| Title | ADO1 MULTIPLEXER F.E.T. Leakage | | Tech Tip
 Number | AD01-TT-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The F.E.T. multiplexers that switch the analogue inputs to the ADOl will float in an undetermined state when power is not supplied to them.

This will result in cross-talk between the inputs and possibly even damage to the F.E.T.'s or the customers equipment in extreme cases.

There is no possibility of a field change to influence the F.E.T. characteristics, (extensive re-design would be necessary), so warn the customers who might be affected directly to keep the AD01 power on when the system is in use.

Title AD	AD01 Source Impedance Problems			Tech TipNumber AD01-TT- 2	
All Processor Applicability		Author A. Thompson	Rev	0	Cross Reference
8's \|115		Approval ${ }_{\text {G. Chaisson }}$	12/	8/72	

When using an ADOl A/D converter with more than one channel, the customer will experience bad readings when switching between channels if his source impedance is too high. Only the first readings on the newly selected channel will be in error.

This problem is inherent in A/D converters using the ADO1 technique of multiplexing and sampling. It is caused by impedance and capacitance in the cables, wires and components slowing down the system charge time if the source impedance is too high. The error may be as high as 4 or 5 counts on the first conversion and varies with configuration, customer cable length, source impedance, etc.

There are two ways to circumvent this characteristic.

1. Keep source impedance down around 1,000 ohms ($1 \mathrm{~K} \Omega$).
2. If a high source impedance is a customer necessity, have his program select the new channel and/or gain and take two or more conversions, using only the last conversion. The last conversion will be accurate.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator AD01A
	12 Bit \times	16 Bit \square	18 Bit	36 Bit \square	

Problem: ADOlA A/D converters that have AHO4 and AH05 (Sample/Hold and Sign bit bipolar) options installed have been exhibiting a power supply problem. The problem is seen when more than three (3) Al24 modules (12 channels) are installed. The symptoms are that the positive 15 volt drops to 8 - 10 volts. This drop in the +15 volt line also causes the +5 to drop and the -15 likewise.

Cause: \quad The cause of this problem is the use of the Deltron P/N 12-03185-3 Power Supply, which during power up, becomes overloaded and due to its inherent characteristics cannot recover from the overload condition.

Correction: An ECO A708-0003 adds a 47 ufd cap. 20 V 10\% and a $97 \Omega \frac{1}{2} W$ resistor from collector of Q2 a DEC 2219 transistor to GND, AC.

Correction: This problem is also corrected with the installation of a Power Mate power supply P/N 12-03185-3.

NOTE:
This is not a problem on ADOl-D used with PDP-11's.

| PAGE 1 | PAGE REVISION | 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- | :--- |

The following are corrections to the AD01-A Calibration Procedures A-SP-AD01-A-06:

Section 4.2.1
Should read: connect the E.D.C. to the A405 input pin A1352 and A13S 2 (ground).

Section 4.2.7
Should read; remove A 220 module then restart program at 202; adjust the offset coarse pot (Figure 4.2) so that the AC switches from 1776-1777 or as close to this state as possible.

Section 6.2
Add: Remove A220 module.
Section 7
Line 2 should read: (slot Al4). Connect the EDC between pins A14P2 and A13F2 (ground).

Line 13 should read: If gross errors are experienced in the last test, remove the Al24 from Bl4.

Line 16 should read: If this test passes but the preceding does not, the problem is probably in the A124 (B14).

The Maintenance Manual for the ADOl-A analog to digital converter subsystem requires caution notes be added to the calibration procedure in the appendix. These caution notes are to prevent possible damage to equipment.

ADOl-A Calibration Procedure, Section 3, Basic AD01-A, before Section 3.1 add note:

CAUTION: Turn off the AC power to the computer and remove the *A405 and A220 modules. If they are not removed damage may result.

Before Section 3.3 Range Adjustment,
CAUTION: Make certain the *A405 and A220 modules have been removed before setting the EDC voltage to -9.9853 volts.

FIELD SERVICE TECHNICAL MANUAL					
12 Bit $\square \mid 16$ Bit \square				18 Bit \square	36 Bit \square

Before Section 4 Adjustment of the A405,
NOTE: At this time turn $A C$ power off and replace the A405 in slot AB13. The A220 should remain out at this time.
*A405 is the Sample and Hold module which is optional in this unit.

Problem - recently two AD01's have exhibited a peculiar problem when attempting to take conversions and change either gain and/or channel.

The symptoms appear as a non-stable input causing conversion readings to start at an incorrect value. Successive conversions approach a value near what it should be when only one channel is used. Use of more than one channel will disguise these symptoms into hash that may appear meaningless.

Solution - this problem can be observed on a scope at the output of the A220* s witch gain amplifier Al4 pin V2.

The output waveform should be a very distinctive step (either positive or negative, depending on input) of less than lusec rise time as the gain is changed or a different input channel is selected.

Good Wave Form:

Bad Wave Form:

$X=$ values actually converted
Solution - this problem is totally corrected by replacing the Al24* used for switching the gain in Bl4.

* AD01-D A220 Location A16

A124 Location Bl6

Title	TEST ROUTINE FOR AD08-B MULTIPLEXER							Tech Tip Number AD08-B-TT	
	Processor Applicability		Author	G.	Chaisson		Rev	0	Cross Reference
	8 81		Approval	W.	Cummins	Date	07/	1/72	

The ADø8-B maintenance manual, and other sources, suggest short maintenance programs which are incorrect and give indications of problems which do not actually exist.

The following program does work and can be used for most maintenance purposes.

$20 / 7604$	Load Channel from SR
$21 / 6542$	Select Channel and Convert
$22 / 6531$	Skip on A/D Done
$23 / 5022$	Not done
$24 / 6534$	Read A/D Buffer
$25 / 7200$	Clear AC
$26 / 6532$	A/D Convert
$27 / 6531$	Skip on A/D Done
$30 / 5027$	Not done
$31 / 6534$	Read A/D Buffer
$32 / 2100$	Stall Loop
$33 / 5032$	JMP .-1
$34 / 5020$	JMP and do again

** The IOT 6542 (ADSC) must be followed by an IOT 6531 (ADSF) before attempting to select another channel (6542) or before an A / D convert (6532) can be issued.

George Chaisson
June 1970

—

AFC diagnostic does not recognize ASR35/KSR35 or LA3 \varnothing altmode codes.

When using the AFC-8 diagnostic MAINDEC-08-D6VA on a system that has an ASR35 or KSR35, it is necessary to change a location in the program. This is necessary since the code for the ALTMODE key is different on the 35 (376) than the 33 (375). The change is

$$
\text { Location: } 6404 \text { - change from } 7403 \text { to } 7402
$$

When using an LA30 make the following change (altmode code $=233$)

Location: 6404 - change from 7403 to 7545

The AFC-8 Diagnostic write-up (Maindec-08-D6VA-DL) contains a Timing Adjustment Procedure (paragraph 5.5.2.1). It presently calls for $a 2 \mathrm{~ms}$ wide pulse from the $\mathrm{M} 3 \varnothing 2$ at $A M \varnothing 4-\mathrm{F} \varnothing 2 \mathrm{~T} 2$ (lower pot).

This pulse being adjusted for only 2 ms will cause the AFC Readings to drift on high gain and will make calibration of the AFC difficult.

Change the procedure to read as follows:
Adjust lower potentiometer on M302 (located at AM04-F02) for a 3 ms wide pulse.

This is a correction to the AFC-8 Diagnostic Write-up only. The AFC-8 Engineering Specifications calls out a 3 ms wide pulse.
\square

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorAG01
	12 Bit 8	16 Bit \square	18 Bit	36 Bit \square	

Title	AG01 or				PRESTON		AMPLIFIERS							Tech Tip Number		AG01-TT-1
	Processor Applicability						Author G	G.	Chaisson			R		0		Cross Reference
	8						Approval W	w.	Cummins					$1 / 72$		

Suggested PM service of Preston Amplifiers on contract:
The maintenance manual describes three tests for the Preston Amplifiers:

Gain Accuracy
Linearity
Common Mode Rejection
These tests should be made periodically (every 1500 hours of operation) as a part of the PM routine. In addition two other things can be done:

1. A check of the chopper circuit with a scope, checking for noisey signals (noise 50 mv P-P) indicating necessity of replacing the chopper.
2. On a customer requested basis and at a $\$ 60$ fix cost replacement of the chopper on a yearly periodic basis. (P/N DEC 29-18313)

These suggestions are an attempt to improve customer satisfaction with service of these units on contract.

Corrective maintenance is normally accomplished by returning the amplifiers to Preston for repair and recalibration.

PAGE 1

PAGE 1	PAGE REVISION	0	PUBLICATION DATE	July 1972

Low Level Multiplexer
The Alll multiplexer relay modules have been found to bounce and interfere with reliable A / D conversions. This problem appears in two different types of operation. First, if a single channel is selected and reselected the problem can show up. Typically, what a programmer may do is select a channel and allow the channel selection to cause an A / D conversion from the AM08. If another conversion is desired on the already selected channel, a reselection of that channel will cause the A / D conversion but will probably cause that relay to bounce and produce unreliable data. Second case would be if an attempt is made to select channels at a rate greater than 180 channels per second.

The problem stems from the fact that the relays used on the Alll module are specified such that the relay must be opened or closed for a minimum of 2.5 milliseconds. This plus AM08-AM03 timing yields a maximum of 180 selectable channels per second with the stipulation that no channel is reselected. (Reselection of the same channel operates the relay faster than specified.)

An ECO has been written for AM08 timing. If a program cannot be changed, ECO $\varnothing \varnothing \varnothing \varnothing 6$, AM0 8 could be accomplished to reduce the likelihood of unreliable A / D conversion results.

di 0 iltal	FIELD SERVICE TECHNICAL MANUAL				Option or Designator AMO 8
	12 Bit X	16 Bit	18 Bit X	36 Bit	

Title	8I-AX08 INCORRECT PRINTS							$\begin{array}{\|l} \text { Tech Tip } \\ \text { Number AX08-TT-1 } \end{array}$	
All	Processor Applicability		Author	J	acey	Rev			Cross Reference
	8 8I\|		Approval	W.	Cummins	Date	07/	1/72	

Problem: Logic Prints do not reflect the following:

1. How RCLK is cleared by the IOT CLRK.
2. How CLYK is cleared by the IOT CLXK.
3. The origin of the signal external.

Answers: 1. The IOT RCLK is decoded as RCLK (\varnothing), (refer to D-BS-AX08-0-1 sheet 1 at coordinates $B 1 / 2,6)$ at pin F of the R113 in slot Al4. This signal collector clears the RCLK flip-flop at pin M of the R203 in slot C12 (D-BS-AX08-0-2 at coordinates D, 5).
2. The IOT CLXK is decoded as XTAL CLK (\varnothing) , (D-BS-AX08-0-1 sheet 1 at coordinates $B 1 / 2,7$) at pin K of the R1l3 in slot Al4. This signal collector clears the XTAL CLK flip-flop at pin F of the R203 in slot C12 (D-BS-AX08-0-2 at coordinates $D, 21 / 2$).
3. Refer to D-BS-AX08-0-2 coordinates $D, 6$ and make the following additions.

PAGE 1	PAGE REVISION	0	PUBLICATION DATE July 1.972

> Some AXO\&'s have been shipped to the field with some of the range capacitors for the RC clock reversed. If any capacitors are reversed, there will be no output from the RC clock for that position of the range switch. The capacitors are electrolytic and all should have their positive ends connected to the top waffer of the range switch. This waffer may be identified by measuring continuity from the center tap (white wire) to terminal 3 of R4 (fine control below the range switch.
> /mt

It has been discovered that all AX08's shipped prior to April 1969 have an error in the wiring of the X display register. The AX08 diagnostic and the Lab-8 software package both run normally. Any customer program which is displaying a base line may have one or two points displayed at random above or below the base line.

The following wiring changes must be made:

```
Delete B21M to B2lV
Delete Bl7V to Bl6K
Add Bl7V to Bl6J
Add Bl8M to B16H
```

Markup the X and Y register print to show that on all X register R205's, the pulse inputs at Pin M are labeled "Load X1"; the pin V inputs should be labeled "Load X2". An ECO is being prepared and will be issued shortly.

PROBLEM:
The A663 module used in the UDC $8 / 11 / 15$ has a power low circuit. If the UDC $+5 V D C$ supply drops below 4.68 volts, ground will be applied to the "LOAD" pulse (Pin CH2 on the A633) to prevent changing the DAC output.

The "POWER LOW" circuit whose output is $Q 42$ emitter or the A633
is biased and operated by the +5 V and +18 V of the H 738 DAC supply.
If the +5 and/or +18 H738 DAC supplies change value beyond a certain point, or R60 is misadjusted, or a circuit component fails, "LOAD" on Pin CH2 will be grounded even though the UDC +5 supply is correct.

The "LOAD" pulse on Pin CH2 is common to the other three functional slots in that DD02 and grounding of load by an A633 prevents outputting to other modules in that DD02. This problem will not affect other DD02's since "LOAD" is buffered by each DD02.

SOLUTION:

An ECO is being generated to correct this problem. ECO \#A633-00002
No Calibration Procedure is available in the Field for the "Power Low" circuit (R60) on the A633 module. If it is determined that R60 is out of adjustment use the following procedure.

1. Set the UDC (H721 or H740 supply) +5 V input to the A633 module Pins AA2, BA2, CA2, and DA2, to $4,6 \mathrm{VDC} \pm .05$ volts.
2. Adjust R60 fulyy clockwise (CW).

Note: 4 Double heigth extenders (W984 (are required to enable access to R60.
3. Insure that the $+5 \mathrm{~V} \pm .25 \mathrm{~V},-18 \pm .01 \mathrm{~V}$ and $+18 \pm .01 \mathrm{~V}$ of the H 738 DAC supply are within tolerance-
4. Slowly adjust R60 until gate E19 pin 13 jsut goes to ground.
5. Adjust the UDC +5 V abck to 5 V .
6. Slowly lower the UDC to +5 V and insure that gate El9 pin 13 goes to ground as the UDC +5 V passes through $4.68 \pm .05 \mathrm{~V}$
7. Readjust the UDC +5 to $5.1 \pm .025$ volts.

PAGE 1	PAGE REVISION	0	PUBLICATION DATE	Ju 1 y 1972

Title	BCOIV WIRING ERROR						$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \end{aligned} \text { BCO1-TTT-1 }$	
	Processor Applicability	Author	Bill	Freeman			0	Cross Reference
$l_{8 \mathrm{E}}$		Approval	W.E.	cummins			6/72	

Some BCOIV cables have made their way to the field which have the black wire that should be attached to pin VV on the Berg cable terminator connected to the unlabeled slot below pin VV. To correct this problem move the wire from the incorrect position to the proper one.

The BCOlV cables can be used on KL8E/A-G, KL8FA-K, DP8EA.

PAGE 1

FIELD SERVICE TECHNICAL MANUAL
Option or Designator

12 Bit 8	16 Bit \square	18 Bit \square	36 Bit

CABLING RULES

Rule \#1

Round and flat coax are electrically interchangeable, and may be intermixed in a system. Round coax is preferable for interconnecting free-standing cabinets, since it is far more resistant to the elephantlike feet of computer operators.

Rule \#2
Ribbon cable and unshielded flexprint are "for the birds". Any person using such a cable on an 8 -Family I / O bus does so at his own peril, and had better not get caught.

Rule \#3
The maximum length of coax which may be used on the programmed I/O bus is 50 ft .

Rule \#4
The maximum length of coax which may be used on the data-break bus is 30 ft .

Rule \#5.
Indiscriminate intermixing of shielded flexprint and coax is not advised. For consistency, and minimum cost, we recommend all cables be shielded flexprint unless used to interconnect free-standing cabinets, or to gain maximum length. No more than one change from flexprint to coax (or vice-versa) is permitted over the length of a bus.

Rule \#6
Shielded flexprint (flexprint cables with alternate solid flexprint) can be used in place of coax. Shielded flexprint should be used only within cabinets, or in locations where it will not be subject to physical abuse (see rule \#l).

Rule \#7

Maximum permissible length of shielded flexprint is 45 ft . for programmed I/O, and 25 ft . for data break.

Rule \#8
\bar{A} DMO1 $=10 \mathrm{ft}$. of cable (data break only). in rules \#4 and \#7.
A DMO4 $=5 \mathrm{ft}$. of cable (data break only) in rules \#4 and \#7.
A DW08 (either A or B) equals 10 ft . of cable in rules \#3, \#4, and \#7.
For DMOL and DMO4, rules \#4 and \#7 refer to the sum of cable lengths from the processor to the DM and from the DM to the most distant break device.

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- |

Your attention is called to drawing $D-A R-P D P-12-0-2$ sheet 4 (Equipment Layout (PDP12)). Note 3 specifies that all systems with data break devices must be cabled with coaxial cable only. This should be strictly adhered to.
/mt

Title	NO P	POWER	LOW FR	ROM	8E	ENABLE			BA8-A		BA	8-			Tech Ti Number		3C08H-TT-1
	Processor Applicability					Author	J	.	undell					0	0	Cross Reference	
						Approval	F	. P	urcell	D	Date		9/		0/72		

BCO8H omnibus expander cables using a Rev. C M936 may fail to bring power low up to the processor from the expander box because the jumper from the cable to pin BV2 of the M936 is missing.

Check for this jumper on any systems using the BC08H cable, especially if you have power low problems.
/mt

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator$\mathrm{BCO} 8 \mathrm{M}$
	12 Bit X	16 Bit \square	18 Bit \square	36 Bit	

Some BC08M-OM over the top connectors have been manufactured with 10 OHM resistors on pins A2, B2, Ul and V2. The use of the connectors with the resistors can cause signal problems.

These resistors should be removed and jumpers installed. /mt

Rule \#8 (continued)
In the case of the DW08A or B, positive and negative buses must be zonsidered separately. For one of these buses (the one originating in the computer) rules \#3, \#4, and \#7 should be applied directly. For the other bus, rules \#3, \#4, \#7 and \#8 govern the sum of the lengths of cable from the computer to the DW08 and from the DW08 to the most distant peripheral on the bus of opposite polarity.

Rule \#9
Termination is required on programmed I / O cables longer than 20 ft. , and may be desirable on shorter cables. For negative bus, use 220 ohm shunt resistors to ground on IOP 1, IOP 2, IOP 4, BTS 1, BTS 3 and Initialize. No special termination module exists for negative bus. For positive bus, 100 ohms to ground on the same lines should be used. (A G717 module does this for you, and should be inserted at the end of the bus on cable \#l.) If two buses are present in a machine, they are electrically independent, and must be separately terminated.

Rule \#10
No branching ("Y" connections) is permitted on the bus.

	FIELD SERVICE TECHNICAL MANUAL						Option or Designator CRO 3
	12 Bit 8	16 Bit	\square	18 Bit	\square	36 Bit \square	

When the reader motor start switch is actuated, noise can be generated as relay Kl contacts close. The solution to this problem is to install a Thyrector across contact terminals \#6 and \#8 of Kl.

$$
\begin{aligned}
& 117 V, 50 H z-T h y r e c t o r ~ p a r t ~ \# S P 9 B 9-\$ 3.66 \\
& 117 V, 60 H z-T h y r e c t o r ~ p a r t ~ \# S P 4 B 4-\$ 2.10
\end{aligned}
$$

PDP-8 ECO \#256 specifies that any 804 logic below serial number 751 must be exchanged if a CRO3 is to be added. A new 804 logic will be included with a field add-on CRO3. There are no additional charges involved for the 804 exchange; the original 804 is to be returned to the factory.

A 60 cycle CRO 3 can be converted to 50 cycle operation by the following procedure:

1) If the motor is rated $50 / 60$ cycles it need not be changed. A 60 cycle motor, however, must be exchanged for one rated 50/60 cycles.
2) The two timing belt pulleys must be changed from \#24XLO 37 (two eash) to \#20XL637 (two each).
3) Capacitor c4 (.0033 mfd.) on the 4017 module must be changed to 82 mmfd . (68mmfd. is acceptable.
4) The following adjustments must be made:
a) decrease $T P 1$ from 80 msec to 60 msec .
b) decrease $T P 2$ from 180 msec . to 166 msec .
c) TP3 should be unchanged, 20 msec .

| PAGE 1 | PAGE REVISION | 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- | :--- |

In order to make control of ECO's easier for Field Service, Engineering is giving the Documation Card Reader's option numbers. You should change your parts lists to call out the following options in place of part numbers; ECO's will be written against the CRø4.

Part Number	Option
30-1ø639-ø1	CRD4-A
30-1ø639-ø2	CRø4-B
3ø-1ø639-ø3	CRø4-C
3ø-1ø639-ø4	CRØ4-D
$3 \emptyset-1 \varnothing 639-\not \subset 5$	CRø4-E
$3 \varnothing-1 \varnothing 639-\varnothing 6$	CRØ 4-F
$3 \emptyset 106639-\emptyset 7$	CRø4-H
$3 \varnothing-1 \varnothing 639-\varnothing 8$	CRO4-.T

| Title | HOPPER EMPTY SWITCH | | | Tech Tip
 Number | CR04-TT-2 |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |

A high failure of the "Hopper Empty Switch" used on the documation card readers is due to the wrong type of switch being used. Possibly due to nomenclature used by documation for "Hopper Empty" and "Hopper Full".

Action: Check all units for the correct switch.
Change all references in the documation manual for "Hopper Full" to "Stacker Full".
Order switches by Part Numbers.
Documation Switch Assembly Summary
A. Hopper Empty Switch Assembly

M200/M1000/M1200 - 29~18523-1020277
Switch, Hopper Empty
M200/M1000/M1200 - 29-19488 - E21-85HX, GRN/BLK
B. Stacker Full Switch Assembly

M200: 29-18524-1120551
M1000: 29-19619-1020211
M1200: 29-19634-1320702
Switch, Stacker Full
M200: 29-18524-E34-85HX-RED/BLK
M1000: 29-194-87-E63-60K-GRN/BLK
Ml200: 29-18524-E34-85HX-RED/BLK
NOTE: E34-85HX cannot be used as a replacement for E21-85HX.

| PAGE 1 | PAGE REVISION A | PUBLICATION DATE December 1972 |
| :--- | :--- | :--- | :--- |

The Documation Card Reader, being a Cross Product Line device, results in different Part Numbers for particular assemblies e.g., modules. Part Numbers for the modules (vendor number) are marked on the ETCH side of the module as an "ASSY 610-03" for example.
NOTE: The revision level of the ETCH or the revision level of the component sides is not the part number.

To establish a standard on future bulletins the following will be used to flag a reference to a particular model of card reader:

MXXYY.DDD \quad| $X X$ | $=$ Modle |
| ---: | :--- |
| $Y Y$ | $=$ Power Type |
| $D D D$ | $=$ Logic Type |

e.g. M0260. GDI $=$ M200 Model 60 Hz with GDI Interface (pos. logic).
e.g. Ml250. MDS $\quad=$ M1200 Model 50 Hz with MDS Interface (neg. logic).

MODULE CROSS REFERENCE

1. M0260 GDI, M0250 GDI	DEC. \#	VENDOR \#
Control	$29-18511$	$1040619-05$
Clock	$29-18510$	$1040765-05$
Sync	$29-18513$	$1040353-03$
Error	$29-18512$	$1040610-03$
2. M0260, MDS, M0250, MDS		
		$1040845-01$
Control	$29-19490$	$1040765-03$
Clock	$29-19491$	$1040353-03$
Sync	$29-18513$	$1040822-01$

3. M1060, MDS, M1050, MDS
Control
Clock
Sync
Error

$29-19490$	$1040845-01$
$29-19491$	$1040765-03$
$29-19493$	$1040353-05$
$29-19494$	$1040822-01$

4. Ml260. MDS, M1250, MDS

Control	$29-19490$	$1040845-01$
Clock	$29-19491$	$1040765-03$
Sync	$29-19492$	$1040353-02$
Error	$29-19494$	$1040822-01$

digital	FIELD SERVICE TECHNICAL MANUAL				Option or Designator CR8I
	12 Bit \triangle	16 Bit	18 Bit	36 Bit 区	

There is a problem with the CR8I in a certain application; the following simplified program will demonstrate the fault.

7øøø	6672	Skip if reader ready; pick card
7øø1	$52 \varnothing \varnothing$	Look for reader ready
$7 \varnothing \varnothing 2$	6671	Skip if card done
$7 \varnothing \varnothing 3$	$52 \varnothing 2$	Look for card done.
7øø4	$52 \varnothing \varnothing$	Get next card

The problem application involves the operator (1) filling the input hopper of the reader, (2) pressing motor start and read start on the reader, (3) loading and starting 7 $\varnothing \varnothing \varnothing$ on the computer. Cards will begin to be processed and after the last card has been processed the program will hang up in the loop looking for READER READY. The operator now repeats steps 1,2 , and 3 and if everything were right the cards would be processed.

The problem is that when motor start is activated, there is enough noise on the READER READY line to cause an erroneous SKIP ON READER READY. Consequently, the program may hang up looking for CARD DONE.

A temporary fix, which will only apply to customers using this scheme of operation, is to install a .Oluf capacitor from pin R2 on the M714 module to ground. A formal ECO to the module is being generated as the permanent method of solution of this problem.

Title	CARD READE CM8L, CM8E		MODEL	$100 \mathrm{M}$	RANDON	HALTS	CM8I		Tech Ti Number	CR8I-TT-2
All	Processor Applicability			Author	Steve	Kline		Rev	0	Cross Reference
	E	818112		Approval	Bill	Cummins	Date	07/	1/72	

Due to the floating grounds of the GDI 100M, there is a lot of internal noise. Occasionally enough noise is induced on the signal LEAMP, to cause motion errors when no card is in the reader. This has the effect of "MOTOR ON -" to go high turning off the motor and "ON LiNE X" to go false. To cure, place . 01 microf cap pin A2-29A to ground.

| PAGE | 1 | PAGE REVISION | 0 | PUBLICATION DATE | July 1972 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CPL

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator CR8I
	12 Bit 8	16 Bit	18 Bit	36 Bit \times	

The following program will illustrate the problem:
7400/6672
7401/7402 - Program should HALT when last card has been processed 7402/6671
$7403 / 5202$
7404/5200
PROBLEM: In the MARK SENSE card reader, a signal called MTRON + is used to reset the ON-LINE X flip-flop (the status of this flip-flop is sampled by our control logic to determine if the card reader is capable of processing another card).

The time span from when the last card leaves the input hopper (Hopper Empty signa1), until MTRON + goes false (resetting the $O N$ LINE X flip-flop), is so long that the reader will appear to be ready even though there are no more cards to be read. (under these conditions, the program above will loop around locations 7402 and 7403)

SOLUTION: The only way to correct the problem is to OR the Hopper Empty signal with MTRON + and use the resultant signal for resetting $0 N$ LINEX: this can only be accomplished by adding an external component to the existing GDI logic.

The following diagrams will explain the exact nature of the modification.

See drawing, page C.

EFFECTS OF MODIFICATION ON GDI LOGIC

GDI PRINT AE
(A2-16B) START -

PIN 1	$A 2-I A B$
PIN2	$A Z-9 B$
PIN 3	PIN 4
PIN5	$+5 V$
PIN6	$A 6-2 O A$
PIN7	GND
PIN 14	$+5 V$

capocitor across IC pins $7 \$ 14$ (. $01 \mu^{\mathrm{Fd}}$, disc, 100 V)
perforated, un-clad printed arrcuit board
(e.g. secition of w994 module)*

$$
\begin{array}{rll}
I C= & M C 846 P \text { or } D T \mu L 94659 \\
& (D E C \text { STK } & 29-16293)
\end{array}
$$

* the abeve assemily can be mounted on the GDI motor brecket Page -3-

FIELD SERVICE TECHNICAL MANUAL				
12 Bit X	$16 \mathrm{Bit} \square$	$18 \mathrm{Bit} \square$	$36 \mathrm{Bit} 区$	

Title	GDI MOD 1øø CARD			READER C		CHANGES				$\begin{aligned} & \text { Tech Tip } \\ & \text { Number CR8I-TT-4 } \end{aligned}$	
All	Processor Applicability				Author	Bob	Nunley		R	0	Cross Reference
					Approval	Bill	Cummins	Date	0	1/72	

Several General Design Inc., Engineering notices have been generated on their Mod 100 and Mod 500 card readers. Included is the package of electrical EN's which may be incorporated in the field by DEC if problems are observed. Although not all EN's give a problem-cure statement, a general statement is included so that the problem-cure may be deduced.

Format of Synopsis:
Date of / En Number / Revision / Assembly Name / Problem-Cure
GDI Break-In / $/$ / Number
Breakdown of symbols:

$$
\begin{aligned}
\text { A3A11-4 }= & \text { Card A3 } \\
& \text { ICA11 } \\
& \text { Pin } 4 \\
\text { A } 3-22 \mathrm{~A}= & \text { Pin 22A } \\
& \text { Card A3 } \\
\text { XA3-22A }= & \text { Wire Side Slot A3 } \\
& \text { Pin 22A }
\end{aligned}
$$

EN Number refers to a drawing.
DEC \# = DEC Part Number.
I. Wiring Plane

10-14-68/EN-10505/B/Wiring - Mod 100/Provide variable lamp
intensity.
Add R101 (8 apot') in series with positive lead to read lamp connector. Wiper to GND - one end to Jlol-B other end is not connected.

To adjust:

1) Disconnect read/head connector.
2) Turn on reader.
3) Using a 500 micro-amp meter, measure and record the short circuit current of each Photocell Negative lead to Pin 13. Positive Lead to each Photocell in turn.
4) Adjust lowest output to 300-350 micro-amps.

PAGE4	PAGE REVISION	0	PUBLICATION DATE	July 1972

CPL

11-11-68/EN-D-10505/C/Wiring - Mod $100 /$ Prevent transients on motor start from setting flip-flops and producing false index markers.

Add three IN270 diodes to slot A3 (DEC \#11-00117)
Anode to XA3-3A, XA3-6A, XA3-8B
Cathodes to XA3-18B
Number CR10, CR11, CR09 respectively

7-28-69/EN-D-10505/F/Wiring - Mod 100/

1) Prevent stacker from interrupting current pick cycle.
2) Improve pull up time of hopper empty signal.
3) A) Add IN270 diode between XA4-29B (anode) and XA5-16A (cathode).
B) Add 4.7 K ohm $1 / 2 \mathrm{~W}$ res. between $\mathrm{XA} 4-29 \mathrm{~B}$ and +5 volt bus.
4) A) Add IN 270 diode between $A 4-30 B$ (anode) A5-16A (cathode).
B) Add 4.7 K ohm $1 / 2 \mathrm{~W}$ res. between $\mathrm{A} 4-30 \mathrm{~B}$ and +5 volt bus. IN270 DEC \#11-00117

2-13-70/EN-D-10505/H/Wiring - Mod 100/Enable reader to stack a card that has a leading edge dark check.

1) Delete $X A 5-9 A$ to $X A 4-22 A$.
2) Add $X A 5-9 A$ to XA4-14A.
3) Change A5-9A name from S.O. ६ N.O. to $\overline{\mathrm{CIRI}}$.

2-13-70-EN-D-10505/H/Wiring - Mod 100/eliminate erroneous "Sync Fail" condition when hopper empty or stacker full is cleared.

Wires:

1) Delete XA4-18A to XA3-29B
2) Add XA4-18A to XA5-22A
3) Change A4-18A name from Composite Error to R.D.Y.

digitali	FIELD SERVICE TECHNICAL MANUAL					Option or Designator CR8I	
	$12 \mathrm{Bit} \times$	16 Bit \square	18 Bit	36 Bit 区			
GDI MOD 100 CARD R		READER CHANGES	(Continued)			$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \end{aligned}$	
Processor Applicability		Author Bob Nunley	Bob Nunley	Rev		0	Cross Reference
8I/2		Approval W.	Cummins	Date 07/31/72			

GDI MOD 100 CARD READER CHANGES (continued)

V. One Shots (A-4)

4-18-69/EN-C-4009/one shots (A-4)/Provide faster recovery for S.0. one shots. (This mod has already been made if assembly number is 4010-101.)

1) Drill P.C. board for 1.0 K resistor (DEC \#13-0036-5).

Solder leads to A4-22A and +5 land from A4-31A.
2) Add 101 after assembly number; i.e., 4010-101.

2-13-69/EN-4009/D/One Shots (A4)/ On rare occasions a "light check" is indicated as the last card is read. By pass switching transients in Mod 100 and Mod 500 readers.

On A4:

1) Add a 2500 PF 10 V cap between $\mathrm{A} 4-28 \mathrm{~A}$ and ground.
2) Show cap on drawing C-4009, designation as C17.

Robert Nunley/February 1971

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator CR8I
	12 Bit X	16 Bit	18 Bit	36 Bit $\overline{\text { X }}$	

IV. Control and Error Detectors (A3) (continued)

10-18-68/EN-4006B/C \& E DET (A3)/Eliminate false "Stacker Fail" indications.

1) Short C2 with a jumper wire on back side of p.C. board.
2) Cut printed circuit on front of board between C 2 and A3A11-6.

4-18-68/EN-C-4006/C \& E DET (A3)/Provide stacker jam detection after one card. (If A3 number is 4008-101, this mod has already been made.)

On the A3 module:

1) Open all printed circuits attached to All pins $4,5, \& 6$.
2) Jumper A3A11-4 to A3-22A.
3) Jumper A3A11-5 to A3-21A.
4) Jumper A3A11-6 to A3-20A.
5) Dri11 P.C. Board for $6.8 \mathrm{~K} 1 / 4 \mathrm{~W}$ resistor (DEC \#13-00463).
6) Solder one lead to A3A11-4. The other end solder to +5 volt and from A3-31A.
7) Add 101 after assembly.
8) This redesigns the stacker fail circuit and creates an extra "and" gate in A3A11.

THIS WIRING CHINGE WILL PKEVENT ANY SIGNAL DOTPUT. FROM THE "CIR 3 " . . (CARD"IN -REIDER SIGNML) WHEN POWER IS TURNLID ON. CKB PROVIOES THE RESET TO THE RENOY …FF. FROM THE MOTOR RELAY AND ISOLATES THE STOP SWITH.- CRG PROVIDES ... THE CIR 3
\qquad CLAMP LOW DURING. POWER ON AND WILL HOLDTHELINE LOW UNTIL THE MOTOR IS STIRTED. _R7 PROVIDES . A PULL_UP. TO REVERSE. BIAS CR8 \&CRG.... WHN THE MOTOR RELAY OPERATES. THN CHANGE REQUIRES AN ADDTTONAL WIRE FROM THE CONTROL \qquad … PANEL TO THE CARD FILE CONNECTOR XA4 - PIN, $2 O B$ MAY BE \qquad - USED AS A TJE POUT FOR TAE WIRE, CRE, CRG AND RT.: \qquad MODEL IOO READER -CIR3 INHIBITICIRCUTT.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator CR8I
	12 Bit 区	16 Bit	18 Bit	36 Bit X	

II. Solenoid \& Indicator Drivers (A5)

2-3-69/EN4012/A/4014 Solenoid and Indicator Drivers (A5) reduce voltage on associated lamps to 14 V . (No need to field retrofit.)

Change resistors from 47 ohms to 75 ohms on $A 5-R 11, R 13, R 15$, R19, R21, Mod 100 \& Mod 500.

Model 500 Drawing D4000 R6, R7 (DEC \#13-05281 = 75 ohm)
Model 100 Wiring R4, R5

1) Provide a non-recoverable error signal to J5-18 (output connector to computer).

Adds an IC. Changes part number of P.C. board to 4013A.
Cannot field retrofit P.C. board. When new module is installed, add XA5-15B to J5-18 $\overline{\mathrm{NRE}}$ (drawing 1).
2) Keep ready signal high until read cycle complete.

See (1) above.
With new board:

Add XA4-14A to XA5-25B
Add XA3-2A to XA5-26B PICK FF Drawing 2

III. Power Supply

3-17-68/EN-B-10502/B-C/Power Supply/
Change components

FROM
REV. B R2 91 ohm
C1 12000 microf 10 V
Tl Part number 12.8-8
REV. C Q1, Q2 T1P14

T0
120 ohm (DEC \#13-00243)
13000 microf 15V (DEC \#10-09436)
Signal \#5864
2N3055 (DEC \#15-05819)

PAGE 6	PAGE REVISION	0	PUBLICATION DATE	Jully 1972

III. Power Supply (continued)

10-29-69/EN-B-10502/D/Power Supp1y
Add thyrector (CR7) between J3-2 \& J4-7
GE \# 6RS 205P4B (DEC \#11-00106)
2-19-69-/EN-B-10502/E/Power Supply/By pass line transients
Add dual . 1 uf capacitor to power supply (C4A, C4B)
Sprague \#DYR6011J (DEC \#10-02153)

6-5-69/EN-1052/F/Power Supply/Improve +5 Volt regulation
Change R1

From
62 ohms $1 / 2$ Watt 5%

To
33 ohms 1 Watt 5% (DEC \#13-04831)
IV. Control and Error Detectors (A3)

10/14-68/EN-4006/B/C \& E DET. (A3) Occasional1y the CIRI F/F does not set when a card enters the Read Station. This will cause a false light check. To eliminate:

Add IN457 diode between A3A8-11 (cathode) and A3A7-12 (anode)

Cables interfacing DEC terminals (communication interfaces) to data sets come in several varieties depending upon the terminal to be utilized. The following are cable types issued by DEC and the terminal interface that the cable may be used with:

Cable	Interface
BC01A	8/I, 8/L, DCØ2
BCø1B	DCø8F
BCalC	8, DCø8B, PTø8B, РTØ8С
BCøle	DCø8B
BCølJ	8/I, 8/L, 12, DCØ2*
BC01V	KL8E, KL8F, KL8M, DP8EA
7ø-5717	PTØ8F, PTØ8FX, $689 \mathrm{MQ}, 689 \mathrm{MA}$
74-6139	689AF, 689AG
7ø-5639	DPø1A
74-6136	689 ADF
74-7226	DCø8H
BCø5C	DP86A

Following is a table giving the standard signals assigned by EIA Standard RS232. Each data cable is listed giving the pins utilized on the data set connector (TYPE DB25P - The hood is Type DB51226-1). Of the several data sets available below are listed the most common along with any differences they have in relation to the EIA Standard. The data sets are also noted on the following table in relation to the signals they used.

* Utilizes Type DBM255 Female Data set connector.

Data Set

* Bell lø3 A, E, G, H
\# Bell 10JF
+ Bell 2ø2.C.D

Differences from Standard

Pin 11 and 12 are originate mode and local mode respectively

Pin 19 remote release Pin 20 remote control
Pin 21 Ready
Pin 22 Ring indicator 1
Pin 23 Ring indicator 2
** Bell 2ø1
Synchronous modem

PAGE 1	PAGE REVISION	0	PUBLICATION DATE July 1972

Data Set 'in	RIn-RS232 Pin Assignments				CABLE TYPE									
					BCO1A	BC01B	BCO1C	BCOLE	BCOLS	BCOIV	70-5717	74-6139	BC05C	70-5639**
					M850	W853	G857	G857	M850	BFRG	W023	W023	BERG	W023
1	Protective GND	*	\#	+	X	X	X	$\begin{array}{r} \text { Tied to } \\ 7 \end{array}$	X	$\begin{array}{r} \text { Tied to } \\ 7 \end{array}$	X	X	X	X
2	Transmitted Data	*	\#	+	X	X	X	X	X	X	X	X	X	X
3	Receive Data	*	\#	+	X	X	X	X	X	X	X	X	X	X
4	Reguest to Send	*	\#	\pm		X				X		X	X	X
5	Clear to Send	*	\#	\pm		X		X	X	X			X	X
6	Data Set Ready	*	\#	+		X		Tied to	Tied to	X			X	X
7	Signal GND	\cdots	\#	\pm	X	X	X	X	X	X	X	X	X	X
8	Data Carrier Detect	*	\#	+		X		$\begin{gathered} \text { Tied to } \\ 6 \end{gathered}$	$\begin{array}{\|c} \hline \text { Tied to } \\ 6 \\ \hline \end{array}$	X		X	X	X
9	Reserved for testing	*	\#	+									X	
10	Not to be used in terminal	\star	\#	+									X	
11			\#							X			X	
12	Sec. Rec. Line Sig. Detector		\#			X				X			X	
13	Scc. Clr to Send												X	
14	Secondary Transmitted Data					X							X	X
15	Transmit Signal Element Timing					X				X			$\begin{gathered} x \\ \text { (note) } \end{gathered}$	X
16	Sccondary Received Data							,					X	
17	$\begin{aligned} & \text { Receive Sig. Rlement } \\ & \text { Timing } \end{aligned}$									X			(note)	X
18													X	
19	Socondary Reguest to Send			\pm									X	
20	Data torminal Peady	\star		+	X	X	X			X	X	X	X	X
21	Signal Ouality Jetector			+									X	
22	Ring Indicator	*		+		X				X		X	X	X
23	Data Signal Rate Selector			+									X	
24	\qquad					X				X			X	X
25						X				X		X	X	

NOTE: Shielded conductor tied to ground pins on both ends.

Data Set Pin\#	$8 \varnothing 1$ Automatic Calling Unit Pin Assignment	Cable Type	
		74-6136	74-7226
		W023	W853
1	Frame Ground	X	X
2	Digit Present	X	X
3	Abondon Call \& Retry	X	X
4	Call Request	X	X
5	Present Next Digit	X	X
6	Power Indication	X	X
7	Signal Ground	X	X
8			X
9	Reserved		
10	Reserved		
11			
12			
13	Data Set Status		X
14	Digit 1	X	X
15	Digit 2	X	X
16	Digit 3	X	X
17	Digit 4	X	X
18	Reserved		
19	Reserved		
20	Reserved		X
21	Reserved		
22	Data Line Occupied	X	X
23	Reserved		
24			
25	Reserved		

When clearing TTY Keyboard flag, Reader run is set causing tape to advance this is undesirable in some programming situations.

CORRECTION:
Clear Flag with IOP4 (Read Buffer) and set Reader run with IOP2.
TT AC clear L. Sets Reader run instead of KCCL.
TT I Strobe H on input of KCCL, instead of grd.
Wiring to be done on each in DCO , AB 09 , ABIO , etc.
Delete: (KLCL) A09V2 A09E2
(GND) B09D1 B09C2
(GND) B09D1 B09T1 (if present)
Add (TTAC clear L) B09E2 A09V2
(TT I Strobe H). B09D1 A09V1
Note: Pins B09D1, B10D1, etc. are bussed to gnd. Bus must be cut.

| Title | SPEED SELECTION OF | M453 CLOCK | | Tech Tip
 Number | DCO2-TT-1 |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |

The following modules use mercury wetted relays in communication systems:
G852 G855 G856 G860

The manufacturer of the relays state there are two (2) general causes of relay failure.
a. High voltage transients may exceed the contact ratings, overheat the contacts and cause them to weld together.
b. Improper handling of the module on which the relays are mounted.

To eliminate the failure "a" the following should be noted:
The output from each module may be a high DC voltage taken from the switched contact of the relay. In the DC08C, the G856 is used when the battery is less than 80 volts while the G860 is used for a battery of greater than 80 volts. The difference between the two modules is the arc suppression across the switches output contact.

The input is a 100 ohm relay coil and cannot withstand a current greater than 100 ma . With this limitation the input cannot be connected directly to the output without a series current limiting resistor.

Since the coil current cannot exceed 100 ma , and the coil resistance is fixed at 100 ohms, the value of the resistor will be a function of the battery voltage used with DC08C or DC08D interface. A typical resistor value would be 2.2 K ohms, 2 watts for a 60 volt battery. The coil will operate at a minimum of about 8 ma, however optimum current range is 35-55ma.

A tester is available which includes a power supply which may be utilized if the customer's DC power (battery) is not available to supply voltage to the G856's or G860's. If the tester supply is used, it will probably be necessary to adjust the receive relay bias setting both when the tester is connected into the DC08C and when the system is returned to normal operation using customer battery (see Installation Manual, Section 9). It is therefore advisable to use the customer's battery whenever it is available.

PAGE 1	PAGE REVISION	0	PUBLICATION DATE July 1972

A simplified by typical representation of the input/output lines for test or installation would be:

WARNING: Damaging overheating will result if the DCO8-C tester is connected into a circuit and power is applied for a period exceeding six hours.

WARNING: Damaging overheating will result if the DC08-C tester is connected into a circuit and power is applied for a period exceeding six (6) hours.

According to the manufacturer, "b" (preceeding page) failures are essentially a result of operating the relay before the mercury has a chance to settle. When the board is in other than the normal operating position the contacts are immersed in mercury. When the board is inserted into the system and the relay is actuated, it is possible that the contacts, bridged by mercury, will allow a high current to flow, causing them to overheat and weld together. To help eliminate these "handling" failures, the following procedures are recommended by the manufacturer:

1. Let the board remain stationary, plugged into the system, for a minimum of twenty-four (24) hours, or
2. run the transmit relay without applying power to the contacts for several minutes or
3. after inserting the boards, but before operating them, vibrate them gently by tapping them in the direction of the arrows with a pencil or module vibrator stick, etc., or

4. vibrate as in part "3", but prior to insertion. After tapping them, handle them very carefully to eliminate splashing excess mercury back onto the contacts.

Part "4" is recommended as out standard Field Service procedure.
It is understood that many times these G series modules must be inserted or removed with power on. When this is done the module must remain in an orientation indicated by the arrows on the relays. IN NO CASE should the module be subjected to vibration since mercury splashing around inside the relay may cause direct shorts of high voltage DC to ground, ruining the module.

In some DC08C systems using G856 and G860 modules the relays are isolated from the battery by a separate fuse for each line in an 893 fuse panel. With such a panel, the four fuses associated with the line in question (remember, 2 lines to a module) should be removed prior to insertion or removal of the module.

digital

 FIELD SERVICE TECHNICAL MANUALOption or Designator
DC08A

The following is a list of possible jumper configurations for the M750 module in the DC08A:

OUTPUT JUMPERS

DESIRED OUTPUT CONDITION	JUMPER FOR EVEN LINE	JUMPER FOR ODD LINE
Mark $=$ LOW	E2 to U2	R2 to T2
Mark $=$ High	F2 to U2	P2 to T2
INPUT JUMPERS		
DESIRED INPUT CONDITION	JUMPER FOR EVEN LINE	JUMPER FOR ODD LINE
Mark $=$ LOW	J1 to M2	K1 to N2
	C1 to H1	E1 to L2
Mark $=$ LoW	Filtered	D2 to M2
	A1 to J1	N2 to V1
	C1 to H1	K1 to U1
Mark $=$ High	C1 to M2	E1 to L2
Mark $=$ High	D2 to M2	N2 to V1
Filtered	Al to Cl	E1 to U1

The input and output conditions required for the DC08 options are listed below. The required conditions for the particular option can be obtained by M750 jumper installation as detailed in the table above.

OPTION	OUTPUT	INPUT
DC08B using W076D modules	Mark = Low	```Mark = Low Filtered Mark = Low*```
DC08B using BC01 cables	Mark $=$ Low	Mark = Low
DC08F, FE, and FF using BCO1B cables	Mark $=$ Low	Mark = Low
689AG or 689MQ using W670 and W570 modules	Mark $=$ High	Mark $=$ High
DC08C using G856 or G860 modules (Polar or Positive Battery)	Mark = Low	Mark = Low
DC08C using G856 or G860 modules (Negative Battery)	Mark $=$ High	Mark $=$ High
DC08CS using G861 modules **	Mark = Low	Mark = Low

Low and High refer to polarities as seen at the input (Pin El, Cl) and Output (Pin S2, Sl) of the M750 line I/O control module for each line. Low - 0 volts $D C$ and High $=+3$ volts DC.
** Jumpers on G861 parallel for POSITIVE Battery "X" for negative battery
G862 no change

* All input jumpers for DC08B options are factory wired as Mark $=$ Low. If noise problems develop with DC08B/W076D (Teletype lines) the jumpers should be changed to Mark = Low Filtered.

The ultimate method by which the input jumpers can be determined is to work back from the signal LINE MUX OUT D through the M750 logic to the input to the module. The polarity at EINE MUX OUT $\#$ must be +3 volts DC when at mark condition.

| Title DF32D INFORMATION | | Tech Tip
 Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| All DF32D-TT-1 | | |

1) The DF32D G E may use either M206 or M216FFS. If the M206 is used, jumpers must be connected from A1 to FF2 and FFl. This is the standard jumper configuration of an M206. The same holds true for the timing track writer modules.
2) Since there is presently no UML for the TTW, the one below should suffice until it is available. Extensive changes make the early DF32D \& E Manual TTW prints obsolete, so you will have to reference the prints shipped with your TTW. The manual, however, gives general theory, operation, and adjustment adequately.

DF 32 D \& E TTW MODULE LOCATIONS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	G	G	G	G		M	M	M	M	M	M	M	M	M	M	M
A	085	085	294	294		111	233	115	117	206	205	113	115	115	113	206
	G	G	G	G	M	M	M	M	M	M	M	M				
B	085	085	294	294	506	602	401	113	602	401	302	113				

3) New G085 module for DF32D, E only. G085 ECO 00006 deletes and adds a capacitor to make the module less susceptible to noise from the DFMA heads. This was previously accomplished by adding 68 pf capacitors on the logic pins. The new module is labeled G0850 and is not interchangeable with the G085.

Title	DF32D, E Noise Pickup			Tech Tip Number	DF 32D-TT-2
All	Processor Applicability	Author Ray Turcotte	Rev	0	Cross Reference
8 E		Approval Frank Purcel1 Date	07/31	1/72	

If BCO8D or BC08D Flat Shielded Coax Cables are used, slot A30 should contain a G0850 Etch Module, not a G085 retrofitted to the level of a G0850. The reason is that the G085 Etch module has inadequate grounding circuitry due to the physical layout of the Etch; noise transfer between the cable in slot A29 and the module in slot A30 can cause extra TTA pulses in the amplifier. Most disks have BC08A Mylar Cable which cause not problems.

Effective immediately, G0850 modules made from modified G085 modules are not acceptable for PDP12 systems. Only G0850's with G0850 Revision "B" etch are acceptable. This is because the true G0850 has a slightly different layout consisting of more grounding. It is hence less susceptible to noise from adjacent digital modules.
/mt

Falcom errors with an 8L and a DF32 or DF32D system may occur on 60 cycle systems due to the DF32, DF32D Disk Data Maindec DFLE or later revisions. This is due to the time constant normally changed for 50 cycle operation being too small. Location 1772 should be changed from 6 to approximately 15 to ensure proper timing for falcom compare.

Problem 1
Very intermittent data failures especially in environments with poor electrical noise. Print D-BS-DF32-0-5. Assume the write lock switches are in the open position. We then have fairly long open circuit lines to A6T and A6E, which pick up spikes and if they are sufficiently bad cause data errors.

Fix 1 I don't know of any spare clamped loads, so I use a 15 K resistor to -15 V giving a 1 mA current source, via termi-points on the wiring side.

Problem 2
Same print. Assume that fix 1 is not implemented. Assume write lock switch is closed. Problem is that write lock sometimes fails to lock out depending on resistor tolerance. Reason is that the midair upside down "and" gate of +10 V and 4.7 K gives approximately 2 mA of write lock current, the G 285 takes 1 mA and the R002/R111 (on the skip logic) another 1 mA . Result is that depending on resistor tolerance the WIA and WIB signals can be at an indeterminate level of say minus 1.5 volts. This can cause intermittent failures of write lock and information can be lost.

Fix 2 Which also takes into account the extra current requirement of fix 1 , is to replace the 4.7 K resistors on the rear of the rotary switch by 2.2 K .

PAGE 1	PAGE REVISION	0	PUBLICATION DATE	July 1972

Title	METHOD TO INPUT	WRITE TIM	ON DF32	$2 \mathrm{~W}$	IITHOUT		CELL	$\begin{aligned} & \text { Tech } \\ & \text { Num } \end{aligned}$	F32-TT-3
All	Processor Applicability		Author	W.	Kochman			0	Cross Reference
	8 81 8		Approval W	W.	Cummins	Date	07/31	1/72	

Since there has been difficulty in the field writing timing on a D 32 modified for electronic photo sync, a simple method has been implemented. This requires a 12 wire change to the timing trackwriter and an R 401 module. This wire change alters the normal track writing procedure only in that $P 2$ has to be adjusted while depressing write.

With the change, timing is now erased each disk revolution before being written in the same manner as the RF08. The following are the changes to the DF32 TTW:

DELETE	B11F	to	B11C
$" \prime$	B11F		B11P
$" \prime$	A15N		A15F
$" \prime$	A15U		A14T
$" \prime$	A15U		A15N
ADD	A14T		A15U
$"$	A15U	A15F	
DELETE	A13V	A15P	
Add	A15T	B11P	
$"$	B05V	B11F	
$" \prime$	B01U	A15N	
$"$	B05P	A15P	

Revised method to write timing on DF32 without photo cell input.

1. Insert properly jumpered R401 in the slot provided for the data cable. Insert timing cable as usual.
2. With channel 1, oberve jack 9 and adjust P3 for 100 usec output.
3. Press write enable to on. While depressing the write switch, observe jack 8 and adjust P2 for 250 usec output, then release the write button.
4. Adjust the pot on the jumpered R401 until the pulses at jack 8 are more than 35 msec apart for 60 cyc le disks or more than 41 msec apart for 50 cycle disks.
5. Put A trigger source on line and observe any timing track jack. Press and release write and observe gap area using the delayed sweep method described in this Tech Tip. This area should be 350 usec (within 50 usec) and is adjustable by P1. Repeat this step if necessary to adjust for 350 usec.

R401 jumpers:

$$
\begin{aligned}
& F-H \\
& L-R \\
& T-U
\end{aligned}
$$

These jumpers have been found to provide sufficient delay for 50 cycle systems. However, more capacitance, if needed, can be added to the delay by adding jumpers from M, N, and P to R or by adding external capacitance from R to GND. 30 guage wire soldered onto PC lugs is an easy way to jumper since the pins on the module slot are inaccessable for jumpering.
6. Press write enable off after checking all timing track jacks for irregularities and replace the timing cable back into the DF32.

METHOD TO OBSERVE GAP USING DELAYED SWEEP
Channel $1=$ photo gap pulse or jack 8 or 9 on TTW.
Channel $2=$ timing track pulses.
Set scope to:
Mode $=$ chop, sync channel 1 Time/div $=$ sweep 5 msec. , delayed sweep .l msec. Horizontal display $=B$ starts after time delay. B sweep mode $=A$ intensified during B.

PAGE ${ }^{3}$	PAGE REVISION	0	PUBLICATION DATE	July 1972

Method to Observe Gap Using Delayed Sweep (continued)

Observe channel 1 and synchronize sweep. Turn intensity down to enable positioning the .l msec intensified sweep over the gap area using the delay time multiplier control. Change B sweep mode to delayed sweep and observe the gap area.

This method can also be used to observe entire data or timing tracks using the multiplier control. In this way, tracks can be closely examined for irregularities.

Method to Adjust Simulated Photogap Pulse

1) P1ace channe1 1 probe on C27V (DF32) or C16V (DS32) and channel 2 probe on A31P (DF32) or C23P (DS32) and observe gap area using delayed sweep. Observe channel 1 .
2) If there is no gap pulse present turn the R303 pot (C28-DF32, C17-DS32) until one appears. If there is at least one pulse go on to step 3 .
3) Adjust the R302 pot (C27-DF32, C16-DS32) so that the first (possibly only) gap pulse is 200 usec long.
4) Adjust the R303 pot until there are two pulses every disk revolution (this may already be the case). Then turn the R 303 pot again until the second pulse disappears. Continue two turns to ensure good margin. This has set the photo gap pulse at 200 usec and balanced the guard bands on either side. Be sure that the guard bands are at least 50 usec.

DF3 3 DS 32
Signal Name
Delete:

$$
\begin{array}{lll}
\text { A05D-A12V } & \text { PCA } & \text { C12D-D16J } \\
\text { A12V-A30P } & \text { PCA } & \text { D16J-D22H }
\end{array}
$$

Delete photo amplifier and platter tape in DFMA

12 Bit		16 Bit \square	18 Bit \square	36 Bit

Add:

DF 32

DS 32
C $28 \mathrm{D}-\mathrm{C} 28 \mathrm{~F}$ PCA
C17D-C17F
C $28 \mathrm{~F}-\mathrm{C} 27 \mathrm{~N}$
PCA
C17F-C16N
$\mathrm{C} 27 \mathrm{~N}-\mathrm{A} 30 \mathrm{P} \quad$ PCA
C16N-D16J
C28P-C28R
C17P-C17R
C $28 \mathrm{~T}-\mathrm{C} 27 \mathrm{~V}$
C28U-C27P GND
C17T-C16V
C17U-C16P
C27P-C27C GND
C16P-C16C
C28V-B21P
TTA
C17V-D22D
C27S-C27T
C16S-C16T
C $28 \mathrm{~J}-\mathrm{C} 28 \mathrm{U}$. 01 mf cap C17J-C17U
C $27 \mathrm{R}-\mathrm{C} 27 \mathrm{~S} .015 \mathrm{mf}$ cap C16R-C16S

DF32
R302-C27
R303-C28
R302-C16

Materials Needed:
DF32 - R302 module, 1 R303 module, 1.01 mf cap., 1.015 mf cap.
DS 32
1 R 303 module, 1 . 01 mf cap., 1.015 mf cap.

