DEC

STD

125
REV. B

CASSETTE
FORMAT
FOR
FILES

DEC STD 125 18-Jun-81 Page 1

TITLE: CASSETTE FORMAT STANDARD FOR LABELLED AND UNLABELLED FILES

ABSTRACT: Describes the format and labelling conventions for files,
physical blocks, logical records and data written on
Digital Corporation . It also
the unlabelled standard. This standard must be followed
when reading and writing cassettes intended for interchange
between systems; it is recommended for other cassettes.

tt e

I

1
| This standard has been reaffirmed without change by the | -«
| ScEtware Standards Approval Committee or 18 June 1981. | -
i
FOR INTERNAL USE ONLY
DATE ECO # ORIGINATOR APPROVED REV.
21-Feb-75 - D. Pavlock R. Amann A
(Eng. Comn.)
%/05/75
18-Jun-81 MLOOL P. White £nq. Com, 8 -
(1d F 0, il
Document Identifier
Size Code Number Rev
A DS EL28125-20-0 B ‘

NP1-205

L 2 4

DEC STD 125 18-Jun-81

Subhead

N e e

LW W LW LW WL LW LW W

IS
s

TABLE OF CONTENTS/REVISION STATUS

Title

Title P:
Table of Contents/Revision Status

INTRODUCTION
MOTIVATTON

SCOPE
HISTORY
Deletions
Change To Previous Standard Proposal
Additions
RELATED STANDARDS ACTIVITIES
FUTURE STANDARDS ACTIVITIES

TERMINOLOGY

THE STANDARD - LEVELS
THE FILE HEADER BLOCK
The File Name

The Data Type

File Block Length
File Sequence Number

Level

File Creation Date

Generation Number

Reco(d Attributes
Unused Byt

Extended Filenane Bytes

SENTINEL PILE

BOOTSTRAP FILES

MULTI-VOLUME FILE SUPPORT

READ Support

WRITE Support

STANDARD FOR UNLABELLED CASSETTES
FOR INTERCHANGE

Revision

18-Jun-81

18-Jun-81
5-Jun-75

5-Jun-75
5-Jun-75

5-Jun-75
5-Jun-75
5-Jun-75
5-Tun-75
5-Jun-75
5-Jun-75

5-Jun-75
5-Jun-75

5-Jun-75

page 2

Page

Arvmn e sas N

<

DEC STD 125 18-Jun-81

TABLE OF CONTENTS/REVISION STATUS (Cont'd)

Subhead Title

5.0 EXAMPLES

5.1 HEADER BLOCK FORMAT

5.2 TYPICAL FILE HEADER BLOCK FOR LEVEL ZERO
5.3 LOGICAL END OF TAPE

5.4 BEGINNING OF TAPE

APPENDIX A
A.1 FORMAT OF PDP-8 BOOTSTRAP FILE
A.2 PDP-8 CASSETTE BINARY PORMAT
A.3 PDP-11 CASSETTE

APPENDIX B FORMAT OF CASSETTES FOR FIELD RELEASE

APPENDIX C NON-STANDARD FILE TYPES

Revision

5-Jun-75

5-Jun-75
5-Jun-75
5-Tun-75
5-Jun-75
5-Jun-75
5-Jun-75

5-Jun-75

Ppage 3

DEC STD 125 5-Jun-75 Page 4
1.8 INTRODUCTION

1.1 MOTIVATION

This standard was written to provide a measure of compatibility among
Digital's systems that support cassettes. It was done at this time
because Digital now supports this medium.

1.2 GoALS

This standard is intended to (1) furnish a design for labelled files
that will allow the users to write files on one system that supports
cassettes, and read them on another, (2) provide a consistent growth
pattern for support of cassettes, through a system of levels of
support, (3) allow the fewest number of data formats consistent with
the needs of computers with different word lengths, and (4) provide a
standard for unlabelled files.

1.3 SCOPE
This standard applies to all Digital Software products that support
labelled cassette files. The following products currently support
Digital cassette:

CAPS-8

CAPS-11/CAPS-11 BASIC

05-11

0s/8

RT-11

RSX-11M
This standard implies changes for each of those systems.

Other systems that wish to support cassettes must follow this
standard.

