
VAX COBOL User Manual
Order Number: AA-H632E-TE

This manual explains how to develop VAX COBOL programs; it also describes the features of
the language and how to use VMS features from VAX COBOL.

Revision/Update Information: This revised manual supersedes VAX COBOL User Manual
(Order Number: AA-H632D-TE).

Operating System and Version: VMS Version 5.0 or higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAX COBOL Version 4.3

First Printing, June 1980
Revised, October 1984
Updated, April 1985
Updated, February 1986
Updated, February 1987
Revised, January 1988
Updated, December 1988
Revised, December 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to re­
strictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1980, 1984, 1985, 1986, 1987, 1988, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1
DEC
DEC/CMS
DEC/MMS
DECnet
DEC mate
DECsystem-1 O
DECSYSTEM-20
DEC US
DECwriter
DIBOL

EduSystem
IAS
MASS BUS
PDP
PDT
P/OS
Professional
Q-bus
Rainbow
RSTS
RSX

RT
ULTRIX
UNIBUS
VAX
VAXcluster
VMS
VT
Work Processor

ZK5185

Contents

Preface . xxvii

Summary of Technical Changes . xxix

Part I Developing VAX COBOL Programs

Chapter 1

Chapter 2

2.1

2.2

2.3

2.4

2.5

2.6

Overview of VAX COBOL

Developing VAX COBOL Programs at DCL Command Level

Choosing a Reference Format .
2.1.1 Terminal Reference Format
2.1.2 ANSI Reference Format
2.1.3 Converting Between Reference Formats .

DCL Commands for Program Development

Creating a VAX COBOL Program

Using the COPY Statement in Your Source Program

Compiling a VAX COBOL Program
2.5.1 The COBOL Command
2.5.2
2.5.3
2.5.4
2.5.5

COBOL Command Qualifiers
Compiling Programs with Conditional Compilation Lines
Compiler Error Messages .
Compiler Listings .
2.5.5.1 Source Program Listing
2.5.5.2 Storage Map Portion of Compiler Listing
2.5.5.3 Compilation Summary
2.5.5.4 Compiler Listing Including the /MACHINE_CODE

Qualifier
2.5.5.5 Compiler Listing for a Contained Program

Linking a VAX COBOL Program
2.6.1 The LINK Command
2.6.2 LINK Command Qualifiers
2.6.3 Positional Qualifiers .
2.6.4 Using an Object Module Library .

2-1
2-1
2-2
2-2

2-2

2-5

2-5

2-6
2-6
2-7

2-16
2-16
2-17
2-18
2-20
2-24

2-25
2-28

2-29
2-30
2-31
2-33
2-34

iii

2.7

2.8

Chapter 3

3.1

3.2

3.3

3.4

3.5

2.6.5 Object Libraries .
2.6.5.1 Using System-Supplied Object Module Libraries
2.6.5.2 Defining the Search Order for Libraries
2.6.5.3 Default User Object Module Libraries
2.6.5.4 System Libraries .

2.6.6 Shareable Images .
2.6.6.1 Creating a Shareable Image•................
2.6.6.2 Using Transfer Vectors

2.6.7 Linker Error Messages .

Running a VAX COBOL Program
2. 7 .1 COBOL Run-Time Errors .

Program Switches .. .
2.8. 1 Setting Switches Internally .
2.8.2 Setting Switches for a Process .
2.8.3 Order of Evaluation .
2.8.4 Checking and Controlling Switch Settings
2.8.5 Example Using Program Switches

Using the VMS Debugger

VMS Debugger Concepts

Features of the Debugger .

Getting Started with the Debugger .
3.3.1 Compiling and Linking to Prepare for Debugging

3.3.2
3.3.3

3.3.1.1 Establishing the Debugging Configuration
Starting and Ending a Debugging Session
Issuing Debugger Commands .

Notes on VAX COBOL Support

Sample Debugging Session

Part II Using VAX COBOL Features on VMS

Chapter 4 Numeric Data Handling

4.1

4.2

4.3

4.4

4.5

iv

How the Compiler Stores Numeric Data

Sign Conventions .

Invalid Values in Numeric Items

Evaluating Numeric Items
4.4.1 Numeric Relation Tests
4.4.2
4.4.3
4.4.4

Numeric Sign Tests
Numeric Class Tests
Success/Failure Tests

Using the MOVE Statement
4.5.1 Elementary Numeric Moves

2-35
2-35
2-36
2-36
2-37
2-37
2-37
2-40
2-41

2-42
2-43

2-43
2-44
2-44
2-44
2-44
2-45

3-1

3-2

3-2
3-3
3-3
3-3
3-4

3-9

3-10

4-1

4-1

4-2

4-2
4-2
4-3
4-4
4-4

4-5
4-5

4.6

4.7

Chapter 5

5.1

5.2

5.3

5.4

5.5

Chapter 6

6.1

6.2

6.3

4.5.2
4.5.3

Elementary Numeric Edited Moves
Common Move Errors .

Using the Arithmetic Statements .
4.6.1 Intermediate Results
4.6.2
4.6.3

4.6.4
4.6.5
4.6.6
4.6.7

Specifying a Truncation Qualifier
Using the ROUNDED Phrase
4.6.3.1 ROUNDED with REMAINDER
Using the SIZE ERROR Phrase
Using the GIVING Phrase
Multiple Operands in ADD and SUBTRACT Statements
Common Errors in Arithmetic Statements .

Arithmetic Expression Processing

Nonnumeric Data Handling

Data Organization .
5.1 .1 Group Items .
5.1 .2 Elementary Items .

Special Characters .

Testing Nonnumeric Items
5.3.1 Relation Tests of Nonnumeric Items

5.3. 1. 1 Classes of Data .
5.3.1.2 Comparison Operations .

5.3.2 Class Tests for Nonnumeric Items

Data Movement .. .

Using the MOVE Statement
5.5.1 Group Moves
5.5.2 Elementary Moves

5.5.2.1 Edited Moves .
5.5.2.2 Justified Moves

5.5.3 Multiple Receiving Items
5.5.4 Subscripted Moves
5.5.5 Common Nonnumeric Item MOVE Statement Errors
5.5.6 Using the MOVE CORRESPONDING Statement for Nonnumeric

Items .. .
5.5. 7 Using Reference Modification

Table Handling

Introduction .

Defining Tables .. .
6.2.1 Defining Fixed-Length, One-Dimensional Tables
6.2.2 Defining Fixed-Length, Multidimensional Tables
6.2.3 Defining Variable-Length Tables
6.2.4 Storage Allocation for Tables

6.2.4.1 Using the SYNCHRONIZED Clause

Initializing Values of Table Elements

4-7
4-8

4-8
4-9
4-9
4-9

4-10
4-10
4-11
4-11
4-11

4-12

5-1
5-2
5-2

5-2

5-3
5-3
5-3
5-4
5-4

5-5

5-6
5-7
5-7
5-8
5-9
5-9

5-10
5-10

5-10
5-11

6-1

6-1
6-1
6-4
6-6
6-7
6-8

6-11

v

6.4

Chapter 7

7.1

7.2

7.3

vi

Accessing Table Elements
6.4. 1 Subscripting .
6.4.2 Subscripting with Literals .
6.4.3 Subscripting with Data Names .
6.4.4 Subscripting with Indexes .
6.4.5 Relative Indexing .
6.4.6 Index Data Items .
6.4. 7 Assigning Index Values Using the SET Statement

6.4.7.1 Assigning an Integer Index Value with a SET Statement .. .
6.4.7.2 Incrementing an Index Value with the SET Statement

6.4.8 Identifying Table Elements Using the SEARCH Statement
6.4.8.1 Implementing a Sequential Search
6.4.8.2 Implementing a Binary Search

Using the STRING, UNSTRING, and INSPECT Statements

Concatenating Data Using the STRING Statement
7.1.1 Multiple Sending Items
7.1.2 Using the DELIMITED BY Phrase
7.1.3 Using the POINTER Phrase
7.1.4 Using the OVERFLOW Phrase
7.1.5 Common STRING Statement Errors

Separating Data Using the UNSTRING Statement
7.2.1 Multiple Receiving Items
7.2.2 Controlling Moved Data Using the DELIMITED BY Phrase

7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8

7.2.2.1 Multiple Delimiters
Using the COUNT Phrase
Saving UNSTRING Delimiters Using the DELIMITER Phrase
Controlling UNSTRING Scanning Using the POINTER Phrase
Counting UNSTRING Receiving Items Using the TALLYING Phrase .. .
Exiting an UNSTRING Statement Using the OVERFLOW Phrase
Common UNSTRING Statement Errors

Examining and Replacing Characters Using the INSPECT Statement
7.3.1 Using the TALLYING and REPLACING Options of the INSPECT

7.3.2
7.3.3
7.3.4

7.3.5

7.3.6

7.3.7
7.3.8

Statement
Restricting Data Inspection Using the BEFORE/AFTER Phrase
Implicit Redefinition _
Examining the INSPECT Operation
7.3.4.1 Setting the Scanner
7 .3.4.2 Active/Inactive Arguments .
7 .3.4.3 Finding an Argument Match .
The TALLYING Phrase
7.3.5.1 The Tally Counter
7.3.5.2 The Tally Argument
7 .3.5.3 The Tally Argument List
7 .3.5.4 Interference in Tally Argument Lists
Using the REPLACING Phrase
7.3.6.1 The Search Argument
7 .3.6.2 The Replacement Value .
7.3.6.3 The Replacement Argument
7.3.6.4 The Replacement Argument List
7.3.6.5 Interference in Replacement Argument Lists
Using the CONVERTING Option
Common INSPECT Statement Errors

6-14
6-14
6-14
6-16
6-16
6-17
6-17
6-17
6-18
6-18
6-18
6-18
6-19

7-1
7-1
7-2
7-4
7-4
7-5

7-6
7-6
7-8

7-12
7-12
7-13
7-14
7-15
7-16
7-16

7-17

7-17
7-18
7-19
7-21
7-22
7-22
7-23
7-24
7-24
7-24
7-25
7-26
7-29
7-30
7-30
7-31
7-31
7-32
7-33
7-33

Chapter 8

8.1

8.2

8.~

8.4

8.5

8.6

8.7

8.8

8.9

8.10

Chapter 9

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

The Basics of Handling VAX COBOL Files and Records

VAX Record Management Services

File Attributes

Record Attributes
8.3.1 Record Format .

8.3.1.1 Fixed-Length Records .
8.3.1.2 Variable-Length Records .

8.3.2 Print-Controlled Files .

File Design Considerations .

File Handling .. .
8.5.1 Identifying a File from Your VAX COBOL Program

8.5.1.1 Using the VALUE OF ID Clause for Device
Independence

8.5.1.2 Using Logical Names .
8.5.2 Choosing File Organization and Record Access Mode

8.5.2.1 File Organizations .
8.5.2.2 Record Access Modes .

Opening and Closing Files .

File Compatibility
8.7.1 Data Type Differences
8.7.2 Data Record Formatting Differences

Backing Up Your Files

Low-Volume 1/0 (ACCEPT and DISPLAY)
8.9.1 Mnemonic Names (SPECIAL-NAMES Paragraph)
8.9.2 Logical Name Devices
8.9.3 ACCEPT Statement
8.9.4 DISPLAY Statement

Printing with VAX VFP

Processing Sequential Files

Sequential File Organization .

Design Considerations

Statements for Sequential File Processing

Defining a Sequential File .

Creating a Sequential File

Reading a Sequential File

Updating Records in a Sequential File .

Extending a Sequential File .

8-1

8-2

8-2
8-3
8-4
8-5
8-7

8-7

8-8
8-8

8-9
8-10
8-11
8-11
8-12

8-14

8-15
8-15
8-16

8-16

8-16
8-16
8-17
8-18
8-18

8-18

9-1

9-2

9-2

9-3

9-4

9-6

9-7

9-8

vii

Chapter 10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Chapter 11

11.1

11.2

11.3

11.4

11.5

11.6

11.7

viii

Processing Relative Files

Relative File Organization .

Design Considerations .

Statements for Relative File Processing .

Defining a Relative File

Creating a Relative File .
10.5.1 Sequential Access Mode Creation .
10.5.2 Random Access Mode Creation

Reading a Relative File
10.6.1 Sequential Reading
10.6.2 Random Reading
10.6.3 Dynamic Reading .

Updating a Relative File .
10. 7 .1 Rewriting Relative Records .

10.7.1.1 Sequential Access Mode Rewriting
10.7.1.2 Random Access Mode Rewriting

10.7.2 Deleting Relative Records
10. 7 .2.1 Sequential Access Mode Deletion
10.7.2.2 Random Access Mode Deletion

Processing Indexed Files

Indexed File Organization .

Design Considerations

Statements for Indexed File Processing

Defining an Indexed File .

Creating and Populating an Indexed File .

Reading an Indexed File .
11.6.1 Sequential Reading
11.6.2 Random· Reading
11 .6.3 Dynamic Reading .

Updating an Indexed File .
11.7.1 Sequential Updating
11. 7 .2 Random Updating .
11.7.3 Dynamic Updating

10-1

10-2

10-3

10-4

10-5
10-5
10-6

10-7
10-7
10-8
10-9

10-10
10-10
10-11
10-12
10-13
10-13
10-14

11-1

11-2

11-3

11-3

11-4

11-6
11-6
11-7
11-9

11-10
11-10
11-12
11-14

Chapter 12

12.1

12.2

12.3

12.4

Chapter 13

13.1

13.2

13.3

Chapter 14

14.1

14.2

14.3

14.4

14.5

14.6

14.7

Input/Output Exception Conditions Handling

Planning for the At End Condition

Planning for the Invalid Key Condition

Using File Status Values
12.3.1 VAX COBOL File Status Values
12.3.2 RMS File Status Values .

Using Declarative Procedures to Handle Exception Conditions

Sharing Files and Protecting Records

File-Sharing and Record-Locking Concepts

Ensuring Successful File Sharing
13.2.1 Providing Disk Residency .
13.2.2 Using VMS File Protection .
13.2.3 Determining the Intended Access Mode to a File
13.2.4 Indicating the Access Allowed to Other Streams
13.2.5 Describing Types of Access Streams
13.2.6 Summarizing Related File-Sharing Criteria
13.2. 7 Checking File Operations .
13.2.8 Specifying the OPEN EXTEND in a File-Sharing Environment

13.2.8.1 OPEN EXTEND with a Shared Sequential File
13.2.8.2 OPEN EXTEND with a Shared Relative File
13.2.8.3 OPEN EXTEND with a Shared Indexed File

Using Record Locking
13.3.1 Specifying Automatic Record Locking
13.3.2 Specifying Manual Record Locking .
13.3.3 Locking Error Conditions .

13.3.4
13.3.5

13.3.3. 1 Hard Record Locks ..
13.3.3.2 Soft Record Locks .
Releasing Locks on Deleted Records .
Bypassing a Record Lock .

Using the COBOL SORT and MERGE Statements

ASCENDING and DESCENDING KEV Phrases
14.1.1 Sorting Concepts .

USING and GIVING Phrases

INPUT PROCEDURE and OUTPUT PROCEDURE Phrases

WITH DUPLICATES IN ORDER Phrase

COLLATING SEQUENCE IS Alphabet-Name Phrase ... •

File Organization .

Multiple Sorts

12-1

12-2

12-3
12-3
12-5

12-7

13-1

13-3
13-3
13-3
13-4
13-5
13-5
13-6
13-9

13-11
13-11
13-11
13-12

13-12
13-13
13-14
13-16
13-16
13-17
13-17
13-18

14-1
14-2

14-2

14-3

14-5

14-6

14-6

14-6

ix

14.8 Sorting Variable-Length Records . 14-8

14.9 Preventing 1/0 Aborts . 14-8

14.10 The MERGE Statement . 14-9

14.11 Sample Programs Using the SORT and MERGE Statements 14-9

Chapter 15 Database Programming with VAX COBOL

15.1 The Self-Paced Demonstration Package . 15-1

15.2 VAX COBOL Data Manipulation Language (DML) . 15-2

15.3 Creating a VAX COBOL DML Program . 15-4

15.4 Compiling a VAX COBOL DML Program. 15-4
15.4.1 Copying Database Records in a VAX COBOL Program 15-5
15.4.2 Using the /MAP Compiler Qualifier . 15-5

15.5 Linking a VAX COBOL DML Program. 15-5

15.6 Running a VAX COBOL DML Program . 15-5

15. 7 A Database . 15-6

15.8 Schema . 15-6

15.9 Storage Schema . 15-6

15.1 O Subschema . 15-6

15.11 Stream . 15-7

15.12 Using COD/Plus . 15-8

15.13 Database Records . 15-8

15.14 Database Data Item . 15-8

15.15 Database Key . 15-8

15.16 Record Types . 15-9

15.17 Set Types . 15-9

15.18 Sets . 15-12
15.18.1 Simple Set Relationships . 15-14

15.18.1.1 System-Owned Sets . 15-15
15.18.1.2 Simple Sets . 15-15
15.18.1.3 Forked Sets . 15-16

15.18.2 Multiset Relationships 15-18
15.18.2.1 Many-to-Many Relationships Between Two Types of

Records 15-18
15.18.2.2 Many-to-Many Relationships Between Records of the Same

Type ·. · · · · · · · · · · 15-20
15.18.2.3 One-to-Many Relationships Between Records of the Same

Type ·. · · · · · · · 15-25

x

15.19

15.20

15.21

15.22

15.23

15.24

15.25

Areas

Realms .. .

Run Unit

Currency Indicators .
15.22.1 Current of Realm .
15.22.2 Current of Set Type
15.22.3 Current of Record Type
15.22.4 Current of Run Unit .

Currency Indicators in a VAX COBOL DML Program
15.23.1 Using the RETAINING Clause
15.23.2 Using Keeplists .
15.23.3 Transactions and Quiet Points .

VAX COBOL DML Programming-Tips and Techniques
15.24.1 The Ready Modes . ~

15.24. 1. 1 Record Locking .
15.24.2 COMMIT and ROLLBACK
15.24.3
15.24.4
15.24.5
15.24.6
15.24.7
15.24.8
15.24.9
15.24.10

15.24.11
15.24.12
15.24.13
15.24.14

The Owner and Member Test Condition
Using IF EMPTY Instead of IF OWNER
Modifying Members of Sorted Sets .
CONNECT and DISCONNECT
RECONNECT
ERASE ALL
ERASE Record-Name
Freeing Currency Indicators
15.24.10.1 Establishing a Known Currency Condition
15.24.10.2 Releasing Record Locks .
FIND and FETCH Statements
FIND ALL Option
FIND NEXT and FETCH NEXT Loops
Qualifying FIND and FETCH

Handling Database Exception Conditions .
15.25.1 AT END Phrase
15.25.2 ON ERROR Phrase

15-29

15-29

15-29

15-30
15-30
15-31
15-32
15-32

15-33
15-34
15-36
15-38

15-39
15-39
15-40
15-41
15-43
15-44
15-44
15-46
15-47
15-48
15-49
15-50
15-50
15-52
15-52
15-53
15-53
15-55

15-56
15-56
15-56

15.25.3 USE Statement . 15-56
15.25.4 How to Translate DB-CONDITION Values to Exception Messages 15-58

15.26 Debugging and Testing VAX COBOL DML Programs 15-58

15.27 DBQ Commands and DML Statements . 15-59

15.28 Sample Debugging and Testing Session . 15-60

15.29 Reading a VAX COBOL Subschema Map Listing.. 15-68

15.30

15.29.1 PARTSS1 Subschema Map Listing . 15-69
15.29.2 PARTSS3 Subschema Map Listing . 15-73

Examples
15.30.1
15.30.2
15.30.3
15.30.4
15.30.5

Populating a Database .
Backing Up a Database
Accessing and Displaying Database Information
PARTBOM Sample Run
Creating Relationships Between Records of the Same Type

15-75
15-75
15-83
15-89
15-91
15-92

xi

Chapter 16

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

xii

15.30.6 STOOL Program Parts Breakdown Report-Sample Run 15-96
15.30. 7 Creating New Record Relationships . 15-96

15.30. 7.1 PERSONNEL-UPDATE Sample Run-'-Listing Before
Promotion . 15-102

15.30. 7.2 PERSONNEL-UPDATE Sample Run-Listing After
Promotion . 15-102

Producing Printed Reports with VAX COBOL

Designing the Report .. .

Components of a Report

Accumulating and Reporting Totals

The Logical Page and the Physical Page

Programming the Conventional VAX COBOL Report
16.5.1 Defining the Logical Page in a Conventional Report
16.5.2 Controlling the Spacing in a Conventional Report
16.5.3 Advancing to the Next Logical Page in a Conventional Report

16.5.3.1 Programming for the Page-Overflow Condition in a
Conventional Report .

16.5.3.2 Using a Line Counter .
16.5.4 Printing the Conventional Report .
16.5.5 A Conventional File Report Example .

Programming the Linage-File VAX COBOL Report
16.6.1 Defining the Logical Page in Linage-File Report
16.6.2 Controlling the Spacing in a Linage-File Report
16.6.3 Using the LINAGE-COUNTER
16.6.4 Advancing to the Next Logical Page in a Linage-File Report
16.6.5 Programming for the Page-Overflow Condition
16.6.6 Printing a Linage-File Report .
16.6.7 A Linage-File Report Example

Modes for Printing Reports
16. 7 .1 Directly Allocating a Printer .
16.7.2 Spooling to a Mass Storage Device

Programming the Report Writer Report ..
16.8.1 Using the REPORT Clause in the File Section
16.8.2 Defining the Report Section and the Report File
16.8.3 Defining a Report Writer Logical Page with the PAGE Clause
16.8.4 Describing Report Group Description Entries
16.8.5 Vertical Spacing for the Logical Page .
16.8.6 Horizontal Spacing for the Logical Page .
16.8. 7 Assigning a Value in a Print Line .
16.8.8 Defining the Source for a Print Field .
16.8.9 Specifying Multiple Reports
16.8.10 Generating and Controlling Report Headings and Footings
16.8.11 Defining and Incrementing Totals

16.8.11.1 Subtotaling
16.8.11.2 Crossfooting .
16.8.11.3 Rolling-Forward ..
16.8.11 .4 RESET Option .
16.8.11.5 UPON Option

16-1

16-2

16-5

16-7

16-7
16-7
16-8
16-8

16-9
16-10
16-10
16-10

16-14
16-14
16-16
16-16
16-16
16-16
16-20
16-21

16-23
16-23
16-24

16-24
16-25
16-25
16-25
16-26
16-29
16-30
16-31
16-31
16-32
16-33
16-34
16-34
16-35
16-35
16-36
16-36

16.8.12 Restricting Print Items . 16-37
16.8.13 Processing a Report Writer Report . 16-38

16.8.13.1 Initiating the Report . 16-38
16.8.13.2 Generating a Report Writer Report 16-39
16.8.13.3 Automatic Operations of the GENERATE Statement 16-39
16.8.13.4 Ending Report Writer Processing 16-40
16.8.13.5 Applying the USE BEFORE REPORTING Statement 16-41
16.8.13.6 Suppressing a Report Group . 16-42

16.8.14 Selecting a Report Writer Report Type . 16-42
16.8.14.1 Detail Reporting . 16-42
16.8.14.2 Summary Reporting . 16-43

16.9 Report Writer Examples . 16-43
16-43
16-44
16-49
16-57
16-63
16-71

16.9.1 Input Data .. .
16.9.2 REPORT1-Detail Report Program
16.9.3 REPORT2-Detail Report Program
16.9.4 REPORT3-Detail Report Program
16.9.5 REPORT 4-Detail Report Program
16.9.6 REPORTS-Summary Report Program

16.1 O Solving Report Problems .
16.10.1 Printing More Than One Logical Line on a Single Physical Line
16.10.2 Group Indicating
16.10.3 Fitting Reports on the Page .
16.10.4 Printing Totals Before Detail Lines
16.10.5 Underlining Items in Your Reports
16.10.6 Bolding Items in Your Reports

Chapter 17 Forms for Video Terminals

17.1 Clearing a Screen Area

17.2 Horizontal and Vertical Positioning of the Cursor .

17.3 Assigning Character Attributes to Your Format Entries

17.4 Using the CONVERSION Clause to Display Data

17.5 Handling Data with ACCEPT Options
17 .5.1 Using CONVERSION with ACCEPT Data
17.5.2 Using ON EXCEPTION When Accepting Data with CONVERSION .. .
17 .5.3 Protecting Your Screen ; .
17.5.4 Using NO ECHO with ACCEPT Data
17 .5.5 Assigning Default Values to Data Fields

17.6 Using Keys on Your Terminal to Define Special Program Functions

17.7 Using the EDITING Phrase

Chapter 18 lnterprogram Communication

18.1 Multiple COBOL Program Run-Unit Concepts
18.1 .1 Definition of a Multiple COBOL Program Run Unit
18.1.2 Examples of COBOL Run Units .
18.1.3 Calling Procedures .

16-80
16-80
16-85
16-86
16-86
16-87
16-87

17-3

17-5

17-8

17-10

17-13
17-13
17-14
17-15
17-17
17-18

17-21

17-31

18-1
18-1
18-1
18-3

xiii

xiv

18.2 COBOL Program Attributes
18.2.1 The INITIAL Clause
18.2.2 The EXTERNAL Clause

18.3 Transferring Execution Control .
18.3.1 The CALL Statement
18.3.2 The EXIT PROGRAM Statement
18.3.3 Nesting CALL Statements

18.4 Accessing Another Program's Data Division
18.4.1 The USING Phrase

18.4.1.1 The Linkage Section .

18.5 Communicating with Contained COBOL Programs
18.5.1 The COMMON Clause
18.5.2 Defining and Using the GLOBAL Clause

18.5.2.1 Sharing Data .
18.5.2.2 Sharing Files
18.5.2.3 Sharing Database Resources
18.5.2.4 Sharing Other Resources

18.5.3 Sharing USE Procedures .

18.6 Including Non-COBOL Programs in the Run Unit

18.7 Using VAX COBOL in the Common Language Environment ;

18.8 The VAX Procedure Calling and Condition Handling Standard
18.8.1 Register and Stack Usage .
18.8.2 Return of the Function Value .
18.8.3 The Argument List .

18.9 VMS Run-Time Library Routines

18.1 O VMS System Services Routines

18.11 Calling Routines .. .
18.11 .1 Determining the Type of Call .
18.11.2 Defining the Argument .
18.11.3 Calling the External Routine .
18.11 .4 Calling System Routines .

18.11.4.1 System Routine Arguments .
18.11.4.2 Calling a System Routine in a Function Call
18.11.4.3 Calling a System Routine in a Procedure Call

18.11.5 Checking the Condition Value .
18.11.5.1 Library Return Status and Condition Value Symbols

18.11 .6 Locating the Result .

18.12 Calling Shareable Images .

18.13 Examples .. .

18.14 Additional Information .

18-4
18-4
18-4

18-5
18-5
18-5
18-6

18-8
18-8

18-10

18-12
18-13
18-14
18-14
18-15
18-15
18-15
18-16

18-19

18-23

18-24
18-24
18-25
18-25

18-25

18-26

18-27
18-27
18-28
18-29
18-29
18-29
18-33
18-34
18-34
18-36
18-36

18-36

18-37

18-40

Part Ill VAX COBOL Programming Options and Performance
Considerations

Chapter 19 Using the REFORMAT Utility

19.1 ANSI-to-Terminal Format Conversion . 19-1
19.1.1 ANSI-to-Terminal REFORMAT Command String 19-2

19.2 Terminal-to-ANSI Format Conversion . 19-2
19.2.1 Terminal-to-ANSI REFORMAT Command String 19-3

19.3 REFORMAT Error Messages . 19-4

Chapter 20 Optimizing Your VAX COBOL Program

20.1 Numeric Data Representation . 20-1
20.1.1 Scaling and Mixing Data-Types . 20-2
20.1.2 Using Significant Digits . 20-2

20.2 Choices in Procedure Division Statements. 20-2
20.2.1 Using ADD, SUBTRACT, MULTIPLY, and DIVIDE Instead of

20.2.2
20.2.3
20.2.4
20.2.5

COMPUTE... 20-2
Using GO TO DEPENDING ON Instead of IF, GO TO
Using Indexing Instead of Subscripting .
Using PERFORM n TIMES Instead of PERFORM VARYING
Using SEARCH ALL Instead of SEARCH

20-3
20-3
20-4
20-4

20.3 Using VAX COBOL for 1/0 Operations . 20-5
20.3.1 Using the APPLY Clause . 20-6

20.3.1.1 Using the PREALLOCATION Phrase of the APPLY
Clause . 20-6

20.3.1.2 Using the EXTENSION Phrase of the APPLY Clause 20-7
20.3.1.3 Using the DEFERRED-WRITE Phrase of the APPLY

Clause . 20-7
20.3.1.4 Using the FILL-SIZE ON Phrase of the APPLY Clause 20-7
20.3.1.5 Using the WINDOW Phrase of the APPLY Clause. 20-7

20.3.2 Using Multiple Buffers. 20-7
20.3.3 Sharing Record Areas . 20-8

20.4 Optimizing File Design . 20-10
20.4.1 Sequential Files . 20-1 O
20.4.2 Relative Files . 20-1 O

20.4.3

20.4.2.1 Maximum Record Number (MRN).... 20-11
20.4.2.2 Cell Size . 20-11
20.4.2.3 Bucket Size . 20-11
20.4.2.4 File Size. 20-13
Indexed Files
20.4.3.1 Optimizing Indexed File 1/0 .
20.4.3.2 Calculating Key Index Levels
20.4.3.3 Caching Index Roots

20-14
20-15
20-19
20-19

xv

Appendix A Compiler Implementation Limitations

Appendix B Error Messages

B.1 Run-Time Errors .
B.1.1 Sample Run-Time Error .

B.2 Program Run Errors .
B.2.1 Faulty Data .
8.2.2 Program Logic Errors .

8.3 Run-Time Input/Output Errors

8.4 Compiler Messages .

Appendix C Using the COBOL-81 SUBSET Flagger

C.1 Using VAX COBOL to Produce Compatible COBOL-81 Source Programs

C.2 Using the /STANDARD:PDP11 Qualifier

C.3 VAX COBOL Flagging Procedures

C.4 Source Level Differences and Incompatibilities
C.4.1 General Language Concepts .
C.4.2 Unsupported Language Elements by Division

C.5 Alignment of COMP Data Items .

Appendix D Additional Information on COBOL Command Qualifiers

D.1 Using the /FLAGGER Qualifier .
D.1.1 What Is the /FLAGGER Qualifier
D.1.2 /FLAGGER Options
D.1.3 FIPS Levels

D.2 /INSTRUCTION_SET Qualifier
D.2.1 Overview of VAX Architectural Subsetting
D.2.2 How Subsetting May Affect VAX COBOL Programs
D.2.3 Determining the Instruction Set
D.2.4 Selecting an Option

D.3 Differences Using /STANDARD:85 and /STANDARD:V3
D.3.1 Overview
D.3.2 DIVIDE Statement
D.3.3 STRING Statement
D.3.4 UNSTRING Statement
D.3.5 INSPECT Statement
D.3.6 PERFORM ... VARYING ... AFTER Statement
D.3. 7 PIC P Digits
D.3.8 Size of Variable Length Tables
D.3.9 EXIT PROGRAM Statement

xvi

8-1
8-1

B-5
8-5
B-6

8-7

8-12

C-1

C-1

C-2

C-2
C-2
C-3

C-9

D-1
D-1
D-2
D-2

D-3
D-4
D-4
D-4
D-4

D-6
D-6
D-6
D-7
D-7
D-8
D-8
D-9

D-10
D-10

D.3.11 OPEN 1-0 and EXTEND Modes

Appendix E Optional Programming Productivity Tools

E.1

E.2

E.3

E.4

E.5

E.6

Index

VAX Language-Sensitive Editor (LSE) and the VAX Source Code Analyzer
(SCA)
E.1.1 Preparing an SCA Library
E.1.2 Starting and Terminating an LSE or an SCA Session
E.1.3 Compiling from Within LSE
E.1.4 Notes on VAX COBOL Support

E.1 .4.1 Programming Language Placeholders and Tokens
E.1.4.2 Placeholder and Design Comment Processing

E.1.5 LSE and SCA Examples
E.1 .5.1 Data Definition
E.1.5.2 IF Statement

VAX COD/Plus
E.2.1 Overview of Data Dictionaries .
E.2.2 COD/Plus Features
E.2.3

E.2.4
E.2.5

E.2.6
E.2.7
E.2.8

COD/Plus Concepts
E.2.3.1 COD/Plus Dictionary Formats
E.2.3.2 Dictionary Path Names .
E.2.3.3 Dependency Recording
E.2.3.4 Compiled Module Entities
E.2.3.5 Entities ·
E.2.3.6 Relationships
E.2.3.7 Pieces Tracking
E.2.3.8 Distributed Dictionary Access
E.2.3.9 Data Security and Integrity
E.2.3.10 COD/Plus Call Interface
Creating Data Definitions .
Accessing Data Definitions
E.2.5.1 Using the COPY FROM DICTIONARY Statement
E.2.5.2 Using the RECORD DEPENDENCY Statement
Using the /DEPENDENCY _DATA Qualifier
Viewing COD/Plus Relationships
VAX COBOL Support for COD/Plus Data Types :

VAX COBOL GENERATOR
E.3.1 VAX COBOL GENERATOR Features

VAX Data Base Management System (VAX DBMS)

VAX DEC/Test Manager

VAX DEC/Code Management System (CMS)

D-12

E-1
E-2
E-3
E-3
E-4
E-4
E-5
E-8
E-9

E-10

E-12
E-13
E-13
E-13
E-13
E-14
E-14
E-15
E-15
E-16
E-16
E-16
E-17
E-17
E-17
E-18
E-18
E-18
E-19
E-20
E-21

E-22
E-23

E-24

E-24

E-25

xvii

Examples
2-1 Main Program and Subprograms . 2-38

2-2 Command Procedure to Link a Program as a Shareable Image 2-39

2-3 Transfer Vectors . 2-41

2-4 Using Program Switches . 2-45

3-1 Source Code Used in the Sample Debug Session. 3-10

4-1 Success/Failure Test . 4-5

5-1 Item Concatenation Using Two MOVE Statements. 5-6

5-2 Sample Record Description Using the MOVE CORRESPONDING Statement. 5-11

6-1 One-Dimensional Table . 6-2

6-2 Multiple Data Items in a One-Dimensional Table . 6-2

6-3 Defining a Table with an Index and an Ascending Search Key 6-3

6-4 Defining a Two-Dimensional Table . 6-4

6-5 Defining a Three-Dimensional Table . 6-5

6-6 Defining a Variable-Length Table . 6-7

6-7 Sample Record Description Defining a Table . 6-8

6-8 Record Description Containing a COMP SYNC Item . 6-9

6-9 Adding an Item Without Changing the Table Size . 6-9

6-10 How Adding 3 Bytes Adds 4 Bytes to the Element Length 6-10

6-11 Initializing Tables with the VALUE Clause. 6-11

6-12 Initializing a Table with the OCCURS Clause . 6-12

6-13 Initializing Mixed Usage Items . 6-13

6-14 Initializing Alphanumeric Items . 6-13

6-15 Using a Literal Subscript to Access a Table . 6-15

6-16 Subscripting a Multidimensional Table . 6-15

6-17 Subscripting with Index Name Items . 6-17

6-18 Sample Table . 6-21

6-19 A Serial Search . 6-22

6-20 Using SEARCH and Varying an Index Other Than the First Index 6-22

6-21 Using SEARCH and Varying an Index Data Item. 6-23

6-22 Using SEARCH and Varying an Index Not Associated with the Target Table 6-23

6-23 Doing a Serial Search Without Using the VARYING Phrase 6-24

6-24 A Multiple-Key Binary Search . 6-24

7-1 Using the STRING Statement and Literals . 7-2

7-2 Sample Overflow Condition . 7-5

8-1 Sample Record Description . 8-3

8-2 Determining Fixed-Length Record Size . 8-4

8-3 Determining Fixed-Length Record Size for Files with Multiple Record
Descriptions . 8-4

8-4 Creating Variable-Length Records with the DEPENDING ON Phrase 8-5

8-5 Creating Variable-Length Records with the RECORD VARYING Phrase 8-6

8-6 Creating Variable-Length Records and Using the OCCURS Clause with the
DEPENDING ON Phrase . 8-6

8-7 Defining Fixed-Length Records with Multiple Record Descriptions 8-7

8-8 Defining a Disk File . 8-8

8-9 Defining a Magnetic Tape File . 8-9

8-10 How to Override or Supplement a File Specification at Run Time. 8-10

xviii

8-11

8-12

8-13

9-1

9-2

9-3

9-4

9-5

10-1

10-2

10-3

10-4

10-5

1Q-6

10-7

10-S

10-9

10-10

11-1

11-2

11-3

11-4

11-5

11-6

11-7

12-1

12-2

12-3

12-4

12-5

12-6

12-7

12-8

13-1

13-2

13-3

13-4

14-1

14-2

14-3

14-4

14-5

14-6

14-7

14-8

14-9

14-10

14-11

Sequential File SELECT Statements .

Relative File SELECT Statements .

Indexed File SELECT Statements

Defining a Sequential File .

Creating a Sequential File .

·Reading a Sequential File

Rewriting a Sequential File

Extending a Sequential File .

Defining a Relative File .

Creating a Relative File in Sequential Access Mode .

Creating a Relative File in Random Access Mode

Reading a Relative File Sequentially .

Reading a Relative File Randomly .

Reading a Relative File Dynamically .

Rewriting Relative Records in Sequential Access ·Mode

Rewriting Relative Records in Random Access Mode .

Deleting Relative Records in Sequential Access Mode .

Deleting Relative Records in Random Access Mode

Defining an Indexed File .

Creating and Populating an Indexed File .

Reading an Indexed File Sequentially .

Reading an Indexed File Randomly

Reading an Indexed File Dynamically .

Updating an Indexed File Sequentially .

Updating an Indexed File Randomly •

Handling the At End Condition .

Handling the Invalid Key Condition .

Defining a File Status for a File .

Using the File Status Value in an Exception Handling Routine

Referencing RMS-STS, RMS-STV, RMS-CURRENT-STS,
and RMS-CURRENT-STV Values

The Declarative Skeleton .

A Declarative Procedure Skeleton .

Five Types of Declarative Procedures

Two Access Streams to a Single File

Program Segment for RMS-STS File-Sharing Exceptions

Automatic Record Locking . ·.

Sample Program Using Manual Record Locking .

INPUT and OUTPUT PROCEDURE Phrases

USING Phrase Replaces INPUT PROCEDURE Phrase

Overriding the COLLATING SEQUENCE IS Phrase

Using Two Sort Files

Using the AFTER STANDARD ERROR PROCEDURE

Using the MERGE Statement

Sorting a File with the USING and GIVING Phrases

Using the USING and OUTPUT PROCEDURE Phrases

Using the INPUT PROCEDURE and OUTPUT PROCEDURE Phrases

Using the COLLATING SEQUENCE IS Phrase

Creating a New Sort Key .

8-13

8-13

8-14

9-4

9-5

9-7

9-8

9-9

10-4

10-5

10-6

10-8

10-9

10-10

10-11

10-13

10-14

10-15

11-4

11-5

11-7

11-8

11-9

11-11

11-12

12-2

12-3

12-4

12-4

12-6

12-8

12-8

12-9

13-6

13-10

13-13

13-15

14-3

14-5

14-6

14-7

14-8

14-9

14-10

14-11

14-13

14-15

14-16

xix

14-12

15-1

15-2

15-3

15-4

15-5

15-6

15-7

15-8

15-9

15-10

15-11

15-12

15-13

15-14

15-15

15-16

15-17

15-18

15-19

15-20

15-21

15-22

16-1

16-2

16-3

16-4

16-5

16-6

16-7

16-8

16-9

16-10

16-11

17-1

17-2

17-3

17-4

17-5

17-6

17-7

17-8

17-9

17-10

17-11

18-1

18-2

18-3

18-4

xx

Merging Files .

Printing a Listing of a Simple Set

Using Forked Sets .

Currency Indicators .

Using the RETAINING Clause

ROLLBACK Statement .. .

Owner and Member Test Condition .

RECONNECT Statement

FREE CURRENT Statement

FETCH NEXT Loop ;

Using a FETCH NEXT Loop to Walk Through a Set Type

A Single USE Statement .

Multiple USE Statements

Sample VAX COBOL DML Program Statements

Sample DML Program Statements

Populating a Database .. .

Backing Up a Database

Accessing and Displaying Database Information

Sample Run of the PARTBOM Program

Creating Relationships Between Records of the Same Type

Creating New Record Relationships

Sample Run of PERSONNEL-UPDATE Before Promotion

Sample Run of PERSONNEL-UPDATE After Promotion

Checking for the Page-Overflow Condition .

Page Advancing and Line Skipping

Checking for Page-Overflow on a 28-Line Logical Page

Programming a 20-Line Logical Page Defined by the LINAGE Clause

Sample Program 1 .

Sample Program 2

Sample Program 3

Sample Program 4

Sample Progra.m 5 .

Printing Labels Four-Up

Printing Labels Four-Up in Sort Order

Erasing a Screen .

Cursor Positioning

Using PLUS for Cursor Positioning

Using Character Attributes .

Using the CONVERSION Clause

Using the ON EXCEPTION Clause

Using the SIZE Phrase .. .

Using NO ECHO .. .

Using the DEFAULT Phrase

Using the CONTROL KEY IN Phrase

EDITING Phrase Sample Code

Execution Sequence .

Sequence of Messages Displayed .

Calling a BASIC Program from VAX COBOL

BASIC Program APP and Output Data

14-18

15-16

15-17

15-33

15-35

15-43

15-44

15-48

15-51

15-54

15-54

15-57

15-58

15-60

15-65

15-76

15-83

15-89

15-91

15-92

15-96

15-102

15-103

16-9

16-12

16-18

16-22

16-45

16-49

16-57

16-64

16-71

16-81

16-84

17-3

17-6

17-7

17-9

17-11

17-14

17-16

17-18

17-19

17-28

17-32
18-7

18-8

18-20

18-21

Figures

18-5
18-6
18-7
18-8
18-9
18-10
18-11
B-1

B-2
D-1

D-2

2-1
2-2
2-3
2-4
2-5
2-6

6-1
6-2
6-3
6-4
6-5
6-6

6-7
6-8

6-9
6-10

6-11
6-12
7-1
7-2
7-3
7-4
7-5
9-1
9-2
10-1
11-1
13-1
13-2
13-3
13-4
13-5
15-1
15-2
15-3

Calling a FORTRAN Program from VAX COBOL.

FORTRAN Subroutine SQROOT

Random Number Generator .

Sample Run of RUNTIME

Using SYS$SETDIR .. .

Using $ASCTIM

Sample Run of CALLTIME

Using RMS Special Registers to Detect Errors .

Using RMS-CURRENT Special Registers to Detect Errors

INSPECT Statement Using Format 3

INSPECT Statement Using Formats 1 and 2

DCL Commands for Developing Programs

VAX COBOL Source Program Listing

Storage Map Portion of VAX COBOL Compiler Listing

Compilation Summary of a VAX COBOL Source Program Listing

VAX COBOL Listing Specifying /MACHINE_CODE Qualifier

VAX COBOL Listing of Contained Program

Organization of the One-Dimensional Table in Example 6-1
Organization of Multiple Data Items in a One-Dimensional Table

Organization of a Table with an Index and an Ascending Search Key

Organization of a Two-Dimensional Table

Organization of a Three-Dimensional Table

Memory Map for Example 6-7
Memory Map for Example 6-8 .

Memory Map for Example 6-9
Memory Map for Example 6-10 .
Memory Map for Example 6-11 .
Memory Map for Example 6-13 .
Memory Map for Example 6-14 .
Results of the STRING Operation

Matching Delimiter Characters to Characters in a Field

Sample INSPECT Statement

Typical REPLACING Phrase

The Replacement Argument .

Sequential File Organization .

A Multiple-Volume Sequential File

Relative File Organization

Indexed File Organization .

Multiple Access to a File

Relationship of Record Locking to File Sharing .

File-Sharing Options .

Why a Record-Already-Exists Error Occurs

Valid and Invalid Combinations for Manual Record Locking

Database and Application Program Relationship ·.

Bachman Diagram

Partial Bachman Diagram of the PARTSS 1 Subschema

18-22
18-23
18-37
18-37
18-38
18-38
18-38

B-7
B-10
D-8
D-8

2-3
2-19
2-23
2-25
2-27
2-29
6-2
6-3
6-4
6-5
6-6
6-8

6-9
6-10
6-11
6-12
6-13
6-14
7-2

7-19
7-21
7-22
7-31
9-1
9-2

10-2
11-2
13-1
13-2
13-8

13-12
13-15
15-6

15-9

15-10

xxi

15-4

15-5

15-6

15-7

15-8

15-9

15-10

15-11

15-12

15-13

15-14

15-15

15-16

15-17

15-18

15-19

15-20

15-21

15-22

15-23

15-24

15-25

15-26

15-27

15-28

15-29

15-30

15-31

15-32

15-33

15-34

15-35

15-36

15-37

15-38

15-39

15-40

15-41

15-42

15-43

15-44

15-45

15-46

15-47

15-48

15-49

xx ii

Bachman Diagram of the PARTSS3 Subschema

Sample Occurrence Diagram 1 .

Sample Occurrence Diagram 2

One Occurrence of Set PART_SUPPLY

Set Relationship .. .

Set Relationships .. .

Occurrence Diagram of a Relationship Between Two Set Types

Bachman Diagram of a System-Owned Set Type .

Bachman Diagram of a Simple Set Type

Bachman Diagram of a Forked Set Type

Forked Set Occurrence .

Bachman Diagram of a Many-to-Many Relationship Between Two Types of
Records .. .

Many-to-Many Relationship Between Two Types of Records

Bachman Diagram of a Many-to-Many Relationship Between Records of the
Same Type .. .

Current of PART_USES and PART_USED_ON

Retain PART_USES Currency

COMPONENT Is Connected to Both Set Types

Finding the Stool Legs While Keeping STOOL Current of PART_USES

Completed Bill of Materials .

Occurrence Diagram of a Many-to-Many Relationship Between Records of the
Same Type .. .

Sample Parts Breakdown Report

One-to-Many Relationship Between Records of the Same Type

Sample Data Prior to Update .

Sample Data After Update

Database Relationships .

Currency Status by Executable DML Statement

Physical Representation of a Realm Without a RETAINING Clause

Physical Representation of a Realm with a RETAIN ING Clause

State of KEEPLIST-1 After Executing Line 000160

State of KEEPLIST-1 After Executing Lines 000190 and 000200

Transactions and Quiet Points

Using the COMMIT Statement

Occurrences of the RESPONSIBLE_FOR Set Type

Modifying Members of Sorted Sets .

After Modifying MEMBER_B and Using RETAINING

Occurrence Diagram Prior to RECONNECT

Occurrence Diagram After RECONNECT

Results of an ERASE ALL

Results of an ERASE Record-Name (with Both OPTIONAL and FIXED Retention
Classes) .. .

Record Locking . , . . .

Using FIND NEXT and FETCH NEXT Loops

Split Screen After FETCH FIRST PART USING PART _ID

Split Screen After FETCH NEXT WITHIN PART_SUPPLY

Split Screen After MODIFY SUP _RATING

Split Screen After FETCH OWNER WITHIN VENDOR_SUPPLY

Split Screen After FETCH CURRENT PART RETAINING PART _SUPPLY

15-10

15-11

15-12

15-13

15-13

15-14

15-14

15-15

15-15

15-16

15-18

15-19

15-20

15-21

15-21

15-22

15-23

15-23

15-24

15-24

15-25

15-26

15-27

15-28

15-29

15-34

15-35

15-36

15-37

15-37

15-39

15-42

15-43

15-45

15-46

15-47

15-48

15-49

15-50

15-52

15-53

15-62

15-63

15-64

15-64

15-66

15-50 Split Screen After FETCH NEXT WITHIN PART_SUPPLY

15-51 Split Screen After FETCH 2 WITHIN PART_SUPPLY

15-52 PARTSS1-PROGRAM Compiler Listing

15-53 PARTSS3-PROGRAM Compiler Listing

16-1 Sample Layout Worksheet .

16-2 Components of a Report .

16-3 Subtotals, Crossfoot Totals, and Rolled Forward Totals

16-4 Logical Page Area· for a Conventional Report

16-5

16-6

16-7

16-8

16-9

A 20-Line Logical Page .

A Double-Spaced Master Listing .

Logical Page Areas for a Linage File Report .

A 28-Line Logical Page .

A 20-Line Logical Page .

15-67

15-68

15-70

15-74

16-2

16-4

16-6

16-8

16-11

16-12

16-15

16-17

16-21

16-1 O Presentation Order for a Logical Page . 16-27

16-11 Sample Report Using All Seven Report Groups . 16-28

16-12 First GENERATE Statement . 16-39

16-13 Subsequent GENERATE Statements. 16-40

16-14 TERMINATE Statement. 16-41

16-15 CUSTMAST1.LIS.. 16-48

16-16 CUSTMAST2.LIS . 16-55

16-17 CUSTMAST3.LIS . 16-63

16-18 CUSTMAST4.LIS. 16-70

16-19 CUSTMAST5.LIS.. 16-79

16-20

16-21

17-1

17-2

17-3

17-4

17-5

17-6
17-7

17-8

Printing Labels Four-Up .

Printing Labels Four-Up in Sort Order

Adding Information to a Master File with a Video Form

Screen Before the ERASE Statement Executes

Screen After the ERASE Statement Executes .

Positioning the Data on Line 19, Column 5

Cursor Positioning Using the PLUS Option

Screen Display with Character Attributes .

Sample Run of Program CONVERT

Accepting Data with the ON EXCEPTION Option

16-81

16-83

17-2

17-4

17-5
17-6

17-8

17-10

17-13

17-15

17-9 Screen Display of NUM-DATA Using the PROTECTED Option 17-17

17-10 Accepting Data with the NO ECHO Option...... 17-18

17-11 Accepting Data with the DEFAULT Phrase . 17-21

17-12 VAX COBOL Control Keys on the Standard VT52 Keypad 17-25

17-13 VAX COBOL Control Keys on the Standard VT100 Keypad 17-26

17-14 VAX COBOL Control Keys on the Standard VT200 and VT300 Keypad 17-27

17-15 Screen Display of Program SPECIAL . 17-31

17-16 Form with ACCEPT WITH EDITING Phrase. 17-34

18-1

18-2

18-3

18-4

18-5

18-6

18-7

Run Unit with Three Separately Compiled Programs .

Run Unit with a Main Program and Two Contained Programs

Run Unit with Three Separately Compiled Programs and Two Contained
Programs·

Sharing Execution Control from a Main Program to Multiple Subprograms

CALL Statement Nesting .

Accessing Another Program's Data Division

Defining Data Names in Linkage Section .

18-2

18-2

18-3

18-6

18-6

18-10

18-12

xx iii

Tables

xx iv

18-8

18-9

18-10

18-11

20-1

20-2

20-3

B-1

B-2

2-1

2-2

2-3

2-4

3-1

4-1

4-2

4-3

4-4

5-1

5-2

5-3

5-4

6-1

6-2

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

7-11

7-12

7-13

8-1

9-1

10-1

11-1

13-1

16-1

17-1

17-2

Using the COMMON Clause

Sharing USE Procedures

Executing Declaratives with Contained Programs (Rule 1)

Executing Declaratives Within Contained Programs (Rule 2)

Execution of a SEARCH ALL Statement

Sharing Record Areas .

Two-Level Primary Index

Listing of Program CALL 1

Listing of Program CALL2

VMS File Maintenance Commands

COBOL Command Qualifiers and Defaults .

Common LINK Qualifiers and Defaults

LINK Positional Qualifiers

Debugger Command Summary

Numeric Relational Operator Descriptions

Sign Tests .. .

Numeric Editing . :

ROUNDING

Relational Operator Descriptions .

Nonnumeric Elementary Moves

Data Movement with Editing Symbols .

Data Movement with the JUSTIFIED Clause

Subscripting Rules for a Multidimensional Table

Subscripting with Data Names

Results of Sample Overflow Statements .

Values Moved into the Receiving Items Based on the Sending Item Value

Handling a Short Sending Item

Results of Delimiting with an Asterisk

Results of Delimiting Multiple Receiving Items .

Results of Delimiting with Two Asterisks

Results of Delimiting with ALL Asterisks

Results of Delimiting with ALL Double Asterisks .

Results of Multiple Delimiters

Values Resulting from Implicit Redefinition

Relationship Among INSPECT Argument, Delimiter, Item Value, and Argument
Active Position .

LEADING Delimiter of the Inspection Operation

Results of the Scan with Separate Tallies .

VAX COBOL File Organizations-Advantages and Disadvantages

Valid 1/0 Statements for Sequential Files

Valid 1/0 Statements for Relative Files .

Valid 1/0 Statements for Indexed Files .

File-Sharing Environment Codes

Results of Group Indicating

Cursor Positioning Requirements for ERASE Options

Available Character Attributes by Terminal Type

18-14

18-17

18-18

18-19

20-5

20-9

20-14

B-2

B-4

2-4

2-7

2-31

2-33

3-5

4-3

4-4

4-8

4-9

5-3

5-7

5-8

5-9

6-16

6-16

7-5

7-7

7-8

7-8

7-9

7-10

7-11

7-11

7-12

7-20

7-23

7-25

7-26

8-12

9-3

10-3

11-3

13-9

16-85

17-3

17-9

17-3

17-4

18-1

18-2

18-3

18-4

B-1

D-1

D-2

D-3

D-4

E-1

VAX COBOL Characters Returned for Cursor Positioning, Program Function,
Function, and Auxiliary Keypad Keys

Key Functions for the EDITING Phrase

VAX Register Usage .

Run-Time Library Facilities

System Services .

VAX COBOL Implementation

Information Contained in an Error Message .

Relationship Among VAX COBOL Modules, Subsets, and Levels

PERFORM ... VARYING ... AFTER Identifier Values

Table Values After a MOVE Statement

New and Revised 1-0 Status Codes .

COD/Plus Data Types

17-22

17-31

18-24

18-25

18-26

18-30

B-12

D-3

D-9
D-10

D-11

E-21

xxv

Objectives

Preface

This book and its companion volume, the VAX COBOL Reference Manual, describe
the VAX COBOL language and its programming system. This manual describes
how to use VAX COBOL under the VMS operating system. The VAX COBOL
Reference Manual describes the concepts and rules of the VAX COBOL language.

Intended Audience

This documentation set is designed for the experienced COBOL programmer. It
does not attempt to teach the COBOL language, fundamental programming, or
system concepts. Textbooks and Digital courses are available for those purposes.

Associated Documents

If you are unfamiliar with the VMS operating system, refer to the VMS documen­
tation for the following information:

• Basic information on the VMS operating system

• Detailed information about how to use the Digital Command Language (DCL)

• A summary description and glossary that provides an overview of the VMS
system

The VAX documentation on VAX architecture provides detailed information about
the family of VAX computers and VAX data types.

Additional prerequisites are described at the beginning of each chapter or ap­
pendix, if appropriate.

Document Structure

The VAX COBOL User Manual is divided into three parts:

PART I

PART II

PART III

Developing VAX COBOL Programs

Using VAX COBOL Features on VMS

VAX COBOL Programming Options and Performance Considerations

xxvii

Conventions

xxviii

The following conventions are used in this manual:

Conventions

quotation mark

apostrophe

$

user input

Meaning

A symbol with a 1- to 3-character abbreviation in­
dicates that you must press a key on the terminal;
for example, ~ and ~ indicate that you press the
RETURN key and the TAB key on your terminal.

The symbol I CTRUx I indicates that you hold down the
key labeled CTRL while you simultaneously press
another key; for example, I crRuc I. I CTRUO I.

A vertical series of periods, or an ellipsis, means that
not all the data you would enter is shown. All program
examples are shown in Digital terminal format, rather
than in ANSI standard format.

The term quotation mark is used to refer to the double
quotation mark character (").

The term apostrophe is used to refer to the single
quotation mark character (').

The dollar sign ($) is used to represent the system
prompt. Your system might use a different symbol for
the system prompt.

In examples in hardcopy versions of this book, user
input (what you enter) is shown in red. In online
versions, user input is shown in bold.

The VAX COBOL documentation to which this manual belongs refers to these
Digital products by their abbreviated names:

• VAX CDD/Plus software is referred to as CDD/Plus.

• VAX DBMS software is referred to as VAX DBMS.

• VAX DEC/rest Manager software is referred to as DEC/rest Manager.

• VAX DEC/Code Management System software is referred to as CMS.

• The VAX Language-Sensitive Editor is referred to as LSE.

• VAX Record Management Services software is referred to as RMS.

• The VAX Text Processing Utility is referred to as VAXTPU.

• The VAX Source Code Analyzer is referred to as SCA.

• The Program Design Facility is referred to as PDF.

Summary of Technical Changes

This section briefly describes the technical changes and new features for VAX
COBOL Versions 4.3, 4.2, 4.1, and 4.0. For detailed information on specific
changes, refer to the Release Notes for the specific version.

VAX COBOL Versions 4.0 and higher are based on the 1985 ANSI COBOL
standard. This manual reflects changes to the VAX COBOL compiler made in
these versions. It also includes corrections, additions, clarifications, and other
minor improvements.

Version 4.3

The following list briefly describes the technical changes for Version 4.3 of VAX
COBOL. For more information, refer to the VAX COBOL Release Notes,
Version 4.3.

• Support for the VAX Program Design Facility (PDF), including the addition of
the /DESIGN command line qualifier. (See Chapter 2 and Appendix E.)

• Support for the VAX Source Code Analyzer (SCA) Version 2.0. (See
Appendix E.)

• Support for the DECwindows Compiler Interface (DWCI). (See Chapter 2.)

• Relaxed datatype restrictions of IF SUCCESS/FAILURE and SET
SUCCESS/FAILURE statements.

• Support for floating point literals. (See Chapter 1 of the VAX COBOL
Reference Manual.)

• Support for the three new RMS-CURRENT special registers. (See Chapter 12
and Appendix B and Chapter 1 of the VAX COBOL Reference Manual.)

• Addition of VAX COBOL 1/0 extensions for Descending Key and Duplicate
Primary Key.

• Relaxed datatype restrictions for ACCEPT WITH EDITING phrase. (See
Chapter 17.)

• Addition of the !DENT clause. (See Chapter 3 of the VAX COBOL Reference
Manual.)

• Support for Vertical Form Unit (VFU) printers. (See Chapter 8 and Chapter
6 of the VAX COBOL Reference Manual.)

xx ix

xxx

Version 4.2

The following list briefly describes the technical changes for Version 4.2 of VAX
COBOL. For more information, refer to the online VAX COBOL Release Notes, for
Version 4.2.

• Support for the VAX License Management Facility (LMF)

• Support for the VAX Source Code Analyzer (SCA). This support includes the
addition of the /ANALYSIS_DATA command line qualifier. (See Appendix E.)

• Support for CDD/Plus. This support includes the addition of the
/DEPENDENCY_DATA command line qualifier. (See Appendix E.)

• Support for the MULTIPLE FILE TAPE clause.

• Addition of the /INSTRUCTION_SET command line qualifier. (See
Appendix D.)

• Addition of the STREAM phrase to the COMMIT statement.

• Addition of the STREAM phrase to the ROLLBACK statement.

• User translatable message file.

• Addition of the EDITING phrase to the ACCEPT statement.

Version 4.1

Version 4.1 of VAX COBOL was a maintenance release and contained no new
features. For more information, refer to the online VAX COBOL Release Notes,
for Version 4.1.

Version 4.0

The following list briefly describes the technical changes for VAX COBOL Version
4.0. For more information, refer to the online VAX COBOL Release Notes, for
Version 4.0.

• Support for the following syntax constructs has been added:

Multistream DBMS access

CLASS clause in the SPECIAL-NAMES paragraph

START REGARDLESS OF LOCK

FETCH, FIND, and STORE with the DB-KEY option

Quadword indexed keys

CALL literal with ON EXCEPTION phrase

Multiple arguments for INSPECT ... ALIJLEADING

Conditional NOTs for the following phrases: AT END-OF-PAGE, AT END,
INVALID KEY, ON EXCEPTION, ON OVERFLOW, and ON SIZE ERROR

The REPLACE statement which allows you to replace source program
text

Ability to initialize tables using a VALUE clause subordinate to an
OCCURS clause

• The optional word TO is now permitted in the ADD ... GIVING statement.

• The figurative constant ALL literal is now permitted in the DISPLAY
statement.

• The optional word ALSO is now permitted in the EVALUATE statement.

• An EXIT PROGRAM statement in the body of a main program causes control
to be transferred to the next statement.

• The category phrase in the INITIALIZE statement can be repeated.

• The text being replaced using a COPY REPLACING statement cannot consist
entirely of a separator comma or semicolon.

• Lines that have been replaced can be viewed in LSE.

• Lines that have been copied can be viewed in the debugger and LSE.

• A paragraph name can be specified in the INPUT and OUTPUT phrases of
the SORT and MERGE statements.

• CURRENCY SIGN cannot be a figurative constant.

• CURRENCY SIGN can now be the character Lor E.

• A RELATIVE KEY data item cannot contain the symbol P in its PICTURE
clause.

• Files with LINAGE clauses cannot be opened in EXTEND mode.

• The size of a variable-length item in an OCCURS DEPENDING ON state­
ment involved in a MOVE is determined by the value of the OCCURS
DEPENDING ON item.

• P digit positions are zero for PIC P items in new cases.

• There are new and revised I-0 status codes.

• The NO REWIND phrase of the CLOSE statement cannot be specified with
the REEL or UNIT phrase.

• The order of evaluation of the identifiers in the PERFORM ... VARYING ...
AFTER construct has changed (Format 4 only).

• The ADVANCING PAGE phrase of the WRITE statement cannot be specified
with the END-OF-PAGE phrase.

• Shared sequential records can be any length, including variable-length
records.

• Scope delimiters no longer must be specified only in terminator clauses such
as AT END, ON OVERFLOW, or ON EXCEPTION.

• New options for the /STANDARD command line qualifier enable you to
generate code using VAX COBOL Version 3.4 or Version 4.0 rules for certain
constructs. (See Appendix D.)

• A new command line qualifier (/FLAGGER) allows you to specify a FIPS level
beyond which the FIPS flagging facility produces informational diagnostics.
(See Appendix D.)

• The relational operators GREATER THAN OR EQUAL TO and LESS THAN
OR EQUAL TO have been added.

• Subscripts and reference modifications for the DIVIDE, STRING, UNSTRING,
and INSPECT statements are evaluated differently.

• Optional files can be opened in OUTPUT, 1-0, and EXTEND mode.

• There are changes to the rules for opening nonoptional files in 1-0 and
EXTEND mode.

• The COBOL-81 SUBSET Flagger has been updated.

• Support for the PDP-11 Version 4.4 Translator has been eliminated.

xxxi

• The evaluation of conditional compilation lines takes place after COPY
processing instead of before.

• The format of replaced COPY text in the listing file may be different.

• Divide by zero is a continuable error.

• The PROCEDURE DIVISION is now optional in VAX COBOL programs.

• COBOL HELP reflects changes made to the compiler.

Incompatibilities with COBOL-81

The COBOL--81 language is a Digital COBOL compiler that runs under several
PDP-11 operating systems. While the COBOL-Bl language is a subset of VAX
COBOL, there are some architectural differences between the PDP-11 and the
VAX processors. The following list gives the known architectural differences.

• INDEX data items in the COBOL--81 language are 2 bytes long; in VAX
COBOL, they are 4 bytes long. INDEX data items cause an incompatibility
only if they are stored in files. Such files are not directly transferable between
the COBOL--81 language and the VAX COBOL language.

• The COBOL--81 compiler aligns COMPUTATIONAL data items on word
boundaries by default; the VAX COBOL compiler does not. In order to create
files that are directly transferable between COBOL--81 and VAX COBOL,
always use the SYNCHRONIZED clause on COMPUTATIONAL data items
within record descriptions.

• The VAX processor traps many cases of invalid data in a decimal numeric
field that the PDP-11 processor does not. Keep this in mind when debugging
COBOL--81 programs. Also, programs that appear to have run without error
on the PDP-11 may produce errors on the VAX processor due to invalid
decimal data.

Acknowledgement

xxxii

COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL COBOL Committee as to the accuracy and functioning of the pro­
gramming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein are:
FLOW-MATIC (trademark of Unisys Corporation), Programming for the UNIVAC
(R) I and II, Data Automation Systems, copyrighted 1958, 1959, by Unisys
Corporation; IBM Commercial Translator Form No. F28-8013, copyrighted 1959
by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

Procedures have been established for the maintenance of COBOL. Inquiries con­
cerning the procedures for proposing changes should be directed to the Chairman
of the CODASYL COBOL Committee, P.O. Box 3609, Norfolk, VA 23514.

Part I
Developing VAX COBOL Programs

Chapter 1

Overview of VAX COBOL

This brief overview highlights the features of the VAX implementation of COBOL
(COmmon Business-Oriented Language). COBOL is widely used throughout the
world for business data processing. The features of VAX COBOL listed here are
described fully in subsequent chapters of this manual and in the VAX COBOL
Reference Manual.

VAX COBOL is a high-performance language for commercial application
development that runs under the VMS operating system. Version 4.0 of VAX
COBOL is based on the 1985 ANSI COBOL Standard X3.23-1985 and Federal
Information Processing Standard 21-2 (FIPS PUB 21-2). The FIPS standard
identifies the ANSI standard as the standard adopted by the U.S. federal
government and as the criteria on which federal validation is based. Version
4.0 of VAX COBOL also contains Digital extensions to COBOL, including screen
handling at the source language level.

VAX COBOL Version 4.0 continues to be highly compatible with previous
versions. However, due to changes necessitated by the 1985 ANSI COBOL
standard, some differences exist between Version 4.0 and previous versions of
VAX COBOL. To minimize the impact of these changes, a new command line
qualifier has been added to Version 4.0 of VAX COBOL. For more information see
Section 2.5.2 and Appendix D.

The following list highlights some of VAX COBO Us features:

• Some features of traditional structured programming languages are
provided by the VAX COBOL compiler, making programs easier to develop,
understand, and maintain. These features include scope delimiters, the
EVALUATE statement, and in-line PERFORM statements.

• Support for all data types specified in the 1985 ANSI COBOL standard.

• Support for the COBOL data manipulation language interface to VAX DBMS,
the Digital CODASYL-compliant database management system.

• Support for the VMS Debugger used for program development.

• Support for multistream DBMS.

• FIPS flagging facility that identifies VAX COBOL extensions, syntax
designated as obsolete, or at a specified FIPS level.

• New reserved words and syntax constructs.

VAX COBOL takes full advantage of the VMS operating system facilities and the
VAX Information Architecture. VAX COBOL is also integrated with many other
Digital products. In particular, VAX COBOL supports the following:

• VAX standard calling procedures, which allow VAX COBOL programs to
call (and be called by) other programs written in VAX COBOL, other VAX

Overview of VAX COBOL 1-1

languages (such as BASIC, FORTRAN, and MACRO), system services,
common run-time library subroutines, and screens produced by VAX. Forms
handling products. VAX. COBOL also provides support for contained
programs. Contained programs can share resources, such as files, variables,
and symbolic characters.

• Record definitions included from CDD/Plus.

• Creation of source code with the VAX. Language-Sensitive Editor (LSE)
and the use of other VAX productivity tools, such as the VAX COBOL
GENERATOR that enables you to automatically generate VAX COBOL source
code.

• Extensive online language help.

• Exchange of data with other systems using DECnet.

Version 4.0 of VAX. COBOL shares some common syntax with COBOL-81,
making it easy to develop error-free COBOL-81 applications for PDP-11 systems.
The VAX COBOL compiler also accepts source programs coded in either ANSI
standard format or Digital terminal format. You can use the REFORMAT Utility
to convert programs written in either format, making conversion and migration of
programs written on other systems more efficient.

Part I of this manual shows you how to begin using VAX COBOL on the VMS
operating system and how to develop programs at the DCL command level. Part
II describes using advanced features of VAX. COBOL, and Part III discusses VAX.
COBOL programming options and enhancements.

1-2 Overview of VAX COBOL

Chapter 2

Developing VAX COBOL Programs at DCL
Command Level

Developing a VAX COBOL program involves a number of steps, including
choosing a reference format for your source program and then creating,
compiling, linking, and running it. You can accomplish each of the last four steps ·
by using DCL commands.

This chapter explains how to choose a reference format and how to develop and
run a VAX COBOL program at the DCL command level.

2.1 Choosing a Reference Format

Before you can compile a COBOL program, you must decide on a reference format
and prepare your source program for input to the compiler. The VAX COBOL
compiler accepts source programs written in either terminal reference format
or ANSI reference format. However, you cannot mix reference formats in the
same compilation unit, even when copying text from a COBOL library. Note that
when copying text from CDD/Plus, the COBOL compiler translates the record
descriptions into the reference format of the source program.

2.1.1 Terminal Reference Format

Digital recommends that you use terminal format, a Digital optional format,
when you create source files from interactive terminals. The compiler accepts it
as the default reference format.

Terminal format eliminates the line number and identification fields of ANSI
format and allows horizontal tab characters and short lines. This format saves
disk space and decreases compile time. Because the spacing requirements of
terminal format are more flexible than ANSI format, it is usually easier to edit
source programs written in this format.

The following explains the structure and content of a terminal reference source
line:

Character Positions

1to4

5 to 256

end of line

Contents

AreaA

AreaB

Margin R

Developing VAX COBOL Programs at DCL Command Level 2-1

NOTE

While the maximum size of a terminal line is 256 characters, a source
listing line contains 132 characters. However, the first 7 columns of
the source listing contain the line numbers of the source code, leaving
only 125 spaces per line for text. Therefore, although a terminal line
greater than 132 characters compiles, the source listing line shows only
the first 125 characters.

You can use the TAB key or the space bar to position source entries in a line.
Pressing the RETURN key signifies the end of a line. Terminal format treats the
end of each line as Margin R. You must enter continuation (-), comment (*),
or skip-to-top-of-page(/) characters in position 1, and conditional compilation
characters in columns 1 and 2 (see Chapter 3 for information on conditional
compilation characters). For more information about using the TAB key, refer to
the VAX COBOL Reference Manual.

2.1.2 ANSI Reference Format

ANSI format (defined in the VAX COBOL Reference Manual) is useful on a card­
oriented system or in an application where strict ANSI compliance is desired. To
select ANSI format, specify the command qualifier /ANSI_FORMAT at compile
time. You can choose this format if your COBOL program was written for a
compiler that used ANSI format.

2.1.3 Converting Between Reference Formats

The REFORMAT Utility allows you to convert a terminal format program to
ANSI format and vice versa. You can also use REFORMAT to match the formats
of source files and COBOL library files when their formats are not the same. See
Chapter 19 for a description of the REFORMAT Utility.

2.2 DCL Commands for Program Development

This section briefly describes the DCL commands that are used to create, compile,
link, and run a VAX COBOL program on a VMS system. These commands
are shown in Figure 2-1. The commands are described in detail later in this
chapter.

2-2 Developing VAX COBOL Programs at DCL Command Level

Figure 2-1: DCL Commands for Developing Programs

COMMANDS ACTION I INPUT/OUTPUT FILES I

$ EDIT PROG_ 1.COB PROG_1.COB

Use the file type of COB to
Create a • indicate the file contains a

VAX COBOL program. source program

/ $COBOL PROG_1
The COBOL Command
assumes the file type of an

Compile the
PROG_1.0BJ

input file is COB . • (PROG_ 1.LIS)

(if you use the /LIST
source program

libraries qualifier, the compiler
creates a listing file.)

// $ LINK PROG_ 1
The LINK command assumes Link the PROG_1.EXE
the file type of an input file • (PROG_ 1.MAP) object module
is OBJ.

(If you use the /MAP qualifier,
the linker creates a map file.)

$RUN PROG_1
Run the

The RUN command assumes executable the file type of an image is
image EXE.

ZK-6304-GE

The following example shows each of the commands shown in Figure 2-1 executed
in sequence.

$ EDIT/EDT PROG 1.COB
$ COBOL PROG 1 -
$ LINK PROG l
$ RUN PROG_l

To create a VAX COBOL source program at DCL level, you must invoke a text
editor. In the previous example, the VAX EDT editor is invoked to create the
source program PROG_l.COB. You can, however, use another editor, such as the
VAX Text Processing Utility (VAXTPU) or the VAX Language-Sensitive Editor
(LSE). COB is used as the file type to indicate that you are creating a VAX
COBOL source program. COB is the default file type for all VAX COBOL source
programs.

Developing VAX COBOL Programs at DCL Command Level 2-3

For more information on editors, refer to the appropriate VMS documentation or
online help.

When you compile your program with the COBOL command, you do not have to
specify the file type; VAX COBOL searches for COB by default.

If your source program compiles successfully, the VAX COBOL compiler creates
an object file with the file type OBJ.

However, if the VAX COBOL compiler detects errors in your source program, the
system displays each error on your screen and then displays the DCL prompt.
You can then reinvoke your text editor to correct each error.

You can include command qualifiers with the COBOL command. Command
qualifiers cause the VAX COBOL compiler to perform additional actions. In
the following example, the /LIST qualifier causes the VAX COBOL compiler to
produce a listing file.

$ COBOL/LIST PROG_l

The COBOL command qualifiers are explained in Section 2.5.2.

Once your program has compiled successfully, you invoke the VMS Linker to
create an executable image file. The VMS Linker uses the object file produced by
VAX COBOL as input to produce an exec11table image file as output.

You can specify command qualifiers with the DCL command LINK. The LINK
command qualifiers are explained in Section 2.6.2 and Section 2.6.3.

Once the executable image file has been created, you can run your program with
the DCL command RUN.

Table 2-1 provides a brief explanation of VMS file maintenance commands.

Table 2-1: VMS File Maintenance Commands

Category

Creating Files

Correcting and
modifying files

Cataloging and
organizing files

Command

CREATE

EDIT [/editor]

EDIT [/editor]

CREATE/DIRECTORY

DIRECTORY

LIBRARY

RENAME

SET DEFAULT

Function

Creates a file from records or data that follows in
the input stream; for example, lines entered from a
terminal or placed in a batch input file.

Invokes one of the VMS interactive editing programs;
for example, EDT or LSE.

Invokes one of the VMS interactive editors to make
changes or additions to a disk file.

Establishes a new directory or hierarchy of directories
to catalog files.

Lists files and information about them. Can list files
with common file names, or file types, files in one or
more directories, files created since a certain date, and
so on.

Creates and maintains libraries of COPY text modules
and libraries of object modules.

Changes the directory a file is cataloged in; or changes
the file name, file type, or version number of a file or
files.

Changes the current default device or directory.

(continued on next page)

2-4 Developing VAX COBOL Programs at DCL Command Level

Table 2-1 {Cont.): VMS File Maintenance Commands

Category Command Function

Copying and backing
up files

ALLOCATE
INITIALIZE
MOUNT
COPY

Provides device handling and control commands that
let you access data written on nonsystem disks, on
magnetic tapes, or on punched cards; or to output data
to a disk or tape. COPY copies the content of a file or
files to another file or files.

Deleting files DELETE

PURGE

Removes the directory entry of the file, making the
contents of the file inaccessible.

Deletes a specified number of earlier versions of a file
or group of files.

2.3 Creating a VAX COBOL Program

To create and modify a VAX COBOL program, you must invoke a text editor.
VMS provides you with two text editors: the Digital Standard Editor (EDT) and
the VAX Text Processing Utility (VAXTPU). However, other editors, such as the
VAX Language-Sensitive Editor (LSE), may be available on your system.

For more information on the editors available, check with your system adminis­
trator and refer to the appropriate VMS documentation.

2.4 Using the COPY Statement in Your Source Program

When you create a source program, VAX COBOL allows you to include frequently
used text from a VAX Librarian file, a COBOL library file, or CDD/Plus. You gain
access to modules in libraries with the COPY statement, in which you specify
explicitly the library that contains the library file.

You can also use the COPY FROM DICTIONARY statement to gain access to
a data dictionary. The COPY FROM DICTIONARY statement allows you to
copy CDD/Plus record descriptions into your source program as COBOL record
descriptions.

The COPY statement allows many separate programs to share common source
text, reducing development and testing time as well as storage requirements.
For example, an application may consist of many separately compiled programs
that share the same structure declaration or external variable declarations. It is
convenient to maintain only one copy of the declaration of the variables and to
include this declaration in each source program with the COPY statement.

The COPY statement causes the compiler to read the file or module specified
by that COPY statement during the compilation of a source program. When
the compiler reaches the end of the included text, it resumes reading from the
previous input file.

Before you can copy record descriptions from CDD/Plus, you must create the
record descriptions using the Common Data Dictionary Language (CDDL) or
Common Dictionary Operator (CDO).

For more information on using CDD/Plus and creating and maintaining text
libraries, refer to Appendix E, the VAX COBOL Reference Manual, and the
CDD/Plus documentation.

Developing VAX COBOL Programs at DCL Command Level 2-5

2.5 Compiling a VAX COBOL Program

The primary functions of the VAX COBOL compiler are to:

• Detect errors in your source program

• Display each error on your terminal screen

• Generate machine language instructions from valid source statements

• Group these language instructions into an object module for the linker

When the compiler creates an object module, it provides the linker with the
following information:

• The name of the entry point. It takes this name from the program name in
the first PROGRAM-ID paragraph in the source program.

• A list of variables that are declared in the module. The linker uses this
information when it binds two or more modules together and must resolve
references to the same names in the modules.

• Traceback information. Traceback information is used by the system default
condition handler when an error occurs that is not handled by the program
itself. The traceback information permits the default handler to display a
list of the active blocks in the order of activation; this is an aid in program
debugging.

• If requested (with the /DEBUG qualifier), a symbol table and a source line
correlation table. A symbol table is a list of the names of all external and
internal variables within a module, with definitions of their locations. The
source line correlation table associates lines in your source file with lines
in your program. The compiler creates these tables only if you specifically
request them. The tables are of primary help when you use the VMS
Debugger.

• If requested (with the /DIAGNOSTICS qualifier), a diagnostics file that is
used within an LSE review session.

To invoke the VAX COBOL compiler, you use the DCL command COBOL
(explained in Section 2.5.1). With the COBOL command, you can specify
command qualifiers. The next two sections discuss in detail the COBOL
command and its command qualifiers.

DECwindows Compiler Interface

If you are working from a workstation running DECwindows, the DECwindows
Compiler Interface (DWCI) enables you to compile source code either from
FileView or from within VAX LSE. DWCI is a menu-driven interface that allows
you to select compilation options and save the selections as separate configura­
tions for future use. DWCI also contains an extensive online Help facility, to help
you make selections.

2.5.1 The COBOL Command

When you compile your source program, use the COBOL command at the DCL
prompt. The COBOL command has the following format:

COBOL[/command-qualifier] ... {file-spec [/file-qualifier] ... } ...

2-6 Developing VAX COBOL Programs at DCL Command Level

/command-qualifier
The name of a qualifier that indicates a specific action for the compiler to perform
on the file or files listed. When a qualifier appears directly after the COBOL
command, it affects all files listed. However, when a qualifier appears after a file
specification, it affects only the file that immediately precedes it. When files are
concatenated, however, these rules do not apply.

file-spec
Indicates the name of the input source file that contains the program or module
to be compiled. You are not required to specify a file type; the VAX COBOL
compiler assumes the file to be of the default file type COB. If you do not provide
a file specification with the COBOL command, the system prompts you for one.

You can supply more than one file specification by separating the file speci­
fications with either a comma (,) or a plus sign (+). If you separate the file
specifications with commas, the files are compiled individually. Compiling files
in this way allows you to control the number of source files affected by each
qualifier. In the following example, the VAX COBOL compiler creates an object
file for each source file but creates only a listing file for the source files entitled
PROG_l and PROG_3.

$ COBOL/LIST PROG_l, PROG_2/NOLIST, PROG_3

If you separate file specifications with plus signs, VAX COBOL appends each
of the specified source files and creates one object file and one listing file. For
instance, in the following example, only one object file, PROG_l.OBJ, and one
listing file, PROG_l.LIS, are created. Both files are named after the first source
file in the list.

$ COBOL PROG_l + PROG_2/LIST + PROG_3

Note that all qualifiers specified for a single file in a list of files separated with
plus signs affect all files within the specified list.

/file-qualifier
The name of a command-qualifier that indicates a specific action for the compiler
to perform on the file that immediately precedes the qualifier. When files are
concatenated, however, these rules do not apply.

2.5.2 COBOL Command Qualifiers

When you compile your source code, you can include qualifiers. The qualifiers
offer you different options for developing, debugging, and documenting programs.
Table 2-2 lists each qualifier and the default.

Table 2-2: COBOL Command Qualifiers and Defaults

Command Qualifier

/[NOJANALYSIS_DATA

/[NO]ANSI_FORMAT

/[NO]AUDIT

/[NO]CHECK

/[NO]CONDITIONALS

Default

/NOANALYSIS_DATA

/NOANSI_FORMAT

/NO AUDIT

/NOC HECK

/NOCONDITIONALS

(continued on next page)

Developing VAX COBOL Programs at DCL Command Level 2-7

Table 2-2 (Cont.): COBOL Command Qualifiers and Defaults

Command Qualifier

/[NO]COPY_LIST

/[NO]CROSS_REFERENCE

/[NO]DEBUG

/[NO]DEPENDENCY_DATA

/[NO]DESIGN

/[NO]DIAGNOSTICS

/[NO]FIPS=7 4

/[NO]FLAGGER

/INSTRUCTION_SET

/[NO]LIST

/[NO]MACHINE_CODE

/[NO]MAP

/[NO]OBJECT

/[NO]SEQUENCE_CHECK

/[NO]STANDARD

/[NO]TRUNCATE

/[NO]WARNINGS

Default

/NOCOPY_LIST

/NOCROSS_REFERENCE

/DEBUG=TRACEBACK

/NODEPENDENCY_DATA

/NO DESIGN

/NO DIAGNOSTICS

/NOFIPS

/NO FLAGG ER

/INSTRUCTION_SET=DECIMAL_STRING

/NOLIST (interactive)

/LIST (batch)

/NOMACHINE_CODE

/NOMAP

/OBJECT

/NOSEQUENCE_CHECK

/STANDARD=85

/NOTRUNCATE

/WARNINGS=OTHER

The following text explains each VAX COBOL command line qualifier. Square
brackets ([]) indicate that the enclosed item is optional. If you specify more than
one option for a single qualifier, you must separate each option with a comma and
enclose the options in parentheses. A vertical bar (I) between options indicates
that you can choose only one of the options listed.

/[NO]ANALYSIS_DATA[:file-spec]

The /[NO]ANALYSIS_DATA qualifier indicates whether or not a .ANA file is
created during compilation. The .ANA file is used with the VAX Source Code
Analyzer (SCA).

The default is /NOANALYSIS_DATA. For more information, refer to Appendix E
and the SCA documentation.

/[NO]ANSl_FORMAT

The /[NO]ANSI_FORMAT qualifier indicates whether the source program is in
ANSI (conventional) format or in Digital terminal format.

For ANSI format, the compiler expects 80-character program lines with optional
sequence numbers in character positions 1 to 6, indicators in position 7, Area A
beginning in position 8, Area B beginning in position 12, and the Identification
Area in positions 73 to 80.

By default, the compiler assumes that the source file is in terminal format; that
is, Area A begins in record position 1 and Area B in position 5.

2-8 Developing VAX COBOL Programs at DCL Command Level

/[NO]AUDIT[:(string, ...)]

The /[NO]AUDIT qualifier specifies whether user-supplied text is included in a
history list entry when a compilation accesses CDD/Plus. /AUDIT without a value
specifies that a standard history list entry is created with no additional text. To
include more than one line of text, you can enclose up to 64 strings, separated
by commas, in parentheses. If /AUDIT is specified, the compiler leaves history
list entries in CDD/Plus for database and for COPY FROM DICTIONARY records
processed by the compiler. This qualifier also leaves a history list in CDD/Plus for
information put in the dictionary as a result of specifying the
/DEPENDENCY_DATA qualifier. Only one user-supplied string is included in
these entries, even though up to 64 can be specified.

The default, /NOAUDIT, specifies that no history list entry is created.

/[NO]CHECK[:(ALL,[NO]PERFORM,[NO]BOUNDS,NONE)]

The /[NOJCHECK qualifier controls whether the system checks PERFORM
statements, indexes, subscripts, reference modification, and the OCCURS
DEPENDING ON depending item for specific run-time errors.

Incorrect use of PERFORM statements can produce unpredictable results. If you
use the PERFORM parameter and violate either of the following rules, the system
generates a run-time error message and aborts the program:

• A paragraph or section that is the subject of a currently active PERFORM
statement must be exited before that paragraph or section can be the subject
of another PERFORM statement.

• Nested PERFORM ranges (active PERFORM paragraphs or sections contain­
ing PERFORMs that execute other paragraphs or sections) must be exited in
reverse order of execution.

The BOUNDS option checks the range of subscripts, indexes, and the depending
item in the DEPENDING ON phrase of the OCCURS clause. The system gener­
ates a run-time error message and aborts the program if it detects one of these
errors:

• If DEPENDING ON is not specified and a subscript or index is greater than
the upper bound or less than or equal to zero

• If DEPENDING ON is specified and a subscript or index is greater than the
depending item or less than or equal to zero

• If a depending item is less than the low bound or greater than the upper
bound, and either of these conditions occurs: (1) a subscripted or indexed
item references a table; (2) a group containing the table is referenced as a
sending item

The /NOCHECK qualifier is equivalent to /CHECK=NONE. If you specify a quali­
fier parameter, the default options do not change unless individually modified.

/CHECK is equivalent to /CHECK=ALL.

The default is /NOCHECK

/[NO]CONDITIONALS[:(selector, ...)]

The /[NOJCONDITIONALS qualifier controls whether the conditional compilation
lines in a source program are compiled or are treated as comments.

Specifying /CONDITIONALS results in all conditional compilation lines being
compiled.

Developing VAX COBOL Programs at DCL Command Level 2-9

Specifying /CONDITIONALS=(selector, ...) results in the selected conditional com­
pilation lines being compiled. The conditional-line-selector-list is a parenthesized
list of one or more alphabetic characters from A to Z. Chapter 3 discusses COBOL
program debugging using conditional compilation lines.

Specifying the default /NOCONDITIONALS results in all conditional compilation
lines being treated as comments during compilation.

/[NO]COPY _LIST

The /[NO]COPY_LIST qualifier controls whether source statements included by
COPY statements are printed in the listing file. The /COPY_LIST qualifier has
no effect unless the /LIST qualifier is also specified.

/NOCOPY_LIST suppresses the listing of text copied from library files; only the
COPY statement appears in the listing file.

The default is /NOCOPY_LIST.

/[NO]CROSS_REFERENCE[:(ALPHABETICAL,DECLARED)]

The /[NO]CROSS_REFERENCE qualifier controls whether the source listing
includes a cross-reference listing.

If you specify /CROSS_REFERENCE without an option or with the
ALPHABETICAL option, the compiler sorts data names and procedure names in
alphabetical order and lists them with the source program line numbers on which
they appear.

Specifying /CROSS_REFERENCE=DECLARED produces a listing of data names
and procedure names in order of declaration.

Specifying /CROSS_REFERENCE=(ALPHABETICAL, DECLARED) produces a
listing of data names and procedure names in both alphabetical and declared
order in the same compilation.

On the listing, the number sign (#) indicates the source line containing the data
name's definition. The asterisk (*) indicates a line on which the associated data
item is modified. The /CROSS_REFERENCE qualifier has no effect unless the
/LIST qualifier is also specified.

The default is /NOCROSS_REFERENCE.

/[NO]DEBUG[:(ALL,[NO]SYMBOLS,[NO]TRACEBACK,NONE)]

The /[NO]DEBUG qualifier controls whether the compiler produces traceback
and local symbol table information for the VMS Debugger. /DEBUG allows you
to refer to data items by data name, and to Procedure Division locations by line
number, paragraph name, and section name. You can also view source lines from
source files and files included by simple COPY statements. The debugger cannot
reference source lines from CDD/Plus or any line in which text has been replaced.
The /DEBUG qualifier can generate both traceback and symbol table information.

• /DEBUG=ALL is equivalent to /DEBUG=(TRACEBACK,SYMBOLS).

• /DEBUG=SYMBOLS produces a symbol table that allows you to refer to data
items by data name and to source lines by line number.

• /DEBUG=TRACEBACK produces traceback information only.

• /DEBUG=NONE is equivalent to /NODEBUG.

• /DEBUG without a value is equivalent to /DEBUG=ALL.

If you specify a qualifier parameter, the default options do not change unless
individually modified.

2-10 Developing VAX COBOL Programs at DCL Command Level

The default is /DEBUG=TRACEBACK.

Chapter 3 discusses COBOL program debugging using the VMS Debugger.

/[NO] DEPENDENCY _DATA

The /[NO]DEPENDENCY_DATA qualifier controls whether or not a compiled
module entity is stored in CDD/Plus. This qualifier also controls whether or not a
CDD/Plus relationship is established between the compiled module entity and the
following:

• All CDD/Plus CDO format dictionary entities specified in COPY FROM
DICTIONARY statements

• All CDO format dictionary entities explicitly specified in RECORD
DEPENDENCY statements

• The object file created by the compilation

/NODEPENDENCY_DATA indicates that a compiled module entity and CDD/Plus
relationships will not be recorded in CDD/Plus.

The default is /NODEPENDENCY_DATA.

For more information, see Appendix E.

/[NO]DESIGN:(COMMENTS,PLACEHOLDERS)

The /[NO]DESIGN qualifier indicates whether or not the compiler will enable
Program Design Facility (PDF) processing.

/DESIGN=COMMENTS instructs the compiler to perform PDF comment process­
ing.

/DESIGN=PLACEHOLDERS instructs the compiler to allow PDF placeholders in
place of COBOL syntax.

The default is /NODESIGN. If you specify /DESIGN without an option, the
default is /DESIGN=(COMMENTS,PLACEHOLDERS). Refer to Appendix E,
Section E.1 for additional information.

/[NO] DIAGNOSTICS[:file-spec]

The /[NO]DIAGNOSTICS qualifier controls whether a diagnostic file containing
compiler messages and diagnostics information is created. The diagnostic file
is reserved for use by Digital. The VAX Language-Sensitive Editor uses the
diagnostic file to display diagnostic messages and to position the cursor on the
line and column where a source error exists. The default file type for a diagnostic
file is DIA.

The default is /NODIAGNOSTICS.

/[NO]FIPS:74

The /[NO]FIPS qualifier allows validation in accordance with the Federal
Information Processing Standard 21-1 (FIPS-PUB 21-1) issued by the U.S.
National Bureau of Standards.

The command line qualifier /FIPS=7 4 supports the Federal Information
Processing Standard 21-1 (FIPS-PUB 21-1) interpretation of File Status and
the intermediate arithmetic data item.

FIPS-PUB 21-1 specifies that a File Status of 10 be returned when reporting At
End conditions; thus, when you use the /FIPS=7 4 qualifier, that File Status value
is returned.

Developing VAX COBOL Programs at DCL Command Level 2-11

When /FIPS=74 is specified, the compiler generates code that adheres to the
ANSI-74 standard rules for P (picture) characters. If, in any operation involving
conversion of data from one form of internal representation to another, the data
item being converted is described with the PICTURE character P, each digit
position described by a P is considered to contain the value zero, and the size of
the data item is considered to include the digit positions so described.

The default, /NOFIPS, causes the compiler to use the algebraic value of the data
item described with a P in only certain types of operations:

• Any operation requiring a numeric sending operand

• A MOVE statement where the sending operand is a numeric or numeric
edited data item and its PICTURE character-string contains the symbol P,
and the receiving operand is numeric or numeric edited

• A comparison operation where both operands are numeric

In all other operations, the digit position specified with the symbol P is ignored
and not counted in the size of the operand.

The following table compares the File Status values that are returned when you
use or do not use the /FIPS=74 qualifier. Note that these At End File Status
values apply to any file organization accessed sequentially. Also note that
/FIPS=74 and /NOFIPS only apply when you also specify /STANDARD=V3.

FILE STATUS VALUES

The file has no next logical record.

An optional file was not present.

The program did not establish a valid next record.

/FIPS=74

10

10

10

/NOFIPS

13

15

16

In addition, the rules on arithmetic operations found in FIPS-PUB 21-1 implicitly
require the compiler to keep a 19-digit temporary number and to round on the
twentieth digit for add and subtract operations. When you use the /FIPS=7 4
qualifier, the compiler follows the FIPS-PUB 21-1 rules for arithmetic operations.

/[NO]FLAGGER[:(HIGH_FIPS,INTERMEDIATE_FIPS,MINIMUM_FIPS, OBSOLETE,
OPTIONAL_FIPS,REPORT_WRITER,SEGMENTATION, SEGMENTATION_1)]

In accordance with the Federal Information Processing Standards Publication
21-2 (FIPS-PUB 21-2) issued by the U.S. National Bureau of Standards, VAX
COBOL allows you to specify a FIPS level of COBOL syntax beyond which
informational diagnostics are generated. To receive the diagnostics, you
must specify the /FLAGGER qualifier as well as the /WARNINGS=ALL or
/WARNINGS=INFORMATION qualifier.

The /FLAGGER qualifier can be useful when a target system's compiler is known
to have a lower level of FIPS syntax support.

When you compile a program using the /FLAGGER qualifier with its options, you
receive diagnostic messages for syntax in the source program that is:

• Not within the FIPS validation level you selected

• Within the optional module you selected

• An obsolete language element as defined by the ANSI 1985 standard for the
COBOL language

• A Digital extension to the COBOL language

2-12 Developing VAX COBOL Programs at DCL Command Level

The default is /NOFLAGGER. Also, the /FLAGGER qualifier cannot be specified
with /STANDARD= V3. For more information on the /FLAGG ER qualifier, refer to
Appendix D.

/INSTRUCTION_SET[:[NO]DECIMAL_STRING I GENERIC]

The /INSTRUCTION_SET qualifier indicates whether or not the compiler will
optimize code using different portions of the VAX instruction set.

/INSTRUCTION_SET=DECIMAL_STRING instructs the compiler to optimize the
code for VAX processors that include the decimal string subset instructions in the
hardware.

/INSTRUCTION_SET=NODECIMAL_STRING instructs the compiler to optimize
the code for VAX processors that emulate the decimal string subset instructions
in the software.

/INSTRUCTION_SET=GENERIC offers a compromise between the other two
settings in cases where the instruction set of the target processor is unknown.
For more information see Appendix D.

You can choose only one option for this qualifier; multiple options are not allowed.
However, you do not have to compile all the modules of an application with the
same /INSTRUCTION_SET option value.

NOTE

Regardless of the /INSTRUCTION_SET option you select, your VAX
COBOL program will run on any VAX processor. The
/INSTRUCTION_SET qualifier is for optimization purposes only.

The default is /INSTRUCTION_SET=DECIMAL_STRING. For more information
on the /INSTRUCTION_SET qualifier, see Appendix D.

/[NO]LIST[:file-spec]

The /[NO]LIST qualifier controls whether the compiler produces an output listing.
When you specify /LIST, you can control the defaults applied to the output file
specification by your placement of the qualifier in the command. The output file
type always defaults to LIS.

Note that the /LIST option is required when you want to use
/CROSS_REFERENCE, /COPY_LIST, /FLAGGER, /MACHINE_CODE, or IMAP.

If you use the COBOL command in interactive mode, the default is /NOLIST.

If the COBOL command is executed from a batch job, the default is /LIST.

/[NO]MACHINE_CODE

The /[NO]MACHINE_CODE qualifier controls whether the listing file contains
compiler-generated machine code. The /MACHINE_CODE qualifier has no effect
unless the /LIST qualifier is also specified.

The default is /NOMACHINE_CODE. For more information on the
/[NO]MACHINE_CODE qualifier, refer to Section 2.5.5.4.

/[NO]MAP[:(ALPHABETICAL,DECLARED)]

The /[NO]MAP qualifier controls whether the listing contains maps. Specifying
IMAP, IMAP=ALPHABETICAL, or IMAP=DECLARED produces a listing of:
(1) data names, procedure names, file names, and their attributes; (2) ex­
ternal references such as user-called routines or Run-Time Library routines;
and (3) subschema information including records, sets, and realms. Both

Developing VAX COBOL Programs at DCL Command Level 2-13

IMAP and IMAP=ALPHABETICAL provide maps in alphabetical order; while
IMAP=DECLARED provides maps in declared order. In addition, specifying
IMAP=(ALPHABETICAL,DECLARED) produces both alphabetical and declared
map listings.

The IMAP qualifier has no effect unless the /LIST qualifier is also specified.

The default is /NOMAP.

/[NO]OBJECT[:file-spec]

The /[NO]OBJECT qualifier controls whether the compiler produces an object file.

By default, the compiler produces an object file with the same file name as the
input file and a file type of OBJ. However, you can define a different file name or a
different file type by specifying /OBJECT= file-spec. See the VMS documentation
on DCL for information on output file specification.

/[NO]SEQUENCE_ CHECK

The /[NO]SEQUENCE_ CHECK qualifier controls whether the contents of
columns 1 to 6 of the source lines are in ascending line number sequence. Out-of­
sequence lines produce warning diagnostics. Source programs written in terminal
format always pass the sequence check.

The default is /NOSEQUENCE_CHECK.

/[NO]STANDARD[=([N0]85,[NO]V3,[NO]PDP11,[NO]SYNTAX)]

The /[NOJSTANDARD qualifier addresses the differences between the following:

• Versions 3 and 4 of VAX COBOL

• VAX COBOL and COBOL-81

• ANSI COBOL and the Digital extensions made to VAX COBOL

The /STANDARD=85 and /STANDARD=V3 options provide the user with a switch
for selecting generated code that conforms to the ANSI 1985 standard or to
Version 3.4 of VAX COBOL in instances where incompatibilities exist.

If you specify /STANDARD=85, the compiler generates code for certain constructs
according to the 1985 ANSI COBOL standard.

If you specify /STANDARD=V3, the compiler generates code in the manner of
Version 3.4 of VAX COBOL and issues informational diagnostics for language con­
structs that would cause different run-time results if /STANDARD=85 had been
specified. To receive the diagnostics, you must also use the /WARNINGS=ALL or
/WARNINGS=INFORMATION qualifier.

Appendix D provides a detailed description of the differences. If you spec­
ify /STANDARD=(85,V3), the compiler generates code as if you specified
/STANDARD=85.

If you specify /STANDARD=PDPll, the compiler generates informational diagnos­
tics for VAX COBOL language elements that are outside the COBOL-81 subset
and indicates syntactic, semantic, and data allocation differences between VAX
COBOL and COBOL-81. Note that generated code is not changed when you
select this option. Also note that if you specify /STANDARD=PDPll, you must
also use /WARNINGS=ALL or /WARNINGS=INFORMATION.

If you use /STANDARD=SYNTAX, the compiler produces informational
diagnostics on language features that are Digital extensions. Therefore,
/STANDARD=SYNTAX is equivalent to /WARNINGS=STANDARD. Also note
that /STANDARD is equivalent to /STANDARD=SYNTAX.

2-14 Developing VAX COBOL Programs at DCL Command Level

The default is /STANDARD=85.

/[NO]TRUNCATE

The /[NOJTRUNCATE qualifier specifies how the compiler stores values in
COMPUTATIONAL receiving items if high-order truncation is necessary.

If you specify /NOTRUNCATE, the compiler truncates values according to the
VAX hardware storage unit (word, longword, or quadword) allocated to the
receiving item.

If you specify /TRUNCATE, the compiler truncates values according to the
number of decimal digits specified by the PICTURE size. Specifying /TRUNCATE
increases program execution time.

In this example, the compiler allocates one word (16 bits) of storage to both A
andB:

01 A PIC 899 COMP.
01 B PIC 89999 COMP.

PROCEDURE DIVISION.

MOVE B TO A.
ADD B TO A.

When you specify /NOTRUNCATE, all 16 bits of B are moved into A. This may
result in a stored value larger than the PICTURE-defined size of two decimal
digits.

When you specify /TRUNCATE, the compiler observes the PICTURE size of A and
stores only the two low-order digits of B in data item A.

The default is /NOTRUNCATE.

/[NO]WARNINGS[:(ALL,[NO]STANDARD,[NO]INFORMATION,
[NO]OTHER,NONE)]

The /[NOJWARNINGS qualifier controls the listing of warning-level and
informational-level diagnostics. Specifying STANDARD produces informa­
tional diagnostics on language features that are Digital extensions. Specifying
INFORMATION produces additional informational diagnostics. Specifying
OTHER produces warning-level diagnostics. /WARNINGS is equivalent to spec­
ifying /WARNINGS=ALL, while /WARNINGS=NONE is equivalent to specifying
/NO WARNINGS.

If you specify a qualifier parameter, the default options do not change unless they
are individually modified.

You must specify /WARNINGS=ALL or /WARNINGS=INFORMATION when you
use /STANDARD=PDPll.

The default is /WARNINGS=OTHER.

For additional information on the rules for qualifiers used on the VMS operating
system, see the syntax rules in the VMS documentation on DCL.

Developing VAX COBOL Programs at DCL Command Level 2-15

2.5.3 Compiling Programs with Conditional Compilation Lines

To debug source code that contains conditional compilation lines, you can use
either the /CONDITIONALS qualifier or the WITH DEBUGGING MODE
clause. The /CONDITIONALS qualifier is explained in Section 2.5.2. For more
information on the /CONDITIONALS qualifier, refer to the VAX COBOL Reference
Manual.

Using the WITH DEBUGGING MODE clause as part of the SOURCE­
COMPUTER paragraph causes the compiler to process all conditional compilation
lines in your source program as COBOL text. If you do not specify the WITH
DEBUGGING MODE clause, and if the /CONDITIONALS qualifier is not in
effect, all conditional compilation lines in your program are treated as comments.

The WITH DEBUGGING MODE clause applies to: (1) the program that Specifies
it, and (2) any contained program within a program that specifies the clause.

2.5.4 Compiler Error Messages

If there are errors in your source file when you compile your program, the VAX
COBOL compiler flags these errors and displays diagnostic messages. To handle

. these errors, you must reference the diagnostic message, and locate and correct
the problem in your source program.

A sample error message looks like this:

12
13
14

PROCEDURE DIVISION.
P-NAME

MOVE ABC TO XYZ.
1 2

%COBOL-E-ERROR 65, (1) Missing period is assumed
%COBOL-F-ERROR 349, (2) Undefined name

In the sample, error pointer (1) points to the closest approximation to where the
error occurred (P-NAME has no period). Error pointer (2) points to an undefined
name in source line number 14. The two error pointers are followed by two error
message lines that each identify, in this order:

• That the VAX COBOL compiler generated the error message

• The severity code (see Appendix B)

• The error message number

• The error pointers

• The error message

Although most diagnostic messages are self-explanatory, Appendix B contains a
list of diagnostic messages that require additional explanation.

The following are some common errors to avoid when entering COBOL command
lines:

• Omitting the /ANSl_FORMAT qualifier for source programs that are in ANSI
format

• Including contradictory qualifiers, such as IMAP without /LIST, or /FIPS=7 4
and /STANDARD=85

• Omitting version numbers from file specifications when you want to compile a
source program that is not the latest version of a source file

2-16 Developing VAX COBOL Programs at DCL Command Level

• Forgetting to use a file type in the file specification when you do not want the
defaul~ file type

To examine diagnostic messages that occurred during compilation, you can print
the listing file (or type the file to your terminal screen) and search for each
occurrence of %COBOL. Section 2.5.5 details how to read a listing file.

2.5.5 Compiler Listings

A compiler listing provides information that can help you debug your VAX
COBOL program. To generate a listing file, specify the /LIST qualifier when you
compile your VAX COBOL program interactively. For example:

$ COBOL/LIST

If the program is compiled as a batch job, the listing file is created by default;
specify the /NOLIST qualifier to suppress creation of the listing file. (In either
case, the listing file is not automatically printed.) By default, the name of the
listing file is the name of the source program followed by a file type of LIS. You
can include a file specification with the /LIST qualifier to override this default.

A compiler listing generated by the /LIST qualifier has the following major
sections:

• Source Program Listing

The source program section contains the source code plus line numbers
generated by the compiler.

• Storage Map

The storage map section contains summary information on program sections,
variables, and arrays.

• Compilation Summary

The compilation summary section lists the qualifiers used with the COBOL
command and the compilation statistics.

When used with the /LIST qualifier, the following COBOL command qualifiers
supply additional information in the compiler listing:

• /COPY_LIST

• /CROSS_REFERENCE

• /FLAGG ER

• /MACHINE_ CO DE

• IMAP

• /STANDARD

• /WARNINGS

See Section 2.5.2 for a description of each qualifier's function.

The next three sections describe each major section of the compiler listing for the
program TRBLE.COB generated by the following command:

$ COBOL/LIST/COPY LIST/MAP=(ALPH,DECLARED)/CROSS=(ALPH,DECLARED)
/ANSI_FORMAT TRBLE~COB

Section 2.5.5.4 displays the compiler listing generated by specifying the
/MACHINE_CODE qualifier for the program MCODE.COB.

Developing VAX COBOL Programs at DCL Command Level 2-17

Section 2.5.5.5 displays the compiler listing for the contained program
TESTA.COB.

2.5.5.1 Source Program Listing

The Source Program section of the compiler listing contains the source code plus
line numbers generated by the compiler.

The circled numbers on the program listing TRBLE (see Figure 2-2) correspond
to the following numbered text explanations:

8 The program name as declared in PROGRAM-ID.

8 The date and time of compilation.

8 The date and time the file specified in circled number 5 was created.

8 The name, version, and edit level of the COBOL compiler.

8 The source file specification, (device:[directory]filename.type;version), which
can be up to 255 characters long. The file specification will be trimmed to fit
in the listing page header. If text from a copy file is listed at page-break time,
the copy file's specification will be printed. The text editor page number (the
number (n) in parentheses) will be printed if there is room.

<t Source line numbers assigned by the compiler. The VMS Debugger uses these
line numbers as location specifications.

8 Sequence numbers. These numbers only appear if the file is in ANSI format.

8 Source text. Although a terminal line can contain 256 characters, a source
listing line contains a maximum of 132 characters.

Ci) Identification field. If the source file is in ANSI format, this field contains the
identification field (positions 73 to 80).

8 Line origin information field. A space identifies a line as part of the actual
program text. If you use the /COPY_LIST command qualifier at compile time,
L identifies a line copied from a library file. If you do not use /COPY_LIST,
copied lines are not printed on the source listing. A C identifies a line created
when a COPY or REPLACE statement pushes program text from its original
line to a new line.

4D Line replacement information field. A space indicates no replacement took
place. An R identifies a line in which text has been replaced.

8 In the listing file, a period (or other symbol, depending on the specific device)
prints in place of any nonprintable ASCII character that was coded in the
program.

• Error message line. This line gives the facility name, the error severity code,
the error message number, the error pointer, and the error message.

e Error pointer. Points to the closest approximation of where the error occurred.

e Error pointer reference. References the error message to the error pointer.

2-18 Developing VAX COBOL Programs at DCL Command Level

Figure 2-2: VAX COBOL Source Program Listing

• • • TRBLE 29-Dec-1989 10:43:32 VAX COBOL V4.3
• 29-Dec-1989 08:19:18 .DEVICE: [COBOL.EXAMPLES]TRBLE.COB;l Source Li~ing

• • • 1 000010 IDENTIFICATION DIVISION.
2 000020 PROGRAM-ID. TRBLE.
3 000030
4 000040 ENVIRONMENT DIVISION.
5 000050 CONFIGURATION SECTION.
6 000060 SOURCE-COMPUTER. VAX.
7 000070 OBJECT-COMPUTER. VAX.
8 000080
9 000090 INPUT-OUTPUT SECTION.

10 000100 FILE-CONTROL.
11 000110 SELECT RECEIVABLES-FILE ASSIGN TO "RECFIL".
12 000120 SELECT TABLE-FILE ASSIGN TO "TBLFIL".
13 000130
14 000140 DATA DIVISION.
15 000150 FILE SECTION.
16 000160 FD RECEIVABLES-FILE
17 000170 BLOCK CONTAINS 20 RECORDS
18 000180 LABEL RECORDS ARE STANDARD.

• ~6L ~~~m g~p~~?vi~. REPLACING R-OTHER-INFO BY FILLER.

•
21L 000020 03 R-ACCOUNT-NUM PIC X (8) •
22LR000030 03 FILLER PIC X (142).
23 000200 FD TABLE-FILE
24 000210 LABEL RECORDS ARE STANDARD.
25 000220 01 TABLE-REC PIC X (130) •
26 000230
27 000240 WORKING-STORAGE SECTION.
28 000250 01 ALPHA-EDIT
29 000260 01 NUM-EDIT
30 000270 01 ALL-ALPHA
31 000280 01 EXT-DATA

PIC AB/B GLOBAL.
PIC ZZZ9.
PIC AAAA.
PIC X(lO) EXTERNAL.

32 000290 01 RECEIVABLES-COUNT
33 000300 01 SAVE-ACCOUNT-NUM
34 000310 01 EOJ-SW

PIC S9(5) COMP-3 VALUE ZEROES.
PIC X(8).
PIC X VALUE "N".

35 000320 01 WS-TABLE.
36 000330 03 FILLER PIC X (130) •
37 000340 01 ACCOUNT-TABLE REDEFINES WS-TABLE.
38 000350 03 TABLE-ENTRIES OCCURS 10 TIMES INDEXED BY
39 000360 05 TBL-ACCOUNT PIC X (8) •
40 000370 05 TBL-TRANS-COUNT PIC S9 (5) •
41 000380
42 000390 PROCEDURE DIVISION.
43 000400 000-START SECTION.

005-0PEN-FILES.
MOVE SPACES TO WS-TABLE.

~~: ~:; ~~~=~~iE. •
INPUT RECEIVABLES-FILE.
CALL "CALLl II •

010-LOAD-TABLE.
READ TABLE-FILE INTO WS-TABLE

AT END

IND-A.

44 000410
45 000420
46 000430
47 000440
48 000450
49 000460
50 000470
51 000480
52 000490
53 000500
54 000510
55 000520
56 000530
57 000540

DISPLAY "TABLE-FILE IS MISSING--TRBLE CANCELLED"
CLOSE TABLE-FILE RECEIVABLES-FILE
STOP RUN.

.ANSI_ID
ANSI ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI=ID

TRBLE
Source Listing

29-Dec-1989 10:43:32
29-Dec-1989 08:19:18

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLES] TRBLE.COB; 1 (1)

58 000550
59 000560 020-READ-RECEIVABLES
60 000570 READ RECEIVABLES-FILE AT END • • • %COBOL-E-ERROR 65, (1) Missing period is assumed
61 000580 GO TO 999-EOJ.
62 000590 ADD 1 TO RECEIVABLES-COUNT.
63 000600 PERFORM 030-SEARCH THRU
64 000610 100-DONE-SEARCH.
65 000620 IF EOJ-SW = "Y"
66 000630 STOP RUN.
67 000640 GO TO 500-PROCESS-RECEIVABLES.
68 000650
69 000660
70 000670
71 000680
72 000690
73 000700
74 000710
75 000720
76 000730
77 000740
78 000750
79 000760

030-SEARCH SECTION.
0 35-SEARCH-ACCOUNT-TABLE.

SET IND-A TO 1.
SEARCH TABLE-ENTRIES

AT END GO TO 050-TABLE-FULL
WHEN R-ACCOUNT-NUM = TBL-ACCOUNT (IND-A)
ADD 1 TO TBL-TRANS-COUNT (IND-A)
GO TO 100-DONE-SEARCH

WHEN TEL-ACCOUNT (IND-A) = SPACES
GO TO 040-ADD-NEW-ACCOUNT.

80 000770 040-ADD-NEW-ACCOUNT.
81 000780 MOVE R-ACCOUNT-NUM TO TEL-ACCOUNT (IND-A) •
82 000790 MOVE 1 TO TBL-TRANS-COUNT (IND-A).
83 000800 GO TO 100-DONE-SEARCH.
84 000810
85 000820
86 000830
87 000840
88 000850
89 000860
90 000870

050-TABLE-FULL.
DISPLAY "TABLE-FILE IS FULL".
DISPLAY "END OF PROGRAM TRBLE".
CLOSE TABLE-FILE RECEIVABLES-FILE.
MOVE "Y" TO EOJ-SW.

91 000880 100-DONE-SEARCH SECTION.
92 000890
93 000900 110-EXIT.
94 000910 EXIT.

ANSI ID
ANSI-ID
ANSI=ID

ANSI ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI=ID

Page

ZK-6437-GE

(continued on next page)

Developing VAX COBOL Programs at DCL Command Level 2-19

Figure 2-2 (Cont.): VAX COBOL Source Program Listing

95 000920
96 000930 500-PROCESS-RECEIVABLES.

ANSI ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI-ID
ANSI=ID

97 000 940* ** ** **** * *** ** *** * * *** *** ** * *** * ***** **
98 000950* Process receivables transactions. *
99 000 960* * * ** * *** * *** ** **** * ** ****** * * * * * ** *****

100 000970 GO TO 020-READ-RECEIVABLES.
101 000980
102 000990 999-EOJ.
103 001000 REWRITE TABLE-REC FROM WS-TABLE.
104 001010 CLOSE RECEIVABLES-FILE TABLE-FILE.
105 001020 DISPLAY "TOTAL RECEIVABLES RECORDS = " RECEIVABLES-COUNT.
106 001030 DISPLAY "END OF PROGRAM TRBLE".
107 001040 STOP RUN.

ZK-6437-1-GE

2.5.5.2 Storage Map Portion of Compiler Listing

The storage map portion of a compiler listing contains summary information on
program sections, variables, and arrays.

If you specified the IMAP qualifier, the storage map contains the following
information:

• Data names, procedure names, and file names and the attributes of each

• External references

• Subschema information including records, sets, and realms

If you specified the /CROSS_REFERENCE qualifier, the storage map also con­
tains the following cross-reference information:

• Program lines where symbols are defined and initialized

• Program lines where the values of symbols are modified

• Program lines where symbols are actual arguments

• Number of times a symbol occurs in each line

The circled numbers on the program listing TRBLE (see Figure 2-3) correspond
to the following numbered text explanations:

0 File names map. Provides file- and record-specific information. Use the
IMAP or IMAP=ALPHABETICAL command qualifier for files that name
information in alphabetical order. Use the IMAP=DECLARED command
qualifier for files that name information in order of declaration. Use
IMAP=(ALPHABETICAL,DECLARED) for files that name information in
both alphabetical and declared order.

8 A list of the file names described in the File Section (File Description (FD)
and Sort/Merge Description (SD) entries).

8 A list of the file's organization as specified in the SELECT clause.

8 A list of the access mode as specified in the ACCESS MODE clause or the
access mode default.

8 A list of BLOCK CONTAINS attributes and whether they specify number of
records (R) or number of characters (C).

8 A list of the number of characters in a file's records. For variable-length
records, the list contains minimum and maximum record length.

0 A list of record formats. Record formats can be fixed, variable, or print;

2-20 Developing VAX COBOL Programs at DCL Command Level

8 Record area. Lists: (1) a record's maximum record length, and (2) its
hexadecimal offset location relative to the program section number's (PSECT)
beginning location. The PSECT number is the numeric field that precedes
the offset location field. PSECT numbers and names are on the Compilation
Summary page of a source listing. A location of** indicates an unreferenced
file.

CD File connector location. Specifies the beginning location of an internal data
structure used by the compiled code and the Run-Time Library (RTL). A
location of ** indicates an unreferenced file.

8 Data names map. Lists data items and their attributes. You obtain this
listing by specifying the IMAP command qualifier. You can obtain the listing
in alphabetical order, declared order, or in both orders (in one compilation)
depending on which IMAP option you select (see circled number 1).

e The source line number where the data item is defined.

41 The data item's level number.

8 The name of the data item.

e Location. Lists the data item's PSECT number and hexadecimal offset
location relative to the PSECT's beginning location. PSECT numbers and
names are in the Compilation Summary page of a source listing. If the
letter L follows the PSECT number, then: (1) the data item is defined in a
LINKAGE SECTION, (2) the ordinal position specified in the USING phrase
for the record containing the data item is indicated by the PSECT number,
and (3) the hexadecimal offset of the data item relative to the record's
beginning is identified by location. A location of ** indicates an unreferenced
data item. Storage is not allocated for unreferenced data items.

• The data item's field size. For numeric data items, size is defined by the
number of nines (9) associated with it in the PICTURE character string.

8 The number of bytes allocated to the data item. For numeric values, field size
and bytes can be different. (See data name RECEIVABLES-COUNT.)

• Usage. Corresponds to the USAGE clause or implicit usage of the data item.
The usage classifications are COMP, COMP-1, COMP-2, COMP-3, DISPLAY,
INDEX, and POINTER.

8 The category of data described by the data item's PICTURE clause. Category
classifications are as follows:

Group

A

AN
ANE
N

NE

=Group

= Alphabetic

= Alphanumeric

= Alphanumeric Edited

=Numeric

= Numeric Edited

8 Subs. Lists the number of subscripts required to reference data items.

9 Attribute. Indicates whether a data item has an external attribute, a global
attribute, or both.

9 Procedure names map. Lists procedure names and their attributes. You
obtain this listing by specifying the IMAP command qualifier. You can ob­
tain the listing in alphabetical order, declared order, or in both orders (in
one compilation), depending on which IMAP option you select (see circled
number 1.)

Developing VAX COBOL Programs at DCL Command Level 2-21

9 The source line number, where the procedure name is defined.

9 A list of procedure names.

8 Location. Lists the procedure name's PSECT number and its hexadecimal
offset location relative to the PSECT's beginning. PSECT numbers and
names are in the Compilation Summary page of a source listing.

9 Lists the procedure name type. Program indicates the PROGRAM-ID name;
Section indicates a section name; spaces indicate a paragraph name.

9 File names map in declared order. Listed when you use IMAP=DECLARED.

• Data names map in declared order. Listed when you use IMAP=DECLARED.

9 Procedure names map in declared order. Listed when you use
IMAP=DECLARED.

9 A cross-reference listing of user-defined names. Specifying the command qual­
ifiers /CROSS_REFERENCE or /CROSS_REFERENCE=ALPHABETICAL
produces a sorted listing, while specifying /CROSS_REFERENCE=DECLARED
produces a listing in order of declaration. In addition, specifying
/CROSS_REFERENCE=(ALPHABETICAL, DECLARED) produces a listing
in both alphabetical and declared order. The cross-reference list also includes
source line numbers for each item. A source line number followed by a num­
ber sign (#) indicates an item's line of definition. Line numbers with an
asterisk (*) indicate reference lines in which a destructive reference is made.
Line numbers without a number sign or asterisk indicate reference lines.

9 A cross-reference listing of user-defined names in declared order. Listed when
you use /CROSS_REFERENCE=DECLARED.

G A list of external references. External references can be subprogram calls,
calls to the Run-Time Library, or calls to system services. Calls to the Run­
Time Library or system services usually originate from compiler-generated
object code.

2-22 Developing VAX COBOL Programs at DCL Command Level

Figure 2-3: Storage Map Portion of VAX COBOL Compiler Listing

TRBLE •
File Names in Alphabetic Order

• Name

FD RECEIVABLES-FILE
FD TABLE-FILE

TRBLECI
Data Names in Alphabetic Order • • • Line Level Name

37 01
30 01
28 01
34 01
31 01
38 01
29 01
21 03
32 01
20 01
33 01
38 03
25 01
39 05
40 05
35 01

TRBLE ED

ACCOUNT-TABLE
ALL-ALPHA
ALPHA-EDIT
EOJ-SW
EXT-DATA
IND-A
NUM-EDIT
R-ACCOUNT-NUM
RECEIVABLES-COUNT
RECEIVER
SAVE-ACCOUNT-NUM
TABLE-ENTRIES
TABLE-REC
TBL-ACCOUNT
TBL-TRANS-COUNT
WS-TABLE

• Organization

Sequential
Sequential

•
29-Dec-1989 10:43:32
29-Dec-1989 08:19:18 • •

VAX COBOL V4.3 Page
DEVICE: [COBOL.EXAMPLES)TRBLE.COB;l (1) • • • Access Block Characters/ Record --- Record Area --- File Connector

Mode Contains Record

Sequential
Sequential

20 R 150
130

1

29-Dec-1989 10:43:32
29-Dec-1987 08: 19: 18 • • Location Size

00000128 130
4

OOOOOllC 4
00000124 1
00000000 10
OOOOOlAC

** 4
00000000 8
00000120 5
00000000 150

** 8
00000128 13
00000098 130
00000128 8
00000130 5
00000128 130

Format Length Location Location

Fixed
Fixed

150
130

00000000
00000098

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLES) TRBLE .COB; 1 (1) • • • • Bytes Usage Category Subs

130 DISPLAY Group
4 DISPLAY A
4 DISPLAY ANE
1 DISPLAY AN

10 DISPLAY AN
4 INDEX N
4 DISPLAY NE
8 DISPLAY AN
3 COMP-3 N

150 DISPLAY Group
8 DISPLAY AN

13 DISPLAY Group
130 DISPLAY AN

8 DISPLAY AN
5 DISPLAY N

130 DISPLAY Group

000002B8
000004BO

• Attribute

Glo

Ext

5
Procedure Names in Alphabetic Order

29-Dec-1989 10:43:32
29-Dec-1989 08:19:18

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLES)TRBLE.COB;l (1) • • Line Name

43 000-START
45 005-0PEN-FILES
52 010-LOAD-TABLE
59 020-READ-RECEIVABLES
69 030-SEARCH
70 035-SEARCH-ACCOUNT-TABLE
80 040-ADD-NEW-ACCOUNT
85 050-TABLE-FULL
91 100-DONE-SEARCH
93 llO-EXIT
96 500-PROCESS-RECEIVABLES

102 999-EOJ
2 TRBLE

TRBLE.
File Names in Declared Order

Name

FD RECEIVABLES-FILE
FD TABLE-FILE

TRBLE.
Data Names in Declared Order

Line Level Name

20 01
21 03
25 01
28 01
29 01
30 01
31 01
32 01
33 01
34 01
35 01
37 01
38 03
38 01
39 05
40 05

TRBLE.
Procedure Names

Line Name

2 TRBLE

RECEIVER
R-ACCOUNT-NUM
TABLE-REC
ALPHA-EDIT
NUM-EDIT
ALL-ALPHA
EXT-DATA
RECEIVABLES-COUNT
SAVE-ACCOUNT-NUM
EOJ-SW
WS-TABLE
ACCOUNT-TABLE
TABLE-ENTRIES
IND-A
TBL-ACCOUNT
TEL-TRANS-COUNT

in Declared Order

43 000-START
45 005-0PEN-FILES
52 010-LOAD-TABLE
59 020-READ-RECEIVABLES
69 030-SEARCH
70 035-SEARCH-ACCOUNT-TABLE
80 040-ADD-NEW-ACCOUNT
85 050-TABLE-FULL
91 100-DONE-SEARCH
93 llO-EXIT
96 500-PROCESS-RECEIVABLES

102 999-EOJ

• • Location Type

0000003C Section
0000003C
00000173
00000201
00000259 Section
00000259
000002B4
000002D5
0000032B Section
0000032B
0000032B
0000032E
00000000 Program

29-Dec-1989 10:43:32
29-Dec-1989 08: 19: 18

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLESJTRBLE.COB;l (1)

Access
Organization Mode

Block
Contains

Characters/ Record
Record Format

--- Record Area --- File Connector
Length Location Location

Sequential
Sequential

Sequential
Sequential

20

29-Dec-1989
29-Dec-1989

Location

00000000
00000000
00000098
OOOOOllC

**
00000000
00000120

**
00000124
00000128
00000128
00000128
OOOOOlAC
00000128
00000130

R 150
130

10:43:32
08:19:18

Size

150
8

130
4
4
4

10
5
8
1

130
130

13

29-Dec-1989 10:43:32
29-Dec-1989 08:19:18

Location Type

00000000 Program
0000003C Section
0000003C
00000173
00000201
00000259 Section
00000259
000002B4
000002D5
0000032B Section
0000032B
0000032B
0000032E

Fixed
Fixed

VAX COBOL V4. 3

150
130

00000000
00000098

Page
DEVICE: [COBOL.EXAMPLES)TRBLE.COB;l (1)

Bytes Usage Category Subs

150 DISPLAY Group
8 DISPLAY AN

130 DISPLAY AN
4 DISPLAY ANE
4 DISPLAY NE
4 DISPLAY A

10 DISPLAY AN
3 COMP-3 N
8 DISPLAY AN
1 DISPLAY AN

130 DISPLAY Group
130 DISPLAY Group

13 DISPLAY Group
4 INDEX N
8 DISPLAY AN
5 DISPLAY N

VAX COBOL V4.3 Page
DEVICE: [COBOL.EXAMPLES)TRBLE.COB;l (1)

000002B8
000004BO

Attribute

Glo

Ext

ZK-6440-GE

(continued on next page)

Developing VAX COBOL Programs at DCL Command Level 2-23

Figure 2-3 (Cont.): Storage Map Portion of VAX COBOL Compiler Listing

TRBLE. 29-Dec-1989 10:43:32 VAX COBOL V4.3 Page
Cross Reference in Alphabetical Order 29-Dec-1989 08: 19: 18 DEVICE: [COBOL. EXAMPLES] TRBLE. COB; 1 (1)

000-START 43it
005-0PEN-FILES 45it
010-LOAD-TABLE 52it
020-READ-RECEIVABLES 59it 100
030-SEARCH 69it 63
035-SEARCH-ACCOUNT-TABLE 70it
040-ADD-NEW-ACCOUNT 80# 78
050-TABLE-FULL 85# 73
100-DONE-SEARCH 9lit 64 76 83
110-EXIT 93it
500-PROCESS-RECEIVABLES 96# 67
999-EOJ 102# 61
ACCOUNT-TABLE 37it
ALL-ALPHA 30it
ALPHA-EDIT 28it
EOJ-SW 34# 65 89*
EXT-DATA 31#
IND-A 38it 71* 74 75 77 81 82
NUM-EDIT 29#
R-ACCOUNT-NUM 21# 74 81
RECEIVABLES-COUNT 32# 62* 105
RECEIVABLES-FILE llit 16it 49 56 60 88 104
RECEIVER 20it
SAVE-ACCOUNT-NUM 33it
TABLE-ENTRIES 38# 72
TABLE-FILE 12it 23it 48 53 56 88 104
TABLE-REC 25it 103*
TEL-ACCOUNT 39# 74 77 81*
TBL-TRANS-COUNT 40# 75* 82*
TRBLE 2it
WS-TABLE 35it 37 46* 47* 53* 53* 103

TRBLE. 29-Dec-1989 10:43:32 VAX COBOL V4.3 Page 10
Cross Reference in Declared Order 29-Dec-1989 08:19:18 DEVICE: [COBOL. EXAMPLES] TRBLE. COB; 1 (1)

TRBLE 2#
RECEIVABLES-FILE 11# 16# 49 56 60 88 104
TABLE-FILE 12# 23# 48 53 56 88 104
RECEIVER 20it
R-ACCOUNT-NUM 21# 74 81
TABLE-REC 25it 103*
ALPHA-EDIT 28#
NUM-EDIT 29#
ALL-ALPHA 30#
EXT-DATA 31#
RECEIVABLES-COUNT 32# 62* 105
SAVE-ACCOUNT-NUM 33#
EOJ-SW 34it 65 89*
WS-TABLE 35it 37 46* 47* 53* 53* 103
ACCOUNT-TABLE 37#
TABLE-ENTRIES 38# 72
IND-A 38# 71* 74 75 77 81 82
TEL-ACCOUNT 39it 74 77 81*
TBL-TRANS-COUNT 40# 75* 82*
000-START 43#
005-0PEN-FILES 45it
010-LOAD-TABLE 52it
020-READ-RECEIVABLES 59# 100
030-SEARCH 69# 63
035-SEARCH-ACCOUNT-TABLE 70#
040-ADD-NEW-ACCOUNT 80it 78
050-TABLE-FULL 85# 73
100-DONE-SEARCH 91# 64 76 83
110-EXIT 93it
500-PROCESS-RECEIVABLES 96it 67
999-EOJ 102it 61

TRBLE. 29-Dec-1989 10:43:32 VAX COBOL V4.3 Page 11
External References 29-Dec-1989 08: 19: 18 DEVICE: [COBOL. EXAMPLES] TRBLE. COB; 1 (1)

CALLl COB$AB NAM COB$DISPLAY COB$ERROR
COB$HANDLER COB$IOEXCEPTION LIB$AB CVTPT 0 LIB$AB CVTTP 0
SYS$CLOSE SYS$CONNECT SYS$CREATE - SYS$EXIT -
SYS$FIND SYS$GET SYS$0PEN SYS$UPDATE

ZK-6440-1-GE

2.5.5.3 Compilation Summary

The compilation summary lists the qualifiers used with the COBOL command
and the compilation statistics.

The circled numbers on the program listing TRBLE (see Figure 2-4) correspond
to the following numbered text explanations.

0 Compilation summary. A summary of compilation activities.

8 Program Sections. Describe PSECT attributes.

8 A list of PSECT numbers and PSECT names.

2-24 Developing VAX COBOL Programs at DCL Command Level

8 The bytes allocated for each PSECT.

• A list of PSECT attributes. For an explanation of PSECT attributes, see the
VMS documentation on linking programs.

8 A summary total, by diagnostic level, of compiler-generated diagnostics.
Diagnostics can be Informational (I), Warning (W), Error (E), or Fatal (F).

e COBOL command qualifiers. The first line of command qualifiers is the
compiler command line. The remaining qualifiers are the command qualifiers
and the command qualifier defaults in effect at compile time.

«D Compile time statistics. These statistics include run or CPU time, elapsed
or clock time, the number of page faults, and the number of virtual memory
pages used to compile the program.

Figure 2-4: Compilation Summary of a VAX COBOL Source Program Listing

TRBLE.
Compilation Summary

PROGRAM SECTIONS • • Name

0 $CODE
1 $LOCAL
2 $PDATA
3 COB$NAMES 2
4 COB$NAMES--4
6 EXT_DATA --

DIAGNOSTICS.

Informational:
Error:

29-Dec-1989 09:35:38 VAX COBOL V4.3 Page 12
29-Dec-1989 15:43:06 DEVICE: [COBOL.EXAMPLES]TRBLE.COB;l (1)

• • Bytes Attributes

1000
1444
1196

24
20
10

PIC CON REL LCL SHR EXE RD NOWRT Align(2)
PIC CON REL LCL NOSHR NOEXE RD WRT Align (2)
PIC CON REL LCL SHR NOEXE RD NOWRT Align (2)
PIC CON REL LCL SHR NOEXE RD NOWRT Align (2)
PIC CON REL LCL SHR NOEXE RD NOWRT Align (2)
PIC OVR REL GBL SHR NOEXE RD WRT Align (2)

(suppressed by command qualifier)

COMMAND QUALIFIERS.

COBOL /LIST /COPY _LIST /MAP= (ALPHA, DECLARED) /CROSS= (ALPHA, DECLARED) /ANSI _FORMAT TRBLE. COB

/COPY LIST /NOMACHINE CODE /CROSS REFERENCE=(ALPHABETICAL,DECLARED)
/ANSCFORMAT /NOSEQUENCE CHECK /W!iP= (ALPHABETICAL, DECLARED)
/NOTRUNCATE /NOAUDIT /NOcONDITIONALS
/CHECK= (NOPERFORM, NOBOUNDS) /DEBUG= (NOSYMBOLS, TRACEBACK)
/WARNINGS= (NOSTANDARD, OTHER, NOINFORMATION) /NODEPENDENCY DATA
/STANDARD= (NOSYNTAX, NOPDPll, NOV3 1 85) /NOFIPS -
/LIST /OBJECT /NODIAGNOSTICS /NOFLAGGER /NOANALYSIS DATA
/INSTRUCTION_ SET=DECIMAL _STRING /DESIGN= (NOPLACEHOLDERS 1 NOCOMMENTS)

STATISTICS •

Run Time:
Elapsed Time:
Page Faults:
Dynamic Memory:

3 .13 seconds
4 • 7 9 seconds
340
502 pages

2.5.5.4 Compiler Listing Including the /MACHINE_ CODE Qualifier

ZK-6443-GE

If you specified the /MACHINE_CODE qualifier, your listing includes a section
displaying compiler-generated object code. Figure 2-5 shows a compiler listing
generated by specifying the /MACHINE_CODE qualifier for the program
MCODE.COB.

The circled numbers on the program listing MCODE (see Figure 2-5) correspond
to the following numbered text explanations.

0 The hexadecimal offset location of a machine code instruction or a pseudoin­
struction relative to the PSECT's beginning location.

8 A machine code instruction or a pseudoinstruction.

8 A machine code instruction or a pseudoinstruction's operap.ds.

Developing VAX COBOL Programs at DCL Command Level 2-25

8 A list of the ASCII representation of literals.

0 The word ENTRY defines the entry point.

• COBOL procedure names and machine-code-generated local labels.

8 The source line number containing the COBOL statement that generated the
machine instructions.

2-26 Developing VAX COBOL Programs at DCL Command Level

Figure 2-5: VAX COBOL Listing Specifying /MACHINE_CODE Qualifier

MCODE
Source Listing

29-Dec-1989 16:07:05
29-Dec-1989 16: 06: 46

VAX COBOL V4.3 Page
DEVICE: [COBOL.EXAMPLES]MCODE.COB;2 (1)

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. MCODE •
3
4 ENVIRONMENT DIVISION.
5 CONFIGURATION SECTION.
6 SOURCE-COMPUTER. VAX.
7 OBJECT-COMPUTER. VAX.
8
9 INPUT-OUTPUT SECTION.

10 FILE-CONTROL.
11 SELECT TEST-FILE ASSIGN TO "TESTFIL".
12
13 DATA DIVISION.
14 FILE SECTION.
15 FD TEST-FILE
16 BLOCK CONTAINS 10 RECORDS.
17 01 TEST-REC.
18 03 T-BYTEl PIC X.
19 03 FILLER PIC X(24).
20
21 WORKING-STORAGE SECTION.
22 01 LITERAL-1 PIC X(50) VALUE
23 "USE THIS EXAMPLE FOR A MACHINE CODE LISTING".
24
25 PROCEDURE DIVISION.
26 000-SAMPLE.
27 OPEN INPUT TEST-FILE.
28 DISPLAY LITERAL-1.
29 CLOSE TEST-FILE.
30 STOP RUN.

MCODE
Machine Code Listing

29-Dec-1989 16: 07: 05
29-Dec-1989 16:06:46

VAX COBOL V4.3 Page
DEVICE: [COBOL.EXAMPLES]MCOOE.COB;2 (1)

• 00000000
00000008
oooooooc
00000010
00000014
00000018
OOOOOOlC
00000020
00000024
00000028
0000002C
00000030

• • .PSECT $PDATA
.BYTE AX54, AX45, AX53, AX54, AX46, AX49, AX4C 0
.LONG AX00004401
.LONG AX00080600
.LONG Axoooooooo
.LONG Axoooooooo
.LONG Axoooooooo
.LONG "XOOOOOOOO
.LONG "XOOOOOOOO
.LONG Axoooooooo
.LONG "X00190019
.ADDRESS $LOCAL
.ADDRESS $LOCAL

• .ENTRY
CLRQ
MOVAB
MOVAB
MOVAB
MOVAB

MCODE, "XOE3C
-(SP)
G"COB$HANDLER, (FP)
$LOCAL+"X80, Rll
$PDATA+"X80, RlO
G"COB$IOEXCEPTION, R9

"TESTFIL"

00000000
00000002
00000004
OOOOOOOB
00000012
00000019
00000020 000-SAMPLE: • 00000020 TSTW

MCODE
Machine Code Listing

00000024
00000026
0000002B
00000020 1$ =•
0000002D
00000032
00000036
0000003F
00000048
00000040
00000056
00000059
0000005E
00000060 2$:
00000060
00000069
0000006C
00000071 3$:
00000071 4$:

BEQL
CALLG
BRB

BICB2
CLRB
MOVC3
MOVL
MOVB
CALLG
BLBS
CALLG
BRB

CALLG
BLBS
CALLG

000228
TEST-FILE+70 (R11)

1$

29-Dec-1989 16:07:05
29-0ec-1989 16:06:46

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLES]MCOOE.COB;2 (1)

$PDATA+"X0110 (RlO) I G"COB$IOEXCEPTION (R9)
4$

#"X08, TEST-FILE-4 (Rll)
TEST-FILE-2 (Rll)
#"XOOF4, $PDATA+"X08 (RlO) I TEST-FILE (Rll)
#"X00080200, TEST-FILE+4 (Rll)
#"X02, TEST-FILE+90 (Rll)
$POATA+"X011C (RlO), G"SYS$0PEN
RO, 2$
$PDATA+AX0124 (RlO) I G".COB$IOEXCEPTION (R9)
4$

$PDATA+"X0130 (RlO) I G"SYS$CONNECT
RO, 3$
$POATA+"X0138 (RlO) I G"COB$IOEXCEPTION (R9)

00000071 CALLG $PDATA+AX0104 (RlO), G"COB$DISPLAY
0003

00024

ZK-6444-GE

(continued on next page)

Developing VAX COBOL Programs at DCL Command Level 2-27

Figure 2-5 (Cont.): VAX COBOL Listing Specifying /MACHINE_CODE Qualifier

0000007A CLRW TEST-FILE+2 (R11)
0000007E BICB2 #"XOB, TEST-FILE-4 (Rll)
00000083 MOVZWL #"XOBOO, TEST-FILE+72 (Rll)
OOOOOOBA CALLG $POATA+"X011C (RlO), G"SYS$CLOSE
00000093 BLBS RO, 5$
00000096 CALLG $POATA+"X0144 (RlO) I G"COB$IOEXCEPTION (R9)
00000098 BRB 6$
00000090 5$:
00000090 CLRB TEST-FILE-3 (R11)
OOOOOOAl 6$:

; 00025
OOOOOOAl CALLG $POATA+"X0150 (RlO) I G"SYS$EXIT
OOOOOOAA MOVL #"XOl, RO
OOOOOOAD RET

ZK-6444-1-GE

2.5.5.5 Compiler Listing for a Contained Program

A contained COBOL program listing includes two additional program elements.
For additional information on contained programs, see Chapter 18.

The circled numbers on the program listing of TESTA (see Figure 2-6) correspond
to the following numbered text explanations:

0 A number that indicates the nesting level of the program. Number one
indicates the containing (main) program.

8 The number order from greater to lesser associated with the contained
program. The END PROGRAM shows the nesting level of the contained
program.

2-28 Developing VAX COBOL Programs at DCL Command Level

2.6

Figure 2-6: VAX COBOL Listing of Contained Program

TESTA\ TESTA
Source Listing • 1 1

2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 2

TESTA\ TESTA
Source Listing

27
28
29
30
31
32
33
34
35
36
37
38
39
40

TESTA\TESTB
Source Listing

41 2
42 2
43 2
44 2
45 2
46 2
47 2
48 2
49 2
50 2
51 2
52 2
53 2
54 2
55 2
56 2
57 2
58 2
59 2
60 2
61 2
62 2
63 2
64 2
65 2
66 2
67 2

• ~i.~
70 1
71 1

29-Dec-1989 16:10:14
29-Dec-1989 16:09:49

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTA.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TESTA-DATA GLOBAL.

02 LET-CNT PIC 9 (2) V9 (2) •
02 IN-WORD PIC X (20) •
02 DISP-COUNT PIC 9 (2) .

PROCEDURE DIVISION.
GETIT SECTION.
BEGINIT.

DISPLAY "ENTER WORD".
MOVE SPACES TO IN-WORD.
ACCEPT IN-WORD.
CALL "TESTB" USING IN-WORD LET-CNT.

PERFORM DISPLAYIT.
STOP RUN.

DISPLAYIT SECTION.
SHOW-IT.

DISPLAY IN-WORD.
MOVE LET-CNT TO DI SP-COUNT.
DISPLAY DISP-COUNT " CHARACTERS".

29-Dec-1989 16:10:14
29-Dec-1989 16:09:49

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTB INITIAL.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SUB-1 PIC 9 (2) COMP.
01 SUB-2 PIC S9 (2) COMP-3.
01 HOLD-WORD.

03 HOLD-CHAR PIC X OCCURS 20 TIMES.

LINKAGE SECTION.
01 TEMP-WORD.

03 TEMP-CHAR PIC X OCCURS 20 TIMES.
01 CHARCT PIC 99V99.

VAX COBOL V4.3 Page
DEVICE: [COBOL.EXAMPLES] TESTA.COB; 1 (1)

VAX COBOL V4. 3 Page 2
DEVICE: [COBOL.EXAMPLES] TESTA.COB; 1 (1)

28-Dec-1989 16:10:14 VAX COBOL V4.3 Page 2
28-Dec-1989 16:09:49 WRT$$DISK: [COBOL.EXAMPLES]TESTA.COB;l (1)

PROCEDURE DIVISION USING TEMP-WORD, CHARCT.
CONVERT-IT SECTION.
STARTUP.

IF TEMP-WORD=SPACES
MOVE 0 TO CHARCT
GO TO GET-OUT.

PERFORM LOOK-BACK
VARYING SUB-1 FROM 20 BY -1
UNTIL TEMP-CHAR (SUB-1) NOT=SPACE.

MOVE SUB-1 TO CHARCT.
MOVE SPACES TO HOLD-WORD.
PERFORM MOVE-IT

VARYING SUB-2 FROM 1 BY 1
UNTIL SUB-1=0.

MOVE HOLD-WORD TO TEMP-WORD.

GET-OUT.
EXIT PROGRAM.

MOVE-IT.
MOVE TEMP-CHAR (SUB-1)

TO HOLD-CHAR (SUB-2) .
SUBTRACT 1 FROM SUB-1.

LOOK-BACK.
EXIT •

END PROGRAM TESTB.
END PROGRAM TESTA.

ZK-6445-GE

Linking a VAX COBOL Program

Once you have compiled a VAX COBOL source program or module, link it using
the DCL command LINK. The LINK command combines your object modules into
one executable image the VMS operating system can execute. A source program
or module cannot run on the VMS operating system until it is linked.

Developing VAX COBOL Programs at DCL Command Level 2-29

Unlike the VMS operating system, some systems do not have a linker. On
these systems, the language compilers resolve symbolic references, and another
software component completes the task while loading the program in memory.
On VMS systems, however, the linker simplifies the job of each language compiler
because the logic necessary to resolve symbolic references need not be duplicated.
The main advantage to a system that has a linker, however, is that individual
program modules can be separately written and compiled, and then linked
together. This includes object modules produced by different language compilers.

When you execute the LINK command, the VMS Linker performs the following
functions:

• Resolves local and global symbolic references in the object code

• Assigns values to the global symbolic references

• Signals an error message for any unresolved symbolic reference

• Allocates virtual memory space for the executable image

When using the LINK command, you may want to use the /DEBUG qualifier.
The /DEBUG qualifier appends to the image all the symbol and line number
information appended to the object modules. In addition, it appends information
on global symbols, and forces the image to run under debugger control when it is
executed.

The LINK command produces an executable image by default. However, you
can also use the LINK command to obtain shareable images and system images.
The /SHAREABLE qualifier directs the linker to produce a shareable image;
the /SYSTEM qualifier directs the linker to produce a system image. For more
information on using shareable images refer to Section 2.6.6. For a complete
discussion of the VMS Linker, refer to the VMS documentation on linking
programs.

2.6.1 The LINK Command

The format of the LINK command is as follows:

LINK[/command-qualifier] ... {file-spec[/file-qualifier] ... } ...

/command-qualifier ...
Specifies the output file option or options.

file-spec ...
Specifies the input file or files to be linked.

/file-qualifier ...
Specifies input file option or options.

If you specify more than one input file, you must separate the input file specifica­
tions with a plus sign (+) or a comma (,).

By default, the linker creates an output file with the name of the first input file
specified and the file type EXE. Note that when you link multiple files, you must
enter the main module ahead of called modules.

The following command line links the object files MAINPROG.OBJ,
SUBPROGl.OBJ, and SUBPROG2.0BJ to produce one executable image called
MAINPROG.EXE:

$ LINK MAINPROG.OBJ, SUBPROGl.OBJ, SUBPROG2.0BJ

2-30 Developing VAX COBOL Programs at DCL Command Level

2.6.2 LINK Command Qualifiers

The LINK command qualifiers can be used to modify the linker's output, as well
as to invoke the debugging and traceback facilities. Linker output consists of an
image file and an optional map file.

Table 2-3 summarizes some of the most commonly used LINK command quali­
fiers. A brief description of each qualifier follows this list. For a complete list of
LINK qualifiers, refer to the VMS Linker documentation.

Table 2-3: Common LINK Qualifiers and Defaults

LINK Command Qualifiers

/BRIEF

/[NOJCROSS_REFERENCE

/[NO]DEBUG

/[NOJEXECUTABLE

/FULL

/[NOJMAP

/[NOJTRACEBACK

/[NOJUSERLIBRARY

/BRIEF

Default

/BRIEF

/NOCROSS_REFERENCE

/NODEBUG

/EXECUTABLE

/FULL

/NOMAP (interactive)

IMAP (batch)

/TRACEBACK

/USERLIBRARY

The /BRIEF qualifier produces a brief memory allocation map file that contains
the following:

• A summary of image characteristics

• A list of object modules included in the image

• A summary of link-time performance statistics

Use /BRIEF only if you also specify IMAP.

Example

$ LINK/MAP /BRIEF PROGA

/[NO]CROSS_REFERENCE

The /[NO]CROSS_REFERENCE qualifier controls whether the linker produces
a symbolic cross-reference on the memory allocation map. The symbolic
cross-reference lists each global symbol referenced in the image, its value, and all
modules in the image that refer to it. Use /CROSS_REFERENCE only if you also
specify IMAP.

The default is /NOCROSS_REFERENCE.

Example

$ LINK/MAP/CROSS_REFERENCE PROGA

Developing VAX COBOL Programs at DCL Command Level 2-31

/[NO]DEBUG[:file-spec]

The /[NO]DEBUG qualifier controls whether the linker includes a debugger in the
image.

If the object module contains local symbol table information for the debugger,
specify /DEBUG to include this information in the image.

You can include the optional file specification to specify a user-defined debugger;
the default file type is OBJ. If you specify /DEBUG without a file specification,
the default VMS Debugger is linked to the image.

The default is /NODEBUG.

Chapter 3 discusses COBOL program debugging using the VMS Debugger. For
more information on using /DEBUG, refer to the VMS Debugger documentation.

/[NO]EXECUTABLE[:file-spec]

The /[NO]EXECUTABLE qualifier controls whether the linker creates an
executable image. The /EXECUTABLE qualifier can also supply a file
specification for the output image file.

By default, the linker creates an executable image with the same file name as the
first input file and a file type of EXE.

Use /NOEXECUTABLE to see the results of linking in less time than the linker
would need to create an image file.

Examples

$ LINK/EXECUTABLE=NEWPROG.IMG/MAP PROGA

$ LINK/NOEXECUTABLE/MAP PROGA

/FULL

Produces a full memory allocation map listing that contains:

• All information contained in the brief listing

• Detailed descriptions of each program and image section in the image file

• Lists of global symbols by name and value

Use /FULL only if you also specify IMAP.

Example

$ LINK/MAP/NOEXEC/FULL PROGA

/[NO]MAP[:file-spec]

The /[NO]MAP qualifier controls whether the linker produces a memory allocation
map listing.

You can provide the file specification to name the map file. Otherwise, the output
file name is the same as the name of the first input file, with a file type of MAP.

When you specify IMAP, you can also specify /BRIEF, /FULL, or
/CROSS_REFERENCE to control map contents. If you specify none of these
qualifiers, the map contains:

• All the information contained in the brief listing

• A list of user-defined global symbols sorted by name

• A list of user-defined program sections

2-32 Developing VAX COBOL Programs at DCL Command Level

The interactive mode default is /NOMAP. The batch mode default is IMAP.

/[NO]TRACEBACK

The /[NO]TRACEBACK qualifier controls whether the linker includes traceback
information in the image file.

By default, the linker includes traceback information so the system can trace the
call stack when an error occurs.

If you specify /DEBUG, the linker also assumes trRACEBACK.

/[NO]USERLIBRARY[=(table, ...)]

The /[NO]USERLIBRARY qualifier controls whether the linker searches
user-defined default libraries to resolve undefined symbols.

/USERLIBRARY causes the linker to search user-defined default libraries before
it searches the system library.

Use /NOUSERLIBRARY to ignore user-defined libraries.

The default is /USERLIBRARY.

2.6.3 Positional Qualifiers

Table 2-4 lists commonly used LINK positional qualifiers. Note that there are no
defaults for these qualifiers.

Table 2-4: LINK Positional Qualifiers

LINK Positional Qualifiers

/INCLUDE

/LIBRARY

/OPTIONS

Default

None

None

None

The following text summarizes the LINK positional qualifiers listed in Table 2-4
and provides a brief description of each qualifier. For a complete list and
description of LINK positional qualifiers, see the VMS Linker documentation.

/INCLUDE=(module-name[, •••])

The /INCLUDE qualifier indicates that the associated file specification refers to
an object module library. The default file type is OLB. It also causes the linker to
include only the specified modules.

You must specify at least one module name. You can specify more than one
module by separating module names with commas and enclosing them in
parentheses. Note that if you use a variable name in a CALL statement to
refer to an external program, you must explicitly include any of the external
modules that might be called by the main program when you link the program.

Using /LIBRARY (LIB) with /INCLUDE causes the linker to search the library
for unresolved references· after it includes the specified module.

Developing VAX COBOL Programs at DCL Command Level 2-33

Examples

$ LINK PROGA,LIBA/INCLUDE=MODA

The linker links PROGA.OBJ and the module MODA from the library file
LIBA.OLB to produce PROGA.EXE.

$ LINK PROGA,LIBA/INC=(MODA,MODB)/LIB

The linker links PROGA.OBJ and the modules MODA and MODB from the
library file LIBA.OLB. Because of the /LIBRARY qualifier, the linker will also
search LIBA.OLB for any other unresolved references in PROGA.OBJ, MODA,
andMODB.

/LIBRARY

The /LIBRARY qualifier indicates that the file specification refers to a library file
to resolve undefined symbols in the input files.

If the file specification does not include a file type, the linker assumes OLB as the
default. Do not specify a library as the first input file unless you also specify the
/INCLUDE qualifier to indicate which library modules are to be included in the
image.

Using /INCLUDE with /LIBRARY causes the linker to search the library for
unresolved references after it includes the specified modules.

Examples

$ LINK PROGA, LIBA/LIBRARY

The linker searches LIBA.OLB for unresolved references in PROGA.OBJ to create
PROGA.EXE.

$ LINK LIBA/LIB/INCLUDE=MODl/EXEC=PROG

The linker includes the module MODl from LIBA.OLB, and then searches
LIBA.OLB for unresolved references in MODl. The result is an executable
image, FROG.EXE.

/OPTIONS

The /OPTIONS qualifier indicates that the input file contains a list of options to
control linking. If the /OPTIONS file specification does not include a file type, the
linker assumes OPT as the default file type.

To link a COBOL DML object program with the shareable VAX DBMS Library,
you must use an option file in the LINK command. To link a DML object program
named DMLPROG.OBJ with the shareable VAX DBMS Library, you would use
this command:

$ LINK DMLPROG, SYS$LIBRARY:DBMDML/OPT

The VMS Linker documentation describes the contents of the option file.

2.6.4 Using an Object Module Library

In a large development effort, programmers often store the object modules for
their subprograms in an object module library. By using an object module library,
you can make program modules contained in the library available to many other
programmers. To link modules contained in an object module library, use the
/INCLUDE qualifier and specify the specific modules you want to link. For
example:

2-34 Developing VAX COBOL Programs at DCL Command Level

$ LINK GARDEN, VEGETABLES/INCLUDE=(EGGPLANT,TOMATO,BROCCOLI,ONION)

This example directs the linker to link the subprogram modules EGGPLANT,
TOMATO, BROCCOLI, and ONION with the main program module GARDEN.

Besides program modules, an object module library can also contain a symbol
table with the names of each global symbol in the library, and the name of the
module in which the global symbol names are defined. You specify the name
of the object module library containing symbol definitions with the /LIBRARY
qualifier. When you use the /LIBRARY qualifier during a link operation, the
linker searches the specified library for all unresolved references found in the
included modules during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL.

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library to be your default library by using the
DCL command DEFINE. The linker searches default user libraries for unresolved
references after it searches modules and libraries specified in the LINK command.
See the VMS documentation on DCL for more information about the DEFINE
command.

For more information about object module libraries see the VMS documentation
on linking programs.

2.6.5 Object Libraries

All VAX COBOL programs reference system-supplied object module libraries
when they are linked. These libraries contain routines that provide 1/0 and
other system functions. Additionally, you can use these libraries, or your own, to
provide application-specific object modules within your particular environment.

2.6.5.1 Using System-Supplied Object Module Libraries

To use the contents of an object module library, you must do the following:

• Refer to the object module by name in your program in a CALL statement, or
VALUE EXTERNAL reference.

