VAX COBOL User Manual
Order Number: AA-HG32E-TE

This manual explains how to develop VAX COBOL programs; it also describes the features of
the language and how to use VMS features from VAX COBOL.

Revision/Update Information: This revised manual supersedes VAX COBOL User Manual
(Order Number: AA-H632D-TE).

Operating System and Version: VMS Version 5.0 or higher
Software Version: VAX COBOL Version 4.3

digital equipment corporation
maynard, massachusetts

First Printing, June 1980
Revised, October 1984
Updated, April 1985
Updated, February 1986
Updated, February 1987
Revised, January 1988
Updated, December 1988
Revised, December 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to re-
strictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1980, 1984, 1985, 1986, 1987, 1988, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1 EduSystem RT

DEC IAS ULTRIX
DEC/CMS MASSBUS UNIBUS
DEC/MMS PDP VAX

DECnet PDT VAXcluster
DECmate P/OS VMS
DECsystem—10 Professional VT
DECSYSTEM-20 Q-bus Work Processor
DECUS Rainbow

DECwriter RSTS ™
DIBOL RSX dliolilt[a]l

ZK5185

Contents

Preface e e e e e e e e e XXVil
Summary of Technical Changes i, XXiX
Partl Developing VAX COBOL Programs
Chapter 1 Overview of VAX COBOL
Chapter 2 Developing VAX COBOL Programs at DCL Command Level
2.1 Choosinga Reference Format iiiurnien.. 2-1
211 Terminal Reference Format 21
21.2 ANSI Reference Format oL, 2-2
2.1.3 Converting Between Reference Formats 2-2
2.2 DCL Commands for Program Development 2-2
23 Creatinga VAXCOBOL Programt iiiennnenn. 2-5
2.4 Using the COPY Statement in Your Source Program 2-5
25 Compiling a VAX COBOL Program. ottt ineernnneennn. 2-6
25.1 The COBOL Commandttt 2-6
252 COBOL Command Qualifierso, 2-7
253 Compiling Programs with Conditional Compilation Lines 2-16
254 Compiler Error Messagescoveveneneennnneeeneenn. 2-16
255 Compiler Listings oo i it e 2-17
2.5.5.1 Source Program Listing. 2-18
25.5.2 Storage Map Portion of Compiler Listing 2-20
2553 Compilation Summary 2-24
2.55.4 Compiler Listing Including the /MACHINE_CODE
Qualifierot i e e e 2-25
2.56.5.5 Compiler Listing for a Contained Program 2-28
2.6 Linkinga VAX COBOL Program. ittt renunnrann.n 2-29
2.6.1 The LINK Command. e e e, 2-30
26.2 LINK Command Qualifiers 2-31
26.3 Positional Qualifiers i 2-33
264 Using an Object Module Library 2-34

2.6.5 Object Librarieso i i e 2-35
2.6.5.1 Using System-Supplied Object Module Libraries 2-35
2.6.5.2 Defining the Search Order for Libraries 2-36
2.6.5.3 Defauit User Object Module Libraries 2-36
, 2.6.5.4 System Libraries o L., 2-37
2.6.6 Shareablelmages i i 2-37
2.6.6.1 Creating a Shareablelmage 2-37
2.6.6.2 Using Transfer Vectors 240
2.6.7 Linker Error Messagesc ittt 2-41
27 Runninga VAX COBOL Programt iiiiinennnnnn. 2-42
2.71 COBOLRun-Time Errors. cv ittt e i 2-43
238 Program Switches i 2-43
2.8.1 Setting Switches Internally i 2-44
2.8.2 Setting Switches fora Process i i, 2-44
2.8.3 Order of Evaluation 2-44
284 Checking and Controlling Switch Settings. 2-44
2.8.5 Example Using Program Switches 2-45
Chapter 3 Using the VMS Debugger
3.1 VMS Debugger Conceptst inninennnns 3-1
3.2 Features of the Debugger 3-2
3.3 Getting Started withthe Debugger. 3-2
3.3.1 Compiling and Linking to Prepare for Debugging. 3-3
3.3.1.1 Establishing the Debugging Configuration 3-3
3.3.2 Starting and Ending a Debugging Session 3-3
3.3.3 Issuing Debugger Commands 34
34 Notes on VAX COBOL Support 3-9
3.5 Sample Debugging Session 3-10
Partll Using VAX COBOL Features on VMS
Chapter 4 Numeric Data Handling
4.1 How the Compiler Stores NumericData 4—1
4,2 Sign Conventions it e et e 4-1
43 Invalid Values in Numericltems. i, 4-2
4.4 Evaluating Numericltems e 4-2
4.4.1 Numeric Relation Tests i, 4-2
44.2 NumericSign Testsot enennn SR 4-3
443 NumericClass Tests. i i 44
4.4.4 Success/Failure Tests i i 44
45 Usingthe MOVE Statement, 4-5
4.5.1 Elementary NumericMoves, 4-5

4.5.2 Elementary Numeric Edited Moves 4-7
45.3 Common Move Errorsottt it it it et e ei e 4-8
4.6 Using the Arithmetic Statements 4-8
4.6.1 Intermediate Results 4-9
4.6.2 Specifying a Truncation Qualifier 4-9
4.6.3 Using the ROUNDED Phrase. 4-9
4.6.3.1 ROUNDED with REMAINDER 4-10
46.4 Using the SIZE ERROR Phrase 4-10
46.5 Usingthe GIVING Phrase i, 4-11
4.6.6 Muitiple Operands in ADD and SUBTRACT Statements 4-11
46.7 Common Errors in Arithmetic Statements 4-11
4.7 Arithmetic Expression Processing 4-12
Chapter 5 Nonnumeric Data Handling
5.1 Data Organization. i 5-1
5.1.1 Group ltems e e 5-2
5.1.2 Elementary tems e e 5-2
5.2 Special Characters ittt 5-2
53 Testing Nonnumeric ltems 5-3
5.3.1 Relation Tests of Nonnumeric ltems 5-3
5.3.1.1 ClassesofData., 5-3
5.3.1.2 Comparison Operations.cuivieunnn. 54
5.3.2 Class Tests for Nonnumericltems. 54
5.4 Data Movement i e e 5-5
5.5 Usingthe MOVE Statement 5-6
5.5.1 Group MOVES et e e 5-7
5.5.2 Elementary Moves0ttt 5-7
5.6.2.1 Edited Moves i 5-8
55.2.2 Justified Moves, 5-9
5.5.3 Multiple Receiving ltems 5-9
5.5.4 Subscripted Moves e e e e e, 5-10
5.5.5 Common Nonnumeric Item MOVE Statement Errors 5-10
5.5.6 Using the MOVE CORRESPONDING Statement for Nonnumeric
Hems . . e s 5-10
5.5.7 Using Reference Modification. 5-11
Chapter 6 Table Handling
6.1 Introduction e 6-1
6.2 Defining Tables it 6-1
6.2.1 Defining Fixed-Length, One-Dimensional Tables 6-1
6.2.2 Defining Fixed-Length, Multidimensional Tables 64
6.2.3 Defining Variable-Length Tables 66
6.2.4 Storage Allocationfor Tables 6-7
6.2.4.1 Using the SYNCHRONIZED Clause 6-8
6.3 Initializing Values of Table Elements 6-11

6.4 Accessing Table Elements i, 6-14
6.4.1 Subscripting e e e 6-14
6.4.2 Subscriptingwith Literals i, 6-14
6.4.3 Subscriptingwith DataNames 6-16
6.4.4 Subscriptingwith Indexes o i L, 6-16
6.4.5 Relative Indexingo oot ie it i e e 6-17
6.4.6 Index Data ltems ittt e e, 6-17
6.4.7 Assigning Index Values Using the SET Statement 6-17

6.4.7.1 Assigning an Integer Index Value with a SET Statement. . . 6-18
6.4.7.2 Incrementing an Index Value with the SET Statement 6-18
6.4.8 Identifying Table Elements Using the SEARCH Statement 6-18
6.4.8.1 Implementing a Sequential Search 6-18
6.4.8.2 Implementing a Binary Search 6-19
Chapter 7 Using the STRING, UNSTRING, and INSPECT Statements

71 Concatenating Data Using the STRING Statement 7-1
711 Multiple Sending ltems L o e 7-1
7.1.2 Using the DELIMITEDBY Phrase 7-2
713 Using the POINTER Phrase coivn... 7-4
714 Using the OVERFLOW Phrase. coiiiio e 7-4
715 Common STRING Statement Errors 7-5

7.2 Separating Data Using the UNSTRING Statement 7-6
7.2.1 Multiple Receiving ltems L il o 7-6
7.2.2 Controlling Moved Data Using the DELIMITED BY Phrase 7-8

7.2.241 Multiple Delimiters 7-12
7.2.3 Usingthe COUNT Phraseot ii ittt 7-12
724 Saving UNSTRING Delimiters Using the DELIMITER Phrase 7-13
725 Controlling UNSTRING Scanning Using the POINTER Phrase. 7-14
726 Counting UNSTRING Receiving ltems Using the TALLYING Phrase . . . 7-15
727 Exiting an UNSTRING Statement Using the OVERFLOW Phrase. 7-16
7.2.8 Common UNSTRING StatementErrors 7-16

73 Examining and Replacing Characters Using the INSPECT Statement 7-17

7.3.1 Using the TALLYING and REPLACING Options of the INSPECT
Statement. e e 7-17
7.3.2 Restricting Data Inspection Using the BEFORE/AFTER Phrase 7-18
7.3.3 Implicit Redefinition e e e e 7-19
7.3.4 Examining the INSPECT Operation o 7-21
7.3.4.1 Settingthe Scanner 7-22
7.3.4.2 Active/lnactive Arguments 7-22
7.3.4.3 Finding an ArgumentMatch. 7-23
7.35 The TALLYING Phraseottt 7-24
7.3.5.1 The Tally Counter 7-24
7.35.2 The Tally Argumento, 7-24
7353 The Tally ArgumentList 7-25
7.354 Interference in Tally Argument Lists. 7-26
7.3.6 Using the REPLACING Phrasecoovvininonn. 7-29
7.3.6.1 The Search Argument. 7-30
7.3.6.2 The Replacement Value 7-30
7.36.3 The Replacement Argument 7-31
7.3.6.4 The Replacement Argument List. 7-31
7.3.6.5 Interference in Replacement Argument Lists 7-32
7.3.7 Using the CONVERTING Option. v, 7-33
7.3.8 Common INSPECT Statement Errors 7-33

vi

Chapter 8 The Basics of Handling VAX COBOL Files and Records

8.1 VAX Record Management Services, 8-1
8.2 File Attributes e 8-2
8.3 Record Attributes e 8-2
8.3.1 Record Format, 8-3
8.3.1.1 Fixed-LengthRecords 84
8.3.1.2 Variable-Length Records 8-5
8.3.2 Print-Controlled Files 87
8.4 File Design Considerations i, 8-7
8.5 FileHandling ittt 8-8
8.5.1 ldentifying a File from Your VAX COBOL Program. 8-8

8.5.1.1 Using the VALUE OF ID Clause for Device
Independence 0., . 89
85.1.2 Using Logical Names 8-10
8.5.2 Choosing File Organization and Record Access Mode 8-11
8.5.2.1 File Organizationscciiiieunnnn.. 8-11
8.5.2.2 Record AccessModes 8-12
8.6 Openingand Closing Files i, 8-14
8.7 File Compatibility e e 8-15
8.7.1 Data Type Differences 8-15
8.7.2 Data Record Formatting Differences 8-16
8.8 Backing Up Your Files 8-16
8.9 Low-Volume I/O (ACCEPT and DISPLAY)ciiiiiinnn... 8-16
8.9.1 Mnemonic Names (SPECIAL-NAMES Paragraph) 8-16
8.9.2 Logical Name Devices 8-17
8.9.3 ACCEPT Statementc. ittt 8-18
8.9.4 DISPLAY Statementottt it i e 8-18
8.10 Printing with VAX VFP i i e 8-18

Chapter 9 Processing Sequential Files

9.1 Sequential File Organization oo, 9-1
9.2 Design Considerations i, 9-2
9.3 Statements for Sequential File Processing 9-2
9.4 Defining a Sequential File 9-3
9.5 Creatinga Sequential File. i iinennnn 94
9.6 Readinga Sequential File 9-6
9.7 Updating Records ina Sequential File 97
9.8 Extending a Sequential File., e 9-8

vii

Chapter 10

Processing Relative Files

10.1 Relative File Organization e e e 10-1
10.2 Desigh Considerations i, 10-2
103 Statements for Relative File Processing 10-3
104 DefiningaRelative File. i i, 10-4
10.5 CreatingaRelativeFile. i i 10-5
10.5.1 Sequential Access Mode Creation 10-5

10.5.2 Random Access Mode Creation 10-6

10.6 Readinga Relative File i i 10-7
10.6.1 Sequential Readingt e 10-7

10.6.2 Random Readingttt 10-8

10.6.3 Dynamic Reading.ottt e 10-9

10.7 Updatinga Relative File 10-10
10.7.1 Rewriting Relative Records 10-10

10.7.1.1 Sequential Access Mode Rewriting 10-11

10.7.1.2 Random Access Mode Rewriting 10-12

10.7.2 Deleting Relative Records 10-13

10.7.2.1 Sequential Access Mode Deletion. 10-13

10.7.2.2 Random Access Mode Deletion 10-14

Chapter 11 Processing Indexed Files

1.1 Indexed File Organization it iiiineennn 11-1
11.2 Design Considerations 11-2
13 Statements for Indexed File Processing 11-3
1.4 Defininganindexed File 11-3
1.5 Creating and Populating an Indexed File 11-4
11.6 ReadinganiIndexed File i i, 11-6
11.6.1 Sequential Readingc.c i 11-6

11.6.2 RandomBReadingcoiiiini ittt 11-7

11.6.3 DynamicReading.t i e 11-9

117 Updating an Indexed File e 11-10
11.7.1 Sequential Updating i 11-10

11.7.2 Random Updating i, 11-12

11.7.3 DynamicUpdating 11-14

viii

Chapter 12 Input/Output Exception Conditions Handling

121 Planning for the AtEnd Condition 121
12.2 Planning for the Invalid Key Condition. 12-2
123 Using File Status Values i iiinnrennn 12-3
12.3.1 VAX COBOL File Status Valuescccvun .. 12-3
12.3.2 RMS File Status Values0, 12-5
124 Using Declarative Procedures to Handle Exception Conditions 127

Chapter 13 Sharing Files and Protecting Records

13.1 File-Sharing and Record-LockingConcepts 13-1
13.2 Ensuring Successful FileSharing 13-3
13.2.1 Providing Disk Residency, 13-3
13.2.2 Using VMS File Protection., 13-3
13.23 Determining the Intended Access Mode toaFile. 134
13.24 Indicating the Access Allowed to Other Streams 13-5
13.2.5 Describing Types of Access Streams. 13-5
13.2.6 Summarizing Related File-Sharing Criteria 13-6
13.2.7 Checking File Operations, 13-9
13.2.8 Specifying the OPEN EXTEND in a File-Sharing Environment 13-11
13.2.8.1 OPEN EXTEND with a Shared Sequential File 13-11 -
13.2.8.2 OPEN EXTEND with a Shared Relative File. 13-11
13.2.8.3 OPEN EXTEND with a Shared Indexed File 13-12
13.3 Using Record Locking i iiinnnnn 13-12
13.3.1 Specifying Automatic Record Locking 13-13
13.3.2 Specifying Manual Record Locking 13-14
13.33 Locking Error Conditions 13-16
13331 HardRecordbLocks, 13-16
13.33.2 SoftRecordlocks it 13-17
13.34 Releasing Locks on Deleted Records 13-17
13.3.5 Bypassinga Record Lock it 13-18

Chapter 14 Using the COBOL SORT and MERGE Statements

141 ASCENDING and DESCENDING KEY Phrases 141

14.1.1 Sorting Conceptsottt e e e 14-2
142 USINGand GIVINGPhrases ciiiininvnnnnnn.. 14-2
14.3 INPUT PROCEDURE and OUTPUT PROCEDURE Phrases 14-3
144 WITH DUPLICATESINORDERPhrase o.un. 14-5
14.5 COLLATING SEQUENCE IS Alphabet-Name Phrase . . .~ 14-6
14.6 File Organization e e e 14-6
14.7 MultipleSorts e e 14-6

14.8 Sorting Variable-Length Records 14-8

14.9 Preventing /O Aborts e e 14-8
1410 The MERGE Statement it 14-9
14.11 Sample Programs Using the SORT and MERGE Statements 14-9

Chapter 15 Database Programming with VAX COBOL

15.1 The Self-Paced Demonstration Package 15-1
15.2 VAX COBOL Data Manipulation Language (DML) 15-2
153 Creatinga VAXCOBOL DML Programt vvnun.. 15-4
154 Compiling a VAX COBOL DML Programoouuuuueeenonn. 15-4
15.4.1 Copying Database Records in a VAX COBOL Program 15-5
15.4.2 Using the /MAP Compiler Qualifier 15-5
155 Linking a VAX COBOL DML Program it ennn. 15-5
15.6 Runninga VAXCOBOL DML Programcc.iiinnnnn. 15-5
15,7 ADatabase e e e 15-6
15.8 Schema e e e e 15-6
15.9 Storage Schema i i e e e e 15-6
15,10 Subschema i e 15-6
1541 Stream e e e 15-7
15,12 USINgCDD/PIUS i i e e e 15-8
1513 Database Recordst 15-8
15.14 Database Dataltem i, 15-8
15,15 Database Key. i i i i i e 15-8
15,16 Record TYPeS oottt it e e e s 15-9
1517 St TYPOSot i e e e 15-9
15,18 SelS e e e 15-12
15.18.1 Simple Set Relationships 15-14
15.18.1.1 System-Owned Sets.............. 15-15
151812 SimpleSets i i 15-15
15.18.1.3 ForkedSets, 15-16
15.18.2 Multiset Relationships i 15-18
15.18.2.1 Many-to-Many Relationships Between Two Types of
Recordsoi it i e 15-18
15.18.2.2 Many-to-Many Relationships Between Records of the Same
TYPE it e e e 15-20
15.18.2.3 One-to-Many Relationships Between Records of the Same
15/ - S 15-25

15.19

15.20

15.21

15.22

15.23

15.24

15.25

15.26

15.27

15.28

15.29

15.30

Currency Indicators

15.22.1
15.22.2
15.22.3
15.22.4

Currency Indicators in a VAX COBOL DML Program

156.23.1
15.23.2
15.23.3

VAX COBOL DML Programming—Tips and Techniques

15.24.1

15.24.2
15.24.3
15.24.4
15.24.5
15.24.6
15.24.7
15.24.8
15.24.9
15.24.10

15.24.11
15.24.12
15.24.13
15.24.14

Handling Database Exception Conditions
ATENDPhrase..........ccoiiiivnnan..

15.25.1
15.25.2
15.25.3
15.25.4

Debugging and Testing VAX COBOL DML Programs
DBQ Commands and DML Statements
Sample Debugging and Testing Session
Reading a VAX COBOL Subschema Map Listing

PARTSS1 Subschema Map Listing
PARTSS3 Subschema Map Listing

15.29.1
15.20.2

Examples
15.30.1
15.30.2
15.30.3
15.30.4
15.30.5

Currentof Realm,
Currentof SetType

Currentof Record Type

Curentof RunUnit

Using the RETAINING Clause
UsingKeeplists
Transactions and Quiet Points

The Ready Modes S
15.24.1.1 RecordLocking
COMMITand ROLLBACK

The Owner and Member Test Condition.
Using IF EMPTY Instead of IFOWNER..............
Modifying Members of Sorted Sets
CONNECT and DISCONNECT

RECONNECT i
ERASEALL i

ERASE Record-Name.o,
Freeing Currency Indicators
15.24.10.1 Establishing a Known Currency Condition
15.24.10.2 Releasing Record Locks
FIND and FETCH Statements

FINDALLOptiont

FIND NEXT and FETCH NEXT Loops
Qualifying FINDand FETCH

ONERRORPhrasecooviiiieinnnnn.
USE Statementoiiiimirtiiinnnnnnn

...........

........

........

........

How to Translate DB-CONDITION Values to Exception Messages

Populatnga Database
BackingUp aDatabase
Accessing and Displaying Database Informatlon
PARTBOM Sample Run

Creating Relationships Between Records of the Same Type

...........

..............

........

........

15-29

15-29

15-29

15-30
15-30
15-31
15-32
15-32

15-33
15-34
15-36
15-38

15-39
15-39
1540
15-41
1543
1544
15-44
15-46
1547
15-48
15-49
15-50
15-50
15-52
15-52
15-53
15-53
15-55

15-56
15-56
15-56
15-56
15-568

15-58

15-59

15-60

15-68
15-69
15-73

15-75
15-75
15-83
15-89
15-91
15-92

xi

15.30.6 STOOL Program Parts Breakdown Report—Sample Run 15-96

15.30.7 Creating New Record Relationships 15-96
15.30.7.1 PERSONNEL-UPDATE Sample Run—Listing Before
Promotion.0, 15-102
15.30.7.2 PERSONNEL-UPDATE Sample Run—Listing After
Promotion. 15-102

Chapter 16 Producing Printed Reports with VAX COBOL

16.1 Designingthe Report e e e e e 16-1
162 ComponentsofaReport................iiiiiinernn. 16-2
16.3 Accumulatingand Reporting Totals 16-5
16.4 The Logical Page and the Physical Page 16-7
16.5 Programming the Conventional VAX COBOL Report 16-7
16.5.1 Defining the Logical Page in a Conventional Report. 16-7
16.5.2 Controlling the Spacing in a Conventional Report 16-8
16.5.3 Advancing to the Next Logical Page in a Conventional Report. 16-8
16.5.3.1 Programming for the Page-Overflow Condition in a
Conventional Report.o .. 16-9
16.5.3.2 UsingalineCounter ur.nn 16-10
16.5.4 Printing the Conventional Report 16-10
16.5.5 A Conventional File Report Example 16-10
16.6 Programming the Linage-File VAX COBOL Report. 16-14
16.6.1 Defining the Logical Page in Linage-File Report 16-14
16.6.2 Controlling the Spacing in a Linage-File Report. 16-16
16.6.3 Using the LINAGE-COUNTER, 16-16
16.6.4 Advancing to the Next Logical Page in a Linage-File Report 16-16
16.6.5 Programming for the Page-Overflow Condition 16-16
16.6.6 Printing a Linage-File Report 16-20
16.6.7 A Linage-File Report Example 1621
16.7 Modes for Printing Reports 16-23
16.7.1 Directly Allocatinga Printer 16-23
16.7.2 Spooling to a Mass Storage Device 16-24
16.8 Programming the Report Writer Report 16-24
16.8.1 Using the REPORT Clause in the File Section 16-25
16.8.2 Defining the Report Section and the ReportFile 16-25
16.8.3 Defining a Report Writer Logical Page with the PAGE Clause 16-25
16.8.4 Describing Report Group Description Entries 16-26
16.8.5 Vertical Spacing for the Logical Page 16-29
16.8.6 Horizontal Spacing for the Logical Page 16-30
16.8.7 Assigninga Valueina PrintLine 16-31
16.8.8 Defining the Source fora PrintField 16-31
16.8.9 Specifying Multiple Reports oL 16-32
16.8.10 Generating and Controlling Report Headings and Footings 16-33
16.8.11 Defining and Incrementing Totals 16-34
16.8.11.1 Subtotaling i 16-34
16.8.11.2 Crossfootingt 16-35
16.8.11.3 Rolling-Forward 16-35
16.8.114 RESET Option.ciiiiiiiennnnnnns 16-36
16.8.11.5 UPONOptiont 16-36

Xii

16.8.12 Restricting Printltems. i i, 16-37

16.8.13 Processing a Report Writer Report 16-38
16.8.13.1 Initiatingthe Report 16-38

16.8.13.2 Generating a Report Writer Report 16-39

16.8.13.3 Automatic Operations of the GENERATE Statement 16-39

16.8.13.4 Ending Report Writer Processing 1640

16.8.13.5 Applying the USE BEFORE REPORTING Statement 16—41

16.8.13.6 Suppressinga Report Group 1642

16.8.14 Selecting a Report Writer Report Type 16-42
16.8.14.1 Detail Reporting. 1642

16.8.142 Summary Reporting 16-43

16.9 Report Writer Examples i 16—43
16.9.1 Input Data i e 1643

16.9.2 REPORT1—Detail Report Programcovvvn 16-44

16.9.3 REPORT2—Detail Report Program 1649

16.9.4 REPORT3—Detail Report Program 16-57

16.9.5 REPORT4—Detail Report Program 16-63

16.9.6 REPORT5—Summary Report Program 16-71

16.10 Solving Report Problems i 16-80
16.10.1 Printing More Than One Logical Line on a Single Physical Line. 16-80

16.10.2 GroupiIndicatingt 16-85

16.10.3 Fitting ReportsonthePage v, 16-86

16.10.4 Printing Totals Before Detail Lines 16-86

16.10.5 Underlining tems in Your Reports 16-87

16.10.6 Bolding ltemsin Your Reports 16-87

Chapter 17 Forms for Video Terminals

17.1 ClearingaScreen Area. 0t initntutenennennenannnn 17-3
17.2 Horizontal and Vertical Positioning of the Cursor 17-5
17.3 Assigning Character Attributes to Your Format Entries 17-8
17.4 Using the CONVERSION Clause to Display Data 17-10
17.5 Handling Data with ACCEPT Options 17-13
17.5.1 Using CONVERSION with ACCEPT Data 17-13

17.5.2 Using ON EXCEPTION When Accepting Data with CONVERSION . .. 1714

17.5.3 Protecting Your Screen e e e e e e 17-15

17.5.4 Using NO ECHO with ACCEPT Datac.oouun.n. 17-17

17.5.5 Assigning Default ValuestoData Fields 17-18

17.6 Using Keys on Your Terminal to Define Special Program Functions 17-21
17.7 Usingthe EDITING Phrase i, 17-31

Chapter 18 Interprogram Communication

18.1 Multiple COBOL Program Run-UnitConcepts 18-1
18.1.1 Definition of a Multiple COBOL Program Run Unit. 18-1

18.1.2 Examples of COBOL Run Units, 18-1

18.1.3 Calling Procedures ittt 18-3

Xiii

Xiv

18.2

18.3

184

18.5

18.6

18.7

18.8

18.9

18.10

18.11

18.12

18.13

18.14

COBOL Program Attributes i
18.2.1 The INITIALClause vttt i e it i i aenn
18.2.2 The EXTERNAL Clauseo iiiineiinnnnnnnn.
Transferring Execution Control
18.3.1 The CALL Statement i,
18.3.2 The EXIT PROGRAM Statementouuunn
18.3.3 Nesting CALL Statements
Accessing Another Program’s Data Division.
18.4.1 The USING Phrase e

18.4.1.1 The Linkage Section.
Communicating with Contained COBOL Programs
18.5.1 The COMMON Clausec.ccitinenrinneneennennnnn
18.5.2 Defining and Using the GLOBAL Clause

185.21 SharingData.t nnn..

185.22 SharingFiles. i,

18.5.2.3 Sharing Database Resources

18.5.2.4 Sharing Other Resourcescovuun.n.
18.5.3 Sharing USE Proceduresciiuiiiiinnnnn..
Including Non-COBOL Programs inthe Run Unit
Using VAX COBOL in the Common Language Environment
The VAX Procedure Calling and Condition Handling Standard
18.8.1 Registerand Stack Usage it
18.8.2 Return of the Function Value
18.8.3 The Argument List i i
VMS Run-Time Library Routines
VMS System Services Routines it
CallingRoutines. it ittt
18.11.1 Determining the Typeof Call o .
18.11.2 Defining the Argument i,
18.11.3 Calling the External Routine vun..
18.11.4 Calling System Routines

18.11.4.1 System Routine Arguments

18.11.4.2 Calling a System Routine in a Function Call

18.11.4.3 Calling a System Routine in a Procedure Call.
18.11.5 Checking the Condition Value

18.11.5.1 Library Return Status and Condition Value Symbols.
18.11.6 Locatingthe Result i,
Calling Shareablelmages it
Examples e e
Additional Information i i i

184
184
184

18-5
18-5
18-5
18-6

18-8
18-8
18-10

18-12
18-13
18-14
18-14
18-15
18-15
18-15
18-16

18-19
18-23

18-24
18-24
18-25
18-25

18-25
18-26

18-27
18-27
18-28
18-29
18-29
18-29
18-33
18-34
18-34
18-36
18-36

18-36
18-37

1840

Partlll VAX COBOL Programming Options and Performance

Considerations
Chapter 19 Using the REFORMAT Utility
191 ANSlkto-Terminal Format Conversion 19-1
19.1.1 ANS|-to-Terminal REFORMAT Command String 19-2
19.2 Terminal-to-ANSI Format Conversionc....... 19-2
19.2.1 Terminal-to-ANSI REFORMAT Command String 19-3
19.3 REFORMAT Error Messagescotiitimitnteninneeaennens 194
Chapter 20 Optimizing Your VAX COBOL Program
20.1 Numeric Data Representation 201
20.1.1 Scaling and Mixing Data-Types 20-2
20.1.2 Using Significant Digits 20-2
20.2 Choices in Procedure Division Statements 20-2
20.2.1 Using ADD, SUBTRACT, MULTIPLY, and DIVIDE Instead of
COMPUTE et e et et 20-2
20.2.2 Using GO TO DEPENDING ON Insteadof IFGOTO 20-3
20.2.3 Using Indexing Instead of Subscripting 20-3
20.2.4 Using PERFORM n TIMES Instead of PERFORM VARYING........ 204
20.2.5 Using SEARCH ALL Instead of SEARCH. 204
20.3 Using VAX COBOL for /O Operations 20-5
20.3.1 Usingthe APPLY Clause. it 20-6
20.3.1.1 Using the PREALLOCATION Phrase of the APPLY
Clauseot e e e e 20-6
20.3.1.2 Using the EXTENSION Phrase of the APPLY Clause. 20-7
20.3.1.3 Using the DEFERRED-WRITE Phrase of the APPLY
Clause i e 20-7
20.3.1.4 Using the FILL-SIZE ON Phrase of the APPLY Clause. . . . 20-7
20.3.1.5 Using the WINDOW Phrase of the APPLY Clause 20-7
20.3.2 Using Multiple Buffers i 20-7
20.3.3 Sharing Record Areasciitiiiineninninnnnnn 20-8
204 Optimizing File Design i it i 20-10
20.4.1 Sequential Files ittt i e e 20-10
20.4.2 Relative Files0 i 20-10
20.4.2.1 Maximum Record Number (MRN) 20-11
20422 CellSizet e 20-11
20423 BucketSize i i, 20-11
20424 FileSize. i e e 20-13
20.4.3 Indexed Files i 20-14
20.4.3.1 Optimizing Indexed File /O 20-15
20.4.3.2 Calculating Key Index Levels 20-19
20.4.3.3 CachinglndexRoots 20-19

XV

Appendix A Compiler Implementation Limitations

Appendix B Error Messages

B.1 Run-Time Errors. i i it i i i e
B.1.1 Sample Run-Time Error i
B.2 Program RUNErrors it it it
B.2.1 Faulty Data.ttt it inennann
B.2.2 Program LOGIC Errorso ittt i e e
B.3 Run-Time Input/Output Errors
B4 Compiler Messagesttt tinnninennnnn

Appendix C Using the COBOL-81 SUBSET Flagger

C.1 Using VAX COBOL to Produce Compatible COBOL-81 Source Programs

C.2 Using the /STANDARD=PDP11 Qualifier
C3 VAX COBOL Flagging Procedurescuiuinn...
C4 Source Level Differences and Incompatibilities
C.41 General Language Concepts
C.4a.2 Unsupported Language Elements by Division
C5 Alignment of COMP Dataltems 0. .

Appendix D Additional Information on COBOL Command Qualifiers

D.1 Using the /FLAGGER Qualifier.
D.1.1 What Is the /FLAGGER Quallifier
D.1.2 JFLAGGER Optionso vi ittt it e et iene e e
D.1.3 FIPS Levelsc0 ittt ineenn
D.2 /INSTRUCTION_SET Qualifier
D.21 Overview of VAX Architectural Subsetting
D.2.2 How Subsetting May Affect VAX COBOL Programs
D.2.3 Determining the Instruction Set,
D.2.4 Selectingan Option i
D.3 Differences Using /STANDARD=85 and /STANDARD=V3.................
D.3.1 Overview e e
D.3.2 DIVIDE Statementttt
D.3.3 STRING Statement i
D.34 UNSTRING Statement i,
D.3.5 INSPECT Statement. i,
D.3.6 PERFORM ... VARYING ... AFTER Statement
D.3.7 PIC P DIgitS . - vttt ittt it e e e e
D.3.8 Size of Variable Length Tables
D.3.9 EXIT PROGRAM Statement

XVi

D.3.11 OPENI-Oand EXTEND Modes D-12
Appendix E Optional Programming Productivity Tools

E.1 VAX Language-Sensitive Editor (LSE) and the VAX Source Code Analyzer

(SCA) . . E—

E.1.1 Preparingan SCA Library e E-2

E1.2 Starting and Terminating an LSE or an SCA Session E-3

E1.3 Compiling from Within LSE E-3

Et14 Notes on VAX COBOL Support E-4

E.1.4.1 Programming Language Placeholders and Tokens E-4

E.14.2 Placeholder and Design Comment Processing E-5

E.1.5 LSEand SCAExamples it e it E-8

E.1.5.1 Data Definition. E-9

E.1.5.2 IFStatement 0 E-10

E.2 VAX CDD/PIUS i e e e e e e e E-12

E.21 Overview of Data Dictionaries E-13

E.2.2 CDD/Plus Features eiiu it E-13

E.2.3 CDD/Plus Conceptsottt i e E-13

E.2.3.1 CDD/Plus Dictionary Formats.00 E-13

E.2.3.2 Dictionary Path Names, E-14

E.2.3.3 Dependency Recording E-14

E.2.3.4 Compiled Module Entities E-15

E.2.3.5 Entities. e e e e e et E-15

E.2.3.6 Relationships, E-16

E2.3.7 Pieces Tracking i, E-16

E.2.3.8 Distributed Dictionary Access E-16

E.2.3.9 Data Security and Integrity E-17

E.2.3.10 CDD/Plus Call Interface E-17

E.2.4 Creating Data Definitions. i E-17

E.25 Accessing Data Definitions o o, E-18

E.2.5.1 Using the COPY FROM DICTIONARY Statement E-18

E.25.2 Using the RECORD DEPENDENCY Statement. E-18

E.26 Using the /DEPENDENCY_DATA Qualifier E-19

E.2.7 Viewing CDD/Plus Relationships E-20

E.2.8 VAX COBOL Support for CDD/Plus Data Types e E-21

E.3 VAX COBOL GENERATOR. i it e e E-22

E.3.1 VAX COBOL GENERATOR Featurescuuuuee.nn. E-23

E.4 VAX Data Base Management System (VAXDBMS) E-24

E.5 VAX DEC/Test Managerttt ittt e e E-24

E.6 VAX DEC/Code Management System (CMS) E-25

Index

xvii

Examples

xviii

21
2-2
2-3
2-4
31
41
51
5-2
6-1
6-2
6-3
6—4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
71
7-2
81
8-2
8-3

8-5
8-6

8-7
8-8
8-9
8-10

Main Program and Subprograms i 2-38
Command Procedure to Link a Program as a Shareable Image 2-39
Transfer Vectorso i i e e e e e, 2-41
Using Program Switches i i i e 2-45
Source Code Used in the Sample Debug Session 3-10
Success/Failure Test. i e s 4-5
Item Concatenation Using Two MOVE Statements. 5-6
Sample Record Description Using the MOVE CORRESPONDING Statement. 5-11
One-Dimensional Table i i i 6-2
Multiple Data Items in a One-Dimensional Table 6-2
Defining a Table with an Index and an Ascending Search Key. 6-3
Defining a Two-Dimensional Table, 64
Defining a Three-Dimensional Table 6-5
Defining a Variable-Length Table 6-7
- Sample Record Description DefiningaTable 6-8
Record Description Containinga COMP SYNC ltem 6-9
Adding an Item Without Changing the Table Size 6-9
How Adding 3 Bytes Adds 4 Bytes to the Elementlength 6-10
Initializing Tables with the VALUE Clause. e e 6-11
Initializing a Table withthe OCCURS Clausecviiinn.n. 6-12
Initializing Mixed Usage Items i, 6-13
Initializing Alphanumeric ltems i i i e, 6-13
Using a Literal Subscriptto AccessaTable 6-15
Subscripting a Multidimensional Table 6-15
Subscripting with Index Name ltems i, 6-17
Sample Table it e e e 6-21
ASerial Search i e e e 6-22
Using SEARCH and Varying an Index Other Than the FirstIndex 6-22
Using SEARCH and Varying an Index Dataltem........................ 6-23
Using SEARCH and Varying an Index Not Associated with the Target Table 6-23
Doing a Serial Search Without Using the VARYING Phrase 6-24
A Multiple-Key Binary Search. it it 6-24
Using the STRING Statementand Literals, 7-2
Sample Overflow Conditionttt 7-5
Sample Record Description i i i P 8-3
Determining Fixed-Length Record Size i, 84
Determining Fixed-Length Record Size for Files with Multiple Record
DesCriptions i i e e e 84
Creating Variable-Length Records with the DEPENDING ON Phrase 8-5
Creating Variable-Length Records with the RECORD VARYING Phrase 8-6
Creating Variable-Length Records and Using the OCCURS Clause with the
DEPENDING ON Phrase itit ittt 8-6
Defining Fixed-Length Records with Multiple Record Descriptions 8-7
DefiningaDisk File 0.t i ity 8-8
Defining a Magnetic Tape File 8-9
How to Override or Supplement a File Specification at Run Time. 8-10

8-11 Sequential File SELECT Statements 8-13

8-12 Relative File SELECT Statements. i, 8~13
8-13 Indexed File SELECT Statementst 8-14
9-1 Defininga Sequential File i, 9-4
9-2 Creatinga Sequential File i, 9-5
9-3 ReadingaSequential Filet inineennns 9-7
94 Rewriting a Sequential File, 9-8
9-5 Extending a Sequential File i e 9-9
10-1 Defininga Relative File i 10-4
10-2 Creating a Relative File in Sequential AccessMode 10-5
10-3 Creating a Relative File in Random Access Mode 10-6
104 Reading a Relative File Sequentially i, 10-8
10-5 Reading a Relative File Randomly s, 10-9
10-6 Reading a Relative File Dynamically, 10-10
10-7 Rewriting Relative Records in Sequential AccessMode 10-11
10-8 Rewriting Relative Records in Random Access Mode 10-13
109 Deleting Relative Records in Sequential AccessMode 10-14
10-10 Deleting Relative Records in Random Access Mode 10-15
11-1 DefininganindexedFile T 11-4
11-2 Creating and Populating an Indexed File 11-5
11-3 Reading an Indexed File Sequentially 11-7
114 ReadinganIndexed File Randomly., 11-8
11-5 Reading an Indexed File Dynamically, 11-9
116 Updating an Indexed File Sequentially v, 11-11
11-7 Updating an Indexed File Randomly 11-12
12-1 Handlingthe AtEnd Condition i 12-2
12-2 Handling the Invalid Key Conditiono i n.. 12-3
12-3 Defininga File StatusforaFile i i i, 124 _
12-4 Using the File Status Value in an Exception Handling Routine 124
12-5 Referencing RMS-STS, RMS-STV, RMS-CURRENT-STS,

and RMS-CURRENT-STV Valuesttt iii e 12-6
12-6 The Declarative Skeleton i 12-8
12-7 A Declarative Procedure Skeleton. i i, 12-8
12-8 Five Types of Declarative Procedures 12-9
13-1 Two Access Streamstoa SingleFile, 13-6
13-2 Program Segment for RMS-STS File-Sharing Exceptions 13-10
13-3 Automatic Record Lockingo o it e e 13-13
13-4 Sample Program Using Manual Record Locking 13-15
141 INPUT and OUTPUT PROCEDURE Phrasescciiiinnnn 14-3
14-2 USING Phrase Replaces INPUT PROCEDURE Phrase 14-5
14-3 Overriding the COLLATING SEQUENCE ISPhrase 14-6
144 UsingTwo SortFiles i 14-7
14-5 Using the AFTER STANDARD ERROR PROCEDURE 14-8
14-6 Usingthe MERGE Statement. i 14-9
14-7 Sorting a File with the USING and GIVING Phrases 14-10
14-8 Using the USING and OUTPUT PROCEDURE Phrases 14-11
14-9 Using the INPUT PROCEDURE and OUTPUT PROCEDURE Phrases 14-13
14-10 Using the COLLATING SEQUENCE ISPhraseot 14-15
14-11 CreatingaNew SortKey it 14-16

Xix

XX

Merging Files it it i e i et 14-18
Printing a ListingofaSimple Set il 15-16
Using Forked Setsot i i i 15-17
Currency INAICAIONS . . . oo ottt et et et e e e e e e 15-33
Using the RETAINING Clause i 15-35
ROLLBACK Statement it i i 15-43
Owner and Member Test Condition 15-44
RECONNECT Statement.ttt et e e 15-48
FREE CURRENT Statementttt 15-51
S 0 Y] = T« 15-54
Using a FETCH NEXT Loop to Walk Through a Set Type 15-54
ASingle USE Statement i e 15-57
Multiple USE Statements i e 15-58
Sample VAX COBOL DML Program Statements 15-60
Sample DML Program Statements, 15-65
Populatinga Databasettt 15-76
BackingUp aDatabase i, 15-83
Accessing and Displaying Database Information 15-89
Sample Run of the PARTBOM Program.o v i ii it i i e e 15-91
Creating Relationships Between Records of the Same Type 15-92
Creating New Record Relationships 15-96
Sample Run of PERSONNEL-UPDATE Before Promotion 15-102
Sample Run of PERSONNEL-UPDATE After Promotion 15-103
Checking for the Page-Overflow Condition 16-9
Page Advancing and Line Skipping i i e 16-12
Checking for Page-Overflow on a 28-Line LogicalPage 16-18
Programming a 20-Line Logical Page Defined by the LINAGE Clause 16-22
Sample Program 1. i e e 16-45
Sample Program 2. e e 16-49
Sample Program 3 e e e e 16-57
Sample Program 4 i e e 16-64
Sample Program 5. e 16-71
Printing Labels Four-Up i i e 16-81
Printing Labels Four-UpinSortOrdero, 16-84
Erasing a SCreenot i i e e e 17-3
Cursor Positioning it it i i e 17-6
Using PLUS for Cursor Positioning e 17-7
Using Character Aftributes i i i i i e 17-9
Using the CONVERSION Clauset 17-11
Usingthe ON EXCEPTION Clauseo ittt i 17-14
Usingthe SIZEPhraset i 17-16
Using NOECHO i i i e i i i e e 17-18
Using the DEFAULT Phrase.ottt it it i e 17-19
Using the CONTROLKEY INPhrase it 17-28
EDITING Phrase Sample Code i, 17-32
Execution Sequence. i i s e 18-7
Sequence of Messages Displayed i, 18-8
Calling a BASIC Program from VAXCOBOL 18-20
BASIC Program APPand OutputData 18-21

18-5 Calling a FORTRAN Program from VAX COBOL v v it i e e e 18-22
18-6 FORTRAN Subroutine SQROOT ittt ittt i i einenn 18-23
18-7 Random Number Generator.o iiiiirninnnen... 18-37
18-8 Sample Run of RUNTIME it ittt e e 18-37
18-9 Using SYSSSETDIRot i e et e e 18-38
18-10 Using SASCTIM e e e e 18-38
18-11 Sample Run of CALLTIME i i e e 18-38.
B-1 Using RMS Special Registers to Detect Errors B-7
B-2 Using RMS-CURRENT Special Registers to Detect Errors B-10
D-1 INSPECT Statement UsingFormat 3. D-8
D-2 INSPECT Statement UsingFormats 1and 2, D-8
Figures
2—1 DCL Commands for Developing Programsot an. 2-3
2-2 VAX COBOL Source Program Listingot enennnn. 2-19
2-3 Storage Map Portion of VAX COBOL Compiler Listing 2-23
24 Compilation Summary of a VAX COBOL Source Program Listing. 2-25
2-5 VAX COBOL Listing Specifying /MACHINE_CODE Qualifier P e 2-27
2-6 VAX COBOL Listing of Contained Programo nnn. ' 2-29
6-1 Organization of the One-Dimensional Table in Example 6-1 6-2
6-2 Organization of Multiple Data ltems in a One-Dimensional Table 6-3
6-3 Organization of a Table with an Index and an Ascending Search Key 64
64 Organization of a Two-Dimensional Table, 6-5
6-5 Organization of a Three-Dimensional Table 66
6-6 Memory Map for Example 67 ittt it it e e e “ 6-8
6-7 Memory Map for Example 6-8 i e, 6-9
6-8 Memory Map for Example 6-9 it i e 6-10
6-9 Memory Map for Example 6-10t e e 6-11
6-10 Memory Map for Example 6—11 i i e 6-12
6-11 Memory Map for Example 6-13 i e e 6-13
6-12 Memory Map for Example 6—14 ittt et 6-14
7-1 Results of the STRING Operation i, 7-2
7-2 Matching Delimiter Characters to Charactersina Field 7-19
7-3 Sample INSPECT Statement ittt i it i annnn 7-21
74 Typical REPLACING Phraset 7-22
7-5 The Replacement Argumentt 7-31
9-1 Sequential File Organization it 9-1
9-2 A Multiple-Volume Sequential File i 9-2
10-1 Relative File Organization it 10-2
11-1 Indexed File Organization ittt 11-2
13—-1 Muiltiple AccesstoaFile. i 131
13-2 Relationship of Record Lockingto File Sharing 13-2
13-83 File-Sharing Options i e, 13-8
13-4 Why a Record-Already-Exists Error Occurs 13-12
13-5 Valid and Invalid Combinations for Manual Record Locking 13-15
15-1 Database and Application Program Relationship e e 15-6
15-2 Bachman DIagramo oot ettt e e e e e e 15-9
15-3 Partial Bachman Diagram of the PARTSS1 Subschema 15-10

XXi

15-4 Bachman Diagram of the PARTSS3 Subschema 15-10

15-5 Sample Occurrence Diagram 1ttt ennann 15-11
156-6 Sample Occurrence Diagram 2 ittt ittt e 15-12
15-7 One Occurrence of Set PART_SUPPLY i i 15-13
15-8 Set Relationship i e e 15-13
15-9 Set Relationships oo it i i e e e 15-14
15-10 Occurrence Diagram of a Relationship Between Two Set Types 15-14
15-11 Bachman Diagram of a System-Owned Set Type 15-15
15-12 Bachman Diagram of a Simple Set Type, 15-15
15-13 Bachman Diagram of a Forked Set Type i, 15-16
15-14 Forked Set OCCUITENECE ot ittt e e e e e ee e 15-18
15-15 Bachman Diagram of a Many-to-Many Relationship Between Two Types of

Records i 15-19
15-16 Many-to-Many Relationship Between Two Types of Records 15-20
15-17 Bachman Diagram of a Many-to-Many Relationship Between Records of the

SaAME TY P . o ot ittt it e e e e e e 15-21
15-18 Current of PART_USES and PART_ USED ON i, 15-21
15-19 Retain PART_USES Currencyttt it i e e e 15-22
15-20 COMPONENT Is Connectedto Both Set Types 15-23
15-21 Finding the Stool Legs While Keeping STOOL Current of PART_USES 15-23
15-22 Completed Bill of Materials i, 15-24
15-23 Occurrence Diagram of a Many-to-Many Relationship Between Records of the

SamME TYPE . . ot e e e e e e e 15-24
15-24 Sample Paris Breakdown Report i, 15-25
15-25 One-to-Many Relationship Between Records of the Same Type 15-26
15-26 Sample Data PriortoUpdate it i 15-27
15-27 Sample Data After Update. i i 15-28
1528 Database Relationships. i 15-29
15-29 Currency Status by Executable DML Statement 15-34
15-30 Physical Representation of a Realm Without a RETAINING Clause 15-35
15-31 Physical Representation of a Realm with a RETAINING Clause 15-36
15-32 State of KEEPLIST-1 After Executing Line 000160 15-37
15-33 State of KEEPLIST-1 After Executing Lines 000190 and 000200 16-37
16-34 Transactions and Quiet Points e 15-39
15-35 Usingthe COMMIT Statement, 15-42
15-36 Occurrences of the RESPONSIBLE_FOR Set Type« oo v it iveve e et 1543
16-37 Modifying Members of Sorted Sets i e 15-45
15-38 After Modifying MEMBER_B and Using RETAINING 15-46
15-39 Occurrence Diagram Prior to RECONNECT e 15-47
15-40 Occurrence Diagram After RECONNECT i, 15-48
15-41 Resultsofan ERASE ALL e e 15-49
1542 Results of an ERASE Record-Name (with Both OPTIONAL and FIXED Retention

Classes) .« . vt e e e e 15-50
15-43 Record Lockingot 15-52
15-44 Using FIND NEXT and FETCH NEXT LoOpS oot iv i i iee e 15-53
15-45 Split Screen After FETCH FIRST PART USING PART_ID 15-62
15-46 Split Screen After FETCH NEXT WITHIN PART_SUPPLY 15-63
15-47 Split Screen After MODIFY SUP_RATING i, 15-64
15-48 Split Screen After FETCH OWNER WITHIN VENDOR_SUPPLY 15-64
15-49 Split Screen After FETCH CURRENT PART RETAINING PART_SUPPLY 15-66

XXi

15-50
15-51
15-562
15-53
16-1

16-3

184
18-5
18-6
18-7

Split Screen After FETCH NEXT WITHIN PART_SUPPLY
Split Screen After FETCH 2 WITHIN PART_SUPPLY

PARTSS1-PROGRAM Compiler Listing .
PARTSS3-PROGRAM Compiler Listing .

Sample Layout Worksheet.
Components of aReport

.............................

Subtotals, Crossfoot Totals, and Rolled Forward Totals
Logical Page Area for a Conventional Report

A 20-Line Logical Page.
A Double-Spaced Master Listing.

Logical Page Areas for a Linage File Report

A 28-Line Logical Page.
A 20-Line Logical Page............
Presentation Order for a Logical Page . .

.............................

Sample Report Using All Seven Report Groups v v v vttt i i e e n et

First GENERATE Statement
Subsequent GENERATE Statements . . .
TERMINATE Statement.
CUSTMASTI.LIS
CUSTMAST2.LIS.
CUSTMAST3.LIS
CUSTMAST4.LIS................
CUSTMASTS.LIS
Printing Labels Four-Up

Printing Labels Four-Up in Sort Order . .

.............................

.............................

.............................

Adding Information to a Master File with a Video Form
Screen Before the ERASE Statement Executes
Screen After the ERASE Statement Executes
Positioning the Data on Line 19, Column 5
Cursor Positioning Using the PLUS Option.

Screen Display with Character Attributes
Sample Run of Program CONVERT . ..

.............................

Accepting Data with the ON EXCEPTION Option
Screen Display of NUM-DATA Using the PROTECTED Option
Accepting Data with the NOECHO Option.
Accepting Data with the DEFAULT Phrase oo,
VAX COBOL Control Keys on the Standard VT52 Keypad
VAX COBOL Control Keys on the Standard VT100 Keypad
VAX COBOL Control Keys on the Standard VT200 and VT300 Keypad

Screen Display of Program SPECIAL . .

Form with ACCEPT WITH EDITING Phraseoiviiiiii i
Run Unit with Three Separately Compiled Programs
Run Unit with a Main Program and Two Contained Programs e
Run Unit with Three Separately Compiled Programs and Two Contained

Programs

Sharing Execution Control from a Main Program to Multiple Subprograms

CALL Statement Nesting...........

Accessing Another Program’s Data Division

Defining Data Names in Linkage Section

15-67
15-68
15-70
15-74

16-2

164

16-6

16-8
16-11
16-12
16-15
16-17
16-21
16-27
16-28
16-39
1640
16-41
16-48
16-55
16-63
16-70
16-79
16-81
16-83

17-2

17-4

17-5

17-6

17-8
17-10
17-13
17-15
17-17
17-18
17-21
17-25
1726
17-27
17-31
17-34

18-2

18-2

18-3
18-6
18-6
18-10
18-12

xxiii

18-8 Usingthe COMMON Clausettt i e e 18-14
18-9 Sharing USE Procedurest iitiiiiiint it ieeenennnnns 18-17
18-10 Executing Declaratives with Contained Programs (Rule 1) 18-18
18-11 Executing Declaratives Within Contained Programs (Rule 2) 18-19
20-1 Execution of a SEARCH ALL Statement 20-5
20-2 Sharing Record Areasiiitiiun e eie et 20-9
20-3 Two-Level Primary INdeX oo vttt e . 20-14
B-1 Listing of Program CALLT i i i i et B-2
B2 Listingof Program CALL2c.cou.... e B4
Tables

2-1 VMS File Maintenance Commandsttt 2-4
2-2 COBOL Command Qualifiers and Defaults 2-7
2-3 Common LINK Qualifiers and Defaults. L., 2-31
2-4 LINK Positional Quallifiers ittt 2-33
3-1 Debugger Command SUMMAryttt iitinneeeinenrenennns 3-5
4-1 Numeric Relational Operator Descriptions 4-3
4-2 Sign Tests i e e e e e e 44
4-3 Numeric Eitingottt e e e e 4-8
4-4 ROUNDING i it e e e ettt 4-9
5-1 Relational Operator Descriptionsttt e, 5-3
5-2 Nonnumeric Elementary Moves it 5-7
5-3 Data Movement with Editng Symbols 5-8
5-4 Data Movement with the JUSTIFIED Clause. 5-9
6-1 Subscripting Rules for a Multidimensional Table 6-16
62 Subscripting with Data Names i i 6-16
7-1 Results of Sample Overflow Statements 7-5
7-2 Values Moved into the Receiving ltems Based on the Sending ltem Value. 7-7
7-3 Handling a Short Sending ltem. 7-8
7-4 Results of Delimiting with an Asterisk, 7-8
7-5 Results of Delimiting Multiple Receiving ltems 7-9
7-6 Results of Delimiting with Two Asterisks 7-10
7-7 Results of Delimiting with ALL Asterisks 7-11
7-8 Results of Delimiting with ALL Double Asterisks 7-11
7-9 Results of Multiple Delimiters i 7-12
7-10 Values Resulting from Implicit Redefinition 7-20
7-11 Relationship Among INSPECT Argument, Delimiter, ltem Value, and Argument

Active PoSItioN e e e 7-23
7-12 LEADING Delimiter of the Inspection Operation 7-25
7-13 Results of the Scan with Separate Tallies 7-26
8-1 VAX COBOL File Organizations—Advantages and Disadvantages 8-12
9-1 Valid I/O Statements for Sequential Files 9-3
10-1 Valid I/0O Statements for Relative Files 10-3
11-1 Valid I/O Statements for Indexed Files 11-3
13~1 File-Sharing Environment Codes. i 13-9
16-1 Resultsof Group Indicating i 16-85
17-1 Cursor Positioning Requirements for ERASE Options 17-3
17-2 Available Character Attributes by Terminal Type 17-9

XXiv

17-3 VAX COBOL Characters Returned for Cursor Positioning, Program Function,

Function, and Auxiliary Keypad Keys.o i i i 17-22
17-4 Key Functions for the EDITING Phrase 17-31
18-1 VAXRegister Usage. 18-24
182 Run-Time Library Facilities i i, 1825
18-3 System Services e e 18-26
18—4 VAX COBOL implementation 18-30
B-1 Information Contained in an Error Message B-12
D-1 Relationship Among VAX COBOL Modules, Subsets, and Levels D-3
D-2 PERFORM ... VARYING ... AFTER Identifier Values D-9
D-3 Table Values After a MOVE Statement D-10
D4 New and Revised [-O Status Codes D-11
E-1 CDD/Plus Data TYpeS .« v o it it et et e et e e e e e e E-21

XXV

Preface

Objectives

This book and its companion volume, the VAX COBOL Reference Manual, describe
the VAX COBOL language and its programming system. This manual describes
how to use VAX COBOL under the VMS operating system. The VAX COBOL
Reference Manual describes the concepts and rules of the VAX COBOL language.

Intended Audience

This documentation set is designed for the experienced COBOL programmer. It
does not attempt to teach the COBOL language, fundamental programming, or
system concepts. Textbooks and Digital courses are available for those purposes.

Associated Documents

If you are unfamiliar with the VMS operating system, refer to the VMS documen-
tation for the following information:

* Basic information on the VMS operating system
® Detailed information about how to use the Digital Command Language (DCL)

¢ A summary description and glossary that provides an overview of the VMS
system

The VAX documentation on VAX architecture provides detailed information about
the family of VAX computers and VAX data types.

Additional prerequisites are described at the beginning of each chapter or ap-
pendix, if appropriate.

Document Structure

The VAX COBOL User Manual is divided into three parts:

PART 1 Developing VAX COBOL Programs
PART II Using VAX COBOL Features on VMS
PART III VAX COBOL Programming Options and Performance Considerations

xxvii

Conventions

XXViii

The following conventions are used in this manual:

Conventions Meaning
A symbol with a 1- to 3-character abbreviation in-

dicates that you must press a key on the terminal;
for example, and indicate that you press the
RETURN key and the TAB key on your terminal.

The symbol indicates that you hold down the
‘ key labeled CTRL while you simultaneously press
another key; for example, [CTRUG].

A vertical series of periods, or an ellipsis, means that
not all the data you would enter is shown. All program
examples are shown in Digital terminal format, rather
than in ANSI standard format.

quotation mark The term quotation mark is used to refer to the double

quotation mark character { ").

apostrophe The term apostrophe is used to refer to the single
quotation mark character (/).

$ The dollar sign ($) is used to represent the system
prompt. Your system might use a different symbol for
the system prompt.

user input In examples in hardcopy versions of this book, user
input (what you enter) is shown in red. In online
versions, user input is shown in bold.

The VAX COBOL documentation to which this manual belongs refers to these
Digital products by their abbreviated names:

¢ VAX CDD/Plus software is referred to as CDD/Plus.

¢ VAX DBMS software is referred to as VAX DBMS.

¢ VAX DEC/Test Manager software is referred to as DEC/Test Manager.
* VAX DEC/Code Management System software is referred to as CMS.
¢ The VAX Language-Sensitive Editor is referred to as LSE.

¢ VAX Record Management Services software is referred to as RMS.

¢ The VAX Text Processing Utility is referred to as VAXTPU.

* The VAX Source Code Analyzer is referred to as SCA.

¢ The Program Design Facility is referred to as PDF.

Summary of Technical Changes

This section briefly describes the technical changes and new features for VAX
COBOL Versions 4.3, 4.2, 4.1, and 4.0. For detailed information on specific
changes, refer to the Release Notes for the specific version.

VAX COBOL Versions 4.0 and higher are based on the 1985 ANSI COBOL
standard. This manual reflects changes to the VAX COBOL compiler made in
these versions. It also includes corrections, additions, clarifications, and other
minor improvements.

Version 4.3

The following list briefly describes the technical changes for Version 4.3 of VAX
COBOL. For more information, refer to the VAX COBOL Release Notes,
Version 4.3.

* Support for the VAX Program Design Facility (PDF), including the addition of
the /DESIGN command line qualifier. (See Chapter 2 and Appendix E.)

¢ Support for the VAX Source Code Analyzer (SCA) Version 2.0. (See
Appendix E.)

¢ Support for the DECwindows Compiler Interface (DWCI). (See Chapter 2.)

¢ Relaxed datatype restrictions of IF SUCCESS/FAILURE and SET
SUCCESS/FAILURE statements.

¢ Support for floating point literals. (See Chapter 1 of the VAX COBOL
Reference Manual.)

e Support for the three new RMS-CURRENT special registers. (See Chapter 12
and Appendix B and Chapter 1 of the VAX COBOL Reference Manual.)

¢ Addition of VAX COBOL I/O extensions for Descending Key and Duplicate
Primary Key.

¢ Relaxed datatype restrictions for ACCEPT WITH EDITING phrase. (See
Chapter 17.) :

¢ Addition of the IDENT clause. (See Chapter 3 of the VAX COBOL Reference
Manual.)

¢ Support for Vertical Form Unit (VFU) printers. (See Chapter 8 and Chapter
6 of the VAX COBOL Reference Manual.)

XXiX

XXX

Version 4.2

The following list briefly describes the technical changes for Version 4.2 of VAX
COBOL. For more information, refer to the online VAX COBOL Release Notes, for
Version 4.2,

¢ Support for the VAX License Management Facility (LMF)

¢ Support for the VAX Source Code Analyzer (SCA). This support includes the
addition of the /ANALYSIS_DATA command line qualifier. (See Appendix E.)

¢ Support for CDD/Plus. This support includes the addition of the
/DEPENDENCY_DATA command line qualifier. (See Appendix E.)

¢ Support for the MULTIPLE FILE TAPE clause.

¢ Addition of the /INSTRUCTION_SET command line qualifier. (See
Appendix D.)

¢ Addition of the STREAM phrase to the COMMIT statement.
¢ Addition of the STREAM phrase to the ROLLBACK statement.

* User translatable message file.
¢ Addition of the EDITING phrase to the ACCEPT statement.

Version 4.1

Version 4.1 of VAX COBOL was a maintenance release and contained no new
features. For more information, refer to the online VAX COBOL Release Notes,
for Version 4.1.

Version 4.0

The following list briefly describes the technical changes for VAX COBOL Version
4.0. For more information, refer to the online VAX COBOL Release Notes, for
Version 4.0.

* Support for the following syntax constructs has been added:
— Multistream DBMS access
= CLASS clause in the SPECIAL-NAMES paragraph
— START REGARDLESS OF LOCK
— FETCH, FIND, and STORE with the DB-KEY option
= Quadword indexed keys
— CALL literal with ON EXCEPTION phrase
— Multiple arguments for INSPECT ... ALL/LEADING

— Conditional NOTs for the following phrases: AT END-OF-PAGE, AT END,
INVALID KEY, ON EXCEPTION, ON OVERFLOW, and ON SIZE ERROR

— The REPLACE statement which allows you to replace source program
text

— Ability to initialize tables using a VALUE clause subordinate to an
OCCURS clause

¢ The optional word TO is now permitted in the ADD ... GIVING statement.

¢ The figurative constant ALL literal is now permitted in the DISPLAY
statement.

¢ The optional word ALSO is now permitted in the EVALUATE statement.

An EXIT PROGRAM statement in the body of a main program causes control
to be transferred to the next statement.

The category phrase in the INITIALIZE statement can be repeated.

The text being replaced using a COPY REPLACING statement cannot consist
entirely of a separator comma or semicolon.

Lines that have been replaced can be viewed in LSE.
Lines that have been copied can be viewed in the debugger and LSE.

A paragraph name can be specified in the INPUT and OUTPUT phrases of
the SORT and MERGE statements.

CURRENCY SIGN cannot be a figurative constant.
CURRENCY SIGN can now be the character L or E.

A RELATIVE KEY data item cannot contain the symbol P in its PICTURE
clause.

Files with LINAGE clauses cannot be opened in EXTEND mode.

The size of a variable-length item in an OCCURS DEPENDING ON state-
ment involved in a MOVE is determined by the value of the OCCURS
DEPENDING ON item.

P digit positions are zero for PIC P items in new cases.
There are new and revised I-O status codes.

The NO REWIND phrase of the CLOSE statement cannot be specified with
the REEL or UNIT phrase.

The order of evaluation of the identifiers in the PERFORM ... VARYING ...
AFTER construct has changed (Format 4 only).

The ADVANCING PAGE phrase of the WRITE statement cannot be specified
with the END-OF-PAGE phrase.

Shared sequential records can be any length, including variable-length
records.

Scope delimiters no longer must be specified only in terminator clauses such
as AT END, ON OVERFLOW, or ON EXCEPTION.

New options for the /STANDARD command line qualifier enable you to
generate code using VAX COBOL Version 3.4 or Version 4.0 rules for certain
constructs. (See Appendix D.)

A new command line qualifier (FLAGGER) allows you to specify a FIPS level
beyond which the FIPS flagging facility produces informational diagnostics.
(See Appendix D.)

The relational operators GREATER THAN OR EQUAL TO and LESS THAN
OR EQUAL TO have been added.

Subscripts and reference modifications for the DIVIDE, STRING, UNSTRING,
and INSPECT statements are evaluated differently.

Optional files can be opened in OUTPUT, I-O, and EXTEND mode.

There are changes to the rules for opening nonoptional files in I-O and
EXTEND mode.

The COBOL-81 SUBSET Flagger has been updated.
Support for the PDP-11 Version 4.4 Translator has been eliminated.

XXXi

¢ The evaluation of conditional compilation lines takes place after COPY
processing instead of before.

¢ The format of replaced COPY text in the listing file may be different.

* Divide by zero is a continuable error.

¢ The PROCEDURE DIVISION is now optional in VAX COBOL programs.
¢ COBOL HELP reflects changes made to the compiler.

Incompatibilities with COBOL-81

The COBOL-81 language is a Digital COBOL compiler that runs under several
PDP-11 operating systems. While the COBOL—-81 language is a subset of VAX
COBOL, there are some architectural differences between the PDP-11 and the
VAX processors. The following list gives the known architectural differences.

¢ INDEX data items in the COBOL—-81 language are 2 bytes long; in VAX
COBOL, they are 4 bytes long. INDEX data items cause an incompatibility
only if they are stored in files. Such files are not directly transferable between
the COBOL-81 language and the VAX COBOL language.

¢ The COBOL-81 compiler aligns COMPUTATIONAL data items on word
boundaries by default; the VAX COBOL compiler does not. In order to create
files that are directly transferable between COBOL-81 and VAX COBOL,
always use the SYNCHRONIZED clause on COMPUTATIONAL data items
within record descriptions.

¢ The VAX processor traps many cases of invalid data in a decimal numeric
field that the PDP-11 processor does not. Keep this in mind when debugging
COBOL-81 programs. Also, programs that appear to have run without error
on the PDP-11 may produce errors on the VAX processor due to invalid
decimal data.

Acknowledgement

XXXii

COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL COBOL Committee as to the accuracy and functioning of the pro-
gramming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein are:
FLOW-MATIC (trademark of Unisys Corporation), Programming for the UNIVAC
(R) I and II, Data Automation Systems, copyrighted 1958, 1959, by Unisys
Corporation; IBM Commercial Translator Form No. F28-8013, copyrighted 1959
by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

Procedures have been established for the maintenance of COBOL. Inquiries con-
cerning the procedures for proposing changes should be directed to the Chairman
of the CODASYL COBOL Committee, P.O. Box 3609, Norfolk, VA 23514.

Partl
Developing VAX COBOL Programs

Chapter 1
Overview of VAX COBOL

This brief overview highlights the features of the VAX implementation of COBOL
(COmmon Business-Oriented Language). COBOL is widely used throughout the
world for business data processing. The features of VAX COBOL listed here are
described fully in subsequent chapters of this manual and in the VAX COBOL
Reference Manual.

VAX COBOL is a high-performance language for commercial application
development that runs under the VMS operating system. Version 4.0 of VAX
COBOL is based on the 1985 ANSI COBOL Standard X3.23-1985 and Federal
Information Processing Standard 21-2 (FIPS PUB 21-2). The FIPS standard
identifies the ANSI standard as the standard adopted by the U.S. federal
government and as the criteria on which federal validation is based. Version
4.0 of VAX COBOL also contains Digital extensions to COBOL, including screen
handling at the source language level.

VAX COBOL Version 4.0 continues to be highly compatible with previous
versions. However, due to changes necessitated by the 1985 ANSI COBOL
standard, some differences exist between Version 4.0 and previous versions of
VAX COBOL. To minimize the impact of these changes, a new command line
qualifier has been added to Version 4.0 of VAX COBOL. For more information see
Section 2.5.2 and Appendix D.

The following list highlights some of VAX COBOL’s features:

* Some features of traditional structured programming languages are
provided by the VAX COBOL compiler, making programs easier to develop,
understand, and maintain. These features include scope delimiters, the
EVALUATE statement, and in-line PERFORM statements.

¢ Support for all data types specified in the 1985 ANSI COBOL standard.

¢ Support for the COBOL data manipulation language interface to VAX DBMS,
the Digital CODASYL-compliant database management system.

* Support for the VMS Debugger used for program development.
¢ Support for multistream DBMS.

¢ FIPS flagging facility that identifies VAX COBOL extensions, syntax
designated as obsolete, or at a specified FIPS level.

¢ New reserved words and syntax constructs.

VAX COBOL takes full advantage of the VMS operating system facilities and the
VAX Information Architecture. VAX COBOL is also integrated with many other
Digital products. In particular, VAX COBOL supports the following:

* VAX standard calling procedures, which allow VAX COBOL programs to
call (and be called by) other programs written in VAX COBOL, other VAX

Overview of VAX COBOL 1-1

languages (such as BASIC, FORTRAN, and MACRO), system services,
common run-time library subroutines, and screens produced by VAX Forms
handling products. VAX COBOL also provides support for contained
programs. Contained programs can share resources, such as files, variables,
and symbolic characters.

* Record definitions included from CDD/Plus.

* Creation of source code with the VAX Language-Sensitive Editor (LSE)
and the use of other VAX productivity tools, such as the VAX COBOL
GENERATOR that enables you to automatically generate VAX COBOL source
code.

¢ Extensive online language help.

* Exchange of data with other systems using DECnet.

Version 4.0 of VAX COBOL shares some common syntax with COBOL-81,
making it easy to develop error-free COBOL~81 applications for PDP-11 systems.
The VAX COBOL compiler also accepts source programs coded in either ANSI
standard format or Digital terminal format. You can use the REFORMAT Utility
to convert programs written in either format, making conversion and migration of
programs written on other systems more efficient.

Part I of this manual shows you how to begin using VAX COBOL on the VMS
operating system and how to develop programs at the DCL command level. Part
II describes using advanced features of VAX COBOL, and Part III discusses VAX
COBOL programming options and enhancements.

1-2 Overview of VAX COBOL

Chapter 2

Developing VAX COBOL Programs at DCL
Command Level

Developing a VAX COBOL program involves a number of steps, including
choosing a reference format for your source program and then creating,
compiling, linking, and running it. You can accomplish each of the last four steps
by using DCL commands.

This chapter explains how to choose a reference format and how to develop and
run a VAX COBOL program at the DCL command level.

2.1 Choosing a Reference Format

Before you can compile a COBOL program, you must decide on a reference format
and prepare your source program for input to the compiler. The VAX COBOL
compiler accepts source programs written in either terminal reference format

or ANSI reference format. However, you cannot mix reference formats in the
same compilation unit, even when copying text from a COBOL library. Note that
when copying text from CDD/Plus, the COBOL compiler translates the record
descriptions into the reference format of the source program.

2.1.1 Terminal Reference Format

Digital recommends that you use terminal format, a Digital optional format,
when you create source files from interactive terminals. The compiler accepts it
as the default reference format.

Terminal format eliminates the line number and identification fields of ANSI
format and allows horizontal tab characters and short lines. This format saves
disk space and decreases compile time. Because the spacing requirements of
terminal format are more flexible than ANSI format, it is usually easier to edit
source programs written in this format.

The following explains the structure and content of a terminal reference source

line:

Character Positions Contents
1to4 Area A

5 to 256 Area B
end of line Margin R

Developing VAX COBOL Programs at DCL Command Level 2-1

NOTE

While the maximum size of a terminal line is 256 characters, a source
listing line contains 132 characters. However, the first 7 columns of
the source listing contain the line numbers of the source code, leaving
only 125 spaces per line for text. Therefore, although a terminal line

greater than 132 characters compiles, the source listing line shows only
the first 125 characters.

You can use the TAB key or the space bar to position source entries in a line.
Pressing the RETURN key signifies the end of a line. Terminal format treats the
end of each line as Margin R. You must enter continuation (~), comment (*),

or skip-to-top-of-page (/) characters in position 1, and conditional compilation
characters in columns 1 and 2 (see Chapter 3 for information on conditional

compilation characters). For more information about using the TAB key, refer to
the VAX COBOL Reference Manual.

2.1.2 ANSI Reference Format

ANSI format (defined in the VAX COBOL Reference Manual) is useful on a card-
oriented system or in an application where strict ANSI compliance is desired. To
select ANSI format, specify the command qualifier /ANSI_FORMAT at compile
time. You can choose this format if your COBOL program was written for a
compiler that used ANSI format.

2.1.3 Converting Between Reference Formats

The REFORMAT Utility allows you to convert a terminal format program to
ANSI format and vice versa. You can also use REFORMAT to match the formats
of source files and COBOL library files when their formats are not the same. See
Chapter 19 for a description of the REFORMAT Utility.

2.2 DCL Commands for Program Development

This section briefly describes the DCL commands that are used to create, compile,
link, and run a VAX COBOL program on a VMS system. These commands

are shown in Figure 2—-1. The commands are described in detail later in this
chapter.

2-2 Developing VAX COBOL Programs at DCL Command Level

Figure 2—1: DCL Commands for Developing Programs

l COMMANDS | I ACTION | INPUT/OUTPUT FILES

PROG_1.COB

—_—
$ COBOL PROG _1

The COBOL Command

assumes the file type of an _ PROG_1.0BJ

input file is COB . Compile the [———» (PROG_1.LIS)

. source program -

(if you use the /LIST librari

qualifier, the compiler ioraries

creates a listing file.)
$ LINK PROG_1

The LINK command assumes Link the PROG_1.EXE
the file type of an input file object module i (PROG_1.MAP)
is OBJ.
(If you use the /MAP qualifier,
the linker creates a map file.))

$ EDIT PROG_1.COB
Use the file type of COB to
indicate the file contains a
VAX COBOL program.

Create a
source program

$ RUN PROG_1 Run the
The RUN command assumes executable
the file type of an image is ;
EXE. image

ZK-6304-GE

The following example shows each of the commands shown in Figure 2-1 executed
in sequence.

$ EDIT/EDT PROG_1.COB
$ COBOL PROG_1

$ LINK PROG_1

$ RUN PROG_1

To create a VAX COBOL source program at DCL level, you must invoke a text
editor. In the previous example, the VAX EDT editor is invoked to create the
source program PROG_1.COB. You can, however, use another editor, such as the
VAX Text Processing Utility (VAXTPU) or the VAX Language-Sensitive Editor
(L.SE). COB is used as the file type to indicate that you are creating a VAX
COBOL source program. COB is the default file type for all VAX COBOL source
programs.

Developing VAX COBOL Programs at DCL Command Level 2-3

For more information on editors, refer to the appropriate VMS documentation or
online help.

When you compile your program with the COBOL command, you do not have to
specify the file type; VAX COBOL searches for COB by default.

If your source program compiles successfully, the VAX COBOL compiler creates
an object file with the file type OBJ.

However, if the VAX COBOL compiler detects errors in your source program, the
system displays each error on your screen and then displays the DCL prompt.
You can then reinvoke your text editor to correct each error.

You can include command qualifiers with the COBOL command. Command
qualifiers cause the VAX COBOL compiler to perform additional actions. In
the following example, the /LIST qualifier causes the VAX COBOL compiler to
produce a listing file.

$ COBOL/LIST PROG_1
The COBOL command qualifiers are explained in Section 2.5.2.

Once your program has compiled successfully, you invoke the VMS Linker to
create an executable image file. The VMS Linker uses the object file produced by
VAX COBOL as input to produce an executable image file as output.

You can specify command qualifiers with the DCL command LINK. The LINK
command qualifiers are explained in Section 2.6.2 and Section 2.6.3.

Once the executable image file has been created, you can run your program with
the DCL command RUN.

Table 2—-1 provides a brief explanation of VMS file maintenance commands.

Table 2-1: VMS File Maintenance Commands

Category

Command Function

Creating Files

Correcting and
modifying files
Cataloging and
organizing files

CREATE Creates a file from records or data that follows in
the input stream; for example, lines entered from a
terminal or placed in a batch input file.

EDIT [/editor] Invokes one of the VMS interactive editing programs;
for example, EDT or LSE.
EDIT [/editor] Invokes one of the VMS interactive editors to make

changes or additions to a disk file.

CREATE/DIRECTORY Establishes a new directory or hierarchy of directories
to catalog files.

DIRECTORY Lists files and information about them. Can list files
with common file names, or file types, files in one or
more directories, files created since a certain date, and
S0 on.

LIBRARY Creates and maintains libraries of COPY text modules
and libraries of object modules.

RENAME Changes the directory a file is cataloged in; or changes
the file name, file type, or version number of a file or
files.

SET DEFAULT Changes the current default device or directory.

(continued on next page)

2-4 Developing VAX COBOL Programs at DCL Command Level

Table 2-1 (Cont.): VMS File Maintenance Commands

Category Command Function
Copying and backing ALLOCATE Provides device handling and control commands that
up files INITIALIZE let you access data written on nonsystem disks, on
MOUNT magnetic tapes, or on punched cards; or to output data
COPY to a disk or tape. COPY copies the content of a file or
files to another file or files.
Deleting files DELETE Removes the directory entry of the file, making the

contents of the file inaccessible.

PURGE Deletes a specified number of earlier versions of a file
or group of files.

2.3 Creating a VAX COBOL Program

To create and modify a VAX COBOL program, you must invoke a text editor.
VMS provides you with two text editors: the Digital Standard Editor (EDT) and
the VAX Text Processing Utility (VAXTPU). However, other editors, such as the
VAX Language-Sensitive Editor (LSE), may be available on your system.

For more information on the editors available, check with your system adminis-
trator and refer to the appropriate VMS documentation.

2.4 Using the COPY Statement in Your Source Program

When you create a source program, VAX COBOL allows you to include frequently
used text from a VAX Librarian file, a COBOL library file, or CDD/Plus. You gain
access to modules in libraries with the COPY statement, in which you specify
explicitly the library that contains the library file.

You can also use the COPY FROM DICTIONARY statement to gain access to
a data dictionary. The COPY FROM DICTIONARY statement allows you to
copy CDD/Plus record descriptions into your source program as COBOL record
descriptions.

The COPY statement allows many separate programs to share common source
text, reducing development and testing time as well as storage requirements.
For example, an application may consist of many separately compiled programs
that share the same structure declaration or external variable declarations. It is
convenient to maintain only one copy of the declaration of the variables and to
include this declaration in each source program with the COPY statement.

The COPY statement causes the compiler to read the file or module specified
by that COPY statement during the compilation of a source program. When
the compiler reaches the end of the included text, it resumes reading from the
previous input file.

Before you can copy record descriptions from CDD/Plus, you must create the
record descriptions using the Common Data Dictionary Language (CDDL) or
Common Dictionary Operator (CDO).

For more information on using CDD/Plus and creating and maintaining text
libraries, refer to Appendix E, the VAX COBOL Reference Manual, and the
CDD/Plus documentation.

Developing VAX COBOL Programs at DCL Command Level 2-5

2.5 Compiling a VAX COBOL Program

The primary functions of the VAX COBOL compiler are to:

* Detect errors in your source program

¢ Display each error on your terminal screen

* Generate machine language instructions from valid source statements

* Group these language instructions into an object module for the linker

When the compiler creates an object module, it provides the linker with the
following information: ’

¢ The name of the entry point. It takes this name from the program name in
the first PROGRAM-ID paragraph in the source program.

* A list of variables that are declared in the module. The linker uses this
information when it binds two or more modules together and must resolve
references to the same names in the modules.

* Traceback information. Traceback information is used by the system default
condition handler when an error occurs that is not handled by the program
itself. The traceback information permits the default handler to display a
list of the active blocks in the order of activation; this is an aid in program
debugging.

¢ If requested (with the /DEBUG qualifier), a symbol table and a source line
correlation table. A symbol table is a list of the names of all external and
internal variables within a module, with definitions of their locations. The
source line correlation table associates lines in your source file with lines
in your program. The compiler creates these tables only if you specifically
request them. The tables are of primary help when you use the VMS
Debugger.

¢ If requested (with the /DIAGNOSTICS qualifier), a diagnostics file that is
used within an LSE review session.

To invoke the VAX COBOL compiler, you use the DCL command COBOL
(explained in Section 2.5.1). With the COBOL command, you can specify
command qualifiers. The next two sections discuss in detail the COBOL
command and its command qualifiers.

DECwindows Compiler Interface

If you are working from a workstation running DECwindows, the DECwindows
Compiler Interface (DWCI) enables you to compile source code either from
FileView or from within VAX LSE. DWCI is a menu-driven interface that allows
you to select compilation options and save the selections as separate configura-
tions for future use. DWCI also contains an extensive online Help facility, to help
you make selections.