Cassette hardware is not required to put out a file gap at the

beginning of the tape. Future cassette drivers and controllers must
not prohibit software from writing at least level zero cassettes.

DEC STD 125 5-Jun-75 Page S
1.4 HISTORY

1.4.1 Deletions

One previous effort was made at standardizing file formats. It
allowed for several items that have been deleted from the current
standard; variable-length records, an optional second header record,
and several extra data formats. Variable length records were
eliminated, because they are hard to implement. The supplementary
header records were rejected, because the size of the medium seemed to
make a second header a candidate for overkill. We eliminated some
data fomats because we decided on a goal of a minimu number of data
ormats

1.4.2 Change To Previous Standard Proposal

The codes for the binary data formats were redefined, because the
previous standard did not adeguately spell out how the codes were to
be used, and confusion resulted. Thus, code zero and codes in the
range 2 to 14 (used by the previous standard proposal) are now listed
as undefined. In order to avoid the necessity for customer
conversion, a system encountering cassettes with a code in that range
should assume correct type and continue. Example: A DOS-11 Linker
would ordinarily expect data type 22. If it encounters data type 3,
it assumes correct format, and continues.

1.4.3 additions

The previous effort was not rigorous in its definition of levels.
Ther was a minimal subset, and then several options beyond that. In
that the primary goal was to ensure the possibility of using cassettes
as an interchange medium, we decided to strictly regulate the way in
which support for cassettes could be increased. Also added were a
generation number and definitions of formerly unused bytes in the
header as reserved for (1) future standard use, and (2) user use.
Cassecte labels (as opposed to file labels) were considered and
rejected for size considerations.

DEC STD 125 5-Jun-75 Page 6

All levels are nested, i.e., if the operating system claims level n

necessary that all
level_zero reading progeams be able to read level Zers format and that
sll level-zero writing prograns shall urite only levelzero fomat.
Further, that all level-one reading programs be able to read
Tevel-rero and level-ons formats and that all lavel-one programs shail
write only level-one format including ar least one level-zero format.
further, -hat all level-two reading programs be able to read level-tuo

format including at least one level-zero format. All level-zero
formats must be strict subsets of level-one formats. All level-one
formats must be strict subsets of level-two formats. This implies

that any system which supports DEC cassettes must have the ability to
read, write and zero cassettes containing type 1 ASCII files.
Therefore, level zero, is the only quaranteed interchange level.

1.5 RELATED STANDARDS ACTIVITIES

ANST and SO have recently formed committees to work in this area and
may generate standards which may have to be dealt with in future
revisions of this standard.

1.6 FUTURE STANDARDS ACTIVITIES

It is expected that ASCII and binary data must comform to the DEC
standard ASCIT and Binary formats, when and if such formats are
defined.

Designers wishina to define new data formats sh 'd remember the more
formats, the hz.der hecomes compatibility. If it still appears that a
new format is required, the proper procedure is to petition the
Software Engineering Stardards Committee.

2.8 TERMINOLOGY

A CASSETTE consists of a sequence of one or more FILES, separated trom
each other by a single FILE GAP. The first file on the cassette must
be preceded by a file gap*; the last file must he followed by a file
9ap and a SENTTNEL FILE (see Section 3.2), or by clear trailer.

2 consists of a sequence of a file header block plus zero or
more data blocks, separated from each other by hlock gaps. The first
block of a file is called the file header hlock, or file label.

d it

DEC STD 125 5-Jun-75 Page 7

A block consists of a sequence of 1 to 2+*16 - 1 DATA BYTES followed
by a 2-byte CYCLIC REDUNDANCY CHECK. (This is a logical limit, there
is no physical limit, except for the length of the tape.)

A cassette BYTE is eight bits (binary number). A BIT is a binary zero
(9) or one (1).

A CHARACTER is a byte interpreted via the ASCII character codes.
Parity is not required. The high order bit (bit 7, the leftmost bit)
of each eight bit byte containing an ASCII character should be masked
on reading. Parity is checked by the software only, not by the
hardware.

A GENERATION NUMBER is a number assigned to a file at creation,

to
distinguish one file from a previous version of the same file.

Blank The ASCII character 'space', whose value is 049 (octal).
Null The ASCIT character whose value is 8@ (octal).
Zero Byte A byte all of whose bits are zeroes.