• Make sure that the linker can locate the library that contains the object
module by ensuring that required software is correctly installed.

• Confirm that required logical names point to the appropriate locations. Make
certain that IMAGELIB, STARLET, and VMSRTL are correctly assigned (in
most cases, correct results will be obtained if they are deassigned).

• Make sure that your default directory (or LINK/OUTPUT directory) is valid
and that you have write privileges to it.

To specify that a linker input file is a library file, use the /LIBRARY qualifier.
This qualifier causes the linker to search for a file with the name you specify and
a default file type of OLB. If you specify a file that the linker cannot locate, a
fatal error occurs and the link terminates.

The sections that follow describe the order in which the linker searches libraries
that you specify explicitly, default user libraries, and system libraries.

Developing VAX COBOL Programs at DCL Command Level 2-35

2.6.5.2 Defining the Search Order for Libraries

When you specify libraries as input for the linker, you can specify as many as you
wish; there is no practical limit. More than one library can contain a definition
for the same module name. The linker uses the following conventions to search
libraries specified in the command string:

• A library is searched only for definitions that are unresolved in the previous
input files specified.

• If more than one object module library is specified, the libraries are searched
in the order in which they are specified.

For example:

$ LINK METRIC,DEFLIB/LIBRARY,APPLIC

The library DEFLIB will be searched only for unresolved references in the object
module METRIC. It is not searched to resolve references in the object module
APPLIC. However, this command can also be entered as follows:

$ LINK METRIC,APPLIC,DEFLIB/LIBRARY

In this case, DEFLIB.OLB is searched for all references that are not resolved
between METRIC and APPLIC. After the linker has searched all libraries
specified in the command, it searches default user libraries, if any, and then
the default system libraries.

2.6.5.3 Default User Object Module Libraries

You can define one or more of your private object module libraries as default user
libraries. The linker searches default user libraries for unresolved references
after it searches modules and libraries specified in the LINK command.

To indicate that a private library is a default user library, enter a DEFINE
command as in the following example:

$ DEFINE LNK$LIBRARY DEFLIB

In this example, LNK$LIBRARY is a logical name and DEFLIB is the name of
an object module library (having the file type OLB) that you want the linker to
search automatically in all subsequent link operations.

You can establish any object module library as a default user library by creating a
logical name for the library. The logical names you must use are LNK$LIBRARY
(as in the preceding example), LNK$LIBRARY_l, LNK$LIBRARY_2, and so on,
to LNK$LIBRARY_999. When more than one of these logical names exists when
a LINK command executes, the linker searches them in numeric order beginning
with LNK$LIBRARY.

When one or more logical names exist for default user libraries, the linker uses
the following search order to resolve references:

• The process, group, and then system logical name tables are searched for the
name LNK$LIBRARY. If the logical name exists in any of these tables, and if
it contains the desired reference, the search is ended.

• The process, then group, and then system logical name tables are searched for
the name LNK$LIBRARY_l. If the logical name exists in any of these tables,
and if it contains the desired reference, the search is ended.

This search sequence occurs for each reference that remains unresolved.

2-36 Developing VAX COBOL Programs at DCL Command Level

2.6.5.4 System Libraries

The directory identified by the system-defined logical name SYS$LIBRARY
contains the following library files:

• IMAGELIB.OLB

• STARLET.OLE

• VMSRTL.EXE

IMAGELIB.OLB contains the global symbols for the shared system images.

STARLET.OLE contains, in object module form, the procedures in VMSRTL.EXE,
as well as additional run-time modules required by various compilers and system
programs.

The file VMSRTL.EXE contains some of the VMS Run-Time Library routines.
The procedures in this library provide many useful functions including:

• Commonly used mathematical and string-handling functions

• Procedures that support code produced by VAX compilers

By default, the linker searches IMAGELIB, then STARLET, to resolve references
to external names that are still unresolved after it searches libraries specified in
the LINK command and default user libraries.

2.6.6 Shareable Images

You can create VAX COBOL programs to be linked and installed as shareable
images. A shareable image is a single copy of a program that can be shared
by many users or applications. Using shareable images provides the following
benefits:

• Saves system resources, since one physical copy of a set of procedures can be
shared by more than one application or user.

• Facilitates the linking of very large applications by allowing you to break
down the whole application into manageable segments.

• Allows you to modify one or more sections of a large application without
having to relink the entire program.

2.6.6.1 Creating a Shareable Image

A shareable image is created using the /SHARE qualifier of the LINK command.

When you create a VAX COBOL program to be installed as a shareable image,
you should consider the concepts of position-dependent code and shareability.
These concepts are covered in detail in the documentation on the VMS Linker.

The following list describes one way to create and install a VAX COBOL program
as a shareable image:

1. Create the main program used to call the subprogram (which will be installed
as a shareable image).

2. Create the subprogram to be installed as a shareable image.

3. Link the shareable image program using the /SHARE qualifier and map the
entry point using either an options file or transfer vectors.

Developing VAX COBOL Programs at DCL Command Level 2-37

4. Copy the shareable image to the SYS$LIBRARY. (This step requires [SYSLIB]
access privileges.) Alternatively you can use an assignment statement.

5. Check to see if there is enough global system space for the shareable image.

6. Install the image in a shareable library. (This step requires PRMGBL,
SYSGBL, or CMKRNL privileges.)

7. Link the main program with the shareable image.

Once you have completed these steps, you can run the main program to access
the subprogram installed as a shareable image.

NOTE

VAX COBOL programs installed as shareable images cannot contain
external files.

When calling a subprogram installed as a shareable image, the program
name specified in the CALL statement must be a literal.

More information on shareable images is available in the documentation on the
VMS Linker.

The following sample programs and command procedure provide an example of
how to create, link, and install a subprogram as a shareable image, as described
in the preceding steps.

Example 2-1 shows the main program CALLER.COB and the two subprograms
(SUBSHRl.COB and SUBSHR2.COB). Only the subprograms are installed as
shareable images.

Example 2-1: Main Program and Subprograms

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLER.
**
* This program calls a subprogram installed as a shareable image.*
**
PROCEDURE DIVISION.
0.

CALL "SUBSHRl"
ON EXCEPTION

DISPLAY "First CALL failed. Program aborted."
END-CALL.
STOP RUN.

END PROGRAM CALLER.

2-38 Developing VAX COBOL Programs at DCL Command Level

(continued on next page)

Example 2-1 (Cont.): Main Program and Subprograms

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBSHRl.

**
* This program is linked as a shareable image. When it is called,*
* it calls another program installed as a shareable image. *
**
PROCEDURE DIVISION.
0.

DISPLAY "Call to SUBSHRl successful. Calling SUBSHR2.".
CALL "SUBSHR2"

ON EXCEPTION
DISPLAY "Second call failed. Control returned to CALLER."

END-CALL.
END PROGRAM SUBSHRl.

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBSHR2.
**
* This program is linked as a shareable image and is called by *
* another shareable image. *
**
PROCEDURE DIVISION.
0.

DISPLAY "Call to SUBSHR2 successful!".
END PROGRAM SUBSHR2.

Example 2-2 shows a command procedure that compiles, links, and installs the
sample programs in Example 2-1.

Example 2-2: Command Procedure to Link a Program as a Shareable Image

$! Create the main program and subprograms to be installed as shareable
$! images. In this example CALLER.COB is the main program. SUBSHRl.COB
$! and SUBSHR2.COB are the subprograms to be installed as
$! shareable images.

Compile the main program and subprograms.

COBOL CALLER.COB
COBOL SUBSHRl.COB
COBOL SUBSHR2.COB

$!
$!
$!
$
$
$
$!
$!
$!
$
$

Create an options file to map the entry points of the subprograms.

COPY SYS$INPUT OPTIONSl.OPT
DECK
UNIVERSAL=SUBSHR1,SUBSHR2

$ EOD
$!
$! Link the subprograms using the /SHARE qualifier to the shareable library
$! and the options file. For more information on options files, refer to
$! the documentation on the VMS Linker.
$!

(continued on next page)

Developing VAX COBOL Programs at DCL Command Level 2-39

Example 2-2 (Cont.): Command Procedure to Link a Program as a Shareable Image

$
$
$
$
$
$
$
$
$
$
$
$
$
$

LINK/SHARE=MYSHRLIB SUBSHR1,SUBSHR2,0PTIONS1/0PT

Copy the shareable images to SYS$LIBRARY. To perform this
you must have [SYSLIB] access privileges. Alternatively,
you can perform the same function by doing a local assignment.

COPY MYSHRLIB.EXE SYS$LIBRARY:*
or

ASSIGN DEVICE: [DIRECTORY]MYSHRLIB.EXE MYSHRLIB

Install the shareable images in a shareable library.
This will allow multiple users to use a single copy of the
shareable image.

$ If you do not install the shareable library,
$ multiple users will each link to their own run-time copy of
$. the image.
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

$!

Note, to install an image in a shareable library, you must have
PRMGBL, SYSGBL, or CMKRNL privileges.

Prior to installing the shareable image, check to see if there is
enough global symbol space.
MCR INSTALL
/GLOBAL
"Z

Also check to see if there are available global sectors and pages.
MCR SYS$GEN
/GBLSE
/GBLPA
"Z

The /WRITE qualifier is required if you want to install writable PSECTS.
MCR INSTALL
device: [directory]MYSHRLIB/SHARE/WRITE

$! Create a second options file to map the main program to the shareable
$! image library.
$ COPY SYS$INPUT OPTIONS2.0PT
$ DECK

MYSHRLIB/SHAREABLE
$ EOD
$!
$! Link the main program with the shareable image subprograms through the
$! options file.
$ LINK CALLER,OPTIONS2/0PT
$!
$! Now you can run the main program.

2.6.6.2 Using Transfer Vectors

Using transfer vectors can be helpful when creating· shareable images for the
following reasons:

• They make it easy for you to modify the contents of shareable images.

• They allow you to avoid relinking user programs bound to the shareable
image if you modify the image.

2-40 Developing VAX COBOL Programs at DCL Command Level

The command procedure in Example 2-3 shows how to create a transfer
vector table and how to link the main program and subprograms (shown in
Example 2-1) with the transfer vector table.

Example 2-3: Transfer Vectors

$!
$! Create a transfer vector table (TRAVEC.MAR).
$ MACRO /OBJ=TRAVEC SYS$INPUT

$

.PSECT TRANSFER VECTOR

The transfer vector table is used to map entry points at
run time to a shareable library. If you make changes to the
shareable library, you only have to relink the library.
You do not have to relink all the programs linked to the
library.

This example transfer vector table maps the entry points
of the shareable subprograms: SUBSHRl, SUBSHR2.

.TRANSFER

.MASK
BRW
RET
.QUAD
.TRANSFER
.MASK
BRW
RET
.QUAD

SUBSHRl
SUBSHRl
SUBSHR1+2

SUBSHR2
SUBSHR2
SUBSHR2+2

Note that there must be an entry point for each shareable image.
Any future additions should be made at the end of the vector.
The order of the entries must remain intact once established.
Do not delete any entries (even if the shareable image is deleted) .

$ LINK/SHARE=MYSHRLIB SUBSHR1,SUBSHR2,TRAVEC

Once you have created the transfer vector table, you can install the subprograms
and link the main program to the shareable library as shown in Example 2-2.

For more information on transfer vectors, refer to the documentation on the VMS
Linker.

2.6.7 Linker Error Messages

If the linker detects any errors while linking object modules, it displays messages
indicating the cause and severity of each error. If any error or fatal error
condition occurs, that is, an error with a severity E or F, the linker does not
produce an image file.

The messages produced by the linker are descriptive, and you do not usually need
additional information to determine the specific error. The following are some
common errors that occur during linking:

• An object module has compilation errors.

This error occurs when you attempt to link a module that generates warnings
or errors during compilation. You can usually link compiled modules for
which the compiler generated messages, but you should verify that the
modules will actually produce the output you expect.

Developing VAX COBOL Programs at DCL Command Level 2-41

• The input file has a file type other than OBJ and no file type was specified.

If you do not specify a file type, the linker assumes the file has a file type
of OBJ. If the file is not an object file and you do not identify it with the
appropriate file type, the linker signals an error message and does not
produce an image file.

• You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on the
command line or if the compilation contains fatal diagnostics.

• A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names from the
command line and the linker cannot locate the definition for a specified global
symbol reference. For example, the main program module OCEAN.OBJ calls
the subprogram modules REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBJ. If
you specify the following LINK command, an error occurs if SEAWEED.OBJ
does not exist in the same directory that the command was issued from:

$ LINK OCEAN, REEF, SHELLS

This example produces the following error messages:

%LINK-W-NUDFSYMS, 1 undefined symbol
%LINK-I-UDFSYMS, SEAWEED
%LINK-W-USEUNDEF, undefined symbol SEAWEED referenced

in psect $CODE off set %XOOOOOOOC
in module OCEAN file DEVICE$: [COBOL.EXAMPLES]PROG.OBJ;l

%LINK-W-USEUNDEF, undefined symbol SEAWEED referenced
in psect $CODE off set %X00000021
in module OCEAN file DEVICES$: [COBOL.EXAMPLES]PROG.OBJ;l

If an error occurs when you link modules, you can often correct the error
by reentering the command string and specifying the correct modules or
libraries. If an error indicates that a program module cannot be located, you
may be linking the program with the wrong VAX COBOL Run-Time Library.

For a complete list of linker messages, see the VMS documentation on
messages.

2.7 Running a VAX COBOL Program

Once you have linked your program, you can use the DCL command RUN to
execute it. The RUN command has the following format:

RUN [/[NO]DEBUG] file-spec

/[NO] DEBUG
The /[NOJDEBUG qualifier is optional. Specify the /DEBUG qualifier to request
the debugger if the image was not linked with it. You cannot use /DEBUG on
images linked with the /NOTRACEBACK qualifier. If the image was linked with
the /DEBUG qualifier and you do not want the debugger to prompt, use the
/NODEBUG qualifier. The default action depends on whether the file was linked
with the /DEBUG qualifier.

file-spec
Is the name of the file you want to run.

2-42 Developing VAX COBOL Programs at DCL Command Level

The following example executes the image NOBUGS.EXE without invoking the
debugger:

$ RUN NOBUGS/NODEBUG

See Chapter 3 for more information on debugging programs.

2. 7 .1 COBOL Run-Time Errors

During execution, an image can generate a fatal error called an exception
condition. When an exception condition occurs, the system displays an error
message. Run-time errors can also be issued by other facilities such as SORT or
VMS.

A run-time error message has the following format:

%COBOL-<l>-<mnemonic>, <message>

%COBOL
Indicates that the COBOL run-time environment issued the error.

<I>
Indicates severity of error. The severity indicator can be one of the following:

Code

I

w
E

F

<mnemonic>

Meaning

Informational-Indicating information

Warning-Indicating a warning

Error-Indicating an error

Fatal-Indicating a severe error

A 3- to 9-character string that identifies the error.

<message>
Identifies the text of the error.

The following example shows a COBOL run-time error issued by an attempt to
divide by zero:

%COB-E-DIVBY-ZER, divide by zero; Execution continues

For a description of COBOL run-time error messages, use the HELP COBOL
ERRORS command.

2.8 Program Switches

Switches exist as the logical name COB$SWITCHES and can be defined for the
image, process, group, or system. You can control program execution by defining
switches in the SPECIAL-NAMES paragraph and setting them internally (within
the image) or externally (outside the image).

Developing VAX COBOL Programs at DCL Command Level 2-43

2.8.1 Setting Switches Internally

To set switches internally, define them in the SPECIAL-NAMES paragraph and
use the SET statement in the PROCEDURE DIVISION to specify switches ON or
OFF.

For example:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

SWITCH 10 IS MY-SWITCH
ON IS SWITCH-ON
OFF IS SWITCH-OFF.

PROCEDURE DIVISION.
000-SET-SWITCH.

SET MY-SWITCH TO ON.

2.8.2 Setting Switches for a Process

To set switches for a process, use the DEFINE or ASSIGN DCL command to
change the status of program switches:

$ DEFINE COB$SWITCHES "switch-list"

where switch-list contains up to 16 switches separated by commas. Set a switch
ON by specifying it in the switch-list. A switch is OFF (the default) if you do not
specify it in the switch-list.

For example:

$ DEFINE COB$SWITCHES "1,5,13" Sets switches 1, 5, and 13 ON.

$ DEFINE COB$SWITCHES "9,11,16" Sets switches 9, 11, and 16 ON.

$ DEFINE COB$SWITCHES Sets all switches OFF.

2.8.3 Order of Evaluation

The order of evaluation for logical name assignments is image, process, group,
system. System and group assignments (including COBOL program switch
settings) continue until they are changed or deassigned. Process assignments
continue until they are changed, deassigned, or the process ends. Image
assignments end when they are changed or the image ends.

2.8.4 Checking and Controlling Switch Settings

You should know the system and group assignments for COB$SWITCHES unless
you have defined them for your process or image. You can check switch settings
by using this command:

$ SHOW LOGICAL COB$SWITCHES

2-44 Developing VAX COBOL Programs at DCL Command Level

Use the DEASSIGN command to remove the switch-setting logical name from
your process and reactivate the group or system logical name (if any):

$ DEASSIGN COB$SWITCHES

To change the status of external switches during execution, do the following:

1. Interrupt the image with a STOP literal COBOL statement.

2. Use a DEFINE command to change switch settings.

3. Continue execution with the CONTINUE command. Be sure not to force
the interrupted image to exit by entering a command that executes another
image.

2.8.5 Example Using Program Switches

Example 2-4 shows how to use program switches.

Example 2-4: Using Program Switches

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

SWITCH 1 ON IS DAILY-DATA
SWITCH 3 ON IS WEEKLY-DATA
SWITCH 5 ON IS MONTHLY-DATA
SWITCH 10 IS MY-SWITCH

ON IS SWITCH-ON
OFF IS SWITCH-OFF.

PROCEDURE DIVISION.
000-CHECK-SWITCHES.

SET MY-SWITCH TO ON.
IF DAILY-DATA PERFORM 100-DAILY-ROUTINE.
IF WEEKLY-DATA PERFORM 200-WEEKLY-ROUTINE.
IF MONTHLY-DATA PERFORM 300-MONTHLY-ROUTINE.
IF NOT DAILY-DATA AND

NOT WEEKLY-DATA AND

NOT MONTHLY-DATA
PERFORM 400-ANNUAL-ROUTINE.

IF END-OF-YEAR="Y"
SET MY-SWITCH TO OFF.

If you use this program to process only weekly and monthly data, your DEFINE
command would be:

$ DEFINE COB$SWITCHES "3,5"

Developing VAX COBOL Programs at DCL Command Level 2-45

Chapter 3

Using the VMS Debugger

This chapter is an introduction to using the VMS Debugger with VAX COBOL
programs. It includes the following information:

• An overview of debugger concepts

• Enough information so that you can start using the debugger

• A summary of the debugger commands by function

• A sample terminal session that demonstrates using the debugger to find a
bug in a VAX COBOL program

For complete reference information on the VMS Debugger, see the VMS
documentation. Online help is available during debugging sessions.

3.1 VMS Debugger Concepts

A debugger is a tool to help you locate run-time errors quickly. It is used with a
program already compiled and linked successfully, with no errors reported, that
does not run correctly; for example, the program output is obviously wrong, or
the program goes into an infinite loop or terminates prematurely. The debugger
enables you to observe and manipulate the program's execution interactively,
step by step, until you locate the point at which the program stopped working
correctly.

The VMS Debugger is a symbolic debugger. This means you can refer to program
locations by the symbols (names) you used for those locations in your program.
You can use the names of variables, paragraphs, sections, and so on. You do not
have to use virtual addresses to refer to memory locations.

The debugger recognizes the syntax, expressions, data typing, and other
constructs of VAX COBOL, as well as the following other VMS-supported
languages:

VAX Ada®
VAX BASIC
VAX BLISS
VAXC
VAXDIBOL
VAX FORTRAN
VAX MACR0-32
VAX PASCAL
VAXPUI

®Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Using the VMS Debugger 3-1

VAX RPG II
VAX SCAN

Therefore, if your program is written in more than one language, you can change
from one language to another during a debugging session. The current source
language determines the format used for entering and displaying data. It also
determines the format for other features that have language-specific settings
(for example, comment characters, operators and operator precedence, and case
sensitivity or insensitivity).

By issuing debugger commands at your terminal, you can do the following:

• Start, stop, and resume the program's execution

• Trace the execution path of the program

• Monitor selected locations, variables, or events

• Examine and modify the contents of variables, or force events to occur

• Test the effect of some program modifications without editing, recompiling,
and relinking the program

Such techniques enable you to isolate an error in your code more quickly than
you can without the debugger.

Once you have found the error in the program, you can edit the source code and
compile, link, and run the corrected version.

3.2 Features of the Debugger

The VMS Debugger provides the following features that help you to debug your
programs:

• Online help-You can access help during debug sessions.

• Source code display-You can display source code during debug sessions.

• Screen mode-You can display and capture information in scrollable windows.

• Keypad mode-You can issue commonly used debugger command sequences
with VTl 00, VT52, or LK201 keypads.

• Source editing-You can edit your source code while in a debug session.

• Command procedures-You can issue debug commands from command
procedures.

• Symbol definitions-You can define your own symbols to represent commands,
address expressions, or values in abbreviated form.

• Initialization files-You can create an initialization file containing commands
to tailor your debug session.

• Log files-You can record your debug session to a log file.

3.3 Getting Started with the Debugger

This section explains how to use the debugger and provides VAX COBOL
examples. The intent is to enable you to start using the debugger; therefore,
only basic functions are covered. For more detailed information, see the VMS
documentation on the debugger. Remember that online help is immediately

3-2 Using the VMS Debugger

available to you during a debugging session when you type the HELP command
at the debugger prompt (DBG>).

3.3.1 Compiling and Linking to Prepare for Debugging

The following example shows how to compile and link a VAX COBOL program
consisting of a single compilation unit named INVENTORY.

$ COBOL/DEBUG INVENTORY
$ LINK/DEBUG INVENTORY

The /DEBUG qualifier on the COBOL command causes the compiler to write
the debug symbol records associated with INVENTORY into the object module,
INVENTORY.OBJ. These records allow you to use the names of variables and
other symbols declared in INVENTORY in debugger commands. (If your program
has several compilation units, you must compile each unit that you want to debug
with the /DEBUG qualifier.)

The /DEBUG qualifier on the LINK command causes the linker to include all
symbol information that is contained in INVENTORY.OBJ in the executable
image. The qualifier also causes the VMS image activator to start the debugger
at run time. (If your program has several object modules, you may need to specify
other modules in the LINK command.)

3.3.1.1 Establishing the Debugging Configuration

Before invoking the debugger (as explained in Section 3.3.2), check that the
debugging configuration is appropriate for the kind of program you are going to
debug.

You can invoke the debugger in either the default configuration or the
multiprocess configuration to debug programs that run in either one or several
processes, respectively. The configuration depends on the current definition of
the logical name DBG$PROCESS. Thus, before invoking the debugger, enter the
DCL command SHOW LOGICAL DBG$PROCESS to determine the definition of
DBG$PROCESS.

For programs that run in only one process, DBG$PROCESS either should be
undefined, as in the following example, or should have the value DEFAULT:

$ SHOW LOGICAL DBG$PROCESS
%SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS

If DBG$PROCESS has the value MULTIPROCESS, and you want to debug a
program that runs in only one process, enter the following command:

$ DEFINE DBG$PROCESS DEFAULT

3.3.2 Starting and Enc;Ung a Debugging Session

To invoke the debugger, issue the DCL command RUN. The following message
will appear on your screen.

$ RUN INVENTORY
VAX DEBUG Version 5.n-nn

%DEBUG-I-INITIAL, language is COBOL, module set to 'INVENTORY'
DBG>

Using the VMS Debugger 3-3

The DBG> prompt indicates that you can type debugger commands. At this point,
if you type the GO command, program execution begins and continues until it is
forced to pause or stop (for example, if the program prompts you for input or an
error occurs).

If your program goes into an infinite loop during a debugging session so that
the debugger prompt does not reappear, press CTRUC. This interrupts program
execution and returns you to the debugger prompt (pressing CTRUC does not end
the debugging session). For example:

DBG> GO

ICTRUCI
DBG>

You can also press CTRUC to abort the execution of a debugger command. This
is useful if a command takes a long time to complete.

If your program already has a CTRUC AST service routine enabled, use the
SET ABORT_KEY command to assign the debugger's abort function to another
CTRL-key sequence.

Pressing CTRUY from within a debugging session has the same effect as pressing
CTRUY during the execution of a program. Control is returned to the DCL
command interpreter($ prompt).

The following message indicates that your program has completed successfully:

%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion'
DBG>

To end a debugging session, type the EXIT command at the DBG> prompt as
follows, or press CTRUZ.

DBG> EXIT
$

3.3.3 Issuing Debugger Commands

You can issue debugger commands any time you see the DBG> prompt. The
debugger commands are summarized in Table 3-1.

To issue a command, type it at the keyboard and press the RETURN key. You
can issue several commands on a line by separating the command strings with
semicolons (;). As with DCL commands, you can continue a command string on a
new line by ending the line with a hyphen (-).

Alternatively, you can use the numeric keypad to issue certain commands. In
addition to the STEP, GO, SHOW CALLS, and EXAMINE commands, several
functions that manipulate screen-mode displays are bound to the keys. You can
also redefine key functions with the DEFINE/KEY command.

Most keypad keys have three predefined functions-DEFAULT, GOLD, and
BLUE. (The PFl key is commonly known as the GOLD key, and the PF4 key is
commonly known as the BLUE key.) To obtain a key's DEFAULT function, press
the key. To obtain its GOLD function, first press the PFl (GOLD) key, and then
the key. To obtain its BLUE function, first press the PF4 (BLUE) key, and then
the key.

For more information on the debug keypad commands, you can type HELP
KEYPAD, or refer to the VMS documentation on the debugger.

3-4 Using the VMS Debugger

Table 3-1 lists all of the debugger commands and any related DCL commands in
functional groupings, along with brief descriptions.

Table 3-1: Debugger Command Summary

Command Description

Starting and Ending a Debugging Session

RUN1

RUN/[NOJDEBUG1

CTRUZ or EXIT

QUIT

CTRUC

{ SET } ABORT_KEY
SHOW

CTRUY-DEBUG1

ATTACH

SPAWN

Invokes the debugger if LINK/DEBUG was used.

Controls whether the debugger is invoked when the
program is executed.

Ends a debugging session, executing all exit
handlers.

Ends a debugging session without executing any exit
handlers declared in the program.

Aborts program execution or a debugger command
without interrupting the debugging session.

Assigns the default CTRUC abort function to
another CTRL-key sequence; identifies the
CTRL-key sequence currently defined for the
abort function.

Interrupts a program that is running without
debugger control and invokes the debugger.

Passes control of your terminal from the current
process to another process.

Creates a subprocess, enabling you to execute DCL
commands without ending a debugging session or
losing your debugging context.

Controlling and Monitoring Program Execution

GO

STEP

{ SET } STEP
SHOW

{

SET
SHOW
CANCEL

{

SET
SHOW
CANCEL

} BREAK

} TRACE

{ ~~~W } WATCH
CANCEL

SHOW CALLS

SHOW STACK

CALL

Starts or resumes program execution.

Executes the program up to the next line,
instruction, or specified instruction.

Establishes or displays the default qualifiers for the
STEP command.

Sets, displays, or cancels breakpoints.

Sets, displays, or cancels tracepoints.

Sets, displays, or cancels watchpoints.

Identifies the currently active routine calls.

Gives additional information about the currently
active routine calls.

Calls a routine.

1 This is a DCL command, not a debugger command.

(continued on next page)

Using the VMS Debugger 3-5

Table 3-1 (Cont.): Debugger Command Summary

Command Description

Examining and Manipulating Data

EXAMINE

SET MODE [NO]OPERANDS

DEPOSIT

EVALUATE

{
SET }
SHOW RADIX
CANCEL

{ ~~~W } TYPE
CANCEL

SET MODE [NO]G_FLOAT

Displays the value of a variable or the contents of a
program location.

Controls whether the address and contents of
the instruction operands are displayed when you
examine an instruction.

Changes the value of a variable or the contents of a
program location.

Evaluates a language or address expression.

Controlling Type Selection

Establishes the radix for data entry and display,
displays the radix, or restores the radix.

Establishes the type for program locations that
are not associated with a compiler-generated type,
displays the type, or restores the type.

Controls whether double-precision floating-point
constants are interpreted as G_FLOAT or D _FLOAT.

Controlling Symbol Lookup and Symbolization

SHOW SYMBOL

{
SET }
SHOW MODULE
CANCEL

{
SET }
SHOW IMAGE
CANCEL

SET MODE [NOJDYNAMIC

{ ~~~W } SCOPE
CANCEL

SYMBOLIZE

SET MODE [NO]LINE

SET MODE [NOJSYMBOLIC

TYPE

EXAMINE/SOURCE

SEARCH

3-6 Using the VMS Debugger

Displays symbols in your program.

Sets a module by loading its symbol records into the
debugger's symbol table, identifies a set module, or
cancels a set module.

Sets a shareable image by loading data structures
into the debugger's symbol table, identifies a set
image, or cancels a set image.

Controls whether modules and shareable images
are set automatically when the debugger interrupts
execution.

Establishes, displays, or restores the scope for
symbol lookup.

Converts a virtual address to a symbolic address.

Controls whether program locations are displayed in
terms of line numbers or routine-name + byte offset.

Controls whether program locations are displayed
symbolically or in terms of numeric addresses.

Displaying Source Code

Displays lines of source code.

Displays the source code at the location specified by
the address expression.

Searches the source code for the specified string.

(continued on next page)

Table 3-1 {Cont.): Debugger Command Summary

Command

{ ~~~W } SEARCH

SET STEP [NO]SOURCE

{ SET }
SHOW MARGINS

{

SET
SHOW
CANCEL

{ SET }
SHOW

} SOURCE

MAX_SOURCE_
FILES

SET MODE [NOJSCREEN

DISPLAY

SCROLL

EXPAND

MOVE

{ SHOW } DISPLAY
CANCEL

{
SET }
SHOW WINDOW
CANCEL

SELECT

SHOW SELECT

SAVE

EXTRACT

{ ~~~W } TERMINAL

SET MODE [NOJSCROLL

Description

Displaying Source Code

Establishes or displays the default qualifiers for the
SEARCH command.

Enables or disables the display of source code
after a STEP command has been executed or at a
breakpoint, tracepoint, or watchpoint.

Establishes or displays the left and right margin
settings for displaying source code.

Creates, displays, or cancels a source directory
search list.

Establishes or displays the maximum number of
source files that can be kept open at one time.

Using Screen Mode

Enables or disables screen mode.

Creates or modifies a display.

Scrolls a display.

Expands or contracts a display.

Moves a display across the screen.

Identifies or deletes a display.

Creates, identifies, or deletes a window definition.

Selects a display for a display attribute.

Identifies the displays selected for each of the display
attributes.

Saves the current contents of a display and writes it
to another display.

Saves a display or the current screen state and
writes it to a file.

Establishes or displays the height and width of the
screen.

Controls whether an output display is updated line
by line or once per command.

CTRUW or DISPLAY/REFRESH Refreshes the screen.

EDIT

{ SET } EDITOR
SHOW

Editing Source Code

Invokes an editor during a debugging session.

Establishes or identifies the editor invoked by the
EDIT command.

(continued on next page)

Using the VMS Debugger 3-7

Table 3-1 (Cont.): Debugger Command Summary

Command

DEFINE

DELETE

{ SET } DEFINE
SHOW

SHOW SYMBOUDEFINED

SET MODE [NOJKEYPAD

DEFINE/KEY

DELETE/KEY

SET KEY

SHOW KEY

Description

Defining Symbols

Defines a symbol as an address, command, or value.

Deletes symbol definitions.

Establishes or displays the default qualifier for the
DEFINE command.

Identifies symbols that have been defined with the
DEFINE command.

Using Keypad Mode

Enables or disables keypad mode.

Creates key definitions.

Deletes key definitions.

Establishes the key definition state.

Displays key definitions.

Using Command Procedures and Log Files

@file-spec

{ SET } ATSIGN
SHOW

DECLARE

{ ~~~W } LOG

SET OUTPUT [NOJLOG

SET OUTPUT
[NOJSCREEN_LOG

SET OUTPUT [NOJVERIFY

SHOW OUTPUT

FOR

IF

REPEAT

WHILE

EXITLOOP

3-8 Using the VMS Debugger

Executes a command procedure.

Establishes or displays the default file specification
that the debugger uses to search for command
procedures.

Defines parameters to be passed to command
procedures.

Specifies or identifies the debugger log file.

Controls whether a debugging session is logged.

Controls whether, in screen mode, the screen
contents are logged as the screen is updated.

Controls whether debugger commands are displayed
as a command procedure is executed.

Displays the current output options established by
the SET OUTPUT command.

Using Control Structures

Executes a list of commands while incrementing a
variable.

Executes a list of commands conditionally.

Executes a list of commands a specified number of
times.

Executes a list of commands while a condition is
true.

Exits an enclosing WHILE, REPEAT, or FOR loop.

(continued on next page)

Table 3-1 (Cont.): Debugger Command Summary

Command Description

Debugging Multiprocess Programs

CONNECT

DEFINE/PROCESS_ GROUP

DO

SET MODE [NO]INTERRUPT

{ SET } SHOW PROCESS

{
DISABLE }
ENABLE AST
SHOW

{
SET } EVENT
SHOW FACILITY

{ SET }. LANGUAGE
SHOW

SET MODE [NO]SEPARATE

SET OUTPUT [NO]TERMINAL

SET PROMPT

{ ~~~W } TASK

SHOW EXIT_HANDLERS

SHOW MODE

SHOW OUTPUT

Brings a process under debugger control.

Assigns a symbolic name to a list of process specifi­
cations.

Executes commands in the context of one or more
processes.

Controls whether execution is interrupted in other
processes when it is suspended in some process.

Modifies the multiprocess debugging environment, or
displays process information.

Additional Commands

Disables the delivery of ASTs in the program,
enables the delivery of ASTs, or identifies whether
delivery is enabled or disabled.

Establishes or identifies the current run-time facility
for language-specific events.

Establishes or displays the current language.

Controls whether the debugger, when used on
a workstation running VWS, creates a separate
window for debugger input and output

Controls whether debugger output, except for diag­
nostic messages, is displayed or suppressed.

Specifies the debugger prompt.

Modifies the tasking environment or displays task
information.

Identifies the exit handlers declared in the program.

Identifies the current debugger modes established by
the SET MODE command (for example, screen mode,
step mode)

Identifies the current output options established by
the SET OUTPUT command

3.4 Notes on VAX COBOL Support

In general, the VMS Debugger supports the data types and operators of VAX
COBOL and other debugger-supported languages. However, there are important
language-specific limitations. (To get information about the supported data types
and operators for any of the languages, type the HELP LANGUAGE command at
the DBG> prompt.)

The debugger can show source text included in a program with the COPY
REPLACING or REPLACE statement. However, the debugger always shows the
original source text instead of the modified source text generated by the COPY
REPLACING or REPLACE statement.

Using the VMS Debugger 3-9

The debugger cannot show the original source lines associated with the code for a
REPORT section. You can see the DATA SECTION source lines associated with a
report, but no source. lines are associated with the compiled code that generates
the report.

3.5 Sample Debugging Session

This section provides a sample debugging session that demonstrates many of the
debugger features.

As you read the debugging section that follows, refer to the code in Example 3-1
to identify source lines. The program, TESTA, accepts a character string from
the terminal and passes it to contained program TESTB. TESTB reverses the
character string and returns it (and its length) to TESTA.

Example 3-1: Source Code Used in the Sample Debug Session

TESTA\TESTA
Source Listing

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 2
24 2
25 2
26 2
27 2
28 2
29 2
30 2
31 2
32 2
33 2
34 2
35 2
36 2
37 2
38 2
39 2
40 2
41 2

3-10 Using the VMS Debugger

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTA.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TESTA-DATA GLOBAL.

02 LET-CNT PIC 9(2)V9(2).
02 IN-WORD PIC X(20).
02 DISP-COUNT PIC 9(2).

PROCEDURE DIVISION.
GETIT SECTION.
BEGINIT.

DISPLAY "ENTER WORD".
MOVE SPACES TO IN-WORD.
ACCEPT IN-WORD.
CALL "TESTB" USING IN-WORD LET-CNT.

PERFORM DISPLAYIT.
STOP RUN.

DISPLAYIT SECTION.
SHOW-IT.

DISPLAY IN-WORD.
MOVE LET-CNT TO DISP-COUNT.
DISPLAY DISP-COUNT " CHARACTERS".

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTB INITIAL.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 SUB-1 PIC 9(2) COMP.
01 SUB-2 PIC S9(2) COMP-3.
01 HOLD-WORD.

03 HOLD-CHAR PIC X OCCURS 20 TIMES.
LINKAGE SECTION.
01 TEMP-WORD.

03 TEMP-CHAR PIC X OCCURS 20 TIMES.
01 CHARCT PIC 99V99.
PROCEDURE DIVISION USING TEMP-WORD, CHARCT.
CONVERT-IT SECTION.
STARTUP.

IF TEMP-WORD = SPACES
MOVE 0 TO CHARCT
GO TO GET-OUT.

PERFORM LOOK-BACK

(continued on next page)

Example 3-1 (Cont.): Source Code Used in the Sample Debug Session

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2
1
1

VARYING SUB-1 FROM 20 BY -1
UNTIL TEMP-CHAR (SUB-1) NOT = SPACE.

MOVE SUB-1 TO CHARCT.
MOVE SPACES TO HOLD-WORD.
PERFORM MOVE-IT

VARYING SUB-2 FROM 1 BY 1
UNTIL SUB-1 = 0.

MOVE HOLD-WORD TO TEMP-WORD.
GET-OUT.

EXIT PROGRAM.
MOVE-IT.

MOVE TEMP-CHAR (SUB-1)
TO HOLD-CHAR (SUB-2).

SUBTRACT 1 FROM SUB-1.
LOOK-BACK.

EXIT.
END PROGRAM TESTB.
END PROGRAM TESTA.

The following debugging session does not show the location of program errors; it
is designed to show only the use of debugger features.

1. The RUN command starts the session. If you compile and link the program
with /DEBUG, you do not need to use the /DEBUG qualifier in the RUN
command.

When you give the RUN command, the debugger displays its standard header,
showing that the default language is COBOL and the default scope and
module are your main program. The debugger returns control with the
prompt, DBG>.

$ RUN TESTA
VAX DEBUG Version 5.n-nn

%DEBUG-I-INITIAL, language is COBOL, module set to 'TESTA'
%DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

2. Use the GO command to get to the start of the main program.

DBG> GO

3. Set a breakpoint.

DBG> SET BREAK %LINE 41

4. Begin execution with the GO command. The debugger displays the execution
starting point, and the image continues until TESTA displays its prompt and
waits for a response.

DBG> GO
ENTER WORD

5. Enter the word to be reversed. Execution continues until the image reaches
the breakpoint at line 41 of the contained program.

backward
break at TESTA\TESTB\CONVERT-IT\STARTUP\%LINE 41

41: PERFORM LOOK-BACK

Using the VMS Debugger 3-11

6. Set two breakpoints. When the debugger reaches line 55 of TESTB, it
executes the commands in parentheses, displays the two data items, and
resumes execution.

DBG> SET BREAK %LINE 55 DO (EXAMINE HOLD-WORD;EXAMINE SUB-l;GO)
DBG> SET BREAK %LINE 49

7. Display the active breakpoints.

DBG> SHOW BREAK
breakpoint at TESTA\TESTB\CONVERT-IT\STARTUP\%LINE 41
breakpoint at TESTA\TESTB\CONVERT-IT\MOVE-IT\%LINE 55

do (EXAMINE HOLD-WORD;EXAMINE SUB-l;GO)
breakpoint at TESTA\TESTB\CONVERT-IT\STARTUP\%LINE 49

8. Use the TYPE command to display the source lines where you set
breakpoints.

DBG> TYPE 41: 55
module TESTA

41:
42:
43:
44:
45:
46:
47:
48:
49:
50: GET-OUT.
51:
52: MOVE-IT.
53:
54:
55:

PERFORM LOOK-BACK
VARYING SUB-1 FROM 20 BY -1
UNTIL TEMP-CHAR (SUB-1) NOT SPACE.

MOVE SUB-1 TO CHARCT.
MOVE SPACES TO HOLD-WORD.
PERFORM MOVE-IT

VARYING SUB-2 FROM 1 BY 1
UNTIL SUB-1 = 0.

MOVE HOLD-WORD TO TEMP-WORD.

EXIT PROGRAM.

MOVE TEMP-CHAR (SUB-1)
TO HOLD-CHAR (SUB-2).

SUBTRACT 1 FROM SUB-1.

9. Set a tracepoint at line 15 of TESTA.

DBG> SET TRACE %LINE 15

10. Set a watchpoint on the data item DISP-COUNT. When an instruction tries
to change the contents of DISP-COUNT, the debugger returns control to you.

DBG> SET WATCH DISP-COUNT

11. Execution resumes with the GO command. Before line 55 in TESTB executes,
the debugger executes the contents of the DO command entered at step 7. It
displays the contents of HOLD-WORD and SUB-1, then resumes execution.

3-12 Using the VMS Debugger

DBG> GO
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\%LINE 55

55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:

HOLD-CHAR(1:20): "d
TESTA\TESTB\SUB-1: 8
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\%LINE 55

55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:

HOLD-CHAR(1:20): "dr
TESTA\TESTB\SUB-1: 7
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\%LINE 55

55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:

HOLD-CHAR(1:20): "dra
TESTA\TESTB\SUB-1: 6
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\%LINE 55

55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:

HOLD-CHAR (1: 20) : "draw
TESTA\TESTB\SUB-1: 5
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\%LINE 55

55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:

HOLD-CHAR(1:20): "drawk
TESTA\TESTB\SUB-1: 4
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\%LINE 55

55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:

HOLD-CHAR (1: 20) : "drawkc
TESTA\TESTB\SUB-1: 3
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\%LINE 55

55: SUBTRACT 1 FROM SUB-1.
TESTA\TESTB\HOLD-WORD:

HOLD-CHAR (1: 20) : "drawkca
TESTA\TESTB\SUB-1: 2
break at TESTA\TESTB\CONVERT-IT\MOVE-IT\%LINE 55

55: SUBTRACT 1 FROM SUB-1.
TBSTA\TESTB\HOLD-WORD:

/ HOLD-CHAR (1: 20) : "drawkcab
TESTA\TESTB\SUB-1: 1
break at TESTA\TESTB\CONVERT-IT\STARTUP\%LINE 49

49: MOVE HOLD-WORD TO TEMP-WORD.

12. Deposit the value 10 into data item SUB-1. Notice that SUB-l's usage is
COMP.

DBG> DEPOSIT SUB-1=10

13. Examine the contents of SUB-1.

DBG> EXAMINE SUB-1
TESTA\TESTB\SUB-1: 10

14. Deposit -42 into data item SUB-2. Notice that SUB-2's usage is COMP-3.

DBG> DEPOSIT SUB-2=-42

15. SUB-2's contents are now -42.

DBG> EXAMINE SUB-2
TESTA\TESTB\SUB-2: -42

16. Examine CHARCT, whose picture is 99V99.

DBG> EXAMINE CHARCT
TESTA\TESTB\CHARCT: 8.00

Using the VMS Debugger 3-13

17. Deposit four characters into CHARCT.

DBG> DEPOSIT CHARCT=15.00

18. CHARCT now contains 15.00.

DBG> EXAMINE CHARCT
TESTA\TESTB\CHARCT: 15.00

19. Deposit an integer larger than CHARCT's definition. The debugger returns
an error message.

DBG> DEPOSIT CHARCT=2890
%DEBUG-E-DECOVF, decimal overflow at or near DEPOSIT

20. Examine the contents of CHARCT.

DBG> EXAMINE CHARCT
TESTA\TESTB\CHARCT: 90.00

21. You can examine any character of a subscripted data item by specifying the
character position. The following EXAMINE command accesses the fourth
character on TEMP-CHAR.

DBG> EXAMINE TEMP-CHAR(4)
TEMP-CHAR of TESTA\TESTB\TEMP-WORD(4): "k"

22. You can use the DEPOSIT command to put a value into any element of a
table and examine its contents. In this example, 11X11 is deposited into the
fourth character position of TEMP-CHAR.

DBG> DEPOSIT TEMP-CHAR (4) ="X"
DBG> EXAMINE TEMP-CHAR(4)
TEMP-CHAR of TESTA\TESTB\TEMP-WORD(4): "X"

NOTE

You can qualify data names in debug commands as you can in
COBOL. For example, if you examine IN-WORD while you debug
your program, you can use the following DEBUG command:

EXAMINE IN-WORD OF TESTA-DATA

23. Deposit a value into CHARCT.

DBG> DEPOSIT CHARCT=8.00

24. Resume execution with the GO command. The program TESTA displays the
reversed word. When the image reaches line 21 in TESTA, the debugger
detects that an instruction changed the contents of DISP-COUNT. Since you
set a watchpoint on DISP-COUNT, the debugger displays the old and new
values, then returns control to you.

DBG> GO
drawkcab
watch of DISP-COUNT of TESTA\TESTA-DATA at TESTA\DISPLAY-IT

\SHOW-IT\%LINE 21
21: MOVE LET-CNT TO DISP-COUNT.

old value = 0
new value = 8

break at TESTA\DISPLAY-IT\SHOW-IT\%LINE 22
22: DISPLAY DISP-COUNT " CHARACTERS".

25. To see the image's current location, use the SHOW CALLS command.

DBG> SHOW CALLS
module name
*TESTA

3-14 Using the VMS Debugger

routine name
TESTA
LIB$AB_CVTPT_U

line
22

rel PC
00000056
00000154

abs PC
00000656
OOOOOC58

26. Resume execution with the GO command. TESTA executes its final display.
The debugger regains control when STOP RUN executes.

DBG> GO
08 CHARACTERS
%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL,

normal successful completion'

27. At this point, you can either examine the contents of data items or end the
session with the EXIT command.

DBG> EXIT
$

Using the VMS Debugger 3-15

Part II
Using VAX COBOL Features on VMS

Chapter 4

Numeric Data Handling

This chapter describes how VAX COBOL stores, represents, moves, and
manipulates numeric data.

4.1 How the Compiler Stores Numeric Data

Understanding how data is stored is particularly important when you define data
items to participate in group moves or to be the subject of a REDEFINES clause.
When moving a complex record consisting of several levels of subordination,
you should be sure that the receiving item is large enough to prevent data
truncation. You can also use data storage concepts to minimize storage space,
particularly when the data file is large. The storage considerations applicable to
table handling are discussed in Chapter 6.

For each numeric data item, VAX COBOL stores the numeric value, a scaling
factor (if a Vora P appears in the PICTURE), and a sign (if an S appears in
the PICTURE). Each of these subjects is discussed separately in the following
sections.

The USAGE clause of a numeric data item specifies the data's internal format
in storage. When you do not specify a usage in a PICTURE clause, the default
usage is DISPLAY. For further information on internal representations see the
USAGE clause tables in the VAX COBOL Reference Manual.

All records, and elementary items with level 01 or 77, begin at an address that
is a multiple of 4 bytes (a longword boundary). The VAX COBOL compiler tries
to locate a data item at the next unassigned byte location. However, some data
items must be aligned on a 2-, 4-, or 8-byte boundary.

4 .. 2 Sign Conventions

VAX COBOL numeric items can be signed or unsigned. However, all VAX COBOL
arithmetic operations yield signed results. If you store a signed result in an
unsigned item, only the absolute value is stored. Thus, unsigned items only
contain the value zero or a positive value. The way VAX COBOL stores signed
results in signed data items depends on the usage and the presence or absence of
the SIGN clause.

Do not use unsigned numeric items in arithmetic operations. They usually cause
programming errors and are handled less efficiently than signed numeric items.
The following example shows how unsigned numeric items can cause errors.

Numeric Data Handling 4-1

DATA DIVISION

01 A PIC 9(5) COMP VALUE 2.
01 B PIC 9(5) COMP VALUE 5.

Then:

SUBTRACT B FROM A. (A= 3)

SUBTRACT 1 FROM A. (A= 2)

However:

COMPUTE A = (A - B) - 1 (A = 4)

The absence of signs for the numeric items A and B results in two different
answers after parallel arithmetic operations have been done. This occurs because
internal temporaries (required by the COMPUTE statement) are signed. Thus,
the result of (A-B) within the COMPUTE statement is -3; -3 and -1 is -4 and
the value of A then becomes 4.

4.3 Invalid Values in Numeric Items

All VAX COBOL arithmetic operations store valid values in their result items.
However, it is possible to store data in numeric items that do not conform to
the data definitions of those items. For example, you can place signed values
into unsigned items and place nonnumeric or improperly signed data into signed
numeric display items. This can happen when you use invalid input data or
redefined items or perform group moves.

The results of arithmetic operations that use invalid data in numeric items are
undefined.

4.4 Evaluating Numeric Items

VAX COBOL provides several kinds of conditional expressions used for evaluating
numeric items. These conditional expressions include the following:

• The numeric relation condition that compares the item's contents to another
numeric value

• The sign condition that examines the item's sign to see if it is positive or
negative

• The class condition that inspects the item's digit positions for valid numeric
characters

• The success/failure condition that checks the return status codes of COBOL
and non-COBOL procedures for success or failure conditions

The following sections explain these conditional expressions in detail.

4.4.1 Numeric Relation Tests

A numeric relation test compares two numeric quantities and determines if the
specified relation between them is true. For example, the following statement
compares item FIELDl to item FIELD2 and determines if the numeric value of
FIELDl is greater than the numeric value of FIELD2.

4-2 Numeric Data Handling

IF FIELDl > FIELD2 ...

If the relation condition is true, the program control takes the true path of the
statement.

Table 4-1 describes the relational operators.

Table 4-1 : Numeric Relational Operator Descriptions

Operator

IS [NOT] GREATER THAN
IS [NOT]>

IS [NOT] LESS THAN
IS [NOT]<

IS [NOT] EQUAL TO
IS [NOT]=

IS GREATER THAN OR
EQUAL TO
IS>=

IS LESS THAN OR EQUAL TO
IS<=

Description

The first operand is greater than (or not greater
than) the second operand.

The first operand is less than (or not less than)
the second operand.

The first operand is equal to (or not equal to) the
second operand.

The first operand is greater than or equal to the
second operand.

The first operand is less than or equal to the
second operand.

Comparison of two numeric operands is valid regardless of their USAGE clauses.

The length of the literal or arithmetic expression operands (in terms of the
number of digits represented) is not significant. Zero is a unique value, regardless
of the sign.

Unsigned numeric operands are assumed to be positive for comparison. The
results of relation tests involving invalid (nonnumeric) data in a numeric item are
undefined.

4.4.2 Numeric Sign Tests

The sign test compares a numeric quantity to zero and determines if it is greater
than (positive), less than (negative), or equal to zero. Both the relation test and
the sign test can perform this function. For example, consider the following
relation test:

IF FIELDl > 0 ...

Now consider the following sign test:

IF FIELDl POSITIVE ...

Both of these tests accomplish the same thing and always arrive at the same
result. The sign test, however, shortens the statement and makes it more obvious
that the sign is being tested.

If the item being tested contains a sign (whether carried as an overpunched
character or as a separate character), the test checks it for a valid sign value.
If the character position carrying the sign contains an invalid sign value, the
NUMERIC class test rejects the item, and program control takes the false path of
the IF statement.

Numeric Data Handling 4-3

Table 4-2 shows the sign tests and their equivalent relation tests.

Table 4-2: Sign Tests

Sign Test

IF FIELDl POSITIVE ...

IF FIELDl NOT POSITIVE ...

IF FIELDl NEGATIVE ...

IF FIELDl NOT NEGATIVE ...

IF FIELDl ZERO ...

IF FIELDl NOT ZERO ...

Equivalent Relation Test

IF FIELDl > 0 ...

IF FIELDl NOT > 0 ...

IF FIELDl < 0 ...

IF FIELDl NOT< 0 ...

IF FIELDl = 0 ...

IF FIELDl NOT= 0 ...

Sign tests do not execute faster or slower than relation tests because the compiler
substitutes the equivalent relation test for every correctly written sign test.

4.4.3 Numeric Class Tests

The class test inspects an item to determine if it contains numeric or alphabetic
data. For example, the following statement determines if FIELDl contains
numeric data:

IF FIELDl IS NUMERIC ...

If the item is numeric, the test condition is true, and program control takes the
true path of the statement.

Both relation and sign tests determine only if an item's contents are within a
certain range. Therefore, certain items in newly prepared data can pass both the
relation and sign tests and still contain data preparation errors.

The NUMERIC class test checks alphanumeric or numeric DISPLAY or COMP-3
usage items for valid numeric digits.

The ALPHABETIC class test check is not valid for an operand described as
numeric.

4.4.4 Success/Failure Tests

The success/failure condition tests the return status codes of COBOL and
non-COBOL procedures for success or failure conditions.

You can use the SET statement to initialize or alter the status of
status-code-id, which must be a word or longword COMP integer.

The SUCCESS class condition is true if you specify that the status-code-id
IS SUCCESS. The FAILURE class condition is true if you specify that the
status-code-id IS FAILURE.

Example 4-1 shows a success/failure test.

4-4 Numeric Data Handling

Example 4-1: Success/Failure Test

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROG.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RETURN-STATUS PIC S9(9) COMP.
PROCEDURE DIVISION.

CALL "PROG-1" GIVING RETURN-STATUS.
IF RETURN-STATUS IS FAILURE PERFORM FAILURE-ROUTINE.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-1.

WORKING-STORAGE SECTION.
01 RETURN-STATUS PIC S9(9) COMP.
PROCEDURE DIVISION GIVING RETURN-STATUS.

IF NUM-1 = NUM-2
SET RETURN-STATUS TO SUCCESS

ELSE
SET RETURN-STATUS TO FAILURE.

EXIT PROGRAM.
END PROGRAM PROG-1.
END PROGRAM MAIN-PROG.

4.5 Using the MOVE Statement

The MOVE statement moves the contents of one item into another item. The
following sample MOVE statement moves the contents of item FIELDl into item
FIELD2:

MOVE FIELDl TO FIELD2.

This section considers MOVE statements as applied to numeric and numeric
edited data items.

4.5.1 Elementary Numeric Moves

If both items of a MOVE statement are elementary items and the receiving item
is numeric, it is an elementary numeric move. The sending item can be either
numeric or alphanumeric. The elementary numeric move converts the data
format of the sending item to the data format of the receiving item.

Numeric Data Handling 4-5

An alphanumeric sending item can be either of the following:

• An elementary data item

• Any alphanumeric literal other than the :figurative constants SPACE,
QUOTE, LOW-VALUE, or HIGH-VALUE

The elementary numeric move accepts the :figurative constant ZERO and
considers it to be equivalent to the numeric literal 0. It treats alphanumeric
sending items as unsigned integers of DISPLAY usage.

If necessary, the numeric move operation converts the sending item to the data
format of the receiving item and aligns the sending item's decimal point on that of
the receiving item. Then it moves the sending item's digits to the corresponding
receiving item's digits.

If the sending item has more digit positions than the receiving item, the decimal
point alignment operation truncates the sending item, with resulting loss of
digits.

The end truncated (high-order or low-order) depends upon the number of sending
item digit positions that find matches on each side of the receiving item's decimal
point.

If the receiving item has fewer digit positions on both sides of the decimal point,
the operation truncates both ends of the sending item. Thus, if an item described
as PIC 999V999 is moved to an item described as PIC 99V99, it loses one digit
from the left end and one from the right end.

In the following example, the caret (") indicates the assumed decimal scaling
position:

01 AMOUNTl PIC 99V99 VALUE ZEROS.

MOVE 123.321 TO AMOUNTl.

Before execution: OOAOO
After execution: 23A32

If the sending item has fewer digit positions than the receiving item, the move
operation supplies zeros for all unfilled digit positions. The caret (") indicates
the assumed stored decimal scaling position:

01 TOTAL-AMT PIC 999V99 VALUE ZEROS.

MOVE 1 TO TOTAL-AMT.

Before execution:

After execution:

OOOAOO

OOlAOO

The following statements produce the same results:

MOVE 001.00 TO TOTAL-AMT.

MOVE "1" TO TOTAL-AMT.

Consider the following two MOVE statements and their truncating and
zero-filling effects:

Statement

MOVE 00100 TO TOTAL-AMT
MOVE "00100" TO TOTAL-AMT

4-6 Numeric Data Handling

TOTAL-AMT After Execution

lOOAOO
lOOAOO

Literals with leading or trailing zeros have no advantage in space or execution
speed in VAX COBOL, and the zeros are often lost by decimal point alignment.

The MOVE statement's receiving item dictates how the sign will be moved. When
the receiving item is a signed numeric item, the sign from the sending item is
placed in it. If the sending item is unsigned, a positive sign is placed in the
receiving item.

4.5.2 Elementary Numeric Edited Moves

An elementary numeric move to a numeric edited receiving item is considered an
elementary numeric edited move. The sending item of an elementary numeric
edited move can be either numeric or alphanumeric. When the sending item is
numeric edited, de-editing is implied to establish the item's unedited numeric
value, which may be signed; then the unedited numeric value is moved to
the receiving field. Alphanumeric sending items in numeric edited moves are
considered unsigned DISPLAY usage integers.

A numeric edited item PICTURE can contain 9, V, and P, but to qualify as
numeric edited, it must also contain one or more of the other editing symbols: Z,
B, and the asterisk (*). For a complete listing and description of these symbols
see the VAX COBOL Reference Manual.

The numeric edited move operation first converts the sending item to DISPLAY
usage and aligns both items on their decimal point locations. The sending item
is truncated or zero-filled until it has the same number of digit positions on both
sides of the decimal point as the receiving item. The operation then moves the
sending item to the receiving item, following the VAX COBOL editing rules.

The rules allow the numeric edited move operation to perform any of the following
editing functions:

• Suppress leading zeros with either spaces or asterisks

• Float a currency sign and a plus or minus sign through suppressed zeros,
inserting the sign at either end of the item

• Insert zeros and spaces

• Insert commas and a decimal point (or decimal points and a comma if
DECIMAL-POINT IS COMMA)

Table 4-3 illustrates several of these functions, which are invoked by the
statement:

MOVE FLD-B TO TOTAL-AMT.

Assume that FLD-B is described as S9999V99. Note that the caret (A) indicates
an assumed decimal point. Also, overpunch signs (the sign of the number encoded
into the rightmost digit) are used in two FLD-B data examples.

Numeric Data Handling 4-7

Table 4-3: Numeric Editing

FLD-B
TOTAL-AMT

PICTURE String Contents After MOVE

0023AOO ZZZZ.99 23.00

0085A9P ++++.99 -85.97

1234"00 Z,ZZZ.99 1,234.00

0012"34 $,$$$.99 $12.34

OOOOA34 $,$$9.99 $0.34

1234"00 $$,$$$.99 $1,234.00

0012"34 $$9,999.99 $0,012.34

0Q12A34 $$$$,$$$.99 $12.34

0000"00 $$$,$$$.$$

0012A3M ++++.99 -12.34

0012"34 $***,***.99 $*****12.34

1234"56 Z,ZZZ.99+ 1,234.56+

-6543"21 $,$ $$,$$$.99DB $6,543.21DB1

1The output includes DB if a negative value is moved.

The currency symbol($ or other currency sign) and the editing sign control
symbols (+ and -) are the only floating symbols. To float a symbol, enter a string
of two or more occurrences of that symbol, one for each character position over
which you want the symbol to float.

4.5.3 Common Move Errors

Programmers most commonly make the following errors when writing MOVE
statements:

• Placing an incorrect number of replacement characters in a numeric edited
item

• Moving nonnumeric data into numeric items with group moves

• Trying to float the currency sign ($) or plus (+) insertion characters past
the decimal point to force zero values to appear as .00 instead of spaces (use
$$.99 or .99)

• Forgetting that the currency sign ($) or plus sign (+) insertion characters
require an additional position on the leftmost end that cannot be replaced by
a digit (unlike the asterisk (*)insertion character, which can be completely
replaced)

4.6 Using the Arithmetic Statements

The VAX COBOL arithmetic statements allow programs to perform arithmetic
operations on numeric data. The following sections explain how to use these
statements.

4-8 Numeric Data Handling

4.6.1 Intermediate Results

Most forms of the arithmetic statements perform their operations in temporary
work locations, then move the results to the receiving items, aligning the decimal
points and truncating or zero-filling the resultant values. This temporary work
item, called the intermediate result item, has a maximum size of 26 numeric
digits. The actual size of the intermediate result varies for each statement; it
is determined at compile time, based on the sizes of the operands used by the
statement.

When the compiler determines that the size of the intermediate result exceeds
26 digits, it uses a software floating-point intermediate item and keeps the most
significant 26 digits, bypassing leading zeros. If possible, do fewer complex
arithmetic operations that use intermediate temporaries. (See Section 4.6.6.)

4.6.2 Specifying a Truncation Qualifier

The /[NO]TRUNCATE compile-time qualifier specifies how the VAX COBOL
compiler stores values in COMPUTATIONAL receiving items if high-order
truncation is necessary.

By default (/NOTRUNCATE), VAX COBOL truncates values according to the VAX
hardware storage unit (word, longword, or quadword) allocated to the receiving
item.

If you specify the !rRUNCATE option, the compiler truncates values according to
the number of decimal digits specified by the PICTURE size.

4.6.3 Using the ROUNDED Phrase

Rounding is an important option that you can use with arithmetic operations.

You can use the ROUNDED phrase with any VAX COBOL arithmetic statement.
Rounding takes place only when the ROUNDED phrase requests it-and then
only if the intermediate result has more low-order digits than the result.

VAX COBOL rounds off by adding a 5 to the leftmost truncated digit of the
absolute value of the intermediate result before it stores that result.

Table 4-4 shows several ROUNDING examples.

Table 4-4: ROUNDING

PICTURE clause

03 ITEMA PIC S9(5)V9999.

03 ITEMB PIC S9(5)V99.

03 ITEMC PIC 89999.

03 ITEME PIC S99V99 VALUE 9.

03 ITEMF PIC S99V99 VALUE 24.

Initial Value

12345.2222

54321.11

4321

9.0

24.00

(continued on next page)

Numeric Data Handling 4-9

Table 4-4 (Cont.): ROUNDING

PICTURE clause

Arithmetic Statement

ADD ITEMA TO ITEMB ROUNDED.

MULTIPLY ITEMC BY 10
GIVING ITEMD ROUNDED.

DIVIDE ITEME INTO ITEMF
ROUNDED.

4.6.3.1 ROUNDED with REMAINDER

Initial Value

Intermediate ROUNDED
Results Result

066666.~322 66666.33

043210 0432

02.666 02.67

The remainder computation uses an intermediate field that is truncated, rather
than rounded, when you use the DIVIDE statement with both the ROUNDED
and REMAINDER options.

4.6.4 Using the SIZE ERROR Phrase

The SIZE ERROR phrase detects the loss of high-order nonzero digits in the
results of VAX COBOL arithmetic operations.

You can use the phrase in any VAX COBOL arithmetic statement.

When the execution of a statement with no SIZE ERROR phrase results in a
size error, the high-order digits are truncated and the results are stored without
notifying the user. When the same statement includes a SIZE ERROR phrase,
the entire result is discarded without altering the receiving items in any way; the
SIZE ERROR imperative phrase is then executed.

If the statement contains both ROUNDED and SIZE ERROR phrases, the result
is rounded before a size error check is made.

The SIZE ERROR phrase cannot be used with numeric MOVE statements. Thus,
if a program moves a numeric quantity to a smaller numeric item, it can lose
high-order digits. For example, consider the following move of an item to a
smaller item:

01 AMOUNT-A PIC S9(8)V99.
01 AMOUNT-B PIC S9(4)V99.

MOVE AMOUNT-A TO AMOUNT-B.

This MOVE operation always loses four of AMOUNT-Xs high-order digits. The
statement can be tailored either of two ways, as shown in the following example,
to determine whether these digits are zero or nonzero ..

1. IF AMOUNT-A NOT > 9999.99
MOVE AMOUNT-A TO AMOUNT-B
ELSE ...

2. ADD ZERO AMOUNT-A GIVING AMOUNT-B
ON SIZE ERROR ...

Both alternatives allow the MOVE operation to occur only if AMOUNT-A loses
no significant digits. If the value in AMOUNT-A is too large, both avoid altering
AMOUNT-Band take the alternate execution path.

4-10 Numeric Data Handling

You can also use a NOT ON SIZE ERROR phrase to branch to, or perform
sections of code only when no size error occurs.

4.6.5 Using the GIVING Phrase

The GIVING phrase moves the intermediate result of an arithmetic operation
to a receiving item. The phrase acts exactly like a MOVE statement in which
the intermediate result serves as the sending item, and the data item following
the word GIVING serves as the receiving item. When a statement contains a
GIVING phrase, you can have a numeric edited receiving item.

The GIVING phrase can be used with the ADD, SUBTRACT, MULTIPLY, and
DIVIDE statements. For example:

ADD A,B GIVING C.

4.6.6 Multiple Operands in ADD and SUBTRACT Statements

Both the ADD and SUBTRACT statements can contain a series of operands
preceding the word TO, FROM, or GIVING.

If there are multiple operands in either of these statements, the operands are
added together. The intermediate result of that operation becomes a single
operand to be added to, or subtracted from, the receiving item. In the following
examples, TEMP is an intermediate result item:

1. Statement:

Equivalent coding:

2. Statement:

Equivalent coding:

3. Statement:

Equivalent coding:

ADD A,B,C,D, TO E,F,G,H.

ADD A B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING TEMP.
ADD TEMP, E, GIVING E.
ADD TEMP, F, GIVING F.
ADD TEMP, G, GIVING G.
ADD TEMP, H, GIVING H.

SUBTRACT A, B, C, FROM D.

ADD A, B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
SUBTRACT TEMP FROM D, GIVING D.

ADD A,B,C,D, GIVING E.

ADD A,B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING E.

As in all VAX COBOL statements, the commas in these statements are optional.

4.6. 7 Common Errors in Arithmetic Statements

Programmers most commonly make the following errors when using arithmetic
statements:

• Using an alphanumeric item in an arithmetic statement. The MOVE
statement allows data movement between alphanumeric items and certain
numeric items, but arithmetic statements require that all items be numeric.

• Writing the ADD or SUBTRACT statements without the GIVING phrase, and
attempting to put the result into a numeric edited item.

Numeric Data Handling 4-11

• Subtracting a 1 from a numeric counter that was described as an unsigned
quantity and then testing for a value less than zero.

• Forgetting that the MULTIPLY statement, without the GMNG phrase,
stores the result back into the second operand (multiplier).

• Performing a series of calculations that generates an intermediate result
larger than 26 digits when the final result will have 18 or fewer digits. You
can prevent this problem by interspersing divisions with multiplications or
by dropping nonsignificant digits after multiplying large numbers or numbers
with many decimal places.

• Performing an operation on an item that contains a value greater than
the precision of its data description. This can happen only if the item was
overwritten by a group move or redefinition.

• Forgetting that you must specify the ROUNDED phrase for each item in an
arithmetic statement containing multiple receiving items.

• Forgetting that the ON SIZE ERROR phrase applies to all receiving items
in an arithmetic statement containing multiple receiving items. Only those
receiving items for which a size error condition is raised are left unaltered.
The ON SIZE ERROR imperative statement is executed after all the receiving
items are processed.

• Controlling a loop by adding to a numeric counter that was described as
PIC 9, and then testing for a value of 10 or greater to exit the loop.

• Forgetting that ROUNDING is done before the ON SIZE ERROR test.

4.7 Arithmetic Expression Processing

VAX COBOL provides the arithmetic statements ADD, SUBTRACT, MULTIPLY,
DIVIDE, and COMPUTE, and the facilities of arithmetic expressions using the +,
-, *, I, and ** operators. You can perform a given arithmetic computation in any
of several ways. For example, if you want to compute a salesman's total yearly
sales as the sum of the four individual sales quarters, you might use this sample
code:

MOVE lST-SALES TO TEMP.

ADD 2ND-SALES TO TEMP.
ADD 3RD-SALES TO TEMP.
ADD 4TH-SALES TO TEMP, GIVING TOTAL-SALES.

In this example, a series of single ADD statements computes the final value of
TOTAL-SALES by holding the partial sums in a temporary location called TEMP,
which you defined in the Data Division of the program. You specify the class,
usage, and number of integer and decimal places to be maintained.

Another possible solution to the problem is as follows:

4-12 Numeric Data Handling

ADD lST-SALES, 2ND-SALES, 3RD-SALES, 4TH-SALES
GIVING TOTAL-SALES.

In this example, the program computes TOTAL-SALES using a single ADD
statement. As in the previous example, an intermediate result is required to
develop the partial sums of the four quarterly sales quantities. However, in this
example, the compiler defines the intermediate result in a manner transparent to
the source program. It allocates storage for and assigns various attributes to this
result according to the rules defined by VAX COBOL. For more information refer
to the VAX COBOL Reference Manual.

In the next example, consider another computational method:

COMPUTE TOTAL-SALES lST-SALES + 2ND-SALES + 3RD-SALES + 4TH-SALES.

This sample coding uses a single COMPUTE statement with an embedded
arithmetic expression. Again, an intermediate result is required and is defined by
the compiler. The compiler generates the intermediate result using the following
rule:

Arithmetic operations are combined without restrictions on composites
of operands and/or receiving items.

(See information about arithmetic operations and rules in the VAX COBOL
Reference Manual.)

Numeric Data Handling 4-13

Chapter 5

Nonnumeric Data Handling

COBOL programs hold their data in items whose sizes are described in their
source programs. The size of these items is thus fixed during compilation for the
lifespan of the resulting object program.

Items in a COBOL program belong to any of three data classes-alphanumeric,
alphabetic, or numeric. Numeric items contain only numeric values. Alphabetic
items contain only A to Z (uppercase or lowercase) and space characters.
Alphanumeric items can contain the following types of values:

• All alphabetic

• All numeric

• A mixture of alphabetic and numeric

• Any character from the ASCII character set

The data description of an item specifies which class that item belongs to.

Classes are further subdivided into categories. Alphanumeric items can be
numeric edited, alphanumeric edited, or alphanumeric. Every elementary item,
except for an index data item, belongs to one of the classes and its categories.
The class of a group item is treated as alphanumeric regardless of the classes of
subordinate elementary items.

If the data description of an alphanumeric item specifies that certain editing
operations be performed on any value that is moved into it, that item is called an
alphanumeric edited or a numeric edited item.

As you read this chapter, keep in mind the distinction between the class or
category of a data item and the actual value that the item contains.

Sometimes the text refers to alphabetic, alphanumeric, and alphanumeric edited
data items as nonnumeric data items to distinguish them from items that are
specifically numeric.

Regardless of the class of an item, it is usually possible at run time to store an
invalid value in the item. Thus, nonnumeric ASCII characters can be placed
in an item described as numeric, and an alphabetic item can be loaded with
nonalphabetic characters.

5.1 Data Organization

A VAX COBOL record consists of a set of data description entries that describe
record characteristics; it must have an 01 or 77 level number. A data description
entry can be either a group item or an elementary item.

Nonnumeric Data Handling 5-1

All of the records used by VAX COBOL programs (except for certain registers
and switches) must be described in the Data Division of the source program.
The compiler allocates memory space for these items (except for Linkage Section
items) and fixes their size at compilation time.

The following sections explain how the compiler handles group and elementary
data items.

5.1.1 Group Items

A group item is a data item that is followed by one or more elementary items or
other group items, all of which have higher-valued level numbers than the group
to which they are subordinate.

The size of a group item is the sum of the sizes of its subordinate elementary
items. The compiler considers all group items to be alphanumeric DISPLAY items
regardless of the class and usage of their subordinate elementary items.

5.1.2 Elementary Items

An elementary item is a data item that has no subordinate data item.

The size of an elementary item is determined by the number of symbols that
represent character positions contained in the PICTURE character-string. For
example, consider this record description:

01 TRANREC.
03 FIELD-1 PIC X(7).
03 FIELD-2 PIC S9(5)V99.

Both elementary items require seven bytes of memory; however, item FIELD-1
contains seven alphanumeric characters while item FIELD-2 contains seven
decimal digits, an operational sign, and an implied decimal point. Operations on
such items are independent of the mapping of the item into memory words (32-bit
words that hold four 8-bit bytes). An item can begin in the leftmost or rightmost
byte of a word with no effect on the function of any operations that refer to that
item.

In effect, the compiler sees memory as a continuous array of bytes, not words.
This becomes particularly important when you are defining a table using the
OCCURS clause (see Chapter 6).

Records, and elementary items with a 77 level number automatically begin on a
longword boundary (multiple of 4 bytes).

5.2 Special Characters

VAX COBOL allows you to handle any of the 128 characters of the ASCII
character set as alphanumeric data, even though many of the characters
are control characters, which usually direct input/output devices. Generally,
alphanumeric data manipulations attach no meaning to the 8th bit of an 8-bit
byte. Thus, you can move and compare these control characters in the same
manner as alphabetic and numeric characters.

Although the object program can manipulate all ASCII characters, certain control
characters cannot appear in nonnumeric literals since the compiler uses them to
delimit the source text.

5-2 Nonnumeric Data Handling

You can place special characters into items of the object program by defining
symbolic characters in the SPECIAL-NAMES paragraph or by using the
EXTERNAL clause. See the VAX COBOL Reference Manual for information on
these two topics.

The ASCII character set listed in the VAX COBOL Reference Manual indicates
the decimal value for any ASCII character.

5.3 Testing Nonnumeric Items

The following sections describe the relation and class tests as they apply to
nonnumeric items.

5.3.1 Relation Tests of Nonnumeric Items

An IF statement with a relation condition (greater than, less than, equal to) can
compare the value in a nonnumeric data item with another value and use the
result to alter the flow of control in the program.

An IF statement with a relation condition compares two operands. Either of
these operands can be an identifier or a literal, but they cannot both be literals.
If the stated relation exists between the two operands, the relation condition is
true.

When coding a relational operator, leave a space before and after each reserved
word. When the reserved word NOT is present, the compiler considers it and the
next key word or relational character to be a single relational operator defining
the comparison. Table 5-1 shows the meanings of the relational operators.

Table 5-1 : Relational Operator Descriptions

Operator

IS [NOT] GREATER THAN
IS [NOT]>

IS [NOT] LESS THAN
IS [NOT]<

IS [NOT] EQUAL TO
IS [NOT]=

IS GREATER THAN OR
EQUAL TO
IS>=

IS LESS THAN OR EQUAL TO
IS<=

5.3.1.1 Classes of Data

Description

The first operand is greater than (or not greater
than) the second operand.

The first operand is less than (or not less than) the
second operand.

The first operand is equal to (or not equal to) the
second operand.

The first operand is greater than or equal to the
second operand.

The first operand is less than or equal to the second
operand.

VAX COBOL allows comparison of both numeric class operands and nonnumeric
class operands; however, it handles each class of data differently. For example, it
allows a comparison of two numeric operands regardless of the formats specified
in their respective USAGE clauses, but it requires that all other comparisons
(including comparisons of any group items) be between operands with the same
usage. It compares numeric class operands with respect to their algebraic values
and nonnm;neric (or numeric and nonnumeric) class operands with respect to a
specified collating sequence.

Nonnumeric Data Handling 5-3

If only one of the operands is numeric, it must be an integer data item or an
integer literal, and it must be DISPLAY usage. The manner in which the compiler
handles numeric operands depends on the nonnumeric operand.

• If the nonnumeric operand is an elementary item or a literal, the compiler
treats the numeric operand as if it had been moved into an alphanumeric
data item the same size as the numeric operand and then compared. This
causes any operational sign, whether carried as a separate character or as
an overpunched character, to be stripped from the numeric item so that it
appears to be an unsigned quantity.

In addition, if the PICTURE character-string of the numeric item contains
trailing P characters, indicating that there are assumed integer positions that
are not actually present, they are filled with zero digits. Thus, an item with
a PICTURE character-string of S9999PPP is moved to a temporary location
where it is described as 9999999. If its value is 432J (-4321), the value in
the temporary location will be 4321000. The numeric digits take part in the
comparison.

• If the nonnumeric operand is a group item, the compiler treats the numeric
operand as if it had been moved into a group item the same size as the
numeric operand and then compared. This is equivalent to a group move.

The compiler ignores the description of the numeric item (except for length)
and, therefore, includes in its length any operational sign, whether carried as
a separate character or as an overpunched character. Overpunched characters
are never ASCII numeric digits. They are characters ranging from A to R,
left brace ({), or right brace (}). Thus, the sign and the digits, stored as
ASCII bytes, take part in the comparison, and zeros are not supplied for P
characters in the PICTURE character-string.

The compiler does not accept a comparison between a noninteger numeric operand
and a nonnumeric operand. If you try to compare these two items, you receive a
diagnostic message at compile time.

5.3.1.2 Comparison Operations

If the two operands are acceptable, the compiler compares them character by
character. The compiler starts at the first byte and compares the corresponding
bytes until it either encounters a pair of unequal bytes or reaches the last byte of
the longer operand.

If the compiler encounters a pair of unequal characters, it considers their relative
position in the collating sequence. The operand with the character that is
positioned higher in the collating sequence is the greater operand.

If the operands have different lengths, the comparison proceeds as though the
shorter operand is extended on the right by sufficient ASCII spaces (decimal 32)
to make both operands the same length.

If all character pairs are equal, the operands are equal.

5.3.2 Class Tests for Nonnumeric Items

An IF statement with a class condition (NUMERIC or ALPHABETIC) tests the
value in a nonnumeric data item (USAGE DISPLAY only) to determine whether
it contains numeric or alphabetic data and uses the result to alter the flow of
control in the program. For example:

5-4 Nonnumeric Data Handling

IF ITEM-1 IS NUMERIC ...
IF ITEM-2 IS ALPHABETIC .. .
IF ITEM-3 IS NOT NUMERIC .. .

If the data item consists entirely of the ASCII characters 0 to 9, with or without
the operational sign, the class condition is NUMERIC. If the item consists
entirely of the ASCII characters A to Z (upper- or lowercase) and spaces, the class
condition is ALPHABETIC.

The ALPHABETIC-LOWER test is true if the operand contains any combination
of the lowercase alphabetic characters a to z, and the space. Otherwise the test is
false.

The ALPHABETIC-UPPER test is true if the operand contains any combination
of the uppercase alphabetical characters A to Z, and the space. Otherwise, the
test is false.

You can also perform a class test on a data item that you define with the CLASS
clause of the SPECIAL-NAMES paragraph.

A class test is true if the operand consists entirely of the characters listed in the
definition of the CLASS-NAME in the SPECIAL-NAMES paragraph. Otherwise,
the test is false.

When the reserved word NOT is present, the compiler considers it and the
next key word as one class condition defining the class test to be executed.
For example, NOT NUMERIC determines if an operand contains at least one
nonnumeric character.

If the item being tested is described as a numeric data item, it can only be tested
as NUMERIC or NOT NUMERIC. The NUMERIC test cannot examine either of
the following:

• An item described as alphabetic

• A group item containing elementary items whose data descriptions indicate
the presence of operational signs

For further information on using class conditions with numeric items, refer to the
VAX COBOL Reference Manual.

5.4 Data Movement

Three VAX COBOL statements (MOVE, STRING, and UNSTRING) perform most
of the data movement operations required by business-oriented programs. The
MOVE statement simply moves data from one item to another. The STRING
statement concatenates a series of sending items into a single receiving item. The
UNSTRING statement disperses a single sending item into multiple receiving
items. Section 5.5 describes the MOVE statement. Chapter 7 describes STRING
and UNSTRING.

The MOVE statement handles most data movement operations on character
strings. However, it is limited in its ability to handle multiple items. For
example, it cannot, by itself, concatenate a series of sending items into a single
receiving item or disperse a single sending item into several receiving items.

'l\vo MOVE statements will, however, bring the contents of two items together
into a third (receiving) item if the receiving item has been subdivided with
subordinate elementary items that match the two sending items in size. If other
items are to be concatenated into the third item, and they differ in size from the
first two items, then the receiving item requires additional subdivisions (through
redefinition).

Nonnumeric Data Handling 5-5

Example 5-1 demonstrates item concatenation using two MOVE statements.

Example 5-1: Item Concatenation Using Two MOVE Statements

01 SEND-1 PIC X(5) VALUE "FIRSTn.

01 SEND-2 PIC X(6) VALUE "SECOND".
01 RECEIVE-GROUP.

05 REC-1 PIC X(5).
05 REC-2 PIC X(6).

PROCEDURE DIVISION.
AOO-BEGIN.

MOVE SEND-1 TO REC-1.
MOVE SEND-2 TO REC-2.
DISPLAY RECEIVE-GROUP.
STOP RUN.

The result of the concatenation follows:

FIRST SECOND

Two MOVE statements can also disperse the contents of one sending item to
several receiving items. The first MOVE statement moves the leftmost end of
the sending item to a receiving item; then the second MOVE statement moves
the rightmost end of the sending item to another receiving item. (The second
receiving item must first be described with the JUSTIFIED clause.) Characters
from the middle of the sending item cannot easily be moved to any receiving item
without extensive redefinitions of the sending item or a reference modification
loop (as with concatenation).

The STRING and UNSTRING statements handle concatenation and dispersion
more easily than compound moves. Reference modification handles substring
operations more easily than compound moves, STRING, or UNSTRING.

5.5 Using the MOVE Statement

The MOVE statement moves the contents of one item into another. For example:

MOVE FIELDl TO FIELD2

MOVE CORRESPONDING FIELDl TO FIELD2

FIELDl is the sending item name, and FIELD2 is the receiving item name.

The first statement causes the compiler to move the contents of FIELDl into
FIELD2. The two items need not be the same size, class, or usage; they can be
either group or elementary items. If the two items are not the same length, the
compiler aligns them on one end or the other. It also truncates or space-fills the
other end. The movement of group items and nonnumeric elementary items is
discussed in Section 5.5.1 and Section 5.5.2, respectively.

The MOVE statement alters the contents of every character position in the
receiving item.

5-6 Nonnumeric Data Handling

5.5.1 Group Moves

If either the sending or receiving item is a group item, the compiler considers the
move to be a group move. It treats both the sending and receiving items as if
they are alphanumeric items.

If the sending item is a group item, and the receiving item is an elementary item,
the compiler ignores the receiving item description except for the size description,
in bytes, and any JUSTIFIED clause. It conducts no conversion or editing on the
receiving item.

5.5.2 Elementary Moves

If both items of a MOVE statement are elementary items, their PICTURE
character-strings control their data movement. If the receiving item was
described as numeric or numeric edited, the rules for numeric moves control the
data movement (see Chapter 4). Nonnumeric receiving items are alphanumeric,
alphanumeric edited, or alphabetic.

Table 5-2 shows the valid and invalid nonnumeric elementary moves.

Table 5-2: Nonnumeric Elementary Moves

Receiving Item Category

Sending Item Category Alphanumeric
Alphabetic Alphanumeric Edited

ALPHABETIC Valid Valid

ALPHANUMERIC Valid Valid

ALPHANUMERIC EDITED Valid Valid

NUMERIC INTEGER Invalid Valid
(DISPLAY ONLY)

NUMERIC EDITED Invalid Valid

In all valid moves, the compiler treats the sending item as though it had been
described as PIC X(n). A JUSTIFIED clause in the sending item's description has
no effect on the move. If the sending item's PICTURE character-string contains
editing characters, the compiler uses them only to determine the item's size.

In valid nonnumeric elementary moves, the receiving item controls the movement
of data. All of the following characteristics of the receiving item affect the move:

• Its size

• Editing characters in its description

• The JUSTIFIED RIGHT clause in its description

The JUSTIFIED clause and editing characters are mutually exclusive.

When an item that contains no editing characters or JUSTIFIED clause in its
description is used as the receiving item of a nonnumeric elementary MOVE
statement, the compiler moves the characters starting at the leftmost position
in the item and scans across, character by character, to the rightmost position.
If the sending item is shorter than the receiving item, the compiler fills the
remaining character positions with spaces. If the sending item is longer than the
receiving item, truncation occurs on the right.

Nonnumeric Data Handling 5-7

Numeric items used in nonnumeric elementary moves must be integers in
DISPLAY format.

If the description of the numeric data item indicates the presence of an
operational sign (either as a character or an overpunched character), or if
there are P characters in its character-string, the compiler first moves the item to
a temporary location. It removes the sign and fills out any P character positions
with zero digits. It then uses the temporary value as the sending item as if it
had been described as PIC X(n). The temporary value can be shorter than the
original value if a separate sign was removed, or longer than the original value if
P character positions were filled in with zeros.

If the sending item is an unsigned numeric class item with no P characters in its
character-string, the MOVE is accomplished directly from the sending item, and
a temporary item is not required.

If the numeric sending item is shorter than the receiving item, the compiler fills
the receiving item with spaces.

5.5.2.1 Edited Moves

This section explains the following insertion editing characters:

B

0

I

Blank insertion position

Zero insertion position

Slash insertion position

When an item with an insertion editing character in its PICTURE
character-string is the receiving item of a nonnumeric elementary MOVE
statement, each receiving character position corresponding to an editing character
receives the insertion byte value. Table 5-3 illustrates the use of such symbols
with the following statement, where FIELDl is described as PIC X(7):

MOVE FIELDl TO FIELD2

Table 5-3: Data Movement with Editing Symbols

FIELD I

070476

04JUL76

2351212

123456

Legend: s = space

Character-String

XX/99/XX

99BAAAB99

XXXBXXXXIXX/

OXBOXBOXBOX

FIELD2

Contents After MOVE

07/04/76

04sJULs76

235s1212/ss/

Ols02s03s04

Data movement always begins at the left end of the sending item and moves
only to the byte positions described as A, 9, or X in the receiving item PICTURE
character-string. When the sending item is exhausted, the compiler supplies
space characters to fill any remaining character positions (not insertion positions)
in the receiving item. If the receiving item is exhausted before the last character
is moved from the sending item, the compiler ignores the remaining sending item
characters.

Any necessary conversion of data from one form of internal representation to
another takes place during valid elementary moves, along with any editing
specified for, or de-editing implied by, the receiving data item.

5-8 Nonnumeric Data Handling

5.5.2.2 Justified Moves

A JUSTIFIED RIGHT clause in the receiving item's data description causes the
compiler to reverse its usual data movement conventions. It starts with the
rightmost characters of both items and proceeds from right to left. If the sending
item is shorter than the receiving item, the compiler fills the remaining leftmost
character positions with spaces. If the sending item is longer than the receiving
item, truncation occurs on the left. Table 5-4 illustrates various PICTURE
character-string situations for the following statement:

MOVE FIELDl TO FIELD2

Table 5-4: Data Movement with the JUSTIFIED Clause

FIELDl

PICTURE
Character-String

xxx

Legend: s = space

Contents

ABC

FIELD2

PICTURE
Character-String
(and JUST-Clause)

xx
xxxxx
XX JUST

XXXXXJUST

Contents After
MOVE

AB

ABCss

BC

ssABC

If there is no JUSTIFIED clause, data movement follows the rules for aligning
data in elementary items.

5.5.3 Multiple Receiving Items

If you write a MOVE statement containing more than one receiving item, the
compiler moves the same sending item value to each of the receiving items. It
has essentially the same effect as a series of separate MOVE statements, all with
the same sending item. For information on subscripted items, see Section 5.5.4.
Also, reference modification is evaluated immediately after subscripting or index
evaluation. Refer to the VAX COBOL Reference Manual for details on reference
modification.

The receiving items need have no relationship to each other. The compiler
checks the validity of each one independently and performs an independent move
operation on each one.

Multiple receiving items on MOVE statements provide a convenient way to set
many items equal to the same value, such as during initialization code at the
beginning of a section of processing. For example:

MOVE SPACES TO LIST-LINE, EXCEPTION-LINE, NAME-FLD.

MOVE ZEROS TO EOL-FLAG, EXCEPT-FLAG, NAME-FLAG.

MOVE 1 TO COUNT-1, CHAR-PTR, CURSOR.

Nonnumeric Data Handling 5-9

5.5.4 Subscripted Moves

Any item (other than a data item that is not subordinate to an OCCURS clause)
of a MOVE statement can be subscripted, and the referenced item can be used to
subscript another name in the same statement.

For example, when more than one receiving item is named in the same MOVE
statement, the order in which the compiler evaluates the subscripts affects the
results of the move. Consider the following examples:

MOVE FIELD1(FIELD2) TO FIELD2 FIELD3.

In this example, the compiler evaluates FIELD1(FIELD2) only once, before it
moves any data to the receiving items. It is as if the single MOVE statement
were replaced with the following three statements:

MOVE FIELD1(FIELD2) TO TEMP.

MOVE TEMP TO FIELD2.

MOVE TEMP TO FIELD3.

In the following example, the compiler evaluates FIELD3(FIELD2) immediately
before moving the data into it, but after moving the data from FIELDl to
FIELD2.

MOVE FIELDl TO FIELD2 FIELD3(FIELD2).

Thus, it uses the newly stored value of FIELD2 as the subscript value. It is as if
the single MOVE statement were replaced with the following two statements:

MOVE FIELDl TO FIELD2.

MOVE FIELDl TO FIELD3(FIELD2).

5.5.5 Common Nonnumeric Item MOVE Statement Errors

The compiler considers any MOVE statement that contains a group item (sending
or receiving) to be a group move. If an elementary item contains editing
characters or a numeric integer, these attributes of the receiving item, which
determine the action of an elementary move, have no effect on the action of a
group move.

5.5.6 Using the MOVE CORRESPONDING Statement for Nonnumeric Items

The MOVE CORRESPONDING statement allows you to move multiple items
from one group item to another group item, using a single MOVE statement. See
the VAX COBOL Reference Manual for rules concerning the CORRESPONDING
phrase. When you use the CORRESPONDING phrase, the compiler performs
an independent move operation on each pair of corresponding items from the
operands and checks the validity of each. Example 5-2 shows the use of the
MOVE CORRESPONDING statement.

The preceding MOVE CORRESPONDING statement is equivalent to the
following series of MOVE statements:

5-10 Nonnumeric Data Handling

Example 5-2: Sample Record Description Using the MOVE CORRESPONDING
Statement

01 A-GROUP.
02 FIELDl.

03 A PIC x.
03 B PIC 9.
03 c PIC xx.
03 D PIC 99.
03 E PIC xxx.

MOVE CORRESPONDING
A-GROUP TO B-GROUP.

MOVE A OF A-GROUP TO A OF B-GROUP.

MOVE C OF A-GROUP TO C OF B-GROUP.

MOVE E OF A-GROUP TO E OF B-GROUP.

5.5. 7 Using Reference Modification

01 B-GROUP.
02 FIELDl.

03 A PIC x.
03 C PIC xx.
03 E PIC xxx.

You can use reference modification to define a subset of a data item by specifying
its leftmost character position and length. Reference modification is valid
anywhere an alphanumeric identifier is allowed unless specific rules for a general
format prohibit it. The following is an example of a reference modification:

WORKING-STORAGE SECTION.
01 ITEMA PIC X(lO) VALUE IS "XYZABCDEFG".

MOVE ITEMA(4:3) TO ...

IDENTIFIER

ITEMA (4:3)

VALUE

ABC

For more information on reference modification rules, refer to the VAX COBOL
Reference Manual.

Nonnumeric Data Handling 5-11

Chapter 6

Table Handling

6.1 Introduction

This chapter discusses the procedures required to define, initialize, and access
tables accurately and efficiently.

A table is one or more repetitions of one element, comprised of one or more data
items, stored in contiguous memory locations. You define a table by using an
OCCURS clause following a data description entry. The literal integer value
you specify in the OCCURS clause determines the number of repetitions, or
occurrences, of the data description entry, thus creating a table. VAX COBOL
allows you to define from 1 to 48 dimensional tables.

After you have defined a table, you can load it with data. One way to load a table
is to use the INITIALIZE statement or the VALUE clause to assign values to the
table when you define it (see Figure 6-10).

To access data stored in tables, use subscripted or indexed procedural
instructions. In either case, you can directly access a known table element
occurrence or search for an occurrence based on some known condition.

6.2 Defining Tables

To define a table you specify an OCCURS clause in a data description entry.
You can define either fixed-length tables or variable-length tables. They may
furthermore be single or multidimensional. The following sections describe how
to use the OCCURS clause and its options.

6.2.1 Defining Fixed-Length, One-Dimensional Tables

To define fixed-length tables, use Format 1 of the OCCURS clause (refer to the
VAX COBOL Reference Manual). This format is useful when you are storing large
amounts of stable or frequently used reference data. Options allow you to define
single or multiple keys, or indexes, or both.

A definition of a one-dimensional table is shown in Example 6-1. The integer 2
in the OCCURS 2 TIMES clause determines the number of element repetitions.
For the table to have any real meaning, this integer must be equal to or greater
than 2.

The organization of TABLE-A is shown in Figure 6-1.

Table Handling 6-1

Example 6-1: One-Dimensional Table

01 TABLE-A.
05 ITEM~B PIC X OCCURS 2 TIMES.

Example 6-2: Multiple Data Items in a One-Dimensional Table

01 TABLE-A.
05 GROUP-B OCCURS 2 TIMES.

10 ITEMC PIC X.
10 ITEMD PIC X.

Figure 6-1: Organization of the One-Dimensional Table in Example 6-1

Longword number

Byte number

Level01

Level OS

Legend: A= TABLE-A
B = ITEM-B

1

B

1

I 2 3 I 4

A

l B

ZK-6039-GE

Example 6-1 specifies only a single data item. However, you can specify as
many data items as you need in the table. Multiple data items are shown in
Example 6-2.

The organization of this table is shown in Figure 6-2.

6-2 Table Handling

Figure 6-2: Organization of Multiple Data Items in a One-Dimensional Table

Longword number

Byte number

Level01

Level OS

Level 10

1

c

Legend: A = TABLE-A
B=GROUP-8

l 2

B

l D

1

A

3 l 4

B

c J D

C= ITEMC
D= ITEMD

ZK-6040-GE

Example 6-1 and Example 6-2 both do not use the KEY IS or INDEXED BY
optional phrases. The INDEXED BY phrase implicitly defines an index name.
This phrase must be used if any Procedure Division statements contain indexed
references to the data name that contains the OCCURS clause. The KEY IS
phrase means that repeated data is arranged in ascending or descending order
according to the values in the data items that contain the OCCURS clause.
For further information on these OCCURS clause options, see the VAX COBOL
Reference Manual.

If you use either the SEARCH or the SEARCH ALL statement, you must specify
at least one index. The SEARCH ALL statement also requires that you specify
at least one key. Specify the search key using the ASCENDING/DESCENDING
KEY IS phrase. See Section 6.4.8 for information about the SEARCH statement
and Section 6.4.4 for information about indexing. When you use the INDEXED
BY phrase, the index is internally defined and cannot be defined elsewhere.
Example 6-3 defines a table with an ascending search key and an index.

Example 6-3: Defining a Table with an Index and an Ascending Search Key

01 TABLE-A.
05 ELEMENTB OCCURS 5 TIMES

ASCENDING KEY IS ITEMA
INDEXED BY INDXl.

10 ITEMC PIC X.
10 ITEMD PIC X.

Table Handling 6-3

The organization of this table is shown in Figure 6-3.

Figure 6-3: Organization of a Table with an Index and an Ascending Search
Key

Longword number

Byte number

Level01

Level05

Level 10

0

1

c

0

2

B

D

Legend: B = ELEMENTS
C= ITEMC
D = ITEMD

1

0

3

B

c

2 3]
0 0 0 0 0 0 1

4 5 6 7 8 9 0

TABLE-A

B B B

D c D c D c D

ZK-6041-GE

6.2.2 Defining Fixed-Length, Multidimensional Tables

VAX COBOL allows 48 levels of OCCURS nesting. If you want to define a
two-dimensional table, you define another one-dimensional table within each
element of the one-dimensional table. To define a three-dimensional table, you
define another one-dimensional table within each element of the two-dimensional
table, and so on.

A two-dimensional table is shown in Example 6-4.

Example 6-4: Defining a Two-Dimensional Table

01 2D-TABLE-X.

6-4 Table Handling

05 LAYER-Y OCCURS 2 TIMES.
10 LAYER-Z OCCURS 2 TIMES.

15 CELLA PIC X.
15 CELLB PIC X.

The organization of this two-dimensional table is shown in Figure 6-4.

Figure 6-4: Organization of a Two-Dimensional Table

Longword number

Byte number

Level01

Level OS

2

2 3 4 5 6 7 8

20-TABLE-X

LY LY

Level10 LZ LZ LZ LZ

Level 15 ABABABAB

Legend: LY= LAYER-Y
LZ= LAYER-Z

A=CELLA
B=CELLB

ZK-6042-GE

Example 6-5 shows a three-dimensional table.

Example 6-5: Defining a Three-Dimensional Table

01 TABLE-A.
05 LAYER-B OCCURS 2 TIMES.

10 ITEMC PIC X.
10 ITEMD PIC X OCCURS 3 TIMES.
10 ITEME OCCURS 2 TIMES.

15 CELLF PIC X.
15 CELLG PIC X OCCURS 3 TIMES.

The organization of this three-dimensional table is shown in Figure 6-5.

Table Handling 6-5

Figure 6-5: Organization of a Three-Dimensional Table

Longword number 1 2 3 4 5 6

Byte number

Level01

Level05

Level 10

Level 15

Legend: A
B
c
D

0

1

c

TABLE-A
LAYER-B
ITEMC
ITEMD

0

2

D

0 0

3 4

D D

0

5

F

E
F
G

0 0 0

6 7 8

B

E

G G G

ITEME
CELLF
CELLG

0 1 1

9 0 1

E

F G G

1 1 1 1 1 1 1 1 2 2 2 2 2

2 3 4 5 6 7 8 9 0 1 2 3 4

A

B

c D D D E E

G F G G G F G G G

ZK-6043-GE

6.2.3 Defining Variable-Length Tables

To define a variable-length table, use Format 2 of the OCCURS clause (refer
to the VAX COBOL Reference Manual). Options allow you to define single or
multiple keys, or indexes, or both.

Example 6-6 illustrates how to define a variable-length table.

It uses from two to four occurrences depending on the integer value assigned
to NUM-ELEM. You specify the table's minimum and maximum size with the
OCCURS (minimum size) TO (maximum size) clause. The minimum size value
must be equal to or greater than zero and the maximum size value must be
greater than the minimum size value. The DEPENDING ON clause is also
required when you use the TO clause.

The data-name of an elementary, unsigned integer data item is specified in the
DEPENDING ON clause. Its value specifies the current number of occurrences.
The data-name in the DEPENDING ON clause must be within the minimum to
maximum range.

Unlike fixed-length tables, you can dynamically alter the number of element
occurrences in variable-length tables.

By generating the variable-length table in Example 6-6, you are, in effect, saying:
"Build a table that can contain at least two occurrences, but no more than four
occurrences, and set its present number of occurrences equal to the value specified
by NUM-ELEM."

6-6 Table Handling

Example 6-6: Defining a Variable-Length Table

01 NUM-ELEM PIC 9.

01 VAR-LEN-TABLE.
05 TAB-ELEM OCCURS 2 TO 4 TIMES DEPENDING ON NUM-ELEM.

10 A PIC X.
10 B PIC X.

6.2.4 Storage Allocation for Tables

The compiler maps the table elements into memory, following mapping rules that
depend on the use of COMP, COMP-1, COMP-2, POINTER, and INDEX data
items in the table element and the presence or absence of the SYNCHRONIZED
(SYNC) clause with those data items.

The VAX COBOL compiler allocates storage for data items within records
according to the rules of the Major-Minor Equivalence technique. This technique
ensures that identically defined group items have the same structure, even when
their subordinate items are aligned. Therefore, group moves always produce
predictable results. For more information, refer to the description of record
allocation in the VAX COBOL Reference Manual.

Figure 6-6 shows how the table defined in Example 6-7 is mapped into memory.

NOTE

To determine exactly how much space your tables use, specify the
IMAP compiler qualifier. This gives you an offset map of both the Data
Division and the Procedure Division.

Table Handling 6-7

Example 6-7: Sample Record Description Defining a Table

01 T.A.BLE-A.
03 GROUP-G PIC X(5) OCCURS 5 TIMES.

Figure 6-6: Memory Map for Example 6-7

Longword number 1 2 3 4 5 6 7

Byte number

Level01

Level03

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

TABLE-A

GROUP-G GROUP-G GROUP-G GROUP-G GROUP-G

ZK-6050-GE

Alphanumeric data items require 1 byte of storage per character. Therefore, each
occurrence of GROUP-G occupies 5 bytes. The first byte of the first element is
automatically aligned at the left record boundary and the first 5 bytes occupy all
of word 1 and part of 2. A memory longword is comprised of 4 bytes. Succeeding
occurrences of GROUP-G are assigned to the next 5 adjacent bytes so that
TABLE-A is comprised of five 5-byte elements for a total of 25 bytes. Each table
element, after the first, is allowed to start in any byte of a word with no regard
for word boundaries.

6.2.4.1 Using the SYNCHRONIZED Clause

By default, the VAX COBOL compiler tries to allocate a data item at the next
unassigned byte location. However, you can align some data items on a 2-, 4-, or
8-byte boundary by using the SYNCHRONIZED clause. The compiler may then
have to skip one or more bytes before assigning a location to the next data item.
The skipped bytes, called fill bytes, are gaps between one data item and the next.

The SYNCHRONIZED clause explicitly aligns COMP, COMP-1, COMP-2,
POINTER, and INDEX data items on their natural boundaries: one-word COMP
items on 2-byte boundaries, longword items on 4-byte boundaries, and quadword
items on 8-byte boundaries. Thus the use of SYNC can have a significant effect
on the amount of memory required to store tables containing COMP and COMP
SYNC data items.

Example 6-8 describes a table containing a COMP SYNC data item. Figure 6-7
illustrates how it is mapped into memory.

6-8 Table Handling

Example 6-8: Record Description Containing a COMP SYNC Item

01 A-TABLE.
03 GROUP-G OCCURS 4 TIMES.

05 ITEMl PIC X.
05 ITEM2 PIC S9(5) COMP SYNC.

Figure 6-7: Memory Map for Example 6-8

Longword number

Byte number

Level01

Level03

Level OS

Legend: 1 = ITEM1
2= ITEM2
f =fill byte

2 3 4 5 6

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

A-TABLE

GROUP-G GROUP-G GROUP-G

7 8

GROUP-G

1fff22221fff22221fff22221fff2222

ZK-6044-GE

Because a 5-digit COMP SYNC item requires one longword (or 4 bytes) of storage,
ITEM2 must start on a longword boundary. This requires the addition of 3
fill bytes after ITEM!, and each GROUP-G occupies 8 bytes. In Example 6-8,
A-TABLE requires 32 bytes to store four elements of 8 bytes each.

If, in the previous example, you defined ITEM2 as a COMP data item of the same
size without the SYNC clause, the storage required would be considerably less.
Although ITEM2 would still require one longword of storage, it would be aligned
on a byte boundary. No fill bytes would be needed between ITEM! and ITEM2,
and A-TABLE would require a total of 20 bytes.

If you now add a 3-byte alphanumeric item (ITEM3) to Example 6-8 and locate it
between ITEM! and ITEM2 (see Example 6-9), the new item occupies the space
formerly occupied by the 3 fill bytes. This adds 3 data bytes without changing the
table size, as Figure 6-8 illustrates.

Example 6-9: Adding an Item Without Changing the Table Size

01 A-TABLE.
03 GROUP-G OCCURS 4 TIMES.

05 ITEMl PIC X.
05 ITEM3 PIC XXX.
05 ITEM2 PIC 9(5) COMP SYNC.

Table Handling 6-9

Figure 6-8: Memory Map for Example 6-9

Longword number

Byte number

Level01

Level03
Level OS

Legend: 1 = ITEM1
2= ITEM2
3= ITEM3

1 2 3 4

0000000001111
1 2 3 4 5 6 7 8 9 0 1 2 3 4

GROUP-G GROUP-G

5 6

1 1 1 1 2 2 2 2 2 2 2
6 7 8 9 0 1 2 3 4 5 6

A-TABLE

GROUP-G

7 8

3 3
9 0 1 2

GROUP-G

1 3 3 3 2 2 2 2 1 3 3 3 2 2 2 2 1 3 3 3 2 2 2 2 1 3 3 3 2 2 2 2

ZK-6045-GE

If, however, you place ITEM3 after ITEM2, the additional 3 bytes add their own
length plus another fill byte. The additional fill byte is added after the third
ITEM3 character to ensure that all occurrences of the table element are mapped
in an identical manner. Now, each element requires 12 bytes, and the complete
table occupies 48 bytes. This is illustrated by Example 6-10 and Figure 6-9.

Example 6-10: How Adding 3 Bytes Adds 4 Bytes to the Element Length

01 A-TABLE.
03 GROUP-G OCCURS 4 TIMES.

05 ITEMl PIC x.
05 ITEM2 PIC 9 (5) COMP SYNC.
05 ITEM3 PIC XXX.

Note that GROUP-G begins on a 4-byte boundary because of the way VAX
COBOL allocates memory.

6-10 Table Handling

Figure 6-9: Memory Map for Example 6-10

Longword number 1 2 3 4 5 6

Byte number

Level01

Level03

Level OS

0
1

1

0
2

f

0 0
3 4

f f

0 0 0 0 0 1

5 6 7 8 9 0

GROUP-G

2 2 2 2 3 3

1 1 1 1 1 1 1 1 1 2 2 2 2 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4

A-TABLE

GROUP-G

3 f 1 f f f 2 2 2 2 3 3 3 f

Legend: 1 = ITEM1
2 = ITEM2
3 = ITEM3
f =fill byte

ZK-6046-GE

6.3 Initializing Values of Table Elements

You can initialize a table that contains only DISPLAY items to any desired value
in either of the following ways:

• You can specify a VALUE clause in the record level preceding the record
description of the item containing the OCCURS clause.

• You can specify a VALUE clause in a record subordinate to the OCCURS
clause.

Example 6-11 and Figure 6-10 provide an example and memory map of a table
initialized using the VALUE clause.

Example 6-11: Initializing Tables with the VALUE Clause

01 A-TABLE VALUE IS "JANFEBMARAPRMAY
"JUNJULAUGSEPOCTNOVDEC".

03 MONTH-GROUP PIC XXX USAGE DISPLAY
OCCURS 12 TIMES.

Table Handling 6-11

Figure 6-10: Memory Map for Example 6-11

Longword number 1 2 3 7 8 9

Byte number

Level01

Level03

Byte contents

0

1

J

0

2

M

A

0 0 0 0

3 4 5 6

M

N F E B

0 0 0 1 1 1

7 8 9 0 1 2 ...
A-TABLE

M M ...
M A R A p R ...

2 2 2 2 2 3 3 3 3 3 3 3

5 6 7 8 9 0 1 2 3 4 5 6

M M M M

s E p 0 c T N 0 v D E c

Legend: M =Month-Group

ZK-6047-GE

If each entry in the table has the same value, you can initialize the table as
shown in Example 6-12.

Example 6-12: Initializing a Table with the OCCURS Clause

01 A-TABLE.
03 TABLE-LEG OCCURS 5 TIMES.

05 FIRST-LEG PIC X VALUE "A".
05 SECOND-LEG PIC S9(9) COMP VALUE 5.

In this example, there are five occurrences of each table element. Each element is
initialized to the same value as follows:

• FIRST-LEG occurs five times; each occurrence is initialized to A.

• SECOND-LEG occurs five times; each occurrence is initialized to 5.

Often a table is too long to initialize using a single literal, or it contains numeric,
alphanumeric, COMP, COMP-I, COMP-2, or COMP SYNC items that cannot be
initialized. In these situations, you can initialize individual items by redefining
the group level that precedes the level containing the OCCURS clause. Consider
the sample table descriptions illustrated in Example 6-13 and Example 6-14.
Each fill byte between ITEM! and ITEM2 in Example 6-13 is initialized to X.
Figure 6-11 shows how this is mapped into memory.

6-12 Table Handling

Example 6-13: Initializing Mixed Usage Items

01 A-RECORD-ALT.
05 FILLER PIC XX VALUE "AX".
05 FILLER PIC S99 COMP VALUE 1.
05 FILLER PIC XX VALUE "BX".
05 FILLER PIC S99 COMP VALUE 2.

01 A-RECORD REDEFINES A-RECORD-ALT.
03 A-GROUP OCCURS 26 TIMES.

05 ITEMl PIC X.
05 ITEM2 PIC S99 COMP SYNC.

Figure 6-11 : Memory Map for Example 6-13

Longword number

Byte number

Level01

1

1

2 3 l 4 5

A-RECORD

2

6 7 l

Level03 A-GROUP A-GROUP

Level OS

Byte contents

Legend: 1 = ITEM1
2= ITEM2
f =fill byte

1

A

f 2 l 2

x

binary1J

1 f 2 l
B x

binary2J

8

2

ZK-6048-GE

As shown in Example 6-14 and in Figure 6-12, each FILLER item initializes
three 10-byte table elements.

Example 6-14: Initializing Alphanumeric Items

01 A-RECORD-ALT.
03 FILLER PIC X(30) VALUE IS

"AAAAAAAAAABBBBBBBBBBCCCCCCCCCC".
03 FILLER PIC X(30) VALUE IS

"DDDDDDDDDDEEEEEEEEEEFFFFFFFFFF".

01 A-RECORD REDEFINES A-RECORD-ALT.
03 ITEMl PIC X(lO) OCCURS 26 TIMES.

Table Handling 6-13

Figure 6-12: Memory Map for Example 6-14

Longword number 1 2 3 4 5 6

Byte number

Level01

Level03
Byte contents at
initialization time

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

A-RECORD

ITEM 1 ITEM 1 ITEM1

A A A A A A A A A A B B B B B B B B B B c c c c
ZK-6049-GE

When redefining or initializing table elements, allow space for any fill bytes that
might be added due to synchronization. You do not have to initialize fill bytes, but
you can do so. If you initialize fill bytes to an uncommon value, you can use them
as a debugging aid in situations where a Procedure Division statement refers to
the record level preceding the OCCURS clause, or to another record redefining
that level.

You can also iilitialize tables at run time. To initialize tables at run time, use the
INITIALIZE statement. This statement allows you to initialize all occurrences
of a table element to the same value. For more information on the INITIALIZE
statement, refer to the VAX COBOL Reference Manual.

Sometimes the length and format of table items are such that they are best
initialized using Procedure Division statements such as a MOVE statement to
send a value to the table.

6.4 Accessing Table Elements

Once tables have been created using the OCCURS clause, the program must have
a method of accessing the individual elements of those tables. Subscripting and
indexing are the two methods VAX COBOL provides for accessing individual table
elements. To refer to a particular element within a table, follow the name of that
element with a subscript or index enclosed in parentheses. The following sections
describe how to identify and access table elements using subscripts and indexes.

6.4.1 Subscripting

A subscript can be an integer literal, an arithmetic expression, a data name, or
a subscripted data name that has an integer value. The integer value represents
the desired element of the table. An integer value of 3, for example, refers to the
third element of a table.

6.4.2 Subscripting with Literals

A literal subscript is an integer value, enclosed in parentheses, that represents
the desired table element. In Example 6-15, the literal subscript (2) in the
MOVE instruction moves the contents of the second element of A-TABLE to
I-RECORD.

6-14 Table Handling

Example 6-15: Using a Literal Subscript to Access a Table

Table Description:

01 A-TABLE.
03 A-GROUP PIC X(S)

OCCURS 10 TIMES.

Instruction:

MOVE A-GROUP(2) TO I-RECORD.

If the table is multidimensional, follow the data name of the desired data item
with a list of subscripts, one for each OCCURS clause to which the item is
subordinate. The first subscript in the list applies to the first OCCURS clause
to which that item is subordinate. This is the most inclusive level, and is
represented by A-GROUP in Example 6-16. The second subscript applies to
the next most inclusive level and is represented by ITEM3 in the example.
Finally, the third subscript applies to the least inclusive level, represented by
ITEM5. (Note that VAX COBOL can have 48 subscripts that follow the pattern in
Example 6-15.)

In Example 6-16, the subscripts (2,11,3) in the MOVE statements move the third
occurrence of ITEM5 in the eleventh repetition of ITEM3 in the second repetition
of A-GROUP to I-FIELD5. ITEM5(1,1,1) refers to the first occurrence of ITEM5
in the table, and ITEM5(5,20,4) refers to the last occurrence of ITEM5.

Example 6-16: Subscripting a Multidimensional Table

Table Description:

01 A-TABLE.
03 A-GROUP OCCURS S TIMES.

OS ITEMl PIC X.
OS ITEM2 PIC 99 COMP OCCURS 20 TIMES.
OS ITEM3 OCCURS

.07 ITEM4
07 ITEMS

01 I-FIELDS

Procedural Instruction:

20 TIMES .
PIC X.
PIC XX OCCURS 4 TIMES.
PIC XX.

MOVE ITEMS(2, 11, 3) TO I-FIELDS.

NOTE

Because ITEM5 is not subordinate to ITEM2, an occurrence number
for ITEM2 is not permitted in the subscript list (when referencing
ITEM3, ITEM4, or ITEM5). The ninth occurrence of ITEM2 in the fifth
occurrence of A-GROUP would be selected by ITEM2(5,9).

Table Handling 6-15

Table 6-1 shows the subscripting rules that apply to Example 6-16.

Table 6-1: Subscripting Rules for a Multidimensional Table

Number of Subscripts
Required to Refer to Size of Item in Bytes

Name of Item the Name Item (Each Occurrence)

A-TABLE NONE 1105

A-GROUP ONE 221

ITEMl ONE 1

ITEM2 TWO 2

ITEM3 TWO 9

ITEM4 TWO 1

ITEM5 THREE 2

6.4.3 Subscripting with Data Names

You can also use data names to specify subscripts. To use a data name as a
subscript, define it with COMP, COMP-1, COMP-2, COMP-3, or DISPLAY usage
and with a numeric integer value. If the data name is signed, the sign must be
positive at the time the data name is used as a subscript.

A data name that is a subscript can also be subscripted-for example, A(B(C)).
Note that for efficiency your subscripts should be S9(5) to S9(9) COMP.

The sample subscripts and data names used in Table 6-2 refer to the table
defined in Example 6-16.

Table 6-2: Subscripting with Data Names

Data Descriptions of Subscript Data Names

01 SUBl PIC 99 USAGE DISPLAY.

01 SUB2 PIC S9(9) USAGE COMP.

01 SUB3 PIC S99.

6.4.4 Subscripting with Indexes

Procedural Instructions

MOVE 2 TO SUBl.

MOVE 11 TO SUB2.

MOVE 3 TO SUB3.

MOVE ITEM5(SUB1,SUB2,SUB3) TO I-FIELD5.

The same rules apply for specifying indexes as for subscripts, except that the
index must be named in the INDEXED BY phrase of the OCCURS clause.

You cannot access index items as normal data items; that is, you cannot use them,
redefine them, or write them to a file. However, the SET statement can change
their values, and relation tests can examine their values. The index integer you
specify in the SET statement must be in the range of one to the integer value
in the OCCURS clause. The sample MOVE statement shown in Example 6-17
moves the contents of the third element of A-GROUP to I-FIELD.

6-16 Table Handling

Example 6-17: Subscripting with Index Name Items

Table Description:

01 A-TABLE
03 A-GROUP OCCURS 5 TIMES

INDEXED BY IND-NAME.

01 I-FIELD PIC X(5).

Procedural Instructions:

SET IND-NAME TO 3.
MOVE A-GROUP(IND-NAME) TO I-FIELD.

NOTE

VAX COBOL initializes the value of all indexes to 1. Initializing
indexes is an extension to the ANSI COBOL standard. Users who
write COBOL programs that must adhere to standard COBOL should
not rely on this feature.

6.4.5 Relative Indexing

To perform relative indexing when referring to a table element, you follow the
index name with a plus or minus sign and an integer literal. Although it is
easy to use, relative indexing generates additional overhead each time a table
element is referenced i.n this way. The run-time overhead for relative indexing of
variable-length tables is significantly greater than that required for fixed-length
tables. If any of the range checks reveals an out-of-range index value, program
execution terminates, and an error message is issued. You can use the /CHECK
command line qualifier to check the range when you compile the program. (See
Chapter 2 for more information.)

The following sample MOVE statement moves the fourth repetition of A-GROUP
to I-FIELD:

SET IND-NAME TO 1.
MOVE A-GROUP(IND-NAME + 3) TO I-FIELD.

6.4.6 Index Data Items

Often a program requires that the value of an index be stored outside of that
item. VAX COBOL provides the index data item to fulfill this requirement.

Index data items are stored as longword COMP items and must be declared with
a USAGE IS INDEX phrase in the item description. Index data items can be
explicitly modified only with the SET statement.

6.4. 7 Assigning Index Values Using the SET Statement

The SET statement assigns values to indexes associated with tables, so that
you can reference particular table elements. Two of the six VAX COBOL SET
statement formats are available to you, and are discussed in the following
sections. (All six formats are shown in the VAX COBOL Reference Manual.)

Table Handling 6-17

6.4.7.1 Assigning an Integer Index Value with a SET Statement

When you use the SET statement, the index is set to the value you specify. The
most straightforward use of the SET statement is to set an index name to an
integer literal value. This example assigns a value of 5 to IND-5:

SET IND-5 TO 5.

You can also set an index name to an integer data item. For example:

SET INDEX-A TO COUNT-1.

More than one index can be set with a single SET statement. For example:

SET TABl-IND TAB2-IND TO 15.

Table indexes specified in INDEXED BY phrases can be displayed by using the
WITH CONVERSION option with the VAX COBOL DISPLAY statement. Also,
you can display, move, and manipulate the value of the table index with an index
data item. You do this by setting an index data item to the present value of an
index. You could, for example, set an index data item and then display its value
as shown in the following example:

SET INDEX-ITEM TO TAB-IND.

DISPLAY INDEX-ITEM WITH CONVERSION.

6.4.7.2 Incrementing an Index Value with the SET Statement

You can use the SET statement with the UP BY/DOWN BY clause to
arithmetically alter the value of a index. A numeric literal is added to (UP
BY) or subtracted from (DOWN BY) a table index. For example:

SET TABLE-INDEX UP BY 12.

SET TABLE-INDEX DOWN BY 5.

6.4.8 Identifying Table Elements Using the SEARCH Statement

The SEARCH statement is used to search a table for an element that satisfies
a known condition. The statement provides for sequential and binary searches,
which are described in the following sections.

6.4.8.1 Implementing a Sequential Search

The SEARCH statement allows you to perform a sequential search of a table. The
OCCURS clause of the table description entry must contain the INDEXED BY
phrase. If more than one index is specified in the INDEXED BY phrase, the first
index is the controlling index for the table search unless you specify otherwise in
the SEARCH statement.

The search begins at the current index setting and progresses through the
table, checking each element against the conditional expression. The index is
incremented by 1 as each element is checked. If the conditional expression is
true, the associated imperative statement executes; otherwise, program control
passes to the next procedural sentence. This terminates the search, and the index
points to the current table element that satisfied the conditional expression.

6-18 Table Handling

If no table element is found that satisfies the conditional expression, program
control passes to the AT END exit path; otherwise, program control passes to the
next procedural sentence.

You can use the optional VARYING phrase of the SEARCH statement by
specifying any of the following:

• VARYING index name associated with table search

• VARYING index data item or integer data item

• VARYING index name not associated with table search

Regardless of which method you use, the index specified in the INDEXED BY
phrase of the table being searched is incremented. This controlling index, when
compared against the allowable number of occurrences in the table, dictates the
permissible search range. When the search terminates, either successfully or
unsuccessfully, the index remains at its current setting. At this point, you can
reference the data in the table element pointed to by the index, unless the AT
END condition is true. If the AT END condition is true, and if the /CHECK
qualifier has been specified, the compiler issues a run-time error message
indicating that the subscript is out of range.

When you vary an index associated with the table being searched, the index
name can be any index you specify in the INDEXED BY phrase. It becomes the
controlling index for the search and is the only index incremented. Example 6-18
and Example 6-20 show how to vary an index other than the first index.

When you vary an index data item or an integer data item, either the index data
item or the integer data item is incremented. The first index name you specify
in the INDEXED BY phrase of the table being searched becomes the controlling
index and is also incremented. The index data item or the integer data item you
vary does not function as an index; it merely allows you to maintain an additional
pointer to elements within a table. Example 6-18 and Example 6-21 show how
to vary an index data item or an integer data item.

When you vary an index associated with a table other than the one you are
searching, the controlling index is the first index you specify in the INDEXED
BY phrase of the table you are searching. Each time the controlling index is
incremented, the index you specify in the VARYING phrase is incremented. In
this manner, you can search two tables in synchronization. Example 6-18 and
Example 6-22 show how to vary an index associated with a table other than the
one you are searching.

When you omit the VARYING phrase, the first index you specify in the INDEXED
BY phrase becomes the controlling index. Only this index is incremented during
a serial search. Example 6-18 and Example 6-23 show how to perform a serial
search without using the VARYING phrase.

6.4.8.2 Implementing a Binary Search

You can use the SEARCH statement to perform a nonsequential (binary) table
search.

To perform a binary search, you must specify an index name in the INDEXED BY
phrase and a search key in the KEY IS phrase of the OCCURS clause of the table
being searched.

Table Handling 6-19

A binary search depends on the ASCENDING/DESCENDING KEY attributes. If
you specify an ASCENDING KEY, the data in the table must either be stored
in ascending order or sorted in ascending order prior to the search. For a
DESCENDING KEY, data must be stored or sorted in descending order prior
to the search.

During a binary search, the first (or only) index you specify in the INDEXED
BY phrase of the OCCURS clause of the table being searched is the controlling
index. You do not have to initialize an index in a binary search because index
manipulation is automatic.

In addition to being generally faster than a sequential search, a binary search
allows multiple equality checks.

The following search sequence lists the capabilities of a binary search. At
program execution time, the system:

1. Examines the range of permissible index values, selects the median value,
and assigns this value to the index.

2. Checks for equality in WHEN and AND clauses.

3. Terminates the search if all equality statements are true. If you use the
imperative statement after the final equality clause, that statement executes;
otherwise, program control passes to the next procedural sentence, the search
exits, and the index retains its current value.

4. Takes the following actions if the equality test of a table element is false:

a. Executes the imperative statement associated with the AT END statement
(if present) when all table elements have been tested. If there is no AT
END statement, program control passes to the next procedural statement.

b. Determines which half of the table is to be eliminated from further
consideration. This is based on whether the key being tested was specified
as ASCENDING or DESCENDING and whether the test failed because
of a greater-than or less-than comparison. For example, if the key values
are stored in ascending order, and the median table element being tested
is greater than the value of the argument, then all key elements following
the one being tested must also be greater. Therefore, the upper half of the
table is removed from further consideration and the search continues at
the median point of the lower half.

c. Begins processing all over again at step 1.

A useful variation of the binary search is that of specifying multiple search keys.
Multiple search keys allow you to select a specified table element from among
several elements that have duplicate low-order keys. An example is a telephone
listing where several people have the same last and first names-but different
middle initials. All specified keys must be either ascending or descending.
Example 6-24 shows how to use multiple search keys.

The table in Example 6-18 is followed by several examples (Example 6-19,
Example 6-20, Example 6-21, Example 6-22, and Example 6-23) of how to
search it.

6-20 Table Handling

Example 6-18: Sample Table

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TEMP-INDEX PIC 9(5) USAGE IS INDEX.
01 FED-TAX-TABLES.

02 ALLOWANCE-DATA.
03 FILLER

"0101440
"0202880

PIC X(70) VALUE

"0304320
"0405760
"0507200
"0608640
"0710080
"0811520
"0912960
"1014400".

02 ALLOWANCE-TABLE REDEFINES ALLOWANCE-DATA.
03 FED-ALLOWANCES OCCURS 10 TIMES

ASCENDING KEY IS ALLOWANCE-NUMBER
INDEXED BY IND-1.
04 ALLOWANCE-NUMBER
04 ALLOWANCE

02 SINGLES-DEDUCTION-DATA.
03 FILLER

"0250006700000016
"0670011500067220
"1150018300163223
"1830024000319621
"2400027900439326
"2790034600540730
"3460099999741736".

PIC XX.
PIC 99999.

PIC X (112) VALUE

02 SINGLE-DEDUCTION-TABLE REDEFINES SINGLES-DEDUCTION-DATA.
03 SINGLES-TABLE OCCURS 7 TIMES

ASCENDING KEY IS S-MIN-RANGE S-MAX-RANGE
INDEXED BY IND-2, TEMP-INDEX.
04 S-MIN-RANGE
04 S-MAX-RANGE
04 S-TAX
04 S-PERCENT

02 MARRIED-DEDUCTION-DATA.
03 FILLER

"04800096000000017
"09600173000081620
"17300264000235617
"26400346000390325
"34600433000595328
"43300500000838932
"50000999991053336".

PIC
PIC
PIC
PIC

PIC

99999.
99999.
9999.
V99.

X(119) VALUE

02 MARRIED-DEDUCTION-TABLE REDEFINES MARRIED-DEDUCTION-DATA.
03 MARRIED-TABLE OCCURS 7 TIMES

ASCENDING KEY IS M-MIN-RANGE M-MAX-RANGE
INDEXED BY IND-0, IND-3.
04 M-MIN-RANGE PIC 99999.
04 M-MAX-RANGE PIC 99999.
04 M-TAX PIC 99999.
04 M-PERCENT PIC V99.

Table Handling 6-21

Example 6-19 shows how to perform a serial search.

Example 6-19: A Serial Search

PROCEDURE DIVISION.
BEGIN.

SINGLE.
IF TAXABLE-INCOME < 02500

GO TO END-FED-COMP.
SET TEMP-INDEX TO 1.
SEARCH SINGLES-TABLE VARYING TEMP-INDEX AT END

GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME= S-MIN-RANGE(TEMP-INDEX)

MOVE S-TAX(TEMP-INDEX) TO FED-TAX-DEDUCTION
WHEN TAXABLE-INCOME< S-MAX-RANGE(TEMP-INDEX)

COMPUTE FED-TAX-DEDUCTION =
S-TAX(TEMP-INDEX) + (TAXABLE-INCOME - S-TAX(TEMP-INDEX)) *
S-PERCENT(TEMP-INDEX).

Example 6-20: Using SEARCH and Varying an Index Other Than the First
Index

PROCEDURE DIVISION.
BEGIN.

MARRIED.
IF TAXABLE-INCOME < 04800

MOVE ZEROS TO FED-TAX-DEDUCTION
GO TO END-FED-COMP.

SET IND-3 TO 1.
SEARCH MARRIED-TABLE VARYING IND-3 AT END

GO TO TABLE-3-ERROR
WHEN TAXABLE-INCOME= M-MIN-RANGE(IND-3)

MOVE M-TAX(IND-3) TO FED-TAX-DEDUCTION
WHEN TAXABLE-INCOME< M-MAX-RANGE(IND-3)

COMPUTE FED-TAX-DEDUCTION =
M-TAX(IND-3) + (TAXABLE-INCOME - M-TAX(IND-3)) *
M-PERCENT(IND-3).

6-22 Table Handling

Example 6-21 : Using SEARCH and Varying an Index Data Item

PROCEDURE DIVISION.
BEGIN.

SINGLE.
IF TAXABLE-INCOME < 02500

GO TO END-FED-COMP.
SET TEMP-INDEX TO 1.
SEARCH SINGLES-TABLE VARYING TEMP-INDEX AT END

GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME= S-MIN-RANGE(TEMP-INDEX)

MOVE S-TAX(TEMP-INDEX) TO FED-TAX-DEDUCTION
WHEN TAXABLE-INCOME < S-MAX-RANGE(TEMP-INDEX)

MOVE S-TAX(TEMP-INDEX) TO FED-TAX-DEDUCTION
SUBTRACT S-MIN-RANGE(TEMP-INDEX) FROM TAXABLE-INCOME
MULTIPLY TAXABLE-INCOME BY S-PERCENT(TEMP-INDEX) ROUNDED
ADD TAXABLE-INCOME TO FED-TAX-DEDUCTION.

Example 6-22: Using SEARCH and Varying an Index Not Associated with the
Target Table

PROCEDURE DIVISION.
BEGIN.

SINGLE.
IF TAXABLE-INCOME < 02500

GO TO END-FED-COMP.
SET IND-2 TO 1.
SEARCH SINGLES-TABLE VARYING IND-0 AT END

GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME= S-MIN-RANGE(IND-2)

MOVE S-TAX(IND-2) TO FED-TAX-DEDUCTION
WHEN TAXABLE-INCOME< S-MAX-RANGE(IND-2)

MOVE S-TAX(IND-2) TO FED-TAX-DEDUCTION
SUBTRACT S-MIN-RANGE(IND-2) FROM TAXABLE-INCOME
MULTIPLY TAXABLE-INCOME BY S-PERCENT(IND-2) ROUNDED
ADD TAXABLE-INCOME TO FED-TAX-DEDUCTION.

Table Handling 6-23

Example 6~23: Doing a Serial Search Without Using the VARYING Phrase

PROCEDURE DIVISION.
BEGIN.

FED-DEDUCT-COMPUTATION.
SET IND-1 TO 1.
SEARCH FED-ALLOWANCES AT END

GO TO TABLE-1-ERROR
WHEN ALLOWANCE-NUMBER(IND-1) NR-DEPENDENTS

SUBTRACT ALLOWANCE(IND-1) FROM GROSS-WAGE
GIVING TAXABLE-INCOME ROUNDED.

IF MARITAL-STATUS = "M"
GO TO MARRIED.

Example 6-24: A Multiple-Key Binary Search

IDENTIFICATION DIVISION.
PROGRAM-ID. MULTI-KEY-SEARCH.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DIRECTORY-TABLE.

05 NAMES-NUMBERS.
10 FILLER

VALUE "SMILEY HAPPY
10 FILLER

VALUE "SMITH ALAN
10 FILLER

PIC

PIC

PIC
VALUE "SMITH CHARLES

10 FILLER PIC
VALUE "SMITH FREDERICK

10 FILLER PIC
VALUE "SMITH HARRY

10 FILLER PIC
VALUE "SMITH HARRY

10 FILLER PIC
VALUE "SMITH LARRY

10 FILLER PIC

X(30)
T.213-4332".

X(30)
C.881-4987".

X(30)
J.345-2398".

X(30)
745-0223".

X(30)
C.573-3306".

X(30)
J.295-3485".

X(30)
X.976-5504".

X(30)
VALUE "SMITHWOOD ALBERT J.349-9927".

05 PHONE-DIRECTORY-TABLE REDEFINES NAMES-NUMBERS OCCURS 8 TIMES
ASCENDING KEY IS LAST-NAME

FIRST-NAME
MID-INIT

INDEXED BY DIR-INDX.
15 LAST-NAME
15 FIRST-NAME
15 MID-INIT
15 PHONE-NUM

PIC X(lO).
PIC X(lO).
PIC XX.
PIC X(8).

PROCEDURE DIVISION.
MULTI-KEY-BINARY-SEARCH.

SEARCH ALL PHONE-DIRECTORY-TABLE
WHEN LAST-NAME (DIR-INDX) "SMITH"
AND FIRST-NAME(DIR-INDX) "HARRY"
AND MID-INIT (DIR-INDX) "J. 11

NEXT SENTENCE.

6-24 Table Handling

(continued on next page)

Example 6-24 (Cont.): A Multiple-Key Binary Search

DISPLAY-RESULTS.
DISPLAY LAST-NAME(DIR-INDX)", 11

FIRST-NAME(DIR-INDX)
MID-INIT(DIR-INDX) II II

PHONE-NUM(DIR-INDX).

Table Handling 6-25

Chapter 7

Using the STRING, UNSTRING, and INSPECT
Statements

This chapter describes the use of the STRING, UNSTRING, and INSPECT
statements.

7.1 Concatenating Data Using the STRING Statement

The STRING statement concatenates the contents of one or more sending items
into a single receiving item.

The statement has many forms; the simplest is equivalent in function to a
nonnumeric MOVE statement. Consider the following example:

STRING FIELDl DELIMITED BY SIZE INTO FIELD2.

If the two items are the same size, or if the sending item (FIELD!) is larger, the
statement is equivalent to the following statement:

MOVE FIELDl TO FIELD2.

If the sending item of the string is shorter than the receiving item, the compiler
does not replace unused positions in the receiving item with spaces. Thus, the
STRING statement can leave some portion· of the receiving item unchanged.

The receiving item of the string must be an elementary alphanumeric item with
no JUSTIFIED clause or editing characters in its description. Thus, the data
movement of the STRING statement always fills the receiving item with the
sending item from left to right and with no editing insertions.

7.1.1 Multiple Sending Items

The STRING statement can concatenate a series of sending items into one
receiving item. Consider the following example:

STRING FIELDlA FIELDlB FIELDlC DELIMITED BY SIZE
INTO FIELD2.

In this sample STRING statement, FIELDlA, FIELDlB, and FIELDlC are all
sending items. The compiler moves them to the receiving item (FIELD2) in the
order in which they appear in the statement, from left to right, resulting in the
concatenation of their values.

If FIELD2 is not large enough to hold all three items, the operation stops when it
is full. If the operation stops while moving one of the sending items, the compiler
ignores the remaining characters of that item and any other sending items not
yet processed. For example, if FIELD2 is filled while it is receiving FIELDlB, the
compiler ignores the rest of FIELDlB and all of FIELDlC.

Using the STRING, UNSTRING, and INSPECT Statements 7-1

If the sending items do not fill the receiving item, the operation stops when the
last character of the last sending item (FIELDlC) is moved. It does not alter the
contents nor space-fill the remaining character positions of the receiving item.

The sending items can be nonnumeric literals and :figurative constants (except for
ALL literal). Example 7-1 sets up an address label by stringing the data items
CITY, STATE, and ZIP into ADDRESS-LINE. The figurative constant SPACE and
the literal period (.) are used to separate the information.

Example 7-1: Using the STRING Statement and Literals

01

01

ADDRESS-GROUP.
03 CITY PIC X (20) .
03 STATE PIC XX.
03 ZIP PIC X(5).
ADDRESS-LINE PIC X(31).

STRING CITY SPACE STATE ". " SPACE ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

7.1.2 Using the DELIMITED BY Phrase

Although the sending items o:the STRING statement are fixed in size at compile
time, they are frequently filled with spaces. For example, if a 20-character city
item contains the text MAYNARD followed by 13 spaces, the STRING statement
using the DELIMITED BY SIZE phrase would move the text (MAYNARD)
and the unwanted 13 spaces (assuming the receiving item is at least 20
characters long). The DELIMITED BY phrase, written with a data name or
literal, eliminates this problem.

The delimiter can be a literal, a data item, a figurative constant, or the word
SIZE. It cannot, however, be ALL literal, since ALL literal has an indefinite
length. When the phrase contains the word SIZE, the compiler moves each
sending item in total, until it either exhausts the characters in the sending item
or fills the receiving item.

If you use the code in Example 7-1, and CITY is a 20-character item, the result
of the STRING operation might look like Figure 7-1.

Figure 7-1: Results of the STRING Operation

AYER
I

16 spaces

MA. 01432

ZK-6051-GE

7-2 Using the STRING, UNSTRING, and INSPECT Statements

A more attractive and readable report can be produced by having the STRING
operation produce this line:

AYER, MA. 01432

To accomplish this, use the figurative constant SPACE as a delimiter on the
sending item:

MOVE 1 TO P.
STRING CITY DELIMITED BY SPACE

INTO ADDRESS-LINE WITH POINTER P.
STRING II, II STATE II. II ZIP

DELIMITED BY SIZE
INTO ADDRESS-LINE WITH POINTER P.

This example makes use of the POINTER phrase (see Section 7.1.3). The
first STRING statement moves data characters until it encounters a space
character-a match of the delimiter SPACE. The second STRING statement
supplies the literal, the 2-character STATE item, another literal, and the
5-character ZIP item.

The delimiter can be varied for each item within a single STRING statement by
repeating the DELIMITED BY phrase after each of the sending item names to
which it applies. Thus, the shorter STRING statement in the following example
has the same effect as the two STRING statements in the preceding example.
(Placing the operands on separate source lines has no effect on the operation of
the statement, but it improves program readability and simplifies debugging.)

STRING CITY DELIMITED BY SPACE
II f II STATE II • II

ZIP DELIMITED BY SIZE
INTO ADDRESS-LINE.

The sample STRING statement cannot handle 2-word city names, such as San
Francisco, since the compiler considers the space between the two words as
a match for the delimiter SPACE. A longer delimiter, such as two or three
spaces (nonnumeric literal), can solve this problem. Only when a sequence of
characters matches the delimiter does the movement stop for that data item.
With a 2-character delimiter, the same statement can be rewritten in a simpler
form:

STRING CITY "f II STATE II. " ZIP
DELIMITED BY " 11 INTO ADDRESS-LINE.

Since only the CITY item contains two consecutive spaces, the delimiter's search
of the other items will always be unsuccessful, and the effect is the same as
moving the full item (delimiting by SIZE).

Data movement under control of a data name or literal generally executes more
slowly than data movement delimited by SIZE.

Remember, the remainder of the receiving item is not space-filled, as with a
MOVE statement. If ADDRESS-LINE is to be printed on a mailing label, for
example, the STRING statement should be preceded by the statement:

MOVE SPACES TO ADDRESS-LINE.

This statement guarantees a space-fill to the right of the concatenated result.
Alternatively, the last item concatenated by the STRING statement can be an
item previously set to SPACES. This sending item must either be moved under
control of a delimiter other than SPACE or use the value of POINTER and
reference modification.

Using the STRING, UNSTRING, and INSPECT Statements 7-3

7.1.3 Using the POINTER Phrase

Although the STRING statement normally starts scanning at the leftmost
position of the receiving item, the POINTER phrase makes it possible to start
scanning at another point within the item. The scanning, however, continues left
to right. Consider the following example:

MOVE 5 TO P.
STRING FIELDlA FIELDlB DELIMITED BY SIZE

INTO FIELD2 WITH POINTER P.

The value of P determines the starting character position in the receiving item.
In this example, the 5 in P causes the program to move the first character of
FIELD lA into character position 5 of FIELD2 (the leftmost character position of
the receiving item is character position 1), and leave positions 1 to 4 unchanged.

When the STRING operation is complete, P points to one character position
beyond the last character replaced in the receiving item. If FIELDlA and
FIELDlB are both four characters long, P contains a value of 13 (5+4+4) when
the operation is complete (assuming that FIELD2 is at least 13 characters long).

7.1.4 Using the OVERFLOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING
operation, and the pointer value is either known or the POINTER phrase is not
used, you can add the PICTURE sizes of sending items together at program
development time to see if the receiving item is large enough to hold the sending
items. However, if the DELIMITED BY phrase contains a literal or an identifier,
or if the pointer value is not predictable, it can be difficult to tell whether or not
the size of the receiving item will be large enough at run time. If the size of the
receiving item is not large enough, an overflow can occur.

An overflow occurs when the receiving item is full and the program is either
about to move a character from a sending item or is considering a new sending
item. Overflow can also occur if, during the initialization of the statement, the
pointer contains a value that is either less than 1 or greater than the length of
the receiving item. In this case, the program moves no data to the receiving item
and terminates the operation immediately.

The ON OVERFLOW phrase at the end of the STRING statement tests for an
overflow condition:

STRING FIELDlA FIELDlB DELIMITED BY "C"
INTO FIELD2 WITH POINTER PNTR
ON OVERFLOW GO TO 200-STRING-OVERFLOW.

The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad
initial value in the pointer from the overflow caused by a receiving item that is
too short. Only a separate test preceding the STRING statement can distinguish
between the two.

Additionally, even if an overflow condition does not exist, you can use the NOT
ON OVERFLOW phrase to branch to or execute other sections of code.

Example 7-2 illustrates the overflow condition.

7-4 Using the STRING, UNSTRING, and INSPECT Statements

Example 7-2: Sample Overflow Condition

DATA DIVISION.

01 FIELDl PIC XXX VALUE "ABC".
01 FIELD2 PIC XXXX.
PROCEDURE DIVISION.

1. STRING FIELDl QUOTE DELIMITED BY SIZE INTO FIELD2
ON OVERFLOW

2. STRING FIELDl FIELDl DELIMITED BY SIZE INTO FIELD2
ON OVERFLOW

3. STRING FIELDl FIELDl DELIMITED BY "C" INTO FIELD2
ON OVERFLOW

4. STRING FIELDl FIELDl FIELDl FIELDl
DELIMITED BY "B" INTO FIELD2 ON OVERFLOW

5. STRING FIELDl FIELDl "D" DELIMITED BY "C"
INTO FIELD2 ON OVERFLOW

6 . MOVE 2 TO P .

MOVE ALL QUOTES TO FIELD2.

STRING FIELDl "AC" DELIMITED BY "C"
INTO FIELD2 WITH POINTER PON OVERFLOW

The STRING statement numbers in Example 7-2 point to the line number results
shown in Table 7-1.

Table 7-1: Results of Sample Overflow Statements

Value of FIELD2 After
the STRING Operation

1. ABC"

2. ABCA

3. ABAB

4. AAAA

5. ABAB

6. 11ABA

Overflow?

NO

YES
NO

NO

YES
NO

7.1.5 Common STRING Statement Errors

The following are common errors made when writing STRING statements:

• Using the word TO instead of INTO

• Failing to include the DELIMITED BY SIZE phrase

• Failing to initialize the pointer

• Initializing the pointer to 0 instead of 1

• Permitting the pointer to get out of range (negative or larger than the size of
the receiving field)

• Failing to provide for space-filling of the receiving item when it is desirable

Using the STRING, UNSTRING, and INSPECT Statements 7-5

• Using the pointer as a subscript without fully understanding subscript
evaluation

7.2 Separating Data Using the UNSTRING Statement

The UNSTRING statement disperses the contents of a single sending item into
one or more receiving items.

The statement has many forms; the simplest is equivalent in function to a
nonnumeric MOVE statement. Consider the following example:

UNSTRING FIELDl INTO FIELD2.

Regardless of the relative sizes of the two items, the sample statement is
equivalent to the following MOVE statement:

MOVE FIELDl TO FIELD2.

The sending item (FIELDl) can be either (1) a group item, or (2) an
alphanumeric or alphanumeric edited elementary item. The receiving item
(FIELD2) can be alphabetic, alphanumeric, or numeric, but it cannot specify any
type of editing.

If the receiving item is numeric, it must be DISPLAY usage. The PICTURE
character-string of a numeric receiving item can contain any of the legal numeric
description characters except P and the editing characters. The UNSTRING
statement moves the sending item to the numeric receiving item as if the sending
item had been described as an unsigned integer. It automatically truncates or
zero-fills as required.

If the receiving item is not numeric, the statement follows the rules for
elementary nonnumeric MOVE statements. It left-justifies the data in the
receiving item, truncating or space-filling as required. If the data description of
the receiving item contains a JUSTIFIED clause, the compiler right-justifies the
data, truncating or space-filling to the left as required.

7.2.1 Multiple Receiving Items

The UNSTRING statement can disperse one sending item into several receiving
items. Consider the following example of the UNSTRING statement written with
multiple receiving items:

UNSTRING FIELDl INTO FIELD2A FIELD2B FIELD2C.

The compiler-generated code performs the UNSTRING operation by scanning
across FIELDl, the sending item, from left to right. When the number of
characters scanned equals the number of characters in the receiving item, the
scanned characters are moved into that item and the next group of characters is
scanned for the next receiving item.

If each of the receiving items in the preceding example (FIELD2A, FIELD2B, and
FIELD2C) is 5 characters long, and FIELDl is 15 characters long, FIELDl is
scanned until the number of characters scanned equals the size of FIELD2A (5).
Those first five characters are moved to FIELD2A, and scanning is resumed at
the sixth character position in FIELDl. Next, FIELDl is scanned from character
position 6, until the number of scanned characters equals the size of FIELD2B
(five). The sixth through the tenth characters are then moved to FIELD2B,
and the scanner is set to the next (eleventh) character position in FIELDl. For
the last move in this example, characters 11to15 of FIELDl are moved into
FIELD2C.

7-6 Using the STRING, UNSTRING, and INSPECT Statements

Each data movement acts as an individual MOVE statement, the sending item
of which is an alphanumeric item equal in size to the receiving item. If the
receiving item is numeric, the move operation converts the data to numeric form.
For example, consider what would happen if the items under discussion had the
data descriptions and were manipulating the values shown in Table 7-2.

Table 7-2: Values Moved into the Receiving Items Based on the Sending Item
Value

FIELD2B
FIELD I PIC S9(5)
PIC X(15) FIELD2A LEADING FIELD2C
VALUE IS: PIC X(5) SEPARATE PIC S999V99

ABCDE1234512345 ABCDE +12345 3450{

XXX:XX0000100123 xxxxx +00001 1230{

FIELD2A is an alphanumeric item. Therefore, the statement simply conducts an
elementary nonnumeric move with the first five characters.

FIELD2B, however, has a leading separate sign that is not included in its size.
Thus, the compiler moves only five numeric characters and generates a positive
sign (+)in the separate sign position.

FIELD2C has an implied decimal point with two character positions to the right
of it, plus an overpunched sign on the low-order digit. The sending item should
supply five numeric digits. However, since the sending item is alphanumeric, the
compiler treats it as an unsigned integer; it truncates the two high-order digits
and supplies two zero digits for the decimal positions. Furthermore, it supplies a
positive overpunch sign, making the low-order digit a +O (ASCII {). There is no
way to have the UNSTRING statement recognize a sign character or a decimal
point in the sending item in a single statement.

If the sending item is shorter than the sum of the sizes of the receiving items,
the compiler ignores the remaining receiving items. If the compiler reaches the
end of the sending item before it reaches the end of one of the receiving items,
it moves the scanned characters into that receiving item. It either left-justifies
and fills the remaining character positions with spaces for alphanumeric data, or
else it decimal point-aligns and zero-fills the remaining character positions for
numeric data.

Consider the following statement with reference to the corresponding PICTURE
character-strings and values in Table 7-3:

UNSTRING FIELDl INTO FIELD2A FIELD2B.

FIELD2A is a 3-character alphanumeric item. It receives the first three
characters of FIELDl (ABC) in every operation. FIELD2B, however, runs
out of characters every time before filling, as Table 7-3 illustrates.

Using the STRING, UNSTRING, and INSPECT Statements 7-7

Table 7-3: Handling a Short Sending Item

FIELDl FIELD2B
PIC X(6) FIELD2B Value After UNSTRING
VALUE IS: PICTURE IS: Operation

ABC DEF xxxxx DEF

899999 0024F

ABC246 S9V999 600{

89999 LEADING SEPARATE +0246

7.2.2 Controlling Moved Data Using the DELIMITED BY Phrase

The size of the data to be moved can be controlled by a delimiter, rather than by
the size of the receiving item. The DELIMITED BY phrase supplies the delimiter
characters.

UNSTRING delimiters can be literals, figurative constants (including ALL
literal), or identifiers (identifiers can even be subscripted data names). This
section discusses the use of these three types of delimiters. Subsequent sections
cover multiple delimiters, the COUNT phrase, and the DELIMITER phrase.

Consider the following sample UNSTRING statement with the figurative constant
SPACE as a delimiter:

UNSTRING FIELDl DELIMITED BY SPACE
INTO FIELD2.

In this example, the compiler scans the sending item (FIELDl), searching
for a space character. If it encounters a space, it moves all of the scanned
(nonspace) characters that precede that space to the receiving item (FIELD2). If
it finds no space character, it moves the entire sending item. When the compiler
has determined the size of the sending item, it moves the contents of that item
following the rules for the MOVE statement, truncating or zero-filling as required.

Table 7-4 shows the results of the following UNSTRING operation that uses a
literal asterisk delimiter:

UNSTRING FIELDl DELIMITED BY "*"
INTO FIELD2.

Table 7-4: Results of Delimiting with an Asterisk

FIELDl FIELD2
PIC X(6) FIELD2 Value After
VALUE IS: PICTURE IS: UNSTRING

x:xx ABC

ABC DEF X(7) ABC DEF

X:XX JUSTIFIED DEF

****** x:xx SSS

*ABCDE x:xx SSS

Legend: s = space

(continued on next page)

7-8 Using the STRING, UNSTRING, and INSPECT Statements

Table 7-4 (Cont.): Results of Delimiting with an Asterisk

FIELDl
PIC X(6)
VALUE IS:

A*****
246***
12345*

2468**
*246**

Legend: s = space

FIELD2
PICTURE IS:

XXX JUSTIFIED

S9999

S9999 TRAILING SEPARATE

S999V9 LEADING SEPARATE

9999

FIELD2
Value After
UNSTRING

ssA

024F
2345+
+4680
0000

If the delimiter matches the first character in the sending item, the compiler
considers the size of the sending item to be zero. The operation still takes place,
however, and fills the receiving item with spaces (if it is nonnumeric) or zeros (if
it is numeric).

A delimiter can also be applied to an UNSTRING statement that has multiple
receiving items:

UNSTRING FIELDl DELIMITED BY SPACE
INTO FIELD2A FIELD2B.

The compiler generates code that scans FIELD! searching for a character that
matches the delimiter. If it finds a match, it moves the scanned characters
to FIELD2A and sets the scanner to the next character position to the right
of the character that matched. The compiler then resumes scanning FIELD!
for a character that matches the delimiter. If it finds a match, it moves all of
the characters between the character that first matched the delimiter and the
character that matched on the second scan, and sets the scanner to the next
character position to the right of the character that matched.

The DELIMITED BY phrase handles additional items in the same manner as it
handled FIELD2B.

Table 7-5 illustrates the results of the following delimited UNSTRING operation
into multiple receiving items:

UNSTRING FIELDl DELIMITED BY "*"
INTO FIELD2A FIELD2B.

Table 7-5: Results of Delimiting Multiple Receiving Items

Values After UNSTRING Operation

FIELDl
PIC X(S) FIELD2A FIELD2B
VALUE IS: PIC X(3) PIC X(3)

ABC*DEF* ABC DEF
ABCDE*FG ABC FGs

Legend: s = space

(continued on next page)

Using the STRING, UNSTRING, and INSPECT Statements 7-9

Table 7-5 (Cont.): Results of Delimiting Multiple Receiving Items

Values After UNSTRING Operation

FIELD I
PIC X(8) FIELD2A FIELD2B
VALUE IS: PIC X(3) PIC X(3)

A*B**** Ass Bss

*AB*CD** SSS ABs

**ABCDEF SSS SSS

A*BCDEFG Ass BCD

ABC**DEF ABC SSS

A******B Ass SSS

Legend: s = space

The previous examples illustrate the limitations of a single-character delimiter.
To overcome these limitations, a delimiter of more than one character or a
delimiter preceded by the word ALL may be used.

Table 7-6 shows the results of the following UNSTRING operation using a
2-character delimiter:

UNSTRING FIELDl DELIMITED BY "**"
INTO FIELD2A FIELD2B.

Table 7-6: Results of Delimiting with Two Asterisks

FIELD I
PIC X(8)
VALUE IS:

ABC**DEF

A*B*C*D*

AB***C*D

AB**C*D*

AB**CD**

AB***CD*

AB*****CD

Legend: s = space

FIELD2A
PICXXX

ABC

A*B

ABs

ABs

ABs

ABs

ABs

Values After UNSTRING Operation

FIELD2B
PIC XXX
JUSTIFIED

DEF

SSS

C*D

D

sCD

CD*

SSS

Unlike the STRING statement, the UNSTRING statement accepts the ALL
literal as a delimiter. When the word ALL precedes the delimiter, the action of
the UNSTRING statement remains essentially the same as with one delimiter
until the scanning operation finds a match. At this point, the compiler scans
farther, looking for additional consecutive strings of characters that also match
the delimiter item. It considers the ALL delimiter to be one, two, three, or more
adjacent repetitions of the delimiter item. Table 7-7 shows the results of the
following UNSTRING operation using an ALL delimiter:

7-10 Using the STRING, UNSTRING, and INSPECT Statements

UNSTRING FIELDl DELIMITED BY ALL "*"
INTO FIELD2A FIELD2B.

Table 7-7: Results of Delimiting with ALL Asterisks

FIELDl
PIC X(S)
VALUE IS:

ABC*DEF*

ABC**DEF

A******F

A*F*****

A*CDEFG

Legend: s =space

FIELD2A
PIC :XXX

ABC

ABC

Ass

Ass

Ass

Values After UNSTRING Operation

FIELD2B
PIC :XXX
JUSTIFIED

DEF

DEF

ssF

ssF

EFG

Table 7-8 shows the results of the following UNSTRING operation that combines
ALL with a 2-character delimiter:

UNSTRING FIELDl DELIMITED BY ALL "**"
INTO FIELD2A FIELD2B.

Table 7-8: Results of Delimiting with ALL Double Asterisks

FIELDl
PIC X(S)
VALUE IS:

ABC**DEF

AB**DE**

A***D***

A*******

Legend: s = space

PICXX

ABC

ABs

Ass

Ass

Values After UNSTRING Operation

PICXXX
JUSTIFIED

DEF

sDE

s*D

ss*

In addition to unchangeable delimiters, such as literals and figurative constants,
delimiters can be designated by identifiers. Identifiers permit variable delimiting.
Consider the following sample statement:

UNSTRING FIELDl DELIMITED BY DELl
INTO FIELD2A FIELD2B.