2.5.1 The COBOL Command

When you compile your source program, use the COBOL command at the DCL
prompt. The COBOL command has the following format:

COBOL[/command-qualifier] ... {file-spec [file-qualifier] ...} ...

2-6 Developing VAX COBOL Programs at DCL Command Level

/command-qualifier .
The name of a qualifier that indicates a specific action for the compiler to perform
on the file or files listed. When a qualifier appears directly after the COBOL
command, it affects all files listed. However, when a qualifier appears after a file
specification, it affects only the file that immediately precedes it. When files are
concatenated, however, these rules do not apply.

file-spec

Indicates the name of the input source file that contains the program or module
to be compiled. You are not required to specify a file type; the VAX COBOL
compiler assumes the file to be of the default file type COB. If you do not provide
a file specification with the COBOL command, the system prompts you for one.

You can supply more than one file specification by separating the file speci-
fications with either a comma (,) or a plus sign (+). If you separate the file
specifications with commas, the files are compiled individually. Compiling files
in this way allows you to control the number of source files affected by each
qualifier. In the following example, the VAX COBOL compiler creates an object
file for each source file but creates only a listing file for the source files entitled
PROG_1 and PROG_3.

$ COBOL/LIST PROG_1, PROG_2/NOLIST, PROG_3

If you separate file specifications with plus signs, VAX COBOL appends each

of the specified source files and creates one object file and one listing file. For
instance, in the following example, only one object file, PROG_1.0BJ, and one
listing file, PROG_1.LIS, are created. Both files are named after the first source
file in the list.

$ COBOL PROG_1 + PROG_2/LIST + PROG_3

Note that all qualifiers specified for a single file in a list of files separated with
plus signs affect all files within the specified list.

ffile-qualifier

The name of a command-qualifier that indicates a specific action for the compiler
to perform on the file that immediately precedes the qualifier. When files are
concatenated, however, these rules do not apply.

2.5.2 COBOL Command Qualifiers

When you compile your source code, you can include qualifiers. The qualifiers
offer you different options for developing, debugging, and documenting programs.
Table 2-2 lists each qualifier and the default.

Table 2-2: COBOL Command Qualifiers and Defaults

Command Qualifier Default
/INOJANALYSIS_DATA /NOANALYSIS_DATA
/INOJANSI_FORMAT /NOANSI_FORMAT
/INOJAUDIT /NOAUDIT
/INOJICHECK /NOCHECK
/INOJCONDITIONALS /NOCONDITIONALS

(continued on next page)

Developing VAX COBOL Programs at DCL Command Level 2-7

Table 2-2 (Cont.): COBOL Command Qualifiers and Defaults

Command Qualifier Default
/INOJCOPY_LIST /NOCOPY_LIST
/[INOJCROSS_REFERENCE /NOCROSS_REFERENCE
/INOIDEBUG /DEBUG=TRACEBACK
/INOIDEPENDENCY_DATA /NODEPENDENCY_DATA
/INOIDESIGN /NODESIGN
/INOIDIAGNOSTICS /NODIAGNOSTICS
/INOJFIPS=74 /NOFIPS
/INOJFLAGGER /NOFLAGGER
/INSTRUCTION_SET /INSTRUCTION_SET=DECIMAL_STRING
/[INOILIST /NOLIST (interactive)
/LIST (batch)
/INOIMACHINE_CODE /NOMACHINE_CODE
/INOIMAP /NOMAP
/INOJOBJECT /OBJECT
/INOJSEQUENCE_CHECK /NOSEQUENCE_CHECK
/[INOISTANDARD /STANDARD=85
/INOITRUNCATE /NOTRUNCATE
/INOJWARNINGS /WARNINGS=0THER

The following text explains each VAX COBOL command line qualifier. Square
brackets ([]) indicate that the enclosed item is optional. If you specify more than
one option for a single qualifier, you must separate each option with a comma and
enclose the options in parentheses. A vertical bar (|) between options indicates
that you can choose only one of the options listed.

/INOJANALYSIS_DATA[=file-spec]

The /INOJANALYSIS_DATA qualifier indicates whether or not a .ANA file is
created during compilation. The .ANA file is used with the VAX Source Code
Analyzer (SCA).

The default is INOANALYSIS_DATA. For more information, refer to Appendix E
and the SCA documentation.
/[NOJANSI_FORMAT

The /INOJANSI_FORMAT qualifier indicates whether the source program is in
ANSI (conventional) format or in Digital terminal format.

For ANSI format, the compiler expects 80-character program lines with optional
sequence numbers in character positions 1 to 6, indicators in position 7, Area A
beginning in position 8, Area B beginning in position 12, and the Identification

Area in positions 73 to 80.

By default, the compiler assumes that the source file is in terminal format; that
is, Area A begins in record position 1 and Area B in position 5.

2-8 Developing VAX COBOL Programs at DCL. Command Level

/INOJAUDIT[=(string,...)]

The /INOJAUDIT qualifier specifies whether user-supplied text is included in a
history list entry when a compilation accesses CDD/Plus. /AUDIT without a value
specifies that a standard history list entry is created with no additional text. To
include more than one line of text, you can enclose up to 64 strings, separated
by commas, in parentheses. If /AUDIT is specified, the compiler leaves history
list entries in CDD/Plus for database and for COPY FROM DICTIONARY records
processed by the compiler. This qualifier also leaves a history list in CDD/Plus for
information put in the dictionary as a result of specifying the
/DEPENDENCY_DATA qualifier. Only one user-supplied string is included in
these entries, even though up to 64 can be specified.

The default, /NOAUDIT, specifies that no history list entry is created.

/INOJCHECK[=(ALL,[NOJPERFORM,[NO]JBOUNDS,NONE)]

The /INOICHECK qualifier controls whether the system checks PERFORM
statements, indexes, subscripts, reference modification, and the OCCURS
DEPENDING ON depending item for specific run-time errors.

Incorrect use of PERFORM statements can produce unpredictable results. If you
use the PERFORM parameter and violate either of the following rules, the system
generates a run-time error message and aborts the program:

* A paragraph or section that is the subject of a currently active PERFORM
statement must be exited before that paragraph or section can be the subject
of another PERFORM statement.

¢ Nested PERFORM ranges (active PERFORM paragraphs or sections contain-
ing PERFORMs that execute other paragraphs or sections) must be exited in
reverse order of execution.

The BOUNDS option checks the range of subscripts, indexes, and the depending
item in the DEPENDING ON phrase of the OCCURS clause. The system gener-
ates a run-time error message and aborts the program if it detects one of these
errors:

¢ If DEPENDING ON is not specified and a subscript or index is greater than
the upper bound or less than or equal to zero

e If DEPENDING ON is specified and a subscript or index is greater than the
 depending item or less than or equal to zero

¢ If a depending item is less than the low bound or greater than the upper
bound, and either of these conditions occurs: (1) a subscripted or indexed
item references a table; (2) a group containing the table is referenced as a
sending item

The /NOCHECK qualifier is equivalent to /CHECK=NONE. If you specify a quali-
fier parameter, the default options do not change unless individually modified.
/CHECK is equivalent to /CHECK=ALL.

The default is NOCHECK.

/[NOJCONDITIONALS[=(selector,...)]

The /[INOJCONDITIONALS qualifier controls whether the conditional compilation
lines in a source program are compiled or are treated as comments.

Specifying /CONDITIONALS results in all conditional compilation lines being
compiled.

Developing VAX COBOL Programs at DCL Command Level 2-9

Specifying /CONDITIONALS=(selector,...) results in the selected conditional com-
pilation lines being compiled. The conditional-line-selector-list is a parenthesized
list of one or more alphabetic characters from A to Z. Chapter 3 discusses COBOL
program debugging using conditional compilation lines.

Specifying the default /NOCONDITIONALS results in all conditional compilation
lines being treated as comments during compilation.

/[NOJCOPY_LIST

The /INOJCOPY_LIST qualifier controls whether source statements included by
COPY statements are printed in the listing file. The /COPY_LIST qualifier has
no effect unless the /LIST qualifier is also specified.

/NOCOPY_LIST suppresses the listing of text copied from library files; only the
COPY statement appears in the listing file.

The default is /NOCOPY_LIST.

/[INOJCROSS_REFERENCE[=(ALPHABETICAL,DECLARED)]
The /INOJCROSS_REFERENCE qualifier controls whether the source listing

includes a cross-reference listing.

If you specify /CROSS_REFERENCE without an option or with the
ALPHABETICAL option, the compiler sorts data names and procedure names in
alphabetical order and lists them with the source program line numbers on which
they appear.

Specifying /CROSS_REFERENCE=DECLARED produces a listing of data names
and procedure names in order of declaration.

Specifying /CROSS_REFERENCE=(ALPHABETICAL, DECLARED) produces a
listing of data names and procedure names in both alphabetical and declared
order in the same compilation.

On the listing, the number sign (#) indicates the source line containing the data
name’s definition. The asterisk (*) indicates a line on which the associated data
item is modified. The /CROSS_REFERENCE qualifier has no effect unless the
/LIST qualifier is also specified.

The default is /NOCROSS_REFERENCE.

/[NO]JDEBUG[=(ALL,[NO]SYMBOLS,[NOJTRACEBACK,NONE)]

The [INOJDEBUG qualifier controls whether the compiler produces traceback
and local symbol table information for the VMS Debugger. /DEBUG allows you
to refer to data items by data name, and to Procedure Division locations by line
number, paragraph name, and section name. You can also view source lines from
source files and files included by simple COPY statements. The debugger cannot
reference source lines from CDD/Plus or any line in which text has been replaced.
The /DEBUG qualifier can generate both traceback and symbol table information.

¢ /DEBUG=ALL is equivalent to /DEBUG=(TRACEBACK,SYMBOLS).

e /DEBUG=SYMBOLS produces a symbol table that allows you to refer to data
items by data name and to source lines by line number.

e /DEBUG=TRACEBACK produces traceback information only.
* /DEBUG=NONE is equivalent to /NODEBUG.
¢ /DEBUG without a value is equivalent to /DEBUG=ALL.

If you specify a qualifier parameter, the default options do not change unless
individually modified.

2-10 Developing VAX COBOL Programs at DCL Command Level

The default is /DEBUG=TRACEBACK.
Chapter 3 discusses COBOL program debugging using the VMS Debugger.

/[NOJDEPENDENCY_DATA

The /NOIDEPENDENCY_DATA qualifier controls whether or not a compiled
module entity is stored in CDD/Plus. This qualifier also controls whether or not a
CDD/Plus relationship is established between the compiled module entity and the
following:

* All CDD/Plus CDO format dictionary entities specified in COPY FROM
DICTIONARY statements

* All CDO format dictionary entities explicitly specified in RECORD
DEPENDENCY statements

* The object file created by the compilation

/NODEPENDENCY_DATA indicates that a compiled module entity and CDD/Plus
relationships will not be recorded in CDD/Plus.

The default is/ NODEPENDENCY_DATA.

For more information, see Appendix E.

/INOJDESIGN=(COMMENTS,PLACEHOLDERS)

The /[NOIDESIGN qualifier indicates whether or not the compiler will enable
Program Design Facility (PDF) processing.

/DESIGN=COMMENTS instructs the compiler to perform PDF comment process-
ing.

/DESIGN=PLACEHOLDERS instructs the compiler to allow PDF placeholders in
place of COBOL syntax.

The default is /NODESIGN. If you specify /DESIGN without an option, the
default is /DESIGN=(COMMENTS,PLACEHOLDERS). Refer to Appendix E,
Section E.1 for additional information.

/[NOJDIAGNOSTICS[=file-spec]

The /[NOJDIAGNOSTICS qualifier controls whether a diagnostic file containing
compiler messages and diagnostics information is created. The diagnostic file
is reserved for use by Digital. The VAX Language-Sensitive Editor uses the
diagnostic file to display diagnostic messages and to position the cursor on the

line and column where a source error exists. The default file type for a diagnostic
file is DIA.

The default is /NODIAGNOSTICS.

/INOJFIPS=74

The /[INOIFIPS qualifier allows validation in accordance with the Federal
Information Processing Standard 21-1 (FIPS-PUB 21-1) issued by the U.S.
National Bureau of Standards.

The command line qualifier /FIPS=74 supports the Federal Information
Processing Standard 21-1 (FIPS-PUB 21-1) interpretation of File Status and
the intermediate arithmetic data item.

FIPS-PUB 21-1 specifies that a File Status of 10 be returned when reporting At
End conditions; thus, when you use the /FIPS=74 qualifier, that File Status value
is returned.

Developing VAX COBOL Programs at DCL Command Level 2-11

When /FIPS=74 is specified, the compiler generates code that adheres to the
ANSI-74 standard rules for P (picture) characters. If, in any operation involving
conversion of data from one form of internal representation to another, the data
item being converted is described with the PICTURE character P, each digit
position described by a P is considered to contain the value zero, and the size of
the data item is considered to include the digit positions so described.

The default, /NOFIPS, causes the compiler to use the algebraic value of the data
item described with a P in only certain types of operations:

* Any operation requiring a numeric sending operand

¢ A MOVE statement where the sending operand is a numeric or numeric
edited data item and its PICTURE character-string contains the symbol P,
and the receiving operand is numeric or numeric edited

¢ A comparison operation where both operands are numeric

In all other operations, the digit position specified with the symbol P is ignored
and not counted in the size of the operand.

The following table compares the File Status values that are returned when you
use or do not use the /FIPS=74 qualifier. Note that these At End File Status
values apply to any file organization accessed sequentially. Also note that
/FIPS=74 and /NOFIPS only apply when you also specify /SSTANDARD=V3.

FILE STATUS VALUES

/FIPS=74 /NOFIPS

The file has no next logical record. 10 13
An optional file was not present. 10 15
The program did not establish a valid next record. 10 16

In addition, the rules on arithmetic operations found in FIPS-PUB 21-1 implicitly
require the compiler to keep a 19-digit temporary number and to round on the
twentieth digit for add and subtract operations. When you use the /FIPS=74
qualifier, the compiler follows the FIPS-PUB 21-1 rules for arithmetic operations.

/INOJFLAGGER[=(HIGH_FIPS,INTERMEDIATE_FIPS,MINIMUM_FIPS, OBSOLETE,
OPTIONAL_FIPS,REPORT_WRITER,SEGMENTATION, SEGMENTATION_1)]

In accordance with the Federal Information Processing Standards Publication
21-2 (FIPS-PUB 21-2) issued by the U.S. National Bureau of Standards, VAX
COBOL allows you to specify a FIPS level of COBOL syntax beyond which
informational diagnostics are generated. To receive the diagnostics, you
must specify the /FLAGGER qualifier as well as the /WARNINGS=ALL or
/WARNINGS=INFORMATION qualifier.

The /FLAGGER qualifier can be useful when a target system’s compiler is known
to have a lower level of FIPS syntax support.

When you compile a program using the /FLAGGER qualifier with its options, you
receive diagnostic messages for syntax in the source program that is:

* Not within the FIPS validation level you selected
* Within the optional module you selected

* An obsolete language element as defined by the ANSI 1985 standard for the
COBOL language

¢ A Digital extension to the COBOL language

2-12 Developing VAX COBOL Programs at DCL Command Level

The default is /INOFLAGGER. Also, the /FLAGGER qualifier cannot be specified
with /STANDARD=V3. For more information on the /FLAGGER qualifier, refer to
Appendix D.

/INSTRUCTION_SET[=[NOJDECIMAL_STRING | GENERIC]

The /INSTRUCTION_SET qualifier indicates whether or not the compiler will
optimize code using different portions of the VAX instruction set.

/INSTRUCTION_SET=DECIMAL_STRING instructs the compiler to optimize the
code for VAX processors that include the decimal string subset instructions in the
hardware.

/INSTRUCTION_SET=NODECIMAL,_STRING instructs the compiler to optimize
the code for VAX processors that emulate the decimal string subset instructions
in the software.

/INSTRUCTION_SET=GENERIC offers a compromise between the other two
settings in cases where the instruction set of the target processor is unknown.
For more information see Appendix D.

You can choose only one option for this qualifier; multiple options are not allowed.
However, you do not have to compile all the modules of an application with the
same /INSTRUCTION_SET option value.

NOTE

Regardless of the /INSTRUCTION_SET option you select, your VAX
COBOL program will run on any VAX processor. The
/INSTRUCTION_SET qualifier is for optimization purposes only.

The default is INSTRUCTION_SET=DECIMAL_STRING. For more information
on the /INSTRUCTION_SET qualifier, see Appendix D.

/[NO]LIST[=file-spec]

The /INOJLIST qualifier controls whether the compiler produces an output listing.
When you specify /LIST, you can control the defaults applied to the output file
specification by your placement of the qualifier in the command. The output file
type always defaults to LIS.

Note that the /LIST option is required when you want to use
/CROSS_REFERENCE, /COPY_LIST, /FLAGGER, /MACHINE_CODE, or /MAP.

If you use the COBOL command in interactive mode, the default is /NOLIST.
If the COBOL command is executed from a batch job, the default is /LIST.

/INOJMACHINE_CODE

The /[INOJMACHINE_CODE qualifier controls whether the listing file contains
compiler-generated machine code. The /MACHINE_CODE qualifier has no effect
unless the /LIST qualifier is also specified.

The default is /NOMACHINE_CODE. For more information on the
/INOIMACHINE_CODE qualifier, refer to Section 2.5.5.4.

/INOJMAP[=(ALPHABETICAL,DECLARED)]

The /INOJMAP qualifier controls whether the listing contains maps. Specifying
/MAP, MAP=ALPHABETICAL, or /MAP=DECLARED produces a listing of:
(1) data names, procedure names, file names, and their attributes; (2) ex-
ternal references such as user-called routines or Run-Time Library routines;
and (3) subschema information including records, sets, and realms. Both

Developing VAX COBOL Programs at DCL Command Level 2-13

/MAP and /MAP=ALPHABETICAL provide maps in alphabetical order; while
/MAP=DECLARED provides maps in declared order. In addition, specifying
/MAP=(ALPHABETICAL,DECLARED) produces both alphabetical and declared
map listings.

The /MAP qualifier has no effect unless the /LIST qualifier is also specified.

The default is INOMAP.

/[NOJOBJECT][=file-spec]
The //NOJOBJECT qualifier controls whether the compiler produces an object file.

By default, the compiler produces an object file with the same file name as the
input file and a file type of OBJ. However, you can define a different file name or a
different file type by specifying /OBJECT= file-spec. See the VMS documentation
on DCL for information on output file specification.

/INOJSEQUENCE_CHECK

The /[INOJSEQUENCE_CHECK qualifier controls whether the contents of
columns 1 to 6 of the source lines are in ascending line number sequence. Out-of-
sequence lines produce warning diagnostics. Source programs written in terminal
format always pass the sequence check.

The default is /INOSEQUENCE_CHECK.

/[INOJSTANDARDI[=([NO]85,[NO]V3,[NO]JPDP11,[NOJSYNTAX)]

The //INOJSTANDARD qualifier addresses the differences between the following:
® Versions 3 and 4 of VAX COBOL

¢ VAX COBOL and COBOL-81

e ANSI COBOL and the Digital extensions made to VAX COBOL

The /STANDARD=85 and /STANDARD=V3 options provide the user with a switch
for selecting generated code that conforms to the ANSI 1985 standard or to
Version 3.4 of VAX COBOL in instances where incompatibilities exist.

If you specify /STANDARD=85, the compiler generates code for certain constructs
according to the 1985 ANSI COBOL standard.

If you specify /STANDARD=V3, the compiler generates code in the manner of
Version 3.4 of VAX COBOL and issues informational diagnostics for language con-
structs that would cause different run-time results if /STANDARD=85 had been
specified. To receive the diagnostics, you must also use the /WARNINGS=ALL or
/WARNINGS=INFORMATION qualifier.

Appendix D provides a detailed description of the differences. If you spec-
ify /STANDARD=(85,V3), the compiler generates code as if you specified
/STANDARD=85.

If you specify /STANDARD=PDP11, the compiler generates informational diagnos-
tics for VAX COBOL language elements that are outside the COBOL-81 subset
and indicates syntactic, semantic, and data allocation differences between VAX
COBOL and COBOL-81. Note that generated code is not changed when you
select this option. Also note that if you specify /SSTANDARD=PDP11, you must
also use /WARNINGS=ALL or /WARNINGS=INFORMATION.

If you use /SSTANDARD=SYNTAX, the compiler produces informational
diagnostics on language features that are Digital extensions. Therefore,
/STANDARD=SYNTAX is equivalent to /WARNINGS=STANDARD. Also note
that /STANDARD is equivalent to /STANDARD=SYNTAX.

2-14 Developing VAX COBOL Programs at DCL Command Level

The default is /STANDARD=85.

/[NOJTRUNCATE

The //NOJITRUNCATE qualifier specifies how the compiler stores values in
COMPUTATIONAL receiving items if high-order truncation is necessary.

If you specify NOTRUNCATE, the compiler truncates values according to the
VAX hardware storage unit (word, longword, or quadword) allocated to the
receiving item.

If you specify /TRUNCATE, the compiler truncates values according to the
number of decimal digits specified by the PICTURE size. Specifying /TRUNCATE
increases program execution time.

In this example, the compiler allocates one word (16 bits) of storage to both A
and B:

01 A PIC S99 COMP.
01 B PIC S9999 COMP.

PROCEDURE DIVISION.

MOVE B TO A.
ADD B TO A.

When you specify /NOTRUNCATE, all 16 bits of B are moved into A. This may
result in a stored value larger than the PICTURE-defined size of two decimal
digits.

When you specify /TRUNCATE, the compiler observes the PICTURE size of A and
stores only the two low-order digits of B in data item A.

The default is/ NOTRUNCATE.

/INOJWARNINGS[=(ALL,[NO]STANDARD,[NO]JINFORMATION,
[NOJOTHER,NONE)]

The /[NOJWARNINGS qualifier controls the listing of warning-level and
informational-level diagnostics. Specifying STANDARD produces informa-
tional diagnostics on language features that are Digital extensions. Specifying
INFORMATION produces additional informational diagnostics. Specifying
OTHER produces warning-level diagnostics. /WARNINGS is equivalent to spec-
ifying /WARNINGS=ALL, while /WARNINGS=NONE is equivalent to specifying
/NOWARNINGS.

If you specify a qualifier parameter, the default options do not change unless they
are individually modified.

You must specify /WARNINGS=ALL or /WARNINGS=INFORMATION when you
use /STANDARD=PDP11.

The default is /WARNINGS=0OTHER.

For additional information on the rules for qualifiers used on the VMS operating
system, see the syntax rules in the VMS documentation on DCL.

Developing VAX COBOL Programs at DCL Command Level 2-15

2.5.3 Compiling Programs with Conditional Compilation Lines

To debug source code that contains conditional compilation lines, you can use
either the /CONDITIONALS qualifier or the WITH DEBUGGING MODE

clause. The /CONDITIONALS qualifier is explained in Section 2.5.2. For more
information on the /CONDITIONALS qualifier, refer to the VAX COBOL Reference
Manual.

Using the WITH DEBUGGING MODE clause as part of the SOURCE-
COMPUTER paragraph causes the compiler to process all conditional compilation
lines in your source program as COBOL text. If you do not specify the WITH
DEBUGGING MODE clause, and if the /CONDITIONALS qualifier is not in
effect, all conditional compilation lines in your program are treated as comments.

The WITH DEBUGGING MODE clause applies to: (1) the program that specifies
it, and (2) any contained program within a program that specifies the clause.

2.5.4 Compiler Error Messages

If there are errors in your source file when you compile your program, the VAX

COBOL compiler flags these errors and displays diagnostic messages. To handle
.these errors, you must reference the diagnostic message, and locate and correct

the problem in your source program.

A sample error message looks like this:

12 PROCEDURE DIVISION.

13 P-NAME

14 MOVE ABC TO XYZ.
1 2

$COBOL-E-ERROR 65, (1) Missing period is assumed
%$COBOL-F-ERROR 349, (2) Undefined name

In the sample, error pointer (1) points to the closest approximation to where the
error occurred (P-NAME has no period). Error pointer (2) points to an undefined
name in source line number 14. The two error pointers are followed by two error
message lines that each identify, in this order:

¢ That the VAX COBOL compiler generated the error message
* The severity code (see Appendix B)

* The error message number

* The error pointers

* The error message

Although most diagnostic messages are self-explanatory, Appendix B contains a
list of diagnostic messages that require additional explanation.

The following are some common errors to avoid when entering COBOL command

lines:
¢ Omitting the /ANSI_FORMAT qualifier for source programs that are in ANSI
format

* Including contradictory qualifiers, such as /MAP without /LIST, or /FIPS=74
and /STANDARD=85

* Omitting version numbers from file specifications when you want to compile a
source program that is not the latest version of a source file

2-16 Developing VAX COBOL Programs at DCL Command Level

¢ TForgetting to use a file type in the file specification when you do not want the
default file type

To examine diagnostic messages that occurred during compilation, you can print
the listing file (or type the file to your terminal screen) and search for each
occurrence of %COBOL. Section 2.5.5 details how to read a listing file.

2.5.5 Compiler Listings

A compiler listing provides information that can help you debug your VAX
COBOL program. To generate a listing file, specify the /LIST qualifier when you
compile your VAX COBOL program interactively. For example:

$ COBOL/LIST

If the program is compiled as a batch job, the listing file is created by default;
specify the /NOLIST qualifier to suppress creation of the listing file. (In either
case, the listing file is not automatically printed.) By default, the name of the
listing file is the name of the source program followed by a file type of LIS. You
can include a file specification with the /LIST qualifier to override this default.

A compiler listing generated by the /LIST qualifier has the following major
sections:

* Source Program Listing

The source program section contains the source code plus line numbers
generated by the compiler.

e Storage Map

The storage map section contains summary information on program sections,
variables, and arrays.

¢ Compilation Summary

The compilation summary section lists the qualifiers used with the COBOL
command and the compilation statistics.

When used with the /LIST qualifier, the following COBOL command qualifiers
supply additional information in the compiler listing:

¢ /COPY_LIST
¢ /CROSS_REFERENCE

* /FLAGGER

e /MACHINE_CODE
e /MAP

¢ /STANDARD

* /WARNINGS

See Section 2.5.2 for a description of each qualifier’s function.

The next three sections describe each major section of the compiler listing for the
program TRBLE.COB generated by the following command:

$ COBOL/LIST/COPY_ LIST/MAP=(ALPH,DECLARED)/CROSS=(ALPH, DECLARED)
/ANSI_FORMAT TRBLE.COB

Section 2.5.5.4 displays the compiler listing generated by specifying the
/MACHINE_CODE qualifier for the program MCODE.COB.

Developing VAX COBOL Programs at DCL Command Level 2-17

Section 2.5.5.5 displays the compiler listing for the contained program
TESTA.COB.

2.55.1 Source Program Listing

The Source Program section of the compiler listing contains the source code plus
line numbers generated by the compiler.

The circled numbers on the program listing TRBLE (see Figure 2-2) correspond
to the following numbered text explanations:

® 6 090 o

The program name as declared in PROGRAM-ID

The date and time of compilation.

The date and time the file specified in circled number 5 was created.
The name, version, and edit level of the COBOL compiler.

The source file specification, (device:[directorylfilename.type;version), which
can be up to 255 characters long. The file specification will be trimmed to fit
in the listing page header. If text from a copy file is listed at page-break time,
the copy file’s specification will be printed. The text editor page number (the
number (n) in parentheses) will be printed if there is room.

Source line numbers assigned by the compiler. The VMS Debugger uses these
line numbers as location specifications.

Sequence numbers. These numbers only appear if the file is in ANSI format.

Source text. Although a terminal line can contain 256 characters, a source
listing line contains a maximum of 132 characters.

Identification field. If the source file is in ANSI format, this field contains the
identification field (positions 73 to 80).

Line origin information field. A space identifies a line as part of the actual
program text. If you use the /COPY_LIST command qualifier at compile time,
L identifies a line copied from a library file. If you do not use /COPY_LIST,
copied lines are not printed on the source listing. A C identifies a line created
when a COPY or REPLACE statement pushes program text from its original
line to a new line.

® Line replacement information field. A space indicates no replacement took

place. An R identifies a line in which text has been replaced.

@® In the listing file, a period (or other symbol, depending on the specific device)

prints in place of any nonprintable ASCII character that was coded in the
program,

Error message line. This line gives the facility name, the error severity code,
the error message number, the error pointer, and the error message.

Error pointer. Points to the closest approximation of where the error occurred.

Error pointer reference. References the error message to the error pointer.

2-18 Developing VAX COBOL Programs at DCL Command Level

Figure 2-2: VAX COBOL Source Program Listing

TRBLE
Source

WONAUNBWNE

Listing

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190

@201. 000010
21L 000020
221R000030

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

TRBLE

Source Listing

58
60

000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540

000550

29-Dec-1989 10:43:32 .3
eze-oec -1989 08:19:18 Qowrca. [COBOL . EXAMPLES] TRBLE . COB; 1

IDENTIFICATION DIVISION.
PROGRAM-ID. TRBLE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT~COMPUTER. VAX.

INPUT~OUTPUT SECTION.

FILE-CONTROL.
SELECT RECEIVABLES-FILE ASSIGN TO “RECFIL".
SELECT TABLE-FILE ASSIGN TO “TBLFIL".

DATA DIVISION.
FILE SECTION.
FD RECEIVABLES-FILE
BLOCK CONTAINS 20 RECORDS
LABEL RECORDS ARE STANDARD.
COPY RECEIV REPLACING R-OTHER-INFO BY FILLER.
01 RECEIVER.
03 R-ACCOUNT-NUM PIC X(8).
03 FILLER PIC X(142).

FD TABLE~FILE
LABEL RECORDS ARE STANDARD.
01 TABLE-REC PIC X(130).
WORKING-STORAGE SECTION.
01 ALPHA-EDIT PIC AB/B GLOBAL.
01 NUM-EDIT PIC 2229.
01 ALL-ALPHA PIC AARA,
01 EXT-DATA PIC X{(10) EXTERNAL.
01 RECEIVABLES-COUNT PIC S9(5) COMP-3 VALUE ZEROES.
01 SAVE-ACCOUNT-NUM PIC X(8).
01 EOJ-SW PIC X VALUE "N".
01 WS~TABLE.
03 FILLER PIC X(130).
01 ACCOUNT-TABLE REDEFINES WS-TABLE.
03 TABLE-ENTRIES OCCURS 10 TIMES INDEXED BY IND-A.
05 TBL-ACCOUNT PIC X(8).
05 TBL-TRANS-COUNT PIC S9(5).

PROCEDURE DIVISION.
000~-START SECTION.

005-OPEN-FILES.
MOVE SPACES TO WS-TABLE.
MOVE "." TO WS~TABLE. @
OPEN I-O TABLE-FILE
INPUT RECEIVABLES-FILE.
CALL "CALL1".

010-LOAD-TABLE.
READ TABLE-FILE INTO WS-TABLE
AT END

DISPLAY "TABLE-FILE IS MISSING--TRBLE CANCELLED"
CLOSE TABLE-FILE RECEIVABLES-FILE
STOP RUN.

29-Dec-1989 10:43:32
29-Dec-1989 08:19:18

59 000560 020-READ-RECEIVABLES
000570

READ RECEIVABLES-FILE AT END

$COBOL-E-ERROR 65, (1) Missing period is assumed
000580

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

000590
000600
000610
000620
000630
000640
000650
000660
000670
000680
000690
000700
000710
000720
000730
000740
000750
000760
000770
000780
000790
000800
000810
000820
000830
000840
000850
000860
000870
000880
000890

000900
000910

GO TO 999-E0J
ADD 1 TO RECEIVABLES-COUNT.
PERFORM 030-SEARCH THRU
100~-DONE-SEARCH.
IF EOJ-SW = "y»

STOP RUN.
GO TO 500-PROCESS-RECEIVABLES.

030-SEARCH SECTION.
035-SEARCH-ACCOUNT-TABLE.
SET IND-A TO 1.
SEARCH TABLE-ENTRIES
AT END GO TO 050-TABLE-FULL
WHEN R-ACCOUNT~NUM = TBL~ACCOUNT (IND-A)
ADD 1 TO TBL-TRANS-COUNT (IND-A)
GO TO 100-DONE-SEARCH
WHEN TBL-ACCOUNT (IND-A) = SPACES
GO TO 040-ADD-NEW-ACCOUNT.

040-ADD-NEW-ACCOUNT .
MOVE R-ACCOUNT-NUM TO TBL-ACCOUNT ({IND-A).
MOVE 1 TO TBL-TRANS-COUNT (IND-A).
GO TO 100~DONE-SEARCH.

050-TABLE-FULL.
DISPLAY "TABLE-FILE IS FULL".
DISPLAY "END OF PROGRAM TRBLE".
CLOSE TABLE-FILE RECEIVABLES~FILE.
MOVE "Y" TO EOJ-SW.

100-DONE-SEARCH SECTION.

110-EXIT.
EXIT.

VAX COBOL V4

ANSI__ID
ANSI__ID
ANSITID

ANSI__:

ANSI”

ANSI__ID
ANSI__ID
ANSI__ID
ANSI™ID
ANSI__ID

VAX COBOL V4.3

Page 1

2

DEVICE: (COBOL.EXAMPLES] TRBLE.COB; 1 (1)

ANSI_ ID
ANSTID
ANSI__ID

ZK-6437-GE

(continued on next page)

Developing VAX COBOL Programs at DCL Command Level 2-19

Figure 2-2 (Cont.): VAX COBOL Source Program Listing

95 000920 ANSI _ID
96 000930 500-PROCESS-RECEIVABLES. ANSI ID
97 000940**********k******k**k** ****** KHKKKKKKKKK ANSI_ID
98 000950* Process receivables transactions, * ANSI__ID
99 000960****************kt****k***************** ANSI'—ID
100 000970 GO TO 020-READ-RECEIVABLES. ANSI™ID
101 000980 ANSI_ID
102 000990 999-E0J. ANSIID
103 001000 REWRITE TABLE-REC FROM WS-TABLE. ANSI__ID
104 001010 CLOSE RECEIVABLES-FILE TABLE-FILE. ANSI"ID
105 001020 DISPLAY "TOTAL RECEIVABLES RECORDS = " RECEIVABLES-COUNT. ANSI_ID
106 001030 DISPLAY "END OF PROGRAM TRBLE". ANSI™ID
107 001040 STOP RUN. ANSI_ID

ZK-6437~1-GE

2,5.5.2 Storage Map Portion of Compiler Listing

The storage map portion of a compiler listing contains summary information on
program sections, variables, and arrays.

If you specified the /MAP qualifier, the storage map contains the following
information: :

¢ Data names, procedure names, and file names and the attributes of each

e External references

¢ Subschema information including records, sets, and realms

If you specified the /CROSS_REFERENCE qualifier, the storage map also con-
tains the following cross-reference information:

¢ Program lines where symbols are defined and initialized

* Program lines where the values of symbols are modified

¢ Program lines where symbols are actual arguments

¢ Number of times a symbol occurs in each line

The circled numbers on the program listing TRBLE (see Figure 2-3) correspond
to the following numbered text explanations:

© File names map. Provides file- and record-specific information. Use the
/MAP or /MAP=ALPHABETICAL command qualifier for files that name
information in alphabetical order. Use the /MAP=DECLARED command
qualifier for files that name information in order of declaration. Use
/MAP=(ALPHABETICAL,DECLARED) for files that name information in
both alphabetical and declared order.

A list of the file names described in the File Section (File Description (FD)
and Sort/Merge Description (SD) entries).

A list of the file’s organization as specified in the SELECT clause.

A list of the access mode as specified in the ACCESS MODE clause or the
access mode default.

A list of BLOCK CONTAINS attributes and whether they specify number of
records (R) or number of characters (C).

A list of the number of characters in a file’s records. For variable-length
records, the list contains minimum and maximum record length.

© © & 606 ©

A list of record formats. Record formats can be fixed, variable, or print.

2-20 Developing VAX COBOL Programs at DCL Command Level

® 66 e

e 6

Record area. Lists: (1) a record’s maximum record length, and (2) its
hexadecimal offset location relative to the program section number’s (PSECT)
beginning location. The PSECT number is the numeric field that precedes
the offset location field. PSECT numbers and names are on the Compilation
Summary page of a source listing. A location of ** indicates an unreferenced
file.

File connector location. Specifies the beginning location of an internal data
structure used by the compiled code and the Run-Time Library (RTL). A
location of ** indicates an unreferenced file.

Data names map. Lists data items and their attributes. You obtain this
listing by specifying the /MAP command qualifier. You can obtain the listing
in alphabetical order, declared order, or in both orders (in one compilation)
depending on which /MAP option you select (see circled number 1).

The source line number where the data item is defined.
The data item’s level number.
The name of the data item.

Location. Lists the data item’s PSECT number and hexadecimal offset
location relative to the PSECT’s beginning location. PSECT numbers and
names are in the Compilation Summary page of a source listing. If the
letter L follows the PSECT number, then: (1) the data item is defined in a
LINKAGE SECTION, (2) the ordinal position specified in the USING phrase
for the record containing the data item is indicated by the PSECT number,
and (3) the hexadecimal offset of the data item relative to the record’s
beginning is identified by location. A location of ** indicates an unreferenced
data item. Storage is not allocated for unreferenced data items.

The data item’s field size. For numeric data items, size is defined by the
number of nines (9) associated with it in the PICTURE character string.

The number of bytes allocated to the data item. For numeric values, field size
and bytes can be different. (See data name RECEIVABLES-COUNT.)

Usage. Corresponds to the USAGE clause or implicit usage of the data item.
The usage classifications are COMP, COMP-1, COMP-2, COMP-3, DISPLAY,
INDEX, and POINTER.

The category of data described by the data item’s PICTURE clause. Category
classifications are as follows:

Group = Group

A = Alphabetic

AN = Alphanumeric

ANE = Alphanumeric Edited

N = Numeric

NE = Numeric Edited

Subs. Lists the number of subscripts required to reference data items.
Attribute. Indicates whether a data item has an external attribute, a global

attribute, or both.

Procedure names map. Lists procedure names and their attributes. You
obtain this listing by specifying the /MAP command qualifier. You can ob-
tain the listing in alphabetical order, declared order, or in both orders (in
one compilation), depending on which /MAP option you select (see circled
number 1.)

Developing VAX COBOL Programs at DCL Command Level 2-21

The source line number, where the procedure name is defined.

A list of procedure names.

@66

Location. Lists the procedure name’s PSECT number and its hexadecimal
offset location relative to the PSECT’s beginning. PSECT numbers and
names are in the Compilation Summary page of a source listing.

Lists the procedure name type. Program indicates the PROGRAM-ID name;
Section indicates a section name; spaces indicate a paragraph name.

File names map in declared order. Listed when you use /MAP=DECLARED.
Data names map in declared order. Listed when you use /MAP=DECLARED.

Procedure names map in declared order. Listed when you use
/MAP=DECLARED.

A cross-reference listing of user-defined names. Specifying the command qual-
ifiers /CROSS_REFERENCE or /CROSS_REFERENCE=ALPHABETICAL
produces a sorted listing, while specifying /CROSS_REFERENCE=DECLARED
produces a listing in order of declaration. In addition, specifying
/CROSS_REFERENCE=(ALPHABETICAL, DECLARED) produces a listing

in both alphabetical and declared order. The cross-reference list also includes
source line numbers for each item. A source line number followed by a num-
ber sign (#) indicates an item’s line of definition. Line numbers with an
asterisk (*) indicate reference lines in which a destructive reference is made.
Line numbers without a number sign or asterisk indicate reference lines.

® 866066 o6

@ A cross-reference listing of user-defined names in declared order. Listed when
you use /CROSS_REFERENCE=DECLARED.

@ A list of external references. External references can be subprogram calls,
calls to the Run-Time Library, or calls to system services. Calls to the Run-
Time Library or system services usually originate from compiler-generated
object code.

2-22 Developing VAX COBOL Programs at DCL Command Level

Figure 2-3: Storage Map Portion of VAX COBOL Compiler Listing

TRBLE
File Names in Alphabetic Order

29-Dec-1989 10:43:32
29-Dec-1989 08:19:18

VAX COBOL V4.3 3
DEVICE: {COBOL.EXAMPLES] TRBLE . COB; 1 (1)

Access Block Characters/ Record -=-— Record Area --- File Connector
Name Organization Mode Contains Record Format Length Location Location
FD RECEIVABLES-FILE Sequential Sequential 20 R 150 Fixed 150 1 00000000 1 000002B8
FD TABLE-FILE Sequential Sequential 130 Fixed 130 1 00000098 1 000004B0
TRBLE 29-Dec-1989 10:43:32 VAX COBOL V4.3 4
Data Names in Alphabetic Order 29-Dec~1987 08:19:18 DEVICE: [COBOL.EXAMPLES] TRBLE .COB; 1 (1)
Line Level Name Location Size Bytes Usage Category Subs Attribute
37 01 ACCOUNT~TABLE 1 00000128 130 130 DISPLAY Group
30 01 ALL-ALPHA *H 4 4 DISPLAY A
28 01 ALPHA-EDIT 1 0000011C 4 4 DISPLAY ANE Glo
34 01 EOJ-SW 1 00000124 1 1 DISPLAY AN
31 01 EXT-DATA 6 00000000 10 10 DISPLAY AN Ext
38 01 IND-A 1 000001AC 4 INDEX N
29 01 NUM-EDIT *x 4 4 DISPLAY NE
21 03 R-ACCOUNT-NUM 1 00000000 8 8 DISPLAY AN
32 01 RECEIVABLES-COUNT 1 00000120 5 3 COMP-3 N
20 01 RECEIVER 1 00000000 150 150 DISPLAY Group
33 01 SAVE-ACCOUNT-NUM i 8 8 DISPLAY AN
38 03 TABLE-ENTRIES 1 00000128 13 13 DISPLAY Group 1
25 01 TABLE-REC 1 00000098 130 130 DISPLAY AN
39 05 TBL~ACCOUNT 1 00000128 8 8 DISPLAY AN 1
40 05 TBL-TRANS-COUNT 1 00000130 5 5 DISPLAY N 1
35 01 WS-TABLE 1 00000128 130 130 DISPLAY Group
TRBLE 29-Dec-1989 10:43:32 VAX COBOL V4.3 Pagt 5
Procedure Names in Alphabetic Order 29-Dec-1989 08:19:18 DEVICE: [COBOL.EXAMPLES] TRBLE.COB; 1 (1)
Line Name Location Type
43 000-START 0 0000003C Section
45 005-OPEN-FILES 0 0000003C
52 010-LOAD-TABLE 0 00000173
59 020~READ-RECEIVABLES 0 00000201
69 030-SEARCH 0 00000259 Section
70 035-SEARCH-ACCOUNT-TABLE 0 00000259
80 040-ADD-NEW-ACCOUNT 0 000002B4
85 050-TABLE-FULL 0 000002D5
91 100-DONE~-SEARCH 0 0000032B Section
93 110-EXIT 0 0000032B
96 500-PROCESS-RECEIVABLES 0 0000032B
102 999~E0J 0 0000032E
2 TRBLE 0 00000000 Program
TRBLE@ 29-Dec-1989 10:43:32 VAX COBOL V4.3 ge 6
File Names in Declared Order 29-Dec-1989 08:19:18 DEVICE: {COBOL.EXAMPLES] TRBLE.COB; 1 (1)
Access Block Characters/ Record --- Record Area --- File Connector
Name Organization Mode Contains Record Format Length Location Location
FD RECEIVABLES-FILE Sequential Sequential 20 R 150 Fixed 150 1 00000000 1 000002B8
FD TABLE-FILE equential equential 130 Fixed 130 1 00000098 1 000004B0
TRBLE 29-Dec-1989 10:43:32 VAX COBOL V4.3 ge 7
Data Names in Declared Order 29-Dec-1989 08:19:18 DEVICE: [COBOL.EXAMPLES] TRBLE .COB; 1 (1)
Line Level Name Location Size Bytes Usage Category Subs Attribute
20 0l RECEIVER 1 00000000 150 150 DISPLAY Group
21 03 R-ACCOUNT-NUM 1 00000000 8 8 DISPLAY AN
25 01 TABLE-REC 1 00000098 130 130 DISPLAY AN
28 01 ALPHA-EDIT 1 0000011C 4 4 DISPLAY ANE Glo
29 01 NUM-EDIT ik 4 4 DISPLAY NE
30 01 ALL-ALPHA bkl 4 4 DISPLAY A
31 01 EXT-DATA 6 00000000 10 10 DISPLAY AN Ext
32 01 RECEIVABLES-COUNT 1 00000120 5 3 comp-3 N
33 01 SAVE~-ACCOUNT-NUM ** 8 8 DISPLAY AN
34 01 EQJ-SW 1 00000124 1 1 DISPLAY AN
35 01 WS-TABLE 1 00000128 130 130 DISPLAY Group
37 01 ACCOUNT-TABLE 1 00000128 130 130 DISPLAY Group
38 03 TABLE-ENTRIES 1 00000128 13 13 DISPLAY Group 1
38 01 ND-A 1 000001AC 4 INDEX N
39 05 TBL~ACCOUNT 1 00000128 8 8 DISPLAY AN 1
40 05 TBL~TRANS-COUNT 1 00000130 5 5 DISPLAY N 1
TRBLE@ 29-Dec~1989 10:43:32 VAX COBOL V4.3 Pag 8
Procedure Names in Declared Order 29-Dec-1989 08:19:18 DEVICE: [COBOL.EXAMPLES} TRBLE.COB; 1 (1)
Line Name Location Type
2 TRBLE 0 00000000 Program
43 000-START 0 0000003C Section
45 005~OPEN-FILES 0 0000003C
52 010~LOAD-TABLE ¢ 00000173
59 020-READ-RECEIVABLES 0 00000201
69 030-SEARCH 0 00000259 Section
70 035-SEARCH-ACCOUNT-TABLE 0 00000259
80 040-ADD-NEW-ACCOUNT 0 000002B4
85 050~-TABLE-FULL 0 000002D5
91 100-DONE-SEARCH 0 0000032B Section
93 110-EXIT 0 0000032B
96 500-PROCESS~RECEIVABLES 0 0000032B
102 999-E0J 0 0000032E
ZK-6440~-GE

Developing VAX COBOL. Programs at DCL Command Level

(continued on next page)

2-23

Figure 2-3 (Cont.):

Storage Map Portion of VAX COBOL Compiler Listing

TRBLE @

Cross Reference in Alphabetical Order

000~START 434
005-OPEN-FILES 454
010-LOAD-TABLE 524
020~READ-RECEIVABLES 59# 100
030-SEARCH 694 63
035-SEARCH-ACCOUNT-TABLE 704
040-ADD-NEW-ACCOUNT 80# 78
050-TABLE-FULL 854 73
100-DONE-SEARCH 914 64
110-EXIT 93#
500-PROCESS-RECEIVABLES 96# 67
999-E0J 1024 61
ACCOUNT~-TABLE 374
ALL~ALPHA 304
ALPHA-EDIT 284
EQJ-SW 344 65
EXT-DATA 314

IND-A 384 T1*
NUM-EDIT 29%
R-ACCOUNT-NUM 214 74
RECEIVABLES-COUNT 324 62*
RECEIVABLES-FILE 114 164
RECEIVER 20#
SAVE-ACCOUNT-NUM 334
TABLE-ENTRIES 38¢ 72
TABLE~FILE 124 234
TABLE-REC 25 103*
TBL-ACCOUNT 39 74
TBL-TRANS~COUNT 40 5%
TRBLE 2
WS-TABLE 35 37
TRBLE

Cross Reference in Declared Order

TRBLE 2
RECEIVABLES-FILE 11 164
TABLE-FILE 12 23%
RECEIVER 20
R-ACCOUNT-NUM 21 74
TABLE-REC 25 103*
ALPHA-EDIT 28
NUM-EDIT 29
ALL-ALPHA 30
EXT-DATA 31
RECEIVABLES-COUNT 32 62*
SAVE-ACCOUNT-NUM 33

EOJ-SW 34 65
WS—-TABLE 35 37
ACCOUNT-TABLE 37
TABLE-ENTRIES 38 72
IND-A 38 71
TBL-ACCOUNT 39 74
TBL~TRANS~COUNT 40 5%
000-START 43
005-OPEN-FILES 45
010-LOAD-TABLE 52
020-READ-RECEIVABLES 59 100
030-SEARCH 69 63
035-SEARCH-ACCOUNT-TABLE 704
040-ADD-NEW-ACCOUNT 804 78
050-TABLE-FULL 85# 73
100-DONE-SEARCH 91# 64
110-EXIT 93#
500~PROCESS~RECEIVABLES 96# 67
999-E0J 1024 61
o1 @

External References

CALL1 COBSAB_NAM
COBSHANDLER COBSIOEXCEPTION
SYSSCLOSE SYSS$SCONNECT
SYSSFIND SYSSGET

76

89*
74
81

105
49

48

77
82*

46*

49
48

81

105

89%
46%

74
82%

76

29-Dec-1989 10:43:32
29-Dec-1989 08:19:18

VAX COBOL V4.3

Page 9
DEVICE: [COBOL,.EXAMPLES} TRBLE.COB;1 (1)

83

75 77 81 82

56 60 88 104
53 56 88 104
81*

47* 53* 53* 103

29-Dec-1989 10:43:32
29-Dec-1989 08:19:18

VAX COBOL V4.3 Page 10
DEVICE: [COBOL.EXAMPLES]TRBLE.COB;1 (1)

56 60 88 104
53 56 88 104
47% 53* 53* 103
75 77 81 82
81%

83

29-Dec-1989 10:43:32 VAX COBOL V4.3 Page 11
29-Dec~1989 08:19:18 DEVICE: [COBOL.EXAMPLES]TRBLE.COB;1 (1)
COB$DISPLAY COBSERROR
LIBSAB CVTPT O LIBSAB_CVTTP_O
SYS$CREATE SYSSEXTT
SYSSOPEN SYSSUPDATE

ZK-6440-1-GE

2.5.5.3 Compilation Summary

The compilation summary lists the qualifiers used with the COBOL command
and the compilation statistics.

The circled numbers on the program listing TRBLE (see Figure 2—-4) correspond
to the following numbered text explanations.

©® Compilation summary. A summary of compilation activities.
® Program Sections. Describe PSECT attributes.
© Alist of PSECT numbers and PSECT names.

2-24 Developing VAX COBOL Programs at DCL Command Level

The bytes allocated for each PSECT.

A list of PSECT attributes. For an explanation of PSECT attributes, see the
VMS documentation on linking programs.

A summary total, by diagnostic level, of compiler-generated diagnostics.
Diagnostics can be Informational (1), Warning (W), Error (E), or Fatal (F).

COBOL command qualifiers. The first line of command qualifiers is the
compiler command line. The remaining qualifiers are the command qualifiers
and the command qualifier defaults in effect at compile time.

Compile time statistics. These statistics include run or CPU time, elapsed
or clock time, the number of page faults, and the number of virtual memory
pages used to compile the program.

Figure 2—4: Compilation Summary of a VAX COBOL Source Program Listing

TRBLE
Compilation Summary

prOGRaM sECTIONS @)

Name

0 $CODE

6 EXT DATA —

piaanostIcs @)

Informational:
Error:

29-Dec-1989 09:35:38

VAX COBOL V4.3 Page 12
29-Dec-1989 15:43:06 (1)

DEVICE: [COBOL.EXAMPLES] TRBLE.COB; 1

Attributes

PIC
PIC
PIC
PIC
PIC
PIC

CON LCL SHR EXE
LCL NOSHR NOEXE
LCL SHR NOEXE
LCL SHR NOEXE
LCL SHR NOEXE
GBL SHR NOEXE

RD NOWRT Align(2)
RD WRT Align(2)
RD NOWRT Align(2)
RD NOWRT Align(2)
RD NOWRT Align(2)
RD WRT Align(2)

1 (suppressed by command qualifier)
1

COMMAND QUALIFIERse
COBOL /LIST/COPY_LIST/MAP=(ALPHA, DECLARED) /CROSS=(ALPHA, DECLARED) /ANSI_FORMAT TRBLE.COB

/COPY_LIST /NOMACHINE CODE /CROSS_REFERENCE=(ALPHABETICAL, DECLARED)
/ANSI FORMAT /NOSEQUENCE CHECK /MAP=(ALPHABETICAL,DECLARED)
XUNCATE /NOAUD.

/NOTRT

/CHECK= (NOPERFORM, NOBOUNDS)
/WARNINGS= (NOSTANDARD, OTHER, NOINFORMATION)
/STANDARD= (NOSYNTAX, NOPDP11, NOV3, 85)

IT /NOCONDITIONALS
/DEBUG= (NOSYMBOLS , TRACEBACK)
/NODEPENDENCY_DATA

/NOFIPS

/LIST /OBJECT /NODIAGNOSTICS /NOFLAGGER /NOANALYSIS DATA
/INSTRUCTION SET=DECIMAL_STRING /DESIGN=(NOPLACEHOLDERS,NOCOMMENTS)

staristics @)

Run Time:
Elapsed Time:
Page Faults:
Dynamic Memory:

3.13 seconds
4.79 seconds
340

502 pages

ZK-6443-GE

25.54 Compiler Listing Including the /MACHINE_CODE Qualifier

If you specified the MACHINE_CODE qualifier, your listing includes a section
displaying compiler-generated object code. Figure 2-5 shows a compiler listing
generated by specifying the /MACHINE_CODE qualifier for the program
MCODE.COB.

The circled numbers on the program listing MCODE (see Figure 2-5) correspond
to the following numbered text explanations.

© The hexadecimal offset location of a machine code instruction or a pseudoin-
struction relative to the PSECT’s beginning location.

® A machine code instruction or a pseudoinstruction.

© A machine code instruction or a pseudoinstruction’s operands.

Developing VAX COBOL Programs at DCL. Command Level 2-25

A list of the ASCII representation of literals.
The word ENTRY defines the entry point.

COBOL procedure names and machine-code-generated local labels.

Qo606

The source line number containing the COBOL statement that generated the
machine instructions.

2-26 Developing VAX COBOL Programs at DCL Command Level

Figure 2-5: VAX COBOL Listing Specifying /MACHINE_CODE Qualifier

MCODE

Source Listing

MCCDE

29-Dec-1989 16:07:05 VAX COBOL V4.3 1
29-Dec-1989 16:06:46 DEVICE: [COBOL.EXAMPLES] MCODE.COB; 2 (1)

IDENTIFICATION DIVISION.
PROGRAM~ MCODE .

1D

ENVIRONMENT DIVISION,

CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TEST-FILE ASSIGN TO "TESTFIL".

DATA DIVISION.
FILE SECTION.
FD TEST-FILE
BLOCK CONTAINS 10 RECORDS.

01 TEST-RE!

03 T-BYTEl PIC X.
03 FILLER PIC X(24).

WORKING-STORAGE SECTION.
01 LITERAL-1 PIC X(50) VALUE
"USE THIS EXAMPLE FOR A MACHINE CODE LISTING".

PROCEDURE DIVISION.
LE.

000-SAMP

OPEN INPUT TEST-FILE.
DISPLAY LITERAL-1.
CLOSE TEST-FILE.
STOP RUN.

Machine Code Listing

00000000
00000008
0000000C
00000010
00000014
00000018
0000001C
00000020
00000024
00000028
0000002C
00000030

00000000
00000002
00000004
00000008
00000012
00000019
00000020

00000020

MCODE

+PSECT
.BYTE
.LONG
.LONG
.LONG
+LONG
.LONG
.LONG
.LONG
.LONG
.LONG

29-Dec-1989 16:07:05 VAX COBOL V4.3 2
29-Dec-1989 16:06:46 DEVICE: [COBOL.EXAMPLESIMCODE . COB,Z (l)

SPDATA
~X54, "X45, “X53, "X54, "X46,"x49, *x4¢) ; "TESTFIL"
~X00004401
~X00080600
~X00000000
~X00000000
~%00000000
~X00000000
~X00000000
X00000000
~X00190019

.ADDRESS $LOCAL
.ADDRESS $LOCAL

.ENTRY
CLRO
MOVAB
MOVAB
MOVAB
MOVAB

000-SAMPLE :

TSTW

Machine Code Listing

00000024
00000026
0000002B
0000002D
0000002D
00000032
00000036
0000003F
00000048
0000004D
00000056
00000059
0000005E
00000060
00000060
00000069
0000006C
00000071
00000071

00000071

IS:‘E.

2%:

3%:
48

BEQL
CALLG

MCODE, “X0E3C

- (SP)

GACOBS$HANDLER, (FP)
SLOCAL+*X80, R11
$PDATA+*X80, R10
GACOBS$IOEXCEPTION, R9

; 00022@

TEST-FILE+70 (R11)

29~Dec-1989 16:07:05 VAX COBOL V4.3 4
29-Dec-1989 16:06:46 DEVICE: [COBOL.EXAMPLES } MCODE .COB; 2 (D

13
2§DATA+AX0110(R10), G*COB$ IOEXCEPTION (R9)

#4%08, TEST-FILE-4(R11)

TEST-FILE-2 (R11)

#°X00F4, $PDATA+~X08(R10), TEST-FILE(R11)
#~X00080200, TEST-FILE+4 (R11)

#°X02, TEST-FILE+90 (R11)

SPDATA+"X011C (R10), G*SYS$OPEN

RO, 2%
$§5ATA+‘X0124(R10), G*COB$IOEXCEPTION (R9)
4

sgmgm*xomo (R10), G"SYS$CONNECT
R : .
$P6ATA+“X0138(R10), G*COB$ IOEXCEPTION (R9}

; 0003
; 00024

$PDATA+"X0104 (R10}, G*COB$SDISPLAY

ZK-6444-GE

(continued on next page)

Developing VAX COBOL Programs at DCL Command Level 2-27

Figure 2-5 (Cont.): VAX COBOL Listing Specifying /MACHINE_CODE Qualifier

00000072 CLRW TEST-FILE+2 (R11)

00000078 BICB2 #°X08, TEST-FILE-4(R11)

00000083 MOVZWL #°X0800, TEST-FILE+72(R11l)

0000008A CALLG SPDATA+"X011C (R10), G SYSSCLOSE

00000093 BLBS RO, 5%

00000096 CALLG $PDATA+"X0144 (R10) , G COBSIOEXCEPTION (R9)
00000098 BRB 63

0000009D 5%:

0000009D CLRB TEST-FILE-3(R1l)
000000A1 6$:
; 00025

000000A1 CALLG $PDATA+"X0150 (R10), G"SYSSEXIT
000000AA MOVL #"X01, RO
0000002D RET

ZK-6444-1-GE

2,5.5.5 Compiler Listing for a Contained Program

A contained COBOL program listing includes two additional program elements.
For additional information on contained programs, see Chapter 18.

The circled numbers on the program listing of TESTA (see Figure 2—6) correspond
to the following numbered text explanations:

© A number that indicates the nesting level of the program. Number one
indicates the containing (main) program.

® The number order from greater to lesser associated with the contained
program. The END PROGRAM shows the nesting level of the contained
program.

2-28 Developing VAX COBOL Programs at DCL Command Level

Figure 2-6: VAX COBOL Listing of Contained Program

TESTA\TESTA 29-Dec-1989 16:10:14 VAX COBOL V4.3 Page 1
Source Listing 29-Dec-1989 16:09:49 DEVICE: [COBOL.EXAMPLES] TESTA.COB;1 (1)

1 1 IDENTIFICATION DIVISION.
g i PROGRAM-ID. TESTA.
4 1 DATA DIVISION.
5 1 WORKING-STORAGE SECTION.
6 1 01 TESTA-DATA GLOBAL.
7 1 2 LET-CNT PIC 9(2)V9(2).
8 1 02 IN-WORD PIC X(20).
(9) 1 02 DISP-COUNT PIC 9(2).
1 1
11 1 PROCEDURE DIVISION.
12 1 GETIT SECTION.
13 1 BEGINIT.
14 1 DISPLAY "ENTER WORD".
15 1 MOVE SPACES TO IN-WORD.
16 1 ACCEPT IN-WORD.
17 1 CALL "TESTB" USING IN-WORD LET-CNT.
18 1 PERFORM DISPLAYIT.
19 1 STOP RUN.
20 1
21 1 DISPLAYIT SECTION.
22 1 SHOW-IT.
23 1 DISPLAY IN-WORD.
24 1 MOVE LET-CNT TO DISP~COUNT.
25 1 DISPLAY DISP-COUNT " CHARACTERS".
26 2
TESTA\TESTA 29-Dec~1989 16:10:14 VAX COBOL V4.3 Pag: 2
Source Listing 29-Dec-1989 16:09:49 DEVICE: [COBOL.EXAMPLES) TESTA.COB; 1 (1)
27 2 IDENTIFICATION DIVISION.
gg g PROGRAM-ID. TESTB INITIAL.
30 2 DATA DIVISION.
31 2 WORKING-STORAGE SECTION.
32 2 0l sSUB-1 PIC 9(2) COMP.
33 2 01 sUB-2 PIC S9(2) COMP-3.
34 2 01 HOLD-WORD.
32 % 03 HOLD-CHAR PIC X OCCURS 20 TIMES.
37 2 LINKAGE SECTION.
38 2 01 TEMP-WORD.
39 2 03 TEMP-CHAR PIC X OCCURS 20 TIMES.
40 2 01 CHARCT PIC 99v99.
TESTA\TESTB 28-Dec-1989 16:10:14 VAX COBOL V4.3 2
Source Listing 28-Dec-1989 16:09:49 WRT$$DISK: [COBOL. EXAMPLES]’I‘ESTA COB:1 (1)
41 2
42 2 PROCEDURE DIVISION USING TEMP-WORD, CHARCT.
43 2 CONVERT-IT SECTION.
44 2 STARTUP.
45 2 IF TEMP-WORD=SPACES
46 2 MOVE 0 TO CHARCT
47 2 GO TO GET-OUT.
48 2 PERFORM LOOK-BACK
49 2 VARYING SUB-1 FROM 20 BY -1
50 2 UNTIL TEMP-CHAR (SUB-1) NOT=SPACE.
51 2 MOVE SUB-1 TO CHARCT.
52 2 MOVE SPACES TO HOLD-WORD.
53 2 PERFORM MOVE-IT
54 2 VARYING SUB-2 FROM 1 BY 1
55 2 UNTIL SUB-1=0.
56 2 MOVE HOLD-WORD TO TEMP-WORD.
57 2
58 2 GET-OUT.
59 2 EXIT PROGRAM.
60 2
61 2 MOVE-IT.
62 2 MOVE TEMP-CHAR (SUB-1)
63 2 TO HOLD-CHAR (SUB-2).
64 2 SUBTRACT 1 FROM SUB-1.
65 2
66 2 LOOK-BACK.
67 2 EXIT.
68 2
69 2 END PROGRAM TESTB.
70 1 END PROGRAM TESTA.
1

ZK-6445-GE

2.6 Linking a VAX COBOL Program

Once you have compiled a VAX COBOL source program or module, link it using
the DCL command LINK. The LINK command combines your object modules into
one executable image the VMS operating system can execute. A source program
or module cannot run on the VMS operating system until it is linked.

Developing VAX COBOL Programs at DCL Command Level 2-29

Unlike the VMS operating system, some systems do not have a linker. On

these systems, the language compilers resolve symbolic references, and another
software component completes the task while loading the program in memory.
On VMS systems, however, the linker simplifies the job of each language compiler
because the logic necessary to resolve symbolic references need not be duplicated.
The main advantage to a system that has a linker, however, is that individual
program modules can be separately written and compiled, and then linked
together. This includes object modules produced by different language compilers.

When you execute the LINK command, the VMS Linker performs the following
functions:

* Resolves local and global symbolic references in the object code
* Assigns values to the global symbolic references
* Signals an error message for any unresolved symbolic reference

¢ Allocates virtual memory space for the executable image

When using the LINK command, you may want to use the /DEBUG qualifier.
The /DEBUG qualifier appends to the image all the symbol and line number
information appended to the object modules. In addition, it appends information
on global symbols, and forces the image to run under debugger control when it is
executed.

The LINK command produces an executable image by default. However, you
can also use the LINK command to obtain shareable images and system images.
The /SHAREABLE qualifier directs the linker to produce a shareable image;
the /SYSTEM qualifier directs the linker to produce a system image. For more
information on using shareable images refer to Section 2.6.6. For a complete
discussion of the VMS Linker, refer to the VMS documentation on linking
programs.

2.6.1 The LINK Command

The format of the LINK command is as follows:
LINK[/command-qualifier] ... {file-spec[/file-qualifier] ...} ...

/command-qualifier...
Specifies the output file option or options.

file-spec...
Specifies the input file or files to be linked.

ffile-qualifier...
Specifies input file option or options.

If you specify more than one input file, you must separate the input file specifica-
tions with a plus sign (+) or a comma (,).

By default, the linker creates an output file with the name of the first input file
specified and the file type EXE. Note that when you link multiple files, you must
enter the main module ahead of called modules.

The following command line links the object files MAINPROG.OBJ,
SUBPROG1.0BJ, and SUBPROGZ2.0BJ to produce one executable image called
MAINPROG.EXE:

$ LINK MAINPROG.OBJ, SUBPROGl.OBJ, SUBPROGZ2.0BJ

2-30 Developing VAX COBOL Programs at DCL Command Level

2.6.2 LINK Command Qualifiers

The LINK command qualifiers can be used to modify the linker’s output, as well
as to invoke the debugging and traceback facilities. Linker output consists of an
image file and an optional map file.

Table 2—-3 summarizes some of the most commonly used LINK command quali-
fiers. A brief description of each qualifier follows this list. For a complete list of
LINK qualifiers, refer to the VMS Linker documentation.

Table 2-3: Common LINK Qualifiers and Defaults

LINK Command Qualifiers Default
/BRIEF /BRIEF
/INOICROSS_REFERENCE /NOCROSS_REFERENCE
/INOJDEBUG /NODEBUG
/INOJEXECUTABLE /EXECUTABLE
/FULL /FULL
/INOIMAP /NOMAP (interactive)
/MAP (batch)
/INO]ITRACEBACK /TRACEBACK
/INOJUSERLIBRARY /USERLIBRARY
/BRIEF

The /BRIEF qualifier produces a brief memory allocation map file that contains
the following:

¢ A summary of image characteristics
¢ A list of object modules included in the image

* A summary of link-time performance statistics
Use /BRIEF only if you also specify /MAP.

Example
$ LINK/MAP/BRIEF PROGA

/[NOJCROSS_REFERENCE

The /INOJCROSS_REFERENCE qualifier controls whether the linker produces

a symbolic cross-reference on the memory allocation map. The symbolic
cross-reference lists each global symbol referenced in the image, its value, and all
modules in the image that refer to it. Use /CROSS_REFERENCE only if you also
specify /MAP.

The default is NOCROSS_REFERENCE.

Example
$ LINK/MAP/CROSS_REFERENCE PROGA

Developing VAX COBOL Programs at DCL Command Level 2-31

/[NO]DEBUG]=file-spec]

The /[INOIDEBUG qualifier controls whether the linker includes a debugger in the
image.

If the object module contains local symbol table information for the debugger,
specify /DEBUG to include this information in the image.

You can include the optional file speciﬁcation to specify a user-defined debugger;
the default file type is OBJ. If you specify /DEBUG without a file specification,
the default VMS Debugger is linked to the image.

The default is /NODEBUG.

Chapter 3 discusses COBOL program debugging using the VMS Debugger. For
more information on using /DEBUG, refer to the VMS Debugger documentation.

/[INOJEXECUTABLE[=file-spec]

The /[NOJEXECUTABLE qualifier controls whether the linker creates an
executable image. The /EXECUTABLE qualifier can also supply a file
specification for the output image file.

By default, the linker creates an executable image with the same file name as the
first input file and a file type of EXE.

Use /NOEXECUTABLE to see the results of linking in less time than the linker
would need to create an image file.

Examples
$ LINK/EXECUTABLE=NEWPROG.IMG/MAP PROGA
$ LINK/NOEXECUTABLE/MAP PROGA

/FULL

Produces a full memory allocation map listing that contains:

¢ All information contained in the brief listing

¢ Detailed descriptions of each program and image section in the image file

¢ Lists of global symbols by name and value
Use /FULL only if you also specify /MAP.

Example
$ LINK/MAP/NOEXEC/FULL PROGA

/[[NOJMAPI[=file-spec]

The /INOIJMAP qualifier controls whether the linker produces a memory allocation
map listing. :

You can provide the file specification to name the map file. Otherwise, the output
file name is the same as the name of the first input file, with a file type of MAP.

When you specify /MAP, you can also specify /BRIEF, /FULL, or
/CROSS_REFERENCE to control map contents. If you specify none of these
qualifiers, the map contains:

¢ All the information contained in the brief listing
¢ A list of user-defined global symbols sorted by name
* A list of user-defined program sections

2-32 Developing VAX COBOL Programs at DCL Command Level

The interactive mode default is INOMAP. The batch mode default is /MAP.

/[INOJTRACEBACK

The /INOITRACEBACK qualifier controls whether the linker includes traceback
information in the image file.

By default, the linker includes traceback information so the system can trace the
call stack when an error occurs.

If you specify /DEBUG, the linker also assumes /TRACEBACK.

/INOJUSERLIBRARY[=(table,...)]

The /INOJUSERLIBRARY qualifier controls whether the linker searches
user-defined default libraries to resolve undefined symbols.

/USERLIBRARY causes the linker to search user-defined default libraries before
it searches the system library.

Use /NOUSERLIBRARY to ignore user-defined libraries.
The default is /USERLIBRARY.

2.6.3 Positional Qualifiers

Table 2—4 lists commonly used LINK positional qualifiers. Note that there are no
defaults for these qualifiers.

Table 2—4: LINK Positional Qualifiers

LINK Positional Qualifiers Default
/INCLUDE : None
/LIBRARY None
/OPTIONS ‘ ;) None

The following text summarizes the LINK positional qualifiers listed in Table 2—4
and provides a brief description of each qualifier. For a complete list and
description of LINK positional qualifiers, see the VMS Linker documentation.

/INCLUDE=(module-namel,...])

The /INCLUDE qualifier indicates that the associated file specification refers to
an object module library. The default file type is OLB. It also causes the linker to
include only the specified modules.

You must specify at least one module name. You can specify more than one
module by separating module names with commas and enclosing them in
parentheses. Note that if you use a variable name in a CALL statement to
refer to an external program, you must explicitly include any of the external
modules that might be called by the main program when you link the program.

Using /LIBRARY (LIB) with /INCLUDE causes the linker to search the library
for unresolved references after it includes the specified module.

Developing VAX COBOL Programs at DCL Command Level 2-33

Examples
$ LINK PROGA,LIBA/INCLUDE=MODA

The linker links PROGA.OBJ and the module MODA from the library file
LIBA.OLB to produce PROGA.EXE,

$_LINK PROGA, LIBA/INC= (MODA, MODB) /LIB

The linker links PROGA.OBJ and the modules MODA and MODB from the
library file LIBA.OLB. Because of the /LIBRARY qualifier, the linker will also
search LIBA.OLB for any other unresolved references in PROGA.OBJ, MODA,
and MODB.

/LIBRARY

The /LIBRARY qualifier indicates that the file specification refers to a library file
to resolve undefined symbols in the input files.

If the file specification does not include a file type, the linker assumes OLB as the
default. Do not specify a library as the first input file unless you also specify the
/INCLUDE qualifier to indicate which library modules are to be included in the
image.

Using /INCLUDE with /LIBRARY causes the linker to search the library for
unresolved references after it includes the specified modules.

Examples
$ LINK PROGA, LIBA/LIBRARY

The linker searches LIBA.OLB for unresolved references in PROGA.OBJ to create
PROGA.EXE.

$ LINK LIBA/LIB/INCLUDE=MOD1/EXEC=PROG

The linker includes the module MOD1 from LIBA.OLB, and then searches
LIBA.OLB for unresolved references in MOD1. The result is an executable
image, PROG.EXE.

/OPTIONS

The /OPTIONS qualifier indicates that the input file contains a list of options to
control linking. If the /OPTIONS file specification does not include a file type, the
linker assumes OPT as the default file type.

To link a COBOL DML object program with the shareable VAX DBMS Library,
you must use an option file in the LINK command. To link a DML object program
named DMLPROG.OBJ with the shareable VAX DBMS Library, you would use
this command:

$ LINK DMLPROG, SYS$LIBRARY:DBMDML/OPT

The VMS Linker documentation describes the contents of the option file.

2.6.4 Using an Object Module Library

In a large development effort, programmers often store the object modules for
their subprograms in an object module library. By using an object module library,
you can make program modules contained in the library available to many other
programmers. To link modules contained in an object module library, use the
/INCLUDE qualifier and specify the specific modules you want to link. For
example:

2-34 Developing VAX COBOL. Programs at DCL Command Level

$ LINK GARDEN, VEGETABLES/INCLUDE=(EGGPLANT, TOMATO, BROCCOLI, ONION)

This example directs the linker to link the subprogram modules EGGPLANT,
TOMATO, BROCCOLI, and ONION with the main program module GARDEN.

Besides program modules, an object module library can also contain a symbol
table with the names of each global symbol in the library, and the name of the
module in which the global symbol names are defined. You specify the name
of the object module library containing symbol definitions with the /LIBRARY
qualifier. When you use the /LIBRARY qualifier during a link operation, the
linker searches the specified library for all unresolved references found in the
included modules during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL.

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library to be your default library by using the
DCL command DEFINE. The linker searches default user libraries for unresolved
references after it searches modules and libraries specified in the LINK command.
See the VMS documentation on DCL for more information about the DEFINE
command.

For more information about object module libraries see the VMS documentation
on linking programs.

2.6.5 Object Libraries

All VAX COBOL programs reference system-supplied object module libraries
when they are linked. These libraries contain routines that provide /O and
other system functions. Additionally, you can use these libraries, or your own, to
provide application-specific object modules within your particular environment.

2.6.5.1 Using System-Supplied Object Module Libraries
To use the contents of an object module library, you must do the following:

* Refer to the object module by name in your program in a CALL statement, or
VALUE EXTERNAL reference.

¢ Make sure that the linker can locate the library that contains the object
module by ensuring that required software is correctly installed.

¢ Confirm that required logical names point to the appropriate locations. Make
certain that IMAGELIB, STARLET, and VMSRTL are correctly assigned (in
most cases, correct results will be obtained if they are deassigned).

¢ Make sure that your default directory (or LINK/OUTPUT directory) is valid
and that you have write privileges to it.

To specify that a linker input file is a library file, use the /LIBRARY qualifier.
This qualifier causes the linker to search for a file with the name you specify and
a default file type of OLB. If you specify a file that the linker cannot locate, a
fatal error occurs and the link terminates.

The sections that follow describe the order in which the linker searches libraries
that you specify explicitly, default user libraries, and system libraries.

Developing VAX COBOL Programs at DCL Command Level 2-35

2.6.5.2 Defining the Search Order for Libraries

When you specify libraries as input for the linker, you can specify as many as you
wish; there is no practical limit. More than one library can contain a definition
for the same module name. The linker uses the following conventions to search
libraries specified in the command string:

* A library is searched only for definitions that are unresolved in the previous
input files specified.

¢ If more than one object module library is specified, the libraries are searched
in the order in which they are specified.

For example:

$ LINK METRIC,DEFLIB/LIBRARY,APPLIC

The library DEFLIB will be searched only for unresolved references in the object
module METRIC. It is not searched to resolve references in the object module
APPLIC. However, this command can also be entered as follows:

$ LINK METRIC,APPLIC,DEFLIB/LIBRARY

In this case, DEFLIB.OLB is searched for all references that are not resolved
between METRIC and APPLIC. After the linker has searched all libraries
specified in the command, it searches default user libraries, if any, and then
the default system libraries.

2.6.5.3 Default User Object Module Libraries

You can define one or more of your private object module libraries as default user
libraries. The linker searches default user libraries for unresolved references
after it searches modules and libraries specified in the LINK command.

To indicate that a private library is a default user library, enter a DEFINE
command as in the following example:

$ DEFINE LNKS$LIBRARY DEFLIB

In this example, LNK$LIBRARY is a logical name and DEFLIB is the name of
an object module library (having the file type OLB) that you want the linker to
search automatically in all subsequent link operations.

You can establish any object module library as a default user library by creating a
logical name for the library. The logical names you must use are LNK$LIBRARY
(as in the preceding example), LNK$LIBRARY_1, LNK$LIBRARY_2, and so on,
to LNK$LIBRARY_999. When more than one of these logical names exists when
a LINK command executes, the linker searches them in numeric order beginning
with LNK$LIBRARY.

When one or more logical names exist for default user libraries, the linker uses
the following search order to resolve references:

e The process, group, and then system logical name tables are searched for the
name LNK$LIBRARY. If the logical name exists in any of these tables, and if
it contains the desired reference, the search is ended.

* The process, then group, and then system logical name tables are searched for
the name LNK$LIBRARY_1. If the logical name exists in any of these tables,
and if it contains the desired reference, the search is ended.

This search sequence occurs for each reference that remains unresolved.

2-36 Developing VAX COBOL Programs at DCL Command Level

2.6.54 System Libraries

The directory identified by the system-defined logical name SYS$LIBRARY
contains the following library files:

¢ IMAGELIB.OLB
¢ STARLET.OLB
¢ VMSRTL.EXE

IMAGELIB.OLB contains the global symbols for the shared system images.

STARLET.OLB contains, in object module form, the procedures in VMSRTL.EXE,
as well as additional run-time modules required by various compilers and system
programs.

The file VMSRTL.EXE contains some of the VMS Run-Time Library routines.
The procedures in this library provide many useful functions including:

* Commonly used mathematical and string-handling functions
® Procedures that support code produced by VAX compilers
By default, the linker searches IMAGELIB, then STARLET, to resolve references

to external names that are still unresolved after it searches libraries specified in
the LINK command and default user libraries.

2.6.6 Shareable Images

You can create VAX COBOL programs to be linked and installed as shareable
images. A shareable image is a single copy of a program that can be shared
by many users or applications. Using shareable images provides the following
benefits:

e Saves system resources, since one physical copy of a set of procedures can be
shared by more than one application or user.

¢ Facilitates the linking of very large applications by allowing you to break
down the whole application into manageable segments.

¢ Allows you to modify one or more sections of a large application without
having to relink the entire program.

2.6.6.1 Creating a Shareable Image
A shareable image is created using the /SSHARE qualifier of the LINK command.

When you create a VAX COBOL program to be installed as a shareable image,
you should consider the concepts of position-dependent code and shareability.
These concepts are covered in detail in the documentation on the VMS Linker.

The following list describes one way to create and install a VAX COBOL program
as a shareable image:

1. Create the main program used to call the subprogram (which will be installed
as a shareable image).

Create the subprogram to be installed as a shareable image.

3. Link the shareable image program using the /SHARE qualifier and map the
entry point using either an options file or transfer vectors.

Developing VAX COBOL Programs at DCL. Command Level 2-37

4. Copy the shareable image to the SYS$LIBRARY. (This step requires [SYSLIB]
access privileges.) Alternatively you can use an assignment statement.

Check to see if there is enough global system space for the shareable image.

Install the image in a shareable library. (This step requires PRMGBL,
SYSGBL, or CMKRNL privileges.)

7. Link the main program with the shareable image.

Once you have completed these steps, you can run the main program to access
the subprogram installed as a shareable image.

NOTE

VAX COBOL programs installed as shareable images cannot contain
external files.

When calling a subprogram installed as a shareable image, the program
name specified in the CALL statement must be a literal.

More information on shareable images is available in the documentation on the
VMS Linker.

The following sample programs and command procedure provide an example of
how to create, link, and install a subprogram as a shareable image, as described
in the preceding steps.

Example 2-1 shows the main program CALLER.COB and the two subprograms
(SUBSHR1.COB and SUBSHR2.COB). Only the subprograms are installed as
shareable images.

Example 2-1: Main Program and Subprograms

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLER.
LR R R T

* This program calls a subprogram installed as a shareable image.*
AAK A KA A KA AR A A AKA AR AR A AR A AR A AR KA AR A A AR A A AR A AR A A AR A R A kA kA Ak Ak Ak hh*k
PROCEDURE DIVISION.
0.

CALL "SUBSHR1"

ON EXCEPTION
DISPLAY "First CALL failed. Program aborted.”

END-CALL.

STOP RUN.
END PROGRAM CALLER.

(continued on next page)

2-38 Developing VAX COBOL Programs at DCL. Command Level

Example 2-1 (Cont.): Main Program and Subprograms

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBSHRI.

KKK KA KKK A KA A KA A KA AKA A KR ARK A AR AAKRAAKR A AR AAAAKRRIAA R AR AR Ak Ak khhhkhkhhkhhkh*x

* This program is linked as a shareable image. When it is called, *
* it calls another program installed as a shareable image. *
AKAKKKIAKAKRKAAKRKKAARAAAKARKRAAAAKRARA A Ak AR A AR Ak A A A Ak Ak hhhkhkhkhhhkhkhkhhhhhhhkhhdkk
PROCEDURE DIVISION.
0.

