

PROCEEDINGS
OF THE

DIGITAL EQUIPMENT
COMPUTER USERS

SOCIETY
Vol. 5, No. 2

g]
PAPERS AND PRESENTATIONS
USA FALL 1978

1978 FALL DECUS U.S.
SAN FRANCISCO HILTON HOTEL
SAN FRANCISCO, CALIFORNIA
NOVEMBER 27-30, 1978

Copyright© 1979, Digital Equipment Corporation

Maynard, Massachusetts

ISSN 0095-2095

Digital Equipment Corporation assumes no

responsibility for the articles which appear

in this document.

The following are trademarks of Digital Equipment Corporation:

COMPUTER LABS DIGITAL
CO MT EX EDUSYSTEM
DDT FLIP CHIP
DEC FOCAL
DECCOMM IAS
DECsystem-10 INDAC
DECSYSTEM-20 LAB-8
DECTAPE MASSBUS
DEC US OMNIBUS
DIBOL OS/8

4/?9-14

PDP
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
UNIBUS
VAX
VMS

FOREWORD

This journal is a publication of the Digital Equipment Computer Users Society, a world-wide society of users of computers
manufactured by Digital Equipment Corporation. The Society has at present more than 33,000 members, and has offices in
Geneva, Switzerland; Kanata, Ontario, Canada; and Crows Nest, Australia as well as headquarter offices in Marlboro,
Massachusetts, U.S.A.

The Society maintains a library of programs for interchange between members, and organizes meetings on local, national, and
international scales to fulfill its primary functions of advancing the art of computation and of providing means of interchange
of information and ideas between members. Five major technical Symposia are at present held annually, one each in Canada,
Australia, and Europe, and two in the United States.

This journal consists of an annual volume in five parts, each the Proceedings of one of the annual DECUS Symposia.
The issues are numbered according to the sequence in which the Symposia take place.

No. 1 - DECUS Europe Symposium
No. 2 - DECUS U.S. Fall Symposium
No. 3 - DECUS Canada Symposium
No. 4 - DECUS U.S. Spring Symposium
No. 5 - DECUS Australia Symposium

A cumulative index for the volume will be published with Number 5.

Proceedings for Symposia held prior to September 1974 are not assimilated into the series.
In addition, all past Proceedings are available on microfilm from:

Europe and Eastern Hemisphere:

University Microfilms International
18 Bedford Row
London WCl R-4EJ, England

All Others:

University Microfilms International
300 North Zeeb Road
Ann Arbor, Michigan 48106

For details of subscription rates for the Proceedings, of back-issues availability, and of forthcoming DECUS Symposia,
contact one of the following:

CHAPTER OFFICES

Australia/NZ:

DECUS Australia
P.O. Box 491
Crows Nest, N.S.W. 2065
Australia

Canada:

DECUS Canada
P.O. Box 11500
Ottawa, Ontario K2H 8K8
Canada

Europe/Middle East: U.S. and All Others:

DECUS Europe DECUS U.S.
12, avenue des Morgines One Iron Way
C.P. 510 Marlboro, MA 01752
CH-1213 Petit-Laney 1, Geneva U.S.A.
Switzerland

TABLE OF CONTENTS

PDP-11 SOFTWARE RSTS
Page

OPERATING SYSTEMS, LANGUAGES & UTILITIES

A SIMPLE INDIRECT COMMAND Fl LE PROCESSOR
FOR RSTS/E
N. Seethoff 559

TEDIT: A SIMPLE ALTERNATIVE
D. Portz

PERFORMANCE MEASUREMENT OF
TERMINAL-ORIENTED SYSTEMS
M. Dashevsky, T. Evans

RSTS/E APPLICATION LIBRARY: CONCEPTS
IN STRUCTURE AND CONTENT
J.A. Hayes

HOW TO PRODUCE AND DEVELOP YOUR
OWN RSTS/E PUBLICATIONS

563

567

571

J.A. Hayes 579

RSTS/E SYSTEM CALLS FROM PASCAL AND
FORTRAN
D.M. Vann . .

NETWORKING

X.25 PACKET SWITCHING NETWORK AND
RSTS/E TIME SHARING
LR. Irons

EDUCATION APPLICATIONS

SCHEDULING STUDENT ASSISTANTS IN THE
COMPUTING LABORATORY

. 587

. 589

J.D. Rose 595

CURRICULUM INTEGRATION AND USER
SUPPORT OF RSTS IN A SMALL BUSINESS
COLLEGE
A. K. Lash 599

COMMERCIAL APPLICATIONS, DBMS

ON·TARGET-AN EFFECTIVE BOTTOM-UP
APPROACH TO SHOP CONTROL
N.J. Viehmann 605

ODMS: A DATA MANAGEMENT SYSTEM
UNDER RSTS/E
P. Tofil, C. Darling, T.E. Moriarty,
R.B. Enders, P.J. Cruson 615

iii

Page

PDP-11 SOFTWARE RSX-11

OPERATING SYSTEMS, LANGUAGES AND UTILITIES

OVERLAP SEEK DISK DRIVER
P.J. Wirtz 623

IAS TIMESHARING CONTROL SERVICES AND
PROGRAM DEVELOPMENT
E.A. Johnson 625

AN IMPLEMENTATION OF BASIC USING
MACR0-11
J. Clemens 629

CONVERSION OF VERY LARGE PROGRAMS
TO RSX-11 BASED SYSTEMS
S.R. Deller.

RUNNING 'REAL-TIME' WITH IAS
E. Bolson, M. Frimer

REPLACING MCA IN AN OEM ENVIRONMENT

637

653

D.M. Kristo! 657

THE DEC FORTRAN ENVIRONMENT FOR
BUSINESS APPLICATIONS
D.J. Hirschfeld 663

NETWORKING

SIZING AND PLANNING A DECNET NETWORK
R. Pigman, W. Lahtinen 665

ENGINEERING AND SCIENTIFIC APPLICATIONS

A SOFTWARE DEVELOPMENT SYSTEM FOR
SMALL DEDICATED AND FRONT-END
MICROCOMPUTER (LSl-11) APPLICATIONS*
J.W. Tippie, P.E. Rynes 671

ACCELERATOR CONTROL USING RSX-11M
AND CAMAC
J.E. Kulaga 675

BUREAU OF MINES DATA ACQUISITION AND
PROCESSING SYSTEM
D.N.H. Chi, H.E. Perlee 681

INTERACTIVE GRAPHICS SUPPORT FOR
MINICOMPUTER SYSTEMS
S.J. Choy 687

PDP-11 IMPLEMENTATION OF A PROPOSED
ANSI DATA EXCHANGE STANDARD
E.R. Hill, J. Bower, P.J. Dionne, A. Medford,
D.Mdhi~n 693

Page

PDP-11 SOFTWARE RT-11

OPERATING SYSTEMS, LANGUAGES AND UTILITIES

A MEMORY RESIDENT OVERLAY HANDLER
FOR RT-11V3
D. Ritchie, Y. Kang

SOFTWARE DEVELOPMENT FOR A SIGNAL
PROCESSING TASK: A COMPARISON OF
LABFORTH WITH FORTRAN AND ASSEMBLY
LANGUAGE
R.M. Harper, D.J. Sirag

TIME SHARE TERMINAL EMULATOR
UNDER RT-11

701

707

T.L. Starr, L.T. Nieh . . . 711

ENGINEERING AND SCIENTIFIC APPLICATIONS

BEINll: ON-LINE BEHAVIOR INPUT
S. Walker, M. Reite 715

ATOMIC ABSORPTION SPECTROMETER
READOUT AND DATA REDUCTION USING
THE LSl-11 MICROCOMPUTER
M.J. Allen, R.W. Wikkerink 719

APPLICATION OF MU-BASIC, VIRTUAL FILES
TO MARINE CHEMICAL RESEARCH
G. Kerr

GT-43 AIRPLANE FLIGHT SIMULATION
C.F. Kyle, P. Sherrod . . .

PDP-11 HARDWARE
AN INEXPENSIVE SYSTEM FOR DIGITIZING
PICTORIAL INFORMATION

727

733

C. Kapps 735

THE MIK-11: INSTRUMENTATION INTERFACING
MADE SIMPLE
D. Abbott 751

HIGH SPEED SQUARE-ROOTING BY
IN-FIELD ENHANCEMENT OF A PDP-11 /45FPP
G.A. Moyle,* N.M. Wilson* 755

THE NEUROSCIENCE DISPLAY PROCESSOR
MODEL2
J.J. Capowski 763

iv

Page

PDP -8 SOFTWARE

OPERATING SYSTEMS, LANGUAGES AND UTILITIES

THE REAL-TIME CAPABILITY OF THE
EDUCOMP TIMESHARED OPERATING SYSTEM
D.C. Buddenhagen 767

SIMPLE MULTl-OS/8 BACKGROUND SHARING
UNDER RTS-8
C.T. Teague, E.W. Yund, J.W. Brodrick 775

ENGINEERING AND SCIENTIFIC APPLICATIONS

MICROPROCESSOR BASED OCEAN BOTIOM
SEISMOMETER
R.D. Moore, C.-Y. Huang 781

CMOS DATA ACQUISITION SYSTEM OF
OFFSHORE OIL RIGS
J.M. Kracik ... 787

PDP-8/E DEVELOPMENT SYSTEM FOR
BIT-SLICE MICROPROCESSORS
D.F. Gluntz 793

THE GDP-12 GEOPHYSICAL DATA
ACQUISITION SYSTEM
R.B. Staley, R.B. Clark, K.L. Zonge 799

GENERAL PAPERS

LANGUAGES AND UTILITIES

IN INTRODUCTION TO PASCAL FOR BASIC
AND FORTRAN PROGRAMMERS
J.A. Krupp 803

LSl-11 WRITABLE CONTROL STORE
ENHANCEMENTS TO U.C.S.D. PASCAL
G. Smith, R. Anderson 813

PASCAL/P-CODE CROSS COMPILER FOR THE
LSl-11 *
B.L. Hitson

BLISS COMPILER OPTIMIZATION TECHNIQUES

819

A.P. Lehotsky 825

ACCURATE DESCRIPTION OF SYSTEM
STRUCTURE - A NEW STANDARD FOR
LANGUAGE QUALITY
E.S. Lowry ... 833

PUTTING THE NAG LIBRARY ON THE
VAX 11/780

Page

B. Ford, S.J. Hague, S. Vaughn 841

MATHEMATICAL- STATISTICAL LIBRARIES:
STATE-OF-THE-ART
T.J. Aird

NUMERICAL METHODS IN LABORATORY
MEDICINE USING THE MUMPS PROGRAMMING
LANGUAGE

847

F.B. Griffith 851

CHARACTERIZATION OF PDP-11
PSEUDO-RANDOM NUMBER GENERATORS(a)
P.R. Nicholson lb), J.M. Thomas, C.R. Watson 853

NETWORKING

NET-A POWERFUL FILE-TRANSFER FACILITY*
R.D. Burris, C.E. Hammons, C.O. Kemper . 865

ENGINEERING, SCIENTIFIC AND MEDICAL
APPLICATIONS

POLYNOMIAL OF DEGREE N-1 FROM N
DATA POINTS
G. Roux

ATROPOS-A VERSATILE DATA ACQUISITION
AND ANALYSIS SYSTEM+
C.A. Logg, R.L.A. Cottrell

MUMPS/IDS OPTOMETRIC OUT-PATIENT
TURNKEY INSTALLATION - A CASE HISTORY
R. Dippner

GRAPHICS

STANDARDIZATION IN COMPUTER GRAPHICS
AN OVERVIEW
R.E. Fryer

A GENERALIZED PLOTTING FACILITY*
R.D. Burris, W.H. Gray

DESIGN CONSIDERATIONS AND PHILOSOPHY
OF A DEVICE - INDEPENDENT PUBLICATIONS/
GRAPHICS SYSTEM

873

875

883

887

891

J.S. Burt 899

EDUCATION

A SPECIAL PURPOSE LANGUAGE (STATUS)
FOR TEACHING STATISTICS: SOME OF ITS
DESIGN PRINCIPLES, AND VALUES AS AN
EDUCATIONAL TOOL
J.C. Turner . 915

v

ENGLISH STRANDS
E. Leventhal . . .

A PROPOSAL ON THE FUTURE DIRECTION
OF COMPUTER ASSISTED INSTRUCTION

Page

921

B.G. Alcock 925

COMMERICAL APPLICATIONS, OFFICE
AUTOMATION

ELECTRONIC MAIL SYSTEM
R. Andreoli, J. Melnick

COMPUTERIZED FINANCIAL ACCOUNTING:
JOURNAL ENTRIES THROUGH FINANCIAL
STATEMENTS

. 929

C.P. Carter 933

APPENDIX A
(Papers presented at 1978 Spring DECUS Meeting)

A SYSTEM ACCOUNTING PACKAGE FOR
RSX-11M
G. Bernstein, C. Granja, A. Brown A-1

'RDCL' REMOTE DEVICE VIA COMMUNICATION
LINK
A. Brown, G. Bernstein ... A-7

A MULTI - DETECTOR PULSE - HEIGHT
ANALYSIS SYSTEM
C.P.J. Kelly, D. Stafford, A.J. Hulbert . .

A MULTI-USER, MULTI-DETECTOR PULSE
HEIGHT ANALYSIS/GAMMA CAMERA DATA
COLLECTION SYSTEM USING CAMAC AND
PLAS
D. Stafford, C.P.J. Kelly, A.J. Hulbert .

APPENDIX B

. A-15

. A-21

AUTHOR/SPEAKER INDEX B-1

PAPERS NOT SUBMITTED FOR
PUBLICATION . . B-3

ATTENDANCE LIST B-5

A SIMPLE INDIRECT COMMAND FILE PROCESSOR

FOR RSTS/E

Norm Seethoff
John Fluke Manufacturing Company

Seattle, Washington

ABSTRACT

A few modifications to the BUILD program
(distributed with all RSTS kits) are described. The
modified BUILD program will execute commands from a
file, saving the user from typing long or repetive
input strings. This program is especially suitable
for use with BACKUP, and an example shows how to
automate BACKUP commands.

INTRODUCTION

BEGIN is a utility program designed to
execute a named command file from any RSTS
terminal. This capability permits a user
to specify a file name from which commands
are to be read and executed as if they were
typed directly from the terminal. BEGIN is
an alternative to typing in a lengthy
series of commands for repetitive
operations such as large assemblies,
compilations and program linking. It is
also very useful for applications in which
another program can generate a complex
sequence of commands to be executed by an
inexperienced operator using BEGIN. In
addition to command file exectuion, BEGIN
presently offers the capability for one
wild card string replacement and three
private logical device assignments.

EXAMPLES

FORTRAN Compilation
As an example, assume that the
EXAMPL.CTL contains the following:

!Sample Command File for BEGIN
RUN $FORTRAN
O:TEST,L:TEST:I:TEST/L:?
A

Q LP:EXAMPL:L:TEST/NH/DE

file

When executed with the following commands
(user entries are in bold type):

RUN &BEGIN
BEGIN Ver. 1.0 RSTS V06C John Fluke Mfg
BEGIN>EXAMPL,SRC,DRO,DRO,DR1

The following command dialogue takes place
(commands generated by BEGIN are
underlined):

Proceedings of the Digital Equipment Computer Users Society 559

RUN &BEGIN
BEGIN Ver. 1.0 RSTS V06C John Fluke Mfg
BEGIN>EXAMPL,SRC,DRO,DRO,DR1
_:'_Q
ll..lJ&
RSTS V06C John Fluke Mfg Job 17 KBO
#100.100
Password:
Job 10 is detached under this account
Job numer to attach to?
1 other user is logged in
Ready
ASSIGN DRO:I
Ready
ASSIGN DRO:O
Ready
ASSIGN DRl:L
Ready
I Sample Command File for BEGIN
RUN $FORTRAN
*O:TEST.L:TEST:I:TEST/L:SRC
. MAIN..
*.:Z.
Ready
Q LP:EAAMPL:L:TEST/NH/DE
Ready
BEGIN Complete

System Disk Backup
BEGIN is a useful aid in the automation of
disk backups. The following example shows
the use of BEGIN to perform a system disk
backup by executing a command file
generated by yet another program. By using
a separate program to generate the command
file, a shell of commands can be
constructed and the actual variable
parameters (BACKUP setname, expiration
date, etc.) can be filled in by the
program. Use of such an approach for
system backup minimizes the chances of
operator errors during the backup. For
clarity, the commands generated by BEGIN
are underlined. User entries are in bold
type.

San Franciaco - November 1978

RUN SYSBAK
Today's backup set tapes are:

THUDRO
THU DR 1

To back up the system disks, enter
the following commands:

For DRO enter:
BEGIN DR1:DRO

For DR1 enter:
BEGIN DRO:DR1

After you have completed the disk
backup, enter the following command to
QUE the listings and delete the scratch
disk files:

BEGIN DR1:BACKUP
Have at it•..•..
Ready

BEGIN DR1:DRO
.:..c.
.!ifil,J,Q
RSTS V06C John Fluke Mfg Job 17 KBO
ii J.L1.Q...Q.
Password:
Job 9 is detached under this account
Job number to attach to?
1 other user is logged in
Ready
! BEGIN control file for system
l

J_
disk backu.11

l Mount the first volume of backup
I set THUDRO on MTO:
RUN $BACKUP
BACKUP V06C-03A
BAC[KUP] OR RES[TORE]?
WORK FILE NAME?
LISTING FILE<KB:>?
FROM DISK<SY:>?
FROM FILES<[1,100]*.*>?
TO DEVICE<MT:>?
BEGIN AT<[*,*]*.*>?
DELETE FILES<NONE>?
COMPARE FILES<NONE>?
II

BACKUP SET NAME<THUDRO>?
EXP DATE<26-0CT-79>?
DENSITY IN BPI<BOO>?
PARITY<ODD>?
MOUNT DEVICE:

ID:
SEQ/I:

DENSITY:
PARITY:

BACKUP
DR1 :THUDRO.WRK
DR1 :THUDRO.LST
DRO:
[II •II J II. I
MT:
[II I II] II • II

NONE
NONE

1.1J..l.illJ1.Q.
01-NOV-7B

.§_Q_Q_
ODD
MT:
THUDRO
1
Boo BPI
ODD

IDENTIFICATION WILL BE
DEVICE? M..l'..Q_;_

FINAL UPON MOUNT

II

DISMOUNT DEVICE:
ID:

SEQ/I:
DENSITY:

PARITY:
EXPIRATION DATE:
PLEASE LABEL THIS
II

BEGIN Complete

VOLUME!

MTO:
THUDRO
1
Boo BPI
ODD
01-NOV-7B

560

USAGE

When run, BEGIN displays:

BEGIN>

as a prompt for entry of the name of the
command file to be executed, an optional
wild card string replacement, and three
logical device names for device assignment.
CCL entry is also supported. The format of
the user entry is:

cmndfile,wildcrd,logdevI,logdevO,logdevL

where cmndfile is the name of the command
file to be executed; wildcrd is the
wildcard replacement string; logdevI,
logdevO, and logdevL are the the physical
devices to be associated with logical
devices I:, O:, and L:. All parameters
specified must be separated by commas.
Note that this prohibits the use of commas
in the wildcard string. The default
command file extension is 'CTL'. The
default wildcard string is null. There are
no default parameters supplied for device
assignment. If a wildcard replacement
string is supplied for substititution, this
string will be used to replace to all
occurrences of '?' in the command file
being executed. If device names are
supplied for logical assignment, they are
assigned to the logical names I, O, and L.
This permits one wildcard replacement
string and up to three logical device
assignment names to be passed to the
command file being executed. All
occurrences of a single ,., in the command
file will be replaced by a control Z
character. A ,., followed by an ASCII
capital letter will be converted to the
equivalent ASCII control character. Null
parameters are allowed. BEGIN is capable
of detecting the entry of a control C on
the terminal and terminating without
executing the remainder of the command
file.

OPERATION

The sequence of operations performed by
BEGIN is nearly identical to those
performed by BUILD. Normal operation of
BEGIN is as follows:

1) Determine the job number and keyboard
number of the job initiating BEGIN.

2) Issue command entry prompt, input
command line, and parse to extract
parameters (unless invoked by a CCL
command and the parameters were passed
in the CCL command).

3) Copy the command file to a temporary
file. The temporary file is then
closed, re-opened for input, and marked
for deletion at completion.

4) BEGIN then detaches from the user's
terminal.

5)

6)

7)

Running detached, BEGIN then
the terminal (under the same
number) from which it detached.

logs in
account

Any logical device assignments
specified in the parameter list are
then forced to the terminal.

All commands contained in the
file are forced to the

command
terminal.

Command lines beginning with a 'I' in
column one are broadcast (rather than
forced) to increase the processing
speed of these comment lines. All
occurrences of a single 'A' are
converted to control Z characters; all
occurrences of 'A' followed by a valid
ASCII letter are converted to the
equivalent ASCII control character.
Execution continues at this step until
the end of the command file is reached
or a control C is entered on the
terminal by the user.

8) If a control C is detected, an
appropriate message is broadcast to the
terminal and the detached job kills
itself.

9) When the end of the command file is
reached, a message is broadcast to the
controlled job indicating completion
and the detached job then kills itself.

AVAILABILITY

Copies of this document and the source of
the APPEND file have been submitted to the
RSTS SIG Library. The SYSBAK program used
to generate the indirect command files for
system backups using BEGIN has also
submitted to the SIG Library.

561

TEDIT: A SIMPLE ALTERNATIVE

Donna Portz
Academic Computing Services

Arizona State University
Tempe, Arizona 85281

ABSTRACT

TEDIT is an ideal text editor for students and novice computer
users. It's appeal is derived from its simplicity, ease
of usage, line orientation, and minimal number of commands.
Enhancements to the original version have made this editor
more versatile without losing its simplicity. Users can
learn it with minimal time investment and optionally utilize
features characteristic of more sophisticated editors.

INTRODUCTION

Text editors should be at sale prices these days
due to their abundance on many computer systems.
For instance, the PDP 11/70 system at Arizona
State University emerged with EDIT, TECO, SOS,
TEDIT and, more recently, EDT, the DEC Common
Editor. But numbers alone are secondary to the
practice that every editor written tries to
outdo its predeccessors in capabilities.
Learning some text editors is like learning a
higher level language, with READ, WRITE, and DO
loop command equivalents being just a taste of
what lies ahead for the unsuspecting user.

WHY TEDIT?

At Arizona State University, three PDP 11/70
computers running RSTS/E are used primarily for
classroom instruction with the majority of
classes learning a programming language. Since
ASU has no batch facilities into these machines,
all input must be accomplished through timesharing
terminals. Programs and data in Fortran or Cobol
must be entered via a text editor. For many
classes, use of terminals and text editing is a
new experience from the batch processing procedures
they previously used, Instead of learning to
keypunch, students now must learn to edit. It was
imperative that editing be an easy task and
maintain a low profile as a means to the final
end product, not burdening the learning process,

With all the editing power that was available,
a choice had to be made. Which editor was the
best for students and novice users? It had to
be simple to learn, easy to use, preferably
line oriented, and contain a minimal number of
commands to do the job. TEDIT fit the requirements
best.

INTRODUCING TEDIT

Still available through the DECUS library as EDIT,
TEDIT, was written originally by William H.
Blake of Purdue University. Enhancements were

Proceedings of the Digital Equipment Computer Users Society 563

added by Brian Nelson of the University of
Toledo, and Rick Catron of ASU to make the version
of TEDIT currently used at ASU. The remainder
of this discussion describes ASU's TEDIT.

Signing On

TEDIT is easy to enter when creating a file for the
first time. In the example below the user response
is underlined:

TED IT
Tedit Version 6.5
Filename? LABl.FOR
Creating file LABl.FOR

*
When a previously created file is to be edited,
the signon procedure is identical except that the
output line "Creating file ••. " becomes "Editing
file ••• ". Thus the student always knows whether
the filename given previously exists or not.
This feature was added at ASU. The asterisk (*)
indicates TEDIT is ready for commands.

Command Overview

TEDIT has seven commands that allow the user to
accomplish any editing task. They are: INSERT,
LIST, DELETE, SEARCH, CHANGE, REPLACE, and END.
Some of the commands may be combined to imitate
more sophisticated manipulations typical of
larger editors. These features will be discussed
later. Use of TEDIT commands is illustrated in
Figure 1.

All TEDIT commands have the same general format to
lessen the confusion:

command name lines/filename

For example:

LIST 10
DELETE 7,9
INSERT 20/NEW.DAT

Command names may b.e the complete name or a one
letter abbreviation which is the first letter of
the command name, e.g. I for INSERT, L for LIST,
etc. The minimal form of the command allowed
is just a command name or abbreviation. The lines

San Francisco - November 1978

and filename field are optional depending on the
intended use.

Line Numbers

TEDIT line numbers may be specified in 3 ways:

a) (blank) no line number given
b) n a single line
c) n,m a group of lines

Format a) assumes all lines or the entire file.
Format b) allows one line to be referenced, and
Format c) an inclusive range of lines beginning
with "n" and ending with "m". Line numbers
cannot exceed the file's range with one exception.
The user may append lines to the end of a file by
specifying a line number one greater than the
last line. In addition, the letter 'L' may be used
to represent the last line number of the file,
which prevents the user from giving an out-of
range line number and receiving an error, as in:

LIST 25,L

Both the last line plus one and 'L' specifications
are enhancements to the original version. Use
of the filename field will be discussed later.

Editing Modes

TEDIT has two operational modes: command level
(or editing) mode and text insertion. The INSERT
and CHANGE commands automatically put the TEDIT
user in text insertion mode (see Figure 1). TEDIT
provides line numbers as each line is entered,
however, the line numbers do not remain with the
file upon exit from TEDIT.

Positioning

TEDIT has no pointer to reference. It can be
assumed that the user is positioned at the
beginning of the file after each command is
completed. Lines are renumbered immediately after
a command is executed. There is no relative
positioning; absolute line numbers are used to
reach the desired line of text.

Command Functions

Please refer to Figure 1 for examples of command
usage.

INSERT is used to enter new lines of text into the
file. Only the command or abbreviation (I) is
used when first creating text lines. When a line
number is specified in the command, the new text
is inserted before the line specified. After
typing INSERT, TEDIT prints a line number and a
greater than character (), referred to hereafter
as a "prompt" character, and waits for the input
line to be typed. TEDIT continues to solicit
new lines by printing line numbers in sequential
order followed by a prompt character. The process
is terminated by a Control/Z. Note the Control/Z
character is not entered in the file. Line
renumbering occurs immediately and the user is left
in command mode (*). As mentioned previously,
new lines may be appended to the end of the file
by specifying a line number one greater than
the actual last line number.

564

!d§! allows the contents of the lines specified
to be printed at the terminal unless a filename
is given in the command. The entire file may
be listed by omitting the line number field.
Control/O is used to terminate the output
prematurely.

DELETE is used to eliminate lines no longer needed
in the file. A user will generally utilize
line numbers with this command. Without line
numbers specified, DELETE will eliminate the entire
file. To prevent accidental destruction, TEDIT
asks the user to confirm this situation with a
"YES" reply. If the file is deleted, TEDIT will
terminate. Lines are renumbered immediately after
selective deletion occurs.

CHANGE provides the TEDIT user with a combination
DELETE and INSERT sequence. The lines specified
are deleted first, then, TEDIT solicits the user
for replacement lines (similar to the INSERT
command). Insertions are terminated by a
Control/Z. Line renumbering occurs immediately
after.

REPLACE is used to replace character strings in
a file with a new string. After receiving the
command, TEDIT responds with "Old character(s)?".
The user types the characters he wants replaced.
Then TEDIT prints "New character(s)?" and waits
for the replacement string. Each line in which
a replacement occurs is printed.

SEARCH allows the TEDIT user to locate a specific
character string. When the command is typed,
TEDIT prints "Character(s)?" and waits for the user
to supply the target string (including blanks if
needed). The lines containing the matched string
are printed at the terminal unless a filename was
given in the command.

END command terminates TEDIT upon completion of
editing. It is used without the line number and
filename fields. If the file being used was just
created in this edit session, TEDIT is exited
immediately. If a file was created in a previous
session, TEDIT responds with "Output file?". The
user types a carriage return if he wants the
updates to replace the previous text in the file
originally edited. The original input text
may be retained if the user specifies a different
filename to hold the edited text. This is
particularly useful if the user has made a bad
editing error and wants the original text back.
In this case the output file can be deleted. END
should always be used for a normal exit since
TEDIT edits a temporary file and copies the
contents to the user's file when END is used.

Alternate File Usage

The filename portion of TEDIT commands enhances
the capability of TEDIT. Depending upon the
command, the filename given may act as an alternate
input or output file. With the INSERT and CHANGE
commands, it acts as an input file, that is the
contents of the file are inserted into the file
being edited before the line specified. E.g.
INSERT 15/NEW.DAT would insert the contents of
NEW.DAT before line 15. The filename field acts
as an output file with LIST, DELETE, and SEARCH.
No output lines are printed at the terminal when
alternate files are used.

Special Commands

Four specialized commands have been added to the
original version:

?L or ?LAST LINE

?F or ?FILENAME

!HEADER

!TIME

returns the line number of
the last line of the file

returns the name of the file
currently being worked on

produces a heading showing
column numbers. No abbrevia
tions are allowed.

displays the current time of
day. No abbreviations are
allowed.

The HEADER and TIME commands may be used at
command level "*" or while inserting text.

Simulated Commands

A "move" and "ditto" command may be effected by
using pairs of the basic TEDIT commands along with
an alternate file specification. A move is
accomplished, for example, by:

DELETE
INSERT

25,30/MOVE.TXT
50/MOVE.TXT

In the above example lines 25 through 30 were
"moved" to precede line 50 with the aid of an
alternate file. Similarly a "ditto" is performed
by:

LIST 25,30/DITTO.TXT
INSERT 50/DITTO.TXT

In this example lines 25 through 30 were repeated
just before line 50 in the file being edited,

Additional Comments

The following comments pertain to TEDIT usage:

- Editing a previously created file is best
accomplished from the bottom up since
line renumbering occurs after a command
is performed.

- Control/Z may be used to return to command
level "*" when in suboption level, e.g.
when TEDIT is requesting character strings
for the SEARCH and REPLACE commands. Also,
Control/Z will return the user to command
level when "Output file?" is solicited by
TEDIT.

- When an input file lacks an extension, TEDIT
searches the user file directory for a file
with the same filename and a null extension.
If a match is not found, the user's directory
is searched from the beginning for a file of
the same name but with a valid source file
extension (APL, B2S, BAS, CBL, CMD, CTL,
DAT, DOC, FOR, FTN, MAC, SRC, TXT). If a
match is found, TEDIT opens the file for edit
ing. If no match occurs, TEDIT will create
a new file.

565

ASU TEDIT Details

TEDIT was converted to BASIC-PLUS 2 for increased
efficiency. It executes approximately 40% faster
than when it was run under BASIC-PLUS (Personal
Communication Rick Catron). Storage requirements
are about llK under BASIC-2. Under BASIC-PLUS
(extend mode) it required about 13K. TEDIT
will handle a maximum of 256 characters per single
line and allows variable line lengths with a maximum
capacity of 246,000 characters.

CONCLUSIONS

TEDIT meets the requirements of an easy to use
student text editor. Its simplicity allows
even novice users to learn it quickly and readily.
Because it is line oriented, the author thinks
it adapts well to the type of usage it receives
at ASU. It is less confusing than character
oriented editors.

The author found the DEC Common Editor was too
complex for student use. Its command formats
and abbreviations are variable; some command
functions are redundant and unclear in absolute
function; and the subcommand level for string
manipulations is far too sophisticated for novices.
The character editor, EDIT, is awkward in handling
buffers and keeping track of "Dot" requires as
much time as the editing session itself.

TEDIT can be utilized in its most elementary form
by means of seven basic commands. Additional
editing power is an optional feature for those
who choose to utilize it. A minimal investment
in time is required.

REFERENCES

1. DEC EDITOR Reference Manual, Digital Equipment
Corporation, Maynard, Mass., 1977.

2. PDP Information Packet, Copyright 1978 Arizona
Board of Regents, Academic Computing Services,
Arizona State University, Tempe.

3. RSTS/E Text Editor Manual, Digital Equipment
Corporation, Maynard, Mass., 1977.

ACKNOWLEDGEMENTS

The author wishes to thank Jim Brodie of ASU for
his helpful ideas and notes in preparing this
manuscript. Thanks also are due to Rick Catron,
formerly of ASU, for information on enhancements
made to TEDIT and to Brian Nelson, University
of Toledo for his contributions to TEDIT. Lastly,
thanks are in order to William Blake of Purdue,
without whom this paper would not have been
presented.

TEDIT
Tedit Ver. 6.5
File name? GETTYS.ADD
Creating file GETTYS.ADD

*I
Type CTRL/Z to stop insertions.

l >FOUR SCCORE AND SEVEN

*END

Ready

TEDIT

2 >YEARS AGO OUR PHOREFATHERS
3 >THIS IS AN EXTRA LINE
4 >BTROUGHT FORTH ON THIS
5 >CONTINENT A NEW
6 >CONCIEVED IN LBIERTY AND
7 >DEDICATED TO THE PROPOSITION
8)AZ

Tedit Ver. 6.5
File name? GETTYS.ADD
Editing file GETTYS.ADD

*L

*I 8

l >FOUR SCCORE AND SEVEN
2 >YEARS AGO OUR PHOREFATHERS
3 >THIS IS AN EXTRA LINE
4 >BTROUGHT FORTH ON THIS
5 >CONTINENT A NEW
6 >CONCIEVED IN LBIERTY AND
7 >DEDICATED TO THE PROPOSITION

Type CTRL/Z to stop insertions.

*R 6

8 >THAT ALL WOMEN ARE CREATED EQUAL
9)AZ

Old character(s)? bi
New character(s)? ib
*L 6

6 >CONCIEVED IN LBIERTY AND
*R 6
Old character(s)? BI
New character(s)? IB

6 >CONCIEVED IN LIBERTY AND

FIGURE 1.

566

*R6
Old character(s)? IE
New character(s)? EI

6 >CONCEIVED IN LIBERTY AND
*C 5
Type CTRL/Z to stop insertions.

5 >continent a new nation·u
CONTINENT A NEW NATION

6)•z

*
INVALID COMMAND
*R 4
Old character(s)? TR
New character(s)? R

*D 3
*R 2

4 >BROUGHT FORTH ON THIS

Old charaCter(s)? PH
New character(s)? F

2 >YEARS AGO OUR FOREFATHERS
*R l
Old character(s)? CC
New character(s)? C

*L

*S

l >FOUR SCORE AND SEVEN

l >FOUR SCORE AND SEVEN
2 >YEARS AGO OUR FOREFATHERS
3 >BROUGHT FORTH ON THIS
4 >CONTINENT A NEW NATION
5 >CONCEIVED IN LIBERTY AND
6 >DEDICATED TO THE PROPOSITION
7 >THAT ALL WOMEN ARE CREATED EQUAL

Character(s)? WOMEN
7 >THAT ALL WOMEN ARE CREATED EQUAL

*R 7
Old character(s)? WO
New character(s)?

7 >THAT ALL MEN ARE CREATED EQUAL
*
R 7
Old character(s)? MEN
New character(s)? MEN

7 >THAT ALL MEN ARE CREATED EQUAL
*END
Output file?

Ready

PERFORMANCE MEASUREMENT OF TERMINAL-ORIENTED SYSTEMS

Marc A, Dashevsky and Thomas G, Evans
Evans Griffiths and Hart, Inc,

Lexington, Massachusetts

ABSTRACT

Computer system performance measurement can play a number
of useful roles, but to measure the performance of a
terminal-oriented application it is necessary to be able
to apply a terminal input load to a number of lines in a
reproducible way, DIALOG is a RSTS/E program developed
for this purpose, Its operation is discussed and some
examples of its use are illustrated,

Computer system performance measurement can play
a number of useful roles, It can aid in "tuning" a
system running a single application or a set of
concurrent applications for improved response time or
throughput. It can be useful in determining hardware
"bottlenecks" and pointing toward changes in system
configuration to alleviate them, For a software
product, it can provide valuable data as to the
capacity of the product to cope with a specified
workload in a specified operating system/hardware
configuration environment, RSTS/E has a quite useful
set of facilities to aid in the collection of such
performance information, pi-imarily the "monitor
statistics" sysgen option and the corresponding
STATUS utility for exhibiting the data thus collected
in a convenient form, A useful introduction to these
facilities is contained in an article on performance
evaluation by Rich Marino in the RSTS-11 SIG
Newsletter (vol, 5, No, 3) for May, 1978, RSX-11M
has no such facilities available as part of the
operating system, but there exists at least one
"task accounting package" (ACCLOG, DECUS 11-329),
which runs under RSX-11M and permits gathering at
least a subset of the performance information
available from RSTS/E.

Given these tools (and a great deal of care,
patience, and cross-checking; interpretation of
performance statistics can be a quite tricky task)
what else is necessary to put an application through
its paces in a controlled, reproducible way? Since
many applications tend to be terminal oriented, we
must have a convenient means of placing a specified
terminal input load on a system, A number of _
facilities to permit such terminal input simulation
have been developed for various computers and
operating systems, For example, ·the SCRIPT program
(part of the User Environment Test Package included
on the RSTS/E V6C kit) is a facility for controlling
programs through simulated terminal input contained
in a sort of command file, or "script", and fed to
the program being controlled via the RSTS/E
pseudo-keyboard facility,

Our requirement, however, was for a mechanism by
which one system could be used to simulate terminal
input on a number of lines into another system on
which only the application of interest is running, so
that clear-cut performance results could be obtained,
What follows is a description of a program called
DIALOG which was developed for this purpose and some
examples of performance results obtained with it,

Proceedings of the Dig/ta/ Equipment Computer Users Society 567

DIALOG is a BASIC-PLUS program which uses the
multiple-terminal feature of the RSTS/E terminal
service to put characters onto output lines which are
plugged into terminal ports on the system to be
driven, and to receive as input on those lines the
terminal outputs of that system, The specification
of the characters to be sent out over the lines being
controlled by DIALOG and those that are expected to
be received is contained in "DIALOG text files"
(,DTF), one for each line, (Note1 the driving
system and driven system may be the same, This may
often be useful for test purposes, though it is
normally quite difficult to disentangle the
performance to be measured from the other activity on
the system,)

DIALOG starts by looking at a specified "DIALOG
control file" (,DCF) which indicates which lines
(i,e, keyboard numbers on the driving system) are to
be used, the name of the ,DTF file to use for each,
and an average input rate (in characters/second)
which DIALOG should attempt to maintain for that
line, A ,DTF file consists of commands indicating
what text and control characters are to be sent on
its associated line by DIALOG, intermixed, as
desired, with commands specifying that DIALOG should
stall execution of the commands in the ,DTF file at
the current point until a specified pattern is found
in the character stream that DIALOG is receiving on
that line, This provides a means of synchronizing as
required the execution of DIALOG and the program or
programs being driven, There are also facilities for
specifying both "overlapped" and "non-overlapped"
delays, simulating several kinds of "user think
time", though these delays are not used in the
performance measurement experiments described below,
The ,IYl'F files may also contain repeat and go-to
commands as well as commands turning on or off
writing to a log file kept by DIALOG, Since a single
DIALOG job uses one I/O channel for multi-terminal
access, and another channel for both the ,DCF file
and the log file, this leaves up to ten channels on
which ,IYl'F files may be open, So, al though DIALOG
could conceivably control as many as 127 lines (the
RSTS/E terminal limit), there is still a limit of ten
unique "dialogues" that may be carried on over these
lines, It is also possible to specify "begin" and
"end" ,DTF-type command files to DIALOG to be
executed before and after the test run specified in
the ,DCF file and its associated ,DTF files, This
makes it possible to execute, say, SYSTAT or STATUS
on the system being driven,

San Francisco - November 1978

DIALOG has a variety of uses; the first version
was developed at EGH to simulate an input load to a
system from a customer's special-purpose terminals,
More recently we have been using the current version
to place an input load on KDSS, EGH's key-to-disk
data entry software package, which exists in both
RSTS/E and RSX-11M versions, and expect to put it to
a variety of other uses, At the time of writing, we
have done a number of experiments in driving KDSS
under various terminal input loads on an 11/35
running RSTS/E or RSX-11M, DIALOG itself, as we have
noted, runs on RSTS/E but there is, of course, no
reason why the system being driven needs to be a
RSTS/E one or even a PDP-11 as long as port-to-port
connection is possible (by, say, a null modem
connecting two EIA ports),

Performance measurements with DIALOG on KDSS are
of interest to us for several reasons, First, it
places us in a position to respond to performance
inquiries with reliable data which is virtually
impossible to obtain in any other way, Customer
experience with KDSS performance is difficult to
extrapolate to new situations because so many things
vary, not least because KDSS is normally running
concurrently with one or more customer-written
applications with which we are unfamiliar, Second, a
range of performance experiments permits us to vary a
number of parameters and examine their effect,
information that gives us a better feel for the
performance costs and benefits of various ways of
using KDSS, For example we conducted an experiment
entering a number of records with a particular data
entry format, following this with the same experiment
modified only by removing from that format all the
prompting text it normally displays, in order to
determine by how much CPU load and disk accesses to
the format library would diminish, In this case it
turned out to be substantial, on the order of a 25%
saving in both, which is the kind of information
helpful to a KDSS user making the tradeoffs involved
in format design,

A typical run from our experiments with KDSS
under RSTS/E using DIALOG consists of (apart from
setup of the system-to-system connections and other
preliminary details) starting up the necessary jobs,
~etting a SYSTAT report, getting a STATUS report
\itself of no special interest), executing the KDSS
experiment specified in the DIALOG control files
(e.g., simulating operators at four terminals, each
entering a 50-record batch using a specified format
and entering specified data into its fields), getting
another STATUS report from the STATUS job which has
been sleeping since the last one, getting another
SYSTAT report, and getting KDSS's own batch status
report, operator statistics report and log, The
printout of these reports forms rather complete
documentation of the run, The most informative
portion of this data is normally the second STATUS
report which provides information on CPU and disk
usage, among other things, in the system being driven
over the interval since the initial report from
STATUS, During this period we insure that only KDSS
is running so that we get "pure" performance numbers,

The procedure used under RSX-11M is similar to
that just described for RSTS/E. ACCLOG is started
and provided with the names of the tasks about which
it is to collect statistics (i,e, the KDSS data entry
task(s) and the KDSS file handler FILTSK), These
tasks are run and data entry is begun, When data
entry is completed, the tasks are terminated and

568

ACCLOG is shut down by running ACCOFF, The file
which contains the statistics accumulated by ACCLOG
is printed, along with the KDSS batch status report,
operator statistics report, and log.

Since, among other things, we want to compare
the performance of the RSTS/E and RSX-11M
implementations of KDSS it must be determined
whether the two different methods of gathering
performance statistics are indeed comparable. Both
STATUS and ACCLOG report what percentage of the time
interval being measured is spent by the CPU (1)
executing monitor code, (2) executing user code, and
(3) in an idle state (STATUS also breaks down the
monitor usage into further categories), STATUS
reports the frequency of disk accesses over this
interval, Although ACCLOG does not report disk
accesses, it collects the number of QIO's issued by
each task being monitored, Since STATUS and ACCLOG
both gather CPU usage information at each clock tick,
it appeared likely that this information would allow
valid comparisons, This was confirmed to our
satisfaction when similar statistics were obtained
by both methods after running identical CPU-bound
test .programs under the two operating systems. It
should be noted that information collected only at
clock ticks has the potential for being misleading
when applied to jobs/tasks which get into or out of
synchronization with the clock in some manner,
Cross-checking results of experiments under various
conditions for consistency is recommended before
placing too much confidence in the results of any
single run, That said, we'll conclude with results
of two representative runs which are consistent with
a set of other experiments under varied conditions,

The machine being driven is a PDP-11/35 with
120KW of memory, RK05 disks, and a DH11 terminal
multiplexer. It runs unmodified RSTS/E V6C, DIALOG
was run on an adjacent PDP-11/40, also with DH11,
and also running RSTS/E V6C. The experiment was a
simulation of eight operators simultaneously
entering 100-record batches (all eight terminals
being handled by one KDSS job) using a data entry
format called EXAMPL, each typing in excess of
12,000 keystrokes/hour, a quite respectable data
entry rate, We consider EXAMPL representative in
terms of prompting text, field edits, etc., and in
fact include it in the KDSS kit as a sample format,
Standard KDSS version 3 was used. The only "tuning"
steps taken were making sure the KDSS batch and
format files on the 11/35 were contiguous and
increasing the output buffer chain limit on the
11/35 for each of the eight lines being driven to 24
to avoid output stalls ("TT state") by the KDSS job,
The lines were set to 9600 baud out from the 11/35
and 110 baud in to it in order to space the arrival
of characters as much like a typing rate as
possible, Briefly, the results shown by STATUS for
the run suggest that even with the relatively slow
RK05's on the 11/35 the process would run out of CPU
capacity before disk capacity; only 2.3 disk
accesses/second were taking place during the run,
Under other circumstances, however, such as frequent
access by KDSS data entry formats to auxiliary jobs
which do heavy file lookup, this situation could
well be reversed, As for CPU usage, the results
were:

5% User :running
21% SYS charged

gfo SYS uncharged
c1f, Lost

65% Idle

100% Total

or, 35% of the CPU time was being consumed, 3c'ff, in
the RSTS/E monitor on behalf of the KDSS job
(presumably mostly in input and output processing
associated with the eight terminal lines) and only 5%
of it in execution of code (all in MACR0-11) in the
KDSS job itself, Finally, the average total
character rate over the eight terminals reported by
STATUS for the period of the run was 27,8
characters/second input (simulated typing) and 189,8
characters/second output (echoing of typed input,
prompting text, cursor positioning, etc,),

The above simulation was repeated with DIALOG
driving the same configuration running RSX-11M, The
experimental conditions were identical to those of
the RSTS/E simulation with three exceptions, First,
the RSX-11M operating system used was standard
version 3,1 except that a set of modifications
contained in the RSX-11M KDSS kit were incorporated
into it at sysgen time, principally to permit
buffering of type-ahead, an essential for high-speed
data entry, Second, the notion of a monitor output
buffer chain quota does not apply to RSX-11M, but
since KDSS under RSX-11M handles its own terminal
output buffering, the KDSS task's own buffer pool was
set to a sufficiently large value (60 128-byte
segments) to insure against output stalls, Third,
ACCLOG rather than STATUS, was the performance
measuring process monitoring system activity, CPU
usage results were as follows:

<Jfo User time
3c'ff, Exec time
61% Null time

10c'ff, Total

Comparing these figures with those from the previous
experiment it can be seen that overall CPU usage
increased from 35% to 3<Jfo while user-mode CPU usage
increased from 5% to gfo, The latter increase is not
surprising considering that under RSX-11M the KDSS
task is performing extensive terminal buffer
management, especially on output, that under RSTS/E
is handled in the monitor's terminal service, It is
perhaps surprising, in view of this shift of
responsibility, that we did not see some corresponding
decrease in exec time,

These results should not be interpreted as a
direct comparison of the performance of RSTS/E and
RSX-11M, While data entry to KDSS under the two
operating systems looks functionally identical to an
opera.tor and while much of the code being executed is
identical, it was necessary to do a number of things
differently because of differences in facilities
provided by the two operating systems, so what is
being compared is the performance of two functionally
identical programs, each implemented with efficiency
under its host opera.ting system in mind, rather than
the performance of two internally identical programs
under the two systems.

569

RSTS/E APPLICATION LIBRARY: CONCEPTS IN
STRUCTURE AND CONTENT

J. A. Hayes, Academic Coordinator
Computer Center

California State University, Northridge
Northridge, California

ABSTRACT

California State University, Northridge Computer Center sup
ports nearly 5,000 RSTS/E users each term. There are two
kinds of users, those who write elementary to intermediate
level programs and those who make use of prewritten applica
tion library programs, For these library program users,
there are a number of ways their interaction with the RSTS/E
application library is made easy to use. For the RSTS/E lib
rarian there are formal library procedures and a unique "lib
rary system" of programs to assist in library management.

INTRODUCTION

The focus of this presentation will examine some
unique concepts in both structure and content of the
RSTS/E program library:

1. The Use of a CCL LIB to Access Programs - To
eliminate users from having to know the location
of the programs, i.e., the PPN's of the file
names.

2. The Concept of a Library System - A group of
programs to provide library maintenance, user
information programs (the on-line INDEX and
SAMPLE EXECUTIONS) and library statistics,

3. Library Procedures - Formal library procedures
to "keep track" of activity via logs and program
history books.

4. The Content of the Library - High quality, user
proof programs provided by stringent, user
oriented Timesharing Library Program Standards
and thorough testing procedures.

These concepts are applicable and transportable to
different sites, both educational and commercial.

HISTORY

The California State University, Northridge Computer
Center academic support staff has had more than 10
years experience with application libraries used by
non-programming users. With a background in 2 time
sharing systems (GE 435 TIMESHARING, dual CDC 3170
ITS TIMESHARING) and one batch (CDC 3170 MASTER)
system where non-programming users have needed to
access 140 to 300 prewritten library programs, we
have, over the years developed well-defined concepts
in structure, procedures and usability of these
libraries.

With the arrival of the PDP 11/45 operating under
RSTS/E in October 1976, we were faced with some
unique problems and unique capabilities for which
we developed solutions unique to the system's cap
abilities. Concepts in library procedures and
content were directly carried over from the pre-

Proceedings of the Digital Equipment Computer Users Society 571

viously established timesharing systems,
Certain user-provided information, such as a lib
rary index and sample executions, were put on-line
for enhanced functionality and updating flexibility.

USE OF A CCL LIB TO ACCESS PROGRAMS

The Problem

On previous timesharing systems, library programs
were entirely "independent" from the account number
of where the programs resided. Users did not pre
viously need to know account numbers of the program
files, It was quite a surprise, of course, to dis
cover that on RSTS/E the user would have to include
the PPN of the library program name for access,

Background

By the time RSTS/E was installed, nearly all the
programmers from our previous statewide timeshar
ing system, which was supported on our site, had
been transferred to the central facility to sup
port both RSTS/E and the incoming new statewide
system, a CDC CYBER 173. In all their infinite
wisdom, the central facility had neglected to pro
cure a support computer for their own staff while
offering to support 19 campus RSTS/E operating
systems and instructional support functions. The
result was that our old friends, our ex-staff mem
bers used our campus PDP 11/45 RSTS/E system to
do development work on. Work was done in the dark
of night after our campus users were off the mach
ine. My compliments go to Tom Hohmann who wrote
most of the programs and to Glenn Dollar who did
all the documentation1 , Likewise, my compliments
go to members of my own staff, Pat Kleinhammer and
Steven Stepanek, who wrote other modules of this
package. The design and resulting structure was
done by the high volume, highly vocal, long argu
mentative method. The results have produced a
stable, well-written, excellently documented pack
age that runs through several versions of RSTS/E
(V5C, V6A, V6B and V6C).

The Solution

The prime objective was to make life easy for the

Sen Francisco - November 1978

non-progrannning user. The application library sys
tem for RSTS/E was designed and implemented to allow
users to access the programs in the application lib
rary by name, eliminating the need for the user to
know the location or PPN where the program resides,
To run a program the user merely types the CCL LIB
followed by the program name he wishes to access.

THE CONCEPT OF A LIBRARY SYSTEM

The secondary objective was to make life easier for
the RSTS/E program librarian, The system of pro
grams behind the LIB CCL:

Provides the linking mechanism from the time
the user types "LIB program-name" to the execu
tion of the program.

Provides library maintenance functions such as
adding, changing and deleting of library pro
grams.

Provides a library utilization program to col
lect statistics on program usage.

Provides an on-line index of library programs
and sample executions of any or all programs
for the user.

The library system consists of four programs,
LIBRUN, LIBMAN, LIBIND, and LIBRPT and one or more
data files. LIBPRG.DIR, is a directory to the
application library and LIBIND.BLK is the index
block used by LIBIND. LIBPRG.DIR contains the Call
Name and a Chain specification for programs in the
library and information used by the index program,
LIBIND.

LIBRUN - The Linking Program

The LIBRUN program is called by the "LIB" CCL and
performs the following functions:

1. Compares the program name entered by the user
with the Call Name entries in LIBPRG.DIR.

2. Upon finding a match collects the appropriate
statistics, if the statistics option is enabled,
and

3. Chains to the program requested by the user.

Statistics, if enabled, are collected into a data
file, LIBDAT.ynnn, where y = last digit of the year
and mm = a 2 digit numerical month. LIBRUN auto
matically creates this file at the beginning of
every month. The file is pre-extended to 40 blocks
allowing for 1209 entries. When LIBRUN normally
records statistics, LIBDAT.ynnn is opened in update
mode. If LIBDAT.ymm is full, the file is opened in
non-update mode and is extended 10 blocks. The
statistics consist of an entry for each call to the
library containing the program name, the date ac
cessed, the time accessed, and the PPN of the cal
ler,

To simplify the design of account independent pro
grams LIBRUN puts the Chain specification into core
connnon in a fixed format. This allows a program to
retrieve the PPN and filename of needed data files
or overlays.

LIBMAN - The Library Maintenance Program

572

LIBMAN, the library maintenance program, allows the
librarian to make modifications to LIBPRG.DIR.
LIBMAN in no way affects the existance of the
actual application program, LIBMAN creates a tem
porary file, LIBPRG.VRL which is deleted by the
EXIT function. All modifications are made to the
temporary file. All input may be abbreviated to
the first three characters. The following commands
are available:

ADD

Allows the librarian to add a Call Name and an
associated Chain specification to LIBPRG.DIR.
The ADD function asks for a Call Name "CALL?" and
a Chain specification "CHAIN?". The librarian
should respond with the name used to call the
program, maximum of 6 RADSO characters, and the
location of the program in the format of a legal
file specification. The program then asks for
Category, Language and Abstract Input File.

The Legal Categories are:

BIOLOGICAL SCIENCES
BUSINESS
CHEMISTRY
DEMOS AND GAMES
EDUCATIONAL APPLICATIONS
ENGINEERING AND COMPUTER SCIENCE
MATH AND STATISTICS
PHYSICS
POLITICAL SCIENCE
SCIENCES, OTHER
UTILITIES

The Legal Languages are:

BASIC-PLUS
FORTRAN IV
MACRO

The abstract (short descriptions of the programs)
input file query may be answered with any legal
file specification. A carriage return indicates
the keyboard. If the abstract is input from the
keyboard, it MUST be terminated with a carriage
return and then a Control-Z. An input file must
be in ASCII format. The maximum length of an
abstract is 498 characters including carriage
returns and line feeds.

An entry CANNOT be added unless ALL the informa
tion is entered,

Allows the librarian to change a Call Name or
associated Chain specification. The CHANGE
function asks for "Call Name?" to which the user
responds with the current Call Name he wishes to
change.

CHANGE then requests the following input:

CALL: <call name>?
CHAIN: <file spec>?
CATEGORY: <category>?
LANGUAGE: <language>?
ABSTRACT: <abstract>?
ABSTRACT OK?

The librarian may change any parameter by typing

the new parameter or leave the parameter "as is" by
entering a carriage return. If the librarian an
swers NO to the "ABSTRACT OK?" query, the program
asks for "ABSTRACT INPUT FILE?"

An entry CANNOT be changed unless ALL information
is entered.

DELETE

Allows the librarian to delete an entry from
LIBPRG.DIR. DELETE asks for a "Call name to
delete?" After the user responds with the program
name to be deleted, DELETE repeats the Call Name
and the Chain specification and then asks "Delete?"
to which the librarian must respond Yes or No.
DELETE removes the entry from LIBPRG.DIR and nulls
the entry in LIBIND.BLK.

EXIT

Sorts the entries in LIBPRG,DIR alphabetically by
Call Name, updates LIBPRG,DIR, deletes LIBPRG,VRL
and then exits LIBMAN. EXIT reports the number of
ADDs, CHANGEs, DELETEs, and total number of entries
in the library directory.

HELP

Lists legal functions.

LIST

Allows the librarian to obtain a list of all Call
Names and associated Chain specifications in
LIBPRG,DIR, LIST asks "OUTPUT TO?" to which the
user can enter any legal file specification. A
carriage return in response to the query indicates
the user's terminal, LIST also reports installa
tion date, language, and category.

LIBIND - The Library INDEX Program

LIBIND, a library index program, allows users to
selectively retrieve information about programs
available on the application library. The user sees
this program by the name INDEX. The "FUNCTION"
query allows the user to specify the method by which
the library information is retrievd, The second
query allows the user to specify a program name,
category name, language name, retrieval date, or out
put filename, An optional switch may be appended to
the second response to specify what information to
print; the default is /S (S for Short), A carriage
return in response to any question will return the
legal responses,

Legal Functions (only the first three characters are
necessary):

CATEGORY

Lists programs by their category (i,e. Business,
Math, etc,). The keyword "ALL" retrieves all pro
grams, Switches are available,

DATE

Allows selection of programs by library entry date.
User inputs the date in RSTS/E format; DD-MMM-YY,
where "DD" is the day, "MMM" is the first three
characters of the month, and "YY" is the last two
digits of the year (i.e. 21-JUN-76), The DATE

673

function is used in conjunction with any other
function and is in effect for the NEXT FUNCTION
ONLY.

EXECUTIONS

Allows printing of a sample execution for a pro
gram on the library. Switches cannot be used by
non-privileged users. Sample executions are taken
from the supplied files ??????.EXE which must re
side in the same account as the associated pro
gram. An undocumented (see the Program listing)
switch enables the librarian to print all sample
executions at the printer. These can be made
available to users as a reference document and
will save valuable connect time.

EXIT

Exits the program.

Prints program instructions.

LANGUAGE

Lists programs by their language (i.e. BASIC-PLUS
FORTRAN, etc.). The keyword "ALL" retrieves all
programs. Switches can be used.

NAME

Lists programs by their library name. The key
word "ALL" retrieves all programs. Switches are
available.

Directs the output for the NEXT function to a
file. The file specification cannot contain a
device or PPN. The OUTPUT function is used in
conjunction with any other function and is in
effect for the NEXT FUNCTION ONLY. A Control-C
will redirect output to the keyboard.

LEGAL SWITCHES

/N Name: Lists only the program name or
names.

IS Short List: Lists program name, language, and
category.

/L Long List: Lists program name, language, date,
category, and abstract.

LIBRPT - The Library Utilization Program

LIBRPT, a library utilization program, produces a
six month report of library usage statistics.
LIBRPT asks for the starting month and year for the
6 month report. If a carriage return is entered
then a 6 month report for the current half-year is
generated. The program also asks "OUTPUT REPORT
TO?" which requires any legal file specification in
response. A carriage return indicates the librari
an's terminal.

The generated report is alphabetical by program
name and contains the number of calls for each of
the six months and the last access date for each
program. Also included is the total number of calls

for each month and a grand total. The program is
also capable of reporting the number of calls by
internal accounts if all internal accounts are less
than a specific Project number and the variable 11P7%"
is changed on line 113 of LIBRPT to indicate the
first non-internal account.

Library Installation Instructions

LIBRUN is called by the CCL "LIB" and therefore must
be installed, in compilied form, in [1,2] with a pro
tection code of 232. LIBMAN, LIBRPT, and LIBIND
should be installed in [3,0]. LIBMAN will also
create the data files in [3,0], where they are expec
ted by LIBRUN and LIBIND.

The installation account or location of the data
files can be changed by program modification. The
statistics option is disabled upon delivery and re
quires a program change to enable. Changeable par
ameters are initialized and documented in the begin
ning of the programs, All programs must be consis
tent with respect to location of programs and data
files.

If an installation does not wish to use the system,
wishes to change the location of any program (lib
rary system or application program), or does not wish
to install ALL programs then a new library directory
and index block must be created using LIBMAN. The
abstract files are needed for this reason only and
are NOT needed by the system for any other reason.

The RSTS/E LIBRARY is designed to use the following
accounts:

ACCOUNT

3,0
3,238
3,239
3,240
3,241
3,242
3,243
3,244
3,245
3,246
3,248
3,249

PURPOSE

LIBRARIAN'S ACCOUNT
COS AP
SCIENCE
DEMOS AND TUTORS
BIOLOGY
SOCIAL SCIENCES
MATHEMATICS
EDUCATIONAL APPLICATIONS
BUSINESS
ENGINEERING
CHEMISTRY
PHYSICS

These accounts must be created before the library is
installed. The program and sample execution files
must be installed in the same account.

LIBRARY PROCEDURES

Apart from the library system of programs, the lib
rarian has formal documented procedures2 to assist
him with library maintenance, These aids help him
"keep track" of what's going on. The formalization
of library procedures has been a result of dealing
with the management of large (140 to 300 numbers of
programs on both previous timesharing systems and
batch systems, With a small number of library pro
grams this kind of structure may not be necessary.
The intent is to document all activities having to
do with an application library.

Library Program Activity Log Procedures

Whenever anything is done to a program (addition,
modification, or deletion) in the RSTS/E Application

574

Library the following entries are made in the Lib
rary Program Activity Log:

, Date
• Program name
• PPN of program
• Name of person performing the activity

Similar entries are made in the RSTS/E Application
Program History Book.

Program History Book Procedures

The purpose of the Program History Book is to supply
detailed information about each program and to re
cord detailed activities with each program. There
are two different kinds of information sheets for
each program:

• Program History Data Sheet

This detailed history of the program and its
characteristics is filled out when installing a
new program. Information on the History Data
Sheet includes:

Program name
Entry date
Program description
Characteristics:

Source Language
Program category
Number of source statements
Core

Source of original program
Original computer and system
Conversion programmer
Conunents

• Program Update Sheet

Entries on the Program Update Sheet are made
whenever a change is made to a program:

Date entered into the library
Documentation change?
New core
Source program changes made
Who entered changes
Reason for change
Current PPN

Library Utilization Procedures

On the last day of each month the librarian runs
the LIBRPT program to generate a 6-month utiliza
tion report reflecting library use for the previous
month and accumulative usage to date,

The LIBRPT program can either be run directly from
the terminal or run via batch using a control file
which can produce an output file and issues a print
request.

Timesharing Program Testing Procedures

It is the function of the librarian to thoroughly
test all programs being submitted to the library.
His responsibility is to make sure the programs
are user-proof and meet the Timesharing Library
Program Standards 3 , The objective is to produce a
high quality product that won't need fixing all the
time. This is a particularly high cost and time
consuming activity - it may take 50 hours of testing

and program change time. The advantages gained in
making sure you have good working programs by thor
ough testing are:

• Happy users who know what to expect in the pro
grams.

• Reduced consulting - very little of our consult
ing has to do with RSTS/E library programs.

• Reduced program "fixing" activity.

More information on testing procedures will be dis
cussed in the following section: The Content of the
Library. -- - --

Updating Library Source Tapes Procedures

Due to the size of the RSTS/E Application Library,
the program sources are not maintained on the system
disk, As programs are added or modified, the sources
are temporarily stored in the library account where
the compiled files and sample executions are stored,
Periodically, the sources are archived on magnetic
tape for back-up and to reduce disk storage.

Two series of tapes are generated: A complete back
up of the library accounts containing all program
sources and individual back-up by program categories.
Program sources on the system disk are then deleted.
The complete back-up tape includes the librarian
accounts where there are current activities in prog
ress (holding areas, testing accounts, DECAL lessons,
and on-line documents) as well as the files for the
library programs themselves including the abstracts
for the Index and Sample Execution file.

Library Program Tape Log Procedures

The Library Program Tape Log provides a tracking
mechanism for the source tapes. Entries include:

• Reel number
• File number
• Tape label description
• Date

Directories are kept with the log.

Summary of Library Procedures

By now, you think we'd run out of procedures. Some
or all of these procedures can be used by a site to
control the library activity. Some of the proce
dures perhaps are not critical - you can "fly by the
seat of your pants" if you want to. Problems will
arise when someone can't remember if something was
done or when you change librarians, or worse, when
library functions are performed by a number of
people. To see the whole picture, a flowchart sum
mary of some of the library procedures is presented
(we are assuming that the program has been completely
tested):

START

MAKE ENTRIES INTO
PROGRAM ACITIVTY LOG

575

MAKE ENTRIES INTO PROGRAM HISTORY BOOK
(PROGRAM HISTORY DATA SHEET

AND
PROGRAM.UPDATE SHEET)

MOVE SOURCES AND RELATED FILES TO
APPROPRIATE LIBRARY ACCOUNT

COMPILE PROGRAM GENERATING .BAC
OR .SAV FILE

MAKE SURE ALL FILES HAVE
PROPER PROTECTIUN CODES

TEST PROGRAM AGAIN TO VERIFY
THAT IT STILL WORKS PROPERLY

CREATE INDEX ABSTRACT (.ABS) FILE
IN [3, 51) WITH PROTECTION CODE 40

RUN LIBMAN IN [3, 0) TO ENTER THE
PROGRAM INTO LIB AND INDEX DIRECTORIES

CREATE A SAMPLE EXECUTION FILE (.CTL)
IN [3, 102) AND SUBMIT TO BATCH

WHILE STILL IN [3, 102), RUN STRIPPING
PROGRAM TO REFORMAT THE FILE INTO A .EXE

FILE. MOVE • EXE FILE TO ACCOUNT
CONTAINING SOURCE PROGRAM.

RUN INDEX TO CHECK ACCURACY OF
PROGRAM ABSTRACT AND SAMPLE EXECUTION

FILE LISTINGS OF ALL PROGRAM SOURCE
AND DOCUMENTATION FILES

FILE LISTING OF SAMPLE EXECUTION

REVIEW CONTENT OF "PROGRAM'' FOLDER
FOR RELEVANT MATERIAL FILE.

DONE!

THE CONTENT OF THE LIBRARY

From our point of view, the library programs are not
just any old programs some one wants on the library
nor do we blindly just put programs on that we get
from other sites. Essentially we're very picky about
what goes on the library. Our goal is to provide
high quality, good, user-proof programs that our
users can rely upon.

Program Acceptance

The factors we consider before accepting a program
for the library include:

• Predicted usage

Will the program be used in a class?
What is the potential number of users?

, Support

Is this a program we want to support?
Is the program submitter willing to offer
support assistance?

, Standards

Can this program be brought up to Time
sharing Library Program Standards?
Is the person submitting the program willing
to bring the program "up to standards"?

Timesharing Library Program Standards

The document "Timesharing Library Program Standards"
3,4,5,5 is a crucial key to the quality of the indi
vidual programs that make up the content of the lib
rary. The standards were designed with the user in
mind, These are not internal programming standards
although we are now encouraging our programmers and
users to abide by the DEC BASIC-PLUS Software
Conventions 9, Our user-oriented standards define
what the user sees, the format of the program and how
the program helps the user respond with the correct
input information,

The structure of "Timesharing Library Program
Standards" first presents standards concepts follow
ed by system (and language) coding specifics, The
primary topics include:

Justification for inclusion in the timesharing
library

, Documentation
Program name (header format)
Program description
Self-contained program instructions
Separate documentation

, Specifications
• Sample data and sample execution
, Programming conventions

Remarks
Credits
ANSI standards

, Requests for user responses
Syntax
Form
Checking the user's responses
Repeating boundary conditions or valid
responses
Data entry from file to terminal, formatted
or free format)

576

File handling
Preferred form of I/O statements
Program interrupt processing

• Program structure suggestions
• Program submissions procedures

Program Testing Procedures

It's not enough for a programmer to say the program
is "up to standards". We've come to know better,
The programmer's intent is good, but the thorough
ness is lacking. The program librarian is respon
sible for complete checkout and testing. Sometimes
very special student assistants are "trained" as
program testers. This alleviates most of very time
consuming "start-up" testing from the librarian and
gives these student-assistants some very valuable
human engineering program experience. It's one
thing to write a program, and it's another thing
to know how to thoroughly test it. Although pro
gram testers are used, the program librarian usu
ally runs a complete test 2 or 3 times also, (Just
checking.)

While the "Timesharing Library Program Standards" is
the primary document a program is tested against,
having student-assistant program testers meant that
we eventually developed a document "Timesharing
Program Testing Procedures", This is a "check off"
list that the librarian uses when reviewing the hard
copy of a program execution from a tester,

Library Content

So what's in our library? Currently there are 140
programs in the following categories:

, Biological Sciences
, Business

Chemistry
• Educational Applications
, Engineering and Computer Science
, Math and Statistics
• Physics

Political Science
, Other Sciences
• Utilities

Besides the very useful INDEX program which provides
our users with a list and description of the lib
rary programs, there is another very special util
ity program. This program is called DOCUME4,5 and
allows users to select on-line publications to be
printed either at the terminal/printer or on the
system line printer. (During peak usage periods
this program is disabled and is used only by in
house staff, Hard copies of these publications are
available during these times,)10

Some programs have come from our users and faculty,
but most of them have been converted from our pre
vious timesharing systems. These programs have
come from Dartmouth, the Huntington I and II pro
jects, the DELTA project, from DEC, from DECUS and
from other sites.

CONCULSION

This paper, "RSTS/E APPLICATION LIBRARY: CONCEPTS
IN STRUCTURE AND CONTENT" has presented many ideas
and helpful hints to managing a timesharing applica
tion library. Some concepts are peculiar to an
educational environment but most of the concepts can

be transported to both educational and commercial
sites. The use of a CCL LIB and the library system
of programs can be very convenient and useful. Lib
rary procedures, even with their formality and forms,
can provide you with a well-managed library. Program
standards and testing procedures can enable you to
produce good software products regardless of the
application.

References

1. Dollar, Glenn and Academic Applications, RSTS/E
LIBRARY SYSTEM, The Division of Informatic;n---
Systems, California State University and
Colleges, and Computer Center, California State
University, Northridge, revised July 1978.

2. Stepanek, Steven, RSTS/E APPLICATION LIBRARY
SUPPORT, Computer Center, California State
University, Northridge, July 1977.

3. Dollar, Glenn; Hohmann, Tom; Hayes, J. A.;
TIMESHARING LIBRARY PROGRAM STANDARDS, Statewide
Timesharing Data Center, California State
University, Northridge.

4. Hayes, J. A., USER-ORIENTED PUBLICATIONS: ON
RSTS/E AND FOR RSTS/E, Fall 1977 DECUS Symposium.

5. Hayes, J. A., USER-ACCESSIBLE PUBLICATIONS: HELP
YOUR RSTS/E USER HELP HIMSELF, Spring 1978 DECUS
Symposium.

6. Stepanek, Steven, PROGRAMMING STANDARDS; DO THEY
REALLY HELP THE USER?, Computer Center, Califor
nia State University, Northridge, Fall 1977 DECUS
Symposium.

7. Hayes, J. A., HOW TO USE RSTS/E: A USER-ORIENTED
TRAINING PACKAGE, Fall 1977 DECUS Symposium.

8. Hayes, J. A., HOW TO USE RSTS/E: HELP FOR THE
USER, Spring 1978 DECUS Symposium.

9. BASIC-PLUS SOFTWARE CONVENTIONS, Digital Equip
ment Corporation.

10. Hayes, J. A., HOW TO PRODUCE AND DEVELOP YOUR OWN
RSTS/E PUBLICATIONS, Fall 1978 DECUS Symposium.

577

HOW TO PRODUCE AND DEVELOP YOUR OWN
RSTS/E PUBLICATIONS

J. A. Hayes, Academic Coordinator
Computer Center

California State University, Northridge
Northridge, California

!\~?_TlY~t;_I_

The California State University, Northridge Computer
Center has become well-known for both the quantity and
.quality of user-oriented RSTS/E publications. Edu~a
tional and commercial sites have expressed strong 1n
terest in the development and production of documen
tation for users. This paper will describe the "how
to's" involved in the production and development of
readily-accessible, inexpensive publications.

The topics will cover:

l. Determining whether publications are needed.
2. Evaluation of cost-effectiveness.
3. Determining what publications should be developed.
4. Development vs. procurement from other sites.
5. Development of site-specific vs. transportable

publications. . .
6. On-line publications vs. hardcopy publ1cat1ons.
7. Publication plans and production schedules.

INTRODUCTION

In the past ten years, the user population of the
California State University, Northridge computer
systems has grown from a few hundred users to well
over 12,000 users per semester •. The staff size has
grown from 3 members to 6 full tlme staff who sup
port these users in a multi-system envi~onment.
While there is a crew of 6 to 14 part tlme student
assistants to assist in consulting services, there
is no way to provide one-to-one assistance for the
majority of the academic user population.

In order to provide users with the necessary infor
mation to use the four major computing systems, the
academic support staff writes, compiles and produces
a large number of publications to "help th~ us~r
help himself". Although vendor documentat10n 1s
readily accessible via free microfiched manuals
and reference copies3~4, the needs of the users
have dictated the development of special user
oriented publications. Many of these are special
ly developed for the novice user. Some publica
tions are designed as supplemental docu111e11Ls and
sti 11 others provide otherwise undocu111ented i nfor
mati on.

Of the 12,000 computer users in this university
environment, approximately 5,000 are RSTS/E users.
When the PDP 11/45 RSTS/E system was installed in
October 1976 a simplistic, user-oriented publica
tion "How To Use RSTS/E Timesharing" was quickly
deveioped and provided free of charge to first
time RSTS/E users. Within 3 weeks a "BASIC-PLUS"
Instant was out of production. Knowing what the
users needed and expected was determined from
having experience with 2 previous timesharing
systems.

Proceedings of the Digital Equipment Computar Users Society 579

Whenever a site, whether commercial or dCddemic,
installs a new computer all the problems of ledrn
ing about the new system are ~her~ again. In com
mercial sites or small academ1c s1tes, programmers
and sophisticated users can supposedly make their
way through the voluminous and expensive vendor
manuals. In larger academic communities wi tf", " .
high number of novice users each t~rm, the l<:>Cirning
of basics of the system must be qu1ck and the costs
must be minimized. As the number of new users
grows at a much faster rate than sup~ort.staff s!ze,
one meuns of providill!J these user•; w1th 111f<!r111,1t lllll
is small free or low cost publications des1yned to
teach th~m basic functional commands, utilities and
concepts. So where do you start? What do you con
sider? And how do you do it without extensive
staff and development costs? The remainde~ of this
paper discusses the answers to these questions.

DETERMINING WHETHER £UB~l~ATIONS ARE_ NE~p_Ep

In .i co111111ercL1l s i !1', 1vi th p1·of<'S', imi.1 I p1·01p
you most certainly cun buy them al I the vendor 11 .. 111-
ual s and let them dig out what they need tc get
started on the ne1v operating system. Hopefully
professional progranuners know what they're looking
for and have a good idea in which kind of manual to
find it in. The considerations involved in this
approach include:

The cost of the manuals.
Not knowing how many of which manuals to
buy (not all the programmers need all the
manuals).
A lengthy learning curve to determine the
important essentials and basic concepts.

San Francisco - November 1978

Small academic sites can use the vendor manual only
approach providing they are dealing with a small num
ber of users. Small informal sessions can be used
to "get the users started". After that they too
can read the vendor manuals.

Alternative Approaches to Vendor Manuals

In large commercial sites and in large academic en
vironments, using only vendor manuals becomes a very
large problem. For academic sites some vendors
(DEC and CDC, for example) are willing to negotiate
reproduction rights to manuals applicable to your
operating system. 2 Certain very popular manuals,
like the BASIC-PLUS Language Manual can be repro
duced in hardcopy form and sold at greatly reduced
prices in local campus bookstores for student and
faculty users. Alternately, vendor manuals can be
reproduced in microfiche form and can be given away
free or sold at a nominal cost (6¢-25¢) to campus
users.

While both these approaches get the very expensive
manuals into the hands of the users at a relatively
low cost, there are still problems in reaching large
numbers of users. Many faculty members are reluc
tant to require their students to purchase vendor
manuals as class texts and there is still the cost
of the hardcopy manual ($5.00-$7.00) that produces
a certain amount of reluctancy on the part of a
student. Microfiche, while certainly the lowest
cost method of making manuals available to large
number of users, carries with it the inherent prob
lem of having microfiche readers available. While
campus libraries have microfiche readers available
and campus computer centers can purchase microfiche
readers for user work areas, many users prefer to
read manuals away from campus. High quality, in
expensive portable microfiche readers can be pur
chased for approximately $200 but hand held, small,
even less expensive readers are still in the early
stages of technology. In a few years there will be
high quality, very inexpensive, very compact micro
fiche readers - and then student users can be ex
pected to acquire a microfiche reader much as they
do the small calculators today.

When You Need More Than Vendor Manuals

Getting vendor manuals into the hands of the users
in a high turnover environment of academia still
does not solve a very crucial problem: how to get
the user on a system with only the information he
needs to know immediately. This is the decision
point in providing special user-oriented information
that is a "distillation" of the huge amounts of
information found in the many manuals available for
only one operating system. The objective is to
provide the new user with only the infor111,1tion he
needs right away, such as:

logging on and logging off,
basic system commands,
simplistic access methods to the language
processors,
simple file concepts,
the simplest form of file manipulation
capability,
easy access to the application library
programs 5 and
any site specific peculiarities.

580

The types of user-oriented publications that pro-
vide this information are the system specific primers,
tutorials, or what we call the "how to use" publica
tions. At California State University, Northridge
we have "HOW TO USE RSTS/E TIMESHARING" and "HOW TO
USE RSTS/E EDIT" ("HOIJ TO USE RSTS/E ElHT" is_tiOW __
"!\-~ INTROIJUCT.JO-f~ TO-l_LCQ").---·-·---·-

Another very popular type of publication .ir<J tltt~
pocketsized "instants". Initially we brouc1l1t up a
quickie titled 11 !3ASIC-PLUS rnST/\NT". Later \'IQ de
ve 1 oped a "RST~t-}'}l}DlQ\J:fTtg;}j\~I". The "B!_S_l_(:_-!1_!-lJ~_
INSTANT" has now been replaced by the DEC RSTS/E
POCKET GUIDE (the RSTS/E documentation peopfi0Ti1al
ly got tllellint).

Other types or categories of publications can be
provided when the need warrants. In a previous
paper, User-Oriented Publications: On RSTS/E and
For RSTS/E, there is a thoroug-hcfiscus-sl"onof:·· --

&Axil ia_r~_ications which provide
supplemental or site specific infor
mation.

Stand-Alone Documentation which is de
veloped when there is no readily avail
able documentation from the vendor or
which provides specific program docu
mentation.

lnde'xes and San~xecut ions which
provide users with information on
library programs.

EVALUATION or COST LIHCTIVLNLSS -------·---·-·- ·-·--·----~----------·-·-···----·-

The Cost To Your Supp_o_rt Staff Without _p_ulJJ icatj..2!!_~.

Without small packets of "distilled" information
about the systems, the academic support staff in
medium to large university environments, is faced
with having to repeat the basic information, such
as logging on, access to languages, etc., over and
over again either on a one-to-one basis or in a
seminar context. Each term the users ask the same
questions of the staff. As mentioned earlier, the
user population grows faster than the staff who
must serve them. The cost is a time cost to your
staff. As the number of academic users grow, cer
tain other academic computer support services are
needed. The staff must be used to support these
new and fast growing service needs leaving less
time for the staff to introduce new users to the
systems. While services such as providing users
with multimedia shows' · 11 can alleviate the repe
titious, time consuminci one-to-one or seminar ses
sions, the users still need somethinq they can
t.1ke a1•1,1y ,111d re,111 01· ,;0111et.l1i11q t11,~y c.in n•ft•1·t•nu•
while at <1 terminal. S11ktl 1 puhl ic.1Lio11:. "tit lhe
bill" in this aspect and free your consulting
st.1ff to help students debug their programs, assist
faculty members in course development, and provide
a multitude of other academic services.

The Cost to Your Users

The prime intent of most courses that use the com
puter as part of their curriculum is not to spend
an excessive amount of time learning how to use a
particular computer system. Courses are desiqrwd:

to teach computer concepts in general;
to teach specific computer languages;
to use the computer as a tool to teach con
cepts that would require a lot of time if
done by hand or calculator (i.e., statistics,
engineering applications, geographical appli
cations, etc.); and
to "assist" the instructor in the teaching
of specific topics such as English, numer
ical analysis, graphics, etc. (CAI).

To this end, the users in an academic co111111unity
should not be required to spend the majority of the
term just learning the basics of using an operating
system which might happen if just vendor manuals
were relied upon. The answer to this problem is
again, to provide users with just the information
they need - a small publication, information that
is distilled and written in a way they can under
stand it quickly. A lot of vendor manuals have im
proved in their readability, but the size in number
of pages is formidable to the novice or casual user.

The Cost of Producing Publications

Every computer center manager will question the
cost of producing publications fdr the users. The
most common thing you'll hear is "we're not in the
publishing business". Certainly the cost of pub
lications must be weighed against the computer
center budget and the personnel time required to
produce good, useable, user-oriented publications.
The objective is to reduce these costs as low as
possible. On the other hand, when the cost of us
ing staff to train large number of students and
faculty about the computer systems each term be
comes noticeably high in terms of time and man
power, it's time to look into alternative means to
provide this service. Other academic support ser
vices may require more and more time and 111anpower.

The cost factors that must be considered include:

Development costs - Writing publications
"from scratch" or just bringing together
appropriate materials (i.e., compiling a
publication) requires time and people.

Typing costs - Once put together, material
must be typed by secretaries, clerical as
sistants or put on-line by staff or student
assistants.

Publishing costs - The cost of paper has
increased a great deal in the last few
years and reproduction facilities can be
limited in so111e academic environments.

Mana~~!1_t_ ~~_s_t_s - With a few p1dJ 1 i c,1-
t ions, this is a 111inimal cost. M,rnd~JiWJ
larger numbers of publications (10-60)
requires management cost in decision
making, scheduling and planning.

Needless to say, the cost impact of producing your
own publications must be carefully considered. It
is very easy to get in over your head very fast.
Producing publications out of a campus computer
center must be identified as a specific academic
support service and warrants the full support of
the management.

581

DETERMINING WllAT PUBLICATIONS Al~[NL_~!l!-J~

The Planned Approacl}

One method of determining what publications are
needed is planning. Evaluate the entire situation
in ter111s of the cost to the user, the co~t impact
to the staff and the budget. The users may desper
ately need small publications to learn about the
system and the staff may need publications to "keep
the users off their hack" but tlw budqet m,1y 1 i111it
the whole concept very st~verely. Jn Lhi" c.iw, l>t•
gin with only the ab5olute essenti..ils tlhlt cdn he
produced for the lowest cost to the staff and to
the budget. On the other hand, if the budget is not
a severely limiting factor and/or costs can be re
covered through sale of small publications, then a
"full blown" set of publications can be determined.

The essential considerations, after cost, are the
needs of the users. Find out what are the most fre
quent problems or what information is requested 111ost
frequently:

Most users will need to know how to operate
the equipment they will be using, therefore
a modest beginning in producing publications
may be providing terminal or keypunch in
structions.

After that, the biggest proble111 may be ac
cess to the operating system - how to log
on or how to set up JCL cards. In a multi
system environment, users may be required
to access more than one system per term for
a given class. The solution to this prob
lem is to provide brief, co111pact, dis
ti11ed information in the form of a primer
or guide publication for the operating sys
tem. These are the "how to use" publica
tions.

When your consulting staff gets deluged by
questions on a certain utility or language,
it's time to consider the "instant" form
of a publication. This is usually a re
sult of too much information in a vendor
mJnua 1 , poor I y 1~r it ten vendor 111<11H1<l I~, 01·
having to search through several manuals
on a specific utility or language. In
stants can be one-pages, folding cards or
pocket size booklets. Someti111es the "ho1·1
to use" for111 may be needed to supplement
the "instant" for111. For example, ..il thouqh
there is a TECO Manual and a TECO Pocket
Guide, an ""iTrtlruouCTTdN TO TEC0;1-i1idTaTso Ee needed. -------------------·

Wltl'll Vl'lldo1· d1ll111111'nl,1t ion i. 11111 1·,·.idiJ·,·
..iv.1il..ible (cit.ltt't' co::.!. proliiliitivt• m· in
comprehensible) or site specific il11ple111e11-
tions differ from vendor manuals, publica
tions of the "cluxil iary or supple111entJry 11

category are warranted. Langu..ige textbooks
teach the language but site specific infor
mation to access the languaye 111ay be needed
to use it. Certain sites may have special
site specific functions or routines that
are used with vendor software. Auxiliary
publications are required for the users in
this case.

When there is no vendor documentation avail
able, "stand-alone" publications may be
needed. Application programs (i.e., pre
written or canned programs) for the non
programming user require stand-alone docu
mentation also.

When a site has a library of application
programs, users need to be informed of what
programs are available. An "Index" of the
library, listing program names and brief
descriptions, solves this problem. Users
may want to see the specific program fea
tures or see how to run the program - the
category of publication is "Instructions
and Sample Executions". If connect time
is at a premium on your site, these may be
hardcopy documents. These two publication
documents inherently have an updating pro
blem if the application library has a
medium to high growth rate; in this case
on-line versions may be a more efficient
method. Restrictions built in to programs
where the user accesses either Indexes or
Sample Executions (which may be voluminous)
can allow the user to drop off either on a
terminal or the line printer only program
information that he is interested in.

Invariably user needs may suggest publications that
do not fall into the above categories. What is im
portant is to determine what is needed and to de
velop a publication to meet the need.

The Random Approach

The alternative to the "planned" approach is the
random approach. It may just so happen that you
don't consider publications as something that means
you sit down and plan out. Repeated consulting
problems or requests for information may mean that
one day you decide that a small publication would
solve the problem. Perhaps a certain instructor is
giving out erroneous or misleading information and
it looks like a brief publication would solve the
problems for everyone. The random approach is
randomly driven by random needs.

With this approach, computer center managers may
find themse'lves suddenly "in the publishing busi
ness". Secretaries may suddenly have entirely new
kinds of things they're typing - for which they
have no experience in doing or that impacts the
normal secretarial typing functions. Current
staff loads may be overburdened by in-house copy
ing and collating on a mimeograph machine. Or
there may be heavy budgetary demands if publica
tions are "sent out". Programmers may become
writers and proofreaders instead of providing
other academic services.

The random approach, unfortunately, is how most of
us start. If your installation can accommodate the
impact over a period of time, you'll be lucky. If
you are seeing a detrimental impact on your site
or if you are considering publications as a way of
helping the user for a new system, the planned
approach is recommended.

Now we get down to the "nitty-gritty" of publ ica-

582

tion production. The needs have been detennined,
the cost-effectiveness has been evaluated, and
which publications are needed have been determined.
We're now at the point of making suggestions for
"how to produce and develop your own RSTS/E publica
tions" which is the title of this paper. The first
step at this point is to determine whether you do
your own development or whether you use available
materials from other sites.

P_e._v~_lgp_i!llJ._J.2~'!'. _O!J!l

Certainly you know the needs of your Olm use1·s and
you know the capabilities of your own staff (the
programmers and the typists). When you consider
developing your own publications whether you "write
them from scratch" or whether you collect materials
and put a publication together, you need to consider
the following factors:

Technical~tise - Do I have staff
programmers with the technical expertise?
Do they know the system? If RSTS/[is a
brand new operating system to your site,
you may have a problem. If your techni
cians learn fast, you may have less of a
problem, but with a new system you have to
allow for a certain amount of time to de
termine what are the basics or essentials
that are most needed.

Writing ability - This is a bigger problem
than you realize if you are just beginning
to get into publications. As we all know,
programmers dl'C known to he notnriou•, ly b.1d
writers. If you are lucky, you have one or
two people who can communicate computer
technical jargon into something user; can
read. If you have time, you can sen~ some
one who has shown some writing abili~y off
to be trained. If you don't have time or
money for this, the DEC pocketsize booklet,
"WRITING FOR THE_~ADER" is reconuner"ded.

Development time - Developing m0 w mc.terials
or compiling existing materials rec,u1res
time. Judicious project nklll<l!JCment ~hould
allow you to tit in publications into staff
projects. If your staff doesn't have time,
consider part-time, student assistants or
contract out the writing of the publications.
Both situations require analysis of content
and a wel 1 defined outline to 1·1ork from.

The advantage to developing your 0\'111 publications
is that they are custo111 fit to your installation
needs. You may also find that such publications are
not available from other sites or the vendors, in
1vhich cJse you do it yrnl!'self.

The disadvantages are personnel ti111e
the writing, managing, and analysis.
portant consideration is quality and
of the publication.

Procurement From Other Sites
---·---~--

and cost for
Another i111-

effect iveness

We're all into "not reinventing the wheel" if we
can possibly do so. In terms of RSTS/E publica
tions, this means getting materials from another
site tha l are useable. Procurement of exist inq
RSTS/E publications is done in the follo\'1i11q 1vay:

• Search techniques - Start asking people
what they have. User conferences are a
good place to begin. Ask your local ven
dor representative for names of educational
sites. Get a list of RSTS/E EDUSIG users
and start writing letters.

• Acquisition - After you find contacts, find
out what they have. Ask if you can have a
copy and if you can reproduce it or extract
from it. If you can get "on-1 ine" copies
of documents they will allow you greater
flexibility in customizing them to your
own site.

Evaluation - After acquisition, review the
document to see if it fits your needs. If
the publication is an extraction from a
vendor manual, proofread it. Make sure
the content is what you want your users to
have.

Customizing - If necessary, modify the pub-
1 ication to suit your installation's needs.
Hardcopy publications may require additions
and deletions. The document may be retyped
or you can do clever "cut and paste" jobs
if the copy was in high quality print.
Photo-ready copies, rather than production
copies may be available. On-line publica
tions give you a greater degree of flexi
bility for customizing. With a text
editor or a word processor package (RUNOFF,
RNO), modifications are done easily.

The advantages of using already developed publica
tions are pretty obvious. You've reduced the de
velopment time. You're not doing something that's
already been done. Chances are that's it's reason
ably readable for users and you haven't had to
coerce programmers into being writers. You've
traded these advantages for search and acquisition
time and editing time.

Trading of RSTS/E publications carries with it a
snow-balling effect. In your search for a parti
cular kind of publication, you may find that the
site you are making inquiries from hds a lot of
other items you can use.

DEVELOPMENT OF SITE SPECIFIC
VS. TRANSPORTABLE PUBLICATIONS

This can be a hard decision. Your objective is to
serve your users and to meet their needs. Once you
get into producing user documentation, you'll find
that site specific information has a tendency to
change more rapidly than the standard products pro
vided by the vendor. For example, in our e..irly
"how to's" we included hours of operation, facil i
ties available and amount of equipment in user
work areas. This information changed each term,
so it was removed from the "how to" publications
(which are relatively stable) and put on a one
page "Facilities Sheet" that is updated each term.
The general rule is: If certain information
changes frequently, separate it from the technical
information on a system, utility or language pub
lication. This will save you the cost of updating
"large" publications.

583

When considering site specific content against the
transportability of the publication, remove such
items as terminal operation instructions. With the
large number of new terminals on the market, you'll
probably change terminals before you change com
puters. In this particular case, individual in
struction publications for each kind of terminal is
recommended. Instead of revising a large general
user's guide for a system whenever you get new ter
minals, you simply quit producing one kind of ter
minal instructions and bring up instructions for
the new terminal. /\ddition..illy not .ill use1·s 111.1.Y
have access to a 11 the termi na 1 s. This way they
only need to have instructions for the terminals
they can access.

ON-LINE PUBLICATIONS VS. HARDCOPY PUBLICATIONS
. - ---~·- ---

On-line publications versus hardcopy publications
wil 1 be discussed strictly in terms of advantages
and disadvantages of each. The decision of provid
ing either or both these methods of production
and accessibility is dependent on a number of
factors.

Hardcoµy Publications - Disadvantages

A direct noticeable cost when "sent out"
to be reproduced. Small, low volume pub-
1 ications reproduced "in-house" tend not
to have an impact on the budget.

Increased numbers of publications and in
crease in size of publications predict the
eventuality of a publication plan and
scheduling of production.

Printing of large numbers of copies may
mean an inventory problem.

Reduced updating flexibility. Wit.·0~t
small stand-alone word processing u;.its or
ability to access on-line publication L 1 es,
modifications and changes mean the whole
publication must be retyped to update it.

Time! iness of updal ill<J. Linked t iq,1tly t11
publicdtio11 inventory and the ease of up
dating, the timeliness of updating is a
crucial factor. Keep your publications
current and correct.

Ha rdcorL.!'1!!>1J ca _!:_i..Q.!l_~__--__ Advarltages

Readily available to users - something they
can easily get at and take home with them
(immediate gratification).

C.111 bt~ .iv.ii J.1hl1• frt~L' or sold .11 .i ln1v t.t1~.1.
in the c<1111pus boo"store.

Highly recommended for "large" publications
or frequently needed publications.

Can make use of special typing or typeset
ting techniques; i.e., bold face lettering,
use of italics or color inks.

Recommended where large quantities are
needed.

Large publications can have heavy stock
cover pages which increase their lifespan.
(Users can be asked to "return" publica
tions when they are finished with them.}

Printing of large quantities reduce the cost
per publication.

On-Line Publications - Disadvantages

Large sized publications require lots of
connect time to run off at a terminal. The
way around this is to give the user a choice
to access on-line documents either at the
terminal or via the system line printer.
Terminal access to large documents may be
restricted to certain times of the term or
times of the day.

Impact on the system line printers. DEC
furnished printers do not seem to be de
signed for high volume usage. Additionally,
other users may want to print large program
files on the printer. Large publications
or those frequently accessed should be made
available in hardcopy form to alleviate
this problem.

On-Line Publications - Advantages

Ease and flexibility of updating.

Updating can be done by a progranJ11er or
a trained typist.

• More changes, "large" changes, and large
insertions are more easily accommodated
using computer text editors and word pro
cessing utilities. Small individual word
processing units have limited capacities.

No inventory proble1n. Copies are available
when needed.

• Available to the user while he is at the
terminal.

Can be accessed from a user terminal/
printer or can be printed on the system
line printer.

Timeliness. Because of the ease and flexi
bility in updating, on-line publication can
be changed in a timely manner. For example,
library indexes can be updated when a new
program is installed.s

Recommended particularly for large size,
low volume publications. Certain publica
tions may only be required by a small num
ber of users or alternately, the size of
the user body cannot be determined before
hand.

Can be hardcopied. Once document is de
veloped on-line or modified from another
site, large number of copies can be repro
duced in hardcopy. Photo-ready copy may be
run out on the system line printer (upper
and lower case capability should be con
sidered) or special hardcopy, impact print
er terminals (OTC, Diablo) may be used.

584

When using the system 1 ine printer a new
ribbon and white paper should be used.
When using a printer terminal (not dot
matrix, please}, use a new print wheel or
ball with carbon ribbon. Many of these
terminals can be programmed to double print
each character to produce exceptionally fine
photo-ready copies.

PUBLICATION PLANS AND PRODUCTION SCHEDULE

Once you have more than 3 to 5 publication~. you're
in the publishing business, If mismanaged, you' 11
have irate managers, overburdened secretary-typists,
frustrated programmer-writers and dissatisfied users
to deal with. First, to avoid these problems, the
service of providing publications to users must be
an acknowledged and supported service. Secondly,
a publication plan and production schedule is
needed.

The Publication Plan

Everyone involved in your computer center publica
tions should get together and lay out a publication
plan. The elements of the plan should consider:

What publications to produce.
Frequency of updating.
Frequency of production.
Whether publications are typed or done
on-line.
Reproduction facilities.
Size of publications.
Who writes or puts together the puhl ication.
flow long wi 11 the publication be in
existence.
Numbers of copies required for a given time
period.
Inventory storage if large number of copies
are produced.
Distribution and inventory checking.

Production Schedule

Once the size of the problem (publications are al
ways a problem) has been defined, the key people
involved such as the he.id secretary and the "publi
cations project leader", can determine a production
schedule. A schedule for the entire year is
recommended.

Scheduling considerations should include the
following:

Publication review - Evaluation of whether
it's still needed, evaluation of content,
check for accuracy of content. If changes
are required, schedule time to do it.
First draft due d.ite for typing.
Proofreading of the first draft.
Second draft due date for typing corrections.
Proofing of second draft.
Final typing.
Final proofing.
Schedule reproduction facilities.

CONCLUSION

It is hoped that the many facetted concept of "how
to produce and develop your own RSTS/E publica
tions" lk!s been covered in this paper. lh<..' 1·eco111-

mendations, the suggestions and awareness of the
problems have been the result of ten years experi
ence by the California State University, Northridge
Computer Center.

To provide you with a beginning in your search for
existing RSTS/E publications, this paper concludes
with a list of sites and publications available
either on RSTS/E or for RSTS/E:

1. Computing Facility
University of California at Irvine
Irvine, California

Publication:
PDP-11 PRIMER, September 1975

2. Academic Computing Services
Arizona State University
Tempe, Arizona 85281

Publication:
PDP INFORMATION PACKET
(TIMESHARING MADE E-Z)
January 1978

3. Waters Computing Center
Rose-Hulman Institute of Technology
Terra Haute, Indiana

Publication:
COMPUTING AT ROSE, December 1977

4. Computer Services
The University of Toledo
2801 West Bancroft Street
Toledo, Ohio 43606

Publication:
TIMESHARING USER GUIDE, January 1978

5. Computer Center
Central State University
Edmond, Oklahoma

Publication:
COMPUTER CENTER USER'S GUIDE, Aug. 1977

6. Computer Center
California State Polytechnic University,
Pomona
3801 West Temple Avenue
Pomona, California 91768

Publications:
LOCAL TIMESHARING INSTANT ----·--·-------·------···
RSTS/E FORTRAN INSTANT (Publishiny and

distribution site)
LOCAL TIMESHARING PROGRAM OPTIMIZATION
GUIDE FOR BASIC-PLUS -
TELERAY TERMINAL INSTRUCTIONS (from

C.S.U., Northridge)

On-Line Publications:
SAMPLE EXECUTION FOR FORTRAN
SAMPLE EXECUTION FOR BASIC-PLUS

585

7. Computer Center
San Francisco State University
1600 Holloway Avenue
San Francisco, California 94132

Publications (Developed On-Line):
SYS SYSTEM FUNCTION CAL_L.5-_, Winter 1976

RS_~L!__RECORD _!/0_, June l 97B

.!!ff!~_D._U~_TJ.()_N _ _.!.Q_ JE~_Q, Fa 11 19/g

_!!TRODU_f:_T_!.Q_N __ l.Q__R!!_Q, Fal I llJ/H
INTRODUCTIOfi_J.Q__EDT_, Winter 1978

8. Computer Center
California State College, Bakersfield
9001 Stockdale Highway
Bakersfield, California 93309

Publications:
HOW TO USE RSTS/E TIMESHARING (modified,

from C.S.U., Nor£hridc1e)
HOW TO lJSL RSTS/E EDIT (modified, from

C.S.U., Northridge)
HOW TO USE RSTS/E FORTRAN
HOW TO USE RSTS/E RUNOFF (modified,

from San Francisco State
University)

EASY EDIT

CALIFORNIA STATE COLLEGE, BAKERSFIELD
f_()_MJl~Tff(~Cflfi_E_R~~J~0!1K((!4]_:NJitil --- -- -·

On-Line l'ubl ications:
FOR HELP
ED HELP
HOW TO USE THE EDITOR (modified, from
----------.. San Francisco State

University)

9. Computer Center
California State College, Stanislaus
800 Monte Vista Avenue
Turlock, California 95380

On-Line Publication:
COSAP I INSTANT

Publication:
C.S.C., STANISLAUS COMPUTER CLNTLR USERS MANUAL -----·---- - -- -- - --

10. Computer Center
California SL1 I l' !Jn i Vl'l'~ i t.v, ~.11 r.1111,•11 l.o
6000 ,J Slt't!d
Sacramento, California %319

Publications:
RSTS/ l_J:.QRTRAN IV INSTANT (modified,

from DEC materials and from
California State University,
Pomona)

C.S.U., SACRAMENTO LOCAL TIMESHARING
INSTANT (modified, from California State
---- Polytechnic University, San

Luis Obispo)

11. Computer Center
California State University, Fresno
Shaw and Cedar Avenues
Fresno, California 93740

Publications:
HOW TO USE RSTS
USER'S BROCHURE FOR RSTS, Winter 1978
TELERAY TERMINAL INSTRUCTIONS ------·-w·----H
GUIDE TO REQUESTING COMPUTER SERVICES
FOR RSTS ----- .

BASIC PROGRAMMING STANDARDS

12. Computer Center
California State College, Dominguez Hills
1000 E. Victoria Street
Dominguez Hills, California 90747

Publications:
TELERAY TERMINAL INSTRUCTIONS
DECWRITER INSTRUCTIONS
DEC EDIT

On-Line Information:
Various on-line help files.

13. Computer Center
California State University, Hayward
24800 Carlos Bee Boulevard
Hayward, California 94542

Publications:
TIMESHARING TERMINAL OPERATION
LOCAL TIMESHARING (RSTS/E)
LOCAL TIMESHARING FORTRAN

On-Line Publications:
.BASIC - BEGINNING USER GUIDE TO RSTS/E
BASIC
llMDP
BPCREF
CO SAP
CREF
CVTFNS - GUIDE TO CVT FUNCTIONS
DIRECT
ED - COSAP DATA EDITOR INFORMATION
EDFOR - HELP FILE FOR LDFOR (THE
f]ll(r}0XJ:}1)J~1}ff-- ---- -- - - -- -·- ----
rn n - HOW TO USE R~TS/L UJIT (fro111

C.S.U., Norfhri(fge)
SYS SYSTEM FUNCTIONS { fro111 San Fran

cisco State University)
FORTRAN INSTANT (from CSU, Northridge)
HELPER - BASIC-PLUS SOURCE EDITOR

(modified, from DECUS)
MACRO - BEGINNING USER'S GUIDE TO THE
MACRO ASSEMBLER

586

MIOCS - MACRO INPUT/OUTPUT CONTROL
SYSTEM {from California State
-~ Polytechnic University,

San Luis Obispo)
NORTON (from DECUS)
TRAN - COSAP TRANSFORMATIONS

14. Computer Center
California State University, Northl'id(JC
18111 Nordhoff Street
Northridue, Ci.1 Ii forni.1 ~IJ.Jll

Publications:
HOW TO USE RSTS/E TIMESHARING (with

V6C Addendum)
TEL ERA Y _ _IIB_M_!_NAL_J!i_SJ_B!J CT I ON2.
FLOPPY DISK INSTRUCTIONS
RSTS/E EDIT INSTANT (V6A)

On-Line Publications:
RSTS/E FORTRAN INSTANT (V6A) (Develop-

ment site)
BASIC-PLUS INSTANT (V6A)
HOW TO USE RSTS/E EDIT (V6A)
RSTS/E RECORD I/0 (from San Francisco

State University)
SYS SYSTEM FUNCTIONS (from San Fran
-----ci sco State University)
l_!:_L& V29 {V6C) {fro111 D[C)
TIMESHARING LIBRARY STANDARDS
RUNOFF (modified to V6A, from DEC)
COSAP I INSTANT (from California State
-------College, Stanislaus)

On-Line Publications (Non-RSTS/E):
HOW TO USE NOS TIMESHARING (CDC CYBER
~--------------

srss 7 .ll INSTANT (fro111 C.11 iforni.1 St.1tp
- - · -- - - · · ilniversi ty, B<1ke1·~,fit~ld)

REFERENCES

l. Hayes, J. A., USER-ORIENTED PUBLICATIONS: ON
~STS/ E AND FOR RSTS/_!, Fa 11 DECUS 1977. --

2. Hayes, J. A., USER~ACCESSIBLE PUBLICATIONS:
HELP YOUR RSTS/TffSERHELPfill4SElT~--$-p-r-fillj-bECUSl97S:-________________ ----

.l. 11.tY•"•, ,J. fl., llOl~ lll llSI l!STS/I: I\ II'.! l!
Ol~ll li_l_l)l _ _llV\IJJ_lSi_li __ l'll_Ck/\(i_I , I .111 · Iii UIS I ii;;.

4. Hayes, J. A.' Hm~ TO USE RSTS/E:. HELP FOR TllE
USER, Spring DtT[J\-T9-?"E:------------- ----- ----·--

5. Hayes, J. A., RSTS/E APPLICATION LIBRARY:
CONCEPTS IN STRUCTURE AND CONTENT, Fall
DECUS 1978. ------------

JAH: spw
10/24/78

RSTS/E System Calls for Pascal and FORTRAN

David M. Vann
Oregon Minicomputer Software, Inc.

2340 s.w. Canyon Road
Portland, Oregon 97201

(503) 226-7760

ABSTRACT

A set of routines has been developed which allows access to
capabilities of the RSTS/E operating system from Pascal and FORTRAN.
These capabilities have previously been available only through
BASIC-Plus SYS() functions or MACRO assembly language.

INTRODUCTION

The RSTS/E operating system provides a large
number of capabilities necessary for a large
time-sharing system. These capabilities
include: assigning and releasing special
devices; setting terminal characteristics;
user login, logout, and accounting; file
directory maintenance; inter-job message
send/receive, and many others. Some of
these capabilities are used by application
programmers; the more specialized features
are used only by system programmers.

Programmer access to these system dependent
features has been provided by extensions in
the BASIC-Plus language, most notably the
SYS() function calls. The SYS() calls are
well documented, but not especially
readable; for example, the following line
returns the current job number:

J%=(ASCII(SYS(CHR$(6%)+CHR$(9%)))/2%)
AND 127%

BASIC-Plus is also an interpretive language,
and is not particularly efficient. The
latest release of RSTS/E therefore includes
some CUSPs (notably PIP.SAV) which are
written in MACRO assembly language.
Unfortunately, documentation on RSTS/E
system calls from MACRO is not easily
acquired; MACRO programming also requires
highly skilled programmers, and can be very
sensitive to operating system changes.

FORTRAN AND PASCAL

Compilers for Pascal and FORTRAN are
available for RSTS/E systems; these
languages are much more efficient than
BASIC-Plus. Both languages also offer
reasonable facilities for creating libraries
of subroutines, and can access MACRO
capabilities. Oregon Software has developed
libraries for Pascal and FORTRAN which allow
efficient access to the RSTS/E system
features in a readable fashion.

Proceedings of the Dig/tel Equipment Computer Users Society 587

Examples:

(acquiring the current job number, as above)

Pascal: J:=Job;

FORTRAN: J=JOB

(Deassign a device by name)

BASIC:
X$=SYS(CHR$(6%)+CHR$(10%)+STRING$(6%,0%)

+RIGHT(SYS(CHR$(6%)+CHR$(-10%)+DEV$),9%))

Pascal: Deassign(DEV);

FORTRAN: CALL DASSGN(DEV)

A more complex example shows accessing a
file in update mode, waiting for other users
to release the desired record:

BASIC:

Pascal:

100 ON ERROR GOTO 120
110 GET #1%, RECORD R%
120 UNLOCK #1% GOTO 200
130 IF ERR=l9% THEN SLEEP 2%
140 RESUME 110

IgnoreIOerror(true);
UpdateFile(fileid,2);
Seek(fileid,recordnum);
IF IOerror THEN FatalIO;
Unlock (fileid);

FORTRAN:
110 READ(l'IRECORD,END=999,ERR=l20} VALUE

CALL UNLOCK(l)
GOTO 200

120 IF (IOERR .NE. 19) GOTO 999
I = ISLEEP(0,0,2,0)
GOTO 110

San Francisco -November 1918

Examples of system calls:

Action Pascal FORTRAN
--Echo off
Rename file
Dismount disk
Advance magtape
Get keyboard number
Do CCL conunand
Is file a TTY?
Get project number

EXPERIENCE TO DATE

Echo(false);
Rename(oldf,newf);
Dismount (disk) ;
MTskip(fileid,count);
K := KBnum;
CCL (Command) ;
IF TTYtype(fileid)
J := ProjectNurnber;

Our experience with these routines is rather
limited, but generally favorable. Several
application programs (in Pascal) use the
routines for simple functions such as
enabling single character terminal
interaction. Our timesharing accounting
system has been rewritten, also in Pascal,
with marked gains in clarity. Probably most
interesting is a Pascal version of the
directory reordering program ($REORDR) which
reorders our RP06 disk in about 5 minutes,
compared to 90 minutes for the BASIC-Plus
program.

AVAILABILITY

The Pascal and FORTRAN libraries,
supporting documentation and some
programs will be submitted to the
library in early 1979.

w:ith
sample

DECUS

588

CALL ECHO(.FALSE)
CALL RENAME(OLDF,NEWF)
CALL DISMNT(DISK)
CALL MTSKIP(UNIT,COUNT)
K = KBNUM
CALL CCL(COMMAND)
IF (TTYTYP(UNIT))
J = PRJNUM

X.25 PACKET SWITCHING NETWORK AND RSTS/E TIME SHARING

L. R. Irons
Tested Time Sharing Ltd.
Calgary, Alberta, Canada

ABSTRACT

The objective of this paper is to present an overview of X.25
Packet Switching Network and outline some methods of accessing
this type of network. The body of this text evolved as a
result of implementing a package to access an X.25 based
network. Although the X.25 portion of the interface is
rigidly defined, the rest of the package is easily configured
for specific applications.

Specifically I will use the Canadian Packet Switching Network,
"DataPac"(l) as an example of an X.25 type Packet Switching
Network, although any X.25 based network would provide equally
as good an example. It is the interface between DataPac and
DEC~2), RSTs(3) system which will be my main concern.

As the software required for X.25 protocol is
not readily available from computer manufacturers at
present, there may be some question of its practical
value. On the other hand, with the increase in
number of X.25 based Packet Switching Networks
internationally, and the current and future inter
connection of these networks, it seems that they are
here to stay. Currently the Canadian and American
Packet Switching Networks are connected to one
another via a Gateway Interface (X.75). The United
States Network is also interconnected to the British
International Packet Switch Network. The list of
X.25 based networks is growing to include Japan,
Australia, France and an Inter-European network.
With these factors in mind it seems appropriate to
have a closer look at X.25 based networks.

The Canadian DataPac network provides prospec
tive customers with a nation-wide network and a
network interface facility for a variety of ter
minals. The interface between a host and the network
has been left to the user. This has led to the
development, by many companies, of a variety of
useful network interfaces, allowing a prospective
DataPac user an interface which not only connects
him to the DataPac network but may also increase the
efficiency of his communications hardware and soft
ware. There are trade offs, such as the introduction
of another vendor between the telephone company and
the computer.

Packet switching is not the answer to all com
munications requirements, it is just another alter
native. Factors such as response, throughput,
access and methods of billing must be taken into
consideration, as they would for any communications
application.

One could describe time division multiplexing
as a number of users sharing a single communications
line with each user being given a specific time slot
on the line. To use a similar analogy, packet
switching could be described as a number of users
sharing a single communications line, where each user
is required to uniquely identify his data. With time

Proceedings of the Digital Equipment Computer Users Society 589

division multiplexing, if a time slot is not used it
is lost, while with packet switching the network can
control the number of users on any given line and
optimize the use of that line.

The goal of X.25 then is to uniquely identify
user data. This is accomplished through four basic
levels of protocol. The first of these levels of
protocol is the physical level and it is composed of
a synchronous interface and modem which are con
nected to the network via a full duplex 4-wire line.
This interface will allow communications to the
network at speeds up to 9600 baud. Included in this
physical level is a synchronous protocol either
Binary Synchronous (BSC) or High-Level Data Link
Control (HDLC).

With the HDLC protocol, which is a bit oriented
protocol, data sent on the synchronous link will be
delimited by a flag bit sequence, which is a string
of six consecutive 1 bits (01111110). HDLC also
requires that after the last data bit and preceding
the terminating flag there be 16 bits of circular
redundancy check, (x's +x'~ +x•+1).. HDLC allows for
the rejection of any data sequence by transmitting
an abort sequence which consists of seven consecu
tive 1 bits (111111).

As previously mentioned HDLC is a bit oriented
protocol and thus possible random occurrences of six
or seven consecutive 1 bits must be avoided. This
is accomplished by a procedure appropriately called
"bit stuffing". Bit stuffing entails analyzing data
to be transmitted: when a sequence of five con
secutive 1 bits is encountered, regardless of word
or byte boundaries, a zero bit is inserted into the
bit stream. The reverse is true for the receiver
(bit unstuffing), which requires deletion of a bit
after the occurrence of five consecutive 1 bits in a
data sequence. The procedures for HDLC and BSC are
standard and fortunately performed very well by a
DEC DUP-11(7) synchronous line interface,

The data stream between flags in HDLC contains
the next level of protocol, namely the frame level

San Francisca - November 1978

protocol. The minimum length of a frame is two bytes
or 16 bits. The frame level is responsible for
establishing, maintaining and clearing the link to
the network. A frame contains an 8-bit address
field, an 8-bit control field and an optional data
field. .The address field of a frame can be either
"A" or "B", and will determine which side of the full
duplex link is being controlled - for example, from
the host point of view, reception of a command frame
with an address of "A" will require transmission of
the appropriate response frame with the address of
"A". Similarly the host will transmit its command
frames with an address of "B" and expect to receive
the appropriate response with a "B" address. The
control field defines the type of frame transmitted
or received.

To establish the link, the host will transmit a
"set asynchronous response mode" (SARM) and wait a
specified timeout period for an ~'.unnumbered acknow
ledge frame" (UA) from the network. This establishes
the link from host to network. The network
establishes its side of the link by sending a SARM
frame: on receipt of this frame the host has a
timeout period in which to transmit a UA response
which will completely establish the link. The link
between host and network is cleared in the same
manner, with the use of a disconnect frame (DISC)
rather than a SARM frame.

Once the link has been established, data trans
mission can commence. At this point the host will
set two frame-related flow-control variables to zero.
We will call these two variables V(S) send variable,
and V(R) receive variable. These variables are used
to keep track of data transmitted or received and
will cycle from 0 - 7, or modulus 8. All data is
transmitted through information frames or I-frames
which will be transmitted with the values of V(R)
and V(S) in their control field. The variable V(S)
contains the number of the next I-frame to be trans
mitted by the host, hence if an I-frame is being
transmitted the current value of V(S) is loaded into
the control field of that I-frame and V(S) ·is
incremented to the number of the next I-frame to be
transmitted. The variable V(R) contains the number
of the next information frame we expect to receive
from the network. If we receive a valid I-frame
from the network the number of that I-frame will
match our V(R) value (it was the one we expected)
and V(R) will be updated to the next expected I-frame.

In response to receiving an I-frame the host or
the network must acknowledge by transmitting either
a "received ready frame" (RR), "received not ready"
(RNR) or its own I-frame - all of which have V(R)
contained in their control field. This V(R) acknow
ledges the V(R)-1 information frame received. The
RNR frame requests the remote to suspend transmission
of I-frames. I-frames, RR, RNR, or "reject frames"
(REJ) are the only frames which contain this flow
control information.

The remaining frame types are used for link
recovery. In the event the number of a received
I-frame does not match V(R) (it is out of order) we
will issue a "reject frame" (REJ) in response. This
reject frame will contain the value of our V(R) in
its control field and will request that the remote
begin retransmission of I-frames whose V(S) value
was equal to the V(R) value contained within the
received REJ frame. The "command reject frame"

590

(CMDR) acts as a catch all for most other errors.
It will be transmitted with the current values of
V(R) and V(S) and error cause information. Reception
of a CMDR usually implies reinitialization of at
least one side of the link.

To complicate things slightly, X.25 allows a
number of information frames to be transmitted
before any acknowledgement of receipt of the_se
I-frames is received, so the updating of V(R) and
V(S) must take this into account. The number of
I-frames allowed to be outstanding is referred to as
window size. It should also be mentioned that the
frame level protocol is time dependent. In other
words, command frames (SARM, DISC, I) must receive
responses (UA, RR, RNR, REJ, CMDR) within a given
timeout period.

The next level of protocol is the packet level.
All of this packet level protocol is contained
within information frames.

The packet level protocol is much the same in
principle as the frame level, although it is more
comprehensive. It is the responsibility of the
packet level to connect, control and clear a number
of calls across the host-network link maintained by
the frame level.

A packet contains 16 bits of addressing infor
mation referred to as a logical channel number, or
LCN. This LCN is only meaningful between the host
and local network node. Furthermore, the packet
also contains 8 bits of packet "type" information.
The packet may also contain information used only
to control the call or user data for transmission.

A call is established when either end receives
a call request packet and responds with a call
accepted packet. The call request packet will con
tain a unique LCN for this host-network link, the
address of the calling host, the address of the
called host and information about the call such as
user data field size, which host is to be billed
for the call, packed level window size, and trans
mission throughput parameters.

A call may be rejected by transmission of a
"clear request" packet which will contain an 8-bit
field which specifies the reason for refusing the
call. Similarly an established call may be cleared
by transmission of a clear request packet. On
receipt of a cle·ar request packet a 11 clear confirm"
is transmitted.

Calls are distinguished from one another by the
LCN. Once a call is accepted all packets transmitted
or received for that call will contain the specific
LCN given in the LCN field of the call request
packet. The LCN is freed upon receipt of clear
confirm or clear request packets.

Once a call has been established, data on the
packet level can be transmitted across the host
network link. As with frame level, we will need to
maintain variables to govern data flow. These may
be called PV(S) and PV(R) - packet send variable and
packet receive variable respectively - and are main
tained in the same manner as V(R) and V(S), with the
appropriate adjustment for window size. A unique
PV(R) and PV(S) variable is maintained for each
established call. Data, "received ready" and

"received not ready" are the only packets which will
contain the PV(R) or PV(S) flow control information.

There are two forms of data packets - level 0
and level 1. Level 0 data packets contain data
destined for the user while level 1 data packets
are used for X.3, X.28, X.26 interactive terminal
protocols (ITI) which will be discussed later.
Different data packet types are distinguished by a
qualifier bit (Q bit) in a restricted sub field of
the LCN. Data packets are allowed a user data field
of 128 bytes, for priority, or 256 bytes for normal
traffic where the shorter packets are given trans
mission priority within the network. When the data
field is completely filled the "more data" bit
(M bit) is set in the type field indicating a logical
continuation of data in the next expected data
packet. The M bit is peculiar to the data packet.

On receipt of a data packet a response will be
required. The response may be a data packet, RR or
RNR packet. This follows the same principles out
lined for the frame level.

Recovery of errors such as out-of-sequence
packets is facilitated by resetting the PV(R), PV(S)
variables to synchronize both ends of the link on
the packet level for a specific call. This is
accomplished by transmission of a reset indication
packet. In response to a reset indication packet a
reset confirm packet is transmitted. The call will
remain connected and transmission can resume. In the
event of major packet level problems, a restart
indication packet is transmitted clearing the entire
packet level calls as well as packet variables. The
response to a restart indication is a restart confirm
packet.

Control of the packet level during a call is
performed by transmission of level 1 data packets or
interrupt packets. The interrupt indication packet
contains an 8-bit data field and is given trans
mission priority over data packets. It is ideally
suited for control C or break indication. The res
ponse to an interrupt indication is an interrupt
confirm packet. It should be noted that only one
interrupt indication may be outstanding.

This very basically describes the packet level
except for level 1 data packets, which are used
mainly for the interactive terminal interface
protocols.

The interactive terminal interface protocol
allows the host and network to establish the terminal
characteristics of the remote user. The actual set
up of the ITI will depend on the remote user's
application as well as his hardware.

The ITI protocol is established by exchange of
level 1 data packets which contain a parameter list
and parameter values or acknowledgements within the
data field. The ITI protocol is set before data
transfer and is set for the link between the remote
user and the network. There is nothing to prevent
the change of ITI parameters during any one call.

Until computer vendor software for interfacing
to packet switch networks becomes readily available,
users are left in the realm of the communications
processor or black box. The basic functions of a
communications processor are to provide the protocol

591

for data destined for transmission and to strip
protocol from received data. The protocol in this
case is X.25 and data is in a format acceptable for
RSTS input/output.

When related to X.25 these functions can easily
be reduced to eight processes, namely:

1. physical level decode (DUP-11 receiver
handler);

2. frame level decode;
3. packet level decode;
4. host transmitter handler;
5. host receiver handler;
6. packet level encode;
7. frame level encode;
8. physical level encode (DUP-11 transmitter

handler).

Keeping in mind the previously described levels
of protocol and the idea of command response, these
processes can be evaluated with little problem.

The physical level receiver will synchronize on
flags. Data between flags is "bit unstuffed", stored
in a buffer and used in the circular redundancy check
calculation. On completion, the buffer is passed to
the frame level decode operation. Any errors which
might occur cause this process to repeat. With a
DUP-11 this complete process is easily written as a
device handler.

The frame level decode process will be active
only when buffered data is passed to it from the
physical level decode process. When active, frame
level decode will analyze the address and control
field of the buffered data and arrive at one of
four possible conclusions:

A. the frame was an error;
B. the frame was a command requiring only a

response.

In both these cases a request is made to frame
level encode for the appropriate response. The
buffer is released.

C. the frame was an expected response in
which case the appropriate variables are
updated and the buffer is released;

D. the frame was a command requiring further
processing (information frame) in which
case a request is made to frame level en
code for the appropriate response, all
affected variables are updated and the
buffer is passed to packet level decode.

The packet level decode procedure is activated
only by the frame level decode and its actions are
in principle much the same. Packet level decode will
analyZ'e the logical channel number and type fields
and as a result perform one of five different
actions:

(i) the packet was in error, in which case
packet level encode is requested to issue
the correct response; release buffer;

(ii) the packet was a command requiring only a
response;

(iii) the packet was an expected response, in
which case update applicable variables and
release buffer;

(iv) the packet contained ITI pertinent data,
in which case update all relevant
variables, issue a request to packet level
encode for response and release buffer.

(v) the packet contained data destined for
user in which case update all applicable
variables, issue request for packet level
encode for the correct response, replace
LCN and type fields with job number, pass
buffered data to host-level transmit.

Host-level transmit procedure is comprised of a
device handler which will transmit the buffered data
and release the buffer.

Data received from the host via the host re
ceiver handler procedure is again stored in a buffer.
It must contain some identification to indicate its
source. When this data string is considered com
plete due to some packet forwarding formula, the
bu&fer is passed to the packet level encode
procedure.

The packet level encode procedure is activated
by either a request from packet level decode for a
response or buffered data from the host receiver.
If activated by a request for a response, packet
level encode will capture a free buffer, load
appropriate LCN, type and data and pass this buffer
to the frame level encode procedure. If buf.fered
data is received from the host receiver, its identi
fication is exchanged for a valid LCN, a type field
is loaded and it is passed to frame level encode.

Frame level encode may be activated by response
requests from frame level decode. In this case a
buffer is captured and the requested response is
built in this buffer. The buffer is then passed to
the physical level encode procedure. Frame level
encode may also be activated by buffered data from
the packet level encode procedure. Frame level
encode will supply the needed frame level information
and pass this buffered data to physical level encode.

Physical level encode is activated by buffered
data from frame level encode. This data is pre
ceded by a flag sequence, followed by circular
redundancy check and a terminating flag. Finally
bit stuffing is performed and the resultant data
transmitted.

The physical level decode and host receiver
handler are self-driven. Initially a read request
is made to each of these processes. When a request
is completed the process will reactivate itself with
another request.

The four processes, physical level encode/
decode and host transmit/receive, once active are
driven by hardware interrupts. The remaining four
processes are driven by software interrupts initia
ted by related processes. These four processes will
execute to completion once they are entered, except
for higher priority hardware interrupts. Each of
these processes also contains a software status
register to show the condition of that process.
This register is accessible by all other processes.

A connnon buff er pool is declared for use in
passing data between processes. Buffers are cap
tured or released by the processes via updating a bit
map of the buffer pool.

692

Buffer pointers and requests are passed between
processes through an RT-11(4) type queue structure.
Each process has a queue which is maintained as a
linked list. However processing of the requests
within a queue is not necessarily serial as in
RT-11 .•

The actual implementation of the two host
related processes is subject to many changes as
there is a ;wide variety of devices suitable for
these processes. The physical device could be
almost anything from a DH-11(5) to another synchro
nous interface depending on the type of host or the
desired format of data. By usdng different devices
and handlers for these two processes the scope of
the communications processor can be completely
changed.

There are many other possible procedures one
could follow to perform the same functions as
described above. In the same light there is no
specific type of hardware required to perform this
function.

This type of application does not require a
great amount of processor power or memory, although
a lack of either will limit its capabilities. These
communications processors have been implemented on
machines va~ing from 8-bit microprocessors to
PDP ll/40's(6).

For the user or manager who has a phobia of
"more computing power", the manufacturers of these
devices can cleverly disguise them to "set your
mind at ease". Whether they are marketed as
communications processors or fancy-type modems, one
brand might be more suited to your application.

Packet switched communications poses some
problems to a time sharing environment like RSTS.
The main problem encountered is the question of
forwarding the data packets to and from the remote
user.

In the case of file transfer, a majority of
data packets can be filled, however, in the case of
an interactive remote user the efficiency of a
packet switch system will suffer, as not all packets
can be completely filled. Consider the Basic Plus(7)
instruction "input 'password' A$;" in some arbitrary
program. The string "password ?" must be output to
the remote user and his response obtained before
exe.cution of the program will continue. Two
relatively empty data packets must be transferred,
but how are we to know if the data packet is to be
sent or if more data is available to fill it?

One solution to this problem is to forward
either full data packets, or data packets that have
not been altered for some arbitrary time. The time
of course would be dependent on whether input is
expected from a user on a 300:baud terminal or input
from the host machine at very high speed. In
practice, this method works fairly well, although it
causes an additional delay. RSTS/E however provides
an even better indication of when a data packet
should be forwarded by entering a 'keyboard wait'
state.

Another major concern from a timesharing point
of view is that of end to end delays. Depending on
packet level window size, what a remote user is

receiving on his terminal at any given moment may be
only a portion of the output, which is -already on
the network destined for him.

The undesirable effects of this delay are
demonstrated through input/output control commands
such as control (C, S, Q, 0). A control "S" for
example may be immediately forwarded to RSRS, which
will cause RSTS to suspend output. Output is not
necessarily suspended to the user terminal, however,
as the remainder of the current data packet and any
subsequent data packets already held by the network
will be sent to the user's terminal. There is
currently no absolute solution to this problem,
although its effects can be minimized by varying
packet level window size, data field size within
data packets and ITI parameters.

These constraints should be considered when
appraising the value of a packet switch facility or
when writing software which could possibly be used
on such a network. For many applications the
benefits of packet switching outweigh the drawbacks.

Currently, as previously mentioned, most DataPac
access is provided in the form of a communications
processor which is physically located between the
host and the network. In general these interfaces
do not require any modification of the host, hard
ware or operating system, they simply interface
line for line to a number of the host communications
ports, hence an interface which will connect 16 EIA
ports to the DataPac network should handle 16 calls
over the DataPac network. The processing abilities
of these communications processors may be used to
better advantage for specific applications.

As a case in point, the communications inter
face can very easily prefix data from any given X.25
logical channel with a job number suitable for RSTS
multi-terminal input/output. All data can then be
passed to a RSTS multi-terminal type job through a
single keyboard line.

Alternatively a RSTS controlling job can pass
the data on via send/receive to individual jobs on
the system, This can provide substantial advantage
for remote data entry applications.

693

There are other methods of communication to
RSTS which are even more convenient. The X.25
handling code could be included in the host and
access provided to users and jobs via a run~time
system. If this were done correctly the integrity
of the main operating system could be maintained.
The end result is specific to this operating
system.

Of course the RSTS operating system could be
modified to accept this type of communication inter
face, although the system is no longer as easily
supported.

The method of implementation is not really of
basic importance as long as one is aware that there
are different methods and trade offs for each.

In conclusion, packet switch communication has
provided us with a very attractive alternative
which complements RSTS time sharing very well. We
have expanded our possible customer base while
reducing total communications costs. The benefits
may not be the same for every application but
packet switch communications is an alternative
which should be evaluated.

REFERENCES

(1) Trans Canada Telephone System Trademark

Va:taPae Sta.ndaAd NetwoJtk Aee.U.6 PJto.toe.ol
Spec.ifi~e.Ovtlon, Trans Canada Telephone System,
Computer Communications Group.

(2) Digital Equipment Corporation Trademark

(3) Digital Equipment Corporation Trademark

(4) Digital Equipment Corporation Trademark

(5) Digital Equipment Corporation Trademark

(6) Digital Equipment Corporation Trademark

(7) Digital Equipment Corporation Trademark

SCHEDULING STUDENT ASSISTANTS
IN THE COMPUTING LABORATORY

J.D. Rose
California State University, Hayward

Hayward, California

ABSTRACT
Scheduling of a part-time student workforce must take into
account the class schedules of the workers. For maximum
stability, it should also take into account their study
habits and other demands on their time. The job may be
complicated by any limitations or rules imposed by Federal,
State, district or campus policies. Workload patterns
throughout the week and the academic term can affect the
staffing level required, and hence the scheduling process.
Changes in all these factors may require work schedules to
be prepared frequently. Unless the workforce is quite small,
this frequent scheduling can become quite tedious and time
consuming. This paper discusses the approach used to solve
these problems in scheduling Student Assistants at the
Computing Laboratory facilities of the California State
University campus at Hayward. Special attention is given
to a package of computer programs developed to automate
much of the process. Written in BASIC-PLUS, they should
be adaptable to other educational institutions with
similar characteristics and requirements.

INTRODUCTION entry into the scheduling system.

California State University, Hayward, supports
instructional computing in part through the
operation of Computing Laboratory facilities. These
contain equipment (such as terminals, card machines,
graphics devices, etc.), user work areas, documen
tation, and personnel to provide assistance. The
work force largely consists of part-time student
assistants, with staff supervision. The scheduling
of these student assistants must take into account
their own schedules and preferences, budgetary
considerations, workload variations, and the
schedule horizon. To prepare manually a "good"
schedule at frequent intervals is a time consuming
job, and using the computing facilities themselves
to automate at least partially the scheduling
procedure seems an obvious approach to the problem.
The philosophy used in the development of a pre-
1 iminary package of programs to achieve partial
automation of the scheduling process is described
below. (Development is continuing, and improved
versions are planned.)

SYSTEM PHILOSOPHY

Student Assistant Inputs

0800

0800

1000

1100

1200

1300

1400

1500

!BOO

1700

1800

1900

2000

I 2100

1 2200

I
! 2300

i
l 2400

MONDAY

I

I

I

I

" (p

" "
2..

2.

i 2.

i z
(p

i "
i 3

3

TUUDAY WEDNEIDA'I! THURSDAY

'-/ I 't

'i I '-/

3 I 3

3 I 3

3 I (, 3 I
I I 3 (p 3 I
i I I I 3 I r,, 3

..l I

I
3 I (, I

; 3 i
2. i 2. :z. I

! :t :z :t I
1 T

i (, I :2. (p i
i

(p : ').

"' :
T i

'f l (, '{

l ! !

'1 I (, 'f l
I 'f

I 3 '1 l !

l 'i I 3 '1

1'111..-y ' t.J e.e..k J

FRIDAY SATURDA~

3 ! 'f

3 T '7 I
3 3

3 3

3 3 I
I

3 3 :

3 3 i

3 3 I
3 ..3 l
'f 'I i

'I 'I

I
i

'i '(:

l ! 'i 'I :

l !

Lf 'I i

I
I

'i '{
I
I

'1 'i

Figure 1. Assistant's Input (Preferences)

Management Parameters

SUNDAY

s

s

s

s-

~

!>-

~

!>

,,-
:,-

~

~-

S"

.-,-

S"

s-
Recognizing that student assistants are students,
we must not schedule them to work during class
times, and should not schedule them during times
they prefer to use for studying. This principle
can be extended to a scheduling system that weights
heavily the assistants' own preferences in general.
The preliminary version of the scheduling package
specifically allows each assistant to specify time
preferences (but not job or location preferences)
by designating a 11 111 for each "first-choice" hour,
etc., down to a 11611 for an hour in which work is
impossible due to a class conflict. Figure 1
illustrates a sample preference matrix, prior to

There may be workweek limitations Imposed or
implied by Federal, State, or institutional
policies. For example, a campus may I imi t student
assistants to, say, 20 hours of work per week.
Or, a student may be receiving "Work-Study" funds,

i

I
I

I

!

i

i
.I
I

Proceedings of the Digital Equipment Computer Users Society 595 San Francisco - November 1978

with an entitlement that averages 15 hours per week
during the term. The fact that such funds may be
derived in part from the Federal government rather
than local sources may be an important factor. And
regardless of the source of funding, there may be
various rates of pay for different jobs, skills, or
educational levels.

Seasonal workload patterns may exist across the
year, over a single term, or even shorter periods.
Thus, the scheduling process may need to take into
account a pattern of staffing densities consistent
with workload fluctuations.

Although some of these management parameters are
collected and stored by the scheduling system,
these data are not actually used by the preliminary
version. Instead, they simply are displayed for
the convenience of the scheduling supervisor.

The Schedule Horizon
Classes at Hayward are scheduled in weekly patterns,
hence student activities tend to follow weekly
patterns. The result is that our student assistants
find it convenient to specify their preferences in
weekly patterns, and that class-generated work-
load also tends to exhibit weekly patterns.

Thus, if the weekly patterns continue throughout
the term, a single schedule with a one-week horizon
is appropriate. However, the factors frequently
change, as when student assistants add or drop
classes in the early part of the term, or alter
their study-time requirements in the latter part of
the term as examinations approach. Here again a
weekly horizon seems appropriate, but new schedules
may have to be prepared with some frequency.

An example of a one-week schedule for a particular
facility is given in Figure 2,

THE SCHEDULING SYSTEM

Information Flow
The supervisor enters various "parameters" into the
system data base when initializing for a new
academic term. The assistants initially prepare
their "inputs" on forms (Figure 1) and then enter
them into the system via interactive terminals,
allowing the selective retrieval and display by the
supervisor as illustrated in Figure 3.

Software
A simple data base structure provides for the
hourly preference information ("inputs") for each
assistant, plus some management parameters. In
order to allow for the entering of schedule infor
mation which would become effective at a later date,
the data base is divided into two duplicate file
structures - one for the current information and one
for the future.

The data collection programs select the proper
(current or future) file structure according to
effective-date information (entered by the
assistant), and extract that person's information
from the file (or request it from the user if not
on file). Editing and display functions are
provided, and the data base is then updated.

The supervisor's package creates, updates, displays,
or erases the data base records for personnel or
parameter changes. Current preference data may be

596

MONDAY TUESDAY Wl!DNESDA~ THURSDAY FRIDAY SATURDAY SUNDAY

i'IH 1'16 fl!H PM

0900
JG 'i' I

t I

JG

1000
Pf I'll "'' "Pw JO~

1100

1200
JA "' I ,

I

I
L

I
I'll

JA I JA PM I
I I I ! I

l
!

!
I I

Pl. I I 1 J6
i

!
'

i

I
..,.

l MH
I ! I i !

JO I PW 1 i I

I G~ i P!L i

i
JS
c~ I

-
Pl;/

I

~
!

I

i

! i~~
1 !~I

l :~~s~

1300

1400

1500
I
I
'
I ,
i

i

!
JB

1800 ..
1700 l
1800 I ,--,,., i JA

I i
1900

i'I
I I I

2000

I

2100
I

I JB

2200 l
!

I

1 !
2300

2400

Computln9 Lab Assistant Schedule: Week 3
Figure 2. Supervisor's Output (Schedule)

1

Assistants draft inputs using standard forms.

Assistants enter and verify inputs using

~·,·~•:i•• '"~''."''

ur.der control of data-collection program(s)

25

program program program
copy copy copy

which store information in data base.

SASE

Supervisor uses interactive terminal under
control of data-extraction program(s) to

retrieve information from data base,

and generate charts in appropriate formats

~
for use in the actual processing to produce

work schedule(s).

Man•;al
Scheduling

Figure 3. Scheduling Process

updated from the "future" file if requested and
the dates are appropriate, and displayed in formats
found to be most helpful in constructing a schedule.
The displays can be for specified subsets of the
workforce for additional versatility.

The various programs which implement the system
are written in BASIC-PLUS, and are running under
RSTS/E on an 11/45. Although coded In an "ad-hoc"
manner, they should be adaptable without difficulty
to another campus facility having similar charac
teristics, requirements, and computing system.
With additional modification, they should also be
usable with other hardware or software systems.

The scheduling problem investigation is continuing,
and (both structurally and functionally) improved
software will be available at a later date. A
mathematical model of the actual scheduling process
has been derived (1), but additional research
will be needed in order to incorporate it into the
system.

REFERENCE

1. Economides, S., and Rose, J. D., "Workforce
Scheduling in a State University Computing
Laboratory Facility," paper presented at the
American Institute for Decision Sciences
10th Annual Convention, St. Louis, November
1, 1978

ACKNOWLEDGEMENTS

The author gratefully acknowledges the contribution
of Spyres Economides in directing the research
effort into the formal modeling aspects of this
project, and the assistance of Bonnie Benzinger
in implementing and testing the current scheduling
system.

597

CURRICULUM INTEGRATION AND
USER SUPPORT OF RSTS IN A

SMALL BUSINESS COLLEGE
"What do we do now that it works?"

Arthur K. Lash
Nichols College

Dudley, Massachusetts

ABSTRACT

Installing an academic timesharing system requires more than
having an operational system. The users and manager of a
new timesharing system (specifically a RSTS system) are
quickly confronted with a variety of support and curriculum
decisions. The experiences at Nichols College (a RSTS user
since September 1977) can serve as a guide for the novice,
and more mature, RSTS installation. Nichols College is a
700+ student four-year college with an evening graduate
school whose primary emphasis is on business and public
administration.

This paper details the problems and their solutions, the
approaches and techniques Nichols has used since becoming
a RSTS site.

BACKGROUND

Nichols College is a four-year institution whose
primary emphasis is on business and public adminis
tration. In addition to the 700 undergraduate stu
dents, a part-time MBA program, with 100 students
is offered. The College acquired its first comput
er (an IBM ll30) in 1968. In 1977 a replacement
system was purchased to bring the College's admin
istrative and academic capabilities into an inter
active mode.

System Resources

A PDP 11/34 (purchased through EDUCOMP Corp.) with
96K and running RSTS/E was selected to replace the
batch-oriented 1130. One administrative and four
academic terminals, in addition to a LP05 line
printer, a TS03 tape drive, and dual RP02 disks
comprise Nichols' present configuration. While
most academic work is currently performed on the
11/34, the 1130 continues to handle administrative
needs until a phased-in conversion to the RSTS/E
system can be completed.

Curriculum

Since 97%of Nichols students are in the business
administration curriculum, a fairly structured set
of courses is required of most freshmen and sopho
mores. Liberal arts requirements (English, history,
social sciences, math, statistics, science) com
prise the bulk of the first two years. Introductory
managerial and financial accounting as well as the
beginning of the business "core", round out the re
quirements. Junior and senior courses primarily
follow major concentration. The introductory com
puter course (which uses BASIC) is not normally
taken until the third year.

A systems emphasis is offered within the management
concentration. Courses in systems analysis,

Proceedings of the Digital Equipment Computer Users Society 599

computers in modern organizations, applications
programming (COBOL), quanti{:tative methods, and a
capstone management information systems offering,
constitute the systems emphasis.

Support Problems

Limited resources of all types are a problem which
plague many organizations, and Nichols is no ex
ception. Significant energies had to be directed
toward system selection, acquisition approval, and
the site preparation completion. Since no individ
ual was assigned these tasks as his/her sole respon
sibility, long range preparation for the actual run
ning and support of the system was limited. Once
the joy and frustration of installing the system
was over, the stark realization of providing ser
vices to users totally unfamiliar with any inter
active system, struck. Compounding the situation
was the fact that the start of the 1977 Fall semes
ter coincided with the installation of the system.

It was in this context that NIC (Nichols Interactive
Computer) came into existence. Since the author
was primarily responsible for system operation, sup
port, education, as well as teaching full-time, the
constraint of time became a major one. However, the
solutions to the problems of supporting all types of
users, and curriculum integration under this con
straint, can serve as a model to other sites. In
addition, these solutions serve as testimony for
inter-installation cooperation and DECUS.

CURRICULUM INTEGRATION

A primary task of NIC is to support and enhance the
offerinqs at Nichols. Two distinct areas exist.
The systems courses described are those where orig
inal program creation takes place. Support facili
ties for these types of courses differ from non-

Sen Francisco - November 1978

system courses where the use of canned library pro
grams is necessary.

Systems Courses

RSTS/E lends itself well to introductory students.
The introductory computer course is split between
dealing with computers in modern organizations and
programming in BASIC. An account for each intro
ductory student (approximately 80 per semester} is
created within the same project number. The pro
ject manager's (XXX,0} account was used extensively.
Illustration programs, assignments, data, and lim
ited operating instructions are made available from
this account. While a programming text for strict
ly BASIC-PLUS is not used, the differences between
BASIC-PLUS and other BASICs are covered in class
lectures and in the Nichols Interactive Computer
User's Guide (see User Support for a description of
this guide). Introduction to Com uter Pro rammin
with the BASIC language by Harvey Deitel Prentice
Hall) is the language text. The computer applica
tions text is Business Data Processing by Mike
Murach (SRA).

Oriented toward business data processing-type appli
cations, the introductory students' programs in
crease in cornp~exity from simple report production
using FOR/NEXT and READ/DATA statements to simulated
file maintenance programs using arrays. Simulation,
two-dimensional arrays and string manipulation are
also covered, but actual BASIC-PLUS files (ASCII,
virtual arrays or Record I/0) are not part of the
introductory course. Thus, the material needed to
produce these types of programs can be adequately
found in a BASIC text supplemented by in-class lec
tures (the DEC BASIC-PLUS Language Manual is a must
for the instructor, however).

The applications programming course poses a differ
ent problem. Because of the wide spread use of
COBOL by businesses, it appears appropriate to offer
students a course in the language. Nichols decided
against using DEC COBOL for one major reason: cost.
COBOL would place a considerable operating load on
the system in a student environment because work
would be primarily in a program development (com
pile) mode. HATBOL from the University of Waterloo
(Canada) was selected to provide COBOL experience
for students at a considerably lower cost and
strain on system operations. Although providing a
less extensive version of the language than the DEC
compiler, WATBOL serves its purpose for student use.
The speed and ease of compilation, combined with
extensive error diagnostics made HATBOL an excellent
compromise for Nichols' purposes. The text used
for the course, An Introduction to COBOL with
~JATBOL: A Structured Approach (WATFAC) by Cowan,
Dirksen, and Graham, together with a WATBOL-11 Users
Guide serve as the primary documentation for HATBOL
under RSTS/E.

The final systems course which utilizes NIC is the
capstone offering titled "Management Information
Systems." File structures are discussed and actua 1
programming of file manipulation operations are re
quired. Unfortunately, this area is not supported
as adequately as other areas of BASIC under RSTS/E.
The Users Guide contains detailed information on
the construction and programming of sequential
ASCII files. Virtual array and record I/0 files
are not in the current version of the User's Guide

600

primarily due to its perceived inappropriateness in
a general document. A Guide to Programming in
BASIC-PLUS by Bruce Presley, et. al., of the
Lawrenceville School contains a chapter on Virtual
arrays. This paper's author is developing a guide
for the more advanced file handling facilities
(virtual arrays and record I/0, available in the
Spring 1979). t.Jhi le these to pi cs receive adequate
coverage in the BASIC-PLUS Programming Manual, this
publication (and other system reference manuals)
are not appropriate teaching/learning aids. There
fore, supporting these types of features for stu
dent users requires more material than DEC supplies.

Non-systems courses

Typically, a student does not encounter his/her
first systems course (the introductory computer
course} until the junior year. A great deal of
computer integration is possible and necessary
prior to junior year. However, this area offers the
widest range of possibilities for system usage and
concurrently an area for potential problems.
Adequate documentation and user support is essential
in this area since these users are unintiated to
the workings of NIC and the BASIC language,

Two major facilities have been established to ser
vice the non-system courses:

A. Public library - a library of over 400 canned
programs resides on the system (in a system
library account). These programs have been
acquired in three ways:

l. EDUCOMP starter kit - as a system supplier,
EDUCOMP has compiled most of the DECUS
library educational programs. These
cover accounting, business, economics,
statistics, math, social and natural
sciences, BASIC tutorials and games.
Documentation varies from none to ade
quate, Many programs have originated
from the Huntington Project or Project
SOLO. Documentation through DEC is
available for some of these programs,

2. Other sites - through the DECUS library
and contacts with other installations,
many additional educational programs have
been placed in the program library.

3. Original programming - students have been
encouraged to submit programs for inclu
sion in the library. While most programs
seem to be categorized as game or novelty,
a trend toward more useful applications
appears underway.

Communicating the contents of the library to
the users is a substantial problem. Hhile
other installations have developed category
search programs, Nichols has found written
documentation to be sufficient. A text file
of each library category was established.
The file contains the name of the program and
a brief explanation of its purpose, These
files are listed and placed on the walls of
the terminal room for reference. Any changes,
additions or deletions made to the library
mandate modification of these text documenta
tion files, faculty demand more detailed
instructions and sample runs of programs be
fore a,ssignil1g these to classes, A current
project underway is to extablish such docu
mentation,

The public library has seen limited actual use
in courses to date. No pressure has been
placed on faculty to integrate these programs
into their offerings. Only those faculty who
have a personal desire to integrate system
facilities into their courses have actually
done so. This has actually been a blessing
in disguise. Due to limited personnel re
sources and a limited number of terminals, a
slow increase in system usage beyond system
courses has allowed for a controlled, manage
able growth in demand.

B. Course library - in order to accomodate those
courses using the system, another library has
been established to hold those programs. De
creased access time and reduced confusion was
the primary motivation for establishing a sep
arate library. Most of these course-related
programs have come from the public library.
Each course is given a separate project num
ber with sufficient programmer numbers to sat
isfy the particular application. A simulated
payroll program producing checks, stubs, reg
ister and general journal entries based on
student inputs is required of all freshmen
accounting students. This type of program
characterizes current usage. !AJstatistical
package was of primary concern. The 1130 had
such a package and one on the new system was
essential. STATll from the DECUS library
(DECUS #RSTSll-110) was selected due to its
cost, ease of use and demand on disk space.
The STATll package contains a RUNOFF version
user's guide which was modified to meet NIC
characteristics and made available to instruc
tors and students who needed details beyond
those provided in class.

A slow and deliberate approach has characterized
Nichols' approach to integrating system usage in
the curriculum. While the system has only been
operationas since the Fall of 1977, the system
related courses are well integrated with computer
usage. Non-systems courses are beginning to incor
porate system usage, This phased-in approach (most
coincidental) has been helpful in allowing system
shakedown and development of adequate support facil
ities for the truly novice user.

USER SUPPORT

While most of the users on the system were enrolled
in systems-related courses, it was easy to explain
system operations. Although it placed a large bur
den on the instructor, it was the only recourse
without adequate documentation for system operations
and usage. To a user at any level, support must be
provided. Ideally, the goal for user support should
be personal assistance when required, combined with
written tutorials and reference material. Nichols
has taken significant steps toward reaching this
goal.

User's Guide

A problem which plagued any efforst to provide user
support was the lack of any adequate written mater
ials for novice users (and in many cases the system
manager). Programming manuals are not appropriate
learning texts. They are not written as such and
can not be expected to serve the purpose. A guide
for novice users which would serve as a combined

601

statement of RSTS/E as implemented on NIC and BASIC
PLUS was essential.

Attempts at writing a user's guide were inconclusive.
The time required for such a project is formidable.
Such time was not available to a system manager
trying to learn system operation and teach on a full
time basis. The author became aware of a user's
guide which had been written by James Condict and
James Krupp at Middlebury Co 11 ege. They made avail -
ab 1 e a copy of their 11 chapter guide in RNO. TSK
format (for a nominal fee). Each chapter was edit
ed to conform to the Nichols environment. A chap
ter on FORTRAN, in the final version, was omitted
since the language is not taught in any course.
The final copy of the manual was produced on a
daisy-wheel printer to achieve a document which is
easy to read and sells for $5.00.

The guide focuses on three main areas:
1. User orientation - Directed toward a novice

user, the guide leads a person through what a
computer is, how to sign on to RSTS, executing
canned programs and various ways of inputting
data to a program.

2. BASIC programming - a concise presentation of
BASIC-PLUS through matrix commands and sequen
tial files.

3. System utilities - the commands necessary for
creating and maintaining BASIC programs as
well as various system utilities (e.g. PIP)
are explained.

The guide is useful to the novice BASIC user, a
user of canned library programs, experienced users
who need to become familiar with RSTS terminology
and function and for programmers who will be writ
ing in FORTRAN and COBOL. This one document alone
has provided significant support for all system
users.

Hands-on assistanse

Regardless of the breadth of written documentation
provided for system users, there comes a point
where personal assistance is required. The four
academic terminals at Nichols are located next to
the computer room. In order to provide assistance,
student consultants are employ~d to operate the
terminal room. These individuals are usually work
study students who have an interest and above-aver
age knowledge of the system.

The consultants serve three main functions. Pri
marily, they assist users in distress (e.g. recover
ing a program which had not been SAVEd). They en
sure both the quality of the physical treatment of
the terminals and the enforcement of a few essential
rules for terminal use (e.g. Running games is pro
hibited when there is a waiting line, monitoring
use when a waiting condition exists to keep aimless
work to a minimum and the flow of users constant).
Lastly, the consultants provide a ready force of
interested programmers for simple programming pro
jects. The Nichols' experience indicates that the
consultants should staff the room continuously dur
ing operating hours (8 AM to 10 PM) until the in
troductory programming students have completed their
first round of program creation, saving, modifica
tion, and running (usually 2 weeks at the start of
a semester). Following that time, the computer
center staff and other users can handle most prob
lems during the day. Consultants, however, are
used for approximately 4 PM to 10 PM daily, except

Friday and Saturday when the tenninal room is closed,
Without the use of student tenninal room consultants
a tremendous burden would be placed on the computer
center staff, a high level of student frustration
would exist, and the operating hours would be sharp
ly curtailed since the security of computer and
tenninal rooms could not be insured.

EXTENDED SYSTEM RESOURCES

The need for a system to support a curriculum and
all of its users exists. With limited financial
and personnel resources, a burden is placed on
those responsible for insuring that these needs
are met. Given these time, financial and person
nel constraints, Nichols has taken the approach of
utilizing the tremendously cooperative nature of
most'R$TS/E sites in acquiring resources which ex
tend system capabilities and ease of operation
whenever possible.

Account Creation and Accounting

Since account creation is one of the first tasks
with which a new system manager is confronted, it
can be a time consuming operation. After several
different approaches, Nichols now uses a modified
R[AtT program written at Middlebury College (DECUS
#RSTSll-109). Creation (and deletion) of groups of
accounts is easily accomplished. Most courses have
individual student accounts assigned. The creation
of any number of individual project, programmer
numbers (PPN) is easily accomplished with this pro
gram. In addition, accounts are assigned random
passwords and a listing file is created for the in
structor's use in actually assigning the numbers in
class.

An added benefit of this modified REACT program is
the creation of a virtual array file of all PPNs
which is used in modified MONEY utility. The draw
backs of the standard MONEY program become glaring
ly obvious the first time the listing is viewed -
no tables, by project or overall! The modified
MONEY program allows for a more usable system ac
counting program. For non-privileged users, MONEY
allows project managers to see their entire project
and programmers their own utilization. The Middle
bury MONEY, and others existing accounting pro
grams achieve the same results, are a necessary
modification to the standard RSTS/E in order for
system management to monitor usage.

Language Processors

The curriculum orientation of Nichols dictated the
acquisition of two additional languages; COBOL and
FORTRAN. FORTRAN was necessary for compatibility
with packaged academic software which might be ac
quired and written in the language. The justifica
tion of a COBOL processor and the WATBOL compiler
in particular, has been detailed above. !An added
feature of the WATMON (the monitor under which
WATBOL executes) is the existence of a SORT and
PRINT utility which is very helpful for student
programmers.

While these added languages are needed to support
the curriculum needs of the College, they must be
supported by adequate documentation. Again, the
DEC supplied FORTRAN manuals can not be viewed as
tutorial or even reference for most student users.
Fortunately, the Middlebury user's guide contains

602

a chapter on the FORTRAN implementation of RSTS/E,
Wf\en the Nichols~ user~ gui~e was constructed, thts
chapter was excluded. It was, however, utilized as
a stand-alone FORTRAN user's guide. The same ap
proach can be taken for any chapter or a related
set of chapters tn producing specifically oriented
user documentation,

WATBOL documentation was not as concisely avatlable,
P..s mentioned earlier, a text exists which is
WATBOL oriented (An Introduction to COBOL with
WATBOL (WATFAC) by Cowan et al.). However, there
are slight implementation discrepancies with RSTS/E,
The University of Waterloo provides a WATBOL User's
Guide and File Utility Guide which can be reproduced
to create a fairly concise set of documentation.
Minor modifications are needed to orient the sup
port materials from a batch to an on-line orienta
tion,

Text Editor

One of the major facilities of RSTS/E with which
Nichols found faults was an easy to learn and use
text editor, Both FORTRAN and WATBOL acquire the
use of an editor to create source programs. Creat
ing and modifying documentation (including modifi
cations to the user's guide) require an easy to
use erlitor. A line-oriented editor was obtained
from Babson College, Written by Doug Platte, this
editor has proven to be easily learned. Besides
line-oriented commands (add, delete, list, replace),
it has string-oriented operations (insert, delete,
find) and possesses file merge capabilities. A
concise, well-written, manual is also available.

This editor is fairly small(Z1 blocks when compiled)
and has become the editor used at Nichols for all
editing operations.

Other facilities

A number of other facilities have been added to the
system to provide easter operation of the system
for the typical system user.

Modified LOGOUT - These modifications come from
the Middlebury package of utilities. It allows
for a user to respond with a "P" for the
"Confirm" prompt. "P" means, "Please log me out
even though I have exceeded my quota. All such
requests are logged into the GRIPE file where
they can be reviewed by the system manager. This
facility is helpful since a novice user may be
confused as to why he is above quota, advanced
users may i'n fact create programs beyond quota,
or a condition might arise where some backup
files exist and a user is not sure whether they
could be deleted. The philisophy here is "better
safe than sorry." When the computer center staff
or instructor is available, these conditions can
be resolved.

Detached Batch - This is another Middlebury util
ity which operates as a detached job and does not
need OPSER, QUEMAN or the SPOOLER to be operation
al. When batch processing is desired, the pro
gram detaches until the job has been completed.
Functionally, this batch processor is equivalent
to the standard DEC program but operates with
considerably less overhead.

Password Changing - Password changtng programs
lift a considerable burden from the shoulders of
the computer center staff and/or instructor.
Once the randomly generated password has been as
signed (through the modified REACT program) each
student is responsible for remembering and main
taining the password. The system manager, however,
has the ability to create a file of project num
bers where this capability is not desired. The
public access number and a course's number (where
many students use the same PPN) fall into the
category of PPNs where this change capability is
not allowed. The password maintenance facility
and a fixed disk quota instill a sense of con-
trol for each user over his/her account. In ad
dition, the responsibility for several aspects of
account upkeep is clearly placed in the user's
hand.

SUMMARY AND CONCLUSIONS

Faced with the related problems of supporting nov
ice users and curriculum integration of a RSTS sys
tem, the Nichols approach has been an evolutionary
one. Initially, only those courses which were di
rectly related to computer usage (the systems
courses), utilized the system. Novice users in
these courses were supported by instructor-provided
aids and guidance. Support schemes (terminal room
assistants, operational guidelines, manuals, etc.)
were developed using the students who were most di
rectly involved with computer usage. In order to
extend the integration of the computer into non
system courses, these support facilities should be
in place. A gradual integration of these non-sys
tem courses has been occuring. In this way, each
new application can be observed and stabilized
prior to a new undertaking. This approach seems
mandatory with limited time, personnel, and mone
tary resources.

Resources beyond the "standard" RSTS system were
also incorporated. Again, the limiting resources
in a small college dictated extensive use of mate
rials produced at other colleges. User application
programs and RSTS utility programs were acquired
at nominal cost from a variety of sources to com
plement system operation. A comprehensive user's
guide for BASIC-PLUS and RSTS relieved the burden
of having individuals serve as the primary resource
for instruction and assistance. Once completed,
efforts at supporting other system features could
then be undertaken. System accounting, an easy-to
use text editor, WATBOL, and various utilities re
lated to the handling of accounts, were added to
enhance the system resources.

Nichols has been able to provide user support and
curriculum integration through combined use of in
house efforts and shared development from other
sites.

603

ON-TARGET,
An Effective Bottom-Up Approach to Job Shop Control

Norman J, Viehmann, President
Viehmann Corporation
Woburn, Massachusetts

ABSTRACT

Job Shop Managers are measured by the results of delivery
performance, cost performance, and the value of work-in-pro
cess inventory, These objectives conflict with one another,
Traditionally, managers of job shops have had to base their
decisions on summaries of incomplete data, To obtain useful
information at an appropriate level of detail it is neces
sary to process very large volumes of data. The computer
can provide such detail. It also makes possible measure
ment of a shop manager's results separately from those of
the materials manager, the production control manager and
engineering manager, The great change in level of manage
ment sophistication made possible by the computer is not
always practical to implement in one giant step, This paper
describes a bottom-up approach for providing job shop man
agers timely, detailed information that has successfully
used the computer to help improve results.

INTRODUCTION

At all levels, managers of job shops are faced with
complex decisions, Typically the reports used by
job shop managers lack the detail necessary to sup
port good decisions. As a result, work-in-process
becomes excessive, serious bottlenecks develop, and
overall delivery performance remains beyond manage
ment control in the attempt to balance overall pro
duction with order input levels.

Traditional reporting includes Total Shop Load by
Week; Number of Jobs In-house/Released; Current
Backschedule (Load and Number of Jobs); Hot List of
Top Priority Jobs; and Open Master List. Planned
capacity is reviewed weekly. Gut feeling of work
load contributes more to decisions on overtime, hir
ing and layoffs than data in these reports,

Policy for accepting incoming orders is oversimpli
fied, Orders are accepted for ship dates requested
by customers unless the shop is shipping signifi
cantly further behind schedule than normal, In that
event, schedule dates are negotiated, The effect on
load is rarely checked-out during the order accept
ance process.

What is needed is a system of reporting that will
do for job shop managers what time-phased require
ments planning did for material managers. However,
an even more complex reporting scheme is required.
To control deliveries of the hundreds of orders
with tens of thousands of operations in a job shop,
it is necessary to control 1) the size of the
queues of jobs waiting at each work center, 2) the
load by week for each work center, and J) the cor
responding effective work center capacities,

Sophisticated computer-generated reports can pin
point needs for management action. In practice,
these reports cannot be introduced directly to

Proceedings of the Digital Equipment Computer Users Society 605

replace the old manual system, Intermediate steps
are required to allow management to get the feel
for the new reporting tools,

This paper describes an "entry level" Shop Floor
Control System that has been introduced in two job
shops. The first system was installed in batch
mode and has operated successfully without change
for ten years, The second system, described here,
features on-line entry and update. It is operating
under DEC's RSTS time-sharing system on a PDP-11/70
and is being installed in a manufacturing job shop
on a PDP-11/34 under CTS-500. The programming
language is BASIC PLUS 2,

We have called the system the "ON-TARGET Job Shop
Control System", It provides the means for accum
ulating and storing all the data that is needed for
basic detailed decision-making on the shop floor
and successive management levels, Before looking
at the system design let's take a closer look at
the problems and decisions that occur daily in
every job shop.

THE JOB SHOP ENVIRONMENT

A typical medium-sized job shop has 50 to 100 work
centers for performing machining, assembly and/or
hand operations on hundreds of different product
items. Each product item has a unique engineering
drawing or sketch and a unique routing, The rout
ing defines the sequence of operations and it spe
cifies the work center, the setup time, and the
production rate for each operation,

Shop orders are created to satisfy either inven
tory or direct customer orders, Upon acceptance, a
shop order is assigned a scheduled ship date, It
may also be assigned a priority code that defines

San Francisco - November 1978

its importance relative to other orders. Many job
shops accept orders for products that require a new
routing to be prepared by methods engineering. It
may be necessary to procure raw material for the
specrific order. An order can logically be released
for production only after methods engineering is
complete and the material is available,

Machine feeds and speeds used in production often
differ considerably from what is specified on the
routing, Sometimes the tooling and occasionally
the work center actually used are different from
the routing, Once a computer system is installed
it is important that routings be updated to match
actual practice.

MANAGING THE JOB SHOP

Purchasing has the responsibility to furnish mater
ial. Methods Engineering is responsible for speci
fying how each product will be manufactured. Manu
facturing Engineering is responsible for specify
ing and maintaining the jigs and fixtures and mach
ines. Manufacturing must see that it completes
shop orders within cost and delivery objectives that
it has accepted,

The effects on delivery of late material, incorrect
methods specifications and machine failures can be
quantified and reported, They seldom are, Most
often, manufacturing bears full responsibility for
deliveries and is expected to make up time for late
material, experimentation with methods and facility
downtime,

It is not uncommon for Manufacturing to find itself
faced with a surge of new load when its backschedule
load has already gone out-of-control and it has
insufficient lead time to hire and train new emplo
yees. Delivery performance decreases rapidly. Over
head costs rise. Work piles up on the shop floor,
Lots are split to make partial deliveries, Jobs
are lost in process and expediting effort and over
time soar.

The most direct solution to this very common situ
ation is to pDovide a set of reports that can pro
mote the liklihood of making the best decision at
the right time.

The shop management decisions that directly effect
delivery performance are, from the bottom up:

Shop Floor Scheduling:

What job should be run next on this work center?

Loading/Overtime:

How many man hours should be assigned to each
work center today; this week?

Capacity Planning/Hiring-Layoff:

How many man hours should be scheduled for the
entire shop next month?

Master Scheduling:

How much load shall we plan (or accept) by
period?

In order to make these decisions the manager needs
to have the following information:

606

For Shop Scheduling:

1. What jobs are available to setup on this work
center?

2. What jobs are about to become available for
setup?

3, What is the Schedule Date; the Priority; the
Hours required on this work center and number
of operations remaining for each job waiting
at this work center?

For Loading:

1. How many standard hours are in queue at this
work center?

2. How many actual hours are required from this
work center to complete back schedule and
current weekly loads?

3, What is the average production output of this
work center?

4. What is the current planned capacity of this
work center?

For Capacity Planning:

1. Has the queue been increasing, remaining
stable, or decreasing for this work cen~er,
this department, the shop?

2, Is the anticipated load increasing? Is there
a load swell or depression moving through the
profile of loading weeks? Is load decreasing
for this 1mrk center, this department, the
shop?

For Master Scheduling:

1. If I accept this job will it create or
encounter an overload on any facility?

2. What ship Schedule Date can be assigned to
this job within the limits of current shop
load?

A system that provides this information requires
data on every operation performed on every job,
This same information can be used to record job
costs.

HOW THE ON-TARGET SYSTEM CAME INTO BEING

Design of the system was initiated in response to
what were viewed as serious problems in a job shop
that manufactures heavy equipment. Jobs are both
make-to-order and for inventory,

1. Approximately 75 jobs were being rescheduled
each week, This represented about ten per
cent of the released jobs.

2. The critical ratio values shown on the daily
shop schedule presented priorities that did
not coincide with the knowledge of shop man
agers. The report was not used in the setup
decision-making process.

It was decided to involve key production people:
managers, supervisors, methods engineers, lead men,
expediters in an intensive study to reveal pro
blems and suggestions. Within one week a workable
priority policy was developed and a system design
concept completed,

The strategy of the system design was to provide
only the essential facts needed, where and when
needed, It was determined that there was a real
need for a reliable shop floor scheduling report.

This report would be used if priority information
was credible. The priority system that was agreed
on reflected solid facts that seldom changed as a
job progressed through the shop.

DESIGN CONCEPTS

General

The Job Shop Control System is part of a total bus
iness system that includes inventory control, order
processing, general accounting, payroll and sales
applications. This business system is operating on
both in-house systems and on time-sharing services,
using from small PDP-11/34 configurations to large
11/70 systems.

The software design allows maximum flexibility to
accomodate the needs of individual organizations,
A single company can tailor separate Job Shop Con
trol Systems to the specific needs of different
shops or divisions. For instance, report files and
transaction files are maintained independently of
time periods. Each user can select when to run his
reports and when to clear his files.

