VAX C

Guide to VAX C

Order Number: AA-L370D-TE

Guide to VAX C
Order Number: AA-L370D-TE

February 1989

This document describes VAX C constructs in context with both the history of the
C programming language and that of the VMS environment. It contains information
on VAX C program development in the VMS environment, the VAX C programming
language, and cross-system portability concerns.

Revision/Update Information: This revised manual supersedes the Guide to VAX C
(Order No. AA—-L370C-TE).

Operating System and Version: VMS Version 5.0 or higher
Software Version: VAX C Version 3.0

digital equipment corporation
maynard, massachusetts

First Printing, May 1982
Revised, April 1985
Revised, March 1987
Revised, January 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1982, 1985, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’'s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-10 PDT

DECUS RSTS ™
DECwriter RSX ﬂﬂ@ﬂﬂﬂn

ZK4565

Contents

Preface e XXi
New and Changed Features XXV
Developing VAX C Programs on VMS Systems

Chapter 1 Developing VAX C Programs at the DCL Command Level

11 DCL Commands for Program Development 1-1

1.2 Creatinga VAXC Program 0o, 1i—4

1.2.1 Using VAXTPU i 14

1211 - TheEVEInterface 1-4

13 Compilinga VAXCProgram¢convevurnenn... 1-5

1.3.1 The CCCommandc.c. ittt nnnnn.. 1-5

1.3.2 The CC Command Qualifiers 1-7

1.3.2.1 Using the /DEFINE and /UNDEFINE Qualifiers . . . 1-18

1.3.3 Compiler Error Messagescouvuivn..n 1-20

1.4 Linkinga VAX C Programccvurueeennnnnnnns 1-22

1.4 The LINKCommand. 1-22

1.4.2 LINK Command Qualifiers 1-23

1.4.3 Linker Input Files i 124

1.4.4 Linker Output Files 1-25

i

£
Linking Against Object Module Libraries and Shareable

1.45
Images. 1-26
1.45.1 Object Module Libraries 1-26
1.4.5.2 Linking Against the RTL Object Libraries 1-27
1.4.5.3 Linking Against the RTL Shareable Images 1-29
1.4.6 Linker Error Messages 1-30
15 Runninga VAX CProgram 1-31
Chapter 2 Using the VMS Debugger

2.1 OVerview e 2-1
2.2 Features of the Debugger 2-3
23 Getting Started with the Debugger. 24
2.3.1 Compiling and Linking a Program to Prepare for Debugging . . 2-4
2.3.2 Starting and Terminating a Debugging Session 2-5
2.3.3 Aborting Program Execution or Debugger Commands 2-6
2.34 Entering Debugger Commands 2—7
2.3.5 Viewing Your Source Code 2-10
2.3.5.1 NoscreenMode 2-10
2352 ScreenMode oo 2-11
2.3.6 Controlling and Monitoring Program Execution 2-12
2.3.6.1 Starting and Resuming Program Execution. 2-12

2.3.6.2 Determining Where Execution Is Suspended-SHOW
CALLS e 2-14
2.36.3 Suspending Program Execution 2-15
2364 Tracing Program Execution 2-17
2.3.6.5 Monitoring Changes in Variables. 2-18
2.3.7 Examining and Manipulating Data 2-19
2.3.7.1 Displaying the Values of Variables 2-20
2372 Changing the Values of Variables 2-21
2.3.7.3 Evaluating Expressions 2-21
24 Notes on Debugger Support for VAXC 2-23
2.4.1 Debugger Command-Line Options 2-23
242 Accessing Scalar Variables 2-23
243 AcCCeSSING ATTaYS . . . ot it e e e 2-25
244 Accessing Character Strings oL 2-27
245 Accessing Structures and Unions 2-28
25 Controlling Symbol References 2-34
2.5.1 Module Setting i 2-34

252 Resolving Multiply Defined Symbols 2-35

2.6 Sample Debugging Session 2-36

Chapter 3 VAX C Support for Parallel Processing

3.1 Overview of Parallel Processing 3-1
3.2 Preparing Programs for Parallel Processing 3-6
33 Conditions That Inhibit Parallel Processing 3-9
3.4 Data-Dependency Analysis, 3-11
3.4.1 Array Variable References 3-11
3.4.2 Function Calls i it 3-13
3.4.2.1 math.h FunctionCalls 3-14
3.4.3 Pointer Variable References. 3-15
3.44 Scalar Variable References 3-16
3.5 Rewriting Code to Resolve Dependencies 3-17
3.5.1 Loop Alignment 3-18
3.5.2 Code Replication iiiin... 3-20
3.5.3 Loop Distribution PR 3-21
3.6 Storage Classes and Parallel Processing 3-22
3.7 Decomposition Pragmas i, 3-23
3.7.1 The ignore_dependency Decomposition Pragma 3-25
3.7.2 The safe_call Decomposition Pragma 3-26
3.7.3 The sequential_loop Decomposition Pragma 3-28
3.8 Memory-Management Functions 3-29
3.9 Tuning Issues Related to Parallel Processing 3-30
3.9.1 Customizing the Parallel-Processing Run-Time Environment . . 3-30
3.9.1.1 Controlling the Number of Processes
(FOR$PROCESSES)t 3-31
3.9.1.2 Controlling Internal Spin Waits
(FOR$SPIN_WAIT) 3-32
3.9.1.3 Controlling the State of a Process
(FOR$STALL_ WAIT)oovon.. 3-33

3.9.2 System Parameters Set with the SYSGEN Utility 3-33
3.9.2.1 Global Section Descriptor Count
(GBLSECTIONS) oo 3-34
3.9.2.2 Global Page Table Entry Count (GBLPAGES) 3-35
3.9.2.3 Gilobal Page File Limit (GBLPAGFIL).......... 3-35
3.9.3 User Parameters Set with the AUTHORIZE Utility 3-36
3.94 Other Tuning Considerations 3-37
VAX C Programming Concepts
Chapter 4 VAX C Tutorial
4.1 C Programming Language Overview 41
4.2 VAX C Programming Language Overview 4-3
4.3 Writing a Program e 4-4
44 Producing Input/Qutput (I10) 4-6
4.5 Conditional Executionof Code 4-10
451 The if Statement 4-10
45.2 The switch Statement 4-12
4.5.3 LoOPS .. 4-14
4.6 Values, Addresses,and Pointers 417
4.7 Aggregates e 4-21
4.7.1 Arrays and Character Strings 4-21
4.7.2 Structuresand Unions 4-22
Chapter 5 Program Structure
5.1 Function Definitions 5-1
5.1.1 Main Function and Function Identifiers. 5-3
5.1.2 Parameter List Declarations 54
51.3 Function Return Data Types 5-5
51.4 Variable-Length Parameter Lists 5-6
5.2 Function Declarations 5-7

vi

53 Function Prototypes 5-9

5.3.1 Using Function Prototypes 5—11
5.4 Using Parameters and Arguments 5-12
5.4.1 Function and Array Identifiers as Arguments. 5-13
5.4.2 Passing Arguments to the main Function 5-15
5.5 Identifiers 5-17
5.6 Language Keywords 5-18
5.7 BIOCKS e 5-21
5.8 Comments 5-22
59 LINT-Like Functionality 5-22

Chapter 6 Statements

6.1 Control Flow Statements. 6-1
6.1.1 The null Statement 6~1

6.1.2 The goto Statement 6-2

6.1.3 The label Statement 62

6.2 Expressions and Blocks as Statements 6-3
6.2.1 The expression Statement 6-3

6.2.2 The compound Statement 6-3

6.3 Conditional Statements 6—4
6.3.1 Theif Statement 64

6.3.2 The switch Statement 6-5

6.3.2.1 Declarations Within a switch Statement 6-7

6.4 Looping Statements 6-7
6.4.1 The for Statement 6-8

6.4.2 The while Statement 6-9

6.4.3 Thedo Statement 6-9

6.5 Interrupting Statementso oL 6-10
6.5.1 The break Statement 6-10

6.5.2 The continue Statement 6-10

6.5.3 The return Statement 6-11

vii

Chapter 7

viii

71

7.2

73

7.4

7.5

7.6

7.7

7.8

7.9

Expressions and Operators
lvaluesand rvalues i i,

Primary Expressions and Operators

7.2 Parenthetical Expressions
7.2.2 FunctionCalls i
7.2.3 Array References
7.2.4 Structure and Union References

Overview of the VAX C Operators

Unary Expressionsand Operators

7.4.1 Negating Arithmetic and Logical Expressions
7.4.2 Incrementing and Decrementing Variables
743 Computing Addresses and Dereferencing Pointers.
7.4.4 Calculating a One’s Complement
7.45 Forcing Conversions to a Specific Type
7.4.6 Calculating Sizes of Variables and Data Types
Binary Expressions and Operators
7.5.1 Additive Operators i
75.2 Multiplication Operators
753 Equality Operators
7.5.4 Relational Operators i
7.5.5 Bitwise Operators. i o
7.5.6 Logical Operators.
7.5.7 Shift Operators

Conditional Operator

Assignment Expressions and Operators
Comma Expression and Operator

Data-Type CONVersionsttt it
7.91 Converting Operands
7.9.2 Converting Function Arguments

7-10
7-10
7-10
7-11
7-12
7-13
7-14

7-14
7-15
7-15
7-16
7-16
7-17
7-17
7-19

7-19

7-20

7-22

7-22

7-23
7-24

Chapter 8
8.1

8.2

8.3

8.4

85

8.6

8.7

8.8

8.9

8.10
8.1

8.12

Data Types and Declarations

Constants i
Variables e
8.2.1 Classification of Variables

8.2.1.1 Data-Type Keywords

8.2.1.2 Format of a Variable Declaration
Integers (int, long, short, char, and unsigned)
8.3.1 Integer Constants.
8.3.2 CharacterConstants
8.3.3 Escape Sequences
Floating-Point Numbers (float and double)
8.4.1 Floating-Point Constants
Pointers e
8.5.1 void Pointers
Enumerated Types (enum)t
Arrays ([D). . . . oo oo e
8.7.1 Initializing Arrayso
Character-String Variables (char *and char[])..:..............
8.8.1 Character-String Constants
Structures and Unions (structand union)
8.9.1 Declaring a Structure or Union
8.9.2 Referencing Members of Structures or Unions
8.9.3 Initializing Structures and Unions
8.9.4 Variant Structures and Unions
8.9.5 BitFields
The void Keyword
The typedef Keyword e e e e e
Interpreting Declarations

8-2
8-2
8-3
8-3

8-4
8-5
8-6
8-7

8-9
8-10

811
8-13

8-13

8-15
8-18

8-19
8-20

8-20
8-22
8-24
8-26
8-28
8-30

8-32
8-32

8-33

Chapter 9

Storage Classes and Allocation

9.1 The Scope of an Identifier. 91
9.1.1 The Compilation and Linking Process 9-2

9.1.2 Position of the Declaration. 9-2

9.1.3 Lexical Scope and Link-Time Scope 94

9.1.4 Program Example e 9-6

9.2 Storage Allocation 9-8
9.3 Internal Storage Classes 9-9
9.3.1 The auto Specifier 9-10

9.3.2 The register Specifier 9-11

9.4 StaticStorage Class i e 9-12
9.5 External Storage Class 9-13
9.6 Global Storage Classes, 9-15
9.6.1 The globaldef and globalref Specifiers. 9-15

9.6.1.1 Comparing the Global and the External Storage

Classes i, 9-17

9.6.2 The globalvalue Specifier e 9-19

9.6.3 Global Enumerated Types e 9-20

9.7 Data-Type Modifiers, 9-21
9.7.1 The const Modifier 9-21

9.7.2 The volatile Modifier 9-23

9.8 Storage-Class Modifiers 9-23
9.8.1 The noshare Modifier. 9-24

9.8.2 The readonly Modifier 9-25

9.8.3 The _align Modifier 9-25

Chapter 10 Preprocessor Directives

10.1 Macro Definitions (#define and #undef) 10-2
10.1.1 Constant Identifiers 104

10.1.2 Canceling Definitions (#undef) 104

10.1.3 Macro Parameters 104

10.1.4 Listing Substituted Lines 10-8

10.2 Common Data Dictionary Extraction (#dictionary) 10-8

10.2.1 Using the #dictionary Directive 10-9

10.2.2 Support for CDD Data Typest 10-11
103 Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif, and
#endif) e 10-13
10.3.1 The defined Operator. 10-15
104 File Inclusion (#include) 10-16
10.4.1 Inclusion Using Angle Brackets 10-17
10.4.2 Inclusion Using Quotation Marks (" ") 10-18
10.4.3 Inclusion of Text Modules 10-19
10.4.4 Macro Substitution in #include Directives 10-20
10.5 Specifying Line Numbers (#lineand #) 10-21
10.6 Specifying the Module Name and Identification (#module) 10-21
10.7 Implementation-Specific Preprocessor Directive (#pragma) 10-22
10.7.1 #pragma [no]builtins Directive 10-23
10.7.2 #pragma ignore_dependency Directive 10-23
10.7.3 #ipragma[nolinline 10-24
10.7.3.1 Restrictions on Inline Expansion 10-25
10.7.4 #pragma [nolmember_alignment e 10-25
10.7.5 #pragma safe_call Directive 10-26
10.7.6 #pragma sequential_loop Directive 10-27
10.7.7 #pragma [no]standard Directive 10-28

Chapter 11 Predefined Macros and Built-In Functions

1.1 Predefined Macros 111
11.1.1 CC$%gfloat (G_Floating Identification Macro) 111
11.1.2 CC8parallel (Parallel-Processing Identification Macro) 11-2
11.1.3 The __DATE__Macro i e . 11-3
11.1.4 The _FILE _Macro.ciiiiiiiiieinnnnnns 11-3
11.1.5 The __LINE__Macroiiiiiiiennnn.n. 11-3
11.1.6 The __TIME__Macrouuiinimienneennn. 11-3
11.1.7 vax, vms, vaxc, and vaxiic (System-ldentification Macros) . . . 11-4
11.2 Built-inFunctions 11-4
11.2.1 Add Aligned Word Interlocked (ADAWI) 11-5
11.2.2 Branch on Bit Clear-Clear Interlocked (BBCCI) 11-€
11.2.3 Branch on Bit Set-Set Interlocked (BBSSI) 11-€
11.2.4 Find First Clear Bit _FFC) 117

11.2.5 Find First SetBit (FFS)c.. v, 11-8
11.2.6 Halt (HALT) . .ottt e e e e e 11-8
11.2.7 Insert Entry into Queue at Head Interlocked (_INSQHI) 11-9
11.2.8 Insert Entry into Queue at Tail Interlocked (_INSQTI) 11-9
11.2.9 Insert Entry in Queue (_INSQUE) 11-10
11.2.10 Load Process Context { LDPCTX) 11-10
11.2.11 Locate Character (LOCC) 11-10
11.2.12 Move from Processor Register (MFPR) 11-11
11.2.13 Move Character 3 Operand (MOVC3) 11-11
11.2.14 Move Character 5 Operand (MOVC5) 11-12
11.2.15 Move from Processor Status Longword (_ MOVPSL) 11-13
11.2.16 Move to Processor Register (MTPR) 11-14
11.2.17 Probe Read Accessibility (PROBER) 11-14
11.2.18 Probe Write Accessibility (PROBEW) 11-15
11.2.19 Read General-Purpose Register (READ_GPR) 11-15
11.2.20 Remove Entry from Queue at Head Interlocked (REMQHI) . . 11-16
11.2.21 Remove Entry from Queue at Tail Interlocked (REMQTI). . .. 11-16
11.2.22 Remove Entry from Queue (REMQUE) 11-17
11.2.23 Scan Characters (SCANC). vt 11-17
11.2.24 Simple Read (SIMPLE_READ) 11-18
11.2.25 Simple Write (SIMPLE_WRITE) 11-19
11.2.26 Skip Character { SKPC), 11-19
11.2.27 Span Characters (SPANC) 11-20
11.2.28 Save Process Context (SVPCTX) 11-21
11.2.29 Write General-Purpose Register (WRITE_GPR). 11-21
Using VAX C Features on VMS Systems
Chapter 12 Using VAX Record Management Services
12.1 RMS File Organization 12-2
12.1.1 Sequential File Organization 12-2
12.1.2 Relative File Organization 12-3
12.1.3 Indexed File Organization 12-3
12.2 Record Access Modes 12-4
12.3 RMS Record Formatso ... 12-5
12.4 RMS Functions i i 12-5

12,5 Writing VAX C Programs Using RMS 12-7
12.5.1 Initializing File Access Blocks 12-9
12.5.2 Initializing Record Access Blocks 12-10
12.5.3 Initializing Extended Atiribute Blocks 12-11
12.5.4 Initializing Name Blocks 12-12
12.6 RMS Example Program i 12-13
Chapter 13 Using VAX C in the Common Language Environment
13.1 The VAX Procedure Calling and Condition Handling Standard 13-2
13.1.1 Register and Stack Usage 13-3
13.1.2 Return of the Function Value 13-5
13.1.3 The Argument List i, 13-5
13.2 Specifying Parameter-Passing Mechanisms 13-6
13.2.1 Passing Arguments by Immediate Value 13-8
13.2.2 Passing Arguments by Reference 13-11
13.2.3 Passing Arguments by Descriptor 13-14
13.2.4 VAX C Default Parameter-Passing Mechanisms 13-19
133 Interlanguage Calling 13-19
13.3.1 Calling VAX FORTRAN i 13-20
13.3.2 Caling VAXMACRO i 13-25
13.3.3 Calling VAXBASIC, .. . 13-29
13.3.4 Calling VAX Pascal 13-32
13.4 Sharing GlobalData 13-37
13.4.1 Sharing Program Sections with FORTRAN Common Blocks . . 13-37
13.4.2 Sharing Program Sections with PL/l Externals 13-39
13.4.3 Sharing Program Sections with MACRO Programs 13-41
13.5 VMS Run-Time Library Routines 1342
13.6 VMS System Services Routines 13-43
13.7 Calling Routines. i 13—44
13.7.1 Determining the Typeof Call 1344
13.7.2 Declaring an External Routine and Its Arguments 13-45
13.7.3 Calling the External Routine 1345
13.74 System Routine Arguments L 13-45
13.7.5 Symbol Definitions L 1349
13.7.6 Condition Values 13-50

xiii

13.7.7 Checking System Service Return Values 13-50

13.8 Variable-Length Argument Lists in System Services - 13-52
13.9 Return Status Values 13-54
13.9.1 Format of Return Status Values 13-54
13.9.2 Manipulating Return Status Values 13-56
13.9.3 Testing for Success or Failure 13-58
13.9.4 Testing for Specific Return Status Values 13-59
13.10 Examples of Calling System Routines 13-61
Chapter 14 VAX C Implementation Notes
141 Program Sections. e 14—1
14.1.1 Attributes of Program Sections (Psects) 14-1
14.1.2 Program Sections Created by VAXC 14-2
Appendix A VAX C Definition Modules
Appendix B VAX C Compiler Messages
Appendix C Optional Programming/ Productivity Tools
C.1 Using VAXLSEwith VAXC C-1
C.1.1 Entering Source Code Using Tokens and Placeholders c-2
Ci1.2 Compiling Source Codeciiiiienunnn .. c+4
C.1.21 Pragma Insertions and Decomposition. C-5
C.1.3 EXamples . .. o e c-6
C.1.3.1 PreprocessorLines C-7
C.1.3.2 External Definition c-7
C.1.33 Function Definition c-8
C.1.34 Block Declaration. e C-11
C.1.35 Statements and Expressions C-17
C.2 Using the VAX Source Code Analyzer C-20
c.2.1 Multimodular Development. Cc-21

Xiv

c.2.2 Setting Up an SCA Environment. C-23
c.2.21 Creatingan SCA Library C-23
C222 Generating the Data Analysis Files C-24
Cc.2.2.3 Selectingan SCA Library C-24
C.224 Loading Data Analysis Files into a Local Library . . C-24
c.23 Using SCA for Cross-Referencing C-25
Appendix D Language Summary
D.1 The CCCommand iiiiiinrinennn D-1
D.2 The LINKCommand D-3
D.3 Data-Type Keywords D—4
D.4 Precedence of Operators D-5
D.5 Statements D-6
D.6 Conversion Rules. D-7
D.7 Escape Sequences D-8
D.8 Preprocessor Directives D-8
D.9 Record Management Services (RMS) D-9
Appendix E Working with the Multiprocess Debugging Configuration

E.1 Getting Started E-1
E.1.1 Establishing a Muiltiprocess Debugging Configuration E-2
E.1.2 Invoking the Debugger E-2
E.1.3 The Visible Process and Process-Specific Commands E-3
E.1.4 Obtaining Information About Processes E-3
E.1.5 Bringing a Spawned Process Under Debugger Control E-5
E.1.6 Broadcasting Commands to Selected Processes E-6
E.1.7 Controlling Execution E-7

E.1.7.1 Controlling Execution with SET MODE
NOINTERRUPT i E-8
E1.7.2 Putting Selected ProcessesonHold E-8
E.1.8 Changing the Visible Process E-9

XV

E.1.9 Dynamic Process Setting E-10
E.1.10 Monitoring the Termination of Images E-11
E1.11 Terminating the Debugging Session E-11
E.1.12 Releasing Selected Processes from Debugger Control E-11
E.1.13 Aborting Debugger Commands and Interrupting Program
Execution e E-12
E.2 Supplemental Information oL, E-13
E.2.1 Specifying Processes in Debugger Commands E-13
E.2.2 Monitoring Process Activation and Termination E-15
E.2.3 Interrupting the Execution of an Image to Connect It to the
Debugger E-15
E.2.3.1 Using the CTRL/Y-DEBUG Sequence to Invoke the
Debugger i, E-16
E.2.3.2 Using the CONNECT Command to Interrupt an
Image E-17
E.24 Screen Mode Features for Multiprocess Debugging E-17
E.2.5 Setting Watchpoints in Global Sections E-19
E.2.6 Compatibility of Multiprocess Commands with the Default
Configuration. i E-20
E.3 Sample Muitiprocess Debugging Session E-21
EA4 Considerations for Muiltiprocess Debugging E-25
E.4.1 UserQuotas i E-25
E.4.2 System ReSOUICES v v vttt it et e e e E-26
VAX C Glossary
Index
Examples
1-1 Symbol Cross-References in a Compiler Listing 1-9
2-1 Debugging Sample Program SCALARS.C 2-24
2-2 Debugging Sample Program ARRAY.C 2-26
2-3 Debugging Sample Program STRING.C. 2-27
24 Debugging Sample Program STRUCT.C 2-30
2-5 Debugging Sample Program ARSTRUCT.C 2-32
Debugging Sample Program POWER.C. 2-37