DISPLAY "Call to SUBSHR1 successful. Calling SUBSHR2.".

CALL "SUBSHR2"

ON EXCEPTION
DISPLAY "Second call failed. Control returned to CALLER."

END-CALL.

END PROGRAM SUBSHRI1.

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBSHR2.
AA A KA KA AR KR AR KR ARKRKAAAA A A R AR AT kA hkkhkhkkhkhhkhhkhhhkhhhhhhkhhkhkhhkkkkhhikk
* This program is linked as a shareable image and is called by *
* another shareable image. *
KAKKKARK KA AR AR A AN AAAAAA R A A A A A ARk bk khk ko hkhkhkhkhkhhkhhkkhhhkhhkhhkkhhkhihk
PROCEDURE DIVISION.
0.

DISPLAY "Call to SUBSHRZ2 successful!".
END PROGRAM SUBSHR2.

Example 2-2 shows a command procedure that compiles, links, and installs the
sample programs in Example 2-1.

Example 2-2: Command Procedure to Link a Program as a Shareable Image

$!
$!
$!
$!
$!
$!
$!
$
$
$
$!
$!
$!
$
$

$

St
$!
S
$!
St

Create the main program and subprograms to be installed as shareable
images. In this example CALLER.COB is the main program. SUBSHR1.COB
and SUBSHR2.COB are the subprograms to be installed as

shareable images.

Compile the main program and subprograms.

COBOL CALLER.COB
COBOL SUBSHR1.COB
COBOL SUBSHR2.COB

Create an options file to map the entry points of the subprograms.

COPY SYSS$SINPUT OPTIONS1.OPT
DECK
UNIVERSAL=SUBSHR1, SUBSHR2
EOD

Link the subprograms using the /SHARE qualifier to the shareable library
and the options file. For more information on options files, refer to
the documentation on the VMS Linker.

(continued on next page)

Developing VAX COBOL Programs at DCL Command Level - 2-39

Example 2-2 (Cont.): Command Procedure to Link a Program as a Shareable Image

$ LINK/SHARE=MYSHRLIB SUBSHR1, SUBSHR2,OPTIONS1/OPT

$!

$! Copy the shareable images to SYSSLIBRARY. To perform this

$! you must have [SYSLIB] access privileges. Alternatively,

$! you can perform the same function by doing a local assignment.
$! “

$! COPY MYSHRLIB.EXE SYS$LIBRARY:*

$! or
$ ASSIGN DEVICE: [DIRECTORY]MYSHRLIB.EXE MYSHRLIB
$!

$! Install the shareable images in a shareable library.

$! This will allow multiple users to use a single copy of the

$! shareable image.

$!

$! If you do not install the shareable library, ;

$! multiple users will each link to their own run-time copy of

$! the image.

$!

$! Note, to install an image in a shareable library, you must have
$! PRMGBL, SYSGBL, or CMKRNL privileges.

$!

$! Prior to installing the shareable image, check to see if there is
$! enough global symbol space.

$! MCR INSTALL

$! /GLOBAL
$! ~z
$!

$! Also check to see if there are availabie global sectors and pages.
$! MCR SYS$GEN

$! /GBLSE
$! /GBLPA
s~z

$!

$! The /WRITE qualifier is required if you want to install writable PSECTS.
$ MCR INSTALL
device: [directory]MYSHRLIB/SHARE/WRITE
$!
$! Create a second options file to map the main program to the shareable
$! image library.
$ COPY SYSSINPUT OPTIONS2.OPT

$ DECK
MYSHRLIB/SHAREABLE

$ EOD

$!

$! Link the main program with the shareable image subprograms through the
$! options file.

$ LINK CALLER,OPTIONS2/OPT

$!

$! Now you can run the main program.

2.6.6.2 Using Transfer Vectors

Using transfer vectors can be helpful when creating shareable images for the
following reasons:

¢ They make it easy for you to modify the contents of shareable images.

¢ They allow you to avoid relinking user programs bound to the shareable
image if you modify the image.

2-40 Developing VAX COBOL Programs at DCL Command Level

The command procedure in Example 2—-3 shows how to create a transfer
vector table and how to link the main program and subprograms (shown in
Example 2-1) with the transfer vector table.

Example 2-3: Transfer Vectors

3!
$! Create a transfer vector table (TRAVEC.MAR).
$ MACRO /OBJ=TRAVEC SYSSINPUT

.PSECT TRANSFER VECTOR

The transfer vector table is used to map entry points at
run time to a shareable library. If you make changes to the
shareable library, you only have to relink the library.

You do not have to relink all the programs linked to the
library.

Ne e Ne Ne Ne N Ne No N

This example transfer vector table maps the entry points
of the shareable subprograms: SUBSHR1, SUBSHRZ.

~e ~e

. TRANSFER SUBSHR1

.MASK) SUBSHR1
BRW SUBSHR1+2
RET

.QUAD

. TRANSFER SUBSHR2
.MASK SUBSHR2
BRW .SUBSHR2+2
RET

.QUAD

Note that there must be an entry point for each shareable image.
Any future additions should be made at the end of the vector.

The order of the entries must remain intact once established.

Do not delete any entries (even if the shareable image is deleted).

LINK/SHARE=MYSHRLIB SUBSHRI1, SUBSHR2, TRAVEC

Once you have created the transfer vector table, you can install the subprograms
and link the main program to the shareable library as shown in Example 2-2.

For more information on transfer vectors, refer to the documentation on the VMS
Linker.

2.6.7 Linker Error Messages

If the linker detects any errors while linking object modules, it displays messages
indicating the cause and severity of each error. If any error or fatal error
condition occurs, that is, an error with a severity E or F, the linker does not
produce an image file. SR

The messages produced by the linker are descriptive, and you do not usually need
additional information to determine the specific error. The following are some
common errors that occur during linking:

* An object module has compilation errors.

This error occurs when you attempt to link a module that generates warnings
or errors during compilation. You can usually link compiled modules for
which the compiler generated messages, but you should verify that the
modules will actually produce the output you expect.

Developing VAX COBOL Programs at DCL Command Level 2-41

¢ The input file has a file type other than OBJ and no file type was specified.

If you do not specify a file type, the linker assumes the file has a file type
of OBJ. If the file is not an object file and you do not identify it with the
appropriate file type, the linker signals an error message and does not
produce an image file.

¢ You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on the
command line or if the compilation contains fatal diagnostics.

¢ A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names from the
command line and the linker cannot locate the definition for a specified global
symbol reference. For example, the main program module OCEAN.OBJ calls
the subprogram modules REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBJ. If
you specify the following LINK command, an error occurs if SEAWEED.OBJ
does not exist in the same directory that the command was issued from:

$ LINK OCEAN, REEF, SHELLS
This example produces the following error messages:

$LINK-W-NUDFSYMS, 1 undefined symbol
$LINK-I-UDFSYMS, SEAWEED
%$LINK-W-USEUNDEF, undefined symbol SEAWEED referenced
in psect $CODE offset %X0000000C
in module OCEAN file DEVICES: [COBOL.EXAMPLES]PROG.OBJ;1
$LINK-W-USEUNDEF, undefined symbol SEAWEED referenced
in psect $CODE offset %X00000021
in module OCEAN file DEVICESS$: [COBOL.EXAMPLES]PROG.OBJ;1

If an error occurs when you link modules, you can often correct the error
by reentering the command string and specifying the correct modules or
libraries. If an error indicates that a program module cannot be located, you
may be linking the program with the wrong VAX COBOL Run-Time Library.

For a complete list of linker messages, see the VMS documentation on
messages.

2.7 Running a VAX COBOL Program

Once you have linked your program, you can use the DCL command RUN to
execute it. The RUN command has the following format:

RUN [/[NOIDEBUG] file-spec

/[INO]DEBUG

The /[NOIDEBUG qualifier is optional. Specify the /DEBUG qualifier to request
the debugger if the image was not linked with it. You cannot use /DEBUG on
images linked with the /NOTRACEBACK qualifier. If the image was linked with
the /DEBUG qualifier and you do not want the debugger to prompt, use the
/NODEBUG qualifier. The default action depends on whether the file was linked
with the /DEBUG qualifier.

file-spec
Is the name of the file you want to run.

2-42 Developing VAX COBOL Programs at DCL Command Level

The following example executes the image NOBUGS.EXE without invoking the
debugger:

$ RUN NOBUGS/NODEBUG

See Chapter 3 for more information on debugging programs.

2.7.1 COBOL Run-Time Errors

During execution, an image can generate a fatal error called an exception
condition. When an exception condition occurs, the system displays an error
message. Run-time errors can also be issued by other facilities such as SORT or
VMS.

A run-time error message has the following format:

%$COBOL-<1>-<mnemonic>, <message>

%COBOL
Indicates that the COBOL run-time environment issued the error.

<I>
Indicates severity of error. The severity indicator can be one of the following:

Code Meaning

I Informational—Indicating information
w Warning—Indicating a warning

E Error—Indicating an error

F Fatal—Indicating a severe error

<mnemonic>
A 8- to 9-character string that identifies the error.

<message>
Identifies the text of the error.

The following example shows a COBOL run-time error issued by an attempt to
divide by zero:
%$COB-E-DIVBY-ZER, divide by zero; Execution continues

For a description of COBOL run-time error messages, use the HELP COBOL
ERRORS command.

2.8 Program Switches

Switches exist as the logical name COB$SWITCHES and can be defined for the
image, process, group, or system. You can control program execution by defining
switches in the SPECIAL-NAMES paragraph and setting them internally (within
the image) or externally (outside the image).

Developing VAX COBOL Programs at DCL Command Level 2-43

2.8.1 Setting Switches Internally

To set switches internally, define them in the SPECIAL-NAMES paragraph and
use the SET statement in the PROCEDURE DIVISION to specify switches ON or
OFPF.

For example:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SWITCH 10 IS MY-SWITCH
ON IS SWITCH-ON
OFF IS SWITCH-OFF.

PROCEDURE DIVISION.
000~SET-SWITCH.
SET MY-SWITCH TO ON.

2.8.2 Setting Switches for a Process

To set switches for a process, use the DEFINE or ASSIGN DCL command to
change the status of program switches:
$ DEFINE COB$SWITCHES "switch-list"

where switch-list contains up to 16 switches separated by commas. Set a switch
ON by specifying it in the switch-list. A switch is OFF (the default) if you do not
specify it in the switch-list.

For example:

$ DEFINE COBS$SSWITCHES "1,5,13" Sets switches 1, 5, and 13 ON.
$ DEFINE COBSSWITCHES "9,11,16" Sets switches 9, 11, and 16 ON.
$ DEFINE COBSSWITCHES " Sets all switches OFF.

2.8.3 Order of Evaluation

The order of evaluation for logical name assignments is image, process, group,
system. System and group assignments (including COBOL program switch
settings) continue until they are changed or deassigned. Process assignments
continue until they are changed, deassigned, or the process ends. Image
assignments end when they are changed or the image ends.

2.8.4 Checking and Controlling Switch Settings

You should know the system and group assignments for COB$SWITCHES unless
you have defined them for your process or image. You can check switch settings
by using this command:

$ SHOW LOGICAL COB$SWITCHES

2-44 Developing VAX COBOL Programs at DCL Command Level

Use the DEASSIGN command to remove the switch-setting logical name from
your process and reactivate the group or system logical name (if any):

$ DEASSIGN COB$SWITCHES

To change the status of external switches during execution, do the following:
1. Interrupt the image with a STOP literal COBOL statement.

2. Use a DEFINE command to change switch settings.

3. Continue execution with the CONTINUE command. Be sure not to force
the interrupted image to exit by entering a command that executes another
image.

2.8.5 Example Using Program Switches

Example 2—4 shows how to use program switches.

Example 2-4: Using Program Switches

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SWITCH 1 ON IS DAILY-DATA
SWITCH 3 ON IS WEEKLY-DATA
SWITCH 5 ON IS MONTHLY-DATA
SWITCH 10 IS MY-SWITCH
ON IS SWITCH-ON
OFF IS SWITCH-OFF.

PROCEDURE DIVISION.
000-CHECK-SWITCHES.
SET MY-SWITCH TO ON.
IF DAILY-DATA PERFORM 100-DAILY-ROUTINE.
IF WEEKLY-DATA PERFORM 200-WEEKLY-ROUTINE.
IF MONTHLY-DATA PERFORM 300-MONTHLY-ROUTINE.
IF NOT DAILY-DATA AND
NOT WEEKLY-DATA AND

NOT MONTHLY-DATA

PERFORM 400-ANNUAL-ROUTINE.
IF END-OF-YEAR="Y"

SET MY-SWITCH TO OFF.

If you use this program to process only weekly and monthly data, your DEFINE
command would be:

$ DEFINE COB$SWITCHES "3,5"

Developing VAX COBOL Programs at DCL Command Level 2~45

Chapter 3
Using the VMS Debugger

This chapter is an introduction to using i:he VMS Debugger with VAX COBOL
programs. It includes the following information:

* An overview of debugger concepts
¢ Enough information so that you can start using the debugger
¢ A summary of the debugger commands by function

e A sample terminal session that demonstrates using the debugger to find a
bug in a VAX COBOL program

For complete reference information on the VMS Debugger, see the VMS
documentation. Online help is available during debugging sessions.

3.1 VMS Debugger Concepts

A debugger is a tool to help you locate run-time errors quickly. It is used with a
program already compiled and linked successfully, with no errors reported, that
does not run correctly; for example, the program output is obviously wrong, or
the program goes into an infinite loop or terminates prematurely. The debugger
enables you to observe and manipulate the program’s execution interactively,
step by step, until you locate the point at which the program stopped working
correctly.

The VMS Debugger is a symbolic debugger. This means you can refer to program
locations by the symbols (names) you used for those locations in your program.
You can use the names of variables, paragraphs, sections, and so on. You do not
have to use virtual addresses to refer to memory locations.

The debugger recognizes the syntax, expressions, data typing, and other
constructs of VAX COBOL, as well as the following other VMS-supported
languages:

VAX Ada®

VAX BASIC
VAX BLISS
VAX C

VAX DIBOL
VAX FORTRAN
VAX MACRO-32
VAX PASCAL
VAX PL/I

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Using the VMS Debugger 3-1

VAX RPG II
VAX SCAN

Therefore, if your program is written in more than one language, you can change
from one language to another during a debugging session. The current source
language determines the format used for entering and displaying data. It also
determines the format for other features that have language-specific settings
(for example, comment characters, operators and operator precedence, and case
sensitivity or insensitivity).

By issuing debugger commands at your terminal, you can do the following:

¢ Start, stop, and resume the program’s execution

¢ Trace the execution path of the program

e Monitor selected locations, variables, or events

e Examine and modify the contents of variables, or force events to occur

¢ Test the effect of some program modifications without editing, recompiling,
and relinking the program

Such techniques enable you to isolate an error in your code more quickly than

you can without the debugger.

Once you have found the error in the program, you can edit the source code and
compile, link, and run the corrected version.

3.2 Features of the Debugger
The VMS Debugger provides the following features that help you to debug your
programs:
* Online help—You can access help during debug sessions.
* Source code display—You can display source code during debug sessions.
¢ Screen mode—You can display and capture information in scrollable windows.

¢ Keypad mode—You can issue commonly used debugger command sequences
with VT100, VT52, or LK201 keypads.

¢ Source editing—You can edit your source code while in a debug session.

* Command procedures—You can issue debug commands from command
procedures.

¢ Symbol definitions—You can define your own symbols to represent commands,
address expressions, or values in abbreviated form.

¢ Initialization files—You can create an initialization file containing commands
to tailor your debug session.

¢ Log files—You can record your debug session to a log file.

3.3 Getting Started with the Debugger

This section explains how to use the debugger and provides VAX COBOL
examples. The intent is to enable you to start using the debugger; therefore,
only basic functions are covered. For more detailed information, see the VMS
documentation on the debugger. Remember that online help is immediately

3-2 Using the VMS Debugger

available to you during a debugging session when you type the HELP command
at the debugger prompt (DBG>).

3.3.1 Compiling and Linking to Prepare for Debugging

The following example shows how to compile and link a VAX COBOL program
consisting of a single compilation unit named INVENTORY.

$ COBOL/DEBUG INVENTORY
$ LINK/DEBUG INVENTORY

The /DEBUG qualifier on the COBOL command causes the compiler to write

the debug symbol records associated with INVENTORY into the object module,
INVENTORY.OBJ. These records allow you to use the names of variables and
other symbols declared in INVENTORY in debugger commands. (If your program
has several compilation units, you must compile each unit that you want to debug
with the /DEBUG qualifier.)

The /DEBUG qualifier on the LINK command causes the linker to include all
symbol information that is contained in INVENTORY.OBJ in the executable
image. The qualifier also causes the VMS image activator to start the debugger
at run time. (If your program has several object modules, you may need to specify
other modules in the LINK command.)

3.3.1.1 Establishing the Debugging Configuration

Before invoking the debugger (as explained in Section 3.3.2), check that the
debugging configuration is appropriate for the kind of program you are going to
debug.

You can invoke the debugger in either the default configuration or the
multiprocess configuration to debug programs that run in either one or several
processes, respectively. The configuration depends on the current definition of
the logical name DBG$PROCESS. Thus, before invoking the debugger, enter the
DCL command SHOW LOGICAL DBG$PROCESS to determine the definition of
DBG$PROCESS.

For programs that run in only one process, DBG$PROCESS either should be
undefined, as in the following example, or should have the value DEFAULT:

$ SHOW LOGICAL DBG$PROCESS
$SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS

If DBG$PROCESS has the value MULTIPROCESS, and you want to debug a
program that runs in only one process, enter the following command:

$ DEFINE DBGS$PROCESS DEFAULT

3.3.2 Starting and Ending a Debugging Session
To invoke the debugger, issue the DCL command RUN. The following message
will appear on your screen.

$ RUN INVENTORY. :
VAX DEBUG Version 5.n-nn

$DEBUG-I-INITIAL, language is COBOL, module set to ’/INVENTORY’
DBG>

Using the VMS Debugger 3-3

The DBG> prompt indicates that you can type debugger commands. At this point,
if you type the GO command, program execution begins and continues until it is
forced to pause or stop (for example, if the program prompts you for input or an
€rror occurs).

If your program goes into an infinite loop during a debugging session so that

the debugger prompt does not reappear, press CTRL/C. This interrupts program
execution and returns you to the debugger prompt (pressing CTRL/C does not end
the debugging session). For example:

DBG> GO

DBG>

You can also press CTRL/C to abort the execution of a debugger command. This
is useful if a command takes a long time to complete.

If your program already has a CTRL/C AST service routine enabled, use the
SET ABORT_KEY command to assign the debugger’s abort function to another
CTRL—key sequence. ‘

Pressing CTRL/Y from within a debugging session has the same effect as pressing
CTRL/Y during the execution of a program. Control is returned to the DCL
command interpreter ($ prompt).

The following message indicates that your program has compl'eted successfully:

%$DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG>

To end a debugging session, type the EXIT command at the DBG> prompt as
follows, or press CTRL/Z.

DBG> EXIT
$

3.3.3 Issuing Debugger Commands

You can issue debugger commands any time you see the DBG> prompt. The
debugger commands are summarized in Table 3—1.

To issue a command, type it at the keyboard and press the RETURN key. You
can issue several commands on a line by separating the command strings with
semicolons (;). As with DCL commands, you can continue a command string on a
new line by ending the line with a hyphen (-).

Alternatively, you can use the numeric keypad to issue certain commands. In
addition to the STEP, GO, SHOW CALLS, and EXAMINE commands, several
functions that manipulate screen-mode displays are bound to the keys. You can
also redefine key functions with the DEFINE/KEY command.

Most keypad keys have three predefined functions—DEFAULT, GOLD, and
BLUE. (The PF1 key is commonly known as the GOLD key, and the PF4 key is
commonly known as the BLUE key.) To obtain a key’s DEFAULT function, press
the key. To obtain its GOLD function, first press the PF1 (GOLD) key, and then
the key. To obtain its BLUE function, first press the PF4 (BLUE) key, and then
the key.

For more information on the debug keypad commands, you can type HELP
KEYPAD, or refer to the VMS documentation on the debugger.

3-4 Using the VMS Debugger

" Table 3-1 lists all of the debugger commands and any related DCL commands in
functional groupings, along with brief descriptions.

Table 3-1: Debugger Command Summary

Command Description
Starting and Ending a Debugging Session

RUN! Invokes the debugger if LINK/DEBUG was used.

RUN/INOIDEBUG! Controls whether the debugger is invoked when the
program is executed.

CTRL/Z or EXIT Ends a debugging session, executing all exit
handlers.

QUIT Ends a debugging session without executing any exit
handlers declared in the program.

CTRL/C Aborts program execution or a debugger command

SET
{ SHOW } ABORT_KEY

CTRL/Y—DEBUG

without interrupting the debugging session.

Assigns the default CTRL/C abort function to
another CTRL—key sequence; identifies the
CTRL—key sequence currently defined for the
abort function.

Interrupts a program that is running without
debugger control and invokes the debugger.

ATTACH Passes control of your terminal from the current
process to another process.

SPAWN Creates a subprocess, enabling you to execute DCL
commands without ending a debugging session or
losing your debugging context.

Controlling and Monitoring Program Execution

GO Starts or resumes program execution.

STEP Executes the program up to the next line,
instruction, or specified instruction.

{ gggw } STEP Establishes or displays the default qualifiers for the

SET
SHOW BREAK
CANCEL
SET
SHOW TRACE
CANCEL
SET
SHOW WATCH
CANCEL

SHOW CALLS
SHOW STACK

CALL

STEP command.
Sets, displays, or cancels breakpoints.

Sets, displays, or cancels tracepoints.

Sets, displays, or cancels watchpoints.

Identifies the currently active routine calls.

Gives additional information about the currently
active routine calls.

Calls a routine.

IThis is a DCL command, not a debugger command.

(continued on next page)

Using the VMS Debugger 3-5

Table 3-1 (Cont.): Debugger Command Summary

Command Description
Examining and Manipulating Data
EXAMINE Displays the value of a variable or the contents of a

SET MODE [NOJOPERANDS

DEPOSIT

EVALUATE

program location.

Controls whether the address and contents of
the instruction operands are displayed when you
examine an instruction. '

Changes the value of a variable or the contents of a
program location.

Evaluates a language or address expression.

Controlling Type Selection

SET
SHOW RADIX
CANCEL
SET
SHOW TYPE
CANCEL
SET MODE [NO]G_FLOAT

Establishes the radix for data entry and display,
displays the radix, or restores the radix.

Establishes the type for program locations that
are not associated with a compiler-generated type,
displays the type, or restores the type.

Controls whether double-precision floating-point
constants are interpreted as G_FLOAT or D_FLOAT.

Controlling Symbol Lookup and Symbolization

SHOW SYMBOL

CANCEL
SET
SHOW IMAGE
CANCEL
SET MODE [NOJDYNAMIC

SET
SHOW SCOPE
CANCEL

SYMBOLIZE
SET MODE [NOJLINE

SET
SHOW MODULE

SET MODE [NOJSYMBOLIC

Displays symbols in your program.

Sets a module by loading its symbol records into the
debugger’s symbol table, identifies a set module, or
cancels a set module.

Sets a shareable image by loading data structures
into the debugger’s symbol table, identifies a set
image, or cancels a set image.

Controls whether modules and shareable images
are set automatically when the debugger interrupts
execution.

Establishes, displays, or restores the scope for
symbol lookup.

Converts a virtual address to a symbolic address.

Controls whether program locations are displayed in
terms of line numbers or routine-name + byte offset.

Controls whether program locations are displayed
symbolically or in terms of numeric addresses.

Displaying Source Code

TYPE
EXAMINE/SOURCE

SEARCH

Displays lines of source code.

Displays the source code at the location specified by
the address expression.

Searches the source code for the specified string.

3-6 Using the VMS Debugger

(continued on next page)

Table 3—-1 (Cont.):

Debugger Command Summary

Command Description
Displaying Source Code
{ gll?IT(;W } SEARCH Establishes or displays the default qualifiers for the

SET STEP [NOISOURCE

{ ssow

SET
SHOW
CANCEL

{ srow }

} MARGINS

} SOURCE

MAX_SOURCE_
FILES

SEARCH command.

Enables or disables the display of source code
after a STEP command has been executed or at a
breakpoint, tracepoint, or watchpoint.

Establishes or displays the left and right margin
settings for displaying source code.

Creates, displays, or cancels a source directory
search list.

Establishes or displays the maximum number of
source files that can be kept open at one time.

Using Screen Mode

SET MODE [NOJSCREEN
DISPLAY

SCROLL

EXPAND

MOVE
{ SHOW
CANCEL

SET
SHOW
CANCEL

SELECT
SHOW SELECT

} DISPLAY

} WINDOW

SAVE

EXTRACT

{ SET
SHOW

SET MODE [NO]SCROLL

} TERMINAL

Enables or disables screen mode.
Creates or modifies a display.
Scrolis a display.

Expands or contracts a display.
Moves a display across the screen.
Identifies or deletes a display.

Creates, identifies, or deletes a window definition.

Selects a display for a display attribute.

Identifies the displays selected for each of the display
attributes.

Saves the current contents of a display and writes it
to another display.

Saves a display or the current screen state and
writes it to a file.

Establishes or displays the height and width of the
screen.

Controls whether an output display is updated line
by line or once per command.

CTRL/W or DISPLAY/REFRESH Refreshes the screen.
Editing Source Code
EDIT Invokes an editor during a debugging session.
{ ggTOW } EDITOR Establishes or identifies the editor invoked by the

EDIT command.

(continued on next page)

Using the VMS Debugger 3-7

Table 3-1 (Cont.): Debugger Command Summary

Command Description

Defining Symbols
DEFINE Defines a symbol as an address, command, or value.
DELETE Deletes symbol definitions.

(528,) v

SHOW SYMBOL/DEFINED

Establishes or displays the default qualifier for the
DEFINE command.

Identifies symbols that have been defined with the
DEFINE command.

Using Keypad Mode

SET MODE [NOJKEYPAD

Enables or disables keypad mode.

DEFINE/KEY Creates key definitions.
DELETE/KEY Deletes key definitions.
SET KEY Establishes the key definition state.
SHOW KEY Displays key definitions.

Using Command Procedures and Log Files
@file-spec Executes a command procedure.

SET
{ o }ATSIGN

Establishes or displays the default file specification
that the debugger uses to search for command
procedures.

DECLARE Defines parameters to be passed to command

procedures.
SET } Specifies or identifies the debugger log file.

{ oW | LOG P gger log

SET OUTPUT [NOJLOG Controls whether a debugging session is logged.

SET OUTPUT Controls whether, in screen mode, the screen

[NOJSCREEN_LOG contents are logged as the screen is updated.

SET OUTPUT [NOJVERIFY Controls whether debugger commands are displayed
as a command procedure is executed.

SHOW OUTPUT Displays the current output options established by
the SET OUTPUT command.

Using Control Structures

FOR Executes a list of commands while incrementing a
variable.

IF Executes a list of commands conditionally.

REPEAT Executes a list of commands a specified number of
times.

WHILE Executes a list of commands while a condition is
true.

EXITLOOP Exits an enclosing WHILE, REPEAT, or FOR loop.

3-8 Using the VMS Debugger

(continued on next page)

Table 3-1 (Cont.): Debugger Command Summary

Command Description
Debugging Multiprocess Programs
CONNECT Brings a process under debugger control.

DEFINE/PROCESS_GROUP
DO

SET MODE [NOJINTERRUPT

{ SET

b } PROCESS

Assigns a symbolic name to a list of process specifi-
cations.

Executes commands in the context of one or more
processes.

Controls whether execution is interrupted in other
processes when it is suspended in some process.

Modifies the multiprocess debugging environment, or
displays process information.

Additional Commands

DISABLE
ENABLE AST

Disables the delivery of ASTs in the program,
enables the delivery of ASTs, or identifies whether

SHOW delivery is enabled or disabled.

{ SET } EVENT_ Establishes or identifies the current run-time facility
SHOW FACILITY for language-specific events.

{ SEI’{)W } LANGUAGE Establishes or displays the current language.

SET MODE [NOJSEPARATE

Controls whether the debugger, when used on
a workstation running VWS, creates a separate
window for debugger input and output

SET OUTPUT [NOITERMINAL Controls whether debugger output, except for diag-
nostic messages, is displayed or suppressed.

SET PROMPT Specifies the debugger prompt.

{ SET } TASK Modifies the tasking environment or displays task

SHOW information.

SHOW EXIT_HANDLERS Identifies the exit handlers declared in the program.

SHOW MODE Identifies the current debugger modes established by
the SET MODE command (for example, screen mode,
step mode)

SHOW OUTPUT Identifies the current output options established by

the SET OUTPUT command

3.4 Notes on VAX COBOL Support

In general, the VMS Debugger supports the data types and operators of VAX

COBOL and other debugger-supported languages. However, there are important

language-specific limitations. (To get information about the supported data types
and operators for any of the languages, type the HELP LANGUAGE command at
the DBG> prompt.)

The debugger can show source text included in a program with the COPY
REPLACING or REPLACE statement. However, the debugger always shows the
original source text instead of the modified source text generated by the COPY
REPLACING or REPLACE statement.

Using the VMS Debugger 3-9

The debugger cannot show the original source lines associated with the code for a
REPORT section. You can see the DATA SECTION source lines associated with a
report, but no source lines are associated with the compiled code that generates
the report.

3.5 Sample Debugging Session

This section provides a sample debugging session that demonstrates many of the
debugger features.

As you read the debugging section that follows, refer to the code in Example 3-1
to identify source lines. The program, TESTA, accepts a character string from
the terminal and passes it to contained program TESTB. TESTB reverses the
character string and returns it (and its length) to TESTA.

Example 3—1: Source Code Used in the Sample Debug Session

TESTA\TESTA
Source Listing

1 1 IDENTIFICATION DIVISION.
2 1 PROGRAM-ID. TESTA.
3 01 DATA DIVISION.
4 1 WORKING-STORAGE SECTION.
5 1 01 TESTA-DATA GLOBAL.
6 1 02 LET-CNT PIC 9(2)V9(2).
71 02 . IN-WORD PIC X(20).
8 1 02 DISP-COUNT PIC 9(2).
9 1 PROCEDURE DIVISION.
10 1 GETIT SECTION.
1 1 BEGINIT. ,
12 1 DISPLAY "ENTER WORD".
13 1 MOVE SPACES TO IN-WORD.
14 1 ACCEPT IN-WORD.
15 1 " CALL "TESTB" USING IN-WORD LET-CNT.
16 1 PERFORM DISPLAYIT.
17 1 STOP RUN.
18 1 DISPLAYIT SECTION.
19 1 SHOW-IT.
20 1 DISPLAY IN-WORD.
21 1 MOVE LET-CNT TO DISP-COUNT.
22 1 DISPLAY DISP-COUNT " CHARACTERS".
23 2 IDENTIFICATION DIVISION.
24 2 PROGRAM~ID. TESTB INITIAL.
25 2 DATA DIVISION.
26 2 WORKING~STORAGE SECTION.
27 2 01 SUB-1 PIC 9(2) COMP.
28 2 01 SUB-2 PIC S9(2) COMP-3.
29 2 01 HOLD-WORD.
30 2 03 HOLD-CHAR PIC X OCCURS 20 TIMES.
31 2 LINKAGE SECTION.
32 2 01 TEMP-WORD.
33 2 03 TEMP-CHAR PIC X OCCURS 20 TIMES.
34 2 01 CHARCT PIC 99V99.
35 2 PROCEDURE DIVISION USING TEMP-WORD, CHARCT.
36 2 CONVERT-IT SECTION.
37 2 STARTUP.
38 2 IF TEMP-WORD = SPACES
39 2 MOVE 0 TO CHARCT
40 2 GO TO GET-QUT.
41 2 PERFORM LOOK-BACK

(continued on next page)

3-10 Using the VMS Debugger

Example 3—-1 (Cont.): Source Code Used in the Sample Debug Session

42 2 VARYING SUB-1 FROM 20 BY -1
43 2 UNTIL TEMP-CHAR (SUB-1) NOT = SPACE.
44 2 MOVE SUB-1 TO CHARCT.

45 2 MOVE SPACES TO HOLD-WORD.

46 2 PERFORM MOVE-IT

47 2 VARYING SUB-2 FROM 1 BY 1
48 2 UNTIL SUB-1 = O.

49 2 MOVE HOLD-WORD TO TEMP-WORD.

50 2 GET-OUT.

51 2 EXIT PROGRAM.

52 2 MOVE-IT.

53 2 MOVE TEMP-CHAR (SUB-1)

54 2 TO HOLD-CHAR (SUB-2).

55 2 SUBTRACT 1 FROM SUB-1.

56 2 LOOK-BACK.

57 2 EXIT.

58 2 END PROGRAM TESTB.

59 1 END PROGRAM TESTA.

60 1

The following debugging session does not show the location of program errors; it
is designed to show only the use of debugger features.

1.

The RUN command starts the session. If you compile and link the program
with /DEBUG, you do not need to use the /DEBUG qualifier in the RUN
command.

When you give the RUN command, the debugger displays its standard header,
showing that the default language is COBOL and the default scope and
module are your main program. The debugger returns control with the
prompt, DBG>.

$ RUN TESTA

VAX DEBUG Version 5.n-nn
%$DEBUG-I-INITIAL, language is COBOL, module set to. ’/TESTA’
%$DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

Use the GO command to get to the start of the main program.
DBG> GO |

Set a breakpoint.

DBG> SET BREAK SLINE 41

Begin execution with the GO command. The debugger displays the execution
starting point, and the image continues until TESTA displays its prompt and
waits for a response.

DBG> GO
ENTER WORD

Enter the word to be reversed. Execution continues until the image reaches
the breakpoint at line 41 of the contained program.

backward
break at TESTA\TESTB\CONVERT-IT\STARTUP\$LINE 41
41: PERFORM LOOK-BACK

~ Using the VMS Debugger 3-11

6. Set two breakpoints. When the debugger reaches line 55 of TESTB, it
executes the commands in parentheses, displays the two data items, and
resumes execution.

DBG> SET BREAK $LINE 55 DO (EXAMINE HOLD-WORD; EXAMINE SUB-1;GO)
DBG> SET BREAK %LINE 49

7. Display the active breakpoints.

DBG> SHOW BREAK

breakpoint at TESTA\TESTB\CONVERT-IT\STARTUP\SLINE 41

breakpoint at TESTA\TESTB\CONVERT-IT\MOVE-IT\$LINE 55
do (EXAMINE HOLD-WORD;EXAMINE SUB-1;GO)

breakpoint at TESTA\TESTB\CONVERT-IT\STARTUP\$LINE 49

8. Use the TYPE command to display the source lines where you set
breakpoints.

DBG> TYPE 41:55
module TESTA

41: PERFORM LOOK-BACK

42: VARYING SUB-1 FROM 20 BY -1
43: UNTIL TEMP-CHAR (SUB-1) NOT = SPACE.
44: MOVE SUB-1 TO CHARCT.

45: MOVE SPACES TO HOLD-WORD.

46: PERFORM MOVE-IT

47: VARYING SUB-Z2 FROM 1 BY 1
48: UNTIL SUB-1 = 0.

49: MOVE HOLD-WORD TO TEMP-WORD.

50: GET-OUT.

51: EXIT PROGRAM.

52: MOVE-IT.

53: MOVE TEMP-CHAR (SUB-1)

54: TO HOLD-CHAR (SUB-2).

55: SUBTRACT 1 FROM SUB-1.

9. Set a tracepoint at line 15 of TESTA.
DBG> SET TRACE $LINE 15

10. Set a watchpoint on the data item DISP-COUNT. When an instruction tries
to change the contents of DISP-COUNT, the debugger returns control to you.

DBG> SET WATCH DISP-COUNT

11. Execution resumes with the GO command. Before line 55 in TESTB executes,
the debugger executes the contents of the DO command entered at step 7. It
displays the contents of HOLD-WORD and SUB-1, then resumes execution.

3-12 Using the VMS Debugger

12.

13.

14.

15.

16.

DBG> GO

break at TESTA\TESTB\CONVERT-IT\MOVE-IT\$LINE
55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:
HOLD-CHAR (1:20) : "d
TESTA\TESTB\SUB-1: 8
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\%LINE
55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:
HOLD-CHAR (1:20) : "dr
TESTA\TESTB\SUB-1: 7
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\$LINE
55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD :
HOLD-CHAR (1:20) : "dra
TESTA\TESTB\SUB-1: 6
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\$LINE
55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:
HOLD-CHAR (1:20) : "draw
TESTA\TESTB\SUB-1: 5
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\$LINE
55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD :
HOLD-CHAR (1:20) : "drawk
TESTA\TESTB\SUB-1: 4
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\$LINE
55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD :
HOLD-CHAR (1:20) : "drawkce
TESTA\TESTB\SUB-1: 3
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\$%LINE
55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD :
HOLD-CHAR(1:20) : "drawkca
TESTA\TESTB\SUB-1: 2
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\$LINE
55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:
HOLD-CHAR(1:20) : "drawkcab
TESTA\TESTB\SUB-1: 1
break at TESTA\TESTB\CONVERT-IT\STARTUP\$LINE
49: MOVE HOLD-WORD TO TEMP-WORD.

Deposit the value 10 into data item SUB-1. Notice that SUB-1’s usage is

COMP.
DBG> DEPOSIT SUB-1=10
Examine the contents of SUB-1.

DBG> EXAMINE SUB-1
TESTA\TESTB\SUB-1: 10

Deposit —42 into data item SUB-2. Notice that SUB-2’s usage is COMP-3.

DBG> DEPOSIT SUB-2=-42
SUB-2’s contents are now —42.

DBG> EXAMINE SUB-2
TESTA\TESTB\SUB-2: -42

Examine CHARCT, whose picture is 99V99.

DBG> EXAMINE CHARCT
TESTA\TESTB\CHARCT: 8.00

Using the VMS Debugger 3-13

55

55

55

55

55

55

55

55

49

17.

18.

19.

20.

21

22.

23.

24.

25,

Deposit four characters into CHARCT.
DBG> DEPOSIT CHARCT=15.00
CHARCT now contains 15.00.

DBG> EXAMINE CHARCT
TESTA\TESTB\CHARCT: 15.00

Deposit an integer larger than CHARCT’s definition. The debugger returns
an error message.

DBG> DEPOSIT CHARCT=2890
$DEBUG-E-DECOVF, decimal overflow at or near DEPOSIT

Examine the contents of CHARCT.

DBG> EXAMINE CHARCT
TESTA\TESTB\CHARCT: 90.00

You can examine any character of a subscripted data item by specifying the
character position. The following EXAMINE command accesses the fourth
character on TEMP-CHAR.

DBG> EXAMINE TEMP-CHAR (4)
TEMP-CHAR of TESTA\TESTB\TEMP-WORD (4): "k"

You can use the DEPOSIT command to put a value into any element of a
table and examine its contents. In this example, "X" is deposited into the
fourth character position of TEMP-CHAR.

DBG> DEPOSIT TEMP-CHAR (4)="X"
DBG> EXAMINE TEMP-CHAR(4)
TEMP~CHAR of TESTA\TESTB\TEMP~WORD (4): "X"

NOTE

You can qualify data names in debug commands as you can in
COBOL. For example, if you examine IN-WORD while you debug
your program, you can use the following DEBUG command:

EXAMINE IN-WORD OF TESTA-DATA

Deposit a value into CHARCT.
DBG> DEPOSIT CHARCT=8.00

Resume execution with the GO command. The program TESTA displays the
reversed word. When the image reaches line 21 in TESTA, the debugger
detects that an instruction changed the contents of DISP-COUNT. Since you
set a watchpoint on DISP-COUNT, the debugger displays the old and new
values, then returns control to you.

DBG> GO

drawkcab

watch of DISP-COUNT of TESTA\TESTA-DATA at TESTA\DISPLAY~-IT
\SHOW-IT\$LINE 21

21: MOVE LET-CNT TO DISP-COUNT.
old value = 0
new value = 8

break at TESTA\DISPLAY-IT\SHOW-IT\S$LINE 22
22: DISPLAY DISP~COUNT " CHARACTERS".

To see the image’s current location, use the SHOW CALLS command.

DBG> SHOW CALLS

module name routine name line rel PC abs PC

*TESTA TESTA 22 00000056 00000656
LIBSAB CVTPT U 00000154 00000C58

3-14 Using the VMS Debugger

26. Resume execution with the GO command. TESTA executes its final display.
The debugger regains control when STOP RUN executes.

DBG> GO

08 CHARACTERS

%DEBUG-I-EXITSTATUS, is ’%$SYSTEM-S—-NORMAL,
normal successful completion’

27. At this point, you can either examine the contents of data items or end the
session with the EXIT command.

DBG> EXIT
$

Using the VMS Debugger 3-15

Partli
Using VAX COBOL Features on VMS

Chapter 4

Numeric Data Handling

This chapter describes how VAX COBOL stores, represents, moves, and
manipulates numeric data.

4.1 How the Compiler Stores Numeric Data

Understanding how data is stored is particularly important when you define data
items to participate in group moves or to be the subject of a REDEFINES clause.
When moving a complex record consisting of several levels of subordination,

you should be sure that the receiving item is large enough to prevent data
truncation. You can also use data storage concepts to minimize storage space,
particularly when the data file is large. The storage considerations applicable to
table handling are discussed in Chapter 6.

For each numeric data item, VAX COBOL stores the numeric value, a scaling
factor (if a V or a P appears in the PICTURE), and a sign (if an S appears in
the PICTURE). Each of these subjects is discussed separately in the following
sections.

The USAGE clause of a numeric data item specifies the data’s internal format
in storage. When you do not specify a usage in a PICTURE clause, the default
usage is DISPLAY. For further information on internal representations see the
USAGE clause tables in the VAX COBOL Reference Manual.

All records, and elementary items with level 01 or 77, begin at an address that
is a multiple of 4 bytes (a longword boundary). The VAX COBOL compiler tries
to locate a data item at the next unassigned byte location. However, some data
items must be aligned on a 2-, 4-, or 8-byte boundary.

4.2 Sign Conventions

VAX COBOL numeric items can be signed or unsigned. However, all VAX COBOL
arithmetic operations yield signed results. If you store a signed result in an
unsigned item, only the absolute value is stored. Thus, unsigned items only
contain the value zero or a positive value. The way VAX COBOL stores signed

results in signed data items depends on the usage and the presence or absence of
the SIGN clause.

Do not use unsigned numeric items in arithmetic operations. They usually cause
programming errors and are handled less efficiently than signed numeric items.
The following example shows how unsigned numeric items can cause errors.

Numeric Data Handling 4-1

DATA DIVISION

01 A PIC 9(5) COMP VALUE 2.
01 B PIC 9(5) COMP VALUE 5.

Then:

SUBTRACT B FROM A. (A = 3)
SUBTRACT 1 FROM A. (A = 2)
However:

COMPUTE A = (A - B) - 1 (A = 4)

The absence of signs for the numeric items A and B results in two different
answers after parallel arithmetic operations have been done. This occurs because
internal temporaries (required by the COMPUTE statement) are signed. Thus,
the result of (A-B) within the COMPUTE statement is —3; -3 and -1 is —4 and
the value of A then becomes 4.

4.3 Invalid Values in Numeric ltems

All VAX COBOL arithmetic operations store valid values in their result items.
However, it is possible to store data in numeric items that do not conform to
the data definitions of those items. For example, you can place signed values
into unsigned items and place nonnumeric or improperly signed data into signed
numeric display items. This can happen when you use invalid input data or
redefined items or perform group moves.

The results of arithmetic operations that use invalid data in numeric items are
undefined.

4.4 Evaluating Numeric Iltems

VAX COBOL provides several kinds of conditional expressions used for evaluating
numeric items. These conditional expressions include the following:

¢ The numeric relation condition that compares the item’s contents to another
numeric value

* The sign condition that examines the item’s sign to see if it is positive or
negative

¢ The class condition that inspects the item’s digit positions for valid numeric
characters

¢ The success/failure condition that checks the return status codes of COBOL
and non-COBOL procedures for success or failure conditions

The following sections explain these conditional expressions in detail.

4.4.1 Numeric Relation Tests

A numeric relation test compares two numeric quantities and determines if the
specified relation between them is true. For example, the following statement
compares item FIELD1 to item FIELD2 and determines if the numeric value of
FIELDL1 is greater than the numeric value of FIELD2.

4-2 Numeric Data Handling

IF FIELDl1 > FIELD2 ...

If the relation condition is true, the program control takes the true path of the
statement.

Table 4-1 describes the relational operators.

Table 4-1: Numeric Relational Operator Descriptions

Operator Description

IS [NOT] GREATER THAN The first operand is greater than (or not greater
IS [NOT] > than) the second operand.

IS [NOT] LESS THAN The first operand is less than (or not less than)
IS [NOT] < the second operand.

IS [NOT] EQUAL TO The first operand is equal to (or not equal to) the
IS [NOT] = second operand.

IS GREATER THAN OR The first operand is greater than or equal to the
EQUAL TO second operand.

IS >=

IS LESS THAN OR EQUAL TO The first operand is less than or equal to the

IS <= second operand.

Comparison of two numeric operands is valid regardless of their USAGE clauses.

The length of the literal or arithmetic expression operands (in terms of the
number of digits represented) is not significant. Zero is a unique value, regardless
of the sign.

Unsigned numeric operands are assumed to be positive for comparison. The
results of relation tests involving invalid (nonnumeric) data in a numeric item are
undefined.

4.4.2 Numeric Sign Tests

The sign test compares a numeric quantity to zero and determines if it is greater
than (positive), less than (negative), or equal to zero. Both the relation test and
the sign test can perform this function. For example, consider the following
relation test:

IF FIELD1 > 0 ...
Now consider the following sign test:
IF FIELD1 POSITIVE ..

Both of these tests accomplish the same thing and always arrive at the same
result. The sign test, however, shortens the statement and makes it more obvious
that the sign is being tested.

If the item being tested contains a sign (whether carried as an overpunched
character or as a separate character), the test checks it for a valid sign value.

If the character position carrying the sign contains an invalid sign value, the
NUMERIC class test rejects the item, and program control takes the false path of
the IF statement.

Numeric Data Handling 4-3

Table 4-2 shows the sign tests and their equivalent relation tests.

Table 4-2: Sign Tests

Sign Test Equivalent Relation Test
IF FIELD1 POSITIVE ... IF FIELD1 >0 ...

IF FIELD1 NOT POSITIVE ... IF FIELD1 NOT >0...

IF FIELD1 NEGATIVE ... IF FIELD1 <O ...

IF FIELD1 NOT NEGATIVE ... IF FIELD1 NOT <0 ...

IF FIELD1 ZERO ... IF FIELD1 =0 ...

IF FIELD1 NOT ZERO ... IF FIELD1 NOT =0 ...

Sign tests do not execute faster or slower than relation tests because the compiler
substitutes the equivalent relation test for every correctly written sign test.

4.4.3 Numeric Class Tests

The class test inspects an item to determine if it contains numeric or alphabetic
data. For example, the following statement determines if FIELD1 contains
numeric data:

IF FIELD1 IS NUMERIC .

If the item is numeric, the test condition is true, and program control takes the
true path of the statement.

Both relation and sign tests determine only if an item’s contents are within a
certain range. Therefore, certain items in newly prepared data can pass both the
relation and sign tests and still contain data preparation errors.

The NUMERIC class test checks alphanumeric or numeric DISPLAY or COMP-3
usage items for valid numeric digits.

The ALPHABETIC class test check is not valid for an operand described as
numeric.

4.4.4 Success/Failure Tests

The success/failure condition tests the return status codes of COBOL and
non-COBOL procedures for success or failure conditions.

You can use the SET statement to initialize or alter the status of
status-code-id, which must be a word or longword COMP integer.

The SUCCESS class condition is true if you specify that the status-code-id
IS SUCCESS. The FAILURE class condition is true if you specify that the
status-code-id IS FAILURE.

Example 4-1 shows a success/failure test.

4-4 Numeric Data Handling

Example 4-1: Success/Failure Test

IDENTIFICATION DIVISION.

PROGRAM-ID. MAIN-PROG.

DATA DIVISION.

WORKING-STORAGE SECTION.

ol RETURN-STATUS PIC S9(9) COMP.
PROCEDURE DIVISION.

CALL "PROG-1" GIVING RETURN-STATUS.
IF RETURN-STATUS IS FAILURE PERFORM FAILURE-ROUTINE.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-1.

WORKING-STORAGE SECTION.
01 RETURN-STATUS PIC S9(9) COMP.

PROCEDURE DIVISION GIVING RETURN-STATUS.

IF NUM-1 = NUM-2

SET RETURN-STATUS TO SUCCESS
ELSE

SET RETURN-STATUS TO FAILURE.

EXIT PROGRAM.
END PROGRAM PROG-1.
END PROGRAM MAIN-PROG.

4.5 Using the MOVE Statement

The MOVE statement moves the contents of one item into another item. The
following sample MOVE statement moves the contents of item FIELD1 into item
FIELD2:

MOVE FIELD1 TO FIELD2.

This section considers MOVE statements as applied to numeric and numeric
edited data items.

4.5.1 Elementary Numeric Moves

If both items of a MOVE statement are elementary items and the receiving item
is numeric, it is an elementary numeric move. The sending item can be either
numeric or alphanumeric. The elementary numeric move converts the data
format of the sending item to the data format of the receiving item.

Numeric Data Handling 4-5

An alphanumeric sending item can be either of the following:
* An elementary data item

* Any alphanumeric literal other than the figurative constants SPACE,
QUOTE, LOW-VALUE, or HIGH-VALUE

The elementary numeric move accepts the figurative constant ZERO and
considers it to be equivalent to the numeric literal 0. It treats alphanumeric
sending items as unsigned integers of DISPLAY usage.

If necessary, the numeric move operation converts the sending item to the data
format of the receiving item and aligns the sending item’s decimal point on that of
the receiving item. Then it moves the sending item’s digits to the corresponding
receiving item’s digits.

If the sending item has more digit positions than the receiving item, the decimal
point alignment operation truncates the sending item, with resulting loss of
digits.

The end truncated (high-order or low-order) depends upon the number of sending

item digit positions that find matches on each side of the receiving item’s decimal
point.

If the receiving item has fewer digit positions on both sides of the decimal point,
the operation truncates both ends of the sending item. Thus, if an item described
as PIC 999V999 is moved to an item described as PIC 99V99, it loses one digit
from the left end and one from the right end.

In the following example, the caret () indicates the assumed decimal scaling
position:

01 AMOUNT1 PIC 99V99 VALUE ZEROS.

MOVE 123.321 TO AMOUNTI1.

Before execution: 00700
After execution: 23732

If the sending item has fewer digit positions than the receiving item, the move
operation supplies zeros for all unfilled digit positions. The caret (*) indicates
the assumed stored decimal scaling position:

01 TOTAL-AMT PIC 999V99 VALUE ZEROS.

MOVE 1 TO TOTAL-AMT.
Before execution: 000700
After execution: 001700
The following statements produce the same results:
MOVE 001.00 TO TOTAL-AMT.
MOVE "1" TO TOTAL-AMT.

Consider the following two MOVE statements and their truncating and
zero-filling effects:

Statement TOTAL-AMT After Execution
MOVE 00100 TO TOTAL~AMT 100700
MOVE "00100" TO TOTAL-AMT 100700

4-6 Numeric Data Handling

Literals with leading or trailing zeros have no advantage in space or execution
speed in VAX COBOL, and the zeros are often lost by decimal point alignment.

The MOVE statement’s receiving item dictates how the sign will be moved. When
the receiving item is a signed numeric item, the sign from the sending item is
placed in it. If the sending item is unsigned, a positive sign is placed in the
receiving item.

4.5.2 Elementary Numeric Edited Moves

An elementary numeric move to a numeric edited receiving item is considered an
elementary numeric edited move. The sending item of an elementary numeric
edited move can be either numeric or alphanumeric. When the sending item is
numeric edited, de-editing is implied to establish the item’s unedited numeric
value, which may be signed; then the unedited numeric value is moved to

the receiving field. Alphanumeric sending items in numeric edited moves are
considered unsigned DISPLAY usage integers.

A numeric edited item PICTURE can contain 9, V, and P, but to qualify as
numeric edited, it must also contain one or more of the other editing symbols: Z,
B, and the asterisk (*). For a complete listing and description of these symbols
see the VAX COBOL Reference Manual.

The numeric edited move operation first converts the sending item to DISPLAY
usage and aligns both items on their decimal point locations. The sending item
is truncated or zero-filled until it has the same number of digit positions on both
sides of the decimal point as the receiving item. The operation then moves the
sending item to the receiving item, following the VAX COBOL editing rules.

The rules allow the numeric edited move operation to perform any of the following
editing functions:

* Suppress leading zeros with either spaces or asterisks

* Float a currency sign and a plus or minus sign through suppressed zeros,
inserting the sign at either end of the item

¢ Insert zeros and spaces

¢ Insert commas and a decimal point (or decimal points and a comma if
DECIMAL-POINT IS COMMA)

Table 4-3 illustrates several of these functions, which are invoked by the

statement:

MOVE FLD-B TO TOTAL-AMT.

Assume that FLD-B is described as S9999V99. Note that the caret (/) indicates
an assumed decimal point. Also, overpunch signs (the sign of the number encoded
into the rightmost digit) are used in two FLD-B data examples.

Numeric Data Handling 4-~7

Table 4-3:

Numeric Editing

FLD-B TOTAL-AMT
PICTURE String Contents After MOVE

0023700 77.7.7.99 23.00
0085"9P ++++.99 -85.97
1234700 7,227.99 1,234.00
0012734 $,$$$.99 $12.34
0000134 $,$$9.99 $0.34
1234700 $$,$$$.99 $1,234.00
0012734 $$9,999.99 $0,012.34
0012734 $$$$,$$$.99 $12.34
0000700 $$$,$$$.8$
001223M ++++.99 -12.34
001234 G ik 9Q Grewrin]9 34
1234756 7.,777,.99+ 1,234.56+

6543721 $,$ $$,$$$.99DB $6,543.21DB*

IThe output includes DB if a negative value is moved.

The currency symbol ($ or other currency sign) and the editing sign control
symbols (+ and —) are the only floating symbols. To float a symbol, enter a string
of two or more occurrences of that symbol, one for each character position over
which you want the symbol to float.

4.5.3 Common Move Errors

Programmers most commonly make the following errors when writing MOVE

statements:

¢ Placing an incorrect number of replacement characters in a numeric edited

item

¢ Moving nonnumeric data into numeric items with group moves

* Trying to float the currency sign ($) or plus (+) insertion characters past
the decimal point to force zero values to appear as .00 instead of spaces (use
$$.99 or .99)

¢ Forgetting that the currency sign ($) or plus sign (+) insertion characters
require an additional position on the leftmost end that cannot be replaced by
a digit (unlike the asterisk (*) insertion character, which can be completely
replaced)

4.6 Using the Arithmetic Statements

The VAX COBOL arithmetic statements allow programs to perform arithmetic
operations on numeric data. The following sections explain how to use these

statements.

4-8 Numeric Data Handling

4.6.1 Intermediate Results

Most forms of the arithmetic statements perform their operations in temporary
work locations, then move the results to the receiving items, aligning the decimal
points and truncating or zero-filling the resultant values. This temporary work
item, called the intermediate result item, has a maximum size of 26 numeric
digits. The actual size of the intermediate result varies for each statement; it

is determined at compile time, based on the sizes of the operands used by the
statement.

When the compiler determines that the size of the intermediate result exceeds
26 digits, it uses a software floating-point intermediate item and keeps the most
significant 26 digits, bypassing leading zeros. If possible, do fewer complex
arithmetic operations that use intermediate temporaries. (See Section 4.6.6.)

4.6.2 Specifying a Truncation Qualifier

The /INOJTRUNCATE compile-time qualifier specifies how the VAX COBOL
compiler stores values in COMPUTATIONAL receiving items if high-order
truncation is necessary.

By default YNOTRUNCATE), VAX COBOL truncates values according to the VAX
hardware storage unit (word, longword, or quadword) allocated to the receiving
item.

If you specify the /TRUNCATE option, the compiler truncates values according to
the number of decimal digits specified by the PICTURE size.

4.6.3 Using the ROUNDED Phrase

Rounding is an important option that you can use with arithmetic operations.

You can use the ROUNDED phrase with any VAX COBOL arithmetic statement.
Rounding takes place only when the ROUNDED phrase requests it—and then
only if the intermediate result has more low-order digits than the result.

VAX COBOL rounds off by adding a 5 to the leftmost truncated digit of the
absolute value of the intermediate result before it stores that result.

Table 4—4 shows several ROUNDING examples.

Table 4-4: ROUNDING

PICTURE clause Initial Value
03 ITEMA PIC S9(5)V9999. 12345.2222
03 ITEMB PIC S9(5)V99. 54321.11

03 ITEMC PIC S9999. ‘ 4321

03 ITEME PIC S99V99 VALUE 9. 9.0

03 ITEMF PIC S99V99 VALUE 24. 24.00

{continued on next page)

Numeric Data Handling 4-9

Table 4-4 (Cont.): ROUNDING

PICTURE clause Initial Value

Arithmetic Statement Intermediate ROUNDED
Results Result

ADD ITEMA TO ITEMB ROUNDED. 066666.3322 66666.33

MULTIPLY ITEMC BY 10 043210 0432

GIVING ITEMD ROUNDED.

DIVIDE ITEME INTO ITEMF 02.666 02.67

ROUNDED.

4.6.3.1 ROUNDED with REMAINDER

The remainder computation uses an intermediate field that is truncated, rather
than rounded, when you use the DIVIDE statement with both the ROUNDED
and REMAINDER options.

4.6.4 Using the SIZE ERROR Phrase

The SIZE ERROR phrase detects the loss of high-order nonzero digits in the
results of VAX COBOL arithmetic operations.

You can use the phrase in any VAX COBOL arithmetic statement.

When the execution of a statement with no SIZE ERROR phrase results in a
size error, the high-order digits are truncated and the results are stored without
notifying the user. When the same statement includes a SIZE ERROR phrase,
the entire result is discarded without altering the receiving items in any way; the
SIZE ERROR imperative phrase is then executed.

If the statement contains both ROUNDED and SIZE ERROR phrases, the result
is rounded before a size error check is made.

The SIZE ERROR phrase cannot be used with numeric MOVE statements. Thus,
if a program moves a numeric quantity to a smaller numeric item, it can lose
high-order digits. For example, consider the following move of an item to a
smaller item:

01 AMOUNT-A PIC S9(8)V99.
01 AMOUNT-B PIC S9(4)V99.

MOVE AMOUNT-A TO AMOUNT-B.

This MOVE operation always loses four of AMOUNT-A’s high-order digits. The
statement can be tailored either of two ways, as shown in the following example,
to determine whether these digits are zero or nonzero.

1. IF AMOUNT-A NOT > 9999.99
MOVE AMOUNT-A TO AMOUNT-B
ELSE ...

2. ADD ZERO AMOUNT-A GIVING AMOUNT-B
ON SIZE ERROR ...

Both alternatives allow the MOVE operation to occur only if AMOUNT-A loses
no significant digits. If the value in AMOUNT-A is too large, both avoid altering
AMOUNT-B and take the alternate execution path.

4-10 Numeric Data Handling

You can also use a NOT ON SIZE ERROR phrase to branch to, or perform
sections of code only when no size error occurs.

4.6.5 Using the GIVING Phrase

The GIVING phrase moves the intermediate result of an arithmetic operation
to a receiving item. The phrase acts exactly like a MOVE statement in which
the intermediate result serves as the sending item, and the data item following
the word GIVING serves as the receiving item. When a statement contains a
GIVING phrase, you can have a numeric edited receiving item.

The GIVING phrase can be used with the ADD, SUBTRACT, MULTIPLY, and
DIVIDE statements. For example:

ADD A,B GIVING C.

4.6.6 Multiple Operands in ADD and SUBTRACT Statements

Both the ADD and SUBTRACT statements can contain a series of operands
preceding the word TO, FROM, or GIVING.

If there are multiple operands in either of these statements, the operands are
added together. The intermediate result of that operation becomes a single
operand to be added to, or subtracted from, the receiving item. In the following
examples, TEMP is an intermediate result item:

1. Statement: ADD AB,C,)D, TO E,F,G,H.

Equivalent coding: ADD AB, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING TEMP.
ADD TEMP, E, GIVING E.
ADD TEMP, F, GIVING F.
ADD TEMP, G, GIVING G.
ADD TEMP, H, GIVING H.

2. Statement: SUBTRACT A, B, C, FROM D.
Equivalent coding: ADD A, B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
SUBTRACT TEMP FROM D, GIVING D.
3. Statement: ADD A,B,C,D, GIVING E.
Equivalent coding: ADD A,B, GIVING TEMP.

ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING E.

As in all VAX COBOL statements, the commas in these statenients are optional.

4.6.7 Common Errors in Arithmetic Statements

Programmers most commonly make the following errors when using arithmetic
statements:

¢ Using an alphanumeric item in an arithmetic statement. The MOVE
statement allows data movement between alphanumeric items and certain
numeric items, but arithmetic statements require that all items be numeric.

¢ Writing the ADD or SUBTRACT statements without the GIVING phrase, and
attempting to put the result into a numeric edited item.

Numeric Data Handling 4-11

* Subtracting a 1 from a numeric counter that was described as an unsigned
quantity and then testing for a value less than zero.

* Forgetting that the MULTIPLY statement, without the GIVING phrase,
stores the result back into the second operand (multiplier).

e Performing a series of calculations that generates an intermediate result
larger than 26 digits when the final result will have 18 or fewer digits. You
can prevent this problem by interspersing divisions with multiplications or
by dropping nonsignificant digits after multiplying large numbers or numbers
with many decimal places.

¢ Performing an operation on an item that contains a value greater than
the precision of its data description. This can happen only if the item was
overwritten by a group move or redefinition.

e Forgetting that you must specify the ROUNDED phrase for each item in an
arithmetic statement containing multiple receiving items.

* Forgetting that the ON SIZE ERROR phrase applies to all receiving items
in an arithmetic statement containing multiple receiving items. Only those
receiving items for which a size error condition is raised are left unaltered.
The ON SIZE ERROR imperative statement is executed after all the receiving
items are processed.

¢ Controlling a loop by adding to a numeric counter that was described as
PIC 9, and then testing for a value of 10 or greater to exit the loop.

e Forgetting that ROUNDING is done before the ON SIZE ERROR test.

4.7 Arithmetic Expression Processing

VAX COBOL provides the arithmetic statements ADD, SUBTRACT, MULTIPLY,
DIVIDE, and COMPUTE, and the facilities of arithmetic expressions using the +,
—, %, /, and ** operators. You can perform a given arithmetic computation in any
of several ways. For example, if you want to compute a salesman’s total yearly
sales as the sum of the four individual sales quarters, you might use this sample
code:

MOVE 1ST-SALES TO TEMP.

ADD 2ND-SALES TO TEMP.
ADD 3RD-SALES TO TEMP.
ADD 4TH-SALES TO TEMP, GIVING TOTAL-SALES.

In this example, a series of single ADD statements computes the final value of
TOTAL-SALES by holding the partial sums in a temporary location called TEMP,
which you defined in the Data Division of the program. You specify the class,
usage, and number of integer and decimal places to be maintained.

Another possible solution to the problem is as follows:

4-12 Numeric Data Handling

ADD 1ST-SALES, 2ND-SALES, 3RD-SALES, 4TH-SALES
: GIVING TOTAL-SALES.

In this example, the program computes TOTAL-SALES using a single ADD
statement. As in the previous example, an intermediate result is required to
develop the partial sums of the four quarterly sales quantities. However, in this
example, the compiler defines the intermediate result in a manner transparent to
the source program. It allocates storage for and assigns various attributes to this
result according to the rules defined by VAX COBOL. For more information refer
to the VAX COBOL Reference Manual.

In the next example, consider another computational method:
COMPUTE TOTAL-SALES = 1ST-SALES + 2ND-SALES + 3RD-SALES + 4TH-SALES.

This sample coding uses a single COMPUTE statement with an embedded
arithmetic expression. Again, an intermediate result is required and is defined by
the compiler. The compiler generates the intermediate result using the following
rule:

Arithmetic operations are combined without restrictions on composites
of operands and/or receiving items.

(See information about arithmetic operations and rules in the VAX COBOL
Reference Manual.)

Numeric Data Handling 4-13

Chapter 5

Nonnumeric Data Handling

COBOL programs hold their data in items whose sizes are described in their
source programs. The size of these items is thus fixed during compilation for the
lifespan of the resulting object program.

Items in a COBOL program belong to any of three data classes—alphanumeric,
alphabetic, or numeric. Numeric items contain only numeric values. Alphabetic
items contain only A to Z (uppercase or lowercase) and space characters.
Alphanumeric items can contain the following types of values:

e All alphabetic

¢ All numeric

¢ A mixture of alphabetic and numeric

¢ Any character from the ASCII character set

The data description of an item specifies which class that item belongs to.

Classes are further subdivided into categories. Alphanumeric items can be
numeric edited, alphanumeric edited, or alphanumeric. Every elementary item,
except for an index data item, belongs to one of the classes and its categories.
The class of a group item is treated as alphanumeric regardless of the classes of
subordinate elementary items.

If the data description of an alphanumeric item specifies that certain editing
operations be performed on any value that is moved into it, that item is called an
alphanumeric edited or a numeric edited item.

As you read this chapter, keep in mind the distinction between the class or
category of a data item and the actual value that the item contains.

Sometimes the text refers to alphabetic, alphanumeric, and alphanumeric edited
data items as nonnumeric data items to distinguish them from items that are
specifically numeric.

Regardless of the class of an item, it is usually possible at run time to store an
invalid value in the item. Thus, nonnumeric ASCII characters can be placed
in an item described as numeric, and an alphabetic item can be loaded with
nonalphabetic characters.

5.1 Data Organization
A VAX COBOL record consists of a set of data description entries that describe

record characteristics; it must have an 01 or 77 level number. A data description
entry can be either a group item or an elementary item.

Nonnumeric Data Handling 5-1

All of the records used by VAX COBOL programs (except for certain registers
and switches) must be described in the Data Division of the source program.
The compiler allocates memory space for these items (except for Linkage Section
items) and fixes their size at compilation time.

The following sections explain how the compiler handles group and elementary
data items.

5.1.1 Group ltems

A group item is a data item that is followed by one or more elementary items or
other group items, all of which have higher-valued level numbers than the group
to which they are subordinate.

The size of a group item is the sum of the sizes of its subordinate elementary
items. The compiler considers all group items to be alphanumeric DISPLAY items
regardless of the class and usage of their subordinate elementary items.

5.1.2 Elementary ltems

An elementary item is a data item that has no subordinate data item.

The size of an elementary item is determined by the number of symbols that
represent character positions contained in the PICTURE character-string. For
example, consider this record description:

01 TRANREC.
03 FIELD-1 PIC X(7).
03 FIELD-2 PIC S9(5)V99.

Both elementary items require seven bytes of memory; however, item FIELD-1
contains seven alphanumeric characters while item FIELD-2 contains seven
decimal digits, an operational sign, and an implied decimal point. Operations on
such items are independent of the mapping of the item into memory words (32-bit
words that hold four 8-bit bytes). An item can begin in the leftmost or rightmost
byte of a word with no effect on the function of any operations that refer to that
item.

In effect, the compiler sees memory as a continuous array of bytes, not words.
This becomes particularly important when you are defining a table using the
OCCURS clause (see Chapter 6).

Records, and elementary items with a 77 level number automatically begin on a
longword boundary (multiple of 4 bytes).

5.2 Special Characters

VAX COBOL allows you to handle any of the 128 characters of the ASCII
character set as alphanumeric data, even though many of the characters

are control characters, which usually direct input/output devices. Generally,
alphanumeric data manipulations attach no meaning to the 8th bit of an 8-bit
byte. Thus, you can move and compare these control characters in the same
manner as alphabetic and numeric characters.

Although the object program can manipulate all ASCII characters, certain control
characters cannot appear in nonnumeric literals since the compiler uses them to
delimit the source text.

5-2 Nonnumeric Data Handling

You can place special characters into items of the object program by defining
symbolic characters in the SPECIAL-NAMES paragraph or by using the
EXTERNAL clause. See the VAX COBOL Reference Manual for information on
these two topics.

The ASCII character set listed in the VAX COBOL Reference Manual indicates
the decimal value for any ASCII character.

5.3 Testing Nonnumeric ltems

The following sections describe the relation and class tests as they apply to
nonnumeric items.

5.3.1 Relation Tests of Nonnumeric ltems

An IF statement with a relation condition (greater than, less than, equal to) can
compare the value in a nonnumeric data item with another value and use the
result to alter the flow of control in the program.

An IF statement with a relation condition compares two operands. Either of
these operands can be an identifier or a literal, but they cannot both be literals.
If the stated relation exists between the two operands, the relation condition is
true.

When coding a relational operator, leave a space before and after each reserved
word. When the reserved word NOT is present, the compiler considers it and the
next key word or relational character to be a single relational operator defining
the comparison. Table 5-1 shows the meanings of the relational operators.

Table 5-1: Relational Operator Descriptions

Operator Description

IS [NOT] GREATER THAN The first operand is greater than (or not greater
IS [NOT] > than) the second operand.

IS [NOT] LESS THAN The first operand is less than (or not less than) the
IS [NOT] < second operand.

IS [NOT] EQUAL TO The first operand is equal to (or not equal to) the
IS [NOT] = second operand.

IS GREATER THAN OR The first operand is greater than or equal to the
EQUAL TO second operand.

IS >= ‘

IS LESS THAN OR EQUAL TO The first operand is less than or equal to the second
IS <= operand.

5.3.1.1 Classes of Data

VAX COBOL allows comparison of both numeric class operands and nonnumeric
class operands; however, it handles each class of data differently. For example, it
allows a comparison of two numeric operands regardless of the formats specified
in their respective USAGE clauses, but it requires that all other comparisons
(including comparisons of any group items) be between operands with the same
usage. It compares numeric class operands with respect to their algebraic values
and nonnumeric (or numeric and nonnumeric) class operands with respect to a
specified collating sequence.

Nonnumeric Data Handling 5-3

~ If only one of the operands is numeric, it must be an integer data item or an
integer literal, and it must be DISPLAY usage. The manner in which the compiler
handles numeric operands depends on the nonnumeric operand.

¢ If the nonnumeric operand is an elementary item or a literal, the compiler
treats the numeric operand as if it had been moved into an alphanumeric
data item the same size as the numeric operand and then compared. This
causes any operational sign, whether carried as a separate character or as
an overpunched character, to be stripped from the numeric item so that it
appears to be an unsigned quantity.

In addition, if the PICTURE character-string of the numeric item contains
trailing P characters, indicating that there are assumed integer positions that
are not actually present, they are filled with zero digits. Thus, an item with
a PICTURE character-string of S9999PPP is moved to a temporary location
where it is described as 9999999. If its value is 432J (—4321), the value in
the temporary location will be 4321000. The numeric digits take part in the
comparison.

¢ If the nonnumeric operand is a group item, the compiler treats the numeric
operand as if it had been moved into a group item the same size as the
numeric operand and then compared. This is equivalent to a group move.

The compiler ignores the description of the numeric item (except for length)
and, therefore, includes in its length any operational sign, whether carried as
a separate character or as an overpunched character. Overpunched characters
are never ASCII numeric digits. They are characters ranging from A to R,
left brace ({), or right brace (}). Thus, the sign and the digits, stored as
ASCII bytes, take part in the comparison, and zeros are not supplied for P
characters in the PICTURE character-string.

The compiler does not accept a comparison between a noninteger numeric operand
and a nonnumeric operand. If you try to compare these two items, you receive a
diagnostic message at compile time.

5.3.1.2 Comparison Operations

If the two operands are acceptable, the compiler compares them character by
character. The compiler starts at the first byte and compares the corresponding
bytes until it either encounters a pair of unequal bytes or reaches the last byte of
the longer operand.

If the compiler encounters a pair of unequal characters, it considers their relative
position in the collating sequence. The operand with the character that is
positioned higher in the collating sequence is the greater operand.

If the operands have different lengths, the comparison proceeds as though the
shorter operand is extended on the right by sufficient ASCII spaces (decimal 32)
to make both operands the same length.

If all character pairs are equal, the operands are equal.

5.3.2 Class Tests for Nonnumeric ltems

An IF statement with a class condition (NUMERIC or ALPHABETIC) tests the
-value in a nonnumeric data item (USAGE DISPLAY only) to determine whether
it contains numeric or alphabetic data and uses the result to alter the flow of
control in the program. For example:

5—4 Nonnumeric Data Handling

IF ITEM-1 IS NUMERIC...
IF ITEM-2 IS ALPHABETIC...
IF ITEM-3 IS NOT NUMERIC...

If the data item consists entirely of the ASCII characters 0 to 9, with or without
the operational sign, the class condition is NUMERIC. If the item consists

entirely of the ASCII characters A to Z (upper- or lowercase) and spaces, the class
condition is ALPHABETIC.

The ALPHABETIC-LOWER test is true if the operand contains any combination
of the lowercase alphabetic characters a to z, and the space. Otherwise the test is
false. '

The ALPHABETIC-UPPER test is true if the operand contains any combination
of the uppercase alphabetical characters A to Z, and the space. Otherwise, the
test is false.

You can also perform a class test on a data item that you define with the CLASS
clause of the SPECIAL-NAMES paragraph.

A class test is true if the operand consists entirely of the characters listed in the
definition of the CLASS-NAME in the SPECIAL-NAMES paragraph. Otherwise,
the test is false.

When the reserved word NOT is present, the compiler considers it and the
next key word as one class condition defining the class test to be executed.
For example, NOT NUMERIC determines if an operand contains at least one
nonnumeric character.

If the item being tested is described as a numeric data item, it can only be tested
as NUMERIC or NOT NUMERIC. The NUMERIC test cannot examine either of
the following:

* An item described as alphabetic

e A group item containing elementary items whose data descriptions indicate
the presence of operational signs

For further information on using class conditions with numeric items, refer to the
VAX COBOL Reference Manual.

5.4 Data Movement

Three VAX COBOL statements (MOVE, STRING, and UNSTRING) perform most
of the data movement operations required by business-oriented programs. The
MOVE statement simply moves data from one item to another. The STRING
statement concatenates a series of sending items into a single receiving item. The
UNSTRING statement disperses a single sending item into multiple receiving
items. Section 5.5 describes the MOVE statement. Chapter 7 describes STRING
and UNSTRING.

The MOVE statement handles most data movement operations on character
strings. However, it is limited in its ability to handle multiple items. For
example, it cannot, by itself, concatenate a series of sending items into a single
receiving item or disperse a single sending item into several receiving items.

Two MOVE statements will, however, bring the contents of two items together
into a third (receiving) item if the receiving item has been subdivided with
subordinate elementary items that match the two sending items in size. If other
items are to be concatenated into the third item, and they differ in size from the
first two items, then the receiving item requires additional subdivisions (through
redefinition).

Nonnumeric Data Handling 5-5

Example 5~1 demonstrates item concatenation using two MOVE statements.

Example 5-1: Item Concatenation Using Two MOVE Statements

01 SEND-1 PIC X(5) VALUE "FIRST".
01 SEND-2 PIC X(6) VALUE "SECOND™.
01 RECEIVE~GROUP.

05 REC-1 PIC X (5).

05 REC-2 PIC X(6).
PROCEDURE DIVISION.
AQ0-BEGIN.

MOVE SEND-1 TO REC-1.
MOVE SEND-2 TO REC-2.
DISPLAY RECEIVE-GROUP.
STOP RUN.

The result of the concatenation follows:
FIRSTSECOND

Two MOVE statements can also disperse the contents of one sending item to
several receiving items. The first MOVE statement moves the leftmost end of
the sending item to a receiving item; then the second MOVE statement moves
the rightmost end of the sending item to another receiving item. (The second
receiving item must first be described with the JUSTIFIED clause.) Characters
from the middle of the sending item cannot easily be moved to any receiving item
without extensive redefinitions of the sending item or a reference modification
loop (as with concatenation).

The STRING and UNSTRING statements handle concatenation and dispersion
more easily than compound moves. Reference modification handles substring
operations more easily than compound moves, STRING, or UNSTRING.

5.5 Using the MOVE Statement

The MOVE statement moves the contents of one item into another. For example:

MOVE FIELD1 TO FIELD2
MOVE CORRESPONDING FIELD1 TO FIELD2

FIELD1 is the sending item name, and FIELD2 is the receiving item name.

The first statement causes the compiler to move the contents of FIELD1 into
FIELD2. The two items need not be the same size, class, or usage; they can be
either group or elementary items. If the two items are not the same length, the
compiler aligns them on one end or the other. It also truncates or space-fills the
other end. The movement of group items and nonnumeric elementary items is
discussed in Section 5.5.1 and Section 5.5.2, respectively.

The MOVE statement alters the contents of every character position in the
receiving item.

5-6 Nonnumeric Data Handling

5.5.1 Group Moves

If either the sending or receiving item is a group item, the compiler considers the
move to be a group move. It treats both the sending and receiving items as if
they are alphanumeric items.

If the sending item is a group item, and the receiving item is an elementary item,
the compiler ignores the receiving item description except for the size description,
in bytes, and any JUSTIFIED clause. It conducts no conversion or editing on the
receiving item.

5.5.2 Elementary Moves

If both items of a MOVE statement are elementary items, their PICTURE
character-strings control their data movement. If the receiving item was
described as numeric or numeric edited, the rules for numeric moves control the
data movement (see Chapter 4). Nonnumeric receiving items are alphanumeric,
alphanumeric edited, or alphabetic.

Table 5-2 shows the valid and invalid nonnumeric elementary moves.

Table 5-2: Nonnumeric Elementary Moves

Receiving Item Category

Sending Item Category Alphanumeric
Alphabetic Alphanumeric Edited

ALPHABETIC Valid Valid
ALPHANUMERIC Valid Valid
ALPHANUMERIC EDITED Valid Valid

NUMERIC INTEGER Invalid Valid

(DISPLAY ONLY)

NUMERIC EDITED Invalid Valid

In all valid moves, the compiler treats the sending item as though it had been
described as PIC X(n). A JUSTIFIED clause in the sending item’s description has
no effect on the move. If the sending item’s PICTURE character-string contains
editing characters, the compiler uses them only to determine the item’s size.

In valid nonnumeric elementary moves, the receiving item controls the movement
of data. All of the following characteristics of the receiving item affect the move:

e Its size
¢ Editing characters in its description
¢ The JUSTIFIED RIGHT clause in its description

The JUSTIFIED clause and editing characters are mutually exclusive.

When an item that contains no editing characters or JUSTIFIED clause in its
description is used as the receiving item of a nonnumeric elementary MOVE
statement, the compiler moves the characters starting at the leftmost position
in the item and scans across, character by character, to the rightmost position.
If the sending item is shorter than the receiving item, the compiler fills the
remaining character positions with spaces. If the sending item is longer than the
receiving item, truncation occurs on the right.

Nonnumeric Data Handling 5-7

Numeric items used in nonnumeric elementary moves must be integers in
DISPLAY format.

If the description of the numeric data item indicates the presence of an
operational sign (either as a character or an overpunched character), or if

there are P characters in its character-string, the compiler first moves the item to
a temporary location. It removes the sign and fills out any P character positions
with zero digits. It then uses the temporary value as the sending item as if it
had been described as PIC X(n). The temporary value can be shorter than the
original value if a separate sign was removed, or longer than the original value if
P character positions were filled in with zeros.

If the sending item is an unsigned numeric class item with no P characters in its
character-string, the MOVE is accomplished directly from the sending item, and
a temporary item is not required.

If the numeric sending item is shorter than the receiving item, the compiler fills
the receiving item with spaces.

5.5.2.1 Edited Moves
This section explains the following insertion editing characters:

B Blank insertion position
0 Zero insertion position
/ Slash insertion position

When an item with an insertion editing character in its PICTURE
character-string is the receiving item of a nonnumeric elementary MOVE
statement, each receiving character position corresponding to an editing character
receives the insertion byte value. Table 5-3 illustrates the use of such symbols
with the following statement, where FIELD1 is described as PIC X(7):

MOVE FIELD1 TO FIELD2

Table 5-3: Data Movement with Editingl Symbols

FIELD1 FIELD2
Character-String Contents After MOVE

070476 XX/99/XX 07/04/76

04JUL76 99BAAAB99 04sJULs76

2351212 XXXBXXXX/XX/ 235s1212/ss/

123456 0XB0XB0XB0X 01502503504

Legend: s = space

Data movement always begins at the left end of the sending item and moves
only to the byte positions described as A, 9, or X in the receiving item PICTURE
character-string. When the sending item is exhausted, the compiler supplies
space characters to fill any remaining character positions (not insertion positions)
in the receiving item. If the receiving item is exhausted before the last character
is moved from the sending item, the compiler ignores the remaining sending item
characters.

