
DEC
STD
125

REV.B

CASSETTE
FORMAT

FOR
FILES

I

Page 1

Describes the format dnd labelling conventions for files,
physical block.s, logicdl records and data written on
I)i'lital Equipment Corporation Cassettes. It dlso describes
the unlabelled standard. This standard must be followed
wben reading dnd wnti:1g cassettes intended for interchange
between systems; it 1s re'corrmended for other cass"ttes.

I This stand;;.rd has been reaffirme<l without change by the
I S<ftware Standards Approval Committee or. 18 June 1981.
I

R. Amann
(Eng. Comm.)
~~/"5175

• • •

• •

• •

TABLE OF CONTENTS/REVISION STATUS

Subhead

Title Page
Table of Content .. /Revlsion St"tus

1.0 INTRODUCTION
1.1 MOTIVATION
1.2 GOALS
U , ..
1.4.1 Deletio;}s
1.4.2 Ch"nge To Previous Standard Proposal
1.4.3 Additions
1.5 RELATED STANDARDS ACTIVITIES
1.6 FUTURE STANDARDS ACTIVITIES

; .. ;.,
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.~

3.1.7
3.1.8
3.1.9
3.1.1~

3.1.11 ;.,
U
'-'
3.4.1
3.4.2

THE STANDARD - LEVELS
THE FILE HEADER BLOCK
The Fl.le Name
The Da.ta Type
File Block Length
~;~:l Sequence Number

File Creation Date
Generation NLlmber
Record AttributeS
Unused Bytes
Extended Filename Bytes
user Bytes
SENTINEL FILE
BOOTSTRAP PI LES
"IULTI-VOLUME FILE SUPPORT
READ Support
\oo'RITE Support

5-.1un-75
5-Jun-75
5-Jlm-75
5-Jun-75
5-Jun-75
5-Jun-75
5-,Jun-75
5-Jun-75
5-Jun-75

5-Jun-75
5-Jun-75
5-Jun-75
5-,}un-75
5-Jun-75
5-Jun-75
5-Jun-75
5-Jun-75
5-Jun-75
5-·Jun-75
5-Jun-75
5-.1un-75
5-Jun-75
5-Jlm-75

5-Jun-75
5-Jun-75
5-Jun-75

page 2

''''''

DEC S"I.'D 125 IB-.1Wl-81 ..,.3

TABLE OF CONTENTS/REVISION STATUS (COnt'dl

Title Revision '''.
5.' EXAMPL.ES 5-.100-75 17
5.1 HEADER BL.OCK FORHAT 5-Jun-75 18
5.2 TYPICAL FlU HEADER BL.OCK FOR t.EVEL. ZERO 5-J'un-75 " 5.3 LOGICAL END OF TAPE 5--.1un-75 18
5.' BEGINNING Of' TAPE 5--.100-75 19

APPENDIX A 5--.1un-75 " A.l FORMAT OF PDP-8 BOOTSTRAP FILE s-.Jun-75 " A.2 PDP-B CASSE'I"l'E BINARY FORMAT 5--.1un-75 22
A.3 POP-ll CASSETTE FORMATS 5-J'oo-75 23

APPENDIX B FORMAT OF CASSETTES FOR FIELD RELEASE 5-Jun-75

APPENDIX C NOH-STANDARD FILE TYPES 5--.100-75

P,,-ge 4

This standard was written to provide a meaSUre of compatibility among
Digital's systems that support cassettes. It was done at this time
because Digital nOW supports this medium.

This standar:l is intended to (I) furnish a design for labelled files
that will allow the lJsers to write files on one syst"", that supports
cassettes, and read them on another, (2) provide a consistent growth
pattern for support of cassettes, through a system of levels of
slJpport, (3) allow the fewest number of data formats consistent with
the neeels of computers with different word lengths, and (4) provide a
standard for unlabelled files.

applies to all Digital Software proaucts that stJpport
cassette files. The following products currently support

CAt'S-8
CAPS-ll/CIIPS-ll RI\.SIC
DOS-11
05/9
RT-ll
RSX-Ill>!

T'lis standard implies changes for each of those systems.