Xvi

2-6

2-7
31
3-2
3-3
34
4-1

10-1
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
131
13-2

A Sample Debugging Session e e
Using the #pragma ignore_dependency Directive
Using the #pragma ignore_dependency Directive
Using the #pragma safe_call Directive
Using the #pragma sequential_loop Directive
Simple Addition in VAX C e
Output of Information e
Output Using the Newline Character
Conditional Execution Using the if Statement
Conditional Execution Using the switch Statement
Looping Using the do Statement
Looping Using the for Statement
Character-String Constants and Arrays
Single Storage Allocation of Unions
Structures e
Case Conversion Programttt
Declaring Functions e
Declaring Functions Passed as Arguments
Echo Program Using Command-Line Arguments
Scope of Variable Declarations in Nested Blocks
Using switch to Count Blanks, Tabs, and Newlines
Rules for Initialization of Structures
Scope and Externally Defined Variables
Reinitializing Two auto Variables
Using Global Variables
Using the globalvalue Specifier
Nested Substitution Directives i
External Data Declarations and Definitions
Main Program Section e
Function Initializing RMS Data Structures
Internal Functions e e
Utility Function: Adding Records
Utility Function: Deleting Records
Utility Function: Typingthe File
Utility Function: Printingthe File.
Utility Function: Updatingthe File.uurinrinn .. .
Passing Floating-Point Arguments by Immediate Value.
Passing Arguments by Reference,

2-37
3-25
3-26
3-27
3-29

4-12
4-14
4-16
4-22
4-24
4-25

5-2

5-14
5-16
5-21
6-6
8-27
9-6
911
9-16
9-20
10-3
12-14
12-16
12-18
12-20
12-22
12-24
12-25
12-27
12-29
13-11
13-13

xvii

13-3 Passing Arguments by Descriptor o o oo 13-17

13-4 Passing Compile-Time String Descriptors, 13-18
13-5 VAX C Function Calling a VAX FORTRAN Subprogram 13-21
13-6 VAX FORTRAN Subprogram Calling a VAX C Function 13-23
13-7 VAX C Function Emulating a VAX FORTRAN CHARACTER*(*)

Function 13-24
13-8 VAX MACRO Program Calling a VAX C Function 13-26
13-9 VAX C Program Calling a VAX MACRO Program 13-28
13-10 VAX C Function Calling a VAX BASIC Function 13-30
13-11 VAX BASIC Program Callinga VAX C Function 13-31
13-12 VAX C Function Calling a VAX Pascal Routine 13-32
13-13 VAX Pascal Program Calling a VAX C Function 13-35
13-14 Sharing Data with a FORTRAN Program in Named Program Sections . . . 13-38
13-15 Sharing Data with a FORTRAN Program in a VAX C Structure 13-39
13-16 Sharing Data with a PL/I Program in Named Program Sections 13-40
13-17 Sharing Data with a PL/I Program in a VAX C Structure. 13-41
13-18 Sharing Data with a MACRO Program in a VAX C Structure 13-42
13-19 Checking System Service Return Values 13-51
13-20 Using Variable-Length Argument Lists 13-53
13-21 Testing for SUCCESS v i it e 13-58
13-22 Testing for Specific Return Status Values 13-60
13-23 Passing Arguments to System Services o 13-62
13-24 Determining $QIO Completion 13-63
1325 Using Time Routines i 13-64
E-1 VAX C Program Used for Multiprocess Debugging Session. E-21
E-2 Sample Multiprocess Debugging Session E-24

Figures

1-1 DCL Commands for Developing Programs 1-2
2-1 Debugger Keypad Key Functions 2-9
3-1 Sequential and Parallel Loop Execution Across Time 3-3
3-2 Program Cycle Using Decomposition. 3-8
4-1 rvalues, Ivaiues, and Assigning Pointers 4-19
4-2 The Indirection Operator in Assignments 4-20
7-1 Boolean Algebra and the Bitwise Operators 7-18
8~1 Alignment of Structure Members. i 8-31
1831 TheCallStack 13-4

xviii

13—2 Structure of a VAX Argument List 13-5
13-3 Example ofa VAX Argument List 13-6
13-4 Passing Arguments by Immediate Value 13-10
13-5 Bit Fields Within a Return Status Value 13-55
13-6 Internal Representation of a Status Value 13-57
C—1 Use of SCA for Multimodular Development. c-22
Tables
1-1 Debugger Compilation Options 1-9
1-2 /MACHINE_CODE Qualifier Options, 1-13
1-3 /INOJOPTIMIZE Qualifier Options 1-14
14 /SHOW Qualifier Options oo it e e e 1-16
1-5 /WARNINGS Qualifier Options 1-18
1-6 VMS Linker Default File Types for Input Files 1-25
2—1 Supported Operators e 2-22
2-2 Unsupported Operatorsot v it e e e e e 2-22
3-1 VAX C Parallel-Processing Support Mechanisms 3-5
3-2 VAX C Decomposition Pragmas, 3-23
3-3 Logical Names Used for Run-Time Tuning 3-31
34 Sysgen Parameters Requiring Changes for Parallel Processing 3-34
5-1 VAXC Keywords oot e i 5-19
5-2 VAX C Features Similar to the LINT Utility 5-23
7-1 VAX C Operators . . . oo oot e e e e et e 7-7
7-2 Precedence of VAX C Operatorsc. vt vnunnnnn. 7-9
8-1 VAX C Data-Type Keywords, 8-3
8-2 Size and Range of VAXC Integers o 8-5
8-3 VAX C Escape Sequencescuuoiiiniinnnenenenen.. 8-8
91 VAX C Storage Classes and Storage-Class Specifiers e 94
9-2 Scope and the Storage-Class Specifiers 9-5
9-3 The Variables in Example 9—1 and Their Storage Classes 9-7
94 Location, Lifetime, and the Storage-Class Keywords 9-9
9-5 Predefined Alignment Constants 9-26
10-1 Mapping Between CDD and VAX C Data Types 10-12
121 Common RMS Run-Time Processing Functions 12-6
12-2 VAX C RMS #include Modules 12-8
12-3 RMS Prototype Data Structures 12-9
13-1 VAXRegisterUsage. ittt i e i 13-3

XixX

Status Values of SYSSSETEF i i i 13-9

Status Values of SYSSREADEF v, 13-12
Valid Class Codesttt ittt et i 13-15
Atomic Data Types oottt e 13-16
Valid Parameter-Passing Mechanisms in VAXC 13-19
Default Passing Mechanisms 13-20
Run-Time Library Facilities 1343
System ServiCeS i e e e 13-44
VAX C Implementationttt 13-46
Possible Severity Values e 13-56
Facility Codes ittt it e e e e e e 13-59
Program Section Attributes e 14-2
Combinations of Storage-Class Specifiers and Modifiers. 14-3
Combination Attributes e e 144
VAX C Definition Modules i A-1
LSE Placeholders i e e c-2
Commands to Manipulate Tokens and Placeholders. C-3
LSE Commands to Review and Examine Source Code C-5
SCA Commands to Use Within LSE C-26
Precedence of Operatorsc it i D-5
Escape Sequences i D-8
RMS Module Names ittt D-9
RMS Templates e e D-10
Debugging States e E-4
Process Specifications e e E-13

Changed and New Keypad Key Functions E-19

Preface

This guide combines reference information on the VAX C programming
language with information necessary for developing and debugging VAX C
programs on the VMS operating system. The guide also includes information
about porting C programs to and from VMS and other operating systems,
as well as the differences between VAX C and other implementations of the
language. For more information about porting programs to and from other
operating systems, see the VAX C Run-Time Library Reference Manual.

Intended Audience

This guide is intended for experienced programmers who need to learn VAX
C, for users who need to know the difference between VAX C and other
implementations, or for experienced VAX C users who need to reference
information. You should be familiar with one high-level language and should
have some familiarity with the DIGITAL Command Language (DCL). If
you are not familiar with or need to reference information about DCL, see
Chapter 1.

Document Structure

This manual has 14 chapters and 5 appendixes. These chapters are grouped
into three parts as follows:

XXi

XXii

Developing VAX C Programs on VMS Systems

Chapter 1 explains how to create, compile, link, and run a VAX C
program.

Chapter 2 explains how to use the VMS Debugger.
Chapter 3 explains how to decompose VAX C loops.

VAX C Programming Concepts

Chapter 4 presents a brief VAX C tutorial.
Chapter 5 explains program structure.
Chapter 6 describes VAX C statements.

Chapter 7 discusses the types of expressions and the operators used in
VAX C.

Chapter 8 explains data types and declarations.

Chapter 9 describes storage classes and allocation.

Chapter 10 explains preprocessor directives.

Chapter 11 describes the predefined macros and the built-in functions.

Using VAX C Features on VMS Systems

Chapter 12 explains VAX Record Management Services (RMS).

Chapter 13 describes VMS System Services and VMS Run-Time Library
routines.

Chapter 14 explains program sections (psects) and VAX C storage
classes.

Appendixes

Appendix A describes VAX C definition modules.
Appendix B lists VAX C compiler messages.

Appendix C provides an overview of the VAX Language-Sensitive Editor
(LSE) and information on the VAX Source Code Analyzer (SCA).

Appendix D provides a summary of all VAX C language features.

Appendix E explains how to debug a program that takes advantage of
parallel-processing features.

The VAX C Glossary provides an alphabetical listing of key terms.

~—

Associated Documents

You may find the following documents useful when programming in VAX C:

VAX C Installation Guide—For system programmers who install the
VAX C software.

VAX C Run-Time Library Reference Manual—For programmers who
wish to use the VAX C Run-Time Library functions and who need
more information about porting programs to and from other operating
systems.

The C Programming Language' —For those who need a more intensive
tutorial than that provided in Chapter 4. This book describes draft-
proposed ANSI C. VAX C contains features and enhancements to the C
language as described in The C Programming Language. Therefore, use
the Guide to VAX C as the reference book for the full description of
VAX C.

Conventions

Convention Meaning

The symbol represents a single
stroke of the RETURN key on a terminal.

The symbol [CTRUX], where letter X rep-
resents a terminal control character, is
generated by holding down the CTRL key
while pressing the key of the specified
terminal character.

$ RUN CPROG In interactive examples, the user’s re-
sponse to a prompt is printed in red; system
prompts are printed in black.

float x; A vertical ellipsis indicates that not all of

. the text of a program or program output is

illustrated. Only relevant material is shown
in the example.

x = 5;

1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second Edition (Englewood
Cliffs, New Jersey: Prentice Hall, 1988).

xxiii

XXiv

Convention

Meaning

option, . ..

[output-source, . ..

sc-specifier ::=
auto

static
[extern]
register

{a |l b}

A

switch statement
fprintf function
auto storage class

A horizontal ellipsis indicates that addi-
tional parameters, options, or values can be
entered. A comma that precedes the ellipsis
indicates that successive items must be
separated by commas.

Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional. Square brackets are
not optional, however, when used to delimit
a directory name in a VMS file specification
or when used to delimit the dimensions of
an array in VAX C source code.

In syntax definitions, items appearing
on separate lines are mutually exclusive
alternatives.

Braces surrounding two or more items
separated by a vertical bar (|) indicate
a choice; you must choose one of the two
syntactic elements.

A delta symbol is used in some contexts to
indicate a single ASCII space character.

In syntax definitions, items appearing in
boldface type identify language keywords
and the names of VMS and VAX C Run-
Time Library functions.

New and Changed Features

The following list documents the features that distinguish VAX C Version
3.0 from previous versions:

You can decompose loops for parallel processing by specifying the
/PARALLEL qualifier on the CC command line (see Chapter 1). For
more information about parallel-processing programming, see Chapter 3.
For more information on parallel-processing debugging, see Appendix E.
You can improve program performance with automatic inline expansion
of function code. For more information, see Chapter 10.

VAX C now allows you to create separate preprocessor output with the
/PREPROCESS_ONLY qualifier. For more information, see Chapter 1.
VAX C now supports new versions of the memory-management functions
malloc, calloe, free, cfree, and realloc. For information about the
linking procedure needed to use these functions, see Chapter 1. For
information about the functions themselves, see the VAX C Run-Time
Library Reference Manual.

You can now specify up to 255 characters for identifier names.

When you use /STANDARD=PORTABLE, the compiler no longer issues
portability messages against the inclusion of the .h include files provided
by VAX C.

VAX C supports built-in functions that allow more direct access to VAX
instructions. For more information, see Chapter 11.

VAX C offers an additional predefined macro, CC$parallel, for use with
parallel-processing applications. For more information, see Chapter 11.

VAX C now supports the VMS License Management Facility. For more
information, see the VAX C Installation Guide.

XXV

XXVi

The following chapters of this manual are new:

Chapter 3 (describes parallel-processing features)
Chapter 4 (the tutorial is now a separate chapter)

Chapter 11 (all predefined macros and built-in functions are now in a
separate chapter)

Appendix E (describes parallel-processing debugging)

Developing VAX C Programs on VMS Systems

Chapter 1

Developing VAX C Programs at the DCL
Command Level

This chapter describes the following information about program development
on a VMS system:

* Overview of Digital Command Language (DCL) commands used for
program development (Section 1.1)

* Creating VAX C programs (Section 1.2)

¢ Compiling VAX C programs (Section 1.3)

* Compilation qualifiers (Section 1.3.2)

¢ Linking VAX C programs (Section 1.4)

* Linking against object libraries (Section 1.4.5.2)

¢ Linking against shareable images (Section 1.4.5.3)

¢ Object module libraries (Section 1.4.5.1)

* Running VAX C programs (Section 1.5)

1.1 DCL Commands for Program Development

This section provides a brief overview of the DCL commands used for
program development. The following sections provide more detailed
information about these topics.

Figure 1-1 shows the basic steps in VAX C program development.

Developing VAX C Programs at the DCL Command Level 1-1

Figure 1-1: DCL Commands for Developing Programs

COMMANDS ACTION [INPUT/OUTPUT FILES]
$ EDIT AVERAGE.C
Use the file type of C to Create a AVERAGE.C
indicate that the file source program

contains a VAX C program

$ CC AVERAGE
The CC Command

assumes that the file type . AVERAGE.OBJ
of an input file is C Compile the (AVER AGE.LIS)
(i you use the LIST source program libraries

qualifier the compiler
creates a listing file)

$ LINK AVERAGE
The LINKcommand assumes .
:) Link the AVERAGE.EXE
nat the e type of aninput | gpject module (AVERAGE MAP)
(If you use the /MAP qualifier

the linker creates a map file)

$ RUN AVERAGE
The RUN command assumes Run the
that the file type of an image executable
is EXE Image

ZK-5167-GE

1-2 Developing VAX C Programs at the DCL Command Level

The following example shows each of the commands shown in Figure 1-1
executed in sequence:

$ EDIT/TPU AVERAGE.C
$ CC AVERAGE

$ LINK AVERAGE

$ RUN AVERAGE

To create a VAX C source program at DCL level, you must invoke a text
editor. In the previous example, the VAX Text Processing Utility (VAXTPU)
editor is invoked to create the source program AVERAGE.C. You can use
another editor, such as VAX EDT or the VAX Language-Sensitive Editor
(LSE). (LSE is a product that must be purchased separately; see Appendix C
for more information.) C is used as the file type to indicate that you are
creating a VAX C source program. C is the conventional file type for all VAX
C source programs.

When you compile your program with the CC command, you do not have to
specify the file type; by default, VAX C searches for files ending with C.

If your source program compiles successfully, the VAX C compiler creates an
object file with the file type OBJ.

However, if the VAX C compiler detects errors in your source program,
the system displays each error on your screen and then displays the DCL
prompt. You can then reinvoke your text editor to correct each error.

You can include command qualifiers with the CC command. Command
qualifiers cause the VAX C compiler to perform additional actions. In the
following example, the /LIST qualifier causes the VAX C compiler to produce
the listing file AVERAGE.LIS:

$ CC/LIST AVERAGE

For a complete list and explanation of all the command qualifiers available
with the CC command, see Section 1.3.2.

After your program has compiled successfully, invoke the VMS Linker to
create an executable image file. The linker uses the object file produced
by VAX C as input to produce an executable image file as output. (The
executable image is a file containing program code that can be run on the
system.)

You can specify command qualifiers with the DCL command LINK. For a
complete list and explanation of all the command qualifiers available with
the LINK command, see Section 1.4.2.

After producing the executable image file, use the RUN command to execute
your program.

Developing VAX C Programs at the DCL Command Level 1-3

1.2 Creating a VAX C Program

To create and modify a VAX C program, you must invoke a text editor. The
VMS system provides you with two text editors: VAX EDT (EDT) and the
VAX Text Processing Utility (VAXTPU). The following section discusses
VAXTPU. See the VAX EDT Reference Manual for more information on EDT.

1.2.1 Using VAXTPU

The VAX Text Processing Utility (VAXTPU) is a high-performance, pro-
grammable utility. VAXTPU provides two editing interfaces: the Extensible
VAX Editor (EVE) and the VAXTPU EDT Keypad Emulator. You can also
create your own interfaces.

Like VAX EDT, VAXTPU provides you with an online HELP facility that you
can access during your editing session. When you invoke VAXTPU to create
a file, a journal file is automatically created. You can use this journal file to

recover your edits if the system fails during an editing session. To recover
your edits, type the EVE/RECOVER command.

Unlike EDT, VAXTPU provides multiple windows. This feature allows you
to view two files on your screen at the same time. VAXTPU also provides
you with other advanced features, such as two editing interfaces.

The following sections describe how to use the EVE interface and the EDT
Keypad Emulator interface.

1.2.1.1 The EVE Interface

EVE is an interactive text editor that allows you to execute common editing
functions using the EVE keypad or to execute more advanced functions by
typing commands on the EVE command line. The following command line
invokes the EVE editor and creates the file PROG_1.C:

$ EDIT/TPU PROG 1.C

You can define a global symbol for the EDIT/TPU command by placing a
symbol definition in your LOGIN.COM file. For example:

$ EVE == "EDIT/TPU"

After this command line is executed, you can type EVE at the DCL prompt
followed by the name of the file you want to modify or create.

For more information on using the advanced features of EVE, see the Guide
to VMS Text Processing.

1-4 Developing VAX C Programs at the DCL Command Level

-

1.3 Compiling a VAX C Program

The VAX C compiler performs the following functions:

¢ Detects errors in your source program
¢ Displays each error on your screen or writes the errors to a file

¢ Generates machine language instructions from the source
statements

¢ Groups these language instructions into an object module for the linker

The following sections discuss the CC command and its qualifiers.

1.3.1 The CC Command

To invoke the VAX C compiler, use the CC command. The CC command has
the following format:

CCl/qualifier...][file-spec [/qualifier...]],...

/qualifier

Specifies an action to be performed by the compiler on all files or specific
files listed. When a qualifier appears directly after the CC command, it
affects all the files listed. However, when a qualifier appears after a file
specification, it affects only the file that immediately precedes it. However,
when files are concatenated, these rules do not apply.

file-spec

Specifies an input source file that contains the program or module to be
compiled. You are not required to specify a file type if you give your file a .C
file extension; the VAX C compiler adopts the default file type C.

You can include more than one file specification on the same command line
by separating the file specifications with either a comma (,) or a plus sign
(+). If you separate the file specifications with commas, you can control
which source files are affected by each qualifier. In the following example,
the VAX C compiler creates an object file for each source file but creates only
a listing file for the source files PROG_1 and PROG_3:

$ CC /LIST PROG_1l, PROG_2/NOLIST, PROG_3

Developing VAX C Programs at the DCL Command Level 1-5

If you separate file specifications with plus signs, the VAX C compiler
concatenates each of the specified source files and creates one object file
and one listing file. In the following example, only one object file is created,
PROG_1.0BdJ, and only one listing file is created, PROG_1.LIS. Both of
these files are named after the first source file in the list, but contain all
three modules.

§$ CC PROG_1 + PROG_2/LIST + PROG_3

Any qualifiers specified for a single file within a list of files separated with
plus signs affect all the files in the list.

You can specify the name of a text library on the CC command line to com-
pile a source program. A text library is a file that contains text organized
into modules indexed by a table. Text libraries have a .TLB default file
extension. The modules in the text library have a .TXT file extension, by
default.

If it cannot find #include modules in libraries specified in the CC command
or in the default library defined by the logical name C$LIBRARY, the VAX C
compiler searches the library identified by the following name:

SYS$LIBRARY:VAXCDEF.TLB

The library VAXCDEF.TLB consists of #include modules supplied with
VAX C as an option at installation time. In addition, this library contains
declarations of values returned by the VMS system services.

Including text modules from the VAXCDEF.TLB library is preferable to
including the files in SYS$LIBRARY with the .H extensions. For example,

you can include the Standard I/O definitions in a program with the following
#include line, which includes the file SYS$LIBRARY:STDIO.H:

#include <stdio.h>

You can also use the following line, which includes the text module stdio
from SYS$LIBRARY:VAXCDEFTLB. This method is more efficient.
Including the stdio text module is usually quicker than including the
STDIO.H file from the SYS$LIBRARY library directory due to the library
indexing system. However, this method is not portable.

#include stdio

See Section 10.4 for more information on #include. See Appendix A for
information on definition modules that you can include in your file. See the
VAX C Run-Time Library Reference Manual for information on the include
files that are required to use certain VAX C RTL functions and macros.

1-6 Developing VAX C Programs at the DCL Command Level

1.3.2 The CC Command Qualifiers

The following list shows all the command qualifiers and their defaults
available with the CC command. A description of each qualifier follows the

list.