Any necessary conversion of data from one form of internal representation to
another takes place during valid elementary moves, along with any editing
specified for, or de-editing implied by, the receiving data item.

5-8 Nonnumeric Data Handling

5.5.2.2 Justified Moves

A JUSTIFIED RIGHT clause in the receiving item’s data description causes the
compiler to reverse its usual data movement conventions. It starts with the
rightmost characters of both items and proceeds from right to left. If the sending
item is shorter than the receiving item, the compiler fills the remaining leftmost
character positions with spaces. If the sending item is longer than the receiving
item, truncation occurs on the left. Table 5—4 illustrates various PICTURE
character-string situations for the following statement:

MOVE FIELD1 TO FIELD2

Table 5-4: Data Movement with the JUSTIFIED Clause

FIELD1 FIELD2
PICTURE
PICTURE Character-String Contents After
Character-String Contents (and JUST-Clause) ¥ MOVE
‘ XX AB
XXXXX ABCss
XXX ABC XX JUST BC
XXXXX JUST ssABC

Legend: s = space

If there is no JUSTIFIED clause, data movement follows the rules for aligning
data in elementary items.

5.5.3 Multiple Receiving ltems

If you write a MOVE statement containing more than one receiving item, the
compiler moves the same sending item value to each of the receiving items. It
has essentially the same effect as a series of separate MOVE statements, all with
the same sending item. For information on subscripted items, see Section 5.5.4.
Also, reference modification is evaluated immediately after subscripting or index
evaluation. Refer to the VAX COBOL Reference Manual for details on reference
modification.

The receiving items need have no relationship to each other. The compiler
checks the validity of each one independently and performs an independent move
operation on each one.

Multiple receiving items on MOVE statements provide a convenient way to set
many items equal to the same value, such as during initialization code at the
beginning of a section of processing. For example:

MOVE SPACES TO LIST-LINE, EXCEPTION-LINE, NAME-FLD.
MOVE ZEROS TO EOL-FLAG, EXCEPT-FLAG, NAME-FLAG.
MOVE 1 TO COUNT-1, CHAR-PTR, CURSOR.

Nonnumeric Data Handling 5-9

5.5.4 Subscripted Moves

Any item (other than a data item that is not subordinate to an OCCURS clause)
of a MOVE statement can be subscripted, and the referenced item can be used to
subscript another name in the same statement.

For example, when more than one receiving item is named in the same MOVE
statement, the order in which the compiler evaluates the subscripts affects the
results of the move. Consider the following examples:

MOVE FIELD1(FIELD2) TO FIELD2 FIELD3.

In this example, the compiler evaluates FIELD1(FIELD2) only once, before it
moves any data to the receiving items. It is as if the single MOVE statement
were replaced with the following three statements:

MOVE FIELD1 (FIELD2) TO TEMP.
MOVE TEMP TO FIELDZ.
MOVE TEMP TO FIELD3.

In the following example, the compiler evaluates FIELD3(FIELD2) immediately
before moving the data into it, but after moving the data from FIELD1 to
FIELD2.

MOVE FIELDl1 TO FIELD2 FIELD3(FIELD2).

Thus, it uses the newly stored value of FIELD2 as the subscript value. It is as if
the single MOVE statement were replaced with the following two statements:

MOVE FIELD1 TO FIELDZ2.
MOVE FIELD1 TO FIELD3(FIELD2).

5.5.5 Common Nonnumeric ltem MOVE Statement Errors

The compiler considers any MOVE statement that contains a group item (sending
or receiving) to be a group move. If an elementary item contains editing
characters or a numeric integer, these attributes of the receiving item, which
determine the action of an elementary move, have no effect on the action of a
group move,

5.5.6 Using the MOVE CORRESPONDING Statement for Nonnumeric Items

The MOVE CORRESPONDING statement allows you to move multiple items
from one group item to another group item, using a single MOVE statement. See
the VAX COBOL Reference Manual for rules concerning the CORRESPONDING
phrase. When you use the CORRESPONDING phrase, the compiler performs

an independent move operation on each pair of corresponding items from the
operands and checks the validity of each. Example 5-2 shows the use of the
MOVE CORRESPONDING statement.

The preceding MOVE CORRESPONDING statement is equivalent to the
~ following series of MOVE statements:

5-10 Nonnumeric Data Handling

Example 5-2: Sample Record Description Using the MOVE CORRESPONDING

Statement
01 A-GROUP. 01 B-GROUP.
02 FIELD1. 02 FIELDL.
03 A PIC X. 03 A PIC X.
03 B PIC 9. 03 C PIC XX.
03 C PIC XX. 03 E PIC XXX.
03 D PIC 99.

03 E PIC XXX.

MOVE CORRESPONDING
A-GROUP TO B-GROUP.

MOVE A OF A-GROUP TO A OF B-GROUP.
MOVE C OF A-GROUP TO C OF B-GROUP.
MOVE E OF A-GROUP TO E OF B~GROUP.

5.5.7 Using Reference Modification

You can use reference modification to define a subset of a data item by specifying
its leftmost character position and length. Reference modification is valid
anywhere an alphanumeric identifier is allowed unless specific rules for a general
format prohibit it. The following is an example of a reference modification:

WORKING-STORAGE SECTION.
01 ITEMA PIC X(10) VALUE IS "XYZABCDEFG".

MOVE ITEMA(4:3) TO...

IDENTIFIER VALUE
ITEMA (4:3) ABC

For more information on reference modification rules, refer to the VAX COBOL
Reference Manual.

Nonnumeric Data Handling 5-~11

Chapter 6

Table Handling

6.1 Introduction

This chapter discusses the procedures required to define, initialize, and access
tables accurately and efficiently.

A table is one or more repetitions of one element, comprised of one or more data
items, stored in contiguous memory locations. You define a table by using an
OCCURS clause following a data description entry. The literal integer value
you specify in the OCCURS clause determines the number of repetitions, or
occurrences, of the data description entry, thus creating a table. VAX COBOL
allows you to define from 1 to 48 dimensional tables.

After you have defined a table, you can load it with data. One way to load a table
is to use the INITIALIZE statement or the VALUE clause to assign values to the
table when you define it (see Figure 6-10).

To access data stored in tables, use subscripted or indexed procedural
instructions. In either case, you can directly access a known table element
occurrence or search for an occurrence based on some known condition.

6.2 Defining Tables

To define a table you specify an OCCURS clause in a data description entry.
You can define either fixed-length tables or variable-length tables. They may
furthermore be single or multidimensional. The following sections describe how
to use the OCCURS clause and its options.

6.2.1 Defining Fixed-Length, One-Dimensional Tables

To define fixed-length tables, use Format 1 of the OCCURS clause (refer to the
VAX COBOL Reference Manual). This format is useful when you are storing large
amounts of stable or frequently used reference data. Options allow you to define
single or multiple keys, or indexes, or both.

A definition of a one-dimensional table is shown in Example 6-1. The integer 2
in the OCCURS 2 TIMES clause determines the number of element repetitions.
For the table to have any real meaning, this integer must be equal to or greater
than 2.

The organization of TABLE-A is shown in Figure 6-1.

Table Handling 6-1

Example 6-1: One-Dimensional Table

01 TABLE-A.
05 1ITEM-B PIC X OCCURS 2 TIMES.

Example 6-2: Multiple Data ltems in a One-Dimensional Table

01 TABLE-A.
05 < GROUP-B OCCURS 2 TIMES.
10 ITEMC PIC X.
10 ITEMD PIC X.

Figure 6-1: Organization of the One-Dimensional Table in Example 6—1

Longword number 1

Byte number 1 2 314
Level 01 A

Level 05 B | B

Legend: A = TABLE-A
B = ITEM-B

ZK-6039-GE

Example 6-1 specifies only a single data item. However, you can specify as

many data items as you need in the table. Multiple data items are shown in
Example 6-2.

The organization of this table is shown in Figure 6-2.

6-2 Table Handling

Figure 6-2: Organization of Multiple Data ltems in a One-Dimensional Table

Longword number 1

Byte number 1 2 3] 4

Level 01 A

Level 05 B B

Level 10 c|{D}jC}|D

Legend: A = TABLE-A C=ITEMC
B = GROUP-B D = ITEMD

ZK-6040-GE

Example 6-1 and Example 6-2 both do not use the KEY IS or INDEXED BY
optional phrases. The INDEXED BY phrase implicitly defines an index name.
This phrase must be used if any Procedure Division statements contain indexed
references to the data name that contains the OCCURS clause. The KEY IS
phrase means that repeated data is arranged in ascending or descending order
according to the values in the data items that contain the OCCURS clause.
For further information on these OCCURS clause options, see the VAX COBOL
Reference Manual.

If you use either the SEARCH or the SEARCH ALL statement, you must specify
at least one index. The SEARCH ALL statement also requires that you specify
at least one key. Specify the search key using the ASCENDING/DESCENDING
KEY IS phrase. See Section 6.4.8 for information about the SEARCH statement
and Section 6.4.4 for information about indexing. When you use the INDEXED
BY phrase, the index is internally defined and cannot be defined elsewhere.
Example 6-3 defines a table with an ascending search key and an index.

Example 6-3: Defining a Table with an Index and an Ascending Search Key

01 TABLE-A.
05 ELEMENTB OCCURS 5 TIMES
ASCENDING KEY IS ITEMA
INDEXED BY INDX1.
10 ITEMC PIC X.
10 ITEMD PIC X.

Table Handling 6-3

The organization of this table is shown in Figure 6-3.

Figure 6-3: Organization of a Table with an Index and an Ascending Search

Key
Longword number 1 2 3
Byte number 0ojo|ojojojojojo}o
112[(3|4|5]|6|7 9|0
Level 01 TABLE-A
Level 05 B B B B
Level 10 c|p|c|p|c|p|c|p|c|Dp

Legend: B = ELEMENTB
C=ITEMC
D =ITEMD

ZK-6041-GE

6.2.2 Defining Fixed-Length, Multidimensional Tables

VAX COBOL allows 48 levels of OCCURS nesting. If you want to define a
two-dimensional table, you define another one-dimensional table within each
element of the one-dimensional table. To define a three-dimensional table, you

define another one-dimensional table within each element of the two-dimensional
table, and so on.

A two-dimensional table is shown in Example 6-4.

Example 6-4: Defining a Two-Dimensional Table

01 2D-TABLE-X.
05 LAYER-Y OCCURS 2 TIMES.
10 LAYER-Z OCCURS 2 TIMES.
15 CELLA PIC X.
15 CELLB PIC X.

6—4 Table Handling

The organization of this two-dimensional table is shown in Figure 6—4.

Figure 6—4: Organization of a Two-Dimensional Table

Longword number 1 2
Byte number 1[2]3|4]5]|6[7]s
Level 01 2D-TABLE-X
Level 05 LY LY
Level 10 LZ}|LZ]|LZ]| LZ
Level 15 A|B|A|BjA|B|A|B
Legend: LY = LAYER-Y A=CELLA
LZ = LAYER-Z B =CELLB
ZK-6042-GE

Example 6-5 shows a three-dimensional table.

Example 6-5: Defining a Three-Dimensional Table

01 TABLE-A.

05 LAYER-B OCCURS 2 TIMES.
10 ITEMC PIC X.

10 ITEMD PIC X OCCURS 3 TIMES.

10 ITEME OCCURS 2 TIMES.
15 CELLF PIC X.

15 CELLG PIC X OCCURS 3 TIMES.

The organization of this three-dimensional table is shown in Figure 6-5.

Table Handling 6-5

Figure 6-5: Organization of a Three-Dimensional Table

Longword number 1 2 3 4 5 6
Byte number olofofofofo|o|o|of1|1|1|1]1]1]|1]|1]1]1]|2]2]|2]|2]2
1|2|3|4|5|6|7|8|o|o|1]2]|3]|4|5|6|7[8]9|0|1|23]|4
Level 01 A
Level 05 B B
Level 10 c/p[p|p] E E |c|plpo|p|] E E
Level 15 Fla|a|c|F|c|a|a Flac|a|a|F|a|ala
Legend: A TABLE-A E ITEME
B LAYER-B F CELLF
C ITEMC G CELLG
D ITEMD
ZK-6043-GE

6.2.3 Defining Variable-Length Tables

To define a variable-length table, use Format 2 of the OCCURS clause (refer
to the VAX COBOL Reference Manual). Options allow you to define single or
multiple keys, or indexes, or both.

Example 6-6 illustrates how to define a variable-length table.

It uses from two to four occurrences depending on the integer value assigned
to NUM-ELEM. You specify the table’s minimum and maximum size with the
OCCURS (minimum size) TO (maximum size) clause. The minimum size value
must be equal to or greater than zero and the maximum size value must be
greater than the minimum size value. The DEPENDING ON clause is also
required when you use the TO clause.

The data-name of an elementary, unsigned integer data item is specified in the
DEPENDING ON clause. Its value specifies the current number of occurrences.
The data-name in the DEPENDING ON clause must be within the minimum to
maximum range.

Unlike fixed-length tables, you can dynamically alter the number of element
occurrences in variable-length tables.

By generating the variable-length table in Example 6-6, you are, in effect, saying:
“Build a table that can contain at least two occurrences, but no more than four
occurrences, and set its present number of occurrences equal to the value specified
by NUM-ELEM.” '

6-6 Table Handling

Example 6-6: Defining a Variable-Length Table

01 NUM-ELEM PIC 9.

01 VAR-LEN-TABLE.
05 TAB-ELEM OCCURS 2 TO 4 TIMES DEPENDING ON NUM-ELEM.

10 A PIC X.

10 B PIC X.

6.2.4 Storage Allocation for Tables

The compiler maps the table elements into memory, following mapping rules that
depend on the use of COMP, COMP-1, COMP-2, POINTER, and INDEX data
items in the table element and the presence or absence of the SYNCHRONIZED
(SYNC) clause with those data items.

The VAX COBOL compiler allocates storage for data items within records
according to the rules of the Major-Minor Equivalence technique. This technique
ensures that identically defined group items have the same structure, even when
their subordinate items are aligned. Therefore, group moves always produce
predictable results. For more information, refer to the description of record
allocation in the VAX COBOL Reference Manual.

Figure 6-6 shows how the table defined in Example 6—7 is mapped into memory.
NOTE

To determine exactly how much space your tables use, specify the
/MAP compiler qualifier. This gives you an offset map of both the Data
Division and the Procedure Division.

Table Handling 6-7

Example 6-7: Sample Record Description Defining a Table

01 TABLE-A.
03 GROUP-G PIC X(5) OCCURS 5 TIMES.

Figure 6-6: Memory Map for Example 6-7

Longword number 1 2 3 4 5 6 7

Byte number 0j0j0]0(10fj0j0j0]Of1|1j1]1111)1]1]1}1]2]2]2]2]2]2]|2
1{2|314[5]6]718|9]/0{1|2|3[4]|5(6]|7{8]910{1|2|3][4|5(6

Level 01 TABLE-A

Level 03 GROUP-G GROUP-G l GROUP-G GROUP-G GROUP-G

ZK-6050-GE

Alphanumeric data items require 1 byte of storage per character. Therefore, each
occurrence of GROUP-G occupies 5 bytes. The first byte of the first element is
automatically aligned at the left record boundary and the first 5 bytes occupy all
of word 1 and part of 2. A memory longword is comprised of 4 bytes. Succeeding
occurrences of GROUP-G are assigned to the next 5 adjacent bytes so that
TABLE-A is comprised of five 5-byte elements for a total of 25 bytes. Each table
element, after the first, is allowed to start in any byte of a word with no regard
for word boundaries.

6.24.1 Using the SYNCHRONIZED Clause

By default, the VAX COBOL compiler tries to allocate a data item at the next
unassigned byte location. However, you can align some data items on a 2-, 4-, or
8-byte boundary by using the SYNCHRONIZED clause. The compiler may then
have to skip one or more bytes before assigning a location to the next data item.
The skipped bytes, called fill bytes, are gaps between one data item and the next.

The SYNCHRONIZED clause explicitly aligns COMP, COMP-1, COMP-2,
POINTER, and INDEX data items on their natural boundaries: one-word COMP
items on 2-byte boundaries, longword items on 4-byte boundaries, and quadword
items on 8-byte boundaries. Thus the use of SYNC can have a significant effect

on the amount of memory required to store tables containing COMP and COMP
SYNC data items.

Example 6-8 describes a table containing a COMP SYNC data item. Figure 6-7
illustrates how it is mapped into memory.

6-8 Tabie Handling

Example 6-8: Record Description Containing a COMP SYNC Item

01 A-TABLE.
03 GROUP-G OCCURS 4 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S9(5) COMP SYNC.

Figure 6-7: Memory Map for Example 6-8

Longword number
Byte number

Level 01

Level 03
Level 05

Legend: 1= ITEM1
2= ITEM2

1 2 3 4 5 6 7 8
olofofololo]o|ofo|1[1f1][1][1]1]1]1]1]1|2|2|2]2]|2|2]|2|2|2|2|3|3]|3
1|2|3]4|s|s|7|8|9|o|1]|2|3]|4]|5]|6|7|8|9]0|1]|2]|3]|4|5|6]7]8]9]|0]1]2
A-TABLE
GROUP-G GROUP-G GROUP-G GROUP-G
1lelelel2]alafa|1][e{t]alaf2]2]1]¢[s]s]2]2]2]2]1]s]t |s]2]2]2]2

f = fill byte

ZK-8044-GE

Because a 5-digit COMP SYNC item requires one longword (or 4 bytes) of storage,
ITEMZ2 must start on a longword boundary. This requires the addition of 3

fill bytes after ITEM1, and each GROUP-G occupies 8 bytes. In Example 6-8,
A-TABLE requires 32 bytes to store four elements of 8 bytes each.

If, in the previous example, you defined ITEM2 as a COMP data item of the same
size without the SYNC clause, the storage required would be considerably less.
Although ITEM2 would still require one longword of storage, it would be aligned
on a byte boundary. No fill bytes would be needed between ITEM1 and ITEMZ2,
and A-TABLE would require a total of 20 bytes.

If you now add a 3-byte alphanumeric item (ITEM3) to Example 6-8 and locate it
between ITEM1 and ITEM2 (see Example 6-9), the new item occupies the space
formerly occupied by the 3 fill bytes. This adds 3 data bytes without changing the
table size, as Figure 6-8 illustrates.

Example 6-9: Adding an ltem Without Changing the Table Size

01 A-TABLE.
03 GROUP-G OCCURS 4 TIMES.
05 ITEM1 PIC X.
05 ITEM3 PIC XXX.
05 ITEM2 PIC 9(5) COMP SYNC.

Table Handling 6-9

Figure 6-8: Memory Map for Example 6-9

Longword number
Byte number

Level 01

Level 03
Level 05

Legend: 1=ITEM1

1 2 3 4 5 6 7 8
ofo[ofofo|o|ofofol 1|1 1][1]|1]1]1]1|1|1[2]2]|2]|2|2|2|2|2|2|2|3]|3]|3
1]2]3]4]s|6|7|8[9]0]|1]2]|3|4]|5|6{7]|8]9]0]|1]|2]|3]|4|5]6[7]|8]9]0]1]2
A-TABLE
GROUP-G GROUP-G GROUP-G GROUP-G
13]3[3[2]2]2]2]1]|3]|3|3][2]2|2]|2]1]|3[3]3]2]2[2]2] 1]|3]3]3]|2]2]2]2

2=ITEM2
3=ITEM3

ZK-6045-GE

If, however, you place ITEM3 after ITEM2, the additional 3 bytes add their own
length plus another fill byte. The additional fill byte is added after the third
ITEMS3 character to ensure that all occurrences of the table element are mapped
in an identical manner. Now, each element requires 12 bytes, and the complete
table occupies 48 bytes. This is illustrated by Example 6-10 and Figure 6-9.

Example 6—10: How Adding 3 Bytes Adds 4 Bytes to the Element Length

01 A-TABLE.
03 GROUP-G OCCURS 4 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC 9(5) COMP SYNC.
05 ITEM3 PIC XXX.

Note that GROUP-G begins on a 4-byte boundary because of the way VAX
COBOL allocates memory.

6-10 Table Handling

Figure 6-9: Memory Map for Example 6-10

Longword number 1 2 3 4 5 6

Byte number olofolofo|ofofofo1|1|1|1|[1]t1|1][1]1]1]|2]2]|2|2]2
1]2|3]|4|5|6|7|8|9]|o|1]|2[3]|4|5]|6[7]|8]|o|0]1]2]|3]4

Level 01 A-TABLE

Level 03 GROUP-G GROUP-G

Level 05 1]t]1]t]2]2]2]2]ala]als{1]t]t]i]2]2]2][2]ala]a]+

Legend: 1 =ITEM1

2 = ITEM2
3 = ITEM3
f = fill byte

ZK-6046-GE

6.3 Initializing Values of Table Elements

You can initialize a table that contains only DISPLAY items to any desired value
in either of the following ways:

* You can specify a VALUE clause in the record level preceding the record
description of the item containing the OCCURS clause.

* You can specify a VALUE clause in a record subordinate to the OCCURS
clause. :

Example 6-11 and Figure 6-10 provide an example and memory map of a table
initialized using the VALUE clause.

Example 6—11: Initializing Tables with the VALUE Clause

01 A-TABLE VALUE IS "JANFEBMARAPRMAY
- "JUNJULAUGSEPOCTNOVDEC" .
03 MONTH-GROUP PIC XXX USAGE DISPLAY
OCCURS 12 TIMES.

Table Handling 6-11

Figure 6—-10: Memory Map for Example 6—11

Longword number 1 2 3 7 8 9
ol o|o|o|o|o|o]o|o]1]1]1 2l2]2]|2|2|3|3]|3|3]|3]|3|3
Byte number
2|3|4|5|6|7|8lo|o|1]|2|---|5|6|7|8]|9|o|1]|2]3]|4|5]|6
Level 01 A-TABLE
Level 03 M M M M [...] ™ M M M
Byte contents Jla[N|E[e|s|m[a]|r]AlP|R] ... [s|e[r|olc|T|N|OlV|D]ElC

Legend: M = Month-~Group

ZK-6047-GE

If each entry in the table has the same value, you can initialize the table as
shown in Example 6-12.

Example 6-12: Initializing a Table with the OCCURS Clause

01 A-TABLE.
03 TABLE-LEG OCCURS 5 TIMES.
05 FIRST-LEG PIC X VALUE "A".
05 SECOND-LEG PIC S9(9) COMP VALUE 5.

In this example, there are five occurrences of each table element. Each element is
initialized to the same value as follows:

e FIRST-LEG occurs five times; each occurrence is initialized to A.

e SECOND-LEG occurs five times; each occurrence is initialized to 5.

Often a table is too long to initialize using a single literal, or it contains numeric,
alphanumeric, COMP, COMP-1, COMP-2, or COMP SYNC items that cannot be
initialized. In these situations, you can initialize individual items by redefining
the group level that precedes the level containing the OCCURS clause. Consider
the sample table descriptions illustrated in Example 6-13 and Example 6-14.
Each fill byte between ITEM1 and ITEM2 in Example 6-13 is initialized to X.
Figure 6-11 shows how this is mapped into memory.

6-12 Table Handling

Example 6-13: Initializing Mixed Usage ltems

01 A-RECORD-ALT.
05 FILLER PIC XX VALUE "AX".
05 FILLER PIC S99 COMP VALUE 1.
05 FILLER PIC XX VALUE "BX".
05 FILLER PIC S99 COMP VALUE 2.

01 A-RECORD REDEFINES A~RECORD-ALT.
03 A-GROUP OCCURS 26 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S99 COMP SYNC.

Figure 6-11: Memory Map for Example 6-13

Longword number 1 2

Byte number 1 2 3 4 5 6 7 8
Level 01 A-RECORD

Level 03 A-GROUP A-GROUP
Level 05 1 f 21 211 f 2| 2
Byte contents Al X B | X

Legend: 1 =ITEMI1
2 =ITEM2
f =fill byte

ZK-6048-GE

As shown in Example 6-14 and in Figure 6-12, each FILLER item initializes
three 10-byte table elements.

Example 6-14: Initializing Alphanumeric ltems

01 A-RECORD-ALT.
03 FILLER PIC X(30) VALUE IS
"AAAAAAAAAABBBBBBBBBBCCCCCCCCCC".
03 FILLER PIC X(30) VALUE IS
"DDDDDDDDDDEEEEEEEEEEFFFFFFEFFFE" .

01 A-RECORD REDEFINES A-RECORD-ALT.
03 ITEM1 PIC X(10) OCCURS 26 TIMES.

Table Handling 6-13

Figure 6-12: Memory Map for Example 6-14

Longword number 1 2 3 4 5 6

Byte number olofo|olofo]ofolo|t{1|1|[t1]1|[1]1]1]1|1]2]2|2]|2]|2
1|2|3|4|5|6|7|8|o|o|1]|2|3]|4|5]|6|7|8|9|0]|1|2]|3]|4

Level 01 A-RECORD

Level 03 ITEM 1 ITEM 1 ITEM 1

Bytecontentsat [alalalala|ala{alala[B]B]|B|B|B]|B|B|BIB|B[C|C|C|C

initialization time
ZK-6049-GE

When redefining or initializing table elements, allow space for any fill bytes that
might be added due to synchronization. You do not have to initialize fill bytes, but
you can do so. If you initialize fill bytes to an uncommon value, you can use them
as a debugging aid in situations where a Procedure Division statement refers to
the record level preceding the OCCURS clause, or to another record redefining
that level.

You can also initialize tables at run time. To initialize tables at run time, use the
INITIALIZE statement. This statement allows you to initialize all occurrences
of a table element to the same value. For more information on the INITIALIZE
statement, refer to the VAX COBOL Reference Manual.

Sometimes the length and format of table items are such that they are best
initialized using Procedure Division statements such as a MOVE statement to
send a value to the table.

6.4 Accessing Table Elements

Once tables have been created using the OCCURS clause, the program must have
a method of accessing the individual elements of those tables. Subscripting and
indexing are the two methods VAX COBOL provides for accessing individual table
elements. To refer to a particular element within a table, follow the name of that
element with a subscript or index enclosed in parentheses. The following sections
describe how to identify and access table elements using subscripts and indexes.

6.4.1 Subscripting

A subscript can be an integer literal, an arithmetic expression, a data name, or
a subscripted data name that has an integer value. The integer value represents
the desired element of the table. An integer value of 3, for example, refers to the
third element of a table.

6.4.2 Subscripting with Literals

A literal subscript is an integer value, enclosed in parentheses, that represents
the desired table element. In Example 6-15, the literal subscript (2) in the
MOVE instruction moves the contents of the second element of A-TABLE to
I-RECORD.

6-14 Table Handling

Example 6-15: Using a Literal Subscript to Access a Table

Table Description:

01 A-TABLE.
03 A-GROUP PIC X(5)
OCCURS 10 TIMES.

Instruction:

MOVE A-GROUP (2) TO I-RECORD.

If the table is multidimensional, follow the data name of the desired data item
with a list of subscripts, one for each OCCURS clause to which the item is
subordinate. The first subscript in the list applies to the first OCCURS clause

to which that item is subordinate. This is the most inclusive level, and is
represented by A-GROUP in Example 6—-16. The second subscript applies to

the next most inclusive level and is represented by ITEMS3 in the example.
Finally, the third subscript applies to the least inclusive level, represented by
ITEMS5. (Note that VAX COBOL can have 48 subscripts that follow the pattern in
Example 6-15.)

In Example 6-16, the subscripts (2,11,3) in the MOVE statements move the third
occurrence of ITEMS5 in the eleventh repetition of ITEMS3 in the second repetition
of A-GROUP to I-FIELD5. ITEM5(1,1,1) refers to the first occurrence of ITEM5
in the table, and ITEM5(5,20,4) refers to the last occurrence of ITEMS.

Example 6-16: Subscripting a Multidimensional Table

Table Description:

01 A-TABLE.
03 A-GROUP OCCURS 5 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC 99 COMP OCCURS 20 TIMES.
05 ITEM3 OCCURS 20 TIMES.
07 ITEM4 PIC X.
07 ITEMS PIC XX OCCURS 4 TIMES.
01 I-FIELD5 PIC XX.

Procedural Instruction:

MOVE ITEM5 (2, 11, 3) TO I-FIELDS.

NOTE

Because ITEMS5 is not subordinate to ITEM2, an occurrence number
for ITEM2 is not permitted in the subscript list (when referencing
ITEMS3, ITEM4, or ITEMS5). The ninth occurrence of ITEM2 in the fifth
occurrence of A-GROUP would be selected by ITEM2(5,9).

Table Handling 6-15

Table 6-1 shows the subscripting rules that apply to Example 6-16.

Table 6-1: Subscripting Rules for a Multidimensional Table

Number of Subscripts
Required to Refer to Size of Item in Bytes
Name of Item the Name Item (Each Occurrence)
A-TABLE NONE 1105
A-GROUP ONE 221
ITEM1 ONE 1
ITEM2 TWO 2
ITEMS3 TWO 9
ITEM4 TWO 1
ITEM5 THREE 2

6.4.3 Subscripting with Data Names

You can also use data names to specify subscripts. To use a data name as a
subscript, define it with COMP, COMP-1, COMP-2, COMP-3, or DISPLAY usage
and with a numeric integer value. If the data name is signed, the sign must be
positive at the time the data name is used as a subscript.

A data name that is a subscript can also be subscripted—for example, A(B(C)).
Note that for efficiency your subscripts should be S9(5) to S9(9) COMP.

The sample subscripts and data names used in Table 6-2 refer to the table
defined in Example 6-16.

Table 6-2: Subscripting with Data Names

Data Descriptions of Subscript Data Names Procedural Instructions

01 SUB1 PIC 99 USAGE DISPLAY. MOVE 2 TO SUB1.
01 SUB2 PIC 89(9) USAGE COMP. MOVE 11 TO SUB2.
01 SUB3 PIC 899. MOVE 3 TO SUB3.

MOVE ITEM5(SUB1,SUB2,SUB3) TO I-FIELDS.

6.4.4 Subscripting with Indexes

The same rules apply for specifying indexes as for subscripts, except that the
index must be named in the INDEXED BY phrase of the OCCURS clause.

You cannot access index items as normal data items; that is, you cannot use them,
redefine them, or write them to a file. However, the SET statement can change
their values, and relation tests can examine their values. The index integer you
specify in the SET statement must be in the range of one to the integer value

in the OCCURS clause. The sample MOVE statement shown in Example 6-17
moves the contents of the third element of A-GROUP to I-FIELD.

6-16 Table Handling

Example 6-17: Subscripting with Index Name Items

Table Description:

01 A-TABLE
03 A-GROUP OCCURS 5 TIMES
INDEXED BY IND-NAME.

01 I-FIELD PIC X(5).
Procedural Instructions:

SET IND-NAME TO 3.
MOVE A-GROUP (IND-NAME) TO I-FIELD.

NOTE

VAX COBOL initializes the value of all indexes to 1. Initializing
indexes is an extension to the ANSI COBOL standard. Users who
write COBOL programs that must adhere to standard COBOL should
not rely on this feature.

6.4.5 Relative Indexing

To perform relative indexing when referring to a table element, you follow the
index name with a plus or minus sign and an integer literal. Although it is
easy to use, relative indexing generates additional overhead each time a table
element is referenced in this way. The run-time overhead for relative indexing of
variable-length tables is significantly greater than that required for fixed-length
tables. If any of the range checks reveals an out-of-range index value, program
execution terminates, and an error message is issued. You can use the /CHECK
command line qualifier to check the range when you compile the program. (See
Chapter 2 for more information.)

The following sample MOVE statement moves the fourth repetition of A-GROUP
to I-FIELD:

SET IND-NAME TO 1.
MOVE A-GROUP (IND-NAME + 3) TO I-FIELD.

6.4.6 Index Data ltems

Often a program requires that the value of an index be stored outside of that
item. VAX COBOL provides the index data item to fulfill this requirement.

Index data items are stored as longword COMP items and must be declared with
a USAGE IS INDEX phrase in the item description. Index data items can be
explicitly modified only with the SET statement.

6.4.7 Assigning Index Values Using the SET Statement

The SET statement assigns values to indexes associated with tables, so that
you can reference particular table elements. Two of the six VAX COBOL SET
statement formats are available to you, and are discussed in the following
sections. (All six formats are shown in the VAX COBOL Reference Manual.)

Table Handling 6-17

6.4.7.1 Assigning an Integer Index Value with a SET Statement

When you use the SET statement, the index is set to the value you specify. The
most straightforward use of the SET statement is to set an index name to an
integer literal value. This example assigns a value of 5 to IND-5:

SET IND-5 TO 5.

You can also set an index name to an integer data item. For example:

SET INDEX-A TO COUNT-1.

More than one index can be set with a single SET statement. For example:
SET TAB1-IND TAB2-IND TO 15.

Table indexes specified in INDEXED BY phrases can be displayed by using the
WITH CONVERSION option with the VAX COBOL DISPLAY statement. Also,
you can display, move, and manipulate the value of the table index with an index
data item. You do this by setting an index data item to the present value of an
index. You could, for example, set an index data item and then display its value
as shown in the following example:

SET INDEX-ITEM TO TAB-IND.

DISPLAY INDEX-ITEM WITH CONVERSION.

6.4.7.2 Incrementing an Index Value with the SET Statement

You can use the SET statement with the UP BY/DOWN BY clause to
arithmetically alter the value of a index. A numeric literal is added to (UP
BY) or subtracted from (DOWN BY) a table index. For example:

SET TABLE-INDEX UP BY 12.
SET TABLE-INDEX DOWN BY 5.

6.4.8 ldentifying Table Elements Using the SEARCH Statement

The SEARCH statement is used to search a table for an element that satisfies
a known condition. The statement provides for sequential and binary searches,
which are described in the following sections.

6.4.8.1 Implementing a Sequential Search

The SEARCH statement allows you to perform a sequential search of a table. The
OCCURS clause of the table description entry must contain the INDEXED BY
phrase. If more than one index is specified in the INDEXED BY phrase, the first
index is the controlling index for the table search unless you specify otherwise in
the SEARCH statement.

The search begins at the current index setting and progresses through the
table, checking each element against the conditional expression. The index is
incremented by 1 as each element is checked. If the conditional expression is
true, the associated imperative statement executes; otherwise, program control
passes to the next procedural sentence. This terminates the search, and the index
points to the current table element that satisfied the conditional expression.

6-18 Table Handling

If no table element is found that satisfies the conditional expression, program
control passes to the AT END exit path; otherwise, program control passes to the
next procedural sentence.

You can use the optional VARYING phrase of the SEARCH statement by
specifying any of the following:

¢ VARYING index name associated with table search
¢ VARYING index data item or integer data item
¢ VARYING index name not associated with table search

Regardless of which method you use, the index specified in the INDEXED BY
phrase of the table being searched is incremented. This controlling index, when
compared against the allowable number of occurrences in the table, dictates the
permissible search range. When the search terminates, either successfully or
unsuccessfully, the index remains at its current setting. At this point, you can
reference the data in the table element pointed to by the index, unless the AT
END condition is true. If the AT END condition is true, and if the /CHECK
qualifier has been specified, the compiler issues a run-time error message
indicating that the subscript is out of range.

When you vary an index associated with the table being searched, the index
name can be any index you specify in the INDEXED BY phrase. It becomes the
controlling index for the search and is the only index incremented. Example 6-18
and Example 620 show how to vary an index other than the first index.

When you vary an index data item or an integer data item, either the index data
item or the integer data item is incremented. The first index name you specify
in the INDEXED BY phrase of the table being searched becomes the controlling
index and is also incremented. The index data item or the integer data item you
vary does not function as an index; it merely allows you to maintain an additional
pointer to elements within a table. Example 6-18 and Example 6-21 show how
to vary an index data item or an integer data item.

When you vary an index associated with a table other than the one you are
searching, the controlling index is the first index you specify in the INDEXED
BY phrase of the table you are searching. Each time the controlling index is
incremented, the index you specify in the VARYING phrase is incremented. In
this manner, you can search two tables in synchronization. Example 6-18 and
Example 6-22 show how to vary an index associated with a table other than the
one you are searching.

When you omit the VARYING phrase, the first index you specify in the INDEXED
BY phrase becomes the controlling index. Only this index is incremented during
a serial search. Example 6-18 and Example 6-23 show how to perform a serial
search without using the VARYING phrase.

6.4.8.2 Implementing a Binary Search

You can use the SEARCH statement to perform a nonsequential (binary) table
search.

To perform a binary search, you must specify an index name in the INDEXED BY
phrase and a search key in the KEY IS phrase of the OCCURS clause of the table
being searched.

Table Handling 6-19

A binary search depends on the ASCENDING/DESCENDING KEY attributes. If
you specify an ASCENDING KEY, the data in the table must either be stored

in ascending order or sorted in ascending order prior to the search. For a
DESCENDING KEY, data must be stored or sorted in descending order prior

to the search.

During a binary search, the first (or only) index you specify in the INDEXED
BY phrase of the OCCURS clause of the table being searched is the controlling
index. You do not have to initialize an index in a binary search because index
manipulation is automatic.

In addition to being generally faster than a sequential search, a binary search
allows multiple equality checks.

The following search sequence lists the capabilities of a binary search. At
program execution time, the system:

1. Examines the range of permissible index values, selects the median value,
and assigns this value to the index.

Checks for equality in WHEN and AND clauses.

Terminates the search if all equality statements are true. If you use the
imperative statement after the final equality clause, that statement executes;
otherwise, program control passes to the next procedural sentence, the search
exits, and the index retains its current value.

4. Takes the following actions if the equality test of a table element is false:

a. Executes the imperative statement associated with the AT END statement
(if present) when all table elements have been tested. If there is no AT
END statement, program control passes to the next procedural statement.

b. Determines which half of the table is to be eliminated from further
consideration. This is based on whether the key being tested was specified
as ASCENDING or DESCENDING and whether the test failed because
of a greater-than or less-than comparison. For example, if the key values
are stored in ascending order, and the median table element being tested
is greater than the value of the argument, then all key elements following
the one being tested must also be greater. Therefore, the upper half of the
table is removed from further consideration and the search continues at
the median point of the lower half.

c. Begins processing all over again at step 1.

A useful variation of the binary search is that of specifying multiple search keys.
Multiple search keys allow you to select a specified table element from among
several elements that have duplicate low-order keys. An example is a telephone
listing where several people have the same last and first names—but different
middle initials. All specified keys must be either ascending or descending.
Example 6-24 shows how to use multiple search keys.

The table in Example 6-18 is followed by several examples (Example 6-19,
Example 6-20, Example 6-21, Example 6—22, and Example 6-23) of how to
search it.

6-20 Table Handling

Example 6-18: Sample Table

DATA DIVISION.

WORKING-STORAGE SECTION.

01 TEMP-INDEX PIC 9(5) USAGE IS INDEX.

0l FED-TAX-TABLES.

02 ALLOWANCE-DATA.
03 FILLER PIC X (70) VALUE

"0101440

- "0202880

- "0304320

- "0405760

- "0507200

- "0608640

- "0710080

- "0811520

- "0912960

- "1014400".

02 ALLOWANCE-TABLE REDEFINES ALLOWANCE-DATA.
03 FED-ALLOWANCES OCCURS 10 TIMES

ASCENDING KEY IS ALLOWANCE-NUMBER
INDEXED BY IND-1.
04 ALLOWANCE-NUMBER PIC XX.
04 ALLOWANCE PIC 99999.

02 SINGLES-DEDUCTION-DATA.
03 FILLER PIC X(112) VALUE
"0250006700000016
- "0670011500067220
- "1150018300163223
- "1830024000319621
- "2400027900439326
- "2790034600540730
- "3460099999741736".
02 SINGLE-DEDUCTION-TABLE REDEFINES SINGLES-DEDUCTION-DATA.
03 SINGLES-TABLE OCCURS 7 TIMES
ASCENDING KEY IS S-MIN-RANGE S-MAX-RANGE
INDEXED BY IND-2, TEMP-INDEX.
04 S-MIN-RANGE PIC 99999.
04 S-MAX-RANGE PIC 99999.
04 S-TAX PIC 9999.
04 S-PERCENT PIC V99.

02 MARRIED-DEDUCTION-DATA.
03 FILLER PIC X(119) VALUE
"04800096000000017)
- "09600173000081620
- "17300264000235617
- "26400346000390325
- "34600433000595328
- "43300500000838932
- "50000999991053336".
02 MARRIED-DEDUCTION-TABLE REDEFINES MARRIED-DEDUCTION-DATA.
03 MARRIED-TABLE OCCURS 7 TIMES
ASCENDING KEY IS M-MIN-RANGE M-MAX-RANGE
INDEXED BY IND-0, IND-3.

04 M-MIN-RANGE PIC 99999.
04 M-MAX-RANGE PIC 999909.
04 M-TAX PIC 99999.
04 M-PERCENT PIC V99.

Table Handling ~ 6-21

Example 6-19 shows how to perform a serial search.

Example 6-19: A Serial Search

PROCEDURE DIVISION.
BEGIN.

SINGLE.
IF TAXABLE-INCOME < 02500
GO TO END-FED-COMP.
SET TEMP-INDEX TO 1.
SEARCH SINGLES-TABLE VARYING TEMP-INDEX AT END
GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME = S-MIN-RANGE (TEMP-INDEX)
MOVE S-TAX(TEMP-INDEX) TO FED-TAX-DEDUCTION
WHEN TAXABLE-INCOME < S-MAX-RANGE (TEMP-INDEX)
COMPUTE FED-TAX-DEDUCTION =
S-TAX (TEMP-INDEX) + (TAXABLE-INCOME - S-TAX(TEMP-INDEX)) *
S-PERCENT (TEMP-INDEX) .

Example 6~20: Using SEARCH and Varying an Index Other Than the First
Index

PROCEDURE DIVISION.
BEGIN.

MARRIED.
IF TAXABLE-INCOME < 04800
MOVE ZEROS TO FED-TAX-DEDUCTION
GO TO END-FED-COMP.
SET IND-3 TO 1.
SEARCH MARRIED-TABLE VARYING IND-3 AT END
GO TO TABLE-3-ERROR
WHEN TAXABLE-INCOME = M-MIN-RANGE (IND-3)
MOVE M-TAX (IND-3) TO FED-TAX-DEDUCTION
WHEN TAXABLE-INCOME < M-MAX-RANGE (IND-3)
COMPUTE FED-TAX-DEDUCTION =
M-TAX (IND-3) + (TAXABLE-INCOME - M-TAX(IND-3)) *
M-PERCENT (IND-3) .

6-22 Table Handling

Example 6-21: Using SEARCH and Varying an index Data ltem

PROCEDURE DIVISION.

BEGIN.
SINGLE.
IF TAXABLE-INCOME < 02500
GO TO END-FED-COMP.
SET TEMP-INDEX TO 1.
SEARCH SINGLES—-TABLE VARYING TEMP-INDEX AT END
GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME = S-MIN-RANGE (TEMP-INDEX)
MOVE S-TAX(TEMP-INDEX) TO FED-TAX-DEDUCTION
WHEN TAXABLE-INCOME < S-MAX-RANGE (TEMP-INDEX)
MOVE S-TAX (TEMP-INDEX) TO FED-TAX-DEDUCTION
SUBTRACT S-MIN-RANGE (TEMP-INDEX) FROM TAXABLE-INCOME
MULTIPLY TAXABLE-INCOME BY S-PERCENT (TEMP-INDEX) ROUNDED
ADD TAXABLE-INCOME TO FED-TAX-DEDUCTION.
Example 6-22: Using SEARCH and Varying an Index Not Associated with the

Target Table

PROCEDURE DIVISION.

BEGIN.

SINGLE.

IF TAXABLE-INCOME < 02500

GO TO END-FED-COMP.

SET IND-2 TO 1. .
SEARCH SINGLES-TABLE VARYING IND-0 AT END

WHEN

WHEN

GO TO TABLE-2-ERROR

TAXABLE-INCOME = S-MIN-RANGE (IND-2)

MOVE S-TAX(IND-2) TO FED~TAX-DEDUCTION
TAXABLE-INCOME < S-MAX-RANGE (IND-2)

MOVE S-TAX(IND-2) TO FED-TAX-DEDUCTION

SUBTRACT S-MIN-RANGE (IND-2) FROM TAXABLE-INCOME
MULTIPLY TAXABLE-INCOME BY S-PERCENT (IND-2) ROUNDED
ADD TAXABLE-INCOME TO FED-TAX-DEDUCTION.

Table Handling 6-23

Example 6-23: Doing a Serial Search Without Using the VARYING Phrase

PROCEDURE DIVISION.
BEGIN.

FED-DEDUCT-COMPUTATION.

SET IND-1 TO 1.

SEARCH FED-ALLOWANCES AT END
GO TO TABLE-1-ERROR

WHEN ALLOWANCE-NUMBER (IND-1) = NR-DEPENDENTS
SUBTRACT ALLOWANCE (IND-1) FROM GROSS-WAGE
GIVING TAXABLE-INCOME ROUNDED.

IF MARITAL-STATUS = "M"

GO TO MARRIED.

Example 6-24: A Multiple-Key Binary Search

IDENTIFICATION DIVISION.
PROGRAM-ID. MULTI-KEY-SEARCH.
DATA DIVISION.
WORKING~STORAGE SECTION.
01 DIRECTORY-TABLE.

05 NAMES-NUMBERS.

10 FILLER PIC X(30)

VALUE "SMILEY HAPPY T.213-4332".
10 FILLER PIC X(30)

VALUE "SMITH C.881-4987".
10 FILLER PIC X(30)

VALUE "SMITH CHARLES J.345-2398".
10 FILLER PIC X(30)

VALUE "SMITH FREDERICK 745-0223".
10 FILLER PIC X(30)

VALUE "SMITH HARRY C.573-3306".
10 FILLER PIC X(30)

VALUE "SMITH HARRY J.295-3485".
10 FILLER PIC X(30)

VALUE "SMITH LARRY X.976-5504".
10 FILLER PIC X(30)

VALUE "SMITHWOOD ALBERT
05 PHONE-DIRECTORY-TABLE REDEFINES NAMES-NUMBERS OCCURS 8 TIMES

J.349-9927".

ASCENDING KEY IS LAST-NAME

FIRST-NAME
MID-INIT
INDEXED BY DIR-INDX.
15 LAST-NAME PIC X(10).
15 FIRST-NAME PIC X(10).
15 MID-INIT PIC XX.
15 PHONE-NUM PIC X(8).

PROCEDURE DIVISION.

MULTI-KEY-BINARY-SEARCH.

SEARCH ALL PHONE-DIRECTORY-TABLE

WHEN LAST-NAME (DIR-INDX) = "SMITH"
AND FIRST-NAME (DIR-INDX) = "HARRY"
AND MID-INIT (DIR-INDX) = "J."

NEXT SENTENCE.

(continued on next page)

6-24 Table Handling

Example 6-24 (Cont.): A Multiple-Key Binary Search

DISPLAY-RESULTS.
DISPLAY LAST-NAME (DIR-INDX)","
FIRST-NAME (DIR-INDX)
MID-INIT (DIR-INDX) " "
PHONE-NUM (DIR-INDX) .

Table Handling 6-25

Chapter 7

Using the STRING, UNSTRING, and INSPECT
Statements

This chapter describes the use of the STRING, UNSTRING, and INSPECT
statements.

7.1 Concatenating Data Using the STRING Statement

The STRING statement concatenates the contents of one or more sending items
into a single receiving item.

The statement has many forms; the simplest is equivalent in function to a
nonnumeric MOVE statement. Consider the following example:

STRING FIELD1 DELIMITED BY SIZE INTO FIELD2.

If the two items are the same size, or if the sending item (FIELD1) is larger, the
statement is equivalent to the following statement:

MOVE FIELDl1 TO FIELDZ2.

If the sending item of the string is shorter than the receiving item, the compiler
does not replace unused positions in the receiving item with spaces. Thus, the
STRING statement can leave some portion of the receiving item unchanged.

The receiving item of the string must be an elementary alphanumeric item with
no JUSTIFIED clause or editing characters in its description. Thus, the data
movement of the STRING statement always fills the receiving item with the
sending item from left to right and with no editing insertions.

7.1.1 Multiple Sending items

The STRING statement can concatenate a series of sending items into one
receiving item. Consider the following example:

STRING FIELD1A FIELD1B FIELD1C DELIMITED BY SIZE
INTO FIELD2.

In this sample STRING statement, FIELD1A, FIELD1B, and FIELD1C are all
sending items. The compiler moves them to the receiving item (FIELD2) in the
order in which they appear in the statement, from left to right, resulting in the
concatenation of their values.

If FIELD2 is not large enough to hold all three items, the operation stops when it
is full. If the operation stops while moving one of the sending items, the compiler
ignores the remaining characters of that item and any other sending items not
yet processed. For example, if FIELD2 is filled while it is receiving FIELD1B, the
compiler ignores the rest of FIELD1B and all of FIELD1C.

Using the STRING, UNSTRING, and INSPECT Statements 7-1

If the sending items do not fill the receiving item, the operation stops when the
last character of the last sending item (FIELD1C) is moved. It does not alter the
contents nor space-fill the remaining character positions of the receiving item.

The sending items can be nonnumeric literals and figurative constants (except for
ALL literal). Example 7-1 sets up an address label by stringing the data items
CITY, STATE, and ZIP into ADDRESS-LINE. The figurative constant SPACE and
the literal period (.) are used to separate the information.

Example 7-1: Using the STRING Statement and Literals

01 ADDRESS-GROUP.

03 CITY PIC X (20).
03 STATE PIC XX.
03 zIp PIC X (5).
01 ADDRESS-LINE PIC X (31).
STRING CITY SPACE STATE ". " SPACE ZIP

DELIMITED BY SIZE INTO ADDRESS-LINE.

7.1.2 Using the DELIMITED BY Phrase

Although the sending items of the STRING statement are fixed in size at compile
time, they are frequently filled with spaces. For example, if a 20-character city
item contains the text MAYNARD followed by 13 spaces, the STRING statement
using the DELIMITED BY SIZE phrase would move the text (MAYNARD)

and the unwanted 13 spaces (assuming the receiving item is at least 20
characters long). The DELIMITED BY phrase, written with a data name or
literal, eliminates this problem.

The delimiter can be a literal, a data item, a figurative constant, or the word
SIZE. It cannot, however, be ALL literal, since ALL literal has an indefinite
length. When the phrase contains the word SIZE, the compiler moves each
sending item in total, until it either exhausts the characters in the sending item
or fills the receiving item.

If you use the code in Example 7-1, and CITY is a 20-character item, the result
of the STRING operation might look like Figure 7-1.

Figure 7-1: Results of the STRING Operation

AYER MA. 01432
L |
16 spaces

ZK-6051-GE

7-2 Using the STRING, UNSTRING, and INSPECT Statements

A more attractive and readable report can be produced by having the STRING
operation produce this line:

AYER, MA. 01432

To accomplish this, use the figurative constant SPACE as a delimiter on the
sending item:

MOVE 1 TO P.
STRING CITY DELIMITED BY SPACE

INTO ADDRESS—-LINE WITH POINTER P.
STRING ", " STATE ". " ZIP

DELIMITED BY SIZE

INTO ADDRESS—-LINE WITH POINTER P.

This example makes use of the POINTER phrase (see Section 7.1.3). The
first STRING statement moves data characters until it encounters a space
character-—a match of the delimiter SPACE. The second STRING statement
supplies the literal, the 2-character STATE item, another literal, and the
5-character ZIP item.

The delimiter can be varied for each item within a single STRING statement by
repeating the DELIMITED BY phrase after each of the sending item names to
which it applies. Thus, the shorter STRING statement in the following example
has the same effect as the two STRING statements in the preceding example.
(Placing the operands on separate source lines has no effect on the operation of
the statement, but it improves program readability and simplifies debugging.)

STRING CITY DELIMITED BY SPACE
" ’ " STATE n . "
ZIP DELIMITED BY SIZE
INTO ADDRESS-LINE.

The sample STRING statement cannot handle 2-word city names, such as San
Francisco, since the compiler considers the space between the two words as

a match for the delimiter SPACE. A longer delimiter, such as two or three
spaces (nonnumeric literal), can solve this problem. Only when a sequence of
characters matches the delimiter does the movement stop for that data item.
With a 2-character delimiter, the same statement can be rewritten in a simpler
form:

STRING CITY ", "™ STATE "“. " ZIP
DELIMITED BY " " INTO ADDRESS-LINE.

Since only the CITY item contains two consecutive spaces, the delimiter’s search
of the other items will always be unsuccessful, and the effect is the same as
moving the full item (delimiting by SIZE).

Data movement under control of a data name or literal generally executes more
slowly than data movement delimited by SIZE.

Remember, the remainder of the receiving item is not space-filled, as with a
MOVE statement. If ADDRESS-LINE is to be printed on a mailing label, for
example, the STRING statement should be preceded by the statement:

MOVE SPACES TO ADDRESS-LINE.

This statement guarantees a space-fill to the right of the concatenated result.
Alternatively, the last item concatenated by the STRING statement can be an
item previously set to SPACES. This sending item must either be moved under
control of a delimiter other than SPACE or use the value of POINTER and
reference modification.

Using the STRING, UNSTRING, and INSPECT Statements 7-3

7.1.3 Using the POINTER Phrase

Although the STRING statement normally starts scanning at the leftmost
position of the receiving item, the POINTER phrase makes it possible to start
scanning at another point within the item. The scanning, however, continues left
to right. Consider the following example:

MOVE 5 TO P.
STRING FIELD1A FIELD1B DELIMITED BY SIZE
INTO FIELD2 WITH POINTER P.

The value of P determines the starting character position in the receiving item.
In this example, the 5 in P causes the program to move the first character of
FIELD1A into character position 5 of FIELD2 (the leftmost character position of
the receiving item is character position 1), and leave positions 1 to 4 unchanged.

When the STRING operation is complete, P points to one character position
beyond the last character replaced in the receiving item. If FIELD1A and
FIELD1B are both four characters long, P contains a value of 13 (5+4+4) when
the operation is complete (assuming that FIELD2 is at least 13 characters long).

7.1.4 Using the OVERFLOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING
operation, and the pointer value is either known or the POINTER phrase is not
used, you can add the PICTURE sizes of sending items together at program
development time to see if the receiving item is large enough to hold the sending
items. However, if the DELIMITED BY phrase contains a literal or an identifier,
or if the pointer value is not predictable, it can be difficult to tell whether or not
the size of the receiving item will be large enough at run time. If the size of the
receiving item is not large enough, an overflow can occur.

An overflow occurs when the receiving item is full and the program is either
about to move a character from a sending item or is considering a new sending
item. Overflow can also occur if, during the initialization of the statement, the
pointer contains a value that is either less than 1 or greater than the length of
the receiving item. In this case, the program moves no data to the receiving item
and terminates the operation immediately.

The ON OVERFLOW phrase at the end of the STRING statement tests for an
overflow condition:

STRING FIELD1A FIELD1B DELIMITED BY "C"
INTO FIELD2 WITH POINTER PNTR
ON OVERFLOW GO TO 200-STRING-OVERFLOW.

The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad
initial value in the pointer from the overflow caused by a receiving item that is
too short. Only a separate test preceding the STRING statement can distinguish
between the two.

Additionally, even if an overflow condition does not exist, you can use the NOT
ON OVERFLOW phrase to branch to or execute other sections of code.

Example 7-2 illustrates the overflow condition.

7-4 Using the STRING, UNSTRING, and INSPECT Statements

Example 7-2: Sample Overflow Condition

DATA DIVISION.

01 FIELDl PIC XXX VALUE "ABC".
01 FIELD2 PIC XXXX.
PROCEDURE DIVISION.

1. STRING FIELD1 QUOTE DELIMITED BY SIZE INTO FIELD2

ON OVERFLOW....
2. STRING FIELD1 FIELD1 DELIMITED BY SIZE INTO FIELD2
ON OVERFLOW...
3. STRING FIELD1l FIELD1 DELIMITED BY "C" INTO FIELD2
ON OVERFLOW....
4. STRING FIELD1 FIELD1 FIELD1 FIELD1
DELIMITED BY "B" INTO FIELDZ2 ON OVERFLOW....
5. STRING FIELD1 FIELD1l "D" DELIMITED BY "C"
INTO FIELDZ2 ON OVERFLOW....
6. MOVE 2 TO P.

MOVE ALL QUOTES TO FIELD2.

STRING FIELD1 "AC" DELIMITED BY "C"
INTO FIELDZ2 WITH POINTER P ON OVERFLOW....

The STRING statement numbers in Example 7-2 point to the line number results
shown in Table 7-1.

Table 7-1: Results of Sample Overflow Statements

Value of FIELD2 After

the STRING Operation Overflow?
1. ABC" NO

2. ABCA YES

3. ABAB NO

4. AAAA NO

5. ABAB YES

6. "ABA NO

7.1.5 Common STRING Statement Errors

The following are common errors made when writing STRING statements:
* Using the word TO instead of INTO

* Failing to include the DELIMITED BY SIZE phrase

¢ Failing to initialize the pointer

¢ Initializing the pointer to 0 instead of 1

¢ Permitting the pointer to get out of range (negative or larger than the size of
the receiving field)

¢ Failing to provide for space-filling of the receiving item when it is desirable

Using the STRING, UNSTRING, and INSPECT Statements 7-5

¢ . Using the pointer as a subscript without fully understanding subscript
evaluation

7.2 Separating Data Using the UNSTRING Statement

The UNSTRING statement disperses the contents of a single sending item into
one or more receiving items.

The statement has many forms; the simplest is equivalent in function to a
nonnumeric MOVE statement. Consider the following example:

UNSTRING FIELD1 INTO FIELDZ2.

Regardless of the relative sizes of the two items, the sample statement is
equivalent to the following MOVE statement:

MOVE FIELD1 TO FIELDZ2.

The sending item (FIELD1) can be either (1) a group item, or (2) an
alphanumeric or alphanumeric edited elementary item. The receiving item
(FIELD2) can be alphabetic, alphanumeric, or numeric, but it cannot specify any
type of editing.

If the receiving item is numeric, it must be DISPLAY usage. The PICTURE
character-string of a numeric receiving item can contain any of the legal numeric
description characters except P and the editing characters. The UNSTRING
statement moves the sending item to the numeric receiving item as if the sending
item had been described as an unsigned integer. It automatically truncates or
zero-fills as required.

If the receiving item is not numeric, the statement follows the rules for
elementary nonnumeric MOVE statements. It left-justifies the data in the
receiving item, truncating or space-filling as required. If the data description of
the receiving item contains a JUSTIFIED clause, the compiler right-justifies the
data, truncating or space-filling to the left as required.

7.2.1 Multiple Receiving Items

The UNSTRING statement can disperse one sending item into several receiving
items. Consider the following example of the UNSTRING statement written with
multiple receiving items:

UNSTRING FIELD1 INTO FIELD2A FIELD2B FIELD2C.

The compiler-generated code performs the UNSTRING operation by scanning
across FIELDI1, the sending item, from left to right. When the number of
characters scanned equals the number of characters in the receiving item, the
scanned characters are moved into that item and the next group of characters is
scanned for the next receiving item.

If each of the receiving items in the preceding example (FIELD2A, FIELD2B, and
FIELD2C) is 5 characters long, and FIELD1 is 15 characters long, FIELD1 is
scanned until the number of characters scanned equals the size of FIELD2A (5).
Those first five characters are moved to FIELD2A, and scanning is resumed at
the sixth character position in FIELD1. Next, FIELD1 is scanned from character
position 6, until the number of scanned characters equals the size of FIELD2B
(five). The sixth through the tenth characters are then moved to FIELD2B,

and the scanner is set to the next (eleventh) character position in FIELD1. For
the last move in this example, characters 11 to 15 of FIELD1 are moved into
FIELD2C.

7-6 Using the STRING, UNSTRING, and INSPECT Statements

Each data movement acts as an individual MOVE statement, the sending item
of which is an alphanumeric item equal in size to the receiving item. If the
receiving item is numeric, the move operation converts the data to numeric form.
For example, consider what would happen if the items under discussion had the
data descriptions and were manipulating the values shown in Table 7-2.

Table 7-2: Values Moved into the Receiving Items Based on the Sending Item

Value
FIELD2B
FIELD1 PIC S9(5)
PIC X(15) FIELD2A LEADING FIELD2C
VALUE IS: PIC X(5) SEPARATE PIC S999V99
ABCDE1234512345 ABCDE +12345 3450{
XXXXX0000100123 XXXXX +00001 1230{

FIELD2A is an alphanumeric item. Therefore, the statement simply conducts an
elementary nonnumeric move with the first five characters.

FIELD2B, however, has a leading separate sign that is not included in its size.
Thus, the compiler moves only five numeric characters and generates a positive
sign (+) in the separate sign position.

FIELD2C has an implied decimal point with two character positions to the right
of it, plus an overpunched sign on the low-order digit. The sending item should
supply five numeric digits. However, since the sending item is alphanumeric, the
compiler treats it as an unsigned integer; it truncates the two high-order digits
and supplies two zero digits for the decimal positions. Furthermore, it supplies a
positive overpunch sign, making the low-order digit a +0 (ASCII {). There is no
way to have the UNSTRING statement recognize a sign character or a decimal
point in the sending item in a single statement.

If the sending item is shorter than the sum of the sizes of the receiving items,
the compiler ignores the remaining receiving items. If the compiler reaches the
end of the sending item before it reaches the end of one of the receiving items,
it moves the scanned characters into that receiving item. It either left-justifies
and fills the remaining character positions with spaces for alphanumeric data, or
else it decimal point-aligns and zero-fills the remaining character positions for
numeric data.

Consider the following statement with reference to the corresponding PICTURE
character-strings and values in Table 7-3:

UNSTRING FIELD1 INTO FIELD2A FIELD2B.

FIELD2A is a 3-character alphanumeric item. It receives the first three
characters of FIELD1 (ABC) in every operation. FIELD2B, however, runs
out of characters every time before filling, as Table 7-3 illustrates.

Using the STRING, UNSTRING, and INSPECT Statements 7-7

Table 7-3: Handling a Short Sending ltem

FIELD1 FIELD2B
PIC X(6) FIELD2B Value After UNSTRING
VALUE IS: PICTURE IS: Operation
ABCDEF XXXXX DEF
599999 0024F
ABC246 S9V999 600{
S9999 LEADING SEPARATE +0246

7.2.2 Controlling Moved Data Using the DELIMITED BY Phrase

The size of the data to be moved can be controlled by a delimiter, rather than by
the size of the receiving item. The DELIMITED BY phrase supplies the delimiter
characters.

UNSTRING delimiters can be literals, figurative constants (including ALL
literal), or identifiers (identifiers can even be subscripted data names). This

section discusses the use of these three types of delimiters. Subsequent sections
cover multiple delimiters, the COUNT phrase, and the DELIMITER phrase.

Consider the following sample UNSTRING statement with the figurative constant
SPACE as a delimiter:

UNSTRING FIELD1 DELIMITED BY SPACE
INTO FIELD2.

In this example, the compiler scans the sending item (FIELD1), searching

for a space character. If it encounters a space, it moves all of the scanned
(nonspace) characters that precede that space to the receiving item (FIELD2). If
it finds no space character, it moves the entire sending item. When the compiler
has determined the size of the sending item, it moves the contents of that item
following the rules for the MOVE statement, truncating or zero-filling as required.

Table 7-4 shows the results of the following UNSTRING operation that uses a
literal asterisk delimiter:

UNSTRING FIELD1 DELIMITED BY "*"
INTO FIELDZ2.

Table 7-4: Results of Delimiting with an Asterisk

FIELD1 FIELD2

PIC X(6) FIELD2 Value After

VALUE IS: PICTURE IS: UNSTRING
XXX ABC

ABCDEF X(7) ABCDEF
XXX JUSTIFIED DEF

sespsksksk m sSS

*ABCDE XXX sss

Legend: s = space

7-8 Using the STRING, UNSTRING, and INSPECT Statements

(continued on next page)

Table 74 (Cont.): Results of Delimiting with an Asterisk

FIELD1 FIELD2
PIC X(6) FIELD2 Value After
VALUE IS: PICTURE IS: UNSTRING
Ak XXX JUSTIFIED ssA

246%#* 59999 024F

12345% S9999 TRAILING SEPARATE 2345+
2468%* 5999V9 LEADING SEPARATE +4680
246%+ 9999 0000

Legend: s = space

If the delimiter matches the first character in the sending item, the compiler
considers the size of the sending item to be zero. The operation still takes place,
however, and fills the receiving item with spaces (if it is nonnumeric) or zeros (if
it is numeric).

A delimiter can also be applied to an UNSTRING statement that has multiple
receiving items:

UNSTRING FIELD1 DELIMITED BY SPACE
INTO FIELD2A FIELD2B.

The compiler generates code that scans FIELD1 searching for a character that
matches the delimiter. If it finds a match, it moves the scanned characters

to FIELD2A and sets the scanner to the next character position to the right
of the character that matched. The compiler then resumes scanning FIELD1
for a character that matches the delimiter. If it finds a match, it moves all of
the characters between the character that first matched the delimiter and the
character that matched on the second scan, and sets the scanner to the next
character position to the right of the character that matched.

The DELIMITED BY phrase handles additional items in the same manner as it
handled FIELD2B.

Table 7-5 illustrates the results of the following delimited UNSTRING operation
into multiple receiving items:

UNSTRING FIELD1 DELIMITED BY "*"
INTO FIELD2A FIELDZ2B.

Table 7-5: Results of Delimiting Multiple Receiving ltems

Values After UNSTRING Operation

FIELD1

PIC X(8) FIELD2A FIELD2B
VALUE IS: PIC X(3) PIC X(3)
ABC*DEF* ABC DEF
ABCDE*FG ABC FGs

Legend: s = space

(continued on next page)

Using the STRING, UNSTRING, and INSPECT Statements 7-9

Table 7-5 (Cont.): Results of Delimiting Multiple Receiving ltems

Values After UNSTRING Operation

FIELD1

PIC X(8) FIELD2A FIELD2B
VALUE IS: PIC X(3) PIC X(3)
AFBHwkE Ass Bss
*AB*CD** sss ABs
**ABCDEF 888 §88
A*BCDEFG Ass BCD
ABC**DEF ABC s8§
AFFEEERR Ass 888

Legend: s = space

The previous examples illustrate the limitations of a single-character delimiter.
To overcome these limitations, a delimiter of more than one character or a
delimiter preceded by the word ALL may be used.

Table 7-6 shows the results of the following UNSTRING operation using a
2-character delimiter:

UNSTRING FIELD1 DELIMITED BY "*#*"
INTO FIELD2A FIELD2B.

Table 7-6: Results of Delimiting with Two Asterisks

Values After UNSTRING Operation

FIELD1 FIELD2B
PIC X(8) FIELD2A PIC XXX
VALUE IS: PIC XXX JUSTIFIED
ABC**DEF ABC DEF
A*B*C*D* A*B sss
AB*#*C*D ABs C*D
AB**C*D* ABs *D*
AB**CD** ABs sCD
AB***CD* ABs CD*
AB¥*¥**CD ABs ss8

Legend: s = space

Unlike the STRING statement, the UNSTRING statement accepts the ALL
literal as a delimiter. When the word ALL precedes the delimiter, the action of
the UNSTRING statement remains essentially the same as with one delimiter
until the scanning operation finds a match. At this point, the compiler scans
farther, looking for additional consecutive strings of characters that also match
the delimiter item. It considers the ALL delimiter to be one, two, three, or more
adjacent repetitions of the delimiter item. Table 7-7 shows the results of the
following UNSTRING operation using an ALL delimiter:

7-10 Using the STRING, UNSTRING, and INSPECT Statements

UNSTRING FIELD1 DELIMITED BY ALL "*"
INTO FIELD2A FIELD2B.

Table 7-7: Results of Delimitirig with ALL Asterisks

Values After UNSTRING Operation

FIELD1 FIELD2B
PIC X(8) FIELD2A PIC XXX
VALUE IS: PIC XXX JUSTIFIED
ABC*DEF* ABC DEF
ABC**DEF ABC DEF
Ak Ass ssF
AFPEksdkr Ass ssF
A*CDEFG Ass EFG

Legend: s = space

Table 7-8 shows the results of the following UNSTRING operation that combines
ALL with a 2-character delimiter:

UNSTRING FIELD1 DELIMITED BY ALL "**"
INTO FIELD2A FIELD2B.

Table 7-8: Results of Delimiting with ALL Double Asterisks

Values After UNSTRING Operation

FIELD1

PIC X(8) PIC XXX
VALUE IS: PIC XX JUSTIFIED
ABC**DEF ABC DEF
AB**DE** ABs sDE

T Ass s*D
Ak Ass sg*

Legend: s = space

In addition to unchangeable delimiters, such as literals and figurative constants,
delimiters can be designated by identifiers. Identifiers permit variable delimiting.
Consider the following sample statement:

UNSTRING FIELD1 DELIMITED BY DEL1
INTO FIELD2A FIELDZ2B.

The data name DEL1 must be alphanumeric; it can be either a group or an
elementary item. If the delimiter contains a subscript, the subscript may vary as
a side effect of the UNSTRING operation.

Using the STRING, UNSTRING, and INSPECT Statements 7-11

7.2.2.1

Multiple Delimiters

The UNSTRING statement scans a sending item, searching for a match from a
list of delimiters. This list can contain ALL delimiters and delimiters of various
sizes. Delimiters in the list must be connected by the word OR.

The following sample statement unstrings a sending item into three receiving
items. The sending item consists of three strings separated by one of the
following: (1) any number of spaces, (2) a comma followed by a single space,
(3) a single comma, (4) a tab character, or (5) a carriage-return character. The
comma and space must precede the single comma in the list if the comma and
space are to be recognized.

UNSTRING FIELD1 DELIMITED BY ALL SPACE
OR n , "w
OR " ’ n
OR TAB
OR CR
INTO FIELD2A FIELD2B FIELDZ2C.

Table 7-9 shows the potential of this statement. The tab and carriage-return
characters represent single-character items containing the ASCII horizontal tab
and carriage-return characters.

Table 7-9: Results of Multiple Delimiters

FIELD1 FIELD2A FIELD2B FIELD2C
PIC X(12) PIC XXX PIC 9999 PIC XXX
A0,C Ass 0000 Css
A [E156, E Ass 0456 Ess
A39 Ass 0003 9ss
A B Ass 0000 Bss
A,C Ass 0000 Css
ABCD, 4321,% ABC 4321 Zss

Legend: s = space

7.2.3 Using the COUNT Phrase

The COUNT phrase keeps track of the size of the sending string and stores the
length in a user-supplied data area.

The length of a delimited sending item can vary from zero to the full length of
the item. Some programs require knowledge of this length. For example, some
data is truncated if it exceeds the size of the receiving item, so the program’s logic
requires this information.

The COUNT phrase follows the receiving item. Consider the following example:

UNSTRING FIELD1 DELIMITED BY ALL "*"
INTO FIELD2A COUNT IN COUNT2A
FIELD2B COUNT IN COUNT2B
FIELD2C.

The compiler generates code that counts the number of characters between the
leftmost position of FIELD1 and the first asterisk in FIELD1 and places the count
into COUNT2A. The delimiter is not included in the count because it is not a part
of the string. The data preceding the first asterisk is then moved into FIELD2A.

7-12 Using the STRING, UNSTRING, and INSPECT Statements

The compiler then counts the number of characters between the last contiguous
asterisk in the first scan and the next asterisk in the second scan, and places the
count in COUNT2B. The data between the delimiters of the second scan is moved
into FIELD2B.

The third scan begins at the first character after the last contiguous asterisk
in the second scan. Any data between the delimiters of this scan is moved to
FIELD2C.

The COUNT phrase should be used only where it is needed. In this example,
the length of the string moved to FIELD2C is not needed, so no COUNT phrase
follows it.

If the receiving item is shorter than the value placed in the count item, the code
truncates the sending string. If the number of integer positions in a numeric item
is smaller than the value placed into the count item, high-order numeric digits
have been lost. If a delimiter match is found on the first character examined, a
zero is placed in the count item.

The COUNT phrase can be used only in conjunction with the DELIMITED BY
phrase.

7.2.4 Saving UNSTRING Delimiters Using the DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that delimited
the sending item to be stored in a user-supplied data area. This phrase is most
useful when:

¢ The UNSTRING statement contains a delimiter list.
¢ Any one of the delimiters in the list might have delimited the item.

* Program logic flow depends on the delimiter match found.

By using the DELIMITER and COUNT phrases, you can make the flow of
program logic dependent on both the size of the sending string and the delimiter
terminating the string.

To use the DELIMITER phrase, follow the receiving item name with the words
DELIMITER IN and an identifier. The compiler generates code that places the
delimiter character in the area named by the identifier. Consider the following
sample UNSTRING statement:

UNSTRING FIELD1 DELIMITED BY ","
OR TAB
OR ALL SPACE
OR CR
INTO FIELD2A DELIMITER IN DELIMA
FIELD2B DELIMITER IN DELIMB
FIELD2C.

After moving the first sending string to FIELD2A, the character (or characters)
that delimited that string is placed in DELIMA. In this example, DELIMA
contains either a comma, a tab, a carriage return, or any number of spaces.
Because the delimiter string is moved under the rules of the elementary
nonnumeric MOVE statement, the compiler truncates or space-fills with left

or right justification.

The second sending string is then moved to FIELD2B and its delimiting character
is placed into DELIMB.

Using the STRING, UNSTRING, and INSPECT Statements 7-13

When a sending string is delimited by the end of the sending item rather than by
a match on a delimiter, the delimiter string is of zero length and the DELIMITER
item is space-filled. The phrase should be used only where needed. In this
example, the character that delimits the last sending string is not needed, so no
DELIMITER phrase follows FIELD2C.

The data item named in the DELIMITER phrase must be described as an
alphanumeric item. It can contain editing characters, and it can also be a group
item.

When you use both DELIMITER and COUNT phrases, the DELIMITER phrase
must precede the COUNT phrase. Both of the data items named in these phrases
can be subscripted or indexed. If they are subscripted, the subscript can be varied
as a side effect of the UNSTRING operation.

7.2.5 Controlling UNSTRING Scanning Using the POINTER Phrase

Although the UNSTRING statement scan usually starts at the leftmost position
of the sending item, the POINTER phrase lets you control the character position
where the scan starts. Scanning, however, remains left to right.

When a sending item is to be unstrung into multiple receiving items, the choice
of delimiters and the size of subsequent receiving items depends on the size

of the first sending string and the character that delimited that string. Thus,
the program needs to move the first sending item, hold its scanning position in
the sending item, and examine the results of the operation to determine how to
handle the sending items that follow.

This is done by using an UNSTRING statement with a POINTER phrase that
fills only the first receiving item. When the first string has been moved to a
receiving item, the compiler begins the next scanning operation one character
beyond the delimiter that caused the interruption. The program examines the
new position, the receiving item, the delimiter value, and the sending string size.
It resumes the scanning operation by executing another UNSTRING statement
with the same sending item and pointer data item. In this way, the UNSTRING
statement moves one sending string at a time, with the form of each succeeding
move depending on the context of the preceding string of data.

The POINTER phrase must follow the last receiving item in the UNSTRING
statement. You are responsible for initializing the pointer before the UNSTRING
statement executes. Consider the following two UNSTRING statements with
their accompanying POINTER phrases and tests:

MOVE 1 TO PNTR.
UNSTRING FIELD1 DELIMITED BY ":"
OR TAB
OR CR
OR ALL SPACE
INTO FIELD2A DELIMITER IN DELIMA COUNT IN LSIZEA
WITH POINTER PNTR.
IF LSIZEA = 0 GO TO NO-LABEL-PROCESS.
IF DELIMA = ":"
IF PNTR > 8 GO TO BIG-LABEL-PROCESS
ELSE GO TO LABEL-PROCESS.
IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

UNSTRING FIELD1 DELIMITED BY ... WITH POINTER PNTR.

7-14 Using the STRING, UNSTRING, and INSPECT Statements

PNTR contains the current position of the scanner in the sending item. The
second UNSTRING statement uses PNTR to begin scanning the additional
sending strings in FIELD1.

Because the compiler considers the leftmost character to be character position
1, the value of PNTR can be used to examine the next character. To do this,
describe the sending item as a table of characters and use PNTR as a sending
item subscript. This is shown in the following example:

01 FIELD1.
02 FIELD1-CHAR OCCURS 40 TIMES.

UNSTRING FIELD1

WITH POINTER PNTR.
IF FIELD1-CHAR(PNTR) = "X" .

Another way to examine the next character of the sending item is to use the
UNSTRING statement to move the character to a 1-character receiving item:

UNSTRING FIELD1l

WITH POINTER PNTR.
UNSTRING FIELD1 INTO CHAR1 WITH POINTER PNTR.
SUBTRACT 1 FROM PNTR.
IF CHARL = "X" ...

The program must decrement PNTR by 1 in order to work, because the second
UNSTRING statement increments the pointer by 1.

The program must initialize the POINTER phrase data item before the
UNSTRING statement uses it. The compiler will terminate the UNSTRING
operation if the initial value of the pointer is less than one or greater than the
length of the sending item. Such a pointer value causes an overflow condition.
Overflow conditions are discussed in Section 7.2.7.

7.2.6 Counting UNSTRING Receiving ltems Using the TALLYING Phrase

The TALLYING phrase counts the number of receiving items that received data
from the sending item.

When an UNSTRING statement contains several receiving items, there are not
always as many sending strings as there are receiving items. The TALLYING
phrase provides a convenient method for keeping a count of how many receiving
items actually received strings. The following example shows how to use the
TALLYING phrase.

MOVE 0 TO RCOUNT.
UNSTRING FIELD1 DELIMITED BY ", "
OR ALL SPACE
INTO FIELD2A
FIELD2B
FIELD2C
FIELD2D
FIELD2E .
TALLYING IN RCOUNT.

Using the STRING, UNSTRING, and INSPECT Statements 7-15

If the compiler has moved only three sending strings when it reaches the end
of FIELD1, it adds 3 to RCOUNT. The first three receiving items (FIELD2A,
FIELD2B, and FIELD2C) contain data from the UNSTRING operation, but the
last two (FIELD2D and FIELD2E) do not.

The UNSTRING statement does not initialize the TALLYING data item. The
TALLYING data item always contains the sum of its initial contents plus the
number of receiving items receiving data. Thus, you might want to initialize the
tally count before each use.

You can use the POINTER and TALLYING phrases together in the same
UNSTRING statement, but the POINTER phrase must precede the TALLYING
phrase. Both phrases must follow all of the item names, the DELIMITER
phrase, and the COUNT phrase. The data items for both phrases must contain
numeric integers without editing characters or the symbol P in their PICTURE
character-strings; both data items can be either COMP or DISPLAY usage. They
can be signed or unsigned and, if they are DISPLAY usage, they can contain any
desired sign option.

7.2.7 Exiting an UNSTRING Statement Using the OVERFLOW Phrase

The OVERFLOW phrase detects the overflow condition and causes an imperative
statement to be executed when it detects the condition. An overflow condition
exists when:

* The UNSTRING statement is about to execute and its pointer data item
contains a value less than one or greater than the size of the sending item.
The compiler generates code that executes the OVERFLOW phrase before it
moves any data, and the values of all the receiving items remain unchanged.

* Data still remains in the sending item after the UNSTRING statement has
filled all the receiving items. The compiler executes the OVERFLOW phrase
after it has executed the UNSTRING statement. The value of each receiving
item is updated, but some data is still unmoved.

If the UNSTRING operation causes the scan to move past the rightmost position
of the sending item (thus exhausting it), the compiler does not execute the
OVERFLOW phrase.

The following set of instructions causes program control to execute the
UNSTRING statement repeatedly until it exhausts the sending item. The
TALLYING data item is a subscript that indexes the receiving item. Compare
this loop with the previous loop, which accomplishes the same thing:

MOVE 1 TO TLY PNTR.
PAR1. UNSTRING FIELD1 DELIMITED BY ", "
OR CR
INTO FIELDZ (TLY) WITH POINTER PNTR
TALLYING IN TLY
ON OVERFLOW GO TO PARL.