The photocell amplfier and platter tape can be deleted by installing this Tech Tip. It is then necessary when timing should have to be rewritten, (such as a new platter being installed) that the directions for writing timing without photocell input should be followed.

This Tech Tip should decrease DF32 service calls by fifty percent.
Bill Kochman - April 1971 REVISED JUNE 1971

PROBLEM: Disk data errors will occur while running customer programs and no disk errors will occur when running disk diagnostics for extended periods of time. (Disk data diagnostic runs twenty passes OK.)

POSSIBLE
SOLUTION: It has been found that the above symptoms have occurred when the TTA and TTB timing tracks have just been on the edge of being marginal. In some cases, looking at the timing tracks with a scope will show either a high or low output amplitude or an uneven output.

In the first case where the amplitude is incorrect, adjustment of the read amplifier is indicated. In the second case where the uneven output is observed, it is a good idea to switch to the spare timing tracks.

1) NEX status bit will be set whenever attampting any selection of a non-existent disk. The programmer must differentiate whether or not write lock is also causing this status bit to be set.
2) NED FF will be set only if a transfer spirals onto a non-existent disk. It is normally set after reading the last word of the last track of existent disks on the last word of a transfer, and under this circumstance alone is designed to set TRC. NED generates an interrupt.

Title	DF 32 INSTRUCTION MANUAL ERROR					Tech Tip ${ }_{\text {DF 32-TT-6 }}$ Number	
All	Processor Applicability	Author	Bill Freeman		Rev	0	Cross Reference
		Approval	W. Cummins	Date	07/	31/72	

"Disk Operating Procedure for Timing Track Writer, DF32", Page 5-7, Instructions 15, 16 and 17 are in error and should read:
(15) Change the scope to alternate sweep and plug probe B into banana jack 9. This test point is the write disable delay which is initiated at the beginning of the photocell signal and terminates at the center of the photocell signal.
(16) The adjustment associated with Jack 9 is P3, located beside the jack. With a screwdriver, adjust this delay time to 100 usec. and observe, on the scope, the two traces of the photocell signal and the delay together. If the signal from Jack 9 appears to initiate at the end of the photocell signal, the photocell switch is in the wrong position.
(17) After adjusting the P3 delay, and without changing the scope settings, remove probe B from Jack 9 and plug it into Jack 8 . This output is the writer track enable delay and is initiated at the beginning of the photocell signal. The delay associated with this delay is P 2 .

It is advisable to have a track writer available before undertaking ohm meter testing for defects in a disk head or cable. The current which can be produced through a disk head by an ohm meter is sufficient to cause an alteration of data on the disk. Even if the disk is not rotating, a glitch may be produced on the disk directly beneath the head.

| PAGE 7 | PAGE REVISION $\quad \varnothing$. | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- |

There has been a problem in the field with men working on DF32 disks and not having readily available to them a scope loop for checking the G285 and G286 matrix selectors, and often not having the G702 light card for use with Diskless. It is possible for two tracks to be selected at all times and for Diskless to run. Disk Data will run and may indicate intermittent parity errors, random select errors, or a failure at one particular address; Multi Disk may also run. Disk Data and Multi Disk will run because they both write one track and then read the same track. Many times the failure is obscured and may lead a field service engineer astray.

The following program has two important features: First, it will monitor the switch register and select a track; by using an oscilloscope the selectors can be checked to see that only one track is selected at any time. Second, the G284 disk writer can be monitored with a scope and the play back voltage can be checked to see if one track is weaker than the others, or if any track has irregularities in voltage.

The switch register bit assignments for disk and track selection are as follows:

```
Bit \varnothing will select track \varnothing or l
Bit 5 will select track 2
Bit 4 will select track 4
Bit 3 will select track 1\varnothing
```

Bits 1 and 2 will select disks \varnothing thru 3
Bits 6 thru 8 will select which memory field will be involved in the data transfer.

By varying the constants (AMT) and (ADR) the program can be used to transfer any quantity of data to any area of core. Also, if the instruction DMAR ($66 \varnothing 3$) is changed to DMAW (66ø5), the program will write on the disk rather than read from it.

To start the program, load address $74 \varnothing \varnothing$, set the switch register to $\varnothing \varnothing \varnothing \varnothing$, and start.

		DCEA $=6611$	7414	$72 \not 0 \varnothing$	CLA
		DCMA $=66 \varnothing 1$	7415	1235	TAD SW
		DEAL=6615	7416	751ø	SPA
		DFSC=6622	7417	5224	JMP . +5
		DMAW $=66 \varnothing 5$	$742 \varnothing$	$72 \varnothing \varnothing$	CLA
		DMAR $=66 \varnothing 3$	7421	$66 \varnothing 3$	DMAR
		PAUSE	7422	5226	JMP WAIT
		* $74 \varnothing \varnothing$	7423	1234	TAD K4 $4 \varnothing \varnothing$
$74 \varnothing \varnothing$	$73 \varnothing \varnothing$	BEG, CLA CLL	7424	$66 \varnothing 3$	DMAR
$74 \varnothing 1$	$66 \varnothing 1$	DCMA	7425	5226	JMP WAIT
$74 \varnothing 2$	6611	DCEA	7426	6622	WAIT, DFSC
$74 \varnothing 3$	1237	TAD AMT	7427	5226	JMP , -1
$74 \not{ }^{7} 4$	3631	DCA I WC	$743 \varnothing$	52øø	JMP BEG
$74 \varnothing 5$	1236	TAD ADR	7431	$775 \varnothing$	WC, $775 \varnothing$
$74 \varnothing 6$	3632	DCA I CA	7432	7751	CA,7751
$74 \varnothing 7$	$76 \not 44$	LAS	7433	$377 \varnothing$.	K377ø,377ø
$741 \varnothing$	3235	DCA SW	7434	$4 \not \subset \varnothing \varnothing$	K4øøø,4øø
7411	1235	TAD SW	7435	øøøø	SW, $\varnothing \varnothing \varnothing \varnothing$
7412	ø233	AND K377¢	7436	7577	ADR, 7577
7413	6615	DEAL	7437	7777	AMT, 7777

| Title | DF32 TIMING TRACK WRITER | | Tech Tip
 Number | DF32-TT-9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

When modified for use with electronic photocell (see DF32 ECO \# $\varnothing \varnothing 43$ or DS32 ECO \#øøøø9) a different operating characteristic may be encountered.

Symptom: After releasing write pushbutton, the writer continues writing timing.

Reason:
Pl is incorrectly adjusted. If clock pulses are too far apart, timing will overlap the gap area causing this symptom.

Correction: Adjust PI until gap area can be adjusted properly. The R401 clock in the TTW controls coarse Pl adjustment and may be out of adjustment if Pl cannot obtain proper results. Clock pulses should be approximately . 54 usec apart for 60 cycle and . 66 usec apart for 50 cycle operation.

For this reason, when writing timing, whether on a disk with or without photocell, the gap area must be examined after releasing the write button.

A faulty motor will rotate in an uneven pattern because of looseness between the shaft and bearings, and this can be seen as a phase shift between the plus patterns on the data tracks as compared with the TTA Timing Pulses. The inner data tracks will have the greatest shift and therefore be the most to fail and the most noticably out of phase. On some motors only vibration will cause this effect.

This problem may temporarily be coorected by increasing the gain of the data amplifier which in turn will increase the width of the sliced output to be strobed. The following diagram illustrates this problem and the test points for placing scope probes.
Using the subtests provided in the Disk Data Tests, write all ones on all tracks. Then use the track selection test also provided in the Data Tests. One of the following should be observed.

Hardware needed to add a cab onto a LINC-8:
Al1 trim should be black
3 - Center clips \#74-5345
1 - Cab top spacer \#74-5343
2 - Fillers \#74-5347
3 - Flat c ips \#74-5344
24-10-32-5/8" screws
24 - \#10 External lock washers
Cable Requirement:

	LINCSIDE	DF32 SIDE
	ME34	C09
	MF34	C10
	ME35	C11
	MF35	C12
	PE02	C13
	PF02	C14
See Note \#l	PH04	C15
	PH04	C16
See Note \#2	PJ08	C17
	ME30	C19

NOTE \#1: These four (4) cables go from these processor connectors to the data terminal panel in a standard Linc-8. However, since the DF 32 must use these signals and they are not available any place else in the existing logic, they must be removed and replaced by the cables going to the DF32. The four cables that were there should be taken back to the field office.

NOTE \#2: This is the cable required for the extended address bits if extended memory is to be used with the disk. However, if you will notice, this cable slot is already being used for Linc addressing and we cannot pick up these signals anywhere else.

In order to be able to use the disk, or any other 3 cycle break device with extended memory, a modification must be put in the machine. This change must be requested from Maynard. When requested this information ask for the "Print Title Linc-DF32 to Extended Memory \#d-WL-7605427-0-0".

Notes of Interest:
Linc-8 ECO's 24 and 25 must be installed in the system before the disk will run correctly. Also make sure that the R302 delay is disable break out, which is part of ECO \# 25 , is set correctly at 750 ns .

FIELD SERVICE TECHNICAL MANUAL

DF 32

It has also been noticed on a few systems that there has been excessive noise on the skip line in the DF32 logic. This can be cleared up by placing a . 01 capacitor through 100 r terminator to ground on pin Cl4K.

Something to Check:
Common wiring error found on previous installations:
Delete:

PH10U to PH12R
PH10T to PD22K

Add:

PH1OU to PJ07U enable linc
PH10T to PE07R disable cycle select
PH12R to PH12U O-PC
PH12T to PD22K 5-11
PRQBLEMS TO BE RUN TO INSURE RELIABILITY OF THE DF32 AND DS32 DISK'S ON A LINC-8.
a) Discless - MAINDEC-08-D5BA-D
b) Disdata - MAINDEC-08-D5CA-D
c) Multidisc-MAINDEC-08-D5DA-D

If these diagnostics will run in their entirety and the rest of the Linc-8 still runs correctly you should be all set.

FIGURE 7
Time/Div $=100 \mu \mathrm{sec}$

FIGURE 8
Time/Div. $=200 \mathrm{~N} \mathrm{sec}$

Figure 9
Time/Div = 20 Msec

ECO ERROR AND CORRECTION LIST
Reference ECO DF32-00043
Error Page \#1
Break-in point reads - \#433 and Future.
Correction: \#433 and Future
up to \#432 ECO-006 must be installed

Error Page \#1 reads

This ECO cannot be installed in units No. 0-433.
Shoud read:
Units 0-432 can be modified by installing ECO \#6 and ECO \#43.

Error Page \#2
Step \#4 of method to adjust stimulated photogap pulse. Reads - continue two turns to ensure good margin.

Correction: Two turns may offset the balance of the guard bands and cause problems.

The correct set up: is covered in the new procedures.

Error Pages \#4 and \#5 - Delete pages \#4 and \#5 due to the fact that these procedures have been followed in the field, step by step, and have never worked correctly. Part C of this report has been proven and should be followed by all technicians.

Error Page \#7 reads -
GND C27P C27L Add
should read:
GND C27P C27C Add

PDP-8I TECH TIP ERROR AND CORRECTION LIST
Reference DF32 Tech Tip \#3 pages 3 and 4 .
Error - These pages are identical to the procedures in ECO DF32-00043. Delete pages 3 and 4.

Correction: Refer to Section C of this report.

Add-Delete Synopsis
DF32 ECO \#43 Add-Delete List

Signal Name	DF 32	DS 32	Add-Delete
PCA	A $05 \mathrm{D}-\mathrm{Al} 2 \mathrm{~V}$	C12D-D16J	Delete
PCA	A12V-A30P	D16J-D22H	"
Delete photo	amplifier	and platter tape	in DFMA.
PCA	C28D-C28F	C17D-C17F	Add
PCA	$\mathrm{C} 28 \mathrm{~F}-\mathrm{C} 27 \mathrm{~N}$	C17F-C16N	"
PCA	$\mathrm{C} 27 \mathrm{~N}-\mathrm{A} 30 \mathrm{P}$	C16N-D16J	"
PCA	C $28 \mathrm{P}-\mathrm{C} 28 \mathrm{R}$	C17P-C17R	"
PCA	C $28 \mathrm{~T}-\mathrm{C} 27 \mathrm{~V}$	C17T-C16V	
GND	C $28 \mathrm{U}-\mathrm{C} 27 \mathrm{P}$	C17U-C16P	"
GND	$\mathrm{C} 27 \mathrm{P}-\mathrm{C} 27 \mathrm{C}$	C16P-C16C	"
TTA	C28V-B21P	C $17 \mathrm{~V}-\mathrm{D} 22 \mathrm{D}$	"
	C27S-C27T	C16S-C16T	I
. 01 F cap	C28J-C28U	C17J-Cl7U	"
.015 F cap	C $27 \mathrm{R}-\mathrm{C} 27 \mathrm{~S}$	C16R-C16S	+

In DF 32 Add R302 module in C27 and R303 in C28
In DS32 Add R303 in C17

Rev. A.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator$\text { DF } 32$
	12 Bit X	16 Bit	18 Bit	36 Bit \square	

The following Tech Tip is divided into five (5) Sections:
A. Synopsis of DF32 ECO \& TTW Problems and Corrections
B. Set Up and Checkout of DF32 TTW
C. Procedure to write timing on a DF32 with or without photocell input.
D. Electrical Adjustment Procedure for DF32
E. Representative Scope Waveforms

The following procedures assume the timing track writer has ECO \#43 installed. This applies to all DF32 TTW's.

This Tech Tip supersedes Old Tech Tip DF32-TT-3 and DF32-TT-9 or 81 Tech Tip Section 9 pages 13 through 16 and 8I Tech Tip Section 9 page 20. Also DF32 ECO\#0043.

SECTION A
DF32 TTW ERROR AND CORRECTION LIST
At least two types of DF32 TTW's currently exist in the field. The old type is the grey metal case and the new type is the new brown leather case. There is no logic differences only packaging differences.
All new TTW's are being checked out prior to being released to the field. However, several older TTW's have been returned to Maynard because of problems experienced after installation of the ECO to modify the TTW to write in the same manner as the RF08 TTW.
A. One major problem is noise being induced on the lines between the G284 modules, TTA normal/spare and TTB normal/spare switches, and the connector blocks for timing and data cables. This problem was overcome by replacing the lines between those points with two conductor shielded cable. The cable is the same as that used for the timing cable on the DFMA.
B. On the old type TTW's, it was discovered that after the 12 wire change had been completed, the technician tied all lines together with cable ties or plastic harness and the noise problem then exists. After the 12 wire change has been installed, the TTW must be checked on the DFMA. The most common indication of the noise problem is that no erase cycle occurs. The lines between the G284 modules and the TTA normal/ spare switches must be separated from all others. This must be done on a trial and error basis until it is found that the noise problem is overcome.
C. Another problem in the new type TTW is a ground loop. The ground run between the data/timing connector block and the logic connector blocks must be removed. A ground run from the data/timing connector blocks should be made to one of the front panel holding screws on the chassis.

The jumpers for the external R401 module should be installed on the pin side of connector block C1. This way, no R401 module will have to be modified. See "Set-up and Checkout Procedures" step 2.

ECO ERROR AND CORRECTION LIST
Reference ECO DF32-00043
Error Page \#1
Break-in point reads - \#433 and Future.
Correction: \#433 and Future up to \#432 ECO-006 must be installed

Error Page \#1 reads
This ECO cannot be installed in units No. 0-433.
Shoud read:
Units 0-432 can be modified by installing ECO \#6 and ECO \#43.

Error Page \# 2
Step \#4 of method to adjust stimulated photogap pulse. Reads - continue two turns to ensure good margin.

Correction: Two turns may offset the balance of the guard bands and cause problems.

The correct set up: is covered in the new procedures.

Error Pages \#4 and \#5 - De1ete pages \#4 and \#5 due to the fact that these procedures have been followed in the field, step by step, and have never worked correctly. Part C of this report has been proven and should be followed by all technicians.

Error Page \#7 reads -
GND C27P C27L Add
should read:
GND C27P C27C Add

PDP-8I TECH TIP ERROR AND CORRECTION LIST
Reference DF32 Tech Tip \#3 pages 3 and 4 .
Error - These pages are identical to the procedures in ECO DF32-00043. Delete pages 3 and 4 .

Correction: Refer to Section C of this report.

Add-Delete Synopsis
DF32 ECO \#43 Add-Delete List

Signal Name	DF 32	DS32	Add-Delete
PCA	A05D-A12V	C12D-D16J	Delete
PCA	A12V-A30P	D16J-D22H	"
Delete photo	amplifier and	platter tape	in DFMA.
PCA	C28D-C28F	C17D-C17F	Add
PCA	C $28 \mathrm{~F}-\mathrm{C} 27 \mathrm{~N}$	C17F-C16N	"
PCA	$\mathrm{C} 27 \mathrm{~N}-\mathrm{A} 30 \mathrm{P}$	C16N-D16J	"
PCA	C $28 \mathrm{P}-\mathrm{C} 28 \mathrm{R}$	C17P-C17R	"
PCA	$\mathrm{C} 28 \mathrm{~T}-\mathrm{C} 27 \mathrm{~V}$	C17T-C16V	"
GND	C $28 \mathrm{U}-\mathrm{C} 27 \mathrm{P}$	C17U-C16P	1
GND	$\mathrm{C} 27 \mathrm{P}-\mathrm{C} 27 \mathrm{C}$	C16P-C16C	\%
TTA	$\mathrm{C} 28 \mathrm{~V}-\mathrm{B} 21 \mathrm{P}$	C17V-D22D	"
	C27S-C 27 T	C16S-C16T	1
.01 F cap	$\mathrm{C} 28 \mathrm{~J}-\mathrm{C} 28 \mathrm{U}$	C17J-C17U	II
. 01 F cap	C27R-C27S	C16R-C16S	1
In DF32 Add	R302 module in	C27 and R303	in C28
In DS32 Add		R303	in C17

ECO	FOR	TIM ING	TRACK	WR ITER
B11F	to	B11C		Delete
B11F	"	B11P		"
A15N	"	A15F		"
U15V	"	A14T		"
U15V	"	A15N		"
A13V	"	A15 P		"
Al4T	"	A15U		Add
A15U	11	A15F		"
A15	"	B11P		"
B05V	"	B11F		11
B01U	J "	A15N		1
B0 5 P	P	Al5 ${ }^{\text {P }}$		"

Paqe -16-

SECTION B
Set-up and Checkout Procedures for DF32 TTW after Electronic photocell ECO has been installed.
A. The following may be accomplished without connecting the DFMA timing cable.

1. Connect power cables to proper source.
2. Insert R401 module in connector "C1" or "DATA". Connector should have jumpers $F H, L R, T \quad U$.
3. Turn on power.
4. Observe Jack 9 and adjust P3 for a 100 usec output (Ref. Figure \#1).
5. While observing Jack 9, adjust the pot on the external R401 module until the pules are:

36 msec apart for 60 Hz
42 msec apart for 50 Hz
(Ref. Figure \#2)
6. Observe Jack 8, while depressing write 2, adjust P2 for a 250 Usec output. (Ref. Figure \#3)
7. Observe Jack 7, again while depressing write 2, the output should resemble Figure \#8, leading edge to leading edge should be approximately 600 nsec . Figure \#8 represents 200 nsec per CM if adjustment is necessary, go to 7A.
7A. Set Pl to MID Range (this is a 10 turn pot), follow step 7 and observe the output at Jack 7. Adjustment is made by turning the pot on the internal R401 module.

7B. The following must be accomplished with the DFMA timing cable inserted:

1. Observe Jack 1, 2, 3, or 4.
2. Set scope to 20 msec per CM.
3. Press write 1 to on (light should be on).
4. Depress write 2 and observe scope. Display should resemble Figure \#9. (This shows that both the write and the erase cycles are occurring). If the display does not resemble Figure \#9 and the cycle is a continuous write, an internal noise problem exists. Refer to (Synopsis of Error and Correction Lists).

Set-up and Checkout Procedures for DF32 TTW after Electronic photocell ECO has been installed. CONTINUED
A. 7 B. continued
5. If all of the above has been accomplished, you may now proceed with the procedure for writing timing. Refer to "Procedure to write timing on a DF32 with or without photocell input."

SECTION C
PROCEDURE FOR WRITING TIMING ON DF32 WITH OR WITHOUT PHOTOCELL INPUT

1. Power down the system. Connect voltage leads from the TTW to the terminal strip located on the left side of the DF32 logic assembly.

Blue $=-15 \mathrm{~V}, \quad$ Red $=+10 \mathrm{~V}, \quad \mathrm{Black}=\mathrm{GND}$
2. Remove timing cable from disk logic location B31 or B32 and insert in connector "C2" or "timing" on TTW.
3. With Photocell - remove data cable from disk logic location A5 and insert in connector "C1" or "data" on TTW. Go to step 4.
4. Apply power to system. With channel 1 observe Jack 9 and adjust P 3 for 100 usec output. Reference Figure 1 .
A. With Photocel1 - go to step 5 .
B. Without photocel1 - while observing Jack 9, adjust the pot on the R401 until the pulses are 36 msec apart for 60 hz and 42 msec apart for 50 hz . Reference Figure 2 , go to step 5 .
5. Press write 1 to on (light should be on). While depressing write 2 , observe Jack 8 and adjust P2 for 250 usec output. Reference Figure 3 . Release write 2 .
6. Observe TTA's (Timing Track) at Jack 1. Reference Figure 4.
Using delayed sweep mode, ensure that the gap area is 350 usec, as in Figure 5. If not, adjust P1 and momentarily depress write 2. Again, check for 350 usec gap.
7. Press write 1 to off (light should be off). (Display on scope will disappear.)

Power system down. Reinsert cables in proper slots and disconnect voltage leads from terminal strip.

FIELD SERVICE TECHNICAL MANUAL
DF32

FIELD SERVICE TECHNICAL MANUAL
12 Bit $\left[\begin{array}{ll\|l\|l\|}\hline \mathrm{X} & 16 \text { Bit } \square & 18 \text { Bit } \square & 36 \text { Bit } \square \\ \hline\end{array}\right.$

PROCEDURE FOR WRITING TIMING ON DF32 WITH OR WITHOUT PHOTOCELL INPUT (continued)
8. Apply power to system. With channel 1 observe PCA at A30P (DF32) D16J (DS32). With channel 2 observe TTA's at A31P (DF32) C23P (DS32). Set scope to delayed sweep and add mode.
A. With photocell - display should be the same as Figure 6. Guard band on right hand side must be at least 50 usec.
B. Without photocell - display will resemble Figure

1. Adjust the lower pot on the R302 module in location C27 (DF32) C16 (DS32) until the pulse width is 200 usec.
2. Adjust the pot on the R303 module in location C28 (DF32) C17 (DS32) until the guard band on the right hand side is 50 usec. The display should be the same as Figure 6.

Disk timing is now correctly adjusted and ready for operation.
NOTE: Figure 7 represents a misadjusted R302 and/or R303 module.

Delayed Sweep Setting for "O" Scope
Checking Gap Area
Time per div. - 5 msec
Delayed sweep time per div. - 50 usec
"B" sweep mode - "B" starts after delay time
Horizontal display - delayed sweep
"A" triggering - line
Coupling - AC or DC
"A" sweep mode - auto trigger
Mode - channel 1
Checking Photocell in Gap area
Same as above with one exception: mode - add

ELECTRICAL ADJUSTMENT PROCEDURE FOR DF32

1. Power the system up and insure the disk motor is running. Logic power should now be on.
2. If good timing is on the disk you may proceed with the following adjustments. Otherwise follow "Procedure for writing timing with or without photocell input."
3. Put probes 1 and 2 on pins J and K of B30 in DF32 (C22 in DS32). Set scope up as follows:

Time/Div - 5 msecs
"A" Trigger - Internal
Coup1ing - AC or DC
"A" sweep mode - Auto Trigger
Mode - Add
Sensitivity - 2 V/Div
Invert Channe1 "B"
Now adjust top pot on G083 in A32 (D23 in DS32) for average peak-to-peak amplitude of 9.0 volts.
4. With scope set up as in step 3 , look at pins P G R of A31 in DF32 (C22 in DS32). Adjust bottom pot of G083 in A32 (D23 in DS32) for same signal characteristics as in step 3 .
5. Set scope up as follows:

Time/Div - 0.2 usec
"A" triggering - Internal
Coupling - AC or DC
"A" sweep mode - auto trigger
Mode - Alternate
Sensitivity - 2 V/Div
DO NOT INVERT CHANNEL "B"
With probe 1 look at the strobe pulse on $\mathrm{pin} V$ of B30 in DF32 (C22 in DS32) and with probe 2 look at the analog signal on pin J or K of B30 in DF32 (C22 in DS32). Adjust bottom pot on R302 in Al4 of DF32 such that the positive transition of the strobe pulse on pin V occurs at the center or just a bit to the right of center of the analog signal on pin J or K.

IMPORTANT NOTE: On multi-disk systems both disks should have the same gap area as this adjustment affects both the DF32 and the DS32.

FIELD SERVICE TECHNICAL MANUAL
DF32

12 Bit | X | 16 Bit \square | 18 Bit \square | 36 Bit \square |
| :--- | :--- | :--- | :--- |

ELECTRICAL ADJUSTMENT PROCEDURE FOR DF32 (continued)
6. Using the disk data test, write all ones on all tracks of the disk. Now read back one track at a time while looking at pins J and K of AlO in DF32 (C14 in DS32) with scope set up as in step 3 . Adjust the top pot of the G083 in A8 in DF32 (C13 in DS32) such that lowest track is no lower than 8.0 volts average peak-to-peak amplitude and highest track is no higher than 10.0 volts.
7. Set up the scope as in step 5. Look at pin of W533 in A10 (C14 in DS32) so that positive transition of the strobe puse on pin V occurs at the center or just to the right of center of the analog signal on pins J or K. This adjusts the strobe pulse for data and will vary according to track amplitude. It is imperative that the track selected to set this adjustment must be of average amplitude in relation to the other 16 tracks and must not be either close to the highest or lowest measured amplitudes.
8. Disk data must now be run in entirety. The timing and data tracks may have to be fine tuned for amplitude if there are any data failures. A moderate increase or decrease in amplitude (1ess than 1.0 volts) should not require a repositioning of the strobe signal.

FIGURE 1
Time/Div $=20 \mu s e c$

FIGURE 2
Time/Div $=5 \mathrm{Msec}$
12 Bit $\left[\begin{array}{ll|l|l|}\hline \mathrm{X}] & 16 \text { Bit } \square & 18 \text { Bit } \square & 36 \text { Bit } \square \\ \hline\end{array}\right.$

Time/Div $=50 \mu s e c$

FIGURE 4
Time $/$ Div $=5 \mathrm{M}$ sec

FIGURE 5
Time/Div $=100 \mu \mathrm{sec}$.

FIGURE 6

Time/Div $=50 \mu \mathrm{sec}$.
12 Bit $\left[\begin{array}{ll|l|l|}\hline \times & 16 \text { Bit } \square & 18 \text { Bit } \square & 36 \text { Bit } \square \\ \hline\end{array}\right.$

FIGURE 7
Time/Div $=100 \mu \mathrm{sec}$

FIGURE 8
Time/Div. $=200 \mu \mathrm{sec}$

Figure 9
Time/Div = 20 Msec

digitall	FIELD SERVICE TECHNICAL MANUAL				Option or Designator DF32
	12 Bit X	16 Bit	18 Bit	36 Bit	

A. Running of Diskless on DF32 with Electronic Photo-Cell modification (ECO DF32-00043).

1. When running diskless on a modified DF32 a PSM error typeout will occur: 10434000
2. To eliminate this error, remove the R303 module in location C28 of the DF32 (Cl7 or DS32).

The reason for this error is that the output of the R303 remains at ground level and therefore represents a true photo sync mark to the logic.
B. Running of Diskless on DF32 without Electronics Photo-cell.

1. When running diskless on an unmodified DF32, it is possible to get a PSM error typeout: 10434000
2. This will occur if the photo-cell AMP assembly is facing the reflective portion of the Disk platter. This can be overcome by means of the disk motor AC switch. Apply power to the motor and then remove power. This will reposition the reflective portion of the platter in relation to the photo-cell amp.

-

FIELD SERVICE TECHNICAL MANUAL
Option or Designator DK8E

12 Bit	$\boxed{2}$	16 Bit \square	\square	18 Bit \square

All M883 modules manufactured previous to July 1971 are C.S. revision C. Some M883 modules were erroneously marked revision D. Since each module has a date stamped on the handle as well as the C.S. revision those erroneously marked can easily be identified.

The only modification that is required to the module is to delete two diodes (D3 and D5). These diodes are located in the upper left hand part of the module as shown in the picture below.

With these two diodes removed the DK8E clock diagnostics (Maindec-8E-D8AB-D-(D) will not run. To have an operative diagnostic two locations will have to be changed. They are:

Location	From	To
5760	5367	$267 \emptyset$
5666	5217	$252 \emptyset$

With the completion of these modifications, you now have a 60 hz clock.

| PAGE 1 | PAGE REVISION A | PUBLICATION DATE November 1972 |
| :--- | :--- | :--- | :--- |

The cable harness going to the power fail (KP8E) or Real Time Clock (DK8EA) board (if installed) is liable to get mutilated on the edge of the power supply cover if the module is not removed carefully.

ECO 7409419-001 adds some 90-08209 grommet to the sharp edge to protect the cable.

Although not a Field retrofit change, it would be worthwhile to add this grommet strip to any systems in your area with clock or power fail, and also to take some grommet along when installing these options.

The M860 module derives BUS STROBE by a circuit that relies on plus 5 V being no 1 ower than 4.9 V for reliable operation. The signal decreases in width with decrease in voltage. When the voltage is too low the processor will hang up while executing 6133 - it has missied BUS STROBE. So keep that plust 5V righton for machines with DK8E.

The DL8I is factory wired into PDP-8I processor logic panels from serial number $7 \% \%$ upward. The machines below serial number $7 \varnothing \varnothing$ require ECO's 8I-00013 and 8I-00022; because of the complexity of these ECO's, they will not be field installed. The 81 logic panel must be exchanged at customer expense.
/mt

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator$\text { DI. } 8 \text { I }$
	32 Bit \times	16 Bit $]$	18 Bit	36 Bit \square	

The DL8I is factory wired into PDP-8I processor logic panels from serial number $7 \varnothing \varnothing$ upward. The machines below serial number $7 \varnothing \varnothing$ require ECO's $8 \mathrm{I}-00013$ and $8 \mathrm{I}-00022$; because of the complexity of these FCO's, they will not be field installed. The 81 logic panel must be exchanged at customor expense.
/mt

When a system, using a DMOl, contains both single and three cycle break devices, there is a possibility that intermittent errors in data or data address or both may occur. The causes are:

1) Back to back single-three cycle breaks. (In 8I-8L systems BT1B= TS3 (0) T2 = TSI (0) MPX F/F's are set by TS3 (0). MPX F/F's gate cycle select to determine whether single or three cycle will happen. The MPX F/F's also qualify the setting of the "B" ENAB F/F's and create the priority timing. Address Accepted from the CP clocks the "B" ENAB F/F's and the Break in Progress F/F in the DMO1. Due to propagation delays and circuit speed of individual components a race condition can be created whereby the MPX F/F's will not always be set in sufficient time to allow the necessary 400 N sec assertion time on DCD gates.

To cure: in the DMOl:

BT1B	Delete	B32M to A2S
BT1B	Delete	B32M to D2S
BT1B	Add	- A2S to D2S
T2	Add	- A2T to B32U
T2	Add	$-B 32 T$ to B32M

The wire change clocks MPX F/F's with TSl(0) to allow enough assertion time. Without this change, a single cycle device may not always break to an extended field.
2) On systems containing single and three cycle break devices (especially RF08), glitches of sufficient width and amplitude can appear on multiplex break to the devices and erroneously clear brk reqs or data buffers. This can happen when a single cycle break occurs after a break request from another device has been honored.

The cause is: in the CP Address Accepted and Break are set at the same time on a single cycle break. In the DM01. Address Accepted clocks the B enable F/F. The output of B enable is anded with Break (1) from the CP to produce multiplexed break. If channel 1 is set up for a break that has been processed and channel o, a single cycle device, requests a break, the circuit delays of B ENAB F / F and P. A. for Address Accepted in the DMO1 is sufficient to put a 120 Nsec spike on multiplexed break to device 1. The same is true of any channel combinations.

To cure: DM01:

Title	DM01 UNDERRATED TRANSISTORS IN M633 MODULES							$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \end{aligned}$	
	Processor Applicability		Author		Asbury			0	Cross Reference
	$\text { 8. } 8 \mathrm{BI} \text { 8L }$		Approval W. Cummins			Date 06/21/72			

DEC 3639B Transistors are underrated for driving DMO1. Their VCEO of 6 volts is exceeded when driving 1.5K at -15V. The 12 transistors on M633 modules should be replaced with DEC 6534B transistors (DEC Part Number 15-ø34ด9-ø1).
/mt

Two new signals, not present in Family-of-Eight Systems, are required in the DMO1 and DMO4 for proper break multiplexing.

If other options are present on the I/O bus prior to the multiplexer, check that the following signals are passed along:

Positive Bus:
B BK SYNC CLK H CABLE 3 PIN T2
ext enab Int pause h CABLE 3 Pin V2
Negative Bus:
B BK SYNC CLK CABLE 6 Pin T
EXT ENAB INT PAUSE CABLE 6 PIN V
Note that "B BK SYNC CLR" should be passed along no farther than the multiplexer due to lack of termination in the other devices.
/mt

FIELD SERVICE TECHNICAL MANUAL			
12 Bit 苗	16 Bit \square	18 Bit \square	36 Bit \square

PDP-12's with DMOl's have exhibited a noise problem on the cycle select line. The noise originates in the DMOI and is amplified and shaped while passing through the DM08. The following fix was originated by Del Hollingsworth PDP-12 Engineering:

1. Add R107 module to C32 DMO1.
2. Install following wiring changes:

Signal Name	From Pin		To Pin	Add
Cl3D	Cl3D		Delete	
3 volt Clamp	Bl5S			Bl1T
			X	
Cycle Select	Bl5R	Al9L		X
	Al9L	AløK		X
Cl3D	C13D	BllT	X	
Cl3D	C13D	C32E	X	
Cycle Select	Al9L	Al0K	X	
	C32D	Al9L	X	

3. Insure cable run from DMO1 to DW08 is as short as possible. /mt

The M633 uses a DEC 3639B transistor. It is overworked when driving a DMOL because the VCEO of 6 volts is exceeded by driving 1.5 K to -15 volts. This will be evident on RK08's, DF32D's, FPP12's and the like being interface through DMO1 multiplexers.

ECO M633-00002 calls for changing the 3639B transistors to DEC 6534B. This transistor has a VCEO of 40.
/mt

Some confusion has arisen from the fact that $D M-1$ rectifier packages produced by Solatron have their physical terminal configuration shifted 900 with respect to those manufactured by Motorola. All internal connections, color coding, and electrical characteristics are identical for both units.

From Engineering Newsletter of Feb. 10,1969

Title DM1/DM̧ 2 INTERCHANGABILITY												Tech Tip Number DM1-TT-2		
All	Processor Applicability					Author	A.	Newbery		Re		0	Cross Reference	
	$8 I$					Approval	W.	Cummins	Date	06	$6 / 3$	1/72		

There is one significant difference between the $D M-1$ and $D M-2$ rectifier which affects interchangability. The inverse voltage rating for the $D M-1$ is 50 volts; it is 100 volts for the $D M-2$. All other specifications are identical including a forward voltage drop of 1 volt @ 10 amps .

A $D M-2$ may be installed to replace a $D M-1$.

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE | July 1972 |
| :--- | :--- | :--- | :--- | :--- |

It is imperative that prescribed procedure be followed in the mounting of the Solatron type (with metal base, as opposed to the all epoxy type) $D M-1$ and $D M-2$ rectifiers. A simple metal to metal mounting will not provide a reliable heat sink and premature failure of the rectifier may occur because of reduced heat dissipation.

A coating of DOW Corning "Compount \#4" (silicon grease) should be applied to the mounting surface/s before the rectifier block is secured in place. This compound is stocked by the Field Service stockroom in 2 oz. tubes.

It is suggested that checking new systems for the presence of the compound may help to reduce the incidence of rectifier failure.

Conversion of the basic $8 I$ involves the changing of the power plug and jumper connections in the 704 power supply; these changes are detailed on print 704-0-1 (jumpering for several other AC line conditions is also included).

1) Remove aover plate from transformer to expose terminal strips.
2) Remove black jumper which ties terminal \#8 to \#13.
3) Add two jumpers to connect terminals \#9 to \#l2 and \#10 to \#11.
4) Remove the white fan lead from terminal \#9 (may be on \#8) and connect it to \#12.
5) Remove the black fan lead from terminal \#8 (may be on \#9) and connect it to \#11.
6) Make the following changes:

| Remove lead from Terminal \# | 20 | 19 | 18 | 17 | 16 | 15 | 14 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Reconnect it to terminal\# | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

7) Replace the cover plate.

For information on teletype conversion see tech manual, section 3 .
In addition to the changing of junpers in the power supply, there are two other concerns:

1) The $A C$ power connector:

60 systems require a $30 A$ Hubbel Connector
50 systems require a 20 A Hubbel Connector.
2) Any thyrectors on the $A C$ line:
$240 V$ systems require a $6 R S 2 \emptyset S P 9 B 9$ thyrector, (DEC Part \#112915)
llov systems require an SP4B4 thyrector, (DEC Part \#11-9106).

| didital | FIELD SERVICE TECHNICAL MANUAL | | | | | Option or Designator |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |

Some DP0lA's may exhibit the problem of data being received, shifted from its proper bit assignment. This may be caused by cross talk in the 70-5639 cable used to connect the DPOl to the data set. The way to check this is to have the remote terminal continually transmit sync characters. The following program will display this character in the PDP-8 accumulator:

7900	72018	CLA
$7 \not 0 \% 1$	6634	STR/Set Terminal Ready
7002	6651	SRF/SKP REC FLG $=\varnothing$
7806	7610	SKP CLA
7884	5212	JMP. -2
7805	6612	RRB/READ REC Buffer
7606	5292	JMP. -4

The accumulator should display the sync character; if cross talk is present, the character will shift randomly while being displayed.

There are presently two ways to correct this problem; one is to move the wires in the cable such that the receive clock and transmit clock are not running close enough to each other to cause cross talk. There are several spare wires in the cable that may be utilized for this purpose. The second method may be adding a capacitor to A5D to ground of the 637 portion of the DPOl. For $2 \not \varnothing \varnothing \varnothing$ to $24 \varnothing \varnothing$ baud speeds the capacitor may be $22 \not \varnothing \varnothing$ mpf, for higher speeds this size may change the bit strobe time and a different size capacitor may be necessary.

There are six programs available for the DP01A:
Two to be used on line with a modem connected to the DPOlA

1. Maindec 08-D8EB with device codes 30 thru 37
2. Maindec 08-D8KA with device codes 60 thru 67

Four for off-line use which do not require connection of a modem
3. Maindec 08-D9MA with device codes 30 thru 37
4. Maindec 08-D9NA with device codes 50 thru 57
5. Maindec 08-D9PA with device codes 60 thru 67
6. Maindec 08-D9QA with device codes 70 thru 77

Operational procedures for all above Maindecs are identical irrespective of the device coding.

Several groups of selection codes have been made available for the DPOlA to make it possible to avoid conflicts with other devices; these maindecs have been prepared to cover this range of codes. As an example, a DP01A coded 60 thru 67 on a system with a DF32 Disk would result in a conflict of IOT's and a change of the DP01A codes to 30 thru 37 would be recommended:

	FIELD SERVICE TECHNICAL MANUAL					Option or DesignatorDPO1
	12 Bit x	16 Bit	18 Bit	\square	36 Bit \square	

There are three adjustable delays in the DPOlA which must be set for proper operation. These delays are associated with the receive logic and will be found on prints D-BS-637-0-1 and D-BS-637-0-3.

A delay of one microsecond is associated with the signal $R B \rightarrow R C B$ and can be adjusted by issuing the IOT 6X54 (where X is the first digit of the device code for the DPOlA) and a JUMP back to the IOT. The resulting pulse may be taken from the W103 at Al9S and applied to Bl7E with Bl7F grounded. The delay may be monitored at Bl7M and adjusted accordingly.

The delay associated with the signal RECEIVE IN PROGRESS will have a time delay which is dependent upon the baud of the device. A table extracted from print D-BS-637-0-1 is as follows:

BAUD	PIN GROUNDED ON R303 at Al6	DELAY ($=1.5$ times 1/Baud)
2000	L	0.75 MSec
2400	L	0.63 MSec
40,800	K	36.75 USec

To set the delay, a program such as follows should have the pulse resulting from IOT 6X54 (where X is the first digit of the device code for the DPOlA) at W103, Al9S applied to Al6T (R303) with Al6U grounded. Al6D may be monitored for the expiration of the one-shot delay and adjustment made accordingly.

A delay associated with "Receive Data" (discussed in DP01AA/Bell 201A3 Data Set Interface Problem, PDP-8 Field Service Tech Manual Section 5, Page 11) can likewise be set by applying a pulse from IOT 6×54 at W103-A19S to B17N with B17P grounded. Use the program which follows with appropriate TIME and COUNT values (use an initial delay in the neighborhood of 50 milliseconds or greater) and monitor the delay output at B17V and adjust accordingly.

It is absolutely essential that these delays be adjusted during installation or maintenance periods since marginal performance will result from misadjustment.

To use the following program to generate IOT's for setting delays, it is necessary to select values for TIME and COUNT from the table of constants which will give an interval of time between ocurrences of the IOT great enough to allow the delay to time out. The interval selected initially should be greater than the suspected worst case setting of the delay.

| PAGE 3 | PAGE REVISION 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- |

| Title | DP01A SETTING DELAYS | (Continued) | Tech Tip
 Number | DP01-TT-3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table of Constants to be used for Appropriate Delays

Approx. Delay (ms)	$5 \varnothing$	26	$6 . \varnothing$	2.4	.45	.1	.$\phi 45$
TIME	$\varnothing \varnothing \varnothing 1$	$\varnothing \varnothing 4 \varnothing$	$\varnothing 1 \varnothing \varnothing$	$1 \varnothing \varnothing \varnothing$	$\varnothing 1 \varnothing \varnothing$	$2 \varnothing \varnothing \varnothing$	$2 \varnothing \varnothing \varnothing$
COUNT	$6 \varnothing \varnothing \varnothing$	$61 \varnothing \varnothing$	$74 \varnothing \varnothing$	$74 \varnothing \varnothing$	$776 \varnothing$	$776 \varnothing$	7774

Program For Generating IOT's For Setting Delays

Interface to a Bell 201A3 is peculiar with respect to other 201's in that initial information being transmitted may be seen immediately (and illegally) on the receive line for several milliseconds. Because the first information transmitted is one or more sync codes, it is conceivable that these codes, when seen on the receive line, could cause the logic to become illegitimately active. Therefore, an interlocking delay is used to hold RECEIVE DATA in a marking or idle state during duplex operation until the danger of echoing data back to the receive logic has passed. This delay is set at 4.5 milliseconds If, for example, the baud is 2000 and the word length has been selected to be 9 bits (4.5 milliseconds), it becomes necessary, because of the delay, to receive at least 3 sync codes during full duplex operation to ensure that the receive logic will become active.

Since this situation is peculiar only to on-line operations of the DP01(X)A/Bell 201A3, the delay should be removed, effectively, for all other modes of interface or operation (including 201A3 on-line tests) by attaching a ground to the R107 at A29M. If it is not bypassed during the use of Computer Special Systems Diagnostics Maindec 08-D8EB and Maindec $08-\mathrm{D} 8 \mathrm{KA}$ on-line tests, the receive logic will show a diagnostic error indicating that "X" number of syncs have been missed or that the logic plainly failed to go active.

A further note of caution - the delay should be set very close to 4.5 milliseconds and the customer informed of the necessity for using at least three (3) sync codes in his message formats.

A delay associated with "Receive Data" (this delay discussed following the sample program) can likewise be set by applying a pulse from IOT 6 X54 at W103-Al9S to B17N with Bl7P grounded. Use the program which follows with appropriate TIME and COUNT values (use an initial delay in the neighborhood of 50 milliseconds or greater) and monitor the delay output at Bl7V and adjust accordingly.

TABLE OF CONSTANTS TO BE USED FOR APPROPRIATE DELAYS

Approx. Delay (ms)	$5 \varnothing$	26	$6 . \varnothing$	2.4	.45	.1	.$\varnothing 45$
TIME	$\varnothing \varnothing \varnothing 1$	$\varnothing \varnothing 4 \varnothing$	$\varnothing 1 \varnothing \varnothing$	$1 \varnothing \varnothing \varnothing$	$\varnothing 1 \varnothing \varnothing$	$2 \varnothing \varnothing \varnothing$	$2 \varnothing \varnothing \varnothing$
COUNT	$6 \varnothing \varnothing \varnothing$	$61 \varnothing \varnothing$	$74 \varnothing \varnothing$	$74 \varnothing \varnothing$	$776 \varnothing$	$776 \varnothing$	7774

PROGRAM FOR GENERATING IOT'S FOR SETTING DELAYS

ø2øø	1220	TAD TIME	ø211	1216	TAD TIME
$\varnothing 2 \varnothing 1$	3216	DCA TME	$\varnothing 212$	77¢	SMA
¢2ø2	1221	TAD COUNT	ø213	5282	JMP 2ø2
¢2ø3	3217	DCA CNT	$\emptyset 214$	6×54	IOT @ W1ø3
$\varnothing 2 \varnothing 4$	2217	ISZ CNT	¢215	52øø	JMP 2øø
¢2ø5	52184	JMP-1	$\varnothing 216$	Z	TME
¢2ø6	1216	TAD TME	¢217	Z	CNT
$\varnothing 287$	7øø4	RAL	$\varnothing 220$	XXXX	TIME
$\varnothing 21 \varnothing$	3216	DCA TME	ø221	XXXX	COUNT

5

The complete option designation number for this device is DPOl-XY where X indicates the computer family with which it is associated and Y indicates the basic model of data set to which it is interfaced.

$$
\begin{aligned}
& \mathrm{X}= \mathrm{A}=8 \text { Family } \\
& \mathrm{B}=9 \text { Family } \\
& \mathrm{C}=10 \text { Family } \\
& \mathrm{D}=7 \text { Family }
\end{aligned}
$$

$$
Y=A=\text { Bell } 201 \text { or equivalent }
$$

$$
B=\text { Bell } 301 \text { or equivalent }
$$

Thus, the device designation with which we are most familiar is DPOl-AA. The DPOl (X)A may be interfaced to either the Bell 201A, 201B, or equivalent. Interface to a Bell 201A3 is peculiar with respect to other 201's in that initial information being transmitted may be seen immediately (and illegally) on the receive line for several milliseconds. Because the first information transmitted is one or more sync codes, it is conceivable that these codes, when seen on the receive line, could cause the receive logic to become illegitimately active. Therefore, an interlocking delay is used to hold RECEIVE DATA in a marking or idle state during duplex operation until the danger of echoing data back to the receive logic has passed. This delay is set at $4.5 \mathrm{millisec}-$ onds. If, for example, the baud is 2000 and the word length has been selected to be 9 bits (4.5 milliseconds), it becomes necessary, because of the delay, to receive at least 3 sync codes during full duplex operation to ensure that the receive logic will become active.

Since this situation is peculiar only to on-line operations of the DP0l(X)A / Bell 201A3, the delay should be removed, effectively, for all other modes of interface or operation (including 201A3 on-line tests) by attaching a ground to the Rl07 at A29M. If it is not bypassed during the use of Computer Special Systems Diagnostics Maindec $08-$ D8EB and Maindec 08-D8KA on-line tests, the receive logic will show a diagnostic error indicating that " X " number of syncs have been missed or that the logic plainly failed to go active.

A further note of caution - the delay should be set very close to 4.5 milliseconds and the customer informed of the necessity for using at least three sync codes in his message formats.

The complete option designation number for this device is DP01-XY where X indicates the computer familu with which it is associated and Y indicates the basic model of data set to which it is interfaced.

$$
\begin{array}{rlrl}
\mathrm{X}= & \mathrm{A}=8 \text { Family } & \mathrm{Y}=\mathrm{A}=\text { Bell } 201 \text { or equivalent } \\
\mathrm{B}=9 \text { Family } & \mathrm{B}=\text { Bell } 301 \text { or equivalent } \\
\mathrm{C}=10 \text { Family } & \mathrm{C}=\text { Bell } 303 \text { or equivalent } \\
\mathrm{D}=7 \text { Family } &
\end{array}
$$

Thus, the device designation with which we are most familiar is DPOl-AA. The DP01 (X)A may be interfaced to either the Bell 201A, 201B or equivalent.

When a synchronous modem, strapped for continuous carrier, is run in a local test mode ith a DPOIA, the following changes must be made to the on-line diagnostics;

Maindec-08-D8KA (Device Codes 6ø-67)

Loc	Change To	Comments
2410	5214	Eliminates looking for end flag with a constant carrier
2276	5350	Breaks main routine
2350	$72 \emptyset 0$	
2351	6652	Makes certain that receiver shuts down when in
2352	6651	constant carrier mode
2353	5351	
2354	2367	
2355	5351	
2356	5277	Return to main routine
2367	¢ $\varnothing \varnothing \varnothing$	

Loc	Change To	Comments
2410	5214	Eliminates looking for end flag with a constant carrier
2276	5350	Breaks main routine
2350	7200	-
$? 351$	6352	
. 352	6351	Makes certain that receiver shuts down when in
2353	5351	constant carrier mode
2354	2367	
2355	5351	
2356	5277	Return to main routine
2367	øøø	

Title	DP 01	RECEIVE	END	FLAG"				Tech Num	DPO1-TT- 7
$\begin{aligned} & \text { All } \\ & \times \end{aligned}$	Processor Applicability			Author	W. Cummins		Rev	0	Cross Reference
				Approval	W. Cummins	Date	7-3	1-72	

The DPOIA is a synchronous communication channel and, as such, an uninterrupted chain of synch characters and/or data is necessary for transmission and receipt of meaningful data. Any interruption will cause a loss if information and a shift of all subsequent data.

Several means of determining data transmission accuracy are available. One possibility is the use of the Receive End Flag which will be set if, for any reason, the delay "DEL" times out and gives Receive In Progress. Since this delay is continually being reset by "Shift RB" it will never time out unless any one; or more, Receive clock pulse(s) is not received from a modem.

Loss of a Receive Clock pulse will always cause an error in transmission; most customer programs do not use the Receive End Flag for monitoring the accuracy of the clock input. However, since the flag may come up, it may cause an interrupt which is not handled correctly by the customer's program. The customer should be made aware of the possibility of this flag problem. If he chooses to ignore it, and/or if he has other means of checking the accuracy of his data, the flag may be grounded out to prevent its interrupting his program. A jumper from Al4T (R202) to ground may be used to eliminate the flag.

If the DPOI is interfaced to a data set operating in the constant carrier mode, the adjustable one-shot at Al7 will not time out. This will eliminate the possibility of getting a "Receive End Flag" except as noted above since "Serial clock Receive" should always be running.

Print $D-B S-637-0-1$ (at $B 8$) indicates a diode, resistor network to ground.

If the network has not been installed, random data errors can occur which will not be detected by the offiline diagnostics 08-D8HB, LA, FA or NA. If the diode has been installed with its polarity reversed, all data will be incorrect, shifted left some indefinite number of bits (one or more).

The on-line Maindecs 08-D8EB and KA may not detect the absence of these components but will fail if the polarity of the diode has been reversed upon installation.

Since no one of the diagnostics will positively detect the absence of this network, it should be verified during installation or maintenance that it has been installed as shown.

Page -9-

FIELD SERVICE TECHNICAL MANUAL Option or Designator 12 Bit x
 16 Bit \square
 18 Bit $\square \quad 36$ Bit \square
 DP-8E

| Title | I.C. LOCATIONS | | Tech Tip
 Number | DP - 8E-TT-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

In the shuffle of ECO's and relaying out of the M839 module used in the DP8E several I.C.'s may have different locations on the module than noted on the prints. Following is a list of the problems, ECO's and print showing the problems.

	ECO	Comment
M839	0001 A	C.S. H is changed by replacing READ/WRITE F/F from RS type using E26 to CD type using E2.
		When relay out occurred this F/F became El5.
		Idle mode did not function properly. ECO added E26 to C input of T-GO F/F. Relay out used E31.
M839	0002	CS H adds CD type F / F to synchronize clear to send ECO calls out the use of El7 but relay out used E2.
M839	0005	CS L to correct a race condition a gate is added to SYNC 2 logic E26 is called for but because it is used in ECO 0001A E 31 must be used in older boards.
M 839	0001 A	Add wire E2 pin 2 to E 3 Pin 6 ECO 0005 de1etes all etch from E3 pin 6, if E3 pin 6 has a wire plus etch move the wire such that it runs from E2 to pin 2 to E11 pin 14.

PAGE $_{1}$ OF
||PAGE REVISION

The DEC DATA SYSTEM 300 is being sold without any means of paper tape input; thus to run any Maindec's the PMKO2B Field Service cassette is required as input.

To connect the cassette remove the 2400 baud KL8E from the system and insert the cassette interface. Remove the BCOlV cable from the VTO5 and use the 7008519 cable which was shipped with the VT05 to connect the VT05 to the cassette. (Reference cassette instructions.) Switch the VT05 from 2400 baud to 110 baud. (Remember before leaving site to return the switch to 2400 baud.)

Run diagnostics according to existing procedures. The only need to reinsert the KL8E supplied with the system is to run the KL8E diagnostic, the VT05 diagnostic and customer software.

The DEC DATA SYSTEMS are delivered with a complete set of paper tape diagnostics. If the diagnostics on your cassette are incomplete or of the wrong revision, take the supplied paper tape to a system with paper tape input and make the necessary corrections to your cassette.

Title DT01 - PDP-8/E				Tech Tip NumberDTØ1 TT-1
Processor Applicability		Author Bill Freeman	Rev 0	Cross Reference
$\|8 \mathrm{E}\|$		Approval W. E. Cummins Date	7-31-72	$\text { TT\# } 002$

When using a DTOl Bus switch on a PDP-8E, it is necessary to change the Wlø3 to Wl23 as noted in PDP-8/E TT \#002 and also change the outputs of the $W 64 \varnothing$ in $B 6$ from $4 \varnothing \varnothing$ nsec, to 1 usec. To utilize 1 usec outputs add wire on location $B 6-E$ to F, L to M, and S to T.

Title	INTERMITTENT			BREAK	FAILURE		ON DTOLAN						$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \end{aligned}$		
	Processor Applicability					Author		Rone	ey/Nunl		Rev			Cross Reference	
						Approval		W.	Cummins		Date 6/6/72				

Erratic Break Operation
The use of a 552 or TCOl with a DTOI-AN may cause erratic break operation to one or both computers. The reason is that, unlike the DM01, DF32, and RF08, the break request signal is not clamped at the source. To cure the erratic operation, clamp the signal $C-B R K$ REQ in the DT01 to $-3 V$. Add B31J to B26S.
C.E. Roney/R. Nun1ey - October 1970

	FIELD SERVICE TECHNICAL MANUAL				$\begin{aligned} & \text { Option or Designator } \\ & \text { G020-G021 } \end{aligned}$
	12 Bit X	16 Bit	18 Bit	36 Bit \square	

$8 \mathrm{I} / \mathrm{L}$ sense amps now use a -4 V slice level instead of -3 V for increaed noise immunity. Either level works fine as long as they are not intermixed. When replacing a G020 or G02l check for the proper level, or when a ghosty symptom occurs in memory check for this mix up. There are a few different revisions of sense amps but the following few rules should eliminate the confusion:

1) Rev. D and earlier are considered - $3 V$ slice level.
2) Rev. F and later are considered $-4 V$ slice level.
3) Rev. E can be either $-3 V$ or $-4 V$ and it is the only revision that can be changed. The resistors to change are listed below:

* Denotes components present on $1 y$ on G021. G020 uses G021 etch.