Command Qualifiers
/INOJANALYSIS_DATA[=file-spec]
/INO]JCROSS_REFERENCE
/INO]DEBUG[=(option, . ..)]
/[NO]DEFINE=(identifier[=definition][, . . .])
/[NO]DIAGNOSTICS]=file-spec]

/INO]JG_FLOAT
/INO]JINCLUDE_DIRECTORY=(pathname [, ...])
/LIBRARY

/INOJLIST[=file-spec]

/[INOJMACHINE_CODE[=option]
/[INOJOBJECT][=file-spec]
/INOJOPTIMIZE[=0ption, . ..]
/INO]JPARALLEL
/[INO]PRECISION={SINGLE,DOUBLE}
/INO]JPREPROCESS_ONLYI[=filename]
/SHOWI[=(option, ...)]

/INO]STANDARD[=(option, .. .)
/INOJUNDEFINE=(identifier[, . ..])
/INO]JWARNINGS[=(option, . ..)]

Default
/NOANALYSIS_DATA
/NOCROSS_REFERENCE
/DEBUG=(TRACEBACK,NOINLINE)
/NODEFINE
/NODIAGNOSTICS
/NOG_FLOAT
/NOINCLUDE_DIRECTORY
See text.

/NOLIST (interactive mode)
/LIST (batch mode)
/NOMACHINE_CODE
/OBJECT

/OPTIMIZE
/NOPARALLEL
/PRECISION=DOUBLE
/NOPREPROCESS
/SHOW=(NOBRIEF,
NODECOMPOSITION,
NODICTIONARY,
NOEXPANSION,
NOINCLUDE,
NOINTERMEDIATE,
NOSTATISTICS,
NOSYMBOLS,
NOTRANSLATION,
SOURCE,

TERMINAL)
/NOSTANDARD
/NOUNDEFINE
/WARNINGS

You can place command qualifiers either on the CC command line itself or on
individual file specifications (with the exception of the /LIBRARY qualifier).
If placed on a file specification, the qualifier affects only the compilation of

Developing VAX C Programs at the DCL Command Level 1-7

the specified source file and all subsequent source files in the compilation
unit. If placed on the CC command line, the qualifier affects all source files
in all compilation units unless it is overridden by a qualifier on an individual
file specification.

The rest of this section describes the CC command qualifiers.

/[INOJANALYSIS DATA[=file-spec]

Controls whether the compiler generates a file of source-code analysis
information. The default file name is the file name of the primary source
file; the default file type is .ANA. The .ANA file is reserved for use with
DIGITAL layered products. For more information, see Appendix C.

/INOJCROSS_ REFERENCE
Directs the compiler to generate cross-references for variable names.
The cross-reference lists each line number in the listing file on which

each variable is referenced. This qualifier has no effect unless /LIST and
/SHOW=symbols are specified.

The default is /NOCROSS_REFERENCE.

Example 1-1 shows a sample of the type of information placed in the com-
piler listing when you use /LIST/SHOW=symbols/CROSS_REFERENCE.

1-8 Developing VAX C Programs at the DCL Command Level

Example 1-1: Symbol Cross-References in a Compiler Listing

Fmm e +
| Storage Map |
B ettt e +
Identifier
Name Line Size Class Type and References
main 37 Extern Function returning
def. long int
- No references
timeb 27 10 bytes Structure tag
- Referenced at
line 40

/[NO]IDEBUG[=(option, ...)]
Requests information to be included in the object module for use by the
debugger. Table 1-1 describes the debugger options.

Table 1-1: Debugger Compilation Options

Option Usage

ALL Includes symbol table records and traceback records. This is
equivalent to /DEBUG=INLINE.

INLINE Generates debug information to cause a STEP command to
STEP/INTO an inlined function call.

NOINLINE Generates debug information to cause a STEP command to
STEP/OVER the inlined function call.

NONE Does not include any debugging information. This is equiva-
lent to /NODEBUG.

(continued on next page)

Developing VAX C Programs at the DCL Command Level 1-9

Table 1-1 (Cont.): Debugger Compilation Options

Option Usage

NOTRACEBACK Does not include traceback records. This option is used to
exclude all extraneous information from thoroughly debugged
program modules. This option is equivalent to /NODEBUG.

NOSYMBOLS Includes only traceback records. This is the default if the

, /DEBUG qualifier is not present on the command line.
SYMBOLS Includes symbol table records, but not the traceback records.
TRACEBACK Includes only traceback records. This is the default if the

/DEBUG qualifier is not present on the command line.

The default is /DEBUG=(TRACEBACK,NOINLINE).

/[NO]DEFINE=(identifier[=definition]{, . . .])

/[INOJUNDEFINE=(identifier[, . ..])

Performs the same functions as the #define and #undefine preprocessor
directives. The /DEFINE qualifier defines a macro to be substituted for
every occurrence of a given identifier in the compilation unit or units;
/UNDEFINE cancels a previous definition (but not subsequent ones). When
both /DEFINE and /UNDEFINE are present in a compilation unit or on the
CC command line, /DEFINE is evaluated before /UNDEFINE.

Since the CC command line must be compatible with DCL, the syntax
of the /DEFINE and /UNDEFINE qualifiers differs from the syntax of
the #define and #undefine preprocessor directives. The following are
differences between the two syntax requirements:

* DCL converts all input to uppercase unless it is enclosed in quotation
marks.

* When more than one /DEFINE is present on the CC command line or in
a single compilation unit, only the last /DEFINE is used. Similarly, only
the last /UNDEFINE is used on the CC command line or the compilation
unit.

* DCL accepts only one equal sign as a delimiter, and a space terminates
the definition.

* You must use quotation marks to define macro definitions. Within the
quotation marks, a delimiter can be either a space or one equal sign,
whichever comes first.

The simplest form of a /DEFINE definition is as follows:

/DEFINE=true

1-10 Developing VAX C Programs at the DCL Command Level

This results in a definition like the one that follows:
#define TRUE 1

The following example uses the /UNDEFINE qualifier:
$ CC/UNDEFINE="TRUE"

Since /DEFINE and /UNDEFINE are not part of the source file, they are
not associated with a listing line number or source line number. Therefore,
when an error occurs in a command-line definition, the message displayed
at the terminal does not indicate a line number. In the listing file, these
diagnostic messages are placed before the source listing in the order that
they were encountered. When the expansion of a definition causes an
error at a specific source line in the program, the diagnostics—both at the
terminal and in the listing file—are associated with that source line.

A command line containing the /DEFINE and the /UNDEFINE qualifiers
can be long. Continuation characters cannot appear within quotes or they
will be included in the macro stream. The length of a CC command line
cannot exceed the maximum length allowed by DCL.

The /NODEFINE and /NOUNDEFINE qualifiers are provided for compatibil-
ity with other DCL qualifiers. You may wish to use these qualifiers to cancel
/DEFINE or /UNDEFINE qualifiers that you have specified in a symbol that
you use to compile VAX C programs.

The defaults are /NODEFINE and /NOUNDEFINE.

For additional information on the use of these qualifiers, see Section 1.3.2.1.

/[INOIDIAGNOSTICS[=file-spec]

Creates a file containing compiler messages and diagnostic information.
The extension .DIA is the default file extension for a diagnostics file. The
.DIA file is reserved for use with DIGITAL layered products. For more
information, see Appendix C.

The default is NODIAGNOSTICS.

/[[NOJG_FLOAT

Controls the format of floating-point variables. If you do not specify
/G_FLOAT on the CC command line, double variables are represented in D_
floating format. If /G_FLOAT is specified, all variables declared as double
are represented in G_floating format. (See Section 8.4 for more information
on the G_floating format.)

Developing VAX C Programs at the DCL Command Level 1-11

A program compiled with /G_FLOAT must also be linked with either the
object library VAXCRTLG.OLB or the shareable image VAXCRTLG.EXE.
If you are linking against object-module libraries, see Section 1.4.5.2 for
information about which libraries to link against and in what order you
need to specify these libraries. If you are linking against shareable images,
see Section 1.4.5.3.

The default is /NOG_FLOAT.

/[NOJINCLUDE_DIRECTORY=(pathname [, ...])

Provides an additional level of search for user-defined include files. Each
path-name argument can be either a logical name or a legal directory
specification, in quoted form.

The /INCLUDE_DIRECTORY qualifier provides the functionality of the -i
qualifier in CC on ULTRIX. This qualifier allows you to specify additional
directories to search for include files. The forms of inclusion affected are the
#include “file-spec” and #include <file-spec> forms. For the quoted form,
the order of search is as follows:

1. The directory containing the top-level source file
2. The directories specified in the /INCLUDE_DIRECTORY qualifier Gif
any)

3. The directory or search list of directories specified in the logical name
C$INCLUDE (if any)

For the bracketed form, the order of search is as follows:

1. The directories specified in the /INCLUDE_DIRECTORY qualifier (if
any)

2. The directory or search list of directories specified in the logical name
VAXCS$INCLUDE (if any)

3. If VAXC$INCLUDE is not defined, then the directory or search list of
directories specified by SYSSLIBRARY

The default is/ NOINCLUDE_DIRECTORY.

/LIBRARY

Indicates that the associated input file is a library containing modules

of VAX C source text. If the library specification does not include a file
extension, the CC command line assumes the .TLB default type. You must
join the /[LIBRARY qualifier with a file specification in a compilation unit
using a plus sign (+); you cannot place the qualifier on the CC command
line. No matter where you place the /LIBRARY qualifier in a compilation
unit, all files in the unit may make reference to modules within that library.
Consider the following example:

1-12 Developing VAX C Programs at the DCL Command Level

$ CC ONE + TWO + THREE/LIBRARY [RETURN]

Files ONE.C and TWO.C can contain references to modules in THREE.TLB.
Consider the following example:

$ CC ONE + TWO + THREE/LIBRARY, FOUR{RETURN]

The file FOUR.C cannot contain references to modules in THREE.TLB since
FOUR.C is located in a separate compilation unit separated by a comma.
The placement of the library file specification does not matter. The following
command lines are equivalent:

$ CC THREE/LIBRARY + ONE + TWO[RETURN
$ CC ONE + THREE/LIBRARY + TWO[RETURN
$ CC ONE + TWO + THREE/LIBRARY[RETURN

/[NO]LIST[=file-spec]

Directs the compiler to produce a listing file containing, by default, a source
program listing, a storage map, and a compilation summary. You must
specify this qualifier to get any type of listing output. None of the other
qualifiers use /LIST by default.

By default, /LIST causes the compiler to create a listing file with the same
name as the source file and with the .LIS file extension. If you include a file
specification with the /LIST qualifier, the compiler uses that specification to
name the listing file.

In interactive mode, the default is /NOLIST. In batch mode, the default is
/LIST. See also the descriptions of the qualifiers /NOIJCROSS_REFERENCE,
/[INOIMACHINE_CODE, and /SHOW.

/[NOJMACHINE_CODE[=option]

Directs the compiler to list the generated machine code in the listing file.
However, the compiler cannot produce any kind of listing file unless you
specify /LIST as well.

Several formats exist to list machine code. Table 1-2 shows the options for
/MACHINE_CODE.

Table 1-2: /MACHINE_CODE Qualifier Options

Option Usage

AFTER Causes the lines of machine code produced during compila-
tion to print after all the source code in the listing.

(continued on next page)

Developing VAX C Programs at the DCL Command Level 1-13

Table 1-2 (Cont.): /MACHINE_CODE Qualifier Options

Option Usage

BEFORE Causes lines of machine code produced during compilation to
print before any source code in the listing.

INTERSPERSED Produces a listing consisting of lines of source code followed

by the corresponding lines of machine code. This is the
default option.

The default is /NOMACHINE_CODE.

/[NOJOBJECT][=file-spec]

Directs the compiler to produce an object module. By default, /OBJECT
creates an object module file with the same name as that of the first source
file of a compilation unit and with the .OBJ file extension. If you include a
file specification with /OBJECT, the compiler uses that specification instead.
See Section 1.3.1 for more information about file specifications.

The compiler executes faster if it does not have to produce an object module.
Use the /INOOBJECT qualifier when you need only a listing of a program or
when you want the compiler to check a file of source text for errors.

The default is /OBJECT.

/OPTIMIZE[=0ption, . ..]
The /INO]JOPTIMIZE qualifier determines whether VAX C eliminates ineffi-
cient code. Table 1-3 presents the /[NOJOPTIMIZE qualifier options.

Table 1-3: /[NOJOPTIMIZE Qualifier Options

Option Usage

[NOIDISJOINT Directs the compiler to optimize the generated machine code.
For example, the compiler eliminates common subexpres-
sions, removes invariant expressions from loops, collapses
arithmetic operations into 3-operand instructions, and places
local variables in registers.

When debugging VAX C programs, use the
/OPTIMIZE=NODISJOINT option if you need minimal opti-
mization; if optimization during debugging is not important,
use the /NOOPTIMIZE qualifier.

(continued on next page)

1-14 Developing VAX C Programs at the DCL Command Level

Table 1-3 (Cont.): /[NOJOPTIMIZE Qualifier Options

Option Usage

[NOJINLINE Provides automatic inline expansion of functions that yield
optimized code when they are expanded. Whether or not
a function is a candidate for inline expansion is based on
its size, the number of times it is called, and whether it
conforms to the rules specified in Section 10.7.3.1.

The default is /OPTIMIZE, which is the same as
/OPTIMIZE=(DISJOINT,INLINE). The /NOOPTIMIZE qualifier turns off the
/PARALLEL qualifier.

/[NOJPARALLEL

Specifies whether the compiler should perform dependency analysis on for
loops in the program and generate optimized code to run on a multiprocessor
system.

If you specify /PARALLEL and if you plan on using the memory-
management functions malloe, calloe, free, or cfree, then you should
include the file stddef.h in your program and you should link against
the proper object library (VAXCPAR.OLB) or shareable image. See
Section 1.4.5.2 for information on linking against object-module libraries
and Section 1.4.5.3 for information on linking against a shareable image.

The default is /NOPARALLEL. The /NOOPTIMIZE qualifier turns off
/PARALLEL.

/[NO]JPRECISION= { g‘gg;fE }

Directs the compiler to generate code to perform floating-point operations on
float variables in single or double precision.

Your code may execute faster if it contains float variables and is compiled
with /PRECISION=SINGLE. However, the results of your floating-point
operations will be less precise. See Chapter 8 for more information on
floating-point variables.

The default is /PRECISION=DOUBLE.

/INOJPREPROCESS_ONLY[=filename]

Gives the same functionality as the -E qualifier on UNIX C compilers.
When it is specified, it causes the compiler to perform only the actions of
the preprocessor phase and writes the resulting processed text to a file.
No semantic or syntax processing is done. Furthermore, no object file,
diagnostic file, listing file, or analysis data file is produced.

Developing VAX C Programs at the DCLL. Command Level 1-15

If you do not specify a file name for the preprocessor output, the name of the
output file defaults to the file name of the input file with a .I file type.

The default is /NOPREPROCESS_ONLY.

/SHOW=[(option, ...)]

Sets or cancels listing options. You must use the /LIST qualifier with the
/SHOW qualifier to use any of the /SHOW options. Table 1-4 presents the

/SHOW options.

Table 1-4: /SHOW Qualifier Options

Option

Usage

ALL
[NOIBRIEF

[NOIDECOMPOSITION

[NOIDICTIONARY

[NOJEXPANSION

Prints all listing information.

Creates the same listing as the option SYMBOLS
except that BRIEF eliminates from the list any
identifiers that are not referenced in the program
and are not members of a structure or union that is
referenced in the program.

The /NOBRIEF option is the default.

Places a summary of the loops that were decom-
posed in the listing file. In addition to the /LIST,
/OPTIMIZE, and /PARALLEL qualifiers, must be
specified for /SHOW=DECOMPOSITION to take
effect.

The [NOJDECOMPOSITION option is the default.

Places the Common Data Dictionary (CDD)
definitions—included in the program with the
#dictionary preprocessor directive—into the listing
file. These data definitions are marked in the listing
file with an uppercase letter D in the listing margin.

The NODICTIONARY option is the default.

Places final macro expansions in the program
listing. When you specify this option, the number
of substitutions performed on the line prints next to
each line.

The NOEXPANSION option is the default.

(continued on next page)

1-16 Developing VAX C Programs at the DCL Command Level

Table 14 (Cont.): /SHOW Qualifier Options

Option

Usage

[NOJIINCLUDE

[NOJIINTERMEDIATE

NONE

[NOJSOURCE

[NOISTATISTICS

[NOISYMBOLS

[NOITERMINAL

[NOJTRANSLATION

Places the contents of #include files and modules in
the program listing.
The NOINCLUDE option is the default.

Places all intermediate and final macro expansions
in the program listing.
The NOINTERMEDIATE option is the default.

Creates an empty listing file, with only the header.
If you specify this option on a CC command line that
contains /LIST and /MACHINE_CODE, the compiler
places machine code in the listing file.

Places the source program statements in the pro-
gram listing.
The SOURCE option is the default.

Places compiler performance statistics in the pro-
gram listing.
The NOSTATISTICS option is the default.

Places the symbol table of the compiled program in
the program listing. The symbol table includes a
list of all functions, the sizes and attributes of all
variables referenced in the program, and a program
section summary and function definition map.

The NOSYMBOLS option is the default.

Displays compiler messages to the terminal.
The TERMINAL option is the default.

Places into the listing file all UNIX system file
specifications that the compiler translates to VMS
file specifications using DEC/Shell functions. See
the VAX C Run-Time Library Reference Manual for
more information on file translation.

The NOTRANSLATION option is the default.

/[[NO]JSTANDARD[=(option, ...)]

Directs the compiler to flag certain VAX C specific constructs and VAX C
relaxations of conventional C language constructs and rules. For example,
the conversions from pointer to integer and back again are subject to more
stringent tests when you specify /STANDARD=PORTABLE. If you specify
/STANDARD without an option, the default is /STANDARD=PORTABLE. In
summary, /STANDARD=PORTABLE causes the compiler to issue warning

Developing VAX C Programs at the DCL Command Level 1-17

messages against coding practices that may not be portable between VAX C
and other implementations.

The default is INOSTANDARD.

/[NOJUNDEFINE=(identifier[, . . .])
See /INOIDEFINE in this section.

/[NOJWARNINGS|[=(option, ...)]

Controls whether the compiler prints warning diagnostic messages, in-
formational diagnostic messages, neither, or both. The default qualifier,
/WARNINGS, causes the compiler to print all diagnostic messages. The
/NOWARNINGS qualifier suppresses both the informational and the warn-
ing messages.

Table 1-5 presents the two /WARNING qualifier options.

Table 1-5: /WARNINGS Qualifier Options

Option Usage

NOINFORMATIONALS Causes the compiler to suppress informational
messages.

NOWARNINGS Causes the compiler to suppress all warning
messages.

The informational message, SUMMARY, cannot be suppressed with
/NOWARNINGS or /WARNINGS=NOINFORMATIONALS.

The default is /WARNINGS.

1.3.2.1 Using the /DEFINE and /UNDEFINE Qualifiers

This section describes using the /DEFINE and /UNDEFINE qualifiers. Since
these qualifiers must follow Digital Command Language (DCL) conventions,
their use differs from the use of the #define and #undefine preprocessor
control directives.

You must enclose macro definitions in quotation marks. DCL issues a
warning message if it encounters a definition of the following form:

/DEFINE=funct (a) = a+sin(a)
The correct definition is written without spaces, as follows:

/DEFINE="funct (a)=a+sin(a)"

1-18 Developing VAX C Programs at the DCL Command Level

This definition produces the same results, as follows:
#define funct(a) a + sin(a)

Within a definition and inside quotes, a delimiter can be either a space or
one equal sign, whichever comes first. Consider the following example:

$ CC/DEFINE="true=1"

This is equivalent to the following:

#define true 1

Consider the following definition:

$ CC/DEFINE="TRUE =1"

This definition is equivalent to the following:
#define TRUE =1

Within the definition and outside quotes, the only allowed delimiter is
one equal sign; a space terminates the definition. Consider the following
example:

$ CC/DEFINE=(maybe=2, "funct (a)=a+sin(a)")
These definitions are equivalent to the following:

#define MAYBE 2
#define funct(a) a + sin(a)

However, the following definitions are not recognized by DCL:

$ CC/DEFINE= TRUE
$ CC/DEFINE=(FALSE 0)

In the first example, DCL interprets TRUE as a file specification; in the
second, DCL flags an invalid value specification.

One equal sign can be passed to the compiler within a single line in one of
the following ways:

$ CC/DEFINE=(EQU==,"equ =", "equal=="

In the first definition, two equal signs are required: the first is removed by
DCL as the delimiter; the other is passed to the compiler. In the second
example, the space is recognized as a delimiter because the definition is
inside quotes. Therefore, only one equal sign is required. In the third
definition, the equal sign is used as the delimiter. The compiler removes the
first equal sign.

Developing VAX C Programs at the DCL Command Level 1-19

You can pass quotation marks in one of the following ways:
§ CC/DEFINE=(QUOTES="""", "funct (b)=printf(")")

In both examples, DCL removes the first and last quotation marks before
passing the definition to the compiler.

The /UNDEFINE qualifier is useful for undefining the predefined VAX C
preprocessor constants. For example, if you use a preprocessor constant
(such as vaxc, VAXC, VAX1lc, or vms) to conditionally compile segments of
VAX C specific code, you can undefine that constant to see how the portable
sections of your program execute. Consider the following program:

main ()

{

#if wvaxc

printf("I’m being compiled with VAX C.");

#else

printf ("I’'m being compiled on some other compiler.")
#endif

}

Output from the program is as follows:

$ CC EXAMPLE.C[RETURN]
$ LINK EXAMPLE.OBJ[RETURN]
$ RUN EXAMPLE.EXE [RETURN]

I’'m being compiled with VAX C.

$ CC/UNDEFINE="vaxc" EXAMPLE[RETURN]
$ LINK EXAMPLE.OBJ[RETURN]

$ RUN EXAMPLE.EXE[RETURN]

I'm being compiled on some other compiler.