The data name DELl must be alphanumeric; it can be either a group or an
elementary item. If the delimiter contains a subscript, the subscript may vary as
a side effect of the UNSTRING operation.

Using the STRING, UNSTRING, and INSPECT Statements 7-11

7.2.2.1 Multiple Delimiters

The UNSTRING statement scans a sending item, searching for a match from a
list of delimiters. This list can contain ALL delimiters and delimiters of various
sizes. Delimiters in the list must be connected by the word OR.

The following sample statement unstrings a sending item into three receiving
items. The sending item consists of three strings separated by one of the
following: (1) any number of spaces, (2) a comma followed by a single space,
(3) a single comma, (4) a tab character, or (5) a carriage-return character. The
comma and space must precede the single comma in the list if the comma and
space are to be recognized.

UNSTRING FIELDl DELIMITED BY ALL SPACE
OR II'

OR II' II

OR TAB
OR CR
INTO FIELD2A FIELD2B FIELD2C.

Table 7-9 shows the potential of this statement. The tab and carriage-return
characters represent single-character items containing the ASCII horizontal tab
and carriage-return characters.

Table 7-9: Results of Multiple Delimiters

FIELDl FIELD2A FIELD2B FIELD2C
PIC X(12) PIC XXX PIC 9999 PICXXX

A,O,C~ Ass 0000 Css

AIT@456, E Ass 0456 Ess

A3 9 Ass 0003 9ss

AIT@IT@B~ Ass 0000 Bss

A,,C Ass 0000 Css

ABCD, 4321,Z ABC 4321 Zss

Legend: s = space

7.2.3 Using the COUNT Phrase

The COUNT phrase keeps track of the size of the sending string and stores the
length in a user-supplied data area.

The length of a delimited sending item can vary from zero to the full length of
the item. Some programs require knowledge of this length. For example, some
data is truncated if it exceeds the size of the receiving item, so the program's logic
requires this information.

The COUNT phrase follows the receiving item. Consider the following example:

UNSTRING FIELDl DELIMITED BY ALL "*"
INTO FIELD2A COUNT IN COUNT2A
FIELD2B COUNT IN COUNT2B
FIELD2C.

The compiler generates code that counts the number of characters between the
leftmost position of FIELD 1 and the first asterisk in FIELD 1 and places the count
into COUNT2A. The delimiter is not included in the count because it is not a part
of the string. The data preceding the first asterisk is then moved into FIELD2A.

7-12 Using the STRING, UNSTRING, and INSPECT Statements

The compiler then counts the number of characters between the last contiguous
asterisk in the first scan and the next asterisk in the second scan, and places the
count in COUNT2B. The data between the delimiters of the second scan is moved
into FIELD2B.

The third scan begins at the first character after the last contiguous asterisk
in the second scan. Any data between the delimiters of this scan is moved to
FIELD2C.

The COUNT phrase should be used only where it is needed. In this example,
the length of the string moved to FIELD2C is not needed, so no COUNT phrase
follows it.

If the receiving item is shorter than the value placed in the count item, the code
truncates the sending string. If the number of integer positions in a numeric item
is smaller than the value placed into the count item, high-order numeric digits
have been lost. If a delimiter match is found on the first character examined, a
zero is placed in the count item.

The COUNT phrase can be used only in conjunction with the DELIMITED BY
phrase.

7.2.4 Saving UNSTRING Delimiters Using the DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that delimited
the sending item to be stored in a user-supplied data area. This phrase is most
useful when:

• The UNSTRING statement contains a delimiter list.

• Any one of the delimiters in the list might have delimited the item.

• Program logic flow depends on the delimiter match found.

By using the DELIMITER and COUNT phrases, you can make the flow of
program logic dependent on both the size of the sending string and the delimiter
terminating the string.

To use the DELIMITER phrase, follow the receiving item name with the words
DELIMITER IN and an identifier. The compiler generates code that places the
delimiter character in the area named by the identifier. Consider the following
sample UNSTRING statement:

UNSTRING FIELDl DELIMITED BY " " ,
OR TAB
OR ALL SPACE
OR CR
INTO FIELD2A DELIMITER IN DELIMA
FIELD2B DELIMITER IN DELIMB
FIELD2C.

After moving the first sending string to FIELD2A, the character (or characters)
that delimited that string is placed in DELIMA. In this example, DELIMA
contains either a comma, a tab, a carriage return, or any number of spaces.
Because the delimiter string is moved under the rules of the elementary
nonnumeric MOVE statement, the compiler truncates or space-fills with left
or right justification.

The second sending string is then moved to FIELD2B and its delimiting character
is placed into DELIMB.

Using the STRING, UNSTRING, and INSPECT Statements 7-13

When a sending string is delimited by the end of the sending item rather than by
a match on a delimiter, the delimiter string is of zero length and the DELIMITER
item is space-filled. The phrase should be used only where needed. In this
example, the character that delimits the last sending string is not needed, so no
DELIMITER phrase follows FIELD2C.

The data item named in the DELIMITER phrase must be described as an
alphanumeric item. It can contain editing characters, and it can also be a group
item.

When you use both DELIMITER and COUNT phrases, the DELIMITER phrase
must precede the COUNT phrase. Both of the data items named in these phrases
can be subscripted or indexed. If they are subscripted, the subscript can be varied
as a side effect of the UNSTRING operation.

7.2.5 Controlling UNSTRING Scanning Using the POINTER Phrase

Although the UNSTRING statement scan Usually starts at the leftmost position
of the sending item, the POINTER phrase lets you control the character position
where the scan starts. Scanning, however, remains left to right.

When a sending item is to be unstrung into multiple receiving items, the choice
of delimiters and the size of subsequent receiving items depends on the size
of the first sending string and the character that delimited that string. Thus,
the program needs to move the first sending item, hold its scanning position in
the sending item, and examine the results of the operation to determine how to
handle the sending items that follow.

This is done by using an UNSTRING statement with a POINTER phrase that
fills only the first receiving item. When the first string has been moved to a
receiving item, the compiler begins the next scanning operation one character
beyond the delimiter that caused the interruption. The program examines the
new position, the receiving item, the delimiter value, and the sending string size.
It resumes the scanning operation by executing another UNSTI:UNG statement
with the same sending item and pointer data item. In this way,· the UNSTRING
statement moves one sending string at a time, with the form of each succeeding
move depending on the context of the preceding string of data.

The POINTER phrase must follow the last receiving item in the UNSTRING
statement. You are responsible for initializing the pointer before the UNSTRING
statement executes. Consider the following two UNSTRING statements with
their accompanying POINTER phrases and tests:

MOVE 1 TO PNTR.
UNSTRING FIELDl DELIMITED BY

OR TAB
OR CR
OR ALL SPACE

"·"

INTO FIELD2A DELIMITER IN DELIMA COUNT IN LSIZEA
WITH POINTER PNTR.

IF LSIZEA = 0 GO TO NO-LABEL-PROCESS.
IF DELIMA= "·"

IF PNTR > 8 GO TO BIG-LABEL-PROCESS
ELSE GO TO LABEL-PROCESS.

IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

UNSTRING FIELDl DELIMITED BY ... WITH POINTER PNTR.

7-14 Using the STRING, UNSTRING, and INSPECT Statements

PNTR contains the current position of the scanner in the sending item. The
second UNSTRING statement uses PNTR to begin scanning the additional
sending strings in FIELD!.

Because the compiler considers the leftmost character to be character position
1, the value of PNTR can be used to examine the next character. To do this,
describe the sending item as a table of characters and use PNTR as a sending
item subscript. This is shown in the following example:

01 FIELDl.
02 FIELDl-CHAR OCCURS 40 TIMES.

UNSTRING FIELDl

WITH POINTER PNTR.
IF FIELDl-CHAR(PNTR) = "X" ...

Another way to examine the next character of the sending item is to use the
UNSTRING statement to move the character to a 1-character receiving item:

UNSTRING FIELDl

WITH POINTER PNTR.
UNSTRING FIELDl INTO CHARl WITH POINTER PNTR.
SUBTRACT 1 FROM PNTR.
IF CHARl = "X" ...

The program must decrement PNTR by 1 in order to work, because the second
UNSTRING statement increments the pointer by 1.

The program must initialize the POINTER phrase data item before the
UNSTRING statement uses it. The compiler will terminate the UNSTRING
operation if the initial value of the pointer is less than one or greater than the
length of the sending item. Such a pointer value causes an overflow condition.
Overflow conditions are discussed in Section 7 .2. 7.

7.2.6 Counting UNSTRING Receiving Items Using the TALLYING Phrase

The TALLYING phrase counts the number of receiving items that received data
from the sending item.

When an UNSTRING statement contains several receiving items, there are not
always as many sending strings as there are receiving items. The TALLYING
phrase provides a convenient method for keeping a count of how many receiving
items actually received strings. The following example shows how to use the
TALLYING phrase.

MOVE 0 TO RCOUNT.
UNSTRING FIELDl DELIMITED BY

OR ALL SPACE
INTO FIELD2A

FIELD2B
FIELD2C
FIELD2D
FIELD2E

" " f

TALLYING IN RCOUNT.

Using the STRING, UNSTRING, and INSPECT Statements 7-15

If the compiler has moved only three sending strings when it reaches the end
of FIELDl, it adds 3 to RCOUNT. The first three receiving items (FIELD2A,
FIELD2B, and FIELD2C) contain data from the UNSTRING operation, but the
last two (FIELD2D and FIELD2E) do not.

The UNSTRING statement does not initialize the TALLYING data item. The
TALLYING data item always contains the sum of its initial contents plus the
number of receiving items receiving data. Thus, you might want to initialize the
tally count before each use.

You can use the POINTER and TALLYING phrases together in the same
UNSTRING statement, but the POINTER phrase must precede the TALLYING
phrase. Both phrases must follow all of the item names, the DELIMITER
phrase, and the COUNT phrase. The data items for both phrases must contain
numeric integers without editing characters or the symbol Pin their PICTURE
character-strings; both data items can be either COMP or DISPLAY usage. They
can be signed or unsigned and, if they are DISPLAY usage, they can contain any
desired sign option.

7.2.7 Exiting an UNSTRING Statement Using the OVERFLOW Phrase

The OVERFLOW phrase detects the overflow condition and causes an imperative
statement to be executed when it detects the condition. An overflow condition
exists when:

• The UNSTRING statement is about to execute and its pointer data item
contains a value less than one or greater than the size of the sending item.
The compiler generates code that executes the OVERFLOW phrase before it
moves any data, and the values of all the receiving items remain unchanged.

• Data still remains in the sending item after the UNSTRING statement has
filled all the receiving items. The compiler executes the OVERFLOW phrase
after it has executed the UNSTRING statement. The value of each receiving
item is updated, but some data is still unmoved.

If the UNSTRING operation causes the scan to move past the rightmost position
of the sending item (thus exhausting it), the compiler does not execute the
OVERFLOW phrase.

The following set of instructions causes program control to execute the
UNSTRING statement repeatedly until it exhausts the sending item. The
TALLYING data item is a subscript that indexes the receiving item. Compare
this loop with the previous loop, which accomplishes the same thing:

MOVE 1 TO TLY PNTR.
PARl. UNSTRING FIELDl DELIMITED BY","

OR CR
INTO FIELD2(TLY) WITH POINTER PNTR
TALLYING IN TLY
ON OVERFLOW GO TO PARl.

7.2.8 Common UNSTRING Statement Errors

The most common errors made when writing UNSTRING statements are as
follows:

• Leaving the OR connector out of a delimiter list

• Misspelling or interchanging the words DELIMITED and DELIMITER

7-16 Using the STRING, UNSTRING, and INSPECT Statements

• Writing the DELIMITER and COUNT phrases in the wrong order when both
are present (DELIMITER must precede COUNT)

• Omitting the word INTO (or writing it as TO) before the receiving item list

• Repeating the word INTO in the receiving item list as shown in this example:

UNSTRING FIELDl DELIMITED BY SPACE
OR TAB
INTO FIELD2A DELIMITER IN DELIMA
INTO FIELD2B DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

• Writing the POINTER and TALLYING phrases in the wrong order (POINTER
must precede TALLYING)

• Failing to understand the rules concerning subscript evaluation

7.3 Examining and Replacing Characters Using the INSPECT
Statement

The INSPECT statement examines the character positions in an item and counts
or replaces certain characters (or groups of characters) in that item.

Like the STRING and UNSTRING operations, INSPECT operations scan across
the item from left to right. Included in the INSPECT statement is an optional
phrase that allows scanning to begin or terminate upon detection of a delimiter
match. This feature allows scanning to begin within the item, as well as at the
leftmost position.

7.3.1 Using the TALLYING and REPLACING Options of the INSPECT
Statement

The TALLYING operation, which counts certain characters in the item, and the
REPLACING operation, which replaces certain characters in the item, can be
applied either to the characters in the delimited area of the item being inspected,
or to only those characters that match a given character string or strings under
stated conditions. Consider the following sample statements, both of which cause
a scan of the complete item:

INSPECT FIELDl TALLYING TLY FOR ALL "B".
INSPECT FIELDl REPLACING ALL SPACE BY ZERO.

The first statement causes the compiler to scan FIELD! looking for the character
B. Each time a B is found, TLY is incremented by 1.

The second statement causes the compiler to scan FIELD! looking for spaces.
Each space found is replaced with. a zero.

The TALLYING and REPLACING phrases support both single and multiple
arguments. For example, both of the following statements are valid:

INSPECT FIELDl TALLYING TLY FOR ALL "A" "B" "C".
INSPECT FIELDl REPLACING ALL "A" "B" "C" BY "D".

You can use both the TALLYING and REPLACING phrases in the same
INSPECT statement. However, when used together, the TALLYING phrase
must precede the REPLACING phrase. An INSPECT statement with both
phrases is equivalent to two separate INSPECT statements. In fact, the compiler
compiles such a statement into two distinct INSPECT statements. To simplify
debugging, write the two phrases in separate INSPECT statements.

Using the STRING, UNSTRING, and INSPECT Statements 7-17

7.3.2 Restricting Data Inspection Using the BEFORE/ AFTER Phrase

The BEFORE/ AFTER phrase acts as a delimiter and can restrict the area of the
item being inspected.

The following sample statement counts only the zeros that precede the percent
sign (%) in FIELD I:

INSPECT FIELDl TALLYING TLY
FOR ALL ZEROS BEFORE "%"

The delimiter (the percent sign in the preceding sample statement) can be a
single character, a string of characters, or any figurative constant. Furthermore,
it can be either an identifier or a literal.

• If the delimiter is an identifier, it must be an elementary data item of
DISPLAY usage. It can be alphabetic, alphanumeric, or numeric, and it can
contain editing characters. The compiler always treats the item as if it had
been described as an alphanumeric string. It does this by implicit redefinition
of the item, as described in Section 7 .3.3.

• If the delimiter is a literal, it must be nonnumeric.

The compiler repeatedly compares the delimiter characters against an equal
number of characters in the item being inspected. If none of the characters
matches the delimiter, or if too few characters remain in the rightmost position
of the item for a full comparison, the compiler considers the comparison to be
unequal.

The examples of the INSPECT statement in Figure 7-2 illustrate the way the
delimiter character finds a match in the item being inspected. The underlined
characters indicate the portion of the item the statement inspects as a result of
the delimiters of the BEFORE and AFTER phrases. The remaining portion of the
item is ignored by the INSPECT statement.

7-18 Using the STRING, UNSTRING, and INSPECT Statements

Figure 7-2: Matching Delimiter Characters to Characters in a Field

Instruction FIELD1 Value

INSPECT FIELD1 ... BEFORE "E".

INSPECT FIELD1 ... AFTER "E".

INSPECT FIELD1 ... BEFORE "K". ABCDEFGHI

INSPECT FIELD1 ... AFTER "K". htlf##;(

INSPECT FIELD1 ... BEFORE "AB". ~
INSPECT FIELD1 ... AFTER "AB". #CDEFGHI

INSPECT FIELD1 ... BEFORE "HI".

INSPECT FIELD1 ... AFTER "HI".

INSPECT FIELD1 ... BEFORE "I". ABCQEFGHI

INSPECT FIELD1 ... AFTER "I". Miif#i#
ZK-1426A-GE

The ellipses represent the position of the TALLYING or REPLACING phrase.
The compiler generates code that scans the item for a delimiter match before it
scans for the inspection operation (TALLYING or REPLACING), thus establishing
the limits of the operation before beginning the actual inspection. Section 7.3.4.1
further discusses the separate scan.

7.3.3 Implicit Redefinition

The compiler requires that certain items referred to by the INSPECT statement
be alphanumeric items. If one of these items is described as another data class,
the compiler implicitly redefines that item so the INSPECT statement can handle
it as an alphanumeric string as follows:

• If the item is alphabetic, alphanumeric edited, or unsigned numeric, the
item is redefined as alphanumeric. This is a compile-time operation; no data
movement occurs at run time.

• If the item is signed numeric, the compiler generates code that first removes
the sign and then redefines the item as alphanumeric. If the sign is a
separate character, that character is ignored, essentially shortening the item,
and that character does not participate in the implicit redefinition. If the sign
is an overpunch on the leading or trailing digit, the sign value is removed and
the character is left with only the numeric value that was stored in it.

The compiler alters the digit position containing the sign before beginning the
INSPECT operation and restores it to its former value after the operation. If
the sign's digit position does not contain a valid ASCII signed numeric digit,
redefinition causes the value to change.

Table 7-10 shows these original, altered, and restored values.

Using the STRING, UNSTRING, and INSPECT Statements 7-19

The compiler never moves an implicitly redefined item from its storage position.
All redefinition occurs in place.

The position of an implied decimal point on numeric quantities does not affect
implicit redefinition.

Table 7-10: Values Resulting from Implicit Redefinition

Original Altered
Value Value Restored Value

} (173) 0 (60) } (173)

A (101) 1 (61) A (101)

B (102) 2 (62) B (102)

c (103) 3 (63) c (103)

D (104) 4 (64) D (104)

E (105) 5 (65) E (105)

F (106) 6 (66) F (106)

G (107) 7 (67) G (107)

H (110) 8 (70) H (110)

I (111) 9 (71) I (111)

{ (175) 0 (60) { (175)

J (112) 1 (61) J (112)

K (113) 2 (62) K (113)

L (114) 3 (63) L (114)

M (115) 4 (64) M (115)

N (116) 5 (65) N (116)

0 (117) 6 (66) 0 (117)

p (120) 7 (67) p (120)

Q (121) 8 (70) Q (121)

R (122) 9 (71) R (122)

(continued on next page)

7-20 Using the STRING, UNSTRING, and INSPECT Statements

Table 7-10 (Cont.): Values Resulting from Implicit Redefinition

Original Altered
Value Value Restored Value

0 (60) 0 (60) } (173)

1 (61) 1 (61) A (101)

2 (62) 2 (62) B (102)

3 (63) 3 (63) c (103)

4 (64) 4 (64) D (104)

5 (65) 5 (65) E (105)

6 (66) 6 (66) F (106)

7 (67) 7 (67) G (107)

8 (70) 8 (70) H (110)

9 (71) 9 (71) I (111)

All other 0 (60) } (173)
values

7.3.4 Examining the INSPECT Operation

Regardless of the type of inspection (TALLYING or REPLACING), the INSPECT
statement has only one method for inspecting the characters in the item. This
section analyzes the INSPECT statement and describes this inspection method.

Figure 7-3 shows an example of the INSPECT statement. The item to be
inspected must be named (FIELDl in our example), and the item name must be
followed by a TALLYING phrase (TALLYING TLY). The TALLY phrase must be
followed by one or more identifiers or literals (B). These identifiers or literals
comprise the arguments. More than one argument makes up the argument list.

Figure 7-3: Sample INSPECT Statement

INSPECT FIELDl TALLYING TLY FOR ALL "B" BEFORE "A" T' II II I

Item being
inspected

Operation
phrase

Argument Delimiter
phrase

ZK-6052-GE

Each argument in an argument list can have other items associated with it.
Thus, each argument that is used in a TALLYING operation must have a tally
counter (such as TLY in the example) associated with it. The tally counter is
incremented each time it matches the argument with a character or group of
characters in the item being inspected.

Using the STRING, UNSTRING, and INSPECT Statements 7-21

Each argument in an argument list used in a REPLACING operation must have
a replacement item associated with it. The compiler generates code that uses the
replacement item to replace each string of characters in the item that matches
the argument. Figure 7-4 shows a typical REPLACING phrase (with $ as the
replacement item).

Figure 7-4: Typical REPLACING Phrase

INSPECT FIELDl REPLACING ALL "0" BY "$"
I I

Replacing argument

ZK-6053-GE

Each argument in an argument list used with either a TALLYING or
REPLACING operation can have a delimiter item (BEFORE/AFTER phrase)
associated with it. If the delimiter item is not present, the argument is applied to
the entire item. If the delimiter item is present, the argument is applied only to
that portion of the item specified by the BEFORE/ AFTER phrase.

7.3.4.1 Setting the Scanner

The INSPECT operation begins by setting the scanner to the leftmost character
position of the item being inspected. It remains on this character until an
argument has been matched with a character (or characters) or until all
arguments have failed to find a match at that position.

7.3.4.2 Active/Inactive Arguments

When an argument has a BEFORE/AFTER phrase associated with it, that
argument has a delimiter and may not be eligible to participate in a comparison
at every position of the scanner. Thus, each argument in the argument list has
an active/inactive status at any given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it starts
the INSPECT operation in an inactive state. The delimiter of the AFTER phrase
must find a match before the argument can participate in the comparison.
When the delimiter finds a match, the compiler generates code that retains the
character position beyond the matched character string; then, when the scanner
reaches or passes this position, the argument becomes active. This is shown in
the following example:

INSPECT FIELDl TALLYING TLY
FOR ALL "B" AFTER "X".

If FIELD! has a value of ABABXZBA, the argument B remains inactive until the
scanner finds a match for delimiter X. Thus, argument B remains inactive while
the compiler generates code that scans character positions 1 to 5. At character
position 5, delimiter X finds a match, and since the character position beyond
the matched delimiter character is the point at which the argument becomes
active, argument B is compared for the first time at character position 6. It finds
a successful match at character position 7, causing TLY to be incremented by 1.

7-22 Using the STRING, UNSTRING, and INSPECT Statements

Table 7-11 shows an INSPECT ... TALLYING statement that is scanning FIELD!,
tallying in TLY, and looking for the arguments and delimiters listed in the left
column. Assume that TLY is initialized to 0.

Table 7-11: Relationship Among INSPECT Argument, Delimiter, Item Value, and
Argument Active Position

Argument
Argument and. FIELDl Active at Contents of
Delimiter Value Position TLY After Scan

ALL BXBXXXXBB 6 2

"B" AFTER "XX" x:xxxxx:xx 3 0

BXBXBBBBXX never 0

BXBXXBXXB 6 2

"X" AFTER "XX" xxxxxxxx 3 6

BBBBBBXX never 0

BXYBXBXX 7 0

"B" AFTER "XB" XBXBXBXB 3 3

BBBBBBXB never 0

XXXXBXXXX 6 0

"BX" AFTER "XB" XXXXBBXXX 6 1

XXBXXXXBX 4 1

When an argument has an associated BEFORE delimiter, the inactive/active
states reverse roles: the argument is in an active state when the scanning
begins and becomes inactive at the character position that matches the delimiter.
Regardless of the presence of the BEFORE delimiter, an argument becomes
inactive when the scanner approaches the rightmost position ofthe item and the
remaining characters are fewer in number than the characters in the argument.
In such a case, the argument cannot possibly find a match in the item, so it
becomes inactive.

Since the BEFORE/AFTER delimiters are found on a separate scan of the item,
the compiler generates code that recognizes and sets up the delimiter boundaries
before it scans for an argument match; therefore, the same characters can be used
as arguments and delimiters in the same phrase.

7 .3.4.3 Finding an Argument Match

The compiler generates code that selects arguments from the argument list
in the order in which they appear in the list. If the first one it selects is an
active argument, and the conditions stated in the INSPECT statement allow a
comparison, the compiler generates code that compares it to the character at the
scanner's position. If the active argument does not find a match, the compiler
generates code that takes the next active argument from the list and compares
that to the same character. If none of the active arguments finds a match, the
scanner moves one position to the right and begins the inspection operation again
with the first active argument in the list. The inspection operation terminates at
the rightmost position of the item.

Using the STRING, UNSTRING, and INSPECT Statements· 7-23

When an active argument finds a match, the compiler ignores any remaining
arguments in the list and conducts the TALLYING or REPLACING operation
on the character. The scanner moves to a new position and the next inspection
operation begins with the first argument in the list. The INSPECT statement can
contain additional conditions, which are described later in this section; without
them, however, the argument match is allowed to take place, and inspection
continues following the match.

The compiler updates the scanner by adding the size of the matching argument to
it. This moves the scanner to the next character beyond the string of characters
that matched the argument. Thus, once an active argument matches a string of
characters, the statement does not inspect those character positions again unless
program control executes the entire statement again.

7.3.5 The TALLYING Phrase

An INSPECT statement that contains a TALLYING phrase counts the
occurrences of various character strings under certain stated conditions. It
keeps the count in a user-designated item called a tally counter.

7 .3.5.1 The Tally Counter

The identifier following the word TALLYING designates the tally counter. The
identifier can be subscripted or indexed. The data item must be a numeric integer
without any editing or P characters; it can be COMP or DISPLAY usage, and it
can be signed (separate or overpunched).

Each time the tally argument matches the delimited string being inspected, the
compiler adds 1 to the tally counter.

You can initialize the tally counter to any numeric value. The INSPECT
statement does not initialize it.

7 .3.5.2 The Tally Argument

The tally argument specifies a character-string (or strings) and a condition under
which that string should be compared to the delimited string being inspected.

The CHARACTERS form of the tally argument specifies that every character in
the delimited string being inspected should be considered to match an imaginary
character that serves as the tally argument. This increments the tally counter by
a value that equals the size of the delimited string. For example, the following
statement causes TLY to be incremented by the number of characters that
precede the first comma, regardless of what those characters are:

INSPECT FIELDl TALLYING TLY FOR
CHARACTERS BEFORE",".

The ALL and LEADING forms of the tally argument specify a particular
character-string (or strings), which can be represented by either a literal or
an identifier. The tally argument character-string can be any length; however,
each character of the argument must match a character in the delimited string
before the compiler considers the argument matched.

• A literal character-string must be either nonnumeric or a figurative constant
(other than ALL literal). A figurative constant, such as SPACE or ZERO,
represents a single character and can be written as " " " " or "O" with the
same effect.

7-24 Using the STRING, UNSTRING, and INSPECT Statements

• An identifier must be an elementary item of DISPLAY usage. It can be any
data class. However, if it is not alphanumeric, the compiler performs an
implicit redefinition of the item. This redefinition is identical to the
BEFORE/AFTER delimiter redefinition discussed in Section 7.3.2.

The words ALL and LEADING supply conditions that further delimit the
inspection operation:

• ALL specifies that every match that the search argument finds in the
delimited character string be counted in the tally counter. When a literal
follows the word ALL, it does not have the same meaning as the figurative
constant, ALL literal. The ALL literal meaning of ALL "," is a string of
consecutive commas (as many as the context of the statement requires). ALL
","used as a tally argument means "count each comma without regard to
adjacent characters."

• LEADING specifies that only adjacent matches of the TALLY argument
at the leftmost position of the delimited character string be counted. At
the first failure to match the tally argument, the compiler terminates
counting and causes the argument to become inactive. The sample statement
INSPECT ... TALLYING (scanning FIELDl, tallying in TLY, and looking for
the arguments and delimiters listed in the left column) gives the results in
Table 7-12 (if the program initializes TLY to 0).

Table 7-12: LEADING Delimiter of the Inspection Operation

Argument and Delimiter

LEADING"*" AFTER "O".

LEADING"**" AFTER "O".

7.3.5.3 The Tally Argument List

FIELDl Value Contents of TLY After Scan

F***O**F 2

F**OF** 0

F**F**O

O***F**

F**O**F***

F**FO***FF

F**FO****F**

F**F**O*

0

3

1

1

2

0

One INSPECT ... TALLYING statement can contain more than one tally argument,
and each argument can have a separate BEFORE/ AFTER phrase and tally
counter associated with it. These tally arguments with their associated tally
counters and BEFORE/ AFTER phrases form an argument list. The manner in
which this list is processed affects the action of any given tally argument.

The following examples show INSPECT statements with argument lists. The text
with each example explains how that list is processed.

INSPECT FIELDl TALLYING T FOR
ALL
ALL
ALL

II I!
I

" "
"; " .

Using the STRING, UNSTRING, and INSPECT Statements 7-25

These three tally arguments have the same tally counter, T, and are active over
the entire item being inspected. Thus, the preceding statement adds the total
number of commas, periods, and semicolons in FIELDl to the initial value of T.
Since the TALLYING phrase supports multiple arguments and only one counter
is used, the previous statement could have been written as follows:

INSPECT FIELDl TALLYING T FOR ALL

INSPECT FIELDl TALLYING
Tl FOR ALL","
T2 FOR ALL"."
T3 FOR ALL ";".

" " , "; " .

Each tally argument in this statement has its own tally counter and is active
over the entire item being inspected. Thus, the preceding statement adds the
total number of commas in FIELDl to the initial value of Tl, the total number of
periods to the initial value of T2, and the number of semicolons to T3.

INSPECT FIELDl TALLYING
Tl FOR ALL"," AFTER "A"
T2 FOR ALL "."BEFORE "B"
T3 FOR ALL ";".

Each tally argument in the preceding statement has its own tally counter; the
first two arguments have delimiter phrases, and the last one is active over the
entire item being inspected. Thus, the first argument is initially inactive and
becomes active only after the scanner encounters an A; the second argument
begins the scan in the active state but becomes inactive after a B has been
encountered; and the third argument is active during the entire scan of FIELDl.

Table 7-13 shows various values of FIELDl and the contents of the three tally
counters after the scan of the previous statements. Assume that the counters are
initialized to 0 before the INSPECT statement.

Table 7-13: Results of the Scan with Separate Tallies

Contents of Tally Counters After Scan

FIELDl
Value Tl T2 T3

A.C;D.E,F 1 2 1

A.B.C.D 0 1 0

A,B,C,D 3 0 0

A;B;C;D 0 0 3

*,B,C,D 0 0 0

The BEFORE/AFTER phrase applies only to the argument that precedes it and
delimits the item for that argument only. Each BEFORE/AFTER phrase causes a
separate scan of the item to determine the limits of the item for its corresponding
argument.

7.3.5.4 Interference in Tally Argument Lists

When several tally arguments contain one or more identical characters active
at the same time, they may interfere with each other, so that when one of the
arguments finds a match, the scanner steps past any other matching characters,
preventing those characters from being considered for a match.

7-26 Using the STRING, UNSTRING, and INSPECT Statements

The following two identical tally arguments do not interfere with each other since
they are not active at the same time. The first A in FIELDl causes the first
argument to become inactive and the second argument to become active:

MOVE 0 TO Tl T2.
INSPECT FIELDl TALLYING

Tl FOR ALL"," BEFORE "A"
T2 FOR ALL"," AFTER "A".

However, the next identical tally arguments interfere with each other since both
are active at the same time:

INSPECT FIELDl TALLYING
Tl FOR ALL","
T2 FOR ALL"," AFTER "A".

For any given position of the scanner, the arguments are applied to FIELDl
in the order in which they appear in the statement. When one of them finds
a match, the scanner moves to the next position and ignores the remaining
arguments in the argument list. Each comma in FIELDl causes Tl to be
incremented by 1 and the second argument to be ignored. Thus, Tl always
contains an accurate count of all the commas in FIELDl, and T2 is always
unchanged.

The following INSPECT statement arguments only partially interfere with each
other:

INSPECT FIELDl TALLYING
T2 FOR ALL"," AFTER "A"
Tl FOR ALL",".

The first argument does not become active until the scanner encounters an
A. The second argument tallies all commas that precede the A. After the A,
the first argument counts all commas and causes the second argument to be
ignored. Thus, Tl contains the number of commas that precede the first A, and
T2 contains the number of commas that follow the first A. This statement works
well as written, but it could be difficult to debug.

The following three examples show that one INSPECT statement cannot count
any character more than once. Thus, when you use the same character in more
than one argument of an argument list, consider the possibility of interference
and choose the order of the arguments carefully. The solution may require two or
more INSPECT statements. Consider the following problem:

INSPECT FIELDl TALLYING
Tl FOR ALL "AB"
T2 FOR ALL "BC".

If FIELDl contains ABCABC after the scan, Tl is incremented by 2, and T2 is
unaltered. The successful matching of the argument includes each B in the item.
Each match resets the scanner to the character position to the right of the B, so
that the second argument is never successfully matched. The results remain the
same even if the order of the arguments is reversed. Only separate INSPECT
statements can develop the desired counts.

Sometimes you can use the interference characteristics of the INSPECT
statement to your advantage. Consider the following sample argument list:

MOVE 0 TO T4 T3 T2 Tl.
INSPECT FIELDl TALLYING

T4 FOR ALL "****"
T3 FOR ALL "***"
T2 FOR ALL "**"
Tl FOR ALL "*"

Using the STRING, UNSTRING, and INSPECT Statements 7-27

The argument list counts all of the asterisks in FIELD 1 in four different tally
counters. T4 counts the number of times that four asterisks occur together; T3
counts the number of times three asterisks appear together; T2 counts double
asterisks; and Tl counts singles.

If FIELD 1 contains a string of more than four consecutive asterisks, the
argument list breaks the string into groups of four and counts them in T4. It
then counts the less-than-four remainder in T3, T2, or Tl.

Reversing the order of the arguments in this list causes Tl to count all of the
asterisks, and T2, T3, and T4 to remain unchanged.

When the LEADING condition is used with an argument in the argument list,
that argument becomes inactive as soon as it fails to be matched in the item
being inspected. Therefore, when two arguments in an argument list contain one
or more identical characters and one of the arguments has a LEADING condition,
the argument with the LEADING condition should appear first. Consider the
following sample statement:

MOVE 0 TO Tl T2.
INSPECT FIELDl TALLYING

Tl FOR LEADING "*"
T2 FOR ALL"*".

Tl counts only leading asterisks in FIELD!; the occurrence of any other character
causes the first tally argument to become inactive. T2 keeps a count of any
remaining asterisks in FIELD 1.

Reversing the order of the arguments in the following statement results in an
argument list that can never increment Tl:

INSPECT FIELDl TALLYING
T2 FOR ALL "*"
Tl FOR LEADING"*".

If the first character in FIELDl is not an asterisk, neither argument can match
it, and the second argument becomes inactive. If the first character in FIELD!
is an asterisk, the first argument matches it and causes the second argument to
be ignored. The first character in FIELD! that is not an asterisk fails to match
the first argument, and the second argument becomes inactive because it has not
found a match in any of the preceding characters.

An argument with both a LEADING condition and a BEFORE phrase can
sometimes successfully delimit the item being inspected, as in the following
example:

MOVE 0 TO Tl T2.
INSPECT FIELDl TALLYING

Tl FOR LEADING SPACES
T2 FOR ALL II " BEFORE " "
T2 FOR ALL II II BEFORE " "
T2 FOR ALL II II BEFORE II II

IF T2 > 0 ADD 1 TO T2.

These statements count the number of words in the English statement in
FIELD 1, assuming that no more than three spaces separate the words in the
sentence, that the sentence ends with a period, and that the period immediately
follows the last word. When FIELDl has been scanned, T2 contains the number
of spaces between the words. Since a count of the spaces renders a number that
is one less than the number of words, the conditional statement adds 1 to the
count.

7-28 Using the, STRING, UNSTRING, and INSPECT Statements

The first argument removes any leading spaces, counting them in a different tally
counter. This shortens FIELDl by preventing the application of the second to the
fourth arguments until the scanner finds a nonspace character. The BEFORE
phrase on each of the other arguments causes them to become inactive when
the scanner reaches the period at· the end of the sentence. Thus, the BEFORE
phrases shorten FIELDl by making the second to the fourth arguments inactive
before the scanner reaches the rightmost position of FIELDl. If the sentence in
FIELDl is indented with tab characters instead of spaces, a second LEADING
argument can count the tab characters. For example:

INSPECT FIELDl TALLYING
Tl FOR LEADING SPACES
Tl FOR LEADING TAB
T2 FOR ALL II

When an argument list contains a CHARACTERS argument, it should be the
last argument in the list. Since the CHARACTERS argument always matches
the item, it prevents the application of any arguments that follow in the list.
However, as the last argument in an argument list, it can count the remaining
characters in the item being inspected. Consider the following example.

MOVE 0 TO Tl T2 T3 T4 T5.
INSPECT FIELDl TALLYING

Tl FOR LEADING SPACES
T2 FOR ALL II II BEFORE II II

' T3 FOR ALL 11 + 11 BEFORE II II ,
T4 FOR ALL 11

-
11 BEFORE 11

,
11

T5 FOR CHARACTERS BEFORE 11
,

11
•

If FIELDl is known to contain a number in the form frequently used to input
data, it can contain a plus or minus sign, and a decimal point; furthermore,
the number can be preceded by spaces and terminated by a comma. When this
statement is compiled and executed, it delivers the following results:

• Tl contains the number of leading spaces.

• T2 contains the number of periods.

• T3 contains the number of plus signs.

• T4 contains the number of minus signs.

• T5 contains the number of remaining characters (assumed to be numeric).

The sum of Tl to T5, plus 1, gives the character position occupied by the
terminating comma.

7.3.6 Using the REPLACING Phrase

When an INSPECT statement contains a REPLACING phrase, that statement
selectively replaces characters or groups of characters in the designated item.

The REPLACING phrase names a search argument of one or more characters and
a condition under which the string can be applied to the item being inspected.
Associated with the search argument is the replacement value, which must be
the same length as the search argument. Each time the search argument finds a
match in the item being inspected, under the condition stated, the replacement
value replaces the matched characters.

A BEFORE/AFTER phrase can be used to delimit the area of the item being
inspected. A search argument applies only to the delimited area of the item.

Using the STRING, UNSTRING, and INSPECT Statements 7-29

7.3.6.1 The Search Argument

The search argument of the REPLACING phrase names a character string and a
condition under which the character string should be compared to the delimited
string being inspected.

The CHARACTERS form of the search argument specifies that every character in
the delimited string being inspected should be considered to match an imaginary
character that serves as the search argument. Thus, the replacement value
replaces each character in the delimited string. For example:

INSPECT ITEMA REPLACING CHARACTERS ...

The ALL, LEADING, and FIRST forms of the search argument specify a
particular character string, which can be represented by a literal or an identifier.
The search argument character string can be any length. However, each
character of the argument must match a character in the delimited string before
the compiler considers the argument matched. For example:

INSPECT ITEMA REPLACING ALL ...

The necessary literal and identifier characteristics are as follows:

• A literal character string must be either nonnumeric or a figurative constant
(other than ALL literal). A figurative constant, such as SPACE or ZERO,
represents a single character and can be written as " " or "O" with the
same effect. Because a figurative constant represents a single character,
the replacement value must be one character long.

• An identifier must represent an elementary item of DISPLAY usage. It can be
any class. However, if it is not alphabetic, the compiler performs an implicit
redefinition of the item. This redefinition is identical to the BEFORE/AFTER
delimiter redefinition discussed in Section 7 .3.2.

The words ALL, LEADING, and FIRST supply conditions that further delimit the
inspection operation:

• ALL specifies that each match the search argument finds in the delimited
character string is replaced by the replacement value. When a literal
follows the word ALL, it does not have the same meaning as the figurative
constant, ALL literal. The :figurative constant meaning of ALL"," is a string
of consecutive commas, as many as the context of the statement requires.
ALL "," as a search argument of the REPLACING phrase means "replace
each comma without regard to adjacent characters."

• LEADING specifies that only adjacent matches of the search argument at
the leftmost position of the delimited character-string be replaced. At the
first failure to match the search argument, the compiler terminates the
replacement operation and causes the argument to become inactive.

• FIRST specifies that only the leftmost character string that matches the
search argument be replaced. After the replacement operation, the search
argument containing this condition becomes inactive.

7 .3.6.2 The Replacement Value

Whenever the search argument finds a match in the item being inspected, the
matched characters are replaced by the replacement value. The word BY followed
by an identifier or literal specifies the replacement value. For example:

INSPECT ITEMA REPLACING ALL "A" BY "X" ALL "D" BY "X".

7-30 Using the STRING, UNSTRING, and INSPECT Statements

The replacement value must always be the same size as its associated search
argument.

If the replacement value is a literal character-string, it must be either a
nonnumeric literal or a :figurative constant (other than ALL literal). A :figurative
constant represents as many characters as the length of the search argument
requires.

If the replacement value is an identifier, it must be an elementary item of
DISPLAY usage. It can be any class. However, if it is not alphanumeric, the
compiler conducts an implicit redefinition of the item. This redefinition is the
same as the BEFORE/AFTER redefinition discussed in Section 7.3.2.

7.3.6.3 The Replacement Argument

The replacement argument consists of the search argument (with its condition
and character-stpng), the replacement value, and an optional BEFORE/AFTER
phrase, as shown in Figure 7-5.

Figure 7-5: The Replacement Argument

ALL ";" BY SPACE BEFORE Tl II
" "

Search Replacement BEFORE/AFTER
argument value phrase (optional)

ZK-6054-GE

7.3.6.4 The Replacement Argument List

One INSPECT ... REPLACING statement can contain more than one replacement
argument. Several replacement arguments form an argument list, and the
manner in which the list is processed affects the action of any given replacement
argument.

The following examples show INSPECT statements with replacement argument
lists. The text following each one tells how that list will be processed.

INSPECT FIELDl REPLACING
ALL"," BY SPACE
ALL "."BY SPACE
ALL ";" BY SPACE.

The previous three replacement arguments all have the same replacement value,
SPACE, and are active over the entire item being inspected. The statement
replaces all commas, periods, and semicolons with space characters and leaves all
other characters unchanged.

INSPECT FIELDl REPLACING
ALL "0" BY "1"
ALL "1" BY "0".

Using the STRING, UNSTRING, and INSPECT Statements 7-31

Each of these two replacement arguments has its own replacement value and is
active over the entire item being inspected. The statement exchanges zeros for ls
and ls for zeros. It leaves all other characters unchanged.

INSPECT FIELDl REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "0" BEFORE SPACE.

NOTE

When a search argument finds a match in the item being inspected,
the code replaces that character-string and scans to the next position
beyond the replaced characters. It ignores the remaining arguments
and applies the first argument in the list to the character-string in the
new position. Thus, it never inspects the new value that was supplied
by the replacement operation. Because of this, the search arguments
can have the same values as the replacement arguments with no
chance of interference.

The statement also exchanges zeros and ls. Here, however, the first space in
FIELD 1 causes both arguments to become inactive.

INSPECT FIELDl REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "0" BEFORE SPACE
CHARACTERS BY "*" BEFORE SPACE.

The first space causes the three replacement arguments to become inactive. This
argument list exchanges zeros for ls, ls for zeros, and asterisks for all other
characters in the delimited area. If the BEFORE phrase is removed from the
third argument, that argument will remain active across all of FIELDl. Within
the area delimited by the first space character, the third argument replaces all
characters except ls and zeros with asterisks. Beyond this area, it replaces
all characters (including the space that delimited FIELDl for the first two
arguments, and any zeros and ls) with asterisks.

7.3.6.5 Interference in Replacement Argument Lists

When several search arguments, all active at the same time, contain one or more
identical characters, they can interfere with each other-and consequently affect
the replacement operation. This interference is similar to the interference that
occurs between tally arguments.

The action of a search argument is never affected by the BEFORE/AFTER
delimiters of other arguments, since the compiler scans for delimiter matches
before it scans for replacement operations.

The action of a search argument is never affected by the characters of any
replacement value, since the scanner does not inspect the replaced characters
again during execution of the INSPECT statement. Interference between search
arguments, therefore, depends on the order of the arguments, the values of the
arguments, and the active/inactive status of the arguments. The discussion in
Section 7 .3.5.4 about interference in tally argument lists generally applies to
replacement arguments as well.

The following rules help minimize interference in replacement argument lists:

1. Place search arguments with LEADING or FIRST conditions at the start of
the list.

2. Place any arguments with the CHARACTERS condition at the end of the list.

7-32 Using the STRING, UNSTRING, and INSPECT Statements

3. Consider the order of appearance of any search arguments that contain
identical characters.

7.3. 7 Using the CONVERTING Option

When an INSPECT statement contains a CONVERTING phrase, that statement
selectively replaces characters or groups of characters in the designated item;
it executes as if it were a Format 2 INSPECT statement with a series of ALL
phrases. (See the INSPECT statement formats in the VAX COBOL Reference
Manual.)

An example of the use of the CONVERTING phrase follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. PROGX.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC X(28).
PROCEDURE DIVISION.
A.

MOVE "ABC*ABC*ABC ABC@ABCABC" TO X.
INSPECT X CONVERTING "ABC" TO "XYZ"

AFTER"*" BEFORE "@".
DISPLAY X.
STOP RUN.

X before INSPECT executes

ABC*ABC*ABC ABC@ABCABC

7.3.8 Common INSPECT Statement Errors

X after INSPECT executes

ABC*XYZ*XYZ XYZ@ABCABC

Programmers most commonly make the following errors when writing INSPECT
statements:

• Leaving the FOR out of an INSPECT ... TALLYING statement

• Using the word WITH instead of BY in the REPLACING phrase

• Failing to initialize the tally counter

• Omitting the word ALL before the comparison character-string

Using the STRING, UNSTRING, and INSPECT Statements 7-33

Chapter 8

The Basics of Handling VAX COBOL Files and
Records

Input and output services require a complex management system; otherwise,
the programmer is left with the task of producing detailed input/output
control for each program. The VMS operating system provides complete I/O
services for handling, controlling, and spooling I/O needs or requests. VAX
Record Management Services (RMS) gives a wide range of record management
techniques while remaining transparent to you. This chapter introduces you to:

• VAX Record Management Services

• VAX COBOL file organizations

• VAX COBOL file attributes

• VAX COBOL record attributes

• VAX COBOL record access modes

• VAX COBOL OPEN and CLOSE statements

• VAX COBOL with the VAX Vertical Forms Printing software utility

8.1 VAX Record Management Services

VAX COBOL provides extensive capabilities for data storage, retrieval, and
modification for the VAX COBOL programmer through VAX Record Management
Services (RMS). You can select from one of several file organizations and access
techniques-each of which is suited to a particular application-from the simplest
sequential search of a sequentially organized file to a sophisticated dynamic
access of an indexed file based on one of several alternate key fields.

The three file organizations available through VAX COBOL and RMS-sequential,
relative, and indexed-are available to three different access modes: sequential,
random, and dynamic. Dynamic access, or access mode switching, is a useful
feature that allows your program to switch from sequential to random access and
back during file processing.

The following topics are contained in the RMS documentation set. These topics
can help you choose the correct RMS defaults for your applications:

• Application design

• File design

• Task design

• Common optimization techniques

The Basics of Handling VAX COBOL Files and Records 8-1

• RMS utilities

• Magnetic tape handling

Understanding the preceding RMS topics allows you to achieve the best
performance from your application, as many RMS defaults are not the optimal
choice for all your applications. See the VMS documentation on VAX Record
Management Services for further information.

8.2 File Attributes

A file is a collection of related records. File attributes let you specify the
following:

• File organization

• Record format

• Physical record size

• File size

The system uses these attributes to create a file and stores them with the file.
When a program accesses a file, it must specify the same attributes stored when
the file was created. For example, a program cannot read a sequential file as an
indexed file, because no index keys exist.

In VAX COBOL programs, yo·1 specify a file's attributes in the Environment and
Data Divisions:

• The APPLY clause specifies file characteristics such as lock-holding, file
extension factors, and preallocation factors. The SELECT statement specifies
the file organization.

• File description entries specify record format and record blocking.

• Record description entries specify physical record size or sizes.

Chapter 9, Chapter 10, and Chapter 11 all present and discuss examples of each
type of file organization supported by VAX COBOL. Chapter 20 explains the use
of the APPLY clause.

8.3 Record Attributes

A record is a group of related data elements. The space a record needs on a
physical device depends on:

• The file organization

• The record format

• The number of bytes the record contains

If a file has more than one record description, the different record descriptions
automatically share the same record area in memory. The Object or Run-Time
System does not clear this area before it executes the READ statement.
Therefore, if the record read by the latest READ statement does not fill the
entire record area, the area not overlaid by the incoming record remains
unchanged.

8-2 The Basics of Handling VAX COBOL Files and Records

8.3.1 Record Format

You can use fixed, variable, or variable with fixed control record format types.

The compiler determines record format from a combination of record description
entries and the RECORD CONTAINS clause. You specify the record format as
follows:

• For fixed-Use the RECORD CONTAINS clause or the VAX COBOL default.

• For variable-Use the RECORD CONTAINS TO clause or RECORD
VARYING.

• For variable fixed control (VFC)-Use the ADVANCING, APPLY, or LINAGE
clause, or use Report Writer statements and phrases.

In Example 8-1, a file contains a company's stock inventory information (part
number, supplier, quantity, price). Within this :file, the information is divided into
records. All information for a single piece of stock constitutes a single record.

Each record in the stock file is itself divided into discrete pieces of information
known as elementary items. You give the item a specific location in the record,
give it a name, and define its size. The part number is an item in the part record,
as are supplier, quantity, and price. In this example PART-RECORD contains
four elementary items: PART-NUMBER, PART-SUPPLIER, PART-QUANTITY,
and PART-PRICE.

Example 8-1: Sample Record Description

01 PART-RECORD.
02 PART-NUMBER
02 PART-SUPPLIER
02 PART-QUANTITY
02 PART-PRICE

PIC 9999.
PIC X (20) .
PIC 99999.
PIC S9(5)V99.

You can completely control the grouping of elementary items into records and
records into files. VAX COBOL programs. either build records and pass them to
RMS for storage in a file, or they issue requests for records while RMS performs
the necessary operations to retrieve the records from a file.

The maximum size of a record depends on its format:

• For fixed-length records, the maximum size is the record size.

• For variable-length.records, the maximum size is the size of the largest record
plus the number of overhead bytes needed by RMS.

• For variable-fixed control records, the maximum size is the size of the largest
record plus header overhead.

In all cases, the length of any record in a file description entry cannot exceed
32,767 bytes for a sequential file, 32,234 bytes for an indexed file, or 32,255 bytes
for a relative file.

The Basics of Handling VAX COBOL Files and Records 8-3

8.3.1.1 Fixed-Length Records

Files with a fixed-length record format contain the same size records. The
compiler generates the fixed-length format when either of the following conditions
is true:

• The RECORD CONTAINS clause specifies a fixed number of characters.

• The RECORD CONTAINS clause is omitted.

The compiler does not generate fixed-length format when either of the following
conditions exist:

• The file description contains a RECORD CONTAINS TO clause or a RECORD
VARYING clause.

• The program specifies a print-controlled file by referring to the file with:

The ADVANCING phrase in a WRITE statement

An APPLY PRINT-CONTROL clause in the Environment Division

A LINAGE clause in the file description

Report Writer statements and phrases

Fixed-length record size is determined by either the largest record description or
the record size specified by the RECORD CONTAINS clause, whichever is larger.
Example 8-2 shows how fixed-length record size is determined.

Example 8-2: Determining Fixed-Length Record Size

FD FIXED-FILE
RECORD CONTAINS 100 CHARACTERS.

01 FIXED-REC PIC X(75).

For the file, FIXED-FILE, the RECORD CONTAINS clause specifies a record size
larger than the record description; therefore, the record size is 100 characters.

However, if the multiple record descriptions are associated with the file, the size
of the largest record description is used as the size. Thus, in Example 8-3, for
the file REC-FILE, the FIXED-REC2 record specifies the largest record size;
therefore, the record size is 90 characters.

Example 8-3: Determining Fixed-Length Record Size for Files with Multiple
Record Descriptions

FD REC-FILE
RECORD CONTAINS 80 CHARACTERS.

01 FIXED-RECl PIC X(75).
01 FIXED-REC2 PIC X(90).

8-4 The Basics of Handling VAX COBOL Files and Records

In Example 8-2, the following warning message is generated when the file
FIXED-FILE is used:

"Record contains value is greater than length of longest record."

And when the file REC-FILE is used, the following warning message is generated:

"Longest record is longer than RECORD CONTAINS value -
longest record size used."

8.3.1.2 Variable-Length Records

Files with a variable-length record format can contain different length records.
The compiler generates the variable-length attribute for a file when the file
description contains a RECORD VARYING clause or a RECORD CONTAINS TO
clause. (See also Section 8.3.2.)

The system stores the record's size in bytes in a record-length field that precedes
each record.

• For disk files, the record-length field is a 2-byte value specifying record length
in bytes. Note that a record's length does not include this 2-byte field.

• For ANSI magnetic tape files, the record-length field is a 4-byte decimal value
specifying record length in bytes. Note that a record's length includes this
4-byte field.

Example 8-4, Example 8-5, and Example 8-6 show you the three ways VAX
COBOL lets you create a variable-length record file.

In Example 8-4, the DEPENDING ON phrase sets the OUT-REC record length.
The IN-TYPE data field determines the OUT-LENGTH field's contents.

Example 8-4: Creating Variable-Length Records with the DEPENDING ON
Phrase

FILE SECTION.

FD INFILE
RECORD LABELS ARE STANDARD.

01 IN-REC.
03 IN-TYPE PIC X.
03 REST-OF-REC PIC X(499).

FD OUTFILE
RECORD VARYING FROM 200 TO 500 CHARACTERS
DEPENDING ON OUT-LENGTH.

01 OUT-REC PIC X(500).
WORKING-STORAGE SECTION.
01 OUT-LENGTH PIC 999 COMP VALUE ZEROES.

The Basics of Handling VAX COBOL Files and Records 8-5

Example 8-5: Creating Variable-Length Records with the RECORD VARYING
Phrase

FILE SECTION.
FD OUTFILE

RECORD VARYING FROM 200 TO 500 CHARACTERS.
01 OUT-REC-1 PIC X(200).
01 OUT-REC-2 PIC X(500).

Example 8-5 shows how to create variable-length records using the RECORD
VARYING phrase.

Example 8-6 creates variable-length records by using the OCCURS clause with
the DEPENDING ON phrase in the record description. VAX COBOL determines
record length by adding the sum of the variable record's fixed portion to the size
of the table described by the number of table occurrences at execution time.

In this example, the variable record's fixed portion size is 113 characters. (This
is the sum of P-PART-NUM, P-PART-INFO, and P-BIN-INDEX.) If P-BIN-INDEX
contains a 7 at execution time, P-BIN-NUMBER will be 35 characters long.
Therefore, PARTS-REC's length will be 148 characters; the fixed portion's length
is 113 characters, and the table entry's length at execution time is 35 characters.

Example 8-6: Creating Variable-Length Records and Using the OCCURS
Clause with the DEPENDING ON Phrase

FILE SECTION.
FD PARTS-MASTER

RECORD VARYING 118 TO 163 CHARACTERS.
01 PARTS-REC.

03 P-PART-NUM PIC X(lO).
03 P-PART-INFO PIC X(lOO).
03 P-BIN-INDEX PIC 999.
03 P-BIN-NUMBER PIC X(5)

OCCURS 1 TO 10 TIMES DEPENDING ON P-BIN-INDEX.

If you describe a record with both the RECORD VARYING ... DEPENDING ON
phrase on data-name-1 and the OCCURS clause with the DEPENDING ON
phrase on data-name-2, VAX COBOL specifies record length as the value of
data-name-1.

If you have multiple record-length descriptions for a file and omit either the
RECORD VARYING clause or the RECORD CONTAINS integer-1 TO integer-2
clause, all records written to the file will have a fixed length equal to the length
of the longest record described for the file, as in Example 8-7.

8-6 The Basics of Handling VAX COBOL Files and Records

Example 8-7: Defining Fixed-Length Records with Multiple Record
Descriptions

FD PARTS-MASTER.
01 PARTS-REC-1 PIC x (200).
01 PARTS-REC-2 PIC x (300).
01 PARTS-REC-3 PIC x (400).
01 PARTS-REC-4 PIC x (500).

PROCEDURE DIVISION.

100-WRITE-REC-l.
MOVE IN-REC TO PARTS-REC-1.
WRITE PARTS-REC-1.
GO TO ...

200-WRITE-REC-2.
MOVE IN-REC TO PARTS-REC-2.
WRITE PARTS-REC-2
GO TO ...

Writing PARTS-REC-1, PARTS-REC-2, PARTS-REC-3 or PARTS-REC-4 produces
records equal in length to the longest record, PARTS-REC-4. Note that this is not
variable-length I/O.

8.3.2 Print-Controlled Files

Print-controlled files contain form-advancing information with each record. VAX
COBOL places explicit form-control bytes directly into the file. Therefore, any
VAX COBOL program trying to read a print-control file can read it successfully
as variable files (RMS strips the VFC header).

If you use the WRITE AFTER ADVANCING, the LINAGE, or the APPLY
PRINT-CONTROL statement, or if you create a Report Writer file, the compiler
generates variable-length print-controlled records. You must use the /NOFEED
option on the DCL PRINT command when you print a print-controlled file.

8.4 File Design Considerations

The difficulty of design is proportional to the complexity of the file organization;
design is least important for applications using sequential organization, more
important for relative organization, and most important for indexed organization.
Chapter 9, Chapter 10, and Chapter 11 all discuss file design for sequential,
relative, and indexed files, respectively.

The Basics of Handling VAX COBOL Files and Records 8-7

8.5 File Handling

Before your program can perform I/O on a file, it must identify the file to the
operating system, specify the file's organization and access modes, and make the
file available by opening it. A program must follow these steps whenever creating
a file or processing one that has already been created.

8.5.1 Identifying a File from Your VAX COBOL Program

A file description entry defines a file's logical structure and associates the file
with a file name that is unique within the program. The program uses this file
name in the OPEN, READ, START, UNLOCK, DELETE, REWRITE, and CLOSE
statements. (The record name is used for WRITE, UNLOCK, and REWRITE.)

You must establish a link between the file name your program uses and the file
specification that RMS uses. The SELECT and ASSIGN and VALUE OF ID
clauses do this. Together these clauses define a file connector. A file connector is
a data structure used by VAX COBOL that contains information about a file. It
links the following:

• A file name and a physical file

• A file name and its associated record area

The program must include a SELECT statement, including an ASSIGN clause,
for every file description entry (FD) it contains. The file name you specify in the
SELECT statement must match the file name in the file description entry. In
the ASSIGN clause, you specify a literal or a COBOL word that associates the
file name with a file specification. This literal or word can be a complete file
specification or one that relies on operating system defaults.

To understand the relationships between the SELECT statement, the ASSIGN
clause, and the FD entry, consider two examples. In Example 8-8, because
the file name specified in the FD entry is DAT-FILE, all I/O statements in the
program referring to that file must use the name DAT-FILE. RMS uses the
ASSIGN clause to interpret DAT-FILE as REPORT.DAT and refers to the default
directory.

Example 8-8: Defining a Disk File

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DAT-FILE
ASSIGN TO "REPORT.DAT"

DATA DIVISION.
FD DAT-FILE

8-8 The Basics of Handling VAX COBOL Files and Records

The I/O statements in Example 8-9 refer to MYFILE-PRO, which the ASSIGN
clause identifies to the operating system as MARCH.311. Additionally, the
operating system looks for the file in the current directory on the magnetic tape
mounted on MTAO:.

Example 8-9: Defining a Magnetic Tape File

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MYFILE-PRO
ASSIGN TO "MTAO:MARCH.311"

DATA DIVISION.
FD MYFILE-PRO

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN INPUT MYFILE-PRO.

READ MYFILE-PRO.

CLOSE MYFILE-PRO.

8.5.1.1 Using the VALUE OF ID Clause for Device Independence

If the file specification is subject to change, it is inconvenient to edit the ASSIGN
clause and recompile and relink the program every time you run it. To avoid
this problem, you can use a partial file specification in the ASSIGN clause and
complete it by using the optional VALUE OF ID clause of the FD entry. In the
VALUE OF ID clause, you may specify a nonnumeric literal or an alphanumeric
WORKING-STORAGE item to supplement the file specification.

The VALUE OF ID clause completes or overrides the file specification in the
ASSIGN clause. This lets you keep the file specification a variable until run time.

Example 8-10 illustrates how to use the VALUE OF ID clause to complete a
partial file specification, MARCH, with operator input. Notice how the Procedure
Division statements prompt the operator for a file specification. This technique
provides the following advantages:

• Maximum flexibility for file access. The operator can override any part of the
file specification in the ASSIGN clause.

• Maximum use of system hardware. The operator can mount a tape (or any
other volume) on any available tape drive and direct the program to it.

• Maximum use of computer operator and operating system. The operator and
operating system no longer have to wait for one job to finish using a specific
tape drive before the next job can be started.

The Basics of Handling VAX COBOL Files and Records 8-9

Example 8-10: How to Override or Supplement a File Specification at Run
Time

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MYFILE-PRO
ASSIGN TO "MARCH"

DATA DIVISION.
FILE SECTION.
FD MYFILE-PRO

*

VALUE OF ID IS USER-EXTENSION.

*

WORKING-STORAGE SECTION.

*
01 USER-EXTENSION

*
PIC X(20).

PROCEDURE DIVISION.
AOOO-BEGIN.

*

DISPLAY "Enter file specification".
ACCEPT USER-EXTENSION.

*

OPEN INPUT MYFILE-PRO.

READ MYFILE-PRO.

CLOSE MYFILE-PRO.

NOTE

If no file type is supplied, VAX COBOL supplies a DAT file type.

8.5.1.2 Using Logical Names

Logical names let you write programs that are device and file independent and
provide a brief way to refer to frequently used files.

You can assign logical names with the ASSIGN command. When you assign a
logical name, the logical name and its equivalence name (the name of the actual
file or device) are placed in one of three logical name tables; the choice depends
on whether they are assigned for the current process, on the group level, or on
a system-wide basis. See the VMS documentation for more information on DCL
and a description of logical name tables.

8-10 The Basics of Handling VAX COBOL Files and Records

To translate a logical name, the system searches the three tables in this order:
(1) process, (2) group, (3) system. Therefore, you can override a system-wide
logical name by defining it for your group or process.

Logical name translation is a recursive procedure: when the system translates
a logical name, it uses the equivalence name as the argument for another
logical name translation. It continues in this way until it cannot translate the
equivalence name.

Assume that your program updates monthly sales files (for example, JAN.DAT,
FEB.DAT, MAR.DAT, and so forth). Your SELECT statement could look like
either of these:

SELECT SALES-FILE ASSIGN TO "MOSLS"

SELECT SALES-FILE ASSIGN TO MOSLS

To update the January sales file, you can use this ASSIGN command to equate
the equivalence name JAN.DAT with the logical name MOSLS:

$ ASSIGN JAN.DAT MOSLS

To update the February sales file, you can use this ASSIGN command:

$ ASSIGN FEB.DAT MOSLS

In the same way, all programs that access the monthly sales file can use the
logical name MOSLS.

To disassociate the relationship between the file and the logical name, you can
use this DEASSIGN command:

$ DEASSIGN FEB.DAT MOSLS

If MOSLS is not set as a logical name, the system uses it as a file specification
and looks for a file named MOSLS.DAT.

8.5.2 Choosing File Organization and Record Access Mode

Your program always states-either explicitly or implicitly-a file's organization
and access mode before the program opens the file. The ORGANIZATION and
ACCESS clauses of the FILE-CONTROL paragraph, if present, specify these two
attributes.

8.5.2.1 File Organizations

VAX COBOL supports three types of file organization:

• ORGANIZATION IS SEQUENTIAL-This organization requires that records
be referenced in the same sequence in which they were written. This
organization is useful for programs that normally access each record serially,
as in a payroll or mailing list file.

• ORGANIZATION IS RELATIVE-This organization lets you access records
randomly, according to their key values (relative record numbers). This
organization is less flexible than indexed organization because you cannot
insert a record in the middle of your file unless you have an empty cell to
contain it.

• ORGANIZATION IS INDEXED-This organization lets you access records
randomly, according to their key values. This is a useful way to organize a
file in which records will be added, changed, or deleted upon demand.

The Basics of Handling VAX COBOL Files and Records 8-11

Table 8-1 lists the three file organizations available to you and summarizes their
advantages and disadvantages. Chapter 9, Chapter 10, and Chapter 11 further
discuss each of these file organizations.

Table 8-1: VAX COBOL File Organizations-Advantages and Disadvantages

File
Organizations Advantages and Disadvantages

Sequential Advantages Uses disk and memory efficiently

Disadvantages

Relative Advantages

Disadvantages

Indexed Advantages

Disadvantages

Provides optimal usage if the application accesses
all records sequentially on each run

Provides the most flexible record format
Allows READ/WRITE sharing
Allows data to be stored on many types of media,

in a device-independent manner
Allows easy file extension

Allows sequential access only
Allows records to be added only to the end of a file

Allows sequential, random, and dynamic access
Provides random record deletion and insertion
Allows records to be READ/WRITE sharing

Allows data to be stored on disk only
Requires that record cells be the same size

Allows sequential, random, and dynamic
access modes

Allows random record deletion and insertion
Allows READ/WRITE sharing
Allows variable-length records to change length

on update
Allows easy file extension

Allows data to be stored on disk only
Requires more disk space
Uses more memory to process records
Generally requires multiple disk accesses to

randomly process a record

If you do not use the ORGANIZATION clause, VAX COBOL assumes the file
organization is sequential.

8.5.2.2 Record Access Modes

The methods for retrieving and storing records in a file are called record access
modes. VAX COBOL supports three types of record access modes:

• ACCESS MODE IS SEQUENTIAL

With sequential files, sequential access retrieves the records in the .same
sequence established by the WRITE statements that created the file.

With relative files, sequential access retrieves the records in the order of
ascending record key values (or relative record numbers).

With indexed files, sequential access retrieves records in the order of
ascending record key values.

• ACCESS MODE IS RANDOM-The value of the record key your program
specifies indicates the record to be accessed.

8-12 The Basics of Handling VAX COBOL Files and Records

• ACCESS MODE IS DYNAMIC-This access mode allows you to switch
from sequential access mode to random access mode and back to sequential
access mode while processing a file, by using the NEXT phrase on the READ
statement. You can switch back and forth as much as you like; the only
limitation is that there must be RELATIVE or INDEXED ORGANIZATION.

If you do not use the ACCESS clause, VAX COBOL assumes sequential access.

A different access mode can be used to process records within the file each time it
is opened. A program can also change access modes during the processing of its
file. Chapter 9, Chapter 10, and Chapter 11 discuss the access modes applicable
to sequential, relative, and indexed file organization, respectively.

Example 8-11 shows sample SELECT statements for sequential files with
sequential access modes.

Example 8-11: Sequential File SELECT Statements

(1)

FILE-CONTROL.
SELECT LIST-FILE

ASSIGN TO "MAIL.LIS"
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL.

(2)
FILE-CONTROL.

SELECT PAYROLL
ASSIGN TO "PAYROL.DAT".

VAX COBOL assumes sequential organization and sequential access unless you
specify otherwise.

Sample SELECT statements for relative files are shown in Example 8-12.

Example 8-12: Relative File SELECT Statements

(1)
FILE-CONTROL.

SELECT MODEL
ASSIGN TO "ACTOR.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL.

(2)
FILE-CONTROL.

SELECT PARTS
ASSIGN TO "PART.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS PART-NO.

Sample SELECT statements for indexed files are shown in Example 8-13.

Because the default organization is sequential, both the relative and indexed
examples require the ORGANIZATION clause.

The Basics of Handling VAX COBOL Files and Records 8-13

Example 8-13: Indexed File SELECT Statements

(1) (2)
FILE-CONTROL. FILE-CONTROL.

SELECT A-GROUP SELECT TEAS
ASSIGN TO "RFCBA.PRO"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS WRITER
ALTERNATE RECORD KEY IS EDITOR.

8.6 Opening and Closing Files

ASSIGN TO "TETLY"
ORGANIZATION IS INDEXED
RECORD KEY IS LEAVES.

A VAX COBOL program must open a file with the OPEN statement before any
other I/O or Report Writer statement can reference it. Files can be opened more
than once in the same program as long as they are closed before the second and
subsequent opens.

Opening a file allocates the buffers, creates or checks the file labels, and
initializes the data structures to the start of the file. Closing a file writes out any
remaining records in the output buffers, writes an end-of-file label on magnetic
output files, and optionally rewinds and/or locks magnetic tape files. Files that
remain open at program termination are closed by the Run-Time System. The
following example shows OPEN and CLOSE statements:

OPEN INPUT MASTER-FILE.
OPEN OUTPUT REPORT-FILE.
OPEN I-0 MASTER-FILE

TRANS-FILE
OUTPUT REPORT-FILE.

CLOSE MASTER-FILE.
CLOSE TRANS-FILE

REPRT-FILE.

The OPEN statement must specify one of four open modes: INPUT, OUTPUT,
I-0, or EXTEND. Your choice, along with the file's organization and access mode,
determines which I/O statements you can use. Section 9.3, Section 10.3, and
Section 11.3 discuss the I/O statements for sequential, relative, and indexed files,
respectively.

When your program performs an OPEN statement, the following events take
place:

1. RMS builds a file specification by using the contents of the VALUE OF ID
clause, if any, to alter or complete the file specification in the ASSIGN clause.
Logicals are translated and the default file type is DAT.

2. The Run-Time System checks the file's current status. If the file is open, or if
it was closed WITH LOCK, the OPEN statement fails.

3. If the file specification names an invalid device, or contains any other errors,
the Run-Time System generates an error message and the OPEN statement
fails.

4. The Run-Time System takes one of the following actions if it cannot find the
file:

a. If the file's OPEN mode is OUTPUT, the file is created.

b. If the file's OPEN mode is EXTEND, or I-0, the OPEN statement fails,
unless the file's SELECT clause includes the OPTIONAL phrase. If the
file's SELECT clause includes the OPTIONAL phrase, the file is created.

8-14 The Basics of Handling VAX COBOL Files and Records

c. If the file's OPEN mode is INPUT, and its SELECT clause includes the
OPTIONAL phrase, the OPEN statement is successful. The first read on
that file causes the AT END condition.

d. If none of the previous conditions is met, the OPEN fails and the
USE procedure (if any) gains control. If no USE procedure exists, the
Run-Time System aborts the program.

5. If the file's OPEN mode is OUTPUT, and a file by the same name already
exists, a new version is created.

6. If the file attributes specified by the program attempting an OPEN operation
differ from the attributes specified when the file was created, the OPEN
statement fails.

If the file is on magnetic tape, RMS rewinds it. To close a file on tape without
rewinding the tape, use the NO REWIND phrase. This speeds processing when
another file is to be written beyond the end of the first file. For example:

CLOSE MASTER-FILE NO REWIND.

You can also close a file and prevent it from being opened again by the program
in the same run. For example:

CLOSE MASTER-FILE WITH LOCK.

8.7 File Compatibility

Files created by different programming languages may require special processing
because of language and character set incompatibilities. The most common
incompatibilities are data types and data record formats.

8. 7.1 Data Type Differences

Data types vary by programming language and by utilities. For example, VAX
FORTRAN does not support the packed-decimal data type and, therefore, cannot
easily use PACKED-DECIMAL data in COBOL files.

You can use the following techniques to overcome data type incompatibilities:

• Use the NATIVE character set, which uses ASCII representation, for all data
in files intended for use across languages.

• If your requirements include processing non-ASCII data, you can
specify a character set in: (1) the SPECIAL-NAMES paragraph of the
Environment Division, along with (2) the CODE-SET clause in the SELECT
statement. Except for NATIVE, you must specify all character sets in the
SPECIAL-NAMES paragraph.

• Use common numeric data types (numeric data types that remain constant
across the application).

In the following example, the input file is written in EBCDIC. This creates a file
that would be difficult to handle in most other languages.

The Basics of Handling VAX COBOL Files and Records 8-15

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. ALPHABET FOREIGN-CODE IS EBCDIC.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "INPFIL"
CODE-SET IS FOREIGN-CODE.

8. 7 .2 Data Record Formatting Differences

Programming languages and system utilities differ in the conventions used to
format their data records. For example, FORTRAN programs ·place a carriage
control character before the first data character in a formatted file record.
Similarly, other languages format print-controlled (and other) records differently
from COBOL.

In some cases, you can avoid this incompatibility by not using print-controlled
files. In FORTRAN, for example, you can open a file with the CARRIAGE
CONTROL= 'NONE 1 specification. Alternately, you can still read it by
defining record descriptions that match the actual format; that is, by defining a
1-character data item before the first real data item in each record operation. The
1-character field can be interpreted or ignored during subsequent read operations.

8.8 Backing Up Your Files

If your disk file becomes corrupted by a hardware error, or with bad data, or
if your program abnormally terminates when the file is opened for output, the
file can become unusable. Proper backup procedures are the key to successful
recovery .

. You should back up your disk file at some reasonable point (daily, weekly, or
monthly, depending on file activity and value of data), and save all transactions
until you create a new backup. In this way, you can easily re-create your disk file
from your last backup file and transaction files whenever the need arises.

8.9 Low-Volume 1/0 {ACCEPT and DISPLAY)

The COBOL language provides two statements, ACCEPT and DISPLAY, for
low-volume I/O operations. In most system configurations, these statements
transfer data to and from a terminal device. In COBOL however, the ACCEPT
and DISPLAY statements refer to VMS logical names.

This section discusses the use of mnemonic names, logical name devices, and the
ACCEPT and DISPLAY statements. For further information on ACCEPT and
DISPLAY screen handling options, refer to Chapter 17.

8.9.1 Mnemonic Names (SPECIAL-NAMES Paragraph)

The ACCEPT and DISPLAY statements transfer data between your program and
logical names. If you do not use the FROM or UPON clauses, the default logical
names are SYS$INPUT for the ACCEPT statement and SYS$0UTPUT for the
DISPLAY statement.

8-16 The Basics of Handling VAX COBOL Files and Records

The FROM or UPON clauses refer to mnemonic names that you can define in
the SPECIAL-NAMES paragraph in the Environment Division. You define a
mnemonic name by equating it to a COBOL implementor name; for example, the
following clause equates STATUS-REPORT to the device LINE-PRINTER:

LINE-PRINTER IS STATUS-REPORT

You can then use the mnemonic name in a DISPLAY statement:

DISPLAY "File contains " REC-COUNT UPON STATUS-REPORT.

8.9.2 Logical Name Devices

The COBOL implementor names in the SPECIAL-NAMES paragraph represent
VMS logical names.

COBOL Implementor
Names

CARD-READER

PAPER-TAPE-READER

CONSOLE

LINE-PRINTER

PAPER-TAPE-PUNCH

Logical Name

COB$CARDREADER

COB$PAPERTAPEREADER

COB$CONSOLE

COB$LINEPRINTER

COB$PAPERTAPEPUNCH

The logical names do not always represent physical devices. You can, for example,
assign a logical name to a file specification with a VMS ASSIGN command:

ASSIGN [ALLSTATUS]STATUS.LIS COB$LINEPRINTER

Because a logical name does not imply a device, it carries no implication of open
mode. Therefore, a program can display upon a mnemonic name that refers to
CARD-READER or accept from a mnemonic name that refers to LINE-PRINTER.

Although the ACCEPT and DISPLAY statements do not refer to file names, the
system implicitly opens a logical name used in either of these statements.

NOTE

When the system opens a logical name for a DISPLAY statement, it
specifies the variable with fixed-length control (VFC) format to allow
carriage control. Therefore, if your program contains both ACCEPT
and DISPLAY statements that refer to the same logical name, it should
execute a DISPLAY before the first ACCEPT. Otherwise, DISPLAY
statement carriage control is lost and all DISPLAY statements execute
as if they contained the WITH NO ADVANCING phrase.

Carriage control characters are not lost when you use ACCEPT and
DISPLAY statements without the FROM or UPON clause, since
these statements refer to different logical names (SYS$INPUT and
SYS$0UTPUT).

The Basics of Handling VAX COBOL Files and Records 8-17

8.9.3 ACCEPT Statement

In the VAX COBOL Reference Manual, Formats 1, 3, and 4 of the ACCEPT
statement transfer data from the object of a VMS logical name to a data item. If
you do not use the FROM clause, the system uses the logical name SYS$INPUT.
Otherwise, it uses the logical name described in the SPECIAL-NAMES paragraph
and referenced in the ACCEPT statement. In the following example, the system
uses COB$CONSOLE:

SPECIAL-NAMES.
CONSOLE IS WHATS-HIS-NAME

PROCEDURE DIVISION.

ACCEPT PARAMETER-AREA FROM WHATS-HIS-NAME.

8.9.4 DISPLAY Statement

The DISPLAY statement transfers the contents of low-volume data items and
literals to the object of a VMS logical name. If you do not use the UPON
clause, the system uses the logical name SYS$0UTPUT. Otherwise, it uses the
logical name described in the SPECIAL-NAMES paragraph and referenced
by the DISPLAY statement. In the following example, the system uses
COB$LINEPRINTER:

SPECIAL-NAMES.
LINE-PRINTER IS ERROR-LOG

PROCEDURE DIVISION.

DISPLAY ERROR-COUNT, " phase 2 errors, ",
ERROR-MSG UPON ERROR-LOG.

8.10 Printing with VAX VFP

VAX COBOL, in conjunction with the VAX Vertical Forms Printing (VFP) software
utility, provides direct support of Vertical Form Unit (VFU)-supported printers.
These VFU-supported printers offer the following useful features:

• Rapid vertical line positioning

• The ability to customize the vertical spacing requirements of your application,
independent of the application itself. When you use a VFU-supported printer,
you can configure the vertical spacing requirements of your application by
associating these requirements with a particular VFU printer channel.

To take advantage of these features, follow these steps:

1. Configure the vertical spacing requirements you want in the printer's VFU.

8-18 The Basics of Handling VAX COBOL Files and Records

2. Reference this specific VFU channel number in the WRITE statement of your
VAX COBOL application. The VAX COBOL compiler makes an association
with that VFU channel when the record is written. (For detailed information
about using VFU channel numbers in WRITE statements, see the VAX
COBOL Reference Manual.)

3. Convert the file that contains the record you want to print using the VAX
VFP software utility. If you do not do this conversion, the VFU will have no
effect on the vertical spacing of that record. Refer to the VAX VFP software
utility documentation for information about converting VAX COBOL data
files with records containing VFU channel commands to printer-specific VFU
channel commands.

4. Print the converted record on a VFU-supported printer. The record is printed
according to the vertical spacing requirements that you specified in the
printer's VFU.

You can change the vertical spacing requirements of your application without
having to change the application itself. You can make these independent changes
in vertical spacing because you specify the vertical spacing requirements in the
printer's VFU and not in the COBOL application.

NOTE

You cannot use files that contain VFU spacing on versions of VMS
earlier than 5.2. If you try to print such files on pre-5.2 versions, you
may encounter undefined print symbiont behavior.

The Basics of Handling VAX COBOL Files and Records 8-19

Chapter 9

Processing Sequential Files

Sequential input/output, in which records are written and read in sequence, is
the simplest and most common form of I/O. It can be performed on all I/O devices,
including magnetic tape, disk, terminals, and line printers.

9.1 Sequential File Organization

In sequential file organization, records are arranged in the order in which they
were written to the file. Figure 9-1 illustrates sequential file organization.

Figure 9-1: Sequential File Organization

I Beginning of file

RECORD
2

RECORD
3

End of file!

RECORD
(n-1)

RECORD
n

ZK-6055-GE

Sequential files always contain an end-of-file (EOF) indication. On magnetic
tapes, it is the EOF mark; on disk, it is a counter in the file header that
designates the end of the file. VAX COBOL statements can write over the EOF
mark and, thus, extend the length of the file. Because the EOF indicates the
end of useful data, VAX COBOL provides no method for reading beyond it, even
though the amount of space reserved for the file exceeds the amount actually
used.

Occasionally a file with sequential organization, for example, a multiple-reel
magnetic tape file, is so large that it requires more than one volume. An
end-of-volume (EOV) label marks the end of recorded information on each volume
and signals the file system to switch to a new volume. On multiple-volume files,
the EOF mark appears only once, at the end of the last record on the last volume.
See Figure 9-2.

Processing Sequential Files 9-1

Figure 9-2: A Multiple-Volume Sequential File

Volume 1 REC REC REC , ... , REC REC REC EOV

Volume2 REC REC REC I ... I REC REC REC EOV

Volume3 REC REC REC I ... I REC REC I · ..
ZK-6056-GE

See the VMS documentation on magnetic tapes for more information on tape
formats.

9.2 Design Considerations

Before you create your sequential file applications, you should design your files
based on these design considerations:

1. Record format (see Chapter 8).

• Fixed-length

• Variable-length

2. Medium-Sequential files can be accessed on disk, magnetic tape, and unit
record devices (for example, printers and card readers). When you select the
medium for your file, consider the following:

• Speed of access-Tape is significantly slower than disk.

• Frequency of use-Use tape to store files and save your disk space for
more immediate purposes.

• Cost of medium-Disk is generally more expensive than tape. The more
frequently the data will be accessed, the more justification there is to use
a more costly medium.

• Transportability-Use tape files if you need to use the file across systems
that have no common disk devices.

3. Allocation-At time of file creation and file extension.

4. Compiler limitations-You want to consider the logical and physical limits
imposed by the VAX COBOL compiler.

For more information on sequential file design, see Chapter 20, and the VAX
documentation on RMS tuning.

9.3 Statements for Sequential File Processing

Processing a sequential file involves the following:

1. Opening the file with the OPEN statement

2. Processing the file with valid I/O statements

9-2 Processing Sequential Files

3. Closing the file with the CLOSE statement

Table 9-1 lists the valid 1/0 statements and illustrates the following
relationships:

• Organization determines valid access modes.

• Organization and access mode determine valid open modes.

• All three (organization, access, and open mode) enable or disable 1/0
statements.

Table 9-1: Valid 1/0 Statements for Sequential Files

Open Mode
File Access
Organization Mode Statement INPUT OUTPUT 1/0 EXTEND

SEQUENTIAL SEQUENTIAL READ Yes No Yes No

REWRITE No No Yes No

WRITE No Yes No Yes

UNLOCK Yes Yes Yes Yes

9.4 Defining a Sequential File

Each sequential file in a VAX COBOL program is given a file name in a separate
SELECT clause in the Environment Division. Refer to Example 9-1 for these
file names: MASTER-FILE, TRANS-FILE, and REPRT-FILE. These names are
referred to by statements in the VAX COBOL program.

The ASSIGN clause associates the file name with a file specification. The file
specification points the operating system to the file's physical and logical location
on a specific hardware device. For example:

• MASTER-FILE is located on disk unit DBl:, directory [DOE.LRM], and is
called MASTER.DAT.

• TRANS-FILE is located on magnetic tape unit 1, directory [DOE.LRM], and
is called TRANS.DAT.

• REPRT-FILE is assigned to the line printer.

Each file is further described in the program with a file description (FD) entry in
the File Section of the Data Division (for example, MASTER-FILE, TRANS-FILE,
and REPRT-FILE). The FD entry is followed immediately by the file's record
description (for example, MASTER-RECORD, TRANSACTION-RECORD, and
REPORT-LINE).

You need not specify either the ORGANIZATION IS SEQUENTIAL phrase or
the ACCESS MODE IS SEQUENTIAL phrase in the SELECT clause since VAX
COBOL assumes sequential organization and sequential access mode unless you
specify otherwise.

Processing Sequential Files 9-3

Example 9-1: Defining a Sequential File

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO "DBl: [DOE.LRM]MASTER.DAT".
SELECT TRANS-FILE ASSIGN TO "MTAl: [DOE.LRM]TRANS.DAT".
SELECT REPRT-FILE ASSIGN TO "LPO:".

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE ...
01 MASTER-RECORD.

02 MASTER-DATA PIC X(80).
02 MASTER-SIZE PIC 99.
02 MASTER-TABLE OCCURS 0 to 50 TIMES

DEPENDING ON MASTER-SIZE.
03 MASTER-YEAR PIC 99.
03 MASTER-COUNT PIC S9(5)V99.

FD TRANS-FILE ...
01 TRANSACTION-RECORD PIC x (25).
FD REPRT-FILE
01 REPORT-LINE PIC x (132).

9.5 Creating a Sequential File

A VAX COBOL program creates a sequential file by:

1. Opening the file as OUTPUT or EXTEND

2. Executing the WRITE statement

Each WRITE statement releases a logical record to the end of an output file,
thereby creating an entirely new record in the file. The WRITE statement
releases records to files that are OPEN in the following modes:

• OUTPUT-The output mode can create these two kinds of files:

Storage files-A storage file remains on tape or disk for future reference
or processing.

Print files-The LINAGE clause, APPLY PRINT-CONTROL clause,
Report Writer statements (via RWCS), or the ADVANCING phrase in the
WRITE statement designates a file as a print file. One or more records
containing a VFC header, which indicates carriage-control characters, are
written to perform line spacing. The WRITE statement does not have to
release print files directly to a storage file. It can release them directly to
the printer for immediate printing. A storage file can also be a print file.

• EXTEND-The extend mode permits new records to be added in sequence
after the last record of an existing file (see Section 9.8).

You can write records in the following two ways:

• WRITE record-name FROM source-area

• WRITE record-name

9-4 Processing Sequential Files

However, the first way provides easier program readability when working with
multiple record types. For example, statements (1) and (2) in this example are
logically equivalent:

FILE SECTION.
FD STOCK-FILE.
01 STOCK-RECORD PIC X(80).
WORKING-STORAGE SECTION.
01 STOCK-WORK PIC X(80).

----------------(1)---------------- --------------(2)---------------
WRITE STOCK-RECORD FROM STOCK-WORK. MOVE STOCK-WORK TO STOCK-RECORD.

WRITE STOCK-RECORD.

When you omit the FROM phrase, you process the records directly in the record
area or buffer (for example, STOCK-RECORD).

The following example writes the record PRINT-LINE to the device assigned to
that record's file, then skips three lines. When it reaches the end of the page
(as specified by the LINAGE clause), it causes program control to transfer to
HEADER-ROUTINE.

WRITE PRINT-LINE BEFORE ADVANCING 3 LINES
AT END-OF-PAGE PERFORM HEADER-ROUTINE.

For a WRITE FROM statement, if the destination area is shorter than the file's
record length, the destination area is padded on the right with spaces; if longer,
the destination area is truncated on the right.

Example 9-2 creates a sequential file.

Example 9-2: Creating a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQOl.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT TRANS-FILE ASSIGN TO "TRANS.DAT".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD
PROCEDURE DIVISION.

PIC X(25).

AOOO-BEGIN.
OPEN OUTPUT TRANS-FILE.
PERFORM A010-PROCESS-TRANS

UNTIL TRANSACTION-RECORD
CLOSE TRANS-FILE.
STOP RUN.

A010-PROCESS-TRANS.

"END".

DISPLAY "Enter next record - X(25)".
DISPLAY "enter END to terminate the session".
DISPLAY "-------------------------".
ACCEPT TRANSACTION-RECORD.
IF TRANSACTION-RECORD NOT = "END"

WRITE TRANSACTION-RECORD.

Processing Sequential Files 9-5

9.6 Reading a Sequential File

To read a sequential file you must do the following:

1. Open the file for INPUT or I/O.

2. Execute the READ statement.

Each READ statement reads a single logical record and makes its contents
available to the program in the record area. There are two ways of reading
records:

• READ file-name INTO destination-area

• READ file-name

In the following example, statements (1) and (2) are logically equivalent:

FILE SECTION.
FD STOCK-FILE.
01 STOCK-RECORD PIC X(80).
WORKING-STORAGE SECTION.
01 STOCK-WORK PIC X(80).

-------------(1)---------------
READ STOCK-FILE INTO STOCK-WORK.

-------------(2)---------------
READ STOCK-FILE.
MOVE STOCK-RECORD TO STOCK-WORK.

When you omit the INTO phrase, you process the records directly in the record
area or buffer (for example, STOCK-RECORD). The record is also available in the
record area if you use the INTO phrase.

In a READ INTO clause, if the destination area is shorter than the length of the
record area being read, the record is truncated on the right and a warning is
issued; if longer, the destination area is filled on the right with blanks.

If the data in the record being read is shorter than the length of the record (for
example, a variable-length record), the contents of the record beyond that data
are undefined.

Example 9-3 reads a sequential file and displays its contents on the terminal.

9-6 Processing Sequential Files

Example 9-3: Reading a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQ02.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT TRANS-FILE ASSIGN TO "TRANS.DAT".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD
PROCEDURE DIVISION.

PIC X (25) .

AOOO-BEGIN.
OPEN INPUT TRANS-FILE.
PERFORM A100-READ-TRANS-FILE

UNTIL TRANSACTION-RECORD
CLOSE TRANS-FILE.
STOP RUN.

AlOO-READ-TRANS-FILE.
READ TRANS-FILE

"END".

AT END MOVE "END" TO TRANSACTION-RECORD.
IF TRANSACTION-RECORD NOT = "END"

DISPLAY TRANSACTION-RECORD.

9.7 Updating Records in a Sequential File

To update a record in a sequential file you must do the following:

1. Open the file for I/O.

2. Read the target record.

3. Rewrite the target record.

The REWRITE statement places the record just read back into the file. The
REWRITE statement completely replaces the contents of the target record with
new data. You can use the REWRITE statement for files on mass storage devices
only (for example, disk units). There are two ways of rewriting records:

• REWRITE record-name FROM source-area

• REWRITE record-name

In the following example, statements (1) and (2) are logically equivalent:

FILE SECTION.
FD STOCK-FILE.
01 STOCK-RECORD PIC X(80).
WORKING-STORAGE SECTION.
01 STOCK-WORK PIC X(80).

---------------(1)------------------
REWRITE STOCK-RECORD FROM STOCK-WORK.

--------------(2)--------------
MOVE STOCK-WORK TO STOCK-RECORD.
REWRITE STOCK-RECORD.

When you omit the FROM phrase, you process the records directly in the record
area or buffer (for example, STOCK-RECORD).

For a REWRITE statement, the record being rewritten must be the same length
as the record being replaced.

Processing Sequential Files 9-7

Example 9-4 reads a sequential file and rewrites as many records as the operator
wants.

Example 9-4: Rewriting a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQ03.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT TRANS-FILE ASSIGN TO "TRANS.DAT".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD PIC X (25) .
WORKING-STORAGE SECTION.
01 ANSWER PIC X.
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 TRANS-FILE.
PERFORM A100-READ-TRANS-FILE

UNTIL TRANSACTION-RECORD
CLOSE TRANS-FILE.
STOP RUN.

AlOO-READ-TRANS-FILE.
READ TRANS-FILE AT END

"END".

MOVE "END" TO TRANSACTION-RECORD.
IF TRANSACTION-RECORD NOT = "END"

PERFORM A300-GET-ANSWER UNTIL ANSWER
PERFORM A200-REWRITE-RECORD.

A200-REWRITE-RECORD.

"Y" OR "N"

IF ANSWER = "Y" DISPLAY "Please enter new record content"
ACCEPT TRANSACTION-RECORD
REWRITE TRANSACTION-RECORD.

A300-GET-ANSWER.
DISPLAY "Do you want to replace this record? -- "

TRANSACTION-RECORD.
DISPLAY "Please answer Y or N".
ACCEPT ANSWER.

9.8 Extending a Sequential File

To position a file to its current end, and to allow the program to write new records
beyond the last record in the file, use both:

• The EXTEND phrase of the OPEN statement

• The WRITE statement

Example 9-5 shows how to extend a sequential file.

9-8 Processing Sequential Files

Example 9-5: Extending a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQ04.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT TRANS-FILE ASSIGN TO "TRANS.DAT".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD
PROCEDURE DIVISION.

PIC X(25).

A000-BEGIN.
OPEN EXTEND TRANS-FILE.
PERFORM AlOO-WRITE-RECORD

UNTIL TRANSACTION-RECORD
CLOSE TRANS-FILE.
STOP RUN.

A100-WRITE-RECORD.

"END".

DISPLAY "Enter next record - X(25)".
DISPLAY "Enter END to terminate the session".
DISPLAY"-------------------------".
ACCEPT TRANSACTION-RECORD.
IF TRANSACTION-RECORD NOT = "END"

WRITE TRANSACTION-RECORD.

Without the EXTEND phrase, a VAX COBOL program would have to do the
following tasks:

1. Open the input file.

2. Copy it to an output file.

3. Add records to the output file.

Processing Sequential Files 9-9

Chapter 10

Processing Relative Files

A relative file consists of fixed-size record cells and uses a key to retrieve its
records. The key, or record key, is an integer that specifies the record's storage
cell within the file. It is analogous to the subscript of a table.

Unlike sequential files, where retrieving the .twentieth record involves reading
the previous 19 records first, relative files can directly access the twentieth record
with one READ operation. In addition, relative files allow the program to read
forward or backward with respect to the current record key.

Another significant fact of relative file processing is that not every cell must
contain a record. Although each cell occupies one record space, a field preceding
the record on the storage medium indicates whether or not that cell contains a
valid record. Thus, a file can contain fewer records than it has cells, and the
empty cells can be anywhere in the file.

The numerical order of the cells remains the same during all operations on a
relative file; however, accessing statements can move a record from one cell to
another, delete a record from a cell, insert new records into empty cells, or rewrite
existing cells.

Relative file processing is available only on disk devices.

10.1 Relative File Organization

With relative file processing, RMS structures a file as a series of fixed-sized record
cells. Cell size is based on the size specified as the maximum permitted length
for a record in the file. RMS considers these cells as successively numbered from
1 (the first) ton (the last). A cell's relative record number (RRN) represents its
location relative to the beginning of the file.

Each cell in a relative file can contain a single record. Empty cells can be
interspersed among cells containing records.

Since cell numbers in a relative file are unique, they can be used to identify
both the cell and the record (if any) occupying that cell. Thus, record number 1
occupies the first cell in the file, record number 21 occupies the twenty-first cell,
and so forth. Figure 10-1 depicts the structure of relative file organization.

Processing Relative Files 10-1

Figure 10-1: Relative File Organization

Cell no.

1
1

Beginning

2

of file End of file j

+ 1 3 999 1000 +

I __ R_E_~_o_Ro_j.___E_M_P_rv_..__R_E_c3_o_R_o__.j 1 _R_E9-c9_~_Ro____._E_M_P_rv____.j
t t

First record
written

Second record
written

ZK-6057-GE

Relative files have three capabilities not available with sequential files:

• Random access by record key

• Record deletion by record key

• Record updating by record key

Relative files are used primarily when records must be accessed in random
order and the records can easily be associated with a sequential number. When
a program creates a relative file, RMS allocates disk space for each cell. No
additional space in the cell can be added thereafter unless you recreate the
file. However, since records can be replaced, you can insert empty records at
first, then replace them later with real records, which gives the effect of adding
records. After a program creates a relative file, it can be updated by replacing or
deleting records. Records are replaced by rewriting the new record over (on top
of) the old one.

Relative files are used like tables. Their advantage over tables is that their

can be saved from run to run. Relative files are best for records that are easily
associated with ascending, consecutive numbers (so that the program conversion
from data to cell number is easy), such as years (the years 71 to 90 could be
stored with record keys 1 to 20), months (record keys 1 to 12), or the 50 U.S.
states (record keys 1 to 50).

10.2 Design Considerations

Before you create your relative file applications, you should design your file based
on these design considerations:

1. Record format (see Chapter 8).

• Fixed-length

• Variable-length

Relative files can contain either fixed-length records or variable-length
records; however, RMS calculates a cell size equal to the maximum record
size plus overhead bytes, resulting in fixed-length storage. Once created,
relative records can be accessed sequentially, randomly, or dynamically.

10-2 Processing Relative Files

2. Medium-Relative files can be accessed on disk only. Make sure the disk pack
is large enough to meet your current and future needs.

3. Allocation at time of file creation and file extension.

4. Bucket size-To optimize the packing of cells into buckets, cell size should be
evenly divisible into bucket size.

5. Maximum number of records.

6. Compiler limitations-Consider the logical and physical limits imposed by the
VAX COBOL compiler.

7. Key scheme.

For more information on relative file design, see Chapter 20, and the VMS
documentation on RMS tuning.

10.3 Statements for Relative File Processing

Processing a relative file involves the following:

1. Opening the file with the OPEN statement

2. Setting the relative record number

3. Processing the file with valid I/O statements

4. Closing the file with the CLOSE statement

Table 10-1 lists the valid I/O statements and illustrates the following
relationships:

• Organization determines valid access modes.

• Organization and access mode determine valid open modes.

• All three (organization, access, and open mode) enable or disable I/O
statements.

Table 10-1 : Valid 1/0 Statements for Relative Files

File
Organization Access Mode Statement

RELATIVE SEQUENTIAL DELETE
READ
REWRITE
START
WRITE
UNLOCK

INPUT

No
Yes
No
Yes
No
Yes

Open Mode

OUTPUT 1-0 EXTEND

No Yes No
No Yes No
No Yes No
No Yes No
Yes No Yes
Yes Yes Yes

(continued on next page)

Processing Relative Files 10-3

Table 10-1 (Cont.): Valid 1/0 Statements for Relative Files

Open Mode
File
Organization Access Mode Statement INPUT OUTPUT 1-0 EXTEND

RANDOM DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
WRITE No Yes Yes No
UNLOCK Yes Yes Yes No

DYNAMIC DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes Yes No
UNLOCK Yes Yes Yes No
READ NEXT Yes No Yes No

10.4 Defining a Relative File

Each relative file in a VAX COBOL program is given a file name in a SELECT
clause in the Environment Division.

The ASSIGN clause associates the file name with a file specification. The file
specification points the operating system to the file's physical and logical location
on a specific hardware device (see HINZ.DAT in Example 10-1). Each file is
further described in the program with a file description (FD) entry in the File
Section of the Data Division (see FLAVORS in Example 10-1). The FD entry is
followed immediately by the file's record description (see KETCHUP-MASTER in
Example 10-1).

You must specify the ORGANIZATION IS RELATIVE phrase in the SELECT
clause; otherwise, VAX COBOL assumes sequential organization. You must also
specify the RELATIVE KEY IS phrase and assign a relative key data name for
random or dynamic access.

Example 10-1 : Defining a Relative File

IDENTIFICATION DIVISION.
PROGRAM-ID. RELOl.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY

10-4 Processing Relative Files

PIC X(50).

PIC 99.

10.5 Creating a Relative File

A VAX COBOL program creates a relative file by performing the following tasks:

1. Specifying ORGANIZATION IS RELATIVE in the SELECT clause

2. Specifying either of the following access modes in the SELECT clause:

• Sequential access

• Random access

Each of these two access mode choices requires a different processing
technique. The next two sections discuss those techniques.

3. Opening the file as:

• OUTPUT-The only function of a WRITE statement with output files is to
place entirely new records into the file. If a file requires more space, RMS
automatically extends the file size, regardless of the access mode.

• 1-0-With input/output files, the WRITE statement places records into
cells that already exist and contain no valid record.

4. Initializing the relative key data name for each record to be written

5. Executing the WRITE statement for each new relative record

6. Closing the file

10.5.1 Sequential Access Mode Creation

When a program creates a relative file in sequential access mode, RMS does not
use the relative key. Instead, it writes the first record in the file at relative record
number 1, the second record at relative record number 2, and so on, until the
program closes the file. If you use the RELATIVE KEY IS clause, the compiler
moves the relative record number of the record being written to the relative key
data item. Example 10-2 writes 10 records with relative record numbers
1to10.

Example 10-2: Creating a Relative File in Sequential Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. REL02.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"
ORGANIZATION IS RELATIVE

DATA DIVISION.
FILE SECTION.
FD FLAVORS.

ACCESS MODE IS SEQUENTIAL.

01 KETCHUP-MASTER.
02 FILLER PIC x (14).
02 REC-NUM PIC 9 (05).
02 FILLER PIC X(31).

WORKING-STORAGE SECTION.
01 REC-COUNT PIC S9(5) VALUE o.

(continued on next page)

Processing Relative Files 10-5

Example 10-2 {Cont.): Creating a Relative File in Sequential Access Mode

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN OUTPUT FLAVORS.
PERFORM AOlO-WRITE 10 TIMES.
CLOSE FLAVORS.
STOP RUN.

A010-WRITE.
MOVE "Record number" TO KETCHUP-MASTER.
ADD 1 TO REC-COUNT.
MOVE REC-COUNT TO REC-NUM.
WRITE KETCHUP-MASTER

INVALID KEY DISPLAY "BAD WRITE"
STOP RUN.

10.5.2 Random Access Mode Creation

When a program creates a relative file using random access mode, the program
must place a value in the RELATIVE KEY data item before executing the WRITE
statement. Example 10-3 shows how to supply the relative key. It writes 10
records in the cells numbered: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20. Record cells
1, 3, 5, 7, 9, 11, 13, 15, 17, and 19 are also created, but contain no valid record.

Example 10-3: Creating a Relative File in Random Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. REL03.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER.

02 FILLER
02 REC-NUM
02 FILLER

WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY
01 REC-COUNT

10-6 Processing Relative Files

PIC
PIC
PIC

PIC
PIC

x (14).
9 (05).
x (31).

99.
S9(5) VALUE 0.

(continued on next page)

Example 10-3 (Cont.): Creating a Relative File in Random Access Mode

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN OUTPUT FLAVORS.
MOVE 0 TO KETCHUP-MASTER-KEY.
PERFORM A010-CREATE-RELATIVE-FILE 10 TIMES.
DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

A010-CREATE-RELATIVE-FILE.
ADD 2 TO KETCHUP-MASTER-KEY.
MOVE "Record number" TO KETCHUP-MASTER.
ADD 2 TO REC-COUNT.
MOVE REC-COUNT TO REC-NUM.
WRITE KETCHUP-MASTER

INVALID KEY DISPLAY "BAD WRITE"
STOP RUN.

10.6 Reading a Relative File

Your program can read a relative file three ways:

• Sequentially

• Randomly

• Dynamically

10.6.1 Sequential Reading

To read relative records sequentially, you must do the following:

1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS SEQUENTIAL clause.

3. Open the file for INPUT or I-0.

4. Read records as you would a sequential file, or use the START statement.

The READ statement makes the next logical record of an open file available
to the program. The system reads the file sequentially from either: (1) cell 1
or (2) wherever you START the file, up to cell n. It skips the empty cells and
retrieves only valid records. Each READ statement updates the contents of the
file's RELATIVE KEY data item, if specified. The data item contains the relative
number of the available record. When the At End condition occurs, execution of
the READ statement is unsuccessful (see Chapter 12).

Sequential processing need not begin at the first record of a relative file. The
START statement specifies the next record to be read and positions the file
position indicator for subsequent I/O operations.

Example 10-4 reads a relative file sequentially, displaying every record on the
terminal.

Processing Relative Files 10-7

Example 10-4: Reading a Relative File Sequentially

IDENTIFICATION DIVISION.
PROGRAM-ID. REL04.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY
01 END-OF-FILE
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN INPUT FLAVORS.

PIC X(50).

PIC 99.
PIC X.

PERFORM A010-DISPLAY-RECORDS UNTIL END-OF-FILE "Y".
A005-EOJ.

DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

A010-DISPLAY-RECORDS.
READ FLAVORS AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" DISPLAY KETCHUP-MASTER.

10.6.2 Random Reading

To read relative records randomly, you must do the following:

1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS RANDOM or DYNAMIC clause.

3. Open the file for INPUT or I-0.

4. Move the relative record number value to the RELATIVE KEY data name.

5. Read the record from the cell identified by the relative record number.

Example 10-5 reads a relative file randomly, displaying every record on the
terminal.

The READ statement selects a specific record from an open file and makes it
available to the program. The value of the relative key identifies the specific
record. The system reads the record identified by the RELATIVE KEY data name
clause. If the cell does not contain a valid record, the invalid key condition occurs,
and the READ operation fails (see Chapter 12).

10-8 Processing Relative Files

Example 10-5: Reading a Relative File Randomly

IDENTIFICATION DIVISION.
PROGRAM-ID. RELOS.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER

WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN INPUT FLAVORS.

PIC X (50) .

PIC 99 VALUE 99.

PERFORM AlOO-DISPLAY-RECORD UNTIL KETCHUP-MASTER-KEY 00.
DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

A100-DISPLAY-RECORD.
DISPLAY "TO DISPLAY A RECORD ENTER ITS RECORD NUMBER (ZERO to END)".
ACCEPT KETCHUP-MASTER-KEY WITH CONVERSION.
IF KETCHUP-MASTER-KEY > 00

READ FLAVORS
INVALID KEY DISPLAY "BAD KEY"

CLOSE FLAVORS
STOP RUN

END-READ
DISPLAY KETCHUP-MASTER.

10.6.3 Dynamic Reading

The READ statement has two formats so that it can select the next logical record
(sequentially) or select a specific record (randomly) and make it available to the
program. In dynamic mode, the program can switch from random access I/O
statements to sequential access I/O statements in any order, without closing
and reopening files. However, you must use the READ NEXT statement to
sequentially read a relative file open in dynamic mode.

Sequential processing need not begin at the first record of a relative file. The
START statement positions the file position indicator for subsequent I/O
operations.

A sequential read of a dynamic file is indicated by the NEXT phrase of the READ
statement. A READ NEXT statement should follow the START statement since
the READ NEXT statement reads the next record indicated by the current record
pointer. Subsequent READ NEXT statements sequentially retrieve records until
another START statement or random READ statement executes.

Example 10-6 processes a relative file containing 10 records. If the previous
program examples in this chapter have been run, each record has a unique
even number from 2 to 20 as its key. The program positions the record
pointer (using the START statement) to the cell corresponding to the value
in INPUT-RECORD-KEY. The program's READ ... NEXT statement retrieves the
remaining valid records in the file for display on the terminal.

Processing Relative Files 10-9

Example 10-6: Reading a Relative File Dynamically

IDENTIFICATION DIVISION.
PROGRAM-ID. REL06.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY
01 END-OF-FILE
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 FLAVORS.

PIC X(SO).

PIC 99.
PIC X VALUE "N".

DISPLAY "Enter number".
ACCEPT KETCHUP-MASTER-KEY.
START FLAVORS KEY = KETCHUP-MASTER-KEY

INVALID KEY DISPLAY "Bad START statement"
GO TO A005-END-OF-JOB.

PERFORM A010-DISPLAY-RECORDS UNTIL END-OF-FILE= "Y".
A005-END-OF-JOB.

DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

A010-DISPLAY-RECORDS.
READ FLAVORS NEXT RECORD AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" DISPLAY KETCHUP-MASTER.

10.7 Updating a Relative File

A program updates a relative file with the WRITE, REWRITE, and DELETE
statements. The WRITE statement adds a record to the file. Only the REWRITE
and DELETE statements change the contents of records already existing in the
file. In either case, adequate backup must be available in the event of error. The
next two sections explain how to rewrite and delete relative records.

10. 7 .1 Rewriting Relative Records

Two options are available for rewriting relative records:

• Sequential access mode rewriting

• Random access mode rewriting

The REWRITE statement logically replaces a record in a relative file. After
successfully rewriting a record into the file, the program can access that record at
any time. However, the program cannot access the record that occupied the cell
previous to the rewrite operation.

10-10 Processing Relative Files

10.7.1.1 Sequential Access Mode Rewriting

To rewrite relative records in sequential access mode, you must do the following:

1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS SEQUENTIAL clause.

3. Open the file for I-0.

4. Read the target record, or use the START statement and then the READ
statement to sequentially read the file up to the target record.

5. Update the target record.

6. Rewrite the target record into its cell.

The REWRITE statement places the successfully read record back into its cell in
the file.

Example 10-7 reads a relative record sequentially and displays the record on the
terminal. The program then passes the record to an update routine that is not
included in the example. The update routine updates the record, and passes the
updated record back to the program illustrated in Example 10-7, which displays
the updated record on the terminal and rewrites the record in the same cell.

Example 10-7: Rewriting Relative Records in Sequential Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. REL07.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 FLAVORS.

PIC X(50).

PIC 99 VALUE 99.

PERFORM A100-UPDATE-RECORD UNTIL KETCHUP-MASTER-KEY 00.
A005-EOJ.

DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

(continued on next page)

Processing Relative Files 10-11

Example 10-7 (Cont.): Rewriting Relative Records in Sequential Access Mode

A100-UPDATE-RECORD.
DISPLAY "TO UPDATE A RECORD ENTER ITS RECORD NUMBER (ZERO to END)".
ACCEPT KETCHUP-MASTER-KEY WITH CONVERSION.
IF KETCHUP-MASTER-KEY IS NOT EQUAL TO 00

START FLAVORS KEY IS EQUAL TO KETCHUP-MASTER-KEY
INVALID KEY DISPLAY "BAD START"

STOP RUN
END-START
PERFORM A200-READ-FLAVORS
DISPLAY "*********BEFORE UPDATE*********"
DISPLAY KETCHUP-MASTER

**

*
* Update routine code here

*
**

DISPLAY "*********AFTER UPDATE*********"
DISPLAY KETCHUP-MASTER
REWRITE KETCHUP-MASTER.

A200-READ-FLAVORS.
READ FLAVORS

AT END DISPLAY "END OF FILE"
GO TO A005-EOJ.

10.7.1.2 Random Access Mode Rewriting

To rewrite relative records in random access mode, you must do the following:

1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS RANDOM or DYNAMIC clause.

3. Open the file for I-0.

4. Move the relative record number value of the record you want to read to the
RELATIVE KEY data name.

5. Read the record from the cell identified by the relative record number.

6. Update the record.

7. Rewrite the record into the cell identified by the relative record number.

The system randomly reads the record identified by the KEY IS clause. The
REWRITE statement places the successfully read record back into its cell in
the file.

If the cell does not contain a valid record, or if the REWRITE operation is
unsuccessful, the invalid key condition occurs, and the REWRITE operation
fails (see Chapter 12).

Example 10-8 reads a relative record randomly, displays its contents on the
terminal, updates the record, displays its updated contents on the terminal, and
rewrites the record in the same cell.

10-12 Processing Relative Files

Example 10-8: Rewriting Relative Records in Random Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. REL08.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 FLAVORS.

PIC X (50) .

PIC 99.

PERFORM AlOO-UPDATE-RECORD UNTIL KETCHUP-MASTER-KEY 00.
A005-EOJ.

DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

AlOO-UPDATE-RECORD.
DISPLAY "TO UPDATE A RECORD ENTER ITS RECORD NUMBER".
ACCEPT KETCHUP-MASTER-KEY.
READ FLAVORS INVALID KEY DISPLAY "BAD READ"

GO TO A005-EOJ.
DISPLAY "*********BEFORE UPDATE*********".
DISPLAY KETCHUP-MASTER.

**

*
*
*

Update routine

**
DISPLAY "*********AFTER UPDATE*********".
DISPLAY KETCHUP-MASTER.
REWRITE KETCHUP-MASTER INVALID KEY DISPLAY "BAD REWRITE"

GO TO A005-EOJ.

10. 7 .2 Deleting Relative Records

Two options are available for deleting relative records:

• Sequential access mode deletion

• Random access mode deletion

The DELETE statement logically removes an existing record from a relative file.
After successfully removing a record from a file, the program cannot later
access it.

10. 7 .2.1 Sequential Access Mode Deletion

To delete a relative record in sequential access mode, you must do the following:

1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS SEQUENTIAL clause.

3. Open the file for I-0.

Processing Relative Files 10-13

4. Either (a) use the START statement to position the record pointer or (b)
sequentially read the file up to the target record.

5. Delete the last read record.

Example 10-9 is an example of deleting relative records in sequential access
mode.

Example 10-9: Deleting Relative Records in Sequential Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. REL09.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 FLAVORS.

PIC X(50).

PIC 99 VALUE 1.

PERFORM A010-DELETE-RECORDS UNTIL KETCHUP-MASTER-KEY 00.
A005-E:OJ.

DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

AOlO-DELETE-RECORDS.
DISPLAY "TO DELETE A RECORD ENTER ITS RECORD NUMBER".
ACCEPT KETCHUP-MASTER-KEY.
IF KETCHUP-MASTER-KEY NOT = 00 PERFORM A200-READ-FLAVORS

DELETE FLAVORS RECORD.
A200-READ-FLAVORS.

START FLAVORS
INVALID KEY DISPLAY "INVALID START"

STOP RUN.
READ FLAVORS AT END DISPLAY "FILE AT END"

GO TO A005-EOJ.

10. 7.2.2 Random Access Mode Deletion

To delete a relative record in random access mode, you must do the following:

1. Specify the ORGANIZATION IS RELATIVE clause.

2. Specify the ACCESS MODE IS RANDOM clause.

3. Open the file I-0.

4. Move the relative record number value to the RELATIVE KEY data name.

5. Delete the record identified by the relative record number.

If the file does not contain a valid record, an invalid key condition exists.

10-14 Processing Relative Files

Example 10-10 is an example of deleting relative records in random access
mode.

Example 10-10: Deleting Relative Records in Random Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. RELlO.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 FLAVORS.

PIC X(50).

PIC 99 VALUE 1.

PERFORM AOlO-DELETE-RECORDS UNTIL KETCHUP-MASTER-KEY 00.
A005-EOJ.

DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

A010-DELETE-RECORDS.
DISPLAY "TO DELETE A RECORD ENTER ITS RECORD NUMBER".
ACCEPT KETCHUP~MASTER-KEY.
IF KETCHUP-MASTER-KEY NOT = 00

DELETE FLAVORS RECORD
INVALID KEY DISPLAY "INVALID DELETE"

STOP RUN.

Processing Relative Files 10-15

Chapter 11

Processing Indexed Files

Unlike the sequential ordering of records in a sequential file or the relative
positioning of records in a relative file, the location of records in indexed file
organization is transparent to the program. It is possible to add new records
to an indexed file and logically place them between physically adjacent records
without re-creating the file. Not only can records be added, but they can also be
deleted, making room for new records.

RMS controls the placement of records in an indexed file based on user-specified
primary and alternate keys in the record itself. The presence of keys in the
records of the file governs this placement. This is the only file organization where
RMS uses the actual contents of the records for record placement within the file.

Indexed file processing is available only on disk devices.

11.1 Indexed File Organization

VAX COBOL allows sequential, random, and dynamic access to records. Each
record is accessed by one of its primary or alternate keys.

A major feature of indexed file organization is the use of a key to uniquely
identify a record within the file. Its location and length are identical in all
records. When creating an indexed file, you must select the data items to be
the keys. Selecting such a data item indicates to RMS that the contents (key
value) of that string in any record written to the file can be used by the program
to identify that record for subsequent retrieval. For more information, see the
RECORD KEY IS clause and the ALTERNATE RECORD KEY IS clause in the
VAX COBOL Reference Manual.

You must define at least one main key, called the primary key, for an indexed
file. VAX COBOL also allows you to optionally define from 1 to 254 additional
keys called alternate keys. Each alternate key represents an additional
character string in each record of the file. The key value in any of these
additional strings can also be used as a means of identifying the record for
retrieval.

You define primary and alternative key values in the Record Description entry.
Primary and alternate key values need not be unique if you specify the WITH
DUPLICATES phrase in the file description entry. When duplicate key values are
present, you can retrieve the records in the order that they were written. The
logical sort order of each key can be either ascending (the default) or descending.
The logical sort order controls the order of sequential processing of the record.

Processing Indexed Files 11-1

As your program writes records into an indexed file, RMS locates the values
contained in the primary and alternate keys. RMS builds these values into a
tree-structured table known as an index (or B-Tree), which consists of a series
of entries. Each entry contains a key value copied from a record. With each key
value is a pointer to the location in the file of the record from which the value
was copied. Figure 11-1 shows the general structure of an indexed file defined
with a primary key only.

Figure 11-1: Indexed File Organization

ABLE

Key Definition

Primary key index (employee name)

ABLE JONES SMITH

record record record

ELM AVE JONES MAIN ST SMITH COLT RD

ZK-6058-GE

For a more detailed explanation of indexed file structure, see the VMS
documentation on RMS tuning.

11.2 Design Considerations

Before you create your indexed file applications, you should design your file based
on these design considerations:

1. Record format (see Chapter 8).

• Fixed-length

• Variable-length

2. Medium-Indexed files can be accessed on disk only.

3. Allocation at the time of file creation and file extension (see Chapter 20).

4. Speed-You want to maximize the speed with which the program processes
data.

5. Space-You want to minimize file size, disk space, and memory requirements
to run your program.

6. Shared access-You must consider who is going to use the data and how they
will access the data.

7. Ease of design-You want to minimize the time spent writing the application.

8. Compiler limitations-You want to consider the logical and physical limits
imposed by the VAX COBOL compiler.

11-2 Processing Indexed Files

For more information on indexed file design optimization, see Chapter 20 and the
VMS documentation on RMS tuning. If you do not carefully design your index
file-that is, if you take all the file defaults-your indexed file application may
run more slowly than you expect.

11.3 Statements for Indexed File Processing

Processing an indexed file involves the following tasks:

1. Opening the file with the OPEN statement

2. Processing the file with valid I/O statements

3. Closing the file with the CLOSE statement

Table 11-1 lists the valid I/O statements and illustrates the following
relationships:

• Organization determines valid access modes.

• Organization and access mode determine valid open modes.

• All three (organization, access, and open mode) enable or disable I/O
statements.

Table 11-1: Valid 1/0 Statements for Indexed Files

File
Organization

INDEXED

Access Mode

SEQUENTIAL

RANDOM

DYNAMIC

Statement

DELETE
READ
REWRITE
START
WRITE
UNLOCK
DELETE
READ
REWRITE
WRITE
UNLOCK
DELETE
READ
REWRITE
START
WRITE
READ NEXT
UNLOCK

INPUT

No
Yes
No
Yes
No
Yes

No
Yes
No
No
Yes

No
Yes
No
Yes
No
Yes
Yes

Open Mode

OUTPUT 1-0 EXTEND

No Yes No
No Yes No
No Yes No
No Yes No
Yes No Yes
Yes Yes Yes

No Yes No
No Yes No
No Yes No
Yes Yes No
Yes Yes No
No Yes No
No Yes No
No Yes No
No Yes No
Yes Yes No
No Yes No
Yes Yes No

11.4 Defining an Indexed File

Each indexed file in a VAX COBOL program is given a file name in a SELECT
clause in the Environment Division. The ASSIGN clause associates the file
name with a file specification. The file specification points the operating system
to the file's physical and logical location on a specific hardware device (see
Example 11.,..1, DAIRY.DAT). Each file is further described in the program
with a file description (FD) entry in the File Section of the Data Division (see
Example 11-1, FLAVORS). The FD entry is followed immediately by the file's

Processing Indexed Files 11-3

record description (see Example 11-1, ICE-CREAM-MASTER). Refer to the VAX
COBOL Reference Manual for information relating to the RECORD KEY and
ALTERNATE RECORD KEY clauses.

Example 11-1 defines a dynamic access mode indexed file with one
primary key (ICE-CREAM-MASTER-KEY) and two alternate record keys
(ICE-CREAM-STORE-CODE, and ICE-CREAM-STORE-STATE). Note that
one alternate record key allows duplicates (ICE-CREAM-STORE-STATE).
Any program using the identical entries in the SELECT clause as shown in
Example 11-1 can reference the DAIRY.DAT file sequentially and randomly.

Example 11-1: Defining an Indexed File

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEXOl.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE

WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 ICE-CREAM-MASTER.

02 ICE-CREAM-MASTER-KEY
02 ICE-CREAM-MASTER-DATA.

03 ICE-CREAM-STORE-CODE
03 ICE-CREAM-STORE-ADDRESS
03 ICE-CREAM-STORE-CITY
03 ICE-CREAM-STORE-STATE

PROCEDURE DIVISION.
AGO-BEGIN.

PIC XXXX.

PIC XXXXX.
PIC X (20) .
PIC X (20) .
PIC XX.

You must specify the ORGANIZATION IS INDEXED phrase; otherwise, the
default is ORGANIZATION IS SEQUENTIAL. You specify ACCESS MODE
IS... in the SELECT clause, depending on how you want to access the file
(SEQUENTIAL, RANDOM, DYNAMIC).

11.5 Creating and Populating an Indexed File

A VAX COBOL program creates an indexed file by:

1. Specifying ORGANIZATION IS INDEXED in the SELECT clause.

2. Specifying either of the following access modes in the SELECT clause:

• Sequential access-The program can write records in ascending or
descending order by primary key, depending on the sort order.

• Random or dynamic access-The program can write records in any order.

11-4 Processing Indexed Files

3. Opening the file for:

• OUTPUT-To add records only

• I-0-To add, change, or delete records

4. Initializing the key values.

5. Executing the WRITE statement.

The best way to initially populate an indexed file is to sequentially write the
records in ascending order by primary key.

The program can add records to the file until it reaches the physical limitations of
its storage device. When this occurs, you should: (1) delete unnecessary records,
(2) back up the file, and (3) recreate the file either by using the CONVERT
Utility to optimize file space, or by using a VAX COBOL program. For more
information, see the VMS documentation on the CONVERT Utility.

Example 11-2 creates and populates an indexed file (DAIRY.DAT). The file
(DAIRY!. DAT) has been sorted in ascending sequence. Notice that the primary
and alternate keys are initialized in ICE-CREAM-MASTER when the contents
of the fields in INPUT-RECORD are read into ICE-CREAM-MASTER before the
record is written.

Example 11-2: Creating and Populating an Indexed File

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEX02.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "DAIRYI.DAT".
SELECT FLAVORS ASSIGN TO "DAIRY.DAT"

ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE

WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE.
01 INPUT-RECORD.

02 INPUT-RECORD-KEY
02 INPUT-RECORD-DATA

FD FLAVORS.
01 ICE-CREAM-MASTER.

02 ICE-CREAM-MASTER-KEY
02 ICE-CREAM-MASTER-DATA.

03 ICE-CREAM-STORE-CODE
03 ICE-CREAM-STORE-ADDRESS
03 ICE-CREAM-STORE-CITY
03 ICE-CREAM-STORE-STATE

WORKING-STORAGE SECTION.
01 END-OF-FILE

PIC 9999.
PIC x (47).

PIC xxxx.

PIC xxxxx.
PIC x (20).
PIC X(20).
PIC xx.

PIC x.

(continued on next page)

Processing Indexed Files 11-5

Example 11-2 (Cont.): Creating and Populating an Indexed File

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN INPUT INPUT-FILE.
OPEN OUTPUT FLAVORS.

A010-POPULATE.
PERFORM AlOO-READ-INPUT UNTIL END-OF-FILE "Y".

A020-EOJ.
DISPLAY "END OF JOB".
STOP RUN.

AlOO-READ-INPUT.
READ INPUT-FILE INTO ICE-CREAM-MASTER

AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y"

WRITE ICE-CREAM-MASTER INVALID KEY DISPLAY "BAD WRITE"
STOP RUN.

11.6 Reading an Indexed File

Your program can read an indexed file in the following three ways:

• Sequentially

• Randomly

• Dynamically

However, to read the file randomly, the program must: (1) initialize either
the primary key data name or the alternate key data name before reading the
target record, and (2) specify that data name in the KEY IS phrase of the READ
statement.

Dynamic access permits switching back and forth from sequential access to
random access any number of times during one OPEN of the file.

11.6.1 Sequential Reading

To read indexed records in a sequential mode, you must do the following:

1. Specify the ORGANIZATION IS INDEXED in the SELECT clause.

2. Specify the ACCESS MODE IS SEQUENTIAL clause.

3. Open the file for INPUT or I-0.

4. Read records from the beginning of the file as you would a sequential file-use
the READ ... AT END statement.

The READ statement makes the next logical record of an open file available to the
program. It skips deleted records and sequentially reads and retrieves only valid
records. When the at end condition occurs, execution of the READ statement is
unsuccessful (see Chapter 12).

Example 11-3 reads the entire indexed file sequentially beginning with the first
record in the file, displaying every record on the terminal.

11-6 Processing Indexed Files

Example 11-3: Reading an Indexed File Sequentially

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEX03.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE

WITH DUPLICATES
.ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 ICE-CREAM-MASTER.

02 ICE-CREAM-MASTER-KEY
02 ICE-CREAM-MASTER-DATA.

03 ICE-CREAM-STORE-CODE
03 ICE-CREAM-STORE-ADDRESS
03 ICE-CREAM-STORE-CITY
03 ICE-CREAM-STORE-STATE

WORKING-STORAGE SECTION.
01 END-OF-FILE
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN INPUT FLAVORS.
A010-SEQUENTIAL-READ.

PIC XXXX.

PIC XXXXX.
PIC X(20).
PIC X (20) .
PIC XX.

PIC X.

PERFORM AlOO-READ-INPUT UNTIL END-OF-FILE "Y".
A020-EOJ.

DISPLAY "END OF JOB".
STOP RUN.

A100-READ-INPUT.
READ FLAVORS AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y"

DISPLAY ICE-CREAM-MASTER
STOP "Type CONTINUE to display next master".

11.6.2 Random Reading

To read indexed records randomly, you must do the following:

1. Specify the ORGANIZATION IS INDEXED clause.

2. Specify the ACCESS MODE IS RANDOM clause.

3. Open the file for INPUT or I-0.

4. Initialize the RECORD KEY or ALTERNATE RECORD KEY data name
before reading the record.

5. Read the record using the KEY IS clause.

The READ statement selects a specific record from an open file and makes it
available to the program. The value of the primary or alternate key identifies
the specific record. The system randomly reads the record identified by the KEY
clause. If RMS does not find a valid record, the invalid key condition occurs, and
the READ statement fails (see Chapter 12).

Processing Indexed Files 11-7

Example 11-4 reads an indexed file randomly, displaying its contents on the
terminal.

Example 11-4: Reading an Indexed File Randomly

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEX04.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ICE-CREAM-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 ICE-CREAM-MASTER.

02 ICE-CREAM-KEY PIC XXXX.
02 ICE-CREAM-DATA.

03 ICE-CREAM-STORE-CODE
03 ICE-CREAM-STORE-ADDRESS
03 ICE-CREAM-STORE-CITY
03 ICE-CREAM-STORE-STATE

WORKING-STORAGE SECTION.
01 PROGRAM-STAT

88 OPERATOR-STOPS-IT
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 FLAVORS.
PERFORM A020-INITIAL-PROMPT.
IF OPERATOR-STOPS-IT

PERFORM A005-TERMINATE.
PERFORM A030-RANDOM-READ.

PIC xxxxx.
PIC x (20).
PIC X(20).
PIC xx.

PIC x.
VALUE "1".

PERFORM A025-SUBSEQUENT-PROMPTS UNTIL OPERATOR-STOPS-IT.
PERFORM A005-TERMINATE.

A005-TERMINATE.
DISPLAY "END OF JOB".
STOP RUN.

A020-INITIAL-PROMPT.
DISPLAY "Do you want to see a store?".
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT "Y" OR "y" OR "N" OR "n".
IF PROGRAM-STAT = "N" OR "n"

MOVE "1" TO PROGRAM-STAT.
A025-SUBSEQUENT-PROMPTS.

MOVE SPACE TO PROGRAM-STAT.
DISPLAY "Do you want to see another store ?".
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT= "Y" OR "y" OR "N" OR "n".
IF PROGRAM-STAT = "Y" OR "y"

PERFORM A030-RANDOM-READ
ELSE

MOVE "1" TO PROGRAM-STAT.
A030-RANDOM-READ.

DISPLAY "Enter key".
ACCEPT ICE-CREAM-KEY.
PERFORM AlOO-READ-INPUT-BY-KEY.

A040-GET-ANSWER.
DISPLAY "Please answer Y or N"
ACCEPT PROGRAM-STAT.

11-8 Processing Indexed Files

(continued on next page)

Example 11-4 (Cont.): Reading an Indexed File Randomly

Al00-READ-INPUT-BY-KEY.
READ FLAVORS KEY IS ICE-CREAM-KEY

INVALID KEY DISPLAY "Record does not exist - Try again"
NOT INVALID KEY DISPLAY "The record is: ", ICE-CREAM-MASTER.

11.6.3 Dynamic Reading

The READ statement has two formats, so it can select the next logical record
(sequentially) or select a specific record (randomly) and make it available to the
program. In dynamic mode, the program can switch from using random access
I/O statements to sequential access I/O statements, in any order, without closing
and reopening files. However, the program must use the READ NEXT statement
to sequentially read an indexed file opened in dynamic mode.

Sequential processing need not begin at the first record of an indexed file. The
START statement specifies the next record to be read sequentially and positions
the file position indicator for subsequent I/O operations anywhere within the file.

A sequential read of a dynamic file is indicated by the NEXT phrase of the READ
statement. A READ NEXT statement should follow the START statement since
the READ NEXT statement reads the next record indicated by the file position
indicator. Subsequent READ NEXT statements sequentially retrieve records until
another START statement or random READ statement executes.

Example 11-5 processes an indexed file containing 26 records. Each record has a
unique letter of the alphabet as its primary key. The program positions the file
to the first record whose INPUT-RECORD-KEY is equal to the specified letter of
the alphabet. The program's READ NEXT statement sequentially retrieves the
remaining valid records in the file for display on the terminal.

Example 11-5: Reading an Indexed File Dynamically

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEX05.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IND-ALPHA ASSIGN TO "ALPHA.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS INPUT-RECORD-KEY.

DATA DIVISION.
FILE SECTION.
FD IND-ALPHA.
01 INPUT-RECORD.

02 INPUT-RECORD-KEY
02 INPUT-RECORD-DATA

WORKING-STORAGE SECTION.
01 END-OF-FILE
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 IND-ALPHA.
DISPLAY "Enter letter"

PIC X.
PIC X(50).

PIC X.

(continued on next page)

Processing Indexed Files 11-9

Example 11-5 (Cont.): Reading an Indexed File Dynamically

ACCEPT INPUT-RECORD-KEY.
START IND-ALPHA KEY = INPUT-RECORD-KEY

INVALID KEY DISPLAY "BAD START STATEMENT"
GO TO A010-END-OF-JOB.

PERFORM A100-GET-RECORDS THROUGH A100-GET-RECORDS-EXIT
UNTIL END-OF-FILE= "Y".

A010-END-OF-JOB.
DISPLAY "END OF JOB".
CLOSE IND-ALPHA.
STOP RUN.

A100-GET-RECORDS.
READ IND-ALPHA NEXT RECORD AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" DISPLAY INPUT-RECORD.

A100-GET-RECORDS-EXIT.
EXIT.

11. 7 Updating an Indexed File

To update a record in an indexed file, your program must do the following:

• In sequential access mode:

1. Read the target record.

2. Verify that this record is indeed the record you want to change.

3. Change the record.

4. Rewrite or delete the record.

• In random access mode: rewrite or delete the record.

Your program can update an indexed file three ways:

• Sequentially

• Randomly

• Dynamically

NOTE

A program cannot rewrite an existing record if it changes the contents
of the primary key in that record. Instead, the program must delete the
record and write a new record. Alternate key values can be changed at
any time. However, the value of alternate keys must be unique unless
the WITH DUPLICATES phrase is present.

11.7.1 Sequential Updating

To update indexed records in a sequential mode, you must do the following:

1. Specify the ORGANIZATION IS INDEXED clause.

2. Specify the ACCESS MODE IS SEQUENTIAL clause.

3. Open the file for I-0.

4. Read records as you would a sequential file, that is, use the READ statement
with the AT END phrase.

11-10 Processing Indexed Files

5. Rewrite or delete records using the INVALID KEY phrase.

The READ statement makes the next logical record of an open file available to the
program. It skips deleted records and sequentially reads and retrieves only valid
records. When the at end condition occurs, execution of the READ statement is
unsuccessful (see Chapter 12).

The REWRITE statement replaces the record just read, while the DELETE
statement logically removes the record just read from the file.

Example 11-6 is an example of a sequential update of an indexed file.

Example 11-6: Updating an Indexed File Sequentially

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEX06.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM~MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE

WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.

DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 ICE-CREAM-MASTER.

02 ICE-CREAM-MASTER-KEY PIC xxxx.
02 ICE-CREAM-MASTER-DATA.

03 ICE-CREAM-STORE-CODE PIC xxxxx.
03 ICE-CREAM-STORE-ADDRESS PIC x (20).
03 ICE-CREAM-STORE-CITY PIC x (20).
03 ICE-CREAM-STORE-STATE PIC xx.

WORKING-STORAGE SECTION.
01 END-OF-FILE PIC x.
01 REWRITE-KEY PIC xxxxx.
01 DELETE-KEY PIC xx.
01 NEW-ADDRESS PIC x (20).
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 FLAVORS.
DISPLAY "Which store code do you want to find?".
ACCEPT REWRITE-KEY.
DISPLAY "What is its new address?".
ACCEPT NEW-ADDRESS.
DISPLAY "Which state do you want to delete?".
ACCEPT DELETE-KEY.
PERFORM A100-READ-INPUT UNTIL END-OF-FILE::::: "Y".

(continued on next page)

Processing Indexed Files 11-11

Example 11-6 (Cont.): Updating an Indexed File Sequentially

A020-EOJ.
DISPLAY "END OF JOB".
$TOP RUN.

AlOO--READ-INPUT.
READ FLAVORS AT END MOVE "Y'' TO END-OF-FILE.
IF END-OF:-FILE NOT = "Y" AND

REWRITE-KEY = ICE-CREAM-STORE-CODE
PERFORMA200-REWRITE-MASTER.

IF END~OF-FILE NOT = "Y" AND
DELETE-KEY = ICE-CREAM-STORE-STATE
PERFORM A300-DELETE-MASTER.

A200-REWRITE-MASTER.
MOVE NEW-ADDRESS TO ICE-CREAM-STORE-ADDRESS.
REWRITE ICE-CREAM-MASTER

INVALID KEY DISPLAY "Bad rewrite - ABORTED"
STOP RUN.

A300-DELETE-MASTER.
DELETE FLAVORS.

11.7.2 Random Updating

To update indexed records in a random mode, you must do the following:

1. Specify the ORGANIZATION IS INDEXED clause.

2. Specify the ACCESS MODE IS RANDOM clause.

3. Open the file for I-0.

4. Initialize the RECORD KEY or ALTERNATE RECORD KEY data name.

5. Write, rewrite, or delete records using the INVALID KEY phrase.

Note that if the primary or alternate key specified in step 4 allows duplicates,
only the first occurrence of a record with a matching value will be updated.

Example 11-7 is an example of a random update of an indexed file.

Example 11-7: Updating an Indexed File Randomly

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEX07.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS ICE-CREAM-MASTER-KEY

DATA DIVISION.
FILE SECTION.
FD FLAVORS.

11-12 Processing Indexed Files

ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE
WITH DUPLICATES

ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.

(continued on next page)

Example 11-7 (Cont.): Updating an Indexed File Randomly

01 ICE-CREAM-MASTER.
02 ICE-CREAM-MASTER-KEY PIC xxxx.
02 ICE-CREAM-MASTER-DATA.

03 ICE-CREAM-STORE-CODE PIC xxxxx.
03 ICE-CREAM-STORE-ADDRESS PIC x (20).
03 ICE-CREAM-STORE-CITY PIC x (20).
03 ICE-CREAM-STORE-STATE PIC xx.

WORKING-STORAGE SECTION.
01 HOLD-ICE-CREAM-MASTER PIC x (51).
01 PROGRAM-STAT PIC x.

88 OPERATOR-STOPS-IT VALUE "1".
88 LETS-SEE-NEXT-STORE VALUE "2".
88 NO-MORE-DUPLICATES VALUE "3".

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 FLAVORS.
PERFORM A030-RANDOM-READ UNTIL OPERATOR-STOPS-IT.

A020-EOJ.
DISPLAY "END OF JOB".
STOP RUN.

A030-RANDOM-READ.
DISPLAY "Enter key".
ACCEPT ICE-CREAM-MASTER-KEY.
PERFORM AlOO-READ-INPUT-BY-PRIMARY-KEY

THROUGH A100-READ-INPUT-EXIT.
DISPLAY "Do you want to terminate the session?".
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "N".
IF PROGRAM-STAT

A040-GET-ANSWER.
"Y" MOVE "1" TO PROGRAM-STAT.

DISPLAY "Please answer Y or N"
ACCEPT PROGRAM-STAT.

AlOO-READ-INPUT-BY-PRIMARY-KEY.
READ FLAVORS KEY IS ICE-CREAM-MASTER-KEY

INVALID KEY DISPLAY "Master does not exist - Try again"
GO TO A100-READ-INPUT-EXIT.

DISPLAY ICE-CREAM-MASTER.
PERFORM A200-READ-BY-ALTERNATE-KEY UNTIL NO-MORE-DUPLICATES.

Al00-READ-INPUT-EXIT.
EXIT.

A200-READ-BY-ALTERNATE-KEY.
DISPLAY "Do you want to see the next store in this state?".
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "N".
IF PROGRAM-STAT = "Y"

MOVE "2" TO PROGRAM-STAT
READ FLAVORS KEY IS ICE-CREAM-STORE-STATE

INVALID KEY DISPLAY "No more stores in this state"
MOVE "3" TO PROGRAM-STAT.

(continued on next page)

Processing Indexed Files 11-13

Example 11-7 (Cont.): Updating an Indexed File Randomly

IF LETS-SEE-NEXT-STORE AND
ICE-CREAM-STORE-STATE = "NY"

PERFORM A500-DELETE-RANDOM-RECORD.
IF LETS-SEE-NEXT-STORE AND

ICE-CREAM-STORE-STATE = "NJ"
MOVE "Monmouth" TO ICE-CREAM-STORE-CITY
PERFORM A400-REWRITE-RANDOM-RECORD.

IF LETS-SEE-NEXT-STORE AND
ICE-CREAM-STORE-STATE = "CA"

MOVE ICE-CREAM-MASTER TO HOLD-ICE-CREAM-MASTER
PERFORM A500-DELETE-RANDOM-RECORD
MOVE HOLD-ICE-CREAM-MASTER TO ICE-CREAM-MASTER
MOVE "AZ" TO ICE-CREAM-STORE-STATE
PERFORM A300-WRITE-RANDOM-RECORD.

IF PROGRAM-STAT = "N"
MOVE "3" TO PROGRAM-STAT.

A300-WRITE-RANDOM-RECORD.
WRITE ICE-CREAM-MASTER

INVALID KEY DISPLAY "Bad write - ABORTED"
STOP RUN.

A400-REWRITE-RANDOM-RECORD.
REWRITE ICE-CREAM-MASTER

INVALID KEY DISPLAY "Bad rewrite - ABORTED"
STOP RUN.

A500-DELETE-RANDOM-RECORD.
DELETE FLAVORS

INVALID KEY DISPLAY "Bad delete - ABORTED"
STOP RUN.

11.7.3 Dynamic Updating

In dynamic mode, the program can switch from using random access I/O
statements to sequential access I/O statements in any order without closing
and reopening files. To dynamically update indexed records, you must do the
following:

1. Specify the ORGANIZATION IS INDEXED clause.

2. Specify the ACCESS MODE IS DYNAMIC clause.

3. Open the file for I-0.

4. Read the records in one of two ways:

• Sequentially-Use the START statement to position the record pointer,
and then use the READ ... NEXT statement.

• Randomly-Initialize the RECORD KEY or ALTERNATE RECORD
KEY data name, and then read records in any order you want using the
INVALID KEY phrase.

5. Write, rewrite, or delete records using the INVALID KEY phrase.

11-14 Processing Indexed Files

Chapter 12

Input/Output Exception Conditions Handling

Many types of exception conditions can occur when a program processes a file; not
all of them are errors. The three categories of exception conditions are as follows:

• At end condition-This is a normal condition when you access a file
sequentially. However, if your program tries to read the file any time after
having read the last logical record in the file, and there is no applicable
Declarative procedure or AT END phrase, the program abnormally terminates
when the next READ statement executes.

• Invalid key condition-When you process relative and indexed files,
the invalid key condition is a normal condition if you plan for it with a
Declarative procedure or INVALID KEY phrase. It is an abnormal condition
that causes your program to terminate if there is no applicable Declarative
procedure or INVALID KEY phrase.

• All other conditions-These can also be either normal conditions (if you plan
for them) or abnormal conditions that cause your program to terminate.

Planning for exception conditions effectively increases program and programmer
efficiency. A program with exception handling routines is more flexible than a
program without them. They minimize operator intervention and often reduce or
eliminate the time a programmer uses to debug and rerun the program.

This chapter introduces you to the tools you need to execute sequential, relative,
and indexed file exception handling routines as a normal part of your program.
The tools you need are as follows:

• The AT END phrase

• The INVALID KEY phrase

• File Status values

• Special registers-RMS-CURRENT-STS, RMS-CURRENT-STY, RMS-STS,
and RMS-STV

• Declarative procedures

12.1 Planning for the At End Condition

VAX COBOL provides you the option of testing for this condition with the AT
END phrase of the READ statement for sequential, relative, and indexed files
and the ACCEPT statement.

Input/Output Exception Conditions Handling 12-1

Programs often read sequential files from beginning to end. They can produce
reports from the information in the file or even update it. However, the program
must be able to detect the end of the file, so that it can continue normal
processing at that point. If the program does not test for this condition when it
occurs, and if no applicable Declarative procedure exists (see Section 12.4), the
program terminates abnormally. The program must detect when no more data
is available from the file so that it can perform its normal end-of-job totaling,
balancing, and closing of the file.

Example 12-1 shows the use of the AT END phrase with the READ statement.

Example 12-1 : Handling the At End Condition

READ SEQUENTIAL-FILE AT END PERFORM A600-TOTAL-ROUTINES
PERFORM A610-VERIFY-TOTALS-ROUTINES
MOVE "Y" TO END-OF-FILE.

READ RELATIVE-FILE NEXT RECORD AT END PERFORM A700-CLEAN-UP-ROUTINES
CLOSE RELATIVE-FILE
STOP RUN.

READ INDEXED-FILE NEXT RECORD AT END DISPLAY "End of file"
DISPLAY "Do you want to continue?"
ACCEPT REPLY
PERFORM A700-CLEAN-UP-ROUTINES.

12.2 Planning for the Invalid Key Condition

An invalid key condition occurs whenever RMS cannot complete a VAX COBOL
DELETE, READ, REWRITE, START, or WRITE statement. When the condition
occurs, execution of the statement that recognized it is unsuccessful, and the file
is not affected.

For example, relative and indexed files use keys to retrieve records. The program
specifying random access must initialize a key before executing a DELETE,
READ, REWRITE, START, or WRITE statement. If the key does not result in
the successful execution of any of these statements, the invalid key condition
exists. This condition is fatal to the program, if the program does not check for
the condition when it occurs and if no applicable Declarative procedure exists (see
Section 12.4).

The invalid key condition, although fatal if not planned for, can be to your
advantage when used properly. You can, as in Example 12-2, read through an
indexed file for all records with a specific duplicate key and produce a report
from the information in those records. However, after you have read the last
of the duplicate records, you receive an invalid key condition for subsequent
read operations to indicate that no more records with this key exist in the file.
Planning for the invalid key condition in this case allows the program to continue
its normal processing.

12-2 lnpuVOutput Exception Conditions Handling

Example 12-2: Handling the Invalid Key Condition

MOVE "SMITH" TO LAST-NAME.
MOVE "Y" TO ANY-MORE-DUPLICATES.
PERFORM A500-READ-DUPLICATES-ROUTINE

UNTIL ANY-MORE-DUPLICATES= "N".

STOP RUN.
A500-READ-DUPLICATES-ROUTINE.

READ INDEXED-FILE RECORD INTO HOLD-RECORD
KEY IS LAST-NAME
INVALID KEY DISPLAY "Name not in file!" STOP RUN.

PERFORM A510-READ-NEXT-DUPLICATES-ROUTINE
UNTIL ANY-MORE-DUPLICATES= "N".

A510-READ-NEXT-DUPLICATES-ROUTINE.
READ INDEXED-FILE NEXT RECORD

AT END MOVE "N" TO ANY-MORE-DUPLICATES.
IF ANY-MORE-DUPLICATES = "Y" PERFORM A700-PRINT-ROUTINES.

MOVE "N" TO ANY-MORE-DUPLICATES.

A700-PRINT-ROUTINES.

12.3 Using File Status Values

Your program can check for the specific cause of the failure of a file operation
by checking for specific File Status values in its exception handling routines. To
obtain File Status values from VAX COBOL, use the FILE STATUS clause in the
file description entry. To provide FILE STATUS values from RMS, use the VAX
COBOL special registers RMS-STS and RMS-STV or RMS-CURRENT-STS and
RMS-CURRENT-STV

12.3.1 VAX COBOL File Status Values

The run-time execution of any VAX COBOL file processing statement results in
a RMS completion code value that reports the success or failure of the COBOL
statement. To access this value, you must specify the FILE STATUS clause in the
file description entry, as shown in Example 12-3.

Input/Output Exception Conditions Handling 12-3

Example 12-3: Defining a File Status for a File

DATA DIVISION.
FILE SECTION.
FD INDEXED-FILE

*
FILE STATUS IS INDEXED-FILE-STATUS.

*
01 INDEXED-RECORD
WORKING-STORAGE SECTION.
01 INDEXED-FILE-STATUS
01 ANSWER

PIC X(50).

PIC XX.
PIC X.

The program can access this File Status variable, INDEXED-FILE-STATUS,
anywhere in the Procedure Division, and depending on its value, take a specific
course of action without terminating the program. Notice that Example 12-4 uses
the File Status defined in Example 12-3. However, not all statements allow you
to access the File Status value as part of the statement. Your program has two
options:

• Examine the status value as part of an error recovery routine built into the
statement. The only relative and indexed file processing statements that
allow you to do this within the INVALID KEY phrase are DELETE, READ,
REWRITE, START, and WRITE. See Example 12-4.

• Define a Declarative procedure to handle the condition (see Section 12.4). All
file organizations and their I/O statements have this option available.

Example 12-4: Using the File Status Value in an Exception Handling Routine

PROCEDURE DIVISION.
AOOO-BEGIN.

DELETE INDEXED-RECORD
INVALID KEY MOVE "Bad DELETE" to BAD-VERB-ID

PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

(continued on next page)

12-4 lnpuVOutput Exception Conditions Handling

Example 12-4 (Cont.): Using the File Status Value in an Exception Handling
Routine

READ INDEXED-FILE NEXT RECORD
INVALID KEY MOVE "Bad READ" TO BAD-VERB-ID

PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

REWRITE INDEXED-RECORD
INVALID KEY MOVE "Bad REWRITE" TO BAD-VERB-ID

PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

START INDEXED-FILE KEY IS EQUAL TO MASTER-KEY
INVALID KEY MOVE "Bad START" TO BAD-VERB-ID

PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

WRITE INDEXED-RECORD
INVALID KEY MOVE "Bad WRITE" TO BAD-VERB-ID

PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

A900-EXCEPTION-HANDLING-ROUTINE.
DISPLAY BAD-VERB-ID " - File Status Value = " INDEXED-FILE-STATUS.
PERFORM A905-GET-ANSWER UNTIL ANSWER= "Y" OR "N".
IF ANSWER = "N" STOP RUN.

A905-GET-ANSWER.
DISPLAY "Do you want to continue?"
DISPLAY "Please answer Y or N"
ACCEPT ANSWER.

Each file processing statement described in the Procedure Division section of the
VAX COBOL Reference Manual contains a specific list of File Status values in
its Technical Notes section. Additionally, all File Status values are listed in an
appendix of the Reference Manual.

12.3.2 RMS File Status Values

VAX COBOL checks for RMS completion codes after each file and record
operation. If the code indicates anything other than unconditional success,
VAX COBOL maps the RMS error code to a File Status value. However, not all
RMS completion codes map to distinct File Status values. Many RMS completion
codes map to a File Status value of 30, a COBOL code for errors that have no
corresponding File Status value.

VAX COBOL provides four special registers, RMS-STS, RMS-STY,
RMS-CURRENT-STS, and RMS-CURRENT-STY. These registers supplement
the File Status values already available and allow the VAX COBOL
program to directly access RMS completion codes. RMS-CURRENT-STS and
RMS-CURRENT-STY contain the file status values from the most recent
file or record operation for any file. For more information, refer to the VMS
documentation on RMS completion codes.

Input/Output Exception Conditions Handling 12-5

You need not define these registers in your program. As special registers, they
are available whenever and wherever you need to use them in the Procedure
Division. However, if you define more than one file in the program and intend
to access RMS-STS and RMS-STY, you must qualify your references to them.
RMS-CURRENT-STS and RMS-CURRENT-STY contain the file status values
for the most recent file or record operation for any file. So when you access
RMS-CURRENT-STS and RMS-CURRENT-STY, you must not qualify your
reference to them.

Notice the use of the WITH CONVERSION phrase of the DISPLAY statement in
Example 12-5. This converts the PIC S9(9) COMP special registers from binary
to decimal digits for terminal display.

Example 12-5: Referencing RMS-STS, RMS-STV, RMS-CURRENT-STS, and
RMS-CURRENT-STV Values

DATA DIVISION.
FILE SECTION.
FD FILE-1.
01 RECORD-1 PIC
FD FILE-2.
01 RECORD-2 PIC
WORKING-STORAGE SECTION.
01 ANSWER
PROCEDURE DIVISION.
AOOO-BEGIN.

PIC

x (50).

X(50).

x.

WRITE RECORD-1 INVALID KEY PERFORM A901-REPORT-FILE1-STATUS.

*
*
*
*

*

The following PERFORM statement displays the file status values
resulting from the above WRITE statement for FILE-1.

PERFORM A903-REPORT-RMS-CURRENT-STATUS.

WRITE RECORD-2 INVALID KEY PERFORM A902-REPORT-FILE2-STATUS.

* The following PERFORM statement displays the file status values
* resulting from the above WRITE statement for FILE-2.

*
PERFORM A903-REPORT-RMS-CURRENT-STATUS.

A901-REPORT-FILE1-STATUS.

*

*

DISPLAY "RMS-STS
DISPLAY "RMS-STV

11 RMS-STS OF FILE-1 WITH CONVERSION.
11 RMS-STV OF FILE-1 WITH CONVERSION.

PERFORM A999-GET-ANSWER UNTIL ANSWER= 11 Y" OR "N".
IF ANSWER = "N" STOP RUN.

(continued on next page)

12-6 Input/Output Exception Conditions Handling

Example 12-5 (Cont.): Referencing RMS-STS, RMS-STV, RMS-CURRENT-STS,
and RMS-CURRENT-STV Values

A902-REPORT-FILE2-STATUS.

*

*

DISPLAY "RMS-STS
DISPLAY "RMS-STV

" RMS-STS OF FILE-2 WITH CONVERSION.
" RMS-STV OF FILE-2 WITH CONVERSION.

PERFORM A999-GET-ANSWER UNTIL ANSWER= "Y" OR "N".
IF ANSWER = "N" STOP RUN.

A903-REPORT-CURRENT-STATUS.

*

*

DISPLAY "RMS-CURRENT-STS
DISPLAY "RMS-CURRENT-STV

" RMS-CURRENT-STS WITH CONVERSION.
" RMS-CURRENT-STV WITH CONVERSION.

PERFORM A999-GET-ANSWER UNTIL ANSWER= "Y" OR "N".
IF ANSWER = "N" STOP RUN.

A999-GET-ANSWER.
DISPLAY "Do you want to continue?"
DISPLAY "Please answer Y or N"
ACCEPT ANSWER.

12.4 Using Declarative Procedures to Handle Exception Conditions

A Declarative procedure executes whenever an I/O statement results in an
exception condition (a File Status value that does not begin with a zero (0)) and
the 1/0 statement does not contain an AT END or INVALID KEY phrase. The AT
END and INVALID KEY phrases take precedence over a Declarative procedure,
but only for the 1/0 statement that includes the clause. Therefore you can have
specific 1/0 statement exception condition handling for a file and also include a
Declarative procedure for general exception handling.

A Declarative procedure is a set of one or more special-purpose sections at the
beginning of the Procedure Division. As shown in Example 12-6, the key word
DECLARATIVES precedes the first of these· sections, and the key words END
DECLARATIVES follow the last.

Input/Output Exception Conditions Handling 12-7

Example 12-6: The Declarative Skeleton

PROCEDURE DIVISION.
DECLARATIVES.

END DECLARATIVES.

As shown in Example 12-7, a Declarative procedure consists of a section header,
followed, in order, by a USE statement and zero, one, or more paragraphs.

Example 12-7: A Declarative Procedure Skeleton

PROCEDURE DIVISION.
DECLARATIVES.
D0-00-FILE-A-PROBLEM SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON FILE-A.
D0-01-FILE-A-PROBLEM.

D0-02-FILE-A-PROBLEM.

D0-03-FILE-A-PROBLEM.

END DECLARATIVES.

VAX COBOL Declarative procedures, and the conditions in the USE statement
under which they execute, are as follows:

• File name-You can define a file name Declarative procedure for each file
name. This procedure overrides the next four procedures. It executes for any
unsuccessful exception condition.

• INPUT-You can define only one INPUT Declarative procedure for each
program. This procedure executes for any unsuccessful exception condition if:
(1) the file is open for input and (2) a file name Declarative does not exist for
that file.