(eyelet leading from pin Tl)
(eyelet connected to collector of $Q 1$)

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE | July 1972 |
| :--- | :--- | :--- | :--- | :--- |

Rev. H sense amps should have a 30 guage ground strap as shown above. This ground strap insures proper strobe margins and noise immunity.

Randon 8I Memory Failures:

If you have intermittent memory problems or you do not have a wide strobe margin, check for these things:

1. That -3 V and -4 V sense amps are not intermixed in an 8 K unit.
2. That Rev. H sense amps have the ground strap.
3. That G221 selectors have 2904 transistors. If the 2904 transistors are Texas Instrument, check that the fall time is within specification (10-90 nsec.).
4. That G624 load resistors are all the same value in any 8 K unit, and that for Ferroxcube stacks they are all 56 ohm. Previous values have been 60,70 or 52.5 ohms. 52.5 is not acceptable under any conditions.
5. That memory current has been adjusted with a current probe and strobe has a good window between checkerboard failures and strobe adjustment. Measuring voltage does not insure proper current values for memory.
6. That ECO 8I-00022 is installed. Although this ECO was directed to the field, it has been instrumental in fixing problems in several older machines. The SPECO does not explain too clearly the add/delete scheme. You will see that the first two deletes are A30D2 to A34S2 and A30E2 to A34T2. The essence of the problem is that those two leads carry the sense signal and may not be identical in length or routing and may trigger the sense amps erroneously because of the noise or phase discrepancy; the two deletes are to be replaced by one run on twisted pair. The other deletes are similarly paired; each pair is to be replaced by one run on twisted pair. The other deletes are deletes are similarly paired; each pair is to be replaced by one run of twisted pair.
7. If instruction test 1 will not run in field 1 of a system with 8 K or more of memory, it may be a result of induced noise picked up from the memory power supply lines by the memory flip-flop output lines. ECO 8I-00051 reroutes these runs to eliminate this problem.
/mt

Many G826's are returned from the field as defective when, actually, there is no defect, only misadjustment of POWER OK.

The basic operational functions of the G826 are first, to detect the AC power input going low and second, to regulate the memory voltage level. The detection of power-in going low, due to either line failure or the front panel power switch being set to the OFF position, is accomplished by sampling for variations on the 5 volt bus. When the 5 volt bus drops below 4.75 volts, the condition is felt by an operational amplifier which generates POWER OK as a +3 volt level. This level becomes the conditioning level which allows the next TP3 to clear the RUN flip flop. At the same time, a turn off signal is applied to the -30 volt memory supply. These two logical events occur to disallow a random read without its associated write cycle. When POWER OK is at +3 volts, the RUN flip flop will act as if the SINGLE STEP switch were on and $\mathbf{- 3 0}$ volts will not come up.

The memory voltage level is set by a pot which is in parallel with an amplifier between the -6 volt and -30 volt supplies. In normal operation, POWER OK is low (\varnothing volts). With a scope sampling at A02J2 (of the $8 I$) or the negative probe of a meter on that point, with the positive probe to ground, adjust the helipot, in the center of the module, clockwise until POWER OK just goes low (\varnothing volts), then a few degrees more.

With POWER OK low, memory voltage may now be adjusted; set up meter connections as follows:

	METER LEADS	
	NEGATIVE	POSITIVE
8 BI	B02V2	BO2M2
8L	B27V2	B27M2

Adjust the Bourns pot on the edge of the module for a reading of +21 to +22.5 volts.
PDP 8L's, logic serial \#150 and later, have a power supply connector card, G785 revision "D" or later, which will make the POWER OK adjustment less critical. They have an extra detection circuit which is OR'ed with the output of the differential amplifier at pin AJ 2 which stops the CP before the +5 volt line begins to drop.

After these adjustments have been made, Maindec 08-DlAB, Memory Power ON/OFF Test, should be run. The helipot is mechanically sensitive; after adjustment, a spot of nail polish or paint should be applied to the adjustment stem to secure it in the desired position.

Due to modification in an SMA $12 / 60$ by Technicon, Corp., the H307 Delay Box must be modified so that a 1.2 sec adjustment can be achieved.

SYMPTOMS:
Test result skipped and all results in error from that point on, due to being out of sync with the analyzer.

SOLUTION:

Remove the 1.8 K , and replace with one of the 3.3 K 's.
NOTE: Some components may have to be soldered to the signal lead on input cable.

It is possible for the +5VDC supply (H710-Dynage 700-167) to go into an overvoltage or protective mode if the outputs of several H7lO supplies are paralleled. The resultant supply output in the overvoltage mode is approximately +lVDC. The supply will come back up to correct voltage if it is allowed to cool.

The vendor (Dynage) acknowledges that a problem may exist (depending upon the system and its operational environment).. The vendor proposes that DEC perform the following temporary change in the supply until the problem can be more explicitly defined and a final fix can be implemented. It is only necessary to perform this change if the supply demonstrates the above symptoms. The vendor also states that the supply is not marginal.

Substitute an $1 N 750(A)$ Zener (DEC Part \#11-0214) for $2 D 3$ zener (l N749) currently in use.

The $H 710$ is currently being used in $680 I$ systems.

If the module is the cause of the failure of an H710 power supply, it would be less expensive to replace the module than the whole power supply. The module is now available from the Field Service stock with a part number 29-17366.

	FIELD SERVICE TECHNICAL MANUAL						Option or Designator H7 16
	12 Bit x	16 Bit		18 Bit	\square	36 Bit \square	

When replacing a "Wanlass" type H7l6 Power Supply due to faulty or erratic operation, specify that the replacement supply is to be the "Armour" type. These new supplies are in stock and will be segregated from the older wanlass supplies. If the stockroom is unable to provide an armour supply, a substitute wanlass will be shipped.

When ordering an $H 721$ to replace other types, it is also necessary to order connectors to fit the H721 outputs. They are:

```
1 each - 12 pin Mate-N-Lock - 12-09351-12
10 each - pins - 12-09378
```

CPL

The 110 VAC 4A available on TB2-3 and 4, 5, and 6 are auto tap outputs and they should not be used to supply power to grounded devices. If the input for the H721 is 220 VAC , TB $2-3$ (110 VAC) output is taken from the "source" side of the AC input and may be 220 V above a real earth ground. Refer to ECO \#H72l-00004 for correction.

Pamotor 4500 C fans with date codes of $11 / 70$ or $12 / 70$ are likely to contain bad bearings.

Any fans with these date codes that fail in the field will be replaced free of charge (material only) by Pamotor, who will supply BEC with enough to cover the respective H72l shipments.

When the new fans arrive they will be put in the Field Service stockroom for issue on an exchange basis, and they will be shipped with captive nuts to get away from the difficulties experienced when trying to replace the present loose nuts.

PAGE 1	PAGE REVISION	A	PUBLICATION DATE	November 1972

Title	Replacement of Transistors Q1øø, Q2øø, Q3øø H724/H724A Power Supply					Tech Tip Number $\mathrm{H} 724 \mathrm{TT}-1$	
	Processor Applicability	Author	Jim Parker		Rev		Cross Reference
		Approval	W.E. Cummins	Date	7-3	1-72	

If the 2 N 3055 transistors being installed are manufactured by RCA or Solitron this problem will not be experienced. If the transistors to be installed are manufactured by Motorola and marked DEC3055 or 2N3055 longer screws will be needed to fit the nut which holds the screw through the transistors with the collector connection tag. This is due to these transistors having a thicker base plate. The replacement screw is a $6 / 32 \times 3 / 4 "$ and two per transistor are needed.

The PDP-8E power supplies are UL approved. Field conversion of power supplies from 115 VAC to $23 \varnothing$ VAC (H 724 to H 724 A) would nullify UL approved. It is therefore recommended that Field conversion be avoided. Also, any field modifications to H724(A), unless accomplished by following a Field Effect ECO could nullify the UL approved.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator H851
	12 Bit X	16 Bit	18 Bit	36 Bit	

For a period the 50-08903 board used on the H85l over the top connector was manufactured using griplets to make the connection through the board. The griplet process can result in bad connections (anything from five (5) OHMs to open circuit), and was ECO'd out of the H85l manufacturing procedure as from September 1, 1972.

The only methods of checking are careful visual inspection under the board, using a solder sucker to clear a hole for inspection or OHM meter checking.

Also, an unknown number of connectors were assembled with the board on backwards. This gives no electrical problem, but could be confusing if you are counting pins for scoping and rely on the "A" etched on the board to find pin A. It could be pin V.

\section*{FIELD SERVICE TECHNICAL MANUAL
 | $12 \mathrm{Bit} \times$ | 16 Bit \square | 18 Bit | 36 Bit |
| :---: | :---: | :---: | :---: |

Option or Designator KA8E

ECO M835-00003 is in error. A new ECO \#M835-0004 has been generated to correct. The following sketches are correct.

Add
Tumper

PAGE 1	PAGE REVISION	0	PUBLICATION DATE July 1972

	FIELD SERVICE TECHNICAL MANUAL						Option or Designator KD8E
	12 Bit	16 Bit	\square	18 Bit	\square	36 Bit \square	

This Tech Tip is written to aid the Field Service Representative when operating the PDP-8e and should not be interpreted as a malfunction.
A. INTERRUPT FLAGS

There are certain things which, although illegal, one may do with a PDP-8/8I/81, but not with the PDP-8e.

On the PDP-8/8I/8L flags were cleared before Interrupt Strobe Time; therefore, a flag could safely be cleared after turning the interrupt on. (This is normally not done because most users have already restored the AC.)

Sample TTY service:

```
/
// service
/
/ ION
*/ KCC
/ JMP EXIT
```

The PDP-8e clears flags at Interrupt Strobe Time due to the faster $1 / 0$ cycles. As a result, the above routine would interrupt from location "*" with a cleared (i.e. No.)flag. This would confuse the best Interrupt Scan Routines.

The solution is to follow the rules and clear the flag before the ION command.

This holds true for all options (not just the TTY).
B. HALTING DURING A BREAK

Under certain conditions, it is possible to FETCH a HALT instruction and have a break request in the same cyc $\overline{1 e}$ (diagnostics are the best example).

With a Break Request, the CPMA, MAJOR STATE, and Instruction Register are disabled at TP4.

The CP MA and EMA in the PDP-8e are updated at TP4 and the machine always stops in TS1. Therefore, under the above conditions the machine stops with the Break MA indicated. The result is one does not know at what address the machine halted.

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Title | HANDLING OF MOS DEVICES | (Continued) | | Tech Tip
 Number | MOS-TT-1 |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |

8. Empty the contents of the bag onto the work area without touching the MOS devices.
9. Prior to touching the MOS device, always discharge yourself by touching the work area or attached metal.
10. Insert the MOS device into the module using care to ensure minimal handling of the device leads. Try to grasp the chip by the body of the device and not by its leads.
11. Replace the unused spare MOS devices in the conductive plastic bag by grasping the body of the IC, after previously discharging yourself against the work table. Reseal the bag using tape or a stapler.

All of the above precautions are to reduce the possibility of a potential difference between the MOS device being handled and the surrounding environment. Again, common sense is essential when choosing a good work area and method of handling these devices.

PROBLEM:

The KE8E module M8341, ECO \# $\begin{aligned} & \text { M } \\ & \text { 朋 } \\ & 2\end{aligned}$ enables the option to clear the $A F C$ if $A C=4 \varnothing \varnothing \varnothing$ and $M Q=\varnothing \varnothing \varnothing \varnothing$ prior to issuing a normalize instruction, in the " B " mode of operation.

The Maindec (8E-DOLA), however, does not check this function. The following program patch will check it. MCN \#8E-DOLA-2 will follow.

Location

4741	$536 \varnothing$	GO TO PATCH
4760	7431	SET "B" MODE
4761	7621	AC \& MQ $\varnothing \varnothing$
4762	$733 \varnothing$	AC $\quad 4 \varnothing \varnothing \varnothing, M Q=\varnothing \varnothing \varnothing \varnothing$
4763	7412	NORMAIIZE
4764	$744 \varnothing$	AC SHOULD $=\varnothing$
4765	7402	NORMALIZE FAILED TO CLEAR AC
4766	7447	SRT "A"MODE
4767	5342	EXIT

| Titie | 7671 | INSTRUCTION | | Tech Tip
 Number | KE8E TT-2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The Microprogrammed Instruction "Skip If Mode B" (7671) as specified in the EAE Instruction Set, does not work. If a made check is desired, the use of the following two instructions is suggested.
$\begin{array}{ll}7621 & \text { Clear the AC and MQ } \\ 7451 & \text { Double Precision Skip if Zero }\end{array}$
If the mode is "B", a skip will occur.

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- |

| d i g i t a l | FIELD SERVICE TECHNICAL MANUAL
 | | | | Option or Designator
 KE8E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Part numbers for the Read Only Memories as used on Module M8340 are as follows:

ROM \#1, Ell Part Number 23-001A1
ROM \#2, E19 Part Number 23-002A1

Be aware that the correct code for the DLD Micro-programmed EAE Instruction is 7663.

DLD is a combination of DAD (7443) and CAM (7621) which gives 7663.

The documents in error are schedule to be reprinted as shown below:

Small Computer Handbook - approximately September 1972
Option Bulletin - approximately August 1972
8E Instruction Card - approximately January 1973
If you are aware of any other errors in the above publications, please send them in on a Problem Report and we will try to get them corrected by printing time.

PAGE 3	PAGE REVISION	0	PUBLICATION DATE	July 197

Title	MM8I 4K/8K Conversion			Tech TipNumberMM $8 I-T T-3$	
All	Processor Applicability	Author R. Nunley	Rev	0	Cross Reference
\times		Approval We_cummins	7/3	172	

An MM8I-A is the MM logic with only 4 K installed. ECO MM8I-00013 prevents the generation of mem done from the non-existent field in an MM8I-A. The MM8I is wired initially as an MM8I-B (8K). To make it operate properly as an MM8I (4K), wiring should be done after ECO MM8I-A-00013 has been installed.

DELETE: B08E1 to B06B1 - ADD: B06S1 to B06B1
To revert to $8 \mathrm{~K}:$ DELETE: B0651 to B06B1 - ADD: B08El to B06B1
These wiring changes are shown in the ECO drawing but not in the ADD/DELETE list.

For add-on MM8I extend 2 or extend 3 , check notes on print MM8I-A.
All extended memories will be wired as extended l-control fields
$2+3$. To convert from extend 1 to extend 2 - control field $4+5$.
EA0 (0) B07L1 to B07K2 - delete
EA0 (1) to B07L1 - add
EA1 (1) B07M1 - delete
EAl (1) to B07H2 \quad - add
EA0 (1) to B07H2 - delete
EA1 (0) B07K2 to B07M1 - add
To convert from extend 1 to extend 3 - control fields $6+7$.
EA0 (0) B07L1 to B07K2 - delete
EA0 (1) to B07L1 - add
EA0 (1) B 07 H 2 - delete
EA signals are available at the following:

EA0(1)	A28	or	D28	D2
EA1 (1)	A28	or	D28	E2
EA2(1)	A28	or	D28	H2

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorKK8E
	12 Bit \triangle	16 Bit	18 Bit	36 Bit	

If a PDP-8E has a M833 Timing Generator it is possible for a peripheral to miss the Initialize pulse when powering up the processor. This can happen if the processor issues the relatively short initialize pulse before the peripheral is "up-to-power".

An indication of this problem could be "Tape Runaway". If the drive is under remote control and has unit \emptyset selected at the time the system is powered up the tape may drive in one direction until the clear key is depressed. This problem is taken care of by the M8330 Timing Gemerator Module (the initialize is 550 ms long). If the problem is observed, the M833 should be exchanged for a M8330.

M865 - PROBLEM: $\begin{aligned} & \text { Some crystal clocks will not start due } \\ & \text { to circuit impedance. }\end{aligned}$
SOLUTION: Add a 10 picofarad capacitor across crystal output leads.

M865 - Problem:
Noise spike may clear reader run, manual restart required.

Solution: Delete etch connection to E46 Pin ll, add jumper from E40 Pin 8 to E46 Pin 11.
(Reference ECO M865-øøøø3)

Title K	KL8E TTY Control (M856,M8650)				Tech TipNumber KL8E TT-2	
Processor Applicability		Author Bill Freema	Rev		0	Cross Reference
$18 \mathrm{E}$		Approval W: Cummins		7-3	1-72	

There are two (2) module types that may be used as teletype interfaces in PDP-8E's, the M865 and M8650. The M8650 may be used as a replacement for the M865 (double check the M8650 jumpers to insure they conform - referencing engineering specification $\mathrm{A}-\mathrm{SP}-\mathrm{KL} 8-\mathrm{E}-1$).

The M865 may not be used indiscriminately as a replacement for the M8650 except when the M8650 is used as the console teletype and the console device is 110 baud.

The M8650 and M8650YA modules are the same except for operating frequences. The M8650 has a crystal for 110 baud operation and the M8650YA has a crystal for multiples of 2400 baud. The part number for the M8650 crystal is 18-09880-01 while the M8650YA crystal is 18-09880-02. In emergency situations, the boards may be exchanged merely by changing the crystal.

digital	FIELD SERVICE TECHNICAL MANUAL				Option or Designator KL8E
	12 Bit \times	16 Bit	18 Bit	36 Bit	

Some M8650, C.S. Rev. A prints were shipped without the hand made change added to the circuit which would make them C.S. Rev. B. The change to the circuit is shown below.

C.S. REV. A

digita			FIELD SERVICE TECHNICAL MANUAL								Option or Designator KM8E	
			12 Bit	16 Bit		18 Bit \square		36 Bit \square				
Title T	Time Share Clearing User Mode Flip/Flop									Tech TipNumber TRE1		
	Processor Applicability			Author	Robert Shelley				Rev	0		Cross Reference
				Approval W.E. Cummins Date 7-31-72								

Problem:
It may be found impossible to manually clear the "User Mode" bit (except by turning power off and on) on M837 modules at etch Revision B, even though the handle stamp indicates the module has been ECO'd to circuit schematic Revision C or D.

This is because most of ECO M837-00001 (circuit schematic Revision C) was never installed on these modules. When Revision C is fully installed the User Mode 'Buffer' (labeled "DB" on print M837-0-1, 2 of 3) is cleared by the load-address key. (The extended load-address key clears the user flop itself.)

Revision C and D prints are correct but the following changes must be made to the module if it's etch revision is B.

The steps below refer to the drawing that follows:

```
1. Cut etch at E19-6, side 2.
2. Cut etch at E19-5, side 1.
3. Cut etch at E19-4, side 1.
4. Cut etch at E19-4, side 2.
5. Add jumper from E19-6 to E29-3.
6. Add jumper from E23-11 to E29-6.
7. Add jumper from E29-5 to Feed-through shown on the drawing.
8. Add jumper from E19-4 to Feed-through shown on the drawing.
9. Add jumper from E19-5 to feed-through shown on the drawing.
10. Add jumper from E19-8 to feed-through shown on the drawing.
11. Add jumper from E29-4 to feed-through shown on the drawing.
12. Cut etch at E40-11, side 1.
13. Add jumper from E40-11 to E25-9.
```

Modules at etch revision C are already correct. Ref. ECO M837-00003.
PAGE 1 ||PAGE REVISION 0 P||PBLICATION DATE July 1972

If a PDP-8E has an M8330 Timing Generator and a power fail option, KP8E, the power fail module should be either an M848 CS. Rev. F, or later, or an M8480.

Due to the design characteristics of the PDP8/E, the Power supply (H724) may be providing power to many different "option" modules. The M848 module has three (3) pairs of jumpers on it to select the correct thresholds, which will vary with the load, for each particular configuration. Also, they may be used to help compensate for poor line voltage conditions (E.G. 95 to 105 VAC).

For example; if a PDP-8E has many modules plugged into its OMNIBUS and there is a loss of AC power, the DC voltages will decay faster than they would if it was a basic PDP-8/E. Therefore, the power fail threshold may need to be set higher for a "Larger" PDP-8E.
/mt

PAGE 1	PAGE REVISION	A	PUBLICATION DATE	November 1972

Converting the ASR-33 to the PDP-8/E
Occasionally a customer may request to have an older ASR-33 configured such that it can be used on any $8 / E$ type system.
CAUTION: Prior to performing any rewiring, be certain that the teletype in question has in fact been modified for use on DEC's PDP-8 family of computers. (Reference the field service technical manual, LT33-TT-3)

The following chart has been designed to reduce the amount of time you would normally spend cross-referencing several different sets of prints. It is highly recommended that, before applying power to the reconfigured system, you double-check all wiring for correctness. Failure to do so could result in damage to the Teletype Control Module andor the Teletype.

1) Disconnect and remove the step down transformer from the teletype base.
2) Remove the AC supply lead from the terminal strip inside the teletype.
3) Connect the new AC power cord to those same terminals, white to \#l, black to \#2 and green to a chassis screw.
4) If the motor is rated for 50 cycles, it must be replaced with one rated for 60 cycle operation. If it is reated $50 / 60$ cycles it need not be changed.
5) Proper operating speed is determined by the ratio of the belt driving gear and its pinion gear: these must be replaced in this conversion.

The parts required for conversion can be specified as follows:
Dart

Belt driving gear (60 Hz)
Pinion gear (60 Hz) 181411
181411 29-11412 1.83
60 Hz motor
AC power cord
181870
29-11432
61.50

182510
29-16755
3.45

Installation charges are based on time and material; there is no fixed charge for this conversion.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator KP8L
	12 Bit x	16 Bit	18 Bit	36 Bit	

| Title | G785/MC8L/KP8L COMPATIBILITY | | Tech Tip
 Number | KP8L-TT-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Title | 611 | | | Tech Tip
 Number | KV8I-TT-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Some older Tektronix 611 scopes have a potentially disastrous flaw. The leads on the secondary of the high voltage transformer do not have sufficient insulation to withstand long usage and will break down and short the cathode voltage (leads 8 \& 9) to ground. To cure, unsolder leads 8 \& from the ceramic strip, cover those leads with a heavier teflon spaghetti then resolder to the same spots on the ceramic strip.

An error in the Add/Delete lists for ECO's 8I-øøø21 and 00036 has resulted in the introduction of peculiar problems into the KV8I. Some KV8I's have left the plant improperly wired.

$$
\begin{array}{ll}
\text { The error: } & A D D D 1 \emptyset E 2 \text { to } E \emptyset 9 L 2 \\
\text { Correction: } & A D D E \not Q 9 V 1 \text { to } E \emptyset 9 L 2
\end{array}
$$

A jittery presentation on a VTll may be the result of a falty ground between the VTgl and the $8 I$. It is probable that the situation can be improved or corrected by plugging the VTøl into the $8 I$ power supply or in any DEC option.

	FIELD SERVICE TECHNICAL MANUAL					Option or Designator LAB 8
	12 Bit \square	16 Bit \square	18 Bit	\square	36 Bit \square	

1) The Lab 8 systems are checked out "in-house" with the standard grid input intensity (Z) signal. If the customer has supplied his own scope, it may be a type which required a cathode input signal. The Lab-8 A/D logic can be modified to provide a cathode signal as follows:

Delete A22F to A21N ADD A22F to A21R
2) If you are running a test during which you expect to see a character or pattern on the screen, and only a raster is visible, it may be that the intensity control has been advanced too far. Best practice is to reduce brightness to minimum, then bring it up to the desired viewing level.
3) If the left diagnal (switch setting 1000 octal) generated by Maindec 8I-D6AA has curled ends, a lack of termination iss indicated. Two 33 K OHM terminators (which are listed on the expernal component list) may be missing, install as follows:

C25K to C25E (C25E is -10)
B 25 K to B 25 E (B 25 E is -10)
4) It should be noted that there are two errors concerning the VC8I in the "Small Computer Handbook". Voltage at terminal BS2 on the A607 module varies from 0 to +2 , not 0 to -10 . The reference voltage is -8 , not -2 .

PROBLEM: Recently software for the Lab-8E has been released from the Program Library and shipped to all customers. Two pieces of software in the software package have problems.

SOLUTION:

1. The Basic Averager DEC-LB-0603-PB needs a one word patch.

Location 7203 from 6530 to 6531.
2. The Time Interval Histogram DEC-LB-U42B-PB has a checksum in the paper tape. This tape must be replaced.

The end of a Line Printer ribbons life is often caused by stretching and skew problems, which eventually cause it to tear or maybe get jammed in the drum.

As most printers call for routine cleaning of the drum area on a weekly (maybe monthly) basis, it is a good idea to reverse the ribbon rolls (top to bottom) at this time to even out any stretching that has taken place and significantly improve ribbon life.

CPI

LA30

Title	DECwriter Ribbons - Recall					$\begin{aligned} & \text { Tech Tip } \\ & \text { Number LA30-TT-4 } \end{aligned}$	
	Processor Applicability	Author	Bryan	Dungey	Rev	0	Cross Reference
X		Approval	Ed Dor	r	09-	5-72	

We have discovered that one shipment of DECWriter ribbons, which were over inked, were mat into stock sometime around the first of the year. The ribbons can be identified by the lot $\$ 35$ which is printed on each ribbon carton.

These ribbons will smudge badly and should be recalled from all field stock areas. Maynard and Westfield Stockrooms have already been purged.

As there is no bell on the LA30, there is no indication of a pass on some of the Basic 8 E Maindecs. The following changes give a "P" for pass when running these Maindecs.

Instruction Test $1 \quad$ change location $\varnothing 12 \varnothing$ from $\varnothing 2 \varnothing 7$ to $\varnothing 32 \varnothing$ Instruction Test 2 change location 3751 from $\varnothing 2 \not 07$ to $\varnothing 32 \varnothing$ Random DCA change location $\varnothing \varnothing 13$ from $\varnothing 2 \varnothing 7$ to $\varnothing 32 \varnothing$ Basic JMP-JMS change location 3567 from $\varnothing 2 \not \subset 7$ to $\varnothing 32 \varnothing$ EAE Inst. Test 2 change location 2175 from $\varnothing \varnothing \varnothing 7$ to $\varnothing 32 \varnothing$
(N.B. this change will print "CP" once a minute)

Title	LA30	INTERMITTENT	STOPS	PRIN	JTING			Tech Ti Number	LA30-TT-6
$\begin{array}{r} \text { All } \\ \mathrm{X} \\ \hline \end{array}$	Processor Applicability		Author	J.	Blundell		Rev	0	Cross Reference
			Approval	F.	Purcell	Date		20/72	

PROBLEM CAUSE: Right margin switch (N/O contact) floating into Mll3 pins Hl and Jl at Al7.

Cure: Add a jumper Al7 Hl to Al7 Ul to clamp the line to plus 3. There will shortly be an ECO to make this a retrofit.

Title	KEYBOARD SHORTS CAUSED BY PAPERCLIPS, ETC.						Tech TipNumberLA $30-T T-7 ~$	
$\begin{aligned} & \text { All } \\ & \mathrm{X} \\ & \hline \end{aligned}$	Processor Applicability		Author	Davis/Barn		Rev	0	Cross Reforence
			Approval	W. Cummins	Date	11	20/72	LK01-TT-

| PAGE 3 | PAGE REVISION ABLICATION DATE November 1272 |
| :--- | :--- | :--- | :--- | :--- |

b) Advance a corner of the screwdriver blade towards the spring point in each orifice of the bar. There should be an ARC of between $1 / 8^{\prime \prime}$ and $1 / 4^{\prime \prime}$. No less than $1 / 8^{\prime \prime}$ and no more than $5 / 16^{\prime \prime}$.

Repeat this for each hole and point in the bar. If any hole fails this test replace the bar.

If no ARC is present anywhere along the bar, do the following.

1. Check primary power to the eliminator transformer. If OK, go the the next step.
2. Replace static eliminator assembly (the assembly
includes the bar).

Part Numbers for the above are:

115 Volts $50 / 60 \mathrm{~Hz}$
LP01 Bar.............. 29-17943
LP01 Transformer....29-17944
*LP01 Assembly........29-17520
LP02 Bar..............29-19364
LP02 Transformer....29-17944
*LP02 Assembly........29-19407

Other Vols $50 / 60 \mathrm{~Hz}$
29-17943
Note 1
Note 1
29-19364
Note 1
Note 1
*Assembly contains bar, cable, transformer and hardware.
Note 1: Specify voltage at time of order (i.e. 230V).
/mt

FIELD SERVICE TECHNICAL MANUAL				
12 BitQ	16 Bit \square	18 Bit \square	36 Bit \square	

Volume III of the 8 E Maintenance Manual and the M8329 circuit schematic, Rev. C both have mistakes with the jumper numbering for device code selection. The board actually agrees with the drawing below.

The fault symptom will typically be either wrong sense of bits 5 or 6 in the decoded IOT, or MD bit 6 always constant on the omnibus.

The same mistakes have been carried over into the LS 8E (M8342) control. The drawing below also applies exactly to the C.S.Rev. \emptyset of that board.

A customer information bulletin from Data Products is as follows:
Change Description:
The AZ-19, Hammer Interlock, circuit board assembly ($\mathrm{P} / \mathrm{N} 212500$) is being replaced by an $A Z-167$ ($P / N 215565$). The reason for this change is to improve voltage loss detection. The AZ-167 will perform the function of the $A Z-19$ and voltage monitor circuit (P / N 214278-2).

The paper guide/ribbon guide assembly (reference 2410 Manual Fig. 3-4) is being eliminated. This change will simplify mechanical alignment and make the units less susceptible to operator abuse. The change also reduces "smudging" by minimizing unwanted contact between paper and ribbon.

Effectivity:

The AZ-167 will be incorporated at $S / N 2525$ scheduled for October delivery. The AZ-167 can be used interchangeably with the AZ-19 in all units. The AZ-19 cannot be used in units above $S / N 2525$. This change will also be implemented in the Model 2310 in the near future.

The paper guide/ribbon guide will not be used after S/N 2492 .

Title	INSTALLATION OF AUTOMATIC PERFORATION STEPOVER					$\begin{aligned} & \text { Tech Tip LPO1-TT-12 } \\ & \text { Number } \end{aligned}$	
	Processor Applicability	Author	W. Cummins		Rev	0	Cross Reference
X		Approval	W. Cummins		07	1/72	

All Data Product Line Printers (2310-80 column) delivered to DEC that are above Data Product serial number 556 DO NOT HAVE automatic perforation stepover installed. If you have any customers who desire this feature, the following change must be made:

Add a wire from 9-27 to $4-25$ on the logic cage.

The LPO1 normally has a 64-character print drum, but as an option a 96-character print drum is available. Unfortunately there is very little information in the Data Products Corporation Technical Manual regarding this option, which has caused some concern. The following provides additional information.

1. Nonprintable Code Detector (Figure 6-7) Pin 31 on the input is grounded thus making 140 through 177 legal.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator LINC-8
	12 Bit \times	16 Bit	18 Bit	36 Bit	

Problem: Incorrect cable listings in the LINC-8
Since the Linc - 8 was first introduced there has been a problem with the cable listings. The prints of the PDP-8 section give standard PDP-8 cable connections, which for the Linc-8 are totally useless. The PDP-8 section is the only part in error.

Solution: Attached is a complete list of the cables of the Linc-8 their slot positions, part numbers, length and type of cable,
This list complements the list in the Maintenance Manual Vol 2 on page 72 and 73 (print \#D-IC-LINC $8-0-5$ and \#D-IC-LINC-8-0-6 I/O cables) both these prints and these attached sheets should be consulted before coming to the conclusion that a cable is missing or a wiring error has been found.

Notes	Type of Cable	Slot Positions	Length-	Part Number
\# 1	W034-W035	MA37- PC01	$50^{\prime \prime}$	74-5559
\# 1	W034-W034	MA38 - PD01	52"	74-05554-10
\# 1	W034-W034	ME36-PE01	$70^{\prime \prime}$	74-05554-5
	W034-W034	MF36-PF01	30"	74-05554-8
		MA36- LA01	$10^{\prime \prime}$	74-05554-1
		MD40 - LD01	10"	
		ME40 - LE01	10"	
		MF40 - LF01	$10^{\prime \prime}$	
		MH38 - LH03	$10^{\prime \prime}$	74-05554-1
		MJ39 - LJ02	$10^{\prime \prime}$	
		MJ40 - LJ01	10"	
		LH39 - PH02	$10^{\prime \prime}$	
		LH40 - PHol	$10^{\prime \prime}$	
		LJ39 - PJ02	$10^{\prime \prime}$	
	W034-W034	LJ40-PJ01	$10^{\prime \prime}$	74-05554-1
	W031-W031	MH39 - LH02	12"	74-05552-2
		MH40 - LH01	12"	
		MJ37- LJ 04	12"	
		MJ38- LJ 03	12"	
		LJ38-PJ03	12"	
	W031-W031	LH38 - PH03	12"	74-05552-2
	W034-W034	LA02 - PA01	52"	74-05554-10
	W034-W034	LA03 - Pb01	52"	74-05554-10
	W033-W033	LA31-DB36	$80^{\prime \prime}$	74-055-3-5
		INDo1- PC38	$80^{\prime \prime}$	
		IND02-PB38		

4）The wave form seen is the negative portion of a 65 V negative pulse．

5）Now reset scope to ADD channel B INVERTED．The waveform now seen should resemble the waveform shown below．The dotted area drawn inficates the error and should be adjusted out by turning appropriate allen screw adjustment．

FIGURE－2A							Depending on Phase of Error Pulse will be either Positive or Negative．
			青				
			表				
\cdots		1111				Nin	Adjust for no Error Pulse！
5			邫				
			邫				

6）Refer to table 5－5 and connect channel B probe to test point of hammer to be adjusted with hammer \＃l as refer－ ence．

7）Adjust hammer 3 through 20 （24）per figure 2A．
8）Change to zone 1 and 2 on interface test board．Multiple waveforms will be observed as zones are added．

9）Change scope setting from ADD to Channel A．Now adjust hammer \＃2l（25）so it falls simultanwously with waveform producted by Hammer \＃1．The hammer \＃1 and hammer \＃21（25） waveform will look similar to Figure 3A．

FIGURE－3A

			I		T		
			表		，		\％
1			者		pa	pana	
				＊	－		，

Error is time between positive upswing of waveform．Adjust hammer \＃21（25）so hammer \＃1 and hammer \＃21（25）occur at same time．

digit al				FIELD SERVICE TECHNICAL MANUAL									Option or DesignatorLINC-8			
				12 Bi	t			16 Bit		18 Bit \square		it \square				
Title LINC-8 CLAMP LOAD'S LOCATION AND USE Tech Tip Number INC-8-TT- $\varnothing 1$																
All Processor Applicability I I N C 8								Author STE	VE	LAMOTTE		Rev			Cros	ss Reference
								Approval DI	CK	EDWARDS	Date	9/12	2/72			

A list of the unused clamp loads within the normal (basic) Linc-8 system has never been compiled in the past.

First, a word about the clamp load and it's uses. There are basically 3 types of clamp loads; $2 \mathrm{ma}, 5 \mathrm{ma}$, and 10 ma , with flip-flops, singleshots and special purpose modules differing in load and drive capability.

The clamp, when driven to ground acts as a load, of it's given value, thus removing that value of driving capability from the circuit. Although, when the clamp is driven to -3 volts, it acts as a supply; the amount of supply per clamp is given in chart form later.

Each circuit in the Linc-8 needs 1 ma of input drive, and has an output capability of 18 ma , except for flip-flops and singleshots which have 17 ma's of output.

Adding a clamp will inprove fall time and the -3 volt drive, but at a cost of the ground driving and noise immunity capability of the output circuit.

In conclusion; before adding a clamp load, take into account:

1. What logic level is needed on the output to be clamped?
2. How many circuits are already being driven by the output circuit?
3. If the output is ground, as a logical one, how much noise is tolerable to achieve the added drive.

H) The setting of the copies control can also effect print quality. There is very little information concerning this adjustment, because all it does is allow you to change from single copy to multiple copy paper. This is accomplished by moving the hammer bank exactly the thickness of the paper, thus maintaining the same hammer flight time. It is possible, depending on the thickness of paper used, when changing from single copy to multiple copy paper that the copies control lever will need to be set at a position other than the one that corresponds with the number of copies being printed. When the copies control is out of adjustment it can cause one of two problems. First, if the hammer bank is too close to the paper, the hammer flight time is shortened and the top of the characters are lost because the hammer strikes the character drum too early. In extreme cases, paper jamming can result. Secondly, if the hammer bank is not close enough, the flight time is increased and the bottom of the characters are lost. The increased flight time also means that the hammer strikes with less force and degrades the print quality on the back copies. In extreme cases, hammers may be damaged.

This information was made possible largely through the efforts of John Benton.

Upon the failure of a hamer driver module it is possible that a hammer may be destroyed, which in turn could cause damage to the replacement hammer driver module.

Before replacing a failed hammer driver module it is advisable to insure that none of the hammers were damaged. This can be accomplished by removing all of the hammer driver modules and taking resistance readings across each of the hammers. If the resistance of any hammer is not bewteen 15 and 20 OHMS (nominal 18 OHMS) it should be considered bad and replaced.

UNUSED CLAMP LOADS

MODULE	TYPE	PIN	APPLICABLE
LOC.	MODULE		ONLY IF OPTION
PA24	S111	P	
PA2 7	Slll	J	
PA27	Slll	P	
PA27	Slll	V	
PA3ø	Slll	V	
PA36	W501	D	
PB2 3	Slll	V	
PB29	S111	J	
PB32	Slll	J	
PB32	Slll	P	
PC28	Slll	P	
PD24	Slll	P	
PD27	Slll	V	
PE27	S111	J	182
PE17	Slll	P	182
PE17	Slll	v	182
PE2ø	Slll	J	182
PE2ø	Slll	P	182
PE2ø	5111	V	182
PE26	Sl11	J	182
PE26	S111	P	182
PE27	Slll	P	182

B) Ribbon and paper dust will accumulate on the paper tension bar (figure 1-8) and also become trapped in the ribbon as it winds on the spool. This will cause a smearing effect on the first copy of the printed paper when allowed to accumulate in sufficient quantities. Regular cleaning of the ribbon and the paper tension bar with a brush or other suitable tool should eliminate this problem.
C) The ribbon tension should be checked to insure that the drag current is being applied to the ribbon take-up motors. This may be checked in the following manner:

1) With power on, open the drum gate and swing out the drum assembly.
2) Check the drag current for the upper take-up by holding the lower ribbon spool and rolling the upper ribbon spool so that the ribbon goes slack. Now by releasing the upper spool, it should automatically rewind and pull the ribbon taut.
3) Perform this same type of procedure for the lower ribbon take-up.
D) The type of paper used will have an extremely important effect on print quality, particularly when using multi-part paper. An evaluation was conducted to determine the best six-part paper with carbons for use. The results are as follows:

First Choice: Moore Business Forms, Inc.
Paper Weight:
Carbon Weight: 11 pound multirite

Performance: 6 pound tab back Good
Print Quality, Copy \#6: Dark, Distinct
Second Choice:
Paper Weight:
Carbon Weight:
Performance:
Print Quality, Copy \#6: Medium to light, Distinct
Third Choice: Royal Business Forms, Inc.
Paper Weight:
Carbon Weight:
11 pound, Form 811-3
Performance:
Print Quality, Copy \#6: Dark, somewhat blurred

Title	LINC-8 CLAMP LOAD'S LOCATION AND USE										Tech Tip Number LINC-8-TT- $\varnothing 1$		
All	Processor Applicability					Author STEVE LAMOTTE				Rev		Cross Reference	
	L	I	N	C	8	Approval DICK EDWARDS Date $9 / 12 / 72$							

$\begin{aligned} & \text { MODULE } \\ & \text { LOC. } \end{aligned}$	TYPE MODULE	PIN	APPLICABLE ONLY IF OPTION
MH11	R3ø3	F	
MH11	R303	H	
MH19	Slll	P	
MH19	Slll	V	
MJ18	Slll	P	
MJ23	Slll	J	
MJ23	Sll1	P	
MJ27	Slll	J	
MJ27	Slll	V	
LA28	Wøø5	$\begin{aligned} & T \\ & \downarrow \end{aligned}$	
LA28	Wøø5	V	
LA34	WめØ5	$\begin{aligned} & \mathrm{N} \\ & \downarrow \end{aligned}$	
LA34	Wøø5	V	
LDø2	B115	J	
LDø2	B115	P	
LDø2	B115	V	
LEØ 3	B115	J	183
LEø3	B115	v	183

Page 5

* CAUTION *

Do not allow code wheel to hit pick-up as damage can occur.

2. Thread pick-up in or out until desired signal is obtained.
3. Tighten locknut; ensure pick-up does not move. /mt

CPI

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator LKO1
	12 Bit x	16 Bit X	18 Bit X	36 Bit X	

Exposed foil etch on keyboard becomes shorted by staples and/or paperclips, etc; resulting in permanent damage to keyboard assembly.

To reduce or eliminate the problem cover the exposed etch with paper stock or foam rubber and tuck the material under the top row of keys. Then tape material to board.
/mt

| Title | NOISE PROBLEM ON DATA PRODUCTS LINE PRINTER | | Tech Tip
 Number | LP01-TT-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The ASl3 module used in the $231 \varnothing$ and $241 \varnothing$ line printers manufactured by Data Products have spare gates used on the transducer amp which
 I.C.'s should be tied to ground. (Module Pin 2 or 6ø).
/mt

| Title | DATA PRODUCTS SEMI-CONDUCTOR CREF | (Continued) | Tech Tip
 Number | LPO1-TT-4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DATA P's PN	DEC P/N	DESCRIPTION	MFG. NAME'S \& P/N'S
89¢214-ø¢1	29-17793	Diode, 1N 1192	Motorola 1N1192
89¢215-901	15-65819	Transistor, 2N3055	Motorola 2N3¢55
890232-901		I.C., Memory TMS3000LR	T.I., TMS $3 \varnothing \emptyset \emptyset \mathrm{LR}$
89¢349-901	29-17892	TRIAC, 2N5573	R.C.A. 2N5573
89¢349-901	29-17892	TRIAC, SC5øB	G.E. SC5ø
809376~001	29-15¢43	TRIAC, 2N5574	R.C.A. 2N5574
899370-901		I.C. Data Comp 7486	Sprague SN7486N
89¢386-ด¢1	29-1779ø	I.C., 74193	Sprague SN74193N
89¢387-ø¢1	29-17791	I.C., $74 \emptyset 4$	Sprague SN7404N
899387-901	19-99686	I.C., $74 \not 44$	Sprague SN7404N
89¢393-901	29-17792	I.C., DM8220n	Nat'1 Semicond. DM8220n
8¢¢491-ด¢1		I.C., 7486	Sprague SN7486N
899516-901		Bridge, Diode SCBA 2	Semtech Alpac SCBA 2
89¢592-ø¢1	29-17875	Diode, Z 5.6v 1N5232	Motorola 1N5232

Added list of replacement semiconductors for LPø8 Data Products Line Printers.

DP P/N
8øø189-øø1
$8 \emptyset \emptyset 21 \emptyset-2 \emptyset 5$

DEC No.
29-17786
29-17936

DESCRIPTION
Diode No Equiv.
Resistor $2 . \emptyset$ IW 1\% Dale

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator LPOI
	12 Bit X	16 Bit X	18 Bit \triangle	36 Bit X	

This is a list of replacement semiconductors and resistors for Data Products Line Printer.

DATA P's P/N	DEC P/N	DESCRIPTION	MFG. NAME'S \& P/N'S
			RCA \# 2N3ø54
8øøø18-øø1	15-ø9523	Transistor DPC2ø2/2ø2A	MOTOROLA \# 2N4233
8øøø19-øø1	29-16826	Transistor DPC201C	MOTOROLA
$8 \varnothing \emptyset \emptyset 2 \emptyset-\emptyset \emptyset 1$	19-Ø5577	I.C., $742 \emptyset$	Sprague SN742øN
8øøø21-øø1	19-Ø5578	I.C., 743ø	Sprague SN743øN
89¢ø22-øø1	19-95579	I.C., 744ø	Sprague SN744øN
89¢ด23-øø1	19-¢5576	I.C., 741ø	Sprague SN7419N
8øø¢24-ø¢1	19-95575	I.C., $74 \emptyset \emptyset$	Sprague SN740¢\%
899926-991	19-¢558¢	I.C., 745¢	Sprague SN7450N
89¢930-47¢	13-ø¢2ø2	Resistor, 47 1/4w 5\%	
8øø¢8 $¢ 0-\emptyset \emptyset 1$	19-990¢4	I.C., 7402	Sprague SN7492N
899981-991	19-65585	I.C., 7476	Sprague SN7476N
8ø¢¢88-ø¢1	29-17394	Transistor, 2N3253	Motorola 2N3253
8甲¢¢88-¢¢1	29-17781	Transistor, 2N3253	Motorola 2N3253
899989-901	15-91742	Transistor, 2N2994	Motorola 2N2904
8ø9¢93-901		Diode, 1N4154	I.T.T. 1N4154
8¢¢¢95-ø¢1	11-¢4861	Diode, 1N4り¢2	I.T.T. 1N4902
899132-991	15-93121	Transistor, DPC295A	Motorola 2N2369
89¢133-¢91	$\begin{aligned} & 15-\emptyset 187 \emptyset \\ & 29-16780 \end{aligned}$	Transistor, 2N2894	Motorola 2N2894
899186-9¢1	29-1683 $¢$	I.C., OP AMP LM711CN	Nat1' Semicond. LM711 CN
809187-901	29-17875	Diode, Z 5.6V IN5232	Motorola IN5232
	29-17909		
8ø¢188-ด¢1	29-16894	Diode, Z 9.1V IN757A	C.D.C. IN757A
8øØ188-øø1	29-16831	Diode, z 9.1V IN757A	C.D.C ${ }^{\text {C.D.C. }}$ ¢M757A
89¢188-9¢1	29-17785	Diode, Z 9.1V IN757A	C.D.C. QM 757 A Motorola 2 N 4213
890190-901	29-16781	SCR, TRIAC 2N4213	Motorola 2 N 4213 Fairchild 2N1595
890190-901	29-16781	SCR, TRIAC 2N1595	Motorola 2N1597
890191-901	29-16782	Transistor 2 N 1597	Motorola 2N1597
8øø192-¢¢1	29-17599	SCR, 2N683	Motorola 2N683
8ØØ192-9¢1	29-17934	SCR, 2 N 683	RCA 2 N 11 Semicond.
890195-9¢1	29-16829	OPAMP, LM797 CN	LM 7 10 CN
80¢195-901	29-17906	OPAMP, LM7¢9CN	Nat'l Semicond. LM 7 99 CN
809210-100		Resistor, 11 w 1\%	Dale
89¢210-2ø5		Resistor, 21 w 1\%	Dale

PAGE

PAGE REVISION

When replacing hammers be extremely careful - do not exert stress on the permanent magnets either side of the hammer being replaced because these magnets may break away from the base plate.

If a magnet breaks off it can be reinstalled with a small amount of Two Part epoxy compound using the following steps:

1. Thoroughly clean the broken magnet and its base plate position after removing adjacent hammers.
2. Check the magnet's polarity by inserting between adjacent magnets. If it is repelled turn the magnet over and note the attitude in which it must be inserted.
3. Apply a small amount of two part epoxy to the mating surfaces, removing excess. Join magnet to base plate. Check for squeeze out of epoxy and wipe away excess. Shim the magnet with cardboard to maintain hammer clearance on either side and let dry overnight.
4. Replace the hammers and check for clearance between hammers and epoxied magnet. Complete reassembly and test.

| Citle 2310 | CATA P PRODUCT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Extreme care should be taken when tightening down the screws that hold the plastic panel on the card cage on Data Products printers. Tightening down on these screws too hard can crack the bussed runs in back of the wiring panel, and they are impossible to repair.

One of the most pronounced symptoms is a fluctuating +12 V line to individual modules, the most susceptible being the AHlo, hammer driver module, where the 2 ohm resistor and driver transistor are destroyed when the +12 V is lost.

ECO LPOl-øøøø9 checks for a complete loss of the +22 or +12 V line to protect the hammer driver modules, but will never detect +12 V loss to and individual module.

Description: The Mark IV Hammer Module (Data Products Part Number 208-504-1; DEC Part Number 29-16783) is mounted to the hammer bank assembly by a hammer hold down screw which goes through the assembly and screws into a brass insert in the hammer module base.

Change Description: The hammer module base has been redesigned deleting the brass insert and adding its function as part of the plastic molded base. The hammer modules are interchangeable.

Effectivity: The change was incorporated in the 2000 series printers in mid January 1972.

Impact: The screws that mount the hammer modules to the hammer bank, are not interchangeable. The new hammer module takes a longer screw (P / N 231699-001). The screws used for the former hammer module is shorter (Data Products P.M. 211727-001; DEC Part Number 29-15025). If the new screw is used with the former hammer module, the screw will bottom out and the hammer module will not be held securely to the hammer bank. If the old screw is used with the new hammer module, the hammer module will not be reliably secured to the hammer bank.

Solution: A new screw will be supplies with each new spare hammer module. This practice bacame effective February 14, 1972. This screw must be used when installing a new spare hammer module.

Use screw (P / N 211727-001-DEC P / N 29-15025) when replacing a new hammer module with a former hammer module spare.

In an emergency, the new screw may be used in the "brass insert" hammer module by adding 5 each \#6.015" thick flat washers or any combination of \#6 washers which add up to .075". These washers are to be used in conjunction with the existing split lock washer ahd flat washer. The existing flat washer is \#6 .015" thick.

	FIELD SERVICE TECHNICAL MANUAL					Option or Designator LPO1
	12 Bit 区	16 Bit 区	18 Bit		36 Bit X	

Due to the mechanical construction of the LPOI, it is a difficult and time consuming procedure to adjust the pickups for character (CHPO), index (INPO), and line strobe (LNSTPO) signals. Furthermore, the maintenance manual does not include the voltage levels or the kind of signals one might expect to see on the output of the pickups.

Test Set-Up for adjusting these signals:
Character Pickup

1. Bring printer to "ReADY" condition.
2. Set oscilloscope as follows:
a. time/div $=2 \mathrm{~ms}$
b. channel 1 volts/div $=0.1$ volt (X10 probe)
3. Observe CHPO at A3A15 pin 28. It should be at least four (4) volts peak to peak with the positive peak being a minimum of 2.5 volts. If need be, adjust* and/or replace the pickup.

Index Pickup

1. Bring printer to "READY" condition.
2. Set oscilloscope as follows:
a. time/div $=10 \mathrm{~ms}$
b. Channel 1 volts/div $=0.1$ volts (Xlo probe)
3. Observe INPO at A3A15 pin 38. It should be at least 2 volts peak to peak; if it isn't, adjust* and/or replace the pickup.

Line Strobe Pickup

1. Remove paper from printer.
2. Remove all paper fault indications (tape down the switches).
3. Bring rinter to "READY" condition.
4. Replace print inhibit switch in the inhibit position.
5. Enter continuous form feed (refer to Tech Tip 8I, Section 17 , Paragraph E.)
6. Set oscilloscope as follows:
a. time/div $=50 \mathrm{~ms}$
b. channel 1 volts/div = 10mv (Xl0 probe)
7. Observe LNSTPO at A3Al5 pin 48. It should be at least 0.3 volts peak to peak. If need by, adjust* and/or replace the pickup.

NOTE: The above voltage levels are minimum acceptable and larger signals are desired.
*To adjust Pick-UP

1. Loosen the locknut on pick-up.

PAGE 6	PAGE REVISION	0	PUBLICATION DATE	July 1972

CPL

There are many factors which contribute to print quality on a drum-type line printer. In fact, the very method by which the character is printed on the paper causes slight blurring and, at the same time, puts great stress on the paper. However, good print quality can be obtained if adjustments are made properly and a good grade of paper is used.

The ensuing discussion assumes that the following items have been checked and are in accordance with specifications. These six (6) items directly effect the print quality and adjustments must be performed as described.

All references will be in the DATA PRODUCTS CORPORATION TECHNICAL MANUAL unless stated otherwise.

1) Power Supply Voltages (Paragraphs 5-21 through 5-25)
2) Hammer Drive Current (Paragraph 5-31)
3) Hammer Flight Time (Paragraph 5-33)
4) Paper Feed Velocity Command (Paragraph 5-35)
5) Paper Drive Belt Tension (Paragraph 5-39)
6) Phasing (Paragraph 5-53, 5-57 for LP02)

The following items and/or adjustments will be covered in this discussion:
A) Reversing the printer ribbon.
B) Cleaning the ribbon and the paper tension bar.
C) Checking ribbon tension.
D) Type of paper.
E) Paper tension.
F) Paper feed.
G) Cleaning the character drum.
H) Copies control lever.
A) Proper care of the printer ribbon is of vital importance for good print quality. It should be pointed out that the first hour or so of printing with a new ribbon will probably result in some ink splatter. Best results will be obtained during the third to tenth hours of print time for most ribbons; however, by reversing the top and bottom ribbon spools after 6-8 hours, up to 15 hours of good print quality may be realized. The additional time gained is due to the fact that in normal use, printing is left justified, thereby placing a greater stress on the left side of the ribbon. Consequently the ribbon wears more on the left side causing skewing and its associated problems. By reversing the ribbon the strain is placed on the virtually unused portion, thus balancing the strain and allowing the heavily used side more time to relax and absorb ink from other parts of the ribbon.

| PAGE8 | PAGE REVISIONO | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- |

MODULE LOC.	$\begin{aligned} & \hline \text { TYPE } \\ & \text { MODULE } \end{aligned}$	PIN	APPLICABLE ONLY IF OPTION
PE34	S111	J	182
PE34	Slll	P	182
PE 35	Slll	P	182
PF¢8	W501	D	$K R \varnothing 1$
PF29	Slll	P	182
PF29	S111	V	182
PF31	Slll	J	182
PF 34	S111	J	182
PF 34	S111	P	182
PH¢7	wøø2	V	
MA 39	Wøø5	$\begin{aligned} & N \\ & \downarrow \end{aligned}$	
MA39	Wøø5	\checkmark	
ME1ø	Slll	V	188
ME16	Sll1	P	
ME16	S111	V	
ME37	Wøø5	$\begin{aligned} & \mathrm{T} \\ & \downarrow \end{aligned}$	
ME37	Wøø5	V	
MFø1	Slll	V	183
MFø9	Blø 4	M	188
MF®9	B1ø4.	S	188
MF 19	W501	D	
MHD8	R303	H	
MHø8	R303	F	
Page 4			

E) Paper tension is also quite important with respect to print quality on multi-part paper. A good rule to follow is to tension the paper as tightly as possible without introducing paper feed problems. Two methods may be employed to determine if paper feed problems exist, and may be used together as a comprehensive test. First, run test \#6 of the LP08 diagnostic (Maindec-8I-D2AA). It this runs satisfactorily, you can be relatively certain that no problems exist in this area. Second, cause paper to skew at the maximum rate. This can be done when the printer is not ready by initiating a manual form feed and then pressing the form feed switch again and holding it prior to the completion of the form feed. This will cuase a continuous slewing of paper at the maximum rate.
F) The paper feed should also be checked to insure that when the paper is not in motion a reverse current is applies to the paper drive motor to hold the paper stationary when printing occurs. This may be checked in the following manner:

1) With power off, grasp the paper drive belt and pull it so that the paper tractors move in an upward direction. This should be the only direction that the tractors can be moved. You should be able to accomplish this with very little effort.
2) With power on, move the paper tractors in the same manner as above. It should now be quite difficult to move the tractors due to the reverse current being applied to the motor.

The symptoms which accompany a loss of reverse current are uneven spacing between lines and a double image on the top copy of print.
G) Regular cleaning of the character drum is necessary for good reproduction on multi-part paper. The number of copies obtainable on a printer are prinarily determined by the force with the hammer strikes the paper and the height of the characters on the drum. Hammer force cannot be changed without danger of damaging the hammers or hammer driver cards. And it is obvious that the height of the characters cannot be increased but we can take advantage of the full height of the characters by cleaning the print drum and removing any accumulated ink and debris regularly.

PAGE $_{10}$	PAGE REVISION	0	PUBLICATION DATE	July 1972

B171	F	9 ma	7 ma
S111	$J, ~ P, ~ V$	5 ma	3.5 ma
R3ø3	H, F	$1 \varnothing \mathrm{ma}$	7.8 ma
wøø2	$\mathrm{D} \rightarrow \mathrm{V}$	2 ma	1.4 ma
Wøø5	$\mathrm{D} \rightarrow \mathrm{V}$	5 ma	3.5 ma
W5め1	D, E	$1 \varnothing \mathrm{ma}$	7.8 ma

12 Bit | X | 16 Bit X | 18 Bit X | 36 Bit X |
| :--- | :--- | :--- | :--- |

LP01

| Title | LP01/LP02 | HAMMER FLIGHT TIME ADJUSTMENT | | Tech Tip
 Number | LP01-TT- 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Calibration of hammer flight time in the LPO1 Technical Manual starts (for LP02) at paragraph 5-32. After adjusting hammer \#l per paragraph 5-33c3, follow the following procedure.