1.3.3 Compiler Error Messages

If there are errors in your source file when you compile your program, the
VAX C compiler signals these errors and displays diagnostic messages.
Reference the diagnostic message, locate the error, and, if necessary, correct
the error. Diagnostic messages displayed by VAX C have the following
format:

%CC-s-ident, message-text
Listing line number m
At line number n in name

1-20 Developing VAX C Programs at the DCL Command Level

%CC
Is the facility or program name of the VAX C compiler. This portion indicates
that the message is being issued by VAX C.

S
Is the severity of the error, represented as follows:

F Fatal error. The compiler stops executing when a fatal error occurs and does
not produce an object module. You must correct the error before you can
compile the program.

E Error. The compiler continues, but does not produce an object module. You
must correct the error before you can successfully compile the program.

W Warning. The compiler produces an object module. It attempts to correct the
error in the statement, but you should verify that the compiler’s action is
acceptable. Otherwise, your program may produce unexpected results.

I Information. This message usually appears with other messages to inform
you of specific actions taken by the compiler. No action is necessary on your
part.

ident

Is the message identification. This is a descriptive abbreviation (mnemonic)
of the message text.

message-text

Is the compiler’s message. In many cases, it consists of more than one line
of output. A message generally provides you with enough information to
determine the cause of the error so that you can correct it.

Listing line number m

Is the integer m, which gives you the line number in the listing file where
the error occurs. This information is given when you specify the command
qualifier /LIST.

At line number n in name

Is the integer n, which gives you the number of the line where the error
occurs. The number is relative to the beginning of the file or text library
module specified by name. You can use the #line directive to change both
the line number and name that appear in the message.

Appendix B lists the messages produced by the VAX C compiler.

Developing VAX C Programs at the DCL Command Level 1-21

1.4 Linking a VAX C Program

After you compile a VAX C source program or module, use the DCL
command LINK to combine your object modules into one executable image,
which can then be executed by the VMS system. A source program or
module cannot run on the VMS system until it is linked.

When you execute the LINK command, the linker performs the following
functions:

* Resolves local and global symbolic references in the object code
* Assigns values to the global symbolic references

* Signals an error message for any unresolved symbolic reference
¢ Allocates virtual memory space for the executable image

When using the LINK command on development systems, use the /DEBUG
qualifier to link your program module. The /DEBUG qualifier appends to
the image all the symbol and line number information appended to the
object modules plus information on global symbols, and causes the image to
run under debugger control when it is executed.

The LINK command produces an executable image by default. However,
you can also use the LINK command to obtain shareable images and
system images. The /SHAREABLE qualifier directs the linker to produce
a shareable image; the /SYSTEM qualifier directs the linker to produce a
system image. See Section 1.4.2 for a complete description of these and
other LINK command qualifiers.

For a complete discussion of the VMS Linker, see the VMS Linker Utility
Manual.

1.4.1 The LINK Command
The LINK command has the following format:

LINK[/command-qualifier]... {file-spec[/ffile-qualifier...]},...

/command-qualifier...
Specifies output file options.

file-spec
Specifies the input files to be linked.

1-22 Developing VAX C Programs at the DCL Command Level

ffile-qualifier...
Specifies input file options.

If you specify more than one input file, you must separate the input file
specifications with a plus sign (+) or a comma (,).

By default, the linker creates an output file with the name of the first input

file specified and the file type EXE. If you link more than one file, it is good

practice to list the file containing the main program first. Then, the name of
your output file will have the same name as your main program module.

The following command line links the object files MAINPROG.OBJ,
SUBPROG1.0BJ, and SUBPROG2.0BJ to produce one executable image
called MAINPROG.EXE:

$ LINK MAINPROG.OBJ, SUBPROGL.OBJ, SUBPROGZ.OBJ

1.4.2 LINK Command Qualifiers

You can use the LINK command qualifiers to modify the linker’s output,
as well as to invoke the debugging and traceback facilities. Linker output
consists of an image file and an optional map file.

The following list summarizes some of the most commonly used LINK
command qualifiers. A brief description of each qualifier follows this list.
For a complete list of LINK qualifiers, see the VMS Linker Utility Manual.

Command Qualifiers Default

/BRIEF See text.
/[INO]JCROSS_REFERENCE /NOCROSS_REFERENCE
/INOIDEBUG /NODEBUG
/INOJEXECUTABLE=][file-spec] /EXECUTABLE=name.EXE

/FULL See text.

/[NOJMAP /NOMAP (interactive) /MAP (batch)
/[NO]SHAREABLE/=file-spec] /NOSHAREABLE
/INOJTRACEBACK /TRACEBACK

/BRIEF

Causes the linker to produce a summary of the image’s characteristics and a
list of contributing modules.

/[[NOJCROSS_REFERENCE

Causes the linker to produce cross-reference information for global symbols;
/NOCROSS_REFERENCE causes the linker to suppress cross-reference
information.

Developing VAX C Programs at the DCL Command Level 1-23

The default is /NOCROSS_REFERENCE.

/[NO]IDEBUG

Causes the linker to include the VMS Debugger in the executable image and
generates a symbol table; /NODEBUG causes the linker to prevent debugger
control of the program.

The default is /NODEBUG.

/INOJEXECUTABLE [=file-spec]
Causes the linker to produce an executable image. /NOEXECUTABLE
suppresses production of an image file.

The default is /EXECUTABLE.

/FULL

Causes the linker to produce a summary of the image’s characteristics, a list
of contributing modules, listings of global symbols by name and by value,
and a summary of characteristics of image sections in the linked image.

/[NO]JMAP
Causes the linker to generate a map file; /NOMAP suppresses the map.

The default is /MAP in batch mode and /NOMAP in interactive mode.

/INO]JSHAREABLE]=file-spec]
Causes the linker to create a shareable image. /NOSHAREABLE generates
an executable image.

The default is/ NOSHAREABLE.
/INOJTRACEBACK

Causes the linker to generate symbolic traceback information when error
messages are produced; NOTRACEBACK suppresses traceback information.

The default is /TRACEBACK.

1.4.3 Linker Input Files

1-24

You can specify the object modules to be included in an executable image in
any of the following ways:

* Specify input file specifications for the object modules.

If no file type is specified, the linker searches for an object file with the
file type OBJ.

* Specify one or more object module library files.

Developing VAX C Programs at the DCL Command Level

You can specify either the name of an object module library with the
/LIBRARY qualifier or the names of the object modules contained in
an object module library with the /INCLUDE qualifier. Section 1.4.5.1
describes the uses of object module libraries.

* Specify an options file.
An options file can contain additional file specifications for the LINK
command, as well as special linker options. You must use the /OPTIONS
qualifier to specify an options file. For more information on options files,
see the VMS Linker Utility Manual.

Table 1-6 shows the default input file types for the linker.

Table 1-6: VMS Linker Default File Types for Input Files

File Type File

OBJ Object module
OLB Library

OPT Options file

1.4.4 Linker Output Files

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
resulting image file has the same file name as that of the first object module
specified with a file type of EXE.

In a batch job, the linker creates both an executable image file and storage
map file by default. The default file type for map files is MAP.

To specify an alternative name for a map file or image file or to specify an
alternative output directory or device, you can include a file specification on
the /MAP or /EXECUTABLE qualifier. In the following example, the LINK
command creates the image file [PROJECT.EXE]JUPDATE.EXE and the map
file [PROJECT.MAPJUPDATE.MAP:

$ LINK UPDATE/EXECUTABLE=[PROJECT.EXE]/MAP=[PROJECT.MAP]

Developing VAX C Programs at the DCL Command Level 1-25

1.4.5 Linking Against Object Module Libraries and Shareable Images

Linking against object modules (stored in object module libraries) or
against shareable images are ways of allowing your program to access data
and routines outside of your compilation units. Either the object module
libraries and the shareable images can be created by you or they could be
ones provided by DIGITAL. To access data in object modules and shareable
images, you can use LINK command qualifiers, VMS logical names, and
options files.

Also, the VAX C Run-Time Library (RTL) provides two formats for you to
choose from: object module libraries or shareable images. Depending on
which type of RTL you want to use and on which type of functions you plan
on calling from your programs, you need to supply information to the linker
that specifies which versions of the functions to access.

When you use the VAX C RTL and its corresponding definition modules (see
Appendix A), remember that the VAX C RTL ships with the VMS operating
system and the definition modules ship with the VAX C compiler. Since the
releases of the compiler and of the operating system are not synchronized,
there may be compatibility issues that you need to consider to use the VAX
C RTL properly. See the release notes (by typing HELP CC RELEASE_
NOTES on the DCL command line) for information that may pertain to this
issue.

The following sections discuss these topics in further detail:
* Object module libraries (Section 1.4.5.1)

¢ Linking against the RTL object libraries (Section 1.4.5.2)
¢ Linking against the RTL shareable images (Section 1.4.5.3)

1.4.5.1 Object Module Libraries

You can make program modules accessible to other users by storing them
in an object module library. To link modules contained in an object module
library, use the /INCLUDE qualifier and specify the modules you want to
link. In the following example, the LINK command directs the linker to link
the subprogram modules EGGPLANT, TOMATO, BROCCOLI, and ONION
with the main program module GARDEN:

$ LINK GARDEN, VEGGIES/INCLUDE=(EGGPLANT, TOMATO, BROCCOLI,ONION)

1-26 Developing VAX C Programs at the DCL Command Level

An object module library can also contain a symbol table with the names
of each global symbol in the library, and the name of the module in which
they are defined. You specify the name of the object module library con-
taining symbol definitions with the /LIBRARY qualifier. When you use

the /LIBRARY qualifier during a linking operation, the linker searches the
specified library for all unresolved references found in the included modules
during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library to be your default library by using
the DCL command DEFINE LNK$LIBRARY. The linker searches default
user libraries for unresolved references after it searches modules and li-
braries specified in the LINK command. For more information about the
DEFINE command, see the VMS DCL Dictionary.

For more information about object module libraries, see the VMS Linker
Utility Manual.

1.4.5.2 Linking Against the RTL Object Libraries

Using the object code of the VAX C Run-Time Library (RTL) functions is
one of two options (see Section 1.4.5.3 for information on the RTL shareable
images). When you choose to use the VAX C RTL as object code, the linker
attempts to resolve all references to VAX RTL functions by searching any
object module libraries specified on the LINK command line. If the linker
locates the function code, it places a copy of the code in the program’s local
program section (psect). If the linker does not locate the function code,

it translates the logical name LNK$SLIBRARY_n to the name of an object
library and then searches that library for the code.

If you choose to link against object module libraries and if you want to

use any of the VAX C RTL functions, you have to link against the file
SYS$LIBRARY:VAXCRTL.OLB. Depending on what other VAX C RTL
functions you want to use or on other linking requirements, you may have
to link against other files in strict order. To use these VAX C RTL functions,
define the logicals LNK$LIBRARY_n as libraries in the following order,
omitting any that you do not need to run your programs:

1. SYS$LIBRARY:VAXCCURSE.OLB

Link against this file if you used the Curses Screen Management pack-
age of VAX C RTL functions and macros in your compiled program. If
you do not need Curses, then do not link against this file.

Developing VAX C Programs at the DCL Command Level 1-27

2. SYS$LIBRARY:VAXCRTLG.OLB
Link against this file if you used the /G_FLOAT qualifier on the CC
command line. If you do not specify /G_FLOAT, then do not link against
this file.

3. SYS$LIBRARY:VAXCPAR.OLB
Link against this file either to access the parallel-processing versions
of the VAX C RTL functions malloe, calloc, free, cfree, and real-
loc or to fulfill another linking requirement for parallel processing.
(See Section 3.3 for information on linking requirements for parallel
processing.)

4. SYS$LIBRARY:VAXCRTL.OLB
Link against this file to access the VAX C RTL. If you do not use any
VAX C RTL functions and if you do not have a VAX C main program,
then do not link against this file (or any of the previous files).

If you want to use the regular versions of the VAX C RTL functions (without
Curses), then you should define the following logical:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTL.OLB[RETURN]

If you need to access all types of VAX C RTL functions and macros, you
should define the logical names in the following order:

DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLB
DEFINE LNK$SLIBRARY 1 SYSS$LIBRARY:VAXCRTLG.OLB[RETURN]
DEFINE LNKSLIBRARY 2 SYS$LIBRARY:VAXCPAR.OLB[RETURN]
5 DEFINE LNKSLIBRARY 3 SYS$LIBRARY:VAXCRTL.OLB[RETURN]

If you only need to use Curses, then you should define the logical names in
the following order:

$ DEFINE LNKSLIBRARY SYS$LIBRARY : VAXCCURSE . OLB[RETURN]
$ DEFINE LNKSLIBRARY 1 SYSSLIBRARY:VAXCRTL.OLB[RETURN

If you need to use Curses and G_floating precision in your program, then
you should define the logical names in the following order:

$ DEFINE LNKSLIBRARY SYS$LIBRARY : VAXCCURSE. OLB[RETURN]
$ DEFINE LNKSLIBRARY 1 SYS$LIBRARY:VAXCRTLG.OLB[RETURN]
$ DEFINE LNKSLIBRARY 2 SYS$LIBRARY:VAXCRTL.OLB[RETURN]

The order of the specified libraries determines which versions of the VAX
C RTL functions are found by the linker first. If the linker does not find
the function code, or if LNK$LIBRARY n is undefined, it assumes that
the function is not a VAX C RTL function, and checks the VMS Common
Run-Time Procedure Library. These references can be explicit references
in your code, or they could be references generated by the compiler to

1-28 Developing VAX C Programs at the DCL Command Level

perform common operations such as input and output, calls to mathematical
functions, and so forth.

If the linker cannot resolve the reference by checking the VMS Common
Run-Time Procedure Library, it assumes that an error has been made. For
more information about Curses, see the VAX C Run-Time Library Reference
Manual. For more information about the G_floating representation of
double variables, see Section 8.4. For more information on VAX C support
for parallel processing, see Chapter 3.

NOTE

Do not use search lists to define the equivalence names for
LNK$LIBRARY_n. The linker will not resolve external references
to the VAX C RTL functions in the proper manner.

1.4.5.3 Linking Against the RTL Shareable Images

Using the object code of the VAX C Run-Time Library (RTL) functions is one
of two options (see Section 1.4.5.2 for more information). You can also use
the VAX C RTL as a shareable image to reduce the space the image takes on
the disk and to increase the program execution rate.

When you use the VAX C RTL as a shareable image, you do not receive a
copy of the object code in your program’s local psect; control is passed, using
pointers, from your program to libraries containing the VAX C RTL images
where the designated function executes. After execution, control returns to
your program. This process has a number of advantages. You significantly
reduce the size of a program’s executable image, the program’s image takes
up less disk space, and the program swaps in and out of memory faster due
to decreased size.

If you do not use the /G_FLOAT qualifier, then create an options file,
OPTIONS_FILE.OPT, containing the following line:

SYS$SHARE : VAXCRTL.EXE/SHARE

If you do use the /G_FLOAT qualifier, then create an options file containing
the following line:

SYS$SHARE : VAXCRTLG .EXE/SHARE

You cannot include the libraries SYS$SHARE:VAXCRTL.EXE and
SYS$SHARE:VAXCRTLG.EXE in the same options file.

Developing VAX C Programs at the DCL Command Level 1-29

If you have linking requirements for parallel processing (see Section 3.3 for
information on compiling and linking requirements), then you also need to
link against the VAXCPAR.OLB object module library. To do this, define the
following logical name:

$ DEFINE LNK$LIBRARY SYSSLIBRARY:VAXCPAR.OLB[RETURN]

After you define the logical name LNK$LIBRARY, you can create the options
file (described previously) that suits your application.

After you create the appropriate options file, named OPTIONS_FILE.OPT,
you can compile and link the program with the following commands:

$ CC PROGRAM.C[RETURN]
¢ LINK PROGRAM.OBJ, OPTIONS_FILE/OPT[RETURN]

1.4.6 Linker Error Messages

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or fatal
error conditions occur (that is, errors with severities of E or F), the linker
does not produce an image file.

The messages produced by the linker are descriptive, and you do not usually
need additional information to determine the specific error. Some common
errors that occur during linking are as follows:

* An object module has compilation errors.
This occurs when you try to link a module that produced warning or
error messages during compilation. You can usually link compiled
modules for which the compiler generated messages, but verify that the
modules will produce the output you expect.

¢ The input file has a file type other than OBJ and no file type was
specified on the command line.
If you do not specify a file type, the linker searches for a file that has
a file type of OBJ by default. If the file is not an object file and you do
not identify it with the appropriate file type, the linker signals an error
message and does not produce an image file.

¢ You tried to link a nonexistent module.
The linker signals an error message if you misspell a module name on
the command line or if the compilation contains fatal diagnostics.

* A reference to a symbol name remains unresolved.

1-30 Developing VAX C Programs at the DCL Command Level

An error occurs when you omit required module or library names

from the command line and the linker cannot locate the definition

for a specified global symbol reference. In the following example, a
main program module, OCEAN.OBJ, calls the subprogram modules
REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBJ, and the following LINK
command is executed:

$ LINK OCEAN, REEF, SHELLS

Because SEAWEED is not linked, the linker signals the following error
messages:

%LINK~-W-NUDFSYMS, 1 undefined symbol

$LINK-I-UDFSYMS, SEAWEED

$LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
$LINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct the error
by reentering the command string and specifying the correct modules or
libraries. If an error indicates that a program module cannot be located, you
may be linking the program with the wrong VAX C RTL.

For a complete list of linker messages, see the VMS System Messages and
Recovery Procedures Reference Volume.

1.5 Running a VAX C Program

After you link your program, you can use the DCL RUN command to execute
it. The RUN command has the following format:

RUN [/[NO]DEBUG] file-spec [/[NO]DEBUG]

/[NO]DEBUG

Is an optional qualifier. Specify the /DEBUG qualifier to invoke the
debugger if the image was not linked with it. You cannot use /DEBUG on
images linked with the INOTRACEBACK qualifier. If the image was linked
with the /DEBUG qualifier and you do not want the debugger to prompt
you, use the /NODEBUG qualifier. The default action depends on whether
the file was linked with the /DEBUG qualifier.

file-spec
Specifies the file you want to run.

The following example executes the image SAMPLE.EXE without invoking
the debugger:

$ RUN SAMPLE/NODEBUG

Developing VAX C Programs at the DCL Command Level 1-31

For more information on debugging programs, see Chapter 2.

During execution, an image can generate a fatal error called an exception
condition. When an exception condition occurs, the system displays an error
message. Run-time errors can also be issued by the operating system or by
certain utilities, such as the VMS Sort Utility (SORT).

When an error occurs during the execution of a program, the program is
terminated and the VMS condition handler displays one or more messages
on the currently defined SYS$ERROR device.

A message is followed by a traceback. For each module in the image that
has traceback information, the condition handler lists the modules that were
active when the error occurred, showing the sequence in which the modules
were called.

For example, if an integer divide-by-zero condition occurs, a run-time
message like the following appears:

$SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero
at PC=00000FC3, PSL=03C00002

This message is followed by a traceback message similar to the following:

$TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC
A C 8 00000007 0000QFC3
B main 1408 000002F7 00000B17

The information in the traceback message is as follows:

module name
Is the name or names of an image module that was active when the error
occurred.

The first module name is that of the module in which the error occurred.
Each subsequent line gives the name of the caller of the module named on
the previous line. In this example, the modules are A and B; main called C.

routine name
Is the name of the function in the calling sequence.

line

Is the compiler-generated line number of the statement in the source
program where the error occurred, or at which the call or reference to the
next procedure was made. Line numbers in these messages match those in
the listing file.

1-32 Developing VAX C Programs at the DCL Command Level

rel PC

Is the value of the PC (program counter). This value represents the location
in the program image at which the error occurred or at which a procedure
was called. The location is relative to the virtual memory address that

the linker assigned to the code program section of the module indicated by
module name.

abs PC
Is the value of the PC in absolute terms; that is, the actual address in
virtual memory representing the location at which the error occurred.

Traceback information is available at run time only for modules compiled
and linked with the traceback option in effect. The traceback option is
in effect by default for both the CC and LINK commands. You may use
the CC command qualifier /NODEBUG and the LINK command qualifier
/NOTRACEBACK to exclude traceback information. However, traceback
information should be excluded only from thoroughly debugged program
modules.

Developing VAX C Programs at the DCL Command Level 1-33

Chapter 2
Using the VMS Debugger

This chapter is an introduction to using the VMS Debugger (debugger) with
VAX C programs and provides the following information:

¢ An overview of the debugger (Section 2.1)

¢ Features of the debugger (Section 2.2)

¢ Information to get you started using the debugger (Section 2.3)

¢ Debugger support for VAX C (Section 2.4)

¢ Controlling symbolic references (Section 2.5)

* A sample terminal session that demonstrates using the debugger
(Section 2.6)

For complete reference information on the VMS Debugger, see the VMS
Debugger Manual. Online HELP is available during debugging sessions.

This chapter describes how to debug programs that run in only one process.
See Appendix E for more information on debugging programs that take
advantage of multiprocess programs.

2.1 Overview

A debugger is a tool that helps you locate run-time errors quickly. It is used
with a program that has been compiled and linked successfully, but does
not run correctly. For example, the output may be obviously wrong, or the
program goes into an infinite loop or terminates prematurely. The debugger
enables you to observe and manipulate the program’s execution interactively
so you can locate the point at which the program stopped working correctly.

Using the VMS Debugger 2-1

The VMS Debugger is a symbolic debugger, which means that you can refer
to program locations by the symbols (names) you used for those locations in
your program—the names of variables, routines, labels, and so on. You do
not need to use virtual addresses to refer to memory locations.

The debugger recognizes the syntax, expressions, data typing, and other
constructs of VAX C, as well as the following VAX-supported languages:

Ada
BASIC
BLISS
COBOL
DIBOL
FORTRAN
MACRO-32
Pascal
PL/1

RPG II
SCAN

If your program is written in more than one language, you can change from
one language to another during a debugging session. The current source
language determines the format used for entering and displaying data, as
well as other features that have language-specific settings (for example,
comment characters, operators and operator precedence, and case sensitivity
or insensitivity).