• OUTPUT-You can define only one OUTPUT Declarative procedure for each
program. This procedure executes for any unsuccessful exception condition if:
(1) the file is open for output and (2) a file name Declarative does not exist
for that file.

• INPUT-OUTPUT-You can define only one INPUT-OUTPUT Declarative
procedure for each program. This procedure executes for any unsuccessful
exception condition if: (1) the file is open for input/output and (2) a file name
Declarative does not exist for that file.

• EXTEND~You can define only one EXTEND Declarative procedure for each
program. This procedure executes for any unsuccessful exception condition
if: (1) the file is open for extending and (2) a file name Declarative does not
exist for that file.

12-8 Input/Output Exception Conditions Handling

Note that the USE statement itself does not execute; it defines the condition
that causes the Declarative procedure to execute. For more information about
Declarative procedures, refer to the USE statement in the VAX COBOL Reference
Manual.

Example 12-8 shows you how to include each of the conditions in your program
and contains explanatory comments for each.

Example 12-8: Five Types of Declarative Procedures

PROCEDURE DIVISION.
DECLARATIVES.
**
Dl-00-FILE-A-PROBLEM SECTION.

*
*

USE AFTER STANDARD ERROR PROCEDURE ON FILE-A.

* If any I/O statement for FILE-A results in an
* error, Dl-00-FILE-A-PROBLEM executes.

*
*
Dl-01-FILE-A-PROBLEM.

PERFORM D9-00-REPORT-FILE-STATUS.

**
D2-00-FILE-INPUT-PROBLEM SECTION.

USE AFTER STANDARD EXCEPTION PROCEDURE ON INPUT.

*
*
* If an error occurs because of an I/O statement
* for any file open in the input mode except FILE-A,
* D2-00-FILE-INPUT-PROBLEM executes.

*
*
D2-01-FILE-INPUT-PROBLEM.

PERFORM D9-00-REPORT-FILE-STATUS.

**
D3-00-FILE-OUTPUT-PROBLEM SECTION.

USE AFTER STANDARD EXCEPTION PROCEDURE ON OUTPUT.

*
*
* If an error occurs because of an I/O statement
* for any file open in the output mode except FILE-A,
* D3-00-FILE-OUTPUT-PROBLEM executes.

*
*
D3-01-FILE-OUTPUT-PROBLEM.

PERFORM D9-00-REPORT-FILE-STATUS.

(continued on next page)

lnpuVOutput Exception Conditions Handling 12-9

Example 12-8 (Cont.): Five Types of Declarative Procedures

**
D4-00-FILE-I-O-PROBLEM SECTION.

*
*

USE AFTER STANDARD EXCEPTION PROCEDURE ON I-0.

* If an error occurs because of an I/O statement
* for any file open in the input-output mode except FILE-A,
* D4-00-FILE-I-O-PROBLEM executes.

*
*
*
D4-01-FILE-I-O-PROBLEM.

PERFORM D9-00-REPORT-FILE-STATUS.

**
DS-00-FILE-EXTEND-PROBLEM SECTION.

*
*

USE AFTER STANDARD EXCEPTION PROCEDURE ON EXTEND.

* If an error occurs because of an I/O statement
* for any file open in the extend mode except FILE-A,
* DS-00-FILE-EXTEND-PROBLEM executes.

*
*
DS-01-FILE-EXTEND-PROBLEM.

PERFORM D9-00-REPORT-FILE-STATUS.

**
D9-00-REPORT-FILE-STATUS SECTION.

END DECLARATIVES
**
AOOO-BEGIN SECTION.

12-10 lnpuVOutput Exception Conditions Handling

Chapter 13

Sharing Files and Protecting Records

This chapter discusses file sharing and record locking for sequential, relative, and
indexed files.

13.1 File-Sharing and Record-Locking Concepts

In a data manipulation environment where many users and programs access the
same data, file control must be applied to protect files from nonprivileged users,
to permit the desired degree of file sharing, and to preserve data integrity in the
files. For example, in Figure 13-1 many users and programs want to access data
found in FILE-A.

Figure 13-1 : Multiple Access to a File

Location 1 Location 2 Location 3

' PROG-A

User1 EJ
EJ

User2 D User3

/ LJ/
Access~
Stream1 ~ I

Acces! ? _/Access
Strea/ Stream 3

FILE-A

ZK-6323-GE

File sharing and record locking allow you to control file and record operations
when more than one access stream (the series of file and record operations being
performed by a single user) is concurrently accessing a file, as in Figure 13-1.

Sharing Files and Protecting Records 13-1

A VAX COBOL program can define one or more RMS access streams. You create
one access stream with each OPEN file-name statement. The access stream
remains active until you terminate the access stream with the CLOSE file-name
statement, or your program terminates.

File sharing allows multiple readers and writers to access a single file
concurrently. The protection level of the file, set by the file owner, determines
which users can share a file.

Record locking controls simultaneous record operations in files that are accessed
concurrently. Record locking ensures that when a program is writing, deleting, or
rewriting a record in a given access stream, another access stream is allowed to
access the same record in a specified manner.

Figure 13-2 illustrates the relationship of record locking to file sharing.

Figure 13-2: Relationship of Record Locking to File Sharing

FILE SHARING

I I
Automatic Manual

Record Locking
I

Record Locking
I

ZK-6105-GE

File sharing is a function of the file system, while record locking is a function
of the VAX Record Management Services (RMS). The file system manages
file placement and the file-sharing process, in which multiple access streams
simultaneously access a file. RMS manages the record-sharing process and
provides access methods to records within a file. This includes managing the
record-locking process, in which multiple access streams simultaneously access a
record.

You must have successful file sharing before you can consider record locking.

In VAX COBOL, the file operations begin with an OPEN statement and end with
a CLOSE statement. The OPEN statement initializes an access stream. The
CLOSE statement terminates an access stream and can be either explicit (stated
in the program) or implicit (on program termination).

In VAX COBOL, you use the ALLOWING clause (in the OPEN statement and
certain record operation statements) to specify file sharing and record locking.
This clause describes what operations other access streams can perform on
specified files. You use the VAX COBOL open mode specification to provide the
specification for the intentions of your access stream.

NOTE

The first program to open a file determines how other programs can
access the file concurrently (if at all).

The record operations for VAX COBOL are as follows:

• READ

• START

13-2 Sharing Files and Protecting Records

• WRITE

• REWRITE

• DELETE

• UNLOCK

You must specify the APPLY clause in the I-0-CONTROL paragraph when you
use manual record locking. See Section 13.3.2 for more details on the use of this
clause.

13.2 Ensuring Successful File Sharing

Successful file sharing requires that you:

• Provide disk residency for the file.

• Use the VMS system file protection facility, as related to the user
identification code (UIC).

• Determine the intended access mode to the file (VAX COBOL open modes).

• Indicate the access allowed by other streams (VAX COBOL ALLOWING
clause).

The remainder of this section discusses these four requirements.

13.2.1 Providing Disk Residency

Only files that reside on a disk can be shared. In VAX COBOL you can share
sequential, relative, and indexed files.

13.2.2 Using VMS File Protection

By using the appropriate VMS file protection, the owner of a file determines how
other users can access the file. An owner can permit up to four types of file access
for each of four user categories. The level of file protection the file owner specifies
determines the types of open modes that a VAX COBOL program can specify
successfully. The four types of file access follow. Note that the following VMS file
protection access types are not a part of VAX COBOL syntax:

• READ-Permits the reading of the records in the file.

• WRITE-Permits updating or extending the records in the file.

• EXECUTE-Applies to on-disk volume protection and image execution and is
therefore not applicable to a VAX COBOL program.

• DELETE-Permits deletion of the file and is therefore not applicable to a
VAX COBOL program (since VAX COBOL has no delete file facility).

NOTE

Note that the EXECUTE and DELETE categories of the file protection
are used by VAX COBOL programmers but not by VAX COBOL
programs; however, a VAX COBOL program can perform these actions
using system service routines.

Sharing Files and Protecting Records 13-3

In the VMS file protection facility, four different categories of users exist with
respect to data structures and devices. A file owner determines which of the
following user categories can share the file:

• SYSTEM-Users of the system whose group numbers are in the range 0 to
the value of the MAXSYSGROUP parameter, or who have certain I/0-related
privileges

• OWNER-Users of the system whose UIC group and member numbers are
identical to the UIC of the file owner

• GROUP-Users of the system whose group number is identical to the group
number of the file owner

• WORLD-All other users of the system who are not included in the previous
categories

The owner of the file has a default protection that the system applies to each
newly created file unless the owner specifically requests modified protection.

For more information on file protection, refer to the VMS documentation on DCL.

13.2.3 Determining the Intended Access Mode to a File

Once you establish disk residency and privileges for a file, you can consider the
third file-sharing criterion: how the stream intends to access the file. You specify
this intention by using the VAX COBOL open and access modes.

The VAX COBOL open modes are INPUT, OUTPUT, EXTEND, and I-0. The
VAX COBOL access modes are SEQUENTIAL, RANDOM, and DYNAMIC. The
combination of open and access modes determines the operations intended on the
file.

You must validate your VAX COBOL intention against the file protection assigned
by the file owner. For example, to use an OPEN INPUT clause requires that
the file owner has granted read access privileges to the file. To use an OPEN
OUTPUT or EXTEND clause requires write access privileges to the file. To use
an OPEN I-0 clause requires both read and write access privileges.

An OPEN OUTPUT clause creates a new version of the file, which makes it
difficult to share the file.

The following chart shows the relationship between open and access modes and
intended VAX COBOL operations. The word ANY indicates that all three access
methods result in the same intentions.

Open Mode Access Mode Intended COBOL Operations

INPUT ANY READ, START

OUTPUT ANY WRITE

I-0 SEQUENTIAL READ, START, REWRITE, DELETE

RANDOM/DYNAMIC READ, START, REWRITE, DELETE, WRITE

EXTEND SEQUENTIAL WRITE

Note that if the file protection does not permit the intended operations, file access
is not granted, even if open and access modes are compatible.

13-4 Sharing Files and Protecting Records

File protection and open mode access apply to both the unshared and shared
(multiple access stream) file environments. A file protection and intent check is
made when the first access stream opens a file (in the unshared file environment),
and again when the second and subsequent access streams open the file (in the
shared file environment).

After these file-sharing checks pass, you can apply the fourth file-sharing
criterion, access allowed to other streams.

13.2.4 Indicating the Access Allowed to Other Streams

You use the VAX COBOL ALLOWING clause of the OPEN statement to specify
what other access streams are allowed to access that file. ·

The OPEN ALLOWING options are as follows:

• OPEN ALLOWING NO OTHERS-Locks the file for exclusive access.
Attempts by other access streams to access the file cause a file lock exception.

• OPEN ALLOWING READERS-Locks the file against operations that
indicate intended write access (OPEN I-0 and OPEN EXTEND). Other
streams can use the OPEN INPUT statement to access the file.

• OPEN ALLOWING WRITERS or UPDATERS or ALL-Allows read and write
access by other streams. Other access streams can open the file in INPUT,
EXTEND, and I-0 modes.

VAX COBOL also permits a list of OPEN ALLOWING options, separated by
commas. The list results ill the following equivalent ALLOWING specifications:

• ALLOWING WRITERS, UPDATERS becomes ALLOWING ALL

• ALLOWING READERS, UPDATERS becomes ALLOWING UPDATERS

The first access stream uses the ALLOWING clause to specify what other access
streams can do. When the second and subsequent access streams attempt to open
the file, the following checks occur:

1. The allowed options of this access stream are checked against the intended
access of the previous streams.

2. The intended access of this access stream is checked against the allowed
access of the previous streams.

For example, if the first access stream specifies the ALLOWING READERS
clause, then a subsequent access stream that opens the file ALLOWING NO
OTHERS would fail. Also, if the first access stream opens the file ALLOWING
READERS, the following access stream that opens the file ALLOWING ALL and
with I-0 mode would fail, because the clause option and the I-0 mode declare
write intent to the file.

13.2.5 Describing Types of Access Streams

You can establish several types of access streams. For example, two programs
opening the same file represent two access streams to that file. Both programs
begin with the file open, perform record operations, and then close the file.

Sharing Files and Protecting Records 13-5

In addition, a single program can establish multiple access streams to a file. In
this case, you use multiple SELECT clauses to choose the file, while the FDs
and all other clauses and statements treat the file independently. Example 13-1
shows two access streams to the same file.

Example 13-1: Two Access Streams to a Single File

IDENTIFICATION DIVISION.
PROGRAM-ID. ACCESSTRM.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-1

ORGANIZATION IS SEQUENTIAL
ASSIGN TO "SHAREDAT.DAT"

SELECT FILE-2
ORGANIZATION rs SEQUENTIAL
ASSIGN TO "SHAREDAT.DAT"

I-0-CONTROL.
APPLY LOCK-HOLDING ON FILE-1, FILE-2.

DATA DIVISION.
FILE SECTION.
FD FILE-1

FD FILE-2

PROCEDURE DIVISION.
01.

OPEN INPUT FILE-1 ALLOWING READERS.
OPEN INPUT FILE-2 ALLOWING READERS.
READ FILE-1 ALLOWING READERS.
READ FILE-2 ALLOWING NO OTHERS.

UNLOCK FILE-1 ALL RECORDS.
UNLOCK FILE-2 ALL RECORDS.
CLOSE FILE-1.
CLOSE FILE-2.
STOP RUN.

13.2.6 Summarizing Related File-Sharing Criteria

This section summarizes the relationships among three of the file-sharing criteria
(the first file-sharing requirement, disk residency, is not included).

The following chart shows the file protection and open mode requirements. For
example, the file protection privilege READ (R) permits OPEN INPUT.

13-6 Sharing Files and Protecting Records

File
Protection

R

w
RW

Open Mode

INPUT

OUTPUT, EXTEND

I-0, INPUT, OUTPUT, EXTEND

Remember, you specify intended operations through the first access stream. For
the second and subsequent shared access to a file, you use the access intentions
(open modes) and the ALLOWING clause to determine if and how a file is shared.

Figure 13-3 shows the valid and invalid OPEN ALLOWING combinations
between first and subsequent access streams.

Sharing Files and Protecting Records 13-7

Figure 13-3: File-Sharing Options

SUBSEQUENT STREAM

E,10 E,10 E,10 I I I 0
A,U,W R N A,U,W R N A,U,W,R,N

E,10
G 3 2 G 3 2 5 A,U,W

E,10
4 3,4 2 G 3 2 5

* R
F
I E,10

1 1,3 1,2 1 1,3 1,2 5 R N
s I
T A,U,W G G 2 G G 2 5

s I
T R 4 4 2 G G 2 5

R
E I

1 1 1,2 1 1 1,2 5
A N
M

0
A,U,W G G 2 G 3 2 5

0
G G 2 G 3 2 5 R

0
1 1 1,2 1 1 1,2 5 N

Legend:

* Assumes "no" file protection violations on first stream

G Second stream successfully opens and file sharing is granted

1 Second stream denied access to the file because the first stream requires exclusive
access (first specified NO OTHERS)

2 Second stream denied access to the file because the second stream requires
exclusive access (second specified NO OTHERS)

3 Second stream denied access to the file because first intends write while second
specifies read-only sharing

4 Second stream denied access to the file because second intends write while first
specifies read-only sharing

5 No sharing; second will create new file with OPEN OUTPUT

ZK-6059-GE

13-8 Sharing Files and Protecting Records

The abbreviations used in Figure 13-3 are as follows:

• OPEN ABBREVIATIONS

E,IO-OPEN EXTEND, OPEN I-0

I-OPEN INPUT

0-0PEN OUTPUT

• ALLOWING ABBREVIATIONS

A,U,W-OPEN ALLOWING ALL or OPEN ALLOWING UPDATERS or
OPEN ALLOWING WRITERS

R-OPEN ALLOWING READERS

N-OPEN ALLOWING NO OTHERS

In the following example, three streams illustrate some of the file-sharing rules:

STREAM 1
STREAM 2
STREAM 3

OPEN INPUT ALLOWING ALL
OPEN INPUT ALLOWING READERS
OPEN I-0 ALLOWING UPDATERS

In this example, stream 1 permits ALLOWING ALL; thus stream 2 can read the
file. However, the third stream violates the intent of the second stream, because
OPEN I-0 implies a write intention that stream 2 disallows. Consequently, the
third access stream receives a file locked error.

13.2. 7 Checking File Operations

You can check the success or failure of a file open operation by using the File
Status code or the RMS status variable (a VAX COBOL special register). This
VAX COBOL special register normally contains RMS-STS values, which you can
obtain by using the VALUE IS EXTERNAL clause.

In addition, if no RMS translation exists for the VAX COBOL specific error
condition, the RMS-STS special register may contain an error message value. See
the VAX COBOL Reference Manual for an explanation of the VAX COBOL error
message symbols.

Table 13-1 illustrates the codes you frequently use in a file-sharing environment.

Table 13-1: File-Sharing Environment Codes

File
Status RMS-STS Register Meaning

00 RMS$_SUC Successful operation

91 RMS$_FLK File is locked

38 COB$_FILCLOLOC File is closed WITH LOCK

30 RMS$_PRV File protection violation

File Status 00, which corresponds to the RMS-STS symbol RMS$_SUC, results
from completion of a successful operation.

File Status 91, which corresponds to the RMS-STS symbol RMS$_FLK, indicates
that another accessor of the file has denied access. Other accessors are other
programs that have denied file access by opening the file for exclusive access
(OPEN ALLOWING NO OTHERS).

Sharing Files and Protecting Records 13-9

File Status 38, which corresponds to the symbol COB$_FILCLOLOC in the
RMS-STS special register, indicates that another file accessor has denied access
by executing a CLOSE WITH LOCK statement.

File Status 30, when it corresponds to the RMS-STS symbol RMS$_PRV, results
from a violation of the file protection codes described in Section 13.2.2. To correct
this condition, the file owner must reset the protection on the file or the directory
that contains the file.

Example 13-2 includes additional codes you may encounter.

Example 13-2: Program Segment for RMS-STS File-Sharing Exceptions

WORKING-STORAGE SECTION.

01 RMS-SUC PIC
01 RMS-OK-RLK PIC
01 RMS-OK-RRL PIC
01 RMS-RNL PIC
01 RMS-DNR PIC
01 RMS-EOF PIC
01 RMS-FLK PIC
01 RMS-FNF PIC
01 RMS-PRV PIC
01 RMS-REX PIC
01 RMS-RLK PIC
01 RMS-RNF PIC
01 RMS-WLK PIC
01 RMS-DNF PIC
01 RMS-DIR PIC
01 RMS-DUP PIC
01 RMS-FUL PIC
01 RMS-KEY PIC
01 RMS-KRF PIC
01 RMS-KSZ PIC
01 RMS-RAC PIC
01 RMS-RSZ PIC
01 RMS-SNE PIC
01 RMS-SPE PIC
01 RMS-ENQ PIC
PROCEDURE DIVISION.
DECLARATIVES.
FILE-1-ERR SECTION.

S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)
S9 (9)

COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP

VALUE IS EXTERNAL RMS$_SUC.
VALUE IS EXTERNAL RMS$_0K_RLK.
VALUE IS EXTERNAL RMS$ OK RRL.
VALUE IS EXTERNAL RMS$-RNL.
VALUE IS EXTERNAL RMS$-DNR.
VALUE IS EXTERNAL RMS$=EOF.
VALUE IS EXTERNAL RMS$_FLK.
VALUE IS EXTERNAL RMS$_FNF.
VALUE IS EXTERNAL RMS$_PRV.
VALUE IS EXTERNAL RMS$_REX.
VALUE IS EXTERNAL RMS$_RLK.
VALUE IS EXTERNAL RMS$ RNF.
VALUE IS EXTERNAL RMS$-WLK.
VALUE IS EXTERNAL RMS$=DNF.
VALUE IS EXTERNAL RMS$ DIR.
VALUE IS EXTERNAL RMS$-DUP.
VALUE IS EXTERNAL RMS$=FUL.
VALUE IS EXTERNAL RMS$_KEY.
VALUE IS EXTERNAL RMS$ KRF.
VALUE IS EXTERNAL RMS$=KSZ.
VALUE IS EXTERNAL RMS$_RAC.
VALUE IS EXTERNAL RMS$_RSZ.
VALUE IS EXTERNAL RMS$_SNE.
VALUE IS EXTERNAL RMS$_SPE.
VALUE IS EXTERNAL RMS$_ENQ.

USE AFTER STANDARD EXCEPTION PROCEDURE ON FILE-1.
FILE-1-USE.

EVALUATE RMS-STS OF FILE-1
WHEN RMS-SUC DISPLAY "successful operation"
WHEN RMS-OK-RLK DISPLAY "record locked but read anyway"
WHEN RMS-OK-RRL DISPLAY "record locked against read but read anyway"
WHEN RMS-RNL DISPLAY "record not locked"
WHEN RMS-DNR DISPLAY "device not ready or not mounted"
WHEN RMS-EOF DISPLAY "end of file detected"
WHEN RMS-FLK DISPLAY "file currently locked by another user"
WHEN RMS-FNF DISPLAY "file not found"

DISPLAY "file protection violation"
DISPLAY "record already exists"

WHEN RMS-PRV
WHEN RMS-REX
WHEN RMS-RLK DISPLAY "record currently locked by another stream"

(continued on next page)

13-10 Sharing Files and Protecting Records

Example 13-2 (Cont.): Program Segment for RMS-STS File-Sharing Exceptions

WHEN RMS-RNF
WHEN RMS-WLK
WHEN RMS-DNF
WHEN RMS-DIR
WHEN RMS-DUP
WHEN RMS-FUL
WHEN RMS-KEY
WHEN RMS-KRF
WHEN RMS-KSZ
WHEN RMS-RAC

DISPLAY "record not found"
DISPLAY "device currently write locked"
DISPLAY "directory not found"
DISPLAY "error in directory name"
DISPLAY "duplicate key detected (DUP not set)"
DISPLAY "device full (insufficient space)"
DISPLAY "invalid record number key or key value"
DISPLAY "invalid key-of-reference for $GET/$FIND"
DISPLAY "invalid key size for $GET/$FIND"
DISPLAY "invalid record access mode"

WHEN RMS-RSZ DISPLAY "invalid record size"
WHEN RMS-SNE DISPLAY "file sharing not enabled"
WHEN RMS-SPE DISPLAY "file-sharing page count exceeded"
WHEN RMS-ENQ DISPLAY "system service request failed"
WHEN OTHER STOP RUN

END-EVALUATE.
END DECLARATIVES.

13.2.8 Specifying the OPEN EXTEND in a File-Sharing Environment

If you specify an OPEN EXTEND in a file-sharing environment, be aware that
the EXTEND results differ depending upon what file organization you use.

13.2.8.1 OPEN EXTEtiD with a Shared Sequential File

In a shared sequential file environment, when two concurrent access streams use
EXTEND ALLOWING UPDATERS, ALLOWING ALL, or ALLOWING WRITERS,
and both streams issue a write to the end of the file (EOF), the additional data
will come from both streams, and the data will be inserted into the file in the
order it was written to the file.

13.2.8.2 OPEN EXTEND with a Shared Relative File

You must use the sequential file access mode when you open a relative file in
extend mode. Sequential file access mode for a relative file indicates that the
record order is by ascending relative record number.

In sequential access mode for a relative file, the RELATIVE KEY clause of the
WRITE statement is not used on record insertion; instead, the RELATIVE KEY
clause acts as a receiving field. Consequently, after the completion of a write by
the first access stream, the relative key field is set to the actual relative record
number.

Figure 13-4 illustrates why this condition occurs.

Sharing Files and Protecting Records 13-11

Figure 13-4: Why a Record-Already-Exists Error Occurs

FILEA

Record 1

Record 2

Record 3

Record 4

Access Stream 1 ---•- 1- End-of-File __, _,. ___ Access Stream 2

Record 5/6

ZK-6060-GE

As the file operations begin, both access streams point to the end of file by setting
record 4 as the highest relative record number in the file. When access stream 1
writes to the file, record 5 is created as the next ascending relative record number
and 5 is returned as the RELATIVE KEY number.

When access stream 2 writes to the file, it also tries to write the fifth record.
Record 5 already exists (inserted by the first stream), and the second access
stream gets a record-exists error. Thus, in a file-sharing environment, the second
access stream always receives a record-exists error.

13.2.8.3 OPEN EXTEND with a Shared Indexed File

You must use the sequential file access mode when you open an indexed file in
extend mode. Sequential access mode requires that the first additional record
insertion have a prime record key whose value is greater than the highest prime
record key value in the file.

In a file-sharing environment, you should be aware of and prepared for duplicate
key errors (by using INVALID KEY and USE procedures), especially on the first
write to the file by the second access stream.

Subsequent writes should also allow for duplicate key errors, although subsequent
writes are not constrained to use keys whose values are greater than the highest
key value that existed at file open time. If you avoid duplicate key errors, you
successfully insert all access stream records.

13.3 Using Record Locking

Once you meet all file-sharing criteria and you access a file, you can consider two
record-locking modes that control access to records in a file:

• Automatic record locking

• Manual record locking

Automatic record locking is the default. In automatic record locking, if you do
not specify an ALLOWING clause on the OPEN statement, the default for files
opened for INPUT is ALLOWING READERS, and the default for files opened for
I-0, OUTPUT, or EXTEND mode is ALLOWING NO OTHERS.

13-12 Sharing Files and Protecting Records

You specify manual record locking by using the APPLY LOCK-HOLDING clause
(in the I-0-CONTROL paragraph), the OPEN ALLOWING statement, and the
ALLOWING clauses on the VAX COBOL record operations (except DELETE).

Both automatic record locking and manual record locking use the same form of
the OPEN ALLOWING clause.

When you close a file, any existing record lock is released automatically. The
UNLOCK RECORD statement releases the lock only on the current record, which
is the last record you successfully accessed.

13.3.1 Specifying Automatic Record Locking

Automatic record locking applies the lock when you access the record and releases
the lock when you de-access the record. In automatic record locking the access
stream can have only one record locked at a time and can apply only one type of
lock to the records of the file.

You de-access a record by using the next READ operation, a REWRITE or
a DELETE operation on the record, or by closing the file. In addition, you
can release locks applied by automatic record locking by using the UNLOCK
statement.

In automatic record-locking mode, you can release the current record lock by
using either an UNLOCK RECORD statement or an UNLOCK ALL RECORDS
statement. However, because in automatic record locking you can only lock one
record at a time, the UNLOCK ALL RECORDS statement unnecessarily checks
all records for additional locks.

The sample program in Example 13-3 uses automatic record locking. The
program opens the file with I-0 ALLOWING READERS. Another access stream
in another program opens the file with INPUT ALLOWING ALL.

If the first access stream is updating records in random order, a record lock can
occur to the second stream from the READ until the REWRITE statement of the
first stream. Record locks can also occur to the first stream when the second
stream reads a record and the first stream tries to read the same record.

Example 13-3: Automatic Record Locking

IDENTIFICATION DIVISION.
PROGRAM-ID. AUTOLOCK.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-1

ORGANIZATION IS RELATIVE
ASSIGN TO "SHAREDAT.DAT"

I-0-CONTROL.

(continued on next page)

Sharing Files and Protecting Records 13-13

Example 13-3 {Cont.): Automatic Record Locking

DATA DIVISION.
FILE SECTION.
FD FILE-1

RECORD CONTAINS 100 CHARACTERS

PROCEDURE DIVISION.
OPEN I-0 FILE-1 ALLOWING READERS.
READ FILE-1-REC.

REWRITE FILE-1.
CLOSE FILE-1.
STOP RUN.

13.3.2 Specifying Manual Record Locking

Manual record locking allows greater control of locking options by permitting
users to lock multiple records in a file and by permitting different types of locking
to apply to different records.

Manual record locking applies the specified lock when you access the record and
releases the lock when you unlock the record.

When you specify manual record locking you must use the following clauses: (1)
an APPLY LOCK-HOLDING clause in the I-0 CONTROL paragraph, (2) an
OPEN ALLOWING clause at file open time, and (3) an ALLOWING clause on
each VAX COBOL record operation (except DELETE).

The possible ALLOWING clauses for the VAX COBOL record operations are as
follows:

• ALLOWING NO OTHERS-Locks records for exclusive access. Others cannot
perform READ, WRITE, DELETE, or UPDATE statements. This clause
constitutes a lock for write and does not allow readers.

However, if the file's OPEN mode is INPUT, using this clause on the record
operation does not lock the record for exclusive access. The most restrictive
record locking you can achieve on a file whose OPEN mode is INPUT is to
exclude writers and allow readers. If a file's OPEN mode is INPUT, specifying
ALLOWING NO OTHERS is equivalent to specifying ALLOWING READERS.

• ALLOWING READERS-Locks records against WRITE, REWRITE, and
DELETE access by all streams including the stream that issues the
statement. Others can perform READ statements. This clause constitutes an
RMS lock for read, which allows others to read the record, but not to write it.

• ALLOWING UPDATERS-Does not apply any locks to the records. Others
can perform READ, REWRITE, and DELETE statements. This clause
constitutes a no record lock condition.

Figure 13-5 shows the valid and invalid ALLOWING combinations for manual
record locking. The columns represent lock held, and the rows represent lock
requested.

13-14 Sharing Files and Protecting Records

Figure 13-5: Valid and Invalid Combinations for Manual Record Locking

"lock
requested"

ALLOWING

UPDATERS

READERS

NO OTHERS

UPDATERS

legal

legal

illegal

"lock held"

READERS NO OTHERS

legal illegal

legal illegal

illegal illegal

ZK-6061-GE

Example 13-4 uses manual record locking. The file is opened with the
ALLOWING READERS clause. The records are read but do not become available
to other access streams because of the lock applied by the READ statement
(READ ... ALLOWING NO OTHERS). When the UNLOCK is executed, the records
can be read by another access stream if that stream opens the file allowing
writers.

Example 13-4: Sample Program Using Manual Record Locking

IDENTIFICATION DIVISION.
PROGRAM-ID. MANLOCK.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-1

ORGANIZATION IS RELATIVE
ASSIGN "SHAREDAT.DAT"

I-0-CONTROL.
APPLY LOCK-HOLDING ON FILE-1.

DATA DIVISION.
FILE SECTION.
FD FILE-1

RECORD CONTAINS 100 CHARACTERS

(continued on next page)

Sharing Files and Protecting Records 13-15

Example 13-4 (Cont.): Sample Program Using Manual Record Locking

PROCEDURE DIVISION.
01.

OPEN I-0 FILE-1 ALLOWING READERS.

READ FILE-1 ALLOWING NO OTHERS.

REWRITE FILE-1-REC ALLOWING NO OTHERS.

UNLOCK FILE-1 ALL RECORDS.
CLOSE FILE-1.
STOP RUN.

In manual record locking, you release record locks by the UNLOCK statement or
when you close the file (either explicitly or implicitly). The UNLOCK statement
provides for either releasing the lock on the current record (UNLOCK RECORD)
or releasing all locks currently held by the access stream on the file (UNLOCK
ALL RECORDS).

When you access a shared file with ACCESS MODE IS SEQUENTIAL and use
manual record locking, the UNLOCK statement can cause you to violate either of
the following statements: (1) the REWRITE statement rule that states that the
last input-output statement executed before the REWRITE must be a READ or
START statement, or (2) the DELETE statement rule that states that the last
input/output statement executed before the DELETE statement must be a READ.
You must lock the record before it can be rewritten or deleted.

13.3.3 Locking Error Conditions

Two record-locking conditions (hard and soft record lock) indicate if a record was
transferred to the record buffer. VAX COBOL provides the success, failure, or
informational status of an I/O operation in the File Status variable.

A hard record lock causes the File Status variable to be set to 92, whereas a soft
record lock causes the File Status variable to be set to 90.

13.3.3.1 Hard Record Locks

A hard record lock condition indicates that the record operation failed and the
record was not transferred to the buffer. A hard record lock results from a
situation such as the following, which uses manual record-locking mode:

1. Program A opens the file I-0 ALLOWING ALL.

2. Program A reads a record ALLOWING NO OTHERS.

3. Program B opens the file I-0 ALLOWING ALL.

4. Program B tries to access the same record as A.

5. Program B receives a hard record lock condition.

6. The record is NOT accessible to Program B.

13-16 Sharing Files and Protecting Records

7. Program B's File Status variable is set to 92.

8. Program B's USE procedure is invoked.

9. Program A continues.

The record was not available to program B.

13.3.3.2 Soft Record Locks

A soft record lock condition indicates that the record is locked, but access to the
record is still allowed. A soft record lock occurs when the stream accessing the
record has allowed read access by other streams that have opened the file in input
mode, or when a READ REGARDLESS or START REGARDLESS statement (see
Section 13.3.5) is employed to override a record lock. A soft record lock results
from a situation such as the following, which uses automatic record-locking mode:

1. Program A opens the file I-0 ALLOWING READERS.

2. Program A reads a record.

3. Program B opens the file INPUT ALLOWING ALL.

4. Program B reads the same record.

5. Program B receives a soft record lock condition. The record is accessible to
Program B.

6. Program B's File Status variable is set to 90.

7. Program B's USE procedure is invoked.

8. Programs A and B continue.

The record was available to Program B.

13.3.4 Releasing Locks on Deleted Records

In automatic record locking, the DELETE operation releases the lock on the
record. In manual record-locking mode, you can delete a record using the
DELETE statement but still retain a record lock. You must use the UNLOCK
ALL RECORDS statement to release the lock on a deleted record.

If a second stream attempts to access a deleted record that retains a lock, the
second stream will receive either a record not found exception or a hard lock
condition.

If another stream attempts to REWRITE to a deleted record that retains a lock,
the type of exception that access stream receives depends on its file organization.
If the file organization is RELATIVE, the access stream receives the record locked
status. If the file organization is INDEXED, the access stream succeeds (receives
the success status).

In relative files, the lock is on the relative cell (record) and cannot be rewritten
until the lock is released. On indexed files, the lock is on the records file address
(RFA) of the deleted record, so a new record (with a new RFA) can be written to
the file.

Sharing Files and Protecting Records 13-17

13.3.5 Bypassing a Record Lock

When you use manual record locking, you can apply a READ REGARDLESS or
START REGARDLESS statement to bypass any record lock that exists. READ
REGARDLESS reads the record and applies no locks to the record. START
REGARDLESS positions to the record and applies no locks to the record. If the
record is currently locked by another access stream, a soft record lock condition
can be detected by a USE procedure.

You use READ REGARDLESS or START REGARDLESS when: (1) a record is
locked against readers because the record is about to be written, but (2) your
access program needs the existing record regardless of the possible change in its
data.

NOTE

You should recognize that READ REGARDLESS and START
REGARDLESS are very powerful tools and should be used only in
extreme circumstances. You prevent the use of READ REGARDLESS
or START REGARDLESS at the file protection level, where you prevent
readers from referencing the file.

13-18 Sharing Files and Protecting Records

Chapter 14

Using the COBOL SORT and MERGE Statements

This chapter presents and explains examples of the SORT and MERGE
statements.

The SORT statement provides a wide range of sorting capabilities and options.
To establish a SORT routine, you do the following (1) declare the sort file with a
SELECT statement in the Environment Division; (2) use a Sort Description (SD)
entry in the Data Division to define the sort file's characteristics; and (3) use a
SORT statement in the Procedure Division.

The following program segments demonstrate SORT program coding:

SELECT Statement

SELECT SORT-FILE ASSIGN TO "SRTFIL"

An SD File Description Entry

SD SORT-FILE.
01 SORT-RECORD.

05 SORT-KEYl
05 SOME-DATA
05 SORT-KEY2

PIC X(5).
PIC X (25).
PIC XX.

Note that you can place the sort file anywhere in the FILE SECTION, but you
must use a Sort Description (SD) level indicator, not a File Description (FD) level
indicator.

SORT Statement (in the Procedure Division)

SORT SORT-FILE
ASCENDING KEY S-NAME
USING NAME-FILE
GIVING NEW-FILE.

This SORT statement names a sort file, a key, an input file, and an output file.
An explanation of keys follows.

14.1 ASCENDING and DESCENDING KEY Phrases

Use the ASCENDING and DESCENDING KEY phrases to specify your sort
parameters. The order of data names determines the sort hierarchy; that is, the
major sort key is the first data name entered, while the minor sort key is the last
data name entered.

In this example, the hierarchy of the sort is SORT-KEY-1, SORT-KEY-2,
SORT-KEY-3.

Using the COBOL SORT and MERGE Statements 14-1

SORT SORT-FILE
ASCENDING KEY SORT-KEY-1 SORT-KEY-2
DESCENDING KEY SORT-KEY-3

14.1.1 Sorting Concepts

14.2

Records are sorted based on the data values in the sort keys. The following
example depicts unsorted employee name and address records used for creating
mailing labels:

Smith, Joe 234 Ash St. New Boston NH 04356

Jones, Bill 12 Birch St. Gardner MA 01430

Baker, Tom 78 Oak St. Ayer MA 01510

Thomas, Pete 555 Maple St. Maynard MA 01234

Morris, Dick 21 Harris St. Acton ME 05670

If you sort the addresses in the previous example using the zip code as the
ascending sort key, the mailing labels are printed in the order shown in the
following example:

SORT KEY

Thomas, Pete 555 Maple St. Maynard MA 01234

Jones, Bill 12 Birch St. Gardner MA 01430

Baker, Tom 78 Oak St. Ayer MA 01510

Smith, Joe 234 Ash St. New Boston NH 04356

Morris, Dick 21 Harris St. Acton ME 05670

Also, records can be sorted on more that one key at a time. If you need an
alphabetical listing of all employees within each state, you can sort on the state
code first (major sort key) and employee name second (minor sort key).

For example, if you, sort the file in ascending order by state (major key) and last
name (minor key), your name and address appear in the order shown in the
following example:

SORT KEY SORT KEY
(minor) (major) ---
Baker, Tom 78 Oak St. Ayer MA 01510

Jones, Bill 12 Birch St. Gardner MA 01430

Thomas, Pete 555 Maple St. Maynard MA 01234

Morris, Dick 21 Harris St. Acton ME 05670

Smith, Joe 234 Ash St. New Boston NH 04356

USING and GIVING Phrases

If you only need to resequence a file, use the USING and GIVING phrases of
the SORT statement. The USING phrase opens the input file, then reads and
releases its records to the sort. The GIVING phrase opens and writes sorted
records to the output file.

Note that you cannot manipulate data with either the USING or the GIVING
phrases.

14-2 Using the COBOL SORT and MERGE Statements

Consider this SORT statement:

SORT SORT-FILE ON ASCENDING KEY SORT-KEY-1
USING INPUT-FILE GIVING OUTPUT-FILE.

It does the following:

1. Opens INPUT-FILE

2. Reads all records in INPUT-FILE and releases them to the sort

3. Sorts the records in ascending sequence using the data in SORT-KEY-1

4. Opens the output file and writes the sorted records to OUTPUT-FILE

5. Closes all files used in the SORT statement

14.3 INPUT PROCEDURE and OUTPUT PROCEDURE Phrases

You can manipulate data before and after sorting by using the INPUT
PROCEDURE and OUTPUT PROCEDURE phrases, and sort only some of
the information in a file. For example, these phrases allow you to use only those
input records and/or input data fields you need.

The INPUT PROCEDURE phrase replaces the USING phrase when you want
to manipulate data entering the sort. The SORT statement transfers control to
the sections or paragraphs named in the INPUT PROCEDURE phrase. You then
use COBOL statements to open and read files, and manipulate the data. You use
the RELEASE statement to transfer records to the sort. After the last statement
of the input procedure executes," control is given to the sort, and the records are
subsequently sorted.

After the records are sorted, the SORT statement transfers control to the sections
or paragraphs named in the OUTPUT PROCEDURE phrase. This phrase
replaces the GIVING phrase when you want to manipulate data in the sort.
You can use COBOL statements to open files and manipulate data. You use the
RETURN statement to transfer records from the sort. For example, you can use
the RETURN statement to print a report from sorted records.

Example 14-1 shows a sort using the INPUT and OUTPUT procedures.

Example 14-1: INPUT and OUTPUT PROCEDURE Phrases

PROCEDURE DIVISION.
000-SORT SECTION.
010-DO-THE-SORT.

SORT SORT-FILE ON ASCENDING KEY SORT-KEY-1
ON DESCENDING KEY SORT-KEY-2
INPUT PROCEDURE IS 050-RETRIEVE-INPUT

THRU 100-DONE-INPUT
OUTPUT PROCEDURE IS 200-WRITE-OUTPUT

THRU 230-DONE-OUTPUT.
DISPLAY "END OF SORT".
STOP RUN.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-3

Example 14-1 (Cont.): INPUT and OUTPUT PROCEDURE Phrases

050-RETRIEVE-INPUT SECTION.
060-0PEN-INPUT.

OPEN INPUT IN-FILE.
070-READ-INPUT.

READ IN-FILE AT END
CLOSE IN-FILE
GO TO 100-DONE-INPUT.

MOVE INPUT-RECORD TO SORT-RECORD.

*You can add, change, or delete records before sorting
*using COBOL data manipulation techniques.

*
*

RELEASE SORT-RECORD.
GO TO 070-READ-INPUT.

100-DONE-INPUT SECTION.
110-EXIT-INPUT.

EXIT.
200-WRITE-OUTPUT SECTION.
210-0PEN-OUTPUT.

OPEN OUTPUT OUT-FILE.
220-GET-SORTED-RECORDS.

RETURN SORT-FILE AT END
CLOSE OUT-FILE
GO TO 230-DONE-OUTPUT.

MOVE SORT-RECORD TO OUTPUT-RECORD.

*You can add, change, or delete sorted records
*using COBOL data manipulation techniques.

*
*

WRITE OUTPUT-RECORD.
GO TO 220-GET-SORTED-RECORDS.

230-DONE-OUTPUT SECTION.
240-EXIT-OUTPUT.

EXIT.

You can combine the INPUT PROCEDURE with the GIVING phrases, or the
USING with the OUTPUT PROCEDURE phrases. In Example 14-2, the USING
phrase replaces the INPUT PROCEDURE phrase used in Example 14-1.

14-4 Using the COBOL SORT and MERGE Statements

Example 14-2: USING Phrase Replaces INPUT PROCEDURE Phrase

PROCEDURE DIVISION.
000-SORT SECTION.
010-DO-THE-SORT.

SORT SORT-FILE ON ASCENDING KEY SORT-KEY-1
ON DESCENDING KEY SORT-KEY-2
USING IN-FILE
OUTPUT PROCEDURE IS 200-WRITE-OUTPUT

THRU 230-DONE-OUTPUT.
DISPLAY "END OF SORT".
STOP RUN.

200-WRITE-OUTPUT SECTION.
210-0PEN-OUTPUT.

OPEN OUTPUT OUT-FILE.
220-GET-SORTED-RECORDS.

RETURN SORT-FILE AT END
CLOSE OUT-FILE
GO TO 230-DONE-OUTPUT.

MOVE SORTED-RECORD TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.
GO TO 220-GET-SORTED-RECORDS.

230-DONE-OUTPUT SECTION.
240-EXIT-OUTPUT.

EXIT.

NOTE

You cannot access records released to the sort-file after the SORT
statement ends.

14.4 WITH DUPLICATES IN ORDER Phrase

The sort orders data in the sequence specified in the ASCENDING KEY and
DESCENDING KEY phrases. However, records with duplicate sort keys may not
be written to the output file in the same sequence as they were read into it. The
WITH DUPLICATES IN ORDER phrase ensures that any records with duplicate
sort keys are in the same order in the output file as in the input file.

The following list shows the difference between sorting with the WITH
DUPLICATES IN ORDER phrase and sorting without it:

Input file
Record

Name Data

JONESABCD

DAVISLMNO

WHITE STUV

JONES EFGH

SMITH 1234

WHITEWXYZ

Sorted Without
Duplicates in Order

Record
Name Data

DAVIS LMNO

JONES EFGH

JONES ABCD

SMITH 1234

WHITE STUV

WHITEWXYZ

Sorted with
Duplicates in Order

Record
Name Data

DAVISLMNO

JONESABCD

JONES EFGH

SMITH 1234

WHITE STUV

WHITEWXYZ

If you omit the WITH DUPLICATES IN ORDER phrase, you cannot predict the
order of records with duplicate sort keys. The JONES records are not in the same
sequence as they were in the input file, but the WHITE records are.

Using the COBOL SORT and MERGE Statements 14-5

In contrast, the WITH DUPLICATES IN ORDER phrase guarantees that records
with duplicate sort keys remain in the same sequence as they were in the input
file.

14.5 COLLATING SEQUENCE IS Alphabet-Name Phrase

This phrase lets you specify a collating sequence other than the ASCII default.
You must define collating sequences in the SPECIAL-NAMES paragraph of the
Environment Division. A sequence specified in the COLLATING SEQUENCE IS
phrase of the SORT statement overrides a sequence specified in the PROGRAM
COLLATING SEQUENCE IS phrase of the OBJECT-COMPUTER paragraph.

Example 14-3 shows the alphabet name NEWSEQUENCE overriding the
EBCDIC-CODE collating sequence.

Example 14-3: Overriding the COLLATING SEQUENCE IS Phrase

ENVIRONMENT DIVISION.
OBJECT-COMPUTER. VAX

PROGRAM COLLATING SEQUENCE IS EBCDIC-CODE.
SPECIAL-NAMES.

ALPHABET NEWSEQUENCE IS "ZYXWVUTSRQPONMLKJIHGFEDCBA"
ALPHABET EBCDIC-CODE IS EBCDIC.

PROCEDURE DIVISION.
000-DO-THE-SORT.

SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2

COLLATING SEQUENCE IS NEWSEQUENCE
USING INPUT-FILE GIVING OUTPUT-FILE.

14.6 File Organization

You can sort any file regardless of its organization; furthermore, the organization
of the output file can differ from that of the input file. For example, a sort can
have a sequential input file and a relative output file. In this case, the relative
key for the first record returned from the sort is 1; the second record's relative
key is 2; and so forth. However, if an indexed file is described as output in the
GIVING or OUTPUT PROCEDURE phrases, the first sort key associated with
the ASCENDING phrase must specify the same character positions specified by
the RECORD KEY phrase for that file.

14.7 Multiple Sorts

A program can contain more than one sort file, more than one SORT statement,
or both sort files and SORT statements. Example 14-4 uses two sort files to
produce two reports with different sort sequences.

14-6 Using the COBOL SORT and MERGE Statements

Example 14-4: Using Two Sort Files

DATA DIVISION.
FILE SECTION.
SD SORT-FILEl.
01 SORT-REC-1.

03 Sl-KEY-1
03 FILLER
03 Sl-KEY-2
03 FILLER

SD SORT-FILE2.
01 SORT-REC-2.
01 SORT-REC-2.

03 FILLER
03 S2-KEY-1
03 FILLER
03 S2-KEY-2
03 FILLER

PROCEDURE DIVISION.
000-SORT SECTION.
010-DO-FIRST-SORT.

PIC X(5).
PIC x (40).
PIC X(5).
PIC X(50).

PIC x (20).
PIC x (10).
PIC x (10).
PIC x (10).
PIC x (50).

SORT SORT-FILEl ON ASCENDING KEY
Sl-KEY-1
Sl-KEY-2
WITH DUPLICATES IN ORDER
USING INPUT-FILE
OUTPUT PROCEDURE IS 050-CREATE-REPORT-1

THRU 300-DONE-REPORT-1.
020-DO-SECOND-REPORT.

SORT SORT-FILE2 ON ASCENDING KEY
82-KEY-1

ON DESCENDING KEY
S2-KEY-2
USING INPUT-FILE
OUTPUT PROCEDURE IS 400-CREATE-REPORT-2

THRU 700-DONE-REPORT-2.
030-END-JOB.

DISPLAY "PROGRAM ENDED".
STOP RUN.

050-CREATE-REPORT-1 SECTION.
**
* *
* *
* Use the RETURN statement to read the sorted records. *
* *
* *
**
300-DONE-REPORT-l SECTION.
310-EXIT-REPORT-1.

EXIT.
400-CREATE-REPORT-2 SECTION.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-7

Example 14-4 (Cont.): Using Two Sort Files

**
* *
* *
* Use the RETURN statement to read the sorted records. *
* *
* *
**
700-DONE-REPORT-2 SECTION.
710-EXIT-REPORT.

EXIT.

14.8 Sorting Variable-Length Records

If you specify the USING phrase and the input file contains variable-length
records, the sort-file record must not be smaller than the smallest record, nor
larger than the largest record, described in the input file.

If you specify the GIVING phrase and the output file contains variable-length
records, the sort-file record must not be smaller than the smallest record, nor
larger than the largest record, described in the output file.

14.9 Preventing 1/0 Aborts

All I/O errors detected during a sort can cause abnormal program termination.
The USE AFTER STANDARD ERROR PROCEDURE declarative, shown in
Example 14-5, specifies error-handling procedures should l/O errors occur.

Example 14-5: Using the AFTER STANDARD ERROR PROCEDURE

PROCEDURE DIVISION.
DECLARATIVES.
SORT-FILE SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON INPUT-FILE.
SORT-ERROR.

DISPLAY "I-0 TYPE ERROR WHILE SORTING".
DISPLAY "INPUT-FILE STATUS IS " INPUT-STATUS.
STOP RUN.

END DECLARATIVES.
000-SORT SECTION.
010-DO-THE-SORT.

SORT SORT-FILE ON DESCENDING KEY
S-KEY-1

WITH DUPLICATES IN ORDER
USING INPUT-FILE
GIVING OUTPUT-FILE.

DISPLAY "END OF SORT".
STOP RUN.

14-8 Using the COBOL SORT and MERGE Statements

NOTE

The USE PROCEDURE phrase does not apply to Sort Description (SD)
files.

14.10 The MERGE Statement

The MERGE statement combines two or more identically sequenced files and
makes their records available, in merged order, to an output procedure or to one
or more output files. Use MERGE statement phrases the same way you use their
SORT statement phrase equivalents.

In Example 14-6, district sales data is merged into one regional sales file.

Example 14-6: Using the MERGE Statement

DATA DIVISION.
FILE SECTION.
SD MERGE-FILE.
01 MERGE-REC.

03 FILLER
03 M-PRODUCT-CODE
03 FILLER

FD DISTRICTl-SALES.
01 DISTRICTl-REC
FD DISTRICT2-SALES.
01 DISTRICT2-REC
FD REGIONl-SALES
01 REGIONl-REC
PROCEDURE DIVISION.
000-MERGE-FILES.

PIC XX.
PIC X (10) .
PIC X(88).

PIC X(l00).

PIC X(lOO).

PIC X(lOO).

MERGE MERGE-FILE ON ASCENDING KEY M-PRODUCT-CODE
USING DISTRICTl-SALES DISTRICT2-SALES
GIVING REGIONl-SALES.

STOP RUN.

14.11 Sample Programs Using the SORT and MERGE Statements

The programs in Example 14-7, Example 14-8, Example 14-9, Example 14-10,
Example 14-11, and Example 14-12 all show how to use the SORT and MERGE
statements.

Example 14-7 shows how to use the SORT statement with the USING and
GIVING phrases.

Using the COBOL SORT and MERGE Statements 14-9

Example 14-7: Sorting a File with the USING and GIVING Phrases

IDENTIFICATION DIVISION.
PROGRAM-ID. SORTA.

*
*
*
*

This program shows how to sort
a file with the USING and GIVING phrases
of the SORT statement. The fields to be
sorted are S-KEY-1 and S-KEY-2; they
contain account numbers and amounts. The

*
*
*
*
* *

*
*
*

sort sequence is amount within account *
number. *
Notice that OUTPUT-FILE is a relative file. *

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "INPFIL".
SELECT OUTPUT-FILE ASSIGN TO "OUTFIL"

ORGANIZATION IS RELATIVE.
SELECT SORT-FILE ASSIGN TO "SRTFIL".

DATA DIVISION.
FILE SECTION.
SD SORT-FILE.
01 SORT-REC.

03 S-KEY-1.
05 S-ACCOUNT-NUM

03 FILLER
03 S-KEY-2.

05 S-AMOUNT
03 FILLER

FD INPUT-FILE
LABEL RECORDS ARE STANDARD.

01 IN-REC
FD OUTPUT-FILE

LABEL RECORDS ARE STANDARD.
01 OUT-REC
PROCEDURE DIVISION.
000-DO-THE-SORT.

PIC X(8).
PIC X(32).

PIC S9(5)V99.
PIC X (53).

PIC X(lOO).

PIC X(lOO).

SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2

WITH DUPLICATES IN ORDER
USING INPUT-FILE GIVING OUTPUT-FILE.

*
*

At this point, you could transfer control to another
section of your program and continue processing.

*
*

DISPLAY "END OF PROGRAM SORTA".
STOP RUN.

14-10 Using the COBOL SORT and MERGE Statements

Example 14-8 shows how to use the USING and OUTPUT PROCEDURE
phrases.

Example 14-8: Using the USING and OUTPUT PROCEDURE Phrases

IDENTIFICATION DIVISION.
PROGRAM-ID. SORTB.
**
*
*
*
*
*
*
*
*
*
*
*

This program shows how to sort a file
with the USING and OUTPUT PROCEDURE phrases
of the SORT statement. The program eliminates
duplicate records by adding their amounts to the
amount in the first record with the same account
number. Only records with unique account numbers
are written to the output file. The fields to be
sorted are S-KEY-1 and S-KEY-2; they contain account
numbers and amounts. The sort sequence is amount
within account number.
Notice that the organization of OUTPUT-FILE is indexed.

*
*
*
*
*
*
*
*
*
*
*

**
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "INPFIL".
SELECT OUTPUT-FILE ASSIGN TO "OUTFIL"

ORGANIZATION IS INDEXED.
SELECT SORT-FILE ASSIGN TO "SRTFIL".

DATA DIVISION.
FILE SECTION.
SD SORT-FILE.
01 SORT-REC.

03 S-KEY-1.
05 S-ACCOUNT-NUM

03 FILLER
03 S-KEY-2.

05 S-AMOUNT
03 FILLER

FD INPUT-FILE
LABEL RECORDS ARE STANDARD.

01 IN-REC
FD OUTPUT-FILE

LABEL RECORDS ARE STANDARD
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS OUT-KEY.

01 OUT-REC.
03 OUT-KEY
03 FILLER

WORKING-STORAGE SECTION.
01 INITIAL-SORT-READ
01 SAVE-SORT-REC.

03 SR-ACCOUNT-NUM
03 FILLER
03 SR-AMOUNT
03 FILLER

PROCEDURE DIVISION.
000-START SECTION.
005-DO-THE-SORT.

PIC
PIC

PIC
PIC

PIC

PIC
PIC

PIC

PIC
PIC
PIC
PIC

SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2

X(8).
X(32).

S9(5)V99.
X(53).

X(100).

X(8).
x (92).

x VALUE

X(8).
X(32).
S9(5)V99.
X(53).

"Y".

(continued on next page)

Using the COBOL SORT and MERGE Statements 1~11

Example 14-8 (Cont.): Using the USING and OUTPUT PROCEDURE Phrases

USING INPUT-FILE
OUTPUT PROCEDURE IS 300-CREATE-OUTPUT-FILE

THRU 600-DONE-CREATE.
**
*
*

At this point, you could transfer control to another
section of the program and continue processing.

*
*

**
DISPLAY "END OF PROGRAM SORTB".
STOP RUN.

300-CREATE-OUTPUT-FILE SECTION.
350-0PEN-OUTPUT.

OPEN OUTPUT OUTPUT-FILE.
400-READ-SORT-FILE.

RETURN SORT-FILE AT END
PERFORM 500-WRITE-THE-OUTPUT
CLOSE OUTPUT-FILE
GO TO 600-DONE-CREATE.

IF INITIAL-SORT-READ == "Y"
MOVE SORT-REC TO SAVE-SORT-REC
MOVE "N" TO INITIAL-SORT-READ
GO TO 400-READ-SORT-FILE.

450-COMPARE-ACCOUNT-NUM.
IF S-ACCOUNT-NUM == SR-ACCOUNT-NUM

ADD S-AMOUNT TO SR-AMOUNT
GO TO 400-READ-SORT-FILE.

500-WRITE-THE-OUTPUT.
MOVE SAVE-SORT-REC TO OUT-REC.
WRITE OUT-REC INVALID KEY

DISPLAY "INVALID KEY " SR-ACCOUNT-NUM " SORTB ABORTED"
CLOSE OUTPUT-FILE STOP RUN.

550-GET-A-REC.
MOVE SORT-REC TO SAVE-SORT-REC.
GO TO 400-READ-SORT-FILE.

600-DONE-CREATE SECTION.
650-EXIT-PARAGRAPH.

EXIT.

14-12 Using the COBOL SORT and MERGE Statements

Example 14-9 shows how to use the INPUT PROCEDURE and OUTPUT
PROCEDURE phrases.

Example 14-9: Using the INPUT PROCEDURE and OUTPUT PROCEDURE
Phrases

IDENTIFICATION DIVISION.
PROGRAM-ID. SORTC.

*
*
*
*
*
*
*
*
*
*
*
*

This program shows how to use the INPUT
PROCEDURE and OUTPUT PROCEDURE phrases of the
SORT statement. Input to the sort is two files
containing the same type of data. Records with
a "D" status-code are not released to the sort.
The program eliminates duplicate records by
adding their amounts to the amount in the first
record with the same account number. Only records
with unique account numbers are written to
the output file. The fields to be sorted are
S-KEY-1 and S-KEY-2. The sort sequence is amount
within account number.

*
*
*
*
*
*
*
*
*
*
*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FIRST-FILE ASSIGN TO "FILEOl".
SELECT SECOND-FILE ASSIGN TO "FILE02".
SELECT OUTPUT-FILE ASSIGN TO "OUTFIL".
SELECT SORT-FILE ASSIGN TO "SRTFIL".

DATA DIVISION.
FILE SECTION.
SD SORT-FILE.
01 SORT-REC.

03 S-KEY-1.
05 S-ACCOUNT-NUM

FD

01

03 FILLER
03 S-KEY-2.

05 S-AMOUNT
03 FILLER
FIRST-FILE
LABEL RECORDS ARE
RECORDl.
03 FILLER

STANDARD.

PIC X(8).
PIC X (32).

PIC S9(5)V99.
PIC X(53).

PIC X(99).
03 Rl-STATUS-CODE PIC x.

FD SECOND-FILE
LABEL RECORDS ARE STANDARD.

01 RECORD2.
03 FILLER PIC x (99).
03 R2-STATUS-CODE PIC x.

FD OUTPUT-FILE
LABEL RECORDS ARE STANDARD.

01 OUT-REC PIC X(lOO).
WORKING-STORAGE SECTION.

PIC X VALUE "Y". 01 INITIAL-SORT-READ
01 FILEOl-COUNT
01 FILE02-COUNT

PIC 9(5) VALUE ZEROES.
PIC 9(5) VALUE ZEROES.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-13

Example 14-9 (Cont.): Using the INPUT PROCEDURE and OUTPUT
PROCEDURE Phrases

01 SORT-COUNT
01 OUTPUT-COUNT
01 SAVE-SORT-REC.

03 SR-ACCOUNT-NUM
03 FILLER
03 SR-AMOUNT
03 FILLER

PROCEDURE DIVISION.
000-START SECTION.
005-DO-THE-SORT.

PIC
PIC

PIC
PIC
PIC
PIC

SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2

9 (5) VALUE
9 (5) VALUE

X(8).
X(32).
S9(5)V99.
x (53).

INPUT PROCEDURE IS 010-GET-INPUT

ZEROES.
ZEROES.

THRU 200-DONE-INPUT-GET
OUTPUT PROCEDURE IS 300-CREATE-OUTPUT-FILE

THRU 600-DONE-CREATE.
**

*
*

Notice the use of DISPLAY and record counters to
produce sort statistics.

*
*

**
DISPLAY "TOTAL FIRST-FILE RECORDS IS
DISPLAY "TOTAL SECOND-FILE RECORDS IS
DISPLAY "TOTAL NUMBER OF SORTED RECORDS IS
DISPLAY "TOTAL NUMBER OF OUTPUT RECORDS IS

" FILEOl-COUNT.
" FILE02-COUNT.
" SORT-COUNT.
" OUTPUT-COUNT.

**

*
*

At this point, you could transfer control to another
section of the program and continue processing.

*
*

**
DISPLAY "END OF PROGRAM SORTC".
STOP RUN.

010-GET-INPUT SECTION.
050-0PEN-FILES.

OPEN INPUT FIRST-FILE.
100-READ-FIRST-FILE.

READ FIRST-FILE AT END
CLOSE FIRST-FILE
OPEN INPUT SECOND-FILE
GO TO 150-READ-SECOND-FILE.

ADD 1 TO FILEOl-COUNT.
IF Rl-STATUS-CODE = "D"

GO TO 100-READ-FIRST-FILE.
RELEASE SORT-REC FROM RECORDl.
GO TO 100-READ-FIRST-FILE.

150-READ-SECOND-FILE.
READ SECOND-FILE AT END

CLOSE SECOND-FILE
GO TO 200-DONE-INPUT-GET.

ADD 1 TO FILE02-COUNT.
IF R2-STATUS-CODE = "D"

GO TO 150-READ-SECOND-FILE.
RELEASE SORT-REC FROM RECORD2.
GO TO 150-READ-SECOND-FILE.

200-DONE-INPUT-GET SECTION.
250-EXIT-PARAGRAPH.

EXIT.

14-14 Using the COBOL SORT and MERGE Statements

(continued on next page)

Example 14-9 (Cont.}: Using the INPUT PROCEDURE and OUTPUT
PROCEDURE Phrases

300-CREATE-OUTPUT-FILE SECTION.
350-0PEN-OUTPUT.

OPEN OUTPUT OUTPUT-FILE.
400-READ-SORT-FILE.

RETURN SORT-FILE AT END
PERFORM 500-WRITE-THE-OUTPUT
CLOSE OUTPUT-FILE
GO TO 600-DONE-CREATE.

ADD 1 TO SORT-COUNT.
IF INITIAL-SORT-READ = "Y"

MOVE SORT-REC TO SAVE-SORT-REC
MOVE "N" TO INITIAL-SORT-READ
GO TO 400-READ-SORT-FILE.

450-COMPARE-ACCOUNT-NUM.
IF S-ACCOUNT-NUM = SR-ACCOUNT-NUM

ADD S-AMOUNT TO SR-AMOUNT
GO TO 400-READ-SORT-FILE.

500-WRITE-THE-OUTPUT.
MOVE SAVE-SORT-REC TO OUT-REC.
WRITE OUT-REC.
ADD 1 TO OUTPUT-COUNT.

550-GET-A-REC.
MOVE SORT-REC TO SAVE-SORT-REC.
GO TO 400-READ-SORT-FILE.

600-DONE-CREATE SECTION.
650-EXIT-PARAGRAPH.

EXIT.

Example 14-10 shows how to use the COLLATING SEQUENCE IS phrase.

Example 14-10: Using the COLLATING SEQUENCE IS Phrase

IDENTIFICATION DIVISION.
PROGRAM-ID. SORTD.
**
*

*
*
*
*
*
*
*

This program sorts a file into a non-ASCII
collating sequence. The collating sequence
is defined by the alphabet-name MYSEQUENCE
in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION.
The collating sequence is:

1. The letters A to Z
2. The digits O to 9

*
*
*
*
*
*
*
*

**
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-15

Example 14-10 (Cont.): Using the COLLATING SEQUENCE IS Phrase

SPECIAL-NAMES.
ALPHABET MYSEQUENCE IS

"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 II

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "INPFIL".
SELECT OUTPUT-FILE ASSIGN TO "OUTFIL".
SELECT SORT-FILE ASSIGN TO "SRTFIL".

DATA DIVISION.
FILE SECTION.
SD SORT-FILE.
01 SORT-REC.

03 S-KEY-1.
05 S-ACCOUNT-NAME

03 S-KEY-2.
05 S-AMOUNT

FD INPUT-FILE
LABEL RECORDS ARE STANDARD.

PIC X(23).

PIC S9(5)V99.

01 IN-REC PIC X(30).
FD OUTPUT-FILE

LABEL RECORDS ARE STANDARD.
01 OUT-REC
PROCEDURE DIVISION.
000-DO-THE-SORT.

PIC X(30).

SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2

COLLATING SEQUENCE IS MYSEQUENCE
USING INPUT-FILE GIVING OUTPUT-FILE.

**
*
*

At this point, you could transfer control to another
section of the program and continue processing.

*
*

**
DISPLAY "END OF PROGRAM SORTD".
STOP RUN.

Example 14-11 is an example of creating a new sort key.

Example 14-11: Creating a New Sort Key

IDENTIFICATION DIVISION.
PROGRAM-ID. SORTE.
**
*
*
*
*

This program increases the size of the
variable input records by a new six­
character field and uses this field
as the sort key.

*
*
*
*

**
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INFILE ASSIGN TO "INFILE".
SELECT SORT-FILE ASSIGN TO "SRTFIL".
SELECT OUT-FILE ASSIGN TO "OUTFILE".

14-16 Using the COBOL SORT and MERGE Statements

(continued on next page)

Example 14-11 (Cont.): Creating a New Sort Key

DATA DIVISION.
FILE SECTION.
FD INFILE

RECORD VARYING FROM 100 TO 490 CHARACTERS
DEPENDING ON IN-LENGTH.

01 INREC.
03 ACCOUNT PIC
03 INCOME-FIRST-QUARTER PIC
03 INCOME-SECOND-QUARTER PIC
03 INCOME-THIRD-QUARTER PIC
03 INCOME-FOURTH-QUARTER PIC
03 ORDER-COUNT PIC
03 ORDERS OCCURS 1 TO 7 TIMES

DEPENDING ON ORDER-COUNT.

9(5).
9(5)V99.
9(5)V99.
9(5)V99.
9(5)V99.
9 (2).

05 ORDER-DATE PIC 9(6).
05 FILLER PIC X(59).

SD SORT-FILE
RECORD VARYING FROM 106 TO
DEPENDING ON SORT-LENGTH.

01 SORT-REC.
03 SORT-ANNUAL-INCOME
03 SORT-REST-OF-RECORD

FD OUT-FILE
RECORD VARYING FROM 106 TO
DEPENDING ON OUT-LENGTH.

01 OUT-REC
WORKING-STORAGE SECTION.
01 IN-LENGTH
01 SORT-LENGTH
01 OUT-LENGTH
PROCEDURE DIVISION.
000-START SECTION.
005-SORT-HERE.

SORT SORT-FILE

496 CHARACTERS

PIC 9 (6) .
PIC X(490).

496 CHARACTERS

PIC X(496).

PIC 9 (3) COMP.
PIC 9(3) COMP.
PIC 9 (3) COMP.

ON DESCENDING SORT-ANNUAL-INCOME
INPUT PROCEDURE 010-GET-INPUT

THRU 070-DONE-INPUT
OUTPUT PROCEDURE 100-WRITE-OUTPUT.

DISPLAY "END OF PROGRAM SORTE".
STOP RUN.

010-GET-INPUT SECTION.
020-0PEN-INPUT.

OPEN INPUT INFILE.
030-READ-INPUT.

READ INFILE AT END
CLOSE INFILE
GO TO 070-DONE-INPUT.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-17

Example 14-11 {Cont.): Creating a New Sort Key

040-ADD-INCOME.
ADD INCOME-FIRST-QUARTER

INCOME-SECOND-QUARTER
INCOME-THIRD-QUARTER
INCOME-FOURTH-QUARTER
GIVING SORT-ANNUAL-INCOME.

050-CREATE-SORT-REC.
ADD 6 IN-LENGTH GIVING SORT-LENGTH.
MOVE INREC TO SORT-REST-OF-RECORD.
RELEASE SORT-REC.
GO TO 030-READ-INPUT.

070-DONE-INPUT SECTION.
080-EXIT.

EXIT.
100-WRITE-OUTPUT SECTION.
110-0PEN.

OPEN OUTPUT OUT-FILE.

120-WRITE.
RETURN SORT-FILE AT END

CLOSE OUT-FILE
GO TO 130-DONE.

MOVE SORT-LENGTH TO OUT-LENGTH.
WRITE OUT-REC.
GO TO 120-WRITE.

130-DONE.
EXIT.

Example 14-12 merges three identically sequenced files into one file.

Example 14-12: Merging Files

IDENTIFICATION DIVISION.
PROGRAM-ID. MERGEOl.
**
*
*
*
*

This program merges three identically sequenced
regional sales files into one total sales file.
The program adds sales amounts and writes one
record for each product code.

*
*
*
*

**
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

VAX.
VAX.·

SELECT REGIONl-SALES ASSIGN
SELECT REGION2-SALES ASSIGN
SELECT REGION3-SALES ASSIGN
SELECT MERGE-FILE ASSIGN
SELECT TOTAL-SALES ASSIGN

14-18 Using the COBOL SORT and MERGE Statements

TO
TO
TO
TO
TO

"REGlSLS".
"REG2SLS".
"REG3SLS".
"MRGFILE".
"TOTLSLS".

(continued on next page)

Example 14-12 (Cont.): Merging Files

DATA DIVISION.
FILE SECTION.
FD REGIONl-SALES

LABEL RECORDS ARE STANDARD.
01 REGIONl-RECORD PIC x (100).
FD REGION2-SALES

LABEL RECORDS ARE STANDARD.
01 REGION2-RECORD PIC x (100).
FD REGION3-SALES

LABEL RECORDS ARE STANDARD.
01 REGION3-RECORD PIC x (100).
SD MERGE-FILE.

01 MERGE-REC.
03 M-REGION-CODE PIC xx.
03 M-PRODUCT-CODE PIC x (10).
03 M-SALES-AMT PIC S9(7)V99.
03 FILLER PIC x (79).

FD TOTAL-SALES
LABEL RECORDS ARE STANDARD.

01 TOTAL-RECORD PIC x (100).
WORKING-STORAGE SECTION.
01 INITIAL-READ PIC X VALUE "Y".
01 THE-COUNTERS.

03 PRODUCT-AMT PIC S9(7)V99.
03 REGIONl-AMT PIC S9(9)V99.
03 REGION2-AMT PIC S9(9)V99.
03 REGION3-AMT PIC S9(9)V99.
03 TOTAL-AMT PIC S9(11)V99.

01 SAVE-MERGE-REC.
03 S-REGION-CODE PIC xx.
03 S-PRODUCT-CODE PIC X(lO).
03 S-SALES-AMT PIC S9(7)V99.
03 FILLER PIC x (79).

PROCEDURE DIVISION.
000-START SECTION.
010-MERGE-FILES.

OPEN OUTPUT TOTAL-SALES.
MERGE MERGE-FILE ON ASCENDING KEY M-PRODUCT-CODE

USING REGIONl-SALES REGION2-SALES REGION3-SALES
OUTPUT PROCEDURE IS 020-BUILD-TOTAL-SALES

THRU 100-DONE-TOTAL-SALES.
DISPLAY "TOTAL SALES FOR REGION 1 " REGIONl-AMT.
DISPLAY "TOTAL SALES FOR REGION 2 " REGION2-AMT.
DISPLAY "TOTAL SALES FOR REGION 3 " REGION3-AMT.
DISPLAY "TOTAL ALL SALES
CLOSE TOTAL-SALES.
DISPLAY "END OF PROGRAM MERGEOl".
STOP RUN.

020-BUILD-TOTAL-SALES SECTION.
030-GET-MERGE-RECORDS.

RETURN MERGE-FILE AT END

" TOTAL-AMT.

MOVE PRODUCT-AMT TO S-SALES-AMT
WRITE TOTAL-RECORD FROM SAVE-MERGE-REC
GO TO 100-DONE-TOTAL-SALES.

IF INITIAL-READ = "Y"
MOVE "N" TO INITIAL-READ
MOVE MERGE-REC TO SAVE-MERGE-REC
PERFORM 050-TALLY-AMOUNTS
GO TO 030-GET-MERGE-RECORDS.

(continued on next page)

Using the COBOL SORT and MERGE Statements 14-19

Example 14-12 (Cont.): Merging Files

040-COMPARE-PRODUCT-CODE.
IF M-PRODUCT-CODE = S-PRODUCT-CODE

PERFORM 050-TALLY-AMOUNTS
GO TO 030-GET-MERGE-RECORDS.

MOVE PRODUCT-AMT TO S-SALES-AMT.
MOVE ZEROES TO PRODUCT-AMT.
WRITE TOTAL-RECORD FROM SAVE-MERGE-REC.
MOVE MERGE-REC TO SAVE-MERGE-REC.
GO TO 040-COMPARE-PRODUCT-CODE.

050-TALLY-AMOUNTS.
ADD M-SALES-AMT TO PRODUCT-AMT TOTAL-AMT.
IF M-REGION-CODE = "01"

ADD M-SALES-AMT TO REGIONl-AMT.
IF M-REGION-CODE = "02"

ADD M-SALES-AMT TO REGION2-AMT.
IF M-REGION-CODE = "03"

ADD M-SALES-AMT TO REGION3-AMT.
100-DONE-TOTAL-SALES SECTION.
120-DONE.

EXIT.

14-20 Using the COBOL SORT and MERGE Statements

Chapter 15

Database Programming with VAX COBOL

VAX COBOL database programming allows you to access data without designing
separate files for specific applications. This chapter introduces the database
programmer to the database management system (VAX DBMS) and the COBOL
data manipulation language (DML). It also discusses the following topics:

• VAX COBOL database program development

• VAX COBOL database concepts

• VAX COBOL programming tips and techniques

• Debugging and testing VAX COBOL database programs

Database programmers and readers unfamiliar with VAX DBMS concepts
and definitions should run the online self-paced demonstration package (see
Section 15.1) as a prerequisite to this chapter. The demonstration package
lets you test VAX DBMS features and concepts as you learn them. You should
also read the introductory material to VAX application development with the
VAX Information Architecture, and the VAX DBMS documentation on database
administration.

15.1 The Self-Paced Demonstration Package

To help you learn how to use a database, Digital has provided you with a
database called PARTS. PARTS is an online self-paced demonstration database
configured to show some of the features of VAX DBMS. You create the PARTS
database as part of the demonstration package. Examples in this chapter refer to
either the PARTSSl or PARTSS3 subschema in the PARTS database. A complete
listing of the PARTS schema, including the PARTSSl and PARTSS3 subschemas,
can be found in the VAX DBMS documentation on data manipulation.

Before beginning the demonstration, you should do the following:

1. Create your own node in CDD/Plus using the Dictionary Management Utility
(DMU). (Refer to the CDD/Plus documentation for more information.)

$ RUN SYS$SYSTEM: DMU ~
DMU> CREATE nodename ~
DMU> SHOW DEFAULT~

defaultname
DMU> EXIT~
$

where:

node name names the new node in the CDD to contain your personal PARTS
database.

defaultname is your CDD default.

Database Programming with VAX COBOL 15-1

For example:

$ RUN SYS$SYSTEM:DMUIBTI]
DMU> CREATE DEMONODE mTI)
DMU> SHOW DEFAULT[@]

CDD$TOP
DMU> EXIT~
$

2. Define CDD$DEFAULT using the defaultname, a period, and the nodename
from step 1. For example:

$ DEFINE CDD$DEFAULT "CDD$TOP.DEMONODE"

defaul tname __j j i
separator period

nodename ____ ___,_

ZK-1434A-GE

To run the demonstration package, type the following:

$ @SYS$COMMON: [SYSTEST.DBM]DBMDEMO ~

You must run the entire demonstration to create and load the PARTS database.
If you have already created the PARTS database but are unsure of or have
changed its contents, you can reload it by running option 11 of the self-paced
demonstration package.

The demonstration package creates the NEW.ROG database instance. See the
VAX Information Architecture documentation for more information. If you have
any problems with the demonstration package, see your system manager or
database administrator.

15.2 VAX COBOL Data Manipulation Language (DML)

The VAX COBOL data manipulation language (DML) is a programming language
extension that provides a way for a COBOL application program to access
a database. A VAX COBOL database application program contains DML
statements that tell the Database Control System (DBCS) what to do with
specified data; tpe DBCS provides all database processing control at run time.
The four classes of DML statements are data definition, control, retrieval, and
update. An explanation of each class follows:

• Data definition-These entries define the specific part of the database to
be accessed by the application program and any keeplists needed to navigate
through it. The entries also result in the creation of a database user work
area (UWA). Transfer of data between your program and the database takes
place in the UWA. Your program delivers data for the DBCS to this area; it is
here that the DBCS places data requested from the database for retrieval to
your program.

SUB-SCHEMA
SECTION

DB

15-2 Database Programming with VAX COBOL

Is the first section of the Data Division. It contains two
paragraphs: the Subschema entry (DB) and the Keeplist
Description entry (LD).

Names the target subschema, translates subschema
record descriptions to compatible VAX COBOL record
descriptions, and creates a user work area (UWA).

LD Names a keeplist to help you navigate through the
database.

For more information on these entries see the Data Division section of the
VAX COBOL Reference Manual.

• Control-The DML control functions tell the DBCS when and how to begin
or end a database transaction.

COMMIT

READY

ROLLBACK

Terminates your transaction, makes permanent all
changes made to the database since the last quiet point,
and establishes a new quiet point for the next run unit.

Prepares selected realms for use.

Ends your transaction, cancels all changes made to the
database since the start of your transaction, empties all
keeplists, and nulls all currency indicators.

• Retrieval-The DML retrieval functions are used to find a record in the
database and, if necessary, retain the record in the user work area (UWA) for
later use.

FIND

FIND ALL

FETCH

FREE

GET

KEEP

Locates a record in the database.

Locates all records specified in the database and puts them
in a keeplist.

Locates a record in the database, retrieves its data item
values, and places them in the user work area (UWA).

Releases references to records.

Retrieves data item values of a previously located record
and places them in the user work area (UWA).

Remembers a record so you can later refer to it.

Records can be found in several ways in the database. By using a Record
Selection Expression in a FIND or FETCH statement, a program has four
formats to choose from: (1) database key identifier access, (2) set owner
access, (3) record search access, or (4) DB-KEY access. The VAX COBOL
Reference Manual explains these in detail.

A COBOL program can sequentially search the database or individual realm.
In all cases, once a record is found by the COBOL application program, the
DBCS sets a currency indicator to hold the database key value of that record
or the position of that record. The COBOL program can indirectly use this
value in KEEP, FIND ALL, or FREE statements or use the RETAINING
option as a placemarker to help the program navigate through the database.

• Update-These functions allow the creation, modification, and deletion of
database records.

CONNECT

DISCONNECT

ERASE

MODIFY

RECONNECT

STORE

Makes a record a member in one or more sets.

Removes a record from one or more sets.

Deletes records from the database.

Changes the contents of a record in the database.

Moves a record from one occurrence of a set type to
another (possibly the same) occurrence.

Adds a record to the database.

The VAX COBOL Reference Manual discusses the effects of the schema data
definition language (DDL) INSERTION and RETENTION options on each of the
DML update verbs.

Database Programming with VAX COBOL 15-3

Once a record has been located by a COBOL program, it can be changed or
even erased from the database. DML programming operations also change the
fundamental relationships within sets, causing records to change as well. For
example, each set is owned by a record or VAX DBMS itself. If the program
erases a record that is the owner of the set, all member records may also be
deleted.

The VAX COBOL Reference Manual contains more information on DML
statements, database conditional expressions, and the special registers
DB-CONDITION, DB-CURRENT-RECORD-NAME, DB-CURRENT-RECORD-ID,
DB-UWA, and DB-KEY.

15.3 Creating a VAX COBOL DML Program

When you create a VAX COBOL DML program, you must include the
SUB-SCHEMA SECTION entry as the first section in the Data Division.
The SUB-SCHEMA SECTION is followed by a DB statement and the DML verbs
described in this chapter.

15.4 Compiling a VAX COBOL DML Program

Your database administrator (DBA) creates schema and subschema definitions in
CDD/Plus. These record definitions are defined in DMU format and are intended
to serve all VAX languages that might access them. In this format, the record
definitions are not compatible with COBOL record definitions. Therefore, when
the VAX COBOL compiler retrieves the subschema definition from CDD/Plus, it
translates the file into an internal form acceptable to the VAX COBOL compiler.

If the translation results in compiler errors, they will probably be fatal. For
example:

DB PARTSS4 WITHIN PARTS.
1

%COBOL-F-ERROR 513, (1) Reserved word "DIVISION" used as name in
sub-schema

%COBOL-F-ERROR 513, (1) Reserved word "QUOTE" used as name in
sub-schema

You should alert your DBA to any errors resulting from a DB statement.

You can define the logical name CDD$DEFAULT as the starting schema node in
CDD/Plus. There is only one logical name translation in the DB statement for
schema-name. If you do not define it, CDD$TOP is the default.

NOTE

You must recompile a VAX COBOL DML program each time the
subschema referenced by a DB statement is created. At compile time,
the date and time of subschema creation (date and time stamps) are
included with the translated subschema record definitions. If you do
not recompile, your program will receive a fatal error at run time.

15-4 Database Programming with VAX COBOL

15.4.1 Copying Database Records in a VAX COBOL Program

A separately compiled VAX COBOL database program must include the
SUB-SCHEMA SECTION header and only one DB statement. The compiler
copies and translates the record, set, and realm definitions in the subschema
named by the DB statement into compatible VAX COBOL record definitions.
You will not see any database record definitions listed immediately following
the DB statement. The translated record, set, and realm definitions are only in
the compiler's subschema map listing. To list these definitions in your program
listing, use the IMAP compiler command line qualifier.

15.4.2 Using the /MAP Compiler Qualifier

Use the /MAP compiler qualifier to generate a subschema map containing a
translated subschema listing. Section 15.29 contains two subschema map listings
and explains how to read them. The following example compiles DBPROG and
creates a listing that includes a subschema map:

$ COBOL/LIST/MAP DBPROG

15.5 Linking a VAX COBOL DML Program

VAX COBOL DML programs must be linked with the shareable VAX DBMS
Library (SYS$LIBRARY:DBMDMUOPT). This library was created as part of the
VAX DBMS installation procedure. Therefore, to link a VAX COBOL DML object
program named DMLPROG.OBJ with the shareable VAX DBMS Library, you
would use this DCL command:

$ LINK DMLPROG,SYS$LIBRARY:DBMDML/OPT

15.6 Running a VAX COBOL DML Program

You use the DCL command RUN to execute your VAX COBOL DML program.
At run time, the Database Control System (DBCS) fills a variety of roles
in VAX COBOL. Its major functions are to monitor database usage, act as
an intermediary between VAX COBOL and the VMS operating system, and
manipulate database records on behalf of user programs. Upon execution of the
first DML statement, the DBCS implicitly executes a BIND statement that links
the run unit to the database. If the BIND statement is unsuccessful, a database
exception occurs.

The DBCS also enforces the subschema view of the database. For example, a
database schema record may contain 20 data items. However, a subschema
record may only define 10 of those data items. If a FETCH statement references
this record, the DBCS only retrieves those defined 10 data items and makes
them available to the COBOL program in the user work area (UWA). The other
10 items are not available to the COBOL program. Figure 15-1 illustrates the
run-time relationships between an application program requesting subschema
data (a FETCH statement, for example), the DBCS, and the data the subschema
describes.

Database Programming with VAX COBOL 15-5

Figure 15-1: Database and Application Program Relationship

VAX COBOL Database Application • Subschema -- Control System Program Data ..._ (DBCS) ..._
(FETCH)-

ZK-1478-GE

15. 7 A Database

A database is a collection of your organization's data gathered into a number of
logically related units. The database administrator (DBA) and representatives
from user departments decide on the organization's informational needs. After
these individuals agree on the contents of the database, the DBA assumes
responsibility for designing, creating, and maintaining the database.

15.8 Schema

The schema is a program written by the DBA using DDL statements. It describes
the logical structure of the database, defining all record types, set types, areas,
and data items in the database. The DBA writes the schema independently of
any application run unit. Only one schema can exist for a database. For a more
detailed description of the schema DDL, see the VAX DBMS documentation on
database administration and design.

15.9 Storage Schema

The storage schema describes the physical structure of the database. It is written
by the DBA using data storage description language (DSDL) statements. For a
complete description of the storage schema, see the VAX DBMS documentation on
database administration and design.

15.10 Subschema

The subschema is a subset of the schema; it is your run unit's view of the
database. The DBA uses the subschema DDL to write a subschema, defining
only those areas, set types, record types, and data items needed by one or
more run units. You specify a subschema to be used by your run unit with
the DB statement. A subschema contains data description entries like the
record description entries you use for file processing. However, subschema data
description entries are not compatible with COBOL data description entries; the
VAX COBOL compiler must translate them. The translated entries are made
available to the COBOL program at compile time. By using the IMAP compiler
qualifier, you obtain a database map showing the translated entries as part of
your program listing.

Many subschemas can exist for a database. For further information on writing a
subschema, see the VAX documentation on DBMS database administration and
design.

15-6 Database Programming with VAX COBOL

15.11 Stream

A stream is an independent access channel between a run unit and a database.
A stream has its own keeplists, locks, and currency indicators. You specify a
stream to be used by your run unit with the DB statement. Streams let you do
the following:

• Access multiple subschemas within the same database

• Access multiple databases

Because streams can lock against one another, it is possible to deadlock within a
single process.

In VAX COBOL you can only specify one stream per separately compiled program.
To access multiple subschemas within the same database or multiple databases,
you must use multiple separately compiled programs and perform calls between
the programs. For example, to gain multiple access to the databases OLD.ROG
and NEW.ROG, you could set up a run unit as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. MULTI-STREAM-1.
DATA DIVISION.
SUB-SCHEMA SECTION.
DB PARTSl WITHIN PARTS FOR "NEW.ROO" THRU STREAM-1.

CALL MULTI-STREAM-2

END PROGRAM MULTI-STREAM-1.
IDENTIFICATION DIVISION.
PROGRAM-ID. MULTI-STREAM-2.
DATA DIVISION.
SUB-SCHEMA SECTION.
DB DEFAULT SUBSCHEMA WITHIN PARTS FOR "NEW.ROO" THRU STREAM-2.

CALL MULTI-STREAM-3.
EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. MULTI-STREAM-3.
DATA DIVISION.
SUB-SCHEMA SECTION.
DB OLDPARTSl WITHIN OLDPARTS FOR "OLD.ROO" THRU "STREAM-3".

EXIT PROGRAM.

In this run unit the main program (MULTI-STREAM-1) accesses the database
NEW.ROG through STREAM-1 and performs a call to a subprogram. The
subprogram (MULTI-STREAM-2) accesses another subschema to the database
NEW.ROG through STREAM-2 and calls another subprogram. This subprogram
(MULTI-STREAM-3) accesses a second database (OLD.ROG) through STREAM-3.

STREAM-1, STREAM-2, and STREAM-3 are stream names. Stream names
assign a character string name to the database/subschema combination you
specify in your DB statement. For more information, refer to the VAX COBOL
Reference Manual and the DBMS documentation.

Database Programming with VAX COBOL 15-7

15.12 Using COD/Plus

You can store the schema, storage schema, and subschemas in CDD/Plus.
CDD/Plus separates data descriptions from actual data values that reside in VMS
files. (For more information, see the VAX DBMS documentation on Common
Data Dictionary Utilities and the CDD/Plus documentation.) Because of this
separation, VAX COBOL DML programs can be written independently of data.
In addition, several subschemas can describe the same data according to their
particular needs. This eliminates the need for redundant data and ensures data
integrity.

At compile time, the COBOL DB statement, in effect, references CDD/Plus to
obtain the data descriptions of a specific subschema. It is not until run time that
the COBOL program has access to the database data values.

15.13 Database Records

A database record, like a record in a file, is a named collection of elementary
database data items. Records appear in the database as record occurrences.
DBMS records are linked into sets.

In VAX COBOL database applications, you do not describe database records in
the COBOL program. Rather, you must use the DB statement to extract and
translate subschema record definitions into your COBOL program as COBOL
record definitions.

Each record description entry defined by the DBA in the schema describes one
record type (see Section 15.16). For example, in Figure 15-8, PART is one record
type and SUPPLY is another record type. Any number of records can be stored in
a database.

In VAX DBMS, records are also called record occurrences. Figure 15-7 shows one
occurrence of PART record type and two occurrences of SUPPLY record type.

The subschema describes records that you can access in your program. Note
that subschema record descriptions might define only a portion of a schema
record. For example, if a schema record description is 200 characters long, a
corresponding subschema record description could be less than 200 characters
long and use different data types.

Individual database records are locked by the DBCS as they are retrieved by the
run unit, and the degree of locking depends on the specific DML command used.
For more information, see Section 15.24.1.1.

15.14 Database Data Item

A database data item is the smallest unit of named data. Data items occur in the
database as data values. These values can be character strings or any of several
numeric data types.

15.15 Database Key

A database key (dbkey) identifies a record in the database. The value of the
database key is the storage address of the database record. You can use this key
to refer to the record pointed to by a currency indicator or an entry in a keeplist.
For example, KEEP, FIND ALL, and FREE statements store and release these
values from a keeplist you define in the SUB-SCHEMA SECTION.

15-8 Database Programming with VAX COBOL

15.16 Record Types

Records are grouped according to common features into record types. The
database administrator (DBA) describes record types in the schema; record
occurrences exist in the database. For example, a record that contains a specific
part name, weight, and cost is a record occurrence. The PART record type,
describing the structure of all occurrences of part records, would be defined in the
schema. The unqualified term record implies record occurrence.

15.17 Set Types

A set type is a named relationship between two or more record types. The major
characteristic of a set type is a relationship that relates one or more. member
records to an owner record. The owner and members of a set are called tenants of
the set. For example, the PART record type could own a SUPPLIER record type
in the set PART_INFO.

As with records, the DBA describes set types in the schema; set occurrences
exist in the database. The unqualified term set implies set occurrence. A set
occurrence is the actual data in the set, not its definition, which is the set type.
Figure 15-2 illustrates a set relationship using a Bachman diagram.

Figure 15-2: Bachman Diagram

PART } Owner

Settype { PART_INFO

l
Tenants

__ s_u_P_P_L v _ ___.I } Member

ZK-1479-GE

A Bachman diagram shows how member records are linked with owner records by
arrows that point toward the members. It is a graphic representation of the set
relationships between owner and member records used to analyze and document
a database design. This simple format can be extended to describe many complex
set relationships. The VAX DBMS documentation on data manipulation contains
a complete Bachman diagram of the PARTS database.

Most of the examples in this chapter use the set types in the PARTSSl and
PARTSS3 subschemas (see the subschema compiler map listings in Section 15.29
and the Bachman diagrams in Figure 15-3 and Figure 15-4. Figure 15-5 and
Figure 15-6 contain three PART records, two VENDOR records, and six SUPPLY

Database Programming with VAX COBOL 15-9

records. The SUPPLY records show suppliers' lag times. Lag time starts when an
item is ordered and ends when the item is received.

The examples assume the records are in the following order:

1. PART record type: LABEL, CASSETTE, TAPE

2. SUPPLY record type: 4-DAYS, 2-DAYS, . I-MONTH, 1-WEEK, 2-WEEKS,
5-DAYS

3. VENDOR record type: MUSICO INC., SOUND-OFF CO.

NOTE

All occurrence diagrams display member records within a set in
counterclockwise order.

Figure 15-3: Partial Bachman Diagram of the PARTSS1 Subschema

PART VENDOR

I
PART USES

1-PART_~SED_ON
PART_INFO

COMPONENT SUPPLY

ZK-1480-GE

Figure 15-4: Bachman Diagram of the PARTSS3 Subschema

~ I VE;DOR I

PART_SUPPLY VENDOR_SUPPLY

SUPPLY

ZK-1481-GE

15-10 Database Programming with VAX COBOL

Figure 15-5: Sample Occurrence Diagram 1

PART_INFO SET

VENDOR_ SUPPLY SET

2-DAYS

ZK-1482-GE

Database Programming with VAX COBOL 15-11

Figure 15-6: Sample Occurrence Diagram 2

PART_INFOSET

VENDOR_SUPPL Y SET

15.18 Sets

.,,,,,,,..,,,,,,.,.---------..

/
/ '

VENDOR RECORD TYPE

PART RECORD TYPE

~ SUPPLY RECORD TYPE

' ' ' '\
\

\
\
\
\
\
\
I
I

ZK-1483-GE

Sets are the basic structural units of a database. A set occurrence has one
owner record occurrence and zero, one, or several member record occurrences.
Figure 15-7 shows one occurrence of PART_SUPPLY set where PART A owner
record occurrence owns two SUPPLY member record occurrences.

Set types establish a logical relationship between two or more types of records. A
subschema usually includes one or more set types. Each set type has one record
type that participates as the owner record and one or more record types that
participate as members. These owner and member records are grouped into set
occurrences.

15-12 Database Programming with VAX COBOL

Figure 15-7: One Occurrence of Set PART_SUPPLV

PART_SUPPLY

PART A

S-1 S-7

ZK-1484-GE

The DBA can specify a set type where each PART record occurrence can own
SUPPLY record occurrences. Figure 15-8 is a Bachman diagram that shows
the relationship between PART record types and SUPPLY record types. Bachman
diagrams give you a picture of the schema or a portion of the schema. Each record
type is enclosed in a box. Each set type is represented by an arrow pointing from
the owner record type to the member record type or types. Thus, in Figure 15-8,
PART is the owner record type of the PART_SUPPLY set type, and SUPPLY is
the member record type.

Figure 15-8: Set Relationship

PART

I
PART_SUPPLY

i
SUPPLY

ZK-1485-GE

You can have many set relationships in a subschema. Figure 15-9 shows a set
relationship where vendor records are also owners of supply records. You would
use this relationship when many parts are supplied by one vendor, and many
vendors supply one part. For example, Figure 15-10 shows a gasket supplied by
three vendors. The supply records show the minimum quantity each vendor is
willing to ship.

Database Programming with VAX COBOL 15-13

Figure 15-9: Set Relationships

~ I VE;DOR I

PART_SUPPL Y VENDOR_SUPPL Y

SUPPLY

ZK-1486-GE

Figure 15-10: Occurrence Diagram of a Relationship Between Two Set Types

PART_SUPPLY VENDOR_SUPPL Y

U.S. SEALS

ZK-1487-GE

15.18.1 Simple Set Relationships

A simple set relationship contains one owner record type and one or more member
record types. Simple relationships are used to represent a basic one-to-many
relationship where one owner record occurrence owns zero, one, or several
member record occurrences. Simple relationships are created with a single set
type. There are three kinds of sets in simple relationships: system-owned sets,
simple sets, and forked sets.

15-14 Database Programming with VAX COBOL

15.18.1.1 System-Owned Sets

By definition, a set contains one owner record and may contain zero or more
member records. Sets owned by the system, however, have only one occurrence in
the database and are called system-owned sets. System-owned sets are used as
entry points into the database. You cannot access the owner of a system-owned
set (the system), but you can access its member records. System-owned sets are
also called singular sets. Figure 15-11 is an example of a system-owned set type.

Figure 15-11: Bachman Diagram of a System-Owned Set Type

SYSTEM

I
ALL PARTS -l

PART

ZK-1488-GE

15.18.1.2 Simple Sets

In simple sets, each set contains only one type of member record. Figure 15-12 is
a Bachman diagram of a simple set type where similar parts are grouped by class
code. For example, plastic parts could be member records owned by a class record
with a class code PL.

Figure 15-12: Bachman Diagram of a Simple Set Type

B
I

CLASS_PART

ZK-1489-GE

Database Programming with VAX COBOL 15-15

Example 15-1: Printing a Listing of a Simple Set

PROCEDURE DIVISION.

100-GET-PLASTICS-CLASS.
MOVE "PL" TO CLASS CODE
FIND FIRST CLASS USING CLASS CODE.

200-GET-PLASTICS-PARTS.
FETCH NEXT PART WITHIN CLASS PART

AT END GO TO 900-DONE-PLASTIC-PARTS.

* Plastic parts print routine.

GO TO 200-GET-PLASTICS-PARTS.

Example 15-1 prints a listing of all parts with a class code of PL.

15.18.1.3 Forked Sets

A forked set has one owner record type and members of two or more different
member record types. In most forked sets, the member record types have
common data characteristics. One such example is the set type PART_INFO
in Figure 15-13, where member record types SUPPLY and PR_QUOTE both
contain information about parts.

Figure 15-13: Bachman Diagram of a Forked Set Type

PART_INFO

~ B I PR_QUOTE I
ZK-1490-GE

One advantage of a forked set type is the ability to connect many different record
types to one set type. Another advantage is that owner records need only one
set of pointers to access more than one member record type. Example 15-2
uses the forked set type shown in Figure 15-13 and the forked set occurrence in
Figure 15-14 to perform a part analysis.

15-16 Database Programming with VAX COBOL

Example 15-2: Using Forked Sets

PROCEDURE DIVISION.

100-GET-PART.
DISPLAY "TYPE PART ID".
ACCEPT PART ID.
IF PART ID = "DONE"

GO TO 900-DONE-PART-INQUIRY.
FETCH FIRST PART USING PART ID

ON ERROR
DISPLAY "PART " PART ID " NOT IN DATABASE"
GO TO 100-GET-PART.

200-GET-SUPPLY-INFO.
FETCH NEXT SUPPLY WITHIN PART INFO

AT END
FETCH OWNER WITHIN PART INFO
GO TO 300-GET-QUOTE-INFO.

* The FETCH OWNER statement resets currency to
* point to the owner. This allows the search for
* PR_QUOTE records to begin with the first member
* record occurrence rather than after the
* last SUPPLY record occurrence.

*

*
*

*
*

PERFORM 500-SUPPLY-ANALYSIS.
GO TO 200-GET-SUPPLY-INFO.

300-GET-QUOTE-INFO.
FETCH NEXT PR_QUOTE WITHIN PART INFO

AT END
GO TO 100-GET-PART.

PERFORM 600-QUOTE-ANALYSIS.
GO TO 300-GET-QUOTE-INFO.

Figure 15-14 is an occurrence diagram of a forked set. The figure shows a part
record owning five PART_INFO member records.

Database Programming with VAX COBOL 15-17

Figure 15-14: Forked Set Occurrence

PART_INFO

PART

SUPPLY

SUPPLY

ZK-1491-GE

15.18.2 Multiset Relationships

A set cannot contain an owner record and a member record of the same type.
Nor can a simple set represent a many-to-many relationship. To simulate such
relationships, VAX DBMS uses the concept of multiset relationships. Multiset
relationships occur when two set types share a common record type called a
junction record. The junction record can contain information specific to the
relationship, or it can be empty. An empty junction record contains only pointer
information used by the DBCS to establish the multiset relationship. This section
discusses three kinds of multiset relationships:

• Many-to-many relationships between two types of records

• Many-to-many relationships between records of the same type

• One-to-many relationships between records of the same type

15.18.2.1 Many-to-Many Relationships Between Two Types of Records

To build a many-to-many relationship between two types of records, the DBA uses
a junction record. For example, a part can be supplied by many vendors, and one
vendor can supply many parts. The SUPPLY record type in Figure 15-15 links or
joins PART records with VENDOR records.

15-18 Database Programming with VAX COBOL

Figure 15-15: Bachman Diagram of a Many-to-Many Relationship Between
Two Types of Records

~
PART_INFO

I VENDOR I
/

VENDOR_SUPPL Y

SUPPLY

ZK-1492-GE

Figure 15-16 is an occurrence diagram of a many-to-many relationship between
two types of records. This diagram typifies a many-to-many relationship because
it shows a part (TAPE) being supplied by more than one vendor and a vendor
(SOUND-OFF CO.) supplying more than one part. You could add additional
vendors for a part by joining new supply records to a part and its new vendors.
You could also add additional parts supplied by one vendor by joining supply
records to the vendor and the new parts.

Database Programming with VAX COBOL 15-19

Figure 15-16: Many-to-Many Relationship Between Two Types of Records

VENDOR RECORD TYPE PART RECORD TYPE C) SUPPLYRECORDTYPE

PART_SUPPLY SET VENDOR_ SUPPLY SET

ZK-1493-GE

15.18.2.2 Many-to-Many Relationships Between Records of the Same Type

To represent a relationship between record occurrences of the same type, the DBA
builds a many-to-many relationship using member records to create the necessary
links. Figure 15-17 shows a many-to-many relationship between records of the
same type, where PART is the owner of both PART_USES and PART_USED_ON
set types and COMPONENT is the junction record.

PART_USES is a bill of materials set type that links a PART owner record
through its COMPONENT member records to the part's subassemblies. The
link to the subassemblies is from COMPONENT member records up to the
PART_USED_ON set type and back to PART owner records.

15-20 Database Programming with VAX COBOL

Figure 15-17: Bachman Diagram of a Many-to-Many Relationship Between
Records of the Same Type

PART

PART_USES

l PART USED ON -+ -
COMPONENT

ZK-1494-GE

For example, assume you are creating a bill of materials and you have a finished
part, a stool, made from one stool seat and four stool legs. Figure 15-18,
Figure 15-19, Figure 15-20, and Figure 15-21 show occurrence diagrams of
the bill of materials you would need to build a stool.

To complete the bill of materials you have to link the stool seat and stool legs to
the finished part, the stool. You would:

1. Use the FIND statement to locate the stool.

PROCEDURE DIVISION.
100-FIND-STOOL.

MOVE "STOOL" TO PART DESC.
FIND FIRST PART USING PART DESC.

Figure 15-18: Current of PART_USES and PART_USED_ON

STOOL (CURRENT OF PART_USES AND PART_USED_ON)

ZK-1495-GE

2. Use the FIND statement to locate the stool seat retaining PART_USES
currency. Because PART usually owns both sets, using a FIND or FETCH
statement to locate PART changes both set currency indicators. Retaining
PART_USES currency keeps a pointer at STOOL; otherwise, STOOL SEAT
would be current for both sets. Section 15.22 discusses currency indicators in
more detail.

Database Programming with VAX COBOL 15-21

200-FIND-STOOL-SEAT.
MOVE "STOOL SEAT" TO PART DESC.
FIND FIRST PART USING PART DESC

RETAINING PART USES.

Figure 15-19: Retain PART_USES Currency

STOOL (CURRENT OF PART_USES)

STOOL SEAT (CURRENT OF
PART_USED_ON)

ZK-1496-GE

3. Build a COMPONENT record (component 1), and store it retaining
PART_USES currency. Because COMPONENT participates in the
PART_USES set, storing it normally changes the set's currency. Therefore,
executing a STORE statement with the retaining clause keeps STOOL as
current of PART_ USES. At this point, STOOL is the PART_USES owner of
component 1, and STOOL SEAT is the PART_USED_ON owner of component
1.

Since the insertion mode for COMPONENT is automatic in both set types,
a STORE COMPONENT automatically connects COMPONENT to both set
types.

300-CONNECT-COMPONENT-1.
MOVE 1 TO COMP_QUANTITY.
STORE COMPONENT RETAINING PART USES.

15-22 Database Programming with VAX COBOL

Figure 15-20: COMPONENT Is Connected to Both Set Types

STOOL (CURRENT OF PART _USES)

(CURRENT OF PART_USED_ON)

ZK-1497-GE

4. Use the FIND statement to locate the stool legs, again retaining PART_USES
currency, thus keeping STOOL current of PART_ USES.

400-FIND-STOOL-LEGS.
MOVE "STOOL LEGS" TO PART DESC.
FIND FIRST PART USING PART DESC

RETAINING PART USES.

Figure 15-21: Finding the Stool Legs While Keeping STOOL Current of
PART_USES

STOOL (CURRENT OF PART_USES)

STOOL SEAT STOOL LEGS (CURRENT OF
PART _USED _ON)

ZK-1498-GE

5. Build a second COMPONENT record (component 4) and store it. This links
both PART_USES owner STOOL and PART_USED_ON owner STOOL LEGS
to component 4. This completes all the necessary relationships you need to
create the bill of materials shown in Figure 15-22.

Database Programming with VAX COBOL 15-23

500-CONNECT-COMPONENT-4.
MOVE 4 TO COMP_QUANTITY.
STORE COMPONENT.

Figure 15-22: Completed Bill of Materials

STOOL

STOOL SEAT

(CURRENT OF PART _USES
AND PART_USED_ON)

STOOL LEGS

ZK-1499-GE

Figure 15-23 shows the relationship between PART records and COMPONENT
records. The solid lines connect PART_USES owners to their members and the
dotted lines connect PART_USED_ON owners to their members.

Figure 15-23: Occurrence Diagram of a Many-to-Many Relationship Between Records of the
Same Type

PART

COMPONENT

PART_USES

PART_USED_ON

15-24 Database Programming with VAX COBOL

PART_USES

PART_USED_ON

ZK-1500-GE

The STOOL program in Example 15-19 loads and connects the parts for
the STOOL bill of materials presented earlier in this section. It uses the
relationship represented in Figure 15-17 to print its parts breakdown report
in Section 15.30.6. Figure 15-24 explains how to read the parts breakdown
report.

Figure 15-24: Sample Parts Breakdown Report

PARTS BREAKDOWN REPORT

PART A (Part A information)

PART B (Part B information)

PART C (Part C information)

PART D (Part D information)

PART D (Part D information)

PART D (Part D information)

The sample parts breakdown report shows that:

ZK-6062-GE

• PART A is built using two subassemblies: PART Band PART D.

• PART B is built using PART C and PART D.

• PART C is built using PART D.

15.18.2.3 One-to-Many Relationships Between Records of the Same Type

To build a one-to-many relationship between records of the same type, the DBA
uses junction records. In a one-to-many relationship between records of the same
type, either record type can be the junction record. However, in Figure 15-25 the
WK_GROUP record type serves as the junction record because the EMPLOYEE
record type has most of the relationship's data.

The record type EMPLOYEE includes all employees-supervisors, managers,
and so forth. A manager can have many supervisors and a supervisor can have
many employees. Conversely, an employee can have only one supervisor, and a
supervisor can have only one manager.

Database Programming with VAX COBOL 15-25

Figure 15-25: One-to-Many Relationship Between Records of the Same Type

BACHMAN DIAGRAM

WK_ GROUP

CONSISTS_OF
MANAGES

EMPLOYEE

DATABASE REPRESENTATION

I EMPLIOYEE I

MANAGES

WK_ GROUP

CONSISTS OF

I EMP:OY:E I
ZK-1501-GE

To show a relationship between employees (that is, who works for whom),
Figure 15-25 uses the record type WK_GROUP as a link to establish an
owner-to-member relationship. For example, a manager or supervisor would
own a WK_GROUP record occurrence in the MANAGES set, and the same
WK_GROUP occurrence owns any number of EMPLOYEE records in the
CONSISTS_OF set. The relationship would be as follows: one occurrence of
EMPLOYEE owns a WK_GROUP record occurrence, which in turn owns zero or
more occurrences of the EMPLOYEE record type.

A one-to-many relationship between records of the same type is different from a
many-to-many relationship between records of the same type because:

• An employee can have only one manager, while a part can be used on many
subassemblies.

• The EMPLOYEE record type can participate both as an owner and a member
in its relationship with WK_GROUP.

• The PART record type can participate only as an owner in its relationship
with COMPONENT.

Example 15-20 shows how to use DML for hierarchical relationships. The
example uses the diagram in Figure 15-25.

The data in Figure 15-26 shows sample EMPLOYEE records and the connecting
WK_GROUP links (Groups A, Bl, and B2). For example, employee Howell
manages a group that consists of employees Noyce and Moore.

15-26 Database Programming with VAX COBOL

Figure 15-26: Sample Data Prior to Update

CONSISTS_OF

MANAGES

10500
HOWELL

MANAGES

CONSISTS_OF

MANAGES

ZK-1502-GE

Assume that employee Klein is promoted to supervisor with Neils and Riley
reassigned to work for him. Figure 15-26 shows the relationship between
EMPLOYEE and WK_GROUP record types prior to the update, and Figure 15-27
shows the relationship after the update.

Database Programming with VAX COBOL 15-27

Figure 15-27: Sample Data After Update

10500
HOWELL

MANAGES

MANAGES
t

ZK-1503-GE

Example 15-20 (PERSONNEL-UPDATE program) uses the data in Figure 15-26
and shows you how to:

1. Load the database (PERSONNEL-UPDATE).

2. Display the contents of the database on your terminal using the Report Writer
before changing relationships (PERSONNEL-REPORT) (see Figure 15-26 and
Example 15-21).

3. Create new relationships (PROMOTION-UPDATE).

4. Display the contents of the database on your terminal using the Report Writer
after changing relationships (PERSONNEL-REPORT) (see Figure 15-27 and
Example 15-22).

15-28 Database Programming with VAX COBOL

15.19 Areas

The DBA divides the database into areas so you can reference the database in
sections instead of an entire unit. Areas are physical divisions of the database
that are defined in the schema and are used to dump selectively, verify, or recover
sections of the database; improve I/O; group logically related record types; and
provide protection restrictions. Areas are stored as separate files and can be on
separate volumes.

15.20 Realms

A realm is a group of one or more areas. Realms are logical divisions of the
database. A realm is the object of the DML READY statement. Figure 15-28
shows the relationship between the schema, areas, subschema, and realms. Even
though realms can contain data from more than one area, the type of data they
contain is dependent on the subschema. It acts as a filter, allowing access to only
specific data items.

Entire realms, as well as individual database records, are locked by the DBCS
as they are retrieved by the run unit, and the degree of locking depends on the
specific' DML command used. For more information, see Section 15.24.1.

Figure 15-28: Database Relationships

SCHEMA FOR THE PARTS DATABASE

ij/77//~ PERSONNEL
/////

SUBSCHEMA FOR ACCESS TO THE PARTS DATABASE

AREAS ~REALMS
ZK-1504-GE

15.21 Run Unit

The term run unit and program are not the same. A run unit is an executable
image that may access a database, while a program can be used in two or more
run units. For example, program SHOW-EMPLOYEE can be run simultaneously

Database Programming with VAX COBOL 15-29

by a payroll department employee to obtain employee data, and by an accountant
to obtain job cost data. Each person controls his or her own run unit.

15.22 Currency Indicators

When you access database records, the database control system (DBCS) uses
pointers called currency indicators to keep track of record storage and retrieval.
VAX COBOL uses currency indicators to remember records and their positions in
the database. Currency indicators can be changed by DML statement execution.
Thus, they assist in defining the environment of a DML statement and are
updated as a result of executing DML statements.

One currency indicator exists for each realm, set type, and record type defined
in your subschema. Another currency indicator, called the run-unit currency
indicator, also exists for the run unit.

All the currency indicators in a run unit are null prior to execution of the first
DML statement. The null value indicates there is neither a current record nor
a current position. Execution of certain DML statements can change the value
of currency indicators. However, currency indicators do not change if statement
execution fails.

The DBCS also uses currency indicators as place markers to control its sequence
of access to the database. For example, if VENDOR is the name of the vendor
records in Figure 15-3, then the current of VENDOR is normally the vendor
record most recently accessed. Likewise, in the set VENDOR_SUPPLY, the
current of VENDOR_SUPPLY is normally the most recently accessed record
of that set. Note that current of set could be either a member or owner record
because both record types are part of the VENDOR_SUPPLY set.

Failure to establish correct currency can produce incorrect or unpredictable
results. For example, you might unknowingly modify or delete the wrong record.
The following sections describe how the DBCS sets currency indicators and how
to use currency status in a DML program.

15.22.1 Current of Realm

Each realm currency indicator can be null or it can identify:

• A record and its position in the realm

• A position in the realm but not a specific record

A record identified by the realm currency is called current of realm. The DBCS
updates current of realm only when you reference a different record within the
realm. For example:

000100
000110
000120
000130
000500
000510
000520
000600
000610
000620
000630

PROCEDURE DIVISION.

FIND FIRST PART WITHIN BUY.
FIND FIRST PART WITHIN MAKE.
FIND NEXT PART WITHIN BUY.
FIND NEXT SUPPLY WITHIN PART INFO.

15-30 Database Programming with VAX COBOL

For example, if LABEL and CASSETTE are in the BUY realm, while TAPE is
in the MAKE realm, statement 000500 sets the first occurrence of PART record
in realm BUY (LABEL) as current of realm BUY. Statement 000510 sets the
first occurrence of PART record in realm MAKE (TAPE) as current of realm
MAKE. Notice that current of realm BUY is still the record occurrence accessed
in statement 000500. Statement 000520 changes the current of realm BUY to
the next occurrence PART record in realm BUY (CASSETTE). Current of realm
MAKE remains the record accessed in statement 000510. Because the SUPPLY
record type is located in the MARKET realm, statement 000600 sets the current
of MARKET realm to the first SUPPLY record in the current PART_INFO set.

15.22.2 Current of Set Type

Each set type currency indicator can be null or it can identify:

• A record and its position in the set type

• A position in the set type but not a record

A record identified by a set type currency indicator is the current record for the
set type, or current of set type.

If the ordering criterion for a set type is NEXT or PRIOR, the set type's currency
indicator specifies the insertion point for member records. Therefore, if the
currency indicator points to an empty position, a member record can be inserted
in the specified position. If the currency indicator points to a record and NEXT
is specified, a member record can be inserted after the current record for the
set type. If the currency indicator points to a record and PRIOR is specified, a
member record can be inserted before the current record for the set type.

The DBCS updates current of set type only when you reference a record that
participates either as an owner or member in a set type occurrence. For example:

000100 PROCEDURE DIVISION.

000500
000510
000520
000600

FIND FIRST PART.
FIND FIRST SUPPLY WITHIN PART INFO.
FIND OWNER WITHIN VENDOR SUPPLY.

Statement 000500 sets the first occurrence of PART (LABEL) as current of set
types PART_USES, PART_USED_ON, and PART_INFO. This is because PART
records participate in three sets (see Figure 15-3). Because LABEL is current of
PART_INFO, statement 000510 sets the first occurrence of SUPPLY (4-DAYS)
owned by LABEL as current of set type PART_INFO. Because SUPPLY also
participates in the VENDOR_SUPPLY set, this statement also sets the current
occurrence of SUPPLY as current of set type VENDOR_SUPPLY. Statement
000520 sets the VENDOR owner record occurrence (SOUND-OFF CO.), which
owns the current SUPPLY record, as current of set type VENDOR_SUPPLY.

Database Programming with VAX COBOL 15-31

15.22.3 Current of Record Type

Each record type currency indicator can be null or it can identify:

• A record and its position among other records of the same type

• A position among records of the same type, but not identify a record

Record type currency indicators do not identify a record type's relationship with
other record types.

A record identified by a record type currency indicator is called current of record
type. The DBCS updates the current of record type only when you reference a
different record occurrence of the record type. References to other record types do
not affect this currency. For example:

000100 PROCEDURE DIVISION

000500
000510
000520
000530

FIND LAST PART.
FIND FIRST SUPPLY WITHIN PART INFO.
FIND NEXT WITHIN PART INFO.
FIND FIRST VENDOR.

Statement 000500 sets the last occurrence of PART (TAPE) as current of record
type PART. Statement 000510 sets the SUPPLY record occurrence (2-DAYS) as
current of record type SUPPLY. Statement 000520 updates current of record type
for SUPPLY to record occurrence (1-WEEK). Statement 000530 sets VENDOR
record occurrence (MUSICO INC.) as current of record type VENDOR.

15.22.4 Current of Run Unit

The Database Control System (DBCS) updates the currency indicator for current
of run unit each time a run unit refers to a different record occurrence, regardless
of realm, set, or record type. For example:

000100 PROCEDURE DIVISION.

000500
000510
000520
000600
000610
000620

FIND FIRST PART.
FIND FIRST SUPPLY.
FIND FIRST VENDOR.

Statement 000500 sets the current of run unit to the first PART record occurrence
(LABEL). Statement 000510 then sets the first SUPPLY record occurrence
(4-DAYS) as current of run unit. Finally, statement 000520 sets the first
VENDOR record (MUSICO INC.) as current of run unit. The first VENDOR
record occurrence remains current of run unit until the run unit refers to another
record occurrence.

15-32 Database Programming with VAX COBOL

15.23 Currency Indicators in a VAX COBOL DML Program

Currency indicators are the tools you use to navigate through a database.
Because of the many set relationships a database can contain, touching a record
with a DML statement often changes more than one currency indicator. For
example, a FETCH to a set type record can change currency for the set type, the
record type, the realm, and the run unit. Knowing currency indicator status,
how currency indicators change, and what statements control them, will help you
locate the correct data.

Example 15-3 searches for TAPE vendors with a supply rating equal to A.
Assume that record TAPE resides in BUY realm and that the SUPPLY record
occurrences 2-DAYS and 5-DAYS have a SUP_RATING equal to A. Figure 15-29
shows how DML statements affect currency status.

Example 15-3: Currency Indicators

000100 PROCEDURE DIVISION

000490 100-FETCH-THE-PART.
000500 MOVE "TAPE" TO PART DESC.
000510 FETCH FIRST PART USING PART DESC.
000520 MOVE "A" TO SUP RATING.
000550 200-FIND-SUPPLY.
000560 FIND NEXT SUPPLY WITHIN PART INFO
000570 USING SUP RATING.
000580 AT END
000590 GO TO 500-NO-MORE-SUPPLY.
000600 FETCH OWNER WITHIN VENDOR SUPPLY.
000610 ************************
000620 * VENDOR PRINT ROUTINE *
000630 ************************
000640 GO TO 200-FIND-SUPPLY.

Statement 000500 provides the search argument used by statement 000510.
Statement 000510 fetches the first occurrence of PART with a PART_DESC equal
to TAPE. Statement 000520 provides the search argument used by statement
000560. Statement 000560 finds each member record occurrence of SUPPLY with
a SUP _RATING equal to A owned by the PART with a PART_DESC equal to
TAPE.

If, instead of its present structure, statement 000560 read "FIND NEXT SUPPLY
USING SUP _RATING," the search for supply records would not be restricted
to supply member records in the PART_INFO set owned by TAPE. Instead, the
search would extend to all supply records, finding all vendors with a supply rating
equal to A, who may or may not be suppliers of TAPE.

Database Programming with VAX COBOL 15-33

Figure 15-29: Currency Status by Executable DML Statement

STATEMENT RUN UNIT REALM SET TYPE RECORD

MARKET MAKE BUY PART_INFO ~n~2e~- PART VENDOR SUPPLY

510 CASSETTE NULL NULL CASSETTE CASSETTE NULL CASSETTE NULL NULL

*560 2-DAYS 2-DAYS NULL CASSETTE 2-DAYS 2-DAYS CASSETTE NULL 2-DAYS

*600 MUSJCOJNC. MUSICOINC. NULL CASSETTE 2-DAYS MUSJCO INC. CASSETTE MUSJCOJNC. 2-DAYS

**560 5-DAYS 5-DAYS NULL CASSETTE 5-DAYS 5-DAYS CASSETTE MUSJCOJNC. 5-DAYS

**600 SOUND-OFF SOUND-OFF NULL CASSETTE 5-DAYS SOUND-OFF CASSETTE SOUND-OFF 5-DAYS

* First execution
•• Second execution

ZK-1505-GE

15.23.1 Using the RETAINING Clause

You use the RETAINING clause to save a currency indicator you want to refer to.
You use the RETAINING clause to: (1) navigate through the database and return
to your original starting point, or (2) walk through a set type. (The expression
"walk through a set type" implies a procedure where you access all owner records
and their respective members.) Refer to the VAX COBOL Reference Manual for
further information.

After finding all members for an owner, the current of run unit is the last
accessed member record occurrence in the set. If the next statement is a FIND
NEXT for an owner, you may not retrieve the next owner. This is because:

• Current of set type (in this case, the last member record occurrence) is also
current of run unit.

• Without a WITHIN clause, the FIND (or FETCH) is based on current of run
unit.

Because DBCS uses currency status as pointers, a FIND NEXT VENDOR
WITHIN MARKET uses current of MARKET realm to find the next owner
record occurrence. To make sure a FIND (or FETCH) next owner statement
finds the next logical owner record, use the RETAINING clause, as shown in
Example 15-4.

15-34 Database Programming with VAX COBOL

Example 15-4: Using the RETAINING Clause

000100 PROCEDURE DIVISION.

000400 100-VENDOR-SUPPLY-WALKTHRU.
000410 FETCH NEXT VENDOR WITHIN MARKET
000420 AT END GO TO 900-ALL-DONE.

* VENDOR PRINT ROUTINE *

000500 300-GET-VENDORS-SUPPLY.
000510 FETCH NEXT SUPPLY WITHIN VENDOR SUPPLY
000520 RETAINING REALM
000530 AT END
000540 GO TO 100-VENDOR-SUPPLY-WALKTHRU.

000550

* SUPPLY PRINT ROUTINE *

GO TO 300-GET-VENDORS-SUPPLY.

Statement 000410 fetches the vendors. Statement 000510 fetches the supply
records owned by their respective vendors. Statement 000510 also uses the
RETAINING clause to save the realm currency.

A FETCH NEXT SUPPLY (statement 000510) without the RETAINING clause
makes SUPPLY current for the run unit, its record type, all sets in which it
participates, and its realm. When SUPPLY record 2-WEEKS in Figure 15-30
is current of run unit, a FETCH NEXT VENDOR statement fetches the vendor
whose physical location in the database follows the 2-WEEKS record. As shown
in Figure 15-30, MUSICO would be the next vendor and the program would be in
an infinite loop.

Figure 15-30: Physical Representation of a Realm Without a RETAINING Clause

•(start walkthrough)

ZK-1389-GE

Database Programming with VAX COBOL 15-35

A FETCH NEXT SUPPLY with the RETAINING clause makes SUPPLY current
for the run unit and the set types but keeps the vendor record current for the
realm shown in Figure 15-31. By retaining the realm currency when you fetch
supply records, the last accessed vendor record remains current of realm. A
FETCH NEXT VENDOR WITHIN MARKET statement uses the realm currency
pointer, which points to MUSICO to fetch the next vendor, SOUND-OFF.
Therefore, retaining the realm currency allows you to fetch the next logical
vendor record.

Figure 15-31: Physical Representation of a Realm with a RETAINING Clause

with retaining

ZK-1507-GE

15.23.2 Using Keeplists

A keeplist is a stack of database key values (see the description of KEEPLIST in
the VAX COBOL Reference Manual). The KEEP and FIND ALL statements build
a stack of keys that lets you retrieve DBMS records using the ordinal position of
the stack entries. DBMS calls the table of entries a keeplist. Each execution of
the KEEP or FIND ALL statement adds a record's database key (dbkey) value to
the end of a keeplist and places a retrieval lock on the record. Therefore, other
users cannot change a record while its database key is in your keeplist.

You can use a keeplist to retain the database key of a record after that record is
no longer current. That is, by inserting a database key into a keeplist, you can
continue to reference that record by specifying the keeplist name and database
key value in your DML statement. This is especially useful when you want
to remember a record during a long sequence of DML commands that affect
currency, or when you want to remember a list of records.

A keeplist can contain zero, one, or several database key values. To activate a
keeplist, use the KEEP statement. To empty a keeplist, use the FREE statement.
All keeplists are deallocated when you execute a COMMIT or ROLLBACK unless
COMMIT RETAINING is used.

The following example adds database keys to a keeplist.

000100 PROCEDURE DIVISION.

000140 100-KEEPLIST-EXAMPLE.
000150
000160
000170
000180
000190
000200

FETCH FIRST VENDOR.
KEEP CURRENT USING KEEPLIST-1.
FETCH FIRST SUPPLY WITHIN VENDOR SUPPLY.
FETCH OWNER WITHIN PART INFO.
IF PART STATUS = "M"

KEEP CURRENT WITHIN VENDOR SUPPLY USING KEEPLIST-1.

15-36 Database Programming with VAX COBOL

Statement 000160 adds the vendor record's dbkey value (the current of run unit)
to KEEPLIST-1. Figure 15-32 shows the contents of KEEPLIST-1 after execution
of statement 000160. Adding a record's database key to a keeplist also prevents
record updating by other concurrent users. Statements 000190 and 000200 add
a supply record's database key to KEEPLIST-1 whenever its PART_INFO owner
has a status of M. Figure 15-33 shows the contents of KEEPLIST-1 after the
execution of statements 000190 and 000200.

Figure 15-32: State of KEEPLIST-1 After Executing Line 000160

KEEPLIST-1

Database Key ORDINAL
(DB KEY) POSITION

vendordbkey 1

ZK-6063-GE

Figure 15-33: State of KEEPLIST-1 After Executing Lines 000190 and 000200

KEEPLIST-1

Database Key ORDINAL
(DB KEY) POSITION

vendordbkey 1

supply, dbkey 2

ZK-6064-GE

You can use database key values as search arguments to locate database records.
For example:

FIND 2 WITHIN KEEPLIST-1

This statement:

• Uses the value of the number 2 to locate the ordinal position of a database
key value

• Uses the database key value to find a record

The KEEP statement can also transfer database key values from one keeplist to
another. For example:

KEEP OFFSET 2 WITHIN KEEPLIST-1 USING KEEPLIST-2

Database Programming with VAX COBOL 15-37

This statement copies the second-positioned database key value in KEEPLIST-1
to the end of KEEPLIST-2.

The FREE statement removes database key value entries from a keeplist. For
example:

FREE ALL FROM KEEPLIST-1

This statement removes all the entries from KEEPLIST-1.

You can remove keeplist entries by identifying their ordinal position within the
keeplist. For example:

FREE 5 FROM KEEPLIST-2

This statement removes the fifth-positioned database key value from
KEEPLIST-2. Removing a keeplist entry changes the position of all the following
entries. For example, after freeing entry 5, entry 6 becomes the fifth-positioned
entry, entry 7 becomes the sixth-positioned entry, and so forth. The FREE
statement changes the ordinal position of a database key value in the keeplist,
not its contents.

15.23.3 Transactions and Quiet Points

You generally segment your run unit into transactions, bounded instances of
run-unit activity. A transaction begins with the first DML statement in the
run unit or with a READY statement that follows a COMMIT or ROLLBACK
statement; continues through a series of DML data access statements; and ends
with either a COMMIT statement, a ROLLBACK statement, or the termination
of the run unit. Before the initial READY statement is issued, after the COMMIT
or ROLLBACK, and before the next READY, the run unit is at a quiet point.
A quiet point is the time that exists between the last executed COMMIT or
ROLLBACK statement and the next READY statement, or the time prior to the
first executed READY statement.

The Quiet Point-Transaction-Quiet Point continuum provides the DBCS with
a structure that allows it to control access to and ensure the integrity of your
data. To implement this control, the DBCS uses currency indicators and locking.
Figure 15-34 shows the segmentation of a run unit into transactions and quiet
points.

15-38 Database Programming with VAX COBOL

Figure 15-34: Transactions and Quiet Points

PROGRAM PROGRAM
BEGINS READY* COMMIT** READY* COMMIT** READY* ROLLBACK*** READY* COMMIT** ENDS

I I I I I I I I I I
.___ _ __. '---y--/ ~ '-----y---J ._____,r----''---y--/ ~ '---y--/' I

Quiet point Transaction Quiet point Transaction Quiet point Transaction Quiet point Transaction Quiet point

*Transaction begins
**Transaction ends and get committed
***Transaction ends and gets aborted

ZK-1508-GE

15.24 VAX COBOL DML Programming-Tips and Techniques

The following sections offer tips and techniques you can use to improve program
performance and reduce development and debugging time.

15.24.1 The Ready Modes

Proper use of the READY usage modes can improve system performance.

You inform the DBCS of your record-locking requirements when you issue the
READY command. The command takes the form:

READY <allow-mode> <access-mode>

or

READY <access-mode> <allow-mode>

The allow- and the access-mode arguments pass your requirements to the DBCS.

The allow-mode object of the READY command indicates what you will allow
other run units to do while your run unit works with storage areas within the
realm you readied. There are four different allow modes as follows:

CONCURRENT Permits other run units to ready the same realm or realms that
contain the same storage areas as the realms your run unit readied.
CONCURRENT also allows other run units to perform any DML function
on those storage areas, including updates.

PROTECTED

EXCLUSIVE

BATCH

Permits other run units to use the same storage areas as your run unit,
but does not allow those run units to update records in the storage areas.

Prohibits other run units from even reading records from the restricted
storage areas.

Allows concurrent run units to update the realm. BATCH also allows you
to access or update any data in the realm while preventing concurrent
run units from accessing or updating the realm.

While the allow mode says what your run unit will allow other run units to
do, the access mode says that your run unit will either read or write records
(RETRIEVAL or UPDATE).

Database Programming with VAX COBOL 15-39

Because the UPDATE access mode can lock out other users, use it only for
applications that perform database updates. If an application accesses the
database for inquiries only, use the RETRIEVAL access mode. The RETRIEVAL
mode also prevents a run unit from accidentally updating the database.

The combination of the allow mode and the access mode is called the usage mode.
There are eight READY usage modes as follows:

• CONCURRENT RETRIEVAL

• CONCURRENT UPDATE

• PROTECTED RETRIEVAL (the system default)

• PROTECTED UPDATE

• EXCLUSIVE RETRIEVAL

• EXCLUSIVE UPDATE

• BATCH RETRIEVAL

• BATCH UPDATE

Use the CONCURRENT usage modes for applications requiring separate run
units to simultaneously access the database. They allow other run units to
perform a READY statement on your realm, and possibly change or delete the
database records in that realm.

Use the PROTECTED usage modes only when unrestricted access might produce
incorrect or incomplete results. Protected access prevents other run units from
making changes to the data in your realm. However, run units in RETRIEVAL
mode can still access (read-only) your realm.

Use the EXCLUSIVE usage modes only when you want to lock out all other
users. The EXCLUSIVE mode speeds processing for your run unit and prevents
other run units from executing a READY statement on your realm. When you
specify EXCLUSIVE access, use only the realms you need. Eliminating the use
of unnecessary realms minimizes lockout. Use the EXCLUSIVE allow mode to
get the best performance from a single run-unit application. Care must be taken,
however, because other run units are locked out and must wait for the exclusive
run unit to finish before it can begin operations.

Use the BATCH RETRIEVAL usage mode for concurrent run units to update the
realm. Use the BATCH UPDATE usage mode to access or update any data in
the realm while preventing concurrent run units from accessing or updating the
realm.

For more information on READY usage mode conflicts, see the READY statement
in the VAX COBOL Reference Manual. It summarizes the effects of usage mode
options on run units readying the same realms.

15.24.1.1 Record Locking

Concurrent run units can reference realms that map to the same storage area;
the same records can be requested by more than one transaction at the same
time. If two different transactions were allowed to modify the same data, that
data would be rendered invalid. Each modification to the original data would be
made in ignorance of other modifications, and with unpredictable results. VAX
DBMS preserves the integrity of data shared by multiple transactions. It also
provides levels and degrees of record locking. You can control access to, or lock:

• All records in a realm you intend to access

15-40 Database Programming with VAX COBOL

• Individual records as they are retrieved by DML statements

You can also lock records totally or allow some retrieval functions.

Record locking begins with the execution of the first READY statement in the run
unit. At that time the DBCS is told of your storage area locking requirements.
If you specify EXCLUSIVE allow mode, no other run unit is allowed to access
records in the specified realms. This is all the locking that the DBCS need do. If
you specify CONCURRENT or PROTECTED modes, the DBCS initiates locking
at the record level.

Individual records are locked as they are retrieved by the run unit. The degree
of locking depends on the specific DML command used. For example, if your run
unit executes a FETCH or FIND statement, the DBCS sets a read-only record
lock, allowing other run units to read, but not update, the records. This lock is
also set if your run unit assigns the database key associated with the record to a
keeplist with the KEEP verb. (Note if you use FETCH or FIND FOR UPDATE, a
no-read lock is placed on the specified record.)

As a record is retrieved, the lock is held at this level until there are no more
currency indicators pointing to the record. If the program assigns a record to
a keeplist, the lock is held by your run unit until it frees the record from the
keeplist with a FREE statement. However, if a currency indicator points to a
record whose database key is also in a keeplist, then a FREE statement to that
keeplist entry still leaves the read-only lock active for that record. Similarly, if
the same database key is in several keeplists, then freeing it from one keeplist
does not release the other read-only locks.

However, the DBCS grants a no-read access lock if your run unit specifies a DML
update verb, such as STORE, CONNECT, or MODIFY. Your run unit retains the
lock on this record until the change is committed to the database by the DML
COMMIT verb or the change is terminated or canceled by ROLLBACK.

The Run-Time System notifies the DBCS each time a run unit requests a locked
record, thus keeping track of which records are locked and who is waiting for
which records. This logging helps the DBCS determine whether a conflict exists,
such as multiple run units requesting, but not being allowed, to access or change
the same record. For more information on record locking, refer to the VAX DBMS
documentation on database design and programming.

15.24.2 COMMIT and ROLLBACK

When you are in CONCURRENT UPDATE mode, any changes made to a record
lock the record and prevent its access by other run units. For example, if
a program updates 200 customer records in one transaction, the 200 customer
records are unavailable to other run units. To minimize lockout, use the COMMIT
statement as often as possible.

The· COMMIT statement makes permanent all changes made to the database,
frees all locks, and nulls all currencies. It also establishes a quiet point for your
run unit.

The RETAINING clause can be used with the COMMIT statement. COMMIT
RETAINING does not empty keeplists; retains all currency indicators; does not
release realm locks; demotes no-read locks to read-only locks; then releases locks
for all records except those in currency indicators or keeplists and makes visible
any changes made to the database.

Database Programming with VAX COBOL 15-41

To use COMMIT properly, you need to know about application systems. For
example, you might want to execute a COMMIT each time you accomplish a
logical unit of work. Or, if you were updating groups of interdependent records
like those in Figure 15-35, you would execute a COMMIT only after updating a
record group.

Figure 15-35: Using the COMMIT Statement

Program Statement

READY

CO:Mtv'.IIT

READY

CO:MJXIIT

Groups of Interdependent Records

RECORD 1 (transfers data to RECORD 2)
RECORD 2 (transfers data to RECORD 1)
RECORD 3 (summarizes data changes for the group)

RECORD 4 (adds a credit amount to RECORD 5)
RECORD 5 (updates data in RECORD 6)
RECORD6
RECORD 7 (summarizes data changes for the group)

ZK-6065-GE

The ROLLBACK statement cancels all changes made to the database since the
last executed READY statement and returns the database to its condition at the
last quiet point. The DBCS performs an automatic ROLLBACK if your run unit
ends without executing a COMMIT or if it ends abnormally.

In Example 15-5 an order-processing application totals all items ordered by a
customer. If the order amount exceeds the credit limit, the program executes a
ROLLBACK and cancels the transaction updates. Notice that the credit limit is
tested for each ordered item, thus avoiding printing of an entire invoice prior to
cancelling the order.

15-42 Database Programming with VAX COBOL

Example 15-5: ROLLBACK Statement

READY-UPDATE.
READY TEST REALM CONCURRENT UPDATE.

* FETCH CUSTOMER ROUTINE *

* FETCH ORDERED ITEMS ROUTINE *

CREDIT-LIMIT-CHECK.
MULTIPLY ORDERED-QUANTITY BY UNIT-PRICE

GIVING ORDER-AMOUNT.
ADD ORDER-AMOUNT TO TOTAL-AMT.
IF TOTAL-AMT IS GREATER THAN CUST-CREDIT-LIMIT

ROLLBACK
PERFORM CREDIT-LIMIT-EXCEEDED

ELSE PERFORM PRINT-INVOICE-LINE.

15.24.3 The Owner and Member Test Condition

The FIND OWNER statement finds the owner of the current of set type, which
may not be the same as the current of run unit. Thus, executing a FIND OWNER
WITHIN set-name when the current of run unit record is not connected to the
specified set returns the owner of the member that is current of set type.

Figure 15-36 shows occurrences of the RESPONSIBLE_FOR set type where
employees are responsible for the design of certain parts.

Figure 15-36: Occurrences of the RESPONSIBLE_FOR Set Type

ZK-1509-GE

Example 15-6 uses the data in Figure 15-36 to perform an analysis of PART D,
PART L, and the work of the engineer responsible for each part. The set retention
class is optional.

Database Programming with VAX COBOL 15-43

Example 15-6: Owner and Member Test Condition

000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000250
000260

MAIL-LINE ROUTINE.
MOVE "PART D" TO PART DESC.
PERFORM FIND-PARTS.
MOVE "PART L" TO PART DESC.
PERFORM FIND-PARTS.
GO TO ALL-FINISHED.

FIND-PARTS.
FIND FIRST PART USING PART DESC.
IF PART-IS-MISSING

PERFORM PART-MISSING.
PERFORM PARTS-ANALYSIS.
FIND OWNER WITHIN RESPONSIBLE FOR.
PERFORM WORKLOAD-ANALYSIS.

DONE-ANALYSIS.
EXIT.

When PART L becomes current of run unit, a FIND OWNER (statement 000240)
finds PART D's owner, thus producing incorrect results. This is because a FIND
OWNER WITHIN set-name uses the current of set type and PART Lis not a
member of any RESPONSIBLE_FOR set type occurrence. To prevent this error,
statement 000240 should read:

IF RESPONSIBLE FOR MEMBER
FIND OWNER WITHIN RESPONSIBLE FOR

ELSE
PERFORM PART-HAS-NO-OWNER.

15.24.4 Using IF EMPTY Instead of IF OWNER

The OWNER test condition does not test whether the current record owns any
member records. Rather, this condition tests if the current record participates
as an owner record. If a record type is declared as the owner of a set type, an
OWNER test for that record type will always be true. Therefore, referring to
Figure 15-36, if EMP4 is the object of an IF RESPONSIBLE_FOR OWNER
test, the result is true because EMP4 is an owner record, even though the set
occurrence is empty.

To test if an owner record owns any members, use the EMPTY test condition. For
example:

IF RESPONSIBLE FOR IS EMPTY PERFORM EMPTY-ROUTINE
ELSE ...

Thus, if EMP4 is the object of an IF RESPONSIBLE_FOR IS EMPTY test, the
result is true because the set occurrence has no members.

15.24.5 Modifying Members of Sorted Sets

If the schema defines a set's order to be SORTED and you modify any data items
specified in the ORDER IS clause of the schema, the record may change position
within the set occurrence. If the record does change position, the set's currency
changes to point to the member record's new position.

15-44 Database Programming with VAX COBOL

Figure 15-37 shows a set occurrence for SORT_SET where MEMBER-B's key
(KEY 3) was changed to KEY 8. Before altering the record's key, the set currency
pointed to MEMBER-B, and a FETCH NEXT MEMBER WITHIN SORT_SET
fetched MEMBER-C. However; the modification to MEMBER-B's key repositions
the record within the set occurrence. Now, a FETCH NEXT MEMBER WITHIN
SORT_SET fetches the MEMBER-D record.

Figure 15-37: Modifying Members of Sorted Sets

BEFORE MODIFYING MEMBER B

(CURRENT OF SET) -.

AFTER MODIFYING
MEMBER B

.- (CURRENT OF SET)

ZK-1510-GE

When you change the contents of a data item specified in the ORDER IS SORTED
clause and you do not want the set's currency to change, use the RETAINING
clause with the MODIFY statement. Thus, MODIFY repositions the record and
RETAINING keeps the currency indicator pointing at the position vacated by
the record. Figure 15-38 shows how the following example retains currency for
SORT_SET.

FETCH NEXT WITHIN SORT SET.
IF MEMBER KEY = "KEY 3"

MOVE "KEY 8" TO MEMBER KEY
MODIFY MEMBER KEY RETAINING SORT SET.

Database Programming with VAX COBOL 15-45

Figure 15-38: After Modifying MEMBER_B and Using RETAINING

,.,,.....-- --

/ 'POSTION VACATED '
\ BY MEMBER-B)

'-.(CURRENT OF SET) /
""'---- ;.....-'

ZK-1512-GE

If MEMBER_B's key was changed to KEY 4, the record's position in the set
occurrence would not change, and a FETCH NEXT WITHIN SORT_SET would
fetch MEMBER_C.

15.24.6 CONNECT and DISCONNECT

When the set membership class is MANUAL, use the CONNECT statement
to link a member record to its set occurrence. You can also use CONNECT for
AUTOMATIC sets, provided that the retention class is OPTIONAL and you have
disconnected the record.

When you use the CONNECT statement, specify the set or sets where the record
is to be connected. Executing a CONNECT statement without the set list clause
connects the record to all sets in which it can be, but is not yet, a member.

Before you execute a CONNECT statement, be sure that currency for the
specified set type points to the correct set occurrence. If not, the member record
will participate in the wrong set occurrence. (For more information on currency,
see Section 15.22 and Section 15.23.) You cannot execute a CONNECT for a
record that participates as an owner of the specified set.

If the set retention class is OPTIONAL, use the DISCONNECT statement to
remove a member record from a specified set. The DISCONNECT statement does
not delete a record from the database.

When you use the DISCONNECT statement, specify the sets from which the
record will be disconnected. Executing a DISCONNECT without the set list
clause disconnects the record from all the sets in which it participates as
an optional member. You cannot execute a DISCONNECT for a record that
participates as an owner of the specified set or that has a set retention class

15-46 Database Programming with VAX COBOL

of FIXED or MANDATORY. Refer to the VAX COBOL Reference Manual for an
explanation of how set membership class affects certain DML verbs.

15.24.7 RECONNECT

Use the RECONNECT statement to remove a member record from one set
occurrence and connect it to another occurrence of the same set type, or to a
different position within the same set. To transfer a member record:

1. Use the FETCH (or FIND) statement to select a record in the set occurrence.
This can be either a member or an owner of the set occurrence you want to
connect to.

2. Use the FETCH (or FIND) statement with the RETAINING clause to transfer
the member record you want. This keeps the currency for the targeted record.

3. Execute a RECONNECT statement using the WITHIN clause.

The RECONNECT statement is useful in applications such as production control
where manufactured items move down an assembly line from one work station
to another. In Figure 15-39, work stations are the owner records and assemblies
are the member records.

Figure 15-39: Occurrence Diagram Prior to RECONNECT

ASSEMBLY _SET

ZK-1513-GE

Example 15-7 transfers ASSEMBLY R, a machine base, to WORK STATION 2
for electrical assembly. The order of insertion is LAST.

Figure 15-40 shows the ASSEMBLY_SET after execution of the RECONNECT
statement. Notice the ASSEMBLY A record replaces the R record's position in the
WORK STATION 1 set occurrence. Also, execution of the RECONNECT makes
the ASSEMBLY R record current for the ASSEMBLY_SET.

Database Programming with VAX COBOL 15-47

Example 15-7: RECONNECT Statement

GET-WORK-STATION.
MOVE 2 TO WORK STATION ID.
FIND FIRST WORK STATION USING WORK STATION ID. - -
MOVE "R" TO ASSEMBLY ID.
FIND FIRST ASSEMBLY USING ASSEMBLY ID

RETAINING ASSEMBLY SET.

* The RETAINING clause retains work station 2 as *
* current of ASSEMBLY SET. Otherwise, the found member *
* would be current of-set and the RECONNECT would fail. *

RECONNECT ASSEMBLY WITHIN ASSEMBLY SET.

Figure 15-40: Occurrence Diagram After RECONNECT

ASSEMBLY _SET

15.24.8 ERASE ALL

ZK-1514-GE

The ERASE statement deletes one or more records from the database. However,
it can delete more than you intended. Accidental deletes can occur because of the
ERASE statement's cascading effect. The cascading effect can happen whenever
the erased record is the owner of a set. Thus, if the current record is an owner of
a set type, an ERASE ALL deletes:

• The current record.

• All records in sets owned by the current record.

15-48 Database Programming with VAX COBOL

• Any records in sets owned by those members. Note that this is a repetitive
process.

This is called a cascading delete.

The occurrence diagrams in Figure 15-41 show the results of using the ERASE
ALL statement.

Figure 15-41: Results of an ERASE ALL

PRIOR TO ERASE ALL AFTER ERASE ALL

SET_A

G)sET_B

0
ZK-1515-GE

The ERASE ALL statement is the only way to erase an owner of sets with
MANDATORY members.

15.24.9 ERASE Record-Name

If you do not use the ERASE ALL statement but use the ERASE record-name,
and the erased record is the owner of a set, the ERASE statement deletes:

• The current record.

• All FIXED members of sets owned by the current record.

• All FIXED members of sets owned by records in rule 2. Note that this is a
repetitive process.

If the current record owns sets with OPTIONAL members, these records are
disconnected from the set, but remain in the database.

The occurrence diagrams in Figure 15-42 show the results of using the ERASE
record-name statement when affected members have an OPTIONAL set
membership. In this figure, B records are FIXED members of the SET_B set
and C records are OPTIONAL members of the SET_C set. Notice that records

Database Programming with VAX COBOL 15-49

Cl and C2 are disconnected from the set, but remain in the database while Bl
through B3 are erased.

Figure 15-42: Results of an ERASE Record-Name (with Both OPTIONAL and
FIXED Retention Classes)

PRIOR TO ERASE <record-name> AFTER ERASE <record-name>

SET_A

0SET_B
Yd

ZK-1516-GE

Remember, records removed from a set but not deleted from the database can still
be accessed.

15.24.1 O Freeing Currency Indicators

Use the FREE database-key-id statement to null the currency indicators for
realms, records, sets, or the run unit. You use the FREE statement: (1) to
establish a known currency condition before executing a program routine, and (2)
to release record locks.

15.24.10.1 Establishing a Known Currency Condition

Establishing a known currency condition is helpful in many situations-for
example, if you have a program that performs a customer analysis and prints
three reports. The first report prints all customers with a credit rating greater
than $1,000, the second report prints all customers with a credit rating greater
than $5,000, and the third report prints all customers with a credit rating greater
than $10,000. Because some customers will appear on more than one report, you
want each report routine to start its customer analysis with the first customer in
the database.

15-50 Database Programming with VAX COBOL

By using the FREE CURRENT statement at the end of a report routine, as shown
in Example 15-8, you null the currency and allow the next print routine to start
its analysis at the first customer.

Example 15-8: FREE CURRENT Statement

MAIN-ROUTINE.
READY TEST REALM CONCURRENT RETRIEVAL.
PERFORM FIRST-REPORT-HEADINGS.
PERFORM PRINT-FIRST-REPORT THRU PFR-EXIT

UNTIL AT-END= "Y".
MOVE "N" TO AT-END.
PERFORM SECOND-REPORT-HEADINGS.
PERFORM PRINT-SECOND-REPORT THRU PSR-EXIT

UNTIL AT-END= "Y".
MOVE "N" TO AT-END.
PERFORM THIRD-REPORT-HEADINGS.
PERFORM PRINT-THIRD-REPORT THRU PTR-EXIT

UNTIL AT-END= "Y".
MOVE "N" TO AT-END.

STOP RUN.
PRINT-FIRST-REPORT.

FETCH NEXT CUSTOMER MASTER
AT END FREE CURRENT

MOVE "Y" TO AT-END.
IF AT-END = "N" AND

CUSTOMER CREDIT RATING IS GREATER THAN 1000
PERFORM PRINT-ROUTINE.

PFR-EXIT.
EXIT.

PRINT-SECOND-REPORT.
FETCH NEXT CUSTOMER MASTER

AT END FREE CURRENT
MOVE "Y" TO AT-END.

IF AT-END = "N" AND
CUSTOMER CREDIT RATING IS GREATER THAN 5000 - -
PERFORM PRINT-ROUTINE.

PSR-EXIT.
EXIT.

PRINT-THIRD-REPORT.
FETCH NEXT CUSTOMER MASTER

AT END MOVE "Y" TO AT-END.
IF AT-END = "N" AND

CUSTOMER CREDIT RATING IS GREATER THAN 10000
PERFORM PRINT-ROUTINE.

PTR-EXIT.
EXIT.

The FREE CURRENT statement in the PRINT-FIRST-REPORT paragraph
nulls the default run-unit currency, thereby providing a starting point
for the PRINT-SECOND-REPORT paragraph. The FREE CURRENT
statement in the PRINT-SECOND-REPORT paragraph does the same for the
PRINT-THIRD-REPORT paragraph. Thus, by nullifying the default run-unit
currency, the FREE CURRENT statements allow the first execution of the
FETCH NEXT CUSTOMER:_MASTER statement to fetch the first customer
master in TEST_REALM.

Database Programming with VAX COBOL 15-51

15.24.10.2 Releasing Record Locks

Regardless of the READY mode used, you always have a record lock on the
current of run unit. Even the READY CONCURRENT RETRIEVAL mode locks
the current record and puts it in a read-only condition. Furthermore, if you are
traversing the database, the current record for each record type you touch with
a DML statement is locked and placed in a read-only condition. Record locking
prevents other users from updating any records locked by your run unit.

A locked record can prevent accessing of other records. Figure 15-43 shows PART
A locked by run unit A. Assume PART A has been locked by a FETCH statement.
If run unit B is in READY UPDATE mode and tries to: (1) update PART A,
and (2) find all of PART Ns member records and their vendor owners, then run
unit B is locked out and placed in a wait state. A wait state occurs when a run
unit cannot continue processing until another run unit completes its database
transaction. Because run unit B uses PART A as an entry point for an update,
the lock on PART A also prevents access to PART Ns member records and the
vendor owners of these member records.

Figure 15-43: Record Locking

(LOCKED BY RUN-UNIT A)

ZK-1517-GE

If a record is not locked by a STORE or a MODIFY statement, or the database
key for the record is not in a keeplist, you can unlock it by using the FREE
CURRENT statement. By using the FREE CURRENT statement, you reduce
lockout and optimize processing for other run units.

15.24.11 FIND and FETCH Statements

The FIND and FETCH statements locate a record in the database and make that
record the current record of the run unit. The FETCH statement also copies the
record to the user work area (UWA), thus giving you access to the record's data.
The FIND does not place a record in the UWA. However, if your only requirement
is to make a record current of run unit, use the more efficient FIND statement.
For example, use the FIND statement if you want to connect, disconnect, or
reconnect without examining a record's contents.

15-52 Database Programming with VAX COBOL

15.24.12 FIND ALL Option

The FIND ALL statement puts the database key values of one or more records
into a keeplist. (See the description of FIND ALL in the VAX COBOL Reference
Manual for syntax details.)

The following example locates all PART records with a PART_STATUS of J and
puts their dbkey values in keeplist TWO.

FIND ALL TWO PART USING PART STATUS
PART_STATUS X(l) = J

15.24.13 FIND NEXT and FETCH NEXT Loops

If you have a FIND NEXT or FETCH NEXT loop in your program, the first
execution of the loop is the same as executing a FIND FIRST or FETCH FIRST.
Unless you properly initialize them, currency indicators can affect selection of the
specified record. For example, if ITEM B in Figure 15-44 is current for
INV _ITEMS, a FIND NEXT INV _ITEMS makes ITEM C the current record
for the run unit. You can null a currency by executing a FREE CURRENT
statement.

Figure 15-44: Using FIND NEXT and FETCH NEXT Loops

~~
WAREHOUSE_SET SUPPLIER_SET

---~---~ -~~--~- ~--~---
(INV_ ITEMS) ITEM A

ZK-1518-GE

Database Programming with VAX COBOL 15-53

Example 15-9 makes the INV _ITEMS currency null prior to executing a FETCH
NEXT loop.

Example 15-9: FETCH NEXT Loop

000100
000110
000120
000130
000140
000150
000160

GET-WAREHOUSE.
MOVE "A" TO WHSE-ID.
FIND FIRST WHSE REC USING WHSE-ID.

UPDATE-ITEM.
MOVE "B" TO ITEM-ID.
FETCH FIRST WITHIN WAREHOUSE SET

USING ITEM-ID.

* INVENTORY UPDATE ROUTINE *

* The next statement nulls the run unit currency.
* Therefore, the first execution of the FETCH NEXT
* gets the first INV_ITEMS record.

*
*
*

000170 FREE CURRENT.
000180 ANALYZE-INVENTORY.
000190 FETCH NEXT INV ITEMS
000200 AT END GO TO END-OF-PROGRAM.
000210 GO TO ANALYZE-INVENTORY.

You can also use FETCH NEXT and FIND NEXT loops to walk through a set
type. Assume you have to walk through the WAREHOUSE_SET and reduce the
reorder point quantity by 10 percent for all items with a cost greater than $500.
Furthermore, you also want to check the supplier's credit terms for each of these
items. You could perform the task as shown in Example 15-10.

Example 15-10: Using a FETCH NEXT Loop to Walk Through a Set Type

000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210*
000220
000230

FETCH-WAREHOUSE.
FETCH NEXT WHSE REC

ITEM-LOOP.

AT END PERFORM END-OF-WAREHOUSE
PERFORM WRAP-UP.

FETCH NEXT INV ITEM WITHIN WAREHOUSE SET
AT END

FIND OWNER WITHIN WAREHOUSE SET
PERFORM FETCH-WAREHOUSE.

IF INV ITEM COST IS GREATER THAN 500 - -
PERFORM SUPPLIER-ANALYSIS.

Reduce reorder point quantity by 10%.
MODIFY INV ITEM.
GO TO ITEM-LOOP.

(continued on next page)

15-54 Database Programming with VAX COBOL

Example 15-10 (Cont.): Using a FETCH NEXT Loop to Walk Through a Set
Type

000240 SUPPLIER-ANALYSIS.
000250 IF NOT SUPPLIER SET MEMBER
000260 DISPLAY "NO SUPPLIER FOR THIS ITEM"
000270 EXIT.
000280 FETCH OWNER WITHIN SUPPLIER SET.
000290* Check credit terms.

Notice the FIND OWNER WITHIN WAREHOUSE_SET statement on line
000170. At the end of a WAREHOUSE_SET collection, statement 000170 sets
the WAREHOUSE_SET type currency to the owner of the current occurrence.
This allows the next execution of FETCH NEXT WHSE_REC to use current of
record type WHSE_REC to find the next occurrence of WHSE_REC. Without
statement 000170, a FETCH NEXT WHSE_REC would use the current of run
unit, which is an INV _ITEM record type.