NOTE: References to LP02 that are different than LPO1 are shown in parenthesis.

1) Set oscilloscope as follows:

Switch or Control
Mode
Coupling Mode
Triggering slope Triggering source Triggering
Channel A \& B volt Input channel mode Time Base XlO Multiplier

Setting
A \& B alt
AC
Neg.
Int.
Channel 1 only
.5 V per CM (X10 probes)
AC
2 ms per CM
ON
2) Channel A should be on $A 3-22 B$ (Hammer \#1) ($A 3-4 B$)

Channel B should be on $\mathrm{A} 3-22 \mathrm{H}$ (Hammer \#2) ($\mathrm{A} 3-4 \mathrm{H}$)
3) Adjust scope's vertical and horizontal position for following signals:

> FIGURE -1A

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator LPO1
	12 Bit x	16 Bit $\boldsymbol{\chi}$	18 Bit 区	36 Bit \times	

Title	LPO1/LPO2 HAMMER FLIGHT TIME ADJUSTMENT				$\begin{aligned} & \begin{array}{l} \text { Tech Tip } \\ \text { Number } \end{array} \text { LPO1-TT - } 9 \\ & \hline \end{aligned}$	
	Processor Applicability	Author	R. Rasmussen	Rev	0	Cross Reference
\times		Approval	W. Cummins Date	07/3	1/72	

10) After hammer \#21 (25) has been adjusted, change scopes setting back to ADD channel B inverted. Now adjust hammer 22 (26) per Figure - 2A. Adjusting out error pulse. Continue by adjusting hammers 23 (27) through 40, then change interface card for zones 1,2 and 3.
11) Now adjust hammer \#41 (49) to coincide with hammer \#l and 21(25).
12) Adjust hammer \#42(50) through 60(72) as hammers 2-20(24) and 22-40(26-48) were adjusted.
13) Change zones to $1,2,3$, and 4.
14) Adjust hammer $61(73)$ to coincide with hammers $1,21,41,(1,25$, 49).
15) Now adjust hammers \#62(74) through $80(96)$ as hammer 2-20(2-24), 22-40(26-48), and 42-60(50-72) were adjusted.
16) For LP02's continue adjusting hammers in zones $5 \& 6$ in the same manner. (That is; hammers 97 through 120, and 121 through 132). This should provide a faster (3-4 times) and much more accurate setup for the hammers.

How to prevent automatic perforation stepover.
2310 MODEL
System numbers
041, 153, 159, 165, 080, 093, 124, 133, 134, 144, 156, 157, 158, 159, 160, 167, 168, 175, 178, 179, 180, 182, 186, 187, 188, 189, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 203 and up:

1. Remove wire between A9-32 and A4-25
2. Remove wire between $A 9-10$ and A4-20
3. Add wrie between A4-20 and A4-28.

For all other serial numbers, remove wire between A9-32 and A4-25.

PAGE	14	PAGE REVISION	0	PUBLICATION DATE July 1972

FIELD SERVICE TECHNICAL MANUAL
Option or Designator
LP01

2) Character Code Wheel (Figure 5-23)

In paragraph 5-55 step 3; substitute "N and O " in the place of "=a".

Title	PROBLEMS ATTRIBUTED TO THE STATIC ELIMINATOR					$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \end{aligned}$	LP01-TT-14
	Processor Applicability	Author	D. Oldham			0	Cross Reference
x		Approval	H. Long	Date		/71	

Most static eliminator problems are caused by dirt, and can be corrected using the following procedure.

NOTE: Item numbers in brackets refer to drawing below.

1) Clean the bar or wand itself by brushing the dust off the wires and associated holes in the bar. Wipe the entire bar with an Ispropyl Alcohol dampered cloth removing all dull residue from the plastic.
2. Remove the cable end from the transformer (item 4) and polish with fine sandpaper.
3. Clean the spring loaded pin in the center of the transformer connector (item \#3).
4. Carefully disassemble the cable connection at the wand, removing
a) the cable
b) the threaded rod adapter with the spring loaded pin contacts and be careful the plastic is soft and deforms easily.

Now clean and polish the contacting surfaces (items 1 and 2).
5. Reassemble and test printer operation. If the same symptoms exist after performing the above procedure, check the eliminator bar. Using a medium length, flat bladed, plastic handled screwdriver.
a) With power on ground the shank of the screwdriver to the paper guide cage.

FIELD SERVICE TECHNICAL MANUAL
Option or Designator LPO1

Title	PROBLEMS ATTRIBUTED TO THE STATIC ELIMINATER (Continued)					$\begin{aligned} & \text { Tech Tip } \\ & \text { Number LPO1-TT-14 } \end{aligned}$	
	Processor Applicability	Author	D. Oldham		Rev	0	Cross Reference
X		Approval	H. Long	Date	8/1	/72	

CPI

digital	FIELD SEPPICE TECHNICAL MANUAL				Option or Designator LK01
	12 Bit X	16 Bit X	18 Bit X	36 Bit X	LKO1

Tit	KEYBOARD SHORTS CAU	BY PAPERCLIPS,			$\begin{array}{\|l\|} \hline \text { Tech Tip } \\ \text { Number } \end{array} \text { LKO1-TT-1 }$	LKO1-TT-1
	Processor Applicability	Author Davis/Barn		Rev	0	Cross Reference
x		Approval W. Cummins	Date	11/	20/72	

Exposed foil etch on keyboard becomes shorted by staples and/or paperclips, etc; resulting in permanent damage to keyboard assembly.

To reduce or eliminate the problem cover the exposed etch with paper stock or foam rubber and tuck the material under the top row of keys. Then tape material to board.
/mt

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorLSO1
	12 Bit X	16 Bit \triangle	18 Bit \times	36 Bit \triangle	

Subject: Two different parts with the same DEC part \#.

Centronic printers model 101 with serial numbers 2105 or lower are 6 level ASCII code printers. Printers with serial numbers 2106 and higher are 8 level ASCII code printers.

The 6 level and 8 level ASCII logic cards are carried under the same 29 part number. The way the printers are now, 8 level ASCII cards cannot be used in the 6 level ASCII printers. The 6 level ASCII cards can be used in 8 level ASCII printers. The addition of 2 jumper wires in the 6 level ASCII printers will allow them to use 8 Level ASCII Logic cards. This way, modules can be interchanged and modules can be intermixed. The jumpers are as follows:

$$
\text { J7 pin } 5 \text { to } 56 \text { pin L (DS8) }
$$

J7 pin 6 to J6 pin E (DS7)
These jumpers can be put underneath the bottom of the Component Board Assy. Connector Board.

The Centronic part numbers for 6 level ASCII modules are as follows:

```
Electronic Card #l - 63001030
Electronic Card #2 - 63001033
```

The Centronic part numbers for 8 level ASCII modules are as follows:

```
Electronic Card #1 - 63002302-2
Electronic Card #2 - 63002303-2
```

The Dec part numbers are as follows:
Electronic Card \#1 - 29-19567
Electronic Card \#2 - 29-19568

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator LS 8E
	12 Bit \square	16 Bit	18 Bit	36 Bit	

Volume III of the 8 E Maintenance Manual and the M8329 circuit schematic, Rev. C both have mistakes with the jumper numbering for device code selection. The board actually agrees with the drawing below.

The fault symptom will typically be either wrong sense of bits 5 or 6 in the decoded IOT, or MD bit 6 always constant on the omnibus.

The same mistakes have been carried over into the LS8E (M8342) control. The drawing below also applies exactly to the C.S. Rev. \emptyset of that board.

$\|l\|$	FIELD SERVICE TECHNICAL MANUAL		
12 Bit \mathbb{x}	16 Bit \mathbb{X}	18 Bit \square	36 Bit \mathbb{X}

Option or Designator LT33

Title	CONVERTING ASR-33 TO PDP-8/E						LT 33-TT-1
	Processor Applicability	Author S	Sweeney/Quinn		Rev	A	Cross Reference
X		Approval	F Purcell	Date		$1 / 73$	

* If the Teletype Control Module is an M865, the split lugs are to be connected to the TTY as follows:

SPLIT LUG\#4 $=\quad$ RDR RLY -

\#3	$=$	TERM \#3
$\# 7$	$=$	TERM \#4
$\# 5$	$=$	TERM \#7
\#6	$=$	RDR RLY
\#2	$=$	

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator MC8I
	$12 \mathrm{Bit} \square$	16 Bit	18 Bit	36 Bit	

There is possibly a wiring error in some 81 logic serial numbers 1400 to 2500. The effects are so random in failure rate and symptoms that situations may arise where either software errors or hardware intermittence may be blamed. An occassional illegal skip on a non-skip IOT, intermittent going to the wrong field, bad data from or wrong location addressed in MM8I, are among the symptoms. The error will not show up using Maindecs. The error is $R M F$ is tied to $+3 V$ (16) which is clamp voltage for MA bits 6 through 8 to the $M M$.

To check for the error being present look for a jumper between Bl5Vl and BO6E1. If that jumper is there, remove it.

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE July 197 |
| :--- | :--- | :--- | :--- | :--- |

Rev. B Print M837-0-1, 2 \& 3

Rev. C Print M837-0-1, Rif 3

Make adds and deletes as per this drawing.

Page 2

Title	G785/MC8L/KP8L COMPATIBILITY				Tech Tip Number	:1C8L-TT- 1
All	Processor Applicability	Author A. Newbury			0	Cross Reference
		Approval W. Cummins	Date	07/	7/72	

The $-1 C 8 L / E P 9 L$ configuration requires that the $G 785$ in the 8 L be an E etch revision or later. This eliminates the need for the roon module in COl of the BAOs. The $G 785 \mathrm{~F}$ revision keeps $C P$ POWER OK from dropping too fast at power down.

Intermittent errors when reading in long binary tapes can often be cured by installing a logic change described in ECO M8650-002. (The ECO is a one year old phase in ECO which has not yet been implemented in Production.)

The relevant portion of the ECO reads as follows:
Problem: Gradual frequency drift of incoming data relative to receiver clock allows logic hazard to occur in receiver shift register under worst case IC combination.

Correction: Guarantee E6/El0 shift register is allowed proper setup time by cutting Etch at Ell pin 9. RUN JUMPER Ell pin 9 to E4 pin 6. Cut Etch at E7 pin 10. RUN JUMPER E7 pin 10 to E4 pin 8. ADD JUMPER E3 pin 5 to El2 pin 9.

This correction applies only to Etch Rev. C boards and is already represented graphically on Rev. C and later circuit schematics.

Modules shipped to date have CS Rev. D stamped on their handles, BUT DO NOT INCORPORATE THE ABOVE CHANGE.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator MI8E
	12 Bit X	16 Bit	18 Bit	36 Bit	

The preliminary MI8E Manual, page 3, explains the encoding scheme of options. The discussion for the TD8E is in error. The data should be:

1312
4312
4312
6773

If converting M8650 to a M8650YA or experiencing garbled data on a M8650, insure the I.C. E22 (74193) is not manufactured by National. Replace this chip with one manufactured by Texas Instruments to correct the problem.

Title	KL8E Device Codes (M8650)				Tech Tip Number	KL8E TT'4
All	Processor Applicability	Author Bill Freeman		Rev	0	Cross Reference
		Approval W. Cummins	Date	7-3	1-72	

The KL8E (M8650) has jumper selectable I/O device codes. Unless the customer requests, or the system configuration requires a deviation from standard, the select codes will be 03-04 for console and 30-31, 32-33, 34-35, 36-37 for added units. The device codes for TSS8E and EDU systems configured by production will be:

KL8E\#	KL8E Device Code
0 (console)	$03 / 04$
1	$40 / 41$
2	$42 / 43$
3	$44 / 45$
4	$46 / 47$
5	$34 / 35$
6	$11 / 12$
7	$30 / 31$
8	$32 / 33$
9	$50 / 51$
10	$52 / 53$
11	$54 / 55$
12	$56 / 57$
13	$70 / 71$
14	$36 / 37$
15	$72 / 73$

If a KL8E is to be a field add on, the option will be delivered with device code 03/04.

Reference pages $12,13,14$, and 15 of the KL8E engineering spec in the PDP-8E print set to change or check the jumpers.

Page 2

There are two combinations of boards which have been shipped to date. Up until September 15, 1972 Glll Rev. D., G646 Rev. B., and G233 Rev. E were shipped. Everything up to serial \#230 falls into this group. The serial number is stamped in ink on each memory board.

Since 9/15/72, Glll Rev. F., G646 Rev. C., and G233 Rev. F have been shipped. This is the correct and most up-to-date combination.

Any problem encountered with an MM8EJ with a serial number below 230 should be treated by removing the entire memory and returning it for repair. The Glll and G646 may be retrofitted, but the G223 should be scrapped.

Any MM8EJ with serial number greater than 230 has modules which are totally interchangeable and may be replaced singularly if necessary.

If a D or E Rev Glll must be retrofitted to an F Rev in the field, the following procedure must be followed:

Use a G 233 which has both a 14.7 K and 34.8 K resistor in it. (R96 and R97)

With a Digital Voltmeter, measure the voltage on pin HAl, V_{xy}, and the +5 volts. $V_{X V}$ must be between -3.65 and -3.70 with respect to the +5 volt measurement. To change $V_{x y}$, a parallel resistor should be put across R65.

Below is a list of useful resistor values which may be used for R65.

Valve	Pin \#
2.37 K	13-10632 $\frac{1}{4}$ watt, 1%
2.49 K	13-00424 $\frac{1}{2}$ watt, 1\%
2.61 K	13-03303 $\frac{1}{4}$ watt, 1%
2.74 K	13-04868 $\frac{1}{4}$ watt, 1\%

To change from 2.37 K to 2.74 K gives a voltage change in V_{xy} of approximately 130 mv . If R 65 is made larger, V_{XY} becomes smaller.

PAGE 1	PAGE REVISION	0	PUBLICATION DATE

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator MM8I
	12 Bit X	16 Bit	18 Bit	36 Bit	

Dwg. A-MU-MM8I-A specifies that a G717 terminator is to be used at the physical end of the memory bus. The PDP-12 memory bus drivers are severely loaded by a 6717 and memory problems may occur. Instead, use a M9ø6 terminator in A32 or D32 as necessary. NOTE: The M9 $\emptyset 6$ requires a +5 volt supply; jumper +5 V to A32A2 or D32A2 as necessary.

We are getting complaints of erratic operation of mM's on systems 12 K and up. The symptoms are inability to run EAE maindecs in field 2 and up or occasional jumping to wrong field for data or instructions, or inability to manual load or examine in field 2 and up, etc.

The problem is noise pick-up in the $M M$ due to proximity of mem done and mem start, and between EA bit signal lines, and in some cases, poor termination.

The following is a summary of cures for the problem:
ECC8I- $\varnothing \emptyset 54$ - Buffer mem start and TP2. Install in all with MM.
ECO 8I-øøø85 - Delay TP3 by 50 nanosec to allow adder more set-up time. Install in all with MC.

ECO 8I-øøl07 - Buffers EA bits and increases drive capability. Install in all with MM where noisey EA bits are observed.

ECOMM8I-øøø15 - Inhibits mem done from a nonexistent field in MM8IA or MM8IC. Install in all MM8IA or MM8IC. ECOMM8IA- $\varnothing \emptyset \emptyset 16$ corrects ECOMM8IA-Øøø15. (Last line should read B08El to B06Bl - add, instead of B06Bl to B06El - add.)

ECOMM8I-øøø12 - Terminates mem start and TP2 in last MM. Install in last MM.
The cure for inductive pick up between mem start and mem done is to reroute and separate the two by maintaining the current pin connections but reroute mem start across the "A" row and mem done across the "D" row, instead of both running across the "B" row. The same type thing could be done for the EA lines if inductive noise is observed on them in the MM.

PAGE 1	PAGE REVISION 0	PUBLICATION DATE	July 1972

The following signal names should be corrected on the MM8I-A-1, Memory Control Page.

Name To

1. MEM START

MXB START MEM H
2. BTP2
3. EAO

MXB MEM TP 3 H
4. EAl

MXF EA $\varnothing \mathrm{H}$
MXF EA 1 H
/mt

1) For EAE to run on a four Omnibus system, the M83l0 module must be at least Etch rev. B CS rev.F.
2) It is possible for the M8340 module (circuit rev. D and earlier)
to decode an erroneous EAE instruction while in use on a four Omnibus system. This is due to the relatively high threshold value of the I.C. DEC 380 input buffer and slow rise time of the M.D. bits on the long Omnibus (ECO in progress)
3) a. At present it is not advisable to extend any module which transmits or receives the signals AC \& MQ load, when using M8341 circuit rev. C. and earlier. Until M834l circuit rev. D. is available use a module swap method of troubleshooting the EAE.
b. When M8341 circuit rev.D becomes available, it will be necessary to extend BOTH the M8300 and M83io simultaneously when troubleshooting $M 8310$. or 18300 . All other modules may be extended individually. (M833, M8s40, M8341, M8330)

Problem: 1) Binary tape does not entirely match the listing.
2) Teletype reader will not read a tape for
3) interrupt testing.
3) Halts defined in the document must be changed to conform to binary tape.
Correction:
2) A new Maindec will be released at a later date.
2) To start the TTY reader, press any key on the teletype keyboard.
3) Change the following halts defined in the
document:

Paragraph 5.1.1

$$
\begin{array}{ll}
\emptyset 2 \emptyset 1 & \text { to } \emptyset 2 \emptyset \emptyset \\
\emptyset 251 & \text { to } \emptyset 25 \emptyset
\end{array}
$$

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator mos DEVICES
	12 Bit \boxtimes	16 Bit 区	18 Bit 区	36 Bit \boxtimes	

Title	HANDLING OF MOS DEVICES			$\underset{\text { Tech Tip }}{\text { MOS }}$-TT-I	
All	Processor Applicability	Author ART ZINS	Rev		Cross Reference
X		Approval ART ZINS	Date	11/7/72	

Due to the high input impedance of MOS (metal oxide semiconductor) devices, they are susceptable to damage from static discharge. These devices, such as the Intel 1103-1, are employed extensively on the G401 MOS memory matrix for the PDP-11/45.

Many manufacturers of MOS devices use various types of internal protection against damage from static discharge. These types of protection range from Zener diodes to limiting resistors. However, the effectiveness of these protection schemes is questionable and many manufacturers suggest that additional precautions be taken to ensure safe handling of these devices.

Of course the precautions taken in the factory are more extensive than those that are practical for field implementation. However, the following information should be helpful for field handing of MOS devices.

1. Choose a work area that exhibits minimal potential for the generation of static electricity.
2. Use a power receptacle that has a connection to earth ground.
3. Only use a soldering iron that offers a 3 wire ground such as the new DEC-supplied soldering iron (DEC Part No. 29-13452). Do not use a transformer type soldering iron.
4. If you are sitting in a chair while working with MOS devices, it is suggested that the chair be electrically connected to the frame of the work table. If this is not possible, use care to prevent the chair from touching the work table, thus preventing a static discharge from the chair to the work table.
5. Removal of defective MOS devices from a module requires no special handling procedures. MOS devices, once soldered on the board, offer no danger of damage from static discharge.
6. If you are standing while handling MOS devices, avoid rubbing your clothing against the work table or near by furniture, thereby preventing the build up of static electricity.
7. MOS devices (as supplied by DEC) are packaged in a conductive plastic bag. Before opening the bag, touch the work table or metal connected to it to discharge any static build up.

B. HALTING DURING A BREAK (continued)

Symptoms If Halted During A Break

1. $\mathrm{MD}=\mathrm{HALT}$
2. Turn front panel indicator switch to State.
3. If no major State is visible (BRK or BRK PROG is on) then the above condition exists.

Best Way to Recover Address

1. Depress Single Step, then continue as many times as necessary to obtain the Fetch State.
2. The EM, CPMA generally would now display the address of the Halt command +1 .
C. HALTING DURING AN INTERRUPT

It is possible to Fetch a Halt, have an Interrupt Request and the Interrupt Qualified in the same cycle.

Symptoms If Halted During An Interrupt

1. $\mathrm{EMA}, \mathrm{MA}=\emptyset \emptyset \emptyset \emptyset \emptyset$
2. STATUS: ION is Lit
3. STATE: Execute, (IR=JMS)

Best Way to Recover Address

1. Push Single Step down
2. Hit Continue
3. $\mathrm{MD}=$ Memory Address of Halt + 1
4. To find EMA issue RIB instruction.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator MR8E
	12 Bit x	16 Bit \square	18 Bit	36 Bit \square	

The MR8E is a 256 word Read Only Memory (ROM) and can in no way have its contents changed by program control. It follows therefore than the only way to test it is to compare its contents against a table that lists what should be in the ROM.

There are two (2) problems currently associated with the MR8E ROM.

1) A number of problem reports have been received saying that extended memory control test (Maindec-08-DHCMA-A) fails when there is a ROM in the configuration. This is to be expected. The program will halt at 2263 to tell you memory has been found in an area that supposedly contained none. (Most ROM's are used as a bootstrap in field 7), and this is a legitimate halt. If you want to test extended memory, then remove the ROM temporarily. The error halt can be useful however, to check that the ROM is only answering to addresses that belong to it, or to locate the starting address of a ROM if you don't want to go diode hunting to see what it is set up for.
2) Maindec-8E-DlJB (MR8E Test) if full of mistakes. It does a good test if the ROM is okay, but if you have errors then it bombs itself and print inaccurate error information. The current MCN's do NOT correct the problem, and a new version of the program is about to be issued. Most ROM problems, incidently, are due to bad corrections at the ends of either the current wires or the sense wires. Re-soldering, being sure to tin the wire, will usually fix it.

PAGE 1	PAGE REVISION 0	PUBLICATION DATE	November 1972

For customer peripherals that need more than 800 nanoseconds separation between IOP's, it is necessary that ECO M8350-0002 be accomplished.

Without the ECO it is possible the IOP will still be timing out at the next TP2. This can cause the KA to restart its timing and send the machine off into random locations in memory.

| Title | COLD SOLDER ON M835 | | Tech Tip
 Number | KA8E-TT-3 |
| :--- | :--- | :--- | :--- | :--- | :--- |

The ground side of capacitor Cl6 on the M835 module may be found to be cold soldered. This is due to the unusually small pad on side two. Although this problem does not affect the normal operation of the module, it is advisable to inspect the connection, and if necessary, resolder from the component side of the module.

The M302 revision K and L will have multiple transitions on the trailing edge of the output, when the input trigger signal remains low longer than the delay time-out. (When a pulse trigger signal is used, this problem does not occur.)
This particular problem showed up in the $\mathbb{T} 05$ Magtape Interface. The signal RAMP H was causing inconsistant tape motion. Replacement of the M302 at location A18 of the TR05 with a new M3020 will correct this deficiency. If an M3020 is not available, an M302 with a revision earlier than K may be substituted.

CPI

FIELD SERVICE TECHNICAL MANUAL
Option or Designator
M405

Bit X	16 Bit X	18 Bit	36 Bit \triangle

M405

The M405A Crystal clock has been known to produce a multiple pulse output when operating in the $5-10$ and $19-20 \mathrm{KHz}$ ranges. If you experience this problem, replace M405A with M405B, which incorporates ECO M405-01. This ECO isolates the analog circuitry ground from the tank circuitry ground, and both widens and shortens the tank ground path to reduce inductance, thereby eliminating the problem.

If an M405B is not available you may install the ECO yourself as follows: Looking at the etch side of the M405A (Handle UP), cut the etch between the bottom left shield screw and R5. Solder a piece of insulated wire from Pin 7 of El to the ground side of RI.

The accompanying sketch illustrates the ground path and the alteration points.

PAGE $_{1}$ PAGE REVISION \varnothing PUBLICATION DATE November 1972

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorM410
	12 Bit X	16 Bit	18 Bit	36 Bit	

Title	M410	REED	CLOCK					$\begin{aligned} & \text { Tech } \\ & \text { Num } \end{aligned}$	M410-TT-1
All	Processor Applicability			Author	Bill	Freeman	Rev	0	Cross Reference
	8 I			Approval	Bill	Cummins Date	7-3	1-72	

A problem has been encountered with the reed in the M4l0 reed clock. The error indication may be that the DC08A clock interrupts stop, causing the user program to hang up. The problem may be that the bracket is not properly supporting the reed. The solution is to put double sided tape on the bracket so that it holds the bracket to the top of the reed and the reed is seated properly in its holder. It may be necessary to elongate the mounting hole on the support bracket to permit a firm bond between the bracket, the tape and the reed.

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- |

When using an M453 variable speed clock in place of an M452 clock in a DC02A, the following jumpers are used to determine the frequency of the clock output.

Frequency	Baud rate	Pins Used On Clock
$200 \mathrm{hz} \mathrm{-} 1 \mathrm{~K} \mathrm{hz}$	25 baud - 125 baud	J 1-R1
$1 \mathrm{Khz}-5 \mathrm{Khz}$	125 - 625	J1-P1
$5 \mathrm{Khz}-25 \mathrm{Khz}$	625 - 3125	J1-N1
$25 \mathrm{~K} \mathrm{hz} \mathrm{-} 125 \mathrm{~K} \mathrm{hz}$	3125 - 15625	J 1 -M1
$125 \mathrm{Khz}-625 \mathrm{Khz}$	15625-78125	J $1-\mathrm{L} 1$
$\begin{gathered} \text { Greater than } \\ 625 \mathrm{~K} \mathrm{hz} \end{gathered}$	$\begin{gathered} \text { greater than } \\ 78125 \end{gathered}$	J 1-K1

If an M453 is to be installed instead of an M452 also add S1 to Ul and V1 to +5 on each clock.

Due to the difference in power supplies between the 8 E and the 8M, the M848 module must be brought up to Revision "K" to work correctly. Revision "J" installs split lugs on the M848, for use in an $8 / \mathrm{M}$ remove the jumper in these split lugs. For use in an $8 / E$ install a jumper.
" $8 / \mathrm{M}$ jumper out - $8 / E$ jumper in"

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorM8650
	12 Bit ${ }^{\text {X }}$	16 Bit	18 Bit	36 Bit	

Many M8650 modules being returned as defective are just out of adjustment. To adjust the module put in the following program where XX is a non-existant device code.

$$
\begin{aligned}
& 7 \phi \phi \varnothing-6 x x 7 \\
& 7 \phi \phi 1-52 \phi \varnothing \\
& 7 \phi \varnothing 2-52 \phi \varnothing
\end{aligned}
$$

Now look at IOP 1 with probe 1 and IOP 2 with probe 2 at the most distant interface logic. The width of IOP 1 should be adjusted between $6 \varnothing \varnothing$ and $8 \varnothing \varnothing$ nanoseconds and the separation should be adjusted between $2 \phi \varnothing$ and $4 \varnothing \varnothing$ nanoseconds. The specification for total time from the start of IOPI to the start of IOP 2 should be between $8 \varnothing \varnothing$ nanoseconds and 1 microsecond.
/mt

It may be desirable to use typesetting reader " \emptyset " as an 8 level high speed reader to read Maindecs into the computer. Instances where you would use this would be:

1) If you have DECtape problems.
2) If you don't have a usable TCO1 or 552 Library Tape, or
3) If it is a disk only system.

The following changes in the PA60, PA68A, PA68F, will enable you to use reader " \emptyset " to read in Maindecs in place of the ASR $33 / 35$. If reader " \emptyset " has been set up properly for 6 level input tapes, you should not have any problem reading 8 level tapes. If problems do arise and you cannot read 8 level tape, you may have to set up the reader for 8 level operation.

If this becomes necessary, remember to re-align reader for 6 level operation after you are done using reader for maindecs. Then place $6 / 8$ level guide in 6 level position (UP).

PA60

1) Delete PA60 A25 Pin D to GND (Hole 6). Delete PA60 A25 Pin E to GND (Hole 7).
2) Check PA61 S1ots A10 \& 11 for jumpers from Pin D to Pin C Remove, if present.
3) Add PA60 A 25 Pin D to $S W$.

Add PA60 A25 Pin E to SW.
Add PA60 ?ny GND to SW.

4) Add $2 / R-141$ at PA61 slots A10 \& 11 .
5) Refer to Tech Tip for $6 / 8$ level RDR alignment.
6) Set $6 / 8$ level guide for 8 level (DOWN). Reader \emptyset may now be used as a high speed reader. Parts required:
$2 / R-141$ Modules
1 - Switch Assembly DPST \quad (continued)
Wire

PAGE 1	PAGE REVISION	0	PUBLICATION DATE July 1972

1) Delete PA68A B13F to GND Delete PA68A B13M to GND.
2) Add PA68A B13F to SW.

Add PA68A B13M to SW.
Add PA68A any GND to SW.
3) Refer to Tech Tip for $6 / 8$ level reader alignment. Reader may now be used as a high speed reader.
4) Set $6 / 8$ level guide for 8 level (DOWN). Parts required:

> 1/switch assembly DPST wire

PA68F

1) Delete PA68F BIOH2 to GND.

Delete PA68F Bl0E1 to GND.
2) Add PA68F Bl0E1 to SW.

Add PA68F B10H2 to SW.
Add PA68F any GND to $S W$.

3) Refer to Tech Tip for $6 / 8$ level reader alignment.
4) Set $6 / 8$ level guide for 8 level (DOWN). Reader may now be used as a high speed reader. Parts required:
$1 /$ switch assembly DPST
wire

| Title CLARIFICATION AND CORRECTION OF TYPESETTING ECO's | Tech Tip
 Number | PA60A-TT-2 |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |

FIELD SERVICE TECHNICAL MANUAL			
12 Bit $⿴ 囗 十 介$	16 Bit \square	18 Bit \square	36 Bit \square

PA60A

Complete all punch adjustments detailed in Tech Tip＂Punch Adjustment Procedure＂Section 4，Page 21．If there is still unreliable operation such as holes being picked up or dropped， characters being punched on top of other characters，or blank frames of tape，check the Schmitt trigger in the PA60 control．

The W501 Schmitt trigger（B32）might not be operating properly． The output pulses may vary radically in width and frequency with the punch running constantly．The problem may be that pin R ，the input is clamped to about $2 \frac{1}{4}$ to $2 \frac{1}{2}$ volts．The problem can be solved by taking the 2 ma．clamp load（Pin D）off the imput（Pin R），and the 10 ma clamp off the output（Pin F）and switching them．This results in having the input clamped with 10 ma clamp load，and the output clamped with the 2 ma clamp load．This causes the input to go to $-3 V$ and，as a result， reliable operations of the W501．

Reference print PA60－A－4 circuit changed as follows：

To Al4F

Selected Timing

FIELD SERVICE TECHNICAL MANUAL
Option or Designator
PA60C

The PA60C option (which will control up to 16 readers) provides a user with a "non-torn tape" system. The paper tape from the keyboard perforator is left in the reader with the tape arm down and initiation of reader selection is begun by pressing a push button mounted on the reader. An indicator lamp, also mounted on the reader, will be extinguished and, provided that no other tape is being processed, the computer will proceed to read and justify the tape. The end of a "take" is indicated by a "stop" code which has been punched on the tape by the operator. When this code is sensed, reading is discontinued and the indicator lamp on the reader lights again. Thus, an operator is free to perforate tape continuously, except for the pushing of a button to signal the computer that a take is ready for processing.

BASIC THEORY OF OPERATION

Reader selection is made in the PA60A and/or PA60B (see print BS-PA60-A-2, and Diagram \#l) which generates select reader levels used to gate the outputs of A and B flip-flops in order to drive the stepping motors in the PR68A Readers (see print BS-PA61-A-3). Further control over reader selection is made by ANDing the Select Reader signals with the outputs of the reader selection in the PA60C.

INITIAL CONDITIONS

On power up and Key Start, Power Clear (produced in the computer) is used to set all R202's in the PA60C to the "l" state. The output from each R202 is taken to two (2) W051's, one being used to control the indicator lamp on the reader and the other to control Select Reader signals. A ground level on the output from each "Select" wo5l will inhibit reader selection by the PA60A or PA60B logic. Thus', on power up all readers are de-selected with the exception of reader \varnothing which uses the opposite state of the RDR01 flip-flop for selection. This is for purposes of program read-in since the Typesetting Rim Loader uses reader \varnothing for reading program tapes, bootstrap tapes, etc. Selection of reader \# \varnothing is controlled by the RDROl logic in the PA60C; \#l by the RDR02; \#15 by RDR16.

When the typesetting program is started, it sequentially steps through reader selec ion searching for a selectable reader; i.e. one with tape in it, the tape arm down and for which the button has been pressed; for example, assume readers \#1, 2 and 6 are selectable. The first IOT 312 will deselect reader \varnothing, reset RDR01 flip-flop, find reader \#l selectable and will begin processing the tape (See READER SELECTION, next page). When processing is complete the nect IOT 312 will deselect reader \#1.

| PAGE 1 | PAGE REVISION $\quad \varnothing$ | PUBLICATION DATE | July 1972 |
| :--- | :--- | :--- | :--- | :--- |

INITIAL CONDITIONS (Continued)

Set RDR02 Flip-Flop and check Reader \#2. This is selectable so the tape in Reader \#2 will be processed. When processing is complete the third IOT 312 will deselect Reader \#2, set RDR03 Flip-Flop and check Reader \#3. Thisis not selectable so another IOT 312 will be given which will check reader \#4. This continues until another selectable reader is found, in this example reader \#6. When the tape in this reader has been processed, reader \#6 will be deselected, RDR07 Flip-Flop set and Reader \#7 checked. After reader \#l5 has been checked, searching will begin again at Reader \#d.

Note that if Reader \#0 is selectable when the typesetting program is started, (the button pushed after start but before the program is loaded) it will be deselected by the first IOT312. It will be selected again only after the program has checked through the other readers in the system and provided, of course, that the operator at Reader \#0 has again pressed the button.

READER SELECTION

(See Diagram \#1) - Example, when an operator at Reader \#l is ready to have a "take" processed, he presses the push button mounted on his reader. The closing of its contacts produces a positive going transition from the W 700 switch filter in slot C 06 (Pin K). This pulse resets the RDR03 flip-flop in slot D09. The indicator lamp on the reader will be extinguished by the W05l at C09, Pin F. The SELECT READER 02 signal from the PA60A will hold the output from the W051 at Cl0 Pin F, at ground, and level RSOl will be at $-3 V$. When the operator selected reader becomes program selected, both SELECT READER signals will be at $-3 V$, thus, tape processing will begin. When the stop code at the end of the tape is read, tape processing is stopped, some housekeeping is performed and then the program begins to step through reader selection again. The IOT312 which began tape processing allowed RSOl to go to ground. The DCD gate for the Flip-Flop is now enabled and hence the first IOT312 following tape processing will set Flip-Flop to the "l" state, thus, deselecting the reader and lighting the indicator lamp on reader "l".

INHIBIT FACILITY

Mounted on the PA60B/C logic frame is a toggle switch. When switched to the OFF position this provides an inhibit level which is used to hold all reader select Flip-Flops in the " \varnothing " state; i.e.; permanently selected. Thus, a selectable reader is redefined as a reader with tape in it and the tape arm down, but without the requirement for pressing the reader push button. PA60C-1-2, revision C and below do not show this inhibit logic.
FIELD SERVICE TECHNICAL MANUAL

12 Bit \downarrow	16 Bit \square	18 Bit \square	36 Bit \square

Option or Designator

INSTALLATION

The PA60B is a two (2) rack control which is pre-wired to include the PA60C option. The PA60C option is implemented by inserting extra modules in the PA60B interface as per UML-PA60B-l. If a PA60C is being added in the field, cable interconnections are as follows:

PAGE 3	PAGE REVISION	0	PUBLICATION DATE	July 1972

WOTE: Interconnections are not shown on PA60B/C prints.

DIAGRAM 1 - Example of Logic Interconnection
(Refer to Print PA60-C-1)

Page -4-

Title	PA60C (Continued)							PA60C-TT-1
$\begin{gathered} \text { All } \\ 8^{\prime} \mathrm{s} \end{gathered}$	Processor Applicability		Author	John Gleeson		Rev	0	Cross Reference
			Approva	W. Cummins	Date	07/	1/72	

PARTS LIST

Listed below are relevant part numbers for the PA6ØC modification:

	DESCRITPION	QUANTITY REQUIRED	PART NUMBER
"Select"	Switch Box	1 per reader	76-Ø5424
Switch	Grayhill Switch \#22ø1	1 per reader	12-Ø2995
	Sub-miniature Toggle Switch	1	$12 \emptyset 1168$
"Inhibit"	Phillips Panhead M/C Screw 8/32xll/4LG		$9 \not 9 \varnothing 6 \emptyset 44-1$
Switch	Spacer 1/4 O.D. \#6 CL Hole lLg	2	
.	Switch Mounting Bracket	1	7405269
	Dialco 1øIR Light	1 per reader	12-4628
	Light Eulb 33ø	1 per reader	12-2986
	Jones Terminal Strip \#4-140	1 per reader	9ø- 96901
John Gleeson December 1.970			

A false indication of tape being read can result from unused reader slots in the PA61A logic. With no reader connected to the PA61A logic, "feed hole" will float more negative than 0.7 volts falsely indicating tape in the reader. Since the typesetting program does not know how many readers are available in the system it must check each one. Sequentially looking at readers $\emptyset-15$, it in turn gives each one a read command and then checks for a reader flag. In existing readers (assuming no tape is in the reader) "feed hole" will be at ground and the flag will not be set. The program will then go on to the next reader. If the program tries to check a reader number where none exists or is not plugged in, "feed hole" will be floating negative enough to set the flag and will erroneously indicate a reader with tape. This will cause the program to hang up on the false reading of rubout codes.

This problem is most likely to occur when:

1) The system has just been installed and the typesetting program is being run for the first time.
2) A reader has been temporarily taken off line for repairs, etc.

The problem can be solved by connecting the "feed hole" inputs of all unused reader slots to ground. Locate the correct points in Table 1 and jumper all unused reader slots to the nearest ground. If a reader was taken off line temporarily, remember to remove the jumper when the reader is back in service.

PA61A Number	Reader Number	Pin Grounded
1	\emptyset	A1H
1	1	A 2H
1	2	B1H
1	3	B2H
2	4	A 1H
2	5	A 2H
2	6	B 1H
2	7	B 2H
3	8	A1H
3	9	A2H
3	10	B 1H
3	11	B2H
4	12	A1H
4	13	A 2H
4	14	B 1H
4	15	B2H

There are two problems associated with the 30 volt power supply used on all typesetting systems. This is the G799 power supply (G799A for $240 \mathrm{~V} / 50 \mathrm{HZ}$) which supplies -30 volts for the pA 61A and PA68A, and +30 volts for the PA 63 and PA 68F controls. The absence of a bleeder resistor on the 30 volt line has caused reader modules to be blown when inserting or removing the reader cable even with all power turned off. The other problem is excessive noise on the line when both the reader and punch are operating, causing various intermittent problems.

Both of these problems were solved by ECO number PA61-A-00003, but most units shipped to date have not had this change incorporated. The ECO consists of addition of a 500 ohm /25 watt bleeder resistor and a $50 \mathrm{mfd} / 50$ volt bypass capacitor in parallel across the 30 volt output. This change applies to all controls (P A61A, PA 68A, PA63, PA 68F) and must be added if not already present to expect proper operation. See Figure 1 for correct wiring and parts numbers.

- 30 VOLT CONFIGURATION

+30 VOLT CONFIGURATION

$$
\text { FIG. } 1 \text { - G799* POWER SUPPLY }
$$

$$
\text { *G799A - } 240 \mathrm{~V} / 50 \mathrm{HZ} \text {. }
$$

PARTS REQUIRED:

1	RI	$13-00333$	500	OHM 25	WATT RESISTOR	
1	Cl	$10-00080$	50	MFD	50	VOLT
1						

FIELD SERVICE TECHNICAL MANUAL			
12 Bit X	16 Bit \square	18 Bit \square	36 Bit \square

Title	WARNING ABOUT M	PUNCH	CONTROL MOD			$\begin{aligned} & \text { Tech Tir } \\ & \text { Number } \end{aligned}$	PA63-TT-2
$\begin{array}{\|c\|} \hline \text { All } \\ 8^{\prime} \mathrm{s} \\ \hline \end{array}$	Processor Applicability	Author	Fred Miller		Rev	0	Cross Reference
		Approval	W. Cummins	Date	07/	$31 / 72$	PA68F-TT-3

Title	CLARIFICATION AND CORRECTION OF TYPESETTING ECO's				Tech Tip Number PA63-TT-3	
All	Processor Applicability	Author F. Miller		Rev	\bigcirc	Cross Reference
8's		Approval W. Cummins	Date		31/74	PR68-TT-9

Title	PA63/PA68F				Tech TipNumberPA63-TT-4	
	Processor Applicability	Author P. Bezeredi		Rev		
8's		Approval				

Some PA63's were wired with the IOP 2 line to C07E1 running parallel with the 30 V wires on C row. The 30 V runs induce noise into IOP 2 line causing errors. If this problem occurs reroute the IOP2 line so that it runs down "B" row to B07 and then down to C07E 1 .

The problem that occurs is the Reader Select Buffer being loaded at the wrong time with the wrong value, thus deselecting the reader that is running. Usually shows up while running Test 07, typeset configuration test.

| digital | FIELD SERVICE TECHNICAL MANUAL | | | Option or Designator | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 12 Bit \triangle | 16 Bit \square | 18 Bit \square | 36 Bit \square | PA68A |

Title	USING TYPESETTING R READER	R "O" AS A HIGH			Tech T Numbe	PA68A-TT-1
$8^{\prime} \mathrm{All}$	Processor Applicability	Author Don Stahl		Rev	0	Cross Reference
		Approval W. Cummins	Date	07/31	1/72	PA60A-TT-1

| PAGE $]$ | PAGE REVISION 0 | PUBLICATION DATE | JuI. 1972 |
| :--- | :--- | :--- | :--- | :--- |

If you don't like to rebuild PP67C and PP67D (Teletype BRPE) punches don't pull the M7l0 module out of PA68F or PA63 controls and leave power on.

When the M710 is out of the circuit, the M113 input gates float. This will turn on the M060 modules and drive maximum current through each solenoid of the punch that is selected. Within a few minutes smoke begins to appear as the windings of the solenoids begin to melt together and the green 10 watt resistors underneath the punch turn shades of amber.
If you must have the M710 out or the circuit, remember to tie the input gates of the M113 high.

PAGE 1	PAGE REVISION	0	PUBLICATION DATE July 1972

Title	PA68F CONVERSION PROBLEM - 6 to 8 level					$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \end{aligned}$	
	Processor Applicability	Author.	P. Tinkahm		Rev	0	Cross Reference
		Approval	W. Cummins	Date	07/	31/72	

When a PA68F (Positive Logic Single Reader/Punch Control) is used for 6 level operation, the "one" side of RD7 and RD6 flip-flops are wired to ground. This keeps RD7 and RD6 from ever setting to a "one". Reference print D-BS-PA68-F-I Rev. H.

Conversion of a PA68F to 8 level operation required removal of the grounds (BlOEl, BlOH2 to Ground). There is a good possibility that RD7 and RD6 will fail to operate properly even with the grounds removed. This is due to the fact that grounding these points might blow out the IC chips for RD7 and RD6.

Solution of the problem is either replacing the M216 in slot Bl0 or replacing the appropriate IC's on the module after the grounds are removed. An upcoming ECO will alter the method of disabling RD7 and RD6 thus alleviating the problem.

CPL

There are currently two kinds of motors in stock as replacements for the PDP-8 Family series of High Speed Punch Assemblies.

These are:

$$
\begin{array}{lllll}
12-05383 & \text { GE } & \text { 5KPM49EG190 } & \text { (stamped: CW) old, PCO1 } \\
12-09365 & \text { GE } & 5 K P M 49 E G 276 A & \text { (stamped: CCW) new, PCO4 }
\end{array}
$$

These motors are not interchangeable. If the wrong one is installed the Punch will run backwards (adding considerably to tape assembling time).

The restrictions for use of these motors are as follows; (refer to accompanying drawing):

On punch assemblies where the drive pulley is at the left, motor 12-05383 is to be used. If the drive pulley is located on the right, then motor 12-09365 must be used.

Aside from the difference in armature rotation, motor 12-05383 has five leads whereas motor 12-09365 has only four.
*For information purposes only, new style Punch Assemblies with the longer input shaft (pt.\#29-19881; equal length at both ends), can be set-up for either right or left hand drive.
dig i ta

| $\|c\|$ | FIELD SERVICE TECHNICAL MANUAL | | |
| :---: | :---: | :---: | :---: | :---: |
| 12 Bit $[X$ | 16 Bit \square | 18 Bit \square | 36 Bit \square | PC02

If a PC02 is found to be difficult to adjust, it may be that the G904 Photo Amplifier has not been modified. The modification is as follows:

1. Change eight (8) 12 K ohm resistors ("A" in drawing below) to l00K ohm, 1/4 W, 5\% (DEC Part \#13-2466).
2. Change nine (9) 3 K and 1 K ohm resistors (B) to 100 UF capacitors (DEC \#10-00016).
3. Change 3.9 K ohm (or may be 7.5 K) resistor (C) to 27 K ohm, $1 / 4 \mathrm{~W}$ (DEC \#13-5346).
4. Replace the 2.2 K ohm resistor (D) with a jumper wire.
5. Replace the ZENER diode (E) with a 1N750A ZENER (DEC \#11-00124).
6. Remove nine (9) . OlUF capacitors (F) from the card; there should be only one (1).01UF remaining on the card, (X).

NOTE: The G9-4 should be adjusted for a $50 / 50$ duty cycle using an alternate ones/zeros tape.

PAGE 1

PAGE REVISION

If a motor must be replaced in an older PCø2 reader, the newer type, oil-damped motor will be supplied. There are differences in the configurations of the forward bearing housing on the two motors and different mounting plates are required. An older type motor can be identified by the absence of the oil port screw and the presence of wires which pass through an opening in the motor case. The newer type motor has the oil port screw and power connections brought out to a Deutsch connector mounted on the rear of the motor (no wires). When a replacement for an older type motor is required, order both of the following:

Motor \#12-4735 - \$298.00
Mounting plate \#74-5941 - \$57.00

CPL

If a motor must be replaced in an older PCø2 Reader, the newer type oil-damped unit will be supplied. Due to difference in the forward bearing housing between the units, a new mounting plate will also be required.

The older style motor can be easily identified by the absence of an oil-port screw and the presence of wires connected internally to the motor.

On the newer type motor, power connections are made available at the rear of the unit via a Deutsch connector.

When replacing an old motor, order both the following items:

$$
\begin{array}{ll}
12-04735 & \text { Motor }
\end{array} \quad \$ 298.00
$$

The accompanying drawings will aid you with the installation of the new unit.

CPI,

digilal

FIELD SERVICE TECHNICAL MANUAL
Option or Designator
PC0 4

Title	PC04 READER ADJUSTMENT PROCEDURE									Tech Tip Number PC04-TT-			
All	Processor Applicability				Author	A	Newbery		Rev		Cross Reference		
X					Approv	W	Cummins	Date	$6 / 6 / 72$				

1. All power must be off while the following checks are made.
a. Check fuses for proper type and rating; they must be 3 Amp., slow blow.
b. Check for continuity between reader lamp ground detent and chassis ground.
c. Check the following wires for proper connection:

COLOR		LOCATION	COLOR		LOCATION
black (str)	+	Bø8C	wh/blue	*	Aø7B
wh/black (str)	\#	Bপ7C	wh/green	*	Bø1 B
brown (str)	\#	$\mathrm{A} \varnothing 1 \mathrm{~N}$	brown (solid)	\#	B63R, B6 3 S
yellow (str)	\#	AØ1V	orange (solid)	\#	B 1 4R, B ${ }^{\text {dS }}$
wh/yellow (str)	\#	Aめ8F	yellow (solid)	\#	B65R,B65S
white (str)	+	BØ1U	violet (solid)	\#	B66R,BØ6S
grey/red (str)		A 88 A	+ if PCØ4 includes punch * only on PCØ4C configuration \# if PCめ4 includes reader		
grey/yellow (str)		A ${ }^{\text {¢ }} 8 \mathrm{~B}$			
blue (str)		B 6 6V			

d. With the reader lamp in position, see that the tension on the lamp is sufficient for good contact.
2. Apply AC power to the unit and check for:
a. $+5, \pm .5$ volts on Aø8A and Bø8A. This voltage is usually 4.3 to 4.6 volts with a .2 to .3 volt ripple.
b. $-15, \pm 1$ volts on $A \varnothing 8 B$ and BØ8B. Large fluctuations in this voltage will make adjustment of the G918 impossible.
c. -30 to -40 volts on $B \varnothing 6 \mathrm{~V}$ and $\mathrm{B} \varnothing 2 \mathrm{D}$.
3. Check for 6.8uf, (\# 10-5306) capacitors between pins Aø3A (+) and Aø3C (-) and between pins Bø3C (+) and Bø3B (-).
4. Reader adjustments:
a. Secure reader lamp and rotate it into such a position that the seam in the glass bulb does not distort the portion of the light beam which illuminates the photo cells.
b. Loosen read head guide plate, press it downward gently against three thicknesses of tape and secure it. (be certain that the plate is positioned so that it will not obstruct the light to the photohead and that the plate is parallel to the platform)
c. Center motor bolts in slotted motor mount holes.
d. Adjust sprocket wheel so that tape data holes are centered over the photo cells and the edge of the tape is against the back plate. This is the tape guide so be sure that the tape is against the back plate but doesn't bind or ride up the side.
e. Reader tape depressor adjustment:

1. Loosen the two screws which hold the fork.
2. Adjust the depressor so that it does not touch the sprocket teeth. With minimum pressure, hold the fork down and tighten the two screws. The fork should be held against the sprocket wheel by spring tension. - || PUBLICATION DATE

CPL

Title	PC04 READER ADJUSTMENT PROCEDURE (Continued)							Tech Tip Number PC04-TT- ${ }_{1}$	
	Processor Applicability		Author	A.	Newbery	Rev 0			Cross Reference
			Approval	W.	Cummins		6/	$/ 72$	

4. Reader adjustments continued:
f. Adjust lamp voltage for 3.8 to 4.1 volts for best adjustment of the G918.
g. Adjust condensor so that maximum light falls on the cells.
h. The M715 adjustments are the same as those for a PC8I/8L; refer to 8I/8L Field Service Tech Manuals Section 4, Page 1 for this procedure.
i. Cycle a \varnothing 's and l's tape through the reader at full speed.
j. Adjust potentiometer on the amplifier module (G918) so that all data holes cause readout. NOTE: if potentiometer adjustment does not allow all holes to be read check the strobe position and adjust it so that all holes are read. Strobe adjustment is made by rotation of the motor on its mounting plate or rotation of the sprocket wheel on its shaft.
k. Look at data pulses (sync negative, internal on scope) and adjust amplifier potentiometer for an on/off percentage ratio of $42 / 58$ on the longest data pulse. It is possible that this ratio may not be obtainable; in this case, adjust the variable resistor in the reader lamp circuit until the ratio is obtained.
5. Check on/off ratio of all data pulses. The minimum ratio must be greater than 25/75. If the minimum on/off ratio is greater than $30 / 70$ adjust the amplifier potentiometer to reduce it to $30 / 70$ or less.
m. Determine the earliest rising and the latest falling data pulse and set the strobe to the center of the sum of these two pulses. (see diagram)
6. Run operational tests on the reader and make any fine tuning adjustments which are necessary.

DATA BIT

	FIELD SERVICE TECHNICAL MANUAL					Option or DesignatorPC8I
	12 Bit \triangle	16 Bit \square	18 Bit	\square	36 Bit \square	

| Title | PC8I INSTALLATION | | Tech Tip
 Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| All | PC8I-TT-1 | | |

Refer to print D MU 8I 0-17 for placement of modules and cables. The 779 power supply is mounted at the rear of the $8 I$ cabinet just above the track for the 81 logic with 9, $10 / 32$ screws. AC power from the 704A supply is brought to terminals 1 and 2 on the lower transformer in the 779. Output from this transformer is brought to the power channel at the top of the cabinet. To obtain 30 volts for the reader motor, the outputs of -15 and +15 in the upper portion of the 779 are brought directly to the reader motor with +15 used as a ground reference. (see diagram below) The reader light is supplied with +10 volts from the power channel.

For neatness, all wires are spiral wrapped together and tied to the cabinet frame. Be certain to leave enough slack so that when the PC8I is pulled out to the end of the tracks, no strain is imposed on these power lines, the AC power cord, or the flexprint cables. A 6/32 machine screw and nut are used with a $\frac{1}{4}$ " cable clamp to tie down the power cable at the rear on the reader side of the PC8I pan. The AC cord from the power channel to the PC8I is tied down with the power wires from the 779 and other leads from the power channel but is not spiral wrapped with them.

Arthur Newbery April 1969

PAGE 1
PAGE REVISION 0
||PUBLICATION DATE July 1972

FIELD SERVICE TECHNICAL MANUAL			
12 Bit $⿴ 囗 十$	16 Bit \square	18 Bit \square	36 Bit \square

PDP－8／E

Due to the fast switching time of the AC bits in the PDP－8／E， sufficient noise may be generated along the Buffered AC cable （of the Positive I／O Interface）to cause false signals at the peripheral end．

All PDP－8／E＇s which have a Positive I／O Interface must be equipped with a G717 Rev．A or B．If a G717 Rev．A is used， a $1 \varnothing \varnothing$ OHM resistor must be installed on the Initialize Signal to ground．If the use of G717 is not possible，（i．e．，customer interface）terminate the following signals with $1 \not \varnothing \varnothing$ OHM resis－ tors to ground．

Signals：	BIOP 1
	BIOP 2
	BIOP 4
	BTS 1
	BTS 3
	Initialize

The W1ø3 device selector for negative logic is commonly used on PDP－8＇s，8I＇s，8L＇s；however，it presents a problem to the 8E． The IOP width on a PDP－8／E is nominally $56 \emptyset \mathrm{nsec}$ ．and variable upwards to 3.1 usec．All data，skips，etc．，being strobed during the last $1 \varnothing \varnothing$ nsec．of width．The wl 03 triggers a $4 \varnothing \varnothing \mathrm{nsec}$ ．PA， and uses it to gate information onto the I／O bus；therefore，the data has come and gone before strobe time．A new device selector （W123）will soon be released which corrects this problem．It consists of the Wl03 etch with the PA ommited．In the meantime the Wlø3 can be modified to eliminate this problem．

Delete：Cl $82 \emptyset \mathrm{pf}$ ．cap．
C4 82ø
C7 82ø
D28 D664
D46 D664
D54 D664

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- | :--- |

Replace with jumper:

$$
\begin{array}{ll}
\text { C2 } & 33 \emptyset \text { pf cap } \\
\text { C5 } & 33 \emptyset \\
\text { C8 } & 33 \emptyset
\end{array}
$$

Mark the handle to denote the module is now a Wl23.
These boards should work on any family of 8 machine, so no compatability problem should exist.

The wl23 may also solve timing problems on positive-but PDP-8I's.

The cable pin chart on page $9-29$ of the PDP-8e SMALL COMPUTER HANDBOOK is in serious error.

Any attempt to follow the chart in the PDP-8e SMALL COMPUTER HANDBOOK will result in total confusion.

The pin numbers given below for the H 855 ($\operatorname{BERG} / 3 \mathrm{M}$) connectors are given as though you were looking directly at the cable connector, not the socket on the 8 e module. Pin A is the top-right pin, pin B is the top-left pin,, pin $U U$ is the lower-right pin, and pin VV is the lower-left pin. The H 855 connectors are 40 pin connectors.

The following information is valid for the I / O and break cables; it should also be correct for any other 8E device utilizing type BCO8J cables.

H855	M953	H855	M953
A	Al-gnd	Y	.Kl-gnd
B	Al-gnd	A	M2
C	Al-gnd	AA	Kl-gnd
D	B1	BB	L1
E	Al-gnd	CC	N1-gnd
F	D2	D	P2
H	F2-gnd	EE	N2-gnd
J	D1	FF	M1
K	F2-gnd	HH	R1-gnd
L	E2	JJ	S2
M	J 2 -gnd	KK	R1-gnd
N	E1	LL	P1
P	C1-gnd	MM	R1-gnd
R	H2	NN	T2
S	C1-gnd	PP	R2-gnd
T	H1	RR	Sl
U	Fl-gnd	SS	Tl-gnd
V	K2	TT	V2
W	L2-gnd	UU	U2-gnd
X	J 1	VV	U2-gnd

NOTE: Pins A2, B2, U1, and V1 on the M953 have no connections.
Page 2

FIELD SERVICE TECHNICAL MANUAL
Option or Designator
PDP8E

| 12 Bit X | 16 Bit \square | 18 Bit \square | 36 Bit \square |
| :---: | :---: | :---: | :---: | :---: |

The following is the latest list of modules and revisions which must be used together. This list of modules will be particularly usefull in conjunction with the modules swapping scheme and also to check on status of a machine before options are added.