By entering debugger commands at your terminal, you can perform the
following operations:

* Start, stop, and resume the program’s execution

* Trace the execution path of the program

* Monitor selected locations, variables, or events

* Examine and modify the contents of variables, or force events to occur

¢ Test the effect of some program modifications without having to edit,
recompile, and relink the program

These techniques allow you to isolate an error in your code much faster than
you could without the debugger.

After you find the error in your program, you can edit the source code and
compile, link, and run the corrected version.

2-2 Using the VMS Debugger

2.2 Features of the Debugger

The VMS Debugger provides the following features to help you debug your
programs:

Online HELP

Online HELP is available during a debugging session and contains
information on all the debugger commands and some selected topics.
Source Code Display

You can display lines of source code during a debugging session.
Screen Mode

You can capture and display various kinds of information in scrol-
lable windows, which can be moved around the screen and resized.
Automatically updated source, instruction, and register displays are
available. You can selectively direct debugger input, output, and
diagnostic messages to displays.

Keypad Mode

When you invoke the debugger, several commonly used debugger
command sequences are assigned by default to the keys of the numeric
keypad (if you have a VT'100, VT52, or LK201 keyboard).

Source Editing

As you find errors during a debugging session, you can use the EDIT
command to invoke any editor available on your system. (You first
specify the editor you want with the SET EDITOR debugger command).
Command Procedures

The debugger allows you to execute a command procedure to recreate a
debugging session, to continue a previous session, or to avoid typing the
same debugger commands many times during a debugging session.
Symbol Definitions

You can define your own symbols to represent lengthy commands,
address expressions, or values.

Initialization Files

You can create an initialization file containing commands to set your
default debugging modes, screen display definitions, keypad key

definitions, symbol definitions, and so on. In addition, you may want to
have special initialization files for debugging specific programs.

Using the VMS Debugger 2-3

* Log Files
You can record the commands you enter during a debugging session and
the debugger’s responses to those commands in a log file. You can use
log files to keep track of your debugging efforts, or you can use them as
command procedures in subsequent debugging sessions.

2.3 Getting Started with the Debugger

The following sections explain how to use the debugger with VAX C
programs. These sections focus on basic debugger functions to get you
started quickly. They also provide any debugger information that is specific
to VAX C. For more detailed information that is not specific to a particular
language, see the VMS Debugger Manual.

2.3.1 Compiling and Linking a Program to Prepare for Debugging

Before using the debugger, you must compile and link your program as
explained in this section. The following example shows how to compile
and link a VAX C program (consisting of a single compilation unit named
INVENTORY) prior to using the debugger:

$ CC/DEBUG/NOOPTIMIZE INVENTORY
$ LINK/DEBUG INVENTORY

The /DEBUG qualifier on the CC command line causes the compiler to
write the debug symbol records associated with INVENTORY into the
object module, INVENTORY.OBJ. These records allow you to use the
names of variables and other symbols declared in INVENTORY in debugger
commands. (If your program has several compilation units, you must
compile each unit that you want to debug with the /DEBUG qualifier.)

Use the /NOOPTIMIZE qualifier when you compile a program in preparation
for debugging. Otherwise, if the object code is optimized (to reduce the size
of the program and make it run faster), the contents of some program
locations may be inconsistent with what you might expect from viewing

the source code. (After debugging the program, recompile it without the
/NOOPTIMIZE qualifier.)

The /DEBUG qualifier on the LINK command line causes the linker to
include all symbol information that is contained in INVENTORY.OBJ in the
executable image. This qualifier also causes the VMS image activator to
start the debugger at run time. (If your program has several object modules,
you may need to specify the other modules in the LINK command.)

2-4 Using the VMS Debugger

2.3.2 Starting and Terminating a Debugging Session

You can invoke the debugger in either the default or multiprocess config-
uration to debug programs that run in either one or several processes,
respectively. The configuration depends on the current value of the logical
name DBG$PROCESS. Thus, before invoking the debugger, enter the DCL
command SHOW LOGICAL DBG$PROCESS.

This chapter covers programs that run in only one process. For such
programs, DBG$PROCESS either should be undefined, as in the following
example, or should have the value DEFAULT:

$ SHOW LOGICAL DBGSPROCESS

$SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS

If DBG$PROCESS has the value MULTIPROCESS, enter the following
commands to debug programs that run in only one process (see Appendix E
for details on multiprocess debugging):

$ DEFINE DBGSPROCESS DEFAULT

You can now invoke the debugger by entering the DCL RUN command. The
following messages then appear on your screen:

$ RUN INVENTORY
VAX DEBUG Version 5.0

$DEBUG-I-INITIAL, language is C, module set to ’INVENTORY’
DBG>

The INITTAL message indicates that the debugging session is initialized
for a VAX C program and that the name of the main program unit is
INVENTORY. The DBG> prompt indicates that you can now type debugger
commands. At this point, if you type the GO command, program execution
begins and continues until the program is forced to pause or stop (for
example, if the program prompts you for input, or an error occurs).

If you have a mixed-language program that includes an Ada package or a
program compiled with the /PARALLEL qualifier, the following message
will appear on your screen instead of the previous one when you invoke the
debugger:

$ RUN INVENTORY
VAX DERUG Version 5.0

$DEBUG-I-INITIAL, language is C, module set to /INVENTORY’
$DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

Using the VMS Debugger 2-5

The INITIAL message indicates that the debugging session is initialized

for a VAX C program and that the name of the main program unit is
INVENTORY. The NOTATMAIN message indicates that execution is
suspended before the start of the main program, so that you can execute
initialization code under debugger control. Typing the GO command places
you at the start of the main program. At that point, type the GO command
again to start program execution. Execution continues until it is forced to
pause or stop (for example, if the program prompts you for input, or an error
occurs).

To end a debugging session and return to DCL level, type EXIT or press
CTRL/Z:

DBG> EXIT
$

The following message indicates that your program has completed execution
successfully:

$DEBUG-I--EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG>

If you want to continue debugging after seeing this message, type EXIT and
start a new debugging session with the DCL RUN command.

2.3.3 Aborting Program Execution or Debugger Commands

If your program loops during a debugging session so that the debugger
prompt does not reappear, press CTRL/C. This interrupts program execution
and returns you to the prompt. For example:

DBG> GO

(infinite loop)

CTRL/C

Interrupt

$DEBUG-W-ABORTED, command aborted by user request
DBG>

Do not press CTRL/Y from within a debugging session. Pressing CTRL/Y
aborts the session and returns you to the DCL prompt ($) rather than the
debugger prompt.

You can also press CTRL/C to abort the execution of a debugger command.
This is useful if a command takes a long time to complete. For example:

2-6 Using the VMS Debugger

DBG> EXAMINE/BYTE 1000:101000

1000: O

1004: O

1008: O

1012: O

1016: 0)

! Should have typed 1000:1010
%DEBUG-W-ABORTED, command aborted by user request
DBG>

If your program has a CTRL/C AST service routine enabled, use the
debugger command SET ABORT_KEY to assign the debugger’s abort
function to another CTRL-key sequence. For example:

DBG> SET ABORT KEY = CTRL P
DBG> GO

%$DEBUG-W-ABORTED, command aborted by user request
DBG>

Note, however, that many CTRL-key sequences have VMS predefined
functions, and the SET ABORT_KEY command enables you to override
such definitions within the debugging session (see the VMS DCL Concepts
Manual). Some of the CTRL-key characters not used by the VMS operating
system are G, K, N, and P.

2.3.4 Entering Debugger Commands

You can enter debugger commands any time you see the debugger prompt
(DBG>). Type the command at the keyboard and press the RETURN key.
You can enter several commands on a line by separating the command
strings with semicolons (;). As with DCL commands, you can continue a
command string on a new line by ending the previous line with a hyphen

(-).

You can also use the numeric keypad to enter certain commands. Figure 2—1
shows the predefined key functions. You can also redefine key functions with
the DEFINE/KEY command.

Most keypad keys have three predefined functions—DEFAULT, GOLD, and
BLUE. (The PF1 key is known as the GOLD key; the PF4 key is known

as the BLUE key.) To obtain a key’'s DEFAULT function, press the key. To
obtain its GOLD function, first press the PF1 (GOLD) key, and then the key.
To obtain its BLUE function, first press the PF4 (BLUE) key, and then the
key.

Using the VMS Debugger 2-7

In Figure 2-1, the DEFAULT, GOLD, and BLUE functions are listed within
each key’s outline, from top to bottom, respectively. For example, pressing
keypad key 0 enters the STEP command; pressing key PF1 and then key 0
enters the STEP/INTO command; pressing key PF4 and then key 0 enters
the STEP/OVER command.

Type the command HELP KEYPAD to get help on the keypad key defini-
tions.

2-8 Using the VMS Debugger

Figure 2-1: Debugger Keypad Key Functions

an N Fi8 F19 F20 N\ (s \
DEFAULT MOVE EXPAND CONTRACT MOVE" MOVE/P
(SCROLL) (EXPAND +) (EXPAND -) MOVE/UP:999
MOVE/UP:S
_ J Y, . J
~\ -
Py PF2 PF3 PF4)
MOVELEFT MOVE/RIGHT
MOVE/LEFT:999 MOVE/RIGHT:999
GOLD HELP DEFAULT | SET MODE SCREEN BLUE ; .
GOLD HELPGOLD | SETMODE NOSCR BLUE MOVEALEFT:10 MOVERIGHT:i0
GOLD HELP BLUE DISP/GENERATE BLUE
(2 \
7 ' Y -
MOVE/DOWN
DISP SRG,INST.OUT| SCROLLUP DISPLAYnext | DISP nextatF$ 299
DISP INSTREGOUT| ~ SCROLLTOP -
SCROLLIUP... DISP SRC, OUT \ /

" NS)(s W)

5 ,

SCROLLAEFT EX/SOU .0%PC | SCROLLRIGHT 6o “EXPAND* EXPAND/UP

SCROLLLEFT:255 | SHOWCALLS | SCROLLRIGHT:255 EXPAND/UP:999

SCROLLAEFT... SHOW CALLS3 | SCROLLRIGHT.. SELNST next LEXPAND’U”

\. J/ \. J ™~ (e

1 (2 \3 ENTER

EXPANDILEFT EXPAND/RIGHT

EXAMINE SCROLLUDOWN | SEL/SCROLL next EXPAND/LEFT999 EXPAND/RIGHT:999
EXAMA(prev) SCROLL/BOTTOM | SEL/OUTPUT next EXPAND/LEFT:10 EXPAND/RIGHT:10

SCROLL/DOWN... | SEL/SOURCE next

- S ENTER 2

0 .
EXPAND/DOWN
STEP RESET EXPAND/DOWN:999
STEPANTO RESET EXPAND/DOWN:5

STEP/OVER RESET \ /
_ J —
8

*"CONTRACT" EXPAND/UP:~1

LK201 Keyboard: EXPAND/UP:-999
Press Keys 24,68 EXPAND/UP:-5
F17 SCROLL \)
F18 MOVE
F19 EXPAND
F20 CONTRACT
EXPAND/LEFT—1 EXPAND/RIGHT:-1
VT-100 Keyboard: EXPAND/LEFT--999 EXPAND/RIGHT:-9
Type Keys 24,68 EXPANDALEFT—10 EXPAND/RIGHT:-10
SET KEY/STATE=DEFAULT SCROLL
SET KEY/STATE=MOVE MOVE
SET KEY/STATE=EXPAND EXPAND
SETKEY/STATE=CONTRACT CONTRACT
EXPAND/DOWN:~1

EXPAND/DOWN:-999|
EXPAND/DOWN:-5

ZK-4774-CE

Using the VMS Debugger 2-9

2.3.5 Viewing Your Source Code

The debugger provides two modes for displaying information: noscreen mode
and screen mode. By default, when you invoke the debugger, you are in
noscreen mode, but you may find that it is easier to view your source code in
screen mode. Both modes are briefly described in the following sections.

23.5.1

Noscreen Mode

Noscreen mode is the default, line-oriented mode of displaying input and
output. To invoke noscreen mode from screen mode, press the keypad key
sequence GOLD-PF3. See the sample debugging session in Section 2.6 for a
demonstration of noscreen mode.

In noscreen mode, you can use the TYPE command to display one or more
source lines. For example, the following command displays line 3 of the
module whose code is currently executing:

DBG> TYPE 3
module MAIN

3: J = 4;
DBG>
The display of source lines is independent of program execution. To display
source code from a module other than the one whose code is currently
executing, use the TYPE command with a path name to specify the module.
For example, the following command displays lines 16 through 21 of module
TEST:

DBG> TYPE TEST\16:21

You can also use the EXAMINE/SOURCE command to display the source
line for a routine or any other program location that is associated with an
instruction.

Note that the debugger also displays source lines automatically when it
suspends execution at a breakpoint or watchpoint or after a STEP command,
or when a tracepoint is triggered (see Section 2.3.6).

If the debugger cannot locate source lines for display, it enters a diagnostic
message. Source lines may not be available for a variety of reasons. For
example:

¢ The module was compiled or linked without the /DEBUG command
qualifier.

¢ [Execution is currently suspended within a system or shareable image
routine for which no source code is available.

2-10 Using the VMS Debugger

* The module may need to be set with the SET MODULE command.
(Section 2.5.1 explains module setting).

* The source file was moved to a different directory after it was compiled
(the location of source files is embedded in the object modules). In this
case, use the SET SOURCE command to specify the new location.

2.3.5.2 Screen Mode

To invoke screen mode, press keypad key PF3. In screen mode, the debugger
splits the screen into three displays named SRC, OUT, and PROMPT, by
default. The following example shows how your screen will appear in screen

mode:

--SRC: module SCOPE---source-sCroll------————=———————————-
* To be used with F2.C so as to demonstrate the
* control of modules and setting of scope.

main ()
{
static int i;
static double f;
double function2();
i = 400;
= OUT -output--——==—-————— e

|
I
\"
Y
O WOowW=Jo Ul WN

- PROMPT -error-program—prompt--——-—-——==———moeme e
DBG>

The SRC display, at the top of the screen, shows the source code of the
module (compilation unit) where code execution is currently suspended.
An arrow in the left column points to the next line to be executed, which
corresponds to the current value of the program counter, PC (the PC is
a VAX register that contains the address of the next instruction to be
executed). The line numbers, which are assigned by the compiler, match
those in the listing file.

The OUT display, in the middle of the screen, captures the debugger’s output
in response to the commands that you enter.

The PROMPT display, at the bottom of the screen, shows the debugger
prompt (DBG>), your input, debugger diagnostic messages, and program
output.

Using the VMS Debugger 2-11

The SRC and OUT displays can be scrolled to display information beyond
the window’s edge. Press keypad key 8 to scroll up and keypad key 2 to
scroll down. Use keypad key 3 to change the display to be scrolled (by
default, the SRC display is scrolled). Scrolling a display does not affect
program execution.

In screen mode, if the debugger cannot locate source lines for the program
unit where execution is currently suspended, it tries to display source

lines in the next routine down on the call stack for which source lines are
available. If this is possible, the debugger also enters the following message:

%$DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
Displaying source in a caller of the current routine.

In such cases, the arrow in the SRC display identifies the call statement in
the calling routine.

2.3.6 Controlling and Monitoring Program Execution

This section discusses the following topics:

¢ Starting and resuming program execution with the GO command
¢ Stepping through the program’s code with the STEP command

¢ Determining where execution is currently suspended with the SHOW
CALLS command

¢ Suspending program execution with breakpoints
¢ Tracing program execution with tracepoints
¢ Monitoring changes in variables with watchpoints

2.3.6.1 Starting and Resuming Program Execution

There are two debugger commands for starfing or resuming program ex-
ecution: GO and STEP. The GO command starts execution. The STEP
command executes a specified number of source lines or instructions.

The GO Command

The GO command starts program execution, which continues until forced to
stop. The GO command is used most often in conjunction with breakpoints,
tracepoints, and watchpoints (described in Sections 2.3.6.3, 2.3.6.4, and
2.3.6.5). If you set a breakpoint in the path of execution and then enter
the GO command, execution is suspended at that breakpoint. If you set a
tracepoint, the path of execution through that tracepoint is monitored. If

2-12 Using the VMS Debugger

you set a watchpoint, execution is suspended when the value of the watched
variable changes.

You can also use the GO command to test for an exception condition or an
infinite loop. If an exception condition that is not handled by your program
occurs, the debugger takes control and displays the DBG> prompt so that
you can enter commands. If you are using screen mode, the pointer in the
source display indicates where execution stopped. You can use the SHOW
CALLS command (see Section 2.3.6.2) to identify the currently active routine
calls (the call stack).

If an infinite loop occurs, the program does not terminate, so the debugger
prompt does not reappear. To obtain the prompt, interrupt execution by
pressing CTRL/C (see Section 2.3.3). You can then look at the source display
and a SHOW CALLS display to find where execution is suspended.

The STEP Command

The debugger command STEP allows you to execute a specified number of
source lines or instructions, or to execute the program to the next instruction
of a particular kind, for example, to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In
the following example, the STEP command executes one line, reports the
action (“stepped to ... ™), and displays the line number (27) and source code
of the next line to be executed:

DBG> STEP

stepped to TEST\COUNT\ $LINE 27
27: xX++ ;

DBG>

Execution is now suspended at the first machine code instruction for line
27 of the module TEST; line 27 is in COUNT, a routine within the module
TEST. TEST\ COUNT\ %LINE 27 is a path name. The debugger uses path
names to refer to symbols. (You do not need to use a path name in referring
to a symbol, however, unless the symbol is not unique. If the symbol is not
unique, the debugger enters an error message. See Section 2.5.2 for more
information on resolving multiply defined symbols.)

The STEP command can execute a number of lines at a time. In the follow-
ing example, the STEP command executes three lines:

DBG> STEP 3

Note that only those source lines for which code instructions were generated
by the compiler are recognized as executable lines by the debugger. The
debugger skips over any other lines—for example, comment lines.

Using the VMS Debugger 2-13

If a line contains more than one statement, the debugger executes all the
statements on that line as part of the single step.

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). Also, by default, the
debugger steps over called routines; execution is not suspended within a
called routine, but the routine is executed. Entering the SET STEP INTO
command causes the debugger to suspend execution within called routines,
as well as within the routine that is currently executing.

2.3.6.2 Determining Where Execution Is Suspended—-SHOW CALLS

The debugger command SHOW CALLS is useful when you are unsure where
execution is suspended during a debugging session (for example, after a
CTRL/C interruption).

The SHOW CALLS command displays a traceback that lists the sequence
of calls leading to the routine where execution is currently suspended. For
each routine (beginning with the one where execution is suspended), the
debugger displays the following information:

¢ The name of the module that contains the routine

¢ The name of the routine

¢ The line number at which the call was made (or at which execution is
suspended, in the case of the current routine)

* The corresponding PC addresses (the relative PC address from the start
of the routine, and the absolute PC address of the program)

For example:

DBG> SHOW CALLS

module name routine name line rel PC abs PC
*TEST PRODUCT 18 00000009 0000063C
*TEST COUNT 47 00000009 00000647
*MY PROG MY PROG 21 0000000D 00000653
DBG>

This example indicates that execution is currently at line 18 of routine
PRODUCT (in module TEST), which was called from line 47 of routine
COUNT (in module TEST), which was called from line 21 of routine
MY_PROG (in module MY_PROG).

2-14 Using the VMS Debugger

2.3.6.3 Suspending Program Execution

The debugger command SET BREAK lets you select breakpoints, which
are locations at which program execution is suspended. When you reach a
breakpoint, you can enter commands to check the call stack, examine the
current values of variables, and so on.

In the following example, the SET BREAK command sets a breakpoint on
the procedure COUNT. The GO command then starts execution. When the
procedure COUNT is encountered, execution is suspended. The debugger
reports that the breakpoint at COUNT has been reached (“break at ... "),
displays the source line (54) where execution is suspended, and prompts you
for another command. At this breakpoint, you can step through the proce-
dure COUNT, using the STEP command, and use the debugger command
EXAMINE (see Section 2.3.7.1) to check on the current values of X and Y.

DBG> SET BREAK COUNT
DBG> GO

break at PROG2\COUNT
54:
DBG>

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers,
routine names, instructions, virtual memory addresses, or byte offsets).
With high-level languages, you typically use routine names, labels, or line
numbers, possibly with path names, to ensure uniqueness.

Specify routine names and labels as they appear in the source code. Line
numbers may be derived from either a source code display or a listing file.
When specifying a line number, use the prefix ZLINE or the debugger will
interpret the line number as a memory location. For example, the following
command sets a breakpoint at line 41 of the module whose code is currently
executing; the debugger suspends execution when the PC value is at the
start of line 41:

DBG> SET BREAK 3%LINE 41

You can only set breakpoints on lines that result in machine code instruc-
tions. The debugger warns you if you try to do otherwise (for example, if
you try to set a breakpoint on a comment line). To set a breakpoint on a line
number in a module other than the one whose code is currently executing,
specify the module’s name in a path name as in the following example:

DBG> SET BREAK SCREEN_IO\$LINE 58

Using the VMS Debugger 2-15

You do not need to specify a particular program location, such as line 58
or COUNT, to set a breakpoint. You can set breakpoints on events, such
as exceptions. You can also use the SET BREAK command with the /LINE
qualifier (but no parameter) to break on every line, or with the /CALL
qualifier to break on every CALL instruction, and so on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHEN clause) or specify that
a list of commands be executed at the breakpoint (with a DO clause). For
example, the next command sets a breakpoint on the label loop3. The DO
(EXAMINE TEMP) clause causes the value of the variable TEMP to be
displayed whenever the breakpoint is triggered.