15.24.14 Qualifying FIND and FETCH

You can locate records by using the contents of data items as search arguments.
You can use more than one qualifier as a search argument. For example, assume
you want to print a report of all employees in department 5 with a pay rate of
$7 .50 per hour. You could use the department number as a search argument and
use a conditional test to find all employees with a pay rate of $7 .50. Or you could
use both the department number and pay rate as search arguments, as follows:

000500
000510
000520
000530
000540
000550
000560
000570
000580
000590

SETUP-QUALIFIES.
MOVE 5 TO DEPARTMENT-NUMBER.
MOVE 7.50 TO EMPLOYEE-RATE.
FREE CURRENT.

FETCH-EMPLOYEES.
FETCH NEXT EMPLOYEE

USING DEPARTMENT-NUMBER EMPLOYEE-RATE
AT END GO TO EXIT-ROUTINE.

PERFORM EMPLOYEE-PRINT.
GO TO FETCH-EMPLOYEES.

You can also locate records by using a WHERE clause to designate a conditional
expression as a search argument. The following example fetches the first
SUPPLY record whose SUP _LAG_ TIME is 2 days or less.

000450 FETCH-SUPPLY.
000460 FETCH FIRST SUPPLY
000470 WITHIN PART INFO
000480 WHERE SUP LAG TIME LESS THAN 2
000490 AT END GO TO EXIT-ROUTINE.

Database Programming with VAX COBOL 15-55

15.25 Handling Database Exception Conditions

This section discusses how to program for database exception conditions.

15.25.1 AT END Phrase

Use the AT END phrase of the FETCH and FIND statements to handle the end
of a collection of records condition. Your program will terminate if: (1) an at end
condition occurs, (2) the program does not include the AT END phrase, and (3)
there is no applicable USE statement.

15.25.2 ON ERROR Phrase

Use the ON ERROR phrase to transfer execution control to the associated
statements' error handling routine. Once in this routine your program can
supply useful and effective debugging information. (See Section 15.25.4, and the
VAX COBOL Reference Manual for more information on VAX DBMS Database
Special Registers.) The ON ERROR phrase can be part of every DML statement.
It allows you to gracefully plan the end of a program that would otherwise
terminate abnormally. (In a FETCH or FIND statement, you cannot specify both
the ON ERROR and AT END phrases in the same statement.) For example:

PROCEDURE DIVISION.

RECONNECT PARTS RECORD WITHIN ALL
ON ERROR DISPLAY "Exception on RECONNECT"

PERFORM PROCESS-EXCEPTION.

PROCESS-EXCEPTION.
DISPLAY "Database Exception Condition Report".
DISPLAY
DISPLAY "DB-CONDITION

DISPLAY "DB-CURRENT-RECORD-NAME
DISPLAY "DB-CURRENT-RECORD-ID

DISPLAY
CALL "DBM$SIGNAL".
STOP RUN.

15.25.3 USE Statement

", DB-CONDITION
WITH CONVERSION.

", DB-CURRENT-RECORD-NAME.
", DB-CURRENT-RECORD-ID

WITH CONVERSION.

Planning for exception conditions is an effective way to increase program and
programmer productivity. A program with USE statements is more flexible than
a program without them. They minimize operator intervention and often reduce
or eliminate the time a programmer needs to debug and rerun the program.

The USE statement traps unsuccessful run-time DBMS exception conditions that
cause the execution of a Declarative procedure. A Declarative procedure can:

• Supply useful and effective database debugging information (see
Section 15.25.4 and the VAX COBOL Reference Manual for more information
on VAX DBMS Database Special Registers)

15-56 Database Programming with VAX COBOL

• Provide alternate processing paths for specific exception conditions

Two sets of USE statements follow:

• The first set, shown in Example 15-11, consists of a single USE statement.
This database declarative executes for any and all database exception
conditions. If you select this set, it must be the only database USE statement
in the Declarative Section. Its format is:

USE [GLOBAL] FOR DB-EXCEPTION.

Example 15-11: A Single USE Statement

PROCEDURE DIVISION.
DECLARATIVES.
200-DATABASE-EXCEPTIONS SECTION. USE FOR DB-EXCEPTION.
DB-ERROR-ROUTINE.

DISPLAY "Database Exception Condition Report".
DISPLAY "---"
DISPLAY "DB-CONDITION = ", DB-CONDITION

WITH CONVERSION.
DISPLAY "DB-CUR-REC-NAME - " DB-CURRENT-RECORD-NAME.
DISPLAY "DB-CURRENT-RECORD-ID = ", DB-CURRENT-RECORD-ID

DISPLAY "DB-CUR-REC-ID
DISPLAY
CALL "DBM$SIGNAL".

END DECLARATIVES.

WITH CONVERSION.
", DB-CRID.

• The second set, shown in Example 15-12, consists of one or more Format 1
USE statements, and one Format 2 USE statement.

Format 1
USE [GLOBAL] FOR DB-EXCEPTION ON DBM$_exception-condition [, DBM$_exception-condition] ...

A Format 1 database declarative executes whenever a database exception
condition occurs and the corresponding DBM$_exception-condition is explicitly
stated in the USE statement.

Format 2

USE [GLOBAL] FOR DB-EXCEPTION ON OTHER.

A Format 2 declarative executes whenever a database exception condition
occurs and the corresponding DBM$_exception-condition is not explicitly
stated in any Format 1 USE statement.

Database Programming with VAX COBOL 15-57

Example 15-12: Multiple USE Statements

PROCEDURE DIVISION.
DECLARATIVES.
200-DATABASE-EXCEPTIONS SECTION.

USE FOR DB-EXCEPTION ON DBM$ CRELM NULL,
DBM$=CRTYPE°_NULL.

200-DATABASE.
PERFORM 300-REPORT-DATABASE-EXCEPTIONS.
IF DB-CONDITION GO TO
IF DB-CONDITION= GO TO
STOP RUN.

225-DATABASE-EXCEPTIONS SECTION.
USE FOR DB-EXCEPTION ON DBM$_DUPNOTALL.

225-DATABASE.
PERFORM 300-REPORT-DATABASE-EXCEPTIONS.
GO TO ...

250-DATABASE-EXCEPTIONS SECTION.
USE FOR DB-EXCEPTION ON OTHER.

250-DATABASE.
PERFORM 300-REPORT-DATABASE-EXCEPTIONS.
EVALUATE DB-CONDITION

WHEN GO TO
WHEN GO TO
WHEN GO TO
WHEN GO TO
WHEN GO TO
WHEN GO TO
WHEN GO TO
WHEN GO TO
WHEN GO TO
WHEN OTHER PERFORM ...

STOP RUN.
300-REPORT-DATABASE-EXCEPTIONS.

DISPLAY "Database Exception Condition Report".
DISPLAY
DISPLAY "DB-CONDITION " ' DB-CONDITION

WITH CONVERSION.
DISPLAY "DB-CUR-REC-NAME ", DB-CURRENT-RECORD-NAME.
DISPLAY "DB-CURRENT-RECORD-ID ", DB-CURRENT-RECORD-ID
DISPLAY
CALL "DBM$SIGNAL".

15.25.4 How to Translate DB-CONDITION Values to Exception Messages

VAX DBMS includes the following procedure for exception condition handling:

CALL "DBM$SIGNAL".

Use this procedure when it is necessary to output an exception message rather
than, or in addition to, displaying the numeric value of DB-CONDITION. For
more information on the VAX DBMS database special register DB-CONDITION,
see the VAX COBOL Reference Manual.

15.26 Debugging and Testing VAX COBOL DML Programs

The Database Query utility (DBQ) commands and generic DML statements are
the tools you use to debug and test your COBOL program's DML statements.
For example, you can use DBQ commands to display currency indicators, test
program loops, or check your program's execution efficiency.

15-58 Database Programming with VAX COBOL

It is important to eliminate any logic errors prior to running a VAX COBOL
DML program against a live database, because poorly written or incorrect logic
can corrupt a database. You can resolve some logic errors by desk-checking a
program. Desk-checking involves reviewing the logical ordering and proper use
of DML statements; for example, executing a FIND when you intend to execute
a FETCH, or executing a CONNECT instead of a RECONNECT. You can also
use the debugger described in Chapter 3. However, neither method gives you
information on currency indicators and the effects DML statements have on
them.

Another method of debugging VAX COBOL DML programs is to test DML
statements using the DBQ utility. DBQ is an online interactive utility that uses
a split screen to show the results of each execution of a DML statement. It is
also an effective database programming learning tool. For a complete description
of the DBQ utility, refer to the VAX DBMS documentation on data manipulation
and programming.

It is recommended that you use all of these tools to design, test, and debug your
VAX COBOL DML programs.

NOTE

The split screen feature of the DBQ utility is not available to users of
VT52 or VT05 terminals.

15.27 DBQ Commands and DML Statements

The DBQ utility provides both generic DML statements and DBQ-specific
commands. Generic DML statements are similar to the VAX COBOL DML
statements explained in the VAX COBOL Reference Manual. However, not all
COBOL DML syntax is applicable to the DBQ utility. These statements and
entries do not apply:

• SUB-SCHEMA SECTION

• LD statement

• AT END phrase

• ON ERROR phrase

• Scope terminators

• USE statement

• DB statement-Use the DBQ utility BIND command to identify the
subschema you will use for testing and debugging. You cannot access a
subschema until you bind it. If your program has this DB statement:

DB PARTSS3 WITHIN PARTS FOR NEW.

the comparable BIND statement is as follows:

dbq>BIND PARTSS3 FOR NEW

• ANY clause-The DBQ utility does not allow the ANY clause in a Record
Selection Expression. Instead, use the FIRST clause.

• DUPLICATE clause-The DBQ utility does not allow the DUPLICATE clause
in a Record Selection Expression. Instead, use the NEXT clause.

• WHERE clause-The operators of this clause are different.

Database Programming with VAX COBOL 15-59

For a complete discussion of generic DML, refer to the VAX DBMS documentation
on data manipulation and programming.

15.28 Sample Debugging and Testing Session

This section shows how to use the DBQ utility for debugging and testing VAX
COBOL DML programs. Because the split screen limits the number of lines that
can be displayed at one time, the split screen figures show the Bachman diagram
only. Corresponding DBQ prompts, entries, and messages follow each Bachman
diagram and are shown in their entirety.

The session tests and finds a logic error in the DML program statements in
Example 15-13. The sample COBOL DML program is intended to:

1. Fetch the first PART in the database with a PART_ID equal to AZ177311

2. Fetch all SUPPLY records for the found PART

3. Check the PART's SUPPLY records for SUP _RATINGs equal to 0

4. Change all SUP _RATINGs equal to 0 to 5, and print SUPPLY records
VENDOR_SUPPLY owners

5. Change PART's PART_STATUS to X if one or more of its SUPPLY records has
a SUP _RATING equal to 5

Remember, the database key values displayed on your screen may be different
from those in the examples.

NOTE

If you are currently accessing PARTSS3 with the DBQ utility and have
made any changes to the database, use the ROLLBACK statement to
cancel your changes. Otherwise, you might change the results of the
debugging session.

Example 15-13: Sample VAX COBOL DML Program Statements

DATA DIVISION.
DB PARTSS3 WITHIN PARTS FOR NEW.

PROCEDURE DIVISION.
000-BEGIN.

READY PROTECTED UPDATE.

MOVE "AZ177311" TO PART ID.
FETCH FIRST PART USING PART ID.
MOVE "N" TO END-OF-COLLECTION.
PERFORM AlOO-LOOP THROUGH A100-LOOP-EXIT

UNTIL END-OF-COLLECTION= "Y".

STOP RUN.

15-60 Database Programming with VAX COBOL

(continued on next page)

Example 15-13 (Cont.): Sample VAX COBOL DML Program Statements

AlOO-LOOP.
FETCH NEXT WITHIN PART SUPPLY

AT END MOVE "Y" TO END-OF-COLLECTION
GO TO AlOO-LOOP-EXIT.

IF SUP RATING = "0"
MOVE "5" TO SUP RATING
MODIFY SUP RATING
MOVE 1 TO MODIFY-COUNT
FETCH OWNER WITHIN VENDOR SUPPLY
PERFORM PRINT-VENDOR.

IF MODIFY-COUNT = 1
MOVE "X" TO PART STATUS
MODIFY PART STATUS.

A100-LOOP-EXIT.
EXIT.

The following DBQ session tests and debugs the sample DML program statements
in Example 15-13:

$ DBQ
dbq> BIND PARTSS3 FOR NEW
dbq> READY PROTECTED UPDATE
dbq> SET CURSIG
dbq> FETCH FIRST PART USING PART_ID

DBQ prompts you for a PART_ID value:

PART_ID [CHARACTER(8)] =AZ177311

Entering AZl 77311 as the PART_ID value causes the Bachman diagram in
Figure 15-45 to appear on your screen.

Database Programn1ing with VAX COBOL 15-61

Figure 15-45: Split Screen After FETCH FIRST PART USING PART_ID

Legend: @l1;i;i$§MM POSITION iubH.ii#Fi.t§•l null

%DBM - I - CURDISPIA., Currency for run unit is 1:2:7
%DBM - I - CURDISPIA., Currency for PART SUPPLY set type is 1:2:7
%DBM - I - CURDISPIA., Currency for PART-record type is 1:2:7
%DBM - I - CURDISPIA., Currency for MARKETS realm is 1:2:7
PART ID - AZ177311
PART-DESC ... GASKET
PART-STATUS - G
PART:SUPPORT - RE

ZK-6067-GE

The next DML statement in Figure 15-46 is FETCH NEXT WITHIN
PART_SUPPLY. Although this statement is in a performed loop, you can still test
its logic by executing a series of FETCH NEXT WITHIN PART_SUPPLY until
you find a SUP _RATING equal to 0.

dbq> FETCH NEXT WITHIN PART SUPPLY

15-62 Database Programming with VAX COBOL

Figure 15-46: Split Screen After FETCH NEXT WITHIN PART_SUPPLY

Legend: @i1;mtj!§11ij POSITION lubF!.i3#Hzl§.! null

vendor

31 It ...

%DEM - I - CURDISPLA, Currency for run unit is 3:2:3
%DEM - I - CURDISPLA, Currency for P.ART SUPPLY set type is 3:2:3
%DEM - I - CURDISPLA, Currency for VENDOR SUPPLY set type is 3:2:3
%DEM - I - CURDISPLA, Currency for SUPPLY-record type is 3:2:3
%DEM - I - CURDISPLA, Currency for MARKETS realm is 3:2:3
SUP RATING = 0
SUP-TYPE = OEM
SUP-LAG TIME = 6-10 DAYS

ZK-6068-GE

Because SUPPLY participates in two sets, the Bachman diagram in Figure 15-46
shows the set relationships for SUPPLY. Notice the SUPPLY record has a
SUP _RATING equal to 0. Therefore, you can test the next DML statement.

dbq> MODIFY SUP RATING
SUP_RATING [CHARACTER(l)]= 5

Notice how the MODIFY statement causes DBQ to issue a prompt, as shown in
the preceding statement. When you MODIFY or STORE a record, DBQ prompts
you for data entry by displaying the data name and its attributes. After entering
the new SUP_RATING, use the RETURN key to execute the MODIFY statement.

Because this MODIFY statement does not change currency, the Bachman diagram
in Figure 15-4 7 is the same as the one in Figure 15-46. Also, DBQ does not
display currency update messages.

Database Programming with VAX COBOL 15-63

Figure 15-47: Split Screen After MODIFY SUP _RATING

Legend:@l1;m?1§MI! POSITION lnbFisli#H.!§.1 null

ZK-6069-GE

The next statement to test is the FETCH for SUPPLY record's owner in the
VENDOR_SUPPLY set.

dbq> FETCH OWNER WITHIN VENDOR SUPPLY

Figure 15-48: Split Screen After FETCH OWNER WITHIN VENDOR_SUPPLY

Legend: liilm;fa4M POSITION f,,bF41Hf¥H.tg.1 null

%DBM - I - ctJRDISPIA, Currency for run unit is 3:5:1
%DBM - I - ctJRDISPIA, Currency for VENDOR SUPPLY set type is 3:5:1
%DBM - I - ctJRDISPIA, currency for VENDOR-record type is 3:5:1
%DBM - I - ctJRDISPIA, currency for MARKETS realm is 3:5:1
VEND ID - 02321332
VEND-NAME - U.S. SEALS
VEND-CONTACI'" == R.R. BINGHAM
VEND-ADDRESS == (1) - 132 MAIN ST.
VEND-ADDRESS - (2) == MJLINE, ILL.
VEND-ADDRESS - (3) =
VEND-PHONE - 8168845398

ZK-6070-GE

Assuming the data item MODIFY-COUNT has a value 1, you can test the last
(MODIFY PART) DML statement.

dbq> MODIFY PART STATUS
PART_STATUS [CHARACTER(l)]= X
dbq> DBM-F-WRONGRTYP, Specified record type not current record type

15-64 Database Programming with VAX COBOL

DBQ generates an error message indicating the MODIFY statement did not
execute because the current of run unit is not a PART record. Comparing the
shading and intensities of the Bachman diagram in Figure 15-48 with the legend
shows the current record is a VENDOR record. Therefore, the diagram indicates
that a MODIFY to the PART record will not work even before you attempt the
MODIFY statement.

To correct the logic error, PART must be the current record type prior to execution
of the MODIFY PART_STATUS statement. One way to correct the logic error is
to execute a FETCH CURRENT PART statement before the
MODIFY PART_STATUS statement. Example 15-14 shows a corrected version of
the sample COBOL DML program statements in Example 15-13.

Example 15-14: Sample DML Program Statements

DATA DIVISION.
DB PARTSS3 WITHIN PARTS FOR NEW.

PROCEDURE DIVISION.
000-BEGIN.

READY PROTECTED UPDATE.

MOVE "AZ177311" TO PART ID.
FETCH FIRST PART USING PART ID.
MOVE "N" TO END-OF-COLLECTION.
PERFORM AlOO-LOOP THROUGH AlOO-LOOP-EXIT

UNTIL END-OF-COLLECTION= "Y".

STOP RUN.
AlOO-LOOP.

FETCH NEXT WITHIN PART SUPPLY
AT END MOVE "Y" TO END-OF-COLLECTION

GO TO A100-LOOP-EXIT.
IF SUP RATING = "0"

MOVE "5" TO SUP RATING
MODIFY SUP RATING
MOVE 1 TO MODIFY-COUNT
FETCH OWNER WITHIN VENDOR SUPPLY
PERFORM PRINT-VENDOR.

IF MODIFY-COUNT = 1
MOVE "X" TO PART STATUS
FETCH CURRENT PART RETAINING PART SUPPLY
MODIFY PART STATUS.

A100-LOOP-EXIT.
EXIT.

The FETCH CURRENT PART statement uses the RETAINING clause to keep
the current SUPPLY record as current of PART_SUPPLY.

Continue testing, starting with the new FETCH statement.

dbq> FETCH CURRENT PART RETAINING PART SUPPLY

Database Programming with VAX COBOL 15-65

Figure 15-49 shows that executing FETCH CURRENT PART RETAINING
PART_SUPPLY makes PART the current record type, while the RETAINING
clause keeps SUPPLY current of PART_SUPPLY set. Retaining the current
supply record as current of PART_SUPPLY means the next execution of FETCH
NEXT WITHIN PART_SUPPLY uses the current SUPPLY record's currency to
locate the next SUPPLY record. If you executed a FETCH CURRENT PART
without the RETAINING clause, a FETCH NEXT WITHIN PART_SUPPLY would
use PART's currency and FETCH the first SUPPLY record belonging to PART.

Figure 15-49: Split Screen After FETCH CURRENT PART RETAINING PART_SUPPLV

Legend: r+jimtjm§d POSITION EfoQ¥H.t§·• null

%DBM - I - CURDISPLA, Currency for run unit is 1:2:7
%DBM - I - CURDISPLA, Currency for PART record type is 1:2:7
%DBM - I - CURDISPLA, Currency for MARKETS realm is 1:2:7
PART ID= AZ177311
PART-DESC = GASKET
PART-STATUS = G
PART-SUPPORT - RE

Now you can retest the MODIFY PART_STATUS.

dbq> MODIFY PART_STATUS
PART_STATUS [CHARACTER(l)]= X
dbq>

ZK-6072-GE

The DBQ prompt indicates the MODIFY was successful.

With the logic error found and fixed, you can test to see if the next execution
of the FETCH NEXT WITHIN PART_SUPPLY fetches the next SUPPLY record
belonging to the first PART record.

dbq> FETCH NEXT WITHIN PART_SUPPLY

The database keys displayed by the currency update messages in Figure 15-50
and Figure 15-51 are the same, thereby showing the AlOO-LOOP paragraph will
fetch the next SUPPLY record owned by the first PART record.

15-66 Database Programming with VAX COBOL

Notice the data items also have the same value. Comparing data item contents
instead of database key values is not a good practice because duplicate records
may be allowed. For example, a PART may have two or more SUPPLY records
containing the same data. Also, each SUPPLY record could point to a different
owner in the VENDOR_SUPPLY set type.

Figure 15-50: Split Screen After FETCH NEXT WITHIN PART_SUPPLV

Legend: @i1;mii!§Mil POSITION f,,bF&.iff#H.!§·I null

~ I I ,,,:11ij1·I.l;l

W+ij11iliM h"i"M.M+!i•

I miilt1 I
%DBM - I - CORDISPLA, Currency for run unit is 3:2:2
%DBM - I - CORDISPLA, Currency for PART SUPPLY set type is 3:2:2
%DBM - I - CORDISPLA, Currency for VENDOR SUPPLY set type is 3:2:2
%DBM - I - CORDISPLA, Currency for SUPPLY-record type is 3:2:2
%DBM - I - CORDISPLA, Currency for MARKETS realm is 3:2:2
SUP RATING = 0
SUP-TYPE = WSUP
SUP-LAG TIME = 1-2 WEEKS

ZK-6073-GE

To show that the record is indeed the second SUPPLY record belonging to the first
PART record, execute the following statement:

dbq> FETCH 2 WITHIN PART SUPPLY

Database Programming with VAX COBOL 15-67

Figure 15-51: Split Screen After FETCH 2 WITHIN PART_SUPPLY

Legend: @i1;m5!§11ij POSITION ••·'3¥Fizi§·I null

%DBM - I - CURDISPLA, currency for run unit is 3:2:2
%DBM - I - CURDISPLA, currency for PART SUPPLY set type is 3:2:2
%DBM - I - CURDISPLA, currency for VENDOR SUPPLY set type is 3: 2: 2:
%DBM - I - CURDISPLA, currency for SUPPLY-record type is 3:2:2
%DBM - I - CURDISPLA, currency for MARKETS realm is 3:2:2
SUP RATING - 0
SUP-TYPE - WSUP
SUP:LAG_TIME - 1-2 WEEKS

ZK-6074-GE

15.29 Reading a VAX COBOL Subschema Map Listing

The circled numbers on the programs PARTSSl-PROGRAM (Figure 15-52) and
PARTSS3-PROGRAM (Figure 15-53) correspond to the following numbered text
explanations. The examples in this chapter refer to the subschema map listings
in this section.

0 Subschema map. Lists the realms, records, and sets defined in the subschema
and a COBOL-like record description for each record. Use the IMAP qualifier
to get this listing.

8 The complete pathname of the subschema node in CDD/Plus.

8 A list of the description entries associated with the subschema.

8 The subschema version number, also called the subschema time-stamp,
indicates the date and time at which the subschema was successfully
compiled and placed in CDD/Plus by the DDL Utility.

CB The schema version number, also called the schema time-stamp, indicates the
date and time at which the schema was successfully compiled and placed in
CDD/Plus by the DDL Utility.

(i) The subschema name.

8 The schema name.

8 A list of the description entries associated with a realm entry.

8 The realm name.

I> A list of the areas that make up the realm.

4D A list of the description entries associated with a record entry.

15-68 Database Programming with VAX COBOL

8 A list of the areas in which the record can be stored. The assignment of
records to areas is made in the record entry of the schema.

8 A list of the sets in the subschema in which the record participates as an
owner record.

e A list of the sets in the subschema in which the record participates as a
member record.

e A COBOL-like representation of the record entry defined in the subschema or
the schema.

9 A list of the description entries associated with a set entry.

• The set name.

8 Identifies the record as owner of the set. This field is SYSTEM for a singular
set.

e Identifies a member record of a set.

9 The insertion class of set membership.

e The retention class of set membership.

8 Indicates the set ordering criterion.

NOTE

Items 3, 8, 11, and 16 are generated by the DDL Utility.

Items 6 and 7 may not be the same names that appear in the DB
statement. They are the names that result after consideration of the
value of CDD$DEFAULT and all logical name translation.

Only the set name appears in a subschema. The specification of owner
and member record types, as well as set membership and ordering, is
done in the schema.

15.29.1 PARTSS1 Subschema Map Listing

PARTSSl-PROGRAM in Figure 15-52 includes the VAX. COBOL Subschema Map
of the PARTSSl subschema.

Database Programming with VAX COBOL 15-69

Figure 15-52: PARTSS1-PROGRAM Compiler Listing

PARTSSl-PROGRAM 29-Dec-1989 14:03:45
Source Listing 29-Dec-1989 14: 03: 43

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. PARTSSl-PROGRAM.
3
4 DATA DIVISION.
5 SUB-SCHEMA SECTION.
6 DB PARTSSl WITHIN PARTS FOR "NEW .ROO" •
7
8 PROCEDURE DIVISION.
9 END PROGRAM PARTSSl-PROGRAM.

PARTSSl-PROGRAM 29-Dec-1989 14:03:45
Data Names in Alphabetic Order 29-Dec-1989 14:03:43
Line Level Name Location Size

6 01 CATEGORY OOOOOOAC 23
6 02 CLASS CODE OOOOOOAC 2
6 02 CLASS-DESC OOOOOOAE 20
6 02 CLASS-STATUS OOOOOOC2 1
6 02 COMP MEAsURE OOOOOOD4 1
6 02 COMP-OWNER PART oooooocc 8
6 02 COMP-QUANTITY OOOOOOD5 5
6 02 COMP-SUB PART OOOOOOC4 8
6 01 COMPONENT OOOOOOC4 22
6 01 DB-CONDITION 00000028 9
6 01 DB-CURRENT-RECORD-ID 00000000 4
6 01 DB-CURRENT-RECORD-NAME 00000005 31
6 01 DB-KEY 00000064 18
6 01 DB-UWA 00000000 108
6 03 EMF FIRST NAME OOOOOOF5 10
6 02 EMF-ID - OOOOOODC 5
6 03 EMF-LAST_ NAME OOOOOOEl 20
6 02 EMF-LOC 00000106 5
6 02 EMF-NAME OOOOOOEl 30
6 02 EMF-PHONE OOOOOOFF 7
6 01 EMFI:OYEE OOOOOODC 47
6 02 GROUP NAME OOOOOlOC 20
6 01 PART - 00000120 79
6 02 PART COST 00000164 9
6 02 PART-DESC 00000128 50
6 02 PART-ID 00000120 8
6 02 PART-PRICE 0000015B 9
6 02 PART-STATUS 0000015A 1
6 02 PART-SUPPORT 0000016D 2
6 01 PR QUOTE 00000170 36
6 02 QUOTE DATE 00000177 6
6 02 QUOTE-ID 00000170 7
6 02 QUOTE-MIN ORDER 0000017D 5
6 02 QUOTE-QTY-PRICE 0000018B 9
6 02 QUOTE-UNIT PRIC 00000182 9
6 02 SUP LAG TIME 00000199 10
6 02 SUP-RATING 00000194 1
6 02 SUP-TYPE 00000195 4
6 01 SUPPLY 00000194 15
6 02 VEND ADDRESS 000001F2 15
6 02 VEND-CONTACT 000001D4 30
6 02 VEND-ID 000001A4 8
6 02 VEND NAME OOOOOlAC 40
6 02 VEND-PHONE 0000021F 10
6 01 VENDOR 000001A4 133
6 01 WK_GROUP OOOOOlOC 20

PARTSSl-PROGRAM 29-Dec-1989 14 :03 :45
Procedure Names in Alphabetic Order 29-Dec-1989 14:03:43

Line Name Location Type

PARTSSl-PROGRAM 00000000 Program

PARTSSl-PROGRAM 29-Dec-1989 14:03:45
External References 29-Dec-1989 14:03:43

DBM$_NOT _BOUND

PARTSSl-PROGRAM. 29-Dec-1989 14:03:45
Sub-schema Map 29-Dec-1989 14:03:43

: _CDD$TOP .PARTS .DBM$SUBSCHEMAS .PARTSSl.

* subschema 8
: Subschema version number: 27-MAR-1987 17:01:22.46.
: Schema versio.umber: 14-DEC-1984 14:42:28.12.

SUBSCHEMA NAME PARTSSl FOR PARTS SCHEMA.

: subschemitjealm.

REALM BtJW
BUY~ V

* subschema realm
*
REALM MAKE

MAKE

subschema realm

15-70 Database Programming with VAX COBOL

VAX COBOL V4. 3 Page 1
DEVICE: [COBOL.EXAMPLES]PARTSS1.COB;4 (1)

VAX COBOL V4. 3 Page 2
DEVICE: [COBOL.EXAMPLES]PARTSS1.COB;4 (1)
Bytes usage Category Subs Attribute

23 DISPLAY Group Glo
2 DISPLAY AN Glo

20 DISPLAY AN Glo
1 DISPLAY AN Glo
1 DISPLAY AN Glo
8 DISPLAY AN Glo
5 DISPLAY N Glo
8 DISPLAY AN Glo

22 DISPLAY Group Glo
4 COMP N Glo
2 COMP N Glo

31 DISPLAY AN Glo
8 COMP N Glo

108 DISPLAY AN Glo
10 DISPLAY AN Glo

5 DISPLAY N Glo
20 DISPLAY AN Glo

5 DISPLAY AN Glo
30 DISPLAY Group Glo

7 DISPLAY N Glo
47 DISPLAY Group Glo
20 DISPLAY AN Glo
79 DISPLAY Group Glo

9 DISPLAY N Glo
50 DISPLAY AN Glo

8 DISPLAY AN Glo
9 DISPLAY N Glo
1 DISPLAY AN Glo
2 DISPLAY AN Glo

36 DISPLAY Group Glo
6 DISPLAY N Glo
7 DISPLAY AN Glo
5 DISPLAY N Glo
9 DISPLAY N Glo
9 DISPLAY N Glo

10 DISPLAY AN Glo
1 DISPLAY AN Glo
4 DISPLAY AN Glo

15 DISPLAY Group Glo
15 DISPLAY AN Glo
30 DISPLAY AN Glo

8 DISPLAY AN Glo
40 DISPLAY AN Glo
10 DISPLAY N Glo

133 DISPLAY Group Glo
20 DISPLAY Group Glo

VAX COBOL V4. 3 Page 3
DEVICE: [COBOL.EXAMPLES]PARTSSl .COB; 4 (1)

VAX COBOL V4. 3 Page 4
DEVICE: [COBOL.EXAMPLES]PARTSS1.COB;4 (1)

VAX COBOL V4. 3 Page 5
DEVICE: [COBOL.EXAMPLES]PARTSS1.COB;4 (1)

ZK-6430-GE

(continued on next page)

Figure 15-52 (Cont.): PARTSS1-PROGRAM Compiler Listing

REALM MARKET
MARKET

: subschema realm

REALM PERSONNEL
PERSONNEL

: subschema record type.

* Within areas: BUY.
* MAI<E • * Owner of sets: CATEGORY PART
: Member of sets: ALL_CATEGORIE-

01 CATEGORY.
02 CLASS CODE !?IC X(2). }
02 CLASS-DESC !?IC X (20) • •
02 CLASS=STATUS !?IC X.

* subschema record type

* Within areas: MAI<E
: Member of sets: PART USES

PART:usED _ON

01 COMPONENT.
02 COMP SUB PART
02 COMP-OWNER PART
02 COMP-MEASuRE
02 COMP=QUANTITY

* subschema record type
*

PICX(8).
PIC X(8).
PIC X.
!?IC 9 (3) V9 (2) •

* Within areas: PERSONNEL
* Owner of sets: MANAGES

PARTSSl-J?ROGRAM
Sub-schema Map
* * Member of sets:
*
01 EMPLOYEE.

02 EMP ID
02 EMP-NAME.

RESPONSIBLE FOR
ALL EMPLOYEES
CONSISTS_OF

03 -EMP LAST NAME
03 EMP-FIRST NAME

!?IC 9(5).

!?IC X(20).
!?IC X(10).
PIC 9(7).
PIC X(5).

02 EMP PHONE -
02 EMP=LOC

; subschema record type

* Within areas:
* Owner of sets:
; Member of sets:

01 WK GROUP.
02- GROUP_NAME

PERSONNEL
CONSISTS OF
MANAGES -

!?IC X(20).

; subschema record type

: Within areas:

: Owner of sets:

; Member of sets:

01 PART.
02 PART ID

BUY
MAI<E
PART USES
PART-INFO
PARrusED ON
ALL PARTS­
ALL-PARTS ACTIVE
CATEGORY PART
RESPONSIBLE _FOR

02 PARrDESC
02 PART-STATUS
02 PART-PRICE

PIC X(8).
PIC X(50).
PIC X.
PIC S9(6)V9(3) SIGN TRAILING.
PIC S9 (6)V9 (3) SIGN TRAILING.
PIC X(2).

02 PART-COST
02 PART-SUPPORT

* subschema record type

* Within areas: · MARKET
: Member of sets: PART_INFO

01 PR QUOTE.
02- QUOTE ID
02 QUOTE-DATE
02 QUOTE-MIN ORDER
02 QUOTEIJNIT !?RIC
02 QUOTE=QTY_PRICE

* subschema record type

* Within areas: MARKET

PIC X(7).
PIC 9 (6).
PIC S9 (5) SIGN TRAILING.
PIC S9 (6)V9 (3) SIGN TRAILING.
PIC S9 (6)V9 (3) SIGN TRAILING.

* Member of sets: PART_INFO

29-Dec-1989 14:03:45
29-Dec-1989 14:03:43

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMl?LES]PARTSS1.COB;4 (1)

ZK-6430-1-GE

(continued on next page)

Database Programming with VAX COBOL 15-71

Figure 15-52 (Cont.): PARTSS1-PROGRAM Compiler Listing

PARTSSl-PROGRAM
~ub-schema Map

VENDOR_ SUPPLY

01 SUPPLY.
02 SUP RATING
02 SUP-TYPE
02 SUP-LAG TIME

* subschema-record type
* * Within areas: MARKET

PIC X.
PIC X(4).
PIC X(lO).

* Owner of sets:
* Member of sets:
*

VENDOR SUPPLY
ALL_ VENDORS

01 VENDOR.
02 VEND ID PIC X(8).
02 VEND-NAME PIC X(40).
02 VEND-CONTACT PIC X(30).
02 VEND-ADDRESS PIC X (15) OCCURS
02 VEND=PHONE PIC 9 (10).

* subschema set type.

;ET NAME ALL CATEGORIES ••
OWNER SYSTEM •
MEMBER CATEGORY---­

INSERTION AUTOMATie-..;;;. ••
RETENTION FIXEDt---__;~
ORDER SYSTEM DEFAULT----·

: subschema set type

SET NAME ALL EMPLOYEES
OWNER SYSTEM
MEMBER EMPLOYEE

INSERTION AUTOMATIC
RETENTION FIXED
ORDER SYSTEM DEFAULT

* subschema set type

SET NAME ALL PARTS
OWNER SYSTEM
MEMBER PART

INSERTION AUTOMATIC
RETENTION FIXED
ORDER SYSTEM DEFAULT

* subschema set type

SET NAME ALL PARTS ACTIVE
OWNER SYSTEM -
MEMBER PART

INSERTION AUTOMATIC
RETENTION OPTIONAL
ORDER SYSTEM DEFAULT

* subschema set type

PARTSSl-PROGRAM
~ub-schema Map

SET NAME ALL VENDORS
OWNER SYSTEM
MEMBER VENDOR

INSERTION AUTOMATIC
RETENTION FIXED
ORDER SORTED

* subschema set type

SET NAME CATEGORY PART
OWNER CATEGORY
MEMBER PART

INSERTION AUTOMATIC
RETENTION MANDATORY
ORDER SORTED

* subschema set type

SET NAME CONSISTS OF
OWNER WK GROuP
MEMBER EMPLOYEE

INSERTION MANUAL
RETENTION OPTIONAL
ORDER SORTED

* subschema set type

SET NAME MANAGES
OWNER EMPLOYEE
MEMBER WK GROUP

INSERTION AUTOMATIC
RETENTION OPTIONAL
ORDER NEXT

3 TIMES.

29-Dec-1989 14:03:45
29-Dec-1989 14:03:43

29-Dec-1989 14 :03 :45
29-Dec-1989 14: 03: 43

15-72 Database Programming with VAX COBOL

VAX COBOL V4. 3 Page 7
DEVICE: (COBOL.EXAMPLES)PARTSS1.COB;4 (1)

VAX COBOL V4. 3 Page
DEVICE: (COBOL.EXAMPLESJPARTSS1.COB;4 (1)

ZK-6430-2-GE

(continued on next page)

Figure 15-52 (Cont.): PARTSS1-PROGRAM Compiler Listing

: subschema set type

SET NAME PART INFO
OWNER PART
MEMBER PR QUOTE

INSERTION AUTOMATIC
RETENTION FIXED
ORDER NEXT

MEMBER SUPPLY
INSERTION AUTOMATIC
RETENTION FIXED
ORDER NEXT

* subschema set type

SET NAME PART USED ON
OWNER PART -
MEMBER COMPONENT

INSERTION AUTOMATIC
RETENTION FIXED
ORDER NEXT

PARTSSl-PROGRAM
Sub-schema Map

29-Dec-1989 14:03:45
29-Dec-1989 14:03:43

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLES]PARTSS1.COB;4 (1)

: subschema set type

SET NAME PART USES
OWNER PART
MEMBER COMPONENT

INSERTION AUTOMATIC
RETENTION FIXED
ORDER NEXT

subschema set type

SET NAME RESPONSIBLE FOR
OWNER EMPLOYEE -
MEMBER PART

INSERTION MANUAL
RETENTION OPTIONAL
ORDER NEXT

* subschema set type

SET NAME VENDOR SUPPLY
OWNER VENDOR
MEMBER SUPPLY

INSERTION AUTOMATIC
RETENTION FIXED
ORDER NEXT

PARTSSl-PROGRAM
Compilation Sununary
PROGRAM SECTIONS

29-Dec-1989 14:03:45
29-Dec-1989 14: 03: 43

VAX COBOL V4.3 Page 10
DEVICE: [COBOL.EXAMPLES]PARTSS1.COB;4 (1)

Name

0 $CODE
3 COB$NAMES 2
4 COB$NAMES--4
5 DBM$SSC B--
6 DBM$UWA=B

COMMAND QUALIFIERS

COBOL /LIST /MAP PARTSSl

Bytes

6
24
16
28

553

Attributes

PIC CON
PIC CON
PIC CON
PIC CON
PIC OVR

/NOCOPY LIST /NOMACHINE CODE /NOCROSS REFERENCE
/NOANSCFORMAT /NOSEQUENCE CHECK /MAP;;-ALPHABETICAL
/NOTRUNCATE /NOAUDIT /NOCONDITIONALS
/CHECK= (NOPERFORM, NOBOUNDS) /DEBUG= (NOSYMBOLS, TRACEBACK)
/WARNINGS= (NOSTANDARD, OTHER, NOINFORMATION)
/STANDARD= (NOSYNTAX, NOPDP 11, NOV3, 85) /NOFIPS
/LIST /OBJECT /NODIAGNOSTICS /NOFLAGGER

STATISTICS

Run Time:
Elapsed Time:
Page Faults:
Dynamic Memory:

1. 71 seconds
15.21 seconds
744
602 pages

REL LCL SHR EXE RD NOWRT Align (2)
REL LCL SHR NOEXE RD NOWRT Align (2)
REL LCL SHR NOEXE RD NOWRT Align (2)
REL GBL NOSHR NOEXE RD NOWRT Align (2)
REL GBL SHR NOEXE RD WRT Align (2)

ZK-6430-3-GE

15.29.2 PARTSS3 Subschema Map Listing

PARTSS3-PROGRAM in Figure 15-53 includes the VAX COBOL Subschema Map
of the PARTSS3 subschema.

Database Programming with VAX COBOL 15-73

Figure 15-53: PARTSS3-PROGRAM Compiler Listing

PARTSS3-PROGRAM
Source Listing

1 IDENTIF:::CATION DIVISION.
2 PROGRAM-ID. PARTSS3-PROGRAM.
3 DATA DIVISION.
4 SUB-SCHEMA SECTION.
5 DB PARTSS3 WITHIN PARTS.

PARTSS3-PROGRAM
Data Names in Alphabetic Order

Line Level Name

5 01 DB-CONDITION
5 01 DB-CURRENT-RECORD-ID
5 01 DB-CURRENT-RECORD-NAME
5 01 DB-KEY
5 01 DB-UWA
5 01 PART
5 02 PART DESC
5 02 PART-ID
5 02 PART-STATUS
5 02 PART-SUPPORT
5 02 SUP LAG TIME
5 02 SUP-RATING
5 02 SUP-TYPE
5 01 SUPPLY
5 02 VEND ADDRESS
5 02 VEND-CONTACT
5 02 VEND-ID
5 02 VENDl-W1E:
5 02 VEND-PHONE
5 01 VENDOR

PARTSS3-PROGRAM
Procedure Names in Alphabetic Order
Line Name

2 PARTSS3-PROGRAM

PARTSS3-PROGRAM
Eitternal References

DBM$_NOT_ BOUND

PARTSS3-PROGRAM.
Sub-schema Map •
* CDD$TOP .PARTS .DBM$SUBSCHEMAS. PARTSS3
* -

Location

00000000

* subschema •

Subschema version number: 14-DEC-1984 14:44:30.89.
* Schema version number: 14-DEC-1984 14:42:28.12.

* •
SUBSCHEMA NAME PARTSS3 FOR PARTS SCHEMA.

: subschema realm 8
REALM MARKETS.

BUY •
MAKE t
MARKET

* subschema record type.

: Within areas: MARKETS 8
: Owner of sets: PART_SUPPLY.

01 PART.
02 PART ID
02 PART-DESC
02 PART-STATUS
02 PART=SUPPORT

* subschema record type

PIC X(8).
PIC X(50).
PIC X.
PIC X(2).

: Within areas: MARKETS •
* Member of sets: PART SUPPLY
* VENDOR_ SUPPLY

01 SUPPLY. }
02 SUP RATINC' PIC X.
02 SUP-TYPE PIC X (4) • •
02 SUP=LAG_TIME PIC X(10).

subschema record type •

* Within areas: MARKETS
: Owner of sets: VENDOR_SUPPLY

01 VENDOR.
02 VEND ID
02 VEND-NAME
02 VEND-CONTACT
02 VEND-ADDRESS
02 VEND=PHONE

: subschema set type •

SET ~~p~lUPPL:•

PIC X(8).
PIC X(40).
PIC X(30).
PIC X(15) OCCURS 3 TIMES.
PIC 9 (10).

MEMBER SUPPLY.
INSERTION AUTOMATIC.
RETENTION FIXED.

29-Dec-1989 14: 07 :26
29-Dec-1989 14:07:17

29-Dec-1989 14:07:26
29-Dec-1989 14:07:17

Location Size

00000028 9
00000000 4
00000005 31
00000064 18
00000000 108
00000084 61
0000008C 50
00000084 8
OOOOOOBE 1
OOOOOOBF 2
OOOOOOC9 10
OOOOOOC4 1
OOOOOOC5 4
000000C4 15
00000122 15
00000104 30
OOOOOOD4 8
OOOOOODC 40
0000014F 10
OOOOOOD4 133

29-Dec-1989 14:07:26
29-Dec-1989 14:07:17
Type

Program

29-Dec-1989 14:07:26
29-Dec-1989 14:07:17

29-Dec-1989 14:07:26
29-Dec-1989 14:07:17

15-74 Database Programming with VAX COBOL

VAX COBOL V4.3 Page 1
DEVICE: [COBOL.EXAMPLES]PARTSS3.COB;2 (1)

VAX COBOL V4.3 Page 2
DEVICE: [COBOL.EXAMPLES)PARTSS3.COB;2 (1)

Bytes Usage Category Subs Attribute

4 COMP N Glo
2 COMP N Glo

31 DISPLAY AN Glo
8 COMP N Glo

108 DISPLAY AN Glo
61 DISPLAY Group Glo
50 DISPLAY AN Glo

8 DISPLAY AN Glo
1 DISPLAY AN Glo
2 DISPLAY AN Glo

10 DISPLAY AN Glo
1 DISPLAY AN Glo
4 DISPLAY AN Glo

15 DISPLAY Group Glo
15 DISPLAY AN Glo
30 DISPLAY AN Glo

8 DISPLAY AN Glo
40 DISPLAY AN Glo
10 DISPLAY N Glo

133 DISPLAY Group Glo

VAX COBOL V4. 3 Page 3
DEVICE: [COBOL.EXAMPLES)PARTSS3.COB;2 (1)

VAX COBOL V4. 3 Page 4
DEVICE: [COBOL.EXAMPLES]PARTSS3.COB;2 (1)

VAX COBOL V4. 3 Page 5
DEVICE: [COBOL.EXAMPLES]PARTSS3.COB;2 (1)

ZK-6435-GE

(continued on next page)

Figure 15-53 (Cont.): PARTSS3-PROGRAM Compiler Listing

PARTSS3-PROGRAM
Sub-schema Map A

ORDER NEXT W

29-Dec-1989 14:07:26 VAX COBOL V4.3 Page 6
29-Dec-1989 14:07:17 DEVICE: [COBOL.EXAMPLES)PARTSS3.COB;2 (1)

: subschema set type

SET NAME VENDOR SUPPLY
OWNER VENDOR
MEMBER SUPPLY

INSERTION AUTOMATIC
RETENTION FIXED
ORDER NEXT

PARTSS3-PROGRAM
Compilation Summary
PROGRAM SECTIONS

Name

0 $CODE
3 COB$NAMES 2
4 COB$NAMES--4
5 DBM$SSC B--
6 DBM$UWA=B

COMMAND QUALIFIERS

Bytes

6
24
16
28

345

29-Dec-1989 14:07:26 VAX COBOL V4.3 Page 7
29-Dec-1989 14:07:17 DEVICE: [COBOL.EXAMPLES)PARTSS3.COB;2 (1)

Attributes

PIC CON REL LCL SHR EXE RD NOWRT Align (2)
PIC CON REL LCL SHR NOEXE RD NOWRT Align (2)
PIC CON REL LCL SHR NOEXE RD NOWRT Align (2)
PIC CON REL GBL NOSHR NOEXE RD NOWRT Align (2)
PIC OVR REL GBL SHR NOEXE RD WRT Align (2)

COBOL /LIST /MAP PARTSS3

/NOCOPY LIST /NOMACHINE CODE /NOCROSS REFERENCE
/NOANSCFORMAT /NOSEQUENCE CHECK /MAP;;-ALPHABETICAL
/NOTRUNCATE /NOAUDIT /NOCONDITIONALS
/CHECK= (NOPERFORM, NOBOUNDS) /DEBUG= (NOSYMBOLS, TRACEBACK)
/WARNINGS= (NOSTANDARD, OTHER, NOINFORMATION)
/STANDARD= (NOSYNTAX, NOPDP 11, NOV3, 85) /NOFIP S
/LIST /OBJECT /NODIAGNOSTICS /NOFLAGGER

STATISTICS

Run Time:
Elapsed Time:
Page Faults:
Dynamic Memory:

O. 92 seconds
8 • 90 seconds
545
465 pages

ZK-6435-1-GE

15.30 Examples

This section provides programming examples of how to do the following:

• Populate a database

• Back up a database

• Access and display database information

• Create new record relationships

This chapter also provides an example of how to create a bill of materials and
sample runs of some of the programming examples.

15.30.1 Populating a Database

The DBMPARTLD program in Example 15-15 loads a series of sequential data
files into the PARTS database. The PARTS database consists of a NEW root
file with a default extension of .ROO describing the database instance and
a series of .DBS storage files containing the actual data records. PARTS is
the schema relative to the current position in CDD/Plus when the program is
compiled. As the DBCS inserts the records, it creates set relationships based on
the PARTSSl subschema definitions. In the DB statement PARTS and NEW can
be logical names. If PARTS is not a logical name, VAX. COBOL appends PARTS
to CDD$DEFAULT; for example, CDD$DEFAULT.PARTS. If NEW is not a logical
name, the DBCS appends .ROO as the default file type; for example, NEW.ROO.

Database Programming with VAX COBOL 15-75

Example 15-15: Populating a Database

IDENTIFICATION DIVISION.
PROGRAM-ID. DBMPARTLD.
**
*
* This program loads the PARTS database

*

*
*
*

**
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MAKE-FILE
ASSIGN TO "DBM$PARTS:DBMMAKE.DAT".

SELECT BUY-FILE
ASSIGN TO "DBM$PARTS:DBMBUY.DAT".

SELECT VENDOR-FILE
ASSIGN TO "DBM$PARTS:DBMVENDOR.DAT".

SELECT EMPLOYEE-FILE
ASSIGN TO "DBM$PARTS:DBMEMPLOY.DAT".

SELECT COMPONENT-FILE
ASSIGN TO "DBM$PARTS:DBMCOMPON.DAT".

SELECT SUPPLY-FILE
ASSIGN TO "DBM$PARTS:DBMSUPPLY.DAT".
SELECT DIVISION-FILE
ASSIGN TO "DBM$PARTS:DBMSUPER.DAT".

SELECT RESP-FOR-FILE
ASSIGN TO "DBM$PARTS:DBMRESPON.DAT".

DATA DIVISION.
SUB-SCHEMA SECTION.

DB PARTSSl WITHIN PARTS FOR NEW.
FILE SECTION.
FD MAKE-FILE

RECORD VARYING FROM 24 TO 80 CHARACTERS.
01 MAKE-PART-RECORD.

02 CONTROL-FIELD PIC x.
02 PART ID PIC X(8).
02 PART DESC PIC X(50).
02 PART STATUS PIC X(l).
02 PART PRICE PIC 9 (6) V9 (3) .
02 PART COST PIC 9 (6) V9 (3) .
02 PART SUPPORT PIC X(2).

01 MAKE-CLASS-RECORD.
02 CONTROL-FIELD PIC x.
02 CLASS CODE PIC xx.
02 CLASS DESC PIC X(20).
02 CLASS STATUS PIC x.

FD BUY-FILE
RECORD VARYING FROM 24 TO 80 CHARACTERS.

01 BUY-PART-RECORD.
02 CONTROL-FIELD PIC x.
02 PART ID PIC X(8).
02 PART DESC PIC X(50).
02 PART STATUS PIC X(l).
02 PART PRICE PIC 9 (6) V9 (3).
02 PART COST PIC 9(6)V9(3).
02 PART SUPPORT PIC X(2).

(continued on next page)

15-76 Database Programming with VAX COBOL

Example 15-15 (Cont.): Populating a Database

01

FD

01

FD

BUY-CLASS-RECORD.
02 CONTROL-FIELD
02 CLASS CODE
02 CLASS DESC
02 CLASS STATUS

COMPONENT-FILE
LABEL RECORDS ARE STANDARD.
COMPONENT-RECORD.

02 COMP SUB PART
02 COMP OWNER PART - -
02 COMP MEASURE
02 COMP_QUANTITY

VENDOR-FILE
LABEL RECORDS ARE STANDARD.

PIC X.
PIC XX.
PIC X(20).
PIC X.

PIC X(8).
PIC X(8).
PIC X.
PIC 9(5).

01 VENDOR-RECORD.
02 VEND ID PIC X(8).
02 VEND NAME PIC X(40).
02 VEND CONTACT PIC X(30).
02 VEND ADD OCCURS 3 TIMES

02 VEND PHONE
PIC X(l5).
PIC 9 (10).

FD SUPPLY-FILE
RECORD VARYING FROM 37 TO 64 CHARACTERS.

01 SUPPLY-RECORD.
02 CONTROL-FIELD PIC X.
02 PART-ID PIC X(8).
02 VEND-NAME PIC X(40).
02 SUP RATING PIC X.
02 SUP TYPE PIC X(4).
02 SUP LAG TIME PIC X(lO).

01 QUOTE-RECORD.
02 CONTROL-FIELD PIC X.
02 QUOTE_ID PIC X(7).
02 QUOTE_DATE PIC 9(6).
02 QUOTE_MIN_ORDER PIC X(5).
02 QUOTE_UNIT_PRIC PIC 9(6)V9(3).
02 QUOTE_QTY_PRICE PIC 9(6)V9(3).

FD EMPLOYEE-FILE

01

FD

01

01

LABEL RECORDS ARE STANDARD.
EMPLOYEE-RECORD.

02 EMP ID
02 EMP NAME.

03 EMP LAST NAME - -
03 EMP FIRST NAME - -02 EMP PHONE

02 EMP LOC
DIVISION-FILE

PIC 9(5).

PIC X (20) .
PIC X(lO).
PIC X(7).
PIC X(5).

RECORD VARYING FROM 6 TO 26 CHARACTERS.
MANAGES-RECORD.

02 CONTROL-FIELD
02 GROUP NAME
02 EMP ID

CONSISTS-RECORD.
02 CONTROL-FIELD
02 EMP ID

PIC X.
PIC X (20) .
PIC 9 (5) .

PIC X.
PIC 9(5).

FD RESP-FOR-FILE

01
LABEL RECORDS ARE STANDARD.
RESP-FOR-RECORD.

02 EMP ID
02 PART ID

PIC 9(5).
PIC X(8).

(continued on next page)

Database Programming with VAX COBOL 15-77

Example 15-15 (Cont.): Populating a Database

WORKING-STORAGE SECTION.

77 ITEM-USED PIC x (70).
77 STAT PIC 9(9} USAGE COMP.
77 DB-TEMP PIC 9 (9) USAGE IS COMP.
77 CLASS-COUNT PIC 999 VALUE IS
77 PART-COUNT
77 COMPONENT-COUNT
77 VENDOR-COUNT
77 SUPPLY-COUNT
77 QUOTE-COUNT
77 EMPLOYEE-COUNT
77 DIVISION-COUNT

PROCEDURE DIVISION.

DECLARATIVES.
100-DATABASE-EXCEPTIONS SECTION.

PIC
PIC
PIC
PIC
PIC
PIC
PIC

USE FOR DB-EXCEPTION ON OTHER.
100-PROCEDURE.

999 VALUE
999 VALUE
999 VALUE
999 VALUE
999 VALUE
999 VALUE
999 VALUE

DISPLAY "DATABASE EXCEPTION CONDITION".
PERFORM 150-DISPLAY-MESSAGE.

150-DISPLAY-MESSAGE.

*

IS
IS
IS
IS
IS
IS
IS

0.
0.
o.
0.
0.
0.
0.
0.

* DBM$SIGNAL displays diagnostic messages based on the
* status code in DB-CONDITION.

*
CALL "DBM$SIGNAL".
ROLLBACK.
STOP RUN.

END DECLARATIVES.

DB-PROCESSING SECTION.

INITIALIZATION-ROUT.
READY EXCLUSIVE UPDATE.

CONTROL-ROUT.
OPEN INPUT MAKE-FILE.
PERFORM MAKE-LOAD THRU MAKE-LOAD-END.
CLOSE MAKE-FILE.

* DISPLAY II II

* DISPLAY CLASS-COUNT, " CLASS records loaded from MAKE".
* DISPLAY PART-COUNT, " PART records loaded from MAKE".

*
*
*

*
*

OPEN INPUT BUY-FILE.
MOVE 0 TO CLASS-COUNT.
MOVE 0 TO PART-COUNT.
PERFORM BUY-LOAD THRU BUY-LOAD-END.
CLOSE BUY-FILE.

DISPLAY II II

DISPLAY CLASS-COUNT, " CLASS records loaded from BUY".
DISPLAY PART-COUNT, "PART records loaded from BUY".

OPEN INPUT VENDOR-FILE.
PERFORM VENDOR-LOAD THRU VENDOR-LOAD-END.
CLOSE VENDOR-FILE.

DISPLAY " "
DISPLAY VENDOR-COUNT, "VENDOR records loaded".

(continued on next page)

15-78 Database Programming with VAX COBOL

Example 15-15 (Cont.): Populating a Database

OPEN INPUT COMPONENT-FILE.
PERFORM COMPONENT-LOAD THRU COMPONENT-LOAD-END.
CLOSE COMPONENT-FILE.

* DISPLAY II ".

* DISPLAY COMPONENT-COUNT, " COMPONENT records loaded".

OPEN INPUT EMPLOYEE-FILE.
PERFORM EMPLOYEE-LOAD THRU EMPLOYEE-LOAD-END.
CLOSE EMPLOYEE-FILE.

* DISPLAY II ".

* DISPLAY EMPLOYEE-COUNT, " EMPLOYEE records loaded".

OPEN INPUT SUPPLY-FILE.
PERFORM SUPPLY-LOAD THRU SUPPLY-LOAD-END.
CLOSE SUPPLY-FILE.

* DISPLAY II It

* DISPLAY SUPPLY-COUNT, " SUPPLY records loaded".
* DISPLAY QUOTE-COUNT, "QUOTE records loaded".

OPEN INPUT DIVISION-FILE.
PERFORM DIVISION-LOAD THRU DIVISION-LOAD-END.
CLOSE DIVISION-FILE.

* DISPLAY " "·
* DISPLAY DIVISION-COUNT, " DIVISION records loaded".

OPEN INPUT RESP-FOR-FILE.
PERFORM RESP-FOR-LOAD THRU RESP-FOR-LOAD-END.
CLOSE RESP-FOR-FILE.

COMMIT.
STOP RUN.

MAKE-LOAD.
READ MAKE-FILE AT END GO TO MAKE-LOAD-END.
IF CONTROL-FIELD OF MAKE-PART-RECORD = "C"

MOVE CORR MAKE-CLASS-RECORD TO CATEGORY
STORE CATEGORY WITHIN MAKE
ADD 1 TO CLASS-COUNT

ELSE
MOVE CORR MAKE-PART-RECORD TO PART
STORE PART WITHIN MAKE
ADD 1 TO PART-COUNT.

GO TO MAKE-LOAD.

MAKE-LOAD-END.
EXIT.

BUY-LOAD.
READ BUY-FILE AT END GO TO BUY-LOAD-END.
IF CONTROL-FIELD OF BUY-PART-RECORD = "C"

MOVE CORR BUY-CLASS-RECORD TO CATEGORY
STORE CATEGORY WITHIN BUY
ADD 1 TO CLASS-COUNT

ELSE
MOVE CORR BUY-PART-RECORD TO PART
STORE PART WITHIN BUY
ADD 1 TO PART-COUNT.

GO TO BUY-LOAD.

BUY-LOAD-END.
EXIT.

(continued on next page)

Database Programming with VAX COBOL 15-79

Example 15-15 (Cont.): Populating a Database

VENDOR-LOAD.
READ VENDOR-FILE AT END GO TO VENDOR-LOAD-END.
MOVE VEND ID OF VENDOR-RECORD TO VEND ID OF VENDOR.
MOVE VEND NAME OF VENDOR-RECORD TO VEND NAME OF VENDOR.
MOVE VEND CONTACT OF VENDOR-RECORD TO VEND CONTACT OF VENDOR.
MOVE VEND_ADD (1) TO VEND_ADDRESS (1) .
MOVE VEND_ADD (2) TO VEND_ADDRESS (2) .
MOVE VEND_ADD (3) TO VEND_ADDRESS (3) .
MOVE VEND PHONE OF VENDOR-RECORD TO VEND PHONE OF VENDOR.
STORE VENDOR.
ADD 1 TO VENDOR-COUNT.
GO TO VENDOR-LOAD.

VENDOR-LOAD-END.
EXIT.

COMPONENT-LOAD.
READ COMPONENT-FILE AT END GO TO COMPONENT-LOAD-END.
IF COMP OWNER PART OF COMPONENT-RECORD - -

COMP OWNER PART OF COMPONENT - -
GO TO COMPONENT-SUB-LOAD.

MOVE COMP OWNER PART OF COMPONENT-RECORD TO PART ID OF PART.
FIND FIRST PART WITHIN ALL PARTS USING PART ID OF PART

AT END DISPLAY PART_ID OF PART,
"COMP OWNER PART does not exist for COMPONENT" - -
GO TO COMPONENT-LOAD.

COMPONENT-SUB-LOAD.
MOVE COMP SUB PART OF COMPONENT-RECORD TO PART ID OF PART.
FIND FIRST PART WITHIN ALL PARTS USING PART ID OF PART

RETAINING PART USES
AT END DISPLAY PART_ID OF PART,

"COMP SUB PART does not exist for COMPONENT"
GO TO COMPONENT-LOAD.

MOVE CORR COMPONENT-RECORD TO COMPONENT.
STORE COMPONENT.
ADD 1 TO COMPONENT-COUNT.
GO TO COMPONENT-LOAD.

COMPONENT-LOAD-END.
EXIT.

EMPLOYEE-LOAD.
READ EMPLOYEE-FILE AT END GO TO EMPLOYEE-LOAD-END.
MOVE CORR EMPLOYEE-RECORD TO EMPLOYEE.
STORE EMPLOYEE.
ADD 1 TO EMPLOYEE-COUNT.
GO TO EMPLOYEE-LOAD.

EMPLOYEE-LOAD-EXIT
EXIT.

15-80 Database Programming with VAX COBOL

(continued on next page)

Example 15-15 (Cont.): Populating a Database

SUPPLY-LOAD.
READ SUPPLY-FILE AT END GO TO SUPPLY-LOAD-END.

SUPPLY-LOAD-LOOP.
IF CONTROL-FIELD OF SUPPLY-RECORD = "S"

ELSE

MOVE PART-ID OF SUPPLY-RECORD TO PART ID OF PART
FIND FIRST PART WITHIN ALL PARTS USING PART ID OF PART

AT END
DISPLAY PART ID OF PART,

" PART-ID for SUPPLY does not exist"
MOVE II II TO CONTROL-FIELD.OF SUPPLY-RECORD
PERFORM BAD-SUPPLY THRU BAD-SUPPLY-END

UNTIL CONTROL-FIELD OF SUPPLY-RECORD "S"
GO TO SUPPLY-LOAD-LOOP

END-FIND
MOVE VEND-NAME OF SUPPLY-RECORD TO VEND NAME OF VENDOR
FIND FIRST VENDOR WITHIN ALL VENDORS USING VEND NAME OF VENDOR

AT END
DISPLAY VEND NAME OF VENDOR

"VEND-NAME for SUPPLY does not exist"
MOVE II II TO CONTROL-FIELD OF SUPPLY-RECORD
PERFORM BAD-SUPPLY THRU BAD-SUPPLY-END

UNTIL CONTROL-FIELD OF SUPPLY-RECORD "S"
GO TO SUPPLY-LOAD-LOOP

END-FIND
MOVE CORR SUPPLY-RECORD TO SUPPLY
STORE SUPPLY
ADD 1 TO SUPPLY-COUNT
GO TO SUPPLY-LOAD

MOVE CORR QUOTE-RECORD TO PR_QUOTE
STORE PR_QUOTE
ADD 1 TO QUOTE-COUNT
GO TO SUPPLY-LOAD.

BAD-SUPPLY.
READ SUPPLY-FILE AT END GO TO SUPPLY-LOAD-END.
IF CONTROL-FIELD OF SUPPLY-RECORD = "Q"

DISPLAY QUOTE_ID OF QUOTE-RECORD, "QUOTE_ID not stored".

BAD-SUPPLY-END.
EXIT.

SUPPLY-LOAD-END.
EXIT.

DIVIS ION-LOAD.
READ DIVISION-FILE AT END GO TO DIVISION-LOAD-END.

(continued on next page)

Database Programming with VAX COBOL 15-81

Example 15-15 (Cont.): Populating a Database

DIVISION-LOAD-LOOP.
IF CONTROL-FIELD OF MANAGES-RECORD = "M"

ELSE

MOVE EMP ID OF MANAGES-RECORD TO EMP ID OF EMPLOYEE - -
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES

USING EMP ID OF EMPLOYEE
AT END DISPLAY EMP_ID OF EMPLOYEE,

" EMP ID for MANAGES does not exist"
MOVE " " TO CONTROL-FIELD OF MANAGES-RECORD
PERFORM BAD-DIVISION THRU BAD-DIVISION-END UNTIL
CONTROL-FIELD OF MANAGES-RECORD = "M"
GO TO DIVISION-LOAD-LOOP

END-FIND
MOVE CORR MANAGES-RECORD TO WK GROUP
STORE WK GROUP
ADD 1 TO DIVISION-COUNT
GO TO DIVISION-LOAD

MOVE EMP ID OF CONSISTS-RECORD TO EMP ID OF EMPLOYEE
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES USING

EMP ID OF EMPLOYEE
AT END DISPLAY EMP ID OF CONSISTS-RECORD,

" EMP_ID for CONSISTS_OF does not exist"
GO TO DIVISION-LOAD

END-FIND
CONNECT EMPLOYEE TO CONSISTS OF
GO TO DIVISION-LOAD.

BAD-DIVISION.
READ DIVISION-FILE AT END GO TO DIVISION-LOAD-END.
IF CONTROL-FIELD OF MANAGES-RECORD = "C"

DISPLAY EMP ID OF CONSISTS-RECORD, " EMP ID not connected".

BAD-DIVISION-END.
EXIT.

DIVISION-LOAD-END.
EXIT.

RESP-FOR-LOAD.
READ RESP-FOR-FILE AT END GO TO RESP-FOR-LOAD-END.

RESP-FOR-LOAD-LOOP.
MOVE EMP ID OF RESP-FOR-RECORD TO EMP ID OF EMPLOYEE.
FETCH FIRST EMPLOYEE WITHIN ALL EMPLOYEES

USING EMP ID OF EMPLOYEE
AT END

DISPLAY EMP_ID OF RESP-FOR-RECORD,
" EMP_ID for RESPONSIBLE_FOR does not exist"
GO TO RESP-FOR-LOAD.

(continued on next page)

15-82 Database Programming with VAX COBOL

Example 15-15 (Cont.): Populating a Database

RESP-PART-LOOP.
MOVE PART ID OF RESP-FOR-RECORD TO PART ID OF PART. - -
FIND FIRST PART WITHIN ALL PARTS USING PART ID OF PART - -

AT END
DISPLAY PART_ID OF RESP-FOR-RECORD,
" PART ID for RESPONSIBLE FOR does not exist" - -
GO TO RESP-FOR-LOAD.

CONNECT PART TO RESPONSIBLE FOR.
READ RESP-FOR-FILE AT END GO TO RESP-FOR-LOAD-END.
IF EMP ID OF RESP-FOR-RECORD EMP ID OF EMPLOYEE

GO TO RESP-PART-LOOP
ELSE

GO TO RESP-FOR-LOAD-LOOP.
RESP-FOR-LOAD-END.

EXIT.

15.30.2 Backing Up a Database

The PARTSBACK program in Example 15-16 unloads all PARTS database
records, independently of their pointers, into a series of sequential data files. It
is the first step in restructuring and reorganizing a database. For example, after
backing up the database, you can change its contents. You can also create a new
version of the database including different keys or new set relationships.

The PARTS database consists of a NEW root file with a default extension of .ROO
describing the database instance and a series of .DBS storage files containing
the actual data records. PARTS is the schema relative to the current position
in CDD/Plus when the program is compiled. In the DB statement, PARTS and
NEW can be logical names. If PARTS is not a logical name, VAX COBOL appends
PARTS to CDD$DEFAULT; for example, CDD$DEFAULT.PARTS. If NEW is not
a logical name, the DBCS appends .ROO as the default file type; for example,
NEW.ROO.

Example 15-16: Backing Up a Database

IDENTIFICATION DIVISION.
PROGRAM-ID. PARTSBACK.

*
*
*

This program unloads the PARTS database

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.

(continued on next page)

Database Programming with VAX COBOL 15-83

Example 15-16 (Cont.): Backing Up a Database

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT MAKE-FILE

ASSIGN TO "DBM$PARTS:DBMMAKE.DAT".
SELECT BUY-FILE

ASSIGN TO "DBM$PARTS:DBMBUY.DAT".
SELECT VENDOR-FILE

ASSIGN TO "DBM$PARTS:DBMVENDOR.DAT".
SELECT EMPLOYEE-FILE

ASSIGN TO "DBM$PARTS:DBMEMPLOY.DAT".
SELECT COMPONENT-FILE

ASSIGN TO "DBM$PARTS:DBMCOMPON.DAT".
SET~CT SUPPLY-FILE

ASSIGN TO "DBM$PARTS:DBMSUPPLY.DAT".
SELECT DIVISION-FILE

ASSIGN TO "DBM$PARTS:DBMSUPER.DAT".
SELECT RESP-FOR-FILE

ASSIGN TO "DBM$PARTS:DBMRESPON.DAT".

DATA DIVISION.

SUB-SCHEMA SECTION.
DB PARTSSl WITHIN PARTS FOR NEW.

FILE SECTION.

FD MAKE-FILE
RECORD VARYING FROM 24 TO 80 CHARACTERS.

01 MAKE-PART-RECORD.
02 CONTROL-FIELD PIC x.
02 PART ID PIC X(8).
02 PART DESC PIC x (50).
02 PART STATUS PIC X(l).
02 PART PRICE PIC 9 (6)V9 (3).
02 PART COST PIC 9 (6) V9 (3).
02 PART SUPPORT PIC X(2).

01 MAKE-CLASS-RECORD.
02 CONTROL-FIELD PIC x.
02 CLASS CODE PIC xx.
02 CLASS DESC PIC X(20).
02 CLASS STATUS PIC x.

FD BUY-FILE
RECORD VARYING FROM 24 TO 80 CHARACTERS.

01 BUY-PART-RECORD.
02 CONTROL-FIELD PIC x.
02 PART ID PIC X(8).
02 PART DESC PIC x (50).
02 PART STATUS PIC X(l).
02 PART PRICE PIC 9 (6)V9 (3).
02 PART COST PIC 9 (6) V9 (3) •
02 PART SUPPORT PIC X(2).

01 BUY-CLASS-RECORD.
02 CONTROL-FIELD PIC x.
02 CLASS CODE PIC xx.
02 CLASS DESC PIC X(20).
02 CLASS STATUS PIC x.

(continued on next page)

15-84 Database Programming with VAX COBOL

Example 15-16 (Cont.): Backing Up a Database

FD COMPONENT-FILE
LABEL RECORDS ARE STANDARD.

01 COMPONENT-RECORD.
02 COMP SUB PART PIC x (8).
02 COMP OWNER PART PIC X(8}. - -
02 COMP MEASURE PIC x.
02 COMP_QUANTITY PIC 9 (5).

FD VENDOR-FILE
LABEL RECORDS ARE STANDARD.

01 VENDOR-RECORD.
02 VEND ID PIC X(8}.
02 VEND NAME PIC X(40}.
02 VEND CONTACT PIC x (30).
02 VEND ADDRESS OCCURS 3 TIMES PIC X(15}.
02 VEND PHONE PIC 9 (10).

FD SUPPLY-FILE
RECORD VARYING FROM 37 TO 64 CHARACTERS.

01 SUPPLY-RECORD.
02 CONTROL-FIELD PIC x.
02 PART-ID PIC X(8}.
02 VEND-NAME PIC X(40}.
02 SUP RATING PIC x.
02 SUP TYPE PIC X(4}.
02 SUP LAG TIME PIC X(lO}.

01 QUOTE-RECORD.
02 CONTROL-FIELD PIC x.
02 QUOTE_ID PIC x (7) .
02 QUOTE_DATE PIC 9 (6).
02 QUOTE_MIN_ORDER PIC x (5).
02 QUOTE_UNIT_PRIC PIC 9 (6) V9 (3) .
02 QUOTE_QTY_PRICE PIC 9 (6}V9 (3).

FD EMPLOYEE-FILE
LABEL RECORDS ARE STANDARD.

01 EMPLOYEE-RECORD.
02 EMP ID PIC 9 (5).
02 EMP NAME.

03 EMP LAST NAME PIC X(20).
03 EMP FIRST NAME PIC X(lO}.

02 EMP PHONE PIC X(7).
02 EMP LOC PIC X(5}.

FD DIVISION-FILE
RECORD VARYING FROM 6 TO 26 CHARACTERS.

01 MANAGES-RECORD.
02 CONTROL-FIELD PIC x.
02 GROUP NAME PIC X(20}.
02 EMP ID PIC 9 (5).

01 CONSISTS-RECORD.
02 CONTROL-FIELD PIC x.
02 EMP ID PIC 9 (5).

FD RESP-FOR-FILE
LABEL RECORDS ARE STANDARD.

01 RESP-FOR-RECORD.
02 EMP ID PIC 9 (5).
02 PART ID PIC X(8).

(continued on next page)

Database Programming with VAX COBOL 15-85

Example 15-16 (Cont.): Backing Up a Database

WORKING-STORAGE SECTION.

77 CLASS-COUNT
77 PART-COUNT
77 COMPONENT-COUNT
77 VENDOR-COUNT
77 SUPPLY-COUNT
77 QUOTE-COUNT
77 EMPLOYEE-COUNT

PROCEDURE DIVISION.

DECLARATIVES.
100-DATABASE-EXCEPTIONS SECTION.

PIC
PIC
PIC
PIC
PIC
PIC
PIC

USE FOR DB-EXCEPTION ON OTHER.
100-PROCEDURE.

999 VALUE
999 VALUE
999 VALUE
999 VALUE
999 VALUE
999 VALUE
999 VALUE

DISPLAY "DATABASE EXCEPTION CONDITION".
PERFORM 150-DISPLAY-MESSAGE.

150-DISPLAY-MESSAGE.

*

IS 0.
IS 0.
IS o.
IS 0.
IS 0.
IS 0.
IS 0.

* DBM$SIGNAL displays diagnostic messages based on the
* status code in DB-CONDITION.

*
CALL "DBM$SIGNAL".
ROLLBACK.
STOP RUN.

END DECLARATIVES.

DB-PROCESSING SECTION.

INITIALIZATION-ROUT.
READY PROTECTED.

CONTROL-ROUT.
OPEN OUTPUT COMPONENT-FILE, SUPPLY-FILE.
OPEN OUTPUT MAKE-FILE.
PERFORM MAKE-UNLOAD THRU MAKE-UNLOAD-END.
CLOSE MAKE-FILE.
DISPLAY II II

DISPLAY CLASS-COUNT, " CLASS records unloaded from MAKE".
DISPLAY PART-COUNT, " PART records unloaded from MAKE".

OPEN OUTPUT BUY-FILE.
MOVE 0 TO CLASS-COUNT.
MOVE 0 TO PART-COUNT.
PERFORM BUY-UNLOAD THRU BUY-UNLOAD-END.
CLOSE BUY-FILE, COMPONENT-FILE, SUPPLY-FILE.
DISPLAY II II

DISPLAY CLASS-COUNT, " CLASS records unloaded from BUY".
DISPLAY PART-COUNT, "PART records unloaded from BUY".
DISPLAY
DISPLAY SUPPLY-COUNT, " SUPPLY records unloaded".
DISPLAY QUOTE~COUNT, " QUOTE records unloaded".
DISPLAY COMPONENT-COUNT " COMPONENT records unloaded".

OPEN OUTPUT VENDOR-FILE.
PERFORM VENDOR-UNLOAD THRU VENDOR-UNLOAD-END.
CLOSE VENDOR-FILE.
DISPLAY II II

DISPLAY VENDOR-COUNT, "VENDOR records unloaded".

(continued on next page)

15-86 Database Programming with VAX COBOL

Example 15-16 (Cont.): Backing Up a Database

OPEN OUTPUT EMPLOYEE-FILE, RESP-FOR-FILE, DIVISION-FILE.
PERFORM EMPLOYEE-UNLOAD THRU EMPLOYEE-UNLOAD-END.
CLOSE EMPLOYEE-FILE, RESP-FOR-FILE, DIVISION-FILE.
DISPLAY II II

DISPLAY EMPLOYEE-COUNT, " EMPLOYEE records unloaded".

COMMIT.
STOP RUN.

MAKE-UNLOAD.
FETCH NEXT CATEGORY WITHIN MAKE

AT END GO TO MAKE-UNLOAD-END.
MOVE "C" TO CONTROL-FIELD OF MAKE-CLASS-RECORD.
MOVE CORR CATEGORY TO MAKE-CLASS-RECORD.
ADD 1 TO CLASS-COUNT.
WRITE MAKE-CLASS-RECORD.

MAKE-PART-LOOP.
FETCH NEXT PART WITHIN CLASS PART RETAINING REALM

AT END GO TO MAKE-UNLOAD.
MOVE "P" TO CONTROL-FIELD OF MAKE-PART-RECORD.
MOVE CORR PART TO MAKE-PART-RECORD.
ADD 1 TO PART-COUNT.
WRITE MAKE-PART-RECORD.
PERFORM COMPONENT-SUPPLY-UNLOAD THRU

COMPONENT-SUPPLY-UNLOAD-END.
GO TO MAKE-PART-LOOP.

MAKE-UNLOAD-END.
EXIT.

BUY-UNLOAD.
FETCH NEXT CATEGORY WITHIN BUY

AT END GO TO BUY-UNLOAD-END.
MOVE "C" TO CONTROL-FIELD OF BUY-CLASS-RECORD.
MOVE CORR CATEGORY TO BUY-CLASS-RECORD.
ADD 1 TO CLASS-COUNT.
WRITE BUY-CLASS-RECORD.

BUY-PART-LOOP.
FETCH NEXT PART WITHIN CLASS PART RETAINING REALM

AT END GO TO BUY-UNLOAD.
MOVE "P" TO CONTROL-FIELD OF BUY-PART-RECORD.
MOVE CORR PART TO BUY-PART-RECORD.
ADD 1 TO PART-COUNT.
WRITE BUY-PART-RECORD.
PERFORM COMPONENT-SUPPLY-UNLOAD THRU

COMPONENT-SUPPLY-UNLOAD-END.
GO TO BUY-PART-LOOP.

BUY-UNLOAD-END.
EXIT.

COMPONENT-SUPPLY-UNLOAD.

COMPONENT-UNLOAD.
FETCH NEXT COMPONENT WITHIN PART USES RETAINING REALM

AT END GO TO SUPPLY-QUOTE-LOOP.
MOVE CORR COMPONENT TO COMPONENT-RECORD.
ADD 1 TO COMPONENT-COUNT.
WRITE COMPONENT-RECORD.
GO TO COMPONENT-UNLOAD.

(continued on next page)

Database Programming with VAX COBOL 15-87

Example 15-16 (Cont.): Backing Up a Database

SUPPLY-QUOTE-LOOP.
FETCH NEXT WITHIN PART INFO RETAINING REALM

AT END GO TO COMPONENT-SUPPLY-UNLOAD-END.
IF DB-CURRENT-RECORD-NAME = "PR_QUOTE" THEN

MOVE CORR PR_QUOTE TO QUOTE-RECORD
MOVE "Q" TO CONTROL-FIELD OF QUOTE-RECORD
ADD 1 TO QUOTE-COUNT
WRITE QUOTE-RECORD
GO TO SUPPLY-QUOTE-LOOP

ELSE
MOVE CORR SUPPLY TO SUPPLY-RECORD
FETCH OWNER WITHIN VENDOR SUPPLY
MOVE "S" TO CONTROL-FIELD OF SUPPLY-RECORD
MOVE VEND NAME OF VENDOR TO VEND-NAME OF SUPPLY-RECORD
MOVE PART ID OF PART TO PART-ID OF SUPPLY-RECORD
ADD 1 TO SUPPLY-COUNT
WRITE SUPPLY-RECORD
GO TO SUPPLY-QUOTE-LOOP.

COMPONENT-SUPPLY-UNLOAD-END.
EXIT.

VENDOR-UNLOAD.
FREE CURRENT WITHIN MARKET.

VENDOR-UNLOAD-LOOP.
FETCH NEXT VENDOR WITHIN MARKET

AT END GO TO VENDOR-UNLOAD-END.
ADD 1 TO VENDOR-COUNT.
MOVE VEND ID OF VENDOR TO VEND ID OF VENDOR-RECORD.

- -
MOVE VEND NAME OF VENDOR TO VEND NAME OF VENDOR-RECORD.
MOVE VEND CONTACT OF VENDOR TO VEND CONTACT OF VENDOR-RECORD.
MOVE VEND ADDRESS OF VENDOR (1) TO

VEND ADDRESS OF VENDOR-RECORD (1) .
MOVE VEND ADDRESS OF VENDOR (2) TO

VEND ADDRESS OF VENDOR-RECORD (2) .
MOVE VEND ADDRESS OF VENDOR (3) TO

VEND ADDRESS OF VENDOR-RECORD (3) .
MOVE VEND PHONE OF VENDOR TO VEND PHONE OF VENDOR-RECORD.
WRITE VENDOR-RECORD.
GO TO VENDOR-UNLOAD-LOOP.

VENDOR-UNLOAD-END.
EXIT.

EMPLOYEE-UNLOAD.
FETCH NEXT EMPLOYEE WITHIN ALL EMPLOYEES

AT END GO TO EMPLOYEE-UNLOAD-END.
MOVE CORR EMPLOYEE TO EMPLOYEE-RECORD.
ADD 1 TO EMPLOYEE-COUNT.
WRITE EMPLOYEE-RECORD.

DIVISION-UNLOAD.
FETCH NEXT WITHIN MANAGES

AT END GO TO RESP-UNLOAD.
MOVE EMP_ID OF EMPLOYEE TO EMP ID OF MANAGES-RECORD.
MOVE GROUP_NAME OF WK_GROUP TO GROUP_NAME OF MANAGES-RECORD.
MOVE "M" TO CONTROL-FIELD OF MANAGES-RECORD.
WRITE MANAGES-RECORD.

(continued on next page)

15-88 Database Programming with VAX COBOL

Example 15-16 (Cont.): Backing Up a Database

CONSISTS-UNLOAD.
FETCH NEXT WITHIN CONSISTS OF RETAINING MANAGES ALL EMPLOYEES

AT END GO TO DIVISION-UNLOAD.
MOVE "C" TO CONTROL-FIELD OF CONSISTS-RECORD.
MOVE EMP ID OF EMPLOYEE TO EMP ID OF CONSISTS-RECORD.
WRITE CONSISTS-RECORD.
GO TO CONSISTS-UNLOAD.

RESP-UNLOAD.
FETCH CURRENT WITHIN ALL EMPLOYEES.

RESP-UNLOAD-LOOP.
FETCH NEXT WITHIN RESPONSIBLE FOR

AT END GO TO EMPLOYEE-UNLOAD.
MOVE PART ID OF PART TO PART ID OF RESP-FOR-RECORD.
MOVE EMP ID OF EMPLOYEE TO EMP ID OF RESP-FOR-RECORD.
WRITE RESP-FOR-RECORD.
GO TO RESP-UNLOAD-LOOP.

EMPLOYEE-UNLOAD-END.
EXIT.

15.30.3 Accessing and Displaying Database Information

The PARTBOM program in Example 15-17 produces a report of subcomponents
(bill of materials) for a part in the PARTS database. Refer to Figure 15-24 for an
explanation of the report and Section 15.30.6 for a sample listing.

Example 15-17: Accessing and Displaying Database Information

IDENTIFICATION DIVISION.
PROGRAM-ID. PARTBOM.
AUTHOR. ME.
INSTALLATION. HERE.
DATE-WRITTEN. TODAY.
SECURITY. NONE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX.
OBJECT-COMPUTER. VAX.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB PARTSSl WITHIN PARTS FOR NEW.
LD KEEP-COMPONENT.

WORKING-STORAGE SECTION.

01

01
01

INPUT-REC

INDENT-LEVEL
END-OF-COLLECTION
88 END-COLLECTION

01 INDENT-TREE.

PIC X (80).

PIC 9(02) VALUE 40.
PIC 9(01) VALUE 0.

VALUE 1.

02 INDENT-TREE-ARRAY PIC X(03) OCCURS 1 TO 40 TIMES
DEPENDING ON INDENT-LEVEL.

(continued on next page)

Database Programming with VAX COBOL 15-89

Example 15-17 (Cont.): Accessing and Displaying Database Information

PROCEDURE DIVISION.

INITIALIZATION.
READY
MOVE

MAKE, BUY EXCLUSIVE RETRIEVAL.
ALL "I "TO INDENT-TREE.

SOLICIT-INPUT.
MOVE ZERO TO END-OF-COLLECTION.
DISPLAY
DISPLAY "Enter PART ID> " WITH NO ADVANCING.
MOVE SPACES TO INPUT-REC.
ACCEPT PART ID

AT END GO TO PARTBOM-DONE.
FETCH FIRST PART WITHIN ALL PARTS USING PART ID

AT END DISPLAY "*** Part number ",

PART_ID, " not found.
GO TO SOLICIT-INPUT.

DISPLAY
DISPLAY
DISPLAY "+-----------------------------------+".
DISPLAY "I Parts Bill of Materials Explosion I".
DISPLAY "I (COBOL Version) I".
DISPLAY "I Part-id: " PART ID " I".
DISPLAY "+-----------------------------------+".
DISPLAY
DISPLAY " "
DISPLAY
DISPLAY PART_ID, " - ", PART_DESC
MOVE ZERO TO INDENT-LEVEL.
FREE ALL FROM KEEP-COMPONENT.
PERFORM PARTBOM-LOOP THRU PARTBOM-LOOP-EXIT

UNTIL END-COLLECTION.
GO TO SOLICIT-INPUT.

PARTBOM-DONE.
COMMIT.
DISPLAY " "
DISPLAY "END COBOL PARTBOM.".
STOP RUN.

PARTBOM-LOOP.
FIND NEXT COMPONENT WITHIN PART USES

***"

AT END PERFORM POP-COMPONENT THRU POP-COMPONENT-EXIT
GO TO PARTBOM-LOOP-EXIT.

KEEP CURRENT USING KEEP-COMPONENT.
ADD 1 TO INDENT-LEVEL.
FIND OWNER PART USED ON. - -
GET PART_ID, PART_DESC.
DISPLAY INDENT-TREE, PART_ID, " - ", PART DESC.

PARTBOM-LOOP-EXIT.
EXIT.

(continued on next page)

15-90 Database Programming with VAX COBOL

Example 15-17 (Cont.): Accessing and Displaying Database Information

POP-COMPONENT.
FIND LAST WITHIN KEEP-COMPONENT

AT END MOVE 1 TO END-OF-COLLECTION
GO TO POP-COMPONENT-EXIT.

FREE LAST WITHIN KEEP-COMPONENT.
SUBTRACT 1 FROM INDENT-LEVEL.

POP-COMPONENT-EXIT.
EXIT.

15.30.4 PARTBOM Sample Run

Example 15-18 displays a sample run of the PARTBOM program in
Example 15-17.

Example 15-18: Sample Run of the PARTBOM Program

Enter PARTID> BT163456

+-----------------------------------+
I Parts Bill of Materials Explosion I
I (COBOL Version) I
I Part-id: BT163456 I
+-----------------------------------+

BT163456 - VTlOO
BU355678 - VTlOO NON REFLECTIVE SCREEN
BU345670 - TERMINAL TABLE VTlOO
I AZ345678 - 3/4 INCH SCREWS
I AZ167890 - 1/2 INCH SCREWS
I AZ517890 - 1/4 INCH BOLTS
I AZ012345 - 3 INCH NAILS
I AS234567 - 1/4 INCH TACKS
I AS901234 - 3/8 INCH SCREWS
I AS456789 - 4/5 INCH CLAMP
I AS560890 - 1 INCH CLAMP
BU456789 - PLASTIC KEY ALPHA.
BU345438 - PLASTIC KEY NUM.
BU234567 - VIDEO TUBE
I AZ345678 - 3/4 INCH SCREWS
I AZ789012 - 3/8 INCH BOLTS
I AS234567 - 1/4 INCH TACKS
I AS560890 - 1 INCH CLAMP

BU890123 - VTlOO HOUSING
BU876778 - VTlOO SCREEN
AZ345678 - 3/4 INCH SCREWS
AZ567890 - 1/4 INCH SCREWS
AZ789012 - 3/8 INCH BOLTS
AS901234 - 3/8 INCH SCREWS
AS890123 - 3/4 INCH ELECTRICAL TAPE

nter PARTID> lctrVzl

END COBOL PARTBOM.

Database Programming with VAX COBOL 15-91

15.30.5 Creating Relationships Between Records of the Same Type

The STOOL program in Example 15-19 illustrates how to create a relationship
between records of the same type. It loads and connects the parts example
discussed in Section 15.18.2.2 and produces a parts breakdown report illustrating
the relationships. Section 15.30.6 contains the sample report.

Example 15-19: Creating Relationships Between Records of the Same Type

IDENTIFICATION DIVISION.
PROGRAM-ID. STOOL.
DATA DIVISION.
SUB-SCHEMA SECTION.
DB PARTSSl WITHIN PARTS FOR "NEW.ROO".
LD KEEP-COMPONENT.
WORKING-STORAGE SECTION.
01 DB-ERROR-CHECK PIC 9.

88 DB-ERROR VALUE 1.
88 DB-OK VALUE 0.

01 DB-CO ND PIC 9 (9).
01 DB-ID PIC 9 (4).

PROCEDURE DIVISION.
AOOO-BEGIN.

READY USAGE-MODE IS CONCURRENT UPDATE.
MOVE 0 TO DB-ERROR-CHECK.
PERFORM BOOO-STORE-PARTS THROUGH

B300-BUILD-AND-STORE-STOOL-LEG.
IF DB-OK PERFORM COOO-STORE-COMPONENTS

THRU 800-VERIFY-ROUTINE.

AlOO-EOJ.
* IF DB-ERROR

ROLLBACK ON ERROR DISPLAY "Error on ROLLBACK"
PERFORM 900-DISPLAY-DB-CONDITION
END-ROLLBACK

DISPLAY "End of Job".
STOP RUN.

BOOO-STORE-PARTS.
FIND FIRST PART ON ERROR

DISPLAY "Positioning to first part is unsuccessful"
PERFORM 900-DISPLAY-DB-CONDITION
MOVE 1 TO DB-ERROR-CHECK.

BlOO-BUILD-AND-STORE-STOOL.
MOVE "SAMPl" TO PART ID.
MOVE "STOOL" TO PART DESC.
MOVE "G" TO PART STATUS.
MOVE 11 TO PART PRICE.
MOVE 6 TO PART COST.
MOVE SPACES TO PART SUPPORT.
IF DB-OK STORE PART ON ERROR

DISPLAY "BlOO Error in storing STOOL"
PERFORM 900-DISPLAY-DB-CONDITION
MOVE 1 TO DB-ERROR-CHECK.

15-92 Database Programming with VAX COBOL

(continued on next page)

Example 15-19 (Cont.): Creating Relationships Between Records of the Same
Type

B200-BUILD-AND-STORE-STOOL-SEAT.
MOVE "SAMP2" TO PART ID.
MOVE "STOOL SEAT" TO PART DESC.
MOVE "G" TO PART STATUS.
MOVE 3 TO PART PRICE.
MOVE 2 TO PART COST.
MOVE SPACES TO PART SUPPORT.
IF DB-OK STORE PART ON ERROR

DISPLAY "B200 Error in storing STOOL SEAT"
PERFORM 900-DISPLAY-DB-CONDITION
MOVE 1 TO DB-ERROR-CHECK.

B300-BUILD-AND-STORE-STOOL-LEG.
MOVE "SAMP3" TO PART ID.
MOVE "STOOL LEGS" TO PART DESC.
MOVE "G" TO PART STATUS.
MOVE 2 TO PART PRICE.
MOVE 1 TO PART COST.
MOVE SPACES TO PART SUPPORT.
IF DB-OK STORE PART ON ERROR

DISPLAY "B300 Error in storing STOOL LEGS"
PERFORM 900-DISPLAY-DB-CONDITION
MOVE 1 TO DB-ERROR-CHECK.

COOO-STORE-COMPONENTS.
MOVE "STOOL" TO PART DESC.

ClOO-FIND-STOOL.
FIND FIRST PART USING PART DESC ON ERROR

DISPLAY "COOO Error in finding STOOL"
PERFORM 900-DISPLAY-DB-CONDITION
MOVE 1 TO DB-ERROR-CHECK.

MOVE "STOOL SEAT" TO PART DESC.

C200-FIND-STOOL-SEAT.
IF DB-OK

FIND FIRST PART USING PART DESC RETAINING PART USES - -
ON ERROR

DISPLAY "COOO Error in finding STOOL SEAT"
PERFORM 900-DISPLAY-DB-CONDITION
MOVE 1 TO DB-ERROR-CHECK.

C300-CONNECT-COMPONENT-1.
MOVE "SAMP2" TO COMP SUB PART.
MOVE "SAMPl" TO COMP OWNER PART. - -
MOVE "U" TO COMP MEASURE.
MOVE 1 TO COMP_QUANTITY.
IF DB-OK

STORE COMPONENT RETAINING PART USES
ON ERROR

DISPLAY "COOO Error in storing first component"
PERFORM 900-DISPLAY-DB-CONDITION
MOVE 1 TO DB-ERROR-CHECK.

C400-FIND-STOOL-LEGS.
MOVE "STOOL LEGS" TO PART DESC.
IF DB-OK

FIND FIRST PART USING PART DESC RETAINING PART USES
ON ERROR

DISPLAY "COOO Error in finding STOOL LEGS"
PERFORM 900-DISPLAY-DB-CONDITION
MOVE 1 TO DB-ERROR-CHECK.

(continued on next page)

Database Programming with VAX COBOL 15-93

Example 15-19 (Cont.): Creating Relationships Between Records of the Same
Type

CSOO-CONNECT-COMPONENT-4.
MOVE "SAMP3" TO COMP_SUB_PART.
MOVE ''SAMPl" TO COMP OWNER PART. - -
MOVE "U" TO COMP MEASURE.
MOVE 4 TO COMP_QUANTITY.
IF DB-OK

STORE COMPONENT
ON ERROR

DISPLAY "COOO Error in storing second component"
PERFORM 900-DISPLAY-DB-CONDITION
MOVE 1 TO DB-ERROR-CHECK.

800-VERIFY-ROUTINE.
CALL "PARTBOM".

900-DISPLAY-DB-CONDITION.
MOVE DB-CONDITION TO DB-COND.
MOVE DB-CURRENT-RECORD-ID TO DB-ID.
DISPLAY "DB-CONDITION ", DB-COND.
DISPLAY "DB-CURRENT-RECORD-NAME - ",

DB-CURRENT-RECORD-NAME.
DISPLAY "DB-CURRENT-RECORD-ID
CALL "DBM$SIGNAL".

IDENTIFICATION DIVISION.
PROGRAM-ID. PARTBOM.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

- ", DB-ID.

SELECT INPUT-FILE ASSIGN TO "SYS$COMMAND".

DATA DIVISION.
SUB-SCHEMA SECTION.
* DB PARTSSl WITHIN PARTS FOR "NEW.ROO".

FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE STANDARD
DATA RECORD IS INPUT-REC.

01 INPUT-REC PIC X(80).

WORKING-STORAGE SECTION.
01 INDENT-LEVEL
01 DBM$_END

PIC 9(02) VALUE 40.
PIC 9(09) COMP

01 END-OF-COLLECTION
88 END-COLLECTION

01 INDENT-TREE.

VALUE EXTERNAL DBM$_END.
PIC 9(01) VALUE 0.

VALUE 1.

02 INDENT-TREE-ARRAY PIC X(03)

PROCEDURE DIVISION.

INITIALIZATION.
OPEN INPUT INPUT-FILE.

OCCURS 1 TO 40 TIMES
DEPENDING ON INDENT-LEVEL.

MOVE ALL "I "TO INDENT-TREE.

(continued on next page)

15-94 Database Programming with VAX COBOL

Example 15-19 (Cont.): Creating Relationships Between Records of the Same
Type

SOLICIT-INPUT.
MOVE ZERO TO END-OF-COLLECTION.
DISPLAY " ".
DISPLAY "Enter PART ID> " WITH NO ADVANCING.
MOVE SPACES TO INPUT-REC.
READ INPUT-FILE INTO PART ID

AT END GO TO PARTBOM-DONE.
FETCH FIRST PART WITHIN ALL PARTS USING PART ID

AT END DISPLAY "*** Part number ",
PART_ID, " not found.

DISPLAY
DISPLAY
DISPLAY

GO TO SOLICIT-INPUT.

" "

DISPLAY "+-----------------------------------+".
DISPLAY "I Parts Bill of Materials Explosion I".
DISPLAY "I (COBOL Version) I".
DISPLAY "I Part-id: 11 PART ID " I".
DISPLAY "+-----------------------------------+".
DISPLAY.·
DISPLAY
DISPLAY II II

DISPLAY PART_ID, 11
-

11
, PART_DESC

MOVE ZERO TO INDENT-LEVEL.
FREE ALL FROM KEEP-COMPONENT.
PERFORM PARTBOM-LOOP THRU PARTBOM-LOOP-EXIT

UNTIL END-COLLECTION.
GO TO SOLICIT-INPUT.

PARTBOM-DONE.
CLOSE INPUT-FILE.
EXIT PROGRAM.

PARTBOM-LOOP.
FIND NEXT COMPONENT WITHIN PART USES

AT END PERFORM POP-COMPONENT
THRU POP-COMPONENT-EXIT

GO TO PARTBOM-LOOP-EXIT.
KEEP CURRENT USING KEEP-COMPONENT.
ADD 1 TO INDENT-LEVEL.
FIND OWNER PART USED ON. - -
GET PART_ID, PART_DESC.
DISPLAY INDENT-TREE, PART_ID,

PARTBOM-LOOP-EXIT.
EXIT.

POP-COMPONENT.

II -

FIND LAST WITHIN KEEP-COMPONENT

", PART DESC.

AT END MOVE 1 TO END-OF-COLLECTION
GO TO POP-COMPONENT-EXIT.

FREE LAST WITHIN KEEP-COMPONENT.
SUBTRACT 1 FROM INDENT-LEVEL.

POP-COMPONENT-EXIT.
EXIT.

END PROGRAM PARTBOM.
END PROGRAM STOOL.

***"

Database Programming with VAX COBOL 15-95

15.30.6 STOOL Program Parts Breakdown Report-Sample Run

This is the report output by the STOOL program in Example 15-.19.

Enter PARTID> SAMPl ~

+-----------------------------------+
I Parts Bill of Materials Explosion I
I (COBOL Version) I
I Part-id: SAMPl I
+-----------------------------------+
SAMPl - STOOL
I SAMP3 - STOOL LEGS
I SAMP2 - STOOL SEAT

Enter PARTID> lctrl!zl
End of Job

15.30. 7 Creating New Record Relationships

The PERSONNEL-UPDATE program in Example 15-20 creates the records
and relationships described in Section 15.18.2.3. It directly contains two
other programs: PROMOTION-UPDATE and PERSONNEL-REPORT.
PROMOTION-UPDATE is directly contained by PERSONNEL-UPDATE.
It changes the record relationships created by PERSONNEL-UPDATE.
PERSONNEL-REPORT is also directly contained by PERSONNEL-UPDATE.
It generates one report showing the record relationships just after creation by
PERSONNEL-UPDATE and another report showing the new record relationships.
PERSONNEL-REPORT is a Report Writer program. Section 15.30.7.1 and
Section 15.30.7.2 each contain a report generated by the PERSONNEL-UPDATE
program.

Example 15-20: Creating New Record Relationships

IDENTIFICATION DIVISION.
PROGRAM-ID. PERSONNEL-UPDATE.

DATA DIVISION.
SUB-SCHEMA SECTION.
DB PARTSSl WITHIN PARTS FOR "NEW.ROO".
LD KEEPSUPER.
LD KEEP-EMPLOYEE.

WORKING-STORAGE SECTION.
01 ANSWER PIC X.

15-96 Database Programming with VAX COBOL

(continued on next page)

Example 15-20 (Cont.): Creating New Record Relationships

PROCEDURE DIVISION.
AOOO-BEGIN.

READY USAGE-MODE IS UPDATE.
PERFORM AlOO-EMPLOYEE-LOAD.
PERFORM A200-CONNECTING-TO-CONSISTS-OF.
DISPLAY "Employees and groups are loaded".
DISPLAY "Personnel Report before update
CALL "PERSONNEL-REPORT".
DISPLAY "Press your carriage return key to continue".
ACCEPT ANSWER.
CALL "PROMOTION-UPDATE".
DISPLAY "Promotions completed".
DISPLAY "Press your carriage return key to continue".
ACCEPT ANSWER.
DISPLAY "Personnel Report after update ... ".
CALL "PERSONNEL-REPORT".

AOlO-EOJ.
ROLLBACK.
DISPLAY "End of PERSONNEL-UPDATE".
STOP RUN.

AlOO-EMPLOYEE-LOAD.
MOVE 10500
MOVE "HOWELL"
MOVE "JOHN"
MOVE 1111111

TO
TO
TO
TO

EMP ID.
EMP LAST NAME.
EMP FIRST NAME.
EMP PHONE.

MOVE "N.H." TO EMP LOC.
STORE EMPLOYEE.

MOVE 08400 TO EMP ID.
MOVE "NOYCE" TO EMP LAST NAME.
MOVE "BILL" TO EMP FIRST NAME.
MOVE 2222222 TO EMP PHONE.
MOVE "N.H." TO EMP LOC.
STORE EMPLOYEE.

MOVE 06600 TO EMP ID. -
MOVE "MOORE" TO EMP LAST NAME.
MOVE "BRUCE" TO EMP FIRST NAME. - -
MOVE 3333333 TO EMP PHONE.
MOVE "N.H." TO EMP LOC.
STORE EMPLOYEE.

MOVE 01000 TO EMP ID. -
MOVE "RA VAN" TO EMP LAST NAME. - -
MOVE "JERRY" TO EMP FIRST NAME.
MOVE 5555555 TO EMP PHONE.
MOVE "N.H." TO EMP LOC.
STORE EMPLOYEE.

MOVE 04000 TO EMP ID.
MOVE "BURLEW" TO EMP LAST NAME.
MOVE "THOMAS" TO EMP FIRST NAME. - -
MOVE 6666666 TO EMP PHONE.
MOVE "N.H~ II TO EMP LOC.
STORE EMPLOYEE.

MOVE 07000 TO EMP ID.
MOVE "NEILS" TO EMP LAST NAME.
MOVE "ALBERT" TO EMP FIRST NAME.
MOVE 7777777 TO EMP PHONE.
MOVE "N.H." TO EMP LOC.
STORE EMPLOYEE.

(continued on next page)

Database Programming with VAX COBOL 15-97

Example 15-20 (Cont.): Creating New Record Relationships

MOVE 05000
MOVE "KLEIN"
MOVE "DON"
MOVE 8888888
MOVE "N.H."
STORE EMPLOYEE.

MOVE 02000
MOVE "DEANE"
MOVE "FRANK"
MOVE 9999999
MOVE "N.H."
STORE EMPLOYEE.

MOVE 01400
MOVE "RILEY"
MOVE "GEORGE"
MOVE 1234567
MOVE "N.H."
STORE EMPLOYEE.

MOVE 05500
MOVE "BAKER"
MOVE "DOUGH"
MOVE 7654321
MOVE "N.H."
STORE EMPLOYEE.

MOVE 07400
MOVE "FIFER"
MOVE "MIKE"
MOVE 1212121
MOVE "N.H."
STORE EMPLOYEE.

TO EMP ID.
TO EMP LAST NAME.
TO EMP FIRST NAME. - -
TO EMP PHONE.
TO EMP LOC.

TO EMP ID.
TO EMP_LAST_NAME.
TO EMP FIRST NAME. - -
TO EMP PHONE.
TO EMP LOC.

TO EMP ID.
TO EMP LAST NAME.
TO EMP FIRST NAME. - -
TO EMP PHONE.
TO EMP LOC.

TO EMP ID.
TO EMP LAST NAME. - -
TO EMP FIRST NAME. - -
TO EMP PHONE.
TO EMP LOC.

TO EMP ID.
TO EMP LAST-NAME.
TO EMP FIRST NAME. - -
TO EMP PHONE.
TO EMP LOC.

A200-CONNECTING-TO-CONSISTS-OF.
MOVE 10500 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES USING EMP ID.
MOVE "A" TO GROUP NAME.
STORE WK GROUP.

MOVE 08400 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES USING EMP ID.
CONNECT EMPLOYEE TO CONSISTS OF.

MOVE 06600 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES USING EMP ID.
CONNECT EMPLOYEE TO CONSISTS OF.

MOVE 08400 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES USING EMP ID.
MOVE "Bl" TO GROUP NAME.
STORE WK GROUP.

MOVE 01000 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES USING EMP ID.
CONNECT EMPLOYEE TO CONSISTS OF.

MOVE 04000 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES USING EMP ID.
CONNECT EMPLOYEE TO CONSISTS OF.

MOVE 07000 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES USING EMP ID.
CONNECT EMPLOYEE TO CONSISTS OF.

(continued on next page)

15-98 Database Programming with VAX COBOL

Example 15-20 (Cont.): Creating New Record Relationships

MOVE 06600 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES
MOVE "B2" TO GROUP NAME.
STORE WK GROUP.

MOVE 01400 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES
CONNECT EMPLOYEE TO CONSISTS OF.

MOVE 02000 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES
CONNECT EMPLOYEE TO CONSISTS OF.

MOVE 05000 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES
CONNECT EMPLOYEE TO CONSISTS OF.

MOVE 05500 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES
CONNECT EMPLOYEE TO CONSISTS OF.

MOVE 07400 TO EMP ID.
FIND FIRST EMPLOYEE WITHIN ALL EMPLOYEES
CONNECT EMPLOYEE TO CONSISTS OF.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROMOTION-UPDATE.

PROCEDURE DIVISION.
AOOO-BEGIN.

MOVE "A" TO GROUP NAME.

*

USING EMP ID.

USING EMP ID.

USING EMP ID.

USING EMP ID.

USING EMP ID.

USING EMP ID.

*The next statement makes HOWELL's GROUP "A" record current

*
FIND FIRST WK GROUP USING GROUP NAME. - -

*
* The next two statements fetch KLEIN using EMP_ID.
* The RETAINING clause keeps the WK GROUP record "A"
* as current of the CONSISTS OF set~ This allows the program
* to connect KLEIN to the correct occurrence of WK GROUP.
* A fetch to KLEIN without the RETAINING clause makes KLEIN
* current of CONSISTS OF thus destroying the pointer to the
* WK GROUP record "A".

*
MOVE 05000 TO EMP ID.
FETCH FIRST EMPLOYEE USING EMP ID RETAINING CONSISTS OF.

*
* The next statement disconnects KLEIN from the WK GROUP "Bl"
* record and connects him to the current WK GROUP "A" record.

*
RECONNECT EMPLOYEE WITHIN CONSISTS OF.

*
* The next two sentences create and store a WK GROUP record.
* Because KLEIN is current of EMPLOYEE, a STORE WK GROUP
* automatically connects WK_GROUP as a member of the MANAGES
* set owned by KLEIN, and makes "B3" current of the MANAGES
* and CONSISTS OF sets.

*
MOVE "B3" TO WK GROUP.
STORE WK GROUP.

(continued on next page)

Database Programming with VAX COBOL 15-99

Example 15-20 (Cont.): Creating New Record Relationships

*
* The next two statements fetch NEILS and retain WK GROUP
* "B3" as current of CONSISTS OF.

*
MOVE 7000 TO EMP ID.
FETCH FIRST EMPLOYEE USING EMP ID RETAINING CONSISTS OF. - -

*
* The next statement disconnects NEILS from WK GROUP "Bl"
* record and reconnects him to the WK GROUP "B3" record.
* It also retains "B3" as current of CONSISTS OF. This
* maintains the pointer at "B3" allowing the program to
* reassign RILEY to KLEIN.

*
RECONNECT EMPLOYEE WITHIN CONSISTS OF RETAINING CONSISTS OF.

*
* The next three statements fetch RILEY, disconnect him from
* "B2" and reconnect him to "B3".

*
MOVE 01400 TO EMP ID.
FETCH FIRST EMPLOYEE USING EMP ID RETAINING CONSISTS OF.
RECONNECT EMPLOYEE WITHIN CONSISTS OF.

END PROGRAM PROMOTION-UPDATE.

IDENTIFICATION DIVISION.
PROGRAM-ID. PERSONNEL-REPORT.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PERSONNEL-REPORT-FILE ASSIGN TO "TT:".

DATA DIVISION.
FILE SECTION.
FD PERSONNEL-REPORT-FILE

VALUE OF ID IS "PERSONNEL.LIS"
REPORT IS PERSONNEL-LISTING.

WORKING-STORAGE SECTION.
01 CONTROL-FIELDS.

02 MANAGER-NAME
02 MANAGES-GROUP
02 SUPERVISOR-NAME
02 SUPERVISES-GROUP
02 EMPLOYEE-NUMBER
02 EMPLOYEE-NAME

REPORT SECTION.
RD PERSONNEL-LISTING

PAGE LIMIT IS 66
HEADING 1
FIRST DETAIL 3
LAST DETAIL 60

PIC x (20).
PIC xx.
PIC X (20).
PIC XX.
PIC XXXXX.
PIC X(20).

CONTROLS ARE MANAGES-GROUP
SUPERVISES-GROUP.

01 TYPE IS PAGE HEADING.
02 LINE 1 COLUMN 22

PIC X(16) VALUE "EMPLOYEE LISTING".

15-100 Database Programming with VAX COBOL

(continued on next page)

Example 15-20 (Cont.): Creating New Record Relationships

01 MANAGER-CONTROL TYPE IS CONTROL HEADING MANAGES-GROUP.
02 LINE IS PLUS 1.

03 COLUMN 16 PIC X(17)
VALUE "MANAGER OF GROUP "

03 COLUMN 33 PIC XX
SOURCE MANAGES-GROUP.

03 COLUMN 35 PIC XXXX
VALUE "IS: ".

03 COLUMN 39 PIC X(20)
SOURCE MANAGER-NAME.

01 GROUP-CONTROL TYPE IS CONTROL HEADING SUPERVISES-GROUP.
02 LINE IS PLUS 1.

03 COLUMN 3 PIC XXXXXXX
VALUE "GROUP: "

03 COLUMN 10 PIC XX
SOURCE SUPERVISES-GROUP.

02 LINE IS PLUS 1.
03 COLUMN 3 PIC X(15)

VALUE IS "SUPERVISOR IS:
03 COLUMN 18 PIC X(20)

"

SOURCE IS SUPERVISOR-NAME.
02 LINE IS PLUS 2.

03 COLUMN 3 PIC X(6)
VALUE "GROUP "

03 COLUMN 9 PIC XX
SOURCE IS SUPERVISES-GROUP.

- 03 COLUMN 12 PIC X(9)
VALUE "EMPLOYEES".

03 COLUMN 24 PIC X(15)
VALUE "EMPLOYEE NUMBER".

03 COLUMN 43 PIC X(13)
VALUE "EMPLOYEE NAME".

01 EMPLOYEE-LINE TYPE IS DETAIL.
02 LINE IS PLUS 1.

03 COLUMN 28 PIC XXXXX SOURCE IS EMPLOYEE-NUMBER.
03 COLUMN 44 PIC X(20) SOURCE IS EMPLOYEE-NAME.

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN OUTPUT PERSONNEL-REPORT-FILE.
INITIATE PERSONNEL-LISTING.
PERFORM A100-GET-THE-BOSS THROUGH A700-DONE-THE-BOSS.
TERMINATE PERSONNEL-LISTING.
CLOSE PERSONNEL-REPORT-FILE.
EXIT PROGRAM.

AlOO-GET-THE-BOSS.
MOVE 10500 TO EMP ID.
FETCH FIRST EMPLOYEE USING EMP ID.
MOVE EMP LAST NAME TO MANAGER-NAME. - -
FETCH FIRST WK GROUP WITHIN MANAGES.
MOVE GROUP NAME TO MANAGES-GROUP.

A200-GET-SUPERVISORS.
FETCH NEXT EMPLOYEE WITHIN CONSISTS OF

AT END GO TO A700-DONE-THE-BOSS.
MOVE EMP LAST NAME TO SUPERVISOR-NAME. - -
KEEP CURRENT USING KEEPSUPER.
FETCH NEXT WK GROUP WITHIN MANAGES.
MOVE GROUP NAME TO SUPERVISES-GROUP.
PERFORM A500-GET-EMPLOYEES THROUGH A600-DONE-EMPLOYEES.
GO TO A200-GET-SUPERVISORS.

(continued on next page)

Database Programming with VAX COBOL 15-101

Example 15-20· (Cont.): Creating New Record Relationships

A500-GET-EMPLOYEES.
FETCH NEXT EMPLOYEE WITHIN CONSISTS OF

AT END GO TO A510-FIND-CURRENT-SUPER.
MOVE EMP LAST NAME TO EMPLOYEE-NAME. - -
MOVE EMP ID TO EMPLOYEE-NUMBER.
GENERATE EMPLOYEE-LINE.
GO TO A500-GET-EMPLOYEES.

A510-FIND-CURRENT-SUPER.
FIND FIRST WITHIN KEEPSUPER.
FREE ALL FROM KEEPSUPER.

A600-DONE-EMPLOYEES.
EXIT.

A700-DONE-THE-BOSS.
EXIT.

END PROGRAM PERSONNEL-REPORT.

END PROGRAM PERSONNEL-UPDATE.

15.30.7.1 PERSONNEL-UPDATE Sample Run-Listing Before Promotion

This sample report, created by the preceding PERSONNEL-UPDATE program,
corresponds to the data in Figure 15-26.

Example 15-21: Sample Run of PERSONNEL-UPDATE Before Promotion

EMPLOYEE LISTING

MANAGER OF GROUP A IS: HOWELL
GROUP B2
SUPERVISOR IS: MOORE

GROUP B2 EMPLOYEES EMPLOYEE NUMBER
05500
02000
07400
05000
01400

GROUP Bl
SUPERVISOR IS: NOYCE

GROUP Bl EMPLOYEES EMPLOYEE NUMBER
04000
07000
01000

EMPLOYEE NAME
BAKER
DEANE
FIFER
KLEIN
RILEY

EMPLOYEE NAME
BURLEW
NEILS
RA VAN

15.30.7.2 PERSONNEL-UPDATE Sample Run-Listing After Promotion

This sample report, created by PERSONNEL-UPDATE in Section 15.30.7,
corresponds to the data in Figure 15-27.

15-102 Database Programming with VAX COBOL

Example 15-22: Sample Run of PERSONNEL-UPDATE After Promotion.

EMPLOYEE LISTING

MANAGER OF GROUP A IS: HOWELL
GROUP B3
SUPERVISOR IS: KLEIN

GROUP B3 EMPLOYEES EMPLOYEE NUMBER EMPLOYEE NAME
07000 NEILS
01400 RILEY

GROUP B2
SUPERVISOR IS: MOORE
GROUP B2 EMPLOYEES EMPLOYEE NUMBER EMPLOYEE NAME

05500 BAKER
02000 DEANE
07400 FIFER

GROUP Bl
SUPERVISOR IS: NOYCE

GROUP Bl EMPLOYEES EMPLOYEE NUMBER EMPLOYEE NAME
04000 BURLEW
01000 RAVAN

Database Programming with VAX COBOL 15-103

Chapter 16

Producing Printed Reports with VAX COBOL

This chapter discusses how to produce a printed report using VAX COBOL. It
addresses the following topics:

• How to design a report

• The components of a report

• Methods of reporting accumulation and control totals

• Methods of programming your VAX COBOL report

• Modes of printing a report

In addition, this chapter explains the use of the VAX COBOL Report Writer, a
feature that assists you in formatting and producing reports.

16.1 Designing the Report

Whether you are producing a report for yourself or for a customer, you must begin
by designing the report. The design of a report is dictated by the data you must
include in the report. If you have a general idea of what the report is to contain,
you can produce a rough outline using a report layout worksheet.

To create the worksheet, either use an online text editor or draw a layout
worksheet like the one displayed in Figure 16-1.

Producing Printed Reports with VAX COBOL 16-1

Figure 16-1 : Sample Layout Worksheet

1"

2"

3"

4"

5"

0 2 JI 10 11 12

910 1 2 314 56 1181 0 1 23 1415 67 89 0 1 23 45 67 89 0 1 23 L4 5 67 89

J,
2 1l
3

4 ll
5 ~I
6

J l
8 I/ l
9 J

10 J
11 ~l
12 ~J
13

14
I/ A'
f ~

15

1 Jl
17 1

18

19 ~l
20 ~I
21

22 II l
23 ~I
24

25 Jl
26 I
2 r

28 l
29

30

ZK-6077-GE

The layout worksheet in Figure 16-1 has 132 characters on a line and 60 lines
on a page. When you outline your worksheet, include specifics such as page
headings, rows and columns, and column sizes.

Section 16.2 discusses other report components that you must plan for when you
design a report. Note that you can use your worksheet later when you write the
VAX COBOL program that produces the report.

16.2 Components of a Report

A description of the seven components of a report follows. The numbers in the
following list correspond to the circled numbers in Figure 16-2:

8 Report Heading (RH)-The report heading consists of information printed
before the main body of a report. It can be printed on a separate page, or
as the first page heading, with the remaining page headings abbreviated to
save paper. The report heading can include information such as handling and
distribution instructions. It can also include the selection criteria, sort order,
and assumptions made when creating the report.

16-2 Producing Printed Reports with VAX COBOL

8 Page Heading (PH)-The page heading consists of information printed on the
top one or more lines of every page in the report. It usually names and dates
the report, gives the report page number, and produces a title for each column
of information in the detail line.

0 Control Heading (CH)-The control heading consists of one or more lines of
information identifying the beginning of a new logical area on a page.

8 Detail Lines (DL)-The detail consists of one or more lines of the primary
data of the report.

8 Control Footing (CF)-The control footing consists of one or more lines of
information identifying the end of a logical area. The control footing can
contain one or more totals and an accompanying message.

6) Page Footing (PF)-The page footing consists of one or more lines of
information at the bottom of each page.

8 Report Footing (RF)-The report footing consists of information printed after
the main body of the report. It can be continued on the same page of the
report body, or it can be on a separate page. It may contain information
such as hash or control totals. A report footing is a convenient place to print
run-time statistics, such as the number of records read and written for each
file. It can also provide warning messages, such as when a table is close to
overflowing.

It is suggested that all reports have an END OF REPORT message or other
indicator at the end of the report, so that you can tell at a glance that you
have all the pages. (The consecutive page numbers tell if a page is missing,
but they do not indicate which page is the last.)

Producing Printed Reports with VAX COBOL 16-3

Figure 16-2: Components of a Report

•

•

*********************** COMPANY CONFIDENTIAL *************************
*********************** COMPANY CONFIDENTIAL *************************
*********************** COMPANY CONFIDENTIAL *************************

* * YEAR TO DATE *

* SALES REPORT *

FOR INTERNAL USE ONLY

DO NOT COPY
FOR SECURITY CLEARANCE LEVELS 1, 2, AND 3

*********************** COMPANY CONFIDENTIAL *************************
*********************** COMPANY CONFIDENTIAL *************************
*********************** COMPANY CONFIDENTIAL *************************

04-NOVEMBER-88 Year To Date Sales Report Page
------+-•Salesman Salary /Bonus Client Name Client Address Total Sales

• .. ____ _,__************************* JANUARY REPORT ***************************

•
•

•

•

SMITH
JOHN

$30, 000. 00
$10,000.00

STREN
TOM

2742 NORTH ST. $225,000.00
MANCHESTER, NH

TOTAL JANUARY SALES: $ 2,000,000.00
___ _,_ __ ,,,.***

************************* FEBRUARY REPORT **************************

.
********************** COMPANY CONFIDENTIAL *************************

*********************** COMPANY CONFIDENTIAL *************************
*********************** COMPANY CONFIDENTIAL *************************

_ _,. ____ ,.<;:<<<<<<<<<<<<«<<<<<<<<CONTINUED ON NEXT PAGE>>>>>>>>>>»>»>»>>>>»>

04-NOVEMBER-88 Year To Date Sales Report Page 1324

*********************** COMPANY CONFIDENTIAL *************************
*********************** COMPANY CONFIDENTIAL *************************
*********************** COMPANY CONFIDENTIAL *************************

Total Records :

*

END OF
* YEAR TO DATE *
* SALES REPORT *

123456
Total Salesmen: 6754

$123, 456, 789. 99
$ 9,876,543.21
$ 6, 789,012.34

Total Sales:
Total Salaries :
Total Bonus :
Total Report Pages: 1324

*********************** COMPANY CONFIDENTIAL *************************
*********************** COMPANY CONFIDENTIAL *************************

------\--*********************** COMPANY CONFIDENTIAL *************************

16-4 Producing Printed Reports with VAX COBOL

ZK-6079-GE

16.3 Accumulating and Reporting Totals

Your program can report three types of totals in the control footings and report
footings of your report:

• Subtotals-Subtotaling is the process of summing a detail item from each
detail line. For example, in Figure 16-3, Salary, Bonus, and Total Sales are
subtotaled. To get the first salary subtotal for January on page 1 ($75,000.00),
the program must add each salesman's salary ($30,000+$25,000+$20,000).
After printing the salary total, the program must zero the total to begin
subtotaling for the next month.

• Crossfoot Totals-Crossfooting is the process of summing subtotals from
a common group of totals. For example, in Figure 16-3, TOTAL SALARY
EXPENSE is crossfooted by adding TOTAL SALARY and TOTAL BONUS.
To get the first TOTAL SALARY EXPENSE crossfoot total for the January
report, the program must add the salary subtotal and the bonus subtotal
before the program clears the subtotals.

• Rolled Forward Totals-Rolling-forward is the process of summing either
subtotals or crossfoot totals. For example, in Figure 16-3, the YEAR TO
DATE TOTALS at the bottom of page 1 are rolled forward from both the
JANUARY and FEBRUARY totals. The program computes the salary
and bonus YEAR TO DATE TOTALS from the previous salary and bonus
subtotals. It computes the total salary expense figure from the previous total
salary expense crossfoot totals.

Producing Printed Reports with VAX COBOL 16-5

Figure 16-3: Subtotals, Crossfoot Totals, and Rolled Forward Totals

04-NOVEMBER-88 Year To Date Sales Report Page 1
O Salesman Salary/Bonus Client Name Client Address Total Sales 0

************************* JANUARY REPORT ***************************

0 SMITH
JOHN

LEPRO
0 RONALD

BALLET
FRANCES

$30,000.00
$10,000.00

$25,000.00
$10,000.00

STREN
TOM

FOSTER
FRANK

2742 NORTH ST. $225,000.00
MANCHESTER, NH

967 HOOVER LANE $195,000.00

0

CAMBRIDGE, MA 0

$20,000.00 O'BRIEN 1001 HUGE DRIVE $ 15,000.00
$10,000.00 PAUL MT. SNOW, VT

0 -- 0

0

JANUARY TOTALS
SALARY
BONUS

$ 75, 000. 00+ Salary subtotal
$ 30, 000 . 00 + Bonus subtotal

TOTAL SALARY EXPENSE $105, 000. OO+ Crossfoot total (salary+ bonus)
0

TOTAL SALES Subtotal • $435, 000. 00
0 ************************* FEBRUARY REPORT ************************** 0

0

SMITH
JOHN

LE PRO
RONALD

0 BALLET
FRANCES

$30,000.00
$10,000.00

$25,000.00
$10,000.00

$20,000.00
$10,000.00

Q FEBRUARY TOTALS
SALARY
BONUS

O TOTAL SALARY EXPENSE

STREN
TOM

FOSTER
FRANK

O'BRIEN
PAUL

2742 NORTH ST.
MANCHESTER, NH

$225,000.00

967 HOOVER LANE $195,000.00
CAMBRIDGE, MA

1001 HUGE DRIVE $ 15,000.00
MT. SNOW, VT

$ 7 5, 000. 00 + Salary subtotal
$ 30, 000. 00 + Bonus subtotal

$1O5, o o o . o o + Crossfoot total (salary + bonus)

0

0

0

0
TOTAL SALES Subtotal • $435, 000. 00
************************* YEAR TO DATE TOTALS ***********************

Q SALARY
BONUS

0 TOTAL SALARY EXPENSE

TOTAL SALES

0 -----------------------

$15 O, O O O . O O + Salary rolled forward total
$ 60, O O O . 00 + Bonus rolled forward total

$210, 000. 00 + Crossfoot total (salary+ bonus)

Rolled forward total--•• $870, 000. 00

0

0

COMPANY CONFIDENTIAL ------------------------­
COMPANY CONFIDENTIAL ------------------------- 0
COMPANY CONFIDENTIAL -------------------------

ZK-6080-GE

16-6 Producing Printed Reports with VAX COBOL

16.4 The Logical Page and the Physical Page

A physical page is the paper page printed by your printer.

A logical page is conceptual, consisting of a page body and optionally a top
margin, footing, and bottom margin. Figure 16-4 and Figure 16-7 illustrate
the logical page structure for the conventional file report and linage-file report,
respectively.

The number of lines on a logical page is defined by the number of lines on the
target physical page. Thus, the number of lines determines the size of the logical
page. When you design a report, you must choose those lines within the logical
page that are to be page headers (PH), control headers (CH), detail lines (DL),
control footings (CF), and page footings (PF). Once the framework of the logical
page is defined, your program must stay within those bounds; otherwise, the
printed report may not contain the correct information.

You can program two types of reports: a conventional file report or a linage-file
report. Section 16.5 and Section 16.5.1 discuss these reports in detail.

16.5 Programming the Conventional VAX COBOL Report

A conventional file report has sequential organization and access mode, contains
variable-length with fixed control records, and consists of one or more logical
pages.

To program a conventional report, you should understand how to do the
following:

• Define the logical page

• Advance to the next logical page

• Program for the page-overflow condition

• Use a line counter

The following sections discuss these topics in detail. Additionally, Section 16.5.5
contains an example of a VAX COBOL program that produces a conventional file
report.

16.5.1 Defining the Logical Page in a Conventional Report

Your program specifies the format of your report. Using the report layout
worksheet you created, you can write a VAX COBOL program that defines the
logical page area for a conventional report. Figure 16--4 shows the logical page
area for a conventional report. The conventional report logical page area consists
of the page areas discussed in Section 16.4.

Producing Printed Reports with VAX COBOL 16-7

Figure 16-4: Logical Page Area for a Conventional Report

Page body line numbers

~

Logical
Page

1
2
3
4
5
6
7

Page Body

ZK-6081-GE

Once you have defined the logical page, you must handle vertical spacing,
horizontal spacing, and the number of lines that appear on each page so that
you can advance to the next logical page. The following sections discuss these
subjects.

16.5.2 Controlling the Spacing in a Conventional Report

To control the horizontal spacing on a logical page, define every report item from
your report layout worksheet in the Working-Storage Section of your VAX COBOL
program.

To control the vertical spacing on a logical page, use the WRITE statement. The
WRITE statement controls whether one or more lines are skipped before or after
your program writes a line of the report. For example, to print a line before
advancing five lines, use the following:

WRITE ... BEFORE ADVANCING 5 LINES.

To print a line after advancing two lines, use the following:

WRITE ... AFTER ADVANCING 2 LINES.

16.5.3 Advancing to the Next Logical Page in a Conventional Report

To advance to the next logical page and position the printer to the page heading
area, you must be able to track the number of lines that your program writes on
a page. The VAX COBOL compiler lets you control the number of lines written on
a page with the WRITE statement.

The WRITE statement must appear in your Procedure Division and it should
contain either the AFTER ADVANCING PAGE or BEFORE ADVANCING PAGE
clause. Example 16-2 demonstrates the use of the WRITE statement with the
AFTER ADVANCING PAGE clause.

The next two sections discuss how to handle a page-overflow condition and how to
use a line counter to keep track of the number of lines your program writes on a
logical page.

16-8 Producing Printed Reports with VAX COBOL

16.5.3.1 Programming for the Page-Overflow Condition in a Conventional Report

A page-overflow condition occurs when your program writes more lines than the
logical page can accommodate. This normal condition lets your program know
when to execute its top-of-page routines. Top-of-page routines should contain
WRITE statements with either the AFTER ADVANCING PAGE or BEFORE
ADVANCING PAGE clause.

These statements determine when a report's logical page is full, and when
the program prints the last line on a logical page (if you do not want to use
all the lines on a page). Example 16-1 shows two methods that check for the
page-overflow condition:

• Paragraph AlOO-FIRST-REPORT-ROUTINES checks for a full page
after it writes a report line. If the page-overflow condition exists,
A901-HEADER-ROUTINE executes.

• Paragraph A500-SECOND-REPORT-ROUTINES checks if more than
50 lines exist on the current logical page. If more than 50 lines exist,
A902-HEADER-ROUTINE executes.

In either case, the AFTER ADVANCING PAGE clause in the
A901-HEADER-ROUTINE and A902-HEADER-ROUTINE paragraphs generates
the characters needed for the printer to position itself at the top of the next page
heading area.

Example 16-1 : Checking for the Page-Overflow Condition

PROCEDURE DIVISION.
AOOO-BEGIN.

Al00-FIRST-REPORT-ROUTINES.

*
* A901-HEADER-ROUTINE executes whenever the number of lines written exceeds
* the number of lines on the 66-line default logical page.

*
WRITE A-LINEl AFTER ADVANCING 2 LINES.
ADD 2 TO REPORTl-LINE-COUNT.
IF REPORTl-LINE-COUNT > 65 PERFORM A901-HEADER-ROUTINE.

A500-SECOND-REPORT-ROUTINES.

*
* This routine uses only the first 50 lines of the 66-line report.

*
WRITE A-LINE2 AFTER ADVANCING 2 LINES.
ADD 2 TO REPORT2-LINE-COUNT.
IF REPORT2-LINE-COUNT IS GREATER THAN 50

PERFORM A902-HEADER-ROUTINE.

(continued on next page)

Producing Printed Reports with VAX COBOL 16-9

Example 16-1 (Cont.): Checking for the Page-Overflow Condition

A901-HEADER-ROUTINE.
WRITE A-LINEl FROM REPORTl-HEADER-LINE-1 AFTER ADVANCING PAGE.
MOVE 0 TO REPORTl-LINE-COUNT.
ADD 1 TO REPORTl-LINE-COUNT.

A902-HEADER-ROUTINE.
WRITE A~LINE2 FROM REPORT2-HEADER-LINE-1 AFTER ADVANCING PAGE.
MOVE 0 TO REPORT2-LINE-COUNT.
ADD 1 TO REPORT2-LINE-COUNT.

Although the WRITE statement allows you to check for a page-overflow condition,
you can also use a line counter that tracks the number of lines that appear on a
page. Section 16.5.3.2 discusses this in more detail.

16.5.3.2 Using a Line Counter

A line counter is another method of tracking the number of lines that appear on a
page. If you define a line counter in the Working-Storage Section of your program,
each time a line is written or skipped the line counter value is incremented by
one.

Your program should contain a routine that checks the line counter value before
it writes or skips the next line. If the value is less than the limit you have set, it
writes or skips. If the value equals or exceeds the limit you have set, the program
executes header routines that allow it to advance to the next logical page.

16.5.4 Printing the Conventional Report

When you are ready to print your report, you must ensure that your system's line
printer can accommodate the page size or form of your report. If the printer uses
a different page size or form, contact your system manager. The system manager
can change the page or form size to accommodate your report.

Section 16. 7 discusses the different modes for printing a report.

16.5.5 A Conventional File Report Example

Example 16-2 shows a VAX COBOL program that produces two reports from the
same input file.

The first report, Figure 16-5, is a preprinted form letter that can be inserted
into a business envelope. This report has a logical page length of 20 lines and a
width of 80 characters. Note that this report uses only the first 15 lines on the
page. Because this is a preprinted form, the program supplies only the following
information:

• The date for line 3

• The customer's name for lines 3 and 13

16-10 Producing Printed Reports with VAX COBOL

• The customer's address for lines 14 and 15

Figure 16-5: A 20-Line Logical Page

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5 6
12345678901234567890123456789012345678901234567B90123456789012

Dear Mr. XXXXXXXXXXXXXXX Date: 99-XXX-99

xx
x t x
x x
x ~ Preprint message is here • x

~ + ~
xx

TO: XXXXXXXXXXX X XXXXXXXXXXXXXXX
xxxxxxxxxxx x xxxxxxx
xxxxxxxxxxxxxxxx xx 99999

ZK-6082-GE

The second report, Figure 16-6, is a double-spaced master listing of all input
records. While this report's logical page is identical to the default logical page
for the system (in this case, 66 vertical lines and 132 horizontal characters), this
report uses only the first 55 lines on the page. Both reports are output to a disk
for later printing.

Producing Printed Reports with VAX COBOL 16-11

Figure 16-6: A Double-Spaced Master Listing

0 PERSONNEL MASTER LISTING Page 1 0

0

0

0

0

**** COMPANY CONFIDENTIAL ****

Harold AHuit 1234 Main Street Southbend

Mary QJewitt 18673 S. 126 Avenue Kreosote

George DCarport 990 North St., Apt 3 Waymouth

Catherine FBallet 2244 Maple St Laconia

Amanda

Robert

DModel Pease AFB Portsmouth

RLurnber 2 Wayne St. Ackensack

Example 16-2: Page Advancing and Line Skipping

IDENTIFICATION DIVISION.
PROGRAM-ID. REPOl.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "REPIN.DAT".
SELECT FORMl-REPORT ASSIGN TO "FORMl.DAT".
SELECT FORM2-REPORT ASSIGN TO "FORM2.DAT".

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE.
01 INPUT-RECORD.

02 I-NAME.
03 I-FIRST
03 I-MID
03 I-LAST

02 I-ADDRESS.
03 I-STREET
03 I-CITY
03 I-STATE
03 I-ZIP

FD FORMl-REPORT.
01 FORMl-PRINT-LINE
FD FORM2-REPORT.
01 FORM2-PRINT-LINE
WORKING-STORAGE SECTION.
01 END-OF-FILE
01 MAX-LINES-ON-FORM2
01 FORM2-LINE-COUNTER
01 PAGE-NO

PIC X(lO).
PIC x.
PIC X(15).

PIC x (20).
PIC X(15).
PIC xx.
PIC 99999.

PIC X(80).

PIC X(80).

PIC x
PIC 99
PIC 99
PIC 99999

VT12345
0

NB87655 0
ALOOOOl

NH03456 0

VT24567
0

NJ56243

ZK-6083-GE

VALUE SPACE.
VALUE 55.
VALUE 00.
VALUE 0.

(continued on next page)

16-12 Producing Printed Reports with VAX COBOL

Example 16-2 (Cont.): Page Advancing and Line Skipping

01 FORMl-LINE-3.
02
02 FORMl-LAST

01 FORMl-LINE-13.
02
02 FORMl-NAME

01 FORMl-LINE-14.
02
02 FORMl-STREET

01 FORMl-LINE-15.
02
02 FORMl-CITY
02
02 FORMl-STATE
02
02 FORMl-ZIP

01 FORM2-HEADER-1.
02 PIC X(15) VALUE

PIC X(9) VALUE SPACES.
PIC X(15).

PIC X(4) VALUE SPACES.
PIC X(26).

PIC x (4) VALUE SPACES.
PIC X(20).

PIC x (4) VALUE SPACES.
PIC X(l5).
PIC x VALUE SPACE.
PIC xx.
PIC x VALUE SPACE.
PIC 99999.

SPACES.
02 PIC X(30) VALUE " PERSONNEL MASTER LISTING
02 PIC X(lO) VALUE SPACES.
02 PIC XXXXX VALUE "Page ".
02 F2H-PAGE PIC ZZZZZ.

01 FORM2-HEADER-2.
02 PIC X(15) VALUE SPACES.
02 PIC X(30) VALUE "**** COMPANY CONFIDENTIAL ****"

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN INPUT INPUT-FILE
OUTPUT FORMl-REPORT

FORM2-REPORT.
PERFORM A900-PRINT-HEADERS-ROUTINE.
PERFORM AlOO-PRINT-REPORTS UNTIL END-OF-FILE "Y".
CLOSE INPUT-FILE

FORMl-REPORT
FORM2-REPORT.

DISPLAY "END OF JOB".
STOP RUN.

A100-PRINT-REPORTS.
READ INPUT-FILE AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y"

PERFORM A200-PRINT-REPORTS.
A200-PRINT-REPORTS.

IF FORM2-LINE-COUNTER IS GREATER THAN MAX-LINES-ON-FORM2
PERFORM A900-PRINT-HEADERS-ROUTINE.

WRITE FORM2-PRINT-LINE FROM INPUT-RECORD
AFTER ADVANCING 2 LINES.

ADD 2 TO FORM2-LINE-COUNTER.
MOVE I-LAST TO fORMl-LAST.
WRITE FORMl-PRINT-LINE FROM FORMl-LINE-3

AFTER ADVANCING 3 LINES.
MOVE I-NAME TO FORMl-NAME.
WRITE FORMl-PRINT-LINE FROM FORMl-LINE-13

AFTER ADVANCING 10 LINES.
MOVE I-STREET TO FORMl-STREET.
WRITE FORMl-PRINT-LINE FROM FORMl-LINE-14.
MOVE I-CITY TO FORMl-CITY.
MOVE I-STATE TO FORMl-STATE.
MOVE I-ZIP TO FORMl-ZIP.
WRITE FORMl-PRINT-LINE FROM FORMl-LINE-15.

(continued on next page)

Producing Printed Reports with VAX COBOL 16-13

Example 16-2 (Cont.): Page Advancing and Line Skipping

A900-PRINT-HEADERS-ROUTINE.

*
* This routine generates a form feed, writes two lines,
* skips two lines, then resets the line counter to 4 to
* indicate used lines on the current logical page.
* Line 5 on this page is the next print line.

*
ADD 1 TO PAGE-NO.
MOVE PAGE-NO TO F2H-PAGE.
WRITE FORM2-PRINT-LINE FROM FORM2-HEADER-l

AFTER ADVANCING PAGE.
WRITE FORM2-PRINT-LINE FROM FORM2-HEADER-2

BEFORE ADVANCING 2.
MOVE 4 TO FORM2-LINE-COUNTER.

16.6 Programming the Linage-File VAX COBOL Report

A linage-file report has sequential organization and access mode, contains
variable-length with fixed control records, and consists of one or more logical
pages. Unlike the conventional VAX COBOL report, however, you can use the
LINAGE clause to do the following:

• Define the number of lines on the logical page

• Divide the logical page into sections

Additionally, a linage-file report has a LINAGE-COUNTER special register
assigned to it that monitors the number of lines written to the current logical
page.

To program a linage report, you should understand how to do the following:

• Define the logical page with the LINAGE clause

• Use the LINAGE-COUNTER special register

• Advance to the next logical page

• Program for the page-overflow condition

The following sections discuss these topics in detail. Example 16-4 shows an
example of a linage-file program.

16.6.1 Defining the Logical Page in a Linage-File Report

Your program specifies the format of your report. Using the report layout
worksheet you created, you can write a VAX COBOL program that defines the
logical page area and divides the page into logical page sections for a linage-file
report. Figure 16-7 shows the logical page area and the four divisions of a
linage-file report.

16-14 Producing Printed Reports with VAX COBOL

Figure 16-7: Logical Page Areas for a Linage File Report

Page body line numbers

t

Logical
Page

1
2
3
4
5
6
7
8
9

10
11
12

*Optional areas

*Top Margin

Page Body

*Footing Area

*Bottom Margin

ZK-6084-GE

To define the number of lines on a logical page and to divide it into logical page
sections, you must include the LINAGE clause as a File Description entry in your
program. The LINAGE clause lets you specify the size of the logical page's top
and bottom margins and the line where the footing area begins in the page body.

For example, to define how many lines you want your program to skip at the
top or bottom of the logical page, use the LINAGE clause with either the LINES
AT TOP or the LINES AT BOTTOM phrase. To define a footing area within the
logical page, use the LINAGE clause with the WITH FOOTING phrase.

The LINES AT TOP phrase positions the printer on the first print line in the page
body. The LINES AT BOTTOM phrase positions the printer at the top of the next
logical page once the current page body is complete. The WITH FOOTING phrase
defines a footing area in the logical page that controls page-overflow conditions.
Additionally, you can insert specific text, such as footnotes or page numbers, on
the bottom lines of your logical page.

In addition to defining the logical page area and the number of lines that appear
on a page, you must be prepared to handle vertical spacing, horizontal spacing,
logical page advancement, and page-overflow. The following sections discuss these
topics in detail.

Producing Printed Reports with VAX COBOL 16-15

16.6.2 Controlling the Spacing in a Linage-File Report

To control the horizontal spacing on a logical page, define every report item from
your report layout worksheet in the Working-Storage Section of your VAX COBOL
program.

To control the vertical spacing on a logical page, use the WRITE statement. The
WRITE statement controls whether one or more lines is skipped before or after
your program writes a line of the report. For example, to print a line before
advancing five lines, use the following:

WRITE ... BEFORE ADVANCING 5 LINES.

To print a line after advancing two lines, use the following:

WRITE ... AFTER ADVANCING 2 LINES.

16.6.3 Using the LINAGE-COUNTER

The LINAGE-COUNTER special register is one method of tracking the
number of lines that your program writes on a logical page. When you use
the LINAGE-COUNTER special register, each time a line is written or skipped,
the register is incremented by 1.

Before the program writes a new line, it checks the LINAGE-COUNTER value
to see if the current logical page can accept the new line. If the value equals the
maximum number of lines for the page body, the compiler positions the pointer on
the first print line of the next page body. The compiler automatically resets this
register to 1 each time your program begins a new logical page.

If you choose not to use the LINAGE-COUNTER register, you can advance to the
next logical page using the WRITE statement, as explained in Section 16.6.4.

16.6.4 Advancing to the Next Logical Page in a Linage-File Report

Linage-files automatically advance to the next logical page when the
LINAGE-COUNTER value equals the number of lines on the logical page.
However, VAX COBOL also lets your program control logical page advancement
with the WRITE statement.

To manually advance to the next logical page from any line in the· current
page body and position the printer on the first print line of the next page body,
your program must include the WRITE statement with either the BEFORE
ADVANCING PAGE clause or the AFTER ADVANCING PAGE clause. For an
example of the WRITE statement, see Section 16.6.7.

Section 16.6.5 discusses how to handle a page-overflow condition.

16.6.5 Programming for the Page-Overflow Condition

A page-overflow condition occurs when your program writes more lines than the
logical page can accommodate. Although the compiler automatically advances
to the next logical page when you use the LINAGE-COUNTER register, header
information is not printed, and the overflow lines begin the next logical page.

If you want your program to advance to the next page and print page headers on
the new page when the page is full, you should include routines in your program
that limit the number of lines on each logical page.

16-16 Producing Printed Reports with VAX COBOL

Example 16-3 demonstrates how to include these routines in your program using
the logical page shown in Figure 16-8.

Figure 16-8: A 28-Line Logical Page

1 p
2 p
3 p
4 p
5 p
6 p
7 p
8 p
9 p
10 p
11 p
12 p
13 p
14 p
15 p
16 p
17 p
18 p
19 p
20 p
21 p
22 p
23 p
24 p
25 FP
26 FP
27 B
28 B

1 2 3 4 5 6
12345678901234567890123456789012345678901234567890123456789012

XYZ Clothing Store
STATEMENT OF ACCOUNT

Page: 999999999
Date: 99-XXX-99

Name: XXXXXXXXXXX X XXXXXXXXXXXXXX Account Number: 999999999
Address: XXX
Date: Amount Description

xx
x • x
x x
x x
x x
x x
x x
x x
x.:: One purchase per line

__.. x -
x x
x x
x x
x x
x x
x x
x x x ,, x
xx

Legend: T= Top margin = line 00
P =Page body =lines 01-26
F = Footing area = lines 25-26
B = Bottom margin = lines 27-28

ZK-6085-GE

In Figure 16-8, each detail line of the report represents a separate purchase at
the XYZ Clothing Store. Each page can contain from 1 to 18 purchase lines. Each
customer can have an unlimited number of purchases. A total of purchases for
each customer is to appear on line 25 of that customer's last statement page.
Headers appear on the top of each page.

The input file, INPUT.DAT, consists of individual purchase records sorted
in ascending order by customer account number and purchase date. In
Example 16-3, the LINAGE clause defines a footing area so the program can
check for a page-overflow condition. When the condition is detected, the program
executes its header routine to print lines 1 to 7.

Producing Printed Reports with VAX COBOL 16-17

Example 16-3: Checking for Page-Overflow on a 28-Line Logical Page

IDENTIFICATION DIVISION.
PROGRAM-ID. REPOVF.
* Print this report: PRINT REPORT.DAT/NOFEED
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "INPUT.DAT".
SELECT REPORT-FILE ASSIGN TO "REPORT.DAT".

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE.
01 INPUT-RECORD.

02 I-NAME.
03 I-FIRST
03 I-MID
03 I-LAST

02 I-ADDRESS.
03 I-STREET
03 I-CITY
03 I-STATE
03 I-ZIP

02 I-ACCOUNT-NUMBER
02 I-PURCHASE-DATE
02 I-PURCHASE-AMOUNT
02 I-PURCHASE-DESCRIP

FD REPORT-FILE
LINAGE IS 26 LINES

WITH FOOTING AT
LINES AT BOTTOM

01 PRINT-LINE
WORKING-STORAGE SECTION.
01 HEAD-1.

02 Hl-LC PIC 99.
02 FILLER PIC X(20)
02 FILLER PIC X(25)
02 FILLER PIC x (6)
02 Hl-PAGE PIC z (9).

01 HEAD-2.
02 H2-LC PIC 99.

PIC x (10).
PIC x.
PIC x (15).

PIC x (20).
PIC X(15).
PIC xx.
PIC 99999.
PIC x (9) ~

PIC xxxxxx.
PIC S9(6)V99.
PIC X(20).

25
2.

PIC x (80).

VALUE "XYZ Clothing
VALUE SPACES.
VALUE "Page: "

Store "

02 FILLER PIC X(20) VALUE "STATEMENT OF ACCOUNT".
02 FILLER PIC X(25) VALUE SPACES.
02 FILLER PIC X(6) VALUE "Date: "
02 H2-DATE PIC x (9) .

01 HEAD-3.
02 H3-LC PIC 99.
02 FILLER PIC X(6) VALUE "Name: "
02 H3-FNAME PIC X(lO).
02 FILLER PIC x VALUE SPACE.
02 H3-MNAME PIC x.
02 FILLER PIC x VALUE SPACE.
02 H3-LNAME PIC x (15).
02 FILLER PIC X(17) VALUE " Account Number: "
02 H3-NUM PIC z (9).

(continued on next page)

16-18 Producing Printed Reports with VAX COBOL

Example 16-3 (Cont.): Checking for Page-Overflow on a 28-Line Logical Page

01 HEAD-4.
02 H4-LC PIC 99.
02 FILLER PIC x (9) VALUE "Address: "
02 H4-STRT PIC X(20).
02 FILLER PIC x VALUE SPACE.
02 H4-CITY PIC X(15).
02 FILLER PIC x VALUE SPACE.
02 H4-STATE PIC xx.
02 FILLER PIC x VALUE SPACE.
02 H4-ZIP PIC 99999.

01 HEAD-5.
02 HS-LC PIC 99.
02 FILLER PIC X(4) VALUE "Date".
02 FILLER PIC X(7) VALUE SPACES.
02 FILLER PIC X(6) VALUE "Amount".
02 FILLER PIC X(lO) VALUE SPACES.
02 FILLER PIC X(ll) VALUE "Description".

01 HEAD-6 PIC X(61) VALUE ALL "-"
01 DETAIL-LINE.

02 DET-LC PIC 99.
02 DL-DATE PIC X(9).
02 FILLER PIC x VALUE SPACE.
02 DL-AMT PIC $ZZZ,ZZZ.99-.
02 FILLER PIC x VALUE SPACE.
02 DL-DESC PIC x (20).

01 TOTAL-LINE.
02 TOT-LC PIC 99.
02 FILLER PIC X(25) VALUE "Total purchases to date: "
02 TL PIC $ZZZ,ZZZ,ZZZ.99-.

01 TOTAL-PURCHASES PIC S9(9)V99.
01 PAGE-NUMBER PIC S9(9).
01 HOLD-I-ACCOUNT-NUMBER PIC X(9) VALUE IS LOW-VALUES.
01 END-OF-FILE PIC X VALUE IS "N".
01 THESE-MANY PIC 99 VALUE IS 1.

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN INPUT INPUT-FILE
OUTPUT REPORT-FILE.

DISPLAY" Enter date--DD-MMM-YY:".
ACCEPT H2-DATE.
PERFORM AlOO-READ-INPUT UNTIL END-OF-FILE "Y".

A050-WRAP-UP.
CLOSE INPUT-FILE

REPORT-FILE.
DISPLAY "END-OF-JOB".
STOP RUN.

A100-READ-INPUT.
READ INPUT-FILE AT END MOVE "Y" TO END-OF-FILE

PERFORM A400-PRINT-TOTALS
MOVE HIGH-VALUES TO I-ACCOUNT-NUMBER.

DISPLAY INPUT-RECORD.
IF END-OF-FILE NOT = "Y"

AND I-ACCOUNT-NUMBER NOT = HOLD-I-ACCOUNT-NUMBER
PERFORM A200-NEW-CUSTOMER.

IF END-OF-FILE NOT = "Y"
AND I-ACCOUNT-NUMBER = HOLD-I-ACCOUNT-NUMBER

PERFORM A300-PRINT-DETAIL-LINE.
MOVE I-ACCOUNT-NUMBER TO HOLD-I-ACCOUNT-NUMBER.

(continued on next page)

Producing Printed Reports with VAX COBOL 16-19

Example 16-3 (Cont.): Checking for Page-Overflow on a 28-Line Logical Page

A200-NEW-CUSTOMER.
IF HOLD-I-ACCOUNT-NUMBER = LOW-VALUES

PERFORM A600-SET-UP-HEADERS
PERFORM A500-PRINT-HEADERS
PERFORM A300-PRINT-DETAIL-LINE

ELSE
PERFORM A400-PRINT-TOTALS
PERFORM A600-SET-UP-HEADERS
PERFORM A500-PRINT-HEADERS
PERFORM A300-PRINT-DETAIL-LINE.

A300-PRINT-DETAIL-LINE.
MOVE I-PURCHASE-DATE TO DL-DATE.
MOVE I-PURCHASE-AMOUNT TO DL-AMT.
MOVE I-PURCHASE-DESCRIP TO DL-DESC.
WRITE PRINT-LINE FROM DETAIL-LINE

AT END-OF-PAGE PERFORM A500-PRINT-HEADERS.
ADD I-PURCHASE-AMOUNT TO TOTAL-PURCHASES.

A400-PRINT-TOTALS.
MOVE TOTAL-PURCHASES TO TL.
COMPUTE THESE-MANY = 25 - LINAGE-COUNTER.
WRITE PRINT-LINE FROM TOTAL-LINE AFTER ADVANCING THESE-MANY LINES.
MOVE 0 TO TOTAL-PURCHASES.

A500-PRINT-HEADERS.
ADD 1 TO PAGE-NUMBER.
MOVE PAGE-NUMBER TO Hl-PAGE.
WRITE PRINT-LINE FROM HEAD-1 AFTER ADVANCING PAGE.
WRITE PRINT-LINE FROM HEAD-2.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE.
WRITE PRINT-LINE FROM HEAD-3.
WRITE PRINT-LINE FROM HEAD-4.
WRITE PRINT-LINE FROM HEAD-5.
WRITE PRINT-LINE FROM HEAD-6.

A600-SET-UP-HEADERS.
MOVE I-FIRST TO H3-FNAME.
MOVE I-MID TO H3-MNAME.
MOVE I-LAST TO H3-LNAME.
MOVE I-ACCOUNT-NUMBER TO H3-NUM.
MOVE I-STREET TO H4-STRT.
MOVE I-CITY TO H4-CITY.
MOVE I-STATE TO H4-STATE.
MOVE I-ZIP TO H4-ZIP.

16.6.6 Printing a Linage-File Report

The default PRINT command inserts a page ejection when a form nears the end
of a page. Therefore, when the default PRINT command refers to a linage-file
report, it can change the report's page spacing.

To print a linage-file report, use the /NOFEED qualifier with the DCL PRINT
command as follows:

PRINT report-file-specification/NOFEED

The LINAGE clause causes a VAX COBOL report file to be in print-file format.
(See Chapter 8 for more information.) When a WRITE statement positions the
file to the top of the next logical page, the device is positioned by line spacing
rather than by page ejection or form feed.

For more information on printing your report, see Section 16. 7.

16-20 Producing Printed Reports with VAX COBOL

16.6. 7 A Linage-File Report Example

Example 16-4 shows a VAX COBOL program that produces a linage-file report.

The LINAGE clause in the following File Description entry defines the logical
page areas shown in Figure 16-9:

FD MINIFl-REPORT
LINAGE IS 13 LINES

LINES AT TOP 2
LINES AT BOTTOM 5.