A File Key is defined as n number of characters of file name and m
number of characters of file name extension (see Section 3.8 for
definition of File Key for each levei}

File names and extensions must consist of letters, numerals and blanks
49 (octal). The first character must not be blank; there shall be no
imbedded blanks within the name or extension; and short names must be
padded on the right with blanks. For level two, bytes 6-5 and 26-28
are considered as a unit, when applying these rules. For levels zero
and one, bytes 26-28 are undefined.

Cassette ASCII is defined as seven bit ASCIT, bit 3 is undefined and
is ignored on reading.

The software must ensure the existence of this initial file gap, by
requiring hardware that does it automatically (e.g., the TAll) or by
writing its own.

ol ifoitlal

DEC STD 125 5-Jun-75 Page 8

End of file is defined as:

a. Spare bytes in the last block are filled with nulls followed
by a file gap

or

. CTRL/Z (832(8)) and all data following must be ignored.

3.6 THE STANDARD - LEVELS
There are three levels for the labelled standard:
LEVEL ZERO:
Level Zero must support:
1. 32 (decimal)-byte header block, which contains:

a. six-character name of file
£ile name i

ol date
d. data-type indication
el eight-bit binary generation number
2. tLogical end-of-file
3. Logical end-of-tape
4. Fixed-length, 128 (decimal)-byte blocks
S. ASCII data (type 1)
6. Optionally, any other listed data type
7. File Key is defined as a six character file name and first two
characters of extension.
LEVEL ONE:
Level One must support:
1. All attributes of level zero
2. Read/write support for multi-volume files

3. File Key is defined as a six-character file name and three
characters of extension.

DEC STD 125 S-Jun-75 Page 9

LEVEL TWO:
1. All attributes of level zero
2. All attributes of level one

3. 9-character file names

16-bit binary generation number
5. A record attributes byte
5. Fixed-length blocks of from 1 to 2**15-1 bytes in length

7. File Key is defined as a nine character file name and three
characters of extension.

3.1 THE FILE HEADER BLOCK

Each labelled file must begin with a 32 (decimal)-byte file header
block. Section 5.1 illustraktes ti~ format of the file header block.

3.1.1 The File Name

The name is in 7-bit ASCII. The eigth bit is undefined, and must be
masked off on reading.

Multiple files with the same file key (for a given level) shall not
appear on a single cassette intended for interchange. If the Software
System does not enforce this, the user manual for the
software/hardware system must instruct the user to generate unique
file keys, if this cassette is intended for interchange.

NOTE

A file may be logically deleted by
changing the name to *PWPTY. To check
for a deleted file, check only the first
character. This is to allow for future
means for deleting a file (e.g., *BAD).

DEC STD 125 5-Jun-75 Page 18

3.1.2 The Dat: Type

Ability to read and write ASCIT data (type 1) is required for level
zero. Any System may support any other data type, regardless of
level, however these data types are not required to be supported for
interchange purpose:

Byte 9 in the file header block contains the "Data Type". The Data
Type defines the way in which data is recorded in that file. Table
3-1 lists the Type Codes and gives the meaning associated with each.

The goal is to have the minimum number of types consistent with
systems having different word length. 0dd numbered types are resecrved
for ASCII types, to allow a single bit to show the presence of ASCII
a

Type zero (undefined) is required, because files on 0S-8 and RT-11
disks do not carry data type information, but file transfers between
disks and cassettes should not be prohibited for that reason. Hence,
for example, the 0S-8 MCPIP program will transfer disk files to
cassette and give a zero type, unless the user specifies type.
Paragraph 1.3.2 describes the reasons for omitting definitions for
types 2 through 14.

for further explanatxon of the various definitions of these data
types, see Appendix

DEC STD 125

5-Jun-75 Page 11

Table 3-1 Standard Data Types

2-14

34-50

If the type is known,
They must write zero

Description

Unknown data type. To copy a file of this type
to another medium, copy all 8 bits per byte and
store in a format that can be restored to a
cassette.

Cassette ASCII.

Unknown data type. To copy a file of this type
to another medium, copy all B bits per byte and
store in a format that can be restored
Cacsatte. (These codes must not be used by any
new software.) See Appendix C for explanation
of the use of these codes in old software
systems.