DBG> SET BREAK loop3 DO (EXAMINE TEMP)
DBG> GO

break at COUNTER\ loop3

37: loop3: for(i = 1; i < 10; 1 ++)
COUNTER\ TEMP : 284.19
DBG>

To display the currently active breakpoints, enter the SHOW BREAK
command as follows:

DBG> SHOW BREAK

Breakpoint at SCREEN_IO\%LINE 58

Breakpoint at COUNTER\ loop3
do (EXAMINE TEMP)

DBG>

If any portion of your program was written in Ada, two breakpoints that are
associated with Ada tasking exception events are automatically established
when you invoke the debugger. When you enter a SHOW BREAK command
under these conditions, the following breakpoints are displayed:

DBG> SHOW BREAK
Breakpoint on ADA event "DEPENDENTS EXCEPTION" for any value
Breakpoint on ADA event "EXCEPTION TERMINATED" for any value

These breakpoints are equivalent to entering the following commands:

DBG> SET BREAK/EVENT=DEPENDENTS_ EXCEPTION
DBG> SET BREAK/EVENT=EXCEPTION_TERMINATED

To cancel a breakpoint, enter the CANCEL BREAK command, specifying the
program location or event exactly as you did when setting the breakpoint.
The CANCEL BREAK/ALL command cancels all breakpoints.

2-16 Using the VMS Debugger

2.3.6.4 Tracing Program Execution

The debugger command SET TRACE lets you select tracepoints, which are
locations for tracing the execution of your program without stopping its
execution. After setting a tracepoint, you can start execution with the GO
command and then monitor the path of execution, checking for unexpected
behavior. By setting a tracepoint on a routine, you can also monitor the
number of times the routine is called.

As with breakpoints, every time a tracepoint is reached, the debugger
enters a message and displays the source line. However, at tracepoints, the
program continues executing, and the debugger prompt is not displayed. For
example:

DBG> SET TRACE COUNT
DBG> GO

trace at PROG2\ COUNT ,
54: |

When using the SET TRACE command, specify address expressions, quali-
fiers, and optional clauses exactly as with the SET BREAK command.

The /LINE qualifier causes the SET TRACE command to trace every line
and is a convenient means of checking the execution path. By default, lines
are traced within all called routines, and the currently executing routine.
If you do not want to trace through system routines or through routines

in shareable images, use the /NOSYSTEM or /NOSHARE qualifiers. For
example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

The /SILENT qualifier suppresses the trace message and the display of
source code. This is useful when you want to use the SET TRACE command
to execute a debugger command at the tracepoint. For example:

DBG> SET TRACE/SILENT $LINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN_IO\ CLEAR\ STATUS: 0

Using the VMS Debugger 2-17

2.3.6.5 Monitoring Changes in Variables

The debugger command SET WATCH lets you set watchpoints that will
be monitored continuously as your program executes. With high-level
languages, you typically set watchpoints on variables that are declared
in your program (you can set watchpoints on arbitrary program locations,
however). If the program modifies the value of a watched variable, the
debugger suspends execution and displays the old and new values.

To set a watchpoint on a variable, specify the variable’s name with the SET
WATCH command. For example, the following command sets a watchpoint
on the variable total:

DBG> SET WATCH total

Subsequently, every time the program modifies the value of total, the
watchpoint is triggered.

The following example shows the effect on program execution when your
program modifies the contents of a watched variable:

DBG> SET WATCH total
DBG> GO

watch of SCREEN_IO\total at SCREEN_IO\SLINE 13
13: total ++;
old value: 16
new value: 17
break at SCREEN_IO.S%LINE 14
14: pop (total);
DBG>

In this example, a watchpoint is set on the variable total, and the GO
command is entered to start execution. When the value of total changes,
execution is suspended. The debugger reports the event (“watch of . .. ”)
and identifies where total changed (line 13) and the associated source line.
The debugger then displays the old and new values and reports that exe-
cution has been suspended at the start of the next line (14). (The debugger
reports “break at ... ”, but this is not a breakpoint; it is the effect of the
watchpoint.) Finally, the debugger prompts for another command.

When a change in a variable occurs at a point other than at the start of a
source line, the debugger gives the line number plus the byte offset from the
start of the line.

2-18 Using the VMS Debugger

Note that this general technique for setting watchpoints applies to “static”
variables. A static variable is associated with the same virtual memory
location throughout program execution. In VAX C, variables of the following
storage class are statically allocated: static, globaldef, globalref, and
extern.

A variable that is allocated on the stack or in a register (a “nonstatic”
variable) exists only when its defining routine is active (on the call stack).
In VAX C nonstatic variables include variables of the storage classes auto
and register. If you try to set a watchpoint on a nonstatic variable when its
defining routine is not active, the debugger enters a warning as follows:

DBG> SET WATCH Y
%DEBUG-W-SYMNOTACT, nonstatic variable ‘Y’ is not active

A convenient technique for setting a watchpoint on a nonstatic variable

is to set a breakpoint on the defining routine, and to specify a DO clause

to set the watchpoint whenever execution reaches the breakpoint. In the
following example, a watchpoint is set on the nonstatic variable Y in routine
COUNTER:

DBG> SET BREAK COUNTER DO (SET WATCH Y)
DBG> GO

break at routine MOD4\COUNTER

$DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction
DBG> SHOW WATCH

watchpoint of MOD4\COUNTER\Y [tracing every instruction]

DBG>

The debugger monitors nonstatic watchpoints by tracing every instruc-
tion. Because this slows execution speed compared to monitoring static
watchpoints, the debugger lets you know when it is monitoring nonstatic
watchpoints.

When execution eventually returns to the calling routine, the nonstatic
variable is no longer active, so the debugger automatically cancels the
watchpoint and enters a message to that effect.

2.3.7 Examining and Manipulating Data

The following sections explain how to use the debugger commands
EXAMINE, DEPOSIT, and EVALUATE to display and modify the con-
tents of variables and to evaluate expressions. It also notes restrictions on
the use of these commands with VAX C programs.

Using the VMS Debugger 2-19

Before you can examine or deposit into a nonstatic variable (see
Section 2.3.6.5), its defining routine must be active (on the call stack).

2.3.7.1 Displaying the Values of Variables

To display the current value of a variable, use the debugger command
EXAMINE. The EXAMINE command has the following form:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the specified
variable and retrieves and formats the data accordingly. The following
examples show some uses of the EXAMINE command:

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4

SIZE\LENGTH: 7

SIZE\AREA: 28

DBG>

Examine a two-dimensional array of integers:

DBG> EXAMINE INTEGER ARRAY
PROG2\ INTEGER_ARRAY

[0,0]: 27

[0,1]: 31

[0,2]: 12

[1,0]: 15

[1,1]1: 22

[1,2]: 18
DBG>

Examine element 4 of a one-dimensional array of characters:

DBG> EXAMINE/ASCII CHAR ARRAY[4]
PROG2\ CHAR_ARRAY[4]: 'm’
DBG>

You can use the EXAMINE command with any kind of address expression,
not just a variable name, to display the contents of a program location. The
debugger associates certain default data types with untyped locations. You

can override the defaults for typed and untyped locations if you want the
data to be interpreted and displayed in some other data format.

See Section 2.3.7.3 for a comparison of the EXAMINE and EVALUATE
commands.

2-20 Using the VMS Debugger

2.3.7.2 Changing the Values of Variables

To change the value of a variable, use the debugger command DEPOSIT.
The DEPOSIT command has the following form:

DEPOSIT variable-name = value
The DEPOSIT command is like an assignment statement in VAX C.

In the following examples, the DEPOSIT command assigns new values to
different variables. The debugger checks that the value assigned, which can
be a language expression, is consistent with the data type and dimensional
constraints of the variable.

Deposit an integer expression:
DBG> DEPOSIT WIDTH = CURRENTWIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY[12] = 'K’

As with the EXAMINE command, the DEPOSIT command lets you specify
any kind of address expression, not just a variable name. You can override
the defaults for typed and untyped locations if you want to interpret the
data in some other data format.

2.3.7.3 Evaluating Expressions

To evaluate a language expression, use the debugger command EVALUATE.
The EVALUATE command has the following form:

EVALUATE language-expression

The debugger recognizes the operators and expression syntax of the cur-
rently set language. In the following example, the value 45 is assigned to
the integer variable WIDTH; the EVALUATE command then obtains the
sum of the current value of WIDTH plus 7:

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH + 7
52

DBG>

Not all VAX C operators can be supported by the debugger, since some can
produce side effects that adversely affect debugging. Table 2-1 lists the VAX
C operators that are supported in language expressions. Table 2-2 lists the
VAX C operators that are not supported by the debugger.

Using the VMS Debugger 2-21

Table 2-1: Supported Operators

Operator(s) Category

- Unary arithmetic

+ - * / % Binary arithmetic

== = > < >= <= Relational

&& I ! Logical

& I A2~ Bitwise logical

< >> Shift

sizeof Compute the size of a scalar
& Address of

* Dereference

Table 2-2: Unsupported Operators

Operator(s) Category

++ - Pre/post increment/decrement
= 4= —= F= /= Assignment

Yo= = &= 7=

7 Conditional

(type) Cast

The following example shows the similarity between the EVALUATE and
EXAMINE commands. When the expression following the command is a
variable name, the value reported by the debugger is the same for either
command.

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH

45

DBG> EXAMINE WIDTH
SIZE\WIDTH: 45

The following example shows an important difference between the
EVALUATE and EXAMINE commands:

DBG> EVALUATE WIDTH + 7
52

DBG> EXAMINE WIDTH + 7
SIZE\WIDTH: 131584

With the EVALUATE command, WIDTH + 7 is interpreted as a language
expression, which evaluates to 45 + 7, or 52. With the EXAMINE command,

2-22 Using the VMS Debugger

WIDTH + 7 is interpreted as an address expression: 7 bytes are added to
the address of WIDTH, and whatever value is in the resulting address is
reported (in this instance, 131584).

2.4 Notes on Debugger Support for VAX C

In general, the debugger supports the data types and operators of VAX C
and the other debugger-supported languages. However, there are certain
language-specific limitations or other differences. (For information on the
supported data types and operators of any of the languages, type HELP
LANGUAGE at the DBG> prompt.)

The following sections present VAX C specific debugging examples. These
examples show you how to work with VAX C data types and expressions.

2.4.1 Debugger Command-Line Options

VAX C provides a set of debugger options that you can specify to the
/DEBUG qualifier to the CC command. These options alter the types of
information that the compiler places in the object module for use by the
VMS Debugger. The debugger options include using traceback records,
using the symbol table, and enabling the debugger to step into inline
functions. For information about these options, see the description of the CC
command-line qualifiers in Section 1.3.2.

2.4.2 Accessing Scalar Variables

The EXAMINE command displays the scalar variables of any VAX C data
type. You reference scalar variables in the case that you declare them, using
the VAX C syntax for such references.

Example 2-1 presents the VAX C program SCALARS.C to use in the next
sample debugging session.

Using the VMS Debugger 2-23

Example 2-1: Debugging Sample Program SCALARS.C

/* SCALARS.C This program defines a large number of *
* variables to demonstrate the effect *
* of the various STEP debugger commands. *x/

main ()

{

static float light_speed; /* Define the variables */

static double speed power;

static unsigned ui;

static long 1li;

static char ch;

static enum primary { red, yellow, blue } color;
static int *ptr;

light_speed = 3.0el0;
speed_power = 3.1234567890123456789e10;

ui = -438394;
1i = 790374270;
ch = 'A7;

color = blue;
ptr = &1i;

The following debugging session executes SCALARS.EXE and shows the
commands used to access variables of scalar data type:
DBG> show symbol/type color
data SCALARS\main\color

enumeration type (primary, 3 elements), size: 4 bytes
This command uses the debugger command SHOW SYMBOL/TYPE to
display the data type of one variable.

The next commands in this sample debugging session are as follows:

DBG> set break %line 22

DBG> go

break at SCALARS\main\%LINE 22
22: }

The commands in the example set a breakpoint before the end of the pro-
gram and enter a GO command to execute the program up to the breakpoint.
These commands allow the variables declared in main to be initialized by
the program.

The next command in this sample debugging session is as follows:

2-24 Using the VMS Debugger

DBG> examine li, ui, light speed, speed power, ch, color, *ptr

SCALARS\main\1i: 790374270
SCALARS\main\ui: 4294528902
SCALARS\main\light_speed: 3.0000001E+10
SCALARS\main\ speed_power: 31234567890.12346
SCALARS\main\ch: 65

SCALARS\main\color: blue

*SCALARS\main\ptr: 790374270

The EXAMINE command directs the debugger to display the contents of the
variables listed. The char variables are interpreted by the debugger as byte
integers, not ASCII characters.

The next command in this sample debugging session is as follows:

DBG> examine/ascii ch
SCALARS\main\ch: npn

To display the contents of ch as a character, you must use the /ASCII
qualifier.

The next command in this sample debugging session is as follows:

DBG> deposit/ascii ch = ‘=z’
DBG> examine/ascii ch
SCALARS\main\ch: wzn
DBG>

The DEPOSIT command loads the value ‘'z’ in the variable ch; the
EXAMINE command shows that ‘z has replaced the previous contents
of the variable ch. Again, use the /ASCII qualifier to translate the byte
integer into its ASCII equivalent.

2.4.3 Accessing Arrays

With the EXAMINE command, you can look at the values in arrays using
VAX C syntax for array references. You can examine an entire array by
giving the array identifier. You can examine individual elements of the
array using the array operators ([1). Array elements can have any data
type. Remember the differences between pointer arithmetic in VAX C and
pointer arithmetic in other languages (see Chapter 8 for more information).
Consider the following declaration:

int *p;

Expression p+1 is equivalent to the address of p[1]; it increments the
array by the length specified by 1 multiplied by the length of the data type
int. Expression p+1 does not add value 1 to the value of variable p. The
following debugger commands are equivalent:

Using the VMS Debugger 2-25

EVALUATE *(p+1)
EVALUATE pli]

Example 22 shows the VAX C program ARRAY.C to use in the next sample
debugging session.

Example 2-2: Debugging Sample Program ARRAY.C

/* ARRAY.C This program increments an array to *
* demonstrate the access of arrays in VAX C. */

main ()
{
int i;
static int arr[10];
for (i=0; i<10; i++)
arr{il=i;

The following debugging session executes ARRAY.EXE and shows the com-
mands used to access variable arrays:

DBG> set br %line 10

DBG> go

break at ARRAY\main\$LINE 10
10: }

The commands in Example 2-2 set a breakpoint at the last line in the
program and execute the program to that point.

The next command in this sample debugging session is as follows:

DBG> examine arr
ARRAY\main\ arr

[0]: 0
[1]: 1
[2]: 2
[31: 3
[4]: 4
[5]: 5
[6]: 6
[7]1: 7
{8]: 8
[9]: 9

By specifying the variable identifier, you can look at the entire array.

2-26 Using the VMS Debugger

~——

The next command in this sample debugging session is as follows:

DBG> examine arr[5]

ARRAY\main\arr[5]: 5
DBG> examine
ARRAY\main\arr[6]: 6
DBG> examine
ARRAY\main\arr(5]: 5

Individual elements of the array are examined when you use the bracket
operator to specify the subscript of the element. Using the debugger’s
address reference operator (specified by pressing RETURN) in an EXAMINE
command returns the next element of the array. Using the up-arrow address
reference operator () returns the previous member of the array.

2.4.4 Accessing Character Strings

Character strings are implemented in VAX C as null-terminated ASCII
strings (ASCIIZ strings). To examine and deposit data in an entire string,
use the /ASCIIZ qualifier (abbreviated /AZ) so that the debugger can
interpret the end of the string properly. You can examine and deposit
individual characters in the string using the VAX C array subscripting
operators ([]). When you examine and deposit individual characters, use
the /ASCII qualifier.

Example 2-3 presents the VAX C program STRING.C to use in the next
sample debugging session.

Example 2-3: Debugging Sample Program STRING.C

/* STRING.C This program establishes a string to *
* demonstrate the access of strings in VAX C. */
main ()
{ .
static char *s = "vaxie";

static char **t = &s;

Using the VMS Debugger 2-27

The following debugging session executes STRING.EXE and shows the
commands used to manipulate VAX C strings:

DBG> step

stepped to STRING\main\S$LINE 8
8: }

DBG> examine/az *s

*STRING\main\s: "vaxie"

DBG> examine/az **t

**STRING\main\t: "vaxie"

The EXAMINE/AZ command displays the contents of the character string
pointed to by *s and **t.

The next command in this sample debugging session is as follows:

DBG> deposit/az *s = "VAX C"
DBG> examine/az *s, **t
*STRING\main\s: "VAX C"
**STRING\main\t: "VAX C"

The DEPOSIT/AZ command deposits a new ASCIIZ string in the variable
pointed to by *s. The EXAMINE/AZ command displays the new contents of
the string.

The next command in this sample debugging session is as follows:

DBG> examine/ascii s[3]

[3] . n on

DBG> deposit/ascii s[3] = "-"
DBG> examine/az *s, **t
*STRING\main\ s: "VAX~-C"
**3STRING\main\t: "VAX-C"

Using array subscripting, you can examine individual characters in the
string and deposit new ASCII values at specific locations within the string.
When accessing individual members of a string, use the /ASCII qualifier. A
subsequent EXAMINE/AZ command shows the entire string containing the
deposited value.

2.4.5 Accessing Structures and Unions

You can examine structures in their entirety or on a member-by-member
basis. You can deposit data into structures one member at a time.

You can make references to members of a structure or union by using the
usual VAX C syntax for such references. That is, if variable p is a pointer
to a structure, you can reference member y of that structure with the
expression p —>y. If variable x refers to the base of the storage allocated
for a structure, you can refer to a member of that structure with the x.y
expression.

2-28 Using the VMS Debugger

To reference members of a structure or union, the debugger follows the VAX
C type-checking rules, which follow. For example, in the case of x.y, y need
not be a member of x; it is treated as an offset with a type. When such

a reference is ambiguous—when there is more than one structure with a
member y—the debugger attempts to resolve the reference in the following
manner. The same rules for resolving the ambiguity of a reference to a
member of a structure or union apply to both x.y and p—>y.

* If only one of the members, y, belongs in the structure or union, x, that
is the one that is referenced.

¢ If only one of the members, y, is in the same scope as x, then that is the
one that is referenced.

You can always give a path name with the reference to x to narrow the scope
that is used and to resolve the ambiguity. The same path name is used to
look up both x and y.

Example 2-4 shows the VAX C program STRUCT.C to use in the next
sample debugging session.

The following debugging session executes STRUCT.EXE and shows the
commands used to access structures and unions:

DBG> show symbol * 1in main

routine STRUCT\main

data STRUCT\main\uv

record component STRUCT\main\<generated name 0002>.im
record component STRUCT\main\<generated name 0002>.fm
record component STRUCT\main\<generated name_0002>.cm
type STRUCT\main\<generated name_ 0002>

data STRUCT\main\p

data STRUCT\main\ sv

record component STRUCT\main\<generated name_0001>.im
record component STRUCT\main\<generated name_0001>.fm
record component STRUCT\main\<generated name 0001>.cm
record component STRUCT\main\<generated name 0001>.bf
type STRUCT\main\<generated_name 0001>

The SHOW SYMBOL command shows the variables contained in the user-
defined function main.

The next commands in this sample debugging session are as follows:
DBG> set break %line 29
DBG> go

break at STRUCT\main\ $LINE 29
29: uv.im = -24;

Using the VMS Debugger 2-29

Example 2-4: Debugging Sample Program STRUCT.C

/* STRUCT.C This program defines a structure and union *
to demonstrate the access of structures and
* unions in VAX C. */
main ()

{
static struct

{
int im;
float fm;
char cm;
unsigned bf : 3;

} sv, *pi

union
int im;
float fm;

char cm;
}oouv;

sv.im
sv.fm

|
[\
K
~

3.0el10;

[0]

<

Q

3
mowonou

W

sv.bf

~J

~

S~
*

Binary: 111 */
p = &sv;

uv.im
uv.fm
uv.cn

(U
w
[}

e D e
I
(=]
~

Setting a breakpoint at line 29 and entering a GO command allows the
program to initialize the variables declared in the structure sv.

The next command in this sample debugging session is as follows:

DBG> examine sv
STRUCT\main\ sv
im: -24
fm: 3.0000001E+10
cm: 97
bf: 7

An EXAMINE command that gives the name of the structure causes the
debugger to display all members of the structure. Note that sv.cm has the
char data type, which is interpreted by the debugger as a byte integer. The
debugger also displays the value of bit fields in decimal.

2-30 Using the VMS Debugger

The next commands in this sample debugging session are as follows:

DBG> examine/ascii sv.cm

STRUCT\main\ sv.cm: "av
DBG> examine/binary sv.bf
STRUCT\main\ sv.bf: 111

To display the ASCII representation of a char data type, you must use the
/ASCII qualifier. To display bit fields in their binary representation, you
must use the /BINARY qualifier.

The next commands in this sample debugging session are as follows:

DBG> deposit sv.im = 99
DBG> deposit sv.fm = 3.14
DBG> deposit/ascii sv.cm = 'z’
DBG> deposit sv.bf = $BIN 010
DBG> examine sv
STRUCT\main\ sv

im: 99

fm: 3.140000

cm: 122

bf: 2

You deposit data into a structure one member at a time. To deposit data into
a member of type char, you can use the /ASCII qualifier and enclose the
character in either single or double quotes. To deposit a new binary value in
a bit field, use the %BIN keyword.

The next commands in this sample debugging session are as follows:

DBG> examine *p
*STRUCT\main\p

im: 99

fm: 3.140000

cm: 122

bf: 2
DBG> examine/binary p ->bf
STRUCT\main\p -->bf: 010

Members of structures (and unions) can also be accessed by pointer, as
shown in *p and p —>bf in the previous example.

The next commands in this sample debugging session are as follows:

DBG> step
stepped to STRUCT\main\S$LINE 30
30: uv.fm = 3.0el0;
DBG> examine uv
STRUCT\main\uv
im: -24
fm: -1.5485505E+38
cm: -24

Using the VMS Debugger 2-31

A union contains only one member at a time, so the value for uv.im is the
only valid value returned by the EXAMINE command; the other values are

meaningless.