Each user has his own unique access code. This
limits him to affecting his own files and protects
his data base from access by other divisions or
departments.

The on-line editing feature facilitates assignment
of the data entry responsibility to the depa.rr.ment
that is the source of the data. Experience has
shown that this improves the accuracy of the data,
It reduces the cost of data entry by greatly reduc
ing editing and review effort. On-line updating of
multiple files provides information that is more
current by one to six days.

Every application function is accessable by a dir~
ect command that is contained in the menu, The
application functions fall into the following cat
egories:

Data Entry

Master File Maintenance and Display
Shop Floor Transactions
Add/Modify/Display Jobs
Reports

Data entry is in conversational mode, Key informa
tion such as job number, clock number, work center
number and part number are edited on-line. When a
value is entered that is not recognized by the
system an error message is displayed, For certain
fields the user may enter a "HELP" command to cause
a list of valid values to be displayed. The data
entry approach fulfills the self-teaching design
strategy and allows an individual to use simplified
procedure as he becomes familiar with the system.

File Structure

The master files and the Open Job file are keyed
index files. A single record is retrieved with two
accesses. Records in ~ Shop Transaction file are
chained internally by Job and externally to the
corresponding operation detail record in the Open
Job file,

607

Reports

Reports are requested from terminals via the Report
Menu. There are four output options: 1) Display at
a CRT terminal, 2) Print at a remote printer term
inal, J) Print at the central system printer, and
4) Create a "spool" file and hold for printing
later.

The print programs are designed to be independent
of periodic cycles, so each user can specify his
own reporting cycles, The result is that one user
can vary his reporting cycles as special needs
arise,

The Job Shop Control Svstem reports are designed to
provide the facts necessary for making well-timed
decisions that will improve in-process inventory,
shop efficiency, costs and deliveries. For in
stance one user established the following initial
reports:

Daily:

Weekly:

Shop Floor Schedule
Transaction Register
Performance Exceptions

Work Center Utilization
Direct Labor Analysis
Scrap/Reject Analysis

On Request:Job Status - Selected Categories
Job Cost
Shop Load

DESIGN FEATURES

Direct Inquiry

The system provides direct inquiry to Customer,
Employee, Work Center and Routing master records;
to the Standard Rate file, to Open Job records
and to Open Job Routing detail records, Inquiries
can be displayed or printed at remote CRTs or
printer terminals,

The master files and the Job file are up-to-date
as of the last transaction entered to the system.
Inquiry always provides the latest information.

Job Processing

New jobs are added to the system via the Job Menu,
The data entry clerk need only key in the product
code, ship schedule, order type, customer number,
customer P. O. number, lot quantity and priority,
The system assigns a sequential job number and an
initial status code, This code can be overridden,
For instance it may be known that material is al
ready available when the order is entered.

Besides entering new jobs there are many other
important day-to-day informational functions that
need to be transmitted to the Job Shop Control
System, These include:

Change ordering information,
Change the job routing,
Split the job,
Release jobs, and
Cancel jobs,

All of' these functions plus "Display Jobn can be
accessed through the Job Menu,

The CHANGE JOB command is used to change priority,
ship schedule, or customer purchase order number.
The lot quantity, status and estimated material
cost can also be changed provid.ed the job has not
been released to production.

It is not uncommon for the methods department to
change the routing after an order has been released
to production. ON-TAGET recognizes this reality of
maintaining accurate shop :f'loor schedules and load,
The system makes it possible to change routings and
have the change take effect while a job is actually
in process, It is possible to change operation time,
to insert or remove or change the sequence of oper
ations which follow the last operation for which
labor has been reported.

The SPLIT command recognizes another reality of job
shops, the split lot, The new quantities, priori ties
and ship schedules are assigned to each split lot
as specified, Actual costs are split proportion
ately between the jobs to the operation where split,

The RELEASE and CANCEL functions provide a simple
means for changing the status of many jobs with a
single transaction,

Transaction Processing

Shop transactions can be classified in the following
categories:

Production Labor

, On-standard
, Substitute or Added Operations
, Setup
, Rework

Non-Production Labor or Daywork
Material
Merge Lots

Transactions can be entered either from a shop floor
terminal or from a display terminal located in the
office, The shop floor terminal can capture data
directly from the machine operators. Prepunched
cards save additional effort and can be used to
enter employee clock number and job number. The
shop floor terminal captures and enters actual hours
automatically,

Only six or seven items are entered for standard
labor transactions:

Clock number
Job number
Operation number
Actual hours (via office CRT only)
Quantity good
Quantity rejected
Operation complete, yes or no,

If off-standard, the work center number needs to be
entered, One manufacturer experiences an average
of only 21 keystrokes per entry,

The MERGE transaction brings the actual cost of one
lot that is combined with another lot into the cost
accounting trail of the second lot. The final job
cost report then accurately reflects the cost of the

608

combined lots,

Non-production transactions capture actual hours in
up to ten daywork categories. These are reported
daily by employee and weekly by category within
department,

Scrap quantities are enteredonrework transactions.
The direct labor cost per unit that has been accum
ulated through the operation where scrapped is used
to compute the scrap cost,

The Transaction Register can be printed as needed,
The user simply specifies the period for which it
is desired, Transactions are removed from the file
by using a copy function and specifying a "reorg
anization" date, Transactions for all jobs that
have been completed on or before that date will be
removed from the file,

Job Costing and Status

With the direct inquiry capability a user simply
enters the job number to obtain the latest status,
Immediately the current shop floor location and
the accumulated cost will be displayed, It can
also be printed, This data is current through the
last operation complete,

Current information about an operation in process
can also be displayed and printed, The detailed
information about an operation is updated as each
shop transaction is accepted,

The Job Cost Analysis lists the detail of each
type of transaction at each operation, Labor
variances for standard production and for non
standard production are clearly shown, If de
sired, setup can be separated from "run" perfor
mance by using setup transactions, Rework labor
and scrap costs can be itemized, The Job Cost
Analysis clearly shows the sources of individually
controllable costs.

Master File Maintenance

All master file maintenance functions are performed
on-line, Tutorial messages are used extensively,
A full list of employees, customers, work centers,
standard labor rates or standard routings can be
displayed with the HELP command, If an attempt is
made to add a record with a duplicate key, an
informative message will be displayed, For some
fields only values that correspond to pre-specified
ranges will be accepted, Where rigid specifica
tions are not practical, warning messages are pro
vided,

Master file maintenance routines are accessed
from the Ma.in Job Shop System Menu, Master file
data that is not affected by shop transactions can
be modified, New operations can be inserted and
operations can be removed,from the Routing Master,

Reports

The Job Shop Control System reports are designed
to support the five primary functions that deter
mine shop performance:

Shop Floor Scheduling
Resource Monitoring
Loading

Capacity Planning
Master Scheduling

In addition to the reports described here, the
Job Shop Control System can provide the data for
the almost infinite variety of reports that users
will request to support individual management
styles,

Shop Floor Scheduling

Released each morning and current as of the end of
the second shift the night before, the Daily Sched
ule lists by work center all the jobs that are at
the work center and all jobs that are just one op
eration before that work center. The jobs are listed
in sequence by scheduled ship date within priority
number, The standard load hours are given for the
job at the work center; also the number of opera
tions remaining; and for "prior operations" jobs,
the work center that they are now at.

Resource Monitoring

These reports are designed to provide feedback on
labor performance and machine utilization in time
for effective investigation and corrective action,

Daily direct labor performance exceptions are re
ported on the Transaction Register, Foremen can
check on causes for large variations in labor
efficiency in time to correct such problems as
poor setups, insufficient training, etc.

The Weekly Direct Labor Performance report gives a
clear picture of relative performance and allows a
foreman to spot significant changes in an individ
ual's performance,

The Weekly Machine Utilization report presents
clear facts about each work center that quantify
effective capacity, underutilization and downtime,

The Weekly Scrap/Reject report identifies sources
of unusual scrap and reject activity and quantifies
the costs relative to overall shop activity,

The three "Weekly" reports can be created for any
period desired,

Loading

The Job Shop Control System allows a manager to
observe the effect of alternate plans for releasing
and scheduling orders, Load is expressed in stan
dard labor hours. The Weekly Labor report lists by
work center by week, the total in-house load, and
the released in-shop load, It also shows the
change in load from the prior week,

The load is determined for each operation on each
job when it is entered to the system, The load
week is determined by backing off from the sched
uled ship date. An estimate of the waiting time
the job will experience at each operation is deter
mined from a Queue Table that is accessed via the
work center file, Each center is assigned one of
several Queue Tables, The Queue Table expresses
estimates of waiting times as a function of a Job's
priority and operation load hours, If backward
scheduling results in a starting load week that is
earlier than the current week, the job is loaded
"forward",

609

Capacity Planning

Capacity Planning is the process of comparing
planned load to existing capacities and making dec
isions to change capacities,

The effective capacity of a work center reflects
the cummulative results of operator efficiency,
machine and tool downtime, and manning,

The Job Shop Control System compares effective
capacity, planned capacity and load, The Weekly
Work Center Utilization report develops the eff
ective capacity and compares it to the planned
capacity, The latter is maintained on the Work
Center file, The Weekly Load report compares
load to planned capacity.

Master Scheduling

The term Master Scheduling is used un at least
two contexts. When a Materials Requirements
Planning system is in use, the Master Schedule
refers to the planned orders for the end products
that are entered to the MRP system for the purpose
of generating orders for inventoried items and
developing capacity requirements,

When MRP is not used, the term Master Scheduling
has many different meanings, It usually refers
to a planning process that is not short term,

The Job Shop Control System facilitates Master
Scheduling. Jobs classified as "Planned Orders"
can be entered to the system, the Load report run,
and then these jobs removed or replaced with an
alternate plan, The resulting Load reports will
give the required capacity by period for 13 periods
into the future, and will include the existing
backschedule load,

ON-TARGET IS PART OF A TOTAL BUSINESS SYSTEM

The Job Shop Control System can be implemented
independently from its sister applications:

Inventory Control
Order Processing/Billing
Sales Analysis
Payroll, Purchasing, and
General Accounting

If desired, the orders generated by the Inventory
Control and/or Order Processing systems can be
processed directly to the Open Jobs file, The
material cost transaction can be created and pro
cessed directly from an inventory withdrawal tran
saction, and so on as appropriate for such other
functions as billing, payroll, general ledger and
machine maintenance,

The Job Shop Control software was designed by
Darry:l Johnson of Interactive Management Systems,
Inc, It conforms to the standards and interlocks
with the other business applications maintained
by that organization.

REPORT 110 14 VEBKLY LOAD REPORT PACI 1
APRIL J, 1978

VORlt CEllTIR LOAD PLAllMZD EST HRS LOAD1 TOT LOAD HOURS HOURS HO OF
11\JllBKR D!i!ICRIPTION VEEK CAPACITI IHSHOP 6 'roTAL CllAllCB CURRENT OYRR FLO JOBS

1050 SPIN au a.DK 44.0 65.0 68.o 10.5- 68.0 .o 14
1) 25.0 45.5 16.4- 40.0 ~-5 1
1i. 2".5 39.6 5.1)9,6 .o 11
IS 22.1)4.5 •1.5)4.5 .o 9
16 16.0)8.7 8,6)5.0).7 12
17 11.5 29.2 1.2 29.2 .o 10
18 10.1 2e.1 1.7- 2811 .o 9
19 o.o 21.5 6.5 21.5 .o 7
20 5.5 15.1 5.1 15.1 .• o 6
21 o.o 21.2 1).1 21.2 .o 6
22 o.o 15.5 e.o- 15.5 .o 4
2) 0.0 16.5 .7 16.5 .o 4
2•1 o.o 5.5 5.5 5.5 .o 1

BAL o.o o.o 5.5- o.o .o 0
10,50 SPIN 'roTAL 199•7)78.9 1.5 9'I

1060 BINCH CU.lBK 4o.o)8.0 i.2.5 10.0- 42.5 .o 18
IJ)7.5 44.1 1.1 44.1 .o 21
1i. 16.1 29.0 6.0 29.0 .o 16
IS 1e.s J0.1 5.2 JO.I .o 17
16 25.0)J.5 "·5-)J.5 .o 20
17 2i..7)).0).0-)).0 .o 19
18 1).8 21.0 6.0 21.0 .o 1.5
19 16.7 21.9 5.0 21.9 .o 16
20 15.0 25.0 7.5 25.0 .o 14
21 11.1 11.9 .o 11.9 .o 11
22 .o 9.4 1.i.- 9.4 .o 10
2) .o 4.1 2.0 4.1 .o s
21> .o).9 1.4).9 .o s

BAL .o 1.2 1,2 1.2 .o 1
1o6o BBNCH TOTAL 2)5.0 204.1 12.5 188

FDRY TOTAL 84.o 4)4.7 561.0 14.o

Figure 1

610

REPORT NO 5 DAILY SCHEDULE PAGE 1
DEPI' 101J '20 1978

WORK QUAN PR SCH EST TOI'AL PREV #OPNS HOURS
CTR JOB# DESCRIPl'ION OPN# TITY NO DATE HOURS HOURS w.c. REMNG REMNG

10J1 1767 WM-55J1 2 50 2 11-JO 6.5 8 6.7
1824 WM-8118 2 50 2 12-01 4.0 6 8.0
1821 WM-8001 J 10 2 12-02 LO 7 10.2
1858 1400) 2 75 J 11-29 15.2 5 L1
1845 DMS1655 J 15 J 12-02 4.o 10 20.1
1803 DRMC-1781 2 25 J 12-04 8.7 11 6.o
1871 WM-8110 J 5 4 12-0J J.O 17 .9

1031 TOI'AL AT WORK CENTER 42,l~

1759 WM-5557 2 150 1 11-29 20.0 1110 8 18.1
"'.! 1951 WS-)28 2 400 2 11-28 28.5 1110 2 6.4 1904 WS-1065 20 50 2 12-09 2.0 2118 10 J5.0 ~ 1909 WS-1067 20 75 J 12-10 J.6 2116 8 J9.5 Cl) :i1 - TOI'AL PENDING 54.1 -
I\) 11JJ 1650 WM-55)2 JO 100 1 12-04 2.0

1784 WM-8119 J5 150 1 12-11 J.O
1675 WM-8114 61 60 1 12-11 1,0
1706 ws-1055 25 800 2 11-JO 12.5
1781 WR-9251 J5 750 2 12-04 11.5
1802 WM-5514 JO 25 2 12-11 1.0

TOI'AL AT WORK CENTER JLO

11JJ 1709 WS-1011 25 1000 1 12-11 14.o 125 5 120.5
1815 WR-9225 15 100 2 12-04 2.0 1015 9 J6.8
1792 WR-9415 JO 200 2 12-11 4.0 1015 7 44.5
1764 WM-1855 20 50 2 12-18 1.0 1010 5 13.6
1780 ws-1069 25 85 4 11-JO LO 1115 10 2LO

TOI'AL PENDING 22.0
DEPI' TOI'AL AT WORK CENTER 73.4
GRAND TOI'AL AT WORK CENTER 465.4

REPORT NUMBER 6 JOB COST ANALYSIS HGE

FJ.Rr NUMBER i/S-4555
Q.U AIITI TY ORDERED 25 JOB lfJl'1>ER 8881 DATE COMPLETED OJ-08-78

TR OP WK CTR QUANT UNIT-COST * LCT VARIANCES * REWORK REJECT SCRAP SCR/ COST OPN YIATL CUM ACTL
CD NO, NO. COHPL $EST $ACTL STAND. TEHP/SUBS $LABOR $LABOR $LABOR REJ BRTFWD DATE $ LABOR ;>

01 522A 25 10.00 16.00 1.50. 00 01-11 125.00 400.00

2 2A F402 25 JJ.00 36.02 75,50 215.00 5 01-15 1,085,50

2 4B 25A 20 2.50 6.04 70.80 01-21 1,206.JO

05 J11B 20 2.50 1.99 10.20- 01-Jl 1, 246.10

06 7651 20 1.00 ,96 .80- 02-09 1,265,JO

8 06 BENCH 6 1.00 6.00 02-09

6 07 200.00 02-17 1,465,30

07 181 2.75 2.70 1.25- 02-20 J0,00 1, 5J2.80

08 54 25 5.00 9.BO 120.00 02-21 1,777.80

8 J11B .5 8.00 02-21

8 F402 45.10 215. 00- 215.00 5 02-22 J0.00-

LABOR $/UNIT 56.75 6-9. 76

FINAL TOTALS 2.5 212. 75 146, JO 14.00 .oo 215.00 200.00 125.00 1, 777,80

VARIANCE ANALYSIS:

VARIAN CE ON ST AllDARD OPERATIONS 212. 75

VARIANCE ON TEMP /SUBSTITUTE OPNS 146,JO

TOTAL VARIANCE 359.0.5

STANDARD LABOR 2.5x .56.75 1,418. 75

MATERIAL $ 125, 00 125.00

GRAND TOTAL DIRECT CHARGES $1, 902.80 $1,902.80

OVERHEAD CHARGES:

SCRAP 215.00

REWORK LABOR 14,00

TOTAL 2:49.00

Figure J

612

REPORT NUMBER H-1 OPEN JOB3 LIST
SJ>J,ECTED BY JOB NJ. !"ROM 30651 TO J0700 PAGE 1

APR 1, 1978

LST JOB DUE .. Q.UANTITIES * • OPNS LST CUMS,U. HRS CUM PRODN HHS CUM LABOR $
JOB NO. PFX ST PR CUSTOMER P. O. NO. GUST# DATE ORDRD GOOD- LOC REJECT RENG Ol'N EST. ACTL EST ACTL ES1 ACTL

SJ0651 5 2 AJ506 20110 J-28-78 500 510 0 20 J.O 2.0 10.0 9.0 95 87
J0652 5 2 11051 J-10-78 25 25 u 2 70A 15.0 14.1 86.6 79,9 865 801
J065J 5 J P14A-J01 8502 J-10-78 600 595 5 3 65T 40.0 10.0 40.0 42.5 400 435

'fJ0654 s 5 J 21602 7525 J-18-78 1100 1200 50 4 J6 105.5 105.5 1017.7 1016.6 10850 10995
30659 5 1 41710 10106 3-J1-78 100000 99800 200 2 20A 10.0 6.0 56.0 51.0 525 499
J0667 4 3 1J22J !02JJ 4-011-78 150 0 0 10 .0 .o .o .o 0 0
30676 5 2 1046 20101 Lr-28-78 500 510 0 9 50 2.9 J,4 19.9 22.5 211 23')
J0677 5 2 56707 10545 4-25-78 100 100 0 7 50 2.1 2.2 25.0 22.5 240 237
J0682 5 2 45756AX 10355 4-04-78 1000 1010 40 11 70 17.5 10.2 66.5 60.2 700 625
J0686 5 1 19009 9875 4-1J-78 u;oo 1525 25 2 65 12.7 11.5 125.0 107.6 1275 1017
30695 5 J 8564p 02]5 4-04-78 100 100 5 1 80 9,5 9,8 190.0 180.5 2115 199.5
30696 3 5 AP101J 8242 3-31-78 50 0 0 10 .o .o .o .0
30697 2 5 X4J50 10174 4-07-78 25 0 (l 10 .0 .0 .o .0
30698 5 4 19876 10125 4-25-78 150 150 0 9 .8 .6 4,0 4.o 48 47
J0699 4 J 10974 4-18-78 1100 0 0 15 .0 .o .0 .0
30700 1 J 75100-AY-112 10435 5-05-78 250 250 0 0 12 .o .o .o .o

GRAND TOTALS 21).0 175.3 16110. 7 1598. J 17J24 16773

LOAD HOURS RJ<;MAINING-SU 60.5
LOAD HOURS RJ<;MAINING-RUN 965.0

Figure 4

613

QDMS: A DATA MANAGEMENT SYSTEM UNDER RSTS/E

P. Tofil, C. Darling, T. E. Moriarty, R. B. Enders, P. J. Cruson
Quodata Corporation
Hartford, CT 06103

ABSTRACT

The QDMS data management system was designed to meet two needs.
First, it gives non-technical users access to the computer with
an easy-to-use report writer. Second, QDMS provides programmers
with a 'tool box' that substantially reduces the time necessary
to create applications software.

A data dictionary provides seventeen attributes for each field.
The file structure includes separate descriptor, index, sequen
tial pointer, special index, and data files. QDMS provides
multi-keyed ISAM, special/selective pointer files, file inver
sions and multiple views of the data file. Up to five files will
be linked via common keys.

Actual sorting is handled by a runtime sort. Sorting with or
without selection can create new index and pointer files. A
multi-file version is used to create a linked pointer file for
use in reporting. The report generator may be used for 'ad hoc'
as well as reusable report creation. Batch and on-line modes are
allowed for the report description process.

Software development under RSTS/E can be greatly enhanced with a
ready set of tools. The tools take the fo!"lll of BASIC-plus func
tions, which provide a standard means of associating the logical
interfile relationships and file accessing required. Thus, pro
grammers can concentrate their efforts on application needs,
rather than the mundane data base requirements.

INTRODUCTION SYSTEM STRUCTURE

As minicomputer systems have gained wide acceptance
in the user community throughout the seventies, the
use of computer technology is no longer reserved for
that elite group of technicians residing in corporate
data centers. Top management is demanding and expec
ting to receive an extension of the computing re
source to non-technical personnel in their organiza
tions. Put another way, management is refocusing
responsibility for corporate data resources back to
the actual users of such data. These users may be
clerks, managers, and in some cases line executives
who use data and the information it yields to operate
on a day-to-day basis.

The challenges are clear. Technicians of today will
be called upon to produce highly sophisticated soft
ware which will be operated in what they will per
ceive to be highly unsophisticated environments.
QDMS, running under the RSTS/E timesharing system is
a step toward putting responsibility for management
of information back into the hands of the user. The
key feature of QDMS that brings info!"lllation closer to
the user is the report writer, which is used by non
technical personnel. It also provides a sophisti
cated report generation facility that replaces pro
gramming in many cases.

Proceedings of the Digital Equipment Computer Users Society 615

QDMS can logically be divided into three major
segments for the purpose of more clearly under
standing the total functionality. System modules
have been designed to provide capabilities to three
varieties of user personnel.

1. Managerial (system managers)
2. User (clerical or operating personnel)
3. Programmer

The various system components are illustrated by
functional area in Figure 1. Note that access to all
modules of the system is controlled by the dispat
cher. The dispatcher functions as an interface
between the user and the various QDMS command levels.
This dispatcher concept keeps the system relatively
easy to use for the user by funneling user requests
through 'tiered' levels of the QDMS command struc
ture. By issuing EXIT commands the user can return
to the dispatcher which will then be ready to receive
the next command request.

Managerial Modules

Certain functions within QDMS are the domain of the
system manager or person designated as the data
administrator within a given PDP-11 site. Figure 1
shows these to be the CONFIGURE, DESCRIBE, ALLOCATE,
and UTILITY modules of the system. These modules

San Francisco - November 1978

Managerial

Figure 1

QDMS SYSTEM STRUCTURE

QDMS
DISPATCHER

CONFIGURE DESCRIBE ALLOCATE UTILITY ADD CHANGE DELETE INQUIRE

(
J.

ACCOUNT EBCDIC LFN LIST PDQRPT QUE RFORMAT TAILOR VDU VFORMAT

CONFIGURE

DESCRIBE

Progra.mming

The Building Block Library consists of a comprehensive set of callable
pre-programmed functions in source format. The functions are for use
by applications programmers when designing specific software modules or
when interfacing same to a QDMS data base.

Figure 2

QDMS MANAGERIAL COMMANDS

Command Enabled

(Filenames & Options)

QDMS
DISPATCHER

.CNF

Environment Command Disabled
Area

File A
File B

.DCR

(Fieldnames & Attributes) Field A Descr.
f--l~---_J--""------------------~ Field B Info.

ALLOCATE (Initialize File)

UTILITY

Index
Fil ex

616

REPORT

ACCESS
DENIED

SORT

might also be accessed by programmers or analysts,
but will most likely be restricted from access by
non-technical users.

The CONFIGURE option (Figure 2) establishes accounts
that will be allowed access to QDMS commands and
files. Each user (account) on the system must have a
configuration file. This file offers the next level
of system security beyond RSTS which limits access to
files if required, and controls the commands that can
be employed by any given user when interacting with
QDMS files. If a user succeeds in logging into QDMS,
but does not have the appropriate configuration file,
further access is immediately denied.

As each user is configured to run QDMS the files that
are allowed to be accessed are designated. In addi
tion the various command modules are either made
available to that user or disabled on a selective
basis. This provides further protection against
unauthorized use of the data base. Configuration
files are built and can be changed on an interactive
basis. Figure 3 is an illustration of the dialogue
necessary to configure a QDMS user.

Figure 3

CONFIGURE QUESTIONS HIERARCHY

1. ACCOUNT ?

ENVIRONMENT RECORD

2. QDMS CODE LOCATION ?

3. TEMP WORK FILE LOCATION ?

4. CONFIGURE ?

5. DESCRIBE ?

6. UTILITY ?

FILE RECORD fin

7. RSTS FILENAME OF QDMS FILE?

8. DESIGNATED DESC. FILE ?

9. DEFAULT VDU "ADD" FILE?

10. DEFAULT VDU "CHANGE" FILE?

11. DEFAULT VDU "DELETE" FILE?

12. ALLOCATE ?

13. ADD ?

14. DELETE ?

15. CHANGE ?

16. INQUIRE ?

17. SORT ?

18. REPORT ?

for
every
account
that
can
access
QDMS

for
every
file
acces
sible
by an
account

617

The DESCRIBE option allows 'windows' into a given
data base for each user. Any combination of fields
in a data base may be defined in a user's descriptor
file. A number of users may have the same data
elements in their respective descriptor files or they
may be tailored uniquely for each user. In this
manner it is possible for several users to maintain
different subsets of the main data base. This also
provides an additional level of security by omitting
those elements in the main data base from a user's
descriptor file that he or she is not privileged to
see. There is the capability when creating a des
criptor file to assign seventeen different attributes
to each QDMS field described.

Figure 4 is a listing of the first two fields in a
twelve field customer master file. As items fourteen
and fifteen in the field attribute table indicate,
there is read and write protection at the field level
which provides further data security. Within the
seventeen attributes there are such capabilities as
range checking, default value, edit checking, and an
on-error value which is used when loading data in
batch mode. The descriptor files like the configura
tion files can be created interactively and dynami
cally altered by privileged personnel should the need
arise.

The ALLOCATE command is used to reserve necessary
disk space required for each file. This command is
used when the file is initially constructed or can be
invoked at any time to extend an existing file.
Space is allocated either by specifying the number of
logical records or indicating the number of disk
blocks to be used. Logical record sizes can range
from 32 bytes to over 2000 bytes. Maximum possible
size of a QDMS file is 33,553,920 bytes.

The UTILITY options are a series of modules designed
to assist all three categories of users. Each
utility performs a specific task when invoked. The
utility command is a.ccessed via the dispatcher at
which time the specific utility is accessed by name.

Figure 5 shows a list of the utility commands and the
function of each. Of particular importance in the
utility repetoire are the RFORMAT and PDQRPT modules.
It is via these modules that the user obtains access
to the comprehensive report writer capabilities of
the system. Although classified under managerial
modules, these components, especially PDQRPT, will be
heavily used by non-technical personnel for report
generation.

The preceding components of the system constitute the
tools available to people charged with maintaining
the integrity and security of the QDMS environment.
Some will be employed by the system manager while
others will be of use to technical supervisors res
ponsible for the quality, content, and security of
all QDMS files on the system. The next section deals
with those components available to the end-user or
non-technical person.

User-Oriented Modules

The dispatcher accesses certain programs which pro
vide end users with the necessary file maintenance,

sorting, and reporting capabilities for maintaining
and using data files independent of technical per
sonnel. These modules are

ADD
CHANGE
DELETE
INQUIRE
SORT
REPORT

Figure 4

DESCRIBE COMMAND LISTING

QDMS DESCRIPTION FILENAME ? ODM3:GUSTMR.DCR

••• QDMS:CUSTMR.DCR IS CURRENTLY DESCRIBED

OPTION ? .l.lSI.

2. OUTPUT TO ? .i.KB:

FIELD # 1

ID NUMBER

3. STARTING CHAR POSITON
4. FIELD LENGTH
5. DATA TYPE CODE
6. COMPARE TYPE
7. EDIT TYPE
8. CHECK LIMITS
9. LOWER LIMIT FIELD VALUE

10. UPPER LIMIT FIELD VALUE
11. DEFAULT VALUE
12. ON ERROR VALUE
13. SORT ELIGIBLE
14. READ PROTECT
15. WRITE PROTECT
16. KEY FIELD VALUE
17. PRINT MASK

FIELD # 2

CUSTOMER'S LAST NAME

3,
4,
5.
6.
7,
8.
9.

10.
11.
12.
13.
14.
15.
16.
17'

STARTING CHAR POSITION
FIELD LENGTH
DATA TYPE CODE
COMPARE TYPE
EDIT TYPE
CHECK LIMITS
LOWER LIMIT FIELD VALUE
UPPER LIMIT FIELD VALUE
DEFAULT VALUE
ON ERROR VALUE
SORT ELIGIBLE
READ PROTECT
WRITE PROTECT
KEY FIELD VALUE
PRINT MASK

ID.NO

1
3
3
NUMERIC
NUMERIC
NO

999999
999999
YES
NO
NO
1

L.NAME

4
12
7
STRING
NO
NO

•••••
YES
NO
NO
0

Note: Underscored text is entered by user.
.t indicates ESCAPE key pressed.

618

Figure 5

UTILITY COMMAND SUMMARY

UTILITY FUNCTION

ACCOUNT Provides system statistics including
block usage, record length, number of
records on file, and dates and times of
last access.

EBCDIC Converts EBCDIC magnetic tape files to
ASCII disk files to be accessed by QDMS.

LIST

LFN

QUE

VDU

Lists ASCII formatted files or copies
files.

Maintains the logical file name table
enabling users to access files by
mnemonic name.

Connects the user to the RSTS/E QUEMAN
system.

Maintains a keyboard table indicating
which terminals are video display units.

VFORMAT Used to format a VDU screen display.
Once formatted, displays can be stored
and recalled at will.

RFORMAT Creates control files used by the report
command control files, determines fields
to be used and output formats of reports
generated. This is a major system
utility.

PDQRPT Links to the RFORMAT utility when an ad
hoc or one-time report is desired. Func
tions as a short form version of the
dialogue necessary to generate a report
eliminating much of the interaction
through system defaults.

TAILOR Changes the size of the user area avail
able for QDSORT user. Specifies sort
area size between 7 and 28K.

Aill2. - This module functions in either the batch or
on-line mode. It is used to add records to an
existing file or to a newly created file. The batch
add will accept data from as many as four different
files either in ASCII format or as RSTS/E Type 1
files. The batch add feature minimizes conversion
time of existing files into QDMS format. In order to
take advantage of the batch add, the user must have
previously configured, described, and allocated a
QDMS file. In addition, it will be necessary to
create a batch control file. The batch control file
may be constructed interactively prior to running the
add program.

The on-line add program is entirely interactive with
terminal prompts to guide the user. A selective add
process may be predetermined at the beginning of a
terminal session. Prompts will be given only for
those fields requested in each record. During the
add process data will be checked against edit

parameters as defined in the descriptor file for each
field. Unqualified data will be rejected and the
user will be prompted accordingly. A verification
option is included if record verification is desired.

The user may add data via sequential conversational
field prompts or construct a video display screen
format. Screen formats may be altered at any time.
They can be stored and recalled for future sessions.
At termination of an add session, pointer files to
the main data file are automatically rebuilt
reflecting the most current condition of the file.

~ - This module is employed to alter the con
tents of fields within records on a QDMS file.
Invoking the change command will retrieve the first
record on the file. Further record retrieval is
based on an Index Sequential Access Method (ISAM). A
record may be accessed by key field or by its rela
tive position to the 'current' record. Valid change
commands are GET, SHOW, CHANGE, NEXT, and MARK. The
GET command will retrieve a record by specified key.
The SHOW command will display requested fields. The
CHANGE command alters the contents of a field. The
NEXT command will retrieve the next record on the
file. NEXT plus or minus N, where N is an increment
of records, will move the user backwards and forwards
in the file. MARK allows the user to change delimi
ters within a field. VDU screen formats may be used
with the CHANGE command.

~ - One or more records may be deleted from a
QDMS file. Valid commands are DELETE, NEXT, GET,
SHOW, and MARK. The latter four commands have been
described under the change function. A series of
records may be deleted relative to the current record
either forward or backward in the file for N records
were N is the count of records to be deleted. The
video display option may be used in conjunction with
the DELETE command. Records are not physically re
moved from the file. The deleted records are flagged
and physically deleted when the file is sorted and
reordered.

INQUIRE - A file may be examined on a record by
record basis. Valid functions include GET, NEXT,
SHOW, and MARK as described in the change module.
The inquire command is most commonly used for low
volume, limited inquiry. A more comprehensive form
of inquiry is offered using sort selection and PDQRPT
described in a succeeding section.

SORT AND REPORT - These commands are sufficiently
powerful to warrant a separate section and will be
treated there.

Summary - In general the user interface offers a
series of easy-to-use command modules to the end
user. Terminal sessions are tutorial in nature.
Ample use of help text is employed. At any point in
the system the user may type 'help' or depress the
line feed key to obtain help messages. Through the
use of prompts, help text, and the user manual, the
end-user should be able to accomplish full data
management functions with a minimum of assistance
from technical personnel.

Programming Tools

Analytical and programming personnel represent the
third category of users for whom QDMS was designed.

619

There exists within the system structure a compre
hensive set of software development tools referred to
as building blocks. The building blocks represent
nearly three dozen general routines that are common
to software systems. These routines have been hard
coded and combined in a library from which each is
accessible via a one line function call. The func
tions accept a fixed number of parameters each time
they are called, and return a single value when
completed.

The purpose of the QDMS Building Block functions is
to reduce the programming required to access a QDMS
data file. Using index and/or pointer files and the
QDMS Building Blocks, most file access can be pro
grammed as a series of function calls. This means
that the programmer never has to worry about using
BASIC-Plus to open files, read or write blocks, de
block buffers, translate encoded data, etc. All
these things can be accomplished by simple function
calls. The functions are divided into two general
areas. There are database functions and index
functions. A list and brief explanation of each is
contained in Figure 6.

Figure 6

QDMS BUILDING BLOCKS FOR PROGRAMMERS

Database Functions

FNA5 Add Record
FNB5% Retrieve Start of Field
FNC5% Close File
FND5% Open Descriptor File
FNF5$ Extract Field
FNG5% Get Record
FNH5% Decrement Header Record
FNI5% QDMS File Initialize
FNJ5$ Justify Field Image
FNK5$ Build Key String
FNL5% Retrieve Length of Field
FNM5% Delete Record
FNN5% Retrieve Number of Named Field
FNN5$ Retrieve Name of a Field
FN05% Open File
FNP5% Change Field in Buffer
FNT5% Retrieve Field Data Type
FNU5% Replace Record on Database
FNV5 Access Pointer File
FNX5$ Translate into ASCII
FNY5$ Translate from ASCII
FNZ5% Utility Function

~ Functions

FNA6
FNC6%
FND6
FNI6%
FNK6$
FNN6
FN06%
FNP6%
FNR6%
FNS6
FNT6%

Add Record
Close File
Delete a Record by Key
Create and Initialize
Retrieve Entire Key
Retrieve Pointer to Next Record
Open File
Put Record
Change Main Pointer in Current Record
Search for a Key
Position Pointer to File End or Beginning

SORT AND REPORT WRITER

THE SORT

A significant part of any data management system
continues to be the sorting and reporting capability.
These QDMS modules were designed to provide optimum
power and flexibility which allow end-user personnel
to obtain selected output in any format without
having to consult programmers or other technicians.

The QDMS sort operates as a RSTS runtime system which
minimizes sort times. The sort creates para-files
consisting of pointer and index files which point to
actual data files or selected subsets of data files.
The user can create multiple pointer files which will
redefine the order and content of data subsets. The
pointer files are accessed by the report writer at
report generation time. There is one index file
associated with the main data base. However, the
sort may be used to create additional index files to
be used by programmers in conjunction with the QDMS
functions or building blocks.

In most instances the sort functions as a key or tag
sort. A reorder option allows physical sorting and
reordering of the main data file optimizing space
utilization and speeding data access. A comprehen
sive selection module provides up to fifteen levels
of Boolean selection criteria with six relational
expressions. Sort and selection dialogue may be
saved in a sort control file and invoked for
subsequent runs. The sort/selection process provides
the report writer with input flexibility for data
sets to be displayed during report generation.

REPORT Writer

Most users judge software systems by the ease with
which output can be obtained. Careful attention was
given to the report writer segment of the QDMS sys
tem. The design called for a completely interactive
report system directed at two categories of users.
The report generator was built to offer maximum
flexibility in features and operation for programming
personnel. The purpose of this design goal was to
virtually eliminate the need for creating application
print programs. An equally important provision was
the short form 'ad hoc' interface which allows non
technical users complete access to the report writer
facility.

The two interface modules known as RFORMAT and PDQRPT
generate report control files which may be saved and
recalled for subsequent report processing. Existing
report control files generate corresponding batch
files which may be altered via any editor to modify
existing report formats or generate unqiue formats
with a minimum of interaction.

The report writer references pointer files created by
the QDMS sort to allow report production in any order
of any subset of the data base generated through the
sort and select option. Output from the report
writer is device independent, and in fact, may be
directed to a peripheral other than a printer. This
option provides a vehicle for the generation of QDMS
sub-files from the main data base. The table trans
formation feature and calculation modules combine to
provide for the generation of data items not con-

620

tained in the main data base. Literals and special
keywords augment this facility.

In summary, English-like declarative statements,
liberal use of embedded help texts, and numerous
default responses make the report writer easy to use
as well as readily acceptable by non-technical users.
Programmers on the other hand will find the long form
version (RFORMAT) a useful tool in generating sophi
sticated reports without having to code programs.
Figure 7 contains a summary of report writer fea
tures.

Figure 7

QDMS REPORT WRITER FEATURES

1) Batch and on-line description process (batch
input file automatically created via on-line
session)

2) Any combination of various line types (head
ings, details, controls, footings, and grand
totals)

3) Report Control File creation for reuse of same
report

4) Table transformations (on a one-to-one or a
range basis)

5) Complete variable horizontal/vertical spacing
(including overprint)

6) Four types of source fields allowed (QDMS
fields, literals, caJ.culations, and special
keywords)

7) Miscellaneous features:

Auto-totalling

Cross field calculations (any valid
algebraic expression)

N-UP reports (mailing lables, form
letters, etc.)

N-level control breaks

Automatic pagination (page numbering and
date stamping)

Averaging

Numeric, Alphanumeric, and floating point
print masks

Device independence

Scroll control option

Operator information (forms setup, cover
page, and report disposition information)

Ad hoc interface (PDQRPT)

Concluding Remarks

As conceived, developed, and herein presented, QDMS
represents a 'tool box' approach for extending file
management, record retrieval, and data reporting
techniques to the unsophisticated user. Through the
use of managerial and programmer oriented modules,
work effort is at least considerably reduced, and at
best almost eliminated. Future releases of the
system will embody such features as linked file
technology allowing a user defineable file linkage
schema which operates across as many as five
different files for sorting and reporting purposes.
This version (V3) is in final test and scheduled for
release in early 1979.

Multiple key access has recently been added to the
CHANGE, DELETE, and INQUIRE modules in the form of a
LOAD command. This feature allows the user to access
records via an alternate index file. Thus, the user
may select any field or combination of fields, exe
cute the sort to create a new index file, and then
retrieve records based on these new key values.

Future release specifications are today being
assembled which will allow applications development
under RSTS in virtually a programmerless environment.
Care will need to be taken to effect the proper
economy-in-scale providing RSTS users with an under
standable, manageable, and affordable alternative to
their data base requirements while maintaining upward
compatibility with future releases of RSTS/E.

OVERLAP SEEK DISK DRIVER

Paul J. Wirtz
Cytrol, Incorporated

Edina, Minnesota

The Overlap Seek Disk Driver (OSDD) is a software
module that replaces the disk driver in the RSX-llM
operating system for the PDP-11. Separate modules
exist for the RK06/07, RM02/03, and RP04/05/06 disk
subsystems. In addition to the functions performed
by the DIGITAL supplied module, the Cytrol drivers
make use of hardware features already in the disk
controllers, but not utilized by RSX-llM. The addi
tional features include:

1) Initiation of I/O requests for all drives in
parallel.

2) Use of the search command to reduce control
ler busy time (RM03, RP04/05/06).

3) Accommodate hardware arbitration of dual
ported drives.

The parallel initiation of requests to drives on the
same controller can substantially increase the rate
at which the disk subsystem can process I/O. It
does this by overlapping the seek (head movement)
operations on several drives at the same time. Be
cause, on the average, the seek time is about 75%
of the total request completion time, seeking drives
in parallel increases the number of requests that
can pass through the disk system. It is a lot like
having several checkout lanes at the supermarket.
Even though every customer goes out through the same
door, having several checkout lanes increases the
number of customers that the store can handle and
reduces the average waiting time per customer. The
current disk drivers for RSX-llM process all disk
requests serially, waiting for each request to com
plete before initiating the next one. The OSDD al
lows requests to different drives to start at the
same time, even though they will finish one at a
time.

I Request 1 Request 2 I Request 3 I Request 4

Drive O Drive 1 Drive 2 Drive 0

Processing disk requests with the standard RSXllM
disk driver

Request 1 Request 4 Drive 0

Request 2 Drive 1

Request 3 Drive 2

Processing disk requests with OSDD

The maximum achievable throughput depends on the
number antl type of drive in the system.

Proceedings of the Digits/ Equipment Computer Users Society 623

Number of Drives
Subsystem

Type 1 2 3 4 5 6 or more

RK06 100 185 240 265 265 265
RK07 100 1il5 235 260 260 260
RM03 100 190 280 365 440 510
RP04 100 190 280 360 430 430
llP05/o6 100 195 2&5 365 440 500 ,
Maximum disk subsystem throughput (percent of non-overlapped)

The actual throughput depends on a number of fac
tors including:

1) The distribution of accessed data within and
between drives.

2) The number and kind of active tasks.

3) The way in which FILES-11 capabilities are
used. (Some choices can cause significant
serialization before requests reach the
driver.)

The best situations for increased performance are:

1) When there are many tasks (users) whose ac
cesses are distributed across several disk
drives.

2) When a single task initiates concurrent I/O
to two or more disk drives.

Each OSDD module is a direct replacement for the
standard DIGITAL disk driver, and can assemble with
all the options that the standard driver does. A
single copy of the OSDD will handle multiple con
trollers for the same type of drive. OSDD can also
be built as either resident (part of the executive
program) or loadable (linked to the executive dyna
mically by VMR and MGR). If error logging is
selected, OSDD will log both device and timeout er
rors. Write-checking is supported and interleaved
with other data transfer operations. User mode
diagnostic can also be performed concurrently with
normal system operation. Diagnostic mode data
transfers are performed directly, giving the diag
nostic program control over the subsystem during
both the seek and the transfer. Offset recovery
is also supported.

In addition, OSDD will make use of the dual-porting
logic on a dual ported drive. If a request is to
be processed for a drive that is seized by the
other controller, the request is deferred until the
drive is released. This scheme allows two CPUs to
have access to the same disk drive. It should be
noted that RSX-llM file software does not support
the simultaneous updating of the volume. Because
these ccnflicts can be avoided or synchronized,
the dual access feature can still be utilized.

San Francisco - November 1978

The installation of OSDD is simplifed by the fact
it is not necessary to perform a complete system
generation in order to include it in an existing
system. OSDD is distributed as source code to be
assembled with the parameter file created by the
SYSGEN. This is the same procedure that would be
followed if a correction were to be made to the
DIGITAL driver. If a new system is to be generated,
there are no changes to the system generation proce
dures. OSDD creates the additional data structures
it needs when the system is bootstrapped for the
first time.

Any future changes to OSDD will be automatically
distributed to the affected registered owners.
Software Dispatches are monitored for changes that
would affect the OSDD modules and, if required,
OSDD will be modified to keep it compatible with
future releases of RSX-llM.

624

IAS TIMESHARING CONTROL SERVICES
AND PROGRAM DEVELOPMENT

Eric A. Johnson
The Jackson Laboratory

Bar Harbor, Maine

ABSTRACT

The IAS Timesharing Control Services provide a means for one
Timesharing task to initiate another. Intertask communication
is possible via the TCS send/receive facility. The Jackson
Laboratory has successfully developed a CLI based statistical
package utilizing the Timesharing Control Services to minimize
resource requirements and maximize program flexability.

The Timesharing Control Executive is that segment of
IAS that monitors and supervises all timesharing
tasks. The resources of the Timesharing Control
Executive are available to the programmer in the form
of a set of macros called the Timesharing Control
Services(1). TCS allows the programmer to create
programs that can initiate other programs,
communicate with those programs, and control their
execution. By using the TCS subtasking or chaining
facilities the programmer can effectively reduce core
memory requirements and allow for simplified
debugging procedures.

The actual procedure for initiating a subtask is very
similar and in most respects easier than opening a
FCS file. A Task Descripter Block (TDB) must first
be defined by including the macro TDBDF$ in the
prospective owner task. This creates a 60 byte data
area that, once it has been defined to TCS, becomes a
workspace to which TCS assumes access. The TDB is
declared to TCS at some point in the invoking task by
the run time macro TDBD$T. TCS requires certain
information in the TDB to perform its functions.

TDB1: TDBDF$

CMDBUF: .ASCII "DB0:[11,36]MYSUBTASK"
CMDBUL:.-CMDBUF

TDBD$T #TDB1

This includes the aooress and the length of the
command line and the type of command line to be used
(more about this later). This information is
inserted into the TDB by using one or more of the
assembly or run time rr. ::ros provided for this
purpose. One of these macros, RUN$T, is then
executed to queue the subta~'k for the timesharing
scheduler. The minimum requirements for a
timesharing task to initiate a subtask is summerized
in Figure 111 .

TCS offers flexability in intertask coordination
through the use of event flags. TCS macros are
available to check for events (CKEV$T), read events
(RDEV$T), as well as setting the local event flags of
a subtask. TCS events including subtask successfully
terminated, subtask aborted, subtask suspended,
initialization failure, messege sent, ect... allow
the programmer to synchronize the functions of two or
more tasks in a straight foward manner. Other macros
are available which allow the owner task the
capability of suspending(SPND$T), resuming(RSUM$T),
or aborting(ABRT$T) a subtask on command.

Define the TDB buffer

The command line definition
and length

Declare the TDB to TCS

RUN$T #TDB1,#CMDBUF,#CMDBUL,#TS.USE Initialize the TDB ..•
and Queue the task

Figure 111 Minimum requirements for Initiating a Subtask

Proceedings of the Digital Equipment Computer Users Society 625 San Francisco - November 1978

The command line used to invoke a task must be an
ASCII string in one of four formats. The first of
these is a blank followed by a user file
specification. A task invoked in this fashion will
be "auto-installed" in the same manner as the run
command is performed in PDS. The second command line
format consists of the three character name of any
task installed as .•. ABC. This may be followed by a
blank and a command. The third format is like the
second, but for tasks installed as $$$ABC. Lastly,
any 1-6 character name may be specified that
corresponds to an installed task.

Thus, any system utility can be invoked with a
command line from a user written task. For example,
if given the command line, "PIP LPO:ONEWAY.LST" TCS
would invoke PIP and stuff the MCR Command Buffer
with the command. PIP would execute and issue the
GMCR$ directive to receive the command, the same way
as if invoked from PDS with an immediate command.

Any subtask can use TCS if it is passed the necessary
privileges. If a subtask initiates a task, it is the
owner of that task and has control over it.
Accordingly, a hierarchyl system of timesharing tasks
can be run and controlled from one terminal.

Task 1

/~
Task 2 Task 3

/~
Task 4 Task 5

I
Task 6

Figure 112 Task Hierarchy

lntertask communication is simplified for related
timesharing tasks by the TCS send/receive facility.
Whenever a chain task or a subtask requires
information from its predecessor, or the owner task
needs results from a decendant, messages of up to 255
bytes each, may be sent quickly and easily.

TCS also gives the programmer charge of program
execution on the occurrence of a CTRL/C event. One
task is designated as the CTRL/C task and is the only
task notified of a CTRL/C event. On the occurence of
a CTRL/C being typed at a terminal, an internal flag
is set and any descendants of the CTRL/C task are
suspended. The CTRL/C task can, at any time, test
the flag to detect the event and take appropriate
action.

Accounting is preserved by TCS. The subtask's
statistics are returned to the issuing task's
associate, TDB, and hence made available to it. The
owner is automatically charged for the resources used
by its decendants.

There are several system parameters that control a
task's priviledges to access TCS(2). First, the
user's profile must have the appropriate bits set in
the two masks, TP1 and TP2; and the MTS parameter

626

must be set for the maximum number of concurrently
active tasks. The CLI under which the program is to
be run (usually PDS) must be installed with adequate
priviledges. Also, the terminals from which a system
is utilizing TCS to perform some multitasking
function must be allocated with the maximum task
switch. In addition, when ever a subtask is to use
TCS, the invoking task must give adequate priviledges
via the TCS TDPR$A or TDPR$T macros. The priviledge
structure of IAS proved to be the most difficult part
of using TCS for this novice Macro-11 Programmer.

The Jackson Laboratory Computer Service provides
applications programming in biomedical research as
well as the business data processing associated with
it's worldwide distribution of laboratory animals.
The interactive statistical package used by the
scientific staff originally was a set of Fortran
routines held over from an IBM 1130 running a single
user, card operating system. The individual programs
were strung together in the conversion effort
following the upgrade to a PDP11/45 in order to give
the investigators direct access to the routines. It
became obvious that this package was not fulfilling
the needs of the staff, It was difficult to use, and
there were many inefficiencies which made the program
time consuming and expensive to use.

In restructuring the package, it was desired, in
addition to an easy to use, standard syntax and more
efficient operation, that additional analysis
routines, regardless of source language, could be
added without requiring extensive modification to
existing routines. It was this language independence
problem that turned us toward the CLI concept.

The resulting program (BOSS) was created as a driver
for separate analysis programs. BOSS perfoms all
syntax interpretation and preprocesses the data
before subtasking to the specified analysis routine.
Each analysis routine is responsible for the actual
number crunching and output format only. They
perform no interaction with the user themselves.
Instead, the driver sends a message to the subtask
and that task, through a subroutine call and two
functions, receives any parameters and switch values
that it may require .. The analysis routine can be
written in any language that supports a CALL
statement. The advantages of separate programs for
the analyses include simplifing debug proceedures and
task overlay definitions. Also the user is now
charged only for what he uses, not for the whole
package.

The analysis routines often require the work file to
be sorted and again, TCS was utilized. This time a
subroutine call by the analysis routine causes TCS to
provide the very efficient PDP-11 SORT utility with a
command line and the work file is sorted.

After we found all of the priviledges that were
required for TCS use, the development of the new
package went quickly. The syntax was generated using
Paul M. Cashman's MARGOT(3), a table-driven parsing
algorithm. We found MARGOT very easy to use and have
since found many more applications for it.

BOSS uses the IAS message output handler, MO, to
handle Help and Error messages. This allows us to
add messages to the package's help facility as we add
analysis routines and keeps the driver down to a
stingy 6K.

The flexibility that we realized with the statistical
package driver suggests that any multi-function
applications package requiring syntax interpretation
could be very quickly and easily developed from a
similar, though more sophisticated program.
Developing a package from such an 'Omni-CL!' would
involve simply defining the required syntax in a
MARGOT-like language, and then writing the individual
programs. Using the CLI concept with the support of
the Timesharing Control Services, appears to be a
very powerful programming tool.

I would like to thank Henry R. Tumblin for patiently
answering an endless supply of questions. He taught
me everything I know about MACR0-11. Also Randy
Adams for his support during the project and for
assistance in the preparation of this paper.

References

1 . ~ ~ !.Q. Writing Command
Interoreters, (Maynard,MA.: Digital
Corporation, 1978) A complete description
macros may be found in this document.

Language
Equipment

of all TCS

2. IAS System Management Guide, (Maynard ,MA.:
Digital Equipment Corporation, 1977)

3. Cashman, Paul M. and Myszewski, Mathew I.,
MARGOT: A Macro-Based Generator of Command Language
Interpreters; Proceedings of~ Digital Equipment
Computer Users Society, Vol. 3, No. 4,
(Maynard,MA.: Digital Equipment Corporation, 1977)

627

AN IMPLEMENTATION OF BASIC
USING MACR0-11

John Clemens
Labshare Division
Damon Corporation

Needham Heights, MA

A BASIC-language translator was developed at Damon
Corporation including a macro implementation of an
expression analyzer and code generator. The trans
lator was developed on a PDP-11/60 running under
RSX-llM, V3.0, and consists of a TECO pre-pass
followed by a MACR0-11 assembly. The TECO pre-pass
changes initial line numbers to legal labels and
parentheses to angle brackets, and performs other
substitutions. A macro-library contains a macro for
each verb of the language and macros for parsing and
generation.

Expressions are parsed from left to right with
parenthetical precedence and can be of any degree of
complexity if they fit on a line. The operators in
clude logical, relational, and arithmetic; the atoms
can be variables, constants, array elements, or
function references. Variable types are single- and
double-precision integer, single- and double-precision
real, string, and byte. Multi-dimensional arrays are
implemented for each variable type.

Three stacks are maintained during the macro
assembly process-- one for generating and recycling
temporary locations, another for retaining a certain
bit of information at each level of recursive evalua
tion, and a third for the correct processing of
embedded FOR-- NEXT loops.

verbs using the expression analyzer are:
atom = expression

BASIC
LET
FOR
IF

atom = expression TO expression (STEP expression)
expression THEN statement

ON expression GOTO/GOSUB linel, line2, lineN

This development was not too costly in time and effort
and suggests that other languages could similarly be
implemented.

INTRODUCTION

The Labshare group at Damon has been given
the goal of developing a data-management
system for clinical laboratories. (Damon
maintains a number of such facilities from
coast to coast). We selected the PDP-11/60
to develop and run the system on, with the
option of running smaller labs with an 11/34.
The application is one in which speed is
part of the product and volume the name of
the game; the system is largely disc-file
intensive, with only minor computational re
quirements. In order to control our own
file-accessing techniques and to maximize
efficiency, we developed our own operating
system, which was tailored for this need.
We also had a large number of application
programs to develop in a reasonably small
period of time and felt that the job would
be easier if they were coded in a high-order
language.

Proceedings of the Digital Equipment Computer Usars Society 629

We had used MACR0-11 running under RSX-llM
for developing the operating-system pro
grams, and this experience gave us the confi
dence to believe that we could implement a
quick-and-dirty version of BASIC using
macros, a version that would "compile"
under RSX and produce programs that would
run using our system. We did this, and it
was fairly quick and not too dirty. There
follows a description of the language it
self and then a description of how some of
its features were implemented ..

LANGUAGE DESCRIPTION

General

The language we developed was not ANSI 1978
BASIC (whatever that is), nor was it Dart
mouth BASIC, nor even DEC's BASIC +2.
Almost all of the features common to all
dialects were implemented; those that were

San Francisco - November 1978

not usually had the property of being both
difficult to implement and useless for our
application. A number of additions were
made to the language~-some specific to our
application and operating system, others of
general data-handling usefulness.

The core BASIC verbs implemented were:

LET
RETURN
REM

CHANGE
GOSUB
GOTO
FOR expression TO expression STEP expression

expression THEN statement IF
ON expression GOTO/GOSUB
END

INPUT and PRINT were implemented in a non
standard (and more sophisticated) manner.
The whole complex represented by the READ,
DATA, and RESTORE statements was not
implemented, although in this case they
would not have been difficult to implement
-just not useful. With separate data
defining statements (BYTE, INTEGER, DOUBLE,
FLOATl, FLOAT2, STRING), a programmer can
specify variables of different types, and
each of these variables may be dimensioned
as a single- or multi-dimensional array or
else undimensioned. These statements ob
viated the need for a separate DIM statement.
Expressions of arbitrary complexity may be
used but precedence is established only
with the use of parentheses and all state
ments must fit on a line (which in our
version of MACR0-11 seems to be about 120
characters). Most of the usual functions
were implemented--especially the string
manipulat ion functions--as were a number of
unusual ones. The MAT statement was not
implemented, owing to lack of interest.

ENHANCEMENTS

The INPUT and PRINT statements were designed
to be used with an IMAGE statement (fancier
than the one in BASIC +2) and an exceptional
return. The exceptional return in the
''PRINT" statement indicates that the bottom
of a page has been reached, so that the pro
grammer can choose to have a heading
printed at the top of the next page. The
exceptional return in the "INPUT" statement
allows an operator to change the normal
course of an application by hitting the
ESCAPE key at a point where he or she is
being asked for some data.

The formats of the INPUT and PRINT state
ments are the same except that the PRINT
statement has an additional argument
(channel number) for printing on multiple
devices. A sample INPUT statement would
be:

1000 INPUT 2000,3000,varl,var2,var3

and would have associated with it an IMAGE
statement, thus:

2000 IMAGE "NAME? ;I ORDER IS;V##OK?;I"

630

The ";I" denotes input to varl, with conver
sion performed depending on the type of the
variab1e; the ";V##" denotes output var2
(performing necessary conversions) and
truncate to 2 digits.

A number of verbs were "borrowed" from BASIC
+2 and have the same meanings:

CALL
CHAIN
COMMON
ONERROR
RESUME

SLEEP
SUB
SUBEND
WAIT

Others were also borrowed from BASIC +2 and
have the same general meanings but the
syntax is different, because of the
differences between our file system and RMS:

CLOSE
DELETE
FIND
GET

KILL
OPEN
PUT
REDEFINE

A number of additions to the language are
probably not of general interest; they in
volve resource-allocation verbs (used to
prevent deadlock, etc.) and other concepts
specific to our operating system or else
to our application. Three statements of
possible interest are DATA, ARRAY, and
STRUCTURE/ENDSTRUCTURE. For each of the
data types there are statements (e.g.,
"DATAil" for single-precision integers) that
allow initialization of variables--this is
more like the FORTRAN concept of DATA than
the BASIC notion (interpreter based) of
READing DATA into the variables. An ARRAY
statement can point an "array-definition
block" at preset data in order to have a
preset array. The STRUCTURE construct
allows the definition of a multi-dimensional
entity in which each block may have sub
fields of different data types. The sub
fields are referred to by their names and
by the subscript of the parent structure-
rather like PL/1.

Deficiencies

A number of restrictions have already been
referred to; the most general restriction
is that we have limited the use of ex
pressions to the LET, FOR/TO/STEP, IF/THEN,
and ONGOTO/GOSUB statements. You will see
from the way expression analysis is
implemented that this restriction is
arbitrary, and if public clamor at DAMON
demanded the use of expressions in, say,
PRINT statements, it could be done. We
felt that if the number of places where
expressions were usable were restricted,
perhaps this would limit the number of
expressions used, although it could be that
the only implication is that the programmer
is required to use more LET statements.
Unnecessary expressions are discouraged,
because they are evaluated by a large re
cursive macro with a substructure of macros
that it invokes, which makes MACR0-11 grind
rather slowly, causing tedium at the

terminal. Another restriction is that array
and structure indices must be single
precision integers; this derives from the
more general restriction that all type con
versions must be made explicit (through the
use of functions) and mixed-mode expressions
are not allowed. Finally, all variables
have to be declared (because of the
different types).

Functions Implemented

The functions we implemented are mostly
self-explanatory, and there should be no
fear that I will explain the ones that are
not. Below is a list of functions:

ABS DATE LOC RIGHT$ TIME
ASCII DATE LOG RND VALil
ATN DATE LOGlO SGN VALI2
BITT EXP MID$ SIN OCT
CHECK FIX MOD SID
CHR$ INT NUMlO SQR
cos JUL IN NUM8$ STRING$
DATE LEFT$ PI TAN
DATE LEN POS TIME

IMPLEMENTATION

TECO Pre-pass

The "compilation" process is in several
stages:

1. A TECO Pre-pass converts the source
program to text more intelligible to
MACR0-11.

2. MACR0-11 assembles the program,pulling
the relevant BASIC verbs as macros out
of a macro library.

3. The object program is Task-Built, along
with a main program called "IMAGE."

4. IMAGE is run, and it takes the core
image of the BASIC program--and writes
it out on a disc file intelligible to
our operating system (but not RSX-llM).

1000 NAME. PNUOOO ; PkOGkAM NAMt
1010 lNTEGtH !,J,K,(H(3,~)) I SUMt VAklAdLtS
1020 OOUdLE (Xlc,c)) ; OOUdLE PRtC!SION AHHAY
1030 STRING (STOO,IO) ; 10 oYlt 51H!Nb
1050 INPUT Jooo,1oou,s100,K ;INPUT ~ VAMIABLES
IObO IMAGE 'NAME: 11 AGE.: 1103\;E" ; IHA~E STAltMtNI
2000 LET I• (J•ll+,)J•((l/J)•KJ ; tXPRtSSlUN
2040 FOR l =·J·K TO J•(Ml•2,#4)J STE.P K/J ; LOUP
2050 IF (l<•J) ANO ((J•#l)>5J THEN LEI J : K+J I CUNOITIUNAL
2070 NEXl l . ; tNO LOUP
2060 ON J+Cl/#2) Guru l2000,30uOJ ; CUHPUTtO GOTU
1000 CHAIN sroo •• 1 ; NtXI PHuGkAM SE.GMtNI
4000 E.NO

Figure 1: A Sample BASIC Program

The purpose of the TECO pre-pass is to per
form a series of substitutions. Consider
Figure 1--a BASIC program. There are line
numbers, parentheses, and other items that
MACR0-11 would not recognize gladly; there
are also items "+" and "-", for example,
which MACR0-11 might recognize too well.
(We want our macro to analyze expressions,
not MACR0-11.) .The magic of TECO produces
Figure 2.

Note that the line numbers are now of the
form "L.NNNN:" and are therefore legal

631

L.IOOU
L.1010
L.1020
L.1030
L, 1050
L.10&0
L.2000
L.2040
L.205U
L.2070
L,2080
L,3UOO
L.4uoo

.MCALL NAME
NAME PNOOUO
lNTtGER I,J,K, < M c 5., > >
DUU6lt < X < 2 1 l > >
SIH!NG < sruo,10 >
INPUT looo,1000,srou.K
IMAGE <'NAME: Ii AGE: l!Oj\IE">
LtT I EQS << J M~ < I AS K > > 5) < < I u$ J > 5
FOH I (ij$ <J Si ~ > TO < J ~~ < M < •2,•q > > >
~~.; ; I LE.S J > NOS < < J ~i •I > ~f) ~ > > fht~

ON < J A$ < I DI #2 > > ~UfU < ~ouo,3uoo >
CHA.IN s rou, •1

•t::NO

Figure 2: Program text after TECO Pre-pass.

MACR0-11 labels. The "+" sign has been
transformed to "A$". In general, symbols we
generate here and in the macro expansions
will have a"." or a"$" in them somewhere,
so as not to conflict with user-defined sym
bols. Spaces have been inserted to separate
text, so that the macros will consider the
symbols separate arguments. Note that the
"END" statement has been replaced with
".END". Guess why! All parentheses have
been replaced with angle brackets, which
MACR0-11 understands. Also ".MCALL NAME"
has appeared at the beginning.

Macro Library

A NAME verb begins each program, which names
the program (which is used by IMAGE) and
".MCALL's" all of the macros used to process
the BASIC statements. There is a macro
called" .. EVAL", which evaluates expressions,
and another, ".OPRAT", which generates
code for expressions. All of these macros
can and many do have sub-macros that they
call. Many of these macros merely push some
arguments and trap to the operating system.
Considering the FOR and NEXT macros should
be instructive.

We set some flags and evaluate the expression
for the starting value A2 (note that TECO
surrounded the expression with angle
brackets) ... EVAL sets a flag when an ex
pression is a simple variable; in that case
we will set the index equal to that variable.
Otherwise, we are assured that code has been
generated for the expression and that the
value now resides in temporary location ".0",
in which case we will set the index equal to
.0 and pop the temporary variable stack
(more about stacks later). We do a similar
thing for the end expression except we use
a sub-macro (.FML) to store the final valve
at an offset from a label we are going to
generate based on the value of the symbol
.. CTR. We do the same if there is a STEP,
otherwise storing a default value of one.
We then branch over the code that detects
when the loop is finished, thus always
executing it once.

Within this code we generate a label with
.FNLAB, increment the index, compare, store,
and do a RETURN (RTS) if we're finished.
Otherwise we pop the run-time stack and do
it again. To see how all this works we
need to consider the MACRO-time stacks.

IFO" lfUK STATtHENl

I

oMALRO FOK Al tQUL A2 10 Aj STEP A4
•• lYPf:.t'A1
•• AIOM:o
.,LCl•=O
•• SPF.=.O
•• SPV.=o
, .EVAL A2
.IF EQ,,.ATOM-1
MUV A2,AI
.!FF
•• SPV.= •• SPV.-1
MO'I .O,Al
.ENOC
•• ATOM:o
•• LCIM:Q
• • EVAL A3
.If f:tJ, •• ATOM-1
.FML \e.CfH,Al,q
.IFF
•• SPV.= •• sPv.-1
• ~M~ \ •• CJ~,.O,ij
.tNOC
•• AfUM:u
•• LCTK=O
.IF H SIEP
.FML \ •• CTR,#1,2
.IFF
•• EVAL A4
.IF Ew, •• ATOM-1
.fML \,,,,ClH,Aqrl
• !Ff
•• SPV.= •• SPV.-1
• FML \ •• CIR,.0,2
.ENOC
.ENOC
Bl< .HO •
• ~OHO I)

• •Or<i> 0

;
;NEXT !USED ~lfH fUW LUUP5

.MACRO NEXJ,AI
•• LEV= •• LEV-I
•• DSTK \ •• LEV
.t:.NDM

1 •• USIK I
.HACl<U •• USlK A
•• GOf. \.ST'A
.tNOM

; •• GUF,, 1
.MACRO •• GOf. B
JSR PC 1 S'b
,,ENlJM

,,fNLA~ \,,,,CJH,\,,,,LfV 1 A1
•• cT•= •• c1•+1

lflNAL VALUt
ISTtP Silt
I ADO SIEP

•• LEV= •• LEV+I
AUD Al,R2
CMP R<, .-12.
BLE • t4
KE TURN

;oo AbAlN

AOO •2,sP
MUV R2, Al
.ENOM

lofNLAB I USED FOR GENERATING LABELS FOR LOOPS
I

.MACHO ,,fNLA~ A 1 ~ 1 C

S'A:
.Sl'B: •• CIR ; PUT NUMnER UF LABtL Al
MOV .•2,R2 I AT CURRtNI STACK LEVtL
,,fNUM

l.fML • STORE f!NALVALUt AND STEP SIZE

.MACRO .FML A,S,Off
MOY s,S'A•OrF
,,t.Nl)M

Figure 3: FOR/NEXT Statement MACROS

Stack Implementation

The implementation of stacks (and label
generating) used the "'\" feature of
MACR0-11. This feature permits passing
"\SYMBOL" as an argument to a macro, and
at that macro's level the argument is a
numeric string corresponding to the value
of SYMBOL at the level that called the macro.
That is--by the way--the reason for some of
the seemingly unnecessary submacro-izing in
the library.

Consider the problem above: we are genera
ting unique labels for the NEXT statement
to JSR to (that is how we can come back ex
hausted following the correct NEXT), and
what we would like to do is push each label
onto a stack for each FOR statement and pop
it off a stack at each NEXT statement, in
order to maintain proper FOR-NEXT nesting.

In the above example .. CTR is used for
generating unique labels, whereas .. LEV
counts the level of nesting of FOR-NEXT
loops and serves as a "stack pointer" (both
symbols are initialized to 0 in the NAME

632

macro). In the .FNLAB macro a symbol is
formed from the concatenation of ".ST" and
the string formed from the value of .. LEV;
this symbol constitutes the stack "storage
element" and proceeds from ".STO" to ".ST999"
as the level of nesting increases. The
symbol is assigned the value of the current
label-generation counter:--x label is
affixed to the "MOV" instruction, which is
the concatenation of "$" with the string
corresponding to the value of the label
generation counter. In the FOR macro on re
turn we increment .. CTR (the label-generation
counter) forever and .. LEV (the stack
pointer) for the time being .

When we encounter a NEXT statement, .. LEV is
decremented by one (in effect popping the
stack), so that it now corresponds to the
latest stack element. We go down one macro
level via the .. DSTK macro to form the
string corresponding to the current level;
then down one more macro level via .. GOF .
to convert the value of ".STN" to a string
to form the proper "$N" label to JSR to.
Whshew! So that is how numbers are stored
on a stack, and that is what makes FOR-NEXT
work, what facilitates temporary label
generation (these labels get recycled), and
how still another stack used in the ex
pression analyzer works.

Data Definition and PSECT Structure

]J _ :')('C'I ion~

Common

Pt·og ram

Initial i:;ct!d Variables

IMT;\ 1

F1inc L ionc;

DA1'A2

l•Nll

Figure 4: Memory layout of task

At Task-Build time there are five relevant
P-sections and, as you can see from Figure
4, they are named "BEGIN", "DATAl", DATA2",

"END", and "ZZZZZZ". BEGIN contains the
COMMON area and object code of the BASIC pro
gram. DATAl contains the initialized
variables from DATA-type statements and
array-definition blocks; it also contains
any- object-library programs that may be re
quired. DATA2 contains any uninitialized
variables that don't live in COMMON, and END
contains information for the IMAGE program,
which lives in ZZZZZZ. The only part of
the program that IMAGE saves on disc is the
program part of BEGIN and all of DATAl.

The data-definition statements have several
purposes.

1. To define the variable
2. To define it in the appropriate P-section
3. To make known the type of the variable
4. To make known the length of the

variable in the case of strings
5. To set up an array-definition block in

the case of arrays and structures.

The type of a variable is determined by
defining a symbol, "$variablename", and
assigning it a value. This effectively
limits variable names to five characters;
string lengths are assigned to symbols of
the form ".variablename". Array-definition
blocks have the form:

variablename ... WORD

.WORD

.WORD

.WORD

.WORD

variablename

(definition)

extl

ext2

extN

Where (definition) is a word containing
the number of dimensions in the low-order
byte and the number of bytes per item in
the high-order byte. The exti's give the
extent in each dimension. A restricting
implication is that all data must be de
fined before use.

Expression Analysis

In analyzing expressions, since everything
happens in the first pass of the assembler,
we did not have the compiler luxury of
pushing everything onto stacks in Reverse
Polish Notation and then popping the
operands and variables off to generate code.
We also felt that trying to implement
implied precedence would be difficult and
that forcing the use of parentheses would
not hurt and would in fact even help pro
gram readability.

The macro that (with submacros) evaluates
expressions is called .. EVAL and is
diagrammed in Figure 5.

633

t--------.1 Cf'RAT(.... 1,Arg2
'--''-"---' mil')

Pop TEMP
stack

Figure 5: Flowchart of Expression Evaluator

.. EVAL is recursive, and because each level
of recursion removes a pair of angle
brackets--a property of MACR0-11-- .. EVAL can
be invoked until a level is reached where a
single symbol is its argument. The macro
takes three courses of action depending on
whether it has one, two, or m~ny arguments
~zero arguments implies a syntax error). If
it has two arguments it decides it has a
function reference, an array reference or
something of the form "unaryoperator '
(expression)". The two-argument case will
be discussed later. If it has more than
three arguments it decides it has something
of the form:

"(expression) binary-operator (expression) ...

Let u~ co~sider the case of three arguments,
that is, (expl) op (exp2)". We first apply
. .EVAL to (exp2); whenever we return to this
macro-nesting level we are assured that all
of the code necessary to compute expl has
been generated or else none has because expl
is atomic. Since the lower level of .. EVAL
sets a flag indicating whether this is the
case, we can set or reset a flag-- .. LFLG--,

accordingly (the .. ATOM flag is reset before
each call of .. EVAL). The value of this flag
is pushed onto a stack (this is the third one
mentioned earlier). We now apply .. EVAL to
(exp2), after which we pop .. LFLG from the
stack. In each case that the expression.were
complex, the results of the computation were
stored in a temporary location, whose number
is on the temporary-location stack (these
locations are generated as .0, .1,.2, etc.
or for strings, .. 0, .. 1, .. 2, etc.). We now
have exactly four cases:
Case 1: expl and exp2 both atomic
In this case we generate (or recycle) a
temporary location using .LBGEN and incre
ment the stack pointer. .LBGEN calls .OPRAT
to generate code to perform the indicated
operation on expl and exp2, and we store
the result in the temporary location (using
the macro call 11 .0PRAT expl, OP, exp2, temp",
with the destination =4 indicating that the
result should be stored in the fourth
argument). The submacro .LBGEN works by
looking at the temporary variable stack
pointer, and assembling the appropriate
label--" .N". It then defines the location
(if it is undefined) and makes the call to
.OPRAT using the temporary label as an
argument.

Case 2: expl atomic, exp2 not atomic
In this case we already have a temporary lo
cation, so we can store the result in it.
We thus perform the operation on expl and
temp and leave the result in temp (".OPRAT
expl, OP, temp", with the dest ina t ion=3).

Case 3: expl not atomic, exp2 atomic
In this case we store the result in the
temporary variable containing the result of
the evaluation of expl, (11 .0PRAT temp, OP,
E?x;p2", with destination =3).

Case 4: both expl and exp2 complex
In this case there are the distinct
temporary variables templ and temp2 con
taining the results of computing expl and
exp2. We decrement the temporary label
stack pointer and store the result in the
left-hand (lower stack count) temp,
(".OPRAT templ, OP, temp2", with destination
=l).

It now can be seen that the case of many
arguments of .. EVAL can be resolved pairwise,
since after the first pair we always have a
temporary result on the left and need only
to .. EVAL the exp on the right to discover
whether we have Case 2 or Case 4. The
macro .NEXPR does this after the first pair
(where "pair" means "exp OP exp") and
continues until it gets blank arguments.
It should be noticed that at return from the
highest level of .. EVAL the final result is
stored in the lowest temporary label of the
stack-- 11 .0 or .. 0 11 •

.. EVAL with two Arguments and Function
Implementation

When .. EVAL has two arguments, it first
determines whether the first argument is a
variable (by virtue of its type being de
fined). All of the operators as well as
all of the traps are defined in different
numeric ranges by the NAME macro at the

634

beginning. We can then detect unary
operators and distinguish them from traps
(which within expressions sometimes imple
ment functions).

If we have a unary operator, we apply .. EVAL
and determine whether it is an atom: If it
is it is a special case of CASE 1, with only

-.nne atom: if it is not. it is a special case
of Case 3. In either case .OPRAT can deal
with it.

If the first argument is not a variable and
is defined, it is a function implemented as
a system trap; if it is not defined, it is an
object-library function. For both types of
functions a sub-macro (.. ARPU) breaks out the
separate arguments and generates code which
will push them on the stack at run-time with
specific symbols predefined for each function
determining:
1. Whether for each argument to have its

address or value pushed.
2. Whether first to push a return-argument

address in the appropriate position.
3. Whether to push the length of a string

before a string argument.
Then, depending on whether it is a trap
function or in the object library, a trap
function will then generate a trap, and an
object-library function a JSR (to an undefined
a label until task-build time). The decision
as to whether a function is a trap or an
object-library routine depends on the judg
ment of whether it is so commonly used by all
tasks that it should remain core-resident,
or whether it is less frequently used or
takes little space anyway and can be added
to each task.

At any rate, if it is none of the above it
is an array reference--the same routine as
above generates code to push the arguments
but doesn't have any special symbols defined
to make it do anything. It merely pushes
the arguments, which are either integer
variables or literals. Then a "JSR .. ARDE"
is generated, which calls the subroutine
that computes from the indices and the array
defini tion definition block the address of the
element. Note that this is in the object
library not because it is infrequently used,
but because it is short and we can avoid the
trap-handling process to make it faster.

Code Generation
By this point code generation becomes
reasonably trivial. The code generator
(.OPRAT) is called upon to perform a binary
(occasionally unary) operation. It is given
(4 arguments - Al, OP(,A2(,A4)). and a
"destination" value, and it is expected to
store the result in Al, A2, or A4, depending
on that value. What code is generated
depends first on the operator and second on
the data type (operations that generate
logical results such as 11> 11 result in
integers =O or not =O, and the AND, OR, NOT,
etc., operators deal in these entities).
The operators are logical, relational, and
arithmetic. A flow chart of .OPRAT is pre
sented in Figure 6, and an example of part
of the macro (featuring the integer arith
metic) in Figure 7.

Figure 6:
17~7 I
17~8
1799
1800
1801
180Z
1803
1804
1805
180&
1807
1608
180'1
1810
1811
181Z
181l
1814
1815
181&
1617
1818
1819
1820
1821
18.1?
18Z3
1824
toe:..
1821>
1827
1628
1829
183U
1831
1832
1833
1834
1635
183b
18H
1838
1839
1840

1''igure 7:

OPRAT (arg1, arg2, arg-:~. arp;4)

PPrform C,unpar
>---~ison depending

on T'll'E

G,'lwratc> Appro
priate Code
'Ja.·:~>d on OEST

(i<'nPrnlt' Coch•
Th'l"lt'mling on

DEST

liP111'1'Ull' Cn<l<•
!)(•Jl'ndlng on

VES'f

GPm'ratc C'ndP
\1c1[X'nding: on

DP.ST

Flowchart of Code Generator

AHllHHEllC

.IF Ell ,.TYPE•,.INTV I !Nlt.Gt.H
,IF Ell d•U ; AUD
,l!F EQ ,,OEST•! AOU C,A
.llf t.Q ,,OEST•.S Al>L> A,(.
• IF EW •• oi::sr-•
MOV A,O
Aull C,0
,tNUC
,HEX IT
,t.NOC
, IF Ell 1:1-s~

• llf EQ .. Dt.ST•I SUl::J C,A
,IF Ew ,,OE<H•3
MOV A,•!SPJ
SUl:I C,($PJ
MOV (SPJ+,C
,ENDC
.If EW ,,Ot.ST·q
MOV A,0
SU8 C,O
,ENDC
,MDII
.tNOC
• If tu H•M~
MOV C 1 P c.
l'IUL ._,,. •
.!H tQ •• Ut5l•I MOV k.5,A
.lH t.Y ,,ut51•.S MUV k:!,C
,IIF ti.I ,,OESJ•q MOV t<.5,0
,MHll
,t.NOC
,IF Ell 1:1•05
MOV A,WC:
ASHC #•lb,,H2
DIV c,Ri
• I If t.Q .. ots1-1 MUV ~2,A

.!If t.Y ,,OESl•.S l'l(JV Wi,l.
• llf Ew ,,OEST•4 MOV w2,o
,MEX!l
,tNOC

,t.NOC

Integer Arithmetic Code Generator

635

Finally, here is some of the code generated
from our original example.

00 L,IOlo::
00 l'I,: ,•OHO

INTEGER I,.J,K, < H < 3,~ > >
M

02 .~Ut<O 2•Z5b, +,, N0t;M•2
3 OQ .wOND

Ob , •01<0 5
00 L,IOiU:: OOU~LE < X < i12 > >
10 X,: ,WOHO x

4•25o,+,,N0t.l'l•i
2

L,1030::
L,I05u::

.wUkO

.l'IUt<D

.~lJt-tD 2
SIHJNG < sruu,10 >
INPUT 3000,IObO,SlOO,K

MUV #UUICHAN,•lSPJ
MUV RL.~000,•\SPJ

MUV •L,IObO+i,•lSP)
HOV O>O>,•(SPJ
... owo SJOO
,•ORU $ST00•2~b,+,SlOU
,•OMO K
.NUHD
,wo1w
TWA~

12
14
lb
00
00
OU
Oq
10
14
20
22
24
2b
30
20
2Z
22
24
Si!
52
bO

L,IObo:: AGE: 1101\;t.•>

•NAM~: il Abt: ;J03\;t•
BR
,ASCII

L,2000:: Lt l I t;"> « J M• < l U K > > Si < < I Oi J
MUV l,.u
At)D K,.u

bb MUV .u,~3

7Z l'IUL J,W~

7b
02
Ob
Ii

,JIF t.U ,,Ut.$1•3 MUV Hl,,O

lb
22

MOV I,~~

ASHC #•lb,,W2
U!V J,Hi
.11F eu •• utsl-4
,JJF EU ,.UESl•I

~o .llf <U •• u<Sl•I
3b .IH rn .. •Alu MUV ,O,I

MUV ~c!, .1
sus K,.i
Sub .1,.0

4• L,2U40:: FUR I ["$ <JS~ K > 10 <JS>< M < #2 1 #4 >
44 MUV J,,O
52 SUB K,,O
&O MOV ,Ud
bb MOV #2,•(SPJ
7':. MOV u,•(5P)

Figure 8: Translated version of a portion
of sample.

CONCLUSION

The line-number labels and the varible names
are defined as global symbols, and there are
no other ones except for object-library entry
points. This means that a programmer equipped
with a BASIC listing and a TKB map can debug
at the BASIC level using a program like ODT
(which we have implemented). It has been a
lot of fun to work on this project and really
exercise the macro-assembler (since it is
recursive, it should be able to solve all
computable problems). Those who would cavil
at its nonstandardness should remember that
it was done for a specific purpose, and no
one is trying to promulgate it. The effort
required a couple of person-months to design
and code; fewer to debug. The indication is
that if you want to implement a language in
a hurry (or perhaps want to translate pro
grams to a PDP-11 that does not support the
language in which they were written), you
might consider the capabilities of MACR0-11.

ACKNOWLEDGMENTS

Dirk Brinkman and Charles Kern both provided
a large number of the ideas used in this
project. Kern did a lot of the work on the
macro library and completely designed and
implemented the TECO pre-pass. Hilary Horton
lent more editing skills than such a paper
deserves, and Rita Frazier much good typing
and patient retyping. Pam Meyer of Damon's
Corporate Communications department did a
professional job on the illustrations. Final
ly, thanks to everybody at Labshare who
attempted to write BASIC programs and thereby
discovered the many bugs.

CONVERSION OF VERY LARGE PROGRAMS TO
RSX-11 BASED SYSTEMS

Steven R. Deller
Computer Sciences Corporation

Falls Church, Virginia

ABSTRACT

Techniques and supporting tools for converting very large programs
to RSX-llD or RSX-llM systems are described. The methodology is
illustrated with examples of FORTRAN program conversions, but
most of the techniques can be applied to programs written in any
language.

Systematic solutions are provided which minimize code changes to
maximize traceability to the original code. Potential pitfalls in
each area are identified. Where feasible, existing DEC system
software was used for solving the problems and verifying the
conversion. Where needed, analytic tools were developed to support
the conversion.

This methodology was applied to several real-world problems; a
description of one of these conversions is provided. DEC system
limitations that have prevented straightforward conversion are
identified, and simple corrections are proposed.

INTRODUCTION

A systematic method of converting very large programs to
RSX-llD or RSX-llM operating systems is described.
The method consists of automated and manual techniques
developed and used for the conversion of large FORTRAN
programs from a CDC 6600 computer to a PDP-11/70.
The programs consisted of many routines, including very
large single routines. In most cases, the size of the
programs and the sequence of calls exhausted the
capabilities of the overlay system. Automated techniques
were developed to support separation of program routines
into multiple, cooperating tasks which operate as though
the routines are in a single task. The separation is
effected without alteration of the source code so that
traceability to the original program is maximized and
testing is simplified. While the tools presented are
discussed in terms of the FORTRAN language and the
RSX-llD system, the method applies to most languages
and systems. Automated tools described are directly
applicable to the RSX-llM system.

Terminology

The terminology used to describe software must be
specific for clear understanding of certain concepts in this
paper. We have selected the following terms and
definitions as being the closest to most literature and
therefore, hopefully the easiest to remember.

The term "routine" refers to a separately compilable unit
of software. The term "task" refers to a collection of
software routines which form the executable unit of a
system. The term "program" refers to a collection of
software routines which execute together to accomplish a
single function.

The distinction between program and task is important to
this paper. We describe later a method by which a single
large program is divided into a set of cooperating tasks.

Proceedings of the Digital Equipment Computer Users Society 637

Thus, a set of tasks comprises a program, contrary to
usual programming practices in which a task and program
are one and the same. A routine is further classified as a
main routine (introduced in FORTRAN by the PROGRAM
statement) or a subroutine (introduced by a SUBROUTINE
or FUNCTION statement).

The abbreviation SGA stands for "sharable global area," a
DEC term describing an area that exists within the
address space of more than one task and contains code,
data, or both. Thus, an SGA is a communication area for
tasks in the same way that COMMON is a communication
area for routines. The single difference is that an SGA
may contain executable code while COMMON may not.

The abbreviation K stands for the decimal value 1024, the
"binary Kilo" value. Thus 3K words refers to 3072 words.

Specific dialects of FORTRAN and versions of operating
systems are discussed in this paper. Dialects accepted by
three PDP-11 FORTRAN compilers are discussed:

e FTN refers to the old VOB.05 FORTRAN
compiler available under RSX-llD V6A.

• FOR refers to the V02.04 FORTRAN IV
compiler available under RSX-llM V3.l and IAS
V2.

e F4P refers to the V02-51 FORTRAN IV-PLUS
optimizing compiler available under RSX-11 D,
RSX-llM, and IAS.

Descriptions of FORTRAN which are operating system
dependent refer to the F4P compiler ruMing under
RSX-llD V6.2 or RSX-llM V3.1. CDC FORTRAN refers
to the Control Data Corporation FORTRAN V2.3 compiler
running under the SCOPE V3 operating system. Versions
of other utility programs are not specified since they are
not germane to issues in ~his paper.

San Francisco - November 1978

Conversion Considerations

The decision to convert large programs to the PDP-11
computer should be very carefully considered. Regardless
of the methods used, most of the effort required to
convert a very large program would not be required if the
target machine had a larger address space. Use of either
a DECsystem-IO or VAX-11/780 computer would simplify
the conversion effort. Only translation of the source
program into a FORTRAN dialect accepted by the target
computer would be necessary. Nonetheless, existing
equipment or software requirements may necessitate
conversion to the PDP-11. The work in this paper is
presented in the hope that such activity, when required,
will be as easy as possible.

CONVERSION METHODOLOGY

The conversion effort is separated into five sequential
activities:

1. Conversion to PDP-11 FORTRAN standard

2. Source modifications for very large data areas

3. Fragmentation of very large single routines

4. Assignment of routines to separate but co
operating tasks

5. Construction of task overlay structures to
minimize memory requirements.

Detailed descriptions of each activity follow. The
descriptions include procedure examples and discussion of
automated tools developed to support the conversion.

Language Conversion

The conversion from one FORTRAN dialect to another
involves preparation of a syntactically and semantically
correct program, which may be compiled on the PDP-11.
Usually the I4 compilation switch is used to default to
4-byte integers so that integer and real alignments are
preserved and integer values have a sufficient range. If
the source documentation permits, some consideration
may be given at this point to the adequacy of data item
sizes and floating point accuracy.

The conversion activity involves three separate steps:

1. Determination of language differences

2. Source conversion

3. Verification.

Each step is described in detail in the following
paragraphs.

Determination of Language Differences. A majority of
language differences can be identified by compiling on the
PDP-11 and examining the source lines that produced
compilation errors. Care must be taken with this
approach, however, since a language construction may
have identical syntax in both languages, yet have a
different semantic interpretation.

For conversion from CDC 6600 FORTRAN, we en
countered four frequently occurring syntactic constructs
that had to be converted to PDP-11 FORTRAN syntax:

638

1. Two-way branching logical IF of the form:
IF (logical) truelabel, falselabel

converted to the form:
IF (logical) GOTO truelabel
GOTO falselabel

2. Multiple assignment destinations of the form:
variablel = ... = variableN =expression

converted to the form:
variable! =expression

variableN = expression

3. Very large logical unit numbers converted to
small, sequentially assigned numbers.

4. Seven-letter symbols converted to six-letter
symbols.

In addition to these, many individual syntactic constructs
required conversion. For example, the CDC FORTRAN
allowed ENTRY statements to be expressed without
repetition of the subroutine parameters, and compilation
control expressions to be included in a PROGRAM
statement. For F4P the subroutine parameters had to be
repeated in the ENTRY statement, and the compilation
control expressions removed from the PROGRAM
statement.

Semantic differences are much harder to identify.
Constructions unspecified by the ANSI standard, which
require interpretation by compiler writers, are especially
likely to be a source of semantic interpretation errors.
For example, the definition of internal representations for
.TRUE. and .FALSE. logical values frequently differ
among dialects. Consequently, programs using integers
instead of logicals in expressions (relying on type
conversion by the compiler) may operate differently when
compiled by different compilers.

Even dialects that assign the same values to logical
constants may differ in the way logical values are tested.
Both the CDC and PDP-I I FORTRAN languages use the
usual definitions of all ones (-1, twos complement) for
.TRUE. constants and zero for .FALSE. constants.
However, both the CDC and DEC FTN compilers produce
code that evaluates true for any nonzero value in an
expression result, the DEC FOR compiler evaluates true
for a nonzero lower byte, and the DEC F4P compiler
evaluates true for a negative value (nonzero sign bit) in an
expression result. In some of the code we converted,
integers with values other than -1 or 0 were tested as
logicals. For CDC execution they evaluated true, for F4P
they evaluated false if positive, true if negative. Each
occurrence was manually detected, usually during testing,
and fixed ..

Many other semantic conversion problems were
encountered. The operation of a computed GOTO when
the index is out of range was different between
compilers. Code that directly modified real values
through manipulation of equivalenced integer values had
to be changed because internal representations differed
between machines. Because these problems are semantic,
not syntactic, simple editing programs could not aid these
conversions. However, a program parser, currently under
development for support of other automated tools, should
allow generation of tools to at least detect these
problems, if not automatically correct them.

Source Conversion. Most program units were converted
using a combination of TECO editor macro commands and

a file conversion program written in FORTRAN. Text
search subroutines previously written for a communication
system were used to minimize the program development.
The definition and implementation of both conversion aids
were completed in a few hours by one person.

Verification. The converted source was verified in two
ways. First, a FORTRAN compilation performed after
each conversion effort determined whether the program
was syntactically acceptable. Second, after the program
had been successfully compiled, a file comparison was run
(using the CMP utility) to produce a listing of differences
between the converted source and the original source
program. Another person then checked this file differ
ence program manually to verify that each conversion was
correct.

Although we were initially skeptical of the value of this
last manual verification, it proved to be beneficial in all
conversions performed. For each conversion, at least one
conversion error was identified. In one of the earlier
conversions, an error in the conversion definitions was
identified. The conversion

A=B=O to A=O
B=O

was performed by a TECO macro command. The
particular implementation chosen produced the following
incorrect conversion.

IF (L) A= B = 0 to IF (L) A= 0
B=O

Such an error in the conversion could prove to be
extremely difficult to detect through debugging.

Large Data Areas

The conversion of large data areas in programs from large
computers is one of the most difficult problems faced in a
conversion task. The method used for conversion depends
on whether the large data area is a single very large array
or simply a very large conglomeration of very small data
items.

Large Arrays. For single very large arrays, two different
solutions are possible. First, the VIRTUAL array
statement may be used with the RSX-ll M FOR compiler.
This solution is the most desirable, since it represents
minimal source code modifications and adds very little
overhead to array accessing. This facility, not yet
available with F4P, has been promised with the next
release. However, it will not be available for RSX-llD
unless region definition and manipulation directives are
added to the system, which seems unlikely.

An alternative solution to virtual arrays is to define a
function subroutine for the array reference. The source
program is modified by removing all declarations for the
array and defining the array name as an external routine.
The function subroutine allows access to a very large
array stored either as a disk file or as a logical memory
array using the buffer allocation and remapping functions
of RSX-llM.

Because access to the backing store (either disk or logical
memory area) is relatively slow, the function subroutine
can provide array transfers in blocks so that most array
references are handled directly from the buffer. If the
routine is written in assembly language, average item
access should not be much greater than that of a normal
FORTRAN array. A compromise between readibility and

639

efficiency could be provided by making primary access an
assembly language program with a call to a FORTRAN
program for any backing store references.

Large Data Groups. Handling large groups of small data
items presents a different problem. Several of the
programs converted in our effort involved unnamed
COMMON areas of more than 20K words, leaving
insufficient space for FORTRAN applications and support
routines. To provide more space, it was necessary to
separate this COMMON area into several named
COMMON areas based on program usage. It was then
possible to place programs using different COMMONs into
separate tasks so that the data area requirement for any
one task was less than 20K words. Use of the TECO
editor allowed searching for symbol references so that
program COMMON usage could be determined.
Frequently, we found a relatively large portion of
COMMON used by only a small set of related subroutines.
When the entire program was later split into separate
tasks, that COMMON needed definition only within the
task containing those subroutines.

In a few cases, single very large routines consisting of
more than 1,000 lines of noncommentary source
statements contained local and common data references
to very large data areas. Conversion of these routines
required separation into smaller units, each of which
referenced a much smaller data area. Such cases
presented an extremely difficult task. These efforts
conversion of very large data areas included as parts of
very large programs-presented the only problem that we
felt might make conversion technically impossible. Some
of the programs that we converted included some difficult
problems in this area, but all were successfully
converted-including one that contained more than 32K
words of COMMON data area.

Large Routine Segmentation

Some of the programs converted consisted of more than
1,000 noncommentary source statements which, when
compiled, required more than 6K words of memory. When
combined with 20K words of data area, 3K words of I/O
routines, 3K words of system support, and 2K words of
arithmetic support, the allowable task size of 32K words
was exceeded.

Even in programs with smaller data area requirements,
programs with more than 500 source statements
complicated later efforts in construction of separate tasks
and overlays. Consequently, an attempt was made to
segment all large routines into several smaller routines,
each of which had less than 500 statements. This
segmentation was accomplished through a systematic
manual application of four separate steps. We are
currently investigating the possibility of automating some
or all of these steps. However all the steps in routine·
segmentation are relatively easy to apply manually, so
automation will probably not prove to be cost-beneficial.

In order to illustrate the segmentation procedure, a small
nonsense program, shown in Figure 1, was split into two
segments. Production of two code segments from this
single routine is described in the following paragraphs. It
should be evident that the segmentation procedure is
meant to be applied only to large routines, in spite of the
small size of the example.

Source Code Segmentation. Segmentation begins with
determination of program segmentation points. This
determination attempts to define points that have
minimum control and data transfer requirements; that is,
points for which there are the fewest transfers into

0001
0002
0003
0004
0005
0006

0007
0008
0009
0010
0011

SUSFOUTINE SCA,!<)
JNTEGF;R*4 K,J
J = K/2
J = K/3

10 IF Cl.EQ.J) GO TO 20
K = J

COMMENT **** SFGMEN1 POINT
I : l + 1
GO TO 10

20 A = 0.3 + FLOATCJ)
RETURN
END

Figure I. Sample Program for Segmentation

and out of any segment, and for which the fewest
variables are shared between segments. This is the only
step in the segmentation procedure which is reasonably
difficult, and thus might benefit from development of an
automated tool. A tool, based on a semantic parser, could
be developed to list the number of control and data
transfers resulting from segmentation at each source line.

Using an editor, the executable statements comprising
each of the identified segments are separated from the
original code. For each segment, a SUBROUTINE
statement similar to the original statement, but with the
segment name instead, is placed at the beginning.
RETURN and END statements are appended to the end of
the segment. Figure 2 shows the resulting code for
subroutines SI and S2 defined as segments of the original
routine shown in Figure I.

0001
0002
0003
0004
0005
0006
0007

10

SUBROUTINE Sl(A,K)
I = l</2
J : K/3
IF CI.EQ.J) GO TO 20
K : J
kETURN
END

ERROR 50 S¥MBOL: 20
F UNDEFINED STATEMENT LABEL

0001
0002
0003
0004
0005
OOOo

20

SUBROUTINE S2(A,K)
I : I + 1
GO 1'0 10
A : 0.3 + FLOAT(!)
R£TURN
END

ERHOR 50 S¥MBOL: 10
F UNDEFINED STATEMENT LABEL

Figure 2. Sample Intermediate Segment Code

lntersegment Control Communication. Each segment
defined in this manner is then compiled. Compilation
errors for each segment identify any references to labels
outside of that segment. A unique number is generated
for each of these intersegment transfer labels. In the
example shown, numbers starting with 100 are allocated
as subroutine SI, and numbers starting with 200 are
allocated as subroutine S2. The first entry point for a
segment is defined as the beginning of that segment.
Each label branched to within a segment from other
segments is then allocated one of the numbers reserved
for the segment in which it is defined. Thus, for
subroutine SI in the example, the beginning of the routine
is given the unique number 101, and label 10 defined
within the routine is given the unique number 102.

640

A uniquely named control variable (ICTL in the example)
is defined for use in resolving internal transfers to
external labels. Each external label referenced from a
segment is redefined within the segment. Code at the
label sets the control variable to the unique number
previously assigned to that label, and then performs a
RETURN.

To resolve external transfers to internally defined labels,
a computed GOTO, indexed by the control variable, is
added to the beginning of each subroutine. All labels
referenced from other segments are assigned a relative
position in the GOTO label list determined by the unique
number previously assigned.

Finally the resulting code is compiled. Most errors in the
intersegment coding produce compilation errors. For the
simple example we have chosen, this compilation is not
very informative so it is not shown in a figure.

lntersegment Data Communication. When all label
references between segments have been resolved, each
segment should compile without error. The resulting
compilation listings may then be analyzed to determine all
variables referenced in a given segment. At this point,
lacking all declarations from the original routine, any
array references will show up as functions. All variables
referenced within more than a single segment are placed
into a new named common (SCTL in the example) along
with the control variable. Finally, each segment is edited
to add all declaration statements from the original
subroutine that are associated with variables used
uniquely in that segment or variables defined within the
common. The resulting code for subroutines SI and S2 is
shown in Figure 3. Note that the declaration for the
variable "J" is not present in subroutine S2, since that
variable is unused in that segment.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
OOH
0012
0013
0014
0015

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

1

10

20

1

20

10

SUBROUTINE Sl(A,K)
INTEGER*4 K,J
COMMON /SCTL/l,ICTL
GO TO C 1r10), ICTL
CALL ERROR
CONTINUE
I = K/2
J : K/3
IF CI.EQ.J) GO TO 20
K :: J
ICTL = 201
RETURN
ICTL = 202
RETURN
END

SUBROUTINE S2CA,K)
INTEGER*4 I<
COMMON /SCTL/I,ICTL
GO TO (1,20),ICTL
CALL ERROR
CONTINUE
I = 1 + 1
GO TO 10
A : 0.3 + FLOAT(!)
ICTL = 0
RETURN
ICTL = 102
RETURN
ENO

Figure 3. Sample Final Segment Code

Segmentation Control Routine. The final segmentation
activity is definition of the control routine that will

mediate intersegment transfers. This routine consists of
the original subroutine statements, the named common for
intertask communication, and code for calling each of the
segments when required. Figure 4 shows the control
routine code used to mediate transfers between segments
in the example. Only declarations for calling parameters
and ,intersegment common variables are included.

0001
0002
0003
0004

0005
0006
0007
OOO!l
OOU9
0010
0011
0012
0013
0014

SUBFOUTJNE.: S(A,KJ
Hl'fE'GE.:k*4 K
COMMON /SCTL/1,JCT!,
ICTL = 101

COMMENT **** Sl ~NTHt 1 FlRSI
999 IF CICTL.lQ.OJ R~TURN

JCTL = lCTL./100
ICTL = MUDllCfL,100)
GU TO C1,2J, JCTL
CALL U<ROH

1 CALL St(A,~)
GO TO 999

2 CALL S2(A,KJ
GU Tu 99~

END

Figure 4. Sample lntersegment Control Routine

Upon initial entry, the control routine simply enters the
first defined position of segment 1. Thereafter, the
control routine uses the value in the control variable to
determine which next segment to call and what control
value to pass. A returned control value of zero signifies
completion of the original routine; that is, the control
routine should return to its caller.

Although the segmentation procedure appears somewhat
complex, our experience indicates that it is relatively
straightforward-less than one man-clay is required to
segment a large program. In some cases, segmentation
may be completed in less than an hour.

Task Construction

Determining groups of routines to be developed into tasks
and constructing those tasks using the task builder is one
of the most difficult steps in a large program conversion.
This difficulty results from the inherent complexity of the
task building process and the problem of determining a
particular organizational structure that simultaneously
meets several complex restrictions.

A task build is inherently complex because of the many
task structure options that must be determined. Although
it is possible to ignore most of these options in normal
program task building, it is not possible with task builds
developed for large program conversions. The premium
placed on task addressing space makes it imperative that
all task build allocation and space control options be
carefully determined. The potential for wasting large
amounts of addressing space because of the large
allocation size of PDP-11 page addressing registers makes
the specification of SGA contents very important.

Four steps are required to generate individual tasks from
the original program routines:

1. Allocation of routines to tasks

2. Preliminary task building

3. SGA task build specification

4. Intertask communication specification.

641

Application of any step may require several iterations if
problems are encountered in some of the later steps. The
first step, allocation of program routines into tasks, is
driven by three sequentially applied criteria: isolation of
all I/O to one task, minimization of SGA size, and
minimization of intertask calls.

Because each step is somewhat complex and may be
performed several times, it is imperative that a well
organized set of compilation, listing, and task building
command files be developed. It is especially helpful if the
indirect command file processor has been installed for
RSX-llD.

Figure 5 illustrates the main indirect command file for
creating five cooperating tasks resulting from one of our
program conversions. The figure also displays the details
of the task build and overlay description files for both the
SGA (RAYCOM) and one of the tasks (RAYl). Use of
these command files during conversion provides automatic
documentation of the conversion effort status at all times.

Allocation of Routines to Tasks by 1/0. All routines that
perform large amounts of 1/0 must be grouped into a
single task. All 1/0 requests must come from a single task
to avoid file or device usage conflicts and to synchronize
reading of sequential file records. Routines containing
only a few 1/0 statements need not be allocated to the 1/0
task. Instead, only the 1/0 statements themselves are
placed into the task by creating a new subroutine
consisting of only those statements.

To create the 1/0 subroutine, each 1/0 statement in the
original routines is replaced by a call to the 1/0
subroutine, specifying a single calling argument. The
argument contains a unique value for each call. The 1/0
statements removed in this fashion are each given a
unique label and placed into the 1/0 subroutine, followed
by a RETURN statement. The associated format state
ments are also moved from the original routines into the
I/O subroutine. Then code-usually a computed GOTO-is
added to the head of the subroutine to branch to the ap
propriate 1/0 statement depending on the value of the call
parameter.

We developed a relatively simple automatic file-scanning
program to perform this task. It allocates both the unique
parameter values and the required labels within the I/O
subroutine, producing all of the code except the entry and
exit code of the I/O subroutine. Because the statements
were collected from several other routines, there were
occasional format statement labeling conflicts that had to
be resolved manually.

Allocation of Routines to Tasks by SGA Usage. After all
I/O has been grouped into a single routine, usage of
common by routines is examined to determine whether
SGA requirements can be reduced by putting all
references to a particular common block into a single
task. In order to simplify this effort, we wrote a small
scanning program that examined all routines and common
definitions to build a common routine usage map. This
map listed for each common the routines that accessed
that common. Frequently a named common was used only
by a few routines, and it was a simple matter to assign
these routines to a separate task. When this was possible,
the associated common no longer needed to be part of the
SGA, and the common requirements for addressing space
in all other tasks were reduced.

There are two cases in which simple scanning of common
declarations is inadequate. The first occurs when a copy
of all common declarations has been put into all routines

: .Tl1LE RAY!RAC.CMD
J .IDENT /V02.03/
: .DATE 21•UC1•78
.S£TF LC : UON'T LIST INTERNAL COMM~NTS
0 lFT LC : COMMAND FILE TU COMPILE AND
.IFT LC : BUILD TASKS FOR HAYTRAC,
.IFT LC : PROGRAM 4 OF NUCDM SERJ[S.
.IFT LC J ***** SYMBOL DEFINITIONS
.IFT LC : COMR : COMPILf RAYTRAC
.lFT LC J LISR = LIS1 RAYTRAC
0 IFT LC : LIBR = LIBRARY BUILD RAYfRAC
.IFT LC : TKBR : TASK BUILD RAYTRAC
0 IFT LC : MAPR : MAP RA¥TRAC
.IFT LC : CUMC : CUMPlL~ RAYCOM COMMUN
.IFT LC : LISC = LIST RAYCOM
.lFT LC : TKBC : TASK 8UlLO RA¥COM
.IFT LC : MAPC : MAP RAYCDM
.IFT LC : ***** OP~RATOR INQUIRY
• ASK COMC SGA COMMON COMPILATIONS
.sETr LISC
.IFT CUMC .ASK LISC SGA COMMON LISTING
.IFT LC :••• BUILD SGA IF COMPILED
0 IFT COMC .SETT TKBC
.IFT COMC : SGA TASK WILL B£ BUILT
.IFF COMC .ASK TKBC SGA TASK BUILO
.ASK CUMR RAYTRAC COMPILATIONS
.SETF LISR
.IFT COMR .ASK LISP RAYTRAC LISTINGS
.IFT LC :••• BUILD LlBRARt IF COMPIL~D
.IFT COMR .SETT LlbR
.IFT COMR : HAYTRAC LIBRARY ~lLL BE BUILT
.IFF COMR .ASK LIBR RAYTRAC LIBRARY BUILD
.IFT LC :••• BUILD RAYTRAC IF COMPILED
.IFT TKBC .SETT TKBR
.IFT TKBC : RAYTRAC TASK WILL HE BUILT
.IFF TKBC .ASK TKBR AAYTRAC TASK BUILD
.SETF MAPR
.IFT TKSR .ASK MAPR RAYTkAC MAP LISTlNGS
.IFT LC : ***** FUNCTION EXECUTION
.IFF COMC .GOTO 10
F4P RAYCOM,RAYCOM/•SP=RAVCUM/14/CO:SO
0 10: .IFT LISC QUE RAYCDM.LST
.IFF COMR .GOTO 20
F4P RAYTRAC,RAYTRAC/•SP=RAYTkAC/I4/C0:50
.20: .IFT LISR QUE RAYTRAC.LST
.IFT LISR LBR RAYTRAC/CR,=RAYTRAC
0 IFT TKBC @RAYCOM.CMD
.IFT TKBR TKS @RAYO.TKB
0 JFT TKBR TKB @RAYl.TKB
.lFT TKBR TKB @RAY2.TKB
.IFT TKBR TKB @RAY3.TKB
.IFT TKBR TKB @RA¥4.TKB
.IFT MAPk QUE RAYO.MAP
.IFT MAPR QUE RAYl.MAP
.IFT MAPR QUE HAY2.MAP
.IFT MAPR QUE RAY3 0 MAP
.IFT MAPR QUE RAY4.~AP

: .TlTL~; RAYCDM.Crw
: .IDENT /VOl.03/
: .nAT~ 22•AUG-7A
: CUMMAND flL~ ru IA5K RUlLU ANO INSTALL

TK8 @RA'tCUf.'. Tl\.b
Hl!.L [1.lJ
PlP RAYCO~.*:*/UF
PIP SY.: [1,1l=l302,6JRAYCtlM.TSK,f1AYCDM.STB
Rl!.M i<ll.YCD~'/L I
INS [1,l)RAYCOM/L1/ACC=R~/UJC:[1,1J
H~L (302,61

.TITLE RAYCOM.TKk

.ID~Nl /VUl.03/

.DAT~ 22•AUG-7B
: lNDlKE,CT COMMAND FILl TO

SYST~M GLUeAL AREA
TA.SK kl.Jll,O

kAYCOM •

RAY.COM/Pl/·~~,RAYCOM/-SP/C~F,RAYCOM/-HD:

RA tCOM, X T1>Ef, XTCCJIAM
l t , 1JSYSL1 ri/f,r\: X TRGSR: X TC V PB: X TA LC 0
[1,JJSYSLJH/L8:XT~RRH:XTSEwO:X1MECV

I
S'I'ACK:i)
UNITS:ll
AC'ffl!,=O
MAXt3ll~·=o

rMTHlJF:O
II

: .TITLE RAY.2.TKR
RAY.2/CP,RAY.2/-SP/CRF=PAt2/MP
CUMMUN:RAYCUM:Rw

UNITS:6
ACTFIJ,:t
ASG:LP:1:2:3:4:5
ASG=TI:6
II

s:
s 1:
52:
S3:
S4:
SS:
56:
57:

.Tl1LE RAk2.0DL

.IOENT /VOl.02/

.DATE 22-AUG-78
COMPUT8R SCJ~NCES CURPORATlUN
RAY.TRAC TAS~ 2 • RAYTk2 ROUTINES
• NAM~~ RA Y2
.ROOT RAY2-XTMAIN•XT0002•S
.FCTR S1•S2-S3•S4·S~-S6•S7-A8NORM
.FCTR RAYTRAC/LB:RAYTR2:CALLA1
.FCTR RAY1PAC/L~:CALLA2:CALLA3
.FC1R RA~TRAC/LB:CALCD:CALCFD
.FC1R RAYTRAC/LB:CALVFO:DWREf
.FCTR RAYTRAC/LR:EENTtR:NPSER
.FCTR RAYTPAC/LB:UPkEF:FINDPT
.FCTR RAYTRAC/LR:BSINf:RCOSF
.END

Figure 5. Indirect Command File Examples

without regard to usage. The second occurs when all
common usage is restricted to unnamed common, so that
only a single common exists. In these two cases, a routine
analyzer that parses the complete FORTRAN program is
needed to determine actual program usage of common
data. We are currently involved in developing a
generalized parser, for use with other automated tools,
which could provide the basis for an analyzer of common
data usage.

Allocation of Routines to Tasks by Call Hierarchy. The
final grouping of routines into tasks makes use of a calling
hierarchy to minimize intertask communication. In order

642

to perform this activity, a calling hierarchy diagram must
be made available, preferably with routine sizes
indicated. Using such a diagram, it is possible to allocate
the remaining routines across a number of tasks, such that
the task sizes are approximately equal and routines that
call each other are usually allocated to the same task. To
simplify the manual creation of the calling hierarchy tree,
a simple scanning routine was developed to extract all call
statements from a routine's source code. Using this
output plus compilation listings, very little effort was
required to generate a calling hierarchy tree with
associated routine sizes.

Occasionally, routines were encountered which were
called from just about every other routine. In every case,
these routines were small and well behaved: the routines
did not retain any information from one call to the next,
and did not have any side effects. Usually these routines
performed some sort of well defined mathematical
function, such as a vector rotation. In these cases, rather
than have a large number of intertask calls, it was decided
to simply put a copy of the routine into every task that
called it. Any well-behaved routine could be handled in a
similar fashion.

Preliminary Task Building. The second step in the task
generation is development of preliminary task builds for
each of the tasks identified in the first step. These task
builds provide the information necessary to evaluate the
groupings established by the first step. Because these
task builds are used primarily for evaluation purposes, the
command files should be kept simple, so that initial
creation is relatively easy.

No SGA references are specified for these task builds; all
common references are resolved within the individual
tasks. For all tasks except the 1/0 tasks, the options
UNITS = 0 and ACTFIL = 0 are specified to minimize the
space reserved for 1/0 support code (which was unused).
In addition, the object file F4PNIO is included in the task
build commands to provide additional space savings by
eliminating most 1/0 routines. For the 1/0 task, the
appropriate UNITS and ACTFIL options are specified, so
that an accurate estimation of space requirements may be
developed. All other options are left unspecified, since
they have no effect on space allocation.

Examination of the resulting task build maps frequently
revealed potential problems in terms of task space. These
problems were resolved either by establishing a new
grouping of routines or by developing an overlay structure
for some of the tasks. This step proceeded relatively
smoothly, except for occasional difficulties with sizing
1/0 tasks. Because these tasks referenced most commons
defined for a program, contained considerable amounts of
code, and required the FORTRAN 1/0 support routines, it
was almost always necessary to develop an overlay
structure. This problem is discussed in greater detail in
the paragraph on overlay generation.

SGA Task Builds. The third step is generation of SGA task
builds. A BLOCK DATA subprogram is written for each
SGA, containing the common declarations and data
statements which define the SGA data contents. Then the
appropriate task build command file for each SGA is
developed. These command files include automatic
transfer of the SGA task image and symbol table files into
the system UIC directory, forcing subsequent task builds
to use the proper common definition. Before use of such
command files, the transfer step was frequently left out
during the building process. The resulting tasks were
invalid, and the entire building process had to be repeated
once the error was discovered. After the SGA task builds
have been specified, appropriate SGA reference
specifications are added to the task build of each program
task.

The allocation of common data areas to an SGA should be
carefully considered so that the total SGA size is nearly,
but not more than, some multiple of 4K words (one page
of addressing space). At least one SGA must be
associated with all program tasks to support the intertask
communication routines that are added in the next step.
This SGA must reserve sufficient space for storing
intertask calling arguments.

643

For programs that we have converted, the space required
for intertask communication has ranged from 500 to 1,000
words. The construction of the intertask communications
subroutines allows use of up to 500 additional words of
common space if it is available. Thus, instead of trying to
make accurate estimates of intertask communication data
area requirements, we simply required that a common
SGA, referenced by all tasks, leave at least 1,000 words of
space unused at this stage.

Because of requirements placed on SGA usage and
complexities in task building allocations, it was almost
always the case that only a single SGA was defined for a
program conversion. Either a common area was assigned
to a single task not part of the SGA for use by routines
only within that task, or it was defined as part of the
SGA, for use by all routines within all tasks in the
program.

Once these task build command files have been defined,
the entire set of tasks is built again so that any new sizing
problems can be identified. Again, it may be necessary to
perform some regrouping or build overlays into a
particular task.

One particularly frustrating error may occur at this
point. In one of our conversions, a task build failed
because of an out-of-memory reference error. This
caused the task build to abort, and no map was
produced-the location of the error could not be
determined. Although computations indicated that the
task build should have proceeded without exceeding the
addressing space, the error persisted even after many
routines were removed.

Detailed investigation finally revealed that the error was
associated with a particular routine-if that routine alone
were task built, the error occurred. The routine defined a
common area larger than any other routine in the program
and, in particular, larger than that specified in the
BLOCK DATA specification for the SGA. Since the SGA
had been assigned to the highest addressing page, the
additional locations specified by the common in the
routine exceeded the PDP-11 addressing space. Once the
common sizes were equalized, the task build succeeded
with its original specifications.

Errors in sizing or referencing are more likely to cause
task build aborts when an SGA is specified as part of the
task build. This is the primary reason SGA task building
was delayed until this step. If task build specifications
are developed in small, incremental steps, failures at any
step can usually be resolved by reference to a previously
successful task build. A task build abort such as the one
described, for which no· map was generated, can be very
frustrating if task build commands are greatly changed
from a previous build.

Intertask Communication Specification. The final step in
task building is to add intertask communication routines
and any missing task build specification details. Our
original efforts at intertask communication consisted of
source code modifications using SEND and RECEIVE
directives to pass the calling information. In order to
keep coding modifications relatively simple, only one-way
calling was allowed. That is, if a routine within one task
initiated a call to a routine in another task, then no
routine in the second task could initiate a call back to any
routine in the first task. This restriction caused a
considerable increase in the complexity to the allocation
of routines to tasks. Furthermore, when program
modifications were required, any changes in the allocation
of routines to tasks necessitated considerable source code

changes. We naturally concluded that these restrictions
and complexities were highly undesirable and should be
eliminated.

In order to remove these difficulties, a set of reentrant,
position-independent subroutines was developed to support
intertask communication. The subroutines were specified
so that intertask calling is transparent to the source
program. Figure 6 lists the subroutines and files that
provide intertask communication functions.

File Subroutine Description

XTRGSR $XREGS

$XREGR

XTALCD $XALCW

$XALCB
$XDALC

XTCVPB $XCVPB

XTERRH $XERRH

XTSEND $XSJSR

$XSRTS

XTRECV $XRECV

XTCOMM $XCOMM

XTMAC

Register save in SGA (RO-R4, C,
V).
Register restore from SGA.

Allocate words from X$WORK
common area.
Allocate bytes from X$WORK.
Deallocate space from X$WORK.

Convert parameter block from
absolute to relative addresses and
back.

Error announcement handler,
TRAP instruction entry.

Send subroutine call (JSR) to
another task.
Send subroutine return (RTS) to
another task.

Receive and process call from
another task (JSR or RTS).

Defines intertask communication
data area for inclusion in an SGA.

Macro definitions for intertask
communication tables and code.

Figure 6. Intertask Communication Subroutines and
Files

Several tables, listed in Figure 7, control the calling
linkages established between tasks. Definition of these
tables requires knowledge of which routines are the
destination of intertask calls, which tasks call each
routine, and the parameter list structure for each call.

Table Contents

X$LINK Task number, subroutine number, number of
arguments, total argument size and relative
address of argument sizes list in X$ARGS table.

X$TASK Task name in radix-50.

X$ARGS Subroutine argument size (bytes) for each
subroutine and each argument in order.

X$ESUB Task-dependent table of subroutine linkages for
all calls to routines in other tasks (routines
external to task).

X$ISUB Task-dependent table of subroutine linkages to
all routines called from other tasks (routines
internal to task).

Figure 7. Intertask Communication Tables

644

For each task, it is necessary to specify which internally
defined routines are accessible to other tasks and which
routines in other tasks are called from that task. Both
it~ms of information may be determined by examining the
task build maps produced in the previous step. For all
tasks in which some routine calls a routine in another
task, the external routine name will be listed as an
undefined global symbol. All of these lists are joined to
form a single list of all routines participating in intertask
calling. Examination of the individual task build map
listings allows identification of the task in which each of
these subroutines is defined.

Finally, the calling sequence in terms of the size of each
calling argument must be determined. The call statement
extractor listing, generated by an automated scan
program in the first step of task building, is used to
construct this information.

Intertask Communication Definition Files. Once the
intertask communication details are defined, an intertask
communication definition file is generated, such as that
shown in Figure 8. Each line in the file, except for
.TITLE, .IDENT, and .END, ia a macro call. The TASK
macro call defines the name of a task and the number of
internal subroutines within that task accessible from other
tasks. All SUB and ARG macro calls before the next
TASK or DEND macro call are associated with that call.
Each SUB macro call defines the sequential number of the
subroutine in the list (starting with 0 and incrementing by
1), the name of the subroutine, and a variable number of
macro parameters defining the size of each argument in
bytes for that subroutine. If insufficient macro parameter
positions are available, the ARG macro call is used to
specify additional subroutine calling arguments. The
DEND macro call terminates the definition of the last
task.

.TITLE
• !DENT
TASK
SUB
TASK
SUB
ARG
ARG
ARG
SUB
SUB
SUB
sue
SUB
TASK
SUB
SUB
SUB
SUB
TASK
SUB
SUB
SUB
SUB
TASK
SUB
SUB
DENO
.EhO

XTDEF.MAC
/VOl .02/

RAYO,t
o,cooR,4,4,4,4,4,4
RAY1,6
O,RREC1,4,4,4,4,4,4,4,4

4,4,10.*4r4r65.*4165.*41414
4,4,4,4,4,2.•4,4,10.•4
4,4,10.*4r4

1 1 XTRW,2,4
2,PRINTU
3,HEDPRN
4,PRTPRN
s,GLOSs,4,4,4,4,4
RAY2,4
O,RAYTR2,4
1 1 CALLA1,4,4,4,4,4,4
2,CALLA2,4,4,4,4,4
3,CALVF0,4,111.*4r4
RAY3,4
O,HRAYCA,4,4,4,4
1,MINIRA
2,NTERPL,4,4,4,4
3,MOOECH,4,4,4,4
RAY4,2
O,PATH
1,fENTER,41111.*41111.•4,4

Figure 8. Sample Intertask Communication
Definition File

In Figure B, communication requirements for five tasks
are defined. The first task, RA YO, contains a single
subroutine, COOR, which may be called from other tasks.

Calls to COOR may specify up to six arguments of 4 bytes
each. For these program tables, the macro computation
could have been used to allocate subroutine numbers.
However subsequent individual task specifications include
only portions of the subroutine definitions, so that
subroutine numbers are required for correct resolution of
subroutine references. In order to keep the macro call
forms identical, subroutine numbers are required in
program table specifications as well.

The intertask communication definition procedure
involves specification of a large number of tables which
must be consistent. In order to aid in the specification,
the macro definitions and intertask communication
subroutines contain a considerable amount of error
checking.

For the macro definitions, all redundancies in the table
definitions are exploited to provide consistency checking.
For example, a subroutine number in the SUB macro call
cannot equal or exceed the number of subroutines defined
in the previous TASK macro can. During execution, the
intertask communication subroutines verify the numbers
and sizes of arguments defined within the calling task and
the receiving task. In addition, the allocation and
deallocation of argument transfer space in the SGA is
closely verified. If a routine writes beyond an allowed
argument space in the SGA (because it expects a larger
argument), corruption of verification words is highly
probable and the error will be detected during
deallocation of the argument space upon retum from the
subroutine.

Error announcement messages are defined in a message
file for handling by the MO message output handler task.
The primary announcement for each error is followed by
lines displaying internal communication subroutine
registers and hardware registers at the time of the error.
The last displayed error line initiates the FORTRAN error
traceback so that the calling sequence in effect at the
time of the error is identified.

Intertask Communication Task-Dependent Data. For each
task, the intertask communication routines require two
internal tables: one for outward calls and one for inward
calls. The outward table defines a global entry point for
each routine in other tasks called from this task. These
entry points define two instructions which invoke the
intertask calling routines. These routines transfer all the
subroutine calling arguments into the task common SGA
and then request execution of the task containing the
subroutine desired. The calling task then enters a wait
state for either a retum from the called task to the
original routine, or a call for execution of some other
subroutine.

A task-dependent portion of the intertask communication
routines forms the main program of the receiving task.
This main program calls an intertask communication
subroutine to receive a call from any other task. When a
call is received, the parameter block addresses in the SGA
are adjusted for the receiving task address space, and the
receiving task ' inward table is used to determine the
address of the subroutine to be called. The return from
that slbroutine is to the intertask communication
subroutines, which restore parameter block information in
the SGA and return to the originating task. This retum
information awakens the originating task.

The intertask communication subroutines transfer the
SGA arguments back to the original calling argument
locations and finally return to the original call. The
transfer of control in both directions provides for transfer

645

of registers RO through R4 and condition codes C and V.
The content of R5 is adjusted in the receiving task to
point to the parameter block definition in the SGA. Due
to PDP-11 coding complexities, condition codes Z and N
are not transferred. None of the contents of stacks are
transferred. This register transfer is sufficient to support
all FORTRAN subroutine and function subroutine calls,
and most MACR0-11 subroutine calls.

All the calling and receiving information is stacked,
allowing task calls to proceed in an arbitrary fashion.
Thus, a routine in task l may call a routine in task 2,
which may, in turn, call a routine in task 1 before
returning. Such a sequence of calls is properly handled by
the intertask communication subroutines.

For each task, the task-dependent inward and outward
tables are defined using a subset of the total intertask
communication routine table definition. Figure 9 shows
these task-dependent definitions for two of the tasks
specified in Figure 8. Each definition includes at its head
a SETTSK macro call which triggers the definition of
inward and outward transfer control tables and defines the
task for which the tables are built.

.TITLE
• IOl::N'I
SETTSK
TASK
SUB
TASK
SUB
ARG
ARG
ARG
SUB
SUS
TASK
SUS
TASK
TASI'.
DENO
.ENO

• TITLE
.IDENT
Sf.:Tl'SK
TASK
SUB
TASK
SUB
SUB
TASK
SUB
SUB
SUB
SUB
TASK
SUB
SUB
SUB
SUB
TASK
SUB
SUB
DENO
.END

X1'D000."1AC
/V01.02/

RAXO
RAYO,t
O,COOR,4,4,4,41414
RA Y1I6
O,RREC1141414r414141414

414110.*414165.*4165.*41414
414141414,2.*414110.*4
414110.*414

1,XTRW1214
3,HE;OPRN
RAY214
O,RAYTR2,4
RA X3, 4
RAY4,2

X1'D002.MAC
/VOl.01/

RAX2
RAY01l
O,COOR 14 14141414 14
RA'l116
2 1 PRINTU
5 1GLOSS1414r414 14
RAY2r4
0 1RAYTR2,4
11CALLA1,4,4,4,4,4,4
21CALLA21414141414
3,CALVf0,4,111.*414
RAY3, 4
O,HRAYCA,4,41414
1,MINIRA
21NTERPL,4,4,4,4
3,MODECH,4,41414
RAU, 2
O,PATH
1,FENTER,4,111.*41111.*414

Figure 9. Sample Task-Dependent Communication
Definition Files

When the TASK macro call containing that task name is
encountered, each SUB macro call generates another

entry in the inward table. All other TASK and associated
SUB macro calls define the entries for the outward table.
Thus, in Figure 9, task RAYO contains a single inward
table entry for subroutine COOR and defines four outward
table entries. The last of these outward table entries
allows routines within RA YO to call subroutine RA YTR2
in task RA Y2. Examination of the task table definitions
for task RA Y2 reveals that it provides an outward entry
for subroutine COOR in task RA YO. This is an example of
calling back to an originating task, which was described
earlier. Task RA YO contains the main routine for the
multitask program. That main routine calls subroutine
RA YTR2 in task RA Y2 and that subroutine calls
subroutine COOR defined in the originating task RA YO.

Intertask Communication Task-Dependent Code. The
intertask communication table definitions also specify the
primary task-that task containing the main routine from
the original program that was converted and, therefore,
the first task executed. The first task macro call
specified in the task definition list is the primary task.
Thus, in Figures 8 and 9 task RA YO is the primary task.

The intertask communication task-dependent code for the
primary task differs slightly from that for the secondary
tasks. For the primary task, a single statement-a call to
the subroutine XTINIT-is inserted in front of all other
main routine executable statements. Secondary tasks are
built with a main routine consisting only of a CALL
XTINIT statement followed by an END statement.

For the primary task, the initialization code returns to the
call. For secondary tasks, the initialization code
immediately enters a wait for a call from an external
task. The FORTRAN main routine for secondary tasks is
used so that the FORTRAN error processing trace
mechanism is properly initialized.

Task Overlaying

Overlays are specified for individual tasks when task
addressing space is exceeded and reallocation of routines
to other tasks (or a new task) is infeasible. The overlay
construction methods differ little from those used for
usual task builds. We have identified three problems
requiring greater concern during task builds:

• Adherence to program hierarchy restrictions

• Routines dependent on calling history

• Overlays involving 1/0 tasks.

Hierarch~ Restrictions. Task overlay hierarchies for tasks
that participate as members of a multitask program differ
from normal tasks in two important, related aspects.
First, each overlay must include intertask communication
routines in its root. Second, all routines accessible to
external tasks participate in both the internal task calling
structure and the external, overall program calling
structure.

Thus, a task overlay structure could be consistent with its
internal calling structure, yet violate the overall program
calling structure. Figure 10 shows the simplest example
of this problem. The calling sequence is: MAIN calls A,
which calls B, which calls c. The two task overlay
structures shown in Figure lOb task build correctly
because there are no structure violations local to either
task. However, when routine B in task 2 calls routine C in
task 1, routine A is overlayed. Because the contents of
routine A are overlayed before it has completed
execution, the return to A will produce an error. This
problem is particularly difficult to detect before
execution.

646

a. Calling Structure

MAIN

c

b. Multitask Overlay Structure

TASK 1 TASK 2

MAIN

INTERTASK
COMMUNICATION

SUBROUTINES

A c

c. Single Task Overlay Structure

INTERTASK
COMMUNICATION

SUBROUTINES

B

~ rn
Figure 10. Calling Hierarchy Violation Example

The complete set of task builds and the program calling
hierarchy must be referenced to identify the problem.
This difficulty is different from that experienced with
usual programming involving single tasks. For single
tasks, a necessary condition for a calling error is that the
overlay description contain a routine inversion. That is,
some routine is farther from the root than another in the
calling hierarchy, yet closer in the overlay hierarchy.
Figure lOc illustrates such an inversion for a single
task-routine B is farther from the calling hierarchy root
than A, yet it is closer to the overlay hierarchy root.
That single task, if executed, would produce the same
type of calling error as described previously for multiple
tasks.

For most programs, task overlay structure is based on the
calling hierarchy so calling errors do not occur. For
multitask programs, however, adherence to calling
structures local to the task is insufficient. The overlay
structure must also adhere to calling hierarchies for the
program, across multiple tasks.

History-Dependent Routines. Routines that use informa
tion from a previous call are termed history-dependent.
Data areas for history-dependent routines cannot be
included in overlays because loading an alternative
overlay would destroy the data, causing all information
from previous calls to be lost.

It should be noted that history-dependent effects are
excluded implicitly by paragraph 10.2.6 of the ANSI 1966
FORTRAN Standard. In spite of this restriction,

history-dependent routines are commonplace in large
computer programs because overlays are infrequent and
routine data values remain intact. Consequently, the
problem appears more frequently in large program
conversions than in usual minicomputer programming.

Solution of the problem first requires identification, but
recognition of history dependency for large programs is a
very complex problem. Consequently, all large programs
that were converted were considered history-dependent
unless manual inspection proved otherwise. For small
programs, manual inspection is rapid and has a high
probability of correct evaluation. Even if identified,
removal of history dependencies may prove to be
difficult. Again, automation appears to be of little use.

Handling of history dependencies, real or assumed, on an
overall, routine basis seems more desirable if conversions
are to be rapid. The solution is straightforward: move all
local data definitions into a program section (PSECT)
independent of the executable code. That PSECT can be
placed in the overlay root (not overlaid) while the code is
placed into an overlay branch, which is overlaid. For
assembly programs, use of a separate PSECT defined with
the attribute GBL (instead of LCL) will allow assignment
of the PSECT to the overlay root. Unfortunately,
FORTRAN defines the $VARS PSECT (containing local
variables) with the attribute LCL, and no system
mechanism allows modification of that attribute.

Specification of the read-only switch (/RO) does generate
the required separation of data from code, but also
produces an undesired side effect-separation of the task
image into read-write and read-only areas. At task build
time, these areas cannot share an addressing page, causing
an average loss of 4K words of addressing space. This loss
cannot be tolerated in these conversions. A compilation
switch to control the GBL/LCL attribute or a task builder
command to override PSECT attributes is needed.

Without access to PSECT attributes, conversion of
history-dependent FOR TRAN programs requires source
code modification. All local variables involved (or
assumed involved) in history-dependent computations must
be placed into a named common defined for use only by
the routine being converted. Then, during task building,
that common area can be forced into the program root.
Such modifications to source code are undesirable, and
should be used only when no reasonable alternative exists.

1/0 Task Overlays. The task assigned to contain all
program I/O statements is likely to require overlaying •.
The I/O task usually contains large data areas in addition
to common SGA references. Several entities, not required
for non-I/O tasks, must be included with the I/O task:

1. FORTRAN 1/0 support routines

2. I/O buffers for each simultaneously active
file

3. File Control Services (FCS) routines.

In addition, compilation of FORTRAN I/O statements
usually produces large code segments.

The complex relationships among I/O and FCS support
routines complicates construction of overlays involving
these routines. Figure 11 shows the task build
(RAYi. TKB) and overlay description (RA Yl.ODL)
command files of the 1/0 task defined for one of our
conversions.

647

Several points should be made regarding these command
files. Within the TKB file, the RAYCOM SGA is
specified, as required for intertask communication. The
ODL file specifies a relatively complex overlay structure
consisting of two task-dependent intertask communication
routines (XTMAIN and XTDOOl), common area definitions,
non-overlaid applications routines (RNOIS and NWOMAP),
shared object time routines, three overlay factors (Fl, F2,
and F3), and a co-tree. Object time is commonly, but
incorrectly, used to describe routines that support
execution. The co-tree specifies two overlay factors
consisting of object time support routines.

Specification of I/O support routines in a co-tree allows
reference by all routines in the root tree, regardless of
their position in the tree. A primary disadvantage of
co-trees is the possible creation of calling hierarchy
errors in the same way as is possible for tasks in multitask
programs. Consequently, co-tree construction requires
careful attention to the routine calling hierarchy.

The overlay structure shown was developed through
detailed study of DEC documentation and considerable
testing. Removal of the references to BSINF and BCOSF
in OTSUPl produces a co-tree that can be used for the
development of other I/O task overlay structures.

Two other points of interest. First, the XTR W routine in
factor F3 is simply a collection of miscellaneous I/O
statements taken from routines in other tasks as described
in the paragraph titled Allocation of Routines to Tasks by
I/O. Second, the definition of COM forces four
commons-XRRECI, XPRNTU, XNWOMP, and XGLOSS
into the root. These commons were created from the
local variables in four routines (RRECI, PRINTU,
NWOMAP, and GLOSS) to remove history dependencies
from those routines. The XNWOMP definition remains
from an earlier overlay description in which NWOMAP
was overlaid. The other commons are required since the
associated routines are overlaid.

RELATED TOPICS

The methodology described only provides for conversion to
an initial operational version of the program to be
converted. Testing of an operational multitask program
has not been described. In general, the testing methods
are similar to those used to test multiple program
implementations. Each task may be provided with
debugging aids, trace printouts, and snapshot dumps as
necessary.

During development of this methodology, deficiencies
were identified in existing automated tools and in existing
DEC software and documentation. Some of our
observations about these deficiencies, and possible
corrections, are discussed below.

Automated Conversion Tools

Several automated tools were developed for use when
applying the conversion methodology. These tools are
based on either TECO macros or on scanning routines
written in FORTRAN. The FORTRAN subroutines were
considerably simplified through use of a format scanning
routine which had previously been written for a
communications processor. Figure 12 illustrates one of
the simpler scanning routines developed, and shows use of
two different format processing subroutines at lines 22
through 24 and line 36.

.TITLE RAY1.TKB
J .IDENT /VOl.01/
J .DATE 22•AUG•78
J INDIRECT COMMAND FILE TO TASK BUILD RAYTRAC ,
RAY1,RAY1/•SP/CRF=RAY1/MP
COMMON:RAYCUM:RW
ACTflL=5
ASGsSY:5,TI:&
II

.TITLE RAY1.0DL

.IDENT /VOl.04/ AUGUST 9, 1978
COMPUTER SCIENCES CORPORATION
RAYTRAC TASK 1 OVERLAY DESCRIPTION

• NAME RAY 1
.ROOT RAY1•XTMAIN•XT0001•COM•~ONDVL•UTCOM••CF1,F2,F3),COTR~E

'***
J FORTRAN COMMON AREA DEFINITIONS
COM: .FCTR XRRECl•XPRNTU•XNWOMP•XGLOSS

.PSECT XRRECt,Rw,o,ovR,GBL

.PS~CT XPRNTU,RW,D,OVR,GBL

.PSECT XNWOMP,RW,o,ovR,GBL

.PSECT XGLOSS,Rw,o,ovR.GBL
'***

NON•OVERLAID FORTRAN ROUTINES
NONOVL: .FCTR RAYTRAC/LB:RNOIS:NWOMAP.
'***
J OBJECT TIME SHARED ROUTINES (PART OF MAIN ROOT)
OTCOM: .FCTR OTCOM1•0TCOM2
OTCOM1: .FCTR llr1JSYSLIB/LB:$1NITI:SOPEN:SCLOSE:SSAVRG
OTCOM2: .FCTR l1r1JSYSLIB/LB:$IOELE:$IOARY:$GETS:$PUTS:$ERRPT
'***
J MAIN TREE OVERLAYS •

• NAME READ :PRIMARY READ ROUTINE
Fl: .FCTR READ•RAYTRAC/LB:RREC1

.NAME WRITE :PRIMARY WRITE ROUTINE
F2: .FCTR ~RITE•RAYTRAC/LB:PRINTU:GLOSS

.NAME RW :COLLECTED READ/WRITE STATEMENTS
F3: .FCTR RW•XTRw
:***
J OBJECT TIME SUPPORT (INCL APPLICATIONS) OVERLAYS
COTREE: .FCTR •OTOVL••COTIOP,OTSUP)

ROOT OF CO•TREE, OBJECT TIME SHARED 1/0 SUPPORT
.NAME OTSOVL

OTDVL: .FCTR OTSOVL•[l,!JSYSLIB/LB:SNAM:SBACKS:SENOF
OBJECT TIME I/D SUPPORT

.NAME OTSIOP
OTIOP: .FCTR OTSlOP•OTlbPt•OTIOP2
OTIOPl: .FCTR C1111SYSLIB/LB:$FIO:$ENCDE:$CONV1:$CUNVR
OTIOP2: .FCTR llr1JSYSLIB/LB:$ISF:SOSF:$ISU

OBJECT TIME ARITHMETIC, CODE, FILE SUPPORT
.NAME OTSSUP

OT SUP:
OTS.UP1:

.FCTR OTSSUP•OTSUP1•0TSUP2•0TSUP3

.FCTR RAYTRAC/LB:BSINF:BCOSF
OTSUP2:
OTSUP3:

.FCTR Cl111SYSLIB/LB:SALOG:SATAN:$EXP:SJMOD:SSIN:$SQRT

.FCTR Clrl)SYSLIB/LB:SMLJ:SPWRR

.END

Figure 11. Sample 1/0 Task Build and Overlay Description Command Files

These format processing subroutines are being utilized in
the development of a generalized parser for FORTRAN.
Completion of this parser will provide for relatively easy
development of a number of automated tools. A calling
hierarchy generator and common data usage map
generator are two such tools planned.

Two improvements to the intertask communication
subroutines have been considered. The first would entail a

648

modification of the argument processing routines so that
any arguments already located within the SGA address
space would not be transferred into the intertask
communication area, thus reducing intertask communica
tion data space requirements.

The second improvement would be to modify the argument
handling routines to accept variable length arguments. In
the current routines, an argument is optional in a call, but

0001
c

PROGRAM SCAN·
.IDENT /V01.03/

...
c

COMPUTER SCIENCES CORPORATION
SOURCE PROGRAM ANALYSIS TOOL
CREATED: 26•JUL•78

c
C THIS PROGRAM PRINTS OUT LINES WlTH 1 PROGRAM 1 , 1 SUBROUTINE 1 1 OR
C A SP~ClflED INPUT STFING. COMMENT LINES ARE IGNORED.
C CUNTINUATIUN LINES AFTER A PRINTED LINE ARE ALSO PRINTED •

0002 ~YTE fILEC40),INPUTC40) !FILENAME AND STRING TO SEARCH FOR
0003 BYT~ LTNEC80),QUTCNT !LINE FRUM FILE, PRINT LINE COUNT
0004 BYTE CC,JNDENT !CARRIAGE CONTROL, INDENTATION COLUMN
0005 INTEGER LNG !LENGTH OF INPUT STRINGS
0006 INfEGER MP,~L !SfRING MATCH POSITION, MATCH LENGTH

C******************** START OF PROGRAM
0007 1 TYPE 850
OOOij 850 FORMAT ('SENTER FILE NAME: 1)

0009 ACCEPT 800, LNG,FILE
0010 BOO fORMAT CQ,40A1J
0011 IF CLNG .EQ. 0) STOP
0012 flLE (MlN(LNG+t,40)):0 !END FILE NAME WITH 0
0013 T~Pf 855
0014 855 fURMAT (1 $ENT~R STRING FOR SEARCH: 1)

0015 ACCEPT 800, LNG,INPUT
001b INPUTCMINCLNG+J,40)):0 !END STRING WITH 0
0017 OP~N CUNIT:l, NAME=FILE1TYPE='OL0 1 1BUFFERCOUNT=21READONLY)
OOld IOUl:O !NO LINES PRINTED YET

C******************** MAIN SEARCH LOOP
0019 100 R~AD (1 18051EN0:900) LNG,LINE
0020 805 FORMAT (~,80Al)

0021 110 IF lLINE(l) .Ea. 'C') GO TO 100 ! IGNORE COMMENT LINES
0022 If CFMTfND(MP1ML1LINE,LlNECLNG)1 1 PROGRAM 1)) GO TO 120
0023 IF (fMTFNDCMP1ML1LINE1LlNE(LNG). 1 SUBROUTINE 1)) GO TO 120
0024 IF CFMTFNDCMP1ML1LINE,LlNE(LNG)1INPUT)) GO TO 130
0025 GO TU 100

C******************** SUCCESSFUL SEARCH PROCESSING
0026 120 IND~NT=2 1 INDENT 2 SPACES FOR PROGRAM OR SUBROUTINE
0027 GO TO 200
0028 130 JNDENT=20 ! INDENT 20 SPACES FOR SEARCH STRING
0029 200 IOUt:MODCIOUT+l,56) !NEXT LINE, 56 LINES PER PAGE
0030 CC=' ' !CARRIAGE CONTROL = SINGLE SPACE
0031 IF CJOUT .EO. 1) CC= 1 1 1 1 ••• 0R NEW PAGE IF FIRST LINE
0032 IOUT:MODClOUT+t,56)
0033 WRITE (6,860) cc.LINE
0034 860 FORMAT CAl,T<INDENT>,80A1)
0035 READ (1,8051F.N0:900) LNG,LINE

C ** CHECK FOR ALPHANUMERIC OR "+" IN COL 6, OR NUMERIC AFTER A TAB.
C ** IF FOUND, IT'S A CONTINUATION LINE AND IS PRINTED AS WELL

0036 IF CFMTMCH CMP,ML1LINE, 1 &1 ,1 + 1 1 1 # 1)) GO TO 200
C ** OTHERWISE, RESUME SEARCH BX CHECKING THIS LINE FOR SPECIAL STRINGS

0037 GO TO 110
0038 900 CLOSE CUNIT:l)
0039 GO TO 1
0040 END

Figure 12. Sample Source Code Scanning Tool

can only be a single size. For the programs we have
converted so far, we have experienced only one variable
length argument. In that case, it was possible to put all
calls to that subroutine in the same task as the subroutine,
so that it did not participate in the intertask
communication. To support variable length arguments,
interpretation of other argument values would be required
to allow computation of the argument size during
execution.

The limited application of intertask communication
routines limits any additional work on them.
Improvements such as those described above will be made

649

only if absolutely required by some future large program
conversion. The FORTRAN parsing programming efforts,
which have applications outside the area of program
conversion, will be pursued regardless of program
conversion requirements.

DEC Software

In general, the DEC system software and documentation
provide a sufficient basis to support the conversion
process. The use of the indirect command file processor
and TECO editing utilities provided considerable power
for very little expenditure of effort. Although both these

utilities are unsupported by DEC for RSX-llD, we found
them easy to add to the system and without problems
during use.

There are, however, a number of minor deficiencies in
other DEC software that prevent straightforward
conversion. These deficiencies have been separated into
three areas: SGA generation deficiencies, FORTRAN
deficiencies, and RSX-11 compatibility deficiencies.

SGA Generation. In spite of some relatively good
descriptions and presentation of examples in the task
builder manual, many concepts are incompletely or
incorrectly described. The RSX-11 D documentation is
particularly obscure when describing the interaction of
task builder and installation switches for construction of,
and reference to, an SGA. While an adequate tutorial of
the problems is impossible in this paper, we would like to
present some clarifications we obtained by running a
number of test programs.

Figure 13 illustrates the five binary options associated
with building and installing an SGA task and building a
task to reference that SGA. The first option, the PI
switch, is independent of the rest of the options. The
switch specifies that the SGA be built position
independently, such that reference to the SGA may use
any addressing space available in the referencing task,
independently of other referencing tasks. Negation of the
switch specifies that the SGA be associated with a
specific addressing area which is the same for all
referencing tasks. The only logical reason for specifying
position dependency is that the SGA includes some code
that was written in a position-dependent fashion. Since
data is inherently position-independent, it should be
possible to associate data with either a position
independent or position-dependent SGA without any
problems.

SGA Task Build Options

1. PI -or- -PI

Referencing Program Task Build Options

2. LIBR -or- COMMON
3. :RW -or- :RO

SGA Installation Options

4. /RW -or- /RO
5. /LI -or- /CM

Figure 13. SGA Construction Options

While this is true for most data areas that a programmer
might define through assembly code, it is not the case for
FORTRAN COMMON areas. In order to eliminate naming
conflicts with subroutines, resolution of FORTRAN
COMMON is performed using program section (PSECT)
names. For some reason-which we were unable to
determine-the task builder is capable of resolving PSECT
names between a task and an SGA only when the SGA is
defined as position-independent. Thus, FORTRAN
COMMON must be included only in position-independent
SGAs. On the other hand, since almost all DEC-provided
support programs are position-dependent, definition of an
SGA containing those programs must be position
dependent. The result is that combining support programs
with FORTRAN COMMON into a single SGA to reduce
addressing space waste is not allowed.

The second option displayed in Figure 13 is provided in the
task build options only for documentation purposes.
Selection of either the COMMON or LIBR keyword

650

identifier for specification of an SGA reference has no
effect on the task build operation or usage of the SGA.

The third option, specification of read-only access or
read-write access to an SGA by a reference task,
interacts with the fourth option-specification of read
only or read-write limitations on the SGA during installa
tion. The two options combine to create four possible
outcomes:

• If the reference task specifies read-only access
and the SGA installation specifies read-only
limitations, the memory management control
registers will restrict all reference tasks to
read-only access. Any attempt by that task to
write into the SGA will cause a memory fault.

• If the reference task specifies read-only access
and the SGA installation specifies read-write
limitations, that particular reference task will
be limited to read-only access, although other
reference tasks may read and write into the
SGA. As before, any attempt by the reference
task to write into the SGA will cause a memory
management fault.

• If the reference task specifies read-write
access and the SGA installation specifies
read-only limitations, the reference task will
fail to install (and, therefore, run) because of an
SGA access mode incompatibility.

• If the reference task specifies read-write and
the SGA specifies read-write limitations, the
reference task will be able to read and write
freely into the SGA space.

Finally, the two SGA installation options interact to
determine SGA resolution following usage. When no
active tasks reference a particular SGA, that SGA may be
considered to be in the dormant state. When an SGA is
dormant, the only SGA image maintained by the system is
the task file. When one or more referencing tasks become
active, the SGA is also considered active.

When an SGA becomes active, the file image is copied
into main memory and all modifications to the SGA are
maintained in the main memory image. When all
referencing tasks again become inactive and the SGA
becomes dormant, the main memory image may either be
discarded or written back into the file image, so that it is
retained until the SGA becomes active again. If the
access limitation specifies read-only, the main memory
image will be discarded because the access limitation
precludes any modification relative to the disk file
image. If the access limitation specifies read-write, the
common (CM) or library (LI) switch determines the
resolution at the end of usage. The main memory image is
copied to the file image if CM was specified at
installation, and it is discarded if LI was specified. The
implication is that any modification to an SGA library
area only has meaning during a particular usage of the
SGA, whereas modifications to a common area have
meaning across SGA usages.

Many of the programs that we converted included BLOCK
DATA COMMON specifications, which provided for
initialization of common areas. Often, these initialized
data areas were included as parts of an SGA. The
traditional method for providing SGA initialization is to
maintain a second file image of the SGA and to copy that
second image into the first image prior to program
execution. Because the particular multitask implemen
tation that we chose guarantees that all referencing tasks

will remain active until execution is complete, it is
possible to obtain the same initialization effect simply by
specifying the LI switch during SGA installation.

FORTRAN Deficiencies. During the conversion efforts,
three deficiencies in the F4P compiler were noted:

1. Lack of VIRTUAL array support

2. Inaccessibility of error processing

3. Inaccessibility of PSECT attributes.

These deficiencies are discussed in the following
paragraphs.

The F4P compiler does not include support for VIRTUAL
specification of arrays to support data areas greater than
32K words. While this deficiency has not prevented any
conversions to this date, its lack has caused some
difficulties in what would have otherwise been rather
straightforward conversions. Since virtual arrays are
provided by the FOR compiler under RSX-11 M, this
feature should be added to F4P as soon as posssible. The
F4P is described by DEC as a superset of FOR; this is not
true for virtual array support at the current time.

The F4P support routines for error processing do not allow
user definition of new error calls. This is a deficiency
because it prevents a user from utilizing an otherwise
very well thought out error announcement mechanism.
The internal control tables for error processing are not
directly available to the user, so development of user
error announcements involves a considerable amount of
code in order to use the MO message output handler.
Access to the error definition tables would allow a user to
provide error controls and announcements just by defining
a few byte values and using the TRAP instruction
mechanism already implemented. While not necessary,
access to such a facility would make the programming
task easier.

The F4P compiler does not allow user modification of
PSECT attributes. As described in the overlay generation
section, specification of the GBL instead of LCL attribute
in the $VARS program section would allow overlaying of
FORTRAN subroutines without regard to their use of local
variables. Although the ANSI FORTRAN standard
specifies that subroutine local data values will be
undefined upon each invocation of a subroutine, many
programs violate the specification by using variable values
from previous subroutine calls. Overlaying of such
subroutines produces execution errors.

If the $VARS program section could be given the attribute
GBL, variables would not be involved in program overlays,
and overlaying would not affect execution. Although

correction of this deficiency is not necessary to fulfill any
formal FORTRAN specifications, its addition would not
violate specifications, and would remove some of the
problems faced during conversion efforts.

Operating System Incompatibilities. Several papers have
been written describing incompatibility problems between
RSX-llD and RSX-llM. This section is only intended to
identify those incompabilities which created significant
problems in developing the intertask communication
subroutines. The primary area of difficulty involved the
different implementation of send and receive directives in
the two systems.

For RSX-llD, intertask communication was provided by
straightforward use of the "variable send and request or
resume" directive in the originating task and the "variable
receive or suspend" directive in the receiving task. For
RSX-llM, the separate use of a send directive followed by
a request or resume directive produces a race condition;
execution could cause a deadlock in which all tasks are
waiting for other tasks to call them. In order to eliminate
this race condition, it was necessary to use receive
asynchronous system traps and internal event flags. The
solution involved more code and used up a resource (event
flag) that might be needed by applications programs.
Thus, it is concluded that RSX-11 M directives for
intertask communication are deficient with respect to
those provided for RSX-llD.

One other difference in the operating systems may
become significant in a conversion effort. Currently,
RSX-llD contains no virtual map space handling
directives. Virtual array support requires these
directives. In this respect, the RSX-ll M operating system
is superior to RSX-llD.

CONCLUSION

A methodology for converting very large programs to the
PDP-11 has been presented. The conversion is based on
five separate activities, supported by automatic tools.
Application of this methodology to several conversions has
proven its worth. Although a large conversion still
remains difficult, the methodology provides systematic
generation of a solution more rapidly than with other
approaches. Further, fewer errors remain after creation
of the first operational version of a program.

During development of the methodology, DEC software
and documentation was adequate in most cases. Specific,
minor deficiencies were described. Automated tools
supporting all phases of a conversion were successfully
and easily developed. Plans for enhancements and
additions to conversion tools were described. Automation
of most of a conversion effort is considered to be feasible.

ACKNOWLEDGMENTS

The author is indebted to Janet Comfort, Computer
Sciences Corporation, for her programming help. Her
willingness to try alternate conversion methods and
perform numerous tests provided much of the information
necessary to the definition of the conversion
methodology. The author is also indebted to Janene
Deller, Computer Sciences Corporation, for her technical
editing and generous assistance with preparation of this
manuscript.

651

RUNNING "REAL-TIME" WITH IAS

Bolson E., Frimer 1'1. Cardiovascular Re-
search and Training Center. University of Wash
ington, Seattle, Washington.

ABSTRACT

Several methods have been studied to implement
real-time features in the interactive
time-sharing system. IAS. This report discusses
the development of communication routines between
real-time tasks and time-shared tasks, and the
implementation of a compact, "pseudo-handler"
task which overcomes several problems in the
former.

Intrgduction.
The Cardiovascular Research and Train

ing Center's <CVRTC> Data Acquisition labo
ratory is used ior a wide range of heart re
search requiring analog/digital conversion,
x-ray image X/Y digitizing, and graphic dis
play. The computer facility presently con
sists of a PDP 11/45 with 124K memory, RK06
disk, 3 RK05 drives. 32 AID lines, and about
20 terminal lines, of which several are
dial-up at 1200 baud. Also available are
several locally interfaced data acquisition
units, primarily an Autotrol large table X/Y
digitizer. and a 9600 baud communication
line to a Decsystem-10. Until recently,
<December, 1977), the operating system was
RSX-11D, which worked relatively faithfully
for the computer-wise staff. As usage by
unsophisticated users such as medical per
sonnel and technical sta-f!f increased, it was
determined that IAS V2.0 would provide com
patibility with RSX-11D while improving re
source utilization (especially response
time) and "user-ability" in an interactive
environment.

Crucial Application.
One maJor application. which was added

near the time of this conversion to IAS, is
the remote usage of Tektronix <TM> 4953 di
gitizer tablets in conJunction with Tektro
nix 4012 graphics terminals at 1200 baud.
These tablets respond to ASCII commands and
send a series of manually digitized coordi
nates to the computer while optionally plot
ting on the terminal.

Since the coordinates are sent continu
ously as long as the user depresses the cur
sor button, prompt acceptance o-f! the digi
tized data over the terminal lines is neces
sary. This basically real-time operation
caused quite a problem with the time-sharing
system.

Straight Time-sharing
The first attempt to acquire data using

a time-sharing task seemed successful until
system activity increased. <It should be
mentioned here that at that time. only 112K
was attached to the computer. causing swap
ping to occur with 3 and sometimes 2 users!)

Proceedings of the Digital Equipment Computer Users Societ) 653

The problem was found to be caused by swap
ping; no matter how large the QIO input
buffer was made <within reason), it could be
filled up at 120 characters/second when
enough activity occurred. Unfortunately
there is no means within IAS to give a
time-sharing task a "high-priority", and IAS
and the TT handler are not structured to
respond to massive terminal input. Double
buffering wouldn't help. since the task must
be active to switch buffers. The possibili
ty of locking the task in core was initially
disgarded due to the loss of multi-task
swapping and small amount of core available.
A separate partition could not be used ei
ther Cdue to the need to provide space for
applications not using digitizers), for the
same reasons.

Real-time/Time-sharing
IAS has a very flexible timesharing

control structure. allowing spawning of sub
tasks to arbitrary depths, while maintaining
control and communication between these sub
tasks. Unfortunately, the real-time execu
tive portion of IAS, based as it is upon
RSX-11, has no such control. Furthermore.
there is no provision for communication
between real-time and time-shared tasks.
This installation successfully developed
several communication routines based upon
the SEND and RECEIVE DATA executive requests
and the RECEIVE AST facilit1J. Briei'11J1 the
AST <Asynchronous System Trap) allows a task
to be inTormed when a SEND DATA has been
queued ior it, whether it is real-time or
time-sharing. The reason for not using the
RECEIVE DATA or SUSPEND request became obvi
ous when PDS became active. informing the
user that the JOb was suspended. PDS is the
"monitor" or command language interpreter
which controls all time-sharing users 'under
IAS.

The communication protocol decided upon
was to SEND DATA and REQUEST the real-time
"sub-task" which would do the actual data
acquisition, storing the data on a disk
file. It of course merely did a RECEIVE
DATA upon start up. The time-sharing "con
trol-task", however. could not suspend, as

San Francisco - November 1978

indicated before. Instead, it enabled a RE
CEIVE AST and waited for an event flag to be
set. These are all non-priveleged executive
req,uasts. The "sub-task", when finished,
executed a SEND DATA with a status word, and
exited. The AST routine set the event flag
in the "control-task", thus waking it up.
The control-task then did a RECEIVE DATA to
get the status.

The above seq,uence of events worked
fine as stated. However. several inadeq,ua
c ies became apparent.

1. First, the real-time sub-task exe
cuted under the UIC it was in
stalled with, usuall11 the UIC under
which it was built.

2. Second, because of other bugs. some
of them DEC'S, the sub-task would
lock up, and the user did not have
the privilege to abort it.

3. Third, if the user t11ped "control
C" and aborted the control-task,
the real-time task would remain
running.

4. Fourth, unless the real-time task
had a priority greater than the
time-sharing system tasks, it would
not be al lowed to run. When it was
given a higher priori tv, there was
a danger of thrashing or even com
plete s11stem lockup, since the
real-time task could not be check
pointed to make room for
time-shared task1.

Diligent research and brainstorming re
sulted in soma solutions. though not all
were good. It was discovered that building
a task with a default UIC of [0,0l would
allow it to execute in the UIC of the RE
GUESTing task. In order to allow the user
to abort the real-time task. it was made
"self abortable"; it would exit through a
RECEIVE AST if sent a message once execut
ing. This was possible because the informa
tion sent to the AST routine includes the
event flags the task might be waiting for
and the program counter <PC> address. The
AST routine set each flag req,uired and in
serted the address of the FORTRAN EXIT su
broutine in place of the previous PC in the
stack. and performed an AST EXIT. This
kludge successfullv aborted the task.

To take advantage of this capability,
the control-task had, to be informed of a re
q,uest for abortion. To implement th is, the
"control C" recognition time-sharing facili
tv was used. It uas found that the wait for
terminal event macro had to have a sub-task
data block. even a dummy one. the procedure
was as follows: (see Figure 1 >

654

FIGURE 1
R•el-T\M.e I T!•u-Sher1ris ll'l'terfe.:.e

Cl r" ! 11 d 11 '""b ~ r t1 re.fer e J'.C 11 l I~ t
ll\ te1<\.

1. SEND DATA and REQUEST real-time
sub-task

2. SPECIFY RECEIVE AST.

3. ENABLE conrol C recognition.

4. Everv second, test for control C or
event flag set by AST.

5. In sub-task, RECEIVE DATA.

6. SPECIFY RECEIVE AST.

7. On normal finish, SEND DATA to con
trol task and exit.

8. Control task, on RECEIVE AST,
event flag.

sets

9. Main loop detects event flag, RECI
EVEs DATA, and continues.

10. Main loop, on detecting control C,
SENDs DATA to sub-task, and tells
control-task to abort. Actually
the control-task Just went to ini
tialization portion of interactive
program.

11. Sub-task, ON RECEIVE AST, sets all
flags requested, and sets PC in
stack to an EXIT routine, and
exits. Task exits.

The above procedure worked.
Unfortunatel\j1 the aforementioned bugs be
came important. It seemed that real-time
and time-sharing tasks did not co-exist as
peacefully as documented. Even with several
DEC patches, one problem remained insoluble:
if there was little system activitv and no
hole was available for the real-time task,
whatever its priority, the task would never
be loaded. The frustrated user would con
trol c, the control task would respond, but
the real-time task would not even start
until the control task exited, causing mass
confusion. If that wasn't enough, it became
apparent that more than two users would

cause h•voc in the partition, because the
time-sharing tasks had to come up every sec
ond. due to the test for control c, and the
real-time tasks, even though half sharable,
were still too big.since they didn't seem to
move around much.

Puudo-handler
Fina1l1,1. it was determined to scrap the

previous development, if a suitable small,
sharable, highly communicative, and high
priority task could be written. A
pseudo-device handler fit the bill perfect
ly. It could run at high priority, was
small b1,1 definition of system requirements,
could communicate through OIO'S and event
flags, and could be written to handle an ar
bitrary number o.P terminals. It is improb
able such a solution would have been at
tempted, however. had not the previous at
tempts failed.

After specification and design. three
weeks o.P intensive effort provided a tablet
handler <TB> with the following characteris
tics:

1. Since no re-entrancy is required.
TB polls through a list of nodes
waiting for tablet input. A pol
ling rate of 6 per second was found
to be sufficient.

2. Nearly all storage is in the QIO
node and a 40 word node picked from
system common. There is no built
in limit to the number of terminals
TB can handle in this way.

3. TB emulates the hardware functions
of the Autotrol digitizer. allowing
users familiar with one unit to use
the other without re-training. In
addition, it saves the calling pro
gram work by interpolating and
sieving points digitized.

4. TB frees the calling program for
swapping until the user has entered
the first control key from the ter
minal. The terminal handler
read-ahead buffer is of sufficient
size to allow time for the task to
be requested and swapped in. The
task is then locked in core until
the number of points requested have
been digitized. If in the future
this technique is insufficient for
the number of users. nodes might be
picked to store data temporarily.
However. so many users would tax
all system resources so badly that
allowing such usage would be in
advisable.

655

Conclusign
The slow. painful development of the TB

handler h•s been rewarded by better under
standing of the operating system. and a smo
oth, user-oriented package for manually di
gitizing picture data. Although reports
were that IAS could not conveniently handler
more than 3 users on a PDP 11/45, this ins
tallation has managed to handle 6 users. in
cluding program developers. Despite the
previously described problems. the
real-time/time-sharing control structure has
been successfully used to control a task for
A/D conversion which must run at very high
priority. This task is small enough that it
usually has a space for loading.

In summary. IAS is capable of handling
users with interactive and real-time re
quirements on a relatively small computer
system.

REPLACING MCR IN AN OEM ENVIRONMENT

David M. Kristel
Massachusetts Computer Associates

26 Princess Street
Wakefield, Massachusetts 01880

ABSTRACT

This paper describes a user-written command
interpreter which replaces MCR for an OEM
laboratory system. The replacement, UMCR,
intercepts unsolicited input that normally goes
to MCR, and it can spawn and control tasks. In
addition UMCR has a command language which is
well-suited to the laboratory user and includes
several unusual features.

BACKGROUND

In early 1977 Massachusetts Computer
Associates (COMPASS) was hired to build a
data acquisition and analysis system for a
laboratory instrument manufacturer. The
system, which we will call UMCR, was to
support multiple users acquiring and analy
zing data from multiple instruments simul
taneously. It had to permit users to
analyze data as it was being acquired. A
sophisticated command language would offer
the experienced user great flexibility,
yet, by making many default assumptions,
help the novice user to get started quickly.
The command language should be verbose to
help the novice, yet allow abbreviations
to reduce keystrokes. Also, it should be a
"soft" system, tolerant of user errors.
Finally, the host system should support
program development activities concurrently
with the laboratory-oriented processing.
A PDP-11, running RSXllM, was the obvious
candidate for supporting the UMCR system.

RSXllM presented its share of obstacles, of
course. Most of them arose in the command
interpretation area. The RSXllM command
interpreter, MCR, was an unsatisfactory
user interface because it gave a novice
user too many ways to get into trouble and
because it could not possibly support the
planned command language without extensive
modification. Clearly, then, some other
task would serve as the user's interface to
the system.

Making some other task the command inter
preter (CI) had its share of problems, too.
The user would still be free to type tc to
reach MCR and get into trouble. Worse
still, by typing input when the CI had no
read queued for the terminal, the user
could inadvertently send characters to MCR.
The result could be confusing if MCR
rejected the input with an error message,
or disastrous if the input accidentally
proved to be a valid MCR command.

Proceedings of the Dig/ta/ Equipment Computer Ueers Society 657

A straightforward, modular way to implement
the various acquisition and analysis
functions is as separate tasks. However,
an independent CI has only limited task
control abilities. Since the RSXllM
Executive permits only one copy of a task
to run at a time, clearly the CI had to
mimic MCR's ability to run multiple copies
of a task by running them under different
names (aliases). In addition, UMCR was
required to run multiple copies of the same
task from one terminal, whereas MCR could
only run one.

To round out the CI's capabilities, some
task control facilities were considered
essential. The CI had to be able to abort
a task at the user's request and had to be
able to tell when an acquisition or analy
sis task had exited.

To recapitulate, the major problems with
using RSXllM for the UMCR system were in
the areas of terminal control and task
control. As it turned out, the necessary
building blocks were readily available
within RSXllM to solve these problems. The
f~llowing sections describe our approach,
the resulting implementation, and the
command language itself.

APPROACH

Task control was the easier problem to sur
mount. The system would consist of a set
of "UMCR tasks" communicating with the CI
by a simple protocol. These UMCR tasks
would perform the data acquisition and analysis.
To run one, the CI would do the equivalent of the
MCR RUN command, using an alias for the task name.
The UMCR tasks would be required to announce their
imminent exit by sending a message to the CI.