ASCIT characters with line numbers. To be
specified.

PDP-8 Cassette bin-loader format. Defined in
the CAPS-8 User Manual. No other PDP-8 format
may use this type code

Reserved for DEC standard ASCII, when and if it
is specified.

PDP-11 0BJ format. Not to be used for other
PDP-11 binary formats.

PDP-11 LDA format. See comments on Type 20.
Reserved for future use of PDP-13.

PDP-11 TSK format defined in RSX-11M Task
Builder Manual

Bootstrap File for PDP-8.
Bootstrap File for PDP-11.
Reserved for bootstraps.

all programs must set the type byte correctly.
() if type is unknown. Proarams reading files

may check this type to see if it agrees with the expected type and
give a warning message on disagreement.

DEC STD 125 5-Jun-75 Page 12

3.1.3 File Block Length

Bytes 18 and 11 of the File Header Block contain the length of each
(non-header) block up to the next file gap. Level zero and one
requires 128 here; level two files must have any non-zero value.

NOTE

Byte 10 contains the most significant
bits. Thus, the record length equals
(256) 10 times the contents of byte '3
plus the contents of byte 11.

If records in this file have variable lengths, byte 18 and 11 must
contain zeroes. Such a file violates the standard.

2.1.4 File Sequence Number

This byte is for multi-volume files. Byte 12 is undefined for level
zero files. It must be a zero byte for single-volume level one and
two files, or the first volume of multi-volume file. Successive
continuation files on different cassettes should be numbered 1,2,3,...
in this field.

3.1.5 Level

Level zero files mist (nsere a zero byte in this position; level one
files a one, and level two files a two. The aigh-order four bits in
this byte are reserved for the possibility of continuation header
blocks. Thus programs must ignore the high-order four bits when
checking level number. This is reserved for future standards use.

3.1.6 File Creation Date

This field is required for all levels. The file creation date is
concained in the six characters starting at byte 14. When specified,
this date shall censist of six 7-bit ASCII characters specifying the
day number (@1-31), the month number (21-12) and the last two digits
of the year number in the order idmmyy. If no date is specified, the
first byte will be zero (null) or blank (4%)8. Date must be inserted,
if known.

dlilgliltlall

DEC STD 125 5-Jun-75 Page 13

3.1.7 Generation Number

Byte 2@ contains an 8-bit binary generation number for all levels. It
must be zero if the generation number is un‘nown or not supported (as
in CAPS-11 or DOS/BATCH-11). Level two files have a 16-bit generation
nunber, with high-order bits in byte 20. Byte 21 must be zero for
level zero and one files.

3.1.8 Record Attributes

Byte 22 specifies certain characteristics for data recorded on level
two files. Bit @ refers to formatting of records destined for
printing device, i.e., line printer, terminal, etc. The definition of
this byte is:

Bit 0 - If 1, indicates that when printing the data, the first
character of the record is to be interpreted as FORTRAN
carriage control character.

Bits 1-7 - Unused; must be zero.

This byte is undefined for levels zero and one.

3.1.9 Unused Bytes

Bytes 23-25 are undefined for levels zero and one; they are reserved
for future use by the standards, and must be set Lo 2 Rl for Tevel
two.

3.1.16 Extended Filename Bytes
Level two files insert the last three characters of the filename in

byte 26-28. Contents of these bytes must be 7-bit ASCII characters
£or level two. These bytes are undefired for level zero and level

3.1.11 User Bytes

Bytes 29-31 are reserved for the user. Default must be written as
zero or as supplied.

DEC STD 125 5-Jun-75 Page 14

3.2 SENTINEL FILE

Logical End of Tape may be denoted by clear trailer or a 32-byte file
header block with the first byte null. Such a block follows a file
gap and is called a sentinel file. See Section 5.3 for examples of
logical End of Tape

3.3 BOOTSTRAP FILES

Bootstrap files must be the first file on the tape, and must have
exactly level zero characteristics, i.e., 128-byte blocks, file names,
etc. Data type must show bootstrap type.

3.4 MULTI-VOLUME FILE SUPPORT

Level zero systems do not support multi-volume Files.