7.2.8 Common UNSTRING Statement Errors

The most common errors made when writing UNSTRING statements are as
follows:

* Leaving the OR connector out of a delimiter list

* Misspelling or interchanging the words DELIMITED and DELIMITER

7-16 Using the STRING, UNSTRING, and INSPECT Statements

* Writing the DELIMITER and COUNT phrases in the wrong order when both
are present (DELIMITER must precede COUNT)

¢ Omitting the word INTO (or writing it as TO) before the receiving item list
¢ Repeating the word INTO in the receiving item list as shown in this example:

UNSTRING FIELD1 DELIMITED BY SPACE
OR TAB
INTO FIELD2A DELIMITER IN DELIMA
INTO FIELD2B DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

* Writing the POINTER and TALLYING phrases in the wrong order (POINTER
must precede TALLYING)

¢ Failing to understand the rules concerning subscript evaluation

7.3 Examining and Replacing Characters Using the INSPECT
Statement

The INSPECT statement examines the character positions in an item and counts
or replaces certain characters (or groups of characters) in that item.

Like the STRING and UNSTRING operations, INSPECT operations scan across
the item from left to right. Included in the INSPECT statement is an optional
phrase that allows scanning to begin or terminate upon detection of a delimiter
match. This feature allows scanning to begin within the item, as well as at the
leftmost position.

7.3.1 Using the TALLYING and REPLACING Options of the INSPECT
Statement

The TALLYING operation, which counts certain characters in the item, and the
REPLACING operation, which replaces certain characters in the item, can be
applied either to the characters in the delimited area of the item being inspected,
or to only those characters that match a given character string or strings under
stated conditions. Consider the following sample statements, both of which cause
a scan of the complete item:

INSPECT FIELD1l TALLYING TLY FOR ALL "B".
INSPECT FIELD1 REPLACING ALL SPACE BY ZERO.

The first statement causes the compiler to scan FIELD1 looking for the character
B. Each time a B is found, TLY is incremented by 1.

The second statement causes the compiler to scan FIELD1 looking for spaces.
Each space found is replaced with_a zero.

The TALLYING and REPLACING phrases support both single and multiple
arguments. For example, both of the following statements are valid:

INSPECT FIELD1 TALLYING TLY FOR ALL "A" "B" "C".
INSPECT FIELD1 REPLACING ALL "A" "B" "C" BY "D".

You can use both the TALLYING and REPLACING phrases in the same
INSPECT statement. However, when used together, the TALLYING phrase
must precede the REPLACING phrase. An INSPECT statement with both
phrases is equivalent to two separate INSPECT statements. In fact, the compiler
compiles such a statement into two distinct INSPECT statements. To simplify
debugging, write the two phrases in separate INSPECT statements.

Using the STRING, UNSTRING, and INSPECT Statements 7-17

7.3.2 Restricting Data Inspection Using the BEFORE/AFTER Phrase

The BEFORE/AFTER phrase acts as a delimiter and can restrict the area of the
item being inspected.

The following sample statement counts only the zeros that precede the percent
sign (%) in FIELD1:

INSPECT FIELD1 TALLYING TLY
FOR ALL ZEROS BEFORE "&".

The delimiter (the percent sign in the preceding sample statement) can be a
single character, a string of characters, or any figurative constant. Furthermore,
it can be either an identifier or a literal.

e If the delimiter is an identifier, it must be an elementary data item of
DISPLAY usage. It can be alphabetic, alphanumeric, or numeric, and it can
contain editing characters. The compiler always treats the item as if it had
been described as an alphanumeric string. It does this by implicit redefinition
of the item, as described in Section 7.3.3.

e If the delimiter is a literal, it must be nonnumeric.

The compiler repeatedly compares the delimiter characters against an equal
number of characters in the item being inspected. If none of the characters
matches the delimiter, or if too few characters remain in the rightmost position
of the item for a full comparison, the compiler considers the comparison to be
unequal.

The examples of the INSPECT statement in Figure 7-2 illustrate the way the
delimiter character finds a match in the item being inspected. The underlined
characters indicate the portion of the item the statement inspects as a result of
the delimiters of the BEFORE and AFTER phrases. The remaining portion of the
item is ignored by the INSPECT statement.

7-18 Using the STRING, UNSTRING, and INSPECT Statements

Figure 7-2: Matching Delimiter Characters to Characters in a Field

Instruction FIELD1 Value
INSPECT FIELD1...BEFORE "E". ABCDEFBAY
INSPECT FIELD1...AFTER "E". JABCHFEGH
INSPECT FIELD1...BEFORE "K". ABCDEFGH]
INSPECT FIELD1...AFTER "K". ABCRERB
INSPECT FIELD1...BEFORE "AB". KBEAHEEAY
INSPECT FIELD1...AFTER "AB". JKBCDEFGHI
INSPECT FIELD1...BEFORE "HI". ABCDEFGHY

INSPECT FIELD1...AFTER "HI". ABEORAAAY
INSPECT FIELD1...BEFORE "I".
INSPECT FIELD1...AFTER "I".

ABCDEFGHI
ABCHErEA

ZK-1426A-GE

The ellipses represent the position of the TALLYING or REPLACING phrase.
The compiler generates code that scans the item for a delimiter match before it
scans for the inspection operation (TALLYING or REPLACING), thus establishing
the limits of the operation before beginning the actual inspection. Section 7.3.4.1
further discusses the separate scan.

Implicit Redefinition

The compiler requires that certain items referred to by the INSPECT statement
be alphanumeric items. If one of these items is described as another data class,
the compiler implicitly redefines that item so the INSPECT statement can handle
it as an alphanumeric string as follows:

¢ If the item is alphabetic, alphanumeric edited, or unsigned numeric, the
item is redefined as alphanumeric. This is a compile-time operation; no data
movement occurs at run time.

¢ If the item is signed numeric, the compiler generates code that first removes
the sign and then redefines the item as alphanumeric. If the sign is a
separate character, that character is ignored, essentially shortening the item,
and that character does not participate in the implicit redefinition. If the sign
is an overpunch on the leading or trailing digit, the sign value is removed and
the character is left with only the numeric value that was stored in it.

The compiler alters the digit position containing the sign before beginning the
INSPECT operation and restores it to its former value after the operation. If
the sign’s digit position does not contain a valid ASCII signed numeric digit,
redefinition causes the value to change.

Table 7-10 shows these original, altered, and restored values.

Using the STRING, UNSTRING, and INSPECT Statements 7-19

The compiler never moves an implicitly redefined item from its storage position.
All redefinition occurs in place.

The position of an implied decimal point on numeric quantities does not affect
implicit redefinition.

Table 7-10: Values Resulting from Implicit Redefinition

Original Altered

Value Value Restored Value
} (A73) 0 (60) } (178)
A (101) 1(61) A (101)
B (102) 2 (62) B (102)
C (103) 3 (63) C (108)
D (104) 4 (64) D (104)
E (105) 5 (65) E (105)
F (106) 6 (66) F (106)
G (107) 7 (67) G (107
H (110) 8 (70) H (110)
I(111) 9(71) 11D
{ (175) 0 (60) {(175)
J (112) 1(61) J (112)
K (113) 2 (62) K (113)
L (114) 3 (63) L (114)
M (115) 4 (64) M (115)
N (116) 5 (65) N (116)
o (117) 6 (66) 0O (117)
P (120) 7 (87) P (120)
Q (121) 8(70) Q (121)
R (122) 9(71) R (122)

(continued on next page)

7-20 Using the STRING, UNSTRING, and INSPECT Statements

Table 7-10 (Cont.): Values Resulting from Implicit Redefinition

Original Altered

Value Value Restored Value
0 (60) 0 (60) } (173)
1(61) 1(61) A (101)
2 (62) 2 (62) B (102)
3(63) 3 (63) C (103)
4 (64) 4 (64) D (104)
5 (65) 5 (65) E (105)
6 (66) 6 (66) F (106)
7(67) 7 (67) G (107)
8 (70) 8 (70) H (110)
9 (71) 9 (71D I1(111
All other 0 (60) } (173)
values

7.3.4 Examining the INSPECT Operation

Regardless of the type of inspection (TALLYING or REPLACING), the INSPECT
statement has only one method for inspecting the characters in the item. This
section analyzes the INSPECT statement and describes this inspection method.

Figure 7-3 shows an example of the INSPECT statement. The item to be
inspected must be named (FIELD1 in our example), and the item name must be
followed by a TALLYING phrase (TALLYING TLY). The TALLY phrase must be
followed by one or more identifiers or literals (B). These identifiers or literals
comprise the arguments. More than one argument makes up the argument list.

Figure 7-3: Sample INSPECT Statement

INSPECT FIELD1 TALLYING TLY FOR ALL "B" BEFORE "A"
l J | 1

Item being Operation Argument Delimiter
inspected phrase phrase
ZK-6052-GE

Each argument in an argument list can have other items associated with it.
Thus, each argument that is used in a TALLYING operation must have a tally
counter (such as TLY in the example) associated with it. The tally counter is
incremented each time it matches the argument with a character or group of
characters in the item being inspected.

Using the STRING, UNSTRING, and INSPECT Statements 7-21

Each argument in an argument list used in a REPLACING operation must have
a replacement item associated with it. The compiler generates code that uses the
replacement item to replace each string of characters in the item that matches
the argument. Figure 7-4 shows a typical REPLACING phrase (with $ as the
replacement item).

Figure 7-4: Typical REPLACING Phrase

INSPECT FIELD1 REPLACING ALL "O" BY "$"
1 J

Replacing argument

ZK-6053-GE

Each argument in an argument list used with either a TALLYING or
REPLACING operation can have a delimiter item (BEFORE/AFTER phrase)
associated with it. If the delimiter item is not present, the argument is applied to
the entire item. If the delimiter item is present, the argument is applied only to
that portion of the item specified by the BEFORE/AFTER phrase.

7.3.4.1 Setting the Scanner

The INSPECT operation begins by setting the scanner to the leftmost character
position of the item being inspected. It remains on this character until an
argument has been matched with a character (or characters) or until all
arguments have failed to find a match at that position.

7.3.4.2 Active/lInactive Arguments

When an argument has a BEFORE/AFTER phrase associated with it, that
argument has a delimiter and may not be eligible to participate in a comparison
at every position of the scanner. Thus, each argument in the argument list has
an active/inactive status at any given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it starts
the INSPECT operation in an inactive state. The delimiter of the AFTER phrase
must find a match before the argument can participate in the comparison.
When the delimiter finds a match, the compiler generates code that retains the
character position beyond the matched character string; then, when the scanner
reaches or passes this position, the argument becomes active. This is shown in
the following example:

INSPECT FIELD1l TALLYING TLY
FOR ALL "B" AFTER "X".

If FIELD1 has a value of ABABXZBA, the argument B remains inactive until the
scanner finds a match for delimiter X. Thus, argument B remains inactive while
the compiler generates code that scans character positions 1 to 5. At character
position 5, delimiter X finds a match, and since the character position beyond
the matched delimiter character is the point at which the argument becomes
active, argument B is compared for the first time at character position 6. It finds
a successful match at character position 7, causing TLY to be incremented by 1.

7-22 Using the STRING, UNSTRING, and INSPECT Statements

Table 7-11 shows an INSPECT...TALLYING statement that is scanning FIELD1,
tallying in TLY, and looking for the arguments and delimiters listed in the left
column. Assume that TLY is initialized to 0.

Table 7-11: Relationship Among INSPECT Argument, Delimiter, tem Value, and
Argument Active Position

Argument
Argument and FIELD1 Active at Contents of
Delimiter Value Position TLY After Scan
ALL BXBXXXXBB 6 2
“B” AFTER “XX” XXXXXXXX 3 0
BXBXBBBBXX never 0

BXBXXBXXB 6

“X” AFTER “XX” XXXXXXXX 3 6
BBBBBBXX never 0
BXYBXBXX 7 0
“B” AFTER “XB” XBXBXBXB 3 3
BBBBBBXB never 0

XXXXBXXXX 6
“BX” AFTER “XB” XXXXBBXXX 6
XXBXXXXBX 4

When an argument has an associated BEFORE delimiter, the inactive/active
states reverse roles: the argument is in an active state when the scanning
begins and becomes inactive at the character position that matches the delimiter.
Regardless of the presence of the BEFORE delimiter, an argument becomes
inactive when the scanner approaches the rightmost position of the item and the
remaining characters are fewer in number than the characters in the argument.
In such a case, the argument cannot possibly find a match in the item, so it
becomes inactive.

Since the BEFORE/AFTER delimiters are found on a separate scan of the item,
the compiler generates code that recognizes and sets up the delimiter boundaries
before it scans for an argument match; therefore, the same characters can be used
as arguments and delimiters in the same phrase.

7.3.4.3 Finding an Argument Match

The compiler generates code that selects arguments from the argument list

in the order in which they appear in the list. If the first one it selects is an
active argument, and the conditions stated in the INSPECT statement allow a
comparison, the compiler generates code that compares it to the character at the
scanner’s position. If the active argument does not find a match, the compiler
generates code that takes the next active argument from the list and compares
that to the same character, If none of the active arguments finds a match, the
scanner moves one position to the right and begins the inspection operation again
with the first active argument in the list. The inspection operation terminates at
the rightmost position of the item.

Using the STRING, UNSTRING, and INSPECT Statements’ 7-23

When an active argument finds a match, the compiler ignores any remaining
arguments in the list and conducts the TALLYING or REPLACING operation

on the character. The scanner moves to a new position and the next inspection
operation begins with the first argument in the list. The INSPECT statement can
contain additional conditions, which are described later in this section; without
them, however, the argument match is allowed to take place, and inspection
continues following the match.

The compiler updates the scanner by adding the size of the matching argument to
it. This moves the scanner to the next character beyond the string of characters
that matched the argument. Thus, once an active argument matches a string of
characters, the statement does not inspect those character positions again unless
program control executes the entire statement again.

7.3.5 The TALLYING Phrase

An INSPECT statement that contains a TALLYING phrase counts the
occurrences of various character strings under certain stated conditions. It
keeps the count in a user-designated item called a tally counter.

7.3.5.1 The Tally Counter

The identifier following the word TALLYING designates the tally counter. The
identifier can be subscripted or indexed. The data item must be a numeric integer
without any editing or P characters; it can be COMP or DISPLAY usage, and it
can be signed (separate or overpunched).

Each time the tally argument matches the delimited string being inspected, the
compiler adds 1 to the tally counter.

You can initialize the tally counter to any numeric value. The INSPECT
statement does not initialize it.

7.3.5.2 The Tally Argument

The tally argument specifies a character-string (or strings) and a condition under
which that string should be compared to the delimited string being inspected.

The CHARACTERS form of the tally argument specifies that every character in
the delimited string being inspected should be considered to match an imaginary
character that serves as the tally argument. This increments the tally counter by
a value that equals the size of the delimited string. For example, the following
statement causes TLY to be incremented by the number of characters that
precede the first comma, regardless of what those characters are:

INSPECT FIELD1 TALLYING TLY FOR
CHARACTERS BEFORE ", ™.

The ALL and LEADING forms of the tally argument specify a particular
character-string (or strings), which can be represented by either a literal or
an identifier. The tally argument character-string can be any length; however,
each character of the argument must match a character in the delimited string
before the compiler considers the argument matched.

* A literal character-string must be either nonnumeric or a figurative constant
(other than ALL literal). A figurative constant, such as SPACE or ZERO,
represents a single character and can be written as “” “” or “0” with the
same effect.

7-24 Using the STRING, UNSTRING, and INSPECT Statements

¢ An identifier must be an elementary item of DISPLAY usage. It can be any
data class. However, if it is not alphanumeric, the compiler performs an
implicit redefinition of the item. This redefinition is identical to the
BEFORE/AFTER delimiter redefinition discussed in Section 7.3.2.

The words ALL and LEADING supply conditions that further delimit the
inspection operation:

* ALL specifies that every match that the search argument finds in the
delimited character string be counted in the tally counter. When a literal
follows the word ALL, it does not have the same meaning as the figurative
constant, ALL literal. The ALL literal meaning of ALL “” is a string of
consecutive commas (as many as the context of the statement requires). ALL

,” used as a tally argument means “count each comma without regard to
adjacent characters.”

¢ LEADING specifies that only adjacent matches of the TALLY argument
at the leftmost position of the delimited character string be counted. At
the first failure to match the tally argument, the compiler terminates
counting and causes the argument to become inactive. The sample statement
INSPECT...TALLYING (scanning FIELD1, tallying in TLY, and looking for
the arguments and delimiters listed in the left column) gives the results in
Table 7-12 (if the program initializes TLY to 0).

Table 7-12: LEADING Delimiter of the Inspection Operation

Argument and Delimiter FIELD1 Value Contents of TLY After Scan
LEADING “*” AFTER “0”. FrspEQ

Qe RE

w o o

F#*F0***FF
LEADING “**” AFTER “0”. FrsFQsesspes

S N =

7.3.5.3 The Tally Argument List

One INSPECT...TALLYING statement can contain more than one tally argument,
and each argument can have a separate BEFORE/AFTER phrase and tally
counter associated with it. These tally arguments with their associated tally
counters and BEFORE/AFTER phrases form an argument list. The manner in
which this list is processed affects the action of any given tally argument.

The following examples show INSPECT statements with argument lists. The text
with each example explains how that list is processed.

INSPECT FIELD1 TALLYING T FOR

ALL " ’ "
ALL n . ”"
ALL “;™".

Using the STRING, UNSTRING, and INSPECT Statements 7-25

These three tally arguments have the same tally counter, T, and are active over
the entire item being inspected. Thus, the preceding statement adds the total
number of commas, periods, and semicolons in FIELD1 to the initial value of T.
Since the TALLYING phrase supports multiple arguments and only one counter
is used, the previous statement could have been written as follows:

INSPECT FIELD1 TALLYING T FOR ALL ", ™ ". W ";m,

INSPECT FIELD1 TALLYING
T1 FOR ALL ", "
T2 FOR ALL "."
T3 FOR ALL ";".

Each tally argument in this statement has its own tally counter and is active
over the entire item being inspected. Thus, the preceding statement adds the
total number of commas in FIELD1 to the initial value of T1, the total number of
periods to the initial value of T2, and the number of semicolons to T3.

INSPECT FIELD1 TALLYING
Tl FOR ALL ","™ AFTER "A"
T2 FOR ALL "." BEFORE "B"
T3 FOR ALL ";".

Each tally argument in the preceding statement has its own tally counter; the
first two arguments have delimiter phrases, and the last one is active over the
entire item being inspected. Thus, the first argument is initially inactive and
becomes active only after the scanner encounters an A; the second argument
begins the scan in the active state but becomes inactive after a B has been
encountered; and the third argument is active during the entire scan of FIELD1.

Table 7-13 shows various values of FIELD1 and the contents of the three tally
counters after the scan of the previous statements. Assume that the counters are
initialized to 0 before the INSPECT statement.

Table 7-13: Results of the Scan with Separate Tallies

Contents of Tally Counters After Scan

FIELD1

Value T1 T2 T3
A.CD.E,F 1 2 1
AB.C.D 0 1 0
ABC,D 3 0 0
A;B;C;:D 0 0 3
*B,C,D 0 0 0

The BEFORE/AFTER phrase applies only to the argument that precedes it and
delimits the item for that argument only. Each BEFORE/AFTER phrase causes a
separate scan of the item to determine the limits of the item for its corresponding
argument.

7.3.5.4 Interference in Tally Argument Lists

When several tally arguments contain one or more identical characters active
at the same time, they may interfere with each other, so that when one of the
arguments finds a match, the scanner steps past any other matching characters,
preventing those characters from being considered for a match.

7-26 Using the STRING, UNSTRING, and INSPECT Statements

The following two identical tally arguments do not interfere with each other since
they are not active at the same time. The first A in FIELD1 causes the first
argument to become inactive and the second argument to become active:

MOVE 0 TO T1 T2.

INSPECT FIELD1 TALLYING
Tl FOR ALL "," BEFORE "A"
T2 FOR ALL "," AFTER "A".

However, the next identical tally arguments interfere with each other since both
are active at the same time:

INSPECT FIELD1 TALLYING
Tl FOR ALL ", "
T2 FOR ALL "," AFTER "A".

For any given position of the scanner, the arguments are applied to FIELD1
in the order in which they appear in the statement. When one of them finds
a match, the scanner moves to the next position and ignores the remaining
arguments in the argument list. Each comma in FIELD1 causes T1 to be
incremented by 1 and the second argument to be ignored. Thus, T1 always
contains an accurate count of all the commas in FIELD1, and T2 is always
unchanged.

The following INSPECT statement arguments only partially interfere with each
other:

INSPECT FIELD1 TALLYING
T2 FOR ALL "," AFTER "A"
Tl FOR ALL ", ".

The first argument does not become active until the scanner encounters an

A. The second argument tallies all commas that precede the A. After the A,

the first argument counts all commas and causes the second argument to be
ignored. Thus, T1 contains the number of commas that precede the first A, and
T2 contains the number of commas that follow the first A. This statement works
well as written, but it could be difficult to debug.

The following three examples show that one INSPECT statement cannot count
any character more than once. Thus, when you use the same character in more
than one argument of an argument list, consider the possibility of interference
and choose the order of the arguments carefully. The solution may require two or
more INSPECT statements. Consider the following problem:

INSPECT FIELD1l TALLYING
Tl FOR ALL "AB"
T2 FOR ALL "BC".

If FIELD1 contains ABCABC after the scan, T1 is incremented by 2, and T2 is
unaltered. The successful matching of the argument includes each B in the item.
Each match resets the scanner to the character position to the right of the B, so
that the second argument is never successfully matched. The results remain the
same even if the order of the arguments is reversed. Only separate INSPECT
statements can develop the desired counts.

Sometimes you can use the interference characteristics of the INSPECT
statement to your advantage. Consider the following sample argument list:

MOVE 0 TO T4 T3 T2 T1.

INSPECT FIELD1 TALLYING
T4 FOR ALL "k#x*x0
T3 FOR ALL "*#*x*u
T2 FOR ALL "**"
Tl FOR ALL "*",

Using the STRING, UNSTRING, and INSPECT Statements 7-27

The argument list counts all of the asterisks in FIELD1 in four different tally

counters. T4 counts the number of times that four asterisks occur together; T3
counts the number of times three asterisks appear together; T2 counts double

asterisks; and T1 counts singles.

If FIELD1 contains a string of more than four consecutive asterisks, the
argument list breaks the string into groups of four and counts them in T4. It
then counts the less-than-four remainder in T3, T2, or T1.

Reversing the order of the arguments in this list causes T1 to count all of the
asterisks, and T2, T3, and T4 to remain unchanged.

When the LEADING condition is used with an argument in the argument list,

“that argument becomes inactive as soon as it fails to be matched in the item
being inspected. Therefore, when two arguments in an argument list contain one
or more identical characters and one of the arguments has a LEADING condition,
the argument with the LEADING condition should appear first. Consider the
following sample statement:

MOVE 0 TO T1 T2.

INSPECT FIELD1 TALLYING

~ T1 FOR LEADING "*'" '
T2 FOR ALL-"*", '

T1 counts only leading asterisks in FIELD1; the occurrence of any other character
causes the first tally argument to become inactive. T2 keeps a count of any
remaining asterisks in FIELD1.

Reversing the order of the arguments in the following statement results in an
argument list that can never increment T1:

INSPECT FIELD1 TALLYING
T2 FOR ALL "*"
Tl FOR LEADING "*",

If the first character in FIELD1 is not an asterisk, neither argument can match
it, and the second argument becomes inactive. If the first character in FIELD1 .
is an asterisk, the first argument matches it and causes the second argument to
be ignored. The first character in FIELD1 that is not an asterisk fails to match
the first argument, and the second argument becomes inactive because it has not
found a match in any of the preceding characters.

An argument with both a LEADING condition and a BEFORE phrase can
sometimes successfully delimit the item being inspected, as in the following
example:

MOVE 0 TO T1 T2.
INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES

T2 FOR ALL " " BEFORE "."“
T2 FOR ALL " " BEFORE "."
T2 FOR ALL " ™ BEFORE ".".

IF T2 > 0 ADD 1 TO T2.

These statements count the number of words in the English statement in
FIELDI, assuming that no more than three spaces separate the words in the
sentence, that the sentence ends with a period, and that the period immediately
follows the last word. When FIELD1 has been scanned, T2 contains the number
of spaces between the words. Since a count of the spaces renders a number that
is one less than the number of words, the conditional statement adds 1 to the
count.

7-28 Using the. STRING, UNSTRING, and INSPECT Statements

The first argument removes any leading spaces, counting them in a different tally
counter. This shortens FIELD1 by preventing the application of the second to the
fourth arguments until the scanner finds a nonspace character. The BEFORE
phrase on each of the other arguments causes them to become inactive when

the scanner reaches the period at the end of the sentence. Thus, the BEFORE
phrases shorten FIELD1 by making the second to the fourth arguments inactive
before the scanner reaches the rightmost position of FIELD1. If the sentence in
FIELD1 is indented with tab characters instead of spaces, a second LEADING
argument can count the tab characters. For example:

INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES
T1 FOR LEADING TAB
T2 FOR ALL " "

When an argument list contains a CHARACTERS argument, it should be the
last argument in the list. Since the CHARACTERS argument always matches
the item, it prevents the application of any arguments that follow in the list.
However, as the last argument in an argument list, it can count the remaining
characters in the item being inspected. Consider the following example.

MOVE 0 TO Tl T2 T3 T4 T5.
INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES

T2 FOR ALL "." BEFORE ","
T3 FOR ALL "+" BEFORE ","
T4 FOR ALL "-" BEFORE ", "

T5 FOR CHARACTERS BEFORE ", 6",

If FIELD1 is known to contain a number in the form frequently used to input
data, it can contain a plus or minus sign, and a decimal point; furthermore,
the number can be preceded by spaces and terminated by a comma. When this
statement is compiled and executed, it delivers the following results:

¢ T1 contains the number of leading spaces.
¢ T2 contains the number of periods.

¢ T3 contains the number of plus signs.

* T4 contains the number of minus signs.

* T5 contains the number of remaining characters (assumed to be numeric).

The sum of T1 to T5, plus 1, gives the character position occupied by the
terminating comma.

7.3.6 Using the REPLACING Phrase

When an INSPECT statement contains a REPLACING phrase, that statement
selectively replaces characters or groups of characters in the designated item.

The REPLACING phrase names a search argument of one or more characters and
a condition under which the string can be applied to the item being inspected.
Associated with the search argument is the replacement value, which must be
the same length as the search argument. Each time the search argument finds a
match in the item being inspected, under the condition stated, the replacement
value replaces the matched characters.

A BEFORE/AFTER phrase can be used to delimit the area of the item being
inspected. A search argument applies only to the delimited area of the item.

Using the STRING, UNSTRING, and INSPECT Statements = 7-29

7.3.6.1 The Search Argument

The search argument of the REPLACING phrase names a character string and a
condition under which the character string should be compared to the delimited
string being inspected.

The CHARACTERS form of the search argument specifies that every character in
the delimited string being inspected should be considered to match an imaginary
character that serves as the search argument. Thus, the replacement value
replaces each character in the delimited string. For example:

INSPECT ITEMA REPLACING CHARACTERS ...

The ALL, LEADING, and FIRST forms of the search argument specify a
particular character string, which can be represented by a literal or an identifier.
The search argument character string can be any length. However, each
character of the argument must match a character in the delimited string before
the compiler considers the argument matched. For example:

INSPECT ITEMA REPLACING ALL ...
The necessary literal and identifier characteristics are as follows:

* A literal character string must be either nonnumeric or a figurative constant
(other than ALL literal). A figurative constant, such as SPACE or ZERO,
represents a single character and can be written as “ ” or “0” with the
same effect. Because a figurative constant represents a single character,
the replacement value must be one character long.

* An identifier must represent an elementary item of DISPLAY usage. It can be
any class. However, if it is not alphabetic, the compiler performs an implicit
redefinition of the item. This redefinition is identical to the BEFORE/AFTER
delimiter redefinition discussed in Section 7.3.2.

The words ALL, LEADING, and FIRST supply conditions that further delimit the
inspection operation:

* ALL specifies that each match the search argument finds in the delimited
character string is replaced by the replacement value. When a literal
follows the word ALL, it does not have the same meaning as the figurative
constant, ALL literal. The figurative constant meaning of ALL “” is a string
of consecutive commas, as many as the context of the statement requires.
ALL “” as a search argument of the REPLACING phrase means “replace
each comma without regard to adjacent characters.”

¢ LEADING specifies that only adjacent matches of the search argument at
the leftmost position of the delimited character-string be replaced. At the
first failure to match the search argument, the compiler terminates the
replacement operation and causes the argument to become inactive.

¢ FIRST specifies that only the leftmost character string that matches the
search argument be replaced. After the replacement operation, the search
argument containing this condition becomes inactive.

7.3.6.2 The Replacement Value

Whenever the search argument finds a match in the item being inspected, the
matched characters are replaced by the replacement value. The word BY followed
by an identifier or literal specifies the replacement value. For example:

INSPECT ITEMA REPLACING ALL "A"™ BY "X" ALL "D" BY "X".

7-30 Using the STRING, UNSTRING, and INSPECT Statements

The replacement value must always be the same size as its associated search
argument.

If the replacement value is a literal character-string, it must be either a
nonnumeric literal or a figurative constant (other than ALL literal). A figurative
constant represents as many characters as the length of the search argument
requires.

If the replacement value is an identifier, it must be an elementary item of
DISPLAY usage. It can be any class. However, if it is not alphanumeric, the
compiler conducts an implicit redefinition of the item. This redefinition is the
same as the BEFORE/AFTER redefinition discussed in Section 7.3.2.

7.3.6.3 The Replacement Argument

The replacement argument consists of the search argument (with its condition
and character-string), the replacement value, and an optional BEFORE/AFTER
phrase, as shown in Figure 7-5.

Figure 7-5: The Replacement Argument

ALL ";" BY SPACE BEFORE "."
I 1 L |]

Search Replacement BEFORE/AFTER
argument value phrase (optional)

ZK-6054-GE

7.3.6.4 The Replacement Argument List

One INSPECT...REPLACING statement can contain more than one replacement
argument. Several replacement arguments form an argument list, and the
manner in which the list is processed affects the action of any given replacement
argument.

The following examples show INSPECT statements with replacement argument
lists. The text following each one tells how that list will be processed.

INSPECT FIELD1 REPLACING

ALL "," BY SPACE
ALL "." BY SPACE
ALL “;" BY SPACE.

The previous three replacement arguments all have the same replacement value,
SPACE, and are active over the entire item being inspected. The statement
replaces all commas, periods, and semicolons with space characters and leaves all
other characters unchanged.

INSPECT FIELD1 REPLACING

ALL "” 0 " BY " l "
ALL "1" BY "Q".

Using the STRING, UNSTRING, and INSPECT Statements 7-31

Each of these two replacement arguments has its own replacement value and is
active over the entire item being inspected. The statement exchanges zeros for 1s
and 1s for zeros. It leaves all other characters unchanged.

INSPECT FIELD1 REPLACING
ALL "0"™ BY "1" BEFORE SPACE
ALL "1™ BY "Q" BEFORE SPACE.

NOTE

When a search argument finds a match in the item being inspected,
the code replaces that character-string and scans to the next position
beyond the replaced characters. It ignores the remaining arguments
and applies the first argument in the list to the character-string in the
new position. Thus, it never inspects the new value that was supplied
by the replacement operation. Because of this, the search arguments
can have the same values as the replacement arguments with no
chance of interference.

The statement also exchanges zeros and 1s. Here, however, the first space in
FIELD1 causes both arguments to become inactive.

INSPECT FIELD1 REPLACING
ALL "QO" BY "1" BEFORE SPACE
ALL "1" BY "O" BEFORE SPACE
CHARACTERS BY "*" BEFORE SPACE.

The first space causes the three replacement arguments to become inactive. This
argument list exchanges zeros for 1s, 1s for zeros, and asterisks for all other
characters in the delimited area. If the BEFORE phrase is removed from the
third argument, that argument will remain active across all of FIELD1., Within
the area delimited by the first space character, the third argument replaces all
characters except 1s and zeros with asterisks. Beyond this area, it replaces

all characters (including the space that delimited FIELD1 for the first two
arguments, and any zeros and 1s) with asterisks.

7.3.6.5 Interference in Replacement Argument Lists

When several search arguments, all active at the same time, contain one or more
identical characters, they can interfere with each other—and consequently affect
the replacement operation. This interference is similar to the interference that
occurs between tally arguments.

The action of a search argument is never affected by the BEFORE/AFTER
delimiters of other arguments, since the compiler scans for delimiter matches
before it scans for replacement operations.

The action of a search argument is never affected by the characters of any
replacement value, since the scanner does not inspect the replaced characters
again during execution of the INSPECT statement. Interference between search
arguments, therefore, depends on the order of the arguments, the values of the
arguments, and the active/inactive status of the arguments. The discussion in
Section 7.3.5.4 about interference in tally argument lists generally applies to
replacement arguments as well.

The following rules help minimize interference in replacement argument lists:

1. Place search arguments with LEADING or FIRST conditions at the start of
the list.

2. Place any arguments with the CHARACTERS condition at the end of the list.

7-32 Using the STRING, UNSTRING, and INSPECT Statements

3. Consider the order of appearance of any search arguments that contain
identical characters.

7.3.7 Using the CONVERTING Option

When an INSPECT statement contains a CONVERTING phrase, that statement
selectively replaces characters or groups of characters in the designated item;

it executes as if it were a Format 2 INSPECT statement with a series of ALL
phrases. (See the INSPECT statement formats in the VAX COBOL Reference
Manual.)

An example of the use of the CONVERTING phrase follows:

IDENTIFICATION DIVISION.

PROGRAM-ID. PROGX.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 X PIC X(28).

PROCEDURE DIVISION.

A.
MOVE "ABC*ABC*ABC ABCRABCABC" TO X.
INSPECT X CONVERTING "ABC" TO "XYzZ"

AFTER "*" BEFORE "@".

DISPLAY X.

STOP RUN.

X before INSPECT executes X after INSPECT executes
ABC*ABC*ABC ABCRARBCARBC ABC*XYZ*XYZ XYZQ@RABCARBC

7.3.8 Common INSPECT Statement Errors

Programmers most commonly make the following errors when writing INSPECT
statements:

¢ Leaving the FOR out of an INSPECT...TALLYING statement
* Using the word WITH instead of BY in the REPLACING phrase
¢ Failing to initialize the tally counter

¢ Omitting the word ALL before the comparison character-string

Using the STRING, UNSTRING, and INSPECT Statements 7-33

Chapter 8

The Basics of Handling VAX COBOL Files and
Records

Input and output services require a complex management system; otherwise,
the programmer is left with the task of producing detailed input/output
control for each program. The VMS operating system provides complete I/O
services for handling, controlling, and spooling I/O needs or requests. VAX
Record Management Services (RMS) gives a wide range of record management
techniques while remaining transparent to you. This chapter introduces you to:

* VAX Record Management Services

* VAX COBOL file organizations

* VAX COBOL file attributes

¢ VAX COBOL record attributes

¢ VAX COBOL record access modes

* VAX COBOL OPEN and CLOSE statements

* VAX COBOL with the VAX Vertical Forms Printing software utility

8.1 VAX Record Management Services

VAX COBOL provides extensive capabilities for data storage, retrieval, and
modification for the VAX COBOL programmer through VAX Record Management
Services (RMS). You can select from one of several file organizations and access
techniques—each of which is suited to a particular application—from the simplest
sequential search of a sequentially organized file to a sophisticated dynamic
access of an indexed file based on one of several alternate key fields.

The three file organizations available through VAX COBOL and RMS—sequential,
relative, and indexed—are available to three different access modes: sequential,
random, and dynamic. Dynamic access, or access mode switching, is a useful
feature that allows your program to switch from sequential to random access and
back during file processing.

The following topics are contained in the RMS documentation set. These topics
can help you choose the correct RMS defaults for your applications:

* Application design
¢ File design
¢ Task design

* Common optimization techniques

The Basics of Handling VAX COBOL Files and Records 8-1

s RMS utilities
* Magnetic tape handling

Understanding the preceding RMS topics allows you to achieve the best
performance from your application, as many RMS defaults are not the optimal
choice for all your applications. See the VMS documentation on VAX Record
Management Services for further information.

8.2 File Attributes

A file is a collection of related records. File attributes let you specify the
following:

¢ File organization

¢ Record format

* Physical record size

* File size

The system uses these attributes to create a file and stores them with the file.
When a program accesses a file, it must specify the same attributes stored when

the file was created. For example, a program cannot read a sequential file as an
indexed file, because no index keys exist.

In VAX COBOL programs, yo1 specify a file’s attributes in the Environment and
Data Divisions:

¢ The APPLY clause specifies file characteristics such as lock-holding, file
extension factors, and preallocation factors. The SELECT statement specifies
the file organization.

¢ File description entries specify record format and record blocking.
* Record description entries specify physical record size or sizes.
Chapter 9, Chapter 10, and Chapter 11 all present and discuss examples of each

type of file organization supported by VAX COBOL. Chapter 20 explains the use
of the APPLY clause.

8.3 Record Attributes

A record is a group of related data elements. The space a record needs on a
physical device depends on:

¢ The file organization
* The record format

¢ The number of bytes the record contains

If a file has more than one record description, the different record descriptions
automatically share the same record area in memory. The Object or Run-Time
System does not clear this area before it executes the READ statement.
Therefore, if the record read by the latest READ statement does not fill the
entire record area, the area not overlaid by the incoming record remains
unchanged.

8-2 The Basics of Handling VAX COBOL Files and Records

8.3.1 Record Format

You can use fixed, variable, or variable with fixed control record format types.

The compiler determines record format from a combination of record description
entries and the RECORD CONTAINS clause. You specify the record format as
follows:

¢ For fixed—Use the RECORD CONTAINS clause or the VAX COBOL default.

¢ For variable—Use the RECORD CONTAINS TO clause or RECORD
VARYING.

¢ For variable fixed control (VFC)—Use the ADVANCING, APPLY, or LINAGE
clause, or use Report Writer statements and phrases.

In Example 8-1, a file contains a company’s stock inventory information (part
number, supplier, quantity, price). Within this file, the information is divided into
records. All information for a single piece of stock constitutes a single record.

Each record in the stock file is itself divided into discrete pieces of information
known as elementary items. You give the item a specific location in the record,
give it a name, and define its size. The part number is an item in the part record,
as are supplier, quantity, and price. In this example PART-RECORD contains
four elementary items: PART-NUMBER, PART-SUPPLIER, PART-QUANTITY,
and PART-PRICE.

Example 8-1: Sample Record Description

01 PART-RECORD.

02 PART-NUMBER PIC 9999.
02 PART-SUPPLIER PIC X(20).
02 PART-QUANTITY PIC 99999.
02 PART-PRICE PIC S9(5)Va9.

~ You can completely control the grouping of elementary items into records and

- records into files. VAX COBOL programs either build records and pass them to
RMS for storage in a file, or they issue requests for records while RMS performs
the necessary operations to retrieve the records from a file.

The maximum size of a record depends on its format:
* For fixed-length records, the maximum size is the reeord size.

* For variable-length records, the maximum size is the size of the largest record
plus the number of overhead bytes needed by RMS.

* For variable-fixed control records, the maximum size is the size of the largest
record plus header overhead.

In all cases, the length of any record in a file description entry cannot exceed

32,767 bytes for a sequential file, 32,234 bytes for an indexed ﬁle or 32,255 bytes
for a relative file.

The Basics of Handling VAX COBOL Files and Records 8-3

8.3.1.1 Fixed-Length Records

Files with a fixed-length record format contain the same size records. The
compiler generates the fixed-length format when either of the following conditions
is true:

¢ The RECORD CONTAINS clause specifies a fixed number of characters.
¢ The RECORD CONTAINS clause is omitted.

‘The compiler does not generate fixed-length format when either of the following
conditions exist:

¢ The file description contains a RECORD CONTAINS TO clause or a RECORD
VARYING clause.

* The program specifies a print-controlled file by referring to the file with:
— The ADVANCING phrase in a WRITE statement
— An APPLY PRINT-CONTROL clause in the Environment Division
— A LINAGE clause in the file description

— Report Writer statements and phrases

Fixed-length record size is determined by either the largest record description or
the record size specified by the RECORD CONTAINS clause, whichever is larger.
Example 8-2 shows how fixed-length record size is determined.

Example 8-2: Determining Fixed-Length Record Size

FD FIXED-FILE
RECORD CONTAINS 100 CHARACTERS.
01 FIXED-REC PIC X (75).

For the file, FIXED-FILE, the RECORD CONTAINS clause specifies a record size
larger than the record description; therefore, the record size is 100 characters.

However, if the multiple record descriptions are associated with the file, the size
of the largest record description is used as the size. Thus, in Example 8-3, for
the file REC-FILE, the FIXED-REC2 record specifies the largest record size;
therefore, the record size is 90 characters.

Example 8-3: Determining Fixed-Length Record Size for Files with Multipie
Record Descriptions

FD REC-FILE

RECORD CONTAINS 80 CHARACTERS.
01 FIXED-REC1 PIC X(75).
01 FIXED-REC2 PIC X(90).

8-4 The Basics of Handling VAX COBOL Files and Records

In Example 8-2, the following warning message is generated when the file
FIXED-FILE is used:

"Record contains value is greater than length of longest record."
And when the file REC-FILE is used, the following warning message is generated:

"Longest record is longer than RECORD CONTAINS value -
longest record size used."

8.3.1.2 Variable-Length Records

Files with a variable-length record format can contain different length records.
The compiler generates the variable-length attribute for a file when the file
description contains a RECORD VARYING clause or a RECORD CONTAINS TO
clause. (See also Section 8.3.2.)

The system stores the record’s size in bytes in a record-length field that precedes
each record.

¢ For disk files, the record-length field is a 2-byte value specifying record length
in bytes. Note that a record’s length does not include this 2-byte field.

¢ For ANSI magnetic tape files, the record-length field is a 4-byte decimal value
specifying record length in bytes. Note that a record’s length includes this
4-byte field.

Example 8-4, Example 8-5, and Example 8-6 show you the three ways VAX
COBOL lets you create a variable-length record file.

In Example 8—4, the DEPENDING ON phrase sets the OUT-REC record length.
The IN-TYPE data field determines the OUT-LENGTH field’s contents.

Example 8—4: Creating Variable-Length Records with the DEPENDING ON

Phrase
FILE SECTION.
FD INFILE
RECORD LABELS ARE STANDARD.
01 IN-REC.
03 IN-TYPE PIC X.

03 REST-OF-REC PIC X(499).

FD OUTFILE
RECORD VARYING FROM 200 TO 500 CHARACTERS
DEPENDING ON OUT-LENGTH.

01 OUT-REC PIC X (500).
WORKING—-STORAGE SECTION.
01 OUT-LENGTH PIC 999 COMP VALUE ZEROES.

The Basics of Handling VAX COBOL Files and Records 8-5

Example 8-5: Creating Variable-Length Records with the RECORD VARYING
Phrase

FILE SECTION.
FD OUTFILE
RECORD VARYING FROM 200 TO 500 CHARACTERS.
01 OUT-REC-1 PIC X(200).
01 OUT-REC-2 PIC X(500).

Example 8-5 shows how to create variable-length records using the RECORD
VARYING phrase.

Example 8-6 creates variable-length records by using the OCCURS clause with

the DEPENDING ON phrase in the record description. VAX COBOL determines
record length by adding the sum of the variable record’s fixed portion to the size
of the table described by the number of table occurrences at execution time.

In this example, the variable record’s fixed portion size is 113 characters. (This
is the sum of P-PART-NUM, P-PART-INFO, and P-BIN-INDEX.) If P-BIN-INDEX
contains a 7 at execution time, P-BIN-NUMBER will be 35 characters long.
Therefore, PARTS-REC’s length will be 148 characters; the fixed portion’s length
is 113 characters, and the table entry’s length at execution time is 35 characters.

Example 8-6: Creating Variable-Length Records and Using the OCCURS
Clause with the DEPENDING ON Phrase

FILE SECTION.
FD PARTS-MASTER
RECORD VARYING 118 TO 163 CHARACTERS.
01 PARTS-REC.
03 P-PART-NUM PIC X(10).
03 P-PART-INFO PIC X(100).
03 P-BIN-INDEX PIC 999.
03 P-BIN-NUMBER PIC X (5)
OCCURS 1 TO 10 TIMES DEPENDING ON P-BIN-INDEX.

If you describe a record with both the RECORD VARYING..DEPENDING ON
phrase on data-name-1 and the OCCURS clause with the DEPENDING ON
phrase on data-name-2, VAX COBOL specifies record length as the value of
data-name-1.

If you have multiple record-length descriptions for a file and omit either the
RECORD VARYING clause or the RECORD CONTAINS integer-1 TO integer-2
clause, all records written to the file will have a fixed length equal to the length
of the longest record described for the file, as in Example 8-7.

8-6 The Basics of Handling VAX COBOL Files and Records

Example 8-7: Defining Fixed-Length Records with Muitiple Record
Descriptions

FD PARTS-MASTER.

01 PARTS-REC-1 PIC X(200).
01 PARTS-REC-2 PIC X (300).
01 PARTS-REC-3 PIC X(400).
01 PARTS-REC-4 PIC X(500).

PROCEDURE DIVISION.

100-WRITE-REC-1.
MOVE IN-REC TO PARTS-REC-1.
WRITE PARTS-REC-1.
GO TO ...

200-WRITE-REC-2.
MOVE IN-REC TO PARTS-REC-2.
WRITE PARTS-REC-2
GO TO ...

Writing PARTS-REC-1, PARTS-REC-2, PARTS-REC-3 or PARTS-REC-4 produces
records equal in length to the longest record, PARTS-REC-4. Note that this is not
variable-length 1/0.

8.3.2 Print-Controlled Files

Print-controlled files contain form-advancing information with each record. VAX
COBOL places explicit form-control bytes directly into the file. Therefore, any
VAX COBOL program trying to read a print-control file can read it successfully
as variable files (RMS strips the VFC header).

If you use the WRITE AFTER ADVANCING, the LINAGE, or the APPLY
PRINT-CONTROL statement, or if you create a Report Writer file, the compiler
generates variable-length print-controlled records. You must use the /NOFEED
option on the DCL PRINT command when you print a print-controlled file.

8.4 File Design Considerations

The difficulty of design is proportional to the complexity of the file organization;
design is least important for applications using sequential organization, more
important for relative organization, and most important for indexed organization.
Chapter 9, Chapter 10, and Chapter 11 all discuss file design for sequential,
relative, and indexed files, respectively.

The Basics of Handling VAX COBOL Files and Records 8-7

8.5 File Handling

Before your program can perform I/O on a file, it must identify the file to the
operating system, specify the file’s organization and access modes, and make the
file available by opening it. A program must follow these steps whenever creating
a file or processing one that has already been created.

8.5.1 Identifying a File from Your VAX COBOL Program

A file description entry defines a file’s logical structure and associates the file
with a file name that is unique within the program. The program uses this file
name in the OPEN, READ, START, UNLOCK, DELETE, REWRITE, and CLOSE
statements. (The record name is used for WRITE, UNLOCK, and REWRITE.)

You must establish a link between the file name your program uses and the file
specification that RMS uses. The SELECT and ASSIGN and VALUE OF ID
clauses do this. Together these clauses define a file connector. A file connector is
a data structure used by VAX COBOL that contains information about a file. It
links the following:

¢ A file name and a physical file

¢ A file name and its associated record area

The program must include a SELECT statement, including an ASSIGN clause,
for every file description entry (FD) it contains. The file name you specify in the
SELECT statement must match the file name in the file description entry. In
the ASSIGN clause, you specify a literal or a COBOL word that associates the
file name with a file specification. This literal or word can be a complete file
specification or one that relies on operating system defaults.

To understand the relationships between the SELECT statement, the ASSIGN
clause, and the FD entry, consider two examples. In Example 8-8, because

the file name specified in the FD entry is DAT-FILE, all I/O statements in the
program referring to that file must use the name DAT-FILE. RMS uses the
ASSIGN clause to interpret DAT-FILE as REPORT.DAT and refers to the default
directory.

Example 8-8: Defining a Disk File

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DAT-FILE
ASSIGN TO "REPORT.DAT"

DATA DIVISION.
FD DAT-FILE

8-8 The Basics of Handling VAX COBOL Files and Records

The I/O statements in Example 8-9 refer to MYFILE-PRO, which the ASSIGN
clause identifies to the operating system as MARCH.311. Additionally, the

operating system looks for the file in the current directory on the magnetic tape
mounted on MTAO:.

Example 8-9: Defining a Magnetic Tape File

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MYFILE-PRO
. ASSIGN TO "MTAO:MARCH.311"

DATA DIVISION.
FD MYFILE-PRO

PROCEDURE DIVISION.

AOOO-BEGIN.
OPEN INPUT MYFILE-PRO.

READ MYFILE-PRO.

CLOSE MYFILE-PRO.

8.5.1.1 Using the VALUE OF ID Clause for Device Independence

If the file specification is subject to change, it is inconvenient to edit the ASSIGN
clause and recompile and relink the program every time you run it. To avoid
this problem, you can use a partial file specification in the ASSIGN clause and
complete it by using the optional VALUE OF ID clause of the FD entry. In the
VALUE OF ID clause, you may specify a nonnumeric literal or an alphanumeric
WORKING-STORAGE item to supplement the file specification.

The VALUE OF ID clause completes or overrides the file specification in the
ASSIGN clause. This lets you keep the file specification a variable until run time.

Example 8-10 illustrates how to use the VALUE OF ID clause to complete a
partial file specification, MARCH, with operator input. Notice how the Procedure
Division statements prompt the operator for a file specification. This technique
provides the following advantages:

¢ Mazximum flexibility for file access. The operator can override any part of the
file specification in the ASSIGN clause.

* Maximum use of system hardware. The operator can mount a tape (or any
other volume) on any available tape drive and direct the program to it.

* Maximum use of computer operator and operating system. The operator and
operating system no longer have to wait for one job to finish using a specific
tape drive before the next job can be started.

The Basics of Handling VAX COBOL Files and Records 8-9

Example 8-10: How to Override or Supplement a File Specification at Run
Time

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MYFILE-PRO
ASSIGN TO "MARCH"

DATA DIVISION.
FILE SECTION.
FD MYFILE-PRO
AAKRKAAKRKAAKRKRA KR A K AR A A A AL AR AN AR kA Ak Ak Ak hkhkkhkhkhkhkhkk
*
VALUE OF ID IS USER-EXTENSION.
*
AR AR R AR A A AR A A A A AR A AR KA A A AT A A ARKR A AR AA KNI A AR AR AR A

WORKING-STORAGE SECTION.

KAKKKAKAARRRKRARAXA A A AR A A A h AR A Ak Ak hhkhhhAkhkhhhdrhhhx
*

01 USER-EXTENSION PIC X(20).
*

R I R I T T I I
PROCEDURE DIVISION.
AO00-BEGIN.
ok ok ok ok ok ok ok ok ok ok R ok Sk ke ok ok ok ok ok ok ok ok ok ok ok kR o ko R ok ok ok o K ok
*

DISPLAY "Enter file specification".

ACCEPT USER-EXTENSION.
*

R R R R L
OPEN INPUT MYFILE-PRO.

READ MYFILE-PRO.

CLOSE MYFILE-PRO.

NOTE
If no file type is supplied, VAX COBOL supplies a DAT file type.

8.5.1.2 Using Logical Names

Logical names let you write programs that are device and file independent and
provide a brief way to refer to frequently used files.

You can assign logical names with the ASSIGN command. When you assign a
logical name, the logical name and its equivalence name (the name of the actual
file or device) are placed in one of three logical name tables; the choice depends
on whether they are assigned for the current process, on the group level, or on
a system-wide basis. See the VMS documentation for more information on DCL
and a description of logical name tables.

8-10 The Basics of Handling VAX COBOL Files and Records

To translate a logical name, the system searches the three tables in this order:
(1) process, (2) group, (3) system. Therefore, you can override a system-wide
logical name by defining it for your group or process.

Logical name translation is a recursive procedure: when the system translates
a logical name, it uses the equivalence name as the argument for another
logical name translation. It continues in this way until it cannot translate the
equivalence name.

Assume that your program updates monthly sales files (for example, JAN.DAT,
FEB.DAT, MAR.DAT, and so forth). Your SELECT statement could look like
either of these:

SELECT SALES-FILE ASSIGN TO "MOSLS"
SELECT SALES-FILE ASSIGN TO MOSLS

To update the January sales file, you can use this ASSIGN command to equate
the equivalence name JAN.DAT with the logical name MOSLS:

$ ASSIGN JAN.DAT MOSLS
To update the February sales file, you can use this ASSIGN command:

$ ASSIGN FEB.DAT MOSLS

In the same way, all programs that access the monthly sales file can use the
logical name MOSLS.

To disassociate the relationship between the file and the logical name, you can
use this DEASSIGN command:

$ DEASSIGN FEB.DAT MOSLS

If MOSLS is not set as a logical name, the system uses it as a file specification
and looks for a file named MOSLS.DAT.

8.5.2 Choosing File Organization and Record Access Mode

Your program always states—either explicitly or implicitly—a file’s organization
and access mode before the program opens the file. The ORGANIZATION and
ACCESS clauses of the FILE-CONTROL paragraph, if present, specify these two
attributes.

8.5.2.1 File Organizations
VAX COBOL supports three types of file organization:

* ORGANIZATION IS SEQUENTIAL—This organization requires that records
be referenced in the same sequence in which they were written. This
organization is useful for programs that normally access each record serially,
as in a payroll or mailing list file.

* ORGANIZATION IS RELATIVE—This organization lets you access records
randomly, according to their key values (relative record numbers). This
organization is less flexible than indexed organization because you cannot
insert a record in the middle of your file unless you have an empty cell to
contain it.

* ORGANIZATION IS INDEXED—This organization lets you access records
randomly, according to their key values. This is a useful way to organize a
file in which records will be added, changed, or deleted upon demand.

The Basics of Handling VAX COBOL Files and Records 8-11

Table 8-1 lists the three file organizations available to you and summarizes their
advantages and disadvantages. Chapter 9, Chapter 10, and Chapter 11 further
discuss each of these file organizations.

Table 8-1:

VAX COBOL File Organizations—Advantages and Disadvantages

File
Organizations

Advantages and Disadvantages

Sequential Advantages

Disadvantages

Relative Advantages

Disadvantages

Indexed Advantages

Disadvantages

Uses disk and memory efficiently

Provides optimal usage if the application accesses
all records sequentially on each run

Provides the most flexible record format

Allows READ/WRITE sharing

Allows data to be stored on many types of media,
in a device-independent manner

Allows easy file extension

Allows sequential access only
Allows records to be added only to the end of a file

Allows sequential, random, and dynamic access
Provides random record deletion and insertion
Allows records to be READ/WRITE sharing

Allows data to be stored on disk only
Requires that record cells be the same size

Allows sequential, random, and dynamic
access modes
Allows random record deletion and insertion
Allows READ/WRITE sharing
Allows variable-length records to change length
on update
Allows eagy file extension

Allows data to be stored on disk only

Requires more disk space

Uses more memory to process records

Generally requires multiple disk accesses to
randomly process a record

If you do not use the ORGANIZATION clause, VAX COBOL assumes the file

organization is sequential.

8.5.2.2 Record Access Modes

The methods for retrieving and storing records in a file are called record access
modes. VAX COBOL supports three types of record access modes:

e ACCESS MODE IS SEQUENTIAL

— With sequential files, sequential access retrieves the records in the same
sequence established by the WRITE statements that created the file.

— With relative files, sequential access retrieves the records in the order of
ascending record key values (or relative record numbers).

— With indexed files, sequential access retrieves records in the order of
ascending record key values.

¢ ACCESS MODE IS RANDOM—The value of the record key your program
specifies indicates the record to be accessed.

8-12 The Basics of Handiing VAX COBOL Files and Records

* ACCESS MODE IS DYNAMIC—This access mode allows you to switch
from sequential access mode to random access mode and back to sequential
access mode while processing a file, by using the NEXT phrase on the READ
statement. You can switch back and forth as much as you like; the only
limitation is that there must be RELATIVE or INDEXED ORGANIZATION.

If you do not use the ACCESS clause, VAX COBOL assumes sequential access.

A different access mode can be used to process records within the file each time it
is opened. A program can also change access modes during the processing of its
file. Chapter 9, Chapter 10, and Chapter 11 discuss the access modes applicable
to sequential, relative, and indexed file organization, respectively.

Example 8-11 shows sample SELECT statements for sequential files with
sequential access modes.

Example 8-11: Sequential File SELECT Statements

(1) (2)
FILE-CONTROL. FILE-CONTROL.
SELECT LIST-FILE SELECT PAYROLL
ASSIGN TO "MAIL.LIS" ASSIGN TO "PAYROL.DAT".

ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL.

VAX COBOL assumes sequential organization and sequential access unless you
specify otherwise.

Sample SELECT statements for relative files are shown in Example 8-12,

Example 8-12: Relative File SELECT Statements

(1) (2)
FILE-CONTROL. FILE~CONTROL.
SELECT MODEL SELECT PARTS
ASSIGN TO "ACTOR.DAT" ASSIGN TO "PART.DAT"
ORGANIZATION IS RELATIVE ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL. ACCESS MODE IS DYNAMIC

RELATIVE KEY IS PART-NO.

Sample SELECT statements for indexed files are shown in Example 8-13.

Because the default organization is sequential, both the relative and indexed
examples require the ORGANIZATION clause.

The Basics of Handling VAX COBOL Files and Records 8-13

Example 8—13: Indexed File SELECT Statements

(1) (2)
FILE-CONTROL. FILE-CONTROL.
SELECT A-GROUP SELECT TEAS
ASSIGN TO "RFCBA.PRO" ASSIGN TO "TETLY"
ORGANIZATION IS INDEXED ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC RECORD KEY IS LEAVES.

RECORD KEY IS WRITER
ALTERNATE RECORD KEY IS EDITOR.

8.6 Opening and Closing Files

A VAX COBOL program must open a file with the OPEN statement before any
other I/0 or Report Writer statement can reference it. Files can be opened more
than once in the same program as long as they are closed before the second and
subsequent opens.

Opening a file allocates the buffers, creates or checks the file labels, and
initializes the data structures to the start of the file. Closing a file writes out any
remaining records in the output buffers, writes an end-of-file label on magnetic
output files, and optionally rewinds and/or locks magnetic tape files. Files that
remain open at program termination are closed by the Run-Time System. The
following example shows OPEN and CLOSE statements:

OPEN INPUT MASTER-FILE.

OPEN OUTPUT REPORT-FILE.

OPEN I-O MASTER-FILE

TRANS-FILE

OUTPUT REPORT-FILE.

CLOSE MASTER-FILE.

CLOSE TRANS-FILE
REPRT-FILE.

The OPEN statement must specify one of four open modes: INPUT, OUTPUT,
I-O, or EXTEND. Your choice, along with the file’s organization and access mode,
determines which I/0 statements you can use. Section 9.3, Section 10.3, and
Section 11.3 discuss the I/O statements for sequential, relative, and indexed files,
respectively.

When your program performs an OPEN statement, the following events take
place:

1. RMS builds a file specification by using the contents of the VALUE OF ID
clause, if any, to alter or complete the file specification in the ASSIGN clause.
Logicals are translated and the default file type is DAT.

2. The Run-Time System checks the file’s current status. If the file is open, or if
it was closed WITH LOCK, the OPEN statement fails.

3. If the file specification names an invalid device, or contains any other errors,
the Run-Time System generates an error message and the OPEN statement
fails.

4. The Run-Time System takes one of the following actions if it cannot find the
file:

If the file’s OPEN mode is OUTPUT, the file is created.

If the file’s OPEN mode is EXTEND, or I-O, the OPEN statement fails,
unless the file’s SELECT clause includes the OPTIONAL phrase. If the
file’s SELECT clause includes the OPTIONAL phrase, the file is created.

8-14 The Basics of Handling VAX COBOL Files and Records

c. If the file’s OPEN mode is INPUT, and its SELECT clause includes the
OPTIONAL phrase, the OPEN statement is successful. The first read on
that file causes the AT END condition.

d. If none of the previous conditions is met, the OPEN fails and the
USE procedure (if any) gains control. If no USE procedure exists, the
Run-Time System aborts the program.

5. If the file’s OPEN mode is OUTPUT, and a file by the same name already
exists, a new version is created.

6. If the file attributes specified by the program attempting an OPEN operation
differ from the attributes specified when the file was created, the OPEN
statement fails.

If the file is on magnetic tape, RMS rewinds it. To close a file on tape without
rewinding the tape, use the NO REWIND phrase. This speeds processing when
another file is to be written beyond the end of the first file. For example:

CLOSE MASTER-FILE NO REWIND.

You can also close a file and prevent it from being opened again by the program
in the same run. For example:

CLOSE MASTER-FILE WITH LOCK.

8.7 File Compatibility

Files created by different programming languages may require special processing
because of language and character set incompatibilities. The most common
incompatibilities are data types and data record formats.

8.7.1 Data Type Differences

Data types vary by programming language and by utilities. For example, VAX
FORTRAN does not support the packed-decimal data type and, therefore, cannot
easily use PACKED-DECIMAL data in COBOL files.

You can use the following techniques to overcome data type incompatibilities:

* Use the NATIVE character set, which uses ASCII representation, for all data
in files intended for use across languages.

* If your requirements include processing non-ASCII data, you can
specify a character set in: (1) the SPECIAL-NAMES paragraph of the
Environment Division, along with (2) the CODE-SET clause in the SELECT
statement. Except for NATIVE, you must specify all character sets in the
SPECIAL-NAMES paragraph.

¢ Use common numeric data types (numeric data types that remain constant
across the application).

In the following example, the input file is written in EBCDIC. This creates a file
that would be difficult to handle in most other languages.

The Basics of Handling VAX COBOL Files and Records 8-15

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. ALPHABET FOREIGN-CODE IS EBCDIC.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INPUT-FILE ASSIGN TO "INPFIL"
CODE-SET IS FOREIGN-CODE.

8.7.2 Data Record Formatting Differences

Programming languages and system utilities differ in the conventions used to
format their data records. For example, FORTRAN programs place a carriage
control character before the first data character in a formatted file record.
Similarly, other languages format print-controlled (and other) records differently
from COBOL.

In some cases, you can avoid this incompatibility by not using print-controlled
files. In FORTRAN, for example, you can open a file with the CARRIAGE
CONTROL= 'NONE" specification. Alternately, you can still read it by

defining record descriptions that match the actual format; that is, by defining a
1-character data item before the first real data item in each record operation. The
1-character field can be interpreted or ignored during subsequent read operations.

8.8 Backing Up Your Files

If your disk file becomes corrupted by a hardware error, or with bad data, or
if your program abnormally terminates when the file is opened for output, the
file can become unusable. Proper backup procedures are the key to successful
recovery.

~ You should back up your disk file at some reasonable point (daily, weekly, or
monthly, depending on file activity and value of data), and save all transactions
until you create a new backup. In this way, you can easily re-create your disk file
from your last backup file and transaction files whenever the need arises.

8.9 Low-Volume I/O (ACCEPT and DISPLAY)

The COBOL language provides two statements, ACCEPT and DISPLAY, for
low-volume I/0 operations. In most system configurations, these statements
transfer data to and from a terminal device. In COBOL however, the ACCEPT
and DISPLAY statements refer to VMS logical names.

This section discusses the use of mnemonic names, logical name devices, and the
ACCEPT and DISPLAY statements. For further information on ACCEPT and
DISPLAY screen handling options, refer to Chapter 17.

8.9.1 Mnemonic Names (SPECIAL-NAMES Paragraph)

The ACCEPT and DISPLAY statements transfer data between your program and
logical names. If you do not use the FROM or UPON clauses, the default logical
names are SYS$INPUT for the ACCEPT statement and SYS$OUTPUT for the
DISPLAY statement.

8-16 The Basics of Handling VAX COBOL Files and Records

The FROM or UPON clauses refer to mnemonic names that you can define in
the SPECIAL-NAMES paragraph in the Environment Division. You define a
mnemonic name by equating it to a COBOL implementor name; for example, the
following clause equates STATUS-REPORT to the device LINE-PRINTER:

LINE-PRINTER IS STATUS-REPORT
You can then use the mnemonic name in a DISPLAY statement:

DISPLAY "File contains " REC-COUNT UPON STATUS-REPORT.

8.9.2 Logical Name Devices
The COBOL implementor names in the SPECIAL-NAMES paragraph represent

VMS logical names.

COBOL Implementor

Names Logical Name
CARD-READER COB$CARDREADER
PAPER-TAPE-READER COB$PAPERTAPEREADER
CONSOLE COB$CONSOLE
LINE-PRINTER COBSLINEPRINTER
PAPER-TAPE-PUNCH COB$PAPERTAPEPUNCH

The logical names do not always represent physical devices. You can, for example,
assign a logical name to a file specification with a VMS ASSIGN command:

ASSIGN [ALLSTATUS]STATUS.LIS COBSLINEPRINTER

Because a logical name does not imply a device, it carries no implication of open
mode. Therefore, a program can display upon a mnemonic name that refers to
CARD-READER or accept from a mnemonic name that refers to LINE-PRINTER.

Although the ACCEPT and DISPLAY statements do not refer to file names, the
system implicitly opens a logical name used in either of these statements.

NOTE

When the system opens a logical name for a DISPLAY statement, it
specifies the variable with fixed-length control (VFC) format to allow
carriage control. Therefore, if your program contains both ACCEPT
and DISPLAY statements that refer to the same logical name, it should
execute a DISPLAY before the first ACCEPT. Otherwise, DISPLAY
statement carriage control is lost and all DISPLAY statements execute
as if they contained the WITH NO ADVANCING phrase.

Carriage control characters are not lost when you use ACCEPT and
DISPLAY statements without the FROM or UPON clause, since
these statements refer to different logical names (SYS$INPUT and
SYS$OUTPUT).

The Basics of Handling VAX COBOL Files and Records 8-17

8.9.3 ACCEPT Statement

In the VAX COBOL Reference Manual, Formats 1, 3, and 4 of the ACCEPT
statement transfer data from the object of a VMS logical name to a data item. If
you do not use the FROM clause, the system uses the logical name SYS$INPUT.
Otherwise, it uses the logical name described in the SPECIAL-NAMES paragraph
and referenced in the ACCEPT statement. In the following example, the system
uses COB$CONSOLE:

SPECIAL-NAMES.
CONSOLE IS WHATS-HIS-NAME

PROCEDURE DIVISION.

ACCEPT PARAMETER-AREA FROM WHATS-HIS-NAME.

8.9.4 DISPLAY Statement

The DISPLAY statement transfers the contents of low-volume data items and
literals to the object of a VMS logical name. If you do not use the UPON
clause, the system uses the logical name SYS$OUTPUT. Otherwise, it uses the
logical name described in the SPECIAL-NAMES paragraph and referenced

by the DISPLAY statement. In the following example, the system uses
COBS$LINEPRINTER:

SPECIAL-NAMES.
LINE-PRINTER IS ERROR-LOG

PROCEDURE DIVISION.

DISPLAY ERROR-COUNT, " phase 2 errors, ",
ERROR-MSG UPON ERROR-LOG.

8.10 Printing with VAX VFP

VAX COBOL, in conjunction with the VAX Vertical Forms Printing (VFP) software
utility, provides direct support of Vertical Form Unit (VFU)-supported printers.
These VFU-supported printers offer the following useful features:

* Rapid vertical line positioning

* The ability to customize the vertical spacing requirements of your application,
independent of the application itself. When you use a VFU-supported printer,
you can configure the vertical spacing requirements of your application by
associating these requirements with a particular VFU printer channel.

To take advantage of these features, follow these steps:

1. Configure the vertical spacing requirements you want in the printer’s VFU.

8-18 The Basics of Handling VAX COBOL Files and Records

2. Reference this specific VFU channel number in the WRITE statement of your
VAX COBOL application. The VAX COBOL compiler makes an association
with that VFU channel when the record is written. (For detailed information
about using VFU channel numbers in WRITE statements, see the VAX
COBOL Reference Manual.)

3. Convert the file that contains the record you want to print using the VAX
VFP software utility. If you do not do this conversion, the VFU will have no
effect on the vertical spacing of that record. Refer to the VAX VFP software
utility documentation for information about converting VAX COBOL data
files with records containing VFU channel commands to printer-specific VFU
channel commands.

4, Print the converted record on a VFU-supported printer. The record is printed
according to the vertical spacing requirements that you specified in the
printer’s VFU.

You can change the vertical spacing requirements of your application without
having to change the application itself. You can make these independent changes
in vertical spacing because you specify the vertical spacing requirements in the
printer’s VFU and not in the COBOL application.

NOTE

You cannot use files that contain VFU spacing on versions of VMS
earlier than 5.2. If you try to print such files on pre-5.2 versions, you
may encounter undefined print symbiont behavior.

The Basics of Handling VAX COBOL Files and Records 8-19

Chapter 9

Processing Sequential Files

Sequential input/output, in which records are written and read in sequence, is
the simplest and most common form of I/Q. It can be performed on all /O devices,
including magnetic tape, disk, terminals, and line printers.

9.1 Sequential File Organization

In sequential file organization, records are arranged in the order in which they
were written to the file. Figure 9-1 illustrates sequential file organization.

Figure 9-1: Sequential File Organization

Beginning of file End of file
RECORD RECORD RECORD | . RECORD | RECORD
1 2 3 (n—1) n
ZK-6055-GE

Sequential files always contain an end-of-file (EOF) indication. On magnetic
tapes, it is the EOF mark; on disk, it is a counter in the file header that
designates the end of the file. VAX COBOL statements can write over the EOF
mark and, thus, extend the length of the file. Because the EOF indicates the
end of useful data, VAX COBOL provides no method for reading beyond it, even
though the amount of space reserved for the file exceeds the amount actually
used.

Occasionally a file with sequential organization, for example, a multiple-reel
magnetic tape file, is so large that it requires more than one volume. An
end-of-volume (EOV) label marks the end of recorded information on each volume
and signals the file system to switch to a new volume. On multiple-volume files,
the EOF mark appears only once, at the end of the last record on the last volume.
See Figure 9-2.

Processing Sequential Files 9-1

Figure 9-2: A Multiple-Volume Sequential File

Voume1 | REC | REC | REC | =+ | REC | REC | REC | EOV |

Volume 2 Rec | rec | rec | == | rec | Rec | Rec | EoV |

voume3 | RECc | Rec | rec | = | rec | Rec | |-

ZK-6056-GE

See the VMS documentation on magnetic tapes for more information on tape
formats.

9.2 Design Considerations

Before you create your sequential file applications, you should design your files
based on these design considerations:

1. Record format (see Chapter 8).
* Fixed-length
¢ Variable-length

2. Medium—Sequential files can be accessed on disk, magnetic tape, and unit
record devices (for example, printers and card readers). When you select the
medium for your file, consider the following:

* Speed of access—Tape is significantly slower than disk.

¢ Frequency of use—Use tape to store files and save your disk space for
more immediate purposes.

* Cost of medium—Disk is generally more expensive than tape. The more
frequently the data will be accessed, the more justification there is to use
a more costly medium.

* Transportability—Use tape files if you need to use the file across systems
that have no common disk devices.

Allocation—At time of file creation and file extension.

Compiler limitations—You want to consider the logical and physical limits
imposed by the VAX COBOL compiler.

For more information on sequential file design, see Chapter 20, and the VAX
documentation on RMS tuning.

9.3 Statements for Sequential File Processing

Processing a sequential file involves the following:
1. Opening the file with the OPEN statement
2. Processing the file with valid I/O statements

9-2 Processing Sequential Files

3. Closing the file with the CLOSE statement

Table 9-1 lists the valid I/O statements and illustrates the following
relationships:

¢ Organization determines valid access modes.
* Organization and access mode determine valid open modes.

¢ All three (organization, access, and open mode) enable or disable I/O
statements.

Table 9—1: Valid I/O Statements for Sequential Files

Open Mode
File Access
Organization Mode Statement INPUT OUTPUT 1/0 EXTEND
SEQUENTIAL SEQUENTIAL READ Yes No Yes No
REWRITE No No Yes No
WRITE No Yes No Yes
UNLOCK Yes Yes Yes Yes

9.4 Defining a Sequential File

Each sequential file in a VAX COBOL program is given a file name in a separate
SELECT clause in the Environment Division. Refer to Example 9-1 for these
file names: MASTER-FILE, TRANS-FILE, and REPRT-FILE. These names are
referred to by statements in the VAX COBOL program.

The ASSIGN clause associates the file name with a file specification. The file
specification points the operating system to the file’s physical and logical location
on a specific hardware device. For example:

¢ MASTER-FILE is located on disk unit DB1:, directory [DOE.LRM], and is
called MASTER.DAT.

¢ TRANS-FILE is located on magnetic tape unit 1, directory [DOE.LRM], and
is called TRAN S.DAT.

¢ REPRT-FILE is assigned to the line printer.

Each file is further described in the program with a file description (FD) entry in
the File Section of the Data Division (for example, MASTER-FILE, TRANS-FILE,
and REPRT-FILE). The FD entry is followed immediately by the file’s record
description (for example, MASTER-RECORD, TRANSACTION-RECORD, and
REPORT-LINE).

You need not specify either the ORGANIZATION IS SEQUENTIAL phrase or
the ACCESS MODE IS SEQUENTIAL phrase in the SELECT clause since VAX
COBOL assumes sequential organization and sequential access mode unless you
specify otherwise.

Processing Sequential Files 9-3

Example 9-1: Defining a Sequential File

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT MASTER-FILE ASSIGN TO "DB1l: [DOE.LRM]MASTER.DAT".
SELECT TRANS-FILE ASSIGN TO "MTALl: [DOE.LRM] TRANS .DAT".
SELECT REPRT-FILE ASSIGN TO "LPO:".

DATA DIVISION.

FILE SECTION.

FD MASTER-FILE...

01 MASTER-RECORD.

02 MASTER-DATA PIC X(80).
02 MASTER-SIZE PIC 99.
02 MASTER-TABLE OCCURS 0 to 50 TIMES

DEPENDING ON MASTER-SIZE.
03 MASTER-YEAR PIC 99.
03 MASTER-COUNT PIC S9(5)V99.

FD TRANS-FILE...

01 TRANSACTION-RECORD PIC X(25).

FD REPRT-FILE... *

01 REPORT-LINE PIC X(132).

9.5 Creating a Sequential File

A VAX COBOL program creates a sequential file by:
1. Opening the file as OUTPUT or EXTEND
2. Executing the WRITE statement

Each WRITE statement releases a logical record to the end of an output file,
thereby creating an entirely new record in the file. The WRITE statement
releases records to files that are OPEN in the following modes:

* OUTPUT—The output mode can create these two kinds of files:

— Storage files—A storage file remains on tape or disk for future reference
or processing.

— Print files—The LINAGE clause, APPLY PRINT-CONTROL clause,
Report Writer statements (via RWCS), or the ADVANCING phrase in the
WRITE statement designates a file as a print file. One or more records
containing a VFC header, which indicates carriage-control characters, are
written to perform line spacing. The WRITE statement does not have to
release print files directly to a storage file. It can release them directly to
the printer for immediate printing. A storage file can also be a print file.

* EXTEND—The extend mode permits new records to be added in sequence
after the last record of an existing file (see Section 9.8).

You can write records in the following two ways:
* WRITE record-name FROM source-area
* WRITE record-name

9-4 Processing Sequential Files

However, the first way provides easier program readability when working with
multiple record types. For example, statements (1) and (2) in this example are
logically equivalent:

FILE SECTION.

FD STOCK-FILE.

01 STOCK-RECORD PIC X(80).
WORKING-STORAGE SECTION.

01 STOCK-WORK PIC X(80).

WRITE STOCK-RECORD FROM STOCK-WORK. MOVE STOCK-WORK TO STOCK-RECORD.
WRITE STOCK-RECORD.

When you omit the FROM phrase, you process the records directly in the record
area or buffer (for example, STOCK-RECORD).

The following example writes the record PRINT-LINE to the device assigned to
that record’s file, then skips three lines. When it reaches the end of the page
(as specified by the LINAGE clause), it causes program control to transfer to
HEADER-ROUTINE.

WRITE PRINT-LINE BEFORE ADVANCING 3 LINES
AT END-OF-PAGE PERFORM HEADER-ROUTINE.

For a WRITE FROM statement, if the destination area is shorter than the file’s
record length, the destination area is padded on the right with spaces; if longer,
the destination area is truncated on the right.

Example 9-2 creates a sequéntial file.

Example 9-2: Creating a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQOLl.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TRANS-FILE ASSIGN TO "TRANS.DAT".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD PIC X(25).
PROCEDURE DIVISION.
AQQO-BEGIN.
OPEN OUTPUT TRANS-FILE.
PERFORM AQ010-PROCESS-TRANS
UNTIL TRANSACTION-RECORD = "END".
CLOSE TRANS-FILE.
STOP RUN.
A010-PROCESS-TRANS.
DISPLAY "Enter next record - X(25)".
DISPLAY "enter END to terminate the session".
DISPIAY "——————— e ",
ACCEPT TRANSACTION-RECORD.
IF TRANSACTION-RECORD NOT = "END"
WRITE TRANSACTION-RECORD.

Processing Sequential Files 9-6

9.6 Reading a Sequential File

To read a sequential file you must do the following:

1. Open the file for INPUT or 1/O.

2. Execute the READ statement.

Each READ statement reads a single logical record and makes its contents

available to the program in the record area. There are two ways of reading
records:

¢ READ file-name INTO destination-area
¢ READ file-name

In the following example, statements (1) and (2) are logically equivalent:

FILE SECTION.
FD STOCK-FILE.

01 STOCK-RECORD PIC X(80).

WORKING-STORAGE SECTION.

01 STOCK-WORK PIC X (80).

————————————— (1) mmmmmmmmmmmmmmm e (2) mmm oo

READ STOCK-FILE INTO STOCK-WORK. READ STOCK-FILE.
MOVE STOCK-RECORD TO STOCK-WORK.

When you omit the INTO phrase, you process the records directly in the record
area or buffer (for example, STOCK-RECORD). The record is also available in the
record area if you use the INTO phrase.

In a READ INTO clause, if the destination area is shorter than the length of the
record area being read, the record is truncated on the right and a warning is
issued; if longer, the destination area is filled on the right with blanks.

If the data in the record being read is shorter than the length of the record (for
example, a variable-length record), the contents of the record beyond that data
are undefined.

Example 9-8 reads a sequential file and displays its contents on the terminal.

9-6 Processing Sequential Files

Example 9-3: Reading a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQO02.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TRANS-FILE ASSIGN TO "TRANS.DAT".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD PIC X(25).
PROCEDURE DIVISION.
AOOO-BEGIN.
OPEN INPUT TRANS-FILE.
PERFORM Al100-READ-TRANS-FILE
UNTIL TRANSACTION-RECORD = "END".
CLOSE TRANS-FILE.
STOP RUN.
A100-READ-TRANS-FILE.
READ TRANS-FILE
AT END MOVE "END" TO TRANSACTION-RECORD.
IF TRANSACTION-RECORD NOT = "END"
DISPLAY TRANSACTION-RECORD.

9.7 Updating Records in a Sequential File

To update a record in a sequential file you must do the following:
1. Open the file for I/O.

2. Read the target record.

3. Rewrite the target record.

The REWRITE statement places the record just read back into the file. The
REWRITE statement completely replaces the contents of the target record with
new data. You can use the REWRITE statement for files on mass storage devices
only (for example, disk units). There are two ways of rewriting records:

¢ REWRITE record-name FROM source-area
¢ REWRITE record-name

In the following example, statements (1) and (2) are logically equivalent:

FILE SECTION.
FD STOCK-FILE.

01 STOCK-RECORD PIC X(80).
WORKING-STORAGE SECTION.

01 STOCK-WORK PIC X(80).

——————————————— (1) mmmmmmmmmmmmmmmmom e (2) mm e

REWRITE STOCK-RECORD FROM STOCK-WORK. MOVE STOCK-WORK TO STOCK—-RECORD.
REWRITE STOCK-RECORD.

When you omit the FROM phrase, you process the records directly in the record
area or buffer (for example, STOCK-RECORD).

For a REWRITE statement, the record being rewritten must be the same length
as the record being replaced.

Processing Sequential Files 9-7

Example 9-4 reads a sequential file and rewrites as many records as the operator
wants.

Example 9—4: Rewriting a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQO03.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE~CONTROL.
SELECT TRANS-FILE ASSIGN TO "TRANS.DAT".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD PIC X (25).
WORKING-STORAGE SECTION.
01 ANSWER PIC X.
PROCEDURE DIVISION.
AQOOO0-BEGIN.
OPEN I-O TRANS-FILE.
PERFORM Al100-READ-TRANS-FILE
UNTIL TRANSACTION-RECORD = "END".
CLOSE TRANS-FILE.
STOP RUN.
Al100-READ-TRANS-FILE.
READ TRANS-FILE AT END
MOVE "END" TO TRANSACTION-RECORD.
IF TRANSACTION-~RECORD NOT = "END"
PERFORM A300-GET-ANSWER UNTIL ANSWER = "Y" OR "N"
, PERFORM A200-REWRITE-RECORD.
A200~-REWRITE-RECORD.
IF ANSWER = "Y" DISPLAY "Please enter new record content"
ACCEPT TRANSACTION~-RECORD
REWRITE TRANSACTICON-RECORD.
A300-GET-ANSWER.
DISPLAY "Do you want to replace this record? —-- "
TRANSACTION-RECORD.
DISPLAY "Please answer Y or N".
ACCEPT ANSWER.