The next commands in this sample debugging session are as follows:

DBG> step

stepped to STRUCT\main\$%$LINE 31

31: uv.cm =
DBG> examine uv.fm
STRUCT\main\uv. fm:
DBG> step

ra’;

3.0000001E+10

stepped to STRUCT\main\%LINE 32

33: }
DBG> examine/ascii uv.cm
STRUCT\main\uv.cm:

LR

This series of STEP and EXAMINE commands shows the content of the
union as the different members are assigned values.

Example 2-5 shows the VAX C program ARSTRUCT.C to use in the next

sample debugging session.

Example 2-5: Debugging Sample Program ARSTRUCT.C
/* ARSTRUCT.C This program contains a structure definition
* and a for loop so as to demonstrate the *
* debugger’s support for VAX C operators. */
main ()
{
int count, i =1;
char ¢ = 'A’;
struct
{
int digit;
char alpha;
} tbl(27], *p;
for (count = 0; count <= 26; count++)
{
tbl[count].digit = i++;
tbl[count].alpha = c++;

2-32 Using the VMS Debugger

The following debugging session executes ARSTRUCT.EXE and shows the
use of VAX C expressions on the debugger command line:

DBG> set break %$line 20 when (count == 2)
DBG> 9o
break at ARSTRUCT\main\$%$LINE 20
20: }
Relational operators can be used in expressions (such as count == 2 in the

preceding example) in a WHEN clause to set a conditional breakpoint.
The next commands in this sample debugging session are as follows:

DBG> evaluate &tbl
2146736881

DRG> evaluate/address tbl
2146736881

The first EVALUATE command uses VAX C syntax to refer to the address
of a variable. It is equivalent to the second command, which uses the
/ADDRESS qualifier to obtain the address of the variable. The addresses of
these variables may not be the same every time you execute the program if
you relink the program.

The next command in this sample debugging session is as follows:

DBG> evaluate tbl[2].digit
3

Individual members of an aggregate can be evaluated; the debugger returns
the value of the member.

The next commands in this sample debugging session are as follows:
DBG> evaluate tbl +4

$DEBUG-I-SCALEADD, pointer addition: scale factor of 5 applied to
right argument

2146736901
DBG> examine 2146736901
ARSTRUCT\main\tbl[4].digit: 5

When you perform pointer arithmetic, the debugger displays a message
indicating the scale factor that has been applied. It then returns the address
resulting from the arithmetic operation. A subsequent EXAMINE command
at that address returns the value of the variable.

The next command in this sample debugging session is as follows:

DBG> evaluate tbl[4].digit * 2
10

The EVALUATE command can perform arithmetic operations on program
variables.

Using the VMS Debugger 2-33

The next command in this sample debugging session is as follows:

DBG> evaluate 7 % 3
1

The EVALUATE command can also perform arithmetic calculations that
may or may not be related to your program. In effect, it can be used as a
calculator that uses VAX C syntax for arithmetic expressions.

The next command in this sample debugging session is as follows:

DBG> evaluate count++
$DEBUG-W-SIDEFFECT, operators with side effects not supported (++, --)

The debugger enters a message when you use an unsupported operator.

2.5 Controlling Symbol References

In most cases, the way the debugger handles symbols (variable names, and
so on) is transparent to you. However, the following two areas may require
action on your part:

* Module setting
¢ Multiply defined symbols

The following sections describe these two areas.

2.5.1 Module Setting

2-34

To facilitate symbol searches, the debugger loads symbol records from the
executable image into a run-time symbol table (RST), where they can be
accessed efficiently. Unless a symbol record is in the RST, the debugger
cannot recognize or properly interpret that symbol.

Because the RST uses memory, the debugger loads it dynamically, antici-
pating what symbols you might want to reference during execution. The
loading process is called module setting, because all of the symbol records of
a given module are loaded into the RST at one time.

At debugger startup, only the module containing the image transfer address
is set. As your program executes, whenever the debugger interrupts
execution, it sets the module where execution is suspended. This lets you
reference the symbols that should be visible at that location.

Using the VMS Debugger

If you try to reference a symbol in a module that has not been set, the
debugger enters a warning. For example:

DBG> EXAMINE K
$DEBUG-W-NOSYMBOL, symbol ‘K’ is not in symbol table
DBG>

You must then use the debugger command SET MODULE to manually set
the module containing that symbol as follows:

DBG> SET MODULE MOD3
DBG> EXAMINE K
MOD3\ROUT2\K: 26
DBG>

The debugger command SHOW MODULE lists the modules of your program
and identifies the modules that have been set.

The dynamic module setting may slow down the debugger as more modules
are set. If performance becomes a problem, use the debugger command
CANCEL MODULE to reduce the number of set modules, or disable
dynamic module setting by entering the debugger command SET MODE
NODYNAMIC. (The SET MODE DYNAMIC command enables dynamic
module setting.)

2.5.2 Resolving Multiply Defined Symbols

The debugger finds the symbols that you reference in commands according
to the following conventions. First, it looks in the PC scope (also known

as scope 0), according to the scope and visibility rules of the currently set
language. This means that the debugger first searches for a symbol within
the routine surrounding the current PC value (where execution is currently
suspended). If the symbol is not found, the debugger searches the nesting
program unit, then its nesting unit, and so on. (The precise order of search
depends on the current language and guarantees that the proper declaration
of a multiply defined symbol is selected.)

The debugger allows you to reference symbols throughout your program,
not just those that are visible at the current PC value, so that you can

set breakpoints in arbitrary areas, examine arbitrary variables, and so on.
Therefore, if the symbol is not visible in the PC scope, the debugger also
searches the scope of the calling routine (if any), then its caller, and so on,
until the symbol is found. Symbolically, this search list is denoted 0, 1,

2, ..., n, where scope 0 is the PC scope and rn is the number of calls in the
call stack. Within each scope, the debugger uses the visibility rules of the
currently set language to locate symbols.

Using the VMS Debugger 2-35

If the debugger cannot resolve a symbol ambiguity, it enters a warning. For
example:

DBG> EXAMINE Y
$DEBUG-W-NOUNIQUE, symbol 'Y’ is not unique
DBG>

You can use a path-name prefix to uniquely specify a declaration of the given
symbol. First, use the SHOW SYMBOL command to identify all path names
associated with the given symbol; then use the desired path name when
referencing the symbol. For example:

DBG> SHOW SYMBOL Y

data MOD7\ROUT3\BLOCKI\Y
data MOD4\ROUT2\Y

DBG> EXAMINE MOD4\RQUT2\Y
MOD4\ROUT2\Y: 12

DBG>

If you need to refer to a particular declaration of Y repeatedly, use the
SET SCOPE command to establish a new default scope for symbol lookup.
References to Y without a path-name prefix will then specify the declaration
of Y that is visible in the new scope region. For example:

DBG> SET SCOPE MOD4\ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12

DBG>

To display the current scope for symbol lookup, use the SHOW SCOPE
command. To restore the default scope, use the debugger command CANCEL
SCOPE.

2.6 Sample Debugging Session

Example 2-6 shows the VAX C program POWER.C, which is to be used in a
debugging session. To learn about a larger number of debugger commands,
reexecute this program and use a different set of debugger commands.

2-36 Using the VMS Debugger

Example 2-6: Debugging Sample Program POWER.C

/* POWER.C This program contains two functions: "main" and *
* "power." The main function passes a number to *
* "power", which returns that number raised to the *
* second power.) */

main ()

{
static int i, j;
int power();

2;

power (i) ;

3
}
power (j)
int j;
{

return (j * J);
}

Example 2-7 shows some of the debugger commands used to evaluate the
execution of POWER.C.

Example 2-7: A Sample Debugging Session

(1] $/’CC/DEBUG/OPTIMIZE=NODISJOINT POWER
$ LINK/DEBUG POWER
$ RUN POWER

VAX DEBUG Version 5.n

(continued on next page)

Using the VMS Debugger 2-37

2-38

0000000

80

®

Example 2-7 (Cont.): A Sample Debugging Session

%$DEBUG-I-INITIAL, language is C, module set to "POWER’
DBG> set break $LINE 13
DBG> . go
break at POWER\main\$%LINE 13
13: j = power(i);
DBG> step/into
stepped to routine POWER\power
16: int j;
DBG> step
stepped to POWER\power\$LINE 18
18: return (j * 3J)
DBG> examine J
$DEBUG-W-NOSYMBOL, symbol ‘J’ is not in the symbol table
DBG> examine j

POWER\ power\j: 2

DBG> step

stepped to POWER\main\$LINE 13+9
13: j = power(i);

DBG> step

stepped to POWER\main\$LINE 14
14: }

DBG> examine j

POWER\main\ j: 4

DBG> go

$DEBUG-I-EXITSTATUS, is ’%SYSTEM-S~NORMAL, normal successful
completion’

DBG> exit

$

Key to Example 2-7:

© To execute a program with the debugger, you must compile and link
the program with the /DEBUG qualifier. The VAX C compiler compiles
the source file with the /DEBUG=TRACEBACK qualifier by default.
However, unless you compile your program with the /DEBUG qualifier,
you cannot access all of the program’s variables. Use the /NOOPTIMIZE
qualifier to turn off compiler optimization that may interfere with debug-
ging. If you desire a minimal amount of optimization that will not in-
terfere with your debugging session, use the /OPTIMIZE=NODISJOINT
qualifier.

® The VMS Image Activator passes control to the debugger on execution
of the image. The debugger tells you the current programming language
and the name of the object module that contains the main function, or
the first function to be executed. Remember that the linker converts the
names of object modules to uppercase letters.

Using the VMS Debugger

®0

® 0

You enter debugger commands at the following prompt:
DBG>

The debugger command SET BREAK defines a point in the program
where the debugger must suspend execution. In this example, the SET
BREAK command tells the debugger to stop execution before execution
of line number 13. After the debugger processes the SET BREAK
command, it responds with the debugger prompt.

The debugger command GO begins execution of the image.

The debugger tells you that it suspended execution of the image at
function main in module power. The debugger specifies sections of the
program by telling you the object module it is working in, delimited by
a backslash character (\), followed by the name of the VAX C function.
The linker converted the name of the object module to uppercase letters
but the debugger specifies the name of the function exactly as it is found
in the source text.

The debugger displays the line of source text where it suspended ex-
ecution. Refer to the source code listing in Example 2-6 to follow the
debugger as it steps through the lines of the program in this interactive
debugging example.

The debugger command STEP/INTO executes the first executable line
in a function. The command STEP tells the debugger to execute the
next line of code, but if the next line of code is a function call, the
debugger will not step through the function code unless you use the
/INTO qualifier. Use STEP/INTO to step through a user-defined or VAX
C RTL function.

When stepping through a function, the debugger specifies line numbers
by listing the object module, the VAX C function, a percent sign (%), the
identifier LINE, and the line number in the source text. Once again, the
debugger delimits all items in the specification with backslash characters
(\).

The debugger command EXAMINE displays the contents of a variable.
The debugger does not recognize the variable, J, as existing in the scope
of the current module.

The debugger supports the case sensitivity of VAX C variables; variable
j exists but variable J does not. Refer to Example 2-6 to review the
program variables.

The debugger responds to the EXAMINE command and tells you that
the value of the variable is 2.

Using the VMS Debugger 2-39

® The value of variable j in function main is different from the separate
variable j in function power. Function power executes properly; it
returns the number 2 raised to the second power (4).

® Upon completion of execution of the image, the debugger states the
status of the execution. In this example, execution is successful.

® To enter the DCL RUN command to execute the program again, or to
do other work outside of the debugger environment, use the debugger
command EXIT to end the debugging session and to go back to DCL.

2-40 Using the VMS Debugger

Chapter 3

VAX C Support for Parallel Processing

This chapter describes how to create and to modify programs that run using
the VAX C parallel-processing features. This chapter discusses the following
topics:

¢ Overview of parallel processing (Section 3.1)

* Preparing programs for parallel processing (Section 3.2)

¢ Conditions that inhibit parallel processing (Section 3.3)

¢ Data-dependency analysis (Section 3.4)

¢ Rewriting code to resolve dependencies (Section 3.5)

¢ Storage classes and parallel processing (Section 3.6)

¢ Decomposition pragmas (Section 3.7)

¢ Memory-management functions (Section 3.8)

¢ Tuning issues related to parallel processing (Section 3.9)

See Appendix E for information on debugging programs that use parallel
processing.

3.1 Overview of Parallel Processing

Parallel processing involves executing segments of a program concurrently
on two or more processors in a multiprocessing system (for example, a
VAX 8300 or a VAX 8800; do not confuse these systems with a VAX cluster
system). Running programs in parallel on multiple processors, instead

of serially on a single processor, can reduce the amount of elapsed time
required to run the program. Running programs in parallel, however,
consumes more system resources (CPU time and memory) than running
serially. Trading off reduced system throughput for reduced elapsed time

VAX C Support for Parallel Processing 3-1

is a decision that depends on the application being executed and the
environment in which it is being executed.

Not all programs are suitable for parallel execution; some programs are
inherently sequential. To achieve maximum benefit, only compute-intensive
code sequences should be considered for running in parallel. For example,
program segments dealing with arithmetic operations performed on arrays
(matrix arithmetic) are generally good candidates for parallel processing.
You can identify other compute-intensive code segments using the VAX
Performance and Coverage Analyzer (PCA) software product, which can be
purchased separately. After isolating code sequences that are candidates for
parallel processing, you can then analyze the sequences in detail and make
any coding changes that are necessary.

VAX C supports the parallel processing of for and while loops. (VAX C
does not support the parallel processing of do loops.) Processing a loop in
parallel means that iterations in the loop are divided among processors and
are executed concurrently.

Decomposition is the process by which VAX C divides each parallel loop
into groups of loop iterations that can be executed concurrently. Figure 3-1
shows parallel and sequential execution of loop iterations over a period of
time.

NOTE

Throughout this chapter, loops to be processed in parallel are
referred to as parallel loops.

3-2 VAX C Support for Parallel Processing

Figure 3-1: Sequential and Parallel Loop Execution Across Time

Muitiple
Processes Sequential I
|
~ 1] |
Time 1] Time |
[| |
1]
lterations lterations

ZK-6740-GE

When you use the /PARALLEL qualifier on the CC command line to compile
a program for parallel processing, a VMS Run-Time Library routine sets up
the parallel-processing environment. VAX C then tries to decompose each
for and while loop. After compilation, each successfully decomposed loop
consists of the following machine code segments:

¢ Code segment 1 determines the total amount of work to be performed in
the loop and sets up global data structures.

* Code segment 2 divides the work into chunks and allocates them to the
various processes.

¢ Code segment 3 is the body of the loop.

¢ Code segment 4 resets the environment from parallel to sequential
processing at the end of each parallel loop.

Each decomposed loop executes in two or more subprocesses, with each sub-
process executing a segment of the iterations in the loop. The subprocesses
are created during the initialization phase of the program. They are not
activated, however, until a parallel for or a parallel while loop is encoun-
tered. When they complete the execution of their portion of the iterations in
a parallel loop, they are placed in a wait state until the next parallel loop is
encountered.

VAX C Support for Parallel Processing 3-3

VAX C does not decompose all for and while loops. By default, VAX C
tries to decompose all for loops and tries to decompose while loops whose
iteration mechanism and number of iterations indicate that the loop is a
good candidate for parallel processing. If in a for or while loop VAX C
discovers a possible data dependency, the compiler does not decompose the
loop; the compiler executes each iteration of the loop sequentially.

A data dependency is a situation that occurs when two or more iterations of
the loop depend on a single piece of data. A loop that is a good candidate for
parallel processing executes properly and predictably when groups of loop
iterations are executed, possibly out of sequence, on separate processors.

If a loop iteration depends on the data from a previous or subsequent loop
iteration, then the results of the program execution after parallel processing
are erroneous or unpredictable.

The following types of data dependencies exist in many parallel-processing
applications, although VAX C only checks for loop-carried dependencies:

* Loop-carried dependency—A data dependency that occurs when a
memory location is both accessed and modified within the same loop.
(VAX C checks programs compiled with /PARALLEL for loop-carried
dependencies.)

* Loop-independent dependency—A data dependency that occurs due
to the relative positions of two statements in a program. (VAX C does
not check programs compiled with /PARALLEL for loop-independent
dependencies.)

* Control dependency—A data dependency introduced by the flow of
control in a program. (VAX C does not check programs compiled with
/PARALLEL for control dependencies.)

VAX C uses algorithms to determine whether data dependencies exist in a
loop. VAX C examines loops and their iterations for the following:

* Presence of pointer variables (Section 3.4.3)

¢ Presence of function calls (Section 3.4.2)

¢ Existence of two or more iterations making references to the same array
element (Section 3.4.1)

* Assigning scalar values and using those values (Section 3.4.4)

VAX C provides mechanisms to use parallel processing and also to suppress
the default actions of the compiler during parallel processing. Table 3-1
presents a summary of the VAX C parallel-processing support mechanisms.

34 VAX C Support for Parallel Processing

e

Table 3—1: VAX C Parallel-Processing Support Mechanisms

Feature Description
CC Command-Line Qualifier
/INOJPARALLEL Specifies that a compilation unit is part of a

program to be run in parallel. The use of the
qualifier determines whether the compiler gener-
ates coding structures that are needed to support
decomposition of for and while loops.

Decomposition Pragmas

#pragma ignore_dependency

#ipragma safe_call

#pragma sequential_loop

Specifies to the compiler that a variable that
appears to be in conflict is safe to decompose. By
default, VAX C does not decompose loops that have
two iterations that access the same element. (See
Section 3.7.1 for more information about #pragma
ignore_dependency.)

Specifies to the compiler that a loop containing a
call to the specified function is safe to decompose.
By default, VAX C does not decompose loops
with function calls. (See Section 3.7.2 for more
information on #pragma safe_call.)

Specifies to the compiler that the iterations of
a for or while loop are to be executed sequen-
tially. By default, VAX C tries to decompose for
and while loops for parallel processing. (See
Section 3.7.3 for more information on #pragma
sequential_loop.)

(continued on next page)

VAX C Support for Parallel Processing 3-5

Table 3-1 (Cont.): VAX C Parallel-Processing Support Mechanisms

Feature Description
Parallel Object Library
VAXCPAR.OLB Contains parallel versions of some VAX C Run-

Time Library (RTL) functions. You must link
against this object module library if your program’s
main function is written in VAX C, or if your
program calls one of the memory-management
functions malloe, calloc, free, cfree, or realloc.
See Section 3.8 for more information on the
memory-management functions. See Section 3.3
for more information on restrictions placed on
programs running in parallel. See Section 1.4.5.2
for more information on linking against object
module libraries.

Run-Time Environment Logical Names

FOR$PROCESSES Contain values that adjust some aspects of the
FOR$SPIN_WAIT run-time environment in which you execute your
FOR$STALL_WAIT program. (See Section 3.9.1 for more information.)

3.2 Preparing Programs for Parallel Processing

To process a VAX C program for parallel execution, do the following:

1. TUse the /PARALLEL qualifier on the CC command line for the compila-
tion unit that contains the main function or that contains loops that you
want to run in parallel.

2. Examine the compiler messages to determine which loops the compiler
decomposed and which it did not. Insert an appropriate decomposition
pragma (see Section 10.7) to alter the loop-decomposition decisions
made by the compiler (f appropriate to your application). If the VAX
Language-Sensitive Editor (LSE) is available on your system, you may
use its VAX C decomposition support to add decomposition pragmas. See
Appendix C for more information about LSE, which is a product that
must be purchased separately.

3. If you inserted decomposition pragmas into the program, then recompile
it using the /PARALLEL qualifier.

4. Link the program. (See Section 3.3 for information about linking
restrictions and requirements.)

3-6 VAX C Support for Parallel Processing

5. Optionally, define the logical FOR$PROCESSES to indicate how many
subprocesses are created to run your decomposed program. For example,
to create four subprocesses to execute your parallel program, enter the
following command:

$ DEFINE/JOB FORSPROCESSES 4
If you do not specify a value for FOR$PROCESSES, it defaults to the
number of processors in the multiprocessor VAX you are using.

6. Execute the program normally. If you did not define the logical
FOR$PROCESSES, the compiler generates a message when you run
your decomposed program.

7. If the program contains run-time errors, use the multiprocessor debugger
to debug it. Define the logical DBG$PROCESS to set up the debugger,
as follows:

$ DEFINE/JOB DBGSPROCESS MULTIPROCESS

See Appendix E for information about debugging decomposed programs.

Figure 3-2 shows a program cycle using decomposition.

VAX C Support for Parallel Processing 3-7

Figure 3-2: Program Cycle Using Decomposition

EDIT <

y
——» CC/PARALLEL PROG

v

Review Diagnostics

Insert
Decomposition
Pragmas
4

Real
Dependency NONGeggc?szosable
ZK-6739-GE

3-8 VAX C Support for Parallei Processing

3.3 Conditions That Inhibit Parallel Processing

You must do the following if you want your program to execute properly in
parallel:

If you want to run some of your VAX C compilation units in parallel, you
must use /PARALLEL to compile the compilation unit containing the
main function, even if the main routine is written in another language.
You can use /PARALLEL on the other compilation units depending on
the needs of your application. If you do not use /PARALLEL on the
compilation unit containing the main routine, the compiler generates a
message.

If you write the main routine of your program in a language that does
not support the /PARALLEL qualifier, you need to write a shell for the
program in a language that does support parallel processing. Then, you
must call the main routine from the shell.

See Section 1.3 for more information on compilation units. See
Chapter 13 for more information on mixed-language programming.

If you use /PARALLEL when compiling a VAX C compilation unit
containing the main function, you must link the program against the
VAXCPAR.OLB object module library. If you do not use the /PARALLEL
qualifier on the compilation unit containing the main function or if your
main routine runs in parallel but is written in another language, you do
not need to link against VAXCPAR.OLB.

See Section 1.4.5.2 for information on object module libraries, linking
order, and the VAX C Run-Time Library (RTL). See Section 3.8 for
information on additional restrictions involving the use of the parallel
memory-management functions in the VAX C RTL. See Chapter 13 for
more information on mixed-language programming.