3.4.1 READ Support

Level one and two systems should always check byte 12 of the header
block for the expected value. When a file is opened, the expected
value of the first volume is zero. The number for each successive
volume is incremented by one. If the expected value is not found, the
system must give a warning.

Level zero systems and other systems reading level zero cassettes must
report end of file when clear trailer or a file gap is reached during
READ. Level one or two systems reading level one or two cassettes
must report end of file only on reaching a file gap. When they reach
clear trailer, they must output a message to the operator asking
whether end of file has been reached

The operator must indicate whether more volumes exist. If the reply
indicates no more volumes, the System must react as though end of file
were reached. If the reply indicates another volume, the System must
2llow the operator to load the _assecte. It must then search the
cassette for a file with the same name and version number -5 the last
one, and the next higher volume number (byte 12). If it finds such a
file, the system must then continue processing. If no such file is on
the cassette, the s stem must report same and allow the operator to
mount another cassette.

DEC STD 125 5-Jun-75 Page 15

3.4.2 WRITE Support

Level zero systems must give a “device full" message when clear
trailer is reached, and close the file. (This implies that the last
file on the cassette may be an incomplete one.) Level one and two
systems that reach clear trailer on WRITE must:

1. Insure that the block being written when clear trailer was
reached will give a clear trailer error when read back. This
involves first checking the byte transfer count to determine
if all bytes of the current block were transferred to cassette
before the clear trailer indication was received. If the
count indicates that all bytes were not transferred, then this
partially-written block will always give a clear trailer
indication when read back with the proper block size. This
last block must be retained for transfer to the next volume,
if the operator so specifies. If the byte transfer count
indicates that all bytes were successfully transferred to
cassette before the clear trailer indication was received,
then the system must backspace one block and write a file gap
over this last block. Writing a file gap if all data bytes
were transferred insures that this block cannot be read on any
drive, and thus, the block will not be duplicated if the
operator chooses to continue the file on another volume. This
last block must be retained for transfer to the next volume if
the operator so specifies.

2. Send a message to the operator indicating that physical end of
tape has been reached and requesting that the operator mount
another volume. The operator must have the option of closing
the file without mounting a new cassette. (This always
results in the loss of at least the last block of the file.)

the operator wishes to close the file, the system should
rewind the volune which filled up. It need perform no furthar
I/0 on this volume; the last file is already effectively
closed. If the operator wishes to continue the file on
another volume, he Should remove the volume which filled up
and mount another volume on the same drive.

3. After the operator has loaded the cassette, the System must
space to logical end of rape, and write a new header with
incremented volume number. It must then write out the block
left over from the previous volume and Continue processing.
It is recommended that the operator have the further option of
specifying that the newly-mounted volume he treated as a blank
cassette. In this case, the System begins writing the header
of the new file at the beginninq of the tave (after the
initial file gap). It does not space to logical end of tape.

dlifgliltla

DEC STD 125 5-Jun-75 Page 16

NOTE

The multi-volume file write support for
level one and two systems described above
is intended only for use with fixed-length
128 byte blocks. For longer vlock lengths,
writing a file gap over the block which was
being written when clear trailer was
detected can result in a gap large enough
to be recognized by hardware as a file gap.
Upon reading this last file on the volume,
such a gap would signify logical end of
file, even though the user may have
specified that output be continued onto
another volume. This problen does not
arise with block lengths of 128 bytes or
less, since overwriting a 128-byte block at
physical end-of-tape with a file gap cannot
result in a gap in a gap large enough to be
recognized by hardware as a true file cap.

4.0 STANDARD FOR UNLABELLED CASSETTES FOR INTERCHANGE

simple systems (e.g., "intelligent" terminals) may be able to support
cassettes only in a manner similar to paper tape support. In such
cases, they merely write data to the cassette in such a manner that it
may be read back later. The cassette, in such cases, contains no
Eiles, no file block headers, no sentinel file, etc.

The format for an unlabelled cassette is as follows: first, the clear
leader; next a file gap; then the data, grouped with successive
fixed-length blocks. These blocks are separated by block gaps and the
data is terminated by a file gap. Block length and content must be
agreed upon in advance by Systems wishing to interchange unlabelled
cassettes. (128) 18-byte blocks are recommended and shall be the
default size.

unlabelled not. for i , since Aata
fomats are unspecified.