9.8 Extending a Sequential File

To position a file to its current end, and to allow the program to write new records
beyond the last record in the file, use both:

¢ The EXTEND phrase of the OPEN statement
¢ The WRITE statement

Example 9-5 shows how to extend a sequential file.

9-8 Processing Sequential Files

Example 9-5: Extending a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQO4.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TRANS-FILE ASSIGN TO "TRANS.DAT".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD PIC X(25).
PROCEDURE DIVISION.
AQ00-BEGIN.
OPEN EXTEND TRANS-FILE.
PERFORM Al0O0-WRITE-RECORD
UNTIL TRANSACTION-RECORD = "END".
CLOSE TRANS-FILE.
STOP RUN.
Al100-WRITE-RECORD.
DISPLAY "Enter next record - X(25)".
DISPLAY "Enter END to terminate the session".

DISPLAY M—m===——mmm—m e ",

ACCEPT TRANSACTION-RECORD.

IF TRANSACTION-RECORD NOT = "END"
WRITE TRANSACTION-RECORD.

Without the EXTEND phrase, a VAX COBOL program would have to do the
following tasks:

1. Open the input file.
2. Copy it to an output file.
3. Add records to the output file.

Processing Sequential Files 9-9

Chapter 10

Processing Relative Files

A relative file consists of fixed-size record cells and uses a key to retrieve its
records. The key, or record key, is an integer that specifies the record’s storage
cell within the file. It is analogous to the subscript of a table.

Unlike sequential files, where retrieving the twentieth record involves reading
the previous 19 records first, relative files can directly access the twentieth record
with one READ operation. In addition, relative files allow the program to read
forward or backward with respect to the current record key.

Another significant fact of relative file processing is that not every cell must
contain a record. Although each cell occupies one record space, a field preceding
the record on the storage medium indicates whether or not that cell contains a
valid record. Thus, a file can contain fewer records than it has cells, and the
empty cells can be anywhere in the file.

The numerical order of the cells remains the same during all operations on a
relative file; however, accessing statements can move a record from one cell to
another, delete a record from a cell, insert new records into empty cells, or rewrite
existing cells.

Relative file processing is available only on disk devices.

10.1 Relative File Organization

With relative file processing, RMS structures a file as a series of fixed-sized record
cells. Cell size is based on the size specified as the maximum permitted length
for a record in the file. RMS considers these cells as successively numbered from
1 (the first) to n (the last). A cell’s relative record number (RRN) represents its
location relative to the beginning of the file.

Each cell in a relative file can contain a single record. Empty cells can be
interspersed among cells containing records.

Since cell numbers in a relative file are unique, they can be used to identify
both the cell and the record (if any) occupying that cell. Thus, record number 1
occupies the first cell in the file, record number 21 occupies the twenty-first cell,
and so forth. Figure 10-1 depicts the structure of relative file organization.

Processing Relative Files 101

Figure 10—1: Relative File Organization

Beginning of file End of file
~ Cell no. 1 2 3 999 1000
RECORD EMPTY RECORD | . | RECORD EMPTY
1 3 999
First record Second record
written written
ZK-6057-GE

Relative files have three capabilities not available with sequential files:
* Random access by record key

¢ Record deletion by record key

¢ Record updating by record key

Relative files are used primarily when records must be accessed in random
order and the records can easily be associated with a sequential number. When
a program creates a relative file, RMS allocates disk space for each cell. No
additional space in the cell can be added thereafter unless you recreate the

file. However, since records can be replaced, you can insert empty records at
first, then replace them later with real records, which gives the effect of adding
records. After a program creates a relative file, it can be updated by replacing or
deleting records. Records are replaced by rewriting the new record over (on top
of) the old one.

Relative files are used like tables. Their advantage over tables is that their

nien 2n 1ianldad b ALY nvannn wadlham dlAasm smamanwer ananan Alan thatr infarmatian
DLLT AD LIMIIUCU LU WIDN ONGUT LOGULIVL ULIGLE MAVLIIIVL Y WU, Laii0vy vakwas migrmatiicen

can be saved from run to run. Relative files are best for records that are easily
associated with ascending, consecutive numbers (so that the program conversion
from data to cell number is easy), such as years (the years 71 to 90 could be
stored with record keys 1 to 20), months (record keys 1 to 12), or the 50 U.S.
states (record keys 1 to 50).

10.2 Design Considerations

Before you create your relative file applications, you should design your file based
on these design considerations:

1. Record format (see Chapter 8).
* Fixed-length
* Variable-length

Relative files can contain either fixed-length records or variable-length
records; however, RMS calculates a cell size equal to the maximum record
size plus overhead bytes, resulting in fixed-length storage. Once created,
relative records can be accessed sequentially, randomly, or dynamically.

Processing Relative Files

7.

Medium—Relative files can be accessed on disk only. Make sure the disk pack
is large enough to meet your current and future needs.

Allocation at time of file creation and file extension.

Bucket size—To optimize the packing of cells into buckets, cell size should be
evenly divisible into bucket size.

Maximum number of records.

Compiler limitations—Consider the logical and physical limits imposed by the
VAX COBOL compiler.

Key scheme.

For more information on relative file design, see Chapter 20, and the VMS
documentation on RMS tuning.

10.3 Statements for Relative File Processing

Processing a relative file involves the following:

1.
2.
3.
4.

Opening the file with the OPEN statement
Setting the relative record number
Processing the file with valid I/O statements
Closing the file with the CLOSE statement

Table 10-1 lists the valid I/O statements and illustrates the following
relationships:

Organization determines valid access modes.
Organization and access mode determine valid open modes.

All three (organization, access, and open mode) enable or disable I/O
statements.

Table 10-1: Valid I/O Statements for Relative Files

Open Mode
File
Organization Access Mode Statement INPUT OUTPUT IO EXTEND
RELATIVE SEQUENTIAL DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes No Yes
UNLOCK Yes Yes Yes Yes

(continued on next page)

Processing Relative Files 10-3

Table 10-1 (Cont.): Valid I/O Statements for Relative Files

Open Mode
File

Organization Access Mode Statement INPUT OUTPUT I-O EXTEND

RANDOM DELETE No No Yes No

READ Yes No Yes No

REWRITE No No "~ Yes No

WRITE No Yes Yes No

UNLOCK Yes Yes Yes No

DYNAMIC DELETE No No Yes No

READ Yes No Yes No

REWRITE No No Yes No

START Yes No Yes No

WRITE No Yes Yes No

UNLOCK Yes Yes Yes No

READ NEXT Yes No Yes No

10.4 Defining a Relative File

Each relative file in a VAX COBOL program is given a file name in a SELECT
clause in the Environment Division.

The ASSIGN clause associates the file name with a file specification. The file
specification points the operating system to the file’s physical and logical location
on a specific hardware device (see HINZ.DAT in Example 10-1). Each file is
further described in the program with a file description (FD) entry in the File
Section of the Data Division (see FLAVORS in Example 10-1). The FD entry is
followed immediately by the file’s record description (see KETCHUP-MASTER in
Example 10-1).

You must specify the ORGANIZATION IS RELATIVE phrase in the SELECT
clause; otherwise, VAX COBOL assumes sequential organization. You must also
specify the RELATIVE KEY IS phrase and assign a relative key data name for
random or dynamic access.

Example 10-1: Defining a Relative File

IDENTIFICATION DIVISION.

PROGRAM-ID. RELO1.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 99.

104 Processing Relative Files

10.5 Creating a Relative File

A VAX COBOL program creates a relative file by performing the following tasks:
1. Specifying ORGANIZATION IS RELATIVE in the SELECT clause
2. Specifying either of the following access modes in the SELECT clause:

* Sequential access

* Random access

Each of these two access mode choices requires a different processing
technique. The next two sections discuss those techniques.

3. Opening the file as:

¢ OQUTPUT—The only function of a WRITE statement with output files is to
place entirely new records into the file. If a file requires more space, RMS
automatically extends the file size, regardless of the access mode.

¢ I-O—With input/output files, the WRITE statement places records into
cells that already exist and contain no valid record.

Initializing the relative key data name for each record to be written
Executing the WRITE statement for each new relative record
Closing the file

10.5.1 Sequential Access Mode Creation

When a program creates a relative file in sequential access mode, RMS does not
use the relative key. Instead, it writes the first record in the file at relative record
number 1, the second record at relative record number 2, and so on, until the
program closes the file. If you use the RELATIVE KEY IS clause, the compiler
moves the relative record number of the record being written to the relative key

data item. Example 10-2 writes 10 records with relative record numbers
1 to 10.

Example 10-2: Creating a Relative File in Sequential Access Mode

IDENTIFICATION DIVISION.

PROGRAM-ID. RELOZ.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"

CRGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER.

02 FILLER PIC X(14).

02 REC-NUM PIC 9(05).

02 FILLER PIC X(31).
WORKING-STORAGE SECTION.

01 REC-COUNT PIC S$S9(5) VALUE O.

(continued on next page)

Processing Relative Files 10-5

Example 10-2 (Cont.): Creating a Relative File in Sequential Access Mode

PROCEDURE DIVISION.
AQOO-BEGIN.
OPEN OUTPUT FLAVORS.
PERFORM AQ10-WRITE 10 TIMES.
CLOSE FLAVORS.
STOP RUN.
AQ1O0-WRITE.
MOVE "Record number" TO KETCHUP-MASTER.
ADD 1 TO REC-COUNT.
MOVE REC-COUNT TO REC-NUM.
WRITE KETCHUP-MASTER
INVALID KEY DISPLAY "BAD WRITE"
STOP RUN.

10.5.2 Random Access Mode Creation

When a program creates a relative file using random access mode, the program
must place a value in the RELATIVE KEY data item before executing the WRITE
statement. Example 10-3 shows how to supply the relative key. It writes 10
records in the cells numbered: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20. Record cells
1,3,5,7,9, 11, 13, 15, 17, and 19 are also created, but contain no valid record.

Example 10-3: Creating a Relative File in Random Access Mode

IDENTIFICATION DIVISION.

PROGRAM-ID. RELO3.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER.

02 FILLER PIC X(14).
02 REC-NUM PIC 9(05).
02 FILLER PIC X(31).

WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 99.
01 REC-COUNT PIC S9(5) VALUE O.

(continued on next page)

10-6 Processing Relative Files

Example 10-3 (Cont.): Creating a Relative File in Random Access Mode

PROCEDURE DIVISION.
AQOO0—-BEGIN.
OPEN OUTPUT FLAVORS.
MOVE 0 TO KETCHUP-MASTER-KEY.
PERFORM AO10-CREATE-RELATIVE-FILE 10 TIMES.
DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.
AQ10-CREATE-RELATIVE-FILE.
ADD 2 TO KETCHUP-MASTER-KEY.
MOVE "Record number" TO KETCHUP-MASTER.
ADD 2 TO REC-COUNT.
MOVE REC-COUNT TO REC~NUM.
WRITE KETCHUP-MASTER
INVALID KEY DISPLAY "BAD WRITE"
STOP RUN.

10.6 Reading a Relative File

Your program can read a relative file three ways:
* Sequentially

¢ Randomly

¢ Dynamically

10.6.1 Sequential Reading

To read relative records sequentially, you must do the following:
1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS SEQUENTIAL clause.

3. Open the file for INPUT or I-O.

4. Read records as you would a sequential file, or use the START statement.

The READ statement makes the next logical record of an open file available

to the program. The system reads the file sequentially from either: (1) cell 1
or (2) wherever you START the file, up to cell n. It skips the empty cells and
retrieves only valid records, Each READ statement updates the contents of the
file's RELATIVE KEY data item, if specified. The data item contains the relative
number of the available record. When the At End condition occurs, execution of
the READ statement is unsuccessful (see Chapter 12).

Sequential prdcessing need not begin at the first record of a relative file. The
START statement specifies the next record to be read and positions the file
position indicator for subsequent I/0 operations.

Example 10-4 reads a relative file sequentially, displaying every record on the
terminal.

Processing Relative Files 10-7

Example 10—4: Reading a Relative File Sequentially

IDENTIFICATION DIVISION.

PROGRAM-ID. RELO4.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"

ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 99.
0l END-OF-FILE PIC X.
PROCEDURE DIVISION.
AQOO-BEGIN.
OPEN INPUT FLAVORS.
PERFORM AQ010-DISPLAY~RECORDS UNTIL END-OF-FILE = "Y".
A005-EOJ.

DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.
AQ10-DISPLAY-RECORDS.
READ FLAVORS AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" DISPLAY KETCHUP-MASTER.

10.6.2 Random Reading

To read relative records randomly, you must do the following:

1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS RANDOM or DYNAMIC clause.

3. Open the file for INPUT or I-O.

4. Move the relative record number value to the RELATIVE KEY data name.
5

Read the record from the cell identified by the relative record number.

Example 10-5 reads a relative file randomly, displaying every record on the
terminal.

The READ statement selects a specific record from an open file and makes it
available to the program. The value of the relative key identifies the specific
record. The system reads the record identified by the RELATIVE KEY data name
clause. If the cell does not contain a valid record, the invalid key condition occurs,
and the READ operation fails (see Chapter 12).

10-8 Processing Relative Files

Example 10-5: Reading a Relative File Randomly

IDENTIFICATION DIVISION.

PROGRAM-ID. RELOS.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.

01 KETCHUP-MASTER-KEY PIC 99 VALUE 99.
PROCEDURE DIVISION.

AQOO-BEGIN.

OPEN INPUT FLAVORS.

PERFORM A100-DISPLAY-RECORD UNTIL KETCHUP-MASTER-KEY = 00.
DISPLAY "END OF JOB".

CLOSE FLAVORS.

STOP RUN.

A100-DISPLAY-RECORD.
DISPLAY "TO DISPLAY A RECORD ENTER ITS RECORD NUMBER (ZERO to END)".
ACCEPT KETCHUP-MASTER-KEY WITH CONVERSION.
IF KETCHUP-MASTER-KEY > 00
READ FLAVORS
INVALID KEY DISPLAY "BAD KEY"
CLOSE FLAVORS
STOP RUN
END-READ
DISPLAY KETCHUP-MASTER.

10.6.3 Dynamic Reading

The READ statement has two formats so that it can select the next logical record
(sequentially) or select a specific record (randomly) and make it available to the
program. In dynamic mode, the program can switch from random access I/O
statements to sequential access I/O statements in any order, without closing
and reopening files. However, you must use the READ NEXT statement to
sequentially read a relative file open in dynamic mode.

Sequential processing need not begin at the first record of a relative file. The
START statement positions the file position indicator for subsequent I/O
operations.

A sequential read of a dynamic file is indicated by the NEXT phrase of the READ
statement. A READ NEXT statement should follow the START statement since
the READ NEXT statement reads the next record indicated by the current record
pointer. Subsequent READ NEXT statements sequentially retrieve records until
another START statement or random READ statement executes.

Example 10—6 processes a relative file containing 10 records. If the previous
program examples in this chapter have been run, each record has a unique
even number from 2 to 20 as its key. The program positions the record
pointer (using the START statement) to the cell corresponding to the value

in INPUT-RECORD-KEY. The program’s READ..NEXT statement retrieves the
remaining valid records in the file for display on the terminal.

Processing Relative Files 10-9

Example 10-6: Reading a Relative File Dynamically

IDENTIFICATION DIVISION.

PROGRAM-ID. RELO6.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"

ORGANIZATION IS RELATIVE
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.

01 KETCHUP-MASTER-KEY PIC 99.

01 END-OF-FILE PIC X VALUE "N".
PROCEDURE DIVISION.

AQQO-BEGIN.

OPEN I-O FLAVORS.

DISPLAY "Enter number".

ACCEPT KETCHUP-MASTER-KEY.

START FLAVORS KEY = KETCHUP-MASTER-KEY
INVALID KEY DISPLAY "Bad START statement"
GO TO A0QOS5-END-OF-JOB.

PERFORM AO010-DISPLAY-RECORDS UNTIL END-OF-FILE = "Y",.

AQO5-END~OF~JOB.

DISPLAY "END OF JOB".

CLOSE FLAVORS.

STOP RUN.

AQ10-DISPLAY-RECORDS.
READ FLAVORS NEXT RECORD AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" DISPLAY KETCHUP-MASTER.

10.7 Updating a Relative File

A program updates a relative file with the WRITE, REWRITE, and DELETE
statements. The WRITE statement adds a record to the file. Only the REWRITE
and DELETE statements change the contents of records already existing in the
file. In either case, adequate backup must be available in the event of error. The
next two sections explain how to rewrite and delete relative records.

10.7.1 Rewriting Relative Records

Two options are available for rewriting relative records:
¢ Sequential access mode rewriting

¢ Random access mode rewriting
The REWRITE statement logically replaces a record in a relative file. After
successfully rewriting a record into the file, the program can access that record at

any time. However, the program cannot access the record that occupied the cell
previous to the rewrite operation.

10-10 Processing Relative Files

10.7.1.1

Sequential Access Mode Rewriting

To rewrite relative records in sequential access mode, you must do the following:
1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS SEQUENTIAL clause.

3. Open the file for I-O.
4

Read the target record, or use the START statement and then the READ
statement to sequentially read the file up to the target record.

5. Update the target record.

6. Rewrite the target record into its cell.

The REWRITE statement places the successfully read record back into its cell in
the file.

Example 10-7 reads a relative record sequentially and displays the record on the
terminal. The program then passes the record to an update routine that is not
included in the example. The update routine updates the record, and passes the
updated record back to the program illustrated in Example 10-7, which displays
the updated record on the terminal and rewrites the record in the same cell.

Example 10-7: Rewriting Relative Records in Sequential Access Mode

IDENTIFICATION DIVISION.

PROGRAM-ID. RELO7.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"

ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.

01 KETCHUP-MASTER-KEY PIC 99 VALUE 99.
PROCEDURE DIVISION.

AO0OO-BEGIN.

OPEN I-O FLAVORS.

PERFORM A100-UPDATE-RECORD UNTIL KETCHUP-MASTER-KEY = (0.
AOQ5-EOJ.

DISPLAY "END OF JOB".

CLOSE FLAVORS.

STOP RUN.

(continued on next page)

Processing Relative Files 10-11

Example 10-7 (Cont.): Rewriting Relative Records in Sequential Access Mode

Al100-UPDATE-RECORD.
DISPLAY "TO UPDATE A RECORD ENTER ITS RECORD NUMBER (ZERO to END)".
ACCEPT KETCHUP-MASTER-KEY WITH CONVERSION.
IF KETCHUP-MASTER-KEY IS NOT EQUAL TO 00
START FLAVORS KEY IS EQUAL TO KETCHUP-MASTER-KEY
INVALID KEY DISPLAY "BAD START"
STOP RUN
END-START
PERFORM A200-READ-FLAVORS
DISPLAY (Wx¥kx k& *x*x*BEFORE UPDATE*** %% kkxt

DISPLAY KETCHUP-MASTER
B L LT

*

* Update routine code here

*

KAKKAKAIAKAAKRKAR AR A Ak A Ak khkhkhkhhkkhkhkhhkhkhkkkhkkkhhkkkkkkkkkkk

DISPLAY "****x*%*x%x**AFTER UPDATE***x**kkkk"n
DISPLAY KETCHUP-MASTER
REWRITE KETCHUP-MASTER.
A200-READ-FLAVORS.
READ FLAVORS
AT END DISPLAY "END OF FILE"
GO TO AO005-EQJ.

10.7.1.2 Random Access Mode Rewriting
To rewrite relative records in random access mode, you must do the following:

1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS RANDOM or DYNAMIC clause.
3. Open the file for I-O.
4

Move the relative record number value of the record you want to read to the
RELATIVE KEY data name.

5. Read the record from the cell identified by the relative record number.
6. Update the record.

7. Rewrite the record into the cell identified by the relative record number.

The system randomly reads the record identified by the KEY IS clause. The
REWRITE statement places the successfully read record back into its cell in
the file.

If the cell does not contain a valid record, or if the REWRITE operation is
unsuccessful, the invalid key condition occurs, and the REWRITE operation
fails (see Chapter 12).

Example 10-8 reads a relative record randomly, displays its contents on the
terminal, updates the record, displays its updated contents on the terminal, and
rewrites the record in the same cell.

10-12 Processing Relative Files

Example 10-8: Rewriting Relative Records in Random Access Mode

IDENTIFICATION DIVISION.

PROGRAM-ID. RELOS.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X (50).
WORKING-STORAGE SECTION.

01 KETCHUP-MASTER-KEY PIC 99.
PROCEDURE DIVISION.

AQO0-BEGIN.

OPEN I-O FLAVORS.

PERFORM A100-UPDATE-RECORD UNTIL KETCHUP-MASTER-KEY = 00.
AO05-EOJ.

DISPLAY "END OF JOB".

CLOSE FLAVORS.

STOP RUN.
A100-UPDATE-RECORD.

DISPLAY "TO UPDATE A RECORD ENTER ITS RECORD NUMBER".

ACCEPT KETCHUP-MASTER-KEY.

READ FLAVORS INVALID KEY DISPLAY "BAD READ"

GO TO A0O05-EOJ.

DISPLAY "X*X******BEFORE UPDATE****xxxx%1

DISPLAY KETCHUP-MASTER.
KRR A R AR KRR AR KRR AR R R AR AR R AR KRR ARARKR AR KA AR AR AR R AR AR KRR KA KKK

*

* Update routine

*

EE SRS RS SR SRR EREEE SR EE RS EE SRR SRR TR R R R R
DISPLAY "h**#*x#*%**AFTER UPDATEX***#xxk*1l,
DISPLAY KETCHUP-MASTER.
REWRITE KETCHUP-MASTER INVALID KEY DISPLAY "BAD REWRITE"

GO TO AO05-EOJ.

10.7.2 Deleting Relative Records

Two options are available for deleting relative records:

* Sequential access mode deletion

¢ Random access mode deletion

The DELETE statement logically removes an existing record from a relative file.

After successfully removing a record from a file, the program cannot later
access it.

10.7.2.1 Sequential Access Mode Deletion

To delete a relative record in sequential access mode, you must do the following:
1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS SEQUENTIAL clause.

3. Open the file for I-O.

Processing Relative Files 10-13

4. Either (a) use the START statement to position the record pointer or (b)
sequentially read the file up to the target record.

5. Delete the last read record.

Example 10-9 is an example of deleting relative records in sequential access
mode.

Example 10-9: Deleting Relative Records in Sequential Access Mode

IDENTIFICATION DIVISION.

PROGRAM-ID. RELO9Y.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"

ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.

01 KETCHUP-MASTER-KEY PIC 99 VALUE 1.
PROCEDURE DIVISION.

AOOO-BEGIN.

OPEN I-O FLAVORS.
PERFORM AOlO0-DELETE-RECORDS UNTIL KETCHUP-MASTER-KEY = 00.
AQ05-EQJ.
DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.
AO10-DELETE-RECORDS.
DISPLAY "TO DELETE A RECORD ENTER ITS RECORD NUMBER".
ACCEPT KETCHUP-MASTER-KEY.
IF KETCHUP-MASTER-KEY NOT = 00 PERFORM A200-READ-FLAVORS
DELETE FLAVORS RECORD.
A200-READ-FLAVORS.
START FLAVORS
INVALID KEY DISPLAY "INVALID START"
STOP RUN.
READ FLAVORS AT END DISPLAY "FILE AT END"
GO TO A005-EOQJ.

10.7.2.2 Random Access Mode Deletion

To delete a relative record in random access mode, you must do the following:
1. Specify the ORGANIZATION IS RELATIVE clause.

Specify the ACCESS MODE IS RANDOM clause.

Open the file I-O.

Move the relative record number value to the RELATIVE KEY data name.

Delete the record identified by the relative record number.

AR S

If the file does not contain a valid record, an invalid key condition exists.

10-14 Processing Relative Files

Example 10-10 is an example of deleting relative records in random access
mode.

Example 10-10: Deleting Relative Records in Random Access Mode

IDENTIFICATION DIVISION.

PROGRAM-ID. REL10.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS- ASSIGN TO "HINZ.DAT"

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.

01 KETCHUP-MASTER-KEY PIC 99 VALUE 1.
PROCEDURE DIVISION.

AQOO-BEGIN.

OPEN I-O FLAVORS.

PERFORM AOl10-DELETE-RECORDS UNTIL KETCHUP-MASTER-KEY = Q0.
AQ05-EQJ.

DISPLAY "END OF JOB".

CLOSE FLAVORS.

STOP RUN.

AQ10-DELETE-RECORDS.
DISPLAY "TO DELETE A RECORD ENTER ITS RECORD NUMBER".
ACCEPT KETCHUP-MASTER-KEY.
IF KETCHUP-MASTER-KEY NOT = 00
DELETE FLAVORS RECORD
INVALID KEY DISPLAY "INVALID DELETE"
STOP RUN.

Processing Relative Files 10-15

Chapter 11

Processing Indexed Files

Unlike the sequential ordering of records in a sequential file or the relative
positioning of records in a relative file, the location of records in indexed file
organization is transparent to the program. It is possible to add new records

to an indexed file and logically place them between physically adjacent records
without re-creating the file. Not only can records be added, but they can also be
deleted, making room for new records.

RMS controls the placement of records in an indexed file based on user-specified
primary and alternate keys in the record itself. The presence of keys in the
records of the file governs this placement. This is the only file organization where
RMS uses the actual contents of the records for record placement within the file.

Indexed file processing is available only on disk devices.

11.1 Indexed File Organization

VAX COBOL allows sequential, random, and dynamic access to records. Each
record is accessed by one of its primary or alternate keys.

A major feature of indexed file organization is the use of a key to uniquely
identify a record within the file. Its location and length are identical in all
records. When creating an indexed file, you must select the data items to be
the keys. Selecting such a data item indicates to RMS that the contents (key
value) of that string in any record written to the file can be used by the program
to identify that record for subsequent retrieval. For more information, see the
RECORD KEY IS clause and the ALTERNATE RECORD KEY IS clause in the
VAX COBOL Reference Manual.

You must define at least one main key, called the primary key, for an indexed
file. VAX COBOL also allows you to optionally define from 1 to 254 additional
keys called alternate keys. Each alternate key represents an additional
character string in each record of the file. The key value in any of these
additional strings can also be used as a means of identifying the record for
retrieval.

You define primary and alternative key values in the Record Description entry.
Primary and alternate key values need not be unique if you specify the WITH
DUPLICATES phrase in the file description entry. When duplicate key values are
present, you can retrieve the records in the order that they were written. The
logical sort order of each key can be either ascending (the default) or descending.
The logical sort order controls the order of sequential processing of the record.

Processing Indexed Files 11-1

As your program writes records into an indexed file, RMS locates the values
contained in the primary and alternate keys. RMS builds these values into a
tree-structured table known as an index (or B-Tree), which consists of a series
of entries. Each entry contains a key value copied from a record. With each key
value is a pointer to the location in the file of the record from which the value
was copied. Figure 11-1 shows the general structure of an indexed file defined
with a primary key only.

Figure 11-1: Indexed File Organization

record

Key Definition
|
v Primary key index (employee name)
ABLE JONES SMITH
| |
record record

ABLE ELMAVE | JONES | MAINST SMITH COLTRD

ZK-6058-GE

For a more detailed explanation of indexed file structure, see the VMS
documentation on RMS tuning.

11.2 Design Considerations

Before you create your indexed file applications, you should design your file based
on these design considerations:

1.

Record format (see Chapter 8).

¢ Fixed-length

¢ Variable-length

Medium—Indexed files can be accessed on disk only.

Allocation at the time of file creation and file extension (see Chapter 20).

Speed—You want to maximize the speed with which the program processes
data.

Space—You want to minimize file size, disk space, and memory requirements
to run your program.

Shared access—You must consider who is going to use the data and how they
will access the data.

Ease of design—You want to minimize the time spent writing the application.

Compiler limitations—You want to consider the logical and physical limits
imposed by the VAX COBOL compiler.

11-2 Processing Indexed Files

For more information on indexed file design optimization, see Chapter 20 and the
VMS documentation on RMS tuning. If you do not carefully design your index
file—that is, if you take all the file defaults—your indexed file application may
run more slowly than you expect.

11.3 Statements for Indexed File Processing

Processing an indexed file involves the following tasks:
1. Opening the file with the OPEN statement

2. Processing the file with valid I/O statements

3. Closing the file with the CLOSE statement

Table 11-1 lists the valid I/O statements and illustrates the following
relationships:

* Organization determines valid access modes.
* Organization and access mode determine valid open modes.

¢ All three (organization, access, and open mode) enable or disable I/O

statements.
Table 11-1: Valid /O Statements for Indexed Files
Open Mode
File
Organization Access Mode Statement INPUT OUTPUT IO EXTEND
INDEXED SEQUENTIAL DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes No Yes
UNLOCK Yes Yes Yes Yes
RANDOM DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
WRITE No Yes Yes No
UNLOCK Yes Yes Yes No
DYNAMIC DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes Yes No
READ NEXT Yes No Yes No
UNLOCK Yes Yes Yes No

11.4 Defining an Indexed File

Each indexed file in a VAX COBOL program is given a file name in a SELECT
clause in the Environment Division. The ASSIGN clause associates the file
name with a file specification. The file specification points the operating system
to the file’s physical and logical location on a specific hardware device (see
Example 11-1, DAIRY.DAT). Each file is further described in the program
with a file description (FD) entry in the File Section of the Data Division (see
Example 11-1, FLAVORS). The FD entry is followed immediately by the file’s

Processing Indexed Files 11-3

record description (see Example 11-1, ICE-CREAM-MASTER). Refer to the VAX
COBOL Reference Manual for information relating to the RECORD KEY and
ALTERNATE RECORD KEY clauses.

Example 11-1 defines a dynamic access mode indexed file with one
primary key (ICE-CREAM-MASTER-KEY) and two alternate record keys
(ICE-CREAM-STORE-CODE, and ICE-CREAM-STORE-STATE). Note that
one alternate record key allows duplicates (ICE-CREAM-STORE-STATE).
Any program using the identical entries in the SELECT clause as shown in
Example 11-1 can reference the DAIRY.DAT file sequentially and randomly.

Example 11-1: Defining an Indexed File

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEXOL1.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE
WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.
DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 ICE-CREAM-MASTER.

02 ICE-CREAM-MASTER-KEY PIC XXXX.
02 ICE-CREAM-MASTER-DATA.
03 ICE-CREAM-STORE-CODE PIC XXXXX.
03 ICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X(20).
03 ICE-CREAM-STORE-STATE PIC XX.
PROCEDURE DIVISION.
AOO-BEGIN.

You must specify the ORGANIZATION IS INDEXED phrase; otherwise, the
default is ORGANIZATION IS SEQUENTIAL. You specify ACCESS MODE

IS... in the SELECT clause, depending on how you want to access the file
(SEQUENTIAL, RANDOM, DYNAMIC).

11.5 Creating and Populating an Indexed File

A VAX COBOL program creates an indexed file by:
1. Specifying ORGANIZATION IS INDEXED in the SELECT clause.
2. Specifying either of the following access modes in the SELECT clause:

¢ Sequential access—The program can write records in ascending or
descending order by primary key, depending on the sort order.

* Random or dynamic access—The program can write records in any order.

11-4 Processing Indexed Files

3. Opening the file for:

¢ OUTPUT—To add records only

¢ 1-O—To add, change, or delete records
4. Initializing the key values.
5. Executing the WRITE statement.

The best way to initially populate an indexed file is to sequentially write the
records in ascending order by primary key.

The program can add records to the file until it reaches the physical limitations of
its storage device. When this occurs, you should: (1) delete unnecessary records,
(2) back up the file, and (3) recreate the file either by using the CONVERT
Utility to optimize file space, or by using a VAX COBOL program. For more
information, see the VMS documentation on the CONVERT Utility.

Example 11-2 creates and populates an indexed file (DAIRY.DAT). The file
(DAIRYIL.DAT) has been sorted in ascending sequence. Notice that the primary
and alternate keys are initialized in ICE-CREAM-MASTER when the contents
of the fields in INPUT-RECORD are read into ICE-CREAM-MASTER before the
record is written.

Example 11-2: Creating and Populating an Indexed File

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEXO02.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INPUT-FILE ASSIGN TO "DAIRYI.DAT".
SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE
WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.
DATA DIVISION.
FILE SECTION.
FD INPUT-FILE.
01 INPUT-RECORD.
02 INPUT-RECORD-KEY PIC 9999.
02 INPUT-RECORD-DATA PIC X(47).
FD FLAVORS.
01 ICE-CREAM-MASTER.

02 ICE-CREAM-MASTER-KEY PIC XXXX.
02 ICE-CREAM-MASTER-DATA.
03 ICE-CREAM~STORE-CODE PIC XXXXX.
03 ICE-CREAM-STORE-ADDRESS PIC X (20).
03 ICE-CREAM-STORE-CITY PIC X(20).
03 ICE-CREAM-STORE-STATE PIC XX.
WORKING-STORAGE SECTION.
01 END-OF-FILE PIC X.

{continued on next page)

Processing Indexed Files 11-5

Example 11-2 (Cont.): Creating and Populating an Indexed File

PROCEDURE DIVISION.
AOO0-BEGIN.

OPEN INPUT INPUT-FILE.

OPEN OUTPUT FLAVORS.
A010-POPULATE.

PERFORM A100-READ-INPUT UNTIL END-OF-FILE = "Y",
AQ20-EOJ.

DISPLAY "END OF JOB".

STOP RUN.
A100-READ-INPUT.

READ INPUT-FILE INTO ICE-CREAM-MASTER

AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y"
WRITE ICE-CREAM-MASTER INVALID KEY DISPLAY "BAD WRITE"
STOP RUN.

11.6 Reading an Indexed File

Your program can read an indexed file in the following three ways:

e Sequentially

¢ Randomly

¢ Dynamically

However, to read the file randomly, the program must: (1) initialize either
the primary key data name or the alternate key data name before reading the

target record, and (2) specify that data name in the KEY IS phrase of the READ
statement.

Dynamic access permits switching back and forth from sequential access to
random access any number of times during one OPEN of the file.

11.6.1 Sequential Reading

To read indexed records in a sequential mode, you must do the following:
1. Specify the ORGANIZATION IS INDEXED in the SELECT clause.

2. Specify the ACCESS MODE IS SEQUENTIAL clause.

3. Open the file for INPUT or I-O.
4

Read records from the beginning of the file as you would a sequential file—use
the READ...AT END statement.

The READ statement makes the next logical record of an open file available to the
program. It skips deleted records and sequentially reads and retrieves only valid
records. When the at end condition occurs, execution of the READ statement is
unsuccessful (see Chapter 12).

Example 11-3 reads the entire indexed file sequentially beginning with the first
record in the file, displaying every record on the terminal.

11-6 Processing Indexed Files

Example 11-3: Reading an Indexed File Sequentially

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEXO03.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE
WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.
DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 ICE-CREAM-MASTER.

02 ICE-CREAM-MASTER-KEY PIC XXXX.
02 ICE-CREAM-MASTER-DATA.
03 ICE-CREAM-STORE-CODE PIC XXXXX.
03 ICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X (20).
03 ICE-CREAM-STORE-STATE PIC XX.
WORKING-STORAGE SECTION.
01 END-OF-FILE PIC X.
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN INPUT FLAVORS.
A010-SEQUENTIAL-READ.

PERFORM Al100-READ-INPUT UNTIL END-OF-FILE = "Y".
A020-EOJ.

DISPLAY "END OF JOB".

STOP RUN.

Al100-READ-INPUT.
READ FLAVORS AT END MOVE "Y" TO END-OF~-FILE.
IF END-OF-FILE NOT = "Y"
DISPLAY ICE-CREAM-MASTER
STOP "Type CONTINUE to display next master".

11.6.2 Random Reading

To read indexed records randomly, you must do the following:
1. Specify the ORGANIZATION IS INDEXED clause.

2. Specify the ACCESS MODE IS RANDOM clause.

3. Open the file for INPUT or I-O.
4

Initialize the RECORD KEY or ALTERNATE RECORD KEY data name
before reading the record.

5. Read the record using the KEY IS clause.

The READ statement selects a specific record from an open file and makes it
available to the program. The value of the primary or alternate key identifies
the specific record. The system randomly reads the record identified by the KEY
clause. If RMS does not find a valid record, the invalid key condition occurs, and
the READ statement fails (see Chapter 12).

Processing Indexed Files 11-7

Example 114 reads an indexed file randomly, displaying its contents on the
terminal.

Example 11—-4: Reading an Indexed File Randomly

IDENTIFICATION DIVISION.

PROGRAM-ID. INDEXO04.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"

ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ICE-CREAM-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 ICE-CREAM-MASTER.

02 ICE-CREAM-KEY PIC XXXX.
02 ICE-CREAM-DATA.
03 ICE-CREAM-STORE-CODE PIC XXXXX.
03 ICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X(20).
03 ICE-CREAM-STORE-STATE PIC XX.
WORKING-STORAGE SECTION.
01 PROGRAM-STAT PIC X.
88 OPERATOR-STOPS-IT VALUE "1".
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-O FLAVORS.
PERFORM A020-INITIAL-PROMPT.
IF OPERATOR-STOPS-IT
PERFORM AOO5-TERMINATE.
PERFORM A030-RANDOM-READ.
PERFORM A025~-SUBSEQUENT-PROMPTS UNTIL OPERATOR-STOPS-IT.
PERFORM AQ0O5-TERMINATE.
AQO5-TERMINATE.
DISPLAY "END OF JOB".
STOP RUN.
AQ20-INITIAL-PROMPT.
DISPLAY "Do you want to see a store?".
PERFORM AQ040-GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "y" OR "N" OR "n".
IF PROGRAM-STAT = "N" OR "n"
MOVE "1" TO PROGRAM-STAT.
AQ025-SUBSEQUENT-PROMPTS.
MOVE SPACE TO PROGRAM-STAT.
DISPLAY "Do you want to see another store ?".
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "y" OR "N" OR "n".
IF PROGRAM-STAT = "Y" OR "y"
PERFORM AO030-RANDOM-READ
ELSE
MOVE "1" TO PROGRAM-STAT.
AO30-RANDOM-READ.
DISPLAY "Enter key".
ACCEPT ICE-CREAM-KEY.
PERFORM Al100-READ-INPUT-BY-KEY.
AQ40-GET-ANSWER.
DISPLAY "Please answer Y or N"
ACCEPT PROGRAM-STAT.

(continued on next page)

11-8 Processing Indexed Files

Example 114 (Cont.): Reading an Indexed File Randomly

Al100-READ-INPUT-BY-KEY.
READ FLAVORS KEY IS ICE-CREAM—-KEY
INVALID KEY DISPLAY "Record does not exist - Try again"
NOT INVALID KEY DISPLAY "The record is: ", ICE-CREAM-MASTER.

11.6.3 Dynamic Reading

The READ statement has two formats, so it can select the next logical record
(sequentially) or select a specific record (randomly) and make it available to the
program. In dynamic mode, the program can switch from using random access
I/O statements to sequential access I/O statements, in any order, without closing
and reopening files. However, the program must use the READ NEXT statement
to sequentially read an indexed file opened in dynamic mode.

Sequential processing need not begin at the first record of an indexed file. The
START statement specifies the next record to be read sequentially and positions
the file position indicator for subsequent I/O operations anywhere within the file.

A sequential read of a dynamic file is indicated by the NEXT phrase of the READ
statement. A READ NEXT statement should follow the START statement since
the READ NEXT statement reads the next record indicated by the file position
indicator. Subsequent READ NEXT statements sequentially retrieve records until
another START statement or random READ statement executes.

Example 11-5 processes an indexed file containing 26 records. Each record has a
unique letter of the alphabet as its primary key. The program positions the file
to the first record whose INPUT-RECORD-KEY is equal to the specified letter of
the alphabet. The program’s READ NEXT statement sequentially retrieves the
remaining valid records in the file for display on the terminal.

Example 11-5: Reading an Indexed File Dynamically

IDENTIFICATION DIVISION.

PROGRAM-ID. INDEXO05.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT IND-ALPHA ASSIGN TO "ALPHA.DAT"

ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS INPUT-RECORD-KEY.

DATA DIVISION.

FILE SECTION.

FD IND-ALPHA.

01 INPUT-RECORD.

02 INPUT-RECORD-KEY PIC X.

02 INPUT-RECORD-DATA PIC X(50).
WORKING-STORAGE SECTION.
01 END-CF-FILE PIC X.
PROCEDURE DIVISION.
AO0OO-BEGIN.

OPEN I-O IND-ALPHA,
DISPLAY "Enter letter"

(continued on next page)

Processing Indexed Files 11-9

Example 11-5 (Cont.): Reading an Indexed File Dynamically

ACCEPT INPUT-RECORD-KEY.
START IND-ALPHA KEY = INPUT-RECORD-KEY
INVALID KEY DISPLAY "BAD START STATEMENT"
GO TO AQ010-END-OF-JOB.
PERFORM Al100-GET-RECORDS THROUGH A100-GET-RECORDS-EXIT
UNTIL END-OF-FILE = "Y".

A010-END~QOF-JOB.

DISPLAY "END OF JOB".
CLOSE IND-ALPHA.
STOP RUN.

Al100-GET-RECORDS.

READ IND-ALPHA NEXT RECORD AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" DISPLAY INPUT-RECORD.

Al100-GET-RECORDS-EXIT.

EXIT.

11.7 Updating an Indexed File

To update a record in an indexed file, your program must do the following:

In sequential access mode:

1. Read the target record.

2. Verify that this record is indeed the record you want to change.
3. Change the record.

4. Rewrite or delete the record.

In random access mode: rewrite or delete the record.

Your program can update an indexed file three ways:

Sequentially
Randomly
Dynamically

NOTE

A program cannot rewrite an existing record if it changes the contents
of the primary key in that record. Instead, the program must delete the
record and write a new record. Alternate key values can be changed at
any time. However, the value of alternate keys must be unique unless
the WITH DUPLICATES phrase is present.

11.7.1 Sequential Updating

To update indexed records in a sequential mode, you must do the following:

1.

2
3.
4

Specify the ORGANIZATION IS INDEXED clause.
Specify the ACCESS MODE IS SEQUENTIAL clause.
Open the file for I-O.

Read records as you would a sequential file, that is, use the READ statement
with the AT END phrase.

11-10 Processing Indexed Files

5. Rewrite or delete records using the INVALID KEY phrase.

The READ statement makes the next logical record of an open file available to the
program. It skips deleted records and sequentially reads and retrieves only valid
records. When the at end condition occurs, execution of the READ statement is
unsuccessful (see Chapter 12).

The REWRITE statement replaces the record just read, while the DELETE
statement logically removes the record just read from the file.

Example 11-6 is an example of a sequential update of an indexed file.

Example 11-6: Updating an Indexed File Sequentially

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEXO06.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE
WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.
DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 ICE-CREAM-MASTER.

02 ICE-CREAM-MASTER-KEY PIC XXXX.
02 ICE-CREAM-MASTER-DATA.
03 ICE-CREAM-STORE-CODE PIC XXXXX.
03 ~ICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X(20).
03 ICE-CREAM-STORE-STATE PIC XX.
WORKING-STORAGE SECTION.
01 END-OF-FILE PIC X.
01 REWRITE-KEY PIC XXXXX.
01 DELETE-KEY PIC XX.
01 NEW-ADDRESS PIC X(20).
PROCEDURE DIVISION.
AQOO-BEGIN.

OPEN I-O FLAVORS.

DISPLAY "Which store code do you want to find?".
ACCEPT REWRITE-KEY.

DISPLAY "What is its new address?".

ACCEPT NEW-ADDRESS.

DISPLAY "Which state do you want to delete?".
ACCEPT DELETE-KEY.

PERFORM A100-READ-INPUT UNTIL END-OF-FILE = "Y".

(continued on next page)

Processing Indexed Files 11-11

Example 11-6 (Cont.): Updating an Indexed File Sequentially

A020-E0J. " ‘ ;
. DISPLAY "END OF JOB".
"~ STOP RUN. =~ -
A100=READ-INPUT.
" "READ - FLAVORS AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" AND
REWRITE-KEY = ICE-CREAM-STORE-~CODE
PERFORM A200-REWRITE-MASTER.
IF END=QF-FILE. NOT = "Y" AND
DELETE-KEY = ICE-CREAM-STORE-STATE
'PERFORM A300-DELETE-MASTER.
A200-REWRITE-MASTER.
MOVE NEW-ADDRESS TO ICE-CREAM~STORE-ADDRESS.
REWRITE ICE-CREAM-MASTER
INVALID KEY DISPLAY "Bad rewrite — ABORTED"
STOP RUN.
A300-DELETE-MASTER.
DELETE FLAVORS.

11.7.2 Random Updating

To update indexed records in a random mode, you must do the following:

1. Specify the ORGANIZATION IS INDEXED clause.

Specify the ACCESS MODE IS RANDOM clause.

Open the file for I-O.

Initialize the RECORD KEY or ALTERNATE RECORD KEY data name.
Write, rewrite, or delete records using the INVALID KEY phrase.

A

Note that if the primary or alternate key specified in step 4 allows duplicates,
only the first occurrence of a record with a matching value will be updated.

Example 11-7 is an example of a random update of an indexed file.

Example 11-7: Updating an Indexed File Randomly

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEXO07.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM~STORE-STATE
WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.
DATA DIVISION.
FILE SECTION.
FD FLAVORS.

(continued on next page)

11-12 Processing Indexed Files

Example 11-7 (Cont.): Updating an Indexed File Randomly

01 ICE-CREAM-MASTER.
02 ICE-CREAM-MASTER-KEY
02 ICE-CREAM-MASTER-DATA.
03 ICE-CREAM—-STORE-CODE

03 ICE-CREAM-STORE-ADDRESS

03 ICE-CREAM-STORE-CITY

03 ICE-CREAM-STORE-STATE

WORKING-STORAGE SECTION.
01 HOLD-ICE-CREAM-MASTER
01 PROGRAM-STAT
88 OPERATOR-STOPS-IT
88 LETS-SEE-NEXT-STORE
88 NO-MORE-DUPLICATES
PROCEDURE DIVISION.
AQOO-BEGIN.
OPEN I-O FLAVORS.

PIC

PIC
PIC
PIC
PIC

PIC
PIC

XXXX.

XXXXX.
X (20).
X(20) .
XX.

X(51).
X.

VALUE "1".
VALUE "2".
VALUE "3".

PERFORM A030-RANDOM-READ UNTIL OPERATOR-STOPS-IT.

A020-EOQJ.
DISPLAY "END OF JOB".
STOP RUN.
A030-RANDOM-READ.
DISPLAY "Enter key".
ACCEPT ICE-CREAM-MASTER-KEY.

PERFORM A100-READ-INPUT-BY-PRIMARY-KEY
THROUGH A100-READ-INPUT-EXIT.
DISPLAY " Do you want to terminate the session?".
PERFORM AQ40-GET-ANSWER UNTIL PROGRAM-STAT = "y" OR "N".
IF PROGRAM-STAT = "y" MOVE "1"

AQ40-GET-ANSWER.

TO PROGRAM-STAT.

DISPLAY "Please answer Y or NV

ACCEPT PROGRAM-STAT.
A100-READ-INPUT-BY-PRIMARY-KEY.

READ FLAVORS KEY IS ICE-CREAM-MASTER-KEY
INVALID KEY DISPLAY "Master does not exist - Try again"
GO TO AlOO-READ-INPUT-EXIT.

DISPLAY ICE-CREAM-MASTER.

PERFORM A200-READ-BY-ALTERNATE-KEY UNTIL NO-MORE-DUPLICATES.

A100-READ-INPUT-EXIT.
EXIT.
A200-READ-BY-ALTERNATE-KEY.

DISPLAY "Do you want to see the next store in this state?".
PERFORM AQ040-GET~ANSWER UNTIL PROGRAM-STAT = "y" QR "N".

IF PROGRAM-STAT = "y"
MOVE "2" TO PROGRAM-STAT

READ FLAVORS KEY IS ICE-CREAM-STORE-STATE
INVALID KEY DISPLAY

MOVE

n3n

"No more stores in this state"
TO PROGRAM-STAT.

(continued on next page)

Processing Indexed Files 11-13

Example 11-7 (Cont.): Updating an Indexed File Randomly

IF LETS-SEE-NEXT-STORE AND
ICE-CREAM~-STORE~-STATE = "NY"
PERFORM A500-DELETE~-RANDOM-RECORD.
IF LETS-SEE-NEXT-STORE AND
ICE-CREAM~STORE-STATE = "NJ")
MOVE "Monmouth" TO ICE-CREAM-STORE-CITY
PERFORM A400-REWRITE-RANDOM-RECORD.
IF LETS-SEE-NEXT-STORE AND
ICE-CREAM-STORE-STATE = "CA"
MOVE ICE-CREAM-MASTER TO HOLD-ICE~CREAM-MASTER
PERFORM A500-DELETE-RANDOM-RECORD
MOVE HOLD-ICE-CREAM-~-MASTER TO ICE-CREAM-MASTER
MOVE "AZ" TO ICE-CREAM~STORE-STATE
PERFORM A300-WRITE-RANDOM-RECORD.
IF PROGRAM-STAT = "N"
MOVE "3" TO PROGRAM-STAT.
A300-WRITE~-RANDOM-RECORD.
WRITE ICE-CREAM-MASTER
INVALID KEY DISPLAY "Bad write ~ ABORTED"
STOP RUN.
A400-REWRITE-RANDOM-RECORD.
REWRITE ICE-CREAM-MASTER
INVALID KEY DISPLAY "Bad rewrite - ABORTED"
STOP RUN.
A500-DELETE-RANDOM-RECORD.
DELETE FLAVORS
INVALID KEY DISPLAY "Bad delete - ABORTED"
STOP RUN.

11.7.3 Dynamic Updating

In dynamic mode, the program can switch from using random access I/O
statements to sequential access I/O statements in any order without closing
and reopening files. To dynamically update indexed records, you must do the
following:

1. Specify the ORGANIZATION IS INDEXED clause.
2. Specify the ACCESS MODE IS DYNAMIC clause.
3. Open the file for I-O.

4. Read the records in one of two ways:

* Sequentially—Use the START statement to position the record pointer,
and then use the READ..NEXT statement.

¢ Randomly—Initialize the RECORD KEY or ALTERNATE RECORD
KEY data name, and then read records in any order you want using the
INVALID KEY phrase.

5. Write, rewrite, or delete records using the INVALID KEY phrase.

11-14 Processing Indexed Files

Chapter 12

Input/Output Exception Conditions Handling

Many types of exception conditions can occur when a program processes a file; not
all of them are errors. The three categories of exception conditions are as follows:

L]

At end condition—This is a normal condition when you access a file
sequentially. However, if your program tries to read the file any time after
having read the last logical record in the file, and there is no applicable
Declarative procedure or AT END phrase, the program abnormally terminates
when the next READ statement executes.

Invalid key condition—When you process relative and indexed files,

the invalid key condition is a normal condition if you plan for it with a
Declarative procedure or INVALID KEY phrase. It is an abnormal condition
that causes your program to terminate if there is no applicable Declarative
procedure or INVALID KEY phrase.

All other conditions—These can also be either normal conditions (if you plan
for them) or abnormal conditions that cause your program to terminate.

Planning for exception conditions effectively increases program and programmer
efficiency. A program with exception handling routines is more flexible than a
program without them. They minimize operator intervention and often reduce or
eliminate the time a programmer uses to debug and rerun the program.

This chapter introduces you to the tools you need to execute sequential, relative,
and indexed file exception handling routines as a normal part of your program.
The tools you need are as follows:

The AT END phrase
The INVALID KEY phrase
File Status values

Special registers—RMS-CURRENT-STS, RMS-CURRENT-STV, RMS-STS,
and RMS-STV

Declarative procedures

12.1 Planning for the At End Condition

VAX COBOL provides you the option of testing for this condition with the AT
END phrase of the READ statement for sequential, relative, and indexed files
and the ACCEPT statement.

Input/Output Exception Conditions Handling 12-1

Programs often read sequential files from beginning to end. They can produce
reports from the information in the file or even update it. However, the program
must be able to detect the end of the file, so that it can continue normal
processing at that point. If the program does not test for this condition when it
occurs, and if no applicable Declarative procedure exists (see Section 12.4), the
program terminates abnormally. The program must detect when no more data
is available from the file so that it can perform its normal end-of-job totaling,
balancing, and closing of the file.

Example 12-1 shows the use of the AT END phrase with the READ statement.

Example 12-1: Handling the At End Condition

READ SEQUENTIAL-FILE AT END PERFORM A600-TOTAL-ROUTINES
PERFORM A610-VERIFY-TOTALS-ROUTINES
MOVE "Y" TO END-OF-FILE.
READ RELATIVE-FILE NEXT RECORD AT END PERFORM A700-~CLEAN-UP-ROUTINES
CLOSE RELATIVE-FILE
STOP RUN.
READ INDEXED-FILE NEXT RECORD AT END DISPLAY "End of file"
DISPLAY "Do you want to continue?"
ACCEPT REPLY
PERFORM A700-CLEAN-UP-ROUTINES.

12.2 Planning for the Invalid Key Condition

12-2

An invalid key condition occurs whenever RMS cannot complete a VAX COBOL

DELETE, READ, REWRITE, START, or WRITE statement. When the condition
occurs, execution of the statement that recognized it is unsuccessful, and the file
is not affected.

For example, relative and indexed files use keys to retrieve records. The program
specifying random access must initialize a key before executing a DELETE,
READ, REWRITE, START, or WRITE statement. If the key does not result in
the successful execution of any of these statements, the invalid key condition
exists. This condition is fatal to the program, if the program does not check for
the condition when it occurs and if no applicable Declarative procedure exists (see
Section 12.4).

The invalid key condition, although fatal if not planned for, can be to your
advantage when used properly. You can, as in Example 12-2, read through an
indexed file for all records with a specific duplicate key and produce a report
from the information in those records. However, after you have read the last

of the duplicate records, you receive an invalid key condition for subsequent
read operations to indicate that no more records with this key exist in the file.
Planning for the invalid key condition in this case allows the program to continue
its normal processing.

input/Output Exception Conditions Handling

Example 12-2: Handling the Invalid Key Condition

MOVE "SMITH" TO LAST-NAME.

MOVE "Y" TO ANY-MORE-DUPLICATES.

PERFORM A500-READ-DUPLICATES-ROUTINE
UNTIL ANY-MORE-DUPLICATES = "N".

STOP RUN.
A500-READ-DUPLICATES-ROUTINE.
READ INDEXED-FILE RECORD INTO HOLD-RECORD
KEY IS LAST-NAME
INVALID KEY DISPLAY "Name not in file!"™ STOP RUN.
PERFORM A510-READ-NEXT-DUPLICATES—-ROUTINE
UNTIL ANY-MORE-DUPLICATES = "N".
A510-READ-NEXT-DUPLICATES-ROUTINE.
READ INDEXED-FILE NEXT RECORD
AT END MOVE "N" TO ANY-MORE-DUPLICATES.
IF ANY-MORE-DUPLICATES = "Y" PERFORM A700-PRINT-ROUTINES.
MOVE "N" TO ANY-MORE-DUPLICATES.

A700-PRINT-ROUTINES.

12.3 Using File Status Values

Your program can check for the specific cause of the failure of a file operation

by checking for specific File Status values in its exception handling routines. To
obtain File Status values from VAX COBOL, use the FILE STATUS clause in the
file description entry. To provide FILE STATUS values from RMS, use the VAX
COBOL special registers RMS-STS and RMS-STV or RMS-CURRENT-STS and
RMS-CURRENT-STV.

12.3.1 VAX COBOL File Status Values

The run-time execution of any VAX COBOL file processing statement results in

a RMS completion code value that reports the success or failure of the COBOL
statement. To access this value, you must specify the FILE STATUS clause in the
file description entry, as shown in Example 12-3.

Input/Output Exception Conditions Handling 12-3

124

Example 12-3: Defining a File Status for a File

DATA DIVISION.
FILE SECTION.

FD INDEXED-FILE
*

FILE STATUS IS INDEXED-FILE-STATUS.
*

01 INDEXED-RECORD PIC X(50).
WORKING-STORAGE SECTION.

01 INDEXED-FILE-STATUS PIC XX.

01 ANSWER PIC X.

The program can access this File Status variable, INDEXED-FILE-STATUS,
anywhere in the Procedure Division, and depending on its value, take a specific
course of action without terminating the program. Notice that Example 12-4 uses
the File Status defined in Example 12-3. However, not all statements allow you
to access the File Status value as part of the statement. Your program has two
options:

¢ Examine the status value as part of an error recovery routine built into the
statement. The only relative and indexed file processing statements that
allow you to do this within the INVALID KEY phrase are DELETE, READ,
REWRITE, START, and WRITE. See Example 12-4.,

¢ Define a Declarative procedure to handle the condition (see Section 12.4). All
file organizations and their I/0 statements have this option available.

Example 12—4: Using the File Status Value in an Exception Handling Routine

PROCEDURE DIVISION.
AOOO-BEGIN.

DELETE INDEXED-RECORD
INVALID KEY MOVE "Bad DELETE" to BAD-~VERB-ID
PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

(continued on next page)

Input/Output Exception Conditions Handling

Example 12-4 (Cont.): Using the File Status Value in an Exception Handling
Routine

READ INDEXED-FILE NEXT RECORD
INVALID KEY MOVE "Bad READ" TO BAD-VERB-ID
PERFORM A900-EXCEPTION~HANDLING-ROUTINE.

REWRITE INDEXED~RECORD
INVALID KEY MOVE "Bad REWRITE" TO BAD-VERB-ID
PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

START INDEXED-FILE KEY IS EQUAL TO MASTER-KEY
INVALID KEY MOVE "Bad START" TO BAD-VERB-ID
PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

WRITE INDEXED-RECORD
INVALID KEY MOVE "Bad WRITE" TO BAD-VERB-ID
PERFORM AS900-EXCEPTION-HANDLING-ROUTINE.

A900-EXCEPTION-HANDLING-ROUTINE.
DISPLAY BAD-VERB-ID " - File Status Value = " INDEXED-FILE-STATUS.
PERFORM A905-GET-ANSWER UNTIL ANSWER = "Y" OR "N".
IF ANSWER = "N" STOP RUN.
A905-GET-ANSWER.
DISPLAY "Do you want to continue?"
DISPLAY "Please answer Y or N"
ACCEPT ANSWER.

Each file processing statement described in the Procedure Division section of the
VAX COBOL Reference Manual contains a specific list of File Status values in
its Technical Notes section. Additionally, all File Status values are listed in an
appendix of the Reference Manual.

12.3.2 RMS File Status Values

VAX COBOL checks for RMS completion codes after each file and record
operation. If the code indicates anything other than unconditional success,

VAX COBOL maps the RMS error code to a File Status value. However, not all
RMS completion codes map to distinct File Status values. Many RMS completion
codes map to a File Status value of 30, a COBOL code for errors that have no
corresponding File Status value.

VAX COBOL provides four special registers, RMS-STS, RMS-STYV,
RMS-CURRENT-STS, and RMS-CURRENT-STV. These registers supplement
the File Status values already available and allow the VAX COBOL
program to directly access RMS completion codes. RMS-CURRENT-STS and
RMS-CURRENT-STV contain the file status values from the most recent
file or record operation for any file. For more information, refer to the VMS
documentation on RMS completion codes.

Input/Output Exception Conditions Handling 12-5

12-6

You need not define these registers in your program. As special registers, they
are available whenever and wherever you need to use them in the Procedure
Division. However, if you define more than one file in the program and intend
to access RMS-STS and RMS-STV, you must qualify your references to them.
RMS-CURRENT-STS and RMS-CURRENT-STV contain the file status values
for the most recent file or record operation for any file. So when you access
RMS-CURRENT-STS and RMS-CURRENT-STV, you must not qualify your
reference to them.

Notice the use of the WITH CONVERSION phrase of the DISPLAY statement in
Example 12-5. This converts the PIC S9(9) COMP special registers from binary
to decimal digits for terminal display.

Example 12-5: Referencing RMS-STS, RMS-STV, RMS-CURRENT-STS, and
RMS-CURRENT-STV Values

DATA DIVISION.
FILE SECTION.

FD FILE-1.

01 RECORD-1 PIC X(50).
FD FILE-2.

01 RECORD-2 PIC X(50).
WORKING-STORAGE SECTION.

01 ANSWER PIC X.
PROCEDURE DIVISION.

A000-BEGIN.

WRITE RECORD-1 INVALID KEY PERFORM A901-REPORT-FILE1l-STATUS.

The following PERFORM statement displays the file status values
resulting from the above WRITE statement for FILE-1.

* % o X

PERFORM A903-REPORT-RMS-CURRENT-STATUS.

WRITE RECORD-2 INVALID KEY PERFORM A902-REPORT-FILE2-STATUS.

The following PERFORM statement displays the file status values
resulting from the above WRITE statement for FILE-2.

b S

PERFORM A903-REPORT-RMS-CURRENT-STATUS.

A901-REPORT-FILE1-STATUS.
ok ok ko ok ok ok ok o ok ok ok o ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok

*

DISPLAY "RMS-STS
DISPLAY "RMS-STV

" RMS-STS OF FILE-1 WITH CONVERSION.
" RMS-STV OF FILE-1 WITH CONVERSION.

I

*
dhkhkhkkkkhkhhhhhhhhhhhhhrrhhhhhhhhhrrdhhhrrkk

PERFORM A999-GET-ANSWER UNTIL ANSWER = "Y" OR "N".
IF ANSWER = "N" STOP RUN.

(continued on next page)

Input/Output Exception Conditions Handling

Example 12-5 (Cont.): Referencing RMS-STS, RMS-STV, RMS-CURRENT-STS,
and RMS-CURRENT-STV Values

A902~-REPORT-FILE2-STATUS.
R T T T P T T e P T e

*
DISPLAY "RMS-STS
DISPLAY "RMS-STV

" RMS-STS OF FILE-2 WITH CONVERSION.
" RMS-STV OF FILE-2 WITH CONVERSION.

*
B R R R R R AL
PERFORM A999-GET-ANSWER UNTIL ANSWER = "Y" OR "N".
IF ANSWER = "N" STOP RUN.
A903-REPORT~CURRENT-STATUS.
R T T e o R R L e
*
" RMS-CURRENT-STS WITH CONVERSION.
" RMS-CURRENT-STV WITH CONVERSION.

DISPLAY "RMS-~CURRENT-STS
DISPLAY "RMS-CURRENT-STV

o

B3
KRAKXKAKRKRAXRAKRA KA KR A AAA KR A I A XA AR A K AA kKA hdhAhdhhxk
PERFORM A999-GET-ANSWER UNTIL ANSWER = "Y" OR "N".
IFF ANSWER = "N" STOP RUN.
A999~-GET-ANSWER.
DISPLAY "Do you want to continue?"
DISPLAY "Please answer Y or N"
ACCEPT ANSWER.

12.4 Using Declarative Procedures to Handle Exception Conditions

A Declarative procedure executes whenever an I/O statement results in an
exception condition (a File Status value that does not begin with a zero (0)) and
the I/0 statement does not contain an AT END or INVALID KEY phrase. The AT
END and INVALID KEY phrases take precedence over a Declarative procedure,
but only for the I/O statement that includes the clause. Therefore you can have
specific I/O statement exception condition handling for a file and also include a
Declarative procedure for general exception handling,

A Declarative procedure is a set of one or more special-purpose sections at the
beginning of the Procedure Division. As shown in Example 12-6, the key word
DECLARATIVES precedes the first of these sectlons, and the key words END
DECLARATIVES follow the last.

Input/Output Exception Conditions Handling 12~7

12-8

Example 12-6: The Declarative Skeleton

PROCEDURE DIVISION.
DECLARATIVES.

END DECLARATIVES.

As shown in Example 12-7, a Declarative procedure consists of a section header,
followed, in order, by a USE statement and zero, one, or more paragraphs.

Example 12-7: A Declarative Procedure Skeleton

PROCEDURE DIVISION.
DECLARATIVES.
DO-00-FILE-A~PROBLEM SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON FILE-A.
D0-01-FILE-A-PROBLEM.

D0-02-FILE-A-PROBLEM.
D0-03-FILE-A-PROBLEM.

END DECLARATIVES.

VAX COBOL Declarative procedures, and the conditions in the USE statement
under which they execute, are as follows:

¢ File name—You can define a file name Declarative procedure for each file
name. This procedure overrides the next four procedures. It executes for any
unsuccessful exception condition.

e INPUT—You can define only one INPUT Declarative procedure for each
program. This procedure executes for any unsuccessful exception condition if:

(1) the file is open for input and (2) a file name Declarative does not exist for
that file.

¢ QUTPUT—You can define only one OUTPUT Declarative procedure for each

program. This procedure executes for any unsuccessful exception condition if:
(1) the file is open for output and (2) a file name Declarative does not exist

. for that file.
. I‘NPUT-'O’UTPUT-,—‘Yo'u can define only one INPUT-OUTPUT Declarative

. procedure for each program. This procedure executes for any unsuccessful
exception condition if: (1) the file is open for input/output and (2) a file name
Declarati_re does not exist for that file. -

8 EXTEND-—You can define only one EXTEND Declarative procedure for each

program. This procedure executes for any unsuccessful exception condition
if: (1) the file is open for extending and (2) a file name Declarative does not
exist for that file.

Input/Output Exception Conditions Handling

Note that the USE statement itself does not execute; it defines the condition
that causes the Declarative procedure to execute. For more information about
Declarative procedures, refer to the USE statement in the VAX COBOL Reference
Manual. :

Example 12-8 shows you how to include each of the conditions in your program
and contains explanatory comments for each.

Example 12-8: Five Types of Declarative Procedures

PROCEDURE DIVISION.
DECLARATIVES.
L R R L R R R T
D1-00~-FILE-A-PROBLEM SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON FILE-A.

If any I/0 statement for FILE-A results in an
error, D1-00-FILE-A-PROBLEM executes.

¥ % X % X X

D1-01-FILE-A-PROBLEM.
PERFORM D9-00-REPORT-FILE-STATUS.

AR K KA KA KA A AR AR R AR A AR AR KR AR A AR AA KR A AR AR A AR KR AR AR KA R AL AR AR AAAAA

D2-00-FILE-INPUT-PROBLEM SECTION.
USE AFTER STANDARD EXCEPTION PROCEDURE ON INPUT.

If an error occurs because of an I/0 statement
for any file open in the input mode except FILE-A,
D2-00-FILE-INPUT-PROBLEM executes.

O R

D2-01-FILE-INPUT-PROBLEM.
PERFORM D9-00-REPORT-FILE-STATUS.

.

.

FAKAKAKAA KKK AR KAAKRKAAKR AR AR KKK AR A R IR KA R hkhA Ak hhkhhkkk

D3-00-FILE-OUTPUT-PROBLEM SECTION.
USE AFTER STANDARD EXCEPTION PROCEDURE ON OUTPUT.

If an error occurs because of an I/0 statement
for any file open in the output mode except FILE-A,
D3-00-FILE-OUTPUT-PROBLEM executes.

* % % Ok % X F

D3—01—FILE—OUTPUT—PROBLEM.
PERFORM D9-00-REPORT-FILE-STATUS.

(continued on next page)

Input/Output Exception Conditions Handling 12-9

12-10

Example 12-8 (Cont.): Five Types of Declarative Procedures

R P P R T e
D4-00-FILE-I-O-PROBLEM SECTION.

£ % % kX 3k X b

USE AFTER STANDARD EXCEPTION PROCEDURE ON I-O.

If an error occurs because of an I/O statement
for any file open in the input-output mode except FILE-A,
D4-00-FILE-I-O-PROBLEM executes.

D4-01-FILE-I-O-PROBLEM.

PERFORM D9-00-REPORT-FILE-STATUS.

R e R R T)
D5-00-FILE-EXTEND-PROBLEM SECTION.

% % % Kk o % *

USE AFTER STANDARD EXCEPTION PROCEDURE ON EXTEND.

If an error occurs because of an I/0 statement
for any file open in the extend mode except FILE-A,
D5-00-FILE-EXTEND-PROBLEM executes.

D5-01-FILE-EXTEND-PROBLEM.

PERFORM D9-00-REPORT-FILE-STATUS.

.

kK kR KKKk kK Kk KR KR R R Kk kR R kR K Kk Rk ko ke ok ok Kok ok R ko ok ke ok Rk ok ok ok ok ok ok ok
D9-00-REPORT-FILE-STATUS SECTION.

END DECLARATIVES
ARKKAKRKAA KK ARRRKR KKK KA RRKRA KK AR ARRRA KA ARARR KA AR KRR AKR KK KKK

AQ00-BEGIN SECTION.

Input/Output Exception Conditions Handling

Chapter 13
Sharing Files and Protecting Records

This chapter discusses file sharing and record locking for sequential, relative, and
indexed files.

13.1 File-Sharing and Record-Locking Concepts

In a data manipulation environment where many users and programs access the
same data, file control must be applied to protect files from nonprivileged users,
to permit the desired degree of file sharing, and to preserve data integrity in the

files. For example, in Figure 13—-1 many users and programs want to access data
found in FILE-A.

Figure 13—1: Multiple Access to a File

Location 1 Location 2 Location 3

User 1 User 2 User 3

"\ /! v

PROG-A PROG-A PROG-B
Access Access Access
Stream 1 Stream 2 Stream 3

R

File sharing and record locking allow you to control file and record operations
when more than one access stream (the series of file and record operations being
performed by a single user) is concurrently accessing a file, as in Figure 13-1.

ZK-6323-GE

Sharing Files and Protecting Records 13-1

A VAX COBOL program can define one or more RMS access streams. You create
one access stream with each OPEN file-name statement. The access stream
remains active until you terminate the access stream with the CLOSE file-name
statement, or your program terminates.

File sharing allows multiple readers and writers to access a single file
concurrently. The protection level of the file, set by the file owner, determines
which users can share a file.

Record locking controls simultaneous record operations in files that are accessed
concurrently. Record locking ensures that when a program is writing, deleting, or
rewriting a record in a given access stream, another access stream is allowed to
access the same record in a specified manner.

Figure 13-2 illustrates the relationship of record locking to file sharing.

Figure 13-2: Relationship of Record Locking to File Sharing

FILE STARING
- I I

Automatic Manual
Record Locking Record Locking

ZK-6105-GE

File sharing is a function of the file system, while record locking is a function
of the VAX Record Management Services (RMS). The file system manages

file placement and the file-sharing process, in which multiple access streams
simultaneously access a file. RMS manages the record-sharing process and
provides access methods to records within a file. This includes managing the
record-locking process, in which multiple access streams simultaneously access a
record.

You must have successful file sharing before you can consider record locking.

In VAX COBOL, the file operations begin with an OPEN statement and end with
a CLOSE statement. The OPEN statement initializes an access stream. The
CLOSE statement terminates an access stream and can be either explicit (stated
in the program) or implicit (on program termination).

In VAX COBOL, you use the ALLOWING clause (in the OPEN statement and
certain record operation statements) to specify file sharing and record locking.
This clause describes what operations other access streams can perform on
specified files. You use the VAX COBOL open mode specification to provide the
specification for the intentions of your access stream.

NOTE

The first program to open a file determines how other programs can
access the file concurrently (if at all).

The record operations for VAX COBOL are as follows:
* READ
e START

13-2 Sharing Files and Protecting Records

¢ WRITE

¢ REWRITE
¢ DELETE
¢ UNLOCK

You must specify the APPLY clause in the I-O-CONTROL paragraph when you
use manual record locking. See Section 13.3.2 for more details on the use of this
clause.

13.2 Ensuring Successful File Sharing

Successful file sharing requires that you:
¢ Provide disk residency for the file.

* Use the VMS system file protection facility, as related to the user
identification code (UIC).

¢ Determine the intended access mode to the file (VAX COBOL open modes).

¢ Indicate the access allowed by other streams (VAX COBOL ALLOWING
clause).

The remainder of this section discusses these four requirements.

- 13.2.1 Providing Disk Residency

Only files that reside on a disk can be shared. In VAX COBOL you can share
sequential, relative, and indexed files.

13.2.2 Using VMS File Protection

By using the appropriate VMS file protection, the owner of a file determines how
other users can access the file. An owner can permit up to four types of file access
for each of four user categories. The level of file protection the file owner specifies
determines the types of open modes that a VAX COBOL program can specify
successfully. The four types of file access follow. Note that the following VMS file
protection access types are not a part of VAX COBOL syntax:

¢ READ—Permits the reading of the records in the file.
o WRITE—Permits updating or extending the records in the file.

¢ EXECUTE—Applies to on-disk volume protection and image execution and is
therefore not applicable to a VAX COBOL program.

¢ DELETE—Permits deletion of the file and is therefore not applicable to a
VAX COBOL program (since VAX COBOL has no delete file facility).

NOTE

Note that the EXECUTE and DELETE categories of the file protection
are used by VAX COBOL programmers but not by VAX COBOL
programs; however, a VAX COBOL program can perform these actions
using system service routines.

Sharing Files and Protecting Records 13-3

In the VMS file protection facility, four different categories of users exist with
respect to data structures and devices. A file owner determines which of the
following user categories can share the file:

* SYSTEM—Users of the system whose group numbers are in the range 0 to
the value of the MAXSYSGROUP parameter, or who have certain I/O-related
privileges

¢ OWNER—Users of the system whose UIC group and member numbers are
identical to the UIC of the file owner

* GROUP—Users of the system whose group number is identical to the group
number of the file owner

¢ WORLD-—AIl other users of the system who are not included in the previous
categories

The owner of the file has a default protection that the system applies to each
newly created file unless the owner specifically requests modified protection.

For more information on file protection, refer to the VMS documentation on DCL.

13.2.3 Determining the Intended Access Mode to a File

Once you establish disk residency and privileges for a file, you can consider the
third file-sharing criterion: how the stream intends to access the file. You specify
this intention by using the VAX COBOL open and access modes.

The VAX COBOL open modes are INPUT, OUTPUT, EXTEND, and I-O. The
VAX COBOL access modes are SEQUENTIAL, RANDOM, and DYNAMIC. The

combination of open and access modes determines the operations intended on the
file.

You must validate your VAX COBOL intention against the file protection assigned
by the file owner. For example, to use an OPEN INPUT clause requires that

the file owner has granted read access privileges to the file. To use an OPEN
OUTPUT or EXTEND clause requires write access privileges to the file. To use
an OPEN I-O clause requires both read and write access privileges.

An OPEN OUTPUT clause creates a new version of the file, which makes it
difficult to share the file.

The following chart shows the relationship between open and access modes and
intended VAX COBOL operations. The word ANY indicates that all three access
methods result in the same intentions.

Open Mode Access Mode Intended COBOL Operations

INPUT ANY READ, START

OUTPUT ANY WRITE

I-0 SEQUENTIAL READ, START, REWRITE, DELETE
RANDOM/DYNAMIC READ, START, REWRITE, DELETE, WRITE

EXTEND SEQUENTIAL WRITE

Note that if the file protection does not permit the intended operations, file access
is not granted, even if open and access modes are compatible.

13-4 Sharing Files and Protecting Records

File protection and open mode access apply to both the unshared and shared
(multiple access stream) file environments. A file protection and intent check is
made when the first access stream opens a file (in the unshared file environment),
and again when the second and subsequent access streams open the file (in the
shared file environment).

After these file-sharing checks pass, you can apply the fourth file-sharing
criterion, access allowed to other streams.

13.2.4 Indicating the Access Allowed to Other Streams

You use the VAX COBOL ALLOWING clause of the OPEN statement to specify
what other access streams are allowed to access that file. '

The OPEN ALLOWING options are as follows:

¢ OPEN ALLOWING NO OTHERS—Locks the file for exclusive access.
Attempts by other access streams to access the file cause a file lock exception.

¢ OPEN ALLOWING READERS—Locks the file against operations that
indicate intended write access (OPEN I-O and OPEN EXTEND). Other
streams can use the OPEN INPUT statement to access the file.

* OPEN ALLOWING WRITERS or UPDATERS or ALL—Allows read and write
access by other streams. Other access streams can open the file in INPUT,
EXTEND, and I-O modes.

VAX COBOL also permits a list of OPEN ALLOWING options, separated by
commas. The list results in the following equivalent ALLOWING specifications:

¢ ALLOWING WRITERS, UPDATERS becomes ALLOWING ALL
* ALLOWING READERS, UPDATERS becomes ALLOWING UPDATERS

The first access stream uses the ALLOWING clause to specify what other access
streams can do. When the second and subsequent access streams attempt to open
the file, the following checks occur:

1. The allowed options of this access stream are checked against the intended
access of the previous streams.

2. The intended access of this access stream is checked against the allowed
access of the previous streams.

For example, if the first access stream specifies the ALLOWING READERS
clause, then a subsequent access stream that opens the file ALLOWING NO
OTHERS would fail. Also, if the first access stream opens the file ALLOWING
READERS, the following access stream that opens the file ALLOWING ALL and
with I-O mode would fail, because the clause option and the I-O mode declare
write intent to the file.

13.2.5 Describing Types of Access Streams
You can establish several types of access streams. For example, two programs

opening the same file represent two access streams to that file. Both programs
begin with the file open, perform record operations, and then close the file.

Sharing Files and Protecting Records 13-5

In addition, a single program can establish multiple access streams to a file. In
this case, you use multiple SELECT clauses to choose the file, while the FDs
and all other clauses and statements treat the file independently. Example 13-1
shows two access streams to the same file.

Example 13-1: Two Access Streams to a Single File

IDENTIFICATION DIVISION.
PROGRAM-ID. ACCESSTRM.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-1
ORGANIZATION IS SEQUENTIAL
ASSIGN TO "SHAREDAT.DAT"

SELECT FILE-2
ORGANIZATION IS SEQUENTIAL
ASSIGN TO "SHAREDAT.DAT"

I-0-CONTROL.
APPLY LOCK-HOLDING ON FILE-1, FILE-2.
DATA DIVISION.
FILE SECTION.
FD FILE-1

FD FILE-2

PROCEDURE DIVISION.

01.
OPEN INPUT FILE-1 ALLOWING READERS.
OPEN INPUT FILE-2 ALLOWING READERS.
READ FILE-1 ALLOWING READERS.
READ FILE-2 ALLOWING NO OTHERS.

UNLOCK FILE-1 ALL RECORDS.
UNLOCK FILE-2 ALL RECORDS.
CLOSE FILE-1.

CLOSE FILE-2.

STOP RUN.

13.2.6 Summarizing Related File-Sharing Criteria

This section summarizes the relationships among three of the file-sharing criteria
(the first file-sharing requirement, disk residency, is not included).

The following chart shows the file protection and open mode requirements. For
example, the file protection privilege READ (R) permits OPEN INPUT.

13-6 Sharing Files and Protecting Records

File

Protection Open Mode

R INPUT

w OUTPUT, EXTEND

RW I-0, INPUT, OUTPUT, EXTEND

Remember, you specify intended operations through the first access stream. For
the second and subsequent shared access to a file, you use the access intentions
(open modes) and the ALLOWING clause to determine if and how a file is shared.

Figure 13-3 shows the valid and invalid OPEN ALLOWING combinations
between first and subsequent access streams.

Sharing Files and Protecting Records 13-7

Figure 13-3: File-Sharing Options

SUBSEQUENT STREAM
Ej0 |Eio|l El0] 1 |1)
AUW| R| N |Aauw|R|N| AUuWRN
EIO
aow| & | 3| 2] & [3]2 5
ElO 4 |34] 2| & |32 5
* R
F
| EJO
L ¢ 1 113 12] 1 l13]12 5
S I
T lauw| G |G| 2] & |efz 5
S I
] ' a4 | al 2| & |laf2 5
R
E |
A . 1 1120 1 112 5
M o
aow| © || 2| ¢ [3]2 5
g c lal 2| & [3]2 5
0
o 1 1112l 1 1|12 5

Legend:
* Assumes "no" file protection violations on first stream
G Second stream successfully opens and file sharing is granted

1 Second stream denied access to the file because the first stream requires exclusive
access (first specified NO OTHERS)

2 Second stream denied access to the file because the second stream requires
exclusive access (second specified NO OTHERS)

3 Second stream denied access to the file because first intends write while second
specifies read-only sharing

4 Second stream denied access to the file because second intends write while first
specifies read-only sharing

5 No sharing; second will create new file with OPEN QUTPUT
ZK-6059-GE

13-8 Sharing Files and Protecting Records

The abbreviations used in Figure 13-3 are as follows:
* OPEN ABBREVIATIONS

— E,JO—OPEN EXTEND, OPEN I-O

- I—OPEN INPUT

- O—OPEN OUTPUT
¢ ALLOWING ABBREVIATIONS

— AJUW—OPEN ALLOWING ALL or OPEN ALLOWING UPDATERS or
OPEN ALLOWING WRITERS

— R—OPEN ALLOWING READERS
— N—OPEN ALLOWING NO OTHERS

In the following example, three streams illustrate some of the file-sharing rules:

STREAM 1 OPEN INPUT ALLOWING ALL
STREAM 2 OPEN INPUT ALLOWING READERS
STREAM 3 OPEN I-O ALLOWING UPDATERS

In this example, stream 1 permits ALLOWING ALL; thus stream 2 can read the
file. However, the third stream violates the intent of the second stream, because
OPEN I-O implies a write intention that stream 2 disallows. Consequently, the
third access stream receives a file locked error.