~~;:;ar~:stems that wish tLl slJpport cassettes must

Cassette hardware is not required to put out a file g<"p at t'le
beginning of the ".ape. Future cassette drivers and cLInt rollers must
not pCLlhioit software from writing at least level zero cassettes.

Page 5

1.4.1 Deletions

One previous effort was made at standardizing fUe formats. It
allowed for sever .. l i terns that have been deleted from the cun"nt
standard 1 v .. riable-Iength records, an optional second header record,
and several extra data formats. Variable length records Were
eli"linated, becal.lse they are hard to implement. The supplementary
header records were rejected, becal.lse the size of the medium seemed to
make a s!!cond header a candidate for overkill. We eliminater:l Some
data format;; because we decided on a go"l of a minimUll' number of data
for!"ats.

1.4.2 Change To Previous Standard proposal

The code" for the binary data formats were redefined, hecause the
previol.ls standard did not adequa::ely spell out how the codes were to
be used, and confusion resulted. Thus, code zero and c::.des in the
range 2 to 14 (used by the previous sta'ldard pro;>:lsal) a~e now listed
as undefined. In order to avoid the necessity for customer
conversion, a system encountering cassettes with a code in that range
Should asstJrne correct type and continue. Example: A DOS-ll Linker
would ordinarily expect data type 22. If it enCOl.lnters data type 3,
it aSsl.lIlleS correct format, and continl.les.

1.4.3 Additions

Th .. of'1!vious effort was not rigorous in its definition of levels.
The! was a minimal subset, and then several options beyond that. In
that: the primary goal was to enSure the possibility of llsing cassettes
as an interchange medium, we decidEd to strictly regulate the way in
which support for cassettes could be increased. Also "dded were a
generation number and clefinitions of formerly llnllsed bytes in the
header as reserved for (1) future standard use, and (2) uSer llSe.
Cassette labels (as opposed to file 13bels) were consiciered anrl
rejected for size considerations.

Page 6

All lev~ls are nested, i.e., if the operating system daims level n
cassette support, this implies it supports all features of level nand
levels zero through n-1. Therefore, it is necessary that all
level-zero reading programs be able to read level zero format and that
all level-ze,·o writing programs shall write only level-zero format.
Further, that all level-one reading programs be "ble to read
level-"l:ero and level-one formilts and that ,,11 l"vel-one progri!llls sh"l!
write 0,,1y level-one format including a" least one level-zero format.
,urther, _hat all level-two reading programs be acle to read level-two
brmat including "t leilst one level-zero for ... at. All level-zero
formats must be strict subsets of level-one formats. All level-one
formats must be strict subsets of level-two formilts. This implies
that any system which supports DEC cassettes must have the ability to
read, write and zero cassettes containing type 1 ASCII files.
Therefore, level zero, is the only guaranteed intarchange level.

haw' recently formed c~i"-tees to work in this area and
standards which may have to be dealt with in future

this standard.