COMPATIBILITY LIST

H724 Power Supply:

A2 regulator board must be Rev. H. to work with expander box.

ECO to replace this are \#5409261-6 and 7.
54-9057 KC8E-B Front Panel:
ECO \#3 CS Rev. E, etch Rev. F must be used with EAE (M8340 and M8341) and timing board (M8330).

M8310 KK8E Register Control

ECO \#6 CS Rev. E, etch Rev. E when used with EAE (M8340 and M8341) and a long bus.

M8320 KK8E Bus Loads:

ECO \#1 CS Rev. B, etch Rev. B when used with M8330.
H8326 DB8E-A Interprocessor Buffer
ECO \#3 (M8326 CS Rev. E etch Rev. E if customer wants done flip-flop.

M8330 KK8E Timing Board:
ECO \#4 M848 (Power Fail) CS Rev. F, etch Rev. D
M847 must have M8330 to run (remove M833)
ECO \#I-M8320 must be CS Rev. B, etch Rev. B
M8330 must use M8350 and M8360 to operate KA or KD

| PAGE $_{7}$ | PAGE REVISION | 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- | :--- |

Title	PDP8E MODULE COMPATIBILITY LIST (Continued)						Tech Tip Number	PDP8E-TT-8
	Processor Applicability		Author	Don	Herbener		0	Cross Reference
	8E		Approval Frank Purcell Date 07/31/72					

M8340 KE8E EAE:

ECO \#3 for 54-9057 (Front Panel) CS Rev. E, etch Rev. F ECO \#6 for M8310 (Reg. Control) CS Rev. E, etch Rev. F

ECO \#1 for M8830 (Real Time Clock) CS Rev. B, etch Rev. C with M8340 etch Rev. F

EAE should use M8330 Timing Board

M8341 KE8E EAE:

ECO \#3 54-9057 (Front Panel) CS Rev. E, etch Rev. F
EAE must use M8330 (Remove M833)

M8350 KA8E I/O Interface:

M835 do not use on customer interface replace with M8350
M8350 must be used in a machine that has an M8330
M8360 KD8E Data Break Interface:
M8360 must be used in machines that have M8330
M837 KM8E Memory Ex. Control:
ECO \#2 CS Rev. D, etch Rev. D when used with power fail (KP8E M848)

M840 PC8E High Speed Reader:

ECO \#8 CS Rev. K, etch Rev. J with power supply regulator board Rev. F and expamder box.

M847 MI8E Bootstrap Loader:

ECO \#5 for 54-9057 (Front Panel) CS Rev. F, etch Rev. F must have M8330 to operate not M833.

M848 KP8E Power Fail:
ECO \#2 M837 CS Rev. D, etch Rev. D
ECO \#4 CS Rev. F, etch Rev. D when used with M8330
M8830 DK8E-C Real Time Clock:
ECO \#l CS Rev. B, etch Rev. C with EAE M8340 Rev.F

It is possible on an 8 E system with a dual omnibus to overload the power supply. The +5 volt line has a 25 amp fuse; however, the specification on the +5 volt line is only 20 amps.

The following chart indicates current consumption at a static level. You may actually draw more under severe programming conditions (such as time-share applications). If you have a system that approaches the 20 amp maximum current draw, a meter should be used to measure the actual current consumption.

The following is only intended as a guide and any system under question should be measured to find out actual current draw.

Option	Description	Board Num.	Static Current	Operating Current
KC 8E	Front Panel	54-09057	. 55	. 55
KK8E	Major Registor	M 8300	1.50	1.65
KK8E	Major Registor Control	M8310	. 57	. 60
KK8E	Bus Loads	M8320	. 46	. 97
KK8E	Timing Generator	M 8330	1.20	1.20
KK8E	RFI Shield	M 849	None	---
MM8E	X-Y Driver	G 227		
MM 8E	Stack	H220	1.02	2.20
MM 8E	Sense-Inhibit	G1 04	---	---
KL 8E	$\begin{aligned} & \text { Async. Data Control }(110 \\ & \text { Baud) } \end{aligned}$	M 8650	. 80	. 80
KL8E	Async. Data Control ${ }_{\text {(}}^{(2400}$ Baud)	M 8650 YA	. 80	. 80
KM8E	Ext. Mem. Control	M 837	1.00	---
KA8E	Positive I/O Interface	M 8350	1.40	1.40
KD8E	Data Break	M 8360	1.43	1.43
PC8E	H.S. Reader/Punch	M 840	. 745	1.25
TD 8E	Simple DEC Tape	M 868	. 92	1.25
LS 8 E	Centronics ${ }^{\text {G L }} \mathrm{L} 30$	M8342	N/A	N/A
LC 8E	01 d LA30	M8329	. 40	. 40
LE8E	LP01, LP02	M 841	. 65	. 65
CR8E	Card Reader	M843	. 545	
MI 8E	Bootstrap, Diode	M847	. 71	71
KE8E	EAE	M8340	. 835	

Option	Description	Board Num.	Static Current	Operating Current
KE8E	EAE	M83 41	. 750	---
KP8E	Power Fail	M848	. 28	. 28
AD 8E-A	A to D Converter	A 841	. 175	. 205
AD 8E-A	A to D Converter	A23 1	. 79	. 80
AM8E-A	8 Channel Analog Multiplexer	A232	. 031	-.-
DB8E	Interprocessor Buffer	M8326	. 80	---
DK8E-EA	Real Time Clock - 60 CPS	M 882	. 335	. 335
DK8E-EC	Crystal Clock	M883	. 4 A	---
DK8E-EP	Programmable Clock	M 860	. 81	. 81
DK8E-EP	Programmable Clock	M518	. 615	. 615
DR8E-EA	12 Channel Buffer I/O	M863	. 83	2.25
DP8E-EA	Sync. Modem Interface	M839	1.80	---
DP8E-EA	Sync. Modem Interface	M866	---	---
KG 8E	Parity Checker \mathcal{G} Generator	M 884	. 80	. 931
KL 8F	Double Buffered TTY	M8652	. 90	. 90
MM 8E-EJ	8 K x 12 bit stack	H 212	---	---
MM8E-EJ	8 K Driver	G 233	2 A	4A
MM 8E-EJ	4 K or 8 K Sense Inhibit	G111	---	---
MP8E	Mem. Parity Sense Inhibit	G1 05	---	---
MP8E	Mem. Parity Driver	G 227	1.00	---
MP8E	Mem. Parity Stack	H220	--	---
MR8E-EA	Read On1y Mem.	M 861	N/A	N/A
MR8E-EA	Read Only Mem.	G643	--	--
MR8E-EC	ROM - Sense	M 880	N/A	N/A
MR8E-EC	ROM - Braid	H241	---	---
MW8E	256 Word R/W Memory	M862	N/A	N/A
RK8E	RK05 Disc	M7104	---	---
RK8E	RK05 Disc	M7105	3.10	N/A
RK8E	RK05 Disc	M7106	---	---
TA8E	Cassette	M8331	2.80	2.80
VC8E	CRT Display	M885	. 52	. 52
VC8E	Point Plot Display	M869	. 31	. 31
X Y 8 E	Incremental Plotter	M842	. 42	. 42

It is possible on an 8 E system with a dual omnibus to overload the power supply. The +5 volt line has a 25 amp fuse; however, the specification on the +5 volt line is only 20 amps.

The following chart indicates current consumption at a static level. You may actually draw more under severe programming conditions (such as time-share applications). If you have a system that approaches the 20 amp maximum current draw, a meter should be used to measure the actual current consumption.

The following is only intended as a guide and any system under question should be measured to find out actual
current draw.

Option	Description	Board Num.	$\begin{aligned} & \text { Static } \\ & \text { Current } \end{aligned}$	$\begin{aligned} & \hline \text { Operating } \\ & \text { Current } \end{aligned}$
KC 8E	Front Panel	54-09057	55	. 55
KK8E	Major Registor	M 8300	1.50	1.65
KK8E	Major Registor Control	M 8310	. 57	. 60
KK8E	Bus Loads	M8320	. 46	. 97
KK8E	Timing Generator	M8330	1.20	1.20
KK8E	RFI Shield	M849	None	
MM 8 E	X-Y Driver	G 227	---	
MM 8 E	Stack	H220	1.02	2.20
MM 8 E	Sense-Inhibit	G1 04	---	---
KL 8E	$\begin{aligned} & \text { Async. Data Control }(110 \\ & \text { Baud) } \end{aligned}$	M8650	. 80	. 80
KL 8E	Async. Data Control (2400	M 8650 YA	. 80	. 80
KM8E	Ext. Mem. Control	M 837	1.00	---
KA8E	Positive I/O Interface	M 8350	1.40	1.40
KD 8E	Data Break	M 8360	1.43	1.43
PC8E	H.S. Reader/Punch	M 840	. 745	1.25
TD 8E	Simple DEC Tape	M 868	. 92	1.25
LS8E	Centronics \& LA30	M8342	N/A	N/A
LC 8E	01 d LA30	M 8329	. 40	. 40
LE8E	LP01, LP02	M 841	. 65	. 65
CR8E	Card Reader	M 843	. 71	--71
MI8E	Bootstrap, Diode	M847	. 835	. 71
KE8E	EAE	M8340	. 835	--

Option	Description	Board Num.	Static Current	Operating Current
KE8E	EAE	M8341	. 750	---
KP8E	Power Fail	M848	. 28	. 28
AD 8E-A	A to D Converter	A 841	. 175	. 205
AD 8E-A	A to D Converter	A 231	. 79	. 80
AM 8E-A	8 Channel Analog Multiplexer	A232	. 031	- - -
D B 8E	Interprocessor Buffer	M8326	. 80	---
DK8E-EA	Real Time Clock - 60 CPS	M 882	.335	. 335
DK8E-EC	Crystal Clock	M 883	. 4 A	---
DK8E-EP	Programmable Clock	M 860	. 81	. 81
DK8E-EP	Programmable Clock	M 518	. 615	. 615
DR8E-EA	12 Channel Buffer I/0	M863	. 83	2.25
DP8E-EA	Sync. Modem Interface	M839	1.80	---
DP8E-EA	Sync. Modem Interface	M866	---	---
KG 8E	Parity Checker \& Generator	M 884	. 80	. 931
KL 8F	Double Buffered TTY	$\text { M } 8652$. 90	. 90
$\text { MM } 8 \mathrm{E}-\mathrm{EJ}$	8 K x 12 bit stack	H2 20	---	— - -
MM 8E-EJ	8 K Driver	$\text { G } 223$	2 A	4A
MM 8E-EJ	4 K or 8 K Sense Inhibit	G111	---	---
MP8E	Mem. Parity Sense Inhibit	G 105	-	---
MP8E	Mem. Parity Driver	G 227	1.00	---
MP8E	Mem. Parity Stack	H220	,	---
MR8E-EA	Read Only Mem.	M 861	N/ A	N/A
MR8E-EA	Read Only Mem.	G643	---	- - -
MR8E-EC	ROM - Sense	$\text { M } 880$	N/A	N/ A
MR8E-EC	ROM - Braid	$\text { H2 } 41$	---	N/
MW8E	256 Word R/W Memory	$\text { M } 862$	N/ A	N/A
RK8E	RK05 Disc	$\text { M } 7104$	---	N/
RK8E	RK05 Disc	$\text { M } 7105$	3.10	N/ A
RK8E	RK05 Disc	M7106	---	$-{ }^{-}$
TA8E	Cassette	M 8331	2.80	2.80
VC8E	CRT Display	M 885	. 52	. 52
VC8E	Point Plot Display	M869	. 31	. 31
XY8E	Incremental Plotter	M 842	. 42	. 42

	FIELD SERVICE TECHNICAL MANUAL						Option or Designator PDP 8E
	12 Bit X	16 Bit	\square	18 Bit	\square	36 Bit \square	

It is possible on an $8-E$ system with a dual omnibus to overload the power supply. The +5 volt line has a 25 amp fuse; however, the specification on the +5 volt line is only 20 amps.

The following chart indicates current consumption at a static level. You may actually draw more under severe programming conditions (such as time-share applications). If you have a system that approaches the 20 amp maximum current draw, a meter should be used to measure the actual current consumption.

The following is only intended as a guide and any system under question should be measured to find out actual current draw.

OPTION	DESCRIPTION	MODULE NO.	+5V in AMPS.	
KC8-E	Front Panel	5009057	. 55	
KK8-E	$C . P$.	M8300	1.5	Worst case for C.P.
		M8310	. 57	equals 4.22 amps
		M8330	1.2	
		M8320	. 46	
M $M-8 \mathrm{E}$	Memory	G104	. 57	worst case 1.8 amps
		H220		All MM's to be
		G227	. 45	figured at 1.0 except field @ 1.8
KL8-E	tty board	M8650	. 800	
KM8-E	Ext. Mem Cntri.	4837	. 985	
PC-8E	H. Spd. RDR \& PNCH	M840	. 745	
LE 8-xX	Line Printer	M841	. 35	
$X Y$ - 8	Plotter	M 842	. 42	
CR or CM	Card Reader	M843		
KA 8 -E	POS I/O	M 8350	1.4	
KD8-E	Data Break	M8360	1.2	
KP8-E	Power fail	M848	. 380	
KE8-E	EAE	M8340	. 835	
KE8-E		M8341	. 75	
M18-E	Bootstrap Loader	M847	. 71	
DK8-EA	Real Time CLK	M882		
DK8-EC	Real Time CLK	M883		
DK8-EP	Real time CLK	M518	. 60	
	Real time CLK	M860	. 84	
TD $8-E$	dectape ctrl	M868	. 92	1.25A worst case

| PAGE 9 | PAGE REVISION 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- |

OPTION	DESCRIPTYON	MODULE NO.	+5V in APMS	
DR 8-E	Digital $1 / 0$	M863		2.25A worst case
VC8-E	Point Plotting Display	M869/M885		
AD8-EA	A/D Converter	A-841	. 265	
AD8-EA	A/D Converter	A-231	. 780	
AM8-EA	8 CH. MUX	A-232	. 031	
DP8-EA	Sync Modem Interface	M839/M866	1.8	
DP8-EB	Sync Modem Interface	M839/M866		
KG 8-E	Redundancy Check	M884	. 800	
DB8-E	$\begin{gathered} \text { Inter-Proc. } \\ \text { Buffer } \end{gathered}$	M8326	. 800	
LC 8-E	LA 30 control	M8329		
KL8F	Doubled Buffer TTY Board	M8652		
$K K-8 E$	RF1 Shield	M849	None	
MR 8-E	ROM	M880		

FIELD SERVICE TECHNICAL MANUAL
PDP-8E

An unknown number of front console boards were manufactured in Puerto Rico with six point eight (6.8) microfarad capacitors as Cl3 (thirteen) in the switch filter circuit. Correct value is 39 (thirty-nine) microfarad. Bad capacitor caused switch bounce problems. Westminister production is just seeing this problem now. please watch out for it. Capacitor is located between ElO and the five transistors in upper right area of the board.

Problem: Bounce in console keys. Examine and deposit may double step. Continue may step over halts when starting test programs.

Cause: Some front panels may have reached the field with the wrong capacitor in the switch filter circuit.

Check: Cl3 should be 39 MFD , bad boards have 6.8 MFD installed. Cl3 is located on the right of the board (as seen from the front) between the five transistors and ElO (DEC 7404) just above the aluminum supporting strip with the lamp holes in it.

The correct capacitor has DEC part number $1 \varnothing \varnothing \varnothing \varnothing 76$.
The following program may be of use when investigating this type of problem. It will cycle the teletype once each time continue is pressed, and halt with the number of bounces in the AC. If the switch bounces for longer than 85 ms , more than one printer cycle will take place.
Starting address is 3.

$0 /$	$74 \varnothing 2$	normal halt. Number of bounces in AC.
$1 /$	$6 \varnothing 41$	Flag set?
2/	$5 \varnothing \varnothing 6$	No, error, add one to AC
$3 /$	$72 \varnothing \varnothing$	Yes, no bounce
$4 /$	$6 \varnothing 46$	Set flag in 85 ms
Start	$5 \varnothing \varnothing \varnothing$	Jump to halt to wait for bounce
$6 /$	$7 \varnothing \varnothing 1$	Add one to AC
$7 /$	$5 \varnothing \varnothing \varnothing$	Jump back to halt to wait for bounce

PAGE 8

FIELD SERVICE TECHNICAL MANUAL
PDP-8/E

PDP-8E Maintenance Manual, Vol. I, Figure 4-7 depicts pors on power control board A2 as follows:

This is true on early revisions of A2 control board, but recent revisions are constructed as follows:

This can lead to confusion and blown fuses in overvoltage protection circuit (R29) when using diagram in Maintenance Manual as a guide when adjusting +5 V .

Customers who have purchased spare parts kits may have received drawings with the kit showing the older layout, it would be a valuable point to check next service call.

A revised Vol. I will be printed around October 72, and the drawing will be updated in the new manual.

When a PDP8/E has more than 1 omnibus, the memories should always be located no further back than slot 28 as long as this agrees with the priority listing. When a machine is fully loaded and the memories are located in locations higher than slot 28 , the system should always be run with the cover on to insure proper air circulation. For checkout purposes, an external fan should be used when the cover is off.

PAGE $_{11}$	PAGE REVISION A	PUBLICATION DATE	Deeember 1972

Publications do exist for all our customer families giving sizes, weights, power consumption, heat production, number of power cables, etc, but it seems that the PDP8 publications are not known about in the field.

You will find brochure 0804X. 0672.2263 (available from communications services in Parker Street, Maynard) will answer many of the questions on power, heat, weight, size, humidity, etc that you may get asked.
Another publication, "Computer Site Preparation Handbook" (DEC-00-ICSPA-$A-D)$ serves as not only an excellent guide to the first time computer customer worried about site preparation, but also has a convenient summary of Data Communications Equipment.

If you find any errors or omissions in either of these publications, please write a problem report on what you have found, and send it to your Support Group for forwarding to Maynard. They will be compiled and your inputs entered until we have a complete and correct reference.

page -2-

FIELD SERVICE TECHNICAL MANUAL Option or Designator

PDP8-E

8E modules must be updated to show revision status after rework.
The status of a module is defined by two (2) revision levels:
The etched board revision level
The circuit schematic revision level
The etched board level is imprinted during production and permanently identified the module board.

The CS level at which the module shipped is imprinted on the handle of the module.

The CS level is subject to change when an ECO orders reworking. There is a column of characters, "A" through "V" on the etched field installed ECO. As each ECO is installed in the field and the CS revision level changes, one or more of these characters is to be removed from the column. The first character of those remaining will indicate the actual CS revision level of that board.

Exact instructions for CS level updating of the module following implementation of an 8 E module ECO will accompany the ECO.

NOTE:
Early revision 8 E modules do not have CS revision letters etched on the board. In such cases, after field installing an ECO, one should scratch the new CS revision into the soft plastic handle using a knife, exacto pen or some other such sharp tool.

EDGE CONNECTOR (H851) MISALIGNMENT

On some of the old, double molded block, H85l connectors an alignment problem in manufacturing existed. Manufacturing now uses a singlemoldedblock with two entry rows. The alignment problem no longer exists. Misalignment sometimes caused the H85l pins to push through the foam and short to the 8 E cover.

In the event of this problem in the field, new H851's can be obtained from Maynard stock. Reference this tech tip and ask for the new single molded block, type.

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorPDP-8E
	12 Bit X	16 Bit \square	18 Bit \square	36 Bit	

| Title CABLINE RULES FOR I/O AND BREAK CABLES | | Tech Tip
 Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PDP8E-TT-6 | | |

The BC08J cable (flat gray cable used with M835 and M8360) has a characteristic impedance of 75 ± 7 ohms, DEC \#74-5556 cable (coax) is approximately 95 ohms while DEC \#BCO8A cable (Mylar) is 90-125 ohms. Therefore in cabling a PDP-8E system if mylar is used an impedance mismatch occurs which cannot be tolerated by peripherals.

As a result rylar cannot be used in PDP-8E Systems.
Cabline rules should be as follows:

1) Round and flat coaxial cables are electrically interchangable and may be intermixed in a system. If cables will be subjected to extra ordinary abuse (such as Free Stand Cabinets) round coax is preferred.
2) Mylar may not be used.
3) Not more than one change from gray cable (BCO8J) to coax or coax to gray cable should be made over the length of a bus.
4) The following cable length restrictions must be observed:

Cables	Directed to Peripheral	Through DW08A
I/O	$50 \mathrm{ft} \operatorname{max.}$	$40 \mathrm{ft} . \max$.
Break	$30 \mathrm{ft} \max$.	$20 \mathrm{ft} . \max$.

Problem: Bounce in console keys. Examine and deposit may double step. Continue may step over halts when starting test programs.

Cause: Some front panels may have reached the field with the wrong capacitor in the switch filter circuit.

Check: C13 should be 39 MFD, bad boards have 6.8 MFD installed. Cl3 is located on the right of the board (as seen from the front) between the five (5) transistors and ElO (DEC 7404) just above the aluminum supporting strip with the lamp holes in it.

The correct capacitor has DEC part number $1 \varnothing \varnothing \varnothing \varnothing 76$.
The following program may be of use when investigating this type of problem. It will cycle the teletype once each time continue is pressed, and halt with the number of bounces in the AC. If the switch bounces for longer than 85 ms , more than one printer cycle will take place. Starting Address is 3.

0/ 7402 Normal Halt. Number of bounces in AC
1/ 6041 Flag Set?
2/ 5006 No, Error, Add one to AC
Start 3/ 7200 Yes, No Bounce
4/ 6046 Set Flag in 85 ms
5/ 5000 Jump to Halt to wait for bounce
6/ 7001 Add one to AC
7/ 5000 Jump back to Halt to wait for bounce

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator$\text { PDP }-8 E$
	12 Bit X	16 Bit	18 Bit	36 Bit \square	

When a PDP8/E has more than on omnibus, the memories should always be located no further back than slot 28 as long as this agrees with the priority listing. When a machine is fully loaded and the memories are located in locations higher than slot 28 , the system should always be run with the cover on to insure proper air circulation. For checkout purposes, an external fan should be used when the cover is off.

FIELD SERVICE TECHNICAL MANUAL						
12 Bit 区						

It has been decided that a change to a reqular tyne of mechanical switch (rather than the magnet/reed combination presently used) will be made on the 8E console board. ECO 5409057-0010 implements this change, and creates etch Rev. J. The boards can be easily recognized by the 8M style rotary switch, rather than the previous plastic one. Without dismantling the machine to look, a quick check is to see whether the status switch will continue clicking a full revolution. Old ones will, but new ones will not, they will come to a stop at the "State" and "Bus" positions.

The two switches travel a different number of degrees between detents (old switch was a 36 degrees/click, new switch is 30 degrees/click) so a new console panel (plexiglass) is also required. The new panel, created by ECO 7408244-03, can be recognized easily by looking at the "State" and "Bus" reference lines. (See drawing below) it will also be date coded later than 15 June 1973.

OLD

State

Bus

NEW

Note That these ECO's are not for field retrofit. They are manufacturing changes only, and the purpose of this tech tip is to warn the field of a possible logistic/compatibility problem as the newer panels start to appear from production.

It has been noted that on several occasions destruction has been exhibited in 8 E and 8 M power supplies when using W 900 A (multilayer) module extender. When inserting the W900A in Row D of the omnibus, +5 is shorted to +15 .

When working on 8 family omnibus machines it is required to use the W987 or W984 module extender.

The following is a list of module extenders and their uses:
W982 - single height, normal length extender.
W984 - double height and extended length extender. Two can be used in conjunction for omnibus use.
W987 - Quad height and extended length extender.
BC08M-OM Over the top flex print cable, connector, for use when one module is extended and other is in omnibus. For use when modules are connected by 4851 connectors. Two are needed for omnibus use.

Note: In some cases two W984's can be used in place of the BC08M-OM. This can be done by turning the extenders upside down and placina the H-851's on the extender ends.

Rotary switch pin 12-10129 is no longer being manufactured. This switch may be identified through the use of glass reeds and 360° rotation. If new switch is needed and if Logistics is depleted of pin 12-10129 then a new front panel will have to be installed.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator PDP-8I
	$12 \mathrm{Bit} \square^{\prime}$	16 Bit	18 Bit	36 Bit	

The recommended method for setting up PDP-8I memories is by adjustment of memory current. DEC uses the following memories with the associated optimum operating currents:

$$
\begin{array}{ll}
\text { Data Products (Core Memories Ltd) } & 360 \mathrm{MA} \\
\text { Plessey Core Stores Ltd. } & 340 \mathrm{MA} \\
\text { Electronic Memories Inc. } & 340 \mathrm{MA} \\
\text { Data RAM Corporation } & 340 \mathrm{MA} \\
\text { Ferroxcube Corporation } & 340 \mathrm{MA}
\end{array}
$$

These are peak currents and are adjusted by the memory voltage pot on the G826.

Current loops can be field installed in any 8I.

1. Delete 30 AWG wiring from XR/W source C39Kl to C37T2.
2. Delete 30 AWG wiring from YR/W source C39Sl to C32T2.
3. Replace each of the above with 24 AWG green wire and leave enough slack to accommodate a current probe.

MC8I does not have a separate power source, so current loops are not necessary.

When tuning memories, use a current probe.
Ideal memory turning is strobe occurring 270 nsec after read current begins. Wich channel A, current probe on read/write current and channel B on strobe, calculate the 270 nsec by measuring leading edge to leading edge disregarding ten percent rise time.

Revised by Bill Kochman/January 1971
||PAGE REVISION 0

Title	PDP-8I MEMORY STACK REPAIRS			Tech Tip PDP-8I TT\#2 Number	
P	Processor Applicability	Approval W. WBury/Fuller 0			Cross Reference
8 I					

PDP-8/I MEMORY STACK REPAIRS

EDF-8/I memory stack failures will usually display one of two symptoms; a bit set at all locations and/or a group of addresses with a common X or Y coordinate not accessible. An open inhibit or sense amp line will produce a set bit at every location; these leads are small gauge and break easily with handiing. Typical ohms readings at the $W 025$ connector cards with the stack out of the CF are:
a) inhibit lines - approximately 10 ohms (except BS2-BT2)
b) BS2-BT2 - thermister - approximately 300 ohms
c) sense lines - approximately 14 ohns

W025 LEAD/CONNECTOR IDENTIFICATION

MFG	SENSE AMP LEAD COLORS	SLOT	INHIBIT LEAD COLORS	SLOT
EMI	Red/White	AB 34	Black/White	AB 35
Ferroxcube	Multicolor/White		Multicolor/Black	
Data-Ram	Purple/Red		Black/White	

PDF-8/I MEMORY DIODE LOCATION

The instructions which follow will assist in solving the problem of a group of addresses not accessible which is usually a result of diode failure on the stack (G610, G611, or G612 boards). 8/I Memory Diode Location and Function print \#CS-3005256-0-3 and prints for G610, G611, G612, may be referenced if available, however, some copies show diode polarities incorrectly.

1) Give careful attention to the diagram on page 3; the circuit structure of the $8 / I$ stack is clearly presented. A complete reading through of this procedure, with each step referenced to that diagram is suggested and will provide the understanding necessary for efficient repair.
2) Locate in colum 1 of the table on page 5 , the Xn or Yn failure in octal.
3) In column 2, you will find the decimal equivalent; this will be indicative of the terminal numbers which must be located on the stack. ONCE THE DECIMAL EQUIVALENT IS DETERMINED, IT MUST BE USED WITH NO FURTHER REFERFNCE TO THE OCTAL VALUE. THE MARKINGS ON THE STACK (Xn , Yn, etc.) ARE IN DECIMAL.

FIELD SERVICE TECHNICAL MANUAL
Option or Designator

PDP-8I

Title P	PDP-8/I MEMORY STACK REPAIRS (Continued)		Tech Tip Number PDP8I TT\#2	
All	Processor Applicability	Author Newbury/Fuller	Rev 0	Cross Reference
		Approval W.E. Cummins Date	7-31-72	

4) For an Xn failure, this number must be interpreted to indicate terminal Xn and its opposite terminal $\overline{\mathrm{Xn}}$; for Yn failure, terminals Yn and $\overline{Y n}$ are indicated. This pair of terminals defines a read/write current path through core. The $\mathrm{Xn}, \overline{\mathrm{Xn}}, \mathrm{Yn}, \overline{\mathrm{Yn}}$ terminals will be found by counting in DECTMAL from the marked terminals of the stack. The G61OA has four rows of terminals:

b) marked X1 - (count 1-3-5-7- etc. to 63)
c) marked $\overline{Y 0}$ and $\overline{Y 62}$ - (count $\varnothing-2-4-6$ etc. to 62)
d) marked $\overline{Y 1}$ and $\bar{Y} 63$ - (count 1-3-5-7 etc. to 63)

The configuration of the G611E is identical and 1 ts terminals are similarly marked. It will be noted that X and \bar{Y} are on the G610 and \bar{X} and Y are on the G611.
5) From the chart on page 5 you have now identified (from colurn 2) the location of the terminals of the unexposed path through core and identification of the external pin connections will be found in columns 3, 4, 5, and 6. Insert the data from columns 2 through 6 into the indicated boxes in the diagram on page 4 and you will have all necessary information for determination (with an ohra meter) of the four diodes and associated circuitry which are suspect.
6) The next step is to determine that wiring, etch, and solder connections are good, which will leave only the diodes in question. A visual check of the physical arrangement of the diodes will indicate that they are connected in pairs with a common "node" terminal for each pair. As shown in the diagrams, there will be a pair of diodes on each side of the stack. With one ohm meter lead connected to a 2 teminal, move the other probe along the rows of node points until continuity is observed. As this is done on both sides of the stack, the two node points will be located and the four diodes identified. An ohm meter reading through core from node point to node point should be approximately three ohms. A continuity check should now be made from each diode out to the external pin connections [3], 4], [5], and [6].
7) If no fault was evident in Step 6, it is reasonable to assume diode failure. REPLACE ALL FOUR DIODES; it is not possible to determine reliably the failure of a single diode and replacement of one or a par only may result in an unbalanced circuit.

| PAGE 3 | PAGE REVISION 0 | PUBLICATION DATE JuIV 1972 |
| :--- | :--- | :--- | :--- |

8) Special care must be taken to prevent pieces of wire or solder from dropping into the cores area. Cut the leads close to the body of the defective diode; be sure not to cut any etch beneath it. Bend the leads up vertically from the board. Form the new diode leads into loops which will fit snugly onto the now vertical stubs with the diode body flush with the board. Crimp the loops for mechanical integrity, trim excess wire, then quickly and carefully spot solder.

DIAGRAM OF $8 / 1$ MEYORY CURRENT FATH THRU CORE

* Tl \& T 2 CONDUCTING WHEL SELECTED

Page 4
PDP8I-TT-2 (Continued)

1	2	3	4	5	6
$\begin{aligned} & \mathrm{X} \text { or } \mathrm{Y} \\ & \text { (OCTAL) } \end{aligned}$	X or Y DECIMAL	EXTERNAL PIN CONNECTIONS			
00	0	AD	AC	BD	BC
01	1	AD	AC	BF	BE
02	2	AD	AC	BJ	BH
03	3	AD	AC	BL	BK
04	4	AD	AC	BN	BM
05	5	AD	AC	BR	BP
06	6	AD	AC	BT	BS
07	7	AD	AC	BV	BU
10	8	AF	AE	BD	BC
11	9	AF	$A E$	BF	BE
12	10	AF	AE	BJ	BH
13	11	AF	AE	BL	BK
14	12	AF	AE	BN	BM
15	13	AF	AE	BR	BP
16	14	AF	AE	BT	BS
17	15	AF	AE	BV	BU
20	16	AJ	AH	BD	BC
21	17	AJ	AH	BF	BE
22	18	AJ	AH	BJ	BH
23	19	AJ	AH	BL	BK
24	20	AJ	AH	BN	BM
25	21	AJ	AH	BR	BP
26	22	AJ	AH	BT	BS
27	23	AJ	AH	BV	BU
30	24	AL	AK	BD	BC
31	25	AL	AK	BF	BE
32	26	AL	AK	BJ	BH
33	27	AL	AK	BL	BK
34	28	AL	AK	BN	BM
35	29	AL	AK	BR	BP
36	30	AL	AK	BT	BS
37	31	AL	AK	BV	BU

1	2	3	4	5	6
X or Y (OCTAL	X or Y DECIMAL	EXTERNAL PIN CONNECTIONS			
40	32	AN	AM	BD	BC
41	33	AN	AM	BF	BE
42	34	AN	AM	BJ	BH
43	35	AN	AM	BL	BK
44	36	AN	AM	BN	BM
45	37	AN	AM	BR	BP
46	38	AN	AM	BT	BS
47	39	AN	AM	BV	BU
50	40	AR	AP	BD	BC
51	41	AR	AP	BF	BE
52	42	AR	AP	BJ	BH
53	43	AR	AP	BL	BK
54	44	AR	AP	BN	BM
55	45	AR	AP	BR	BP
56	46	AR	AP	BT	BS
57	47	AR	AP	BV	BU
60	48	AT	AS	BD	BC
61	49	AT	AS	BF	BE
62	50	AT	AS	BJ	BH
63	51	AT	AS	BL	BK
64	52	AT	AS	BN	BM
65	53	AT	AS	BR	BP
66	54	AT	AS	BT	BS
67	55	AT	AS	BV	BU
70	56	AV	AU	BD	BC
71	57	AV	AU	BF	BE
72	58	AV	AU	BJ	BH
73	59	AV	AU	BL	BK
74	60	AV	AU	BN	BM
75	61	AV	AU	BR	BP
76	62	AV	AU	BT	BS
77	63	AV	AU	BV	BU

Page 6

	FIELD SERVICE TECHNICAL MANÜAL						Option or DesignatorPDP-8I
	12 Bit	16 Bit	\square	18 Bit	\square	36 Bit \square	

A customer recently complained of difficulty in getting correct results when normalizing certain numbers. Both Maindecs ran so a long hard look was given to the customer's software. The reason for the failure was the result of combining the instructions MQ LOAD and NORMALIZE.

In the SMALL COMPUTER HANDBOOK it appears that this combination of instructions is legal, since they are executed at different event time. The only time they are not legal is when AC bits \varnothing and 1 are different, which is the key to the whole problem. As soon as the AC is loaded with this combination of bits the signal NORM NOT is true and this disqualifies the gate that AND's it with NMI. When this happens we never get EAE START and never even do the NORMALIZE portion at all. This situation causes the Microinstruction MQL-NMI to be illegal.

Radiation from the leads of the AC panel switch on the PDP-8I causes failures in the Memory ON/OFF Test. The problem was especially accute on a $24 \varnothing$ volt machine where the usual thyrector across the switch at the power transformer, and/or at the panel switch (the most effective location) did not work. Two (2) ECO's (8I-øøø27 and 704A-øøøø5) have been issued to correct this problem. ECO $8 \mathrm{I}-\varnothing \varnothing \varnothing 27$ adds a switch filter and shielded cable to eliminate radiated noise. ECO $704 A-\phi \varnothing \varnothing \varnothing 5$ moves the $G 813$ card off the +5 volt breaker to a position in the power supply less susceptable to RF noise.
I PAGE REVISION
1 P

	FIELD SERVICE TECHNICAL MANUAL						Option or DesignatorPDP-8L
	12 Bit 8	16 Bit		18 Bit	\square	36 Bit \square	

The Power Clear signal run, generated at A 25 S 2 is overloaded beyond engineering specs. However, because we use the level rather than transition, this overload is acceptable in most machines. In the rest, due to component age and component individual characteristics, weird unexplainable things might happen with any or all of the following symptoms.

1. Intermittent halt when none was programmed (not to be confused with loss of timing where run is on but there is no control of the machine) where run is cleared as if the halt key was actuated.
2. Intermittent loss of data where one-memory cell is changed to $\emptyset \emptyset \emptyset \emptyset$.
3. Intermittent clearing of flags and/or buffers in I / O devices (not connected to a DM01).

If any of these syptoms occur it is possible that the cause is the power clear run.

If a glitch appears on power clear this is what can happen:

1. If the glitch appears before TP3 but after TP2 memory control flops will be cleared and as a result one memory location will be cleared, but the $M B$ will have the correct data this time. TP 3 will then set RUN and the program should resume normal flow (until the zero's are reached again).
2. If the glitch appears after TP3 the effect is as if the SS key is pressed.
3. Depending on where the glitch occurs between MEM start and strobe governs whether or not a read is done at all, or a strobe is generated.
4. If the glitch appears in the 8 L of amplitude and duration enough to cause any of the above, it will be felt on the $I / 0$ bus and cause the same type intermittent problems.

To buffer Power C1ear: break the $\overline{\text { Power Clear }}$ run at A 27 S 2 but maintain the other end (could go to D16Al or BI3R1 depending on the vintage of the 8 L).

Add A27S2 to C27E2
Add C 27 J 2 to other end of wire deleted in the first step.
Add 220 ohm $1 / 4 W$ pull up
C 27 J 2 to +5 V
This gives a drive of about 100 load units for the $\overline{\text { Power C1ear run. }}$

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- |

There are errors in the 8L print set not in Logic Gating but in signal names and generation. Two of these errors have been corrected by ECO's which will be coded "P" therefore will not be distributed to the field.

The corrections are:

1. Drawing No. D-BS-8L- $\varnothing-2$ coordinates $D-7$ direct clear of TSl is not strobe, but the "OR" function of Power clear + 5trode. The signal comes from Inverter Mlll at A35Hl. (This gating was generated by ECO 8L-00045, ECO 8L-00059, ECO 8L-00062.) Direct Clear of TSl should now be called "A35Hl."
2. Drawing number $\mathrm{D}-\mathrm{BS}-8 \mathrm{~L}-\varnothing-13$ coordinates $\mathrm{B}-6$ generation of "CP Power OK." The logic works correctly but should be drawn like this.

Another ECO will be generated to effect correction of an error which exists with respect to ECO's 8L \#00045 and 00056. The schematic which is part of the Speco for 8L 00056, shows correctly that there are three inputs to the M115 which is added in slot C28. The Add/Delete sheet, however, fails to include the wiring of the TS4 (\varnothing) input to C28B1. The following Add will resolve the problem:

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorPDP-8L
	12 Bit X	16 Bit	18 Bit	36 Bit	

PROBLEM: $\quad 3$ Cycle break devices, with cables over 15 ft . in length, have displayed a problem of intermittently not setting "Break". This is caused by "Ext 3 cycle L" being noisy at the processor. This condition brings up WC Set, when it shouldn't be there.

FIX: Ground "ext 3 cycle L " signal at processor, A34V2 B34C2

This Tech Tip aply's only to systems with 3 cycle break options, and no 1 cycle break devices.

CAUSE: \quad Some console boards may have the wrong resistor installed in the switch filter circuit.

CHECK: ECO $54 \varnothing 9668-\varnothing \varnothing 4$ should be installed anyway, but also check to see that R5l is 15 K (brown, green, orange). Bad boards had 51K (green, brown, orange).

The resistor is located on the right at the top of the board. From the right edge count in five I.C.'s then it is the fourth (4th) resistor. (Next component across is another resistor, then a small capacitor).

Also note that although this resistor is called out correctly in the parts list the circuit schematic in the drawing set shows it as 1.5 K . This is a mistake. 1.5 K will not work and an ECO is in progress to correct this drawing.

Title	Procedure for Adjusting 8/M Power Supply						$\begin{aligned} & \hline \text { Tech Tip } \\ & \text { Number } \end{aligned}$	PDP8M-TT-2
All Pr	Processor Applicability	Author	R.	Boehm		Rev	0	Cross Reference
8E		Approval	W.	Cummins	Date	07/	31/72	

Due to the locations of pots for voltage adjustments (under transformer) it is necessary to remove and dismantle power supply. This should be done by the following procedure.

NOTE: Turn OFF power.

1. Remove four (4) screws from underneath $8 / \mathrm{M}$.
2. Slide power supply out through back of $8 / \mathrm{M}$ being careful not to scrape wires and connectors.
3. Remove plug from front end of heat sink (see drawing).
4. Remove 6 screws (3 per side) that hold power supply circuit card (see drawing).
5. Remove circuit card.
6. Replace plug that was removed in Step 3.
7. Turn on power and start program.
8. Adjust voltages (see drawing).
9. DO NOT leave power ON for more than 15 minutes with power supply outside of $8 / \mathrm{M}$. This is due to overheating.
10. Replace power supply in reverse of removal.

SIDE VIEW

SIDE VIEW

Some systems have been seen in house that go into RUN when the examine or deposit keys are used.

Investigation of the problem suggests it is caused by haise pickup on the wires going to the 22 f timing capacitors from the one-slots added by the ECO 5409668-004.

If you experience the problem on the field try moving the capacitors so that they are physically positioned between the timing resistors and the 74123 one slot itself, before you spend any time investigating in more detail.

An ECO is in progress at this time to make this an official production change.

	FIELD SERVICE TECHNICAL MANUAL						Option or DesignatorPDP-8M
	12 Bit X	16 Bit	\square	18 Bit	\square	36 Bit \square	

There exists some confusion on the field with ordering spare parts for the PDP8/M power supply due to the designation $H 740$ used in the drawing set.

The PDP8/M SUPPLY IS NOT AN H740.
Originally, there were several flavours of the $H 740$ (A, B, C, etc) but this led to confusion and the letter designations were dropped for the computer supplies ($8 \mathrm{M}, 8 \mathrm{~F}$ and $11 / 05$).

The H740 designation has been dropped entirely. If you need spares you must order as follows:

```
54-09728 (Rev. C or later) Regulator Board
16-10601-02 Transformer
74-09376
70-08537
70-08675
74-09375
90-06020-1
90-06633
```

Regulator Board
Transformer
Chassis
AC Harness
DC Harness
Bracket (6 required)
Screw (12 required)
Washer \#6 (12 required)

The last three items may be important to you if you return a regulator board with the support brackets on it, since a new board has no brackets.

The most likely semiconductor you may need are:

15-10705	Transformer	GPS A05	
15-10706	Transformer	GPS A55	
11-10714	Diode Bridge	NSS 3514	200V peak inverse, 20 amp
		C32A×135	forward current.
15-10928	SCR	C32AX135	Rev. C
15-10899	SCR	C32BX179	+5 crowbar for Rev. C

Plus, for the Rev. C or D supplies only; (Rev. B uses normal cartridge fuses).

5 amp	Pico Fuse	$12-05747$
15 amp	Pico Fuse	$12-10929$

PAGE 5	PAGE REVISION	0	PUBLICATION DATE

PROBLEM:
Some of the early 8M's shipped (up to serial \#2100 approx.) may have had Pins 2 and 6 on Pl (the plug going to the transformers) reversed.
SYMPTOM:
110 volt machines: Unplugging thermostat does not power down system.

220 volt machines: Circuit breaker may trip, or Power Supply transformer may start smoking.

CURE:
Next call check thermostat operation and correct wiring if necessary. (Note: 220 volt systems are okay, since the problem is seen and corrected in production when they blow up.)

WARNING: The exact details of the wiring error are not confirmed. The symptoms are as stated, and it was a tivo wire swap, but it may have been two other pins. Any details either confirming the above pin numbers, or correcting them would be appreciated by PDP8 Product Support. (Jeff Blundell, 21-4.)

Starting in May, some shipments of the new PDP8M chassis will be made, leading to a complete changeover to the new chassis by July or August. You will find it much easier to work on, especially in the power supply area, which is now available behind a removable service panel at the rear.

However, there is one problem you should be aware of. When the 54-9728 regulator board is manufactured it starts life as a board measuring approximately $6 \frac{1}{2} " \mathrm{X}$ l2". This should be eventually trimmed to its final size of $5.05^{\prime \prime} \mathrm{X} 10.5^{\prime \prime}$, thus removing the crop marks on the etch. You will find many of the boards in your spares are oversize, with the crop marks still visible at the corners, and these will not fit in the new chassis, as dimension 'A' in the dxawing will not tolerate
 a board wider than about 5.10 .

Customers will not be impressed if you have to file or hacksaw a new board to fit in their machines, so check your boards carefully and trim them in the office before calling on a customer with power problems in a new style 8 M or 8 F .

The Field Service stockroom and depot repair have been warned, and will purge their stock during the coming months, but you should check yours now, before you get caught.
$\mathrm{JB} / \mathrm{mt}$
NOTE: See Saies Update Vol. 4 Number 17 for better pictures with dimensions.

| PAGE 7 | PAGE REVISION 0 | PUBLICATION DATE March 1973 |
| :--- | :--- | :--- | :--- |

It is not necessary to remove the bezel and associated hardware when troubleshooting in order to temporarily add a programmers console to a PDP8M equipped with only the operators panel.

If you add a 15" length of blue wire to pin DB2 of a w987 quad extender, and terminate the wire with a 90-07917-0 fast on connector, the extender can be plugged into slot 1 (in front of the M8330) with the blue wire supplying -15 volts to enable the switches and LED's.

Note: 1. The "panel lock" switch will not be operative when working this way.
2. SW switch must be UP on the operators panel to allow the programmers panel $S W$ switch to function.

In order to obtain U.L. Approval for our systems, we must reduce the length of the power codr from 25 feet to 15 feet (external to cabinet).

Henceforth, please inform customers desiring physical installation data that the standard lenght of power cord is fifteen (15) feet.
/mt

ECO 5409728-6A field retrofits Rev. B and Rev C supplies with a new type crowbar zener if the supply has a history of blowing fuses.

However, no drawing change is officially called out to the schematic, since engineering feels that creating a Rev. B2 and $C l$ will add more confusion than we have right now.

If you have a supply that blows its +5 fuse (15 Amp pico fuse DEC Part Number 12-10929), then implement this ECO by changing Dl2 to an ll-11205 (5.7 volt 2% zener diode) AND MARK UP THE SCHEMATIC AND PARTS LIST TO REFLECT THE CHANGE!!
P.S. The DEC Part Number for the other fuse (10 amp) is 12-10929-01.

INTRODUCTION:

The PP67 punch is an adaptation of either the Teletype BRPEll punch or the BRPEI8 punch, the BRPEll being an 8 level punch and the BRPE18 a 6 level punch. Both punches are originally built to operate at 50 characters/second, but are modified by DEC, to operate at 110 characters/second. The addition of a DEC assembly (part number 70-5095-control assembly) converts the punch to a PP67 (6 or 8 level dependent on the use required).

PERTINENT DOCUMENTS:
PA60, PA61, PP67 Prints; DEC-08-17TA-D, BRPE Punch Manual - 215B and 1154 B .

CONTROL SWITCH:
On top of the punch is a four (4) position switch. The four positions have the following significance:
"AVAILABLE" - in this position switching on or off of the punch motor is under processor control. On the side of the punch is an adjustable micro-switch operated by an arm which rests on the tape spool. When the spool is reduced to a certain diameter "Tape Low"), dependent on the setting of the micro-switch, the arm operates the micro-switch and signals a PUNCH NOT AVAILABLE condition which can be gated into the processor using an IOT instruction.
"STOP WHEN DONE"- in this position simulates a "TAPE LOW" condition. Since the Typesetting Program only checks for availability before commencing to punch, it would be possible to commence a "take" punch out just before the tape low condition and then run out of tape if the "take" was a long one. If a monitor should notice that this condition may occur shortly, he can switch the punch from "available" to "Stop When Done" while a tape is being punched which would allow the "take" to be finished, but then prevent any further "takes" from being routed to this punch.
"CONTINUOUS" - in this position the punch motor is turned on but the punch is inhibited from processor control, PUNCH NOT AVIALABLE condition being signalled.
"OFF" - in this condition, the punch motor is turned OFF and the PUNCH NOT AVAILABLE condition is signalled.

PAGE	1	PAGE REVISION	0	PUBLICATION DATE	July 1972

Title	PP67A/B TYPESETTING PUNCH						$\begin{aligned} & \text { Tech Tip } \\ & \text { Number PP67-TT-1 } \end{aligned}$	
All	Processor Applicability	Author	John	Gleeson		Rev	0	Cross Reference
8's		Approval	Bill	Cummins	Date	7-3	1-72	

NOTE: On the side of the punch is a toggle switch which can be used to switch on the motor irrespective of the position of the switch on top of the punch. This switch is for maintenance purposes only and it is recommended that the customer be advised to use switch on top of the punch when replacing tape in the punch, since if the switch is left in the "Available" position, a "take" could still be routed to the punch and lost if the customer is in the process of changing tape.

THEORY OF OPERATION

Control Circuit (See Diagram 1)
Point A, the junction of R3, R4 is at $-3 V$. Assuming the switch in the "Available" position, before the "MOTOR START" signal is sent to the punch, point B is also at $-3 V$ hence the transistor is cut off and there is no volt drop applied across the wheelock relay. The SCR in the motor circuit has no control voltage applied to it and is therefore turned "off" (see note 1). When a $\mathrm{MO} O \mathrm{TOR} \mathrm{START}$ is sent to the punch, point B goes to ground, the transistor turns on and the wheelock relay operates, closing point D. As the first half cycle of the 110 volt supply builds up across Rl/R2 a voltage develops at point C which is applied as a control voltage to the SCR. The SCR turns "on" and current flows in the motor circuit driving the motor. As the first half cycle finishes, the anode voltage of the SCR reduces to zero, hence, the SCR turns off, but the second half cycle again develops a control voltage at Point C hence the SCR turns on again. Thus while the wheelock switch is operated the motor runs. When the MOTOR START signal is removed, the transistor cuts off; the wheelock switch opens and hence no further control voltage can be applied to the SCR. The SCR therefore turns off and remains off until the next MOTOR START signal is applied.

While the punch has sufficient tape in it, point F is at approximately -3.4 volts, R5 being connected in series with a 470 ohm resistor in the interface (Diagram 2), hence in this condition PUNCH AVAILABLE is signalled via pin 21 of the amp plug. When the TAPE LOW switch operates, a ground is signalled. The condition is also signalled by turning the punch switch to STOP WHEN DONE, CONTINUOUS or OFF. In the CONTINUOUS position, though, a ground is also applied to the transistor, point B, hence the motor runs continuously.

Operation of the toggle switch provides a direct supply to the motor, hence, the motor runs continuously irrespective of the position of the punch switch.

In the "OFF" condition an SCR has a high resistance in both directions (expamle $100,000 \mathrm{ohm}$), the gate to cathode being equivalent to a small diode. Providing the anode voltage is positive with respect to the cathode, if a small positive voltage (example lV) is applied to the

gate, the forward resistance of the SCR will be greatly reduced and current will flow through the SCR. Once current is flowing, the SCR can only by turned off by removing the anode voltage.

Punch Solenoids (Dee Diagram 3)
Punch solenoids are driven from $W 040$ solenoid drivers. One side of each solenoid is taken to -30 V , the other side being taken to a $\mathbf{W} 040$. When a solenoid driver is selected, it lifts the discrete solenoid feed from -30 V to ground, thus energizing the punch solenoid. In order that the solenoid drives are only driven at the correct point in the punch cycle, a reluctance pick-up situated on the brass disc forward of the motor shaft provides an output which is developed across a $1 \mathrm{~K} 1 / 4$ watt resistor with an 0.01 uf capacitor in parallel, in the punch interface, to supply a half enable input, to gate through the respective SELECT PUNCH level. The point in the punch cycle at which the output from the reluctance pick-up is provided can be varied by means of the "range-finder" (timing scale) situated at the front of the punch above the brass disc. This variation is provided to compensate for lengths of cable, signal delay, etc.

The diode across the solenoid is used for damping and the resistor is used to limit the current through the solenoid.

Adjustments:

All mechanical adjustments for the punch are detailed in the BRPE Technical Manual. Once these adjustments are made correctly, two further checks need to be made:

1) Punching a series of alternate rubouts and tape feeds, hang a scope probe on the feed from the solenoid driver, at the punch solenoid, checking each solenoid in turn. The waveform should be as below:

The "glinch" should be positioned at the trailing edge of the sawtooth waveform (see below).

PAGE $_{3}$	PAGE REVISION 0	PUBLICATION DATE	July 1972

This can be achieved by slackening the two screws clamping the punch solenoid and adjusting the solenoid until the "glitch" is in the correct position. Make sure that when making this adjustment, the solenoid is moved squarely in the vertical direction. If tilted, the armature may slip out of the blocking pawl (see Diagram on page 13 of BRPE Manual Bulletin 2l5B). If small "glitch" is unobtainable, check the mechanical adjustments again, and, only as a last resort, adjust the tension on the solenoid armature spring.
2) Punching alternate l's and \varnothing 's, slacken the screw holding the range finder and move the slide in one direction until punching beings to deteriorate: Note the position on the scale, then move the slide in the opposite direction until punching begins to deteriorate again and note the position on the slide. Set the range-finder at the midway point between the two positions and tighten the screw.

NOTE 1: If the scope probe is hung on the common feed at the solenoid, the waveform will look like

NOTE 2: To check the feed hole solenoid, the program will have to contain a stall so that the solenoid is de-energized between punching of characters. The following program would be suitable for running while checking all solenoids:
$2 ø \varnothing / 76 \emptyset 4$
6314
$72 \not 0 \varnothing$
$6 \emptyset 26$
$6 \varnothing 21$
$52 \not 04$
$222 \varnothing$
$52 \varnothing 6$
$7 \varnothing 4 \varnothing$
$52 \emptyset 3$

$S R=\varnothing 2 \varnothing \varnothing$
LOAD ADD
SR8-II=Punch N^{O}
START

Page -4-

Title	PP67A/B TYPESETTING PUNCH (Continued)							PP67-TT-1
	Processor Applicability	Author	J.	Gleeson		Rev	0	Cross Reference
8's		Approval	W.	cummins	Date 7-31-72			


```
DIAGRAM 1 - PUNCH CONTROL
```


Page -6-

FIELD SERVICE TECHNICAL MANUAL
Option or Designator
P?67

12 Bit | \square |
| :--- |

W990	FUNCTION	AMP PLUG
A	+10 V	15
B	-15V	14
C	GROUND	11 and 20
D	HOLE Ø	8
E	HOLE 1	1
F	HOLE 2	2
H	FEED HOLE	9
J	HOLE 3	3
K	HOLE 4	4
L	HOLE 5	5
M	HOLE 6	6
N	HOLE 7	7
P	MOTOR START	13
R	AVAILABLE	21
S	GROUND	12
T	SELECTED TIMING	24
U	GROUND	17
V	GROUND	16
-30V	LY IN INTERFACE	18

Title	BRPE PUNCHES (PP67A, B,C,D)					Tech TipNumberPP67-TT-2	
All	Processor Applicability	Author	John	Gleeson	Rev	0	Cross Reference
		Approval W. Cummins Date 7-31-72			Date 7-31-72		

For correct operation at 110 characters/second on $50 / 60 \mathrm{~Hz}$ systems, the following Motor/Gear sets are used:
a) 60 hz 115 V (Motor Speed - 3600 r.p.m.)

		TTY\#		DEC	
Motor	Pulley	171190 (44	teeth)	29-11299	Part of
Motor	Drive Gear	143052 (24	teeth)	29-11197	\rightarrow modification
Belt		143055		29-11198	kit, TTY

The motor used is a model LMU3, with a 60 hz thermostatic swith TTY \#122249, DEC \#29-11148.
b) $50 \mathrm{hz} \mathrm{115V}$ and 230 V (Motor Speed - $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.)

Motor	Pulley	147627(33 teeth)	N/A]	Part of
Motor	Drive Gear	147626(15 teeth)	$N / A \rightarrow$	modification
Belt		195448	N / A	kit, TTY

The LMU3 motor is also used for 50 hz systems, the changing of the gear set compensates for running the motor at $5 / 6$ the normal speed (due to frequency). The supply for the punch is taken from a step-down transformer on 230 V systems. The thermostatic switch used is a 50 hz switch TTY \#193781, DEC \#29-16808.

$50 / 60 \mathrm{hz}$ motors

The LMU 3 motoris asynchronous motor, no manual variation of the speed being possible, hence, the requirement for different gear sets for $50 / 60 \mathrm{hz}$ operation. Some punches, however, have been equipped with a series governed $50 / 60 \mathrm{hz}$ motor which can be used on either system with only minor changes. This is achieved by a "Governor" on the back end of the motor which can be regulated to compensate for different frequencies. The motor runs at a constant $3600 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , using a 60 hz gear set. When the motor is run on 50 hz , which would give a speed of $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , the "Governor" is varied by means of a screw in the "Governor". By using a tuning fork tuned to a motor speed of 3600 r.p.m., bring the motor speed back up to $3600 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Hence, the only change required when switching the punch between different systems is to adjust the "Governor" to give a speed of $3600 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The method is explained in BRPE Technical Manual Bulletin 295B pages 10 , 11 of the "Principles of Operation" section and pages 6 and 7 of the "Adjustments" section.
The Thermostatic switch used, however, must be the one for the system frequency that the punch is being run on.
$\frac{\text { TOOLS }}{\text { Tuning Fork }} \quad \frac{\text { DEC \# }}{29-16114} \quad \frac{\text { TTY\# }}{104986}$

The Maynard stockroom will soon have available both 6 and 8 level tungsten carbide die block assemblies for the BRPE punch.