The only message from the CI to a UMCR task
would request the task to abort itself.
The ABRT$ Executive directive was not
satisfactory for this purpose because (1)
the aborted task would have no chance to
clean up, (2) the message appearing on the

Sen Francisco - ft!ovember 1978

terminal would be confusing to the UMCR
user, and (3) the issuing task (CI) would
have to be privileged in a system with
multi-user protection.

Terminal control appeared to complicate our
design considerably until an elegantly
simple appruach was found. We wanted the
CI to be "live" all the time, in the sense
that the user could always enter an escape
character (tC) and wake it up. This
facility would allow the CI to abort a UMCR
task even when output was coming to the
user's terminal (TI).

The first approach we considered would have
the CI issue an "attach" to the terminal
and field unsolicited chara~ter ASTs. Of
course, this approach was unsatisfactory
because, with the CI attached, no other
UMCR tasks could output to the terminal.

A second approach would have the CI "pass"
its attachment, somehow, to another task,
which would then be responsible for attend
ing to tC from the terminal. However, if
we used standard RSXllM facilities there
would be a brief "time window" during which
neither the CI nor the other UMCR task was
actually attached to the terminal. Also,
this approach required too much logic to
be present in the analysis task, even if
the CI did not designate that task to take
control of TI. Having recognized a tC,
this task would have to pass the attach
ment back to the CI so the CI could prompt
for input.

The final unsatisfactory approach would
create a "terminal control task" which
would do all reads and writes on the user's
terminal and handle tC's. We feared that
this approach would generate too much
Executive activity by passing input and
output around, thus slowing the system and
using dynamic memory. Also, this task
would probably take a fair amount of space,
and there might have to be one copy per
terminal.

Our final approach, by comparison, was
quite simple. Upon reflection we recog
nized that we wanted the CI to behave just
like MCR, but not be MCR. MCR is always
"live" because theterminal driver passes
to MCR all input for which there is no
other outstanding input request. This type
of input is called "unsolicited input".
Even after the '>' prompt, MCR does not
make an input request, which is why output
may occur on the terminal after a prompt
has appeared.

Clearly if we wanted our CI to treat the
terminal the way MCR does, we should modify
the terminal driver to do exactly that.
We would create a special "UMCR mode" in
the terminal driver. Once a terminal was
in UMCR mode, all unsolicited input would
go to the task that put it in that state,
rather than MCR. Furthermore, if tC was
typed, a 'UMCR>' prompt could be produced.

658

The idea of modifying RSXllM did not imme
diately appeal to us because such changes
could lead to other problems, DEC would not
support them, and they would complicate the
system generation procedure. Nevertheless
the alternatives presented at least as many
headaches, and the resulting system would
not run as smoothly.

IMPLEMENTATION

The required capabilities for UMCR seemed
to point to the CI being a privileged task,
since it would have to delve into RSXllM
structures. However, the size limitation
on privileged tasks was surely going to be
a problem, and debugging such tasks raised
the specter of frequent system crashes
during program development. We therefore
chose to make the CI non-privileged.

The decision to make the CI non-privileged
had other virtues. Clearly the manipulation
of RSXllM structures still needed to be
done. However, our decision forced us to
define those operations very carefully.
The result was the specification of one
very small task (UINS), with which the CI
communicates, and of modest changes to the
RSXllM Executive which are completely trans
parent to the rest of the system. UINS
supports task spawning, and the Executive
changes provide terminal support.

To run tasks, the CI passes the file name
and alias of the desired task to UINS and
waits for a local event flag to be set.
UINS does not, itself, contain code to
install and run tasks. Since the INStall
part of MCR is adept at these functions, we
decided to let it do the hard work. The
undocumented '/RUN=REM' option in INStall
is used by MCR to implement the RUN command
(install, run, remove), so we used it as
well. UINS simple queues an appropriate
INStall command to MCR and waits for the
requested task to begin.
CI's local event flag.

Then it sets the

The normal terminal driver places unsolici
ted input lines on MCR's receive-data queue.
Since MCR is privileged, it can retrieve
these lines, which are not genuine receive
data packets, and process them. When MCR
processes a command line for an installed
task like PIP, it places the result in the
system's "GMCR queue". When PIP runs, it
retrieves the line with a GMCR$ directive
(get MCR command line).

Because the CI is non-privileged, we needed
non-privileged ways to get the terminal
into and out ot UMCR mode and to fetch1
command lines. Since we wanted to minimize
changes to RSXllM, we used two existing
mechanisms: QIO$ and GMCR$ directives.
Special terminal QIO sub-functions set and
clear UMCR mode. The GMCR$ mechanism is
expedient for associating the unsolicited
command lines with the CI. When TI is in
UMCR mode, the terminal driver places

unsolicited input lines on the GMCR queue.
The CI can then easily obtain them with the
GMCR$ directive. (The CI does not get lines
that are cleaned up the way MCR normally
leaves them. Thus our use of GMCR$ is non
standard.)

The terminal driver modifications to support
"UMCR mode" are conceptually simple.
Facilities are added to allow a task (the
CI) to put the terminal into, or take it
out of, UMCR mode. Code is added to type
'UMCR>', instead of 'MCR>', when the
terminal is in UMCR mode and tc is typed.
Finally, at the point where unsolicited
input is completed, code is added to note
whether UMCR mode is in effect. If it is,
the input line is placed on the GMCR queue,
directed to the task which placed that
terminal in UMCR mode.

Two other parts of the RSXllM Executive
require modification to insure system
integrity. The code which handles exiting
tasks (DREIF) turns off UMCR mode for a
terminal if the exiting task had put it in
UMCR mode. Turning off UMCR mode makes
the terminal revert to a normal RSXllM
terminal, communicating with MCR. Also,
the GMCR queue must be emptied of all
entries addressed to the exiting task and
not just the first one.

To support these changes foT system gener
ation, we added all of our modifications
with conditional assembly symbols and mod
ified the SYSGEN procedure. Since the
RSXllM Version 3.1 SYSGEN is comprised of
indirect command files, changes were easy
to make. The modified SYSGEN asks "DO YOU
WANT UMCR SYSTEM SUPPORT?". An affirmative
answer defines the necessary symbols to
produce that support. Thus our client can
easily generate the systems they need with
out special digressions that could lead to
errors.

COMMAND LANGUAGE

We wanted the UMCR command language to be
simple to use, allowing an advanced user
to invoke commands quickly while supporting
the struggling new user. It was to offer
string ~ubstitution and language extension
via procedure files. It had to give users
sufficient control structures to support
running lengthly sequences of data acquisi
tion and analysis while the system was
unattended. The language facilities to
achieve these goals are described below.

The. commands that UMCR recognizes fall into
three classes: external, control, and
internal. External commands perform data
acquisition or analysis and are realized
as separate tasks. However, external
commands are completely parsed before the
associated task is run, the task receiving
the result of parsing. Control commands
implement control structures in procedure
files. Internal commands are those
commands (other than control commands)

659

which the CI executes within itself. As
with most command languages, the user enters
the command name first, followed by any
optional parts.

External commands often have marry parameters
and switches that select the exact processing
desired. Typical designs for similar
languages require users to specify all
parameters in the exact order they are
expected (positional notation), or to
specify only certain parameters by name
(keyword notation). The user who does not
know the positional order, in the first
case, or the keywords for parameters, in
the second, is lost.

Consider some, examples. Assume we are deal
ing with command CMD which has parameters
with keyword names Pl, P2, P3, and P4.
Their positional order corresponds to the
digit in their names. (Real parameters for
a real command would have keywords like
TEMPERATURE, MASS, VOLTAGE, etc. We use
these simpler names here so the reader can
remember their positional order.) To
execute CMD with positional parameters the
user says

CMD [l] ,[2] ,[3] ,[4]

where [i] represents a value for parameter
Pi· (Command lines end with Carriage
Return to begin execution.) A purely key
word version of the same invocation might
be:

CMD Pl=[i] ,P2=[2] ,P3=[3] ,P4=[4)

or

CMD P3=[3],Pl=[l],P4=[4],P2=[2]

or some other variant.

The UMCR command language merges positional
and keyword notation in an unusual way.
The result is a straightforward synthesis
of those notations with prompting. In
UMCR, a keyword changes the "current
parameter number". Thus a command like:

CMD P4=[4] ,Pl=[l] ,[2] ,[3]

is meaningful, and is equivalent to the
previous examples. The use of the keyword
Pl= has changed the current parameter
number to 1. Then the values [l], [2], [3]
are treated positionally. Of course, the
preceding P4= had changed the current
parameter number to 4, as well. (Remember
that real parameters are not named Pn, so
the command interpreter does not use a digit
in the keyword to determine the proper
position. Iri a sense the keywords are
symbolic position numbers.)

Prompting falls out of this scheme naturally.
The user's prompt request character is
ESCape (ALT MODE), represented by$ below.
For example, if the user types:

CMD$

UMCR responds by prompting with:

Pl=

and waits for the user•s response.
the user enters:

[1]$

When

UMCR responds by prompting again, this time
with:

P2=

The user can "mix and match" positional and
keyword notation and promptirig as shown
in the equivalent examples below (under
lined portions produced by UMCR):

(l) CMD [l],[2],[3]$
P4= [4]

(2) CMD$
Pl= [l],[2]$

P3= [3],P4=[4]

(3) CMD [l],P4=$
P4= [4],P2=$

P2= [2] $

P3= [3]

One glaring omission in the discussions
above is the question of what happens if
the user types:

CMD [l]

Does a (groan) "syntax error" occur? The
answer is a definite "No!". UMCR contains
a multi-level defaulting structure that
attempts to supply a value for the omitted
parameters. In fact the defaulting
mechanism is one of the key ingredients
toward making the system easy to use.

Human engineering considerations of the
defaulting mechanism dictate that parameters
of the same name (keyword) in different
commands in fact be the same parameter.
The user never ha;-to decide "Is this the
CMDl version of parameter XYZ, or the CMD2
version?". Although UMCR has many
parameters that are unique (or peculiar)
to only one command, some are used by two
or more commands.

The defaulting mechanism, as we said,
applies to parameter values. There are
three levels of default: base-level,
local, and global. The base-level default
is built into the parameter code and cannot
be changed. The local default supplies
the value of a parameter in the context of
a specific command. The global default
applies to any instance of the parameter
in any command. The lacal and global
defaults may be set by the user, and they
retain their values until they are expli
citly changed by the user. Their initial
value is null (none).

660

To assign a value to a parameter, UMCR
first uses any value supplied by the user
on the command line(s). Next the local
default, or, if there is none, the global
default is used. In their absence the
base-level default is used.

The previous discussion about specifying
parameter values omitted the fact that
default values are displayed with each
prompt. The value displayed is the default
that would be used (local, global, base
level) if the user specified no value. If
we use the notation '<i> 1 to represent the
default for parameter Pi, example (3) above
would really look like:

(3) CMD [l] ,P4=$
P4= <4> [4],P2=$

P2= <2> [2]$

P3= <3> [3]

When the user finally types Carriage Return
to begin command execution, there may be
parameters for which UMCR requires a value
and the user has specified neither a default
nor a regular value. Also, some parameters
the user supplied may have caused errors.
In these cases UMCR prompts for a correct
value. Once satisfied, UMCR will begin
command execution.

Now we can see how various classes of users
might make use of UMCR. The novice user
will generally step through all parameters,
supplying values as he goes. The exper
ienced user will generally set defaults for
parameters. She will use positional
notation to supply a few parameters, since
the most variable ones are usually first.
Occasionally she will use keywords to change
a specific item, or prompting, to verify
defaults.

Using parameter defaults is one way the
user can minimize input keystrokes. We
should mention that UMCR recognizes commands
and keywords by the minimum number of
characters in a given context. Two further
mechanisms for decreasing the number of
keystrokes are string variables and the
special symbol @. Arbitrarily named string
variables may be assigned values and then
used in any input to UMCR. For example,
if [l], the value for parameter 1 in the
discussions above, had a particularly long
value, the user could assign the value to
string variable A and type:

CMD 'A' ,[2],[3],[4]

to invoke the command.

The symbol @ is really just a special string
variable name that does not require quotes
('). However, its content is constrained
to be a file specifier string. Since files
in the UMCR system often differ only by
extension, this tool is very handy for
selecting files rapidly in different
parameters. For example, the user could

type:

ATSET DK1:(100,75]FOO

to set the value of @.
might say:

CMD @.DAT,@.LST

In a command he

The string 'DK1:[100,75]FOO' is substituted
for each occurence of @.

The UMCR system includes a facility for
running long sequences of commands auto
matically, like RSXllM's indirect command
files. Two features of this procedure file
mechanism are distinctive, however. First,
a procedure file is invoked without a pre
ceding special character (such as @ in
RSXllM). Second, and more important,
procedures may have arguments. The two
aspects combine to make procedure files an
effective command language extension
mechanism.

The argument passing mechanism resembles
parameter handling in external commands
while using the string variable mechanism.
Procedure files are called by specifying
the filename in place of a command name.
The balance of the command line is assumed
to contain procedure arguments which are
remembered.

Nothing is done with the arguments until
the ARGS command is encountered. ARGS
states the names and positional order of
the arguments for the procedure. The
names, in fact, are string variable names
which are assigned values by matching up
the arguments with the names. These string
variables are then used like any others.

ARGS is slightly more complicated than just
stated, however, because the user may also
use keywords to specify procedure arguments
in the procedure call. The keywords must
match the argument names in ARGS. As with
external commands, keywords in procedure
calls change the current argument position
number.

One other helpful detail about the proced
ure file mechanism is that arguments for
which no value has been specified retain
their previous value. Combining this with
the keyword mechanism, a procedure file
can set "defaults" for procedure arguments.
If the procedure is called with some
missing arguments, the default (string)
values will allow the procedure to proceed.

An example will illustrate these points. Assume
that we are writing a procedure PROC which
has four arguments: Al, A2, A3, A4. (Here
again, the names chosen are for convenience. In
fact they may be arbitrary length alphanumeric
symbols.) The files would probably start with the
five lines:

661

SSET Al=<l>
SSET A2=<2>
SSET A3=<3>
SSET A4=<4>
ARGS Al, A2, A3, A4

where <i> is a default value for Ai
and SSET sets a value of a string variable

The rest of the procedure file depends on
the function to be performed. References
to (and alterations of) the argument string
variables may be made freely.

The procedure call for PROC can resemble
the examples given previously for external
commands, except that there is no prompting.
Again, letting [i] stand for a user
supplied value for argument Ai, the lines
below show user input and the string values
used by UMCR:

PROC
PROC A3=[3]
PROC [l] ,[3]
PROC A3=(3],[4]

<l>,<2>,<3>,<4>
<l> ,<2> ' [3] ,<4>
[l] ,<2>, [3] ,<4>
<l>,<2>,[3] ,[4]

The ability to run long sequences of UMCR
commands unattended is assisted by UMCR
control commands: IF-THEN-ELSE, WHILE-DO,
FOR. The numbers on which these commands
operate may come from the procedure file
itself, from user input (an ASK command),
or from the task error code returned by an
exiting task. This last item makes it
possible to alter the course of a procedure
file if something unusual happens during
data acquisition or analysis.

All of the syntactic processing by the CI
has been implemented using a modified
version of the MARGOT command language
interpreter generator (developed by M.J.
Myszewski and P.M. Cashman of COMPASS; see
Proc. 1977 Spring DECUS, pp. 1131-1144).
MARGOT was originally developed to support
another project at COMPASS, and the UMCR
system represents its third usage by us.
The MARGOT package provides a convenient
conceptual framework for thinking of
syntactic structures at a BNF-like level.
Our experiences reinforce the earlier
favorable comments: the MARGOT package
greatly simplified syntactic processing
for us. (The original MARGOT is available
as DECUS 11-322.)

CONCLUSIONS

Once we overcame the technical hurdles, we
found RSXllM to be a very satisfactory base
on which to build the UMCR system. Despite
our modifications to it, RSXllM has been
reliable and trouble free. We use the same
modified system for program development and
UMCR task check-out, so we feel certain
that the modifications are indeed transparent
to standard RSXllM software.

The technique of using a small privileged
task neatly encapsulates the function of
spawning other tasks and has worked relia
bly. The task was simple enough to be
debugged in less than a day. The overhead
incurred by having UINS run MCR and INStall
has been unobjectionable.

The modifications to the RSXllM Executive
proved to be quite small: 42 bytes.
Changes to the terminal driver required 132
bytes, or about 4% of the size of the driver
we use. We consider these costs very small
when compared with the cost of obtaining
equivalent functionality any other way.

The command interpreter has been used
extensively during program development of
the analysis tasks, but so far few "real"
users have had access to it. Initial
experience indicates that there will
probably be a "learning curve" during which
users will gradually acquaint themselves
with its full power.

ACKNOWLEDGEMENTS

The author wishes to thank Robert M.
Supnik and Nancy Kronenberg for their help
in the early part of this project. Their
investigations exposed the problem areas
in RSXllM, and they proposed general
solutions to them.

662

THE DEC FORTRAN ENVIRONMENT FOR
BUSINESS APPLICATIONS

David J. Hirschfeld
Business Controls Corporation

Elmwood Park, New Jersey

ABSTRACT

Many DEC users of PDPll systems are in the FORTRAN
environment running applications other than those
usually classified as Business Applications. These
users often turn elsewhere to accomplish the pro
cessing of their business information never realiz
ing the tremendous potential inherent in their PDPll
hardware and their FORTRAN software for the fulfill
ment of business data processing needs. With aware
ness of this potential many DEC users could imple
ment effective Business Systems running alongside
their other applications and do it far more economi
cally than with any other alternative.

Many DEC users of PDPll systems are in the
FORTRAN environment and are running applica
tions other than those usually classified as
Business Applications (Order Entry, Billing,
Sales Analysis, Inventory Control, Materials
Requirements Planning, Job Costing, Accounts
Receivable and Payable, Payroll, List Maint
enance, General Ledger and other similar
applications).
Many of these users turn to other sources
such as service bureaus, time-sharing, other
manufacturers and even non-compatible DEC
systems to meet their needs for Business in
formation processing. A conscious awareness
of the excellent potential their existing
computer environment has for the fulfillment
of Business data processing needs opens up a
new and very attractive alternative.
The purpose of this paper is to alert the
DEC user to the tremendous potential within
his DEC FORTRAN environment for the effec
tive and economical fulfillment of his Busi
ness data processing needs.
In an article published in the April 1 78
issue of Datamation called "Comparing Com
puter Language Performance", Mr. Jerome w.
Blaylock reports on the results of a study
conducted at the University of Houston Com
puting Center comparing the performance of
COBOL and FORTRAN in a Business Environment.
The tests were done on a large Byte oriented
machine which favors the Byte oriented COBOL
language over the Word oriented FORTRAN lan
guage which would fare even better on a Word
machine like the PDPll. Mr. Blaylock is
quoted as saying "Our experiments indicate
that FORTRAN is - or at least can be - ef
fective compared to COBOL".
When considering DEC FORTRAN under RSXllM on
a PDPll computer, one might well expect an
even more enthusiastic endorsement of the
FORTRAN environment for Business Applica
tions. Here are some of the significant
reasons why this conclusion can be expected.
Reliability
One of the major considerations of anybody

Proceedings of the Digital Equipment Computer Users Society 663

thinking of putting the key operating data
of their business on a computer is the re
liability of the software tools they use.
Nothing can set you back harder than a bug
in the manufacturer's software that affects
your application and is completely out of
your control to correct. A good rule of
thumb is to allow manufacturer's software a
three year period of field experience and
debugging to achieve an acceptable level of
reliability. Both DEC's RSXllM operating
system and their FORTRAN IV compiler pass
this test and have proven their reliability
in thousands of installations. The number
and type of corrections coming down from
Maynard at this time are relatively small
and deal with problems remote enough from
the main stream of business data processing
functions as to allow for a very high level
of confidence by the Business System Plan
ner.
Multi-Programming Ca~ability
The flexibility required by a user oriented,
interactive Business Information System and
by a Company wishing to mix Business and
non-Business applications requires a high
degree of multi-programming capability.
The RSXllM operating system offers the user
outstanding flexibility for multi-program
ming, the only practical limits being the
amount of core available and the amount of
core required by individual application
programs.
Score another point for the DEC FORTRAN.
Our experience with this environment in im
plementing Business data processing systems
for many Companies has shown the following
average core requirements:

.Operating System 32K Bytes

.Re-entrant FORTRAN Res. Libr .. 24K Bytes

.Each Application Program 12K Bytes
Using our experience, it can be shown that
even with a PDP1134 having a capacity of
256K bytes core memory, the user can have
up to 16 Business Application programs run
ning simultaneously.

San Francisco - November 1978

Combine this capability with printer spool
ing available with RSXllM and you have one
powerful, interactive, user oriented Busi
ness data processing system.
Efficiency
The efficient use of system resources by
FORTRAN is demonstrated dramatically above.
There is more, however, to be said about the
efficiency of FORTRAN operating in a Word
machine as most minicomputers are. For ex
ample, our experience has shown that the
average compilation time for a FORTRAN Busi
ness Application program was under 30 se
conds exclusive of printing source listings.
With the spooling capability of RSXllM, each
programmer can effectively start his next
compilation after 30 seconds. Execution of
application code is also highly efficient
since the compiler's object code conforms
to the hardware's word oriented architec
ture.
Compatibilit~ with Other Applications
Present applications in FORTRAN, BASIC and
MACRO 11 can run side by side with your
FORTRAN Business Application programs. Each
user is protected with his own UIC. Even
Word Processing applications can run concur
rently with your FORTRAN programs. Some us
ers that have PDPll's as a real-time part
of their production operation such as Type
setters for example, need to have back-up
hardware on-site that is almost always idle.
Why not use it for Business data processing,
or conversely, have a Business system that
can back-up your present system and vice
versa.
Availability of FORTRAN Programmers
Aside from the fact that a DEC user in the
FORTRAN environment probably has some
FORTRAN expertise in-house, there are more
FORTRAN programmers in the world, than any
other language. It is also alot easier to
learn FORTRAN than it is to learn COBOL for
example.
Availability of Re-entrant Code
With DEC's FORTRAN IV plus, the user can
write application code that is completely
re-entrant. Essentially, this means that
more than one terminal or user can share
one core copy of a program. In certain
business applications this is an extremely
important capability. Consider, for exam
ple, a large wholesale distribution opera
tion where any number of terminals may be
needed to inquire into the status of inven
tory and enter a customer's order. If each
terminal had to have its own program, the
maximum number of terminals in a 256K byte
machine would be about 16. With re-entrant
code, however, one 12K byte program could
service any number of terminals, each with
its own destructable data buffer.
Availability of Proven Application Packages
One of the most attractive advantages of
the FORTRAN environment for Business data
processing is the availability of proven
application packages.
Taking advantage of the existing high qual
ity application packages available for
PDPll's in the FORTRAN environment brings
big and immediate benefits to the PDPll
user.
1. Avoiding the cost of development and

664

the thinning of usually already scarce
programming resources.

2. Proven packages are clean, debugged
and standardized.

3. Proven packages are accurately and pro
fessionally documented.

4. Professionally developed packages usu
ally represent latest state of the art
status. More money is spent on devel
oping these packages than any one user
could justify.

5. The user can be up and running quickly
and inexpensively, thereby gaining the
confidence of top management as well
as their support for further excur
sions into Business Data Processing.

6. Packages developed for RSXllM and
FORTRAN represent little difficulty
for the existing staff to pick-up,
operate and even modify.

These types of professionally developed
packages are available and adaptable for
most Companies in the most standardized
areas of Business data processing.

.Accounts Receivable

.Accounts Payable

.Payroll

.General Ledger

.Bill of Materials

.Materials Requirements Planning

.List Maintenance
Some areas of Business Data Processing al
most always require customizing to the
unique characteristics of a particular
business firm. Applications like Order
Entry, Invoicing, Sales Analysis and Com
missions usually reflect the unique per
sonality of a firm and to try and change
the successful traits of a Company as it
interfaces with its customers to fit into
a package is flirting with disaster.
Most firms that offer Business application
packages also offer customized design and
turnkey software services. It is often
wise to use their experience with these
applications rather than to dilute your
non-business oriented data processing
staff with these applications. The most
important thing, however, is for the PDPll
user to be consciously aware of ~he in
herent potential existing in his FORTRAN
system for a good solid Business Informa
tion System.

SIZING AND PLANNING

A DECNET NETWORK

Richard Pigman and William Lahtinen
Digital Equipment Corporation

Maynard, Massachusetts

ABSTRACT

This paper outlines a set of planning requirements that must be
addressed in implementing a network. These requirements center
on the following tasks:

1. Configuring a network that will accommodate projected
growth. (The term "Network Sizing" is frequently used
to describe this activity.)

2. Planning for network installation and operation.

SIZING THE NETWORK • All system transaction types are defined.

In order to size a network, application and system
requirements must be defined -- application re
quirements first, and then system requirements.
Once application requirements relative to functional
distribution, input/output characteristics, and
growth forecasts are established, development and
training can begin, system needs can be identified,
and the network sizing task addressed.

Planning for network installation and operation can
begin before the order with Digital is signed -
certainly no later.

NETWORK SIZING -- An Example

Because application and system needs are unique to
specific situations, this paper will use a sample
installation in order to illustrate how the planning
concepts for network sizing are applied. We will
work with a sample order entry system that has the
following application and system requirements:

Application Requirements -- Example

• A central location will handle network management,
data base control, and program control.

• There are six remote locations with the following
characteristics: the users are non-data process
ing type personnel; the transactions are update
and query; the system will be in operation eight
hours a day (9-5).

• Business activity (and thus, transaction volume)
will increase over the next three years.

System Requirements -- Example

• The topology is defined as consisting of a
central node and six remote nodes. (See
Figure 1.)

• The Operating System used at each node is known.

• CPU requirements for each node are known. (See
Figure 1.)

Proceedings of the Digital Equipment Computer Users Society 665

• Forecasts of transaction volumes are available
for the next three years. (See Figure 2.)

RSX-UM

NEED TO !lillRMINE:

+ COl1MUN!CATIONS INTERFACES REQUIRED
+ SPEED OF COMMUNICATIONS UNE REQUIRED

Figure 1 -- Network Configuration -- Example

TOTAi.

SYSTEM NEEDS

D A I L Y Y 0 L U M E S <TRANSACTIONS/DAYS BE'D!£EN ll/70 AND ll/34J

10.000

s.ooo

4.000

17 .ooo
14.000

11.000

4.000

4.000

3.000

25.000

20.000

15.000

10.000

10.00()

.10.000

Figure 2 -- Transaction Volume Forecast Example

Factors still to be determined are: the communica
tions interfaces required for each link, and the
speed of the communications lines. Also, we want
to estimate the CPU utilization required for

San Francisco - November 1978

communications.

DEFINING COMMUNICATIONS NEEDS: Inter:i;aces, L;i:ne
Speeds, Processing

In order to select the proper communications .j:nter.
face and correct line speed, you must have accurate
data on message traffic for the network links, and
applications throughput requirements. Once. the
message traffic for the application is projected,
CPU usage can be estimated, and minimum communica
tions line speed requirements can be determined.

Typically, you would have a forecast of the number
of daily transactions each node is expected to
process, rather than message traffic for the
network. Figure 2 shows the transaction forecast
for each of the 11/34 nodes (B through G) in our
order entry example. We must examine each link in
the network, looking at transaction volume, CPU
utilization, and line speed. We came up with our
expected transaction figures when we defined our
application needs. Now we must estimate CPU
utilization.

There are several factors which impact CPU utiliza
tion. Some of these are defined by the application,
others are user.,.determined.

The CPU utilization factors defined by the applica
tion are:

• Number of Messages/Second.

•Size of Message (characters).

User-determined factors are:

• Communications Interface (character interrupt vs.
DMCll).

e CPU (11/70 or 11/34).

Number of messages per second is derived from trans
action volume, which will be discussed later. The
size of the messages is determined by transaction
type, which is already known from our application
definition. In our example, the CPUs are already
given, but if they were not, processing requirements
could be established through evaluation of the other
three factors. CPU selection is determined by the
amount of processing power the user wants to
dedicate to the network.

It is important to note that the communications
interface selected affects CPU utilization. This
again, as we will see, reflects a choice by the user
of the CPU utilization he will tolerate.

The factors that must be considered in establishing
required line speed are also defined by the applica
tions and by user requirements.

The factors defined by the application are:

• Number of Messages/Second.

•size of Messages (characters).

User-determined factors are:

•Full duplex (FOX) vs.half duplex (HDX).

666

• Error rate of the conununications line.

• Synchronous or asynchronous transmission.

As with CPU utilization, the message rate and size
defined by the applications is a determining factor
in specifying the required line speed.

Now let us look at some tools that will help us
determine how much CPU we need for the network, and
what lines can best satisfy our requirements. These
tools consist of several graphs and tables (Figures
3 through 9) illustrating some of the information
gathered on the DECnet Phase II product performance.
We will be using these graphs to aid in selecting
the line speed and conununications interface for our
order entry system. The graphs will also allow us
to estimate CPU utilization. All of our branch
offices have this information. Your local salesman
and Software Services representative can assist you
in sizing your network.

The data we will be using is for DECnet-llM V2.0.

The first graph (Figure 3) represents the net line
utilization, versus message size, by line speed.
The graph depicts what the user application would
see as net utilization, depending on message size
and line speed. For example: the graph shows that
a 256-character message, running on a line rate at
9.6K results in a net line utilization of 70%.
These figures are for the DMCll/FDX conununications
device.

I I I iii lii I 111 I I ii I I I ii Ii Ii I I I I I I I I I I I I ii iii ii

• user•Messa'9e size (characters) .. -
Figure 3 -- Net Line Utilization vs. Message Size

The next graph (Figure 4) represents the CPU
utilization by processor versus user message rate.
For example: this graph shows that 10 messages/
second uses less than 20% of an ll/34. For the
DMCll, it has been found that message size for
message lengths between 8 and 1024 characters has a
negligible effect on CPU usage. Therefore, this one
graph is applicable for message lengths between 8
and 1024 characters.

For the DUPll, a character interrupt device, the
message length does have a significant impact on
CPU usage. Figure 5 shows the CPU usage for DECnet
llM V2.0, on a 11/34 with a DUPll interface, for
various length messages at various message rates.
Figure 6 shows the same data for a ll/70.

.. ..
•

.. ..
..
•
••

~~I I 11ii11 i~I I I Ii I I I IJ.11 ii I I I I i:J ii I I I I I l~i I

Figure 4 -- CPU Usage vs. Message Rate

..

.. ~
~ ..

Q)
tr>

al p•

~ ~ ..
User Message Rate (Msgs/Sec)

Figure 5 -- CPU Usage vs. Message Rate for 11/34

Figure 6 -- CPU Usage vs. Message Rate for 11/70

In order to determine CPU utilization and communica
tions interface, we need to know the minimum user
line speed, the net line speed the user application
sees, the message rate, and message size required by

667

our application. The minimum user line speed is a
percentage of the minimum real communications line
speed. The concept can be expressed as follows:
Net Line Utilization is user line speed over real
line speed (expressed as a percentage) . The same
factors which influence real line speed affect line
utilization .

We are now ready to analyze our data and determine
the line speed and communications interface for our
order entry system .

First, we need to translate our transaction rate per
day into peak hour requirements. We want to con
figure the network to handle the peak hour network
traffic.

The peak hour load can be determined either by
knowing the application or by estimating the peak
load using empirical data.

For our order entry example, the peak hour load is
assumed to be 17% of the daily volume (See Figure
7). As an example, take Node Bin our network. In
year 3 the node will process 25000 transactions a
day. The peak hour load then is:

Peak load= (.17) (25000) 4250 transaction/hour.

Averaging the load over the hour, we get trans
actions per second.

Transactions/second 4250 = 1. 2
3600

PEAK HOUR EQUALS 17% OF DAILY VOLUl'E

VOLUl1E

MID-l'llRNING MID-AFTERNOON

Figure 7 - Peak Load Pattern

We now must translate transactions per second into
network traffic (messages/second). This translation
is application specific. For each application
transaction, how many network user messages are
generated? For our order entry example, we will
assume the following:

• One message to the 11/70 -- average size 128
characters.

• Average of four messages back to the 11/34 for
each message to the 11/70 -- average size of each
= 128 characters.

Therefore, for each transaction, there are an
average of 5 messages to and from the 11/34 (Node B).
The peak load averaged 1.2 transactions a second;
therefore, the peak message rate for Node B is:

Messages/second = (1.2 transactions/second)
(5 messages/transactions) = 6

In year 3, Node B will have a peak message rate of
6 messages/second.

Similarly, we can calculate the peak message rates
for each node in the network. The peak message
rate for the 11/70 is the sum of all the message
rates for the 11/34 nodes.

Now that the message rates are known, we can esti
mate CPU utilization from the graphs. For example,
our message rate for Node B is 6 messages/second,
128 characters a message. Using a full duplex
DMCll, the CPU utilization (Figure 4) would be 9%.
If we use a full duplex DUPll, the CPU utilization,
(Figure 5) would be 24%. Figure 8 shows the message
rates and CPU utilization using a full duplex DMCll
interface for all the nodes in the network.

MESSAGES PER CPU
SECOND UTILIZATION

ryEAB 31 lfB!I! !l!Cll CHARD

ll/34CBl 6.0 91

ll/34(Cl u 61

ll/311(0) 3.6 s:
11/34(£) 2.4 4%

ll/34(f) 2.4 41

ll/34(Gl 2.4 4%

ll/70<TOTAU 21.6 20I

NatE: CPU UT!UZATIDll DOES NOT INCLIJDE APPLICATION
PlllCESSING OR OTHER BACKGROUND PROCESSING.

Figure 8 -- Message Rate/CPU Utilization Table

It is important to note that CPU utilization does
not include application processing, or other back
ground processing. Also, since the DMCll performs
all DDCMP functions, CPU utilization is not
affected by the conununications error rate, as it
would be by character-interrupt interfaces. Network
throughput, however, is affected by the error rate,
even with DMCll interfaces.

Assuming we want to minimize the amount of CPU
devoted to the network, we select the DMCll as our
conununications interface.

Now we want to select the line speed. Again, taking
the link between Node A, the 11/70 and Node B, 11/
34, we will determine the minimum line speed re
quired. If we use a full duplex DMCll link between
the nodes, we will need a line speed capable of
handling the greatest message rate in a given
direction. It can be determined that the message
rate to Node A from Node B (to the 11/70) is 1.2 per
second at 128 characters per message. This is
derived as follows: 1.2 (transactions/second x 1
(messaqes per transaction). The message rate to
Node B from Node A (to the 11/34) is 4.8 messages/
second at 128 characters per message. This is
derived as follows: 1.2 (transactions/second x 4
(messages per transaction). Therefore, the user
line must be rated to handle the higher message rate
into the Node B (to the 11/34).

668

• Net bits per second - (message/rate) (characters/
message) (bits/character) •

• Net bits per second = (4.8) (128) (8) = 4916 BPS.

As previously pointed out, the user line speed (Net
BPS) is equal to the net line utilization times the
real line speed.

•Net BPS= (Net line utilizations) (Line speed).

• Line speed - Net BPS/Net line utilization.

We can determine from Figure 3, that with a message
size of 128 characters, net line utilization of 60%
is realized. Therefore, the minimum required line
speed of the link between Node A and Node B is:

• Line speed = 4916/.60 = 8193 BPS.

Therefore, a 9600 baud line which can handle 8193
bps, is required for the link. This line speed
does not include provisions for:

• Error rate of the conununications line.

• Queuing delays for line traffic (response time
sensitive).

Similar calculations will determine the line speeds
required for the other links. Assuming all links
are full duplex DMCll links, the CPU utilization and
necessary line speed for all the remote nodes is
shown in Figure 9.

CPU !IT!! IZAI!ON l.lllLil!fEil

91 9600

61 noo
SI noo

E 41 4800

41 4800

41 4800

Figure 9 -- CPU Utilization/Line Speed Table

A clear statement of the application needs, par
ticularly message rate and message size, are
essential to size a network. Again, the validity
of your plan: depends on the accuracy of your data.

Now that you have sized your network, you are
ready to sign the order with DEC, and go on to the
next planning activities - installation and
operation.

PLANNING FOR INSTALLATION AND OPERATION

A word of caution! After placing the order, there
is a tendency to sit back and wait for the equipment
to arrive. This is dangerous! It is important that
planning for installation and operation begin as
soon as possible. In some cases, planning should
have begun while application and system needs were
being evaluated.

Several factors contribute to the necessity for
planning.

1. It is quite likely that the network will
consist of components from several vendors.

2. There are frequently different operating
systems involved in a network.

3. There is usually geographic dispersion to
consider. All nodes are not located in the
same room. Node-to-node communication can
span continents.

Any one of these factors can cause special con
sideration to arise. When you take all of them
together, the problems to be handled are formidable.
In addition, from a project control point of view,
the sheer magnitude of the installation task can be
awesome.

KEY ELEMENTS IN PLANNING

First, and most important, is the appointment of a
network manager. The network manager function can
be exercised by one person, a part of a person, or
an entire department, depending on network size.
The appointment of a network manager should be
made as early as practical in the planning process.
In fact, it can, in many cases, be made when
identifying application system needs or while the
network is being sized. The network manager has
several functions. He or she serves as an inter
face with DEC and with other vendors, develops the
schedules, procedures, and documentation, and
identifies training requirements. These are
discussed in turn below.

Developing Schedules

The network manager should first address the problem
of scheduling. Input to this task consists of
corporate requirements (by when must the network be
installed, for example), equipment and personnel
availability for installation and operation. The
development of procedures, the preparation of
documentation for training. should also be addressed.

In general, scheduling should specify tasks,
individuals or groups responsible for each, and
indicate by when each task must be completed. It
is desirable to schedule the ordering and delivery
of all components. (Don't forget lines and moderns.
For some reason, these are often the last thing
anybody thinks of.) Scheduling should also cover
installation sequence, training, and deadlines for
the preparation of procedures and documentation.

Developing Procedures

Don't wait until after the network is installed to
develop procedures. Procedures should be prepared
ahead of time. People who are going to be involved
in installing and operating the network should be
trained in their particular responsibilities in
advance, should understand what these responsibili
ties are, how they are carried out, and know where
the documentation is located. Installation proce
dures are useful both in installing the original
network and in adding nodes later. Other procedures
(backup/fallback, testing-test equipment, preventa
tive maintenance, fault isolation, and escalation)
are used mainly in operating the network. It is
good practice to check the soundness of backup/
fallback procedures at installation -- before a
crisis situation develops.

Installation

Installation procedures are among the first to be
developed. When installing a network, remember two
concepts: phasing and staging. Phasing means
installing the nodes in sequence or in phases -
don't try to install the entire network at once.
Staging is recommended if networks are new to you.
Staging means shipping communicating nodes to one
location and developing the applications before
separating the nodes. This approach can save a lot
of telephone time and possibly much travel time.

Any critical communications link in a network is a
weak link -- unless backup procedures are available
to assure continued function in the event of
primary link failure. Availability of a Chicago
New York line, for example, could be so critical
that it would be wise to have a dial backup connec
tion or a second line available. Availability of
the backup, however, is not enough: operating
personnel must know how to use it. Testing proce
dures for testing the network and for using test
equipment are also necessary. Routine testing in
off-hours can spot gradual communications line
degradation and remedy the condition before failures
occur. Many users who operate large networks have
found it wise to configure testing and fallback
equipment and procedures into a "Technical Control
Center" or a "Network Management Center" and testing
is performed on a routine basis. Since these
facilities are often operated by relatively un
skilled personnel (on the third shift) well defined
procedures are essential.

Maintenance

Preventive maintenance is not too mundane a concern
in a network environment. Remember ·that PM's are
necessary for network system availability -- and
they must be scheduled so as not to interfere with
network operations.

Fault Isolation

The time to develop fault isolation procedures is
before something has failed. In a failure situa
tion, operations personnel are often under intense
pressure and do not have time to learn how to
operate test equipment or test the system. Proce
dures must be developed, and personnel trained to
use them, before crisis situations arise. Routine
testing, as discussed above, provides a good
environment for training personnel in the use of
fault isolation procedures.

Problem Escalation

Because of the complexity of networks and the likeli
hood that multiple vendors will be involved, there
is a high probability that situations will arise
where it will be necessary to escalate a problem,
both in the user and vendor organizations. Proce
dures for doing this should be developed so as to
bring a problem to the attention of those most
competent to deal with it.

Training

In addition to developing schedules and procedures,

669

the network manager coordinates vendor and internal
training, based on procedures developed for opera
ting the network.

Documentation

The documentation function records the schedules
and all the procedures discussed above. A procedure
for updating the documentation should also be
developed to make sure that the entire staff is
working with current information. Other necessary
documentation includes the packaging of internal
training in a useful format, and the provision of
any reference material that might be useful to the
people operating the network.

A node map should be developed. A node map is a
document which shows where all the nodes in the
network are located, identifies the hardware and
software configuration of each, and names the
individual or group responsible for its operation.

It is also advisable to prepare a call list, based
on the escalation procedures noted earlier, so that
if problems do occur, operating personnel at each
node know what procedure to follow. All documenta
tion should be available at every node in the
network.

How DIGITAL Can Help

There are several ways that DIGITAL can help a
customer in planning installation and operation of
his network:

• The Customer Support Plan

• Training Courses and Seminars

• Software Testing Aids

• Site Preparation Guide

• Site Management Guide

• Consulting Service

Customer Support Plan

The Customer Support Plan is a requirement for all
network sales proposals. It is prepared by DIGITAL
as part of the pre-sales process and provides
information such as: (1) account background, (2)
major applications, (3) customer staffing and skills,
(4) service recommended to the customer, (5) the
delivery plan of equipment, (6) an alternation
mechanism -- that is, how does DIGITAL interact with
the customer to change the plan, and (7) who is the
DIGITAL representative involved in the process.

Training

Training courses and seminars -- DIGITAL provides a
number of lecture-type and audio visual courses
designed for customers getting ready to operate
their own networks. Our catalog, available through
Educational Services, lists and describes all of the
courses available. DIGITAL's consulting services,
which is discussed later, will develop customized
seminars to meet the special needs of individual
customers.

670

Testing Aids

Software testing aids include line and node
counters, software loopbacks, and various operator
controls. These are standard in most operating
systems. Procedures for using them and the
information they provide are the same for every
operating system. There are, however, some indivj
dual differences.

The list of testing aids is fairly lengthy but it
is important to know that there are counters which
record line and node events, including retrans
missions, extraneous messages, blocks received,
blocks sent, connects initiated, connects received.
A full list is covered in the System Manager's
Guide for each operating system, Commands that
turn lines on and off and which list counts of
line events are also discussed in detail,

Site Preparation

The Site Preparation Guide, available from DIGITAL,
covers considerations that should be exercised in
the preparation of the site for installing a node.
It covers site planning, acoustics, vibrations,
lighting, cleanliness, electrical considerations,
grounding, electromagnetic interference, tempera
ture, humidity, etc. The Guide also includes a
handy site preparedness checklist which summarizes
all the considerations on a single sheet of paper.

Site Management

The Site Management Guide contains general and
specific information relative to each line site.
It is furnished on a per-system basis to users
who buy field service contracts. It contains
worksheets such as the customer activity log, PM
log, configuration worksheets, problem reporting,
trouble log, etc. It is also a handy place to put
the site documentation discussed above.

Consulting Services

Consulting Services are available from our Software
Services Organization. They are referred to as
Level I services and Level II services. Level I
services cover the installation of software
products in a network and a demonstration of
network functionality. Level II services and
these are only examples -- cover anything the
customer wants that we can provide. This can
include, for example, planning and scheduling a
staged installation, conducting seminars, reviewing
network utilization and performance, and development
of application software. These services are
provided for an additional fee. For more details,
consult your nearest DIGITAL office.

Summary

Most of the information contained in this paper is
based on common sense. Experience has taught us
(and others) that neglect of any of the factors
discussed, will make network installation and
operation more difficult, lengthier, and more
expensive.

A SOFTWARE DEVELOPMENT SYSTEM FOR SMALL DEDICATED
AND FRONT-END MICROCOMPUTER (LSI-11) APPLICATIONS*

J, W. Tippie and P. E. Rynes
Argonne National Laboratory

9700 South Cass Avenue
Argonne, Illinois 60439

ABSTRACT

The development of software for small dedicated micro
computer applications is frequently impeded or compli
cated by lack of adequate peripherals, utilities, and
operating systems. In this paper we shall descrlbe a
software development system for the LSI-11 microcomputer,
some of its anticipated applications, and some of the
software problems. The term "small dedicated application"
is used here to refer to one-, or few-of-a-kind systems
based on the LSI-11 that lack a device suitable to sup
port an operating system, and that are not subject to
frequent software changes.

INTRODUCTION

In an environment heavily committed to PDP-11
family minicomputer applications, the LSI-11
is very attractive for small dedicated appli
cations because of its readily available
software support, familiar hardware architec
ture, and ease of transferring files (soft
ware and data) between larger minicomputers
and the microcomputer. The problem that re
mains to be solved is providing an adequate
software development facility for small
dedicated applications. Software develop
ment is frequently hindered by lack of ade
quate support facilities such as peripherals,
software utilities, and operating system
environment. Typical microcomputer develop
ment systems costing $20,000 or more are
available, but suffer from being single user,
and dedicated to software development for
some particular microprocessor family.

Software development (be it for minicomputer
or microcomputer) involves considerable time
at low resource utilization (text editing),
with short bursts of high-resource utiliza
tion (compile, assemble, task build). It
further requires access to such resources as
large direct access storage (for development
source code files, libraries, and data),
terminals (local and remote), line printers
(for listings), and file transfer media such
as floppy disk and magnetic tape. The pe
ripheral investment is high for both mini
computer and microcomputer software develop
ment, but not providing the support hardware
is even more costly in terms of reduced
programmer efficiency, Thus a multiuser
environment based on a larger minicomputer
running RSX-11/M with adequate peripherals
is ideal for development of software both
for minicomputers (PDP-11 family), and
microcomputers (LSI-11).

*Work performed under the auspices of the
U,S, Department of Energy.

Proceedings of the Digital Equipment Computer Users Society 671

The system shown in Figure 1 has evolved at
Argonne to support minicomputer software
development. The remainder of this paper
describes some of the software tools, prob
lems and applications specific to the sup
port of the LSI-11 microcomputer in this
environment.

PDP-11/70
2561< Bytes Memory

300 Bwd
~Ports

Versatec
Printer
Plotter

Figure 1. PDP-11/70 Software Development
System.

Software Considerations
For reasons discussed earlier the multiuser
environment as provided by RSX-11/M (or
another multiuser operating system) is de
sirable because it permits maximum use of
available resources. The RSX-11 environment
provides the necessary file structure,
editors, assembler, task builder, and other
utilities, In an ideal situation the soft
ware developer wishes to write his applica
tion (preferably in a higher level language),
edit the source code, compile it, link or
task build it with library support, and
test it (see Figure 2),

San Francisco -- November 1978

D

Assemble
Program
Modules

Taskbuild
Application
Load Module

PROM
Program Task
"BLAST"

Edit Applications
Source Code
Module(s)

2708 EPROM

3079 PROM -
Kinetic SystemJ __ -- · · ·

Programmer CAMAC Crate
CAMAC Module

Figure 2. Software Development Sequence.

The standard RSX-11/M environment supports
the functions of edit, assemble, and task
build of a core image file, and provides a
rich collection of utilities. It does not
support (as standard) a higher level language
that generates code suitable for execution
in ROM (Read Only Memory) without operating
system support. Neither does it support (as
standard) utilities to program PROMs or down
line load task images of developed software.

These utilities (to be discussed below),
coupled with some of the MACRO "Languages"
such as SUPERMAC 1 or BIOMAC 2 would enable
the user to develop dedicated LSI-11 soft
ware in a relatively efficient manner. The
major utility that remains to be developed
for use with RSX-11/M is a higher level
language that runs under RSX, but generates
code and has an object time library suitable
for execution in an environment with no
operating system, and that separates read
write segments from read only segments.

Application Task Organization
Applications requiring the program to reside
in read only memory must be divided into
pure (read only) and impure (read/write)
segments. Only the pure segment can be
programmed into PROM. The impure segment is
treated as a virtual program section and is
restricted to contain only global references,
and memory allocation directives (,BLKW,
.BLKB, etc,), The task builder permits each
segment (pure and impure) to be made up of

672

several program sections that can be concat
enated or overlayed as desired. For example:

,PSECT PURE,RO,LCL,REL,CON
(pure program module)
.PSECT IMPURE,RW,LCL,REL,CON
(impure program module)

Note that impure .PSECTs (VSECTs) must
either carry the same name or be allocated
individually at task build, The following
example illustrates the task build options
to generate a file suitable for programming
into PROM.

>TKB
TKB>PTASK/-MM/-HD/SQ,LP:=OBJ1,0BJ2 •••
TKB>/
ENTER OPTIONS:
TKB>STACK=O
TKB>PAR=GEN:base:window
TKB>VSECT=IMPURE:base:window
TKB>//

To produce a clean memory image file the
stack=O, no memory management, and no
header options are required, The task image
file and corresponding memory organization
of the target machine are illustrated in
Figure 3.

32K

1/0 Page

,- 28K

: : : : : : : ~s_-c;;~~:
,.}e

\0''V
RAM

--~------------

"''-........
'-

--------------- .'-........

> 16K

'\''='
-----~4-~- ----
<(\J.e

ROM

Lobel Block

~ Vectors 0

Task File Tor get Machine

Figure 3. Task Image File and Memory
Organization,

PROM Programming
The hardware to support programming of 2708
and 2716 EPROMs is illustrated in Figures 1
and 2. The Kinetic Systems 3079 CAMAC PROM
programmer was chosen because of the exist
ing CAMAC hardware and RSX-11/M CAMAC
driver, 3 With this hardware it is very
easy to program PROMs and verify the infor
mation in a programmed PROM in a multiuser
environment.

A utility program, BLAST, was developed to
program PROMs from either task image files
or data files under RSX-11/M. PROMs can be
programmed either sequentially or alternat
ing high byte-low byte in separate PROMs
(as for a task image).

Downline Loading
To complement the PROM programming utility,
a down line loading utility is needed to
load tasks into dedicated processors and to
test software to be programmed into PROM.
The most flexible method of implementing a
down line load facility is to use the
asynchronous dedicated or dial up parts of
the host system. If binary data is encoded
into the printable character set, the
standard host computer terminal driver can
be used,

The down line load bootstrap is implemented
in PROM. A "type-through" mode is provided
to enable the user to initiate the RSX-11/M
down line load task. A special escape
character (CTRL/A) is used to initiate the
transfer in the host and the down line load
bootstrap code in the LSI-11.

In the initial implementation, binary data
is converted to HEX-ASCII (0-9, A-F) with
two characters per byte, and a six bit repre
sentation is being developed. Messages of
the following format are used for processor
to processor communication:

protocol ID
message type
sequence number
length

•
•
•

information
•
•
•

check sum

The information field for down line loading
includes a load address and length plus data.

Applications
Several applications using these techniques
are under development. The first is a dedi
cated processor to control a large scattering
chamber. This application will control
several detector-bearing arms that can be
moved both radially and azimuthally. The
processor must display the current angles
and detector radii and accept commands from
the physicist/operator to position the
detectors without crossing arms, running the
detectors into the beam, or violating as
sorted other physical limitations. The
controller must also accept control infor
mation from a larger computer system when
appropriate (see Figure 4).

Another application under development is to
use LSI-lls as "intelligent crate control
lers" in a large distributed serial CAMAC
system, The "intelligent crate controllers"
will be down line loaded with tasks and

673

LSl-n 4K RAM
4K EPROM

Control Lin< to
Data Acq..isition
C""1Jllter System

Figure 4. Scattering Chamber Control
System.

control profiles to cycle electrical storage
batteries through loads simulating those
encountered in a battery powered vehicle
(see Figure S). Summary data collected
from the batteries will be sent back to the
main computer and recorded,

Serial L2 Crate Controler"---~

Con'YTU'lications

/A Battery
Cycler Control

AOC Battery
Voltoge-Cl.f"rent
Monitor

4K Shcred
RAM Memor

Remote CAMAC Crate

LSl-11
28K RAM

Console
Port

(4K RAM in CAMAC)

Q-bus

9
CAMAC Serial Hiqhway
To PDP-11/ 45 Control Computer

Figure S. NBTL Remote Battery
Controller.

Conclusions
Development of software for dedicated
LSI-11 based applications in the RSX-11/M
multiuser environment is very effective.
It represents a better use of r~sources
than RT-11 or some of the other micro
computer development systems, Problems
with higher level languages and separation
of read-write segments from read only seg
ments remain to be overcome. Clearly, DEC

should be urged to address these problems,
as the resulting development system could
easily become one of the most powerful in
the industry.

REFERENCES

1. SUPERMAC available through DECUS
Library.

2. G. s. Herman Giddens et al., BIOMAC:
Bioak Struaturai Programming Using
PDP-ii Assembier Language, Software:
Practice and Experience, Vol. 5 (1975),

3. J, W. Tippie, P. H. Cannon, CAMAC
Driver for the RSX-iZM V3 Operating
System, Proceedings of the Digital
Equipment Computer Users Society, Vol 4,
No. 2, P563 (1977).

ACKNOWLEDGEMENT

The authors wish to acknowledge the efforts
of s. Alford, a participant in the Argonne
Summer 1978 Undergraduate Research Program,
who implemented much of the PDP-11/70 code,

674

ACCELERATOR CONTROL USING RSX-llM AND CAMAC The submitted manuscript has been authored
by a contractor of the U. S. Government
under contract No. W-31·109-ENG·38.
Accordingly. the u. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U.S. Government purposes.

Joseph E. Kulaga
Physics Division, Argonne National Laboratory

Argonne, Illinois 60439*

ABSTRACT

This paper describes a computer-control system for a supercon
ducting linear accelerator currently under development at
Argonne National Laboratory. RSX-llM V3.l running on a
PDP 11/34 is used with CAMAC hardware to fully control 22
active beam-line elements and monitor critical accelerator
conditions such as temperature, vacuum, and beam ·character
istics. This paper contrasts the use of an RSX compatible
CAMAC driver for most CAMAC I/O operations and the use of the
Connect-to-Interrupt Vector directive for fast ADC operation.
The usage of table-driven software to achieve hardware
configuration independence is discussed, along with the
design considerations of the software interface between a
human operator and a computer-control system featuring
multi-function computer-readable control knobs and computer
writable displays which make up the operator's control
console.

INTRODUCTION

Accelerator Components
A joint effort by personnel of the Physics and
Chemistry Divisions of Argonne National Laboratory
was begun in mid-1975 to design and construct a
superconducting linear acceleratorl to provide
precision beams of heavy ions for nuclear physics
research. The accelerating elements consist of a
linear array of independently-phased split-ring
resonators2 operating at an rf frequency of 97 MHz
and a temperature of 4.6 °K. The drift-tube
assembly of the resonator is fabricated entirely of
niobium and cooled internally with flowing liquid
helium. The cylindrical housing is constructed of
an explosively-bonded composite of niobium on
copper, as are the end plates which attach by
means of a demountable rf seal. These innovations
have produced a rugged and highly successful
superconducting rf resonator. The beam is focussed
radially by superconducting solenoid lenses which
achieve higher field strengths and greater
focussing power than a quadrupole lens of the same
size; the solenoids are placed one after each
second resonator in the beam line. The cryostats,
which currently house up to six resonators and
three. solenoids, are interchangeable, modular
vacuum tanks twelve feet in length and three feet
in diameter. They contain liquid nitrogen and
liquid helium distribution systems, with all
control and instrumentation signals coming in and
out of the cryostat by way of a nitrogen filled
instrumentation line. The superconducting linear
accelerator, the first application of rf super
conductivity to heavy-ion acceleration, has been

* This work was performed under the auspices of
the U. S. Department of Energy.

Proceedings of the Digital Equipment Computer Users Society 675

tested successfully with a two-cryostat configur
ation of six resonators and five solenoids, and
is scheduled to expand to a 16-resonator,
8-solenoid system by mid-1979.

System Design
In choosing a control system3 for this new
accelerator, a computer-based system was seen as
the best approach for a flexible, powerful control
mechanism with expansion capabilities. The goal
was to focus all monitoring and control functions
into a simple, compact console, featuring computer
driven components, that could supply all monitoring
information needed by an operator on demand or in
real time, provide alarm messages should the need
arise, and allow full control of all active
elements.

CAMAC hardware was chosen as our standard instrum
entation and interface system because of its
inherent modularity and flexibility. "rt was
decided that the console should consist of a
limited number of display and control devices whose
functions were assigned as needed and that the
main device for displaying information to the
operator would be a color TV monitor. (The new
dimension that color provides not only allows
separation of fields of data for improved
readability but is extremely useful for drawing the
operator's attention to warning or alarm messages.)

The potential for major hardware re-configuration
in such an experimental project necessitated a
modular software system driven by tables defining
the instrumentation needs and the accelerator
configuration. To achieve this goal a multi-tasking
operating system with inter-task communication was
indicated.

San Francisco - November 1978

Computer Hardware
The computer system, designed to completely control
and monitor the superconducting linac, is based on a
PDP 11/34 processor with 96K words of memory and
floating point hardware. Peripherals include a dual
disk drive, a Versatec electrostatic line printer/
plotter, a Tektronix 4006 storage tube graphics
terminal, a CRT terminal, and a CAMAC serial highway
system. An operator's console is located next to
the computer and is interfaced to it by means of
several CAMAC modules and standard DL-11 interfaces
(Fig. 1).

Figure 1. Superconducting linac control system.

CAMAC Hardware
A master CAMAC crate resides with the computer in
the accelerator control room and is interfaced to
the 11/34 by means of a UNIBUS crate controller.
In addition to the CAMAC serial highway driver,
modules within the master crate include a color TV
monitor driver to provide displays of current
accelerator conditions, a touch panel display
driver by which most control is initiated, gate
modules to interface two high-quality ADC's
(analog to digital converter) for beam diagnostics,
and a control panel interface module. The single
serial crate is located approximately 150 feet from
the computer, next to the accelerator beam line, and
contains all the modules necessary to control and
monitor the linac. A 32-channel scanning ADC is
used to measure solenoid currents, as well as read
out thermocouples that monitor the temperature of
the nitrogen-cooled heat shield. Thermometry at
liquid-helium temperatures is accomplished by
measuring the resistance of germanium resistors.
The computer routes a particular resistor to a
lock-in amplifier by means of a specially designed
digital I/O subsystem controlled by CAMAC; the
amplifier output is connected to an ADC input for
computer read out. The resonators each require two
voltages to set a phase and one to set the field
strength, for a total of three DAC (digital to
analog converter) channels per resonator. The
current of each solenoid is adjusted by setting the
DAC's of the independent solenoid power supplies
over the same digital I/O bus used for the liquid
helium temperature thermometry. Beam current is
measured, digitized, and read out through a CAMAC

676

scaler module, while cryostat vacuum is interfaced
through a CAMAC input gate module. It is estimated
that the capacity of a single serial crate is
sufficient to handle all control and monitoring
needs of up to four cryostats.

SOFTWARE SYSTEM

Overview
It seemed clear from the outset that the software
system would require a real-time multi-tasking
system with a reasonable response time, inter-task
communication, and support for time-based task
initiation. RSX-llM V3.l was chosen as the most
suitable DEC operating system for this application.
All tasks but two are written in Fortran IV and
Fortran resident library support was included.
(The two exceptions were heavily involved with
CAMAC hardware and it was essential that they
execute as quickly as possible.) All interactions
with CAMAC hardware were handled with Fortran
callable Macro assembly language subroutines.
Most tasks can be activated from the operator's
console, with provisions for scheduling several of
them for repetitive time-based execution (e.g.,
execute now and every 10 minutes thereafter).
Several specialized tasks that perform rarely
needed table initialization or input a great deal
of information are executable from a terminal only.
Details of typical operation will be discussed
later.

CAMAC I/O
The computer interfaces to CAMAC via a Kinetic
Systems 3912 crate controller which maps each
module subaddress to a unique UNIBUS address so
that functionally each module appears to be on
the UNIBUS (a module readout may simply consist of
a movement of data out of a specific location, e.g.,
MOV SUBADR, R0). It can also generate up to 24
unique interrupt vector addresses for module LAM's
(look-at-me signals) or it can OR any number of
them to a given interrupt vector. Since most of
the CAMAC I/O operations involve relatively simple
processes such as reading an ADC, setting a DAC, or
writing information to the TV monitor, one might
consider mapping to the I/O page to perform them.
However, even if one could tolerate the risk of
giving every task privileged access to the I/O
page(!), one would have to serialize access to
modules such as the TV monitor driver that may have
as many as four tasks trying to write information
"simultaneously" (e.g., normal information and high
priority alarm messages).

The CAMAC I/O problem was solved by using an
RSX-llM compatible driver4 that treated each UNIBUS
crate controller and each serial highway driver
as a distinct logical unit. Each unit could
further be given up to 256 independent I/O
subchannels for the queuing of requests made with
the standard RSX QIO mechanism. In typical
operation, subchannel ~ of a given unit is used for
all non-interrupt I/O to any module addressed by
that unit, and subchannels numbered 1 or greater
are assigned to specific modules that produce LAM's.
As a consequence, I/O to any given module is
serialized, and, since each logical unit is always
free and only individual subchannels can become
busy, a "wait-for-LAM" request can be issued for as
many modules as there are subchannels. This CAMAC
driver supports I/O requests consisting of single

or multiple CAMAC (FNA) commands (with optional
looping capability), suspension of FNA list execution
pending a LA!1, and makes serial highway operations
transparent at the QIO level. This driver has proven
very effective in this multi-tasking environment, and
is used for all control and monitoring applications.

The potentially high data rate associated with the
beam diagnostic software prevented the use of the
CAMAC driver for this application. When tuning one
of the superconducting resonators, an operator scans
a range of phase angle settings to find the phase
angle corresponding to the desired energy gain for
the beam particle being accelerated. Also of
interest during this tuning process is the temporal
distribution of the beam pulse. Two 4K channel
energy and time spectra are accumulated through
high-quality ADC's interfaced to CAMAC by means of
input gate modules. The typical 2-parameter event
data rate is about 1 KHz, with the rate potentially
reaching 4 KHz. For this application, an ADC gate
module was assigned a unique interrupt vector
address for its LAM, and the V3.l Connect to
Interrupt Vector directive (CINT$) was employed.
Since this application is representative of full
usage of CAMAC hardware and multi-tasking with a
great deal of inter-task communication, it will be
discussed in some detail here- the details of
operator initiation of tasks will be presented in a
subsequent section.

When the operator indicates to the resonator setting
task RESON that he is about to set the field strength
and phase angle of a particular resonator, a task
called CENTROID is initiated. This task creates an
8K dynamic region for storage of the energy and time
spectra, maps to it, clears the region, and
initiates task ACCUM. The data acquisition task
ACCUM, written in Macro, maps to the 8K region,
issues the Connect to Interrupt Vector directive
CINT$, and enters a wait for global event flag state
(when set, the flag indicates ACCUM is to disconnect
from the interrupt vector and exit). When ADC
interrupts occur, the interrupt service routine is
entered in Kernel mode, and its virtual address
space includes all of the Executive, the pool, and
the I/O page. The two ADC's are read out directly
(since the crate controller maps their CAMAC
subaddresses into the I/O page) and the information
placed in one of two buffers. When a buffer is full,
a fork level routine is called to allow an AST
(asynchronous system trap) to be queued for the
pulse-height analysis routine. The analysis is
carried out from the buffer at task level priority.
Using the criteria of 50% ADC deadtime for a
mid-scale peak at 4096-channel digitization, an
8 KHz rate can be handled with no noticeable
deterioration in system performance. Using the
Mark Time directive, CENTROID is activated every
two seconds, calculates the centroid of the single
peak appearing in the energy spectrum and writes its
location (i.e., energy) on the TV monitor for the
operator using a QIO to the CAMAC driver. Viewing
the beam energy value on the monitor, the operator
may reset a resonator phase angle, which results in
a QIO the CAMAC driver to set the necessary DAC's.
The operator typically activates task DISPLAY (from
task RESON) to display either the energy or time
spectrum on the Tektronix storage tube terminal
(using a subroutine package which issues appropriate
QIO's to the standard RSX terminal driver). Task
RESON communicates with tasks DISPLAY and CENTROID
by means of the SEND DATA and RECEIVE DATA

677

directives for various option selections. Figure 2
indicates the data flow and inter-task communication
at this point.

,---------,
: Other :
: Status :
I I

' or I
'Control
: Tasks
I
L. ___ ""6 ____ ,

DISPLAY

TV

CONSOLE

BK
Dynamic

Region

Graphics

Terminal

_

Figure 2. Control and information flow.

ACCUM

ADC's
via

CAMAC

When the operator signals completion of a resonator
setting, tasks CENTROID and ACCUM automatically
exit and the 8K dynamic region is deleted.

Configuration-Independent Software
Realizing that the experimental nature of the
accelerator could potentially result in frequent
changes in the instrumentation and the hardware
configuration, all software addressing any
·accelerator monitoring or controlling hardware is
table driven. An initialization task is used to
load a disk resident accelerator configuration
table and define the order and placement of the
resonators and solenoids and define the CAMAC
addresses of the DAC's and ADC's needed to control
them. Any task needing to control or monitor some
aspect of an active accelerator element (a solenoid
or resonator) reads the table entry for that
element and retrieves the necessary CAMAC access
information, typically the FNA code in a compact,
one-word form used by the CAMAC driver. A
subroutine that issues the QIO to the driver for
a control or monitor function would use the FNA
code as its input argument. This mechanism allows
dynamic hardware reassignment should the need arise.
For example, if one channel of a scanning ADC
becomes defective, it is a simple matter to
reassign another channel or even anoth~r module to
replace its function. Similarly, all thermometry
parameters including CAMAC access information and
temperature conversion coefficients are stored in
easily-modified tables residing on disk as random

access files. Since some temperature sensors are
read frequently, it would be undesirable to retrieve
CAMAC access information each time they are read out,
so an in-core table is built from the disk file for
those sensors. Should any access information change,
it is a simple matter to signal the thermometry
software to rebuild its in-core table from a
newly constructed disk file.

This approach is not used on modules such as the
TV monitor and touch panel display drivers since
they are not subject to possible reassignment or
reconfiguration. All software addressing these
"system" modules assumes a fixed CAMAC address.

OPERATOR'S CONSOLE

One of the more interesting aspects of the linac
control system is its very simple control console
which is the focal point of all monitoring and
controlling functions (Fig. 3). All control activity

Figure 3. Control console.

is initiated at the touch panel display, a black and
white TV monitor over which is positioned a touch
sensitive transparent panel containing a 4 x 4
matrix of capacitance-sensitive areas. The display
driver for the touch panel is a CAMAC module, and
all I/O is accomplished with the CAMAC driver. A
given control task draws and labels buttons on the
screen corresponding to the touch-sensitive areas
and assigns a particular function to each (Fig. 4).
Above the touch panel is a CAMAC driven color TV
monitor on which can be displayed all information
gathered by monitoring tasks (e.g., temperature,
vacuum readings, solenoid currents, etc.) either in
real time for constant monitoring of an item or in
the form of a summary of the most recently recorded
data from a disk file. Of the 26 lines visible on

678

Figure 4. Sample touch panel menu.

the screen at one time, 20 are reserved for such
information, and the last 6 for warning or alarm
messages and special task usage. A color monitor
was chosen for its ability to add emphasis to
warning and alarm messages to attract the operator's
attention and give some indication of the severity
of the condition. For example, a flashing red
message is used when a power supply failure is
suspected and immediate operator intervention is
required. Similarly, yellow messages warn of out
of-range temperature readings, a problem less
severe than equipment failure, but requiring
attention. Green text is likewise used for an
acceptable real-time condition, while white is used
for general information. It was not felt that this
added dimension of relative importance could be
effectively conveyed on a black and white monitor.
Below the touch panel are three 32-character
alphanumeric displays, two 5-digit numeric displays,
and two control knobs (Fig. 5); beside the touch

Figure 5. Control knobs and displays.

panel is a numeric key pad (Fig. 4). All five
displays and the keypad are interfaced by means of
DL-11 type interfaces so that all I/O to them is
done with QIO's to the RSX terminal driver. The
control knobs, interfaced via a CAMAC scaler
module, and the displays are only "logically
connected" to a system parameter when a particular
task requires it, so during the course of

contr~lling the accelerator, a given knob or display
assumes a variety of functions. A pair of continu
ously rotatable knobs was chosen as the basic control
mechanism for operator-adjustable device control
values (currents and voltages) because of the
natural association one makes between control knob
ro~ation and analog signal levels (e.g., a clockwise
rotation increases a value and a counter-clockwise
rotation decreases it, as in a radio volume control).
Other devices, such as position-sensitive or pressure
sensitive "joystick" controls, were considered, but
seemed to lack the "natural feel" of a control knob,
Several factors dictated the use of two control knobs
for the console. One knob would be insufficient to
satisfy the need to adjust two interrelated
parameters simultaneously (e.g., resonator phase
and amplitude). Having more than two knobs seemed
unjustified for several reasons: 1) the inability
of a single operator to simultaneously adjust more
than two knobs (only two hands!); 2) the strong
desire to maintain a simple uncluttered console, as
opposed to the "separate-knob-for-every-variable"
approach; 3) no foreseeable need to simultaneously
adjust three or more variables; and 4) no need for
a knob dedicated permanently to a specific function
all parameters can be adjusted by means of a
computer assignable knob.

The operation of the system is best understood
through use of an example session. If the operator
boots· in the aystem, the STARTUP command file
installs all tasks in the control system, runs an
initialization task to place the CAMAC hardware in
a proper initial state, and, as its final step,
executes task MAIN which diaplays a "main menu'' of
options for the operator on the touch panel display
(Fig. 4). A response to a button interrupt may take
one of sevet;"al forms. A function such as "ENABLE
VACUU11 READOUT" J;"esults in a fl;ig being set in a
global common area. A function such as "CLEAR
ER.ROR. MESSAGES" is executed within the MAIN task and
results in the error message field of the TV monitor
bei.ng cle;ired. A function such as "DISPLAY
TEMl'ERATURE STATUS" results in the execution of an
independent t;isk which displays the current
temperature information from a disk file on the TV
monitor. Functions such as "SET RESONATOR" or
"SELECT TE}!PERATURE OPTIONS" would request an
appropriate independent task to run and then cause
MA.IN to exit. The selected control task then
"ta,kea over" the touch panel to display its menu of
options for the operator. There are presently five
such control tasks, two of which have two "pages" of
options (one page for execution options, one page
for resonator selection).

Under normal circumstances, the upper alphanumeric
display of the control panel is blank, the two
parameter description displays have the legend
i1UNATTACHED", a,nd the numeric displays indicate a
zero value. When setting a solenoid, for example,
control knob "A" remains "UNATTACHED", but control
knob "B" can be used to set the solenoid current.
The parameter "B" display indicates its "logical
connection" as the control for the solenoid current
while the numeric display indicates the value to
which the current is to be set. Rather than rotate
the control km:>b, the operator could alternately
input a new value using.the keypad, whose
"connection" is indicated by a prompt in the upper
most alphanumeric display (Fig. 5). Similarly, when
adjusting a resonator, diaplays "A" reflect the
current resonator field strength value and knob "A"

679

allows the operator to alter its value, while the
"B" displays and knob deal with the resonator phase
angle. This ability to dynamically assign both a
logical and a physical connection in this manner has
enabled us to replace a conventional control console
having numerous displays, knobs, switches, and
lights, with a simple, uncluttered, yet functionally
expandable console.

CONCLUSIONS

Our experience with the superconducting linac control
system to date has led to the following conclusions:

1) The hardware configuration independence
achieved with the table-driven software approach
has proven that technique to be indispensable in an
environment associated with an experimental project.
On the occasions when the hardware or instrumen
tation needed to be reconfigured, the changes were
reflected in the software system within a few
minutes-much less than if a piece of software had
to be modified.

2) A touch panel for task and sub-task initiation,
computer assignable control devices, and a color
TV monitor, have been shown to form the basis of an
effective, simple, and expandable control console.
Very little operator education is required because
the number of controls is so limited and their
labelling obvious. The touch-panel menu, at any
given time, presents a list of the only reasonable
options available, so inappropriate option selection
is virtually impossible.

3) The RSX compatible CAf1AC driver has been
proven to be a safe and effective I/O mechanism for
CAMAC modules. The V3.l Connect to Interrupt
Vector directive works very well with our CAMAC
hardware and the data acquisition rates we
encounter.

REFERENCES

1. L. M. Bollinger et al., "The Argonne Super
conducting Heavy-Ion Linac," Proceedings of the
1976 Proton Linear Accelerator Conference, (AECL-
5677 Chalk River, 1976) p. 95.

2. K. W. Shepard et al., "Development and
Production of Superconducting Resonators for the
Argonne Heavy-Ion Linac," to be published in the
Proceedings of the 1978 Applied Superconductivity
Conference.

3. All of the instrumentation for monitoring and
controlling the accelerator, as well as the control
panel itself, was designed by Mr. Robert Daly of
the Electronics Division of Argonne.

4. J. W. Tippie, and P. H. Cannon, "CAMAC Driver
for the RSX-llM V3 Operating System," Proceedings
of the Digital Equipment Computer Users Society,
Vol. 4, No. 2, pp. 563-566.

ACKNOWLEDGMENTS

Special thanks to Dr. J .• W. Tippie of the Applied
Mathematics Division of Argonne for numerous helpful
discussions and suggestions. Thanks also to P. H.
Cannon for his help in incorporating the CAMAC
driver into the system.

BUREAU OF MINES DA.TA ACQUISITIOO AND PROCESSING SYSTEM

D:mald N. H. Chi and Henry E. Perlee
Bureau of Mines

U .s. Department of the Interior
Pittsburgh, Pennsylvania

ABSTRACT

The U.S. Bureau of Mines' Pittsburgh Mining and Safety
Research Center (PMSRC) has installed a centralized canputer
facility to provide on-line, high-speed (500,000 sanples/sec)
short-duration (<10 seconds) data acquisition; on-line, low-
speed (<100 samples/sec), long-duration (weeks or nonths)
data acquisition; and off-line, high- and low-speed data ac
quisition through control of such data storage devices as
data-loggers, analog magnetic tape recorders, and satellite
mini- or microcaiputers. The canputer facility, which is
connected to the Center's various laboratories by both analog
and digital data transmission lines, consists of a host PDP
ll/70* front-ended with the two PDP-ll/34's, The PDP-11/70
coordinates the functions of the two PDP-ll/34's and pro
cesses the bulk of the data retrieved fran the two front-ends.
One of the ll/34's is dedicated to the high-speed data acqui
sition, and the other handles low-speed data acquisition,
data-loggers, analog tape recorder, and satellite mini- or
microcomputers.

INI'IDilJCTIOO

PMSRC is one of five research centers within the
mining branch of the U.S. Bureau of Mines conducting
or overseeing research related to the health and
safety of the Nation's underground coal miners. The
research areas at PMSRC include fires and explosions,
respirable coal dust control, methane control and
ventilation, roof supp:>rt, explosives testing, indus
trial hazards, and mine conm.mication and illumina
tion.

Basically, there are three technical tasks for which
the canputer has found the nost use, nodeling physi
cal systems, data acquisition and processing, and
systems control; all canputer-related administrative
and financial functions are processed at the Bureau's
Denver canputer installation. The nodeling tasks
primarily pertain to the numerical solution of de
scriptive equations (nosily sets of partial dif
ferential equations) relating to the labyrinth of
physical and chemical processes directly or indi
rectly associated with conditions hazardous to an
underground coal miner. The data acquisition and
processing task involves the reception of analog
and digital signals transmitted fran the various
station laboratory transducers to the canputer for
storage and subsequent processing. The systems
control task primarily concerns the prograimed op
eration of relays for instrumentation, calibration,
and testing purposes.

Reference to specific equipnents does not constitute
endorsement by the Bureau of Mines

Proceedings of the Digital Equipment Computer Users Society 681

The four largest research facilities within PMSRC
that use the data acquisition services are the Ex
perimental Coal Mine, the Fire Research Facility,
the In Situ Canbustion Facility, and the Explosion
Gallery. The Experimental Coal Mine consists of a
double-entry coal mine 1,200 feet long with corri
dors 10 feet wide by 6 feet high in which coal dust
explosions research is conducted. This facility
uses 75 transducers that measure gas pressure and
tenperature, dust concentrations, air velocity,
radiation intensity, and flame speed at 10 locations
along the entries. The transducer signals, after
amplification, are sent 500 feet to the canputer
over analog lines where they are sampled at about
2,400 samples/sec/channel. Typically, a coal dust
explosio~ lasts less than 5 seconds and generates
1.8 x 10 data points.

The In Situ Canbustion Facility involves a surface
trench approximately 35 feet long by 8 feet high
and 6 feet wide lined with refractory brick. Forty
tons of a 95% coal, 5% cement mixture are cast into
the trench to simulate a thick coal seam that con
tains a central channel of 1.5- by 1.5-foot cross
section. The coal is ignited at one end of the
channel, air is forced through the channel at
various rates, and the spread of the fire, ~r
atures, gas product canposition, snoke, pressure
drops, enthalpy, radiative and convective flux, and
ventilation velocity are measured. Transducer sig
nals are acquired by a data logger and magnetic
tape recorder, then sent to the canputer over both
analog and digital lines. Initially, each trans
ducer is sampled once every 10 seconds, slowing to
once every 15 to 30 minu~s after 3 or 4 days of
the burn, accumulating 10 data points. Paralleled

San Franclaco - November 1978

signal cables to a second data logger penni ts
sampling speeds up to 25/second. Each test involves
about 250 channels of info:anation.

The Fire Research Facility contains two refractory
lined ducts, 30 feet long. Duct cross sections are
1 by 1 foot and 2 by 2 feet; the ducts are lined
with timber or coal blocks. A fire is initiated at
one end of the ventilated channel, and the rate of
fire spread along the channel wall and other infor
mation are followed as described above in the In
Situ Facility. About the same volume of data is
generated and handled as in the In Situ Facility.

The Explosion Gallecy consists of a 90-foot-long,
6-foot-diameter steel pipe used to conduct experi
ments similar to those run in the Experinental Coal
Mine. Many of the experinents conducted in the Ex
perinental Coal Mine are first run in this facility
to get a feeling for the nature and magnitude of the
processes. The facility is located 2,000 feet fran
the crnputer, and all data are transmitted and
sampled in the same manner as for the Experinental
Coal Mine. For laboratocy grounds layout and the
data lines network, see reference 1.

SYSTEM OONFIGURATIOO

Figure l shows the configuration of PMSRC's Data
Acquisition and Processing Collputer Facility. As the
figure shows, the facility consists of three main
frames, a host PDP-ll/70 front-ended with two PDP
ll/34's. The upper PDP-11/34 in the figure is used
exclusively for slCM"-speed (<100.samples/sec/channel)
long-duration (days or months) data acquisition; the
lower PDP-11/34 is exclusively for the high-speed
(up to SOOK samples/sec), short-duration (<10 sec
onds) runs.

Host Caiputer

The host PDP-ll/70 has 384K words of roomocy, two
TE16-EE magetic tape drives, two RP04 88 meg byte
Ui8k. drives, one 1,200-line/rrd.nute LPll-RA line
printer, one 1,000-card/minute coll-A card reader, a
Hooston Incremental DP-5 plotter, two (4800 baud and
1200 baud) synchronoos ports for camnunications with
a Control Data Corp. CYB~74 and a Burrooghs 86700
crnputer in Denver, two DZll's providing 22 asyn
chronoos ports to support time-sharing users, and
two mcll's for high-speed (1 meg baud) camnuni
cation with the two PDP-ll/34's. The host is run
under IAS supporting DECnet, MUX200 (a simulator for
Control Data's UT200 rerrote batch terminal), FORl'RAN
IV-Plus, and BASIC. The host caiputer provides the
bulk of the data-processing chores and all the out
putting.

Data·AOJuisition Front-Ends

The high-speed PDP-11/34 front-end has 64K words of
memocy, one RP04 disk drive, an ICSll with 16 volt
age sense, 16 voltage interrupts, 16 latching relays,
and 16 flip-flop modules, a DZll asynchronoos nulti
plexer, a high-speed A/D subsystem (see below), and
a mcll for ccmnunication with the host. Data re
trieved by this subsystem are transmitted as analog
signals over shielded, twisted pairs up to distances
of 2,000 feet using only lCM"-cost line-driving
amplifiers.

682

The low-speed PDP-11/34 is almost identical to the
former except it has 48K words of menocy and does
not have a high-speed A/D subsystem. Both systems
run under RSX-llM supporting FORl'AAN IV and DECnet.
The voltage sense and voltage interrupts are used to
sense experinentally generated event markers, e.g.
tines of ignition, and the latching relays and flip
flops operate relays in the laboratories for instru
roonta tion calibration and testing.

Figure 2 shows the configuration of one of the four
A/D subsystems designed to achieve a maximum
throoghput rate of 500,000 samples/sec for a total
of 128 channels for a duration of 2.Q seconds. This
subsystem consists of four modules, each containing
the following hardware connected as shown in figure
2:

1. Analogic AN5864 12-bi t A/D converter
with 32 differential (+ 10 v) nulti
plexer inputs and a maximum sampling
rate of 125 KHz;

2. A buffer with a storage capacity of
lroog 16-bit words is provided by the
Monolithic Extended Memocy (EMU).
The EMU is a dual-port, semi-conductor,
read/write menocy that is UNIBUS and
software plug-caipatible with RF-11/
RS-ll disk controller and fixed-head
disk subsystem;

3. DRll-C, a general digital interface
pennitting ccmnunication between the
EMU and the PDP-ll/34 bus;

4. X4, a 16-bi t parallel interface be
tween the A/D and the EMU. (not
shown in figure 2) ·

In addition, a single CXJfi'Eir-S&; Ccystal Clock with
a switch-selectable pulse rate fran 0.1 to 13 MHz
drives all four modules simultaneoosly. The trig
ger-cl-ia.."-'1.el sha .. m in t.11e figure trips ··t.l-ie EMU,
which in turn sets high 1 of the 16 parallel output
bits of the DRll-C connected to the ll/34 bus. As
the controlling program in the 11/34 sees this bit,
it triggers the A/D via the DRll-C and EMU to start
sampling data at the rate determined by the clock
until the buffer is filled. Subsequently, the data
are transferred to the RP04 disk and then foIWarded
to the host for further processing. The EMU has
the ability to store data at rates up to 1 MHz.
This unit can also be q?erated in a cycling mode
where the EMU repeatedly cycles data throogh the
buffer stopping on canmand fran the 11/34. We be
lieve this is probably one of the fastest digital
data acquisition systems available. If desired,
the crnplete sequence of controlling and processing
steps can be fully autanated.

The low-speed PDP-ll/34 system, in addition to pro
viding real-tine low-speed data a~uisition, also
camnunicates with microcaiputer-based rerrote data
a~uisition systems and controls the operation of
an analog magnetic tape recorder and a data logger.
The latter can accormroate up to 1,000 input chan
nels at 25 samples/sec, and the mag tape has 14
channels with band widths up to 300 KHz.

Because this 11/34 does not haVe an A/D, analog sig
nals generated in the laboratories are converted to
ASCII and transmitted to one of the catputer asyn
chronous ports over either shielded, twisted pairs
or phone lines if m:idems are available. Saie of the
pairs in these cables also serve as control lines.
Each 11/34 supports its own console, which is used
primarily for operator control and systems debugging.

SOFIWARE

The 11/70 supporting software includes scientific
subroutine packages such as International Mathe
matical and Statistical Libraries, BMDP, and SFORI'RAN
(Structured Fortran implementing the Chapin or
Nassi-Schneidei::man logical charts). All data acqui
sition, control, and plotting routines have been de
veloped by the Bureau of Mines personnel. Two of
these are briefly nentioned below.

PMSRC Plotting Package

The PMSRC plotting package is an integrated plotting
package, patterned after DISSPIA but nodified to fit
within 20K words. Basically, in a few DISSPIA-like
statements, the user specifies page size, location of
the physical origin, axis lengths, number of tick
marks, scaling, legends, and their position and
arrays of data to be plotted in engineering units.
The users do not need to do any data conversion.
This package will be made available through DEOJS.

Data Ao:;i:uisition Package

This package perfoilllS such functions as autanatic
calibration and testing of signal conditioning in
strumentation, spectral analysis, filtering, and
plot preparation. Past experience has shown that
experinentalists constantly change their processing
requirements, and hence, code update and maintenance
functions occupy a large portion of the prograrruning
staff's tine. TO minimize such demands, the package
makes use of a data base containing all necessai:y
parameters to process any specific experinental set
up. This data base has the attribute of unlimited
expansion capability for future changes. Each file
of experinental data submitted for processing is
accatpanied by a copy of the data base, containing
parameter updates obtained during the data acquisi
tion process. For exanple, for each transducer, a
record is created containing such infoi::mation as the
multiplexer channel number, type of sensor, file lo
cation of the calibration and engineering unit con
version coefficients, plotting parameters, type of
filtering, and types of processing. If the user
changes the types of sensors, it is a simple matter
to change these records without changing the pro
cessing programs. This package is sufficiently gen
eral to process data generated and aa;i:uired by any
neans within the Center.

SUMMARY

The Bureau of Mines has installed what we believe is
a unique data aa;i:uisition and processing system that
may satisfy the requirements of many research labo
ratories. It has a powerful large-scale catputer as
a back-up for the large number-crunching jobs. It
satisfies the high-speed, short-duration and the
low-speed, long-duration data aa;i:uisition require
nents, and has tine-sharing and batch subsystems for

683

program developnent. It is also equipped with the
best available scientific subroutines for data pro
cessing, · and the system allows expansion to handle
increasing workloads.

REFERENCE

1. U.S. Bureau of Mines High-Speed Data Aa;i:uisition
System, R. w. Markley and H. E. Perlee, Applica
tion of Catputer Methods in the Mineral Industi:y,
Society of Mining Engineers of AIMMPE, New York,
New York 1977, pp. 395-403.

POP-11/34

0.4 M words/sec
44 Mega words

481\ 16bit 1-------~

Slow speed data acquisition

UNIBUS

16 Channels
of D/A

20KHz

7410

16 Voltage
sense

16 Voltage
interrupt

ICS-11

16 Latching
relays

16 Flip-flop

FIGlJIUP, l

words -- -·-----·---------------------------------------.--~---../
RSX-11/M

PDP-11170
- 'A

384K 16bit

words

PDP-11/34

0.4M words/sec
44 Mega words each

~

To Cyber-74, To 86700,
t)en\ft!r Denver

0.4Mwords/sec
44 Mega words

~ ·-- ~

64K 16bit f--------'------~--
UNIBUS

words

RSX-11/M High speed data acquisition

AID subsystem
128 channels
2-4 K words/sec/

channel
IM words memory

128 analog channels

1,200 steps/sec
Incremental

:g:; :gr;; '----v-------J
C\JNNN 16 lines
NNNC\J C:...NNN To time-::.haring terminals
mm Olen
ooa:i cca:>

7410

D/A
20KHz

16 channels

684

16 Voltage
sense

16 Voltage
interrupt

ICS-11

6 +0.5Vat 20ma
sense level

2.5ms response
time

200Hz max.
input

IOK Hz,
IOOK Hz or

60Hz

I Clolk I

16 Latching
relays

16 Flip-flops

2 amps, 100
VA max

3ms response
time

125 Hz
repetition rate

uECNET
1Mega l.Jits/sec

PDP-11/34

64 K words

RPO 4 Disk

44 meg words

KEY

~ Data flow line

- Control line

FIGURE 2

UNIBUS

1

Status Run

l Status Monolithic
Run Extended

I .. --DR 11-C
~l_!_tate ~lear and memory (EMU)

.__ ___ ...J l initiate- -"'8001< words

Cl ·.;::
-n

Comtel-seg
1031 clock

0.1-13 meg Hz

685

:s
c: u
~ c:

a:: 0 ...
0
Q)

u

Ana logic
AN5864 AID

and Mux
125KHZ

32 differential inputs

Trigger r:hannel

INTERACTIVE GRAPHICS SUPPORT FOR
MINICOMPUTER SYSTEMS

Steven J. Choy
Harry Diamond Laboratories

Adelphi, MD 20783

ABSTRACT

An interactive-graphics, minicomputer-based
FORTRAN IV, software package called GRAPHELP has
been developed at Harry Diamond Laboratories. The
current system provides device-independent,
interactive support for both direct view storage
and refresh CRT terminal systems using serial
communication lines. Functions supported include
both absolute and relative vectors of four varying
line textures, user definable scaling, windowing,
clipping and 128 nested subpicture display files
for refresh graphics. In addition, routines are
provided for graphics input, interactive screen
erase control and, for refresh terminals,
selective erase. Higher level axes drawing
routines are provided for data plotting
applications in either linear or logarithmic form.
This report presents a functional overview of the
system software capability along with a collection
of sample engineering applications using the
graphics library on a DEC PDP-11, RSXll-D based
system.

INTRODUCTION

GRAPHELP is a set of FORTRAN IV
callable routines to represent data in
pictorial form both interactively and
passively on a CRT graphic display.
Currently, output drivers exist for the
Imlac PDS-4 refresh display system and the
entire family of T~ktronix 401X storage
tube type displays. Included is support
for the enhanced Graphics Mode for the
Tektronix 4014 and 4015 high resolution
display terminals. In addition, drivers
exist on a partial basis for an Adage
GP-430, DEC GT-40, and for output only, the
Versatec printer/plotter.

Because minicomputer applications at
Harry Diamond Laboratories (HDL) span a
wide range of requirements, GRAPHELP was
designed to be general enough that it could
support those applications ranging from
general data plotting to design layout. As
discussed later, the software provides this
graphics support with maximal terminal
transparency to the user programmer. Thus
the target terminal of the application is
not of primary concern to the user.

The software library has been in
active use for three years on a PDP-11/45
at HDL using the RSXll-D operating system.
Output to the terminals is accomplished
through direct calls to QIO from FORTRAN.
All terminals are connected to the PDP 11
via the DHll multiplexor at communication
rates of 9600 baud. The high communication

Proceedings of the Digital Equipment Computer Uaars Society 687

speed allows
interaction
because of

for a
between

the quick
computer on output.

high degree of
user and machine

response of the

FUNCTIONALITY

The GRAPHELP package provides support
for interactive graphics in both the
storage CRT and the refresh CRT
environments. The two basic levels of
subroutines are (1) a primitive device
co~rdinate level and (2) a higher, user
coordinate level.

At the primitive level, a canonical
pseudo graphics terminal device is defined
as the target for input and output (see
figure 1). This device can operate in one
of two states. At initialization time this
terminal is in an alphanumeric
communications state. In this state the
terminal is treated as a conventional
teletype terminal. The programmer may use
standard FORTRAN READ and WRITE statements
to communicate with the terminal. The
second state provided is a graphics state.
In this state the terminal is treated as a
device for communicating graphics data to
and from the computer. When in this mode,
the pseudo device terminal contains an
absolute and a relative vector generator
which uses the inch as its basic unit of
measure. The screen origin of the terminal
is defined to be the lower left hand corner

San Francisco - November 1978

2•D 11lpttt. croaah•lr

~CU:NCt,I> \ow.r• left. q- cor11er

ALPHANUMERIC KEVBOARD

GRAPHELP ideal interactive terminal

FIGURE 1

JaaiC U1'i\ O(HUUr&
h t.he inch

Can be either refre•h
or .st.orage CRT

Su11port.-!. bot.h eh.so lut.e
and relat.1ve veet.or.s

Fv.nct.iQn for ac:reen er&.se

of the CRT. In addition, the terminal
contains a hardware character generator for
picture annotation and a function to erase
the screen.

Two methods for input exist on this
pseudo graphics device; an alphanumeric
keyboard and a two dimensional X-Y locator.
(The locator is actually implemented by use
of a tablet, a lightpen, or thumbwheels.).
Routines are provided to query the locator
in either the terminal's coordinate system
or the user's coordinate system. Keyboard
input is queried by use of either a
conventional FORTRAN READ statement or by
\1se of a GRAPHELP call fut zslugl~ chacactt!.l
input.

When the pseudo terminal is used as a
refresh terminal, additional functions are
available. These include multiple
intensities, selectable blinking of picture
elements, and individual subpicture
definition and manipulation. Subpictures
are essentially independent display
segments that allow a user to selectively
modify portions of the display without
affecting other parts of the display.
GRAPHELP supports up to 128 user-definable
subpictures. These subpictures may be
individually created, displayed, appended
to, redefined and erased. Using the
subpicture capability on a refresh terminal
allows the user to present an application
dynamically and/or interactively via
subpicture redefinition. Any user
subpicture may "call" or link to another
user subpicture to a level of six deep.
This allows for complex picture data
structures in design layout systems. In
addition, GRAPHELP provides separate
display lists for each of the two terminal
modes descibed previously. Thus,
applications may send out temporary prompts

688

in the alphanumeric
disturbing the
display.

display list
applications

without
graphics

All GRAPHELP programs using the
storage CRT as the primary output may also
use the refresh CRT for output with no
modification to the source program or
object relinking required. Those GRAPHELP
programs using the refTesh CRT for the
primary output may also use the storage
CRT, but functions specific to the refresh
CRT will be ignored when the storage CRT is
used. Thus, those applications requiring
subpictures will not run correctly on the
storage CRT.

At the higher level of GRAPHELP, a
general two-dimensional plotting package is
provided for general data plotting and
other general user applications. Graphic
data is expressed in the user's own
coordinate system, and appropriate routines
exist for scaling and translating the
user's coordinate system to the primitive
device coordinate system. This scaling can
be either linear or logarithmic. In either
case, clipping boundaries (windows on the
data) may be constructed in the users
coordinate system to enable "zooming" of a
picture. At the users option, the clipping
can be disabled. The user may define up to
eight different coordinate systems and save
and restore these different coordinate
systems as needed by the application. The
default user coordinate system is the
canonical pseudo device coordinate system,

At this high level the user does not
have to worry about the lower-level
graphics functions that are being performed
to implement this higher level
two-dimensional graphics. The user can

-- tr - -• _ , 1 I. _, _ - -- - _' f- _, - - -- - ,._ _, ·- ·- - _. _ I_ A -
p~LLULlli dLL UL~ ~LttpUL~~ LUULLll~~ Lil UL~

own coordinate system without having to
worry about scaling transformations, vector
overflow on the screen, or any of the other
common headaches associated with graphics
programming. This level is totally device
independent.

For general data plotting, subroutines
are available to draw both linear and
logarithmic axes. In addition symbolic
display of floating point numbers can be
generated with an autoformatting
capability. The user can optionally select
the output precision of a number in terms
of the maximum number of decimal places
displayed. Data-scaling routines that are
compatible with CalComp routines are also
incorporated in GRAPHELP, along with
routines to plot data lines. For
interactive viewing of data plots, a
conditional screen erase is provided where
the erase condition is a function of
keyboard input.

The next section presents a few of the
varying applications at HDL that use
GRAPHELP for interactive graphics support.

SAMPLE APPLICATIONS USING GRAPHELP

A large number of the computer
graphics applications at HDL are related to
th~ area of viewing collected data. For
example, the air gun facility obtains
experimental data in the form of high speed
"streak" films. The traces on the films
are then digitized using an automated
digitizer to obtain time-displacement data.
GRAPHELP is subsequently used to display
reconstructed film scan digitizations.

SCH P UP DEL UP M-1
2 g 0 0 0 2081
3 12 8 70 8 205 I
4 16 12 65 12 2091
s 19 16 65 16 2131
6 16 15 64 15 212:
7 20 16 62 16 2041
8 19 16 59 16 2131
9 16 14 56 14 207l

10 19 15 53 15 2061
11 19 16 50 16 2041
12 19 18 47 18 2031
13 16 16 45 16 206:
14 20 16 42 16 202 I
15 16 16 40 16 2041
16 16 16 38 16 2071
17 12 12 36 12 2041
18 12 12 33 12 2061
19 11 11 31 11 2041
80 8 8 29 8 2071
21 8 827 8211'.l:
22 7 7 25 7 2(18:
23 4 4 23 4 207:
24 4 4 22 4 209:
25 4 4 20 4 207:
26 4 4 18 4 210:

70 4 0 0 0 211:

0 s 7 4
++++ +H+

++++++++ +Ho+
++++ ++++ - ++++ +++ ++++ ++++ +I++ ++++

++++ ++++ +t++ ++++
++++ - ++++ ++++ ++++
+I+ +H+ ++++ ++++ ++++

- +!++ ++++ ++++
+I++ +H+ ++++ +++t +++

+I+ +I++ +H+ +H+ ++++
++t+ ++++ +H+ ++++ +++

++++ +H+ -++t+ ++++
++++ +H+ ++++ ++++ ++++

++++ ++++ -++++ ++++ ++++ ++++
++++ ++++ ++++

++++ ++H- +H+
++++ ++++ +I+

++++ ++++
++++ +t++

++++ +++
+++t

++++
++++

++++

FIGURE 2

Computer analyses are then performed and
the results are plotted again using
GRAPHELP. Figure 2 shows a typical output
of the reconstructed scan and figure 3
shows a typical X-Y linear graph of the
computed results.

The shock and vibration test facility
uses a GRAPHELP-based program to
interactively view multiple data plots.
Using this program, an engineer graphically
and mathematically constructs an ideal
input shock pulse using individual sine,
triangular, and square waves or
combinations of these. A shock spectrum
transformation of the idealized input pulse
is performed and the result is plotted on
the CRT along with the originally specified
upper and lower limits. If the resulting
output function is not within the required
limits, the engineer can alter the input
pulse and redo the transformation. Once
the desired pulse is created, an actual
test is performed using the idealized pulse
as input data to the shock machine. The
machine-generated test pulse is recorded
and then digitized and used as input into
the program. The transformation is applied
to the test pulse and compared graphically
with the transformed output of the ideal

689

32.0 1s0.

u

' l ,,
s 24.0 ' 1as.

I

' T • ' c
'

T
\'

" t
!f...(! T 1()0.

' R
5

... ; ~ ; ; -r·········· .. ··j

.. 50.•. L ~

?.S.
-r,.20

---r----------;c--~~;--~~+-~~-+-~~--;-~~-i

o. o.ce o,-:c o.e0 o.i;::ci :.co !.cei
TIMI". M!LL!SEC.

SHOT 0574

FIGURE 3

pulse. Figure 4 shows a plot of
test pulse and its
transformation. Use of this
enables better simulation of the
environment.

Hie.

19.

SHOCK SPECTRUl'I TEST OH 19-0Cl'-78
PERCENT CRITICAL DMIPING JS s.ee"

··~~-~~~~~~~~~~~~~~~~
!. 100. 1eee.

FREOUENCVfHZ)

FIGURE 4

an actual
resulting
technique

real world

A

An additional area of use for GRAPHELP
at HDL is in design layout. One example of
use is an interactive system for ~enerating
block diagrams and flow charts for
technical reports. Figures 1 and 5 show
typical outputs produced by this GRAPHELP
based program. Another example of
engineering design layout is that of
computer aided integrated circuit (IC) mask
layout. Figure 6 shows a typical IC layout
constructed interactively using a GRAPHELP

FLO~ DIACRA" FOR DELAY OPTI"IZATION

FIGURE 5

based program. The picture shown in figure
7 was magnified using the crosshair cursor
and the clipping facility.

: ...
i
+

llOllllO.D'lllli

• ...
: ...
"'

FIGURE 6

++

As an example of dynamic computer
graphics, figure 8 shows one frame of a
simulated missile-target encounter that was
developed using GRAPHELP's subpicture
capabilities. The figure shows three views
of t~e encounter. Utilizing the subpicture
facility, the views are updated for each
time increment of the simulation, giving
the viewer a continuous update of the
simulated encounter.

For those engineers and scientist that
do not wish to write computer graphics
programs to plot test data, a generalized

690

FIGURE 7

two dimensional plotting task is provided
for non-programmers. The task is
essentially an interactive gateway to

FIGURE 8

GRAPHELP plotting subroutines. Users may
specify up to fourteen different sets of

data in multiple files. The input files
must be in ASCII readable form, but no real
restrictions are placed on the format
content of the data. Functions available
to the user include, text specification for
axes, data identification, legends, titles;
windowing and zooming of data; line
texture and symbol plotting choices;
command file input and output; and
arbitrary line annotation. The command
language combines english like statements
in conjuntion with 2-d graphic input. If
any coordinate argument is missing from a
command, it is queried from the user by the
task via the graphic input device of the
terminal.

CONCLUSION

Minicomputer-based systems provide an
ideal vehicle for interactive graphics
systems. The quick response time, coupled
with high output rates on the communication
lines allow users to interact with the
computer in an interactive environment.
Basing the graphics interface on a high
level language such as FORTRAN decreases
the time to learn to use the system
effectively for scientists and engineers.
The GRAPHELP system implemented at HDL is
one demonstration that interactive graphics
may be used on small systems as a tool to
support a wide variety of engineering
applications.

691

PDP-11 IMPLEMENTATION OF A PROPOSED ANSI DATA EXCHANGE STANDARD

Paul J. Dionnev E. Richard Hillv John Bower' Anne Medfordr Debbie Mathisen
Battelle, Pacific Northwest Laboratories

Richland, Washington

ABSTRACT

The Interlaboratorw Working Group for Data Ex
change <IWGDE> was formed in 1975 to address the
Problem of exchanging massive amounts of environ-
mental data among the Department of Enersw's <DOE>
communitw of national laboratories. The IWGDE
found no efficient means of exchansins these data
and so created an exchanse standard usins 9-track
tape. This Standard has been submitted to the Am
erican National Standards Institute <ANSI> for
consideration as an ANSI Standard and is now under
review.

Usins the Standard solves the Problems that Plasue
researchers who wish to exchanse data, sPecifical
lw differences in computer hardware and confisura
tions, operating swstems and oPeratins Philoso
Phies.

Basicallw, the Standard defines a Data DescriPtive
File <DDF> followed bw a Data File <DF>. The DDF
contains control Parameters and the necessarw data
descriPtions for interpretation of the data re
cords and data elements in the DF. Data are
stored in the DF as a series of tas/value Pairs.
Tass identifw the values thew accomPanw.

The Standard is imPlemented on several IBM and CDC
confisurations' most recentlw on PDP-11/70s. The
Standard has been used successfullw for over a
wear and is available to others who are interest
ed. The PDP-11 version is written in FORTRAN
IV-PLUS and runs on RSX-11/IAS oPeratins swstems.

INTRODUCTION ins PhilosoPhies' both bw the manufacturer
and bw the laboratorw using the eauiPment.

The Interlaboratorw Workins Group for Data
Exchanse <IWGDE> was formed in an ad hoc
manner during 1975. The need for data ex
chanse and information coordination was re
cosnized earlw in resional studies Programs
and representatives from each of the DOE la
boratories began meetins to define the Prob
lem and develop solutions.

It was found that each laboratorw had larse
amounts of various twPes of environmental
and demosraPhic data which were of interest
to others. There was no effective or effi
cient means of exchansins these data. Each
reauest for information had been handled
with a varietw of resPonses, none of them
standard. Worse wet' the fact that some la
boratories had IBM eauiPment while the rest
had CDC eauiPment compounded the Problem be
cause of differences in hardware confisura
tions' oPeratins swstem software and comPut-

Proceedings of the Digital Equipment Computer Users Society 693

The IWGDE auicklw decided that a common
method of data and information exchange
should be used and set about to develop a
DOE Standard. The first implementation was
done at the Oak Ridse National Laboratorw
<ORNL> in 1976 and documented in that wear's
Annual RePort.<1> Since that time the DOE
Standard has been submitted to the American
National Standards Institute for considera
tion as an ANSI Standard.<2> It is under
review now.

Staff at ORNL imPlemented the Standard in
PL/1 for IBM eauiPment while Brookhaven Na
tional Laboratorw <BNL> and Los Alamos Sci
entific Laboratorw <LASL> staff, with fi
nancing from the Savannah River Laborator~
<SRL), besan to imPlement the CDC
version.<3> Level 1 versions are now opera
tional at all laboratories. Arsonne Nation
al Laboratorw <ANL> is usins the ORNL imPle-

San Francisco - November 1978

mentation while SRL has created a different
.IBM version for com~atibilit~ with their da
ta handlins s~stem. Lawrence Berkele~ Labo
rator~ <LBL> and Lawrence Livermore Labora
tor~ <LLL> have created their own CDC imPle
mentations. The Pacific Northwest Laborato
rv• <PNL> used the CDC version on the CDC
6600 run b~ Boeins Computer Services Rich
land for the Hanford contractors until the
PDP-11 version was oPerational. See Fi~ure
1 for the locations of the IWGDE Standard
imPlementations.

The Level 2 implementation will still do
nothins with the DDF but will handle
multi-dimensional data in the DF. Level 2
will also have a set of hiSher-level subrou
tines available to the user which will make
the Job of creatins an IWGDE Standard tape
easier.

The Level 3 implementation will handle hier
archical data structures in the DF and will
use the DDF information to crack the DF.

Laborator~ Location Computer Software

---------- -----------~-- ---------
ANL Arsonner IL IBM PL/1
BNL UPtonr NY CDC FORTRAN/COMPASS
LASL Los Alamos, NM CDC FORTRAN/COMPASS
LBL Berkele~' CA CDC FORTRAN

PDP-11/45 FORTRAN IV-PLUS/MACRO
LLL Livermore, CA CDC LLLTRAN
ORNL Oak Ridse' TN IBM PL/1
PNL Richlandr WA CDC FORTRAN/COMPASS

PDP-11/70 FORTRAN IV-PLUS/MACRO
SRL Aikenr SC IBM FORTRAN

PDP-11/45 FORTRAN IV-PLUS/MACRO

FiSl•Jre 1. IWGDE Standard ImPlementations

The Disital EauiPment Corporation's PDP-11
is a widel~ used minicomputer in most of the
DOE communit~ and, in man~ cases' is more
accessible and less expensive than the larse
machines for use b~ research staff who wish
to send or receive environmental data on in
dustr~ standard 9-track masnetic tapes.

Rather than create a new implementation from
scratch' we chose to convert as much of the
existi~s CDC Level 1 imPlementation as Pos
s1oie. we felt that we could save time b~
not reinventins the wheel, b~ takins advan
tase of alread~ created Procedures and b~
facilitatins communication between several
technical imPlementations usins the same
subroutine names and PhilosoPh~. The PDP-11
version' in its Present form' is capable Of
readins or writins Level 1 data and readins
multi-file volumes.

I•ISCUSSION

Basicall~r the Standard reauires the user to
write two files on tape for ever~ set of da
ta or information to be exchansedr as shown
in Fisure 2. The first file is the Data
nescriPtive File <DDF> and describes the da
ta to be transmitted. The second file is
the Data File <DF> described b~ the DDF.

800/1600 BPI
ASCII
Standard Labels

Labels

File 1

Labels

Labels

File 2

Labels

VOLl
HDR1
HDR2

EDF

D
EDF

IEOF1 rEOF21

EDF

HDR1rHDR2

EDF

D
EDF

IEOF1 PEOF21

EOF
EOF

Data
DescriPtive
File - DDF

Data
File - DF

The Level 1 imPlementation of the Standard
writes a DDF and DF. The DDF is not used
except to manuall~ read the data descrip
tion. The DF contains tas/value Pairs' or
e•sentiall~r one-dimensional information. A
universal Prosram is available to read and
Print the DDF and DF of an~ Standard tape.
Howeverr in order to extract data from the
taPe and format it accordins to user specif
icationsr a Prosram must be written usins
the IWGDE subroutines.

Fisure 2+ Tape Structure

694

When the Level 3 imPlementation is complete
the researcher receivins the tape can mount
the tape on the tape driver call the stan
dard read routine which will read the DDFr
extract the aPProPriate PaSesr titles,
headers and formats and read the DF into a
file for Printins or manipulation. This
will aPPlw for all senerallw accepted data
structures.

This Standard has alreadw been used as the
basis for exchansins SeosraPhic data and as
sociated thematic data which contain a wide
varietw of complex and interlockins data
structures.<4>

Feat•Jres

The IWGDE Interchanse Standard eliminates
common tape-crackins Problems manw of us
have experienced when trwins to write a taPe
for someone off-site or when trwins to read
a foreisn taPe we've received. For examPler
the S·tandard reGui res the use of standard
labeled tapes which allows easw use across
computers. The Standard reGuires the use of
the ASCII character setr not binarw or
EBCDIC characters makins the format machine
independent.

The onlw machine-dependent Part of the
PDP-11 implementation is the collection of
mastaPe Primitives which are written in
MACRO. The rest of the code is modularr us
ins FORTRAN IV-PLUS. We use the Primitivesr
alons with the FORTRAN routinesr for ease of
installins the Standard at other facilities.
The PDP-11 implementation is interactive and
enables one to Guicklw Peruse a tape sent
from off-site usins a seneralized tape read
ins prosram.

Standard label Processins is implemented in
a set of FORTRAN IV-PLUS subroutines. These
subroutines Provide label readinsr checkins
and writing and are used bw the data inter
chanse subroutines.

Readins a taPe can be done with a general
ized routine; howeverr each tape that is
written reGuires an aPPlication-sPecific
code.

The imPlementation of the Standard Produces
data in an exchanse format. Once the data
is on-siter it should be converted to a
site-specific format. For examPler if wou
reGuest data from someone's ADABAS database
on an IBM computer and wou want to load the
data into wour DBMS-11 databaser wou must
write a seneralized translator to convert
the IWGDE Standard into a DBMS-11 recognized
data structure.

Risht now the Standard is capable of creat
in~ one DDF/DF file Pair <or one standard
file> of information Per taPe. Later the
Standard will SUPPort the caPabilitw to
transmit several files Per tape and
multi-volume files.

A generalized taPe reading Prosram that we
have created uses the data interchange

695

subroutines, labelins subroutines and mag
taPe Primitive subroutines to read the DDF
and DF of a standard tape. Standard label
checkins is performed. The user can sPecifw
the file and block within the file at which
to start reading. Blocks within a file can
be skiPPed.

SUBROUTINE DEFINITION

There are several levels of routines which
can be senericallw classified as 'User',
'Intermediate' and 'Basic' as shown in Fis
ure 3. 'User' identifies those routines
which the user has available to him/her for
the PUrPose of creating a Prosram which will
read or write a tape for the application at
hand+ 'Intermediate' identifies those rou
tines which read and write the ANSI Standard
label recordsr the DDFr and DF data.
'Dasie' identifies the machine-dependent
masnetic tape Primitives and commonlw used
utilitw routines.

'User'

'Intermediate'

'Basic'

Write Read

TXDDF DMPDDF
ADDFLD RDREC
WRTREC FETNXT
TERMDF FETMOR

Write Read General
---·--.. --

SETDDF RHmu2 INITCN
WHDR12 F~EOF12 CHGFIL
WEOF12 NXTCHR
-WRITES

MastaPe
Primitives Utilities

LEADZE YYDDD
FINDFL STF"<COM
FINDBL STRMOV
SKIPI1L BYTCOM

Fisure 3. Subroutine Structure

'User'

Write

TXDDF is an optional routine Provid
ed for the convenience of the user.
If calledr TXDDF reads a user DDF
descriPtive file' writes the DDF on
tape and leaves the user readw to
write the DF+

ADDFLD adds a tag/value Pair to the
DF buffer.

WRTREC writes the logical record.

TERMDF closes the outPut file.

Read

DMPDDF reads
<It loSicallw
file.)

and Prints the DDF+
'opens' the standard

RDREC reads the next losical record
from the DF,

FETNXT sets the next tas/value Pair
from the current losical record.

FETMOR sets the next Part of the
value strins from the current field.
This subroutine is useful when the
value strinS exceeds a reasonable
maximum lensth. The entire strins
is obtained bw successive calls to
this subroutine.

'Intermediate'

Write

Read

SETDDF formats the leader for the
DDF file.

WHDR12 writes the ANSI standard HDR1
and HDR2 label records before the
DDF and DF.

WEOF12 writes the ANSI standard EOF1
and EOF2 label records after the DDF
and DF.

WRITES writes the current buffer to
tape and EOF mark, if aPProPriate.

RHDRi2 reads the ANbl standard HDRl
and HDR2 label records and checks
for correctness.

REOF12 reads the ANSI standard EOF1
and EOF2 label records and checks
for correctness.

NXTCHR extracts a character
time from the inPut buffer.
the buffer is empty, the next
block is read.

at a
When
ta Pe

General

INITCN interactivelw oPens the stan
dard tape file bw readins or writins
the ANSI standard VOLi label record
followed bw callins RHDR12 or
WHDR12, dePendinS on the aPPlica
tion.

CHGFIL switches Processins from the
DDF to DF file. It Processes all
labels between the DDF and DF files
and Processes the trailins labels
for the DF file+ It calls REOF12
and RHDR12 or WEOF12 and WHDR12
between the DDF and the DF dePendins
on the aPPlication. CHGFIL also

696

calls REOF12 or WEOF12 and reads or
writes an EOF mark after the DF.

MastaPe Primitives

The MastaPe Primitives consist of
several machine-dePendent routines
for readins and writins blocks of
data from and to the tape alons with
a number of error routines. The
MastaPe Primitives are written in
MACRO.

Utilities

LEADZE fills an inteser strins with
the approPriate number of leadinS
zeros.

FINDFL finds the reauested file on
the tape for selective Perusal+

FINDBL finds the reauested block on
the tape for selective perusal.

SKIPBL skiPs a specified number of
blocks on the taPe to reach the sec
tion desired for selective Perusal.

YYDDD calculates the wear and daw in
the YYDDD format <78123) usins the
swstem subroutine !DATE,

STRCOM comPares, character bw char
acter, two strinss that are LBYTES
lons, and returns a flas indicatins
a true or false comparison.

STRMOV moves one strins,
lons, into another strins.

LBYTES

BYTCOM compares the characters in
the middle of one strins with
another strins. A true or false
flas is set dePendins UPon the re
sult.

EXAMPLE

An example demonstrates the waw the IWGDE
Standard is used to create an exchanse taPe.
Fisure 4 shows the two input data files
which maw be in card form or reside on wour
computer's mass storase device.

The DDF of Fisure 4 is Pre- and
Post-delimited bw *DDF and *EODDF. These
delimiters are used bw the TXDDF subroutine.
The first line of the DDF contains tas 000
which is reserved bw the IWGDE Standard for
desisnatins the title of the database. The
title for the example is "Author List.• No
tice laterr in Fisure 6, that tas 000 is not
transmitted as Part of the DF.

The second line, tas 001, is also reserved
bw the IWGDE Standard for the record iden
tifier field. This tas must aPPear in each
loSical record of the DF, and need not be
numeric.

*DDF
000
001
100
101
102
200
201
202
*EODDF

AUTHOR LIST
RECORD KEY
ORGANIZATION
ADDRESS
CITY
AUTHOR
TELEPHONE
LOCATION

BATTELLE, PACIFIC NORTHWEST LABORATORIES
POST OFFICE BOX 999
RICHLAND, WA 99352
PAUL J. DIONNE
(509) 946-2452
LIFE SCIENCES LABORATORY
DICK HILL
(509) 946-2675
MATHEMATICS BUILDING

Fisure 4. ExamPle DDF & DF Source Data

The third line• tag 100, is the first user
defined tas. (Tass 000-009 are reserved b~
the IWGDE Standard for database name' record
seouencer and other ~et-to-be defined uses.
All other tas numbers or names are available
for use b~ the user. Asain• tass need not
be numeric. User defined tass in the DDF
contain information about the data to be
transmitted.> Tas 100 identifies the Orsani
zation Name which for the example value is
"Battelle• Pacific Northwest Laboratories.•

The fourth line, tas 101, identifies the Ad
dress which for the example value is "Post
Office Box 999,•

The fifth line, tas 102• identifies the Ci
t~, State and ZiP Code which for the example
value is "Richland• WA 99352+"

The last three tass, 200-202, define a set
of rePeatins data, Tas 200 identifies an
Author Name• tas 201 the author's TelePhone
Number and tas 202 the author's Office Loca
tion. For the example two of the authors
are listed alons with their telephone
numbers and office locations.

The DDF is alwa~s one record Ions and that
record is limited to 2046 b~tes. The DF can
contain as man~ losical records as the user
wishes to define. The IWGDE Standard
software handles the sPannins of losical re-
cords which are larser than 2046 b~tes.

Fisure 5 is a flow chart of a Prosram which
will write the IWGDE Standard taPe with the
data of Fisure 4, After initializins the
variables and arra~s' esPeciall~ RECKEY• the
Prosram opens the DDF and DF source data
files of Fisure 4. TXDDF calls other rou
tines which write the VOL1, HDR1 and HDR2
label records. It transfers all the DDF
source data as text to the taPe and then
calls other Prosrams which write the EOF1
and EOF2 label records for the DDF and the
HDRl and HDR2 label records for the DF.

To write the DF to tape, RECKEY is increased
b~ one• and a line is read from the DF

START

0

OPEN DDF FILES

+ 1

READ A LINE SOURCE FILE

+ 1

READ A LINE SOURCE FILE

Fisure 5. ExamPle Prosram to Write an IWGDE TaPe

697

source file and added to the current buffer.
Two more lines are then read and added to
the current buffer before the record is
written to tape. The first DF record con
sists of RECKEY and the orsanization data
associated with tass 100-102+

RECKEY is then increased b~ one asain and
added to a new current buffer+ The data as
sociated with tass 200-202 are read from the
DF source file and added to the current
buffer. That buffer is then written ~o taPe
as the second losical record. The Prosram
then continues to look for more data associ
ated with tass 200-202 and writes as man~ of
these records as there are data in the DF
source file (in the examPle• one more>.

Havins written all the data to tape from the
DF source file• TERHDF is called+ TERHDF
calls other subroutines which write the EOFl

and EOF2 label records and
losical-end-of-taPe mark.

Fisure 6 shows the results of writins the
source data files of Fisure 4 to taPe usins
the IWGDE Standard with the example Prosram
of Fisure 5. Each record of the file con
si~ts of the ANSI Standard Sesment Control
Word (positions 1-5), the 19 character IWGDE
Standard leader, a variable lensth director~
<wh~se lensth depends UPon the amount of da
ta in the record) and the bod~ which is sim
PlY the data itself.

director~ for each field of data. Each en
try contains the startins Position of the
data, lensth of data (includins termina
tors), and thetas which identifies the da
ta.

For the example DDF of Fisure 6, the record
lensth <SCW> is 156 characters, the leader
identifies the director~ and itself to be 76
characters in lensth. It further states
that each directory entry is seven char
acters lons C2 + 2 + 3>: the character count
field is 2 characters lons, the startins Po-

00156 ______ oooo76 ___ 223_000120000111121001323101os36102os4420007492011os62020966
;
AUTHOR LISH
RECORD KEY;
ORGANIZATION;
ADDRESS;
CITY;
AUTHOR;
TELEPHONE;
LOCATION=

00135 ______ 000049 ___ 223_0010200100410210120431021963;
H
BATTELLE,_PACIFIC-NORTHWEST_LABORATORIES;
POST_OFFICE_Box_999;
RICHLAND,_WA-99352:
001oa ______ oooo4a ___ 223_001020020015022011s172022332;
~H
PAULJ._DIONNE;
(509)_946-2452;
LIFE-SCIENCES-BUILDING:
00107 ______ 000049 ___ 223_0010200200160220115182022133;
3;
E+-RICHARD-HILL;
(509)_946-2675;
MATHEMATICS-BUILDING=

Note: Spaces are shown by underline char-
--"'-- .11--- _, __ .:
cn.~-IL#ic::'I I UI l...LOl-.L\,::t•

field terminators, colons represent record
terminators and eaual-sisns represent file
terminators.

Fisure 6. ExamPle IWGDE Standard TaPe

The Sesment Control Word CSCW) is the in
teser number of characters in the record in
c ludins the sew and all terminators.

The leader contains two numbers. The first
number is the lensth of the leader includins
the field terminator. The second 3-disit
number describes the format of each directo
ry entry. <A directory entry is comPrised
of three elements: character count of the
data, startins Position of the data, and the
tas which identifies the data•) The first
disit of the format descriPtor defines the
lensth of the character count field in the
directory entrw. The second diSit defines
the lensth of the startins Position field in
the directorw entry. The third disit de
fines the lensth of the tas field in the di
rectory entrw.

The directory describes the data in the bodw
of the record. There is one entrw in the

698

sition is 2 characters lons and the tas is 3
characters lons.

Examinins the directory, we find that tas
000 is 12 characters lons and starts at Po
sition oo, tas 001 is 11 characters lons and
starts in Position 12, tas 100 is 13 char
acters Ions and starts in Position 23, and
so forth. The directory and each field are
terminated with an ANSI Standard
non-Printins field terminator CASCII RS,
eauivalent to 30 decimal>. We have chosen
to rePlace the non-Printins field terminator
with a 1 ; 1 for clarity. The DDF is one re
cord lons and is terminated by a file termi
nator• which is the ANSI Standard
non-Printins character FS <ASCII 28 deci
mal)+ The 1 =1 is the character we have cho
sen to Print for clarity.

The first record of the DF is 135 characters
lons. The leader identifies the directorw
and itself to be 48 characters lons. The

directorw saws tast 001 is 02 characters lonst
startins at Position oo, tast 100 is 41 char
acters lons startins at Position 02, and so
forth.

The DF contains three recordsr each with its
own SCWr leaderr directorwr and bodw. The
definition of the data in the last two re
cords of the DF can be translated in the
same manner as described above. In a
multi-record filer record terminators are
the non-Printins ANSI Standard character GS
<ASCII 29 decimal). The •:• is the char
acter we choose to Print for claritw.

BIBLIOGRAPHY

1. D. L. Austin and D. Merrillr "ERDA
Interlaboratorw Workins Group for Data
Exchanse <IWGDE>r Annual RePort for
FY1976". LBL-5329r Lawrence Berkeley
Laboratorwr Berkelew CAr September 1976.

2. ANSI Subcommittee X3L5r "Draft Proposal
American National Standard SPecifica

t ion for an Information Interchanse Data
DescriPtive File". Workinst PaPer ANSI
X3L5/78-77Fr American National Standards
Institute• September 1978.

3. R. A. Wilew and C. M. Benkovitzr
"User's Guide for the ImPlementation of
the Proposed American National Standard
Specification for an Information Inter
chanse Data Descriptive File on Control
Data 6000/7000 Series Computers•.
LA-6940-MSr Los Alamos Scientific Labo
ratorwr Los Alamos NMr September 1977.

4. P. J. Dionne (editor), "GeosraPhic Ex
change Standard and Primer• •. PNL..-2748r
Pacific Northwest Laboratorwr Richland
WAr October 1978+

5. c. M. Benkovitzr
Interchanse Within
Brookhaven National
NYr APril 1977.

"Facilitating Data
ERDA"r BNl..-22595r

Laboratorwr UPtonr

6. E. R. Hillr J. C. Bowerr P. J.
I•ionner A. E. Medfordr I•. Io
Mathisen and L. H. Gerhardsteinr
"User's Guide for the ImPlementation of
Level One of the Proposed American Na
tional Standard Specification for an In
formation Interchanse Data DescriPtive
File on Disital EauiPment Corporation
PDP-11/70". To be Publishedr Pacific
Northwest Laboratorwr Richlandr WAr
A•Jgust 1978.

699

ACKNOWLEDGEMENTS

The authors wish to identifw those
outside of PNL who have contributed
tiallw to the PDP-11 implementation
IWGDE Standard.

PeOPle
s•Jbstan
of th<·?

First of allr Dr. A. A. Brooks <ORNL>
created the Standard which is beinS reviewed
bw ANSI. Dr. John Suich <SRL> Provided the
funds and encouragement for the imPlementa
tion. Carmen Benkovitz CBNL> and Richard
Wilew CLASL> created the orisinal CDC ver
sion uPon which the PDP-11 imPlementation is
based.

A MEMORY RESIDENT OVERLAY HANDLER FOR RT-11 V3

D. Ritchie and Y. Kang
Fermi National Accelerator Laboratory

Batavia, Illinois 60510

fl BS TRACT.

A memory resident overlay handler for RT-11 SJ V3 is
described. The handler allows the use of memory above 28K
for program overlays. The handler has been written in
such a way that no linker modification is required. Only
slight modifications to the RT-11 SJ device drivers are
required to handle I/O to addresses above 32K. With the
exception of an initialization call, the handler's
operation is entirely transparent to the user's program.
Some restrictions on program organization are required.

INTRODUCTION

About every eight seconds, the F'ermilab particle
accelerator delivers protons to experiments during
a "spill time" of approximately one second
duration. During the spill the experiments acquire
as raucb data as possible. The data is in the form
of experimental events (up to several hundred
events per spill and within the range of 50 to 1000
16-bit words per event). During the inter-spill
period, the online program logs the events to tape
from memory buffers or a spooling disk file and
analyzes as many events as possible. The RT-11 SJ
monitor is the simplest DEC monitor capable of
satisfying these needs efficiently.

Without special modifications, programs in RT11 SJ
must occupy no more than approximately 25K of
memory (28K monitor device drivers). By
dividing a large program into segments not needed
in memory at the same time and loading these
segments from mass storage into the same memory
region when called, the effective program size may
be increased. The cost, however, is 10 to 100
milliseconds per call.

In applications such as event analysis in online
programs, this time overhead can not be tolerated.
With the memory resident overlay handler described
below, one may reduce the time overhead to no more
than 170 microseconds per overlay. (This figure
assumes that the segment has been loaded once; the
time for the initial load is similar to the
standard overlay case. Careful programming insures
that these in.itial overheads are experienced at the
tolerable level of once per accelerator cycle or
less.)

The size of the handler is 500 words, including
tables adequate for a rather extensive overlay
structure. This is significantly less overhead
than alternative methods to make more memory
available for programs. These alternatives involve

Proceedings of the Digital Equipment Computer Users Society 701

using a more complex operating system, e.g.
RSX-11i1 or the extended memory version of RT-11,
RT-11 XM. In these cases, the operating system,
al tnough more powerful, requires more memory and
other resources merely for its own use. Also,
particularly in the RSX-11H case, the time overhead
to handle event interrupts and process event data
is increased. (More conditions must be checked and
met before control can be given in a reliable way
to the user's event read-out and processing
routines.) The responsiveness of the system in
handling its single most important task, that of
spill-time data acquisition, is thus degraded.

The memory resident overlay handler consists of two
parts: the first part is an initialization
subroutine, MROI, which prepares some tables
necessary for use at the overlay call.

The second ifl the overlay call service routine,
MROSEV, equivalent to the handler which the DEC
linker provides. This handler, however, will load
segments into memory above 2~K (as well as into the
standard overlay area).

The handler requires a KT-11 memory management unit
(and therefore, a PDP-11 /311, 115, 55, or bO). A
total of at least 32K of memory is required in
order for the routine to be useful. The handler
has been written in such a way that no linker
modifications are necessary. The handler requires
only slight modifications to the RT-11 SJ V3 device
drivers (to handle I/O to addresses above 32K).

USE OF THE HANDLER

To use the memory resident overlay handler, one
simply makes an initialization call:

CALL MROI(MEM,NRS)

San Francisco - November 1918

where the integer input argument MEM specifies the
top limit of the memory to be used (in order of
increasing address) for the program, standard
overlay regions, drivers, monitor, and additional
overlay regions. If memory exists above MEM, it
may be used for anything the user wishes: data
buffers, histogram storage, etc. The handler will
not modify it. MEM should be in units of 1024
words. NRS is an integer output argument which, if
the initialization is successful, reports the
number of region sets allocated by the handler
within the addresses O to MEM K specified. (A
region set is the collection of overlay regions
laid out for the program by the RT-11 linker.
Region set 1 is the usual overlay area immediately
above the root and below the monitor, drivers, and
Fortran free space area. The additional region
sets begin at 28K physical address.)

Note that a special condition occurs when NRS
equals or exceeds the maximum number of segments
specified for any region. In this case, once the
program has called all the overlays, segment reads
from the program load device will stop. All
segments are in memory and the handler simply
switches the map from one to another as each is
called.

If the initialization is not successful (due, for
example, to the linking requirements not being
observed), NRS is set negative and a message
printed. Once the handler has been successfully
initialized, one may then proceed to call various
overlays. See the section on handler operation for
an understanding of how the initialization works.

LINKING REQUIREMENTS

Tnere are two l.J.nKing requirements; (I) The r·oui.,

segment must end just before a 4K word boundary.
(2) The highest overlay region must end just before
a 4K word boundary. Unless these requirements are
met, NHS is set to -1 in the initialization call.

We accomplish the first requirement using the
/U:20000 linker round switch. Please refer to the
example given below. First, we write and compile a
simple dummy routine defining a unique . CSECT or
COMMON block name. Next, we specify this module
somewhere in the root segment linker command line
along with the /U:20000 switch. When the linker
asks for the section name to round, we give the
. CSECT or COM1'10N block name defined above. The
linker will then extend this program section so
that the root segment ends just before a 4K word
boundary.

The second requirement is best met by adjusting the
size of a dummy array in one of the segments
occupying the highest region. The size should be
increased until the second condition is satisfied.

702

LIMITATIONS AND RESTRICTIONS

The present implementation of the memory resident
overlay handler is limited to maximums of 16 region
sets, 10 regions, and 50 segments. Increasing the
number of regions and segments requires only a
simple change of assembly parameters and
reassembly. Increasing the maximum number of
region sets requires more involved program
modification. The present maximums are adequate
for most Fermilab applications.

The implementation goal of a simple handler
necessitated a few additional programming
restrictions, besides the usual restrictions on
overlay calls and references as stated in the
linker manual. Observing the following rules will
satisfy the restrictions. Under certain cases, one
may bypass the rules and still have a correct
program. A thorough understanding of the overlay
technique and the memory management hardware is
necessary to deter~ine the allowed bypass cases.

1. Only overlay calls from the root segment
may have arguments. Making an overlay
call with arguments from another overlay,
such as a CALL SEG2(A,B,C) from SEG1, is
not allowed. However, the reference, CALL
SEG2, from SEG 1 i§. allowed, as is CALL
SEG1(D,E,F) from the root segment. Nested
overlay calls with arguments are
prohibited because the arguments may
reside in an area of memory no longer
accessible after the call.

2. Overlay segments may not do direct memory
access I/CJ to buffers within the overlay
area. The 1/0 requires the physical
addresses of the buffers. Only the
virtual addresses are available to the
segment unless special calculations are

statements such as READ (1'10) ARRAY and
I/O using SYSF4 (SYSLIB) read and write
routines are the sort of operations
prohibited by this rule.

Note that operations such as Fortran
formatted 1/0 and I/O involving root
segment buffers are allowed. Fortran
formatted I/O operates correctly because
the actual 1/0 involves a buffer in the
Fortran free space region (above the
overlay region and below the drivers and
monitor). Here, as with the root segment,
the mapping is such that the virtual
address is always the same as the physical
address. The format conversion transfers
the data between this buffer and the
variables in the segment. These CPU
transfers require the virtual addresses
which fil:§. available: (They are provided
through the standard internal argument
passing of the Fortran I/O system.)

SYSTEM ROUTINE MODIFICATIONS

The handler specifies all addresses for segment
reads by the "odd-bit" method. This allows
physical addresses anywhere in the range O through
12ltK to be specified in a manner consistent with
the normal use in the 0 to 32K region. The drivers
for the program load devices have been modified to
accept this.

In this method, the 18 bit address is put into a
two-word block (high 2 bits, low 16). The address,
with its odd bit set, of this two-word block is
given to the monitor in the standard I/O call. It
is passed to the driver. Upon finding the odd bit
set, the driver proceeds to obtain indirectly the
18 bit address from the block for placement into
the appropriate device registers. Since even
addresses are normally specified to program load
devices and since these are handled in the usual
way, regular driver use is not affected. Further,
because one still only requires one word for the
memory address specification, it is not necessary
to change the length of queue elements within the
monitor.

OVERLAY HANDU:R OPEhATION

Please refer to Figure for a typical memory
layout on a machine with at least 40K.

Initial 1.z.iill.Qn
The initialization call causes a jump instruction
to the MROSEV overlay call service routine to be
put into the first two words of the DEC-provided
overlay handler ($0VRH). (The linker inserts this
handler begining at the base address of every
overlayed program.) The initialization call also
sets up some tables for the use of MROSEV.

The information needed for these tables is
developed from the segment table following the DEC
overlay handler. This table contains the load
address, the relative block number, and the length
in words for each segment in the program. The
primary tables set up are the segment-to-
region/region-set table (SEGTRR), and the
region/region-set-to-segment table (RRTSEG). A
table called the region/- region-set use-bit table
(LRUBT) is also prepared. Initially, of course,
the tables show no segments in memory.

Overlay Call
When a call to an overlay is made, the MROSEV
handler gains control via the dummy subroutine
inserted in the user's program by the linker and
the jump instruction inserted by MROI. The segment
number times 6 and the mefllory address at which to
enter the overlay are parameters to this call.
Using the segment number, MROSEV then examines
SEGTRR to determine whether or not the segment is
in memory in some region set.

Segment In Memory
If the segment is in memory (the segment's region
set number as entered in SEGTRR is non-zero), the

703

handler changes the KT11 registers to ,oap that
region set into the overlay area. It also updates
the region/region-set use-bit table and the current
region set number. It then enters the segment at
the desired entry address. The time required for
this in-memory call is approximately 100
microseconds.

Note that the handler always uses the KT-11 memory
mapping unit in kernel mode. This allows other
uses to be made of the user and supervisor modes
and mapping registers. It also simplifies certain
aspects of the use with existing programs. (for
example, SPL instructions and debugging bALT's
continue to perform as expected.)

Segm§.!lLN.QLl.n..J'l_emory
If the segment is not in memory, the handler calls
the RSRCH subroutine to select a region set into
which the segment should be read. (Remember that a
segment must be put into the region for which it
was linked, but that this may be in any region
set.) The ha.ndler then reads the segroent into the
region of the selected region set. If the region
previously contained a segment, it resets the
tables appropriately and updates them to reflect
the new segment in memory. \lith the segment in
memory, it proceeds as with the in-memory case.
The time required for the not-in-memory call is
composed of the handler .'3etup and finish-up ti·ne,
and the overlay read-in tirne. The first is 200
microseconds. The second is dependent on the
overlay size and disk position, and is a minimum of
11 mill iseconJs for a 1000 word overlay from an
RK05 disk.

Overln_Return
When a return from a segment is made, the handler
segment return routine is first executed. (It's
address was placed on the stack at the overlay
call.) This routine simply re1aoves the stacked
parameters and takes the actual segment return if
the stacked previous region set number and the
current one are the sarne. If they are not the
same, the routine returns to the previous region
set by switching the memory map back. It then
removes the parameters and takes the actual segment
return. In the map switch case, the return time is
70 microseconds. In the no-map switch case, it is
20 microseconds.

R~fil<_Selection
The region set select subroutine (RSRCH) uses an
approximation to a "least-recently-used" algorithm
(1) to select a region set. MROSEV sets a bit in
the use-bit table corresponding to a particular
region/region-set whenever a segment residing or
just loaded into that area is called. RS~CH scans
the use-bits for a particular region over all the
region sets. Use-bits found to be set are cleared
and the corresponding region set is skipped. The
first use-bit found clear stops the scan. The
corresponding region set is returned.

Certain applications may require a different
selection algorithm for efficient or correct
operation. The selection algorithm is isolated in
a single subroutine to make it easy to replace with
an alternative routine.

In particular, an alternative RSRCH and some
utility routines have been developed which permit
the user to specify those segments allowed to be
loaded into region sets 2 and higher. RSRCH
operates as described for these segments. For all
others, it selects region set 1. In this way, the
handler may be used with existing overlayed
programs in which some segments obey the
restrictions of no arguments, etc., while others do
not.

c

EXAMPLE

PROGRAM ROOT
Ca-!MON /PARAM/ P4,P5,P6,P7,P8,P9
COMMON /ANS/ A4,A5,A6,A7,A8,A9
DATA MEM/40/
CALL MR or (MEM 'NHS)
IF (NRS.EQ.-1) STOP 'MROI FAILED'
CALL SEG 1 (ARG 1)
CALL SEG2(ARG2)
CALL SEG3(ARG3)
STOP
END

SUBROUTINE SEG1(A)
CALL SEG4
CALL SEG7
RETURN
END

SUBROUTINE SEG2(B)
CALL SEG5
RETURN
END

SUBROUTINE SEG3(C)
CALL SEG9

RETURN
END

SUBROUTINE SEG4
ca~MON /PARAM/
COMMON /ANS/
RETURN
END

SUBROUTINE SEG5
CALL SEG8
RETURN
END

SUBROUTINE SEG6

RETURN
END

SUBROUTINE SEG7
COMMON /ANS/ .•.....
WRITE (5,205) A7

205 FORMAT (E10.3)
RETURN
END

SUBROUTINE SEG8

704

203

CCl'1l'10N /PARl\M/ ,
READ (11,203) A8
fORMAT (E10. 3)
RETURN
END

SUBROU'l'Il~E SEG':i
DIMENSION rvuva-.Y(1)
RETURN
END

SUBROUTINE DUMMY
COl'u'!Olii /SNTNEL/1
HETUrtN
END

BATCH !:"ILE

R MACRO
*MROI=MROI
*MMINIT=MMINIT
*MMERR=Ml··lEHR
R FORTRAN

*ROOT=ROOT
11SEG1=SEG1

*SEG9=SEG9
*DUNl"lY=DUYi!'lY
.R LINK
*EX!v1J:'L, EXMPL=HOOT .M.ROl .MMINIT.
M.MERR, DUH1"iY/U: 20000/ I
11Si::G1/0:1
*SEG2/0: 1
*
'"SEG9/0:3//
*BOUNDARY S!ICTIUt~? SNTNEL

Based on the load map, EXMPL.MAP, the length of the
array IDUMMY in SEG9 is increased by the amount
needed to cause re3ion 3 to end just below the next
higher 4K word boundary. Then, SEG9 is recompiled
a!"!d EXMPL is relir?ked.

(MROI contains both the initialization and the
MROSEV service routine. MMINIT is called by JviROI.
It initializes the KT-11 so that the initial memory
map with memory management on is the same as that
with it off. MMERR handles any memory management
error traps.)

REF Erl ENC ES

(1) Madnick, Stuart E. , and John
QperatJJl~ ~§.tem§i.. McGraw-Hill, New
Page 155-156.

J. Donovan,
York, 1974.

Physical Address

!-----------------!128K
I/(J l'age

!-----------------!124K

!-----------------!48K
I

1-----------------!44K
I

--!-----------------!40K

Possible
Resident
Segments

t ! Region 3 (SEG8) ! 7,8,9
Region I- -!
Set 2 !

! Region 2 (SEG6) ! 4,5,6
1- -!

i ! Region 1 (SEG2) ! 1, 2, 3
--1-----------------!28K

I RT-11 I
etc. !24K

!
--!-----------------'20K
f ! Region 3 (SEG9) 7,8,9

Region !
Set 1

! Region 2 (SEG5) 4,5,6
!-+ ! Region 1 (SEGl) 1,2,3

--!-----------------.BK

Root

!-----------------!OK

Virtual Address

!-----------------!32K
1/0 Page I

!-----------------!28K
I HT-11

etc. !24K
I

!-----------------!20K
<t,,. $HOVLY

Overlay Area
mapped to
Region Set 1 or
Region Set 2 I

! ..(""$HROOT !
!-----------------!8K

Root

!-----------------!OK

Figure 1. Memory with segments 1, 2, 5, 6, 8, and 9 loaded.

705

SOFTWARE DEVELOPMENT FOR A SIGNAL PROCESSING TASK:
A COMPARISON OF LABFCRTH WITH FORTRAN AND ASSEMBLY LANGUAGE

Ronald M. Harper and David J. Sirag
Department of Anatomy and The Brain Research Institute, UCLA

and laboratory Software Systems
Los Angeles, Calif, 90049

ABSTRACT

A biological signal acquisition and analysis
system has been implemented on the LSI-11 computer
in a fast interactive language, LABFORTH,
operating under RT-11. LABFORTH is a structured,
high Level language which allows ready access to
assembly Language, fast execution, compact code,
and extremely rapid development time. The task
was to acquire a Large number of biological
signals at a variety of different sampling rates
over very Long time periods. The data consisted
of both analog and event (point process> data
acquired during sleep and waking states.
Analytical routines consisted of time series
analysis and point process procedures, as well as
a variety of data manipulation and display
utilities. A package similar to this developed in
assembly Language and FORTRAN provided a basis for
comparison of these languages with LABFORTH. The
principle differences between developing the
LABFORTH version and the assembly Language/FORTRAN
version was a markedly reduced time for program
development and a great reduction in length of
source code. The reduced length of source code
has dramatically eased program maintenance over
the earlier FORTRAN/assembly Language version.
The interactive capability of LABFORTH has allowed
very easy modification of the routines for unique
situations. It thus has proven to be an excellent
laboratory language for the LSI-11.

INTRODUCTION

A variety of biological and physical
science applications require the acquisition
of a large number of different analog
signals as well as the capability to acquire
event, or point process data. the analog
signals may differ widely in band~idth, and
the event data may arrive asynchronously.
At the same time, it is frequently necessary
to synchronize the incoming data to an
external clock reference signal. If the
data is taken from analog magnetic tape,
then the reference clock is often a time
encoded signal which can be displayed on
paper as well as stored on analog tape.

eye movement analog channels. At the same
time, event data such as the occurrence of
spike discharges from single neurons are
simultaneously present. In the case of
sleep data, EEG, respiratory, cardiac and
EMG data possess vastly different signal
bandwidth requirements, ranging from 0-4 hz
to 0-3khz. At the same time, the discharge
of single neurons of the brain may occur on
6-8 channels at rates up to several hundred
discharges/sec for each channel.

An example of such a recording
situation is provided in the recording of
physiological data during sleep. In this
case, data is normally derived from
electroencephalographic <EEG),
electrocardiographic (EKG), respiratory,
electromyographic CEMG>, body movement, and

Proceedings of the Dig/ta/ Equipment Computer Users Society 707

An additional requirement for steep
data is that these recordings must be
collected over very Long time periods
ranging from 8-72 hrs. Other disciplines
such as respiratory physiology and some of
the physical sciences have other unique
acquisition problems, but there is a common
requirement of a need to accept botn analog
data and' event data with wide bandwidth and
different data rates, and a need to store
these data on a mass storage device with the
additional requirement to gather specific
data events in reference to a independently
referenced time code.

San Francisco - November 1978

We have developed such a general data
acquisition package on the LSI-11. It
acquires a variety of analog and event data,
and stores these data, using a double
buffered technique to prevent lost samples,
on a mass storage device. It also
incorporates an analysis package to provide
acc~~s to particular portions of the stored
record, and a variet~ of statistical and
time series packages to summarize the data.

The emphasis in program development was
on flexibility in sampling a~d prolonged
recording capability. For these reasons,
considerable attention was focused on
capability to accept widely different
sampling rates and procedures for data
compression and file manipulation. Future
editions to the system will incorporate
routines which are optimized for maximum
throughput at fixed sampling rates.

LANGUAGE SELECTIO~

Because the package imposed extreme
demands on timing for the LSI-11, it was
essential that portions of the program run
at assembler speed. At the same time, it
was necessary that a large portion of the
programming be in a high level Language
whereever possible for speed of program
development, readability of source code, and
ease of program modification. The system
also required that the capability for
additional extension of the package be a
prime consideration.

For these reasons, the high level
language LABFORTH was chosen for the
development language. LABFORTH is a stack
oriented, high Level interactive language
which utilizes threaded code procedures,
together with a fast compiler (Harper and
Sirag, 1978a,b). Its execution speed is
very fast, and the interactive capabilities
of the language allows very rapid develop
prcigram development. This ability to
immediately modify and test routi~es extends
to assembly language programming~ Thus,
even assembler code, which is an integral
part of the language, can be written and
tested in an on-line, interactive fashion.
LABFORTH is inherently extensible; that is,
new routine~ can be added by making a
definition consisting of previously defined
elements. Thus, new features to the
language can be readily added, and become a
permanent part of the structure. LABFORTH
belongs to the class of structured
languages; there is no GOTO statement, and
the program flow is inherently modular.

Although there are other interactive
languages which allow immediate testing of
high level routines, such as BASIC or FOCAL,
these languages are ' interpretative, and
hence inherently slow. Moreover, addition
of features to the lanuage, such as the
incorporation of routines to access the A/D

708

converters or parallel interface require the
recompilation of the entire source language
of FOCAL or BASIC. Addition of a line of·
assembly code into LABFORTH requires only
the insertion of the line into the source
text, where it is immediately compiled and
becomes part of the language. FORTRAN
usually has I/O routines for lab~ratory
peripheral use, but is not interactive, and
is not readily extensible. Any additional
feature to the language must be compiled as
a separate subroutine and linked to the main
body of code. This is a process which has
been standardized in versions of FORTRAN for
the LSI-11, but is not convenient to use.

ACQUISITION PACKAGE

The package as implemented consists of
an acauistion portion and an analysis
portion. The acquisition portion has the
capability of sampling up to 15 analog
channels (plus the time code on the
sixteenth channel), and 11 digital I/O
channels.

It was essential to save as much space
as possible on the mass storage device,
since up to 72 hours of data needed to be
recorded. For this reason, the A/D values
were stripped to 8 bits.

The sampling of the A/D is under the.
control of the programmable clock which is
ticking at 1 msec intervals. A variety of
sampling rates can be used for the A/D
converter which are clock multiples of this
basic tick rate. At present, P. sampling
groups, each of which possesses 5 analog
channels, can be set up at different clock
rates. For the sleep acquisition package,
th~ current channel· set up and sampling
rates are '1 channel of EKG at 256
samples/sec, 2 channels of EEG at 64/sec, 3
channels of respiration and 1 of EOG at
16/sec, and 1 channel of behavior code and 1
of motility at 1/sec. However, the
configuration could have contained as many
as 5 channels of data being sampled at 256
samples/sec. The operator is interrogated
at setup time for the configuration of
sampling rates and assignme~t of data
channels. This configuration is printed,
and is also stored in a file for later
recall on analysis.

The clock count is also stored in a
double precision buffer. A single precision
buffer was not used, since it would overflow
after 65 seconds at the 1 msec tick rate.
This buffer is read after the occurence of
an interupt from a digital event on the I/0
card. The principle use of these data is
for recording transient events, such as the
discharge of single neurons. However, a
very large number of these events may
appear, and it is important to preserve
space in recording these times of occurences
as well. To aid in conservation of both

space and time, only the tower ~2 bits of
the time buffer are recorded, along with 4
bits of event channel information. The
remaining part of the time information is
recorded only when the upper 20 bits changes
i.e. only after 4096 ticks. Since this
occurs at 4 second intervals at the 1 msec
clock rate, Little time or space is used for
event data, while accuracy of time between
intervals is preserved.

An incrementing Binary Coded Decimal
(BCD) time code which was simultaneously
written on an ink writing polygraph and
stored on analog tape for correlation of the
two media, is decoded on the fly by the
acquisition routines. The routines also
read the current time as kept by the
programmable clock on the double precision
clock buffer, and stores both the BCD code
and the clock tick time together with the
acquired data. It is important to note
that, because of variation either in analog
magnetic tape speed or in generation of the
BCD code, the BCD code may arrive
asychronousty. Thus its exact time of
occurrence cannot be predicted; yet
knowledge of its time of arrival is
necessary for correlation of polygraph and
digitized data. Thus, the programs mus~
decode the BCD signal, and also note its
time of arrival on •the programmable clock
time.

The data are stored in files on the
mass storage device in record lengths that
are determined at configuration set up time.
At present, data are stored on floppy
diskettes which are automatically swapped on
filling. However, the system is also set up
for serial devices such as industry
compatible magnetic tapes, as well as large
disk storage devices. The standard RT-11
device drivers are currently used in the
system. However, special purpose drivers
for even higher data rates are planned.

ANALYSIS SYSTEM

A flexible analysis package forms part
of the system. The analysis package allows
reconstruction of the stored data, and
enables random access to portions of the
recalled records.

Time and space requirements during
recording precluded organization of the data
for convenient analysis. Data was, however,
recorded with alt necessary information so
that an intermediate program could, after
data acquisition, organize the recorded data
for rapid access and analysis. There were
two such routines in the anaysis system.
The first, PREANAL, creates a record
directory and notes the Location of each
word of each record, so that the record may
later be found by indexing through the
directory. This technique is necessary
because the records have varying lengths,

708

caused by the varying number of triggered
events. A permanent file is made of the
directory. There are a total of 3 files
associated with the data; the configuration
file (.CON), the directory C.DIR>, and the
data C.DAT).

The second data organizing routine is
called READO. It is used at the beginning
of each analysis session to read the
configuration file, the record directory,
and the 0th data record. It uses the
configuration file to simulate the recording
of sample data in the record. However,
instead of recordng data, it notes the
location into which the data would be
stored. Using this technique, a sample map
is created. The map is organized by channel
number; thus, all data from a given channel
can be collected by using the sample map for
the channel to locate the data. Various
routines then are available which use the
above data representaion. The COLLECT
routine gathers the data from the specified
channel (using the sample map), converts it
if necessary to floating point, ~nd stores
the data into an array. These procedures
essent1ally allow random access to
individual elements of sampled data, even
though they may be located on a serial
device. Once in the array, the data can be
manipulated by a number of statistical or
anaytical routines, such as time series
analysis routines.

A variety of analytical
been incorporated into
including FFT routines and
programs. This collection
being steadily enlarged as
develops.

packages have
the package,
point process
of programs is

the package

COMPARISON WITH OTHER LANGUAGES

At this point, the relative merits of
writing the package in LABFORTH as opposed
to a combination of FORTRAN or Assembly
language routines can be evaluated. There
is for this evaluation a point of
comp.arisen, because a similar package had
been developed for the PDP-12 computer some
years earlier (Harper et. al., 1974; Mason
et. al., 1974; Pacheco et. al., 1974;
Harper and Mason, 1978). This previous
package was developed primarily for sleep
analysis and was written in FORTRAN with
assembly language subroutines, and in PAL-8.
That package cost approximately 7 man years
of development time. Six months of that
time was devoted to the analog to digital
conversion routines. The equivalent
routines in LABFORTH, which additionally
included recovery and random acess
utilities, required 6 weeks in LABFORTH.
Program development time of other routines
is more difficult to estimate, since some
aspects of the analysis portions have
changed between the two systems. However,
on selected routines, development speed has
been between 4-10 times faster in LABFORTH
than with the previous package.

A principle advantage of pro~ramming in
the LABFORTH language is the degree of
capability for expanding the sy•tem.
Additional language features for new I/O
devices or new mass storage devices, or new
display devices can be readily added to the
language with no recompilation of previous
source code.

The resulting LABFORTH code is much
more compact than the previous package. The
PDP-12 package occupied several hundred
pages of source code bound in a 4 inch thick
volume. The acquisition package alone
occupied over a 100 pages of assembly
source. The LABFORTH acquisition routine
occupies 6 pages of source code. This small
number of pages required for the source code
greatly facilitates program maintenance.

The LABFORTH version of the program
runs very fast. Where speed is of highest
priority, assembly language code was
incorporated into the LABFORTH source. The
high level code is also very fast in
execution, and exceeds the speed of FORTRAN
source code in such analytical routines as
the Fast Fourier Transform. Use of the
stack features of LABFORTH is instrumental
in providing fast execution.

Because the program is modular, memory
size is not as significant a problem in this
task, except where very large files are
required. however, the very large routines
are typically ocupying 10 to 30 % less space
than equivalent assembly langage and FORTRAN
routines. This largely results from the
inherent tendency to reuse routines which
are already defined in LABFORTH, rather than
executing IN-LINE code. As a result,
programs tend to grow linearly in LABFORTH ,
rather than exponentially as with othPr
languages.

The key to the success of LABFORTH as
applied to this acquisition and anaysis
package is that it is sufficiently fast and
flexible to perform tasks which previously
could only be carried out in assembly
language. However, snce it is a high level
language, and, more important, an inteactive
high level language, program development is
very fast. The earlier version of this
package required portions of the system to
be written in assembly language, and
portions to be written in a high level
language, i.e. FORTRAN. The result was a
non-integrated collection of individual
programs that were developed at great
expense, and was diffic~lt to maintain.
This version in LABFORTH, however, was
developed quickly, and resulted in an
integrated compact package that forms a
readily maintainable system whi~h is fast in
execution.

710

SUMMARY

An acquisition and anlysis package has
been developed for gathering analog and
digital data and storing these data onto a
mass storage device. The acquisition
routine has been written in LABFORTH, a high
level interactive language with stack.
features that allows fast execution compared
with a similar package written in FORTRAN
and Assembly language. Compared with the
older package, this system was developed
faste r, runs more quickly, and is more
extensible than the previous version.

BIBLIOGRAPHY

1. Harper, R.M. and Si rag, D. J.
LABFCRTH: Replacing BASIC
fast interactive language
Digest,pp 245-250, 1978

and FORTRAN with a
NCC Pers. Com.

2. Harper, R.M. and Sirag,
A Fast Interactive Language
Proc. Digital Equip. Comp.
4, pp. 957-961, 19JP.

D.J. LABFORTH:
for the LSI-11.

Users Soc., 4,

3. Harper R.M. and Mason, J. A Computer
System For The Analysis Of Physiological
Data During Sleep. In Press.

4.Mason, J. R. Harper, R.M., and Pacheco,
R.F. Analysis of respiratory data during
sleeping and waking. Proc. Digital Equip.
Users Soc. 1, 2, pp. 567-571, 1974

5.Pacheco, R.F., Perga, A., and Harper, R.M.
Time series analysis of physiological data
during sleep and waking. Proc. Digital
Equip. Users Soc. 1, 2, pp 551-556, 1974.

6.PDP and FOCAL are registered trademarks of
Digital Equipment Corporation. LABFORTH is
a trade.mark of Laboratory Software Systems,
which developed the software described here.

TIME SHARE TERMINAL EMULATOR UNDER RT-11

T.L. Starr and L.T. Nieh
General Electric Company
Louisville, Ky. 40225

ABSTRACT

TSTE is a program which enables a PDP-11 under the RT-11
operating system to communicate with a remote computer,
e.g. G.E. Mark III or DEC-10, over a telephone line at low
data rate, 110 or 300 baud. Basic hardware requirements
are a DL-llE asynchronous communication interface, and a
Bell 103 or equivalent data set. The program normally
operates in terminal mode where the PDP-ll's console device
appears to be a time share terminal to the user, and the PDP-11
emulates the functions of a time share terminal to the remote
computer. In addition, the user can transmit an ASCII data
file from the system RK05 disk, or store data received from the
remote computer on disk. The program further provides a con
trol character to generate a BREAK signal to the remote com
puter, and a control shift character which allows any control
character to be transmitted to the remote computer. The pro
gram will be made available through the DECUS program library.

INTRODUCTION

Out of tens of thousands of PDP-ll's in use today,
most are self-standing systems that operate with
out the benefits of being able to communicate with
a remote computer or terminal. This paper presents
a computer program, Time Share Terminal Emulator
(TSTE), that enables a PDP-11 operating under RT-11/
V2C Single Job Monitor to communicate with the out
side world while imitating a time share terminal.
The program transmits ASCII data at 300 baud, and
requires moderately priced communication devices -
i.e., a DL-llE interface and a Bell 103 equivalent
data set. Using this program, the PDP-11 is turned
into a super intelligent terminal that supports a
variety of computation and communication activities.
Some of the applications that we find useful are -

1) transmission of locally generated finite element
model data for analysis on a remote computer.

2) transmission of remote computation result back
to the PDP-11 for post-processing.

3) transmission of locally edited program and data
files to a remote computer.

4) transmission of data and result files to a re
mote terminal.

5) transmission of programs between PDP-ll's.

HARDWARE REQUIREMENT

1) PDP-11 Computer Supporting RT-11V2C
2) DLll-E Asynchronous Interface
3) Bell 103 Compatible Data Set
4) Console Device - 30 cps or faster
5) RK11/RK05 Disk

Proceedings of the Digital Equipment Computer Users Society 711

The program TSTE is currently operating on a PDP-
11/10 with 28K words memory, a DLll-E interface, a
Prentice DC22 data set, a Tektronix 4010 as console
device, and a RK11/RK05 disk. The DLll-E is in
stalled according to the DLll Asynchronous Line
Interface Engineering Drawing. For communication
with G.E. Mark III time sharing service at 300 baud,
the following jumper selectable options on the
DLll-E are used:

7 data bits
even parity
1 stop bit
300 baud transmit and receive

The 25 ft. cable supplied with the DLll-E connects
it with the data set. The Prentice DC-22 Data Cou
pler is a self-contained modem compatible with the
Bell System 103A Data Set. Data coupler options are
selected as follows:

RS-232C Interface
Data Access Arrangement- CDT-1000, Manual Dial
Originate
Half-duplex

The DAA option provides a data button on the tele
phone instrument to connect the data coupler with
the phone line.

Since the console device echoes all transmitted and
received characters, it must operate at a rate equal
to or faster than the DLll-E interface in order to
support sustained data transmission. The Tektronix
4010 operates at 9600 baud, however, a LA36 Dec
writer II operating at 30 cps probably would work
also. The RK11/RK05 disk is used to store data files
that are either transmitted or received from the
remote computer.

San Francisco - November 1978

SOFTWARE REQUIREMENT

TSTE is a MACR0-11 program that operates under
RT-ll/V2C Single Job Monitor. It uses less than
4K words of memory. The source program and write-up
will. be available from the DECUS PDP-11 library.

MODES OF OPERATION

Terminal Mode
This is the default mode of operation. The user
communicates with the remote computer through the
console device. User inputs at the console key
board are transmitted to the remote computer, while
outputs from the remote computer are printed on the
console printer. Since the data set operates in
half duplex, the user and the remote computer take
turns in sending data. User can generate a BREAK
signal by typing a CTRL K character. With G.E.
Mark III time share service, type CTRL K once to
issue a BREAK while the user is inputing; type
CTRL K twice to issue a BREAK while the remote
computer is outputing.

File Transmission Mode
The user enters the File Transmission Mode by typing
a CTRL T character. TSTE reads the file RK0:0UT.DAT
and transmits its contents to the remote computer.
The data set again causes the console printer to
print the characters as they are transmitted. In
essence, file transmission is analogeous to using
the paper tape reader with a conventional time share
terminal. To assure compatibility with paper tape
input format and timing requirement, TSTE provides
rubout fill characters following each line feed
character.

File Receive Mode
The user initiates the File Receive Mode by typing
a CTRL R character. TSTE opens a file RK0:IN.DAT
and writes all the subsequent console dialog in that
file. However, the user must type a CTRL D
character to close the file in order to make it
permanent before exiting from TSTE. Otherwise,
RK0:IN.DAT will not appear in the file directory.
File receive is analogeous to using the paper tape
punch with the conventional time share terminal.

Control Shift
Certain control characters, e.g. CTRL C and CTRL R,
are recognized and intercepted by the RT-11 key
board monitor or TSTE, . thus they cannot be sent to
the remote computer from the keyboard. TSTE pro
vides a control shift character, CTRL N, which
when followed by an alpha character signifies that
it is to be sent as a control character. For
example: a CTRL N followed by an X would send a
CTRL X (line delete for G.E. Mark III) to the re
mote computer. Since most control characters are
not printable, the echo will not appear on the con
sole printer. This feature allows TSTE to communi
cate with a PDP-10 remote computer which shares
common control characters with the PDP-11.

PROGRAM MESSAGES

Normal Messages
All TSTE messages are preceeded by a "#" sign.

1) On start-up, TSTE prints

712

READY FOR REMOTE COMPUTER

2) On entering file transmit mode (CTRL T), TSTE
prints

TRANSMIT OUT.DAT FILE

3) On leaving file transmit mode, TSTE prints
OUT. DAT FILE TRANSMITTED

4) On entering file receive (CTRL R), TSTE prints
OPEN IN.DAT FOR INPUT

5) On leaving file receive mode (CTRL D), TSTE
prints

IN. DAT CLOSED

Fatal Errors
Four fatal error conditions cause TSTE to abort and
return to RT-11 monitor. TSTE prints an error
message and exits to RT-11.

1) Fetch RK disk handler error
DEVICE NOT FOUND

2) Open file error - file receive or file transmit
mode

FILE OPEN ERROR

3) Write error - file receive mode
FILE WRITE ERROR

4) Read error - file transmit mode
FILE READ ERROR

Non-Fatal Errors
Two non-fatal errors cause TSTE to print a warning
message, but to continue processing.

1) Attempt to open an already opened file - file
receive mode

FILE ALREADY OPENED

2) Attempt to close an already closed file - file
receive mode

FILE ALREADY CLOSED

Normal Exit
TSTE normally exits by user typing two CTRL C's.

Dynamic Operation with TSTE
Since the remote computer considers TSTE to be a
time share terminal, the remote computer will wait
for input for a reasonable amount of time before
terminating the session due to time out. Con
sequently, the user can exit from TSTE, by typing
two CTRL C's, perform some local file manipulations
or computations, and then re-run TSTE to resume
remote processing. This dynamic enter/exit capabi-
1 ity allows a remote processing session to send and
receive a number of files taking advantages of com
puting capabilities of both the PDP-11 and the re
mote computer. By switching the data set in
receive mode, TSTE communicate with a remote termi
nal or another PDP-11 which is calling in with its
data set in the originate mode.

PROGRAM LIMITATIONS

TSTE relies on asychronous data communication, thus
there is no provision for transmission error detec
tion. However, processor-to-processor data transfer
eliminates an intermediate data storage medium such
as paper tape or cassette while suffering equally
from data transfer errors. One solution to detect
transmission errors is to have the remote computer
send back the transmitted file, and then do a file
comparison locally.

TSTE has not been used at 1200 baud, although this
has been limited by the hardware, i.e., the data
set and the console device.

713

BEINll: ON-LINE BEHAVIOR INPUT

Stephen Walker and Martin Reite
University of Colorado Medical Center

Denver, Colorado

ABSTRACT
BEINll is a FORTRAN program for computer entry and editing
of primate behavioral observations as they occur using an
on-line LSI-11 microcomputer. BEINll permits real time data
collection, bypassing traditional event recording techniques
like audio tapes and checklists. Additional advantages are
accurate entry timing, automatic error checking of the
entries, a real-time display of previous entries and
currently active entries, and the ability to edit the entire
behavioral entry sequence irr.mediately after the session is
terminated.

Entries are structured around a focus subject, who is the
originator or recipient of all behaviors scored. The entries
themselves are one or two character mnemonics representing
specific predefined behaviors taken from a suitable taxonomy
and a 4-digit number describing any other animal involved in
the specific behavior. The program keeps track of when
behaviors are entered and displays the currently active
behaviors on the CRT terminal to give the observer a time
locked summary of what has happened and is happening. The
program automatically times to a preset length then displays
the entire sequence of entries with time of occurrence
before the session is appended to the focus subject's data
file. The program includes an expandable library of 64
different possible behavior entries. The program is
adaptable to monitor and quantify real time behavior
observation from any species for whom a taxonomy can be
developed.

BEINll is a PDP-11 FORTRAN program designed to
permit real time collection of behavioral data
from animal subjects (we presently use it for
infant monkeys) living in social groups. One or
two character symbols representing specific
behaviors are entered on a key board terminal
as they occur, and active entries (those not
terminated and lasting more than 1 sec) are
displayed on a CRT. The repertoire of behavioral
entries is based on a single animal subject called
the focus who is defined before the behavioral
session is started, and to whom or from whom all
behavior entries are directed. Most behavior
entries can be electively modified with a 4-digit
number representing another animal that might be
involved in a specific behavior. For example, an
entry indicating the focus subject is being

present library. Subcategory 1 contains entries
which define the focus animal's physical relation
ship with its mother. One of these entries is
always active, and any subsequent entry from
Subcategory 1 automatically stops the previous
entry. Subcategory 2 defines the focus animal's
physical activity level; again one cf these

groomed can be modified to state who is doing the
grooming. The behaviors are taken from a behavior
taxonomy appropriate for the species, and the human
observer observes the subject for a finite period
of time (preset to 3 or 5 minutes but variable)
called an observation session. At the end of a
session, the program stores the data so as to
provide duration (with absolute start and stop
times), frequency, and sequence of all entries.