:~ is expected that ASCII and binary data must comform to
~~~7~:~~ ASCII and 9inary fOl"'nacs, if such formats "re 

1d remerr."er the more 
still appears t."at a 
is to petition t!1e 



page 7 

A block consists of a sequence of 1 to 2**16 - 1 DATA BYTE:S fLlllowed 
by a 2-byte CYCLIC REDUNDANCY CHECK. (This is a Inqical limit, there 
is no physical limit, except for the lenqth of the tape.) 

A cassette BlTE is eight bits (binary number). A BIT is a b~nary zero 
(3) or one (1). 

A CHARACTER is a byte interpreted via the ASCII character codes. 
Parity is not required. The high order bit (bit 7, the leftmost bit) 
of each .. ight bit byte containing an ASCII character should be masked 
~~rdr.:ar~i.ng. Parity is cheeked by the software only, not by the 

A GENE:RATION NUMBER is a number assigned to a file at creation, to 
distinguish one file from a preVious version of the same file. 

The ASCII character 'space', whose value is 0411 (octal). 

The ASCII character whose vall.!e is Illlf! (octal1. 

Zero Byte A byte all of whose bits are zeroes. 

A File Key is defined as n mtmber of characters of file name and m 
number of characte,-s of file name extension (see Section 3.1l for 
definition of File '<ey for each le·..-e':. 

File nameS and extens~ons must consist ot letters, numerals and bL.nks 
40 (octal). The first character must not be blank; there Shall be no 
imbedded blanks within the name or extension; and short names must be 
padded LIn the right with hlanks. For level t'ot>, bytes 0-5 ann 21i-28 
are considered as a lInit, when applying these rules. For levelS zero 
and one, bytes 26-28 are l.!nnefined. 

Cassette ASCII is rlefined as seven bit AsCn, bit 8 is undefined and 
is ignored on rearling. 

* The software !'1ust ensure the e~istence of this initial file Cl"'P, by 
requiring hardwar& that does it al.!tOlTlatically (e.g .• the TlI.ll) or by 
· ... riting its own. 



P"ge 8 

a. Spare bytes in the last block are filled with nulls followed 
by a file gap 

b. CTRL/Z (<132(8)) and all data following must be ignored. 

Level Zero must support' 

1. 32 (decimal)-byte header block, which contains, 

siX-character name of file 
b. three-charao..:ter file name extension 
c. date 
d. data-type indication 
e. eight-bit binary generati",n number 

2. Logical end-ai-file 

3. Logical end-oi-tape 

4. Fixed-length, 128 (decima1)-byte blocks 

5. ASCII data (type 1) 

~. Optionally, any other listed data type 

7. file Key is defined as a sil<o character file name and first two 
characters of extension. 

Level One must support, 

1. lUI attributes of level zero 

2. Read/write support for multi-Vol"",e files 

3. File Key is defined as a six-ch~racter file na",e and three 
characters of extension. 



Page 9 

4. 16-bit binary generation number 

5. 1; record attributes byte 

->. Fixed-length blocks of from 1 to 2**1"-1 bytes in length 

7. File !{ey is defined as a nine character file name and three 
characters of e>:tension. 

Each labelled file must begin with a 32 (decim~ll-byte file header 
bloCk. Section 5.1 illustrates t: ~ format of the file header blOCk. 

The name is in 7-bit ASCII. The eiqth bit is undefined, and must be 
masked off on reading. 

"'Iultiple files with the same file key (for a given levell shall not 
appear on a single cassette intended for interchange. If the software 
system does not enforce this, the uSer manual for the 
software/hardware system must instruct the user to generate unlque 
file keys, if this cassette is intended for interchange. 

1; file may be logically deleted by 
changing the name to *~PTY. 1'0 cl,eck 
for a deleted file, check only the first 
character. This is to allow for tuture 
meanS for deleting a file (e.g., *E\AD). 



Page HI 

3.1.2 The Dat.l Type 

Ability to read and write ABell data (type 1) is required for level 