DEC STD 125 5-Jun-75 Page 17

5.8 EXAMPLES

5.1 HEADER BLOCK FORMAT

The following diagram illustrates the format of the standard Eile
header tlock. Detailed descriptions of the fields are contained in
Section 3.1 of the standard.

a | | Type
11 1
2 |
5 File name 1
4 |
5 I
A 1
7 File name Extension I a
8 1
. 9 Tata Type I
most significant —=> 1a
least significant --> 11 Block Length 1P
12 Sequence Number I8
15 Support Level 1 8
1a 1 |
51 |
10 1
17 Date 1A
18 1
191 1
most significant —-> 29 | Generation Wumber [
least significant —-> 21 | 1
22 T REC_Attributes 1B
23 | Tindefined for Levels 0 3
24 1 & 1, must be set to I8
25 | 2éro by level 2 i
2 | Tast 3 characters of t
271 File I A
28 | tevel 2 i
29 | {
391 Reserved for I8
a Customer l
Type:
A = ASCII

8 = Ainary

DEC STD 125 5-Jun-75 Page 18

5.2 TYPICAL FILE HEADER BLOCK FOR LEVEL ZERO

! [[! | 1
| FILNAM | 7XT 1 1 1@ | 128 |0 | & | 216173 | 2 @ | Unspecified |
i | [U A A 1 1 1
1 1 [[1 | I
a -=> £ <===> 9 18 11 12 13 14 28<====>25 26<=======>31
FILENAME: FILNAM, TXT
Type: ASCIT (1)
Aalock
Length 128 (10)
Sequence 4 = multi-volume files not in level zero.
Level: Zero
e: January 1, 1973
Generation Number
zero
5.3 LOGICAL END OF TAPE
| 1 1 1
I I | I
! | 1 I
Date Alock File Gap Sentinel File
Data Block Date Block Data Rlock Clear
Block Gap Block Gan Block Gap Trailer
[[1 1 !
[N [1 | 1
1 | [I | |
[| i 1 1
1 I ! ! | 1
[1 | | 1
Pata Block Data Rlock Partially clear
Block Gap Block Gap wWritten Trailer
Data Block

DEC STD 125 5-2un-75 Page 19

5.4 BEGINNING OF TAPE

Clear File Block Data Block Data File
Leader Gap Gap Block Gap Block Gap

1 I
1 I
HEADER | 1
1 I

1
1
1
1

< >

32 Bytes

n bytes
(128 for Level)

DEC STD 125 5-Jun-75 Page 20

APPENDIX A

Al FORMAT OF PDP-8 BOOTSTRAP FILE

File must be such that when positioned as the first file on a
cassette, it can be read in by the MI8-EL ROM bootstrap loader and
when branched to will perform some bootstrap function (like read in
the second file on the cassette which may he the monitor).

In order to create a bootstrap file properly, one must know what the
32-word ROM bootstrap does. A source listing is given below:

/CASSETTE SYSTEM BOOTSTRAP
COPYRIGHT 1972

DIGITAL EQUIPMENT CORPORATION
WAYNARD, MASS. #1754

NN

S.R.

/STARTING LOCATION (NORMALLY): 4800

5700 XCLR=5700
5701 KSDR=6741
5702 KSFN=5702
5793 KSBF=5703
5794 KLSA=6704
5785 KSAF=6705
5706 KGOR=4706
5707 KRSB=6707
7002 BSW=7002 /PDP-8/E, -8/F, AND -8/M ONLY
3602 L0C=3502 /LOCATION WHERF SECONDARY
/BOOTSTRAP REALLY SETS LOADED
4990 *4n00 /INITIALIZE PULSF CLFARS THE LINK
94000 1237 START, TAD M58 /CHANGE READ CRC CODE () TO
/REWIND <1> [RIN]
04001 1206 CRCCHK, TAD L268 /LOAD RFAD CRC CODR INTD STATUS
/REGISTER A [IMP I START]
04002 5794 KLSA /EIRST TIWR THROUGH, LINK MUST
/BE 1 HER
84083 5706 KGOA /m[ﬂnr THF. OPERATION (RFAD
/CRC OR REWIND OR FRWD FILE GAP)
74084 5793 KSRF /RFADY?
94605 5204 RDCOD, JMP .-l /NO, WAIT
@485 7264 L2A@, CML STA RAL /SFT AND AC= A HALT (7775)
24087 5702 KSEN /ANY FRRORS?