The behavior taxonomy library contains 64 items
divided in 5 Subcategories designed to facilitate
the observer's behavior entry. Table 1 lists the

Proceedings of the Dig/tel Equipment Computer Users Society 715

entries is always active, any subsequent entry of
a member of Subcategory 2 replaces the current
entry. On the CRT display, entries in both
Subcategori~s 1 and 2 cause t.heir display 'column
to be replaced with the latest entry. Subcategory
3 contains entries whose active length of time
can be defined (called duration items). Up to 6
of these entries may be displayed as active at one
time. Entries in Subcategory 3 are stopped by
reentering the exact entry. Subcategory 4 contains
entries whose active duration is very short (called
frequency items) and are assigned a 1 second
duration. Subcategory 4 has one display column on
the CRT. Subcategory 5 is for control commands
and behavioral entries which are undefined. These
entries are displayed in a separate column and are
written to the data file. This Subcategory is
useful for defining new behavioral entries not
presently in the entry library, and serves as an
error detector, since all entries not in Subcate
gories 1 through 4 automatically appear in
Subcategory 5,

Ban Franc/eco- November 1978

SUBCATEGORY 1:

K Cradle by Ma
E Enclosed by Ma
s Passive support by Ma
T Contact with Ma
x Proximity to Ma
A Apart save level
v Apart other level
z Mother separated

SUBCATEGORY 3:

K- Cradle by - (Not Ma)
E- Enclosed by - (Not Ma)
S- Passive Support by - (Not Ma)
T- Contact with - (Not Ma)
X- Proximity with - (Not Ma)
N On the Nipple
BE Bedding Exploration
DR Drink
EA Eat
F Fight in pen by others
IA- Initiate Aggression on
G- Initiate Groom on -
IM- Initiate Mount on -
IN- Initiate Genital Exploration on
IO Inattentive Object Exploration
MI- Ma initiate aggression on -
MM- Ma receives mount from
W- Ma receives aggression from
OE Object exploration
00 Oral object exploration
OS Orality on self
RA- Receive aggression from
RG- Receive groom from
RM- Receive mount from
RN- Receive genital exploration from -
RS- Restrain by -
SL Slouch
TT Temper Tantrum

SUBCATEGORY 2:

R Quiet rest
J Active rest
M Movement
C- Carried by -
L Locomotion
P- Play with

SUBCATEGORY 4:

Activity count
D- - approaches focus
B Convulsive jerk
0 Coo
I- Initiate play to
Q Squeal
IT- Initiate threat to
IU- Initiate punishment to
IX- Initiate social exploration to -
Y- - leaves focus
H Mark for edit reference
ND Nipple denied by Ma
NO Noise from outside pen
NP- No response to play overture from
RP- Receive play overture from
RT- Receive threat from -
RU- Receive punishment from -
RX- Receive social exploration from -
SK Scratch self
ST Startle reaction
SU- Submit to -
WE Wean

SUBCATEGORY 5 :

START
EDIT
SAVE
OTHER ENTRIES

TABLE I

A listing of the monkey behavior taxonomy currently used with BEINll.
Items followed by a dash (-) can be optionally modified with a
4-digit identifier (See text for discussion).

Operation of BEINll is .best explained by a step by
step description. After the program is loaded the
computer prompts the observer for the focus
subject's number, the observer's name, the experi
mental condition, and the number of the subject's
group. After entering this data the program asks
for initial conditions or entries which are active
at the time the session is started. Subcategories
1 and 2 always need initial conditions; Subcate
gories 3 and 4 may or may not have any active
behaviors. BEINll's commands are START for
beginning the behavioral sessions, EDIT for editing
the entire behavioral entry sequence, and SAVE for
appending the most recent behavioral sessions to a
particular subject's data file.

The START command enables the timer, writes a
start session entry in the data, and requests the
current date and time of day from RTll and stores
them with the data. The program is now in

716

operation awaiting new behavioral entries as it
times the session. Each behavioral entry causes
the time of occurence to be recorded. Next the
entry is split into the mnemonic and optional
modifying animal number. The mnemonic is compared
with the behavioral entry library to determine its
Subcategory. The new behavioral entry is .then
inserted into the proper CRT display column. If
the entry is from Subcategory 1 or 2, it replaces
the existing entry on the display. If it is from
Subcategory 3 this display area is searched to
determine if the new behavioral entry is a
terminator for an active entry or the start of a
new behavior. If it is from Subcategory 4 or 5
it will be displayed once on a single line and need
not be terminated. Following each behavioral
entry a single line 80 characters in length is
then output to the CRT terminal. This line
contains the time of occurence (measured in seconds
from start of session) of the entry, as well as

all currently active behaviors • BEINll is .then
ready for another entry. At the end of the session
time, an end of session entry is written to the
data area with the length of the session included
(3 or 5 minutes), and the end of session message
appears on the CRT terminal.

After typing EDIT, the CRT Terminal prompts for
a comment whose form is unrestricted other than
a maximum 60 character length. This provides an
opportunity for the observer to type in any special
descriptive circumstances accompanying the
observation session just completed. The entire
session is then displayed along with time of
occurence of each entry; each entry is also
assigned an entry number for editing purposes.
Typing E [entry number] causes the first 50 entries
after the entered entry number to be displayed.
Existing entries may be replaced by typing the
entry number followed by the new text. Typing D
[entry number] causes that entry to be deleted and

the follow.l.ng entries to be moved up one. Typing I
[entry number<sp)new entry] inserts a new entry
before the specified entry number.

Typing SAVE causes the program to search the
storage device for the already specified animal's
file and append the just edited session to it.
The program is then ready for a new observation
session. Data are stored in the ASCII form seen
during editing, and are easily deciphered for
later analytic and statistical routines.

This program can be down line loaded to run on a
satellite LSI-11 freeing up the host. This is
the way we currently run.it using a satellite Heath
Hll microcomputer with an H9 video console remote
from the main PDP11T03 system. The program is
being expande~ to include acquisition of concurrent
physiological data. Library additions, deletions,
changes in session time, or changes in entry
grammar are easily impiemented by a competent
FORTRAN programmer.

Acknowledgements: This research is supported by USPHS Grant No. MH19514. M. Reite is supported by NIMH
Research Scientist Development Award No. 5K02MH46335.

717

ATOMIC ABSORPTION SPECTROMETER READOUT AND DATA
REDUCTION USING THE LSI-11 MICROCOMPUTER

Michael J. Allen and Robert W. Wikkerink
Lawrence Livermore Laboratory

Livermore, California

Some common instruments found in the chemistry laborotory have
analog chart recorder output as their primary data readout media.
Data reduction from this medium is slow and relatively inaccurate.
This paper describes how to interface a single LSI-11 microcomputer
to PERKIN-ELMER models 603 and 303 Atomic Absorption Spectrophotometers.

DEFINING THE PROBLEM

Due to the large volume of samples that are process
ed through our laboratory and the excessive number
of manual steps required for data reduction, there
is a great need to automate the process so that the
chances for errors and the time the operator spends
runnirtg the machine are minimized. In our labora
tory there are two PERKIN-ELMER .P.tomic Absorption
Spectrophotometers. A Model 603 with LED digital
readout and a Model 303 with chart recorder readout.
When using the ~03, the operator manually copies
numbers from the LED display while the sample is
being asperated. The hand gathered data is then
reduced to parts-per-million or micrograms-per-mil
liliter by using a calculator. The Model 303 on the
other hand, requires the operator to make quantita
tive measurements by measuring the peak height from
traces on chart paper either manually or by analog
computer.

GOALS

A. Automatically generate card image ASCII files
for use in later calculations. These files to
be output to paper tape or disk.

B. Generate printed pages suitable for storage in a
logbook.

C. Free the chemist from tedious manual data gath
ering and reduction.

SYSTEMS EVOLUTION

Since the PERKIN-ELMER Model 603 is the primary
data gathering instrument, this paper will be most
ly concerned with describing the program and the
hardware that was required to interface the LSI-11
to ft. ·current plans-for the Model 303 will be
discussed in part.

The program was first written in FOCAL, then in
assembly language to run in an available LSI-11
with 4K core memory and an ASR-33 Te 1 etype for I/0.
The LSI-11 has since been upgraded such that it now
has 28K memory, RT-11, dual floppy disks, EIS/FIS
chip, and a TI Silent terminal. In addition BASIC
is now running on the system and a similar AA pro
gram has been written in the BASIC language.

A. FOCAL:

IMPLEMENTATION CONSIDERATIONS

Too slow, no mass storage capability
without RT-11, 4K memory is barely
adequate, and grossly inadequate
string handling.

Proce&dlngs of th& Digital Equlpm&nt Comput&r Us&rs Society 719

B. MACR0-11: Difficult to make changes in pro
gram, has mass storage capability,
4K memory is adequate, very immune
to 'glitches•, and adequate ~trfng
handling.

C. BASIC-11: Requires 16K memory minimum, good
mass storage capabilities, excel
lent string manipulation, and the
program may be easily changed.

D. HARDWARE: The PERKIN-ELMER communications in
terface provided a suitable RS-232-C
serial interface port for connection
to the LSI-11 microcomputer running
at 1200 BAUD.

As soon as 16K memory, dual floppy disks, and RT-11
became available the FOCAL version was abandoned
and work proceeded on the MACR0-11 and BASIC-11
versions.

OPERATIONAL MODES

The operational modes available include BEGIN, RE
SET, MANUAL, MANUAL BATCH, DUMP, and TAPE. A de
tailed discussion of each operational mode follows:

A. BEGIN:

B. RESET:

C. MANUAL:

BEGIN mode provides for manual
entry of certain parameters
which do not change for a given
sample set. Examples: Element
designation, sample volume, pro
cedural blank, procedural blank
code, dilution factor, and mass
unit code. The BEGIN mode also
permits the operator to select
for input either ABSGRBANCE or
CONCENTRATION data.

RESET mode provides for the mod
ification of the dilution fac
tor parameter, entered in the
BEGIN mode, without entering or
modifying any other parameters
associated with the BEGIN mode.

The MANUAL mode provides for
manual entry of the solution
identification number, amount
of sample, the sample name, and
the number of aliquots required
for this analysis. In addition,
the operator may also elect to
utilize "Method-of-Additions"

San Francisco - November 1978

in which case the computer will
request the number of data points
required. Two through five data
points are acceptable. The ter
minal requests 'O:' to indicate
that the sample requested has no
'spike' added to the sample being
analyzed. After processing the
'O:' data, the terminal requests
'l:' data and so forth until all
points have been entered

Using two points, the algorithm
follows the standard form. For
three or more points, the computer
performs a least-squares fit to
a straight line.

D. MANUAL BATCH: This mode is identical to the
MANUAL mode except that the op
erator is interrogated only once
for the initial values with the
additional request to input the
total number of samples to ana
lyze.

E. DUMP:

F. TAPE:

The hardcopy device prints all
data in the same form as for MAN
UAL mode and is suitable for log
book entry. The computer treats
the solution identification as a
floating point number and incre
ments it by one for each sample.
The low three characters of the
sample name must be digits and
are converted to an integer in
order to be incremented by one
for each sample analyzed.

Under MANUAL BATCH mode, the com
puter outputs the usual inform
ation for the log page and awaits
data from the Model 603 AA unit.
Method-of-Additions analyses are
handled likewise with no operator
communication with the computer.
The MANUAL BATCH mode is su.i table
for sample changer operation if
desired.

The DUMP mode puts the final data
in card image format onto the
floppy disk (MACR0-11 version
only). The result is an ASCII
file which may be entered into
a database. The BASIC version
automatically outputs card images
in a sequential disk file.

The TAPE mode punches the final
data in card image format onto
paper tape, on the ASR-33 termi
nal, for storage or entry into a
database.

The program mostly operates in the two modes: BEGIN
and MANUAL.

720

OPERATIONAL DESCRIPTION:

In all modes where interaction between the operator
and the computer is required, the RUBOUT character
deletion command is allowed. In' the MACR0-11 ver
sion, RUBOUT echoes a backslash for each character
that is deleted. If more characters are deleted
than are actually in a given field the program ig
nores them. The BASIC version operates with RUB
OUT as described in the BASIC manual.

The program must be initialized in the BEGIN mode
as the MANUAL mode requires that the BEGIN mode
parameters be previously entered.

MACR0-11 VERSION RESTRICTIONS: Any time the TAPE
mode is called, the program must be restarted in
BEGIN mode as the data buffer pointer is reset at
the end of the tape punching sequence, effectively
eliminating the card images from the data buffer.
While in the MANUAL mode, the LSI-11 wait~ for the
PRINT button on the AA unit to be activated, col
lects the readings until the requested number of
aliquots has been satisfied, prints out.a header
on the terminal, calculates and prints micrograms
per-ml, standard deviation, net micrograms-per-ml,
and fractional standard deviation for the sample
currently being analyzed.

The SAMPLE ID, SOLUTION ID, net micrograms-per-ml
and FSD are written to the storage buffer in
strings of ASCII characters. The program then
prints the MODE prompt again. At that point the
operator can return to the BEGIN mode to change
parameters~- continue with the MANUAL mode for the
next sample or go to the TAPE mode for outputting
the stored data to paper tape via the terminal low
speed paper tape punch.

The program allows the operator to analyze samples
in CONCENTRATION or ABSORPTION by changing the mode
switch on the AA unit and by answering the absorb
ance question that is asked in the BEGIN mode.

The operator may also elect to do standard addi
tions whenever sample matrix problems are suspected.
The program allows two to five point standard addi
tions depending upon the operators preference.

With the addition of RT-11 and dual floppy disks,
the MACR0-11 program was modified slightly to allow
the operator to write the memory stored dat~ to the
default device with the DUMP mode. In the DUMP
mode the program requests a file name and then
writes the file with a .DAT extension. At the end
of the write, the program prints ALL DONE and exits
to monitor so the operator is forced to restart the
program in the BEGIN mode.

In the RT-11 version buffer space has been reserved
for 200 samples before the data must be dumped to
the floppy disk whereas in the non RT-11 version
the maximum allowable buffer space is limited only
by the size of memory. In the non RT -11 version,
if the operator asks for the DUMP mode instead of
TAPE mode, the program ignores the dump request and
outputs the memory buffer to the low speed paper

tape punch. In the RT-11 version either dump to DK:
or tape is allowed. This is done with conditional
assembly code so the program is useable on either
LSI-11 system without major program modifications.
The data that ts transferred to DK: with the DUMP
mode are written in ASCII format for editing pur
poses.

BASIC-11 FILE STORAGE SCHEME: BASIC-11 is program
med to open a sequential file which has been pre
viously dimensioned as a string array. When BASIC
is first started, a filename is requested and BASIC
creates a null file of that name with a .DAT exten
sion. As each sample is analyzed in the MANUAL mode,
BASIC opens the sequential file, reads the strings
into an array, adds the next string element to the
array, then closes the sequen~ial '.ile. Trye con
stant updating of the sequential file provides for
the preservation of data in the event of a power
failure. However, repetitively updating the sequ~n
tial file creates imbedded empty files on the device
directory which may, in turn, create housekeepi~g .
problems on small floppy disk systems. The periodic
use of the RT-11 .SQUEEZE command may prove necessary
in such cases.

EXAMPLES

A. MACR0-11: Figure l shows an example of BEGIN
mode parameter entries. Note that
a carriage-return simply retains the
previous value of a parameter.

MODE: B

ABSORBANCE? N
STANDARD ADDITIONS? Y
SPIKE CONG. IN PPM: 2.0

ELEMENT: : NM
VOLUME: ******* : l
BLANK: ******* :
BLANK CODE: : 13
DILFACT: ******* : l
SASAMP: ******* : .01
MUCODE: : l 0

(Figure 1)

Figure 2 (See Page

Figure 3 shows how the operator uses
the DUMP mode to transfer the data to
a file on the default device. Note
that the "=" sign is required.
MODE: D

AT THE ASTERISK TYPE FILE NAME IN
THE FOLLOWING FORMAT.
FILENM=
6 CHARACTER FILENAME IS MAXIMUM

PWL=

ALL DONE.

(Figure 3)

721

B. BASIC-11:

Figure 4 shows an example of how eas
ily the dilution factor can be changed
in the RESET mode.

MODE: R

DILFACT: 100.000 10

MODE:

(Figure 4)

F.igure 5 shows an example of paramet
er entries in the BEGIN mode. Note
that in order to retain the previous
value of-any parameter, it must be
retyped as the operator progresses
through the BEGIN mode. The RESET
mode may be used to change the dil
ution factor without disturbing or
.retyping any other parameter.

ENTER FILE NAME (6 CHARS. MAX) ABC123
NEW FILE? Y

MODE: BEGIN

ABSORBANCE? Y
STANDARD ADDITIONS? N
STANDARD CONCENTRATION IN PPM:5
ABSORBANCE OF STANDARD: .2

ELEMENT: :CA
VOLUME: 0 :1
BLANK: 0 :0
BLANK CODE: : 15
DILFACT: 0 : l
SDSAMP: 0 : . 001
MUCODE: : 13

(Figure 5)

Figure 6 illustrates the RESET mode.

MODE: RESET

DILFACT: l :2.5

MODE:

(Figure 6)

Figure 7 (See Page

Figure 8 (See Page

Figure 9 illustrates a card image
file dump from either the MACR0-11
or the BASIC-11 versions.

700036 PWL027 SRlO 19.6111 .000633
700037 PWL029 SRlO 13.3055 .000934
700038 PWL030 SRlO 1.38888 .020000
700039 PWL031 SRlO 8.27777 . 001501
700040 PWL036 SRlO 7.94444 .001564
700041 PWL039 SRlO 7.88888 . 001575
700021 PWL045 SRlO 19. 7777 .000628
700043 PWL085 SRlO 12.8055 .000970
700044 PWL087 SRlO 9.36111 .001327
700045 PWL075 SRlO 6.76666 .001836
700046 PWL079 SRlO 7.62222 .001630
700047 PWL081 SRlO 9.43333 . 001317
700048 PWL086 SRlO 5.75555 .002158
700049 PWL030 SRlO 52.2222 .000238
700050 PWL035 SRlO 25.5555 .000486

(Figure 9)

SYSTEM PERFORMANCE

The Model 603 AA unit and the LSI-11 have been oper
ating together for approximately one year now. A
comparison was made between the old system of hand
collecting and calculating the data versus letting
the LSI-11 do it. Before automating the system,
it took three to five minutes to collect and hand
calculate one sample. After automating it takes
40 seconds to analyze and machine calculate the
same sample. The whole analytical process has been
speeded up by a factor of 4 to 7 which is a signi
ficant, improvement.

FUTURE PLANS

Since the addition of RT-11 and dual floppy disks
to the system BASIC has been added. Future plans
call for the addition of the PERKIN-ELMER Model 303
and a DIONEX SYSTEM 10 Ion Chromatograph both of
which have chart recorder output. This will be
accomplished by adding an A/D converter to the
LSI-11 and utilizing analytical programs designed
to operate under DEC'S MULTI-USER BASIC.

ACKNOWLEDGMENT

Many thanks to Bob Heft who provided the' inspira
tion and support for this project and to Bill Steele
for his many practical suggestions. A special note
of thanks to co-author Bob Wikkerink who wrote the
MACR0-11 version of this program for without his
help, this paper would not have been written.

Work performed under the auspices of the U.S. Energy
Research & Development Administration, contract No.
W-7405-Eng-48.

722

MODE: B

ABSORBANCE? N
STANDARD ADDITIONS? N
ELEMENT: : CA
VOLUME: ******* : 1
BLANK: ******* : 0
BLANK CODE: : 15
DILFACT: ******* : 1
SDSAMP: ******* : .001
MUCODE: : 10

MODE: M

SOLUTION ID: 700049
AMOUNT: ******* : 1
SAMPLE ID: NUR004
BLANK CODE: 15
HOW MANY ALIQUOTS? 5
VOLUME: 1.00000
!!!!! START AA UNIT!!!!!

4.56 4.62 4.63 4.71 4.64

Figure 2 shows two examples of MANUAL mode operations.
The first is for a sample using CONCENTRATION values
for data input. The second sample was analyzed using
two-point Method-of Additions. Note that all float-
ing point numbers are represented in a six-digit for
mat. Note also that the MANUAL BATCH mode is not avail
able.

ELEM.
CA

DILFACT
1. 00000

UG/ML
4.63200

S.D.
.000447

BLANK

NET UG/10
4.63200

S.D.
.000447

MODE: M

SOLUTION IO: HCCOlO
AMOUNT: 1.00000:
SAMPLE ID: HCCOlO
VOLUME: 1.00000
BLANK CODE: 13
HOW MANY ALIQUOTS? 4

STD ADDITION~ 0

0.06 0.06 0.07 0.06

CONCENTRATION: .062500

STD ADDITION:

1. 04 1. 02 1. 02 1. 02

CONCENTRATION: 1.02500

SAMPLE CONG: . 129870

ABSOLUTE SIGMA: .000954

RETAIN STD ADD'N NUMBER ? Y

FSD: .005000

FSD: .005000

(figure 2)

723

F.S.D.
. 000097

MODE: M

SOL ID: 700002
AMOUNT: l
SAMP ID: NUR004

VOLUME: l

BLANK CODE: 15

Figure 7 shows examples of MANUAL mode operations.
Note the date and time are automatically printed
by the computer for logging purposes.

HOW MANY ALIQUOTS FOR RUN # 2 :3
o. 002 o. 001 0. 002

AVERAGE MACHINE READING: 0.0017

TODAY IS 24-0CT-78 THE TIME IS 15:18:10

ELEM.
CA

MODE: MB

DILFACT
l O. E-01

UG/ML
4.167E-02

S.D.
l.44E-02

BLANK
o.o

(Figure 7)

724

NET UG/10
4.167E-02

S.D.
l.44E-02

F.S.D.
3.46E-Ol

Figure 8 illustrates the MANUAL BATCH mode of oper
ation. Note that the operator answers only initial
values for solution identification, and sample iden
tification. The computer continues from there for
the number of samples designated. The operator need
only operate the PRINT button on the Model 603.

MODE: MB

HOW MANY SAMPLES IN THIS BATCH? 2
SOL ID: 700003
AMOUNT: l
SAMP ID: NURl 04

VOLUME: l

BLANK CODE: 15
HOW MANY ALIQUOTS FOR RUN # 3 : 3
HOW MANY POINTS TO FIT? 2
STD. ADDITION: 0 0.002 0.001 0.001
AVERAGE MACHINE READING: 0.0013

STD. ADDITION: l 0.017 0.017 0.017
AVERAGE MACHINE READING: 0.0170

TODAY IS 24-0CT-78 THE TIME IS 00:06:09

NET SAMPLE CONCENTRATION: 4.255E-Ol UG/ML

ABSOLUTE SIGMA: 3.47E-04

SOL ID: 700004
AMOUNT: l
SAMP ID: NUR105
VOLUME: l
BLANK CODE: 15
HOW MANY ALIQUOTS FOR RUN # 4 : 3

HOW MANY POINTS TO FIT? 2
STD. ADDITION: 0 0.001 0.000 0.001
AVERAGE MACHINE READING: 0.0007

STD. ADDITION: l 0.016 0.016 0.016
AVERAGE MACHINE READING: 0.0160

TODAY IS 24-0CT-78 THE TIME IS 00:08:05
NET SAMPLE CONCENTRATION: 2.174E-Ol UG/ML
ABSOLUTE SIGMA: ·l.77E-04

MODE:

(Figure 8)

725

APPLICATION OF MU-BASIC, VIRTUAL FILES TO MARINE CHEMICAL RESEARCH

George Kerr
Harbor Branch Foundation, Inc.

Fort Pierce, Florida

ABSTRACT

A PDP 11/34 system has been set up to reduce data resulting
from marine chemistry analyses. A series of MU-BASIC pro
grams operating under RT-11 has been developed providing
the following virtual file applications:

1. Building and editing input data files.
2. Selection of data used in various

statistical subroutines.
3. Storage and retrieval of reduced data in

a master file.

The advantages and disadvantages of virtual file utilization
on a small (32K word), floppy based system are illustrated.

INTRODUCTION

Marine chemical research usually entails analysis of
numerous seawater samples for nutrients, metals, and
particulate materials. Laboratory procedures are
generally complex, tedious, and slow. However,
sophisticated analytical instrumentation has been
developed, and has found acceptance as a reliable
and productive means to increase the efficiency and
reduce human error of such procedures. Automatic
methods free the investigator for less routine tasks
and provide more rapid and precise determinations
[1 '2] .

The amount of data resulting from these analyses is
large, and is usually gathered by hand, organized
into consistent groupings, and then reduced by rou
tine statistical methods. With automated laboratory
procedures, this is perhaps the most time consuming
aspect of chemical oceanography. It is also the most
amenable to computer applications, as has been real
ized in biomedical research laboratories [3]. The
sheer volume of data and the number of computations
involved in routine data reduction for interpretation
of experimental results have compelled the marine
chemists at Harbor Branch Foundation, Inc. to request
the development of an automated data collection and
reduction system.

In an effort to determine long-term trends, the
marine chemistry group routinely samples several
locations within the lagoon to determine the con
centration of dissolved nutrients, heavy metals,
and organic carbon. In addition, several physical
p~rameters such as water temperature, salinity, and
tide are monitored.

Samples returned to the laboratory are processed
through several types of chemical analytic equip
ment. In each instance an ordered sample tray is
prepared for analysis. Technicon AutoAnalyzer~are
used for nutrient determinations. Heavy metal de
terminations are accomplished by anodic stripping
voltametry and atomic absorption spectrophotometry.
Infrared techniques are used in dissolved organic
carbon determinations.

Proceedings of the Digital Equipment Computer Users Society 727

CHEMICAL LABORATORY CONSIDERATIONS

The marine chemistry group sought the assistance of
the computer services group in determining nutrient,
heavy metal, and dissolved organic carbon concen
trations from raw instrument results, in monitoring
the quality of procedures and sampling techniques,
and in storing and later retrieving nearly 1600
weekly concentration and physical measurements.
Also provision was to be made for future expansion
in the number of concentration determinations
processed.

All concentration determinations, independent of
instrument, used similar techniques. These in
cluded the placement of blank and standard samples
among water samples within instrument sample trays.
Blanks are used to remove the bias produced by in
herent in situ turbidity, and/or reagents added to
the samples during processing. Standard samples of
known concentration are used to calibrate the in
struments for each sample tray.

In general, to produce known concentrations from
raw instrument results the following were required:

I, A calculation of mean blank value to be sub
tracted from the water sample data.

2. A linear regression of standard samples to
determine the relationship between instrument
readings and known concentrations.

To monitor the quality of analytic processes, the
following were required:

1. A Students 1 t-test to determine the equality of
means between each sample tray's blank set and
all blanks previously processed by the parti
cular instrument,

2. A cumulative sum test between standard set
slopes and the set of all standard set slopes
determined from previous instrument runs of
particular nutrients, heavy metals, or dis
solved organic carbon.

3. The determination of the minimum detectable con
centration for each sample tray processed.

San Francisco - November 1978

4. An analysis of covariance between standard set
slopes when multiple stan<lard sets were used,

Sample trays would include samples from several
stations. At each station multiple depths were
sampled, and at each depth replicate samples were
taken. To monitor sampling techniques, the mean,
standard deviation and coefficient of variation
between replicated samples were desired. Also, in
two instances, an analysis of covariance between
replicated samples at the same depth was required.

The chemistry group would accept or reject in
strument results on the basis of a report generated
for each sample set processed. Decision making
by the software was not required except that water
sample concentrations found below minimum detectable
limits would be stored as one half the minimum de
tectable limit calculated for each sample set.
Also, missing data was to be ignored in all calcu
lations. Storage and retrieval of concentration
and physical data was to be based on four identifi
cation levels: cruise number, station number,
element (nutrient, water temperature), and replicate
number.

COMPUTER SYSTEM CONSIDERATIONS

To a 11 ow simultaneous access to the PDP 11 /34 by
other users, the system to handle the request was
written in MU-BASIC. Since all concentration deter
minations required similar statistical routines,
these were written in subroutine form. Due to
memory 1 imitations, 3.5K words, programs required
overlaying'.

A separate data entry routine was written but not
incorporated into the root concentration determina
tion programs, (CDPs), for two reasons. One, the
availability of the CRT terminal in addition to the
in-laboratory hard copy terminal permits two chem
ists to enter raw data simultaneously. However, the
unavailability of a second hard copy terminal does
not permit simultaneous running of two CDPs from
which reports were desired. Two, a separate data
entry program permits the chemists to defer concen
tration determination until a more advantageous
time.

To simplify data entry, information was entered in
the order in which analytic instrument results were
produced. Virtual files were selected to store the
raw information for each process so that the accu
racy of entered data would not be affected by disk
storage and to conserve disk storage space. These
two advantages of MU-BASIC virtual files result from
the fact that, unlike sequential files, a conversion
from binary to ASCII format does not occur.

Since the numbers of water samples, blanks, and
standards and their ordering within sample trays
could change, it was decided to create virtual tray
layout files for each process which define the
statistics to be applied in each case and the sample
tray ~umbers to be used within each statistic.
Virtual files are advantageous here due to their
random access capabilities.

Under normal operating conditions there would not be
sufficient floppy disk storage to contain concentra
tion and physical results for extended periods of
time. Nearly 42,000 words would be generated in six
months. Therefore, intermediate master update files

728

were used to contain results of the CDPs until a
time when they could be used to update a master
file contained on a separate floppy disk. Virtual
files were used for intermediate files to conserve
floppy disk space and to retain the accuracy of
results. Updates to the master file were made
several times daily during low activity periods.

The floppy disk containing the master file also
stored a master file query program, (MFQP), and an
MU-BASIC virtual string file containing information
describing the contents of the master file.
Queries of master file information are made during
low activity periods. MU-BASIC virtual files were
selected for the master file and the master des
cription file to conserve disk space, to provide
random access capabilities, and to remove the need
to copy the entire file for each update. Since
MU-BASIC virtual files emulate one dimensional
arrays, use of a simple algorithm permits access to
any element within these files. Also, a virtual
master file would retain the accuracy of the final
results of the CDPs.

THE CHEMICAL DATA PROCESSING SYSTEM

The final chemical data processing system, (COPS),
consisted of four CDPs, ten statistical sub
routines, one raw data entry and edit program (DEP),
one MFQP, one master file update program, (MFUP),
eight virtual raw data files, four virtual tray
layout files, thirteen sequential blank storage
files, thirteen sequential standard set slope files,
and two sequential work files.

A stream within COPS is defined by analytic equip
ment type, Since all ,a.treams are similar, only the
Technicon AutoAnalyze~ stream will be discussed in
detai 1.

Figure l illustrates the AutoAnalyzer<© stream. The
DEP is used to enter, print, and edit the analytic
instrument generated raw informati£_n later used by
the CDP. Since five AutoAnalyzers'!Ywere run simul
taneously, five virtual raw data files were used in
this particular stream. Other streams where instru
ment turnaround times were slower required only one
raw data file.

All files within a stream contain file names with
similar roots. File suffixes define a particular
nutrient in the case of the AutoAnalyzer<© stream,
and file prefixes, common between streams, define
the file function, This naming scheme simplified
file management. File names are created within
programs from a terminal identification of the
nutrient being processed, This is illustrated by
the following example:

10 DATA ''NH3", "NOZ+N02", "N02", "SI 04", "P04 11

20 FOR J=I TO 5\READ N1$\NEXT J
30 DATA "NUTl II' "NUT2", "NUT3", "NUT4", "NUT5"
40 FOR J"'I TO 5\READ N2$ (J)\NEXT J

100 Pl $="5 I 1\P2$,,,"B11'..P3$= 11 S11\E$= 11 • DAT"

200 PRINT "ENTER THE NUTRIENT NAME";\INPUT N$
210 FOR J"'l TO 5\IF N$,,,NI$ (J) GO TO 220\NEXT J

220 DEF FNA (X$, Y$, Z$)=X$ & Y$ & Z$
230 Fl$=FNA (Pl$, N1$(J), E$)

•
280 OPEN Fl$ FOR OUTPUT AS FILE VF2

ENTRY
REPORT

RAW
DATA

FILES

BLANK
FILES

SLOPE
FILES

DIALOG

CONC.
--MDETERMINE 1----

PRGM.

STAT.
SUBS.

COPIED
RAW

DATA

TRAY
LAYOUT

FILE

CONC.
REPORT

MASTER
UP~TE
FILES

DIALOG

MASTER
UPDATE

PRGM.

MASTER
FILE

UPDATE'
REPORT

DIALOG

QUERY
PRGM.

QUERY
REPORT

®
FIGURE I. TECHNICON AUTOANALYZER STREAM

729

MASTER
l.D.

FILE

Only one raw data file is processed by the CDP at
one time. The nutrient to be processed is identi
fied by the chemist and the appropriate raw data
file is copied into the temporary raw data file. A
separate virtual work file is used in each stream
for temporary storage of raw data since these data
could then be modified within the temporary file by
dilution factors and blank values without destroying
the original raw data.

Subroutines were written with common line numbers
so they could be overlaid. The CDP uses the sta
tistical subroutines in conjunction with pointers
into the tray layout file. The following illustra
tes the interaction between a CDP pointer, Z, the
tray layout file, VFl, and the raw data file, VF2,
within a statistical subroutine used to calculate
a mean.

5000 X=Z + 1
5010 N=VFl (X)
5015 M=0
5020 FOR J=l TO N
5030 P=VFl (X + J)
5040 M=VF2(P) + M
5050 NEXT J
5060 M=M/N
5070 RETURN

In the above example, the value of the variable N is
read from the tray layout file. This variable is
used to specify the number of raw data used in the
mean calculation. The variable P, also read from
the tray layout file, defines the virtual file posi
tions of the raw data.

Sequential blank files and cumulative sum slope
files contain blank means and standard set slopes
used to compare each sample set run with previous
runs.

Keyboard dialog with the CDP consists of identifica
tion of the nutrient to be analyzed, the entry of
dilution factors by sampler number, and the entry of
probability levels.

The final report consists of results of the various
statistics and a listing of the final nutrient con
centrations by sampler number.

Master update files contain identification informa
tion used in the MFUP in addition to concentration
results. Identification information consists of a
process code and week number, identifying the entire
file; and a station number, sampler number, and
replicate number identifying each concen,tration
result. In the case of the AutoAnalyzer® stream,
concentration identification information, with the
exception of week number, does not change between
runs. Therefore, they are stored permanently in
the master update files. However, other instrument
streams. required 6ntry.of identification data.

The MFUP uses the identification information
supplied with the concentration results in conjunc
tion with a simple algorithm to store the concentra
tion data in the appropriate master file location.
Figure 2 illustrates master file storage by
algarithm.

The master file is updated and queried during
certain non-active periods of the day. The possi
bility of destroying previous master update file

730

results with subsequent runs is present. To
alleviate this possibility, the master update files
are tagged with a default value in the location
reserved for a week number. Upon data entry, a
check is made of the week number within the appro
priate master update file. If a default is
detected, data entry is permitted. If a default is
not detected, then data entry is not permitted.

The MFQP functions in a similar manner to the MFUP.
Variables are selected for printing on the basis of
a week number range, sampler number, and variable
number. Again a simple algorithm much like that
illustrated in Figure 2 is used to locate the master
file positions of the desired information.

ADVANTAGES OF VIRTUAL FILES WITHIN COPS

MU-BASIC virtual files were used extensively in the
resulting COPS to determine nutrient, heavy metal,
and dissolved organic carbon concentrations from
raw chemical analytic instrument results; to moni
tor the quality of procedures and sampling tech
niques, and in storing and later retrieving nearly
1600 weekly concentration and physical measurements
made in the Indian River Lagoon, Florida.

Vi rtua 1 f i 1 es were found to have the fo 11 owing
advantages on a small PDP 11/34 minicomputer:

1, A more accurate retention of data as compared
with sequential file processing.

2. A four fold savings in disk storage space as
compared with sequential file processing.

3. A memory saving in all instances where arrays
exceeded one block in length.

4. Virtual files provide random access capabili
ties where sequential files do not.

5. Files need not be read in their entirety to
reach the last file element as with sequential
file processing,

6. When updating files, the entire file need not
be copied as in sequential file processing.

COPS ADVANTAGES TO THE CHEMIST

Prior to the creation of the COPS, calculations
involved in statistical analyses occupied nearly
one half man day for each sample set, With the
advent of the COPS, similar analyses were pro
cessed in 15 minutes or less.

Before the COPS all calculations were performed by
hand entry and manipulation of data using desk top
calculators. Intermediate and final results were
copied into individual process notebooks for future
reference, The adoption of the COPS by the chem-
ists has removed many sources of error inherent
with previous methods, and has greatly simplified
the correlation, interaction, and retrieval of
information for the chemistry group as a whole.

REFERENCES

[l] Char, K.M. and J.P. Riley. 1966. The auto
matic determination of phosphate in
seawater. E_eep-Se~~L-~~:___46I:~·

[2] Armstrong, F.A.J., C.R. Stearns and J.D.H.
Strickland. 1967. The measurement of
upwelling and subsequent biological
processes by means of the Technicon Auto
AnalyzerR and associated equipment.
~eep-Sea Res., 14: 381-389.

r
0

1600

3200

1

MASTER
FILE

...

CRUISE
I

CRUISE
2

CRUISE
3

-

l

~
\ 200

\
\
\

160~
L_ FILE POSITION

CRUISE
SECTION

CRUISE
PHYSICAL

DATA

STATION
I DATA

STATION
2 DATA

0

I/

/
/

/

,

300

9 00

\

\
\ 600

\
\
\
\

STATION
SECTION

...

STATION
PHYSICAL

DATA

AUTO-
ANALYZER

DATA

P2R~iS

PROCESS
3 ~TA

PROCESS!
4DATA

AUTO
ANALVZER

SECTION

200 30

/
/

/

9-1 NUTRIENT

35 0

\50

\
\
\

750 \

\
900 \

450
\

I

NUTRIENT\
2

•

•

•

•

•

25

\
\
\
\
\
\

\
\

NUTRIENT
425 \

6

NUTRIENT MASTER FILE POSITION• A+B+c+D+E
WHERE: A• (CRUISE NUMBER-I) X 1600 'i"200

9 .. (STATION NUMBER-I) X 700 -r 100
C= (PROCESS NUMBER-I) X 150

D• (NUTRIENT NUMBER-I) X 25
E • REPLICATE NUMBER

\
\

NUTRIENT
SECTION

...

SAMPLE~
I

REP
I

SAMPLE~
I

REP
2

•

•

•
•

SAMPLER
16

REP
3

FIGURE 2. MASTER FILE LAYOUT AND STORAGE ALGORITHM

731

300

301

302

325

[3] Monstev, A.W. and H. Clan. 1977. Electro
myographic diagnosis using a PDP-12.
~roe. Digital Equipment Users Socie1:1.,
3ITT: 1015-1018.

[4] Digital Equipment Corporation, MU-BASIC/RT-I I
L!.ser's Manual, Maynard, Mass., ~975.

ACKNOWLEDGEMENTS

.The author; wishes to express his appreciation to
Hr. John Montgomery, supervisor of nutrient and
trace metal chemistry; and his staff; and Mr.
Edward Gallaher, supervisor of computer services,
Harbor Branch Foundation, Inc. for thei,r support

·during the development of COPS and in the prepara
tion of this paper.

This is contribution number 117 from the Harbor
Branch Foundation, Inc.

732

GT-43 AIRPLANE FLIGHT
SIMULATION

C. Frank Kyle and Phil Sherrod
Vanderbilt University
Nashville, Tennessee

ABSTRACT

This paper describes a GT-43 based program, called "PILOT"
which simulates the flight of a light airplane. The simulation
is accomplished by calculation in real-time of the major forces
which act upon the plane. These include the forces acting on
the wings, the tail and control surfaces, the engine thrust,
drag, and landing gear forces. Joystick and potentiometer
controls are used to fly the simulated airplane. Normal
flight, take-offs, landings, crashes, and stalls are handled
realistically.

"PILOT" is a program which runs on a GT-43 to
simulate the flight of a light airplane. The pilot
of the simulated flight sits before the GT-43
display screen and operates joystick,
potentiometer, and push-button controls to control
the flight. The real-time behavior of the airplane
and its flight instruments are always displayed,
but the pilot can select any of three different
points of view from which to watch the behavior of
the airplane. The first is the view of the
external terrain which would be seen by a pilot
onboard the aircraft. A second view shows the
aircraft as seen by an observer in the control
tower of the airport. The tower observer always
tracks the flight of the airplane. He is equipped
with zoom-lens binoculars for use when the airplane
is not in the immediate vicinity of the airport.
The third view is that of a distant observer who
also has a zoom lens. He is free to look about as
he wishes and is even free not to watch the flight
so that blind instrument approaches can be
practiced.

There are seven flight instruments which are
continuously displayed. These range from simple to
relatively complex. There is a fuel gauge, an
airspeed indicator, and an altimeter which have
obvious functions. There is an artificial horizon
which displays the aircraft attitude in flight, and
an automatic direction finder (ADF) which indicates
the direction to the airport relative to the
current aircraft heading. Two instrument landing
system (ILS) devices are also included. A VOR/DME
display indicates the bearing and distance to the
aircraft from the airport. One airport runway is
equipped with ILS transmitters. The last flight
instrument is a glide slope indicator which
functions on approaches to the ILS runway to
indicate the position of the airplane relative to
the nominal glide slope.

PILOT runs on a GT-43 equipped with 28K words of
memory, floating point hardware, and an AR-11 A/D
subsystem to which the controls are connected and
which provides the real-time clock. PILOT runs
under RT-11 and in its current form it nearly
saturates the resources of the machine. It heavily
loads both the CPU and the VR-11 display processor
and we run it under single job RT-11 to save core.

Proceedings of the Digital Equipment Computer Users Society 733

The program consists of two basic modules, a
display library written in MACR0-11 and the flight
dynamics module written in FORTRAN. The display
library, GTLIB, was written at Vanderbilt as a set
of general purpose routines which provide efficient
access by a FORTRAN program to the VR-11 and AR-11
hardware through a set of low level routines, and
relatively sophisticated routines for driving the
display. The display library is specifically
designed to allow the calculation and generation of
one display command list to be overlapped with the
display of another. Routines are included to
provide facilities for the efficient display of
moving 3-dimensional objects. There are routines
which translate or rotate either an object or the
observer in the 3-dimensional space, for example.
One routine will perform a perspective projection
of the resulting scene, clip the result to the
screen window size, and call low level routines to
display the result. PILOT depends heavily on the
availablity of these facilities. The removal of
hidden lines is a problem of much greater
difficulty. Because of limited computer resources
the removal of hidden lines was not attempted.

PILOT originated as a demonstration program to
illustrate the proper use of the GTLIB routines.
For various reasons (users requested more
functionality, it was a challenge, it kept us away
from other work) it grew to have a life of its own.
Basically the program consists of a routine which
reads data describing the airplane and the
surrounding terrain and then uses the GTLIB
routines to generate the display image in real
time. This routine does "Computer Science". This
main routine calls a subroutine, MOVE, which
calculates the motions of the airplane which result
from the various forces acting on it. MOVE does
"Physics".

MOVE, in turn, calls various other routines which
calculate the forces acting on the airplane from
its linear and angular velocities, and from its
position when taxiing. WINGS is called, for
example, with arguments specifying the airspeeds of
a representative point on each wing. This
information together with aircraft configuration
data is used to calculate the force and torque
which each wing contributes to the motion of the

San Francisco -November 1978

aircraft. WINGS also calculates the effect of the
ailerons and, if the angle of attack is too high, a
flag is set which causes the main program to
display a stall warning. In more severe cases an
actual stall is simulated by reducing lift and
increasing drag.

Such force routines are included to approximate the
effects of the wings, the tail surfaces, the engine
thrust and fuselage drag, the landing gear, and a
special routine is included to detect crashes.
These force routines do "Engineering".

Our experience has been that the simulation of
flight can be very realistically accomplished with
relatively crude approximations to the aerodynamic
forces. The ground forces involved in taxiing are
much more difficult because of the nature of the
frictional forces between the tire and the surface.
Momentarily large forces can result which are
difficult to handle by ordinary numerical
integration. A better solution seems to be to
treat the non-skidding wheel as a constraint and
then calculate the constraining force to determine
whether a skid in fact occurs. In any case, the
WHEELS routine simulates the forces resulting from
a three point landing gear with rolling wheels
equipped with brakes, and supported by springs and
shock absorbers. The nose wheel is steerable.
WHEELS is the largest of the force routines.

PILOT reads the data which specify the airport
layout and the airplane configuration from data
files. Consequently the simulation can be varied
greatly without intimate knowledge of the program.
We have experimented with a terrain layout
containing two airports and with various airplane
configurations. These cruinges are largely cosmetic
and simple to effect. Parameters used in the
flight dynamics calculations can be changed in the
same manner except that more care must be exercised
to produce an airworthy craft. Incidentally
certain parameter errors, e.g. a weight with the
wrong sign, produce surprising results when the
simulation is started.

There are various directions in which PILOT could
conceivably evolve from here. It is currently
highly core limited but that could be alleviated by
overlaying the fairly extensive initialization
code. There are fairly simple ways by which the
curvature of the earth could be simulated to permit
the inclusion of multiple airports and .navigation
aids without the need to process them all for
di.splay all the time, since most would be hidden by
the horizon, and to avoid the numerical problems
inherent in handling data which represents the
detail of an airport (scale of 1-10 feet) separated
by large distances from another airport (scale
10-10,000 miles). In addition a better simulation
of the flight is certainly possible by making
better approximations to the actual performance of
a specific real aircraft. Unfortunately, the
current state of PILOT borders on exhausting the
resources of the GT-43. It is currently fairly
well optimized for run time and consequently no
great improvement in that area is likely.
Measurements indicate that the display and
simulation times are comparable so further progress
will probably await the availability of more

734

powerful hardware. In the meantime the current
PILOT is ari enjoyable game, if not valuable
instruction in display processing (and perhaps in
pilot training?).

AN INEXPENSIVE SYSTEM FOR DIGITIZING PICTORIAL INFORMATION

Charles Kapps
Temple University
Philadelphia, PA.

and

Lawrence Mays
University of Alabama

Birmingham, AL.

ABSTRACT

One of the chief stumbling blocks in the develop~ent of pic
ture processing systems has been the very high cost of the
equipment necessary for digiti~ing pictorial information.
Usually, this equipment consists of specially designed tele
vision cameras or scanning equipment which must be slow
enough to allow for processing time in the computer. At the
same time, digitizing should be fast enough to be practical.

This article describes a system which allows standard, "off
the-shelf" television equipment to be interfaced to a com
puter. The function of the equipment is to slow down the
rate of information flow from the television equipment. Al
ternative designs are shown which allow for varying data
rates as required by the particular system.

The cost of building the interface is quite low, and since
standard, mass produced television equipment is used, overall
cost of the system is very reasonable.

BACKGROUND

The problem of digitizing pictorial information can
be broken into two parts. The first part consists of
converting the picture into some form of electronic
signal. Second, this electronic signal must then be
put into some digital form which is useable to a com
puter.

Some of the simpler systems involve human interaction
such as digitizing tablets, light pens, joysticks,
and tracking balls. Because of the need for human
interaction these systems are extremely slow. Most
of these systems can, of course, be automated by use
of light sensing devices coupled to some sort of
electro-mechanical drive system which would in effect
take the place of human hands and eyes in the system.
Such electro-mechanical systems are not only quite
expensive, but also slow because of the inherent
slowness of mechanical operations.

The obvious solution to these problems is to remove
the mechanical parts of the system and have a purely
opto-electronic scanning system. Such systems of
course are the basis for all modern television.
Television-type systems are, of course, analog in na
ture, and the difficulties arise in converting this
sort of information to digital information. The
problem is, just the reverse of that E'"'.countered with
mechanical systems. Television systems are too fast.
It is possible to digitize television signals in real
time, and this is, in fact, being done in some digi
tal systems currently being used by the broadcast in
dustry. Because of the extremely high data rates (at
least 16 megabits/second), the equipment is extremely

Proceedings of the Digital Equipment Computer Users Society 735

expensive. In addition, these data rates are much
too fast to be processed by most general purpose com
puters, especially the less expensive mini and micro
computers which are now being used extensively in
laboratories.

There are two solutions to the problem of excess
speed. The first is to use video equipment which is
specially designed to operate at slower speeds. This
has in fact been done, however, the equipment is
usually extremely expensive primarily because of the
non-standard design. An alternative solution, which
this article explores, uses standard video equipment,
and employs special techniques in the analog to digi
tal conversion process which slow down the rate of
information flow from the video equipment to the com
puter. The video equipment used can be either a
standard, mass produced camera of receiver. As can
be seen from the following, the digital conversion
equipment is minimal. Consequently an entire system,
capable of connection directly to a medium speed
digital input/output port on a computer can be made
to sell for under one thousand dollars.

Finally, some alterations are made to the basic,
cheap system. For a moderate increase in cost, these
allow the video system to be interfaced to the com
puter on a high speed, direct memory access port, or
directly to the computer memory bus. The speed of
the system can thus be improved. In effect, the
speed becomes limited only by the capabilities of the
computer.

San Francisco - November 1978

THEORY OF OPERATION

As mentioned above, a standard television system gen
erates 16 to 32 million bits of information per
second. Our.iesystem reduces this information rate to
a more manageable rate. To do this, ene of two things
must be sacrificed, resolution or frame repetition
rate, (or perhaps a combination of both). Our deci
sion was not to sacrifice resolution. As a conse
quence, it takes much longer than l/30 of a second to
scan an entire picture. Therefore, we cannot deal
with moving pictures, at least not in real time. (For
some applications, this may require the use of a stop
action device such as is found in many video recording
machines). Consequently, the remainder of this dis
cussion will assume that the television camera is
viewing a still picture, and scanning it over and.over
again at the normal rate of thirty interlaced frames
per second. (The systems used by the authors are for
standard American broadcast equipment. Clearly, the
interface equipment could be modified in order to ac
commodate the various European and other television
systems).

In order to accomplish a sufficiently slow sampling
rate, only one sample will be made on each horizontal
line. Thus, the resulting sampling rate will be
15,750 samples per second. This is well within the
capabilities of less expensive analog to digital con
verters, computer interfaces, and mass storage de
vices. Using this strategy, a sample is made at some
fixed delay time after the occurance of a horizontal
sync pulse. The result is that a vertical line is
scanned on the picture, as is shown in Figure 1.

It should be noted that the vertical sampling line is
passed over twice, because of the interlace. On the
first pass the odd lines are sampled, and on the
second pass the even lines are sampled.

In order to sample an entire picture, it is necessary
to sample successive vertical lines in a fashion sim
ilar to the way regular television scans a picture in
terms of successive horizontal lines. Sampling of
successive vertical lines is done by increasing the
time delay between the horizontal sync pulse and the
sm:ple point. As the time delay increases, the ver
tical scan line moves to the right across the picture.

Since 1/30 of a second is required to sample each
vertical line, a minimum of about 30 seconds would be
required for sampling an entire picture with full
available resolution. This, of course, does not al
low for .processing time, or latency time. (Latency
is due to the fact that the television equipment is
continuously scanning at 30 frames per second. If
the processor misses the beginning of a frame, it is
necessary to wait until the next frame begins. A
modification to the system is proposed later to avoid
much of the latency problem). The first application
of this system made little use of software techniques
for overlapping input/output time, and therefore re
quired four minutes to copy a full resolution sample
to magnetic tape for future processing.

PROTOTYPE SYSTEM

Figure 2 shows the schematic diagram of the prototype
system. This system was desisned to connect a stan
dard television camera to a PDP-11 computer. The in
terface to the computer operated through an LPS-11
laboratory peripheral system with an analog to digi
tal input and a digital input/output port.

736

The prototype system receives three inputs from the
television camera; horizontal drive, vertical drive,
and a standard video signal. (Of course, with the
appropriate additional circuits, the vertical and
horizontal drive signals could be derived from a com
posite video signal).

The system produces two outputs to the computer. The
first is the sample value which conveys the bright
ness of the sampled point. This signal is in analog
form which is then converted to digital by the LPS-11.
An alternative structure would be to have included an
A to D converter within the prototype system itself.
The second output signal is an interrupt signal which
informs the computer when the sample value is ready.

The system receives three digital input signals from
the computer. The first is a multi-bit signal desig
nated A1 - A9 which indicates the delay time from

the horizontal sync pulse to the sample point. Treat
ed as a binary number, this signal specifies the de
lay time in multiples of 125 ns. The other two sig
nals from the computer are the Reset and Go signals.
Reset simply initializes all flip-flops, and thus
turns off·the sample process. Go signals the start
of the scanning of a vertical line.

Still referring to Figure 2, Ic1A and IC2A form a

circuit which produces a pulse at the begi~ning of a
picture. In the interlaced system, the horizontal
sync pulse for the first odd line immediately follows
the trailing edge of the vertical sync pulse. On the
first even line the trailing edge of the vertical
sync pulse is approximately halfway between horizon
tal sync pulses. See Figures 3a and 3b (Note, that
the horizontal and vertical drive pulses at this
point have been inverted by Q1 and Q2). IC1A is a

one shot, the purpose of which is to lengthen the
vertical sync pulse slightly so that it coincides
with the first odd horizontal pulse.

IClB' IC3B' IC3A' and IC3B are the state flip-flops

and logic, and indicate when the system is in the
"Go" condition. IC2C and IC4B Produce the reset

condition.

IC4A and IC's 5-8 form the delay circuit. The "Go"

condition opens gate rc4A which causes the horizontal

sync pulse to load data bits A1 - A9 into the preset

table down counter IC's 5-7. Ic8 is an 8 MHz clock

which causes the counter to count down once each 125
ns. When the count reaches zero, a borrow signal is
generated which stops the clock pulses, and signals
the end of the delay to the sampling circuitry.

The sampling circuitry consists of a sample and hold
circuit (Ic10 and Ic11) and two one shots (Ic9A and

B). Ic9A actuates the sample and held circuit which

samples the video signal. Ic9B interrupts the com

puter after a suitable delay to handle settling of
the sample and hold output.

SPEED IMPROVEMENT OF PROTOTYPE SYSTEM

The primary speed limitation of the prototype system
is the fact that only one sample is made for each
horizontal line, or 15,750 samples per second. It

may well be possible that the computer is capable of
sampling at a faster rate.

Two modifications to the system are shown here, which
allow more than one sample per line. This would al
low us to double, triple, quadruple, etc. the overall
speed of the system. Limitations in speed would prob
ably be the processing rate of the computer.

The first scheme for improving speed is simply a mod
ification of the master counter of the prototype sys
tem (IC5_7 in Figure 2). This counter enables the

analog sampling of the video signal on the count of
zero. Recall that this is a nine bit counter, there
fore there are 512 possible sampling points. Observ
ing the modifications shown in Figure 4, we are in
effect adding more bits to the more significant end
of the counter. We would probably make a correspon
ding decrease of bits at the least significant end so
that our total line count remains 512, (or there
abouts).

If Ic21 is a two bit counter, and we remove two bits

from the master counter, IC5_7, we will get a signal

to sample when we reach a count of N which comes from
the seven bit input from the computer A1 - A7• How-

ever, the clock, IC8 is not inhibited as before, but

continues until Ic21 reaches its maximum count. Thus,

we get a sample when the number of pulses reaches
N+l28, N+256, and N+384. We are now scanning four
vertical lines one each frame. Each line is one
fourth of the way across the picture. (See figure
5.) The result would be that a picture could possibly
be acquired in one fourth the time. Of course, we
are assuming that the sample and hold, A-D conversion,
and computer processing of a sample could occur
4 x 15750 = 63000 times per second. This allows
slightly less than 16 mµ per sample, probably the
maximum processing speed for most minicomputers such
as the PDP-11/05.

We should note that there is no reason other than
that of convenience, for the counters used in this
system to be binary counters. Thus, the number of
vertical scan lines need not be a power of two. We
could therefore easily modify the system to scan 500,
750, 900 etc. vertical lines rather than 512.

An alternative method of scanning is shown in the
modifications of Figure 6. This system makes a suc
cession of samples on the consecutive clock pulses
following the point where the master counter reaches
zero. The main difference between this system is
that instead of having scattered sample lines across
the picture, there is a scan of a cluster of adjacent
lines forming a band in the middle of the picture.

The disadvantage of this system is that more hardware
is needed. Since the samples arrive in a cluster,
too fast to be analyzed separately, individual sam
pling circuits are required for each point.

The advantage of the system is that the samples are
not scattered, but lie within a region. This can be
very useful if we are not sampling the entire pic
ture, but merely an area within the picture.

The output is shown going to a bank of A to D conver
ters, this could of course be replaced by one or a
few A to D converters, suitably multiplexed. In

737

fact, with multiplexing controlled by a pulse train,
the data could be delivered to the computer at the
same rate of speed as the Figure 4 system.

FURTHER SPEED IMPROVEMENT

The basic limitation of speed in the systems in
Figure 4 and 6 are that the computers can only
process the data just so fast. There is, however,
one method left to produce a significant improvement.
This is direct memory access. Direct memory access
techniques allow the data from the A-D converters to
be stored directly into the computer memory without
requiring the computer itself to perform any proces
sing. This can be achieved using the systems shown
in Figures 2, 4, or 6 and simply connecting the out
puts from the A-D converters to a direct memory ac
cess port.

It is possible for such a system to deliver informa
tion to a large computer at a rate of four million
samples per second. However, the cost of such a
system clearly could not be described as inexpensive.

Nonetheless, there are some reasonably priced systems
for direct memory access to minicomputers. An al
ternative to direct memory access which may even have
a speed advantage is a system which makes use of the
fact that many computers are designed with a general
purpose bus structure, such as the PDP-ll's UNIBUS R.

In this system the video interface contains its own
memory of 512 bytes. These hold the converted sam
samples from the useful part of a vertical line.
There is also an interface to the computer bus which
allows the 512 byte memory to "look like" memory on
the computer. There is an address switch which
determines whether the 512 byte memory gets its
address from the horizontal line counter as it does
during writing, or from the computer bus as it does
while reading. Figure 8 shows the general layout of
such a system.

No control is shown on the address switch, as there
are several possibilities. One method would be to
have the switch operated at high speed, back and
forth, depending upon whether the computer or TV in
terface is requesting use of the memory. This method
would involve a fairly complex set of arbitration
logic to avoid conflicts between the two contenders
for the memory. A simpler method of control would
be to forbid computer access to the memory while a
vertical line is being scanned•· Here the c~ntrol of
the switch is simply derived·from the GO signal in
the interface. This method is not really much slower
than the first method, since it would be very diffi
cult to take advantage of overlap possibilities, be
cause the computer does not "know" exactly where the
TV interface is in the scanning process. Circuitry
could be added to allow this, but would not have any
advantage over the dual memory system which follows.

The main advantage of the Direct Memory System is
that it frees the computer of having to perform in
terrupt processing on every sample point. This could
account for a considerable amount of processing time
in a minicomputer configuration.

Another problem which this system helps to save is
latency. Our original, prototype system could re
quire as much as 1/15 second to complete a scan if
we were unfortunate enough to initiate the scan just
after the odd vertical sync pulse. Since we have a

counter in the system which keeps track of the hori
zontal line number, (see Figure 8) it would not be
too difficult to keep that counter running contin
uously. This allows data to be picked up from where
ever you are in a scan. What we would then do is
start loading the memory in the middle, and eventu
ally wrap around to loading the lower part. All that
is needed is a second counter or timer which signals
the computer when this wrap around is complete. This
will always be 1/30 second after scanning starts.

An improvement over the Direct Memory System is a
Dual Direct Memory System shown in Figure 9. This
system is essentially like the Direct Memory System,
except that there is a second memory. While one
memory is switched to the computer bus, the other
memory is switched to the TV interface. This allows
the overlap referred to above, since the computer can
process the contents of one memory at the same time
as the TV interface is loading the other memory.

It naturally follows that the techniques of speed en
hancement employed in Figures 4 and 6 can be used
with either the single or dual direct memory systems.
The cost for doing so would be the increase of memory
required by the systems.

CONCLUSION

At the time of writing, the prototype system shown in
Figure 2 has been constructed and in operation for
the better part of a year. This system interfaces a
standard TV camera to a PDP-11/05 computer. Not
counting the cost of the TV camera or the LPS-11 in
terface to the PDP-11, the cost of the system was
extremely minimal. (Parts costs were less than
$100).

The system works quite well, and has been used for a
number of experimental picture processing ~ndeavors.
One experiment involves the use of a line printer to
produce a low resolution rendering of a picture. This
kind of process is now becoming a popular novelty

1 item. Our system requires a 72 second exposure,

which is a little slow. Here, however, much use
could be made of the speed improvement techniques
discussed above. We can do so without the fear of
getting too fast, because the low resolution required
means that it is not necessary to sample every line.

Figures 10 and 11 show samples of pictorial output
which was processed by our system. Figure 10 is a
low resolution picture processed as described in the
above paragraph. Figure 11 is a high resolution pic
ture which employs nearly the full amount of resolu
tion available. Output was generated on a Versat4ci
D 900 electrostatic printer/plotter. Half tone gray
scales are produced by printing a 4 x 5 array con
taining a varying number of black dots corresponding
to the darkness of the area. The dots are randomly
placed in the 4 x 5 array in order to produce a
smooth texture.

Exposure times for these ten pictures was 7 1/2 sec
onds for Figure 10 and 2 1/2 minutes for Figure 11.
The major part of the time involved was not due to
the TV interface, but rather to the processing time
needed for saving the pictorial data. More efficient
programming could reduce exposure by 50 to 75 per
cent.

In general, the authors can see much possibility for

738

development of techniques of this sort.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support
given by the following persons: John Fowler for
hardware support, Steven Lipschutz for photograph
assistance, Marcia Kapps for drafting, and Jackie
Harriz for acting as subject matter for Figures 10
and 11.

E~-:-~-~-~-~-~-~-::=:=:=:=:=:::=:=:::=:=:::::::_:~~:;~~-:-~-~-~-~-~-~-~-~-~-~-~-~-~=:::Looo --·------------....... ----------------------LINES

.. ==--~= ~~----_ == ~= = :----~--------~ =~~----_-: ~ _-_ ------~ ~-: ~ ~ :~~---= ~~
------------ ___ It-EVEN

> __:_- ___________ : _ --~ -_-::: :~·:_·:_-_-~:::::: ~ ~ -----_-:- _ _ _ _ LINES

'!!!'., - - .. -
________ ...,. ___________________ _

------ - ------ --. ---- - ----- - - - --- - - -----
----------------·------------ ----- ------- ----------
~--- ---- --- -- -·- --- -- ---- - - -- - -- -
-------- - - - - _.,. -- - - - -- ·- - - - - - - - -

1--- ---------·--------------
I- -

~--~==~==~~~=~~==~~~~~~~~~~=------------------------ -------
!------------------------ -------

-----·-----
1-- - ----- - -. - -- -- -- -~

L SAMPLE POINTS

FIGURE I. SAMPLING STRATEGY

739

.....
~
0

"Tl

@
fft
!'> .,,

~
-< .,,
ITI

CJ)

-<
CJ)

-i
ITI
3::

VERT.
DRIVE

I IC
.5.-a I IA

ONES

~IZ.---------~-----....... T-----------..-----,
DRIVE

GO
SIGNAL

Va: D R Q
D Q

Q

rc3A
R Q

RESET '1' e I

HORIZ. ~~

DRIVE

VERT----1
DRIVE I~

Vee

;>--- HORIZ.
DRIVE

02

VERT.
-----DRIVE

Ag.Aio A5-A8 A1- A4

LOAD DATA 11 LOAD DATA LOAD DATA

BORROW ~HBORROW c~ BORROW ~

CLEAR CLEAR
IC5 IC6 'f IC7

ONE
SHOT

200.ns

IC9A

ONE
SHOT

40MS

IC9B

BMHZ
CLOCK

ENABLE IICa -
1C4c

t------------INTERUPT
TO

COMPUTER

VOLTAGE
FOLLOWER

11 . Vee I ENABLE
VIDEO IN-----_. :t:IN OUT• • 1

SWITCH

VIDEO
TO
COMPUT~R

rc10 IC11

VERTICAL SYNC.

HORIZONTAL SYNC.
_____.n....____

ODD FRAME EVEN FRAME

FIGURE 3. BEGINNING OF ODD AND EVEN FRAME

741

BORRO
FROM

IC7

w
CLOCK

FROM ---IR
GO

SIGNAL
1C4A

COUNTER
MAX.

IC21 Ca.t.IT

_.. .

_.. .

TO INHIBIT
CLOCK tee

TO IC9
SAMPLE 8
HOLD8

fNTERUPT SIGNAL

FIGURE 4. SYSTEM MODIFICATION FOR SAMPLING SEVERAL
VERTICAL LINES ON EACH FRAME

742

HORIZONTAL SCAN LINE
- SHOWING SAMPLING POINTS

NTH Ntl28TH Nt2!5&TH N+384 TH
LINE LINE LINE LINE

FIGURE 5. SCAN OF MULTIPLE VERTICAL LINES

743

::!! ;
CJ)

en
~
en
-I

"" 3C

i:
0

TO INHIBIT
COUNTING OF

lC5_7

BORROW

TO

FROM 1C7

c COUNTER

INTERUPT

CL~MIC8~R IC!I I

Q

2 c SIGNAL
"'Tl
C'S TO INHBIT

!t DECODER
CLOCK IC9

~
"'Tl

I FROM E
IC32

GO SIGNAL I C4A
0
::0

I
.... en

J>
3C
~

1C35A IC359 .. "ONE SHOTS
. . .

z
(j)

J>
TO A-D VIDEO IN CONVERTE

m
J> z c
0
"'Tl

<
"" ::0
-I

~
IC36A, 1C3se. ... SAMPLE 8 HOLD

r
r
z
"" en

i----------------1 - HORIZONTAL SCAN
LINE SHOWING
SAMPLING POINTS

FIGURE 7. SCAN OF A BAND OF VERTICAL LINES

745

tC
MEMORY

FROM

SAMPLE 8 HOL.D
A-D

CONVERTER DATA
IN

DATA
our~-

FROM
HORIZONTAL.
SYNC

FROM START
OF FRAME

C HORIZONTAL
LINE

------4R COUNTER

FIGURE 8. DIRECT MEMORY SYSTEM

BUS ADDRESS

746

BUS

SWITCH

DA'TA DATA

" rurl I
MEMORY.I

..,.,
@
:::u
"' FROM
!O I SAMPLE a HOLD

c I SWITCH c:
J> r-

~
g A-D

~ V'\e~ ~BUS :::u CON•
HORIZON'TAL

"' 0 VERTER ~ LINE

~~
INTER-V -

"'TO

-t COIMTER
FACE

3C

"' I I I I BUS
3C
0 :::u I FROM HORIZONTAL SYNC.
-<
~

FROM START OF FRAME

en
-t

"' 3C ADDRESS

.DATA DA'Ul
Ill OUT

MEMORy#2

----; :-: :
s: : : n r r : : 1 rr: : n : : : : : : : : : : : - : - : -- : : : : : : : : : : : : : : xssssxsXXYXLL I XY= = sssssss:s:;;:;;:;;:;;:;;"'"'"'''"""'=

:::::::::::::::;::~:~~=====~~~~=:~~~:;;~~~:;:~::::~~~~;;
8, .•..•..•..... : - : : : : : --SS$GSSSSSSSS$(:$$Sl{. Si
S, , , , , . , , , , , , . , : : 1 : -L YLLLLLL I I I I I I I I I I.$~
•..........•... : : : : : : : : : l::::':: :-: : : : : : :--========-----=== ,$,
8 • • • • • • • • • • • • • • • : ----YY: : : : --= =. S'
8, ,.,,, ... ,:: I::::: l: : : : : : : : : : : : I :-- : : : : : :----YL:: : : :--=. $l
a.•••••••·•• • • • ·::::::::: ':: : : : : : : : : : : : : : : : : : ':::::: :----:: : : ----YI:: : --=LX: So
S, • • · • • • • • • • • • •::: :----YI-=LYXXSS-$~
8 , :----YLYSXXXXXX:Si
8 . . , : ---= XSSSSXYYXX. St
8 .. , ,.,.,,,::: :-==YSSXYYYYXYY.$1
8 . . , , ... : = = XSXXYYYYXYYY. $ ~
S .. , ::: :--LYS$XYYYXXLLYY.$i
8 :: :--=XXSSXYYXXLLILX:S!:
8, : -- I LSSSXXXXSYL YYXX. $t
8 .. ,•..... :::::::::::::::::::::::::::::::::::: ---= IYX$$SSYYYYYYXYSSL$i
8 ... ,,., :: :------= ILYXSS$XXXYYYYYLIYY-$~
S, ::: :---= ILYYYYSSSSXYXYYLLLLLYL: $l
8 :: :---= ILLYYYXXX$SSXXYYXYYLLLLYY-$!
S, ::: :-----=I ILYYYXXXXSSSSSXXXYYLLI I ILLL=$ti
S ::: :-----= ILLYYXXXX$$$$$$$$XXYYYYYLLLILYl$1
8 :.::: :----= ILLYYYXXXXSSSSSSSSSSXYYXSXXLLLLLL-Sl
8 ,,,:.::.::::: :: ::::: :: : ::::::::: ::: ::: :::: :----===ILLYYYXXXXXS$$SS$$$$SS$SXYXXXXYYIILY-$~
S .. • ::::::::::::::::::::::::::::::::::---==I ILLYYYYYXXXXSS$$$SSSSSS$$SSSXSXXXXXXYYYLL=S~
8 •••.•...•..•.• :::::::::::::::::::::::::::::----==IILLYYYYXXYXYX:XXXSXSSSSSSSSSSSSSSSSSXYXYYXXYXLLISS
8 ••••••••••••••• ::::::::::::::::::::::::----=ILLYYYXYXYXXXXXXXX$XX$$$X$$$$$$$$$$$$$$$$$$XXYYYYXXX-$ti
8 ••••..••.•..•.• ::::::::::::::::::::---=llLLYYYYYYYXXXXXXXX$$$$$$$$$$$SXSXSS$SSSSS$$$SXYYYXXYXX=St
S ..•........... :::::::::::::::::----IILLYYYYYYYYYXXXXXX$S$$$$$$$$$$$$XXXXXS$$$$$$SSXXYLLYYYXXLS~
8 •••••.•••.•••. :::::::::::::::--JILLYYYYYYXYXXXXXX$XSXSX$$$$S$$$$SSSX$XXX$$SSSSSSSSSSSSXSXXXXYYSSLSI.
8 ...•••.••..• :::::::::::::--=ILLYYXXXXXXXXXXXXXSXSS$$$$$$$$$$$$$SXSSS$$$$SX$$S$$$$$$$SSXXXXYXSSXYIS~
S:, ..••..••••. ::::::::::--ILLYYXYXXXXSSSXSS$$$$$$$$$$$$$$$$$$$$$XSXSX$$$$$$$$$$$$$XSXXX$$$$XYXXJS8
8 ••.•••••.•.• :.:::::::--ILYYXXXX$$$$$$$$$$X$$SX$$$$$$$$$$$$$$$$$$$$SS$S$$$$$SSSSSXXXXX$$$S$YYYYYYIS8
S ...•..•... ,,::::::::--LYYYXXX$$$SSSS$$$$$$X$XXYYYLLLYYXXSXS$$$$$$$$$$$$SSSSSXXXXXXS$SSS$$XYYYYYXL$8
8.: ••..••... ,.::::::-ILYYXXX$S$$$$$$$SS$XXYYLLI==---===IIYYLLLLXXSSSSSSSSSXYYXXXXSSSSXXYYSSXXSSSSI$$
8 •••••••••••••• ::::-ILYYYXX:SSSS$$$$$XLJLIIILLYL=-::::--==IILL=-==LYXXXYYXXXXXXXSSSSSSSSXYYXYYSSYYI$$
S •••••••••••••• ,::-LLYYXXYXS$S$$$XLl=--I===LXYYI=:::,:.--=IIIIIIIIILYXYLLLLLLLYYYYYXYXXXXXXXXYXXIS$
8 •••••••••..••.• :- IYYXXXXXXXXSXXL=-:: --=--=YXLYI I-:: •.. :-========I ILLYXSYI I I I I I ILXYYYYYXYSS$$$XYXLSS
S: •••••••.•. , •• ::JYYXXSXSXSXXXX=: ..•• ,:1=-=YYYLLJ-: .• ,,:-===ILI==-=IIYYSSYllllil=IIILXXSSYXSYYX$SY$$
S ••••••••••••• ,:-YYXXS$$$$SSSL= •••••.•• II=IIYLLI=-::.:::--==IYLI=====LLXSSXLIIIII=====III=I$SYYLXI$$
8,,,,.,,,,,,,::-IYX$$$$$$$SSX= •...••.•• -I=IIIIII=--:-------==YYII==--=IX$$$LLIIIIII=====-::ysLYII=$$
····•••••••··''=LX$$$$$$$$$XL: •...••..•• :==LI=--=====IILL=--=YYllI=--==LXX$YLllllllII==-- ••. =YLIYISS
$.••••.••.•••• : IYS$$$$$$$$$L= ...••.•.•••• : : =======----=YL= =--LY! I I=: :--LYSX$XI I I I II I I II== ..• , YYLLJ$$
S, :LXS$$$$$$$SX=: •.••.•••.•• , ••..•• : : : : : .. :LYI=--LL=II=:. :-LYXSSSYIIII ILILII=:: .. --LYISS
8 , : LXS$$$$$$$SX-: .•....•.•.••...•••• : •..•. -LYI-:: LYI I I=:.: - IYXSSSXLI ILILILII=-: •.•• --XSS
8 :LX:S$$$$$$$XL: ••.••.••••••• ::-=: :----::-=XY=: ::LLIIJ=::--JYX$$$XYIILILIII==-: ••• :: :-$$
S., =YX8$$$$8$J= ••..•••••.•••• ==I I=:::: :--==LI:::: LL! I=-. :--LYXXXXYXILI I= I====:, .. :,::-$$
8 : IYSS$SSSXI: ••.•.•..•...• : ====I=-: .•.• : :- : • : : : YL I I=-: :-IYXXXYXYYILI I I====-: ... : : : : : $$
s :-YS8$8$YX=-•..•...• :==-==I==- ...•.... :::-YL==----ILYXXXYYYLLL========-: •• -:::-$S
8 ::YX$$$SXSLI: ...•••...•• --::-LLIJ=: •..•.. ::--=II----==LYXXYYLLYYillllILLLI=-: ::=-=1$$
8 : :LYXSSSSSXY=: .•..•••..• -: : :=YXLIJ: ..•...• -=------==I IYYYYYLLYYYLILLLYYYYLI I I I= T=TT.$$
S : ILXS$$$$XXLL-: •...•••. ::. :-LYLI= .•••••• :-=---==IIILLYYYYYYYYYYLYXXSSXXYYLYYLI L1J ($$
8,, ..•..••.....• :-=YYXXXSXXXXLI--:::: :·: ==--==YL=- .•.... :: =I I I I I IILLYXXXXSXSSSSSS$$$$$$XXXYYYLY 0: .SS
$, •••••••••.•••• ;:: ILYYXXXXXXXXYYII==== ILi I I !LI-: ..• ::--= ILLILLLYXS$$$$$$$$$SSS$$$$$$$XXYYXXYY :::J (SS
8 ••..•..••.••..•. ::--LYYYXYXXX$$$$SXXYXYYYYLLII==---=IILLYYXXS$$$$$$$$$$$$$$$$$$$$$SSXXYXLLYYL:t- ($$
8 ••••• , •••••••••• ::::-=LYYYYYXXXXS$$$$$$$$$$SXXXXYXXXXXXXXXS$$$$$$$$$$$$$$$$SXXSS$SSSXYXXXXXSX(..) l$$
8 ••••••••••••••••• :::::-=LLLYYXXXXX$$$$$$$$$$$$$$$$$$$XXXXX$$$$$X$X$$$$$$$$$$XXXX$SXXYYYXXX$$$:Q: 1$$
8 ••••.•..••...••• ::::::::--JLYYXXXX$SSXSS$$$8S$$$$SSXXYYYXXXXSXXSXXSXXSS$$$$SXXYYXXXXXXYXYXXss: {$$
S, •.............. :::::::::: :-IIYYXX$$$$$$$$$$$$$$$XXXXXXl'YXXXXXX$$$$$$SXXX$$XXSXYYYYXX$: {$8j
S ::::::::::::::--ILXXX$S$$$$$$$$$$XXXXXXYYYLLLLYYYYYYYYXXXXXXXSSSSSSXYXXXYXXX$:Z: !$$
8 : : : : : : : : : : : : : : : : : : -- I IYYXXXSXXXXXXXXYYYYYYLL YYYYYYXXXXXXXXXSSSSSSXXYXX 0 {$$
8 :::::::::::::::::::::: :-==LYXXYYXXYYYLLLLLLLLLLLYYYYYXYYYXYYYYYSS$$$$XXYXYY t- !$$
8 .••......•..... :::::::::::::::::::::::::::::--ILLLYYYYLLLLIILLLLLLYYYYYYYYXXYYYXXSXSXXSXXYXXY· !$$
8, , , .•..•.. , : -- I ILLLLLLLLLLLLLLL YYYXXXXXXYYYXXXXSSXXYLLLLY ':) ;s~
8 •• , •....• :: : : : : : : :-=IIllLLLLLYLYYYYXXXXXXXYYXXSXSSXYLYllL -l 1s;s
8,,•... ••.• : : : : : :: : :: :--===IIILYYYYYYYXXXXYYYYXXXXXXSSSSYXllL 0 ($$
8 ::: :::::: ::::: ::::::::: ::::::::::: :::: :: : ::---=IIILLLLLLYYLLYYYYYYYXXXS$SXXYLLL Cl),$$
8 : : : :: :: : : : : : : : : : :--==IILIIIIILLLLYYYYXXXXS$SSYXYLL L1J ,$$
8, •....•.•..•.. : ---=I I I I I I LLLLYYYYXXX$$$$$XXL YL 0: {$$

8 : : :: :: : : : : : : : : : : : : : : :: : : :: : : : :: -----=I I I I I ILL YXXXXSSSSSXXXYY IS$
8 : ---====I ILL YYXSSSS$$$$$XXL ;Jt {$$

:: : : : : : : : : : : :: :: : : : : : : : : : : : : : : : ::~=:~~!!~rr~ s ~==
8 : - : : -- = = = = I= LLL YYYYYYYX • 1$$
8 .. , , .. : : : : : : : : : : : : :- : -----==I ILLLYLLYLY 0 {$$
8 ::: :------===I ILLLLL - {SS
S ••••••••••••• : : : : : : : : : : : : : : : : : : - : : -- : --------= = I I I I LLL LIJ :s;s
S., : : : : : : : : : : : :-----: - : :---: :- :- : : : : : : : : : :-----==I I I I IL 0: '$$
8 :::: :::::::-----------------------::::::: ::--:--:-------------------------==IllILL:::J ~S
8 , . : : : : : : : : --= = = I I I LLL (!) 'SS.

:: : : : : : : : : ; : : : : : : ::~~~ ~ ~ ~ttt, Li: ~::
S •••••••• ::::::--===--=======!IILLLLYXS$
8 •••••• ::::----------------------------=--------------==--=-=-=======-=====================IILLYYYSS
8- ••• :::----=====================================I=============================IIIIIIILLLLLYYYXlOO{S$
Ill TT T TT J .I .I.I.I.LL YYYYYYYLLYLL YYL YLLLLL YI.LL YLYL YLL YYYL YYYL YYYYYXXXXXXXXSXXXXXXXXXSXXSXXSX$S$$$$$SSS$SSC$$

&$$$$$$$$$

748

749

THE MIK-11: INSTRUMENTATION INTERFACING
MADE SIMPLE

Mr. Douglas Abbott
Standard Engineering Corporation

Fremont, California

ABSTRACT

Techniques are discussed for integrating microprocessors into
CAMAC, the instrumentation interfacing standard, An LSI-11
based CAMAC crate controller and its supporting modules are
described.

CAMAC INSTRUMENTATION

CAMAC (1) is an internationally recognized and sup
ported standard for interfacing scientific and industrial
instrumentation to computers, Its inherent modularity
makes it extremely flexible and easy to use, Among its
principal features are:

1. It is fully specified, Mechanical, electrical, and
functional characteristics are sufficiently defined
that modules are genuinely interchangeable.

2. Because it is a genuine standard, multiple sources
are available virtually by definition. Supplier A's
module is guaranteed to work with Supplier B's
crate and Supplier C's crate controller.

3. CAMAC was developed~ users for users and there
exists a diverse community of enthusiastic users in
a wide variety of disciplines supporting and extending
the CAMAC philosophy.

4. It is well suited to industrial and other less than
hospitable environments because of its rugged
mechanical packaging and conservative electrical
specs.

MICROPROCESSORS IN CAMAC

The rapid development of the microprocessor has led
quite naturally to the concept of trating the computer as
a component. Programmable intelligence now comes in
small packages which can be liberally sprinkled around
a system wherever they are needed, The real problem
is how to package a microcomputer to be an effective
"building block" component, CAMAC, with its well
defined interfaces is an excellent solution to this problem.

There are two basic approaches to incorporating micro
processors into CAMAC based instrumentation. A
microprocessor can be "buried" within a CAMAC module
to add capability that would not be possible otherwise.
The module is considered "smart" but the processor
itself is programmed and not visible to the user. Single
chip microprocessors are well-suited to this approach.

Proceedings of the Digital Equipment Computer Users Society 751

The other approach is to incorporate a microcomputer
into a CAMAC system controller so that it is explicitly
visible and is still treated by the user as a general
purpose computer. The LSI-11/2 is an excellent can
didate for this level of CAMAC integration, Its physical
size allows it to conveniently mount in a CAMAC module.
The computational power and speed of the LSI -11 are
compatible with the data transfer capacity of the CAMAC
Dataway. PDP-ll's are already widely used in applica
tions suited to CAMAC so that existing software may be
easily transferred.

THE MIK-11/2

Our CAMAC version of the LSI-11 is called the MIK-11/2.
The basic unit is a triple-width CAMAC module con
sisting of:

1. The LSI-11/2 processor

2. Console terminal interface and real-time clock

3, Interface to the CAMAC Dataway

Figure 1: The MIK-11/2

San Francisco - November 1978

These elements are actually individual single width
modules mechanically held together by a common front
panel (Figure 1). An additional single width module
holds 16K or 32K words of RAM plus a 256 word boot
strap FROM. These four units plus additional periph
erals and/or PROM memory are interconnected by a
frocit panel snap-on bus module implementing the Q Bus
(Figure 2).

11
I

!I Ill L~= .. i 25
!Ill :::»

~I ~ 2 ~9 ...
ii t ~ .. ! i ~Ill
~ ~ ~o s i

~ z • Q -
! d >- ..
6 .. ~ ..

~

~~~~.....__~__,....__~~~~---~----~-~~ 
Figure 2: MIK-11/2 Block Diagram 

Peripheral interfaces are also packaged in single width 
CAMAC modules. Asynchronous and synchronous 
serial ports and floppy disk are currently available. An 
adapter module allows any dual wide LSI-11 board to be 
used with the MIK-11. All MIK-11 modules draw power 
from the Dataway but only the Dataway interface and 
DMA module described below have any functional con
nection to it. 

CAMAC Interface 

The LSI-11 makes an excellent controller for CAMAC. 
A CAMAC crate may be considered to have a 9 bit 
address field--5 bits for station number (1 to 25) and 4 
bits for sub-address (0 to 15). The MIK-ll's Dataway 
interface or "crate controller" maps the CAMAC Dataway 
into a block of 512 word addresses on the Q Bus (Figure 
3), That is, each sub-address of each module has a 
unique bus address. Consequently, any LSI-11 instruc
tion such as BIS or TST can be executed directly on a 
CAMAC register, Module-to-module transfers can be 
executed without transferring any data explicitly through 
the processor and module scans can take advantage of 
auto-increment addressing. 

Each module is assigned its own interrupt vector, Thus 
when a module needs service, it asserts its individual 
LAM ( Look-At-Me) line which vectors directly to the 

service routine. 

752 

Additional Dataway interfaces may be attached so that a 
single MIK-11 can control more than one crate. Each 
crate controller has its own unique address and vector 
spaces. 

-·------...... 177776 

N24A15 rq· .;::: 
CRATE 0 .. C.ONTROWR ,. 
FUNCTIONS 2 N24AO 
167400 

N23Al5 

N23Al4 

NIAi 

NIAO 166040 

NO 

CC-LSI ADDRESS SPAa 

'--------o 
LSI BUS ADDRESS SPACE 

Figure 3: CAMAC Address Mapping 

DISTRIBUTED SYSTEMS 

The LSI-11, in the form of the MIK-11, is well-suited 
to distributed control and data acquisition systems. 
Several forms are possible. 

Auxiliary Controller 

A recently defined CAMAC standard (2) provides a 
mechanism for multiple controllers to reside within a 
CAMAC crate. If the controllers in a conventional 
CAMAC system (driven by a single host computer) are 
equipped with an Auxiliary Controller Bus (ACB), addi
tional programmable controllers (auxiliaries) can be 
inserted in the system as necessary to relieve the host 
computer of time consuming housekeeping functions. 
For example the auxiliary may scan a set of alarms and 
report to the host only when an alarm condition is pre
sent, 

The MIK-11 can be made into an auxiliary controller by 
replacing the normal CAMAC controller board with an 
auxiliary controller board (Figure 4), To the processor 
this is identical to the normal master controller. 

Meaningful communication between the host and the 
auxiliary through the Dataway is only possible if the 
auxiliary can also be accessed by the host as a module, 
For this purpose a DMA module is provided which looks 
like a module on the Dataway and allows another con
troller to read and write the MIK-ll's memory. This 
module also permits the MIK-11 to create a demand or 
interrupt back to the central system controller. 

One could conceive of this configuration as a "macro 
module", That is, the system controller need only talk 
to the MIK-11 which, in turn, is programmed to process 
raw data from several input modules and distribute data 



~ 
::> c 
~ ~ 

= i ! 

FRONT END 
PROCESSOR 

>t .. ., 
~ .. .. 0 

:!! 

-, 

.. g CC-A2 ::> ... • 0 • >- ~ .. !l 0 ..... z ... .. 
~ .. 0 < ! 

~ ~ 
.. 

~ ~ :c >-u • ::> < z :x < ~ >-.. ~ < < 
Cl 

Figure 4: MIK -11/2 Auxiliary Configuration 

~~~~Pa_ra~lle_l_U_n_k~~~~ HostComputer 
PDP.11 Serles

TO OTHER
REMOTE NODES

Legend

A/D-112

ASP-11

Analog to Digital
Converter, 12 blt
slngle channel
Asynchronous Serlal
Communication Port

AR-302 16 Bit Isolated Input
Register

DAC.1062 8 Channel, 10 Bit Digital
to Analog Converter

DPM-11 Dual Port Memory (8K)
EPROM-11 Erasable PROM (4K)

With On-Board
Programming

RS232or 20MALOOP - 'j RAM•11/32 32K RAM With 256 Word

16ANALOQIN
16 DIGITAL IN

I ANALOG OUT
8 DIGITAL OUT

FIELD WIRING

I

r-
la

fD N N i!l
~ :: !il ~'I'
;~

' u a:
~~u

I lt l I

J J

1 TERMINAL STRIPS

~~
~ :I ~

Ii!~ ~ lli ~ :I

REMOTE NODE

MIK-11/2
MX-016

SS-R

Figure 5: Typical MIK -11/2 Process Control System

753

Bootstrap PROM
Microcomputer
Multiplexer

Solid State Relay

to output modules. The implication of this approach is
that the system controller's software is simplified in
that it need only deal with one module rather than many.

Networks

The MIK-11 can also operate in a conventional network
environment utilizing asynchronous and synchronous
serial ports. Figure 5 is an example of such a network.
In this case a simplification of system controller soft
ware is achieved in that it talks to the MIK-11 's through
DECNET or REMOTE-11 and need not know anything
about CAMAC. This is an excellent technique for incor
porating CAMAC-based instrumentation into existing
systems with minimal impact,

Figure 5 also illustrates another approach to inter-pro
cessor communication, the Dual Port Memory. As its
name implies, this BK word block of memory has two
independent ports allowing it to connect to two proces
sors. Both processors may "simultaneously" access the
DPM. This allows one or more MIK-11 's to act as
front end processors for larger machines. The example
shows a MIK-11 serving as a communications front end.

CONCLUSION

Microprocessors and CAMAC have had, and will continue
to have, a synergistic effect on each other in the rapidly
developing field of computer based instrumentation and
control. CAMAC gives the microcomputer access to a
wide range of existing instrumentation combined with a
convenient standardized packaging scheme suited to
industrial environments. On the other hand, micropro
cessors enhance the inherent power and flexibility of
CAMAC and provide the mechanism for incorporating it
into distributed system environments.

Because of its unified bus architecture, the LSI-11 is
particularly effective as a CAMAC controller and will
no doubt find extensive applications in CAMAC systems.

BIBLIOGRAPHY

l, "CAMAC Instrumentation and Interface Standards",
Institute of Electrical and Electronics Engineers,
1976,

2. "Multiple Controllers in a CAMAC Crate", U. S.
Department of Energy document DOE/EV-0007,
1978.

754

HIGH SPEED SQUARE-ROOTING BY IN-FIELD ENHANCEMENT
OF A PDP-11/45 FPP

G, A, MOYLE* & N, M, WILSON**
University of New South Wales,
Faculty of Military Studies,

Royal Military College,
DUNTROON ACT AUSTRALIA 2600

It is common in large scale scientific and engineer
ing computer programs to find that square-root oper
ations are frequently required. These calculations
are usually achieved by means of time consuming
software approximation routines. Significant reduct
ions in overall computing times can be obtained by
replacing these routines with special purpose hard
ware.

This paper describes the design considerations,
performance characteristics and unusual interfacing
utilized in a high speed, single precision square
root module constructed for the PDP-11/45 computer
within the Chemestry Department of the University of
New South Wales, Faculty of Military Studies.

The module uses a high speed multiplier, successive
approximation register and digital comparitors in a
square-root-by-recursion network to achieve an order
magnitude reduction in the time required for a square
root calculation.

INTRODUCTION

It is common in large scale scientific and
engineering computer pro~rams to find that
square-root operations are frequently requir
ed. Typical of these operations is that
required in Molecular Dynamics investigations
where intermolecular distances, calculated

in hardware, most if not all general
purpose computers forsake hardware implemen
tation in favour of software approximation
routines. However, the time consumed by
these routines results in long run times,
particularily for large programs requiring
many square-root operations. from

3 2
r = I l I X. I

i=l 1
are needed.

Although the early pioneers of electronic
digital computers were of the opinion that
square-root operations would be implemented

A hardware square-root module constructed
and interfaced to a PDP-11/45 Floating Point
Processor and the design considerations,
operational characteristics and performance
of this unit are the subjects of this paper.

DESIGN CONSIDERATIONS

The 32-bit single precision floating point
format utilized by PDP-11 computers, of nec
essity, dominates the design of any hard
ware device which is to replace software
routines. This format, detailed below, uses

a 32-bit sign-magnitude convention compris
ing an 8-bit excess 2008 exponent and a 24-
bit normalized fraction with "hidden" most
significant bit.

15 14 7 6 0 15 7 6 0

Is I EXPONENT FRACTION (High) 11 _______ F_R_A_c_T_I_o :N_(_L_o_w_) _____ ___..

PDP-11 FLOATING POINT FORMAT

*At present on sabbatical leave with
TEKTRONIX, INC., Beaverton, Oregon.

Proceedings of the Digital Equipment Computer Users Society 755

**Presently with
DEFENCE RESEARCH CENTRE, Salisbury, S,A.

San Francisco - November 1978

Physical and mathematical considerations re
move any requirement to handle square-roots
of negative quantities and hence the obvious
simplification of ignoring the sign bit on
input and setting the sign bit to positive
on output may be adopted. In addition, the
normalized format always ensures, except for
the special case of zero which may be easily
detected and allowed for, that the most sig
nificant bit (the "hidden" bit) of the frac
tion is always 1; that is, the fraction lies
between 0.5 and 1.0, and hence, that the
most significant bit of the result fraction
must also be 1 without requiring recourse to
explicit normalization.

Obtaining the square-root of the input num
ber thus requires that the exponent be halv
ed and the square-root of the fraction found.
However, since the exponent may be odd, and
thus have a remainder modulo-2, the fraction
cannot be independently considered. Compen
sation for an odd exponent may be made by
subtracting one from the exponent, prior to
halving, multiplying the fraction by two -
a simple left shift of the fraction by one
bit position - to compensate and the reverse
of this procedure on output with the addit
ion of one to the exponent and a right shift
of the fraction. This procedure scales all
possible input fractions into the range of
0.5 to 2.0 - unnormalized fractions - and by

so doing ensures that the most significant
bit of the result is always 1. The most
obvious advantage of this technique is the
removal of any requirement for extensive
and expensive multi-position (greater than
two) bit shifting arrays for normalization.

Determination of the square-root of the cor
rected fraction thus becomes the major oper
ational requirement. Various methods. based
on table or ROH look-up, iterative arrays,
binary equivalents of the school taught squ~
are-root algorithm, Newton-Raphson tech
niques etc. can easily be found in a liter
ature survey. However, all these possibil
ities appear, on closer examination, to re
quire extremely complicated and/or expensive
and/or extravagant hardware implementations.

The comparitive recent development of single
package, high-speed binary multipliers in
various configurations (2x4, 4x4, 8x8, 16x
16 etc.) enables an alternate technique
based on successive approximations to become
competitive with the more traditional meth
ods. This technique of "square-root by re
cursion" is well documented - see Ghest,
"AMD Application Note, October 1972" - and
encloses a high-speed multiplier in a feed
back network comprising a multi-bit success
ive approximation register and a digital
comparitor as detailed below.

SUCCESSIVE APPROXIMATION ..
REGISTER -

,
MULTIPLIER

SQUARES TRIAL VALUE FROM S.A.R.

DIGITAL COMPARITOR -... COMPARES SQUARED TRIAL INPUT
WITH INPUT

r

SQUARE-ROOT

In operation, the successive approximation
register is initialized to all ones and
thereafter, at every clock pulse, success
ive bits, from left to right, are set to
zero on a trial basis. The resulting word

is feed to the multiplier for squaring and
a decision on the correctness of a zero in
that trial position determined by compari
son between the squared trial and the input
fraction.

756

This technique requires, in general, as many
trials as there are bits in the square-root
- in the case under consideration 24. But,
with normalized fractions, the most signifi
cant bit is 'a priori' known to be a 1 and
thus only 23 trials are actually required.
In addition, the most significant bits of
the result are determined first and the
floating point format used produces the fir
st 16-bit word after only six trials. Thus,
partial overlap of computation and readout
is possible.

Excess 200 exponent halving is a little
more compl~cated than just a simple right
shift. Analysis of the required operation
shows, however, that the simple transform
ation shown below suffices.

I- 23

I A

BITS

Square-rooted
exponent bits E7E7E6E5E4E3E2E1

where the bar signifies
complementation.

Zero, the only special case, is defined in
the floating point format as all those num
bers with an exponent of zero. Hence, this
condition is easily detected and the appro
priate action taken.

Multiplier requirements may be determined
by the following analysis:-

after taking account of the correction
needed for the case of an odd exponent, the
square-root fraction requires a maximum of
25-bits. On input, the most significant
23-bits of the corrected fraction may be
considered in two parts as follows:-

-I
B I

I- 15 BITS +8 BITS -I

0

and after squaring:-
0

I-

this may be re-interpreted as:-

29 30

+
11+ 36

AB

Only the 25 most significant bits are requi
red and thus the B2 result is redundant,
allowing the array to be truncated to two

29 30 1+ 5

30 BITS + 16 BITS

+
37

2AB

I- 23 BITS
1+ 5

16xl6 multipliers (type TRW MPY 16AJ) with
a maximum error of ±1 bit.

INTERFACE TECHNIQUE

The usual means of interfacing a module of
this nature to a PDP-11 is via a device such
as Digital's DRll-C General Purpose Inter
face Board. Whilst this technique is satis
factory for most applications, it suffers

757

from the following limitations in the con
text of this paper - high speed.

a). Two transfer operations are required
for single precision floating point

data formatted numbers.

b). The system UNIBUS is utilized for at
least two cycles in order to effect
this transfer.

and

c). The resulting data transfer rate is
relatively slow (15 Mbits/sec).

These limitations can be removed, at least
for input operations, by an alternative
technique that uses an interface designed
such that whenever a number is written into
a designated accumulator register of the
FP11-B Floating Point Processor that number
is also loaded into the input latch of the
user's special purpose module. Examination
of the FP11-B engineering drawings reveals
that the required number is available on
the "C" inputs of the accummulator multi
plexer and at the wire-wrap pins in slot 3
of the FPP11-B back-plane. In addition,
the control logic signals:-

a). Multiplexer Select - S0 & S1

b). Accumulator Address - A0 ,A1 ,A2 & A3

c). Function Select

are also avaiable.

For the square-root module, the chosen reg
ister is ACO and the control signals are
decoded to produce the two load signals -

LOAD A

and
LOADB

Note: Two load commands are
required since the bytes comprising the
number are only available simultaneously if
they are shifted from within the Floating
Point Processor. If the single precision
number is moved into the accumulator regis
ter from a location external to the FPP it
will be moved as two seperate 16-bit words.

Access to the required data inputs is pro
vided by a user built interface board equ
ipped with low current unified bus receivers
and high speed opto-couplers to provide com
plete electrical isolation inserted into the
unused module slots AB15 of the PDP-11/45
together with a small amount of added back
plane wiring - see Figure 1.

The benefits conferred by this interfacing
technique can be summerised as:-

a). The UNIBUS is not used for input
transfers and thus no interruption
to the Central Processing Unit pro
gram occurs.

b). Both words of a single precision
number may be transferred simultan
eously.

c). Complete electrical isolation be
tween the FPP/PDP-11 and the peri
pheral device may be provided.

and

d). A higher effective data transfer
rate is possible (Typically 96Ubits
/sec).

There are some limitations to this method:-

a). Data transfer is restricted to the
input mode (referenced to the square
root module) only, since the output
function would require the multi
plexing of the inputs to "ACMX" and
must be controlled by the FPP or CPU
instructions.

b). For other applications where it is
not desireable to load the peripher
al device with redundant information
(see Operational Characteristics),
it would be necessary to:~

and

Either: i). Ensure that the design
ated register is not
loaded until the requ
ired number is ready

or

ii). Generate an additional
flag or control signal
to be used as an enable
flag for data transfer.

c). The LSB of the single precision man
tissa as well as the two low order
bytes of the double precision man
tissa, if the extra precision was
required, are not currently avail
able on the back-plane p~ns although
this facility could be user added to
the existing printed circuit cards.

OPERATIONAL CHARACTERISTICS

The prototype square-root module has been
connected to the FPll-B FPP and it's per
formance confirmed. With the square-root
calculation initiated by the loading of ACO
(the possible redundant loading referred to
above), the clock frequency set to 20MHz

758

and no tailoring of the control signals,
the module generates square-roots to an
accuracy of ±2 bits in 10.7µsecs. This re
presents an improvement of a factor of 10
over the 100µsecs required by a typical
software routine.

The design is at present far from optimum
and it is anticiapted that improvements to:

a). Duration and relative timing of the
control signals

b). Increase in clock speed - it has been
found that with the existing control
signals spurious r~sults do not occur
until the clock frequency exceeds 25
MHz.

and

c). Successive approximation register
weightings and hard-wiring of the
most-significant-bit of the multi
plier input to reduce the total num
ber of multiplier iterations

will reduce the computation
time to about 8µsecs.

Progress on these improvements has been hal
ted by the arrival and installation of a
FP11-C FPP which does not have the required
data and control lines readily available.

CONCLUSIONS

This paper has described a simple but power
ful square-root module and associated inter
facing technique that provides for direct
access to the accumulator registers of a
FP11-B Floating Point Processor. The main
advantage of this system is the great re
duction in computation time and the ready
means whereby an existing machine may have
its performance enhanced by in-field mod-

ifications. The requirement for minimal
additional software management are seen as
minor limitations which can be readily over
come in the majority of applications.

The time saved in data transfer and compu
tation can provide for significant reduct
ion in the overall time required in recur
rent operations.

ACKNOWLEDGEMENTS

The authors wish to thank Professor R. J.
Bearman of the Faculty of Military Studies
for his sponsorship, support and interest

and to Dr. D. Jolly of the same department
for his assistance during the development
period.

I
I

I
I

+5V +5V

-~:~"-----h
I

+5V

O.lµfd.

L _____ ...; ______ _

HP 4360

LOW LOADING, OPTICALLY ISOLATED
INPUT INTERFACE UNIT

Figure 1

759

iDS8640 t 7404
SQUARE
ROOT
MODULE

LEFT SHIFT R2M

BY ONE BIT

LOAD INPUT LATCH WITH R2

(INCLUDING HIDDEN BIT)

y

LEGEND
R2E Exponent of R2
R2M Mantissa of R2
RE Exponent of R
RM .Mantissa of R

FLAG 0

LOAD EXP ADDER WITH

(R2E 07,07,06, ... ,01)

LOAD R2M INTO

COMP AR I TOR

ADD 1 TO RE

RIGHT SHIFT RM

BY ONE BIT

SET ALL BITS

OF RE=O

y

N

y

INITIATE I

SEQUENCE

LOAD RM INTO

OUTPUT LATCH

D0AD RE INTO i--~~~..._~~-iTRANSFER RESULT TO

OUTPUT LATCH 11/45 VIA DR11-C

SINGLE PRECISION SQUARE-ROOT MODULE
FLOW DI AG RAM

FIGURE 2

760

R2 E v "1"

8'1 HIDDEN

BIT
07 ' 0 a, 57

LOAD - EXP

7)' FLAG FLAG

"'
EXP RIGHT

SHIFT -
NETWORK

1/
8)' 8)' r

/

•, 1

EXP ADDER

.....
~ l

"0"

1 1

)· 7

ALL ZEROS 2 I/P -DETECTOR MUX

1
L_

7

,rs

CKWDA
s

R2M SAR START (INITIATE I SEQUENCE)
,.v23

(_ 35 l
D

MANTISSA - SAR

)'25
~24

• TRISTATE BUFFERS

2 I/P MUX
~

J-24

26 x 26
MULTIPLIER

ARRAY
(MSB=O)

ADDERS

wl 25

CKWDB 25 BIT COMPARITOR
A<B

~

l_ I
T

f 237

EXP t..i MANTISSA
WD SELECT

J

1 T L -.....
-......

SINGLE PRECISION SQUARE-ROOT MODULE
BLOCK DIAGRAM

1 SRCOMP

RM

v 23
/

~

FLAG fi 2 I/P MUX.

RM

1
2 I/P MUX. ---..

TO DRll-C

FIGURE 3

THE NEUROSCIENCE DISPLAY PROCESSOR MODEL 2

Joseph J. Capowski
Department of Physiology

UNC School of Medicine
Chapel Hill, NC 27514

ABSTRACT

A refreshed vector graphics display processor to generate
complex dynamic displays even when driven by a PDP-11/03.

WHAT IS AN NDP2?

From several years of experience; the computer
graphics needs of the neuroscience computer user
community have been defined.(l) Those needs are to
present on a CRT and to copy onto paper those types
of displays described below. Because no system,
commercially available at a reasonable cost, say
less than $10,000, could generate those displays,
the Neuroscience Display Processor, NDP, (2) was
designed, built, and put into production use as a
PDP-11/45 output device in January, 1977. System
software was written to allow the NDP to be pro
grammed easily by a FORTRAN programmer. User
response to the NDP has been excellent.

In order to increase the speed of the NDP, to
simplify it, to allow it to be driven by a processor
of power less than that of the PDP-11/45, and to
take advantage of new LSI technology, the second
version of the NDP, the NDP2, has been designed and
built. The NDP2 is a refreshed vector graphics
display processor designed to generate complex
dynamic displays even when driven by a small proces
sor such as a PDP-11/03.

The salient features of the NDP2 are now described.
The NDP2 is driven by a PDP-11 through a 16 bit data
cable such as that emanating from a DRll-C or a
DRVll parallel interface. A random access memory
stores up to lf096 coordinate triples which define
the end points of lines. The triples are multiplied
times a rotation and translation matrix. Since the
matrix can be updated dynamically, the image can be
smoothly rotated. Each triple is checked to see if
it has been rotated off-screen, and if so, its
entire line is eliminated. The rotated triples are
orthographically projected and passed to the line
generator. The line generator, a digital differen
tial analyzer design,(3) generates analog deflection
ramps for a 17 inch CRT.

TYPES OF NEUROSCIENCE GRAPHICS DISPLAYS

Neuroscience line drawing graphic displays convey
information about a neuroanatomical structure or a
series of neurophysiological events. This informa
tion almost always takes one of three forms:
structures, waveforms, and graphs.

A neuroanatomical structure such as that shown in
Figure 1, is formed of only short lines. These
structures may be two- or three-dimensional. It
must be possible to smoothly rotate the structure in
order for the scientist to understand its three-

Proceedings of the Digital Equipment Computer Users Society 763

dimensional form. The rotation ealculation may
force some of the parts of the structure off-screen,
but since the structure is composed of only short
lines, a simple line rejection scheme which rejects
an entire line if either end of the line is off
screen can be used without degrading the picture
appreciably. An orthographic projection, simply
ignoring Z after rotation, may be used to map the
three-dimensional structure onto a two-dimensional
display surface.

L417D1

Figure 1.

RY ODD RZ DOD

A neuron axon tree from the spinal cord
of a cat.

An example of a waveform display is shown in Figure
2. This display is two-dimensional, composed of
short lines, .and requires no rotation or projection.
Depending upon programming techniques, it may be
helpful to utilize translation and line rejection
facilities to display a window of waveforms from a
longer series of them.

San Franct.oo- November 1978

0.1.
.I. 2

.I. .I.

Figure 2.

3 !5 7 o

2 .I. 2 3 2 2 2 2

A series of physiological electrical
waveforms.

An example of a statistical summary is shown in
Figure 3. This is a two-dimensional, static display
composed of long lines, short lines, and dots.
Neither clipping nor projection is involved.

.10.

s.o
e.O
CPS
4.0

2.0

000 ...
.~

... : · ,,. ... · .. :·:
70.

eO.

50.
ST:CM
40.

30.

20.
000 24. 4S. 72. 120

T:CME SEC:

Figure 3. A statistical summary, instantaneous
frequency vs. time and stimulus temperature vs.
time, of waveforms of the type shown in Figure 2.

NDP2 BUS STRUCTURE

A block diagram of the bus structure of the NDP2 is
shown in Figure 4. A 16 bit command is received
from the host computer in the upper left corner of
the diagram. The most significant 4 bits of the
command determine the instruction type. The least
significant 12 bits of the command form immediate
data, used by the NDP2 during the execution of the
command.

A 12 bit count register is used to store the number
of iterations required by a drawing instruction. It
is decremented, and when it reaches zero, the draw
ing instruction terminates.

The NDP2 memory, organized as 4096 words of 37 bits
each, is used to store up to 4096 coordinates of
drawing data. Each coordinate requires 12 bits each
for X, Y, and Z, and 1 bit to specify whether a
MOVE or DRAW should be performed to that coordinate.
A 14 bit memory pointer (MEMP) register keeps track
of the current address. Its most significant 12
bits define the current coordinate and its least

764

significant 2 bits define which dimension (X, Y, Z,
or MD) is currently under consideration •

The rotation and translation matrix is stored as a
4 x 2 x 12 bit array. Its current address is
determined by the 3 bit matrix pointer (MATP)
register.

Output from memory passes through a switch (SW)
which selects for one input to the multiplier-accu
mulator either the memory output or the number one •
Output from the matrix forms the other input to the
multiplier-accumulator. A TRW multiplier-accumula
tor integrated circuit repeatedly calculates A = A
+ MEMORY * MATRIX in order to perform matrix
multiplication. The rotated and translated coordi
nate is stored in the 12 bit XDEV, YDEV registers,.
whose contents are available to the line generator.

If, during the matrix multiplication of a coordi
nate, overflow occurs, then that coordinate has
been rotated or translated off-screen. The ~ID bit
of any coordinate fetched from memory is forced to
the value MOVE if overflow has occurred during the
matrix multiplication of that coordinate or during
the matrix multiplication of the previous coordi
nate. This modification rejects any line if either
of its endpoints is rotated or translated off
screen.

CXlMMAND
FROM
HOST

Figure 4. The NDP2 Bus Structure.

NDP2 ALGORITHM

••

In the block diagram of the NDP2 shown in Figure 5,
each rectangle represents one state. Each clock
pulse advances the NDP2 from one state to the next.

A push of the master clear button, a clear pulse
from the host computer, or the n0rmal termination
of a command causes the NDP2 to enter state O, at
which time the NDP2 clock stops, the "done" line
to the host computer is turned on, and the NDP2
awaits a command from the host computer. When a
comm.and is received, .the NDP2 clock starts, and
the NDP2 advances into one of five states, depend
ing upon the received command.

If the command is a LMATP, for load matrix pointer,
the NDP2 advances to state 5, where the immediate
data contained in the command is captured by the
MATP register. If the command is a LMEMP, for
load memory pointer, the NDP2 advances to state 6,
where the immediate data is captured by the MEMP'
register. If the command is a LMAT, for load

matrix, the NDP2 advances to state 10, where the
innnediate data is captured into that matrix element
currently designated by the MATP register. Then,
in state 11, the MATP register is incremented.
This scheme facilitates loading of consecutive
matrix elements. Similarly, if the command is a
LMEM, for load memory, the NDP2 advances to state
12, where the immediate data is captured into
that memory word currently designated by the
MEMP register. Then, in state 13, the MEMP register
is incremented. This scheme facilitates loading
of consecutive memory locations.

If the command is a DRAW, first the number of
coordinates to be drawn is loaded into the COUNT
register. Then, in states 15 through 22, the
rotated and translated X coordinate is computed and
stored in the XDEV register. In states 24 through
31, the rotated and translated Y coordinate is
computed and stored in the YDEV register.

Note that because an orthographic projection,
ignoring Z after rotation, is to be performed, no
need exists to compute the rotated Z coordinate.
Also note that the translation terms are stored as
a fourth row of the matrix and that the translation
calculation is performed by multiplying (l)(M41)
and (l)(M42). Thus the entire matrix manipulation
is performed as:

[XRT YRT] [X y Z l] [Mll
M21
M31
M41

Ml2] M22
M32
M42

where ~XRT YRT] is the rotated, translated, and
orthographically projected coordinate, [X Y Z] is
the coordinate fetched from memory, and M is the
rotation and translation matrix.

If the line generator has not completed the previous
line by the time that the NDP2 enters state 32, the
NDP2 waits in state 32 for it to finish. When the
line generator is ready, the NDP2 advances to state
33 and starts the line generator drawing a line to
the current coordinate. Also in state 33, the
number of coordinates to be drawn, stored in the
COUNT register, is decremented. If another coordi
nate is to be drawn, its calculation is begun in
state 15. If not, the NDP2 returns to state 0.

Figure 5. The NDP2 Algorithm.

765

NDP2 REALIZATION

The NDP2, shown in Figure 6, consists of 135
standard speed TTL integrated circuits mounted on
two Augat panels. The NDP2 line generator consists
of 100 standard speed TTL integrated circuits plus
a pair of deglitched D/A converters mounted on one
Augat panel. Standard speed TTL logic was selected
to minimize cost, noise, and power distribution
problems.

A master clear pushbutton may be used to force the
NDP2 into algorithm state 0. A single step switch
controls the mode of operation of the NDP2 clock.
When the switch is on, each depression of a single
step pushbutton generates one clock pulse. This
pushbutton may be used to advance the NDP2
through its algorithm one state at a time. Two
LED digit displays monitor the current algorithm
state. Other LED digits display the current
command and the contents of important NDP2 regis
ters. These displays allow the observation of much
NDP2 activity and serve in debugging graphics
display programs.

The NDP2 control logic is implemented with a
register which contains the current algorithm state.
This state forms an address into a 32 word by 32
bit ROM, whose outputs control the bus structure
and supply the next algorithm state.

The cost of constructing the NDP2 was quite small
as it was built primarily from salvaged parts. A
conservative estimate for purchasing the parts used
in the NDP2 is $2000. The most expensive parts of
the NDP2 are three Augat panels, two deglitched
D/A converters, a multiplier-accumulator integrated
circuit, power supplies, and a mounting rack. The
cost estimate should not be compared to the cost of
a commercially available graphics display system
because it does not include the cost of the labor
required to design, construct, debug, and market
the NDP2 and its system software.

NDP2 PERFORMANCE

The NDP2 has been running since September, 1978
though not yet in a production environment. The
primary application for which the NDP2 will be used,
neuron reconstruction, display, and analysis, is
presently being developed on the PDP-11/03 to which
the NDP2 is attached,

An NDP2 clock period of 0.5 microsecond per algo
rithm state is currently in use. This period
results in a time of 7.5 microseconds to fetch a
coordinate from NDP2 memory, multiply it t.imes the
rotation matrix, and pass it to the line generator.
A line generator period of 0.1 microsecond per
iteration is currently in use. This period results
in a line generator speed of 43,000 inches per
second when the line generator drives a 17 inch CRT.
For short lines, less than 75 iterations of the line
generator or less than 0.33 inch, the NDP2 runs
memory fetch and calculate bound at 7.5 microseconds
per line. For longer lines, the NDP2 runs line
generator bound. Neuroscience displays have very
few lines longer than 0.33 inch. Therefore the
NDP2 usually runs fetch and calculate bound and is
able to draw 4400 lines at a 30 Hz refresh rate.

Figure 6. THe NDP2.

NDP2 PROGRA11MING

Every attempt has been made to make it as easy as
possible for the FORTRAN programmer to use the NDP2
without having to learn much about it. A graphics
subroutine package (4) had been written for the
NDP and has been updated for the NDP2. The sub
routine package is a pyramid or hierarchy of sub
routines in which each higher level subroutine calls
some of the subroutines of a lower level. A
FORTRAN programmer may display a statistical summary
such as that shown above with a single call to the
highest level subroutine. The highest level sub
routine calls building block subroutines which
handle individual functions necessary to generate
the display. Examples of such functions are the
scaling of data into the display file, the drawing
and labeling of axes, the display of floating point
numbers, and the generation of characters at certain
locations in the display. If a prograllll'1er wishes to
generate some non-standard display, he may call the
building block subroutines directly, that is, enter
the pyramid on a lower level.

Low level subroutines, called from FORTRAN, allow
the programmer to display polygons, dots, or lines
from data which he has assembled. 3D structures
such as that shown above are drawn by calling these
routines. At the lowest level, in assembler
language, the programmer may send LOAD REGISTER and
DRAW instructions to the DRVll to command the NDP2.

766

He may check the done bit in the DRVll status reg
ister to see if the NDP2 is ready for another com
mand.

ACKNOWLEDGEMENTS

The author wishes to thank Edward R. Perl, Chairman,
Department of Physiology, University of North
Carolina, Chapel Hill, for his financial and moral
support. Aid in designing and building line genera
tors was received from Roy Propst and Dave Smith of
the University of North Carolina and from Fred
Rosenberger of Washington University. John Mcinroy
contributed greatly in the programming effort.
Neuroscientific material used for examples was
contributed by Miklos Rethelyi and Edward R. Perl.
This work was supported by the United States Public
Health Service through Grant ii NS11132 and Grant Ii
RROSl106.

REFERENCES

1. J. Capowski (1976) Characteristics of Neuro
science Computer Graphics Displays and a
Proposed System to Generate Those Displays.
Computer Graphics 10:2, 257-261.

2. J. Capowski (1978) The Neuroscience Display
Processor. Computer. Nov~mber, 1978.

3. W. Newman and R. Sproull (1973) Principles of
Interactive Computer Graphics. McGraw-Hill,
Inc. New York, N. Y.

4. J. Hclnroy and J. Capowski (1977) A Graphics
Subroutine Package for the Neuroscience Display
Processor. Computer Graphics 11:1, 1-12.

THE REAL-TIME CAPABILITY OF TllE

EDUCOMP TIMESHARED OPERATING SYSTEM

D. C. HUDDENHAGEN
WESTERN ELECTRIC CO., INC.

OMAHA, NEHRASKA

ABSTRACT

The Educomp Timeshared Operating System (ETOS) is a multi
programming system for the Digital Equipment Corporation (DEC)
PDP-8/e, /f, /m and /a Minicomputers. The ETOS allows as
many as 16 users shared access to the computer and peripherals.
The programming system which the ETOS provides the user is
the DEC OS/8 or COS disk based system.

While not comparable to large scale real-time systems the
ETOS is designed to handle timeshare and real-time pro
gramming. This report discusses the ETOS real-time capability.

INTRODUCTION

The Educomp Timeshared Operating System (ETOS) is a
multiprogramming system for the Digital Equipment
Corporation (DEC) PDP-8/e, /f, /m, and /a mini
computers. At the Omaha Works, ETOS is installed
in a PDP-8/e which forms a part of the Omaha Works
Engineering/Manufacturing Timeshare System. The
ETOS allows as many as 16 users shared access to
the processor (computer) and the peripheral devices.
The ETOS monitor provides each user with a virtual
computer system, i.e., the ETOS monitor makes it
appear to the user that he is running a complete,
stand-alone PDP8/e computer system. The program
ming system which the ETOS provides the user is
the DEC stand-alone OS/8 or COS disk based system.
(The Omaha Works installation has only OS/8.)
Under this programming system the ETOS user has a
choice of three high level programming languages;
BASIC, FORTRAN II, or FORTRAN IV. PALS, the
assembler language, is also available as well as
the normal OS/8 utility programs. For a complete
description of the OS/8 programming system, the
user should refer to the OS/8 Handbook. Detailed
information on the ETOS can be obtained from the
ETOS Version 5A System User's Guide.

While not comparable to large scale real-time
systems, the ETOS is designed to handle timeshare
and real-time programming. The remainder of this
report discusses the ETOS real-time capability.

A DESCRIPTIVE Ai~ALOGY

The ETOS can be thought of as a network of DEC
PDP-8/e minicomputers sharing common disk storage.
Each user job would correspond to one of the
computers and the ETOS monitor would be the
executive machine which controls the overall
network operation and allocates network resources
to the individual machines (user jobs) on an
as-needed basis. Since the minicomputers are
virtual machines which occupy the same real
machine, the most important network resource which
the executive machine (monitor) allocates is
processor time. In this timeshare network, each
of the virtual machines, except the monitor, is

Procee:Jlngs of the Digital Equipmant Computer Users Society 767

allocated processor time in turn. During its
allocated time, a virtual machine may execute
program code or make requests to the monitor for
the use of other network resources. Since the
monitor controls the network operation, it must
operate in real time, i.e., the monitor must
respond to the demands of the network as they
occur. To enhance the real-time capability of the
monitor, a portion of it is permitted to occupy
the two lower fields of memory in the real machine
at all times. On the other hand, a user job may
be temporarily stored on disk while another user
job is loaded into real machine memory during its
allocated processor time. (This process is
referred to as swapping.)

The ETOS allows one user job (virtual machine) to
run in real time as well as in the normal time
share mode. The real-time portion of the user
job can be referred to as the foreground job and
the timeshare portion as the background job. The
user foreground job may use one or two fields of
memory. When initiated, the foreground job
actually forms an extension of the resident
monitor and, as such, is permitted to occupy real
machine memory at all times, i.e., the foreground
job, once initiated, is not swapped. The
background job may be written into the same
field(s) of memory as the foreground job, into
memory fields not used by the foreground job, or
both. Therefore, the background job may be
subject to no swapping, partial swapping, or total
swapping. In any event, the background job is
treated by the monitor as a normal timeshare job.
In terms of the multi-computer network analogy, the
user job which is running real time can be con
sidered to be a machine which is running two
programs, a foreground job and a background job.
The foreground job is allowed to respond to
external events immediately whereas the background
job is queued for use of network resources in the
same w'!iy as the rest of the network computers.
Since they occupy the same machine, the obvious
advantage the background job has that the other
user jobs do not have, is its ability to

San Francisco - November 1978

communicate directly with the foreground job and
thereby with the real world.

REAL-TIME MULTI-TASKING

Most probably, more than one user job will want the
ability to run in real time. Since the ETOS allows
only one real-time job there is a conflict which
must be resolved. One solution is to simply have
the users take turns running their real-time
jobs. If the real-time jobs to be run can
accommodate this type of scheduling the solution is
acceptable and very easy to implement. More than
likely, however, the real-time jobs will conflict
with each other and a better solution must be
found.

Generally speaking, the portion of any user job
which must run in real time is quite small and
consists of the minimal amount of coding required
to successfully handle a peripheral device operating
on a program interrupt basis. Even though only one
user job is allowed to run in real time, the

foreground job can be programmed to handle several
real-time tasks. In this configuration, the
background job coordinates the transfer of data to
and from the other user jobs which are using one or
more of the foreground tasks. In effect, the
background job becomes a real-time monitor
operating within the confines of the ETOS. Un
fortunately, communication between user jobs,
particularly the first contact, is not easily
accomplished. A brief description of ETOS software
architecture will permit a more effective
discussion of this communication problem.

THE ETOS SOFTWARE STRUCTURE

The ETOS monitor operates on four levels of soft
ware priority. These priority levels have nothing
to do with interrupt priority, so, to avoid
confusion, they will be referred to simply as
levels.

Level 0 software is executed immediately following
an interrupt. The system interrupt is off, the
user flag is cleared, and the instruction field
and data field are both set to O. Level 0 soft
ware checks for conditions which may have caused an
internal interrupt, i.e., an interrupt resulting
from a user executing a virtual machine instruction
which requires monitor intervention. In some cases
internal interrupts are also processed in level 0
software.

Level 1 software is used to identify and sometimes
service external interrupts. External interrupts
are caused by peripheral devices. The processor
state is the same as for level 0 software except
that the data field is set to 1. The foreground
task(s) of a real-time user job is considered to
be level 1 software and is executed immediately
upon entry to level 1.

Level 2 is the software level on which most of the
resident monitor is executed. The processor state
is the same as for level 1 software except the
system interrupt is on. This means that level 0
and level 1 software can be re-entered if an
interrupt occurs while level 2 software is being
executed. To prevent degradation of system
interrupt handling, any user written real-time
task(s) should spend a minimum amount of time on

768

level 1. Monitor calls which perform level shift
ing between levels 1 and 2 are available to the
user.

Level 3 is designated for user jobs. While
operating on level 3, the system interrupt is on
and the user flag is set. In addition, level 3
jobs are subject to swapping. There are two types
of level 3 jobs, privileged and non-privileged.
Privileged jobs are permitted to change the normal
manner in which level 3 software is executed
whereas non-privileged jobs are not.

There are three ways in which a privileged job can
change normal level 3 operation. The simplest of
these is through use of the CUF (clear user flag)
instruction. Execution of this instruction causes
the user program to run in executive mode. In
essence, running in executive mode means that all
multi-user functions are inhibited, i.e., the user
has complete control of the real machine. (More
information about executive mode operation can be
found in the PDP8/e, PDP8/m & PDP8/f Small
Computer Handbook on page 5-18.) Since the system
interrupt is on and the system clock is running,
the user is subject to swapping. To return to
normal level 3 operation, the SUF (set user flag)
instruction is executed.

The second method which a privileged user job can
use to change normal level 3 operation is to
request the monitor to execute the job on level 2.
This is accomplished by executing the RMON
instruction. Following the RMON instruction, the
user is running in executive mode and, since the
machine is running level 2 software, no swapping
will occur. The user must not run on level 2 for
any extended period since the level 2 queue may
overflow, causing the system to crash. A call to
a monitor routine is used to return to normal
level 3 operation.

The third way of altering normal level 3 operation
is for the privileged user to start a real time
job by executing a HOOK instruction. Following
execution of this instruction, the user fore
ground job becomes memory resident and is treated
as a part of the level 1 monitor but the background
job is still executed as level 3 software. The
UNHOOK instruction is used to stop a real-time job.

In addition to being able to run real-time or
executive mode software, the privileged user has
at his disposal several system functions ·and
monitor routines which can be used to access all
user and system software. In addition, they can,
to some extent, control the execution of user jobs
other than his own. It is through the use of
these privileged functions and monitor routines
that the user job running in real time can set up
an effective means of communication between the
background job (real-time monitor) and other user
jobs which need to use the foreground task(s).
More information about the ETOS software structure
and the monitor functions and routines available
to the privileged user can be obtained from the
ETOS Version 5A System Manager's Guide.

HOW TO COMMUNICAT~

The user real-time application will determine the
type and amount of interaction between the user
program and the real-time monitor. In fact, some

applications may require no interaction whatsoever.
For example, a data collection application may be
implemented by having the foreground task handle
the data collection device interrupts while the
background task stores the collected data in a
file on disk. The user job would then simply
ace.ess the disk file and process the data as
needed.

Other applications may require only infrequent
interaction which could be handled in an indirect
manner. This method would have the user job and
the real-time monitor exchange information by means
of a disk file accessible to both. This type of
information exchange would require the real-time
monitor and the user job to periodically check the
disk file for new information. As the frequency
of these file checks increases, however, the
required disk read/write time increases accordingly
and can seriously degrade overall system perfor
mance. Therefore, for those applications which
require high-speed exchange of instructions or
small amounts of data, the utilization of a direct
means of communication is desirable. In terms of
the multi-computer network analogy, direct
communication would be equivalent to providing the
individual computers the ability to access the
machin.e resisters and memories of other computers.

It is expected that most ETOS users would not be
privileged. To do otherwise would certainly
jeopardize system operation. Unfortunately, a
non-privileged user job has absolutely no way of
directly communicating with another job. There
fore, the user is forced to use some type of
indirect communication to establish contact with
the real-time monitor. A disk file could be used
for this purpose but a more efficient method is
available. Associated with each user job is a 32
word job data block. Non-privileged user jobs are
allowed to read any job data block a word at a
time but they can only change selected words in
their own block. The last five words of the job
block forms a small buff er which can be written
into by the user job through the use of the TXTSET
system function. This buffer area is intended to
hold the name of the current program and is only
used by the SYSTAT program when listing the system
status. The use of this buffer area for other
purposes causes no system problems even though
SYSTAT may print out some strange program names.
Therefore, the user job is free to place a message
into this buff er area which will be recognized by
the real-time monitor as a request for service.
Of course, the real-time monitor must periodically
check the user data blocks to determine if real
time service is being requested. Even though this
is an indirect method of communication, system
operation is not degraded since disk read/write
time is not required. The frequency at which this
checking is done is determined by the urgency of
the user job. Generally, the time lag between the
user request for real-time service and the
recognition of the request by the real-time monitor
is of little consequence. However, once the real
time monitor recognizes the request and initiates
the real-time service the rate of interaction
between the user and the real-time monitor can be
adjusted to fit the job requirements.

Recall that the real-time monitor is a privileged
user. (Only privileged users can run in real
time.) Being a privileged user, the real-time

769

monitor has complete access to the resident ETOS
monitor and can control some aspects of user job
operation through the use of privileged monitor
functions. Among these control aspects is the
ability to change the contents of the user's
virtual machine resisters, p:.tt the user job to
sleep for an indefinite period of time and then
wake it up as needed, and even make the user job
a privileged job. However, since the user job is
subject to swapping, the real-time monitor can not
directly affect the contents of the user's virtual
machine memory since it is never sure where the
user program is in real memory. If it is necessary
for the user job to directly interact with the
real-time monitor, the real-time monitor must make
the user job privileged. This can be done
immediately after initial contact by ·simply having
the real-time monitor set the user's privilege word
in the job data block to an appropriate value. A
privileged user job has an advantage over the
real-time monitor in terms of direct communication.
Since the foreground job is not subject to swap
ping, the privileged user job can find it in real
memory. Once found, the user job can read from or
write into that memory area, thereby communicating
directly with either the foreground or background
task. This type of operation may be necessary for
applications requiring large amounts of information
to be quickly passed between the user job and the
real-time job. To illustrate how the real-time
capability of the ETOS can be used, the first
real-time application implemented at the Omaha
Works will be discussed. As the application is
examined, alternate methods of performing various
functions will be indicated.

AN EXAMPLE

On the following page is a block diagram of the
Omaha Works Engineering/Manufacturing Timeshare
System. The system is comprised of two independent
operating systems which are loosely tied together
through the Communication Processor (ComPro). One
of the operating systems is the DEC TSS/8 time
share system which has been in use at the Omaha
Works for several years. The other operating
system is the ETOS. The ETOS, as configured, has
no peripheral devices directly interfaced to it
with the exception of a line printer and, of course,
the cartridge disk system. However, before
installation it was determined that some method of
storing and retrieving ETOS and OS/8 files on a
media other than magnetic disk was needed. To
meet this need it was decided that a parallel bus
interface would be used to provide a real-time
interface between the ETOS and the ComPro. The
ComPro would have interfaced to it a dual DECtape
system dedicated to ETOS users and a high speed
paper tape reader and punch which would be shared
by the TSS/8 and ETOS users. In addition, to
facilitate future numerical control support
applications, a data link from the ComPro to the
Computer Vision graphics system was provided. This
data link was also dedicated to ETOS users.

To implement this real-time application it was
necessary to write two application programs; the
Real Time Executive (RTE) and the File Transfer
Program (FTP). The RTE consists of a foreground
task and a background task. The foreground task
handles the real-time interrupt service for the
parallel data bua connecting the ETOS processor to
the ComPro. As currently written, the foreground

MODEMS

13 300 BAUD!
II 110 BAUD! TELEPHONE NETWORK

DECTAPE
SYSTEM

16 DRIVES>

f'IXED HEAD
DISK SYSTEM

12 PLATTERS!
MODEM
SWITCH

CARTRIDGE
DISK SYSTEM

12 DRIVES) INTELLEC
MICROCOMPUTER

COMMUNICATION
PROCESSOR

LINE
PRINTER

HARDWIRED
TERMINALS

14 600 BAUD CRT' Sl

IDECWRITERI IASR 33 TTYI

LINE
PRINTER

HARDWIRED
TERMINALS

11 1200 BAUD CRT>

COMPUTER VISION
GRAPHICS SYSTEM

THE OMAHA WORKS ENGINEERING/ MANUF,A.CTURING TIMESHARE SYSTEM

task is quite short and runs completely on level 1.
As more real-time tasks are added, it will be
necessary to execute portions of the tasks on
level 2 to prevent degradation of interrupt
servicing. The background task is the real-time
monitor and acts as the interface between the FTP
and the foreground task. The FTP is the program
which is run by a user whenever he wishes to
transfer a data file between his account and one
of the peripheral devices controlled by the
ComPro. The FTP requests transfer commands from
the user and relays them to the real-time monitor.
The real-time monitor interprets the commands and,
with the help of the foreground task, effects the
data transfer. Upon completion of the transfer,
the real-time monitor returns control to the FTP
and the user can terminate the program or make
additional data transfers.

Since the real-time job must be privileged, a
special account for real-time use only was
established. The RTE program and a special ETOS
file named COMLINKDAT were placed in this account
and are not available to general users except
through the FTP.

To initiate a file transfer, the user simply runs
the FTP. The program goes through an initializa
tion routine and then calls the OS/8 command
decoder. The user inputs the file transfer

770

commands and then waits for the commands to be
executed. To make the file transfer commands
available to the real-time monitor, the FTP stores
them in the COMLINKDAT file which resides in the
same account as the RTE and then initiates the
data transfer by contacting the real-time monitor.

In implementing this application it was assumed
that all users would be non-privileged. This
required the initial contact between the user
program and the real-time monitor to be
accomplished through an indirect means. Initially,
it was intended to use the disk file method of
indirect communication. ·However, when this
method was tried it was immediately apparent that
the disk read/write time required for the RTE to
locate new users would seriously degrade system
operation. As a result, it was decided that the
file transfer commands would be given to the RTE
through the disk file but all other communication
would be accomplished through the use of the test
area in the user job block.

Normally, the first four words of the test area
are used to store the OS/8 file name and extension
of the current prog~am; in this case FTP.SV. The
fifth word is unused. The FTP stores the number
of the COMLINKDAT file block which contains the
transfer commands in the fifth word location and
requests real-time service by changing the current

program name to FTPX.SV. After the test area is
changed (by using the SETTXT system function) the
FTP goes into a continuous series of 1 second
waits. If at the end of 10 seconds, the real-time
monitor has not recognized the FTP request for ser
vice, an error message is displayed to the user
and the FTP returns control to the OS/8 monitor.

After the foreground task of the RTE is started,
the real-time monitor checks all system users every
5 seconds to determine if any users are running a
program called FTPX. SV. These checks are made by
running in executive mode and reading the appro
priate areas of the user job data blocks located
in the resident monitor. (The job data blocks
start at location 200 in field 1 but the first two
jobs are part of the ETOS monitor; KMON and DMON.
The first "real" job data block starts at memory
location 10300.) The real-time monitor checks the
first word of the job data block before reading
the text area. If word 1 is d the job data block
is not being used and no furti1er checks in that
block are necessary. If word 1 is not a O, the
real-time monitor checks the job data block test
area. When the real-time monitor finds a job
requiring service it resets the user job data
block test area to FTP.SV. The FTP recognizes
this change as a signal that real-time service has
begun.

After recognizing a request for service, the real
time monitor establishes its own four word job
block for the user. The first word in this block
is a user status word. Since several users could
request real-time service simultaneously, a
queueing system was necessary and the status word
is used to indicate to the real-time monitor the
user status in the queue. The second word in the
block contains a pointer to the last word in the
user's job data block. This word location is used
to pass control information to the user so a
pointer to this location is advantageous. The
third word holds the number of the COMLINKDAT
file block in which the user's file transfer
commands are stored. The fourth word stores a
pointer to the user's virtual program counter.
Whenever the real-time monitor wants to send
control information to the user, it loads the
coded information into the last word of the user's
job data block and then changes the contents of
the user's virtual program counter. In this way
the real-time monitor forces the FTP, which is
still running continuous 1 second waits, to run a
routine which interprets the last word in the
users job data block and takes appropriate action.

An alternate approach would have been for the FTP
to put itself to sleep indefinitely after
determining that the RTE had recognized its
request for service. This is· done by using the
WAIT system function to set one of the user status
resister wait bits in the user job data block.
Then, whenever control information must be sent
to the user, the real-time monitor could set the
user's virtual program counter to the desired
address and make up the user by calling the
monitor wake up routine. This method has the
advantage of immediately placing the user job in
the run queue whereas the method employed may
require an additional 1 second wait before the
user is queued. In addition, the control infor
mation could be loaded i.nto the user's virtual
accumulator, eliminating the need to use the job

771

data block text area.

In those instances where it is necessary for the
FTP to return control information to the RTE, the
FTP loads the coded information into the last word
in the user's data block and returns to the
continuous 1 second waits. The next time the
real-time monitor checks the user, the returned
control information is recognized and acted upon.

Any alternative method for returning control
information to the real-time monitor would require
the user to be made temporarily privileged. The
real-time monitor can d~ this by setting the
user's privilege word in the job data block to an
appropriate value. The real-time monitor could
then provide the user with the real field location
of the memory resident foreground task. This
would allow the user to write directly into a
specified area of that memory field, eliminating
the need for the real-time monitor to periodically
scan the user job data blocks. Since the user
would be privileged, the user program could also
locate the real-time job data block and modify
any of the locations including the virtual machine
resisters. However, since the real-time monitor
is intended to serve several simultaneous users,
any meddling in this area must be done carefully
to insure that no interference is generated
be tween users.

The actual data transfer between the user account
and the peripheral devices is handled by the real
time monitor. The transfer commands are read from
the COMLINKDAT file, interpreted, and are normally
carried out by the real-time monitor with no
additional help from the FTP or input from the
user. There are certain error conditions which do
require user input to resolve. In these instances,
the information is treated as control words and
transfered via the user job data block text area.
In this aprlication, the disk reads required to
obtain the transfer commands are of no consequence
in terms of total time required since the data
transfer involves a continuous series of disk
reads or writes. However, for applications which
do not involve reading or writing large amounts of
disk data but do require the transfer of small
amounts of data between the user program and the
real-time monitor, it may be advantageous for the
user to be temporarily privileged so that data
transfer can be made in memory without resorting
to disk file transfers.

SOME LIMITATIONS

The ETOS cannot handle all types of real-time
applications. The most obvious limitation is
on-line disk storage. The ETOS is limited to
four cartridge disk drives and has a maximum on
line data storage capacity of approximately 8.5
million bytes. This eliminates any application
which requires a massive data base.

Another less obvious restriction results from the
fact that the ETOS is primarily a timeshared
multi-programming system. As such, each user in
turn is allocated a specific amount of time during
which his program is executed. The ability of one
job to run in real time does not alter this basic
operating principle since the real-time back
ground task is treated as a normal timeshare job.
Even though individual jobs can be granted extra

run time, the order in which the jobs are run
cannot be altered, i.e., there is no method of
assigning task priorities. As more jobs are run,
the time interval between run times for any specific
job increases. If the real-time application is
time dependent to the point where the background
task must run within extremely short intervals, it
is not a suitable application for the ETOS.

Finally, those applications which require
continuous, high speed service cannot be imple
mented on the ETOS. High speed in this case is
defined as an interrupt rate greater than can be
successfully handled by the real-time foreground
task. Normally, the ETOS monitor will recognize
an interrupt and give control to the foreground
task within 100 usec.after the occurrence of the
interrupt. Allowing 40 to 50 usec. for the fore
ground task to find and service the interrupting
device, a maximum total interrupt rate for all
foreground tasks would be approximately 7000
interrupts per second. Servicing interrupts at
this rate would leave little time for normal
timeshare operation and could be tolerated only
for short periods of time. Since the ETOS is
primarily a timeshare system, a realistic average
real-time interrupt rate would be 1000 to 2000
interrupts per second. This would allow real
time service without seriously degrading timeshare
performance.

SUITABLE APPLICATIONS

In spite of the restrictions on ETOS real-time
use, there are many applications which can be
successfully implemented. One type of application
was discussed earlier; the use of a real-time task
to handle peripheral devices not supported by the
ETOS monitor. An application of this type could
be used to provide additional on-line st0rage for
another real-time application which could not
otherwise be implemented.

Another type of application which could be
implemented is data collection. As an example,
assume it is desired to collect manufacturing
process data from 20 machines each of which performs
a manufacturing operation at a rate of one machine
cycle per second. Further assume that the data
will be transmitted from each machine to the ETOS
in 10 byte bursts over an asynchronous serial line
interface at a rate of 240 bytes per second. The
ETOS real-time task would have to service a
maximum of 200 interrupts per second. Allowing
300 usec. to service an individual interrupt
implies the worst case total time for interrupt
handling is 60 msec. per second or 6% of total
time.

Reversing the above example illustrates another
type of application which could be implemented on
the ETOS; machine control. Machines which
currently receive their control information from
paper tape, magnetic tape, punched cards, or other
similar types of storage media could be serviced
by an ETOS real-time taBk. Each potential appli
cation would have to be examined to determine if
the required rate of data transfer exceeds the
ETOS real-time capability.

772

PROGRAMMING

Up to this point nothing has been said about the
actual real-time programming. There are three
types of programs which must be written in order
to put a real-time application into practice; the
foreground task(s), the background task previously
referred to as the real-time monitor, and the user
application program. The foreground and back
ground tasks are coresident in the real-time job
and will be discussed first.

In order to successfully operate as an extension
of the ETOS monitor, the foreground task(s) must
be as short as possible and should do nothing more
than locate the interrupting device and service it.
Since level 1 routines are re-entered on 100 usec.
intervals it may be necessary to do only device
recognition on level 1 and queue level 2 service
to handle the remainder· of the real-time task.
Foreground tasks will be written, in assembler
language. There is no other good alternate choice.
Much helpful information on writing real-time tasks
is available from the ETOS Version SA System
Manager's Guide.

In writing the background task, the programmer
does have a choice of languages. Since it is
possible to use assembly language subroutines
with all of the higher level languages, the channel
input/output functions, system functions, and other
special operations which cannot be programmed
directly in the higher level languages can be
executed in assembler language subroutines which
are called from the main program. Assembler
language subroutines can most easily be incor
porated into FORTRAN II programs. In fact,
FORTRAN II allows assembler language statements
to be mixed with FORTRAN statements. For that
reason, FORTRAN II would be a good language choice
for writing the background task. For example, a
background task could be written in FORTRAN II,
which executes in field 0 and allocates field 1
data storage through the use of the COMMON state
ment. The foreground task could then be written
in field 2 and share the field 1 data storage
thereby providing effective communication between
the foreground and background tasks. Use of the
CHAIN statement would allow the programmer to make
the background task as long as necessary. BASIC
or FORTRAN IV could also be used although it is
more difficult to incorporate assembler language
subroutines into programs written in these
languages. This is particularly true of FORTRAN IV.

In writing the user application programs, the
programmer has the same language choices as when
writing the real-time monitor. As was true with
the background task, the channel input/output
functions, the system functions, and other special
operations can be handled with calls to subroutines
written in assembler language.

One of the major differences between programming
the real-time job and the user job is who might be
expected to do the programming. The person
programming the real-time task would have to have
a basic, system level understanding of the ETOS
monitor, experience in programming interrupt driven
device handlers, and the ability to program in
assembler language. The person programming the
background task would require the same system level

knowledge and a working ability in assembler
language programming plus the higher level
language if he chooses to use one of them.

On ·the other hand, the person writing a user
application program should not be required to have
E~PS system level knowledge nor should he be re
quired to have assembler language programming
ability. In fact, anyone should be able to use
existing real-time tasks by simply writing an app
lication program in any of the ETOS languages.
This implies that he should have at his disposal,
subroutine calls which he can incorporate into his

program in order to perform needed system level
functions.

It is assumed that the organization responsible
for the ETOS system operation would program the
foreground and background tasks. In addition,
this organization would also be expected to
provide the assembler language subroutines needed
to perform system level functions. These are not
unreasonable assumptions since the personnel in
volved with the ETOS would be familiar with the
DEC PDP-8/e system hardware, the ETOS system level
functions, and would also have assembler language
programming expertise.

IN CONCLUSION

After all this discussion, what can be said about
the ETOS real-time capability? First of all, the
ETOS can be successfully used to put into practice
many of the potential real-time applications found
in the industrial environmen~. Included in these
potential applications is data collection
utilizing either manual or automatic input stations,
on demand data retrieval in human readable or
machine readable format; and direct control of
manufacturing machines, particularly those machines
currently controlled by paper tape, magnetic tape,
or punched card input. In addition, based on Omaha
Works experience, the real-time aspect of the ETOS
can be ef¥ectively used to incorporate the ETOS
into distributed processing computer networks.

This is not to say that the ETOS has unlimited
real-time capability. In setting up any real-time
job on the ETOS it must be remembered that even
though the foreground task will run in real time,
the background task and the user application pro
grams are timeshare jobs and as such are limited
in the more traditional real-time background task
capabilities. This is particularly true in the
areas of intertask communication, execution
priorities, and scheduling. Therefore, real-time
applications which require frequent or time

dependent interaction between the user program and
the r·eal-time job, or scheduling of user programs
for subsequent execution may not be suitable for
implementation on the ETOS.

As far as programming is concerned, anyone
knowledgeable in BASIC, FORTRAN II, or FORTRAN IV
should be able to successfully write a user
application program provided he has at his
disposal assembler language subroutines which
perform the required system level functions.
Writing these subroutines as well as the real
time foreground and background tasks would require
more system level assembler language programming
than would be the case with a conventional real
time system. However, this should be within the

773

capability of the personnel responsible for the
ETOS operation.

In conclusion, the ETOS represents a good, low
cost method for putting potential real-time
applications into practice and, at the same time,
providing general use timesharing.

REFERENCES

1. Digital Equipment Corporation, "OS/8 Handbook",
1974.

2. Digital Equipment Corporation, "PDP8/e, PDP8/m,
and PDP8/f Small Computer Handbook", 1973.

3. QUODATA Corporation, "ETOS Version SA Syst~m
User's Guide", 1977.

4. QUODATA Corporation, "ETOS Version SA System
Manager's Guide", 1977.

SIMPLE MULTI-OS/8 BACKGROUND SHARING UNDER RTS-8

C.T. Teague, E.W. Yund, and J.W. Brodrick
Veterans Administration Medical Center

Martinez, California

ABSTRACT

A simple background sharing scheme was developed to allow
three concurrent OS/8 users on a 32K Lab 8E running RTS-8
v.2 in the foreground. The system allows multiple residents
in each of the three OS/8 task partitions. Foreground
communication to user real time tasks from each background
user is accomplished by trapping a "super IOT". Implementing
this system in our environment required modification of the
RTS-8 executive to allow dynamic removal of interrupt skip
chain entries and to preserve EAE mode and step counter. A
separate background task scheduler, currently not a part of
the executive, was developed to insure sharing of background
time. This scheduler is dynamically controlled by the
highest priority OS/8 task in order to allow accurate real
time control when required. Thus, both multi-user OS/8 and
real time functions are supported by this system.

INTRODUCTION

RTS-8, a fixed priority multiprogamming system
created by DEC for PDP-8 users, allows shared use
of hardware resources by up to 63 "tasks" (1). Each
task is a sequential program that executes under
control of the RTS-8 executive. The RTS-8 executive
maintains the state of each task, schedules task
execution and supervises intertask communication.
As a part of the RTS-8 system, DEC supplies tasks
that control most DEC I/O devices, a monitor
console routine (MCR), a nonresident task swapper
(SWAPPER), and an OS/8 support task (OS8SUP). The
OS8SUP task controls a virtual OS/8 machine that
executes in the background, thus, providing access
to full OS/8 facilities (powerful utilities, high
level languages, etc.) to a single user. We have
modified our RTS-8 system to support up to three
OS/8 users who share background time. Unlike the
MULTI8 system developed by Cardozo (2) our system
retains the RTS-8 structure and can be implemented
by any RTS-B user with sufficient memory to allow
at least BK for each OS/8 user, a system device for
each, and BK memory for RTS-B system and user
tasks.

We are currently running our modified RTS-8 system
on a 32K LAB-B/e with 3 RK05 disk drives, parallel
LA-30 and 5 KL8 serial interfaces, as well as a
custom data break tone generator. This system
supports 3 concurrent OS/8 background tasks, one of
which is nonresident and shares memory,
exclusively, with an essentially identical OS/B
that uses a different console device. In addition,
RK8E disk driver, 3 TTY drivers with access to the
MCR, system clock, Diablo printer, laboratory
peripherals, paper tape data input and OS/8 file
listing facilities are supported. All control and
utility tasks reside with the RTS-B executive in
fields 0 and 1. Each OS/B background user executes
in a separate 2 field partition above field 1 and
is assigned a separate system device.

Proceedings of the Digital Equipment Computer Users Society 775

System memory usage was minimized by heavily
overlaying low demand and noncritical I/O bound
tasks. For example, the OS/8 file look-up, listing,
and paper tape input utility tasks share a single 4
page memory partition and communicate with each
other and other foreground activities through a
resident 1 page message area. Similarly, all 3 TTY
drivers share a 2 page partition; a resident page
containing interrupt code is allocated to each.
Memory requirements were further reduced by
eliminating superfluous (to us) time, date, and
task scheduling features of the MCR. Also,
foreground access to OS/B files was restricted to
lookup and to reading or writing existing files,
thereby eliminating cumbersome
background/foreground interlock code. The system
was configured to allow up to 32 tasks (23 tasks
currently running) and requires 59 memory pages
including 6 pages for each OS/8 support task.

MULTIPLE ~ IMPLEMENTATION

~ Executive Modification

RTS-B provides no mechanism for preserving the EAE
mode or step counter in the task state table.
Preservation of EAE state is critical when multiple
OS/8 or foreground EAE use is desired. EAE state
may be simply preserved by extending the RTS-B task
state table and including code to determine EAE
mode and store it with the step counter in a single
word associated with each task. Rather than extend
the task state table we chose to restrict all
foreground tasks to using the same EAE mode with
individual modes and step counters preserved for
each OS/B support task. This strategy required a
separate table having a minimum length of 4 words,
one entry for the foreground and one entry for each
OS/8 support task. Thus far, this scheme has
succeeded and offers the advantage of minimizing
RTS-8 table space.

San Francisco - November 1978

The EAE mode saver code is entered whenever. task
state is saved and EAE mode restorer code is
entered whenever task state is restored
(Listing 1). A single bit preserves the mode and
the low order 5 bits hold the step counter in the
table word. EAE mode is detected by executing a
DPSZ instruction which skips if the EAE is in mode
B and AC-MQ are O. Both the AC and MQ registers
must be saved before executing this code. The step
counter is restored with the EAE in mode B then the
mode is corrected to match that which was saved
before task exectution was suspended. We placed
this code and table in page O field O because space
was available there; however, this code could be
relocated elsewhere within the executive.

A further executive modification was required to
implement the OS/8 swapping feature of our system.
A means to dynamically remove entries in the RTS-8
interrupt skip chain was added so that terminals
located in widely separated la.boratories could be
driven by either an RTS-8 TTY driver or an OS/8
support task. On entry these OS/8 tasks remove the
TTY driver skip chain entry, suspend the TTY driver
and insert their console handler entry into the
skip chain. On exit they remove their own entry,
release the TTY driver, send a message to the TTY
driver and FREE the partition. The TTY driver
checks to see if it is in the skip chain before
processing the message and inserts itself if it is
not.

The skip removal routine (Listing 2) is called in
the same manner as any other executive request with
a -SKPIOT argument. It skips down the skip chain
looking for a matching I/O opcode. If one is found,
the previous entry is updated to point to the next
entry after the current one. Then the current entry
is zeroed so that it may be reentered. If the end
of the skip chain was modified, pointers to the end
are also updated. Nothing is done if no
corresponding opcode is found. Installation of this
feature requires modification of the exective
request table to add the entry and modification of
SKPINS to place the pointer to the end of the skip
chain on page 0 (Listing 3). This routine actually
is part of the executive and should be incorporated
within the executive. However, since the SWAPPER
contains the FREE routine, also a part of the
executive, and enough space was available, the skip
removal routine was placed following the FREE
executive code in the SWAPPER.

RTS-8 v.2 also does not allow nonresident tasks to
be started from the interrupt level. This
limitation was removed by inserting code in the
executive interrupt processor which places a
nonresident task in SWAPWT and runs the SWAPPER
whenever an event flag is posted by an interrupt
which makes a nonresident task runnable. This
modification must be made to allow swappable TTY
driver tasks; however it is not needed to support
multiple OS/8 background tasks.

~ Initialization

The OS/8 support 4ask supplied by DEC loads
initialization code into its virtual field O which
is executed one time to move the OS/8 system areas
into virtual memory and establish a correspondence
between OS/8 and RTS-8 device handlers. The user
mode skip chain entry is also initialized at this
time. This initialization code calls the OS/8 user

776

service routine (USR) which performs disk I/O. USR
disk usage causes a spurious interrupt to occur
after OS/8 initialization is complete and
interrupts are restored. This spurious interrupt is
a problem if the RTS-8 disk driver has been called
before it occurs because the disk driver modifies
its interrupt handler so that the spurious
interrupt will be interpreted as a fatal error'and
lock up the system (before it ·is really going).
This problem is accentuated by the multiple
initialization required by the 3 OS/8 system. Since
the SWAPPER is the only task likely to call the
disk driver before OS/8 initializes, we eliminated
the spurious interrupt problem by placing the
SWAPPER in USERWT /initially and releasing it after
OS/8 initialization was completed. Otherwise, OS/8
initialization is unmodified except that the
highest priority OS/8 support task supervises the
initialization of lower priority OS/8 tasks and
inserts the user interrupt entry into the skip
chain (Listing 4). All lower priority OS/8 tasks
initially are placed in USERWT and are released
when initialization is complete.

~ Support ~ Interrupt Handler

The OS/8 user interrupt handler entry point remains
unchanged although code must be inserted to
temporarily preserve the AC and Flags from the
interrupt and dispatch to the appropriate OS/8
support task. Each task must then recover its AC
and Flags (Listing 5).

.Q.SL]. Background Timesharing

Because RTS-8 has a fixed priority preemptive
scheduling scheme, the highest priority OS/8
support task (OS81) will prevent execution of lower
priority OS/8 support tasks (OS82 & OS83) unless it
is waiting for I/O. During largely compute bound
operations, such as compilation, OS81 will use all
available background time. In order to force OS81
to share time with other background tasks, we
implemented a timeshare module as a separate task
which could be controlled by OS81 because OS81
sometimes requires all background time to
accurately control experiments running in real
time.

The timeshare task allocates a time slice to each
OS/8 task whenever they are runnable unless OS81
has set a flag indicating that it is not to be
suspended. In this case, OS81 is not suspended and
remaining background time is equally shared between
OS82 and OS83 (Figure 1). In the event that an OS81
program fails to reset the time share flag, the
OS81 support task resets the flag automatically
whenever its keyboard monitor is loaded. Otherwise,
the state of this flag is controlled by OS81
programs through the foreground/background
communication module described below.

A time slice of 160 ms is used in our system
because this time gives a good balance between OS/8
user response time and the time consumed by the
timeshare task. Longer intervals reduce the amount
of time consumed by the time share task but also
prohibitively increase OS/8 response time; whereas,
shorter intervals increase the time consumed by the
timeshare task.

WAIT

NO

NO

SUSPEND 0581, WAIT

SUSPEND 0582, WAIT

NO

RUN OS81

RUN OS82

NO

NO

SUSPEND OS81, WAIT

RUN OS81

Figure 1. Triple OS/8 timeshare module.

777

Alteration ..Qf .Q.sL§.

To facilitate timeshare operation we were forced to
make 3 alterations in OS/8 system programs. First,
the KL8E TTY handler was modified so that instead
of continually executing KRS instructions after
receiving a CTRL S the sequence KSF; JMP .-1 is
executed instead. This sequence causes the OS/8
support task to wait for I/O rather then needlessly
executing. The second alteration was made to the
FORTRAN II TTY handler and involved inserting the
same sequence of instructions to cause it to wait
for input. Finally, FORTRAN IV, without FPP, also
was modified to use standard programmed I/O
transfer by changing the interrupt driven I/O
handlers in the FORTRAN IV run time system (FRTS)
page O. Since other illegal IOT instructions (ION,
IOF, etc.) are interpreted as NOP by the OS/8
support task, no other changes need be made.

FOREGROUND/BACKGROUND COMMUNICATION

In order to take full advantage of both RTS-8 and
OS/8 facilities an effective means to communicate
with the foreground RTS-8 tasks from background
OS/8 users is necessary. DEC suggests calling a
special task from the background in a manner
similar to calling any other OS/8 device handler.
Although this scheme should be practical for a
single background user, the system overhead in
storage and special function decoding this scheme
requires would be prohibitive in our multi-OS/8
system. Therefore, we decided to place a foreground
communication module within each OS/8 support task.
This arrangement allowed us to easily customize the
module for the special requirements of each OS/8
user and also allows each OS/8 task to monitor its
own foreground requests.

The foreground/background module is activated by
executing a 6777 IOT instruction in the background
with the offset into a table of callable foreground
tasks in the accumulator. The attempt to execute
the IOT is trapped by the time share hardware and
control is passed to the foreground/background
code. This code translates the table offset, forms
a message to the foreground task and sends it
(Listing 6). In all cases, except when a message is
sent to the DEC-supplied clock task, the message
consists of the address of the "real" message which
resides in an OS/8 background field. Special
functions, such as the dynamic time share control
required by OS81, are called by passing a negative
argument in the accumulator. Currently only one
other special function is required; the swapping
OS/8 users use this function to FREE their
partition. This means of freeing the partition was
selected because single character commands were too
easy to type inadvertently. For example, when CTRL
F was used to free the partition it was often typed
instead of CTRL G while using OS/8 EDIT.
Furthermore, virtually all control characters are
used by our text processing system. Incidentally,
access to the Diablo printer from the text 1 format
program is provided through this communication
module and, thus, may be called by any of the 3
OS/8 users.

COMMENT

Most users are satisfied with the current system;
however, a few problems have occurred. Although
individual OS/8 system devices are unique, care

must be exercised to restrict indiscriminate file
transfers between mass storage devices since all
OS/8 background programs have access to all
devices. We have implemented a general rule that
one. may read from but not write upon the mass
storage device of another user. This rule should be
suffficient in most situations. If it is necessary
to.'transfer files to another user's device, we have
found that telephone communication must precede the
transfer. We also are among the RTS-8 users who
have experienced a problem with the loss of the
teleprinter flag in the OS/8 support task TTY
handler. Like other users who have experienced this
problem we have no solution other than to enter the
appropriate wait value in the correct event flag
location and post it from an MCR console terminal.

Listing 1. Routine and table to save EAE mode for
OS/B's and foreground.

/ROUTINE AND TABLE TO PRESERVE EAE MODE AND
/STEP COUNTER ACROSS EXECUTIVE CALLS.

*61 /PAGE O, THERE IS ROOM
MODTBL, 4000 /FOREGROUND ENTRY

4000 /OSB ENTRIES FOLLOW
4000 /BIT O=MODE; O:B, 1=A
4000 /BITS 7-11, STEP COUNT

MOSBN, -os8+1 /-ONE LESS THAN OS81
MDBASE, MODTBL /TABLE BASE
MODPTR, MODTBL /POINTER INTO TABLE
/SAVE MODE AND SC IN TABLE
MODSAV, 0

JMS MODTSK /POINT INTO TABLE
CAM /CLEAR AC-MQ FOR TEST
SCA /STEP COUNT IN AC7-11
DCA I MODPTR /SAVED
DPSZ /SKIPS IN MODE B
CLA STL RAR /SET BIT 0 IF MODE A
TAD I MODPTR /COMBINE WITH SC
DCA I MODPTR /IN TABLE
JMP I MODSAV ./DONE.

/RESTORE MODE AND SC ACCORDING TO TABLE
MODRES, 0

JMS MODTSK
SWAB
TAD I MODPTR
ASC
TAD I MODPTR
SPA CLA

/POINT INTO TABLE
/MODE B TO RESTORE SC

/SC RESTORED
/BACK TO TEST MODE

SWEA /MODE A
JMP I MODRES /DONE.

/FORM POINTER INTO TABLE ACCORDING TO TASK
MODTSK, 0

TAD TASKX
TAD MOSBN
SPA
CLA
TAD MDBASE
DCA MODPTR
JMP I MODTSK

/CURRENT TASK
/LESS OSB OFFSET
I+ IF BACKGROUNDER
/ALL FOREGROUNDERS

/INTO POINTER
/DONE.

Listing 2. Dynamic skip chain removal code,
located in the SWAPPER.

/SWAPPER CODE TO IMPLEMENT SKOUT
*COMMAND
INIT /INITIALIZATION
XFREE
IFDEF SKOUT <
JMP I .+1 /SKOUT ENTRY

SKLOC, XSKOUT

778

>
/FOLLOWING AFTER BODY OF SWAPPER AND XFREE

IFDEF SKOUT <
LOC20=20
FBSKCH= SKLOC+1
FXRET= SKLOC+2
FCDIF= SKLOC+3
INTEND= SKLOC+4

/TAKE A SKIP OUT OF THE SKIP CHAIN
/CALL: CAL
I SKOUT
I -SKPIOT /MINUS THE IDT
I
XSKOUT,

SKPLP,

NCDIF,

LCDIF,

SCDIFO,

NXTSKP,

TAD I
DCA
ISZ
TAD
DCA
GDF 0
TAD
DCA
IAC
TAD I
DCA
ISZ
TAD I
TAD
SNA CLA
JMP
TAD I
DCA
HLT
CIF 0
TAD I
TAD
SZA CLA
JMP
AC7776
TAD
DCA
TAD I
DCA
ISZ
TAD I
DCA
DCA I
TAD I
DCA
HLT
CIF 0
TAD
DCA I
TAD
STA
TAD
DCA
TAD
DCA I
TAD
SZA CLA
JMP
CDF 0
TAD
DCA I
TAD
DCA
CDF CIF
JMP I
AC7776
TAD
DCA
TAD
JMP

LOC20
T
LOC20
FBSKCH
LS TAD

SCDIFO
LCD IF

LSTAD
ADPTR
LSTAD
LSTAD
(-SKP

SCDIFO
LSTAD
NCDIF

ADPTR
T

/GET NEGATIVE IDT

/START OF CHAIN

/IN FIELD 0
/TO START
/FIELD OF PREVIOUS

I+ ADDRESS OF NEXT
/POINTS AT SKIP
/POINT AT CDF CIF

/SKP ENDS CHAIN

/SEARCHED IT ALL
/FIELD INTO LINE
/AND SAVED

/OUR FIELD *IOF*
/TEST THE INSTRUCTION

NXTSKP /NOT IT
/FOUND

ADPTR
ADPTR
ADPTR
ADSAV
ADPTR
ADPTR
NCDIF
ADPTR
INTEND
ENDFL

NCDIF
LSTAD
ADSAV

LSTAD
LSTAD
ADSAV
LSTAD
ENDFL

SCDIFO

LCD IF
FCDIF
LSTAD
INTEND
0
FXRET

ADPTR
LSTAD
NCDIF
SKPLP

/ADDRESS OF NEXT

/SAVED
/NOW THE FIELD

/ZERO THIS ENTRY
/CLEARED THE END?
/SAVE A FLAG
/FIELD OF LAST
/OUR FIELD, AGAIN
/FIELD OF NEXT
/IN PREVIOUS

/POINT TO ADDRESS

/AND UPDATE
/WAS THE END?

/IF NOT
/OTHERWISE, RESET
/SKPINS POINTERS
/FIELD

I AND ADDRESS

/*ION* AND AWAY!

/UPDATE ADDRESS

/TEST THE NEXT

LSTAD, 0
ADPTR, 0
ADSAV, 0
ENDFL, 0

>

Listing 3. RTS-8 executive modifications to
implement dynamic skip chain entry removal.

/MODIFICATION OF RTS-8 EXECUTIVE - PAGE 0
T , 0 /TEMPORARY

IFDEF SWAPPER <
IFNZRO COMMAN-.
<__ERROR: CHANGE SWAPPER__>
IFNDEF SKOUT <

/SWAPPER LOADS TWO ENTRY POINTS HERE
•.+2
>

/SPECIAL CODE FOR SKIP OUT ROUTINE
IFDEF SKOUT <

/SKOUT ALSO LOADS ENTRY POINTS

FBSKCH,
FXRET,
FCDIF,
INTEND,

•• +4
BSKCHN
EXRET
INTCDF
BSKCHN
>
>

/BEGINNING OF SKIP CHAIN
/NON-INTERRUPT RETURN
/CDF CIF TO LAST SKIP
/ADDRESS OF LAST SKIP

.I

/MODIFICATION OF RTS-8 EXECUTIVE DISPATCH
/TABLE - PAGE 3

XUNBARG
IFDEF SKOUT <!SKIP OUT ENTRY
XSKOUT=COMMAN+2
XSKOUT
>

/MODIFICATION OF RTS-8 EXECUTIVE REQUEST
/SKPINS - PAGE 3

JMP I (TSTOP
IFNDEF SKOUT

INTEND, BSKCHN /NOW ON PAGE 0
>

Listing 4. Multiple OS/8 initialization supervised
by higest priority OS/8 support task. Actual
initialization code is loaded into each OS/8
virtual field 0 by the OS/8 support task.

/MULTIPLE OS/8 INITIALIZATION
/RESIDES IN HIGHEST PRIORITY OS8 TASK.