zero. Any system may support any other datil type, req"rdless of 
l .. vel, however these data types are not required to be supported for 
interchange p,Jrposes. 

Byte 9 in the file header block contains the ~Oata Type". The Data 
Type defines the way in which data is recorded in that file. Table 
3-1 lists the Type Codes and gives the meaning associated with each. 

to have the minimum number of types consistent ,.ith 
different word length. Odd numbered types are reserved 

to allow a single hit to show the presence of ASCII 

Type zero (undefinedj is required, ~E'cause files on 05-8 and RT-11 
disks do not carry data type information, but file transfers between 
disks and cassettes should not be prohibited for that reason. Hence, 
for example, the OS-8 "I(:PIP program will transfer disk files to 
cassette and give a zero type, unless the "ser specifies type. 
Paragraph 1.3.2 describes the reaso!!S for omitting defi!!itions for 
types 2 through 14. 

!>or further explanation of the ",,,ious definitions of these data 
types, "lee Append ix A. 



page 11 

Standard Data Types 

Unknown data type. To copy a file of this type 
to another medium, copy all 8 bits per byte and 
store in a format that can be restor"d to a 

Unknown data type. To copy a file of this type 
to another medium, copy all 8 bits per byte and 
store in a format that can be restored to a 
c,"ssette. (These codes must not 00 us"d by any 
new software.) S"e Appendi" C for ""planation 
.;>f the Us" of these codes in old software 
systems. 

ASCII characters with line numbers. 
specified. 

t~e CAPS-8 User Manual. No other POP-8 format 
may use this type code. 

Reserved for DEC standard ASCII, when and if it 
is specified. 

POP-11 OBJ format. Not to be used fDr Dther 
PDP-Il hinary formats. 

PDP-II LOA format. See comments on Type 2~. 

PDP-II TSK format defined in RSX-11" Task 
Builder ... anua!. 

flootstrap File for PDP-8. 

800tstrap file for PDP-11. 

Reserved for bootstraps. 

If the type is known, all proqrams must s"t 
They must .. rite ~ero (1) if type 15 unkno",,",. 
may check this type to see if it agrees .. Hh 
'live a .. arning message on disagreement. 



paqe 12 

].1.] File Block: Lell<Jth 

ByteS ll~ ,nd II of the File Header Block contain the length of e"ch 
(non-he"der) block: up to the next file gar>. Level zero and one 
requires 128 here; level two files mClst h"ve any non-zero value. 

Byte 10' contains the most significant 
bits. Thus, the record length equals 
(25") 10' times the contents ot byte .~ 

plus the contents of byte 11. 

a records in this file have variable lengths, byte l~ and 
contain zeroes. Such a file violates the standar". 

File Sequence NU/llber 

files. Byte 12 is unclefinen for level 

b~~e !~~ tiS!~';l\::Olf~: _ leves~c~~~s ~~~ 
cassettes shoulrl he nU/llbered 1,2,3, •.. 

zero files must insert a zero byte in this poSition; level one 
and level two files a tW'O. T"e :1igh-order four bits in 

reserved. for the nossibility of continuation header 
progri'Oms must ignore the high-order four hits ",hen 

number. ':'his is reserved for fur"r" stand"rds "5e. 



Page 13 

Byte 2~ contains an ii-bit binary generation number for all levels. It 
must be zero if the generation nlJlllber is un'<nown or not supported (as 
in CAP'l-ll or OOS/BATCH-ll). Level two files h<"ve a IF;-bit generation 
number, ",ith high-order bits in byte 20. Byte 21 must be zero for 
level zero and one files. 

Byte 22 specifies certain characteristics for data recorded on level 
tlNO files. Bit 0 refers to formatting of records destined for 
printing device, i.e., line printer, terminal, etc. TIle definition of 
this byte is: 

If 1, indicates that when printing the elata, the first 
character of the record is to be interpreted as FORTRA>,! 