44010 7414 SKP LA ad
04011 3211 ncA /HALT ON ANY ERROR FXCEPT FOR

DEC STD 125

a4012 3636
04013 1205

94014 5704
#4315 6705

94015 5761

84017 s215

5-Jun-75 Page 21

/REWIND OR FRWD FILE GAP

DCA I PTR /CAN'T ALLOW 'TAD I PTR' LATER
/TO AFFECT LINK

TAD RDCOD /GET CODE FOR READ (9)

KLSA /LOAD INTO STATUS RESISTER A
LOOP, KGOA /FIRST TIMFE STORES 173 INTO MEMORY
/(8-BIT COMPLIMENT OF RDCOD)
/OTHER TIMFS RFADS ONF 6-3IT
/RYTE OF PAIK
KSDR /NEW DATA WORD READY?
aMp -1 /N0, Wi
RSU /MOVE s BIT BYTE TO H.0. AC
szL /WHICH 6-BIT BYTE OF THE PAIR?
TAD 1 PTR /2ND. SO ADD IN 1ST RYTE
CML HSW /SWAP BACK AGAIN. SET LINK TO

/INDICATE NEXT BYTE
DCA I PTR /STORE BACK INTO MEMORY
SNL E WE DOME LOADING BOTH 6-BIT

/BYTES?
157 PTR /YES, SO POINT TO NEXT MEMORY WORD
ISZ KNT /BUMP COUNTER

/REITERATE

Jmp LOOP

STA CLL RTL

BSW /SET AC=7577

DCA RNT /SET COUNT TO ALLOW READING A
/248 BYTE RECOR

JMP CRCCHK /GO CHFCK THE cnc
T, 7737 /ONES COMPLIMENT OF NUMBER OF
/BYTES T0 LOAD
PTR, Loc-23 /MEMORY LOCATION TO REGIN LOAD AT
M50 -5¢ /CLA SPA SZL

/THIS ROUTINE BINARY LOADS BINARY rn.zs INTO MEMOPY.
/IT BEGINS BY LOADING A RECORD OF SIZE
/'ruzu CONTINUES TO LOAD SUCCESSIVE necmms FACH OF SIZE

/'n-us PROCESS CONTINUES UNTIL IT DESTROYS ITSELF.
/TLOCATIONS 4@@@ AND 4301 ARF RFPLACED RY JMP I(3IN)]
/BY THE SECONDARY ROOTSTRAP.

/THF FIRST MEMORY LOCATION ARFORE A NFW CASSFTTF RECORD
/1S READ IN IS LOADED WITH A RANDOM VALUE (173).
/SUCCESSIVE WORDS ARE LOADED WITH THE 12-BIT QUANTITY.
/180A+8, WHERE A AND B ARE SUCCRSSIVE 6-BIT BYTES FROM
/THE CASSETTF RECORD.

/MEANINGLESS WORDS GRT LOADED IF THE CASSETTE CONTAINS
/8-RIT RYTES AS CAN (AND DOES) HAPPEN WHEN 'LOADING'
/THE HEADER, AND WHEN 'LOADING' THF ORIGIN AT THE
/REGINNING OF THE RECORD.

DEC STD 125 5-Jun-75 Page 22

Basically, the bootstrap file is a standard PDP-3 binary file except
that origin settings are treated as data words. The ROM reads data
from successive records (beginning with the header record) and treats
this data as binary data (two successive bytes form one 12-bit word
using the low order 6-bits of each byte). These binary data words are
loaded into core into successive locations beginning with location
3557 in field 0. This location was chosen so that the random data in
the file header block loads there and then the real data from the
first 200-byte record begins loading into location 3A02.

NOTE

Fach time a record gap is encountered,
the next core location is loaded with an

undetermined 12-bit word. Data in the
next record resumes with the next core
location.

This process continues until locations 4904 and 4081 are loaded.
Location 40#1 must be loaded with the starting address of the
secondary bootstrap, location 48A1 must be loaded with a 5504. (This
number must be a multiple of 109)

It is strongly recommended that there be only one hootstrap file -
nanely the one used by CAPS-3 called C2RAT. If necessary, it can
read in a terciary bootstrap to do further loading (see the 0S/8
program called C3800T).