13.2.7 Checking File Operations

You can check the success or failure of a file open operation by using the File
Status code or the RMS status variable (a VAX COBOL special register). This
VAX COBOL special register normally contains RMS-STS values, which you can
obtain by using the VALUE IS EXTERNAL clause.

In addition, if no RMS translation exists for the VAX COBOL specific error
condition, the RMS-STS special register may contain an error message value. See
the VAX COBOL Reference Manual for an explanation of the VAX COBOL error
message symbols. :

Table 13-1 illustrates the codes you frequently use in a file-sharing environment.

Table 13-1: File-Sharing Environment Codes

File

Status RMS-STS Register Meaning

00 RMS$_SUC Successful operation

91 RMS$_FLK File 1s locked

38 COB$_FILCLOLOC File is closed WITH LOCK
30 RMS$_PRV File protection violation

File Status 00, which corresponds to the RMS-STS symbol RMS$_SUC, results
from completion of a successful operation.

File Status 91, which corresponds to the RMS-STS symbol RMS$_FLK, indicates
that another accessor of the file has denied access. Other accessors are other

programs that have denied file access by opening the file for exclusive access
(OPEN ALLOWING NO OTHERS).

Sharing Files and Protecting Records 13-9

File Status 38, which corresponds to the symbol COB$_FILCLOLOC in the
RMS-STS special register, indicates that another file accessor has denied access
by executing a CLOSE WITH LOCK statement.

File Status 30, when it corresponds to the RMS-STS symbol RMS$_PRY, results
from a violation of the file protection codes described in Section 13.2.2. To correct
this condition, the file owner must reset the protection on the file or the directory
that contains the file.

Example 13-2 includes additional codes you may encounter.

Example 13-2: Program Segment for RMS-STS File-Sharing Exceptions

WORKING-STORAGE SECTION.

01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

RMS-SUC PIC S9(9) COMP VALUE IS EXTERNAL RMS$_SUC.
RMS—-OK-RLK PIC S9(9) COMP VALUE IS EXTERNAL RMS$_OK_RLK.
RMS-OK-RRL PIC S9(9) COMP VALUE IS EXTERNAL RMS$_OK_RRL.
RMS—RNL PIC S9(9) COMP VALUE IS EXTERNAL RMSS$_RNL.
RMS-DNR PIC S9(9) COMP VALUE IS EXTERNAL RMS$_ DNR.
RMS-EOF PIC S9(9) COMP VALUE IS EXTERNAL RMS$_EOF.
RMS-FLK PIC S9(9) COMP VALUE IS EXTERNAL RMSS$_FLK.
RMS—-FNF PIC S9(9) COMP VALUE IS EXTERNAL RMSS$_FNF.
RMS-PRV PIC S9(9) COMP VALUE IS EXTERNAL RMS$ PRV.
RMS-REX PIC S9(9) COMP VALUE IS EXTERNAL RMS$ REX.
RMS-RLK PIC S9(9) COMP VALUE IS EXTERNAL RMS$ RLK.
RMS~RNF PIC S9(9) COMP VALUE IS EXTERNAL RMSS$_RNF.
RMS-WLK PIC S9(9) COMP VALUE IS EXTERNAL RMS$_WLK.
RMS-DNF PIC S9(9) COMP VALUE IS EXTERNAL RMS$_DNF.
RMS~-DIR PIC S9(9) COMP VALUE IS EXTERNAL RMS$_DIR.
RMS-DUP PIC S9(9) COMP VALUE IS EXTERNAL RMS$ DUP.
RMS-FUL PIC S9(9) COMP VALUE IS EXTERNAL RMS$_FUL.
RMS~KEY PIC S9(9) COMP VALUE IS EXTERNAL RMS$_KEY.
RMS-KRF PIC S9(9) COMP VALUE IS EXTERNAL RMS$S_KRF.
RMS-KSZ PIC S9(9) COMP VALUE IS EXTERNAL RMS$ KSz.
RMS-RAC PIC S9(9) COMP VALUE IS EXTERNAL RMS$_RAC.
RMS-RSZ PIC S$9(9) COMP VALUE IS EXTERNAL RMS$_RSZ.
RMS-SNE PIC S9(9) COMP VALUE IS EXTERNAL RMS$_SNE.
RMS-SPE PIC S9(9) COMP VALUE IS EXTERNAL RMS$_ SPE.
RMS-ENQ PIC S9(9) COMP VALUE IS EXTERNAL RMS$_ ENQ.

PROCEDURE DIVISION.

DECLARATIVES.

FILE-1-ERR SECTION.

USE AFTER STANDARD EXCEPTICON-PROCEDURE ON FILE-1.

FILE-1-USE.

EVALUATE RMS-STS OF FILE-1

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN

RMS-SUC DISPLAY "successful operation”
RMS—-OK-RLK DISPLAY "record locked but read anyway"
RMS~OK~RRL DISPLAY "record locked against read but read anyway"

RMS~-RNL DISPLAY "record not locked"

RMS-DNR DISPLAY "device not ready or not mounted"

RMS-EOF DISPLAY "end of file detected"

RMS-FLK DISPLAY "file currently locked by another user"
RMS~-FNF DISPLAY "file not found"

RMS-PRV DISPLAY "file protection violation™

RMS~REX DISPLAY "record already exists"

RMS-RLK DISPLAY "record currently locked by another stream"”

(continued on next page)

13-10 Sharing Files and Protecting Records

Example 13-2 (Cont.):

Program Segment for RMS-STS File-Sharing Exceptions

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN

RMS-RNF
RMS~WLK
RMS~DNF
RMS-DIR
RMS-DUP
RMS—-FUL
RMS-KEY
RMS-KRF
RMS-KSZ
RMS-RAC
RMS-RSZ
RMS-SNE
RMS-SPE
RMS-ENQ

DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY

OTHER STOP RUN
END-EVALUATE.
END DECLARATIVES.

"record not found"

"device currently write locked"
"directory not found"

"error in directory name™

"duplicate key detected (DUP not set)"
"device full (insufficient space)"
"invalid record number key or key value"
"invalid key-of-reference for $GET/$FIND"
"invalid key size for GET/SFIND"
"invalid record access mode"

"invalid record size"

"file sharing not enabled"

"file-sharing page count exceeded"
"system service request failed"

13.2.8 Specifying the OPEN EXTEND in a File-Sharing Environment

If you specify an OPEN EXTEND in a file-sharing environment, be aware that
the EXTEND results differ depending upon what file organization you use.

13.2.8.1 OPEN EXTEND with a Shared Sequential File

In a shared sequential file environment, when two concurrent access streams use
EXTEND ALLOWING UPDATERS, ALLOWING ALL, or ALLOWING WRITERS,
and both streams issue a write to the end of the file (EOF), the additional data
will come from both streams, and the data will be inserted into the file in the
order it was written to the file.

13.2.8.2 OPEN EXTEND with a Shared Relative File

You must use the sequential file access mode when you open a relative file in
extend mode. Sequential file access mode for a relative file indicates that the
record order is by ascending relative record number.

In sequential access mode for a relative file, the RELATIVE KEY clause of the

WRITE statement is not used on record insertion; instead, the RELATIVE KEY
clause acts as a receiving field. Consequently, after the completion of a write by
the first access stream, the relative key field is set to the actual relative record

number.

Figure 13-4 illustrates why this condition occurs.

Sharing Files and Protecting Records 13-11

Figure 13-4: Why a Record-Already-Exists Error Occurs

FILE A
Record 1

Record 2

Record 3

Record 4

Access Stream 1| ——— |— End-of-File — ««———— Access Siream 2

Record 5/6

ZK-6060-GE

As the file operations begin, both access streams point to the end of file by setting
record 4 as the highest relative record number in the file. When access stream 1
writes to the file, record 5 is created as the next ascending relative record number
and 5 is returned as the RELATIVE KEY number.

When access stream 2 writes to the file, it also tries to write the fifth record.
Record 5 already exists (inserted by the first stream), and the second access
stream gets a record-exists error. Thus, in a file-sharing environment, the second
access stream always receives a record-exists error.

13.2.8.3 OPEN EXTEND with a Shared Indexed File

You must use the sequential file access mode when you open an indexed file in
extend mode. Sequential access mode requires that the first additional record
insertion have a prime record key whose value is greater than the highest prime
record key value in the file.

In a file-sharing environment, you should be aware of and prepared for duplicate
key errors (by using INVALID KEY and USE procedures), especially on the first
write to the file by the second access stream.

Subsequent writes should also allow for duplicate key errors, although subsequent
writes are not constrained to use keys whose values are greater than the highest
key value that existed at file open time. If you avoid duplicate key errors, you
successfully insert all access stream records.

13.3 Using Record Locking

Once you meet all file-sharing criteria and you access a file, you can consider two
record-locking modes that control access to records in a file:

* Automatic record locking

¢ Manual record locking
Automatic record locking is the default. In automatic record locking, if you do
not specify an ALLOWING clause on the OPEN statement, the default for files

opened for INPUT is ALLOWING READERS, and the default for files opened for
I-O, OUTPUT, or EXTEND mode is ALLOWING NO OTHERS.

13-12 Sharing Files and Protecting Records

You specify manual record locking by using the APPLY LOCK-HOLDING clause
(in the I-O-CONTROL paragraph), the OPEN ALLOWING statement, and the
ALLOWING clauses on the VAX COBOL record operations (except DELETE).

Both automatic record locking and manual record locking use the same form of
the OPEN ALLOWING clause.

When you close a file, any existing record lock is released automatically. The
UNLOCK RECORD statement releases the lock only on the current record, which
is the last record you successfully accessed.

13.3.1 Specifying Automatic Record Locking

Automatic record locking applies the lock when you access the record and releases
the lock when you de-access the record. In automatic record locking the access
stream can have only one record locked at a time and can apply only one type of
lock to the records of the file.

You de-access a record by using the next READ operation, a REWRITE or

a DELETE operation on the record, or by closing the file. In addition, you
can release locks applied by automatic record locking by using the UNLOCK
statement.

In automatic record-locking mode, you can release the current record lock by
using either an UNLOCK RECORD statement or an UNLOCK ALL RECORDS
statement. However, because in automatic record locking you can only lock one
record at a time, the UNLOCK ALL RECORDS statement unnecessarily checks
all records for additional locks.

The sample program in Example 13-3 uses automatic record locking. The
program opens the file with I-O ALLOWING READERS. Another access stream
in another program opens the file with INPUT ALLOWING ALL.

If the first access stream is updating records in random order, a record lock can
occur to the second stream from the READ until the REWRITE statement of the
first stream. Record locks can also occur to the first stream when the second
stream reads a record and the first stream tries to read the same record.

Example 13-3: Automatic Record Locking

IDENTIFICATION DIVISION.
PROGRAM-ID. AUTOLOCK.
ENVIRONMENT DIVISION.
INPUT~-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-1
ORGANIZATION IS RELATIVE
ASSIGN TO "SHAREDAT.DAT"

I-O-CONTROL.

(continued on next page)

Sharing Files and Protecting Records 13-13

Example 13-3 (Cont.): Automatic Record Locking

DATA DIVISION.
FILE SECTION.
FD FILE-1
RECORD CONTAINS 100 CHARACTERS

PROCEDURE DIVISION.
OPEN I-O FILE-1 ALLOWING READERS.
READ FILE-1-REC.

REWRITE FILE-1.
CLOSE FILE-1.
STOP RUN.

13.3.2 Specifying Manual Record Locking

Manual record locking allows greater control of locking options by permitting
users to lock multiple records in a file and by permitting different types of locking
to apply to different records.

Manual record locking applies the specified lock when you access the record and
releases the lock when you unlock the record.

When you specify manual record locking you must use the following clauses: (1)
an APPLY LOCK-HOLDING clause in the I-O CONTROL paragraph, (2) an
OPEN ALLOWING clause at file open time, and (8) an ALLOWING clause on
each VAX COBOL record operation (except DELETE).

The possible ALLOWING clauses for the VAX COBOL record operations are as
follows:

e ALLOWING NO OTHERS—Locks records for exclusive access. Others cannot
perform READ, WRITE, DELETE, or UPDATE statements. This clause
constitutes a lock for write and does not allow readers.

However, if the file’s OPEN mode is INPUT, using this clause on the record
operation does not lock the record for exclusive access. The most restrictive
record locking you can achieve on a file whose OPEN mode is INPUT is to
exclude writers and allow readers. If a file’s OPEN mode is INPUT, specifying
ALLOWING NO OTHERS is equivalent to specifying ALLOWING READERS.

¢ ALLOWING READERS—Locks records against WRITE, REWRITE, and
DELETE access by all streams including the stream that issues the
statement. Others can perform READ statements. This clause constitutes an
RMS lock for read, which allows others to read the record, but not to write it.

* ALLOWING UPDATERS—Does not apply any locks to the records. Others
can perform READ, REWRITE, and DELETE statements. This clause
constitutes a no record lock condition.

Figure 13-5 shows the valid and invalid ALLOWING combinations for manual
record locking. The columns represent lock held, and the rows represent lock
requested.

13-14 Sharing Files and Protecting Records

Figure 13-5: Valid and Invalid Combinations for Manual Record Locking

"lock held"
ALLOWING UPDATERS READERS NO OTHERS
UPDATERS legal legal illegal
r;‘il'; steg”| FEADERS legal legal illegal
NO OTHERS ilegal ilegal illegal
ZK-6061-GE

Example 13-4 uses manual record locking. The file is opened with the
ALLOWING READERS clause. The records are read but do not become available
to other access streams because of the lock applied by the READ statement
(READ..ALLOWING NO OTHERS). When the UNLOCK is executed, the records
can be read by another access stream if that stream opens the file allowing

writers.

Example 13—4: Sample Program Using Manual Record Locking

IDENTIFICATION DIVISION.
PROGRAM-ID. MANLOCK.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-1
ORGANIZATION IS RELATIVE
ASSIGN "SHAREDAT.DAT"

I-O-CONTROL.
APPLY LOCK-HOLDING ON FILE-1.
DATA DIVISION.
FILE SECTION.
FD FILE-1
RECORD CONTAINS 100 CHARACTERS

(continued on next page)

Sharing Files and Protecting Records 13-15

Example 13-4 (Cont.): Sample Program Using Manual Record Locking

PROCEDURE DIVISION.
01.
OPEN I-O FILE-1 ALLOWING READERS.

READ FILE-1 ALLOWING NO OTHERS.
REWRITE FILE-1-REC ALLOWING NO OTHERS.

UNLOCK FILE-1 ALL RECORDS.
CLOSE FILE-1.
STOP RUN.

In manual record locking, you release record locks by the UNLOCK statement or
when you close the file (either explicitly or implicitly). The UNLOCK statement
provides for either releasing the lock on the current record (UNLOCK RECORD)
or releasing all locks currently held by the access stream on the file (UNLOCK
ALL RECORDS).

When you access a shared file with ACCESS MODE IS SEQUENTIAL and use
manual record locking, the UNLOCK statement can cause you to violate either of
the following statements: (1) the REWRITE statement rule that states that the
last input-output statement executed before the REWRITE must be a READ or
START statement, or (2) the DELETE statement rule that states that the last
input/output statement executed before the DELETE statement must be a READ.
You must lock the record before it can be rewritten or deleted.

13.3.3 Locking Error Conditions

Two record-locking conditions (hard and soft record lock) indicate if a record was
transferred to the record buffer. VAX COBOL provides the success, failure, or
informational status of an I/O operation in the File Status variable.

A hard record lock causes the File Status variable to be set to 92, whereas a soft
record lock causes the File Status variable to be set to 90.

13.3.3.1 Hard Record Locks

A hard record lock condition indicates that the record operation failed and the
record was not transferred to the buffer. A hard record lock results from a
situation such as the following, which uses manual record-locking mode:

Program A opens the file I-Q ALLOWING ALL.
Program A reads a record ALLOWING NO OTHERS.
Program B opens the file I-O ALLOWING ALL.
Program B tries to access the same record as A.

Program B receives a hard record lock condition.

I

The record is NOT accessible to Program B.

13-16 Sharing Files and Protecting Records

7. Program B’s File Status variable is set to 92.
8. Program B’s USE procedure is invoked.

9. Program A continues.

The record was not available to program B.

13.3.3.2 Soft Record Locks

A soft record lock condition indicates that the record is locked, but access to the
record is still allowed. A soft record lock occurs when the stream accessing the
record has allowed read access by other streams that have opened the file in input
mode, or when a READ REGARDLESS or START REGARDLESS statement (see
Section 13.3.5) is employed to override a record lock. A soft record lock results
from a situation such as the following, which uses automatic record-locking mode:

1. Program A opens the file -O ALLOWING READERS.
Program A reads a récord.
Program B opens the file INPUT ALLOWING ALL.

Program B reads the same record.

AR

Program B receives a soft record lock condition. The record is accessible to
Program B.

6. Program B’s File Status variable is set to 90.
7. Program B’s USE procedure is invoked.

8. Programs A and B continue.

The record was available to Program B.

13.3.4 Releasing Locks on Deleted Records

In automatic record locking, the DELETE operation releases the lock on the
record. In manual record-locking mode, you can delete a record using the
DELETE statement but still retain a record lock. You must use the UNLOCK
ALL RECORDS statement to release the lock on a deleted record.

If a second stream attempts to access a deleted record that retains a lock, the
second stream will receive either a record not found exception or a hard lock
condition.

If another stream attempts to REWRITE to a deleted record that retains a lock,
the type of exception that access stream receives depends on its file organization.
If the file organization is RELATIVE, the access stream receives the record locked
status. If the file organization is INDEXED, the access stream succeeds (receives
the success status).

In relative files, the lock is on the relative cell (record) and cannot be rewritten
until the lock is released. On indexed files, the lock is on the records file address
(RFA) of the deleted record, so a new record (with a new RFA) can be written to
the file.

Sharing Files and Protecting Records 13-17

13.3.5 Bypassing a Record Lock

When you use manual record locking, you can apply a READ REGARDLESS or
START REGARDLESS statement to bypass any record lock that exists. READ
REGARDLESS reads the record and applies no locks to the record. START
REGARDLESS positions to the record and applies no locks to the record. If the
record is currently locked by another access stream, a soft record lock condition
can be detected by a USE procedure.

You use READ REGARDLESS or START REGARDLESS when: (1) a record is
locked against readers because the record is about to be written, but (2) your

access program needs the existing record regardless of the possible change in its
data.

NOTE

You should recognize that READ REGARDLESS and START
REGARDLESS are very powerful tools and should be used only in
extreme circumstances. You prevent the use of READ REGARDLESS
or START REGARDLESS at the file protection level, where you prevent
readers from referencing the file.

13-18 Sharing Files and Protecting Records

Chapter 14
Using the COBOL SORT and MERGE Statements

This chapter presents and explains examples of the SORT and MERGE
statements.

The SORT statement provides a wide range of sorting capabilities and options.
To establish a SORT routine, you do the following (1) declare the sort file with a
SELECT statement in the Environment Division; (2) use a Sort Description (SD)
entry in the Data Division to define the sort file’s characteristics; and (3) use a
SORT statement in the Procedure Division.

The following program segments demonstrate SORT program coding:

SELECT Statement
SELECT SORT-FILE ASSIGN TO "SRTFIL"

An SD File Description Entry

SD SORT-FILE.

01 SORT-RECORD.
05 SORT-KEY1 PIC X (5).
05 SOME-DATA PIC X (25).
05 SORT-KEY2 PIC XX.

Note that you can place the sort file anywhere in the FILE SECTION, but you
must use a Sort Description (SD) level indicator, not a File Description (FD) level
indicator.

SORT Statement (in the Procedure Division)

SORT SORT-FILE
ASCENDING KEY S-—-NAME
USING NAME-FILE
GIVING NEW-FILE.

This SORT statement names a sort file, a key, an input file, and an output file.
An explanation of keys follows.

14.1 ASCENDING and DESCENDING KEY Phrases

Use the ASCENDING and DESCENDING KEY phrases to specify your sort
parameters. The order of data names determines the sort hierarchy; that is, the
major sort key is the first data name entered, while the minor sort key is the last
data name entered.

In this example, the hierarchy of the sort is SORT-KEY-1, SORT-KEY-2,
SORT-KEY-3.

Using the COBOL SORT and MERGE Statements 14-1

SORT SORT-FILE
ASCENDING KEY SORT-KEY-1 SORT-KEY-2
DESCENDING KEY SORT-KEY-3

14.1.1 Sorting Concepts

Records are sorted based on the data values in the sort keys. The following
example depicts unsorted employee name and address records used for creating

mailing labels:

Smith, Joe 234 Ash St. New Boston NH 04356
Jones, Bill 12 Birch St. Gardner MA 01430
Baker, Tom 78 Oak St. Ayer MA 01510
Thomas, Pete 555 Maple St. Maynard MA 01234
Morris, Dick 21 Harris St. Acton ME 05670

If you sort the addresses in the previous example using the zip code as the
ascending sort key, the mailing labels are printed in the order shown in the
following example:

SORT KEY
Thomas, Pete 555 Maple St. Maynard MA 01234
Jones, Bill 12 Birch St. Gardner MA 01430
Baker, Tom 78 Oak St. Ayer MA 01510
Smith, Joe 234 Ash St. New Boston NH 04356
Morris, Dick 21 Harris St. Acton ME 05670

Also, records can be sorted on more that one key at a time. If you need an
alphabetical listing of all employees within each state, you can sort on the state
code first (major sort key) and employee name second (minor sort key).

For example, if you sort the file in ascending order by state (major key) and last
name (minor key), your name and address appear in the order shown in the
following example:

SORT KEY SORT KEY

(minor) (major)

Baker, Tom 78 Oak St. Ayer MA 01510
Jones, Bill 12 Birch St. Gardner MA 01430
Thomas, Pete 555 Maple St. Maynard MA 01234
Morris, Dick 21 Harris St. Acton ME 05670
Smith, Joe 234 Ash St. New Boston NH 04356

14.2 USING and GIVING Phrases

If you only need to resequence a file, use the USING and GIVING phrases of
the SORT statement. The USING phrase opens the input file, then reads and
releases its records to the sort. The GIVING phrase opens and writes sorted
records to the output file.

Note that you cannot manipulate data with either the USING or the GIVING
phrases.

14-2 Using the COBOL SORT and MERGE Statements

Consider this SORT statement:

SORT SORT-FILE ON ASCENDING KEY SORT-KEY-1
USING INPUT-FILE GIVING OUTPUT-FILE.

It does the following:

1. Opens INPUT-FILE

Reads all records in INPUT-FILE and releases them to the sort

Sorts the records in ascending sequence using the data in SORT-KEY-1
Opens the output file and writes the sorted records to OUTPUT-FILE
Closes all files used in the SORT statement

AN o

14.3 INPUT PROCEDURE and OUTPUT PROCEDURE Phrases

You can manipulate data before and after sorting by using the INPUT
PROCEDURE and OUTPUT PROCEDURE phrases, and sort only some of

the information in a file. For example, these phrases allow you to use only those
input records and/or input data fields you need.

The INPUT PROCEDURE phrase replaces the USING phrase when you want

to manipulate data entering the sort. The SORT statement transfers control to
the sections or paragraphs named in the INPUT PROCEDURE phrase. You then
use COBOL statements to open and read files, and manipulate the data. You use
the RELEASE statement to transfer records to the sort. After the last statement
of the input procedure executes, control is given to the sort, and the records are
subsequently sorted.

After the records are sorted, the SORT statement transfers control to the sections
or paragraphs named in the OUTPUT PROCEDURE phrase. This phrase
replaces the GIVING phrase when you want to manipulate data in the sort.

You can use COBOL statements to open files and manipulate data. You use the
RETURN statement to transfer records from the sort. For example, you can use
the RETURN statement to print a report from sorted records.

Example 14-1 shows a sort using the INPUT and OUTPUT procedures.

Example 14-1: INPUT and OUTPUT PROCEDURE Phrases

PROCEDURE DIVISION.
000-SORT SECTION.
010-DO~THE~-SORT.
SORT SORT-FILE ON ASCENDING KEY SORT-KEY-1
ON DESCENDING KEY SORT-KEY-2
INPUT PROCEDURE IS O050-RETRIEVE-INPUT
THRU 100-DONE-INPUT
OUTPUT PROCEDURE IS 200-WRITE-OUTPUT
THRU 230-DONE-QUTPUT.
DISPLAY "END OF SORT".
STOP RUN.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-3

Example 14—1 (Cont.): INPUT and OUTPUT PROCEDURE Phrases

050-RETRIEVE-INPUT SECTION.
060—-OPEN-INPUT.
OPEN INPUT IN-FILE.
070-READ-INPUT.
READ IN-FILE AT END
CLOSE IN-FILE
GO TO 100-DONE-INPUT.
MOVE INPUT-RECORD TO SORT-RECORD.
EER S S ST LSS ST S EEEE S LRSS S SRS EEEESEEE SR EEREEEEEEEEEE S S EE]
*You can add, change, or delete records before sorting *
*using COBOL data manipulation techniques. *
LRSS SRS E S S S SRS E RS ETEEEE LS SRS ESESEEEEEEESE S SRR SRS
RELEASE SORT-RECORD.
GO TO 070-READ-INPUT.
100-DONE-INPUT SECTION.
110-EXIT-INPUT.
EXIT.
200-WRITE-OUTPUT SECTION.
210-OPEN-OUTPUT.
OPEN OUTPUT OUT-FILE.
220-GET-SORTED-RECORDS.
RETURN SORT-FILE AT END
CLOSE OUT-FILE
GO TO 230-DONE-OUTPUT.
MOVE SORT-RECORD TO OUTPUT-RECORD.
AR AR R A AR AR AR AR A A AR AR A AR AR KRR AR AR AAKRARAXNAKR AR AR AR AR AR

*You can add, change, or delete sorted records *
*using COBOL data manipulation technigques. *
A A KA AR KA AR KA A KR A R KA AR AR A AR AN A N AR AR R AR AR AR AR IR A Aok hk
WRITE OUTPUT-RECORD.
GO TO 220-GET-SORTED-RECORDS.
230-DONE-QUTPUT SECTION.
240-EXIT-QUTPUT.
EXIT.

You can combine the INPUT PROCEDURE with the GIVING phrases, or the
USING with the OUTPUT PROCEDURE phrases. In Example 14-2, the USING
phrase replaces the INPUT PROCEDURE phrase used in Example 14-1.

14-4 Using the COBOL SORT and MERGE Statements

Example 14-2: USING Phrase Replaces INPUT PROCEDURE Phrase

PROCEDURE DIVISION.
000-SORT SECTION.
010-DO-THE-SORT.
SORT SORT-FILE ON ASCENDING KEY SORT-KEY-1
ON DESCENDING KEY SORT-KEY-2
USING IN-FILE
OUTPUT PROCEDURE IS 200-WRITE-OUTPUT
THRU 230-DONE-OUTPUT.
DISPLAY "END OF SORT".
STOP RUN.
200-WRITE-QUTPUT SECTION.
210-OPEN—-OUTPUT.
OPEN OUTPUT OUT-FILE.
220-GET-SORTED-RECORDS.
RETURN SORT-FILE AT END
CLOSE OUT-FILE
GO TO 230-DONE-QUTPUT.
MOVE SORTED-RECORD TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.
GO TO 220-GET-SORTED-RECORDS.
230-DONE-OUTPUT SECTION.
240-EXIT-OUTPUT.
EXIT.

NOTE

You cannot access records released to the sort-file after the SORT
statement ends.

14.4 WITH DUPLICATES IN ORDER Phrase

The sort orders data in the sequence specified in the ASCENDING KEY and
DESCENDING KEY phrases. However, records with duplicate sort keys may not
be written to the output file in the same sequence as they were read into it. The
WITH DUPLICATES IN ORDER phrase ensures that any records with duplicate
sort keys are in the same order in the output file as in the input file.

The following list shows the difference between sorting with the WITH
DUPLICATES IN ORDER phrase and sorting without it:

Sorted Without Sorted with

Input file Duplicates in Order Duplicates in Order
Record Record Record

Name Data Name Data Name Data
JONES ABCD DAVIS LMNO DAVIS LMNO
DAVIS LMNO JONES EFGH JONES ABCD
WHITE STUV JONES ABCD JONES EFGH
JONES EFGH SMITH 1234 SMITH 1234
SMITH 1234 WHITE STUV WHITE STUV
WHITE WXYZ WHITE WXYZ WHITE WXYZ

If you omit the WITH DUPLICATES IN ORDER phrase, you cannot predict the
order of records with duplicate sort keys. The JONES records are not in the same
sequence as they were in the input file, but the WHITE records are.

Using the COBOL SORT and MERGE Statements 14-5

In contrast, the WITH DUPLICATES IN ORDER phrase guarantees that records
with duplicate sort keys remain in the same sequence as they were in the input
file.

14.5 COLLATING SEQUENCE IS Alphabet-Name Phrase

This phrase lets you specify a collating sequence other than the ASCII default.
You must define collating sequences in the SPECIAL-NAMES paragraph of the
Environment Division. A sequence specified in the COLLATING SEQUENCE IS
phrase of the SORT statement overrides a sequence specified in the PROGRAM
COLLATING SEQUENCE IS phrase of the OBJECT-COMPUTER paragraph.

Example 14-3 shows the alphabet name NEWSEQUENCE overriding the
EBCDIC-CODE collating sequence.

Example 14-3: Overriding the COLLATING SEQUENCE IS Phrase

ENVIRONMENT DIVISION.
OBJECT-COMPUTER. VAX
PROGRAM COLLATING SEQUENCE IS EBCDIC-CODE.
SPECIAL-NAMES.
ALPHABET NEWSEQUENCE IS "ZYXWVUTSRQPONMLKJIHGEEDCBA"
ALPHABET EBCDIC-CODE IS EBCDIC.
PROCEDURE DIVISION.
000-DO-THE-SORT.
SORT SCRT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2
COLLATING SEQUENCE IS NEWSEQUENCE
USING INPUT-FILE GIVING OUTPUT-FILE.

14.6 File Organization

You can sort any file regardless of its organization; furthermore, the organization
of the output file can differ from that of the input file. For example, a sort can
have a sequential input file and a relative output file. In this case, the relative
key for the first record returned from the sort is 1; the second record’s relative
key is 2; and so forth. However, if an indexed file is described as output in the
GIVING or OUTPUT PROCEDURE phrases, the first sort key associated with
the ASCENDING phrase must specify the same character positions specified by
the RECORD KEY phrase for that file.

14.7 Multiple Sorts

A program can contain more than one sort file, more than one SORT statement,
or both sort files and SORT statements. Example 14—4 uses two sort files to
produce two reports with different sort sequences.

14-6 Using the COBOL SORT and MERGE Statements

Example 14-4: Using Two Sort Files

DATA DIVISION.
FILE SECTION.

SD SORT-FILEl.
01 SORT-REC-1.

03
03
03
03

S1-KEY-1
FILLER
S1-KEY-2
FILLER

SD SORT-FILE2.
01 SORT-REC-2.
01 SORT-REC-2.

03
03
03
03
03

PROCEDURE DIVISION.
000-SORT SECTION.
010-DO-FIRST-SORT.

FILLER
S2-KEY-1
FILLER
S2-KEY-2
FILLER

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC

X(5).
X (40).
X(5).
X(50) .

X(20) .
X(10) .
X(10).
X (10) .
X (50).

SORT SORT-FILEl ON ASCENDING KEY
S1-KEY-1

S1-KEY-2 .

WITH DUPLICATES IN ORDER

USING

INPUT-FILE

OUTPUT PROCEDURE IS 050-CREATE-REPORT-1

020~-DO-SECOND-REPORT.
SORT SORT-FILE2 ON ASCENDING KEY

S2-KEY-1

ON DESCENDING KEY

S2-KEY-2

030-END-JOB.

DISPLAY

STOP RUN.

050-CREATE-REPORT-1 SECTION.
B R R R R R R R R R R 2 T T

* Use the RETURN statement to read the sorted recoxds.

KAKKRKKAK KA KRR AKRR AR KRA A AR AAKR AR KRAAR AR K AR KRR A kAR Rk Ak Ak kA kkkk

USING

THRU 300-DONE-REPORT-1.

INPUT-FILE

OUTPUT PROCEDURE IS 400-CREATE-REPORT-2

THRU 700-DONE-REPORT-2.

"PROGRAM ENDED".

*
*
*
*
*
*

300-DONE-REPORT-1 SECTION.

310-EXIT-REPORT-1.

EXIT.
400-CREATE-REPORT-2 SECTION.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-7

Example 144 (Cont.): Using Two Sort Files

Ahkhkkhkhhkhkhkkhhhkhhhkhkhkhhhkhhhkhkhhkhhkhhhhhhkhhhkhhhhkkhkhkhdhkxhkhkhrhhkkhxk

Use the RETURN statement to read the sorted records.

% % % % *
* % % ¥ *

ARARKKAAKKRIKRARARK AR KR ARK AR AR IR A A AR KRR AR A RA AR AR AR KRR KKK KKK
700-DONE-REPORT-2 SECTION.
710-EXIT-REPORT.

EXIT.

14.8 Sorting Variable-Length Records

If you specify the USING phrase and the input file contains variable-length
records, the sort-file record must not be smaller than the smallest record, nor
larger than the largest record, described in the input file.

If you specify the GIVING phrase and the output file contains variable-length
records, the sort-file record must not be smaller than the smallest record, nor
larger than the largest record, described in the output file.

14.9 Preventing I/O Aborts

All 1/O errors detected during a sort can cause abnormal program termination.
The USE AFTER STANDARD ERROR PROCEDURE declarative, shown in
Example 14-5, specifies error-handling procedures should I/O errors occur.

Example 14-5: Using the AFTER STANDARD ERROR PROCEDURE

PROCEDURE DIVISION.
DECLARATIVES.
SORT-FILE SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON INPUT-FILE.
SORT-ERROR.
DISPLAY "I-O TYPE ERROR WHILE SORTING".
DISPLAY "INPUT-FILE STATUS IS " INPUT-STATUS.
STOP RUN.
END DECLARATIVES.
000-SORT SECTION.
010-DO-THE-SORT.
SORT SORT-FILE ON DESCENDING KEY
S~-KEY~1
WITH DUPLICATES IN ORDER
USING INPUT-FILE
GIVING OUTPUT-FILE.
DISPLAY "END OF SORT".
STOP RUN.

14-8 Using the COBOL SORT and MERGE Statements

NOTE

The USE PROCEDURE phrase does not apply to Sort Description (SD)
files.

14.10 The MERGE Statement

The MERGE statement combines two or more identically sequenced files and
makes their records available, in merged order, to an output procedure or to one
or more output files. Use MERGE statement phrases the same way you use their
SORT statement phrase equivalents.

In Example 14-6, district sales data is merged into one regional sales file.

Example 14-6: Using the MERGE Statement

DATA DIVISION.
FILE SECTION.

SD MERGE-FILE.
01 MERGE-REC.

03 FILLER PIC XX.
03 M-PRODUCT-CODE PIC X(10).
03 FILLER PIC X(88).
FD DISTRICT1-SALES.
01 DISTRICT1-REC PIC X(100).
FD DISTRICTZ2-SALES.
01 DISTRICT2-REC PIC X(100).
FD REGION1-SALES
01 REGION1-REC PIC X (100).

PROCEDURE DIVISION.
000-MERGE-FILES.
MERGE MERGE-FILE ON ASCENDING KEY M~PRODUCT-CODE
USING DISTRICT1-SALES DISTRICT2-SALES
GIVING REGION1-SALES.
STOP RUN.

14.11 Sample Programs Using the SORT and MERGE Statements

The programs in Example 14-7, Example 14-8, Example 14-9, Example 14-10,
Example 14~11, and Example 14-12 all show how to use the SORT and MERGE
statements.

Example 14-7 shows how to use the SORT statement with the USING and
GIVING phrases.

Using the COBOL SORT and MERGE Statements 14-9

Example 14-7: Sorting a File with the USING and GIVING Phrases

IDENTIFICATION DIVISION.
PROGRAM-ID. SORTA.
AK A AR KA A AR AR AARKA AN AAAKRAKNAAAKNKAARKNAA A AR AR A AR AN AR A A KK
* This program shows how to sort *
a file with the USING and GIVING phrases b
of the SORT statement. The fields to be *
sorted are S-KEY-1 and S-KEY-2; they *
contain account numbers and amounts. The *
sort sequence is amount within account *
number. *
Notice that OUTPUT-FILE is a relative file. *
KA AKRAKRA KA AA KA KR AR KA A A AR AR A ARARA A AR A A AR A AR AR XAk hkkk
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "INPFIL".

SELECT OUTPUT-FILE ASSIGN TO "OUTFIL"

ORGANIZATION IS RELATIVE.

SELECT SORT-FILE ASSIGN TO "SRTFIL".
DATA DIVISION.
FILE SECTION.
SD SORT-FILE.
01 SORT-REC.

03 S-KEY-1.

* % % % % % X

05 S-ACCOUNT-NUM PIC X(8).
03 FILLER PIC X(32).
03 S-KEY-2.

05 S—-AMOUNT PIC S9(5)V99.
03 FILLER PIC X(53).

FD INPUT-FILE
LABEL RECORDS ARE STANDARD.
01 IN-REC PIC X(100).
FD OUTPUT-FILE
LABEL RECORDS ARE STANDARD.
01 OUT-REC PIC X(100).

PROCEDURE DIVISION.
000-DO-THE-SORT.
SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2
WITH DUPLICATES IN ORDER
USING INPUT-FILE GIVING OUTPUT-FILE.

Ahkhhhkhkkhhkhkhhkhhhkhkhhkhhkhhhkhkhhhhkhhhkhhkhhhkhkdhkhhkkhhhhkhhkhhhhkhkkhrhkk

* At this point, you could transfer control to another *
* section of your program and continue processing. *
Khkkhkhkhkhhkhkhkhkhhkhhhhhkhhhhkhhhkhkhrohkhhkhkhhhkkhkhkhhkhhhhhhhhhhhrkkhhhhk
DISPLAY "END OF PROGRAM SORTA".
STOP RUN.

14-10 Using the COBOL SORT and MERGE Statements

Example 14-8 shows how to use the USING and OUTPUT PROCEDURE
phrases.

Example 14-8: Using the USING and OUTPUT PROCEDURE Phrases

IDENTIFICATION DIVISION.
PROGRAM-ID. SORTB.
AAKAhkAkhhAhhhhhhhkhhrdhrhhhhhbhhhhkhkhrhhhhhkhkrkhhhrdhkhrhhhkhkhhhkkhhkk
* This program shows how to sort a file *
with the USING and OUTPUT PROCEDURE phrases *
of the SORT statement. The program eliminates *
duplicate records by adding their amounts to the *
amount in the first record with the same account *
number. Only records with unique account numbers *
are written to the output file. The fields to be *
sorted are S-KEY-1 and S-KEY-2; they contain account *
numbers and amounts. The sort sequence is amount *
within account number. *
* Notice that the organization of OUTPUT-FILE is indexed. *
AAKKRAKR KA AR AR R AR A AR KR AA AR A AR AR AT AN A A A AN KA ARk Ak A b Ak hhhhhhhhrhrhhhk
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "INPFIL".

SELECT OUTPUT-FILE ASSIGN TO "OUTFIL"

ORGANIZATION IS INDEXED.

SELECT SORT-FILE ASSIGN TO "SRTFIL".
DATA DIVISION.
FILE SECTION.
SD SORT-FILE.
01 SORT-REC.

03 S-KEY-1.

L S T S S

05 S-ACCOUNT-NUM PIC X(8).
03 FILLER PIC X(32).
03 S-KEY-2.

05 S-AMOUNT PIC S9(5)V9S.
03 FILLER PIC X(53).

FD INPUT-FILE
LABEL RECORDS ARE STANDARD.
01 IN-REC PIC X(100).
FD OUTPUT-FILE
LABEL RECORDS ARE STANDARD
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS OUT-KEY.
01 OUT-REC.

03 OUT-KEY PIC X (8).

03 FILLER PIC X(92).
WORKING-STORAGE SECTION.
01 INITIAL-SORT-READ PIC X VALUE "Y".
01 SAVE-SORT-REC.

03 SR-ACCOUNT-NUM PIC X(8).

03 FILLER PIC X(32).

03 SR-AMOUNT PIC S9(5)Vv99.

03 FILLER PIC X(53).

PROCEDURE DIVISION.
000-START SECTION.
005-DO-THE-SORT.
SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S—-KEY-2

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-11

Example 14-8 (Cont.): Using the USING and OUTPUT PROCEDURE Phrases

USING INPUT-FILE
OUTPUT PROCEDURE IS 300-CREATE-OUTPUT-FILE
THRU 600-DONE-CREATE .
ARAKRAKR KR AR KA AR KRR AR A KA A A AR KT A XA AAR AR A AR A AR A A AR AR AR A A AR h A Aok hkkk
* At this point, you could transfer control to another *
* section of the program and continue processing. *
AR AR AR KR KKK KA R AR A AR AR R A A AR A A AR ARAA AR AR A A AAAR R A A A A dhk Ak hkhhhkk*x
DISPLAY "END OF PROGRAM SORTB".
STOP RUN.

300-CREATE-OUTPUT-FILE SECTION.
350-OPEN-OUTPUT.
OPEN OUTPUT OUTPUT-FILE.
400-READ-SORT-FILE.
RETURN SORT-FILE AT END
PERFORM 500-WRITE-THE-OUTPUT
CLOSE OUTPUT-FILE
GO TO 600-DONE-CREATE.
IF INITIAL-SORT-READ = "Y"
MOVE SORT-REC TO SAVE-SORT-REC
MOVE "N" TO INITIAL-SORT-READ
GO TO 400-READ-SORT-FILE.
450-COMPARE~ACCOUNT-NUM.
IF S—-ACCOUNT-NUM = SR-ACCOUNT-NUM
ADD S-AMOUNT TO SR-AMOUNT
GO TO 400-READ-SORT-FILE.
500-WRITE-THE-OUTPUT.
MOVE SAVE-SORT-REC TO OUT-REC.
WRITE OUT-REC INVALID KEY
DISPLAY "INVALID KEY " SR-ACCOUNT-NUM " SORTB ABORTED"
CLOSE OUTPUT-FILE STOP RUN.

550-GET-A-REC.

MOVE SORT-REC TO SAVE-SORT-REC.

GO TO 400-READ-SORT-FILE.
600-DONE~CREATE SECTION.
650-EXIT-PARAGRAPH.

EXIT.

14-12 Using the COBOL SORT and MERGE Statements

Example 14-9 shows how to use the INPUT PROCEDURE and OUTPUT
PROCEDURE phrases.

Example 14-9: Using the INPUT PROCEDURE and OUTPUT PROCEDURE
Phrases

IDENTIFICATION DIVISION.
PROGRAM-ID. SORTC.
KAAAKAKAAAAAKAAKRAKRARA LA AR A A kA kA hkhkhhhkkhhkdkkhkhkhkhkhhhkhhkkhhkkkx
* This program shows how to use the INPUT *
PROCEDURE and OUTPUT PROCEDURE phrases of the *
SORT statement. Input to the sort is two files =
containing the same type of data. Records with b
a "D" status-code are not released to the sort. *
The program eliminates duplicate records by *
adding their amounts to the amount in the first *
record with the same account number. Only records *
with unique account numbers are written to *
the output file. The fields to be sorted are *
S-KEY-1 and S-KEY-2. The sort sequence is amount *
* within account number. *
KEAKKKAAKARAKAAAA A A Ak hhAhAhhhhkhhhhhkhhkhhhhhhhkhhhkhkrhhhkhhkkhhkdkhhik
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FIRST-FILE ASSIGN TO "FILEOL1™.

SELECT SECOND~FILE ASSIGN TO "FILEO2".

SELECT OUTPUT-FILE ASSIGN TO "OUTFIL".

SELECT SORT-FILE ASSIGN TO "SRTFIL".
DATA DIVISION.
FILE SECTION.
SD SORT-FILE.
01 SORT-REC.

03 S-KEY-1.

B R . . R

05 S~ACCOUNT-NUM PIC X(8).
03 FILLER PIC X(32).
03 S-KEY-2.

05 S-AMOUNT PIC S9(5)Vv99.
03 FILLER PIC X(53).

FD FIRST-FILE
LABEL RECORDS ARE STANDARD.
01 RECCRD1.
03 FILLER PIC X(99).
03 R1-STATUS-CODE PIC X.
FD SECOND-FILE
LABEL RECORDS ARE STANDARD.

01 RECOCRD2.
03 FILLER PIC X(99).
03 R2-STATUS-CODE PIC X.

FD OUTPUT-FILE
LABEL RECORDS ARE STANDARD.

01 OUT-REC PIC X(100).
WORKING-STORAGE SECTION.

01 INITIAL-SORT-READ PIC X VALUE "Y".

01 FILEO1-COUNT PIC 9(5) VALUE ZEROES.
01 FILEO2~-COUNT PIC 9(5) VALUE ZEROES.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-13

Example 14-9 (Cont.): Using the INPUT PROCEDURE and OUTPUT
PROCEDURE Phrases

01 SORT-COUNT PIC 9(5) VALUE ZEROES.
01 OUTPUT-COUNT PIC 9(5) VALUE ZEROES.
01 SAVE~SORT-REC.

03 SR-ACCOUNT-NUM PIC X (8).

03 FILLER PIC X(32).

03 SR-AMOUNT PIC S9(5)V99.

03 FILLER PIC X(53).

PROCEDURE DIVISION.
000-START SECTION.
005-DO-THE-SORT.
SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2
INPUT PROCEDURE IS 010-GET-INPUT
THRU 200-DONE-INPUT-GET
OUTPUT PROCEDURE IS 300-CREATE-OUTPUT-FILE
THRU 600-DONE-CREATE.

KA AR KA R AR AR A A R AR A A A AR A A AN A A A AR AR A AR A KN A R AR AR AA AR A A AR KK, K
* Notice the use of DISPLAY and record counters to *

* produce sort statistics. *

AR KKK KA I KA KA A AR KA KA AR KA KRR A AAAKRKAAARNKRA AR AA AR KRR A A AR A A RA A A KKK
DISPLAY "TOTAL FIRST-FILE RECORDS IS " FILEO1-COUNT.
DISPLAY "TOTAL SECOND-FILE RECORDS IS " FILEO2-COUNT.
DISPLAY "TOTAL NUMBER OF SORTED RECORDS IS " SORT-COUNT.
DISPLAY "TOTAL NUMBER OF OUTPUT RECORDS IS " QUTPUT-COUNT.

KA A KA KR KA AR KA AR KA A AR KA AR A KRR A A KA AR A A AR A A d AR A Ak hkhk kA kKxhhkhkk*k

* At this point, you could transfer control to another *
* section of the program and continue processing. *
hhkkhkkhkhkhhkhkhkkhhhhhhkhhhhhkhhkhhkhhkhhhhhkhkhkhkhhhhkhkhhhhkhdhhkhhhhhxk
DISPLAY "END OF PROGRAM SORTC".
STOP RUN.
010-GET-INPUT SECTION.
050-OPEN-FILES.
OPEN INPUT FIRST-FILE.
100~-READ-FIRST-FILE.
READ FIRST-FILE AT END
CLOSE FIRST-FILE
OPEN INPUT SECOND-FILE
GO TO 150-READ-SECOND-FILE.
ADD 1 TO FILEO1-COUNT.
IF R1-STATUS-CODE = "D"
GO TO 100-READ-FIRST-FILE.
RELEASE SORT-REC FROM RECORD1.
GO TO 100-READ-FIRST-FILE.
150-READ-SECOND-FILE.
READ SECOND-FILE AT END
CLOSE SECOND-FILE
GO TO 200-DONE-INPUT-GET.
ADD 1 TO FILEO2-COUNT.
IF R2-STATUS~CODE = "D"
GO TO 150-READ-SECOND-FILE.
RELEASE SORT-REC FROM RECORDZ2.
GO TO 150-READ-SECOND-FILE.
200-DONE-INPUT-GET SECTION.
250~EXIT-PARAGRAPH.
EXIT.

(continued on next page)

14-14 Using the COBOL SORT and MERGE Statements

Example 14-9 (Cont.): Using the INPUT PROCEDURE and OUTPUT

PROCEDURE Phrases

300-CREATE-OUTPUT-FILE SECTION.
350-OPEN-OUTPUT.
OPEN OUTPUT OUTPUT-FILE.
400-READ-SORT-FILE.
RETURN SORT-FILE AT END
PERFORM 500-WRITE-THE-OUTPUT
CLOSE OUTPUT-FILE
GO TO 600-DONE-CREATE.
ADD 1 TO SORT-COUNT.
IF INITIAL-SORT-READ = "Y"
MOVE SORT-REC TO SAVE-SORT-REC
MOVE "N" TO INITIAL-SORT-READ
GO TO 400-READ-SORT-FILE.
450-COMPARE-ACCOUNT-NUM.
IF S-ACCOUNT-NUM = SR-ACCOUNT-NUM
ADD S-AMOUNT TO SR-AMOUNT
GO TO 400-READ-SORT-FILE.
500-WRITE-THE-OUTPUT.
MOVE SAVE-SORT-REC TO OUT-REC.
WRITE OUT-REC.
ADD 1 TO OUTPUT-COUNT.
550-GET-A-REC.
MOVE SORT-REC TO SAVE-SORT-REC.
GO TO 400-READ-SORT-FILE.
600-DONE~CREATE SECTION.
650-EXIT-PARAGRAPH.
EXIT.

Example 14-10 shows how to use the COLLATING SEQUENCE IS phrase.

Example 14-10: Using the COLLATING SEQUENCE IS Phrase

IDENTIFICATION DIVISION.

PROGRAM-ID. SORTD.

KA KAK AR KA KA A AKX AR AKAAKR KRR AAAARNAKAA XN AAAA AL AR KR A A ARk XA hkhk
* This program sorts a file into a non-ASCII

* collating sequence. The collating sequence *
* is defined by the alphabet-name MYSEQUENCE *
* in the SPECIAL-NAMES paragraph of the *
* ENVIRONMENT DIVISION. *
* The collating sequence is: *
* 1. The letters A to Z *
* 2. The digits 0 to 9 *
KKK KAKRKAAKRK AR AR KRR AR A AARKRA AR A A A A AR AR AR AR A A A A hA X k)

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-15

Example 14-10 (Cont.): Using the COLLATING SEQUENCE IS Phrase

SPECIAL-NAMES.
ALPHABET MYSEQUENCE IS
"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 ™.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INPUT-FILE ASSIGN TO "INPFIL".
SELECT OUTPUT-FILE ASSIGN TO "OUTFIL".
SELECT SORT-FILE ASSIGN TO "SRTFIL".
DATA DIVISION.
FILE SECTION.
SD SORT-FILE.
01 SORT-REC.

03 S-KEY-1.
05 S-ACCOUNT-NAME PIC X(23).
03 S-KEY-2.
05 S-AMOUNT PIC S9(5)V99.

FD INPUT-FILE
LABEL RECORDS ARE STANDARD.
01 IN-REC PIC X(30).
FD OUTPUT-FILE
LABEL RECORDS ARE STANDARD.
01 OUT-REC PIC X(30).
PROCEDURE DIVISION.
000~DO-THE-SORT.
SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY~2
COLLATING SEQUENCE IS MYSEQUENCE
USING INPUT-FILE GIVING OUTPUT-FILE.
KA KA KA KRR A KRR KRR AR AR AR AR AR AR KRR ARAKRKRR R A AR AAARRRAKRAAR AR AR Ak hkhkkhkhx
* At this point, you could transfer control to another *
* section of the program and continue processing. *
AKAKAKRKAKRK A A KRR A AR KA AR AR A AR KRAFAR AR AR A AR A A A A Ak Ak hkhhhhkhhkhhhhhkhhkkk
DISPLAY "END OF PROGRAM SORTD".
STOP RUN.

Example 14-11 is an example of creating a new sort key.

Example 14-11: Creating a New Sort Key

IDENTIFICATION DIVISION.

PROGRAM-ID. SORTE.
KA AAK KA AR A IR A A A Ak ko khhh ok ke hkkkkkkkkkkkkkdonk*

* This program increases the size of the *
* variable input records by a new six- *
* character field and uses this field *
* as the sort key. *

AAKKKIAKRA KRR AKRKREAKKKR AR AR KA A KRR R KA KA AR AKRKR AR KA KAk Ahhhkhkk

ENVIRONMENT DIVISION.)
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INFILE ASSIGN TO "INFILE".
SELECT SORT-FILE ASSIGN TO "SRTFIL".
SELECT OUT-FILE ASSIGN TO "OUTFILE".

(continued on next page)

14-16 Using the COBOL SORT and MERGE Statements

Example 14-11 (Cont.): Creating a New Sort Key

DATA DIVISION.

FILE SECTION.

FD INFILE
RECORD VARYING FROM 100 TO 490 CHARACTERS
DEPENDING ON IN-LENGTH.

01 INREC.
03 ACCOUNT PIC 9(5).
03 INCOME-FIRST-QUARTER PIC 9(5)V99.
03 INCOME-SECOND-QUARTER PIC 9(5)V99.
03 INCOME-THIRD-QUARTER PIC 9(5)Va9.
03 INCOME-FOURTH-QUARTER PIC 9(5)V99.
03 ORDER-COUNT PIC 9(2).
03 ORDERS OCCURS 1 TO 7 TIMES

DEPENDING ON ORDER-COUNT.

05 ORDER-DATE PIC 9(6).
05 FILLER PIC X(59).
SD SORT-FILE

RECORD VARYING FROM 106 TO 496 CHARACTERS
DEPENDING ON SORT-LENGTH.

01 SORT-REC.
03 SORT-ANNUAL-INCOME PIC 9(6).
03 SORT-REST-OF-RECORD PIC X(490).
FD OUT-FILE

RECORD VARYING FROM 106 TO 496 CHARACTERS
DEPENDING ON OUT-LENGTH.

01 OUT-REC PIC X(496).
WORKING-STORAGE SECTION.

01 IN-LENGTH PIC 9(3) CoOMP.
01 SORT-LENGTH PIC 9(3) COMP.
01 OUT-LENGTH PIC 9(3) COMP.

PROCEDURE DIVISION.
000-START SECTION.
005-SORT-HERE.
SORT SORT-FILE
ON DESCENDING SORT-ANNUAL-INCOME
INPUT PROCEDURE 010-GET-INPUT
THRU 070-DONE-INPUT
QUTPUT PROCEDURE 100-WRITE-OUTPUT.
DISPLAY "END OF PROGRAM SORTE".
STOP RUN.
010-GET-INPUT SECTION.
020-OPEN-INPUT.
OPEN INPUT INFILE.
030-READ—-INPUT.
READ INFILE AT END
CLOSE INFILE
GO TO 070-DONE-INPUT.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-17

Example 14-11 (Cont.): Creating a New Sort Key

040~-ADD-INCOME.

ADD INCOME-FIRST-QUARTER
INCOME-SECOND~QUARTER
INCOME-THIRD-QUARTER
INCOME-FOURTH-QUARTER

: GIVING SORT-ANNUAL-INCOME.

050-CREATE-SORT-REC.

ADD 6 IN-LENGTH GIVING SORT-LENGTH.

MOVE INREC TO SORT-REST-OF-RECORD.

RELEASE SORT-REC. '

GO TO 030-READ-INPUT.

070-DONE-INPUT SECTION.
080-EXIT.

EXIT.
100-WRITE-OUTPUT SECTION.
110-OPEN.

OPEN OUTPUT OUT-FILE.

120-WRITE.
RETURN SORT-FILE AT END
CLOSE OUT-FILE
GO TO 130-DONE.
MOVE SORT-LENGTH TO OUT-LENGTH.
WRITE OUT-REC.
GO TO 120-WRITE.
130-DONE.
EXIT.

Example 14-12 merges three identically sequenced files into one file.

Example 14—12: Merging Files

IDENTIFICATION DIVISION.
PROGRAM-ID. MERGEO1.

KKK AR KA KR AR KA KA AR KR AR A AR KRN ARAKRAAKRAKRAAKRAKRKRARRAKN A A AR A AR A XK

* This program merges three identically sequenced *
* regional sales files into one total sales file. *

* The program adds sales amounts and writes one
* record for each product code.

*
*

KAAKAAKRAKR A A A A AAATAAAA ANk Ak kb Ak A b vk dkhkhhhhhhkhkhhrhrdrrrkx

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. VAX.

OBJECT-COMPUTER. VAX.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT REGION1-SALES ASSIGN TO "REG1SLS".
SELECT REGION2-SALES ASSIGN TO "REG2SLS".
SELECT REGION3-SALES ASSIGN TO "REG3SLS".
SELECT MERGE-FILE ASSIGN TO "MRGFILE".
SELECT TOTAL-SALES ASSIGN TO "TOTLSLS".

14-18 Using the COBOL SORT and MERGE Statements

(continued on next page)

Example 14-12 (Cont.): Merging Files

DATA DIVISION.
FILE SECTION.

FD REGION1-SALES
LABEL RECORDS ARE STANDARD.
01 REGIONL1-RECORD PIC X(100).
FD REGION2-SALES
LABEL RECORDS ARE STANDARD.
01 REGION2-RECORD PIC X(100).
FD REGION3-SALES
LABEL RECORDS ARE STANDARD.
01 REGION3-RECORD PIC X(100).
SD MERGE-FILE.
01 MERGE-REC.
03 M-REGION-CODE PIC XX.
03 M-PRODUCT~CODE PIC X(10).
03 M-SALES-AMT PIC S9(7)V99.
03 FILLER PIC X(79).
FD TOTAL-SALES
LABEL RECORDS ARE STANDARD.
01 TOTAL-RECORD PIC X(100).
WORKING-STORAGE SECTION.
01 INITIAL-READ PIC X VALUE "Yy".
01 THE-COUNTERS.
03 PRODUCT-AMT PIC S9(7)V99.
03 REGIONI1-AMT PIC S9(9)V99.
03 REGION2-AMT PIC S9(9)V99.
03 REGION3-AMT PIC S9(9)V99.
03 TOTAL-AMT PIC S9(11)V99.
01 SAVE-MERGE-REC.
03 S-REGION-CODE PIC XX.
03 S-PRODUCT-CODE PIC X(10).
03 S-SALES-AMT PIC S9(7)V99.
03 FILLER PIC X(79).

PROCEDURE DIVISION.
000-START SECTION.
010-MERGE-FILES.

OPEN OUTPUT TOTAL-SALES.

MERGE MERGE-FILE ON ASCENDING KEY M-PRODUCT-CODE
USING REGION1-SALES REGION2-SALES REGION3-SALES
OUTPUT PROCEDURE IS 020-BUILD-TOTAL-SALES

THRU 100-DONE-TOTAL-SALES.

DISPLAY "TOTAL SALES FOR REGION 1 " REGION1-AMT.

DISPLAY "TOTAL SALES FOR REGION 2 " REGION2-AMT.

DISPLAY "TOTAL SALES FOR REGION 3 " REGION3-AMT.

DISPLAY "TOTAL ALL SALES " TOTAL-AMT.

CLOSE TOTAL-SALES.

DISPLAY "END OF PROGRAM MERGEOL"™.

STOP RUN.

020-BUILD-TOTAL-SALES SECTION.
030-GET-MERGE-RECORDS.

RETURN MERGE-FILE AT END
MOVE PRODUCT-AMT TO S—-SALES-AMT
WRITE TOTAL-RECORD FROM SAVE-MERGE-REC
GO TO 100-DONE-TOTAL-SALES.
IF INITIAL-READ = "Y"
MOVE "N" TO INITIAL-READ
MOVE MERGE-REC TO SAVE-MERGE-REC
PERFORM 050-TALLY-AMOUNTS
GO TO 030-GET-MERGE-RECORDS.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-19

Example 14-12 (Cont.): Merging Files

040-COMPARE~PRODUCT-CODE.
IF M-PRODUCT-CODE = S-PRODUCT-CODE
PERFCORM 050~TALLY-AMOUNTS
GO TO 030-GET-MERGE-RECORDS.
MOVE PRODUCT-AMT TO S—-SALES-AMT.
MOVE ZEROES TO PRODUCT-AMT.
WRITE TOTAL-RECORD FROM SAVE-MERGE-REC.
MOVE MERGE-REC TO SAVE-MERGE-REC.
GO TO 040-COMPARE-PRODUCT-CODE.
050-TALLY-AMOUNTS. '
ADD M-SALES-AMT TO PRODUCT~AMT TOTAL-AMT.
IF M-REGION-CODE = "01"
ADD M-SALES-AMT TO REGION1-AMT.
IF M-REGION-CODE = "02"
ADD M-SALES-AMT TO REGIONZ-AMT.
IF M-REGION-CODE = "03"
ADD M-SALES-AMT TO REGION3-AMT.
100-DONE-TOTAL-SALES SECTION.
120-DONE.
EXIT.

14-20 Using the COBOL SORT and MERGE Statements

Chapter 15
Database Programming with VAX COBOL

VAX COBOL database programming allows you to access data without designing
separate files for specific applications. This chapter introduces the database
programmer to the database management system (VAX DBMS) and the COBOL
data manipulation language (DML). It also discusses the following topics:

* VAX COBOL database program development

¢ VAX COBOL database concepts

* VAX COBOL programming tips and techniques

* Debugging and testing VAX COBOL database programs

Database programmers and readers unfamiliar with VAX DBMS concepts

and definitions should run the online self-paced demonstration package (see
Section 15.1) as a prerequisite to this chapter. The demonstration package
lets you test VAX DBMS features and concepts as you learn them. You should
also read the introductory material to VAX application development with the
VAX Information Architecture, and the VAX DBMS documentation on database
administration.

15.1 The Self-Paced Demonstration Package

To help you learn how to use a database, Digital has provided you with a
database called PARTS. PARTS is an online self-paced demonstration database
configured to show some of the features of VAX DBMS. You create the PARTS
database as part of the demonstration package. Examples in this chapter refer to
either the PARTSS1 or PARTSS3 subschema in the PARTS database. A complete
listing of the PARTS schema, including the PARTSS1 and PARTSS3 subschemas,
can be found in the VAX DBMS documentation on data manipulation.

Before beginning the demonstration, you should do the following:

1. Create your own node in CDD/Plus using the Dictionary Management Utility
(DMU). (Refer to the CDD/Plus documentation for more information.)

$ RUN SYS$SYSTEM:DMU [RET]

DMU> CREATE nodename [RET]

DMU> SHOW DEFAULT [RET}
defaultname

DMU> EXIT [RET]

$

where:

nodename names the new node in the CDD to contain your personal PARTS
database.

defaultname is your CDD default.

Database Programming with VAX COBOL 15-1

For example:

$ RUN SYS$SYSTEM:DMU [RET}

DMU> CREATE DEMONODE [RET]

DMU> SHOW DEFAULT [RET]
CDDSTOP

DMU> EXIT [RET]

$

2. Define CDD$DEFAULT using the defaultname, a period, and the nodename
from step 1. For example:

$ DEFINE CDD$DEFAULT "CDD$TOP.DEMONODE™

defaultname
separator period
nodename

ZK-1434A-GE

To run the demonstration package, type the following:
$ @SYSSCOMMON: [SYSTEST.DBM]DBMDEMO

You must run the entire demonstration to create and load the PARTS database.
If you have already created the PARTS database but are unsure of or have
changed its contents, you can reload it by running option 11 of the self-paced
demonstration package.

The demonstration package creates the NEW.ROO database instance. See the
VAX Information Architecture documentation for more information. If you have
any problems with the demonstration package, see your system manager or
database administrator.

15.2 VAX COBOL Data Manipulation Language (DML)

The VAX COBOL data manipulation language (DML) is a programming language
extension that provides a way for a COBOL application program to access

a database. A VAX COBOL database application program contains DML
statements that tell the Database Control System (DBCS) what to do with
specified data; the DBCS provides all database processing control at run time.
The four classes of DML statements are data definition, control, retrieval, and
update. An explanation of each class follows:

* Data definition—These entries define the specific part of the database to
be accessed by the application program and any keeplists needed to navigate
through it. The entries also result in the creation of a database user work
area (UWA). Transfer of data between your program and the database takes
place in the UWA. Your program delivers data for the DBCS to this area; it is
here that the DBCS places data requested from the database for retrieval to
your program.

SUB-SCHEMA Is the first section of the Data Division. It contains two
SECTION paragraphs: the Subschema entry (DB) and the Keeplist
Description entry (LD).

DB Names the target subschema, translates subschema
record descriptions to compatible VAX COBOL record
descriptions, and creates a user work area (UWA).

15-2 Database Programming with VAX COBOL

LD Names a keeplist to help you navigate through the
database.

For more information on these entries see the Data Division section of the
VAX COBOL Reference Manual.

¢ Control—The DML control functions tell the DBCS when and how to begin
or end a database transaction.

COMMIT Terminates your transaction, makes permanent all
changes made to the database since the last quiet point,
and establishes a new quiet point for the next run unit.

READY Prepares selected realms for use.

ROLLBACK Ends your transaction, cancels all changes made to the
database since the start of your transaction, empties all
keeplists, and nulls all currency indicators.

* Retrieval—The DML retrieval functions are used to find a record in the
database and, if necessary, retain the record in the user work area (UWA) for

later use.

FIND Locates a record in the database.

FIND ALL Locates all records specified in the database and puts them
in a keeplist.

FETCH Locates a record in the database, retrieves its data item
values, and places them in the user work area (UWA).

FREE Releases references to records.

GET Retrieves data item values of a previously located record
and places them in the user work area (UWA).

KEEP Remembers a record so you can later refer to it.

Records can be found in several ways in the database. By using a Record
Selection Expression in a FIND or FETCH statement, a program has four
formats to choose from: (1) database key identifier access, (2) set owner

access, (3) record search access, or (4) DB-KEY access. The VAX COBOL
Reference Manual explains these in detail.

A COBOL program can sequentially search the database or individual realm.
In all cases, once a record is found by the COBOL application program, the
DBCS sets a currency indicator to hold the database key value of that record
or the position of that record. The COBOL program can indirectly use this
value in KEEP, FIND ALL, or FREE statements or use the RETAINING
option as a placemarker to help the program navigate through the database.

e Update—These functions allow the creation, modification, and deletion of
database records.

CONNECT Makes a record a member in one or more sets.

DISCONNECT Removes a record from one or more sets.

ERASE Deletes records from the database.

MODIFY Changes the contents of a record in the database.

RECONNECT Moves a record from one occurrence of a set type to
another (possibly the same) occurrence.

STORE Adds a record to the database.

The VAX COBOL Reference Manual discusses the effects of the schema data
definition language (DDL) INSERTION and RETENTION options on each of the
DML update verbs.

Database Programming with VAX COBOL 15-3

Once a record has been located by a COBOL program, it can be changed or
even erased from the database. DML programming operations also change the
fundamental relationships within sets, causing records to change as well. For
example, each set is owned by a record or VAX DBMS itself. If the program
erases a record that is the owner of the set, all member records may also be
deleted.

The VAX COBOL Reference Manual contains more information on DML
statements, database conditional expressions, and the special registers
DB-CONDITION, DB-CURRENT-RECORD-NAME, DB-CURRENT-RECORD-ID,
DB-UWA, and DB-KEY.

15.3 Creating a VAX COBOL DML Program

When you create a VAX COBOL DML program, you must include the
SUB-SCHEMA SECTION entry as the first section in the Data Division.

The SUB-SCHEMA SECTION is followed by a DB statement and the DML verbs
described in this chapter.

15.4 Compiling a VAX COBOL DML Program

Your database administrator (DBA) creates schema and subschema definitions in
CDD/Plus. These record definitions are defined in DMU format and are intended
to serve all VAX languages that might access them. In this format, the record
definitions are not compatible with COBOL record definitions. Therefore, when
the VAX COBOL compiler retrieves the subschema definition from CDD/Plus, it
translates the file into an internal form acceptable to the VAX COBOL compiler.

If the translation results in compiler errors, they will probably be fatal. For
example:

DB PARTSS4 WITHIN PARTS.
1
$COBOL-F-ERROR 513, (1) Reserved word "DIVISION" used as name in
sub-schema
$COBOL-F-ERROR 513, (1) Reserved word "QUOTE" used as name in
sub-schema

You should alert your DBA to any errors resulting from a DB statement.

You can define the logical name CDD$DEFAULT as the starting schema node in
CDD/Plus. There is only one logical name translation in the DB statement for
schema-name. If you do not define it, CDD$TOP is the default.

NOTE

You must recompile a VAX COBOL DML program each time the
subschema referenced by a DB statement is created. At compile time,
the date and time of subschema creation (date and time stamps) are
included with the translated subschema record definitions. If you do
not recompile, your program will receive a fatal error at run time.

15-4 Database Programming with VAX COBOL

15.4.1 Copying Database Records in a VAX COBOL Program

A separately compiled VAX COBOL database program must include the
SUB-SCHEMA SECTION header and only one DB statement. The compiler
copies and translates the record, set, and realm definitions in the subschema
named by the DB statement into compatible VAX COBOL record definitions.
You will not see any database record definitions listed immediately following
the DB statement. The translated record, set, and realm definitions are only in
the compiler’s subschema map listing. To list these definitions in your program
listing, use the /MAP compiler command line qualifier.

15.4.2 Using the /MAP Compiler Qualifier

Use the /MAP compiler qualifier to generate a subschema map containing a
translated subschema listing. Section 15.29 contains two subschema map listings
and explains how to read them. The following example compiles DBPROG and
creates a listing that includes a subschema map:

$ COBOL/LIST/MAP DBPROG

15.5 Linking a VAX COBOL DML Program

VAX COBOL DML programs must be linked with the shareable VAX DBMS
Library (SYS$LIBRARY:DBMDML/OPT). This library was created as part of the
VAX DBMS installation procedure. Therefore, to link a VAX COBOL DML object
program named DMLPROG.OBJ with the shareable VAX DBMS Library, you
would use this DCL command:

$ LINK DMLPROG, SYS$LIBRARY :DBMDML/QOPT

15.6 Running a VAX COBOL DML Program

You use the DCL command RUN to execute your VAX COBOL DML program.
At run time, the Database Control System (DBCS) fills a variety of roles

in VAX COBOL. Its major functions are to monitor database usage, act as

an intermediary between VAX COBOL and the VMS operating system, and
manipulate database records on behalf of user programs. Upon execution of the
first DML statement, the DBCS implicitly executes a BIND statement that links
the run unit to the database. If the BIND statement is unsuccessful, a database
exception occurs.

The DBCS also enforces the subschema view of the database. For example, a
database schema record may contain 20 data items. However, a subschema
record may only define 10 of those data items. If a FETCH statement references
this record, the DBCS only retrieves those defined 10 data items and makes
them available to the COBOL program in the user work area (UWA). The other
10 items are not available to the COBOL program. Figure 15-1 illustrates the
run-time relationships between an application program requesting subschema
data (a FETCH statement, for example), the DBCS, and the data the subschema
describes.

Database Programming with VAX COBOL 15-5

Figure 15-1: Database and Application Program Relationship

V/'\ASI(D &253‘- . Database > Subschema
Control System Data
Program -— (DBCS) -
(FETCH)
ZK-1478-GE

15.7 A Database

A database is a collection of your organization’s data gathered into a number of
logically related units. The database administrator (DBA) and representatives
from user departments decide on the organization’s informational needs. After
these individuals agree on the contents of the database, the DBA assumes
responsibility for designing, creating, and maintaining the database.

15.8 Schema

The schema is a program written by the DBA using DDL statements. It describes
the logical structure of the database, defining all record types, set types, areas,
and data items in the database. The DBA writes the schema independently of
any application run unit. Only one schema can exist for a database. For a more
detailed description of the schema DDL, see the VAX DBMS documentation on
database administration and design.

15.9 Storage Schema

The storage schema describes the physical structure of the database. It is written
by the DBA using data storage description language (DSDL) statements. For a
complete description of the storage schema, see the VAX DBMS documentation on
database administration and design.

15.10 Subschema

The subschema is a subset of the schema; it is your run unit’s view of the
database. The DBA uses the subschema DDL to write a subschema, defining
only those areas, set types, record types, and data items needed by one or
more run units. You specify a subschema to be used by your run unit with

the DB statement. A subschema contains data description entries like the
record description entries you use for file processing. However, subschema data
description entries are not compatible with COBOL data description entries; the
VAX COBOL compiler must translate them. The translated entries are made
available to the COBOL program at compile time. By using the /MAP compiler
qualifier, you obtain a database map showing the translated entries as part of
your program listing.

Many subschemas can exist for a database. For further information on writing a
subschema, see the VAX documentation on DBMS database administration and
design.

15-6 Database Programming with VAX COBOL

15.11 Stream

A stream is an independent access channel between a run unit and a database.
A stream has its own keeplists, locks, and currency indicators. You specify a
stream to be used by your run unit with the DB statement. Streams let you do
the following:

* Access multiple subschemas within the same database

* Access multiple databases

Because streams can lock against one another, it is possible to deadlock within a
single process.

In VAX COBOL you can only specify one stream per separately compiled program.
To access multiple subschemas within the same database or multiple databases,
you must use multiple separately compiled programs and perform calls between
the programs. For example, to gain multiple access to the databases OLD.ROO
and NEW.ROO, you could set up a run unit as follows:

IDENTIFICATION DIVISION.

PROGRAM-ID. MULTI-STREAM-1.

DATA DIVISION.

SUB-SCHEMA SECTION.

DB PARTS1 WITHIN PARTS FOR "NEW.ROO" THRU STREAM-1.

CALL MULTI-STREAM-2

END PROGRAM MULTI-STREAM-1.

IDENTIFICATION DIVISION.

PROGRAM-ID. MULTI-STREAM-2.

DATA DIVISION.

SUB-SCHEMA SECTION.

DB DEFAULT_SUBSCHEMA WITHIN PARTS FOR "NEW.ROO" THRU STREAM-2.

CALL MULTI-STREAM-3.
EXIT PROGRAM.
IDENTIFICATION DIVISION.
PROGRAM-ID. MULTI-STREAM-3.
DATA DIVISION.
SUB-SCHEMA SECTION.
DB OLDPARTS1 WITHIN OLDPARTS FOR "OLD.ROO" THRU "STREAM-3".

EXIT PROGRAM.

In this run unit the main program (MULTI-STREAM-1) accesses the database
NEW.ROO through STREAM-1 and performs a call to a subprogram. The
subprogram (MULTI-STREAM-2) accesses another subschema to the database
NEW.ROO through STREAM-2 and calls another subprogram. This subprogram
(MULTI-STREAM-3) accesses a second database (OLD.ROO) through STREAM-3.

STREAM-1, STREAM-2, and STREAM-3 are stream names. Stream names
assign a character string name to the database/subschema combination you
specify in your DB statement. For more information, refer to the VAX COBOL
Reference Manual and the DBMS documentation.

Database Programming with VAX COBOL 15-7

15.12 Using CDD/Plus

You can store the schema, storage schema, and subschemas in CDD/Plus.
CDD/Plus separates data descriptions from actual data values that reside in VMS
files. (For more information, see the VAX DBMS documentation on Common

“ Data Dictionary Utilities and the CDD/Plus documentation.) Because of this
separation, VAX COBOL DML programs can be written independently of data.
In addition, several subschemas can describe the same data according to their
particular needs. This eliminates the need for redundant data and ensures data
integrity.

At compile time, the COBOL DB statement, in effect, references CDD/Plus to
obtain the data descriptions of a specific subschema. It is not until run time that
the COBOL program has access to the database data values.

15.13 Database Records

A database record, like a record in a file, is a named collection of elementary
database data items. Records appear in the database as record occurrences.
DBMS records are linked into sets.

. In VAX COBOL database applications, you do not describe database records in
the COBOL program. Rather, you must use the DB statement to extract and
translate subschema record definitions into your COBOL program as COBOL
record definitions.

Each record description entry defined by the DBA in the schema describes one
record type (see Section 15.16). For example, in Figure 15-8, PART is one record
type and SUPPLY is another record type. Any number of records can be stored in
a database. :

In VAX DBMS, records are also called record occurrences. Figure 15-7 shows one
occurrence of PART record type and two occurrences of SUPPLY record type.

The subschema describes records that you can access in your program. Note
that subschema record descriptions might define only a portion of a schema
record. For example, if a schema record description is 200 characters long, a
corresponding subschema record description could be less than 200 characters
long and use different data types.

Individual database records are locked by the DBCS as they are retrieved by the
run unit, and the degree of locking depends on the specific DML command used.
For more information, see Section 15.24.1.1.

15.14 Database Data Item

A database data item is the smallest unit of named data. Data items occur in the
database as data values. These values can be character strings or any of several
numeric data types.

15.15 Database Key

A database key (dbkey) identifies a record in the database. The value of the
database key is the storage address of the database record. You can use this key
to refer to the record pointed to by a currency indicator or an entry in a keeplist.
For example, KEEP, FIND ALL, and FREE statements store and release these
values from a keeplist you define in the SUB-SCHEMA SECTION.

15-8 Database Programming with VAX COBOL

15.16 Record Types

Records are grouped according to common features into record types. The
database administrator (DBA) describes record types in the schema; record
occurrences exist in the database. For example, a record that contains a specific
part name, weight, and cost is a record occurrence. The PART record type,
describing the structure of all occurrences of part records, would be defined in the
schema. The unqualified term record implies record occurrence.

15.17 Set Types

A set type is a named relationship between two or more record types. The major
characteristic of a set type is a relationship that relates one or more member
records to an owner record. The owner and members of a set are called tenants of
the set. For example, the PART record type could own a SUPPLIER record type
in the set PART INFO.

As with records, the DBA describes set types in the schema; set occurrences
exist in the database. The unqualified term set implies set occurrence. A set
occurrence is the actual data in the set, not its definition, which is the set type.
Figure 15-2 illustrates a set relationship using a Bachman diagram.

Figure 15-2: Bachman Diagram

PART } Owner
Set type -l: PART_INFO — Tenants
SUPPLY :|~ Member
ZK-1479-GE

A Bachman diagram shows how member records are linked with owner records by
arrows that point toward the members. It is a graphic representation of the set
relationships between owner and member records used to analyze and document
a database design. This simple format can be extended to describe many complex
set relationships. The VAX DBMS documentation on data manipulation contains
a complete Bachman diagram of the PARTS database.

Most of the examples in this chapter use the set types in the PARTSS1 and
PARTSS3 subschemas (see the subschema compiler map listings in Section 15.29
and the Bachman diagrams in Figure 15-3 and Figure 15-4. Figure 15-5 and
Figure 15-6 contain three PART records, two VENDOR records, and six SUPPLY

Database Programming with VAX COBOL 15-9

records. The SUPPLY records show suppliers’ lag times. Lag time starts when an

item is ordered and ends when the item is received.
The examples assume the records are in the following order:

1. PART record type: LABEL, CASSETTE, TAPE

2. SUPPLY record type: 4-DAYS, 2-DAYS, 1-MONTH, 1-WEEK, 2-WEEKS,

5-DAYS

3. VENDOR record type: MUSICO INC., SOUND-OFF CO.

NOTE

All occurrence diagrams display member records within a set in

counterclockwise order.

Figure 15-3: Partial Bachman Diagram of the PARTSS1 Subschema

PART

PART_USES

PART_USED_ON

COMPONENT

PART_INFO

VENDOR

SUPPLY

VENDOR_SUPPLY

ZK-1480-GE

Figure 15-4: Bachman Diagram of the PARTSS3 Subschema

PART VENDOR
N\ /
PART_SUPPLY VENDOR_SUPPLY
SUPPLY
ZK-1481-GE

15-10 Database Programming with VAX COBOL

Figure 15-5: Sample Occurrence Diagram 1

PART_INFO SET

=St

VENDOR_SUPPLY SET

w SOUND-OFF CO.