carriage control character. 

UnUSecil must he zero. 

This byte is undefined for levels zero and one. 

3.1.9 Unused Bytes 

Bytes 23-25 are undefined for levels zero and Onel they are reserved 
for future use by the standards, and must be set to a rwll for level 
two. 

E>:tended Filename Bytes 

Level two files insert the last three characters of the fi1e~ame in 
byte 26-28. Contents 01' these bytes must be 7-bit ASCI! characters 
be level two. These bytes are undefined for level zero -"nd level 

Use.- Bytes 

Bytes 29-31 are reserved for ~he Llser. Default must be weitt~n "s 
zero or ?S supplied. 



paqe 14 

Logical End of Tape may be denoted by cle",r trailer or a 32-byte file 
header block with the first byte null. Such a block follOWS a file 
gap and is called a sent~nel file. See Section 5.3 for examples of 
loqical 8nd of Tape. 

Bootstrap fil.;.s must he the fhst file on the tape, and must have 
ex~ct1y level zero characteristics, i.e., 128-byte blocks, file names, 
etc> Data type must show oootstrap type. 

Level Zero systems do not support multi-volume files. 

3.4.1 RE:M) Support 

one and two systems shoLJld alw"ys check byte 12 of the header 
for the e><pected value. When a file is openei1, t~e expected 
of the first volume is zero. The number for each successive 
is incremented by one. If the expect~ value is not found, the 
must "live a "arning. 

Level ~ero systems and other systems reading level zero cassettes must 
report end of file when cle~r trailer or a file q~p is reached during 
READ. Level one or two systems reading level one or two cassettes 
must report end of file only on reaching a file qap. When they reach 
clear trailer, they must output a messaqe to the oP<'!rator asking 
whether end of file has been reached. 



Page 15 

3.4.2 WRITE Support 

Level zero systems must oive a "device full" message when clear 
trailer is reached, and close the file. (This implies that the last 
file on the cass(>tte may be an incomplete one.) Level one and two 
systems that reach clear trailer on WRITE must, 

1. Insure that the blOCk being written when clear triOiler WiOS 
reached will give a cle~r trailer efror .men read back. This 
involves first checking the byte transfer count to determine 
if all bytes of the current blOCk were transferred to CiOssette 
before the clear tn.iler indic<'ltion was received. If the 
count inrlicates that all bytes were not transferred, then this 
partially-written block will always 'live a clear trailer 
indication when r"iOd back with the proper blOCk si<:e. This 
last hlock must be retained for transfer to the next volume, 
if the operator sO spe,:ifies. If the byte transfer count 
jl'dicates that all bytes were successfully transferred to 
cassette before the clear t~ailer indication was received, 
then the system must backspace one blOCk and write a file gap 
over this last blOCk. Writing a file gap if all data bytes 
were transferred insures that this hlock cannot be read on any 
drive, and thUS, the block will not 'Je duplicate" if the 
operator chooses to continue the file on another volume. This 
last block must be retained for transfer to the next volume if 
the op>rator 50 specifies. 

2. Send a message tr the oper"tor indicating that physical ent! of 
tape has been reached 'md requesting that the operator ",ount 
another volctme. The operator must have the option of closin, 
the file without ",ounting a new cassette. (or!'is always 
results in the loss of 1'It least the last block of the fil ... ) 
If the operator wiShes to close the file, the system should 
rewind the volume which filled Llp. It r,eed perform no furth"r 
I/O on this volctme; the last file is already effectively 
closet!. If the operator wishes to continue the file on 
another vol ctme , he shoulct remove the vollll'le which filled LlP 