•57
IFNZRO NTASKS-OS8<

TSKCTR,
ACT,
NTASKX,
LINKT,

OS8-NTASKS

NTASKS+1
> •166

SWAPPER

STKBMN

TSWAP,
AC,
STKBMX,
PC,
OSINIT,
LINK, INITOS

I - OS8 TASKS
/AC TEMP
/LAST OS8 +1
/INTFLGS TEMP

/SWAPPER FOR INIT
/OS/8 AC
/START AFTER INIT
/OS/8 PC
/INIT CODE ADDRESS
/OS/8 INTFLGS

/INITIALIZATION CODE
/OVERWRITTEN BY RING BUFFERS

•4600
START, CAL

SKPINS
TTINT

OWBASE= START

/LINK IN OS/8
/TELETYPE

779

OWLEN=
IRBASE=
IHLEN=
I REND=

20
OWBASE+OWLEN
10
IRBASE+IRLEN
CDF CIF OS8FO /INITIALIZE OS8
JMS I OSINIT
IFNZRO NTASKS-OS8<

!*** BEGINING OF SPECIAL INITIALIZATION
CDF CIF OS82FO /INITIALIZE OS82
JMP I OSINIT

UNBARL,

IFDEF OS83 <
CDF CIF OS83FO /INITIALIZE OS83
JMP I OSINIT
>
TAD NTASKX /UNBLOCK LOWER
TAD TSKCTR /PRIORITY OS8
JMS UNBLKR /BLOCKED UNTIL
ISZ TSKCTR /INITIALIZED
JMP UNBARL
>

/ALL OS8 TASKS INITIALIZED ***
/TO PREVENT SYSTEM LOCK-UP WHEN STARTED

TAD TSWAP
JMS UNBLKR
JMP I STKBMX /LOAD KEYBOARD MONITOR

UNBLKR, 0 /UNBLOCK TASK
CAL
UNBARG
USERWT
JMP I UNBLKR

Listing 5. Modified interrupt handler for triple
OS/8 system. This code is located in the highest
priority OS/8 support task.

/TIMESHARE INTERRUPT HANDLER
IFNZRO NTASKS-OS8<

TASKX= 32 /CONTAINS CURRENT TASK
DCA ACT /AC TEMP
GTF
DCA
TAD
TAD
IF DEF
SNA
JMP
CLL RAR
>
SZA CLA

LINKT
TASKX
(-OS8
OS83

TSINT1

/INTFLAGS TEMP
/CURRENT TASK
/LESS THIS ONE
<!IF THERE ARE 3

/THIS IS IT
/AC HAD 1 OR MORE

IFDEF OS83 <
JMP I (TSINT3 /MORE THAN
>
JMP I

TSINT1, TAD
DCA
TAD
DCA
>

(TSINT2
ACT
AC
LINKT
LINK

/RECOVER AC
/FROM INTERRUPT
/AND FLAGS

IFZERO NTASKS-OS8<
DCA AC
GTF
DCA
>

LINK

Listing 6. Foreground/background communication
module. Similar in each OS/8 support task; this one
is from OS81.

/COMMUNICATION MODULE FOR VARIOUS DEVICES
/CALL: TAD FUNCTION
I 6777 /TRAP IOT

I ADDRESS /MESSAGE ADDRESS
I /RETURN, AC CLEAR BEEEBEMCES
I
SNDMSG, TAD AC /FUNCTION 1 • BIS-6 1.!IH!Clil MiUBlll.l. Digital Equipment

SPA CLA Corporation. Maynard. Massachussetts. 1975.
JMP ALT8SW /FLOP TIMESHARE FLAG
JMS UCIF /FIELD OF CALL 2. Cardozo, E.L. : MULTI8 - A real time/timsharing
ISZ PC system employing virtual memory techniq·ues.
TAD I PC /MESSAGE ADDRESS Pcoceedinn .2.f... ~ Digihl Equipment .llJW:a.
DCA SNDADD /HERE Society 4:873, 1978. '
TAD AC /OFFSET IN TABLE
SNA
JMP CLKCAL /CALL THE CLOCK
TAD SNDLST /POINT AT TASK
DCA SNDDEV
CDF CUR /OUR FIELD
TAD I SNDDEV /ACTUAL TASK
DCA SNDDEV
TAD UCIF+1 /FIELD OF MESSAGE
DCA SNDCDF /FOR TASK

HERSND, CAL
SENDW /SEND AND WAIT

SNDDEV, 0
MHERE /OUR MESSAGE

ALTOUT, DCA AC /ZERO AC BEFORE
JMP I SNDRTN /RETURNING

SNDRTN, XNOP
MHERE, ZBLOCK 3 /RTS OVERHEAD
SNDCDF, 0
SNDADD, 0
SNDDUR, 0
SNDLST, SNDLST /TABLE OF TASKS

TONE /TONE GENERATOR
DGIO /DIGITAL I/O
VC80 /SCOPE CONTROL
ATOD /ANALOG TO DIGITAL
DIAB /DIABLO PRINTER

CLKCAL, JMS UCIF /HERE FORM CLOCK MSG
TAD I SNDADD
DCA SNDCDF
ISZ SNDADD
TAD I SNDADD /DURATION IN
DCA SNDDUR /SYSTEM TICKS
DCA SNDADD /NO HIGHER ORDER
CDF CUR I I.E. <= 40 SEC
IAC
DCA SNDDEV /CLOCK=1
JMP HERSND

ALT8SW, TAD AC /-1 TIMESHARE OK
CMA /OTHERWISE NOT
DCA ALTOS /PAGE 0 FLAG
JMP AL TOUT /RETURN IMMEDIATELY

780

MICROPROCESSOR BASED OCEAN BOTTOM SEISMOMETER

Robert D. Moore
Chin-Yen Huang

Geological Research Division
Scripps Institution of Oceanography

La Jolla, California

ABSTRACT

The prototype of a new ocean bottom seismometer design has
been constructed at Scripps Institution of Oceanography and
is operational. The design is based on a microcomputer using
a 6100 microprocessor which emulates the DEC PDP8/E*. Instru
ment design, operating features and some software features
are discussed.

Historically, the science of seismology has been
the source of most of the data on which our present
picture of the large-scale structure of the earth's
interior is based. Studies of the propagation of
elastic waves produced by earthquakes through the
earth's interior has enabled much to be inferred
about its structure. Recently, interest in the
developing theory of plate tectonics has created a
need for data on small-scale structures, such as
plate boundaries. In order to obtain such data the
seismometer must be sited at or very near the point
of interest. Approximately 70% of the earth's sur
face, including many of the sites at which such
small-scale structural data are needed, is covered
by the oceans. Consequently, ocean bottom seismo
meter (OBS) systems capable of recording data at
such sites have been developed at several geophysi
cal laboratories in recent years.

The Scripps Institution of Oceanography has had an
OBS program for several years using instruments
designed here by Prothero 1 • A couple of years ago
the need for additional instruments to support an
expanding research program became evident. The
availability of CMOS microprocessors whose low
power consumption makes them usable in this appli
cation led to the decision to embark on a new de
sign incorporating a microprocessor. The chief at
traction of this approach is the resulting flexi
bility of the instrument. In order to realize as
much of this potential as possible the processor
chosen was the 6100 which emulates the DEC PDP8/E.
This choice allows the use of a large-scale PDP8/E
and the OS/8 operating system for program develop
ment.

Figure 1 is a photograph of the OBS system ready
for launch. It consists of a pressure case (cap
sule) which contains the electronics, batteries,
tape recorder and the triaxial 1 Hz seismometer.
The fourth sensor, a hydrophone to detect pressure
waves in the water, and the transducer for the
acoustic system used to provide limited two-way
communication between the OBS and a surface ship,
are mounted outside the capsule and may be seen in
Figure 1. The capsule is supported by a triangular
anchor frame to which it is rigidly attached by

*DEC, PDP8/E and OS/8 are registered trade marks of
the Digital Equipment Corporation, Maynard, MA.

Proceedings of the Dig/ta/ Equipment Computer Users Society 781

two explosive bolts. The capsule with its at
tachments is positively buoyant, the weight of the
anchor frame being sufficient to make the assembly
negatively buoyant. At launch the assembly is
lowered from the deck of the ship to a depth of
about 200 feet and held there while its operational
status is checked out using the acoustics. The line
is then severed and the capsule free falls to the
bottom. Deployment depths may be as great as 5 km
(16,000 feet). Once on the bottom, the instru-
ment automatically goes through a start-up procedure
preparatory to taking data. The acoustic system is
used to determine whether any problem develops, in
which case the capsule is recalled and corrections
are made. It is then assembled to a new anchor
frame and re-launched. Once the capsule is opera
ting satisfactorily, the ship leaves to launch other
capsules or to do other oceanographic work. At the
end of the deployment period, typically 10 to 30
days, the ship returns to the launch position, a
coustic communication with the capsule is estab
lished and a release command is transmitted. This
fires one of the two explosive bolts which is the
normal release mode. If this fails, but the acous
tic commands are being received by the capsule, a
second command is sent to fire the other, back-up,
bolt. If this also fails to produce a release, a
pair of internal timers will attempt to fire the
primary bolt first, then the back-up. If all of
this fails, a $25,000 instrument is irretrievably
lost. If either bolt fires, the capsule separates
from the anchor frame and floats to the surface
where it is recovered by the ship. During the cap
sule's ascent, the acoustic system is used to keep
the ship positioned above it to ensure that it sur
faces close to the ship.

Figure 2 shows the interior of the capsule. The
object on top is the tape recorder. It is sup
ported by the card cage which contains the CPU,
memory and all peripheral interface cards. In the
foreground is the acoustic package. Below these,
the can housing the seismometer and its levelling
system can be seen. The objects sticking out from
the seismometer can are amplifiers, filters, etc.

Figure 3 is a block diagram of the OBS system. The
basic design philosophy has been to make the system
essentially a PDP8/E computer plus peripherals, all
of which communicate via an extended 6100 bus, as

San Francisco - November 1978

Figure 1. Assembled OBS ready for launch. The cylindrical object in the front is the hydro
phone, the annular object on the left the transducer for the acoustic system.

opposed to a hardware-oriented system using the
processor as a controller. Apart from timing re
strictions, the system has no properties not deter
mined by software. An exception to this is the re
lease system which is autonomous and independent
from the comput'er.. This is to prevent either a
failure to release, or a premature release due to.
computer hardware or software failure. Release
system status information, i.e. acoustic connnand(s)

782

received, timer release connnand(s) generated and
whether the associated firing circuits have actu
ated, are available to the computer for acoustic
transmission to the surface. All peripherals ex
cept the memory extender are implemented with the
6101 parallel interface element (PIE). All use
progrannned data transfers and status flags except
the analog-to-digital converter which is serviced
via a vectored interrupt in order to attain as

Figure 2. Interior of OBS capsule

precise data sample times as possible. The memory
extender is implemented with CMOS logic and is the
only departure (apart from the special instruction
set pertaining to the peripherals) from PDP8/E
software compatability. It only implements the DEC
instructions pertaining to data fields, the in
struction field being hardwired to zero. The
large-scale PDP8/E system used here for program
development was built around a 6100 and has sockets
to accomodate capsule cards. The PIE device num
bers used in the capsule were chosen so as not to
conflict with those of the standard peripheral de
vice~ on the iarge system. Thus, all capsule cards
may be operated in the large system for hardware
and software debugging.

Data are recorded on magnetic tape. A commercial
battery-powered 1/4" reel-to-reel tape recorder,
modified for digital recording, is used. Four
tracks are recorded serially using phase encoding.

783

Each track is recorded independently with one data
channel recorded on each track. The four tracks
are played back independently, one at a time. The
recording system operates at a fixed throughput
rate of 1728 bits per second, or 144 12 bit words
per second. Since each data channel is sampled at
a rate of 128 samples per second, an overhead of 16
words per second is available for time, gain, etc.
Four parallel-to-serial shift registers in the re
corder formatter provide the four serial bit
strings. The recorder is started and stopped under
program control. While the recorder is running,
the formatter must be supplied with four 12 bit
words every 6.94 msec. This is accomplished by
loading four consecutive words to the accumulator
(AC) and then to the formatter via "load data"
commands in response to a "load data" flag. Since
the formatter is double buffered, the four words
may be loaded any time during.the 6.94 msec fol
lowing the flag. The track on which a given word

fj(}/..T 1 .. l ~c I lJ(KF)

------ - - - - - -- -
J l 801..T 2.

---- -=--------- - - - - - - - - - -- ------I-----
TAPE .REl.£"5£ : llCOUSTIC

REI.Ell~£ l/COIJ:,T/C
r-- li!E~ 7/Hclt. l Ult~ 7/Hclt.

71'.AAIS- t---
A 13

C£111£~

l t:- _I J _,

UcobE~ WM~ ~ ~GS1 !!AM hi-(FlitlJll&IM

t:UJCJ(.. 6)$TD.f
/l)T#'IVAt:G' I ~" i/01, ~

~ATTEle.
""" t.)llO.s I ~ /,JMOS UIK ~>"'*'

! NJ IJ(&.«JG>

~ l BtlS ,
~

r--- ··--,
S/FISMtJMer~ II. Z>. c. }'IE~'f

Cl»JT"lfDL..
Ll!V6n.Jt. CIAJT//!JI/.. .,,,.,, IMAJEL.o

f f'l.OCESSOI(. /'llkr1'tEKll(. E't'fFPIJti/(, rl-t ~CE"SS1ve" f m.:r- ...,,A'SO.c.
$11Mf'C£"-"1Jl>o ~

/IOl..7>

I - - - - - - - - - - - - - - --,
!i.elSMOMeT«

~--·-·--

/l'IDl!DPHOIJe
I

!51•AJll1.. TR.1-AJl,/AI.. .$11.AJAL I
(.IJIJT1t/)I.,

~ !+tour'""' I---~OU~ /leoC~SSIAlt. I hlAJE'L
6llMJ UMJrbl.. &1111.J~ I

I 'llt.IJIJl'E':

I 11TN& OIJrsl

- - - - - - - - - - - - - - - - - - - -- - IJOm9 lnoJIT M
871!1111&7"~

~lleofNIWE' "TEl.ETYl'E"
CNSuc.,e.

Figure 3. System block diagram.

is written depends on whether it is the first, sec
ond, etc. of a given group of four words. Thus CPU
time required to service the recorder is minimal.
The tape speed used is 15/16 IPS resulting in a re
cording bit density of about 1800 BPI. Since a
five-inch reel holds about 1800 feet of 1/2 mil
tape a total recording time of about 6.4 hours is
available.

Since typical deployment times greatly exceed the
total recording time, only data representing useful
seismic events are recorded. Two modes of opera
tion are used. In one mode, earthquakes constitute
the signal source. In this case the OBS must by
some means determine when incoming data represents
a seismic event rather than ambient seismic noise.
In the second mode, artificial seismic waves, usu
ally produced by underwater explosions, constitute
the signal source. In this mode the "shooting" is
done on a schedule and the capsule is required to
record on the same schedule. A precision real-time
capsule clock is needed both to implement shooting
schedules and to generate time words to be recorded
on tape along with the data. The recorded time is
used to compare seismic wave arrival times between
capsules, For the data to be useful these times
must be good to ~ 0.1 sec. The real-time clock

784

consists of a 24 bit counter which is incremented
at 1 Hz.

The contents of the counter can be read by the CPU.
Time is written on the tape once per second. The
data are sampled at a rate of 128 Hz in re-
sponse to interrupts. Since there are 128 samples
between one second clock words on the tape "cap
sule time" can be resolved to better than .01 sec.
At launch each capsule's 1 Hz clock is set as
closely in phase with WWV as possible. The 1 Hz
and 128 Hz clock frequencies are obtained by
counting down on a 2.004480 MHz temperature compen
sated crystal oscillator which is also used to
clock the CPU. All of this enables time compari
sons between capsules to about 0.2 sec for a 30-day
deployment at their present state of development.

The analog-to-digital converter (ADC) assembly con
sists of the converter~ a sixteen channel multi
plexer (MUX) and a sample and hold amplifier (SHA),
all low-power CMOS devices. The SHA requires 100
µsec to settle after being a.witched to a new chan
el; a conversion takes 70 µsec. The assembly is
interfaced to the CPU via a PIE. The coding for a
single conversion is: load MUX address to AC, load
AC to MUX address register, wait 100 µsec, execute

convert instruction, wait for ADC done flag, load
ADC output to AC, store AC. Done as fast as possi
ble, a sequence of four conversions takes about
1 msec. This PIE is also used to enable the CPU to
transmit capsule status bits to the surface. Data
are transmitted serially to the surface, 12 bits
at a time, by loading a word from the AC to the
interface which starts transmission. A flag is
available that signals transmission complete. The
computer word is converted by the interface to a
series of pulses each of which causes the acoustic
transmitter to "ping" once (a ping is a 12 KHz
pulse 4.5 msec long). The code used is one ping
for a zero, two, spaced 0.5 sec apart, for a one.
The time between successive bits is exactly 4 sec
as determined by the capsule clock. This enables
capsule clock rate to be checked via the acoustic
system.

On the surface, communication with the capsule is
via a control panel providing all the standard
PDP8/E control panel functions and a TTY interface.
Data is transferred between the capsule and the
control panel/TTY via a two-way serial port. The
interconnect requires four wires--data in, data
out, UART clock and ground. Since the capsule con
nector must be a deep submergence type and since
highly reliable connectors of this type with large
numbers of pins do not exist the small number of
wires is very important. The actual control panel
functions are performed by the control panel board
in the capsule, the external control panel being an
input/output device. All clocks used by the cap
sule board are generated from the UART clock which
is inactive when the external control panel is dis
connected. When the external control panel is dis
connected, just before launch, the capsule control
panel board goes into an inactive state so as to
not interface with subsequent program execution.

Because of the horizontal seismometers, the triaxi
al seismometer assembly must be accurately lev
eled. The seismometer mounting system provides for
automatic leveling upon execution of a "level" in
struction. The maximum capsule tilt that can be
accomodated is± 15°. If the slope of the surface
upon which the capsule comes to rest exceeds this,
a "tilt" flag is set resulting in a corresponding
acoustic transmission. In such a case the OBS must
be recalled and re-launched.

The standard capsule memory compliment is 12K, nor
mally fields 0, 1 and 2. Program memory space is
hardware limited to field zero, fields 1 and 2 be
ing used as a data buffer. Whether recording is
initiated by a time schedule or by event triggering
it is desirable to have data available for a time
previous to that at which the recorder is started.
At the present system throughput rate the 8K in
fields 1 and 2 contains 14 sec of previous data at
any time. The memory boards all use lK RAM (6518)
!C's and are designed so that they can be write
disabled in lK blocks by plugging an appropriately
wired connector into the board. The present cap
sule operating software occupies 24 memory pages,
using an average of about 80% of the available lo
cations per page. These pages are all in the upper
3K, which are write disabled. This leaves the
lower lK, including page 0, for program scratchpad.

The use of write disabled RAM rather than ROM or
PROM for program storage is mainly to achieve

785

maximum software flexibility. Our experience has
shown that write disabled RAM is stable enough to
result in reliable program execution over long
periods of time. (Battery operation also helps
considerably.) The system includes a "watchdog
timer" which provides a means of program restart in
the event of a problem caused by a soft program er
ror. Hard program errors due to memory or other
hardware failures are, in general, irrecoverable.

The useful bandwidth of the system is from about
0.1 Hz to 30 Hz. The upper frequency limit is de
termined by system throughput rate, the lower by the
sensors. Each data channel is sampled at 128 Hz
resulting in a Nyquist frequency of 64 Hz. The
upper frequency limit for the data is set by the
requirement that the low pass anti-alias filters be
down at least 60 db at 64 Hz. Data are sampled in
response to interrupts caused by a 128 Hz clock de
rived from the capsule clock. All four channels
are sampled sequentially as rapidly as possible
after the interrupt so that sample timing will be
as accurate as possible. This results in a worst
case timing error (last channel sampled) of less
than 1 msec, and is negligible compared to the
0.1 sec timing accuracy required of the data.

Considerable processing is carried out on this data
within the interrupt service loop. (All processing
discussed below is carried out independently for
all four data channels.) Short-term (1 sec) aver
ages of the data, and the absolute value of the
data (D and IDI, respectively), are generated b·
summing 128 consecutive samples. These average.
are updated on every interrupt. Once every 128
interrupts a 128 Hz interrupt coincides with a 1 Hz
clock increment. At these times long-term averages
of D and IDI are updated (t and It!, respectively).
A simple recursive algorithm namely:

is used. Y represents tor It!, X represents Dor
IDI. This algorithm closely approximates the re
sponse of a single-section RC low-pass filter with
a time constant = (A+ B)/B multiplied by the time
between successive Xi values. The present soft
ware can handle time constants up to A ~ 1023, B =
1, Le., 1024 sec, if the algorithm is updated once
per second. Calculations are carried out using 36
bit two's compliment arithmetic. This register
length is used to accomodate all possible values
of Yi and Xi without overflow.

The data channel gains are automatically adjusted
to a value appropriate to the ambient seismic noise
at the capsule location. The gains are adjusted
during the start-up process and as needed during
the entire deployment. In order· to maximize dynam
ic range the gain should be such that ambient noise
is just above the ADC threshold. The present
scheme maintains !ti at between 4 and 10 bits; full
scale being ± 2048 bits.

!ti is also used for event triggering. Once each
second the ratio IDl/ltl is calculated. If this
ratio exceeds some threshold value T, where T > 1
for N successive trials, an event is said to have
occurred and recording is started. T and N are

variable program parameters. This is a very mini
mal triggering algorithm. Ideally such an algori
thm should be capable of triggering reliably on
real events in the presence of ambient noise whose
amplitude greatly exceeds that of the events. It
is hoped that the real-time data processing pro
v4led by this system will contribute to the de
veiopment of trigger algorithms appr~aching the i
deal more closely. Event detection is enabled only
if a corresponding program flag is set and is dis
abled during periods when the system is recording
on a time schedule. The software includes the
ability to switch back and forth between timed and
event recording at preset times during a given dei
ployment•

As discussed above, the automatic gain control pro
gram maintains ltl between 4 and 10 bits. Since
2048 bits represents 5 V, this represents an aver
age voltage between 1-0 mV and 24 mV. It is very
possible for the electronics involved to have an
offset of this order. This would invalidate the
gain adjustment procedure and the trigger algori
thm. Since the seismic signals have zero average
value the long term average 1 will simply equal the
offset of the channel in ~uestion. The data used
to compute IDI and hence 111 are offset-corrected
by subtracting 1 before processing them.

All cf the operations described above are carried
out during the first twelve 128 Hz interrupts fol
lowing each 1 Hz clock increment. These consist
of updating 1 and 111 and gain adjustment for all
four channels. The trigger algorithm is executed
during the 111 loop for the channel used to trig
ger. (At present only one channel, the vertical
seismometer, is used for t'riggering.) The average
execution time for the various paths is 3.5 msec.
The interrupt service routine also stores the off
set corrected data and the additional overhead
words into the 8K RAM buffer according to the tape
format. The buffer is loaded in a circular fash
ion, old data being continuously overwritten by
new. A pointer register is maintained to locate
the moving boundary between old and new data.
This pointer is used to determine the buffer ad
dresses read during recording. Since the data are
inp~t to and removed from the buff er at equal
average rates buffer manipulation is simple.

For most of the time during a deployment the cap
sule is not recording data. During this time a
background program which consists mainly of a
long skip chain during which the many capsule
status flags are checked is executed. The frequen
cy of the CPU clock can be switched by the program
between 2 MHz and 250 KHz. Since computer current
consumption at the low.frequency is about 50% of
that ·at the high frequency and since more than half
the time is spent in the background program, con
sider ab le power is saved by running the background
program in slow clock. High clock must be used
during the interrupt service routine to meet time
requirements. The capsule clock is also checked
in the background program for times at which the
recording mode is to be switched between event and
timed, and for scheduled recording times when in
the latter mode.

During recording periods a program flag in the in
terrupt service routine is set. When this flag is
set the service routine returns to a different
background routine which outputs data to the tape

786

recorder and performs certain related bookkeeping
tasks in addition to checking the recorder load
data flag. Since the load data flags are 6.9 msec
apart and the interrupt service routine only re
quires 3.5 msec there is time to service both the
interrupts and the recorder flag. The CPU clock is
maintained at 2 MHz as long as the capsule is re
cording. When the recorder is stopped, the program
flag is cleared and operation reverts to the. normal
background routine.

The present state of this development is that a
prototype capsule is complete and working along with
a first~attempt software package. This software is
sufficient to duplicate all the features of ex
isting hard-wired systems with some impr.ovements.
As time goes on our goal is, through a continuing
software develo,pment program, to achieve a level of
performance beyond that of existing systems. A
particular case would be the development of trigger
algorithms approaching the ideal more closely than
the present one. It is also hoped {perhaps for
lornly) that, for a few years at least, instrument
performance can be steadily improved by software
development, the hardware configuration remaining
essentially fixed.

Acknowledgments. During this work, the energetic
and dedicated efforts of Dave Berliner, Fred Boat
right, Karen Chass and Don Sullivan have been in
valuable. In the course of the development of this
instrument, many fruitful discussions were held
with W. A. Prothero of U.C. Santa Barbara, who is
presently engaged in a similar development project,
several of the design features of this instrument
being originally due to him. This research has
been supported principally by the Office of Naval
Research under contract USN N00014-75-C-0152 with
some assistance from the National Science Founda
tion under grants OCE76-22680 and EAR76-22493.

References

1. Prothero, W. A., A free fall seismic capsule
for seismicity and refraction work, Off shore Tech
nology Conference, Paper #2440, 1976.

CMOS DATA ACQUISITION SYSTEM

FOR OFFSHORE OIL RIGS

by

John M. Kracik
Oceanic Engineering Division

Interstate Electronics Corporation
Anaheim, California

ABSTRACT

This system uses various transducers to monitor strain,
temperature, pressure and acceleration on the marine riser
pipe through which offshore oil wells are drilled. A data
link is used to communicate between the remote site (sea
floor) and a minicomputer on the drilling rig. This data
link may use hard wire, RF, inductive or acoustical
transmission. The 6100 based system is capable of loading
software via either the data link or a resident ROM
memory. The system is inst al led in a 5-inch ID pressure
housing with power supplied from the surface system.

INTRODUCTION

In offshore drilling operations a marine riser is
used to link the wellhead at the sea floor with the
drilling rig. Both the drill string and drilling
fluid pass through this riser. A structural fault in
the riser can result in a catastrophic failure;
therefore, to safeguard against such a failure, a
remote data acquisition system is employed to measure
riser stress and other critical parameters at the
wellhead. Operating water depths range from 100 feet
to as much as 5, 000 feet, and in this instance, the
wellhead was at 5,000 feet. (See Figure 1.)

PDP-8 COMPUTER USED IN DRILLING OPERATIONS

The objective of the system in this offshore oil
drilling application was to gather large amounts of
data at the 5,000-foot deep remote site, process the
data through various algorithms, and then transmit
the processed data to a central PDP-8 computer on the
surface for further processing and storage.
Additionally, this CMOS DATA ACQUISITION SYSTEM was
required to operate continuously, 24 hours day.

OPERATIONAL DEPTHS LIMIT SIZE AND POWER

The constraints of equipment size and power supply at
the remote site made the problem a difficullt one.
Becau~e the system was required to operate at a water
depth of 5,000 feet, it was necessary to package it
into a small pressure vessel capable of withstanding
considerable outside pressure. The small size of the
package and the 24-hour-operation requirement also
effectively ruled out self-contained batteries as the
primary power source, therefore power had to be
supplied by the PDP-8. And too, because of the great
operational depth, the size and weight of the cable
had to be minimized.

Proceedings of the Digital Equipment Computer Users Society 787

It was also required that the system be capable of
(l) responding to commands from the central PDP-8
computer for synchronizing data gathered at the
remote site and at the PDP-8 site, (2) changing
system parameters, and (3) executing calibration
functions. Additionally, it was desired to change
the total operating characteristic of the remote site
from the PDP-8 computer (e.g., loading new
acquisition programs).

MICROPROCESSOR LOGICAL CHOICE

In meeting the design constraints, the selection of a
microprocessor was a logical choice. The micro
processor is capable of controlling the acquisition
of sensor data, executing various algorithms
associated with the data being acquired for
transmission, and responding to various commands from
the central PDP-8 computer. A CMOS microprocessor
was chosen primarily because it is a low power
consumer. Consequently, cable conductor size was
also reduced because current required for CMOS
operation is minimal. (See Figures 2 an4 3.)

To improve reliability of the system over the desired
temperature range of 0°C to 85°C, the system supply
voltage was increased from 5 Vdc to 6 Vdc and this
appreciably reduced the propagation delay due t.o
capacitive loading of various processor and memory
signals. To further enhance the system, new
state-of-the art CMOS buffers (HD-6495) were
implemented.

The 6100 series microprocessor was chosen because it
met the above-stated conditions and is also capable
of executing the P.DP-8 computer instruction set.
Being able to compile new programs at the PDP-8 and
down-load them to the remote site was an additional
benefit.

San Francisco- November 1978

"RIDAS" ,---------------,
I STORED I
I PROGRAM I

(PROMS I

I I
COMMAND DATA

SENSOR ..-----t---.-.. MUX ADDRESS DATA+ STATUS

SENSOR -----t~-...

FILTERS AND
MULTIPLEXER

12 BIT ADC DATA MICROPROCESSOR 1---+''C~O_MMA~N_D_s __ ____, PDP-8
32K

CALIBRATE COMMANDS I POWER I CIRCUITS ,,---~--

L _____________ _J

SENSOR----+-~

Figure 1. Data Acquisition System

788

MUXADC

FILTERS

COMMAND
DATA

_______ _J

DISCRETE LOGIC

MICROPROCESSOR LOGIC

DISCRETE LOGIC:
LARGER NUMBER OF
IC'S NECESSARY TO
MEET REQU I REMENTS

MICROPROCESSOR LOGIC
REDUCED NUMBER OF IC'S
AS MICROPROCESSOR CAN
BE PROGRAMMED TO MEET
REQUIREMENTS

Figure 2. Comparison of Discrete and
Microprocessor Logic Boards

SYSTEM OPERATION

Operationally, the basic function of the data
acquisition system was to acquire analog data from
various sensors located at the remote site. To
acquire data from these sensors, a knowledge of
sensor output is necessary to determine critical
parameter sample rates and low-pass filter character
istics. Sensor output can be characterized into two
subgroupings--low-level differential and high-level
single ended--both exhibiting a d-c to 0.25 Hz
frequency response. Low-level sensor output can be
subgrouped into +100 mV full scale and +350 mV full
scale. High-level sensor output range;- between +5
volts and +10 volts full scale. A sample rate of-2
Hz was necessary to meet accuracy requirements and to
prevent aliasing of data over the bandwidth of
interest from d-c to about 0. 25 Hz. Under these
conditions 4-pole low-pass filters with a corner
frequency of 0. 25 Hz would be necessary, dictating
the use of active filters. But physical component
size and power consumption prohibited this approach,
and it was decided to use passive 2-pole low-pass
filters at 8 Hz with a sample rate of 32 Hz. Once
the data is acquired at 32 Hz, it is digitally
filtered to prevent aliasing and then subsampled at a
2-Hz rate prior to transmission to the PDP-8. The
digital filter required maximum processor speed
during data acquisition.

The use of read only memory (ROM) for program
execution reduces board density; however, this causes
the use of indirect memory reference instructions
which reduces processor execution speed by as much as
30 percent. Since some RAM is needed for storage of
data, an al 1-RAM system was implemented, but this
meant that the program would always have to be loaded
upon st art-up. This was accomplished by downloading
from the surface PDP-8; however, data transmission
errors may occur or the downlink may fail entirely.

789

1000

100
L-..L~~~:...:..:.::;...__,.'-":;,.-'

10-i---.....J~--7'+-?'

10-4

1o2 1o3 1o4 1o5 lrP 107 1u8
FREQUENCY

TTL 74L DTL

PROPAGATION DELAY lOns 33ns 30ns

TOGGLE FREQUENCY 35MHz 3MHz 5MHz

QUI ES CENT POWER lOmW !mW 8.5mW

NOISE IMMUNITY IV IV IV

FAN OUT 10 10

74L'S

!Ons

40MHz

2mW

0.8V

20

*AS DETERMINED BY ALLOWABLE PROPAGATION DELAY

CMOSl5Vl

35ns

5MHz

lOnW

2V

50*

Figure 3. Properties of CMOS Logic
Versus other Families

Thus, to ensure proper program loading, a backup
method was needed. The solution was to use a Program
Injection Module which allows the remote system to be
loaded with correct software in the event of a faulty
program load from the PDP-8. To minimize processor
design, the Program Injection Module is treated as an
I/O device, and to minimize power consumption, it is
operated in a power-up mode only during program
loading, which takes approximately 2 to 3 milli
seconds.

MODULARIZED HARDWARE PERMITS EXPANSION

The hardware was modularized for expansion with the
minimum configuration consisting of two modules -- a
Basic Control Module and a Program Injection Module
(optional). Additional Analog Interface Modules can
be utilized to expand the system to the required
number of channels. The Control Module contains the
microprocessor and support circuitry, an interval
timer, two serial asynchronous interfaces, debug ROM
(1024 x 12), bootstrap loader PROMS (256 x 12), 2K of
RAM memory (2048 x 12), and four parallel interface
circuits. The Program Injection Module contains 2K
words of PROM (2048 x 12) which is power strobed
during access. The Low-Level Analog-to-Digital
Converter Module contains an 8-channel differential
analog multiplexer, a 12-bit analog-to-digital
converter (all CMOS), eight low-pass 2-pole filters,
and signal exi tat ion and calibration circuitry. The
High-Level Analog-to-Digital Converter Module
contains a 32-channel, single-ended analog multi
plexer, a 12-bit analog-to-digital converter (all
CMOS), thirty-two 2-pole filters, and three hardwired
voltage levels used for calibration. (See Figure 4.)

The electronics modules were designed so that they
would fit into a 5-inch ID, 21-inch-long cylinder.
The modules are interconnected by a 40-conductor flat
cable.

MICROCOMPUITR

SERIAL 1/0

SERIAL 1/0

PROGRAM INJECTION
MEMORY MODULI

HIGH LIVEL
32 CHANNEL MUX/ADC
MODULE

MICROPROCESSOR

256 x 12
PROM

2048 x 12
RAM

__ s-------,
I M.E.D.l.C. I

---l I
L------....1

LOW LEVEL
MUX/ADC
P.1.E.

LOW LEVEL
8 CHANNEL MUX/ADC
MODULE

LOW LEVEL
8 CHANNEL MUX/ADC
MODULI

Figure 4. Data Acquisition System Block Diagram

Control Module

The control module contains two separate programs
stored in read-only memory (ROM): a 256-word program
and 1024-word program. The 1024-word program is
stored in a 1024 x 12 masked ROM and contains an
octal debugger routine; the 256-word program is
stored in three 256 x 4 PROMS and contains a system
test program and two loader programs. The selection
of ROM programs is accomplished via a switch on the
control module. The octal debugger is used as a
system debug tool to isolate component failures on
the control module and I/O modules. The program
allows an operator to enter short test programs and
verify the results via a terminal connected to the
control module utilizing a serial 1/0 port. The
test/loader program verifies operational status of
the system by first checking processor operation,
memory operation, crystal clock operation and I/O
operation. It notifies the central PDP-8 system of
its status by transmitting various control codes via
a serial 1/0 port. Once proper operation has been
established, the program then executes a loader
routine. The loader routine first establishes if a
binary load is to occur by monitoring the serial 1/0
port for proper binary load sequence. In the event
of an improper binary load sequence, it waits for
approximately 1 minute at which time it executes a
program injection routine. Both binary loader and
program injection routines check for valid checksum.
If a checksum failure occurs, a status message is
sent to the PDP-8 system and the program remains in
loader mode.

The control module contains 2048 words of random
access read/write memory (RAM) where program
execution and temporary data storage occur. The use
of RAM memory for program execution was used so that
maximum processor speed would occur.

790

The control module also contains three parallel
interface elements (PIE). The PIEs were chosen
because of their vector interrupt facility and
simplification of I/O circuitry. One PIE is used to
control two universal asynchronous receiver
transmitters (UART). In addition, two flag outputs
are used to control whether even parity or no parity
is implemented on the UARTs. One of the UARTs is
used as a primary interface to the PDP-8 computer;
the second is used as an auxiliary input.

The second PIE is used to control two low-level
Mux/ADC modules. Its two output control signals
(WRITE STROBES) are used to load multiplex address
information and to start analog-to-digital conversion
(ADC). The two input port control signals (READ
STROBES) are used to read ADC information, and two
sense lines are used to detect end of conversion
(EOC) status. Three flag outputs are used to select
the low-level calibration function. The fourth flag
is used to force the multiplexers into channel zero
selection.

The third PIE is used to control the high-level
Mux/ADC module and the program injection module. One
of the output control signals is used to select
multiplexer address information and to initiate
conversion. The second output control signal is used
to load the program injection module address
register. One of the input control signals is used
to read ADC information into the processor; and one
sense line is used to detect EOC status. The second
input control line is used to read data (program
instructions) from the program injection module. The
remaining sense lines are used to detect power low
and interval timing interrupts from the XTAL
oscillator.

All control signals are buffered before they leave
the module via a 40-conductor cable.

Low-Level Multiplexer ADC Module - The low-level
multiplexer analog-to-digital converter contains an
8-channel low-level multiplexer and 12-bit
analog-to-digital converter module, eight precision
voltage regulators used for sensor excitation,
sixteen 2-pole low-pass filters, and fifteen
calibration relays. Two sets of low-pass filters are
used prior to the connection of sensor output to the
differential multiplexer. The differential
multiplexer ADC contains an instrumentation amplifier
with appropriate gain to amplify sensor output and
various circuitry to allow for amplifier settling
before an analog-to-digital conversion is initiated.

High-Level Multiplexer ADC Module The high-level
multiplexer ADC module contains a 64-channel
multiplexer (51 channels are used), a 12-bit ADC
module, and forty-eight 2-pole low-pass filters.
Three of the multiplexer channels are hardwired to
precision voltage sources used for calibration.

The multiplexer address is loaded from the buffered
processor data during a write instruction from the
appropriate PIE. Once the address has been latched,
the Mux/ADC module waits for its instrumentation
amplifier to settle at which time it samples the
analog voltage in its sample-and-hold-circuit and
then starts a conversion. The end of conversion
signal (EOC) is connected to an appropriate PIE sense
1 ine. When the EOC signal occurs, the processor
executes a service routine which places the A/D data
on the processor data lines.

Program Inspection Module

The program injection module contains 2048 words of
bipolar PROM memory, a 12-bit CMOS address latch, 12
tri-state CMOS buffers, and control logic used to
power PROMS during access. The address latch is
loaded via the buffered processor data lines when a
write instruction is execute:! :~rom the appropriate
PIE. The write instruction is also used to power the
PROM memory. The data (instructions) is loaded on
the processor data lines during a read instruction.
The falling edge of the read instruction are used to
power down the PROMS.

CONCLUSION:

In this offshore drilling application the constraints
of physical size, power consumption, and size and
weight of the cable connecting the surface equipment
and subsurface electronics were met by the use of a
CMOS microprocessor. The CMOS microprocessor reduced
the amount of logic needed at the remote site and
also reduced the amount of power needed for its
operation. Typically, the control module consumes
only 50 mA of current, hence the siz.e of the
conductor cable could be minimized. Utilization of a
serial data transmission format reduced the number of
conductors between the surface and remote site.
Reduction of both conductor size and the number of
conductors allowed the use of smaller lighter cables.

The use of a microprocessor reduced the amount of
logic necessary at the remote site, hence an increase
in reliability could be realized. Furthermore, the
remote site now could be reprogrammed to implement
any data acquisition function desired.

791

PDP-8/E DEVELOPMENT SYSTEM FOR BIT-SLICE
MICROPROCESSORS

Douglas F. Gluntz
Harris Government Electronics System Division

Melbourne, Florida

ABSTRACT

Microcode generation consumes the largest share of
the development dollar in most bit-slice micro
processor based design budgets. Microcode requires
many hours to develop, therefore expensive, and is
usually left to the skill of the designer. Costs
can be significantly reduced by the use of hardware
and software design aids. A PDP-8/E· is used for
source entry, linkage to a functional simulator
(COL) and microcode loading to a memory simulator.
The aids discussed in this article were developed
and used on a project involving an AMO 2901
bit-slice microprocessor, however, the techniques
described can be applied to any microprocessor.

INTRODUCTION

The primary objective of most microprocessor
design projects is to provide a reliable
device to perform a specific function.
Development of the firmware component is an
important (sometimes predominant) cost
factor, well worth studying.

Firmware engineering is a collection of
rapidly evolving concepts which can be ap
plied to firmware development activities.
"Firmware engineering" may be defined as
the planning designing, construction and
management of microprocessor firmware, in
cluding programming methodology, reliability,
performance and design evaluation, and
program development aids. The field is less
than ten years old and moving rapidly.

The firmware designer, unlike his hardware
counterpart, is pretty much on his own. He
usually can't call manufacturers for appli
cation information, data sheets, or techni
cal consultation that will help solve his
particular problem. Since firmware for bit
slice microprocessors is unique for each
application, assemblers, compilers, and/or
interpreters are non-existent. Cost
effective firmware design is currently a
hit and miss affair and highly dependent on
the skill of the firmware designer. Until
now, there was no set format to follow that
would ensure cost effective design of firm
ware.

The method proposed herein, consists of the
following steps:

1. Firmware design
2. Computer modeling and simulation
3. Firmware/hardware integration and debug

Proceedings of the Dig/ta/ Equipment Computer Users Society 793

Good firmware design should obey the same
basic rules as good top down structured
programming utilized in normal software
development. As such, this paper will only
briefly dwell on this area.

Computer modeling and simulation provides a
means to simulate the hardware and firmware.
Although this paper will not concern itself
with hardware design, it is an important
factor in the timely generation of working
microcode. Computer modeling and simulation
can provide the hardware designer with
essential information to allow for timely
development of the hardware to support
firmware debug.

At some point in a project, the hardware
must be married to the firmware. As most
designers have discovered, the honeymoon is
of extremely short duration. Divorce is
simply not allowed and an amicable co -
existence must prevail. This period is
known as debug time. It is often faced with
great reluctance and despair. At the end
is a trail of frayed nerves, bloodshot eyes,
lost friendships and a great sigh of relief.
This activity can be improved upon signifi
cantly with the use of the proper design
aids. These aids assist both the hardware
and firmware designer and provide meaning
ful data upon which design change decisions
can be based.

FIRMWARE DESIGN

Assuming that you have used top-down design,
the complete firmware requirements have now
been broken down into the sub-blocks that
can be coded easily. What follows next is
really an extension of the activity that
was already performed in order to get to
this point; namely, break the requirements

San Francisco - November 1978

smaller pieces. However, each piece will
have a personality all of its own. The
three steps required to get to the end of
the design process are as follows:

1. Flow Chart
2. Sequence Chart
3. Microcode Generation

The flow chart for a microprocessor system
is really no different from any other.flow
chart. It is a pictorial representation of
the logical sequence of events necessary to
perform a required operation. Each sub -
block should have its own flow chart. It
should not contain detailed step-by-step or
instruction-by-instruction detail. Remem
ber it is showing flow, not minute detail.
It should be noted, that after debug is
complete, this piece of documentation will
undergo only minor modification, if any.

Now that you know the overall events
necessary to perform a certain task, you are
now prepared to proceed to the next level of
detail - the sequence chart. The sequence
chart describes the sequential operation of
the microprocessor. A micro-operation is a
single operation and it takes severa~ micro
operations to perform a useful function.
Each sequence represents a micro-operation
or simply an operation performed by the
microprocessor during one clack cycle. Un
like the flow chart, this piece of documen
tation can - and usually does undergo
several modifications before debug is
complete.

Now the final, and easy task of generating
the microcode. You simply plug in the
necessary digits on a coding sheet to
perform the micro-operation defined by the
sequence chart. It is during this operation
that the memory locations will be determined
and can be added to the sequence chart.

Before any code generation can begin, a
coding format based on the standard eighty
column coding sheet is selected. It is
noteworthy to point out that the coding
format should provide for incorporation of
comment statements for each line of code.
Full lines of comments should also be allow
ed. Each column is also assigned a default
value to relieve the programmer from in
serting a numeric character in each column
for all lines of code. These values are
also selected such that whenever possible,
the default value generates a logic "l" in
the PROM if the selected PROMs are received
with all locations containing ones and re
quired programming to obtain zeroes.

Since, the final depository of the firmware
you have designed is usually stored in
solid state memories (ROMS, PROMS, EAROMS,
etc.) every attempt should be made to design
some multiple of memory word length -
typically lK. During the early design
stages when the control word is bein~
developed it is usually a good pract17e to
provide spare bits. Today, the cost is less
than $20 for a IKX4 PROM. It is a lot

794

cheaper to provide more bits/word in the
early stages of design than to go back and
add a IKX4 PROM later on. You will almost
invariably need a longer word at the con
clusion of a project than you predicted at
the beginning.

The size of the firmware can grow in two
directions - horizontally and vertically.
A horizontal expansion is implemented
simply by adding more control bits to each
and every word for controlling additional
hardware elements. Horizontal expansion
allows the microprocessor to perform more
parallel operations during each micro-cycle.
It suffers from low utilization of· the con
trol bits and requires more memory. A
vertical expansion requires an increase in
the number of words, and can increase the
overall capability of the microprocessor.
The drawback here is that if the number of
words are exceeded for a memory device (e.g.
lK), it will be necessary to double the
size of the memory to gain the additional
words. Each system has to be analyzed as
to the best implementation to meet program
requirements.

COMPUTER MODELING AND SIMULATION

There are many hardware simulators commer
cially available on the market today. Re
gardless of the simulator selected, it
should perform as many of the following
functions as possible:

1. Simulation to lowest level of interest
(gate, flip-flop, counter, register,
etc.)

2. Timing analysis
3. Fault detection
4. Fault isolation
5. Test pattern generation
6. Fanout loading analysis
7. Variable delay element
8. Technology independent
9. Failure analysis
10. Accept microcode as input

The philosophy here is to accurately simu
late the hardware by computer modeling to
confirm the hardware design and at the ap
propriate time execute firmware instruc
tions. This allows resolving many problems
during the early stages of design instead
of waiting until the integration phase when
the fix will be more difficult and costly.
Effective computer simulation programs are
costly to generate, therefore, the tendancy
to roll-your-own should be suppressed.

Firmware microassemblers are usually non -
existent for bit-slice microprocessors.
Although some manufacturers sell firmware
prototype and/or development systems, they
are costly and may not fit any specific
application. Most firmware designers have
a computer system available for use which
will probably be adequate for the task at
hand. The computer system should be able
to receive and store the required microcode
and comments. Obviously, it is highly de
sirable that this computer system and the

computer system providing hardware simula
tion discussed above be one and the same.

An interactive full page editor with CRT
display is probably the most prized posses
sion of any firmware designer. No matter
how competent the firmware designer or how
diligently he aspires to perform error -
free, editing will consume a large portion
of his time and effort. The ability to see
large blocks of microcode combined with the
capability to quickly insert and observe a
change will significantly reduce edit time
and increase firmware development produc
tivity. Something less than an interactive
full page editor with CRT display may suf
fice, but productivity will suffer.

The simulator selected was Computer Design
Language (CDL) • CDL is a non-procedural
language for describing the functional
organization, algorithms, and both parallel
and sequential operations of a digital
system. CDL was initially developed by Dr.
Yaohan Chu, Professor of Computer Science,
University of Maryland. Since CDL is im
plemented by a FORTRAN program requiring
large core, it was run on a time share
system utilizing a Univac 1108 computer.
Simulation runs required an average of
twenty seconds of CPU time. Since some of
the routines contained lengthy nested DO
loops it would have been too costly to
execute the entire routine. Sometimes short
cuts were used or simulation not performed
at all. The majority of the firmware
problems discovered later were found to be
in those areas where the simulation was
shortened or omitted. Hardware design re
lease to manufacturing was delayed until
sufficient CDL simulations were performed to
verify design integrity.

A CDL computer model for the AMD 2901 bit
slice microprocessor was developed. Next a
COL computer model was developed for the
system and included a 24 bit microprocessor,
sequencer, pipeline registers and memories.

CDL requires all input data to be in octal
format in order to perform simulation.
The coding sheet developed for this project -
optimized for ease of programming - was
incompatible with required COL input.
Therefore, a CDL preprocessor was developed
to accept coding sheet data as input and
provide the following printer outputs:

1. Echo of input
2. Binary Memory Map
3. CDL Input

A control card input for the CDL preproces
sor allows the operator to select any com
bination of the printer outputs listed
above as well as no listing. The COL input
generated by the preprocessor is stored in
a file for use by CDL whenever a simulation
run is desired.

After processing by the CDL preprocessor is
completed, actual simulation runs are per
formed to verify the microcode integrity.

795

It usually took several runs to remove all
coding errors. As a result of performing
CDL simulation, coding errors were quickly
identified and corrected. The first few
CDL simulation runs also identified hard
ware design errors which were quickly cor
rected. Actual hardware fabrication did
not commence until after CDL simulation
verified design integrity. Other than
Manufacturing errors, no corrections were
made to the design of the hardware contain
ed in the CDL simulation. As a result of
performing CDL simulation, a large amount
of debugged microcode was available for
integration when the hardware was received
from manufacturing.

All of the CDL preprocessor activities were
performed on a computer system with the
following configuration:

Computer:
Memory Type:
Memory Size:
Peripherals:

Operating System:

PDP8/E
Magnetic core
32K bytes (12 bits/byte)
Card Reader- 300 cards/

minute
Line Printer- 900 lines/

minute
TTY - ASR33
Dual Disc - Two sided

single platter
3.2M bytes of 12 bit

words
CRT Screen with keyboard

OS/8-3

The COL preprocessor accepted as input the
punched cards containing the desired micro
code with the operator assigning a code
name each block of code entered. Comment
cards are accepted and are indicated by
column 1 being non-blank. A "+" character
in column 1 indicated that it was the first
card for that file and was used during
printout to always start a new page.

The CDL preprocessor examines the non -
comment columns of each line of non-comment
input. Each column is verified to contain
a valid symbol. In the event a blank is
encountered, the default value is inserted.
If no default value has been specified, an
error condition exists. Meaningful error
messages are provided and the line of micro
code containing the error is also printed
out. Further processing of the sub-block
is inhibited until all errors are corrected.

FIRMWARE/HARDWARE INTEGRATION AND DEBUG

All efforts expended prior to this point
have been directed to removing as many
hardware and firmware errors as possible.
Obviously, all errors will not have been
removed. Design changes in both the hard
ware and firmware will be required to obtain
the desired finished product.

To minimize cost and schedule impact during
the integration phase, the firmware should
be placed in a PROM simulator for final
debug. Since all of the desired microcode

is stored in the previously described com
puter system needed to support the COL
simulation effort, the PDP-8/E can also be
utilized to provide the following functions
in support of the PROM simulator:

1. Loader
2. Communicator

The function of the loader software is to
control the communicator hardware in order
to transmit memory content data to a remote
terminal (PROM simulator). The loader
program requires the operator to define
which sub-blocks are to be transmitted.
Upon receipt of this information, no
further input from the operator is required.
The loader first transmits an inquiry to the
PROM simulator to determine that a physical
connection exists and that the PROM simula
tor is powered up. If the inquiry is not
successful an appropriate error message is
printed out on the teletype and further
processing terminated. After confirmation
of a valid link has been determined a second
inquiry is made to determine if the PROM
simulator is ready to accept data. If the
PROM simulator is not ready for data, an
appropriate error message is printed out on
the teletype and further processing inhibit
ed. Once communication has been established
and verification of the PROM simulator is
ready to accept data, the loader program
accesses the sub-blocks binary memory maps.

Data is sent to the communicator in seven
bi t bytes. The six LSBs contain memory

·content data and the MSB is used to indicate
whether the current word contains data or a
command. Therefore, a total of eight words
are necessary to transmit one line of micro
code for the Control Memory. After a full
line of microcode has been sent, a command
is generated to load the transmitted data
into a buffer register. The loader program
now retrieves the data stored in the buffer
register and verifies data integrity. If an
error is detected, the entire line of micro
code is retransmitted and verification of
buffer register content repeated. If after
two tries, an error condition still exists,
an appropriate error message is printed out
on the teletype and further processing in
hibited. After the memory has been loaded,
the entire contents of the loaded memory
is read and transmitted back for verifica
tion by the loader program.

Appropriate error messages are generated in
the event discrepancies are detected between
the transmitted and received memory content
data. At the successful completion of the
loader program, 72K bits of microcode will
have been loaded into the PROM simulator
and verified in approximately 5 seconds.

The communicator is the hardware necessary
to receive the seven-bit word from the
loader program for transmission to the PROM
simulator. The communicator also receives
data from the PROM simulator for use by the
loader programmer. It was designed to plug
into the PDP-8/E bus and acts like a periph
eral device.

796

In the transmit mode, the communicator routes
the received seven-bit word from the loader
program to a UART. The UART generates an
even parity bit and attaches it to the re
ceived seven-bit word. The UART then per
forms a parallel to serial conversion and
sends the eight-bit word to a differential
line driver transmission over twisted pair
transmission line to the PROM simulator.

In the receive mode, the data is received
by a differential line receiver and routed
to the UART. The UART calculates the
parity bit based on the received seven bits
of data and compares it to the received
parity bit. If the received parity bit and
calculated parity bit are not identical an
error flag is set. The UART also performs
serial to parallel conversion of received
data. The seven bits of received data and
error status are then available in parallel
for use by the loader program.

In addition to providing two-way communica
tion with the computer system in the acqui
sition of microcode, the PROM simulator con
tains the following operational modes:

1. System
2. Control

In the system mode, the hardware undergoing
checkout doesn't know that the PROMS are not
installed. In an actual system, the clock
frequency was 4 MHz. Therefore, a line of
microcode is executed every 250 nanoseconds.
It was determined that cable lengths between
the PROM simulator and the hardware under
going debug had to be kept as short as pos
sible, therefore, no cable was longer than
three feet. Also, all cables were fabri
cated using twisted pair ribbon cable. One
line of each twisted pair was terminated to
ground at both ends as close to the source/
destination as possible. All inputs and
outputs from the PROM Simulator were buffer
ed using Schottky TTL devices.

There were three operating sub-modes in the
System mode. In the run sub-mode, normal
system operation was performed. In the
single step sub-mode, operation was con
fined to execution of only one microinstruc
tion. A pushbutton was provided such that
one microinstruction was executed each time
the pushbutton was depressed. This feature
was extremely useful during firmware debug.
A logic analyzer was connected to the
microprocessor output bus to provide a
visual display of data corning from the
microprocessor. The combination of the
logic analyzer and the single-step feature
of the PROM simulator turned out to be a
very powerful combination for quickly iso
lating and correcting hardware/firmware
anomalies.

It was noted during the run sub-mode, that
the LEDs (a total of 92) used for displays
induced significant noise as the result of
flashing on or off. On several occassions,
the noise reached levels high enough to
change memory content. A change was imple
mented whereby the power for the LEDs came

from a separate power supply which was set
at 3.SVDC instead of 5.0VDC. This seemed to
alleviate the problem. Subsequent PROM
simulators inhibited LED displays during the
run sub-mode and eliminated the problem
entirely.

In the trap sub-mode, operation would halt
whenever a certain memory address was ac
cessed. Switches were provided for each of
the ten address lines associated with the
memory. Whenever the selected address
matched the address state of the switches,
normal operation would halt. This allowed
the operator to halt at a selected point in
the firmware such that manual measurements
could be made. It also allowed the operator
to halt a program if a wrong branch had been
taken as the result of a decision point in
the firmware. A switch was provided to
enable/inhibit the trap function. Sync
signals were also provided whenever the trap
address switch settings matched the actual
memory address. These sync signals in no
way interfered with the PROM simulator
operation and were used to trigger external
test equipment. Sync signals were generated
regardless of the trap enable/inhibit switch
setting.

The Control mode provided for manual control
over RAM content. Switches allowed the
operator to select any memory address. LED
displays provided visual indication of
memory contents. Switches allowed the
operator to set the desired state. Push
button switches when depressed, loaded the
switch settings into the selected memory
address location. The LED display provided
visual confirmation that the desired data
content had been loaded. This mode allowed
the operator to quickly edit stored micro
code during the debug stage.

It must be remembered that any editing done
on the PROM simulator in no way affects the
microcode stored in the computer systems.
On several occassions it proved helpful to
reload the PROM simulator with the unedited
microcode. Whenever it was determined that
the edited microcode was valid then the
microcode stored in the computer would be
upgraded accordingly. A feature deemed de
sireable but not implemented is to dump the
contents of the PROM simulator to the com
puter system and after copying the unedited
microcode, automatically upgrade the micro
code for each of the edited sub-blocks.
This would allow the next PROM simulator
loading operation to contain the edited
microcode but still retain the previous un
edited code if needed. Another desireable
feature to be added would be the necessary
hardware and software to program the selected
PROM, once the microcode checkout has been
completed.

797

THE GDP-12 GEOPHYSICAL DATA ACQUISITION SYSTEM
R.B. Staley, R.B. Clark, K.L. Zonge

Zange Engineering & Research Organization

Tucson, Arizona

.ABSTRACT
This paper discusses the design and application of an all CMOS,
battery powered, backpackable, MICR0-8 system that is used by
the mining and oil industry.

INTRODUCTION

For the past six years Zange Engineering and
Research Organization has been using PDP-8's in
mineral and oil exploration obtaining field data on
the electrical characteristics of rocks using com
plex resistivity (CR), conventional induced polar
ization (IP), and time domain electromagnetic mea
surements. We have two independent systems, each
composed of a PDP8M, TU60 DEC cassette and a tele
type, mounted in a truck, which runs off a generator
at remote sites. These have given exemplary service
in extremely harsh environments from sub-arctic to
the deserts of the southwest. Each computer is
equipped with 16 K of semiconductor memory and two
high speed A to D channels. with 12 bit precision.
External preamplifiers monitor the received and
transmitted signals and after signal conditioning
through isoamps, feed them to the A to D's in the
8M's. There, each waveform is digitized and
stacked in memory, with up to 2048 waveforms stacked.

Our transmitted signal is a square wave with
frequencies of .1 Hz through 10 Hz and is trans
mitted from a high voltage current source which
ranges from one to 20 amps. The stored data is
manipulated with digital filtering and then a fast
Fourier transform is run on both the transmitted
and received waveforms. These are de convolved and
the residual phases and magnitudes of the first
eleven harmonics are stored on cassette and printed
on the teletype. Later these data are used for
further analysis on the main office computer which
is a PDP8E with hardware arithmetic, 32 K memory,
DEC cassette, DEC tape, RK05 disks, Tektronix
terminal and hard copy unit, and a line printer.

After using the system for two years we were
approached by a company which wanted a portable
battery powered system. Since we were thinking
along these lines ourselves it was decided to
seriously approach the problem. When the project
was conceived, the machine was to be a hardwire
design with fixed instruction capabilities. After
a year of design implementation and development it
was decided that our resources were not up to
building such a machine from scratch. At about
this time Intersil announced the all CMOS 6100.
Since we had been working with 8's for three years
it became apparent that with the same assembly
language we could use our 8E as a development
machine for the MICR0-8.

Proceedings of the Dig/ta/ Equipment Computer Users Society 799

We began working with the 6100 as soon as it
became available and spent about a year trying to
get an all CMOS system in operation. Intersil had
no experience at this time with anything over a
l K CMOS system and we were attempting to build
12 to 20 K systems with dual processors and a three
bus structure. During this time our 8E was used
for program development and debug of system soft
ware. The software for the GDP-12 was much dif
ferent than that used on our truck mounted 8M's as
we were now only measuring the fundamental of each
transmitted waveform and not doing a Fourier trans
form. This was due to the speed of the five volt
MICR0-8 being about one-third of the large 8's
in our application.

OVERVIEW OF THE GDP-12

Analog Section
Going through our system we start with the

analog channels. In our current system we have
dual analog channels with differential inputs and
a computer controlled gain stage ranging from 1 to
32 ,768. DC offsets can be corrected manually with
a DC offset potentiometer. This is used to take
care of any static ground potentials present. Each
analog channel can be controlled separately and
channel two may be turned on and off independently
of channel one. There are also two digitally
controlled low pass Bessel function filters which
can be set from .5 to 5120 Hz. These are used in
setting the cutoff frequency for aliasing in the
analog to digital conversion. The two A to D con
verters are all CMOS with 12 bit precision and 65
microsecond conversion times. Outputs are latched
on the end of conversion and transferred to the bus
upon signal from the MPU. End of conversion is
signaled by enabling a skip line which causes the
processor to grab the digitized data for each
channel.

Microprocessor Section
Going to the MPU board, the first thing to con

sider is the bus structure. There are three
separate busses in the GDP-12, one main bus and two
time shared. The main data bus is connected to
microprocessor one only. This bus provides access
to and from the analog board, main memory and master
clock. Gain and filter information is passed to

San Francisco - November 1978

the analog board and data and skips are passed back.
Thirty-two K words of memory may be addressed by
the main microprocessor on this bus. The master
clock is loaded with the desired frequency and
sample rate from the main bus which also enables
various fl a gs for different modes of ope rat ion.

Sample rate controls the A to D converter di
rectly while A to D end of conversion flags the
skip line. There are also flags present for spec
ialized signal processing, i.e., quadrature and
duty cycle.

Time share bus A allows input and output from
the control panel. Processor A or B can be select
ed on this bus. This allows the control panel to
access either processor but not both at the same
time. We use an equivalent of the PDP8 control
panel for doing debug operations on programs and
hardware. This allows for easy modifications of
the programs. By using a tristate bus structure
either processor may be se.l ected by the control
panel. The control panel is ROM controlled and
uses the CP mode of the 6100 chip.

Ti me Sha re Bus B
Time share bus B is used for data transfer to

and from I/0 devices, 4 K of shared memory in field
7 and the front panel displays and switches. The
I/O devices designated in the system are a teletype
terminal and minicassette. The terminal port is
either RS-232 or 20 ma loop with a computer control
led baud rate select of 110-9600 baud. The ter
minal port is through a UART and PIE with hardware
modification to make it look more like a DEC tele
type port. Minor software changes were made to
facilitate hardware incompatibility.

The minicassette is a Braemar computer devices
Model 600 with a hardware interface including a PCI
and PIE. Custom software is used to give control
of data to and from the computer. It can be
accessed by either processor and will be used to
load programs via the bootstrap loader program and
to store data.

Program loading is currently done through a
high speed paper tape reader port with parallel data
input and handshake capabilities. The manual paper
tape reader is capable of loading data in excess of
5000 baud and is our standard method of loading
programs into the GDP-12. It has proven to be very
reliable, though somewhat clumsy, and allows for
fast reloading of programs. Normally with battery
backup on our CMOS memory, a reload is necessary
only on program change. Presently we are using a
commercially available paper tape reader modified
to enable us to be independent of ambient light.

Front Panel
The front panel controls allow the operator to

control the sequencing of the programs and allow
for changing of modes of operation at the operator's
discretion. Most of the input switches are self
explanatory. There are switches to control gain,
frequency of incoming signal, number of averages to
be taken, program select, and some undedicated
switches which can be used to input constants used
in the calculations. Data is output to three 3 1/2
digit liquid crystal displays. Display one uses
the plus and minus signs to indicate which processor
is running and also has a numeric readout of
program information. Displays two and three are

800

used to output data from the program calculations
such as phase and magnitude. The displays also
have limited alphanumeric capabilities and are used
to display certain information, i.e., low battery
or high temperature indications.

Currently the memory structure is set up for
a maximum of 28 K of main memory and 4 K of time
share memory. Normally the systems we use have 8 K
of main memory and 4 K of time share. Main memory
is only accessable by processor A which includes
fields o·to 6 while field 7 is reserved for both
processors A and B. Processor B can only access
4 K of memory as it has no EMA control. Processor
A normally transfers data to field 7 then processor
B can work on it while processor A goes back to
gathering data from the A to D converters.

Real Ti me Clock
The other section of the system is the real

time clock used to provide synchronization with
the transmitted signal. The oscillator is a 5 MHz
proportional oven controlled oscillator with four
decade divide by N counters used for setting the
maximum sample rate and highest frequency of
operation. For example if one wanted a sample
rate of 8192 Hz and a maximum frequency of opera;,
tions of 256 Hz, divide 8192 into 5 MHz, getting
the closest approximation which is 610. This is a
fixed divisor which sets up the maximum sample rate
and the maximum frequency to be used. Sixteen
selectable sample rates and frequencies are avail
able between the maximum frequency and the minimum
frequency in binary multiples. The normal sample
rate used is from 8192 to one sample per second and
frequencies from 256 Hz to 1/256 Hz. Most of the
frequencies we work with range from .125 Hz to
256 Hz.

The oscillator is coupled to the transmitter
controller to reset the divider chain to provide
a phase reference between frequencies. This also
allows doing a drift check between the oscillators
to see if they are oscillating at the same frequency.
An electrical trim is provided to adjust the
frequency of oscillation, and allows the oscjllators
to be matched in frequency to one part in loll. A
phase meter is used to lock the two oscillators to
approximately the same frequency. This phase
setting will hold all day for frequencies up to
10 Hz. For higher frequencies one must use more
care in adjusting the oscillator trim and check the
drift between transmitter and receiver more often.

Power Supply
The internal power for the receiver is five

volts DC for all digital circuits except the timing
chain and oscillator. We use a 12 volt to 5 volt
switching regulator to supply power to the logic
circuits. It is capable of about 75% efficiency
and has much greater capacity than needed by our
circuitry. This is partly due to the fact that our
control panel proms are still bipolar and draw
fifty time more power than the rest of the system,
along with the LED displays which display the
address and data registers. There is also a bi
polar 15 volt supply which powers the analog
section and A to D converters. There is a separate
bipolar 12 volt supply which is used for supplying
-12 volts for teletype 20 ma operation or RS232.
The power consumption of the analog section is
around 100 milliamps. By comparison the digital

section with 12K memory and two processors running
simultaneously draws only around 10 mills total on
an average power basis.

There are built-in calfbraters for both the
transmitter controller and receiver controller. They
are used to check the internal phase shift of the
amplifiers and the phase stability of the trans
mitter controller. Both the transmitter controller
and receiver controller are identical and either
one can be used to control a geophysical trans
mitter. The only difference between the two is
that the transmitter controller has no sample rate
circuitry and has a manual instead of computer
controlled frequency select. The controller
operates off its own 12 volt battery and uses the
battery's internal regulation to provide voltage
to the circuits. The crystal oscillator has a
self-contained controller to provide a regulated
supply for the crystal. The operating range
for the rest of the circuitry is from 10.8 to
14 volts. Total power consumpti.on is about two
watts at 0°C and maximum voltage. Battery capacity
allows operation for 24 hours.
Bootstrap Loader

Our normal program loader is done through a
modified control panel function. It is limited
to selecting processor A or B, and bin booting
with select for cassette, teletype or high speed
paper tape reader. A full function control panel
may be plugged into the same port allowing normal
implementation for all control panel functions:
exam, deposit PC, deposit flags, deposit memory and
bin boot.

This concludes the presentation of the GDP-12
geophysical data processor. Our future aims are
to condense this unit to one-half of its
present size and increase memory size using the
4 K CMOS memories which were not available when we
started this design. We would like to increase
the operating voltage to 10 volts to increase our
throughput in the digital section. We are also
waiting for faster CMOS A to D converters. We
are limited in sample rate at this time due to the
65 microsecond conversion time of our current A to
D's. With all the electronics in the main case
there would be room in the lid to put the cassette,
and battery powered printer.

At present we have thumbwheel switches for
data entry but with a printer system we would be
able to go to a keypad, with keyed data displayed
on a 32 character alphanumeric LDC display, then
loaded into the computer and printer on command
for execution. This, in part, is our future goal
for a second generation remote site data processor.

801

An Introduction to PASCAL for
BASIC and FOPTPAN Programmers

by

James A. Krupp
~iddlebury College

ABSTRACT

The principal features of the programming language
PASCAL are described. Particular attention is paid
to the variety of data types supported.
Considerations which miqht aftect the choice of
PASCAL in favor Of BASIC or FORTPA~ as an applica
tions language are also presented.

1.0 Introduction

In the six or seven years since the first
PASCAL compilers, PASCAL and the concepts
of structured programming have beco~e the
basis for the first course in Computer Sci
ence at many universities and colleges.
The reasons for the rapid growth have been
well-discussed in the literature and are
most apparent to anyone who has strugqled
with teaching introductory programming
using Fortran or Basic.

The purpose of this paper ls not to restate
the benefits of PASCAL tor teaching, but
rather to introduce some of the princioal
features of the language and to assess the
relative advantages and disadvantages of
proqrammlng various applications in PASCAL.
The intended audience is the relatively ex
perienced Basic-Plus or Fortran proqra~mer
who has heard much about PASCAi and wonrlers
whether it would be suitable for his/her
application. The emphasis of this paper
will be on "standard" PASCAL as described
in "PASCAL User Manual and Report, 2nd ed."
by Jensen and Wirth.

(Note: This paper was oeslaned for presen
tation in a tutorial session at fall 7H
DECUS. It was anticipated that discussion
would follow the presentation. It is the
author's intent to summarize this discus
sion in a future issue of the DECUS PASCAL
SIG Newsletter).

2.0 A PASCAL Program.

The following pages contain a relatively
short, but complete Pascal proqram which
demonstrates several features of tne
language. The program comments Cin curlv
braces, { and }) describe what it does. It
is followed by sample input and a sample
program run. This example was selected ?e
cause the problem is straight-forward and
uses many features ot the language. The
discussion which follows will refer to this
program frequently.

Proceedings of the Digital Equipment Computer Users Society 803

2.1 Program Structure - Overview.

Each PASCAL proaram consists of a heading
and a "block". The neadinq ls the PROGRAM
statement wnicn identifies the proqram name
and the standard input and output files
used by the program. Everythina else is
considered tne block. It consists of six
sections: !)label declaration, 2Jcontant
declaration, 3)type definition, 4)variable
declaration, S)procedure and function de
finition, and 6)the statement part. ln the
example program, all of these except "label
declaration" are present.

Pascal makes use of reserved words wnich
have special meanings in the definition of
the language. Reserved words are printed
in uppercase in the sample program; source
filP.s can be written in any com~ination of
cases for most compilers. source files may
be completely free•format; however certain
conventions are frequently followed to make
the programs more readable. The samcle
program follows one such convention.

2.1.1 LABEL Section - This section de-.
clares all labels used in the program.
Labels are used as tne targets of "GOTO"
statements and are unsigned inteqer con
stants. It is the exceptional PASCAL pro
gram which has any labels or GOTO state
ments.

2.1.2 CONST Section - PASCAL per~its sym•
bols to be equated to constants to aid in
program readability. This is analogous to
the PARAMETER statement in DEC's
Fortran IV-Plus. The example proqram de•
clares "numsiz", "numscores", and "group
size" as constants with the values sho•n.
Note that all identifiers, be they names of
constants, variables, etc., can be of any
length in Pascal; however, "standard" Pas
cal is only required to recognize differ
ences in the first eight cnaracters.

San Francisco - November 1978

PROGRAM example1C1nput,output)'

{Sample program demonstrating some of the
features of PASCAL. This program reads
a list of student names and grades,
computes an average grade for each and
then sorts the list and prints it out.

Features of this example are chosen to
make the PASCAL reasona~lY clear to the
reader unfamiliar with PASCAL. Therefore,
certain options in the language have been
deliberately omitted as being "too
obscure".>

CONST
namsiz = 20;
numscores = 10;
qroupsize = 50;

TYPE
groupindex = 1 •• qroupsize;
scoreindex = 1 •• numscores;
student = RECORD

name : ARRAY Cl •• namsizJ OF char;
score: ARRAY CscoreindexJ OF integer;
average: real

END;
group = ARRAYCgroupindexJ OF student;

VAR
i,nstu : groupindex;
j,ngrades: scoreindex;
sum : real;
inf!le : text;
class : group;
ch :cha.r;

PROCEDURE openCVAR fil:text);

{this procedure is used to "hide"
implementation dependent version of
reset() procedure.>

VAR
filnam: ARRAYC1 •• 20J OF char;
i : 1 •• 20;

BEGIN
readln; <implementation quirk for tt: input}
writeC'Input filespec > ');
i:=O;
WHILE NOT eoln DO

BEGIN
i:=i+l ; read(filnamCiJJ:

END;
readln;
resetCfil,filnam);

END;

804

PROCEDURE classort(VAR class:group; n:groupindex);

{Sorts class on average using a recursive
quicksort algorithm from Wirth's
"Algorithms + Data Structures = Programs"}

PROCEDURE sor tC l, r: groupindex);

VAR
i,j: groupindex;
x,w : student;

BEGIN
1:=1; j:=r;
x:=class[Cl+r) DIV 21;

REPEAT
WHILE classCiJ.average < x.averaqe DO 1:=1+1;
WHILE x.average < class[jJ.average DO j:=j-1;
IF 1<=j

THEN
BEGIN

w:=class[1J;
class [1J :=class [jJ;
class(jJ:=w;
1:=1+1; j:=j-1

END
UNTIL i>j;

IF l<j
THEN sort(l,j);

IF i<r
THEN sort(1,r);

END {sort procedure};

BEGIN
sortCl,n)

END fclassort procedure};

PROCEDURE listclass(VAR class:group;
nstu:groupindex; nscore:scoreindex);

{This procedure lists the students in order by
average score.}

VAR
1,j: integer:

BEGIN
writeln;
write(' Student ');
FOR i:=l TO nscore DO writeCi:4J;
writeln(' Average');
writeln;
FOR i:=l TO nstu DO
WITH class [i] DO

BEGIN
FOR j:=l TO nams1z DO writeCname[jJ);
FOR j:=l TD nscore DO writeCscore[jJ:4);
writeln(average:B:2)

END
END {listclass procedure>;

805

BEGIN <start of main program}
open(infilel;
readlnC1nf1le,nstu,ngrades);
FOR 1:=1 TO nstu DO

BEGIN
c1assc11.name:=•
j::O;
readC1nf1le,ch);
WHILE (ch<>',') AND (j<namsiz) DO

BEGIN
j:=j+1:
classCil.nameCjl:=ch;
readC1nf1le,ch)

END;
IF ch<>','

THEN
REPEAT

readCinfile,ch)
UNTIL eh:',':

sum:=o.o;
FOR j:=l TO ngrades DD

BEGIN
readCinfile,classCiJ.scoreCjJ);
sum:=sum+class[iJ.scoreCjJ;

END;
classCil.average:=sum/ngrades;
readln Cinf ile)

END {for loop};

classortCclass,nstu);
listelassCelass,nstu,ngrades);

END.

Sample input file:

7,5
dkjfjl,56,78,96,43,24
abc,23,34,35,46,67
defghi,34,45,63,74,97
dskflskjflk,12,23,24,35,45
absurdlylongnamefortesting,1,23,34,45,67
dkdkdlsls,33,22,44,55,66
dkjflsk,45,34,67,98,34

Sample program run:

RUN EXAMPL
Input filespec > TEST.DAT

Student 1 2 3 4 5

dsl<:flskjflk. 12 23 24 35 45
absurdlylongnamefort 1 23 34 45 67
abe 23 34 35 46 67
dkdl<.dlSlS 33 22 44 55 66
dkjflsk 45 34 67 98 34
dkjfjl 56 78 96 43 24
defghi 34 45 63 74 97

Ready

Average

27.80
34.00
41.00
44.00
55.60
59.40
62.60

806

2.1.3 TYPE section - This section is used
to extend the basic data types provided in
the language. Section 2.2 below on "Data
Structure" will discuss data types futther.

2.1.4 VAR section - All variables in a
PASCAL program must be declared. This re
quires some adjustment in programming style
for BASIC and FORTRAN programmers.
However, this adjustment comes quickly
(PASCAL compilers flag any statement con
taining undeclared variables) and has many
benefits. One benefit is compiler type
checking, which allows the compiler to de•
tect incorrect expressions and assignments
before such errors have a chance to produce
obscure errors in executable code. For
large programs, the requirement that all
variables be declared helps immeasurably in
program maintenance.

2.1.s PROCEDURE Section - Declaration of
procedures Ci.e., subroutines) and func•
tions is like writing a program within a
program. Namely, the procedure or function
statement plays the role of the program
statement in the header. The rest of the
procedure definition is a block consisting
of exactly the same six parts which make up
a program. This leads to "nested" variable
and procedure definitions and the idea of
the "scope" of a definition. Variables de
fined within a procedure are local to that
procedure. Variables defined in procedures
outside the current procedure are consi
dered global to the current procedure.
Variables defined in the main program are
global to all procedures. If the same var
iable name is declared twice, the "closest"
definition is used.

In the sample program the variables
i,nstu,j,... declared in the main program
are accessible within all of the proce
dures, unless the same identifier is rede·
fined within the procedure. In "open", the
variable "i" is redefined and is thus dif
ferent than the "i" defined in the main
routine. The variable "j" could be ac
cessed within "open". The array "filnam"
cannot be accessed from the main program.
The scope rules for variable names apply
equally to all identifiers in a PASCAL pro
gram.

Parameters may be passed by value or by
reference; the procedure or function
statement identifies the type of argument
transmission for each parameter. VAR
preceeding a parameter name means it is
passed by reference; otherwise it is as
sumed to be passed by value. Functions and
procedures may also be passed as arguments.
All procedures and functions In PASCAL may
be used recursively. The various proce
dures in the sample program snow these fea
tures.

807

2.1.6 statement Section - This is the
"program"; it starts with the keyword
BEGIN and continues through the last END.
The preceeding 5 parts have defined all the
variables, constants and procedures avail•
able to the program. For large applica
tions developed in a "top-down" way, the
main program is usually little more than a
series of procedure invocations within a
simple loop. The elements of the language
Which make up the statement part are des
cribed below. In the sample program, a
comment identifies the start of the state•
ment section.

2.2 Data Structure.

The wide range of data types within PASCAL
is potentially the most contusing aspect of
the language. The language provides four
basic scalar types: integer, real, boole•
an, and character. However, this simple
beginning is augmented by methods for de•
tining additional scalar types and for
structuring these types, that is, grouping
them together into complex units. The
structured types are: arrays, records
Ci.e,, the PL/I "structure"), sets (similar
to PL/I "bit strings"), and (sequential)
files. In addition the type "pointer" ex
ists for use with dynamically allocated
data structures.

The discussion which follows will be some
what limited. However, enough will be co
vered to allow the experienced programmer
to see the potential for clear and effi·
cient programming of his/her own applica
tions in PASCAL, The word "type" will ap•
pear frequently in this discussion. By
"type" we mean the characteristics associ•
ated with a constant or the range of values
which a variable may taKe on. For example,
integer type means whole numbers between
-32768 and 32767 {for most PDP-11 implemen
tations). The concept of data type is fun
damental to PASCAL. The TYPE section of a
program is where a programmer defines the
characteristics of a new data type and
gives this type a name.

2.2.1 Scalar Types - Intrinsic. The types
real, integer, and boolean correspond to
real, integer, and logical from Fortran.
The type char Cfor character> is used to
represent the printing and non-printing
characters; the byte type from Fortran is
similar Cit stores one character>, but PAS
CAL does not permit arithmetic on variables
of type char Cas Fortran does on byte
data). These four types are referred to as
scalars.

2.2.2 scalar Types - user-defined. Other
scalar types may be defined by the pro
grammer. Scalars are distinct from struc
tured types such as arrays. scalars pos
sess order Ce.g., integers), but they lack
any structure such as a 2•dimensional array
of integers might have Ce.g., "rows" and
"columns">. To define a new scalar type,
one includes a definition in the TYPE sec
tion of the program. For example,

TYPE
figure=Ccircle,triangle,square,star);

Subsequently, variables may be declared of
type "figure", e.g.,

VAR

The result of scalar definition is to de
fine a set of programmer specified symbols
Chere, circle, triangle, etc.) as constants
of a new type (figure). Then variables de
clared of this type may only take on values
from this collection; e.g., objl may be
assigned the value of circle, but not the
value 1. Types so declared impose an ord
ering on the objects which make up the
type; namely, the first item is less than
the second is less than the third, etc.
Special functions succ() and pred() are
supplied tor obtaining the successor value
or predecessor value, resp; for example,
succCcirclel=triangle. The obvious appli
cation of programmer defined scalar types
ls to remove obscure integer values from a
program and to replace them by a suitable
identifier.

Another way to define additional scalar
types is to specify one type as a subrange
of another type. For example,

TYPE
counter = 1 •• 60;

defines a type counter to be limited to the
subrange 1 to 60 of the type integer.
Variables declared of type counter could be
used in expressions involving integers,
however, any attempt to assign a value
larger than 60 or less than 1 to such a
variable would produce a runtime error
(provided such run•time checking were in
effect). As experience with PASCAL grows,
a programmer will most likely find
him/herself using subrange types extensive
ly. use of subranges provides excellent
documentation on how variables are supposed
to behave, documentation which substantial
ly aids in the maintenance of large pro
grams. Several subrange types are used in
the example program.

2.2.3 Structured Types - The Array. The
simplest structured type is the array.
This is defined exactly as in other
languages. A variable definition involving
an array would appear as

808

VAR
a,b,c : ARRAY [1 •• 10,1950 •• 1958] OF REAL;

Here, each of aC), b() and c(l is defined
as a two-dimensional array. The range of
each subscript may be any scalar or
subrange type, except real. Arrays may be
of any dimension. The storage of
multi-dimensional arrays is by row.
Reference to array elements are of the form
a[i,jJ, where the i and j may be any ex•
pression which yields a value of the appro
priate index type used in the definition of
the array. Array bounds must be constant;
there is no dynamic array allocation in
PASCAL.

2.2.4 structured Types - The Set. A vari•
able declared as a set of objects may be
viewed as a "bit•string", i.e., the Pres
ence or absence of an object from the set
is determined by its bit being set or
cleared. For example,

TYPE
collection = SET OF figure;

VAR
p,q,r: collection;

Here figure is the scalar type declared
above: it could be any scalar or subrange
type. The maximum size of a set is imple
mentation dependent; typical PDP·11 imple
mentations allow 64 elements. variables p,
q, and r can be assigned values, e.g.,

p:=fcircle,triangleJ;

assigns the set consisting of the two ele
ments circle and triangle to the variable
p. This is equivalent to settinq bits in p
to show the presence of these items. Set
operations include union and intersection
Cand-ing and or-ing ot bit strings) and re
lational operations of set inclusion (bit
testing). An operation for determining the
presence of a particular element in a set
is also provided. This is particularly
convenient for range searches. For exam
ple, the following could be used to deter
mine if ch is one of the characters 'A',
' G ' , '·P ' , 'T ' , or 'Z ' •

VAR
ch : char;
letters : SET OF char;

....
{in the statement part}

letters:=C'A', 'G', 'P', 'T', 'Z'J;

IF Ch IN letters THE~ •••

2.2.5 Structured Types - The Record. The
record is the most powerful data structur
ing technique in PASCAL. It allows the
grouping together of many different types,
including type record itself, into a single
data type. This type is most easily demon-

strated by some examples.

TYPE
complex = RECORD re:real;

im:real
END {declare type complex as

an ordered pair of reals}

date = RECORD month: 1 •• 12;
day 1 •• 31;
year 1900.,1999

END; {date as an ordered triple}

employee : RECORD name: ARRAY Cl •• 40)

birth: date;
start: date;

OF char;

code : Caa,bb,cc,dd}
END; {an employee record}

The type student in the sample program is
another example. The individual declara
tions within a record are called fields.
Record types also permit "variants", in
which a single type is defined with one or
more fields whose definition varies accord•
inq to the value of another "tag" field.

Records are frequently used for dynamic
data structures. This is done bY including
one or more fields of type "pointer" which
can be assigned values "to point" at anoth
er record, producing arbitrary linked data
structures. PASCAL provides procedures for
allocating records and setting a pointer
variables to point at them. This feature
together with procedures that may be used
recursively means that most algorithms on
graphs can be simply and efficiently imple•
mented in PASCAL.

2.2.6 structured Types • The File. Only
sequential files are supported in standard
PASCAL. Files are thought of as sequences
of elements of some type on which certain
operations are permitted. For example, ap
pending an element to the end of a sequence
corresponds to writing onto the file. If
fil is declared to be a file of some type,
and t is a variable of the same type, then
the statements

assign the value of t to the buffer var!•
able Cfil-) and output the buffer. Since
data can be accessea directly in the
buffer, many file operations can be per
formed quite efficiently in PASCAL.

Files may be of any Valid type. Files of
characters, textfiles, are treated special
ly; namely, the line organization of
text files is marked with special
'end-of-line' characters which can be de
tected when a file is read, or inserted
when the file is written. Textfiles are
very similar to stream-files in PL/I. The
sample program shows the use of textfiles
and 1/0 to the user's terminal.

809

2.2.1 some Final Comments on Data Struc•
tures - It is not possible to provide a
feeling for the richness of PASCAL'& data
types in so short a presentation. In par•
ticular the use of pointers with records
for dynamic data allocation makes implemen•
tation-of many algorithms very clean and
!fficient. Likewise, the true strength of
such tools as variant records and sets is
hard to appreciate without looking at large
and complex programs which use them.

There is of course one data type which is
conspicuous bY its absence, namely string,
strings are a major weakness of PASCAL.
They are defined as arrays of characters,
and, therefore, must be of fixed length.
This together with explicit type checking
makes the string manipulation facilities
very primitive when compared with even the
simplest of BASIC interpreters. In the
area of strings, PASCAL is about on par
with a Fortran compiler supporting CHAR•
ACTER data type,

2,3 control Structures.

Compared to the complexity of data types,
the control structures within PASCAL are
simple to describe and understand. The
element which simplifies it the most is the
concept of a compound statement. If we let
the letter s stand tor any simple statement
in PASCAL, then the group of statements

BEGIN s; s; S; S END

is a compound statement and may be placed
anywhere a simple statement is permitted.
In fact, the statement part of a PASCAL
program may be considered a single compound
statement. Note that the semi-colon C;)
serves as a statement separator in PASCAL,
unlike PL/I where it serves as a statement
terminator.

Simple statements consist of assignment
statements, procedure invocations, condi•
tional or selective statement execution
(the IF and CASE statements), and looping
statements (WHILE, REPEAT, and FOR). There
is also the unconditional transter state•
ment (GOTO), but this is rarely used in
well-written PASCAL programs. Since these
control structures are relatively familiar
from other programming languages, only a
few brief comments on each will follow.

2.3.1 Assignment Statement - The assign
ment operator is ·:=', to distinguish it
from the relational operator for equality.
Assignment is only allowed between expres•
sions and variables of identical type. The
exception is that subranges of the same
scalar type may be mixed and integers will
be automatically coerced to type real. The
conversion from real to integer must be ex•
plicitly performed using the functions
truncc> or round(),

2.3.2 Procedure Invocation • Procedures
are "called" simply bY writing their name1
see the last two lines of the sample pro•
gram. Functions are invoked by using them
in an expression.

2.3.3 IF ••• THEN ••• ELSE and CASE ••• oF
Statements - Conditional execution is via
the IF statement. A boolean expression
follows the IF; a true value causes the
THEN "clause~ to be executed; a false
value the ELSE "clause". The ELSE "clause"
is optional. "Cla~se" ls a simple or com•
pound statement.

The CASE ••• OF statement ls similar to
BASIC's ON ••• GOTO or Fortran's arithmetic
GOTO; it can be used with any scalar type
except real. For example,

CASE objl OF
circle: <Sl>;
triangle: <S2>;
square,star: <S3>

END

will execute exactly one of the compound
statements <Sl>, <S2>, or <S3> according to
the value of objl.

2.3.4 WHILE, REPEAT, and FOR Looping
Statements - Each of these statements con
trols the execution of a loop. The formats
are

WHILE <boolean exp,> DO s;

REPEAT s UNTIL <boolean exp.>;

FOR <scalar>:=<scalar exp.>
TO <scalar exp.> DO s;

Each of the statements s in the WHILE and
REPEAT statements ls executed until
<boolean exp.> is false or true, resp. The
major difference between WHILE and REPEAT
is when the test is performed; WHILE tests
before s is executed, and REPEAT tests
after s is executed. FOR loops have a step
of +1 or -1; TO is used for +l and DOWNTO
ls used for -1. Any scalars, except real,
may be used as a FOR loop index, e.g.,

FOR objt:=clrcle TO star DO ••••

3.o some Implementation Features.

There are several implementations of PASCAL
available for the PDP•l1. Most of these
provide essentially all of the features of
standard PASCAL together with various "en
hancements" to the language. some of these
enhancements improve the ease of program
ming in PASCAL; others do violence to the
basic precepts of the language's design.
Some of the more helpful and common en
hancements follow,

810

i.

2.

l.

4.

s.

An EXIT state~ent to cause premature
exiting from WHILE and REPEAT loops.
Others provide a separate LOOP con•
struct which ii similar to WHILE, but
makes explicit provision for premature
loop exit.

Inclusion of an ELSE statement 1n the
CASE statement. The statement follow•
ing the ELSE would be executed if the
scalar value didn't match any o~ the
explicitly listed case labels.

Boolean operations CANO, OR, NOT) on
integer data types.

Special mechanisms to allow easy I/O to
the user's terminal for interactive
programs.

Support of structured constants. For
example, if z were declared as complex,
something like

z:=complexC3.0,S.O>;

is permitted.
require

Standard PASCAL would

z.re:=3.o; z.im:=s.o;

for this assignment. Note that if z
and w are both of type complex, "z:=w"
is supported in standard PASCAL.

6. Functions which may return a value of
structured type. standard PASCAL sup
ports only scalar valued functions.

7. Random access files and procedures for
associating a file name and device with
a file variable.

s. External procedures and separately com
piled procedures This feature ls neces•
sary for large applications requiring
overlaid code. Calling conventions are
usually documented well enough to per
mit calls to assembly language rou
tines. some implementations provide a
direct mechanism for calling Fortran
subroutines.

9. At least one implementation provides a
debugger which makes debugging PASCAL
almost as easy as debugging Basic-Plus.

This list is not exhaustive. However, even
as it stands, it clearly demonstrates why
many people are very concerned about devel
oping standards for the language before im
plementations become so fragmented that
PASCAL becomes as non-transportable as
Basic.

4.0 PASCAL vs. BASIC-PLUS or FORTRAN

Having reviewed the basic features of the
language, the question arises, "For which
applications should PASCAL be selected?" If
the decision is between Fortran and PASCAL,

PASCAL will beat Fortran in areas of ease
of implementation and program efficiency jn
almost every application. The exceptions
are applications requiring double precision
or complex arithmetic; PASCAL has neither.
If random access files are used, then
"standard" PASCAL would have to be
by-passed. However, most implementations
provide some sort of random access file ca
pability. If portability is an issue, PAS
CAL and Fortran rank about the same, if you
use only "standard" PASCAL or "standard"
Fortran.

When the choice is between Basic-Plus and
PASCAL, the decision will be more diffi
cult. The following is a partial list of
considerations.

1. If extensive use of Basic strings and
string functions seems likely, program
ming in PASCAL may require major revi
sions to the approach being used. For
example, the Basic functions LEFT(),
RIGHT(), INSTR(), have no analog in
PASCAL. If you are planning signif i•
cant amounts of command parsing using
these functions, this portion of your
application would require complete
re-design if written in PASCAL.

2. If your application js a "quick and
dirty, one-shot" program, use Basic.
It wouldn't be worth your energy to use
PASCAL. If your application is a large
program, or series of programs, the in
herent efficiency of program execution
with PASCAL may be worth whatever addi•
tional energy is required for program•
ming it.

3. Well-written PASCAL is easy to read and
maintain, once you become familiar with
the language. Poorly written PASCAL is
at least as bad as poorly-written any•
thing else. If you can develop your
application using the methods of
"top-down" design, then writing it in
PASCAL will be quite easy. The larger
the application, the greater the rela
tive advantages of PASCAL. If you de·
veloP programs by continuous "hacking"
at a crude first attempt, PASCAL will
probably not help you.

4. If you require access to monitor tables
and special features in your applica•
tion, this will require external proce•
dures written in assembly language.
However, once this is done, programs
written using these procedures have the
potential of being infinitely easier to
understand than their counterparts in
Basic•Plus. The principal reason for
this is that all the "ugly stuff" can
be hidden in a procedure; it won't in•
trude upon your program the way PEEK
sequences and SYS() calls usually do.

s. The extensive
Basic-Plus are
PASCAL. Most
allow recovery

error facilities of
simply unavailable in
implementations will

from common file system

811

errors, but this is not "standard" PAS·
CAL and does require significantly more
work than is required by Basic.

6. Applications involving complex in-core
data structures are more easily written
in PASCAL than in Basic-Plus. However,
if these applications require fancy
file manipulation, care must be taken.
This is particularly true if files of
structured types are created. PASCAL
says nothing about how such files ap
pear on external devices. If access to
these files is required by non-PASCAL
programs, significant problems could
arise.

7. Since PASCAL is not currently supported
on PDP•ll's by DEC, you must be some
what of an adventurer to select PASCAL
as your implementation language. The
available compilers are generally
solid, but not without their "kinks"
that can cause a great deal of lost
time. However, most of the problems
the author has experienced while learn
ing PASCAL are no worse than problems
which arise from trying to be too
clever with Basic-Plus or Fortran.

The most important consideration is to re•
alize that PASCAL cannot be the best solu•
tion to all of your problems. There are
clearly applications where it will excel;
there are others tor which it would be a
very poor choice.

s.o References

For persons wishing to know more about PAS
CAL the following short list is provided.
Jensen and Wirth contains the definition of
"standard" PASCAL. The other book by Wirth
has some excellent algorithms written in a
slightly modified PASCAL. The book by Gro
gono is the clearest text on PASCAL at this
time; it also has a very complete bibliog
raphy on other books and articles on PAS~

CAL.

Grogono, P. •• Programming in PASCAL,

Addison•Wesley, 1978.

Jensen, K. and Wirth, N. -- PASCAL User

Manual and Report, 2nd Edition,

------revised. Springer-Verlag, 1978
(corrected printing).

Wirth, N. •• Algorithms + Data Structures

= Programs, Prentice•Hall, 1976. - --------

LSI-11 WRITABLE CONTROL STORE ENHANCEMENTS TO u.c.s.D. PASCAL

Gordon Smith and Roger Anderson
Lawrence Livermore Laboratory

University of California
P.O. Box 5507

Biomedical Sciences Division
Livermore, California 94550

ABSTRACT

The DEC KUVll-AA Writable Control Store was used to
implement selected portions of the U.C.S.D. Pascal P-machine
in firmware. The frequency and execution speed of P-machine
instructions were measured in a battery of test programs to
guide the selection process. A 32 to 46% reduction in
execution time has been obtained for these test programs.

INTRODUCTION

The recent release of the KUVll-AA Writable Control
Store (WCS)l has permitted user access to a level
of the LSI-11 previously restricted to a select
few. A number of interesting projects are possible
with this product such as the application described
here, the microprogramning of portions of Ken
Bowles' U.C.S.D. Pascal P-machine.2

The LSI-11 Microprocessor and Writable Control Store

The LSI-11 is a microprocessor microprogramned to
emulate the PDP-11 instruction set. The
microprocessor has 26 eight-bit registers that are
addressed by a combination of direct and indirect
means. Its instruction set is highly vertical,
i.e., it is not unlike a conventional, albeit
primitive, machine language. Control is exercised
by a Translation Array, consisting of four
programned logic arrays, that examines the fetched
PDP-11 level machine instruction and determines
where microprogram execution is to begin. The
Translation Array may continue to exert control by
generating new inputs to the location counter as a
function of the current value of the location
counter, interrupt signals, and other control
inputs.

The memory address space is 2K words. It is
divided into four 512 word pages. Half of this
address space, or two pages, is used to emulate the
PDP-11. The EIS/FIS chip is optional and adds a
third page of microcode that emulates an extended
PDP-11 instruction set. These additional
instructions include integer multiply and divide
plus a battery of floating point instructions. The
fourth page is left unused.

The WCS contains a lK, or two page, random access
memory that is primarily intended to be used as the
third and fourth page of the microprocessor
memory. Use of the WCS as the third page of memory
is restricted by the Translation Array. Normally
the EIS/FIS code resides on this page. To
facilitate its execution the Translation Array is
programned to perform various control functions
when execution reaches specific memory locations on
the page. User microprograms must avoid these

Proceedings of the Digital Equipment Computer Users Society 813

locations. Complications can be avoided entirely
by loading the EIS/FIS code into one page of the
WCS and restricting new microprograms to the other.

DEC has allocated opcodes 76700-76777 for user
microprogramning. When the Translation Array
encounters an opcode in this range, it directs
control to a single address in the fourth page of
memory. The user is then responsible for decoding
the individual opcodes. Use of the Translation
Array to facilitate execution of user microprograms
is not supported.

The U.C.S.D. Pascal P-machine

The U.C.S.D. Pascal system is a complete
stand-alone system designed to run on micro- and
minicomputers. One of its most impressive features
is its use of an underlying P-machine. The
P-machine is a stack-oriented pseudocomputer that
exists as an interpreter written in the assembly
language of the host computer. Pascal source code
is compiled to an intermediate P-code that is, in
effect, the assembly language of the P-machine.
This design makes the system highly portable. The
operating system itself is written in Pascal. Only
the relatively small native code interpreter must
be written to transfer it to a new host. To date
there have been successful implementations on the
PDP-11 series and the 8080 family of
microprocessors, including the 8080A and 8085.
Other advantages of this type of implementation
include the efficient use of small memories and
fast compilation speed.

PROJECT DEFINITION

As described above, the execution of the U.C.S.D.
Pascal P-machine is a two-level process. The
LSI-11 microprocessor emulates a PDP-11 computer,
which in turn simulates the P-machine. We are
exploring the possibility of having the LSI-11
microprocessor emulate the P-machine directly. The
primary advantage will be an increase in program
execution speed.

One of our initial observations was that there is
not enough room in the WCS to implement the entire

San Francisco - November 1978

P-machine. On the average, it requires more
microcode than macrocode to implement a P-machine
instruction. One measure put the ratio at 1.7
words of microcode for every word of macrocode.
The current LSI-11 macro-level interpreter requires
2.4K words. A microprogranmed P-machine, we
estimate, will require 3 to 4K words of microcode
without the use of the Translation Array.

For this project we used one of the pages of the
WCS to implement portions of the P-machine and the
other page to contain the EIS/FIS code. Our task
was to select the best portions to microcode.

SELECTION OF PORTIONS OF THE P-MACHINE TO
MICROCODE

Control Structure

To execute a P-mach ine ins true tion, an opcode 11111st
be read from macro-level memory, control
transferred to the appropriate routine for
execution, and control returned for the next
instruction fetch. This process will be called the
interpreter fetch sequence. In the macro-level
P-machine interpreter, this takes approximately
25 µs for most instructions and 30 to 45% of the
total program execution time. This data makes the
interpreter fetch sequence an excellent candidate
for microprogramning.

The interpreter fetch sequence in our micro/macro
interpreter uses a variation of the scheme used in
the macro-level interpreter. In this scheme the
P-machine opcode is used to index a table of
macro-addresses for the respective routines. This
same table is used by the mcro/macro interpreter
with the difference that micro-addresses are also
stored in the table. The addresses are
differentiated by having the high order four bits
of the words containing the 11-bit micro-addresses
set to ones. Macro-addresses never have these bits
set because the high end of memory is normally
reserved for I/O devices.

The microcoded interpreter fetch sequence has two
entry points. First, its execution can be
initiated from macrocode by the opcode 76704.
Second, after a microcoded P-machine instruction is
executed, a jump is made directly into the
interpreter fetch routine. The direct entry from
microcode is faster than from macrocode.

The speed of the microcoded interpreter fetch
sequence averages approximately 14.5µs for most
instructions. This is somewhat disappointing, but
nevertheless is our most successful single
microcoded routine. It alone can reduce program
execution time by 12 to 19%.

The micro/macro control structure can handle
microcode instructions in addition to 76704.
Useful instructions include general purpose
instructions such as a block move. Other useful
ones are specialized instructions that execute the
frequently used parts of a P-machine instruction,
leaving the logic for handling special cases or
error conditions in macrocode. The scheme for
supporting the non-76704 instructions centers
around the use of the microstruction, Modify

814

Instruction (MI). This technique is discribed in
detail in the WCS Users Guide.I Briefly, the MI
instruction uses the fetched macro-level
instruction to index a table of jump instructions
in the microprocessor memory.

Another key element of the control structure is the
handling of interrupts. Periodically, during the
execution of long microcode routines a check is
made to see if interrupts are pending. If an
interrupt has occurred, execution is aborted and
control returns to macrocode to service the
interrupt. After the interrupt has been serviced,
the micro-routine is restarted from the beginning.
Microcoded routines that may be aborted 11111st be
careful to postpone making permanent changes until
after the last interrupt check.

P-machine Instructions

A series of tests were conducted to determine the
best P-machine instructions to microcode. For
these tests a DEC KWVll-A progranmable real-time
clock was used to maintain a running count of the
number of microseconds spent executing each
P-machine instruction. Also, each instruction was
counted as it was executed. From this data the
average execution speed, percent of program
execution time, and percent of instruction
execution frequency were calculated for each
instruction. Instructions with a high percentage
of program execution time and/or a high frequency
of execution are prime targets for
microprogranming. Frequency of execution is
important because of the faster direct entry from
microcode to the interpreter fetch sequence.

Unfortunately, there does not exist a typical
program that can be tested. Instead a battery of
test programs was assembled to gain insight into
conmonly used programs. These test programs are as
follows:

Compilations

WHETSTONE

Sorts

Six programs totalling 3341
lines of source code were
compiled. The programs were
selected at random. Two were
written by one of the authors of
this paper, one was WHETSTONE
(see below), and three (XREF,
CALC, & RTllTOEDIT) were
se lee ted from the software
distributed by U.C.S.D ••

This program is a synthetic
benchmark developed by H. Curnow
and B. Wichmann3. It
exercises a computer in a manner
considered typical of scientific
programs. Specifically, it
includes array manipulation,
conditional jumps, procedure
calls, integer arithmetic, and
trigonometric and other standard
functions using real numbers.

Three programs, Quicksort
(recursive), Quicksort
(nonrecursive)-, and Heapsort,
were used to sort an identical
array of 3,000 reasonably random

Miscellaneous
exploratory
programs

integers. The algorithms used
were based on those given by N.
Wirth4.

Two programs were run in the
hopes of gaining special
insights into the behavior of
the P-machine. The first
creates a cross-reference of a
Pascal source program. This
XREF program was written at
Sperry-Univac. The second
(BTSI) builds a balanced tree in
the heap and conducts searches
of that tree. Again, the
algorithm was based on one by N.
Wirth4.

An example of these test results is presented in
Table 1.

With this test data, we are able to select portions
of the P-machine to microprogram, code those
portions, and then evaluate the resulting
performance. The ultimate basis for the evaluation
is the percent reduction in program execution time
derived per word of WCS used and the consistency of
the improvement across the spectrum of test
programs.

RESULTS

To date a page of microcode has been coded. All of
this code was written before the test series
described above was completed, although preliminary
test results were available. Tests using a line
time clock have measured a 32 to 46% reduction in
execution time for the test programs when compared
to the macro-level LSI-11 interpreter. (Note, both
interpreters use the EIS/FIS code). These results
are shown in Fig. 1. The page of microcode
contains 19 P-machine instructions and four general
purpose instructions. The speed improvements

Table 1. Execution speed, percent of execution time, and execution frequency of individual
P-machine instructions coded in LSI-11 assembler language. These results were obtained from
the compilation of 3341 lines of source code. The average execution speeds are adjusted to
eliminate the time for the interpreter fetch sequence. The percent of program execution time
includes the interpreter fetch sequence time in the calculation. The interpreter fetch
sequence and the single instruction SLDC are in microcode.

Average Percentage Percentage
execution of program of execution

Mnemonic Instruction speed in~ execution time frequency

CIP Call Intermediate Procedure 632 21.6 2.0
CSP Call Standard Procedure 1186 17.5 0.9
FJP False Jump 25 3.7 8.7
RNP Return From Non-base Procedure 75 3.1 2.5
SRO Store Global Word 31 2.5 4.7

·SLDO Short Load Global Word, total 12 2.5 12.7
INN Set Inclusion 114 2.1 1.1
SLDL Short Load Local Word, total 12 1.7 8.4
LOO Load Global Word 32 1.6 3.0
CLP Call Local Procedure 205 1.6 0.5
EQUI Integer Comparison,= 20 1.6 4.5
UJP Unconditional Jump 22 1.5 3.9
LDM Load Multiple Words 68 1.4 1.2
STL Store Local Word 31 1.3 2.5
CXP Call External Procedure 487 1.1 0.1
XJP Case Statement 63 1.1 1.0
ADI Add Integer 10 1.0 6.0
UNI Set Union 92 0.8 0.5
LOB Load Byte 21 0.8 2.3
LAO Load Global Address 31 0.7 1.4
SINO Short Index and Load Word, total 17 0.7 2.4
LLA Load Local Address 31 0.7 1.3
SLD012 Short Load Global Word, offset 12 12 0.7 3.4
SLDC Short Load Word Constant, total 3 0.6 15.3
IXA Index Array 75 0.5 0.4
SLD03 Short Load Global Word, offset 3 12 0.5 2.6

The remaining Instructions have percents of program execution time of less than 0.5% and percents of total frequency of execution
of less than 2.3%.

815

Fig. 1. Percent reductions in program execution time obtained by the micro/macro interpreter
when compared to the macro-level interpreter.

Reduction
execution

time,%

50

40

30

20

Compilations
(41.5)

Whetstone
(33.7)

Quicksort (R)
(45.1)

obtained for the P-machine instructions and the
number of words of WCS required to code them are
given in Table 2. The general purpose instruction
are:

An instruction to retrieve "BIG" operands.
These operands may be either one or two bytes
long, depending on whether the sign bit of the
first byte is set.

An instruction to traverse down the static
links of the P-machine stack n levels.

A block move instruction that increments the
source and destination addresses as each word
is moved.

A block move instruction that decrements the
source and destination addresses as each word
is moved.

The microcode produced to date and the detailed
test results and procedures are available from the
authors on request. Test were run using the
LSI-11/2 (KDll-HA) with the MSVll-DD 32K memory.

WHAT CAN BE DONE

Work is still in progress. Both the selection of
routines to microcode and the density of the

816

Quicksort (N R)
(45.6)

T

Heapsort
(43.4)

XREF
(32.2)

T

BTSI
(45.1)

microcode can be improved. The current reduction
in execution time, as previously mentioned, is 32
to 46%. We expect that this figure can be improved
by several percentage points. A final figure of
roughly 45 to 55% seems to be possible. When it is
completed, this code could be programmed into
read-only memory and made available at a price
considerably lower than the WCS board. Although
such a product may not be of widespread interest,
some installations may find it worthwhile.

An exciting possibility is the complete conversion
of the microprocessor to a P-machine. In
particular, if the Translation Array could be used
for the interpreter fetch sequence and other
control functions, speed improvements should far
outstrip anything that can be accomplished with a
single page of WCS. Space will still be a major
problem even with the Translation Array. If this
problem can be overcome speed improvements by a
factor of four or more do not seem unrealistic.

ACKNOWLEDGEMENT

Work performed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore
Laboratory under contract number W-7405-ENG-48.

Table 2. Microcoded P-machine instruction execution times and the number of WCS words used. The timing
results were obtained from a test consisting of two compilations, the Whetstone and Quicksort
(nonrecursive). Execution speeds are adjusted to eliminate the time for the interpreter fetch sequence.
Similarly, microcode for the interpreter fetch sequence is not counted in the "words of WCS" figures.
The number of "Words of WCS shared" with other routines are included in the number of "Total words of
WCS".

*Figure is an estimate.

Mnemonic Instruction

AND Logical And
CHK Check Subrange Bounds
CIP Cal I Intermediate Procedure
CLP Call Local Procedure
FJP False Jump
GRTI Integer Comparison,>
LAO Load Global Address
LOCI Load Constant Word
LDM Load Multiple Word
LDO Load Global Word
LEOI Integer Comparison,.;;;
LLA Load Local Address
NEQI Integer Comparison, =F
RNP Return From Non-base Procedure
SLDC Short Load Word Constant
SRO Store Global Word
STL Store Local Word
UJP Unconditional Jump
XJP Case Statement

* Figure is an estimate.

REFERENCES

(1) LSI-11 WCS Users Guide, EK-KUVll-TM-001,
Digital Equipment Corporation, Maynard, Mass.
(1978).

(2) UCSD (Mini-Micro Computer) Pascal, Release
Version I.4, January 1978, Institute for
Information Systems, University of California
at San Diego, La Jolla, Ca., Ken Bowles
director.

(3) H.J. Curnow and B.A. Wichmann, "A Synthetic
Benchmark", The Computer Journal, Vol 19, No 1,
February 1976, pp 43-49.

(4) N. Wirth, Algorithms + Data Structures =
Programs, Prentice Hall, New Jersey, 1976.

Micro Macro Total words Words of
time, µs time, µs ofWCS WCS shared

5 17 6 0
22 26 19 0

188 542 29 0
75 189 113 0

4 24 20 13
10 23 17 9
10 38 22 13

5 22 8 0
22 56 24 0
10* 32 24 13
11 21 17 9
9* 31 22 13
8 21 12 9

24 74 49 0
3 6* 4 0

10* 31 23 13
9 31 23 13
6 24 14 13

16 63 28 0

817

PASCAL/P-CODE CROSS COMPILER FOR THE LSl-11 *

Bruce L. Hitson
Stanford Linear Accelerator Center

Stanford, California

ABSTRACT

This paper describes the implementation of a cross compiler for Pascal
that produces code that can be executed on an LSI-I I minicomputer. The
approach taken is to first compile the source Pascal program (using an
existing compiler) into an intermediate form known a.s P-Code. The P-Code
is then cross compiled to LSI- I I assembly language. Once this has been
achieved, the assembly language programs can be assembled using existing
assemblers (such as MACRO-I I) to produce relocatable load modules.
These are linked together into an absolute load module and reforma.tted for
transmission via serial line to the LSI-I I. The details of the implementation
are described. A comparison is also made betweeri the approach taken in
this implementation (cross compiling to the host machine's assembly code)
and the approach where P-Code is interpreted directly.

INTRODUCTION

This paper describes the Implementation of a cross compiler
for the LSI-I I that converts Pascal pseudo-code (P-Code)[I] into
assembly code that is suitable for processing by existing LSI-I I
software. Unlike many other implementations of Pascal for
minicomputers, this approach does not interpret P-Code, but
instead produces LSI- I I assembly code [2) by cross compiling the
P-Code statements that are output by the Pascal compiler. One of
the goals of this approach is .to generate code that will execute
significantly faster than existing interpretive implementations
without a severe increase in the total program size (program code
plus runtime support routines). We would also like to allow
programs written in Pascal and other languages such as Fortran,
PL-11[3) and assembly language to be compiled separately and
linked together into software packages that make use of the best
features of each language. We are able to protect our large
investment in existing software and yet be able to write new
programs. in a high-level language that should be easier to debug
and maintain.

HARDWARE

The· system is designed to be used on LSI-I I systems that
have a minimal hardware configuration. A minimal system might
consist of the LSI- I I processor,' an EIA RS232 serial line interface
for connection to the host computer, and a ROM kernel that can
communicate with the host computer and download LSI-I I core
images via the serial line from the host computer. In our case, the

* Work supported by the Department of Energy under contract
number EY-'76-C-03-0515.

Proceedings of the Digital Equipment Computer Users Society 819

host computer is referred to as the TRIPLEX. It consists of two
IBM 3'70{168s running OS/VS2 and a single IBM 360/91 running
OS/MVT. All three processors operate under the ASP job
management system. An alternative configuration col!ld be based
solely on an LSI-II or other PDP-I I family computer with noppy
drives and a large enough memory to execute the Pascal compiler.
We have chosen to Implement the first configuration for our
current applications.

The systems In use at Stanford Linear Accelerator Center
(SLAC) typically consist of an LSI-I I with serial line Interface, iK
of ROM kernel routines, and 2iK words of RAM. This allows
execution of reasonably large software packages without having to
be overly concerned about the efficient use of memory. Typical
programs use only a fraction of the available memory for code
storage, leaving the remainder for runtime stack and heap.

SOFTWARE

The software used to produce code that can be executed on
the LSI- I I is, for the most part, written In Pascal. The only
eicceptions to this are the Pascal runtime routines which are
written in assembly language for the sake of efficiency. The main
programs used In the process of making an LSI- I I absolute load
module are described briefly below.

l) Stanford Pascal compiler (4) - This ls a highly modified
version of the Zurich P2 compiler[5). M odlflcatlons to

produce P-Code that Is also cross compiled Into efficient IBM
370 code were done by Sassan Hazeghl of SLAC. This Is the
same P-Code that is cross compiled to LSI-I I code that
eventually runs on the LSI-I I.

San Francisco - November 1978

2) P-Code Cross Compiler (PCC) - This Is a 1500 llne Pascal
program that takes as Its Input P-Code produced by the
Stanford Pascal compiler, and produces assembly code
suitable for processing by standard LSI-I I assemblers such as
MACRO-II. The detailed implementation of this program
is the topic of the following sections.

9) Pascal runtime support - This collection of routines provides
the standard procedures of the Pascal language (e.g., PUT,
GET, EOF, etc.). It Is currently written In assembly code for
the sake of efficiency, and Is In the process of being coded In
Pascal.

4) SLAC LSI-II Software [6) This consists of
implementations of programs such as MACRO-II that run
on the TRIPLEX and are 'used for assembling, linking, and
loading LSI- I I code. This also includes routines for
downloading programs via the serial line Interface to remote
LSI-I I systems.

A II program development, compiling and linking Is currently
done on the TRIPLEX. The LSI-II is simply downloaded from
the TRIPLEX via the serial line and started executing at the
beginning of the program that was loaded. Note that complex
program systems may be. loaded which may themselves consist of
compilers, Interpreters, etc.

IMPLEMENTATION DETAILS

Memory Organization

Memory ls conceptually divided Into three areas: Pascal
monitor, program code, and runtime stack/heap. These are shown
in Figure I. The Pascal monitor performs the necessary
initialization before entering the main Pascal. program. It also
does clean-up operations when the LSI- I I has finished e~ecutlng
and before control is returned to the TRIPLEX. The program
code ls the actual code for the routines of the Pascal program that
Is to be executed. The rest of the memory space ls allocated to
runtime stack and heap. The heap starts at the end of the
program code and grows towards higher memory locations. The
stack starts at the highest memory location and grows towards
lower .memory locations.

Pascal
Mani tor

Program
Code

Runt l me
Heap
J. J.

t t· Run 1me
Stack

Figure I - Memory Organization

820

.Data T):pes

Before discussing P-Code, it is useful to know the structure
of the data that It will be referencing. There are six baslc'types of
data: addresses (A), boolean (B), character (C), integer (I), real (R),
and set (S). Boolean and character variables occupy one byte of
storage each. Addresses and Integer variables occupy one word (2

bytes) of storage each. Reals are represented in standard DEC
floating point format, and ,occupy two words (4 bytes); Sets occupy
four words (8 bytes), and can have up to 64 members. Alignment
for each data type is provided for by the compiler according to the
number of bytes It occupies. Thus, reals are aligned on 8 byte
boundaries, while characters and booleans are allgned on single
byte boundaries.

P-Code is a pseudo-assembly code designed for a mythical ·
stack computer (the P-machlne[S)). There are. 'two basic types of
instructions: Instructions that manipulate the top few Items of the
stack, and Instructions that move !;lata to and from "memory".
The "memory" is actually part of the stack, and Is accessed by
specifying a pointer into the stack. A general P-Code Instruction
consists of four fields: OP, T, P, and Q;

OP T p a

Figure 2 - P-Code Format

OP is a string of characters that specifies the operation to be
performed. T Is a single character that specifies the type of the
operand to the instruction (e.g., I•integer, R·real). P and Q.. are
used for a variety of purposes. They are most commonly used to
specify a level and offset for instructions that load or store
variables. The P-Code instruction set Is described in the paper by
Gilbert and Wall[I].

Referenclne- Variables

The P-Code produced by the Stanford Pascal compiler
references variables by specifying two numbers: a level number
and an offset. The level number specifies the lexical level of the
variable being referenced. The scoping rules of the Pascal
language require this to be interpreted as the lexical level of the
most recently invoked procedure at the level specified. The offset
specified Is the number of bytes from the base of the specified
lexical level where the variable being referenced is stored.

In order to make references to variables as quickly as
possible, we would like to use the Indexing capabilities of the
LSI- I l's general purpose registers. A number of registers, referred
to as DISPLA Y[I) .. DISPLA Y[n) are used to hold pointers to
the base of the most recent activation of the lexical level (I.e.,
procedure or function) associated with n. To access a particular
variable at lexical level n, we can use the Indexed addressing
mode of the LSI-I I. Thus, to Implement the P-Code Instruction

LOO I <level>, <offset>
which loads an integer onto the stack, we can say

MOY -<offset>(DISPLA Y[<level>)), -(SP).
A problem with this scheme Is that we may want to access

variables .in more leicical levels. than there are registers to hold
their base pointers. A solution to this problem Involves keeping

· only the most commonly us.ed DISPLAY registers In actual
registers of the LSI-I I. The remaining display registers are stored
In memory, and loaded Into registers only as they are needed. The
concept of display registers has been discussed by Gries[?] and
others.

As it turns out, the structure of many Pascal programs is
such that most variables accessed are either local to the currently
Invoked procedure or are global variables (I.e., dech,.red in the
body of the program and not in a procedure or function). Taking
advantage of this fact, only two registers are dedicated to holding
DISPLAY register pointers. DISPLA Y[Jj Is referred to
symbolically as "GMP" (Global Memory Pointer), and
DISPLA Y(n] (where n Is the level of the currently executing·
procedure) Is referred to symbolically as "CMP" (Current Memory
Pointer). References to variables in lexical levels other than those
specified by OMP and CMP require that the value of
DISPLA Y[n] first be loaded Into a temporary register which is
then used for Indexing.

In order to allow recursive procedures and functions, the
value of CMP must be saved at each Invocation. This process is
described In the section on the Runtime Stack. 7he value of
OMP need not be saved and Is, in fact, fixed for the duration of a
programs eicecution since a Pascal program (as opposed to a Pascal
procedure or function) is not allowed to call another program at
leiclcal level I.

Runtime Stack

The format of the runtime stack Is shown in Figure 3.
Starting at the high end of memory, we have the stack frame for
the main program. This ·consists of the return address to the
Pascal monitor. Following this are five words of system variables,
and three words of I/0 buffer addresses. The 1/0 buffer
locations contain pointers to buffers for up to six different devices.
The default I/0 device Is the tty. The global variables are stored
after the 110 buffer addresses.

When a procedure or function is invoked, a new stack frame
is allocated. The first word of this stack frame is the return
address to the procedure that invoked it. (In the case of the first
procedure call, this will be the main procedure). The value of the
CMP register must ·also l;)e updated. This consists of I) save the
old value of DISPLA Y[<level>] In the next stack location 2) load
DISPLA Y[<level>] with the current value of CMP 3) load CMP
with a pointer to the return address that was pushed onto the
stack In step 1...thls Is the base of the new stack frame.

The neict four words on the stack are used to store the result
of calls to routines that are functions. These four words are
unused If the routine Is a procedure. Local variables (variables
declared in the level that we are now entering) appear next on the
stack.· The code for the routine whose stack frame was just
created is now executed. At some random point in this routine,
another procedure or function call may occur. If the call Is to a
function that is embedded In a calculation, some Intermediate
results of the calculation being done may be stored on the top of
the stack. These are referred to in the diagram as temporary

821

variables since they represent intermediate results.At this point, a
new stack frame for the function being called Is created, and
execution proceeds as described above.

func rs It I Function result

func rslt I Function result

old disp ·1 Old DISPLA Y[n]

CMP .. ret addr I Return to previous level

Temporary variables

Local variables

Arguments to proc/func

func rs It Function result

func rs It Function resu It

func rs It Function resu It

func rslt Function result

old disp Old DISPLA Y[n]

.. ret addr Start of first proc/func

.
f i I e addr I 110 file addresses

I
1/0 file addresses f i I e addr I

file addr I I I 0 file addresses

file addr I 1/0 file addresses

I System variables

I System variables

I
·System variables

System variables

GMP .. ret addr I Return to Pascal monitor

Figure 3 - Runtime Stack Format

OPTIMIZATION

At the present time, only a slight degree of optimization has
been implemented. This manifests Itself as not executing the
standard system calls to do the Initial resetfrewrite of the tty (since
the tty is already Initialized by the Pascal monitor). Also, routines
to "start 1/0 (SIO)" and to "end .110 (EIO)" to the tty have been
optimized out for the same reasons.

There are many· places where the LSl-11 translation of a
sequence of P-Code statements are relatively Inefficient. Consider
the Pascal statement "l:~I+ I". If the variable "I" Is an Integer
located at an offset of 14 In level I (the main program), the
following P-Code might be produced:

LODI 1,14 ;Get variable "I" onto stack
LDC I I ;Load the constant "I" onto stack
ADD I ;(Top- I)+-Top+(Top-1); Top:• Top- I ;
STO I 1,14 ;Store the value back in "i"

The LSl-11 assembly code produced would be:
. MOY -14(GMP),-(SP) ;SRC•> LOO I 1,14

MOY •l,-(SP) ;SRC·> LDC I I
ADD (SP)+,(SP) .. ;SRC•> ADD I
MOY (SP)+, -14(GMP) ;SRC•> STO I 1,14

Obviously, this is not the optimum solution since the single
LSI-11 assembly statement

INC -14(GMP)
would have had the desired result. The Increment instruction
takes two words of memory, whereas the sequence produced above
takes seven words!! This Inefficiency is due largely to the
differing architectures of the register oriented LSl-11 and the
stack oriented P-machine. Efforts are currently under way by
various people to produce optimized P-Code[SJ. that would
eliminate some of the more obvious inefficiencies. We are
working on a much less extensive optimization of replacing the
above <load><load><operatton><store> operations with a more
nearly optimal solution. This should have a fairly significant effect
in reducing program size.

INTERFACE TO OTHER LANGUAGES

One of the i:naln objectives in cross compiling Pascal to
LSI- I I assembly code was to allow Pascal routines to be linked
together with routines fr<!m other languages. In this way, our
existing software library of Fortran, PL- I I, and assembler routines
can be used along with Pascal routines to produce significant
software systems. Also, this allows the use of a language that Is
most appropriate for the problem at hand. As an example, It is
fairly Inefficient to deal with low.:.level concepts such as bit
masking or trap handling through Pascal routines (although not
Impossible). These routines can be implemented In PL-I I or In
assembly language and linked in with the Pascal 'routines to
produce a usable software package.

PERFORMANCE EVALUATION

As was mentioned in the introduction, one of the main
motivating factors for the cross compiling Implementation of
Pascal as opposed to the Interpretive approach Is the speed with
which the code executes. A !though extensive testing has not yet
been completed, a preliminary comparison of the Pascal system
produced using PCC (PASLSI) and two other systems has been
made. The performance was also compared to DEC Fortran
running under RT-11 on the LSI-I I. A simple Integer bubble
sort was used as a benchmark. It Is a fairly good example since it
tests a combination of performance characteristics such as loop
efficiency and array indexing efficiency. Execution time was
tested for the sorting of 500 Integers (arranged In reverse order so
that every integer must be moved). Three Pascal systems were
compared: PASLSI, UCSD Pascal[9], and Stanford Pascal. The
results shown · below are typical of the three systems from
measurements made so far.

Execution time of bubble sort of 500 Integers
(measured in seconds)

Stanford Pascal (IBM 370) - 0.6
DEC Fortran (LSI-II)- 22.0

PASLSI (LSI-II)- 84.0
UCSD Pascal (LSI-I I) - 463.0

822

Based on the preliminary ·results above, we can make a couple of
comments. PASLSI seems to have a significant speed advantage
over UCSD Pascal (which uses an interpretive approac;h).
Compared to Fortran, PASLSI runs about four times slower at the
present. It shnuld be kept in mind, however, that the DEC
Fortran has been optimized to a significant extent, whereas the
PAS LSI system still has considerable room for Improvement
With some of the optimizations mentioned under "Optimizations",
it seems reasonable to assume that PASLSI in Its final f1>rm will
probably execute within a factor of two of DEC Fortran.

CONCLUSIONS

The cross compiling approach to making Pascal available
on a minicomputer such as the LSI-11 is a useful addition to our
existing software package of Fortran, PL-11, ·and assembly
language routines. It allows us to use programs written In Pascal
together with existing software written In other languages with
only minor changes to the existing software. High level programs
can be written quickly and cleanly In the block structured
environment of Pascal. Low .level routines can be written that
perform critically time dependent tasks or that can more easily
access the lower level constructs of the LSI-I I than Pascal. . Thus,
a particular task can be written in the language that Is most nearly
suited to the task (be it execution-time critical, memory usage
critical, or software development and debugging time critical).
The system Is in a continual state of improvement and extension,
and will no doubt have many new features added by the time this
paper Is printed.

ACKNOWLEDGEMENTS

I would like to thank Sassiln Hazeghl of SLAC for his help
with Stanford Pascal and for the many Pascal programs he has
graciously shared with me. I especially want to thank Les Cottrell,
whose initial encouragement got me started on this project, and
whose continued support, help, and advice keeps me going.

REFERENCES

[I] Erik J. Gilbert and David W. Wall "P.,.Code Intermediate
Assembler Language (PAIL-3)", Stanford Artificial
Intelligence Laboratory, on-line documentation, March 1978 ..

[2] Digital Equipment Corporation, "Microcomputer Handbook
1976-1977", Maynard Massachusetts.

[SJ Russell, Robert D. "PL-II: A Programming Language for
the DEC PDP-11 Computer" European Organization for
Nuclear Research (CERN), Geneva, 1974.

[4] Sassan Hazeghi, "Stanford Pascal Compiler" on line
documentation at SLAC.

[!i] K.Y. Nori, U. Ammann, K. Jensen, H. H. Nagel., "The
PASCAL <P> Compiler: Implementation Notes", Berlchte
des Instltutis fur Informatlk, Zurich.

[6) R.LA. Cottrell and C.A. Logg, "An IBM 370/360 Software
Package for Developing Stand Alone LSI-I I Systems",
Proceedings of the Digital Equipment Users Society, vol. i,
no. i, pp 985/991, April, 1978.

[7) Gries, David, "Compiler Construction for Digital
Computers", John Wiley 8c: Sons, N.Y. 1971.

[8) Sites, Richard L. "Progress Report, June 1978:
Machine-Independent Code Optimization", Department of
Applied Physics 'and Information Science, University of
California, San Diego.

[9) UCSD (Mini-Micro Computer) PASCAL Documentation,
Release Version l.i, January 1978.

823

BLISS COMPILER OPTIMIZATION TECHNIQUES

Alan P. Lehotsky
Digital Equipment Corporation

Maynard, Massachusetts

ABSTRACT

The family of BLISS compilers developed by DEC produces highly
optimized object code. The formal and heuristic techniques
used by these compilers are reviewed, with specific examples
drawn from each compiler: Bliss-16, Bliss-32, and Bliss-36.

INTRODUCTION

The language family categorized
Bliss has been under development
three years. Figure 1 is a brief
that development.

as Common
by DEC for
history of

BLISS-10 =======> BLISS-36C ==>BLISS-36
I A
v I

BLISS-11 =>BLISS-32 =>BLISS-16C =>BLISS-16

Figure 1 - BLISS Family History

The current languages and their implementa
tions are direct descendants of Bliss-11.
[l]

Digital has a commitment to Bliss as the
preferred implementation language for all
new software developed within Central En
gineering. This commitment is justified by:

o Reduced life-cycle costs. (Fewer bugs,
faster implementation, easier mainte
nance)

o Code quality approaching
by a talented assembly
grammer.

that produced
language pro-

o The opportunity to transport software
and software engineers among architec
tures. (2]

The Common Bliss family presently consists
of three members: Bliss-32, Bliss-36 and
Bliss-16. Approximately 50% of each com
piler is common source code. All three are
written in Bliss and share a common design.
The TOPS-10 versions of Bliss-36 and
Bliss-16 have the only non-Bliss code in the
full compiler set. It is a six page
MACR0-10 routine used to interface to SCAN,
and was written as part of the original bo
otstrap process. Bliss-36 has taken about 1

Proceedings of the Digital Equipment Computer Users Society 825

man-year to bootstrap from the Bliss-32
sources and reach a usable level of functi
onality. It is expected that Bliss-16 will
require a similar effort. Currently, only
Bliss-32 is available for purchase by cus
tomers. Bliss-36 and Bliss-16 are not ava
ilable at this time.

Other DEC products written in Bliss include
VAX-11 Common Runtime Library, Linker,
VAX-11 SORT, DEBUG and RMS-32 ISAM. Ongoing
(and unannounced) development includes DEC

NET utilities and at least four high-level
languages.

Our optimization strategy generally favors
space reduction over speed reduction. The
justification is expressed in part by the
following:

"Our philosophy is that code size is a more
important consideration since we cannot
predict which portions of a program will
contribute significantly to the execution
time, but that space costs something whether
or not the code occupying it is ever execut
ed." (l]

In addition, smaller code is faster due to
fewer instruction fetches. On paging ma
chines, smaller code reduces the working set
and provides better paging behavior.

COMPILER OVERVIEW

This paper divides the compiler into 3 pri
mary phases, based on their optimization
strategies and goals. These phases are:

Common Front End - Constant folding,
data-flow analysis and common
sub-expression recognition. There is a
fairly rigorous theory behind the stra
tegies and algorithms used. Most optim
izations are essentially transformations
of the source-program after macro and
structure expansion.

San Francisco - November 1978

Target Specific Transformations - Knowledge
of the target-machine architecture is
used to transform the internal represen
tation of the program into a more opti
mal program. •optimal• is usually meas
ured in the number of instructions and
data-references required to implement
the program's semantics.

Final Optimization - More traditional optim
izations, including peepholes, redundant
instruction elimination, jump-branch re
solution and adjacent instruction merg
ing.

The compiler works on a single routine at a
time. The internal representation of the
routine is a tree, almost identical to a
parse-tree (but without any declarations).
Figure 2 shows a single routine declaration
for our old friend •Nt".

ROUTINE factorial(n)=
BEGIN
IF .n EQL 0
THEN

1
ELSE

~n * factorial(.n-1)
END;

Figure 2 - Sample routine

Figure 3 shows the tree·built for the rou~
tine FACTORIAL.

Each phase
treewalk.
countered,
voked.

Figure 3 - Internal tree

does a top-down, left-to-right
As each node in the tree is en

node-speci f ic routines are in-

COMMON FRONT END

Optimizations performed here ate primarily
target machine independent.

~~ Folding (KFOLD)

Constant folding is an exception to targe.t
independence in that Bliss-16 runs only as a

826

cross-compiler under VAX/VMS, TOPS-10 or
TOPS-20. Host architecture differences with
regard to arithmetic processing can be sig
nificant unless care is taken. Therefore,
constant folding is carefully tailored to
the target-machine's arithmetic precision.

Constant folding is based on the axioms of
expressions arithmetic. Besides folding

like

==> 64

the folding sub-phase performs more esoteric
optimizations. For example, Figure 4 shows
a LITERAL declaration and a SELECTONE ex
press ion. The SELECTONE expression compares
its SELECTOR with each of the SELECT-LABELS,
when the SELECTOR and SELECT-LABEL are equal
the SELECT-ACTION is executed.

LITERAL
white=O,
red=l,
blue=2,
green=3,
purple=4;

SELECTONE .color OF
SET
[red,white,blue]:
[green]:
[purple]:
TES;

us_flag;
grass;
cows

Figure 4 - SELECTONE Expression

The range of expressions "[red,white,blue]"
in the SELECT-LABEL is transformed by KFOLD
into a single expression "[white TO blue]",
which only requires a single unsigned com
parison equivalent to

(.color LEQU blue)

as it takes advantage of the fact that 0 is
the smallest unsigned number.

Flow Analysis (FLOWAN)

Flow analysis has the largest body of formal
theory behind it.

Common Sub-Expressions - Two expressions El
(the creation) and E2 (the use) are Common
Sub-Expressions (CSE's) if

1. The values returned by El and E2
are always identical.

2. Program control flow is such that
whenever E2 is evaluated, El has
been evaluated.

The FLOWAN subphase detects potential CSEs.
Because of the target architecture, some ex
pressions may be easier to recompute than to
save in temporaries. This can be better de
termined in target-dependent phases, so the

identification of 'feasible' CSE's is done
later.

There are essentially two types of CSE's re
cognized, REAL and BOGUS. REAL CSEs have a
single creation, followed by one or more
uses. Figure 5 shows a set of expressions
involving ".x+l", some of which are CSEs.

BEGIN

IF .x+l GTR 0
THEN

BEGIN

a=. b [• x+ l] ;

END;

c = .x+l; E3

x = .d;

f = .x+l; E4

END

El

E2

Figure 5 - CSE Candidates

El and E2 are CSE's, El and E3 are CSE's.
But, E2 and E3 are not CSE's because E2's
evaluation is not guaranteed to precede E3's
evaluation. El and E4 are not CSE's because
the values returned are not always identi
cal.

BOGUS CSEs have creations on every branch of
conditional-execution flow and one or more
uses. Figure 6 is an example of a BOGUS CSE
"(2*.a)".

IF .x
THEN

BEGIN
a = • x;
factor
END

ELSE
BEGIN
a = -.x;

(2*.a)

root = (2* .a)
END;

sum= .factor+ (2*.a);

Figure 6 - BOGUS CSE Candidate

The equivalent transformed expression is
shown in Figure 7.

IF .x
THEN

BEGIN
a = • x;
Tl = factor= (2*.a)
END

ELSE
BEGIN
a = -.x;
Tl = factor = (2* .a)
END;

sum = .factor + .Tl;

Figure 7 - BOGUS Equivalent

Reference [l] provides a good discussion of
the algorithms and techniques used in CSE
recognition.

Code Motion - Another major optimization in
FLOWAN is the recognition of code-motion op
portunities. Expressions which are indepen
dent of surrounding expressions may be moved
to a place where they are either easier to
compute, are outside of loops, or are evalu
ated once rather than in all branches of a
conditional expression such as IF or CASE.
There are four fundamental types of code mo
tion: ALPHA, OMEGA, RHO and CHI.

ALPHA and OMEGA apply to IF-THEN-ELSE and
CASE expressions. Constituent expressions
are moved 'backwards' (ALPHA) or 'forwards'
(OMEGA) when their evaluation is indepen
dent. Figure 8 shows an expression amenable
to ALPHA and OMEGA motion, and Figure 9
shows the equivalent transformed expres
sions.

827

IF .x
THEN

(y .a + • b; x = 5)
ELSE

(Z .a + .b; x = 5);

Figure 8 - ALPHA-OMEGA Candidate

Tl = .a + .b;
IF .x
THEN

y .Tl
ELSE

z = .Tl;
x = 5;

Figure 9 - ALPHA-OMEGA Equivalent

Notice that the BOGUS CSE in Figures 6-7
couldn't be ALPHA-motioned because the eva
luation of "(2*.a)" wasn't independent of
the preceding assignments "a= ••• ".

CHI-motion removes loop-invariant expres
sions from the body of a loop, to avoid re-

computing them during each loop-traversal.
Figure 10 shows a CHI motion candidate in
the initialization of an MxN matrix.

!NCR i from 0 to N-1 DO
!NCR j from 0 to M-1 DO

(a + (. i *N) + • j) = 0;

Figure 10 - CHI Candidate

The expression ".i*N" is
inner loop, and will
FLOWAN into Figure 11:

invariant to
be transformed

!NCR i from 0 to N-1 DO
BEGIN
tl = .i*N;
!NCR j from 0 to M-1 DO
(a + .tl + .j) = 0
END;

Figure 11 - CHI Equivalent

the
by

which eliminates M(N-1) multiply instruc
tions at execution time.

RHO motion is more complex to describe.
Figure 12 shows a typical RHO-situation.
The expression ".x+.y" is created inside the
loop, invalidated by a store into one of its
constituent expressions ("x = .c") and re
computed again. RHO motion optimizes by
moving the first creation outside the loop
and recomputing the second creation into the
same temporary.

WHILE .c DO
BEGIN
a = (.x+.y) * 5;
x = .c;

c = (. x+. y) * 5
END;

Figure 12 - RHO candidate

Figure 13 shows that an add and a multiply
have been moved out of the loop by RHO mo
tion.

Tl = (.x+.y) * 5;
WHILE .c DO

BEGIN
a = .Tl;
x = .c;

Tl= (.x+.y) * 5;
c = .Tl
END;

Figure 13 - RHO equivalent

The code. motions shown here seem trivial,
but data-structure references and
macro-expansions can produce code which pro
fits from these optimizations.

828

TARGET SPECIFIC TRANSFORMATIONS

Target-specific transformations continue to
use the internal tree to detect and apply
optimizations. There are several subphases
of interest, including:

DELAY - Determines the general 'shape' of
the code based on the target architec
ture. The set of feasible CSEs is se
lected from the potential CSEs identi
fied by FLOWAN. The name 'DELAY'
refers to the strategy of delaying the
computation of a low-level node in the
tree until an upper level in the tree.

TNBIND - Measures the lifetimes of
user-declared dynamic storage and com
piler temporaries. These 'variables'
are assigned to stack and register lo
cations according to their needs.

CODE - Generates the instruction sequences
required to implement a single node in
the tree.

DELAY Subphase I

The DELAY subphase propagates informa
tion down the tree describing how the
sub-tree will be used in an expression. The
kind of use information includes

RESULT - Either REAL or FLOW, indicating
whether this sub-expression will be
needed as a real value, or only to de
termine conditional flow. For exam
ple, the expression "(.x EQL O)" is
REAL when used in

y = (• x EQL 0) ;

and FLOW when used in

y = (IF .x EQL 0 THEN 1 ELSE 0);

Additionally, it is possible for an
expression to be both REAL and FLOW.
If ".x EQL O" is a CSE, it will be
both.

CONTEXT - OPERAND context indicates that the
result of an expression is needed for
itself, while ADDRESS context implies
that the expression is used only to
address a memory location. Thus the
expression ".A+4" is ADDRESS when used
in the expression

(.a+4) = 0 ! CLRL 4(a)

which allows the compiler to use ad
dressing modes to evaluate the expres
sion, assuming that "a" is in a regis
ter. But it is OPERAND when it ap
pears in the expression

y = .a+4 ! ADDL3 f4,a,y

and an add instruction is needed to
obtain a physical result.

MUST_BE REG - Result must be in register.
This is used by Bliss-16 when compil
ing for a PDP-11 with EIS. One of the
operands of the multiply must be in a
register.

COND_CODE - Result will only be used for its
condition code setting. This is used
on VAX by the CASE expression when its
selector is the SIGN builtin-function
or the CH$COMPARE string comparison
function. Figure 14-16 show the CASE
expression, the resulting code without
and with this optimization. This
saves 21 bytes in the example shown!

CASE SIGN(.x) FROM -1 TO l OF
SET

1$:

(-1] :
[0] :
[l] :
TES;

Figure 14 - CASE Expression

TSTL
MOVPSL
EXTV
SUBL3
CASEL
.WORD
.WORD
.WORD

x
RO
fl2,lt2,RO,RO
R0,#1,RO
R0,#-1,U
2-1
3-1
4-1

Figure 15 - Non-optimized VAX code

4$:

TSTL X
BLSS 2$
BEQL 3$

Figure 16 - Optimized VAX Code

TNBIND Subphase

This subphase is primarily target inde
pendent. The few differences for each com
piler are mainly a result of quirks in the
target hardware. This is especially true of
the character manipulation instructions.
VAX potentially uses RO-RS in string in
structions, the KL-10 requires any 5 contig
uous accumulators, and the PDP-11 normally
uses software simulation via routine calls.

The primary activities are

1. Temporary assignment

2. Lifetime determination

829

3. Priority ranking

4. Packing temporaries into available•
stack and register resources.

The primary goal of TNBIND is to minimize
the dynamic space requirements. A single
register may be used for declared local sto
rage and compiler temporaries having disjo
int lifetimes.

I choose to gloss over this subphase,
because it is very complex and its payoff is
subtle.

CODE Subphase

CODE generates the locally optimal se
quence of machine-instructions based on in
formation provided by DELAY and TNBIND. No
consideration of the surrounding instruction
environment is made at this time. Thus gar
bage such as

BRB 10$
10$: ••••

MOVL RO, RSLT
MOVL RSLT, RO

can be generated by adjacent nodes in the
tree. However, within a single node, the
generated code will be nearly optimal. For
example each Bliss compiler performs consid
erable analysis on field move generation.
Expressions such as

DST = .SRC<p,s>;

where 'p' and 's' are literals are very com
mon. Bliss-32 and Bliss-36 have an easier
job, as they never need more than a single
instruction (EXTV or LDB) to fetch a
field. Bliss-16 however may require 4 or
more instructions to mask and shift the
field into position.

On the PDP-10 full use is made of imme
diate mode when generating literal values.
All forms of MOVxI and HxyzI are used.

FINAL PHASE

The final phase is ad-hoc, but has a high
payoff. A number of optimizations which
would be impossible in earlier phases are
done here, once instruction sequences and
operand locations are known. Some techni
ques are common to all implementations.

Cross-Jumpi~

Cross-jumping is somewhat similar to
OMEGA-motion in FLOWAN. Identical code se
quences which branch to the same merge point
are adjusted to become part of the merge
point. For example:

IF (.x eql 0) THEN x=.y ELSE x=.w;

where x,y and w are memory locations would

generate the DECsystem-10 sequence

SKIPN Tl,X
JRST L$1
MOVE Tl,Y
MOVEM Tl,X
JRST L$2

L$1: MOVE Tl ,W
MOVEM Tl,X

L$2:

which would be cross-jumped to result in

SKIPN Tl,X
JRST L$1
MOVE Tl,Y
JRST L$2

L$1: MOVE Tl ,W
L$2: MOVEM Tl,X

saving a single word.

Peepholes

The cross-jumping example shows another
optimization possibility. The DECsystem-10
SKIPx can replace a MOVE JUMP sequence in
some situations. Thus FINAL will reduce the
previous code sequence to:

SKI PE
SKI PA
MOVE
MOVEM

Tl,X
Tl ,W
Tl,Y
Tl,X

Many of FINAL's optimizations are synergis
tic. Eliminating a single instruction can
result in many additional optimizations.

Literal generation is a very powerful
peephole optimization. The VAX-11 has an
extensive and complex set of instructions
and addressing modes which can be used to
materialize literal values. For example,
the hardware allows literal operands between
0 and 63 to be represented by a single byte.
Thus MOVL and MNEGL allow -63 to 63 to be
easily generated. The Bliss-32 compiler
al so knows that

MCOML #63 ,dst

can be used to generate -64!

In Bliss-32, a major optimization is
the merging of adjacent field references.
For example

MOVL RO,R2
MOVL Rl,R3

will end up as

MOVQ RO,R2

Similar optimizations are performed
field insertions, such as

BICW2
BICB2

will be merged to

#~XFFOl, A
#2, A+3

for

BICL2 f~X200FF01, A

Jump-Branch Resolution

One of the few formally definable parts
of FINAL is the jump-branch resolution done
for Bliss-32 and Bliss-16. Both machines
support variable-length branching the
PDP-11 having 2 or 4 byte instructions
while the VAX has 2, 3 or 6 byte instruc~
tions. On both machines, the conditional
branches are only 2 bytes long. The com
piler can always produce the 'best' sequence
of JMP/BR instructions required to reach the
target label.

This is implemented by building a
flow-graph of the machine-language and re
ducinq that qraph by collapsing sub-graphs
of known size. -

CONCLUSION

The Bliss compiler family uses a variety of
algorithms, strategies, heuristics and
'tricks' to produce optimized object code.
When measured against other optimizing com
pilers on suitable problems, Bliss generates
code that is typically 30% smaller.

Table l compares the Bliss family aga
inst FORTRAN on several architectures. The
test case is an iterative solution to the
Towers of HANOI originally written in FOR
TRAN. No special effort was made to rede
sign the algorithm in order to optimize for
a particular machine or compiler. In fact
the Bliss, FORTRAN and PASCAL versions wer~
compiled from single sources for each
language. Appendix A and B show the sources
for ~liss and FORTRAN respectively.
Appendix C shows a VAX-11 Macro version
which was tweaked as much as possible.

Lang ua~e Instructions

Bliss-32 85 bytes
VAX Fortran 126 bytes
VAX-·11 Macro 81 bytes

Bliss-36 27 words
FORTRAN-10 44 words
PASCAL(note 1) 78 words
MACR0-10 25 words
SAIL 64 words

Bliss-16 100 bytes
Fortran-4 Plus 194 bytes
c 142 bytes
RSX-11 FORTRAN 248 bytes
PASCAL(note 2) 342 bytes

Table 1 - Code Quality Comparisons

Note 1 - Hedrick Souped-Up PASCAL for DEC
system-20. No run time checking.

830

Note 2 - DECUS PASCAL VS.
checking.

No run-time

In order to achieve
Bliss uses tricks
fenses" for a
contemplate!

the optimization goals,
which are "flogging of-

programmer to even

BIBLIOGRAPHY

[l] Wulf, Johnsson, Weinstock, Hobbs and
Geschke, The Design of an Optimizing
Compiler, American Elsevier~ New York,
197 5.

[2] Marks, Maurice, "Transportable Program
ming in Bliss", Proceedings of the
Digital Equipment Computer ~Users
Societ~, Vol. 4, No. 4 1978.

[3] Brender, "A Survey of Bliss-16, Bliss-32
and Bliss-36", Proceedings of the
Digital Equipment Computer ~Users
Society, Vol. 4, No. 4

APPENDIX A - BLISS Example

MODULE TOWER(MAIN=HANOI}=
BEGIN
OWN

NO
NF
NT

VECTOR[20],
VECTOR[20],
VEC'l'OR [20];

GLOBAL ROUTINE HANOI
BEGIN
LOCAL

N,I,K,JP;

I=l;
K=2;
JP=O;
N=l 9;
WHILE 1 DO

BEGIN
IF .N EQL 0
THEN

BEGIN
DO

NOVA LUE

(IF (JP = .JP-1} LSS 0 THEN RETURN}
WHILE

(N = .NO[.JP]} LEQ O;
I = • NF [.JP] ;
K = .NT[.JP];
NO[.JP] = -.N;
I = 6 - .I - .K;
END

ELSE
BEGIN
NO[.JP] = .N;
NF[.JP] = .I;
NT[.JP] = .K;
K = 6 - .I - .K;
END;

JP- = .JP + 1;
N = .N - l;
END;

ENJ;>;

END ELUDOM

831

c
c

APPENDIX B - FORTRAN Example

FORTRAN BENCHMARK - HANOI

DIMENSION N0(20} ,NF(20} ,NT(20}
I=l
K=2
N=20

c
JP=l

3 IF (N-1} 5,7,5
5 NO{JP}=N

NF(JP}=I
NT(JP)=K
K=6-I-K

6 N=N-1
JP=JP+l
GO TO 3

7 JP=JP-1
IF(JP} 8,777,8

8 N=NO (JP}
IF (N} 7,7,9

9 I=NF(JP}
K=NT (JP}
NO (JP) = -N
!=6-I-K
GO TO 6

777 CONTINUE
STOP
END

APPENDIX C - VAX MACRO Example

.TITLE Tower of Hanoi

.PSECT own,noexe,2

NT: .BLKL
NO: .BLKL
NF: .BLKL

.PSECT
• ENTRY
MOVAB
MOVL
MOVL
CLRL
MOVL

1$: BNEQ
2$: DECL

BEQL
MOVL
BLEQ
MOVL
MOVL
MNEGL
PUSHAB
MNEGL
BRB

3$: MOVL
MOVL
MOVL
PUSHAB
MNEGL

4$: INCL
DECL
BRB

5$: RET
• END

20
20
20

$code$,nowrt,2
HANOI, AM<R2,R3,R4>
WANO, R4
#1, Rl ; I
#2, R2 ;K
RO ;JP
#19, R3 ;N
3$
RO
5$
(R4} [RO] , R3
2$
80 (R4} [RO] , Rl
160 (R4} [RO], R2
R3, (R4} [RO]
-6 (R2} [Rl]
(SP}+,Rl
4$
R3, (R4} [RO]
Rl, 80 (R4} [RO]
R2, -80 (R4} [RO]
-6(R2} [Rl]
(SP}+, R2

RO
R3
1$

ACCURATE DESCRIPTION OF SYSTEM STRUCTURE
- A NEW STANDARD FOR LANGUAGE QUALITY

Edward s. Lowry
Digital Equipment Corporation

Maynard Massachusetts

ABSTRACT

DAWN is a generally extensible programming language
wich provides adaptable, declarative application
programs. Programs and system descriptions written
in DAWN accurately describe not only the function of
information systems but also their structure.
Current languages (particularly ones like APL and
LISP) describe function but extensively omit,
distort, and bury information about system
structure. Deficient language has seriously impeded
progress in information science, which (like any
.science) is completely dependent on accurate,
detailed descriptions. Progress in software
technology requires the following improvements,
which depend on accurate structural description:

elimination of representational irrelevancies,
elimination of irrelevant distinctions between
data objects and system objects,
reduction of need for special purpose languages,
natural ways of referencing sets of objects,
non-procedural programming style,
assistance to the user through automated
analysis of programs for greater informality,
adaptability, reliability, and performance.

Avoiding representational irrelevancies while
keeping the language small requires a careful choice
of primitive operand types. It is argued that the
nodes and arcs of directed graphs are the best
choice. Additional technical dependencies among the
above steps, and the ways that DAWN facilitates
taking them, are discussed.

This paper proposes principles.of· a ·general
·approach to making improvements in ease of
use of computers, and briefly describes a
specific design for a language called DAWN
based on those principles. DAWN
applications are very free from computer
oriented irrelevancies and are very
declarative and English-like in style,
especially for business applications. The
most immediate usefulness of DAWN is
expected to result from providing business
data processing customers with application
packages which they can easily understand
and adapt to their needs. The capabitities
of Dawn will also be helpful in coping with
the diversity of data structures and system
objects which will exist in computer
networks.

An important feature is the lack of
procedural statements. The relationship
between the input orders and the invoices
produced is expressed declaratively.

DAWN EXAMPLE
An illustration of the style of Dawn is
given in Figure 1. The program accepts
orders, groups them by customer, and
produces an invoice for each such customer.
It calculates extensions, totals, taxable.
totals, and discounts for each invoice. It
is invoked as orders are created. The
example is taken from one used to illustrate
th~ .BDL. langu~ge [l].

Proceedings of the Dig/ta/ Equipment Computer Users Society 833

The first statement creates a context for
the program and data to reside in and gives
it a name: billing.

The next statement defines the structure of
a set of objects of type customer each of
which is uniquely identified by an integer.
The •key" attribute asserts its uniqueness.
Each customer has a name and address which
are character strings. Customers are also
categorized as classA, classB, or classc.

The next statement defines the structure of
a set of items in a sales catalog. Each
item is identified by an integer. Each item
is defined to have a unit price in dollars
and an indication of whether it is taxable.

The next statement defines the structure of
a set of orders which are created· in the
context. Each order is related to a
customer, and contains a list of item_lines
indicating the kind and number of items
ordered. The word •holds" indicates that

San Francisco - November 1978

DAWN BILLING EXAMPLE

declare billing context;

declare customer set /* customer file
has integer key
has name in string
has address in string
is one of (classA classB classC);

declare item set /* sales catalog
has integer key
has price in dollar
maybe taxable;

declare order set /* input file
has customer
holds set item line
has invoice

:= findorcreate invoice(its customer);
/* creates invoice for customer if needed

declare item line sets
/* contained in orders and invoices

has item
has count
has amount :=the count*price of the item;

declare invoice set /* output file
has customer key
has set order converse

/* the orders having this invoice
holds set item line • copy every

item_line of every order of it
has total

:= sum amount of every item line of it
has total taxable := sum amount of every

item lTne of it whose item is taxable
has discount := the total * (.10 if its

customer is classA else .OS if
its customer is classB else 0)

has total due := the total - the discount;

end;;

Figure 1. Dawn. Billing Example

the item lines are an integral part of the
order (unlike the customer). On creation of
each order, it is related to an invoice
which has the same customer. If no such
invoice exists one is created a~ a result of
the •.findorcreate" f.unc;tion.

The.next statement indicates that item lines
exist in lists which are contained by-other
objects. Each item line is related to an
item, a number of them being purchased, and
a dollar value of the purchased items which
is computed as shown.

The next statement defines the structure of
the set of invoices produced. At most one
invoice exists at any time for a customer to
which the invoice is related. The invoice
is automatically related back to the .set of
orders which are related to the invoice.
That is specif led by the "converse•
attribute. A list of item_lines are

834

,implicitly created as part of the invoice by
the expression •copy every item line of
every order of it•. This is equivalent to a
doubly nested loop of statements in other
languages. A total, total taxable
discount, and total due are defined a~
relations in the invoice, and computed
automatically according to the expressions
given. ·

Any time an order is created or altered the
invoices are altered to reflect the changes.
Given documentation in English (more
detailed than the above) plus on-line
explanatory aids it is hoped that persons
with little computer training will be able
to understand the meaning of such programs.
It is also hoped that such people who
understand the needs of their small business
information systems will be able, with
interactive computer assistance, to adapt
prepackaged application programs written in
similar style to their specific needs.

Such packages would include functions for
printing. things like formatted invoices and
.orders. The interactive facilities of Dawn
provide for the creation and alteration of
such functions with little reading and no
writing of Dawn expressions. Interactive
input of orders would also be perfomed in a
menu driven style. The effectiveness of the
interactive facilities is enhanced by
exploiting the accurate descriptions of the
data structures given by the declarations.

At present only a query subset of Dawn has
been implemented, but a more complete
implementation is planned.

While many features of Dawn are matters of
subjective design, the following section
argues that any language having as much ease
of use will share a number of its underlying
characteristics, which are different from
those of current languages.

TECHNICAL DEPENDENCIES

There are reasons why technical capabilities
~hich improve ease of use of computers are
interdependent, and must be built on top of
each other in a fairly definite order as
illustrated in Figure 2.

1. Pro rams unskilled users.
Except for a minority o s1tuat1ons w ere
.computer applications can be installed using
only paramaterisation by users, someone
who understands the needs of the
installation must understand and modify the
code. When the user is relatively unskilled
the programs must be much more readable (2)
than those in current languages. Successful
modification of a program by an unskilled
user also depends on effective analysis (9)
of both the program and the user's inputs,
so that inappropriate inputs can be
corrected and queried and the user can be
shown the effects of the changes.

2. Readable Programs
For programs and system desciptions to be
highly readable to humans it is necessary to
make a major change from procedural to
declarative styles (3) of presentation.
Some technical information is best presented
procedurally, but it is most often presented
to people packaged in small relatively
independent declarative statements rather
than the large networks of int;erdependent
and uninformative imperatives used in
current progamming. Readability may also be
enhanced by automated analysis of progams
(9) which can present the progams in a
variety of styles and with varying amounts.
of explanation in direct response to user
requests. Readabi 1 i ty also depends on
eliminating computer oriented irrelevancies
(6) as shown indirectly in figure 2.

3. Declarative style
Declarative statements about systems (this
sentence, for example) almost always include
references to whole sets of objects (4) from
their problem domains. Current major
languages (Cobol, Fortran, PL/I, BASIC, RPG)
do not have set references beyond
rudimentary ones such as those in character
string operations.

8. ACCURATE DESCRIPTION OF SYSTEM STRUCTURE

7. INTEGRATE FILES & INTERNAL DATA

II
6. ELIMINATE REPRESENTATIONAL IRRELEVANCIES

(HIGH FIDELITY REPRESENTATION) i
SIMPLE PRIMITIVE OPERANDS

(DIRECTED GRAPH)

II 10. EASY ACCESS TO
~ MULTI-PURPOSE DATA

4. NATURAL SET REFERENCES

~ Jj,
3. DECLARATIVE STYLE

9. EFFECTIVE LoMATED II 11. GENERAL
EXTENSIBILITY
OF LANGUAGE ANALYSIS il

~2~~AfJLE PROGRAMS

1. PROGRAMS ADAPTABLE
BY UNSKILLED USERS

Figure 2. Dependencies for ease of use

835

For business programming most proceduralness
can be eliminated and what remains will
tend to be intuitively understandable.
Computations are triggered mainly by the
occurence of patterns which are recognized
in the data structure. Responses to the
recognition of patterns will in turn create
patterns which are recognized and responded
to, creating ripple effects through the
system. While business systems are
structurally rich, the patterns which get
recognized are fairly simple ones, like
crossing of numeric threshholds, and changes
of set membership between empty and
non-empty.

4. Natural set references
The effect of a set reference is obtained in
current languages by iterating through a
loop of imperative statements. Instead of
being contained within a single statement a
set reference is distributed over several
imperative statements which contain
irrelevant information about how the members
are represented and accessed. To package
the needed variety of set references within
individual statements it is a practical
necessity that representational and
accessing irrelevancies be minimized (6). A
few languages do permit set references, with
varying degrees of generality. These
include APL, LISP, SETL, and various data
base query languages. A consistent feature
of such languages is that their kinds of
primitive operand are simple and few in
number. The question then arises as to
whether that is a necessary feature of a
language with general set references. DAWN
has over 20 distinctly different kinds of
set reference plus many functions which
construct sets. The reasons for including
them seem adequate to ensure that anything
much simpler would soon be extended to
include comparable constructions. If they
were defined for anything other than a small
number of simple primitive operands it seems
very 1 ikely that the language would be
needlessly complex (5).

5. Simple primitive operands
The need to simultaneously have a few simple
primitive operand types and avoid
repr.esentational irrelevancies imposes
severe constraints on the acceptable choi~e
of primitive operand types. Reasons are
given below why the nodes and arcs of
directed graphs are probably optimal.

6. Eliminate representational irrelevancies
Systems are composed of obJects,
relationships between them, and processes
that transform them. They are not, in
general made of: variables, records, fields,
bits, addresses, integer indexed arrays,
etc. The latter are examples of
representational irrelevancies introduced to
encode models of information systems in
current computer languages. Any language
provides a data model comprised of the
primitive data-structures in which states of
the information system must be represented.
Mismatches between the structure of the
information system (or problem environment)

and the structures provided by the data
model force the user to introduce
representational conventions mapping his
information structures onto the available
data structures. The user understands the
conventions (at least temporarily) but
current languages provide no way to inform
the machine about them. Strong typing like
that of Pascal provides a way to formalize
some information about the representation
conventions. The encapsulations of Clu and
Alphard provide additional information by
restricting the operations which can be
performed on the data structures.

A Dawn reference such as:

every employee of every department where
population of its location > 100000

is not expressible in current major
languages (nor newer ones like Pascal, Clu,
or Alphard) without conspicuous inclusion of
representational irrelevancies. The ability
to interpret such a refer.ence is dependent
on information about the structure of the
information system. The system must be
aware of the existence of 1 to N employee
relationships between departments and other
objects (presumably people). It should also
be aware that locations are defined for
departments but not employees. This
illustrates the need for accurat~, detailed
description of the structure of information
systems (8) to avoid representational
irrelevancies.

The dependency may also be expressed by
noting that complete information about data
structures is always needed for successful
execution. Any incompleteness in the
description of the information structures
implies some difference between the
information structures and the data
structures and hence some irrelevancies will
be introduced in representing one by the
other.

Eliminating representational irrelevancies
(or providing high fidelity representation)
also requires that any multiplicity of ways
of ·introducing representational
irrelevancies be avoided. To do so requires
that structural and referencing distinctions
between files and internal data be
eliminated (7).

7. Integration of files and internal data
Elimination of structural and referencing
distinctions between files and internal
data is prerequisite to most of the above
steps and implies a major departure from
most current languages. Cobol, for example,
is extensively designed around that
distinction.

8. Accurate description of system structure
Systems have structure and function.
Programming languages have tended to
emphasize detailed precise description of
the function of systems while omitting,
distorting, and burying information about
their structure. The data declarations of

836

Algol-like languages give some information
about the structure of the problem
environment, but it is very limited and
distorted by the procrustean data structures
available. Many features of the information
structure are deducible only by detailed
study of what the programs do and do not do.
This is particularly true with APL programs.

For systems to be comprehensible and
effective their structure and function
should be well suited to each other.
Mismatches between structure and function
lead to irrelevant complications. of both
structure and function. Since the days of
octal coding newer languages have.tended to
give steadily more emphasis to description
of system structure. Heterogeneous records
and strong typing are examples of
improvements. A number of data base data
models have since gone further in providing
structural description but not within the
framework of a strong programming language.
The DAWN language continues this trend, and
may carry it close to a natural conclusion.
At present the information sciences remain
very deficient in the most elementary
requirement for any kind of scientific
activity - tools for accurate description of
the relevant phenomena.

Though any kind of system must have a
structure, the structure of information
systems is a somewhat subtle idea. Bra ins
and computers tend to adapt very well to a
wide range of system functions with no
externally obvious effects on their
structure at all. However, complex
information systems usually include models
of physical systems whose structure is
relatively well understood. The
representational irrelevancies, and failures
to accurately represent system structure
become apparent when examining such models
of physical systems as represented in
current languages.

The main feature of DAWN which enables it to
improve ease of use is that it permits a
very complete description of both the
structure and the function of a broad class
of systems using a declarative style with a
high level of representational fidelity.

9. Effective automated analysis
Improvements in application development for
the forseeable future will depend strongly
on making the computer a more effective,
active partner in all phases of the
application development process. This
depends on the computer performing
automated, or semi-automated analyses of
computer programs and other user inputs.
For many years automated program analysis
has been a swamp where well motivated
efforts have bogged down mainly in
representational irrelevancies. Som~
progress has been made, mainly in efficient
compilation. Performing effective· program
analysis based on current languages involves
the difficult technical problems of
translating internally from low level to
higher level language with better

representational fidelity. Th-at would lead
to a degrading man-machine relationship in:
which the human must write his program in
relatively machine oriented terms while the
machine analyzes the program in more human
terms.

Any analysis activity involves abstracting
away information which is irrelevant to a
particular_purpose. A sensible way to start
is by abstracting out information which is
not relevant to any of the user's purposes
but imposed by the tools he is using. The
best way to do that is to refrain from
including the irrelevancies in the first
place (6).

Effective automated analysis also depends on
a more declarative style of programming (3).
It is generally easier for both people and
machines to extract useful information from
assertive statements than networks of
imperatives.

Improving automated analysis is probably the.
most important challenge facing software
.technology. It can help in many ways, sue~
as : re 1 i ab i 1 i t y , i n f o rm a 1 i n t e r act i v e'
development, performance, recovery,
migration between systems, etc. :.. t is hard
to overemphasize the need to •drain the
swamp• of representational irrelevancies so
this can proceed. This consideration was
the main motivation for the original
development of Dawn.

10. Easy access to multi-purpose data
The economic justification for putting
information into a computer depends on1

capturing and preparing the data with a
minimum of human effort and distributing the
costs over as many users as possible. This
economic pressure plus other technical
developments are leading us in the direction
of multi-user data bases and computer
networks where many people and many
application programs draw on increasingly
diverse sources of information in ever
larger integrated systems.

For this trend to proceed iri an orderly way
there is a basic problem to consider: Any
person who manipulates the same body of
information represented in two differen~
data models must understand both
representations and the transformation
between them. Any such burden on the user
is very damaging to ease of use.

To illustrate, if a user wants to write a
program accepting inputs from a Cobol file
and an APL workspace he has a data
conversion problem. He would normally take
one of the inputs, understand its
representation, design a new representation,
and specify a transformation. Conceivably
he could manipulate a Cobol file which is
automatically created and structured to
represent any APL workspace, or an APL
workspace whch is structured to represent
any Cobol file. That would compound the
representational irrelevancies of both
models.