VAX C does not decompose loops properly if any of the following conditions
exist:

The loop is a while loop and the compiler cannot determine the number
of iterations in the loop

There is a function call in the loop (Section 3.4.2)
There are pointers used in the loop (Section 3.4.3)

There exist two or more iterations making references to the same array
element (Section 3.4.1)

There exists a scalar variable that is defined in one loop iteration and
referenced in another iteration (Section 3.4.4)

A return or goto statement is contained within the loop.

VAX C Support for Parallel Processing 3-9

e A label is contained within the loop.

* There are more than 32 variables used within the function containing
the loop. ’

¢ A static or globaldef array is referenced or modified within the loop.
(See Section 3.6 for more information about storage classes and parallel
processing.)

¢ A static or globaldef scalar is referenced within the loop. (See
Section 3.6 for more information about storage classes and parallel
processing.)

* The loop is a do loop.

* The loop control variable is not an [auto] variable. (See Section 3.6 for
more information about storage classes and parallel processing.)

¢ The loop control variable is a float or double.
* There is a function call in a loop termination condition.

* The loop is a multiple index loop. You can rewrite this sort of loop as a
nested loop to allow decomposition analysis.

* The loop is a nested loop. If a loop contains other loops (nested loops)
and all the loops are eligible for decomposition, VAX C only decomposes
the outermost loop. Similarly, if your program has a decomposed loop
that contains a function call and the function contains a decomposed
loop, the loop inside the function does not run in parallel. However, if
the function is called from sequential code, the loop inside the function
executes in parallel.

e A call to the VAX C RTL function longjmp.
» Input or output operations, since they involve function calls.
¢ Exception or signal handling, since they involve function calls.

* Running your programs from the DEC/Shell. (You must use the DCL
command-language interpreter to compile, link, and run parallel
programs.)

If you set errno in a loop to be decomposed, you must check its value within
the decomposed loop. If the program calls a function that sets errno from
within a decomposed loop and, if it then checks the value of errno outside
the loop, the value of errno at that point reflects the error status of the
program code outside the loop, not the error status of the code inside of the
loop. Since each subprocess receives its own copy of errno, you need to check
the value of errno periodically inside of the loop.

See Section 3.8 for information about programming restrictions involving
the use of the parallel-processing versions of the VAX C RTL memory-
management functions malloc, calloc, free, cfree, and realloc.

3-10 VAX C Support for Parallel Processing

3.4 Data-Dependency Analysis

If a data dependency is carried by a for or a while loop, the result of
running it in parallel often varies from sequential execution and varies from
one parallel execution to another parallel execution. This unpredictability
occurs because loop iterations can be executed out of order when a loop is
run in parallel and a loop with a loop-carried data dependency only works
correctly when the loop iterations are executed in order.

This section discusses how VAX C analyzes the following calls and references
inside each loop body to determine if a loop contains dependencies:

* Array variable references (Section 3.4.1)

¢ TFunction calls (Section 3.4.2)

¢ Pointer variable references (Section 3.4.3)

¢ Scalar variable references (Section 3.4.4)

3.4.1 Array Variable References

VAX C analyzes all references to arrays in a loop; each array reference

is considered in turn. If no element of the array can be modified during
execution of the loop, then the values of the array elements are constant in
the loop. In this case, the array does not introduce any data dependencies
into the loop.

If any array element can be modified within the loop, VAX C must perform
further analysis of the loop’s references to this array to ensure that no two
iterations of the loop reference the same element of the array. In particular,
VAX C tries to establish that at least one index of every reference to the
array in the loop is distinct in every iteration.

VAX C determines that a simple expression containing the loop’s index
variable is distinct in each iteration if the expression satisfies the following
conditions:

¢ The index variable appears only once (and is not multiplied by a factor
of zero).
e All index-expression values are invariant (unchanging) in the loop.

¢ All indexed references to the same dimension of the array are identical,
except for the constant part.

VAX C Support for Parallel Processing 3-11

If an array reference has a constant part, then the compiler computes the
distance. If distance MOD stepsize = 0 (where step_size is the amount
of the increment), then a dependency exists and the compiler does not
decompose the loop. Otherwise, the compiler decomposes the loop.

Consider the following example:

for (i = 0; i < 100; i++)
{ for (j = 0; j < 100; j++)
{ for (k = 0; k < 100; k++)
{ abc{3]1[3 + k] = abclj + 11[J + k] + i * bed[i][i];
}

}

VAX C does not decompose the loop on i because no index expression of

the abc array refers to the loop-index variable i. The abc array is the only
variable considered in loop analysis here, because it is the only one modified
in the loop.

VAX C does not decompose the loop on j, either. While j is used in both
index expressions of abe, the index expression for the first dimension is not
identical in all references to abe, and the index expression for the second
dimension contains a reference to the variable k. The variable k is not
constant during execution of the j loop, and this prevents decomposition.

Even though the first two loops are not decomposed, the loop on k can be
decomposed. The second index of every reference to array abc is identical

(j + k) and contains the loop index variable k. The remainder of the
expression (j) is invariant within the k loop. The reference to bed[i] does not
prevent decomposition on the k loop because it is also an invariant value in
the k loop.

When loop decomposition is inhibited by an array dependency, VAX C issues
a message for each line of code in the loop that references the array. For
example, consider the following listing fragment:

12 1 for (i = 0; 1 < 10; i++)
13 1 {

14 2 x[i] = x[i - 1] * pi;
15 2 y[il = y[i + 1] * pi;

Lines 14 and 15 generate messages that indicates that the loop-control
variable i is contained in an expression that is not invariant. However, the
compiler decomposes the following loop without generating messages:

3-12 VAX C Support for Parallel Processing

12 1 for (1 = 0; 1 < 10; i += 2)
13 1 {

14 2 x[i] = x[1 - 1] * pi;
15 2 y[il = y[i + 11 * pi;

VAX C requires that the arrays referenced in a loop be [extern] or [auto]
arrays for the loop to decompose. Arrays that have the static, globaldef,
or globalref storage-class specifiers cannot have their storage accessed by
multiple processes. If you use an array with one of these storage classes
within a loop, you receive a message and loop decomposition is inhibited.

NOTE

In this chapter, the notation [extern] refers to any variable
declared outside of a function that does not have a static,
globaldef, or globalref storage-class specifier. When declaring
such a variable, the key word extern is optional, and hence, the
[extern] notation.

Similarly, any variable declared inside a function that is not a function
parameter and that has an auto or register storage-class specifier is an
[auto] variable. If the variable has no storage-class specifier, [auto] is the
default.

See Chapter 9 for more information about the [extern] and [auto] storage-
class specifiers.

3.4.2 Function Calls

By default, VAX C does not decompose loops containing function calls.
Functions that are called inside a loop can introduce unpredictable behavior
in a decomposed loop in the following ways:

If the function called from within the loop is not reentrant, the par-
allel execution of several iterations of the function may introduce
unpredictable behavior.

A nonreentrant function is any function that cannot have several
instances active at once. For example, if a function reads and updates a
counter in a static variable, it is not reentrant. In general, any function
that uses static data is not reentrant.

If the function has side effects that introduce data dependencies into the
loop, the function may behave unpredictably. For instance, if a function
updates a global array that is accessed in the decomposed loop from
which it is called, you must examine the function carefully to make
certain that no dependencies are introduced by the function call. That

VAX C Support for Parallel Processing 3-13

is, the function must not read any memory written by other iterations of
the loop, or write any memory read by other iterations of the loop.

e If the loop does not have a predictable flow of control, that is, it does not
return normally, decomposition cannot proceed properly. For example, if
the function calls the VAX C Run-Time Library (RTL) routine longjmp,
the function cannot be decomposed.

If you determine that the function contains none of the previous restrictions,
you can use the safe_call pragma to tell the compiler that it is safe

to execute the function in parallel for a given loop. See Section 3.7 for
information about the safe_call pragma and other decomposition pragmas.

If the safe_call pragma does not appear before a loop containing a function
call, the compiler issues a message and that loop is not decomposed.
However, the compiler may still perform the inline optimization on the
function in the loop.

The following section describes the use of math.h functions in decomposed
loops.

3.4.2.1 math.h Function Calls

By default, the compiler does not decompose loops containing function calls.
However, VAX C places global #pragma safe_call directives in the math.h
include file. This allows you to use most of the math functions in the VAX
C Run-Time Library (RTL) without inhibiting loop decomposition or without
requiring you to use #pragma safe_call in your program.

Not all of the math functions are safe to call in your programs. By default,
using the following math functions inhibits loop decomposition:

* frexp

e modf

These math functions introduce possible data dependencies by accepting
pointer arguments and by returning additional information by using these
arguments. You should not use these functions in loops that you want VAX
C to decompose.

If you want to check the value of errno as possibly set by one of the math
functions, you need to place that check inside the loop to be decomposed.
(See Section 3.3 for more information.)

NOTE

If you place the #include math directive inside of a function
definition, the effect of the #pragma safe_call directives is only

3~14 VAX C Support for Parallel Processing

local to that function. If you call the math functions in other
function definitions, VAX C does not decompose loops in that
function. To keep the effect of the math.h safe_call pragmas
global, place the #include directive outside function definitions.

See the VAX C Run-Time Library Reference Manual for more information on
the math functions in the VAX C RTL. See Section 3.7 for more information
on the #pragma safe_call directive. See Section 10.4 for more information
on file inclusion.

3.4.3 Pointer Variable References

Using pointer variables inside a loop can make it difficult to determine
whether a data dependency exists within the loop. For instance, in the
following example, it is impossible to determine whether the access through
the pointer variable p introduces a data dependency unless it is known
whether p points to an element of vector:

for (1 = 0; 1 < 127; i++)
{
vector{i] = *p * pi / sin (x);
}
The possible data dependency is clear if an arbitrary element of vector is
substituted for *p in the previous expression:

for (i = 0; i < 127; i++)
{
vector([i] = vector[42] * pi / sin (x);

}

If multiple arrays are used in the loop, there is the possibility of a data
dependency between p and every array used in the loop.

VAX C analyzes references to pointers; if the pointer is initialized so that
VAX C can determine the identity of an underlying array, using the pointer
in the loop may not prevent decomposition (if it does not introduce data
dependencies).

If you are working with arrays, you should use the bracket operators to ref-
erence array elements. If you use pointer notation to access array elements,
the compiler does not decompose the loop. The compiler decomposes a loop
containing the following references to array members:
for (1 = 0; i < n; i++)

plil = qli};

VAX C Support for Parallel Processing 3-15

The compiler does not decompose a loop containing the following references
to array members, even though this method is functionally equivalent to the
one in the last example:
for (i = 0; 1 < n; i++)

*pt+ = *g++;
If VAX C cannot determine whether a pointer dereference introduces a data
dependency, the compiler generates a message and does not decompose the
loop. The compiler generates a message for every dereference of the pointer
in the loop. If you can determine that using the pointer does not introduce
a data dependency, you can use the ignore_dependency decomposition
pragma to inform the compiler of this. See Section 3.7 for information about
decomposition pragmas.

3.4.4 Scalar Variable References

To determine if a loop can be decomposed, VAX C analyzes references to
scalar variables within the loop. If a scalar variable in a loop introduces

a data dependency, the loop is not decomposed. A scalar can introduce a
loop-carried data dependency only if the value of the scalar is defined in one
iteration of the loop, and used in another. Since iterations of a decomposed
loop have no guaranteed execution order, the iteration that is executed last
might vary, which causes the value of the scalar to vary at loop termination.

If a scalar variable is not modified during the execution of a loop, its value
can be shared by all iterations of the loop; such scalar references do not
prevent decomposition. However, if a scalar variable is modified in the loop,
it introduces a loop-carried data dependency when either of the following
conditions occur:

¢ If the value of the scalar variable is defined outside the loop and it is
used before it is defined inside the loop.

¢ If the value of a scalar variable is defined inside the loop and it is used
outside the loop.

If either of these two conditions exists, the loop is not decomposed and VAX
C generates a message.

Consider the following example:

3-16 VAX C Support for Parallel Processing

[}

Q.
[}
o

for (i = 0; 1 < N; i++)

-
Hh
o
A
o

[o}
0o
1

g

printf("%d\n", d);

VAX C does not decompose this loop for two reasons. First, scalar variable
¢ is initialized outside the loop, then used in a loop iteration before it is
defined inside the loop. Second, the final value of d from the last iteration
is used outside the loop. The references to variables a and b are not factors
preventing decomposition, because a is not modified in the loop, and b is
defined before it is used in the loop, and b is not used after the loop.

VAX C also requires that loop index variables and other scalars modified or
used in a loop have the [auto] storage class in order for decomposition to
proceed. Scalars used in a decomposed loop are placed in registers, to ensure
that each process executing an iteration has its own private copy. VAX C
only places [auto] variables in registers. If you modify a scalar that is not
an [auto] variable in a loop which VAX C is analyzing for decomposition,
you receive a compiler message. Scalars that are read but not modified in
the loop must have either the [auto] or the [extern] storage class, or you
receive a compiler message and loop decomposition is inhibited.

Even if the scalars in a loop do not cause a data dependency, they can
prevent VAX C from decomposing a loop if there are too many of them.
Because VAX C tries to place scalars that are modified within loops in
registers, if there are more modified scalars in a loop than there are
registers available, the loop is not decomposed. When this occurs, a compiler
message is issued.

3.5 Rewriting Code to Resolve Dependencies

The following sections describe three coding techniques that you can use to
eliminate data-dependency problems that remove a loop from consideration
for parallel processing. The three coding techniques are as follows:

¢ Loop alignment (Section 3.5.1)

VAX C Support for Parallel Processing 3-17

* Code replication (Section 3.5.2)
* Loop distribution (Section 3.5.3)

3.5.1

Loop Alignment

Loop alignment changes loop-carried dependencies to loop-independent
dependencies. This method works by changing subscripts so that all
references to a given array element occur in the same iteration.

The code in the following for loop demonstrates an alignment problem:

for (i = 2; 1 < n; i++);
{

alil = b[il;

c[il = ali + 11;
}
The first loop iteration accesses the value in memory location afi + 1] and
the next iteration stores another value into that location, referencing it as
location afi].

When the code is executed sequentially, the value in memory location a[i + 1]
is used before another value is stored into that memory location. This is
not true if the code is executed in parallel. For example, if loop iterations 4
and 5 execute in separate processes and iteration 5 executes before iteration
4, the value that iteration 4 accesses from the memory location associated
with afi + 1] is the value established by iteration 5 in the memory location
associated with alil.

The way to remedy this dependency is to bring into alignment the two
references to the memory location in array a, that is, the references to a[i]
and afi + 1]. You can do this by changing the second assignment statement,
as follows:

Original Statement

cl[il = ali + 11;

Revised Statement

c[i-1] = a[il;

The revised statement eliminates the data-dependency problem associated
with the previous references to memory locations in array a. However, to
compensate for the change to the array reference, you may have to adjust
the loop control values and add appropriate if constructs to achieve the same
effect as the original loop.

3-18 VAX C Support for Parallel Processing

It is also important to maintain the order in which memory locations are
accessed. In this case, memory location a[i + 1] in the original for loop is
used in one iteration and then redefined in the next iteration (as memory
location ali]). By aligning the references, each iteration operates on only
one memory location and, in the original order of the operations, array a’s
memory locations are defined before they are used. So, in the revised for
loop being prepared for parallel processing, the statement performing the
use operation must be moved ahead of the statement performing the store
operation in order to preserve the original order of these operations.

In the following example, additional changes have to be made to the loop, as
follows:

Original for Loop

for (i = 2; 1 < n; i++)
{
al[i]
cl[i]

blil;
afi + 1];

/]

}

Revised for Loop

for (i = 2; 1 < n + 1; i++)

{

if (4 > 2)

cli - 11 = a[il;
if (1 <= n)

afi]l = bl[i]l;

}

Alternatively, you can compensate for the change to the array reference by
distributing certain statements outside the loop, as follows:

Original for Loop

for (i=2; i < n; i++)
{
al[i]
c[i]

bli];
ali + 11;

}

Revised for Loop

if (n >= 2)
al2] = b[2];
for (1 = 3; i < n; i++4)
{
cli - 1] = afil;
a[i]l = bli]l;
}
if (n >= 2)
cin] = aln + 1];

VAX C Support for Parallel Processing 3-19

If statements are distributed outside the loop, tests must be made to control
when those statements are executed. Otherwise, they are always executed
and that behavior causes an error when the loop has no iterations.

In addition, when using the loop alignment technique to resolve a data
dependency, check to ensure that the coding changes that you make to bring
one reference into alignment do not cause previously aligned references to
become unaligned.

3.5.2 Code Replication

Code replication entails duplicating certain operations to eliminate a
data-dependency problem.

The following example shows a data-dependency problem that can be
resolved by code replication:

for (i = 2; i <= 100; i++)
{
ali]
d[i)

bli] + cli];
ali]l + ali - 1];

|1

}

This example contains a loop-carried dependency between memory locations
afi] and ali - 1]. The value at memory location ali - 1] is not predictable
because, in some instances, it is not defined in one loop iteration before
another loop iteration tries to use it. For example, if iterations 2 through
50 are executing in the main process and iterations 51 through 100 are
executing in a separate process, loop iteration 51 may try to use memory
location a[i - 1] before loop iteration 50 has stored a value in that memory
location, referencing it as memory location a[il.

To eliminate this problem, establish the value of ali - 1] in a new memory
location and then eliminate the reference to the old memory location,
substituting a reference to the duplicated memory location. For example,
you can revise the for loop, as follows:

Original for Loop

for (1 = 2; i <= 100; i++)
{

b(i] + cli];
afi]l + ali - 13];

afli)
d[i]

3-20 VAX C Support for Parallel Processing

Revised for Loop

af2] = Dbl2] + cl2];

d[2] = a[2] + alll;

for (i = 3; i <= 100; i++)
{

afi] = b[i] + c[i];
ta = b[i - 1] + c[i - 1];
d[i] = a[i] + ta;

}

In this situation, you compute the value of memory location ali - 1], store
it into temporary variable ta, and replace the reference to a[i - 1] with a
reference to variable ta.

Some of the calculations are pulled out of the loop and the iteration count
is modified. This is necessary because the reference to afi] in the original
loop used the original value of a[i], not one computed by bl[i] + c[i]. Using
the code replication technique generally requires this type of modification to
bring references back into alignment.

3.5.3 Loop Distribution

Loop distribution involves breaking down a loop with data-dependency
problems into several loops, one or more of which can be run in parallel. For
example, consider the following for loop:

for (i = 1; 1 <= 100; i++)
{

afi - 1] + d[il;
bl[i]l - alil;

ali]
cli]

/]

}

This loop contains a data dependency and VAX C cannot run it in parallel
without producing unpredictable results. As mentioned in the previous
section, if loop iterations 1 through 50 are executing on one processor and
loop iterations 51 through 100 are executing on another processor, it is likely
that loop iteration 51 will try to access a value in memory location a[i - 1]
before iteration 50 has executed (and stored the necessary value at that
location).

To eliminate this problem, you can distribute the for loop. For example, you
can revise the for loop, as follows:

VAX C Support for Parallel Processing 3-21

Original for Loop

for (i = 1; 1 <= 100; i++)
{
al[i] = a[i - 1] + d[i];
c[i] = b[i] - alil;
}

Revised for Loop

for (i = 1; 1 <= 100; i++)
alil = ali - 1] + d[i];

for (i = 1; i <= 100; i++)
c[i] = b[i] - al[i];

Given these changes, the second loop can now be executed in parallel.

3.6 Storage Classes and Parallel Processing

Only variables that are mapped to shared memory can be accessed by
multiple processes. Variables that are not mapped to shared memory
can inhibit loop decomposition. VAX C automatically maps the following
variables to shared memory:

* Any variable that is allocated on the stack, such as an automatic scalar
or array variable

¢ Any scalar variable with the [extern] storage-class modifier
* Any variable whose address is passed to a function

Variables that have the globaldef or static attributes are not mapped to
shared memory.

Any memory allocated with the malloc function is not shared unless you
follow certain requirements for using parallel versions of the memory-
managment functions of the VAX C RTL. See Section 3.8 for more
information.

VAX C automatically aligns [extern] variables modified within a decom-
posed loop on a page boundary. This is necessary in order to place them in
shared memory.

However, this page alignment can sometimes cause a linker warning to

be generated. If a variable is automatically page aligned in one module
because it is accessed in a decomposed loop, but it is not page aligned in
other modules, you get a linker warning. This can be safely ignored; if you
prefer, you can change the alignment of the variable to be page aligned in
all modules by using the _align declaration modifier.

3-22 VAX C Support for Parallel Processing

3.7 Decomposition Pragmas

In addition to rewriting your code to resolve dependencies, you can place
decomposition pragma directives into your programs to override the default
actions taken by the compiler. Table 3-2 presents the VAX C decomposition

pragmas.

Table 3-2: VAX C Decomposition Pragmas

Pragma Description
#pragma ignore_ Specifies to the compiler that a variable that appears
dependency to be in conflict is safe to decompose. By default, VAX

C does not decompose loops that have two iterations
that access the same element.

#pragma safe_call Specifies to the compiler that a loop that contains
a call to the specified function is safe to decompose.
By default, VAX C does not decompose loops with.
function calls.

#pragma sequential_loop Specifies to the compiler that the iterations of a for
or while loop should be executed sequentially. By
default, VAX C tries to decompose all for and while
loops for parallel processing.

For the ignore_dependency and sequential_loop pragmas, a placement
of the pragma affects only the next for or while loop encountered (re-
gardless if the loop contains a reference to any specified pointer or array
variable).

For the safe_call pragma, the placement of the pragma determines the
scope of the pragma’s effect. If you place a safe_call pragma outside of all
function definitions, the pragma affects all for and while loops from the
position of the pragma to the end of the compilation unit. In this case, the
effect of the pragma is global.

If you place the safe_call pragma inside a function definition, the pragma
affects only the next for or while loop encountered within that function
(regardless if the loop contains a call to the specified function). In this
case, the effect of the safe_call pragma is local to the enclosing function
definition.

VAX C Support for Parallel Processing 3-23

If you specify