and mount another volctm .. on the same orive. 

3. After the on .. r",tor has loaded the cassette, the system must 
space to logical end of tace, imd write a new header with 
incremented volume nLlmber. It must then ",ri te '>ut the blOCk 
left over from the previous volume and continue processing. 
It is recolWlen<led that the oper1'ltor have the further option of 
specifyinq th;'lt the newly-mounted vol"",e he treated as '" bl",nk 
cassette. In this case, the system begins ",ritinq th .. header 
of the new file at the heginnin'l of the tape (after the 
initi"l file ,),ap). It rioes not space to logical end of t",pe. 



The multi-vol,-",e file write support for 
level one and two systems nescribed above 
is intended only for use with fixed-length 
128 byte blocks. For longer ulock len<Jths, 
writing a file gap over the block which WIIS 
being written when clear tr"iler was 
detected Clln result in a gap large enough 
to be recognized by hardware as '" file gap. 
Upon reading this last file on the volume, 
such a gap would signify logical end of 
file, even though the user may have 
specified thllt output be continuerl onto 
another volume. This proble!'l does not 
arise with block lengths of 128 bytes or 
less, since overwriting a 128-byte block at 
physical end-of-tape \<lith a iile gap cannot 
resul t in a gap in a gap large enough to be 
recognized by hardware as a true file <;ap. 

Page Hi 

Simple syste!'ls (e.g., Hintelligent" ter:rninals) may he ahle to support 
cassettes only in a m"nner similar to pllpe!r tape support. In such 
cases, they merely write data to th'" cassette in such a manner that it 
"'''y be read back later. The cassette, in such cases, contains no 
files, no file t-Iock headers, nO sentinel file, etc. 

The format for an unlabelled cassette is as fallows: first, the clear 
leader; next a file qap~ then the data, qrouperl with successive 
fixed-length bl::>cks. These blocks are separated by blOCk gaps and the 
dat" is teI'"l'inated by a file gap. Rlock length and content must he 
agreed upon in ndvance by systems wishing to interchange unlabelled 
cassettes. (128) HI-byte blocks are recOTnl'\ended and snaIl be the 
default size. 

'lnlabelled cassettes are not recommended for interchange, since rjata 
fomats ar", llnspecified. 



Page 17 

diag~am illustrates the fonnat of the stanrlard file 
header Detailed descriptions Of" the fields are ('ontainen in 
Section the standan'l. 

A I , Type 
1 I I 
2 I I 
3 I I 

" I 
~ i-----------: 
7 , File name Extension , A 

" I 9 , Data Type , a 

?~;~t S!1~~U~~:~t -=~> i~ : '3lock t.enqth : R 

12 I Sequerlce Number I B 
13 I Support Level I B 
14' I 
15 I I 
l~ I I 
17' I,", 
18 I I 
19 I I 

most signHicant --) 2~ I G"ner"tiorl NUI'1',er I R 
least siqn:Ucant --) 21 I I 

22 I 'lEe Attributes I A 
23 I 'Indefined for Levels ~ I 
24 I ~ 1, must he set to ! 9 

i~ : Last z;r~h~~a~:~;! ~f : 
27 I I" 

;~ : : 
3'1 I I B 
31 I I 



I I I I I I I I I 
I FILNAM I '1'XT I 1 I ~ I 12A I" I ~ I ~1".L73 I " 
I I I I I lr I I I I 
I I I I I I I I I 

FILE'lA"'E, 

~i:~ 
Lenqth 
Sequence 
[.evel, 
Date, 

FIt.NI\. .... TXT 

''I 

Data BlOCk Date Block 
BlOCk Gap Alock 

~ata 

'nock Gap 

Page 18 

, , 
~ I Unspecifie,; I , , 

, , 

Clear 
Trailer 



File 
Oop 

paq. 19 

Block 
Gap Block Gap Block Gap 

<--------> 
32 Bytes n bytes 

fl2S for Level 'lJ) 



Page 20 

must be such that lItlen posi tioned as the first file on a 
cassette. it can be read in by th .. ~re-EL ROl<' bootstrap loader and 
lOhen branched to will perform Some bootstrap function Ilike read in 
the second file on the cassettE which may he the ..,onitor). 

In order to create a bootstrap file properly. one must know what the 
32-word ROM bootstrap noes. A source listing is qiven below: 