These die blocks and pins have a life of something in excess of 15 times that of the conventional die blocks. They will also allow the user to punch other types of tape such as mylar or aluminum with no problems. Of course, the more abrasive tapes will increase the wear factor, but these blocks are built for punching them.

These are highly precision devices and at no time should anyone attempt to disassemble the die block. The vendor is the only one capable of doing this. If any problems are encountered, simply return it to Maynard for repair.

The die blocks are etched with digitals name-block number and pin size. Thus you would see: Digital-6EE. The 6 means it was block number 6. The EE is the pin size. The vendor has agreed to make all blocks and pins the same size.

When installing these blocks do not use the punch pin retaining plate. This is not necessary for the operation of the punch.

It is recommended that all contract machines have the tungsten carbide die blocks installed when the conventional blocks wear out.

All old die blocks should be returned to Maynard for credit.
They will also be offered for sale to anyone interested in purchasing them.

The part numbers and selling prices are as follows:
Description
DEC No.
Prices

6 level adv. feed w/pins	$29-17 \not 114$	$\$ 430.00$
8 level ctr. feed w/pins	$29-17 \not 15$	450.00
Code pin	$29-1742 \emptyset$	18.00
Feed Pin	$29-17421$	30.00

NOTE: THESE BLOCKS SHOULD ONLY BE INSTALLED WHEN THE OLD ONE WEARS OUT.

PAGE 9	PAGE REVISION	0	PUBLICATION DATE	July 1972

| Title | TROUBLESHOOTING THE PP67A/B MOTOR CONTROL CIRCUITT | Tech Tip
 Number |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| PP67-TT-4 | | |

During normal typesetting operation, the rotary switch on the top of the punch is in the available position. If the punch fails to work correctly, this may be an indication of a faulty motor control circuit. This circuit is located inside the punch cover on top of the motor.

The PP67A/B motor control circuit is quite easy to troubleshoot with the following technical tip.

There are two main troubles that occur in the control circuitry. The first is the punch motor never turns on This is usually a bad transistor. The second trouble is the punch motor once on, will never turn off. This is a bad SCR in most cases. This procedure can only be used in the case of the punch never turning on.

Using Figure 1 , if the punch does not turn on properly, you can find the trouble using a jumper wire.

1) Turn offf/on switch (on side of punch near the motor) to ON position. If motor runs okay, go on to Step 2, if not, check 110 volts in motor or ON/OFF switch.
2) Turn OFF/ON switch to OFF position. Turn the rotary switch on top of punch to the continuous position and leave it there for the remainder of this procedure. Turn computer on (to supply -15 V). If punch runs okay in this position, trouble is in rotary switch, cable, or computer interface (PA60/61 or PA68A). If the motor did not start, go to step \#3.
3) Using jumper wire, short across SCR (D6) (points A to B), cathode to anode. If motor turns on, go on to step 4, if not, check for bad bridge return (Dl-D4 or D7).
4) Using jumper wire, short across relay contact, (points C to D). If motor turns on, go to step 5, if not, check for bad SCR (gate).
5) Using jumper wire connector from cathode of D5 (Points E to F), to GND, if punch motor turns on, go to step 6, if not, check for bad relay or no-l5V supply.
6) Using jumper wire, short across transistor (Q1) emitter to collector, (points G to H). If punch motor turns on, replace bad transistor or check $R_{3} R_{4}$ voltage divider. If punch motor does not turn on, go to step \#7.

12 Bit $\triangle x^{2}$	16 Bit \square	18 Bit \square	36 Bit \square

7) Using jumper wire, connect the emitter of the transistor to ground (points G to F). If the punch turns on, check for a broken wire from the emitter to the rotary switch, a broken ground connection to the rotary switch, or a faulty rotary switch. If the punch does not turn on, the problem is not within the punch motor control circuit.

One other problem found in the punch control circuit is resistors R_{1} and R2 (47 ohm) burnt. This was caused by the SCR having an open cathode. When the relay contact closed, 110 volts is dropped across R_{1} and R_{2} and if $S C R$ fails to fire, R_{1} and R_{2} will burn up.
For replacement part numbers for any of the above mentioned items, refer to punch control circuit schematics D-CS-7005095-0-1, Revision A.

FIGURE 1

| Title | PP8I SYNCRONIZATION | | Tech Tip
 Number | PP8I-TT-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

If erratic puncin operation suggests the possibility of the logic for syncronization being at fault, the following procedure will guide you in making a determination. The procedure for mechanical syncronization in the Roytron maintenance manual may also be helpful.

Signal SYNC PUN at pin F on the $W 033$ connector at the rear of the punch (or H28V2 - M710) should hold at +2 volts with punch power off. With power on, the signal should be as shown below.

If this signal is not as described, the following steps are suggested:

1) Check to see that +5 volts is present at pin V of the $W 033$ connector at the rear of the punch.
2) Disconnect the W033 connector. There are two identical coils on the front left of the punch which should be checked; readings of about 500 ohms should be obtained from both pin F to V and pin F to ground.

3) The gap between the coil head and core wheel should be checked; a piece of paper tape may be used as a reasonable gauge for checking the clearance.

4) If the previous steps fail to suggest a solution, it is possible that the coil core may have become demagnetized. Proceed as follows:
a) Turn off all power.
b) Remove red wire from pin V and black wire from pin F.
c) Note that PDP-8 and PDP-8I require opposite polarization in this step: For PDP-8I, make temporary connections of the red wire to ground, pin C and the black wire to -30 volts, pin D. For PDP-8, make temporary connections of the black wire to ground, pin c. and the red wire to -30 volts, pin D.
d) Bring up power momentarily, then shut down; current flow thru the coil will remagnetize the core.
e) The 30 volt circuit does not include a bleeder resistor; as a result a charge will remain on the 30 volt line for some time. To avoid the possibility of discharging it thru the logic, it is suggested that the 30 volt supply be disconnected from the PC8I at the terminal strip on the rear panel before proceeding.
f) The coil leads can now be removed from terminals C and D and returned to their original positions, red to V and black to \dot{F}.
g) Reconnect the 30 volt supply lead to the rear of the PCBI and recheck the SYNC PUN output again.
h) If the SYNC PUN signal remains below an acceptable level it may be that the coil assembly is defective. If placing a screwdriver blade against the exposed core end causes a significant rise in output level, it is an indication that the assembly should be replaced.

Arthur Fuller

Title $\quad \mathrm{P}$	PR8I Steps with Power Up and Start					Tech Tip Number PR8I-TT-1	
P	Processor Applicability	Author	Chuck	Sweeney	Rev	0	Cross Reference
8I		Approval	W. Cum	mins Date	7-31	1-72	

The logic by which tape is moved one character position during power up and by START is explained as follows. The circuit design of the A and B flip-flops is such that they come up in the \varnothing state. This condition generates STOP ENABLE which will set the ENABLE flip-flop because STOP COMPLETE is present. STOP COMPLETE is generated 40 msec after the INITIALIZE pluse which zeros the ENABLE flip-flop. ENABLE (1) qualified the clock which pulses a cycle of the A \& B flip flops in the usual manner to step a character which is read into the reader buffer but not into the AC.

Title	M715 and G908 Adjustments PR8I (not PC04)						Tech Tip Number	PR8I-TT-2
All	Processor Applicability	Author	C.	Sweeney		Rev	0	Cross Reference
		Approval	B.	Cummins	Date	7	31-72	

With the reader FEED switch depressed, pulses at H27U2 should be at intervals of 1.67 msec . The lower pot on the M7l5 should be adjusted for correction.

Load the following test program:

$7 \not \varnothing \varnothing 1$	$6 \varnothing 14$	$7 \not \varnothing \varnothing 5$	$52 \varnothing 4$
$7 \varnothing \varnothing 2$	$6 \varnothing 11$	$7 \not \varnothing 66$	$52 \varnothing 1$
$7 \varnothing \varnothing 3$	$52 \varnothing 2$	$7 \not \varnothing \varnothing 7$	$\varnothing \varnothing \varnothing \varnothing$
7004	$22 \varnothing 7$		

With the program running and no tape in the reader, check to see that the sprocket wheel is not stepping. If it is stepping that indicates the probability that the feed hole gain of the G908 is set too low; a clockwise adjustment of the pot on the 6908 should correct this. Insert a ones/zeros tape in the reader. If the reader does not move tape, that indicates the probability that the feed hole gain of the G908 is set too high; a computer-clockwise adjustment of the pot on the G908 should correct this. The proper adjustment for that pot is midway between the two failure conditions.

Once the $G 908$ is adjusted correctly the M715 adjustment can be continued. With the program running, the required signal at H 27 U 2 is 3.5 msec between the first and second pulses in the group of three. The upper pot on the M715 should be adjusted for correction.

PAGE $_{1}$	PAGE REVISION	0	PUBLICATION DATE July 1972

Maindec 08-D2FC-Part 2 will fail with an indication of error when actually there is none. The constant, M377, in location $\varnothing \varnothing 2 \varnothing$ should be changed to $\varnothing \varnothing \varnothing \varnothing$ to eliminate the problem.

If the system includes an AX08 option, there will be an additional problem in that the test includes an AX08 IOT instruction 6377 at location $\varnothing 3 \varnothing 5$. The contents of location $\varnothing 3 \varnothing 5$ should be an NOP-7 $7 \phi \varnothing$. The later program 08-D2GC has eliminated this problem,

| Title | PR8I MODULE AND MAINDEC REVISIONS | | Tech Tip
 Number | PR8I-TT-4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ECO8I-00008 documents the use of specific revision M705 and M715 modules in the PR8I. There are only two combinations which are acceptable:

M705 Revision
M715 Revision C A Not installed 08-D2FC 2 D C Installed 00008

FIELD SERVICE TECHNICAL MANUAL
 12 Bit <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">x</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">16 Bit \square</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">18 Bit \square</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">36 Bit \square</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| x | 16 Bit \square | 18 Bit \square | 36 Bit \square |
| :--- | :--- | :--- | :--- | :--- |</table-markdown></div>

Title	G900 PROBLEMS						Tech Tip PR68A-TTT-1 Number	
	Processor Applicability		Author		Debarge	Rev	0	Cross Reference
8.			Appro		E. Cummi	7-31-72		

Revision C boards, and some revision B, have a basic defect in that the trim pot is wired into the circuit incorrectly. These problems were identified by Tom Gibson and Norm Howe and are detailed in the schematic below.

CORRECT CIRCUIT

INCORRECT CIRCUIT IN G900-REV B AC

Reworking of revision C boards involves the cutting of etch (Fig. 1) and the installation of jumpers (Fig. 2).

Revision B boards can be repaired by simply connecting the trim pot leads to the proper split lug (see Fig. 3 next page).

PAGE

1

PAGE REVISION 0

FIGURE 3

Revision F boards will be released shortly and will incorporate the final scheme of compensating bias resistors. The resistor scheme (which is shown above) should be implemented in the field on all older boards.

Revision A - All bias resistors lok ohms.
B - All bias resistors changed except R23 at input pin U. Some defective because of trim pot miswiring (see over).
C - All were defective - trim pot miswired - can be reworked as detailed on previous page)
D - Correction to revision C but made improperly - not released.
E - Revision D corrected - R23 still 10K.
F - All known problems corrected - R23 changed to 15K.

Title	SET-UP	PROCEDURE	NTINUED					PA68 -TT-2
	Processor Applicability		Author	J. Gleeson		Rev	0	Cross Reference
8.5			Approval	W.E.Cummins Date 7-31-72	Date 7-31-72			

Repeat for the other pot using Data Hole 3 (A28J; PA60A or Bl4P; PA68A). A comparison between Data Hole \emptyset and Data Hole 5 (A28V; PA60A or B1 3 V ; PA68A) may be made to check for skew.

When the margins have been set up satisfactorily, using a short piece of tape check that the control sees "out of tape" as the tape runs out. Slight re-adjustment of the G900 may be necessary but do not move too far from the $40 / 60$ setting if method 1 used. Recheck the adjustments if this cannot be obtained. Also check that the tape switch is wired to simulate the "out of tape" condition, by lifting the arm up.

MIXED TAPE LEVEL SYSTEMS

Some systems have the requirement to be able to read both 6 and 8 level tape. Where both tapes are advanced feed hole, the procedure is the same as described above except that the check for skew should be made between hole \emptyset and hole 7 (A27P; PA60A or B13J; PA68A).

Where the 8 level tape is center feed hole, it has been found to be better, where possible, to reserve a reader for reading 8 level tape only. If this is not practical, the readers should be set up as for 6 level tape and then marginal re-adjustment of the sprocket wheel made, together with re-margining of the pots, to accommodate both tapes.

When all readers have been set up satisfactorily, do a final check, using either the Typesetting Configuration Maindec $08-\mathrm{D} 2 \mathrm{HB}$ or the TCSE.

PAGE	5	PAGE REVISION	0	PUBLICATION DATE July 1972

Title	SET-UP PROCEDURE (CONTINUED)						$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \end{aligned}$	
All	Processor Applicability		Author J	J. Gleeson		Rev	0	Cross Reference
8:S			Approval	W.E.Cummins	Date	7-31	1-72	

DIAGRAM 1

DIAGRAM 2

DIAGRAM 3

FIELD SERVICE TECHNICAL MANUAL

Before commencing the set-up procedure check that the G900 modules in the reader are modified to revision F level as detailed in TYPESETTING TECH MANUAL SECTION 14, Pages 1 and 2. If they are not, the G900's must be brought up to date before attempting any adjustments.

STATIC ADJUSTMENTS

1. Diagram I - Measure the voltage across the reader lamp. This should be lov. If it is not, slacken the clamp connector on the 7.5 ohm resistor in the reader and move the clamp until 10 V is obtained. Tighten the clamp, then recheck voltage. If cables are over 150' the -15 volt and ground lines must have dual wires in the cable.
2. Diagram II - Release the screw holding the 6 level guide and if the reader is to be used for 8 level, drop the guide to its lowest position and tighten the screw. If the reader is to be used for 6 leve1, move the guide up until the guide surface is flush with the surface of the cell block. Tighten the screw.

Take a short piece of tape, 6 or 8 level appropriate to the reader use, and place it in the reader. Adjust the cell block, with the two screws shown, so that the tape lies flat across the sprocket wheel and the ell block surface. Tighten the screws.

Place 3 thicknesses of tape between the tape bed and tape hold-down weight and tighten the screw that connects it to the back plate. The weight should now be secured.
3. Diagram III - Rotate the lamp so that the filament produces an even beam of light and casts no shadow, from the bulb's seam, over the apertures. (Note: inspect the bulb for filament sag, if present replace the bulb). Adjust the condensing lens so that the flat portion is parallel with the cell block. Loosen the two set screws on the bracket assembly and move it forward or backward to make the light beam cut across the right hand edge of the apertures.

PAGE	3	PAGE REVISION	0	PUBLICATION DATE July 1972

Title	SET-UP PROCEDURE (CONTINUED)				Tech Num	PR68 -TT-2
$\begin{aligned} & \text { All } \\ & 8^{\prime} \$ \end{aligned}$	Processor Applicability	Author	J. G1eeson	Rev	0	Cross Reference
		Approval	W.E.Cummins	7-3	1-72	

4. Diagram IV

- Take a short piece of tape with a rub-out code perforated about half way along the tape and place it in the reader. Release the two allen set screws in the sprocket wheel and, holding the tape taut across the cell block and wheel, move the sprocket wheel laterally so that the holes in the tape are centered over the photo cell apertures. Be sure that the tape is not curled up against the back plate. Partially tighten one of the screws.

5. Diagram V - Select the required reader via the PA60 control by loading the following porgram:

$$
\emptyset / 7604 \text { LAS }
$$

Load ADD \varnothing, set the reader number in $S R$ bits 8-11, then press START.

Release the screw in the wheel and keeping the lateral position fixed, rotate the wheel axially until the leading edge of the tape holes is just touching the right hand edge of the light beam. Tighten the allen set screws in the wheel.
6. Diagram VI - Put the spring arm down and check that the straight part of the fingers are horizontal and just touching the wheel. Careful use of long-nosed pliers may be used to achieve this. Also check from above that the fingers are centered over the sprockets on the wheel.

RUNNING ADJUSTMENTS

When all preliminary adjustments have been made, the reader should be margined. There are two methods of doing this:

1) Using a short program (or Typeset Configuration Test Program 10) read a 1 's and \emptyset 's tape loop. Observe the $A C$ for data and swing the pots on the G900's from the extreme of picking up bits to the extreme of losing bits, counting the number of full turns. Set the pots at 40% back from the point of picking up; i.e., if 10 turns obtained, set the pot 4 turns frompicking up. It is likely that when checking bits $1,2,3,4$, the feed hole will be picked up first, causing the program to hang up on the flag. This is the extreme of that direction. A minimum of 6 turns should be obtained on both pots.
2) Reading a l's and \emptyset 's loop, and using a scope, hang one probe on A29J; PA60A (hole \emptyset) or B15P (PA68A) and the other probe on A24J (PA60A), B12E (PA68A) and observe the relationship between the data and "strobe". Adjust the pot and if necessary the wheel to obtain timing as shown below.

Page -4-

Title	SET-UP	Procedure	TINUED				Tech Tip PR68 -TT-2 Number	
All	Processor Applicability		Author	J. Gleeson		$7-31-72$		Cross Reference
8'S			Approval	W.E.Cummins	Date			

DIAGRAM 4

On CSI Systems, the reader interrupt has been disabled in order for the CSI Program to run. On most systems CSI does this by taping a pin on the module which generates INTER REQ for the reader, but on some systems this is hard wired in. This tape or wire must be removed in order that the System Exerciser and all DEC MAINdecs can be run.

	FIELD SERVICE TECHNICAL MANUAL					$\begin{aligned} & \text { Option or Designator } \\ & \text { PR68 } \end{aligned}$
	12 Bit Q	16 Bit \square	18 Bit	\square	36 Bit \square	

PROBLEM: Improper mounting of the top cover box on PR68A and PR68B readers. Insufficient clearance between the cover box and the mounting plate for the Osram Bulb may cause a short circuit from -15 volts to ground. The threaded standoffs used to mount the cover box are not of correct lengths. Specified length of these standoffs is $13 / 8$ inches. However, it has been discovered their actual length varies from $15 / 16$ inches to $13 / 8$ inches.

SOLUTION: Increase the length of the threaded standoffs to achieve a reasonable amount of clearance between the cover box and the Osram Bulb mounting plate. There are two suitable methods of resolving the problem.

1) Add washers as necessary behind the standoffs to effectively increase their length.
2) Replace the existing standoffs with same of correct length (1 $3 / 8$ inches).

PARTS LIST

Item No.	Drawing No.	Part No.	Description
27	MA-E-PR68A-0-1	None	Plain Washer (Medium)
28			$5 / 16$ O.D X 5/32 I.D
29	MA-E-PR68A-0-1	NOne	External Tooth Lock
29	MA-E-PR68A-0-1	None	Threaded Standoff \#6

NOTE: Eithor Washer (item 27 or 28) may be used.

Title	SET UP PROCEDURE	R THE PR68B READER			$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \end{aligned}$	
All	Processor Applicability	Author John Gleeson			0	Cross Reference
$8^{\prime} \mathrm{s}$		Approval w. Cummins	Date	7-31	-72	

All adjustments for the PR68B reader are the same as for the PR68A with the exception of the following:

1) Using a piece of tape with a rub-out perforated in it, adjust the sprocket wheel axially so that the Data Holes on tape are positioned directly over the photo cell apertures, then move marginally either side to obtain best margins by either method described in the PA68A Tech Tip. The reason for the difference in Data Hole positioning as compared to the PR68A is that in positive logic interfaces the strobe occurs earlier.
2) In the PR68B there is only one amplifier module, a G908.
3) Using the scope method for margining, the points to look at are:

	Hole \emptyset		Hole 5		Hole 7
PA68F	B11E2			Strobe	
PA63	B27 10		B1øC1		B13U1
	B272	B28J1		B28C1	C8U1

The PA63 provides a user with a "NON-TORN-TAPE-ALLOTTING" system (NTTA) by the simple addition of one G930 module to each reader in the system. The customer's use of this option is the same as described in the PA60C Tech Tip so this description will be confined to the logic theory.

Theory of Operation - See Diagram 1
Initial Conditions:
a) Point "A" is HIGH.
b) Point "C" is HIGH, therefore, "D" is LOW, turning on transistor Q2 and lighting the lamp.
c) Point "D" being LOW, point "F" is HIGH, turning on transistor Q1 and hence holding point "G" at GND.
d) The flip flop is in the " 0 " state, hence point "B" is LOW.
e) Point "G" being "LOW", the clock input to the flip flop is HIGH.

Operation:

1) When the switch on the reader is pressed, a LOW is applied to points "A" and "C".
2) Point "D" goes HIGH, cutting off transistor $Q 2$, thus extinguishing the lamp.
3) Point "F" goes low, cutting off transistor $Q 1$ and allowing point "G" (Bus) to follow the level of SEL RDR XX H; the bus being tied to this level in the PA63 interface. Assuming this reader not program selected at this stage, point "G" remains LOW.
4) Point "A" provides a LOW through chips E1 and E2 at point "C" which is fed back to point A thus "remembering" the operation of the switch.
5) When this reader is program selected, point "G" goes "High" but has no effect on the flip flop since the clock input "H" is negative going. The tape in this reader is then processed.
6) When tape processing has been completed, the program deselects the reader, thus point "G" goes LOW. This provides a positive going clock pulse to the flip flop setting it to the "1" state.
7) Point "B" goes HIGH, point "C" therefore goes HIGH and point "D" goes LOW, $Q 2$ is turned on, lighting the lamp and $Q 1$ is turn on tying point "G" to ground.

| PAGE 11 | PAGE REVISION | 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- | :--- |

Title	G930 - USED IN PR68D READER (Continued)					Tech Tip Number	PR68-TT-6
	Processor Applicability	Author J	J. Gleeson		Rev	0	Cross Reference
$\begin{aligned} & 815 \\ & 8 ' s \\ & \hline \end{aligned}$		Approval	W. Cummins		7-3	1-72	

8) Point " D " going LOW resets the flip flop at point " J " and point "C" being HIGH provides a feedback to point "A" to re-establish initial conditions.

Inhibit Facility:

When installed, this option can be disabled at any time by throwing a switch, mounted in the PA63, to the "OFF" position.

PR68DA Reader:
When this option is not installed, the readers have the designation PR68DA. The following modifications are made to the reader. (See print PR68-D-2):

1) Momentary switch replaced with ON/OFF switch.
2) 56 OHM resistor added from B04F2 to A 04 V .

Also the jumper providing +5 V to the NTTA switch in the PA63 is disconnected from the +5 V line and taped down in the power supply.

If this option is field fitted, the switch must be changed: The resistor removed; a G930 inserted in slot B04 in each reader in the system. Also the NTTA switch in the PA63 must be rewired to

Pin $F=$ input from reader switch
Pin $H=$ output to indicator lamp
Pin J, Bus $=$ tied to SEL RDR XX H in PA63

Page -12- DIAGRAM 1 - THEORY OF OPERATION

	FIELD SERVICE TECHNICAL MANUAL					Option or Designator PR68	
	12 Bit Q	16 Bit \square	18 Bit	\square	36 Bit		

There is a possibility that some BC01H cables used with PR68D/DA Readers may have reached the Field incorrectly wired. There is an 0.1 MFD 100 volt capacitor on the M908 connector at the control end of the cable. This capacitor is supposed to be wired from SEL RDR XXH (Pin Vl) to ground (Pin Tl). However, some cables have been found with this capacitor errantly wired from SEL RED XXH. (Pin Vl) to +30 volts (Pin Sl or Ul). On systems with PR68D Readers (NTTA) the problem may show up as an inability to select a reader even after repeated attempts at pressing the reader select switch. On systems with PR68D readers (Non NTTA) the problem may show up as intermittent reader selection errors caused by the noise induced from +30 volt line. The cure is to simply rewire the capacitor correctly from Pin VI to pin Tl. It is recommended that all BCOlH reader cables be checked and corrected, if necessary.

PA6 3-00012:

1) Do not delete B28D1 to B28F2.
2) If not already present, add the following to $6 / 8$ level switch.

| a) Add \#22 AWG S1 -C | (red/wht) to B28D1 |
| :--- | :--- | :--- | :--- |
| b) Add \#22 AWG S1 -N/O | (brn/wht) to C08C2 |
| c) Add \#22 AWG S1 -N/C | (blu/wht) to B2lv1 |

PR68D-00015A: (PR68D-00015A takes precedence over PR68D-00015)
Item 16 and 21, sheet 3 of 6 are for PR68D only (Non-NTTA)

1) Add \#22 AWG (gry/blk) wire between rocker switch, N/C position and A2 on W023A connector card in slot B01.
2) Remove wire jumper on $A 2$ W023A connector card and add $1 \mathrm{~K} 1 / 4 \mathrm{~W}$ resistor.

Again, this is only for PR68DA Readers.

PAGE 13	PAGE REVISION 0	PUBLICATION DATE	July 1972

Possible M7l0 Problems:
When punch is activated and the 5 second delay times out, the first character is punched. The 5 second delay may be cleared again, punching a character every 5 seconds. This is caused by etch
layout on M7lo Rev. F.
Field Solution:
Add. $01 \mathrm{mfd} / .00 \mathrm{~V}$ cap to A 07 V 2 to gnd on PA68F and A 30 V 2 to gnd on Pa63.

ECO's are being prepared to cover the deficient areas.

Problem:
The lens for the PCO4 Reader ($1 / 16$ inches long) was assigned that same part number (74-4989) as the lens for the PR68 Typesetting Reader (1 3/16 inches long).
Text:
Each lens now has its own part number. Use the following numbers when ordering:

Part \#	Description	Used On
74-4989-6	Lens, 1 1/16in. long	PCO4
74-4989-1	Lens, 1 3/16in. long	PR68 ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{DA}$)

NOTE: This Tech Tip replaces Tech Tip labeled "Short Lens on PR68A/PR68B" Section 4, Page 14, which is obsolete.

Bit \square	16 Bit	18 Bit	36 Bit

PR6 8

Phenolic Block (Photocell Assy)P/N29-15961 can no longer be ordered. If a new photo cell assembly is needed order Kit P/N 29-20672. The new photocell assembly requires modification of the PR68A interface cable by replacing the reader end with a modified M978B or M9780 module. This module is supplied with the kit which also includes the new photocell assembly $\mathrm{P} / \mathrm{N} 70-09382$, cable clamps and hardware, and necessary procedures and specifications. THIS IS A RETROFIT but should only be replaced when a new photoce $\overline{11}$ is needed, or when system is due a P.M.

If a modified PR68A is in need of repair you only need to order the part that is bad, not another kit. All part numbers are included with specifications in the kit. An ECO to the PR68 is forthcoming on this change.

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorPT08
	12 Bit ${ }^{\text {a }}$	16 Bit	18 Bit	36 Bit \square	

Diagrams on the three pages that follow describe options and set up of the $W 706$ modules úsed in PT08's.

Special Notes:

1. For best results the $W 706$ should be jumpered for a $1 / 2$ stop bit less than the transmitting device is transmitting. This allows a half bit time to get back in sync if there is a slight timing mis-match between the PTO8's clock and the device sending to the W706.
2. The 'NO RUN OPEN' option may be used in special applications where it is not desirable to get continual flag interrupts if the $W 706^{\prime} s$ input is open. (TTY unplugged, VT06 with power off, etc.) The option prevents the receiver from starting to receive a second character until the stop bit (mark) has been received from the first character. The 'NO RUN OPEN' option requires at least 1.5 stop bits to function properly.
3. Another special application feature is available on W706's that have etch revision D. Clearing the receive flag may be accomplished by either 10 P 2 or lop4. The factory standard is 10 P 2 .
4. In all cases the $W 707$ must be jumpered for the full number of stop bits required by the receiving device.

W707 TRANSMITTER

Page 2

FIELD SERVICE TECHNICAL MANUAL
Option or Designator

12 Bit X	16 Bit	18 Bit \square	36 Bit \square

РT08

W706 ETCH REV. C CS REV. A

5 Bit CODE: INSERT J3, J4; REMOVE JI, J2
8 Bit CODE: INSERT J1, J2; REMOVE J3, J4
NO RUN OPEN: INSERT J6, J9; REMOVE J5, J7, J8
0.5 STOP BITS: Set up jumpers for 1.0 stop bits and insert a jumper between pins 9 and 10 of E5.
1.0 STOP BITS: INSERT J5 and J6; REMOVE J7, J8, J9
1.5 STOP BITS: INSERT J7 and J8; REMOVE J5, J6, J9
2.0 STOP BITS: INSERT J6 and J8; REMOVE J5, J7, J9

Use insulated wire for J9

Title PT08 - OPTION SELECTION JUMPERS						$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \end{aligned}$	
All	Processor Applicability	Author	R. Shelley			0	Cross Reference
	$8\|8 \mathrm{~S}\| \begin{array}{lll} 8 I & \\ \hline \end{array}$	Approval	W. Cummins	Date	7-3	1-72	


```
5 BIT CODE: INSERT J3, J4; REMOVE J1, J2
8 BIT CODE: INSERT J1, J2; REMOVE J3, J4
NO RUN OPEN: INSERT J6, J9; REMOVE J5, J7, J8
0.5 STOP BITS: SET UP JUMPERS for 1.0 STOP BITS and
    INSERT a jumper between pins l & 2 of El4
    1.0 STOP BITS: INSERT J5, J6;REMOVE J7, J8, J9
    1.5 STOP BITS: INSERT J7, J8;REMOVE J5, J6, J9
    2.0 STOP BITS: INSERT J6, J8;REMOVE J5, J7, J9
    Clear Flag - Factory Standard:
        Insert Jlo; Remove Jll
Clear Flag - Special Applications:
        Insert Jll; Remove Jlo
```

FIELD SERVICE TECHNICAL MANUAL
Option or Designator
12 Bit $\mathbb{X}] 16$ Bit $\square \mid 18$ Bit $\square \mid 36$ Bit \square

| Title | PT08 MODIF ICATION | | Tech Tip
 Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PT08-TT-2 | | | |

Past policy has kept the field from modifying a PT08 to a PT08F or PT08FX.
Now, however, it has been found relatively easy to modify a PT08 to a PT08F. The following procedures are included to enable the change. The printed dircuit revision must be C to implement this change.

Add the following to convert a

PT08B to a PT08BF
location

PT08C to a PT08CF location

Jumper	A4D to B2D	A4D to B2D
Jumper	B1D to B2E	B1D to B2E
Jumper		A20D to B18D
Jumper	B17D to B18E	
modem cab1e P/N $70-5717$	B3	B3 \& B19
W511.	B1	B1 \& B17
W602	A4	A4 \& A20

These changes apply to only those PT08's with a receive clock in Al6 or A32 and a transmit clock in B04 or B20.

To change a PT08 to a PT08X the following must be done (the printed circuit 5003980 must be exposed to allow etch cuts and it must be Rev. C).

Changes	PT08B			PT08C *		
Remove R40l	A1 6 B4			$\begin{aligned} & \text { A } 32 \\ & \text { B2 } 0 \\ & \hline \end{aligned}$		
Add R405	B16			B32		
Add W708	B1 2			B2 8		
Cut etch	B15V			B31V		
Jumper	B16D	to	B12E	B32D	to	B28E
Jumper	B12S	to	B15S	B28S	to	B31S
Jumper	B12D	to	B5D	B28D	to	B21D
Jumper	B12J	to	A15J	B28J	to	A31J
Jumper	B12V	to	B15V	B28V	to	B31V
Jumper	B12L	to	A15F	B28L	to	A31F
Jumper	B12F		B15J	B28F	to	B31J
Jumper	B1 2P	to	B5U	B2 8P	to	B2 1U

*NOTE: Left half same as PTØ8B.

	PT08 MODIFICATIONS		(Continued)					Tech Tip PT08-TT-2 Number	
	Processor Applicability		Author		Cummins	Rev			Cross Reference
			Approval		Cummins		7-	31-72	

Do the following when a W 709 is to be supplied with the PT08X:
Add W709 PT08B B4 PT08C B20
Cut Etch B04D to B05D B20D to B21D
Delete B16D to B12E B32D to B28E
Add
Add B04D to B12E B20D to B28E
Add B04J to B03J B20J to A19J

It is essential that these factors be determined:
The module of the Data-Phone set with which the customer will be operating at the other end of the data-line must be determined so that compatibility of both stations can be assured. The telephone company can verify compatibility between various models.

The BAUD rate must be known. The customer's BAUD rate must be set the same as the BAUD rate at the other end of the data-line. The customer will usually have this information available for you or can obtain it.

The character code must be known. In effect this means that for intelligible data to be sent and received by the customer, he must know what type of character code the system at the other end of the data-line transmits and receives. The customer should normally have this information for you.

The IOT Device Code of the PT08 for the Data-Phone must be known. This code is normally one of the following: ll \& $12,40 \& 41$, $42 \& 43,44 \& 45,46 \& 47$. It should be noted that the first device code is usually for the receiver protion of the PTO8 and the second device code is usually for the transmitter portion of the PTO8. This is not to be taken as the final word on this arrangement, but merely as an example. This should be checked out thoroughly before trying to check out the PT08.

The PTO8 clocks must be set so that the Data-Phone will be operated at the correct BAUD rate. If the PT08 contains R401 clocks, the way to determine the setting for the clocks is as follows:

12 Bit | | 16 Bit \square | 18 Bit \square | 36 Bit \square |
| :--- | :--- | :--- | :--- |

$$
\text { Time }=\frac{1}{\text { BAUD } \times 2}
$$

Example: For a rate of 300 BAUD, the output of the clocks should be set for a ulse every 1.66 ms .

$$
\begin{aligned}
\text { Time } & =\frac{1}{300 \times 2} \\
& =1.66 \mathrm{msec}
\end{aligned}
$$

If the PT08 has a crystal clock, there is no adjustment for it. The logic for the PT08 is somewhat different for a crystal clock control; therefore, if it is desired to know the pulse rate of the clock, the following formulas may prove helpful:

```
Freq. = BAUD X 128 (if a W709 is used)
Freq. = BAUD X 8 (if no W709 is used)
W709 is used when frequency is less than 4K BAUD.
```

After determining the settings for the clocks, they both must be set to the same rate (if they are R401's.)

Once the clocks have been set up the Data-Phone test can be run. The program write-up calls for a jumper from B03E to B03P; however, this does not allow the connecting cables to be tested. For best test results and most complete checkout, pin 2 and 3 of the 25 pin Cannon Plug should be jumpered together and the program run. (Do not connect the jumper from B03E to B03P).

The cable is wired as follows:

Color	25 Pin Cannon	W023	Signal
Black	Pin 1	C	Ground
Red	Pin 2	E	Transmit Data
Green	Pin 3	P	Received Data
Wite	Pin 20	K	Data Term. Ready (+10V)
Brown	Pin 7	C	Ground

The indications that the program is working correctly are that the program will cycle and the AC will be stepping. This program simply transmits data and reads back the same data and compares it to see if it is correct.

Normally this is as much as DEC is required to test, but it may be advantageous to go one step further and try transmitting and receiving data to and from the station at the other end of the data line.

| PAGE 7 | PAGE REVISION 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- | :--- |

| Title DATA PHONE INSTALLATIONS WITH PTO8 | | Tech Tip
 Number | PT08-TT-3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The following is a program which will allow the use of the console teletype to send and receive data over the Data-Phone line to a remote teletype.

LOC: 200 / $6031210 / 5207$
201 / $5211 \quad 211 / 6 \mathrm{XXl} \quad \mathrm{XX}=$ IOT Code for Receiver, in PT08. 202 / 6036 212 / 5200
203 / 6046 213 / 6XX6
204 / 6 YY6 214 / 5203 YY = IOT Code for Transmitter, in 205 / 6041
206 / 5205 207 / 6YY1

This program will loop, waiting for data from the remote teletype or the console teletype. Anything typed on either will be printed on both.

If this test runs correctly, the installation and check out of the system should now be complete.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator RF08
	12 Bit \times	16 Bit \square	18 Bit \square	36 Bit \square	

Certain software routines can cause DRL's in the PDP-8L computer after the installation of RF08 ECO 0019. If this problem is evident, the installation of RF08 ECO 0029 will correct the problem.

In the near future ECO's will be issued to correct the following list of problems:

1) When doing a cross disk transfer, address zero on track zero of the extended disk is not accessed and all data is placed in its proper address plus one. However, if the beginning of the transfer is at zero on track zero of the extended disk, the transfer is normal.
2) When doing a write with W LS \emptyset set as the EMA increments from 7 to 10 , 17 to 20,37 to 40 , a spike is generated on the interrupt line causing an undefined interrupt.
3) When deselecting and then reselecting an extended disk unit within 150 us, a false PCA signal is generated. If an LMAP occurs during this time after reselection of the extended disk, the 256 us delay is inhibited and DRE is immediately set. This problem can be exhibited by running Random Track Address Test on an extended disk.
4) Problems with motor stopping long after installation caused by Rl of the motor control: Rlis passing current as long as the motor is running; therefore, developing excessive heat leading to an eventual breakdown.

Carl Cline/January 1971

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE July 1972 |
| :--- | :--- | :--- | :--- |

Problem: During address test of disk data, the first lif addresses may generate errors. The errors are due to photo sync and LDMP not occurring at the same time. This forces the disk control to wait 16 words rather than setting DRE immediately. The present solution is to adjust photo sync to 110 microseconds.

This problem is more apparent on PDP-12 and may have to be adjusted to 125 us.

The quality of a disk surface can be altered by a build up of dirt or by handiing of the entire eisk assembly. This condition can be detected in time to save the surface from eventual destruction and long down times.

The detection of dirt can generally be confirmed with the use of a scope. The following method should be used:
A) Sync scope "on line".
B) Set time/cent. to 5 ms .
C) Set volts/cent. to . 2 V (using X 10 probe).
D) Place probe on RS08 location A02, pin T.
E) One of the following sketches. should be observed.

F) The first sketch indicates a good surface, only minor dips will be observed in a revolution.
G) The second sketch indicates that the surface is dirty and has started scoring the surface. The display on the scope will have sharp jagged decreases in amplitude. Where a good surface will have a minor and more gentle.decrease and increase.
H) This procedure should be repeated on all timing tracks (three) and on randomly selected data tracks.
page 2

	FIELD SERVICE TECHNICAL MANUAL					Option or Designator RF08
	12 Bit \triangle	16 Bit \square	18 Bit	\square	$36 \mathrm{Bit} \square$	

Title	RF08 (Disk) (Continued)					Tech Tip Number	RF08-TT-4
All	Processor Applicability		Author C. Cline			0	Cross Reference
	8E\| 8 I - 8 L		Approval W. Cummins	Date	7-3	-72	

This method will give you the general condition of the surface, however, if the diagnostic still gives error on a specific track and address this problem should be confirmed before replacing disk. Only a minor adjustment may be required to correct the problem.

In order to look at one word on my data track use the following method:
A) Load Disk Data
B) Load Address 201
C) Start desired track in SR

Continue desired address in $S R$
Continue desired data in $S R$
Continue desired data in $S R$ (usually all ones)
Continue 7001 in $S R$
This will read and write in the desired location.
D) Halt Program

Load 200
Start 7201
This will read only the location selected previously; it may
be necessary to put $S R$ bit 3 to inhibit errors.
E) Now with channel one, sync on ADC negative location B21 pin N in RF08.
F) With channel two, and scope on alternate look at output of data amp in RS08 location A12T.
G) You will now observe the data being retrieved for the desired word.
H) If the decrease in amplitude is not catastrophic you may adjust it until there is a sliced output. (RS08 B12D and E)

If PM's are performed on equipment, it is a good idea to monitor any change in track amplitude from the previous $P M$.

New RF08 TTWs have a coarse adjustment pot instead of the $50-60$ cycle
switch. To use the new pot:

1) Find the middle position on the fine adjustment pot.
2) Press write and examine gap area.
3) Adjust the coarse adjustment pot while performing step 2 until the gap area is approximately 2 msec .
4) Adjust the fine adjustment pot while performing step 2 until the gap area is 500-550 usec.

Title	NOTES ON RF08 TUNING PROCEDURE						$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } 08-T T-6 \end{aligned}$	
All	Processor Applicability	Author		Freeman		Rev 0		Cross Reference
		Approval	W.	Cummins	Date	7-3	-72	

Use RFO8 Disk Data Maindec 08-D5EA. When random errors occur on one or two tracks, it is better to run the data patterns on a selected track rather than run the entire 40 -minute test. This may be done by loading address $\varnothing 2 \varnothing 1$ and starting with the switch register set to the desired track; now load address $\varnothing 2 \varnothing \varnothing$ and start with $6 \varnothing \varnothing \varnothing$ in the switch register. The program will exercise the selected track with all data patterns and then jump to the incremental word count test (random data) exercise all tracks randomly, then return to the selected test track.

The selection of a specific track for testing makes adjustment procedures more efficient because the program can loop through the complete test in a few minutes. The effect of a slice control or amplifier adjustment can be observed very quickly, especially on the single track, but also on the other tracks as well.

Title	OHM	METER	TESTING	OF	DISK	HEADS	IN	RF	8-D	F32	Tech Tip Number RF08-TT-7		
All	Processor Applicability				Author	W. F	ee			Rev	0		Cross Reference
					Approval	W. C	immi	ns	Date	7	31-72		DF 32-TT-7

Early revision G285's and G286's must be modified for proper operation in an RSO8. The components shown on the component-side view drawings below must be the values and part numbers as indicated. Either module, so modified, will function properly in a DF32 or DS32.

These changes will bring the $G 285$ to circuit revision A level as specified in ECO G285-00001 and the G286 to circuit revision B level as specified in ECO G286-00001. It should be noted that the revision level printed on the board is the "etch" revision level and differs from the "circuit schematic" revision leve1.

Steve Gradie June 1969

It is imperative that the $A C$ power supplied to the RFø8/RSø8 be connected in proper phase relationship. Improper phasing or lack of a high quality ground can cause random, unexplainable errors in the processing of disk data. Refer to "AC" Power Specifications for Computer Installation" for an explanation of proper AC power wiring. Check with a scope for a signal on the white AC lead at the RSø8 control; there should be none. A check at the RSø8 motor fuse terminal should produce a 60 -cycle sine wave. If these indications are reversed, it is an indication of phase reversal which must be corrected.

The following slots in the RF08 were designed for Bl63 modules initially:

A23, A24, B3, B4, B7, B8, B25, B26, D7, D8; ECO RF08-00005 specifies that Sl23's should be installed instead. This is not a field retrofit ECO. The Bl63's will operate just as satisfactorily as the Sl23's.

Problem: RFO8 disk data does not verify that IOT 6603 (DMAR) clears the $A C$.

Correction: Make the following changes to 08-D5EB.

Location	Change to	Symbolic
3174	7440	SZA
3175	7402	HLT/ERROR
3176	7200	CLA
3177	5756	JMP I READ

Page -6_

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator RF08
	12 Bit X	16 Bit	18 Bit	36 Bit \square	

On Linc-8's with RF08's installed, if problems are encountered with "INCR MB" being loaded down, check that the $3 V$ clamp in the RF08 is removed.

Signal Name	From	To	Delete
$-3 V$ Clamp	C08V	C125	x

/mt

—.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator RK08
	12 Bit X	16 Bit	18 Bit	36 Bit	

Title	RK08 SECTOR TRAN	UCER A	JUSTMENT			Tech Tip Number	RK08-TT-1
	Processor Applicability	Author Schults/Herbener			Rev	0	Cross Reference
$8^{\prime} \mathrm{s}$		Approval Bill Cummins Date 6/01/72					

The Pertec Manual, Chapter 6, Section B, does not say to remove the head alignment adapter before proceeding with the sector transducer alignment. DEC Maintenance Manual for RK8, Chapter 6.13.1, paragraph 4, carefully spells this out.

Disk systems set up inadvertently with the head adapter installed when doing sector transducer alignments will be incompatible with other systems.
/mt

ECO \#9 for the RK08 causes test 16 of the RK8 disk and control instruction test (Maindec-08-D5JB-D) to fail.

As a temporary fix change location $27 \varnothing$ to $\varnothing 232$. There is an MCN to reflect this.
/mt

PAGE 1	PAGE REVISION	B	PUBLICATION DATE	November 1972

Title	PA/WD	MODULE INC	ATIBII					Tech Ti Number	RK0 8-TT-3
All	Processor Applicability		Author	Ralph	Boehm	Rev 0			Cross Reference
$8^{\prime} \mathrm{s}$			Approval	W. Cum	mins	Date	$08 /$	3/72	

The PA/WD module in the RKOl Drives made by CMD have 33 K OHM resistors installed for $R 2$ and $R 3$. The same module made by PERTEC have 5.6 K OHM resistors for R 2 and R3. The PERTEC module will work in all RKOl drives. The CMD module, identified by the letters CMD etched on the module and the gold fingers, will only work in the CMD drives.

Pertec changed the resistor values because the early revision boards (CMD) would randomly generate spikes and cause errors. By changing the resistors $R 2$ and $R 3$ on the CMD PA/WD to 5.6 K OHM the module will work in all RK01 drives. R2 and R2 are located between the two heat sinks.

Occasionally the M206 modules used in the Current Address register (CA \varnothing-CA1l) and Word Count register (WC $\varnothing \varnothing$-WCll) do not ripple through properly when incremented (example: incrementing from 5777 to 6000). This is caused by crosstalk between jumper-lugs or etch runs on the M206. (Failure rate - once in 16 to 20 hours).

Replacing the M206's in RK08 B03, B04, B08 and B09 with M2l6's will correct this problem.

ECO \#RK08-00012 reflects this change.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator RK08
	12 Bit X	16 Bit	18 Bit	36 Bit	

Title	2.88 MHz CRYSTAL AVAILABILITY									RK08-TT-5
All	Processor Applicability			Author	Chuck	Sweeney	Rev	0	Cross Reference	
8 's				Approval Frank Purcell Date 01/24/73						

At present, all Crystal values between 1 to $1 \varnothing \mathrm{MHz}$ are classified under stock number 18-05501.

Unfortunately, the 2.88 MHz crystal used in the RKø8 was never assigned a discrete number; such as 18-05501-XX.

This situation has since been corrected, and Field Service Stockroom in Maynard will carry the required crystal.

For reference, the parts needed on the M405 are as follows:
2.88MHz Crystal 18-05501-08
(Northern Engineering Labs, model NE-6A)
100 H VIH-100 Choke 16-00633
18MMF LOOV vapacitor $10-02608$
NOTE: DEC currently stocks a 2.88 MHz Crystal under the number 18-10694-03. This crystal cannot be used in this application. /mt

On the PA/WD board in the RKO1 resistors are crimped or bent to prevent the resistor from sitting on the board after soldering. It is possible that rough handiing will break these resistors, and cause faults, as has been seen on some system.

PAGE 3	PAGE REVISION	0	PUBLICATION DATE January 1973

FIELD SERVICE TECHNICAL MANUAL

Title	HARDWARE	PROBLEMS	EXISTING	WITH RF08	AND	RS08		Tech Numb	RS08-TT-1
	Processor Applicability		Author	C. Cline			Rev	0	Cross Reference
			Approval	W. Cummins	-	Date	7-3	1-72	RF08-TT-2

| Title | OHM METER TESTING OF DISK HEADS IN RF/RS08-DF32 |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | | Tech Tip |
| :--- |
| Number | RS08-TT-2

Title RSO	S08-TA TRACK WRIT	PROBLEM				RS08-TT-3
	Processor Applicability	Author B. Freeman		Rev	0	Cross Reference
\| 81		Approval W. Cummins	Date 7-31-72			

A problem has been encountered in the use of the RSø8-TA Timing Track Writer. If, after the timing tracks have been recorded, errors indicating a parity error are encountered when running the Disk Data Maindec, the Track A pulses may have been recorded improperly. This can be verified by syncing on a failing address and checking pin Bø9D in the RSø8. If the thirteenth pulse occurs within a shorter time interval than the other twelve, the timing track writer has written the track improperly, The problem can be remedied by re-routing wires in the RSø8-TA. The wires on the output of the Track C writers must be moved away from those on the Track A writers. The wires on A21K thru A2IR, and B21K thru B21R should be moved away from the wires which run from the logic blocks to the metal plate on which the switches are mounted.

Title	RS08 CLEANING KITS FOR DM1 SURFACES							$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \mathrm{RS} 08-\mathrm{TT}-4 \end{aligned}$	
All	Processor Applicability		Author	C.	. Cline		Rev	0	Cross Reference
	8I		Approval	พ่	. Cummins	Date	7-3	1-72	

[^0]| PAGE 1 | PAGE REVISION | 0 | PUBLICATION DATE |
| :--- | :--- | :--- | :--- |

In future RSø8 disk units there will be two kinds of surfaces used. One will be the original Techmet surface which is silver and highly polished. The second is a new surface, DMl, generally a dark blue and/or yellowish color. Variations in color and spots need not be of concern.

With the phasing in of a new disk, an entirely new cleaning procedure was developed. Its purpose is to resist corrosion and lubricate the surface. Each disk kit (suitcase) will be supplied with enough DEC cleaning fluid and lint free towels to clean one DMI surface.

NOTE: This cleaning fluid is to be used only on the DM1 surfaces, continue using current procedure on Techmet surface.

The DM1 cleaning procedure is as follows:

1. Use special DEC cleaning only on DMl disks.
2. Mount the disk on a spin stand. Apply Der cleaner to a clean lab towel and wipe the surface of the disk. Use the clean side of the towel to wipe the disk surface dry.
3. Apply Dec cleaner on disk surface. Let a thin layer of the solution stand on the disk surface:
4. After the solvent completely evaporates, tāke another clean lab towel and start buffing the surface, using clean sides of the towels after every few strokes.
5. Continue buffing using new towels whenever necessary until there is no dark spot or stain on the disk surface.
6. Wipe the edges of the disk. The disk is now ready to be mounted on the hub.
7. After mounting the disk, slowly turn it by hand.
8. If it feels hard to turn, remove the disk and rebuff with dry towels. If the disk is properly buffed, the heads will not stick to the disk.
9. Reassembly of the disk is exactly as before.

NOTE: If the disk surface has not been buffed satisfactorily the excess DEC cleaner can get collected on the ferrite pads. When reassembling the disk units the heads must be cleaned and examined in the usual manner.

Title	SENSITIVE TIMING TRACK CABLES					Tech Ti Number	RS08-TTT-6
$\begin{array}{r} \text { All } \\ \mathrm{X} \\ \hline \end{array}$	Processor Applicability	Author	O. Josb		Rev	0	Cross Reference
		Approval	H, Long	Date	09/	20/72	

Most timing track cables are sensitive to pressure or sharp bends. This shows up by securing the cable by hand or bending the cable while the disk is being exercised, "Hardware Errors" will result. Such errors are only of momentary nature and occur at the instant the pressure is applied. There is no after effect and this phenomenon is not observed under normal operating conditions.
/mt

Title	LEAKS AROUND ABSOLUTE FILTERS								Tech Num	RS08-TT-7
$\begin{gathered} \text { All } \\ \mathrm{X} \\ \hline \end{gathered}$	Processor Applicability		Author	J.	Kilkenne			Rev	0	Cross Reference
			Approval	W.	Cummins	Date 09/20/72				

When replacing the absolute filter, check to see that the rubber strip at the top of the filter makes a good seal with the filter top cover.

If it does not, remove the rubber strips from the old filter and replace in the bottom of the filter holder, so that the new filter will be higher in the filter holder and so provide a good air tight seal.
/mt

In TCO1 DECtape library system tape \# DEC-08-SUCO-UB, the "Escape" program can cause two undeterminable locations of Rim Loader to be destroyed. This problem has been corrected on tapes now being issued.

Field Solutions:

1. Recopy Escape program from known good tape.
2. Reload Rim Loader after running "Escape" routine.

Title	ERROR IN TCO1 BASIC EXERCISER MAINDEC-08-D3BB-D													TC01-TT-2
All	Processor Applicability				Author				Rev			0	Cross Reference	
	8					Approval	W.	Cummins	Date	6/				

The error condition affects the write/read test starting at location 0204 with test pattern 6 selected.

Test pattern 6 is a 7070 pattern that is written on the DECtape, then read back to the processor and verified. The error causes the program to execute test pattern 6 only once, then the program selects test pattern 5 (0707) erroneously.

Error printouts could then occur for both test patterns. No significant testing of test pattern 6 can be made.

To correct error change location 4642 from 5630 JMP I GNPAT5 to 5636 JMP I GNPAT6.

| PAGE 1 | PAGE REVISION A | PUBLICATION DATE December 1972 |
| :--- | :--- | :--- | :--- |

-

When installing the G829 for ECO TCø8- $\varnothing \varnothing \varnothing 14$, the module requires a $1 \varnothing$ amp fuse.

Due to lack of sufficient documentation, some confusion has developed over how to field-adjust this module.

The modules are set up, in Maynard, by applying a l mv sine wave to input pins $D Z$ and EZ; R7 is then adjusted for a symetrical (e.g. 50/50) square wave at output pins U2 and V2.

Should it become necessary to field-adjust this module, the following alternate procedure may be used:

1) Refer to Section 6.4 (Head Output Check) of the TU56 Maintenance Manual or Section 4.4 of the TU55 Maintenance Manual to determine if the read head is capable of developing the proper read signals.
2) Install the module to be adjusted in slot Al8 of TC08 (Timing Track).
3) With the transport selected, observe the waveform at pins Al8U2 and Al8V2 and adjust R7, if necessary, to obtain a symetrical square wave (a scope loop subroutine such as Test 210 of the Dectape Basic Exerciser may be used for this purpose).

NOTE: Due to the differences of the input signals used (e.g. l mv as compared with 10 mv) this method is not as accurate as the one used in Maynard; but it will provide satisfactory results in regards to field use.

PAGE 1	PAGE REVISION	0	PUBLICATION DATE	ly 1972

Title	DECTAPE TRANSPORT CABLES						Tech TipNumber	
All	Processor Applicability		Author C	C. Sweeney		Rev	0	Cross Reference
	8 I 8L 8 E		Approval	W. Cummins	Date	6/6	72	

To connect a TC08 DECtape control to a TU56:

CONNECT FROM	TO		CABLE TYPE	
			TU56	A06

To connect a TU56 to a TU56:

TU56	A07	TU56	A06	BC02X-3
TU56	A, B11	TU55	A, B10	$74-5152-1$

To connect a TU56 to a TU55:

TU56	A07	TU55	A05	70-6223*
TU56	A, Bll	TU55 A, B02	$\mathbf{7 4 - 5 1 5 2 - 1}$	

To connect a TC08 to a TU55:

TC08	A24	TU55	A05	74-5151
TC08	A, B19	TU55	A, B02	$\mathbf{7 4 - 5 1 5 2 - 1}$

To connect a TC01 DECtape control to a TU56:

TC01	C32	TU56 A06	A06
TC01	C, D19	TU56	A, B10

To connect a TCO1 to a TU55:
TC01 C32
TCO1 C, Dl9
$\begin{array}{ll}\text { TU55 } & \text { A05 } \\ \text { TU55 } & \text { A, B02 }\end{array}$
74-5151-1
74-5152-1

To connect a TU55 to a TU56:

TU55	A06	TU56 A06	70-6223*
TU55	A, B03	TU56 A, B10	$74-5152-1$

To connect a TU55 to a TU55:

TU55	A06	TU55	A05	74-5151-1
TU55	A, BO	TU55	A, B02	$74-5152-1$

[^1]

The following is a table of module placement for TC08.
A
B
C
D

1.	G821	G821	M100/M101*	
2.	Cable	M623/M633*	M100/M101*	Cable
3.	Cable	M623/M633*	M100/M101*	Cable
4.	Cable	M623/M633*	M102/M103*	Cable
5.	Cable	M623/M633*	M102/M103*	Cable
6.	Cable	M111	M111	Cable
7.	M161	M207	M207	M161
8.	M206	M113	M121	M207
9.	M117.	M206	M206	M121
10.	M113	M627	M121	M119
11.	M111	M115	M113	M206
11.	M113	M117	M115	M627
13.		M206	M111	M602
14.	M302	M206	M206	M307
15.	M627	M113	M113	M401
16.	M602	M602	M627	M302
17.			M111	M602
18.	G888	G888	M228	M2288
19.	W032	W032		
20.	G888	G888		
21.	G888	G8790		
22.	M502	M633		
23.	M633	W005		
24.	Cable			
25.	Cable			
26.	Cable			

*Listed TC08N/TC08P for different busses.
Cables
A02-A06 \& D02-D06 = I/O connectors
Al9 - (Wo32) Data Cable to Transport
A24 - Command Cable to Transport
A25 - Indicators - Status. A, unit select, etc.
A26 - Indicators - MC, Write, etc.
NOTE: M663 in A23 and B22 are not changed as polarity of 10 bus is changed.