ZK-1482-GE

Database Programming with VAX COBOL 15-11

Figure 15-6: Sample Occurrence Diagram 2

PART_INFO SET VENDOR RECORD TYPE

— — —— VENDOR_SUPPLY SET PART RECORD TYPE

O SUPPLY RECORD TYPE

ZK-1483-GE

15.18 Sets

Sets are the basic structural units of a database. A set occurrence has one
owner record occurrence and zero, one, or several member record occurrences.
Figure 15-7 shows one occurrence of PART_SUPPLY set where PART A owner
record occurrence owns two SUPPLY member record occurrences.

Set types establish a logical relationship between two or more types of records. A
subschema usually includes one or more set types. Each set type has one record
type that participates as the owner record and one or more record types that
participate as members. These owner and member records are grouped into set
occurrences.

15-12 Database Programming with VAX COBOL

Figure 15-7: One Occurrence of Set PART_SUPPLY

PART_SUPPLY

PARTA

ZK-1484-GE

The DBA can specify a set type where each PART record occurrence can own
SUPPLY record occurrences. Figure 15-8 is a Bachman diagram that shows

the relationship between PART record types and SUPPLY record types. Bachman
diagrams give you a picture of the schema or a portion of the schema. Each record
type is enclosed in a box. Each set type is represented by an arrow pointing from
the owner record type to the member record type or types. Thus, in Figure 15-8,
PART is the owner record type of the PART_SUPPLY set type, and SUPPLY is
the member record type.

Figure 15-8: Set Relationship

PART

PART_SUPPLY

)

SUPPLY

ZK-1485-GE

You can have many set relationships in a subschema. Figure 15-9 shows a set
relationship where vendor records are also owners of supply records. You would
use this relationship when many parts are supplied by one vendor, and many
vendors supply one part. For example, Figure 15-10 shows a gasket supplied by
three vendors. The supply records show the minimum quantity each vendor is
willing to ship.

Database Programming with VAX COBOL 15-13

Figure 15-9: Set Relationships

PART VENDOR
\ /
PART_SUPPLY VENDOR_SUPPLY
SUPPLY
ZK-1486-GE

Figure 15-10: Occurrence Diagram of a Relationship Between Two Set Types

PART_SUPPLY VENDOR_SUPPLY

ZK-1487-GE

15.18.1 Simple Set Relationships

A simple set relationship contains one owner record type and one or more member
record types. Simple relationships are used to represent a basic one-to-many
relationship where one owner record occurrence owns zero, one, or several
member record occurrences. Simple relationships are created with a single set
type. There are three kinds of sets in simple relationships: system-owned sets,
simple sets, and forked sets.

15-14 Database Programming with VAX COBOL

15.18.1.1 System-Owned Sets

By definition, a set contains one owner record and may contain zero or more
member records. Sets owned by the system, however, have only one occurrence in
the database and are called system-owned sets. System-owned sets are used as
entry points into the database. You cannot access the owner of a system-owned
set (the system), but you can access its member records. System-owned sets are
also called singular sets. Figure 15-11 is an example of a system-owned set type.

Figure 15-11: Bachman Diagram of a System-Owned Set Type

SYSTEM

ALL_PARTS

PART

ZK-1488-GE

15.18.1.2 Simple Sets

In simple sets, each set contains only one type of member record. Figure 15-12 is
a Bachman diagram of a simple set type where similar parts are grouped by class
code. For example, plastic parts could be member records owned by a class record
with a class code PL.

Figure 15-12: Bachman Diagram of a Simple Set Type

CLASS

CLASS_PART

4

PART

ZK-1489-GE

Database Programming with VAX COBOL 15-15

Example 15-1: Printing a Listing of a Simple Set

PROCEDURE DIVISION.

100-GET-PLASTICS-CLASS.
MOVE "PL" TO CLASS_ CODE
FIND FIRST CLASS USING CLASS_CODE.
200-GET-PLASTICS-PARTS.
FETCH NEXT PART WITHIN CLASS PART
AT END GO TO 900-DONE-PLASTIC-PARTS.
KRKKRRAKARKKAKAK KKK KR AR ARKRRRAKRARARARKR AR AR A KA KKK KR KK

* Plastic parts print routine.
R R R R R R LR 2

GO TO 200-GET-PLASTICS-PARTS.

Example 15-1 prints a listing of all parts with a class code of PL.

15.18.1.3 Forked Sets

A forked set has one owner record type and members of two or more different
member record types. In most forked sets, the member record types have
common data characteristics. One such example is the set type PART_INFO
in Figure 15-13, where member record types SUPPLY and PR_QUOTE both
contain information about parts.

Figure 15-13: Bachman Diagram of a Forked Set Type

PART

PART_INFO

N

SUPPLY PR_QUOTE

ZK-1490-GE

One advantage of a forked set type is the ability to connect many different record
types to one set type. Another advantage is that owner records need only one
set of pointers to access more than one member record type. Example 15-2
uses the forked set type shown in Figure 15-13 and the forked set occurrence in
Figure 15-14 to perform a part analysis.

15-16 Database Programming with VAX COBOL

Example 15-2: Using Forked Sets

PROCEDURE DIVISION.

100-GET-PART.
DISPLAY "TYPE PART ID".
ACCEPT PART 1ID.
IF PART ID = "DONE"
GO TO 900-DONE-PART-INQUIRY.
FETCH FIRST PART USING PART_ID
ON ERROR
DISPLAY "PART " PART ID " NOT IN DATABASE"
GO TO 100-GET-PART.
200-GET-SUPPLY~INFO.
FETCH NEXT SUPPLY WITHIN PART_INFO
AT END
FETCH OWNER WITHIN PART INFO
GO TO 300-GET-QUOTE-INFO.
KA KA KKK AR A KR A KR KA KA KA A KRAAAKRIARAKRAA AR AR AR KA AR IR Ak Ak Ak ki) k
The FETCH OWNER statement resets currency to *
point to the owner. This allows the search for *
PR_QUOTE records to begin with the first member *
record occurrence rather than after the
last SUPPLY record occurrence. *
KAhkhkkhkhkhkhkhhkhhhhhbhkhhhhkhkrkhhhkhhkhohkdhkkhkkhkhkkrhdrkrkhhkxk
PERFORM 500-SUPPLY-ANALYSIS.
GO TO 200-GET-SUPPLY-INFO.

300-GET-QUOTE~INFO.
FETCH NEXT PR QUOTE WITHIN PART_INFO
AT END
GO TO 100-GET-PART.
PERFORM 600-QUOTE-ANALYSIS.
GO TO 300-GET-QUOTE-INFO.

*
*
*
* *
*
*

Figure 15-14 is an occurrence diagram of a forked set. The figure shows a part
record owning five PART INFO member records.

Database Programming with VAX COBOL 15-17

Figure 15-14: Forked Set Occurrence

PART_INFO

PR_QUOTE

PR_QUOTE

ZK-1491-GE

15.18.2 Multiset Relationships

A set cannot contain an owner record and a member record of the same type.
Nor can a simple set represent a many-to-many relationship. To simulate such
relationships, VAX DBMS uses the concept of multiset relationships. Multiset
relationships occur when two set types share a common record type called a
junction record. The junction record can contain information specific to the
relationship, or it can be empty. An empty junction record contains only pointer
information used by the DBCS to establish the multiset relationship. This section
discusses three kinds of multiset relationships:

* Many-to-many relationships between two types of records
¢ Many-to-many relationships between records of the same type

¢ One-to-many relationships between records of the same type

15.18.2.1 Many-to-Many Relationships Between Two Types of Records

To build a many-to-many relationship between two types of records, the DBA uses
a junction record. For example, a part can be supplied by many vendors, and one
vendor can supply many parts. The SUPPLY record type in Figure 15-15 links or
joins PART records with VENDOR records.

15-18 Database Programming with VAX COBOL

Figure 15-15: Bachman Diagram of a Many-to-Many Relationship Between
Two Types of Records

PART VENDOR
N\ /
PART_INFO VENDOR_SUPPLY
SUPPLY
ZK-1492-GE

Figure 15-16 is an occurrence diagram of a many-to-many relationship between
two types of records. This diagram typifies a many-to-many relationship because
it shows a part (TAPE) being supplied by more than one vendor and a vendor
(SOUND-OFF CO.) supplying more than one part. You could add additional
vendors for a part by joining new supply records to a part and its new vendors.
You could also add additional parts supplied by one vendor by joining supply
records to the vendor and the new parts.

Database Programming with VAX COBOL 15-19

Figure 15-16: Many-to-Many Relationship Between Two Types of Records

) VENDOR RECORD TYPE

PART RECORD TYPE O SUPPLY RECORD TYPE

PART_SUPPLY SET — — —— VENDOR_SUPPLY SET

ZK-1493-GE

15.18.2.2 Many-to-Many Relationships Between Records of the Same Type

To represent a relationship between record occurrences of the same type, the DBA
builds a many-to-many relationship using member records to create the necessary
links. Figure 15-17 shows a many-to-many relationship between records of the
same type, where PART is the owner of both PART USES and PART USED_ON
set types and COMPONENT is the junction record.

PART_USES is a bill of materials set type that links a PART owner record
through its COMPONENT member records to the part’s subassemblies. The
link to the subassemblies is from COMPONENT member records up to the
PART_USED_ON set type and back to PART owner records.

15-20 Database Programming with VAX COBOL

Figure 15-17: Bachman Diagram of a Many-to-Many Relationship Between

Records of the Same Type

PART

|
PART_USES |

l PART_USED_ON

COMPONENT

ZK~1494-GE

For example, assume you are creating a bill of materials and you have a finished
part, a stool, made from one stool seat and four stool legs. Figure 15-18,
Figure 15-19, Figure 15-20, and Figure 15-21 show occurrence diagrams of
the bill of materials you would need to build a stool.

To complete the bill of materials you have to link the stool seat and stool legs to
the finished part, the stool. You would:

1.

Use the FIND statement to locate the stool.

PROCEDURE DIVISION.
100-FIND-STOOL.
MOVE "STOOL" TO PART_DESC.
FIND FIRST PART USING PART_DESC.

Figure 15-18: Current of PART_USES and PART_USED_ON

(CURRENT OF PART_USES AND PART_USED_ON)

ZK-1495-GE

Use the FIND statement to locate the stool seat retaining PART USES
currency. Because PART usually owns both sets, using a FIND or FETCH
statement to locate PART changes both set currency indicators. Retaining
PART_USES currency keeps a pointer at STOOL; otherwise, STOOL SEAT
would be current for both sets. Section 15.22 discusses currency indicators in
more detail.

Database Programming with VAX COBOL 15-21

200-FIND-STOOL-SEAT.
MOVE "STOOL SEAT" TC PART DESC.
FIND FIRST PART USING PART_DESC
RETAINING PART_ USES.

Figure 15-19: Retain PART_USES Currency

(CURRENT OF PART_USES)
PART_USED_ON)

ZK-1496-GE

3. Build a COMPONENT record (component 1), and store it retaining
PART_USES currency. Because COMPONENT participates in the
PART_USES set, storing it normally changes the set’s currency. Therefore,
executing a STORE statement with the retaining clause keeps STOOL as
current of PART USES. At this point, STOOL is the PART _USES owner of
component 1, and STOOL SEAT is the PART USED_ON owner of component
1.

Sinece the insertion mode for COMPONENT is automatic in both set types,
a STORE COMPONENT automatically connects COMPONENT to both set
types.

300-CONNECT-COMPONENT-1.

MOVE 1 TO COMP_QUANTITY.
STORE COMPONENT RETAINING PART USES.

15-22 Database Programming with VAX COBOL

Figure 15-20: COMPONENT Is Connected to Both Set Types

» (CURRENT OF PART_USES)

STOOL SEAT (CURRENT OF PART_USED_ON)

ZK-1497-GE

4. Use the FIND statement to locate the stool legs, again retaining PART_USES
currency, thus keeping STOOL current of PART USES.

400-FIND-STOOL-LEGS.
MOVE "STOOL LEGS" TO PART DESC.
FIND FIRST PART USING PART DESC
RETAINING PART USES.

Figure 15-21: Finding the Stool Legs While Keeping STOOL Currént of
PART_USES

» (CURRENT OF PART_USES)

PART_USED_ON)

ZK-1498-GE

5. Build a second COMPONENT record (component 4) and store it. This links
both PART _USES owner STOOL and PART_USED_ON owner STOOL LEGS
to component 4. This completes all the necessary relationships you need to
create the bill of materials shown in Figure 15-22.

Database Programming with VAX COBOL 15-23

500-CONNECT-COMPONENT-4 .
MOVE 4 TO COMP_QUANTITY.
STORE COMPONENT.

Figure 15-22: Completed Bill of Materials

(CURRENT OF PART_USES
AND PART_USED_ON)

ZK-1498-GE

Figure 15-23 shows the relationship between PART records and COMPONENT
records. The solid lines connect PART USES owners to their members and the
dotted lines connect PART _USED_ON owners to their members.

Figure 15-23: Occurrence Diagram of a Many-to-Many Relationship Between Records of the
Same Type

PART —— PART_USES

""" PART_USED_ON

COMPONENT

—— PART_USES
~~77 PART_USED_ON

ZK-1500-GE

15-24 Database Programming with VAX COBOL

The STOOL program in Example 15-19 loads and connects the parts for
the STOOL bill of materials presented earlier in this section. It uses the
relationship represented in Figure 15-17 to print its parts breakdown report
in Section 15.30.6. Figure 15-24 explains how to read the parts breakdown
report.

Figure 15-24: Sample Parts Breakdown Report

PARTS BREAKDOWN REPORT

PART A (Part A information)
PART B (Part B information)
PART C (Part C information)
PART D (Part D information)
PART D (Part D information)

PART D (Part D information)

ZK-6062-GE

The sample parts breakdown report shows that:

¢ PART A is built using two subassemblies: PART B and PART D.
¢ PART B is built using PART C and PART D.

* PART C is built using PART D.

15.18.2.3 One-to-Many Relationships Between Records of the Same Type

To build a one-to-many relationship between records of the same type, the DBA
uses junction records. In a one-to-many relationship between records of the same
type, either record type can be the junction record. However, in Figure 15-25 the
WEK_GROUP record type serves as the junction record because the EMPLOYEE
record type has most of the relationship’s data.

The record type EMPLOYEE includes all employees—supervisors, managers,
and so forth. A manager can have many supervisors and a supervisor can have
many employees. Conversely, an employee can have only one supervisor, and a
supervisor can have only one manager.

Database Programming with VAX COBOL 15-25

Figure 15-25: One-to-Many Relationship Between Records of the Same Type

BACHMAN DIAGRAM DATABASE REPRESENTATION
WK_GROUP EMPLOYEE
! I
CONSISTS_OF MANAGES
MANAGES
EMPLOYEE WK_GROUP
CONSISTS_OF
EMPLOYEE
ZK-1501-GE

To show a relationship between employees (that is, who works for whom),
Figure 15-25 uses the record type WK_GROUP as a link to establish an
owner-to-member relationship. For example, a manager or supervisor would
own a WK_GROUP record occurrence in the MANAGES set, and the same
WEK_GROUP occurrence owns any number of EMPLOYEE records in the
CONSISTS_OF set. The relationship would be as follows: one occurrence of
EMPLOYEE owns a WK_GROUP record occurrence, which in turn owns zero or
more occurrences of the EMPLOYEE record type.

A one-to-many relationship between records of the same type is different from a
many-to-many relationship between records of the same type because:

¢ An employee can have only one manager, while a part can be used on many
subassemblies.

¢ The EMPLOYEE record type can participate both as an owner and a member
in its relationship with WK_GROUP.

¢ The PART record type can participate only as an owner in its relationship
with COMPONENT.

Example 15-20 shows how to use DML for hierarchical relationships. The

example uses the diagram in Figure 15-25.

The data in Figure 15-26 shows sample EMPLOYEE records and the connecting
WEK_GROUP links (Groups A, Bl, and B2). For example, employee Howell
manages a group that consists of employees Noyce and Moore.

15-26 Database Programming with VAX COBOL

Figure 15-26: Sample Data Prior to Update

10500
HOWELL

MANAGES
GROUP A
CONSISTS_OF CONSISTS_OF

08400 06600
NOYCE MOORE

MANAGES MANAGES
GROUP Bt GROUP B2
CONSISTS_OF

CONSISTS_OF

01000 04000 07000 02000 01400 05500
RAVAN BURLEW, NEILS DEANE RILEY BAKER

ZK-1502-GE

Assume that employee Klein is promoted to supervisor with Neils and Riley
reassigned to work for him. Figure 15-26 shows the relationship between
EMPLOYEE and WK_GROUP record types prior to the update, and Figure 15-27
shows the relationship after the update.

Database Programming with VAX COBOL 15-27

Figure 15-27: Sample Data After Update

10500
HOWELL

MANAGES

GROUP A

CONSISTS OF
08400 05000 06600
NOYCE KLEIN MOORE
MANiGES MANi\GES MANAGES
GROUP Bt GROUP B3 GROUP B2
CONSISTS_OF CONSISTS_OF CONSISTS OF.
01 000 04000 07000 01 400 02000 05500 07400
RAVAN URLEW NEILS RILEY DEANE BAKER FIFER

ZK-1503-GE

Example 15-20 (PERSONNEL-UPDATE program) uses the data in Figure 15-26
and shows you how to:

1. Load the database (PERSONNEL-UPDATE).

2. Display the contents of the database on your terminal using the Report Writer
before changing relationships (PERSONNEL-REPORT) (see Figure 15-26 and
Example 15-21).

Create new relationships (PROMOTION-UPDATE).

4. Display the contents of the database on your terminal using the Report Writer
after changing relationships (PERSONNEL-REPORT) (see Figure 15-27 and
Example 15-22).

15-28 Database Programming with VAX COBOL

15.19 Areas

The DBA divides the database into areas so you can reference the database in
sections instead of an entire unit. Areas are physical divisions of the database
that are defined in the schema and are used to dump selectively, verify, or recover
sections of the database; improve 1/0; group logically related record types; and
provide protection restrictions. Areas are stored as separate files and can be on
separate volumes.

15.20 Realms

A realm is a group of one or more areas. Realms are logical divisions of the
database. A realm is the object of the DML READY statement. Figure 15-28
shows the relationship between the schema, areas, subschema, and realms. Even
though realms can contain data from more than one area, the type of data they
contain is dependent on the subschema. It acts as a filter, allowing access to only
specific data items.

Entire realms, as well as individual database records, are locked by the DBCS
as they are retrieved by the run unit, and the degree of locking depends on the
specific DML command used. For more information, see Section 15.24.1.

Figure 15-28: Database Relationships

SCHEMA FOR THE PARTS DATABASE

Vo/ /
' 5%@,5@@/' L 7 RS

SUBSCHEMA FOR ACCESS TO THE PARTS DATABASE

AREAS 7 '/ REALMS

ZK-1504-GE

15.21 Run Unit

The term run unit and program are not the same. A run unit is an executable
image that may access a database, while a program can be used in two or more
run units. For example, program SHOW-EMPLOYEE can be run simultaneously

Database Programming with VAX COBOL 15-29

by a payroll department employee to obtain employee data, and by an accountant
to obtain job cost data. Each person controls his or her own run unit.

15.22 Currency Indicators

When you access database records, the database control system (DBCS) uses
pointers called currency indicators to keep track of record storage and retrieval.
VAX COBOL uses currency indicators to remember records and their positions in
the database. Currency indicators can be changed by DML statement execution.
Thus, they assist in defining the environment of a DML statement and are
updated as a result of executing DML statements.

One currency indicator exists for each realm, set type, and record type defined
in your subschema. Another currency indicator, called the run-unit currency
indicator, also exists for the run unit.

All the currency indicators in a run unit are null prior to execution of the first

DML statement. The null value indicates there is neither a current record nor

a current position. Execution of certain DML statements can change the value

of currency indicators. However, currency indicators do not change if statement
execution fails.

The DBCS also uses currency indicators as place markers to control its sequence
of access to the database. For example, if VENDOR is the name of the vendor
records in Figure 15-3, then the current of VENDOR is normally the vendor
record most recently accessed. Likewise, in the set VENDOR_SUPPLY, the
current of VENDOR_SUPPLY is normally the most recently accessed record

of that set. Note that current of set could be either a member or owner record
because both record types are part of the VENDOR_SUPPLY set.

Failure to establish correct currency can produce incorrect or unpredictable
results. For example, you might unknowingly modify or delete the wrong record.
The following sections describe how the DBCS sets currency indicators and how
to use currency status in a DML program.

15.22.1 Current of Realm

Each realm currency indicator can be null or it can identify:
* A record and its position in the realm

¢ A position in the realm but not a specific record

A record identified by the realm currency is called current of realm. The DBCS
updates current of realm only when you reference a different record within the
realm. For example:

000100 PROCEDURE DIVISION.

000110

000120

000130 .

000500 FIND FIRST PART WITHIN BUY.
000510 FIND FIRST PART WITHIN MAKE.
000520 FIND NEXT PART WITHIN BUY.
000600 FIND NEXT SUPPLY WITHIN PART_INFO.
000610 .

000620

000630

15-30 Database Programming with VAX COBOL

For example, if LABEL and CASSETTE are in the BUY realm, while TAPE is
in the MAKE realm, statement 000500 sets the first occurrence of PART record
in realm BUY (LABEL) as current of realm BUY. Statement 000510 sets the
first occurrence of PART record in realm MAKE (TAPE) as current of realm
MAKE. Notice that current of realm BUY is still the record occurrence accessed
in statement 000500. Statement 000520 changes the current of realm BUY to
the next occurrence PART record in realm BUY (CASSETTE). Current of realm
MAKE remains the record accessed in statement 000510. Because the SUPPLY
record type is located in the MARKET realm, statement 000600 sets the current
of MARKET realm to the first SUPPLY record in the current PART INFO set.

15.22.2 Current of Set Type

Each set type currency indicator can be null or it can identify:
* A record and its position in the set type

* A position in the set type but not a record

A record identified by a set type currency indicator is the current record for the
set type, or current of set type.

If the ordering criterion for a set type is NEXT or PRIOR, the set type’s currency
indicator specifies the insertion point for member records. Therefore, if the
currency indicator points to an empty position, a member record can be inserted
in the specified position. If the currency indicator points to a record and NEXT
is specified, a member record can be inserted after the current record for the

set type. If the currency indicator points to a record and PRIOR is specified, a
member record can be inserted before the current record for the set type.

The DBCS updates current of set type only when you reference a record that
participates either as an owner or member in a set type occurrence. For example:

000100 PROCEDURE DIVISION.

000500 FIND FIRST PART.

000510 FIND FIRST SUPPLY WITHIN PART INFO.
000520 FIND OWNER WITHIN VENDOR_ SUPPLY.
000600

Statement 000500 sets the first occurrence of PART (LABEL) as current of set
types PART_USES, PART_USED_ON, and PART_INFO. This is because PART
records participate in three sets (see Figure 15-3). Because LABEL is current of
PART_INFO, statement 000510 sets the first occurrence of SUPPLY (4-DAYS)
owned by LABEL as current of set type PART _INFO. Because SUPPLY also
participates in the VENDOR_SUPPLY set, this statement also sets the current
occurrence of SUPPLY as current of set type VENDOR_SUPPLY. Statement
000520 sets the VENDOR owner record occurrence (SOUND-OFF CO.), which
owns the current SUPPLY record, as current of set type VENDOR_SUPPLY.

Database Programming with VAX COBOL 15-31

15.22.3 Current of Record Type

Each record type currency indicator can be null or it can identify:
* A record and its position among other records of the same type

* A position among records of the same type, but not identify a record

Record type currency indicators do not identify a record type’s relationship with
other record types.

A record identified by a record type currency indicator is called current of record
type. The DBCS updates the current of record type only when you reference a
different record occurrence of the record type. References to other record types do
not affect this currency. For example:

000100 PROCEDURE DIVISION

000500 FIND LAST PART.

000510 FIND FIRST SUPPLY WITHIN PART_INFO.
000520 FIND NEXT WITHIN PART_INFO.
000530 FIND FIRST VENDOR.

Statement 000500 sets the last occurrence of PART (TAPE) as current of record
type PART. Statement 000510 sets the SUPPLY record occurrence (2-DAYS) as
current of record type SUPPLY. Statement 000520 updates current of record type
for SUPPLY to record occurrence (1-WEEK). Statement 000530 sets VENDOR
record occurrence (MUSICO INC.) as current of record type VENDOR.

15.22.4 Current of Run Unit

The Database Control System (DBCS) updates the currency indicator for current
of run unit each time a run unit refers to a different record occurrence, regardless
of realm, set, or record type. For example:

000100 PROCEDURE DIVISION.

000500 FIND FIRST PART.

000510 FIND FIRST SUPPLY.
000520 FIND FIRST VENDOR.
000600 .
000610 .
000620 .

Statement 000500 sets the current of run unit to the first PART record occurrence
(LABEL). Statement 000510 then sets the first SUPPLY record occurrence
(4-DAYS) as current of run unit. Finally, statement 000520 sets the first
VENDOR record (MUSICO INC.) as current of run unit. The first VENDOR
record occurrence remains current of run unit until the run unit refers to another
record occurrence.

15-32 Database Programming with VAX COBOL

15.23 Currency Indicators in a VAX COBOL DML Program

Currency indicators are the tools you use to navigate through a database.
Because of the many set relationships a database can contain, touching a record
with a DML statement often changes more than one currency indicator. For
example, a FETCH to a set type record can change currency for the set type, the
record type, the realm, and the run unit. Knowing currency indicator status,
how currency indicators change, and what statements control them, will help you
locate the correct data.

Example 15-3 searches for TAPE vendors with a supply rating equal to A.
Assume that record TAPE resides in BUY realm and that the SUPPLY record
occurrences 2-DAYS and 5-DAYS have a SUP_RATING equal to A. Figure 15-29
shows how DML statements affect currency status.

Example 15-3: Currency Indicators

000100 PROCEDURE DIVISION

000490 100-FETCH-THE~PART.

000500 MOVE "TAPE" TO PART_DESC.

000510 FETCH FIRST PART USING PART DESC.
000520 MOVE "A" TO SUP_RATING.

000550 200-FIND-SUPPLY.

000560 FIND NEXT SUPPLY WITHIN PART INFO
000570 USING SUP_RATING.
000580 AT END

000590 GO TO 500-NO-MORE-SUPPLY.
000600 FETCH OWNER WITHIN VENDOR SUPPLY.
000610 KAKKKRKERKRAKRKKRKAKRRKA KRR ARAK

000620 * VENDOR PRINT ROUTINE *

000630 KAKKKKK A A ARk hhhhk*kkxk KKK *

000640 GO TO 200-FIND-SUPPLY.

Statement 000500 provides the search argument used by statement 000510.
Statement 000510 fetches the first occurrence of PART with a PART DESC equal
to TAPE. Statement 000520 provides the search argument used by statement
000560. Statement 000560 finds each member record occurrence of SUPPLY with
a SUP_RATING equal to A owned by the PART with a PART_DESC equal to
TAPE.

If, instead of its present structure, statement 000560 read “FIND NEXT SUPPLY
USING SUP_RATING,” the search for supply records would not be restricted

to supply member records in the PART INFO set owned by TAPE. Instead, the
search would extend to all supply records, finding all vendors with a supply rating
equal to A, who may or may not be suppliers of TAPE.

Database Programming with VAX COBOL 15-33

Figure 15-29:

Currency Status by Executable DML Statement

STATEMENT{ RUN UNIT REALM SET TYPE RECORD
MARKET | MAKE | BUY PART_INFO gf,"‘,g%?—- PART VENDOR SUPPLY
510 CASSETTE |NULL NULL | CASSETTE | CASSETTE | NULL CASSETTE | NULL NULL
*560 2-DAYS 2~DAYS NULL | CASSETTE | 2-DAYS 2-DAYS CASSETTE | NULL 2-DAYS

*600 MUSICO INC.|MUSICO INC.{ NULL | CASSETTE | 2-DAYS MUSICO INC. jCASSETTE | MUSICO INC. 2-DAYS
“*560 5-DAYS 5-DAYS NULL { CASSETTE | 5-DAYS 5-DAYS CASSETTE | MUSICO INC. 5-DAYS

**600 SOUND-OFF| SOUND-OFF | NULL | CASSETTE | 5-DAYS SOUND-OFF |CASSETTE | SOUND-OFF 5-DAYS

* First execution
** Second execution

ZK-1505-GE

15.23.1 Usi

15-34 Database

ng the RETAINING Clause

You use the RETAINING clause to save a currency indicator you want to refer to.
You use the RETAINING clause to: (1) navigate through the database and return
to your original starting point, or (2) walk through a set type. (The expression

“walk through a set type” implies a procedure where you access all owner records

and their respective members.) Refer to the VAX COBOL Reference Manual for
further information.

After finding all members for an owner, the current of run unit is the last
accessed member record occurrence in the set. If the next statement is a FIND
NEXT for an owner, you may not retrieve the next owner. This is because:

* Current of set type (in this case, the last member record occurrence) is also
current of run unit.

e Without a WITHIN clause, the FIND (or FETCH) is based on current of run
unit.

Because DBCS uses currency status as pointers, a FIND NEXT VENDOR
WITHIN MARKET uses current of MARKET realm to find the next owner
record occurrence. To make sure a FIND (or FETCH) next owner statement

finds the next logical owner record, use the RETAINING clause, as shown in
Example 15-4.

Programming with VAX COBOL

Example 15-4: Using the RETAINING Clause

000100 PROCEDURE DIVISION.

000400 100-VENDOR-SUPPLY-WALKTHRU.
000410 FETCH NEXT VENDOR WITHIN MARKET
000420 AT END GO TO 900-ALL-DONE.

;*****************
* VENDOR PRINT ROUTINE *

AKAkKAKAAKKRAAKRAAAkAAAAAA A KAk

000500 300-GET-VENDORS-SUPPLY.

000510 FETCH NEXT SUPPLY WITHIN VENDOR SUPPLY
000520 RETAINING REALM

000530 AT END)
000540 GO TO 100-VENDOR-SUPPLY-WALKTHRU.

Kk kkokkkokkkkkk kR ok ok ok ok kK kK
* SUPPLY PRINT ROUTINE *

AARKKAAAKRA A A A A XA AA kA XA Ak kk

000550 GO TO 300-GET-VENDORS-SUPPLY.

Statement 000410 fetches the vendors. Statement 000510 fetches the supply
records owned by their respective vendors. Statement 000510 also uses the
RETAINING clause to save the realm currency.

A FETCH NEXT SUPPLY (statement 000510) without the RETAINING clause
makes SUPPLY current for the run unit, its record type, all sets in which it
participates, and its realm. When SUPPLY record 2-WEEKS in Figure 15-30

is current of run unit, a FETCH NEXT VENDOR statement fetches the vendor
whose physical location in the database follows the 2-WEEKS record. As shown
in Figure 15-30, MUSICO would be the next vendor and the program would be in
an infinite loop.

Figure 15-30: Physical Representation of a Realm Without a RETAINING Clause

4-pavs > Ca-weeks D 2-DAYs C MUSICO = (start walkthrough) C_SOUND-OFF

without retaining

ZK-1389-GE

Database Programming with VAX COBOL 15-35

A FETCH NEXT SUPPLY with the RETAINING clause makes SUPPLY current
for the run unit and the set types but keeps the vendor record current for the
realm shown in Figure 15-31. By retaining the realm currency when you fetch
supply records, the last accessed vendor record remains current of realm. A
FETCH NEXT VENDOR WITHIN MARKET statement uses the realm currency
pointer, which points to MUSICO to fetch the next vendor, SOUND-OFF.
Therefore, retaining the realm currency allows you to fetch the next logical
vendor record.

Figure 15-31: Physical Representation of a Realm with a RETAINING Clause

4-DAYS < (start walkthrough) C_SOUND-OFF

with retaining

ZK~1507-GE

15.23.2 Using Keeplists

A keeplist is a stack of database key values (see the description of KEEPLIST in
the VAX COBOL Reference Manual). The KEEP and FIND ALL statements build
a stack of keys that lets you retrieve DBMS records using the ordinal position of
the stack entries. DBMS calls the table of entries a keeplist. Each execution of
the KEEP or FIND ALL statement adds a record’s database key (dbkey) value to
the end of a keeplist and places a retrieval lock on the record. Therefore, other
users cannot change a record while its database key is in your keeplist.

You can use a keeplist to retain the database key of a record after that record is
no longer current. That is, by inserting a database key into a keeplist, you can
continue to reference that record by specifying the keeplist name and database
key value in your DML statement. This is especially useful when you want

to remember a record during a long sequence of DML commands that affect
currency, or when you want to remember a list of records.

A keeplist can contain zero, one, or several database key values. To activate a
keeplist, use the KEEP statement. To empty a keeplist, use the FREE statement.
All keeplists are deallocated when you execute a COMMIT or ROLLBACK unless
COMMIT RETAINING is used.

The following examplé adds database keys to a keeplist.

000100 PROCEDURE DIVISION.

000140 100-KEEPLIST-EXAMPLE.

000150 FETCH FIRST VENDOR.

000160 KEEP CURRENT USING KEEPLIST-1.

000170 FETCH FIRST SUPPLY WITHIN VENDOR_SUPPLY.

000180 FETCH OWNER WITHIN PART_ INFO.

000190 IF PART STATUS = "M"

000200 KEEP CURRENT WITHIN VENDOR SUPPLY USING KEEPLIST-1.

15-36 Database Programming with VAX COBOL

Statement 000160 adds the vendor record’s dbkey value (the current of run unit)
to KEEPLIST-1. Figure 15-32 shows the contents of KEEPLIST-1 after execution
of statement 000160. Adding a record’s database key to a keeplist also prevents
record updating by other concurrent users. Statements 000190 and 000200 add
a supply record’s database key to KEEPLIST-1 whenever its PART INFO owner
has a status of M. Figure 15-33 shows the contents of KEEPLIST-1 after the
execution of statements 000190 and 000200.

Figure 15-32: State of KEEPLIST-1 After Executing Line 000160

KEEPLIST-1
Database Key ORDINAL
(DBKEY) POSITION
vendor dbkey 1
ZK-6063-GE

Figure 15-33: State of KEEPLIST-1 After Executing Lines 000190 and 000200

KEEPLIST-1
Database Key ORDINAL
(DBKEY) POSITION
vendor dbkey 1
supply dbkey 2
ZK-6064-GE

You can use database key values as search arguments to locate database records.
For example:

FIND 2 WITHIN KEEPLIST-1
This statement:

® Uses the value of the number 2 to locate the ordinal position of a database
key value

¢ Uses the database key value to find a record

The KEEP statement can also transfer database key values from one keeplist to
another. For example:

KEEP OFFSET 2 WITHIN KEEPLIST-1 USING KEEPLIST-2

Database Programming with VAX COBOL 15-37

This statement copies the second-positioned database key value in KEEPLIST-1
to the end of KEEPLIST-2.

The FREE statement removes database key value entries from a keeplist. For
example:

FREE ALL FROM KEEPLIST-1
This statement removes all the entries from KEEPLIST-1.

You can remove keeplist entries by identifying their ordinal position within the
keeplist. For example:

FREE 5 FROM KEEPLIST-2

This statement removes the fifth-positioned database key value from
KEEPLIST-2. Removing a keeplist entry changes the position of all the following
entries. For example, after freeing entry 5, entry 6 becomes the fifth-positioned
entry, entry 7 becomes the sixth-positioned entry, and so forth. The FREE
statement changes the ordinal position of a database key value in the keeplist,
not its contents.

15.23.3 Transactions and Quiet Points

You generally segment your run unit into transactions, bounded instances of
run-unit activity. A transaction begins with the first DML statement in the

run unit or with a READY statement that follows a COMMIT or ROLLBACK
statement; continues through a series of DML data access statements; and ends
with either a COMMIT statement, a ROLLBACK statement, or the termination
of the run unit. Before the initial READY statement is issued, after the COMMIT
or ROLLBACK, and before the next READY, the run unit is at a quiet point.

A quiet point is the time that exists between the last executed COMMIT or
ROLLBACK statement and the next READY statement, or the time prior to the
first executed READY statement.

The Quiet Point—Transaction—Quiet Point continuum provides the DBCS with
a structure that allows it to control access to and ensure the integrity of your
data. To implement this control, the DBCS uses currency indicators and locking.
Figure 15-34 shows the segmentation of a run unit into transactions and quiet
points.

15-38 Database Programming with VAX COBOL

Figure 15-34: Transactions and Quiet Points

PROGRAM PROGRAM
BEGINS READY* COMMIT™ READY* COMMIT™ READY* ROLLBACK*™* READY* COMMIT™ ENDS
;l‘_j R Ve L T I\ \'d /1 T g N T N '_I_j
Quiet point Transaction Quiet point Transaction Quiet point Transaction - Quiet point Transacton Quiet point

*Transaction begins
**Transaction ends and get committed
“**Transaction ends and gets aborted
2K-1508-GE

15.24 VAX COBOL DML Programming—Tips and Techniques

The following sections offer tips and techniques you can use to improve program
performance and reduce development and debugging time.

15.24.1 The Ready Modes

Proper use of the READY usage modes can improve system performance.

You inform the DBCS of your record-locking requirements when you issue the
READY command. The command takes the form:

READY <allow-mode> <access-mode>

or

READY <access-mode> <allow-mode>

The allow- and the access-mode arguments pass your requirements to the DBCS.

The allow-mode object of the READY command indicates what you will allow
other run units to do while your run unit works with storage areas within the
realm you readied. There are four different allow modes as follows:

CONCURRENT Permits other run units to ready the same realm or realms that
contain the same storage areas as the realms your run unit readied.
CONCURRENT also allows other run units to perform any DML function
on those storage areas, including updates.

PROTECTED Permits other run units to use the same storage areas as your run unit,
but does not allow those run units to update records in the storage areas.

EXCLUSIVE Prohibits other run units from even reading records from the restricted
storage areas.

BATCH Allows concurrent run units to update the realm. BATCH also allows you
to access or update any data in the realm while preventing concurrent
run units from accessing or updating the realm.

While the allow mode says what your run unit will allow other run units to
do, the access mode says that your run unit will either read or write records
(RETRIEVAL or UPDATE).

Database Programming with VAX COBOL 15-39

Because the UPDATE access mode can lock out other users, use it only for
applications that perform database updates. If an application accesses the
database for inquiries only, use the RETRIEVAL access mode. The RETRIEVAL
mode also prevents a run unit from accidentally updating the database.

The combination of the allow mode and the access mode is called the usage mode.
There are eight READY usage modes as follows:

* CONCURRENT RETRIEVAL

¢ CONCURRENT UPDATE

* PROTECTED RETRIEVAL (the system default)
¢ PROTECTED UPDATE

¢ EXCLUSIVE RETRIEVAL

¢ EXCLUSIVE UPDATE

* BATCH RETRIEVAL

* BATCH UPDATE

Use the CONCURRENT usage modes for applications requiring separate run
units to simultaneously access the database. They allow other run units to
perform a READY statement on your realm, and possibly change or delete the
database records in that realm.

Use the PROTECTED usage modes only when unrestricted access might produce
incorrect or incomplete results. Protected access prevents other run units from
making changes to the data in your realm. However, run units in RETRIEVAL
mode can still access (read-only) your realm.

Use the EXCLUSIVE usage modes only when you want to lock out all other
users. The EXCLUSIVE mode speeds processing for your run unit and prevents
other run units from executing a READY statement on your realm. When you
specify EXCLUSIVE access, use only the realms you need. Eliminating the use
of unnecessary realms minimizes lockout. Use the EXCLUSIVE allow mode to
get the best performance from a single run-unit application. Care must be taken,
however, because other run units are locked out and must wait for the exclusive
run unit to finish before it can begin operations.

Use the BATCH RETRIEVAL usage mode for concurrent run units to update the
realm. Use the BATCH UPDATE usage mode to access or update any data in
the realm while preventing concurrent run units from accessing or updating the
realm.

For more information on READY usage mode conflicts, see the READY statement
in the VAX COBOL Reference Manual. It summarizes the effects of usage mode
options on run units readying the same realms.

15.24.1.1 Record Locking

Concurrent run units can reference realms that map to the same storage area;
the same records can be requested by more than one transaction at the same -
time. If two different transactions were allowed to modify the same data, that
data would be rendered invalid. Each modification to the original data would be
made in ignorance of other modifications, and with unpredictable results. VAX
DBMS preserves the integrity of data shared by multiple transactions. It also
provides levels and degrees of record locking. You can control access to, or lock:

* All records in a realm you intend to access

15-40 Database Programming with VAX COBOL

* Individual records as they are retrieved by DML statements

You can also lock records totally or allow some retrieval functions.

Record locking begins with the execution of the first READY statement in the run
unit. At that time the DBCS is told of your storage area locking requirements.

If you specify EXCLUSIVE allow mode, no other run unit is allowed to access
records in the specified realms. This is all the locking that the DBCS need do. If
you specify CONCURRENT or PROTECTED modes, the DBCS initiates locking
at the record level.

Individual records are locked as they are retrieved by the run unit. The degree
of locking depends on the specific DML command used. For example, if your run
unit executes a FETCH or FIND statement, the DBCS sets a read-only record
lock, allowing other run units to read, but not update, the records. This lock is
also set if your run unit assigns the database key associated with the record to a
keeplist with the KEEP verb. (Note if you use FETCH or FIND FOR UPDATE, a
no-read lock is placed on the specified record.)

As a record is retrieved, the lock is held at this level until there are no more
currency indicators pointing to the record. If the program assigns a record to
a keeplist, the lock is held by your run unit until it frees the record from the
keeplist with a FREE statement. However, if a currency indicator points to a
record whose database key is also in a keeplist, then a FREE statement to that
keeplist entry still leaves the read-only lock active for that record. Similarly, if
the same database key is in several keeplists, then freeing it from one keeplist
does not release the other read-only locks.

However, the DBCS grants a no-read access lock if your run unit specifies a DML
update verb, such as STORE, CONNECT, or MODIFY. Your run unit retains the
lock on this record until the change is committed to the database by the DML
COMMIT verb or the change is terminated or canceled by ROLLBACK.

The Run-Time System notifies the DBCS each time a run unit requests a locked
record, thus keeping track of which records are locked and who is waiting for
which records. This logging helps the DBCS determine whether a conflict exists,
such as multiple run units requesting, but not being allowed, to access or change
the same record. For more information on record locking, refer to the VAX DBMS
documentation on database design and programming.

15.24.2 COMMIT and ROLLBACK

When you are in CONCURRENT UPDATE mode, any changes made to a record
lock the record and prevent its access by other run units. For example, if

a program updates 200 customer records in one transaction, the 200 customer
records are unavailable to other run units. To minimize lockout, use the COMMIT
statement as often as possible.

The COMMIT statement makes permanent all changes made to the database,
frees all locks, and nulls all currencies. It also establishes a quiet point for your
run unit.

The RETAINING clause can be used with the COMMIT statement. COMMIT
RETAINING does not empty keeplists; retains all currency indicators; does not
release realm locks; demotes no-read locks to read-only locks; then releases locks
for all records except those in currency indicators or keeplists and makes visible
any changes made to the database.

Database Programming with VAX COBOL 15-41

To use COMMIT properly, you need to know about application systems. For
example, you might want to execute a COMMIT each time you accomplish a
logical unit of work. Or, if you were updating groups of interdependent records
like those in Figure 15-35, you would execute a COMMIT only after updating a
record group.

Figure 15-35: Using the COMMIT Statement

Program Statement Groups of Interdependent Records

RECORD 1 (transfers data to RECORD 2)
RECORD 2 (transfers data to RECORD 1)
RECORD 3 (summarizes data changes for the group)

RECORD 4 (adds a credit amount to RECORD 5)

. RECORD 5 (updates data in RECORD 6)

. RECORD 6

RECORD 7 (summarizes data changes for the group)

ZK-6065-GE

The ROLLBACK statement cancels all changes made to the database since the
last executed READY statement and returns the database to its condition at the
last quiet point. The DBCS performs an automatic ROLLBACK if your run unit
ends without executing a COMMIT or if it ends abnormally.

In Example 15-5 an order-processing application totals all items ordered by a
customer. If the order amount exceeds the credit limit, the program executes a
ROLLBACK and cancels the transaction updates. Notice that the credit limit is
tested for each ordered item, thus avoiding printing of an entire invoice prior to
cancelling the order.

1542 Database Programming with VAX COBOL

Example 15-5: ROLLBACK Statement

READY-UPDATE.
READY TEST REALM CONCURRENT UPDATE.
ek ok Kk kK ek ok ok ok ok ok ok KKk kR ok k Kk ok

* FETCH CUSTOMER ROUTINE *

khkhkkkhkhkhkkkhkhkkkhhkhkkdhhkkxkkhkhhkkk

KAKK A KKK KAAKRKAKRKRAKAA KRR KA AR AR AKX

* FETCH ORDERED ITEMS ROUTINE *
KRKKKA K kIR I RAKhhkhhkkkrkkkkkkkkkx

CREDIT-LIMIT-CHECK.
MULTIPLY ORDERED-QUANTITY BY UNIT-PRICE
GIVING ORDER-AMOUNT.

ADD ORDER-AMOUNT TO TOTAL-AMT.

IF TOTAL-AMT IS GREATER THAN CUST-CREDIT-LIMIT
ROLLBACK
PERFORM CREDIT-LIMIT-EXCEEDED

ELSE PERFORM PRINT-INVOICE-LINE.

15.24.3 The Owner and Member Test Condition

The FIND OWNER statement finds the owner of the current of set type, which
may not be the same as the current of run unit. Thus, executing a FIND OWNER
WITHIN set-name when the current of run unit record is not connected to the
specified set returns the owner of the member that is current of set type.

Figure 15-36 shows occurrences of the RESPONSIBLE_FOR set type where
employees are responsible for the design of certain parts.

Figure 15-36: Occurrences of the RESPONSIBLE_FOR Set Type

e o

ZK-1509-GE

Example 15-6 uses the data in Figure 15-36 to perform an analysis of PART D,
PART L, and the work of the engineer responsible for each part. The set retention
class is optional.

Database Programming with VAX COBOL 15-43

Example 15-6: Owner and Member Test Condition

000130 MAIL-LINE ROUTINE.

000140 MOVE Y“PART D" TO.PART_DESC.
000150 PERFORM FIND-PARTS.

000160 MOVE "PART L" TO PART DESC.
000170 PERFORM FIND-PARTS.

000180 GO TO ALL-FINISHED.

000190 FIND-PARTS.

000200 FIND FIRST PART USING PART DESC.
000210 IF PART-IS-MISSING

000220 PERFORM PART-MISSING.
000230 PERFORM PARTS-ANALYSIS.

000240 FIND OWNER WITHIN RESPONSIBLE_FOR.
000250 PERFORM WORKLOAD—-ANALYSIS.
000250 DONE-ANALYSIS.

000260 EXTIT.

When PART L becomes current of run unit, a FIND OWNER (statement 000240)
finds PART D’s owner, thus producing incorrect results. This is because a FIND
OWNER WITHIN set-name uses the current of set type and PART L is not a
member of any RESPONSIBLE_FOR set type occurrence. To prevent this error,
statement 000240 should read:

IF RESPONSIBLE FOR MEMBER
FIND OWNER WITHIN RESPONSIBLE_FOR
ELSE
PERFORM PART-HAS-NO-OWNER.

15.24.4 Using IF EMPTY Instead of IF OWNER

The OWNER test condition does not test whether the current record owns any
member records. Rather, this condition tests if the current record participates
as an owner record. If a record type is declared as the owner of a set type, an
OWNER test for that record type will always be true. Therefore, referring to
Figure 15-36, if EMP4 is the object of an IF RESPONSIBLE_FOR OWNER
test, the result is true because EMP4 is an owner record, even though the set
occurrence is empty.

To test if an owner record owns any members, use the EMPTY test condition. For
example:

IF RESPONSIBLE FOR IS EMPTY PERFORM EMPTY-ROUTINE
ELSE ...

Thus, if EMP4 is the object of an IF RESPONSIBLE_FOR IS EMPTY test, the
result is true because the set occurrence has no members.

15.24.5 Modifying Members of Sorted Sets

If the schema defines a set’s order to be SORTED and you modify any data items
specified in the ORDER IS clause of the schema, the record may change position
within the set occurrence. If the record does change position, the set’s currency
changes to point to the member record’s new position.

15-44 Database Programming with VAX COBOL

Figure 15-37 shows a set occurrence for SORT_SET where MEMBER-B’s key
(KEY 3) was changed to KEY 8. Before altering the record’s key, the set currency
pointed to MEMBER-B, and a FETCH NEXT MEMBER WITHIN SORT_SET
fetched MEMBER-C. However, the modification to MEMBER-B’s key repositions
the record within the set occurrence. Now, a FETCH NEXT MEMBER WITHIN
SORT_SET fetches the MEMBER-D record.

Figure 15-37: Modifying Members of Sorted Sets

SORT-OWNER

KEY 1

BEFORE MODIFYING MEMBER B

MEMBER-A

MEMBER-B KEY 3
SORT-OWNER

MEMBER-A KEY 1
MEMBER-C KEY 6

MEMBER-D KEY 9

(CURRENT OF SET) —» MEMBER-C KEY 6

AFTER MODIFYING
MEMBER B

MEMBER-D KEY 9

MEMBER-B KEY 8)-=— (CURRENT OF SET)

ZK-1510-GE

When you change the contents of a data item specified in the ORDER IS SORTED
clause and you do not want the set’s currency to change, use the RETAINING
clause with the MODIFY statement. Thus, MODIFY repositions the record and
RETAINING keeps the currency indicator pointing at the position vacated by
the record. Figure 15-38 shows how the following example retains currency for
SORT_SET.

FETCH NEXT WITHIN SORT SET.
IF MEMBER KEY = "KEY 3"
MOVE "KEY 8" TO MEMBER KEY
MODIFY MEMBER KEY RETAINING SORT_SET.

Database Programming with VAX COBOL 1545

Figure 15-38: After Modifying MEMBER_B and Using RETAINING

SORT-OWNER

MEMBER-A KEY 1 MEMBER-D

LN
/ POSTION VACATED ™\
BY MEMBER-B

“(CURRENT OF SET) .~
~ -

S —— —

MEMBER-B

MEMBER-C KEY 6

ZK-1512-GE

If MEMBER_B’s key was changed to KEY 4, the record’s position in the set
occurrence would not change, and a FETCH NEXT WITHIN SORT_SET would
fetch MEMBER_C.

15.24.6 CONNECT and DISCONNECT

When the set membership class is MANUAL, use the CONNECT statement

to link a member record to its set occurrence. You can also use CONNECT for
AUTOMATIC sets, provided that the retention class is OPTIONAL and you have
disconnected the record.

When you use the CONNECT statement, specify the set or sets where the record
is to be connected. Executing a CONNECT statement without the set list clause
connects the record to all sets in which it can be, but is not yet, a member.

Before you execute a CONNECT statement, be sure that currency for the
specified set type points to the correct set occurrence. If not, the member record
will participate in the wrong set occurrence. (For more information on currency,
see Section 15.22 and Section 15.23.) You cannot execute a CONNECT for a
record that participates as an owner of the specified set.

If the set retention class is OPTIONAL, use the DISCONNECT statement to
remove a member record from a specified set. The DISCONNECT statement does
not delete a record from the database.

When you use the DISCONNECT statement, specify the sets from which the
record will be disconnected. Executing a DISCONNECT without the set list
clause disconnects the record from all the sets in which it participates as
an optional member. You cannot execute a DISCONNECT for a record that
participates as an owner of the specified set or that has a set retention class

15-46 Database Programming with VAX COBOL

of FIXED or MANDATORY. Refer to the VAX COBOL Reference Manual for an
explanation of how set membership class affects certain DML verbs.

15.24.7 RECONNECT

Use the RECONNECT statement to remove a member record from one set
occurrence and connect it to another occurrence of the same set type, or to a
different position within the same set. To transfer a member record:

1. Use the FETCH (or FIND) statement to select a record in the set occurrence.
This can be either a member or an owner of the set occurrence you want to
connect to.

2. Use the FETCH (or FIND) statement with the RETAINING clause to transfer
the member record you want. This keeps the currency for the targeted record.

3. Execute a RECONNECT statement using the WITHIN clause.
The RECONNECT statement is useful in applications such as production control
where manufactured items move down an assembly line from one work station

to another. In Figure 15-39, work stations are the owner records and assemblies
are the member records.

Figure 15-39: Occurrence Diagram Prior to RECONNECT

ASSEMBLY_SET

WORK STATION
2
ASSEMBLY F

WORK STATION
1
ASSEMBLY R

WORK STATION
3
@ ASSEMBLY B

WORK STATION
4

ASSEMBLY H

ZK-1513-GE

Example 15-7 transfers ASSEMBLY R, a machine base, to WORK STATION 2
for electrical assembly. The order of insertion is LAST.

Figure 15-40 shows the ASSEMBLY_SET after execution of the RECONNECT
statement. Notice the ASSEMBLY A record replaces the R record’s position in the
WORK STATION 1 set occurrence. Also, execution of the RECONNECT makes
the ASSEMBLY R record current for the ASSEMBLY_SET.

Database Programming with VAX COBOL 15-47

Example 15-7: RECONNECT Statement

GET-WORK~STATION.

MOVE 2 TO WORK_STATION_ID.

FIND FIRST WORK_STATION USING WORK_STATION_ID.

MOVE "R"™ TO ASSEMBLY_ ID.

FIND FIRST ASSEMBLY USING ASSEMBLY . ID

RETAINING ASSEMBLY SET.

LR SR E LSS TS LSS S S SEEEEE LRSS EE S LS LSS SRS SRS EEEEEE SRS
* The RETAINING clause retains work station 2 as *
* current of ASSEMBLY SET. Otherwise, the found member *
* would be current of set and the RECONNECT would fail. *
KA AR R AR KR AR AR AR KA AR AR AR AR AR AR A AR A AR A AAARAKRR AR AARAAA AR AA A ARA AKX

RECONNECT ASSEMBLY WITHIN ASSEMBLY_ SET.

Figure 15-40: Occurrence Diagram After RECONNECT

ASSEMBLY_SET

WORK STATION
1

WORK STATION
2
ASSEMBLY A @ ASSEMBLY R

WORK STATION
3
@ ASSEMBLY B

WORK STATION
4

ZK-1514-GE

15.24.8 ERASE ALL

The ERASE statement deletes one or more records from the database. However,
it can delete more than you intended. Accidental deletes can occur because of the
ERASE statement’s cascading effect. The cascading effect can happen whenever
the erased record is the owner of a set. Thus, if the current record is an owner of
a set type, an ERASE ALL deletes:

* The current record.

* All records in sets owned by the current record.

15-48 Database Programming with VAX COBOL

¢ Any records in sets owned by those members. Note that this is a repetitive
process.

This is called a cascading delete.

The occurrence diagrams in Figure 15-41 show the results of using the ERASE
ALL statement.

Figure 15-41: Results of an ERASE ALL

PRIOR TO ERASE ALL AFTER ERASE ALL

s (s

-

ZK-1515-GE

The ERASE ALL statement is the only way to erase an owner of sets with
MANDATORY members.

15.24.9 ERASE Record-Name

If you do not use the ERASE ALL statement but use the ERASE record-name,

and the erased record is the owner of a set, the ERASE statement deletes:

¢ The current record.

¢ All FIXED members of sets owned by the current record.

¢ All FIXED members of sets owned by records in rule 2. Note that this is a
repetitive process.

If the current record owns sets with OPTIONAL members, these records are

disconnected from the set, but remain in the database.

The occurrence diagrams in Figure 15-42 show the results of using the ERASE
record-name statement when affected members have an OPTIONAL set
membership. In this figure, B records are FIXED members of the SET_B set
and C records are OPTIONAL members of the SET_C set. Notice that records

Database Programming with VAX COBOL 15-49

C1 and C2 are disconnected from the set, but remain in the database while B1
through B3 are erased.

Figure 15-42: Results of an ERASE Record-Name (with Both OPTIONAL and
FIXED Retention Classes)

PRIOR TO ERASE <record—-name> AFTER ERASE <«record—-name>

ZK-1516-GE

Remember, records removed from a set but not deleted from the database can still
be accessed.

15.24.10 Freeing Currency Indicators

Use the FREE database-key-id statement to null the currency indicators for
realms, records, sets, or the run unit. You use the FREE statement: (1) to
establish a known currency condition before executing a program routine, and (2)
to release record locks.

15.24.10.1 Establishing a Known Currency Condition

Establishing a known currency condition is helpful in many situations—for
example, if you have a program that performs a customer analysis and prints
three reports. The first report prints all customers with a credit rating greater
than $1,000, the second report prints all customers with a credit rating greater
than $5,000, and the third report prints all customers with a credit rating greater
than $10,000. Because some customers will appear on more than one report, you
want each report routine to start its customer analysis with the first customer in
the database.

15-50 Database Programming with VAX COBOL

By using the FREE CURRENT statement at the end of a report routine, as shown
in Example 15-8, you null the currency and allow the next print routine to start
its analysis at the first customer.

Example 15-8: FREE CURRENT Statement

MAIN-ROUTINE.

READY TEST REALM CONCURRENT RETRIEVAL.

PERFORM FIRST-REPORT-HEADINGS.

PERFORM PRINT-FIRST-REPORT THRU PFR-EXIT
UNTIL AT-END = "Y".

MOVE "N" TO AT-END.

PERFORM SECOND-REPORT-HEADINGS.

PERFORM PRINT-SECOND-REPORT THRU PSR-EXIT
UNTIL AT-END = "Y".

MOVE "N" TO AT-END.

PERFORM THIRD-REPORT-HEADINGS.

PERFORM PRINT-THIRD-REPORT THRU PTR-EXIT
UNTIL AT-END = "Yy".

MOVE "N" TO AT-END.

STOP RUN.
PRINT-FIRST-REPORT.
FETCH NEXT CUSTOMER MASTER
AT END FREE CURRENT
MOVE "Y" TO AT-END.
IF AT-END = "N" AND
CUSTOMER CREDIT RATING IS GREATER THAN 1000
PERFORM PRINT-ROUTINE.
PFR~EXIT.
EXIT.
PRINT-SECOND-REPORT.
FETCH NEXT CUSTOMER MASTER
AT END FREE CURRENT
MOVE "Y" TO AT-END.
IF AT-END = "N" AND
CUSTOMER CREDIT RATING IS GREATER THAN 5000
PERFORM PRINT-ROUTINE.
PSR-EXIT.
EXIT.
PRINT-THIRD-REPORT.
FETCH NEXT CUSTOMER MASTER
AT END MOVE "Y" TO AT-END.
IF AT-END = "N" AND
CUSTOMER CREDIT RATING IS GREATER THAN 10000
PERFORM PRINT-ROUTINE.
PTR-EXIT.
EXIT.

The FREE CURRENT statement in the PRINT-FIRST-REPORT paragraph
nulls the default run-unit currency, thereby providing a starting point

for the PRINT-SECOND-REPORT paragraph. The FREE CURRENT
statement in the PRINT-SECOND-REPORT paragraph does the same for the
PRINT-THIRD-REPORT paragraph. Thus, by nullifying the default run-unit
currency, the FREE CURRENT statements allow the first execution of the
FETCH NEXT CUSTOMER_MASTER statement to fetch the first customer
master in TEST_REALM.

Database Programming with VAX COBOL 15-51

15.24.10.2 Releasing Record Locks

Regardless of the READY mode used, you always have a record lock on the
current of run unit. Even the READY CONCURRENT RETRIEVAL mode locks
the current record and puts it in a read-only condition. Furthermore, if you are
traversing the database, the current record for each record type you touch with
a DML statement is locked and placed in a read-only condition. Record locking
prevents other users from updating any records locked by your run unit.

A locked record can prevent accessing of other records. Figure 15-43 shows PART
A locked by run unit A. Assume PART A has been locked by a FETCH statement.
If run unit B is in READY UPDATE mode and tries to: (1) update PART A,
and (2) find all of PART A’s member records and their vendor owners, then run
unit B is locked out and placed in a wait state. A wait state occurs when a run
unit cannot continue processing until another run unit completes its database
transaction. Because run unit B uses PART A as an entry point for an update,
the lock on PART A also prevents access to PART A’s member records and the
vendor owners of these member records.

Figure 15-43: Record Locking

PART A (LOCKED BY RUN-UNIT A) VEND 1 VEND 2

S-1 “

S-7

ZK-1517-GE

If a record is not locked by a STORE or a MODIFY statement, or the database
key for the record is not in a keeplist, you can unlock it by using the FREE
CURRENT statement. By using the FREE CURRENT statement, you reduce
lockout and optimize processing for other run units.

15.24.11 FIND and FETCH Statements

The FIND and FETCH statements locate a record in the database and make that
record the current record of the run unit. The FETCH statement also copies the
record to the user work area (UWA), thus giving you access to the record’s data.
The FIND does not place a record in the UWA. However, if your only requirement
is to make a record current of run unit, use the more efficient FIND statement.
For example, use the FIND statement if you want to connect, disconnect, or
reconnect without examining a record’s contents.

15-52 Database Programming with VAX COBOL

15.24.12 FIND ALL Option

The FIND ALL statement puts the database key values of one or more records
into a keeplist. (See the description of FIND ALL in the VAX COBOL Reference
Manual for syntax details.)

The following example locates all PART records with a PART STATUS of J and
puts their dbkey values in keeplist TWO.

FIND ALL TWO PART USING PART STATUS
PART_STATUS X(1l) = J

15.24.13 FIND NEXT and FETCH NEXT Loops

If you have a FIND NEXT or FETCH NEXT loop in your program, the first
execution of the loop is the same as executing a FIND FIRST or FETCH FIRST.
Unless you properly initialize them, currency indicators can affect selection of the
specified record. For example, if ITEM B in Figure 1544 is current for
INV_ITEMS, a FIND NEXT INV_ITEMS makes ITEM C the current record

for the run unit. You can null a currency by executing a FREE CURRENT
statement.

Figure 15-44: Using FIND NEXT and FETCH NEXT Loops

ACME SUPPLY

WAREHOUSE SET SUPPLIER_SET

v rmems) C_mema_D—_mem_>—_meme_D>—_imemp_>—C_meME

ZK-1518-GE

Database Programming with VAX COBOL 15-53

Example 15-9 makes the INV_ITEMS currency null prior to executing a FETCH
NEXT loop.

Example 15-9: FETCH NEXT Loop

000100 GET-WAREHOUSE.

000110 MOVE "A"™ TO WHSE-ID.

000120 FIND FIRST WHSE REC USING WHSE-ID.
000130 UPDATE-ITEM.

000140 MOVE "B" TO ITEM-ID.

000150 FETCH FIRST WITHIN WAREHOUSE_SET
000160 USING ITEM-ID.

hhkhkkhkhkkhkhkhhkhkkhhhkkhhxkkhkrxrhxkxk%k

* INVENTORY UPDATE ROUTINE *
AAKKKKKRKKRRKRKAKRKAKRK KRR KRR KKK

AR A KA A AT AL AR IR A KA A A AT AA AR A IR A AAI AR A KA A Ak xhkhkkx

* The next statement nulls the run unit currency. *
* Therefore, the first execution of the FETCH NEXT *
* gets the first INV_ITEMS record. *
AKRKEK KKK KRR K AKR KRR KR AR AR KA AR K AR KR A KR AR KR AR KR AR A AR AR R A AR KA RN AX K

000170 FREE CURRENT.

000180 ANALYZE-INVENTORY.

000190 FETCH NEXT INV_ITEMS

000200 AT END GO TO END-OF-PROGRAM.

000210 GO TO ANALYZE-INVENTORY.

You can also use FETCH NEXT and FIND NEXT loops to walk through a set
type. Assume you have to walk through the WAREHOUSE_SET and reduce the
reorder point quantity by 10 percent for all items with a cost greater than $500.
Furthermore, you also want to check the supplier’s credit terms for each of these
items. You could perform the task as shown in Example 15-10.

Example 15-10: Using a FETCH NEXT Loop to Walk Through a Set Type

000100 FETCH-WAREHOUSE.

000110 FETCH NEXT WHSE_REC

000120 AT END PERFORM END-QF-WAREHOUSE
000130 PERFORM WRAP-UP.

000140 ITEM-LOOP.

000150 FETCH NEXT INV_ITEM WITHIN WAREHOUSE SET
000160 AT END

000170 FIND OWNER WITHIN WAREHOUSE_ SET
000180 PERFORM FETCH-WAREHOUSE.

000190 IF INV_ITEM COST IS GREATER THAN 500
000200 PERFORM SUPPLIER-ANALYSIS.

000210%* Reduce reorder point quantity by 10%.
000220 MODIFY INV_ITEM.

000230 GO TO ITEM—-LOOP.

(continued on next page)

15-54 Database Programming with VAX COBOL

Example 15-10 (Cont.): Using a FETCH NEXT Loop to Walk Through a Set

Type
000240 SUPPLIER-ANALYSIS.
000250 IF NOT SUPPLIER SET MEMBER
000260 DISPLAY "NO SUPPLIER FOR THIS ITEM"
000270 EXIT.
000280 FETCH OWNER WITHIN SUPPLIER_SET.
000290%* Check credit terms.

Notice the FIND OWNER WITHIN WAREHOUSE_SET statement on line
000170. At the end of a WAREHOUSE_SET collection, statement 000170 sets
the WAREHOUSE_SET type currency to the owner of the current occurrence.
This allows the next execution of FETCH NEXT WHSE_REC to use current of
record type WHSE_REC to find the next occurrence of WHSE_REC. Without
statement 000170, a FETCH NEXT WHSE_REC would use the current of run
unit, which is an INV_ITEM record type.

15.24.14 Qualifying FIND and FETCH

You can locate records by using the contents of data items as search arguments.
You can use more than one qualifier as a search argument. For example, assume
you want to print a report of all employees in department 5 with a pay rate of
$7.50 per hour. You could use the department number as a search argument and
use a conditional test to find all employees with a pay rate of $7.50. Or you could
use both the department number and pay rate as search arguments, as follows:

000500 SETUP-QUALIFIES.

000510 MOVE 5 TO DEPARTMENT-NUMBER.

000520 MOVE 7.50 TO EMPLOYEE-RATE.

000530 FREE CURRENT.

000540 FETCH-EMPLOYEES.

000550 FETCH NEXT EMPLOYEE

000560 USING DEPARTMENT-NUMBER EMPLOYEE-RATE
000570 AT END GO TO EXIT-ROUTINE.
000580 PERFORM EMPLOYEE-PRINT.

000590 GO TO FETCH-EMPLOYEES.

You can also locate records by using a WHERE clause to designate a conditional
expression as a search argument. The following example fetches the first
SUPPLY record whose SUP_LAG_TIME is 2 days or less.

000450 FETCH-SUPPLY.

000460 FETCH FIRST SUPPLY

‘000470 WITHIN PART_INFO

000480 WHERE SUP_LAG_TIME LESS THAN 2
000490 AT END GO TO EXIT-ROUTINE.

Database Programming with VAX COBOL 15-55

15.25 Handling Database Exception Conditions

This section discusses how to program for database exception conditions.

15.25.1 AT END Phrase

Use the AT END phrase of the FETCH and FIND statements to handle the end
of a collection of records condition. Your program will terminate if: (1) an at end
condition occurs, (2) the program does not include the AT END phrase, and (3)
there is no applicable USE statement.

15.25.2 ON ERROR Phrase

Use the ON ERROR phrase to transfer execution control to the associated
statements’ error handling routine. Once in this routine your program can
supply useful and effective debugging information. (See Section 15.25.4, and the
VAX COBOL Reference Manual for more information on VAX DBMS Database
Special Registers.) The ON ERROR phrase can be part of every DML statement.
It allows you to gracefully plan the end of a program that would otherwise
terminate abnormally. (In a FETCH or FIND statement, you cannot specify both
the ON ERROR and AT END phrases in the same statement.) For example:

PROCEDURE DIVISION.

RECONNECT PARTS_RECORD WITHIN ALL
ON ERROR DISPLAY "Exception on RECONNECT"
PERFORM PROCESS—-EXCEPTION.

PROCESS-EXCEPTION.
DISPLAY "Database Exception Condition Report".

DISPLAY " ™.
DISPLAY "DB-CONDITION = ", DB-CONDITION
WITH CONVERSION.

DISPLAY "DB-CURRENT-RECORD-NAME = ", DB~CURRENT-RECORD-NAME.
DISPLAY "DB-CURRENT-RECORD-ID = ", DB-CURRENT-RECORD-ID

. WITH CONVERSION.
DISPLAY " ™.
CALL "DBMS$SIGNAL".
STOP RUN.

15.25.3 USE Statement

Planning for exception conditions is an effective way to increase program and
programmer productivity. A program with USE statements is more flexible than
a program without them. They minimize operator intervention and often reduce
or eliminate the time a programmer needs to debug and rerun the program.

The USE statement traps unsuccessful run-time DBMS exception conditions that
cause the execution of a Declarative procedure. A Declarative procedure can:

* Supply useful and effective database debugging information (see
Section 15.25.4 and the VAX COBOL Reference Manual for more information
on VAX DBMS Database Special Registers)

15-56 Database Programming with VAX COBOL

Provide alternate processing paths for specific exception conditions

Two sets of USE statements follow:

The first set, shown in Example 15-11, consists of a single USE statement.
This database declarative executes for any and all database exception
conditions. If you select this set, it must be the only database USE statement
in the Declarative Section. Its format is:

USE [GLOBAL] FOR DB-EXCEPTION.

Example 15-11: A Single USE Statement

PROCEDURE DIVISION.

DECLARATIVES.

200-DATABASE~EXCEPTIONS SECTION. USE FOR DB-EXCEPTION.
DB-ERROR-ROUTINE.

DISPLAY "Database Exception Condition Report™.

DISPLAY Mmoo o e e ",
DISPLAY "DB-CONDITION = ", DB-CONDITION

WITH CONVERSION.
DISPLAY "DB-CUR-REC-NAME = ", DB-CURRENT-RECORD-NAME.
DISPLAY "DB-CURRENT-RECORD-ID = ", DB-CURRENT-RECORD-ID

WITH CONVERSION.

DISPLAY "DB-CUR-REC-ID = ", DB-CRID.
DISPLAY " ".

CALL "DBMSSIGNAL".

END DECLARATIVES.

The second set, shown in Example 15-12, consists of one or more Format 1
USE statements, and one Format 2 USE statement.

Format 1
USE [GLLOBAL] FOR DB-EXCEPTION ON DBMS$_exception-condition [, DBM$_exception-condition]...

A Format 1 database declarative executes whenever a database exception
condition occurs and the corresponding DBM$_exception-condition is explicitly
stated in the USE statement.

Format 2
USE [GLOBAL] FOR DB-EXCEPTION ON OTHER.

A Format 2 declarative executes whenever a database exception condition
occurs and the corresponding DBM$_exception-condition is not explicitly
stated in any Format 1 USE statement.

Database Programming with VAX COBOL 15-57

Example 15-12: Multiple USE Statements

PROCEDURE DIVISION.
DECLARATIVES.
200~DATABASE-EXCEPTIONS SECTION.
USE FOR DB-EXCEPTION ON DBM$_CRELM NULL,
DBM$_CRTYPE_NULL.
200-DATABASE.
PERFORM 300-REPORT-DATABASE-EXCEPTIONS.

IF DB-CONDITION = GO TO ...
IF DB-CONDITION = GO TO ..
STOP RUN.

225-DATABASE-EXCEPTIONS SECTION.
USE FOR DB~EXCEPTION ON DBMS$_DUPNOTALL.
225-DATABASE.
PERFORM 300-REPORT-DATABASE-EXCEPTIONS.
GO TO ...
250-DATABASE-EXCEPTIONS SECTION.
USE FOR DB-EXCEPTION ON OTHER.
250-DATABASE.
PERFORM 300-REPORT-DATABASE-EXCEPTIONS.
EVALUATE DB-CONDITION

WHEN GO TO ..
WHEN GO TO ...
WHEN GO TO ...
WHEN GO TO ...
WHEN GO TO ...
WHEN GO TO ...
WHEN GO TO
WHEN GO TO ...
WHEN GO TO ...
WHEN OTHER PERFORM. ..

STOP RUN.

300-REPORT-DATABASE-EXCEPTIONS.
DISPLAY "Database Exception Condition Report".

DISPLAY " ".
DISPLAY "DB-CONDITION =", DB-CONDITION

WITH CONVERSION.
DISPLAY "DB-CUR-REC-NAME = ", DB-CURRENT-RECORD-NAME .
DISPLAY "DB-CURRENT-RECORD-ID = ", DB~CURRENT-RECORD-ID
DISPLAY " ",

CALL "DBMS$SSIGNAL".

15.25.4 How to Translate DB-CONDITION Values to Exception Messages

VAX DBMS includes the following procedure for exception condition handling:
CALL "DBM$SIGNAL".

Use this procedure when it is necessary to output an exception message rather
than, or in addition to, displaying the numeric value of DB-CONDITION. For
more information on the VAX DBMS database special register DB-CONDITION,
see the VAX COBOL Reference Manual.

15.26 Debugging and Testing VAX COBOL DML Programs

The Database Query utility (DBQ) commands and generic DML statements are
the tools you use to debug and test your COBOL program’s DML statements.
For example, you can use DBQ commands to display currency indicators, test
program loops, or check your program’s execution efficiency.

15-58 Database Programming with VAX COBOL

It is important to eliminate any logic errors prior to running a VAX COBOL
DML program against a live database, because poorly written or incorrect logic
can corrupt a database. You can resolve some logic errors by desk-checking a
program. Desk-checking involves reviewing the logical ordering and proper use
of DML statements; for example, executing a FIND when you intend to execute
a FETCH, or executing a CONNECT instead of a RECONNECT. You can also
use the debugger described in Chapter 3. However, neither method gives you
information on currency indicators and the effects DML statements have on
them.

Another method of debugging VAX COBOL DML programs is to test DML
statements using the DBQ utility. DBQ is an online interactive utility that uses
a split screen to show the results of each execution of a DML statement. It is
also an effective database programming learning tool. For a complete description
of the DBQ utility, refer to the VAX DBMS documentation on data manipulation
and programming.

It is recommended that you use all of these tools to design, test, and debug your
VAX COBOL DML programs.

NOTE

The split screen feature of the DBQ utility is not available to users of
VT52 or VI'05 terminals.

15.27 DBQ Commands and DML Statements

The DBQ utility provides both generic DML statements and DBQ-specific
commands. Generic DML statements are similar to the VAX COBOL DML
statements explained in the VAX COBOL Reference Manual. However, not all
COBOL DML syntax is applicable to the DBQ utility. These statements and
entries do not apply:

¢ SUB-SCHEMA SECTION
* LD statement

* AT END phrase

¢ ON ERROR phrase

* Scope terminators

¢ USE statement

¢ DB statement—Use the DBQ utility BIND command to identify the
subschema you will use for testing and debugging. You cannot access a
subschema until you bind it. If your program has this DB statement:

DB PARTSS3 WITHIN PARTS FOR NEW.
the comparable BIND statement is as follows:
dbg>BIND PARTSS3 FOR NEW

* ANY clause—The DBQ utility does not allow the ANY clause in a Record
Selection Expression. Instead, use the FIRST clause.

¢ DUPLICATE clause—The DBQ utility does not allow the DUPLICATE clause
in a Record Selection Expression. Instead, use the NEXT clause.

* WHERE clause—The operators of this clause are different.

Database Programming with VAX COBOL 15-59

For a complete discussion of generic DML, refer to the VAX DBMS documentation
on data manipulation and programming.

15.28 Sample Debugging and Testing Session

This section shows how to use the DBQ utility for debugging and testing VAX
COBOL DML programs. Because the split screen limits the number of lines that
can be displayed at one time, the split screen figures show the Bachman diagram
only. Corresponding DBQ prompts, entries, and messages follow each Bachman
diagram and are shown in their entirety.

The session tests and finds a logic error in the DML program statements in
Example 15-13. The sample COBOL DML program is intended to:

1. Fetch the first PART in the database with a PART_ID equal to AZ177311
2. Fetch all SUPPLY records for the found PART

3. Check the PART’s SUPPLY records for SUP_RATINGs equal to 0

4

Change all SUP_RATINGS equal to 0 to 5, and print SUPPLY records
VENDOR_SUPPLY owners

5. Change PART’s PART _STATUS to X if one or more of its SUPPLY records has
a SUP_RATING equal to 5

Remember, the database key values displayed on your screen may be different
from those in the examples.

NOTE

If you are currently accessing PARTSS3 with the DBQ utility and have
made any changes to the database, use the ROLLBACK statement to
cancel your changes. Otherwise, you might change the results of the
debugging session.

Example 15-13: Sample VAX COBOL DML Program Statements

DATA DIVISION.
DB PARTSS3 WITHIN PARTS FOR NEW.

PROCEDURE DIVISION.
000-BEGIN.
READY PROTECTED UPDATE.

MOVE "AZ177311" TO PART_ID.

FETCH FIRST PART USING PART_ ID.

MOVE "N" TO END-OF-COLLECTION.

PERFORM A100-LOOP THROUGH A100-LOOP-EXIT
UNTIL END-OF-COLLECTION = "Y".

STOP RUN.

(continued on next page)

15-60 Database Programming with VAX COBOL

Example 15-13 (Cont.): Sample VAX COBOL DML Program Statements

Al100-LOOP.
FETCH NEXT WITHIN PART SUPPLY
AT END MOVE "Y" TO END-OF-COLLECTION
GO TO Al00-LOOP-EXIT.
IF SUP_RATING = "QO"
MOVE "5" TO SUP_RATING
MODIFY SUP_RATING
MOVE 1 TO MODIFY-COUNT
FETCH OWNER WITHIN VENDOR_ SUPPLY
PERFORM PRINT-VENDOR.
IF MODIFY-COUNT = 1
MOVE "X" TO PART_STATUS
MODIFY PART STATUS.
A100-LOOP-EXIT.
EXIT.

The following DBQ session tests and debugs the sample DML program statements
in Example 15-13:

$ DBQ

dbg> BIND PARTSS3 FOR NEW

dbg> READY PROTECTED UPDATE

dbg> SET CURSIG

dbq> FETCH FIRST PART USING PART ID

DBQ prompts you for a PART _ID value:
PART ID [CHARACTER(8)] =Az177311

Entering AZ177311 as the PART ID value causes the Bachman diagram in
Figure 15-45 to appear on your screen.

Database Programniing with VAX COBOL 15-61

Figure 15-45: Split Screen After FETCH FIRST PART USING PART_ID

Legend: [CEERENg POSITION null

PART]
PART SUPPLY
supply
%DEM - I - CURDISPIA, Currency for run unit is 1:2:7
$DBM - I - CURDISPIA, Currency for PART SUPPLY set type is 1:2:7
%DBM - I - CURDISPIA, Currency for PART record type is 1:2:7

%DBM -~ I - CURDISPIA, Currency for MARKETS realm is 1:2:7
PART ID = AZ177311

PART DESC = GASKET

PART STATUS = G

PART SUPPORT = RE

ZK-6067-~-GE

The next DML statement in Figure 15-46 is FETCH NEXT WITHIN
PART_SUPPLY. Although this statement is in a performed loop, you can still test
its logic by executing a series of FETCH NEXT WITHIN PART_SUPPLY until

you find a SUP_RATING equal to 0.

dbg> FETCH NEXT WITHIN PART_ SUPPLY

15-62 Database Programming with VAX COBOL

Figure 15-46: Split Screen After FETCH NEXT WITHIN PART_SUPPLY

Legend: [CRERTANY POSITION null

$DBEM
%DEM
$DEM
$DBM -

HHHH

%DBM - I - CURDISPLA, Currency for MARKETS realm is 3:2:3
SUP_RATING = 0
SUP_TYPE = OEM

PART] vendor
PART SUPPLY VENDOR SUPPLY|
SUPPL

CURDISPIA, Currency for run unit is 3:2:3

- CURDISPLA, Currency for PART SUPPLY set type is 3:2:3

- CURDISPIA, Currency for VENDOR SUPPLY set type is 3:2:3
- CURDISPIA, Currency for SUPPLY record type is 3:2:3

SUP_LAG TIME = 6-10 DAYS

ZK~6068-GE

Because SUPPLY participates in two sets, the Bachman diagram in Figure 15-46
shows the set relationships for SUPPLY. Notice the SUPPLY record has a
SUP_RATING equal to 0. Therefore, you can test the next DML statement.

dbg> MODIFY SUP_RATING
SUP_RATING [CHARACTER(1l)]= 5

Notice how the MODIFY statement causes DBQ to issue a prompt, as shown in
the preceding statement. When you MODIFY or STORE a record, DBQ prompts
you for data entry by displaying the data name and its attributes. After entering
the new SUP_RATING, use the RETURN ke