/CASSETTE SY'lTE~ llooTSTRAP 

COPY'1IGfIT 1972 
DIGITAL F:QUIP .. ENT CORPORATION 
MAYNARD, MASS. ~1754 

/STARTING LOCATIO"! (NORMALLY), 

41l1l0 

!(SDR~~7~1 

KSf:'l~<;7",2 

KSRP=<;71l3 
RLSA~fi7M 

KSAF-"i705 
kGOA='i70fi 
KRSB-"i7~7 
BSW:7002 /PDP-8/E, -8/F, AND -8/1'1 ON::'Y 
LOC"'3~02 /LOCATIO"I ""HER!': SE;CONDARY 

/BOOTSTRAP REALLY GETS LOADED 

1237 START, 
/INITIALIZP. PULSF: CLP.ARS THE LINK 
/CHANGE READ eRe COD!': (~) TO 

CRCC!1K, TAl) L2"" 

ROCOD, 
L2~", ~~ST1I. RAL 

/REWIND <1> [FlIN] 
/LOAD RF'AD eRe COD~ [NT') STATUS 
/REGIST!':R 1\ [.J"'!P I 'lTIIRTl 
/FIRST TI"'R TIlROUGIl. LP1l; "U~T 
/'lE 1 RimE 
/INITIATIC Tf/R OP£:RII1'I()'iI (RRIID 
/eRC OR REWIND OR FRWD PILE GAP) 
/'lP.ADY? 
/"<0, WIIIT 
/S~T L'-l A"I) "'C'- ... 'lALT r777~) 

/ANY ~RRORS? 

'l!«p eLA /"Ir) 
1)CA /HALT ON ANY ERROR ~XCP.PT FOP 



@4U3 12@5 
@4@14 <;7@4 

Page 21 

/REWIND OR F'RWD FILE GAP 
/CA~'T ALLOW 'TA..D I PTR' LATRR 
/TO A..FFECT LINK 
/GET CODE FOR RF:"!) (I'll 

I'lMUS <;7@<; LOOP, 
ILOAD INTO STATUS RESISTI':R A 
/FIRST TI"If: STORf:<; 173 INTO ME"ORY 
/(8-'3IT COMPLI"IE!<T OF RDCOD) 
/<'JTRER TI"Ir,S RF:ADS 0"1': Ii-BIT 
/flITE OF PAUl 
/'lE.'l"' DATA WORT} RE»,OY? 

/'lo, WAIT 
@40120 711"2 RS'1i /"IOVl': 6-BrT fl"fTl'; TO H.O. AC 
34@21 743., 52L /MIlcH ~-IHT BYTE OF THE P»'IR? 
~4(l22 1.,3>; TAD 1 "TR /2ND. SO »'DD IN 1ST RYTE 
114323 7@22 ~L HSW /SWAP BACK AGAIN. SET LINK TO 

/INDICATE NEX'f BYTE 
"41'l24 3636 /STORE BACK INTO "IEIoIORY 
.,4.,25 742@ /AAE WE DO~lE LOADING BOTH 6-BIT 

/RY'TES? 
223<; IS?; PTR /YES, SO POINT TO NEXT "IE"IORY WORD 
2235 ISZ KNT /BUMP COUNTER 
5215 J"IP LOOP IRE ITERATE 
734<; STA CLL RTL 
7@@2 SSW /SET AC~7577 
3235 DCA KNT /SET COUNT TO ALLCM' READING A 

/2f1f1 BYTE RECORD 
'I4@34 52"1 J"'P CRCCJ{K /GO CHf:C'< 1'1;1:: CRC 
~403S 7737 '<'IT, 7737 JONES C~PLI"'I':NT OF "IU"'BER OF 

/RYTES TO LOAD 
24030 3557 PTR, /"'f:.'\ORY LOCATION TO Flf:GI"I LOAD AT 
@4,,37 773" "15", -50 /ClA SPI!. S7.L 

/T'H~ ROUTINE <lINARY LOll,DS BINARY !'"ILES TNT'} ''IE1010PY. 
/11' BEGI~S BY LOADING A RECORD 01> 'in!': 4", 
ITHEN CO"lTINUES TO LO"'D SUCCESSIVE REC'1'1DS EACT-'I 1"Jf" SIZE 
/2'HI. 
ITHIS PROCESS CO"ITT~lJES \/NTIL IT DESTROYS ITSELF. 
I (LOCATIONS 4"~~ AND 4"~1 AR~ RRPLACSD RY .7~P r ('>1'1) 1 
/SY THE SECONDARY '>OOTSTRAP. 
ITH!': "IRST ~Er<10RY LOCATIO"l RR;;",)RE A 'H'~ CASSI'.TTI:: RPCI"JRfJ 
lIS RF..AD IN IS LOADED 14ITH A RAND~ VALUE (173). 
/<;lJCCESSIVE 'oJORQ3 ARE LOADED ' .... IT'1 THE 1.2-Flrr QUANTITY. 
11~"A+B, wT-n=:RE A AND B ARE SUCCESSIVE 6-RI-:' RYTES FR()!o1 
ITHE <::ASSP.TTE ru.:CORD. 
/MEANINGLESS WORDS GP.T LOADf:D TF THI': CASSETTE CO"lTAI'I5 
/9-'11'1' AY'l'ES AS CAN (II.ND DOE'i) 'lA"PF.'J ''-'lEN 'LOADING' 
ITHE READER, AND ' .... HEN 'LOADING' THE ORIGIN liT THE 
!'W.GI"'IING OF THE REenRD, 



5-.1un-75 paqe 22 

'lasically, the bootstrap file is a standard PDP-B binary file except 
that origin settinqs are treated as data won:!s. The ROO1 reads (lata 
froo sue':essive records (beginninq with the hearler reeon'l) anrl tre<'lts 
this data as binary data (two successive bytes form one 12-bit word 
using the low order "-bits of each byte). These binary clata words are 
loaded into core into successive locations be.qinninq with loc"tion 
3557 in field 0. This location was chosen so that the random data in 
the file header block loads there and then the real data 
first 200-byte record begins 10a,Hng into location 3"rJ2. 

<;aeh time " record gar> is encountere<:l, 
the next core location is loaded with " ... 
undete[TT'lined 12-hit word. Data in the 
next record resumes wi th 
location. 

.,ne hootstrap file -
If necessary, it can 

10"riing (see the IjS/S 

File consists of a s"quence of "ntries. 

Each entry consists of one or two 8-bi~ >,ytes as !:ollows: 
high order hit, bit 1 is low orrier)' 