Title	ADJUSTMENTS FOR DECTAPE SYSTEMS - Family of 8					Tech Tip Number $\mathrm{TC} 08-\mathrm{TT}-5$	
All	Processor Applicability	Author	Rober	t Nunley	Rev	0	Cross Reference CPL TU56-TT-9
		Approval	Frank	PurcelDate	12/0	6/72	

	FIELD SERVICE TECHNICAL MANUAL					$\begin{aligned} & \text { Option or Designator } \\ & \text { TC58 } \end{aligned}$
	12 Bit \times	16 Bit \square	18 Bit	\square	36 Bit \square	

1. The EOF character while reading gets stored in memory location specified by the initial address.
2. A recent $E C O$ change which informs the program that the selected magnetic tape unit is settling down is OR'ed with the illegal status bit (Bit 3). This added status information is present only during the transport setting period after the drive was instructed to stop. (TU20 settling time - 5 ms) Ref: PDP-8/I Handbook, Pages 177 and 178. (PDP-8 EC0 \#279).
3. The TC58 extended memory field is loaded by the MTGO command in which AC Bits 6, 7 , 8 , are loaded in the data field bits $0,1,2$, respectively.
4. Under certain long data blocks using a nine track system, the CRC character and LPCC character may be identical and equal to the end of file code. A space reverse command will consider the LPCC and CRC character as an EOF thus causing tape shut down procedures. This will be corrected in the near future.
5. Remember if a record is written in even parity mode (BCD), a zero character will contain no bit in the parity channel. If two consecutive characters contain zeros, the control may begin shut down procedures.

When checking for data errors on a 9 channel TC58 system, it is necessary to run TC58 Instruction Test 1 (Maindec 08-D9DB) and TC58 Instruction Test 2 (Maindec 08-D9EA) because the CRC data is checked only with these maindecs; it is not checked by Maindec 08-D9FA TC58 Data Reliability Test (9 track). The CRC is calculated and written on tape by hardware in the TC58 control. No hardware checks are made on the CRC, therefore, the CRC must be checked by software during a read operation.

There is a deficiency in the TC58 Random Exerciser (Maindec-08-D9CC) that causes symptoms which may be interpreted as a TC58 hardware failure because the end-of-tape (EOT) can be missed and the program will continue until the tape runs off the reel. This can happen because the interrupt handing routine does not check for EOT while doing an end-of-file (EOF). During EOF a TC58 interrupt causes its status register to be read, but all bits, except the one representing EOF, are masked out. Any function causing an interrupt from the TC58, other than an EOF, will therefore be missed. The following patch entered manually, after the Maindec has been read into core, will allow recognition of EOT while doing an EOF.

Address	New Contents	
3326	4340	
3340	0	Enter
3341	7300	CCACLL
3342	6706	ReadStatus
3343	6712	C1ear Status
3344	0353	Mask for EOT
3345	7650	SNA SZA - EOT?
3346	5740	Not EOT So Leave
3347	1354	(Set Up to
3350	3500	Cnter EOT
3351	3430	CRoutines
3352	5740	Go to EOT routines
3353	0040	
3354	3101	

Drive Function Timer MAINDEC-9-D4CC, 8-D9BA, 15-D4CC and earlier versions may hang in the bad tape test after installing ECO TC59-14 or TC58-09. To correct, change the following locations which are about 100 locations prior to the bad tape test.

MAINDEC	ADDRESS	OLD CONTENTS	NEW CONTENTS
9-D4CC	2367	LAC /WR BUF-1	LAC/WRBUF+BLENTH-10
		203501	203604
15-D4CC	2273	LAC/WRBUF-1	LAC/WRBUF+BLENTH-10
		203415	203511
80D9BA	2705	TAD K3777	TAD K6515
		1063	1067

	FIELD SERVICE TECHNICAL MANUAL						Option or Designator TD8E
	12 Bit 8	16 Bit	\square	18 Bit		36 Bit \square	

Title	TD8E DECTape Formatter					$\begin{array}{\|l} \text { Tech Tip } \\ \text { Number } \end{array} \text { TD8E TT-1 }$	
Processor Applicability		Author	Ken Quinn		Rev	0	Cross Reference
$\|8 \mathrm{E}\|$		Approval	W. Cummins	Date	7-31	1-72	

It is possible to get intermittent mark timing errors when using DEC-8E-EUZB-PB DECtape formatter. The problem is corrected in DEC-8E-EUZC-PB, and this tape should be used. A temporary fix is to change location 1600 of the formatter from $1162+n 73 n n$.

| Title | TAPE RUNAWAY | | Tech Tip
 Number | TD8E-TT-2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Due to the effect of circuit delays in the M868 and the TU56, a tape runaway may be observed on unit $1,3,5$, or 7 while running the TD8E DECtape Diagnostic (MAINDEC8E-D3AB). This is caused by an instruction sequence of:
A. SDLC (All l's) CAF
B. SDLC (All l's)

SDLC (All $\varnothing^{\prime \prime}$)
To Correct MAINDEC-8E-D3AB toggle in the following patch after the program has been loaded:

Address	Change To
¢314	1365
¢365	6400
$\emptyset 405$	1364
$\emptyset 564$	6777

A new MAINDEC will be available in the Programy Library in the near future. The new MAINDEC number is MAINDEC-08-DHTDA-A, and it will incorporate all previous MCN's.

Because the circuit delays may cause this type of a program, a drive should always be stopped by clearing the Stop/Go flip-flop (AC Bit 2) before clearing the unit flip-flop.

FUNGTION CONTROL

12 Bit X	16 Bit \square	18 Bit \square	36 Bit \square

| Title ILLEGAL INTER RECORD GAP CHARACTERS | | Tech Tip
 Number | TR02-TM-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Problem - During a normal READ operation, if the program is such that the computer HALTs after reading a record of data; and the computer START key is depressed at this time; a full character frame of bits may be written on tape.

This condition occurs when the computer START key is depressed: because:
a) The computer originated signal inITIALIZE enters the TR02 interface and derives a signal called \emptyset INIT B L: the latter signal resets the R / W flip-flop (amoung others). In the reset state, the R/W flip-flop indicates a WRITE function to the PEC transport.
b) The same INITIALIZE signal leaves the TRO2 interface as a pulse called REMOTE RESET: this REMOTE RESET signal is used in the PEC transport to generate a GRS (General Reset) pulse that clears all control flip-flops and the WRITE buffers.

1) If the TR02 R/W flip-flop is reset and a WRITE LOCK ring is on the tape supply reel when a GRS occurs, a character will be written on tape within the InterRecord Gap.

Solution - The way to correct this problem is to isolate the effects of INITTALIZE from the R / W flip-flop.

Two things are necessary to effect the solution: replacement of the M216 at TRO2 location Al4 with an M206, and related wiring changes in the area of Al4 to allow the new module to operate correctly.

MODULE: Replace M216 in TR02 location Al4 with an M206 on which the tabs FF1 and FF2 are jumpered to the K2 tabs; this allows isolation of FFO reset line from the other fF's on the board; the output F2 (INIT A L) on the M111 at location A08 is quite capable of handing the additional loads of FFl and FF2.

WIRING: Because of the layout of the M206, the logic positions of FF 0 and FF l must be reversed (see interface print TRO2-NP-3); (it is desired that the DIRECT CLEAR input of FFO (Al of M206) be controlled by the signals \emptyset REWIND L and \emptyset WR LD L; provision must also be made for 0 REWIND L to be able to "force" an \varnothing INIT A L)
The following diagrams depict the exact nature of the change.

| PAGE 1 | PAGE REVISION 0 | PUBLICATION DATE JuIy 1972 |
| :--- | :--- | :--- | :--- |

Title	Illegal Inter-record Gap Characters (Continued)							$\begin{aligned} & \text { Tech Tip } \\ & \text { Number TR02-TT-l } \end{aligned}$	
All	Processor Applicability		Author	C.	Sweeney		Rev	0	Cross Reference
8's			Approv	al W.	Cummins	Date	6/6	/72	

Add/Delete Scheme

SIGNAL NAME	RUN	ADD	DEL
\emptyset WR SET (1) H	A14E1 - A17H2		X
A16N2	A14F2-A16N2		X
\emptyset READ L	$\mathrm{A} 10 \mathrm{~T} 2-\mathrm{A} 14 \mathrm{~J} 2$		X
\emptyset READ/WRITE (1) H	A17E2 - A14H2		X
Al7F 2	A14D1 - A17F2		X
A 16N2	A14F2 - B20J1		X
\emptyset READ/WRITE (1) H	A 14 H 2 - A10M2		X
A11C1	A08E2 - A11C1		X
\emptyset Remote reset l	$\mathrm{Al1B1}-\mathrm{A} 11 \mathrm{P} 1$		X
\emptyset REMOTE RESET L	A11B1-A24K2		X
Al1C1	A08V1 - A11C1		X
\emptyset REMOTE RESET L	$\mathrm{Al1P1}-\mathrm{A} 24 \mathrm{~K} 2$	x	
\emptyset WR LD L	A12J2 - A11B1	X	
A16R2	A16R2 - A08E2	X	
\emptyset Remote reset L	A16P2 - A06K1	X	
A11C1	A08V1 - AllC 1	X	
\emptyset WR SET (1) H	$\mathrm{A} 14 \mathrm{H} 2-\mathrm{A} 17 \mathrm{H} 2$	X	
A16N2	A14D1 - A16N2	X	
\emptyset READ L	Al0T2 - A14F1	X	
\emptyset READ/WRITE (1) H	$\mathrm{Al4E1}$ - A17E2	X	
A17F2	A14F2 - A17F2	X	
A16N2	B 20 J 1 - A 16 N 2	X	
\emptyset WR SET (1) H	A10M2 - A14El	X	
D664 DIODE	CATHODE AT A11A1;	X	
	ANODE AT A06K1		

\qquad

FIELD SERVICE TECHNICAL MANUAL

Option or Designator
TYPESET SOFTWARE

The bootstrap loaders for both 552 and TCOl have been translated so that bootstrap tapes can be prepared easily on site with any TTS perforator. A sequential typing of the following characters will punch a tape with the indicated octal codes and the result will be a bootstrap loader tape.

552 Bootstrap Loader (Disk and Non-Disk Systems)

OCTAL							
J	26	J	26	J	26	J	26
7	17	8	15	U	16	U	16
I	14	8	15	3	$\not{ }^{6}$	ADD THIN	11
F	32	EN SPACE	35	N	$3 \varnothing$	RETURN	$2 \varnothing$
7	17	U	16	U	16	TAPE FEED	$\not \varnothing \varnothing$
SPACE BAND	1ø	U	16	ADD THIN	11	TAPE FEED	$\varnothing \varnothing$
J	26	J	26	J	26	J	26
8	15	8	15	U	16	U	16
SPACE BAND	$1 \varnothing$	U	16	ELEVATE	$\varnothing 4$	5	12
D	22	N	36	QUAD LEFT	33	EN SPACE	35
U	16	U	16	U	16	7	17
\$	$\varnothing 7$	ADD THIN	11	PF-LM	$\varnothing 5$	THIN	$\not \subset 1$
\checkmark	26	J	26	J	26	J	26
8	15	8	15	U	16	U	16
ADD THIN	11	7	17	PF-LM	$\varnothing 5$	EM SPACE	13
EN SPACE	35	D	22	QUAD RIGHT	37	F	32
U	16	U	16	TAPE FEED	$\varnothing \varnothing$	U	16
7	17	PF-LM	$\emptyset 5$	TAPE FEED	$\varnothing \varnothing$	S	12
J	26	J	26	J	26	J	26
8	15	U	16	U	16	U	16
S	12	TAPE FEED	¢0	A	$\varnothing 6$	I	14
N	$3 \varnothing$	EN SPACE	35	RETURN	$2 \varnothing$	EN SPACE	35
U	16	7	17	THIN	$\not \chi_{1}$	7	17
ADD THIN	11	A	$\varnothing 6$	E	$\not{ }^{\prime}$	S	12
J	26	J	26	\checkmark	26	J	26
8	15	U	16	U	16	U	16
EM SPACE	13	THIN	$\not 1$	\$	$\varnothing 7$	8	15
N	36	N	36	,	21	QUAD LEFT	33
U	16	U	16	THIN	$\not \square 1$	U	16
ADD THIN	11	ADD THIN	11	SP BAND	18	ADD THIN	11
${ }_{\mathbf{J}}$	26	${ }^{\text {J }}$	26	J	26	J	26
8	15	U	16	U	16	7	17
I	14	E	$\varnothing 2$	SP BAND	$1 \varnothing$	I	14
D	22	EN SPACE	35	RETURN	$2 \varnothing$	F	32
U	16	U	16	TAPE FEED	$\varnothing \varnothing$	8	15
A	¢6	U	16	TAPE FEED	$\phi \varnothing$	SPACE BAND	$1 \varnothing$

PAGE18

PAGE REVISION
|PUBLICATION DATE July 1972

Page 19

FIELD SERVICE TECHNICAL MANUAL
12 Bit \boxtimes 16 Bit 18 18 Bit \square

Option or Designator

TYPESET SOFTWARE

HOT METAL SYSTEMS

PROGRAM TITLE	LOCATION	AC CONTENTS	REASON
Basic Bands	1577	Not pertinent	Memory error halt
Basic No-Bands	554	Not pertinent	Memory error halt
$\begin{gathered} \text { Disk } \begin{array}{c} \text { System Bands } \\ \text { (TCOI) } \end{array} \\ \hline \end{gathered}$	$\begin{array}{r} 0611 \\ 5204 \\ \hline \end{array}$		Illegal Character Disk Error Halt
$\begin{gathered} \text { Disk } \begin{array}{c} \text { System No-Bands } \\ \text { (TCO1) } \end{array} \\ \hline \end{gathered}$	$\begin{array}{r} 0611 \\ 5204 \\ \hline \end{array}$		Illegal Character Disk Error Halt
Disk Wirestripper Bands (TCOl)	$\begin{array}{r} 512 \\ 1376 \\ 2576 \\ 4316 \\ \hline \end{array}$	Not pertinent Not pertinent Not pertinent Not pertinent	Memory error halt Memory error halt Programmer use halt Dssk error halt
Disk Wirestripper No-Bands (TCOl)	$\begin{array}{r} 612 \\ 1163 \\ 4321 \end{array}$	Not pertinent Not pertinent Not pertinent	Memory error halt Memory error halt Disk error halt
Dectape Bands (TCOI)	$\begin{aligned} & 0611 \\ & 5171 \\ & \hline \end{aligned}$	Status B. Reg.	Illegal Character DECtape Error Halt
$\begin{aligned} & \text { DEC-tape No-Bands } \\ & \text { (TCO1) } \end{aligned}$	$\begin{aligned} & 0611 \\ & 5171 \end{aligned}$	Status B Reg.	Illegal Character DECtape Error Halt
DECtape Wirestripper Bands (TCøl)	$\begin{array}{r} 612 \\ 1376 \\ 2576 \\ 4573 \\ \hline \end{array}$	Not pertinent Not pertinent Not pertinent Stat. Reg.B.	Memory error halt Memory error halt Programmer use halt DECtape error halt
DECtape Wirestripper NO-Bands (TCO1)	$\begin{array}{r} 612 \\ 1163 \\ 4572 \end{array}$	Not pertinent Not pertinent Stat. Req.B.	Memory error halt Memory error halt DECtape error halt

COLD TYPE PROGRAMS

Fototronic $12 \not \subset \varnothing$ \& TXT
537 Disk System (TC01)

3065
3517

Stat Reg. B.
Not pertinent Disk error halt Not pertinent Memory Error halt

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator TYPESET SOFTWARE
	12 Bit x	16 Bit	18 Bit	36 Bit \square	

Title ERROR HALTS IN DEC TYPESETTING SOFTWARE			Tech Tip TYPESET NumbersFTWRE-TT-14	
All Pr	Processor Applicability	Author R. Hartz	Rev ${ }_{\text {A }}$	Cross Reference
8		Approval ${ }_{\text {G }}$. Chaisson	5/23/73	

COLD TYPE PROGRAMS (continued)

PROGRAM TITLE	LOCATION	AC CONTENTS	REASON
Classified Ad II Storage	$\begin{aligned} & 1 \not 43 \\ & \varnothing 351 \end{aligned}$	Disc status Not pertinent	Disc error halt Illegal TTY command in class ad storage mode
Compugraphic $9 \not \varnothing \varnothing \varnothing$	$\begin{aligned} & 3 \not \varnothing \varnothing 4 \\ & \varnothing 536 \\ & \hline \end{aligned}$	Disc status Status B reg.	Disc error halt DEC tape error
Class Ad III version No. 3 (713 display used)			
Display Exec. Prog.			DECtape bootstrap error
\varnothing	7422		Core patch halt SW= øøøø
\emptyset	$\not ¢ 232$		Disk error at start
ϕ	2113		Disk illegal sub. sector
\varnothing	2535		```Dectape error (AC= status B)```
$\begin{aligned} & \varnothing \\ & \varnothing \end{aligned}$	$\begin{aligned} & 1737 \\ & 3627 \\ & \hline \end{aligned}$		Disk transfer error Disk full error
Class Executive Program			
Field \varnothing	$741 \varnothing$		DECtape bootstrap error
\varnothing	7422		$\begin{aligned} & \text { Core patch halt } \\ & S W=0000 \end{aligned}$
\varnothing	¢232		Disk error at start
\varnothing	2135		Disk illegal subsector
\varnothing	254ø		Dectape error (AC= status B)
\varnothing	1741		Disk transfer error

PAGE 4 OF	PAGE REVISION A	PUBLICATION DATE	May 73

COLD TYPE, PROGRAMS (continued)

PROGRAM TITLE	LOCATION	AC CONTENTS	REASON
Updating Program			
Field 1	1221		Disk header area
			full
" 1	$21 \varnothing$		Disk failure on read
Initializing Program			
Field 1	0312		Disk compare error
1	\$254	.	Disk failure on writs
Translating Program			
Field 1	$\$ 216$		Ad found in class \varnothing
1	¢27¢		Disk full error
1	$\not \subset 634$		Bad ad on dectape
Kill program			
Field 1	$\varnothing 345$		Disk failure on read
List Program			
Field 1	$\not \subset 213$		Disk failure on read
Edit Progran			
Field 1	210		Disk failure
1	537		Disk full error
Sort program			
Field 1	255		Disk failure
1	307		Disk full error
Run Count Update			
Field 1	332		Disk failure
Skip Key Update			
Dump Program			
Field 1	243		Disk failure
Proof program			
Size command			
Field 1	243		Disk failure

FIELD SERVICE TECHNICAL MANUAL
12 Bit16 Bit \square 18 Bit \square 36 Bit \square

Option or Designator
TYPESET SOFTWARE

AUXILIIARY PROGRAMS

Disk System Loader (TC01)	$\begin{aligned} & 6112 \\ & 5546 \\ & 7444 \\ & 7554 \end{aligned}$	Stat. Reg. B Not pertinent Stat. Reg. B Not pertinent	DECtape error halt Disk error halt DECtape error halt Disk error halt
TC01 - Disk Patcher	674	Stat. Reg. B Not pertinent	DECtape error halt Disk error halt
TCO1 - Disk Dictionary Editor	$\begin{aligned} & 1252 \\ & 1534 \end{aligned}$	$\begin{aligned} & \text { Zero } \\ & \text { Stat. Reg. B } \end{aligned}$ Not pertinent	Insertion error DECtape error halt Disk error halt
```TCOl-Disk zero Production Stats```	44	Not pertinent	Disk error halt
```TRMBLK (TCO1- Non-Disk)```	6322	Stat. Reg. B	DECtape error halt
$\begin{aligned} & \text { SYSLOD (TCOl- } \\ & \text { NOn-Disk } \end{aligned}$	7443	Stat. Reg. B	DECtape error halt
PATCHB (TCO1-Non-Disk	674	Stat. Reg. B	DECtape error halt
```EDTSYS (TCOl- Non-Disk```	1523	Stat. Reg. B	DECtape error halt
ZSTATS (TCOl-Non-Disk	250	Stat. Reg. B	DECtape error halt
UPDATE (TCOl-Non-Disk	327	Not pertinent	Operation done halt
COPSYS (TCO1-Non-Disk	$\begin{aligned} & 212 \\ & 303 \\ & 314 \end{aligned}$	Not pertinent Not pertinent Stat. Reg. B	Programmer use halt Comparison error halt DECtape error halt
PSTATS (TCO1- NOR-Disk	323	Stat. Reg. B	DECtape error halt


| PAGE $4^{9}$ | PAGE REVISION 0 | PUBLICATION DATE May 1973 |
| :--- | :--- | :--- | :--- |





PROGRAM TITLE	LOCATION	AC CONTENTS	REASON
PSTATS (552 Disk)	233	Not pertinent	Disk error halt
STOCK EDITOR	770	Addr. Of err.	Various errors
	2172	Stat. Reg. B	DECtape errors halt


I. Introduction

The purpose of this Tech Tip is to enable the user to read computer output tapes accepted by the Pacesetter series of Photo composition machines. An understanding of the code structure is helpful when trying to differentiate between bad output due to Pacesetter malfunction or bad output due to the Typeset $8 / 11$ system malfunction.
2. Tape Format

The Pacesetter uses the TTS code structure. Commands consist of a bell code followed by an alpha-numeric character and up to four (4) digits containing the parameters of the command.

Not all of the Pacesetter functions will be listed in the table since they are not all necessary in computer-mode.

3. Function Codes (* $=$ Bell Code)

Function	Flag Code	Followed By
Type Face	*t	1 digit for Typeface 1-8
Line Length	* 1	4 digit; 2 for picas, 2 for points
Point Size	*p	2 digit; for sizes 05-72
Leading	* V	3 digits; $\frac{1}{2}$ pts of lead 0-255
Add Lead	*a	3 digits; $\frac{1}{2}$ pts of lead 0-255
No Flash (next character)	* $b$	-
```Cancel Flash (Until EOL or Flash")```	*	-
Allow Flash	* u	-
Zero Width (Next Character)	* \emptyset	Desired Character
Supercase Characters	* Y	Desired Character
Quad Right	* q	-
One Unit Space	* 1	-
Kern ($1 / 2$ unit for each code)	*m	-
Stop	*T.F.	

4. Spacing

In addition to the EM, EN and THIN and ONE UNIT space noted above, there are four (4) other sizes of fixed spacing used.
a) $\frac{1}{2}$ unit space called by *5
b) three (3) larger spaces (undefined at this stage) called by *7 *8 *9.
5. Quadded/Justified Lines

All justified lines and Quad Right Lines will be ended with a Quad Left and Return $(33,20)$. Spacing necessary to justify the line will be included in the line. Quad Left and Quad Center Lines will end the same but will not output the spacing on the right hand side.

6. Example

a. Type Face \#8
b. Line Length 11.6 pica
C. Point Size 10 points
d. Leading $10 \frac{1}{2}$ points
e. Shift N - Unshift o w
f. Interword Spacing-EM plus one unit
g. is
h. Quad Left, Return

CPL

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorTU20
	12 Bit 8	16 Bit X	18 Bit 区	36 Bit	

Title	MAG TAPE, TU20/TY PINCH ROLLERS	TRANSPORTS REPLACEMFNT		Tech Ti Number	TU20-TT-1
11	Processor Applicability	Author	Rev		Cross Reference
$8^{\prime} \mathrm{s}$		Approval W. Cummins	Date	06-72	

When ordering replacement Pinch Roller assemblies for 580, TU20 or 545, you will be supplied with the type that are on the TU30. This roller is identical, except for a "lip" which will cause it to rotate continually when power is applied.

This feature improves start/stop timing, and reduces tape damage and end play problems of the roller and bearings. The 3030 rollers do work (field tested by Field Service). The .004" gap remains the same. Because of the superior characteristics of this roller, we are stocking only the 3030 Pinch Rollers.

CPL

1. The drive function time program and specifications have been specified for a seven track system. These values are subject to change with a nine track drive due to head gap spacing. The revised specifications have been provided to production Engineering and will be available soon.
2. TU20 manual specified rewind time as less than 3 ms , should read 3 minutes.
3. The reason for supplying the read and write shutdown delay values in the TU20 specification and in PDP-8I Handbook, page 181 and 183, is to define the manimum time elapses, the drive begins to decelerate and will be given the necessary time to settle down (5 minutes).
NOTE: Continue mode of operation is allowable on the same drive even if a change of direction is given. The control automatically stops the drive and changes direction.

CPL

Title	TU20 Pulse Permination				Tech Ti Number	$\text { TU20-TT- } 3$
All	Processor Applicability		Author Joe Godbout	Rev 0		Cross Reference
\times			Approval W. Cummins	Date	06-06-72	

It has been found that the optimum termination for the RECORD DATA pulse on the TU20, for a multiple transport system, would be one terminator on the first transport on the bus, and one terminator on the last transport on the bus. Currently each transport is equipped with the terminator.

In all future systems only the first and last transports on the bus will be terminated.

New G084's may require adjustment in the field. G084 adjustment will be required in transports which have heads replaced.

DO NOT RETURN THESE MODULES TO THE PLANT.
DO NOT ADJUST THEM ACCORDING TO THE MAINTENANCE MANUAL.

1. Write a tape of all ones at 556 BPI , odd parity.
2. Look at pins on each G084 module.
3. Adjust each $G 084$ output to 1.8 volts.
4. Run all applicable tests and check for errors.
5. Optimization may be necessary since the brand of tape will affect amplitude.

	FIELD SERVICE TECHNICAL MANUAL					Option or DesignatorTU28
	12 Bit x	16 Bit	18 Bit		36 Bit 区	

	Incompatibility Between Old and New Revision Reel Servo Boards in PEC Transports						Tech TipNumber TU28-TT-1	
All	Processor Applicability		Author	C. Sweeney		Rev	0	Cross Reference
	8 81 $8 L$		Approv	rank Purcell	Date	07/	31/72	

At present there are three different revision Reel Servo Boards in use. They are:
a) 1øø129-Ø1: Used on earlier module with potentiometer controlled tape tension arms; it cannot be used in place of the following boards:
b) 1ØØ913-Ø1: Used in later models with potentiometer controlled tape tension arms; it cannot be used on units with photo-sensing control of tape tension arms; it can be used as a replacement for the $1 \not \varnothing \varnothing 129-\varnothing 1$ after the following wiring change on the PEC unit:

ADD: J201 pin 18 to J202 pin 20
c) 1øø913-Ø1E: Used on models with photo-sensing control of tape tension (it has two additional look OHM pots on it, set back from the +5 V and -5 V pots, for controlling the response of the photo amplifiers); it can be used as a replacement for (b) by setting the two lOOK OHMs before installing the board; it can also be used in place of (a) by setting both l00K OHM pots to 5 K OHMs and adding a jumper between J20l pin 18 and $J 202$ pin 20.

Failure to follow the above directions when installing a revision 100913-01E in older transports may cause the Reel Servo amplifiers to be overdriven and fuse $F 201$ to blow (SCR may also be damaged.) Once the pots have been adjusted to 5 K OHMs, apply a coating of pot dope to set them.

This can be incorporated in the PDP-8/8I/8L Tech Tip Notebook.

| Title | CAPSTAN MOTOR BRUSH | | | Tech Tip
 Number | TU28-TT-2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PAGE 1	PAGE REVISION A A A A	PULICATION DATE November 1972

Title	INCOMPATIBILITY BETWEEN OLD AND NEW REVISION REEL SERVO BOARDS IN PEC TRANSPORTS					Tech Tip Number	TU25-TT-1
	Processor Applicability		Author	Chuck Sweeney	Rev	0	Cross Reference
	$\begin{array}{l\|l\|l\|} \hline 8 & 8 \mathrm{I} & 8 \mathrm{I} \\ \hline \end{array}$		Appr	rank Purcell ${ }^{\text {Da }}$		1	

| Title | CAPSTAN MOTOR BRUSH WEAR (TU22/25/28) | | Tech Tip
 Number | TU25-TT-2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CPT

A. Write enable compatability with TU55's.

There are approximately one hundred and fifty (150) TU56's in the field containing the "B" revision "Switch Control Panel" (assembly 70-06222). Transports containing these control panels will have difficulty enabling the "Write" function if connection in any of the following system configurations.

1. A TCO1 or TCO2 control, a TU56 w/B Rev. Switch Control Panels and more than two (2) TU55's.
2. A TCOl or TC02 control, a TU56 w/B Rev. Switch Control Panels and more than one additional TU56 w/C Rev. Switch
Pa Panels.
3. An additional problem will be generated if the Rl07 modules in slot Bll of the TU55's have been replaced by Sl07 modules in which case a TU56 w/B Rev. Switch Control Panels will not operate reliably in conjunction with any TU55's.

If any of these circumstances occur the problem may be resolved by replacing Rev. B panels by Rev. C Panels.

NOTE: C Revision panels are direct replacements for B revision panels.
/mt

Problem: When a TU55 is set to unit $8(\varnothing)$ tape creep is evident when other transports in the system are being used. Tape creeps about 3/4" per hour running DECTREX on one (l) other transport, TU56 or TU55. This problem has been observed only on TCØ8 controller.

Cause: When Status A or the TC $\varnothing 8$ changes value, under program control, unit \varnothing is selected momentarily causing the select line for unit \varnothing (8) to "glitch". This glitch appears at the two And gates, at location Bø6 in the TU55, and is Anded with the Forward (FDW) and reverse (REV) signals causing the Direction F / F at $B \varnothing 8$ to toggle as the FWD/REV bit in the Status A register is changing.

Because direction is toggling and Brake Enable is true and delay (\varnothing) is true, the two solenoid drivers at $B 12 R$ and S cause the left and right brakes to toggle. Because there is uneven tape tension, the tape creeps as the brakes are turned on and off.

Fix: Install a D664 diode as follows:

This diode prevents the Direction F / F from changing states when Motion (\varnothing) is true.

This fix in no way hampers operation of the manual switches that wind or rewind tape.
This can be incorporated in the PDP-8/8I/8L Tech Tip Notebook

CPL

FIELD SERVICE TECHNICAL MANUAL			
12 Bit \times	16 Bit 区	18 Bit 区	36 Bit \times

There are two（2）primary vendors of motors for the TU56．ELINCO supplies two types of motors；one is a gray color，the second type is a gold color motor．Any of the above are acceptable．Another vendor，Ashland，was tried and supplied a black motor．These motors should not have been released to the field；if any are noticed， they should be replaced．

Motors may be mixed with a transport but not within a drive．If a motor has to be replaced it should be ordered by vendor name as well as by part number．Black Motors from MOTRONICS are good．

Problem＂Write Enable＂switches failing soon after installation． Correction：Clean the switches with freon or isopropyl alcohol．

The transistors called out in the module ECO referenced above have two（2）possible pin configurations and can be inserted backwards．

The transistors in question are DEC part numbers $151 \varnothing 7 \not 85$ and 151め706．The two（2）presently accepted sources are Motorola （MPSAØ5 and MPSA55，respectively），and General Electric（GPSAD5 and GPSA55，again，respectively）．The pin configurations for the Motorola and G．E．transistors are shown at the end of this memo．Note that the flattened part of the transistor cannot be used as a reference when the transistor is inserted．

PAGE 1	PAGE REVISION	0	PUBLICATION DATE June 1972

Title	TU56	INTERMITTENT					ERRORS					Tech Tip Number \qquad	
All	Processor Applicability						Author		Nunley		Rev	0	Cross Reference
	$8 \mathrm{8I}$	8E					Approval	W.	Cummins	Date		/72	

There are numerous reports of intermittent errors (timing, mark track, parity or data) on TU56. The resultant investigation led to numerous possibilities for the cause of these errors. Not every TU56 exhibits the errors at this time, but the potential is present for all of them. The most probable cause is poor grounding technique. Grounds are made through painted surfaces and mechanical mountings. This Tech Tip will give temporary methods to cure the problems until ECO's are generated.

Do things in this order:

1) Clean guides and head. Disassemble the guides and clean the wear plate, its spring and their respective slots. Check for correct assembly of wear plate and spring.
2) Make sure all electrical adjustments are set correctly.
3) Ground the front panel by running a 30 gauge termipoint jumper from pin C2 in an unused slot in the B row, to one of the screws holding the slide to the right side of the front panel.

These three steps should cure the random problems; however, there is the final step if they did not:

1) Remove the TU56 from the cabinet.
2) Remove the G848 modules and cut the etch going to pin AC2 and to pin BC2.
3) Run a jumper from a common point of the two capacitors in the 725 to the ground lug on the back of the 725 power supply where the logic power comes in.
4) Remove one screw from each surface on the power supply and scrape the paint from under it, then replace the screw tightly. Do this also for the AC recepticals on the 725.

If the problem persists, you probably have a skew problem which must be corrected by deskewing the guides or the head or both.

CPL

	FIELD SERVICE TECHNICAL MANUAL						$\begin{aligned} & \text { Option or Designator } \\ & \text { TU56 } \end{aligned}$
	12 Bit x	16 Bit		18 Bit		36 Bit X	

Motor slow to come up to speed:
If you have a motor which seems to have a slow dirve in one direction, the cause may not be a bad motor. This motor exerts a force of about 60 inch/ounces, therefore any undue binding because of misalignment of hubs and guides can cuase the motor to appear to be bad. To check, run a full reel of tape onto the forward reel watching the inside edges of the spool to see that there is some clearance between the spool interior sides and the tape edges. If this clearance is not present, the tape will ride up one side or the other, indicating a misalignment which can cause the drag. Do the same in the reverse direction. If, in either direction, there is the build up on the edge remove that hub and adjust it so that there is clearance between the tape and sppols.

For information only:
The drag may also be caused by the bushings or spring mounted on the motor shaft. These bushings are there to give a balancing drag and to prevent the tape from creeping to the full reel when no motion is ordered either in local or remote. The bushings are oil impregnated and no cleaning of them should be attempted. If after all else fails to eliminate the slow motor and you feel you must replace the motor also replace the bushings and spring. So with each motor (12-9602) order also the following:

$$
\begin{aligned}
& \text { Bushing } 12-9926 \quad 2 \text { each } \\
& \text { Spring } 12-9917 \quad 1 \text { each } \\
& \text { Connector Pins } 12-9370 \quad 4 \text { each }
\end{aligned}
$$

Also check for loose connections in the motor mate-n-lock connectors.

PAGE 3	PAGE REVISION	0	PUBLICATION DATE

Title	TU56 PROBLEMS				Tech Tip Number	TU56-TT-7
$\left.\begin{gathered} \text { All } \\ \mathrm{x} \end{gathered} \right\rvert\,$	Processor Applicability	Author		Rev	0	Cross Reference
		Approval	Date	08	08/72	

Investigating the following four areas can save you much time when investigating problem reports involving slow turn around and/or up to speed discrepancies.
A. Dry bushings in anti-creep clutch.

1. The bushings, part number 12-09926, are ordered as oil impregnated. In the past one order of bushings was received which were plain brass, not oil impregnated. It appears that a few (approx. 100) of these were installed in TU56's before the error was caught. These plain brass bushings are easy to spot.
a. They will not have any oily film on their surface.
b. In appearance they will be very shiny and will have grooves worn into the surface of the bushing that contacts the hub.
2. Solution: Replace with new bushings which are oil impregnated. The new oil impregnated bushing will have many small black pits in its surface.
B. Incorrect size of springs (DEC Part Number 12-09917) used in the anti-creep clutch.
3. The easy way to check for this problem is to first make sure that both bushings in the anti-creep clutch assembly are oil impregnated.
a. With the anti-creep clutch installed and the hub correctly installed (use gauge) put the Remote-Local-Off switch to the Local position allowing motor time to get up to speed and then turn switch to "Off". If the hub comes to an abrupt stop, less than two revolutions, you may have an oversize spring. The part of the spring that is most critical is the tip that fits into the lock ring in the mounting surface of the motor. If you do not have a new spring it is possible to bend this tip slightly, effectively reducing its length. Do not attempt to bend the spring material too much as it will fracture.
C. Hub Set Screws
4. If, for any reason, you remove a plastic reel hub from a DECtape transport replace the set screws with new ones and be sure that the set screws are DEC Part \#90-08382-10. NO OTHER TYPE WILL CORRECTLY HOLD THE HUB!

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator VC8E
	12 Bit x	16 Bit \square	18 Bit \square	36 Bit \square	

Title	VC8E-Lab 8E - USE AND MODIFICATION				Tech TipVC8E TT\#1 Number	
Processor Applicability		Author A. Wallack/		Rev	0	Cross Reference
		Approval W. Cummins	Date	7-31	1-72	

On many occasions customers do not purchase a scope from DEC to go with their VC8E: The following information is an attempt to aid in getting the customers system up and running. (Note: modifications to standard DEC modules to accommodate a customers scope are no longer DEC's responsibility.)

The VC8E display controller was designed to accommodate the VR14, Tektronix 602 and the RM503 scopes. However, with certain modifications the VC8E can interface to many other scope and plotters as well. The following guidelines must be taken into consideration before attempting to control a scope that has not been specified by DEC.

A. Intensification Pulse

1. Pulse width - the VC8E can supply a lusec pulse width. However, to avoid reflection on long cables, a 200 nsec rise time (fall time if negative) is incorporated into the pulse width. Therefore, the width is defined from the start of the pulse to the completion.

Many scopes other than the ones mentioned above require longer pulse widths. As an example, some storage scopes require approximately a 5 to 6 usec pulse width. The VC8E cannot accommodate such scopes unlessthe user changes the l usec pulse generator (on M869) to a larger value. This would require changing the capacitor (M869 C23) to another value which is appropriate to the user's application. All scope manuals should define pulse width. (Calculation of the new value of C 23 should be done using the Fairchild 9601 IC spec sheet.)
2. Polarity - The VC8E contain provisions to change the polarity of the output signal by a switch on the M869 module. Improper value of the intensify polarity will result in signal blanking at the wrong times. (Retraces may be seen).
3. Voltage - the VC8E can generate pulse voltages from $+4 V$ to $-2 V$. It can also, with the removal and addition of certain jumpers (Wl \& W2) on the M885 module, generate a +4 V to -10V voltage swing. However, one should note that the rise and fall times will be greater. In many cases, the intensify pulse input requirements to various scopes are 0 to $l V$. An external adjustment on the scope or a special attenuating network would have to be used. This is the user's responsibility and must be considered before attempting to interface. As in the case of the Tektronix 602 , DEC sells a VM03 kit which includes mounting hardware, and attenuating resistors and capacitors. The Tektronix 602 has provisions in its circuitry for the addition of external components. However, this may not be true of other scopes.
B. X and Y Outputs

1. Voltage - the voltages generated by the X and Y outputs of the VC8E are + and -5 volts. "This cannot be modified." The user must have external at tenuators or an internal scope gain adjustment. One must also note that many scopes call for only positive voltage swings. However, usually an offset position can be adjusted to correct input polarity problems. (This adjustment must be internal to the scope.)
2. Sett1ing time (control) - the VC8E is a scope control and not a D/A converter. The settling time from maximum deflection full scale step is 4 usec. Many scopes have faster settling times than 4 usec. The user in this case should use the internal delay set by the option at its minimum value (6 usec).
3. Settling time (scope) - scope settling times may vary from 1 usec to 50 usec. The VC8E was designed for the VRl4 and Tektronix 602 (with VMO3 option) as stated previously. A done flag will occur when either scope has reached its settling time, internally timed on the VC8E (20 usec for the VR14 and 6 usec for Tektronix 602). However, all scopes differ somewhat in settling times. The user must determine, if the VC8E time delay is adequate for his scope. For slow scopes, in excess of 20 usec, software delays may be incorporated in his system or the user may change the 20 usec delay circuit by adding a larger capacitor for C24 on the M869 and determining the value from the 9601 spec sheet.
C. Drive

Careful selection of cabling should be used. The X and Y outputs are capable of driving loads greater than 1 K in parallel with 5000 pf of capacitance. That is, 100 ft . of cable at $50 \mathrm{pf} / \mathrm{ft}$.
D. External Controls

The VRl4 has a 2 channel input whereby the user can select a channel by setting a bit in the status register. This signal is usually not used by other scopes. However, the user may be able to use it as a pen up, pen down capability on an XY plotter. The output signal is zero to +5 volts with a 10 ma source at +5 V and a 30 ma sink current at ground. This bit can also be as a signal for partially controlling a storage scope.
E. Ground Logic

The analog signals that are present at the output of the VC8E are the analog voltages, the analog ground and the logic ground (shield). When using differential inputs, the analog voltage and analog gnd must be used. When using single ended inputs use only the analog voltage and logic gnd. At no time connect the analog gnd to the system ground. In other words, beware of ground loops.
F. VC8E Restrictions

1. The VC8E cannot control storage scopes fully. It can only plot points.
2. The VC8E can use two different IOT device codes 05 and 15.
3. Maximum of 2 VC8E controller in 1 system.

The responsibility to interface to various scopes will rest with the customer. Following these quidelines will enable the user to accomplish this successfully.

FIELD SERVICE TECHNICAL MANUAL
$\left.\begin{array}{\|c\|c\|c\|c\|}\hline 12 \text { Bit } & \square & 16 \text { Bit } \quad \square & 18 \text { Bit } \square\end{array}\right) 36$ Bit \square

| Title | Extraneous Light Pen Interrupt | Tech Tip
 Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| VC8I-TT-1 | | |

If a VC8I is installed without the 370 Light Pen, it is necessary that D0 $3 V 2$ be grounded. If this point is allowed to float, extraneous interrupts will occur when instructions 6054 and 6064 are generated. Another source of this problem is faulty assembly of the M701 in that transistor $Q 5$ is inserted into incorrect holes.

1) There are errors concerning the VC8I in the small computer handbook.
a) The intensify signals are variations in voltage level, not duration.
b) The A607 has an output of \varnothing to +2 V , not \varnothing to -10 V .
2) The vc8I print ($-0-1$) indicates a reference voltage of $\mathbf{- 2}$ which is an errors reference voltage is -8 V .
3)

ADD MODULES	M701	A607	A607
INTO 8I SLOT	HJ23	HJ24	HJ25

4) The configuration diagram print 8I-0-24 (1-2-3-4) should be referenced to determine placement of the RM503 scope.
5) VC8I less 370 Light Pen - cable is part \#70-5772.

VC8I with 370 Light Pen - cable is part \#70-5771.
a) Connect wiring harness as shown in the wiring diagram below.
b) To supply -15 V to Light Pen logic, connect Hø3B2 to Dø3B2.
c) Dq3v2 must not be grounded for Light Pen operation.

If the Light Pen option is field installed on the VCBI, a new bracket with the logic, pen, and lok control will be supplied. Thiswill replace the original bracket which is mounted beneath the RM503.

7) Checkout
a) The VC8I provides intensify voltages suitable for the RM503 which may be inadequate for use with other scopes. A service scope and the following programs will allow verification of correct operation.

BEG 6074
6054
6075
6054
6076
6054
6077
6054
eMP BEG

BE C
7200
7040
6052
6062
IMP BEG +1

DO 3F2(z)

10 valts/cm. $5 \mathrm{uscc} / \mathrm{cm}$.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator VC8I
	12 Bit X	16 Bit	18 Bit	36 Bit	

| Title | DISPLAYS VC8I | | Tech Tip
 Number | VC8I-TT - 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Recently the VC8I intensity control module M701, Revision C, has been found to have been improperly produced. The problem is that a DEC 664 diode was installed for D9 instead of the proper DEC 670 diode. This problem exists on M701 etch revision C modules and can be corrected in the field by replacin g D9 with the correct DEC 670 diode.

All spares modules should be checked for this problem and corrected before attempting to use them. Modules with this problem that are installed and used will be permanently damaged and no display will exist.

MODULES INSTALLED AND IN USE DO NOT HAVE THIS PROBLEM.

	FIELD SERVICE TECHNICAL MANUAL						Option or Designator VP8I
	12 Bit $]$	16 Bit		18 Bit	\square	36 Bit \square	

Recently, difficulties have been experienced when attempting to set up the M704 delays associated with slow-motion instructions. The total duration of these delays should be approximately 70 ms to allow sufficient time for the drum to settle into position. The delay is set by a 1.2 K potentiometer (R53), in series with a 220 ohm resistor (R52) on the M704. To allow R53 to adjust through a range of 60 to $80 \mathrm{~ms}, \mathrm{R} 52$ must be changed to 680 ohms . The following illustrations are in reference to Engineering Drawings D-BS-VP8I-0-1 and D-CS-M704-0-1.

D-BS-VP8I-0-1

TO PIN 1 OF ET
D-CS-M704-0-1

FIELD SERVICE TECHNICAL MANUAL			
12 Bit 区	16 Bit 园	18 Bit \square	36 Bit \square

High voltage ARC-OVER, usually occuring inside the high voltage regulator may be caused by contamination of the porcelan standoff insulators. SOme insulators were assemblied with metal screwdrivers, and the inside of the insulator may have been scrtached

If ARC-OVER does occur, disassemble the regulator assembly and visually inspect the interior of the standoffs for scratches metal deposits, etc. If they are damaged, simple cleaning of the insulator with soap and water may cure the problem. Otherwise, they must be replaced.

The correct part number is 12-10594
Needless to say, they should be disassemblied and reassembled with only non-metallic screwdrivers. These are available from the field service stockroom on special order, or preferrably local purchase.

Shipping hazards and customer site environmental conditions may cause internal damage to the high voltage switch (H.V.S.) circuit (7008471) of the VR20 color point plot display.

Conditions have arisen, in the field, which dramatize the need for a thorough examination of the H.V.S. circuit for possible component defects and/or dirt build up. Component breakage or excessive dust can cause arcing within the H.V.S. circuit resulting in even greater damage effective over an extended period of time. What follows is a description of the most common H.V.S. problems:
A. COMPONENT BREAKAGE

There are four (4) long 20 Megohm resistors in the H.V.S. circuit used as the series leg of a voltage divider/regulator network. Due to extreme vibrational shock, one or more of these resistors may crack resulting in a potential drop of between 5 and 10 KV . across the crack of the broken resistor (s).

This difference of potential across the crack can cause arcing to occur. There arcs tend to enlarge the crack causing an even greater

danger to the scope. This situation, depending upon the position of the break on the resistor, may extend to the resistor bracket ultimately causing damage to the H.V.S. cabling.
B. EXCESSIVE DIRT

Dirt under certain instances, can act as a path of conductance. It can be seen; therefore, that arcing may occur across a path of dust particles which may cause indeterminate damage to the scope.

Keeping the above problems in mind, it has become necessary to initiate a special check which should be performed at every installation and preventive maintenance:

1. Remove the high voltage switch box per the procedure listed in the VR20 User's Manual (DEC-12-HRSA-D) section 4.4.3.
2. Remove the bottom cover of the H.V.S. box.
3. Insure the H.V.S. circuit has discharged completely by clipping a ground lead first to the H.V.S. box chassis and then to all exposed areas of the H.V.S. circuit.

CAUTION: Use only one hand when performing the above step.
4. Clean the entire H.V.S. box of all dirt build up.
5. Observe the contents to check for broken or hairline cracked components.
6. If any breaks are observed, replace the entire H.V.S. assembly (7008471).
7. Install the good H.V.S. assembly per the reverse order of the above procedure steps 1 and 2 .

CPL

| Title | VT05 - 8 FAMILY | | Tech Tip
 Number | VTO5-TT- 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Current mode, local TTY: (Cable may be up to 1800 feet in length.

Pin Assignment
W076D

3
4
7
6

EIA:

Interface

PT08F, PT08FX
DC02
PT08B, PT08C

Cable

705717
BC01A
BCOlC or BCOlJ
(Total Length must be less than 50 feet)

25 feet standard
25 feet standard
25 feet standard

Cables

707517 - w023 to 25 pin amphenol
BCO1A \& BCOlC - must go through H308 or H312 null modem or swap pin 2 and 3 for correct transmitreceive wiring.

BC01J - M850 to 25 pin amphenol connect directly between VT05 and PT08B or PT08C.

Frior to ECC N 7001-00005, the M7001 was not compatible with the high speed option M7004. Also, when adapting a VTO5 to 50 Hz use, a $\because e r t i c a l$ synch problem developed after jumpers w4 and w6 were changed.

ECO M7001-00005 makes the M7001 and M7004 compatible and adds a 300 pf cap $:$ rom E6 pin f to ground to eliminate the synch problem.

PAGE 1	PAGE REVISION	PUBLICATION DATE

Title	VT05	MAINTENANCE	NUAL ER				VT05-TT-3
	Processor Applicability		Author		Rev 0		Cross Reference
x			Approval	H. Long	Date 08/0	2/72	

There is an error in the VTO5 manual page $1-8$ ($\mathrm{DEC}-00-\mathrm{H} 4 \mathrm{AB}-\mathrm{D}$) and in the engineering specification sheet 7 of 36 (A-SP-VT05-29) with respect to the current mode (20 ma) mate-n-lock plug pin assignments. The table should be as shown below:

PIN NUMBER
DESCRIPTION
Unassigned
OTHER NOTATIONS

1
2
3
4
5
6
7
8
Received Data*
Transmotted Data*
Reserved
Received Data
Reserved
Transmitted Data Keyboard + Reserved

Unassigned
Display
Keyboard -
Reserved
Display +
Reserved Reserved

* Pins 2 and 3 are more negative referenced to pins 5 and 7.

FIELD SERVICE TECHNICAL MANUAL
Option or Designator
VT06

Title	VT06 - MODEM COMPATIBILITY PROBLEM				$\begin{aligned} & \text { Tech Tip } \\ & \text { Number } \end{aligned}$	
All	Processor Applicability	Author	W. Freeman	Rev	0	Cross Reference
$8^{\prime} d$		Approval	W. Cummins	Date		

Care must be taken when installing a VT06 to a modem other than a Bell lo3A. In particular, terminals 11 and 12 of the VT06 are used for Reverse Channel Transmitted Data and Reverse Channel Receive Data respectively. In a l03F these terminals are used for Originate Mode and Local Mode respectively. Therefore, the VT06 will not operate on a $103 F$ without removing the wires attached to pins 11 and 12 in the cable. Other problems may exist with different modems. It would be wise to check the terminal connections of the modem with that of VT06 (in users manual, page 3l) to assure no mating connections will cause a problem.

Title VT06-Cabling				$\begin{array}{\|l\|} \hline \text { Tech Tip } \\ \text { Number } \end{array}$	
All	Processor Applicability	Author	Rev	0	Cross Reference
X		Approval	Date 08/0	2/72	

There have been some cabling problems encountered during installation of VT06's to DC02's and DP12's. Hopefully, the information given below will help iron out the difficulties.

1. A BCOlA is the cable intended for use with a modem or null modem. It should come wired with the TRANSMIT and REC lines crossed over. These lines will be crossed again internally in the modem so that they end up correctly at the VT06.
2. A BCO1J should not have the TRANSMIT and REC lines crossed. It is intended for use without a modem or null modem. Apparently, some have gotten into the field wired like a BCOlA. Make this correction by switching the wires on pins 2 and 3 at either the paddle board or the cinch connector, so that the lines run straight through.
3. H312 null modems may still be on the drawing board and therefore not available immediately. The idea of a null modem is to facilitate switching from the VT06 to a data phone hookup with out having to change cables. If a data phone hookup is not likely to be used, then a BCOlJ should be connected directly to the terminals extender cable.
4. Some of the extender cables for the VT06 have been found to lack the run from J9 pin 20 to pin 1 of the cinch (Data Terminal Ready). If it is necessary, the connection can be made with one of the unused wires in the cable.

5. For checking any hookup, continuity should be established between the points listed in the following chart.

VTø6 J9

Data terminal ready	20	to	1 (+5)
Xmitted Data	2	to	2 (REC)
Received Data	3	to	3 (Transmit)
GRD			4 (N.C.)
			to
			5 GRD

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator vWO2
	12 Bit X	16 Bit	18 Bit	36 Bit	

This is a description of the repair and disassembly of the device. These are purchased with a one year warranty from MFE, Salem, N.H. The warranty status can be checked by serial number with Jim Hunt, Westminster X583. Simple repairs can be done without voiding warranty.

Tools needed:	$\# 1$ Phillips	needle nose pliers
Soldering iron	$\# 2$ Phillips	hex key wrench set
Solder	small screwdriver	spring hook teletype tools
Cement (Duco 29-15195)	control/contact cleaner $(29-20631)$	

Common problems are:

1. Bent clips or loose screws on theta pot. (Accessable by removing bottom cover). These clips support the weight of the linear pot assembly and are easily bent by a vertical jolt. If theta pot has turned, steps 16 to 20 must usually be performed.
2. Screw on end of slide arm loose. (Complete disassembly necessary). This is usually caused by twisting of this rod, particularly during stylus mounting. The rod should not rotate at all. If it does, serious bending of the wiper contacts can result.
3. Sticking or uneasy sliding of the slide arm. Silicone contact cleaner is often sufficient. Adjustment of bearing can be done without disassembly by prying off front wood bezel (the one with the hole) and loosening (do not remove) the three screws underneath. (see step 12)

No replacement subparts other than stylus and cable are available.

DISASSEMBLY OF VWO2 GRAPH TRAN DEVICE

1. Turn device upside down, pull back felt pad to reveal screws holding bracket.
Remove two screws (A) releasing one side and top of bracket. Leave other side.
2. Remove four screws (B) and take off bottom cover.
3. Remove two screws (C) and pull out the connector and it's two spacers.
4. Slide back sleeves and unsolder the red, yellow and black wires (rho pot). Pull the wires out of hole in base block.
5. You should have as spare parts now 8 screws, two spacers, bottom cover, bracket side and top.
6. Turn device right side up and loosen two hex set screws (D) in round plate. Lift linear pot assembly free of base.
7. Turn assembly over and remove four hex screws (E) holding on circular plate.
8. Remove screws at each end of pot assembly.(F)

IMPORTANT

9. Before attempting to slide out the guts, pull the rod (G) to it's fully extended position. Take the three wires and push the ends back into the assembly so that nothing sticks out the hole. The hook tools furnished with the DEC tool kit are useful for thi'
10. Carefully slide the insides out of the tube. Do not force. If it does not come out with reasonable pulling, give up.

d i g i t a 1	FIELD SERVICE TECHNICAL MANUAL			Option or Designator	vwo2		

11. Remove the remaining screw (H) from the bushing bracket (note when reassembling that this goes on the side opposite the wire cutout). Carefully pull the whole slide arm assembly out the end of the channel.
12. If bushing assembly is not loose and has not been binding, it should not be necessary to tamper with it. If binding is a problem then pry off the wood trim and by trial and error positioning of the bushing using the clamping screws (J) try to achieve smooth operation. The use of silicone or volume control cleaner is sometimes helpful.
13. On slide arm assembly make sure screw (K) is tight, flat side of stop (L) is facing carbon track, wipers are in good shape and properly contact the carbon and brass strips, sheaves should be spring loaded to fit firmly in the track rods.
14. Rods (M) should be firmly cemented in place, back plate should be tight (N).
15. Reassemble by stepping backwards 12 thru 3 and 1. leave off bottom cover. In step 10 position wires over rod as shown. Slidearm should be extended.
16. Turn assembly upside down, loosen screw and remove clamp ring from theta pot. (P) Remove pot cover.
17. Make sure theta pot clips (Q) are tight and that pot housing will not rotate. It may be necessary to remove and bend these clips to make them tight.

Title	GRAPH TRAN TRACING DEVICE REPAIR				Tech Tip Number	VWO2-TT-1
All	Processor Applicability	Author ROBERT JOHNSON				Cross Reference
8 's		Approval AL SHIMER	Date	8/3	/73	

18. Carefully holding the linear pot assembly so it does not slip off the shaft, again loosen the set screws (D). Position the theta pot wiper arm so that it is in the center of the 100° resistor arc. At the same time, with the linear arm centered
 tighten one of the set screws. Swing the linear back and forth to assure that the wiper on the theta (Q) pot stops equal distances from the take off points on the carbon path. If not, loosen set screw and try again.
19. Replace pot cover and bottom cover.
20. Pots can easily be checked before or after

CAUTION

Do not use a simple ohm meter on the pot. The current from an ohm meter is capable of burning the pots. Checking for major troubles or noise problems can be done using an ohm meter or battery as a voltage source and a scope as shown. Any jumps or noise can easily be seen on the scope pattern.

Linearity can be checked by using the test program in the RAD 8 acceptance procedure to display the A/D bits in the accumulator lights. By sliding the linear pot along a ruler and comparing change in bits to change in length, rho linearity can be checked. To check the theta pot, with the slide arm extended, trace a curve and then mark off equal graduations on this curve with dividers. Compare as before to bit count.