Figure 16-9 shows a 20-line logical page that includes a top margin (T), a page
body (P), a footing area (F), and a bottom margin (B).

Figure 16-9: A 20-Line Logical Page

1 T
2 T
3 p
4 p
5 p
6 p
7 p
8 p
9 p
10 p
11 p
12 p
13 p
14 p
15 FP
16 B
17 B
18 B
19 B
20 B

1 2 3 4 5 6
12345678901234567890123456789012345678901234567890123456789012

Dear Mr. XXXXXXXXXXXXXXX Date: 99-XXX-99

xx
x t x
x x
x =- Preprint message is here ~ x

~ + ~
xx

TO: XXXXXXXXXXX X XXXXXXXXXXXXXXX
xxxxxxxxxxx x xxxxxxx
xxxxxxxxxxxxxxxx xx 99999

Legend: T =Top margin = lines 1 and 2
P = Page body = lines 3 through 15
F = Footing area = line 15
B = Bottom margin = lines 16 through 20

ZK-6086-GE

The first line to which the logical page can be positioned is the third line on
the page; this is the first print line. The page-overflow condition occurs when a
WRITE statement causes the LINAGE-COUNTER value to equal 15. Line 15 is
the last line on the page on which text can be written. The page advances to the
next logical page when a WRITE statement causes the LINAGE-COUNTER value
to exceed 15. The pointer is then positioned on the first print line of the next
logical page.

Producing Printed Reports with VAX COBOL 16-21

Example 16-4: Programming a 20-Line Logical Page Defined by the LINAGE
Clause

IDENTIFICATION DIVISION.
PROGRAM-ID. REPLINAG.
* Print the report - PRINT MINIFl.DAT/NOFEED
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "REPIN.DAT".
SELECT MINIFl-REPORT ASSIGN TO "MINIFl.DAT".

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE.
01 INPUT-RECORD.

02 I-NAME.
03 I-FIRST
03 I-MID
03 I-LAST

02 I-ADDRESS.
03 I-STREET
03 I-CITY
03 I-STATE
03 I-ZIP

FD MINIFl-REPORT
LINAGE IS 13 LINES

LINES AT TOP
LINES AT BOTTOM

01 MINIFl-PRINT-LINE
WORKING-STORAGE SECTION.
01 END-OF-FILE
01 LINE-UP-OK
01 MINIFl-LINE-3.

02 FILLER
02 MINIFl-LAST
02 FILLER
02 FILLER

PIC X(lO).
PIC x.
PIC X(lS).

PIC X(20).
PIC X(lS).
PIC xx.
PIC 99999.

2
5.

PIC x (80).

PIC x
PIC x

PIC X(9)
PIC X(lS).
PIC x (23)
PIC X(6)

VALUE
VALUE

VALUE

VALUE
VALUE

02 MINIFl-DATE PIC 99/99/99.
01 MINIFl-LINE-13.

02 FILLER PIC x (4) VALUE
02 MINIFl-NAME PIC x (26).

01 MINIFl-LINE-14.

SPACE.
SPACE.

SPACES.

SPACES.
"Date:

SPACES.

02 FILLER PIC X(4) VALUE SPACES.
02 MINIFl-STREET

01 MINIFl-LINE-15.
02 FILLER
02 MINIFl-CITY
02 FILLER
02 MINIFl-STATE
02 FILLER
02 MINIFl-ZIP

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN OUTPUT MINIFl-REPORT.
ACCEPT MINIFl-DATE FROM DATE.

PIC X(20).

PIC X(4) VALUE
PIC X(15).
PIC x VALUE
PIC xx.
PIC x VALUE
PIC 99999.

PERFORM A300-FORM-LINE-UP UNTIL LINE-UP-OK= "Y".
OPEN INPUT INPUT-FILE.
PERFORM AlOO-READ-INPUT UNTIL END-OF-FILE= "Y".

AOlO-WRAP-UP.
CLOSE INPUT-FILE

MINIFl-REPORT.
DISPLAY "END OF JOB".
STOP RUN.

SPACES.

SPACE.

SPACE.

II

(continued on next page)

16-22 Producing Printed Reports with VAX COBOL

Example 16-4 (Cont.}: Programming a 20-Line Logical Page Defined by the
LINAGE Clause

AlOO-READ-INPUT.
READ INPUT-FILE AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y"

PERFORM A200-PRINT-REPORT.
A200-PRINT-REPORT.

MOVE I-LAST TO MINIFl-LAST.
WRITE MINIFl-PRINT-LINE FROM MINIFl-LINE-3 BEFORE ADVANCING 1 LINE.
MOVE SPACES TO MINIFl-PRINT-LINE.
WRITE MINIFl-PRINT-LINE AFTER ADVANCING 9 LINES.
MOVE I-NAME TO MINIFl-NAME.
WRITE MINIFl-PRINT-LINE FROM MINIFl-LINE-13 BEFORE ADVANCING 1 LINE.
MOVE I-STREET TO MINIFl-STREET.
WRITE MINIFl-PRINT-LINE FROM MINIFl-LINE-14 BEFORE ADVANCING 1 LINE.

TO MINIFl-CITY. MOVE I-CITY
MOVE I-STATE
MOVE I-ZIP

TO MINIFl-STATE.
TO MINIFl-ZIP.

WRITE MINIFl-PRINT-LINE FROM MINIFl-LINE-15 BEFORE ADVANCING 1 LINE.
A300-FORM-LINE-UP.

MOVE ALL "X" TO INPUT-RECORD.
PERFORM A200-PRINT-REPORT 3 TIMES.
DISPLAY "Is Alignment OK? (Y/N) : " WITH NO ADVANCING.
ACCEPT LINE-UP-OK.

16.7 Modes for Printing Reports

Either your VAX. COBOL program can allocate a printer directly and immediately
produce the report, or it can spool the report to a mass storage device for printing
later. Section 16.7.1 and Section 16.7.2 describe these two modes of printing.
Note that spooling the report to a mass storage device makes better use of system
resources than allocating a printer directly.

16.7.1 Directly Allocating a Printer

To directly allocate a printer, your VAX. COBOL program must include the
printer's device name in the file specification for the report file as follows:

SELECT REPORT-FILE ASSIGN TO "LP:".

Directly allocating the printer has the following advantages:

• Results are immediate.

• Numbers on a preprinted form are associated with a record in a file (as in the
case of payroll checks). For example, as the operator opens each box of forms
and mounts them in the printer (or remounts them if a paper jam occurs),
your program can request and accept the starting number from each new
box of forms. If the program then outputs a record for each printed form and
includes the form number in the record, you establish an immediate audit
trail.

Directly allocating the printer has the following disadvantages:

• Either you must wait until all printer requests from the system spooler are
completed, or you must change job priorities.

Producing Printed Reports with VAX COBOL 16-23

• You tie up the printer for as long as your job runs. If your program does
computations and runs for a long time, you could significantly reduce your
installation's pages-printed-per-day production schedule.

• You do not have a backup report file in the event of power failure or other
unforeseen circumstances. Therefore, if your job fails, you must begin again.

16. 7 .2 Spooling to a Mass Storage Device

To spool your report to a mass storage device (such as a disk or magnetic tape)
for later printing, your VAX COBOL program must include a file specification in
the report file section. For example, to spool JAN28P.DAT to the device DBl:, you
would include the following code in your program:

SELECT REPORT-FILE ASSIGN TO "DB1:JAN28P".

Spooling to a mass storage device has the following advantages:

• You can run your job at any time regardless of other printer activity and
printer status.

• Your application program does not make immediate resource demands on the
printer.

• You can schedule the printing based on production and shop requirements,
and print the file according to your priority needs.

• You optimize use of the printer. Spooling results in printing the maximum
number of lines per minute.

• You have a backup of the file.

Spooling to a mass storage device has the following disadvantages:

• You do not see immediate results.

• It is difficult and expensive to input preprinted form numbers (for example,
check numbers) from your forms into your report file.

16.8 Programming the Report Writer Report

Report Writer allows you to describe the physical appearance of a report's format.
To do this, you specify the Report Writer statements that describe the report's
contents and control in the Report Section of the Data Division. These statements
replace many complex, detailed procedures that you would otherwise have to
include in a conventional or linage-file report.

The following sections explain how to produce a report with the Report Writer.
These sections discuss how to do the following:

• Use the REPORT clause

• Define the Report Section and the report file

• Define the Report Writer logical page

• Specify multiple reports

• Define and increment totals

• Process a Report Writer report

• Select a Report Writer type

16-24 Producing Printed Reports with VAX COBOL

Detailed examples using Report Writer are documented in Section 16.9.

16.8.1 Using the REPORT Clause in the File Section

To create a report with Report Writer, you must write a report to a specific
file. That file is described by a File Description (FD) entry; however, unlike a
conventional or linage-file report, your FD entry for a Report Writer file must
contain the REPORT clause, and you must assign a name for each report in the
REPORT clause.

For instance, in the following example, the File Description on the left does not
specify Report Writer; however, the example on the right correctly shows a Report
Writer File Section entry:

FD SALES-REPORT FD SALES-REPORT

01 PRINT-AREA PIC X(l33). REPORT IS MASTER-LIST.

To completely describe the report that you specify in the REPORT clause, you
must define a Report Section. Section 16.8.2 discusses the Report Section.

16.8.2 Defining the Report Section and the Report File

A Report Section provides specific information about the report that is specified
with the REPORT clause. Each report listed in the File Section must be defined
in the Report Section.

To define a report, use a Report Description (RD) entry followed by one or more
Report Group Description entries (01-level) in the Report Section. For example:

FILE SECTION.

FD SALES-REPORT
REPORT IS MASTER-LIST.

REPORT SECTION.

RD MASTER-LIST
PAGE LIMIT IS 66

HEADING 1
FIRST DETAIL 13
LAST DETAIL 30
FOOTING 50.

The RD supplies information about the format of the printed page and the
organization of the subdivisions (see Section 16.8.4).

16.8.3 Defining a Report Writer Logical Page with the PAGE Clause

To define the logical page for a Report Writer report, you use the PAGE clause.
This clause enables you to specify the number of lines on a page and the format
of that page. For example, the PAGE clause allows you to specify where the
heading, detail, and footing appear on the printed page. If you want to use
vertical formatting, you must use the PAGE clause.

Producing Printed Reports with VAX COBOL 16-25

The RD entry example in Section 16.8.2 contains the following PAGE clause
information:

RD Entry Line

PAGE LIMIT IS

HEADING

FIRST DETAIL

LAST DETAIL

FOOTING

Meaning

66 Maximum number of lines per page is 66

1 Line number on which the first report heading (RH) or page
heading (PH) should print on each page

13 First line number on which a control heading (CH), detail
(DE), or control footing (CF) should print on a page

30 Last line number on which a CH or DE can print on a page

50 Last line number on which a control footing (CF) can print on
a page (if specified, page footing (PF) and report footing (RF)
report groups follow the line number shown in FOOTING)

The PAGE LIMIT clause line numbers are in ascending order and must not
exceed the number specified in the PAGE LIMIT clause (in this example, 66
lines).

Section 16.8.4 describes report group entries in more detail.

16.8.4 Describing Report Group Description Entries

In a Report Writer program, report groups are the basic elements that make up
the logical page. There are seven types of report groups, which consist of one or
more report lines printed as a complete unit (for example, a page heading). Each
report line can be subdivided into data items or fields.

The seven types of report groups are as follows:

Report Group Type

REPORT HEADING

PAGE HEADING

CONTROL HEADING

DETAIL

CONTROL FOOTING

PAGE FOOTING

REPORT FOOTING

Description

Prints a title or any other information that pertains to the
entire report

Prints a page heading and column headings

Prints a heading when a control break occurs

Prints the primary data of the report

Prints totals when a control break occurs

Prints totals or comments at the bottom of each page

Prints trailer information for the report

A Report Writer program can include both printable report groups and null report
groups. Null report groups are groups that do not print but are used for control
breaks.

Figure 16-10 shows the report group presentation order found on a logical page.
You must code at least one DETAIL report group (printable or null) in your
program to produce a report. All other report groups are optional. Note that you
can code a report group by using the abbreviations shown in Figure 16-10.

16-26 Producing Printed Reports with VAX COBOL

Figure 16-10: Presentation Order for a Logical Page

REPORT HEADING
PAGE HEADING

CONTROL HEADING FINAL }
CONTROL HEADING 1

CONTROL HEADING 2

DETAIL

CONTROL FOOTING 2}
CONTROL FOOTING 1

CONTROL FOOTING FINAL
PAGE FOOTING

REPORT FOOTING

(RH)
(PH)

(CH)

(DE)

(CF)

(PF)
(RF)

ZK-6087-GE

Figure 16-11 shows a report that uses all seven of the report groups listed in the
preceding table.

Producing Printed Reports with VAX COBOL 16-27

Figure 16-11: Sample Report Using All Seven Report Groups

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

SALES REPORT

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

PAGE HEADING--+ ~ MONTH WK. SALES

DETAIL
LINES

0
0

~ JAN. REPORT
~ JAN. 4 10.000
0
~JAN. 11 15.000

0

i JAN. TOTALS 25.000 i
0 0
0 0
0 0
i CONTINUED ~
0 0

8 MONTH WK. SALES 8
0 0
0 0
0 0 g FEB.REPORT g
g FEB. 2 9.000 g
g FEB. 411.000 g
0 0 g FEB. TOTALS 20.000 g

0 0
0 0
0 0
0 0
o CONTINUED o
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

i END OF REPORT i
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

+-- PAGE FOOTING

REPORT FOOTING

ZK-1551-GE

To code report groups, you use an 01-level entry to describe the physical and
logical characteristics of the report group and the Report Writer TYPE clause
to indicate the type of the report group. The TYPE clause can be preceded by
a user-defined report group name. The CONTROL HEADING and FOOTING

16-28 Producing Printed Reports with VAX COBOL

report groups use data names that are also specified as CONTROL clause
names in the Report Description entry (see Section 16.8.10 for CONTROL clause
information).

The following example shows how to use the TYPE and CONTROL clauses:

DATA DIVISION.

REPORT SECTION.

01 REPORT-HEADER TYPE IS REPORT HEADING.
01 PAGE-HEADER TYPE IS PAGE HEADING.
01 CONTROL-HEADER TYPE IS CONTROL HEADING CONTROL-NAME-1.
01 DETAIL-LINE TYPE IS DETAIL.
01 CONTROL-FOOTER TYPE IS CONTROL FOOTING CONTROL-NAME-2.
01 PAGE-FOOTER TYPE IS PAGE FOOTING.
01 REPORT-FOOTER TYPE IS REPORT FOOTING.

16.8.5 Vertical Spacing for the Logical Page

You use the LINE clause for positioning vertical lines within a report group or
for indicating vertical line space between two report groups. The LINE clause
indicates the start of an absolute print line (a specific line on a page) or where a
relative print line (an increment to the last line printed) is to print on the page.
You can use this clause with all report groups.

In the following example, the LINE clause indicates that this report group begins
on absolute line number 5 on a page. LINE IS 7 indicates that this report group
has a second line of data found on absolute line number 7. Absolute line numbers
must be specified in ascending order.

01 PAGE-HEADER TYPE IS PAGE HEADING.
02 LINE IS 5.

02 LINE IS 7.

In the following example the term PLUS in the LINE clause indicates that
DETAIL-LINE prints two lines after the last line of the previous report group.
If you used a CONTROL HEADING report group that ended on line 20 before
DETAIL-LINE, then DETAIL-LINE would print beginning on line 22.

01 DETAIL-LINE TYPE IS DETAIL.
02 LINE PLUS 2.

In the following example the LINE clause specifies that the REPORT FOOTING
report group prints on line 32 of the next page:

01 REPORT-FOOTER TYPE IS REPORT FOOTING.
02 LINE IS 32 ON NEXT PAGE.

You can code NEXT PAGE only for CONTROL HEADING, DETAIL, CONTROL
FOOTING, and REPORT FOOTING groups, and only in the first LINE clause in
that report group entry.

Within the report group, absolute line numbers must be in ascending order
(although not consecutive) and must precede all relative line numbers.

You can use the NEXT GROUP clause instead of the LINE clause to control line
spacing. In NEXT GROUP clause, you specify the amount of vertical line space
you want following one report group and before the next. You use this clause in

Producing Printed Reports with VAX COBOL 16-29

the report group that will have the space following it, as shown in the following
example:

01 CONTROL-HEADER TYPE IS CONTROL HEADING CONTROL-NAME-1
NEXT GROUP PLUS 4.

01 DETAIL-LINE TYPE IS DETAIL.

This example indicates relative line use. The report group (DETAIL) immediately
following this CONTROL HEADING report group will print on the fourth line
after the CH's last print line.

You can also specify absolute line spacing with the NEXT GROUP clause. An
absolute line example-NEXT GROUP IS 10-places the next report group on
line 10 of the page. In addition you can use NEXT GROUP NEXT PAGE, which
causes a page-eject to occur before the NEXT GROUP report group prints.

NEXT GROUP can be coded only for REPORT HEADING, CONTROL HEADING,
DETAIL, CONTROL FOOTING, and PAGE FOOTING report groups, and only at
the 01 level.

A PAGE FOOTING report group must not specify the NEXT PAGE phrase of the
NEXT GROUP clause.

Both the LINE and NEXT GROUP clauses must adhere to the page parameters
specified in the PAGE clause in the RD entry.

In addition, the Report Writer facility keeps track of the number of lines printed
or skipped on each page by using the LINE-COUNTER. LINE-COUNTER
references a special register that the compiler generates for each Report
Description entry in the Report Section. The Report Writer maintains the value
of LINE-COUNTER and uses this value to determine the vertical positioning of a
report.

16.8.6 Horizontal Spacing for the Logical Page

The COLUMN NUMBER clause defines the horizontal location of items within a
report line.

You use the COLUMN NUMBER clause only at the elementary level. This clause
must appear in or be subordinate to an entry that contains a LINE NUMBER
clause. Within the description of a report line, the COLUMN NUMBER clauses
must show values in ascending column order. Column numbers must be positive
integer literals with values from 1 to the maximum number of print positions on
the printer. For example:

01 DETAIL-LINE
TYPE DETAIL
LINE PLUS 1.
02 COLUMN 1
02 COLUMN 17
02 COLUMN 28
02 COLUMN 40
02 COLUMN 97

PIC X(l5) SOURCE LAST-NAME.
PIC X(lO) SOURCE FIRST-NAME.
PIC XX SOURCE MIDDLE-INIT.
PIC X(20) SOURCE ADDRESS.
PIC $$$,$$$,$$$.99 SOURCE INVOICE-SALES.

Omitting the COLUMN clause creates a null (nonprinting) report item. Null
report items are used to accumulate totals and force control breaks as described
in Section 16.8.4.

The following example shows the use of a COLUMN NUMBER clause in a LINE
clause:

02 LINE 15 COLUMN 1 PIC X(12) VALUE "SALES TOTALS".

16-30 Producing Printed Reports with VAX COBOL

The previous example results in the following output:

1 2 3 4
column 1234567890123456789012345678901234567890

SALES TOTALS

In the next example, the COLUMN NUMBER clauses are subordinate to a LINE
NUMBER clause:

02 LINE
03
03
03
03
03

5 ON NEXT PAGE.
COLUMN 1 PIC X(12) VALUE "(Cust-Number".
COLUMN 14 PIC 9999 SOURCE CUST-NUM.
COLUMN 18 PIC X VALUE ") ".
COLUMN 20 PIC X(15) VALUE "TOTAL PURCHASES".
COLUMN 36 PIC $$$$,$$$.99 SUM TOT-PURCHS.

The previous example produces the following output:

1 2 3 4
column 1234567890123456789012345678901234567890123456

(Cust-Number 1234) TOTAL PURCHASES $1,432.99

16.8. 7 Assigning a Value in a Print Line

In a Report Writer program, one way you specify a value for an item is to use the
VALUE clause. This clause designates that the data item has a constant literal
value. You often use this clause with REPORT HEADING and PAGE HEADING
report groups, because the data in these groups is usually constant, as shown in
the following example:

01 TYPE IS PAGE HEADING.
02 LINE 5.

03 COLUMN 1
PIC X(27) VALUE "CUSTOMER MASTER FILE REPORT".

03 COLUMN 40
PIC X(5) VALUE "SALES".

The previous example results in the following output:

Output:

1 2 3 4 5
column 12345678901234567890123456789012345678901234567890

CUSTOMER MASTER FILE REPORT SALES

16.8.8 Defining the Source for a Print Field

To assign a variable value to an item in a Report Writer program, you use the
SOURCE clause.

The SOURCE clause, written in the Report Section, is analogous to the MOVE
statement.

The clause names a data item that is moved to a specified position on the print
line. Before an item that contains a SOURCE clause is printed, the Report Writer
moves the value in the field named in the SOURCE clause into the print line at
the print position specified by the COLUMN clause, as shown in the following
example. Any data editing specified by the PICTURE clause is performed before
the data is moved to the print line.

Producing Printed Reports with VAX COBOL 16-31

01 DETAIL-LINE
TYPE DETAIL
LINE PLUS 1.
02 COLUMN 1 PIC X(15) SOURCE LAST-NAME.
02 COLUMN 17 PIC X(lO) SOURCE FIRST-NAME.
02 COLUMN 28 PIC XX SOURCE MIDDLE-INIT.
02 COLUMN 35 PIC X (20) SOURCE ADDRESS.
02 COLUMN 55 PIC X(20) SOURCE CITY.
02 COLUMN 75 PIC XX SOURCE STATE.
02 COLUMN 78 PIC 99999 SOURCE ZIP.

You can also code a SOURCE clause with PAGE-COUNTER or LINE-COUNTER
as its operand, as the following example shows. PAGE-COUNTER references
a special register created by the compiler for each Report Description entry in
the Report Section. This counter automatically increments by 1 each time the
Report Writer executes a page advance. The use of PAGE-COUNTER eliminates
Procedure Division statements you normally would write to explicitly count pages,
as shown in the following example:

01 TYPE IS PAGE HEADING.
02 LINE 5.

03 COLUMN 1
PIC X(27) VALUE "CUSTOMER MASTER FILE REPORT".

03 COLUMN 52
PIC X(4) VALUE "PAGE".

03 COLUMN 57
PIC ZZZ9
SOURCE PAGE-COUNTER.

This example produces the following output:

1 2 3 4 5 6
column 123456789012345678901234567890123456789012345678901234567890

CUSTOMER MASTER FILE REPORT PAGE 9

16.8.9 Specifying Multiple Reports

To include two or more reports in one file, you specify multiple identifiers in the
REPORTS clause and provide multiple RDs in the Report Section.

To identify the lines of two or more reports in one file, you use the CODE clause,
as shown in the following example:

FILE SECTION.
FD REPORT-FILE

REPORTS ARE REPORTl
REPORT2
REPORT3.

REPORT SECTION.
RD REPORTl ...

CODE"AA".

RD REPORT2 ...
CODE"BB".

RD REPORT3 ...
CODE"CC".

The CODE clause specifies a 2-character nonnumeric literal that identifies each
print line as belonging to a specific report. When the CODE clause is specified,
the literal is automatically placed in the first two character positions of each
Report Writer logical record. Note that if the clause is specified for any report in
a file, it must be used for all reports in that file.

16-32 Producing Printed Reports with VAX COBOL

16.8.10 Generating and Controlling Report Headings and Footings

When you write a report that has control headings and/or footings, you must use
the CONTROL clause to create control levels that determine subsequent headings
and totals.

The CONTROL clause, found in the RD entry, names data items that indicate
when control breaks occur. The CONTROL clause specifies the data items in
major to minor order. You must define these CONTROL data items, or control
names, in the Data Division, and reference them in the appropriate CONTROL
HEADING and FOOTING report groups.

When the value of a control name changes, a control break occurs. The Report
Writer only acknowledges this break when you execute a GENERATE or
TERMINATE statement for the report, which causes the information related
to that CONTROL report group to be printed.

In the following example, the report defines two control totals (MONTH-CONTRL
and WEEK-CONTRL) in the CONTROL clause. The source of these control
totals is in an input file named IN-FILE. The file is sorted in ascending sequence
by MONTH-CONTRL and WEEK-CONTRL. The Report Writer automatically
monitors these fields in the input file for any changes. If a new record contains
different data than the previous record read, Report Writer triggers a control
break.

FD
01

IN-FILE.
INPUT-RECORD.
02 MONTH-CONTRL
02
02
02 WEEK-CONTRL

PIC ...

PIC ...
FD REPORT-FILE REPORT IS SALES-REPORT.

REPORT SECTION.
RD SALES-REPORT.

CONTROLS ARE MONTH-CONTRL, WEEK-CONTRL.
01 DETAIL-LINE TYPE IS DETAIL.

01 TYPE IS CONTROL FOOTING MONTH-CONTRL.

01 TYPE IS CONTROL FOOTING WEEK-CONTRL.

In this example, if the value in WEEK-CONTRL changes, a break occurs and
Report Writer processes the CONTROL FOOTING WEEK-CONTRL report group.
If the value in MONTH-CONTRL changes, a break occurs and Report Writer
processes both CONTROL FOOTING report groups, because a break in any
control field implies a break in all lower-order control fields as well.

The same process occurs if you include similar CONTROL HEADING report
groups. However, CONTROL HEADING control breaks occur from a break to
minor levels, while CONTROL FOOTING control breaks occur from a break to
major levels.

The following example demonstrates the use of FINAL, a special control field that
names the most major control field. You specify FINAL once, in the CONTROL
clause, as the most major control level. When you code FINAL, a FINAL control
break and subsequent FINAL headings and footings occur during program
execution: once at the beginning of the report (as part of the report group,
CONTROL HEADING FINAL), before the first detail line is printed; and once at
the end of the report (as part of the report group, CONTROL FOOTING FINAL),
after the last detail line is printed.

Producing Printed Reports with VAX COBOL 16-33

01 TYPE CONTROL FOOTING FINAL.
02 LINE 58.

04 COLUMN 1 PIC X(32) VALUE
"TOTAL SALES FOR YEAR-TO-DATE WAS".

04 COLUMN 45 PIC 9(6) .99 SOURCE TOTAL-SALES.

This example produces the following output:

1 2 3 4 5
column 1234567890123456789012345678901234567890123456789012345

TOTAL SALES FOR YEAR-TO-DATE WAS 953208.90

16.8.11 Defining and Incrementing Totals

In addition to using either the VALUE or SOURCE clause to assign a value to a
report item, you can use the SUM clause to accumulate values of report items.
This clause establishes a sum counter that is automatically summed during the
processing of the report. You code a SUM clause only in a TYPE CONTROL
FOOTING report group.

The identifiers of the SUM clause are either elementary numeric data items not
in the Report Section or other sum counters in the Report Section that are at
the same or lower level in the control hierarchy of the report, as specified in the
CONTROL clause.

The SUM clause provides three forms of sum accumulation: subtotaling,
crossfooting, and rolling-forward. See Section 16.3 for further details.

16.8.11.1 Subtotaling

In subtotaling, the SUM clause references elementary numeric data items that
appear in the File or Working-Storage Sections and then generates sums of those
items.

In the following example, EACH-WEEK represents a CONTROL clause name.
COST represents a numeric data item in the File Section that indicates weekly
expenses for a company. DAY and MONTH indicate the particular day and
month.

01 TYPE CONTROL FOOTING EACH-WEEK.
02 LINE PLUS 2.

03 COLUMN 1 PIC rs X(30)
VALUE IS "TOTAL EXPENSES FOR WEEK/ENDING".

03 COLUMN 33 PIC rs X(4) SOURCE IS MONTH.
03 COLUMN 39 PIC IS X(2) SOURCE IS DAY.
03 WEEK-AMT COLUMN 45

PIC ZZ9.99 SUM COST.

This example produces the following subtotal output:

1 2 3 4 5
column 12345678901234567890123456789012345678901234567890

TOTAL EXPENSES FOR WEEK/ENDING JULY 02 799.23

When the value of EACH-WEEK changes, a control break occurs that causes this
TYPE CONTROL FOOTING report group to print. The value of the sum counter
is edited according to the PIC clause accompanying the SUM clause. Then the
sum lines are printed in the location specified by the items' LINE and COLUMN
clauses.

16-34 Producing Printed Reports with VAX COBOL

16.8.11.2 Crossfooting

In crossfooting, the SUM clause adds all the sum counters in the same CONTROL
FOOTING report group and automatically creates another sum counter.

In the following example, the CONTROL FOOTING group shows both subtotaling
(SALES-1) and crossfooting (SALES-2):

01 TYPE DETAIL LINE PLUS 1.
05 COLUMN 15 PIC 999.99 SOURCE BRANCHl-SALES.
05 COLUMN 25 PIC 999.99 SOURCE BRANCH2-SALES.

01 TYPE CONTROL FOOTING BRANCH-TOTAL LINE PLUS 2.
05 SALES-1 COLUMN 15 PIC 999.99 SUM BRANCHl-SALES.
05 SALES-2 COLUMN 25 PIC 999.99 SUM BRANCH2-SALES.
05 SALES-TOT COLUMN 50 PIC 999.99 SUM SALES-1, SALES-2.

The SALES-1 sum contains the total of the BRANCHl-SALES column and the
SALES-2 sum contains the total of the BRANCH2-SALES column (both sums
are subtotals). SALES-TOT contains the sum of SALES-1 and SALES-2; it is a
crossfooting.

The crossfooting ouput is as follows:

1 2 3 4 5 6
column 123456789012345678901234567890123456789012345678901234567890

125.00 300.00 425.00

16.8.11.3 Rolling-Forward

When rolling totals forward, the SUM clause adds a sum counter from a
lower-level CONTROL FOOTING report group to a sum counter in a higher-level
footing group. The control logic and necessary control hierarchy for rolling
counters forward begins in the CONTROL clause.

In the following example, WEEK-AMT is a sum counter found in the lower-level
CONTROL FOOTING group, EACH-WEEK This sum counter is named
in the SUM clause in the higher-level CONTROL FOOTING report group,
EACH-MONTH. The value of each WEEK-AMT sum is added to the higher-level
counter just before the lower-level CONTROL FOOTING group is printed.

RD EXPENSE-FILE.

CONTROLS ARE EACH-MONTH, EACH-WEEK.
01 TYPE CONTROL FOOTING EACH-WEEK.

02 LINE PLUS 2.
03 COLUMN 1 PIC IS X(30)

VALUE IS "TOTAL EXPENSES FOR WEEK/ENDING".
03 COLUMN 33 PIC IS X(9) SOURCE IS MONTH.
03 COLUMN 42 PIC rs X(2) SOURCE rs DAY.
03 WEEK-AMT COLUMN 45 PIC ZZ9.99 SUM COST.

01 TYPE CONTROL FOOTING EACH-MONTH.
02 LINE PLUS 2.

03 COLUMN 10 PIC X(l8) VALUE IS "TOTAL EXPENSES FOR".
03 COLUMN 29 PIC X(9) SOURCE MONTH.
03 COLUMN 50 PIC ZZ9.99 SUM WEEK-AMT.

The following output is a result of rolling the totals forward:

1 2 3 4 5
column 1234567890123456789012345678901234567890123456789012345

TOTAL EXPENSES FOR DECEMBER 379.19

Producing Printed Reports with VAX COBOL 16-35

16.8.11.4 RESET Option

When a CONTROL FOOTING group is printed, the SUM counter in that group
is automatically reset to zero. If you want to specify when a SUM counter is
reset to zero, use the RESET phrase. RESET names a data item in a higher-level
CONTROL FOOTING that will cause the SUM counter to be reset to zero.
RESET is used only with a SUM clause.

The following example sums SALES, resetting the counter to zero only when it
encounters a new year (YEAR). This prevents the sum from being reset to zero
when a new month causes a control break, giving a running total of the months
within the year.

RD SALES-REPORT.

CONTROLS ARE YEAR, EACH-MONTH, EACH-WEEK.

01 TYPE CONTROL FOOTING EACH-MONTH
02 COLUMN 10 PIC ZZ9.99 SUM SALES RESET ON YEAR.

16.8.11.5 UPON Option

Another SUM option is the UPON phrase. This phrase allows selective
subtotaling for the DETAIL Report Group named in the phrase. When you
use the UPON phrase, you cannot reference the sum counter in the SUM clause.
You can use any File or Working-Storage Section elementary numeric data item.

When you code the UPON option with the SUM clause, the value of the data
items of the SUM clause will be added whenever the TYPE DETAIL report group
you name in the UPON option is generated.

WORKING-STORAGE SECTION.

01 WORK-AREA.

03 ADD-COUNTER

REPORT SECTION.

PIC 9 VALUE 1.

01 FIRST-DETAIL-LINE TYPE IS DETAIL LINE IS PLUS 2.

01 TYPE IS CONTROL FOOTING FINAL.

05 LINE IS PLUS 3.

05 LINE PLUS 2.
10 COLUMN 5 PIC Z(3)9 SUM ADD-COUNTER

UPON FIRST-DETAIL-LINE.

16-36 Producing Printed Reports with VAX COBOL

In the preceding example, the value of ADD-COUNTER is added to the
CONTROL FOOTING FINAL counter every time the FIRST-DETAIL-LINE
report group is generated.

16.8.12 Restricting Print Items

In a Report Writer program, the GROUP INDICATE clause eliminates repeated
information from report detail lines by allowing an elementary item in a DETAIL
report group to be printed only the first time after a control or page break. The
following example illustrates the use of this clause:

01 DETAIL-LINE TYPE DETAIL LINE PLUS 1.

*

*

05 COLUMN 1 GROUP INDICATE PIC X(6) VALUE "SALES:".
(prints only the first time after a control or page break)

05 COLUMN 10 PIC X(lO) SOURCE BRANCH.
(prints each time)

These statements produce the following lines:

SALES: BRANCH-A

BRANCH-B

BRANCH-C

The next two examples are nearly identical programs; the only difference is the
use of the GROUP INDICATE clause in the second example.

The following program does not contain a GROUP INDICATE clause:

01 DETAIL-LINE TYPE IS DETAIL
LINE IS PLUS 1.

02 COLUMN 1 PIC X(15)
SOURCE A-NAME.

02 COLUMN 20 PIC 9(6)
SOURCE A-REG-NO.

It produces the following output:

1 2 3
123456789012345678901234567890
Name Registration

Number

Rolans R. 123456
Rolans R. 123456
Rolans R. 123456
Vencher R. 654321
Vencher R. 654321
Vencher R. 654321
Vencher R. 654321
Anders J. 987654
Anders J. 987654
Anders J. 987654

The following example contains a GROUP INDICATE clause:

01 DETAIL-LINE TYPE IS DETAIL
LINE IS PLUS 1.

02 COLUMN 1 PIC X(15)
SOURCE A-NAME
GROUP INDICATE.

02 COLUMN 20 PIC 9(6)
SOURCE A-REG-NO.

Producing Printed Reports with VAX COBOL 16-37

With the GROUP INDICATE clause, the program produces the following output:

1 2 3
123456789012345678901234567890
Name

Rolans R.

Vencher R.

Anders J.

16.8.13 Processing a Report Writer Report

Registration
Number

123456
123456
123456
654321
654321
654321
654321
987654
987654
987654

In a Report Writer program you usually use the following five statements:

• INITIATE

• GENERATE

• TERMINATE

• USE BEFORE REPORTING

• SUPPRESS

You must use the INITIATE, GENERATE, and TERMINATE statements. The
USE BEFORE REPORTING and the SUPPRESS statements are optional.

Before any Report Writer statement is executed, the report file must be open.

16.8.13.1 Initiating the Report

The INITIATE statement begins the report processing and is executed before
any GENERATE or TERMINATE statements. The report name used in this
statement is specified in the RD entry in the Report Section and in the REPORT
clause of the FD entry for the file to which the report is written.

INITIATE sets PAGE-COUNTER to 1, LINE-COUNTER to zero, and all SUM
counters to zero.

PROCEDURE DIVISION.

MAIN SECTION.
000-START.

OPEN INPUT CUSTOMER-FILE.
OPEN OUTPUT PRINTER-FILE.

INITIATE MASTER-LIST.

A second INITIATE statement for the same report must not be executed until a
TERMINATE statement for the report has been executed (see Section 16.8.13.4).

16-38 Producing Printed Reports with VAX COBOL

16.8.13.2 Generating a Report Writer Report

The GENERATE statement prints the report.

You can produce either detail or summary reports depending on the GENERATE
identifier. If you code the name of a DETAIL report group with GENERATE, you
create a detail report; if you code a report name with GENERATE, you create a
summary report.

16.8.13.3 Automatic Operations of the GENERATE Statement

When the first GENERATE statement is executed, the following report groups
are printed, if they are specified in the program:

• REPORT HEADING report group

• PAGE HEADING report group

• CONTROL HEADING report group

• For detail reporting, the specified TYPE DETAIL report group

A USE BEFORE REPORTING declarative can also execute just before the
associated report group is produced.

NOTE

Figure 16-12 and Figure 16-13 illustrate the major flow of operations,
but do not cover all possible operations associated with a GENERATE
statement.

Figure 16-12 shows the sequence of operations for the first GENERATE
statement.

Figure 16-12: First GENERATE Statement

COBOL Program

Procedure Division

GENERATE
(next sequential

instruction)

write

RH, PH,
CH FINAL

write

CH major
CH minor

write
DETAIL

line

ZK-1552-GE

For subsequent GENERATE statements in the program, the following operations
take place:

• Any USE BEFORE REPORTING declaratives execute just before the
associated report group is produced.

• Any specified control breaks occur.

Producing Printed Reports with VAX COBOL 16-39

• CONTROL FOOTING and CONTROL. HEADING report groups print after
the specified control breaks occur.

• In a detail report, the TYPE DETAIL report groups print.

• SUM operands are incremented.

• Sum counters are reset as specified.

Figure 16-13 shows the sequence of operations for all GENERATE statements
except the first. See Figure 16-12 for a comparison with the sequence of
operations for the first GENERATE statement.

Figure 16-13: Subsequent GENERATE Statements

GENERATE

add all
SUM operands

NO

Reset
SUM

16.8.13.4 Ending Report Writer Processing

add SUM
sum-name(s) up
to this control
level and save

write CH
from this

control break
level to minor

Write
DETAIL line

write CONTROL
FOOTINGS from

minor to this
control break level

set control
to new values

ZK-1553-GE

The TERMINATE statement completes the processing of a report.

Like INITIATE, the TERMINATE statement report name is specified in the RD
entry in the Report Section and in the REPORT clause of the FD entry for the file
to which the report is written.

When the TERMINATE statement is executed, breaks occur for all control fields,
and all control footings are written; any page footings and report footings are also
written.

16-40 Producing Printed Reports with VAX COBOL

PROCEDURE DIVISION.

300-END-OF-FILE.
TERMINATE MASTER-LIST.
CLOSE CUSTOMER-FILE, PRINTER-FILE.
STOP RUN.

If no GENERATE statement has been executed for the report, the TERMINATE
statement does not produce any report groups.

A second TERMINATE statement for the report must not be executed before a
second INITIATE statement for the report has been executed.

The TERMINATE statement does not close the report file; a CLOSE statement
must be executed after the TERMINATE statement.

Figure 16-14 shows the sequence of operations for TERMINATE.

Figure 16-14: TERMINATE Statement

TERMINATE add and save save write contra I
all SUM control footing from

sum-names values minor to major

set controls
to new values

reset SUM
operands up
to major level

produce produce produce CF
RF group PF group FINAL group

ZK-1554-GE

16.8.13.5 Applying the USE BEFORE REPORTING Statement

In a COBOL program, you specify a Declarative section to define procedures
that supplement the standard procedures of the program. Note that in a Report
Writer program, you can specify the USE BEFORE REPORTING statement. This
USE BEFORE REPORTING statement gives you more control over the data to be
printed in a Report Writer program.

The USE BEFORE REPORTING statement:

• Allows you to define declarative procedures

• Causes those procedures to be executed just before a specified report group is
printed (this specified report group name is written with the USE statement)

Producing Printed Reports with VAX COBOL 16-41

• Lets you modify the data to be printed (for example, where simple sum
operations must be augmented by more complex operations involving
multiplication, division, and subtraction)

• Lets you suppress printing the report group

The following example indicates that the phrase BEGINNING-OF-REPORT
is to be displayed just before the REPORT HEADING group named
REPORT-HEADER; the phrase END-OF-REPORT is to be displayed just before
the REPORT FOOTING group called REPORT-FOOTER.

PROCEDURE DIVISION.
DECLARATIVES.
BOR SECTION.

USE BEFORE REPORTING REPORT-HEADER.
BOR-A.

DISPLAY "BEGINNING-OF-REPORT".
EOR SECTION.

USE BEFORE REPORTING REPORT-FOOTER.
EOR-A.

DISPLAY "END-OF-REPORT".
END DECLARATIVES.

Note that you cannot use INITIATE, GENERATE, or TERMINATE in a
Declarative procedure.

16.8.13.6 Suppressing a Report Group

You can also use the SUPPRESS statement in a USE BEFORE REPORTING
procedure to suppress the printing of a report group. For example, you can
suppress printing of an unnecessary total line, such as a line for a monthly sales
total that has only one sale or a line of zeros.

The SUPPRESS statement nullifies any NEXT GROUP and LINE clauses, but
leaves the LINE-COUNTER value unchanged.

Note that the SUPPRESS statement applies only to that particular instance of
the report group; that group will be printed the next time unless the SUPPRESS
statement is executed again.

The SUPPRESS statement has no effect on sum counters.

16.8.14 Selecting a Report Writer Report Type

You can print two types of reports using the Report Writer feature. In a detail
report, you print primary data information as well as totals. In a summary
report, you print only control heading and footing information (such as report
data headings and totals) and exclude detail input record information.

Section 16.9 provides examples of detail and summary reports.

16.8.14.1 Detail Reporting

In detail reporting, at least one printable TYPE DETAIL report group must be
specified. A GENERATE statement produces the specified TYPE DETAIL report
group and performs all the automatic operations of the Report Writer as specified
in the report group entries (see Section 16.8.13.3).

16-42 Producing Printed Reports with VAX COBOL

In the following example, DETAIL-LINE is the name of the DETAIL report group.
When this GENERATE statement executes, a detail report is printed.

200-READ-MASTER.
READ CUSTOMER-FILE AT END MOVE HIGH-VALUES TO NAME.
IF NAME NOT = HIGH-VALUES GENERATE DETAIL-LINE.

16.8.14.2 Summary Reporting

In summary reporting, the GENERATE statement performs all of the automatic
operations of the Report Writer, but does not produce any TYPE DETAIL report
groups.

A report name references the name of an RD entry. If MASTER-LIST is an RD
entry, then GENERATE MASTER-LIST produces HEADING and FOOTING
report groups (in the order defined), but omits DETAIL report group lines.

16.9 Report Writer Examples

This section provides you with the input data and sample reports produced by
five Report Writer programs. Each sample report has a program summary section
that describes the Report Writer features used in that program; you can examine
the summary and output to determine the usage of Report Writer features. Note
that each sample report is followed by the program that was used to generate it.

Also, many of the report pages in Reports 2 through 5 have been compressed into
fewer pages than you would normally find. For example, a report title page is
typically found on a separate page.

NOTE

The Report Writer produces a report file in print-file format. When the
Report Writer positions the file at the top of the next logical page, it
positions the pointer by line spacing, rather than page ejection or form
feed.

The default VMS PRINT command inserts a form-feed character
when a form is within four lines of the bottom. Therefore, when the
default PRINT command refers to a Report Writer file, unexpected page
spacing can result.

The /NOFEED file qualifier of the PRINT command suppresses
the insertion of form-feed characters and prints Report Writer files
correctly. Consequently, you should use the /NOFEED qualifier when
you use the Report Writer to print a report.

16.9.1 Input Data

The following records are used for the programs in this section.

Producing Printed Reports with VAX COBOL 16-43

Abbott
Adam
Albert
Alexander
Abbott
Allan
Amos
Amico
Abbott
Ames
Alwin
Alexander
Berger
Abbott
Ames
Carter
Alexander
Carroll
Abbott
Hemingway
Cooper
Alexander
Dickens
Tho re aux
Abbott
Williams
Alexander
Ames
Dickinson
Frost
Alexander
Abbott

16.9.2

John Bl2 Pleasant Street Nashua NH03102123400000011000090070188
Harold B980 Main Street Nashua NH03102234100000022100890020688
Robert SlOO Meadow Lane Gardner MA01420123400000036100900020688
Greg T317 Narrows Road Westminster MA01473341600000041000071020688
John B12 Pleasant Street Nashua NH03102123400000011000090070188
David LlO Wonder Lane Merrimack NH03014678000000012410100020688
James A71 State Rd East Westminster MA01473123410000064100090020688
Art A31 Athens Road Nashua NH03060890000000071234070020688
John B12 Pleasant Street Nashua NH03102123400000011000090070188
Alice J40 Center Road Nashua NH03060789000000071000000020788
Tom F400 High Street Princeton NJ12341123410000087000017030788
Greg T317 Narrows Road Westminster MA01473341600000041000071020688
Tom H700 McDonald Lane Merrimack NH03060123410000101234160020688
John Bl2 Pleasant Street Nashua NH03102123400000011000090070188
Alice J40 Center Road Nashua NH03060789000000071000000020788
Winston R123 Timpany Street Brookline NH03078234160000112341676020788
Greg T317 Narrows Road Westminster MA01473341600000041000071020688
Alice L192 Lewis Road London NH03416111170000121678900020788
John B12 Pleasant Street Nashua NH03102123400000011000090070188
Joe ElO Cuba Street Westminster MA01473123410000138769000020788
Frank J300 Mohican Avenue Mohawk MA01480341670000143416780020788
Greg T317 Narrows Road Westminster MA01473341600000041000071020688
Arnold ClOO Bleak Street Gardner MA01440900000000111234167020788
Ralph H800 Emerson Street Walden MA01416416780000160000600020788
John B12 Pleasant Street Nashua NH03102123400000011000090070188
Sa:i;nuel T310 England Road Worcester MA01400123410000177890000020788
Greg T317 Narrows Road Westminster MA01473341600000041000071020688
Alice J40 Center Road Nashua NH03060789000000071000000020788
Rose E21 Depot Road Amherst MA01423416780000196668890020788
Alfred R123 Amherst Street Merrimack NH03060123410000201111490020788
Greg T317 Narrows Road Westminster MA01473341600000041000071020688
John B12 Pleasant Street Nashua NH03102123400000011000090070188

REPORT1-Detail Report Program

REPORT! uses the PAGE HEADING, DETAIL, and CONTROL FOOTING report
groups and produces a detail report-CUSTMASTl.LIS.

To get CUSTMASTl.LIS, you use the following commands:

$ COBOL REPORTl

$ LINK REPORTl

$ RUN REPORTl

$ PRINT/NOFEED CUSTMASTl.LIS

The program (REPORT!) in Example 16-5 produces the output shown in
Figure 16-15 (CUSTMASTl.LIS).

16-44 Producing Printed Reports with VAX COBOL

Example 16-5: Sample Program 1

IDENTIFICATION DIVISION.
PROGRAM-ID. REPORTl.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER-FILE
SELECT SORT-FILE
SELECT SORTED-FILE
SELECT PRINTER-FILE

DIVISION.
SECTION.

ASSIGN
ASSIGN
ASSIGN
ASSIGN

DATA
FILE
SD
01

SORT-FILE.
SORTED-CUSTOMER-MASTER-FILE.
02 SORT-NAME
02

FD CUSTOMER-FILE

TO
TO
TO
TO

VALUE OF ID IS "CUSTMAST.DAT".

"SYS$DISK:".
"SYS$DISK:".
"SYS$DISK:".
"SYS$DISK:".

PIC X (26) .
PIC X (71) .

01 CUSTOMER-MASTER-FILE PIC X(97).
FD SORTED-FILE

VALUE OF ID IS "SORTEDMAS.DAT".

01 CUSTOMER-MASTER-FILE.
02 NAME.

03 LAST-NAME
03 FIRST-NAME
03 MIDDLE-INIT

02 ADDRESS
02 CITY
02 STATE
02 ZIP
02 SALESMAN-NUMBER
02 INVOICE-DATA.

03 INVOICE-NUMBER
03 INVOICE-SALES
03 INVOICE-DATE.

FD PRINTER-FILE

04 INV-DAY
04 INV-MO
04 INV-YR

VALUE OF ID IS "CUSTMASTl. LIS"
REPORT IS MASTER-LIST.

WORKING-STORAGE SECTION.

01 UNEDITED-DATE.
02 UE-YEAR PIC 99.
02 UE-MONTH PIC 99.
02 UE-DAY PIC 99.
02 FILLER PIC X(6).

01 ONE-COUNT PIC 9 VALUE 1.

PIC X(15).
PIC X(lO).
PIC x.
PIC X(20).
PIC X(20).
PIC xx.
PIC 99999.
PIC 99999.

PIC 999999.
PIC S9(5)V99.

PIC 99.
PIC 99.
PIC 99.

(continued on next page)

Producing Printed Reports with VAX COBOL 16-45

Example 16-5 (Cont.): Sample Program 1

REPORT SECTION.

RD MASTER-LIST
PAGE LIMIT IS 66
HEADING 1
FIRST DETAIL 13
LAST DETAIL 55
CONTROL IS FINAL.

01 TYPE IS PAGE HEADING.
02 LINE 5.

03 COLUMN 1
PIC X(27) VALUE "CUSTOMER MASTER FILE REPORT".

03 COLUMN 100
PIC X(4) VALUE "PAGE".

03 COLUMN 105
PIC ZZZ9
SOURCE PAGE-COUNTER.

02 LINE 7.
03 COLUMN 1

03

03

02 LINE 8.

PIC X VALUE "+".
COLUMN 2
PIC X(llO) VALUE ALL
COLUMN 112
PIC X VALUE "+".

03 COLUMN 1
PIC X VALUE "!".

03 COLUMN 10

"-"

PIC X(4) VALUE "NAME".
03 COLUMN 29

PIC X VALUE "!".
03 COLUMN 43

PIC X(7) VALUE "ADDRESS".
03 COLUMN 81

PIC X VALUE "I".
03 COLUMN 91

PIC X(7) VALUE "INVOICE".
03 COLUMN 112

PIC X VALUE "I".
02 LINE 9.

03 COLUMN 1
PIC X VALUE "I".

03 COLUMN 2
PIC X(llO) VALUE ALL "-"

03 COLUMN 112
PIC X VALUE "I".

02 LINE 10.
03 COLUMN 1

PIC X(6) VALUE "I LAST".
03 COLUMN 16

PIC X(7) VALUE "I FIRST".
03 COLUMN 26

PIC X(4) VALUE "IMII".
03 COLUMN 35

PIC X(6) VALUE "STREET".
03 COLUMN 48

PIC X VALUE"!".
03 COLUMN 52

PIC X(4) VALUE "CITY".

16-46 Producing Printed Reports with VAX COBOL

(continued on next page)

Example 16-5 (Cont.): Sample Program 1

01

01

03 COLUMN 71
PIC X VALUE "I".

03 COLUMN 72
PIC X(2) VALUE "ST".

03 COLUMN 74
PIC X VALUE "1 ".

03 COLUMN 76
03 COLUMN 81

PIC X VALUE II I".
03 COLUMN 83

PIC X(4) VALUE "DATE".
03 COLUMN 88

PIC X VALUE "I".
03 COLUMN 90

PIC X(6) VALUE "NUMBER".
03 COLUMN 98

PIC X VALUE "I".
03 COLUMN 103

PIC X(6) VALUE "AMOUNT".
03 COLUMN 112

PIC X VALUE "I".
02 LINE 11.

03 COLUMN 1
PIC X VALUE "+".

03 COLUMN 2
PIC X(llO) VALUE ALL "-"

03 COLUMN 112
PIC X VALUE "+".

DETAIL-LINE
TYPE DETAIL
LINE PLUS 1.

02 COLUMN 1 PIC X(15) SOURCE LAST-NAME.
02 COLUMN 17 PIC X(lO) SOURCE FIRST-NAME.
02 COLUMN 28 PIC xx SOURCE MIDDLE-INIT.
02 COLUMN 30 PIC X(20) SOURCE ADDRESS.
02 COLUMN 51 PIC X(20) SOURCE CITY.
02 COLUMN 72 PIC xx SOURCE STATE.
02 COLUMN 75 PIC 99999 SOURCE ZIP.
02 COLUMN 81 PIC Z9 SOURCE INV-DAY.
02 COLUMN 83 PIC x VALUE "-".
02 COLUMN 84 PIC 99 SOURCE INV-MO.
02 COLUMN 86 PIC x VALUE "-".
02 COLUMN 87 PIC 99 SOURCE INV-YR.
02 COLUMN 90 PIC 9 (6) SOURCE INVOICE-NUMBER.
02 COLUMN 97 PIC $$$,$$$,$$$.99-

SOURCE INVOICE-SALES.
02 DETAIL-COUNT PIC S9(10) SOURCE ONE-COUNT.
02 INV-AMOUNT PIC S9(9)V99 SOURCE INVOICE-SALES.
FINAL-FOOTING TYPE IS CONTROL FOOTING FINAL

02
02 FDC
02
02 FIA

LINE PLUS 5
NEXT GROUP NEXT PAGE.

COLUMN 20 PIC X(17) VALUE "TOTAL RECORDS: ".
COLUMN 40 PIC ZZZ,ZZZ,ZZ9 SUM ONE-COUNT.
COLUMN 73 PIC X(15) VALUE "TOTAL SALES: ".
COLUMN 93 PIC $$$,$$$,$$$,$$$.99- SUM INVOICE-SALES.

(continued on next page)

Producing Printed Reports with VAX COBOL 16-47

Example 16-5 (Cont.): Sample Program 1

PROCEDURE DIVISION.
000-DO-SORT.

SORT SORT-FILE ON ASCENDING KEY SORT-NAME
WITH DUPLICATES IN ORDER
USING CUSTOMER-FILE
GIVING SORTED-FILE.

DISPLAY "END OF SORT".

050-START.
OPEN INPUT SORTED-FILE.
OPEN OUTPUT PRINTER-FILE.
ACCEPT UNEDITED-DATE FROM DATE.
INITIATE MASTER-LIST.
PERFORM 200-READ-MASTER UNTIL NAME

100-END-OF-FILE.
TERMINATE MASTER-LIST.
CLOSE SORTED-FILE, PRINTER-FILE.
STOP RUN.

200-READ-MASTER.

HIGH-VALUES.

READ SORTED-FILE AT END MOVE HIGH-VALUES TO NAME.
IF NAME NOT = HIGH-VALUES GENERATE DETAIL-LINE.

Figure 16-15: CUSTMAST1.LIS

CUSTOMER MASTER FILE REPORT PAGE 1
+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000..90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Adam Harold B 980 Main Street Nashua NH 03102 2-06-88 000002 $21,008.90
Albert Robert S 100 Meadow Lane Gardner MA 01420 2-06-88 000003 $61,009.00
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
Allan David L 10 Wonder Lane Merrimack NH 03014 2-06-88 000001 $24,101.00
Alwin Tom F 400 High Street Princeton NJ 12341 3-07-88 000008 $70,000.17
Ames Alice J 40 Center Road Nashua NH 03060 2-07-88 000007 $10,000.00
Ames Alice J 40 Center Road Nashua NH 03060 2-07-88 000007 $10,000.00
Ames Alice J 40 Center Road Nashua NH 03060 2-07-88 000007 $10,000.00
Amico Art A 31 Athens Road Nashua NH 03060 2-06-88 000007 $12,340.70
Amos James A 71 State Rd East Westminster MA 01473 2-06-88 000006 $41,000.90
Berger Tom H 700 McDonald Lane Merrimack NH 03060 2-06-88 000010 $12,341.60
Carroll Alice L 192 Lewis Road London NH 03416 2-07-88 000012 $16,789.00
Carter Winston R 123 Timpany Street Brookline NH 03078 2-07-88 000011 $23,416.76
Cooper Frank J 300 Mohican Avenue Mohawk MA 01480 2-07-88 000014 $34,167.80
Dickens Arnold C 100 Bleak Street Gardner MA 01440 2-07-88 000011 $12,341.67
Dickinson Rose E 21 Depot Road Amherst MA 01423 2-07-88 000019 $66,688.90
Frost Alf red R 123 Amherst Street Merrimack NH 03060 2-07-88 000020 $11, 114.90
Hemingway Joe E 10 Cuba Street Westminster MA 01473 2-07-88 000013 $87,690.00
Thoreaux Ralph H 800 Emerson Street Walden MA 01416 2-07-88 000016 $6.00
Williams Samuel T 310 England Road Worcester MA 01400 2-07-88 000017 $78,900.00

TOTAL RECORDS: 32 TOTAL SALES: $732,927.86

ZK-1477A-GE

16-48 Producing Printed Reports with VAX COBOL

16.9.3 REPORT2-Detail Report Program

Example 16-6 (REPORT2) is a Report Writer program that uses the REPORT
HEADING, PAGE HEADING, DETAIL, CONTROL FOOTING, and REPORT
FOOTING report groups and produces a detail report-CUSTMAST2.LIS (shown
in Figure 16-16). The output includes both subtotals and rolling-forward totals.

Example 16-6: Sample Program 2

IDENTIFICATION DIVISION.
PROGRAM-ID. REPORT2.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER-FILE ASSIGN TO "SYS$DISK:".
SELECT SORT-FILE ASSIGN TO "SYS$DISK:".
SELECT SORTED-FILE ASSIGN TO "SYS$DISK:".
SELECT PRINTER-FILE ASSIGN TO "SYS$DISK:".

DATA DIVISION.
FILE SECTION.

SD SORT-FILE.
01 SORTED-CUSTOMER-MASTER-FILE.

02 SORT-NAME
02

FD CUSTOMER-FILE
VALUE OF ID IS "CUSTMAST.DAT".

01 CUSTOMER-MASTER-FILE

FD SORTED-FILE
VALUE OF ID IS "SORTEDMAS.DAT".

01 CUSTOMER-MASTER-FILE.
02 NAME.

03 LAST-NAME
03 FIRST-NAME
03 MIDDLE-INIT

02 ADDRESS
02 CITY
02 STATE
02 ZIP
02 SALESMAN-NUMBER
02 INVOICE-DATA.

03 INVOICE-NUMBER
03 INVOICE-SALES
03 INVOICE-DATE.

04 INV-DAY
04 INV-MO
04 INV-YR

FD PRINTER-FILE
VALUE OF ID IS "CUSTMAST2.LIS"
REPORT IS MASTER-LIST.

WORKING-STORAGE SECTION.
01 UNEDITED-DATE.

02 UE-YEAR PIC 99.
02 UE-MONTH PIC 99.
02 UE-DAY PIC 99.
02 FILLER PIC X(6).

01 ONE-COUNT PIC 9 VALUE 1.

PIC X(26).
PIC X(71).

PIC X(97).

PIC X(15).
PIC X(lO).
PIC x.
PIC X(20).
PIC X(20).
PIC xx.
PIC 99999.
PIC 99999.

PIC 999999.
PIC S9(5)V99.

PIC 99.
PIC 99.
PIC 99.

(continued on next page)

Producing Printed Reports with VAX COBOL 16-49

Example 16-6 (Cont.): Sample Program 2

REPORT SECTION.

RD MASTER-LIST
PAGE LIMIT IS 66
HEADING 1
FIRST DETAIL 13
LAST DETAIL 55
CONTROLS ARE FINAL

NAME.
01 REPORT-HEADER TYPE IS REPORT HEADING NEXT GROUP NEXT PAGE.

02 LINE 24.
03 COLUMN 45

PIC X(31) VALUE ALL "*"
02 LINE 25.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 26.
03 COLUMN 45

PIC X(31) VALUE "* Customer Master File *"
02 LINE 27.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 28.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 55

PIC Z9
SOURCE UE-DAY.

03 COLUMN 57
PIC X VALUE "-"

03 COLUMN 58
PIC 99
SOURCE UE-MONTH.

03 COLUMN 60
PIC X VALUE "-"

03 COLUMN 61
PIC 99
SOURCE UE-YEAR.

03 COLUMN 75
PIC X VALUE "*"

02 LINE 29.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 30.

03 COLUMN 45
PIC X(31) VALUE "* Report 2 *"

02 LINE 31.
03 COLUMN 45

PIC X(31) VALUE "* Detail Report *"
02 LINE 32.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

(continued on next page)

16-50 Producing Printed Reports with VAX COBOL

Example 16-6 (Cont.): Sample Program 2

02 LINE 33.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 34.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 35.
03 COLUMN 45

PIC X (31) VALUE ALL "*"
01 TYPE IS PAGE HEADING.

02 LINE 5.
03 COLUMN 1

PIC X(27) VALUE "CUSTOMER MASTER FILE REPORT".
03 COLUMN 100

PIC X(4) VALUE "PAGE".
03 COLUMN 105

PIC ZZZ9
SOURCE PAGE-COUNTER.

02 LINE 7.
03 COLUMN 1

PIC X VALUE "+".
03 COLUMN 2

PIC X(llO) VALUE ALL "-"
03 COLUMN 112

PIC X VALUE "+".
02 LINE 8.

03 COLUMN 1
PIC X VALUE "I".

03 COLUMN 10
PIC X(4) VALUE "NAME".

03 COLUMN 29
PIC X VALUE "I".

03 COLUMN 43
PIC X(7) VALUE "ADDRESS".

03 COLUMN 81
PIC X VALUE "I".

03 COLUMN 91
PIC X(7) VALUE "INVOICE".

03 COLUMN 112
PIC X VALUE "I".

02 LINE 9.
03 COLUMN 1

PIC X VALUE "I".
03 COLUMN 2

PIC X(llO) VALUE ALL "-"
03 COLUMN 112

PIC X VALUE "I".

(continued on next page)

Producing Printed Reports with VAX COBOL 16-51

Example 16-6 (Cont.): Sample Program 2

02 LINE 10.
03 COLUMN 1

PIC X(6) VALUE "I LAST".
03 COLUMN 16

PIC X(7) VALUE "I FIRST".
03 COLUMN 26

PIC X(4) VALUE "IMII".
03 COLUMN 35

PIC X(6) VALUE "STREET".
03 COLUMN 48

PIC X VALUE "I".
03 COLUMN 52

PIC X(4) VALUE "CITY".
03 COLUMN 71

PIC X VALUE "I".
03 COLUMN 72

PIC X(2) VALUE "ST".
03 COLUMN 74

PIC X VALUE "I".
03 COLUMN 76

PIC X(3) VALUE "ZIP".
03 COLUMN 81

PIC X VALUE "I".
03 COLUMN 83

PIC X(4) VALUE "DATE".
03 COLUMN 88

PIC X VALUE "I".
03 COLUMN 90

PIC X(6) VALUE "NUMBER".
03 COLUMN 98

PIC X VALUE "I".
03 COLUMN 103

PIC X(6) VALUE "AMOUNT".
03 COLUMN 112

PIC X VALUE"!".
02 LINE 11.

03 COLUMN 1
PIC X VALUE "+".

03 COLUMN 2
PIC X(llO) VALUE ALL "-"

03 COLUMN 112
PIC X VALUE "+".

01 DETAIL-LINE
TYPE DETAIL
LINE PLUS 2.
02 COLUMN 1 PIC X(15) SOURCE LAST-NAME.
02 COLUMN 17 PIC X(lO) SOURCE FIRST-NAME.
02 COLUMN 28 PIC xx SOURCE MIDDLE-INIT.
02 COLUMN 30 PIC X(20) SOURCE ADDRESS.
02 COLUMN 51 PIC X(20) SOURCE CITY.
02 COLUMN 72 PIC xx SOURCE STATE.
02 COLUMN 75 PIC 99999 SOURCE ZIP.
02 COLUMN 81 PIC Z9 SOURCE INV-DAY.
02 COLUMN 83 PIC x VALUE "-".
02 COLUMN 84 PIC 99 SOURCE INV-MO.
02 COLUMN 86 PIC x VALUE "-".
02 COLUMN 87 PIC 99 SOURCE INV-YR.
02 COLUMN 90 PIC 9 (6) SOURCE INVOICE-NUMBER.
02 COLUMN 97 PIC $$$,$$$,$$$.99-

SOURCE INVOICE-SALES.
02 DETAIL-COUNT PIC S9(10) SOURCE ONE-COUNT.
02 INV-AMOUNT PIC S9(9)V99 SOURCE INVOICE-SALES.

(continued on next page)

16-52 Producing Printed Reports with VAX COBOL

Example 16-6 (Cont.): Sample Program 2

01 TYPE IS CONTROL FOOTING NAME
NEXT GROUP IS PLUS 2.

02 LINE IS PLUS 2.
03 COLUMN 73

PIC X (39) VALUE ALL 11 * 11 .
02 LINE IS PLUS 1.

03 COLUMN 20 PIC X(l 7) VALUE II TOTAL RECORDS: II
03 IDC COLUMN 40 PIC ZZZ,ZZZ,ZZ9 SUM ONE-COUNT.
03 COLUMN 73 PIC X(22) VALUE II* INVOICE SUB TOTAL: II
03 IIA COLUMN 97 PIC $$$,$$$,$$$.99- SUM INVOICE-SALES.
03 COLUMN 112 PIC X VALUE II*''

02 LINE IS PLUS 1.
03 COLUMN 73

PIC X (39) VALUE ALL 11 *".
01 FINAL-FOOTING TYPE IS CONTROL FOOTING FINAL

NEXT GROUP NEXT PAGE.
02 LINE IS PLUS 2.

03 COLUMN 70
PIC X(42) VALUE ALL "*"·

02 LINE IS PLUS 1.
03 COLUMN 14 PIC X(21) VALUE "GRAND TOTAL RECORDS: "
03 FDC COLUMN 40 PIC ZZZ,ZZZ,ZZ9 SUM IDC.
03 COLUMN 70 PIC X(24) VALUE "* GRAND TOTAL INVOICES:".
03 FIA COLUMN 95 PIC $,$$$,$$$,$$$.99- SUM IIA.
03 COLUMN 112 PIC X VALUE "*"

02 LINE IS PLUS 1.
03 COLUMN 70

PIC X(42) VALUE ALL 11 *"·
01 REPORT~FOOTER TYPE IS REPORT FOOTING.

02 LINE 24 ON NEXT PAGE COLUMN 45
PIC X(31) VALUE ALL "*"

02 LINE 25.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*II
02 LINE 26.

03 COLUMN 45
PIC X(31) VALUE II* Customer Master File *II

02 LINE 27.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 28.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 55
PIC Z9
SOURCE UE-DAY.

03 COLUMN 57
PIC X VALUE "-"

03 COLUMN 58
PIC 99
SOURCE UE-MONTH.

03 COLUMN 60
PIC X VALUE "-"

03 COLUMN 61
PIC 99
SOURCE UE-YEAR.

03 COLUMN 75
PIC X VALUE II*"

(continued on next page)

Producing Printed Reports with VAX COBOL 16-53

Example 16-6 (Cont.): Sample Program 2

02 LINE 29.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 30 COLUMN 45

PIC X(31) VALUE "*
02 LINE 31.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 32 COLUMN 45
PIC X(31) VALUE ALL "*"

PROCEDURE DIVISION.
DECLARATIVES.
BOR SECTION.

USE BEFORE REPORTING REPORT-HEADER.
BOR-A.

DISPLAY "BEGINNING-OF-REPORT".
EOR SECTION.

USE BEFORE REPORTING REPORT-FOOTER.
EOR-A.

DISPLAY "END-OF-REPORT".
END DECLARATIVES.
MAIN SECTION.
000-DO-SORT.

SORT SORT-FILE ON ASCENDING KEY SORT-NAME
WITH DUPLICATES IN ORDER
USING CUSTOMER-FILE
GIVING SORTED-FILE.

000-START.
OPEN INPUT SORTED-FILE.
OPEN OUTPUT PRINTER-FILE.
ACCEPT UNEDITED-DATE FROM DATE.
INITIATE MASTER-LIST.

End of Report 2

PERFORM 200-READ-MASTER UNTIL NAME HIGH-VALUES.
100-END-OF-FILE.

TERMINATE MASTER-LIST.
CLOSE SORTED-FILE, PRINTER-FILE.
STOP RUN.

200-READ-MASTER.
READ SORTED-FILE AT END MOVE HIGH-VALUES TO NAME.
IF NAME NOT = HIGH-VALUES GENERATE DETAIL-LINE.

16-54 Producing Printed Reports with VAX COBOL

*"

Figure 16-16: CUSTMAST2.LIS

CUSTOMER MASTER FILE REPORT

*

*

Customer Master File *

25-08-89 *

Report 2
Detail Report

*

*
*

*

PAGE 2
+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90

TOTAL RE~ORDS: 7 INVOICE SUB TOTAL: $70,006.30 *

Adam Harold B 980 Main Street Nashua NH 03102 2-06-88 000002 $21,008.90

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $21,008.90 *

Albert Robert S 100 Meadow Lane Gardner MA 01420 2-06-88 000003 $61,009.00

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $61,009.00 *

Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
CUSTOMER MASTER FILE REPORT PAGE 3
+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $10,000.71

TOTAL RECORDS:

Allan David L 10 Wonder Lane

TOTAL RECORDS:

Alwin Tom F 400 High Street

TOTAL RECORDS:

Ames Alice J 40 Center Road
Ames Alice J 40 Center Road
Ames Alice J 40 Center Road

TOTAL RECORDS:

Amico Art A 31 Athens Road

TOTAL RECORDS:

6

Merrimack

1

Princeton

1

Nashua
Nashua
Nashua

3

Nashua

1

* INVOICE SUB TOTAL: $60,004.26 *

NH 03014 2-06-88 000001 $24,101.00

* INVOICE SUB TOTAL: $24,101.00 *

NJ 12341 3-07-88 000008 $70,000.17

INVOICE SUB TOTAL: $70,000.17 *

NH 03060
NH 03060
NH 03060

2-07-88 000007
2-07-88 000007
2-07-88 000007

$10,000.00
$10,000.00
$10,000.00

* INVOICE SUB TOTAL: $30,000.00 *

NH 03060 2-06-88 000007 $12,340.70

INVOICE SUB TOTAL: $12,340.70 *

ZK-1478A-GE

(continued on next page)

Producing Printed Reports with VAX COBOL 16-55

Figure 16-16 (Cont.): CUSTMAST2.LIS

CUSTOMER MASTER FILE REPORT PAGE 4
+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+
Amos James A 71 State Rd East Westminster MA 01473 2-06-88 000006 $41,000.90

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $41,000.90 *

Berger Tom H 700 McDonald Lane Merrimack NH 03060 2-06-88 000010 $12,341.60

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $12,341.60 *

Carroll Alice L 192 Lewis Road London NH 03416 2-07-88 000012 $16,789.00

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $16,789.00 *

Carter Winston R 123 Timpany Street Brookline NH 03078 2-07-88 000011 $23,416.76

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $23,416.76 *

Cooper Frank J 300 Mohican Avenue Mohawk MA 01480 2-07-88 000014 $34,167.80

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $34,167.80 *

Dickens Arnold · C 100 Bleak Street Gardner MA 01440 2-07-88 000011 $12,341.67
CUSTOMER MASTER FILE REPORT PAGE 5
+--+
I NAME I ADDRESS I INVOICE I
1---~----1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $12,341.67 *

Dickinson Rose E 21 Depot Road Amherst MA 01423 2-07-88 000019 $66,688.90

TOTAL RECORDS: 1 INVOICE SUB TOTAL: $66,688.90 *

Frost Alfred R 123 Amherst Street Merrimack NH 03060 2-07-88 000020 $11,114.90

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $11,114.90 *

Hemingway Joe E 10 Cuba Street Westminster MA 01473 2-07-88 000013 $87,690.00

TOTAL RECORDS: 1 INVOICE SUB TOTAL: .$87,690.00 *

Thoreaux Ralph H 800 Emerson Street Walden MA 01416 2-07-88 000016 $6.00

TOTAL RECORDS: 1 INVOICE SUB TOTAL: $6.00 *

Williams Samuel T 310 England Road Worcester MA 01400 2-07-88 000017 $78,900.00

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $78,900.00 *

CUSTOMER MASTER FILE REPORT PAGE 6
+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+

**
GRAND TOTAL RECORDS: 32 * GRAND TOTAL INVOICES: $732,927.86 *

**

* Customer Master File *
* *
* 25-08-89 *
* *
* End of Report 2 *
* *

ZK-1478A-1-GE

16-56 Producing Printed Reports with VAX COBOL

16.9.4 REPORT3-Detail Report Program

Example 16-7 (REPORT3) is a Report Writer program that uses the REPORT
HEADING, PAGE HEADING, DETAIL, CONTROL FOOTING, and REPORT
FOOTING report groups and produces a detail report-CUSTMAST3.LIS (shown
in Figure 16-17).

Example 16-7: Sample Program 3

IDENTIFICATION DIVISION.
PROGRAM-ID. REPORT3.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER-FILE ASSIGN TO "SYS$DISK:".
SELECT SORT-FILE ASSIGN TO "SYS$DISK:".
SELECT SORTED-FILE ASSIGN TO "SYS$DISK:".
SELECT PRINTER-FILE ASSIGN TO "SYS$DISK:".

DATA DIVISION.
FILE SECTION.
SD SORT-FILE.
01 SORTED-CUSTOMER-MASTER-FILE.

FD

01

FD

01

02 SORT-NAME
02

CUSTOMER-FILE
VALUE OF ID IS "CUSTMAST.DAT".
CUSTOMER-MASTER-FILE

SORTED-FILE
VALUE OF ID IS "SORTEDMAS.DAT".
SORTED-RECORD.
02 SORTED-NAME
02 S-ADDRESS
02 S-CITY
02 S-STATE
02 S-ZIP
02 S-SALESMAN-NUMBER
02 S-INVOICE-DATA.

03 S-INVOICE-NUMBER
03 S-INVOICE-SALES
03 S-INVOICE-DATE.

04 S-INV-DAY
04 S-INV-MO
04 S-INV-YR

FD PRINTER-FILE
VALUE OF ID IS "CUSTMAST3.LIS"
REPORT IS MASTER-LIST.

WORKING-STORAGE SECTION.

01

01
01
01

UNEDITED-DATE.
02 UE-YEAR
02 UE-MONTH
02 UE-DAY
02 FILLER
ONE-COUNT

PIC 99.
PIC 99.
PIC 99.
PIC X(6).

EOF
SAVE-INVOICE-SALES

PIC X (26).
PIC X(71).

PIC X(97).

PIC X(26).
PIC x (20).
PIC x (20).
PIC xx.
PIC 99999.
PIC 99999.

PIC 999999.
PIC S9(5)V99.

PIC 99.
PIC 99.
PIC 99.

PIC 9 VALUE 1.
PIC X VALUE "N".
PIC S9(9)V99 VALUE 0.

(continued on next page)

Producing Printed Reports with VAX COBOL 16-57

Example 16-7 (Cont.): Sample Program 3

01 CUSTOMER-MASTER-RECORD.
02 NAME.

03 LAST-NAME
03 FIRST-NAME
03 MIDDLE-INIT

02 ADDRESS
02 CITY
02 STATE
02 ZIP
02 SALESMAN-NUMBER
02 INVOICE-DATA.

03 INVOICE-NUMBER
03 INVOICE-SALES
03 INVOICE-DATE.

04 INV-DAY
04 INV-MO
04 INV-YR

REPORT SECTION.

RD MASTER-LIST
PAGE LIMIT IS 66
HEADING 1
FIRST DETAIL 13
LAST DETAIL 55
CONTROLS ARE FINAL.

PIC X(15).
PIC X(lO).
PIC x.
PIC X(20).
PIC X(20).
PIC xx.
PIC 99999.
PIC 99999.

PIC 999999.
PIC S9(5)V99.

PIC 99.
PIC 99.
PIC 99.

01 REPORT-HEADER TYPE IS REPORT HEADING NEXT GROUP NEXT PAGE.
02 LINE 24.

03 COLUMN 45
PIC X (31) VALUE ALL "*"

02 LINE 25.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 26.

03 COLUMN 45
PIC X(31) VALUE "* Customer Master File *"

02 LINE 27.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 28.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 55
PIC Z9
SOURCE UE-DAY.

03 COLUMN 57
PIC X VALUE "-"

03 COLUMN 58
PIC 99
SOURCE UE-MONTH.

03 COLUMN 60
PIC X VALUE "-"

03 COLUMN 61
PIC 99
SOURCE UE-YEAR.

03 COLUMN 75
PIC X VALUE "*"

(continued on next page)

16-58 Producing Printed Reports with VAX COBOL

Example 16-7 (Cont.): Sample Program 3

02 LINE 29.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 30.

03 COLUMN 45
PIC X (31) VALUE "* Report 3 *"

02 LINE 31.
03 COLUMN 45

PIC X (31) VALUE "* Detail Report *"
02 LINE 32.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 33.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 34.

03 COLUMN 45
PIC X(31) VALUE ALL "*"

01 TYPE IS PAGE HEADING.
02 LINE 5.

03 COLUMN 1
PIC X(27) VALUE "CUSTOMER MASTER FILE REPORT".

03 COLUMN 100
PIC X(4) VALUE "PAGE".

03 COLUMN 105
PIC ZZZ9
SOURCE PAGE-COUNTER.

02 LINE 7.
03 COLUMN 1

PIC X VALUE "+".
03 COLUMN 2

PIC X(llO) VALUE ALL "-"
03 COLUMN 112

PIC X VALUE "+".
02 LINE 8.

03 COLUMN 1
PIC X VALUE "I".

03 COLUMN 10
PIC X(4) VALUE "NAME".

03 COLUMN 29
PIC X VALUE "I".

03 COLUMN 43
PIC X(7) VALUE "ADDRESS".

03 COLUMN 81
PIC X VALUE "I".

03 COLUMN 91
PIC X(7) VALUE "INVOICE".

03 COLUMN 112
PIC X VALUE "I".

(continued on next page)

Producing Printed Reports with VAX COBOL 16-59

Example 16-7 {Cont.): Sample Program 3

01

02 LINE 9.
03 COLUMN 1

03

03

PIC X VALUE "I".
COLUMN.2
PIC X(llO) VALUE ALL
COLUMN 112
PIC X VALUE "I".

"-"

02 LINE 10.
03 COLUMN 1

PIC X(6) VALUE "I LAST".
03 COLUMN 16

PIC X(7) VALUE "I FIRST".
03 COLUMN 26

PIC X(4) VALUE "IMII".
03 COLUMN 35

PIC X(6) VALUE "STREET".
03 COLUMN 48

PIC X VALUE "I".
03 COLUMN 52

PIC X(4) VALUE "CITY".
03 COLUMN 71

PIC X VALUE "I".
03 COLUMN 72

PIC X(2) VALUE "ST".
03 COLUMN 74

PIC X VALUE "I".
03 COLUMN 76

PIC X(3) VALUE "ZIP".
03 COLUMN 81

PIC X VALUE "I".
03 COLUMN 83

PIC X(4) VALUE "DATE".
03 COLUMN 88

PIC X VALUE "I".
03 COLUMN 90

PIC X(6) VALUE "NUMBER".
03 COLUMN 98

PIC X VALUE "I".
03 COLUMN 103

PIC X(6) VALUE "AMOUNT".
03 COLUMN 112

PIC X VALUE "I".
02 LINE 11.

03 COLUMN 1
PIC X VALUE "+".

03 COLUMN 2
PIC X(llO) VALUE ALL "-"

03 COLUMN 112

DETAIL-LINE
TYPE DETAIL
02 COLUMN 1
02 COLUMN 17
02 COLUMN 28
02 COLUMN 30
02 COLUMN 51
02 COLUMN 72
02 COLUMN 75
02 COLUMN 81

PIC

LINE IS
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X VALUE "+".

PLUS 1.
X(15) SOURCE LAST-NAME.
X(lO) SOURCE FIRST-NAME.
XX SOURCE MIDDLE-INIT.
X(20) SOURCE ADDRESS.
X(20) SOURCE CITY.
XX SOURCE STATE.
99999 SOURCE ZIP.
Z9 SOURCE INV-DAY.

16-60 Producing Printed Reports with VAX COBOL

(continued on next page)

Example 16-7 (Cont.): Sample Program 3

01

01

02 COLUMN 83
02 COLUMN 84
02 COLUMN 86
02 COLUMN 87
02 COLUMN 90
02 COLUMN 97

PIC X
PIC 99

VALUE "-"
SOURCE INV-MO.

PIC X VALUE "-".
PIC 99 SOURCE INV-YR.
PIC 9(6) SOURCE INVOICE-NUMBER.
PIC $$$,$$$,$$$.99-

SOURCE SAVE-INVOICE-SALES.
FINAL-FOOTING TYPE IS CONTROL FOOTING FINAL

NEXT GROUP NEXT PAGE.
02

02

LINE IS PLUS 2.
03

03

LINE IS
03
03 FIA
03

COLUMN 70
PIC X(33) VALUE "*********************************"
COLUMN 103
PIC X(13) VALUE "*************"
PLUS 1.
COLUMN
COLUMN
COLUMN

70 PIC X(24) VALUE "* GRAND TOTAL INVOICES:".
95 PIC $,$$$,$$$,$$$.99- SUM INVOICE-SALES.
114 PIC XXX VALUE " * "

02 LINE IS PLUS 1.
03 COLUMN 70

PIC X(33) VALUE "*********************************"
03 COLUMN 103

PIC X(13) VALUE "*************"

REPORT-FOOTER TYPE IS REPORT FOOTING.
02 LINE 24 ON NEXT PAGE COLUMN 45

PIC X(31) VALUE ALL "*"
02 LINE 25.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 26.
03 COLUMN 45

PIC X(31) VALUE "* Customer Master File *"
02 LINE 27.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 28
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 55

PIC Z9
SOURCE UE-DAY.

03 COLUMN 57
PIC X VALUE "-"

03 COLUMN 58
PIC 99
SOURCE UE-MONTH.

03 COLUMN 60
PIC X VALUE "-"

03 COLUMN 61
PIC 99
SOURCE UE-YEAR.

03 COLUMN 75
PIC X VALUE "*"

(continued on next page)

Producing Printed Reports with VAX COBOL 16-61

Example 16-7 (Cont.): Sample Program 3

02 LINE 29.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 30 COLUMN 45

PIC X(31) VALUE "*
02 LINE 31.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 32 COLUMN 45
PIC X(31) VALUE ALL "*"

PROCEDURE DIVISION.

DECLARATIVES.
BOR SECTION.

USE BEFORE REPORTING REPORT-HEADER.
BOR-A.

DISPLAY "BEGINNING-OF-REPORT".
EOR SECTION.

USE BEFORE REPORTING REPORT-FOOTER.
EOR-A.

DISPLAY "END-OF-REPORT".
DET SECTION.

USE BEFORE REPORTING DETAIL-LINE.
DET-A.

IF SORTED-NAME = NAME

End of Report 3

MOVE SORTED-RECORD TO CUSTOMER-MASTER-RECORD
ADD INVOICE-SALES TO SAVE-INVOICE-SALES
SUPPRESS PRINTING.

IF NAME SPACES SUPPRESS PRINTING.
END DECLARATIVES.

MAIN SECTION.
000-DO-SORT.

SORT SORT-FILE ON ASCENDING KEY SORT-NAME
WITH DUPLICATES IN ORDER
USING CUSTOMER-FILE
GIVING SORTED-FILE.

000-START.
OPEN INPUT SORTED-FILE.
OPEN OUTPUT PRINTER-FILE.
ACCEPT UNEDITED-DATE FROM DATE.
MOVE SPACES TO NAME.
INITIATE MASTER-LIST.
PERFORM 200-READ-MASTER UNTIL EOF "Y".

100-END-OF-FILE.
TERMINATE MASTER-LIST.
CLOSE SORTED-FILE, PRINTER-FILE.
STOP RUN.

200-READ-MASTER.
READ SORTED-FILE AT END MOVE "Y" TO EOF

MOVE HIGH-VALUES TO SORTED-NAME.

*"

(continued on next page)

16-62 Producing Printed Reports with VAX COBOL

Example 16-7 (Cont.): Sample Program 3

GENERATE DETAIL-LINE.
IF SORTED-NAME NOT = NAME

MOVE S-INVOICE-SALES TO SAVE-INVOICE-SALES.

IF EOF NOT "Y" MOVE SORTED-RECORD TO CUSTOMER-MASTER-RECORD.

Figure 16-17: CUSTMAST3.LIS

CUSTOMER MASTER FILE REPORT

* *
* Customer Master File
* *
* 25-08-89
* *
* Report 3 *
* Detail Report
*
*

PAGE 2
+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $70,006.30
Adam Harold B 980 Main Street Nashua NH 03102 2-06-88 000002 $21,008.90
Albert Robert S 100 Meadow Lane Gardner MA 01420 2-06-88 000003 $61,009.00
Alexander Greg T 317 Narrows Road Westminster MA 01473 2-06-88 000004 $60,004.26
Allan David L 10 Wonder Lane Merrimack NH 03014 2-06-88 000001 $24,101.00
Alwin Tom F 400 High Street Princeton NJ 12341 3-07-88 000008 $70,000.17
Ames Alice J 40 Center Road Nashua NH 03060 2-07-88 000007 $30,000.00
Amico Art A 31 Athens Road Nashua NH 03060 2-06-88 000007 $12,340.70
Amos James A 71 State Rd East Westminster MA 01473 2-06-88 000006 $41,000.90
Berger Tom H 700 McDonald Lane Merrimack NH 03060 2-06-88 000010 $12,341.60
Carroll Alice L 192 Lewis Road London NH 03416 2-07-88 000012 $16,789.00
Carter Winston R 123 Timpany Street Brookline NH 03078 2-07-88 000011 $23,416.76
Cooper Frank J 300 Mohican Avenue Mohawk MA 01480 2-07-88 000014 $34,167.80
Dickens Arnold C 100 Bleak Street Gardner MA 01440 2-07-88 000011 $12,341.67
Dickinson Rose E 21 Depot Road Amherst MA 01423 2-07-88 000019 $66,688.90
Frost Alfred R 123 Amherst Street Merrimack NH 03060 2-07-88 000020 $11,114.90
Hemingway Joe E 10 Cuba Street Westminster MA 01473 2-07-88 000013 $87,690.00
Thoreaux Ralph H 800 Emerson Street Walden MA 01416 2-07-88 000016 $6.00
Williams Samuel T 310 England Road Worcester MA 01400 2-07-88 000017 $78,900.00

*************************************~********
* GRAND TOTAL INVOICES: $732,927.86 *
**

*

Customer Master File
*

25-08-89
*

End of Report 3
*

ZK-1479A-GE

16.9.5 REPORT4-Detail Report Program

Example 16-8 (REPORT4) is a Report Writer program that uses the REPORT
HEADING, PAGE HEADING, DETAIL, PAGE FOOTING, CONTROL
FOOTING, and REPORT FOOTING report groups. The program also uses
the TYPE DETAIL clause-GROUP INDICATE. The program produces a detail
report-CUSTMAST4.LIS (shown in Figure 16-18).

Producing Printed Reports with VAX COBOL 16-63

Example 16-8: Sample Program 4

IDENTIFICATION DIVISION.
PROGRAM-ID. REPORT4.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER-FILE ASSIGN TO "SYS$DISK:".
SELECT SORT-FILE ASSIGN TO "SYS$DISK:".
SELECT SORTED-FILE ASSIGN TO "SYS$DISK:".
SELECT PRINTER-FILE ASSIGN TO "SYS$DISK:".

DATA DIVISION.
FILE SECTION.
SD
01

FD

01

FD

01

SORT-FILE.
SORTED-CUSTOMER-MASTER-FILE.
02 SORT-NAME
02

CUSTOMER-FILE
VALUE OF ID IS "CUSTMAST.DAT".
CUSTOMER-MASTER-FILE

SORTED-FILE
VALUE OF ID IS "SORTEDMAS.DAT".
CUSTOMER-MASTER-FILE.
02 NAME.

03 LAST-NAME
03 FIRST-NAME
03 MIDDLE-INIT

02 ADDRESS
02 CITY
02 STATE
02 ZIP
02 SALESMAN-NUMBER
02 INVOICE-DATA.

03 INVOICE-NUMBER
03 INVOICE-SALES
03 INVOICE-DATE.

04 INV-DAY
04 INV-MO
04 INV-YR

FD PRINTER-FILE
VALUE OF ID IS "CUSTMAST4.LIS"
REPORT IS MASTER-LIST.

WORKING-STORAGE SECTION.
01 UNEPITED-DATE.

02 OE-YEAR PIC 99.
02 OE-MONTH PIC 99.
02 OE-DAY PIC 99.
02 FILLER PIC x (6) .

01 ONE-COUNT PIC 9 VALUE 1.

REPORT SECTION.
RD MASTER-LIST

PAGE LIMIT IS 66
HEADING 1
FIRST DETAIL 13
LAST DETAIL 55
FOOTING 58
CONTROLS ARE FINAL

NAME.

PIC X (26).
PIC X (71) .

PIC X (97).

PIC x (15).
PIC X(lO).
PIC x.
PIC X(20).
PIC X(20).
PIC xx.
PIC 99999.
PIC 99999.

PIC 999999.
PIC S9(5)V99.

PIC 99.
PIC 99.
PIC 99.

1~4 Producing Printed Reports with VAX COBOL

(continued on next page)

Example 16-8 (Cont.): Sample Program 4

01 REPORT-HEADER TYPE IS REPORT HEADING NEXT GROUP NEXT PAGE.
02 LINE 24.

03 COLUMN 45
PIC X (31) VALUE ALL "*"

02 LINE 25.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 26.

03 COLUMN 45
PIC X (31) VALUE "* Customer Master File *"

02 LINE 27.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 28.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 55
PIC Z9
SOURCE UE-DAY.

03 COLUMN 57
PIC X VALUE "-"

03 COLUMN 58
PIC 99
SOURCE UE-MONTH.

03 COLUMN 60
PIC X VALUE "-"

03 COLUMN 61
PIC 99
SOURCE UE-YEAR.

03 COLUMN 75
PIC X VALUE "*"

02 LINE 29.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 30.

03 COLUMN 45
PIC X(31) VALUE "* GROUP INDICATE *"

02 LINE 31.
03 COLUMN 45

PIC X(31) VALUE "* Detail Report 4 *"
02 LINE 32.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 33.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 34.

03 COLUMN 45
PIC X (31) VALUE ALL "*"

(continued on next page)

Producing Printed Reports with VAX COBOL 16-65

Example 16-8 (Cont.): Sample Program 4

01 TYPE IS PAGE HEADING.
02 LINE 5.

03 COLUMN 1
PIC X (27) VALUE "CUSTOMER MASTER FILE REPORT".

03 COLUMN 100
PIC X (4) VALUE "PAGE".

03 COLUMN 105
PIC ZZZ9
SOURCE PAGE-COUNTER.

02 LINE 7.
03 COLUMN 1

PIC X VALUE "+".
03 COLUMN 2

PIC X{llO) VALUE ALL "-"
03 COLUMN 112

PIC X VALUE "+".
02 LINE 8.

03 COLUMN 1
PIC X VALUE "I".

03 COLUMN 10
PIC X{4) VALUE "NAME".

03 COLUMN 29
PIC X VALUE "I".

03 COLUMN 43
PIC X (7) VALUE "ADDRESS".

03 COLUMN 81
PIC X VALUE "I".

03 COLUMN 91
PIC X{7) VALUE "INVOICE".

03 COLUMN 112
PIC X VALUE "I".

02 LINE 9.
03 COLUMN 1

PIC X VALUE "I".
03 COLUMN 2

PIC X (110) VALUE ALL "-"
03 COLUMN 112

PIC X VALUE "I".
02 LINE 10.

03 COLUMN 1
PIC X{6) VALUE "I LAST".

03 COLUMN 16
PIC X{7) VALUE "I FIRST".

03 COLUMN 26
PIC X(4) VALUE "IMII".

03 COLUMN 35
PIC X(6) VALUE "STREET".

03 COLUMN 48
PIC X VALUE "I".

03 COLUMN 52
PIC X{4) VALUE "CITY".

03 COLUMN 71
PIC X VALUE "I".

03 COLUMN 72
PIC X{2) VALUE "ST".

03 COLUMN 74
PIC X VALUE "I".

03 COLUMN 76
PIC X(3) VALUE "ZIP".

03 COLUMN 81

(continued on next page)

16-66 Producing Printed Reports with VAX COBOL

Example 16-8 (Cont.): Sample Program 4

PIC X VALUE "I".
03 COLUMN 83

PIC X(4) VALUE "DATE".
03 COLUMN 88

PIC X VALUE "I".
03 COLUMN 90

PIC X(6) VALUE "NUMBER".
03 COLUMN 98

PIC X VALUE "I".
03 COLUMN 103

PIC X(6) VALUE "AMOUNT".
03 COLUMN 112

PIC X VALUE "I".
02 LINE 11.

03 COLUMN 1
PIC X VALUE "+".

03 COLUMN 2
PIC X(llO) VALUE ALL "-"

03 COLUMN 112
PIC X VALUE "+".

01 DETAIL-LINE
TYPE DETAIL
LINE PLUS 1.
02 COLUMN 1 PIC X(15) SOURCE LAST-NAME GROUP INDICATE.
02 COLUMN 17 PIC X(lO) SOURCE FIRST-NAME GROUP INDICATE.
02 COLUMN 28 PIC xx SOURCE MIDDLE-INIT GROUP INDICATE.
02 COLUMN 30 PIC X(20) SOURCE ADDRESS.
02 COLUMN 51 PIC X(20) SOURCE CITY.
02 COLUMN 72 PIC xx SOURCE STATE.
02 COLUMN 75 PIC 99999 SOURCE ZIP.
02 COLUMN 81 PIC Z9 SOURCE INV-DAY.
02 COLUMN 83 PIC x VALUE "-".
02 COLUMN 84 PIC 99 SOURCE INV-MO.
02 COLUMN 86 PIC x VALUE"-".
02 COLUMN 87 PIC 99 SOURCE INV-YR.
02 COLUMN 90 PIC 9 (6) SOURCE INVOICE-NUMBER.
02 COLUMN 97 PIC $$$,$$$,$$$.99-

SOURCE INVOICE-SALES.
02 DETAIL-COUNT PIC S9(10) SOURCE ONE-COUNT.
02 INV-AMOUNT PIC S9(9)V99 SOURCE INVOICE-SALES.

01 PAGE-FOOTING TYPE IS PAGE FOOTING.
02 LINE 59.

03 COLUMN 45
PIC X(l6) VALUE "C 0 M P A N Y

03 COLUMN 62
PIC X(25) VALUE "C 0 N F I D E N T I A L

02 LINE 60.
03 COLUMN 45

PIC X(l6) VALUE "C 0 M P A N Y
03 COLUMN 62

PIC X(25) VALUE "C 0 N F I D E N T I A L

(continued on next page)

Producing Printed Reports with VAX COBOL 16-67

Example 16-8 (Cont.): Sample Program 4

01 TYPE IS CONTROL FOOTING NAME
NEXT GROUP IS PLUS 2.

02 LINE IS PLUS 2.
03 COLUMN 73

PIC X (39) VALUE ALL "*"·
02 LINE IS PLUS 1.

03 COLUMN 20 PIC X(17) VALUE II TOTAL RECORDS: "
03 IDC COLUMN 40 PIC ZZZ,ZZZ,ZZ9 SUM ONE-COUNT.
03 COLUMN 73 PIC X(22) VALUE "* INVOICE SUB TOTAL: II

03 IIA COLUMN 96 PIC $$$,$$$,$$$.99- SUM INVOICE-SALES.
03 COLUMN 111 PIC X VALUE "*"

02 LINE IS PLUS 1.
03 COLUMN 73

PIC X (39) VALUE ALL "*"·
01 FINAL-FOOTING TYPE IS CONTROL FOOTING FINAL

NEXT GROUP NEXT PAGE.
02 LINE IS PLUS 2.

03 COLUMN 70
PIC X(42) VALUE ALL "*".

02 LINE IS PLUS 1.
03 COLUMN 14 PIC X(21) VALUE "GRAND TOTAL RECORDS: ".
03 FDC COLUMN 40 PIC ZZZ,ZZZ,ZZ9 SUM IDC.
03 COLUMN 70 PIC X(24) VALUE "* GRAND TOTAL INVOICES:".
03 FIA COLUMN 94 PIC $,$$$,$$$,$$$.99- SUM IIA.
03 COLUMN 111 PIC X VALUE "*"

02 LINE IS PLUS 1.
03 COLUMN 70

PIC X(42) VALUE ALL "*".

01 REPORT-FOOTER TYPE IS REPORT FOOTING.
02 LINE 24 ON NEXT PAGE COLUMN 45

PIC X(31) VALUE ALL "*"
02 LINE 25.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 26.
03 COLUMN 45

PIC X(31) VALUE "* Customer Master File *"
02 LINE 27.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 28.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 55

PIC Z9
SOURCE UE-DAY.

03 COLUMN 57

(continued on next page)

16-68 Producing Printed Reports with VAX COBOL

Example 16-8 (Cont.): Sample Program 4

02

02

02

PIC X VALUE "-"
03 COLUMN 58

PIC 99
SOURCE UE-MONTH.

03 COLUMN 60
PIC X VALUE "-"

03 COLUMN 61
PIC 99
SOURCE UE-YEAR.

03 COLUMN 75
PIC X VALUE "*"

LINE 29.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
LINE 30 COLUMN 45

PIC X(31) VALUE "*
LINE 31.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 32 COLUMN 45

PIC X(31) VALUE ALL "*"

PROCEDURE DIVISION.
DECLARATIVES.
BOR SECTION.

USE BEFORE REPORTING REPORT-HEADER.
BOR-A.

DISPLAY "BEGINNING-OF-REPORT".
EOR SECTION.

USE BEFORE REPORTING REPORT-FOOTER.
EOR-A.

DISPLAY "END-OF-REPORT".
END DECLARATIVES.

MAIN SECTION.
000-DO-SORT.

SORT SORT-FILE ON ASCENDING KEY SORT-NAME
WITH DUPLICATES IN ORDER
USING CUSTOMER-FILE
GIVING SORTED-FILE.

000-START.
OPEN INPUT SORTED-FILE.
OPEN OUTPUT PRINTER-FILE.
ACCEPT UNEDITED-DATE FROM DATE.
INITIATE MASTER-LIST.

End of Report 4

PERFORM 200-READ-MASTER UNTIL NAME HIGH-VALUES.
100-END-OF-FILE.

TERMINATE MASTER-LIST.
CLOSE SORTED-FILE, PRINTER-FILE.
STOP RUN.

200-READ-MASTER.
READ SORTED-FILE AT END MOVE HIGH-VALUES TO NAME.
IF NAME NOT = HIGH-VALUES GENERATE DETAIL-LINE.

*"

Producing Printed Reports with VAX COBOL 16-69

Figure 16-18: CUSTMAST4.LIS

* *
* Customer Master File *
* *

25-08-89 *
* *
* GROUP INDICATE *
* Detail Report 4 *

*
* *

CUSTOMER MASTER FILE REPORT PAGE 2

+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+
Abbott John B 12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90

Adam

Albert

Alexander

Allan

12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90
12 Pleasant Street Nashua NH 03102 7-01-88 000001 $10,000.90

TOTAL RECORDS: 7 * INVOICE SUB TOTAL: $70,006.30 *

Harold B 980 Main Street Nashua NH 03102 2-06-88 000002 $21,008.90

TOTAL RECORDS:

Robert S 100 Meadow Lane

Greg

TOTAL RECORDS:

T 317 Narrows Road
317 Narrows Road
317 Narrows Road
317 Narrows Road
317 Narrows Road
317 Narrows Road

TOTAL RECORDS:

David L 10 Wonder Lane

TOTAL RECORDS:

1

Gardner

1

Westminster
Westminster
Westminster
Westminster
Westminster
Westminster

6

Merrimack

1

* INVOICE SUB TOTAL: $21,008.90 *

MA 01420 2-06-88 000003 $61,009.00

* INVOICE SUB TOTAL: $61,009.00 *

MA 01473 ·2-06-88 000004 $10,000.71
MA 01473 2-06-88 000004 $10,000.71
MA 01473 2-06-88 000004 $10,000.71
MA 01473 2-06-88 000004 $10,000.71
MA 01473 2-06-88 000004 $10,000.71
MA 01473 2-06-88 000004 $10,000.71

* INVOICE SUB TOTAL: $60,004.26 *

NH 03014 2-06-88 000001 $24,101.00

* INVOICE SUB TOTAL: $24,101.00 *

COMPANY
COMPANY

CONFIDENTIAL
CONFIDENTIAL

CUSTOMER MASTER FILE REPORT PAGE 3
+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+
Alwin Tom F 400 High Street Princeton NJ 12341 3-07-88 000008 $70,000.17

Ames

Amico

TOTAL RECORDS:

Alice J 40 Center Road
40 Center Road
40 Center Road

TOTAL RECORDS:

Art A 31 Athens Road

TOTAL RECORDS:

1

3

1

Nashua
Nashua
Nashua

Nashua

* INVOICE SUB TOTAL: $70,000.17 *

NH 03060 2-07-88 000007 $10,000.00
NH 03060 2-07-88 000007 $10,000.00
NH 03060 2-07-88 000007 $10,000.00

* INVOICE SUB TOTAL: $30,000.00 *

NH 03060 2-06-88 000007 $12,340.70

INVOICE SUB TOTAL: $12,340.70 *

Amos James A 71 State Rd East Westminster MA 01473 2-06-88 000006 $41,000.90

Berger

Carroll

TOTAL RECORDS: 1

Tom H 700 McDonald Lane Merrimack

TOTAL RECORDS:

Alice L 192 Lewis Road

TOTAL RECORDS:

1

London

COMPANY
COMPANY

16-70 Producing Printed Reports with VAX COBOL

* INVOICE SUB TOTAL: $41,000.90 *

NH 03060 2-06-88 000010 $12,341.60

* INVOICE SUB TOTAL: $12,341.60 *

NH 03416 2-07-88 000012 $16,789.00

* INVOICE SUB TOTAL: $16,789.00 *

CONFIDENTIAL
CONFIDENTIAL ZK-1480A-GE

(continued on next page)

Figure 16-18 (Cont.): CUSTMAST4.LIS

CUSTOMER MASTER FILE REPORT PAGE 5
+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+

Williams

TOTAL RECORDS: 1 * INVOICE SUB TOTAL: $6.00 *

Samuel T 310 England Road Worcester MA 01400 2-07-88 000017 $78,900.00

TOTAL RECORDS:

GRAND TOTAL RECORDS:

1

32

* INVOICE SUB TOTAL: $78,900.00 *

**
* GRAND TOTAL INVOICES: $732,927.86 *
**

COMPANY
COMPANY

CONFIDENTIAL
C 0 N F I D E N T I A L

*
*
*

*

Customer Master File

25-08-89

End of Report 4

*
*

ZK-1480A-1-GE

16.9.6 REPORTS-Summary Report Program

Example 16-9 (REPORT5) is a Report Writer program that uses the REPORT
HEADING, PAGE HEADING, DETAIL, CONTROL FOOTING, PAGE FOOTING,
and REPORT FOOTING report groups. The program produces a summary
report-CUSTMAST5.LIS (shown in Figure 16-19)-because the GENERATE
statement specifies a report name (MASTER-LIST) rather than a DETAIL report
group.

Example 16-9: Sample Program 5

IDENTIFICATION DIVISION.
PROGRAM-ID. REPORTS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER-FILE ASSIGN TO "SYS$DISK:".
SELECT SORT-FILE ASSIGN TO "SYS$DISK:".
SELECT SORTED-FILE ASSIGN TO "SYS$DISK:".
SELECT PRINTER-FILE ASSIGN TO "SYS$DISK:".

(continued on next page)

Producing Printed Reports with VAX COBOL 16-71

Example 16-9 (Cont.): Sample Program 5

DATA DIVISION.
FILE SECTION.

SD
01

FD

01

SORT-FILE.
SORTED-CUSTOMER-MASTER-FILE.
02 SORT-NAME
02

CUSTOMER-FILE
VALUE OF ID IS "CUSTMAST.DAT".
CUSTOMER-MASTER-FILE

FD SORTED-FILE
VALUE OF ID IS "SORTEDMAS.DAT".

01 CUSTOMER-MASTER-FILE.
02 NAME.

03 LAST-NAME
03 FIRST-NAME
03 MIDDLE-INIT

02 .ADDRESS
02 CITY
02 STATE
02 ZIP
02 SALESMAN-NUMBER
02 INVOICE-DATA.

03 INVOICE-NUMBER
03 INVOICE-SALES
03 INVOICE-DATE.

04 INV-DAY
04 INV-MO
04 INV-YR

FD PRINTER-FILE
VALUE OF ID IS "CUSTMAST5.LIS"
REPORT IS MASTER-LIST.

WORKING-STORAGE SECTION.
01 UNEDITED-DATE.

02 UE-YEAR PIC 99.
02 UE-MONTH PIC 99.
02 UE-DAY PIC 99.
02 FILLER PIC X(6).

01 ONE-COUNT PIC 9 VALUE 1.

REPORT SECTION.
RD MASTER-LIST

PAGE LIMIT IS 66
HEADING 1
FIRST DETAIL 13
LAST DETAIL 55
FOOTING 58
CONTROLS ARE FINAL

NAME.

PIC X (26) .
PIC X (71).

PIC X(97).

PIC x (15).
PIC X(lO).
PIC x.
PIC x (20).
PIC x (20).
PIC xx.
PIC 99999.
PIC 99999.

PIC 999999.
PIC S9(5)V99.

PIC 99.
PIC 99.
PIC 99.

01 REPORT-HEADER TYPE IS REPORT HEADING NEXT GROUP NEXT PAGE.
02 LINE 24.

03 COLUMN 45
PIC X(31) VALUE ALL "*"

02 LINE 25.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 26.

03 COLUMN 45

(continued on next page)

1~72 Producing Printed Reports with VAX COBOL

Example 16-9 (Cont.): Sample Program 5

PIC X(31) VALUE "* Customer Master File *"
02 LINE 27.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 28.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 55

PIC Z9
SOURCE UE-DAY.

03 COLUMN 57
PIC X VALUE "-"

03 COLUMN 58
PIC 99
SOURCE UE-MONTH.

03 COLUMN 60
PIC X VALUE "-"

03 COLUMN 61
PIC 99
SOURCE UE-YEAR.

03 COLUMN 75
PIC X VALUE "*"

02 LINE 29.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 30.

03 COLUMN 45
PIC X (31) VALUE "* Report 5 *"

02 LINE 31.
03 COLUMN 45

PIC X(31) VALUE "* Summary Report *"
02 LINE 32.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 33.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 34.

03 COLUMN 45
PIC X(31) VALUE ALL "*"

(continued on next page)

Producing Printed Reports with VAX COBOL 16-73

Example 16-9 (Cont.): Sample Program 5

01 TYPE IS PAGE HEADING.
02 LINE 5.

03 COLUMN 1
PIC X(27) VALUE "CUSTOMER MASTER FILE REPORT".

03 COLUMN 100
PIC X(4) VALUE "PAGE".

03 COLUMN 105
PIC ZZZ9
SOURCE PAGE-COUNTER.

02 LINE 7.
03 COLUMN 1

03

03

02 LINE 8.

PIC X VALUE "+".
COLUMN 2
PIC X(llO) VALUE ALL
COLUMN 112
PIC X VALUE "+".

03 COLUMN 1
PIC X VALUE "I".

03 COLUMN 10

"-"

PIC X(4) VALUE "NAME".
03 COLUMN 29

PIC X VALUE "I".
03 COLUMN 43

PIC X(7) VALUE "ADDRESS".
03 COLUMN 81

PIC X VALUE "I".
03 COLUMN 91

PIC X(7) VALUE "INVOICE".
03 COLUMN 112

PIC X VALUE "I".
02 LINE 9.

03 COLUMN 1
PIC X VALUE "I".

03 COLUMN 2
PIC X(llO) VALUE ALL "-"

03 COLUMN 112
PIC X VALUE "I".

02 LINE 10.
03 COLUMN 1

PIC X(6) VALUE "I LAST".
03 COLUMN 16

PIC X(7) VALUE "I FIRST".
03 COLUMN 26

PIC X(4) VALUE "IMII".
03 COLUMN 35

PIC X(6) VALUE "STREET".

16-74 Producing Printed Reports with VAX COBOL

(continued on next page)

Example 16-9 (Cont.): Sample Program 5

03 COLUMN 48
PIC X VALUE "I".

03 COLUMN 52
PIC X(4) VALUE "CITY".

03 COLUMN 71
PIC X VALUE "I".

03 COLUMN 72
PIC X(2) VALUE "ST".

03 COLUMN 74
PIC X VALUE "I".

03 COLUMN 76
PIC X(3) VALUE "ZIP".

03 COLUMN 81
PIC X VALUE "I".

03 COLUMN 83
PIC X (4) VALUE "DATE".

03 COLUMN 88
PIC X VALUE "I".

03 COLUMN 90
PIC X(6) VALUE "NUMBER".

03 COLUMN 98
PIC X VALUE "I".

03 COLUMN 103
PIC X(6) VALUE "AMOUNT".

03 COLUMN 112
PIC X VALUE "I".

02 LINE 11.
03 COLUMN 1

PIC X VALUE "+".
03 COLUMN 2

PIC X(llO) VALUE ALL "-"
03 COLUMN 112

PIC X VALUE "+".

01 DETAIL-LINE
TYPE DETAIL
LINE PLUS 1.
02 COLUMN 1 PIC x (15) SOURCE LAST-NAME GROUP INDICATE.
02 COLUMN 17 PIC x (10) SOURCE FIRST-NAME GROUP INDICATE.
02 COLUMN 28 PIC xx SOURCE MIDDLE-INIT GROUP INDICATE.
02 COLUMN 30 PIC X(20) SOURCE ADDRESS.
02 COLUMN 51 PIC x (20) SOURCE CITY.
02 COLUMN 72 PIC xx SOURCE STATE.
02 COLUMN 75 PIC 99999 SOURCE ZIP.
02 COLUMN 81 PIC Z9 SOURCE INV-DAY.
02 COLUMN 83 PIC x VALUE "-".
02 COLUMN 84 PIC 99 SOURCE INV-MO.
02 COLUMN 86 PIC x VALUE "-".
02 COLUMN 87 PIC 99 SOURCE INV-YR.
02 COLUMN 90 PIC 9 (6) SOURCE INVOICE-NUMBER.
02 COLUMN 97 PIC $$$,$$$,$$$.99-

SOURCE INVOICE-SALES.
02 DETAIL-COUNT PIC S9 (10) SOURCE ONE-COUNT.
02 INV-AMOUNT PIC S9(9)V99 SOURCE INVOICE-SALES.

(continued on next page)

Producing Printed Reports with VAX COBOL 16-75

Example 16-9 (Cont.): Sample Program 5

01 TYPE IS CONTROL FOOTING NAME
NEXT GROUP IS PLUS 2.

02 LINE IS PLUS 2.
03 COLUMN 73

PIC X (39) VALUE ALL "*".
02 LINE IS PLUS 1.

03 COLUMN 20 PIC x (17) VALUE II TOTAL RECORDS: II

03 IDC COLUMN 40 PIC ZZZ,ZZZ,ZZ9 SUM ONE-COUNT.
03 COLUMN 73 PIC X(22) VALUE "* INVOICE SUB TOTAL: "
03 IIA COLUMN 96 PIC $$$,$$$,$$$.99- SUM INVOICE-SALES.
03 COLUMN 111 PIC X VALUE "*"

02 LINE IS PLUS 1.
03 COLUMN 73

PIC X(39) VALUE ALL "*"·
01 FINAL-FOOTING TYPE IS CONTROL FOOTING FINAL

NEXT GROUP NEXT PAGE.
02 LINE IS PLUS 2.

03 COLUMN 70
PIC X(42) VALUE ALL "*"·

02 LINE IS PLUS 1.
03 COLUMN 14 PIC X (21) VALUE "GRAND TOTAL RECORDS: II

03 FDC COLUMN 40 PIC ZZZ,ZZZ,ZZ9 SUM IDC.
03 COLUMN 70 PIC X(24) VALUE "* GRAND TOTAL INVOICES:".
03 FIA COLUMN 94 PIC $,$$$,$$$,$$$.99- SUM IIA.
03 COLUMN 111 PIC X VALUE "*"

02 LINE IS PLUS 1.
03 COLUMN 70

PIC X(42) VALUE ALL "*"·
01 REPORT-FOOTER TYPE IS REPORT FOOTING.

02 LINE 24 ON NEXT PAGE COLUMN 45
PIC X (31) VALUE ALL "*"

02 LINE 25.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 26.

03 COLUMN 45
PIC X(31) VALUE "* Customer Master File *"

02 LINE 27.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 28.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 55
PIC Z9
SOURCE UE-DAY.

03 COLUMN 57
PIC X VALUE "-"

03 COLUMN 58
PIC 99
SOURCE OE-MONTH.

(continued on next page)

16-76 Producing Printed Reports with VAX COBOL

Example 16-9 (Cont.): Sample Program 5

03 COLUMN 60
PIC X VALUE "-"

03 COLUMN 61
PIC 99
SOURCE UE-YEAR.

03 COLUMN 75
PIC X VALUE "*"

02 LINE 29.
03 COLUMN 45

PIC X VALUE "*"
03 COLUMN 75

PIC X VALUE "*"
02 LINE 30 COLUMN 45

PIC X (31) VALUE "* End of Report 5 *"
02 LINE 31.

03 COLUMN 45
PIC X VALUE "*"

03 COLUMN 75
PIC X VALUE "*"

02 LINE 32 COLUMN 45
PIC X(31) VALUE ALL "*"

01 PAGE-FOOTING TYPE IS PAGE FOOTING.
02 LINE

03

03

02 LINE
03

03

PROCEDURE DIVISION.
DECLARATIVES.
BOR SECTION.

59.

60.

COLUMN 45
PIC X(l6) VALUE "C 0 M P A N Y
COLUMN 62
PIC X (25) VALUE "C 0 N F I D E

COLUMN 45
PIC X(l6). VALUE "C 0 M P A N Y
COLUMN 62
PIC X (25) VALUE "C 0 N F I D E

USE BEFORE REPORTING REPORT-HEADER.
BOR-A.

DISPLAY "BEGINNING-OF-REPORT".
EOR SECTION.

USE BEFORE REPORTING REPORT-FOOTER.
EOR-A.

DISPLAY "END-OF-REPORT".
END DECLARATIVES.

MAIN SECTION.
000-DO-SORT.

SORT SORT-FILE ON ASCENDING KEY SORT-NAME
WITH DUPLICATES IN ORDER
USING CUSTOMER-FILE
GIVING SORTED-FILE.

II

NT I AL

NT I A L "

(continued on next page)

Producing Printed Reports with VAX COBOL 16-77

Example 16-9 (Cont.): Sample Program 5

000-START.
OPEN INPUT SORTED-FILE.
OPEN OUTPUT PRINTER-FILE.
ACCEPT UNEDITED-DATE FROM DATE.
INITIATE MASTER-LIST.
PERFORM 200-READ-MASTER UNTIL NAME HIGH-VALUES.

100-END-OF-FILE.
TERMINATE MASTER-LIST.
CLOSE SORTED-FILE, PRINTER-FILE.
STOP RUN.

200-READ-MASTER.
READ SORTED-FILE AT END MOVE HIGH-VALUES TO NAME.
IF NAME NOT = HIGH-VALUES GENERATE MASTER-LIST.

16-78 Producing Printed Reports with VAX COBOL

Figure 16-19: CUSTMAST5.LIS

CUSTOMER MASTER FILE REPORT

* *
* Customer Master File *
*
* 25-08-89 *
*
* Report 5 *
* Summary Report *
* *
* *

PAGE 2

+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+

TOTAL RECORDS:

TOTAL RECORDS:

TOTAL RECORDS:

TOTAL RECORDS:

TOTAL RECORDS:

TOTAL RECORDS:

TOTAL RECORDS:

TOTAL RECORDS:

CUSTOMER MASTER FILE REPORT

7

1

1

6

1

1

3

1

C 0 M P A, N Y
COMPANY

* INVOICE SUB TOTAL: $70,006.30 *

* INVOICE SUB TOTAL: $21,008.90 *

* INVOICE SUB TOTAL: $61,009.00 *

INVOICE SUB TOTAL: $60,004.26 *

* INVOICE SUB TOTAL: $24,101.00 *

* INVOICE SUB TOTAL: $70,000.17 *

* INVOICE SUB TOTAL: $30,000.00 *

* INVOICE SUB TOTAL: $12,340.70 *

CONFIDENTIAL
CONFIDENTIAL

PAGE 3
+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+

TOTAL RECORDS: 1

TOTAL RECORDS: 1

TOTAL RECORDS: 1

TOTAL RECORDS: 1

TOTAL RECORDS: 1

TOTAL RECORDS: 1

TOTAL RECORDS: 1

TOTAL RECORDS: 1

COMPANY
COMPANY

* INVOICE SUB TOTAL: $41,000.90 *

* INVOICE SUB TOTAL: $12,341.60 *

* INVOICE SUB TOTAL: $16,789.00 *

* INVOICE SUB TOTAL: $23,416.76 *

* INVOICE SUB TOTAL: $34,167.80 *

* INVOICE SUB TOTAL: $12,341.67 *

* INVOICE SUB TOTAL: $66,688.90 *

* INVOICE SUB TOTAL: $11,114.90 *

CONFIDENTIAL
CONFIDENTIAL

ZK-1481A-GE

(continued on next page)

Producing Printed Reports with VAX COBOL 16-79

Figure 1~19 (Cont.): CUSTMAST5.LIS

CUSTOMER MASTER FILE REPORT PAGE 4

+--+
I NAME I ADDRESS I INVOICE I
1--1
I LAST I FIRST I MI I STREET I CITY I ST I ZIP I DATE I NUMBER I AMOUNT I
+--+

TOTAL RECORDS:

TOTAL RECORDS:

TOTAL RECORDS:

GRAND TOTAL RECORDS:

1

1

1

32

* INVOICE SUB TOTAL: $87,690.00 *

* INVOICE SUB TOTAL: $6.00 *

* INVOICE SUB TOTAL: $78,900.00 *

**
* GRAND TOTAL INVOICES: $732,927.86 *
**

COMPANY CONFIDENTIAL
COMPANY CONFIDENTIAL

* *
* Customer Master File *
* *
* 25-08-89 *
* *
* End of Report 5 *
* *

ZK-1481A-1-GE

16.1 O Solving Report Problems

Several variations to the basic report format are discussed in the next sections.

16.10.1 Printing More Than One Logical Line on a Single Physical Line

When your report has only a few columns, you can print several logical lines
on one physical line. If you were to print names and addresses on four-up
self-sticking multilabel forms, you would print the form left to right and top
to bottom, as shown in Figure 16-20 and Example 16-10. To print four-up
self-sticking labels, you must format each logical line with four input records.

However, if the columns must be sorted by column, the task becomes more
difficult. The last line at the end of the first column is continued at the top of the
second column of the same page, indented to the right, and so forth, as shown
in Figure 16-21 and Example 16-11. Example 16-11 defines a table containing
all data to appear on the page. It reads the input records, stores the data in the
table as it is to appear on the page, prints the contents of the table and then fills
spaces. When it reaches the end of file, the remaining entries in the table are
automatically blank. You can extend this technique to print any number of logical
lines on a single physical line.

16-80 Producing Printed Reports with VAX COBOL

Figure 16-20: Printing Labels Four-Up

0

0

0

0

0

1 2 3

6 7

Example 16-10: Printing Labels Four-Up

IDENTIFICATION DIVISION.
PROGRAM-ID. REP02.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "LABELS.DAT".
SELECT REPORT-FILE ASSIGN TO "LABELS.REP".

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE.
01 INPUT-RECORD.

02 INPUT-NAME PIC X(20).
02 INPUT-ADDRESS PIC X(15).
02 INPUT-CITY PIC X(lO).
02 INPUT-STATE PIC XX.
02 INPUT-ZIP PIC 99999.

FD REPORT-FILE.
01 REPORT-RECORD PIC X(132).
WORKING-STORAGE SECTION.
01 LABELS-TABLE.

03 NAME-LINE.

4

8

05 LINE-1 OCCURS 4 TIMES INDEXED BY INDEX-1.
07 LABEL-NAME PIC X(20).
07 FILLER PIC X(lO).

03 ADDRESS-LINE.
05 LINE-2 OCCURS 4 TIMES INDEXED BY INDEX-2.

07 LABEL-ADDRESS PIC X(15).
07 FILLER PIC X(15).

03 CSZ-LINE.
05 LINE-3 OCCURS 4 TIMES INDEXED BY INDEX-3.

0

0

0

0

0

ZK-6088-GE

(continued on next page)

Producing Printed Reports with VAX COBOL 16-81

Example 16-1 O (Cont.): Printing Labels Four-Up

07 LABEL-CITY PIC X(lO).
07 FILLER PIC xxxx.
07 LABEL-STATE PIC xx.
07 FILLER PIC xxxx.
07 LABEL-ZIP PIC 99999.
07 FILLER PIC xxxxx.

01 END-OF-FILE PIC x.
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN INPUT INPUT-FILE
OUTPUT REPORT-FILE.

MOVE SPACES TO LABELS-TABLE.
SET INDEX-1, INDEX-2, INDEX-3 TO 1.
PERFORM AlOO-READ-INPUT UNTIL END-OF-FILE "Y".

A050-WRAP-UP.
IF LABEL-NAME(l) IS NOT EQUAL TO SPACES

PERFORM A300-PRINT-FOUR-LABELS.
AOSO-END-OF-JOB.

*

CLOSE INPUT-FILE
REPORT-FILE.

DISPLAY "END OF JOB".
STOP RUN.

Al00-READ-INPUT.

*

READ INPUT-FILE AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE = "Y" NEXT SENTENCE

ELSE PERFORM A200-GENERATE-TABLE.

A200-GENERATE-TABLE.

*

MOVE INPUT-NAME
MOVE INPUT-ADDRESS
MOVE INPUT-CITY

TO LABEL-NAME(INDEX-1)
TO LABEL-ADDRESS(INDEX-2)
TO LABEL-CITY(INDEX-3)

MOVE INPUT-STATE TO LABEL-STATE(INDEX-3)
MOVE INPUT-ZIP TO LABEL-ZIP(INDEX-3)
IF INDEX-1 = 4 PERFORM A300-PRINT-FOUR-LABELS

ELSE SET INDEX-1, INDEX-2, INDEX-3 UP BY 1.

A300-PRINT-FOUR-LABELS.
WRITE REPORT-RECORD FROM NAME-LINE AFTER ADVANCING 3.
WRITE REPORT-RECORD FROM ADDRESS-LINE AFTER ADVANCING 1.
WRITE REPORT-RECORD FROM CSZ-LINE AFTER ADVANCING 1.
MOVE SPACES TO LABELS-TABLE.
SET INDEX-1, INDEX-2, INDEX-3 TO 1.

16-82 Producing Printed Reports with VAX COBOL

Figure 16-21 : Printing Labels Four-Up in Sort Order

0

0

0

0

0

0

0

0

0

0

0

0

0

1

24

0

0

0

0

0

0

0

0

0

0

0

0

0

ZK-1556-GE

Producing Printed Reports with VAX COBOL 16-83

Example 16-11: Printing Labels Four-Up in Sort Order

IDENTIFICATION DIVISION.
PROGRAM-ID. REP03.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "LABELS.DAT".
SELECT REPORT-FILE ASSIGN TO "LABELS.REP".

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE.
01 INPUT-RECORD.

02 INPUT-NAME PIC X(20).
02 INPUT-ADDRESS PIC X(15).
02 INPUT-CITY PIC X(lO).
02 INPUT-STATE PIC xx.
02 INPUT-ZIP PIC 99999.

FD REPORT-FILE.
01 REPORT-RECORD PIC X(132).
WORKING-STORAGE SECTION.
01 LABELS-TABLE.

03 FOUR-UP OCCURS 6 TIMES INDEXED BY ROW-INDEX.
04 NAME-LINE.

05 LINE-1 OCCURS 4 TIMES INDEXED BY NAME-INDEX.
07 LABEL-NAME PIC X(20).
07 FILLER PIC X(lO).

04 ADDRESS-LINE.
05 LINE-2 OCCURS 4 TIMES INDEXED BY ADDRESS-INDEX.

07 LABEL-ADDRESS PIC X(15).
07 FILLER PIC X(15).

04 CSZ-LINE.
05 LINE-3 OCCURS 4 TIMES INDEXED BY CSZ-INDEX.

07 LABEL-CITY PIC X(lO).
07 FILLER PIC XXXX.
07 LABEL-STATE PIC XX.
07 FILLER PIC XXXX.
07 LABEL-ZIP PIC 99999.
07 FILLER PIC XXXXX.

01 END-OF-FILE
PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN INPUT INPUT-FILE
OUTPUT REPORT-FILE.

MOVE SPACES TO LABELS-TABLE.

PIC X.

SET ROW-INDEX, NAME-INDEX, ADDRESS-INDEX, CSZ-INDEX TO 1.
PERFORM AlOO-READ-INPUT UNTIL END-OF-FILE "Y".

A050-WRAP-UP.
IF LABEL-NAME(l, 1) IS NOT EQUAL TO SPACES

PERFORM A300-PRINT-PAGE-OF-LABELS VARYING ROW-INDEX
FROM 1 BY 1 UNTIL ROW-INDEX IS GREATER THAN 6.

A050-END-OF-JOB.
CLOSE INPUT-FILE

REPORT-FILE.
DISPLAY "END OF JOB".
STOP RUN.

16-84 Producing Printed Reports with VAX COBOL

(continued on next page)

Example 16-11 (Cont.): Printing Labels Four-Up in Sort Order

AlOO-READ-INPUT.
READ INPUT-FILE AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE = "Y" NEXT SENTENCE

ELSE PERFORM A200-GENERATE-LABELS.
A200-GENERATE-LABELS.

MOVE INPUT-NAME TO LABEL-NAME(ROW-INDEX, NAME-INDEX)
MOVE INPUT-ADDRESS TO LABEL-ADDRESS(ROW-INDEX, ADDRESS-INDEX)
MOVE INPUT-CITY TO LABEL-CITY(ROW-INDEX, CSZ-INDEX)
MOVE INPUT-STATE TO LABEL-STATE(ROW-INDEX, CSZ-INDEX)
MOVE INPUT-ZIP TO LABEL-ZIP(ROW-INDEX, CSZ-INDEX)
IF ROW-INDEX = 6 AND NAME-INDEX = 4

PERFORM A300-PRINT-PAGE-OF-LABELS VARYING ROW-INDEX
FROM 1 BY 1 UNTIL ROW-INDEX IS GREATER THAN 6

MOVE SPACES TO LABELS-TABLE
SET ROW-INDEX, NAME-INDEX, ADDRESS-INDEX, CSZ-INDEX TO 1

ELSE
PERFORM A210-UPDATE-INDEXES.

A210-UPDATE-INDEXES.
IF ROW-INDEX = 6 SET ROW-INDEX TO 1

ELSE

SET NAME-INDEX
ADDRESS-INDEX
CSZ-INDEX UP BY 1

SET ROW-INDEX UP BY 1.
A300-PRINT-PAGE-OF-LABELS.

WRITE REPORT-RECORD FROM NAME-LINE(ROW-INDEX)
AFTER ADVANCING 3.

WRITE REPORT-RECORD FROM ADDRESS-LINE(ROW-INDEX)
AFTER ADVANCING 1.

WRITE REPORT-RECORD FROM CSZ-LINE(ROW-INDEX)
AFTER ADVANCING 1.

16.10.2 Group Indicating

The group indicating process greatly improves a report's readability where long
sequences of entries have some element in common. You print the element once,
then leave it blank for subsequent lines, as long as there is no change in that
element. For example, if your sample file's sort sequence is State (major key) and
City (minor key), you get sequences like those in Table 16-1.

Table 16-1: Results of Group Indicating

Without Group Indicating With Group Indicating

STORE STORE
STATE CITY NUMBER STATE CITY NUMBER

Arizona Grand Canyon 111111 Arizona Grand Canyon 111111
Arizona Grand Canyon 123456 123456
Arizona Grand Canyon 222222 222222
Arizona Tucson 333333 Arizona Tucson 333333
Arizona Tucson 444444 444444

(continued on next page)

Producing Printed Reports with VAX COBOL 16-85

Table 16-1 {Cont.): Results of Group Indicating

Without Group Indicating With Group Indicating

STORE STORE
STATE CITY NUMBER STATE CITY NUMBER

Arizona Tucson 555555 555555

Massachusetts Maynard 111111 Massachusetts Maynard 111111

Massachusetts Maynard 222222 222222

Massachusetts Maynard 333333 333333

Massachusetts Maynard 444444 444444

Massachusetts Tewksbury 111111 Massachusetts Tewksbury 111111
Massachusetts Tewksbury 222222 222222

New Hampshire Manchester 111111 New Hampshire Manchester 111111

New Hampshire Manchester 222222 222222

New Hampshire Merrimack 333333 New Hampshire Merrimack 333333

New Hampshire Merrimack 444444 444444

New Hampshire Merrimack 555555 555555

New Hampshire Nashua 666666 New Hampshire Nashua 666666

16.10.3 Fitting Reports on the Page

If you need more columns than physically can fit on a page, you can do the
following:

• Eliminate as many unused spaces as possible between columns. Columns
should not be run together; however, you can use one blank space instead of
several.

• Eliminate nonessential information.

• Print two or more lines with staggered headers and columns.

• Print two reports.

16.10.4 Printing Totals Before Detail Lines

A report that must include totals at the top of the page before the detail lines has
three solutions as follows:

• Store the logical print lines in a table, total the table, and then print from the
table.

• Pass through the file twice. The first time, compute the totals. The second
time, print the report. This method is slow and complicated if there are many
subtotals.

• Write the lines into a file with a sort key containing the report, page, and
line number. When your program writes the last line and computes the total,
have it assign a page and line number to the total line's sort key. Use an
appropriate page and line number to cause the total line to sort in front of its
detail lines. After the program completes, sort the file, read it, drop the sort
key, and produce the report.

16-86 Producing Printed Reports with VAX COBOL

16.10.5 Underlining Items in Your Reports

Sometimes you must underline a column of numbers to denote a total and also
underline the total to highlight it:

1234
1122

2356

To print a single underline, use the underscore character and suppress line
spacing. For example:

WRITE PRINT-LINE FROM SINGLE-UNDERLINE-TOTAL
BEFORE ADVANCING 0 LINES.

This overprints the underscore (,....) on the previous line, underlining the item:
1122. Use the equal sign (=) to simulate double underlines. Note that you must
write the equal signs on the next line. For example:

WRITE PRINT-LINE FROM DOUBLE-UNDERLINE-TOTAL
AFTER ADVANCING 1 LINE.

16.10.6 Bolding Items in Your Reports

To bold an entire line in a report:

1. Write the line as many times as you want, specifying the BEFORE
ADVANCING 0 LINES phrase (three times is sufficient). This darkens
the line but does not advance to the next line.

2. Write the line one last time without the BEFORE ADVANCING phrase. This
overprints the line again and advances to the next print line.

For example:

WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES.
WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES.
WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES.
WRITE PRINT-LINE FROM TOTAL-LINE.

This example produces a darker image in the report. You can use similar
statements for characters and words, as well as complete lines. To bold only a
word or only a character within a line, you must:

1. Write the print line and specify the BEFORE ADVANCING 0 LINES phrase.

2. Use reference modification to create a skeleton line containing only the items
in the print ·line you want bolded.

3. Write the skeleton line as many times as you want and specify the BEFORE
ADVANCING 0 LINES phrase. This darkens the items in the skeleton line
but does not advance to the next line.

4. Write the skeleton line one last time without the BEFORE ADVANCING
phrase. This overprints the line again and advances to the next print line.

Producing Printed Reports with VAX COBOL 16-87

For example:

WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES.
* * Move spaces over the items in the source print line (TOTAL-LINE)
* that are not to be bolded
*

MOVE SPACES TO ...
WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES.
WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES.
WRITE PRINT-LINE FROM TOTAL-LINE.

16-88 Producing Printed Reports with VAX• COBOL

Chapter 17

Forms for Video Terminals

This chapter explains how you can design an online video form similar to a
printed form, using VAX COBOL ACCEPr and DISPLAY statements. These
statements provide options for developing video forms on VT52, VT100, VT200,
or VT300 1 terminals, and let you write your application without regard to the
type of terminal the application will eventually run on. You can run your forms
application on any of these terminals .. However, not all options are available for
the VT52 terminal; those unavailable options have no effect on the form.

For simple screen applications, or applications requiring specialized screen
displays, such as scrolling regions or double-width/double-height displays,
refer to the VAX documentation on Run-Time Library (RTL) routines. This
manual provides information on terminal-independent screen manipulation RTL
procedures.

A video form allows you to do the following:

• Improve the appearance of an application's terminal dialogue

• Make data entry applications, menu selections, and special control keys easier
to use

• Clarify the type. of input expected from an operator

For example, Figure 17-1 is a sample form created by a VAX COBOL program
that lets you enter employee information into a master file. This program
prompts you for input data to the form. Once all data is entered, the program
writes it to the master file and displays a new form.

1 VAX COBOL does not provide mouse or split screen support

Forms for Video Terminals 17-1

Figure 17-1: Adding Information to a Master File with a Video Form

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*******PERSONNEL MASTER FILE DATA INPUT FORM****

Employee Nmnber=--~~~~~ Wage Class:~~~

Employee Name:~~~~~~~~~~~~~~~~~

Employee Address:~~~~~~~~~~~~~~~

Employee Phone No.=~~~~~~~~~~~~~~~

Department=~~~~~~~~~~~~~~~~~~~

Supervisor Name=~~~~~~~~~~~~~~~~~

Supervisor Phone No.:~~~~~~~~~~~~~~

Current Salary:$~~~~~~~~~~~~~~~~~

Date Hired:~/~/~ Next Review Date:~/~/~

Designing Your Form with ACCEPT/DISPLAY Options

ZK-6089-GE

To help you design a video form, the ACCEPT/DISPLAY options allow you to do
the following:

• Erase specific parts or the entire screen

• Use relative and absolute cursor positioning

• Specify video attributes of data to be displayed and accepted

• Convert data to appropriate usage when accepting or displaying data

• Handle error conditions when accepting and displaying data

• Provide screen protection by limiting the number of characters typed on the
terminal when accepting data

• Accept data without echoing

• Specify default values for ACCEPT statements

• Define and handle special control keys for ACCEPT statements

• Allow field editing.

The remainder of this chapter discusses these topics.

17-2 Forms for Video Terminals

17.1 Clearing a Screen Area

To clear part or all of your screen before you accept or display data, you can use
one of the following ERASE options of the ACCEPT and DISPLAY statements:

• ERASE SCREEN-Erases the entire screen before accepting or displaying
data at the specified or implied cursor position.

• ERASE LINE-Erases the entire specified line before accepting or displaying
data at the specified or implied cursor position.

• ERASE TO END OF SCREEN-Erases from the specified or implied cursor
position to the end of the screen before accepting or displaying data at the
specified cursor position.

• ERASE TO END· OF LINE-Erases from the specified or implied cursor
position to the end of the line before accepting or displaying data at the
specified cursor position.

Table 17-1 lists the ERASE options and indicates whether each option requires
relative or absolute cursor positioning for your terminal type. (See Section 17 .2.)

Table 17-1: Cursor Positioning Requirements for ERASE Options

Cursor Positioning for Your Terminal Type

ERASE Option VT52 VT100/VT200/VT300

ERASE SCREEN Absolute only Absolute or Relative

ERASE LINE Absolute only Absolute or Relative

ERASE TO END OF SCREEN Absolute or Relative Absolute or Relative

ERASE TO END OF LINE Absolute or Relative Absolute or Relative

In Example 17-1, the entire screen is erased before Employee number: is
displayed. Figure 17-2 shows how the screen looks before the ERASE statement
executes. Figure 17-3 shows how the screen looks after the ERASE statement
executes.

Example 17-1: Erasing a Screen

IDENTIFICATION DIVISION.
PROGRAM-ID. ERASEIT.
DATA DIVISION.
PROCEDURE DIVISION.
AOO-BEGIN.

DISPLAY "Employee number:" LINE 4 COLUMN 5 ERASE SCREEN.
DISPLAY " " LINE 23 COLUMN 1.
STOP RUN.

Forms for Video Terminals 17-3

Figure 17-2: Screen Before the ERASE Statement Executes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21·
22
23
24

1 2 3 4 5 6 7 8
123456789012345678901234567?9012345678901234567890123456789012345678901234567890

ZK-6090-GE

17-4 Forms for Video Terminals

Figure 17-3: Screen After the ERASE Statement Executes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

17.2 Horizontal and Vertical Positioning of the Cursor

To position data items at a specified line and column, you use the LINE
NUMBER and COLUMN NUMBER phrases. You can use these phrases with
both the ACCEPT and DISPLAY statements. You can also use literals or numeric
data items to specify line and column numbers.

In Example 17-2 and in Figure 17-4, Employee name: is displayed on line 19 in
column 5.

Forms for Video Terminals 17-5

Example 17-2: Cursor Positioning

IDENTIFICATION DIVISION.
PROGRAM-ID. LOCATE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COL-NUM PIC 99 VALUE 5.
PROCEDURE DIVISION.
AOO-OUT-PARA.

DISPLAY "Employee name:" LINE 19

DISPLAY II II LINE 24
COLUMN 1.

STOP RUN.

COLUMN COL-NUM
ERASE SCREEN.

Figure 17-4: Positioning the Data on Line 19, Column 5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-6092-GE

If you use LINE, but not COLUMN, data is accepted or displayed at column 1 of
the specified line position.

If you use COLUMN, but not LINE, data is accepted or displayed at the current
line and specified column position.

If you do not use either phrase, data is accepted or displayed at the position
specified by the rules for Format 1 ACCEPT and DISPLAY in the VAX COBOL
Reference Manual.

17-6 Forms for Video Terminals

NOTE

The presence of either or both the LINE and COLUMN clauses implies
NO ADVANCING.

You can use the PLUS option with the L.INE or COLUMN clauses for relative
cursor positioning. The PLUS option eliminates the need for counting lines or
columns. Once you specify an initial LINE or COLUMN number, you can position
items by using the LINE PLUS or COLUMN PLUS phrases. If you use PLUS
option without an integer, PLUS 1 is implied. Note that cursor positioning is
relative to where the cursor is after the previous ACCEPT or DISPLAY.

To get predictable results from your relative cursor positioning statements, do
not:

•
•
•
•

Cause a display line to wrap around to the next line .

Accept data into unprotected fields .

Go beyond the top or bottom of the screen .

Mix displays of double-high characters and relative curso: positioning .

In Example 17-3 the PLUS phrase is used twice to show relative positioning,
once with an integer, and once without. Figure 17-5 shows the results.

Example 17-3: Using PLUS for Cursor Positioning

IDENTIFICATION DIVISION.
PROGRAM-ID. LINEPLUS.
PROCEDURE DIVISION.
AOO-BEGIN.

DISPLAY "Positioning Test" LINE 10 COLUMN 20 ERASE SCREEN
"Changing Test" LINE PLUS 5 COLUMN PLUS 10
"Adding Test" LINE PLUS COLUMN PLUS.

DISPLAY " " LINE 23 COLUMN 1.
STOP RUN.

Forms for Video Terminals 17-7

Figure 17-5: Cursor Positioning Using the PLUS Option

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-6120-GE

Positioning Test is displayed on line 10, column 20 of the form; Changing Test is
displayed on line 15, column 46 of the form; and Adding Test is 9i,splayed on line
16, column 60 of the form.

NOTE

If you use the LINE PLUS phrase so that relative positioning goes
beyond the bottom of the screen, your form scrolls with each such
display.

17.3 Assigning Character Attributes to Your Format Entries

Depending on your terminal type, you can use one or more of the character
attributes in Table 17-2 to highlight your screen data. Example 17-4 shows the
use of these attributes in a program segment. Figure 17-6 shows the results of
the program segment in Example 17-4.

17-8 Forms for Video Terminals

Table 17-2: Available Character Attributes by Terminal Type

Character Attribute

BELL
sounds your
terminal bell

UNDERLINED
underlines
your text

BOLD
intensifies
your text

BLINKING
blinks your
text

REVERSED
changes your
screen's
background

VTlOO, VT200, and
VT300 Series Terminals
with Advanced Video
Option

Available

Available

Available

Available

Available

Example 17-4: Using Character Attributes

IDENTIFICATION DIVISION.
PROGRAM-ID. CHARATTR.
PROCEDURE DIVISION.
AOO-BEGIN.

VT52 and VTlOO Without the
Advanced Video Option

Available

Not Available

Not Available

Not Available

Not Available

DISPLAY "Employee No:" UNDERLINED LINE 5 COLUMN 5 ERASE SCREEN.
DISPLAY "Employee wage class:" BOLD LINE 5 COLUMN 24.
DISPLAY "NAME" BLINKING LINE PLUS 6 COLUMN 6.
DISPLAY "SALARY: $" REVERSED LINE PLUS 6 COLUMN 24.
DISPLAY " " LINE 23 COLUMN 1.

Forms for Video Terminals 17-9

Figure 17-6: Screen Display with Character Attributes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-6093-GE

17.4 Using the CONVERSION Clause to Display Data

Use the CONVERSION clause to display the contents of numeric fields. When
you use the CONVERSION clause with a DISPLAY statement, the numeric item
appears on the screen:

• In DISPLAY usage

• With a decimal point (if needed) or comma (if DECIMAL-POINT IS COMMA)

• Edited (if needed)

• With a sign (if needed)

This display lets you see the values of non-DISPLAY data items in a form that
the user can read. The size of the displayed field is determined by the PICTURE
clause of the displayed item. Example 17-5 and Figure 17-7 show how to display
different types of data with the CONVERSION clause.

17-10 Forms for Video Terminals

Example 17-5: Using the CONVERSION Clause

IDENTIFICATION DIVISION.
PROGRAM-ID. CONVERT.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DATAlA PIC X(lO).
01 DATAlB PIC X(lO) JUST.
01 DATA2 PIC +++++9999.99.
01 DATA3 PIC S9(2)V9(2) COMP.
01 DATA4 PIC S9(3)V9(3) COMP.
01 DATA5 PIC S9(6)V9(6) COMP.
01 DATA6 PIC S9(4)V9(4) COMP-3.
01 DATA7 PIC S9(1)V9(7) SIGN LEADING SEPARATE.
PROCEDURE DIVISION.
CONVERT-CHECK SECTION.
Pl.

P2.

P3.

P4.

DISPLAY "To begin press your carriage return key"
LINE 1 COLUMN 1 ERASE SCREEN
BELL UNDERLINED REVERSED.

ACCEPT DATAlA.
DISPLAY "X(lO) Test" LINE 8 ERASE LINE.
ACCEPT DATAlA WITH CONVERSION PROTECTED REVERSED

LINE 8 COLUMN 50.
DISPLAY DATAlA REVERSED WITH CONVERSION

LINE 8 COLUMN 65.
DISPLAY "X(lO) JUSTIFIED Test" LINE 10 ERASE LINE.
ACCEPT DATAlB WITH CONVERSION PROTECTED REVERSED

LINE 10 COLUMN 50.
DISPLAY DATAlB REVERSED WITH CONVERSION

LINE 10 COLUMN 65.

DISPLAY "Num edited Test (+++++9999.99) :" LINE 12 ERASE LINE.
ACCEPT DATA2 PROTECTED REVERSED WITH CONVERSION

LINE 12 COLUMN 50.
DISPLAY DATA2 REVERSED WITH CONVERSION

LINE 12 COLUMN 65.

DISPLAY "Num COMP Test S9(2)V9(2) :" LINE 14 ERASE LINE.
ACCEPT DATA3 PROTECTED REVERSED WITH CONVERSION

LINE 14 COLUMN 50.
DISPLAY DATA3 REVERSED WITH CONVERSION LINE 14 COLUMN 65.

DISPLAY "Num COMP Test S9(3)V9(3) :" LINE 16 ERASE LINE.
ACCEPT DATA4 PROTECTED REVERSED WITH CONVERSION

LINE 16 COLUMN 50.
DISPLAY DATA4 REVERSED WITH CONVERSION

LINE 16 COLUMN 65.

(continued on next page)

Forms for Video Terminals 17-11

Example 17-5 (Cont.): Using the CONVERSION Clause

PS.

P6.

P7.

P8.

DISPLAY "Num COMP Test S9(6)V9(6) :"LINE 18 ERASE LINE.
ACCEPT DATA5 PROTECTED REVERSED WITH CONVERSION

LINE 18 COLUMN 50.
DISPLAY DATAS REVERSED WITH CONVERSION

LINE 18 COLUMN 65.

DISPLAY "Num COMP-3 Test S9(4)V9(4) :" LINE 20 ERASE LINE.
ACCEPT DATA6 PROTECTED REVERSED WITH CONVERSION

LINE 20 COLUMN 50.
DISPLAY DATA6 REVERSED WITH CONVERSION

LINE 20 COLUMN 65.

DISPLAY "Num DISPLAY Test S9(l)V9.(7)Sign Lead Sep:"
LINE 22 ERASE LINE.

ACCEPT DATA7 PROTECTED REVERSED WITH CONVERSION
LINE 22 COLUMN 50.

DISPLAY DATA7 REVERSED WITH CONVERSION
LINE 22 COLUMN 65.

DISPLAY "To end ... type END"
LINE PLUS COLUMN 1 ERASE LINE
BELL UNDERLINED REVERSED.

ACCEPT DATAlA.
IF DATAlA = "END" STOP RUN.
GO TO Pl.

17-12 Forms for Video Terminals

Figure 17-7: Sample Run of Program CONVERT

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-6094-GE

Note that you can also display COMP-1, COMP-2, RMS-STS, RMS-STY,
LINAGE register, RWCS LINE, and RWCS PAGE items; the DBMS registers
DB-CONDITION, DB-CURRENT-RECORD-NAME, DB-KEY, DB-UWA and
DB-CURRENT-RECORD-ID; and VALUE EXTERNAL and POINTER VALUE
REFERENCE items.

17.5 Handling Data with ACCEPT Options

Several ACCEPT phrases help you handle data, including the CONVERSION, AT
END, ON EXCEPTION, PROTECTED, SIZE, NO ECHO, and DEFAULT clauses.

17.5.1 Using CONVERSION with ACCEPT Data

When you use the CONVERSION clause with an ACCEPT numeric operand
(other than floating point), VAX COBOL converts the data entered on the
form to a trailing-signed decimal field. Editing is performed when specified by
destination. The data is then moved from the screen to your program using
standard MOVE statement rules.

Forms for Video Terminals 17-13

When you use the CONVERSION clause with an ACCEPT numeric floating-point
operand, VAX COBOL converts input data to floating-point (COMP-1 or
COMP-2 as appropriate). The converted result is then moved to the destination
as if moving a numeric literal equivalent to the input data with the MOVE
statement.

When an ACCEPT operand is not numeric, the CONVERSION clause moves the
input characters as an alphanumeric string, using standard MOVE statement
rules. This lets you accept data into an alphanumeric-edited or JUSTIFIED field.

If you use the CONVERSION clause while accepting numeric data, you can also
use the ON EXCEPTION clause. This clause lets you control data entry errors
that can occur when entering numeric data.

If you do not use the CONVERSION clause, data is transferred to the destination
item according to Format 1 ACCEPT statement rules.

17.5.2 Using ON EXCEPTION When Accepting Data with CONVERSION

If you enter illegal numeric data or exceed the PICTURE description (if not
protected) of the ACCEPT data (with an overflow to either the left or right of
the decimal point), the imperative statemep.t associated with ON EXCEPTION
executes, and the destination field does not change.

Example 17-6 (and Figure 17-8) show how the ON EXCEPTION clause executes
if you enter an alphanumeric or a numeric item out of the valid range. The
statements following ON EXCEPTION prompt you to try again.

If you do not use ON EXCEPTION and a conversion error occurs:

• The field on the scr~en is filled with spaces.

• The terminal bell rings and the terminal automatically reprompts you for the
data results.

• The contents of the destination field are not changed.

Example 17-6: Using the ON EXCEPTION Clause

IDENTIFICATION DIVISION.
PROGRAM-ID. ONEXC.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NUM-DATA PIC S9(3)V9(3) COMP-3.
PROCEDURE DIVISION.
AOO-BEGIN.

DISPLAY "Enter any number in this range: -999.999 to +999.999"
LINE 10 COLUMN 1
ERASE SCREEN.

ACCEPT NUM-DATA WITH CONVERSION LINE 15 COLUMN 15
ON EXCEPTION

DISPLAY "Valid range is: -999.999 to +999.999"
LINE 20 REVERSED WITH BELL ERASE TO END OF SCREEN

DISPLAY "PLEASE try again ... press your carriage return key"
" to continue" LINE PLUS REVERSED

ACCEPT NUM-DATA.
GO TO AOO-BEGIN.

17-14 Forms for Video Terminals

Figure 17-8: Accepting Data with the ON EXCEPTION Option

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-6095-GE

17 .5.3 Protecting Your Screen

You can use the PROTECTED phrase in an ACCEPT statement to limit the
number of characters that can be entered. This clause prevents overwriting or
deleting parts of the screen.

If you use this phrase, and you try to type past the rightmost position of the
input field or delete past the left edge of the input field, the terminal bell sounds
and the screen cursor does not move. You can accept the data on the screen
by pressing a legal terminator key, or you can delete the data by pressing the
DELETE key. If you specify PROTECTED WITH AUTOTERMINATE, the
ACCEPT operation terminates when the maximum number of characters has
been entered unless a terminator has been entered prior to this point. For more
information on legal terminator keys, refer to the CONTROL KEY phrase of the
ACCEPT statement in the VAX COBOL Reference Manual.

You can also use the REVERSED, BOLD, BLINKING, or UNDERLINED
attributes with the PROTECTED phrase. Using these attributes lets you see
the size of the input field on the screen before you enter data. The characters you
enter also echo the specified attribute.

You can specify the NO BLANK and FILLER phrases with the PROTECTED
phrase. The NO BLANK phrase specifies that the protected input field is not to
be filled with spaces until after the first character is entered. The FILLER phrase
initializes each character position of the input field with the filler character
specified.

Forms for Video Terminals 17-15

When you use the FILLER phrase with the NO BLANK phrase, the input field is
filled with the filler character only after you have entered the first character.

The PROTECTED SIZE phrase sets the size of the input field on the screen and
allows you to change the size of the input field from the size indicated by the
PICTURE phrase of the destination item. Example 17-7 and Figure 17-9 show
how to use the SIZE phrase with the PROTECTED phrase. When the example
specifies SIZE 3, any attempt to enter more than three characters makes the
terminal bell ring. When the example specifies SIZE 10, the ACCEPT statement
includes the ON EXCEPTION clause to warn you whenever you enter a number
that would result in truncation at either end of the assumed decimal point.
Figure 17-9 shows such an example in which the operator entered a 10-digit
number, exceeding the storage capacity of the data item NUM-DATA on the left
side of the assumed decimal point.

NOTE

The SIZE phrase controls only the number of characters you can enter;
it does not alter any other PICTURE clause requirements. Truncation,
space or zero filling, and decimal point alignment occur according to
MOVE statement rules only if CONVERSION is specified.

Example 17-7: Using the SIZE Phrase

IDENTIFICATION DIVISION.
PROGRAM-ID. PROTECT.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING--STORAGE SECTION.
01 NUt-1-DATA PIC S9(9)V9(9) COMP-3.
PROCEDURE DIVISION.
AOO-BEGIN.

DISPLAY "Enter data item (NUM-DATA) max SIZE 3:"
LINE 1 COLUMN 15
UNDERLINED
ERASE SCREEN.

PERFORM ACCEPT-THREE 5 TIMES.
DISPLAY "Same data item (NUM-DATA) max SIZE 10:" LINE PLUS 3

COLUMN 15
UNDERLINED.

PERFORM ACCEPT-TEN 5 TIMES.
STOP RUN.

ACCEPT-THREE.
ACCEPT NUM-DATA WITH CONVERSION PROTECTED SIZE 3

LINE PLUS COLUMN 15.
ACCEPT-TEN.

ACCEPT NUM-DATA WITH CONVERSION PROTECTED SIZE 10
LINE PLUS COLUMN 15
ON EXCEPTION

DISPLAY "TOO MANY NUMBERS--try this one again!!!"

17-16 Forms for Video Terminals

COLUMN PLUS
REVERSED
GO TO ACCEPT-TEN.

Figure 17-9: Screen Display of NUM·DATA Using the PROTECTED Option

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3. 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-6109-GE

When you do not use the PROTECTED phrase, the amount of data transferred
is determined according to the ACCEPT statement rules (see the VAX COBOL
Reference Manual).

17.5.4 Using NO ECHO with ACCEPT Data

By default, the characters you type at the terminal are displayed on the screen.
Example 17-8 and Figure 17-10 show how the NO ECHO phrase prevents the
input field from being displayed; thus, the NO ECHO phrase allows you to keep
passwords and other information confidential.

Forms for Video Terminals 17-17

Example 17-8: Using NO ECHO

IDENTIFICATION DIVISION.
PROGRAM-ID. NOSHOW.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PASSWORD PIC X(25).
PROCEDURE DIVISION.
AOO-BEGIN.

DISPLAY "ENTER YOUR PASSWORD: " LINE 5 COLUMN 10
ERASE SCREEN.