A.2 PDP-8 CASSETTE BINARY FORMAT
File consists of a sequence of entries.

(bit 3 is

Each entry consists of one or two 8-bit hytes as follows
high order bit, bit 1 is low order):

data entry: bytes
1st byte: bits 8,7 must be 79

bits 6-1 are high order & bits of data word
2nd byte: bits 3,7 must be 29

bits 6-1 are low order & bits of “ata word
origin entry: 2 hytes

DEC STD 125 5-Jun-75 Page 23

1st byte: bits 8,7 must be A1
bits 6-1 are high order 4 bits of new origin

“2nd byte: bits 8,7 must be 28
bits 6-1 are low order 6 bits of new origin

field entry: 1 byte

bits 8,7 must be 1.
bits 6-4 is new field setting
bits 3-1 must be 94

trailer entry 1 byte

bits 8-1 must be 13 009 000

These entries may appear in any order except that trailer entries may
only appear at the end of the file and there must be at least one byte
of leader/trailer at the end. TIf the last entiy hefore the final
trailer is an origin entry then that represents the program's starting
address.

Cassette binary format does not include a binary checksum. This was a
design flaw.

First frame of :rauer at end signifies logical end-of-file. Data
after it is not speci

A.3 PDP-11 CASSETTE FORMATS
1. Formatted Binary Format

Records are word aligned, variable length and only the "text”

section can cross block boundaries. Records are variable

\eng th and can cross block boundaries. MNulls are used as
where n .

201

1
2 a0

Byte 3 low order of (length of "DATA" in bytes)+d=(n]
4 high order of (length uf "DATA* in bytes)+d=(n]
5
n

ayte (last byte of DATA)
Ryte n+1 Checksum byte = - Byte

(two's complement add with carry out ignored)

DEC STD 125 5-Jun-75 Page 24

The format for the “"data" information will vary from use to

use.
NOTE
PDP-11 OBJ & LDA formats (types 20&22)
toth adhere to this formatted Binary
Format, but _ differ in their
interpretation of "DATA".
2. 11M TSK Format -

Cannot be completely defined here.

*Since there will always be an 11M Task Builder Manual, a
reference to it should suffice.

DEC STD 125 5-Jun-75 Page 25

APPENDIX B

FORMAT OF CASSETTES FCR FIELD RELEASE

when a cassette is copied from one drive to another, there is no
guarantee that the physical length of the data on the copy will be the
same as the physical length of the origina:. Although Gata may fit on
one cassette, when attempting to copy this data onto another cassette,
one may run out of room on the second cassette. For this resson, we
recommend that any cassettes intended for interchange should not he
more than about 75% full.

More specifically, we recommend that a cassette intended for
interchange should not contvin more than 2aAA03 (octal) bytes of data.
When computing this number, each record gap written should be
considered to be equivalent to 56 (octal) bytes of data and each file
gap (including the initial one) should be considered equivalent to 454
{octal) bytes.

Cassettes intended to be copied by and distributed via the Digital
Software Distribution Center must adhere to this recomnendation.
NOTE
Currently the SDC cannot copy a cassette
bigger than this. (This affects

submission of multi-volime cassette files
to SDC) .

DEC STD 125 S-Jun-75 Page 26

APPENDIX C

NON-STANDARD FILE TYPES

Type Description
2 paper tape image (non-ASCIT)
3 core inage format #1
e 35-bit computer word in 5

(wastes low order 4 bits of hfch byte)

4 core image format #2
one 12-bit computer word in 2 byte
(only the low order 5 bits of each byte being used)

5 core image format
one 18-bit cumputer word in 3 byte

5 core image format 34
one 3A-bit computer word in 5 byt
(only the low order 5 bits of each byte heing used)

7 core image format §5
one 15-bit computer word in 2 byte

10 PS/R character packing (core image format #6),
3 bytes for two 12-bit words as shown below

1 core image format %7

wo 35-bit wo:ds in 9 byte
12 core image format

€our 18-bit words in 9 byte
13 bootstrap file
14 bad file

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26