PAGE 1

A W076, Revision "D", connector module has been designed to accomodate both positive and negative logic, and Teletypes equipped with this new module will be interchangeable throughout the PDP-8, 9 and 12 families.

Formerly, W070 was required for operating a Teletype with a PDP-8, 8S, Linc-8, or PDP-9; PDP-8I or 8L have utilized earlier revisions of the W076.

If a chain of grounds is present in the PDP-8 memory wing, the W076 D will be shot circuited and damaged when power is applied.

The following list of deletes will correct this situation. Incorporate this change only if a $W 076 \mathrm{D}$ is to be used.

Deletes:

$$
\begin{aligned}
& \text { MF30C - MF30F } \\
& \text { MF30F }- \text { MF30J } \\
& \text { MF30J -MF30L } \\
& \text { MF30L-MF30N } \\
& \text { MF30N - MF30P } \\
& \text { MF30R - MF30U }
\end{aligned}
$$

$/ \mathrm{mt}$

A W076, revision "D", connector module, has been designed to accomodate both positive and negative logic and Teletypes equipped with this new module will be interchangable throughout the PDP-8, 9 and 12 families.

Formerly, a $W 070$ was required for operating a Teletype with a PDP-8, 8S, or $E D P-9$; PDP-8I and 8 L have utilized earlier revisions of the W076.

```
A TELETYPE KITH THE W076 D SHOULD NOT BE CONNECTED TO A PDP-8 UNTIL THE IMPLEMENTATION OF ECO 8M-00004 IS ASSURED.
IF A CHAIN OF GROUNDS IS PRESENT IN THE PDP-8 MEMORY WING, THE W076 D KILL BE SHORT CIRCUITED AND DAMAGED WHEN POWER IS APPLIED.
```

The "ADD/DELETE" list for ECO 8M-00004 is as follows:

Delete MF30C to MF30F	Delete MF30L to MF30N
Delete MF30F to MF30J	Delete MF30N to MF30R
Delete MF30J to MF30L	Delete MF30R to MF30U

The removal of these grounds, if they are present, will eliminate the problem and proper operation may be expected.

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorW968
	12 Bit \square	16 Bit	18 Bit	36 Bit \square	

W968 collage mounting boards are not interchangeable with w967/W966 collage boards. The $\mathrm{W} 967 / \mathrm{W} 966$ was designed specifically for the 8 E . W967/W966's have their pin DA2 in contact with the 8 E 15V bus while W968's use +5 volts on pin DA-2.

FIELD SERVICE TECHNICAL MANUAL $\begin{gathered}\text { Option or Designator } \\ \text { xy8E }\end{gathered}$ 12 Bit $\mathbb{X} / 16$ Bit $\square \mid 18$ Bit $\square \mid 36$ Bit \square

Sales literature has erroneously called out 25 foot cables as standard with the XY8E plotter. Twenty-five (25) foot cable is a special and must be ordered as such if required. Twelve (12) foot cable is the standard. 8 E marketing is taking steps to notify the field of this problem through sales and marketing channels.

Twenty-five (25) foot cable must be twisted pair. The 12 foot cable is straight, 10 conductor standard wire in a round case.

	PAGE 1	PAGE REVISION	0	PUBLICATION DATE	July 1972

FIELD SERVICE TECHNICAL MANUAL			
12 Bit X	16 Bit \square	18 Bit \square	36 Bit \square

Problem: Common wiring errors found when adding 183/184 to a Linc-8.

Many times after completing the installation of the extended memory to the Linc-8 it has been found that some problems still exist. Problems such as trying to run LAP-6 and even the St. Louis test in upper core have been adding many hours to the installation time. These problems have not actually been the fault of the 183/184 but of the PDP-8 processor there have been some common wiring errors in some of the older Linc-8's. These wiring errors apparently cannot be picked up by

Solution: This revision will list these wiring errors and also give general areas to keep in mind when such a problem develops.

Print	From	To	Delete ADD	ADD	
S-BS-Linc-8-0-P105	PC18F	PD19H	x		(p.62)
D-BS-Linc-8-0-P105	PD18H	GND	X		(p.62)
D-BS-Linc-8-0-P109	PC31J	PC31L	X		(p.65)
D-BS-Linc-8-0-P109	PC31J	PC31L		X	(p.65)
D-BS-Linc-8-0-L18	LB01F	LH06L		X	
D-BS-Linc-8-0-L18	LB06N	LH18J		X	

There are wiring errors that have been found in the field so far. There may be others in the same runs or in different runs. It would be a good idea to keep an eye on the MB register and control page for other errors. This seems to be the area where most of the problems occur. Low MB-1 run has also been found to have errors in it.
/mt

12 Bit | X | 16 Bit \square | 18 Bit \square | 36 Bit \square |
| :--- | :--- | :--- | :--- |

Title	PROCEDURE FOR SETT 580 MAG TAPE CONTR	DELAYS IN PDP-8		$\begin{array}{\|l\|} \hline \text { Tech Tip } \\ \text { Number } 580-\mathrm{TT}-1 \end{array}$
	Processor Applicability	Author W. Freeman	Rev 0	Cross Reference
8's		Approval w. Cummins	Date 06/06/72	

Use with MAINDEC-827 (580 compiler). For the EOR delay write the tape at the correct density and check timing, then read the written portion for the read check. For the motion delays write a section of tape and check timing, then check read backward timing and finally, read forward timing. \mid Delay \mid Function \mid Program \mid operation \mid Sync \mid Look at \mid Duration \mid The following delays are shown on print BS-D-580-0-7 (sheet 3 of 3).

D1	200 BPI Clock	ST: 100 WR: JM:	Writing 200 BPI	-	1 M 7 H	111 usec
D2	556 BPI Clock	ST:110 WR: JM:1	Writing 556 BPI	-	1 M 7 H	40 usec

The following delays are shown on print BS-D-580-0-7 (sheet 2 of 3).

D3	Write EOR 556 BPI	RE: ST:110 GO: WR:1 3000 JM: 3	Write one word record 556 BPI	1M2K 1	IM6S	160 usec
D4	$\begin{aligned} & \text { Read EOR } \\ & 556 \mathrm{BPI} \end{aligned}$	```RE: ST:110 RD: 1 3000 JM:2```	Read one word record 556 BPI	$\begin{array}{l\|l} \text { lN7K } & 1 \\ \text { (2nd } & 1 \\ \text { pulse) } & \end{array}$	1M6S	120 usec
D5	Write EOR 200 BPI	```RE: ST:100 GO: WR:l }300 JM:3```	Write one word record 200 BPI	1M2K 1	1M6s	444 usec
D6	$\begin{aligned} & \text { Read EOR } \\ & 200 \mathrm{BPI} \end{aligned}$	$\begin{aligned} & \text { RE: } \\ & \text { ST: } 100 \\ & \text { RD:1 } 3000 \\ & \text { JM:2 } \end{aligned}$	Read one word record 200 BPI	$\begin{array}{l\|l} \hline \text { lN } 7 \mathrm{~K} \\ \text { (2nd } \\ \text { pulse) } \end{array}$	1M6S	340 usec
D7*A	Write from load point	$\begin{array}{ll} \text { GO: } \\ \text { WR:1 } 3000 \\ \text { JM:2 } \end{array}$	Write one word record from load point	$\begin{aligned} & \text { lN16R } \\ & \text { (GO } \\ & \text { going to } \\ & \text { a one) } \end{aligned}$	1M6V	120 msec
D8	Write from load point	$\begin{array}{ll} \text { RE: } \\ \text { GO: } \\ \text { WR:1 } & \\ \text { JM: } & \\ \hline \end{array}$	Write one word record	$\begin{aligned} & \text { 1N16R } \\ & \text { (GO } \\ & \text { going to } \\ & \text { a one) } \end{aligned}$	1M6V	10.4 msec

PAGE 1	PAGE REVISION	0	PUBLICATION DATE July 1972

Delay	Function	Program	Operation	Syme	Look at	Duration
D9	Read Forward Stop	$\begin{aligned} & \text { RE: } \\ & \text { RD:1 } 3000 \\ & \text { JM:1 } \end{aligned}$	Read one word record	lM6S	1M6V	3.2 msec
D10	Read reverse Stop	$\begin{aligned} & \text { RB:I } 3000 \\ & \text { JM: } \end{aligned}$	Read backwards one word record	1M6S	1M6V	6.5 msec
D11**	Read from load point	$\begin{aligned} & \text { RD: } 13000 \\ & \mathrm{JM}: \end{aligned}$	Read from load point	$\begin{aligned} & \text { 1M10F } \\ & \text { (IOT } \\ & 6704 \text {) } \end{aligned}$	1M6V	90 msec
D12	Read Start and NOP	$\begin{array}{ll} \text { RE: } & \\ \text { RD: } & 3000 \\ \text { JM:I } & \\ \hline \end{array}$	Read one word record	$\begin{aligned} & \text { 1M10F } \\ & \text { (IOT } \\ & 6704 \text {) } \end{aligned}$	1M6V	4.3 msec

The following delay is shown on print BS-D-580-0-6 (sheet 2 of 2).

SKEW	B	Skew	RD: JM:	Read a record	-

NOTES:

*A To check timing from load point rewind the tape in local, then ground 1 M3Y and check write timing. For read timing, unground 1 M 3 Y , rewind, reground and read the tape just written.
*B For the skew delay write a length of tape and then read this portion of tape.

CPL

RS232C E/A standards define pin 25 of the modem plug as unassigned The Bell l03E uses pin 25 to provide capabilites to the Data Communications equipment to control the busy status of the modem. In data set cable 7406139 , used by the 689 pin 25 is tied to pin 4 (data terminal ready). This connection should be made by a violet wire between pin 25 of the modem plug and pin L on the W023. However, in some cables this connection is made by a jumper between pins 4 and 5 within the modem plug.

If the customer's modem uses pin 25 for some other purpose and it's necessary to break this connection, be on the look out for cables that are jumpered within the modem plug.

NOTE: This same cable is used in the DCl0 (with the w023 cut off).

Any communication system which has a 689AG option is delivered with its data lines connected to line \varnothing up through line 32. In that configuration the 689AG diagnostics (maindecs 8I-D8CA and 8I-D8DA) should run satisfactorily. However the customer may, at his own discretion, rearrange options such that the 689AG line \varnothing is not connected to line \varnothing of the communication system. When this happens the two diagnostics will not function at all. To make them function the data cables from the 689AG must temporarily be placed in the corresponding slots of the DC08A (\varnothing to $\varnothing, 1$ to 1 , etc.). The diagnostics may then be run; the cables must be reconnected in the customer's configuration after completion of these diagnostic procedures.

PAGE 1	PAGE REVISION	0	PUBLICATION DATE	July 1972

| Title | 708/708A POWER SUPPLIES | | Tech Tip
 Number | 708-TTM-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Reference schematic diagrams and parts lists for the 708 and 708A power supplies. No information is listed with respect to resonating capacitor Cl7. The following information applies to C17 in both supplies.

Power Supply Component Value DEC Part No.

708

708A

6 MFD 660 VAC 60 cycle 29-19376

7 MFD
660 VAC 50 cycle 29-15902

All 50 cycle PDP12 systems shipped prior to October, 1971 do not have the proper taps selected on the main power transformer. Although the primary tap selection chart is correct, the secondary taps also have to be changed. If they are not, all of the output voltages will be low and may have up to $\frac{1}{2}$ vac of ripple. This will cause erratic and unreliable operation, expecially if the input AC is low.

Reference print D-CS-724-0-1

Wire Color	To Tap	Move to Tape
BRN	7	14
BRN	6	15
ORN	5	16
BLU	4	17
YEL	3	18
YEL	2	19
RED	1	20
/mt		

PAGE I

Tu，
 FELD SEBMCE TECH MANUAL

ADJUSTUENTS FOR DECTAPE GYSTEAS

There axe several various sources of adjustinent procedures for DECtape some of each of which ase incorrect．ro correct the difficiencics，this paper is a consolidation ard condensation of the various sources and has as its ojjeutive ub establish procedure and value for the different delay＊and oscijizatozs．

Lisve＊ij the outli：ue are dizferent adjustiments，the procedure to adfust， the raine to atjust to，test points and pot／module iocation．rools neaessary

454 oscixloscote or egujituant $=$（scope）
7ottwindmameter \cdots（VOR）
¥oi：サwesker
Aa cinage texmipoint junztar－mCo
30 giage texmpoint jumpon－rcoa
At least 1 knowngood cortíticd or forinatted resi of certified bectape （supglied by cistomes）．
．Set ut Aljen woencies

Programs：

\＃．

多多 0
-122
$00 \% 2 \quad 73 \% 4$

Fig 4 3y2
$6965 \quad 2621$
0005 5005

83l？$\quad 5965$
j\％12 20.5
siti2 676c

$4029 \quad$ 9月明

ge22 解活
多733 $\quad 7795$
P924 8209
82\％5

TAD 24
DTE＂DTGA
CLACR
TAD 23
ve\％ 20
252 27

25720
JMP．-3
$2 A D 25$
DTZA
JMF． $3 E C+2$

Woit loop about 2.2 seo． Unit 0 ，move forward change direction each DraA
programs (continued)

0030 0631 0032 0933 0034
08035
0036 0037

TAD 37
DTXA
NOP
NOP
NOP
CLA
JMP 30
Unit $\emptyset, ~ R e v e r s e, ~ H A L T . ~$

TRANSPORTS ZDJUSTMENTS TU55:	PROCEDURE	VALUE
Brake Disk Gap	Power off. Brake gap is set by loosening the set screws in the hub of the disk and spacing the disk from the braking surface (on the motor)	The gap should be about . 004 inches (one thickness of tTY paper). Disk should fly parallel to the brake surface.
Brake Oneshot	Power on. Local. Equal tape on each reel. Forward or reverse switch rapidly pushed	$T P .-A \& D$ Nominal 80 msec . Pot R303 AB4.

Drag \& Stop Torque Voltage

Local. Equal tape on each reel. Connect black lead from meter to red $A C$ input faston connector on back of TU55 (above motox).
Right motor - connect red lead from meter to faston tab of cap below right motor (as viewed from the frontl. Do drag and stop adjustment for right motor before moving the red lead. Left motor -- connect red lead from meter to faston tabs on cap below left motor (as viewed from the front). Do drag and stop adjustment before removing leads. Caution should be taken not to connect meter leads to the G850's for they are easily shorted and destroyed.

Right: Connect meter as described.
power on.
Stop: Push and Release \rightarrow FWD Push button. Adjust pot nearest the handle on G850 in Al2 for 60 VAC.
Drag: Push
Hold (REV) 영
Pushbutton, adjusting pot fartherest from the module handle on 6850 in Al2 for 85 V AC. Power off: Connect leads for left motor. Power on left. Push and Release (REV) (1) pushbutton, $A D J$ pot near" est the handle of G850 in All for 60 VAC.

FIELD SERVICE TECH MANLAL

ADJUSTMENTS FOR DECTAPE SYSTEMS (Continued.)

TRANSPORTS ADJUSTMENTS TU55:	PROCEDURE	VALUE
Drag \& Stop Torque Voltage (continued)	Power ON. Local. Actuate. in turn forward and REV. Pushbutton, tape should run freely in each direction and stop with no backl.ash or slapping. If any slapping is in evidence, the brake oneshot may be fine tuned to remove the slap.	Drag: Push and hold (FWD). Pushbutton adjusting pot furtherest from the handle on G850 in A11 85VAC. Power OFF. Remove meter leads.
TRANSPORTS DJUSTMENTS TU56:	PROCEDURE	VALUE
3rake Oneshot	Power ON. Equal tape on each reel. Local - Rapidly push \& release $F W D$ or $R E V$ pushbuttons. Scope.Fine adjust so there is no tape slap.	M302 Bø8 Left transport, TP, B08F2 top pot. Right transport TP BO8T2, botton pot. Nominal 85 msec .
10 Hz Oscillator	Scope. Power on.	AO3 M2 or AO3 N2 Adjust oscillator for 25 msec (40 Hz)

IUBS
Hubs are to be positioned so that there is . 117 inches clearance between back of. hub and shaft channel in mounting plate. The set screws are to be adjusted to 18 inches/ounces. However the guage and torque wrench necessary for hub adjustment are not always available, so the following is the procedure:

M302 Bø8
Left transport, TP, B08F2 top pot. Right transport pot

AO3 M2 or AO3 N2
dust oscillator for 25 msec (40 Hz)

FIELD SEFVICE TECH MANLIAL

adJUSTMENTS FOR DECTAPE SYSTEMS (Continued)

(27) (Family

 FIELD SERVICE TECH MANUAL

 FIELD SERVICE TECH MANUAL}

ADJUSTMENTS FOR DECTAPE SYSTEMS (Continued)

ADJUSTMENTS	PROCEDURE	TCDI	TC9 8
mpo Crosstalk Delay	Toggle in Programs Scope. Transport remote, Unit \emptyset, equal tape on each reel. Tape has to be either certified or formatted Load Start 0000 .	DTE.20H. ADJ top pot, R302DTE 20 for 10 ल sec. Positive going sqaure wave.	A14F2. ADJ top pot M302 Al4 for $10 \mu \mathrm{sec}$. Positive going square wave.
TP1 Crosstalk Delay	Same as TPO. Halt Computer	None	A14T2. ADJ bottorn pot M302 Al4 for 10 posec Fositive going square wave.
Unit \& Motion Delay	Scope. Transport Remote, Unit \emptyset, equal tape on each reel. Tape must be either certified or formatted. Load and start 0000.	DTE25D. ADJ R303 DTE25 for $i 20$ msec posit- ive going square wave.	DIAE2. ADJ top pot 4307 D14 for 140 msec . Negative going square wave.
Rate Delay (TCOI)	As in U \& M Delay. Halt computer.	DTEI5E. ADJ pot M303 DTE15 for 70 sec pos- itive going square wave.	
$\begin{aligned} & \text { Speed Delay } \\ & (\text { TCOB }) \end{aligned}$	Remove G888 from Al8. Termipoint jumper between D14K2 \& D14U1. Transport, remote, unit o. Run program \#2. Restore TCO8 when finished.		D14F2. Adjust bottom pot. M307 D14 for 70 مsec. Negative going. square wave.
XSA Delay	Transport remote unit O. Load start 0030, program \#2.	DTE20V ADJ Botton pot. R302 DFE20 for 5 fasec. Negative going square wave.	With ECO TCO80021 D16T2. Bottom pot. ADJ M302 D16 for 3 fsec.

FIELD SEPVICE TECH MANUAL

ADJUSTMENTS FOR DECTAPE SYSTEMS (Continued)

ADJUSTMENTS	PROCEDURE	TCOI	TCO8
XSA Delay (con't)			Without ECO TC08-0021 D16T2. Bottom pot adjust M302 D16 as follows: PDP8-I 6.5 Msec PDP8-E 6.5 Msec PDP8-L $7.0 \mu \mathrm{sec}$ PDP8 $6.5 \mu \mathrm{sec}$ Positive square.
Write Clock	HALT COMPUTER Scope. 24 Guage termipoint jumper - TCOL 30 guage termipoint jumper TC08 transport local. No tape over head. Computer halted.	Jumper between ground and DTD22P. TP. DTC25D. ADJ pot R401 DTC25 for 8.33 sec . pulse repition rate. (120 KHz) Remove jumper.	Jumper between ground and D15K2 TP. D15D2 ADJ pot M401 D15 for $8.33 \mathrm{sec}(120$ XHz.). Pulse repition rate. Remove jumper.
$\begin{aligned} & \text { SYNC-PL Delay } \\ & \text { (TCOB) } \end{aligned}$	Make following changes to program 1: 0024= 0310-Unit 0, FWD, search. Continous. $\begin{aligned} & 7754=W C=0000 \\ & 7755=C A=0177^{\prime} \end{aligned}$ Transport, Remote, Unit \emptyset, equal tape on each reel. Tape must be either certified or formatted. Load and start 0000 . scope. HALT COMPUTER	Hone	TP D16F2. ADJ top pot M302, D16 for . $2 \mu \mathrm{sec}$. Positive going square wave. (This ADJ added by ECO TCO800018).

FIELD SERVICE TECH MANUAL

ADJUSTMENTS FOR DECTAPE SYSTEMS (Continued)

At this time ali adjustments have been made. Scratch tapes should now be formatted and Basic Exerciser parts 201, 203, 204 and 205 should be run to test the DECtape system. On multiple transport systems the just formatied tapes should be swapped between the various transports to help detect any skew problems which will be manifested as random errors after the tapes have been swapped. If a skew problem is uncovered obtain a G500 TU55/56 skew tester module and following the cautions and procedures outlined, deskew the drives.

Read instructions completely before using.
CAUTION: If system has several transports which must be deskewed, be sure to recover data from tapes written with skew before deskewing all transports!

After much research and testing, it has been concluded that tapes marked "ZERO SKEW" and reallyhave zero skew, are almost non-existant. As the tape ages and has undergone various handiings and abuses, such as dirty drives, misadjusted hubs, etc. the tape looses its physical specifications and thereby its usefulness as a "ZERO SKEW" reference. Also the oxide portion of the tape have not been applied with tight quality control and the tape itself may induce some skew even if formatted on a drive which has been conscientiously deskewed to zero time difference between iracks \emptyset and $1 \varnothing$, therefore, BEWARE OF TAPES MARKED "ZERO SKEW" - THEY MAY NOT NECESSARILY BE!

The only true, honest and accurate method of measuring skew is to format a tape and turn it over, so that oxide side is up and read this tape on the drive on which it has been formatted. The time difference between the two signals (track land lo) is twice the actual skew of the transport.

CAUYION: Unless a tape has been marked "certified" by DEC, its operation and skew holding characteristics cannot be guaranteed. All DECtape skew work shall be done only with "certifiea" tape.

GLOSSARY: SKEW: Time difference between the signals on the timing tracks (track 1 and track lo), due to the head being other than perpendicular to the chassis mounting surface and path of tape travel.

REAL
SKEW: The value obtained when measuring the skew of a head against a zero skew tape.

Zero A tape on which there is zero time difference SKEW between the timing tracks.
TAPE:

 FIELD SERVICE TECH MANLJAL

IUSTMENTS FOR DECTAPE SYSTEMS (Continued)

USE:
(1) Plug in skew tester $A F T E R$ selecting source of V plus, see NOTES on $S 3$ and TO USE: (5), S3.
(2) Calibrate. See NOTES on $S 1$ and TOUSE: (5), S3.
(3) Select correct split winding, see NOTES on S2 and TO USE: (5), S2.
(4) Skew Test
A. Zero Skew Tape Available: (Certified DECtapes are not zero skew. They may have a l 1 sec skew.) Run tape across head in normal manner. Gain of tester is enough to give clipped sine wave out. About lov P/P. Go to step 4C. This skew is real.
B. No Zero Skew Tape Available. Clean tape head and guides. (4-E) Format Tape. Reverse tape so oxide side is up. (4-F) Now thread this tape from take-up reel across head with oxide up onto original supply reel. Move tape in local mode. Go to step 4C. The skew indicated is twice real skew.
C. Skew is measured by measuring the time difference between the two signals crossing a given reference line. Figure 1. To test skew; with tape in motion, depress lightly on the back edge of the tape on the right or left sides of the head. Record which side causes the skew to increase when pressure is applied to one side or the other. If the real skew is greater than 2 , sec, the head should be deskewed. This tolerance will apply to both TU55 and TU56 transports to gain an added factor of interchangeability of tapes. If the head is to be deskewed, it should be taken as close to zero as possible. If a non-zero skew is used, it must be formatted after each attempt to deskew.
D. To deskew:

1. Remove head and thoroughly clean back of head and mounting surface of all dirt, glue, skew shims, etc: Remount head and redo $4 A$ or $4 B$ as applicable.
2. If shimming is necessary, magtape reflective marker (DEC \#29-15191) is acceptaíle. place the marker on the back of the head on the edge of the side which caused the shew to increase in step 4C. (For TU56. heads, the reflective tape must be placed only below the mounting screw.) Remount head being careful not to curl the ship tape edge and redo step $4 A$ or $4 B$.

PRmmis

```
) USE: (4) Skew Test (Continued)
```

E. To Clean:

1. Heads and Guides: Use DECtape cleaning solution generously on the head, wiping dirt with clean, lint free towel (Kimwipe).
2. Guides: Disassemble guide from plate and thoroughly clean with solution all parts including wear plates, studs, springs, spring holes and guides themselves.
3. Tape: Place doubled clean, lint free towel over head; thread tape over towel; place free end of towel over tape.

Run tape from end-to-end at least once in each direction.
F. Reversing Tape: (Oxide side up)

Figure 4-F-1
Mount normally full reel of tape on right hub and empty reel on left. Thread tape from bottom of full spool onto top of empty reel. In local move all tape to left reel. , This places oxide side up for skew test.

CAUTION: Maintain manual pressure on the supplying reel to prevent tape runaway.
(5) Switches: $N C=$ DOWN NO $=U P$

Sl (Middle Switch) Calibrate - NO/Normal - NC
NO Select signal to lower amp to compensate for internal drift and phase shift of op amps. To calibrate, put switch in NO position, scope in Add, tape oxide side up and move tape in local. The two signals are 180° phase and should cancel. ADJ lOKPOT for smaliest resultant signal. Return switch to NC position.

NC Signal from other half split winding is applied to lower amp for skew test. Do not adjust pot for anv difference in amplitude. This difference is a result of low signal from one half of split winding due to skew。

51)

 FIELD SERVICE TECH MANUAL

 FIELD SERVICE TECH MANUAL}

ADJUSTMENTS FOR DECTAPE SYSTEMS (Continued)
TO USE: (5) switches (continued)

S2 Top Switch: Select split winding, due to different vendors assigning different pins for head connection. If switch is in wrong position, slG2 will be twice amplitude of SlGl in normal position of Sl, when oxide side up. If oxide side is down, a phase shift plus skew will result.

S3 Bottom Switch: For compatibility to R series transports NC-- +5V if applied to V plus.

NO-- +1OV is divided to +5 for V plus.
CAUTION: This selection is to be made before voltages are applied.

TU55/56 Skew Tester may be placed in any empty slot which has +5 (or +10), -15, and ground in pins A2, B2 and C2 respectively.

Attach female data cable from head to male of tester.

PARTS LIST:

MCI709CG	19-9344
220 OHM 1/4W 5\%	13-02/1
4.7K 1/4W 5\%	13-0447
1.5K 1/4W 5\%	13-0391
22K 1/4W 5\%	13-1808
10K POT	13-9143-
470K 1/4W 5\%	13-2398
330 OHM 1/2W 5\%	13-0296
1N753A	11-2421
22pf 100V 5\%	10-0021
lopf 100V 5\%	10-0006
. $01 \mathrm{mf} 100 \mathrm{~V} 5 \%$	10-1610
$6.8 \mathrm{mf} \mathrm{35V} \mathrm{20} \mathrm{\%}$	10-0067
$1 P S T 6$ AT1-T2	12-1168
Amphenol	
133-022-03	12-2909
680 OHM 1/2W 5\%	13-0347
1. Amphenol Pin Assignments	
-Pin A Skew Tap.	
-Pin D Center Tap.	
-Pin B solid winding on Western Magnetic head. Split winding on Brush head.	
-pin C Split w Solid windin Split windin	$\begin{aligned} & \text { nest } \\ & \text { sh. } \\ & \text { ew measur } \end{aligned}$

PAGE 10 OF 16] PABE REVISION 0 T] PUBLICATION DATE Februayy 15,1974 DIGITAL EQLIPMENT CORPORATION O MAYNARD. MASSACHUSETTS

20

2. M series use $N C$ position of $S 3$ (+5 applied to A2).
R series use No position of $S 3$ (+10 V applied to A).
3. El-E4 MCl709 CG. Pin $4=V$ minus Pin $7=V$ plus.

Unless otherwise noted resistors are in OHM, l/4W. 5\%
4. MC1709 CG.
pin side.

5. $51=c a l i b r a t e / n o r m a l$

S2 $=$ select split winding
$s 3=$ select V plus source

FIGURE 1
Input Coupling: $A C ;$ Sync: AC HF REJ; ADJ both CH to level.
Sync on channel 1. Put start of sweep at left end of x axis. position seep 2 to start at same point. The difference in time where the two sweep across the x axis is the skew.

NOTE: Signals shown are for reference only to show skew measurement. They may be square wave (step 4A) or negative portion of this signal depending on tape direction (step 4B).

OXIDE SIDEUP
G500 OUTPUT ABOUT $2 V P / P$

These pictures are for reference only，however can be used to illuatrate a point．

```
Given: Tape: Moving Forward
                                    Channel 2 leads channel 2 as shown.
```

If tape is reversed，channel 2 should lag channei 1 ，as shown with dotted lines，the same amount as it leads going forward．If this condition is not met，either amount is different or does not swap from lead to lag，It indicates faulty guides which must be cleaned or replaced．

Fith

 FIELD SERVICE TECH MANUAL

 FIELD SERVICE TECH MANUAL}

Sशントタノ YNIWI」

PRem,
 DECTAPE
 FIELD SERVICE TECH MANLAL

G500 SKEW TESTER

DCTAR TRANSPOT DESGN

Now mohnaisms and some trado-ofis botyeen detronir wad methanial constromas in magnotic tapar rocoridigy tatmanuas

Are you an enginecring or scientific user of a computer? Would you like to take your program to the computer, read it more conveniently and rapidly than you could with cards or paper tape, perhaps edit or revise it at a console teleprinter, insert some data to be processed by it and receive your results quickly on a typewriter printout with your revised program recorded on a new magnetic tape? Using conventional tape or perforated paper tape or cards, you'll find your prob-lem-solving use of a computer far less convenient than what we've just outlined.

Thomas Stockebrand, of Digital Equipment Corporation, Maynard, Mass., pointed out that in developing its new tape transports, Digial had to question some basic principles of design embodied in conventional systems. Instead of functioning as a step in the progression of data from computer memory to output device, they wanted their new tape to function in interim steps in processing: for reading a program in, for reading in subroutines vihle assembling a program. for debugging a program on line, and for reconding assembled and revised programs.

Whereas, conventional units often feed a line printer, stopping and reading out a character at a time or a line of printing at a time, operation of the new unit would be continuous while reading in or reading out a sizeahle block of data. This suggests a different tape system configuation. lastead of only one or two conventiona! tranpont, the computer installation woud also here nong of the aw tamspors, prhaps enough to allot one to ecre wer. Suen a configuration woul alse offer a mati-bin sorting chpobity to cut the number of tape pesces in seard and merge operations.

SyStan naunamens

The overriding goals, simplicity and reliability, were considered to have many elements in common. To achieve these goais, Stockebrand said that the designers wanted a system that would function consistently with the fewest possible parts. The minimum system seemed to require places to store the tape, a means of moving it, a guide to position it and a head witlr-which to write on the tape and read from it.

Tapa Strage

Bins and reels were considered for storing the tape. Reeis were selected for three reasons: denser paeking, hence more efficient use of space; cleaner reel storage and an extremely simple mechanism for pulling tape past the head. For the reels to apply the driving force, the designers considered a tape mechanism as a connector which is elastic between two masses which are in motion, approximating a spring with a weight hanging from each end. Because of the tape's elasticity, it is necessary to limit the amount of force applied to it and to regulate the rate at which this force changes. This general coupling problem was considered to have two parts, dynamic when the tape is changing speed and static when it is coasting or at rest. The dynamic part of the problem encompases three states of motion: starting. ronsing and stopping. Dynamic control ore tupe motion must emmante the stack loops that can form and be taken up if the brasing fore apphed ow the trating hub is not propaty matrined to the torque and speed of the leading hub. With
... w_{2} e stopped, the control teannique rust provide for balanced forees to be applied to the two huos, keeping the tape from slackeniug or wandering. Complicating this requirement is the fact that the amount of tape on each reel, hence the diameter and resulting force, can be quite different. The Jecision was made to have reels made of a plastic composition and to keep the reel diameter ratio small. This would lighten the mass that had to be controlled and reduce the diameter variation between full and empty reels to from 1.3 to 1. With $10^{\prime \prime}$ reels this variation is from 2 to 1.

Tapa Adyanco

To propel the tape, ac induction motors were chosen because they are reliable, inexpensive, require little maintenance, have favorable torquespeed characteristics and, lacking brushes, run spark-free. To eliminate ancther prime source of sparking-a significant contributor of error in tape systems-the decision was made to constantly torque boti motors in their drive directions thus eliminating: the need for torque reversals; the consequent collapse of motor fields and the resulting rich spariss at switeh contacts. The driving motor would run on full line voltage, the trailing motor on partial power to produce the proper torque for maintaining tape tension, and the trailing motor would be switched to full power for braking as the driving motor's power was eut. With both on partial power, the tape woukd be kept tense while stopped. greatly simplifying the motion control subsystem. Since the ac induction motor does not make a good generator, the net result of ruming the trailing motor backward would be only a small effect on the pover factor. Little heat dissipation was in fact experienced.

The actual-field voltage used to achieve the proper torque in the trailing motor is 35 v produced by connecting a resistor in series with the field. This torque results in a tape tension, over the full length of the tape, that remains withiri 200° of the nominal value. In addition to the full line voltage applied to the ifeds for driving or brating, a thire value, 15 v, is applied to each fied, through a second damping resistor, when the tare is to remain stopped. The resistors ase shonted in and out simply with relays.

Tope Lutio

The next effort was no ind the simplest guide that would position
the nape prearey as is pussed the hemt. To apily the iestrume tores Rida the adges of the tape semed dowhats and the smptest edge gutio porsble, stack fomed hy a poir of edges paralming the tape, was sofocel. It was to furation more as a Eestaner than a zuide in that is woud wheh the iape onty intermittenty, only when it was needed to prevent the tape fron wandering more than the few thousandens of an inch praited by the pols pisee dimentions, A true gutse would constantit hold the tape in the desirct position and it woud constantly be wearing. Flanged rollens were rejected because they do not guide effectively. Because there is no relative motion of tape and roiler, no sir cushion forms and the tape is constantly in contact with the rollers surface. The tape then defeats the effort of the flange, crowding tep azainst the pushing side ratier than moving in the desired diection. Aecording to Staskebrand, the lengti of the traci would be a function of the degree of slew control requirad whete the tape passed the hoad. Shew considerations depend on the density of the proposed recording format, that is the nearness of adjacent bits in a track. The resulting gulde length was calculated to pecmit reasonatic skcow.

To make such a gude functon with a minimmof wear-and to tre able to cdeegaide at a!l-- the fore it would bate to wed hat to be hepi to a minimum, With anytheng but minintum force, tha tape wout buble. If the guide were curvad, sone resistance to bubking wouk result, so the amount of guide force needed and the amount of ourvature needed to acheve the corresponding resistance wore calchated. Air fletition of the tape promised minimum foree rem quitements. but how to achieve air flotaion sinply and reliaby posed design problems. Becuuse air bown it under the tape woulu briag oil, dust, iragments of coating, ard other debris with it, Stockomand explaned hat the engheers tesonted inated to byaroGymmic luntiontion, relying on the viscosity of sir to entran it with the tape and provite the fletation mation. Ait is not urually thomet of as a vicons fhaid: but it is in proportion to its mass.

DECtent averemte AB's lew-nass Anedran thongh conthere motion of the tate elmantat the stom-stat aratic mok o ondatonal transper. boutury bur reted is
 one so swo thes the pule destance. wher revimen flow is whod. Fa-

cation are lupe farion, inta baneons ratios of curbature, relative velocity of tape and sude and visosity of air. The chitical considentica is the thickness of the air curhion, since the ame in adition to reducing the force neaded for guting. is to boat the tape over ary rughness and dirt in the guide track and on the head. Increasing the raditis of curvature of the gube provides the destred increase in the thickness of the air cusibion.

Passing the hoad, air cushon thickness nust be minimem, since separation of the tape from the head by so much as the distance between suecessive bits ($1 / 37.5^{\prime \prime}$) attenuates the signal 55 db . Becatse the tension, air viscosity, and relative velocity over the head are the same as over the guide, the only parameter that can be changed to move the tape closer to the head is the radius of curvature of

WDCtate irnasport shawing the two
 to the late while and tios atraberd head ascustly.

he bed, Agnt in choomy to ws. sign rether thon adapt crioto hos, the ammach towen was sotuhble through cimplaty. It wow'd here ban possible to position the trac coccoty vith prossure pads. as es omanort; tone but the pads colloce dire continuously and periotically dopest it on the rape.

ABMDBUT

Given this simplified transport, tho dessmus then had to asees its ataptability to conventional reondag technipues, Sped control, never a primary design goal, Stockebrand explanizad, dernands careful consideration. The emphasis, he said, the desigater of the conventional transport must place on speed control is dua to the requirements posed by the anplitude-senimg recording technigue. A Ove recorded at $80^{\prime \prime} / \mathrm{s}$, for example, would not rend out as a Onve at siover spods. To eliminate this speed-aceuracy tependency, DECtape desigacrs selected a polaty-sensing technique. In pohritysensing, the direction of the flox reversal indicates whether the recordes bit is a ZERO or a ONR. Since the amplitude of the recorten siznal is not important, bu signat-to-mise retios which would render other tes. nigties aseless con easile be usw. Wh this technique, tape speeds from 30 to $600 \% / \mathrm{s}$ give identical redouts of a given body of ata. For writige, hos came the sped win wheth the houl can switeh its polarity is a bitutime factor, polaris-sensing gives a surd tolarane of from 60 to $120^{\prime \prime} / \mathrm{s}$. Acthal desga sped is $50 / \mathrm{s}$, abherd in $6^{\prime \prime}$ of tape travel or leas.

As the ree? dameter grows on the driving hab. the rpm would horest under ennstunt torgue, bus the forquspeed curve characteristics of tha? leading motor are unibed to problas constant tape whion. The coneran tencion limits tape spes variation to 10% over the entise 20 f leagth of the tupe, well withm the lmits of er-ror-free operatom. Since the send does vary, prozamming athenton is required to mollfy the changing date deasity when readiag in the oppoit? direction from the viriting diection. When reading and recording in the - same direction, the user fints F ? dispatity. Date is detubly weten and read on informaton cutived fom a simal given wher the proworied ha ing tack indoetes that a shather is an pextion at the hoot The homat
 adfess, icthe the whi rewide a sto gle recorded chrmoth or even one in it, whosk atocting affoent mor acters.
:....

TU55 INFORNATION

This diode prevents the Direction F / E from changing states wher Notion (ϕ) is true.

This fix in no way hampers operation of the manual switches that wind or rewind tape.

This can be incorporated in the PDE-8/8I/81 Tech Tip ivotebook

March 71

FIELD SEPVICE TECH: MANUAL

COMPATABILITY TU56's

A. Write enable compatability with Tu55's.

There are approximately one hundred and fifty TUSG's in the field containing the "B" revision "Switch Control Panel" (assembly 70-06222). Transports containing thesc control panels will have difficulty enabling the "Write" function if connected in any of the following system configurations.
i. A TCO1 or TCO2 control, a TUS6 w/b Rov. Switci Controi panels, and more than two TuS5's.
2. A TCOI or TCOR control, a TU56 w/o Rev. Switch Control panels and more then one additional Tu56 w/e Rev. Switch panels.
3. An additional problom will be generated if the Rlo\% modules in siot Bll of the TuSS's have been roplaced by Sl07 modules in which case a Tutb w/b rev. Switch Control panels will not operate reliably in conjunction with any 1U5S's.

If any of these circumstances occur the mrobiem may be rosolved by rophacing hev. B panels by Rev. G panols.

NoTE: G revision panels are direct replacemonts for B revision panels..
B. Problem; Poor data reliability; asually on transport in front of the power supply.

A possbun acasen fox thls problem may be improper giound
 power suppiy). The TuSG has two separate ground systems. One for the external supplies $(+5$ or +10 and -15$)$ and one for the reel motor power supply (775). These ground systems are desifuod so that motor current does not return on the extemme supplies ground line. The two ground systems are commoned at a virtual current node on the 6848 "Motor Brive" modules, If tho two grounds wexe shorted within the 725 power supply on if one of the grounds was open sufficient noise conld be genorated to cause data errors.

COMPATABILITY TUS6's (continucd)

B. Problem: continued

To check for this problem perform the following steps:

1. Kemove ali (4) G848 modules from the TU56.
2. Measurc the resistance between the two ground connectors on the front of the 725 power supply. The resistance shouid be infinite.
3. Measure tho resistance between each harness connector (pin 5) which you have disconnccted from a G84B and the ground. side of each filter capacitol in the 725 power supply. This resistance should be zero (a short circuit).

If 2 above is not true find the short and repair.
If 3 above is not true tind the open and repair. Usually this is caused by a poor stripping of wire or a poor crimping of the AMp connectors.
E. Luttig/March 1971

Comparison of Ragretic Recording Rechniques

s安㫫

FIELD SERVICE TECH MANUAL
＊TU55 TAPE GUTDE REPLACEMENT
In Dectape installations which require above average usage，there may be a problem of aluminum from the guides adhering to the tape．The correct procedure for replacing the aluminun guides with an optional，heavy duty， type is as follows：

1）Renove all power from the transport．
2）Place a protective covering over the head to eliminate any possibility of its being danaged．

3）Renove the two hex head screws from the front of each guide and renove the front cover plate assembly．

4）Renove the four hex head screws which hold the transport mounting plate in position．Move the transport assembly forward about two inches so that the two hex head screws which secure the guides to the mounting plate can be renoved．These screws are accessible from above．

5）Each guide is now held to the mounting plate by two roll pins which can be seen from the rear；with a pin punch，drive the pins and guide evenly forward to dismount the guide。

6）Check the front surface of the mounting plate where the pins were driven through to be certain that no burring or protrusion of the surface around the holes has occurred．A stone should be used to elininate any protruding distortion of the surface．

7）With pliers，pull the pirs from the original guide。
8）The pins should then be inserted into the new guide，the mating surfaces cleaned，and the guide positioned against the mounting plate with the pins aligned with the holes．with a nonmetalic hamer and／or a pro． tective block of wood or plastic，gently tape the guide evenly so as to begin insertion of the pins evenly into their holes．The screw which is to secure the guide to the plate should be engaged and tightened alternately as the guide is tapped to maintain alignment with the plate as the guide is seated．

9）As the screv is finally tightened，there should be no gap between the plate and the guj．de．
10）Replacement of the front cover plate assembly will．complete the exchange．
11）It is advisable that skew be checked if equipment is available，otherwise a formatting／exercise exchange of tapes between transports will be indicative。

＊TU55＂SET UP＂SPECIFICATIONS AND PROCEDURES

1）Set brake disk～brake coil gap at 。004 in。 clearance；a single thickness of ASR－33 paper makes an adequate＂gauge＂．Surfaces should be parallel，howm ever，the 1004 in。 is to be measured where the surfaces are closest when minor disk distortion is present．

2）Torque settings（Equally valid for 50 and 60 HZ ）
a）Initial conditions
1）Line voltage at AC receptacle on TU55 $=115 \mathrm{VAC}$
2）Tape on both reels
3）Brake gap set as described above
b）Stop Torque set
1）Comect VOM to tabs of G850 in slot A12（right motor） （expect $\pm 60 \mathrm{VAC}$ ）
2）Switch unit to＂LOCAL＂
3）Push FWD，switch and release
4）Adjust pot nearer the G850 handle for meter reading of 60 VAC
5）Connect VON to tabs of 6850 in slot All（left motor）
6）Push REV，switch and release
7）Adjust as in step 4 above
c）Trailing Torque set up
1）Connect VOM to tabs of G850 in slot A12（right motor） （expect $\pm 85 \mathrm{VAC}$ ）
2）Rewind tape so that right reel is nearly full of tape．
3）Push and hold the REV，Switch so tape is winding onto the left reel as this adjustment is made．
4）Adjust pot farther from the $G 850$ handle for meter reading of 85 VAC ．
5）Connect VOM to tabs of G850 in slot All（left motor）．
6）Rewind tape so that left reel is nearly full of tape．
7）Push and hold the FWD，switch so tape is winding onto the right reel as this adjustment is made。
8）Adjust pot farther from the $G 850$ handle for meter reading of 85 VAC．
d）Stop Delay set up
1）Switch unit to＂LOCAL＂
2）Scope voltage at pin Aø4D
3）Press and release FWD，switch
4）Adjust pot on R303 delay for 80 ns ．which is the spec．

TU56 DECtape Transport
Maintenance Supplement

Tse only recommended cleaning fluid as supplied by DEC. Tape guides and head must be clean. Alcohol base cleaning fluids (such as carbon tet.) could remove finish from anodized parts.

Possible areas of trouble: Indication may be excessive mark track or timing track errors. Refer to drawing \#E-AD-7 $\varnothing \varnothing 632 \phi-\varnothing-\varnothing$.

1. Dirt or burr in spring hole of cover plate causes excessive skew.
2. Dirt between tape guide and wear plate seen as uneven or incomplete arc on wear plate.
3. Wear plate has beveled edge and flat edge-beveled edge toward tape.
4. Tape oxide deposits on tape guide and rear check plate may cause skew problems.
5. Glue deposits between rear check plate and casting machine surface.

The tape head can be replaced in the field; no skew alignment needed. The book says NO to protect the field engineer from the customer if for some reason the field engineer does not want to change it in front of the customer.

When replacing the tape head, keep the protective cover on the head until the cable is inserted through the casting hole. But, do not attach the tape head to the casting machine surface with the protective tape still on the head. The possibility of getting a piece of tape (adhesive) caught between the two increases the possibility of a skew problem.

Alignment: When replacing a tape head, with the cable inserted through the casting hole and the protective tape removed, "eyeball" the bottom edge of the tape head to be parallel with the opening in the casting. Hold the tape head so that any slack is removed in an upward direction while tightening the screws. The tape head screws are accessible through two holes in the control panel cards.

The control panel cards have a solder strip along the top and bottom edee. The top strip is +5 v . and the bottom is -15 v .

The TU56 tape reel hubs should be removed by backing off the motor mounting screws and inserting a double loop of \#l8 gauge insulated wire between the hub and the face plate: NOT a SCREWDDRIVER. A quick pull should then remove even a tight hub.

Removing the hub gives access to a spring loaded bushing which reduces hub "creep". The tape hub may creep in the direction of the reel which has the least amount of tape. If the tape is evenly distributed on both reels, no more than one inch of creep should be seen after the hubs come to a rest. The one inch is due to the unwinding of the torque in the spring.

When replacing a hub for any reason, replace the screvs. The knurl on the end of the screw becomes damaged after one tightening. There will be a "torque wrench" available to the field offices to tighten these screws without stripping the threads in the hub.

When replacing a hub, insert the $0.018^{\prime \prime}$ plastic gauge between the hub and the faceplate to ensure proper clearance and reduce skew problems. Tap the end of the hub to seat the shaft (it's spring loaded) before tightening the screws.

Electrical adjustments on the TU56 consist of the oscillator adjustment and the left and right brake adjustments. These are given in the Maintenance Manual, Chapter 6.

The G859 Clock Regulator adjustment should be done with the horizontal sweep on $5 \mathrm{~ms} / \mathrm{div}$. This allows two complete cycles to be displayed on the screen and the adjustment set for $50 \mathrm{~ms} / 2$ cycles.

The $6888 \mathrm{Rd} / \mathrm{Wr}$ ' Amp. (located in the TCll logic) adjustment should be such that the output (square wave) transitions occur as the input (sine wave) crosses zero.

FHED SERVICE TEGH MANUAL

(MAINDEC 831-5/8 DECTAPE MALHTEMANCE PACKAGE

The Timing Routine in Maindec 831 will not run with a 183 extra memory control. When Mac Ext 2 in the Mac Register is set, the program fails by wiping out the program. This is a program fault, not a hardware problem.

552 DECTAPE INSTRUCTION MANUAL
There are several errors in the timing set-up procedure in the 552 DECtape instruction Manual: (Errors 1 through 4 will be found only in the Instruction Manual, the prints are correct.)

1. On page $5-6$, step b, the negative duration of the signal should be shown to be 140 Msec , not 35 Msec .

1 2. Page $5-6$, step c, the point to scope is $2 U 14 T$, not $2 L 14$; also the negative duration of the signal should be shown to be 140 Msec , not 35 Hsec .
3. Page $5-5$, step d, the negative duration of the signal should be shown to be 90 Msec, not 35 Msec .
4. Page $5-7$, step i, the point to scope is 2L08T, not 2L08p.
5. Both the manual (step k, page 5-7) and print BS-D-552-D-7 indicate incorrect signal duration: a duration of 3 Usec should have been specified. (2L08Z)

Bill Freeman November 1968

TU55 CONFIGLRATION WITH TCOI/550/552
The following chart indicates differences which must be resolved when a TU55 is renoved from a 550 or 552 and installed on a TCOL or vice versa.

November 1969

- The error condition affects the wite/read test starting at location 0204 with test pattern 6 selected.

Test pattern 6 is a 7070 pattern that is written on the DECtape, then read back to the processor and verified. The error causes the program to execute test patiern 6 only once, then the program selects test pattern 5 (0707) erroneously.

Error printouts could then occur for both test patterns. No significant testing of test pattern 6 can be made.

To correct error change location 4642 from 5630 JMP I GNPAT5
to 5636 JMP I GNPAT'.

NOTE

Before any mechanical adjustments are performed, user maintenance personnel are directed to check the model tape transport provided with their system. Some PDP-12A systems are equipped with the TU55 tape transports (instructions for which are provided in this manual). Other PDP-12A systems employ the TU56 transport. The users of these systems are directed to the TU56 Maintenance Manual for the appropriate mechanical adjustment procedures.

4.5.1 Brake Adjustment

4.5.1.1 Set-up Procedure

Step Procedure
1 Turn off the power to the transport that is to be adjusted. Tapes should not be mounted on the transport.
2 Slide the transport fully forward.
3 Remove the $115-\mathrm{Vac}$ line cord from the transport.
4.5.1.2 Adjustment Procedure - The brake shoes are located on the motor shafts as shown in Figure 4-13. The brake shoes follow the rotation of the motor shaft (hubs).

Figure 4-13 TU55 Brake Adjustment

Step

Insert a . 004 -inch feeler gauge between the brake shoe and brake surface.
Adjust the brake for proper clearance by loosening the two allen setscrews on the brake shoe and moving the brake in and out along the shaft.
After the adjustment is made and the allen setscrews are secured, rotate the hub several revolutions by hand to be certain that there is not binding and that the motor turns freely.
Set the FUNCTION control to LOCAL and pulse the DIRECTION switch. A properly adjusted brake should produce a minimum of "clicking."

Repeat this procedure for each hub on all the TU55 transports.
Reinstall 115-Vac line cord.

4.5.2 TU55 Torque Adjustments

4.5.2.1 Set-up Procedure - The following equipment is required:

a. VOM or VTVM with a set of insulated clip leads.
b. Small long-shaft (6 -inch) screwdriver.
c. Oscilloscope.
4.5.2.2 Stop-Torque Adjustment

Step Procedure

1 Line voltage (ac) to TU55 on.
2 Scratch tape installed on both hubs.
$3 \quad$ Brake gap set as described in Paragraph 4.5.1.
4 Switch the unit to LOCAL.
Connect the VOM to the tab terminals of module G850 at location A12 (right motor) as shown in Figure 4-14. Expect a reading of approximately 60 Vac.
6 Depress FWD \rightarrow switch and release.
7 Adjust trimpot nearer the G850 handle for meter reading of 50 Vac.
8
Connect the VOM to the terminals of module G850 in location All (left motor) as shown in Figure 4-14.
9 Depress the REV * switch and release.
10 Adjust the trimpot nearer the G 850 handle for a meter reading of 60 Vac .

Figure 4-14 TU55 Torque Adjustment Tabs

4.5.2.3 Trailing Torque Adjustments

Step

1 | Connect the VOM to tab terminals of the $G 850$ module in location A12 (right |
| :--- |
| motor). Expect 85 Vac . |

Step \quad| Adjust the potentiometer farthest from the G850 module handle for a meter |
| :--- |
| reading of 85 Vac (Figure 4-15). Make certain that the tape is still in motion |
| during the adjustment. |

Figure 4-15 TU55 Stop Delay Adjustment

4.5.2.4 Stop Delay Adjustment

Step

1

2

Procedure
Switch the tape unit to LOCAL.
Set the oscilloscope as follows:
a. Trigger: Channel 1.
b. Mode: Channel 1.
c. Channel 1: $2 \mathrm{~V} / \mathrm{cm}$.
d. Sweep: 10 ms .

Step	
3	Procedure 4
Connect the scope probe to $A 04 D$ as shown in Figure 4-16. 5 Depress and release FWD \rightarrow switch. Adjust porentiometer R303 for approximately 80 ms delay, as shown in Figure 4-15, or until tape snapping is minimal.	

Figure 4-16 Stop Torque Scope Connection

4.5.3 TU55 Transport Head Replacement and Adjustment Procedures

These procedures outline the steps necessary to effect a field (on-site) replacement and/or alignment of the $\mathrm{read} / \mathrm{write}$ tape head on the TU55 Tape Transport. The need for adjustment is indicated when the following specifications are exceeded:
a. The tape head is to be vertically aligned between the tape guides, projecting $1 / 8$ inch above the guide edges.
b. The maximum amount of tape skew should not exceed $\pm 3 \mu \mathrm{~s}$.

4.5.3.1 Head Removal

Step

1 | At the tape transport control panel, set the REMOTE/OFF/LOCAL switch to |
| :--- |
| the OFF position and remove ac power to the computer. |

4.5.3.2 Head Installation

Step Procedure

1 Replace the tape head with a new assembly, reversing steps 3 and 4 above.
2 Secure the mounting clamps.
3 While tightening the clamps, make certain that the tape head is vertically aligned between the tape guides and that it is projecting $1 / 8$ inch above the tape guides.

4.5.3.3 Head Skew Adjustment

Step Procedure
1 Mount a DEC-certified master skew tape on the transport.
2 Connect the skew checker to the tape head ribbon connector and the tape transport de supply ferminals.
a. Pin A of the checker connector should mate with the pin closest to the larger end of the tape head connector.
b. In most installations, the power wiring is color-coded to correspond with the TU55 wiring. In some transports, however, the +10 V lead may be red; in this case, this will be a green wire connection to the checker.
c. Connect the oscilloscope probe to the point marked SKEW. Connect the scope ground to the point marked GND (black). Adjust the scope for a $1-\mu \mathrm{s} / \mathrm{cm}$ horizontal sweep and a $1-\mathrm{V} / \mathrm{cm}$ vertical sensitivity.
d. Determine the type of tape head in use; it may be a brush head or another type. If the head on the skew checker is a brush type, set the switch to BRUSH. If the head is a different type, set the switch to GJM. (Refer to Figure 4-17).

12-0127

Figure 4-17 Skew Checker Schematic Diagram

Step
2 (Cont)

Procedure
e. Restore ac power to the computer and place the tape transport REMOTE/OFF/LOCAL switch to the LOCAL position. While observing the oscilloscope, move the master skew tape back and forth across the tape head. Note that the output of the skew checker (as presented on the scope) does not exceed $\pm 3 \mu$. (Refer to Figure 4-18.)
f. If the skew appears to be on the edge of the tape guides or slightly out of specification, some skew adjustment can be made by moving the tape head slightly to one side or the other and/or alternately loosening and retightening the mounting screws of the tape head clamps. In most cases, this action changes the skew $\pm 1 \mu$. If a large amount of skew is present, shimming of the tape head becomes necessary.

Figure 4-18 Skew Checker Output

Procedure
a. To determine the direction in which to shim, lightly press against the moving tape on either side of the head. If skew is reduced when pressing at the left side of the head, shim the right rail of the head block. If the skew is reduced when pressing at the right side of the head, remove the shim stock from the right rail. Use $1 / 2-m i l$ shim stock (available as "Scotch Tape Marker"), and shim only the right rail of the head.
b. After shimming the head, realign the tape head (as directed in steps 2 and 3 of Paragraph 4.4.8.2., Head Installation) and recheck the skew. The skew must be less than $3 \mu \mathrm{~s}$ in both directions.

4.6 ANALOG SYSTEM ADJUSTMENT PROCEDURES

Paragraphs 4.6.1.1 through 4.6.1.3 provida the checks and adjustrints to be performed in the field. Included are the A-D circuits (preamps and optional multiptexer chantiels) and the VR12 display and control adjustment procedures. The information contained in this adjustait manual provides for only those adjustments which are

[^0]: - DMI cleaning kits are now available to the field. Each RSø8 kit (suitcase) should contain two DMI cleaning kits along with its present complement of paraphernalia. Each time a DMl disk is cleaned discard the used DMI kit completely and order a new one.

[^1]: * 70-6223 CAUTION: It is possible to install this cable backwards; see note on cable terminator to insure cable is installed properly.