ACCEPT PASSWORD WITH NO ECHO.
STOP RUN.

Figure 17-10: Accepting Data with the NO ECHO Option

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-6096-GE

17.5.5 Assigning Default Values to Data Fields

Use the DEFAULT phrase to assign a value to an ACCEPT data item whenever:

• The program requires a value, and the operator does not have a value for the
data item.

17-18 Forms for Video Terminals

• There is a high probability that the default value is identical in most of the
records-as where a constant (such as· a state's abbreviation) is used in a
mailing list.

When you use the DEFAULT phrase, the program executes as if the default
value had been typed in when you press RETURN. However, the value is not
automatically displayed on the screen.

You can also use the CURRENT VALUE phrase with the DEFAULT phrase to
specify that the default input value is the initial value of the ACCEPT destination
item.

Example 17-9 and Figure 17-11 show you how to use the DEFAULT phrase
to specify default input values (the value must be an alphanumeric data
name, a nonnumeric literal, or figurative constant). The example uses the
TO-BE-SUPPLIED abbreviations [TBS], ***[TBS]****, and +00.00 as the default
values for three data items in the program.

Example 17-9: Using the DEFAULT Phrase

IDENTIFICATION DIVISION.
PROGRAM-ID. TRYDEF.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE
01 DATAlA
01 NAMElA
01 PRICEA
01 DATA123.

SECTION.
PIC 9(12).
PIC XXXXX.
PIC S99V99.

02 NAMElB PIC XXXXX.
02 PIC XX VALUE SPACES.
02 DATAlB PIC XXXXXXXXXXXX.
02 PIC XXX VALUE SPACES.
02 PRICEB PIC $99.99-.

01 NAME-DEFAULT PIC XXXXX VALUE "[TBS]".
01 COL-NUM PIC 99 VALUE 10.
PROCEDURE DIVISION.
AOO-DEFAULT-TEST.

DISPLAY "*********PLEASE ENTER THE FOLLOWING INFORMATION*********"
LINE 5 COLUMN 15
REVERSED BLINKING
ERASE SCREEN.

DISPLAY "**"
LINE 7 COLUMN 15.

DISPLAY " Part Part Pa~t"

II ---------STORED AS-----------"
LINE 9 COLUMN 15.

DISPLAY " Name Number Price"
Name Number Price "

LINE 10 COLUMN 15.
DISPLAY "Defaults --->[TBS] ***[TBS]**** +00.00"

LINE 11 COLUMN 2.
DISPLAY "----- ------------ ------"

LINE 12 COLUMN 15.
DISPLAY "**"

LINE 20 COLUMN 15.
DISPLAY "5. " REVERSED BLINKING LINE 18 COLUMN COL-NUM.
DISPLAY "4. " REVERSED BLINKING LINE 17 COLUMN COL-NUM.
DISPLAY "3. " REVERSED BLINKING LINE 16 COLUMN COL-NUM.
DISPLAY "2. " REVERSED BLINKING LINE 15 COLUMN COL-NUM.

(continued on next page)

Forms for Video Terminals 17-19

Example 17-9 (Cont.): Using the DEFAULT Phrase

DISPLAY "1. " REVERSED BLINKING LINE 14 COLUMN COL-NUM.
DISPLAY " " LINE 13 COLUMN 15.
PERFORM A05-GET-DATA 5 TIMES.
DISPLAY " " LINE 22 COLUMN 1.
STOP RUN.

A05-GET-DATA.
ACCEPT NAMElA

PROTECTED
DEFAULT NAME-DEFAULT
LINE PLUS COLUMN 15 ERASE TO END OF LINE.

ACCEPT DATAlA
PROTECTED
DEFAULT "***[TBS]****"
COLUMN 21.

ACCEPT PRICEA
PROTECTED
WITH CONVERSION
DEFAULT ZERO
COLUMN 34.

MOVE NAMElA TO NAMElB.

MOVE DATAlA TO DATAlB.
MOVE PRICEA TO PRICEB.
DISPLAY DATA123 REVERSED COLUMN 44.

17-20 Forms for Video Terminals

Figure 17-11: Accepting Data with the DEFAULT Phrase

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-6097-GE

17.6 Using Keys on Your Terminal to Define Special Program
Functions

Use the CONTROL KEY IN phrase of the ACCEPTsb1tement to tailoryour .
screen handling programs to give special meanings to any ·or all. of these ~eys
your terminal:

' . ·'

• Cursor positioning keys (up arrow, down arrow, left arrow, and right arr()w·
keys)

• Program function keys (PFl, PF2, PF3, and PF4)

• Function keys (F6 to F20)

• Auxiliary keypad keys (if in keypad mode) 0 to 9, minus (-), comma (,),
period(.), ENTER, FIND, INSERT HERE, REMOVE, SELECT,PREV
SCREEN, NEXT SCREEN

You can use the CONTROL KEY IN phrase to accept data a.ndto terminate
it with a control key or to allow a user to .press only . a control key (for nie:o.u
applications).

Table 17-3 lists the characters returned to the data name specified in the
CONTROL KEY IN phrase.

Forms for Video Terminals 17-21

Table 17-3 is for VT52, VTlOO, VT200, and VT300 terminals. Depending on your
terminal type, certain keys listed in this table are not applicable to your terminal
keyboard.

Table 17-3: VAX COBOL Characters Returned for Cursor Positioning, Program
Function, Function, and Auxiliary Keypad Keys

Characters Returned in the Data Name
Specified by CONTROL KEY IN

Key Name Keypad Name First Remaining

Cursor up up arrow cs11 A

Cursor down down arrow cs11 B

Cursor right right arrow cs11 c

Cursor left left arrow cs11 D

Program function PFl ss31 p

Program function PF2 ss31 Q
Program function PF3 ss31 R

Program function PF4 ss31 s

Auxiliary keypad left blank ss31 p

Auxiliary keypad center blank ss31 Q
Auxiliary keypad right blank ss31 R

Auxiliary keypad 0 sss1 p

Auxiliary keypad 1 ss31 q

Auxiliary keypad 2 ss31 r

Auxiliary keypad 3 ss31 s

Auxiliary keypad 4 ss31 t

Auxiliary keypad 5 ss31 u

Auxiliary keypad 6 ss31 v

Auxiliary keypad 7 ss31 w

Auxiliary keypad 8 ss31 x

Auxiliary keypad 9 ss31 y

Auxiliary keypad ss31 m

Auxiliary keypad sss1

Auxiliary keypad ss31 n

Auxiliary keypad ENTER ss31 M

Auxiliary keypad FIND csr1 1-

Auxiliary keypad INSERT HERE cs11 2-

Auxiliary keypad REMOVE cs11 3 ...

Auxiliary keypad SELECT cs11 4,..

Auxiliary keypad PREVSCREEN cs11 5 ...

Auxiliary keypad NEXT SCREEN CSP 6-

TAB TAB 9

RETURN RETURN 13

1The CSI and 883 characters are shown for your information only. You need not check for their
presence because the remaining characters are unique and need no qualification.

(continued on next page)

17-22 Forms for Video Terminals

Table 17-3 (Cont.): VAX COBOL Characters Returned for Cursor Positioning,
Program Function, Function, and Auxiliary Keypad Keys

Characters Returned in the Data Name
Specified by CONTROL KEY IN

Key Name Keypad Name First Remaining

Function key HOLD SCREEN Not Available

Function key PRINT SCREEN Not Available

Function key SET-UP Not Available

Function k~y DATA!I'ALK Not Available

Function key BREAK Not Available

Function key F6 Not Available

Function key F7 cs11 18-

Function key F8 cs11 19-

Function key F9 cs11 20-

Function key FlO cs11 21-

Function key Fll (ESC) cs11 23-

Function key F12 (BS) cs11 24-

Function key F13 (LF) cs11 25-

Function key F14 cs11 26-

Function key F15 (HELP) cs11 28-

Function key F16 (DO) cs11 29-

Function key F17 cs11 31-

Function key F18 cs11 32-

Function key F19 cs11 33-

Function key F20 cs11 34-

CTRUA 1

CTRUB 2

CTRUC Not Available

CT RUD 4

CT RUE 5

CTRUF 6

CTRUG 7

CT RUH 8

CTRUI (TAB) 9

CTRUJ 10

CTRUK 11

CTRUL 12

CTRUM 13
(RETURN)

CT RUN 14

CTRUO Not Available

1The C8I and 883 characters are shown for your information only. You need not check for their
presence because the remaining characters are unique and need no qualification.

(continued on next page)

Forms for Video Terminals 17-23

Table 17-3 (Cont.): VAX COBOL Characters Returned for Cursor Positioning,
Program Function, Function, and Auxiliary Keypad Keys

Key Name

CTR UP

CTRUQ

CTRUR

CTRUS

CTRIJT

CTRUU

CTR UV

CTRUW

CTRUX:

CTRI/Y

CTRUZ

Keypad Name

Characters Returned in the Data Name
Specified by CONTROL KEY IN

First

16

Not Available

18

Not Available

Depends on
SET CONTROL
Setting

21

22

23

24

Not Available

Results depend
on presence or
absence of the
AT END phrase
in the ACCEPT
statement

Remaining

The definition and value of the C81 and 883 characters used in Table 17-3 follow:

01 SS3X PIC 9999 COMP VALUE 143.
01 SS3 REDEFINES SS3X PIC X.
01 CSIX PIC 9999 COMP VALUE 155.
01 CSI REDEFINES CSIX PIC X.

Figure 17..;..12, Figure 17-13, and Figure 17-14 show the standard keypads
for the VT52, VTlOO, VT200, and VT300 terminals, respectively. The shaded
keys correspond to the keypad names in Table 17-3, which lists the characters
returned to the application program.

17-24 Forms for Video Terminals

Figure 17-12: VAX COBOL Control Keys on the Standard VT52 Keypad

Forms for Video Terminals 17-25

Figure 17-13: VAX COBOL Control Keys on the Standard VT100 Keypad

17-26 Forms for Video Terminals

Figure 17-14: VAX COBOL Control Keys on the Standard VT200 and VT300
Keypad

Forms for Video Terminals 17-27

Example 17-10 shows you how to use the CONTROL KEY phrase to handle
arrow keys, program function keys, auxiliary keypad keys, CTRUZ, TAB, and
RETURN, using a VTlOO terminal on a VMS operating system.

When you use this phrase, you allow program function keys and arrow keys, as
well as RETURN and TAB keys, to terminate input. This phrase also permits you
to use those keys to move the cursor and to make menu selections without typing
any data on the screen.

NOTE

To activate the auxiliary keypad, your program must execute DISPLAY
ESC "=". You must also define ESC as the escape character. Refer to
Example 17-10.

In Example 17-10, the terminator key codes are displayed on the screen.

Example 17-10: Using the CONTROL KEY IN Phrase

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL NAMES.

SYMBOLIC CHARACTERS
CR-VAL CSI-VAL CTRL-Z-VAL SS3-VAL TAB-VAL ESC

ARE 14 156 27 144 10 28.
PROGRAM-ID. SPECIAL.
DATA DIVISION.
WORKING-STORAGE SECTION.

*
* The code returned will be the same

* VTlOO, VT200, and VT300 terminals.

*
01 CONTROL-KEY.

02 FIRST-CHAR-CONTROL-KEY PIC X.
88 CR VALUE CR-VAL.
88 CSI VALUE CSI-VAL.

on VT52,

88 CTRL-Z VALUE CTRL-Z-VAL.
88 SS3 VALUE SS3-VAL.
88 TAB VALUE TAB-VAL.

02 REMAINING-CHAR-CONTROL-KEY PIC xxxx.
88 UP-ARROW VALUE "A".
88 DOWN-ARROW VALUE "B".
88 RIGHT-ARROW VALUE "C".
88 LEFT-ARROW VALUE "D".
88 PFl VALUE "P".
88 PF2 VALUE "Q".
88 PF3 VALUE "R".
88 PF4 VALUE "S".
88 AUXO VALUE "p".
88 AUXl VALUE "q".
88 AUX2 VALUE "r".
88 AUX3 VALUE "s".
88 AUX4 VALUE "t".
88 AUX5 VALUE "u".
88 AUX6 VALUE "v".
88 AUX7 VALUE "w".
88 AUX8 VALUE "x".

17-28 Forms for Video Terminals

(continued on next page)

Example 17-10 (Cont.): Using the CONTROL KEY IN Phrase

88 AUX9 VALUE "y".
88 AUXMINUS VALUE "m".
88 AUX COMMA VALUE "l".
88 AUXPERIOD VALUE "n".
88 AUXENTER VALUE "M".

PROCEDURE DIVISION.
PO.

*
* DISPLAY ESC "=" puts you in alternate keypad mode

*

Pl.

DISPLAY ESC "="
DISPLAY ERASE SCREEN.

DISPLAY "Press a directional arrow, PF, RETURN, TAB,
LINE 3 COLUMN 4.

DISPLAY "or auxiliary keypad key (CTRL/Z stops loop)"
LINE 4 COLUMN 4.

ACCEPT CONTROL KEY IN CONTROL-KEY AT END GO TO P2.
IF CR= DISPLAY "RETURN" LINE 10 COLUMN 5 ERASE LINE GO TO Pl.
IF TAB = DISPLAY "\TAB" LINE 10 COLUMN 5 ERASE LINE GO TO Pl.
IF PFl DISPLAY "PFl" LINE 10 COLUMN 5 ERASE LINE GO TO Pl.
IF PF2 DISPLAY "PF2" LINE 10 COLUMN 5 ERASE LINE GO TO Pl.
IF PF3 DISPLAY "PF3" LINE 10 COLUMN 5 ERASE LINE GO TO Pl.
IF PF4 DISPLAY "PF4" LINE 10 COLUMN 5 ERASE LINE GO TO Pl.
IF UP-ARROW DISPLAY "UP-ARROW" LINE 10 COLUMN 5 ERASE LINE

GO TO Pl.
IF DOWN-ARROW DISPLAY "DOWN-ARROW" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF LEFT-ARROW DISPLAY "LEFT-ARROW" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF RIGHT-ARROW DISPLAY "RIGHT-ARROW" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUXO DISPLAY "AUXILIARY KEYPAD 0" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUXl DISPLAY "AUXILIARY KEYPAD 1" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUX2 DISPLAY "AUXILIARY KEYPAD 2" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUX3 DISPLAY "AUXILIARY KEYPAD 3" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUX4 DISPLAY "AUXILIARY KEYPAD 4" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUXS DISPLAY "AUXILIARY KEYPAD 5" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUX6 DISPLAY "AUXILIARY KEYPAD 6" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUX7 DISPLAY "AUXILIARY KEYPAD 7" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUX8 DISPLAY "AUXILIARY KEYPAD 8" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUX9 DISPLAY "AUXILIARY KEYPAD 9" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUXMINUS DISPLAY "AUXILIARY KEYPAD -" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUXCOMMA DISPLAY "AUXILIARY KEYPAD," LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUXPERIOD DISPLAY "AUXILIARY KEYPAD ." LINE 10 COLUMN 5

ERASE LINE GO TO Pl.
IF AUXENTER DISPLAY "AUXILIARY KEYPAD ENTER" LINE 10 COLUMN 5

ERASE LINE GO TO Pl.

(continued on next page)

Forms for Video Terminals 17-29

Example 17-10 (Cont.): Using the CONTROL KEY IN Phrase

P2.

P3.

DISPLAY "Not an allowable control key -"
"press the RETURN key to continue"

LINE 10 COLUMN 5
WITH BELL ERASE LINE.

ACCEPT CONTROL-KEY.
GO TO Pl.

DISPLAY "Press the RETURN key to end this job"
LINE 11 COLUMN 5 ERASE LINE.

ACCEPT CONTROL KEY IN CONTROL-KEY LINE 12 COLUMN 5 ERASE LINE.
IF CR NOT = FIRST-CHAR-CONTROL-KEY GO TO PO

ELSE
DISPLAY "END OF JOB" LINE 13 COLUMN 35

BOLD BLINKING REVERSED BELL
ERASE SCREEN

* DISPLAY ESC ">" WITH NO puts you out of alternate keypad mode

*
DISPLAY ESC ">" WITH NO.
STOP RUN.

Figure 17-15 shows a sample run of the program in Example 17-10 using the
right arrow terminal key.

),.

17-30 Forms for Video Terminals

Figure 17-15: Screen Display of Program SPECIAL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-6097-GE

To expand upon Example 17-10, you can, for example, accept data in addition
to specifying the CONTROL KEY phrase. This enables you to accept data and
determine what to do next based on the data. You can use the CONTROL KEY
phrase to move the cursor around on the screen or take a specific course of action.

17.7 Using the EDITING Phrase

Specifying the EDITING phrase of the ACCEPT statement enables field editing.
Table 17-4 briefly describes the keys that the EDITING phrase enables.

Table 17-4: Key Functions for the EDITING Phrase

Key

Left arrow,
CTRUD

Right arrow,
CTRUF

Function

Move-left

Move-right

Description

Moves the cursor one space to the left. If the
cursor is at the first character position of the
field, the terminal bell rings.

Moves the cursor one space to the right. If
the cursor is one space beyond the rightmost
character position of the field, the terminal bell
rings.

(continued on next page)

Forms for Video Terminals 17-31

Table 17-4 (Cont.): Key Functions for the EDITING Phrase

Key Function Description

CTRUH, Beginning-of-field Positions the cursor to the first character
F12 (BS) position of the field.

CT RUE End-of-field Moves the cursor one position beyond the
rightmost character position in the field~

CTRUU Erase-field Erases the entire field and moves the cursor to
the first character position·of the field.

CTRUA, Switch-mode Switches the editing mode between insert and
F14 overstrike.

Example 17-11 shows the sample code that produces the form in Figure 17-16.
(The Current Value field is provided for example purposes only.)

Example 17-11: EDITING Phrase Sample Code

PROCEDURE DIVISION.
AlOOO-BEGIN.

OPEN I-0 EMP-FILE.

BlOOO-MODIFY.
DISPLAY "MODIFY EMPLOYEE INFORMATION FORM" ERASE SCREEN

AT LINE 2 COLUMN 10.
DISPLAY "Enter Employee Number AT LINE PLUS 2 COLUMN 10.

ACCEPT EMP-KEY
FROM LINE 4 COLUMN 34
PROTECTED WITH EDITING REVERSED
DEFAULT IS CURRENT
AT END

STOP RUN.

B2000-DISPLAY.

MOVE EMP-REC TO OUT-REC.

DISPLAY "Date of Hire : II AT LINE PLUS 2 COLUMN 10.
DISPLAY MON-IN AT COLUMN 25.
DISPLAY "-" AT COLUMN 27.
DISPLAY DAY-IN AT COLUMN 28.
DISPLAY "-" AT COLUMN 30.
DISPLAY YR-IN AT COLUMN 31.
DISPLAY "Current Value :" AT COLUMN 40.
DISPLAY MON-NUM AT COLUMN 56.
DISPLAY "-" AT COLUMN 58.
DISPLAY DAY-NUM AT COLUMN 59.
DISPLAY "-" AT COLUMN 61.
DISPLAY YR-NUM AT COLUMN 62.

(continued on next page)

17-32 Forms for Video Terminals

Example 17-11 (Cont.): EDITING Phrase Sample Code

DISPLAY "Department :" AT LINE PLUS 2 COLUMN 10.
DISPLAY DEPT-IN AT COLUMN 23.
DISPLAY "Current Value :" AT COLUMN 40.
DISPLAY DEPT-NUM AT COLUMN PLUS.

DISPLAY "First Name : " AT LINE PLUS 2 COLUMN 10.
DISPLAY F-NAME-IN AT COLUMN 23.
DISPLAY "Current Value ·" AT COLUMN 40.
DISPLAY F-NAME

DISPLAY "Last Name ...
DISPLAY L-NAME-IN
DISPLAY "Current Value : " AT
DISPLAY L-NAME

ACCEPT MON-NUM
FROM LINE 6 COLUMN 25
PROTECTED WITH EDITING REVERSED
DEFAULT IS CURRENT
AT END

STOP RUN.

AT

AT LINE PLUS 2
AT

COLUMN
AT

DISPLAY MON-NUM

ACCEPT DAY-NUM

AT LINE 6

FROM LINE 6 COLUMN 28
PROTECTED WITH EDITING REVERSED
DEFAULT IS CURRENT
AT END

STOP RUN.

DISPLAY DAY-NUM

ACCEPT YR-NUM
FROM LINE 6 COLUMN 31
PROTECTED WITH EDITING REVERSED
DEFAULT IS CURRENT
AT END

STOP RUN.

AT LINE 6

DISPLAY YR-NUM AT LINE 6

ACCEPT DEPT-NUM
FROM LINE 8 COLUMN 23
PROTECTED WITH EDITING REVERSED
DEFAULT IS CURRENT
AT END

STOP RUN.

DISPLAY DEPT-NUM

ACCEPT F-NAME
FROM LINE 10 COLUMN 23
PROTECTED WITH EDITING REVERSED
DEFAULT IS CURRENT
AT END

STOP RUN.

AT LINE 8

DISPLAY F-NAME AT LINE 10

COLUMN PLUS.

COLUMN 10.
COLUMN 22.

40.
COLUMN PLUS.

COLUMN 56.

COLUMN 59.

COLUMN 62.

COLUMN 56.

COLUMN 56.

(continued on next page)

Forms for Video Terminals 17-33

Example 17-11 (Cont.): EDITING Phrase Sample Code

ACCEPT L-NAME
FROM LINE 12 COLUMN 22
PROTECTED WITH EDITING REVERSED
DEFAULT IS CURRENT
AT END

STOP RUN.

DISPLAY L-NAME AT LINE 12 COLUMN 56.

Figure 17-16: Form with ACCEPT WITH EDITING Phrase

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-1516A-GE

Since the ACCEPr statements in Example 17-:-11 contain EDITING phrases,
a person using the form in Figure 17-16 ·can use any of the keys listed in
Table 17-4 for field editing purposes to make corrections or modifications.

17-34 Forms for Video Terminals

Chapter 18

lnterprogram Communication

Interprogram communication occurs when VAX COBOL programs communicate
with each other or with non-COBOL programs through the CALL statement and
external data.

This chapter introduces you to multiple program. (COBOL and non-COBOL) run
units. The chapter explains. and presents examples of how to transfer execution
control and data from one program to another in the run unit. Also, the chapter
presents information on contained COBOL programs, the Run-Time Library, and
system. services.

18.1 Multiple COBOL Program Run-Unit Concepts

This section defines a multiple COBOL program run unit, explains the calling
procedures, and gives examples of run units.

18.1.1 Definition of a Multiple COBOL Program Run Unit

A multiple COBOL program run unit consists of either of the following:

• One main (driver) program and one or more separately compiled
subprograms; each program can have none, one, or more contained (nested)
programs.

• One main program with one or more contained (nested) subprograms.

18.1.2 Examples of· COBOL Run Units

This section provides examples of COBOL run units.

Figure 18-1 shows a run unit with three separately compiled programs, none of
which have contained programs.

NOTE

A separately compiled program has a nesting level number of 1. If this
program contains other source programs, it is the outermost containing
program. A contained program has a nesting level number greater
than 1.

lnterprogram Communication 18-1

Figure 18-1: Run Unit with Three Separately Compiled Programs

r--- IDENTIFICATION DIVISION. I PROGRAM-ID. MAIN-PROGRl\M.
~ IDENTIFICATION DIVISION. I PROGRAM-ID. SUBl.

e :ALL SUBl.

LL RUN.

I e

l

e :ALL SUB2.

.l LT PROGRAM.
IDENTIFICATION DIVISION.
PROGRAM-ID. SUB2.

EXIT PROGRAM.

ZK-1432A-GE

Figure 18-2 shows a run unit with one main program and two contained
programs (SUBl is a directly contained program of MAIN-PROGRAM; SUB2
is an indirectly contained program of MAIN-PROGRAM).

Figure 18-2: Run Unit with a Main Program and Two Contained Programs

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROGRAM.

CALL SUBl.

STOP RUN.

I IDENTIFICATION DIVISION. e ~ROGRAM-ID. SUBl.

CALL SUB2. e EXIT PROGRAM. r--- IDENTIFICATION DIVISION.
I PROGRAM-ID. SUB2.

8.
L EXIT PROGRAM.

END PROGRAM SUB2.
END PROGRAM SUBl.

---- END PROGRAM MAIN-PROGRAM.

ZK-1433A-GE

18-2 lnterprogram Communication

Figure 18-3 shows a run unit with three separately compiled programs, one of
which, MAIN-PROGRAM, has two directly contained programs (SUBl, SUB2).

Figure 18-3: Run Unit with Three Separately Compiled Programs and Two
Contained Programs

....------ IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROGRAM.

CALL SUBl.
CALL SUB2.

STOP RUN.

A .-

1

--- IDENTIFICATION DIVISION.
W PROGRAM-ID. SUBl.

8
I CALL SUB3.

EXIT PROGRAM •
._ ___ END PROGRAM SUBl.

....

1

--- IDENTIFICATION DIVISION.
PROGRAM-ID. SUB2.

8
I EXIT PROGRAM.
._ ___ END PROGRAM SUB2.

----- END PROGRAM MAIN-PROGRAM.

r-- IDENTIFICA.TION DIVISION. I PROGRAM-ID. SUB3.

e CALL SUB4.

LiTOP RUN.

r--- IDENTIFICATION DIVISION.
I PROGRAM-ID. SUB4.

8.
L EXIT PROGRAM.

ZK-1431A-GE

18.1.3 Calling Procedures

A COBOL main (driver) program calls subprograms (contained or separately
compiled). Image execution begins and ends in the main program's Procedure
Division. The program contains one or more CALL statements and is a calling
program.

A COBOL subprogram is called by a-main program or another subprogram. The
subprogram contains none, one, or several CALL statements. If a subprogram
contains a CALL statement, it is both a calling and a called program. If the
subprogram does not contain a CALL statement, it is a called program only.

lnterprogram Communication 18-3

18.2 COBOL Program Attributes

Any VAX COBOL program can possess the INITIAL clause in the PROGRAM-ID
paragraph. Data and files in a COBOL program can have the EXTERNAL clause.

18.2.1 The INITIAL Clause

A COBOL program with an INITIAL clause is initialized, whenever the program
is called, to the same state as when that program was first called in the run unit.

During this initialization process, all internal program data whose description
contains a VALUE clause is initialized to that defined value. Any item whose
description does not include a VALUE clause is initialized to an undefined value.

When an INITIAL clause is present and when the program is called, an implicit
CLOSE statement executes for all files in the open mode associated with internal
file connectors.

When an INITIAL clause is not present, the status of the files and internal
program data are the same as when the called program was exited.

The initial attribute is attained by specifying the INITIAL clause in the program's
PROGRAM-ID paragraph. For example:

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST-PROG INITIAL.

18.2.2 The EXTERNAL Clause

Storage of data can be external or internal to the program in which the data
is declared. A file connector can also be external or internal to the program in
which it is defined.

External data or files can be referenced by every program in a run unit that
describes that data or those files as external.

The EXTERNAL clause indicates that data or a file is external. This clause is
specified only in File Description entries in the FILE SECTION or in Record
Description entries in the WORKING-STORAGE Section. The EXTERNAL clause
is one method of sharing data between programs. For example, in the following
Working-Storage Section entry, the data items in RECORD-1 are available to
any program in the image that also describes RECORD-1 and its data items as
EXTERNAL:

01 RECORD-1 EXTERNAL.
03 ITEMA PIC X.
03 ITEMB PIC X (20) ..
03 ITEMC PIC 99.

NOTE

EXTERNAL files and data must be described identically in all
programs in which they are defined.

18-4 lnterprogram Communication

18.3 Transferring Execution Control

This section explains how transfer of control occurs and how access of program
data takes place between VAX COBOL programs in a run unit. Contained
COBOL programs have additional communication mechanisms that are explained
in Section 18.5.

You control a multiple program run-unit sequence by executing the following:

• A controlling CALL statement in the calling program (main or subprogram)

• An EXIT PROGRAM statement in the called subprogram

18.3.1 The CALL Statement

A CALL statement transfers the run unit's execution control from the calling
program to. the beginning of the called subprogram's Procedure Division. See the
VAX COBOL Reference Manual for the CALL format.

The first time the called subprogram gains execution control, its state is that of a
fresh copy of the program. Thereafter, each time it is called its state is the same
as the last exit from that program, except when: (1) the called program has the
INITIAL clause, or (2) the calling program cancels the called program.

NOTE

A program cannot cancel itself nor can any program cancel the program
that called it.

18.3.2 The EXIT PROGRAM Statement

To return execution control to the calling program, the called subprogram
executes an EXIT PROGRAM statement.

You can include more than one EXIT PROGRAM statement in a subprogram.
However, if it appears in a consecutive sequence of imperative statements, the
EXIT PROGRAM statement must appear as the last statement of the sequence.
For example:

IF A= B DISPLAY "A equals B", EXIT PROGRAM.

READ INPUT-FILE AT END DISPLAY "End of input file"
PERFORM END-OF-FILE-ROUTINE
EXIT PROGRAM.

If you do not include an EXIT PROGRAM statement in a subprogram, the
compiler generates one at the end of the program.

On executing an EXIT PROGRAM statement in a called subprogram, control
returns to the statement following the calling program's CALL statement, or the
first imperative statement in a NOT ON EXCEPTION clause specified for that
CALL statement.

On executing an EXIT PROGRAM statement in a main program, the EXIT
PROGRAM is ignored and control continues with the next statement.

lnterprogram Communication 18-5

Figure 18-4 shows how control is passed between programs.

Figure 18-4: Sharing Execution Control from a Main Program to Multiple Subprograms

Sharing Execution Control
from a Main Program to Multiple Subprograms

IDENTIFICATION DIVISION. IDENTIFICATION DIVISION. IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.

PROGRAM - ID. MAIN. PROGRAM - ID. SUB. PROGRAM - ID. SUBA. PROGRAM - ID. SUBB.

ENVIRONMENT DIVISION. ENVIRONMENT DIVISION. ENVIRONMENT DIVISION. ENVIRONMENT DIVISION.

DATA DIVISION. DATA DIVISION. DATA DIVISION. DATA DIVISION.

PROCEDURE DIVISION. PROCEDURE DIVISION. PROCEDURE DIVISION. PROCEDURE DIVISION.

BEGIN. !© BEGIN. !® BEGIN. !® 10 CALL II SUBA".

ZK-1474-GE

18.3.3 Nesting CALL Statements

A called subprogram can itself transfer execution control after receiving control
from a main program or another subprogram. This technique is known as CALL
statement nesting. For example, Figure 18-5 shows a nested image that executes
a series of three CALL statements from three separate programs.

Figure 18-5: CALL Statement Nesting

MAIN calls SUB,
SUB then calls SUBA
SUBA then calls SUBB

MAIN SUB SUBA SUBB

ZK-1475-GE

The MAIN, SUBl, and SUB2 programs in Example 18-1 illustrate their execution
sequence by displaying a series of 12 messages on the default output device.
Image execution begins in MAIN with message number 1. It ends in MAIN

· with message number 12. The image's message sequence is shown following the
program listings.

18-6 lnterprogram Communication

Example 18-1 : Execution Sequence

IDENTIFICATION DIVISION.

*
* MAIN is a calling program only

*
PROGRAM-ID. MAIN.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
BEGIN.

DISPLAY 11 1. MAIN has the first execution control.
DISPLAY 11 2. MAIN transfers execution control to SUBl
DISPLAY 11 upon executing the following CALL.
CALL 11 SUBl 11

DISPLAY 11 11. MAIN has the last execution control.
DISPLAY 11 12. MAIN terminates the entire image upon
DISPLAY 11 execution of the STOP RUN statement.
STOP RUN.

IDENTIFICATION DIVISION.

*
* SUBl is both a called and calling subprogram

*
*
*

It is called by MAIN

* It then calls SUB2
PROGRAM-ID. SUBl.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
BEGIN.

DISPLAY 11 3. This is the entry point to SUBl.
DISPLAY 11 4. SUBl now has execution control.
DISPLAY 11 5. SUBl transfers execution control to SUB2.
CALL 11 SUB2 11

DISPLAY 11 9. SUBl regains execution control
DISPLAY 11 10. after executing the following
DISPLAY 11 EXIT PROGRAM statement.
EXIT PROGRAM.

IDENTIFICATION DIVISION.

*
* SUB2 is called subprogram only

* * It is called by SUBl

*
PROGRAM-ID. SUB2.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
BEGIN.

DISPLAY 11 6. This is the entry point to SUB2.
DISPLAY 11 7. SUB2 now has execution control.
DISPLAY 11 8. SUB2 returns execution control to SUBl
DISPLAY 11 after executing the following
DISPLAY 11 EXIT PROGRAM statement.
EXIT PROGRAM.

II

II

II

II

II

II

II

II

II

II

II

II

II

lnterprogram Communication 18-7

Example 18-2 shows the messages printed to the default output device when the
programs in Example 18-1 are run.

Example 18-2: Sequence of Messages Displayed

1. MAIN has the first execution control.
2. MAIN transfers execution control to SUBl

3.
4. SUBl
5. SUBl
6.
7. SUB2

8. SUB2

upon executing the following CALL.
This is the entry point to SUBl.
now has execution control.
transfers execution control to SUB2.
This is the entry point to SUB2.
now has execution control.

returns execution control to SUBl
after executing the following
EXIT PROGRAM statement.

9. SUBl regains execution control
10. after executing the following

EXIT PROGRAM statement.
11. MAIN has the last execution control.
12. MAIN terminates the entire image upon

execution of the STOP RUN statement.

18.4 Accessing Another Program's Data Division

In a multiple COBOL program run unit, a called subprogram can access its
calling program's Data Division. However, the calling program controls how much
of it will be accessible to the called subprogram through:

• The USING phrase in both the CALL statement and the Procedure Division
header

• The Linkage Section

• The EXTERNAL clause (see Section 18.2.2)

• The GLOBAL clause (see Section 18.5.2)

18.4.1 The USING Phrase

To access a calling program's Data Division, use a CALL statement in the calling
program and a Procedure Division USING phrase in the called program. The
USING phrases of both the CALL statement and the Procedure Division header
must contain an equal number of data names. (See Figure 18-6.)

The CALL statement can make data available to the called program by five
argument-passing mechanisms:

• REFERENCE-The address of (pointer to) the argument (arg) is passed to
the calling program. This is the default mechanism.

• CONTENT-The address of a copy of the contents of arg is passed to the
called program. Note that since a copy of the data is passed, the called
program cannot change the original calling program data.

• VALUE-The value of arg is passed to the called program. If arg is a data
name, its description in the Data Division can be as follows: (a) COMP usage
with no scaling positions (the PICTURE clause can specify no more than nine
digits) and (b) COMP-1 usage.

18-8 lnterprogram Communication

• DESCRIPTOR-The address of (pointer to) the data item's descriptor is
passed to the called program.

• OMITTED-A value equivalent to BY VALUE 0 is passed to the called
program. Note that OMITTED does not change the default mechanism.

NOTE

A called COBOL subprogram must have arguments passed to it
using BY REFERENCE, which is the default, or BY CONTENT. BY
VALUE, OMITTED, and BY DESCRIPTOR are DIGITAL extensions
and will not work as expected if passed to a COBOL program.
These argument-passing mechanisms are necessary when calling
Run-Time Library Routines and system service routines as described in
Section 18.7.

The mechanism for each argument in the CALL statement USING phrase
must be the same as the mechanism for each argument in the called program's
parameter list.

If the BY REFERENCE phrase is either specified or implied for a parameter,
the called program references the same storage area for the data item as the
calling program. This mechanism en.sures that the contents of the parameter in
the calling program are always identical to the contents of the parameter in the
called program.

If the BY CONTENT phrase is either specified or implied for a parameter, only
the initial value of the parameter is made available to the called program.
The called program references a separate storage area for the data item. This
mechanism ensures that the called program cannot change the contents of the
parameter in the calling program's USING phrase. However, the called program
can change the value of the data item referenced by the corresponding data name
in the called program's Procedure Division header.

Once a mechanism is established in a CALL statement, successive arguments
default to the established mechanism until a new mechanism is used. For
example:

CALL "TESTPRO" USING ITEM-A
BY DESCRIPTOR ITEM-B

Note that ITEM-A is passed using the BY REFERENCE phrase and that ITEM-B
is passed using the BY DESCRIPTOR phrase.

If the OMITTED phrase is specified for a parameter, the established call
mechanism does not change.

One other mechanism of the CALL verb is the ability to use a GMNG phrase in
the CALL statement. This allows the subprogram to return a value through the
data item in the GMNG phrase. For example:

CALL "TESTPRO" USING ITEMA ITEMB
GIVING ITEMC.

Note that the GMNG result (ITEMC) must be an elementary integer numeric
data item with COMP, COMP-1, or COMP-2 usage and no scaling positions.

The order in which USING identifiers appear in both calling and called programs
determines the correspondence of single sets of data available to the called
subprogram. The correspondence is by position, not by name.

lnterprogram Communication 18-9

Figure 18-6: Accessing Another Program's Data Division

IDENTIFICATION DIVISION.

PROGRAM-ID. MAIN.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 A PICTURE X. -•-------
01 B PICTURE 9. -~--------1--

01 C PICTURE XX. '-....-.... ======--=:J==-
01 D PICTURE 99. + -

IDENTIFICATION DIVISION.

PROGRAM-ID. SUB.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 PART PICTURE X.
01 AMOUNT PICTURE 9.
01 COST PICTURE 99.
01 COLOR PICTURE XX.

PROCEDURE DIVISION.

START-UP. l G)

--+-~- PROCEDURE DIVISION USING PART,
AMOUNT,

SUB-START-UP. COLOR,

@
CALL "SUB" USING A, B, C, D. -

STOP RUN. • '-------.......,._ __ EXIT PROGRAM.

COST,

ZK-1731-84

In Figure 18-6, when execution control transfers to SUB, it can access the four
data items in the calling program by referring to the data names in its Procedure
Division USING phrase. For example, the data names correspond as follows:

MAIN
Calling Program

data-name

18.4.1.1 The Linkage Section

A
B
c
D

SUB
Called Subprogram

data-name

PART
AMOUNT
COLOR
COST

You must define each data name from the Procedure Division header's USING
data name list in the called subprogram's Linkage Section. For example:

LINKAGE SECTION.

01 PART PICTURE .. .
01 AMOUNT PICTURE .. .
01 INVOICE PICTURE .. .
01 COLOR PICTURE .. .
01 COST PICTURE .. .

PROCEDURE DIVISION U'SING PART, AMOUNT, COLOR, COST.

18-10 lnterprogram Communication

Of those items you define in the Linkage Section, only those in the calling
program's Procedure Division header's USING phrase are accessible to the called
program. In the previous example, INVOICE is not accessible from the called
program.

When a subprogram references a data name from the Procedure Division header's
USING data name list, the subprogram processes it according to the definition in
its Linkage Section.

A called program's Procedure Division can reference data items in its Link.age
Section only if it references one of the following:

• Any data item in the Procedure Division USING data-item-list

• A data item that is subordinate to a Linkage Section data item in the
Procedure Division USING data-item-list

"
• Any other association with a data item in the Procedure Division USING

data-item-list; for example, index-name, redefinition, and so on.

In Figure 18-7, SUB is called by MAIN. Because MAIN includes FILE-RECORD
and WORK-RECORD in its CALL "SUB" USING statement, SUB can reference
these data items just as if they were in its own Data Division. However, SUB
accesses these two data items with its own data names, F-RECORD and
W-RECORD.

lnterprogram Communication 18-11

Figure 18-7: Defining Data Names in Linkage Section

IDENTIFICATION DIVISION.

PROGRAM-ID. MAIN

ENVIRONMENT DIVISION.

DATA DIVISION.

FILE SECTION.

IDENTIFICATION DIVISION.

PROGRAM-ID. SUB.

ENVIRONMENT DIVISION.

DATA DIVISION.

FILE SECTION.

01 FILE-RECORD PICTURE ... +----i
WORKING-STORAGE SECTION. :

01 WORK-RECORD PICTURE ... 4--1 :
WORKING-STORAGE SECtlON.

: : LINKAGE SECTION.
I I
1 ---i --- 01 F-RECORD PICTURE ...
I

'---~ --- 01 W-RECORD PICTURE ...
PROCEDURE DIVISION. .. PROCEDURE DIVISION USING F-RECORD

W-RECORD.
BEGIN. 10 BEGIN.

CALL "SUB" USING FILE-RECORD ® @
WORK-RECORD~r--

~~

STOP RUN. -~-------+---- EXIT PROGRAM.

©

18.5 Communicating with Contained COBOL Programs

ZK-1477-GE

A contained COBOL program is a subprogram nested in another COBOL program
(the containing program). The complete source of the contained program is found
within the containing program. A contained program can also be a containing
program.

A VAX COBOL containing/contained program provides you with program
and data attributes that noncontained COBOL programs do not have. These
attributes, described in the next several sections, often allow you to more easily
share and more conveniently access COBOL data items and other program
resources.

This VAX COBOL programming and data structuring capability encourages
modular programming. In modular programming, you divide the solution of a
large data processing problem into individual parts (the contained programs) that
can be developed relatively independently.

Consequently, the use of this VAX COBOL containing/contained block structure
as a modular programming design can increase program efficiency and assist in
program modification and maintainability.

18-12 lnterprogram Communication

The contained program uses all calling procedures described in Section 18.3 and
Section 18.4. However, when a contained program includes the COMMON clause
(a program attribute)· and the GLOBAL clause (a data and file trait), additional
rules apply.

18.5.1 The COMMON Clause

The COMMON clause is a program attribute that can be applied to a directly
contained program. The COMMON clause is a means of overriding normal
scoping rules for program names, which state that a program that does not
possess the common attribute and that is directly contained within another
program can be referenced only by statements included in that containing
program. (Refer to the VAX COBOL Reference Manual for Scope of Names rules.)

A program that does possess the common attribute can be referenced by
statements included in that containing program and by any programs directly or
indirectly contained in that containing program, except the program possessing
the common attribute and any programs contained within it.

The common attribute is attained by specifying the COMMON clause in a
program's Identification Division.

Figure 18-8 shows a run unit that has a COBOL program (PROG-MAIN) with
three contained programs; one of which has the COMMON clause. The example
indicates which programs can call the common program.

PROG-NAME-B and PROG-NAME-C are directly contained in PROG-MAIN;
PROG-D is indirectly contained in PROG-MAIN.

PROG-MAIN can call PROG-NAME-B because PROG-MAIN directly contains
PROG-NAME-B. PROG-NAME-B can call PROG-NAME-D because
PROG-NAME-B directly contains PROG-NAME-D.

PROG-NAME-C can call PROG-NAME-B because: (1) PROG-NAME-C is not
contained in PROG-NAME-B, (2) PROG-NAME-B has the common attribute, and
(3) PROG-NAME-C is contained by PROG-MAIN. However, PROG-NAME-D
cannot call PROG-NAME-B because PROG-NAME-D is contained within
PROG-NAME-B.

lnterprogram Communication 18-13

Figure 18-8: Using the COMMON Clause

~-- IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-MAIN.

CALL PROG-NAME-B

r------ IDENTIFICATION DIVISION.
I PROGRAM-ID. PROG-NAME-C.

8 CALL PROG-NAME-B

l____ ~ND PROGRAM PROG-NAME-C.
,____ __ END PROGRAM PROG-MAIN.

18.5.2 Defining and Using the GLOBAL Clause

ZK-1430A-GE

Data and files can be described as either global or local. A local name can be
referenced only by the program that declares it. A global name is declared in
only one program but can be referenced by both that program and any program
contained in the program that declares the global name.

Some names are always global, other names are always local, and some names
are either local or global depending on specifications in the program that declares
the names. (See Scope of Names rules in the VAX COBOL Reference Manual.)

18.5.2.1 Sharing Data

A data name is global if the GLOBAL clause is specified in the Data Description
entry by which the data name is declared or in another entry to which that
Data Description entry is subordinate. If a program is contained within another
program, both programs may reference data possessing the global attribute. The
following example shows the Working-Storage Section of a containing program
MAIN. Any contained program in MAIN, as well as program MAIN, can reference
that data (unless the contained program declares other data with the same
name).

WORKING-STORAGE SECTION.
01 CUSTOMER-FILE-STATUS
01 REPLY
01 ACC-NUM

18-14 lnterprogram Communication

PIC XX
PIC X(lO)
PIC 9(18)

GLOBAL.
GLOBAL.
GLOBAL.

18.5.2.2 Sharing Files

A file connector is global if the GLOBAL clause is specified in the File Description
entry for that file connector. If a program is contained within another program,
both programs may reference a file possessing the global attribute. The following
example shows a file (CUSTOMER-FILE) with the GLOBAL clause in a
containing program MAIN. Any contained program in MAIN, as well as program
MAIN, can reference that file.

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN.

DATA DIVISION.
FILE SECTION.
FD CUSTOMER-FILE

GLOBAL

Any special registers associated with a GLOBAL file are also global.

18.5.2.3 Sharing Database Resources

The following user-defined words are always implicitly defined as global in the
Subschema Section:

• Data name

• Keeplist name

• Key name

• Realm name

• Record name

• Set name

In addition, database special registers, DB-CONDITION,
DB-CURRENT-RECORD-NAME, DB-UWA, DB-KEY, and
DB-CURRENT-RECORD-ID are always global.

The program defining the Subschema Section and any program it contains can
reference these user-defined words and special registers.

18.5.2.4 Sharing Other Resources

Condition names, record names and report names can also have the global
attribute. Any program directly or indirectly contained within the program
declaring the global name can reference the global name.

A condition name declared in a Data Description entry is global if the
condition-variable it is associated with is a global name.

A record name is global if the GLOBAL clause is specified in the Record
Description entry by which the record name is declared, or in the case of Record
Description entries in the File Section, if the GLOBAL clause is specified in the
File Description entry for the file name associated with the Record Description
entry.

lnterprogram Communication 18-15

A report name is global if the GLOBAL clause is specified in the Report
Description entry by which the report name is declared. In addition, if the
Report Description entry contains the GLOBAL clause, the special registers
LINE-COUNTER and PAGE-COUNTER are global names.

Because you cannot specify a Configuration Section for a program contained
within another program, the following types of user-defined words are always
global; that is, they are always accessible from within a contained program:

• Alphabet name

• Class name

• Condition name

• Mnemonic name

• Symbolic character name

These user-defined words can be referenced by statements and entries either in
the program that contains the Configuration Section or any program contained in
that program.

18.5.3 Sharing USE Procedures

The USE statement specifies declarative procedures to handle input/output
errors. It also can specify procedures to be executed before the program processes
a specific report group.

More than one USE AFTER EXCEPTION procedure in any given program can
apply to an input/output operation when there is one procedure for file name
and another for the applicable open mode. In this case, only the procedure for
file name executes. Figure 18-9 shows that FILE-NAME-PROBLEM SECTION
executes.

18-16 lnterprogram Communication

Figure 18-9: Sharing USE Procedures

--- IDENTIFICATION DIVISION.

8

PROGRAM-ID. MAIN-PROGRAM.

PROCEDURE DIVISION.
DECLARATIVES.

IDENTIFICATION DIVISION.
PROGRAM-ID SUBl.

PROCEDURE DIVISION.
DECLARATIVES.
FILE-NAME-PROBLEM SECTION . .-------------.

USE AFTER STANDARD ERROR PROCEDURE ON FILE-NAME.

FILE-INPUT-PROBLEM SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON INPUT.

END DECLARATIVES.
000-BEGIN.

OPEN INPUT FILE-NAME.-----------'

END PROGRAM SUBl
,___ __ END PROGRAM MAIN-PROGRAM.

ZK-1429A-GE

At run time, two special precedence rules apply for the selection of a declarative
when programs are contained in other programs. In applying these rules, only
the first qualifying declarative is selected for execution. The order of precedence
for the selection of a declarative follows:

1. RULE 1-The declarative that executes first is the declarative within the
program containing the statement that caused the qualifying condition. In
Figure 18-10, FILE-NAME-PROBLEM procedure executes.

lnterprogram Communication 18-17

Figure 18-10: Executing Declaratives with Contained Programs.(Rule 1)

..----- IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROGRAM.

--- IDENTIFICATION DIVISION.
PROGRAM-ID. SUBl.

0
PROCEDURE DIVISION.

A DECLARATIVES. I
IDENTI.FICATION DIVISION.
PROGRAM-ID. USE-PROGRAM.

V FILE-NAME-PROBLEM SECTION .4-----------... Cf» USE AFTER STANDARD ERROR PROCEDURE ON FILEA.

~ OPEN INPUT FILEA.

iND PROGRAM USE-PROGRAM •
..._ __ END PROGRAM SUBl.

----END PROGRAM MAIN-PROGRAM.

ZK-1428A-GE

2. RULE 2-If a declarative is not found using rule 1, the Run-Time System
searches all programs directly or indirectly containing that program for a
global use procedure. This search continues until the Run-Time System
either: (1) finds an applicable USE GLOBAL declarative, or (2) finds the
outermost containing program. Either condition terminates the search; the
second condition terminates both the search and the run unit.

Figure 18-11 shows applicable USE GLOBAL declaratives found in a containing
program before the outermost containing program. Note that the first OPEN goes
to the mode-specific procedure in the USE-PROGRAM rather than the :file-specific
procedure in the MAIN-PROGRAM.

18-18 lnterprogram Communication

Figure 18-11: Executing Declaratives Within Contained Programs (Rule 2)

---- IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROGRAM.

PROCEDURE DIVISION.
DECLARATIVES.
FILEA-OUTPUT-PROBLEM SECTION.

USE GLOBAL AFTER STANDARD ERROR P?OCEDURE ON OUTPUT.
FILEB-PROBLEM SECTION.

USE GLOBAL AFTER STANDARD ERROR P ~)DCEDURE ON FILEB.

IDENTIFICATION DIVISION.
PROGRAM-ID. USE-PROGRAM.

PROCEDURE DIVISION.
DECLARATIVES.
FILEA-NAME-PROBLEM SECTION.

USE GLOBAL AFTER STANDARD ERROR PROCEDURE ON FILEA.-----.
FILEB-INPUT-PROBLEM SECTION.

USE GLOBAL AFTER STANDARD ERROR PROCEDURE ON INPUT.

I
IDENTIFICATION DIVISION. e ~ROGRAM-ID. SUB2.

PROCEDURE DIVISION.
A 000-BEGIN.
V OPEN INPUT FILEB. ----------------

l: OPEN OUTPUT FILEA.--------------------'

~ PROGRAM SUB2.
END PROGRAM USE-PROGRAM.

----END PROGRAM MAIN-PROGRAM.

ZK-1427A-GE

18.6 Including Non-COBOL Programs in the Run Unit

Because the VAX COBOL compiler is part of the VMS common language
environment, a VAX COBOL program can call a procedure written in another
VAX. language. This communication among high-level languages exists because
VAX languages adhere to the VAX Procedure Calling and Condition Handling
Standard when generating a call to a procedure. The standard states that
any call to a procedure must be handled using the CALLS or the CALLG
VAX instructions. Section 18.8 briefly describes the standard. For detailed
information, refer to the VMS documentation on system routines, which also
describes error handling by the different languages.

Calling a procedure written in another language allows you to take advantage of
features in other languages. Example 18-3 and Example 18-5 demonstrate how
to call non-COBOL programs in the run unit.

lnterprogram Communication 18-19

Example 18-3 shows how to call a BASIC program from a VAX COBOL
program.

Example 18-3: Calling a BASIC Program from VAX COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. APPL.
**
* This VAX COBOL program accepts credit application *
* information and passes this information to a BASIC *
* program that performs a credit analysis. Notice *
* that the data passed to the BASIC program is in *
* the standard VAX binary format. *
**
DATA DIVISION.
WORKING-STORAGE SECTION.
01 APPLICATION-NUMBER PIC 999.
01 C-APPLICATION-NUMBER PIC 9 (9) COMP.
01 ANNUAL-SALARY PIC 9 (9).
01 C-ANNUAL-SALARY PIC 9 (9) COMP.
01 MORTGAGE-RENT PIC 999.
01 C-MORTGAGE-RENT PIC 9 (9) COMP.
01 YEARS-EMPLOYED PIC 99.
01 C-YEARS-EMPLOYED PIC 9 (9) COMP.
01 YEARS-AT-ADDRESS PIC 99.
01 C-YEARS-AT-ADDRESS PIC 9 (9) COMP.
PROCEDURE DIVISION.
010-BEGIN.

DISPLAY "Enter 3 digit application number".
ACCEPT APPLICATION-NUMBER.
IF APPLICATION-NUMBER = 999
DISPLAY "All applicants processed" STOP RUN.
MOVE APPLICATION-NUMBER TO C-APPLICATION-NUMBER.
DISPLAY "Enter 5 digit annual salary".
ACCEPT ANNUAL-SALARY.
MOVE ANNUAL-SALARY TO C-ANNUAL-SALARY.

DISPLAY "Enter 3 digit mortgage/rent".
ACCEPT MORTGAGE-RENT.
MOVE MORTGAGE-RENT TO C-MORTGAGE-RENT.
DISPLAY "Enter 2 digit years employed by current employer".
ACCEPT YEARS-EMPLOYED.
MOVE YEARS-EMPLOYED TO C-YEARS-EMPLOYED.
DISPLAY "Enter 2 digit years at present address".
ACCEPT YEARS-AT-ADDRESS.
MOVE YEARS-AT-ADDRESS TO C-YEARS-AT-ADDRESS.
CALL "APP" USING BY REFERENCE C-APPLICATION-NUMBER
C-ANNUAL-SALARY C-MORTGAGE-RENT
C-YEARS-EMPLOYED C-YEARS-AT-ADDRESS.
GO TO 010-BEGIN.

18-20 lnterprogram Communication

Example 18-4 shows the BASIC program APP called in Example 18-3, and
sample output from the program's execution.

Example 18-4: BASIC Program APP and Output Data

10 SUB APP (A%,B%,C%,D%,E%)
40 IF A% = 999 THEN 999
50 IF B% => 26000 THEN 800
60 IF B% => 18000 THEN 600
70 IF B% > 15000 THEN 500
80 IF B% => 10000 THEN 400
90 GO TO 700
400 IF E% < 4 THEN 800
410 IF D% < 2 THEN 800
420 GO TO 800
500 IF E% < 4 THEN 700
510 GO TO 800
600 LET X% = B% I 12
650 IF C% => X%/4 THEN 670
660 GO TO 800
670 IF E% => 4 THEN 800
700 PRINT TAB(l);"APPLICANT
710 GO TO 999
800 PRINT TAB(l);"APPLICANT
999 SUBEND

Sample Run of APPL

$ RUN APPL

NUMBER

NUMBER

Enter 3 digit application number
376 ~
Enter 5 digit annual salary
35000 ru
Enter 3 digit mortgage/rent
461 ~

";A%; " REJECTED"

";A%;" ACCEPTED"

Enter 2 digit years employed by current employer
03 ~
Enter 2 digit years at present address
05 ~
APPLICANT NUMBER 376 ACCEPTED
Enter 3 digit application number
999 ~
All applicants processed

Example 18-5 shows how to call a FORTRAN program from a VAX COBOL
program.

lnterprogram Communication 18-21

Example 18-5: Calling a FORTRAN Program from VAX COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. GETROOT.
**
* This program accepts a value from the terminal, *
* calls the FORTRAN subroutine SQROOT, and passes *
* the value as a character string. Program *
* SQROOT returns the square root of the value. *
**
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-NUMBER.

03 INTEGER PIC 9 (5).
03 DEC-POINT PIC x (1) .
03 DECIMAL PIC 9 (8) .

01 WORK-NUMBER.
03 INTEGER PIC 9 (5) .
03 DECIMAL PIC 9 (8).

01 WORK-NUMBER-A REDEFINES WORK-NUMBER PIC 9(5)V9(8).
01 DISPLAY-NUMBER PIC ZZ,ZZ9.9999.
PROCEDURE DIVISION.
STARTER SECTION.
SBEGIN.

MOVE SPACES TO INPUT-NUMBER.
DISPLAY "Enter number (with decimal point) : "

NO ADVANCING.
ACCEPT INPUT-NUMBER.
IF INPUT-NUMBER = SPACES

GO TO ENDJOB.
CALL "SQROOT" USING BY DESCRIPTOR INPUT-NUMBER.
IF INPUT-NUMBER = ALL "*"

DISPLAY "** INVALID ARGUMENT FOR SQUARE ROOT"
ELSE

DISPLAY "The square root is: " INPUT-NUMBER
INSPECT INPUT-NUMBER

REPLACING ALL " " BY "0"
MOVE CORRESPONDING INPUT-NUMBER TO WORK-NUMBER
WORK-NUMBER-A TO DISPLAY-NUMBER
DISPLAY DISPLAY-NUMBER.

GO TO SBEGIN.
ENDJOB.

STOP RUN.

Example 18-6 shows the FORTRAN program SQROOT called by the program in
Example 18-5, and sample output from the programs' execution.

The SQROOT subroutine accepts a 14-character string and decodes it into a
real variable (DECODE is analogous to an internal READ). It then calls the
SQRT function in the statement that encodes the result into the 14-character
argument.

18-22 lnterprogram Communication

Example 18-6: FORTRAN Subroutine SQROOT

SUBROUTINE SQROOT(ARG)
CHARACTER*14 ARG
DECODE(14,10,ARG,ERR=20)VAL

10 FORMAT(F12.6)
IF(VAL.LE.0.)GO TO 20
ENCODE(14,10,ARG)SQRT(VAL)

999 RETURN
20 ARG='**************'

GO TO 999
END

Sample Run of GETROOT:

$ RUN GETROOT ~
Enter number (with decimal point): 25. ~
The square root is: 5.000000

5.0000
Enter number (with decimal point) : HELLO ~
** INVALID ARGUMENT FOR SQUARE ROOT
Enter number (with decimal point): 1000000. ~
The square root is: 1000.000000
1,000.0000
Enter number (with decimal point): 2. ~
The square root is: 1.414214

1. 4142
Enter number (with decimal point) : ~
$

18.7 Using VAX COBOL in the Common Language Environment

The VAX. COBOL compiler is part of the VMS common language environment.
This environment defines certain calling procedures and guidelines that allow
you to call programs written in different languages or prewritten system routines
from VAX. COBOL. You can call the following routine types from VAX. COBOL:

• Subprograms written in other VAX. languages

• VMS Run-Time Library routines

• VMS system services

The terms routine, procedure, and function are used throughout this chapter.
A routine is a closed, ordered set of instructions that performs one or more
specific tasks. Every routine has an entry point (the routine name) and optionally
an argument list. Procedures and functions are specific types of routines: a
procedure is a routine that does not return a value, whereas a function is a
routine that returns a value by assigning that value to the function's identifier.
In COBOL, routines are also referred to as subprograms and called programs.

System routines are prewritten VMS routines that perform common tasks, such
as finding the square root of a number or allocating virtual memory. You can call
any system routine from your program, provided that VAX. COBOL supports the
data structures required to call the routine. The system routines used most often
are VMS Run-Time Library routines and system services. For more information
on system routines, refer to the VMS documentation on Run-Time Library
routines and VMS system services.

lnterprogram Communication 18-23

18.8 The VAX Procedure Calling and Condition Handling Standard

The VAX Procedure Calling and Condition Handling Standard describes the
concepts used by all VAX languages for invoking routines and passing data
between them. The following attributes are specified by the VAX Procedure
Calling and Condition Handling Standard:

• Register usage

• Stack usage

• Function value return

• Argument list

The following sections discuss these attributes in more detail. The VAX Procedure
Calling and Condition Handling Standard also defines such attributes as the
calling sequence, the argument data types and descriptor formats, condition
handling, and stack unwinding. These attributes are discussed in detail in the
VMS documentation on system services.

18.8.1 Register and Stack Usage

The VAX Procedure Calling and Condition Handling Standard defines several
registers and their uses, as listed in Table 18-1.

Table 18-1 : VAX Register Usage

Register

PC
SP
FP
AP

Rl
RO,Rl

Use

Program counter

Stack pointer

Current stack frame pointer

Argument pointer

Environment value (when necessary)

Function value return registers

By definition, any called routine can use registers R2 to Rll for computation and
the AP register as a temporary register.

In the VAX Procedure Calling and Condition Handling Standard, a stack is
defined as a LIFO (last-in/first-out) temporary storage area that the system
allocates for every user process. The system keeps information about each
routine call in the current image on the call stack. Then, each time you call a
routine, the system creates a structure known as the call frame on this call
stack. The call frame for each active process contains the following:

• A pointer to the call frame of the previous routine call. This pointer
corresponds to the frame pointer (FP).

• The argument pointer (AP) of the previous routine call.

• The storage address of the point at which the routine was called; that is,
the address of the instruction following the call to the current routine. This
address is called the program counter (PC).

18-24 lnterprogram Communication

• The contents of other general registers. Based on a mask specified in the
control information, the system restores the saved contents of these registers
to the calling routine when control returns to it.

When a routine completes execution, the system uses the frame pointer in the
call frame of the current routine to locate the frame of the previous routine. The
system then removes the call frame of the current routine from the stack.

18.8.2 Return of the Function Value

A function is a routine that returns a single value to the calling routine. The
function value represents the return value that is assigned to the function's
identifier during execution. According to the VAX Procedure Calling and
Condition Handling Standard, a function value may be returned as either an
actual value or a condition value that indicates success or failure.

18.8.3 The Argument List

The VAX Procedure Calling and Condition Handling Standard also defines a data
structure called the argument list. An argument list passes information to a
routine and receives results. An argument list is a collection of longwords in
memory that represents a routine parameter list and possibly includes a function
value. To pass data between routines that are not written in the same language,
you must specify an argument-passing mechanism. Section 18.4.1 describes the
argument-passing mechanisms for VAX COBOL.

For additional information on the VAX Procedure Calling and Condition Handling
Standard, see the VMS documentation on system services routines.

18.9 VMS Run-Time Library Routines

The VMS Run-Time Library is a library of prewritten, commonly used routines
that perform a wide variety of functions. These routines are grouped according to
the types of tasks they perform, and each group has a prefix that identifies those
routines as members of a particular VMS Run-Time Library facility. Table 18--2
lists all the language-independent Rl,ln-Time Library facility prefixes and the
types of tasks each facility performs.

Table 18-2: Run-Time Library Facilities

Facility Prefix Types of Tasks Performed

DTK$ DECtalk routines that are used to control a DIGITAL DECtalk device

LIB$ Library routines that obtain records from devices, manipulate
strings, convert data types for 110, allocate resources, obtain system
information, signal exceptions, establish condition handlers, enable
detection of hardware exceptions, and process cross-reference data

MTH$ Mathematics routines that perform arithmetic, algebraic, and
trigonometric calculations

(continued on next page)

lnterprogram Communication 1 ~25

Table 18-2 (Cont.): Run-Time Library Facilities

Facility Prefix Types of Tasks Performed

OTS$ General-purpose routines that perform tasks such as data type
conversions as part of a compiler's generated code

SMG$ Screen management routines that are used in designing, composing,
and keeping track of complex images on a video screen

STR$ String manipulation routines that perform such tasks as searching for
substrings, concatenating strings, and prefixing and appending strings

PPL$ Parallel processing routines that help you implement concurrent
programs on single-CPU and multiprocessor systems

18.1 O VMS System Services Routines

System services are prewritten system routines that perform a variety of tasks,
such as controlling processes, communicating among processes, and coordinating
I/O.

Unlike the VMS Run-Time Library routines, which are divided into groups by
facility, all system services share the same facility prefix (SYS$). However, these
services are logically divided into groups that perform similar tasks. Table 18-3
describes these groups.

Table 18-3: System Services

Group

AST

Change Mode

Condition Handling

Event Flag

Information

Input/Output

Lock Management

Logical Names

Memory
Management

Process Control

Security

Time and Time
Conversion

18-26 lnterprogram Communication

Types of Tasks Performed

Allows processes to control the handling of asynchronous system
traps

Changes the access mode of particular routines

Designates condition handlers for special purposes

Clears, sets, reads, and waits for event flags, and associates with
event flag clusters

Returns information about the system, queues, jobs, processes,
locks, and devices

Performs 1/0 directly, without going through RMS

Enables processes to coordinate access to shareable system
resources

Provides methods of accessing and maintaining pairs of
character-string logical names and equivalence names

Increases or decreases available virtual memory, controls paging
and swapping, and creates and accesses shareable files of code or
data

Creates, deletes, and controls execution of processes

Enhances the security of VMS systems

Schedules events and obtains and formats binary time values

18.11 Calling Routines

The basic steps for calling routines are the same whether you are calling a
routine (subprogram) written in VAX COBOL, a routine written in some other
VAX langtiage, a system service, or a VMS Run-Time Library routine. There are
five steps required to call any system routine:

1. Determining the type of call

2. Defining the arguments

3. Calling the routine or service

4. Checking the condition value, if applicable

5. Locating the result

The following sections outline the steps for calling non-VAX COBOL routines.

18.11.1 Determining the Type of Call

Before you call an external routine, you must first determine whether the call
should be a procedure call or a function call. In VAX COBOL, a routine that does
not return a value should be called as a procedure call. A routine that returns a
value should be called as a function call. Thus, a function call returns one of the
following:

• A function value (a COMP integer, COMP-1, or COMP-2 number). For
example, the call LIB$INDEX returns an integer value.

• A return status, which is a longword (PIC 9(5) to 9(9) USAGE IS COMP)
condition value that indicates the program has either successfully executed or
failed. For example, LIB$GET_INPUT returns a return status.

Although you can call most system routines as a procedure call, it is
recommended that you do so only when the system routine does not return
a value. By checking the condition value, you can avoid errors. The VMS
documentation on system services and Run-Time Library routines contains
descriptions of each system routine and a description of the condition
values returned. For example, the RETURNS section for the system routine
LIB$STAT_TIMER follows:

RETURNS

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism by value

Because LIB$STAT_TIMER returns a value, it should be called as a function. If
a system routine contains the following description under the RETURNS section,
you should call the system routine as a procedure call:

RETURNS

None.

lnterprogram Communication 18-27

18.11.2 Defining the Argument

Most system routines have one or more arguments. These arguments are used
to pass information to the system routine and to obtain information from it.
Arguments can be either required or optional, and each argument has. the
following characteristics:

• Access type (read, write, modify ...)

• Data type (floating point, longword ...)

• Passing mechanisms (by value, by reference, by descriptor ...)

• Argument form (scalar, array, string ...)

To determine which arguments are required by a routine, check the format
description of the routine in the VMS documentation on system services or
Run-Time Library routines. For example, the format for LIB$STAT_TIMER is as
follows:

LIB$STAT_TIMER code, value [,handle-adr]

The handle-adr argument appears in square brackets ([]), indicating that it is an
optional argument. Hence, when you call the system routine LIB$STAT_TIMER,
only the first two arguments are required.

Once you have determined which arguments you need, read the argument
description for information on how to call that system routine. For example, the
system routine LIB$STAT_TIMER provides the following description of the code
argument:

code

VMS Usage:
type:
access:
mechanism:

longword_signed
longword integer (signed)
read only
by reference

Code that specifies the statistic to be returned. The code
argument contains the address of a signed longword
integer that is this code. It must be an integer from 1 to 5.

After you check the argument description, refer to Table 18-4 for the VAX
COBOL equivalent of the argument description. For example, the code argument
description lists the VMS usage entry longword_signed. To define the code
argument, use the VAX COBOL equivalent of longword_signed:

01 LWS PIC S9(9) COMP.

Follow the same procedure for the value argument. The description of value
contains the following information:

value

VMS Usage:
type:
access:
mechanism:

varying_arg
unspecified
write only
by reference

The statistic returned by LIB$STAT TIMER. The value
argument contains the address of a-longword or quadword
that is this statistic. All statistics are longword integers
except elapsed time, which is a quadword.

18-28 lnterprogram Communication

For the value argument, the VMS usage, varying_arg, indicates that the data
type returned by the routine is dependent on other factors. In this case, the data
type returned is dependent upon which statistic you want to return. For example,
if the statistic you want to return is code 5, page fault count, you must use a
signed longword integer. Refer to Table 18-4 to find the following definition for a
longword_signed:

01 LWS PIC S9(9) COMP.

Regardless of which Run-Time Library routine or system service you call, you can
find the definition statements for the arguments in the VMS usage in Table 18-4.

18.11.3 Calling the External Routine

Once you have decided which routine you want to call, you can access the routine
using the CALL statement. You set up the call to the routine or service the same
way you set up any call in VAX COBOL. To determine the syntax of the CALL
statement for a function call or a procedure call, see the VAX COBOL Reference
Manual, and refer to the examples in this chapter.

Remember, you must specify the name of the routine being called and all
parameters required for that routine. Make sure the data types and passing
mechanisms for the parameters you are passing coincide with those defined in
the routine.

18.11.4 Calling System Routines

The basic steps for calling system routines are the same as those for calling
any routine. However, when calling system routines, you need to provide some
additional information discussed in the following sections.

18.11.4.1 System Routine Arguments

All system routine arguments are described in terms of the following information:

• VMS usage

• Data type

• Type of access allowed

• Passing mechanism

VMS usages are data structures layered on the standard VMS data types. For
example, the VMS usage mask_longword signifies an unsigned longword integer
used as a bit mask, and the VMS usage floating_point represents any VMS
floating-point data type. Table 18-4 lists the VMS usages and the VAX COBOL
statements you need to implement them.

lnterprogram Communication 18-29

Table 18-4: VAX COBOL Implementation

VMS Data Type

access_bit_names

access_mode

address

address_range

arg_list

ast_procedure

boolean

byte_signed

byte_unsigned

channel

char_string

complex_number

cond_value

context

date_ time

device_name

ef_cluster_name

ef...:.number

exit_handler_block

fab

file_protection

VAX COBOL Definition

NA ... PIC X(128).1

NA ... PICX.1

access_mode is usually passed BY VALUE
as PIC 9(9) COMP.

USAGE POINTER.

01 ADDRESS-RANGE.
02 BEGINNING-ADDRESS USAGE POINTER.
02 ENDING-ADDRESS USAGE POINTER.

NA ... Constructed by the compiler as a result of using the
COBOL CALL statement. An argument list may be created
as follows, but may not be referenced by the COBOL CALL
statement.

01 ARG-LIST.
02 ARG-COUNT PIC S9(9) COMP.
02 ARG-BY-VALUE PIC S9(9) COMP.
02 ARG-BY-REFERENCE USAGE POINTER
02 VALUE REFERENCE ARG-NAME .
. . . continue as needed

01 AST-PROC PIC 9(9) COMP.2

01 BOOLEAN-VALUE PIC 9(9) COMP.2

NA ... PICX.1

NA ... PICX.1

01 CHANNEL PIC 9(4) COMP.2

01 CHAR-STRING PIC X to PIC X(65535).

NA ... PIC X(n) where n is length.1

01 COND-VALUE PIC 9(9) COMP.2

01 CONTEXT PIC 9(9) COMP.2

NA ... PIC X(S).1

01 DEVICE-NAME PIC X(n) where n is length.

01 CLUSTER-NAME PIC X(n) where n is length.

01 EF-NO PIC 9(9) COMP.2

NA ... PIC X(n) where n is length.1

NA ... 'Ibo complex for general COBOL use. Most of a FAB
structure can be described by a lengthy COBOL record
description, but such a FAB cannot then be referenced by
a COBOL 1-0 statement. It is much simpler to do the
1-0 completely within COBOL, and let the COBOL compiler
generate the FAB structure, or do the 1-0 in another language.

01 FILE-PROT PIC 9(4) COMP.2

1 Most VMS data types not directly supported in VAX COBOL can be represented as an alphanumeric
data item of a certain number of bytes. While VAX COBOL does not interpret the data type, it may
be used to pass objects from one language to another.
2 Although unsigned computational data structures are not directly supported in VAX COBOL, you
may substitute the signed equivalent provided you do not exceed the range of the signed data
structure.

(continued on next page)

18-30 lnterprogram Communication

Table 18-4 (Cont.): VAX COBOL Implementation

VMS Data Type

fioating_point

function_ code

identifier

io_status_block

item_list_2

item_list_3

item_list_pair

item_quota_list

lock_id

lock_status_block

lock_ value_block

logical_name

longword_signed

longword_ unsigned

mask_byte

mask_longword

mask_ quadword

mask_ word

VAX COBOL Definition

01 F-FLOAT USAGE COMP-1.
01 D-FLOAT USAGE COMP-2.
* g-fioat and h-fioat are not supported in
VAX.COBOL.

01 FUNCTION-CODE.
02 MAJOR-FUNCTION PIC 9(4) COMP.2

02 SUB-FUNCTION PIC 9(4) COMP.2

01 ID PIC 9(9) COMP.2

01 IOSB.
02 COND-VAL PIC 9(4) COMP.2

02 BYTE-CNT PIC 9(4) COMP.2

02 DEV-INFO PIC 9(9) COMP.2

01 ITEM-LIST-TWO.
02 ITEM-LIST OCCURS n TIMES.

04 COMP-LENGTH PIC S9(4) COMP.
04 ITEM-CODE PIC S9(4) COMP.
04 COMP-ADDRESS PIC S9(9) COMP.

02 TERMINATOR PIC S9(9) COMP VALUE 0.

01 ITEM-LIST-3.
02 ITEM-LIST OCCURS n TIMES.

04 BUF-LEN PIC S9(4) COMP.
04 ITEM-CODE PIC S9(4) COMP.
04 BUFFER-ADDRESS PIC S9(9) COMP.
04 LENGTH-ADDRESS PIC S9(9) COMP.

02 TERMINATOR PIC S9(9) COMP VALUE 0.

01 ITEM-LIST-PAIR.

NA

02 ITEM-LIST OCCURS n TIMES.
04 ITEM-CODE PIC S9(9) COMP.
04 ITEM-VALUE PIC S9(9) COMP.

02 TERMINATOR PIC S9(9) COMP VALUE 0.

01 LOCK-ID PIC 9(9) COMP.2

NA

NA

01 LOG-NAME PIC X TO X(255).

01 LWS PIC S9(9) COMP.

01 LWU PIC 9(9) COMP.2

NA ... PIC X.1

01 MLW PIC 9(9) COMP.2

01 MQW PIC 9(18) COMP.2

01 MW PIC 9(4) COMP. 2

1 Most VMS data types not directly supported in VAX COBOL can be represented as an alphanumeric
data item of a certain number of bytes. While VAX COBOL does not interpret the data type, it may
be used to pass objects from one language to another.
2 Although unsigned computational data structures are not directly supported in VAX COBOL, you
may substitute the signed equivalent provided you do not exceed the range of the signed data
structure.

(continued on next page)

lnterprogram Communication 18-31

Table 18-4 (Cont.): VAX COBOL Implementation

VMS Data Type

null_arg

octaword_signed

octaword_unsigned

page_protection

procedure

process_id

process_name

quadword_signed

quadword_ unsigned

rights_holder

rights_id

rah

section_id

section_name

systeID._access_id

tiID.e_name

uic

user_arg

VAX COBOL Definition

CALL ... USING OMITTED or
PIC S9(9) COMP VALUE 0
passed USING BY VALUE.

NA

NA

01 PAGE-PROT PIC 9(9) COMP.2

01 ENTRY-MASK PIC 9(9) COMP.2

01 PID PIC 9(9) COMP. 2

01 PROCESS-NAME PIC X TO X(15).

01 QWS PIC S9(18) COMP.

01 QWU PIC 9(18) COMP.2

01 RIGHTS-HOLDER.
02 RIGHTS-ID PIC 9(9) COMP.2

02 ACCESS-RIGHTS PIC 9(9) COMP.2

01 RIGHTS-ID PIC 9(9) COMP.2

NA ... Too coID.plex for general COBOL use. Most of a RAB
structure can be described by a lengthy COBOL record
description, but such a RAB cannot then be referenced by
a COBOL I-0 stateID.ent. It is ID.uch siID.pler to do the I-0
coID.pletely within COBOL, and let the COBOL coID.piler
generate the RAB structure, or do the I-0 in another language.

01 SECTION-ID PIC 9(18) COMP.2

01 SECTION-NAME PIC X to X(43).

01 SECTION-ACCESS-ID PIC 9(18) COMP.2

01 TIME-NAME PIC X(n) where n is the length.

01 UIC PIC 9(9) COMP. 2

01 USER-ARG PIC 9(9) COMP.2

varying_arg Dependent upon application.

vector_byte_signed NA ... 3

vector_byte_unsigned NA ... 3

vector_longword_signed NA ... 3

vector_longword_unsigned NA ... 3

vector_quadword_signed NA ... 3

vector_quadword_unsigned NA ... 3

vector_ word_signed NA ... 3

vector_word_unsigned NA ... 3

word_signed 01 WS PIC S9(4) COMP.

word_unsigned 01 WS PIC 9(4) COMP.2

2 Although unsigned computational data structures are not directly supported in VAX COBOL, you
may substitute the signed equivalent provided you do not exceed the range of the signed data
structure.
3VAX COBOL does not permit the passing of variable-length data structures.

18-32 lnterprogram Communication

18.11.4.2 Calling a System Routine in a Function Call

In the following example, LIB$STAT_TIMER returns a condition value called
RET-STATUS. To call this system routine, use the FORMAT of the function call
described in the VMS documentation on system services or Run-Time Library
routines. In this case, the format is as follows:

01 ARG-CODE PIC S9(9) COMP.
01 ARG-VALUE PIC S9(9) COMP.
01 RET-STATUS PIC S9(9) COMP.

CALL "LIB$STAT_TIMER"
USING BY REFERENCE ARG-CODE, ARG-VALUE
GIVING RET-STATUS.

As stated earlier, you are not using the optional handle-arg argument. In a CALL
statement, you can specify an optional argument in one of two ways:

[,optional-argument]

or

, [optional-argument]

If the comma appears outside of the brackets, you must pass a zero by value or
use the OMITTED phrase to indicate the place of the omitted argument.

If the comma appears inside the brackets, you can omit the argument as long as
it is the last argument in the list. For example, look at the optional arguments of
a hypothetical routine, LIB$EXAMPLE_ROUTINE:

LIB$EXAMPLE_ROUTINE argl [,arg2] [,arg3] [,arg4]

You can omit the optional arguments without using a placeholder:

CALL "LIB$EXAMPLE_ROUTINE"
USING ARGl
GIVING RET-STATUS.

However, if you omit an optional argument in the middle of the argument list,
you must insert a placeholder:

CALL "LIB$EXAMPLE_ROUTINE"
USING ARGl, OMITTED, ARG3
GIVING RET-STATUS.

In general, Run-Time Library routines use the [,optional-argument] format, while
system services use the ,[optional-argument] format.

In passing arguments to the procedure, you must define the passing mechanism
required if it is not the default. The default passing mechanism for all VAX
COBOL data types is BY REFERENCE.

The passing mechanism required for a system routine argument is indicated in
the argument description. The passing mechanisms allowed in system routines
are those listed in the VAX Procedure Calling and Condition Handling Standard
in the VMS documentation on system services routines.

If the passing mechanism· expected by the .routine or service differs from ·the
default mechanism in VAX COBOL, you must override the default. To force an
argument to be passed by a specific mechanism, refer to the following list:

• If the argument is described as "the address of," use BY REFERENCE, which
is the default.

• Ifthe argument is described as "the value of," use BY VALUE.

lnterprogram Communication 18-33

• If the argument is described as "address of descriptor," use BY DESCRIPTOR.

NOTE

If a routine requires a passing mechanism that is not supported by
VAX COBOL, calling that routine from VAX COBOL is not possible.

Even when you use the default passing mechanism, you can include the passing
mechanism that is used. For example, to call LIB$STAT_TIMER, you can use
either of the following definitions:

CALL "LIB$STAT_TIMER"
USING ARG-CODE, ARG-VALUE
GIVING RET-STATUS.

CALL "LIB$STAT_TIMER"
USING BY REFERENCE ARG-CODE, ARG-VALUE
GIVING RET-STATUS.

18.11.4.3 Calling a System Routine in a Procedure Call

If the routine or service you are calling does not return a function value or
condition value, you can call the system routine as a procedure. The same rules
apply to optional arguments; you must follow the calling sequence presented in
the FORMAT section of the VMS documentation on system services or Run-Time
Library routines.

One system routine that does not return a condition value or function value is the
Run-Time Library routine LIB$SIGNAL. LIB$SIGNAL should always be called
as a procedure, as shown in the following example:

01 ARG-VALUE PIC S9(5) COMP VALUE 90.

CALL "LIB$SIGNAL" USING BY VALUE ARG-VALUE.

18.11.5 Checking the Condition Value

Many system routines return a condition value that indicates success or failure;
this value can be either returned or signaled. In general, system routines return
a condition value with the following exceptions:

• The system routine returns a function value.

• The CONDITION VALUES RETURNED is None.

• There is no CONDITION VALUES RETURNED description, but rather a
CONDITION VALUES SIGNALED description. (Success conditions are not
signaled.)

• The call to the routine was made as a procedure call.

If any of these conditions apply, there is no condition value to check.

If there is a condition value, you must check this value to make sure that it
indicates successful completion. All success condition values are listed in the
CONDITION VALUES RETURNED description.

Condition values indicating success always appear first in the list of condition
values for a particular routine, and success codes always have odd values. A
success code common to many system routines is the condition value
SS$_NORMAL, which indicates that the routine completed normally and

18-34 lnterprogram Communication

successfully. You can reference the condition values symbolically in your COBOL
program by specifying them in the EXTERNAL phrase of the VALUE IS clause.
Symbolic names specified in VALUE IS EXTERNAL become link-time constants;
that is, the evaluation of the symbolic name is deferred until link time because it
is known only at link time. For example:

01 SS$_NORMAL PIC S9(5) COMP VALUE EXTERNAL SS$_NORMAL

CALL "LIB$STAT TIMER" USING ARG-CODE, ARG-VALUE GIVING RET-STATUS.
IF RET-STATUS NOT EQUAL SS$_NORMAL ...

Because all success codes have odd values, you can check a return status for any
success code. For example, you can cause execution to continue only if a success
code is returned by including the following statement in your program.

IF RET-STATUS IS SUCCESS ...

Sometimes several success condition values are possible. You may only want to
continue execution on specific success codes. For example, the $SETEF system
service returns one of two success values: SS$_ WASSET or SS$_ WASCLR. If you
want to continue only when the success code SS$_ WASSET is returned, you can
check for this condition value as follows and branch accordingly:

IF RET-STATUS EQUAL SS$_WASSET

or

EVALUATE RET-STATUS
WHEN SS$_WASSET

If the condition value returned is not a success condition, then the routine did not
complete normally, and the information it should have returned may be missing,
incomplete, or incorrect.

You can also check for specific error conditions as follows:

WORKING-STORAGE SECTION.
01 USER-LINE PIC X(30).
01 PROMPT-STR PIC x (16) VALUE IS "Type Your Name".
01 OUT-LEN PIC S9(4) USAGE IS COMP.
01 COND-VALUE PIC S9(9) USAGE IS COMP.
88 LIB$_INPSTRTRU VALUE IS EXTERNAL LIB$_INPSTRTRU.

PROCEDURE DIVISION.
PO.

CALL "LIB$GET_INPUT" USING BY DESCRIPTOR USER-LINE PROMPT-STR
BY REFERENCE OUT-LEN
GIVING COND-VALUE.

EVALUATE TRUE
WHEN LIB$_INPSTRTRU

DISPLAY "User name too long"
WHEN COND-VALUE IS FAILURE

DISPLAY "More serious error".

lnterprogram Communication 18-35

18.11.5.1 Library Return Status and Condition Value Symbols

Library return status and condition value symbols have the following general
form:

fac$_abcmnoxyz

where:

fac is a 2- or 3-letter facility symbol (LIB, MTH, STR, OTS, BAS, COB, FOR, SS).

abc are the first 3 letters of the first word of the associated message.

mno are the first 3 letters of the next word.

xyz are the first 3 letters of the third word, if any.

Articles and prepositions are not considered significant words in this format. If a
significant word is only two letters long, an underscore character is used to fill out
the third space. The VMS normal or success code is used to indicate successful
completion. Some examples of this code are as follows:

RETURN Status

LIB$_INSVIRMEM

FOR$_NO_SUCDEV

MTH$_FLOOVEMAT

BAS$_SUBOUTRAN

18.11.6 Locating the Result

Meaning

Insufficient virtual memory

No such device

Floating overflow in Math Library procedure

Subscript out of range

Once you have defined the arguments, called the procedure, and checked the
condition value, you are ready to locate the result. To find out where the result is
returned, look at the description of the system routine you are calling.

For example, in the following call to MTH$ACOS the result is written into the
variable COS:

01 ARG-CODE PIC S9 (9) COMP VALUE 1.
01 COS COMPl VALUE 0.

CALL "MTH$ACOS" USING BY REFERENCE ARG-CODE GIVING COS.

This result is described in the VMS documentation on system services and
Run-Time Library routines, under the description of the system routine.

18.12 Calling Shareable Images

When calling a subprogram installed as a shareable image, the program name
specified in the CALL statement must be a literal.

VAX COBOL programs installed as shareable images cannot contain external
files.

For more information on shareable images refer to Chapter 2 and the VMS
Linker documentation.

18-36 lnterprogram Communication

18.13 Examples

This section provides examples that demonstrate how to call system routines
from VAX COBOL programs.

Example 18-7 shows a procedure call and gives a sample run of the program
RUNTIME. It calls MTH$RANDOM, a random number generator from the
Run-Time Library, and generates 10 random numbers. To obtain different
random sequences on separate runs, change the value of data item SEED for each
run.

Example 18-7: Random Number Generator

IDENTIFICATION DIVISION.
PROGRAM-ID. RUNTIME.

*
*

This program calls MTH$RANDOM, a random number
generator from the Run-Time Library.

*
*

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SEED PIC 9(5) COMP VALUE 967.
01 A-NUM COMP-1.
01 C-NUM PIC Z(5).
PROCEDURE DIVISION.
GET-RANDOM-NO.

PERFORM 10 TIMES
CALL "MTH$RANDOM" USING SEED GIVING A-NUM
MULTIPLY A-NUM BY 100 GIVING C-NUM
DISPLAY "Random Number is " C-NUM

END-PERFORM.

Example 18-8 shows output from a sample run of the RUNTIME program in
Example 18-7.

Example 18-8: Sample Run of RUNTIME

Random Number is 1
Random Number is 7
Random Number is 92
Random Number is 90
Random Number is 22
Random Number is 29
Random Number is 65
Random Number is 38
Random Number is 32
Random Number is 40

lnterprogram Communication 18-37

Example 18-9: Using SVS$SETDIR

01 DIRECTORY PIC X(24) VALUE "[MYACCOUNT.SUBDIRECTORY]".
01 STAT PIC S9(9) COMP.

CALL "SYS$SETDIR" USING BY DESCRIPTOR DIRECTORY
OMITTED
OMITTED
GIVING STAT.

Example 18-9 shows a program fragment that calls the SYS$SETDIR system
service.

Example 18-10 calls the System Service routine $ASCTIM.

Example 18-10: Using $ASCTIM

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLTIME.
**
* This program calls the system service routine *
* $ASCTIM which converts binary time to an ASCII *
* string representation. *
**
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TIMLEN
01 D-TIMLEN
01 TIMBUF
01 RETURN-VALUE
PROCEDURE DIVISION.
000-GET-TIME.

PIC 9999 COMP VALUE O.
PIC 9999 VALUE 0.
PIC X(24) VALUE SPACES.
PIC S9(9) COMP VALUE 999999999.

DISPLAY "CALL SYS$ASCTIM".
CALL "SYS$ASCTIM" USING BY REFERENCE TIMLEN

BY DESCRIPTOR TIMBUF
OMITTED
GIVING RETURN-VALUE.

IF RETURN-VALUE IS SUCCESS
THEN

ELSE

DISPLAY "DATE/TIME " TIMBUF
MOVE TIMLEN TO D-TIMLEN
DISPLAY "LENGTH OF RETURNED

DISPLAY "ERROR".
STOP RUN.

" D-:TIMLEN

Example 18-11 shows output from a sample run of the CALLTIME program in
Example 18-10.

Example 18-11: Sample Run of CALLTIME

CALL SYS$ASCTIM
DATE/TIME 21-APR-1987 09:34:33.45
LENGTH OF RETURNED = 0023

18-38 lnterprogram Communication

The following example shows how to call the procedure that inserts a variable
bit field (LIB$INSV) from a COBOL program. The format of the LIB$INSV
procedure is explained in the VMS documentation on Run-Time Library routines.
To set the low order three bits of BIT-RESULT to 4, you would code the following:

WORKING-STORAGE SECTION.
01 SRC PIC S9(9) USAGE IS COMP.
01 POS PIC S9(9) USAGE IS COMP.
01 SIZ PIC S9(9) USAGE IS COMP.
01 BIT-RESULT PIC S9(9) USAGE IS COMP.

PROCEDURE DIVISION.

PO.
MOVE 4 TO SRC.
MOVE 0 TO POS.
MOVE 3 TO SIZ.

CALL "LIB$INSV" USING SRC, POS, SIZ, BIT-RESULT.

The following example shows how to call the procedure that enables and
disables detection of floating-point underflow (LIB$FLT_UNDER) from a COBOL
program. The format of the LIB$FLT_UNDER procedure is explained in the VMS
documentation on Run-Time Library routines.

WORKING-STORAGE SECTION.
01 NEW-SET PIC S9(9) USAGE IS COMP.
01 OLD-SET PIC S9(9) USAGE IS COMP.

PROCEDURE DIVISION.

PO.
MOVE 1 TO NEW-SET.
CALL "LIB$FLT_UNDER" USING NEW-SET GIVING OLD-SET.

The following example shows how to call the procedure that finds the first clear
bit in a given bit field (LIB$FFC). This procedure returns a COMP longword
condition value, represented in the example as RETURN-STATUS.

WORKING-STORAGE SECTION.
01 START-POS PIC S9 (9) USAGE IS
01 SIZ PIC S9 (9) USAGE IS
01 BITS PIC S9(9) USAGE IS
01 POS PIC S9 (9) USAGE IS
01 RETURN-STATUS PIC S9(9) USAGE IS

PROCEDURE DIVISION.

CALL "LIB$FFC" USING START-POS,
SIZ,
BITS,
POS

COMP VALUE 0.
COMP VALUE 32.
COMP VALUE 0.
COMP VALUE 0.
COMP.

GIVING RETURN-STATUS.

IF RETURN-STATUS IS FAILURE
THEN GO TO error-proc.

lnterprogram Communication 18-39

18.14 Additional Information

For more detailed information on system services and Run-Time Library routines,
refer to the VMS documentation on system service routines and creating modular
programs.

The VMS documentation on system routines contains the VAX Procedure Calling
and Condition Handling Standard. The VMS Modular Programming Standard
can be found in the VMS documentation on creating modular procedures.

All manuals listed in this chapter can be found in the VMS documentation set.

18-40 lnterprogram Communication

Part Ill
VAX COBOL Programming Options and Performance

Considerations

Chapter 19

Using the REFORMAT Utility

The REFORMAT Utility converts terminal format source programs to
conventional ANSI format and vice versa.

Consider the two formats:

• Terminal format is compatible with the VAX system. Terminal format
eliminates the line-number and identification fields of ANSI format and
allows horizontal tab characters and short lines. It saves disk space and
decreases compile time.

• Conventional ANSI format produces source programs compatible with the
reference format of other COBOL compilers.

The VAX COBOL Reference Manual discusses both formats in detail.

19.1 ANSI-to-Terminal Format Conversion

REFORMAT converts each ANSI format source line to terminal format by:

• Removing the 6-character sequence field in the first six character positions of
the ANSI format line.

• Moving any continuation symbol (-) or comment symbols (* or I) from
character position 7 into character position 1.

• Moving the conditional compilation character (if any) from the ANSI format
indicator area into character position 2 and inserting a backslash character
(\) into character position 1 of the terminal format line.

• Replacing spaces with horizontal tabs immediately to the right of Margin B
and every eight character positions thereafter until .the end of the line. This
does not occur in source lines containing a nonnumeric literal.

• Removing the identification entry field in character positions 73 to 80 of the
ANSI format line.

• Removing insignificant trailing spaces before character position 73 of the
ANSI format line.

• Replacing every form-feed record with a line containing a slash(/) in
character position 1.

• Placing the converted code in positions 1 to the end of the line, thereby
creating a terminal format line.

Using the REFORMAT Utility 19-1

19.1.1 ANSI-to-Terminal REFORMAT Command String

To run REFORMAT, enter this command:

$ RUN SYS$SYSTEM:REFORMAT

REFORMAT executes and prompts you with this message:

REFORMAT - ANSI-to-terminal conversion mode [YIN]?

For an ANSI-to-terminal conversion, type Y and press RETURN. REFORMAT
confirms your choice with this message:

REFORMAT - ANSI-to-terminal format selected

REFORMAT then asks for input and output file specifications:

REFORMAT - ANSI-format input file spec :
REFORMAT - Terminal-format output file spec :

REFORMAT reads the input file and writes a terminal format output file. After
processing the last record, REFORMAT displays these messages:

REFORMAT - n ANSI COBOL source records converted to terminal format
REFORMAT - ANSI-to-terminal format conversion mode [YIN]?

The first message indicates the number of input records converted to terminal
format; the second message prompts you for conversion of another file. Enter the
next file to convert, or type CTRUZ to end execution.

19.2 Terminal-to-ANSI Format Conversion

REFORMAT converts each terminal format source line to ANSI format by:

• Placing a 6-character line number (000010) in the first six character positions
of the first line and increasing it by 000010 for each subsequent line.

• Moving any continuation symbol (-), or the comment symbols (* or I) from
character position 1 into character position 7.

• Removing the backslash character (\), if any, from character position 1 in
terminal format and moving the following conditional compilation character
into character position 7 of the ANSI format line.

• Replacing horizontal tabs with space characters at every eighth character
position, starting at character position 5 and ending at the end of the line.

• Moving spaces into remaining character positions after the last character of
code and before character position 73.

• Expanding a terminal line with more than 65 characters into two or more
ANSI format lines and right-justifying these lines at character position 72.

• Placing either identification characters (if supplied at program initialization)
or spaces into character positions 73 to 80.

• Right-:justifying (at position 72) the first line of a continued nonnumeric
literal. This ensures that the literal remains the same length as it was in the
default format.

• Replacing every form-feed record with a line containing a slash (I) in position
7 and space characters in positions 8 to 72.

• Placing the converted code in character positions 8 to 72, thereby creating one
or more ANSI format lines.

19-2 Using the REFORMAT Utility

Note that it is possible to construct a terminal format line that converts to an
invalid ANSI formatted line. Consider the case of a conditional compilation line
with a long nonnumeric literal:

\A 01 FOO PIC X (80) VALUE A ... A.

This statement cannot be reformatted to a valid ANSI statement. The literal is
80 characters long, which indicates that the literal must be continued on the next
line by placing a continuation symbol (-) in the indicator area. The line is also
a conditional compilation line, which indicates that the A is to be placed in the
indicator area. Clearly both characters cannot be placed in the indicator area.
VAX COBOL continues the conditional compilation line by placing the A in the
indicator area. This means the program remains valid if conditionals are not
used in the compilation because the lines become comment lines. If conditionals
are used, you must locate and correct these invalid lines. The reformat program
is a text processor and does not perform the level of checking required by lines
such as these. You detect this error during a compile operation.

19.2.1 Terminal-to-ANSI REFORMAT Command String

To run REFORMAT, enter this command:

$ RUN SYS$SYSTEM:REFORMAT

REFORMAT prompts you with this message:

REFORMAT - ANSI-to-terminal conversion mode [YIN]?

For a terminal-to-ANSI conversion, type N and press RETURN. REFORMAT
confirms your choice with this message:

REFORMAT - Terminal-to-ANSI format selected

REFORMAT then asks for input and output file specifications:

REFORMAT - Terminal-format input file spec:
REFORMAT - ANSI-format output file spec:

After you enter the file specifications, REFORMAT asks for an identification entry
in columns 73 to 80:

REFORMAT - Columns 73 to 80:

If you want an identification entry, type from one to eight characters.
REFORMAT places these characters, left-justified, in columns 73 to 80 of each
output line. Otherwise, press RETURN.

REFORMAT reads the input file and writes the output file in SO-character ANSI
format records. After processing the last record, REFORMAT displays these
messages:

REFORMAT - n Terminal COBOL source records converted to ANSI format
REFORMAT - ANSI-to-terminal format conversion mode [YIN]?

The first message indicates the number of input records converted to ANSI
format; the second message prompts you for conversion of another file. Type
CTRUZ to end execution.

Using the REFORMAT Utility 19-3

19.3 REFORMAT Error Messages

If any of your responses to the prompts are incorrect, REFORMAT displays
error messages. It replaces the parentheses and the parenthetical text with the
appropriate format type you specified.

REFORMAT - Error in opening (ANSI or terminal) format input file:
REFORMAT - (ANSI or terminal) format input file spec:

The system could not open the input file; either the file is not on the specified
device or you typed the file name incorrectly. The default device is SYS$DISK.

To continue processing, examine the input file specification and type a corrected
version. To process another file, type a new input file specification. To end
execution, type CTRL/Z.

REFORMAT - Error in opening (ANSI or terminal) format output file:
REFORMAT - (ANSI or terminal) format output file spec:

The system could not open the output file. An incorrectly typed file specification
usually causes this error. The default device is SYS$DISK.

To continue, examine the output file specification and type a corrected version. To
end execution, type CTRL/Z.

REFORMAT - (ANSI or terminal) format input file is empty
REFORMAT - (ANSI or terminal) format input file spec:

The system opened an empty input file. To continue, type a new input file
specification. To end execution, type CTRL/Z.

REFORMAT - Error in reading (ANSI or terminal) format input file
REFORMAT - Ref ormating aborted
REFORMAT - n (ANSI or terminal) COBOL source records converted to

(ANSI or terminal) format
REFORMAT - ANSI-to-terminal format conversion mode [Y or N]?

REFORMAT failed to read a record from the input file. This error ends the
conversion process. REFORMAT closes both files and displays the number of
converted input records.

You can either convert another file or end the session by typing CTRL/Z.

REFORMAT - Error in writing (ANSI or terminal) format output file
REFORMAT - Reformatting aborted
REFORMAT - n (ANSI or terminal) COBOL source records converted to

(ANSI or terminal) format
REFORMAT - ANSI-to-terminal format conversion mode [Y or N]?

REFORMAT failed in an attempt to write an output record. It ends execution
and closes both files.

To process another file, type a new input file specification and continue the
prompting message sequence. To end execution, type CTRL/Z.

19-4 Using the REFORMAT Utility

Chapter 20

Optimizing Your VAX COBOL Program

You can decrease processing time and save storage space by using compiler
optimization features when you write VAX COBOL programs. This chapter shows
how certain numeric data-type and Procedure Division statements can help you
optimize your VAX COBOL programs. Refer to Section D.2 for information about
optimizing your VAX COBOL programs for certain VAX processors.

The information in this chapter should be seen as guidelines only, and may not be
appropriate in all cases. When using the suggestions in this chapter, you should
use only those suggestions that fit your needs.

20.1 Numeric Data Representation

Optimizing numeric data is one way to improve program performance. In
general, for arithmetic operations, BINARY (COMP) and PACKED-DECIMAL
(COMP-3) items run faster than a numeric data item with a USAGE IS DISPLAY
clause. The compiler must convert USAGE IS DISPLAY numeric data items to
PACKED-DECIMAL items before performing arithmetic operations. More than
one conversion is necessary. In addition, PACKED-DECIMAL and fixed BINARY
items use less disk space than numeric display items.

For example, notice the storage space used by data items with a USAGE BINARY
statement:

PICTURE Range

89 TO 89(4)

89(5) to 89(9)

89(10) to 89(18)

Storage

1 word

1 longword

1 quadword

(2 bytes)

(4 bytes)

(8 bytes)

In general, describe a numeric data item as USAGE BINARY when:

• The data item is part of an arithmetic operation and is less than one
quadword.

• The data item is used as a subscript. In this case, allocate a longword by
specifying PIC S9(5) to PIC S9(9).

Although not as storage-efficient as USAGE BINARY, data items with a USAGE
PACKED-DECIMAL statement let you store two digits per byte rather than one
digit per byte for USAGE DISPLAY items, as shown in the following example:

Optimizing Your VAX COBOL Program 20-1

USAGE DISPLAY
USAGE

PACKED-DECIMAL
PICTURE Storage PICTURE Storage

S9(5)V99

S9(12)V9

7 bytes

13 bytes

S9(5)V99 4 bytes

S9(12)V9 7 bytes

To calculate the number of storage bytes for a PACKED-DECIMAL item, divide
the PICTURE size by 2 (without rounding) and add 1 to the result. You can check
the allocation with the compiler qualifier IMAP.

In general, describe a numeric data item as USAGE PACKED-DECIMAL when:

• The receiving field is a numeric display or edited data item.

• The data item is part of a file's record description frequently used in
arithmetic operations.

20.1.1 Scaling and Mixing Data-Types

Scaling is the process of aligning decimal points for numeric data items. Avoid
mixing scale-factors and data-types in arithmetic operations.

In general, when you do numeric operations, it is better to use operands of the
same usage and scale.

20.1.2 Using Significant Digits

In general, the fewer significant digits in an item, the better the performance
(except as described in Section 20.1.1). For example, for a numeric data item to
contain a number from 1 to 999, declare it as PIC 9(3), not PIC 9(10).

20.2 Choices in Procedure Division Statements

Some Procedure Division statements make better use of the VAX COBOL
compiler than others. This section discusses these statements and shows how to
use them.

20.2.1 Using ADD, SUBTRACT, MULTIPLY, and DIVIDE Instead of COMPUTE

The ADD, SUBTRACT, MULTIPLY, and DIVIDE statements are generally faster
than the COMPUTE statement and use fewer intermediate temporaries; they
usually execute fewer instructions. For example:

Record definitions:

01 A PIC S9(4)V99 PACKED-DECIMAL.
01 B PIC S9(4)V99 PACKED-DECIMAL.
01 c PIC S9(4)V99 PACKED-DECIMAL.
01 D PIC S9(4)V99 PACKED-DECIMAL.
01 E PIC S9(4)V99 PACKED-DECIMAL.
01 F PIC S9(4)V99 PACKED-DECIMAL.
01 TEMPl PIC S9(4)V99 PACKED-DECIMAL.
01 TEMP2 PIC S9(4)V99 PACKED-DECIMAL.

Compute statement:

COMPUTE F = ((((A+ B) - (C + D)) / 2) * E).

20-2 Optimizing Your VAX COBOL Program

Separate arithmetic statements:

ADD A, B GIVING TEMPl.
ADD C, D GIVING TEMP2.
SUBTRACT TEMP2 FROM TEMPl.
DIVIDE TEMPl BY 2 GIVING TEMP2.
MULTIPLY TEMP2 BY E GIVING F.

20.2.2 Using GO TO DEPENDING ON Instead of IF, GO TO

The GO TO DEPENDING ON statement generates fewer instructions than
a sequence of IF and GO TO statements; it can also improve a program's
readability. For example:

GO TO 100-PROCESS-MARRIED
200-PROCESS-SINGLE
300-PROCESS-DIVORCED
400-PROCESS-WIDOWED

DEPENDING ON MARITAL-STATUS.

The previous example generates fewer instructions and is easier to read than the
following:

IF MARITAL-STATUS = 1
GO TO 100-PROCESS-MARRIED.

IF MARITAL-STATUS = 2
GO TO 200-PROCESS-SINGLE.

IF MARITAL-STATUS = 3
GO TO ~00-PROCESS-DIVORCED.

IF MARITAL-STATUS = 4
GO TO 400-PROCESS-WIDOWED.

Remember, data items referenced by the DEPENDING ON clause must contain
a numeric value that is: (1) greater than zero, and (2) not greater than the
number of procedure names in the statement. Otherwise, control passes to the
next executable statement.

20.2.3 Using Indexing Instead of Subscripting

Using index names for table handling is generally more efficient than using
PACKED-DECIMAL or numeric DISPLAY subscripts, since the compiler declares
index names as longword binary data items. Subscript data items described in
the Working-Storage Section as longword binary items are as efficient as index
items. Indexing also provides more flexibility in table-handling operations, since
it allows you to use the SEARCH statement for sequential and binary searches.

The efficiency order for indexing and subscripting is as follows:

1. Index names, or subscript data items described as longword BINARY

2. Subscript data items described as 1-word BINARY

3. Subscript data items described as PACKED-DECIMAL

4. Subscript data items described as numeric DISPLAY

Optimizing Your VAX COBOL Program 20-3

These two examples are equally efficient:

Example 1

WORKING-STORAGE SECTION.
01 TABLE-SIZE.

03 FILLER
01 THE-TABLE REDEFINES TABLE-SIZE.

PIC X (300) .

03 TABLE-ENTRY OCCURS 30 TIMES PIC X(lO).
01 SUBl PIC S9(5) BINARY VALUE ZEROES.

Example 2
WORKING-STORAGE SECTION.
01 TABLE-SIZE.

03 FILLER
01 THE-TABLE REDEFINES TABLE-SIZE.

PIC X(300).

03 TABLE-ENTRY OCCURS 30 TIMES PIC X(lO)
INDEXED BY IND-1.

If applicable, use a numeric literal to access a table. For example:

MOVE TABLE-ENTRY (numeric literal) TO ...

Using a numeric literal is faster than using either a subscript or an index:

MOVE TABLE-ENTRY (SUBl) TO .. .

MOVE TABLE-ENTRY (IND-1) TO .. .

20.2.4 Using PERFORM n TIMES Instead of PERFORM VARYING

If possible, use PERFORM n TIMES. It executes fewer instructions than
PERFORM VARYING. For example:

PERFORM 050-MONTHLY-ANALYSIS 12 TIMES.

This is more efficient than:

PERFORM 050-MONTHLY-ANALYSIS
VARYING A-COUNTER FROM 1 BY 1
UNTIL A-COUNTER IS GREATER THAN 12.

20.2.5 Using SEARCH ALL Instead of SEARCH

When performing table look-up operations, SEARCH ALL, a binary search
operation, is usually faster than SEARCH, a sequential search operation. A
binary search determines a table's size, finds the median table entry, and
searches the table in sections, by using compare processes. A sequential search
manipulates the contents of an index to search the table sequentially (Figure 20-1
shows execution of a SEARCH ALL statement). However, SEARCH ALL requires
the table to be in ascending or descending order by search key, while SEARCH
imposes no restrictions on table organization. Section 6.4.8 contains examples of
binary and sequential table-handling operations.

20-4 Optimizing Your VAX COBOL Program

Figure 20-1 : Execution of a SEARCH ALL Statement

Determine table size

Find median table entry

Successful search, pass
control to next

procedural statement

Execute AT END statement (if specified)
pass control to next procedural statement

Eliminate upper half of
table from search

Eliminate lower half of
table from search

ZK-1526-GE

20.3 Using VAX COBOL for 1/0 Operations

VAX COBOL provides methods of controlling RMS actions during 1/0 operations.
You have the choice of accepting the defaults RMS provides or using these
optional methods to make your program more efficient.

The VAX COBOL language elements that can specify alternatives to the RMS
defaults are as follows:

• The APPLY clause in the 1-0-CONTROL paragraph

• The RESERVE n AREAS clause in the FILE-CONTROL paragraph

Optimizing Your VAX COBOL Program 20-5

• The SAME RECORD AREA clause in the 1-0-CONTROL paragraph

• The BLOCK CONTAINS clause in the FD entry

For additional information on the RMS terms and concepts included in this
section, see the RMS reference documentation and the VMS documentation on
RMS tuning.

20.3.1 Using the APPLY Clause

The APPLY clause in the I-0-CONTROL paragraph of the Environment Division
provides phrases that you can use to improve 1/0 processing. Examine the
following example of the APPLY clause:

[
CONTIGUOUS l

APPLY CONTIGUOUS-BEST-TRY

PREALLOCATION preall-amt ON { file-name } ...

20.3.1.1 Using the PREALLOCATION Phrase of the APPLY Clause

By default, the system does not preallocate disk blocks. As a result, files
can require multiple extensions of disk blocks. Although file extension is
transparent to your program, it takes time. To reduce this time, use the
APPLY PREALLOCATION clause to preallocate disk blocks. Specifying APPLY
PREALLOCATION preallocates noncontiguous disk blocks.

When you specify the CONTIGUOUS-BEST-TRY phrase, RMS makes up to
three attempts to allocate as many contiguous disk blocks as it can; it then
preallocates remaining blocks noncontiguously. The CONTIGUOUS-BEST-TRY
phrase minimizes disk space fragmentation and gives better system throughput
than CONTIGUOUS.

The APPLY CONTIGUOUS (physically adjacent) clause makes one attempt
at contiguous preallocation; if it fails, the OPEN operation fails. Use APPLY
CONTIGUOUS if you require a specific physical space on disk.

Contiguous files can reduce or eliminate window turning. When you access a
file, the file system maps virtual block numbers to logical block numbers. This
map is a window to the file. It contains one pointer for each file extent. The file
system cannot map a large noncontiguous file: the file system may have to turn
the window to access records in another extent. However, a contiguous file is one
extent. It needs one map pointer only, and window turning does not take place
after you open the file.

The following statements create a file (after OPEN/WRITE) and preallocate 150
contiguous blocks:

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT A-FILE ASSIGN TO "MYFILE".

I-0-CONTROL.
APPLY CONTIGUOUS PREALLOCATION 150 ON A-FILE.

20-6 Optimizing Your VAX COBOL Program

20.3.1.2 Using the EXTENSION Phrase of the APPLY Clause

APPLY EXTENSION extend-amt ON { file-name } ...

The APPLY EXTENSION clause is another way to reduce I/O allocation and
extension time. Adding records to a file whose current extent is full causes '
the file system to extend the file by one disk cluster. (A disk cluster is a set of
contiguous blocks; its size is determined when you initialize the volume with
the DCL INITIALIZE command or when the volume is mounted with the DCL
MOUNT qualifier: /EXTENSION=n.)

You can override the default extension by specifying the number of blocks in the
APPLY EXTENSION clause. The APPLY EXTENSION integer becomes a file
attribute stored with the file.

20.3.1.3 Using the DEFERRED-WRITE Phrase of the APPL y Clause

APPLY DEFERRED-WRITE ON { file-name } ...

Each WRITE or REWRITE statement can cause an I/O operation. The APPLY
DEFERRED-WRITE clause permits writes to a file only when the buffer is full.
Reducing the number of WRITE operations reduces file access time. However,
the APPLY DEFERRED-WRITE clause can affect file integrity: records in the I/O
buffer are not written to the file if the system crashes or the program aborts. You
cannot use DEFERRED-WRITE on write-shared files.

20.3.1.4 Using the FILL-SIZE ON Phrase of the APPLY Clause

APPLY FULL-SIZE ON { file-name } ...

Use the APPLY FILL-SIZE clause to populate (load) the file and force COBOL to
write records into the bucket area not reserved by the fill number. Routine record
insertion uses the fill space, thereby reducing bucket splitting and the resulting
overhead.

Do not use the APPLY FILL-SIZE clause for routine record insertion; it prohibits
the use of bucket fill space and creates unnecessary buckets.

20.3.1.5 Using the WINDOW Phrase of the APPLY Clause

APPLY WINDOW ON {file-name} ...

Window size is the number of file mapping pointers stored in memory. A large
window improves I/O because the system spends less time remapping the file.

When a disk is initialized, the default window size is set by specifying the
/WINDOW qualifier. You can override this qualifier with the APPLY WINDOW
clause. However, avoid specifying too large a window size. Window size is part of
the system's pool space, and a large window size could affect system performance.

20.3.2 Using Multiple Buffers

Multibuffering can increase the speed of I/O operations by reducing the number
of file accesses. When a program accesses a record already in the I/O buffer, the
system moves the record to the current record area without executing an I/O
operation.

Optimizing Your VAX COBOL Program 20-7

You can specify multiple buffering by using the RESERVE clause in the SELECT
statement of the Environment Division. The RESERVE clause specification
overrides the system default. (The system default is usually set by means of
the DCL command SET RMS_DEFAULT). This example reserves six areas for
FILE-A:

SELECT FILE-A ASSIGN TO "FILE-A"
RESERVE 6 AREAS.

You can specify up to 127 areas in the RESERVE clause. In general, specifying
from 2 to 10 areas is best.

20.3.3 Sharing Record Areas

The compiler allocates unique storage space in the Data Division for each file's
current record area. Transferring records between files requires an intermediate
buffer area and adds to a program's processing requirements.

To reduce address space and processing overhead, files can share current record
areas. Specify the SAME RECORD AREA clause in the I-0-CONTROL paragraph
of the Environment Division. Records need not be the same size, nor must the
maximum size of each current record area be the same.

Figure 20-2 shows the effect of current record area sharing in a program that
reads records from one file and writes them to another. However, it also shows
a drawback: current record area sharing is equivalent to implicit redefinition.
The records do not exist separately. Therefore, if the program changes a record
defined for the output file, the input file record is no longer available.

20-8 Optimizing Your VAX COBOL Program

Figure 20-2: Sharing Record Areas

Program Without Shared
Record Area

PROCEDURE DIVISION.

READ INP-FILE ...

MOVE INP-REC TO OUT-REC.
WRITE OUT-REC ...

Process Without Shared Areas

Program With Shared
Record Area

I-0-CONTROL.
SAME RECORD AREA FOR

INP-FILE OUT-FILE.

PROCEDURE DIVISION.

READ INP-FILE .•.

WRITE OUT-REC ...

Process With Shared Areas

INP-FILE buffer

READ READ
(move) (move)

I NP-REC

MOVE
I NP-REC

OUT-REC
OUT-REC

WRITE WRITE
(move) (move)

OUT -Fl LE buffer

ZK-1539-GE

Optimizing Your VAX COBOL Program 20-9

20.4 Optimizing File Design

This section provides information on how to optimize the following file types:

• Sequential

• Relative

• Indexed

20.4.1 Sequential Files

Sequential files have the simplest structure and the fewest options for definition,
population, and handling. You can reduce the number of disk accesses by
minimizing record length.

With a sequential disk file, you can use multiblocking to access a buffer area
larger than the default. Because the system transfers disk data in 512-byte
blocks, a blocking factor with a multiple of 512 bytes improves I/O access time.
In the following example, the multiblock count (four) causes reads and writes to
FILE-A to access a buffer area of four physical blocks:

FILE SECTION.
FD FILE-A .

BLOCK CONTAINS 2048 CHARACTERS

If you do not want to calculate the buffer size, but want to specify the number
of records in each buffer, use the BLOCK CONTAINS n RECORDS clause. The
following example specifies a buffer large enough to hold 15 records:

BLOCK CONTAINS 15 RECORDS

When using the BLOCK CONTAINS n RECORDS clause for sequential files on
disk, RMS calculates the buffer size by using the maximum record unit size and
rounding up to a multiple of 512 bytes. Consequently, the buffer could hold more
records than you specify.

In the following example, the BLOCK CONTAINS clause specifies five records.
RMS calculates the block size as eight records, or 512 bytes.

FILE SECTION.
FD FILE-A

BLOCK CONTAINS 5 RECORDS.
01 FILE-A-REC PIC X(64).

20.4.2 Relative Files

1/0 optimization of a relative file depends on four concepts:

• Maximum record number-The highest numbered record written to a relative
file.

• Cell size-The unit of disk space needed to store a record unit size (record
unit size = record + record overhead).

20-10 Optimizing Your VAX COBOL Program

• Bucket size-The number of blocks read or written in one 1/0 operation
(equivalent to buffer size). A bucket contains from 1 to 63 physical blocks.

• File size-The number of blocks used to preallocate the file.

20.4.2.1 Maximum Record Number (MRN)

If you create a relative file with a VAX COBOL program, the system sets the
maximum record number (MRN} to 0, allowing the file to expand to any size.

If you create a relative file with the CREATE/FDL Utility, select a realistic MRN,
since an attempt to insert a record with a number higher than the MRN will fail.

20.4.2.2 Cell Size

The system calculates cell size. (However, you can specify a different cell size
when you create the file by using the RECORD CONTAINS clause in the file
description.) You cannot write records larger than the specified cell size.

Avoid selecting a cell size larger than necessary since this wastes disk space. To
optimize the packing of cells into buckets, cell size should be evenly divisible into
bucket size.

The system calculates cell size using these formulas:

Fixed-length records:

Variable-length records:

cell size = 1 + record size

cell size = 3 + record size

For fixed-length records, the overhead byte is a record deletion indicator.
Variable-length records use two additional overhead bytes to indicate record
length. The following example calculates a cell size of 101 for fixed-length records:

FD A-FILE
RECORD CONTAINS 100 CHARACTERS

20.4.2.3 Bucket Size

A bucket's size is from 1 to 63 blocks. A large bucket improves sequential access
to a relative file. You can prevent wasted space between the last cell and the end
of a bucket by specifying a bucket size that is a multiple of cell size.

If you omit the BLOCK CONTAINS clause, the system calculates a bucket size
large enough to hold at least one cell or 512 bytes, whichever is larger (that
is, large enough to hold a record and its overhead bytes). Records cannot cross
bucket boundaries, although they can cross block boundaries.

Use the BLOCK CONTAINS n CHARACTERS clause of the file description to set
your own bucket size (in bytes per bucket). Consider the following example:

Optimizing Your VAX COBOL Program 20-11

FILE-CONTROL.
SELECT A-FILE

ORGANIZATION IS RELATIVE.

DATA DIVISION.
FILE SECTION.
FD A-FILE

RECORD CONTAINS 60 CHARACTERS
BLOCK CONTAINS 1536 CHARACTERS

In the preceding example, the bucket size is 3. Each bucket contains:

25 records (25 x 60) = 1500 bytes

1 overhead byte per record (1x25) = 25 bytes

11 bytes of wasted space = 11 bytes

TOTAL = 1536 bytes

If you use the BLOCK CONTAINS CHARACTERS clause and specify a value
that is not a multiple of 512, RMS rounds the value to the next higher multiple of
512.

In the following example, the BLOCK CONTAINS clause specifies one record per
bucket. Since the cell needs only 61 bytes, there are 451 wasted bytes in each
bucket.

FILE-CONTROL.
SELECT B-FILE

ORGANIZATION IS RELATIVE.

DATA DIVISION.
FILE SECTION.
FD A-FILE

RECORD CONTAINS 60 CHARACTERS
BLOCK CONTAINS 1 RECORD.

To improve I/O access time: (1) specify a small bucket size, and (2) use the
BLOCK CONTAINS n RECORDS clause to specify the number of records (cells)
in each bucket. This example creates buckets that contain eight records.

FD A-FILE
RECORD CONTAINS 60 CHARACTERS
BLOCK CONTAINS 8 RECORDS.

In the preceding example, the bucket size is one 512-byte block. Each bucket
contains:

8 records (8 x 60)

1 overhead byte per record (1 x 8)

24 bytes of wasted space

TOTAL

20-12 Optimizing Your VAX COBOL Program

= 480 bytes

8 bytes

= 24 bytes

= 512 bytes

20.4.2.4 File Size
Calculating a file's size helps you determine its space requirements. A file's
size is a function of its bucket size. Wh~n you create a relative file, use these
calculations to determine the number of blocks that you need:

f
·z . (. bl k) 511 +(number of buckets* bytes per bucket)
i e size in oc s =

512

b f b k
number of records in the file

num er o uc ets = ----------­
number of cells per bucket

Assume that you want to create a relative file able to hold 3,000 records. The
records are 255 bytes long (plus 1 byte per record for overhead), with 4 cells to a
bucket (BLOCK CONTAINS 4 RECORDS). To determine file size:

1. Calculate the number of buckets:

750
3000

=--
4

2. Calculate bucket size (see Section 20.4.2.3):

2 = 4 * (1+255)
512

3. Calculate bytes per bucket = (bucket size * number of bytes in a block):

4. Calculate file size:

1024 = 2 * 512

1500 = 511+{750*1024)
512

file size = 1500 physical blocks

To allocate the 1500 calculated blocks to populate the entire file, use the APPLY
CONTIGUOUS-BEST-TRY PREALLOCATION clause; otherwise, allocate fewer
blocks.

Before writing a record to a relative file, RMS must have formatted all buckets up
to and including the bucket to contain the record. Each time bucket reformatting
occurs, response time suffers. Therefore, writing the highest-numbered record
first forces formatting of the entire file only once. However, this technique can
waste disk space if the file is only partially loaded and not preallocated.

Optimizing Your VAX COBOL Program 20-13

20.4.3 Indexed Files

An indexed file contains data records and pointers to facilitate record access.

All data records and record pointers are stored in buckets. A bucket contains
an integral number of contiguous, 512-byte blocks. The number of blocks is the
bucket size.

Every indexed file must have a primary key, a field in the record description
that contains a unique value for each record. When RMS writes records to the
indexed file, it collates them according to increasing primary key value in a series
of chained buckets. Thus, you can access the records sequentially by specifying
ACCESS SEQUENTIAL.

As RMS writes records, it builds and maintains a tree-like structure of key-value
and location pointers. The highest level of the index is a single bucket, called
the root bucket. RMS scans one bucket at each level until it reaches the
bottom, or data level. In a primary key index, this level contains actual data
records. Buckets in each higher level, called index levels, contain index records.
Successive levels of an index file are numbered. The data level is level zero. The
number of levels above level zero is called the index depth. Figure 20-3 shows a
2-level primary index.

Figure 20-3: Two-Level Primary Index

LEVEL2

LEVEL 1

LEVELO

Q,ucKET
ZK-1540-GE

RMS also builds an index for each alternate key that you define for the file. Like
the primary index, alternate key indexes are contained in the file. However, they
do not contain data records at the data level; instead, they contain pointers, or
secondary index data records (SIDRs), to data records in the data level of the
primary index.

Each random access request begins by comparing a key value to the root bucket's
entries. It seeks the first root bucket entry whose key value equals or exceeds the
value of the access request key. (This search is always successful, because the
root bucket's highest key value is the highest possible value that the key field can
contain.) Having located that key value, RMS uses its bucket pointer to bring the
target bucket on the next lower level into memory. This process is repeated for
each level of the index.

RMS searches one bucket at each level of the index until it reaches a target
bucket at the data level. It then determines the data record's location, enabling
it to retrieve or delete a record or write a new record. There can be no duplicate

20-14 Optimizing Your VAX COBOL Program

primary key values. If a record insertion causes a duplicate primary key value,
the attempted write produces an exception condition.

A data level bucket may not be large enough to contain a new record. In this
case, RMS inserts a new bucket in the chain, moving enough records from the old
bucket to preserve the key value sequence. This is known as a bucket split.

20.4.3.1 Optimizing Indexed File 1/0

1/0 optimization of an indexed file depends on five concepts:

• Records-The size and format of the data records can affect the disk space
used by the file.

• Keys-The number of keys and existence of duplicate key values can affect
disk space and processing time.

• Buckets-Bucket size can affect disk space and processing time. Index depth
and file activity can affect bucket size.

• Index depth-The depth of the index can affect bucket size and processing
time.

• File size-The length of files affects space and access time.

Records

Variable-length records can save file space: you need write only the primary
record key data item (plus alternate keys, if any) for each record. In contrast,
fixed-length records require that all records be equal in length.

For example, assume that you are designing an employee master file. A
variable-length record file lets you write a long record for a senior employee
with a large amount of historical data, and a short record for a new employee
with less historical data.

In the following example of a variable-length record description, integer 10 of the
RECORD VARYING clause represents the length of the primary record key, while
integer 80 describes the length of the longest record in A-FILE.

FILE-CONTROL.
SELECT A-FILE ASSIGN TO "AMAST"

ORGANIZATION IS INDEXED.
DATA DIVISION.
FILE SECTION.
FD A-FILE

ACCESS MODE IS DYNAMIC
RECORD KEY IS A-KEY
RECORD VARYING FROM 10 TO 80 CHARACTERS.

01 A-REC.
03 A-KEY PIC X(lO).
03 A-REST-OF-REC PIC X(70).

Buckets must contain enough room for record insertion, or bucket splitting occurs.
In this case, a new bucket contains records moved from the original one. For each
record moved, a 7-byte pointer to the new record location remains in the original
bucket. Thus, bucket splits can accumulate overhead and possibly reduce usable
space so much that the original bucket can no longer receive records.

Optimizing Your VAX COBOL Program 20-15

Record deletions can also accumulate storage overhead. However, most of the
space is available for reuse. Because there can be no duplicate primary keys,
RMS can reclaim all but 2 bytes of the deleted record space. This 2-byte field is a
record deletion flag.

There are several ways to minimize overhead accumulation. First, determine
or estimate the frequency of certain operations. For example, if you expect to
add or delete 100 records of a 100,000-record file, your database is stable enough
to allow some wasted space for record additions and deletions. However, if you
expect frequent additions and deletions, try to:

• Choose a bucket size that allows for overhead accumulation, if possible. Avoid
bucket sizes that are an exact or near multiple of your record size.

• Optimize record insertion by using the RMS DEFINE Utility to define the file
with fill numbers; use the APPLY FILL-SIZE clause when loading the file.

Alternate Keys

Each alternate key requires the creation and maintenance of a separate index
structure. The more keys you define, the longer each WRITE, REWRITE, and
DELETE operation takes. (READ operations are not affected by multiple keys.)

If your application requires alternate keys, you can minimize 1/0 processing
time if you avoid duplicate alternate keys. Duplicate keys can create long record
pointer arrays, which fill bucket space and increase access time.

Bucket Size

Bucket size selection can influence indexed file performance.

To the system, bucket size is an integral number of physical blocks, each 512
bytes long. Thus, a bucket size of 1 specifies a 512-byte bucket, while a bucket
size of 2 specifies a 1024-byte bucket, and so on.

The VAX COBOL compiler passes bucket size values to RMS based on what you
specify in the BLOCK CONTAINS clause. In this case, you express bucket size in
terms of records or characters.

If you specify block size in records, the bucket can contain more records than you
specify, but never fewer. For example, assume that your file contains fixed-length,
100-byte records, and you want each bucket to contain five records, as follows:

BLOCK CONTAINS 5 RECORDS

This appears to define a bucket as a 512-byte block, containing five records of 100
bytes each. However, the compiler adds RMS record and bucket overhead to each
bucket, as follows:

Bucket
overhead

= 15 bytes per bucket

Record
overhead

= 7 bytes per record (fixed-length)
9 bytes per record (variable-length)

Thus, in this example, the bucket size calculation is:

Bucket overhead

Total record space is (100 + 7) * 5

TOTAL

20-16 Optimizing Your VAX COBOL Program

= 15 bytes

= 535 bytes

= 550 bytes

(Record size is 100 bytes, record
overhead is 7 bytes for each of 5
records)

Because blocks are 512 bytes long, and buckets are always an integral number of
blocks, the smallest bucket size possible (the system default) in this case is two
blocks. The system, however, puts in as many records as fit into each bucket.
Thus, the bucket actually contains nine records, not five.

The CHARACTERS option of the BLOCK CONTAINS clause lets you specify
bucket size more directly. For example:

BLOCK CONTAINS 2048 CHARACTERS

This specifies a bucket size of four 512-byte blocks. The number of characters in
a bucket is always a multiple of 512. If not, RMS rounds it to the next higher
multiple of 512.

Index Depth

The length of data records, key fields, and buckets in the file determines
the depth of the index. Index depth, in turn, determines the number of disk
accesses needed to retrieve a record. The smaller the index depth, the better the
performance. In general, an index depth of 3 or 4 gives satisfactory performance.
If your calculated index depth is greater than 4, you should consider redesigning
the file.

You can optimize your file's index depth after you have determined file, record,
and key size. Calculating index depth is an iterative process, with bucket size
as the variable. Keep in mind that the highest level (root level) can contain only
one bucket. An example of index depth calculation follows the information in File
Status calculation:

File Size

When you calculate file size:

• Every bucket in an indexed file contains 15 bytes of overhead.

• Every bucket in an indexed file contains records. Only record type and size
differ.

• Data records are only in level 0 buckets of the primary index.

• Index records are in level 1 and higher-numbered buckets. .

• If you use alternate keys, secondary index data records (SID Rs) are only in
level 0 buckets of alternate indexes.

Use these calculations to determine data and index record size:

• Data records:

Fixed - length record size = actual record size + 7

Variable - length record size = actual record size + 9

• Index records:
Record size = key size + 3

If a file has more than 65,536 blocks, the 3-byte index record overhead could
increase to 5 bytes.

Use these calculations to determine SIDR record length:

• No duplicates allowed:

Record size = key size + 9

Optimizing Your VAX COBOL Program 20-17

• Duplicates allowed:

Record size = key size + 8 + 5 * (number of duplicate records)

NOTE

Bucket packing efficiency determines how well bucket space is used.
A packing efficiency of 1 means the buckets of an index are full. A
packing efficiency of .5 means that, on the average, the buckets are half
full.

Consider an indexed file with these attributes:

• 100,000 fixed-length records of 200 characters each

• Primary key = 20 characters

• Alternate key = 8 characters, no duplicates allowed

• Bucket size= 3 (an arbitrary value)

• No fill number

Primary key index level calculations:

Level 0 (data level buckets):

bytes per bucket - 15
data records per bucket = d .

7 recor size+

1536 - 15 =
7

= 7 data records per bucket
200+

b f d b k
number of data records

num er o ata uc ets = d b k recor s per uc et

100 000 . = ~ = 14, 286 buckets to contain all data records.

Level 1 (index buckets):

. bytes per bucket - 15
index records per bucket = k .

3 ey size+

1536 - 15 .
= = 66 index records per bucket

20+3

b f
. d b k no. of buckets from level n - 1

num er o in ex uc ets = --.-"----.;;...._----­
index records per bucket

14 286
= -i6 = 216 level 1 buckets to address all data buckets at level 0

Continue calculating index depth until you reach the root level-that is, when the
number of buckets needed to address the buckets from the previous level
equals 1.

Level 2 (index buckets):

216
number of buckets = 66 = 4 level 2 buckets to address all level 1 buckets

Level 3 (index buckets):

4
number of buckets =

66
= 1 level 3 bucket to address all

level 2 buckets (Level 3 is the root bucket for the primary index.)

20-18 Optimizing Your VAX COBOL Program

20.4.3.2 Calculating Key Index Levels

If you allow duplicate keys in alternate indexes, the number and size of SIDRs
depend on the number of duplicate key values in the file. (For duplicate key
alternate index calculations, see the RMS reference documentation.) Since
alternate index records are usually inserted in random order, the bucket packing
efficiency ranges from about .5 to about .65. The following example uses .an
average efficiency of .55.

Level 0 (data level buckets-no duplicate alternate keys):

SIDR
, b k _ bytes per bucket - 15

s per uc et - Jc •
9 ey size+

1536-15 = = 89 SIDRs per bucket
8+9

b f b k
number of records

num er o uc ets = ------­
records per bucket

100 000 .
= ~9 = 1123 level 0 alternate index buckets

Level 1 (index buckets):

1536- 15 .
records per bucket = = 138 index records per bucket number of buckets

8+3

1123 =
138

= 9 level 1 buckets to address data buckets (SID Rs) at level 0

Level 2 (index buckets):

9
number of buckets =

138
= 1 level 2 bucket to address data buckets

at level 1 (level 2 is the root level)

20.4.3.3 Caching Index Roots

The system requires at least two buffers to process an indexed file: one for a data
bucket, the other for an index bucket. Each buffer is large enough to contain a
single bucket. If your program does not contain a RESERVE n AREAS clause, or
if you do not use the SET RMS_DEFAULT DCL command, the system sets the
default.

A RESERVE n AREAS clause creates additional buffers for processing an indexed
file. At run time, the system retains (caches) in memory the roots of one or more
indexes of the file. Random access to any record through that index requires one
less 1/0 operation.

You can also use the SET RMS_DEFAULT/BUFFER_COUNT=count to create
additional buffers.

The following rules apply for caching index roots:

• Allocate one buffer for each key that your program uses to access file records,
in addition to the two required buffers. For example, if the file contains a
primary key and two alternate keys, and you use all these keys to access
records, allocate a total of five buffers. If you use only one key, you need only
one additional buffer area, or a total of three.

Optimizing Your VAX COBOL Program 20-19

• Use the RESERVE n AREAS clause to obtain allocation, where n is two more
than the number of distinct keys used for access. For example, the RESERVE
5 AREAS clause allocates two required buffers, plus three buffer areas for
caching the roots of three distinct file access keys.

• Use the SET RMS_DEFAULT/BUFFER_COUNT=count DCL command if you
want to allocate buffers without specifying the RESERVE AREA clause in
your program, or for buffer allocation on a process or system-wide basis.

The SET RMS DCL commands also apply to sequential and relative files. The
SET RMS DCL commands and RESERVE AREA clause provide the same
functionality.

2~20 Optimizing Your VAX COBOL Program

Appendix A

Compiler Implementation Limitations

The following list summarizes the VAX COBOL compiler's limitations and
restrictions. The compiler issues diagnostic messages whenever you exceed its
limits.

1. Run-time storage (generated object code and data) for COBOL programs
cannot exceed 2,147,483,647 bytes.

2. The length of an FD's record cannot exceed 32, 767 bytes for a sequential file,
32,234 bytes for an indexed file, or 32,255 bytes for a relative file. For SD
records the length cannot exceed 32,759 bytes for a sequential file, 32,226
bytes for an indexed file, or 32,24 7 bytes for a relative file.

3. Bucket size for relative and indexed files cannot be greater than 63.

4. A sequential disk file's multiblock count cannot be greater than 127.

5. The physical block size for a sequential tape file must be from 20 to 65,532
bytes, inclusive.

6. Run-time storage for an indexed file's RECORD KEY or ALTERNATE
RECORD KEY data item must not be greater than 255 bytes.

7. The maximum number of EXTERNAL file connectors and/or record definitions
is 248. The compiler implements each EXTERNAL file connector and record
definition as a separate PSECT, with the EXTERNAL file name and record
name serving as the PSECT name. Each index name within an EXTERNAL
record is implemented as a separate PSECT.

8. The number of indexed file RECORD KEY and ALTERNATE RECORD KEY
data items must not exceed 255.

9. The number of literal phrases specified to define an alphabet in an
ALPHABET clause of the SPECIAL-NAMES paragraph must not be greater
than 256.

10. The value of a numeric literal in a literal phrase of an ALPHABET clause
must not be greater than 255.

11. The value of a switch number in the SWITCH clause of the SPECIAL-NAMES
paragraph must be from 1 to 16, inclusive.

12. The value of a numeric literal in the SYMBOLIC CHARACTERS clause must
be from 1 to 256, inclusive.

13. The value of an integer in the EXTENSION option of the APPLY clause must
be from 0 to 65,535, inclusive.

14. The value of an integer in the WINDOW option of the APPLY clause must be
from 0 to 127, inclusive, or equal to 255.

Compiler Implementation Limitations A-1

15. The value of the integer in the RESERVE AREAS clause must not be greater
than 127.

16. If a data item is allocated more than 65,535 bytes, a COBOL program cannot
reference it.

17. Alphanumeric or numeric edited picture character-strings cannot represent
more than 255 standard data format characters.

18. Alphanumeric or alphabetic picture character-strings cannot represent more
than 65,535 standard data format characters.

19. A nonnumeric literal cannot be greater than 256 characters.

20. A hexadecimal literal cannot be greater than 256 hexadecimal digits.

21. A PICTURE character-string cannot contain more than 256 characters.

22. The number of operands in a single DISPLAY statement cannot be greater
than254.

23. The number of operands in the USING phrase of a CALL statement cannot
be greater than 255.

24. The number of USING files in a SORT or MERGE statement cannot
exceed 10.

25. The maximum number of characters in a subschema pathname specification
is 256.

26. The maximum static nesting depth of contained programs is 256.

27. The maximum number of characters in a user-word in VAX COBOL is 31.
The maximum number of characters allowed in a user-word as defined by
the ANSI COBOL standard is 30. The compiler issues an informational
diagnostic if you use 31-character user-words. The maximum number of
characters in an external report file name is 30.

28. The maximum number of strings associated with the /AUDIT compile
qualifier is 64.

29. The maximum number of characters in a CDD/Plus pathname specification is
256.

30. The maximum number of levels in a database subschema record definition
supported by VAX COBOL is 49.

31. The maximum number of digits in a numeric database data item supported
by VAX COBOL is 18.

32. The maximum number of standard data format characters in a character-type
database data item is 65,535.

33. If a file is assigned to a magtape media and you use the BLOCK CONTAINS
clause in the associated file description, the number of characters in a
physical block determined from the BLOCK CONTAINS clause must be an
even multiple of 4.

34. If a file is assigned to a disk medium and you use the BLOCK CONTAINS
clause in the associated file description, the BLOCK CONTAINS value must
be an even multiple of 512.

35. The maximum number of lines in any report file is 999,998,000,001.

36. The maximum subscript value for any subscript or index name is
2,147,483,647.

A-2 Compiler Implementation Limitations

37. In the OCCURS n TIMES clause of a Data Description entry, the maximum
allowable value for n is 2,147,483,647.

38. The maximum static scoping depth of file-specific USE procedures is 82.

39. The maximum static scoping depth of database USE procedures is 84.

40. The maximum number of operands in a given COBOL DML statement is 255.

41. In a PERFORM n TIMES statement, the maximum allowable value for n is
2,147,483,647.

42. The maximum static nesting depth of nested IF statements is 64.

43. The maximum number of levels for subscripts is 48.

44. The maximum number of files in a MULTIPLE FILE TAPE clause is 255.

Compiler Implementation Limitations A-3

Appendix B

Error Messages

This appendix discusses run-time errors, program run errors, and run-time I/O
errors. Also included in this appendix is a partial list of compiler messages
returned by the VAX COBOL compiler.

B.1 Run-Time Errors

Faulty program logic can cause abnormal termination. If errors occur at run
time, the Run-Time Library (RTL) displays a message with the same general
format as system error messages. In addition, the system TRACEBACK facility
displays a list of routines active when the error occurred.

The following DCL command displays a list of COBOL run-time errors:

$ HELP COBOL ERRORS

You can then access help for any of the run-time errors displayed.

B.1.1 Sample Run-Time Error

Notice that line 45 in program TRBLE in Figure 2-2 calls subprogram CALL!.
CALLl in turn calls CALL2. (CALLl and CALL2 are listed in Figure B-1 and
Figure B-2, respectively.) Program CALL2 has a logic error at line 25 where it
attempts to add the alphanumeric contents of data-item ALPHA to the numeric
data-item NUMA. Running program TRBLE produces these results:

$ RUN TRBLE
CALL 1 HAS BEEN CALLED
CALL 2 HAS BEEN CALLED
%COB-F-INVDECDAT, invalid decimal data
%TRACE-F-TRACEBACK, symbolic stack dump follows

module name

CALL2
CALLl
TRBLE

routine name

CALL2
CALLl
TRBLE

line

24
19
43

relative PC

00000035
0000003C
00000185

absolute PC

0000145D
00001418
00001185

When an error occurs, TRACEBACK produces a symbolic dump of the active
call frames. A call frame represents one execution of a routine. For each call
frame, TRACEBACK displays the following information: (1) the module name,
(program-id), (2) the routine name (program-id), (3) the source listing line
number where the error or CALL occurred, and (4) program-counter (PC)
information.

Error Messages B-1

Figure B-1 : Listing of Program CALL 1

CALLl
Source Listing

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. CALLl.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. VAX.
6 OBJECT-COMPUTER. VAX.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT CALLl-FILE ASSIGN TO "CALLlFIL".

10 DATA DIVISION.
11 FILE SECTION.
12 FD CALLl-FILE
13 BLOCK CONTAINS 500 CHARACTERS.
14 01 CALLl-REC PIC X(500).
15 WORKING-STORAGE SECTION.
16 PROCEDURE DIVISION.
17 000-BEGIN.
18 DISPLAY "CALLl HAS BEEN CALLED".
19 CALL "CALL2".
20 010-DONE.
21 EXIT PROGRAM.

CALLl
Machine Code Listing

.PSECT $PDATA

29-Dec-1989 10:12:48
29-Dec-1989 09:27:13

29-Dec-1989 10: 12: 48
29-Dec-1989 09:27: 13

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLES]CALL1.COB;3 (1)

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLES]CALL1.COB;3 (1)

00000000
00000010
00000018
OOOOOOlC
00000020
00000024
00000028
0000002C
00000034
00000038
0000003C
00000040
00000044

.BYTE "X43, "X41, "X4C, "X4C, "X31, "X20, "X48, "X41, "X53, "X20, "X42, "X45, "X45, "X4E, "X20, "X43 "CALLl HAS BEEN C"
"ALLED"

1$:

.BYTE "X41, "X4C, "X4C, "X45, "X44

.LONG "X010E0015

.ADDRESS $PDATA

.LONG "X00000002

.LONG "XOOOOOOOl

.ADDRESS $PDATA+"X18

.BYTE "X43, "X41, "X4C, "X4C, "X32

.LONG "X010E0005

.ADDRESS $PDATA+"X2C

.LONG "X00000002

.LONG "X00000008

.ADDRESS $PDATA+"X34

.PSECT $LOCAL

.LONG "XOOOOOOOO

.PSECT $CODE

.ENTRY CALLl, "XOOOO
BRB 1$
• WORD "XOOOO
BISL2 #"XOl, $LOCAL

CLRQ -(SP)
MOVAB G"COB$HANDLER, (FP)

00000000

00000000
00000002
00000004
00000006
OOOOOOOD
OOOOOOOD
OOOOOOOF
00000016 000-BEGIN:

00000016

00000021
00000028
0000002A
00000035
00000035
0000003C

CALLG $PDATA+"X20, G"COB$DISPLAY

2$:

MOVAB
BNEQ
CALLG

CALLS
010-DONE:

0000003C
0000003F
00000046
0000004 7 3$:
00000047
0000004A

MOVL
BLBS
RET

MOVL
RET

G"CALL2, RO
2$
$PDATA+"X3C, G"COB$ERROR

#"XOO, G"CALL2

#"XOl, RO
$LOCAL, 3$

#"XOl, RO

00018

00019

00021

"CALL2"

CALLl
Compilation Summary

29-Dec-1989 10: 12: 48
29-Dec-1989 09:27:13

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLESJCALL1.COB;3 (1)

PROGRAM SECTIONS

l>lame Bytes Attributes

75 PIC CON REL LCL SHR EXE 0 $CODE
1 $LOCAL
2 $PDATA

4 PIC CON REL LCL NOSHR NOEXE
72 PIC

3 COB$NAMES 2 24 PIC
4 COB$NAMES 4 6 PIC

COMMAND QUALIFIERS

COBOL /LIST/MACHINE_CODE CALLl

/NOCOPY LIST /MACHINE CODE /NOCROSS REFERENCE
/NOANSCFORMAT /NOSEQU'ENCE CHECK /NOMAP
/NOTRUN~TE /NOAUDIT /NOCONDITIONALS

CON REL
CON REL
CON REL

/CHECK= (NOPERFORM, NOBOUNDS) /DEBUG= (NOSYMBOLS, TRACEBACK)
/WARNINGS= (NOSTANDARD, OTHER, NOINFORMATION) /NODEPENDENCY DATA

LCL
LCL
LCL

/STANDARD= (NOSYNTAX, NOPDPll, NOV3, 85) /NOFIPS -
/LIST /OBJECT /NODIAGNOSTICS /NOFLAGGER /NOANALYSIS DATA
/INSTRUCTION_ SET=DECIMAL _STRING /DESIGN= (NOPLACEHOLDERS / NOCOMMENTS)

STATISTICS

Run Time:
Elapsed Time:
Page Faults:
Dynamic Memory:

0 • 38 seconds
1 • 66 seconds
230
408 pages

B-2 Error Messages

SHR NOEXE
SHR NOEXE
SHR NOEXE

RD NOWRT Align (2)
RD WRT Align (2)
RD NOWRT Align (2)
RD NOWRT Align (2)
RD NOWRT Align (2)

ZK-6447-GE

From the TRACEBACK information you can determine that the last line to
execute successfully was line 24 of the program module CALL2 (labeled 0 in
Figure B-2).

The TRACEBACK information also gives you the relative and absolute PC of
the instruction (labeled 8 in Figure B-2). Relative PC is the location in memory
containing the instruction that failed to execute. If you specify the /LIST and
/MACHINE_CODE qualifiers when you compile the program, the listing shows
relative PC 00000035 is in the .PSECT $CODE area of the machine code listing.
Absolute PC is the absolute memory. address of the instruction that failed.

You can also use the VMS Debugger to examine the machine code instruction.
To do this, compile and link the program using the /DEBUG qualifier. When you
run the program, you automatically enter the debugger. Once in the debugger,
you could use the EXAMINE/INSTRUCTION command to examine the contents
of the failed instruction. You could also use the debugger in screen mode, which
would indicate where the error occurred. For more information on the debugger,
refer to Chapter 3 and the VMS Debugger documentation.

EXAMINE/INSTRUCTION AX00001322

Error Messages B-3

Figure B-2: Listing of Program CALL2

CALL2
Source Listing

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. CALL2.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. V1'Jl...
6 OBJECT-COMPUTER. VAX.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT CALL2-FILE ASSIGN TO "CALL2FIL".

10 DATA DIVISION.
11 FILE SECTION.
12 FD CALL2-FILE
13 BLOCK CONTAINS 600 CHARACTERS.
14 01 CALL2-REC.
15 03 PIC X(300).
16 03 PIC X(300).
17 WORKING-STORAGE SECTION.
18 01 ALPHA PIC 999.
19 01 REDEF-ALPHA REDEFINES ALPHA PIC XXX.
20 01 NUMA PIC 999 VALUE ZEROES.
21 PROCEDURE DIVISION.
22 000-BEGIN.
23 DISPLAY "CALL2 HAS BEEN CALLED".
24 MOVE "ABC" TO REDEF-ALPHA.
25 ADD ALPHA TO NUMA.
26 010-END.
27 EXIT PROGRAM.

CALL2
Machine Code Listing • .PSECT $PDATA

29-Dec-1989 10:14:01
29-Dec-1989 09:27:15

29-Dec-1989 10 :14: 01
29-Dec-1989 09:27:15

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLES]CALL2.COB;2 (1)

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLES]CALL2.COB;2 (1)

00000000 .BYTE "X43, "X41, "X4C, "X4C, "X32, "X20, "X48, "X41, "X53, "X20, "X42, "X45, "X45, "X4E, "X20, "X43 "CALL2 HAS BEEN C"
"ALLED" 00000010

00000018
OOOOOOlC
00000020
00000024
00000028

1$:

.BYTE "X41, "X4C, "X4C, "X45, "X44

.LONG "X010E0015

.ADDRESS $PDATA

.LONG "X00000002

.LONG "XOOOOOOOl

.ADDRESS $PDATA+"X18

.PSECT $LOCAL

.LONG "XOOOOOOOO

.PSECT $CODE

.ENTRY CALL2, "X080C
BRB 1$
• WORD "XOOOO
BISL2 #"XOl, $LOCAL+"X08

CLRQ
MOVAB
SUBL2
MOVAB

-(SP)
G"COB$HANDLER, (FP)
#"X08, SP
$LOCAL+"X80, Rll

00000008

00000000
00000002
00000004
00000006
OOOOOOOD
OOOOOOOD
OOOOOOOF
00000016
00000019
00000020 000-BEGIN:

00000020

0000002B

CALLG $PDATA+"X20, G"COB$DISPLAY

INSV

00000035 • CVTTP
00000040 CVTTP
0000004C ADDP4
00000051 CVTPT
0000005C 010-END:

0000005C
0000005F
00000063
00000064 2$:
00000064
00000067

MOVL
BLBS
RET

MOVL
RET

#"X00434241, #"XOO, #"X18, REDEF-ALPHA(Rll)

#"X03, ALPHA(Rll), G"LIB$AB CVTTP U, #"X03, (SP) rm: ~1(Ri~~o3?"~~~~AB_CV'rTP_U, #"X03, 4 (SP)

#"X03, (R3), G"LIB$AB_CVTPT_U, #"X03, NUMA(Rll)

#"XOl, RO
$LOCAL+"X08 (Rll), 2$

#"XOl, RO

00023

00024

00025

00027

CALL2
Compilation Summary

29-Dec-1989 10:14:01
29-Dec-1989 09:27:15

VAX COBOL V4. 3 Page
DEVICE: [COBOL.EXAMPLES]CALL2.COB;2 (1)

PROGRAM SECTIONS

Name Bytes Attributes

0 $CODE
1 $LOCAL
2 $PDATA
3 COB$NAMES 2
4 COB$NAMES 4

COMMAND QUALIFIERS

COBOL /LIST/MACHINE_CODE CALL2

104 PIC
12 PIC
44 PIC
24 PIC

6 PIC

/NOCOPY LIST /MACHINE CODE /NOCROSS REFERENCE
/NOANSCFORMAT /NOSEQOENCE CHECK /NOMAP
/NOTRUNCATE /NOAUDIT /NOCONDITIONALS

CON
CON
CON
CON
CON

/CHECK= (NOPERFORM, NOBOUNDS) /DEBUG= (NOSYMBOLS, TRACEBACK)

REL
REL
REL
REL
REL

/WARNINGS= (NOSTANDARD, OTHER, NO INFORMATION) /NODEPENDENCY DATA
/STANDARD= (NOSYNTAX, NOPDPll, NOV3, 85) /NOFIPS -
/LIST /OBJECT /NODIAGNOSTICS /NOFLAGGER /NOANALYSIS DATA

LCL SHR EXE
LCL NOSHR NOEXE
LCL SHR NOEXE
LCL SHR NOEXE
LCL SHR NOEXE

I INSTRUCTION_ SET=DECIMAL _STRING /DESIGN= (NOPLACEHOLDERS, NOCOMMENTS)

STATISTICS

Run Time:
Elapsed Time:
Page Faults:
Dynamic Memory:

O • 50 seconds
1. 67 seconds
365
408 pages

B-4 Error Messages

RD NOWRT Align (2)
RD WRT Align (2)
RD NOWRT Align (2)
RD NOWRT Align (2)
RD NOWRT Align (2)

ZK-6449-GE

B.2 Program Run Errors

Incorrect or undesirable program results are usually caused by data errors or
program logic errors. You can resolve most of these errors by desk-checking your
program and by using the VMS Debugger.

B.2.1 Faulty Data

Faulty or incorrectly defined data often produce incorrect results. Data errors can
sometimes be attributed to:

• Incorrect picture size. If the picture size of a receiving data item is too small,
data may be truncated.

77 COUNTER PIC 9.

PROCEDURE DIVISION.

LOOP.
ADD 1 TO COUNTER
IF COUNTER< 10 GO TO LOOP.

• Incorrect file definition. The block size specified when accessing a file should
be the same block size used when creating the file.

• Incorrect record field position. The record field positions that you specify in
your program may not agree with a file's record field positions. For example,
a file could have this record description:

01 PAY-RECORD.
03 P-NUMBER PIC X(S).
03 P-WEEKLY-AMT PIC S9(5)V99 COMP-3.
03 P-MONTHLY-AMT PIC S9(5)V99 COMP-3.
03 P-YEARLY-AMT PIC S9(5)V99 COMP-3.

Incorrectly positioning these fields can produce faulty data.

In the following example, a program references the file incorrectly. The field
described as P-YEARLY-AMT actually contains P-MONTHLY-AMT data, and vice
versa.

01 PAY-RECORD.
03 P-NUMBER
03 P-WEEKLY-AMT
03 P-YEARLY-AMT
03 P-MONTHLY-AMT

PROCEDURE DIVISION.
ADD-TOTALS.

PIC X(S).
PIC S9(5)V99
PIC S9(5)V99
PIC S9(5)V99

COMP-3.
COMP-3.
COMP-3.

ADD P-MONTHLY-AMT TO TOTAL-MONTHLY-AMT.

Error Messages 8-5

You can minimize file definition and record field position errors by writing your
file and record descriptions in a library file and then using the COPY or COPY
FROM DICTIONARY statement in your programs.

Your choice of test data can minimize faulty data problems. Rather than using
actual or ideal data, use test files that include data extremes.

Determining when a program produces incorrect results can often help your
debugging effort. You can do this by maintaining audit counts (such as total
master in = nnn, total transactions in = nnn, total deletions = nnn, total master
out = nnn) and displaying the audit counts when the program ends. Conditional
compilation lines (explained in this manual) used in your source program can also
help your debugging effort.

B.2.2 Program Logic Errors

When checking your program for logic errors, first examine your program for
some of the more obvious bugs, such as the following:

• Hidden periods. Periods inadvertently placed in a statement usually produce
unexpected results. For example:

050-DO-WEEKLY-TOTALS.
IF W-CODE = "W"

PERFORM 100-WEEKLY-SUMMARY
ADD WEEKLY-AMT TO WEEKLY-TOTALS.
GO TO 000-READ-A-MASTER.

WRITE NEW-MASTER-REC.

The period at the end of ADD WEEKLY-AMT TO WEEKLY-TOTALS
terminates the scope of the IF statement. The GO TO is not within the
IF scope and will always be executed. This changes the logic of the statement
by transforming GO TO 000-READ-A-MASTER from a conditional to an
unconditional GO TO. In addition, the statement following the GO TO will
never be executed.

• Tests for equality, rather than inequality. Executing a procedure until a test
condition is met can cause errors:

PERFORM ABC-ROUTINE UNTIL A-COUNTER = 10.