837

Such compounding of representational
irrelevancies is fairly harmless if at least
one of the data models avoids introducing
significant representational irrelevancies.
It is possible to represent Cobol files or
APL workspaces in DAWN in a fairly
straightforward way. Thus a user of DAWN
Can reach into I extract, and manipulate
data in alien systems with relatively little
difficulty. This assumes software support
which is specific to the implementation of
the alien data model but need not be
specific to the application.

If the information structure is fully and
accurately described in a formal way then
conversion to a different data model can be
fully automatic. However, if the
description is deficient (as in the case of
APL and Cobol) human intervention is needed
to make up for the deficiency.

The user who works in a "high fidelity data
model" (that is, one relatively free from
represenatational irrelevancies) can access
data in other models with little loss of
convenience compared with native users of
those models. The inconveniences would
include syntactic differences and loss of
performance. The user who works in a lower
level model is limited to accessing other
data in the same model or using data
translated to his model from one whose
information structures are fully desc.ribed ~
Otherwise he must specify a conversion or
accept a compounding of representational
irrelevancies. In any case the
representational choices must be understood
by the user, whether made in preparing the
original data, by his own manual
translation, or by some mechanical
translation. A probably unimportant
exception ·would be representational choices
in the original data which are formally
described and hence automatically removable.

The above considerations indicate that
providing easy access to diverse sources of
multi-purpose data is strongly dependent on
elimination of representational
irrelevancies (6) and accurate description
of system structure (8).

Compounding of representational
irrelevancies is probably a natural
characteristic of large networks.
Distortions are cummulatiive. when viewing
anything through multiple interfaces.
Whatever the user's view of how systems
should be organized, the network will
interface with subsystems built according to
a different philosophy. The user's best
protection against being overburdened by the
more remote and uncontrolable irrelevancies
is to use a high fidelity model himself
which avoids aggravating the problems.

Easy access to diverse sources of data also
depends on the relatively non-technical
issue of common acceptance of a small number
(preferably one) of standard data models.
That process is helped when technical

analyses lead naturally to a narrow range of
choices. It is hoped that the rationale
below favoring the directed graph as a basis
for a satisfactory model will help do that.

11. General Extensibility of Language
Languages for query, formatting, job
control, graphics, simulation, text
processing, etc. exist separately mainly to
escape from representational irrelevancies
in current languages. Their capabilities
can be expressed naturally using DAWN with
added functions. The point is not that Dawn
provides all the language facility that a
user may need, but that the basic parts of
the language including data structuring,
referencing·, and basic functions provided,
do not impose irrelevancies whi.ch lead the
user to abandon them when specialized
function and notations are needed.
Relatively superficial language features
such as specialized syntax may be added in
situations where normal syntax would be
unduly repetitious or non-traditional.

The term "programming language" is
probably misleading when discussing
generality. A system with a vocabulary of
about a hundred words is not appropriately
described as a language, and certainly not a
general one. Dawn could more accurately be
described as a generally extensible language
core for programming and information system
description. General extensibility depends
mainly on avoiding representational
irrelevancies (6) which limit the
reusability of underlying structures. It is
possible of course, to achieve high
representational f id el i ty for some problem
domains but not others. Integrated business
systems of moderate size have very rich
structural requirements which cover many
other needs. The adequacy of Dawn for very
different areas like theoretical physics and
artificial intelligence has only been
partially explored, but successfully so far.
To include query capability, natural set
references (4) are needed.

However special-purpose a language may be,
most of the data it references will be
multi-purpose. Easy access to
multi-purpose data (10) is also a basic
requirement. Effective extensibility also
requires that the language plus extensions
for some problem domain be subsetable so it
will be as easy to learn as a completely
specialized language with the same function.
The lack of irrelevancies suggests that no
unneeded complications will occur, but that
supposition needs to be tested.

One kind of kind of generality in Dawn is
that distinctions between data objects and
computer system objects are eliminated from
a language point of view. Al though system
oriented functioris are needed, the
underlying language for data processing and
system control are merged. Since the
language describes and references objects
which are not data objects it is more
appropriate to speak of the operand model of
the language rather than its data model.

The generality of Dawn in describing both
data and system objects is needed for large
networks because system objects with novel
structure and function will be routinely
added to the network. The present practice
of changing the control language whenever
that happens will bec..ome increasingly
unacceptable.. ·

NEED FOR A DIRECTED GRAPH OPERAND MODEL

The simultaneous requirement for eliminating
representational irrelevancies and using a
small number of simple primitive operand
types imposes severe constraints on the
acceptable choice of primitive operand~. If
everything is built from a few kinds of
"building block= we would resonably expect
substantial irrelevant •granularity• in the
results. This will happen if the primitives
are large in the sense of having significant
internal structure. FQf this reason the
integer indexed array, which is a primitive
for so many programming languages, is not
satisfactory. The integer indices are
usually unnecessary identifiers which users
are forced to associate with objects in
their problem environment.

The prevailing mismatch between programming
languages and data base data models
indicates the difficulty of satisfying the
above two requirements. The µnfortunate
results are extensive. Dawn app·ears to be
the only multi-purpose programming language
with a data model suitable for data base.

While not rigorous the following rationale
indicates that the nodes and arcs of
directed graphs are optimal. Directed
graphs have proven to be a useful way to
represent many abstractions of many kinds of
systems. All abstractions of all systems
described in DAWN are represented entirely
by directed graphs, and statements about
them. To test for optimality we consider
two questions:

(1) Can nodes or arcs be replaced with
different primitives in a way that provides
overall simplifications.
(2) If not, are there other primitives whose
additional inclusion would provide overall
simplification?

838

Consider (1). By itself, a node has no
internal structure so it does not inherently
incorporate anything extraneous when used to
represent an object in the problem
environment. There is nothing simpler to
replace it with. The arc of a directed
graph is also a very simple structure. It
is adequate in representing relationships
between objects and for building
representations of complex structures.
There are very few kinds of primitive
element that are simpler. The node, the
bit, and the arc from a non-directed graph
are all simpler, but by themselves or in
combination they cannot do the job of the
directed arc. A set of bits in a •field"

may be used to represent a directed arc, but
only if the bi ts themselves are related to
each other by some separate mechanism (at
least to provide sequencing). Conceivably
the node and directed arc could be replaced
by some more complex primitive such as
binary subgraphs similar to those of LISP,
an APL variable, or something as yet
unsuggested. As noted above any primitive
with substantial internal structure is very
likely to introduce irrelevancies.
Anything could be constructed o_f bina,ry
subgraphs, but they would be playing roles
essentially the same as the node and arc.
It seems unlikely that anything more
complex than nodes and relations can be used
to represent very many kinds of structure
without irrelevancy unless parts of those
primitives are ignored or suppressed in some
way. The possibility of building from
simpler things seems precluded by the
extreme scarcity and inadequacy of simpler
things. Nodes could be viewed as a special
case of relations in which there is no
interest in the objects they relate to or
from. However, that does not seem to lead
to useful simplifications.

Concluding at least tentatively, that nodes
and relations are unlikely to be displaced
as primitive operands the second question
remains as to whether additional primitives,
not built from nodes or relations can be
added to a multi purpose language providing
an overall simplification. Some candidates
might be: undirected arcs, numbers, bits,
character strings, arrays, N-way relations.
Each of these are represented by structures
of nodes and relations in DAWN. For each,
treating them as separate primitives would
complicate the language by adding special
cases to the definitions of references,
declarations, and primitive functions among
other problems. Little would be gained
since nodes and relations do a good job of
representing each, though not a perfect job.

The set of real numbers is represented as an
infinite unchanging set of nodes. Other
objects do not contain numbers; they may
contain relations to numbers. Such
relations may be informally regarded as
"fields• containing numbers. However,
numbers are primitive in one respect. The
arithmetic functions are primitive.

Character strings are represented in DAWN as
shown in Figure 3. There is a set of nod~s,
ordered by a collating s~quence representing
the distinct members of the character set.
A character string is a node with a set of
relations from the string to individual
characters in the alphabet. Those relations
are ordered by another set of relations.

839

0

•a 11 "b" "c" "d"

Figure 3. The character string 'cab'

Users will nearly always coneptualize, and
manipulate such character strings as though
they were primitives of the more
conventional form lclalbl occupying fields.
Most users will probably learn subsets of
the language in which the underlying
structure of character strings is not
mentioned. The existence of the underlying
structure gives meaning to many language
constructs which would otherwise require
special definition. Of course, a different
representation is needed when text with
variable typefaces, underscores, etc. are
included.

The treatment of arrays
notation as derived rather
concepts may be one of th~
simplifications in DAWN. See

and subscript
than primitive
more important
Figure 4.

0 0 o } stations

r:
0

: }eputures trains 0

0 0 0

Figure 4. An array in Dawn

An N dimensional array in DAWN is a set of
nodes each of which has N "key" relations
which give its coordinates in the array.
Using this approach subscript notation is
just a syntactic abbreviation. For example:

departure_time (train_l7, Denver)

would mean:

departure time of departure where
(train of the departure is train 17 and
station of the departure is Denver)

A result of this treatment of arrays is that
all mention of arrays in the DAWN definition
is very brief and localized. A definition
of a BASIC-like subset of DAWN in which
arrays are treated as primitive seems useful
and possible, but it has not been defined.

A bit is represented in DAWN by a node with
a relation to one of the special nodes true
and false. The conscious use of bi ts -for
representing other structures seems to arise
mainly from temporary hardware limitations.

Another candidate for a primitive operand is
the undirected arc. It is usually
represented in DAWN by a pair of converse
relations connecting the same two objects,
as shown in Figure 5.

o~o o~o
~

Figure 5. Undirected arc and representation

Any change to one member of a converse pair
forces a corresponding change to the other.

For some cases it can be represented by a
node with two relations. Except for
sibling, spouse, adjacency, and a few
others, symmetric relationships are
relatively uncommon. While non-symmetric
relationships could be represented by
undirected arcs it is intuitively natural to
regard them as pairs of relations and to use
different names to refer to them. For
example, the "is-owner-of• relation may
imply responsibilities which the converse
"is-possession-of• relation would not.

Another candidate primitive is the 3-way or
N-way relations. Such a relationship is
usually represented in DAWN by a node with 3
or N relations any of which could be
associated with a converse relation.

The costs of not adding them as primitives
are that the representation in DAWN
primitives will sometimes show through.
Syntactic abbreviations and special
functi~ns will paper over the
representations most of the time but not
always. The main difficulties will be
caused by mixtures of variant ways of
representing such structures.

For each of these candidate primitives the
value of not introducing them as primitive
operands, separate from nodes and relations,
is a very substantial simplification of the
language. Going from 2 to 3 kinds of
primitive operand would tend to add special
cases to the definition pervasively.

I tentatively conclude that introducing
primitives in addition to nodes and arcs
\'Jould be consistently counterproductive. I
would welcome commentary from any source
which tends to confirm or refute this
conclusion•

[l] "An Interactive Business Definition
System" by Hammer, Howe, and Wladawsky,
Sigplan Notices, April 1974, pages 25-33.

840

PUTI'ING THE NAG LIBRARY ON THE VAX11/780

B. Ford, S.J. Hague and S. Vaughn
Numerical Algorithms Group Inc.

1250 Grace Court, Downers Grove, Illinois 60515

ABSTRACT

The NAG Library is a tailored collection of subroutines covering
areas of numerical mathematics and is designed to assist
computer users solving a wide range of mathematical and
statistical problems. It is supported by detailed user
documentation, by example programs demonstrating the use of
the routine, and by a set of implementation test programs
used to certify the performance of the software (according
to standards of accuracy and efficiency) in each computing
environment. The NAG Library has been written in FORTRAN,
Algol 60 and Algol 68. In FORTRAN it is available on 25
machine ranges involving 53 different hardware/compiler
configurations and including large scale and mini computer
families. In particular it is available for DEC System-10
(KA, KI and KL), DEC System-20, DEC PDP 11 and DEC VAX 11.
The paper will discuss aspects of algorithm design and
subroutine construction which permits the apparently
opposing goals of software transportability and accuracy
and efficiency to be achieved. Implementation of the NAG
Library was one of the first application packages completed
on the VAX 11. The project provided significant exercising
of the standard features of the FORTRAN-IV-PLUS compiler
and the system's arithmetic, standard utility programs and
file handling. Since a comparable activity has been
completed upon a number of other configurations (including
the DEC PDP 11) a brief qualitative assessment of the VAX
will also be included.

1. INTRODUCTION Quadrature

The NAG Library is a tailored collection of computer
subroutines in mathematics and statistics, for use in
a wide variety of disciplines. It serves the needs
of both the novice and the expert, and its users
include undergraduate students, professors, engin
eers, research scientists, statisticians, economists,
applied mathematicians and many others. The princi
pal language version is FORTRAN but there is an Algol
60 version offering nearly parallel facilities. A
third language version has been developed in Algol
68. On almost all the medium and large-sized
computer systems in general use, the FORTRAN Library
is available, and it has also been implemented on a
number of small and mini computer systems. The NAG
Library is now used in more than 230 computer
installations in over 20 countries around the world.

Numerical Differentiation
Ordinary Differential Equations
Integral Equations

The current Mark (edition) of the NAG FORTRAN
Library contains 345 user-callable routines which
cover these areas of numerical analysis and
statistics:

Summary of Contents of NAG Library

Simultaneous Linear Equations
Eigenvalues and Eigenvectors of Matrices
Linear Algebra (Miscellaneous)
Non-Linear Optimization
Operations Research
Non-Linear Equations

Proceedings of the Dig/ta/ Equipment Computar Users Society 841

Curve and Surface Fitting
Fast Fourier Transforms
Special FUnctions
Basic Statistics
Statistical Distribution Functions
Correlation and Regression Analysis
Analysis of Variance
Random Number Generators
Sorting
Error Trapping
Mathematical Constants and Machine Parameters

New Marks are produced approximately once a year,
and at the next Mark (Mark 7 - due sometime in 1979)
at least 70 new routines will be added including
extensions to the ordinary differential equations
and optimisation chapters, the launching of a
partial differential equations chapter and an
expansion of the statistical facilities. At later
Marks the most significant features are likely to be
a further strengthening of statistical chapters and
the possible inclusion of graphical software.

The Numerical Algorithms Group (NAG) was formed in
1970 in Britain. The activity has four aims.
(a) To create a balanced, general purpose numerical
algorithms library to meet the mathematical and
statistical requirements of computer users, in

San Francisco - November 1978

FORTRAN and Algol 60.
(b) To support the library with documentation giving
advice on problem identification and algorithm
selection, and on the use of each routine.
(c) To provide a test program library for certifi
cation of the library.
(d) To implement the library as widely as user
demand required.

Its 150 members include numerical analysts and
software specialists of international repute, and
the activities of these advisors and contributors
are coordinated by a full-time staff of 28 people
most of whom are based in the NAG Central Office,
Oxford. NAG Incorporated was established in March
1978 with a full-time office in Downers Grove,
Illinois.

A descr1ption of the overall development of the NAG
Library is given in 6 In this paper, we concen
trate on the process of implementation; that is,
the process of adapting the Library on different
computing systems. In Section 2, general princi-

'ples of implementation are described. The VAX
implementation in particular is described in
Section 3.

2. IMPLEMENTATION - GENERAL CONSIDERATIONS

The term 'implementation' in the NAG context means
the production of a well-tested and suitably pre
pared version of the NAG Library for a specific
computing system; that is, a particular combination
of hardware, operating system and compiling system.
(The term is also used to denote the final version
of the software itself). The testing process
involves the execution of two sets of programs; the
example programs which appear in the user document
ation, and the more stringent, implementation test
programs. Each user routine has its own exampre-
program and has an associated stringent test
program.

It will therefore already be obvious that the
implementation process is a major exercise involving
the running of hundreds of programs. The reason for
this significant attempt at certification in a
particular environment is that it is not adequate
simply to provide just a source text library. Even
if an algorithm is competently encoded into a
library routine, its behaviour can be affected,
even ruined, by a variety of factors such as
compiler errors, file corruption or mis-handling of
data. In almost every implementation, the intensive
and systematic running of a large number of test
programs, some of which are particularly severe, has
revealed at least some minor defect or foible in the
compilation system or even in the machine arith
metic. In some cases these defects have been far
from minor! Indeed the implementation exercise,
viewed not as certification in an environment but
as a test of the environment itself, has proved so
effective that a number of manufacturers have asked
NAG to allow them to use NAG test software as a
'weapon with which to assault a new compiler'.

Implementation experience in NAG has gradually been
accumulated over the last six or seven years. When
the library project began in 1970, though there was
a strong emphasis on standards and conventions, they
were formed largely in the context of a single
machine library (the ICL 1906A/S) . It was never
envisaged that the number of machine range versions

842

would reach its present figure. Soon, however, even
after the first few additional implementations in
1972 onwards, the fundamental principle of multi
machine software development became clear. That
principle can be summarised in one word, 'anticipa
tion' - we must try at each stage in the development
process to anticipate future constraints or require
ments that are or may become relevant in particular
context. This must not be done, however, at the
cost of unduly affecting the behaviour of the soft
ware in existing environments or of introducing
unacceptable generality or complexity of use.

In mathematical terms, the principle of anticipation
is implied by the term 'adaptable algorithms',
i.e. methods which adapt themselves to perform
satisfactorily in particular environments. The
algorithm developer must therefore have some means
of characterising; in symbolic form: pertinent
aspects of a computer system. This 'machine
modelling' approach is reflected in the NAG Library
by the use of the X-chapter utility functions, which
are adjusted to yield relevant values such as the
base of the arithmetic or the largest positive
integer, for each particular implementation. By
using these basic utilities, the behaviour of the
algorithm can be tailored to a specific machine
(e.g. maximum precision on a CDC Cyber machine) but
the coded algorithm as a library routine remains
essentially implementation-independent. In some
cases, e.g. approximations of special functions, a
more elaborate approach (see 1> is necessary but
nevertheless can still be regarded as part of the
adaptability policy which is further described in 2

Even with adaptable algori thzns, there may still be
changes necessary at the software level because of
syntax or semantic differences betwe~n language
dialects on different systems. See for a survey
of portability in the NAG project. For aesthetic
and organisational reasons we wish to minimise those
changes. The principle of anticipation suggests
therefore that library routines are coded in a
restricted language subset which is contained within
all present and, hopefully, most future implement
ation dialects. The NAG Library, in all three
language versions, is written on the basis of this
intersection approach. The Library is therefore in
large part portable in the sense that much of it
requires no change when moved from one system to
another. It is not feasible, however, to avoid all
changes (this is particularly true for Algol 60) .
If we can anticipate that changes will be necessary,
making those changes (e.g. from single to double
precision in FORTRAN or from one Algol 60 symbol
representation to another) should be made as easily
and reliably as possible. The use of programming
aids to perform these changes mechanically or to
impose coding standards prior to multi-machine
implementation is increasing (see 4) • An appropri
ate term for the NAG Library is therefore
transportable as defined in 5, i.e. consistent with
performance requirements, coding changes between
implementations are, where possible, avoided or
mechanised.

Before considering the tactics to be adopted during
an implementation, it is useful to review the scale
of the exercise about to be undertaken. The overall
task is to create a compiled library involving
several hundred routines and to run all example and
stringent test programs against that library until
acceptable results are produced. For a new machine

range implementation at Mark 6 of the FORTRAN
Library for example, this would involve receiving
items of data from Central Office on this scale.

503 routines (incl. 50,700 records
auxiliaries)

334 example programs 15,700

203 example program 1,900
data sets

334 example program 8,700
results

284 stringent test 40,700
program

192 stringent test 10,200
program data

284 stringent test 63,100
results

2,137 191, 100

At various stages in the implementation exercise, as
software is modified or results generated for comp
arison, the number of separate items, records or
characters is often increased by a factor of at
least two. The implied requirements for file
storage space might not disturb the prospective
implementor on a large IBM 360/195 nor would the
implied requirement for processor time involved in
compilation and execution en masse 'frighten' the
cray-1 implementor. On many other machines however,
particularly small or mini systems, it is vital that,
from the outset, implementors appreciate the total
volume of information and number of items involved.

3. IMPLEMENTATION OF THE NAG LIBRARY

ON THE DEC VAXll/780

We now describe the implementation of the NAG
FORTRAN double precision Library, Mark 6, on a DEC
VAX11/780 at Marlborough, Mass. The implementation
was derived from the NAG base double precision
library, which is in effect a generalised version
of the IBM 360/370 double precision implementation.
Both the base and IBM implementations are prepared
at Cambridge University.

3.1. Stages In The Implementation

(a) The complete Mark 6 double precision Library
tape (including routines, example programs, data and
results*, stringent test routines, data and results")
was transferred on an IBM format tape to a DEC
PDP 11/70 at Reading. This involved converting over
two thousand Library items into DEC ASCII disc files
under the IAS system.

(b) Machine-specific constants were inserted in the
X chapter utility routines. Similarly appropriate
expansion coefficients were embedded in the Special
Functions S chapter. These coefficients were
identical to those used for the PDP/11 Mark 5
implementation on the assumption (later amply veri
fied in computational practice) that the two machine
families have the same arithmetic properties.

As double precision complex is not available in
PDP/11 or VAX11 FORTRAN, those routines which in
other NAG implementations use COMPLEX*16 had to be

843

modified. Complex variables and arrays were
replaced by DOUBLE PRECISION arrays with an extra
leading dimension of 2.

(c) The modified base software was written out to
two magnetic tapes in /DOS format, taken from the
PDP11 at Reading, England, and read into the VAX11
filestore at Marlborough, U.S.A.

(d) Using the FORTRAN-IV-PLUS compiler, the FORTRAN
Library routines were compiled. The LIBRARIAN
facility was then used to create a compiled library,
ready to be tested.

(e) Two FORTRAN programs, already developed during
the PDP/11 implementation, were modified to generate
from a supplied index of names, job control to
compile, execute (and optionally compare the results
of) programs. The first program, EXJOBGEN, applied
to example programs; the second, STJOBGEN, to the
more stringent implementation test programs.

(f) The testing began with the execution of the
Special Function chapter which contains routines for
the accurate computation of Bessel functions, error
functions, arctangents etc. Thus, running the
associated test software, whilst not providing a
comprehensive examination of all aspects of the
underlining arithmetic, does sometimes reveal
deficiencies or undermine assertions. (In the VAXll
case, claims about PDP/11 compat1bility were
substantiated by this preliminary exercise, but a
compiler problem was revealed - see 3.2).

(g) All other example programs, apart from those for
routines in assembly language, were executed, and
the results produced were checked. No particularly
significant discrepancies were found between the
VAX11 and IBM results.

(h) A similar operation as in (g) but for implemen
tation test programs was carried out next. The
results checking phase revealed one significant case
of inaccuracy, concerning the curve fitting routine
E02DAF. (This was later ascribed to an error in the
optimisation phase of the compiler, and an appropri
ate correction initiated) . The rest of the programs
run produced results which were acceptably close· to
the reference results.

(i) About the same time that stage (e) was started,
work also began on the writing of several routines
in the VAX-MACRO assembly language. One of these
routines accumulates inner products in greater than
double precision, and the others are concerned with
random number generation. During the development
of these routines, the DEBUG facility was used
extensively. When testing was satisfactorily
completed, the final stages of implementation could
commence.

(j) All outstanding test programs, which depended
on the completion of stage (i) , were run, and their
results checked.

(k) A release tape containing the tested compiled
Library, the routine source text and example program
text, data and results, was constructed in the
PDP/11-compatible /DOS format.

* IBM results supplied for reference pu:cposes

(1) A Library Support Note, describing the
composition of the above tape and the installation
of the Library, was written. This note is primarily
for the benefit of computer staff responsible for
mounting and supporting the Library. An
Implementation Document was also written. This
gives implementation-dependent information for users
of the VAX11 Library.

3.2. Assessment Of The Implementation

Implementation of the Mark 6 VAX11 FORTRAN double
precision Library involving stages (a) to (1) was
completed in about 5 man-weeks; this is much the
shortest period that any implementation of the NAG
Library on a new system has taken. We now consider
some of the factors behind that undoubted success
and compare aspects of the VAX11 experience with
that on PDP11 and with previous implementation
experience generally.

{a) Reliability Considerations - The VAX/VMS system.
used for the implementation proved to be thoroughly
reliable throughout the exercise, apart from the
perhaps inevitable hitch at the very start (see (b)).
After that isolated incident, all basic facilities
employed performed satisfactorily. No information
was lost or corrupted during the processing of more
than 2000 files.

Arithmetic behaviour was according to specification
(that has not always been our experience on other
systems) and the mathematical functions in the
FORTRAN compiler library performed as expected.
There were two minor numerical 'quirks':

- all constants less than 10-38 had to be entered
as O.ODO.

- the expression DBLE(FLOAT{N)) lost accuracy when
N is a integer with more significant figures than a
single precision floating point real number (problem
cured by using DFLOAT) •

The FORTRAN compiler itself emerged with satisfac
tory credit from the implementation exercise. The
problems posed by that exercise should not be
underestimated. Many of the test cases present
a searching examination of the compilation system
and even compiling the Library itself, which has a
highly modular structure in parts, has on other
occasions revealed deficiencies in the compiler and
related utilities. In the VAX11 case, two
compilation difficulties arose:

- five routines in the Special FUnction chapter
contained nested multiplication with more than 20
levels of nesting in one statement. The problem
had been encountered with the PDP/11 FORTRAN-IV-PLUS
compiler and is more a compiler working stack
limitation. Whereas on the PDP/11, the compiler
had been reconfigured, for the VAX implementation,
the five routines were modified to permit them to
compile.

- one routine in the Curve and Surface Fitting
chapter would not work when it was optimised. When
recompiled with the optimising option switched off,
it produced answers which were in the main satis
factory but were unacceptable in one test case.
After investigation, the likely case of the problem
was isolated in the compiler itself, and appropri
ate corrective action initiated.

844

(b) Comparisons With PDP/11 Experience - Familiarity
with IAS gained whilst performing the PDP/11 imple
mentation was useful in switching to VAX/VMS, which
ha.s JllOst of the same commands· (although parameters
are sometimes different) and has the same filestore
structure.

The ability to exchange disc and tapes between the
PDP/11 and VAX is obviously most useful {though the
very first attempt at transfer in stage {c) failed
because of system corruption) •

Coding in VAX-MACRO proved fairly easy to write
and test with knowledge of PDP-11 MACRO. Although
direct conversion was not feasible, the random
number and inner product routines were quickly
developed and tested, mainly due to the availability
of the DEBUG facility.

Numerically, the behaviour of the two implemented
libraries, even on the most sensitive test cases,
was found to be almost or exactly identical.

On the basis of comparing approximate timing of
about 12 test programs, it appeared that VAX11
execution speeds were between 1~ and 2 times as fast
as those obtained on the 11/70, except for programs
which took only a few seconds to run. In those
cases the 11/70 code was faster, presumably because
of VMS overheads on VAX.

(c) Comparisons With Other Implementation Experience
It would be perhaps unfair and Unwise to draw
sweeping conclusions about VAX computers in
comparison with other specific machine ranges. one
system may appear to be superior or more suited to
our needs than another in one respect but inferior
or less convenient in other regards. our goal has
always been to implement our Library quickly but
thoroughly; it has not been to conduct a wide
ranging and objectively-designed comparison of
different computer systems. With that proviso, we
would offer the following general observations
about our experience:

- the VAX/VMS system demonstrated a basic reliabil
ity during implementation. Other systems,
particularly those recently introduced, have not on
the whole displayed the same reliability.

- the filestore structure and handling facilities
proved particularly convenient for the file
intensive implementation activity.

- execution speeds compared favourably with other
machine ranges.

- Some specific utilities were found especially
useful (and are lacking on some comparable systems)
e.g. automatic ordering of library entries, sorted
directories.

- the job control language was easy to learn and
proved reasonably un-verbose; for instance to
compile and execute a test program took 7 VAX
commands and over 20 on another manufacturer's
system.

ACKNOWLEDGEMENTS

The NAG VAX11 implementation was undertaken by
Sallie Vaughn of the NAG Central Office, using the
VAX-11/780 of the Engineering Systems Group at

Digital's Marlborough offices.

REFERENCES

[1] Schonfelder, J.L., 'The Production and Testing
of Special Functions in the NAG Library'. In
'Portability of Numerical Software', Oak Brook,
1976. W.R. Cowell (Ed), Lecture Notes in
Computer Science, No. 57, Springer-Verlag,
New York, 1977.

[2] Ford, B., 'The Evolving NAG Approach to
Software Portability'. In 'Software
Portability'. P. Brown (Ed), Cambridge
University Press, 1977.

[3] Bentley, J. and Ford, B., 'On the Enhancement
of Portability Within the NAG Project - A
Statistical Survey' . In 'Portability of
Numerical Software', Oak Brook, 1976.

[4] Du Croz, J.J., Hague, S.J. and Siemieniuch, J.L.,
'Aids to Portability Within the NAG Project'.
In 'Portability of Numerical Software', Oak
Brook, 1976.

[5] Hague, S.J. and Ford, B., 'Portability -
Prediction and Correction', Software Practice
and Experience, Vol. 6, 1976.

[6] Ford, B., Bentley, J., Du Croz, J.J. and
Hague, S.J., 'The NAG Library Machine',
Software Practice and Experience, 1978
(to appear) •

APPENDIX

Technical Details Of The NAG VAX11 Implementation

Processor: VAX11/780
Operating System: VAX/VMS
Compiler: FORTRAN-IV-PLUS To.7-92
Options: Traceback

Optimise
Check
Overflow

Precision: Double

For further details of the NAG Library Service,
please contact

The Secretary,
Numerical Algorithms Group Incorporated,
1250, Grace Court,
Downers Grove,
Illinois 60515

Tel: (312) 969 7107

845

MATHEMATICAL-STATISTICAL LIBRARIES
STATE-OF-THE-ART

Thomas J. Aird
IMSL

Sixth Floor, GNB Building
7500 Bellaire Boulevard
Houston, Texas 77036

(713) 772-1927

ABSTRACT

This paper discusses mathematical-statistical, Fortran
libraries. The first part covers some general topics: how
libraries are developed and supported; who uses libraries,
etc .• The second part deals with specific changes that IMSL
is making to its library for Edition 7 (to be released in
January, 1979).

GENERAL TOPICS

The term "library", as used in this paper, means a
unified collection of basic computational routines
(written in Fortran) along with associated docu
mentation covering mathematics and statistics. A
library is more than just a collection of subrou
tines. The term "unified" is a crucial part of the
definition. It means that a great deal of effort
has been devoted to standardizing routine names,
argument lists, and documentation. This standardi
zation is intended to make a library easy to use.
A proper naming scheme means that routines are easy
to locate in the reference manual and standardized
documentation makes it easier for the user to under
stand once the proper routine is located. The IMSL
Library is divided into seventeen chapters designa
ted by the first letter of the chapter title; A, B,
C, D, E, F, G, I, L, M, N, O, R, S, U, V, and Z.
Figure 1 gives the chapter titles. There are more
than 400 routines in the IMSL Library and the chap
ter grouping into natural subsets of mathematics
and statistics, aids the user in locating specific
routines. Each routine name begins with the corres
ponding chapter letter and reference documentation
is arranged alphabetically within the manual.

LIBRARY CHAPTERS

ANALYSIS OF EXPERIMENTAL DESIGN DATA
BASIC STATISTICS
CATEGORIZED DATA ANALYSIS
DIFFERENTIAL EQUATIONS; QUADRATURE; DIFFERENTIATION
EIGENSYSTEM ANALYSIS
FORECASTING; ECONOHETRICS; TIME SERIES
GENERATION AND TESTING OF RANDOM NUMBERS;

GOODNESS OF FIT
INTERPOLATION; APPROXIMATION; SMOOTHING
LINEAR ALGEBRAIC EQUATIONS
MATHEMATICAL AND STATISTICAL SPECIAL FUNCTIONS
NON-PARM-IETRIC STATISTICS
OBSERVATION STRUCTURE
REGRESSION ANALYSIS
SAMPLING
UTILITY FUNCTIONS
VECTOR, MATRIX ARITHMETIC
ZEROS AND EXTREMA; LINEAR PROGRAMMING

Figure 1: Library Chapters

Proceedings of the Digital Equipment Computer Users Society 847

Other important library attributes are: (1) con
sultation, (2) maintenance, and (3) evolving with
the state-of-the-art. Consultation implies that
someone is available, by telephone or mail, to
answer questions about the library. Maintenance
means that any errors in library routines are cor
rected and not left in a continual state of being
"rediscovered". Evolving with the state-of-the-art
means that obsolete algorithms are being replaced
when improved versions are available. In order to
provide this service, IMSL maintains an advisory
board comprised of experts in the area of numerical
mathematics, statistics, and computer science.
Figure 2 lists the IMSL advisors and gives their
area of specialization and affiliation.

As an example of how a library is used, suppose that
one wishes to solve a system of linear equations
AX=B. The required steps are as follows:

(1) Locate and read documentation for the appropri
ate routine.

(2) Write a program to call the library linear equa
tion solver routine. The program must dimension
and initialize the matrix A and vector B, dimen
sion WK, and set N and IA correctly.

The CALL statement might be
CALL LEQTlF (A,l,N,IA,B,O,WK,IER)

if the IMSL Library is being used.

The user of a linear equation solver should,

(1) know something about linear systems, i.e., be
familiar with the terms matrix, vector, row,
column, order, singularity, solution, right
hand side

(2) know how to write a Fortran program that passes
arguments to a subprogram.

The user should not be required to know about the
algorithm used to solve the problem in order to
properly call the routine.

The following figures 3 to 6 give various categori
zations of IMSL subscribers to show "Who is using
the IMSL Library".

San Francisco - November 1978

R. ANDERSON

K. BROWN

W. CODY

C. DE BOOR

W. GENTLEMAN

T. HULL

M. JOHNSON

W. KAHAN

R. KARPINSKI

P. LEWIS

M. LYNN

C. MOLER

B. PARLETT

M. POWELL

J. RICE

J. THOMPSON

J. TRAUB

K. WARWICK

COMPUTER NUMBER %

IBM 249
CDC 140
DEC 10 69
UNIVAC 55
HIS 34
XEROX 28
BGH 23
DGC 20
DEC 11 7
TELEFUNKEN 3
OTHER 6

(JUNE 1978) 634

STATISTICS

NUMERICAL MATH
NONLINEAR OPTil1IZATION

NUMERICAL MATH
SPECIAL FUNCTIONS

NUMERICAL MATH
SPLINE APPROXIMATION

NUMERICAL MATH
LINEAR ALGEBRA

NUMERICAL MATH
DIFFERENTIAL EQUATIONS

MECHANICS
APPLIED MATH

NUMERICAL MATH

COMPUTER SCIENCE
LANGUAGES

UNIV. OF KENTUCKY

UNIV. OF MINNESOTA

ARGONNE NATIONAL LAB

UNIV. OF WISCONSIN

UNIV. OF WATERLOO

UNIV. OF TORONTO

UNIV. OF WISCONSIN

UNIV. OF CALIFORNIA
BERKELEY

UNIV. OF CALIFORNIA
MEDICAL CENTER

STATISTICS NAVAL POSTGRADUATE SCHOOL
RANDOM NUMBER GENERATION

C011PUTER SCIENCE

NUMERICAL MATH
LINEAR ALGEBRA

NUMERICAL MATH
LINEAR ALGEBRA

NUMERICAL HATH
NONLINEAR OPTIMIZATION

NUMERICAL MATH
APPROXIMATION

STATISTICS
FORECASTING

NUMERICAL MATH
ZEROS

STATISTICS
FACTOR ANALYSIS

UNIV. OF CALIFORNIA
BERKELEY

UNIV. OF NEW MEXICO

UNIV. OF CALIFORNIA
BERKELEY

CAMBRIDGE

PURDUE UNIV.

RICE UNIV.

CARNEGIE-MELLON UNIV.

WARWICK RESEARCH

Figure 2: The IMSL Advisory Board

INDUSTRIAL
OF TOTAL COLLEGES, UNIVERSITIES

39 GOVERNMENT
AUSTRALIA 4

22 CANADA 7
11 DENMARK 1

9 FRANCE 3
5 GERMANY 1
4 ISRAEL 1
4 ITALY 1
3 NETHERLANDS 2
1 SOUTH AFRICA 2
1 SWEDEN 1
1 U.S.A. 73

100 VENEZUELA 1
TOTAL (MARCH 1978)

234
268

97

599
Figure 3: IMSL Subscribers by Computer Type Figure 4: IMSL Subscribers by Category

(Industry, College, Government)

848

ADVERTISING
AEROSPACE & AIRCRAFT
ATOMIC & NUCLEAR RESEARCH
AUTOMOBILES & TRUCKS
BANKS
BUSINESS EQUIPMENT & SUPPLIES
CHEMICALS
DRUGS & HEALTH CARE
ELECTRICAL EQUIPMENT
ELECTRIC POWER
ELECTRONICS
ENGINEERING & CONSTRUCTION
FARM EQUIPMENT
FOODS
GLASS & GLASS PRODUCTS
HOTELS, MOTELS, RESTAURANTS
INSURANCE - PROPERTY & CASUALTY
MACHINERY &. EQUIPMENT
METALS & MINING
NATURAL GAS
OIL
OIL SERVICE
PAPER & PRODUCTS
PRINTING & PUBLISHING
RAILROADS
SERVICE & RESEARCH
SOAP
STEEL
TELECOMMUNICATIONS
TIRE & RUBBER

. TV & RAD IO BROADCASTING

Figure 5: IMSL Subscribers by Industry

AUSTRIA 3
AUSTRALIA 18
BRAZIL 3
CANADA 37
COSTA RICA 1
DENMARK 2
FINLAND 2
FRANCE 6
HONG KONG 1
ISRAEL 7
ITALY 2
JAPAN 4
MEXICO 2
NETHERLANDS 13
NEW ZEALAND 1
NORWAY 2
SAUDI ARABIA 1
SOUTH AFRICA 4
SPAIN 1
SWEDF.N 9
SWITZERLAND 5
TURKEY 1
UNITED KINGDOM 6
VENEZUELA 1
WEST GERMANY 18

Figure 6: Il1SL Subscribers Non-
United States by Country

2
35

3
14

4
11
16
14

8
6

15
5
3
1
2
1
2
3
2
2

22
1
1
2
2

42
1
2
9
2
1

Library development and support is an expensive and
complex task. A reasonable estimate of development
cost for high quality software is $10 to $30 per
source code statement. This figure does not in
clude costs for original research or for support
activities. The IMSL Library contains approxi
mately 50,000 source code statements and the initial

849

development cost was about $1,000,000. The annual
cost of supporting the library is approximately
$500,000.

Some of the trends in mathematical software are out
lined below.

(1) User standards of acceptability are becoming
much higher. Users expect software to be
easy-to-use, robust, and portable.

(2) Much more effort is going into the implementa
tion (programming) stage of code development.
The importance of this activity is being
recognized. Several books have appeared that
are devoted to specific Fortran codes. For
example:

Gear, Numerical Initial Value Problems in
Ordinary ·Differential ~ions, 1971:-

Brent, Algorithms for Minimization Without
Derivatives, 1973.

Lawson/Hanson, Solving Least Squares Problems,
1974.

Smith/et al, Matrix Eigensystem Routines -
.EISPACK, 1974.

Shampine/Gordon, Computer Solution of Ordinary
Differential Equations, 1975.

de Boor, ~Practical Guide to Splines, 1978.

(3) There are about 1000 papers published in jour
nals each year that deal with numerical com
putation research. Many journals publish
algorithms. In 1974, ACM initiated a journal·
called Transactions on Mathematical Software.

(4) Many math software conferences are being held
each year.

(5) A great deal of interest in portable software.

Cowell, Portability of Numerical Software, 1977.

(6) A new Fortran standard was adopted in 1978.

(7) Several funded projects concerned with develop
ing high quality software: EISPACK, FUNPACK,
LINPACK, ROSEPACK. Results from these projects
are in the public domain.

IMSL EDITION 7

Edition 7 was discussed in an article in the IMSL
Numerical Computations Newsletter, Issue 15,
February 1978. That article is reproduced below.

"Seven years ago IMSL announced a subroutine library
for IBM computers. Since that time, the library
has been developed for seven other computer types.
The addition of computers one at a time has resulted
in a product that is quite complex to evolve and
maintain. There are five separate, two volume,
reference manuals, covering 400 subroutines, each
having eight versions (ten versions for S/D rou
tines). A great deal of input has come to IMSL

regarding how the library should be improved and
evolved. The sources are: IMSL subscribers (there
are 700 at the present time), the IMSL Advisory
Board, an NSF-supported portability study, and
vendors of computer services. Edition 7 of the
IMSL Library will represent a substantial effort
to achieve the following goals:

(1) The new edition must include structural im
provements in the software and its documen
tation.

(2) The results of the effort must be pleasing
to current subscribers and provide improved
library service.

(3) The product must allow subsequent new editions
to be produced and maintained more easily for
all computer types supported by IMSL.

We feel that the Edition 7 changes will serve these
goals; In addition, the revised structure will aid
subscribers who change computer types or have mul
tiple computer types at their installation. Fea
sibility of product development by IMSL for new
environments will be enhanced.

A major part of the Edition 7 effort will be to
produce one (3 volume) reference manual which will
serve all computer types. Some of the planned im
provements are listed below.

(1) Tabs will be provided for the manual: INTRO,
CONTENTS, KWIC INDEX, OTHER INDICES, CHAPTER
A, .•. , CHAPTER z.

(2) Each routine will have an example. Type
statements, dimension s·tatements, input, and
output will be shown. A brief description
of the problem being solved will be given.

(3) Standard wording will be used to describe
arguments that relate to DIMENSION statements.

(4) Some "Programming Notes" will be moved from
the typed part of the document to the machine
readable section under the heading "REMARKS."
This structure should aid on-line documentation
systems.

(5) A new routine, UHELP, will be written to pro
vide on-line access to important information
about the IMSL Library.

(6) In addition to the current KWIC INDEX, other
indices based on classification schemes such
as SHARE, ACM, and ISI will be included in
the reference manual.

Another part of the effort will deal with code
changes needed to standardize argument lists and
structure across computers. Some routines must be
rewritten to achieve this uniformity, and we want
to minimize the size of this set. Edition 7 will
be upwards compatible with the current library.
Whenever an argument list must change, a new name
will be used and subscribers will be permitted to
retain old codes and to continue using them. IMSL's
current policy of supporting deleted codes for one
year after edition release will be continued.

860

Two new routines are planned for handling error
message printing and I/O unit selection:

(1) UERSET will allow the user to selectively
eliminate printed error messages.

(2) UGETIO will allow the input/output unit de
signators, used by IMSL routines, to be changed
by the installation or by the user during
program execution.

In summary, Edition 7 will represent a content up
grade consistent with that of prior new editions.
Product/service structural improvements that reflect
the seven years of user-IMSL experience will appear
as well. Edition 7 is scheduled for release to
subscribers in January, 1979,"

NUMERICAL METHODS IN LABORATORY MEDICINE
USING THE MUMPS PROGRAMMING LANGUAGE

Frank B. Griffith
Univenity of Arizona Health Sciences Center

Tucson, Arizona

ABSTRACT
The MUMPS programming language contains an extended precision capability,
the $M function. Using this feature, fundamental numerical and statistical
analysis programs have been written for laboratory medicine applications at
the Arizona Health Sciences Center. The programs include statistical analysis,
series approximations to transcendental functions, and fitting polynomial
curves to two-dimensional data.

LABORATORY APPLICATIONS

There are specific areas of laboratory medicine in which the
test data are two-dimensional and have his<orically been presented
and analyzed graphically. These include time/concentration meas
urements in toxicology, zone size/concentration in antibiotic
assays, and absorbance/concentration measurements in serum pro
teins (immunoglobins). These tests are typically done with known
standards, and measurements are plotted on graph paper to obtain
a standard curve from which the patient test value is interpolated.
With fundamental methods of numerical and statistical analysis, it
is possible to define which of several function types fits the stand
ard curve test and to use that function for test value computations.

ACCURACY

The $M function, as defined in MUMPS, provides the user with the
extended precision arithmetic capabilities necessary in laboratory
medicine applications. Laboratory data are typically read with an
accuracy of two or three decimal places, with an occasional method
requiring four places. Therefore, all arithmetic in the support func
tions in done in the $M format. In each of the five function rou
tines, the user defines an epsilon to be used in the convergence
delta check. Each function is written as a converging series approxi
mation with the series evaluation terminating when the last addend
of the series is less than epsilon. The typical value of epsilon is
:000001.

POLYNOMIAL CURVE-FITTING METHODS

There are currently four function types which can be defined and
evaluated for a given set of data points. Each of the four is derived
by the "least squares" method, with the goodness-of-fit being eval
uated as the square root of the sum of the squared differences. The
four functions are:

linear
quadratic
cubic
exponential

LOGARITHMS

y =a+ bx
y =a+ bx+ cx2
y =a +bx + cx2 + dx3
y = aebx

The log function is written for natural logarithms, base e
(2.718281828), noted as In. The convergent series is:

(x-1 1 x-1 3 1 x-1 5)
In x = 2 - + - - + - - . . . for each x>O.

x+1 3 x+1 5 x+1

The user can apply a conversion to the calculated logs to change
bases. The relationship loga b =In b /In a makes the specific In
approximation a general purpose log function.

EXPONENTIATION

The exponential function is written to evaluate ex, where e =

Proceedings of the Digital Equipment Computer Users Society 851

2. 718281828. The series

x2 x3
eK = 1 + x + 21 4' 3"! + ... converges for al I real x.

The user can evaluate any real number to any real exponent by
using the logarithm/exponentiation routines. To evaluate y=xn,
where x and n are positive real numbers:

y = xn
In y = n In x

Evaluate· In x and multiply by n to get a constant c:

In y = c
y =eC

Now evaluate ec to obtain the desired y as a function of x.

SQUARE ROOTS

The Newton-Raphson method for determining roots has been
applied to determine square roots. The procedure is iterative,
requiring an initial estimate of the root of n. The initial estimate,
X1, is taken to be $R(n): This will be very close to the final value,
so that the routine will usually converge to an epsilon of .000001
in three iterations. To find the square root of N, the equation
x2=N will be solved for x:

x2 = N
f(x) = x2 - N = 0
f'(x) = 2x

The Newton-Raphson method computes successive approxima
tions by evaluating:

x·+1 = x· - f(xi)
I I f'(Xi)

The series is assumed to have converged when the absolute differ
ence between two successive estimates [xi+1-Xil is less than
epsilon.

TRIGONOMETRIC FUNCTIONS

The convergent series approximations to Sin (x) and Cos (x) are:

x3 x5 x7
Sin (x) = x - -31 + -51 - - 1 ••• for al I real values of x.

. . 7.
x2 ,(4 x6

Cos (x) = x - 2'! + 4'! - 6'! for all real values of x.

The argument x is expressed in radians and a conversion expres
sion to change from degrees to radians is:

Angle (Rad)= Angle (degrees) #360/360*2*71'

There are basic definitions and relations whereby the other four
trigonometric functions can be evaluated with the Sin and Cos
functions.

San Francisco -November 1978

CHARACTERIZATION OF PDP-11 PSEUDO-RANDOM NUMBER GENERATORs(a)

Paul R. Nicholson(b), John M. Thomas
and Charles R. Watson

Ecosystems and Energy Systems Departments
Pacific Northwest Laboratory

Operated by Battelle Memorial Institute
Richland, Washington 99352

ABSTRACT

The pseudo-random number generators of four PDP-11 languages
are characterized. The algorithms for the PDP-11 functions
RND (BASIC-11 and BASIC-PLUS-2), RAN, and RNDU (FORTRAN IV
and FORTRAN-IV-PLUS) arg essent~al~y ident~ca~ •. The period
is approximately 5 x 10 • Stat1st1cally s1gn1f1cant
differences between observed and expected values did not
exceed those expected for the frequency test. However,
results of the runs and lag-product tests indicate some
short-term behavior that may be undesirable for certain
applications. A "pseudo-period" was detected and could also
influence a few applications of the DEC algorithm where long
sequences of numbers are used.

"It has been said that more computer time
has been spent testing random numbers than using
them in applications! This is untrue, although it
is possible to go overboard in testing."

INTRODUCTION

Random numbers are used in many computer simulation
techniques. The testing necessary to adequately
characterize a particular random number generator
depends on the consequences (within a simulation)
of using numbers generated in a non-random fashion.
The effect of a slightly non-random simulation in a
blackjack game used for recreational purposes is by
no means the same as when the results are to be used
to "invest" at a Las Vegas casino.

In critical cases, such as personally financed
gambling, the user should probably write a random .
number generating routine using one of the sophisti
cated algorithms recommended by Knuth.I At the
other extreme, some users can accept the results
from a vendor supplied routine at face value, with
only cursory eva 1 uat ion, ·because the consequences
of using an average random number generator may be
quite modest. Most cases fall in the middle. The
majority of users may be aware that good quality
random numbers are necessary for an application, but
are hesitant to sacrifice the efficiency and conven
ience of the built-in random number generators
unnecessarily. In this paper we characterize the
DEC pseudo-random number generators to aid users in
evaluating their applicability for particular
problems.

Knuth, Vol. II, p. 66

Our original intent was to test and compare the
pseudo-random number generators supplied with the
DEC PDP-11 languages that were available to us. We
expected to find a difference in quality between
results obtained on our small 11/34, running
BASIC-11 under RT-11 and those from FORTRAN or
BASIC-PLUS-2 on our 11/70 under IAS. However, we
found no qualitative difference; the algorithms of
RND in BASIC-11 and BASIC-PLUS-2, RAN and RANDU in
FORTRAN-IV and FORTRAN-IV-PLUS are essentially the
same, differing only in their starting values and
speed of execution. This is not apparent in the
Language Reference Manuals, but a careful
examination of the MACRO source language
subroutines revealed the same basic algorithm.

Many methods for generatin~ 2a~dom numbers have
been proposed and tested; • • only a few have
been found acceptable. Of the acceptable methods,
the linear congruential algorithm

Vi+l = (aVi + c) mod m

has the most widespread use. This algorithm can be
implemented to run very efficiently when the
constants a, c and m are optimally chosen. If m is
the wordsize of the computer, then the mod function
can be implemented in machine language by a simple
bit rotation.

(a) Prepared for the U.S. Department of Energy under Contract No. EY-76-C-06-1830
(b) Current address: University of Washington, Seattle, WA 98195.

Proceedings of the Digital Equipment Computer Users Society 853 San Francisco - November 1978

The maximum possible period (number of consecutive
different random numbers) of a random number than
generator using this algorithm is m. When m is the
wordsize of a 16-bit computer, a period greater
216 (65,536) is theoretically impossible. Such a
short period would not be worthwhile for most
serious applications; the supply of random numbers
could be exhausted in less than five seconds of CPU
time! To alleviate this problem, the DEC algorithm
stores m in two words; thus t.he theoretical period
on a PDP-11 is 232 (greater than 4 billion).
This theoretical period may be attained only if the
remaining ·two ronstants, a and c, are optimally
chosen. Knuth discusses thl~ problem in detail.
The DEC algorithm sets a = 2 , a number which
may be efficiently entered in MACRO. To further
speed the calculation, the algorithm uses c = 0, so
the final equation is

Vi+l = (216 + 3) V · mod 232 1

The resulting "random number" is then divided by a
constant scaling factor to put it in the interval
(O,l). However, when c = 0 the maximum theoretical
period is reduced, but we show below that it is
still long enough for most purposes.

The inter-language differences arise because each
language uses a different starting value, V0 •
Further, the user has the option of entering the
generator at a fixed or random starting value.
Thus the numbers returned by the various PDP-11
generators will be different even though the
underlying sequence of numbers is quite similar and
would be identical if the periods were maximized.

Knowing that conclusions from one language would be
applicable to the others simplified our evaluations.
We were able to run time-consuming programs in
FORTRAN or BASIC-PLUS-2 on off-shift time using the
11/70 and perform shorter tests in BASIC on
prime-time using the 11/34.

There are dozens of statistical tests recommended
for the evaluatjon of computer generated pseudo
random numbers.! We chose four: an evaluation
of the period length and frequency, and tests of
runs and lag products. The latter procedure is a
variant of the serial correlation test. Others,
including the poker test, the coupon collector's
test, the maximum-of-t, test and the serial
correlation test, may be necessary to insure the
suitability of the DEC algorithm for some specific
applications.

PERIOD LENGTH

Theory

Because of the mathematical characteristics of
generating functions, a 11 random-number generators
currently available operate in periods (cycles).
After a certain period, sometimes very long, the
sequence will start again, i.e., numbers will begin
to repeat. For all but the most intensive uses,
the period need not be greater than several
million, but in fact it is reasonable to expect the
period of a liner congruential generator to be
greater than 100 million.

854

Methods

A computer routine to empirically determine the
period of a random number generator is conceptually
and operationally simple, but because of the com
puting times involved, it is not often attempted.
As a rough guide, FORTRAN RAN calls can generate
100,000 numbers in 6 seconds, whereas the equivalent
BASIC statements take about 3 minutes to execute.
Based on these figures the generation of 100 million
numbers would take 1-2/3 hours and 58 hours for
FORTRAN and BASIC, respectively. However, two more
factors must be considered. First, each number
generated by RND must be compared to another in an
IF statement. Second, a period of over 500 million
can reasonably be expected. Generating time in
BASIC would be over 12 days on an 11/34 computer.
Both generating and comparing would take about 17
days. Clearly, this sort of testing should not be
attempted in BASIC, nor in FORTRAN when computer
time is expensive.

To test for the period of RAN, we generated, saved,
and compared several consecutive random numbers as
follows:

[l]

[2]

[3]

Results

generate original sequence:
call RND several thousand
times, then
a = RND No.
b = RND No.
c = RND No.
c = RND No.
count = 0
loop and test:
a1 = RND No., increment count
a1 # a?, go to 2
test other 3 values:
b1 = RND No.
c1 = RND No.
d1 = RND No.
print: a, b, c, d

al ' b1 ' cl ' dl ,
and count

b1 I b, increment count
go to [2]

c1 I c, increment count
go to [2]

d1 I d, increment count
go to [2]

Done

We found that individual random numbers do occur
more frequently than expected. For lack of a
better phrase we call this phenomenon the
"pseudo-period." During our investigation of the
period for BASIC-PLUS-2 RND, the program exited
from Step [2] of the above algorithm 16 times. In
15 of these 16 cases the tests in Step [3] failed
and returned to the loop-and-test stage (Step[2]).
As shown in Table 1, whenever we found an exact
match of a, we observed near matches of b, c and d.

Clearly, the high correlation for the three
successive numbers (after the match of a and a1)
is undesirable; but until further research is
conducted, the extent and meaning of this problem
(for practical applications) will remain unclear.
Marsaglia4 and Maclaren and Marsaglia5 indicate

Tab le 1. Origina 1 and "Matched" Sequences of Pseudo-Random Numbers
Generated to Check the Period of RND.

Original Sequence
a b c

.310183 .0876232 .734091

match "~seudo matches"

.310183 .0870738 .730795

.310183 .0885387 .739585

.310183 .0880504 .736655

.310183 .0873790 .732626

.310183 .0862970 • 729331

.310183 .0883556 .738486

.310183 .0878063 .735190

.310183 .0882946 .738120

.310183 .0871349 .731167

.310183 .0873180 .732260

.310183 .0885998 .739951

.310183 .0881115 .737021

.310183 .0878673 .735556

.310183 .0868907 • 729697

.310183 .0856210 • 733725

.310183* .0876232* .734091*

* Exact match of the original sequence.

that uniform random numbers calculated using
congruential generators can be shown to fall in
sets of parallel hyperplanes. Our empirical
evidence may indicate such an effect since an exact
match of four consecutive numbers was not obtained
until 537 million numbers were generated.

FREQUENCY TEST

Theory

Pseudo-random-number generators are designed to
produce a uniform distribution on the interval zero
to one. If 1000 uniformly distributed numbers are
grouped into 10 classes of equal size, then 100
numbers should be found in each class. In general,
the expected value is T/n, where T is the total
number of observations, and n is the number of
classes.

Method

We generated 1,000,000 numbers, classified them in
100 categories (or cells), and repeated the
procedure 39 times. The theoretical and observed
values were tested for goodness-of-fit using the
chi-square (xZ) test.

Results

The frequency of statistically significant
(p < 0.05) xZ values for the 39 cases was close to
the number expected, Table 2. In addition, we
recorded the number of times the highest and lowest
observations occurred within a class interval for
each of the 39 repeated runs (Table 3). Since
expected frequencies were just under 2 per
constructed class interval (of length 5), we
arranged the original data into larger classes
(length 25). Clearly, large and small values
(i.e., < 10000 or > 10000) seem to occur with about

Millions of Length of
d Random Numbers Psuedo-Period

.615940
Generated in Millions

.601108 17 17

.640660 48 31

.627476 72 24

.609348 73 01

.594516 153 80

.635716 306 150

.620884 317 11

.634068 338 21

.602756 347 09

.607700 367 20

.642308 397 30

.629124 429 32

.622532 469 40

.596164 480 11

.614292 495 15

.615940* 537 42

855

the expected frequency (Table 3). Finally, we
pooled the results for 39 cases {390,000/category)
and x2 was still not statistically significant.

RUNS TEST

Theory

Tests for uniformity do not take into account the
order in which random numbers are generated. A
generator which produces 100 values of .1, 100
values of .2, and 100 values of .3, etc. would pass
a frequency test which considered 1000 observations
and 10 classes. Thus, to supplement the frequency
test, the arrangement of numbers within a sequence
must be evaluated.

Two statistical tests (runs up and down, and runs
above and below the mean) were used to evaluate
"runs" in sequences of pseudo-random numbers. The
two procedures are similar, but not identical.
However, we only illustrate the results of "runs"
above and below the mean procedure here. Consider
the rounded uniform pseudo-random number sequence
(actually generated by RND in BASIC): .4, .6, .1,
.9, .7, 0, .8, .4, .2, .1, .4, .9, .8, .1, .8, .7,
1., .9, .8, .4, .2

The object of the test is to evaluate how many
numbers are counted ·before one is encountered below
the mean (i.e., in this case, below 0.5). In the
sequence above, the first number is below the mean
and corresponds to a run of length zero.
Repeating, one value (.6) occurs before another
number below the mean is encountered (a run of
length one). The following 10 runs were extracted
from the sequence above by repeated use of the
procedure just outlined.

0 1 2 1 0 0 0 2 5 0
Using this information and the expected theoretical
distribution of runs,6 we constructed Table 4.

Table 2. Distribution of 39 Chi-Squares Calculated from
1,000,000 Random Numbers Classified in 100 Equal
Categories.

Range of Chi-Square Expected
for 99 Degrees of Probability of Observing (Rounded) Observed

Freedom Chi-Sguare Freguencx Freguencies

less than 68. 56 0 < p s. 0.01 0.4

68.57 - 72.91 0.01 < p ~ 0.025 0.6 1

72.92 - 76. 76 0.025 < p ~ 0.05 1.0 1

76. 77 - 81.33 0.05 < p :s. 0.10 2.0

81.34 - 89.25 0.10 < p :S. 0.25 6.0 9

89.26 98.50 0.25 < p < 0.50 10.0 11

98.51 - 108.20 0.50 < p :s. 0.75 10.0 8

108.21 - 117.31 0.75 < p !S. 0.90 6.0 5

117 .32 - 122.94 0.09 < p :S. 0.95 2.0 2

122.95 - 127 .93 0.95 < p :s. 0.975 1.0 1

127 .94 - 133.85 0.975 < p < 0.99 0.6 1

greater than 133.85 0.99 < p :s. 00 0.4

Total 40.0 39

Table 3. Frequencies of High and Low Counts Within Class Limits
(Based on an Expected Value of 10,000 per Cell).

Number of Times
Classes in this
Range Contained*

Lowest Highest
Cell numbers Lowest Highest Counts Counts

(Class limits) Counts Counts <102000 >102000 Ex(!ected

0 - 5 4 1
5+ - 10 2 0

10+ - 15 3 3 11 8 9.8
15+ - 20 2 2
20+ - 25 0 2

25+ - 30 2 2
30+ - 35 4 1
35+ - 40 1 1 10 8 9.8
40+ - 45 2 3
45+ - 50 1 1

50+ - 55 1 3
55+ - 60 3 1
60+ - 65 4 1 12 14 9.8
55+ - 70 3 7
70+ - 75 1 2

75+ - 80 1 1
so+ - 85 2 3
as+ - 90 0 3 6 9 9.8
go+ - 95 2 2
95+ - 100 1 0

Total 39 39

* 2 observations/cell were expected

856

To evaluate the statistical significance of results
such as those in Table 4, the chi-squ~re test can
be used. We calculated a value for:< of 6.20,
which in this case is not greater than the expected
chi-square for 5 degrees of freedom.

Table 4. An Example of the Results from
a "Runs" Test Below the Mean.

Length Number Number
of Run Observed Ex~ected

0 5 5
1 2 2.5
2 2 1.25
3 0 0.625
4 0 0.3125
5 1 0.15625

Method

We used RND to generate 200 sets of 7000 runs and
recorded these results in 11 categories (runs of 0
through 9 and greater than 9). Runs both above and
below the mean (0.5) were calculated, and the
algorithm was terminated when a total of 7000 runs
were obtained.

Results

Each calculated chi-square (200 repeats of n = 7000
runs) for tests of runs below and above the mean is
tabulated in Tables 5 and 6 respectively. Since 10
of the calculated chi-squares would be expected
within the 5% area on either tail of the
theoretical X 2 distribution (for 10 degrees of
freedom), the observations seem to be mostly in
accord with expected values. However, in the case
of runs below the mean we obtained 19 values below
the 5% point and for runs above the mean we
obtained 15 values above the 5% point. Frequencies

of observed and expected values were in accord for
other cells (not above or below the 5% points),
Tables 5 and 6. If these results were validated by
more extensive testing, a short cyclic pattern may
be indicated. In such circumstances, simulations
using output from RND should be replicated several
times to be sure of repeatable output.

The frequency of run components (O to 9 and 9) that
contributed more than 2 to the total calculated
chi-square are tabulated in Table 7. Only
statistically significant chi-squares (P<0.05,
upper tail) were investigated. There is no
evidence that any run length occurred more or less
often than expected (although a few seemingly
aberrant values occurred) for the cases where
chi-square was statistically significant.

AUTOCORRELATION

Tests for autocorrelation examine the tendency of
numbers to be correlated with others a uniform
distance apart in a sequence [i.e., successive
pairs or every third, fourth, fifth,. etc. number
can be examined (6, p. 241)]. One way to conduct
the autocorr7lation procedure is to use the lag
product test • In this test, numbers are
evaluated sequentially based on the interpair
distance between them. The products

[1 N-k I ck = ~ ~ u .• u.+k -0.25
1 =1 1 1

are formed, where
k = 1, 2' 3' 4, 5, • • . 25

lags. Where there is no correlation, Ck is
normally distributed with mean of 0 and variance

2 13N - 19k
er = 144(N-k) 2

Table 5. Observed and Expected Frequencies of Chi-Square for 200 Cases
of n = 7000 Runs Below the Mean.

Range of Chi-Square
for 10 Degrees of

Freedom

0 - 2.2
< 2.2 - 2.6
< 2.6 - 3.3

3.3 - 3.9

< 3.9 - 4.9
< 4. g - 6.7
< 6. 7 - 9.3
<9.3 - 12. 5

< 12.5 - 16.0
<16.0 - 18.3

< 18.3 - 20.5
< 20.5 - 23.2
< 23.2 - 25. 2
< 25 .2

Probability of
Observing Chi-Square

in This Range

.005

.005

.015

.025

.05

.15

.25

.25

.15

.05

.025

.015

.005

.005

Observed
Frequencies

1
1
5

12

13
32
50
48
18
9

4
5
0
2

857

Expected
Frequencies

1
1
3
5

10
30
50
50
30
10

5
3
1
1

Observed
Minus Expected
Frequencies

0
0

+2
+7

+3
+2
0

-2
-12
-1

-1
+2
-1
+l

Summary

lower 5%
observed 19
expected 10

middle 90%
observed 170
expected 180

upper 5%
observed 11
expected 10

Table 6. Observed and Expected Frequencies of Chi-Square for 200 Cases
of n = 7000 Runs above the Mean for 200.

Range of Chi-Square Probab i l i ty of Observed
for 10 Degrees of Observing Chi-Square Observed Expected Minus Expected

Freedom in This Range Frequencies Frequencies Frequencies Summary

0 - 2.2 .005 0 1 -1 lower 5%
< 2.2 - 2.6 .005 1 1 0 observed 9
<2.6 - 3.3 .015 3 3 0 expected 10
<3.3 - 3.9 .025 5 5 0

<3.9 - 4.9 .05 12 10 +2
<4.9 - 6.7 .15 25 30 -5 middle 90%
<6.7 - 9.3 .25 55 50 +5 observed 176
<9.3 - 12.5 .25 47 50 -3 expected 180

<12.5 - 16.0 .15 23 30 -7
<16.0 - 18.3 .05 14 10 +4

<18.3 - 20.5 .025 8 5 +3 upper 5%
<20.5 - 23.2 .015 3 3 0 observed 15
<23.2 - 25.2 .005 3 1 +2 expected 10
<25.2 - 00 .005 1 1 0

Table 7. Runs Which Contributed More Than 22to Statistically Significant
Chi-Squares (Upper 5% End of the x Di.stribution Only) for
200 Cases of 7000 Runs Above and Below the Mean.

Length of run(s) which contributed at least 2 to a statistically
Runs significant (P<0.05} chi-square (18.3 at 10 degrees of freedom}.

0 1 2 3 4 _i_ 6 7 8 9 9 Total

Above
the mean 3 3 3 5 4 8 3 2 7 8 3 49

Below
the mean 1 4 3 3 3 3 2 3 4 5 5 34

Total 4 7 __L 8 7 11 5 5 11 ll 8 85

858

The results can be studied by computing

ck z = -
<T

and evaluating both the statistical significance of
individual c~·s and the distribution of the
calculated Z s. This is a test of whether each
calculated ck is statistically different from its
expected value (0). In addition, the frequency
with which Ck's above and below zero occur can be
investigated.

Method

We generated 4 repeats each of 25 replications of
100, 200, and 1000 numbers using BASIC-11 RND.
Substantially more repeats (10) were generated for
sets of 500 random numbers. We computed Ck and
o-z for each value of k from 1 to 25 and compared
the calculated Z-statistics with expected values
(based on the normal distribution), evaluated the
statistical significance of Z's and investigated
the occurrences of Ck's above and below zero.

Results

The summarized results from 4 repeats of 25
replications of 100 random numbers each are in
Table 8. The data are arranged by both number of
negative Ck's and number of statistically
significant Z-statistics within each of 25 lags.
The summary of positives and negatives within each
of the 25 lags is at the bottom of the first four
columns and the total number of statistically
significant (P'0.10; 0.05 in each tail) differences
is beneath the second four, columns. These two
sets of four columns and associated totals were
used to construct Tables 9, 10 and 11
respectively. Results based on 200, 500, and 1000
random numbers were also summarized in a manner
similar to Table 8, and are included in Tables
9-11. Finally, we used a separate algorithm to
compute 100 sets of 25 Ck's based on 1000 random
numbers and tabulated the results for each lag
(1 to 25). This process was repeated 10, times and
we calculated and tabulated the Z-statictics. The
distribution of calculated Z-statistics was
compared to expected values based on the normal
distribution. Results are in Table 12.

Several features evident in Table 8 are supported
in summary Tables 9-12. It appears (Table 8) that
Ck's tend to be either mostly below or above the
mean. We observed 47 cells with 20 or more Ck's
below the mean and 38 cells with 20 or more Ck's
above the mean. However, cells with a more even
distribution of Ck's around the mean are under
represented; we observed only 15 in 100 trials.
This observation is substantiated in Table 9, which
shows similar findings for other lengths of random

859

number sequences. These data indicate that in most
cases (over 80%) the Ck's for a sequence of 25
lags will be either mostly above or below the
expected mean.

However, Chi-square was not statistically
significant for the results summarized in
Table 10. Thus, about the same frequency of
negative and positive Ck's occurred when numbers
of cells with more than half of the Ck's below
the expected mean (0.25) were tabulated (e.g. fifth
column of Table 8). Therefore, the predominantly
positive and negative sequences (Table 9} occur
with about equal frequency and probably in random
order. These predominate sequences of negative or
positive Ck's (within 25 lags) were not ·
necessarily significantly different (P<0.10) from
their expected value (O}, based on the calculated
Z-statistic (last 4 columns in Table 8). In
addition to the predominately negative and positive
Ck's, data in Table 8 (last 4 columns) imply that
a majority of statistically significant
Z-statistics tended to occur together in groups.
However, numbers of significant differences in a
column were near the expected value of 62.5.
Results for all random number sequence lengths in
Table 11 support this observation since an average
of between 6 and 7 repeats of 25 replications
contained statistically significant Ck's (for 25
lags) and between 2 and 3.25 of these contained
greater than 12 statistically significant Ck's.
Using a seperate algorithm, the distribution of Z's
calculated for 100 sets of 1000 random numbers were
compared to expected values; no aberrant behavior
was observed. Results for the statistically
significant (P<0.05} cases are tabulated in
Table 12. No particular lag or position in the
distribution seemed to occur more frequently than
expected. However, repeats 1 and 6 seemed to
exhibit unexpected characteristics most often.

We interpret the observations summarized in
Tables 9-12 to imply that lag correlations (in lags
of 1 to 25) are either predominately positive or
negative more often than expected, and that when a
statistically significant Z-statistic occurs,
sometimes it is in a "clump" of similarly
statistically significant Z's in a lag sequence.
Both observations indicate some undesirable
short-term behavior in the generated random number
sequences. The length of strongly negative or
positive sequences is some- times 3 or 4 repeats
long (see Table 8, column 1, replications 8 to 10,
17 to 20, and 21 to 25). When this occurs with
1000 random number sequences, up to 4000 numbers
may then have lag correlations predominately above
or below the expected value. These data suggest
that in applications where fewer then 5000 numbers
are used, procedures should be repeated several
times.

Table 8. Results of the Lag Product Test (For Lags of 1 to 25)
Applied to 100 Sequences of 100 Random Numbers.

Replication Number of Lag Products (Ck's)*
(Each Replication Which Were Below the Number of Significant (P < 0.10)

Contains the Ex~ected Mean {0.25} Numbers of Cells Lag Product Tests {Calculated Z'sl
Results of 25 Lag With More Than

Product Tests)
1

Re~eat Number
4

12 Negative Ck's Re~eat Number
2 3 1 2 3 4

1 22 0 24 25 3 0 1 0 10
2 25 22 25 25 4 0 0 0 0
3 2 25 25 0 2 0 0 0 6
4 13 15 6 25 3 0 0 0 0
5 3 25 25 0 2 0 0 1 15
6 0 0 25 9 1 11 3 20 0
7 12 14 25 24 3 0 0 0 0
0 25 ?C. c 0 ? 0 1 0 25 0, .,
9 25 0 14 25 3 0 17 0 1

10 25 0 25 7 2 0 1 7 0
11 0 8 3 10 0 12 0 0 0
12 5 22 21 25 3 0 0 0 3
13 1 22 21 19 3 2 0 0 0
14 3 25 25 2 2 0 0 0 0
15 19 12 0 25 2 0 0 1 1
16 c;/ 25 25 25 0 3 0 1 7 10
17 0 25 0 21 2 24 0 0 0
18 0 24 2 4 1 1 0 0 0
19 0 3 0 1 0 0 0 2 0
20 0 25 25 0 2 0 0 25 3
21 25 6 4 0 1 0 0 0 0
22 25 25 0 0 2 1 0 24 13
23 24 0 0 25 2 0 0 0 0
24 25 0 24 25 3 0 0 0 0
25 9 25 3 25 2 0 14 0 0

Number of cells with: Totals
20 or more negatives 10 13 13 11 47 51 Total: 51 37 87 87
20 or more positives 11 7 10 10 38 Expected: 62.5 62.5 62.5 62.5

Between 20 negative and
15 20 positive 4 5 2 4

* Each cell contains .the number of negative values calculated
using lag product test (see text) for each lag from 1 to 25.

860

Length of

Table 9. Frequency of Occurrence of Cells With More Than 20 Ck's Below the Mean,
Cells With More Than 20 Ck's Above the Mean, and Other Cells
(Lags from 1 to 25) for Random Number Sequences of Various Lengths

Number of Number of Number of Cells Number of Cells
Other Cells

Less than 20
Random Number Repeats of 25 Cells With 20 or More With 20 or More Negatives

*

Seguences Re~lications Evaluated t)9atives Positives or Positives
n ::::oo±': :TuL :J!L

100 4 100 47 47 38 38

200 4 100 48 48 35 35

500 10 250 108 43 105 42

1000 4 100 40 40 41 41

Percent of Total Number of Cells; 100 or 250.

Table 10. Frequency of Cells With More Than Half of Ck's Below the Expected
Mean Versus Expected Within 4 Repeats of Each of 25 Replications for
Random Number Sequences of Various Lengths.

Length of Random
Observed Frequency of Cells with >12 Negative

Ck's in 4 Re~eats of 25 Lags {k}
Number Seguence 0 1 2 3 4 - - -
100 2 3 11 8 1

200 1 3 14 6 1

500 (Repeats 1-4) 2 8 9 5 1

500 (Repeats 5-8) 2 6 9 6 2

1000 0 4 16 5 0

Total Observed 7 24 59 30 5

I!i1
15

17

37

19

Total Expected*
} x2 = 6.68 n.s.

7.8 31.3 46.9 31.1 7.8

* Calculated; based on the binomial distribution where n = 25, P = 0.50

861

ID
15

17

15

19

Length of

Table 11. Means and Standard Deviations of Number of Significant Differences
(P<0.10, based on Z-statistics) and Numbers of Cells with Greater
than 12 Significant Differences for Random Number Sequences
of Various Lengths.

Number of Ce 11 s Where > 12
Numbers of Number of Significant (P< 0.10) of 25 Lags (1 to 25) were

Random Number Repeats of 25 Differences Found in Each Repeat Significant {P< 0.10}
Sequence Replications Mean Standard Deviation Mean Standard Deviation

100 4 7.75 1. 71 2.50 0.58

200 4 7.50 2.08 2.25 0.96

500 10 6.15 2.07 2.00 1.25

1000 4 7.25 2.06 3.25 1.50

Table 12. Distribution of the Z - Statistic Calculated From Ck's and
Standard Deviations of the Lag Product Test (Based on 10
Repeats of 1000 Random Numbers).

Repeat Length of Calculated Distribution of Calculated Z - Statistics
Number Lag {k} Chi-Square for 100 sets of 1000 Random Numbers

_:::1.645 <1.645 < 1.1 <0.55 <0 <-0.55 <-1.1 <-1.645
>1.1 >0.55 >O > -0.55 >-1.1 >-1.645

1 2 19.8 7 3 16 30 20* 7* 15 2
1 13 16.4 6 4 14 36* 15 14 8 3
1 21 18.9 8 6 10 32* 21 6* 13 4
1 25 18.7 6 7 16 32* 13 8 15* 3
2 5 15 3 3 19* 15 15 21 15 8* 4
6 3 16.2 10* 5 13 13 29 16 12 2
6 5 16.5 8* 9 13 11 29 12 15 3
6 8 21.6 11 4 14 19* 19 15 17* 1
7 19 14.3 9* 7 8 26 26 10* 6 8

10 1 16.5 3 9 14* 15 22 29 5 3

Expected Frequencies 5 8.6 15.6 20.9 20.9 15.6 8.6 5

* Contributed more than 4 to a statistically
significant (P<0.05, x2 = 14.1, df = 7) chi-square.

862

SUMMARY

The DEC algorithm for computing pseudo random
numbers is essentially the same in BASIC-11,
BASIC-PLUS-2, FORTRAN IV, §nd FORTRAN IV-PLUS.
The period is about 5 x 10 • An irregular
"pseudo-period" was observed 15 times before there
was an exact repeat of an original sequence. This
pseudo-period may need further investigation for
some applications where pseudo-random numbers are
used. The statistically significant differences
(between the frequencies observed and those
expected from a uniform distribution) were within
the expected range. We observed more statistically
signit·icant runs than expected, which may suggest
that the algorithm produces short-term runs. The
results of the lag-product test again implied
short-term runs (up to 4000 numbers) and suggests
that statistically significant autocorrelations
occur in "clumps."

In general, the data seem to support the view that
the DEC pseudo-random number generator will produce
a reasonable series of numbers for many common
applications. Repeated runs may be necessary to
confirm results in applications where only a few
numbers (less than 5000) are used. Users of
extremely long runs of random numbers should be
aware of possible problems associated with the
"pseudo-period."

ACKNOWLEDGEMENT

We thank Bill Parm of Digital for assistance with
the algorithms and Ms. Connie Connally for help in
editorial matters.

1.

2.

3.

4.

5.

6.

7.

863

REFERENCES

D. E. Knuth. 1973. The Art of Computer
Programming, Vol. 2. Addison-Wesley, Menlo
Park, California.

P. T. Brady. Random Number Generator for the
PDP-5/8. DECUS Program Library No. 8-25.

G. A. Griffith. Pseduo Random Number Generator
For use with FOCAL. DECUS Program Library No.
FOCAL 8-1.

G. Marsaglia. 1970. Regularities in
Congruential Random Number Generators. Numer.
Math. 16:8-10. -- -

D. M. Maclaren and G. Marsaglia.
Uniform Random Number Generators.
Compt. Mach. 1£:83-89.

1965.
J. Assn. ---

J. W. Schmidt and R. E. Taylor. 1970.
Simulation Analysis of Industrial Systems.
Irwin, Homewood, Illinois.

R. 0. Gilbert. 1973. An Evaluation of Four
Pseudo-Random Number Generators, BNWL-1743,
Battelle, Pacific Northwest Laboratories,
Richland, Washington.

*

By acceptance of this article, the
publisher or recipient acknowledges
the U.S. Government's right to
retain a nonexclusive, royalty-free
license in and to any copyright
covering the article.

NET - A POWERFUL FILE-TRANSFER FACILITY

R. D. Burris, C. E. Hammons, and C. 0. Kemper
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37830

ABSTRACT

The NET command and system provide access to a network
that includes DECsystem-lOs, PDP-lls, PDP-12s, PDP-8s,
IBM System/360s, and a CDC 7600. A DECNET-style command
syntax is used. Full wildcard capability is provided
for transmission, retrievals, and third-party transfers.
The NET command was made to interface to existing pro
grams transmitting to the IBM and CDC equipment. For
transfers between DECsystem-lOs, a spooler was written
to support file transfer through asynchronous (teletype)
lines, a DAS78 front end, or a DLlO link to a PDP-11/45.
The PDP-11/45 is itself a node in the network. Users
on many nodes can direct files to the 11/45 for storage,
printing, plotting, or routing to some other node. It
is between DECsystem-lOs that the most powerful and free
interchange of data is possible. Possible source
devices include all directory devices and ersatz devices.
Destination devices include all devices and queues that
do not require operator intervention.

INTRODUCTION

General
Data processing centers are frequently dedicated
to the equipment of one manufacturer. The advan
tage of such dedication can best be shown by con
tradiction - when the software of several vendors
is present, the installation users must know
several ways to perform every task. The invest
ment in education, the number of mistakes provoked
by this situation, the concomitant losses in
productivity, and the decrease in user morale are
usually sufficient to convince management that
the multiple vendor approach is unattractive.
With the recent developments in networking and
distributed processing, however, it has become
much more attractive to have the capability to
use such networks and the facilities of other
computer centers that may not have become dedi
cated to the same vendor. This paper describes
the successful merger of three such networks,
which use equipment from International Business
Machines (IBM), Control Data Corporation (CDC),
Digital Equipment Corporation (DEC), and CRAY.

Contents
We consider the following topics:
l. the goals, structure, and implementation of

the system;
2. the network as it appears to the user;
3. a special monitor interface between the

DECsystem-10 and a DEC PDP-11/45;
4. The PDP-11/45 networking system structure

and functi ans.

Proceedings of the Digital Equipment Computer Users Society 865

SYSTEM DESIGN

General
Figure l depicts the networks under consider
ation. The Fusion Energy Division (FED) and the
Computer Sciences Division (CSD) nodes, both
DECsystem-lOs, serve as portals to the Magnetic
Fusion Energy (MFENET) and CSD networks, respec
tively. The PDP-11/45 is the central node in
the data gathering network of the FED. The
project described is the integration of these
networks into one supernetwork and the provision
of a means of effective access to that network.
Existing facilities
Personnel of MFENET provide and support links
between DECsystem-lOs in that network and the
CRAY-1. Personnel of CSD support links between
the CSD DECsystem-lo and the IBM System/360 com
puters. Rather than attempt to replace or
duplicate the work of those groups, the develop
ment of the supernetwork incorporates their
programs with only minor modifications. Figure
2 shows the desired software structure of the
supernetwork after support of the FED to PDP-
l l /45 link and the 11/45 to CSD links and after
the creation of a consistent user interface.

Design parameters
The system to be developed must adhere to the
following guidelines.

* Research sponsored by the Office of Fusion
Energy (ETM), U.S. Department of Energy under
contract W-7405-eng-26 with the Union Carbide
Corporation.

San Francisco - November 1978

'l1
I;/

I;/
I;/

I//
I I
/;
I
I

- PROPOSED

=-EXISTING

ORNL/DWG/FED_.,

Fig. l(a)

866

FROll
F.E.D.

DEC-10

FRDll
DEC-ID

FROMX-1

--~~~Q~ •.
NElWORK

IBM
3705
FRONT

END

MAGNETIC
FUSION
ENERGY

NElWORK

CCIO
FRONT

END

CCJO
FRONT

ENO

POP-11/IO

MODCDMP

llDDCOlll'

PDP 11/ID
FRONT

END

IBM
3111111

IBll
3B0/11

111131Q/IBI

IBM 370/115

1111
3IQ/IO

PRINCETON
DEC SYSTEM-10

GENERAL
ATOMIC

DEC SYSTEM 10

LIVERMORE
CDC 7600

LIVERMORE
DEC SYSTEM ID
M DIVISION

LIVERMORE
DEC SYSTEM 10

HAIPvla

RJE CC70

ASP via
HIE 3105

Fig. l(b)

867

DATA 100

NEUTRON PHYSICS

DATA 100

NEUTRON PHYSICS

IBM 3IUl20
BURNSI ROWE, NJ.

11112122
NRC. WASHINGTON

RJE

llAl'IDCITY,S.D.

DATA 100

SOLID STATE PHYSICS

1111 ·sm
ENGINEERING TECH.

COPE 111111

GEORGIA TECH

CCI
FRONT

END

CRAY-I

DRIUDWG/FED 71-441-2

11112122

Y-129204-2

DEC SYSTEM 10

ORELA

MODCDMP

METALS a CERAMICS

MOO COMP

ENVIRONMENTAL SCIENCES

RJE

GENERAL ELECTRIC. SUNNYVALE

DATA 100

DOE, GRAND JUNCTION, COLO.

MOOCOMP

NATIONAL LIBRARY OF MEDICINE

MODCDMP

LOCAL

DIAL-UP
DATA
100~

Ill

OllflUDWB/fED Jl-Ml-3

IBM37111

K-ZI

POP 11/40

GOODYEAR ATOMIC

IBll 11311

PADUCAH

RJE

OAK RIDGE

1111-

AIR RESEARCH

11113B0/1H

WASHINGTON

1111318

NATIONAL LEAD

ARPANET

ORNUOWG/FED 78-448-

SCIENCE
APPLICATIONS, INC.

DEC SYSTEM ID

LOS ALAMOS
DEC SYSTEM ID

ORNL/DWG/FED 78-865

OVERALL NETWORK LOGIC

COMMAND
BY

USER

COMMAND
BY

USER

COMMAND
BY

USER

NETO UT
PROGRAM

NET
COMMAND

PROCESSOR

Fig. 2

1. A simple command should provide access to all
nodes of the network.

2. The syntax of that command should be familiar
or easy to learn.

3. The system should provide as much power to
the user as possible. Desirable options
include remote printing, plotting, punching,
and batch, as well as simple disk-disk trans
fers.

4. The command should provide wildcard file spec
ification (i.e., the user should be able to
specify that all files of a particular type
should be transferred and to specify that
request as if it were a single request).

5. Existing software should be used wherever
possible and modified as little as possible
for ease of debugging and maintenance.

6. The software should be easily adapted to dif
ferent hardware/software so that upgrading of
the system can be accomplished as easily as
possible.

7. The network should not impact system security
at any site.

System structure
In our networks, each link has the same general
structure (see Fig. 2) -- a user interface program,
which places files to be transmitted in a queue,
and a queue processing program to remove the
files from the queue and transmit them. The rea
son this structure is followed is to disassociate
the user from waiting for the transaction to be
completed (consider what happens when the link is
down and the user has to wait) and to keep the
spooling program as small as possible by handling
command decoding in a separate program.

868

I91SPL
SPOOLER

The new facility was to include interfaces to
existing software. Rather than write a user
interface that would support all the old syntaxes
and functions as well as the new ones, the new
facility was made capable of translating the new
command string into the syntaxes of the old com
mands and then invoking the old user interfaces.
By taking this approach, the old spoolers need
no changes because they were fed by the same
user interfaces and revisions of those inter
faces could be supported easily.

NETWORK-USER INTERFACE

General
As stated previously, providing an interface
featuring ease of use and great tolerance to
user errors is considered extremely important.
These characteristics are provided by choice of
a familiar syntax for the command, by the pro
vision of effective defaults, and by careful
attention to error correction facilities.

Command syntax
The svntax chosen for the command was the
DECsystem-10 Peripheral Interchange Program (PIP)
syntax. The reasons for this choice include
familiarity, ease of use, and the availability
of DEC's SCAN and WILD routines for use in the
parsing of the command string. The format for
that syntax is

DESTINATION = SOURCE

where each side of the command involves one or
more file specifications. To implement the

network facility, an additional field is included
on each side of the command, namely, a node spec
ifier. The node is delimited in the DECNET style
with the underscore (back arrow) character. The
resultant general syntax is

NODE+FILE.A,FILE.B, ••• =NODE+FILE.X,FILE.Y, •••

where FILE.A, etc., is a specification of a file.
The format for a complete file specification is

DEV:FILE.EXTnProj,Prog]/SWITCH/SWITCH

where
DEV is the device on which the file can be
found;
FILE is the name of the file;
EXT is the extension (data type) of the file;
[Proj,Prog] is the designator of the user or the
portion of the disk in which the file may be
found;
/SWITCH provides additional information about the
file.

Each file specifier (filespec) can have all the
above information specified, or several of the
fields can be specified once per side and apply
to all filespecs on that side. For some fields,
if no source for the data exists, defaults are
assumed. An example of the complete command is

.NET Xl0+DSKB;DATA.A[200,143]=FED+DSKC:INFO.CD
[200,21455]

Defaults
The provision of defaults makes the task of
the user much easier. It is usually possible for
a user to effect file transfer with as few as two
entities - remote node and source file specifi
cation. The defaults assumed are listed below.

Field

Node

Destination
device
Des ti nation
file name
Remote PPN

Source device
Local PPN

Default

The node to which the user is logi
cally connected

OSK:

Same as source file name
The mapping of the user's logged
in PPN will be used, if such a
mapping exists
OSK:
The PPN under which the user is
logged into the system.

A user could effect a file transfer by typing

• NET XlO_ = FILE.ABC

Error correction
In specifying the transmission of several files,
the user is likely to make a typi.ng error. To
preclude the requirement to reenter the entire
command, the user is prompted for correction of
such errors as the following:
1. null device,
2. wildcard device,
3. null switch,
4. unknown switch (misspelled switch),
5. ambiguous switch (misspelled or too abbrevi

ated),

869

6. omitted switch value,
7. unknown switch value (misspelled),
8. ambiguous switch value (misspelled or too

abbreviated),
9. zero or excessive-length project or pro

grammer number,
10. no file satisfying a wildcard specification.

Each of these errors is normally treated as fatal
by SCAN or WILD, but special intercepts of their
monitor returns have been implemented.

Functions available

General. The general function of the NET com
mand is to break the command string specified by
the user into one or more command strings accept
able to (i.e., in the syntax of) the remote
computer. The strings generated are saved in a
disk file and passed to the spooler via the
queueing structure.

These generated strings

1. tell the local spooler what function to per
form,

2. are transmitted to the remote computer,
3. tell the remote spooler what function to

perform.

Three primary functions are provided in this
network: file transmission, file retrieval, and
third-party transfers. File transmission is the
transfer of a file from the node to which the
user is logically connected to some other node
in the network. File retrieval is the transfer
of a file from some other node in the network to
the node to which the user is connected. Third
party transfers involve the transfer of a file
from one node to another when neither of the
nodes involved is the one to which the user is
connected.

Transmission. In simple file transmission, the
source node is the local computer. The command
string generated by the NET command might be a
hybrid form, depending on the destination node
type; that is, if the destination is the PDP-11/
45, then the destination side of the generated
string will be in RSX-110 format while the source
is in DECsystem-10 format. The spooler will find
a file containing the command string(s) defining
the transmission and will look in a staging area
for the file to be sent. The command string will
then be sent to the remote node and will be fol
lowed by the data file. Upon receipt at the
remote node, the command string (always at the
first block sent) will be parsed to determine dis
position of the data •

If the destination node is a DECsystem-10, several
destination "devices" are possible. In addition
to the usual disk device, the user may specify
"INP", "LPT", and any other legal queue. Thus the
user may submit jobs to the batch queue on the
remote 10 or cause the file to be printed or
plotted, etc. In addition, because communications
queues are legal destinations, the file can be
submitted to the queue for the IBM System/360 or
for the MFENET.

Examples of file transmission follow:

.NET+-XlO FILE.A[200 ,33]=FED+FILE .A[4,5]

which sends FILE.A from [4,5] on the FED node to
[200,33] on the CSD node;

.NET A7600+-/U=Xl0+-FILE.CTL[4,5]

which sends FILE.CTL from [4,5] on the CSD'node
to the user's area of the MFENET CDC 7600.

Retrieval. When the NET command processes a com
mand in which the local node is the destination,
it still builds strings and saves them for the
spooler. In this case, however, no data will be
copied to the staging area (because the source
files are on the remote computer). Furthermore,
it will be the source side of the command that
will be translated to the syntax of the remote
computer.

When the spooler picks up the file containing such
command strings and recognizes that they are
retrieval requests, it sends the command strings
alone (without data) to the computer designated as
the source node. That computer, when it receives
a command string in which it is the source, simply
places the request into the queue for the communi
cations spooler with a flag set to indicate that
the data file is not in the staging area. For
example,

.NET =Xlo+FILE.AA[200,3]

takes the file FILE.AA from area [200,3] on the
XlO node and transfers it to the user's area on
the local node.

Third-party transfers and wildcard specifications.
Third-party transfers refer to transmissions in
which the local node does not participate as either
source or destination. Wildcard specifications
refer to the use of a wildcard character in place
of one or more characters of a file name or PPN.
When third-party transfers or wildcard retrieval
requests are specified, processing must be mod
ified somewhat.

Recall that the handling of the IBM and MFENET net
works required the running of another program to
provide the interface to their spoolers. If such
a request were.received by the spooler on one of
the DECsystem-lOs, it would have to overlay itself
to invoke such a program, thereby terminating the
communications link. If a wildcard retrieval
request were received by the spooler, the spooler
would have to include the SCAN and WILD programs
to resolve the required file names, and the
spooler thus would be much larger.

Rather than take either of these actions, these
facilities have been provided in another manner.
When the NET command recognizes such a situation,
the original net command is saved by itself in a
file in the staging area, and another command
string is invented that submits the saved command
as a job for the batch queue on the remote
DECsystem-10.

The result of this procedure is that the command
string entered by the user is actually executed
on the remote computer in the batch mode. The

870

NET command at the remote computer then takes
care of wildcards or the invocation of the inter
faces to the other networks.

Examples of third-party transmissions and wildcard
file retrieval follow:

.NET RSX+-LPT:=Xlo+ABC.LPT[33,45]

when.the user is logged into the FED node causes
the printing of the file ABC.LPT from area [33,45]
of the XlO node on the PDP-11/45 impact printer;

.NET =Xlo+FILE.*

when the user is logged into the FED node causes
the retrieval of all files that have file name
"FILE" from that user's area on the XlO node.

Auxiliary functions
With the establishment of this link, several other
functions became possible. One of them was a pro
gram enabling the user to execute the DIRECT com
mand on the remote DECsystem-10. The user is
prompted for the DIRECT command to be executed,
and the response is submitted to batch on the
remote computer. A whole family of applications
could be built on this concept.

Another very powerful facility interfaces the
DECsystem-10 to the plotters run from the IBM
System/360s of CSD. A 360 job that can do ap
propriate conversions is created on the 10 and
queued with the data for transmission to the 360s.
By this ploy and using a special PLOT command
developed at FED, the plotters of the IBM System/
360 are just as accessible to users logged into
the DECsystem-10 as are graphics terminals physi
cally linked to that 10.

MONITOR INTERFACE

General information and description
The FED DECsystem-10 and the data gathering com
puters of the Fusion Energy Division are all
nodes to the FED PDP-11/45. The link of concern
here is the one between the FED 10 and the 11/45.
The hardware connecting these computers is a Data
Link Control unit (DLlO), which permits direct
access to the memory of the DECsystem-10 by the
PDP-11/45. The DLlO was chosen (rather than a
DA28 Interprocessor Buffer or the DN87 Communi
cations Processor) because of the high speed
shared memory segment window available via the
DLlO and because of the nature of data exchange
offered to the two systems (TOPSlO and RSX-llD).

TOPSlO implementation
We wanted to use a service program that was com
patible with the DAS78/DN61 class of devices,
but the DEC service program for this type of
device pl aced unacceptable cons tra i n:be on the sub
wi ndows supported by such processors. Therefore,
we developed our own device-service program,
which permits the logical subwindows to be imple
mented and supported as generalized I/O devices.

The DEC service program (D78INT) was replaced by
our version, thus making monitor generation quite
easy and permitting compatibility with future
monitor releases (as long as there are no major

changes in DEC philosophy). The DLlO window is
used in nonnal fashion and is referenced via

!mnemonics I provided by TOPSlO for DAS78 operations
!(XXIO, XXOO, XXIl, etc.). A feature not offered
by DAS78 remote job entry software permits the
job controlling transmission in the DECsystem-10
to select program units in the front end system
and then co111Tiunicate with these units under min
imal constraints. The content and protocol of
these front end programs are at the discretion·
of the DECsystem-10 program. The service program
will support all four DLlO windows.

PDP-11/45

General description
The Fusion Energy Division's communications sys
tem consists of a PDP-11/45 central processor,
memory, fixed and moving head disk, line printer,
electrostatic printer/plotter, and a variety of
communications interfaces. Operating under
Digital Equipment Corporation's real-time multi
tasking executive RSX-11 D. the s.vstem provides a
file transfer interface between all systems con
nected to it, makes its own peripherals available
to all systems connected to it, and provides a
software development environment for other PDP-11
systems.

Communications elements
The communications system contains a wide variety
of synchronous, asynchronous, and direct-memory
access (OMA) links. Support is provided for a
wide variety of standard and special purpose
protocols having widely differing throughput and
data format characteristics.

Software elements
Aside from the executive and its system tasks,
which have not been locally modified, the soft
ware consists of the following:
1. link driver, receiver, and transmitter tasks

for each external system link;
2. driver and queue-server (despooler) tasks for

each local, nonfile structured peripheral;
3. a spooler/conversion task, SPOOL;
4. a despooling scheduler task, SCHDSP;
5. an operator link command task, ••• QUE.

Transmission processing
The protocol for all file transmissions in the
network requires an ASCII command string describ
ing the operations to be performed, optionally
followed by data on which to operate. Such
transmissions are processed by the PDP/45 as
described in the following sections.

Link driver and receiver tasks. The link driving
tasks control the communications hardware inter
faces and arbitrate whatever protocol governs the
specific link. When a remote system indicates a
readiness to transmit, the receiving link driver
requests the loading and execution of the appro
priate receiver task, which will remain active
until the data set has been completely received.
The receiver task writes the incoming data into
a file in the system's spooling area. It also
creates a description of the spool file to pass
to the spooling program.

871

Spooling program. The command string, which
precedes the data set, and the description of
the spool file created by the receiver task are
now passed to the spooling program. This task
perfonns any internal conversion necessitated by
link command switches or by differences between
the source and destination nodes and then moves
the result into a transmission queue in the sys
tem's queueing area. The spooler then makes an
entry in the appropriate transmission queue,
which contains the link co111Tiand itself and a
description of the data set.

Note that the queueing structure used by the com
munications system is that which is implied in
the RSX file system. The destination node is
used as the queue name and as the file name
extension. The file version number serves to
order the queue. Facilities provided by the
fi"le system allow adding to, picking from, and
scanning of one or more FIFO queues quite simply.

The reliability of the system is closely related
to the file structuring as well. Because the
system maintains all directory information on
the volume to which it pertains, the queue entries
and data sets are highly protected from loss
through hardware failure (and the executive and
file system software have never failed). Further
more, the operator may redirect the spooling and
queueing pseudo-devices to and from actual disk
devices at will, providing great flexibility in
system maintenance and holding data in case of
link failure.

Despooling and transmission. Despooling may be
initiated either by scheduling or by a request
from the remote system. During the despooling
process, the link command and the data set are
taken from the queueing area by the despooler
and passed to the link driver. As before, the
link driver arbitrates the protocol and inter
faces the software and the device hardware.

Excehtions. There are several important exceptions
to t is general flow. For example, several
external systems service data collection appli
cations only. Links serving such systems support
only transmission from that system into the PDP-
11/45, so no transmission queues or despooling
tasks exist in the PDP-11/45 for such links.

The local printer and plotter peripherals, while
considered output links for the purposes of
spooling, cannot receive files from external nodes
and thus do not have receiver tasks defined.

Finally, a link command may not have an associated
data set, as is the case in the file retrieval and
third-party requests. The only software component
involved in this case is the spooler, which han
dles the routing.

Oherator command task
T e operator link command task allows the system
operator to enter the link commands to the spooler
as if they came from an external node. Thus the
operator command task is equivalent to a receiver
task with the console substituted for the external
link. Data sets to be transmitted (if any) may
reside on any file structure.

Conclusion
The many levels of hardware and software priority,
the separation of functions, and the file struc
ture processing provided by RSX-llD permit the
combination of diverse components into a single,
highly reliable unit tuned to conmunications
effectiveness.

CONCLUDING REMARKS

The noteworthy features of this network include
easy, powerful, and effective access, considerable
off-loading of the DECsystem-lOs to a PDP-11/45,
and utilization of software from several sources
to provide the unification of three networks. The
network provides an extremely useful tool to users
of the data gathering subnetwork or of the
DECsystem-lOs.

872

ACKNOWLEDGMENTS

Mr. Duane Winkler, Computer Sciences Division of
Union Carbide Corporation Nuclear Division, wrote
the software supporting the link between the CSD
DECsystem-10 and the CSD IBM System/360 computers.
Betty Shuttleworth, Barry Howard, and Peter Pearson
wrote the software supporting the linking of DEC
system-lOs to the MFENET. Jack Francis, Oliver
Yonts, and Jay Reynolds of the Fusion Energy
Division of Oak Ridge National Laboratory wrote
software supporting links between the PDP-11/45
and data gathering PDP-12s and PDP-Bs. Reid Gryder
made many valuable suggestions. Ms. Rose Ann
Pemberton prepared the manuscript. Our thanks to
all these people.

POLYNOMIAL OF DEGREE N-1
FROM N DATA POINTS

Gerald Roux
The Boeing Company
Seattle, Washington

ABSTRACT

A method is presented to derive a polynomial of degree N-1
which passes through N data points. An algorithm implements
the method of divided differences to obtain the polynomial.

Introduction
Nonlinear relationships abound in nature. The input/
output functions of processes, be they chemical,
electrical.or mechanical are usually nonlinear. The
ability to represent these nonlinear functions
mathematically with a known degree of accuracy would
often simplify data processing. lists of empirical
data could be expressed as one mathematical funtion
requiring less space to store and an easy means of
data manipulation. Interpolation between discrete
data points would be simplified when using a contin
uous representation of a field of data points.

Continuous nonperiodic data can be approximated by
a series of the form

Y =a +ax+ a x2 +a x3 +····+a xn (1)
0 l 2 3 n

A function can be approximated as closely as desired
by increasing the number of terms. an infinite series
is needed to exactly represent a continuous non
periodic function. However, n points on any continuous
funtion can be exactly represented by a polynomial
of degree n-1.

Method Of Divided Differences
Equation (1) is defined by the coefficients. the
value of the coefficients can be obtained by the
method of divided differences and the application
of Newtons interpolation formulal. Given n data
points (xi , yi) the polynomial is defined by

y = a0 + a1(x-x1) + a 2 (x-x 1)(X~x2) +·····

+a (X-x.)(X-x)'"'"(X-x) n l 2 n-1 (2)

where a0 through a are the coefficients obtained
from an array of d~vided differences. To form the
array put the given data points (x. , yi) into two
columns. Generate n-1 more columns 1with numbers at
intersecting diagonals from the given data pairs as
follows: Divide the difference of the two numbers
just above and below the diagonal intersection and
immediately to the left by the difference of the x's
tn the·diagonals through the intersection. An example
will illustrate the process. given 4 data points
(-10,-5) , (-5,5) , (0,4) , (10,5) the following
divided differences array would result.

Proceedings of the Digital Equipment Computer Users Society 873

-10 -- -5----

----- 2-----5 5 ---- ..--- - . 22----

-----. 2 ---- --- .012 4---- ____ .02 o---

10--- 5
----- .1

The a. values are along the top diagonal. Values for
a0 thtough a3 are -5 , 2 , -.22 and .012.

Inserting the ai and xi values into equation 2:

y = -5+2(X+l0)-.22(X+lO)(X+5)+.012(X+lO)(X+5)(X+O)

Multiplying and combining terms:

y = .012x3 -.04x2 -.7x +4

The method yealds an exact polynomial for the points
given. the fit to any continuous function can be
made as good as the user chooses by increasing the
number of points used and therefor the degree of the
resulting polynomial.

Implementation
A program to derive the polynomial which will pass
through any number of points using the method of
divided differences has been written in BASIC. The
program requires only 350 words of memory to
implement and an additional 186 words to solve a
10th degree polynomial. the program listing is shown
below. Program flow is as follows. The (x.,y.) data
points are loaded into array AA(O, i) and AA(i, i)
locations in line ~10. The divided differences array
is then developed from these (x.,y.) points in
program lines 112 through 122 u~ing nested FOR loops
to perform successive divisions of the differences.
The completed differences array for the given points
is

10 -5 2 -.22 . 012

-5 5 -.2 .02 0
0 4 . 1 0 0

10 5 0 0 0

San Francisco - November 1978

The ai values for equation 2 are in AA(i+l,O) and
the x. values for equatfon 2 are in AA(O,i). Array
AA th~refore contains all the information necessary
to complete the desired polynomial. Lines 226 through
236 assemble the polynomial.
The locations in working array BB and array CC cor
respond to one greater than the exponential value of
X in the final polynomial. The final content of each
location in array CC is the coefficient value. That
is, the content of CC(4) is the coefficient of x4-l.

Successive multiplications of the (X-xi) factors are
performed in line 132 and the results are summed
into the appropriate locations of working array BB.
Line 128 then multiplies array BB by the ai value in
AA(i+l,O) and sums the result into array CC. After
n iterations the final coefficient values for xo
through xn-1 are in CC(O) through CC(n-1). The poly
nomial is then read from array CC by lines 140
through 146. The example results are shown below.

Reference
(1) G.A.Korn and T.M.Korn, Mathematical Handbook for

Scientists and Engineers, 2nd. ed. McGraw-Hill,
1969, p. 747

100 REl'IARK PROGRAM TO GENERATE POLYNCl'IIAL TO PASS THROUGH H POIHTS
USING THE t!Ellm OF DilJIOEO DIFFEREHl."'ES.

101 RELEASE UAR IABLES
102 PRINT •HOW MANY POINTS ARE THERE?": ItfllT H
104 DIHEtlSIOH AA<tl,H-1>.BB<H>.CC<H>
106 PRINT ·usT EACH POINT ()(,Y)"
108 FOR 1=8 TO H-1
110 IHPUT M<0.I>.AA<l,I>
112 tlEXT I
114 FOR S=l TO H-1
116 FOR 1=8 TO H-1-S
118 LET AA<S+l, I >=<AA<S, 1+1 >-AACS, I))/(AA(Q,S+I)-AA<O, I))
120 IEXT I
122 1£XT S
124 LET BB< 1 >=1
126 FOR J=t TO H
128 LET R=M<J,0>:LET CC=CC+<RWB>
130 FOR I::H TO l STEP -1
132 LET Q=8-AA< 0, J-1> : LET BBC I>=« QUl8(I >>+BB< 1-1))
134 NEXT I
136 NEXT J
138 PRIHT :PRINT "THE m..YHOl'IIAL FOR nE ";H;" POINTS GIVEN IS•"
139 PRINT :PRINT •PRIHT
140 FOR I=l TO H
141 IF CC<H-I+l >>O:GOTO 144
142 PRINT 112*<1-l>;CC<H-I+l>;•x•;•--tc•;tt-I•GOTO 146
144 PRINT 112*<1-l>;•+•;CC<H-I+l>;"X";"--tc•;tt-I
146 NEXT I
148 STOP

10

s
6

4

2

;.r-m
~

ti-

...

TTTT

L

TTTT TTTT -..TT TTTT TTTT

.....
~ ~

~
""

TTTT

... ~ -....
0

-2

-4

J

... L
rL

-6
~~

-a ~

-10 ~ ..1...L.L.1.

-10 -s
_Ll__LL -1...LLl. _l_LLl_ ...l....LLL _Ll_l_l_ _.Ll_l_l

-~ ... 0
3 2

V=.012X -.04X -.7X+4

874

"Tm

Ll...Ll

6

TTT"T.;,

•

~~
7...,

•
•

•

•
•

..l.J..J...J..-

10

ATROPOS - A VERSATILE DATA ACQUISITION AND ANALYSIS SYSTEMt

C.A. Logg and R.L.A. Cottrell
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94305

ABSTRACT

At SLAC we frequently need versatile, portable, rugged,
and compact test and control modules to use in the develop
ment and testing of detection equipment for high energy
physics experiments. The basic system we have developed is
based on an LSI-11 microcomputer with 24K RAM, 4K ROM, 2
serial interfaces (one to the console terminal, the other
to the large SLAC IBM computer complex (the 'TRIPLEX')), a
programmable clock, and a CAMAC crate controller. Data
logging support is provided for magnetic tape, floppy disk,
and an interactive program ACQUIRE which runs on the TRIPLEX
under the timesharing system ORVYL. The data is read from
various CAMAC modules, collected, buffered, and optionally
logged. At a lower priority, the data read is sampled and
analyzed in real time on the LSI-11 to produce various
histograms and tables. Concurrently a more extensive
analysis can be performed by the TRIPLEX program on the data
which is logged to it. Interactive facilities provided by
the microcomputer operating system enable the user to change
CAMAC module addresses and the function codes used with them,
specify various data cuts and transformations that are to be
performed on the sample data, and specify new histogram
limits and titles. Results of the real-time analysis, by
both the microcomputer and the TRIPLEX program (if it is
attached), may be displayed in graphical or tabular form on
the console terminal.

The basic system hardware cost (exclusive of the magne
tic tape drive and floppy disk drive) is around $7000. The
software is written in a modular fashion so that the user
can supply his own data reading and analysis routines. This
system has been in use for two years by various groups on
several LSI-lls at SLAC.

INTRODUCTION able on the TRIPLEX for source code preparation
and storage, object code production and linking,
and down line loading ATROPOS is an LSI-11 microcomputer1 based soft

ware system for data acquisition and analysis which
is now in use at SLAC. The design aims have been to
provide a system that:

* is CAMAC compatible
* is portable
* is simple to use
* is modular in software and hardware so it can be

easily tailored to individual needs
* can make use of the various facilities2 of the

large SLAC IBM computer complex (the 'TRIPLEX')tt
without modification to the TRIPLEX hardware or
system software; in particular:
+ can be programmed by making use of the sophis

ticated software development facilities avail-

t Work supported by the Department of Energy under
contract no. EY-76-C-03-0515.

tt The SLAC computer complex is composed of two IBM
370/168's which run OS/VS2 Release 1.6, and one IBM
360/91 which runs OS/MVT Release 21.8, all under
:the control of ASP version 3.2.

Proceedings of the Digital Equipment Computer Users Society 875

+ can be used interactively with the TRIPLEX to
provide a more sophisticated online analysis
than the LSI-11 can provide on its own

* can be used effectively in stand alone mode (i.e.,
independent of the TRIPLEX and any logging
facilities)

* is low in cost.

The basic pattern around which the system must
work is that when an 'event' happens, the data re
sulting from that event must be read in, analyzed
locally, and sometimes logged to some form of mass
storage. A grouping of events in time (from time A
to time B) is called a 'run'. When we 'BEGIN' a run,
various initializations must occur. The user must
be able to 'PAUSE' the run, possibly to examine the
data already taken, to change or fix the hardware, or
maybe to change slightly the analysis which is
happening on an event by event basis. Then the user
will want to 'RESUME' the run. At some point the
user will want to 'END' the run, and henceforth the
data that was taken will be referred to as the data
from RUN N where N is some number. During a run,
the user must be able to examine in graphical and

San Francisco - November 1978

tabular form the results obtained so far. He may
selectively restart some of the analysis (clear
histograms) or modify the analysis (redefine or define
some data transformations and/or histograms where the
results are binned, or even reconfigure the CAMAC
devices, i.e., change their addresses and/or function
codes).

The following sections describe the system we
have developed.

HARDWARE CONFIGURATION

The basic system (Fig. 1) consists of an LSI-11
with EIS/FIS,l 24K 16 bit words of RAM, 4K 16 bit
words of Intel 2708 EPROMs, 2 serial interfaces
(DLVll),l a programmable line time clock (KWllL),3 a
CAMAC crate, a dedicated type U CAMAC crate control
ler (Schlumberger JLSI-10), and an alpha-numeric
video terminal (usually an Ann Arbor 4080D).

The 4K of EPROM contains a kernel of routines
which support the link to the TRIPLEX, and provide
some basic I/O and conversion facilities for use by
the stand alone systems which are down line loaded
into the RAM. A further description of the EPROM
programs can be found in Reference 4.

One of the serial interfaces is for the connec
tion to the TRIPLEX. Connnunication to the TRIPLEX
is via an EIA RS232C asynchronous serial line,
utilizing a telephone and modem or a hardwired line.
The second serial interface is for the console
terminal.

More elaborate ATROPOS systems (Fig. 2) have
included:

* a Tektronix 4013 as the console terminal; it is
used concurrently as the graphics display device

* a third serial interface that goes to an Ann Arbor

876

terminal (without keyboard) which is used to pro
vide a constantly refreshed tabular display of the
event data, current run statistics and 24 bit
CAMAC scaler readings
an 800 bpi 9 track tape drive for local logging of
data ttt
a floppy disk for backup reloading of the program
and local logging of data.

SOFTWARE DEVELOPMENT AND MAINTENANCE

The programs are written and maintained by using
the software development facilities available on the
TRIPLEX. · The facilities include a PL-11 cross com
piler, 5 a MACR0-11 cross assembler,6 a cross linker,6
the WYLBUR text editing system,7 IBM OS data sets,
and all the peripherals of a large computer center.
A further description of how we utilize these facili
ties for our software development can be found in
Reference 4.

The programs are edited, compiled and/or assem
bled and linked together on the TRIPLEX to form an

·absolute load module which is then down line loaded
into the LSI-11. This allows us to have complete
access to our software development facilities from
any site where we have access to a hardwired line to
the TRIPLEX or a telephone and modem.

OPERATOR INTERACTION FACILITIES

Operator interaction is provided via the console
keyboard and optionally via a specially designed ex
periment control panel (ECP) (see Fig. 2) which

ttt The ROM kernel has a facility for dumping the
RAM contents onto floppy disk and restoring it from
floppy. It takes about 3 minutes to down line load
ATROPOS (16K words) into the LSI-11 over a 9600 baud
TRIPLEX line and about 90 seconds to reload from the
floppy disk.

Fig. 1. The basic system is
composed of an LSI-11, a CAMAC
crate, and an Ann Arbor terminal.

Fig. 2. One of the more elaborate ATROPOS systems
consists of (from top to bottom): an Ann Arbor
terminal (without keyboard) as an auxiliary display,
a magnetic tape drive, an ECP, a dual floppy disk
drive, the LSI-11 itself, and on the right, the
Tektronix 4013 terminal which is used as the LSI-11
console and the graphics display device.

interfaces to the system via a single width CAMAC
module.

The console keyboard is interrupt driven. The
user enters, through the keyboard, a coIIlllland text
string and terminates it with a carriage return. The
input text string is then matched against a set of
COIIlllland strings and the appropriate subroutine is
called to execute that coIIlllland. Some coIIllllands will
prompt further for a text string, octal, decimal
integer or floating point number accordingly.

The ECP has two 16 bits octal thumbwheels (xe
ferred to as ETWO and ETWl), two 4 digit decimal
thumbwheels (ETW2 and ETW3}, and one hexadecimal
thumbwheel (ETW4). It also has 16 sens.e lines
(toggle switches), 16 push puttons, 4 digits of 7
segment LEDs, and 16 LED status lights. When one of
the buttons is pushed, a CAMAC LAM interrupt occurs.
The routine which responds to this CAMAC interrupt
reads the push buttons and calls the appropriate
routine to handle the push button command. Every
I/30th of a second, the ECP thumbwheels and toggle
switches are read, and their values are saved in the
appropriate CONSTANTs (ETWO, ETWl, ETW2, ETW3, ETW4,
TOGL}. The CONSTANTs are discussed in the section
entitled User Accessible Variables. The 7 segment
LEDs are used together with one of the octal thumb
wheels to provide monitoring of memory locations.
The status lights are used to indicate the status of
the program and the data taking.

877

For an ATROPOS system which does not have an
ECP, commands are added to the keyboard command list
which enable the user to set the toggle switch bits
in TOGL, thumbwheel CONSTANTs (ETWO, ETWl, ETW2, ETW3,
ETW4), and issue, through the keyboard, commands that
would have been provided by the ECP push buttons.

A list of the commands available follows. Those
with a double asterisk are also provided by the ECP
if one is available. The coIIlllland HELP when entered
via the keyboard will print a list of available
commands together with a short description of each.

** BEGIN
** BKCLR
** CONLIS
** CONS ET
* DETACH

** END
* EXPDEF
* EXPDEL
* EXP EXEC

* EXPLIST

* EXP SHOW

* HALT

** HCLR
* HDEF
* HDEL
* HELP

** HGET
** HLOG

** HOUT
** HSUM

* JOBTIHE

* DDT

** PAUSE
* RECOVER
* RESTART

** RESUME
* TOGL

* TRAC EOFF

* TRAC EON

* WYLOFF
* WYLON
* CTRL U

- Begin a run.
- Clear the background queue.
- List the CONSTANTs.
- Set a CONSTANT.
- Terminate the logging.
- End a run.
- Define an expression.
- Delete an e~ression definition.
- Execute the defined expressions.

This is provided for system testing
purposes.

- List the expressions which are
defined.

- List the values the expressions had
after their last evaluation.

- Execute a HALT instruction and put
the LSI-11 into ODT mode.

- Clear a histogram.
- Define a histogram.
- Delete a histogram.
- Print a list of available commands.
- List the histogram definitions.
- Log the contents of a specified

histogram.
- Display a histogram.
- Display ~he statistics for a speci-

fied histogram.
- List the time and date the load

module was created.
- This coIIlllland provides limited abso

lute address memory access and
modification. This is provided for
system testing purposes.

- Pause a run.
- Recover from a TRIPLEX crash.
- Restart the logging.
- Resume a run.
- This allows the user to set a sense-

line. This cOIIlllland is provided only
on systems which do not have an ECP.

- Disable the trace trap. This is
provided for system development.

- Set a trace trap. This is provided
for system development.

- Disable all TRIPLEX COIIllllUnication.
- Reenable TRIPLEX COIIllllUnication.
- This is equivalent to pushing the

UPDATE button on the ECP. It updates
the display according to what is
contained in ETWO.

The commands which are provided for system
testing purposes are usually included in the final
production system, since they may be useful in
checking out the CAMAC hardware and other peripherals.

USER ACCESSIBLE VARIABLES

In an ATROPOS system there are several groups
of variables, commonly referred to as the CONSTANTs,
which the user has access to. Each group of
CONSTANTs is identified by an ID in the range 100
thru 177 (octal). The CONSTANTs include:

* various run statistics such as the run number
(RUN#), the number of events read so far (READ),
the number of events logged (LOGD), the number of
events not logged (LOST), and the number of events
analyzed locally (SAMP)

* various parameters associated with the histogram
display format (TOGL,ETW0,ETW1,ETW2,ETW3,'ETW4)

* event data pedestals
* event data CAMAC addresses
* event data CAMAC read functions
* the event data
* event data histogram ID's

Commands are provided so that the user can easily
look at, and, in some cases, change the values of the
CONSTANTs. Each CONSTANT has associated with it an
up to four character name, or an up to four character
name and an index. A facility is provided whereby
when the user tries to set a CONSTANT, a subroutine
can be called to check the value it is to be set to.
That subroutine then can either issue an error
message to indicate a bad value (and possibly a re
minder of the purpose of the CONSTANT) and set a flag
(so the value will be reprompted for), or set the
value to some reasonable value.

CONSTANT accessing commands are:

* CONSET - examine a CONSTANT and set its value
For example:*

CONS ET
CONST NAME= AAl (AAl is a CAMAC address variable.

164S02 is its octal Q-BUS
address, and 1 10 1 is the
decoded crate, station, and
subaddress.)

(ABS.ADDR.,C,N,A)= 164S02 1 10 1
CRATE=l
STATION=< er>

SUBADDRESS=2
CONST NAME= APl
0: 7S -

CONST NAME= <er>

(A null response does not change
the old value.)

(0 is current contents, replace
it with 7S)

(The <er> terminates the CONSET
dialogue.)

* CONLIS - lists a group of CONSTANTs in tabular form
For example:

CONLIS
CONSTANT GROUP? ? (A '?' gives a list of the

CONSTANT group titles.)
101-STATISTICS
102-ECP OPTIONS

+ In the examples user responses are underlined, and
all user responses are terminated with a carriage
return. The symbol <er> refers to a carriage return
typed before any other input on that line (~.e., a
null response). Lower case text is a comment on the
example which would not appear in a real session.

878

103-ADC DATA PEDESTALS
104-TDC DATA PEDESTALS
lOS-ADC DATA CAMAC ADDRESSES
106-TDC DATA CAMAC ADDRESSES
107-ADC DATA READ FUNCTIONS
110-TDC DATA READ FUNCTIONS
111-ADC HISTOGRAM ID
112-TDC HISTOGRAM ID
113-DRIFT CHAMBER READOUT PARMS
114-SCALER CAMAC ADDRESSES
llS-ADC DATA
116-TDC DATA
117-DRIFT CHAMBER TIME, ADR
120-SCALER DATA
121-DRIFT CHAMBER WIRE PEDESTALS
122-DRIFT CHAMBER WIRE GAINS
CONSTANT GROUP? lOS
(These are the CAMAC address variables. The
numbers in parentheses are decimal and are the
crate, station, and subaddress values which have
been decoded from the octal QBUS address which is
listed just after them.)
AAO (1,10,0) : 164SOO;
AA2 (1,10,2) 164S04;
AA4 (1,10,4) 164Sl0;
AA6 (1,10,6) 164S14;
AAS (1,10,S) 164S20;
AAlO: (1,10,10) 164S24;
CONSTANT GROUP? llS

AAl (1,10,1)
AA3 (1,10,3)
AAS (1,10,S)
AA7 (1,10,7)
AA9 (1,10,9)
AAll: (1,10,11)

ADO llS; ADI O; AD2
AD4 : lOS; ADS : 9; AD6
ADS : llS; AD9 : 110; ADlO
CONSTANT GROUP? <er>

129; AD3
9; AD7

29; ADU

(The <er> ends the CONLIS dialogue.)

DATA ACQUISITION AND LOGGING

164S02;
164S06;
164S12;
164S16;
164S22;
164S26;

14S;
12S;
lOS;

When an ATROPOS system is created, the appro
priate routine must be supplied to respond to the
event interrupt. The CONSTANTs contain the CAMAC
addresses of the modules from which the data is read.
These are set by default at system initialization
time, but may be changed by the user interactively at
any time. Basically all the routine does is read the
data, call a system routine to log it, and pass the
data onto the sampling routine which is also user
supplied and invoked at a lower level. In order to
change the 'device' to which the data is logged (the
.TRIPLEX, magnetic tape, or floppy disk), one has to
specify the appropriate object module library and
relink the program. No actual coding changes are
necessary. Due to the memory required, one cannot
create a system which contains simultaneously all
three logging facilities. All logging is interrupt
driven and there is provision for both synchronous
and asynchronous operation. All logical records
passed to the logging routine are buffered. In the
case of the tape and floppy devices multiple buffers
are used. The number (and length in the case of the
tape device) is determined dynamically by the event
data rates and the available memory. Each physical
record includes information to identify the computer
system which is generating it and the current run
number. Data descriptors are included with the tape
and floppy device data to simplify conversion of
data types (e.g., floating point, integer, ASCII
character strings) from LSI-11 format to IBM 370
format. Event data records also include the event
number to provide a check on the data. In the case
of the floppy disk logging, each run is written as
a separate file in RT-11 format. S

ACQUIRE - THE TRIPLEX LOGGING TASK

For the logging to the TRIPLEX, ATROPOS communi
cates with a job ACQUIRE,9 which is running under the
interactive time sharing system ORVYL.10 The TRIPLEX
terminal communication protocol is basically half
duplex with a DCl character being sent by the TRIPLEX
to turn the line over to the terminal. Characters
sent by the 'terminal' when it does not own the line
are ignored by the TRIPLEX apart from a BREAK which
interrupts the TRIPLEX and, after it has been pro
cessed, causes the TRIPLEX to turn over the line.
Characters may be sent by the TRIPLEX at anytime.
When ACQUIRE is attached, it intercepts any messages
from ATROPOS to the TRIPLEX, and processes them.
There are three types of messages sent by ATROPOS to
ACQUIRE: data messages, ACQUIRE commands, and
regular WYLBUR commands. The protocol for the
ATROPOS/ACQUIRE communication enables ACQUIRE to
distinguish between the three kinds.

Data messages start with a DC3 character. They
also have a checksum for the data record on the end
of them. The communication line to the TRIPLEX only
supports 7 bit character transmissions and some of
those characters are used as control characters by
the communications controller at the TRIPLEX. There
fore each 8 bit byte of binary data is encoded into
two 7 bit ASCII hex characters before transmission.
When ACQUIRE receives a message with a DC3 on the
beginning of it, it computes a checksum, decodes the
binary data, saves the data record in the data file
(if the checksum is good), and sends a reply back to
ATROPOS as to the status of that record. If the
record had a checksum error, ACQUIRE notifies ATROPOS
and the message is retransmitted. The transmission
rate that can be reasonably sustained over a 2400
baud communication line is about sixty 8 bit bytes/
second of logical data.

ACQUIRE commands are commands typed by the user
that (in most cases) start with an equals sign ('=').
These commands allow the user to control the analysis
which ACQUIRE is performing on the data which is
logged to it. For example, the user may define or
redefine the ACQUIRE histograms, clear them, display
them (on the LSI-11 terminal or any TRIPLEX graphic
device (e.g., the Versatec plotter)), or manipulate
the format in which the ACQUIRE histograms are dis
played.

Any command not preceeded by an equals sign or
a DC3 character is checked against a list of ACQUIRE
commands, and if it is not there then it is sent by
ACQUIRE onto WYLBUR for processing. In this fashion,
the terminal can be used to communicate with WYLBUR
and hence be used for program development etc. even
while taking data.

Since the ACQUIRE task is written in IBM FORTRAN
IV it may be modified by the experimenter. Further
it has access to almost all the facilities of the
TRIPLEX. For example, it uses the facilities of DPAK
.and HPAKll and Unified Graphics12 for displays and
histogramming, disk mass storage facilities (IBM OS
data sets), and the output facilities (lineprinter,
Versatec plotter, and other peripherals) available
on the TRIPLEX.

HISTOGRAMMING FACILITIES IN ATROPOS

Histograms provide a convenient way of analyzing
and displaying the data which is being accumulated.

879

In order to provide as much flexibility as possible,
our facilities allow the user to define and/or re
define the histograms both at compile and execution
time. Up to 63 histograms (ID's range from 1 to 77
octal) can be defined at any given time. For each
the user must specify the ID, the number of bins, the
low bin, the bin width, and a title which is displayed
when the histogram is displayed. The output facili
ties are modularized so that one can easily change
display devices without a lot of recoding. Typically
we use a Tektronix 4013 terminal for a console ter
minal and display the histograms on that.

Histogram commands available are:

* HDEF which enables the user to define a histogram.
He supplies an ID, number of bins, low bin value,
bin width, and histogram title.
For example:

·HDEF
Im-1
ti of BINS? 100
LOW? 0
WIDTH?- 5
TITLE? TOTAL NUMBER OF WIRES FIRED EACH EVENT

(Up to 80 characters)

* HCLR which prompts for the ID of the histogram to
be cleared. A response of 0 clears all the histo
grams. The push button HCLR command uses the
contents of ETWO as the ID.

* HDEL which prompts the user for the ID of the
histogram to be deleted. A response of 0 deletes
all histograms.

* HOUT enables the user to display the contents of
a histogram in a graphical (Fig. 3) or tabular
form.

* HSUM displays the statistics of a specified histo
gram.
For example:

Fig. 3. Example of the graphical display of an
ATROPOS histogram.

·HSUM
ID=30
HSUM FOR: PESTOV 1 TDC

ID : 24 LBIN : 250 HBIN : 448 CALL : 6280
UFLO : 28 OFLO : 6125
Y SUM= 6280.000 XMEAN= 444.5710 SIGMA= 24.23909

* HLOG provides the user with a way of saving (on
the logging device) the histogram contents for
future reference.

* HGET allows the user to examine all or one of the
histogram specifications. For example:

· HGET
ID?? (Response of '.?' or 0 results in the

listing of all defined histograms)
ID=l0,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=Sl TRIG COUNTER ADC
ID=ll,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=S2 TRIG COUNTER ADC
ID=12,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=S3 TRIG COUNTER ADC
ID=13,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=S4 TRIG COUNTER ADC
ID=14,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=PESTOV 1 ADC
ID=l5,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=PESTOV 2 ADC
ID=16,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=PESTOV 3 ADC
ID=17,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=PESTOV 4 ADC
ID=20,TYPE=2@,#BINS=100,XLOW=O,XWID=l0,

TITLE=PESTOV 5 ADC
ID=21,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=PESTOV 6 ADC
ID=22,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=PESTOV 7 ADC
ID=23,TYPE=2@,#BINS=l00,XLOW=O,XWID=l0,

TITLE=PESTOV 8 ADC
ID=30,TYPE=2@,#BINS=l00,XLOW=250,XWID=2,

TITLE=PESTOV 1 TDC
ID=31,TYPE=2@,#BINS=l00,XLOW=250,XWID=2,

TITLE=PESTOV 2 TDC
ID=32,TYPE=2@,#BINS=l00,XLOW=250,XWID=2,

TITLE=PESTOV 3 TDC
ID=33,TYPE=2@,#BINS=l00,XLOW=250,XWID=2,

TITLE=PESTOV 4 TDC
ID=34, TYPE=2@, //BINS=l00,XLOW=250 ,XWID=2,

TITLE=PESTOV 5 TDC
ID=35,TYPE=2@,#BINS=l00,XLOW=250,XWID=2,

TITLE=PESTOV 6 TDC
ID=36,TYPE=2@,#BINS=l00,XLOW=250,XWID=2,

TITLE=PESTOV 7 TDC
ID=37,TYPE=2@,#BINS=l00,XLOW=250,XWID=2,

TITLE=PESTOV 8 TDC

EXPRESSION FACILITIES

Very of ten the user would like to look at
various transformations of the data the user is
taking, and the user wants to be able to change
these transformations easily. The simple expression
definition and evaluation facilities provided by
ATROPOS allow him to do this. There are basically
five parts to the expression facilities.

* The expression definition facility is entered by
the command EXPDEF. The command EXPDEF prompts
the user for an INDEX, an expression, any condi
tions the user wants to attach to the evaluation
of that expression, and an ID of a histogram

880

where the result is to be histogrammed. If no
histogram of the result is desired, the user res
ponds 0 to the ID prompt. The expressions are
evaluated in strictly left to right order. There
is no heirarchy of operators (they all have equal
precedence) and parentheses cannot be used to
group subexpressions. The result of any expression
can be used in a later expression in which case
the previous expression is referenced by preceding
its index with'%:'. If, at evaluation time, the
previous expression was not evaluated because one
of the attached conditions was not satisfied, then
a zero is used for its value. Elements of the
indexed CONSTANTs are referred to by giving the
name followed by a colon followed by the index.
Every operator is denoted by a single character.
The operators allowed in the arithmetic expressions
are+,*,-,/, > (arithmetic shift right), <
(arithmetic shift left), & (logical and), I
(logical or), (an underscore for minimum func-
tion), and a A-(a carat for maximum function).
In the conditionals, > (greater than),< (less
than), = (equal to), and fl (not equal to) are
permitted. Note that the conditional A>B>C is
equivalent to A>B and A>C, and not A>B and B>C.
An operand may be a named CONSTANT or a decimal,
octal or hexadecimal integer. Each expression is
checked for syntax when it is entered by the user.
If at evaluation time an error (overflow or un
defined CONSTANT) is detected, the entire expres
sion string is printed on the console terminal
with a pointer to the operator where the error
occurred. Note that 32 bit intermediate results
are propagated if the next operation is an addi
tion, subtraction, or division. For all other
operations, if the intermediate result is greater
than 16 bits, then an overflow is presumed to have
occurred and the evaluation of that expression is
aborted with a warning. Although the expression
facility is very simple, it appears to be adequate
for our purposes and requires little memory for
expression storage or for parsing and evaluation.
As an example of the expression definition use:
suppose we have 3 ADCs (analog to digital conver
ter), each with a pedestal, and 3 associated TDCs
(time to digital converter); we want to histogram
the residual of each ADC reading and its pedestal,
and the TDC/100 associated with the largest
residual.

·EXPDEF
INDEX=l

EXP=ADCl-APED:l
COND=<cr>
ID=l

INDEX=2
EXP=ADC2-APED:2
COND=<cr>
ID=2
INDEX=3
EXP=ADC3-APED:3
COND=<cr>
ID=3
INDEX=4
EXP=TDl

(index by which the expression
is defined)

(the expression)
(no conditions attached)
(histogram result in histogram
with ID=l)

COND~l > %:2 > %:3
COND=<cr>
ID=O --
INDEX=5
EXP=TDZ
COND=%:2 > %:3 > %:1

*
*

COND=~
ID=O
INDEx=6
EXP=TD3
COND=-%:3 > %: 1
COND=%:3 > %:2
COND=<cr>
ID=O
INDEx=7
EXP=%:4 + %:5 + %:6/100
COND=<cr>
ID=4 --
INDEx=<cr>

EXPDEL prompts a user for the index of the expres
sion which is to be deleted, then deletes it.
EXPLIST lists all of the defined expressions,
their associated conditions, and histogram ID.
For example:

EXPLIST
1 ID=OOOOOl
2 ID=000002
3 ID=000003
4 ID=OOOOOO
5 ID=OOOOOO
6 ID=OOOOOO
7 ID=000004

ADCl-APED:l
ADC2-APED:2
ADC3-APED:3
%:1>%:2>%:3 : TDl
%:2>%:3>%:1 : TD2
%:3>%:1 AND %:3>%:2
%:4+%:5+%:6/IOO

TD3

* To perform the evaluations at the appropriate time,
the user puts a call to EXPXEQ in his code. This
will usually be in the sampling routine. EXPXEQ
will evaluate all the expressions, and histogram
the results in the appropriate histogram for those
which were successfully evaluated. The command
EXPEVAL executes an EXPXEQ call. This is usually
used for testing purposes.

* EXPSHOW lists the results from the last EXPXEQ
call, along with a flag which indicates whether a
given expression was successfully evaluated.

TAILORING AN ATROPOS SYSTEM

Over the past two years we have tailored and
used three substantially different ATROPOS systems.**
In addition, at least two other ATROPOS systems have
been tailored by other groups at SLAC. In general we
have found the software structure makes it simple to
tailor a system to meet a new equipment configuration.
In fact we have used the ATROPOS structure as a base
for two other unrelated monitoring (CLOTHO) and
control (LACHESIS) systems we needed.+++

The following subsections describe the changes
needed and the routines that must be supplied in the
tailoring of a system.

++ The first system we developed was used in the
SLAC C-beam in December I976 to test a new shower
counter design.I4 In summer 1977 we tailored a
system which we used to develop a hardware method of
generating random bits.IS That one entailed the
logging of several million bits of data to the
TRIPLEX. Currently we are using ATROPOS to develop
detectors for a future experiment.

+++ CLOTHO, LACHESIS, and ATROPOS are the names of
the three fates.13 CLOTHO is a system which monitors
the polarized electron source located in the SLAC
injector. CLOTHO was the youngest of the three fates.

881

* The CONSTANTs
The CONSTANTs (their names, memory allocation,

check routines and group names) must be set up
according to what the system being tailored requires.
Although this must be done very carefully, it is a
fairly simple process.

* UINIT
UINIT is the basic system initialization routine.

It should load the CONSTANTs and initialize them, set
up the interrupt vectors for the clock interrupt, the
CAMAC interrupts, initialize the keyboard processing,
initialize any auxiliary devices (such as tape drives,
floppy disk, auxiliary displays), and define the
default histograms.

* UMAIN
The group of routines we call UMAIN are the run

control routines. UBEGIN, UEND, URESUME, UPAUSE are
called when the user does a BEGIN run, END run, RESUME
run, or PAUSE run, respectively. In these routines
the programmer must enable/disable the event data
interrupts, clear the histograms (usually at BEGIN
run), and take any other appropriate actions.

* EVENTLAM
This is the routine which handles the event

interrupt. It reads the data and does any logging
that may be necessary, and then passes the data onto
the sampling routine (also user supplied and user
invoked).

* UCLOCK
The user must supply this routine to respond to

the clock interrupt if the target machine has a clock.
For an ATROPOS system which does not have a· clock,
this routine can be omitted.

* BKGRND
Although ATROPOS is completely interrupt driven,

we have found it advantageous to do some things in
background as CPU time allows. For example, updating
the console display and driving the auxiliary display
are done from the background. In the case of our
auxiliary display, every I/30th of a second, the
clock routine posts a command to the background queue
to update the display if a command is not already
present in the background queue.

Currently the user supplied routines must be
written in PL-II or MACRO-II. Soon we hope to have
PASCAL16 and FORTRANI7 programming capabilities added
to our LSI-II software development facilities on the
TRIPLEX.

CONCLUSIONS

The ATROPOS system described herein is quite
useful for our needs, although it does have its
limitations. Since we do not run under a disk based
operating system such as RT-11, we do not have all
the flexibility that we could have with, for example,
overlays. With the memory constraints relieved by

She spun the thread of life. LACHESIS is the system
which provides closed loop feedback position and
energy steering of the SLAC beam in beam line 'A' of
the beam switchyard. LACHESIS was the fate who deter
mined the length of the thread of life. ATROPOS (the
system described in this paper) provides analysis
facilities for the result of the beam hitting a target.
ATROPOS was the fate who cut off the thread of life.

overlaying, we could have a much more elaborate
system. Since we do not use a disk and RT-11, we
are dependent on the TRIPLEX for all our coding
changes and loading. However, in our experience,
this has not been a problem.

In general, we feel the advantages of our system
outweigh its disadvantages. It is very low in cost
(no software licences and a minimum of peripherals),
portable, and very reliable. We do not have a lot
of mechanical peripherals upon which we are absolutely
dependent. If, for example, we are logging to tape
and the drive fails, we can switch easily to the
TRIPLEX logging, although we will log at a much
slower rate to the TRIPLEX. For data storage and
output purposes, we have at our conunand the facili
ties of the TRIPLEX, which provides things we could
in no way afford for each individual ATROPOS system.

ACKNOWLEDGEMENTS

We wish to acknowledge the help received from
the following people: Sylvia Sund for her work on
ACQUIRE, the interactive TRIPLEX program; William
Bryg for his work on the logging; Joe Zingheim for
building the LSI-lls and Experiment Control Panels,
and helpful discussions; and the many users of the
system for their helpful suggestions and interesting
challenges.

REFERENCES

1. The Microcomputer Handbook, Digital Equipment
Corporation, 1977.

2. SLAC Computer Services User Note No. 99, The
TRIPLEX Users Guide, June 1978.

3. MDB MLSI-SMU System Monitoring Unit, MDB Systems
Inc., 1995 N. Batavia Street, Orange, CA 92665.

4. R.L.A. Cottrell and C.A. Logg, An IBM 370/360
Software Package for Developing Stand Alone LSI-
11 Systems, Proceedings of the Digital Equipment
Computer Users Society, Vol. 4, No. 4, pp. 985/
991, April 1978.

882

5. Robert Russell, PL-11: A Progranuning Language
for the DEC PDP-11 Computer, Edited by T.C.
Streater, CERN 74-24 (1974}.

6. S. Steppel and H.E. Syrett, XASMll/XLINKll, A
PDP-11 Cross Assembler/Linker User's Manual,
CGTM. No. 160 (1974), SLAC, Stanford, CA.

7. WYLBUR/370, The Stanford Timesharing System
Reference Manual, Third Edition, November 1975.

8. RT-11 Software Support Manual, DEC, Maynard
Mass (1976), Order #DEC-11-0RPGA-B-D, DNI.

9. R.L.A. Cottrell and S,J, Sund, ACQUIRE, Group A
Program Document No. 34, January 1977, Group A,
SLAC, Stanford, CA.

10. ORVYL/370, The Stanford Timesharing System,
Functional Description, October 1975.

11. C.A. Logg, A.M. Boyarski, A.J. Cook, and R.L.A.
Cottrell, DPAK and HPAK - A Versatile Display
and Histogranuning Package, SLAC Report No. 196,
June 1976.

12. Robert C. Beach, The SLAC Unified Graphics
System, CGTM No. 170, January 1976.

13. J.E. Zimmerman, Dictionary of Classical Mythology,
Bantam Books Inc., 1971.

14. W.B. Atwood, C.Y. Prescott, and L.R. Rochester,
First Test of a New Shower Detector, SLAC TN
76 7, (1976).

15. R.L.A. Cottrell and S. Sund, RANDOM: Random
Bits for Source Polarization Sign Selection,
Group A Programming Document No. 48, December
1977.

16. Bruce L. Hitson, PASCAL/PCODE Cross Compiler for
LSI-11, to be presented at the Fall DECUS
Symposium, 1978.

17. B.M. Bricaud and R.L.A. Cottrell, Integration
of RT-11 FORTRAN into the IBM 360/370 Software
Development Package for LSI-lls, Group A Pro
granuning Document No. 50, March 1978, Group A,
SLAC, Stanford University, Stanford, CA.

MUMPS/IDS OPTOMETRIC OUT-PATIENT TURNKEY INSTALLATION - A CASE HISTORY

RALPH DIPPNER
SYSTEMS ANALYST

STATE UNIVERSITY OF NEW YORK
STATE COLLEGE OF OPTOMETRY

100 East 24th Street
New York, New York 10010

We are installing MUMPS and IDS software for a large optometric clinic
out-patient accounting system, This unit is to be 'turnkey' and should
be cut over by November 1, 1978. I am a systems analyst with over 10
years of experience in commercial and real-time/scientific computer
usage, and am monitoring the effort as I intend to build upon it as
soon as it appears to be running properly, I am currently the sole
programmer/analyst at this site,

This paper covers 1) selection, 2) lease/buy, 3) user interface, 4)
run-in and training conditions, S) semi-final evaluation, 6) future
course.

BACKGROUND

The State University of New York, Univer
sity Optometric Center, located in Manhat
tan, provides eye care service to a large
clinic population and training for optom
etrists for the State and some surrounding
areas. Patient accounting, billing and
preparation of a medicaid magnetic tape
were performed in a batch mode off-site.
Costs were linear with respect to patient
load, error rates were high, lags in re
porting were two to six weeks, and the
system was expensive to modify, We infer
mally evaluated over one dozen alternative
processes, and issued a RFP (request for
proposal) for turnkey on-line real-time
system, Criteria were essentially, dis
counted cost, time savings, support and
responsiveness, Reporting and systems re
quirements, both mandatory and desirable,
were stated, They included as mandatory,
as an overview; an ability to note patient
and procedure flows, medicaid billing tape
(1600 bpi), conversion of existing master
tape, on-line edit, suitably fast record
access (by name, partial name, or identi
fication number),suitable restriction on
access, expandability, flexibility, suit
able data base backup, and separate list
ings of charges, and cost of later charges,
Desirable features were (again as an over
view) j ·heavy and complete documentation,
proven reliability, parallel runs, suit
able protocols for non-experienced users,
fall back and recovery drills, pricing by
treatment, multi-part tear off mailers,
all bill generation on-site, batch posting
of medicaid returns, and handling of third
party guarantors". We expected firm main
tenance statements 9 a.m, to 9 p.m. }ionday
to Friday, both lease and purchase alter
natives to be shown, reasonable lease can
cellation provisions, specification of min
imal system up-time, and pro-rates for non
achievement.

Proceedings of the Dig/ta/ Equipment Computer Users Society 883

The RFP was sent to over 30 major computer ven
dors and OEM's. Nine responses were obtained,
and a formal question session allowed to an
swer vendor questions,

EVALUATION

SYSTEM ff TYPE

l, on-line off-site
Fortran/MOMS/CDC

2, IDS/MUMPS
PDP 11/34

3. MUMPS on Basic
DG hardware

4. Software unknown
WANG WCS/30

s. MIIS
PDP 11/34

6. COBOL
MRDOS/DG

7. BRAS II/BHIPS
Burroughs Bl700/1800

8. RPG II
Data share/datepoint

9. Unknown software
PDP 11/34 +ABD's CRT 1 s

REASON FOR REJBCTION

a) overpriced
b) not on site

a) overpriced
b) poor cancellation

provision
a) lack of lease
b) lack of demonstra-

table software
c) poor flexability for

growth
a) heavy lease cancel-

lation penalties
b) a bit overpriced
a) overpriced
b) lease cancellation

penalties heavy
a) way overpriced

a) overpriced
b) no cancellation

clause

a) no cancellation op-
ti on

b) overpriced using
their figures

System ff4 failed mandatory specifications, due to
lack of a lease offer, but all others met them.

Contract approval was obtained from the State,
DEC and IDS, implementation plans drawn up, and
hardware and software was finally ordered 6/14/78.

San Francisco - November 1978

CONTRACT CONDISERATIONS:

Many contractors did not ask critical questions
at the briefing, although paths were specifically
opened for this. .Perhaps they knew the answers,
or perhaps they had a 'we will overcome' attitude

(although no one thought the approach sufficiently
innovational to break prices for us), and finally
perhaps we will have some grief if responsibili
ties are not stated explicitly at contract time.
Yet we did not have 10 current systems in 10 op
tometric health centers to evaluate.

All costs that might be startup costs should be
paid over the first twelve months or longer.

The hardware manufacturer should warrant equipment
and not charge maintenance over the warranty time
period.

No one was willing to give penalties for slow per
formance, and no one offers one year guarantees
on hardware and software. Bills for added help if
any is needed, after warranty period, must be nail
ed down.

FUTURE DEVELOPMENTS:

Note most of the vendors offer heavy cancellation
penalties. This is due largely to the threat of
obsolescense in computer hardware, as they don't
know what the market value will be when we might
give a unit back ·0 to them.

The literature and conversation indicate develop
ment is "underway" for microprocessors with MUMPS
supporting multi-user data bases, as well as MUMPS
under or with UNIX (a cheap powerful operating sys
tem developed by Bell Labs), but our savings will
be in the CPU-central processing unit (about 10%
only) not in the peripherals needed, and success
ful development appears· tv,be at least two years
away. Rarely will the CPU be the bottleneck on
processing.

Real savings occur when the contract is over, and
we pay only $650/month or thereabouts for mainten
ance.

The reconunendation made herein does not place us
in the forefront of activity at all, but it does
allow reasonable upgrade without substantial ad
ditional costs, while avoiding dead-end or temp
orary approaches.

We have three people currently at the admitting
desk, and an in-house population growth rate
estimated at a)lcw of 10% for theforseeable future
and b) 100% within 2 years and 10% thereafter.
We will be able to avoid admissions staffing in
creases only by faster thruput and fewer entry
errors. It is estimated that 30% of a hospital
cost is "information processing". (1) MUMPS has
grown to a nationally recognized and standardized
computer health data base language within the last
five or so years. It is also acceptable for CAI
(computer assisted instruction). A users group
has been formed, and additional shared applications
at low cost are emerging. It's drawbacks current
ly are that it is not oriented to heavy computa
tion tasks, and currently uses no operating sys-

884

tem other than its own internal one.

Education of health care personnel in information
flows and systems has been lagging technical de
velopment and recognized cost/effective approach
es. We believe we have here the basis for an ef
fective approach.

We will stabilize this system, do a management
evaluation, pay for it, then consider relative
priority and profit of patient recall, patient
scheduling (including O.D.s, students and rooms),
extension to clinical findings, Dx and Rx assis
tence, automated system use training modules,
better survey and statistical analysis. As
sole on-site analyst with two other computers to
work with, the above are also dependent upon re
laxed fiscal constraints and/or more training of
non-DP management in systems work and program
ming.

FINAL SYSTEM CONFIGURATION:

PDP 11/34 with 128Kb MOS memory, conununications
multiplexor with 8 channels.now, expandable for
$1600 to 16 channels, 5 VT52 CRTS, 1 ADM 3A, 1
Decwriter,l LA180 high speed character printer,
one 1600/800 bpi magnetic tape controller and
drive, one RM02 67 megabyte controller and drive,
600' of cabling,IDS software, training and docu
mentation.

The system showed up as a partial shipment with
no software, as DEC had not finished testing the
version.supplied to them by IDS. Generally one
should avoid new equipment if close adherance to
schedules is required, since support can be poor.
The boot shipped with the system here would not
support the RM02 disk.

USER INTERFACE, RUN IN AND TRAINING:

Instruction has been OJT almost totally, and
little added staff needed, except to bring the
converted master file data up to date. Only
self-pay patients with open balances were con
verted.· This was less than initially desired,
but was workable. The system went down twice
with bus errors, but added anti-static cacpeting
corrected that. The system is started Monday at
8:00 a.m. by non-DPers, and runs until about 8
p.m. Friday, when it is successfully shut down
by non-DPers. Management has yet to be fully
trained, and documentation is scanty from a sys
tems viewpoint.

SEMI-FINAL EVALUATION

Due to the lag of hardware final acceptability from
DEC and incomplete master tape conversion by IDS,
on-line operation commenced 11/1/78, leaving only
one week for evaluation.. Problem areas will be:
1) isolation. of hardware vs software contributions
upon system malfunction .• 2) diagnosis of malfunc
tion via X-11 if the magtape unit malfunctions, as
there is no XXDP RM02 monitor, 3) sufficient train
ing for managers as to allow more alternatives and
intelligent decision making when. the system needs
to be modified, 4) final checkout of medicaid tape
acceptability, 5) proper training on hardware
startup/shutdown alternati~es,6) final clerical
training and system failure procedures, and 7)
adequate maintenance coverage at minim1un cost.
Finally we may have to replace the label printing
LA36 with a better but cheaper EIA tractor feed
printer, since the need to leave the last 3 labels
on the LA36 tractors disrupts work flow a bit.
I should have then largely resolved by late Novem
ber, except for some final documentation• and
training of managers in MUMPS, which IDS apparent
ly is not going to do.

We still expect an increase in collections imme
diately and better control thereafter. Clerks
like the entry and recall speeds, we can add
ports and have enough storage for growth as well
as expansion to other data flow control problems.

Achnowledgement is gratefully given to Drs. A. N.
Haffner, E. Johnston, M. Heiberger, and R. Weber,
M. Soroka, R. McQuade, Ms Pat Ruopoli, Mss. D.
Anderson, H, Kaslow, M. Flippin (DEC) and the
clinic staff, whose cooperation moved this project
out of the area between "more than a bit difficult"
and "effectively impossible".

REFERENCE

1) Hospital Computer Systems - M.F. Collen - 1974

885

STANDARDIZATION IN CCMPUTER GRAPHICS
An Overview

R. E. Fryer
Naval Weapons Center

China Lake, Ca. 93555

ABSTRACT

Within the last tWJ years, several major steps have been taken
toward establishing a standard for graphics support software.
The Graphics Standards Planning Carrnittee (GSPC) sponsored
by ACM has developed a strawnan graphics system design of
'core' features. Included in the core features are the ability
to define Picture Segments with various Attributes and
canposed of graphics Primitives. The graphical object is
Transfonned by View Specifications before being displayed.
Control functions for the graphics software and hardware are
also designed into the Core system, as are interfaces to the
application program and the environment. A formal carmittee
of ANSI is now detennining whether to recarnnend the developnent
of a standard. The GSPC is continuing to refine the
Core design, and coordinating trial implementations.

INTRODUCTION

The need for standards in canputer graphics was
often expressed in the early 70's. The first coll
ective effort to address this topic began at a
relatively small Special Interest Group conference
held in April 1974 at the National Bureau of
Standards(l). Following the initiatives estab-
lished in part at this meeting, the GSPC was
chartered. After tw:i years activity that included
extensive interaction with and contributions by
European colleagues, the GSPC was realigned to
include the goal of describing a set of core graph
ics functions that substantially met standards
related criteria. The major result of these
collective efforts was distributed in July 1977 in
a document often called the 'Core Report' (2). This
document has fonned the design guide for several
trial :implementations. A detailed description of
this background material has been prepared by Puk(3).

REVIEW OF THE CORE SYSTEM

A second part of the Core Report is a survey of
several existing graphics support systems. Within
this survey, a set of canparison criteria are
discussed by which a graphics system may be describ
ed. This format ((2), pp. I-3, I-8) is used in
broad fonn in this review.

Overview

The Core System design was the result of a method
ological approach developed during the 1974-1976
t:ime period. Program portability was the strongest
factor in the design approach. However, absolute
portability is not expected (sane changes in source
code are required between facilities using standard
languages due to minor implementation issues -
graphics code will be subject to at least these same
portability problems). In the develoµnent of the
Core System, an atterrpt was made to support port
ability except for minor syntax and related issues.

Proceedings of the Digital Equipment Computer Users Society 887

The following concepts were considered essential
foundations for the standard design ((2), p. II-3):

Separation of input and output functions

Mininrum differences between plotter output
and interactive display output

Use of tw:i coordinate systems -
w:irld coordinates for picture construction
device coordinates for display data

A display file will contain device display data

segments within the display file can be
independently named and modified as a unit

Viewing transfonns are invoked to convert.
w:irld coordinates into display device C(Y)rds.

Another philosophical aspect in the Core concept is
support of levels of capability. To encourage
acceptance of the Core approach by users ranging
fran plotter output through real time 3-D inter
active applications, four major and 3 sub levels
are defined.:

Basic Output only; for 'non-dynamic', non
interactive applications (plotters, storage
tenninals, microfonn, etc.) • Segments are
used but not stored; full 2-D and 3-D primitive
set, all viewing transfonns.

Buffered Output only; segments are used and
retained; so attributes may be modified.

Interactive Adds Input to the above, so
segments are detectable when enabled.

Canplete Adds transformations for images to
exploit carmon hardware capabilities; incor
porated in three i:-ub-levE:ls:

2D Image Translation transformations
2D Translation, Rotation, and Scaling
2D, 3D Translation, Rotation, and Scaling

Methodology is further discussed in (2) and (4).

San Francisco - November 1978

Input

The Input system design is based on the following
concepts. The user software interface is with
logical devices, or functions - not with physical
devices. This :improves portability since a given
installation can bin:l these logical devices to
available physical devices or simulations of them.
Five logical input devices and typical physical
devices are discussed below. Sane logical devices
produce data when sampled; others create an event
when activated. Events received by the Core are
placed in an event queue.

Graphical input is defined for 3 logical devices.

Locator The function of locating a 2 dimen
sional position (nonnalized device coordinates
are reported) is usually provided by physical
tablet or joystick. This device is sampled,
and the Core autanatically echos a cursor.

Pick The Pick device generates an event.
The event report contains the name of the
segment picked, and the name of the primitive
within the segment picked if it also was named.
A typical pick physical device selection is a
light pen. This device is also often accanp
lished with a tablet.

Valuator One dimensional input (establishing
a value) is typically realized in hardware with
pots and shaft encoders, though an elegent
implementation has been done with a light pen.
This device is sampled and provides its value
in nonnalized device coordinates.

The other t;vx) logical input devices are:

Keyl:x:>ard This event device provides single
characters or strings in the event report.
A tenninal keyl:x:>ard or a simulation of one on
a tablet are the most ccmnon physical devices.

Button This device returns the logical button
I/D on the event report. A function keyl:x:>ard
is a typical physical realization, though
the function is often simulated with a light
pen or tablet (menu selection).

Output may be generated for 20 or 3D graphical
objects (2D is a defined subset of 3D). World
coordinates are used to define objects, and a
right or left handed system may be selected.
Coordinates are defined to be Absolute or Relative
to a CUrrent Position that always defines the
start of the next graphical output.

Primitives - The object may be canposed of Lines,
line strings (POLYL:i:N.E), TEX!' and MARKERS.
Primitives are not named, but may have a P:tci< ID
for input discrimination of primitives within-a
segment.

Primitives are defined in v.orld coordinates, and
modify the Current Position (CP). The CP defines
the origin for the next primitive.

Primitive Attributes, in addition to the PICK ID
mentioned, include COIDR, LINESTYLE, LINEWIDTH,
and INTENSITY. These attrirutes, once named, must

888

remain fixed until the primitive ii; deleted. It may
then be rel:x:>rn with a new attribute.

Text - Attributes of the TEXT primitive include
FONT, CHARSIZE, CHARSPACE, CHARPIANE, and CHAR
c,uALITY. The i:;pace attriJ::ute defines the canponents
of the vector pointing between character origins in
3 i:;pace. CHARPIANE defines the orientation of
characters. CHAROOALITY defines the extent to
which the system user wants to use available hard
ware character generators or levels of canplexity
of software character generators. Low quality
text allows for maximum use of existing character
generators; high quality demands canplete conf01:m-
ance with all attrirutes.

Picture Segments - A picture segment contains a
collection of primitives and attribute specifica
+i ons. Segments ore Ll'li tiated bv a CREATE SEQ\1ENT
call and tenninated with CIDSE SEGiENT.- Segments
are typed retained or non-retained. Retained
segments may be allowed to have no image transfonn
capability, or any of the sub-level options for
image transfonnations. Non-retained segments
provide a framev.ork for the data to be plotted
rut no storage for the data (no display file is
retained). Only retained segments may be renamed
or deleted.

Segments may not contain references to other
segments - that is, picture subroutining is not
provided in the Core System.

Segment Attributes The segment type may not be
modified once a segment is created. The
Visibility, Detectability (for input) , ability to
Highlight, and Image Transfonn parameters may all
be dynamically modified during or after creation
of the segment.

Viewing Transfonns

Tv.o kinds of transfonnation.are provided - viewing
and image. The viewing transfonnation is specified
by defining a reference point to view (possibly a
point on an object), a nonnal to the plane of the
projection plane (picture resulting fran the
projection) , and the distance fran the plane to the
reference point. Projection may be parallel or
perspective. Rotation may be defined by also
specifying a VIEW_UP direction.

Windowing may be rectangular for 2D, a 30 solid
frustrum or a 3D parallel solid. Windowing may be
turned on or off.

Image Transfonns - The image produced by the viewing
transfonnations may, if enabled, be further modified
in a level 4 (canplete) Core. An analogy may be
drawn between 2D Image Transfonnations (rotation
and translation) and rotation/translation of a
picture resulting fran a camera shot taken fran
the same viewpoint defined al:x:>ve. This analogy
begin~ to fail when considering scaling and 3D
rotations.

Control

The Core System must be Initialized, and the
user then defines the level of support required for
his application. This may be used to dynamically
load the required routines, or perhaps just to
diagnose if the local implementation is inadequate.

The user may also INITIALIZE, SELECT, DESELECr, and
TE™INATE devices. A series of changes to a picture
may be collected under a 131\'ICH OF UPDATES set of
controls. This improves perfonnance of sane graph
ics systems where update time is relatively long
{such as a network system or a storage tenninal that

must be erased and redra'Wn. at tenninal speeds) •

Errors are defined to be diagnosed for each function
within the Core System. Error reporting will be
routed to a logging device by the Core or passed to
a user Error Handling function.

The user may INQUIRE and SET values of many internal
Core variables such as attributes, the CP, viewing
parameters, number of surfaces, input status, etc.

Hooks - Hooks define standard ways to provide the
application program with access to infOlJTlation or
procedures within the Core. Hooks are required
features in Core :implementations.

Escape - The ESCAPE allows the application program
to access special hardware features. This capabil
ity is provided since it will be sanetimes required,
and this approach provides a standard way to call
non-standard functions.

ANSI STUDY GROUP

Within the American National Standards Institute
{ANSI), the X-3 Standards Planning And Requirements
Ccmnittee (SPARC) has fOJJI1ed a Study Group on
Canputer Graphics Progranming Languages. The
role of the Study Group is to investigate areas
where standards in canputer graphics are recan
mended. A reccmnendation for a standard must be
based on technical feasibility, econanic benefit,
and practicality (especially implementation time).
This group will recrnmend whether one or more
standards should be developed. Though this Study
Group w:>n't prepare any recarmended standards,
it may provide follow-on groups (if any) with
extensive guidance based on its studies.

This Study Group is formed of subJroups that are
coordinating with other standards bodies (including
the International Standards Organization) , reviewing
Core considerations, defining other graphics aspects
appropriate for consideration, and carrying out
related study and review tasks(S).

GSPC

The ACM special interest group SICGRAPH has
redirected the GSPC to new goals and activities
to be pursued concurrently with the ANSI efforts.
The major goals are(6):

To continue technical studies relating to
standards, including refinenent/extension
of the Core System.

To dissaninate and gather information
relating to past and new efforts.

These functions are also being met through several
subgroups that include clarification, refinements,
and extensions to the Core System, surveys of
trial :implementations of the Core System, and
further study of graphics standards methodology.

889

The background of the current canputer graphics
standards effort within ANSI and SICGRAPH has been
reviaied. A quick review has been provided of the
structure and capabilities of the Core System,
a subroutine oriented design of a graphics support
system.

The current goals and activities of the ANSI
Study Group and the GSPC are reviaied. References
are provided for access to the next level of detail.

REFERENCES

1. Proceedings of the Conference on Device
Independent Canputer Graphics, National Bureau
of Standards, Gaithersburg, MD, April 1974.
Published in Canputer Graphics, Vol. 8, 4,
Winter 1974.

2. "Status Report of the Graphic Standards
Planning Ccmnittee," Canputer Graphics Vol. ll,3
Fall 1977.

3. Puk, R. F., "The Background of Canputer
Graphics Standardization," Canputer Graphics
Vol. 12, 1-2, June 1978.

4. van Dam, A. and Newnan, W., "The Developnent
of a Graphics Standard," Canputing Surveys llJ,4
December 1978.

5. "ANSI X-3 SPARC/CGPL Goals and Activities,"
canputer-Grapillcs_ Vol. 12, 1-2, June 1978.

6. "ACM/SICGRAPH GSPC Goals and Activities,"
Canputer Graphics Vol. 12, 1-2 June 1978.

By acceptance of this article, the
publisher or recipient acknowledges
the U.S. Government's right to
retain a nonexclusive, royalty-free
Ileen• In and to any copyright
covering the article.

* A GENERALIZED PLOTTING FACILITY

R. D. Burris and W. H. Gray
Oak Ridge National Laboratory

Oak Ridge, Tennessee

ABSTRACT

A command which causes the translation of any supported
graphics file format to a format acceptable to any suppo:t'.ted.
device has been implemented on two linked DECsystem-lOs.
The processing of the command is divided into parsing and
translating phases. In the parsing phase, information is
extracted from the command and augmented by default data.
The results of this phase are saved on disk and the appro
priate translating routine is invoked. Twenty-eight trans
lating programs have been implemented in this system. They
support four different graphics file formats, including the
DISSPLA and Calcomp formats, and seven different types of
plotters, including Tektronix, Calcomp, and Versatec devices.
Some of the plotters are devices linked to the DECsystem-lOs
and some are driven by IBM System/360 computers linked via
a communications network to the DECsystem-lOs. The user
of this facility can use any of the supported packages to
create a file of graphics data, preview the file on an on
line scope, and, when satisfied, cause the same data to be
plotted on a hard copy device. All of the actions utilize
a single simple command format.

INTRODUCTION

1.1 General
In the last few years the advances in computer
hardware and software have been impressive. For
the most part such advances have been beneficial,
but the problem of "future shock" exists in com
puter science as well as in the rest of our
culture. The problem has been perhaps more severe
in the specific area of graphics, where graphics
support packages and plotting devices are legion.

1.2 Environment
The system we describe was developed for
DECsystem-lOs, of which our installation has two.
They are linked to one another and to several IBM
System/360s by communications lines and software.
We are concerned in this paper with timesharing
users of the DECsystem-lOs.

Several types of plotters are available: Tek
tronix graphics terminals, Versatec printer/
plotters, Calcomp pen-and-ink flatbed plotters,
and a FR80 COM device with graphics capability.
Over the last 15 years many graphics support
packages for various plotters have been written or
acquired by our installation, so that now there
are about 50 graphics support packages available.

1.3 P~oblem Description
Consider the following set of basic decisions
which must be made before a graphics application
is designed and developed.

1. The designer must decide upon the plotter
to be used in production.

2. The implementer must decide upon the plotter
to be used in debugging.

3. The implementer must choose a graphics soft
ware package which

Proceedings of the Digital Equipment Computer Users Society

891

(a) is appropriate to the solution of the
problem,

(b) supports the production plotter, and
(c) supports the debugging plotter.

Some problems arise in making these decisions.
1. The implementer must understand and support

the interface between the graphics package
and the plotter.

2. The implementer should understand all pack
ages and interfaces so that accurate deci
sions are possible.

3. Everyone must consider the interface between
the user and the product - if it is difficult
to use, no one will use it.

In an environment where so many options are avail
able, these problems are immense.

1. 4 Problem /Solution __
If a system were available which would translate a
given file or graphics data to a format consistent
with any available plotter, and if such support
were available for all supported graphic files,
all the problems would be solved.

*

1. The designer and implementer no longer need
to choose the plotter, since all applications
are device-independent.

2. The implementer need not consider the chosen
plotter while deciding upon the support pack;
age - the package most appropriate to the
problem may be used.

3. The interface between the support package and
the plotter is already don~.

4. There is only one user interface.

Research sponsored by the Off ice of Fusion Energy
(ETM), U.S. Department of Energy, under contract
W-7405-eng-26·with the Union Carbide Corporation.

Sen Francisco - November 1978

Note that in such a system, the interfaces must be
well done since users of all levels of expertise,
from rankest greenhorn to seasoned pro, will be
using them.

1.5 Purpose of This Paper
The system described in this paper is an implemen
tation of the concept set forth in Section 1.4.
At this time four graphics file formats and seven
types of plotters are supported, with all 28 pos
sible combinations of those elements implemented.
A simple, flexible, powerful, and extremely for
giving interface has been developed. We discuss
the design parameters for this system and the
structure that evolved for their implementation,
then describe the system components, and finally
present scenarios of the use of the system by
novice and experienced users.