rI"ta entry: 2-bytes 

1st hyte, hi ts 8,7 ",ust he ~0 

bits ~-l are ~igh onler ;; bits of data worn 

bn ~yte, hits 8,7 must he WI 
hits r,-l are !ow order ~ hits ')f ""t" word 

')righ entry' 



1st byte: 

"2nd byte: 

field entry' 

5-Jun-75 Page 23 

bits B,7 must be III 
bits fi-1 are high order Ii bits of new origin 

bits a,7 must be 110 
bits 6-1 are low order r; bits of new origin 

1 byte 

bits 8,7 m,ust be 11 
bits fi-4 is new Field settir'<;j 
biU 3-1 must be II~II 

trailer entry: 1 byte 

bits 8-1 must be 10 000 000 

Theae entries may appear in any order except that trailer entries ...... y 
only appear at the end of tbe file and there must be at least one byte 
of leader/trailer I.It the end. If the last ently before the final 
trailer is an ori'1in entry then that represents the program's starting 
,,<ldress. 

Cassette binary format does not include a binary CheckSum. This was a 
design flaw. 

First frame of trailer at end signifies logical end-of-fHe. Oata 
after it ianotspecified. 

A.3 PDP-ll CMiSETrE FORfIIATS 

1. Fomatted Binary Format 

Records are word aligned, variable length and only the ~telCt­
section can cross bl=k hounrlaries. Reeor1s are varia!)le 
length and can cross block boundaries. TIIulls are userl <'s 
inter-record separOltors where necessary. 

By tel 
F!yet 2 ~1I0 
Byte 3 low orrler of (length of -DATA- in hytes) +4"{nl 
Byte 4 hi'1h order of (lenqth uf -PATA- in bytes)+4-{nl 
ByteS 
lJyte 1'1. (last byte of DA'I'A) 

Flyte 1'1.+1 Chaeksum byte" - Byte 

(two's complement add with carry out iqnored) 



Page 24 

'!'he format for the "dat,," informiltion will vary from l.lse to 

LDII. formats (types 2~&22) 

looth adhere to this formatted Binary 
Format, but differ their 
interpretation of "DII.TII.". 

Cannol: be completely deflned here. 

*Since there will always be an 11'" Task Builder Manual, 
reference to it should suffice. 



page 25 

When a cassette is copied Erom one drive to another, there is nO 
guarantee that the physi<:"al length of the data on the cony will be the 
same as the phySical length of the origina.. Although cOata may fit on 
one cassette, when attempting to copy this data onto another cassette, 
one may nm out of I;"oom on the second cassette. For this reason, we 
recommend that any c,"ssettes intended for interc"ange should not he 
more than about 75% full. 

"lore specifically, we recommend that a Cassp.tte intended for 
interchange should not cont·'in "".ore than 2~~fl~0 (octal) bytes of data. 
When computing this numbel;", each record gap written should be 
considered to be equivi'llent to 5~ (oct"l) bytes of d"t" and each file 
gap (including the initial one) Should be considered equivalent to ~54 
(octal) hytes. 

C"ssettes intended to be copied by and distributed via the Digital 
Software Distribution CenL"1;" must adhere to this recommendation. 

Currently the SOC c"nnot copy a cassette 
bigger than this. (This affects 
sulInL.sion of multi-vall",,, cassette files 
to SOC). 



Type Description 

paper tape image (non-ASCII) 

core imilge format II 
one 3r;-bit computer word in S byte 
(wastes low onler 4 bits of fifth byte) 

core imaqe format #2 
one 12-bit computer word in 2 byte 

paqe 26 

(only the low orde~ r, bits of each byte being tJsed) 

core image format 13 
one 18-bit computer word in 3 byte 

Core image format '4 
one 31i-bit comPtJter word in ~ byte 
(only the low order ~ hits of each byte heln,! tJsed) 

core image format tS 
one l~-bit comptJter word in 2 byte 

PS/fl character pacldnq (core image format J~), 

3 bytes for two 12-bi t words as shown below 

core i",age format t7 
two 3~-bit words i'l 9 byte 

Core image format t8 
four IS-bit "-'Ords in 'l byte 

bootstrap file 


	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26