2. SYSTEM DESCRIPTION

2.1 General
We have been describing some of the problems
facing users to emphasize the primary design
goal of this facility, the provision of a device
independent, user-oriented plotting facility. We
wanted to provide a user interface which would
not require much learning, would be essentially
istatic over long periods of time, would require
a minimum of user input, and would permit cor
rections without repeating the entire request.

2.2 Design Parameters
The generalized plotting system was designed in
accordance with these specifications:

1. The system must be capable of handling sev
eral graphics file formats and several
plotters.

2. The system must be easily and consistently
expandable to new file formats and devices.

3. The user's view of the system should be
static except for additions supporting new
facilities.

4. A single command should be able to direct
the conversion of any supported graphics
file to a format compatible with any sup
ported device.

5. The command should have a syntax familiar
to the user.

6. The command must be easy to use.
7. The command processor must be exceptionally

forgiving of user errors.
8. As much existing software as possible should

be used, to minimize development time.
9. The system must be easy to maintain.

2.3 System Structure
The processing of a user command was seen to con
sist of two phases: the inspection of the command
for validity and the translation of the specified
data to the required plotter format. The system
was therefore divided into two parts: the command
scanner (the user interface) and the translators.
Since many translation programs already existed,
they were to be used to the greatest extent pos
sible. In fact, the only modification to the
translators presently implemented has been to cause
the translator to look in a disk file for the name
of the graphics file.

In general, the command scanner processing consists
of the following steps (see Figure 1):

1. Acquire the command to be inspected.
2. Parse the command into its constituent fields.
3. Verify the existence of the required trans

lator.
4. Acquire system default information.
5. Acquire default information for the required

translator.
6. Acquire and apply user defaults (SWITCH.IN!

file).
7. Prompt for any omitted mandatory information.
8. Prompt for any needed corrections.
9. Build a parameter file for the translator.

10. Invoke the translator.

PLOT
COMMAND SCANNER

LOGIC

CRNL/DWG/fED 78 -SS7

SYSTEM -SUPPLIED
DATA

USER -SUPPLIED
DATA

PLOT.HLP

892

INCLUDE
USER
ANO

SYSTEM

ANO
TRANSLATOR

DEFAULTS

INITAL
COMMAND

SWITCH
.INI

YES CORRECTIVE
>-----t-.----i DIA LOG, TH EN

CONTINUE

YES

Fig. 1

3. USER INTERFACE

When a system provides great power and flexibility,
so many options may be available that the system
could be impossible to use. Consequently, a great
deal of attention was placed upon the structuring
of the system for ease of use. Among the steps
taken were the specification of a simple, famil
iar command syntax; the definition of many
defaults; and the corrections of many errors.

3.1 Command Syntax
Since the facility was intended for installation
on a DECsystem-10, a syntax appropriate to that
computer was desired. The Peripheral Interchange
Program (PIP) syntax was chosen as being the most
familiar to the user. Specifically, the syntax
was

.PLOT PLTDEV:=DEV:FILE.EXT/SWITCH,DEV:FILE.EXT/SW
/SW, •••

where
PLTDEV is the destination plotter,
DEV is the device upon which the source file is
found,
FILE is the name of the graphics file,
EXT is the type of data (i.e., Calcomp, Tektronix,
vectors, etc.), and
/SWITCH is additional information about the file
or the translation to be done.

To maintain maximum compatibility with DEC soft
ware, the SCAN and WILD programs were used to
process the connnand string.

3.2 Defaulting
The user of a facility on a computer system rarely
knows all of the available options. In a facility
as extensive as this one, the number of options is
very large, so the user could find effective func
tioning very difficult unless the system is care
fully designed. One way of aiding the user is an
extensive set of default values.

Defaults to two types of fields are provided.
The first type is called the command field and
includes device, file name, and extension. The
second type of field is the switch.

Defaults are also provided in a variety of ways.
There are defaults provided by the system, by
the user in a SWITCH.INI file, and by the user
while invoking the command.

3.2.1 Command Defaults - There are two sources
of default information for the command field
defaults - the system and the user. If the user
types

.PLOT

the system will interpret the command to mean,
for instance,

• PLOT VER:=SEGMNT.VEC

These defaults are a function of the computer upon
which the generalized plot facility is installed
and are contained in a file known to the command
scanner.

893

It often happens, however, that devices or file
formats are used in bursts. For instance, users
will perform debugging using Tektronix terminals
to take advantage of quick turnaround and would
thus like a different default plot device to
obviate typing

.PLOT TEK:=

every time. Accordingly, the switches DEVICE,
FILE, and EXTENSION have been implemented for
inclusion in the SWITCH.INI file. If the user
desiring extensive use of the TEK device includes
the line

PLOT/DEVICE:TEK

in the SWITCH.INI file, the results of

.PLOT

are now

.PLOT TEK:=SEGMNT.VEC

Of course, if the user explicitly specifies some
field, that specification overrides any default,
just as the SWITCH.INI specifications override the
system defaults.

3.2.2 Switch Defaults - As in the case of command
defaults, there are several sources of default
information for switches. Again, there are system
supplied defaults, but now the defaults are spe
cific to each translator, rather than to the
system as a whole. These defaults are kept in
files known to the command scanner and are applied
once the translator has been chosen. In addition
to the specification of values for switches, these
files contain information about the switches
required for the translator and switches meaningful
to it.

The user may also specify default values by includ
ing information in the file SWITCH.INI. Any
switch may be· included in the SWITCH.INI file. If
the same switch has a system default, the SWITCH.INI
value takes precedence.

A third means of specifying defaults is by sticky
defaults. That is, in a command which will plot
several files, switches common to all files may
be specified before the first file name and will
then be applied to all subsequent files until over
ridden explicitly. For instance,

.PLOT =/COPIES:3 A.VEC,B.VEC

will plot three copies each of A.VEC and B.VEC.
The command

.PLOT =/COP:3 A.VEC,B.VEC,C.VEC/COPIES:4

will plot three copies of A.VEC and B.VEC, but four
copies of C.VEC •

Explicit specifications of a value by a user take
precedence over all forms of defaults. Sticky
defaults take precedence over SWITCH.INI defaults,
which in turn override system defaults.

3.2.3 Unspecified Values - As mentioned above,
there is information available to the command
scanner concerning switches which must be spec
ified for some translators. If there is no
source of information for such a switch, includ
ing any form of default, the user will be
prompted for that value.

3.3 Overall Logic
Figure 2 presents the overall logic of the gen
eralized plot system, including the flow from
the command scanner through the translators to
the graphics device. Note that in several places
in the diagram there are entries of "NETWORK
QUEUE", These represent the transmission of the
file to some other computer in the extensive net
work of which our DECsystem-lOs are a part. For
instance, some portion of the work for all the
Calcomp plotters is done on IBM System/360s.

3.4 Error Correction
Few events are more frustrating to a user of a
timesharing system than typing a long command
string and having the operating system throw
it all away because the user misspelled a switch.
This problem is highlighted in this facility

since there are so many switches which can be
used. To alleviate this problem, the user is
told of the mistake made and prompted for correct
data, Among the errors which are correctable are:

l, null device,
2. wildcard device,
3. null switch,
4. unknown switch (name misspelled),
5. ambiguous switch (name misspelled or too

abbreviated),
6. omitted switch value,
7. ambiguous switch value (keyword misspelled),
8, ambiguous switch value (keyword misspelled

or too abbreviated),
9, zero or excessive length project or pro

grammer number, and
10. no file satisfying a wildcard specification,

4. TRANSLATORS

4,1 General
The discussion so far has considered the user
software interface. That interface makes known
to the plotting system a set of information de
scribing the work to be done and the program
which is to do that work. The remaining functions

ORNL/DWG/FED 78-866

PLOT SYSTEM LOGIC

PLOT
COMMAND
SCANNER

VECTOR
TO

RASTER
CONVERSION

INTERFACE
ROUTINE

ALL 360
JOB

CALCOMPS CREATION

TEK

V45

VER

-TEKTRONIX
TERMINALS

Fig. 2

894

DATA
FILE

ASCII TO
EBCDIC

TRANSLATION

NETWORK
QUEUE

to be performed are to save the· information in
a standard manner and to invoke the trans
lation program. Each translator must be able
to access the saved information, convert the
identified graphics data to the required plot
ter format, and generate the plotter device
access protocol.

The following steps are a simplified list of
the flow of a general translator program:

1. Invoke and initialize the translator.
2. Access the information about the inter

mediate graphics file and specified
switches.

3. Open a graphics data file.
4. Input a graphics data file buffer.
5. Decode the packed information into

graphics file primitive information.
6. Translate graphics file instruction

into device instructions.
7. Encode the device driving instructions

into the device primitive format.
8. Output to device.
9. Repeat steps 4-8 until graphics file is

exhausted.
10. Close graphics file and device.
11. Check for completion of job step and

terminate or return to step 2.

4.2 Scanner-Translator Interface
There are three elements to the scanner
translator interface. First, the information
identifying the graphics data and the required
conversion must be saved in a format accessible
to the translator. To do this a disk file is
created, the name of which contains the number
of the timesharing job assigned to the user
doing the work, thus providing uniqueness to
the disk file name. The specifiers are saved
in the following order:

1. switches applicable to all graphics files
in the request (global switches),

2, file specifications, including each of
the remaining elements,

3. file structure,
4. file name,
5. extension,
6. PPN, and
7. switches relevant only to this request

(file switches).
The entries are saved in a fo.rmat consistent
with their nature. File structures, names,
and extensions are saved in SIXBIT, the PPNs
are binary, and the format of the switch values
depends upon their nature. The global switches
are all ASCII, while most of the remaining
switches take binary values. The global switches
have positional values - the first six words
of the parameter file contain the value of the
NAME switch, the next ten contain the ADDRESS
values, etc. The file switches are saved in
the format:

1. SIXBIT switch name (truncated to six char
acters),

2. word length of the switch value (in binary),
and

3. switch value.

Next, the proper translator must be invoked. The
name of the translator is created by concatenating
the extension of the file name and the plot device.
For example, if the file SEGMNT.VEC is to be

895

plotted on the Versatec, the name of the trans
lator is VECVER, for VECtor file to VERsatec for
mat. Control is passed to that translator by
means of the RUN UUO, so that the entire memory
space of the command scanner is overlaid by the
VECVER translator.

Finally, the translator must be able to access
the parameter file. A subroutine capable of this
has been written and must be called by each trans
lator. The calling sequence for the parameter
access routine is

CALL PLPOST(I,J)

where

PLPOST stands for PLot POSTprocessor,
I is an integer code for the datum desired, and
J is the area in which the value for the datum
is to be stored.

The calling program should be written to expect
the datum in the format in which it is being
passed, which is generally not the same as the
format expected by the original translator.

4.3 Tektronix Processing

4.3.l Translations - The graphics file to 'Tek
tronix translators are the least complicated of
the programs discussed in this report. A spe~
cific decoder is used for each supported graphics
file type which unpacks the graphics instructions.
These instructions are then translated into syn
onymous instructions for the Tektronix storage
tube. Vendor software,. available from Tektronix
(1), is used to encode the translated instructions
into device primitives which actually control
the position of the beam on the face of the Tek
tronix storage tube.

4.3.2 Plotter interface - The Tektronix storage
tubes are treated as teletype ports into the PDP-
10. As such, graphic postprocessing done at a
terminal of this type is interactive. No
spooling of job requests is required.

4.4 Versatec Printer/Plotter Processing

4.4.1 Translations - The graphics file to Versa
tec plotter translators are the most complicated
of the programs discussed in this report. They
are typically 7 to 10 times larger in executable
module size than corresponding Tektronix trans
lators, due specifically to the vector-to-raster
conversion which must be performed. The same set
of graphics file decoders is used to unpack in
dividual file types. These instructions are
translated into line segments. The first stage
of the vector-to-raster conversion process maps
all line segments into the raster buff er (which
is currently an entire Versatec page 1024 by 800
dots). The second stage, which begins as soon as
a new page is requested, compresses the raster
buffer in preparation for transmitting this infor
mation to the Versatec plotter spooler. The com
pressed raster data are placed in another file
and when all input has been exhausted, program
control passes to the I/O interface which queues
the compressed raster data to the Versatec plot
ter spooler.

4.4.2 Plotter Interface - At one of our instal
lations a Versatec printer/plotter is used as the
only hard copy output device, serving as both line
printer and hard copy plotter. Two queues have
been defined to serve that device, each queue
having its own spooler. Given the queue for plot
work and the spooler to handle that work, all
that the translator needs to do is to enter its
output in that queue. The rest of the processing
is handled by the systern.

At the same installation a second computer (a DEC
PDP-11/45) is available with its own Versatec
printer/plotter. If that Versatec is specified,
the untranslated file is transmitted to the PDP-
11/45 and converted to raster image there, thus
providing much faster operation and reduced load
on the DECsystem-10.

4.5 Calcomp Processing

4.5.1 · Translations - The graphics file to Cal
comp plotter translators are based upon a slightly
different principle, Actually, these translators
create a DISSPLA (2) compressed graphics data
set from the input graphics data file. This
scheme was chosen since a program which would
transmit a DISSPLA compressed graphics file to the
IBM System/360 and a program which would plot the
same file on the remote Calcomps already existed
(although not in a convenient form). Therefore,
in keeping with the modest software development
of the generalized plotting facility, the same
set of graphics file decoders was used to unpack
the data files. These graphics instructions are
translated into line segments and "drawn" into
the DISSPLA compressed graphics data set.

4.5.2 Plotter Interface - The Calcomp Plotters at
our installation are both stand-alone plotters.
That is, they are not physically connected to any
computer. To do plotting the user puts the data
on a magnetic tape which then is transported to
the plotter. Because of various considerations,
including the availability of operators, tapes,
and software, all tapes for the Calcomp plotters
are created by IBM System/360 computers. Since
much of the plot development work is done or
saved on the DECsystem-10, the generalized plot
ting system must be capable of generating a job
to run on the IBM·System/360s which will create
a tape for the Calcomp plotters. Since the IBM
System/360s are linked by communications lines
and software to the DECsystem-10, the plot system
can then enter the generated job into a queue for
the IBM System/360s and let the system do the rest
of the work.

The primary tenets of the generalized plot system
apply to the job generating code as well as to the
rest of the system. The user should be insulated
from unnecessary detail and should be provided
with as many defaults as possible. To that end,
only a few mandatory data are defined and SWITCH.
INI support for those data is provided (so that
the user may define those data once and then for
get about them). The required data are the user
identifier (a 3-character field assigned adminis
tratively to provide job name uniqueness on
IBM System/360 work), the charge number (which is
used in IBM System/360 accounting and is a s~an
dard field), and the address of the user (which
is used in routing output).

896

Given the above information, two general methods
of providing a tape for the Calcomp plotters are
available. For jobs doing relatively little plot
ting, a high turnaround method is available in
which the graphics file is created with a stan
dard name upon IBM System/360 direct access stor
age on a disk pack of a given name. At regular
intervals the operators of the IBM System/360s
invoke a program which searches that disk pack
for all files of standard name construction and
places their contents on a single tape for trans
port to the Calcomps.

Jobs creating large graphics files must create
their own tapes in the interests of saving on-line
direct access space. The generalized plot system,
then, needs to build a different job, one which
calls for the mounting of a tape and which causes
the creation of a plot control card to accompany
the tape to the plotter.

The creation of each type of job under the gen
eralized plotting system obeys the same rules as
the rest of the system - the user does not have
to know what is going on. In fact, the user will
never see the job control language until the out
put of the job is delivered.

It is important to note that the plotting system
exists on two DECsystem-lOs about six miles
apart, which are linked by communications lines
and spoolers so that either one may be used with
the plot system with no modification of the
procedure. If the user is connected to the remote
DECsystem-10, an extra routine step is interposed
(without the user's knowledge) which sends the
generated job to the DECsystem-10 in the room
next to the IBM System/360s, from which the job
is entered into the IBM System/360 queue. The
user cannot tell from the job output which com
puter was used to initiate the job.

5. SCENARIOS

5.1 General
Let us now consider the appearance of the gener
alized plot system to the user. We consider two
users - the novice and the old pro. The novice
is defined as a person who has no previous experi
ence with the plot system, but who does know how
to create a graphics file and has had enough
experience with DECsystem-10 to know that HELP
files exist for many facilities and that often
a /H switch will provide assistance. The old pro
has been using the plot system for a long time
and knows about all the defaults and short cuts
possible.

5.2 Novice
We begin with the novice user who has already
created a graphics file, which we call SEGMNT.VEC.
The user first types

.HELP PLOT (where PLOT is the command invoking
the system)

and receives some general information about the
system as a whole. Included in this file are
some basic commands chosen to provide the user
with some inkling of the range and depth of the

command structure. One of the commands given as
an example is

.PLOT TEK:=SEGMNT.VEC

which will cause the user's file to be plotted on
1 the user's Tektronix scope. Cheerfully, the
'user enters that command and finds that the re-
sultant plot is not as intended.

Having found errors in the program and used the
Tektronix plotting capability of the system
\to verify that the file is correct, the user
now desires a hard copy of the graph. Hoping
that a command like

• PLOT/HELP

will provide helpful information, as it does for
many facilities on the DECsystem-10, the user
tries it. The response is a list of categories
of information available from which the user is
asked to choose. Interested in finding out what
plotters are available, the user responds appro
priately and finds that a VECC92 processor is
available (vector file to Calcomp 925/1036 plot
ter). (The HELP facility then prompts for the
next category of information desired,) Contin
uing the dialog, the user finds that several
switches are mandatory or recognized but not being
in the mood to figure them all out simply types
the command:

,PLOT C92:=SEGMNT.VEC

which the user hopes will take care of all prob
lems and plot the file on the Calcomp 925/1036
plotter.

Unfortunately, further information is required
before the plot can be made, since an IBM System/
360 job must be created to do some of the trans
lation. The user is then prompted for a user
identifier, a charge number, and an address. The
user is then pleased to find that the request is
complete and the work is scheduled.

Flushed with success, the user decides to plot
another file, one named FILE.ABC. Entering the
command

.PLOT C92:=FILE.ABC

the user is disappointed to note that no trans
lator ABCC92 exists and that prompts for correct
device and file extension have been issued. Knowing
that the information was correctly entered and
knowing that the file is really in the DISSPLA POP
format the user renames the file to FILE.POP and
types

.PLOT C92:=FILL.PPP

misspelling grievously. The plot system announces
that no such file exists and prompts for correction.
When the user responds correctly, the system again
prompts for user identifier, charge, and address
before scheduling the work,

5.3 Old Pro - Our old pro knows all about the
generalized plot system. Long ago this user tired
of responding to prompts for switches and built a
SWITCH.IN! file containing the line

897

PLOT/DEVICE:TEK/UID:RDB/ADDRESS:"9201-2 Y-12"/
CHARGE:l2345

so that the IBM System/360 jobs required for
various applications could be easily built.
Furthermore, this user knows about the default
file names and devices for each installation, so
to plot a SEGMNT.VEC file on a Tektronix scope
this user types only

.PLOT

The device field and mandatory switch values will
be provided by the SWITCH.IN! field while the file
name and extension fields will be provided by the
system defaults •

When all the bugs are out of the application and
the old pro wants a Calcomp plot, the SWITCH.IN!
file is modified to contain /DEV:C92 so that the
command

.PLOT

takes care of it with no prompting. The old pro
also knows about the copies and forms capabilities
of the system and about the multiple pens avail
able on the Calcomp 925, so when desiring to take
advantage of these features the pro types

,PLOT =A.VEC/COPIES:3/FORMS:602/INK:(GREEN/L,
BLACK,RED/L)

which causes the file A,VEC to be plotted three
times on 602-type forms with the three pens set
to liquid green ink, black ballpoint pen, and
liquid red ink, respectively.

6. SYSTEMS MAINTENANCE

In a system as complex as this one, considerable
effort should be directed to making the system
easy to maintain and to expand. Part of the
means of doing so was to use existing software
wherever possible and to make only minimal changes
to interface to the new regime. But various new
facilities were added, including the automatic
application of various translator-specific defaults
and the definition of mandatory switches for each
translator.

The new facilities are largely supported by means
of tables which are kept on disk. One file, the
PLOT,HLP file, contains the list of supported
translators, mandatory and legal switches for each
one, and special information about each transla
tor, as well as the system default specifications
for plot device, graphics file name and extension,
and the plot command (used when the user types
only "PLOT"), In that file the translator names
are SIXBIT, the switch fields are in the form of
bit maps, and the default command information is
ASCII. A program named HELPFI was written to
create and maintain this file.

The translator-specific defaults are kept in
separate .HLP files with the same names as the
translators themselves. That is, the defaults
file for the.VECVER translator is named VECVER.HLP.
This file is created by the same program which
maintains the PLOT.HLP file, but it is ASCII.
It contains the list of default values in the
form of switch strings recognizable by the SCAN

program, lists of mandatory and legal switches and
of special information, and an ASCII text string
providing additional information. Since this file
is in ASCII no update provisions are made for it -
the system maintainer needs only to use some
editor, such as TECO, to modify it.

In accordance with the design specifications for
this system, the HELPFI program was designed for
ease of use. The maintainer is prompted for each
entry and each is validated. The maintainer may
create, delete, or modify translator entries.

7. CONCLUSIONS

The generalized plot system described in this
paper provides to the user of a DECsystem-10 the
capability to use virtually any graphics support
package provided with any plotter available. The
user is not required to know very much about the
system and the most probable user errors are
correctable via prompts. The system has been
designed for ease of maintenance and expansion,
so that minimal support effort is required.

898

REFERENCES

1. Tektronix Plot 10 Terminal Control User
Manual, Tektronix, Inc,, Beaverton, Oregon
(1976).

2. DISSPLA (Display Integrated Software System
and Plotting Language) is a proprietary
software library of graphics routines copy
righted by Integrated Software System Corp.,
San Diego, California.

ACKNOWLEDGEMENTS

Reid Gryder, Kathe Fischer, Betsy Clark, and
Charles Thompson all made valuable suggestions
con~erning the design of th:ts system. Ms. Rose
Ann Pemberton prepared the manuscript. Our thanks
to them all.

Design Considerations and Philosophy
of a

Device-Independent Publications/Graphics System

Jean s. Burt
National Nuclear Data Center

Brookhaven National Laboratory
Upton, New York 11973

ABSTRACT

Over a period of ten years the National Nuclear
Data Center has implemented graphics systems to
meet a broad range of user requirements in the
areas of interactive graphics, publications and to
a lesser extent, text-editing, graphical data
interpretations and on-line data evaluation. The
systems have been designed to support varying
levels of user sophistication with respect to
programming ability and user knowledge of the
hardware involved,
This paper will present an overview of the NNDC's
graphics system which is available to the user via
a higher level language, FORTRAN. The system has
been designed using layers of software between the
user and the device-dependent code. One layer is
dedicated to processing the incompatibilites and
inconsistencies between such devices as paper
plotter, interactive graphics and FR-80
microfilm/microfiche hardware. Another handles the
niceties necessary for finer quality pulications
work, e.g. superscripting, subscripting, boldface,
variable character/page sizing, rotation, the use
of multiple character sets (e.g. mathematical,
Greek, physics) as well as features to allow the
user to design special characters.

BACKGROUND

The National Nuclear Data Center (NNDC) at
Brookhaven National Laboratory is
designated by the U.S. Department of
Energy to provide a wide spectrum of
information services covering the entire
field of low energy nuclear data to
requestors within the United States and
Canada(R1). The scope of the services
performed by the Center ranges from issuing
newsletters and publications to providing
technical assistance of a scientific as
well as computer nature to conducting
seminars on special topics. The NNDC also
interfaces with and coordinates similar
groups nationally and internationally in
the periodic revision of documented and
computerized reference data libraries to
insure completeness and accuracy of
information (Figure 1).

of requests. These requests may be
answered by retrievals from one or more of
the Center's data libraries and may include
documents (write-ups, graphs, fiche),
computer output listings and/or magnetic
tapes generated according to individual
requestor specifications. More general
needs are often satisfied by one of the
Data Center's many publications.

The NNDC has approximately 30 staff members
of which 20 are at the scientific or
professional level (Figure 2). It
maintains its own dedicated computers
(KA-10 & PDP-15 subsystem) for support and
maintenance of bibliographic and
experimental data libraries and servicing

Proceedings of the Digital Equipment Computer Users Society 899

Until recently, the NNDC computer needs
were fulfilled by a DEC-10 KA processor
with 144K of memory. Periperals included
two line printers, card reader, a TU20 tape
subsystem (2 7tr and 1 9tr), 6 RP02 disk
drives and 4 dectape units. A PDP-15 with
CRT display, graph tablet and lightpen
functioned as the interactive graphics
subsystem, while an incremental-drum
mechanical plotter completed the
configuration (Figure 3).

The Data Center is presently being upgraded
to a KL-10/1091. The dectape units,
printers, card reader and plotter are being
carried across, as is the PDP-15 subsystem
and its developed software. A TU70-71-72
tape subsystem (2 9tr and 1 7tr)and 4 RP06
drives are replacing the prior tape and

San Francisco.-November 1978

disk subsystems, respectively. By the
acquisition of this new hardware, the
Center intends to meet its objective of
providing on-line access to computer codes
and to non-confidential data libraries
within the next few years.

Design Considerations

The NNDC had three choices for selection as
output media: a drum plotter (CalComp-563,
30" width), a 16mm/35mm CRT/microfilm
subsystem (initially a Ca1Comp-B35 replaced
by Information International Incorporated's
FR80/COMP80 system, which then afforded
microfiche capability) and lastly, a CRT
display. Each of these was examined to
determine basic physical limitations and
individual operating characteristics.
Character height-to-width ratio differed as
did character formation. Cnaracter
generation on the paper plotter and the CRT
display are accomplished by stroke
definition; on the FR80/COMP subsystem the
characters could be mapped into the
predefined Fft-80 stroke symbol table. (The
facility for character generation via
user-defined stroking does exist in the
NNDC software package.)

The next consideration concerned the Data
Center's basic function, that of providing
information services to requesters. This
implied visual presentations that were
clear to the requestor, conveyed concisely
the information sought and were of a
quality that spoke well for the Center, as
a physics community servicer. Therefore,
in addition to the normal alphabetic and
numeric character sets, provisions had to
be made for the inclusion of the Greek
symbols which comprise a large portion of a
physicist's vocabulary, as well as the
mathematical symbols used in numerical
analysis and Monte Carlo techniques in
order to report those program problem
solutions.

The fact that the problem solutions
primarily addressed a scientific community
meant that certain special effects would be
needed in any publication and technical
report or newsletter. The physical meaning
of a decay scheme or mass chain and
associated isotopic representations are
conveyed by a specific type of display
(Figure 4, R2). The graphics software had
to provide superscripting and subscripting
features as well as upper and lower case
capabilities. Additionally, as seen in
this primarily textual report (Figure 5,
R3) boldface was required in addition to
page rotation, variable page layouts and
the resultant recalculation for possible
character resizing. (Figure 6, R3).
Lastly, this transparency exemplifies the
type of axis annotation and multiple x-y
data reporting demanded within results of
actual experimentally-measured data
(Figures 7 & 8, R4).

900

Finally, consider for whom the graphics
package was to be written: a user. User
may denote an applications programmer who
writes the graphics programs and generally
understands the machine internals and the
techniques of making a graphics device
function. User might also imply the
end-user; one who may be a non-computer
oriented person, a pure physicist with
minimal but self-serving knowledge of a
programming language. Finally there are
those individuals in the middle of the
spectrum, people who do a fair amount of
programming and data handling, but .are not
computer types by avocation.

Consequently, after assembling these
factors and compiling the range of features
to be included, the philosophical aspects
of the design of the graphics system for
the NNDC took root. The package must
support a singular graphics device or
combinations of devices for simultaneous
output, yet remain device-independent.
This would enable the user/programmer,
regardless of personal ability, to easily
utilize/implement the system and to
concentrate on his particular application
rather than the peculiarities of an
individualdisplay medium. High quality
results had to be achieved with maximum
flexibility in number and type of features
available. Lastly, and obviously, the
•cost' of the graphics software had to be
minimized, cost being measured by speed of
programming, ease of implementation into
existing codes, maintainability and the
ability for future interface of new
features (Figure 9).

Approach

Initially three plotting packages, one for
each physical device (subsystem), evolved
for use on the PDP-10; each had identical
FORTRAN-callable software interfaces· in
terms of subroutine name as well as number
and order of arguments. These were
entitled LlB40, PLOTS and PLOT15 (Figure
10a).

LIB40 is the PDP-10 FORTRAN-40 Library
Subroutine plotting package. Its available
routines are described in any one of DEC's
FORTRAN Language Manuals. Consequently,
its features will not be discussed at any
length. These routines are equivalent to
those available from CalComp lCalifornia
Co•puter Products) and are basically used
to produce plots on an incremental drum
plotter.

PLOTS is the programming package consisting
of subroutines designed to perform the
basic x-y plotting functions on a
microfilm/microfiche subsystem. Multiple
film sizes and fiche reductions are
available, the most commonly employed being
16mm and 35mm for film, and 42X or 48X for
fiche. Certain routines calculate the plot
data and then format the plot data into
lines and symbols; still others format

lines and symbols into commands to write
the magnetic tape which later drives the
plotter.

The PLOT15 (R5) program package and its
associated interactive-graphics software
(AUX15) are written utilizing a
master-slave concept whereby the PDP-10
acts as the master and the PDP-15 is the
slave. The PDP-10 initiates all
communications between the computers via
the DA-10 hardware. (The DA-10 hardware is
a basic interrupt-driven buffered device
that permits transfer of data on a word
basis via the iobus •. The 36-bit word from
the PDP-10 results in two 18-bit PDP-15
words.) On the PDP-15 low core (0-200
octal) is reserved for the device handler
that facilitates the transmission of data
between the two computers; this is written
in MACR0-15. High core (201-37777 octal)
is reserved for the storage of the display
file. After initialization, as each input
word from the PDP-10 is read, the display
file is immediately updated; the display
is not stopped during the procedure so the
continuous picture is shown. This process
of inserting one word at a time is
continued until all input words are
inserted or the PDP-15'S available core is
filled, at wbich point an error message is
sent and any remaining transmission is
ignored (R5). Note that basically the
PDP-15 is functioning as a buffer and the
PDP-10 is loading it and dispatching the
final display.

Interrogation of the PDP-15 with respect to
raster position of the lightpen cursor,
VT-15 pushbutton status, next available
core location for the display file, etc.
are accomplished through the AUX15
routines. These routines also include
features for buffer management of the
picture to accomplish subpicturing and
selective erasure of the display.

Solution

The programming for rapid implementation of
simultaneous plotting on any or all of the
three graphics subsystems was instituted in
the following sequence:

1) To obtain a complete set of
subroutines with unique, but
device-identifying names, the routines from
the existing systems were either renamed by
the addition of a character at the end of
the name, shortened or changed to avoid
conflict with popular names.

2) A labeled COMMO~ area was used to
define three flags to indicate which
devices were •turned on'; if the device
flag was zero, it signified the device is
'off'. The non-zero state designated
device •on• and created output for that
unit.

3) A new set of general-purpose
subroutines with the identical names and
calling sequences as existed in any of the
original systems was written to minimize
chance of error. Routines not applicable

901

to a device substem were included as
consistency.

used the labelled
dummies to maintain
Internally these routines
COMMON to decide which
routine to call, using
renamed name.

actual graphic
the subroutine's

With the adoption of these conventions the
user need only be concerned with initially
defining a device as 'on 1 or 'off'. He
then proceeds to program, implementing the
appropriate calls to the functional
subroutines SYMBOL, NUMBER, PLOT, etc., as
if only one device were being used. This
system was entitled PLOT3, to symQolize the
use of the three devices (Figure 10b).

PLOT3 directs control to a particular
device. It 'sits' at the top of the
sections of code dealing with the devices
and separates them from the bulk of the
user-code. This particular sequence of
intercommunication, i.e. user PLOT3

device, insures that the routines remain
independent of each other but at the same
time are able to communicate with each
other via deliberately established and
organized operands and arguments, thereby
avoiding direct user involvement. PLOT3
also contains defensive code to protect the
user from himself and the occurrence of
certain common errors. Two such examples
are automatic advance to eliminate
overplots and checks against on,mid-plot
reinitialization.

Occupying the same layer as PLOT3 yet
distinct from it, since its development is
more recent, is FANCY, a collection of
functionally-specific subroutines (R7).
Through the use of subroutine calling
parameters, these provide special feature
selection such as titling, additional
character set definitions (symbol table
position mappings via ASYMBL, symbol stroke
definitions via PENMOV, user-defined
special character stroking via SPCHR) and
axis labeling and scaling capabilities. A
command menu and parameter-selection
routine can be invoked to handle the actual
device initialization and character
selection and assembly. Thus the user, in
response to a quiry sequence at run time,
can use the code to layout his basic
publication.

Scenario of fill Application

To demonstrate the flexibility of the
graphics software, consider the steps taken
in assembling and refining the data for one
of the NNDC's best-known publications,
BNL325, Neutron Cross Sections, Vol. II,
otherwise referred to as "The Book of
Curves."

The appropriate data in the form of
bibliographic as well as data point tables,
is retrieved from the Evaluated Nuclear
Data files (E~DF) and the CSISRS
Experimental Data files. Another program
combines these multiple files into a single

file while generating !~dices of the
isotopic and energy range contents of the
merged fi-le.

The experimental and evaluated data points
are then displayed on the PDP-15 CRT
(PLOT3-PLOTD). A physicist then examines
the data, certifying the credibility
against individual expertise and
supplemental resonance parameter data. The
data and possibly selected portions of it,
are culled and refit to obtain a smooth
curve. During this iterative process,
picture manipulations and alterations are
accomplished via lightpenning and
appropriate menu selection (AUX15).
Certain portions of the display may be
zoomed for closer examination; other
subpictures may be deleted entirely. After
the curve analysis is completed,
'eyeguides' are generated and final data
values extracted, redisplayed and written
to an updated data file which is in turn
plotted on the paper plotter (PLOT3-PLOT5).
(Eyeguides are created for publication as
an attempt to delineate the main features
of the data. R4) These plots are then
evaluated and depending upon those results,
either redisplayed, refit and replotted or
denoted as finalized for publication.

After all the data files have been analyzed
in this manner and it has been determined
that the best possible fit for data has
been achieved, the resultant pictures are
plotted on microfilm (PLOT3-PLOTS).
Negatives for use for future printing are
made; in a separate run, microfiche can be
generated to provide an inexpensive and
easily accessible storable medium.

(Note: the PLOT3-subsystem parenthesized
expressions are merely notations to show
the interrelationship and behavior of the
package.)

Conclusions

This design structure originated
approximately 8 years ago, and while the
software has been modified and enhanced
over the years, the basic concept has
remained the same. The beauty of the
layered design is in its conceptual
simplicity (Figure 12). While most
graphics and publications packages,
especially those involving sophisticated
interactive graphics, take considerable
amounts of people, hardware and software
resources, this is untrue of the NNDC
graphics software.

The man-years used to develop and maintain
the system have been small and yet the
system's functionality and flexibility are
tremendous. The NNDC graphics package is
not a sophisticated software package, but
merely an adherence to the basics of good
programming technique. That implies
modularity: the consolidation into
specific places within the code, all of
each particular type of function. Clarity

902

and ease of programmer assimilation are
accomplished utilizing significant in-line
documentation through the inclusion of
comment statements to explain segments of
the coded logic. Coupling this with
standard FORTRAN usage has enabled sections
of the code to be transported across
machines. Additional featur~s can be
easily interfaced into PLOT3 as additional
modules via the FANCY routines.
Maintainability has been shown in that the
package has accommodated changes in
computer configuration with little or no
adjustment in the software or on the part
of the user and has adapted to changing
conditions over the course of time.

In-the course of designing publications the
basic goal has been to convey the maximum
amount cf information in the most visually
comprehensive manner. Whenever the Data
Center has been faced with that type of
challenge, the package has permitted higher
level routines to be developed with no
change in the basic software. Through
these means, the NNDC has met its
obligations to the scientific community in
the quality of services rendered.

References

R 1:

R2:

R 3:

R 4:

R5:

R6:

An Introduction 1,Q the
Nuclear Q.s..t&. Center. s.
Director

National
Pearlstein,

ENDF/B
P.F.

Fission
Rose, T.W.

Product ~ ~
Burrows, August 1976

~ Bibliography Q_[Integral Charged
Particle Nuclear~ T.W. Burrows,
J.S. Burt, March 1978, 2nd Edition

BNL325. Neutron Cross Sections. D.I.
Garber, R.R. Kinsey, Vol.
Experimental Data Plotted
Eyeguides/Evaluated Curves,
1976, 3rd Edition

PLOT15 System - Version 72-1:
Cullen

PLOT3 System
Cullen, W.H.

Version 72-1:
Kropp

I I. ,
Against
January

D.E.

D.E.

Acknowledgements

The author wishes to thank Bruce Stype of
the Brookhaven Graphic Arts Department for
creating and reproducing the illustrations
needed for this paper and also to William
Kropp for supplying historical information
on the previous plotting packages and final
proofreading of this document.

:g
w

IJ
G"
c.
?
(f1 -

~ ~
A

" ~
'•

"' "" itj'.
. >

4-CENTER GEOGRAPHIC AREAS
OF RESPONSIBILITY

I :::: ::.E.A.)

NOS (LA.E.A.l

CJD (U.S.S.R.)

Neutron Cross Section Data is collected, stored, and disseminated according to an International agreement involving 4 centers.
Requests for Neutron Data should be directed to the center responsible for your geographical area.

btPAl'fMlNT
o~

E.NE.RG.Y

~I 6..,.•••«tt I
~ NRTION~L
~ LAl!IOR.ATORY

N~1"10NA-L NOC.LE.AR btl"fll C.Et-li~'R. (Nl\llJC.)

J
D~1'A

t~J\\..UA"l'I OtJ
c. e)

l::)·,,,.d·o""
(.1)

1-------1 5EC.2~TA R.IAL
(3)

]
Dr.\·nt

f'\ANA6E.M E.M1'
(,)

°PM'f5\C..\:51'5

S'/5. AHAl.'/51'

1 l
~t.JPPO~,....

S e:e."111c.e.s
(e>)

~\lC.L!A~ ~rv.sQ.S s s. tV\t,,.R.

P !-!'IC:. IS IS ~'I~. At.11'L'IS1'
C.0KPun\1 ~PPOlll

904

LPT1

LPTO

Kf..\· 10

t4 IU.M\W~

905

746

0.755s

0.309s

14.0s

11-

1 ~~ Pr

8.32s

11-

1H Nd

11 . 5 m

11-

18.0m IT

7.50m
1 6i Pm

11- 4.10m

11+
1 B"Eu +

96.0m IT

9.30h

13.0y

11-

1 6~ Gd

a LONG LIVED

152-0

906

REF'ERENCES<conl>
No. Lab Work

Type
Reference

ncu (p. n >13zn o<E>
1032 BNL Ex pl J PR/C 9 1819 574

Ex pl 4 EXFOR80057.002 77
1033 ETH Ex pl 4 EXFOR80048.002 77
1034 ORL Ex pl p ORNL-2910 25 460
1035 ROC Ex pl 4 EXFOR80051. 77
1036 CLA Ex pl 4 EXFOR80060.002 77
1037 HRV Ex pl 4 EXFOR80054.004 77
1038 MUN Ex pl J NP/A 198 625 70

Ex pl 4 EXFOR80058.002 77
1039 ANL Ex pl J PR/C 7 1410 473

Ex pl 4 EXFOR80031. 002 77

B3cu<p.n>B3zn o<E>xf'IC lor
1040 HIR Expl J JIN 39 1923 77

Emin Emax
IMeVl IMeVI

4.0+0 2.5+1
4.0+0 2.5+1
4.2+0 6.3+0
4.2+0 5.8+0
4.2+0 6.6+0
4.5+0 I. 1+1
5.0+0 9.9+1
8.7+0 1.6+1
8.7+0 1.6+1
1 .5+3 I :2+4
1 .5+3 1 .2+4

3.0+1 5.2+1

Aulhor, Commenls

Col le+ TBL. CURV. ACTIVATION METHOD.
49 DATA POINTS.

9 DATA POINTS.
Johnson+ CURV. 4PI NEUTRON DET.

IO POINTS.CPX DATA CORRECTED BY COMP
15 DATA POINTS.
16 DATA POINTS.

Hi I I e+ TBL. CURV. STCKD FOILS.
8 DATA POINTS.

Sleinberg+ TBL. CURV.
.7 ENTRIES.

Noma+CURV.RAT ZN61/ZN63.STCKD-FOIL+ISOL
B3cu<p.y> 8 .. Zn cu•ul1l!v1w r1l1llv1 product yleld

1041 KFI Expl J JP/G 2 365 76 3. 1 +O 3.3+0

ncu<p.y> 1 .. Zn o<E>
1042 CAL Theo R OAP-422 875 TR 1 .2+1

15Cu<p.1bsorpllon> o<E>
1043 IJI Revw J FCY 6 827 75 6.8+0 1 .5+1

Revw J SJPN 6 325 76 6.8+0 1 .5+1

Hcu<p. toll 1 > a CE>
1044 IJI Revw J FCY 6 827 75 6.8+0 1 .5+ I

Revw J SJPN 6 325 76 6.8+0 1.5+1

Hcu<p.0> 62N1 o<E>
1045 CAL Theo R OAP-422 875 1. 1+0 8. 1 +O

B5cu<p.4n+p>B 1cu o<E>
1046 HRV Expl 4 EXFOR80054.008 77 4.5+1 9.9+1

85Cu<p.3n+p> 82cu o<E>
1047 HRV Expl 4 EXFOR80054.007 77 2.5+1 9.9+1

15Cu<p.n+p>B1tcu o<E>
1048 HRV Expl 4 EXFOR80054.006 77 9.8+0 9.9+1
1049 BNL Exp l J JIN 38 23 76 1. 3+1 2.5+1

Exp l. 4 EXFOR80059.002 77 1. 3+1 2.5+1
1050 BNL Theo C 778NL 491 77 1.5+1 7.0+1
1051 MCG Expl W MEGHIR+ 66 1 .9+1 8.5+1

Expl 4 EXFOR80016.002 076 1 .9+1 8.5+1
1052 ORL Expl J PR 99 718 55 2.2+1
1053 ORL Exp l 4 EXFOR80050.012 77 2.2+1
1054 MCG Expl J JIN 35 361 73 2.3+1 1. 0+2

Expl 4 EXFOR80023.002 77 2.3+1 1. 0+2
1055 MCG Expl J CJC 55 3609 077 3.5+1 8.5+1

s'cu<p.n+p>B1tcu a IE>xF'ac lor
1056 ORL Expl J PR 99 718 55 2.2+1

15Cu<p.tn1l1sltc>B5cu p1rl11I olE>xF'1clor

Fodor+ CURV. 2KEV STEPS. GEILll

Woosley+ CURV. HAUSER~FESHBACH.

Nemels+ TBL.
TRANSLATION OF FCY 6, 14l ,82711975l.

Nemels+ CURV. DEPENDENCE ON N AND Z
TRANSLATION OF FCY 6, 14l ,8271751.

Woosley+ CURV. HAUSER-FESHBACH.

12 DATA POINTS.

17 DATA POINTS.

18 DATA POINTS.
Col Ii+ SINGLE AND STCKD FOILS.
. 19 DATA POINTS.

F1uuR.~ S

Divadeenam. CURV. GDH+PREEQUILIBRIUM.
Meghir+ TBL IN PR 144,96211966)
. 19 ENTRIES.
Cohen+ TBL.
. 500M8. REL. UNC.=15%. CALIB. UNC.=15%
Newlon+ TBL. CURV. ACTIVATION.
. 19 ENTRIES.
Gal inier+TBL.MONITOR FROM JIN 35,361173

Cohen+ TBL. CURV. RATIOIP,NPl/IP,2Nl.

1057 !JI Expl J YF 24 461 976 2.0+0 3.0+0 Krivonosov+ CURV. 771KEV LEVEL.
Expl J SNP 24 239 77 2.0+0 3.0+0 .TRANSLATION OF YF 2413l, 46111976l.

15Culp.4n>12zn a<E>
1058 HRV Expl 4 EXFOR80054.010 77 3.4+1 9.9+1

15Cu<p.3n> 13Zn o<E>
l059 HRV Expl 4 EXFOR80054.009 77 3.0+1 9.9+1

Hcucp.2n> 1 .. zn
1060 ORL Expl J PR

o<E>xF'aclor
99 718 55 2.2+1

15Cucp.n) 85zn producl yt1ldxF'1clor
1061 WMU Exlh J PR/C 15 1592 477 2.2+0

907

11 DATA POINTS.

11 DATA POINTS.

Cohen+ TBL. CURV. RATIOIP,NPl/IP,2Nl.

Bernsletn.NDG. CAL. GEOM. CORR TO E<THl

Tar gel Inc Emin Em ax Lab W Aulhor No. Tar gel Inc Em in Emax Lab W Aulhor No.
<MeVl <MeVl <MeVl <MeVl

o parllal o<E> z • 3 o<E>
6Li d I. 0-1 1.0+0 ANL E Elwyn+ 2262 45 Sc 22Ne 8.4+1 GRE M Bi 1111rey+ 5756

12c t'+N 6.7+1 TAM M Slokslead+ 4791 5ty 160 7.7+1 GREE Chevarier+ 5246

a co•pound-nucleus o<E>
55Mn 12c 7.7+1 GREE Chevarier+ 4597
56Fe 160 7.7+1 GREE Chevarier+ 5261

3H d NDG LAS D Hale+ 2240 60Ni 12c 7.7+1 GREE Chevarier+ 4608
3He d NDG LAS D Hale+ 2245 l97Au 12c 1. 3+2 YAL E Eyal+ 4686 +
4He p NDG LAS D Ha I e+ 21 l97Au 160 I .4+2 1.7+2 YALE Eyal• 5504 +

12c 3He 3.0+1 BRK E Pape+ 2686 Many 12c NDG GRE M B i I I H e y + 4727
12c l'+N 8.7+1 tAM M Slokslead+ 4792 Many l'+N NDG GRE M B i I I t! r e y + 4931
12c l'+N 8.7+1 TAM M Slokslead+ 4793 Many 160 NDG GRE M B i I I t! r e y + 5544
12c l'+N 8.7+1 TAM M Slokslead+ 4794 Many 22Ne NDG GRE M Bi 11 t!rey+ 5766

a direct-Interaction o<E> z = 3 parllal oirE>
12c 3He 3.0+1 BRK E Pape+ 2687 12c l'+N 8.7+1 1.6+2 TAMM Slokslead+ 4838
51y 160 7.7+1 GREE Chevarier+ 5240 z • 3 .spallallon tr<E> ~ socr l'+N 7. l+I 1.0+2 GRE M Bi 11 erey+ 4867

~ 55Mn 12c 7.7+1 GREE Chevarier+ 4595 12c p 4.5+1 1.0+2 MRY E Malhews+ 119
~ 56Fe 160 7.7+1 GREE Chevarier+ 5260 z = 3 binary oU:J 60Ni 12c 7.7+1 GREE Chevarier+ 4607

8 a relallve otEl
160 p 2.0+1 1.0+2 !NUT Compani-Tabrizi+ 166 I

QI z = 3 spectru• average ~(EJxFactor 8
7Li p 1.6+0 1 .2+1 UPP E Sandhu+ 37 ~

12c 12c 9.0+0 2.8+1 SAC R Papineau. 4482 cm p 0 p 0.0+0 9.9+9 MRY M Roche+ 155 ~ -
a o <E >xFac tor 6LI product ylel1f 0 z -3H d 5.0-1 2.0+1 LAS D Drosg. 2241 98e p 5.0-2 2.0-1 KFI E Szenlpelery. 56 ..

0
3H l 6. 1-2 I .9-1 CCP E Serov+ 2630 I OB 7Li 2.4+1 HE! E Kohlr~r+ 4304 ~

6Li 7.5-2 3.1-1 CAL R Tombre! lo. 33 180 100 9. 1+1 PARE Oelraz+ 5592 -p

a parllal o <E> xFacl or &u o<E>
7Li d 1. 9+0 2. I +O !JI E Granlsev+ 2281 4He a 6.0+1 1.4+2 MRY E Malhews. 3196

o speclru• average o<E>xFaclor
6Li d 2.3+0 6.0+0 TNL E Gould+ 2266

12c l'+N 8.7+1 1.6+2 TAMM Slokslead+ 4795
6Li d 1 .0-3 I .0+0 ANL T Elwyn+ 2263 Bu parllal o<EI 6Li d 1.0-3 1.0+0 ANL T Elwyn+ 2265

a lh I ck largel y 1 e Id
4He a 4.7+1 5.0+1 MSU E King+ 3197
6Li p 3.5+0 9.0+0 TNL E Gou I~+ 34

2H l I .9-1 NBS E F I em i n g + 2626 9Be p 4.6+0 5.5+0 KTO E Yasug+ 57

~ spectrum average thick largel y I e Id
12c l'+N 6.7+1 TAM M Slokslead+ 4796

c,m p A I SCR RIC T Wal lon+ 273
Bu co•pound-nucleus o<E>

p

z = 3 o<E>
12c l'+N 8.7+1 TAM M Slokslead+ 4797
12c l'+N 8.7+1 TAM M Slokslead+ 4798

"""' 12c 12c 4.5+1 2.0+2 TAME Namboodiri+ 4506 12c l'+N 8.7+1 TAM M Slokslead+ 4799 -Ii'
c:::;.

?
(fl

t)""

en
ui

z --

GI O•- CJ
~NLl-V"ll/'I

.:'~~~~
¥,:_J(.!)(O

Z04"NOl
""'"""' (O(Olf)

- ~Gll>0

0 en

" ~ ui "" "" "'

...
0

..:' b"

0 en
.,; N

0 ~ " N ~

(q)J>

~

":

>

~
c

LIJ

909

" en

O•-
OUO

•rZ
b o"'

ZLO

ZO'N

'"""""' - ~G

"'? 0 0 ,,. .,; N

(q).O

3 11Lu
q,o.io IJ I I I I I I I I I I 1 I I I I I I I I I I I I I I J I J J J J ~

11Lu I IA crtot
&67 Im z; 055 BNL Ha ~ er

J. 0.103r· 66 WUR Br di. 53 BNL Fo. n "(
5.0.io2 ~ ~b -~~~ ~~

~

..0 b 1.ox1a2 MAssr;:in"nr&;. !_ ~ ·w·

50.t ~ .. ~.i;.
JO.

5.0
I I I I I

.005 .010 .05 • JO .5 1.0 5.0 JO.O
~ En(eV)

~ ~::::::1 ~ I< I I I I ~~t·~. I
fl')
ct"' 5.o.1o2

(/) ::c
b l .Ox102

~ 50
• ::t® ~<if" ~ p~ %<t hf~ ~ <J>N> di L <1> H !£ ·- T 'B©J \I:>~. -~ -~

10. , ,.,

5.0
I I I

JO. 50. JOO. q,0.102
En<eV)

8.0 5.0.io2

71Lu G"tat

& 71 BNW Fo I] J .o,1.,2

7.0T 50.

'.'.C '.'.C 10.

b 6.0 ., b 5.0

1.0

5.0=t= ~- 1 .5

q,5 I I I I I I I I ·1 I """'I I """'I I "'""I 'I """I I ""'"I I """'I I' """I
2.0 5.0 Jo.o 20. .02 .Jo J.O 10.0 100. Jo.1i.1c2 Jo.o.1a3 10.0.ioq

En<MeV) En(eV)

367

C.. \..\ Pi t2. A c.1ro ~ S er L!> \
b d· e.. f' VV\ ·, 'V\IA. .\..\ ¢V\

"ti~..(.·, V\ \ htp \I\...

I V\ ~ ~R.K ~ll\~ N ~ t R \\ \ (.f 5 - ~C.95-P t

f ~A-rul2. E.S -

911

(?MtR~
:LMfL~. I LIBl\-0 l>Lfl

B
:)YMBf/>L

r TII rl-'T-~ 1o..111 M nr-o
I r LYJ \ J I l'\IV 1--1 Ut;..\'\.,..

-PL</fT 5

~~T) I PL(jl\151
~IN

!:.TC..

(C\.)

PL9YT3 PL0TS ?l0TB ?L¢TD

PL~\ PL~TS 1>l¢TB ?L(trtl

SYMB0L 5 '/t'\ B 5 ~'/\V\BB SYMBD

\\\ \J i"\ B E R. N\J MBS l\\U \V\ BB NU l"\B D

PL01S PL~!SS ?L¢15B PL,01 5 D

FlN t: IN 5 'f=IN'O F\ NbD

C..ALC.M? Ci:tlC. ~ C..RLC...6 C..ALCD

pu.d'..ll.9'1 ~a.~e.'(~ i \ w..J f..ic.'vi. e. ti I ::,p\a. V - C.I~ . ."(

(b)

~\GURt. \0

912

p

L
¢
\
3

I bUMMYR-1

I

913

~?l::L\A\.. C-\IH.ALTtR

Gs~ N ~ ~'..A"T\f5 Ni

iZ.

914

A SPECIAL.PURPOSE LANGUAGE (STATUS) FOR TEACHING STATISTICS;

SOME OF ITS DESIGN PRINCIPLES, AND VALUES AS AN EDUCATIONAL TOOL

J.C. Turner
University of Waikato
Hamilton, New Zealand

ABSTRACT

STATUS is a language developed primarily to aid in the teach
ing of statistics and probability, and to point the way to
new educational methods. However, it is broad enough to suit
a wide class of users, and is open-ended. The main consider
ation in the design of its syntax is that statements shall be
simple to learn and flexible in use. This simplicity, together
with the power of its interpretive system, make STATUS a
suitable base language from which to develop new forms of
teaching statements.

KEYWORDS

Statistical computing; special purpose language;
software; teaching; education; STATUS; values;
methods.

1. EDUCATIONAL USES OF COMPUTERS

Much has been written on the use of computer langua
ges, interpretive-systems, packages and on-line
systems to aid in the teaching of statistics. A
good set of references may be fotmd in EVANS (1973) •1

A Conference of rele~ance to this paper is reported
on by BAJPAI (1974).

Whichever method writers experiment with they
usually report enthusiastically on the results
achieved. Some of the values and advantages
menti<m~d ~r!!. __ the following:

Using the computer it is possible to bypass
teaching fine points in grouping and other
methods for c.alculating cOmm.on indices •••
especially true in attempts to introduce
students to nonparametric distributions.

Each student can spend most of his available
time on interpreting results rather than
calculating them ••• not only able to
interpret many results but also to do so on
basis of information ordinarily too cumber
some for him to acquire.

Each student can do more work with subject
matter connected with his own speciality
••• he is thereby much more strongly
motivated to learn the statistical concepts.

He becomes able to process data by a number
of relatively complex computational
procedures which leads to feelings of
accomplishment(rather than frustration, or
total failure, as when doing them by hand
or desk calculator).

Proceedings of the Dig/ta/ Equipment Computer Users Society 915

He is introduced to many more techniques
than is customary (many, if not most, under
graduates still learn only classical methods
of one and two sample univariate tests, and
some simple linear regression and corre-.
lation. Is this really enough, now that we
have computers?)

Data can be plotted in a variety of ways,
and studies of distributions, and tests,
can be made by graphical means.

Simulation can be used as an educational
tool.

Familiarity with computing procedures and
computers is gained, a valuable educational
~oal in its.elf,

2. DESIGN PRINCIPLES OF THE
STATISTICAL LANGUAGE 'STATUS'

The language STATUS (STATistical computing Ultra
Simple) has been developed at the University of
Waikatoi New Zealand with all the above teaching_
possibi ities and values held firmly in view. The
class of student for which it will be used, in the
main, is undergraduate, both mathematical and non
mathematical,· in all years. It has already been
tested on large numbers of students in this class.
The following claims - additional to those o:utlined
above - can be made for it:

Statements of the language can be used in
statistical texts and notes in much the same
way as mathematical script and formulae are
now. Although not always as economical as
mathematical writing, two or three lines of
STATUS to define a formulae will often be
more memorable and meaningful to a student
than a similar mathematical development.
This is certainly not the case with programs
written in general purpose languages such as
Fortran, Algol and APL.

San Francisco - November 1978

Each operation with STATUS is simple to
learn and may be used with little or no
change on both univariate and multivariate
data. Thus a student on a second or third
course will move easily to the complex
calculations needed for multivariate work.
Indeed, the intention is that with STATUS
he will be introduced to multivariate
statistics much earlier than is now possible.

STATUS is based on matrix manipulation; so
a statistics student will absorb, almost
painlessly, the symbolism and operations
of matrix algebra. He will be able to
apply STATUS to the many other areas of
mathematics, science and social science
etc. where matrices play an important role.

Although STATUS was designed with computer
batch-processing in view, it can be used
easily at a terminal, and on-line teaching
methods are being devised for it.

3. REASONS FOR PRODUCING STATUS

The author's experiences with attempts to introduce
computing into statistics courses (with classes both
large and small, mathematics and methods orientated)
have led him to the following convictions:

That a iecturer's time and energy are severely
limited. Unless he has a regular support of teach
ing assistants and laboratory technicians, and
immediate a.ccess to programming aid, he cannot
attempt any computerized teaching system which will
add much to his own load.

That using a general purpose language is not satis
factory for most courses (BASIC is perhaps the most
acceptable). Statistical confusion is merely
confounded by discussing computer routines. Consider
for example, a student's deepening incomprehension
when asked to study a Fortran program to calculate
a statistic as simple even as ~ ; the use of
subscripted variables and DO loops is more terrify~
ing than the application of E in mathematical
notation.

That interactive computer teaching systems are too
expensive to be generally possible at the present
time, particularly for l_arge classes. An inter
active system, one in which the student 'converses'
with the computer, aims to usurp many of the
traditional tasks of the teacher, freeing him for
higher level work. It provides such advantages as
instant answers, assessment of work and feedback,
and directed learning tasks. But in many senses
the computer is driving the student. The success
with which it can do so - the self-confidence and
independent abilities to probe and inquire which it
can impart to the student - depend very much on the
quality of the system software. The problem of
producing software which is adequate to deal with
general teaching situations in interactive mode is
a very difficult one. However, it is undeniable
that the benefits of using such systems are great,
and their use will greatly increase in future, as
computing power becomes cheaper and the necessary
software becomes available.

916

That the best hope of putting large scale computers
into the hands of large classes of students from a
wide variety of disciplines is to produce high level,
special purpose languages which can be learned and
used very easily. Hence the development of STATUS.
A matrix interpretive system was in use at the
University, called SMIS (Symbolic Matrix Interpretive
System); and it was considered better to build a
teaching language onto that than to attempt to build
teaching courses round statistical packages such as
BASIS (Burroughs), or systems such as P-STAT.

For further discussion on all these points the reader
is referred to WALLACE (1969). 3

4. THE NEED FOR SIMPLICITY

Before going on to a description of the language
STATUS, we make some general cOlllillents on one of the
major themes of this paper - the need for simplicity.
It is a matter which all too often appears to be
insufficiently considered by computer scientists and
software writers.

The emphasis with a special language must be on
simplicity, otherwise the educational issues with
which the student is engaged will be clouded by the
difficulties of using the language. As Wallace says,
there is a danger of converting statistics courses to
programming courses (the introduction of too much
mathematics into statistics courses is a remarkably
similar danger), However if the statements of the
language are devised with sufficient care, and
symbolism kept to a minimum, program segments can be
freely interspersed with teaching notes (in the same
way that mathematical formulae are, and perhaps with
more effect) and so will be assimilated with the
subject matter.

The language must be flexible enough for equivalent
results to be produced in a variety of ways. And
the lecturer must be able to insert new statements
into the system with comparative ease. He will then
be able to set projects which are germaine to his
course, and demanding and realistic for the students.

Apart from the simplicity of learning, writing and
remembering a language, the ease by which it may be
used at the Computer Centre must be considered.
There appears to be a 'Computer Manager's Syndrome'
which attacks many managers - it causes them to
devise complicated input procedures and job control
systems, and insists that users be coded to the nth
degree. For a special purpose language to be of
real use in teaching, this kind of tyranny must be
swept away. With STATUS a student has no special
control card to supply. He writes a 'start'
statement, with his name and course number, and that
is all; an 'end' statement is available but not
essential. For student project work no more than
this should ever be necessary.

If all language and operational procedures can be
kept as simple as possible, both lecturer and
students will confidently exploit the system, and
achieve statistical objectives far more comprehensive
than those of normal courses.

5. BRIEF DESCRIPTION OF THE STATUS LANGUAGE

Statements
Every statement in the language consists of an
opaode followed by up to three matrix names,
followed by up to four numbeFs. Additional inform
ation is sometimes inserted, as a bracketed
'aFgwnent', after the opcode.

Example: FREQ DATA FRQ 12

This statement causes a grouped frequency table,
with 12 group intervals, to be formed from the data
stored in matrix DATA. The table is stored in FRQ.

An opaode is a 3- or 4-le~ter word, coding an
operation which the computer has to carry out. It
is usually evident from the opcode what the
operation is to be. Examples are SUM, MEAN, FRQ,
POWR, SAMP, LOAD, PRNT, ANOV, CORR. Familiarity
with about twenty of these is quickly gained; this
is sufficient for first-course students to carry out
sophisticated statistical exercises, with real or
simulated data.

The matrix names are made up by the program writer.
They are used for locations in computer memory of
input data, or results computations. No
distinction between real and integer data is needed.

In general the numbeFs may be integers or decimals,
used to specify such things as matrix orders,
powers, numbers of frequency groups, etc.

Programs
The editing and punching of programs is enormously
simplified by the fact that all is in free format.
One or more spaces between items delimit the items.
Further, statements are usually very short, and
several may be punched on one card (separated by
semi-colons).

Input/Output problems are reduced to a minimum. For
student (and much general) work it is not necessary
to give the user full control of his printed output.
Provided that comments can be interspersed freely
with printed matrices, there is no need of
facilities for setting out tables, headings and text
in precise positions on the printout. Much time is
wasted on such niceties.

A student has no job control cards to wrestle with.
His program must begin with a 'start' statement
(e.g. STRT J.C.TURNER; even the name is optional)
and that is all. No 'end' statement is needed.

Illustrative example: The following complete prog
ram illustrates the simplicity, and a few of the
opcodes, of the language.

Program

STRT J.C.TURNER DEMO.

LOAD TEMP 30 5

E:xplanation

Essential start card; text
after STRT is optional.

Instructs computer to read
data (e.g. temperatures)
into a matrix named TEMP
of order 30x5

917

21.3 14.6 18.7 ••••••
23.4 22.0 17.9 ••••••
28.1 25.3 •••••• 24.5

* COMPUTE FIVE MOMENTS

STAT TEMP MOMS

PRNT MOMS

FREQ TEMP FRQ 12

HIST FRQ

Program

* SUPPOSE NOW THAT THE
* NUMBERS IN TEMP ARE
* THIRTY
* RECORDINGS OF A
* 5-VARIATE
* EXPERIMENT

CORR TEMP R
PRNT R 1
CORRELATION MATRIX

EIGN R VALS VECS
PRNT VALS, VECS

* SUPPOSE NOW THAT THE
ii< DATA
*'IN TEMP IS FROM AN
* UNREPLICATED
* 2-FACTOR EXPT
* REQUIRING ANALYSIS
* OF VARIANCE

ANOV TEMP 30 5

Data for TEMP, stored row
wise. It is punched in
free format, using as many
cards as necessary

An asterisk signifies a
'comment' which will appear
in the program printout

The statistics (x, s, m ,
m., m) will be stored~as
a 9colftnm-vector in MOMS
(name supplied by user)

The statistical vector will
be printed out, with head
ing MATRIX MOMS. Elements
are printed with 5 decimal
digits (format F14.5); rows
and columns are numbered
for ease of reference

A grouped frequency table,
with 12 groups, is computed
and stored under name FRQ.
If the opcode is extended
thus: FREQ (EXPLAIN), a
neat tabular printout
be given automatically

A suitably scaled histogram
of the TEMP data will be
printed out.

Explanation

Comments

The 5x5 correlation matrix
R will be computed and
printed out, The 1 in the
print statement signifies
that a 'heading' follows, to
be printed immediately
before the matrix R

The eigenvalues and vectors
will be computed and stored
in VALS, VECS; they are
then printed out

Comments

The analysis of variance
computations will be carried
out. A standard anova table
will be printed. Sums of
squares, degrees of freedom
and mean squares will be
stored under fixed names SS,
DF, MS respectively, for
further calculations if desired.

Using semi-colons the whole program can be punched
on about 7 cards (excluding data cards). The
program causes a great deal of computing to be
carried out. and the manner of writing it is simple
and easily remembered. In teaching. of course.
such a hotch-potch program would never be presented.
Opcodes and statements are available for illustrat
ing statistical concepts and methods ·in'whichever
order. at whatever depth, the lecturer cares to
introduce them. From their very first lesson. and
in each subsequent lesson. the students learn to
write complete programs. of increasing sophisticat
ion. A simple example of this process follows.

6. EXAMPLE OF TEACHING PROCEDURE

Consider some of the difficulties in teaching the
concept and computation of the arithmetic mean. A
lecturer is faced with these in his first or second
lecture,

Teaching Problems
Given a sample of 20 observations from an experiment
we have to explain the symbols, mean. computation
and uses of

20
x - < l a:H20.

i=l i;

Time has to be spent explaining subscripts and the
sigma operator.: both of which are quite difficult
concepts for most beginners. And. as mentioned
above. to show how a computer obtains x. using
FORTRAN with a subscripted variable and DO loop,
would deepen the confusion.

STATUS approach
Introducing the sample as a column-vector x. the
STATUS algorithm (program) for producing x in
XBAR is

SIGM X
DIV SUMX

SUMX
20 XBAR

stores Ex in SUMX
divides by 20 and stores
x in XBAR

This can be given first. before introducing '&cln.
its mathematical equivalent. It may also be worth
while to introduce the alternative algorithm

MULT
DIV

IR X
SUMX 20

SUMX
XBAR

where IR is a lx20 row-vector of l's. This gives
another view of x; and prepares the way for use
of X'X as a sum of squares - and for X'X later
as the sum of squares and cross products matrix when
X is' an nxp matrix.

If the means of 12 (say) samples are required. then
X is written as a 20xl2 matrix, each column being
one sample, Both the above algorithms. operating
on x. will produce in XBAR the row-vector
(x1 , x2 , ••• , x12). Thus the student can be set a
project in lesson 1 to study. and report on,
sampling properties of the mean. His writing of
computer programs will be quick but not automatic;
each statement has to be thought about from a
statistics point of view. And when he receives his
printout he will have further calculations to do by
hand (e.g. find ranges), and conclusions to draw
and write about.

918

Once an algorithm in STATUS is learned. a single
statement may be available to replace it. Thus for
the arithmetic mean the statement MEAN X XBAR
does the job, producing a vector of column means
from the_ matrix X. This enables teaching to pro
ceed in small steps or large ones. depending on the
standards and objectives of the course. Note that
even a small step in STATUS is a big one compared
with its equivalent in FORTRAN. And whenever
possible it will be one with direct statistical
significance.

Mathematics formulae must be introduced too. but
often this will best be done after algorithms have
been used by the students. (KNUTH, the well-known
computer scientist, has stated his belief that a
mathematician has not fully understood a mathematics
theorem if he cannot state it in algorithmic form.
There is much truth in this.)

7 • SPECIAL FACILITIES

A number of facilities which add greatly to the
power of the language will now be described briefly.

Use of Disk Storage
A lecturer must be able to store sets of data on
disk. and students to use these sets easily in their
projects. STATUS provides these facilities thus:

Storing Statement
FILE MATX

L=
any matrix name, of a set of data
loaded by the lecturer in the
usual manner

opcode for filing MATX on disk

Accessing Statement
DISK MATX

any matrix mane, of a set of data
already stored on disk

opcode for causing MATX to be
copied from disk to core memory

Data matrices are just as easily removed from disk,
using the.opcode PURG (for 'purging'). To prevent
unlawful or careless purging, the device of writing
FILE(LOCK) MATX will 'lock' the matrix on disk; an
unlocking device is of course available - but it is
not given to students!

Simulated Sampling
A wide range of ·statistical functions may be sampled
by means of the standard statement:

SAMP (distribution type) M m n a b
~ values of dis-

1
the name of the
written here.

t tribution
parameters as
needed

an mxn matrix is supplie:l
distribution function must be

No 'seed' need be specified for the generation of
pseudo-random digits, although the one currently in
use can be inspected and changed if desired by means
of an opcode SEED.

Distribution types available are UNIFORM,
EXPONENTIAL, NORMAL, BINOMIAL, POISSON, GEOMETRIC,
CHISQ, F and T. Others can be added as teaching
needs dictate. The matrix M of sampled values is
immediately available for use in studies of
probability distributions, sampling theories and
simulations.

Matrix Handling
There are many facilities of the language which make
it a very powerful one for matrix handling. Some of
these are:

Unconditional branching (using GO and DEC)
Looping (several methods; the simplest uses
LPTO)
Conditional branching (using IF, with relations
.NE., .EQ. ,etc.)
Creating matrices (creating, spanning, removing
inserting, etc. of special matrices, sub
matrices, diagonals)
Permuting on colunms

Of special mention is that vectors of matrices may
be stored and accessed simply. An opcode may be
set to operate on just one of the matrices in the
vector, or on all of them.

8. SCOPE OF STATUS

The current state of the language is that it
contains over 100 subroutines; about 40 opcodes
carry out matrix operations and 40 are specific to
statistical work. In a first course in statistics,
knowledge of about 25 opcodes is very rapidly gained,
and these are sufficient for many teaching purposes
(and general use). Of the many students tested,
with or without previous computing knowledge,
whether symbol-oriented or not, very few had
difficulty in using it freely from the first lesson.
Eleven teaching units have been written, to be
issued in three sets. The titles are:

Set 1: Matrix handling, Basic statistics, Sarrrpling;
probability distributions, Statistical inference;
Set 2: Various input and output facilities,
Multivariate analysis (1), Branching and looping;
creating matrices, Analysis of variance;
Set 3: Multivariate analysis (2), Multivariate
analysis (3), Multivariate analysis (4).

A twelfth unit deals with SMINT and PUTIN, the
procedures for inserting new opcodes into the
language. A set of opcodes for Operational
Research projects is also included in the language.
The opcodes are LINP (linear programming), QSIM and
QCAL (simulation and calculations on queue systems),
and INV (inventory systems).

9. THE FUTURE

A number of statements for time-series analysis, and
for a variety of non-parametric methods will be
introduced shortly.

Three proposed additions to the facilities of STATUS
are:

(1) the ability to compute a 'higher arithmetic
expression' - that is one composed of matrices
and matrix operations - with a single state
ment;

919

(2) the ability to store subroutines temporarily:

(3) to simplify student use, mark-sense and porta
punch cards are being designed for use in a
PDP 11/34 Cafeteria system.

Teaching experiments are being planned for 1979 on
wards which will enable different approaches to
statistics teaching to be taken, for courses both
mathematics and methods oriented, and their results
to be compared. Using STATUS and adding to it when
necessary, attempts will be made to travel further
and achieve a wider range of objectives than
normally. Clearly, if more project work is to be
expected of a student - however simply it can be
programmed for computer - then less of his time can
be directed to examination of purely mathematical
aspects; this is where cuts will no doubt have to
be made. However, if the project work leads to
better grasp of statistical principles, more
application, more analysis and more evaluation of
results, this must be to the good for the majority
of our students.

If one is convinced that a special purpose stat
istical language such as STATUS is going to provide
benefits of real educational value, one wonders
whether an even higher level language (a super
language!) should not be developed for educational
purposes. When planning to use a computer to help
with a process, it is easy to fall into the trap
of merely programming the process as it exists now,
rather than considering the equation

'computer plus process' = 'new process'

one should ask what kinds of 'new process' are
possible, before beginning programming. For example,
the following sketch of a super educational lang
uage might be what we should aim at.

CT
he matrix j

SMIS interpretive plus

system/ / t
special purpose
subject-oriented
languages

STATUS,
PHYSUS,

~ very high j
EDLANG level education-
t \ al language

MATHUS,
CHEMUS,

ORUS,
PSYCHUS

The subject languages would operate independently
with SMIS (for local teaching and general purposes),
or through EDLANG if certain high level teaching
processes were being attempted. EDLANG would enable
computations and analysis of data (literal and
numeric) to be carried out which answered general
questions covering a spectrum of subjects. For
example, instead of asking a student to study and
use one statistics function at a time, could we not
provide him (via the computer) with a schema of
information which enabled him to understand families
of such functions, used in different contexts.
Could he be enabled to study systems of equations
(linear, nonlinear, differential), and model and
examine processes (discrete and continuous),
evaluating effects of changes on them; to ask
questions about them and persuade the computer to
answer them; and to synthesise and report on his
findings. If this could be made possible, then
univariate studies would give way quickly to multi
variate ones, linear to nonlinear, functions to
function spaces, and so on.

The type of statement which might exist in EDLANG
(pure speculation at the moment) is

WHAT (system) INl IN2 OUT m n

l 1 t tmatrix of answers
matrix of parameter- values
needed for each question

vector of question numbers
name of system to be studied
(e.g. a specified class of functions
f(x.y.z; a.b.c •••))

The available questions a student might ask would be
of the type "What happens if ••• ?" These would
have to be carefully specified in relation to each
system; Other opcodes. such as LOOK. HOW etc ••
would allow for plots to be asked for. and other
kinds of question to be made.

ACKNOWLEDGEMENTS• ETC.

A matrix-handling system called SMIS was originally
produced at the University of California. Berkeley
(1967). The simplicity of its use gave the author
the incentive to devise the STATUS language. Full
credit must be given to W.T. Rogers. University of
Waikato. who has been responsible for large scale
changes. simplifications and additions to the
interpretive system. and has helped the author
considerably in the writing of the statistical
subroutines.

STATUS is currently running on PDP 11/70(RSTS) and
Burroughs B6700 computers. It is written entirely
in FORTRA?~. and requires little work to modify it
for other machines, For further details of
computing aspects see ROGERS AND TURNER (197?)~ or
write for information to J.C. Turner, University
of Waikato. Hamilton. New Zealand. Prospective
users outside New Zealand please note that an
initial charge of $750 will be made for a tape of
STATUS, and a further $35 per year if the news
letter and update service is required.

REFERENCES

2 BAJPAI, A.C. (1974) (Editor). Proceedings of the
Conference held under the auspices of
NCC/CAMET, Mar 1974. Int.J.of Math.Ed.in Sc.
& Tech • .?_. Nos. 3- and 4.

EVANS, D.A. (1973). The influence of Computers
in the Teaching of Statistics. J.R.Statist.
Soc.A, 136, pt 2, 153-190.

~ ROGERS, W.T. and TURNER. J.C. (197?). STATUS: a
Statistical Computing Language. (in
preparation for the Journal of Statistical
Computing and Simulation)

WALLACE. D.L. (1969). Computers in the teaching
of statistics: where are the main effects?
In Statistical Computation (Milton, R.C. &
Nedler, J,A, editors). pp 349-361. New
York: Academic Press,

920

ENGLISH STRANDS

Eric Leventhal
Riverdale Country School

Riverdale, New York

ABSTRACT

English Strands are on their way to becoming a
reality. This paper describes the efforts to
date that have lead to a working segment of what
w~ll eventually be a complete English drill and
practice package,

Educational software has been developed at
Riverdale Country School since 1973, Our
constant goal has been to ease the burden
of the classroom teacher by having the
computer provide some individualized drill
work. This paper will present a brief
history of our activities and in some de
tail describe our work done to date on
English Strands.

Ideally any package should be simple to use;
great efforts must be made so that both the
students and the teachers need know as
little as possible about the computer. The
purpose of computer assisted instruction
(CAI) is to help the teacher in instructing
the student. The teacher must be able to
enroll students in the drill programs and
to produce comprehensive reports about in
dividual students or entire classes, with
out the aid of a computer expert. The
software must be easy to use so that the
teacher is not discouraged from using the
computer. The software must also be easy
to modify so that feedback from the teacher
can be used to make improvements in the
programs and in the curriculum,

The curriculum Of any CAI package is crucial
to its success, Through years of experience
we at Riverdale have learned that no matter
how well written the individual programs
are, without a complete curriculum they are
useless. From our experience, in the Math
Strands, the format we have found best for
drilling is the division of each curriculum
into different topics or "strands'', Each
strand is then divided into a series of
levels which may correspond to increasing
difficulty or simply to different rules,
The students may then be drilled on a series
of' exercises from various strands, or in
exercises from an individual strand,

The development of drilling programs for
Mathematics was begun five years ago by
Riverdale personnel in conjunction with a
school from which we were renting computer
time, The original curriculum for the Math
Strands was based on the work of Dr. Patrick
Suppes at Stanford University. The first
version of the Math Strands was written by
Michael Fulop, a tenth grade student, in

Proceedings of the Digital Equipment Computer Users Society 921

the summer of 1974, A year later work
commenced on English Strands with a vocab
ulary program, but because of the massive
amounts of data required it has never been
used extensively. Each vocabulary word must
have a definition, an example, a hint, and
seven drills; although the learning strate
gies seem effective, it will take a long
time to produce, enter, and edit all of the
curriculum material necessary for large
scale use,

Although the vocabulary program is not
currently used, a program which was develop
ed for use with VOCAB and other English pro
grams, called ENGMOD, a general purpose data
enterer, editor and printer, is still used
whenever variable length data storage is
required in our CAI programs.

During 1976 and 1977 the Math Strands were
revised and upgraded as feedback from
teachers and students pointed out inadequa
cies and possible improvements. (For further
information on the Math Strands please refer
to the presentation by David Solomon at the
San Diego DECUS Conference in 1977,) The
English Strands on the other hand, has re
mained unused, The problem has not been
lack of programmers, because very enthusias
tic and capable student programmers are
always available, but has been finding will
ing and qualified individuals to develop the
curriculum.

An effort was begun in the spring or· 1978
to design and develop a set of English CAI
programs. The success of Math Strands has
convinced us that the strands concept is
sound and should be adhered to, From past
experience it was decided to keep the actual
volume of data at a manageable size and to
find some logical way to divide the curric
ulum so that it need not all be developed
at one time. The lesson we learned from
previous English efforts was that the
teachers who would be using the final CAI
programs must be involved in designing and
and implementing the curriculum. The
dif'ferent needs of teachers at different
grade levels suggested that we develop two
different approaches to the use of' the
computer in English, One approach, aimed

San Francisco - November 1978

at the elementary grades, stresses the gen
eral language arts curriculum, while the
other approach, for the high school is or
iented toward specific topics.

A paragraph format has been devised for the
curriculum at the elementary level. Starr
Snead, a fifth grade tea~her and a special
ist in reading and learning disabilities,
and Phil Snead, a school psychologist and
former fifth and sixth grade teacher, have
developed this curriculum over the summer;
Phil Terman, an eleventh grade student,
wrote the program. These paragraphs in
corporate a highly flexible battery of ex
ercises in a series of one hundred fifty
paragraphs. The curriculum is developed
from the analysis of several elementary
school texts. The added complexity and
difficulty in writing the material is more
than compensated for by the higher level
of interest and the stronger motivation for
the young children to use the program, be
cause of the coherent paragraph form.

Each of the one hundred fifty paragraphs
consists of four or five sentences, each
sentence dealing with a particular strand:
(1) Vocabulary, (2) Spelling, (3) Punctua
tion, (4) Usage. Each sentence has a sim
ple, average and difficult form of the
question. A combination of these sentences
is chosen according to the student's re
corded proficiency in the particular strand.
From these sentences a cohesive paragraph is
composed. This paragraph is printed, and
multiple choice questions are asked about
each strand. The student's record is up•
dated based on performance during a session.
It is also possible, if a student is weak in
one strand, to drill the student in only
that one strand.

David Nicholson, a high school English
teacher, has worked in conjunction with
Eric Leventhal, a twenfth grade student, to
implement English Strands. These strands
concentrate on specific skills; therefore,
no paragraphs are used. Instead, the em
phasis is placed on college-board type
drills. The high school curriculum is or
ganized into six strands. These are:
(1) Punctuation, (2) Syntax, (3) Grammar and
Usage, (4) Diction and Style, (5) Spelling,
and (6) Vocabulary. Because of our pas,t ex
periences with developing English curriculum,
only the punctuation and syntax strands have
been tackled thus far. Each strand is divi
ded into a series of substrands. In the
case of punctuation some of the substrands
include quotation marks, hyphens and dashes,
and parenthesis. Each substrand is composed
of one or more levels; each with one rule
and a set of drills. Three types of
approaches are available: the student may
answer assorted drills from various strands
at the level which the student is currently
on in the strand; or the student might
answer questions from only one strand in
which case the student will advance from
one level to the next or the student may do
drills from one specif'ic rule in a particu
lar strand. This last method is used to

922

exercise skills in which the teacher has
determined the student needs extra work.

This logical structure is implemented
through two sets of variable length ASCII
data files. The ENGMOD file structure and
routines are usedJ; this has greatly simpli
fied the debugging of the program. One
file, the index file, is a two dimensional
array: strand number by level. The current
English programs allow for eight strands
and any number of levels. The index con•
tains a list of pointers to the other file,
the drill text file, as well as the criteria
for promotion from each level to the next
one. The individual level consists of a
pointer to the text of its rule, its
standard for advancement, the number of the
level to advance to, and a set of up to
four instructions each with a list of point
ers to the drills. The first line of the
entries in the data file is an I.D. line.
This identifies the entry in terms of its
type (rule, instruction or drill), the
strand, the substrand, and the level it
belongs to. This structure allows a great
deal of flexibility in the arrangement of
the levels and allows cross checking in
order to verify the integrity of the data
base.

Each entry in the data file is comprised
of five sections: the I.D. line, the main
text, the multiple choice question, the
conditional print, and the answers to the
multiple choice question. Any section,
except the I.D. line may be omitted. The
I.D. line is as described above. The main
text may either contain pure text, as in
the case of rules and instructions, or may
have embedded questions. The embedded
questions format is mainly used in the
punctuation strand where the text is
printed and the terminal waits for the
student to type in a punctuation mark or
answer. If the student's answer is correct
then the next part of the sentence is
printed; if the answer is wrong then the
student is asked to try again. (The
student is given two tries.) The multiple
choice question and answers may be used
alone or in conjunction with the main text
to strengthen the student's understanding
of a rule. The conditional print lines are
optionally displayed according to the
student's answer to the multiple choice
question. These lines might be a hint,
encouragement, or the corrected version of
a sentence.

While writing the two different English
Strands this summer and autumn, we have
tried to keep the two sets of programs as
much in common as possible. The very diff
erent drill formats have made it necessary
to separate the data files, but both sets
of files are in ENGMOD format. Because
ENGMOD was written and debugged before
this summer neither of the programmers had
to spend time writing new routines or add
itional data utility programs. Although
the reporting requirements for the fifth
and tenth grade English Strands are

different, there are sufficient similarities
to warrant combining them into one file.
The student enrolling program for Math
Strands has been generalized and now will
enroll students in English Strands as well.

The English Strands actually consist of nine
programs; some are shared with other CAI
programs. The programs include: ENGMOD and
VTMOD, the variable length data enter, edit,
and list programs; ENROLL, the student en.
roll and delete program; STRAND, the program
which is used for students to begin a CAI
session; ENGREP, which generates reports on
the students' progress in English; ENG5, the
fifth grade drill program; ENGDRL, the tenth
grade drill program; and two utility programs
for the tenth grade strands data files. The
two utility programs are ENGCHK, which ver
ifies the integrity of the inde:x and data
files, and ENGTBL, which lists information
about the rules and drills available.
ENGCHK checks every level of one strand and
compares the I.D. line of the rule to that
of each instruction and drill which are also
used by the level. All differences are list
ed along with the level number, rule number,
and instruction or drill number. This cross
check, although not perfect, has been quite
effective at locating typing errors in the
index file or in the entering of data items.

ENGTBL lists the levels of a strand so that
a teacher can see what level corresponds to
the current classroom work, or is able to
tell a student what to type in order to get
special help on some rule the student may
be having difficulty with. ENGTBL lists the
level number and an expanded version of the
I.D. line (e.g. "Rule for Punctuation and
Commas A and B" instead of "R2;A&B,1"),
ENGCHK lists the text of the rule and/or
lists the basis for advancement to the next
level, what the next level is, and a list of
the instructions and the drills for the rule
according to the wishes of the teacher. The
text of the instructions and drills may be
listed using ENGMOD, but these are only
needed to correct errors.

Manuals are being prepared for all Strand
programs. The source programs have been
carefully documented, line by line, and
include all subroutines, functions, and
variables. Every data file has a format
(.FRM) file describing it. This practice
is necessary if the programs are ever to be
updated or patched after they have been
written. Even though it is time consuming
to keep the documentation up to date, the
benefits are well worth the time spent.
In a school environment, the improved ease
of a new programmer understanding a program
is greatly appreciated because each student
programmer will, at most, only be at school
for a few years.

Students can use English without having to
know much about the computer, all a student
must do is to type "ENGLISH". If the stu
dent is logged off then LOGIN will chain to
STRAND on the system librar}r account. If
the student is logged on then the CCL com-

923

mand "ENGLISH" would run STRAND. In addi
tion to the general session, the student may
request work on a specific strand (e.g.
"English Punctuation" where "Punctuation"
may be abbreviated to any length; as long
as it caIUlot be confused with another strand)
or on a specific strand and level (e.g.
"English Punctuation 7 11 .). STRAND then asks
the student his I.D. number and name.
These are1 checked to be sure they are valid
andmatcli. If they are, STRAND then chains
to either elementary school or high school
English Strands, depending on which one the
student is enrolled in. The session then
begins at a level based on the results of
the previous sessions; however, if the stu
dent specifies a level, the session uses
that one instead. Either way, the score is
recorded at the end of the session and a
score swrunary is printed on the terminal for
the student. The swrunary includes a list of
all the strands and levels worked on in a
particular session, the number of drills
done for each, and the number of drills done
correctly.

The teacher must log on to the system in
order to work with English, but this can be
done from any account. The teacher can run:
ENROLL, to enroll new students or delete
students; ENGREP, to receive a report on the
progress of an individual student, or an
entire class; ENGTBL, to list the rules,
texts and drills used; and ENGMOD to enter
or edit the rules, the instructions, the
drills or the index. For security reasons,
each of these programs have a password.

In the future, as experience is gained with
the English Strands, modifications will be
made. The main foundation for any change
will not be to increase efficiency or to
decrease storage space, but to best meet
the requirements of the students and the
teachers. The curriculum will continue to
expand as the other strands curriculum are
written and entered. Teachers, as they
begin to see the possibilitie~ are becoming
enthusiastic. The success of the English
Strands depends upon the ease with which it
can be integrated into the classroom and
used as an adjunct to the more traditional
learning procedures. At Riverdale we feel
that English Strands will be able to live
up to these difficult requirements.

A PROPOSAL ON THE FUTURE DIRECTION OF COMPUTER ASSISTED INSTRUCTION

Bruce G. Alcock
Riverdale Country School

Riverdale, New York

ABSTRACT

There is a critical need for establishing guidelines
that will foster development and implementation of
computer assisted instruction on a wide scale.
Presented below are three points which are intended
to greatly expand the scope of development projects
as well as increase the number of potential users.

For the past few years, the power of the
computer in the educational environment as
a learning tool has not only become evident
but it has also been applied in practical
every day use. This has resulted in a
belief among computer education specialists
that in order to expand activities beyond
isolated local pockets of success, a
national effort is necessary. This is a
proposal for one possible approach.

This summer the House of Representatives
Committee on Science and Technology held
hearings on computer uses in education
and what could be done to further the all
too few efforts currently being made.
They are expected to recommend the creation
of a presidential appointed committee to
study the problem further. This past
August an organization called the National
Educational Computing Consortium was formed
to: (1) Influence direction of educational
computing. (2) Conduct special studies and
projects. (3) Provide information to
various societies. (4) Hold meetings.
There has also been talk about the creation
of a national clearing house through which
all CAI development would be coordinated.

For the past six years, personnel at the
Riverdale Country School have been working
on developing and implementing curriculum
on the computer. In some cases this has
involved modification of existing curricula
but there have also been attempts at
developing the curriculum itself. Some
projects have failed, or are still in
progress, but others have been extremely
successful. Based on this we now feel
that there is a lack of experience in
developing material for the elementary/
secondary school market that is evident
in all proposals we have seen to date.
Furthermore, our feelings dealing with
more general issues are reinforced on the
college level through our involvement with
DECUS (Digital Equipment Computer Users
Society} which has brought us in contact
with schools of higher education that are
producing and using successful material.

P-dlngs of the Dig/ta/ Equipment Computer Users Society 925

The first fact that becomes painfully clear
is the void which exists between various
institutions that are developing material.
This void could also be described as a lack
of communication, or more appropriately, a
lack of channels through which communication
is fostered. For the past five years, only
TICCIT and PLATO have received any real
publicity effort and neither of these pro
jects is useful to the user who has a com
puter system and would like to implement
some type of computer assisted instruction.
The only lines of communication that do
exist are through user groups and these tend
to be very insular. Even so, this provides
some sort of awareness that there are other
installations attempting similar projects.

The elementary/secondary school environment
is especially affected by the lack of know
ledge on availability of material. Computer
personnel at this level often are math or
science teachers doing computer work on a
part-time basis. They do not belong to any
of the computer-oriented professional
societies, and do not know about user gr.oups
or other sc'hools using computers that could
provide information on using the computer
and teaching programming.

A central clearing house to distribute soft
ware is necessary. While the activities of
CONDUIT are already engaged in this activity,
possible expansion of this organization has
to be seriously considered. More importantly,
the existing activities and future potential
need to be publicized not just among the
computer education people but among all
educators as a source of existing low cost
material. The programs distributed by
CONDUIT theoretically may be run on any
system, and may even be adaptable to the
microcomputer market.

The computer manufacturers user groups can
provide another good source for interchange
of material, but they often are not geared
to the needs of educators. Some form of
incentive must be developed including, if
need be, the subsidizing of education
oriented user groups.

San Francisco - November 1978

The most difficult aspect of developing CAI
material is the curriculum itself. Lesson
materials must be presented in a format
which lends itself to computer implement
ation, Teachers currently derive their
curriculum content through the use of
textbooks which for the most part are
linear with little or no branching. The
student reads a chapter and answers
questions at the end of the chapter. This
work is corrected in class and the next
day the teacher prepares a student for the
next homework assignment by introducing
the next section. While this is an over
simplification, it is obviously impossible
for a teacher with twenty students to hand
out twenty different homework assignments,
especially if that teacher has four or
five different classes. If the student is
weak in one area, the problems should be
easier in that area and harder for those
skills in which the student has strength.

A computer curriculum is designed with a
single student in mind, since the student
and the terminal are on a one-to-one basis,
Furthermore, the branching capabilities
that make possible easier or harder ex
ercises, additional explanations, or
skipping material the student is familiar
with, are concepts familiar to the systems
analyst, but totally alien to the curriculum
specialist.

Projects, including workshops and articles
in general educational journals to educate
the educator on how to write new course
material using the above mentioned features,
should be sponsored by the National Science
Foundation as well as National Institute
for Education. Bringing the computer into
the mainstream of education is not an easy
task, but is essential to extending the
use of the computer, Currently, only the
computer education specialist is able to
use the new technology and create material
for it. Funding which will bring knowledge
on how to use the computer to the majority
of educators still unaware of how to use
the potential will alleviate fears about
computers as well as make it possible to
have an increase in development of curric
ulum for the computer.

Exchange of material has been an issue which
the commercial market has solved through
the use of COBOL, and the scientific
community through FORTRAN, BASIC is
supposed to be the language of education,
but is rapidly spreading to small systems
for business and other applications, The
minimal BASIC (for which a standard now
exists) does not have enough power to
produce good software - it does not even
include text manipulation facilities, The
proliferation of education (CAI) languages
includes TUTOR, COURSEWRITER, PILOT, etc.,
all of which have strong supporters, This
complicates the picture since it is im~
possible to exchange software, Perhaps the
attempts at standardization and interchange,

926

are being made at the wrong level. It is
difficult to present the exact same lesson on
a graphics CRT terminal and on a paper
terminal of 72 characters width, Graphics
cannot be used on the printer and text must
remain on the screen long enough for the
student to read and understand it.

The common denominator is the curriculum.
This is the most difficult and expensive
portion of CAI development. Implementation
left up to individual institutions can take
many forms including graphics when the
equipment is available. The implementation
language, as well as method, should be such
that the system is used most effectively,
Optimization is especially important in a
market where hardware dollars are limited,
and programming talent in the form of
students is relatively inexpensive. Com
puter people not familiar with this special
environment would tend to have education
follow the patterns set by business where
equipment expense can be justified by
reducing operating costs, as well as
having a tax advantage, while trying to
keep expensive programming costs down,

Developing curriculum material is too
expensive to be undertaken as an in-house
project with no external funding, Moreover,
a great deal of good talent lies fallow
because of this cost factor, The federal
government through NSF and NIE must be
persuaded to initiate a program that will
make it possible for qualified institutions
to form the lesson material that is so
desperately needed, But in doing so, some
organization must keep track of progress of
all the projects for two reasons. The first
reason, accountability, means that the work
will be completed according to the terms
under which the grant was made (not to
control the effort); the second, publicity,
will encourage developers since each project
has to be given national coverage, Motiva
tion will be increased and sharing of ideas
will also increase, Coverage, not re
stricted to the computer education people,
but among all educators will make them aware
of the effort that is taking place and what
material will be available in the future,
They can then plan to use the computer in
the not too distant future,

Terms of the grant must include making the
final product available to all other
educational institutions at distribution
cost. It would be more appropriate, how
ever, for an expanded CONDUIT or a national
clearing house to take on this task of
distribution, Individual institutions
would then be able to implement the exist
ing curriculum packages quite rapidly on
an array of different processors, Computer
manufacturers then would find it profitable
to buy the best CAI packages, provide
support and sell them to schools that do
not want to develop their own software.

While there are no guarantees that the soft
ware part of this plan would be a success,
consider that a private school (elementary/
secondary level) took one summer to imple
ment a version of the Stanford Math Strands
curriculum. Certainly, at this point,
private enterprises would find it profitable
to write the programs and this must not be
discouraged. With the curriculum in the
public domain, anyone could pick it up and
do whatever they wanted to with it.

From the lessons of TICCIT and PLATO we
should learn that any further money must be
spent on the software and not hardware, and
the software funds should go toward content
not more languages. Any money spent for
system sot·tware should be directed toward
networking of microprocessors. Distributed
processing does not mean isolated processing,
especially in the educational environment
where central records on student performance
permit mobility on the part of students.

Holding national meetings is not a bad idea
but if it only caters to a small group of
specialists it is not going to help expand
CAI development. A national conference
that will specifically address itself to
involving the non-computer educators is
necessary. But perhaps, the first effort
should be made by computer educators to
attend the regular educational meetings.

The main points that must be stressed are:

1. Funding of a distributor - CONDUIT - is
the easiest way since they already have
the expertise. But whoever takes on the
task of distribution must include the
elementary/secondary school market, as
well as higher education, and be able
to distribute curriculum packages.

2. Develop new methods for curriculum
presentation, and inform the entire
education industry of these methods.
Do not restrict creating CAI to a small
group of specialists. The programming
and curriculum work are two separate
areas that should be attended to by two
separate groups, without losing commun
ication between the two parties.

3. Funding of local curriculum development.
Emphasis has to be placed on complete
packages, and keeping the entire edu
cation industry informed on what is
being done. Curriculum packages will
fall into the publio domain, but
specific implementations can be sold
commercially. The profit incentive has
been lacking thus far, and this will
adequately reduce initial investment
on CAI.

927

It should be noted that in each of these
points, involvement of the entire education
community is an important part of the
strategy for without the cooperation and
help of the typical classroom teacher,
nothing lasting can be accomplished.

Forming a policy for the nation on computer
education will have to include input from
many organizations. It will have to go
into much greater detail than has this paper.
The three major points listed above form
the nucleus around which such a policy
could be built.

ELECTRONIC MAIL SYSTEM

RICHARD ANDREOLI and JERALD MELNICK
DIGITAL EQUIPMENT CORPORATION

ONE IRON WAY
MARLBORO, MA

ABSTRACT
A combination of office automation, word processor and
communications system, this system gives the user the ability
to generate, edit, electronically deliver and file memos,
messages or documents. Other features include the ability to
keep personal calendars, generate large documents and develop
and edit graphic displays.

INTRODUCTION

"ELECTRONIC MAIL" has recently been used to label
many different means of transmitting information
electronically. Telegraph, store and forward
message switches, and communicating word processors
are among the most widely used today. Facsimile
document transmission is attracting a large amount
of new interest and is also typically described as
"ELECTRONIC MAIL". This method employs a page
scanner which converts images into raster and then
transmits the signal (usually over telephone lines)
to a decoding device which then prints the image.

EMS-11

The ELECTRONIC MAIL SYSTEM (EMS) discussed here is a
DEDICATED-DOCUMENT based Mail System operating under
DSM-11. Presently, 45 terminals are connected to a
PDP-11 /55. Terminals are owned or shared by users
and access to the system is protected by requiring a
user specified password when logging in. In this
configuration, all EMS users have access to a common
data base. Messages (memos and documents) are
transferred with a minimal time delay and the system
provides many additional aids to automate office
work, as well as supporting a number of marketing
functions. In addition, a telephone link to the
Corporate Message Service (CMS - a store and forward
message switch) allows EMS users to send messages
from their terminals to many parts of the world.

OBJECTIVES

The objective of EMS is eliminate the large amount
of paper generated in the operation of an office.
The system provides an effective and dependable
means of comm uni ca ti on, as well as an aid in
editing, copying, filing, and scheduling of events.
The benefit is better utilization of human resources
and a more efficient way of communicating.

Proceedings of the Dig/ta/ Equipment Computer Users Society 929

DESCRIPTION

The system is comprised of four subsystems:

1. CALENDAR KEEPER
2. MEMO HANDLER
3. DOCUMENT HANDLER
4. GRAPHICS HANDLER

A fifth subsystem exists which allows the SYSTEM
COORDINATOR to maintain the lists and profiles of
all EMS users, and update distribution lists for
convenient memo distribution. The routines are
accessed by choosing a selection from a list of
available options or MENU. The following is a brief
outline of the routines within each of the
subsystems.

CALENDAR KEEPER

The objective of the CALENDAR KEEPER is to create an
efficient and organized means of personal calendar
scheduling, along with the added capability which
finds common unreserved time slots for up to five
people.

The CALENDAR KEEPER consists of five sections which
are displayed as choices on the "CALENDAR KEEPER
MENU" when the routine is first accessed. These
sections are:

1. DISPLAY CALENDAR
Displays any individual's calendar for any
specified date.

2. SCHEDULE
Permits the
activities
calendar.

scheduling of events or
on the users's personal

3. TIME SLOT SCAN
Searches the calendars of up to five
persons for a desired number of contiguous
unreserved time slots.

4. AVAILABLE TIME SLOT
Displays calendar of up to five persons and
allows the scheduling of common unreserved
time slots.

San Franclaco - November 1978

5.. CALENDAR DIRECTORY
Lists all of those individuals who currently
have a calendar.

MEMO HANDLER

The objective of the memo handler is to provide an
efficient means of drafting, editing, copying,
filing, and distributing memos.

Capabilities of the MEMO HANDLER feature:

1. Automated distribution of INTERNAL mail with
negligible time delay. Hardcopy production is
available, along with mail address label
printing for all EXTERNAL mail.

2. complete editing capabilitias.

3. Automated filing and memo retrieval by "SUBJECT
SEARCH".

The MEMO HANDLER consists of six sections which are
displayed as choices on the "MEMO HANDLER MENU" when
the subsystem is first accessed. These sections
are:

1. GENERATE MEMO
Permits drafting, editing, and sending of a
memo.

2. SEND MEMO
Allows the user to send memos from the
UNSENT file •

3. READ MEMO
Displays any memo contained in a user's
files.

4. MEMO AND FILE MANAGER
Creates user defined files, deletes files,
deletes memos, and files memos.

5. SEARCH MEMO SUBJECT
Searches through all or selected memos for
memos with a specified subject.

6, LIST DIRECTORIES
Lists all EMS users, all available
distribution lists, all individuals within a
specified distribution list and all
distribution groups in which a specified
individual may be found.

DOCUMENT HANDLER

The objective of the DOCUMENT HANDLER is to provide
an ef.ficient means to draft, store, edit and print
documents.

The DOCUMENT HANDLER is particularly useful for
generating reports or plans which require periodic
updates and printing. The document may also be
forwarded to the EMS users along with an attached
FORWARDING MESSAGE.

The DOCUMENT HANDLER consists of six sections which
are displayed as choices on the DOCUMENT HANDLER
MENU when the routine is first accessed. These

930

sections are:

1. GENERATE DOCUMENT
Permits document drafting with page and
line format controls.

2. EDIT DOCUMENT
Allows editing of documents.

3. PRINT DOCUMENT
Prints hardcopy of selected documents.

4. DELETE DOCUMENT
Deletes any unwanted documents.

5. DOCUMENT DIRECTORY
Lists all documents which belong to the
user.

6. FORWARD DOCUMENT
Allows the user to send a copy of the
document along with a cover letter to any
EMS user.

GRAPHICS HANDLER

The purpose of the GRAPHICS HANDLER is to provide
the user (without programmer intervention) with the
ability to create their own graphs. This will be
performed by the user answering questions pertaining
to data manager routines and graphic manager
routines.

The DATA MANAGER MENU consists of the following five
sections:

1. ENTER NEW DATA FILE
Permits the setting up of a data file
consisting of X and Y point values.

2. EDIT EXISTING DATA FILE
Allows the editing of a data file.

3. DISPLAY EXISTING DATA FILE
Displays on terminal or hardcopy a users
data file.

4. DELETE DATA FILE
Deletes any unused and unwanted data file.

5. DATA FILE DIRECTORY
Lists all data files which belong to the
user.

The GRAPHICS MANAGER MENU consists of the following
five sections:

1. GENERATE NEW GRAPH
Allows the user to generate a graph using
up to two data files, setting scales and
labeling the graph.

2. EDIT GRAPH
Allows the editing of a graph: such as,
displaying the graph as a histogram or
graph, change scaling and/or labeling, etc.

3. DISPLAY EXISTING GRAPH
Displays any graph which belongs to the
user.

4. DELETE GRAPH
Deletes any unwanted graphs.

5. GRAPH FILE DIRECTORY
Lists all graphs which belong to the user.

FUTURE CONSIDERATIONS

This project was originally started with a small
group of managers and secretaries operating with 20
terminals on an 11/40. The first system was written
in MUMPS-11 and later converted to DSM-11. As
previously mentioned, 45 terminals are now connected
to an 11 /55 and a directory of 300 users is now on
file. The link to the CMS system has greatly
improved the flexibility and usefulness of EMS.
Approximately one third of all memos written on EMS
are now transferred for distribution through the
Corporate Message Service. Future plans include
receiving messages from CMS.

Efforts are now being made to add the many new ideas
and features suggested by users. The design and
implementation of a network of DSM-11 based
Electronic Mail systems is currently underway. Each
node will be responsible for switching its own
outgoing mail to the appropriate system.
Communication between nodes will take place via
dial-up lines. Directory and system information
will be passed in a similar fashion, allowing
directory updates at each node.

Finally,, a link will be available to all WORD
PROCESSING SYSTEMS {WPS-8). WPS-8 files will be
transferred to and from the EMS DOCUMENT HANDLER for
temporary storage or transmission to users and other
WPS-8 systems.

931

COMPUTERIZED FINANCIAL ACCOUNTING:
JOURNAL ENTRIES THROUGH FINANCIAL STATEMENTS

Clairmont P. Carter
Babson College

Babson Park, Mass. 02157

ABSTRACT

Transaction analysis is often considered to be the
key to understanding financial accounting. How
ever, because of the many mechanical, bookkeeping
processes involved between transaction analysis
and the preparation of financial statements, it is
quite possible for students to fail to clearly see
the financial statement impact of specific busi
ness transactions. Through the use of a financial
accounting computer package it is now possible for
students to concentrate on transaction analysis
while the computer handles most of the mechanics
and prepares the financial statements. As a
result, students can quickly see how their anal
ysis and interpretation of specific transactions
directly influence the financial statements.
Specifically, there has been developed a financial
accounting computer package which requires stu
dents to input journal entries only, after which
the computer will update the general ledger, pre
pare a trial balance, and generate financial
statements. The computer program is such that
each student has a separate set of files in which
her or his company input is maintained and from
which the financial statements are prepared. The
financial accounting computer package includes 12
sets of transactions covering the topics most
frequently discussed in a financial accounting
principles course, such as, cash, receivables,
inventories, fixed assets, liabilities, and
owners' equity. The transaction sets apply to an
unincorporated, service enterprise which evolves
into an incorporated, merchandising firm.

INTRODUCTION

The accounting process consists of the fol
lowing ten steps:

1. The preparation of general journal en
tries.

2. Posting the general journal entries to
the general ledger.

3. The preparation of a trial balance
before adjustment.

4. The preparation of adjusting journal
entries.

5. Posting the adjusting entries to the
general ledger.

6. The preparation of the adjusted trial
balance.

7. The preparation of the closing entries.
8. Posting the closing entries to the

general ledger.
9. The preparation of the post-closing

trial balance.
10. The preparation of the financial state

ments.

Of the ten steps described above, all but
two steps are of a highly mechanical na
ture. Only Steps l and 4, the preparation
of journal entries, require detailed
analyses. As a consequence, the analysis
of business transactions which result in
general journal entries and/or adjusting
entries is often considered to be the key
to understanding financial accounting.
However, the need for the other, mechanical
steps in the accounting process often makes
it difficult for students to clearly see
the impact that their analysis of business
transactions can have upon the financial
statements which result from the complete
accounting process. In fact, the mechan
ics of the accounting process are so cum
bersome that accounting is quite often
taught on a topic-by-topic basis, in which
the accounting effects of such topics are
discussed but rarely demonstrated on a com
plete set of financial statements. For ex
ample, in many accounting principles
courses it is customary to discuss the
effects of different inventory costing
techniques and different depreciation

Proceedings of the Digital Equipment Computer Users Society 933 San Francisco - November 1978

methods but such effects are rarely, if
ever, demonstrated on a complete set of
financial statements. The bookkeeping
process is so cumbersome that it often
prohibits such exploration 0£ the finan
cial statement e£fects of many alternative
accounting practices. As a result, stu
dents obtain some idea of the impact of
alternative accounting practices, but
rarely do the students have an opportunity
to put such effects into proper prospective
by viewing them in relation to the other
topics which impact on the financial state
ments.

To overcome the mechanical nature of the
accounting process, to allow students to
concentrate on transaction analysis and
still be able to see the impact of their
analysis upon a complete set of financial
statements, a financial accounting computer
package has been developed. In essence,
the financial accounting computer package
requires the students to perform the trans
action analysis and the computer performs
the mechanical, bookkeeping process,
resulting in the financial statements.

ELEMENTS OF THE FINANCIAL
ACCOUNTING COMPUTER PACKAGE

The financial accounting computer package
may be viewed as three separate elements -
a series of business transactions, the com
puter input, and the computer output - each
of which is discussed below.

Business Transactions
The financial accounting computer package
has been designed in such a way that the
students are viewed as the accountants for
a business enterprise. To both reflect the
operations of the business and to expose
the students to the many different topics
discussed in a financial accounting prin
ciples course, 12 sets of accounting trans
actions have been developed. Each set of
transactions covers one month's business
activity. For each month's activity, it is
the students' responsibility to analyze the
transactions and, with the aid of the com
puter, prepare the monthly financial state
ments.

The 12 transaction sets are designed to
cover most of the topics normally discussed
in a financial accounting principles course,
such as, cash, receivables, inventories,
fixed assets, liabilities, and owners'
equity. Furthermore, in order to include
coverage of the different types of busi
nesses and the different capital structures
of businesses, the transaction sets reflect
several possible transactions in a company's
development, as presented in Exhibit 1.

.A.n examination of Exhibit 1 :reveals that
the transaction sets do not cover manu
facturing enterprises o:r partnerships.
Neither of these topics was included in
the transaction sets because sucli. topics
are discussed only briefly in most finan
cial accounting principles courses. How
ever, it should be noted th.at the computer
program is flexible enough. that the ch.art
of accounts and, thus, the financial state
ments, may be modifi.ed to reflect either
topic if an instructor so desires. Of
course, such. modification would also re
quire a change in one or more of the 12
transaction sets.

As illustrations of the types of events
covered in the transaction sets, Exhibits
2, 3, and 4 present e.xamples of trans
actions effecting the Stone Automotive Com
pany. Exhibit 2 reflects the events of a
service company which. is a sole proprietor
ship. The transaction set in Exhibit 2 is
the first one presented to the students
and, as such, has been designed to be
brief and relatively simple, since, for
many students, this may not only :Oe their
first experience with accounting but may
also be their first exposure to the com
puter. A quick review of Exhibits 3 and 4
reveals that the transaction sets become
more complicated as the students progress:
through the accounti.ng course. Exhibit 3
presents transactions relating to the oper
ations of a merchandising company which is
a sole proprietorship and Exhibit 4 pre
sents transactions relating to a merchan
dising firm which is a corporation. Thus,
as illustrated in Exhibits 2, 3, and 4, the
students' company evolves from a sole pro
prietorship, service company to a merchan
dising corporation. The transaction sets
have been designed to reflect such evolu
tion and to show its effects on the finan
cial statements.

EXHIBIT 2
TRANSACTION SET

SERVICE COMPANY, SOLE PROPRIETORSHIP

Transaction Set #1
1/1/78 Jessica Stone organized the Stone

Automotive Company by investing
$2,000 of her cash. The Stone
Automotive Company will provide
high quality automobile engine
service on an appointment only
basis. The service will be pro
vided in Ms. Stone's personal
garage using tools owned by Ms.
Stone.

1/8/78 The Company purchased, on account
$1,350 of automotive supplies
which will be used to service
various automobiles.

EXHIBIT 1
TRANSACTION SET COVERAGE

Transaction Sets
1-4
5-9

10-12

Business Type
Service Company
Merchandising Company
Merchandising Company

934

Capital Structure
Sole Proprietorship
Sole Proprietorship
Corporation

1/20/78

1/25/78

1/31/78

The Company borrowed $2,400 from
a friend of Ms. Stone by Ms.
Stone's signing of a note pay
able. Beginning on 2/20/78 the
note will be repayed in twelve
monthly installments of $200.
The loan is interest free.
The Company paid for half of the
automotive supplies purchased on
1/8/78. The balance is to be
paid on 2/5/78.
The Company purchased a small
piece of land to be used as a
parking lot. The land cost
$1,000 and will be paid for on
2/28/78.

EXHIBIT 3
TRANSACTION SET

MERCHANDISING COMPANY, SOLE PROPRIETORSHIP

Transaction Set #5
5/1/78 After a good deal of research,

Ms. Stone decided that she would
be better off by selling auto
parts than by using them to re
pair cars. As a result, as of
5/1/78 her business changed from
auto engine repair to auto parts
distribution.

5/1/78 The supplies on hand were exam
ined and determined to be in
salable condition. Hint: The
supplies should be reclassified
as inventory.

5/4/78 Jessica purchased, on account,
$5,000 of auto parts.

5/5/78 Ms. Stone paid April's bills
received 4/25/78.

5/10/78 Ms. Stone received the cash on
all 4/30/78 accounts receivable.

5/13/78 Jessica paid cash for half the
auto parts purchased on 5/4/78.

5/15/78 Ms. Stone made her second pay
ment on the bank note.

5/16/78 Because of the volume of busi
ness, Ms. Stone hired Linda
Fetters as a part-time sales
clerk. Ms. Fetters is to be
paid a wage of $2.50 per hour.

5/25/78 May's utility bill was $52, the
phone bill was $72, and the ad
vertising bill was $105. All
three bills will be paid 6/5/78.

5/31/78 May's sales were $4,450, of
which $3,000 were cash, the bal
ance to be collected in June.

5/31/78 Auto parts on hand totaled
$3,000.

5/31/78 Ms. Fetters was paid for all 20
hours she worked in May.

5/31/78 Ms. Stone withdrew $950 for her
personal use.

EXHIBIT 4
TRANSACTION SET

MERCHANDISING COMPANY, CORPORATION

Transaction Set #10
10/1/78 Ms. Stone decided to incorporate

her business. After fulfilling
all the legal requirements, the
result was 10,000 authorized

935

10/1/78

10/5/78

10/7/78
10/10/78

10/10/78

10/12/78

10/15/78

10/17/78

10/20/78

Part

shares of $1 par value common
stock. 6,000 of the shares were
taken by Ms. Stone in return for
her capital interest in the busi
ness.
Ms. Stone decided the business
needed a truck more than a car.
As a result, she sold the car
for $1,500. She then paid
$2,400 cash for a 1974 Ford pick
up truck, which will be depreci
ated over four years, using the
sum-of-the-years'-digits method
and assuming no salvage value.
Stone paid September's bills
received 9/25/78.
Stone paid the October rent.
Ms. Fetters subscribed to 100
shares of the $1 par value Stone
Incorporated common stock. The
subscription price was $5 per
share.
The note receivable received on
7/10/78 and discounted on 7/25/78
was settled in full by the maker
of the note. Hint: The maker
paid the bank and the bank noti
fied Ms. Stone.
Stone paid for the auto parts
purchased 9/19/78.
Stone made her seventh payment
on the bank note.
Stone increased the petty cash
fund by $50.
Auto parts purchased on account
with terms of N/30 were:

Quantity Invoice
Purchased Price/Unit

22 270.00
10 4.50

5 74.40
4 43.50

Class
Transmissions
Mufflers
Exhaust Pipes
Axles
10/23/78 Ms. Fetters paid for the stock

subscribed on 10/10/78.
October's utility bill was $180,
the phone bill was $74, and the
advertising bill was $215. All
three bills will be paid on
11/5/78.

10/25/78

10/31/78

10/31/78

10/31/78

10/31/78

Part
Class

October's sales were $10,250, of
which $4,250 were cash, the bal
ance were credit sales under
terms of 2/10, N/30.
October credit customers owing
$2,000 paid within the discount
period.
The 8/31/78 accounts receivable
of $350 were collected. $2,000
of the September accounts receiv
able were collected and $175 were
judged to be uncollectible.
A physical inventory revealed the
following to be on hand.

Quantity Current Market
On Hand Price

18 270.00
20 4.75

5 74.00
2 43.00

Transmissions
Mufflers
Exhaust Pipes
Axles
10/31/78 Petty cash expenditures in

October were: $25 for office
supplies and $43 for postage.

10/31/78

10/31/78

10/31/78

10/31/78

Ms. Fetters was paid for 250
hours worked and Ms. Stone was
paid a salary of $1500.
Truck expenses paid in cash were
$100.
October's bank service charge
was $5.
Plaston stock has a market value
of $12.25/share.

Computer Input
The computer input for the financial ac
counting computer package is designed
around a series of commands which allow
students to select the specific computer
function they want performed. Exhibit 5
briefly explains the conunands available to
the students.

Command
l

2
3

4
5
6

7
8

9
10

EXHIBIT 5
COMPUTER COMMANDS

Purpose
Set up all accounts in the gener
al ledger. This command elimi
nates all old balances which may
exist and prepares the general
ledger to accept the results of
any new journal entry postings.
List the chart of accounts.
Modify the chart of accounts and
the general ledger.
Prepare journal entries.
List the journal entries.
Post journal entries to the gen
eral ledger.
List the trial balance.
List the financial statements:
income statement, capital state
ment, and balance sheet.
Exit from the program.
Help! List all available
commands.

It should be noted in Exhibit 5 that the
computer commands are quite similar to the
accounting process described earlier.
Specifically, the accounting process pro
ceeds from journal entries to financial
statements and so does the series of com
puter commands. Thus, in effect, the
series of commands allows the students to
perform the accounting process with the
aid of the computer.

Once the students have selected their de
sired computer command, the computer re
sponds with a series of simple questions
which must be answered by the students.
For example, if the students select command
4, the journal entry command, the computer
will ask for (1) the transaction date, (2)
an explanation of the transaction, (3) the
account number, (4) debit or credit, and
(5) the dollar amount of the debit or
credit. Each question must be answered
before the next one is asked. Furthermore,
questions 3, 4, and 5 are repeated until
the total debits equal the total credits.
Thus, the computer will not allow the stu
dents to present it with data which will
result in financial statements which do not
tie together.

936

In essence, the financial accounting com
puter pack.age input is prepared by the
i.nteracti.on between the students and the
computer.. Through the use of a series of
commands, the students indicate the opera
tion they want performed. The computer re
sponds wi.th a series of questions, the an
swers to which will allow the computer to
perform the desired operation. From a
practical standpoint, student-computer
interaction is most pronounced during the
journal entry operation (command 4). It i.s
at this stage that the students mus-c inform
the computer of the results of the stu
dents' analysis of specific business trans
actions. Once the computer has been so
informed, through the use of the proper
series of commands, the computer will gen
erate a complete set of financi.al state~
roents. An example of the complete input
;requirements and the output results is pre
sented in a following section of this pa
per. It should be especially noted that
the key to obtaining reas·onable financial
statements through the use of thi.s finan
cial accounting computer package is the
studentsl analysis of business trans
actions. If students analyze transactions
incorrectly, they will get unreasonable
results. The computer will not correct the
students' inability to do accounting.

Computer Out!ut
The output o the financial accounting com
puter package depends upon the computer
command selected by the students. Essen
tially, the output consists of the follow
ing: (1) the chart of accounts, which is
presented as Exhibit 6, (2) the general
journal, presented as Exhibit 7, (3) the
trial balance, presented as Exhibit 8, (4)
the income statement, presented as Exhibit
9, (5) the capital statement, presented as
Exhibit 10, and (6) the balance sheet, pre
sented as Exhibit 11. In addition to the
computer output presented in Exhibits 6
through 11, the financial accounting com
puter package results in a print-out of the
students-computer interaction, as presented
in the following section of this paper.

EXHIBIT 6
CF.ART OF ACCOUNTS

Account Number
1000
llOO
lllO

ll20
ll50
1200
1250
1300
1350
1500
1520

1550
1570

1600

Account Name
Cash
Accounts Receivable
Allowance for Doubtful

Accts.
Notes Receivable
Interest Receivable
Prepaid Insurance
Prepaid Rent
Supplies
Other Current Assets
Furniture & Fixtures
Accum. Deprec.-Furn. &

Fixt.
Machinery & Equipment
Accum. Depr.-Mach. &

Equip.
Buildings

1620
1650
1670

1700
1800
1850
1900
2000
2050
2100
2150
2200
2400

2500
2600

3000
3100

3200
4000
4050
4100
4200
5000
5010
5020
5030
5100
5150
5200
5250
5300
5350

5400
5450
5500
5550
5600
5650

5700

5750
5800

Accum. Deprec.-Buildings
Automobiles
Accum. Depree.-

Automobiles
Land
Patents
Goodwill
Investments
Accounts Payable
Notes Payable (current)
Interest Payable
Wages Payable
Unearned Revenue
Other Current

Liabilities
Mortgage Payable
Notes Payable (long

term)
Capital
Revenue & Expense

Summary
Withdrawals
Service Revenue
Sales
Interest Income
Other Revenue
Cost of Goods Sold
Purchases
Purchase Discounts
Purchase Returns
Salaries Expense
Rent Expense
Advertising Expense
Utilities Expense
Telephone Expense
Repairs & Maintenance

Expense
Insurance Expense
Property Taxes Expense
Interest Expense
Supplies Expense
Amortization of Goodwill
Depreciation - Furn. &

Fixt.
Depreciation - Mach. &

Equip.
Depreciation-Buildings
Depreciation-Automobiles

EXHIBIT 7
GENERAL JOURNAL

Transaction Account
Date
xx/xx/xx

xx/xx/xx

Totals

Account
Number
xx xx
xx xx
xx xx

Totals

ExElanation _#_
xx xx
xxxx
xx xx
xx xx

EXHIBIT 8
TRIAL BALANCE

AS OF XX/XX/XX

Account Debit
Name Balance

xx
xx

xx

Debit Credit
xx

xx
xx

xx
xx xx
-

Credit
Balance

xx
xx

937

EXHIBIT 9
INCOME STATEMENT

FOR PERIOD ENDING XX/XX/XX

Current
REVENUES Month

Service Revenue
Interest Income
Other Revenue

TOTAL REVENUE
OPERATING EXPENSES:

Salaries Expense
Rent Expense
Advertising Expenses
Utilities Expense
Telephone Expense
Repairs & Maintenance Expense
Insurance Expense
Property Taxes Expense
Interest Expense
Supplies Expense
Amortization of Goodwill
Depreciation - Furn. & Fixt.
Depreciation - Mach. & Equip.
Depreciation-Buildings
Depreciation-Automobiles

TOTAL OPERATING EXPENSES
NET INCOME

EXHIBIT 10
CAPITAL STATEMENT

FOR PERIOD ENDED XX/XX/XX

Beginning Balance
Add: investments

net income
Deduct: withdrawals

net loss
Ending Balance

EXHIBIT 11
BALANCE SHEET

AS OF XX/XX/XX

ASSETS

Current Assets:
Cash

x
x --x
x

x
Accounts Receivable x
Allowance for Doubtful Accts. x x

Notes Receivable
Interest Receivable
Prepaid Insurance
Prepaid Rent
Supplies
Other Current Assets
Total Current Assets
Plant & Equipment
Furniture & Fixtures
Accum. Deprec.-Furn. & Fixt.

Machinery & Equipment
Accum. Depr.-Mach. & Equip.

Buildings
Accum. Deprec.-Buildings

Automobiles
Accum. Deprec.-Automobiles

x
x

x

x
x
x
x
x
x

x

x x

x
x x

x
x x

x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x

x
x

xx

xx

xx
xx

x

Land ~
Total Plant & Equipment
Other Assets:
Patents
Goodwill
Investments
Total Other Assets
Total Assets

LIABILITIES & OWNERS EQUITY

Current Liabilities:
Accounts Payable
Notes Payable (current)
Interest Payable
Wages Payable
Unearned Revenue
Other Current Liabilities
Total Current Liabilities
Long Term Liabilities:
Mortgage Payable
Notes Payable (long term)
Total Long Term Liabilities
Total Liabilities
OWners Equity:
Capital
Expense & Revenue SUI11I11ary
Withdrawals
Total Owners E~uity
Total Liabilities & Owners Equity

FINANCIAL ACCOUNTING COMPUTER
PACKAGE ILLUSTRATED

x
x
x

x
x
x
x
x
x

x
x

x
x
x

x

_li
x =

x

x
x

x
x

Many of the elements of the financial ac
counting computer package are presented in
the following illustration of how students
would make use of the package to generate
March's financial statements for the Stone
Automotive Company. At this point in the
students' use of the package, January's and
February's events have already been process
ed and the appropriate financial statements
have been generated.

Business Transactions
Exhibit 12 presents the March transactions
of the Stone Automotive Company.

3/1/78

3/5/78

3/15/78

EXHIBIT 12
STONE AUTOMOTIVE COMPANY

MARCH TRANSACTIONS

Because her garage was getting
rather crowded, Ms. Stone signed
a one-year lease on her neighbor's
garage. The lease calls for
monthly rental payments of $250
to be made on the first day of
each month. Jessica paid $750 to
her neighbor on 3/1/78.
Ms. Stone paid February's bills
received on 2/25/78.
Because her friend was experienc
ing some financial problems, Ms.
Stone decided to repay her loan.
To accomplish this, Jessica bor
rowed $2400 from the Chestnut Hill
Bank by signing a one-year note.
Beginning on 4/15/78, the note
will be repayed in 12 monthly in
stallments of $200 plus 12% inter-

938

3/20/78

3/25/78

3/31/78

3/31/78

est on the declining balance.
Using some (.or all) of the money
borrowed from the bank, Jessica
repayed her friend for the money
borrowed on 1/20/78.
Ms. Stone withdrew $750 for her
personal use.
March's utility bill was $153,
the phone bill was $46, and the
advertising bill was $89. All
three bi.lls will be paid on
4/5/78.
During~arch, Ms. Stone provided
her customers with $1,500
services of which she received
$800 in cash.
Automotive supplies on hand
totaled $600.

Inasmuch as the students have processed
January's and February's transactions,
they have the chart of accounts presen.t.ed
in Exhibit 6. Using the chart of accounts
and February's balance sheet, the students
would analyze March's transactions and
prepare the general journal entries pre
sented in Exhibit 13.

Once the students have prepared the gener
al journal entries, they are ready to make
use of the computer, as follows:

Computer Processing
To gain access to and make use of the fi
nancial accounting computer package, the
students must take the following steps:

1. Turn on the computer terminal.
2. Type HELLO 70,1 (or another appropriate

access code).
3. The computer responds by requesting the

appropriate password, to which the stu
dents respond by typing AC200.

4. The computer responds with a statement
informing the students that they have
gained access to the financial account
ing computer package and everything is
ready to run.

5. The student responds by typing RUN
ACCTG.

6. The computer responds by requesting the
students' three digit character code.
Note: Each student has a separate set
of files in which the company's general
ledger is maintained. The students
respond to the computer by typing in
the code number assigned by the in
structor.

7. The computer responds by requesting a
command and indicating that command 10
may be helpful to the students.

8. At this stage, if the students have any
doubts regarding any of the commands,
the- students respond to the computer by
typing 10.

9. The computer responds with a command
listing similar to that presented in
Exhibit 5 and asks the students to
select a command.

10. Inasmuch as the students have prepared
the journal entries presented in

EXHIBIT 13
STONE AUTOMOTIVE COMPANY

MARCH GENERAL JOURNAL ENTRIES

Date Ex:elanation Account Number
3/1/78 Garage Lease 5150

1250
1000

3/5/78 A/P Payment 2000
1000

3/15/78 Bank Loan 1000
2050

3/15/78 Loan Payment 2050
1000

3/20/78 Withdrawal 3200
1000

3/25/78 Expense Recognition 5250
5300
5200
2000

3/31/78 Revenue Recognition 1000
1100
4000

3/31/78 Supplies Expense 5550
1300

3/31/78 Interest Expense 5500
2100

3/31/78 Closing 4000
3100

3/31/78 Closing 3100
5150
5250
5300
5200
5550
5500

3/31/78 Closing 3100
3000

3/31/78 Closing 3000
3200

Exhibit 13, the students are ready to
input such journal entries into the
computer. Therefore, the students
respond to the computer by typing 4.

11. The computer responds by indicating
that this command is for the process
ing of journal entries. As a result
of this command, the following inter
action takes place between the comput
er and the students.

Computer Question
Date of transaction:

xx/xx/xx
Explanation
Account Number
DR of CR
Debit Rent Expense for
Account Number
DR of CR
Debit Prepaid Rent for
Account Number
DR of CR
Credit cash for

Students' Response

3/1/78
Lease Payment

5150
D
250

1250
D
500

1000
c
750

Once the total debits equal the total
credits, the computer lists the journal
entry, as follows:

9,39

Account Name Debit Credit
Rent Expense 250
Prepaid Rent 500

Cash 750
A/P 200

Cash 200
Cash 2,400

Notes Payable 2,400
Notes Payable 2,200

Cash 2,200
Withdrawal 750

Cash 750
Utility Expense 153
Telephone Expense 46
Advertising Expense 89

A/P 288
Cash 800
A/R 700

Service Revenue 1,500
Supplies Expense 450

Supplies 450
Interest Expense 12

Interest Expense 12
Service Revenue 1,500

E & R Summary 1,500
E & R Summary 1,000

Rent Expense 250
Utility 153
Telephone 46
Advertising 89
Supplies Expense 450
Interest Expense 12

E & R Summary 500
Capital 500

Capital 750
Withdrawals 750

3/1/78 5150 Rent Expense $250
1250 Prepaid Rent 500
1000 Cash $750
* * * Lease Payment * * *

12. After the journal entry is processed
the computer asks if the students
wish to delete the entry and start
again.

13. If the students respond yes, the
journal entry is deleted from the
computer files. If the answer is no,
the journal entry is not deleted.

14. The computer responds to the students
by asking if any more journal entries
will be prepared.

15. If the students respond yes, then the
process described in steps 11 through
14 will be repeated. If the response
is no, the computer requests a new
command.

16. After the students have processed all
their journal entries, they would re
spond with comrnand 6, which posts the
entries to the general ledger.

17. The computer responds by posting the
entries and asking for the next
command.

18. The students would probably respond
with command 7 which results in the

trial balance.
19. The computer responds by listing the

trial balance presented in Exhibit 14
and requests a new command •.

Account

EXHIBIT 14
STONE AUTOMOTIVE COMPANY

TRIAL BALANCE
AS OF 3/31/78

Number Account Debit Credit
1000 Cash $1,950
1100 Accounts Receivable 700
1250 Prepaid Rent 500
1300 Supplies 600
1700 Land 1,000
2000 Accounts Payable $ 288
2050 Notes Payable 2,400
2100 Interest Payable 12
3000 Capital 2,300
3200 Withdrawals 250
4000 Service Revenue 1,500
5150 Rent Expense 250
5200 Advertising Expense 89
5250 Utilities Expense 153
5300 Telephone Expense 46
5500 Interest Expense 12
5550 Supplies Expense 450

$:(), 500 $6,500

20. After reviewing the trial balance,
the students would respond with
command 8, which results in the
financial statements.

21. The computer responds by indicating
that this command results in finan
cial statements and the following
interaction takes place.

Computer Students'
Question Response

Do you want the income statement yes
11 11 11 11 capital statement no
11 11 11 11 balance sheet no

The students want only the income statement
at this point because the capital statement
and balance sheet require the preparation of
closing entries. Once the students have
responded, the computer lists the financial
statement requested. As a result of the
above command, the computer would list the
income statement presented in Exhibit 15.

22. After the income statement is prepar
ed, the computer asks for its next
command.

23. The student would respond with a 4
and, using the trial balance obtained
in Step 19, would prepare the closing
entries needed.

24. The computer would process the jour
nal entries and request a new command.

25. The student would respond with command
6 to post the journal entries.

26. The computer would post the journal
entries and request a new command.

27. At this stage the student could
request a new trial balance listing,
which would be similar to Exhibit 14,
or could request the financial state
ments by choosing command 8.

28. Responding to command 8, the computer
would determine which financials
are desired by asking the same ques
tions indicated in step 21. At this
point the students would want the
capital statement and the balance
sheet, which the computer would list
as presented in Exhibits 16 and 17.

EXHIBIT 16
STONE AUTOMOTIVE COMPANY

CAPITAL STATEMENT
FOR PERIOD ENDED 3/31/78

Beginning Balance
Add: _ Net Income
Deduct: Withdrawals
Ending Balance

$500
$750

$2,300
5GO
750

$2,050

EXHIBIT 15

Revenues:
Service Revenue

Total Revenues
Operating Expenses

Rent Expense
Advertising Expense
Utilities Expense
Telephone Expense
Interest Expense·
Supplies Expense

Total Operating Expenses
Net Income

STONE AUTOMOTIVE COMPANY
INCOME STATEMENT

FOR PERIOD ENDED 3/31/78
Current Month

$1,500

250
89

153
46
12

450

940

$1,500

1,000
$ 500

Year-to-Date

250
128
278

82
12

750

$2,300

1,500
$ BOO

EXHIBIT 17
STONE AUTOMOTIVE COMPANY

BALANCE SHEET
AS OF 3/31/78

ASSETS
Current Assets:

Cash
Accounts Receivable
Prepaid Rent
Supplies

Total Current Assets
Plant & Equipment:

Land
Total Plant & Equipment

Total Assets

$1,950
700
500
600

1,000

LIABILITIES & 0~7NERS' EQUITY
Current Liab1l1t1es:

Accounts Payable $ 288
Notes Payable 2,400
Interest Payable 12

Total Current Liabilitie-s~~
Owners' Equity

Capital 2,050
Total Owners' Equity

Total Liabilities & Owners'
Equity

$3,750

1,000
$4,750

$2,700

2,050
$4,750

29. After the financial statements have
been listed, the computer asks for a
new command.

30. At this point the students may request
a listing of all the journal entries
by typing 5.

31. The computer would respond with a
journal listing similar to Exhibit 13.
The computer would then ask for a new
command.

32. At this point the students have com
pleted their transaction set and would
exit from the program by typing 9.

941

SUMMARY AND IMPLICATIONS

The financial accounting computer package
described in this paper allows students to
interact with the computer and, as a re
sult, generate financial statements
through analyzing business transactions
and preparing journal entries. Through
the use of the package the students can
better see the financial statement effects
of their analysis of business transactions.
Furthermore, the use of the computer
package allows accounting instructors to
relate the effects of specific accounting
topics to a complete set of financial
statements, without requiring students to
make use of the many mechanical, cumber
some steps of the accounting bookkeeping
process. For example, by varying the use
of accounting methods among students, it
is possible for accounting instructors to
examine the effects of alternative account
ing methods as in the areas of inventory
costing and fixed asset depreciation.

A SYSTEM ACCOUNTING PACKAGE FOR RSX•llM

Gary Bernstein
Carmelo Granja

Alex Brown

BioMedical Engineering Unit
McGill University

Montreal, Canada

1. Introduction

RSX•11M is a multi-user, multi•task,
event driven real•time operating system.
when installed on a powerful midi-computer
such as the PDP•ll/70, it can manage the
concurrent operation of real time pro•
grams, program development, network com
munications and a host of other facilities
whose requests may emanate from any user
logged on local or remote terminals and
perhaps even another computer's terminal.

Despite all the capabilities avail·
able to users, RSX·llM does not provide
any accounting facilities nor does it per
mit any type ot performance measurement.

from a management point of view this
situation becomes intoleraole in a
multi-user environment. This is especial·
ly true when users must be made account•
able for tne utilization of the resources
available.

This lack of facilities also impedes
users who wish to obtain system perfor•
mance parameters to either compare with
other computer facilities or simply to
tune a program so as to achieve better
performance.

2. overview

This paper descrioes the design and
implementation of a software system which
logs and reports some of the computer re
sources consumed by users of an RSX•llM
operating system. Statistics which are
logqed on a per-user basis include:

lJ Total terminal connect time:
2J Total weighted terminal connect time,

wnere the weighting factor is a tunc·
tion ot the terminal's baud rate;

3) Total numoer of log•ons and log•offs;
4) Total number of disk•olocK•weeks;
5) Total number ot l/O requests (QlO'sJ;
6) Total CPU time Cticks) consumed by

user tasks:
7) Total memory

(kilo•word•ticksJ consumed
tasks.

Proceedings of the Digital Equipment Computer Users Society

demands
by user

A·1

The only qlobal statistic currently
logged is an accumulation ot total connect
time versus time-of-day which, when print•
ed out as a histogram, provides an indica
tor of peak times of system usage.

Reports which can be generated by the
system include:

1) Terminal connect time profile (histo-
gram);

2) Numbered invoices sorted by user
name;

3) Summary report Of total resources
consumed during the reporting period;

4) Summary financial report;
5) Detailed report ot resources consumed

by each user.

Utility functions which allow the operator
to edit or zero selected portions ot the
logqinq file are also provided.

the accountinq system has been in use
since May, 1977 on a PD~·ll/70 based
multi-user RSX•11M system. During this
time it has been tound to be virtually
tree from error, consistent and accurate
without significantly deqrading system
performance or jeopardizing system integ•
rity. The version described in this re
port runs under RSX•llM V03.1.

3. General Design Approach

All logginq, with the exception of
disk blocK usage, is accomplished by send
ing message packets containing the statis•
tics to be logged to a logging task, USR•
LOG.TSK, which ultimately stores the
statistics in a common loqqing tile, USR·
LOG.SYS. This method of inter-task com•
munication allows considerable flexibility
in system integration, debugging and test
ing, and allows new components to be added
to the system in a hierarchical manner
without stopping operation. for example,
the first stage coded into the system was
concerned with logging terminal statis
tics. The CPU loqqing was then added and
tested on-line without disabling the ter
minal logging.

San Francisco - November 1978

4. Logging of Terminal Statistics

Task "ACL' (described in paragraph 5)

sends messages to task USRLOG each time an
individual user accomplishes a successful
connect or disconnect request. The con
tents of the messages sent by ACL include
the UlC at the time ot connect or discon
nect, the receive speed ot the requesting
terminal and the RSX-llM terminal UCB tram
which the log-on or log-off request was
initiated. Upon receipt ot a log•on mes
sage, task USRLOG notes the. contents of
the message in a scratch-pad area of the
loqqing file, USRLUG.SYS. Upon receipt of
the corresponding loq-otf message, task
USRLUG retrieves the loq-on data from the
scratch-pad area and updates the appropri
ate record ot the logging file to reflect:

1) The total time (minutes used
UIC since the last time the
file was zeroed;

2) The total weighted time used
lJ l c;

J) The number ot loq-ins and
performed under tnat UIC.

by the
logging

by the

log•otfs

•weighted time' is detined as the product
of an index ot terminal speed and terminal
connect time. ~or example, terminals con
nected at speeds between 1200 baud and
2400 bdud have an associated weighting
index ot 2. A session ot 40 minutes on
sucn a terminal would result in a weighted
time of BO ~inutes added to the accumulat
ed weighted time in the log file.

In addition to the statistics noted
at log•ott time an elementary pro•
connect time versus time of day is
usinq Lhe tallowing algorithm:

above,
f i.le Of
updated

Each hour of the day is represented
by one of 24 histogram 'bins' stored
in tne log~inq tile. When a user
logs ott, the number ot minutes used
during each hour ot connect is added
to the appropriate bin. vuick
loq-ons and loq-ofts only cause the
profile to be updated it the clock
has 'ticked' at least one minute.
Single precision 16-bit bins allow
accummulat1on of up to 32,7b1 minutes
per b1n, which allows 34 days of log
qinq a tully utilized, 16 terminal
system before overflow occurs. An
exarnpl~ ot the profile printed by the
reporting task is shown in fig. 1.

Exception conditions are treated as
follows:

1) When tne UlC at log•off differs
from the UIC at loq•on, USRLOG determines
the log-on UlC by' terminal number and up
dates the accummulated statistics tor the
log•on UIC;

A-2

2l When the terminal speed index is
different at log-on from log-oft, the
larqer of the two indices is used to log
weignted connect time;

3) Upon overflow of any of the logged
parameters (unlikely) the maximum allow•
able value is maintained unmodified;

4) upon system crashes no entries are
made in the loqginq file of users who were
active before the crash. Each time the
system ls rebooted a utility task, INILUG,
is run from the STARTUP command file which
zeroes the scratch•pad area ot the logging
file. It should be noted tnat lNlLOG
could be coded so as to update the log
file using tne pre-crash information
stored in the scratch-pad. However, our
philosophy has been to somewhat pacify the
irate user who has just experienced-a sys
tem crash by not charging tor the time
used before tne crash. lt should also be
noted that down-times scneduled with SHUT•
UP cause enforced log-otts to be executed
tor each logged-on terminal and tnus do
not result in any loss of accounting
statistics.

Upon log-otf a summary of logged
statistics is displayed on the user termi
nal as illustrated i~ Fiq. 2. 'Connect
time' is the time used during the session
while 'total time' is the accumulated time
used by the UIC during the then-current
billing perioa.

s. Un-Line System Parameter Measurements

5.1 Design criteria

The factors that intluenced tne de
sign ot the on-line account logging
software packa~e can be summarized as fol
lows:

aJ Select a minimum set ot parameters
to measure on-line usage ot system re
sources on a per user ~asis;

b) Design a method tor measuring the
above parameters ensuring a minimum amount
of degradation in system pertormance;

cl Provide a communication facility
with a secondary task to pass along tne
intormation gathered on-line;

d) Maintain all the desired capabili·
ties on a single task including tne abili·
ty to maintain executive hooks, thus avo
iding having to patch the executive before
Sl'SG~I~;

el Since the task needs to modify the
executive on-line, provide facilities tor
restoring executive and deactivating the
task;

tJ ~or accounting purposes provide an
ott•line tacility tor accumulating on a
per user basis the relevant accounting
parameters. for individual users, provi~
sion to present on his terminal the intor
mation gathered tor that session.

~.2 Parameters Measured

After takinq into consiaeration sev
eral factors, amonq them the amount of
difficulty in implementation ana Lurden to
the executive we settled on the selection
of these parameters:

1) l/() count - nurr,ber ot QlU's issued by
tasks running on benalf of d

loggea-on user.
2) CPU time - numher ot Ct-'li ticks (1

tick =
ecuting
user.

3) Memory
i.e.
manded
amount
etfecl

1 /b (J second) used t'Y tasks ex-
on behalt ot d loqqed-on

demands - number ot kw•ticks,
amount ot memory in kw's de
by a loqqed-on user times the

of time those demands were in
Ctick..s).

The 1/0 count provides a measure ot the
amount ot wor~ pertormea by the eXPcutive
l/U-related modules on oehalt ot the user.
Its measurement is accomplishea by means
ot the intercept technique.

An intercept point cor hook) is
placed in tne executive module IOSUH. The
code of this intercept simply counts Ltie
number ot QIO requests issued by tasks
running on behalt ot loqqea•on users.

The CPU time is a direct measurement
ot CPU resources consumed by loqqed-on
users. Tne memory aemands parameter con
tains a built-in penalty tor makinq memory
demands while the system is busy servicinq
ott1er users simultaneously; tnat is, oe~
mands made durinq "primet1me" (system very
busy) will stay in etfect longer, there
fore the resultdnt kw•t pardmeter will oe
larqer.

rne measurement ot these two parame
ters is accomplisnea by a combination ot
intercept and Sdrnplinq techniques. for
CPU time measurements two intercepts are
effected in executive module srsxr. une
of these is used for task switching and
the other tor null code execution. Tney
are capable ot maintaininq a Pointer to
the user presently usin'1 the CPU. Tt1e po
inter will be zero it no loqqed-on user or
the null task is in control of the CPU.

The intercepts tor measurinq memory
demands are placed in executive modules
REQSH tor starting a task and VH~lf tor
stopping a task. The code in tnese two
intercepts maintains the total present
memory demand in kw's tor each loqqed•on
user.

A-3

Given the above parameters provided
by the executive hooks, we are then able
by means of the synchronous sampling me
chanism provided by tne bO hz system
clock, to accumulate CPU-11M~ and
MEM.D~MANDS•TlCKS tor eacn user logged-on.

5.3 Lmplementation

S.J.l Account logging
ACL is tne name ot tne task
ments sections a, D and c ot
criteria.

task CACL>.
'hhich imole

tne desiqn

ACL is ~iv1ded into t~o distinct
parts of code. The tirst part contains
all the necessary loaic to implement tne
desired functions wnicn are independent of
the executive. rhe second part consists
ot position inuependent code wh1cn wnen
hooked to the ~ifterent executive moaules
will operate at tne executive level. fhis
code, althougn oresent within the task,
will eventually be placed in the system
pool and operate entirely trom tnere.

The major tunctions ot ttie ACL task
are as follows:

lJ maintain a section ot position in
dependent coae and executive nooks which
can oe inserted -..;nen tne task is run ana
removed wnen tne task receives a code from
another task to stop;

2> establist1 "communication protocol
with tne executive code to permit detec
tion of a user loqging on or oft Lor
anotner task requirinq to stop).

3) Un detection ot a user loqqiny-on
to insert a pacKet at memory on a
self-threaded list wnich ls also accessi
ble fro~ the executive code Placed in the
pool. Tt;e lJ:tJCh ot tne user is ri1.1ced in
the packet to identity the user. A mes
sage witn pertinent rarameters is also
sent to USHLOG, the task usea to accumu
late informdtion otf-line.

4J Un detection ot a user loqqing-ott
to de-allocate tram the pool tne packet ot
memory used tor on-line account loqginJ ot
parameters and to send to USHLUG a message
containinq all tne intormation qatheren.

5J On detection ot a "stop" message
from ACLO~~ to restore tne executive to
its normal state and to de-allocate trom
the pool the cutters usea tor coae and
packets.

NOTES

1. As presently implemented ACL requires
the existance ot EIS. This restriction
can easily be removed however.
2. ACL can run checkpointable on any par•
tition. While waiting for messages it re•
mains in the sroP condition.
3. for reasons of possible executive
throughput degradation, the 60 Hz clock
must have been selected at SYSGEN as the
system clock.
4. To provide stand-alone debugging capa
bilities, ACL can be assembled with dif
ferent optional code.
5. ACL should never be aborted. To deac
tivate ACL the user must run ACLOFF. This
task merely sends a message to AL~ which
permits ACL to deactivate itself properly.

the
ACL.

5.3.2 ACLOFF -ACLUFf is the name ot
tasK usea to send the stop message to

5.3.3 ACL~P. The module ACLEP is as
sembled with tdsk USHLUG and permits accu
mulation of tne account-loyqinq parameters
gathered by ACL. on a file in the system
disk. ·it also presents on the user termi•
nal the relevant information.

ACLfP needs tne presence ot tne op•
tional floatiny point unit in the system.

5.3.4 General Considerations.
Measurement ot the above three parameters
for accounting purposes implies tnat the
numoers thus outained represent actual
conditions ot system behaviour regardless
ot individual user torm of demands.

In this reydrd oue to tecnnical con
siderations the following assumptions are
made:

1J All users' tasks run at the same
detault priority, are all checkpointaole,
are not SLAVE, and nave not been started
by the RU~ directive Cor HUN command with
/HSI option).

TasKs that run at hiqher priority
than default cannot ce round-robinned; it
t~ey are not cnecKpointable tney canno~ oe
made swap~able; SLAV~ tasKs are not ac•
counted tor since coth their fl: and UIC
may change avnamically oy a RECEIVE direc
tive; and finally tne HUh directive Cor
kUN co~mana with /RSL option) always
causes tne system to set tne Tl: device
tor the requested tasK to cu:.

i) H~L and nt~, which are used to log
users on ana off tram terminals, are the
only means ot gettinq access to system re
sources.

At present we assume a frienaly envi
ronment and expect all users to follow the
rules given auove.

A-4

lf necessary it should not
difficult to make privileged
tures that at present could get
accounting procedure. These
/PRI=, /SL, /•CP; i.e. always
propriate defaults at run
non-Privileged users.

prove too
those f ea
around the

would be
have ap
time for

6. Measurement Of System Disk Parameters

Another statistic logged by the sys
tem is tne amount of dis~ storage claimed
by each user.

The concept of an online, real-time,
disk-storage "monitor" task (i.e. a task
that would record, in some fashion, all
tile system activity: creations, dele
tions, extensions, etcJ was re1ected.
such a monitor would present considerable
overhead to the tiling system; it was de•
cided that the dividenas gained trom such
a precise measurement would not justify
the projected decline in system pertor
mance.

Tneretore, a "sampling" approach was
taken. A Fortran proqram, 'BLK', was cre
ated. For each entry in the RSX account
tile, l;LK examines ttie user ~'ile Oirectory
~UfDJ. For each entry in a UFO, OLK exam
ines the associated file header, from
which it extracts the values tor number ot
blocKs used and number ot olocks allocat
ed. Totals tor blocks-used and
01ocks-a11ocated to a particular UfD are
stored in a ranaom-access tile. This file
is loqlcally orqanized into tixed-size
"segments", where each segment represents
one run of HLK, and contains information
about the date ana time ot sampling, and
totals for eacn UFD sampled during that
run. At invoice time, the reporting task,
'REPLUG', examines each seqment of the
sample file and accumulates a
"disk-block•weeK" total tor each UlC en•
countered.

Samples are taken daily Via the RSX
scheduling mechanism, i.e. the STARTUP
command tile installs ULK, then schedules
it to be run at ~:oo AM, 5ith a reschedule
interval ot ~4 nours.

rne sample tile is reset [i.e. all
seqments are logically deleted) atter a
set ot invoices has been produced, whereu
pon the cycle oeqins anew.

7. Report Generation

The utility task, H~PLOG, is respon
siole tor generation ot summary reports
and invoices, and tor general housekeeping
operations on the data tiles. The inter
active tunctions are as follows:

1) print summary report of system usage;
2) print terminal usage profile;
3) examine a single account;
4) modify a sinqle account; this provi•

sion allows for manual intervention
under exceptional circumstances;

5) print invoices; a financial summary
is generated tollowing the invoices;

6) zero the loqging data file;
7) zero only the scratch area ot the log

data file, e.g. to reset the current
status of the accounting system;

8) zero the terminal usage profile area
of the log file;

9J zero the disk block sample tile;
10) create new log files;
11) create new disk block sample file.

The task has oeen written using a "Struc•
tured FORTRAN" dialect. A preprocessor
exists to translate the "Sf" code into
ANSI FORTRAN. Some examples ot typical
invoices and reports are shown in Figures
3 to ~.

AcKnowledgement

This work was supported Dy a grant
trom the Macdonald Stewart Foundation.

LOS-ON PROFILE

FROM 99-SEP-77 TO 82-FEB-78 ---------·--
18 28

I I
0 " c 1.5'1)
1 " c I .2JC)
2 " C I. IX)
3 " C 8.9X)
4 It (8.9JC)
5 1t C 8.9X)
8 " (8.8")
7 .. (8.8")
8 .. (1. llC)
9 """" C 3.7X> 18 _ c 8.0X)

II """""" C 8.4X)
12 """""" C 6.4X>
13 """"""" C 7.IX> 14 (9.9,)
IS """""""""*" Cl9.6X)
18 """""*"*"* Cl0.2X>
17 """""""" C 7.9X) 1e·"*""" C S.2">

1·11 -•• C 4.4X>
28 """" c 3.9)()
21 ••- C 4.IDO
22 ""* C 3. IX>
23 - (2.0X>
>

X OF TOTAL TERMINAL TIHE USED

s0 40 se
I I I

Fig. 1 Connect Time Profile

88
I

>BYE
>
HAVE A GOOD AFTERNOON
I 8-FEB-78 14 I "'9 TT 1 I : 1.0GSED OFF
>

TOTAL TIME I :

CONNECT TIME I I

I/O COUNT ••
CPU TIME ••

IO. DEtlAND I I

Fig. 2 Log-Off Message Displayed on TI:

MEDNET CHARSES FROM 16-JAN-78 TO 82-FEB-78 INVOICE t8818SI ---
NAME• BROWN.A
ACCOUNT• 183 3

TERMINAL HOURS/CHARGE " sex OISCOUNT)

AVERAGE TERMINAL SPEED GROUP/SURCHARGE

NIJt18ER LOG-ONS/CHAR6E

1.28

3.43

8

9.83

3.12

8.88

OISK_SLOCK_WEEKS USEO/CHARGE 466. 1.48

TOTAL... S 14.94 ________ , ____________________________ _
CHARSES SHOWN ABOVE ARE TO BE PAIO.

CHARGES SHOWN BELOll ARE FOR INFORMATIONAL PURPOSES ONLY
ANO REPRESENT THE PROJECTED RATE SCHEDULE FOR THE PERICO
APR-1978 TO MAR-1979. ANY COMMENTS RE THE PROJECTEO RATE
SCHEDULE WOULD BE APPRECIATEO.

TERMINAL HOURS/CHARGE I • 28 4 • 28

CPU MINUTES/CHARGE S.43 4.211

KILO_I/0-REQUESTS/CHARr::e: 17 .88 I. 77

MEMORY OEHANO CKW.)iOURS)/CtlARGE 25.83 7 .SI

OISK_BLOCK_WEEKS USEO/CHARGE 466. 1.48

TOTAL... S 18.24

SENERAL MESSAGE

RSX-I 1H VS. I ZS NOii INST ALLEO AND FULLY OPEilATJ:ONAL.

Fig. 3 Sample Invoice

A-5

USER LOG REPORT FROM Uh.JAN-78 TO 02-FEB-78 11 •00•59 PAGE -------- -- ---------------
NAME UIC T.IHE USED WEIGHTED LOGONS/OFFS DBW KS ----------

:UC COUNT CPU TIKS MEMORY DEMAND CKWT)

-
ARROTT,A 162 I 58 232 2/ 2 16.

1276. 243. 1462945.

BERNSTEIN, G 3 101 0 0 0/ 0 1207.
0. 0. 0. -

SHEU LIBRARY 121 3 22 22 4/ 4 527.
506. 156. 637353. -

COOPER,J 121 2 634 641 18/ 18 3753.
12944. 10458. 17206950. --------

l>AVJ:ES,P 123 5 838 9111 10/ Ill 2843.
56521. 22644. 22894872.

)>
a,

llJ:L.1.IS,I> 141 I 84 285 8/ e 2473.
393Uil. 34053. 5791931. -

YAHAl10TO.Y.L 133 2 98 392 13/ 13 0.
8943. 1899. 2992333. -

SUHHARY ----
NIJHBER OF ACCOUNTS: 146

TOTAL HOURS USED• 537.867
TOTAL WEIGHTED HOURS• 1604.863
TOTAL + LOGONS: 11119
TOTAL + LOGOFFS: 1058
TOTAL DISK_BLOCK_WEEKS• 207830.

TOTAL I/O COUNT• 11.779273E+117
TOTAL CPUTIKS• 0.437771E+117
TOTAL MEMORY OEHAND• 0.103277E+lll
>

Fig. 4 User Log Report

SUt1lfARY OF CHAR6ES I 6-JAN-78 TO 02-FEB-78 11 : 00, 59

............... -------------------------------
CI) CURRENT CHARGING SYSTEM•

TERMINAL CONNECT TIME CHARSES•
TERMINAL SPEED SURCHAR6ES•
LOSON CHARGES:
SUBTOTAL/AVG HOURLY CHARGE•

DISK BLOCK CHARGES•
TOTAL CHAR6ES:

(2) PROJECTED CHARGING SYSTEM•

TERMINAL CONNECT TIME CHAR6ES•
CPU TIME CHARGES:
:U0 CHARGES:
MEMORY DEMAND CHARGES•
SUBTOTAL/AVG HOURLY CHARGE•

D:ISK BLOCK CHARGES:
TOTAL CHARSES •

SUHlfARY OF RATES -- ---
"(I) CURRENT CHARGING SYSTEM•

Ho.r ly Rah, Co,,.,..,\ Tl
Surchor-04> For- T.,.Wllnal S-d
l.ogon Ch 04>

C2) PROJECTED CHARGING SYSTEM 1

Ho.rly Ral• Co,,.,.c\ Tl
Rol• ,...,. CPU Ho....,.

• • • Mfnul•
Role ,_,. 1111111 I/O R.,_.,\a
Role ,_,. KW_Haur- H.iaor-y o-and

(3) FOR EITHER SYSTEM:

w..kly Rale ...,. H•oabvl• Dick Slor-aa•
• • • Block • •

4034.00
1087.02

1111.911
$ 5211 .92 $ 9.69

638.45
$ 58511.37

537.87
15211.114
779.27

1434.40
$ 4271.68 $ 7.94

838.45
s 49111.03

s 15.00
$ 1.00
$ 11.10

$ 1.110
$ 75.00
$ 1.25
s li!l.lli!I
s 11.30

$ 6.li!lli!I
S0.li!l03!

NUMBER OF INVOICES: 131
LAST INVOICE NUMBER USED• 001 153

~ ~~~-~~~~-~~-- -------------------------->
~· Financial Summary Report

"RDCL"
REMOTE DEVICE VIA COMMUNICATION LINK

Alexander Brown and Gary Bernstein
BioMedical Engineering Unit

McGill University
Montreal, Quebec

ABSTRACT

This paper describes an RT•ll device driver which passes all
filinq requests to a remotely-located RSX•llM system over a
serial, asynchronous communication link. A task at the RSX
end of the link honours the filing request by directing I/O
to either:

aJ a toreiqn-mounted RT-11 volume;
or b) an RSX·llM file containing the imaqe of an RT-11

volume.
Data and control messages are transferred between the two
processors via a simple communications protocol. The driver
may be used as an RT•ll system•device handler, or simply tor
inter-system tile transters. ·

INTRODUCTION

Within the community of PDP-11 users
one serious impediMent to ettective dis
tributed processinq has been the lack of a
reliable, easily-implemented system which
allows communication between the RT•ll and
RSX•tlM operating systems. Described her
ein is a sottware package which provides
these facilities by allowing the RT•ll
user to pertorm, in a fairly transparent
manner, filinq operations to a "Remote
Device over a serial asynchronous Commun!•
cation LinK" lRUCL). Specifically, the
facilities provided by RDCL include:

1) Virtual Terminal - The ability to use
the RT-11 system console CTTJ as an RSX
terminal lTIJ;

2) Remote ~ilinq - The ability to initi•
ate, from the RT•ll Satellite system,
filing operations which perform l/U to
a mass storaqe device located on the
RSX•llM Host system;

3) Down-Line-Loading The ability to
load, from a mass storage aevice on the
Host, a version of HT-11 which treats
the Host"s mass storage as though it
were a local system device.

The implications ot these tacilities
are numerous. Economies of scale become
immediately obvious when several disk•less
PDP•ll satellite processors are able to
communicate with an RSX system configured
with a large-capacity system device. for
example, it i& possiole to contiqure mul•
tiPle core-only LSl-11 systems from which
users are aole to down-line-load RT•ll,
perform normal RT•ll program development
activities and then run the application

Proceedings of the Digital Equipment Computer Users Society A-7

programs so developed. These programs are
able to write data acquired auring the ap•
plication back to the Host device using
stan~ai;d; ~T-11 t"URTRAN or SYSLIB 110
statements. By eliminating local mass
storage completely, hardware costs are
substantially reduced (typically one third
ot tne cost of floppy-based systems is for
the floppy), while software functionality
and transparency are maintained.

Although core-only RDCL systems pro
vide completely transparent program devel
opment tacilities by fetching unmodified
RT•ll system programs from the remote dev
ice, it is sometimes desirable to use MDCL
as a complement to systems which have
their own local mass storage. For exam•
ple, in an environment wnere extensive
program development activity takes place
on the satellite, it is advantageous to
load the RT•ll system and system programs
(which are otten heavily overlaid) from a
local floppy disk, rather than via the
slower communication 'link. However, the
programmer can still benefit from ROCL by
using the re~ote device as he would any
other Rf-11 peripheral. For example,
source programs, load modules, subroutine
libraries and data can all be stored and
directly manipulated on the larger remote
device using standard RT-11 command
strings. This helps to alleviate the
problems often encountered with the limit
ed amount of storage availaole tor user
tiles after the RT-11 system files have
been placed on a floppy disk. Equally im
portant in this mode is the application
program•s aoilitY to file data on the RSX
system, where it can be analyzed, report
ed, backed up, etc. using the more exten
sive resources of the multi-user system.

San Francisco - November 1978

The virtual terminal capability pro•
Vides a logical connection between the
RSX·llM terminal driver and the console
terminal of the satellite processor, mak•
inq it possible to perform proqram devel•
opment on the Host system without having
to physically disconnect the terminal from
the Satellite. This facility becomes use
tul, for example, when the RT-11 user
wishes to initiate an RSX task to perform
analysis on data which has been filed on
the Host via RDCL, or to perform the prel
iminary stages ot RT-11 program develop•
ment (iterations ot edit and compile tor
syntax) on the RSX system. At installa
tions which also run RT•ll as a task under
RSX Cavailaole trom the DECUS RT•ll SIG),
all staqes of RT-11 proqram development
can be accomplished in virtual terminal
mode Cor indeed at the ttost site itself);
the final version can then be copied to
the Satellite usinq RDCL file transfer
mode.

The RDCL system should not be regard
ed as a competitor with DECNET/RT. Many
of the DECNET facilities (e.g.
tasK-to-task communication) are not sup
ported. The motivation behind RDCL was
primarily to achieve a highly-specific fa
cility which would be functionally tran
sparent to the RT-11 user, and which would
neitner add a great deal of overhead nor
require extensive documentation changes at
the RT-11 end. In this respect, RDCL may
be considered as a viable alternative for
those users who either do not require the
extensive tunctionality ot D~CNET or can
not meet its additional requirements.

Dl::SlGN OVERVIEW

The final staqe in all Rt-11 filing
operations is always a request queued to
the device handler to read or write a
qiven number of words, starting at a qiven
logical block ot the device. This device
independent approach to l/U makes it pos
sible to easily add device drivers to the
RT•ll system without changinq the struc
ture of the other operating system compo•
nents.

The primary component of the RDCL
system is an HT-11 device driver CHDJ
whicn performs I/U to a communication

·link, rather than to a UNI~US device. The
parameters of all tiling requests received
bY the RD driver are translated into con
trol-packets which are then transmitted
over the communication link to a task run·
nirig on the Host processor. The Host
task, ROH, pertorms the actual device I/O
usinq RSX•11M olock I/O directives, and
transmits the data so read (in the case of
a READ operation) back to the Satellite
over the link in the form of data-packets.

For example, consider the initial re
quest queued to the device driver each
time HT•ll programs attempt to react a file

A-8

from disk. At the driver level, a request
is received to read logical block 6 (the
directoryJ ot the device and deposit the
data stored in that block into a core
buffer. When the read operation is com
plete, the driver notifies the RT•ll file
system CUSH) which determines from the di·
rectory information in memory whether or
not the file is resident on the device.
Assume now that the same RT-11 disk is
placed in a disk drive on an RSX system
rather than on the system running RT-11.
(This will hencetortn be called a
'foreign-mounted RT•ll aisk'.J The request
to reaa block 6 of this device is now
placed by the RD driver on a telephon~

line, rather than on the UNIBUS. At the
RSX end, task RDH checks the accuracy and
syntax ot the messaqe received from RD
and, assuming all is in order, ieads block
6 of the toreign•mounted volume and sends
the resulting data back to RT-11 over the
link. The RD driver is then responsible
for checking the accuracy ot the data mes•
saqe received from RSX and passing the
data buffer to the USR. Thereafter, all
RT-11 operations will proceed as if the
data were reaa trom a local device.

The above is a simplified description
of the approach used in the RDCL implemen
tation. figure 1 shows the intormation
tlow diaqrammatically.

RT-11
ayalem

or
user

program

RT-11
Volume

Hoal
Volume

r----------,
---~-Frie

Figure I

Syalem
J:nlerf'oc•

r------iRD,
Commun-
1col1 on
J:n ler f' oce

Asynchronous
Inlerf ace

CS..le I 11 le)

Acynchronous
Inlerface

(Hosl)

Host
Te,.mlnal

Driver

Commun-
1cal1 on
Inlerf'oc•

Fl le
Syal em
Inlerf'oce

Hoel

ROH

1 Fl le Syalem
I
I
L------------'

Inf'ormollon Flow In lhe RDCL Syelem

On the RT•ll system is shown the ROCL
driver CRD:> which is responsible tor
passing USR requests to the RSX task CRDH)
running on the Host. The RD/ROH modules,
enclosed by dashed lines on the diagram,
may be considered together as a completely
transparent system device handler by
RT•ll. All RT•ll operations, including
overlaying, running system programs and
running user-written programs which per•
form system level I/O Ce.g. FORTRAN
'WRITE') will oe functionally transparent
although noticeably slower in operation
due to the speed restrictions imposed by
the communication link. This type of im•
plementation results in a system which is
simple to generate, maintain and use,
since all the changes are located in a
single module, the RD driver.
Furthermore, a m1n1mum amount ot time is
required to educate the RT·ll user. From
his point ot view, all that has changed is
that a 'new device•, RD:, has been added
to the system, a device which may be ac•
cessed in the same tashion as the other
mass··storage devices described in the
RT•ll manual set.

VIRTUAL DISK

A turther aspect ot tne functionality
of the system is related to the implemen•
tation ot the Host task, RDH. With very
minor changes, ROH is able to access a
file located on the RSX system disk rather
than a toreign•mounted RT-11 volume. This
file is organized such that it contains an
image of an kr-11 file structured device.
Thus, tor example, the seventh blocK with•
in the tile contains the same directory
information as the seventh block of an
RT•ll volume. ROH can be contigured sucn
that it will honour an RD request to read
the seventh block of a disk by pertorming
a "read-virtual-block" operation on the
seventh blocK ot the file.

This feature makes it possible to
contiyure several satellite processors,
ea~h able to perform tiling operations to
independent tiles ('virtual disks'), all
ot which are located on the Host system
disk. when the Host system device is
larqe enough, this mode ot operation be•
comes attractive by reason of the fact
that it is not necessary to reserve indi
vidual disK drives tor each of the commun
icating satellites. Additionally, the
size ot each virtual disk can be tailored
to provide only as much storage as is re•
quired by each Satellite.

VIRTUAL-TERMINAL UTILITY

As mentioned previously, tne
virtual-terminal utility, 'RDTALK', allows
a user at tne satellite to utilize the re•
sources of the Host system in the same
fasnion as it he were sitting at a termi•

A-9

nal directly connected to the Host.

Among other operations, RDTALK acts
as the mechanism for establishing logical
connection and disconnection of the RD
driver to the ROH task. Initially, RDTALK
establishes the Satellite terminal as a
virtual terminal to the Host. The RT•ll
user then is able to log onto the RSX sys•
tem and initiate the running of the ROH
task which, as noted above, is responsive
to several control-type messages which em•
anate from the satellite. lf RDCL is
being used as a complement to local sto•
rage on the Satellite, no further opera
tions are required; i.e. ROH will always
act upon READ/WRITE contro1 messages
transmitted by RD. However, using RDTALK,
the Satellite user may enter other mes•
sages directly from the satellite console
which will be recognized by ROH. For ex
ample, to down•line•load a version ot
RT•11, the Satellite user types the char•
acters 'BOO' on the console. Other possi•
ble control messages are 'DSC' Cdiscon•
nect) and 'RPT' CreportJ.

In configurations which support local
mass storage at the satellite, 'RDTALK' is
run from the local device.
Down-line-loading of RT-11 on a core•only
machine is accomplished by executing
RDTALK from read-only-memory (ROM).
Preliminary versions of this special ROM
bootstrap have already been built tor UN•
lBUS PDP-11 systems; the design of LSl·ll
versions is in progress.

MODifIEU RT•ll MONlTUR

The version of RT•ll
down-line-loaded differs in two
the DEC-distributed RT•ll
system:

which is
ways from
operating

1) The D~C distribution of RT·ll includes
several monitors, all of Which are ba
sically the same except tor the system
device driver which has been linked as
part ot the monitor. Thus, tor exam•
ple, RKMNSJ.SYS ditfers from RXMNSJ.SYS
only to the extent that the RK driver
is linked in the former case and the RX
driver in the latter. In the case of
the RDCL version of R1•11, the RD
driver is linked to the executive,
thereby allowing system device l/U re•
quests to default to the remote device.

2) The first part of every RT-11 monitor
file consists of bootstrap code which,
when initiated, reads tne remainder of
the monitor into memory from the system
device. The HDCL monitor is linked to
a modified bootstrap whicn allows the
monitor to oe read trom, the remote dev•
ice.

Thus, to create the HDCL version ot RT-11,
it is necessary to have available the
source modules ot the RT•ll executive and

link these to the bootstrap and driver mo
dules provided as a part ot the RDCL dis
tribution.

CUMMUNlCATIONS PROTOCOL

-·--------------·------
Host-satellite synchronization is ac

complished using a simple ACK-NAK communi•
cation protocol with asynchronous clocking
for determining time-outs. Error checking
on data packets is implem,nted using a
Cyclical Redundancy Check aloorithm
CCRC-16). When errors are detected, re
tries on the data packet are maae. When
the number ot retries exceeds the RDCL de•
fined limit, the operation is aoorted -
the driver at the Satellite takes a "aev•
ice-error" exit to the monitor, while the
Host tasK returns to the "wait state",
i.e. wait tor a control message. The
protocol has intentionally been kept sim
ple in order to minimize system overhead.

USER lNTERf"ACE

The user at the satellite interacts
with the system as he would with RT-11,

.R ROTALK

ROTALK -- X01 .1
Enl•r VlrluQI T•rmlnal Mod.

(Initial•
conv•r•a~ fon

with
Ho•l:>

>HEL RORS C I OCI on)
PASSWORD•

RSX-11M SL21 MULTI-USER SYSTEM
6000 AFTERNOON
38-JAN-78 12119 LOGGED ON TERMINAL TTt81

>RUN ROH
?
ROTALI< -- Exit

.R PIP
*R01/E
38-JAN-78
RKROMN.SYS 52
PIP .SAV 14

• .:.c
.R FORTRA
•R01TEST.TEST•R01TEST
•""C.

.R LINK
•RD1TEST•R01TEST,SV1FORLIS
•"C

• RUN RD•TEST

SToP --

. R RDTALK

ROTALK -- X01. 1
Enl•r Vlrlual T•rMlnal Mod•

?DSC
TT18 -- STOP
>BYE
HAVE A GOOD AFTERNOON
30-JAN-78 12125 TT10: LOGGED OFF
>
RDTALK -- Exit

(any
RSX

ao1M1-..d:>

(lnll communlcallon•)
(ROH prompt)
(<AP><CR> oau•••

r•lurn lo
RT-I I:>

(talk
d1rectly

to Hoet
aQaln:>

(r•queat the Hoal
comm. taak lo atop)

CloQ of'f')

(<AP><CR> coue••
return to

RT-1 D

FIGURE 2. - SAMPLE TERMINAL SESSION

A-10

with the additional steps of connecting to
and disconnecting trom the Host, figure 2
is a sample terminal session which illus•
trates the typical interaction possible
from an RT·ll system with local mass sto
rage,

When RT-11 is bootstrapped trom a re
mote-device, explicit references to device
RD: are unnecessary; i.e. RT·ll de
faults to SY:, which invokes the RD driver
linked into the RDCL version ot RT-11.

Similarly, user programming is
sparent. For example, a portion ot
gram which will file data into a
access file located on the remote
would oe:

CALL ASSIGN(l,'RD:MYflLE.DAT')
DEFINE FJLE 1 (LREC,NREC,U,IVAR)
WRITE (1'1)10LlST

HOST TASK TRANSPORTABILITY

tr an·
a pro
random
device

The Host task has been coded in a
hiqh•level structured language,
'Structured f"ortran' CSf">. The SF trans·
lator produces standard ANSI FORrRAN
source code which can then, in turn, be
compiled by most FORTRAN-IV compilers with
little or no modification. There is some
RSX•11M system-specific code contained in
ROH, but an attempt was made to modularize
the design sutticiently so that this code
could be easily identitied and changed.

The possioility exists tor implement
inq the Host task on systems other than
RSX•11M (e.g. RSX-llD, TUPS-10, etcl.
The operating system characteristics which
would be necessary are:

1) The equivalent ot the RSX-11~ terminal
driver airective to read ana
pass-all•bits to the task with no echo;

2J The ability for the tiling system to
perform logical and/or virtual block
I/O on mass storage devices;

3) Asynchronous timer support •

HARDWARE REQUIREMENTS

a) satellite

- PDP-11 (or LSI•ll) processor capable ot
runninq RT-11 ;

• clock to be used by RD: for timeout
control ;

- asynchronous serial interface (e.g.
DL•11W) to be used for communication to
the Host :

therefore achieve maximum speed,

(4) the interdependence of the send and
receive activities. The nature of
received messages affects the nature
of transmitted ones,

(5) the existence of a priority-ordered
list of send messages.

Factors (1) and (2) suggest that the send and
receive activities be interrupt driven. At the same
time, factor (4) means that there are critical
sections of code where shared data regions are
accessed. Unfortunately, RT-11 does not provide any
special mechanism such as semaphores for controlling
access to shared data. An alternative is the use of
interrupt lockout during critical sections. This is
acceptable as long as the duration of the interrupt
lockout is less than the minimum time span between
interrupts. Access to shared data has been minimized
as much as possible. The only shared data structures
that remain are the pointers and counters for six
queues and two sets of flags associated with reset
and negative acknowledgement conditions; all of
these are accessed for very short periods of time.

Factors (3) and (5) required a straightforward
mechanism for scanning the list of send message
flags and initiating the transmission of the highest
priority message. An approach involving the use of
a clock-driven scan of this send list is conceptually
clear - it avoids multiple layers of send interrupt
processing - and involves little overhead. Further,
the scan interval can be easily adjusted to fit the
transmission time of the shortest possible message.
A clock is also needed to provide retransmission and
link failure timeout conditions. The first of these
timeouts occurs if transmitted messages have not
been acknowledged for a certain length of time.
This timeout is a function of maximum message length
and link speed. The second timeout occurs after a
fixed interval if no .. messages are received on the
link. In this situation, the current state of the
link is stored in a file and an exit to the RT-11
monitor is performed.

Message Transmission: The sequence of events
associated with the transmission of a message is the
following:

(1) after a timeout, the timer activates the
scheduler;

(2) the scheduler scans the send list flags.
If one is set the flag is cleared and the
appropriate message is prepared. Flags
are set by the timer, the interface
subroutines or the receive side of the
processor, according to the current status
of the system. Data messages are handled
slightly differently. There can be more
than one data message waiting at any one
time to be transmitted but only one of
each type of control message. Therefore,
a queue is needed to store waiting data
packets. The scheduler detects the
presence of a waiting data packet by
checking the counter associated with this
queue rather than a flag;

(3) the prepared message is passed to the
transmit side of the device processor;
while the message is being transmitted,

A-11

the scheduler is inhibited.

From the above discussion, we see that the act
of transmitting messages has no effect on the receive
side of the protocol processor, apart from disabling
interrupts during critical sections. This separation
of activity has two advantages; it improves clarity
and it minimizes shared data. Total separation is
impossible; facto1· {4) requires that the receive side
affect the transmit side of the monitor. However,
this effect is limited to the setting of flags and
the adjusting of pointers and counters. One example
is the adjustment of the retransmit queue upon
reception of message acknowledgements. The receive
side itself is driven completely from receive
interrupts. In fact all the processing of received
messages is performed in a nested series of
completion routines called from. receive interrupt
service ·routine. This approach'presents no problem
as long as the time to receive the shortest packet
is longer than the time to process a packet header
(which has a fixed length) .

Message Reception: The following sequence of events
is associated with message reception:

(1) upon reception of a packet, the header CRC
is computed and the packet is discarded if
it is bad;

(2) if it is a control message, the processor's
state variables are updated and the send
list adjusted;

(3) if it is a data packet, the state variables
are updated and the data region's CRC
computed. If the packet is valid it is
passed to the message processor via an
interface subroutine. Otherwise, it is
discarded.

BUFFER MANIPULATION

The size and number of buffers is the choice of
the message processor using DDCMP. This permits
maximum flexibility and promotes efficient use of
resources. The only size constraint is a maximum

d . . f 214 ata region size o

The buffer queues used in DDCMP are one-way
linked lists. Each list is characterized by a
headpointer, tailpointer and counter. Two separate
sets of buffers for transmit and receive were used
for the following reasons:

(1) Because a steady outflow of data messages
is dependent on a steady inflow of
acknowledgements, buffers must always be
available to the receive side of the
device processor. This is most easily
achieved by dedicating a set of buffers
to reception.

(2) Having a linked list of send buffers, as
opposed to a ring buffer, has the
advantage of permitting the message
processor to return buffers to DDCMP in
an order different from that in which they
were obtained.

Send buffers: Three sets of buffers are used for
transmission:

sendfree queue:

send queue:

retransmit queue:

list of buffers available
to the message processor
for filling.

list of buffers containing
data messages waiting to
be transmitted.

list of buffers containing
transmitted but unacknow
ledged data messages.

The send buffers carry only numbered data
messages. Control messages are formed when the need
arises and are not stored. The flow of buffers is
the following: empty buffers are passed to the
message processor where they are filled and returned
to the send queue. Upon transmission, they are
placed on the retransmit queue until an acknowledge
ment returns them to the sendfree queue.

Receive buffers: The receive buffers are used for
the reception of both data and control messages.
Three sets of buffers are again used:

receivefree queue: pool of free buffers.

numberedmessage list of received data
queue: messages waiting for

validation.

receive message
queue:

list of valid data
messages waiting to be
passed to the message
processor.

In addition, there are three buffers within
the reception process itself. They are the

'presentbuffer', 'previousbuffer' and 'nextbuffer'.
The presentbuffer is the one currently being filled
with incoming characters, the previousbuffer is the
one most recently filled and the nextbuffer is the
one to be filled next. Because the processing of
control messages and data messages with bad headers
takes less time than does the reception of the
shortest possible message (8 bytes), the buffers
containing these messages can be reassigned
immediately as the nextbuffer without having to
pass through the receivefree queue. This is path
(1) in Figure 3. Data messages with good headers
and bad data follow path (2), returning directly to
the receivefree queue. Valid data messages pass
through the receivemessage queue and return via the
message processor to the receivefree queue (path, (3)).

If the message processor does not introduce any
significant bottlenecks in the system, efficient
transmission and reception is possible using only
six buffers: three for transmit, where one buffer
is being filled, the other is being transmitted and
the third is waiting for an acknowledgement, and
three for receive, where one is being filled, the
other is being validated and the third is being
emptied.

INTERFACE TO MESSAGE PROCESSOR

The five interface subroutines allow any
message processor to utilize the DDCMP processor in
a clean straightforward manner. These Fortran
callable routines are used to initiate and terminate
activity at the DDCMP level, to obtain and deliver
buffers for transmission in an asynchronous manner

A-12

and to access the contents of received messages.

Initialization: All DDCMP-level counters and flags
are initialized by the initialization routine DDINIT:
the number and size of buffers is specified and the
communication link is started up via the START-STACK
sequence.

Sending Messages: To avoid core-to-core transfers,
the subroutine GETBLK makes available to the message
processor the actual buffer used for transmitting
the message. Once the buffer is filled it is returned
to DDCMP via SNDBLK.

Receiving Messages: If the same approach were used
on the receive side, there would be the possibility
that they would not be returned to DDCMP after th~
message was obtained. To avoid this possibility,
a core-to-core transfer is used by RECEIV to move
the contents of a received buffer to a· core array.
The message processor must arrange to call RECEIV on
a regular basis to ensure that received messages are
picked up. Otherwise, a bottleneck may occur on the
receive side of the DDCMP processor.

Termination: The subroutine DDEXIT is called to
terminated DDCMP activity and to exit to the RT-11
monitor. The message processor must perform all of
its own exit operations before calling DDEXIT.

INTERACTION WI1H RT-11 MONITOR

The current implementation of the protocol
processor runs under the RT-11 single-job monitor.
All interrupt service routines, through the .INTEN
programmed request, run in system &:ate. This greatly
reduces available stack space, so subroutine calls
internal to DDCMP pass all parameters in registers.
Under the SJ monitor, the 60HZ clock interrupt serves
no practical purpose, so it is rerouted to provide
the needed DDCMP timer facilities. If the F/B
monitor were used, the DDCMP timer could be made to
run as a F/B clock initiated completion routine.

XFR - A FILE TRANSFER UTILITY PROGRAM

One current application of the DDCMP
communications module is the full-duplex transfer of
ASCII and binary files between processors. XFR is a
Fortran program which handles all the higher-level
duties associated with this task. Among its
activities are the following:

(i) interact with the user to determine the
sequence of actions to be performed. The
user must specify the type of file and
the direction of transfer. Only one
file is eligible at any given time for
transmission in a particular direction.

(ii) perform all I/O to storage devices;
because ASCII files are record oriented
while binary files are block oriented,
the two types are treated differently.

(iii) break down files into packets and vice
versa and transport the packets to and
from DDCMP.

(iv) provide the higher-level message protocol
for interaction with the other processor.
This protocol is needed to initiate and
terminate transfers and to report errors

(v) maintain a log of link activity over
extended periods _of time. XFR shares
with DDCMP a common block of variables
which reflect the number and types of
messages which are sent across the link.
Upon exit, DDCMP stores this information
in a file; XFR stores the same information
in a second file with the difference that
the second file contains a running account
of all activity since the file was
created; the DDCMP created file stores
only the latest link usage information.
In this way, both current and long-term
link activity can be monitored.

CONCLUSION

An assembly-language module implementing a
point-to-point full duplex version of DDCMP and
running under the RT-11 SJ monitor has been developed.
This module, including a line driver for a DL-11
serial interface, is less than l.8K words in length,
excluding buffers. The module has been designed to
be general in nature, with a clean straightforward
interface to any higher-level module using it. This
permits its use in a wide range of applications.
One such use is the transfer of files between
processors.

MESSAGE PROTOCOL

PROCESSOR PROCESSOR

DEVICE

PROCESSOR

Figure 1. LEVELS OF PROCESSOR NEEDED FOR COMMUNICATION

A-13

COMMUNICATION
~
....... -;;;;"

LINE

CHANNEL

DEVICE

LISN

(init)

TALK

~---------------------------------!
t I
I I
I ACTIVATE init I

MESSAGE

PREPARATION

SCHEDULER

MESSAGE

VALIDATION

tE~----t TIMER

MESSAGE

PROTOCOL1--':;...._~-~PROCESSOR

INTERFACE

Figure 2. FUNCTIONAL DESCRIPTION OF DDCMP PROCESSOR

PREVIOUS

BUFFER

(1) control

NUMBERED
MESSAGE

QUEUE

(2) data
messages
with bad
data

RECEIVE
MESSAGE

QUEUE

(3) good
data
messages

CHANNEL

and data
messages
with bad
header

PRESENT

BUFFER

NEXT

BUFFER

Figure 3. FLOW OF RECEPTION BUFFERS

RECEIVE FREE
QUEUE

A-14

Message
DDCMP Processor

A MULTI-DETECTOR PULSE-HEIGHT ANALYSIS SYSTEM

Chris P. J. Kelly, Damon Stafford and Alfred J. Hulbert
Inhalation Toxicology Research Institute

Lovelace Biomedical and Environmental Research Institute
P. O. Box 5890

Albuquerque, New Mexico 87115

ABSTRACT

Investigators at Lovelace ITRI are currently using a unified
Multi-Detector Pulse Height Analysis (PHA) system which per
mits the same software package on a PDP-ll/T34 to be used for
analysis of nuclear counting spectra collected from a wide
variety of detectors. The analysis software described includes
interactive graphics on storage scope terminals and specialized
spectral analysis routines tailored to individual detectors or
experiments. The detectors include Germanium-Lithium high
resolution qamma detectors, Silicon-Lithium alpha particle de
tectors, Phoswich (Sodium Iodide-Cesium Iodide) X-Ray detectors,
beta scintillation and large Sodium Iodide counters. Applica
tions include neutron activation analysis, analytical radiochem
istry, personnel monitoring and analysis of biological specimens
from radiobioloqical studies. A companion PHA package on the
ITRI central computer, a PDP-11/70, is functionally equivalent
at most levels, with identical user commands, but with enhanced
capability for more extensive analysis and hardcopy qraphics.

INTRODUCTION

At the Inhalation Toxicology Research Institute
(ITRI), pulse height analysis (PHA) has long been an
important research tool. As real time computing has
expanded, researchers have asked for more computer
assistance in the collection and analysis of PHA
spectra and this is the system designed to meet
those needs.

DESCRIPTION OF PROBLEM

While designing the PHA software, it became clear
that the various users of the system would have dif
ferent needs in counting and analysis, which depended
upon many factors. First, the emission characteris
tics of the radioisotopes (alpha, beta, gamma and
X-ray emitters were all in use). Second, the type of
application (e.g., personnel monitoring, analytical
chemistry and emissions characteristics). Finally,
what was to be done with results (observed, discarded
or saved for use in Information Storage and Retrieval
sys terns).

The program had to meet these needs, and provide for
future expansion and adaptation to other computers.
Two PDP-ll/T34 processors were scheduled for use in
collection and analysis of pulse height data. All
detectors had to be accessible by any user, collec
tion and analysis had to be independent processes,
and some specialized analysis and output routines
needed restrictions on use. The file structure and
access scheme provided a key to our solution, and a
modular program structure completed the answer.

This flexible system allows each detector to run in
dependently of others, and since some detectors have
very long counting times (ten or more hours), this
means many simultaneously active detectors. We found
that the costs of that many stand-alone systems, and
the problems of continually setting up multichannel

Proceedings of the Digital Equipment Computer Users Society A-15

analyzers for different collection arrangement (and
the errors created thereby) were prohibitive, and
justified the development effort.

HARDWARE ARRANGEMENT

The data collection is performed by a CAMAC-oriented
data acquisition system, connected to a PDP-ll/T34 or
11/45 mini-computer. Figure 1 is a schematic of the
system, with detectors on the left. Each detector
provides its own power supplies, preamps and ampli
fiers, and puts out pulses between 0 and 8.192 volts
in amplitude. These signals are sent to a multiplexer
which buffers input to a high-speed analog-to-digital
converter (ADC). Tag bits added by the multiplexer
note from which detector the pulse originated, and
digital information is sent to a CAMAC input module.
The CAMAC dataway also contains a multiple clock
module which collects elapsed and live time data.
The Camac Branch control is handled by a 11i crooro
grammed Branch Driver (MBD-11), a fast microprocessor
which resides on the PDP-11 Unibus, and processes
data for OMA transfer to the PDP-11 memory.

Control programs in the PDP-11 allocate buffers in
core, one for each active detector, and upon termina
tion of a collection, write the data and associated
header to a disk file.

FILE STRUCTURE AND ACCESS

In order to allow all users access to the recently
collected data files, a special user code was created
which gave all users ('world' in the DEC terminology)
full access privledges, and stored all data and most
common ~ibraries in that user file dictionary. The
collection program puts out completed spectra into a
master data file (Figure 2) onto which the detectors
are logically mapped by a definition file. This
definition file also serves as a symbolic maooinq, as
each detector is given a unique six-character name by

San Francisco - November 1978

WBC

Ge Li

Beta

Phosw

Nal

SiU

Si Li

Si Li

M

u

L

T

E
R

HARDWARE CONFIGURATION

A
D

c

CAM AC
DATA
WAY

liil 0.1. M.

MBD

II

---....... 'I
CAM AC

BRANCH HIGHWAY

Figure 1

u
N
I
B
u s

I D TIME COl.tffTIME RESQ... EXPT. ID LINK

FILE
STRUCTURE

(UP TO 1024 POINTS)

DETECTOR NUMBER
5 6 7 8

Nat Si Li Si Li
II

15 20 25 30 35

BLOCK NUMBER

Figure 2

A·16

9

II

PDP-llT34
RSX-HM

10

II

II

II

55

which the user can refe.r to that detector. The data
file is a direct access file 240 blocks long, mapped
into a maximum of 48 detectors (five disk blocks per
detector). All detectors have the same structure to
their files, with the first block reserved for a file
description header, and the remainder for data, up to
1024 channels of integers.

The header of the file contains the following infor
mation:

1. Detector ID - six-character symbolic name
of detector.

2. Detector Number - order in which detector
data are mapped into the most recent data file.

3. Time of Day - date and time spectrum was
collected.

4. Counting Time - livetime and elapsed time
(and therefore deadtime) of collection, and time for
use in calculations after deadtime corrections are
performed.

5. Resolution Information - energy (KeV) cor
responding to channel one and to the highest channel
in the spectrum.

6. Number of Channels in this count.

7. Experiment ID - user entered identification
of data.

8. Unique ID - for sorting of files.

9. Clock Frequency - of collection control
clock.

10. Deadtime Correction Indicator.

11. Background Subtraction Indicator.

12. Linkage Indicator for multi-detector
counts.

13. Collection Termination Code (to indicate
type of termination, e.g., overflow, timeout).

14. Reserved space for future expansion.

The file is read by calls to in-house multiple-block
I/0 subroutines which perform a direct access read
without the use of large intermediate buffers, con
serving memory and speeding execution of I/0.

This arrangement is convenient because the latest
data are always found in the same file, and the user
is able to access any of the detectors simply by
knowing the detector ID name. Only minimal instruc
tion in the operating system of the computer and the
PHA program is required. The file system addi
tionally hinders storage of worthless or poorly de
fined data files (forgotten and wasting the limited
mass storage) by writing the most recently collected
data on top of older data for the same detector.
This forces users to make use of data before collect
ing additional spectra, a benefit to the system and
the users. A user collecting a series of 10 minute
counts is able to start a new collection before
analyzing the old, since it is only upon termination
that older data are erased, and older data are read
by the analysis program keeping a complete copy in

A-17

core during analysis. This overlap of collection and
analysis greatly speeds the counting process when
many samples are involved.

GENERAL ANALYSIS

The program is interactive with the user, with any or
all options selected at will and in any order. This
adds to the flexibility of analysis, since any
feature may be repeated or dropped as necessary.

Upon startup, the program asks what detector the user
is interested in, and calls the mapping subroutine to
error check and to set pointers to the detector re
quested. Data are read into common arrays, and the
input file closed. At this point, a subroutine be
gins to analyze header information, and a summary is
printed on the user terminal and on a logging file on
disk. Since analysis is usually performed on
graphics terminals, the logging file provides a semi
permanent storage of analysis results in addition to
an audit trail of functions performed during anal
ysis.

A header analysis subroutine performs deadtime cor
rection based upon data collected by two clocks (live
time and elapsed time) at count time, and notifies
the user of the magnitude of deadtime and the new sum
of the data.

This deadtime correction is performed based upon the
termination code, because the integer data type
places restrictions on maximum counts per channel,
and collection programs will terminate a collection
if data value in any channel approaches this value.
In this case, the live time of the count will be used
with no change in data, while in other cases data
will be scaled to match requested count time.

After this brief analysis, control is passed back to
the main routine, which asks the user for a two
letter command, which will determine the next func
tion to be implemented. Options include the
following:

1. AA - Alpha Radiochemistry Special Analysis

2. AB - Beta Spectrometer Special Analysis

3. AG - Ge(Li) High Resolution Analysis

4. AN - Human l~ho le-Body Counter Special
Analysis

5. BG - Generation of background library

6. BS - Subtract latest background from data

7. EX - Exit from analysis with line printer
list of analysis

8. GR - Interactive Graphics

9. LG - Update whole-body counting libraries

10. RC - Semi-automatic recalibration of scales

11. SA - Save current data in disk file

12. TC - Convert data to counts per minute

13. VP - Hardcopy Graphics

Each of these functions have interesting features,
and because Qf the modular design of the program,
more may be added at any time with ease. Here the
discussion will center on a few of the more interest
ing functions.

Alpha Radiochemistry Analysis

This function is tailored to the needs of highvolume
radioanalytical chemistry of low-level alpha emit
ters, and is a front-end to an Information Storage
and Retrieval system. In this sense, subroutines
will do some minor analysis and calculations, and
then reformat the data for entry into the !SR system.

When the user calls this function, the program re
quests names of materials expected in the sample, and
reads a library containing some characteristics of
the materials. Using this 1 ibrary information, the
spectrum is examined and peaks in expected areas are
counted and checked for shape and actual energy cor
respondence. The program then calculates actual ac
tivity in these samples using count time, and stores
the information together with ID data in a free-field
data file which is automatically named for the Julian
date and fraction of day on which the spectrum was
collected.

The user needs only to transfer this file to the cen
tral computer for use in the !SR system. Throughout
the PHA program, extensive error checking of input
data is performed to ensure accuracy in results.

Whole Body Counting Analysis

The Human Whole-Body Counter is used for personnel
monitoring, and periodic checks are performed to en
sure safety of laboratory personnel. Sodium iodide
detectors are sensitive medium-resolution devices,
and are used to produce a 512 channel spectrum in a
standard 10 minute counting time. A library contain
ing spectra of the radioisotopes used at ITRI is
stored on disk, having been counted on the whole-body
counter using standard sources.

When a spectrum has been collected, the user calls
the WBC analysis function, which requests names of
the library spectra he wishes to compare with the
sample. Five spectra are used in any one run. These
library spectra have unique ID names by which the
user refers to them.

After reading all library spectra into an array, a
spectrum fitting matrix inversion routine fits the
libraries to the sample using a least squares tech
nique and prints a list of suspected quantitites of
each library radionuclide.

Interactive Graphics

A useful and widely used feature is the interactive
graphics mode of analysis, as it provides a flexible
and powerful means of computer assisted examination
of pulse height spectra.

Using 17 single-letter commands, the user is able to
perform a relatively exhaustive examination of the
data, leaving only the most complex and specialized
functions to other subroutines. Functions implemented
are as follows:

1. A

2. B

3. c

4. D

5. E

6. G

7. H,L

8. M

9. 0

10. R

11. s

12. T

13. x

14. z

- Integrate user designated area of
display.

- Rescale to previous window.

- Connect data points with a solid
1 i ne.

- Display computer generated best
fit spectrum (generated by the
Whole-Body counter Analysis
routines).

- Identify point at crosshairs.

- Display spectrum with logarithmic
Y axis.

- High and low limits on new window
(Zoom). Allows magnified view of
data.

- Multiply all data by user input
number.

- Return to original window (display
all data).

- Replot in same window.

- Smooth data (five-point least
squares parabolic fit).

- Integrate entire spectrum.

- Exit from Graphics.

- Set point at crosshairs to value
of zero.

15. Errors - Bell and question mark appear.

Interactive Graphics is performed on storage screen
terminals with crosshairs, using in-house plotting
subroutines for control of the special graphics mode.
Since all data generated by the user in graphics mode
is erased from the screen upon exit, all functions
called are recorded on the disk logging file which is
spooled on exit from the PHA program.

Hardcopy Graphics

An option is available to create a paper graph of
data, using either a high resolution electrostatic
printer/plotter or the impact matrix line printer/low
resolution plotter. The user requests hardcopy
graphics and the routine asks for a plot title, and
calls in subroutines to generate intermediate binary
files. Functions diverge now depending upon which
computer is used. On data collection computers (PDP
ll/T34) the pass-two plot generation is accomplished
by a slave task, with output appearing immediately on
the impact matrix printer/plotter. On the central
computer, the binary file is saved for use by the
pass-two program at a later time, with output on the
electrostatic plotter under control of the computer
operator.

A·18

SUMMARY

This Pulse Height Analysis system, designed for a
multi-detector, multi-user environment has been in
use now for approximately one year and has met the

primary needs of users for more rapid and complete
analysis of spectra. Additionally, it has provided
the starting point for more specialized techniques,
having removed from the experimenter many of the
burdens of manual data analysis. Flexibility of
design makes the system easily adaptable to changes
or additions of detectors and specialized analysis
functions.

ACKNOWLEDGEMENTS

Work performed under U. S. Department of Energy Con
tract Number EY-76-C-04-1013.

The authors thank Drs. R. O. McClellan, M. B. Snipes,
S. H. Weissman and J. A. Mewhinney and Mr. F. Barr
for reviewing this manuscript.

We regret the announce the recent death of Mr.
A. J. Hulbert.

A-19

A MULTI-USER, MULTI-DETECTOR PULSE HEIGHT ANALYSIS/GAMMA CAMERA DATA
COLLECTION SYSTEM USING CAMAC AND .PLAS

Damon Stafford, Chris P. J. Kelly and A. J. Hulbert
Inhalation Toxicology Research Institute

Lovelace Biomedical and Environmental Research Institute
P. 0. Box 5890

Albuquerque, New Mexico 87115

ABSTRACT

A system which collects data independently from many pulse
height analysis detectors is described. Connection to the com
puter is via either parallel or serial CAMAC branches and
Microprogrammed Branch Drivers (MBD 11). Computers are either
PDP-11/T34's or a PDP-11/45 with RSX-llM Ver. 3.0 as the op
erating system. Some gamma camera collection functions are
implemented. These are being expanded. Users run a simple
startup task from any terminal to provide required parameters.
A central monitor task (CONTRL) then error checks the request
and sets up PLAS buffer areas. A third task (COLLEC) communi
cates the request to the MBD which actively controls data
collection. The only task which must be core resident during
collection is COLLEC which is relatively small in size.

REQUIREMENT

Nuclear data collection at the Inhalation Toxicology
Research Institute (ITRI) has been an integral part
of our research support technology for many years.
Control of collection and entry of data into the com
puter was, until recently, very cumbersome and inef
ficient. In some cases no computer processing of
data was done because of the time involved in data
entry. New research projects required computer pro
cessing simply because of the volume of data to be
collected. Many more individuals with diverse back
grounds would be involved in data collection so it
was desirable to simplify the collection process as
much as possible. The decision was made to automate
the collection process.

Pulse height analysis (PHA) includes quantitating the
number of radioactive emissions from a substance over
a wide energy range. Our requirements for PHA vary
significantly with the specific project. One project,
low level alpha radiochemistry, will have 32 collec
tion detectors on-line and possibly simultaneously
active. Storage requirements for projects vary from
one 128 word buffer to two 16K word buffers per de
tector. Collection times vary from a few seconds to
many hours. Count rates vary from a few counts per
hour to 50,000 counts per second. Gamma camera col
lection is primarily a PHA in a three coordinate sys
tem. For most applications the collection problem is
the same as the two coordinate system.

CAMAC has become the ITRI standard for data collec
tion. Parallel branches are planned to most areas
which require PHA collection services. A serial
branch will serve other areas which are low count
rate projects. Currently eleven detectors are in op
eration on one parallel branch. The garrma camera is
presently in the testing stage. The serial highway
will be operational soon.

Individual stand-alone systems were rejected for most
applications because of the large number of systems
required. A data interface would still have to be

Proceedings of the Digital Equipment Computer Users Society A-21

developed for transferring the data to the primary
analysis computers.

SYSTEM OVERVIEW

Capabilities

A researcher can start a collection from any terminal
connected to the same computer as the detector. It
can be scheduled to run for a specific time duration.
It will stop automatically if the number of counts in
an energy range exceeds 32000. The researcher can at
any time stop collection and save the accumulated
data.

Actual elapsed time may be slightly different (less
than a second) than the time requested by the re
searcher. A free running clock times each collection
so that elapsed time is known accurately. Analysis
programs use this to compensate for deviations. Re
solving time of the ADC is usually more significant.
It is monitored and is then compensated for by analy
sis routines.

Usage

Collection of data from any detector proceeds as fol
lows. The sample is placed in the detector. The re
searcher goes to any terminal connected to the same
computer to which the detector is connected. A col
lection startup program is run. OMNI is the standard
startup routine which works for all detectors except
gamma camera (Figure 1). Some projects have startup
tasks asking only one question. The computer will
return a message to the user's terminal saying that
collection was started (assuming there were no er
rors) and a collection termination message when col
lection is finished. The sample may then be removed
from the detector and the process repeated for
another sample. All collection system events are
also logged to the console terminal.

Because disk storage space on the data collection
computers is limited, the system requires that

San Francisco - November 1978

RUN $OMNI
OMNI: 24-APR-78 07:26:53
OMNI: ENTER THE DETECTOR ID>JELLYl
OMNI: ENTER THE DURATION (HRS,MIN,SEC)>0,1,0
OMNI: ENTER X, WHERE 2 XXX IS THE NUMBER OF CHANNELS>12
OMNI: ENTER COMMENTS>THIS IS THE BIG DEMO
>
CONTRL: 24-APR-78 07:27:51 JELLY! Data collection started
CONTRL: 24-APR-78 07:28:55 JELLY! Timeout collection finish

Figure 1. Collection startup with system replies.

researchers specifically make a permanent copy of the !
data if it is desired to save it. Otherwise succes- ·
sive collections on the same detector will destroy
the current data. An analysis program is available,
which has graphics capability, to aid in that deci
sion. That same analysis program will make a perma
nent copy of the data if required. The data can then
be moved to the central computer, a PDP 11/70, for
extensive analysis.

Electronics (Figure 2)

The heart of the system is one of two PDP ll/T34 com
puters or a PDP 11/45. Each system has several

PMT PMT

PREAMP ooo PREAMP

AMP AMP

MULTIPLEXER

FREE1GATED INPUT
CLOCKICLOCK REG.

fC°AMAC
I r----
1 I
I I

DURATION 1---1--4----1

CLOCK MBD I I
L_J

PDP

UNIBUS

11/34

:PLANNED
I DECNET

I

PDP 11/70
ANALYSIS

PHA COLLECTION
ELECTRONICS

Figure 2

0 0 0

0 0 0

A-22

terminals available to users. Each PDP 11 has at
least one Microprogrammed Branch Driver (MBD). The
MBD is a fast (350 nanosecond instruction time) 16
bit 4K word microprocessor. It is programmable and
has eight separate register sets. The MBD interfaces
a CAMAC parallel branch highway containing one to
seven crates to the PDP 11. It performs all realtime
control functions. Other non-PHA realtime functions
may be active simultaneously with PHA. Detectors,
consisting of a photo-multiplier tube (PMT), a pre
amp and an amp, send information through a multi
plexor (which can handle up to 16 detectors) to an
analog to digital converter (ADC). The voltage level
from the detector is proportional to the energy of
the photon striking the scintillation material in
front of the PMT. This is converted to a digitized
value from zero to a maximum set on the front panel
of the ADC. This number and the multiplexor channel
number are put in an input register in the CAMAC
crate. A CAMAC LAM (look at me) occurs and the MBD
will begin its processing. A dual timer module is
supplied with each input register. One timer measures
elapsed time. The other measures time the ADC is
unavailable for new conversions.

Software

All ITRI's realtime systems use the RSX-11M operating
system. Included in each system are two ITRI written
drivers which synchronize actions of the MBD with the
PDP 11. Facilities are available whereby PDP 11 user
programs can load MBD memory with programs or data,
start execution of MBD programs and receive asynchro
nous system traps (AST's) for MBD caused interrupts
to the PDP 11. To make more efficient usage of
memory and to make the logic of individual programs
simpler, a multi-task collection system was designed.
All PDP 11 code is written in Fortran, the only
higher level language available. The MBD code was
written utilizing a set of assembler macros.

The central monitor and resource allocator is CONTRL.
It is always active but checkpointable. No operations
with critical response times are performed in CONTRL.
It receives input requests from other tasks and
finishes each particular function before processing
the next request. COLLEC interfaces (at a user
level) the PDP 11 collection tasks with the MBD. It
initially loads the MBD with its programs. It awakens
the MBD when new collections are to be started and
receives information about collections that have
finished. It is non-checkpointable. Nothing is
dependent upon response time.

The investigator communicates with the system through
any one of several startup tasks: These tasks ask
the appropriate questions of the investigator's
specific needs. They are small and easily written.
All use the same subroutines for communicating with
the collection system. All communicate directly with
CONTRL.

Programs that reside in the MBD control all data col
lections. These programs have quick response time
requirements. The lowest priority program controls
communication with the PDP 11 concerning new collec
tion starts and system shutdown. The middle priority
program controls actual collection timing. It in
forms the PDP 11 when a collection has finished. Any
one of a series of high priority programs process
incoming data ready LAM's from detectors. From the
time a LAM occurs until the MBD is available to
process a new event, roughly 20 microseconds elapse.

System Flow

Parenthesized numbers in the following text refer to
labels in Figure 3. To start a collection an inves
tigator runs a startup task. All required questions
are asked and the answers error checked before any
interaction with the rest of the system occurs. The
maximum information required of the investigator is
the detector name, collection duration, buffer size,
and a comments field for sample identification. The

5

CONTROL

4 14

COLLECTION

8
!Meo

___ _J
9 ----,

I
I
I

'
PHAINI

10

10 PHACLK

12

15

13

LAMS II OMA
I I
L _______ _J

PHA COLLECTION
INTER-TASK FLOW

Figure 3

A·23

startup task then sends a message to CONTRL request
ing buffer space (1). If the detector is not already
in use, CONTRL will allocate a buffer in a PLAS re
gion. A "send by reference" will be executed so that
the startup task can attach itself to the buffer
region (2). The startup task zeroes the buffer and
fills in required header information. This includes
the time and date and a computer generated unique
identification. When finished, a message is sent to
CONTRL and the startup. task exits (3).

When CONTRL receives the second message, it starts
COLLEC, if it is not already active, and sends it a
"send by reference" message pointing to the buffer
(4). If the particular MBD does not have active col
lections, COLLEC will load the MBD with its programs.
To get the required CAMAC branch addresses COLLEC
returns a message to CONTRL (5). CONTRL searches EDI
format configuration files on disk (6) and builds
tables with all required commands in a small PLAS
region. A "send by reference" is returned to COLLEC
(7). CONTRL detaches itself. from the tables region.
COLLEC loads these tables into the MBD (8) and de
taches and ~eletes the tables region. The timing and
data handling programs in the MBD are started (still
8). These go to sleep but will restart themselves
when there is something to do. To start the MBD col
lecting data, COLLEC runs the low priority MBD pro
gram PHAINI (9). This copies buffer and timing
information to the MBD. It sets a flag so that both
timing and data collection will commence (10).
Everytime a LAM occurs for a detector that is in use,
the location in the PDP 11 buffer corresponding to
the detector and the appropriate energy range is
incremented (11). For a detector that is .not in use
the LAM is simply cleared. When the timing program,
utilizing a duration timer, decides collection has
finished, the LAM handling program is told to stop
data collection for that detector (12). This stoppage
will also occur if a buffer location exceeds 32000
counts. Information about elapsed time, ADC dead
time, and the reason for collection termination is
stored in the PDP 11 buffer. COLLEC is informed of
the finish via an AST caused by an MBD interrupt
(13). COLLEC detaches itself from the PLAS buffer
and sends a message to CONTRL informing it of the
completion (14). If there are no remaining active
collections in the MBD, all the PHA MBD programs are
terminated and the MBD memory freed. CONTRL writes
the buffer and header to disk (15). It detaches
itself from the buffer region and deletes it. The
terminal from which the startup task ran has a com
pletion message written to it.

Utilities

Several utilities are available. The startup tasks
are classed as utilities. There is a utility DETKIL
which allows the researcher to request immediate
termination of collection but save the data. DETSTA
allows the researcher to find out if a particular
detector is busy.

Several utilities are available to the system manager
who knows the password. DETKIL will kill a collec
tion from a different terminal than the one from
which the collection was started. GLOSTA dumps in
ternal tables on CONTRL. SHUT causes the collection
system to disallow any new collections. All collec
tions which are active at the time SHUT is run will
go to completion.

PLAS USAGE

PLAS regions are allocated by COLLEC for two reasons.
A 256 word region is created for the MBD tables each
time an MBD is to be loaded. Once the send by refer
ence has been made to COLLEC, CONTRL detaches itself.
When COLLEC detaches itself after loading the MBD the
region is deleted. The minimum region allocation for
buffer space is 4K words. More than one buffer may
reside in a region if there is room. A buffer that
is longer than 4K has a region dedicated to it. Once
the last active collection in a region finishes, the
region is detached and deleted. A maximum of eight
regions may be in use.

Using PLAS to build the tables might seem overly com
plicated. COLLEC could have fetched the CAMAC com
mand tables by itself. By letting CONTRL do this
work, COLLEC which must be memory resident during all
active collections, need have no Fortran I/0 routines
included in task image. The PLAS routines must also
be used to attach the buffers and so perform a dual
function. Table building occurs only when a collec
tion is started and no other collections are active
on the target MBD.

CAMAC BRANCH RECONFIGURATION

Once the data collection system is quiescent, modules
may be moved around at will on the CAMAC branch. New
detectors or multiplexors may be added or equipment
may be removed. Crates may be added or removed.
CONTRL uses two files in EDI format to build all
branch addresses when a collection starts. One file,
CONFIG.CMC which is used by all ITRI data collection
tasks, lists all module locations on the branch. The
second, SYMMAP.LIB which is used exclusively by the
nuclear data collection system, lists multiplexor
characteristics, detector names, and deadtime clock
information. A third small file, PHACHL.LIB, con
trols the priority of the MBD programs.

It is not possible to replace CAMAC modules with
other vendor modules unless the command sequence is
exactly the same. Malfunctioning modules can be
swapped out as required with identical modules.

If a PDP 11 goes down for a significant period of
time, the MBD can be changed to another PDP 11. By
editing CONFIG.CMC, PHACHL.LIB and SYMMAP.LIB, the
operational PDP 11 can be brought up with two CAMAC
branches within minutes.

RELIABILITY

The software has performed reliably. After initial
checkout systems failures have always been hardware
failures. The MBD has been the most unreliable com
ponent. The system has the same weaknesses of any
distributed CAMAC system. Powerfailures at crate
locations are not necessarily detected. The software
is somewhat error insensitive. Collections will con
tinue as long as their required hardware appears to
be operational. This includes the MBD's on multiple
MBD systems. For failing collections the system
assumes that no data is better than potentially
corrupted data.

TERMINAL OUTPUT

A 11 termi na 1 output is done vi a a message handling
task. A 11 messages are 1 ogged both to the user ter
minal and to the console log. Collection tasks send

A-24

a standard system message. It contains a message
number relevant to the collection status. The mes
sage output task accesses an English language text
file and outputs this message. If the text file can
not be accessed or the message number does not have
a corresponding text, the message number is printed.
Up to five different messages can be buffered in the
message output task (that is ten active output re
quests to the system). Other messages will be await
ing their turn in the receive queue. If for some
reason the message output routine is not available,
CONTRL will print a message to the user terminal.

The slave task attribute is not used to communicate
Tl's. None of the utility tasks are installed.
Hence their execution name is the name of the termi
nal. This task name is passed as a part of all mes
saqes. CONTRL saves the name so that it can be used
as-needed.

FUTURE EXPANSION

Only two enhancements are planned at the present.
One is the capability to link detectors together.
This will allow multiple detectors to have simulta
neous collection starts and stops. This type of col
lection will allow one buffer for all or a separate
buffer for each detector. The other enhancement will
allow the researcher to have collection stop when a
maximum specified count is obtained in any one energy
range.

COMMENTS

The primary advantage of the system has been the time
saved by direct entry of data into computer storage.
With the analysis programs available it is possible
to quickly accept or reject data. Data can be recol-
1 ected immediately if required. The most difficult
problem to overcome has been caused by the removal of
the researcher from the operation of the equipment.
Equipment calibration and correctness monitoring,
which has traditionally been a function which the
researcher would perform, tends to be ignored because
the system is "computerized".

The first demonstration of the system gave birth to
an interesting anecdote. We were showing all the
advantages of the system, pointing out the efficiency
of operation with respect to personnel time. We were
using the OMNI startup program for the demonstration.
No more did researchers have to twirl thousands of
knobs and play with paper tape. One question we were
asked was "Do we always have to answer all four
questions?".,

ACKNOWLEDGEMENTS

Work performed under U. S. Department of Energy Con
tract Number EY-76-C-04-1013.

The authors thank Ors. R. 0. McClellan, M. B. Snipes,
S. H. Weissman and J. A. Mewhinney and Mr. F. Barr
and Mr. G. J. Newton for reviewing this manuscript.

We regret to announce the recent death of Mr.
A. J. Hulbert.

AUTHOR/SPEAKER INDEX

Page Page

Abbott, D .. 751 Johnson, E.A. 625
Aird, T.J. 847
Alcock, B.G. 925 Kang, Y. 701
Allen, J.J. 719 Kapps, C. 735
Anderson, R. 813 Kelley, C.P.J. A-15,A-21
Andreoli, R. 929 Kemper, C.O. 865

Kerr, G .. 727
Bernstein, G. . A-1,A-7 Kracik, J.M. 787
Bolson, E. 653 Kristol, D.M. 657
Bower, J. 693 Krupp, J.A. 803
Brodrick, J. W. 775 Kulaga, J.E. 675
Brown, A. A-1.A-7 Kyle, C.F. 733
Buddenhagen, D.C. 767
Burris, R.D. 865, 891 Lahtinen, W. 665
Burt, J.S. 899 Lash, A.K .. 599

Lehotsky, A.P. 825
Capowski, J.J. 763 Leventhal, E. 921
Carter, C.P. 933 Logg, C.A. . 875
Chi, D.N.H. 681 Lowry, E.S. 833
Choy, S.J. 687
Clark, R.B. 799 Mathisen, D. 693
Clemens, J. 629 Medford, A. 693
Cottrell, R.L.A. 875 Melnick, J .. 929
Cruson, P.J. 615 Moore, R.D. 781

Moriarty, T.E. 615
Darling, C. 615 Moyle, G.A. 755
Dashevsky, M.A. 567
Deller, S.R. 637 Nicholson, P.R. 858
Dionne, P.J. 693 Nieh, L.T. 711
Dippner, R. 883

Perlee, H.E. 681
Enders, R.B. 615 Pigman, R .. 665
Evans, T.G. 567 Portz, D. 563

Ford, B. 841 Reite, M. 715
Frimer, M. 653 Ritchie, D .. 701
Fryer, R.E. 887 Rose, J.D. 595

Roux,G. 873
Gluntz, D.F. 793 Rynes, P.E. 671
Granja, C. A-1
Gray, W.H. 891 Seethoff, N. 559
Griffith, F .B. 851 Sherrod, P .. 733

Sirag, D.J. 707
Hague, S.J. 841 Smith, G. 813
Hammons, C.E. 865 Staley, R.B. 799
Harper, R.M. 707 Stafford, D. A-15,A-21
Hayes, J.A. 571,579 Starr, T.L. 711
Hill, E.R. 693
Hirschfeld, D.J. 663 Teague, C.T. 775
Hitson, B. L. 819 Thomas, J.M. 853
Huang, C.-Y. A-15,A-21 Tippie, J.W. 671
Hulbert, A.J. A-15,A-21 Tofil, P .. 615

Turner, J.C. 915
Irons, LR .. 589

B-1

Page

Vann, D.M. 587
Vaughn, S .. 841
Viehmann, N.J. 605

Walker, S. 715
Watson, C.R. 853
Wikkerink, R.W. 719
Wilson, N.M. 755
Wirtz, P.J. 623

Yund, E.W. 775

Zonge, K.L. 799

8-2

PAPERS NOT SUBMITTED
FOR PUBLICATION

PLANNING FOR A DECNET NETWORK
M. Weinstein

RSTS/E DISK INTERNALS
M. Mayfield

OPTIMAL BASIC-PLUS PROGRAMMING TECHNIQUES
M. Mayfield

USING SYSTEM TABLES
B. Alcock

ADDING KEYWORDS AND FUNCTION NAMES
INTO THE DICTIONARY OF BASIC/RT-11
F.1. Magee

APPLICATIONS OF DBMS-11 TO MANUFACTURING
SYSTEMS
F.R. Cope

A GRAPHICS PACKAGE FOR COMPUTER
CALCULUS
K. Wooldridge

SYSTEM PERFORMANCE UNDER AN EDUCATIONAL
WORKLOAD
R. Strickland

LSl-11 MICROPROGRAMMING AND ADVANCED
TECHNIQUES
D. Gaubatz

MICROCOMPUTERS-A 5-YEAR LOOK
B. Demmers

THE HIDDEN POWERS OF THE DSM-11 DATA BASE
ANDTHE ASSIST-11
A. Waisman

APPLICATIONS OF THE DALL-J AUXILIARY
UNIBUS CONTROLLER
B. Weiske

SEWER SYSTEM EVALUATION SURVEY
S. Katz

MICROGRAPHICS RETRIEVAL WITH DATA BASE
MANAGEMENT
W. Tabor

DESIGN OF A SECURE HIGH PERFORMANCE, RSTS
BASED TRANSACTION PROCESSING
R. Briggs

B-3

PROJECT MANAGEMENT FOR COMPLEX SOFTWARE
PROJECTS
F. Viggiano

A DATA DRIVE PLOT ROUTINE
C. Watson

GAM/GDL FOR THE VS60
K. Wheaton

ASCII GRAPHICS: A TECO RUNOFF DRAWING
SYSTEM FOR SMALL SYSTEMS USE
D. Gaubatz

CURRENT STATUS AND PLANS FOR
DECSYSTEM-8/78

D.S. Harmer

AN ALL CMOS MICR0-8 DEVELOPMENT SYSTEM
H.M. Smith

HOSTING NON-VMS SOFTWARE
R.A. Vossler

INFORMATION PROCESSING AND THE OFFICE
OF THE FUTURE
M.B. Andelman

A DISTRIBUTED DATA ACQUISITION/CONTROL/
PROCESSING SYSTEM IN A PRODUCT
ENGINEERING ENVIRONMENT
F.A. Spitler

DIGITAL SYSTEM PERFORMANCE ANALYSIS
R. Fadden

PERFORMANCE ANALYSIS- STATE-OF-THE-ART
R. Fadden

TRAX PRODUCT OVERVIEW
E. Hopey

ATIENDANCE

NAME COMPUTER

Abbott, Doug, Standard Engineering Corp. LSI,11
Abitboul, Jeanne, Scancom Corp. LSI,11
Abma, John, Wittenberg Univ. 11
Abramson, Robert, DEC-Merrimack VAX,11
Abuttahir, Ibrahim H., Minis.of Pet. & Min. Res. VAX
Adams, Kenneth J., Canada Cement Lafarge 11
Adleman, Henry, DEC-Maynard 8, 11
Agrawal, Arun, Gould, Inc. LSI,11
Ahnberg, Don, DEC LSI,11
Aird, Tom, Int'l Math & Stat Library 11
Aker, Eric, California State Univ.
Albers, Robert, E.R. Squibb & Sons, Inc.
Albert, Ronald L., Manufacturers Hanover TRS
Alcock, Bruce, Riverdale Country School
Alderman, D. W., University of Utah
Alderman, John, Digital Communications
Aldrich, Mike, Yuba Community College
Alexander, Jarvis, LIOCS Corp.
Alexander, William, Solid State Measurements
Alexanderson, John, DEC-Merrimack
Aley, Ray E., Jr., EG&G
Allard, Henry, DEC-Maynard
Allee, Jim L., L.D. McFarland Co.
Allen, Michael J., Lawrence Livermore Lab.
Allen, Robert, Cisco-Pacific Inc.
Allen, Rosemary, Lawrence Berkeley Labs
Allred, F. Mark, Philip Morris U.S.A.
Alpern, David, Saber Laboratories, Inc.
Alpern, Eugene, Saber Laboratories, Inc.
Alton, Michael, Lawrence Livermore Lab.
Alvarez, Patrick, KQED, Inc.
Ames, Donald R., DEC-Tewksbury
Amma, Joseph Jr., US Steel Research
Andelman, Michael B., LIOCS Corp.

LSI,11
11
11

11
8

LSI,11
LSI

LSI, 8

11
LSI,11

11
8, 11

VAX,11
LSI,11

11
11

8,11
LSI,11

VAX
11

LSI,11
VAX

11
Anderson, Charlotte, Ford Aerospace & Comm Cpr.
Anderson, Frank, Grand Canyon College
Anderson, Lea, DEC-Maynard LSI,11
Anderson, Philip A., Information Systems, Inc. 11
Anderson, R.R., Chevron Geophysical Co. VAX,11
Anderson, Roger, Lawrence Livermore Labs 8,11
Andert, John, Deferred Compensation
Andreae, Sypko, Lawrence Berkeley Labs
Andrews, Harold, GENRAD
Andrews, Neal, Tri/Valley Growers
Anthony, Ralph, Ralfarithms Software Serv.
Applebee, Ralph, Idaho, The College of
Aquilera, Alfonso, Microprocesa Dores
Armstrong, Gary, Lawrence Livermore Labs
Armstrong, Mike, Badger Meter, Inc.
Armstrong, Nick, Lawrence Berkeley Labs
Arnold, Jon, Delta College
Arris, David L., General Dynamics/WDSC
Arrowsmith, Donald, Naval Air Propulsion Ctr.
Arsenault, Raymond, DEC-Merrimack
Arvish, Al, Alpha Omega Systems, Inc.
Askey, Robert C., ESL, Inc.
Aspegren, Robert, Solano Community College
Atkinson, Lee, Avco Systems Division
Aubrey, Tom, Amcor Computer Corp.
Aurbach, Richard L., Monsanto Agr. Prod.
Austin, Don, Lawrence Berkeley Labs
Autran, Roland, Chase Manhattan Bank
Avery, Richard, Litton Systems, Inc.

LSI,11
8,11

11
LSI,11

11
VAX

8,11
LSI,11

11
LSI,11

11
CTS, 8

8,11
LSI,11

LSI,11
11

LSI,11
VAX,11
VAX,11

LSI

B-5

NAME COMPUTER

Baatz, Eric, DEC-Tewksbury
Baccus, Don, Oregon Minicomputer
Backus, Robert, Gould Systems
Bagalay, Ronald R., US Army Corps of Eng.
Baker, Don, San Francisco Unified School
Baker, John, Lawrence Livermore Labs
Baker, June, Computer Sciences Corp.
Baker, Lawrence M., US Geological Survey
Baker, Steven, J. Baker & Assoc., Inc.
Baker, William, Miami-Dade Community
Baldridge, Neil, Compu-Share Incorporated
Baldwin, Rich, North County Compu Serv
Bales, Robert, DEC-Salem
Ball, Robert, British Columbia Bldg.Corp.
Banovsky, Michael, DEC-Marlboro
Barale, Paul, Lawrence Berkeley Labs
Barale, Ronald J., Lockheed LMSC
Bargmeyer, Bruce, US Department of Labor
Barker, Bruce, Valley News
Barker, Raymond E., Caterpillar Tractor Co.
Barnett, Bill, LASL
Barr, John, Montana, University of
Barr, Lee A., TRW Systems
Barrett, Martin, Security Industry
Barringer, Tim, NASA Ames Research Ctr.
Barry, David, General Electric
Bartelt, Mark, CA Institute of Tech.
Barton, Victor, Lawrence Livermore Lab.
Basch, Robert, Liberty Mutual Ins. Co.
Batchelder, Maynard, Electrend, Inc.
Bate, Stephen D., DEC-Charlotte
Bates, Kenneth, Real-Time Systems
Battat, Franklin M., Liberty Goldd Fruit
Bauer, Jerry, Toscana Baking Co., Inc.
Baymler, B.E., NOAA/EDIS/CEAS
Beal, G.S., Nat Water Rsh Institute
Bean, Dwight, San Diego, University of
Beaner, Gary, Rainbow Computing Inc.
Bearden, Robert G., Amcor Computer Corp.
Beattie, Bruce C., Merritt College Compu

Co.

Ctr.

11
LSI,11
LSI,11

8

LSI,11
VAX,11

8, 11
VAX, 11

LSI
CTS

VAX,11

LSI,11

11
VAX,11
LSI,11
LSI,11

11
11

VAX,11
VAX

LSI,11
8,11

11

VAX,11
8,11

11
11

LSI,11
11

LSI,11
11
11

Beattie, Judith C., Merritt College Compu Ctr. 11
Becker, J. Alex, Kentucky Machinery Inc.
Becker, Teri, Informatics
Bedford, Ray G., Lawrence Livermore Labs
Beebe, James A., Environment Protection AG
Beeby, John, O'Brien Corporation
Beek, Clyde J., Boeing Company
Beer, Donna, Arnar-Stone Laboratories
Beidle, David, CA State Univ & Colleges
Bello, Keith, California State Univ.
Bendebba, Mohammed, Johns Hopkins School

VAX,11
8,11

11
11
11
11

LSI,11
LSI,11

11
Benedict, John S., Russ Systems 11
Bennett, Richard K., Lockheed Palo Alto RS Lab. 11
Benion, Scott T., Los Alamos Scientific Lab.
Benoit, Thomas, Information Systems, Inc.
Bensman, Kerry w., DEC-Waltham
Benson, Bill, Lawrence Berkeley Labs
Benthusen, Donald E., Sandia Laboratories
Benton, Louis, Staff Computer Technology
Bentsen, P. Craig, Celanese Chemical Co.
Berg, Gary, Chemineer, Inc.
Berg, Gary, American Sign & Indicator
Bergen, R. E., Calgary Power Ltd.
Bergstresser, Philip, TRW Systems
Bernick, Myrna, Magnavox Research Labs
Berry, Barry C., U.S. Army
Berry, Hershel, Gulf Interstate Eng Co.
Bersig, James, Mercedes-Benz of N.America
Besel, Hilmer, Loma Linda University

VAX
11

VAX,11
LSI,11
LSI,11

11
11

8,11
11

VAX,11
VAX,11

11

CTS,11
11

Bettencourt, Gloria M., Kaman Science Corp. 11

NAME

Bezanson, Bob, Computer Synergy, Inc.
Bezeredi, Paul, DEC-Tewksbury
Bickley, Lyle, Fidelity Bank
Bieler, John, Ecological Analysts, Inc.
Bieszczad, Kay A., F. N. Cuthbert Co.
Biller, James, MIT
Billig, Rich, DEC-Marlboro
Birkel, Peter J., Naval Avionics Center
Bitkowsk, Thomas, System Consultants, Inc.
Bitter, Mark, Transaction Technology
Black, Peter, E. R. Squibb IST. FOR
Blackett, Kent, DEC-Marlboro
Blair, Rodger C., DEC-Merrimack
Blake, Bennet, Boeing Comm Airplane Co.
Blake-Knox,M.W., Bell-Northern Research
Blazek, Daniel R., Sandia Laboratories
Blood, Glenn, Continental Group
Bobbitt, John S., FNAC
Bock, Frederick, Usariem
Boebinger, John, Boebinger Agency
Boerger, Stephen, Cincinnati Milacron, Inc.
Bogert, Peter, Howard Savings Bank
Boles, Evelyn, Tri/Valley Growers
Boll, Jim, H. S. Crocher
Bolson, Edward, Washington, Univ. of
Bonham, Verlene, Sierra Digital Systems
Bonham, William, Sierra Digital Systems
Booker, John, Experimental Computer
Boone, David, DEC-Calgary, Alberta
Borges, Jerry, Lawrence Berkeley Labs
Bornmann, Robert, Rockefeller University
Bosin, Kenneth, GENRAD, Inc.
Bosworth, Bruce W., Pitney Bowes
Boule, Richard, General Electric Co.
Bowlby, James o., :Lawrence Berkeley Labs
Bowman, James E. Jr., Computer Labs, Inc.
Boyd, Laurence, Gilbert/Commonwealth
Boykin, Wilber, NASA Johnson Space Ctr.
Boyle, Brian, Interactive Management
Boyle, P.J.R., Colorado, University of
Bradley, Don, Digital Telephone Systems
Brady, Joyce E., Boeing Compu Services Co.
Braglia, Bob, Pontiac Motor Division
Bramhall, Mark, DEC-Merrimack
Brandt, B., DEC-Santa Clara
Brandt, J. Joseph, Lawrence Livermore Lab.
Brandt, Tim, McHugh, Freeman & Assoc.
Brannan, Gary, Georgia-Pacific Corp.
Branton, Robert A., Consulting & Contract
Branum, Alyce, DEC-Marlboro
Brauch, C.J., Multi-List
Breitenstein, Richard, Naval Weapons Ctr.
Brenner, Alan, Creative Systems
Brew, Donald R., Fed Bureau of Investigation
Brewer, Robert, Amherst Associates, Inc.
Bridge, Thomas, Norco Mills of Norfolk
Brierley, Stuart, Gamma Associates Ltd.
Briggs, Richard S., DEC-Meriden
Brind, F. Alan, DEC-Merrimack
Brindley, Bill, Defense Communications
Britton, Barbara J., Lawrence Berkeley Labs
Brodine, Robert, Argo Systems
Bronskill, M.J., Ontario Cancer Institute
Bronson, Mark, California, University of
Brooks, Clarence M., DEC-Merrimack

COMPUTER

LSI,11
VAX,11

8,11
11
11

LSI,11
LSI,11

11
LSI,11

VAX
LSI,11

VAX
VAX,11
VAX,11

11
VAX,11

11
11

LSI,11
11
11
11
11

11
8,11
8,11

VAX
VAX,11
LSI,11
LSI,11

11
VAX,11
LSI,11
VAX,11

11
11

8,11
LSI,11
LSI, 8

LSI
11

LSI,11
VAX

VAX,11
LSI,11
VAX,11
LSI,11

11

VAX,11
11

8,11
11
11

CTS, 11
LSI,11

LSI,11
VAX,11

8
11
11

Broussard, Sharon M., Naval Air Rework Facility
Brown, Bill, DEC-Tewksbury

CTS
11

Brown, Bob, DEC-Nashua
Brown, Howard, McLaughlin Research Corp.
Brown, James R., McAuto

LSI,11
11

8,11

B-6

NAME COMPUTER

Brown, John, Stanford Linear
Brown, Linda, Afis/Ind
Brown, Reid, DEC-Tewksbury
Brown, Stephen, Merritt College
Bryant, Wayne M., Composition Systems, Inc.
Bryski, Sholom, Automated Concepts, Inc.
Buckley, ~urice R., Ford Aevo
Buddenhagen, David, Western Electric Co.
Buffenbarger, David, CNA Insurance
Buhman, Don, Blue Mt. Community College
Bunker, J. K., Chevron Research Company
Burd, William c., Sandia Laboratories
Burger, Hope, Merritt College
Burger, Raymond Jr., Southern CA Rsh Institute
Burke, Thomas J., RCA
Burkhart, Bruce, Lawrence Berkeley Labs
Burnes, N. J., Informatics, Inc.
Burnett, James, Wagner Data Systems
Burns, Elinor, DEC-Maynard
Burris, Randall, Oak Ridge National Lab.
Butler, Robert, E.I. Qupont Denemours
Byfield, T. E., Duval Corporation
Byram, Susan K., California Scientific Sys.
Byrne, Charles, Philip Morris, Inc.

Cadieux, Edward, Information Systems, Inc.
Caldwell, Robert, Milliken & Company
Calek, Art, DEC-Rolling Meadows
Calko, Samuel, Philip Morris, Inc.
Cameron, M. Dianne, Consolidated Comp. Inc.
Campbell, Jay C., Business Computer Systems
Canafax, Thomas, Data Route, Inc.
Canal, F. C., Shell Francaise
Cannaveno, John J., Hoffmann La Roche, Inc.
Cannon, Philip, Science Applications, Inc.
Capel, David, Western Pacific Railroad
Capowski, Joseph, North Carolina, Univ. of
Carabetta, Michael, Interactive Management
Caraher, William, E.I. Dupont Company
Cardoza, Wayne, Bell Laboratories
Carlock, Linda E., Hughes Aircraft Company
Carr, Richard, El Paso Natural Gas Co.
Carrato, Anthony, USAF-Air Training Com.
Carroll, A. B., American Business Compus
Carter, Clairmont, Babson College
Carter, G.W., Bunker Ramo Corp.
Carter, Vicki, Data Route, Inc.
Carter, William L., Intermedics, Inc.
Caruso, Sally, NALC 203C3 U.S. Navy
Cary, Clifford N., Creare, Inc.
Casillo, John, Product Management Corp.
Casper, E. H., Diamond Shamrock Corp.
Cassaro, Edwards., California, Univ. of
Cassinelli, Shirley, Lawrence Berkeley Labs
Castain, Eric, Ecological Analysts
Catinella, Paul, Railcar Maintenance Co.
Caulk, Harry, Collins Pine Company
Cerchio, Gerard, Informatics/Programming
Chadwick, H. E., Western Electric Co., Inc.
Chaffeur, James, United States Computers
Chalmers, Bryan, Willipeg, University of
Chalmers, Leslie, Crocker National Bank
Chamberlain, Ryan K., Impack Services
Chan, Dennis, Bell Laboratories
Chan, Paul, Lawrence Berkeley Labs
Chan, Ping Chung, Hong Kong Polytechnic
Chao, James Lee, Lawrence Berkeley Labs
Chapin, David, Boys Town Research Center
Chapman, Dennis, Georgia-Pacific Corp.
Charlot, Courtland, DEC-Maynard
Chen, Jones C., Sunoco, Inc.

11
VAX,11

11
8,11

11
LSI

8

LSI,11
VAX,11

8,11
11

VAX,11
VAX,11
CTS,11

VAX,11
VAX,11

8,11
11

11
VAX

VAX,15
11

VAX,11
VAX,11

8,11
8,11

VAX,11
LSI,11

LSI,11
LSI,11

11
VAX
11

LSI
VAX,11

11
11

VAX,11
8, l-1

11
VAX,11
LSI,11

11
VAX

LSI, 11
VAX,11

11
11

8,11
LSI,11
LSI,11

11
11
11

CTS,11
11

VAX,11
11

LSI,11
11

8,11
LSI,11

11

NAME COMPUTER

Chernoff, Anton, DEC-Maynard
Cherry, Michael, Texas, Univ. of,@ Dallas
Chi, Donald, U.S.Bureau of Mines
Chiang, James, Royal Hong Kong Jockey Cl
Chin, Sau, NWS
Chodosh, Daniel F., Smithlilne & French Labs
Choy, Steven, Harry Diamon Labs
Choy, Michi, Crocker National Bank
Christensen, Peter, National Bank of Detroit
Christian, Chris, Lucky Stores, Inc.
Christy, Peter, DEC-Maynard
Chu, Hilton, Naval Weapons Station
Church, Gregg, Gejac, Inc.
Church, Janice, Gejac, Inc.
Church, James D., Westinghouse Broadcasting
Cirilo, Lionel, H. S. Crocker
Clark, Alan R., Lawrence Berkeley Labs
Clark, Jerry, American Sign & Indicator
Clark, Michael, McDonnell Douglas
Clark, Richard, Zonge Engineering
Clarke, Timothy O., Menlo Computer Associates
Clemens, John, Damon Corporation
Cleveland, David H., Lawrence Berkeley Labs
Cline, James w., California, University of
Clingerman, David, Fairchild
Clites, Roy, DEC-Maynard
Coffeen, Tricia, Lawrence Berkeley Labs
Cohen, David B., Philip Morris Inter
Colan, Gary, Lutheran General Hospital
Cole, Gary, DEC-Maynard
Cole, Mary, DEC-Maynard
Cole, Michael, EG&G Idaho, Inc.
Cole, Stephen, Georgia Inst. of Technology
Cole, Sue, American Sign & Indicator
Cole, Vern, Georgia-Pacific Corp.
Coleman, H. Legare, Milliken & Company
Collins, John, 3M Company
Collins, Roger, U.S. Leasing Corporation
Condon, Terry, DEC-Merrimack
Conklin, Peter, DEC-Tewksbury
eonley, Chuck, DECUS-Marlboro
Connell, Clyde H., Env.Rsh.Inst.of Michigan
Conville, John, Cableshare
Cook, R. L., Bunker Ramo Corp.
Cooke, C.L., Digital Telephone Systems
Copeland, Lee, LDS Church
Copp, Anne s., DEC-Maynard
Copper, Jack, Compuguard Corp.
Coppola, Victor, DEC-Maynard
Cornwall, Susan, DEC-Maynard
Corthell, N. David, Generix Drug Corporation
Coryell, James, Coryell Graphics
Coryell, Judith, Moorpadt College
Coscia, Donald, Suffolk Community College
Cossalter, John, B.C. Telephone Company
Cossette, Angela, DEC-Maynard
Coston, Arthur w., Applied Information Sys.
Cottrell, James, TRW Defense & Space Sys.
Cottrell, R. Les, Stanford Linear Accel Ctr.
Couch, Carols., Naval Air Rework Facility
Coulsell, Robert R., International Comm. Sci.
Couvreur, Thomas, Chemical Abstracts Service
Cox, Patricia R., Los Alamos Scientific Lab.
Cramer, Timothy, Puget Sound, University of
Crapuchettes, Jim, Menlo Computer Associates
Crawforth, Jim, U.S. Geological Survey
Creamer, Roger, CTB/McGraw-Hill
Cromartie, Edmunds., Magnavox Govt. & Ind.Co.
Crosby, Richard, DEC-Merrimack
Cross, Allen R., Arc Associates
Cross, John P., Soil Testing Services, Inc.

LSI,CTS
11
11
11
11

LSI,11
8,11

11
11

8,11

11
LSI,11
LSI,11
LSI,11

VAX,11
LSI,11

VAX
8

8,11
11

LSI,11
8,11

11
VAX,11
VAX,11

CTS

CTS, 8
LSI

8,11
8,11

LSI,11
LSI,11
VAK,11

11
VAX,11

CTS
VAX,11

8,11

VAX,11
8, 11

LSI,11

LSI,11

CTS

LSI, 8
8

8,11
VAX,11

LSI,11
VAX,11
LSI,11

11
11

VAX,11
11
11

VAX,11
LSI,11
CTS, 8

11
11

B·7

.NAME COMPUTER

Cross, Kenneth, Oak Ridge National Lab
Crossnoe, Marvin, Compu-Share, Inc.
Crow, Jerry, Georgia-Pacific Corp.
Crow, Vern, Battelle-Northwest
Crowley, Roger, Union-Tribune Publishing
Crum, Sterling, Nordata
Cruson, Pieter, Quodata Corporation
Cuddy, Dave, Bell-Northern Research
Cumming, Gordon C.G., Computer Dynamics Inc.
Cuomo, Vince, Beckman Instruments, Inc.
Cureton, Kenneth L., Dialogue Computer Sci.
Curley, Robert, American College
Curley, William, Federal Reserve Bank
Curtis, Daniel, Fermi Nat'l Accelerator
Curtis, Robert E., U.S. Government
Cushman, Robert, Jones & Lamson
Cutler, James, Michigan, University of
Cutter, Mark, Lawrence Berkeley Labs
Cytry, Allan, Bankers Trust Company

Dagraca, John J., Hughes Aircraft
Daley, Robert, DEC-Merrimack
Dalrymple, Brent, U.S. Geological Survey
Daly, Kathleen, Solano Community College
Dammeier, John, Tacoma News Tribune
Damon, Peter, DEC-Maynard
Damour, Paul, DEC-Mill Valley
Danbury, Thomas, Survey Sampling, Inc.
Dancy, Marion, DEC-Tewksbury
Daniels, David W., KMS Fusion, Inc.
Daniels, Robert, Monsanto Co.
Danner, Bruce, Rose-Hulman Inst.
Darley, Lucy, Evans Griffiths & Hart
Dash, Mike, John Fluke Mfg. Co., Inc.
Dashevsky, Marc, Evans Griffiths & Hart
Daugherty, Michael, DEC-Merrimack
Davila, Roberto, DEC-New York
Davis, Burt, Los Alamos Scientific Lab.
Davis, Dorsey, Dow Chemical Company
Davis, Gregory, Lawrence Livermore Labs
Davis, Jerry M., Fote Air
Davis, Lawrence w., American Col.of Radiology
Davis, Marys., California State Univ.
Davis, Roy, DEC-Tucson
Davison, Marilyn, DEC-Maynard
Davy, Donn, Lawrence Berkeley Labs
Dawson, Randy, DEC-Maynard

LSI,11
11

8,11
VAX

11
VAX,11

LSI,11
11

LSI,11
11

VAX,11
VAX,11

VAX
LSI

8,11
VAX,11

VAX,11
8

11
VAX
VAX

11
VAX

LSI,11
11

VAX,11
VAX,11
VAX,11
CTS, 8
VAX,11
VAX

11
LSI,11

8
11
11

VAX,11
VAX,11

Dayringer, Henry, Monsanto LSI,11
Dean, Robert, Kentucky State University 11
Deeter, Wayne, Able Computer Technology LSI,11
Degraffenreid, Duncan, USDA, SEA, Communica LSI,11
Degroff, Michael, WR Grace & Company 11
Degroot, Tony, Lawrence Livermore Labs LSI,11
Deininger, Axel, William M. Mercer, Inc. VAX,11
Delaney, Dave, Ramada Inns, Inc. 11
Delano, E. Leon, Kenyon College 11
Delia, Clark, DEC-Tewksbury 11
Deller, George, Computer Synergy LSI,11
Deller, Steven R., Computer Sciences Corp. VAX,11
Deloyht, Thomas E., Panhandle Eastern Pipe Line 11
Demasek, Frank, General Motors Corp. 11
Demers, Kenneth, United Tech Research Ctr. LSI,11
Demmer, William, DEC-Tewksbury LSI,11
Denniston, Dave, DEC-Maynard
Denny, Charles, DEC-Marlboro
Desaussure, Raymond, Lawrence Livermore Labs
Desmarais, Joyce, DEC-Maynard
Dey, Walter, TRIUMF/UBC
DiBartolomeo, May I., US Food & Drug Adm/Edro
Dickinson, Sandy, DEC-Maynard

VAX
I/AX

VAX,11
11

Dierich, Leonard A., Economics Laboratory, Inc. 11

NAME COMPUTER

Dietrich, w.v., Kastle Systems
Dightam, John, Canadian Broadcasting
Dill, William Jr., Matrelon, Inc.
Dilworth, John, Lawrence Berkeley Labs
Dionne, Paul J., Battelle Pacific NW Labs
Dippner, Ralph, New York State Univ.
Dixon, John, EMR Telemetry
Dohan, D. A., California, University of
Dolan, Robert A., Comdesign, Inc.
Dole, Stuart, California, University of
Dollar, Glenn, Rainbow Computing, Inc.
Dollar, William R., Crystal .oil Co.
Dollard, John A., Navy Per Rsh & Dev Ctr.
Dolph, Edwin J., Schlumberger-Doll Rsh Ctr.
Doman, Jennifer, Hydroscience, Inc.
Donahue, John G., DEC-El Segundo
Doob, Michael, Manitoba, University of
Dosen, Robert, Fermi Nat Accelerator Lab.
Doupont, Paul, Lawrence Livermore Labs
Dowlin, Kenneth E., Pikes Peak Reg. Library
Downie, Jerry L., Coor's Porcelain Company
Downward, James G., KMS Fusion, Inc.
Doyle, Terry, System Development Corp.
Dray, Robert, Digital Equipment Co.Ltd.
Dress, Henry, Naval Air Propulsion Ctr.
Drummond, John, Ontario Hydro
Dubay, David J., DEC-Merrimack
Dudley, Charles M., PRC/Information Sci. Co.
Duffy, Darrell, DEC-Maynard
Duffy, James M., Lawrence Livermore Labs
Duft, Thomas G., 154 Riveredge Road
Duke, Dennis c., Interactive Info Systems
Duncan, Anne, DEC-Merrimack
Duncan, Russell, US Government Printing Office
Dunham, Sam, California State University
Durnford, Dick, Alpha Omega Systems, Inc.
Dutton, Ross, North West Computer Ser.
Dutton, Robert P., ESL/Inc.
Dye, Toby, California University

Easton, John T., Minnesota, University of
Eau Claire, Joseph L., Booz, Allen & Hamilton
Ebinger, Larry, Sandia Laboratories
Eckman, Ren, Computer Synergy
Eckroth, Gary, DEC-Merrimack
Edelstein, Ronald, American Cyanamid Company
Edmundson, Edward H, Minnesota, University of
Edwards, Bruce, Altel Data
Edwards, Steven, Cal Poly University
Edwards, Tom, Tri/Valley Growers
Eggers, Maury C., Corning Glass Works
Ehrlich, Charles, Crocker National Bank
Einstein, Stewart A., RDA
Eisenberg, Lawrence H., Eisenberg Law Corp.
Eley, Herbert w., U.S. Navy
Elkine, David, Arnar-Stone Laboratories
Ellington, Jerry, Crocker Bank
Elliott, Paul, Technology Inc.
Ellis, Charles R., Indiana University
Ellis, Russell, System Design
Emerson, Mark, Seattle Pacific University
Enders, Robert B., Think Inc.
Englberg, Norman, General Electric
Engleman, Roger, USDA-SEA-AR
English, Paul, Boeing Comm Airplane Co.
Enicks, Charles R., Commonwealth Clinical Sys.
Epstein, Arnold, J. Baker & Assoc., Inc.
Equals, R.V., TRW Energy Systems Group
Erickson, Robert, Stiffel Company

LSI,11
11

LSI
LSI,11

11
8,11

LSI,11
8,11

VAX
11

LSI,11
11
11

VAX,11
11

LSI,11
8

VAX,11
8,11

11
VAX,11
LSI,11

11
LSI,11

8,11
VAX

11
VAX,11
VAX,11

11
VAX,11

11
11

8,11
11

LSI,11
LSI,11

8,11
VAX,11
LSI,11
LSI,11

11
8,11

11
8,11

11
11

LSI,11
11

CTS, 8
VAX,11

11
11

VAX,11
LSI,11
LSI,11
LSI, 11

8,11
VAX,11

11
8

11
8,11

CTS,11
11

Esbensen, Dan, North County Compu Serv VAX,11
Esfandiari, Mary Ann, NASA/Goddard Space Fl Ctr. 11

B-8

NAME cOMPUTER

Estes, James w., Int.Crops Rsh.Institute
Esteva, Carlos A., Microprocesadores
Ethier, Errol E., Wachusett Reg.Sch.Dist.
Evans, Thomas, Evans Griffiths & Hart
Evanson, R. A., Paragon Data Systems, Inc.
Everhart, Glenn C., RCA
Ewen, Carl G., Tubular Steel Inc.

Facer, Eilene, TRW
Fafarman, Dave, EDS Nuclear Inc./ATD
Farnan, Ron, Institute for Law
Farrell, B., Informatics, Inc.
Farrell, H. James, St. Mary's College
Farrington, N.J., Computer Applications
Fauber, Marion M., Delco Products Div GMC
Faulconer, Robert, DECUS-Marlboro

LSI,11

VAX,11
CTS, 11

VAX
11

11
VAX

11
11
11

CTS
VAX,11

Faunt, Douglas, ESL, Inc. LSI
Fein, Michael, DEC-Maynard
Felling, Stephanie, Electrend, Inc. 11
Fenrick, Michael, Science Applications, Inc. 11
Ferber, B., Santa Clara County
Ferguson, Francis, Alberta Government Tele.
Ferraro, Frank, Georgia-Pacific Corp.
Ferry, James Jr.
Ferry, James III
Fettes, George, Foothills Hospital
Figler, Alan, Telemed Corp.
Finch, Geoff, DEC-Nashua

VAX,11
LSI,11
LSI, 8
LSI, 8
LSI,11

11

Finch, Joanne, E.R. Squibb and Sons 11
Fincke, William B., Scripps Inst.Oceanography LSI,11
Fish, David, Lockheed Space & Missile VAX,11
Fite, Ken
Fitzgerald, Brian, DEC-Merrimack
Fjelsted, Kevin, Lawrence Berkeley Labs
Fleischer, Richard, Ohrbach's Inc.
Flesher, Richard L., Medical Arts Laboratory
Floyd, Richard A., California, Univ.of
Flynn, Rick, TRW Information Services
Fogels, E. A., Toronto, University of
Foley, George B., Bell Labs
Foley, Kenneth, Planning Research Corp.
Foote, Brian, Illinois, University of
Ford, Brian, Numerical Algorithms Grp.
Ford, Donald, Public Broadcasting Serv.
Ford, James, Hoffman La Roche Inc.
Forecast, John, DEC-Maynard
Foreman, Alling C., PMC, Inc.
Forster, Doug, Sylvania
Foster, Frank, Dow Chemical Co.
Frailey, Dennis, Texas Instruments Inc.
Frankel, Allan, Integrated Software Sys.
Fraser, Michael, Armed Forces Radiology
Frazer, Kent, Rubicon Corporation
Frean, Charles, DEC-Maynard
Fredericks, Frank J., Rockwell International
Fredricksen, Tom, Accounting Service Co.
Freeborn, Chris, Esso Chemical Canada
Freeman, Ronald B., Bell Laboratories
Freeman, Dean, Arkansas, University of
Freiburger, Dana, California State Univ.
Freier, Alano., DEC-Carrollton
French, Donald Jr., General Dynamics/WDSC
French, Raymond B., Boeing Comm Airplane Co.
French, Richard D., Cincom Systems of Canada
Fried, Robert, DEC-Merrimack
Friedrich, Kurt, DEC-Tewksbury
Friesen, Richard D., Lawrence Livermore Labs
Froemming, G., Informatics, Inc.
Fultyn, Robert V., Los Alamos Scientific Lab.
Furchner, Donna, American Sign & Indicator
Fushimi, Fred C., Monsanto Research Cor~

LSI,11
11

LSI,11
VAX,11

11
LSI,11
LSI,11

11
LSI,11
VAX,11
VAX,11
VAX,11

8,11
VAX,11
LSI, 11
VAX,11

LSI,VAX
LSI,11

VAX,11
LSI

11
VAX,11
LSI,11

11
LSI,11

VAX,11
VAX

VAX,11

8,11
VAX,11

VAX
LSI,11

8,11

NAME COMPUTER
Fustes, Manuel, Gulf Interstate Eng. Co.

Gaarder, Bruce L, Macalester College
Gabelnick, Stephen D., Argonne National Lab.
Gache, Donald, International Datasystems
Gagnon, Raymond Jr., Wyman-Gordon Company
Gale, David, Mini-Compu Business Appl.
Galla, Ron, Georgia-Pacific Corp.
Gallant, Walter
Gallup, Jeff, Lawrence Berkeley Labs

11
LSI,11

8,11
11

8,11

Ganbarg, William, Chicago, University of 11
Gardner, Ted, Georgia-Pacific Corp. 8,11
Gardner, Brian, Comtech Group
Garrett, Ronald, Valley News 11
Garth, William Jr., Chevrolet Engineering Ctr. 11
Garton, Bill A., Boeing Computer Services VAX,11
Gau, Dennis, Western Electric 11
Gaubatz, Donald, DEC-Maynard LSI
Gault, Susan, DEC-Tewksbury VAX
Gauronskas, Charles T., Field Research
Gausman, R. K., TRW Energy Systems Group
Gebbie, Ray, Guntert Sales Div.Inc.
Gee, Wen-Sue, Lawrence Berkeley Labs
Geiger, Duane L., Colorado Systems Group
Geiger, Richard G., DEC-San Francisco
Geller, Dalia, Lawrence Berkeley Labs
Gemmill, Bill, Orange County Hospital
Gendreau, Raymond, Kellogg Company
George, Pat, E & J Gallo
Gerber, Bob, LDS Church
Gernert, James M., Energy Ent.of Denver, Inc.

CTS,11

VAX,11
11
11

LSI,11
8,11

11
LSI,11

Gertz, Kenneth A., Lawrence Livermore Labs 8,11
Gervasi, Samuel M., Rochester Telephone Corp.
Gey, Fred, Lawrence Berkeley Labs VAX,11
Ghose, Abigail J., Magnavox Govn't & Ind. 8,11
Giao, Anthony 8,11
Gaio, Mark 8,11
Gieraltowski, Gerald F., Argonne National Lab. VAX
Giesa, Patrick L., Stein Distributing Co., Inc. CTS
Giesler, Gregg, Los Alamos Scientific Lab. LSI,11
Gifford, Robert, Steiger Tractor Inc. 11
Gildea, Thomas J., Nebraska, Univ.of Med. Ctr.
Gill, A. J., Interlake, Inc.
Gillette, Glenn L., DEC-Merrimack
Gilligan, Barry D. , Mission Research Corp.
Gimbel, Rick, DEC-Marlboro
Gin, Helena Won, Lawrence Berkeley Labs
Girard, Paul, Alcan
Gisseler, James M., Illinois Tool Works, Inc.
Giudice, John, DEC-Marlboro
Glackerneyer, Richard, Boeing Computer Service
Glaser, Gerry, Skidmore, Owings & Merrill
Glazer, Eli, DEC-Maynard
Glish, Michael K., Caterpillar Tractor Co.
Glisky, Dan, Pontiac Motor Division
Globe, Carla B., Chemical Abstracts Ser.
Glorioso, Robert M., DEC-Maynard
Glover, Dell, DEC-Marlboro
Goding, David, Lewis and Clark College
Gogue, Michael, TRW Defense & Space Sys.
Goings, J. Steven, Mostek Corporation
Golde, Hellmut, Washington, University of
Golden, Donald, Litton Resources Systems
Goldman, Earl, Nitty Gritty Productions
Goldman, Karen, Nitty Gritty Productions
Goldman, L., DEC-Santa Clara
Goldstein, Jacob, Cusys Inc.
Goldwire, Henry C Jr., Los Alamos Sci. Lab.
Gonzales, Rafael, All Indian Pueblo Council
Goodhue, Alan, Digital Management Corp.
Goodman, Terri A., EG&G Inc.

LSI,11
11

VAX,11
VAX

VAX,11
VAX,11

11
11

LSI
VAX,11

11

VAX,11
LSI,11
VAX,11
LSI,11

VAX
11

VAX,11
VAX

LSI,11
11
11

LSI,11
8,11

LSI,11
11

VAX,11
11

B-9

NAME
Goodrich, Gerald, DEC-Maynard
Goodwin, Keith, Otero Jr. College
Gordon, Jack, Lunday-Thagard Oil Co.
Gordon, Richard, Dofasco
Gordon, Richard H., Sonoma State University
Gorlen, Keith, Nat'! Inst. of Health
Gould, Judith
Graham, ,Kathy, ESL, Inc.
Graham, William, Systems Consultants, Inc.
Grand, Diana, Lawrence Berkeley Lab.
Graniero, Charles, Stanford Linear
Grant, Chris, Willis, Conluffe, Tait

COMPUTER!
LSI,11

VAX,11
LSI

11
LSI

11
LSI,11
LSI,11
VAX,11

8
Gratzer, George, Manitoba, University of 8
Graves, Wayne R., D.C.A. Reliability Lab. LSI,11
Gray, Raymond C., American Tel & Tel Co. LSI,11
Gray, Leonard, Valley News 11
Gray, R., Skidmore, Owings & Merrill 11
Greco, Richard, Lewis and Clark College VAX·
Green, Jim, Washington, University of 11
Green, Kelly, Washington, University of LSI,11
Green, Tom, California, University of LSI,11
Greene, Jay, International Datasystems 8,11
Greenwood, James R., Lawrence Livermore Labs LSI,11
Greer, CA, Naval Air Rework Facility 11
Gregory, Charles w., Colgate-Palmolive Co. 11
Greiman, Bill, Lawrence Berkeley Labs VAX,11
Griffel, David, Admin Inc. LSI,11
Griffith, Frank, Arizona Health Sci.Ctr. 11
Griffith, H. Russell, Digital Management Corp.VAX,!!
Griffith, Ronald D.L., Michigan, Univ. of LSI,11
Griffith, W. D., Mobil Research & Develop. 11
Grigsby, Fred, Dofasco LSI
Grimwood, Neil w., Valley National Bank 11
Grinstead, Harold B., Mason&Hanger-Silas Mason 8,11
Gross, Jerome, Union Electric Co. 11
Gruenemeier, Henry R., Airesearch Mfg. Company 11
Grundler, Mark W., Grinnell College 11
Grutze, Al, Tri/Valley Growers 11
Guarino, Ruth B., E.R. Squibb Inst. for Med LSI,11
Guerrero, Henry C., Atlantic Richfield C~ 11
Guldenschuh, Charles, DEC-Maynard 11
Gumm, Barbara, Lawrence Radiation Lab. 8, 11
Gunderson, Robert L., James S. Kemper & Company
Gustafson, Robert, Simultation Specialists LSI,11
Guthrie, Charles W., Inca, Inc. 11
Guy, Richard, Loma Linda University 11
Guzman, Marc A., Cedars Sinai Medical Ctr. 11

Haas, Raymond J., Navy Personnel RSH & DEV
Hager, Mark J., Economics Laboratory, Inc.
Hagmeier, Jerry, Gardner-Denver Company
Haigh, David, DEC-Bedford
Hakimi, Ruben, Missouri, University of
Halbert, Daniel, California, University of
Hall, Judith J., DEC-Acton
Hall, Sue, Southwestern at Memphis
Ham, Ronald J., DEC
Hamaker, David w.
Hamaker, Kathryn A.
Hamilton, Bruce, ITT Research Institute
Hamma, George, Synergistic Technology
Hammersley, Richard, Gilbert/Commonwealth
Hancock, Jack, TRW Defense & Space Sys.
Hander, Edwin, U.S. Army Institute
Haney, Don, DEC-Maynard
Hankley, Donald, Naval Ship Eng. Ctr.
Hanks, J. G., U.S. Marine Corps
Hanks, Charles, DEC-Merrimack
Hannan, Peter J., Minnesota, University of
Hanson, R.C., Engineering-Science
Hanus, Michael J., Wisconsin Med.College

11
11

8, 11
VAX

11,15
VAX

11
VAX

LSI,11
LSI

LSI,11
11

VAX
LSI

LSI,11
8,11

11

11
11
11

COMPUTER

Hardesty, Dennis, Naval Weapons Support Ctr.
Hardin; Bill, Georgia-Pacific Corp.
Hardy, Donald E., DEC-Maynard

8
11

Harlow, Frederick, Naval Research Lab. 8,11
Harney, Michael J., Construction Data Sys.Inc. 11
Harper, R.M., California, University of LSI,.11
Harrington, Richard J., Pacific Telephone Co. 8,11
Harris, D., Canada Cement Lafarer 11
Harris, J. Gregory, Georgia-Pacific Corp. LSI,11
Harris, Kevin, DEC-Tewksbury VAX,11
Harrison, James, Los Alamos Scientific Lab. LSI,11
Harrison, Steve, Skidmore, Owings & Merrill 11
Hartman, Dan, Naval Air Rework Facility 11
Hartnett, Nicole, DEC-Maynard

8,11
11

8,11
11

Hartnett, William, International Datasystems
Harvey, Bradford, County of Los Alamos
Hassinger, Robert, Liberty Mutual Rsh Ctr.
Hassler, Ardoth, Central State University
Haugen, Richard R., Intern'l Harvester Co.
Hauger, Carl Jr., E. I. Dupont

VAX,11
8,11

Inc. LSI
VAX,11

11

Havlin, Robert H., Hydro-Air Engineering,
Hawthorn, Paula, Lawrence Berkeley Labs
Hayden, J. Michael, Buck Knives, Inc.
Hayes, J. A., Computer Ctr CA St Univ.
Hayes, John G., South Central Bell Tel.Co.
Haymond, Ed, Georgia-Pacific Corp.
Heafer, John, Browning-Ferris Ind., Inc.
Heald, L., Douglas Inc.
Hebert, George, Quebec Deposit & Invt.Fund
Heckler, Wayne G., TRW
Heckman, Brad, Lawrence Berkeley Labs
Heffner, Stephen, Independent Consultant
Heffron, Mathew, Beckman Instruments Inc.
Hehmann, Robert A., Cedars Sinai Medical Ctr.
Heidebrecht, J.B., TRW DSSG
Heintz, David M., GENRAD Inc.
Heintz, Philip, Radiation Oncology Ctr.
Helton, James w., EG&G Inc.
Hemphill, John P., Gilmore Envelope
Henderson, Bill, DEC-Merrimack
Henderson, Charles, Pomona Valley Aviation
Henderson, Lofton R., NCAR
Hensiek, F.W., EG&G
Hermes, A. III, MIT
Herron, Peter, Suffolk County Comm. Col.
Higgins, Mike, Cetus Corporation
Higgins, Ronald D., DEC-Marlboro
Hill, Dave, GSU Sacramento
Hill, Joe, Georgia-Pacific Corp.
Hill, Richard, Consolidated Film Ind.
Hilton, Roy, Chevron Oil Field Rsh.Co.
Hinkins, Ruth, Lawrence Berkeley Labs
Hirschfeld, David J., Business Controls Corp.
Hitson, Bruce L, Stanford Linear Accel.Ctr.
Ho, Chanh, New Britain Housing
Ho,Khanh, New Mexico Junior College
Hobbs, Craig w., Iowa, University of
Hobde, Dennis, GTE Sylvania, Inc.
Hoffman, Robert C., Lawrence Berkeley Labs
Hoffman, Wilson, California, University of
Hogan, Cheryl, DECUS-Marlboro
Hohmann, Edward C., Polytech State Univ.
Holbrook, E.D., Sandia Laboratories
Holdsworth, George, Staff Computer Tech Corp.
Holeman, C.W., Electron Inc.
Holloway, Ian, General Foods Ltd.
Holmes, Carl, Continental Computer
Holmes, Harvard, Lawrence Berkeley Labs
Holsworth, Frank, California, University of
Holt, Mary M., A.H. Robins Company
Holter, R.F., Rockwell International

LSI, 11
LSI,11

8,11
8,11

11

VAX,11
VAX,11
LSI,11

LSI,11
VAX,11

11
11
11

VAX,11
11
11

LSI, 8
LSI,11

11
11

11
8,11

LSI
VAX,11
VAX,11

8,11
LSI,11

11

LSI,11
VAX,11

11
11

11
11

VAX,11
11
11
11

VAX,11
11

LSI,11

B·10

NAME COMPUTER

Hopkins, H. Kenneth, California, Univ. of
Hopp, R.J., Swift & Co., R&D Center
Horn, Brue~, Los Alamos Scientific Lab.
Hornik, Gerald J., DEC-Merrimack
Hourican, J.F., W.R. Grace & Company
House, Ronald A., Naval Underwater Systems
Hoverter, Earl, Naval Air Rework Facility
Hovland, Hal, Hal Systems Corp.
Howard, Dan, Bell Canada
Howe, Bill, Collins Pine Company
Howell, Tim, U.S. Fleet Leasing Inc.
Hoy, Herbert H., NASA Ames Research Center
Hoye, Vicki, Henry Wurst
Hsia, Albert, DEC-Tewksbury
Hubbard, John w., Pacific Data Systems
Hubbard, William E., L.D. McFarland Company
Hube, Randall, Xerox Corporation
Huffington, James, Virginia Mason Hospital
Hughes, Olwen, Sranot
Hull, Leota, Pan American University
Hull, Marilyn J.,

8
11

LSI,11
VAX, 11

11
VAX,11

11
11

8,11
11

LSI,11
11

8
11

8,11
8,11

11
LSI,11

11
Humlie, George P.A., Morgan Equipment Company CTS, 11
Hunt, Dan P., EG&G Inc.
Hunter, Barrie, DEC-Maynard
Husami, Art, DEC-Santa Ana
Hustvedt, Richard, DEC-Tewksbury
Hunter, Richard, Enterprise Companies
Hyman, Neil, Microcomputer Systems Corp.

Illencik, Stephen, Republic Buildings Corp.
Imblum, Ray W., DEC-Santa Ana
Infante, Frank, DEC-Maynard
Ingle, James, W.R. Grace, Cryovac Div.
Inglis, Geoffrey B., Rochester, Univ. of
Ingram, Al, DEC-El Segundo
Ingram, Larry, Hennepin County Library
Inman, Dale M., Phelps Dodge Corporation
Iobst, John, ANPA/RI
Irons, Lloyd, Tested Time Sharing Ltd.
Isaacs, Fred P., Applilon, Inc.
Isbelle, Ted, California Res. & Tech.
Isidro, Ed, Crocker National Bank
Iverson, Robert, Jet Propulsion Lab.
Ivey, Wm. Max, Arizona State University

Jackson, Barry C., Lawrence Livermore Labs
Jackson, Bill, E & J Gallo
Jackson, Michael Q., British Columbia Railway
Jacobsen, Ralph, Data Enterprises
Jacoby, Rick, Informatics, Inc.
Jaffee, M., DEC-Santa Clara
James, John, Cetus Corporation
Jameson, Gail, Tektronix Inc.
Jansen, Ronald, DEC-Maynard
Jayanthi, Sarma, ITT Telecommunications
Jekowski, John P., EG&G Inc.
Jellinek, John, Enterprise Companies
Jenkinson, John, Mostek
Jensen, Kathleen, DEC-Tewksbury
Jesse, Richard H., Lawrence Livermore Labs
Jimenez, Tomas C., NAT Resources Mgmt.Center
Johnson, Brian, Jenson Compu Sys Ltd.
Johnson, Darryl, Interactive Mang.Sys.Inc.
Johnson, David A., Western Pacific Railroad
Johnson, David K., Union Pacific Railroad Co.
Johnson, David R., US Postal Service
Johnson, Ellen, Cummins Service & Sales
Johnson, Eric, Jackson Laboratory
Johnson, Glenn B., DEC-Maynard
Johnson, M.A., W.R. Grace Company
Johnson, Mark, Alberta Rsh.Council

LSI

VAX

11

LSI,11
11

8
VAX,11

11
11

LSI,11

'TAX
VAX

11
LSI,11

11

LSI,11
LSI,11

11
11
11

LSI,11
LSI,11

8
11

LSI,11

11
VAX

LSI,11
11

VAX,11
LSI, 11

11
11
11

LSI,11
8,11

11
VAX,11

NAME COMPUTER

Johnson, Paul D., California, University of
Johnson, Rowland R., Lawrence Berkeley Labs
Johnson, Stephan, DEC-Maynard
Johnson, Susan, Los Alamos Scientific Lab.
Johnson, Ted, DEC-Maynard
Johnston, Dick, E & J Gallo
Jones, Brian, Versatec
Jones, Byron M., Bucyrus-Erie Company
Jones, Frank R., Esso Chemical Canada
Jones, Hilary o., Sandia Laboratories
Jones, John F., Crystal Oil Company
Jones, Michael R., Boeing Computer Services
Jones, Ronald, N.West Development Corp.
Jones, Terry, West Texas Equipment Co.
Jory, Roger, Lawrence Berkeley Labs
Joseph, Allen, Valeo, Inc.
Josephs, William H., Magnavox
Joza, David W., Wyman-Gordon Company
Juhl, Daniel A., MDB Systems, Inc.
Jukes, Robert E., Naval Reserve Support
Julian, Carol, Valley News
Jurgens, Judy, DEC-Tewksbury

Kaczoqka, Peter, Time Share Corp.
Kafka, D.K., Chevron Research Company
Kafka, Hal, Measurex Corporation
Kahle, Ronald H., Hamilton/Avnet
Kahn, Ted, Cetus Corporation
Kanter, David B., IMS Computer Services
Kapka, Joseph, Hambrecht and Quist
Kaplan, Roy, Aeronautical Research
Kapps, Charles, Temple University
Kareiva, Alan L., Dennen Steel Corporation
Kasfelein, John, Taylor University
Katz, Robert, DEC-Marlboro
Katz, Stuart, Commercial Computer Serv.
Katzung, B.G., California, University of
Kauder, T.C., Rockwell International
Kavetsky, Edward M., GM Manufacturing Dev.
Kawakami, Ron, Academic Computer Service
Kawaye, Gary, California State University
Kawell, Leonard, DEC-Tewksbury
Kearney, James J., Walsh Associates Inc.
Keenan, George, E.I. Dupont De Nemours & Co.
Keeton, Andrew, MCC Powers

LSI,ll
VAX,11

LSI,11

LSI,11
LSI,11
LSI,11

11
LSI,11

11
11

11
VAX,11

11
LSI,11

11
11

VAX

LSI,11
LSI,11
VAX,11

LSI
11

CTS, 8
VAX,11
VAX,11
LSI,11

VAX,11
VAX,11

11
11

LSI,11
LSI,11
VAX,11

11
VAX

11
11

LSI,11
Keith, Stephen B., American Col.of Radiology VAX,11
Keller, Tim, Singer Link Division LSI,11
Kelley, Carl, Robert Cliff & Assoc.Inc. LSI,11
Kelley, Michael S., Microcomputer Systems Corp. 11
Kelley, R.W., Sandia Laboratories 11
Kellogg, Martin, Los Alamos Scientific Lab. 11
Kelly, Chris, Lovelace Biom. & Env. Res. LSI,11
Kelly, David S., Teledyne Controls LSI,11
Kelly, Helen, San Diego State Univ. VAX,11
Kelly, Joseph V., Wyman-Gordon Company LSI,11
Kelsay, Jim, General Dynamics LSI,11
Kelsey, Joseph M., Washington, Univ. of VAX
Kendall, Burton, Measurex Corporation LSI,11
Kendrick, N.S. Jr., Georgia Institute of Tech 8,11
Kenton, James, Arnar-Stone Laboratories
Kenzie, Tony, Borden Chemical
Kerr, Douglas, Informatics/Programming
Kerr, George, Harbor Branch Foundation
Kesling, Wayne E., Monsanto Research Corp_
Kessler, Allan R., Admins Inc.
Khan, Hassen A., Pullman Kellogg
Kibrick, Robert, Lick Observatory
Kiesel, Joanne, Free Communion Church
Killefn, Jeffrey J,, Minuteman Tech.
Kilroy, Robert, Naval Air Rework Fae.
Kilty, Nancy, DEC-Bedford

11
LSI,11

11
8,11

11
8

CTS

11
VAX

B-11

NAME COMPUTER

Kimble, Graham, SPSS Inc Northfield Div.
Kimura, Arato, Behlen Mfg. Company
Kimura, Irene, Ecological Analysts
Kindschuh, Kevin, Crawford Service Co., Inc.
King, D. Wayne, B.C. Telephone Company
King, F., TRW-DSSG
Kinnan, Fred A., U.S. Army
Kinnear, Kim, DEC-Tewksbury
Kinzey, Glen D., Professional Datasystems
Kipple, Howard, New Mexico Junior College
Kirkeng, Johan, Cytrol, Inc.
Kittell, Richard, Los Alamos Scientific Lab.
Klapatch, Ken, Computer Sciences Corp.
Klein, Gary, Computer Science Corp.
Kleinhammer, Pat, Rainbow Computing Inc.
Klingler, Val, EG&G Idaho, Inc.
Knight, Vernon E., U.S. Navy
Knipp, Randolph s., E.I. Dupont
Knox, Margaret H., Computation Center
Knudson, Richard, Georgia-Pacific Cor~
Kobine, Tony, Finar Sys. Limited
Kobrin, R.J., Mobil R & D Corporation
Kocsis, Dave, Intersil, Inc.
Kodimer, Dennis, Terak Corp.
Koehler, James D., The Poise Company
Koeninger, R. Kent, California State
Koetke, Walter, Putnam/Northern Boces
Kohlbrand, Janice, Dow Chemical Company
Kokenge, Dan, E & J Gallo
Koley, Ray, New Britain Housing
Kolm, David, Student
Komarmy, Louis, Children's Hospital of SF
Konopacky, John E., CESA #9 NEPL

VAX,.11
11
11
11
11

VAX,11
LSI,11

11
8,11

11
LSI,11
LSI,11
LSI,11
LSI,11

11,15
11

8,11
11

LSI,11
11

8,11
LSI, 8
LSI,11

11
11

11
LSI,11

11
LSI,11
LSI,11

11
8,11
8,11

11
11

Koolish, Daniel, Hartley Data Systems, Ltd.
Koolish, Ruth, Hartley Data Systems, Ltd.
Koolkin, Larry, Univ.of TX Medical Branch
Kopp, Ladd L., Pomona Valley Aviation
Korn, Granino, Arizona, University of
Kortesoja, Alan A., Manufacturing Data
Koster, Ken, Teltone Corporation

LSI,11
System LSI,11

Kowal, Al, Canadian Broadcasting
Kowalyshyn, John, Labatt Breweries
Kozlowski, Thomas, Los Alamos Scientific Lab.
Kraus, Joe, Crocker National Bank
Krcmar, Stan, Dissly Research
Kremer, John A.,US Steel Corporation
Kridle, Robert, California, Univ. of
Kristel, David M., Massachusetts Compu Assoc.
Kroepfl, David J., Lawrence Livermore Labs
Krol, M., Dept of Environment
Kroll, Geoffrey T., Illinois Bell Telephone
Kron, Peter, Software Ag.of N. America
Krones, Robert, Informatics/Programming
Kroph, John, Seattle Pacific Univ.
Krueger, Wade, DEC-Lanham
Kruijk, Rob, DEC-Maynard
Krupp, James, Middlebury College
Krupp, Michael, Children's Hospital of SF
Krysler, David, Monterey Peninsula Herald
Kudrna, Ken, Georgia-Pacific Corp.
Kuff, Hal, Oceanic Enterprises, Inc.
Kulaga, Joseph, Argonne National Labs
Kulemin, Jean, Tri/Valley Growers
Kuo, Ivy, Lawrence Berkeley Labs
Kuramon, Aki, Lawrence Livermore Labs
Kurasaki, Kerry, Second Source
Kurg, Haldi u., Miami Police Department
Kurjan, Philip
Kursewicz, Bernard, Mobil Research & Dev.Crp.
Kwok, Linda, Lawrence Berkeley Labs
Kyle, Charles F., Vanderbilt University

LSI,11
11

VAX
LSI,11

11
8,11

LSI,11
LSI,11

11
LSI,11

11
8,11

VAX,11
LSI, 8
LSI,11

11
CTS, 11

11
CTS, 8

8,11
11

LSI,11
11

VAX, 11
LSI, 8

8,11
11
11

8,11
VAX,11
LSI,11

NAME COMPUTER

Labiak, William G., Lawrence Livermore
Labiniec, John, New Britain Housing
Labosky, Bonnie, SPSS, Inc.
Lacey, Donald E. , Bendix Corp.
Lac~oute, Bernard, DEC-Tewksbury
Lacy, Sharon, Lawrence Livermore Labs
Lahey, Terri, Fermilab

Labs

Laight, Peter D., British Columbia Railway
Landrum, G.J., Niosh
Lane, Robert L. ,. DEC-Merrimack
Lane, Stewart E., Advanced Data Systems, Inc.
Lane, Ted c., Bay Area Rapid Transit
Lang, Bob, Crocker National Bank
Lang. W.W., MacMurray College
Lange, Robert, LCS Minicompute Systems
Langer, Rudolph S.,Lawrence Livermore Labs
Langhofer, Laurn, UCLA Ctr for Health Science
Langston, Peter, Davis Polk & Wardwell
Lantz, Mel, Morgan Equipment
Lanz, Kai, Stanford University
Lanza, M.D., Chevron Research Company
LaPierre, Richard, Lawrence Berkeley Lab.
Larer, Gerald F., Occupational Skills Ctr.
Larson, James B., Rockwell International
Lash, Arthur, Nichols College
Laster, LaMar, Intermedics Inc.
Lathrop, Robert T., US Postal Service
Lavaller, Richard, Alcan
Lauth, Norbert Jr., Public Broadcasting Serv.
Lawless, Thomas, U.S. Environmental
Lawrence, Thomas, Management Sciences
Lawson, W.V., Applicon Inc.

LSI
11

VAX,11
LSI,11
VAX,11
LSI,11

VAX
11

LSI,11

LSI,11
VAX,11

11
11

8,11
LSI

LSI,11
LSI,11
CTS,11
LSI,11
LSI,11
LSI,11

11
VAX,11

11
11

LSI,11
VAX,11

8,11
VAX,11

11
Lawyer, Bryan, Lawrence Livermore Lab.
Leacy, Ian, Cableshare
Learson, Jack, DEC-Merrimack
Leary, Bridget, Flavorland Industries
Leboss, Bruce, McGraw-Hill Publications
Lebowitz, Jerry A., Fleet Analysis Center
Lech, Bernard, DEC-Maynard

VAX,LSI
LSI,11

8,11
11

Ledbetter, Wallace, Georgia-Pacific Corp.
Lee, David, California, Univ. of
Lee, George, Bridgeport-Textron,Contrs
Lee, Larry J., System Industries
Lee, Lawrence, Citidata
Lefebvre, Lowell, Sytek In~
Lehotsky, Alan, DEC
Leino, Arthur, Stanford Linear
Lellman, James, G.D. Searle & Company
Lemmer, Thomas G., Dalgety, Inc.
Lenhart, Donald, Caterpillar Tractor C~
Lennon, William J., Lawrence Livermore Labs
Lenski, Laurence, Kaman Sciences Corp.
Lenz, S.J., Sandia Laboratories
Leonard, John, Aeronautical Res. Assoc.
Lerner, Joe, Tennessee, University of
Lesser, Victor R., Massachusetts, Univ. of
Lev, Howard, DEC-Tewksbury
Levine, Barbara, Lawrence Berkeley Labs
Levine, Michael N. , US Naval Weapons Ctr.
Levinz, Pam, DEC
Levy, Harold, Applicon, Inc.
Levy, Henry M., DEC-Tewksbury
Lew, John P., DEC-Santa Ana
Lewis, Dave, LDS Church
Lewis, J. Otis, Philip Morris USA
Lewis, Mark F., Federal Aviation Admin.
Lewis, Reiko, Dewberry, Nealon & Davis
Li, Stella K.H., Dow Chemical Pacific
Lidster, Kenneth c., DISC
Liebold, Klaus, Salk Institute
Lieske, Jerald, RPGIG

11

8,11
VAX,11
LSI,11

11
LSI,11

8,11
VAX

VAX,11
11
11

8,11
11

LSI,11

VAX
VAX

LSI,11
VAX,11
LSI,11

VAX
VAX

VAX,11
LSI,11

8,11
11
11

8,11
8,11

11
8

8·12

NAME COMPUTER

Lin, Dan, DEC-Maynard 11
Lincicome, Jack, First Int'l Services Corp. 11
Lind, James, Frank J. Seiler VAX,ll
Linder, Jack, Coors Porcelain Company 11
Lindsey, Randy, Cibar, Inc. VAX,11
Linse, Donna,. DEC 11
Lipcon, Eli, DEC-Maynard 11
Lipman, Mayers., Roberts & Schaefer CG 11
Lisee, Remi, DEC-Merrimack 8,11
Liston, Don, Lawrence Livermore Labs LSI,ll
Litchfield, Barbara J., Value Data Processing Inc. 11
Little, John, Instrumentation Lab. 8,11
Little, Skip, Woods Hole Oceanographic VAX,11
Little, Todd, Science Applications In~ LSI,ll
Littrell, David F., Baxter-Travenol Labs ll
Livingston, Jim, Lawrence Berkeley Labs VAX,11
Lloyd, Brian, UCSD 8,11
Lloyd, Phil, TRW 11
Lockhart, Robert, Lawrence Livermore Labs
Lockrey, Brian, ITT North Electric Co.
Lockwood, Jonathan, Harris Semiconductor
Lockwood, Mary
Loftin, Lavon, Millsaps College
Logg, Connie, Stanford Linear Accel.Ctr.
Loitz, Gary s., Watkins-Johnson:Company
Loken, Stewart, Lawrence Berkeley Labs
Lomicka, Roy, DEC-Maynard
Long, Joel, United Industry, Inc.
Long, A.J. II, South Central Bell Tel Co.
Long, Dick, Coll\Puter Synergy
Lopez, Hector, Cerveceria Cuauhtemoc SA
Louis, Raymond, Lawrence Berkeley Lab.
Loveland, Richard A., DEC-Maynard
Lowe, Mike, E & J Gallo
Lowenstein, Carl, Marine Physical Lab.
Lowry, Edward, DEC-Maynard
Lubell, Bradford, California, Univ. of
Luca, John, TRT Telecommunications
Luhring, Hank, Solano Cty.Sup.of Schools
Lundquist, Arthur, US Air Force Systems Com.
Lyddon, Sandra L., Chevron Oil Field Rsh.Co.
Lyman, John, Lawrence Berkeley Lab.

Maas, Margaret, DEC-Maynard
MacGibbon, George A., CBL Auckland Limited
Mack, Ronald M., Tektronix, Inc.
Mackichan, Alan, KBM, Inc.
Madrian, Jost, Salt Lake City School
MaGee, F.I., Sandia Laboratories
Magidson, William, PLM, Inc.
Mahon, George, Ford Aerospace & Comm.
Mallet, Charles, DEC-Maynard
Malone, James, General Connecticut
Malone, Ray, Xerox Corporation
Manelski, Denis, Mints
Mangiarelli, Ronald R., U. s. Air Force
Mann, Barbara, TRW Defense & Space Sys.
Mann, Emory H. Jr., General Electric Co.
Manter, Walter, DEC-Marlboro
Manton, John, Mostek
Marcek, Steven, DEC-Oakland
March, Pam, Liocs Corporation
Marcil, Mike, DEC
Marek, John M., Lebus Data Centers Inc.
Marino, Richard A., Data Processing Design
Markley, Richard L., Corning Glass Works
Marks, J.P. Telesensory Systems, Inc.
Marler, Kevin M., Union Pacific Railroad Co.
Marschke, Vern, NCA Corporation
Marsh, Richard, Tulasi, Ltd.
Marshall, Ted, Data Processing Design

11
8
8

8,11
LSI,11

LSI
VAX,11

LSI,11
LSI,11

LSI,11

11
LSI,ll

8,11
VAX,11

11
LSI,11
VAX,11
LSI,ll

11
11

LSI
11
11
11

VAX

11
11

8
11
11
11

8,11
VAX,LSI

VAX
LSI,11

11
CTS, 8
VAX,11

11
LSI,ll

11
11

CTS,11
LSI,11

NAME

Martin, Arvid L., General Motors Rsh.Labs
Martin, Carol A., TRW Systems

COMPUTER

VAX
11

Martin, Jerome A., First Computer Corporation LSI,11
Martindale, Jerry L., Joy Machinery Company 11
Martinelli, Jack, Cetus Corporation
Martinez, Sabiniano, Equitec Financial Group
Marvel, Mary, General Motors Res. Lab.
Marx, Joel, Varian Graphics
Mason, G.R., Bonker Ramo

11
11
11

LSI,11
VAX

Mastrandrea, Joseph, Mt Sinai Ins. Comp. Sci. LSI,11
Matejcek, Paul, Varian Mat 11
Matlack, Elizabeth, DEC-El Segundo
Matsumoto, Scott, Lawrence University
Mattheiss, Paul, Suntech, Inc.
Matthews, Thomas, Ricks College
Mattison, Bonnie, California, Univ. of
Maurer, Hank, DEC-Marlboro
Maurice, Michael, Reel Trophy, Inc.
Mayer, Tim, Cibar, Inc.
Mayfield, Mike, Data Processing Design
Mayras, Shell Francaise
Mazzari, Darrel A., Color Corp.of America
McCarthy, Mike, DEC-Colorado Springs
McCarty, Jack, Inslaw
McCleary, Ron, Harding College
Mcclurg, William, United Technologies
McCormick, John, Alberta Government Tel~
McCormick, R.B., Atlantic Richfield Co.
McCoy, Daniel, Informatics Inc.
McCray, Wm. Arthur, DEC-Tewksbury
Mccue, Kevin, TRW DSSG
McDaniel, Larry, California, Univ. of
McDaniel, R.S., Alberta Research Council
McDonald, Joyce, World Book-Childcraft
McDonald, Lenard, Rockwell International
McDonough, John, New York Telephone Co.
McDonough, Martin F., Value Data Processing
McFerrin, Paul, Bell Telephone Lab.
McFerrin, Steven, Bendix Field Eng.
McGhie, Dennis, SRI International
McGinnis, Gerald, Argonne National Labs
McGinnis, Kenneth, Pennsylvania, Univ. of
McGlinchey, James, Fischer & Porter Systems
McGraw, Joseph, Bendix Epid
McGuinness, James, Schering Corp.
Mcilvaine, Jim, Bridgeport-Textron Control
Mcintosh, Stuart, Admins, Inc.
Mcintyre, Tom, DEC-Maynard
McKenna, Michael, Time Share Corporation
McLawhon, George B., Hallibueton Services
McLean, Donald, MacNeal & Schwendler
McLeod, Jim, American Sign & Indicator
McMacken, Dennis, U.S. Geological Survey
McMichael, Patrick, Wabco Union Switch & Sign
McMillan, Guy G., California, Univ. of
McMillin, Leslie S., Energy Ent of Denver Inc.
McNaughton, Bruce, DEC-Nashua
McNeal, Sharon, EG&G Inc.
McNeish, Andy, Canadian Broadcasting Corp.
McParland, Charles, Lawrence Berkeley Labs
McPhaden, Christine, California, Univ. of
McPharlin, Tom, Systems Control Inc.
McRitchie, Bruce, Bridge Brand Food Service
Meador, M.D., Northwest Outdoor Stores
Mears, Donald, Minnesota, Univ. of
Medlin, Terry P., NIH INIDR
Meese, Robert, DEC-Marlboro
Mehren, D.J., Duval Corporation
Mehta, Gautam, Westinghouse Electric
Melancon, Jason, Standard Structures, Inc.
Mellor, N.P., Smithkline & French Labs

VAX,11
11
11

11
VAX

LSI,11
11

VAX,11
11

VAX, 8

11
11

LSI,11
LSI,11

11
11

VAX,11
VAX,11
LSI,11
LSI,11

11
11
11

LSI,11
LSI,11

8,11
VAX,11

11
LSI,11

8,11

LSI,11

8,11
LSI,11
LSI,11

VAX
LSI,11

11
11

LSI,11
8,11

LSI,11
11

VAX,11

CTS,11
LSI,11
LSI,11
VAX,11
VAX,11

11
11
11

B-13

NAME COMPUTER

Melnick, Jerry, DEC-Marlboro
Meloche, Gilles, National Research Council
Mena, Harry, Algonquin College
Menk, Peter, A.C.U.
Meny, Susan, Connecticut General Life
Merchant, Michael J., EG&G Inc.
Merrell, Greg, Allen Bradley Company
Merrill, Roy, Cetus Corporation
Merriman, Michael, Applied Information Dev.
Merritt, Philip E., Hughes Research Labs
Mess, George, Kalium Chemicals
Michael, Greg, DEC-Colorado Springs
Michelson, Randy, Lawrence Berkeley Labs
Miles, Ken, Nordata
Mileski, Jack, DEC-Tewksbury
Miller, Christopher, Herman Miller, Inc.
Miller, Dan G., Los Alamos Scientific Lab.
Miller, David, GTE Sylvania
Miller, Jay L., GTE Sylvania, ESG-WS
Miller, Jerry, Progressive Management
Miller, John A., Online Data Processing
Miller, Randolph R. , System Development Corp.
Miller, Robert A., Lockheed Missiles & Space
Miller, Ross w., Online Data Processing
Mills, Vincent T., San Francisco State Univ.
Mitchell, Jeffrey w., DEC-Marlboro
Mitchell, Terrell K., DEC-Merrimack
Mitchell, William, AFRRI
Mitsch, Stephen, Systems Consultants, Inc.
Mock, Melissa, Crocker National Bank
Moe, Christine, Stanford University
Moersdorf, Gerard B., Software Results Corp.
Moffa, Roy J., DEC-Maynard
Mohan, Sat, TIW Industries Ltd.
Monaghan, Terry, Borden Chemical
Mond, Lawrence A., Anstat, Inc.
Monia, Charles, DEC-Tewksbury
Montague, Bruce, School of Aerospace Med.
Monterubio, Fred, Bridgeton Hotels, Inc.
Moody, K.B., W.R. Grace & Company
Moore, James, Stanford University
Moore, Raymond A., Hyde Park Chemical Corp.
Moore, Robert D., Scripps Inst Oceanography
Moore, Shirley, Crocker National Bank
Moore, Terrence, Stanford Univ.Med Center
Moothart, Eric, Data Processing Design
Morris, Robert, E.R. Squibb & Sons, Inc.
Morrison, James, DEC-Marlboro
Morton, Jerry R., Chemineer, Inc.
Morton, John, B-N Software Research
Mounteer, William D., Tested Time Sharing Lt~
Mountjoy, David R., Bendix Corporation
Moy, Lidia, California, Univ. of
Moyer, Richard, Stanford Linear
Moyle, Gordon, New South Wales, Univ. of
Mucci, John, DEC-Marlboro
Mueller, Edward, Logicon, Inc.
Mueller, Martin R., Informatics Incorporated
Mueller, Michael, Rockhurst College
Mundy, Linda, Cetus Corporation
Murtland, Lori, Creative Systems
Mussetter, Robert, Mussetter Reality, Inc.
Mustain, Charles W., Berea City Schools
Mustain, Richard D., Philip Morris USA
Myers, Jack, Stanford Linear Accel. Ctr.

Nace, Roger, DEC-Englewood
Nadel, Lesta, Lawrence Berkeley Labs
Naglee, John, American Tel & Tel Co.
Napkori, Joseph, Safeguard Business System
Natowitz, Jerry, Cincinnati, University of

LSI,11

11
11

VAX,11
LSI
LSI

LSI,11

VAX,11

VAX,11

11
VAX

11
11
11

VAX
VAX,11

VAX
VAX,11

VAX,11
LSI,11

11
11
11

LSI,11
LSI

11
11

VAX,11
VAX

8,11
LSI,11

11
LSI I 11

11
8

11
11

VAX,11
11

VAX

11

CTS

8,11
VAX,11

LSI,11
8,11

11
11

8
11

8,11
LSI, 11

VAX,11
VAX,11

11
11
11

NAME COMPUTER

Naylor, Mark, General Foods Ltd.
Naylor, William, Gannett Co., Inc.
Neeland, James, Hughes Research Labs
Neill, Jim, Bell Canada
Neilson, David, Lawrence Livermore Lab.
Nelson, Brian, Toledo, University of
Nelson, Dick, Domain Industries, Inc.
Nelson, Gary, American Management
Nelson, Gregory, Ford Aerospace & Co111111Corp.
Nelson, R.L.
Neuberger, Kent, Key Air Conditioning Co.
Newcombe, Pete, York Graphic Services
Newell, Timothy, Boebinger Agency, Inc.
Nicholas, Pete, Lawrence Livermore Lab.
Nichols, Herb, DEC-Tewksbury
Nichols, Lee H. III, E. I. Dupont
Nichols, Tom, DEC-Marlboro
Nicholson, Paul R., Battelle, Pacific NW Labs
Nickles, John c., California, Univ. of
Nicol, David, Pan American Technical
Niday, James, Lawrence Livermore Lab.
Nieh, Luther, General Electric Co.
Nighbor, Bill, Hal Systems Corp.
Nirenberg, Isabel, Space Astronomy Lab.
Noble, Douglas R., Drug Enforcement Admin
Noble, Donna, Kitchell Contractors, Inc.
Nordby, David H., G.D. Searle & Company
Norman, Jerry, United States Computers
Normington, Dave, NCA Corporation
Norris, Kathryn s., DEC-Tewksbury
North, Ken, Hughes Helicopters
Noyce, William, DEC-Merrimack
Nunnally, John, Harding College
Nusbaum, Robert, DEC-Maynard

11
11

VAX,11
11

LSI,11
11

VAX,11
'VAX

8,11
11

LSI,11
VAX,11

LSI
11

8
VAX,11

11
LSI,11

11
8,11

11
LSI,11

11
11

VAX
11
11

VAX
11

11
LSI,11

O'Connell, Janet, Business Inf Systems Inc.
O'Connell, Joseph P., Business Inf Systems Inc.
O'Reilly, J. Michael, Mini Data Systems Inc. 8,11
Oakes, William Jr., Los Alamos Scientific Lab. VAX
Oakland, Frederic, Cutler Hannner Inc. LSI,15
Oconnell , John, Datatrol, Inc. LSI,11
Odom, Warren E., Good News Book Store LSI,11
Okada, So, ASR Corporation LSI,11
Olien, David M., Iowa State University VAX,11
Olmstead, Kent, Los Alamos Scientific Lab. VAX
Olsen, Larry, G. D. Searle VAX
Onuma, Lambert, DEC-Oakland
Oothoudt, Michael, Los Alamos Scientific Lab.
Oppenheimer, Jim, Lawrence Livermore Lab.
Oppermann, Curt, Missouri Pacific Railroad
Osborne, Stan, DEC-San Francisco
Oskirko, Maryann, DECUS-Marlboro
Ostlund, James J., California, Univ. of
Otte, Mike, American Telecom
Ovalle, Alejandro, Comision Fed de Electric
Overby, D. Russel, Oak Ridge National Lab.
Overton, Mack, U.S. Food & Drug Admin.
OWen, Jan, DEC-Santa Clara

Padwa, Stephen, Brookhaven National Lab.
Page, Calvin, Georgia-Pacific Corp.
Page, William, DEC-Tewksbury
Pajerski, Rose, NASA Goddard Space Flight
Palladino, Robert A., Schering Corporation
Palmer, Dean L., GTE Sylvania
Palmer, Thomas, Illinois Bell Tel Co.
Palmerston, David w., DEC-Oakland
Papajcik, Ronald, Horsburgh & Scott Co.
Park, Denise, Mischer Enterprises, Inc.
Parker, David, Duke University
Parker, Ron, Canadian Hydrographic Ser.

VAX,11
LSI,11

11
8,11

LSI,11
11

VAX,11
8,11

LSI,11

VAX,11
8,11

VAX
VAX

11
VAX,11

8,11
11

11
LSI,11

11

B-14

NAME COMPUTER

Parrish, Donna B., Fluor Corporation
Parson, Bob, NP Time Sharing Service
Parsons, Gilbert, Parsons Brake Service
Parsons, Jim, Naval Air Rework Facility
Passafiume, Joseph, DEC-Maynard
Patel, J.N., Budd Company
Patterson, Gary, Maritime Administration
Patterson, Robert, Litton UHS
Paul, Roger, American Sign & Indicator
Paulk, J.W., Daniel International Corp.
Paulson, Joe, Domain Industries, Inc.
Paulson, Boyd, Standard University
Payne, Mary, DEC-Maynard
Payne, Richard, Woods Hole Oceanographic
Payne, William L., EG&G Inc.
Pearson, James, NWC Federal Credit Union
Pearson, Larry, DEC-Maynard
Pearson, Robert L., R.A. Hanson Company
Pearson, Stanton, DEC-Maynard
Pech, Bernard, Lawrence Berkeley Lab.
Peck, Robert c., California, Univ. of
Peckoff, Barry, Philip Morris Intl.
Peebles, James E., Arizona, University of
Pekin, Dian, DEC-Bedford
Pellegrino, Harry, Naval Avionics Center
Pellerin, Roy, Teltone Corp.
Pelletier, Arthur, Dept. of National Defense
Pensak, David A., E.I. Dupont:Oe Nemours
Pensak, Lois B., Widener College
Pepin, Pauls., Delco Products Div. GMC
Perk, Harry, Dow Chemical Co.
Perry, Dennis, Los Alamos Scientific Lab.
Perry, Thorne, Baxter Travenol
Pessin, J.S., Bunker Ramo Corp.
Peters, Carol, DEC-Tewksbury

LSI,11
VAX,11

11
LSI,11

11
LSI,11
LSI,11

LSI
11

LSI,11
8,11

VAX
11

LSI,11
LSI,11

VAX,11
LSI,11

8,11
11

K/LSI
11
11
11

'VAX
11

VAX,11
11

LSI,11
11

VAX,11
VAX

Petersen, Jay H., ESL, Inc. LSI,11
Peterson, Curtis, Multi-List VAX,11
Peterson, James c., Environmental Protection AG 11
Peterson, Roger L., Lawrence Livermore Labs
Pettet, Mark, Tektronix, Inc.
Pfeifer, Larry L., Signal Technology Inc.
Phalen, Thomas D., U.S. Food & Drug Adm/EDRO
Phelps, William, Francis and Nygren
Phillips, L.N., Transport Canada
Pickering, Howard, Tested Time Sharing Ltd.
Pickford, Terry, ABC-TV
Picott, William, DECUS-Marlboro
Piel, Gary P., United States Air Force
Piela, Ron, Illinois Tool Works
Pierce, D.M., Sandia Laboratories
Pigman, Richard, DEC-Maynard

LSI
LSI,11
VAX,11

11
11
11
11

11
11

8,11

LSI,11
LSI
11
11

Pine, B.J., Nat'l Comp Performance Co.
Pinfield, Edward, Colorado, Univ. of
Pitliuk, Jaime, Security Industry
Pitluck, Samuel, Lawrence Berkeley Lab.
Pollack, J. Eric., DEC-Tewksbury
Ponting, Bob, Versatec
Ponzio, Gloria A., Mini Computer Supplier
Poelman, Robert, Santa Barbara Cty. Mental
Poon, Bobbi, Ford Aerospace & Comm Corp.
Poppendieck, Mary, 3M Company

VAX,11
CTS

Hlth. 11

Porz, Donna, Arizona State University
Post, Craig, Naval Weapons Center
Post, William, Computer Science Corp.
Poust, Roy, Georgia-Pacific Corp.
Poutissou, Renee, Montreal, Univ. of
Powell, Bruce, California State Univ.
Powell, James, Stanford University
Powell, John, Nat'l Inst. of Health
Powell, Ricky H., HQDA Taggen (DAAG-PLS)
Powers, David, Cadillac Motor Division
Prather, John, Sun Shipbuilding Co.

VAX
LSI
11

VAX,11
LSI,11
LSI,11

11
LSI,11
LSI,11
LSI,11

11
LSI,11

11

NAME

Pratt, Orville, Lovelace Biom.& Env. Res.
Preston, David, Hutchinson Community
Pribadi, K.S., Compuguard Corporation
Priborsky, Tony, Arizona State University
Prinzivalli, Pete R., Measurex
Provost, Thomas, MIT
Puls, James, Chicago, University of
Pulsipher, D.C., Sandia Laboratories
Purdue, Clint, Sandia Laboratories
Puttress, John, Applied Dynamics Int.

Quigley, Donald, Naval Underwater System
Qureshi, Muzaffar A., Population Council

Racer, C.W., Chevron Geophysical Co.
Racklyeft, David, General Motors
Radcliffe, Clark, California, University
Radford, Kenneth, DCA Reliability
Ragan, Logan, Nu. West Development Corp.
Ralston, Carl, DEC-Marlboro
Ramsey, Newell R., EG&G, Inc.
Randall, Ron, DEC-Marlboro
Rappley, David, Arkansas Gazette

of

Rasmussen, Gary, Gary S. Rasmussen & Assoc.
Rasmussen, Warren, San Francisco State Univ.
Rasted, John, JTR Associates
Rasted, Susan, Software Dynamics Inc.
Ravo, William G., Naval Underwater Systems
Rawlinson, S., TRW-DSSG
Reardon, James M., Fluor Corporation
Reder, Thomas, Dow Chemical Co.
Redmon, Robert, United Catalyst
Reece, Randy, Multi-List Inc.
Reese, C.H., Chevron Research Company
Rehbein, Carl, DEC-Maynard
Reibling, Lyle, Lear Siegler, Inc.
Reicheld, Harold, Dofasco
Reilly, John, CDI Oakland
Reinap, Ginny, DEC-Maynard
Reiners, Edward, Philip Morris, Inc.
Reinkemeyer, J., GSD/IBM
Reisert, Christopher, Manufacturers Hanover
Reite, Martin, Colorado, University of
Remedios, A.J., Chevron Research Company
Renneke, David R., Augustana College
Reno, Douglas, Abbott Laboratories
Renta, Charles, Pertee
Restagno, Dominick, Manufacturers Hanover
Reynolds, John D., System Development Corp.
Reynolds, Walter E., Applied
Rhew, Ki-Won, El-Jay, Inc.
Rhodes, Owen F., Florida Computer Inc.
Rich, Emil, American Broadcasting Co.
Rich, Steve, Dewberry, Nealon & Davis
Richardson, Wendell, Bingham Mechanical
Richmond, Rick, Pikes Peak Regional Library
Richter, C.E., Western Electric Company
Rickson, Bryce, Vartron Corp.
Riebs, Andrew, DEC-Merrimack
Riel, David A., Fed. Bureau of Investigation
Rieman, Gerald A., Dayton Data Processing
Riley, Patrick, United States Computers
Riley, Robert, Western Electric Co., Inc.
Riquet, Danielle, SII
Risch, Douglas, Lawrence Livermore Labs
Risso, William L., National Inst.of Health
Ritchie, David, Fermi Nat'l Accelerator
Ritchie, R.W., Washington, Univ. of
Ritenour, Robert P., EG&G Inc.
Rix, Alfred, Tacoma News Tribune
Roach, Hal, Cerritos College

COMPUT~R

VAX,11
11

LSI
VAX,11

VAX
LSI,11

11
11
11

VAX,11

VAX
11

VAX,11
11

8
11

VAX
LSI,11
VAX,11

8,11
11
11
11
11

VAX
VAX

LSI,11

11

LSI,11
VAX,11
LSI,11

LSI

8,11
11

TRS 11
LSI,11
LSI,11

11
11

LSI,11
VAX,11

VAX
8,11

VAX,11
VAX,11
LSI,11

11
11
11

LSI,11
CTS, 11

11
11

LSI,CTS
11
11
11

LSI
11

VAX
11
11

B-15

NAME COMPUTER

Roads, Curtis, Compter Music Journal
Robert, Ron, US Fleet Leasing
Roberts, Carol, Nat'l Transportation
Roberts, James L., DCA Reliability Labs
Robertson, Larry, R.S. Association
Robinson, Gordon, Charles S. Lewis & Co. Inc.
Robinson, Mike, United Computing Systems
Robinson, Richard V., US Department of Labor
Robison, Frank H., Daytronic Corp.
Rodean, F. Glynn, Plymouth State College
Rodgers, David, DEC-Tewksbury
Rodgers, Tom, Crocker National Bank
Rogers, George H., Canada College
Roland, David, Informatics, Inc.
Romanoff, Robert, National Inst of Health
Roode, R. David, Informatics PMI
Root, Stephen, DEC-Maynard
Ropchan, Wally, Stanford University
Ropp, Patricia, Hood College
Rose, J.D., Academic Computing Service
Rose, Stanley, Bankers Trust Co.
Rosen, Daniel, Transcomm Data Systems
Rosenbluh, Kathy, Chicago, University of
Ross, Carlos, Grupo Cydas
Ross, Ken, Ross Systems, Inc.
Rothe, Edward, NASA-GSFC, Infom. Analysis
Rothermel, John G., TRW DSSG
Roush, Ellard T., GIPD
Roux, Gerald, Boeing Company
Roveda, John, Charlie Systems Inc.
Rowan, Willian H., California, Univ. of
Ruch, Peter, United States Air Force
Rudkin, Ralph, CTEC, Inc.
Rudy, Jeffrey, DEC-Merrimack
Ruff, Curtiss, Motorola
Runyon, John, Philip Morris International
Runyon, Marilyn
Russ, Allen E., Tulane University
Ryan, Joe, NALC 203C U.S. Navy
Ryan, Tim, University Data Systems
Rynes, Philip, Argonne National Lab.
Ryshpan, Jonathan, Microform

Saabes, M., TRW-DSSG
Sabetta, Donna, EDS Nuclear Inc.
Sadler, Dan, Compuserv
Sadler, Lisa, Compuserv
Sadofsky, Mike, DEC-Maynard
Salas, George R., IVIC
Salmon, Donald, Vernay Laboratories, Inc.
Saloky, Al, DEC-Merrimack
Saltzberg, Steven A., Louisville, Univ. of
Samson, Paul, Teltone Corp.
Samuel, Dan J., Digital Pathways, Inc.
Sanborn, Robert, National Bank of Detroit
Sanders, Debbie, S&H Computer Leasing Inc.
Sanders, Harry, S&H Computer Leasing Inc.
Santon, Lee, Ontario Cancer Institute
Sapp, Ed, DEC-Maynard

VAX,11
11
11
11

VAX,LSI
11
11

VAX
LSI,11

8,11
VAX

11
11
11

LSI,11
LSI,11

8
LSI,11

11
LSI,11

11
11
11
11

LSI,11
VAX,11

11
11

CTS, 8
VAX,11
LSI,11

11
VAX,11

LSI,11
LSI

LSI,11
VAX,11

LSI
LSI,11
LSI,11

LSI,VAX
CTS,11

8,11
8,11

LSI,11
11

11
LSI,11

11

LSI,11
LSI,11
LSI,11

8,11
LSI,11
VAX,11

Sarbin, Theodore R., DEC-Santa Ana
Sasseen, Doug, National Food Processors
Sather, Louis, Wisconsin, University of
Satterlee, Duane, International Harvester Co. LSI,11

11 Saylor, Jean, System Development Corp.
Scandora, Anthony, Science Applications Inc.
Scanlon, Harold, EG&G Washington Analytic
Scardino, Shirley, DEC-Santa Clara
Scarloss, Walter, Corning Glass works
Schachter, Ted M., Los Alamos Scientific Lab.
Schaefer, Ronald, DEC-Tewksbury
Schainbaum, Julius, Smith Kline & French Labs

LSI,VAX
11

LSI, 11
LSI,11
LSI,11
VAX,11

8,11

NAME COMPUTER

Scheckter, Michael, Hughes Aircraft Co.
Scheremeta, James T., Boeing Computer Serv.
Scherrer, Deborah, Lawrence Berkeley Lab.
Schick, William, Fairleigh Dickinson Univ.
Schioeder, Esther, Lawrence Livermore Labs
Schloerb, Paul, Kansas, University of
Schlumpf, Michael A., Bally Mfg. Corp.
Schmauder, Philip, Dept. of Air Force
Schmeichel, Robert, DEC-Maynard
Schmidt, David, Management Science Assoc.
Schneider, Richard, DEC-Maynard
Schneider, W.S., Bunker Ramo Corp.
Schoenberger, Annette, MacMurray College
Schoenberger, R.J., MacMurray College
Schoeppe, Henry, Sandia Laboratories
Schoeppner, Mike, Bendix Kansas City
Schofield, L.N., General Dymanics/WDSC
Scholz, Warren, Tennessee Gas Pipeline
Schomberg, Paul, NCA Corporation
Schopp, Ken, EDS Nuclear Inc.
Schrader, David, 3M Company
Schramm, Michael, H.S. Crocker Co., Inc.
Schrick, Dale P., Meda Sonics
Schriesheim, Jeffrey, DEC-Maynard
Schroeder, James, Battelle Northwest
Schueler, Rich, Crocker National Bank
Schurr, David, Kaiser Hospital
Schurter, James L., MacMurray College
Sconce, William J., Industrial Specialties
Scott, Wayne, Vernay Laboratories Inc.
Scotten, Arthur, Comm.and Computer Service
Seefeldt, B., TRW-DSSG
Seifert, William, Los Alamos Scientific Lab.
Selim, Lydia, Crown Zellerbach
Seminario, Carlos, Georgia Tech
Senechal, Paul, Dofasco
Sergejew, Alex A., Auckland Sch.of Medicine
Settle, Dominic, Fotomat Corporation

VAX,11
VAX,LSI

VAX,11
8,11

VAX
11

LSI,11
8,11

11
VAX,11

VAX,11
11
11

LSI,11
11

11
11

VAX,11
11

LSI,11
11

VAX
11

8,11
11
11
11
11

VAX
LSI,11

11
8

LSI
8,11

11
Seufert, Steven, DEC-Maynard LSI,11
Severyn, John, Lawrence Livermore Labs VAX,11
Seward, Robert C., Pertee 8,11
Sexton, Jim, Amcor Computer Corp. 11
Seymour, Richard, Washington, Univ. of LSI,11
Shacter, Stewart, First National Bank of St.Paul 11
Shah, S., DEC-San Francisco
Shannon, Enoch J., California State Univ.
Shanzer, Herbert, DEC-Maynard
Sharp, Robert, Inco, Inc.
Sharpe, Stan, Cincinnati Milacron Inc.
Shartle, Harold F., US Navy Ships Parts Cont.
Shaulis, Roger, Philip Morris U.S.A.
Shear, Robert D., Shear Development Corp.
Shelton, Rick, Commercial Computer Sys.
Sherborn, Dennis, Zimmerman Metals, Inc.
Sheridan, Kim A., Interactive Info.Systems
Sherman, Thomas, DEC-Tewksbury
Sherrill, Nathaniel, US Geological Survey
Sherrod, Phil, Vanderbilt University
Shindell, Dav, DEC-Santa Ana
Shirley, Fred, DEC- Merrimack
Shlaer, Sally, Lawrence Berkeley Labs
Shpiz, Leo, DEC-Merrimack
Shropshire, K. David, USAF-Air Training Com.
Shurman, Gary, Professional Datasystems
Shurtleff, Robert D., DEC-Merrmiack
Shuster, Joseph, World Book Childcraft
Sidenblad, Paul, System Development Corp.
Siegel, Albert L., Battelle Columbus Labs
Siegenthal, Martin, San Francisco State Univ.
Siemens, Phillip, Menol Computer Associates
Siftar, Gary, Cisco

VAX,11
11

LSI,11
11
11

8,11
LSI,11

8,11
11
11
11

CTS, 8
VAX,11
LSI,11

11

VAX,11
8,11

11
LSI,11

VAX
VAX

VAX,11
8,11

LSI,VA~

B-16

NAME

Sikes, Dale, Lockheed Missiles & Space
Sills, Andrew, UCLA Ct~ for Health ScL
Simich, Ellen, DEC-Merrimack

COMPUTER

LSI,11
LSI,11

Simmons, Frank, Accurate Data Systems, Inc. CTS,11
Simmons, Louis, Citibank 8, 11
Simmons, Stephen, US Leasing Corporation VAX,11
Simms, A., DEC-Santa Clara LSI,11
Simon, Randolph F., US Navy Astronautics Gr:i;:. 8,11
Simpson, Lawrence, Michael Reese Hospital VAX,11
Sisson, Norwood, Arizona State University 8,11
Sivertson, John N., Johnson & Johnson 11
Skalabrin, Val, Second Source 8,11
Skelton, Claudia, DEC-San Francisco VAX,11
Skelton, Steve, DEC-Maynard VAX
Skoog, Clifford, Sandia Laboratories LSI,11
Skorodinsky, Robert G. , Sys tern Development Corp. 11
Skret, Dan, Vindicator Corp. CTS, 8
Slaski, Kenneth, Schering-Plough Corp.
Slezak, Ken, EMR Telemetry
Small, Steven L., Western Electric Co.
Small, W.H., Mobil Research & Dev. Corp.
Smith, Alan B., Dow Chemical
Smith, Albert, USDE Bonneville Power
Smith, Barry, Oregon Minicomputer
Smith, Christopher, EG&G Inc.
Smith, David A., DEC-Blue Bell
Smith, D.R., Toronto, University of
Smith, Gary, Area Two Educational
Smith, Jerry, Education & Res.Comp.Ctr.
Smith, Joseph, DEC-Maynard
Smith, Mickey, US Air Force
Smith, Paul, Naval Air Rework Facility
Smith, Raymond V., New England Nuclear
Smith, Sandy, Area Two Educ. Computer Ctr.
Snapper, Arthur, Western Michigan Univ.
Snawder, Paul T., Santa Clara County
Sneddon, T.W., Sandia Laboratories
Snipes, H., TRW-DSSG
Snively, C.P., IBM/GSD
Snow, David, DEC-Tewksbury
Snow, Scott, Mini-Compu BusinessApplications
Snyder, Frank D., Westinghouse Elec Cor~
Sebek, Walter, Metropolitan Sanitary
Soehomonian, Vatche, DEC-Oakland
Soivenski, Mitchell S., Liberty Mutual Ins.Co.
Solo, Beverly, Merritt College
Solomon, David, Riverdale Country School
Somes, Austin H., NASA Ames Research Ctr.
Sopka, Elisabeth, Sitear Development Corp.
Sosa, Arturo T., Comision Fed.de Electricity
South, Charles, Hughes Research Labs
Spann, James, Lawrence Livermore Lab.
Spavin, Barbara, DG&G Inc.
Speake, Tom, DEC-New York
Spears, Bill, Baylor College of Medicine
Spear, David, Systems Consultants, Inc.
Spelfogel, Carol, Shawmut Bank of Boston
Spence, Martha L., DEC-Maynard
Spence, Robert, DEC-Maynard
Spinek, Ronald, DEC-Maynard
Spitz, Charles, DEC-Tewksbury
Sporn, Patricia, FDA Bureau Medical Device
Sprague, William, General Motors Corp.
Springer, Allen, Amos Press
Sprouse, Gene, Rainbow Computing
St. Armour, Jerry, Union-Tribune Publishing
Stafford, Damon, Lovelace Biom.& Env.Res.
Stafsudd, Jacquie, Hughes Research Labs
Stagg, David, Yale Univ. Sch. of Medicine
Stamerjohn, Ralph, Monsanto
Stanfill, R. James, Swedish Hospital

LSI, 11
8,11

11
11
11

8,11
11

LSI,11
LSI,11

11
VAX,11

8,11
11

VAX
11

8
11

VAX
11
11

LSI,11
VAX,11

11
11

VAX
VAX,11

11
VAX,11

LSI
11

11
VAX,11

11
VAX,11
LSI,11
VAX,11

11
11

LSI,11
11

11
LSI,11
VAX,11
LSI,11
LSI,11

11

NAME

Stange, Whitey, Computer Applications Corp.
Stanzione, Dennis, Export Credit Corporation
Stark, Duane, Doubletree, Inc.
Starkey, Jim, DEC-Merrimack
Steele, Craig S., Harvard University
Steele, Robert, Inco, Inc.
Steenbergen, Robert B., EG&G Inc.
Steinberg, Daniel, SRI International
Steingart, Alec, Republic Nat'l Bank of NY
Stepanek, Steven, CSU, Northbridge
Stern, David M., Research Systems Inc.
Sternick, Wendy S., Atlantic Richfield Co.
Stevens, Edwin, EMDA, Inc.
Stevens, Kenneth, USAFSAM/BRP, Brooks Air
Stevens, T.C., Toronto, University of
Stewart, E.H., Rectec, Inc.
Stewart, Jim, British Columbia Bldg. Cor.
Stewart, John, Van Ert Electric Co., Inc.
Stewart, Russell, Dow Chemical Co.
Sthultz, Michael R., Sunrise Hospital

COMPUTER

CTS

11
VAX,11

VAX
LSI,11

11
11
11

LSI,11
8,11

11
LSI,11

8,11
LSI,11
LSI,11

CTS,11
8,11

Stinson, Murray, Scientific Placement Inc.
Stockdill, James W., US Navy Ships Parts Cont.
Stockley, C.H., Sandia Laboratory

LSI,11
11
11
11

Stodden, Joan, Varian Graphics
Stodghill, Walter, Motorola
Stoklosa, Henry, Du Pont Company
Stosick, Jim, Stanford University
Strackbein, Ray, Chalfont Communications
Strange, Fred, Lawrence Livermore Labs
Strauss, Dick, DEC-Maynard
Strecker, William D., DEC-Tewksbury
Strelko, Ronald, Milprint
Strezleck, s., Standard Brands, Inc.
Strickland, James, Caterpilar Tractor Co.
Stroebe, D.G., Chevron Research Company
Stroh, William, Oceanic Enterprises, Inc.
Strutt, Chris, DEC-Reading
Stuart, Antoinette, USDA Forest Service
Stupak, Matt, CMI Corporation
Sturtevant, Jim, DEC-San Francisco
Stylos, Paul, DEC-Marlboro
Sukiennik, Anthony, DEC-Merrimack
Sullivan, Stephen J., New Mexico,univ.of
Sullivan, Tim, International Harvester
Sully, Chris, Transcomm Data System
Sumner, Thos, California, University of
Surma, Gary A., V.H. Monette & Company
Surovov, Peter A., General Electric Co.
Suski, Greg, Lawrence Livermore Labs
Sventek, Joe, Lawrence Berkeley Labs
Sventek, Virginia, Lawrence Berkeley Labs
Swanborg, Rick, Helix Technology Corp.
Swenson, Steven, Farinon Electric
Swierczewski, Joseph, Garden Way Mfg. Co.,
Swihart, Stanley J., PDS Associates
Swindell, C. Eric, Mason Clinic
Sykes, David, CTEC, Inc.
Sykes, Patricia, Tailored Software
Sykes, Robert, Tailored Software
Sykora, Ronald G., EG_&G Inc.
Szeto, Simon, DEC-Merrimack
Szurek, John L., US Army

Tabata, Les, Lawrence Berkeley Labs
Tabor, William, Florida Computer, Inc.
Tallerico, Dennis, Diamond Shamrock Corp.
Tamer, Katherine, Technology Incorporated
Tani, Kenneth, Tani Company
Tani, Jon R., Electronics Research Lab.
Tanner, Bruce, Cerritos College
Tannery, Verna, Dow Chemical USA

VAX,11

LSI,11
LSI,11

11
8,11

VAX
11

11
LSI,11
CTS,11
VAX,11

VAX,LSI
11

LSI,11

11
LSI,11

LSI, 11
11
11

VAX,LSI
VAX,11
VAX,11
VAX,11

11
Inc.

LSI,11

11
LSI,11
LSI,11

11
11

LSI,11

VAX,11
11

11,15
8,11
8,11

LSI, 8

11

B-17

NAME COMPUTER

Tardif, Gill, DEC-Merrimack
Taylor, Ed, Finar Systems Ltd.
Taylor, James L., Brigham Young University
Taylor, Jonathan, DEC
Taylor, Kenneth, Bingham Mechanical
Taylor, Michael, San Francisco Fire Dept.
Taylor, Pamela M., Iowa State University
Teague, Charles T., VA Medical Center
Tellez, Anne, Cooperative Services, Inc.
Tenison, Ronald, Gatlin Gabel School
Tenney, Sam, Alpha Computing Inc.
Terrell, Mark, Informatics - PMI
Terry, George, Tennessee Gas Pipeline Co.
Tetelman, Bruce, Columbia University
Thagard, Gregory, Lunday-Thagard Oil Co.
Thatcher, Raymond v., Union Carbide Corp.
Thiel, David, GENRAD
Thissell, George, DEC-Marlboro
Thomas, Darrell G., Lovelace Biom. & Env. Res.
Thomas, Richard, Lawrence Berkeley Lab.
Thompson, Greg, DEC-Moffett Field
Thompson, John, Intermetrics, Inc.
Thompson, Patricia, NASA-Johnson Space Ctr.
Threatt, Douglas, USAFSAM/BRP
Throneburg, Monte, Grain Systems, Inc.
Tieman, Leonard J., Bell Helicopter Textron
Tikson, Michael, Battelle - Columbus
Timm, Philip E., Bell Telephone Labs
Tippie, J .w., Argonne National Lab.
Tirmari, George H., Navy Astronautics Group
Tnnkel, Mitchell, DEC-Merrimack
Todd, William, DEC-Merrimack
Toms, Shackelfor, Technical Advisors Inc.
Toscano, John, Cabot Corp.
Toth, Anne, DEC-Maynard
Townsend, Timothy, Stanford University
Tracy, Thomas E., Environmental Protection
Trauger, Gary, Battelle-Northwest
Travis, Dale, Argonne Nat'l Labs
Tritch, Michael, Alley Crafts Company
Trujillo, Stephen C., Arizona, Univ. of
Tubbs, John, V.A. Hospital
Tucciarone, Alex, New Britain Housing
Tucker, Paul, Battelle-Northwest
Tumblin, Henry, Jackson Laboratory

LSI,11
11

LSI,11
VAX,LSI

11
11

VAX,11
8

11
LSI,11
LSI,11

11
11

VAX,11

8,11
11

LSI,11
LSI,11
LSI,11
VAX,11
LSI,11

8,11
11
11

VAX,11
LSI, 11

8,11

VAX,11
LSI,11

11
8

11
11

VAX,11
11

8
8,11

11
VAX,11

8,11
Tunison, Michael S., Perfection Spring & Stamp
Turcich, George w., Interlake, Inc. 11

11
11
11

Turner, David B., Data Processing Design, Inc.
Turner, John, Waikato, University of
Turner, Martha w., American Col.of Radiology
Turner, Ron, American Sign & Indicator
Tuso, Rosanne, Mints/NAMSB
Tyler, George, Lawrence Livermore Lab.
Tymoczko, Kathy L., SPSS, Inc.
Tysdal, Orville, Jones & Jones

Uhrich, Mark L., DEC-Maynard
Ulloa, Guillermo, Crocker Nuclear Lab.
Uptmor, Terry B., Pacific Gas & Elec.Co.
Uter, Thomas G., University of California
Uzi, Gelleg, Grandt Israel

Valcarcel, Reynaldo, Gillette
Valdez, Gerardo F., Grupo Cydsa
Valentine, M.A., Pacific Telephone & Tele.

8,11
11

LSI,11
VAX,11

11

8,11
LSI,11

8,11
11

11
11
11

Van Camp, Warren, Informatics, Inc. LSI,11
Van Doren, E.D., Kaman Sciences Corp. LSI,11
Van Lehn, Allan, Lawrence Livermore Lab. 8,11
Van Sweringen, R.A., Exxon Research & Eng Co. 11
Van Volkenburg, Donald, DEC-Tewksbury 11
Vanarsdall, Paul J., Lawrence Livermore Labs LSI,11

NAME

Vanderpool, Tom, 3M Co111Pany
Vanevery, James J., Boeing Computer Services
Vanhorn, Earl c., DEC-Maynard
Vann, Dave, Oregon Minico111Puter
vardas, Leos., Lawrence Berkeley Labs
Vaughn, Donald D., Tri-State Generation
Vavroch, Duane, Gazette Company
venning,E. Peter, CBL Canterbliry Limited
verroest, Philippe, Shell Francaise
Viana, Thomas A., Naval Underwater Systems
Victor, Graeme A., Stanford University
Viehmann, Norman, Viehmann Corporation
Viggiano, Frank, Spiridells & Associates
Vilandre, John E., Minnesota, University of
Viscarola, Peter, DEC-Bedford
Vivian, Stan, DEC-Winnipec, Manitoba
Voet, Janet, Telesensory Systems, Inc.
Vossler, Roger, TRW DSSG
Vuoso, Jerome, Brooklyn Friends School

Wagner, Kermit, GSA/FPA/MCL/ISD
Walker, Justin c., Nat.Bureau of Standards
Walker, Larry, Lawrence University
Waller, George w., Arete Associates
Walraven, Robert, California, Univ. of
Walty, Kevin, Booz, Allen & Hamilton
Walus, Bryan, McDonnell Douglas
Ward, Charles, Argonne National Lab.
Ward, Sandra, Argonne National Lab.
Warner, Kurt E., Commonwealth Clinical Sys.
Wasley, David L., California, Univ. of
Watson, Bill, Nevada, University of
Watson, Charles, Battelle-Northwest
Watson, Larry, Grand Canyon College
Watts, Jeffrey c., California, Univ. of
Watts, Michael, Custom Computer Services
Watts, P.M., W.R. Grace & Company
Weatherhead, Alan, San Francisco State Univ.
Webber, Theodore, DEC-Merrimack
Webster, Ronald, Toledo, University of
Wecker, Stuart, DEC-Maynard
Wedig, Gary, Merrell Research Center
Weg, Aaron, AOL Data Systems, Inc.
Wehry, Arthur H., Actron-McDonnell Douglas
Weihs, Mark, Toledo Edison Company
Weiser, Neil, Continental Group
Weiske, William, DEC-Nashua
Weitzman, Mertin, Microsound Company
Welch, Daniel F., Flight Systems Inc.
Welch, Ron, Cities of Pleasant Hill
Welch, William D., System Development Corp.
Wells, Mary H., EG&G Inc.
Wempe, James, Dalgety, Inc.
Wentz, Carroll, York Graphic Services
Werner, Nancy, Bell Laboratories
Werner, R.E., Lawrence Livermore Labs
Westhaver, Al, Schnitzer Steei
Weston, Daniel J., Roth Corporation
Weston, Mike, Los Altos High School
Weyand, Thomas, Technical Advisors, Inc.

COMPUTER

LSI,ll
VAX,11
VAX,11
LSI,11
LSI,11
VAX,11
CTS,11

11
11

VAX,11
11
11

VAX,11
11

B,11
CTS,11
VAX,11

B

LSI,11
11

VAX,11
11
11

VAX
VAX,11

11
11

VAX

11
B

VAX,11
11
11

VAX,11
B,11

VAX,11
LSI

11
11

LSI
11

VAX
11
11

LSI,11
VAX,11

LSI

11
VAX,11

Wheaton, Kenneth L., Interactive Graphic Sys. LSI,11
Wheeler, Dana, Naval Rework Facility 11
Whicker, Douglas J., Barron & Associates
White, L.C., Tri-Valley Growers
White, Rod V., MacDonald Services
Whitehurst, Jeanne K., Boeing Comm.Air. Co.
Whitfill, Jim, Los Alamos Scientific Lab.
Whitney, Rusty, Oregon Minicomputer
Whyde, Raymond, Battelle Columbus Labs
Wick, Darrell, Camusun College
Wiehe, John, Deluxe Equipment Co.

B
11
11

VAX,11
LSI,11
VAX,11

VAX

11

NAME COMPUTER

Wiener, Sandra, Stanford University
Wierzba, Steven, Kaiser Permanente Medical
Wiggins, Harvey, Texas, Univ.of @ Dallas
Wikkerink, Robert, Lawrence Livermore Lab.
Wild, Donald, Aetna Insurance Co.
Wilder, A.L., Kastle Systems
Wiley, Ken, Lawrence Berkeley Labs
Wilfert, Thomas, Motorola
Willer, Richard, Illinois Bell Telephone
Williams, David, Prototype. Develop Assoc.
Williams, Donald, Jet Propulsion Lab
Williams, Garry, Miliken & Company
Williams, R.J., Pertee Computer Corp.
Williamson, Marc, Georgia-Pacific Corp.
Williksen, Wayne, Ford Aerospace & Comm Corp.
Willis, James, DEC-Maynard
Wilner, Vicki, Massachusetts Inst.of Tech.
Wilson, Alan, Varian Graphics
Wilson, Frank, Hughes Aircraft
Wilson, Richard, St. Joseph's Hospital
Windsor, Brian, DEC-Calgary
Winstrom, Lee, DEC-Bellevue
Winters, James, Volunteer State
Wirtz, Paul, Cytrol, Inc.
Witcher, Mark F., Diamond Shamrock
Witek, Richard, DEC-Merrimack
Wittenberg, Mark, Informatics/Programming
Wogsberg, Eric, Computer Technology
Wolchak, John, Saskatcheisan, Univ.of
Wolf, Richard, Pittsburgh, Univ. of
Wolsky, Gilbert, DEC-Merrimack
Womack, Michael M., The Poise Company
Wong, Edmound, California, Univ. of
Wong, Jennie, Naval Air Rework Facility
Wong, John, Tektronix

.Wong, Sam, National Semiconductor
Wong, Sheldon, Lawrence Berkeley Labs
Wong, Will, Crocker National Bank
Wood, John, Lawrence Berkeley Labs
Wood, Peter, Lawrence Berkeley Labs
Wood, Randall, MS Band of Choctaw Indian
Wood, Robert, Bell Laboratories
Woods, Wesley, The Boeing Computer
Woodworth, Mike, Measurex Corporation
Wool, Thomas, E.I. Dupont De Nemours
Wooldridge, Kent, California State College
Woolford, Donald C., Cancer & Leukemia Group
Worstell, Glen, Parsec Systems
Wright, Bruce, Duke University
Wright, Edward, DEC-Maynard
Wright, Fred, DEC-Oakland
Wright, John, Florida Computer
Wright, Larry, American Sign & Indicator
Wright, Robert, California State College
Wu, Shirley, Manufacturers Hanover
Wyman, Elizabeth, DEC-Waltham
Wyncott, George, Purdue Univ. Comp. Center
Wyrick, T.B., Texas Gas Transmission

Yang, Teresa, DEC-Merrimack
Yen, Albert, Lawrence Berkeley Labs
Yeraska, Robert, DEC-Tewksbury
Young, Bill, California, Univ. of
Young, Bob, Helix Technology Corp.
Young, George, Georgia-Pacific Corp.
Young, Jim, E & J Gallo
Young, John M., Crown-Zellerbach
Young, Steven, Missouri Pacific Railroad
Yu-Kuang, A., Borden Chemical
Yves, Riquet,systems Informatiques

8·18

LSI
11
11

LSI
11

LSI,11
VAX,11

11
8,11

VAX
LSI

11
LSI,11

B,11
VAX

B
VAX

VAX,11
8

LSI

VAX,11
11
11

LSI,11
11

LSI,11
B,11

11
VAX

11
CTS

11
11

B,11
VAX,11

11
LSI,11
LSI,11

11
111

VAX
LSI,11

11
11

LSI,11
LSI,11

VAX,11
VAX, 11
LSI,11
LSI,11
VAX,11
VAX,11
VAX,11

VAX

VAX,11
VAX

VAX,11
VAX,11

11
11

LSI, 11
11
11
11
11

NAME COMPUTER

Zaborowsky, Benjamin, Eli Lilly and Company
Zalkind, Herb, DEC-El Segundo
Zane, Ronald, California, Univ. of
Zappala, Chuck, Teltone Corp.
Zeise, Fred, Data Systems Design, Inc.
Zeisler, James, Enterprise Companies
Zeitlin, Jim, Cetus Corporation
Zepeda, Raul, Comision Fed de Electric
Zerr, Alan, Altel Data/A.G.T.
Zima, Paul J., Evans & Sutherland Compu
Zimmer, William, DEC-Maynard
Zingheim, Joseph, Stanford Linear
Zirkle, L.D., Sandia Corporation
Zlaket, Jerome, Rockwell International
Zoller, John, Xerox Corporation
Zongker, Layle, Los Alamos Scientific Lab.
Zornes, Aaron, Cincom Systems
Swonitzer, Rodney E., Monolithic Systems Corp.
Zywiol, Gary, GM Mfg. Development

LSI,11
VAX,11

8,11
11

8,11

LSI,11
VAX,11

11
VAX,11

LSI,11
11

VAX,11
LSI,11

VAX,11
8,11

LSI

~19