If, during execution, the program increments A-COUNTER by a value other
than 1 (2 or 1.5, for example), A-COUNTER might never equal 10, causing a
loop in ABC-ROUTINE. You can prevent this type of error by changing the
statement to:

PERFORM ABC-ROUTINE UNTIL A-COUNTER > 9

• Two negative test conditions combined with an OR. The object of the following
statement is to execute GO TO 200-PRINT-REPORT when TEST-FIELD
contains other than an A or B. However, the GO TO always executes because
no matter what TEST-FIELD contains, one of the conditions is always true.

B-6 Error Messages

IF TEST-FIELD NOT = "A" OR NOT = "B"
GO TO 200-PRINT-REPORT.

You can correct this logic error by changing the statement to:

IF TEST-FIELD NOT = "A" AND NOT = "B"
GO TO 200-PRINT-REPORT.

B.3 Run-Time Input/Output Errors

An I/O error is a condition that causes an I/O statement to fail. I/O errors are
detected by the VAX Record Management Services (RMS) or the VAX Run-Time
Library (RTL). You can use the RMS special registers, RMS-STS, RMS-STY, and
RMS-FILENAME as well as RMS-CURRENT-STS, RMS-CURRENT-STY, and
RMS-CURRENT-FILENAME, to detect errors. Example B-1 and Example B-2
show how you can use RMS special registers to detect errors.

Example B-1: Using RMS Special Registers to Detect Errors

IDENTIFICATION DIVISION.
PROGRAM-ID. RMS-SPEC-REGISTERS.

*
* This program demonstrates the use of RMS special registers to
* implement a different recovery for RMS file errors

*
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OPTIONAL EMP-FILE

ASSIGN TO "SYS$DISK:FOO.DAT".
SELECT REPORT-FILE

ASSIGN TO "SYS$0UTPUT".
DATA DIVISION.
FILE SECTION.
FD EMP-FILE

VALUE OF ID IS VAL-OF-ID.
01 EMP-RECORD.

02 EMP-ID
02 EMP-NAME
02 EMP-ADDRESS

PIC 9(7).
PIC X(l5).
PIC X(30).

(continued on next page)

Error Messages 8-7

Example B-1 (Cont.): Using RMS Special Registers to Detect Errors

FD REPORT-FILE
WORKING-STORAGE SECTION.
01 VAL-OF-ID
01 END-OF-FILE
01 BADNAME
01 FILE-NOT-FOUND
01 DIR-NOT-FOUND
01 INV-DEVICE
01 INV-FILE-ID
01 RMS-ERR
01 D-DATE
01 EOF-SW

88 E-0-F
88 NOT-E-0-F

01 VAL-OP-SW
88
88

01 OP
88
88
88

REPORT SECTION.

REPORT IS RPT.

PIC X(20).
PIC S9 (9) COMP VALUE EXTERNAL
PIC S9 (9) COMP VALUE EXTERNAL
PIC S9 (9) COMP VALUE EXTERNAL
PIC S9 (9) COMP VALUE EXTERNAL
PIC S9 (9) COMP VALUE EXTERNAL
PIC S9 (9) COMP VALUE EXTERNAL
PIC S9 (9) COMP VALUE EXTERNAL
PIC 9 (6).
PIC x.

VALUE "E".
VALUE "N".

PIC X.
VALID-OP VALUE "V".
OP-FAILED VALUE "F".
PIC X.
OP-OPEN VALUE "0".
OP-CLOSE VALUE "C".
OP-READ VALUE "R".

RD
01

RPT PAGE 26 LINES HEADING 1 FIRST DETAIL 5.
TYPE IS PAGE HEADING.

02 LINE IS PLUS 1.

RMS$ EOF.
SS$ BADFILENAME.
RMS$ FNF.
RMS$-DNF.
RMS$-DEV.
RMS$-IFI.
SHR$=RMSERROR.

03 COLUMN 1 PIC X(l6) VALUE "Employee File on".
03 COLUMN 18 PIC Z9/99/99 SOURCE D-DATE.

02 LINE IS PLUS 2 .
03 COLUMN 2
03 COLUMN 22
03 COLUMN 42
03 COLUMN 70

01 REPORT-LINE
02 LINE IS PLUS 1.

03 COLUMN IS
03 COLUMN IS
03 COLUMN IS

PROCEDURE DIVISION.
DECLARATIVES.
USE-SECT SECTION.

PIC X(S) VALUE "emp "
PIC X(4) VALUE "name".
PIC X(7) VALUE "address".
PIC ZZ9 SOURCE PAGE-COUNTER.
TYPE IS DETAIL.

1 PIC 9(7) SOURCE EMP-ID.
20 PIC X(15) SOURCE IS EMP-NAME.
42 PIC X(30) SOURCE IS EMP-ADDRESS.

USE AFTER STANDARD ERROR PROCEDURE ON EMP-FILE.

B-8 Error Messages

(continued on next page)

Example B-1 (Cont.): Using RMS Special Registers to Detect Errors

CHECK-RMS-SPECIAL-REGISTERS.
SET OP-FAILED TO TRUE.
EVALUATE RMS-STS OF EMP-FILE TRUE

WHEN (END-OF-FILE) OP-READ
SET VALID-OP TO TRUE
SET E-0-F TO TRUE

WHEN (BADNAME) OP-OPEN
WHEN (FILE-NOT-FOUND) OP-OPEN
WHEN (DIR-NOT-FOUND) OP-OPEN
WHEN (INV-DEVICE) OP-OPEN

DISPLAY "File cannot be found or file spec is invalid"
DISPLAY RMS-FILENAME OF EMP-FILE
DISPLAY "Enter corrected file (cntrl-z to STOP RUN) : "

WITH NO ADVANCING
ACCEPT VAL-OF-ID AT END STOP RUN END-ACCEPT

WHEN ANY OP-CLOSE
CONTINUE

WHEN ANY RMS-STS OF EMP-FILE IS SUCCESS
SET VALID-OP TO TRUE

WHEN OTHER

END-EVALUATE.
END DECLARATIVES.
MAIN-PROG SECTION.
000-DRIVER.

IF RMS-STV OF EMP-FILE NOT ZERO
THEN

CALL "LIB$STOP" USING

ELSE

BY VALUE RMS-STS OF EMP-FILE,
BY VALUE RMS-STV OF EMP-FILE

CALL "LIB$STOP" USING
BY VALUE RMS-STS OF EMP-FILE

END-IF

PERFORM 100-INITIALIZE.
PERFORM WITH TEST AFTER UNTIL E-0-F

GENERATE REPORT-LINE
READ EMP-FILE

END-PERFORM
PERFORM 200-CLEANUP.
STOP RUN.

100-INITIALIZE.
ACCEPT D-DATE FROM DATE.
DISPLAY "Enter file spec of employee file: " WITH NO ADVANCING.
ACCEPT VAL-OF-ID.
PERFORM WITH TEST AFTER UNTIL VALID-OP

SET VALID-OP TO TRUE
SET OP-OPEN TO TRUE
OPEN INPUT EMP-FILE
IF OP-FAILED
THEN

SET OP-CLOSE TO TRUE
CLOSE EMP-FILE

END-IF
END-PERFORM.
OPEN OUTPUT REPORT-FILE.
INITIATE RPT.
SET NOT-E-0-F TO TRUE.
SET OP-READ TO TRUE.
READ EMP-FILE.

(continued on next page)

Error Messages B-9

Example B-1 (Cont.): Using RMS Special Registers to Detect Errors

200-CLEANUP.
TERMINATE RPT.
SET OP-CLOSE TO TRUE.
CLOSE EMP-FILE REPORT-FILE.

END PROGRAM RMS-SPEC-REGISTERS.

Example B-2: Using RMS-CURRENT Special Registers to Detect Errors

IDENTIFICATION DIVISION.
PROGRAM ID. RMS-CURRENT-SPEC-REGISTERS.

*
* This program demonstrates the use of RMS-CURRENT special registers
* to implement a single recovery for RMS file errors with multiple files

*
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-1

ASSIGN TO "SYS$DISK:FOO_l.DAT".
SELECT FILE-2

ASSIGN TO "SYS$DISK:F00_2.DAT".
SELECT FILE-3

ASSIGN TO "SYS$DISK:F00_3.DAT".
DATA DIVISION.
FILE SECTION.
FD FILE-1.
01 FILE-1-REC.

02 Fl-REC-FIELD
FD FILE-2.
01 FILE-2-REC.

02 F2-REC-FIELD
FD FILE-3.
01 FILE-3-REC.

02 F3-REC-FIELD
PROCEDURE DIVISION.
DECLARATIVES.
USE-SECT SECTION.

PIC 9(9).

PIC 9 (9).

PIC 9 (9).

USE AFTER STANDARD EXCEPTION PROCEDURE ON INPUT.
CHECK-RMS-CURRENT-REGISTERS.

DISPLAY "**************ERROR**************"·
DISPLAY "Error on file: " RMS-CURRENT-FILENAME.
DISPLAY "Status Values:".
DISPLAY II RMS-STS = II RMS-CURRENT-STS WITH CONVERSION.
DISPLAY II RMS-STV = II RMS-CURRENT-STV WITH CONVERSION.
DISPLAY "***********************************"

END DECLARATIVES.
MAIN-PROG SECTION.
MAIN-PARA.

B-10 Error Messages

OPEN INPUT FILE-1.
OPEN INPUT FILE-2.
OPEN INPUT FILE-3.

CLOSE FILE-1.
CLOSE FILE-'2.

(continued on next page)

Example B-2 (Cont.): Using RMS-CURRENT Special Registers to Detect
Errors

CLOSE FILE-3.
STOP RUN.

END-PROGRAM RMS-CURRENT-SPEC-REGISTERS.

You can check a file's 1/0 status by using File Status data items. Each time
an 110 operation occurs, the system generates a 2-character file status key
value. Checking a file's status during a USE procedure or in an INVALID KEY
imperative condition can help you determine the nature of an 1/0 error. For
example:

FD INDEXED-MASTER
ACCESS MODE IS DYNAMIC
FILE STATUS IS MASTER-STATUS
RECORD KEY IN IND-KEY.

WORKING-STORAGE SECTION.
01 MASTER-STATUS PIC XX VALUE SPACES.

PROCEDURE DIVISION.

050-READ-MASTER.
READ INDEXED-MASTER

INVALID KEY PERFORM 100-CHECK-STATUS
GO TO 200-INVALID-READ.

100-CHECK-STATUS.
IF MASTER-STATUS = "23"

DISPLAY "RECORD NOT IN FILE".
IF MASTER-STATUS = "90"

DISPLAY "RECORD LOCKED BY ANOTHER USER".

The VAX COBOL Reference Manual contains a list of File Status key values.

If your program contains a USE procedure for a file and an 1/0 operation
for that file fails, the RTL performs the procedure, but the system does not
display an RMS error message. A USE procedure can sometimes avoid program
termination. For example, a File Status of 91 indicates that the file is locked by
another program; rather than terminate your program, you could perform other
procedures and then try re-opening the file.

If program continuation is not desirable, the USE procedure can perform
housekeeping functions, such as saving data or displaying program-generated
error messages.

Error Messages 8-11

If you specify an INVALID KEY phrase for a file and the 1/0 operation causes an
INVALID KEY condition, the RTL performs the associated imperative statement.
The RTL performs no other file processing for the current statement. The USE
procedure (if any) is not performed. The INVALID KEY phrase processes 1/0
errors due to invalid key conditions only.

If you do not specify an INVALID KEY phrase but declare a USE procedure for
the file, RTL performs the USE procedure and returns control to the program.

B.4 Compiler Messages

When the VAX COBOL compiler detects an error, a diagnostic message is
generated by the compiler and is displayed online.

Some compile-time error messages need more explanation than can be provided
online. This appendix contains those diagnostic messages that require additional
detail.

If the compiler detects an error, it displays the erroneous source line, an error
pointer, possibly an asterisk, and an error message. An asterisk immediately
preceding the error message means further diagnostic information about a
compile-time error is found in this appendix.

Compiler command line qualifiers can suppress informational and warning
messages (see the /WARNINGS qualifier in Chapter 2 for diagnostic options.)
Error messages are written to SYS$ERROR and, if a listing is specified,
embedded in the listing file.

An error message has the following format:

%COBOL-a-ERROR bbb,(c) *ddd

Table B-1 explains the information contained in an error message.

Table B-1 : Information Contained in an Error Message

Symbol Meaning

%COBOL identifies a VAX COBOL compiler-generated error.

a identifies the severity code. The compiler classifies errors by these severity
codes (from least to greatest severity):

B-12 Error Messages

I Information-To get these messages, use the /WARNINGS,
/WARNINGS=INFORMATION, or /STANDARD=PDPll command
qualifier. These messages convey observational or advisory information.
However, they may indicate program errors that you might want to
correct.
Information-To get these messages, use the /WARNINGS,
/WARNINGS=STANDARD, or /STANDARD=SYNTAX command qualifier.
These messages are informational and indicate that you have used
a Digital-defined COBOL language feature. This feature may not be
transportable to other COBOL implementations.

(continued on next page)

Table B-1 (Cont.): Information Contained in an Error Message

Symbol Meaning

bbb

c

*

ddd

W Warning-Warnings indicate an error condition for which the compiler
can take corrective action. Check this action to make sure it is what you
wanted. Otherwise, the program might produce unexpected results.

E Error-Error messages indicate error conditions that are not fatal, but
are usually not executable by the compiler. The compiler still creates an
object file, but the program might not properly execute. Therefore, you
should correct the error and recompile the program.

F Error-A fatal error indicates that the compiler cannot take any
corrective action or create an object file. Therefore, you must correct
the error and recompile the program.

indicates the diagnostic error message number listed in this appendix.

(Error Pointer Reference) references the error message to the closest
approximation to where the error occurred.

indicates diagnostic information is found in the compile-time diagnostic
appendix.

indicates the diagnostic error message. A brief description of the error
identified by the error pointer.

The selected VAX COBOL compiler error numbers, severity codes, and messages
are as follows:

Number Code Message

033 E

054 E

061 E

091 E

209 F

291 F

388 F

*Integer value is outside valid range-results are undefined.
The value is either: (1) greater than that allowed by RMS, (2) not less
than 2**31, or (3) equal to zero. The compiler truncates the value, and
the results are undefined.

*VALUE and condition-names invalid with subordinate JUSTIFIED,
SYNCHRONIZED, or non-DISPLAY usage.

The compiler accepts the VALUE clause.

*Missing level 01 or 77 entry before this item.

If the current item is a condition-name, the compiler ignores the
definition; otherwise, the compiler treats the current item as an 01
level item.

*Incorrect data-name in REDEFINES clause.

The compiler assumes the correct data-name, if possible. Otherwise,
the clause is ignored.

*Invalid ADVANCING operand.

The operand must be either: (1) PAGE, (2) a mnemonic-name, (3) an
unsigned integer data item, or (4) an unsigned integer literal.

*READ statement required for OPEN 1-0 on file.
The program opens the file in 1-0 mode, but does not contain a READ
statement. A DELETE or REWRITE operation on a sequentially
accessed file requires a previously executed READ or START statement.

*Node <CDD-node-name> is an invalid CDD object.

The dictionary object is corrupt. A required VAX CDD entry was not
found. You must reinsert the definition into the dictionary.

Error Messages B-13

Number Code Message

391 E

392 F

397 F

401 E

402 F

404 E

411 E

B-14 Error Messages

*CDD OCCURS data-item initialization invalid in COBOL-value
ignored.
This VAX CDD entry is incompatible with VAX COBOL. An item in
COBOL with an OCCURS clause cannot have a VALUE clause. The
compiler ignores the initial value attribute in this dictionary entry.

*CDD error at node <CDD-node-name>.

The dictionary object is corrupt. A required VAX CDD entry was not
found. You must reinsert the record definition into the dictionary.

*CDD record containing symbolic literals invalid in COBOL.

This VAX CDD entry is incompatible with VAX COBOL. The COBOL
language does not define symbolic literals. You must do one of the
following:

• Redefine the record definition in the dictionary, omitting the
symbolic literal

• Do not use this record definition with VAX COBOL
The compiler ignores the symbolic literal. You must redefine and
reinsert the record definition into the dictionary.

*Invalid multidimensional CDD OCCURS.

This VAX CDD entry is incompatible with VAX COBOL. VAX CDD
supports the definition of multidimensional tables more generally than
does VAX COBOL. You must do one of the following:

• Redefine the record definition in the dictionary, omitting this
multidimensional table definition

• Do not use this record definition with VAX COBOL
The compiler uses one dimension of information of a multidimensional
table definition.

*Node <CDD-node-name> is a <CDD-node-type>, not a record
definition.

VAX COBOL requires a pathname to reference a VAX CDD record
description. You must use a different pathname in your COPY FROM
DICTIONARY statement or correct the VAX CDD entry to describe
a record. The compiler ignores the COPY FROM DICTIONARY
statement.

*Redefinition of FILLER invalid in COBOL.

The compiler ignores the redefinition and treats the item as a separate
data description entry.

*Length for database record-item <item-name> must be greater than
zero.

The minimum size for a COBOL data item is 1 byte. In a VAX DBMS
Data Description entry, the minimum size for a subschema data item is
0 bytes. You must do one of the following:

• Redefine the subschema data item to be at least 1 byte, and
recompile the subschema with the VAX DDL Utility

• Do not use this subschema with VAX COBOL
The compiler treats the record-item as if it has a length of 1 byte. This
may produce run-time errors.

Number Code Message

412 E

413 E

414 E

418 F

419 F

420 F

439 F

441 F

444 E

*Length for database record-item "<item-name>" must be multiple of 8
bits.

This entry is incompatible with VAX COBOL. The smallest unit of data
that can be defined in a VAX COBOL program is 1 byte (8 bits). The
compiler rounds the length up to the next multiple of 8 bits.

*Offset for database record-item "<item-name>" must be multiple of 8
bits.
This entry is incompatible with VAX COBOL. The smallest unit of data
that can be defined in a VAX COBOL program is 1 byte (8 bits). The
compiler rounds the offset up to the next multiple of 8 bits.

*Length for database record "<record-name>" must be multiple of 8
bits.

This entry is incompatible with VAX COBOL. The smallest unit of data
that can be defined in a VAX COBOL program is 1 byte (8 bits). The
compiler rounds the length up to the next multiple of 8 bits.

*Error in accessing subschema-DB statement ignored.

The VAX COBOL compiler was unsuccessful in its attempt to access the
subschema and/or schema specified in your DB statement. You must
make sure that the schema and subschema exist in the VAX CDD. Also
verify that your logical names resolve to the schema and subschema
that you intend to use. The compiler ignores the DB statement.

*Invalid stride for database record-item "<item-name>".

This entry is incompatible with VAX COBOL. The stride attribute
describes the separation (in bits) between one occurrence of a table
item and the next occurrence. This should be the same as the allocated
length of a single occurrence of the item. The compiler issues this
diagnostic whenever the two lengths do not agree. You must do the
following: (1) redefine your subschema to ensure that these two
database record-item lengths are identical, and (2) recompile the
subschema containing this record-item with the VAX DBMS DDL
Utility. The compiler gives the record-item a stride equal to the length
of one occurrence of the table item.

*Unable to complete subschema processing.

The VAX COBOL compiler failed to exit the VAX CDD when it
completed subschema processing. Recompile the COBOL program.
The compiler terminates subschema processing.

*Error in accessing record-item "<item-name>" from subschema.
The subschema containing the record item is most likely corrupt.
Recompile the subschema with the VAX DBMS DDL Utility.

*Invalid multidimensional database record-item "<item-name>".
This entry is incompatible with VAX COBOL. The VAX DBMS Data
Definition Language defines multidimensional tables more generally
than VAX COBOL. You must do one of the following:

• Redefine the record definition in the dictionary, omitting such
multidimensional table definitions

• Do not use this record definition with VAX COBOL
The compiler uses one dimension of information of the multidimensional
table definition.

*Unsupported subschema datatype for "<record-item-name>".
The compiler treats the item as ifit were alphanumeric with a length
equal to the original data type.

Error Messages B-15

Number Code Message

458 F *Invalid length for database record "<record-name>".
The subschema containing the record definition with the invalid length
is most likely corrupt. Recompile the subschema with the VAX DBMS
DDL Utility. The compiler assigns the record a length of one byte. This
may produce run-time errors.

466 F *Offset required for database record-item "<item-name>".

The required offset-into-the-record attribute is missing in the entry
for this subschema record-item. Most likely the subschema is corrupt.
Recompile the subschema using the VAX DBMS DDL Utility.

467 F *Subschema must have at least one database record.

This valid VAX DBMS DDL entry is invalid in COBOL. You must do
one of the following:

• Redefine the subschema including a record-type definition and
recompile the subschema with the VAX DBMS DDL Utility

• Do not use such subschema definitions with VAX COBOL
The compiler terminates subschema processing.

468 F *Upper-bound required for database record-item "<item-name>".

The compiler encountered a table definition with no upper-bound. Most
likely the subschema record description is corrupt. Recompile the
subschema with the VAX DBMS DDL Utility.

473 E *OCCURS DEPENDING ON data-name must be defined in the same
DATA DIVISION as the OCCURS DEPENDING ON.
The compiler ignores the error.

479 F *Error in accessing record "<record-name>" from subschema.
The subschema containing the record is most likely corrupt. Recompile
the subschema using the VAX DBMS DDL Utility.

480 F *REFERENCE data name defined in an invalid section.

Data name must be defined in the Subschema, File, or Working-Storage
Sections. The compiler ignores the entire VALUE clause.

484 F *Error in accessing realm "<realm-name>" from subschema.
The subschema containing the realm is most likely corrupt. Recompile
the subschema with the VAX DBMS DDL Utility.

493 F *Invalid GLOBAL clause.
This data-item either: (1) does not have an explicit name, (2) is not
an 01 or 77 item, or (3) is not defined in the File or Working-Storage
Sections.

494 F *Error in accessing set "<set-name>" from subschema.

The subschema containing the set is most likely corrupt. Recompile the
subschema with the VAX DBMS DDL Utility.

495 F *Numeric database record-item "<item-name>" must represent at least
one digit.

This subschema entry is incompatible with VAX COBOL. The VAX
DBMS Data Definition Language allows the definition of numeric
record-items to consist of zero digits, VAX COBOL does not. Correct the
definition of the numeric record-item and recompile the subschema with
the VAX DBMS DDL Utility.

532 F *OFFSET invalid in a format 3 record selection expression.

OFFSET can be used in the database key identifier form of the record
selection expression, but not the record search access form.

B-16 Error Messages

Number Code Message

533 F

562 F

584 I

*Operand subordinate to another database group operand.

The list of record-items for this statement cannot contain any item that
is subordinate to another item in the list.

*Invalid number of selection objects.

In the WHEN clause of an EVALUATE statement, the number of
selection objects must equal the number of selection subjects.

*Allocation of this table is incompatible with subset.

For information on how to correct this error, see Appendix C.

Error Messages B-17

Appendix C

Using the COBOL-81 SUBSET Flagger

This appendix describes the VAX COBOL compile-time qualifier
/STANDARD=PDPll.

C.1 Using VAX COBOL to Produce Compatible COBOL-81 Source
Programs

COBOL-81 is the COBOL compiler that runs on the Professional and PDP-11
systems.

COBOL-81 is a subset of VAX COBOL. This superset-subset relationship allows
you to create programs that are portable between VAX and PDP-11 systems.
Thus, a COBOL source program that contains only language elements supported
by COBOL-81 can run on both systems. However, some architectural differences
between the PDP-11 and VAX computers cause incompatibilities between
COBOL-81 and VAX COBOL that prevent program portability.

The COBOL-81 fl.agger provided by VAX COBOL enables you to detect and
eliminate incompatible language elements in VAX COBOL programs. The fl.agger
identifies all language elements in VAX COBOL source programs that are not
part of the COBOL-81 subset. It also identifies source language elements related
to the system incompatibilities previously mentioned.

You invoke the COBOL-81 fl.agger by specifying the /STANDARD=PDPll
command line qualifier. To receive the diagnostics, you must also specify the
/WARNINGS=ALL qualifier.

C.2 Using the /STANDARD:PDP11 Qualifier

When you compile a VAX COBOL program with the /STANDARD=PDPll
qualifier, informational diagnostics indicate which language elements prevent the
COBOL program from being VAX/PDP-11 compatible.

These informational diagnostics do not prevent the compiler from generating
object code. When you invoke the fl.agger, the compiler issues appropriate
diagnostics to the terminal and, if /LIST was specified, to the listing file.

Because the COBOL-81 and VAX COBOL compilers handle certain errors
differently, a COBOL program is considered compatible only when it compiles free
from all levels of diagnostics. For example, an error diagnosed as W- or E-level by
VAX COBOL (that does not prevent object code generation) may be diagnosed as
F-level by COBOL-81. In these instances, the fl.agger does not provide additional
diagnostics. Digital extensions that are supported by both VAX COBOL and
COBOL-81 are among the few exceptions to this rule.

Using the COBOL-81 SUBSET Flagger C-1

NOTE

Use the /WARNINGS=ALL command line qualifier .with the
/STANDARD=PDPll qualifier to ensure that the compiler does not
suppress the generated diagnostics. The /WARNINGS=ALL qualifier
causes the compiler to list all warning-level and informational-level
diagnostics.

C.3 VAX COBOL Flagging Procedures

This section describes how the COBOL--81 flagger determines and flags
COBOL-81 incompatible elements in your COBOL program. Keep this approach
in mind when you review your COBOL program compilation listing and revise
your COBOL program to make it compatible.

A COBOL source program has two levels where differences may occur:

• The sectional level

• The context-specific level

When the flagger views a program at the sectional level, it sees the source
as composed of many COBOL sections (CONFIGURATION SECTION,
INPUT-OUTPUT SECTION, etc.). If the COBOL program contains a section
that is not supported by COBOL--81, the COBOL--81 flagger issues a single
diagnostic on that section. For example, COBOL-81 does not support any portion
of the Report Section (for Report Writer). Therefore, the flagger issues a single
diagnostic at the beginning of the section, rather than flagging each item defined
in the Report Writer Section.

The context-specific level encompasses the lexical, syntactic, and semantic
views of the COBOL source program; most diagnostics are context-specific. A
context-specific message either describes the error or specifies a corrective action.

C.4 Source Level Differences and Incompatibilities

This section lists source level differences and incompatibilities between VAX
COBOL and COBOL--81. The COBOL--81 flagger diagnoses most of these
differences.

A COBOL--81 flagger diagnostic indicates a language element that you must
remove or alter to make the program compatible. Where the necessary alteration
is not obvious, the flagger provides an explanation of the recommended alteration.

The VAX COBOL Reference Manual and the COBOL-81 Reference Manual
contain complete information on VAX COBOL and COBOL--81 syntax,
respectively.

C.4.1 General Language Concepts

The following list describes the lexical differences between VAX COBOL and
COBOL-81:

• The dollar sign ($) and underscore (_) are invalid characters for COBOL-81
words.

• COBOL--81 words are limited to 30 characters.

• Null nonnumeric literals ("") are not supported by COBOL--81.

C-2 Using the COBOL-81 SUBSET Flagger

• Apostrophes (')are not valid nonnumeric literal delimiters in COBOL-81.

• Terminal format source lines are limited to 200 characters in COBOL-81.

The following non-division-specific language elements are not supported by
COBOL-81:

• The following COPY statement options:

text-name OF/IN library-name

REPLACING pseudo-text (= =)

REPLACING 'identifier'

FROM DICTIONARY

• END PROGRAM header

• Contained programs

• More than one source program in a file

• Floating point literals, hexadecimal literals

• REPLACE statements

C.4.2 Unsupported Language Elements by Division

The following sections explain those language elements not supported by
COBOL-81. The elements are grouped by division.

IDENTIFICATION DIVISION

The following VAX COBOL language elements in the IDENTIFICATION
DIVISION are not supported by COBOL-81:

• COMMON clause

• IDENT clause

• INITIAL clause

ENVIRONMENT DIVISION

The following VAX COBOL language elements in the ENVIRONMENT DIVISION
are not supported by COBOL-81:

• SEGMENT LIMIT clause

In VAX COBOL the SEGMENT LIMIT clause is for documentation only. In
COBOL-81, it is enforced.

• Literal option of the ALPHABET clause

• ASCII and EBCDIC as system names

• Symbolic characters

• FILE-CONTROL and file description entry clauses

In VAX COBOL, some clauses that describe files in COBOL can appear in
either the FILE-CONTROL paragraph or the file description entry (FD) of
a file, but not in both. COBOL-81 does not allow this. The following can
appear only in the FILE-CONTROL paragraph in COBOL-81:

ACCESS MODE clause

- FILE STATUS clause

Using the COBOL-81 SUBSET Flagger C-3

RECORD KEY clause (indexed files)

ALTERNATE RECORD KEY clause (indexed files)

Similarly, the following can appear only in the file description entry (FD) in
COBOL-81: .

BLOCK CONTAINS clause

CODE-SET clause

• OPTIONAL phrase for relative and indexed files.

• PADDING CHARACTER phrase

• RECORD DELIMITER IS STANDARD-! phrase

• RERUN clause in I-0-CONTROL

In COBOL-81, the RERUN clause in I-0-CONTROL cannot specify a
conditional name.

• File-spec in an ASSIGN clause

In COBOL-81, the file-spec in an ASSIGN clause must be a nonnumeric
literal.

• RECORD KEY or ALTERNATE RECORD KEY for an indexed file

In COBOL--81, the RECORD KEY or ALTERNATE RECORD KEY for
indexed files must be alphanumeric. Also duplicate and primary descending
keys are not supported.

• CONTIGUOUS-BEST-TRY, COl, and LOCK-HOLDING as system names.

• SAME AREA clause

In VAX COBOL the SAME AREA clause is used for documentation only. In
COBOL-81, it is enforced.

• APPLY clause syntax differences

In VAX COBOL you must choose one or more options for each APPLY clause.
In COBOL--81 you can choose only one option per APPLY clause. The
following APPLY clause entry is valid in VAX COBOL, but not in COBOL--81
for the reason just described:

APPLY FILL-SIZE MASS-INSERT ON FILE-A

To make this clause compatible, expand it into two APPLY clauses:

APPLY FILL-SIZE ON FILE-A

APPLY MASS-INSERT ON FILE-A

• APPLY PREALLOCATION clause

The maximum preallocation amount in the APPLY PREALLOCATION clause
differs between VAX COBOL and COBOL--81.

• MULTIPLE FILE TAPE clause

• WINDOW phrase

The values of window-ptrs in the WINDOW phrase differ between VAX
COBOL and COBOL--81.

C-4 Using the COBOL-81 SUBSET Flagger

DATA DIVISION

The following VAX COBOL language elements in the DATA DIVISION are not
supported by COBOL-81:

• SUB-SCHEMA SECTION

• REPORT SECTION

• EXTERNAL clause in file description entries

• GLOBAL clause in file description entries

• EXTERNAL clause in record description entries

• GLOBAL clause in record description entries

• OCCURS clause as follows:

Lower-bound of zero

More than three levels of nesting

VAX COBOL follows the 1985 ANSI COBOL standard rules for evaluating
the size of an OCCURS DEPENDING ON item.

• PICTURE character string

VAX COBOL follows the 1985 ANSI COBOL standard rules for when
PICTURE P positions are zero.

In COBOL-81, a PICTURE character string cannot exceed 30 characters.

• COMP-1 usage

• COMP-2 usage

• POINTER usage

• USAGE IS INDEX items (size and alignment differences)

• Alignment of COMP data items

This incompatibility requires careful consideration due to the complexity
of data allocation. See Section C.5; it explains the differences between the
compilers allocation of COMP data items and presents methods available to
correct the incompatibility.

• VALUE clause, except in the WORKING-STORAGE SECTION

• EXTERNAL option on VALUE clause

• REFERENCE option on VALUE clause

PROCEDURE DIVISION

The following VAX COBOL language elements in the PROCEDURE DIVISION
are not supported by COBOL-81.

• Nesting parentheses

Parentheses can be nested to a maximum of 24 levels in COBOL--81. VAX
COBOL has no limit for parentheses nesting; however, the size of the entire
expression can be too large for the internal parse stack.

• Special registers

The following COBOL special registers occupy 4 bytes in VAX COBOL and 2
bytes in COBOL-81:

- RMS-STS

Using the COBOL-81 SUBSET Flagger C-5

- RMS-STV

LINAGE-COUNTER

The values returned in the special registers RMS-STS and RMS-STV differ
between the VAX and PDP-11 systems.

COBOL-81 does not recognize the following VAX COBOL special registers:

DB-CONDITION

DB-CURRENT-RECORD-NAME

DB-CURRENT-RECORD-ID

RMS-FILENAME

RMS-CURRENT-STS

RMS-CURRENT-STV

RMS-CURRENT-FILENAME

• Subscripting

COBOL-81 supports a maximum of 3 subscripts.

In COBOL-81, a subscript cannot be an arithmetic expression or a data
name.

VAX COBOL supports the 1985 ANSI COBOL standard rules for subscript
evaluations. Because of the differences in subscript evaluation, differences
may result when you use the DIVIDE, STRING, UNSTRING, and INSPECT
statements.

• Reference modification

• File Status values

COBOL-81 does not support File Status value 25. Although COBOL-81
supports File Status value 96, that error does not occur in VAX COBOL
programs.

• Record selection expressions for COBOL DML

• Database conditions

• Segment-numbers

COBOL-81 supports segment-numbers between 0 and 49.

• ACCEPT statement

- FROM DAY-OF-WEEK phrase

- AT END phrase

• ALTER statement

• COBOL--81 does not support the following CALL statement options:
1 identifier'

BY VALUE

BY CONTENT
1 literal' (illegal characters and truncation)

GIVING

ON EXCEPTION

C-6 Using the COBOL-81 SUBSET Flagger

- ON OVERFLOW

COBOL-81 supports only alphanumeric items as CALL BY DESCRIPTOR
arguments.

• CANCEL statement

• COMPUTE statement

Exponents specified in COMPUTE must be integers in COBOL-81.

• Data manipulation language (DML) statements

• DIVIDE statement

VAX COBOL supports the 1985 ANSI COBOL standard rules for subscript
evaluation in DIVIDE statements.

• EVALUATE statement

• EXIT PROGRAM statement

In a main program VAX COBOL ignores the EXIT PROGRAM statement.

• GENERATE statement

• Optional procedure name for GO TO

• INITIALIZE statement

• INITIATE statement

• INSPECT statement-CONVERTING phrase

The BEFORE/AFTER clause syntax of the INSPECT statement in COBOL-81
is a subset of VAX COBOL syntax.

VAX COBOL supports the 1985 ANSI COBOL standard rules for subscript
evaluation in the INSPECT statement.

VAX COBOL supports multiple arguments for the ALL/LEADING phrase of
the INSPECT statement.

• MERGE statement restrictions

MERGE key size cannot be greater than 255 characters. Total number of
characters in MERGE keys cannot exceed 512. MERGE cannot specify more
than 16 merge keys. Neither infile nor outfile can describe an indexed file in
random access mode.

• MOVE-De-editing of numeric edited items

• OPEN statement

The following restrictions exist for the OPEN statement in COBOL-81:

OPEN EXTEND is allowed only on files with SEQUENTIAL organization.

Files specified in a SAME AREA clause cannot be open at the same time.

The following clauses of the OPEN statement:

• ALLOWING WRITERS

• ALLOWING UPDATERS

• Optional files may not be opened for OUTPUT, I-0, or EXTEND

• PERFORM

Optional procedure name

TEST BEFORE/AFTER clause

Using the COBOL-81 SUBSET Flagger C-7

- VAX COBOL supports the 1985 ANSI COBOL standard rules for
evaluation of identifiers in the AFTER clause.

• Procedure Division Header GIVING phrase

• RECORD statement

• The following clauses of the READ statement:

- ALLOWING UPDATERS

ALLOWING READERS

- ALLOWING NO OTHERS

- REGARDLESS OF LOCK

• ALLOWING NO OTHERS clause on the REWRITE statement

• The following clauses of the SET statement:

- condition-name TO TRUE

- pointer-id TO REFERENCE

- status-code-id TO SUCCESS/FAILURE

• The following clauses of the START statement:

- ALLOWING UPDATERS

- ALLOWING READERS

- ALLOWING NO OTHERS

- REGARDLESS OF LOCK

• STRING statement

VAX COBOL supports the 1985 ANSI COBOL standard rules for subscript
evaluation.

• SUPPRESS statement

• TERMINATE statement

• UNSTRING statement

VAX COBOL supports the 1985 ANSI COBOL standard rules for subscript
evaluation.

• The following clauses of the USE statement:

- GLOBAL

- BEFORE REPORTING

- FOR DB-EXCEPTION

• Mnemonic name following BEFORE/AFTER ADVANCING clause of the
WRITE statement

• The VFU-CHANNEL clause

C-8 Using the COBOL-81 SUBSET Flagger

C.5 Alignment of COMP Data Items

COBOL-81 aligns COMPUTATIONAL (COMP) data items on word boundaries.
VAX COBOL does not have this alignment restriction, and so aligns COMP data
items on the next available byte boundary.

This alignment difference becomes an incompatibility when COMP items are used
in files as in group names; however, all COMP items must be allocated compatibly
before the program is transferable. The COBOL-81 :ftagger indicates those COMP
items that are incompatibly aligned, that is, any COMP item that does not begin
on a word boundary. There are two methods of correcting this incompatibility:

• Specify the SYNCHRONIZED (SYNC) clause for all COMP items in your
program.

• Insert FILLER data items before incompatible COMP items to force
compatible alignment.

The SYNCHRONIZED clause causes VAX COBOL and COBOL-81 to align
COMP items on the same boundaries. The COMP item's size determines the
required alignment boundary. The compiler· can insert fill bytes before the COMP
item to obtain the correct alignment. This method is the preferred corrective
method, as it is the simplest way to ensure compatibility.

The second method involves the use of FILLER data items to force incompatible
COMP items to word boundaries. Correcting an incompatible record using this
method may result in a record that occupies less space than one corrected using
the SYNCHRONIZED clause. In addition to identifying incompatible COMP
items, the COBOL-81 :ftagger indicates where FILLER data items should be
inserted to force compatible. alignment.

The following examples illustrate incompatible items and the use of both methods
to correct them.

Example 1-lncompatible Data Item

Incompatible record

01 ITEM-A.
03 ITEM-B PIC X.
03 ITEM-C PIC 9(9) COMP.

COBOL-81 :Hagger diagnosis:

01 ITEM-A. 7
8
9

03 ITEM-B PIC X.
03 ITEM-C PIC 9(9) COMP.

1
%COBOL-I-ERROR 586, (1) Allocation of this item is incompatible
with subset
%COBOL-I-ERROR 584, (1) Insert 1 fill byte before this item
(same level number) for subset compatibility

Method 1:

Place the SYNCHRONIZE, or SYNC, clause on the COMP item:

FD FILE-1.
01 ITEM-A.

03 ITEM-B PIC X.
03 ITEM-C PIC 9(9) COMP SYNC.

Using the COBOL-81 SUBSET Flagger C-9

Method 2:

Refer to the preceding COBOL-81 flagger diagnosis. To correct the record, insert
a FILLER data item with PIC X as indicated by the informationals:

FD FILE-1.
01 ITEM-A.

03 ITEM-B PIC x.
03 FILLER PIC x.
03 ITEM-C PIC 9 (9) COMP.

Example 2-Tables

Incompatible record:

FD FILE-1.
01 ITEM-A.

03 ITEM-B OCCURS 3
05 ITEM-C PIC
05 ITEM-D PIC

COBOL-81 flagger diagnosis:

01 ITEM-A.

TIMES.
9 (9) COMP.
x.

21
22 03 ITEM-B OCCURS 3 TIMES.

1
%COBOL-I-ERROR 585, (1) Allocation of this table is incompatible
with subset

23
24

Method 1:

05
05

ITEM-C PIC 9(9) COMP.
ITEM-D PIC X.

Place the SYNCHRONIZE, or SYNC, clause on the COMP item:

FD FILE-1.
01 ITEM-A.

03 ITEM-B OCCURS 3 TIMES.
05 ITEM-C PIC 9 (9) COMP SYNC.
05 ITEM-D PIC x.

Method 2:

This table is more difficult to correct using the second method (the manual
method).

Because the solution is not easily indicated by informational diagnostics, the
flagger does not point out where to insert FILLER data items. The length of the
occurring group is odd, and the COMP item is on an even-byte offset relative
to the beginning of the record. This causes every other occurrence of ITEM-C
(starting with the second) to begin on an odd-byte boundary. The correction
should cause each occurrence of ITEM-B to begin on an even-byte boundary,
without increasing the size of ITEM-B.

FD FILE-1.
01 ITEM-A.

03 OCCURS 3 TIMES.
05 ITEM-B.

10 ITEM-C PIC 9 (9) COMP.
10 ITEM-D PIC x.

05 FILLER PIC X.

C-10 Using the COBOL-81 SUBSET Flagger

Example 3-Complex Record

Incompatible record:

01 ITEM-A.
03 ITEM-B PIC x.
03 ITEM-C.

05 ITEM-D PIC
05 ITEM-E PIC

x.
9 (4) COMP.

One of the rules that affects data allocation in both compilers is known as
Boundary Equivalence. Refer to the VAX COBOL Reference Manual, for a
description of Boundary Equivalence. Since the COBOL-81 compiler requires
ITEM-E to be word aligned, ITEM-C must be word aligned according to the
Boundary Equivalence rule. Thus, since ITEM-C begins on an odd-byte boundary,
it is incompatible. Note that the fl.agger diagnoses this incompatibility as well as
that ofITEM-E.

COBOL-81 :Bagger diagnosis:

38
39
40

01 ITEM-A.
03
03

ITEM-B PIC X.
ITEM-C.
1

%COBOL-I-ERROR 586, (1) Allocation of this item is
incompatible with subset
%COBOL-I-ERROR 583, (1) Insert 1 fill byte before this
group item for subset compatibility

41 05 ITEM-D PIC X.
42 05 ITEM-E PIC 9(4) COMP.

1
%COBOL-I-ERROR 586, (1) Allocation of this item is
incompatible with subset
%COBOL-I-ERROR 584, (1) Insert 1 fill byte before this item
(same level number) for subset compatibility

Method 1:

Place the SYNCHRONIZE, or SYNC, clause on the COMP item:

01 ITEM-A.
03 ITEM-B PIC x.
03 ITEM-C.

05 ITEM-D PIC x.
05 ITEM-E PIC 9(4) COMP SYNC.

Method 2:

Refer to the preceding COBOL-81 fl.agger diagnosis. To correct the record, insert
FILLER data item with PIC X as indicated by the informationals:

01 ITEM-A.
03 ITEM-B PIC x.
03 FILLER PIC x.
03 ITEM-C.

05 ITEM-D PIC x.
05 FILLER PIC x.
05 ITEM-E PIC 9(4) COMP.

Using the COBOL-81 SUBSET Flagger C-11

Appendix D

Additional Information on COBOL Command
Qualifiers

This appendix provides additional information on the following COBOL command
line qualifiers:

• /FLAGGER

• /INSTRUCTION_SET

• /STANDARD

D.1 Using the /FLAGGER Qualifier

This section explains how to use the /FLAGGER qualifier and provides the
following information:

• Options used with the /FLAGGER qualifier

• FIPS validation levels

• A table indicating FIPS levels

In accordance with the Federal Information Processing Standard Publication 21-2
(FIPS-PUB 21-2) issued by the U.S. National Bureau of Standards, VAX COBOL
allows you to specify a FIPS level of COBOL syntax beyond which informational
diagnostics will be generated. To do this, include the /FLAGGER qualifier when
you compile your VAX COBOL program. To receive the informational diagnostics,
you must also use the /WARNINGS=INFORMATIONAL or /WARNINGS=ALL
qualifier. The /FLAGGER qualifier is particularly useful when a target system's
compiler has a low level of FIPS syntax support.

When you use the /FLAGGER qualifier with its options, you receive diagnostic
messages for syntax in the source program as follows:

• Not within the FIPS validation level you selected when the source program is
compiled

• Within the optional module you selected when the source program is compiled

• For obsolete language elements as defined by the ANSI 1985 standard for the
COBOL language

• For Digital extensions to the COBOL language

Additional Information on COBOL Command Qualifiers D-1

D.1.1 /FLAGGER Options

/FLAGGER=HIGH_FIPS produces informational diagnostics for language
constructs in the source program that are above the FIPS high validation
level. These are constructs supported by VAX COBOL that are Digital extensions
to the COBOL language.

/FLAGGER=INTERMEDIATE_FIPS produces informational diagnostics for
language constructs in the source program that are above the FIPS intermediate
validation level. These are constructs supported by VAX COBOL that are within
the FIPS high validation level or Digital extensions.

/FLAGGER=MINIMUM_FIPS produces informational diagnostics for language
constructs in the source program that are above the FIPS minimum validation
level. These are constructs supported by VAX COBOL that are within the FIPS
high and intermediate validation levels or Digital extensions.

/FLAGGER=OBSOLETE produces informational diagnostics for language
constructs that are identified as obsolete by the ANSI 1985 COBOL standard
for the COBOL language. If a language construct is in the selected FIPS level or
optional module and is also on the obsolete list, only the obsolete diagnostic will
be generated if /FLAGGER=OBSOLETE is specified.

/FLAGGER=OPTIONAL_FIPS produces informational diagnostics for language
constructs supported by VAX COBOL within FIPS optional modules. VAX COBOL
provides support for the optional modules Report Writer and Segmentation.

/FLAGGER=REPORT_ WRITER produces informational diagnostics for language
constructs supported by VAX COBOL within the FIPS optional module Report
Writer.

/FLAGGER=SEGMENTATION provides informational diagnostics for language
constructs supported by VAX COBOL within the FIPS optional module
Segmentation.

/FLAGGER=SEGMENTATION_l provides informational diagnostics for language
constructs supported by VAX COBOL within level 1 of the FIPS optional module
Segmentation.

Any combination of qualifier options is permitted. If more than one validation
level (high, intermediate, or minimum) is specified, the lowest level is
used. If no FIPS level is specified, but another /FLAGG ER option is used,
/FLAGGER=HIGH_FIPS is assumed.

The default is /NOFLAGGER. This qualifier cannot be used if /STANDARD=V3 is
also used.

D.1.2 FIPS Levels

Table D-1 shows the required functional processing modules and the optional
modules supported by VAX COBOL. The table also shows the COBOL subsets
that correspond to the FIPS levels of Minimum, Intermediate, and High. The
levels numbers (0, 1, and 2) correspond to the levels indicated in the 1985 ANSI
COBOL standard.

D-2 Additional Information on COBOL Command Qualifiers

Table D-1: Relationship Among VAX COBOL Modules, Subsets, and Levels

Required Modules

Nucleus

Sequential I-0

Relative I-0

Indexed I-0

InterprograID.CoID.Inunication

Sort-ID.erge

Source Text Manipulation

Optional Modules

Report Writer

SegID.entation

Table Legend

Minimum

1

1

0

0

1

0

0

-, or 1

-, 1, or 2

0-Null level (the module is not included in the subset)
1-First nonnull level
2-Second nonnull level
Dash-Optional

COBOL Subsets

Intermediate High

1 2

1 2

1 2

1 2

1 2

1 1

1 2

-, or 1 -, or 1

-, 1, or 2 -, 1, or 2

For more information, refer to the Federal Information Processing Standard
Publication 21-2 (FIPS-PUB 21-2) and the 1985 ANSI COBOL standard.

D.2 /INSTRUCTION_SET Qualifier

The /INSTRUCTION_SET qualifier allows you to optimize your VAX COBOL
programs for certain VAX processors.

The /INSTRUCTION_SET qualifier has the following options:

• DECIMAL_STRING

• NODECIMAL_STRING

• GENERIC

The default is /INSTRUCTION_SET=DECIMAL_STRING.

NOTE

Regardless of the /INSTRUCTION_SET option you choose, your
VAX COBOL program will run on any VAX processor. The
/INSTRUCTION_SET qualifier merely allows you to optimize your
code for certain processors.

Additional Information on COBOL Command Qualifiers D-3

D.2.1 Overview of VAX Architectural Subsetting

The VAX family of processors offers a wide range of processors within a single
architectural framework. All VAX processors have the ability to run all of the
system software and layered products in the VAX family. In this way, different
VAX processors are able to meet a variety of cost and performance needs.

In order to achieve this wide range of processors with a single architecture,
the VAX instruction set has been divided into subsets. Processors that do not
implement the full instruction set in the hardware can be referred to as subset
processors.

Subset processors implement various subset classes of instructions through
software emulation. This process allows the processors to offer full VAX
functionality at some reduction in execution speed.

For more information on VAX architectural subsetting refer to the VAX
Architecture Reference Manual.

D.2.2 How Subsetting May Affect VAX COBOL Programs

Some VAX COBOL programs may experience performance degradation on
processors that emulate the decimal string instructions. Performance degradation
occurs because emulating large numbers of instructions takes a processor longer
than if the instructions are implemented in the hardware.

The most noticeable performance degradation occurs in VAX COBOL programs
that are CPU intensive (that is, programs that require a lot of CPU time as
opposed to 1/0 time). However, since most COBOL programs are 1/0 intensive,
they are likely to experience only slight performance degradation when run on a
subset processor.

D.2.3 Determining the Instruction Set

The instructions that affect CPU intensive COBOL programs are the decimal
string instructions. You can use the following DCL commands to determine
whether or not your VAX processor implements the decimal string instructions in
the hardware:

$ DECIMAL_EMULATED=F$GETSYI ("DECIMAL_EMULATED")
$SHOW SYMBOL DECIMAL_EMULATED

The second command returns a true or false response. If the response is true,
your system emulates the decimal string instructions. If the response is false,
your system implements the decimal string instructions in the hardware.

D.2.4 Selecting an Option

The /INSTRUCTION_SET qualifier enables you to optimize your VAX COBOL
program for the environment your VAX COBOL application will run in.
Depending on the environment, you might want to select a specific option.

0-4 Additional Information on COBOL Command Qualifiers

Using /INSTRUCTION_SET :DECIMAL_STRING

/INSTRUCTION_SET=DECIMAL_STRING optimizes the code for VAX processors
that include the decimal string instructions in the hardware. This is the default.

You should use this option if your program will be running on processors that
implement the decimal string instructions in the hardware.

Using /INSTRUCTION_SET :NODECIMAL_STRING

/INSTRUCTION_SET=NODECIMAL_STRING instructs the compiler to optimize
the code for VAX processors that do not include the decimal string instructions in
the hardware. You should consider using this option when both of the following
conditions are true:

• The application will only be run on. VAX processors that emulate the decimal
string instructions

• CPU performance is important

Using this option will improve the performance of most VAX COBOL applications
that run on a subset processor. However, you will see the most improvement in
applications that are CPU intensive.

Using /INSTRUCTION_ SET :GENERIC

/INSTRUCTION_SET=GENERIC offers a compromise between the other two
settings. Using this option avoids some of the performance degradation programs
may experience when run on a subset processor. However, programs compiled
using this option, perform at nearly optimal levels on processors that include the
decimal string instructions in the hardware.

You should consider using this option when your VAX COBOL application will
run in an environment that includes VAX processors that emulate the decimal
string instructions, as well as processors that implement these instructions in the
hardware.

Other Considerations

The /INSTRUCTION_SET qualifier instructs the compiler to generate different
code sequences for various operations. Although the behavior of the code
generated with the various /INSTRUCTION_SET options is the same when
the input data is valid, there may be some differences when programs encounter
invalid data. Invalid data may be caused by program logic errors or corrupt data
files.

When working with DISPLAY or PACKED DECIMAL data items with
/INSTRUCTION_SET=DECIMAL_STRING, the instructions generated for
operations often check the validity of the input data items being processed.
This is a side effect of the instructions being used. If bad data is encountered at
run time, the INVALID DECIMAL DATA message is generated and the program
terminates execution.

When you use /INSTRUCTION_SET=NODECIMAL_STRING or
/INSTRUCTION_SET=GENERIC, some of the operations do not validate the
correctness of the data being processed. If your program encounters invalid data
items, the program continues to execute; however, the results are unpredictable.

If your program runs in an environment where invalid data is common, you may
want to use /INSTRUCTION_SET=DECIMAL_STRING.

If you are developing a large application with several modules, you do not have to
compile all the modules with the same qualifier value. For more information on
compiling VAX. COBOL programs, see Chapter 2.

Additional Information on COBOL Command Qualifiers D-5

D.3 Differences Using /STANDARD:85 and /STANDARD:V3

This section explains the differences between the code generated when you
compile programs using /STANDARD=85 and /STANDARD= V3.

D.3.1 Overview

Version 4.0 and higher versions of VAX COBOL are based on the ANSI 1985
COBOL standard. Versions prior to Version 4.0 of VAX COBOL were based on
the ANSI 197 4 COBOL standard. While most of the enhancements made to this
version of VAX COBOL are compatible with versions of the compiler prior to
Version 4.0, some differences exist. Although these differences do not affect most
existing programs, there are some instances where results might vary.

To minimize conflicts with existing programs, VAX COBOL allows you to compile
programs according to the rules for either the current version or Version 3.4. To
do this you use the /STANDARD qualifier.

/STANDARD=85 instructs the compiler to compile and generate code according to
the ANSI 1985 COBOL standard. /STANDARD=85 is the default.

/STANDARD=V3 instructs the compiler to compile and generate code in the
manner of VAX COBOL Version 3.4 in specific instances.

If you use the /WARNINGS=ALL qualifier with the /STANDARD qualifier, the
compiler generates informational diagnostics for language constructs that depend
on the /STANDARD qualifier.

The following statements are affected by the /STANDARD qualifier:

• Subscript evaluation and reference modification in the following instances:

Remainder of a DIVIDE statement

STRING and UNSTRING statements

Identifiers in an INSPECT statement

• The order of evaluation of identifiers for some PERFORM ... VARYING ...
AFTER statements.

• PIC P items. These are zero in new cases.

• The size of a variable-length table is different in certain cases.

• EXIT PROGRAM statement in a main program.

• New and revised I/O file status codes.

• Opening nonoptional files in I-0 and EXTEND mode.

D.3.2 DIVIDE Statement

The /STANDARD=85 qualifier instructs the compiler to evaluate subscripts
associated with the REMAINDER phrase of DIVIDE statements after the result
of the divide operation is stored in the identifier associated with the GIVING
phrase.

The /STANDARD= V3 qualifier instructs the compiler to evaluate subscripts for
the REMAINDER phrase at the beginning of the DIVIDE statement.

D-6 Additional Information on COBOL Command Qualifiers

The following example highlights the difference in how subscripts for the DIVIDE
statement are evaluated:

DIVIDE DIVIDEND BY DIVISOR GIVING QUOTIENT
REMAINDER REM (QUOTIENT) .

If you use /STANDARD=85, the subscript (QUOTIENT) for REM is evaluated
after the value of QUOTIENT is updated.

If you use /STANDARD=V3, the subscript (QUOTIENT) for REM is evaluated
before the DIVIDE statement is executed.

D.3.3 STRING Statement

The /STANDARD=85 qualifier instructs the compiler to evaluate subscripts and
reference modifications for source strings and delimiters in a STRING statement
once, as the first operation of the execution of the statement.

The /STANDARD=V3 qualifier instructs the compiler to evaluate the subscripts
and reference modifications for source strings and delimiters prior to examining
each source string. Also, the pointer is updated after each examination of a
source string.

The following example highlights the difference in how subscripts for the source
string in a STRING statement are evaluated:

STRING SRC-STRING-A (PTR) SRC-STRING-B (PTR)
DELIMITED BY DELIM (PTR)
INTO DEST-STRING
WITH POINTER PTR

If you use /STANDARD=85, the value of PTR is the same for both source strings
and the delimiter.

If you use /STANDARD=V3, the subscript, PTR, for SRC-STRING-A and DELIM
is evaluated before characters are transferred to DEST-STRING. After the
characters are moved, the number of characters moved is added to PTR. The new
value of PTR is then used to evaluate SRC-STRING-B (PTR) and DELIM (PTR).

D.3.4 UNSTRING Statement

The /STANDARD=85 qualifier instructs the compiler to evaluate all subscripts
and reference modifications in the UNSTRING statement once, as the first
operation when the statement is executed.

The /STANDARD=V3 qualifier instructs the compiler to evaluate subscripts and
reference modifications for the source string, pointer, and tallying items once, as
the first operation when the statement is executed. Subscripts for delimiters are
evaluated before each examination of the source string. Subscript evaluation for
the destination string, delimiter destination, and the counter occur just before the
data is transferred to these items. The pointer and tallying items are updated
after each examine and move cycle.

The following example highlights the difference in how subscripts for the
UNSTRING statement are evaluated:

UNSTRING SRC-STRING DELIMITED BY "A"
INTO DEST-STRING (CNT)

DEST-STRING (CNT)
TALLYING IN CNT

Additional Information on COBOL Command Qualifiers D-7

If you use /STANDARD=85, the initial value of CNT is used for all subscripts in
the statement.

If you use /STANDARD=V3, SRC-STRING is examined and the data in the first
INTO clause is transferred. The TALLYING item CNT is then incremented. As
the statement continues to execute, any transfers to the items in the second INTO
clause use the new value of CNT when their subscripts are evaluated.

D.3.5 INSPECT Statement

The /STANDARD=85 qualifier instructs the compiler to evaluate all subscripts
and reference modifications in the INSPECT statement once, as the first
operation when the statement is executed.

The /STANDARD= V3 qualifier only differs when you use Format 3 of the
INSPECT statement. If you use Format 3, /STANDARD= V3 instructs the
compiler to treat the statement as if it were two separate statements. For
example, if you use /STANDARD=V3, the single statement in Example D-1 is
equivalent to the two statements in Example D-2. In this example, the value of
the subscript for SRC-STRING-B is dependent upon the value of TLY after the
TALLYING phrase is executed.

Example D-1: INSPECT Statement Using Format 3

INSPECT SRC-STRING-A TALLYING TLY FOR CHARACTERS
REPLACING CHARACTERS BY SRC-STRING-B (TLY)

Example D-2: INSPECT Statement Using Formats 1and2

INSPECT SRC-STRING-A TALLYING TLY FOR CHARACTERS
INSPECT SRC-STRING-A REPLACING CHARACTERS BY SRC-STRING-B (TLY)

For more information, see Format 3 of the INSPECT statement in the VAX
COBOL Reference Manual.

D.3.6 PERFORM ... VARYING ... AFTER Statement

When you use Format 4 of the PERFORM statement, the /STANDARD=85
qualifier instructs the compiler to augment the identifier associated with the
VARYING phrase before setting the identifier associated with the AFTER phrase.

When you use Format 4 of the- PERFORM statement, the /STANDARD= V3
qualifier instructs the compiler to set the identifier associated with the AFTER
phrase before augmenting the identifier associated with the VARYING phrase.

D-8 Additional Information on COBOL Command Qualifiers

The following example, in which one VARYING variable depends on another
VARYING variable, produces different results using /STANDARD=85 and
/STANDARD=V3.

PERFORM ... VARYING ID2 FROM 1 BY I UNTIL ID2 > 3
AFTER ID5 FROM ID2 BY 1 UNTIL ID5 > 3

Table D-2 shows the different values for the identifiers in the previous example.

Table D-2: PERFORM ... VARYING ... AFTER Identifier Values

ISTANDARD=85 ISTANDARD=V3

Pass ID2 ID5 ID2 ID5

First 1 1 1 1

Second 1 2 1 2

Third 1 3 1 3

Fourth 2 2 2 1

Fifth 2 3 2 2

Sixth 3 3 2 3

Seventh NIA NIA 3 2

Eighth NIA NIA 3 3

D.3.7 PIC P Digits

The /STANDARD=85 qualifier instructs the compiler to interpret PIC P digits as
zeros in the following cases:

• Operations where the sending operand is numeric

• MOVE statements where the sending operand is numeric and contains P
digits

• MOVE statements where the sending operand is numeric edited and contains
P digits and the receiving item is numeric or numeric edited

• Comparison operations in which both operands are numeric

The /STANDARD=V3 qualifier does not instruct the compiler to interpret PIC P
digits as zeros in numeric to alphanumeric moves.

The following example produces different results using /STANDARD=85 and
/STANDARD=V3.

01 P PIC 9P VALUE 10.
01 N PIC 99.
01 X PIC XX.

MOVE P TO N X.

If you use /STANDARD=85, both N and X are equal to 10 after the MOVE
statement executes. If you use /STANDARD= V3, N is equal to 10 and X is equal
to 1 followed by a space.

Additional Information on COBOL Command Qualifiers D-9

D.3.8 Size of Variable-Length Tables

The /STANDARD=85 qualifier instructs the compiler to determine the size of
a variable-length item containing an OCCURS DEPENDING ON statement
involved in a MOVE by the value of the OCCURS DEPENDING ON item.
However, when the item is within the data structure containing the OCCURS
clause, and the item is the target of a MOVE statement, the maximum size of the
table is used.

The /STANDARD=V3 qualifier instructs the compiler to always use the maximum
size of the destination table.

The following is an example of how this change produces different results:

01 A-TABLE PIC 99.
01 TABLE-1.

03 B-TABLE OCCURS 1 TO 10 TIMES DEPENDING ON A-TABLE PIC X.
01 C-TABLE PIC X(lO) VALUE "0123456789".

MOVE 5 TO A-TABLE
MOVE C-TABLE TO TABLE-1.

Table D-3 shows the values of the table elements for B-TABLE after the MOVE
statement using /STANDARD=85 and /STANDARD=V3.

Table D-3: Table Values After a MOVE Statement

Table Element /STANDARD=V3 /STANDARD=85

B-TABLE(l) 0 0

B-TABLE(2) 1 1

B-TABLE(3) 2 2

B-TABLE(4) 3 3

B-TABLE(5) 4 4

B-TABLE(6) 5 Undefined

B-TABLE(7) 6 Undefined

B-TABLE(8) 7 Undefined

B-TABLE(9) 8 Undefined

B-TABLE(lO) 9 Undefined

D.3.9 EXIT PROGRAM Statement

If you use /STANDARD=85, an EXIT PROGRAM statement in the body of a
main program is bypassed and the statements following the EXIT PROGRAM
statement are executed. If the program is a subprogram, the EXIT PROGRAM
statement acts as a return.

If you use /STANDARD=V3, an EXIT PROGRAM statement is treated as a return
in both main programs and subprograms.

D-10 Additional Information on COBOL Command Qualifiers

D.3.10 New and Revised 1-0 Status Codes

Table D-4 explains the new and revised 1-0 status codes for VAX COBOL.

If you use /STANDARD=85 you receive the File Status codes listed in the column
labeled 85, and your program acts accordingly.

If you use /STANDARD= V3 you receive the File Status codes listed in the column
labeled V3, and your program acts accordingly.

Table D-4: New and Revised 1-0 Status Codes

1-0 Error Condition

READ successful-record shorter than fixed file attribute.

CLOSE reel/unit attempted on nonreel/unit device.

READ fails-relative key digits exceed relative key.

WRITE fails-relative key digits exceed relative key.

OPEN I-0 on file that is not mass storage.

WRITE fails-attempt to write a record ~f a different size than
in the file description.

READ fails-no next logical record (EOF detected).

READ fails-no next logical record (EOF on OPTIONAL file).

READ fails-no valid next record (already at EOF).

READ NEXT or sequential READ-no valid next record pointer.

READ or START fails-optional input file not present.

READ successful-record longer than fixed file attribute.

OPEN on relative or indexed file that is not mass storage.

REWRITE fails-attempt to rewrite record of different size.

CLOSE fails-file not currently open.

DELETE or REWRITE fails-previous I-0 not successful READ.

OPEN fails-file previously closed with LOCK.

OPEN fails-file created with different organization.

OPEN fails-file created with different prime record key.

OPEN fails-file created with different alternate record keys.

OPEN fails-file currently open.

READ or START fails-file not opened INPUT or I-0.

WRITE fails-file not opened OUTPUT, EXTEND, or I-0.

DELETE or REWRITE fails-file not opened I-0.

OPEN INPUT on a nonoptional file-file not found.

1See Section D.3.10.1.

Status Code

vs 85

00 04

00 07

00 14

00 24

00 37

00 44

13 10

15 10

16 10
161 461

25 23

30 04

30 37

30 44

93 42

93 43

94 38

94 39

94 39

94 39

94 41

94 47

94 48

94 49

97 35

Additional Information on COBOL Command Qualifiers D-11

D.3.10.1 No Valid Next Record Condition

This section describes what happens when you compile your program using
/STANDARD=85 or /STANDARD= V3 and all the following conditions exist:

• The no valid next record (NVNR) condition exists.

• Your program attempts a sequential READ statement.

• Your program includes an AT END branch associated with the READ
statement.

If you use /STANDARD=85, the following occurs:

• The File Status code variable, if any, for the file is set to 46.

• The statements associated with the AT END statement are not executed.

• The program terminates execution abnormally (unless you have provided for
this situation with a USE AFTER STANDARD EXCEPTION procedure).

If you use /STANDARD= V3, the following occurs:

• The File Status code variable, if any, for the file is set to 16.

• The statements associated with the AT END statement are executed.

• The program continues to execute normally.

D.3.11 OPEN 1-0 and EXTEND Modes

If you use the /STANDARD=85 qualifier, nonoptional files opened in I-0 or
EXTEND mode are not created, if the file is unavailable, and a run-time error is
issued.

If you use the /STANDARD=V3 qualifier, nonoptional files opened in I-0 or
EXTEND mode are created, if the file is unavailable.

D-12 Additional Information on COBOL Command Qualifiers

Appendix E

Optional Programming Productivity Tools

This appendix provides an overview of optional programming productivity tools
that are not included with the VAX COBOL software or the VMS operating
system. Using these tools can increase your productivity as a VAX COBOL
programmer. The following products are described in this appendix:

• VAX Language-Sensitive Editor (LSE) and VAX Source Code Analyzer (SCA)
(Section E.1)

• VAX CDD/Plus (Section E.2)

• VAX COBOL GENERATOR (Section E.3)

• VAX Data Base Management System (VAX DBMS) (Section E.4)

• VAX DEC/I'est Manager (Section E.5)

• VAX DEC/Code Management System(CMS) (Section E.6)

For information on how to purchase these tools, contact your Digital sales
representative.

E.1 VAX Language-Sensitive Editor {LSE) and the VAX Source
Code Analyzer {SCA)

The VAX Language-Sensitive Editor (LSE) is a powerful and flexible text editor
designed specifically for software development. The VAX Source Code Analyzer
(SCA) is an interactive tool for program analysis.

These products are closely integrated; generally, you can invoke SCA through
LSE. LSE provides additional editing features that make SCA program analysis
more efficient. In conjunction with the VAX COBOL compiler, the two tools
provide a set of new enhancements supporting source code design and review.

LSE also provides the following software development features:

• Formatted language constructs, or templates, for most VAX programming
languages, including VAX COBOL. These templates include the keywords
and punctuation used in source programs, and use placeholders to indicate
locations in the source code where additional text is optional or required.

• Commands to compile, review, and correct compilation errors from within the
editor.

• Integration with VAX DEC/Code Management System (CMS). You can issue
CMS commands from within the editor to make source file management more
efficient.

Optional Programming Productivity Tools E-1

SCA performs the following types of program analysis:

• Cross-referencing, which supplies information about program symbols and
source files.

• Static analysis, which provides information on how subprograms, symbols,
and files are related.

LSE and SCA together, in conjunction with VAX language compilers, provide the
following software design features:

• Pseudocode support, which includes a new LSE placeholder for delimiting
text that describes algorithms or design decisions. This feature allows you to
write source code in shorthand, returning later to fill in code details.

• Placeholder processing, in which language compilers accept LSE placeholders
and pseudocode as valid program elements during compilation. This feature
allows you to test the validity of algorithms while programs are still in
shorthand form.

• Comment processing, which includes design comment information in the
SCA library. SCA performs cross-referencing and static analysis on this
information in response to user queries.

• View support, which provides a reverse-design facility. LSE commands
compress program code into overview line summaries. If you choose to edit
these overview lines, the program code reflects the modifications you make.

• A report tool, callable through LSE, which can print views, standard design
reports, and customized reports.

The following sections provide entry, exit, and language-specific information on
the combined use of LSE and SCA.

For More Information:

• On LSE and SCA-Guide to VAX Language-Sensitive Editor and VAX Source
Code Analyzer

• On CMS-Guide to VAX DEC I Code Management System

E.1.1 Preparing an SCA Library

SCA stores data generated by the VAX COBOL compiler in an SCA library. The
data in an SCA library contains information about all symbols, modules, and files
encountered during a specific compilation of the source. You must prepare this
library before you enter LSE to invoke SCA by following these steps:

1. Create a VMS directory for your SCA library. For example:

$ CREATE/DIRECTORY PROJ: [USER.LIBl]

2. Initialize and set the library with the SCA CREATE LIBRARY command. For
example:

$ SCA CREATE LIBRARY [.LIBl]

If you have an existing SCA library that has been initialized, you make its
contents visible to SCA by setting it with the SCA SET LIBRARY command.
For example:

$ SCA SET LIBRARY [.EXISTING_SCA_LIBARAY]

E-2 Optional Programming Productivity Tools

A message appears in the message buffer at the bottom of your screen,
indicating whether or not your SCA library selection succeeded.

3. Direct the VAX COBOL compiler to generate data analysis files by appending
the /ANALYSIS_DATA qualifier to the COBOL command. For example:

$ COBOL/ANALYSIS_DATA PG1,PG2,PG3

This command line compiles the input files PGl.COB, PG2.COB and
PG3.COB, and generates corresponding output files for each input file,
with the file types OBJ and ANA. SCA puts these files in your current default
directory.

4. Load the information in the data analysis files into your SCA library with the
LOAD command. For example:

$ SCA LOAD PG1,PG2,PG3

This command loads your library with the modules contained in the data
analysis files PG 1.ANA, PG2.ANA, and PG3.ANA.

5. Once you have prepared the SCA library, you enter LSE to begin an SCA
session. Within this context, the integration of LSE and SCA provides
commands that you can use only within LSE.

E.1.2 Starting and Terminating an LSE or an SCA Session

To invoke LSE, issue the following command at the DCL prompt:

$ LSEDIT USER.COB

To end an LSE session, press CTRUZ to get the LSE> prompt. If you wish to
save modifications to your file, issue the EXIT command. If you do not wish to
save the file or any modification to the file, issue the QUIT command.

To invoke SCA from LSE, type the SCA command that you wish to execute at the
LSE> prompt, as in the following syntax:

LSE> command [parameter] [/qualifier ...]

To invoke SCA from the DCL command line for the execution of a single
command, you can use the following syntax:

$SCA command [parameter] [/qualifier ...]

If you have several SCA commands to invoke, you may wish to use the SCA
subsystem to enter commands, as in the following syntax:

$SCA
SCA> command [parameter] [I qualifier ...]

Typing EXIT (or pressing CTRUZ) ends an SCA subsystem session and returns
you to the DCL level.

E.1.3 Compiling from Within LSE

To compile a completed VAX COBOL program, issue the following command at
the LSE prompt:

LSE> COMPILE

Optional Programming Productivity Tools E-3

To compile a VAX COBOL program that contains placeholders and design
comments, include the following qualifiers with the previous command:

LSE> COMPILE $/ANALYSIS_DATA/DESIGN=(PLACEHOLDERS, COMMENTS)

The /ANALYSIS_DATA qualifier causes the compiler to generate a data analysis
file containing source code analysis information and to provide this information to
the SCA library.

The /DESIGN qualifier instructs the compiler to recognize placeholders and
design comments as valid program elements. If you have also specified the
/ANALYSIS_DATA qualifier, the compiler includes information on placeholders
and design comments in the data analysis file.

LSE provides several commands to help you review errors and examine your
source code:

Command Key Binding

COMPILE None

REVIEW None

END REVIEW None

GOTO SOURCE CTRUG

NEXT STEP CTRLJF

PREVIOUS STEP CT RUB

{Down arrow
Up arrow

E.1.4 Notes on VAX COBOL Support

Function

Compiles the contents of the source buffer. You
can issue this command with the /REVIEW
qualifier to put LSE in REVIEW mode
immediately after the compilation.

Puts LSE into REVIEW mode and displays any
errors resulting from the last compilation.

Removes the buffer $REVIEW from the screen;
returns the cursor to a single window containing
the source buffer.

Moves the cursor to the source buffer that
contains the error.

Moves the cursor to the next error in the buffer
$REVIEW.

Moves the cursor to the previous error in the
buffer $REVIEW.

} Moves the cursor within a buffer.

This section describes VAX COBOL-specific information for the following LSE and
SCA features:

• Programming language placeholders and tokens

• Placeholder and design comment processing

E.1.4.1 Programming Language Placeholders and Tokens

LSE accepts keywords, or tokens, for all languages with LSE support, but the
tokens themselves are language-defined. For example, you can expand the
{IDENTIFICATION DIVISION .. } token only when using VAX COBOL.

Likewise, LSE provides placeholders, or prompt markers, for all languages
with LSE support, but the specific text or choices these markers call for are
language-defined. For example, you see the [DATA DIVISION ..] placeholder only
when using VAX COBOL.

E-4 Optional Programming Productivity Tools

NOTE

Keywords such as IF, OPEN, and WRITE can be tokens as well as
placeholders; therefore, any time you are in the VAX COBOL language
environment you can type one of these words and press CTRL/E to
expand the construct.

Remember that braces ({}) enclose required placeholders; brackets ([]) enclose
optionaj placeholders. When you erase an optional placeholder, LSE also deletes
any associated text before and after that placeholder.

You can use the SHOW TOKEN and SHOW PLACEHOLDER commands to
display a list of all VAX COBOL tokens and placeholders, or a particular token or
placeholder. For example:

LSE> SHOW TOKEN IF
LSE> SHOW TOKEN

{lists the token IF}
{lists all tokens }

To copy the listed information into a separate file, first issue the appropriate
SHOW command to put the list into the $SHOW buffer. Then issue the following
command:

LSE> GOTO BUFFER $SHOW
LSE> WRITE filename. filetype

To obtain a hard copy of the list, use the PRINT command at DCL level to print
the file you created.

E.1.4.2 Placeholder and Design Comment Processing

While all languages with LSE support provide placeholder processing, each
language defines specific contexts in which placeholders can be accepted as valid
program code. VAX COBOL defines contexts for ENVIRONMENT DIVISION,
DATA DIVISION, and PROCEDURE DIVISION placeholders. The following list
shows the valid contexts within a VAX COBOL ENVIRONMENT DIVISION.

• The entire ENVIRONMENT DIVISION

• The CONFIGURATION SECTION

• The INPUT-OUTPUT SECTION

• The SOURCE-COMPUTER paragraph

• The OBJECT-COMPUTER paragraph

• The SPECIAL-NAMES paragraph

• The FILE-CONTROL paragraph

• The I-0-CONTROL paragraph

• Any clause in the FILE-CONTROL paragraph

• Any clause in the SPECIAL-NAMES paragraph

• Any clause in the I-0-CONTROL paragraph

The following list shows the valid contexts within a VAX COBOL DATA
DIVISION.

• The entire DATA DIVISION

• The SUBSCHEMA SECTION

• The FILE SECTION

• The WORKING-STORAGE SECTION

Optional Programming Productivity Tools E-5

• The REPORT SECTION

• The DB subschema description

• A complete FD file description

• A complete SD file description

• A complete RD file description

• A complete record description

• A complete report group description

The following list shows the valid contexts within a VAX COBOL PROCEDURE
DIVISION.

• Any paragraph or section name

• Any paragraph or section name references in the GO TO, PERFORM, SORT,
MERGE, or ALTER statements

• Any conditional expressions referenced in the IF, EVALUATE, PERFORM, or
SEARCH statement

• Any complete statement

VAX COBOL accepts optional LSE placeholders in any context where optional
syntax is allowed. The following example shows some contexts in which LSE
placeholders and design comments might appear in the design of a VAX COBOL
program.

IDENTIFICATION DIVISION.
PROGRAM-ID. paycheck.
*+
* FUNCTIONAL DESCRIPTION:

*
* This program computes the amount of an employee's salary and
* prints a paycheck.

*
* FORMAL PARAMETERS:

*
*
*
*

name -
The name of the employee, lastname first

* IMPLICIT INPUT PARAMETERS:

*
* [description or none]

*
* IMPLICIT OUTPUT PARAMETERS:

*
* [description or none]

* * RETURN VALUE:

*
* [description or none]

* * SIDE EFFECTS

*
* [description or none]

*
* DESIGN:

*
*
*

[tbs]

* [logical properties]

*
* [other files required]

*

E-6 Optional Programming Productivity Tools

Command

EXPAND

UNEXPAND

* [other tags]
*-

DATA DIVISION.
WORKING-STORAGE SECTION.
01 weekly-salary PIC S9(5)V99.
LINKAGE SECTION.
01 name PIC X(20).

PROCEDURE DIVISION USING name.
PO.

«Fetch the employee's record.»

* Compute paychecks differently for salaried and hourly employees.
IF «employee is salaried»
THEN

«Use a fixed weekly salary from the employee's record.»
ELSE

«Fetch the number of regular and overtime hours worked.»
«Compute the weekly pay.»

END-IF

«Print the paycheck»
END PROGRAM paycheck.

VAX COBOL support for placeholder and design comment processing includes the
following language-specific stipulations:

• Pseudocode placeholders are designated with double right- and left-angle
brackets,<<>> or«».

• Comment processing is limited to the IDENTIFICATION DIVISION,
ENVIRONMENT DIVISION, and DATA DIVISION.

Placeholders are either optional or required. Required placeholders, which are
delimited by braces ({}), represent places in the source code where you must
provide program text. Optional placeholders, which are delimited by brackets
([]), represent places in the source code where you can either provide additional
constructs or delete the placeholder.

Additionally, when you use VAX COBOL with LSE, the expanded code might
include ellipses (...), or vertical bars (I). Syntax constructs followed by
ellipses indicate that the constructs can be repeated. A vertical bar between
constructs indicates that you must choose one of the constructs.

There are three types of LSE placeholders:

Type of
Placeholder

Terminal

Nonterminal

Menu

Description

Provides text that describes valid replacements for the placeholder

Expands into additional language constructs

Provides a list of options corresponding to the placeholder

LSE commands allow you to manipulate tokens and placeholders. These
commands and their default key bindings are as follows:

Key Binding

CTRL/E
PFl-CTRUE

Function

Expands a placeholder

Reverses the effect of the most recent
placeholder expansion

GOTO PLACEHOLDER/FORWARD CTRL/N Moves the cursor to the next placeholder

Optional Programming Productivity Tools E-7

Command Key Binding Function

GOTO PLACEHOLDER/REVERSE

ERASE PLACEHOLDER/FORWARD

UNERASEPLACEHOLDER

CTRL/P

CTR UK

PFl-CTRUK

Moves the cursor to the previous placeholder

Erases a placeholder

Restores the most recently erased placeholder

Moves the indicator down through a menu

Moves the indicator up through a menu

Selects a menu option

None

None

None

Down arrow

Up arrow

{
ENTER }
RETURN

E.1.5 LSE and SCA Examples

The following example shows how you can use the LSE tokens and placeholders
to create a PERFORM statement within a VAX COBOL program. The example
shows expansions of the following features:

• Data definition

• IF statement

Instructions and explanations precede each example, and an arrow (+-) indicates
the line in the code where an action has occurred. See Section E.1.4.2 for the
commands that manipulate tokens and placeholders.

When you use LSE to create a new VAX COBOL program, the initial string,
{program module} appears at the top of the screen. If you expand the initial
string, the following appears on your screen:

[Module level comments]
{program} ...

Delete the [Module level comments] placeholder and then expand the {program} ...
placeholder. When you finish, your screen should look as follows:

{IDENTIFICATION DIVISION .. }
[ENVIRONMENT DIVISION ..]
[DATA DIVISION ..]
[PROCEDURE DIVISION ..]
[contained program] ...
END PROGRAM {program-name}.
[program] ...

To begin to create the program EXAMPLE, expand the {IDENTIFICATION
DIVISION .. } placeholder and type EXAMPLE over the placeholder
{program-name}. At this point, your screen should look as follows:

IDENTIFICATION DIVISION. <--
PROGRAM-ID. EXAMPLE [IS [INITIAL] [COMMON] PROGRAM] [WITH IDENT
{module-vers-string}]. <--
[AUTHOR. [comment-entry]] <--
[INSTALLATION. [comment-entry]] <--
[DATE-WRITTEN. [comment-entry]] <--
[DATE-COMPILED. [comment-entry]] <--
[SECURITY. [comment-entry]] <--
[Routine level comments] <--
[ENVIRONMENT DIVISION ..]
[DATA DIVISION ..]
[PROCEDURE DIVISION ..]
[contained-program] ...
END PROGRAM {program-name}. <-­
[program] ...

E-8 Optional Programming Productivity Tools

E.1.5.1 Data Definition

This section provides an example of how to create a simple data definition.

Beginning where you were after typing EXAMPLE, erase the placeholders down
to [DATA DIVISION ..]. Then expand the [DATA DIVISION ..] placeholder.
Erase the placeholders down to [WORKING-STORAGE SECTION] and expand
it. Type 01 over the [record-description-entry] placeholder and expand 01. Your
screen should then look as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

DATA DIVISION. <-­
WORKING-STORAGE SECTION. <--
01 [{data-name}JFILLER] <--

[REDEFINES {other-data-item}]
[IS EXTERNAL]
[IS GLOBAL]
[PICTURE IS {character-string}]
[USAGE IS {COMPJCOMP-1JCOMP-2JCOMP-3JDISPLAYJINDEXJPOINTER}]
[SIGN IS {LEADINGJTRAILING} [SEPARATE CHARACTER]]
[SYNCHRONIZED [LEFTJRIGHT]]
[JUSTIFIED RIGHT]
[BLANK WHEN ZERO]
[VALUE IS {value-option}].

[record-description-entry] ...
[LINKAGE SECTION ..]
[REPORT SECTION ..]
[PROCEDURE DIVISION ..]
[contained-program] ...

END PROGRAM EXAMPLE.
[program] ...

Move to the {data-name} placeholder and type A-DATA-DEFINITION. Erase the
placeholders down to the [PICTURE IS {character-string}] placeholder and expand
it. Move to the {character-string} placeholder and type 999. Move to the [USAGE
IS {COMP I COMP-1 I COMP-2 I COMP-3 I DISPLAY I INDEX I POINTER}]
placeholder and expand it. At this point, your screen should look as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A-DATA-DEFINITION <--

PICTURE IS 999 <--
USAGE IS {COMPJCOMP-1JCOMP-2JCOMP-3JDISPLAYJINDEXJPOINTER} <-­
[SIGN IS {LEADINGJTRAILING} [SEPARATE CHARACTER]]
[SYNCHRONIZED [LEFTJRIGHT]]
[JUSTIFIED RIGHT]
[BLANK WHEN ZERO]
[VALUE IS {value-option}].

[record-description-entry] ...
[LINKAGE SECTION ..]
[REPORT SECTION ..]
[PROCEDURE DIVISION ..]
[contained-program] ...
END PROGRAM EXAMPLE.
[program] ...

The {COMP I COMP-1 I COMP-2 I COMP-3 I DISPLAY I INDEX I POINTER}
placeholder needs to be expanded to display a menu and select the DISPLAY
option. Erase the placeholders down to the [VALUE IS {value-option}] placeholder
and expand it. Type 3 over the {value-option} placeholder. Erase the placeholders
down to the [PROCEDURE DIVISION ..] placeholder. At this point, the record
definition is complete and your screen should look as follows:

Optional Programming Productivity· Tools E-9

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A-DATA-DEFINITION

PICTURE IS 999
USAGE IS DISPLAY <-­
VALUE IS 3. <--

[PROCEDURE DIVISION ..]
[contained-program] ...
END PROGRAM EXAMPLE.
[program] ...

E.1.5.2 IF Statement

This section demonstrates how to use LSE to create a simple VAX COBOL
statement. An IF statement is developed in the example that follows.

Move your cursor to the [PROCEDURE DIVISION ..] placeholder shown in the
previous example and expand it. Erase the placeholders down to the [section]
placeholder and expand it. Type SECTION-ONE. Erase the placeholders down tc
the {paragraph} placeholder and expand it. Type PARAGRAPH-1. At this point
your screen should look as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A-DATA-DEFINITION

PICTURE IS 999
USAGE IS DISPLAY
VALUE IS 3.

PROCEDURE DIVISION. <-­
SECTION-ONE SECTION. <-­
PARAGRAPH-1. <--

[sentence] ...
[paragraph] .. .
[section] .. .
[contained-program] ...

END PROGRAM EXAMPLE.
[program] ...

Move to the [sentence] ... placeholder, type IF, and then issue an EXPAND
command. Your screen should look as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A-DATA-DEFINITION

PICTURE IS 999
USAGE IS DISPLAY
VALUE IS 3.

E-10 Optional Programming Productivity Tools

PROCEDURE DIVISION.
SECTION-ONE SECTION.
PARAGRAPH-1.

IF {conditional-expression} <-­
THEN

{then-clause}
[ELSE {else-part}]
[END-IF]
[sentence] ...

[paragraph] .. .
[section] .. .
[contained-program] ...
END PROGRAM EXAMPLE.
[program] ...

Move to the {conditional-expression} placeholder and expand it. Choose
{arithmetic-expression} IS [NOT] {POSITIVE I NEGATIVE I ZERO} from the
menu that appears and expand it.

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 A-DATA-DEFINITION

PICTURE IS 999
USAGE IS DISPLAY
VALUE IS 3.

PROCEDURE DIVISION.
SECTION-ONE SECTION.
PARAGRAPH-1. .

IF {arithmetic-expression} IS [NOT] {POSITIVEINEGATIVEIZERO} <-­
THEN

{then-clause}
[ELSE {else-part}]
[END-IF]
[sentence] ...

[paragraph] .. .
[section] .. .
[contained-program] ...
END PROGRAM EXAMPLE.
[program] ...

Type A-DATA-DEFINITION over the {arithmetic-expression} placeholder. Move
to the [NOT] placeholder and delete it. Move the cursor to the
{POSITIVE I NEGATIVE I ZERO} placeholder and expand it. This brings up
a menu. Choose POSITIVE. Your screen should then look as follows, with the
cursor on the {then-clause} placeholder:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A-DATA-DEFINITION

PICTURE IS 999
USAGE IS DISPLAY
VALUE IS 3.

Optional Programming Productivity Tools E-11

PROCEDURE DIVISION.
SECTION-ONE SECTION.
PARAGRAPH-1.

IF A-DATA-DEFINITION IS POSITIVE <--
THEN

{then-clause}
[ELSE {else-part}]
[END-IF]
[sentence] ...

[paragraph] .. .
[section] .. .
[contained-program] ...

END PROGRAM EXAMPLE.
[program] ...

Expand the {then-clause} placeholder; this brings up a menu. Choose the
{statement} placeholder, which also brings up a menu. Type "DISPLAY
A-DATA-DEFINITION.". Erase through the [program] ... placeholder.

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A-DATA-DEFINITION

PICTURE IS 999
USAGE IS DISPLAY
VALUE IS 3.

PROCEDURE DIVISION.
SECTION-ONE SECTION.
PARAGRAPH-1.

IF A-DATA-DEFINITION IS POSITIVE
THEN <--

DISPLAY A-DATA-DEFINITION. <--
END PROGRAM EXAMPLE. <--

At this point the program is complete. You can then issue the LSE COMPILE
command. The LSE COMPILE command allows you to compile the contents of a
buffer without leaving the LSE session. When you exit the LSE editing session,
you can then link and run the program.

E.2 VAX COD/Plus

VAX COBOL supports CDD/Plus. CDD/Plus is a new version of the VAX Common
Data Dictionary (CDD) that is completely compatible with previous versions
while providing new features such as the ability to create field definitions and the
ability to track the use of dictionary entities.

This section provides information on using CDD/Plus with VAX COBOL, including
the following:

• An overview of data dictionaries

• An introduction to CDD/Plus concepts

• Information on creating, accessing, and referencing data definitions

• Information on creating compiled module entities and viewing CDD/Plus
relationships

E-12 Optional Programming Productivity Tools

E.2.1 Overview of Data Dictionaries

A data dictionary system provides you with the ability to create, analyze, and
administer metadata. Metadata describes data and describes how that data is
used. Metadata keeps track of the location, type, format, and size of the actual
data.

Data dictionaries usually provide the following features:

• Ensure the integrity of shared metadata and the procedures used to analyze,
maintain, manage, and design business metadata

• Provide a centralized repository for information management shops

• Offer a dynamic aid to software application development

The dictionary represents metadata in the· form of dictionary definitions. A
CDD/Plus dictionary definition can contain various attributes and can be related
to another CDD/Plus dictionary definition. Some commonly used dictionary
definitions are fields, records, and databases.

You can store and maintain the actual data values outside the data dictionary in
several ways; for example, with a database management system like RdbNMS, in
RMS files, in CMS libraries, or even off line.

Using a data dictionary enables many products to share the metadata and data.
The more you enforce dictionary usage, the more accurate and consistent your
data will be. Since many products can share the metadata stored in a data
dictionary, using a data dictionary also reduces data redundancy.

E.2.2 COD/Plus Features

CDD/Plus provides the following features:

• Compatibility with previous versions of the software

• Single user interface

• Distributed dictionary access

• Field-level data descriptions

• Relationships between dictionary definitions

• Pieces tracking

• Data security and integrity

• Call interface

E.2.3 COD/Plus Concepts

This section provides information on CDD/Plus concepts.

E.2.3.1 COD/Plus Dictionary Formats

CDD/Plus supports metadata stored in two ·formats: metadata that you
manipulate with the Common Dictionary Operator (CDO) and metadata that
you manipulate with the Dictionary Management Utility (DMU),

• CDO format

Optional Programming Productivity Tools E-13

Dictionaries created in CDO format can store not only definitions, but also
information about how the definitions are related. When you install
CDD/Plus you create a CDO dictionary on your system. You create and
manipulate definitions in CDO dictionaries through the CDO utility.

• DMU Dictionaries

CDD/Plus supports DMU dictionaries and the utilities that manipulate DMU
dictionary definitions-DMD, CDDL and CDDV. If a DMU dictionary does not
already exist on your system, CDD/Plus creates one during the installation
procedure. You create DMU dictionary definitions through the DMU utility;
however, you can read DMU dictionary definitions through either DMU or
CDO. Versions of CDD/Plus prior to Version 4.0 support dictionaries in DMU
format only.

VAX COBOL supports both formats.

For more information on data dictionary formats, refer to the CDD/Plus
documentation.

E.2.3.2 Dictionary Path Names

VAX COBOL allows two types of valid path name parameters when referring
to dictionary definitions. They differ in the method of specifying the dictionary
origin or root.

• Dictionary anchor path name

An anchor path name begins with a VMS directory specification as the
dictionary origin; it specifies the VMS directory that contains the dictionary.
This type of path name is valid for CDO-format dictionary definitions only.
For example:

MYNODE::DISK$2: [MYDIRECTORY]PERSONNEL.EMPLOYEES_REC

The node, device, and directory components are optional. For example, if the
dictionary is located at your current default directory, you can specify:

PERSONNEL.EMPLOYEES

• CDD$TOP path name

You use this to refer to either DMU- or CDO-format dictionary definitions.
The path origin is always CDD$TOP. This is known as the DMU naming
convention. For example:

CDD$TOP.PERSONNEL.EMPLOYEES_REC

E.2.3.3 Dependency Recording

When dependency recording is in effect, the CDO dictionary is updated at
compilation time to show what data entities and relationships defined therein
are used by the compiled module (in other words, the data dependencies created
by the compilation).

To take advantage of dependency recording, you must specify the
/DEPENDENCY_DATA qualifier in the COBOL command when you compile the
module. Additionally, the current CDD$DEFAULT must refer to definitions in
CDO format.

For more information on dependency recording, see Sections Section E.2.5 and
Section E.2.6.

E-14 Optional Programming Productivity Tools

E.2.3.4 Compiled Module Entities

When you compile a program with the /DEPENDENCY_DATA qualifier,
the compiler creates a construct known as a compiled module entity in the
CDO-format dictionary. A compiled module entity is created for each separately
compiled program. The name of the entity is the PROGRAM-ID name with
hyphens translated to underscores. Compiled module entities are put in the
dictionary associated with the current CDD$DEFAULT directory.

In addition, the compiler creates a temporary file entity for each .OBJ file
generated by the compilation. Each compiled module entity contains a pointer
to a file entity, and several compiled module entities can point to the same file
entity. At the end of the compilation, the file entity does not actually exist in the
dictionary. However, information correlating the compiled module entity and the
object file entity does exist in the dictionary.

E.2.3.5 Entities

An entity is a piece of information represented in the dictionary. A CDO entity
definition can contain various attributes, or characteristics, and can be related to
another CDO definition. You can define, store, and access many types of entity
definitions in CDO dictionaries. Some commonly used entity definitions include
fields, records, and databases.

Field Definitions

A field definition is the smallest unit of metadata that can be created and
accessed in the dictionary. Because each piece of metadata is a separately
addressable entity, VAX CDD/Plus is known as a field-level dictionary. Field
definitions typically include information about the data type and size, and other
optional attributes.

Field definitions can be simple data structures or complex subscripted structures.
They can be combined to form various record definitions and can be accessed
individually from several of the VAX layered products. You need store only one
copy of a particular definition that is used by various sources.

VAX CDD/Plus keeps track of dictionary definition usage at the field level.
Therefore, you can easily show which dictionary entities (such as records) make
use of a particular field definition. When a field definition is changed, you can
identify which entities may be affected by the change and which entities need to
be redefined in order to access the changed field. This ability to track entities is
known as pieces tracking. (See Section E.2.3. 7 .)

Record Definitions

A record definition is a dictionary entity that typically consists of a grouping of
field definitions. You can combine field and record definitions into complex record
structures.

Dictionary Directories

You organize your dictionary definitions by creating a dictionary directory
structure. Directories map each definition name to a certain location.

A directory is not a dictionary definition, but contains dictionary definitions and
other directories. Field and record definitions are grouped in named directories.
Dictionary directories are similar in concept to VMS directories; they allow you to
hierarchically organize and group the definitions in your dictionary. You can use
search lists and wildcards to manipulate data in directories.

Optional Programming Productivity Tools E-15

E.2.3.6 Relationships

CDO creates relationships when you connect two CDO data definitions in some
way.

For example, you can base the definition of a new field on a field definition
that already exists in a CDO dictionary. Similarly, you can relate a group of
field definitions to a record definition by including the field names in the record
definition. You do not need to define these relationships; CDO automatically
creates them for you when you create your field and record definitions in CDO.

You can establish a relationship between two CDO definitions in different CDO
dictionaries that are distributed on different devices on a single node, on different
nodes in a VAXcluster environment, or on nodes connected by a local or wide area
network. For example, you can create a record definition in one CDO dictionary
that includes field definitions contained in another.

VAX COBOL enables you to create relationships by using the
/DEPENDENCY_DATA qualifier when you compile your program. Creation and
use of these relationships is discussed in Sections Section E.2.5 and Section E.2.6.

E.2.3. 7 Pieces Tracking

Because CDD/Plus keeps track of all CDO dictionary usage, you can easily find
out which other dictionary entities make use of a particular field definition.
When you want to change a field definition, you can confirm which definitions the
change may affect and which entities you must redefine to access the changed
field definition.

For example, if you use a particular field definition in several different record
definitions, and the record definitions are accessed in turn by other records and
by an Rdb/VMS database, CDD/Plus can locate all the uses of the single CDO field
definition. You find out about these interrelationships with the SHOW commands.
The SHOW USES, SHOW USED_BY, and SHOW WHAT_IF commands help you
to keep track of dependent and interrelated definitions and to assess the impact
of changes.

You can control changes to your definitions in two ways: you can change the
original definition to take effect immediately, or you can create a new version and
allow users to incorporate the change over time. When you change or make a new
version of a definition, dependent definitions that do not automatically include the
change (such as Rdb/VMS databases) are flagged with an informational message
about the change. Messages allow you to warn users when a new version of
a dictionary definition exists or when inconsistencies may exist between the
dictionary and external copies.

E.2.3.8 Distributed Dictionary Access

Through the CDO, you can access metadata in CDO dictionaries and directories
that are located on different devices on a single node, on different nodes in a
VAXcluster, or on nodes connected by a local or wide area network

You can access metadata in all these places as a single logical dictionary, provided
that you have the appropriate access rights. In addition, you can access your
DMU dictionaries from CDO. This versatility affords you greater security for
sensitive parts of a dictionary and greater flexibility for storing large dictionary
files. ·

E-16 Optional Programming Productivity Tools

E.2.3.9 Data Security and Integrity

To protect dictionary files from unauthorized users, CDD/Plus provides the
database administrator with the tools to grant or deny dictionary definition access
rights. The CDD/Plus protection provisions for CDO definitions are consistent
with RdbNMS and VMS protection schemes.

Integrity, the completeness, accuracy, and consistency of definitions, is a critical
factor in the success of any dictionary operation. For this reason, CDD/Plus
provides journaling capabilities that automatically protect your dictionary
sessions from system failures.

E.2.3.1 O COD/Plus Call Interface

You can make direct calls to the CDD/Plus entry points from VAX COBOL
programs. Using the call interface allows you to directly access CDO dictionaries
without using the CDO utility. For more information on the call interface, refer
to the CDD/Plus documentation.

E.2.4 Creating Data Definitions

In CDD/Plus, you can create data definitions in both DMU and CDO format.
Definitions that are stored in CDO format enable you to create the definitions
on the field level. Additionally, you can create relationships between fields and
records and the programs that access the· definitions.

In the following example, the CDD/Plus directory is set to SALES and NAME,
STREET, CITY, STATE, and ZIP are created as fields using CDO:

CDO> SET DEFAULT SALES
CDO> DEFINE FIELD NAME DATATYPE IS TEXT SIZE IS 25 CHARACTERS.
CDO> DEFINE FIELD STREET DATATYPE IS TEXT SIZE IS 20 CHARACTERS.
CDO> DEFINE FIELD CITY DATATYPE IS TEXT SIZE IS 20 CHARACTERS.
CDO> DEFINE FIELD STATE DATATYPE IS TEXT SIZE IS 2 CHARACTERS.
CDO> DEFINE FIELD ZIP DATATYPE IS TEXT SIZE IS 5 CHARACTERS.

The fields can then be related to any record, by creating the record· and including
the required fields.

The following example creates two records in CDO format,
CUSTOMER_ADDRESS_RECORD and EMPLOYEE_ADDRESS_RECORD.
Both of these record definitions are located in the CDD/Plus directory SALES and
share the same field definitions of NAME, STREET, CITY, STATE, and ZIP.

CDO> DEFINE RECORD CUSTOMER_ADDRESS_RECORD.
cont> NAME.
cont> STREET
cont> STATE.
cont> ZIP.
cont> END RECORD.
CDO> DEFINE RECORD EMPLOYEE_ADDRESS_RECORD.
cont> NAME.
cont> STREET
cont> STATE.
cont> ZIP·
cont> END RECORD.

You can then access the record definitions from your VAX COBOL program using
the COPY FROM DICTIONARY statement.

For more information on creating data definitions, refer to the CDD/Plus
documentation.

Optional Programming Productivity Tools E-17

E.2.5 Accessing Data Definitions

You access record definitions stored in CDD/Plus from your VAX COBOL
program using the the COPY FROM DICTIONARY statement. Additionally,
you can reference data definitions in CDO dictionaries using the RECORD
DEPENDENCY statement.

E.2.5.1 Using the COPY FROM DICTIONARY Statement

The COPY FROM DICTIONARY statement enables you to copy data definitions
from CDD/Plus. When you use the COPY FROM DICTIONARY statement, the
data definitions are included in your program. For example, the following VAX
COBOL statements access the data definitions in Section E.2.4:

IDENTIFICATION DIVISION.
PROGRAM-ID. MASTER-FILE.
DATA DIVISION.
WORKING-ST,ORAGE SECTION.
COPY "DEVICE: [VMS_DIRECTORY]SALES.CUSTOMER_ADDRESS_RECORD" FROM DICTIONARY.
COPY "DEVICE: [VMS_DIRECTORY]SALES.EMPLOYEE_ADDRESS_RECORD" FROM DICTIONARY.

In the previous example, the device and VMS directory specified refer to the
device and VMS directory where CDD/Plus is located.

If you compiled this program with the /LIST and /COPY_LIST command line
qualifiers, the source listing would appear as follows:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. MASTER-FILE.
3 DATA DIVISION.
4 WORKING-STORAGE SECTION.
5 COPY "DEVICE: [VMS_DIRECTORY]SALES.CUSTOMER_ADDRESS_RECORD" FROM DICTIONARY.
6L *
7L *_CDD$TOP.SALES.CUSTOMER_ADDRESS_RECORD
8L *
9L 01 CUSTOMER_ADDRESS_RECORD.

lOL 02 NAME PIC X(25).
llL 02 STREET PIC X(20).
12L 02 CITY PIC X(20).
13L 02 STATE PIC X(2).
14L 02 ZIP PIC X (5).
15 COPY "NODE::DEVICE: [VMS_DIRECTORY]SALES.EMPLOYEE_ADDRESS_RECORD" FROM DICTIONARY.
16L *
17L *_CDD$TOP.SALES.EMPLOYEE_ADDRESS_RECORD
18L *
19L 01 EMPLOYEE ADDRESS RECORD.
20L 02 NAME - - PIC X (25).
21L 02 STREET PIC X(20).
22L 02 CITY PIC X(20).
23L 02 STATE PIC X(2).
24L 02 ZIP PIC X(5).

E.2.5.2 Using the RECORD DEPENDENCY Statement

The RECORD DEPENDENCY statement allows you to explicity create a
CDD/Plus relationship between a compiled module entity and a dictionary entity
in CDO format. When you use this qualifier, the entity is not copied into your
program and does not appear in the source listing.

The RECORD DEPENDENCY statement can only appear in the PROCEDURE
DIVISION and the statement is ignored unless you compile your program with
the /DEPENDENCY_DATA qualifier.

E-18 Optional Programming Productivity Tools

The following is an example of how to use the RECORD DEPENDENCY
statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. MASTER-FILE.

PROCEDURE DIVISION.
AOlOO.

RECORD DEPENDENCY "DEVICE: [VMS DIRECTORY] SALES.CUSTOMER ADDRESS RECORD"
TYPE IS "CDD$COMPILED_DEPENDS_ON" IN DICTIONARY.- -

When this statement is executed, a CDD/Plus relationship is
made between the compiled module entity MASTER_FILE and
the CUSTOMER_ADDRESS_RECORD. The relationship type is
CDD$COMPILED_DEPENDS_ON which indicates that the program
MASTER-FILE depends on CUSTOMER_ADDRESS_RECORD. This information
is stored in the dictionary.

For more information on the RECORD DEPENDENCY statement, refer to the
VAX COBOL Reference Manual.

E.2.6 Using the /DEPENDENCY _DATA Qualifier

The /DEPENDENCY_DATA qualifier enables you to create compiled module
entities in CDO-format dictionaries. To create compiled module entities you must:

• Enable dependency recording by compiling your program with the
/DEPENDENCY_DATA qualifier

• Direct the COBOL compiler to a CDO-format dictionary or a CDD/Plus
compatibility dictionary

If you use the /DEPENDENCY_DATA qualifier when compiling programs that
contain COPY FROM DICTIONARY statements, the following entities are
created:

• A compiled module entity in CDD/Plus.

• A temporary object file entity (this entity is not stored in the directory). The
name of this entity is the same as the object file name.

• A relationship between the compiled module entity and object file entity. The
type of this relationship is CDD$IN_FILE.

• A relationship between the compiled module entity and the records copied.
The relationship type would be CDD$COMPILED_DEPENDS_ON.

If you use the /DEPENDENCY_DATA qualifier when compiling programs that
contain RECORD DEPENDENCY statements, a relationship between the
compiled module entity and the entity specified in the RECORD DEPENDENCY
statement is created and stored in CDD/Plus. You can explicity state the
relationship type as either CDD$COMPILED_DEPENDS_ON or
CDD$COMPILED_DERIVED_FROM.

Optional Programming Productivity Tools E-19

E.2. 7 Viewing COD/Plus Relationships

You can view CDD/Plus relationships from CDO by using the following variations
of the CDO SHOW command:

• USED_BY

• USES

• WHAT_IF

SHOW USED_BY

The SHOW USED_BY command displays the CDO objects that are used by the
specified object. Using this command is helpful when you are planning to modify
data definitions. You can use this command to show the relationships between
fields and records. For example, if you use the SHOW USED_BY command for
the CUSTOMER_ADDRESS_RECORD created in Section E.2.4, the following
information would be displayed:

CDO> SHOW USED BY CUSTOMER ADDRESS RECORD
Members of DEVICE: [VMS_DIRECTORY]SALES.CUSTOMER_ADDRESS_RECORD;l
I DEVICE: [VMS DIRECTORY]NAME;4 (Type FIELD)
I I via CDD$DATA_AGGREGATE_CONTAINS
I DEVICE: [VMS DIRECTORY]STREET;l (Type FIELD)
I I via CDD$DATA_AGGREGATE_CONTAINS
I DEVICE: [VMS DIRECTORY]CITY;l (Type FIELD)
I I via CDD$DATA_AGGREGATE_CONTAINS
I DEVICE: [VMS DIRECTORY]STATE;l (Type FIELD)
I I via CDD$DATA_AGGREGATE_CONTAINS
I DEVICE: [VMS DIRECTORY]NAME;4 (Type FIELD)
I I via CDD$DATA_AGGREGATE_CONTAINS

This example shows that the record CUSTOMER_ADDRESS_RECORD uses the
fields NAME, STREET, CITY, STATE, and ZIP.

For more information on the SHOW USED_BY command, refer to the CDD/Plus
documentation.

SHOW USES

The SHOW USES command displays the CDO objects that use the specified
object. Using this command is helpful when you are planning to modify data
definitions. You can use this command to show the relationships between
dictionary entities and the compiled modules that access them. For example, if
you used the SHOW USES command for the CUSTOMER_ADDRESS_RECORD
created in Section E.2.4, and compiled the sample code in Section E.2.5.1 with the
/DEPENDENCY_DATA qualifier, the following information would be displayed:

CDO>SHOW USES CUSTOMER ADDRESS RECORD
Owners of DEVICE: [VMS DIRECTORY] SALES.CUSTOMER ADDRESS RECORD;l
I DEVICE: [VMS DIRECTORY]MASTER FILE;l (Type : CDD$COMPILED MODULE)
I I via CDD$COMPILED_DEPENDS:::~oN -

This example shows that the record CUSTOMER_ADDRESS_RECORD is used
by the program MASTER-FILE.

For more information on the SHOW USES command, refer to the CDD/Plus
documentation.

E-20 Optional Programming Productivity Tools

SHOW WHAT_IF

The SHOW WHAT_IF command displays the ancestor objects that might be
affected if the specified object is modified. Using this command is helpful when
you are planning to modify data definitions. You can use this command to
show the relationships between dictionary entities. For example, if you used
the SHOW WHAT_IF command for the CUSTOMER_ADDRESS_RECORD
created in Section E.2.4 and compiled the sample code in Section E.2.5.1, with the
/DEPENDENCY_DATA qualifier, the following information would be displayed:

CDO>SHOW WHAT IF CUSTOMER ADDRESS RECORD
Signaled owners of DEVICE:[VMS DIRECTORY]SALES.CUSTOMER ADDRESS RECORD;l
I DEVICE: [VMS DIRECTORY]MASTER FILE;l (Type : CDD$COMPILED MODULE)
I I via CDD$COMPILED_DEPENDS=ON -

This example shows that a change to CUSTOMER_ADDRESS_RECORD might
effect the program MASTER-FILE.

For more information on the SHOW WHAT_IF command, refer to the CDD/Plus
documentation.

E.2.8 VAX COBOL Support for COD/Plus Data Types

Table E-1 lists the data types supported by CDD/Plus and VAX. COBOL.

Table E-1: COD/Plus Data Types

Data Type CDD/Plus COBOL

UNSPECIFIED s u
SIGNED BYTE s w
UNSIGNED BYTE s w
SIGNED WORD s s
UNSIGNED WORD s w
SIGNED LONGWORD s s
UNSIGNED LONGWORD s s
SIGNED QUADWORD s s
UNSIGNED QUADWORD s w
SIGNED OCTWORD s w
UNSIGNED OCTWORD s w
F_FLOATING s s
F _FLOATING COMPLEX s w
D_FLOATING s s
D_FLOATING COMPLEX s w
G_FLOATING s w
G_FLOATING COMPLEX s w
H_FLOATING s w

S-The facility fully supports the data type.
W-The facility translates the data type into one it supports and issues diagnostics.
U-The data type is unsupported and the facility issues a fatal diagnostic.

(continued on next page)

Optional Programming Productivity Tools E-21

Table E-1 (Cont.): COD/Plus Data Types

Data Type CDD/Plus COBOL

H_FLOATING COMPLEX s w
UNSIGNED NUMERIC s s
LEFT OVERPUNCHED NUMERIC s s
LEFT SEPARATE NUMERIC s s
RIGHT OVERPUNCHED NUMERIC s s
RIGHT SEPARATE NUMERIC s s
PACKED DECIMAL s s
ZONED NUMERIC s w
BIT s w
DATE s w
TEXT s s
VARYING STRING s w
POINTER s s
VIRTUAL FIELD s w
SEGMENTED STRING s w

S-The facility fully supports the data type.
W-The facility translates the data type into one it supports and issues diagnostics.
U-The data type is unsupported and the facility issues a fatal diagnostic.

For more information on data types, refer to the CDD/Plus documentation.

E.3 VAX COBOL GENERATOR

The VAX COBOL GENERATOR is a screen-oriented program generator
that produces VAX COBOL source programs. You can use the VAX COBOL
GENERATOR as a productivity tool for the creation and maintenance of data
processing applications.

The VAX COBOL GENERATOR uses a graphical interface that allows you to
create or modify a program by choosing icons that represent the components
making up the program (such as menus and screens). From this input, the VAX
COBOL GENERATOR produces a VAX COBOL source program that can be used
like any other source program.

The VAX COBOL GENERATOR can also be used for rapid prototyping to produce
a program that can later be expanded and refined to become a production
application. This makes the VAX COBOL GENERATOR an effective and efficient
programming tool for producing and maintaining VAX COBOL programs.

The VAX COBOL GENERATOR can produce programs that call subprograms
written in other VMS langm;1ges, as well as many Run-Time Library routines and
system services. Similarly, programs produced by the VAX COBOL GENERATOR
can be called by other VMS products adhering to the VAX Calling Standard.

The default screen interactions utilize the VAX COBOL extensions to the
ACCEPT and DISPLAY statements. However, the VAX COBOL GENERATOR
can also produce screen applications that use other screen packages, such as the
VAX Forms Management System (FMS).

E-22 Optional Programming Productivity Tools

To define an application in the VAX COBOL GENERATOR environment, you
select and place icons (representing various parts of the application) in the screen
work area for expansion. You define data and procedural flow by connecting
these parts together. The VAX COBOL source code generated is then compiled
by the VAX COBOL language processor and linked by the VMS Linker. These
applications can then be executed on any valid VMS operating system.

E.3.1 VAX COBOL GENERATOR Features

The following list briefly describes some of the VAX COBOL GENERATOR's
major features:

• Integrated COBOL programming environment

From the VAX COBOL GENERATOR you can access other software (such as
VAX Rdb/VMS and VAX CDD/Plus), and create forms and reports without
leaving the GENERATOR's development environment.

• Sophisticated graphic interface

The VAX COBOL GENERATOR implements a sophisticated graphic interface.
This feature allows you to define and manipulate program parts and
relationships by using icons to create nodes. You then connect the nodes
using lines showing data and procedural flow and give them names.

• Top-down program design

The GENERATOR enables you to create programs starting at the highest
level. This approach promotes logical and orderly development. The VAX
COBOL GENERATOR supports this by allowing you to define structural
nodes that represent a complex function. You can then decompose this
representation into parts.

It is not necessary to expand all of the structural nodes for the GENERATOR
to produce COBOL programs. This feature allows you to evaluate partially
completed programs while work continues on the development of unexpanded
structural nodes.

• Single points of control for data used

The VAX COBOL GENERATOR provides you with a data dictionary to store
common data definitions. This provides a single point of control so that data
elements used in single, or multiple, applications need only be changed once.
These applications can then be regenerated incorporating the changes.

Optionally, you can use CDD/Plus record definitions created by the
GENERATOR and stored in CDD/Plus.

Libraries are another single point of control for changes. Form, file, local
storage, report, and procedure node definitions, as well as a data dictionary,
can be stored in a library and referenced from multiple programs.

• Comprehensive on-line assistance

Help information is· available at the DCL level, as well as from within the
GENERATOR at all times.

• Automatic documentation of the application design

The MAP feature provides you with an overall map of the program.
Information contained in the map includes node locations, node types,
and errors that occurred during the last generation. You can print out a copy
of the map using the PRINT MAP command, and use it as a reference.

Optional Programming Productivity Tools E-23

The GENERATE DOCUMENT command automatically creates a text file of
all the. information about the nodes in the program or the library. This file
can also be printed out and used as a reference.

• Ability to document the source code of the generated program

VAX COBOL source code generated by the VAX COBOL GENERATOR is
automatically documented in the GENERATOR's environment, which also
allows you to add your own comments to the code. The GENERATOR prompts
you for comments during the development cycle.

For more information on the VAX COBOL GENERATOR, refer to the VAX
COBOL GENERATOR documentation.

E.4 VAX Data Base Management System {VAX DBMS)

VAX DBMS is a multiuser general-purpose CODASYL-compliant database
management system. VAX DBMS is used for accessing and administrating
databases ranging in complexity from simple hierarchies to complex networks
with multilevel relationships. VAX DBMS supports full concurrent access in a
multiuser environment without compromising the integrity and security of your
database.

VAX DBMS features include the following:

• Full concurrent access in a multiuser environment

• Record locking and journaling

• Automatic transaction and verb rollback

• Multiple-database support (one or more databases for processing)

• Online backup

• Integration with CDD/Plus

• Schema, subschema, storage schema, and security schema data definition
languages (DDLs)

For more information, refer to the VAX DBMS documentation.

E.5 VAX DEC/Test Manager

VAX DEC/rest Manager helps test software during development and
maintenance. This tool automates the organization, execution and review of
tests and allows several developers to use one set of tests at the same time.

With DEC/rest Manager you can describe your tests, organize them. by assigning
them to groups, and choose combinations of tests to run by test name or by group.
DEC/rest Manager executes the tests selected and then compares the results
with the expected results.

For more information, refer to the VAX DEC/rest Manager documentation.

E-24 Optional Programming Productivity Tools

E.6 VAX DEC/Code Management System {CMS)

The VAX. DEC/Code Management System (CMS) is a program librarian for
software development and evolution. It is comprised of a set of commands that
enable you to manage files of an ongoing project.

CMS enables you to do the following tasks:

• Store ASCII text files in a project library

• Retrieve previous generations of files stored in CMS

• Obtain a report of file modifications, including when, why, and by whom the
modifications were made

• Determine the origin of each line of a file, either as an annotated listing or as
comments in the file

• Manage concurrent modifications and merge separately developed
modifications

• Store related files together as a single element

• Relate the generation of one element to the corresponding generations of
other elements

For more information, refer to the VAX. DEC/Code Management System
documentation.

Optional Programming Productivity Tools E-25

A
Abort function, 3-4
ACCEPT statement

EDITING phrase, 17-31
Access

database key identifier, 15-3
record search, 15-3
set owner, 15-3

Access mode
BATCH, 15-39
changing, 8-13
CONCURRENT, 15-39
default, 8-13
dynamic, 8-12
EXCLUSIVE, 15-39
lock, 15-41
PROTECTED, 15-39
random, 8-12
sequential, 8-12
UPDATE, 15-40

Address expression, 3-1
/ANALYSIS qualifier

in compile command, 2-8
I ANAL YSIS_DATA qualifier

use with PDF, E-4
ANSI format, 2-2

See Developing programs
ANSI-to-terminal

command string, 19-2
format conversion, 19-1

/ANSl_FORMAT qualifier
in compile command, 2-2, 2-8

ANY clause, 15-59
APPLY clause, 8-2, 20-S
Argument-passing mechanisms

BY CONTENT, 18-8
BY DESCRIPTOR, 18-9
BY OMITIED, 18-9
BY REFERENCE, 18-8
BY VALUE, 18-8

Arguments
optional, 18-28, 18-33

Arithmetic expressions
processing, 4-12

Arithmetic operations
results of rounding off, 4-9

Arithmetic statements, 4-8, 4-12
advantages over COMPUTE, 20-4
common errors, 4-11
intermediate results, 4-9
with GIVING phrase, 4-11

Arithmetic statements (Cont.)
with SIZE ERROR phrase, 4-10

ASSIGN DCL command, 2-44
At end condition

planning for, 12-1
AT END phrase, 15-56, 15-59
Attributes

COBOL program, 18-4
/AUDIT qualifier

in compile command, 2-9

Index

Automatic ROLLBACK, 15-42
AUTOMATIC set membership class, 15-46
Auxiliary keypad keys, 17-21

B
BATCH

access mode, 15-39
BATCH RETRIEVAL

allow mode, 15-40
usage mode, 15-40

BATCH UPDATE
allow mode, 15-40
usage mode, 15-40

Binary search, 6-18 to 6-25
function and results, 6-20
requirements for, 6-19
with AT END statement, 6-20
with keys, 6-20

BIND command, 15-59
Bottom margin, 16-15
/BRIEF qualifier

in LINK command, 2-31
Byte boundaries

effects on storage allocation, 6-8

c
COBOL-81 Subset Flagger, C-1 to C-11

alignment of COMP data items, C-9, C-11
flagging procedures, C-2
producing compatible COBOL-81 source programs,

C-1
/STANDARD=PDP11 qualifier, C-1, C-2
unsupported language elements, C-3, C-8
VAX COBOUCOBOL-81 differences, C-2, C-8

Calling
procedure, 18-3
sequence examples, 18-39

Calling subprograms

See lnterprogram communication

lndex-1

CALL statement
nesting, 18-6
use of, 18-5

Cascade delete, 15-49
COD

See COD/Plus
CDD$DEFAULT, 15-4
CDD$TOP, 15-2
COD/Plus, 15-4, 15-8, E-12 to E-22

accessing data definitions
creating compile module entities, E-19
distributed dictionary access, E-16
entities, E-15
field definitions, E-15
integrity, E-17
path names, E-14
pieces tracking, E-16
protection, E-17
record definitions, E-15
relationships, E-16
using the /DEPENDENCY_DATA qualifier, E-19

Cell
contents, 10-1
location in the file, 10-1
numbering, 10-1
relative record number, 10-1
size, 10-1

Character attributes for terminal screen, 17-8
/CHECK qualifier

in compile command, 2-9
Class, 5-5
CLASS-NAME, 5-5
Class tests, 5-4

numeric, 4-4
CMS

integration with LSE, E-1
COB$SWITCHES, 2-43
COBOL, 1-1

run-time errors, 2-43
COBOL command, 2-4, 2-6 to 2-15

qualifiers, 2-7 to 2-15
COBOL data manipulation language

See Data manipulation language
COBOL GENERATOR, E-22
Code Management System, E-25
Command line

common VAX COBOL errors, 2-16
Command qualifiers

with the COBOL command, 2-4, 2-6
with the LINK command, 2-4

COMMIT RETAINING statement, 15-41
COMMIT statement, 15-3
Communication

See lnterprogram communication
contained programs, 18-12

Comparing operands, 5-4
Compilation summary, 2-25
Compile

listing, 2-17
Compile command qualifiers

/ANALYSIS, 2-8
/ANSl_FORMAT, 2-2, 2-8
/AUDIT, 2-9
/CHECK, 2-9
/CONDITIONALS, 2-9
/COPY _LIST, 2-10

lndex-2

Compile command qualifiers (Cont.)
/CROSS_REFERENCE, 2-10
/DEBUG, 2-10
/DEPENDENCY_DATA, 2-11
/DESIGN, 2-11
/DIAGNOSTICS, 2-11
/FIPS[=74], 2-11
/FLAGGER, 2-12, D-1
/INSTRUCTION_SET, 2-13, D-3

See also /INSTRUCTION_SET qualifier
/LIST, 2-13
/MACHINE_CODE, 2-13
/MAP, 2-13
/OBJECT, 2-14
/SEQUENCE_CHECK, 2-14
/STANDARD, 2-14
/TRUNCATE, 2-15
/WARNINGS, 2-15

Compiler error messages, 2-16, 2-17
Compiler implementation limitations, A-1
Compiling

/DEBUG, 3-3
VAX COBOL DML program, 15-4

Compiling programs, 2-4, 2-6
conditional compilation lines, 2-16

Concatenating items
nonnumeric data, 7-1

CONCURRENT
access mode, 15-39
allow mode, 15-40

CONCURRENT RETRIEVAL
usage mode, 15-40

CONCURRENT UPDATE
usage mode, 15-40

Conditional compilation lines, 2-16
Conditional expression

database, 15-4
/CONDITIONALS qualifier

in compile command, 2-9
Condition values

returned, 18-34
signaled, 18-34

CONNECT statement, 15-3
usage, 15-46

Contained program
COMMON clause, 18-13
communication with, 18-12
reading a listing, 2-28

Contained subprogram, 18-1
CONTENT

argument-passing mechanism, 18-8
CONTINUE statement, 2-45
Control footing, 16-3
Control heading, 16-3
CONTROL KEY IN phrase, 17-21
Controlling index, 6-19, 6-20
Conventional Report

logical page, 16-7
page advancing, 16-8

CONVERSION clause, 17-10, 17-13
COPY FROM DICTIONARY statement, E-18
COPY statement, 2-5
/COPY_LIST qualifier, 2-17

in compile command, 2-10

Creating an executable image
/CROSS_REFERENCE qualifier, 2-17, 2-20

/CROSS_REFERENCE qualifier (Cont.)
in compile command, 2-1 O
in LINK command, 2-31

CTRUC, 3-4
CTRUY, 3-4

interrupting debugger, 3-4
CTRUZ

exiting debugger, 3-4
use with LSE, E-3

Currency indicator, 15-58
affected by, 15-30
as pointer, 15-34
changing the value of a, 15-30
current of realm, 15-30
current of record type, 15-32
current of set type, 15-31
freeing, 15-50
navigation aid, 15-33
null, 15-30
place markers, 15-30
realm, 15-30
record type, 15-32
run unit, 15-32
saving, 15-34
set type, 15-31

Currency indicators, 15-30, 15-38
Current of set type, 15-31

D
Database

See also Keeplist and DML statements
administrator (OBA), 15-4, 15-9
areas, 15-29
CDD$DEFAULT, 15-4
CDD$TOP, 15-4
COD/Plus, 15-8
COMMIT RETAINING statement, 15-41
COMMIT statement, 15-41
compiling a VAX COBOL DML program, 15-4

using the /MAP qualifier, 15-5
conditional expression, 15-4
CONNECT statement, 15-46
copying database records, 15-5
creating, 15-6
creating a VAX COBOL DML program, 15-4
creating new record relationships, 15-96
creating records, 15-3
currency indicator

freeing, 15-50
example, 15-51

null, 15-30
record type, 15-32
run unit, 15-32
Run unit, 15-30
saving, 15-34

currency indicators, 15-30, 15-33
example, 15-33
realm, 15-30
See also Currency indicators, 15-30
set type, 15-31

Database Control System, 15-5
Data Definition Language, 15-4
data item, 15-8
data manipulation language, 15-2

See also DML
DBQ utility, 15-59, 15-60

Database (Cont.)
DB statement, 15-5
debugging DML programs, 15-58

sample session, 15-60
definition of, 15-6
degree of record locking, 15-8
deleting records, 15-3, 15-48
demonstration package, 15-1

creating, 15-2
loading, 15-2

designing, 15-6
DISCONNECT statement, 15-46
entry points into, 15-15
ERASE ALL statement, 15-48
ERASE statement, 15-49
erasing records for, 15-3
error-handling routines, 15-56
establishing a known currency condition, 15-50
exception conditions, 15-56

AT END phrase, 15-56
ON ERROR phrase, 15-56
translating DB-CONDITION values, 15-58
USE statement

example, 15-57
FETCH NEXT, 15-53
FETCH statement

qualifying, 15-55
FIND ALL statement, 15-53
finding records, 15-3
FIND NEXT, 15-53
FIND statement

qualifying, 15-55
forked sets, 15-16
IF EMPTY clause, 15-44
keeplists, 15-36
key, 15-8
key identifier access, 15-3
linking a VAX COBOL DML program, 15-5
locking out other users, 15-40
logical division, 15-29
maintaining, 15-6
many-to-many relationships

records of the same type, 15-20
two types of records, 15-18

MEMBER test condition, 15-43
minimizing lock out, 15-40
modifying members of sorted sets, 15-44
modifying records, 15-3
multiset relationships, 15-18

example, 15-92, 15-96
NEW.ROO, 15-2
one-to-many relationsships

records of the same type, 15-25
OWNER test condition, 15-43
physical division, 15-29
place markers, 15-3
processing control, 15-2
program examples, 15-75

accessing database information, 15-89,
15-91

backing up a database, 15-83
creating relationships, 15-92, 15-96
displaying database information, 15-89,

15-91
populating a database, 15-75

programming techniques, 15-39
READY usage modes, 15-39

lndex-3

Database
programming techniques

READY usage modes (Cont.)
See also READY statement, Access

mode, and Usage mode
protected access, 15-40
quiet points, 15-38

figure, 15-38
reading a subschema map listing, 15-68

example, 15-69, 15-73
read-only access, 15-40
realms, 15-29
RECONNECT statement, 15-47
record, 15-8
record deleting, 15-3
record locking, 15-29, 15-40

See also Record locking
individual records, 15-41
READY statement, 15-41
realm level, 15-41
record level, 15-41
releasing locks, 15-52

record retrieval, 15-3
record transfers, 15-47
record types, 15-9
RETAINING clause, 15-34

example, 15-34
ROLLBACK statement, 15-41
running a VAX COBOL DML program, 15-5
run unit, 15-29

concurrent, 15-40
schema, 15-6
set occurences, 15-12
set relationships, 15-13, 15-14
sets, 15-12
set types, 15-9
simple sets, 15-14, 15-15
simultaneous access to, 15-40
storage address of the record, 15-8
storage schema, 15-6
stream, 15-7

multiple streams, 15-7
subschema, 15-6
SUB-SCHEMA section, 15-5
system-owned sets, 15-15
testing DML programs, 15-58

sample session, 15-60
transaction, 15-38
transactions

figure, 15-38
unrestricted access, 15-40
updating records, 15-3
user work area, 15-5

Database Control System (DBCS), 15-2, 15-32
major functions, 15-5

Database Query utility (DBQ), 15-59
Data definition, 15-2
Data Definition Language, 15-4

DDL utility, 15-4
Data Definition Language, 15-2
Data dictionary

See also COD/Plus
metadata, E-13
overview, E-13

Data Division
accessing another program's, 18-8

lndex-4

Data items
index, 6-17

Data manipulation language (DML), 15-2
See also DML statements

Data movement, 5-5, 5-11
Data-name

subscript with, 6-16
Data names map, 2-21
Data organization, 5-1
Data Storage Description Language (OSOL), 15-6
Data testing, 5-3, 5-5
Data types

scaling and mixing, 20-4
DB-CONDITION, 15-4

translating values, 15-56
DBCS

See Database Control System
DB-CURRENT-RECORD-ID, 15-4
DB-CURRENT-RECORD-NAME, 15-4
DBG$PROCESS, 3-3
Dbkey, 15-8

value, 15-37
DBM$SIGNAL, 15-58
DBMDEMO, 15-2
DBMS, E-24
DB statement, 15-4, 15-5, 15-8, 15-59
DCL commands

ASSIGN, 2-44
CONTINUE, 2-45
DEASSIGN, 2-45
DEFINE, 2-44
for program development, 2-2 to 2-29

DDL utility
See Data Definition Language

DEASSIGN DCL command, 2-45
Debugger, 3-1 to 3-15, B-5

command summary, 3-5
compiling and linking with the Debugger, 3-3
conepts, 3-1
features, 3-2
Getting started, 3-2
Help, 3-2
initialization, 3-3
interrupt, 3-4
issuing commands, 3-4
prompt (DBG>), 3-3
sample debugging session, 3-1 O
starting and ending a session, 3-3
VAX COBOL support, 3-9

Debugging, 3-1 to 3-15
LINKING with the Debugger, 2-32
sample session, 3-11 to 3-15, 15-60
use of desk-checking, B-5
use of faulty data, B-5
using conditional compilation lines, 2-16
VAX COBOL DML programs, 15-58

Debugging configuration
default, 3-3

/DEBUG qualifier, 3-3
in compile command, 2-10
in LINK command, 2-32

DEC/CMS
See Code Management System

Decimal truncation
reasons for avoiding, 20-4
/TRUNCATE compiler qualifier, 20-4

Declarative procedures
EXTEND, 12-8
file name, 12-8
INPUT, 12-8
INPUT-OUTPUT, 12-8
OUTPUT, 12-8
samples, 12-9
using, 12-7

DECffest Manager, E-24
DECwindows Compiler Interface, 2-6
DEFAULT phrase, 17-18
Default user object module libraries, 2-36
DEFINE DCL command, 2-44
Defining tables, 6-1 to 6-11
/DEPENDENCY _DATA qualifier

in compile command, 2-11
using, E-19

DESCRIPTOR
argument-passing mechanism, 18-9

/DESIGN qualifier
in compile command, 2-11
use with PDF, E-4

Desk-checking, B-5
Detail lines, 16-3
Developing programs, 2-1, 2-45

VAX COBOL GENERATOR
choosing a reference format, 2-1, 2-2

ANSI format, 2-2
terminal reference format, 2-1, 2-2

converting reference format, 2-2
creating a program, 2-5
editors, 2-5
reference format, 2-2

/DIAGNOSTICS qualifier
in compile command, 2-11

DISCONNECT statement, 15.;;.3, 15-46
DIVIDE statement, D-6
DML

See Data manipulation language
See DML statements

DML statements, 15-2
COMMIT, 15-3, 15-41
CONNECT, 15-3, 15-46
DISCONNECT, 15-3, 15-46
ERASE, 15-3, 15-48
FETCH, 15-3, 15-52
FIND, 15-3, 15-52
FREE, 15-3, 15-36, 15-50
GET, 15-3
KEEP, 15-3, 15-36
MODIFY, 15-3
READY, 15-29
RECONNECT, 15-3, 15-47
ROLLBACK, 15-3, 15-42
STORE, 15-3

DMU Utility, 15-1
DSDL

See Data Storage Description Language
DUPLICATE clause, 15-59
DWCI

See DECwindows Compiler Interface

E
Edited moves

nonnumeric data, 5-8
Editing

numeric symbols, 4-7
EDITING phrase, 17-31
Editors, 2-3

See also Developing programs
LSE, E-1 to E-12

Elementary data items
nonnumeric, 5-2

Elementary moves
nonnumeric, 5-7
numeric edited, 4-7

Empty member record, 15-18
END PROGRAM, 2-28
Entry

SUB-SCHEMA SECTION, 15-4
Entry points

into the database, 15-15
ERASE statement, 15-3

usage, 15-48
Erasing

a line on the terminal screen, 17-3
database records, 15-3
entire terminal screen, 17-3
to end of line on terminal screen, 17-3
to end of terminal screen, 17-3

Error messages, B-1 to B-17
compiler messages, B-12
REFORMAT Utility, 19-4

Errors
common VAX COBOL command line, 2-16
1/0, 8-7
in arithmetic statements, 4-11
in MOVE statements, 4-8
in size, 4-10
inspecting data, 7-33
nonnumeric MOVE statements, 5-1 O
run-time, B-1

sample error, B-1
run-time input/output, B-7
STRING statements, 7-5
unstringing data, 7-16

EXCLUSIVE
access mode, 15-39
allow mode, 15-40

EXCLUSIVE RETRIEVAL
usage mode, 15-40

EXCLUSIVE UPDATE
usage mode, 15-40

/EXECUTABLE qualifier
in LINK command, 2-32

Execution
interrupting with CTRUC, 3-4

Execution control
transferring, 18-5

EXIT debugger command, 3-4
EXIT PROGRAM statement, D-10

use of, 18-5
Expression processing

arithmetic, 4-12
EXTERNAL clause

use of, 18-4

lndex-5

F
FETCH NEXT statement loop, 15-53
FETCH statement, 15-3

AT END phrase, 15-56
ON ERROR phrase, 15-56
usage, 15-52

File
See also, Indexed file, Relative file, and Sequential

file
See also Access mode
See also Record
ACCEPT and DISPLAY statements, 8-16
ACCEPT statement, 8-18
backing up files, 8-16
choosing file organization, 8-11
choosing record mode access, 8-11
connector, 8-8
data record formatting differences, 8-16
data type differences, 8-15
defining a disk, 8-8
defining a magnetic tape, 8-9
description entry, 8-8
design considerations, 8-7
device independence, 8-9

using logical names, 8-10
DISPLAY statement, 8-18
fixed-length records, 8-4
handling, 8-1 to 8-18

identifying a file, 8-8
logical names, 8-17
low-volume 1/0, 8-16

logical names, 8-16
mnemonic names, 8-16
multiple openings in same program, 8-14
opening and closing a, 8-14
optimization, 20-S
print-controlled, 8-7
processing, 8-1
record access modes, 8-12
record management, 8-1
record size, 8-3
sharing

See File sharing
SPECIAL-NAMES paragraph, 8-16
variable-length records, 8-5

File attributes
defining, 8-2

File description, 8-2, 8-4, 8-8, 12-3 to 12-4
indexed files, 11-1
relative files, 10-4
sequential files, 9-3

File names map, 2-20
File.organization, 8-1

See also, Indexed file, Relative file, and Sequential
file

advantages and disadvantages, 8-12
default, 8-12
indexed, 8-11
relative, 8-11
sequential, 8-11
specifying, 8-2

File sharing, 13-1 to 13-18
See also Protecting records and Record locking
checking file operations, 13-9
concepts, 13-1

lndex-6

File sharing (Cont.)
describing types of access streams, 13-5
determining the access mode, 13-4
ensuring successful file sharing, 13-3
indicating the access allowed to other streams,

13-5
specifying OPEN EXTEND, 13-11

with a shared indexed file, 13-12
with a shared relative file, 13-11
with a shared sequential file, 13-11

summarizing related file-sharing criteria, 13-6
using file status codes, 13-9
using RMS special registers, 13-9
using VMS file protection, 13-3

File specification
how RMS builds a COBOL, 8-14
keeping as a variable, 8-9
overriding at run-time, 8-9
variable, 8-9

File Status values
for RMS, 12-5
for VAX COBOL, 12-3

FIND ALL option, 15-53
FIND NEXT statement loop, 15-53
FIND statement, 15-3

AT END phrase, 15-56
ON ERROR phrase, 15-56
usage, 15-52

/FIPS[=74] qualifier
in compile command, 2-11

FIXED set membership class, 15-47
/FLAGGER qualifier, 2-12, D-1 to D-3

description, D-1
FIPS levels, D-2
options, D-2

HIGH_FIPS, D-2
INTERMEDIATE_FIPS, D-2
MINIMUM_FIPS, D-2
OBSOLETE_FIPS, D-2
OPTIONAL_FIPS, D-2
REPORT_WRITER, D-2
SEGMENTATION, D-2
SEMENTATION_ 1, D-2

Footing area, 16-15
FOR DB-EXCEPTION statement

usage, 15-57
Forked set, 15-16
Format

ANSI, 2-2
conversion of ANSI to terminal, 19-1
conversion of terminal to ANSI, 19-2
terminal, 2-1

Form control bytes, 8-7
Forms

See Video forms
FREE statement, 15-3, 15-36

usage, 15-50
/FULL qualifier

in LINK command, 2-32
Function calls

for system routines, 18-33

G
GET statement, 15-3
GLOBAL clause

definition of, 18-14

GLOBAL clause (Cont.)
sharing database resources with, 18-15
sharing data with, 18-14
sharing files with, 18-15
sharing other resources, record-name, 18-15
sharing other resources, report-name, 18-16
usage, 18-14

GO TO DEPENDING
advantages of using, 2Q-4

GROUP INDICATE clause, 16-85
Group items, 5-2

nonnumeric, 5-2
Group moves

nonnumeric data, 5-7

H
Help

online, 3-2
HELP debugger command, 3-2

1/0, errors, B-7
1/0 exception conditions handling, 12-1 to 12-1 o
1/0 handling

AT END condition, 12-1
INVALID KEY condition, 12-2
using declarative procedures, 12-7
using file status values, 12-3

IF EMPTY clause, 15-44
IF OWNER clause, 15-44
/INCLUDE qualifier

in LINK command, 2-33
Index data item, 6-18

declaration, 6-17
modifying with SET, 6-17
where defined, 6-3

Indexed file, 11-1 to 11-14
See also Optimization
access modes, 11-3
alternate key, 11-1
at end condition, 12-1
creating, 11-4
defining, 11-3
design considerations, 11-2
File Status values, using, 12-3
110 statements, 11-3
index, 11-2
invalid key condition, 12-2
INVALID KEY condition, 12-2
key, 11-1

length, 11-1
location, 11-1

open modes, 11-3
optional key, 11-1
organization, 11-1

advantages, 8-12
disadvantages, 8-12

population, initial, 11-5
primary key, 11-1
reading, 11-6

dynamically, 11-9
randomly, 11-7
sequentially, 11-6

reorganizing, 11-5
updating, 11-10

Indexed file
updating (Cont.)

dynamically, 11-14
randomly, 11-12
sequentially, 11-10

Indexes, 6-1
initializing, 6-17

Indexing
advantages, 2Q-4
efficiency order, 2Q-4

Indexing compared with subscripting, 2Q-4
INITIAL clause

use of, 18-4
Initializing

tables, 6-11 to 6-14
INSERTION option, 15-3
Inspecting data

active/inactive arguments, 7-22
BEFORE/AFTER phrase, 7-18
finding a match, 7-23
implicit redefinition, 7-19
INSPECT operation, 7-21
interference in tally argument list, 7-26
replacing phrase, 7-29
scanner setting, 7-22
tally argument, 7-24
tally counter, 7-24
TALLYING phrase, 7-24

INSPECT statement, 7-17 to 7-33, D-8
AFTER phrase, 7-18
BEFORE phrase, 7-18
common errors, 7-33
CONVERTING phrase, 7-33
function, 7-17
how the INSPECT statement inspects data, 7-21
implicit redefinition, 7-19
REPLACING phrase, 7-17

interference in the replacement argument list,
7-32

replacement argument, 7-31
replacement argument list, 7-31
replacement value, 7-30
search argument, 7-30

TALLYING phrase, 7-17, 7-24
argument list, 7-25
arguments, 7-24
counter, 7-24
interference in the tally arguemnt list, 7-26

/INSTRUCTION_SET qualifier, D-3 to D-5
determining an, D-4
GENRIC option, D-5
how subsetting may affect VAX COBOL programs,

D-4
in compile command, 2-13
NODECIMAL_STRING option, D-5
other considerations, D-5
selecting an option, D-4 to D-5
subsetting overview, D-4

Interference
in replacement argument list, 7-32
in tally argument list, 7-26

Intermediate result item, 4-9
Intermediate results

for arithmetic statements, 4-9
lnterprogram communication, 18-1 to 18-40

See also calling routines
accessing another program's Data Division, 18-8

lndex-7

lnterprogram communication
accessing another program's Data Division (Cont.}

Linkage Section, 18-10
USING phrase, 18-8

additional information, 18-40
calling non-COBOL programs, 18-19

example, 18-20
calling routines, 18-27

defining the argument, 18-28
determining the type of call, 18-27
locating the result, 18-36
making the call, 18-29

calling system service routines, 18-29
checking condition values, 18-34
EXTERNAL phrase, 18-35
in a procedure call, 18-34
library return status, 18-36
VALUE IS clause, 18-35

calling system service routinescondition value
symbols, 18-36

CALL statement
passing arguments, 18-8

common language environment, 18-23
using COBOL in, 18-23

contained programs, 18-12
COMMON clause, 18-13
GLOBAL clause, 18-14
shaing database resources, 18-15
sharing data, 18-14
sharing files, 18-15
sharing other resources, 18-15
USE procedures, 18-16

examples, 18-37
multiple run-unit

examples, 18-1
multiple run-unit concepts, 18-1

calling procedures, 18-3
definition, 18-1

program attributes, 18-4
EXTERNAL clause, 18-4
INITIAL clause, 18-4

sharable images, 18-36
transferring execution control, 18-5

CALL statement, 18-5
nesting, 18-6

EXIT PROGGAM statement, 18-5
VAX Procedure Calling and Condition Handling

Standard, 18-24
argument list, 18-25
function value, 18-25
register usage, 18-24
stack usage, 18-24

VMS Run-Time Library routines, 18-25
VMS System Services routines, 18-26

Interrupt
debugging session, 3-4
execution of command, 3-4
execution of program, 3-4

Invalid key condition
planning for, 12-2

INVALID KEY phrase, B-12
Invoking

debugger, 3-3
1-0-CONTROL paragraph, 13-3, 13-13, 20-5 to

20-9

lndex-8

J
Junction record, 15-18
Justified moves

nonnumeric data, 5-9

K
Keeplist

activating, 15-36
contents, 15-36
deallocating, 15-36
emptying, 15-36
usage, 15-36

Keeplist description entry (LO}, 15-2, 15-36, 15-59
KEEP statement, 15-3, 15-36
Key codes, 17-28
Key identifier access

database, 15-3
Keys

ascending, 6-6
descending, 6-6

Keywords
using with LSE, E-4

L
Language

data description, 15-6
data storage description, 15-6
subschema data description, 15-6

Language-Sensitive Editor

See LSE
Libraries

condition value symbols, 18-36
default user object modules, 2-36
object modules, 2-35

· return status, 18-36
system, 2-36, 2-37
system-supplied object module libraries, 2-35
VAX DBMS, 15-5

/LIBRARY qualifier
in LINK command, 2-34

LINAGE clause
usage, 16-15

LINAGE-COUNTER, 16-16
special register, 16-16

Linage-file report
bottom margin, 16-15
footing area, 16-15
logical page, 16-14
makeup, 16-14
page advancing, 16-16
page body, 16-15
page-overflow condition, 16-16
printing the, 16-20
top margin, 16-15

LINE-COUNTER, 16-30
Linkage section

example, 18-10
Linkage Section

description, 18-1 O
LINK command, 2-30

See also LINK command qualifiers
Positional qualifiers, 2-33
syntax, 2-30

LINK command qualifiers, 2-31

LINK command qualifiers (Cont.)
/BRIEF, 2-31
/CROSS_REFERENCE, 2-31
/DEBUG, 2-32
/EXECUTABLE, 2-32
/FULL, 2-32
/INCLUDE, 2-33

object module library, 2-34
/LIBRARY, 2-34
/MAP, 2-32
/OPTIONS, 2-34
/SHARE, 2-37, 2-41
/TRACEBACK, 2-33
/USERLIBRARY, 2-33

Linking
/DEBUG, 3-3

Linking programs, 2-4, 2-29 to 2-42
See also LINK command
error messages, 2-41
object module libraries, 2-35
using an object module library, 2-34
using system-supplied object module libraries,

2-35
Listing, 2-17

contained programs, 2-28
object code, 2-25
source program, 2-18

/LIST qualifier
in compile command, 2-13

Literal subscripts
accessing tables, 6-14
definition, 6-14

Locking records, 15-38
See also Protecting records

Logical name, 8-10 to 8-11, 8-16 to 8-18
CDD$DEFAULT, 15-4
CDD$TOP, 15-4
DBM$SIGNAL, 15-58

Logical page
conventional report, 16-7
definition, 16-7
spacing, 16-7
structure, 16-7

Loops
FETCH NEXT, 15-53
FIND NEXT, 15-53

LSE, E-1

M

compiling source code, E-3
defined, E-1
entering source code, E-3
examples, E-8
exiting, E-3
features of, E-1
invoking, E-3
using placeholders, E-4
using tokens, E-4
VAX COBOL programs (example), E-8 to E-12
VAX COBOL support

tokens and placeholders, E-4

/MACHINE_CODE qualifier, 2-25
in compile command, 2-13

MANDATORY set membership class, 15-47
MANUAL, 15-46

Many-to-many relationship, 15-18
Map

data name, 2-21
file name, 2-20
procedure name, 2-21

/MAP qualifier, 2-17, 2-20, 15-5, 15-6
in compile command, 2-13
in LINK command, 2-32

Member record, 15-9
empty member, 15-18
insertion point, 15-31

MEMBER test condition, 15-43
MERGE statement, 14-1, 14-9 to 14-20

example, 14-9
sample programs, 14-9

Messages
REFORMAT Utility error, 19-4

Modifying
database records, 15-3

MODIFY statement, 15-3
Modular Programming Standard, 18-40
MOVE CORRESPONDING statement, 5-10
MOVE statement, 4-5, 5-6

common errors, 4-8
Multiple delimiters

for unstringing data, 7-12
Multiple operands

in ADD and SUBTRACT statements, 4-11
Multiple receiving items

for unstringing data, 7-6
Multiple sending items

for stringing data, 7-1
Multiset relationships, 15-18

N
Nested subprogram, 18-1
Nesting

CALL statements, 18-6
level, 2-28

NEXT, 15-31
Node, 15-1
NO ECHO clause, 17-17
Non-COBOL programs

run unit, 18-19
Nonnumeric data, 5-1 to 5-11

classes, 5-3
common nonnumeric item move errors, 5-1 O
concatenating items, 7-1
data movement, 5-5
data organization, 5-1
edited moves, 5-8
elementary moves, 5-7
group items, 5-2
group moves, 5-7
justified moves, 5-9
MOVE CORRESPONDING statement, 5-10
MOVE statement, 5-6
multiple receiving items, 5-9
special characters, 5-2
STRING statement, 7-1
subscripted moves, 5-1 O
testing, 5-3

class tests, 5-4
comparing operands, 5-4
relational operator descriptions, 5-3

using reference modification, 5-11

lndex-9

Nonnumeric data items
elementary, 5-2
testing

relational tests, 5-3
Null currency indicator, 15-30
Numeric class tests, 4-4
Numeric data, 4-1 to 4-13

arithmentic statements
multiple operands

ADD statement, 4-11
SUBTRACT statement, 4-11

arithmetic expression processing, 4-12
arithmetic statements, 4-8

common errors, 4-11
GIVING phrase, 4-11
intermediate rules, 4-9

common numeric move errors, 4-8
elementary numeric edited moves, 4-7
elementary numeric moves, 4-5
evaluating numeric items, 4-2
invalid values, 4-2
MOVE statement, 4-5
NOT ON SIZE ERROR phrase, 4-11
/[NO]TRUNCATE qualifier, 4-9
numeric edited data rules, 4-7
numeric editing symbols, 4-7
ON SIZE ERROR phrase, 4-10
optimizing, 2Q-4
REMAINDER phrase, 4-10
representation of, 2Q-4
ROUNDED phrase, 4-9, 4-10
sign conventions, 4-1
storing, 4-1
testing

class test, 4-2, 4-4
relational operators description, 4-3
relational test, 4-2
relational tests, 4-2
sign test, 4-2, 4-3
success/failure tests, 4-4

Numeric edited data
rules for, 4-7

Numeric edited data item
contents, 4-7
description, 4-7

Numeric edited moves
elementary, 4-7

Numeric editing, 4-7
Numeric items

invalid values in, 4-2
testing, 4-2

class test, 4-2
relation test, 4-2
sign test, 4-2

Numeric moves
elementary, 4-5

0
Object code

listing, 2-25
Object module

creating, 2-6
default user libraries, 2-36
defining the search order for, 2-36
using libraries, 2-35

lndex-10

Object module (Cont.)
using system-supplied libraries, 2-35

/OBJECT qualifier
in compile command, 2-14

Occurrence
owner record, 15-12
record, 15-12
set, 15-9, 15-12

OCCURS clause
indexes, 6-1
keys, 6-1

OMITIED argument-passing mechanism, 18-9
ON ERROR phrase, 15-56, 15-59
One-to-many relationship, 15-25
ON EXCEPTION clause, 17-14
Open mode

EXTEND, 8-14
INPUT, 8-14
1-0, 8-14
OUTPUT, 8-14

OPEN statement
EXTEND, D-12
1-0, D-12

Optimization, 20-1 to 20-20
file design, 20-10
1/0 operations, 20-5

APPLY clause, 20-6
DEFERRED-WRITE phrase, 20-7
EXTENSION phrase, 20-7
FILL-SIZE ON phrase, 20-7
PREALLOCATION phrase, 20-6
WINDOW phrase, 20-7

sharing record areas, 20-8
using multiple buffers, 20-7

indexed files, 20-14
1/0, 20-15

alternate keys, 20-16
bucket size, 20-16
caching index roots, 20-19
calculating index levels, 20-19
file size, 20-17
index depth, 20-17
records, 20-15

numeric data representation, 20-1
ADD, 20-2
BINARY, 20-1
COMP, 20-1
COMP-3, 20-1
COMPUTE, 20-2
DISPLAY, 20-1
DIVIDE, 20-2
GO TO DEPENDING ON, 20-3
IF, 20-3
indexing, 20-3
mixing data-types, 20-2
MULTIPLY, 20-2
PACKED-DECIMAL, 20-1
PERFORM n TIMES, 2Q-4
PERFORM VARYING, 20-4
scaling, 20-2
SEARCH, 2Q-4
SEARCH ALL, 20-4
subscripting, 20-3
SUBTRACT, 20-2

relative files, 20-1 O
bucket size, 20-11
cell size, 20-11

Optimization
relative files (Cont.)

file size, 20-13
maximum record number, 20-11

sequential files, 20-1 O
OPTIONAL set membership class, 15-46
/OPTIONS qualifier

in LINK command, 2-34
Owner record, 15-9

occurrence, 15-12
OWNER test condition, 15-43, 15-44

p
Page

logical, 16-7
physical, 16-7
size definition, 16-10

Page body, 16-15
Page footing, 16-3
Page heading, 16-2
PARTS database demonstration package

creating, 15-2
loading, 15-2

PDF
compiling prior to use, E-3
VAX COBOL support, E-5 to E-12

placeholder processing, E-5, E-6
Performance, improving 1/0, 8-2
PERFORM statement, D-8
Physical page

definition, 16-7
PIC P digits, D-9
Place markers

database, 15-3
Pointer, 15-30
Position

empty, 15-31
Print-controlled file, 8-4, 8-7
Print file, 9-4
PRIOR, 15-31
Procedure Calling and Condition Handling Standard,

18-40
Procedure calls, 18-34
Procedure names map, 2-21
Processing control, database, 15-2
Productivity tools, E-1
Program

accessing another data division, 18-8
compiling, 2-6
creating, 2-5

VAX COBOL GENERATOR
driver, 18-1
logic errors, B-6
run errors, B-5

faulty data, B-5
Program listing

reading, 2-17 to 2-29
Program switches

See switches
PROTECTED

access mode, 15-39
allow mode, 15-40

PROTECTED phrase, 17-15
PROTECTED RETRIEVAL

lock, 15-36

PROTECTED RETRIEVAL (Cont.)
lock keeplist, 15-36
usage mode, 15-40

PROTECTED UPDATE
usage mode, 15-40

Protecting records, 13-1 to 13-18
automatic record locking, 13-13
bypassing a record lock, 13-18
concepts, 13-1

Q

error conditions, 13-16
hard locks, 13-16
soft record locks, 13-17

manual record locking, 13-14
using record locking, 13-12

QUIT command (LSE), E-3

R
Read-only

access lock, 15-41
READY statement, 15-3, 15-29, 15-39

access mode, 15-39
allow mode, 15-39
record locking, 15-41

Realm
currency indicator, 15-30
nulling a currency indicator, 15-50
record locking level, 15-41

RECONNECT statement, 15-3
usage, 15-47

Record
attributes, 8-2
blocking, specifying, 8-2
cells, 10-1
current, 15-30
database, 15-8
fixed-length, 8-4
format, 8-3
junction, 15-18
locking

See Protecting records, Record locking, and
File sharing

maximum size, 8-3
member, 15-9
nulling a currency indicator, 15-50
occurrence, 15-12
owner, 15-9
processing, 8-1 to 8-18
protection

See Protecting records
record-length field, 8-5
Selection Expression, 15-3
space needs on a physical device, 8-2
subschema definition, 15-8
types, 15-9
variable-length, 8-5

Record-length descriptions, multiple, 8-6
Record level

record locking, 15-41
Record locking

See also Protecting records
database, 15-8, 15-29
individual records, 15-41

lndex-11

Record locking (Cont.)
minimizing lock out, 15-41
no-read access locks, 15-41
read-only locks, 15-41
READY statement, 15-41
realm level, 15-41
record level, 15-41
resolving locking conflicts, 15-41
using keeplists, 15-41

Record locks
releasing, 15-50

Record Management System (RMS), 8-1 to 8-2,
8-3, B-7 to B-11

See also RMS special registers
building a COBOL file specification, 8-14
completion codes, 12-5

Record occurrence, 15-8
Record search access, 15-3
Record type

currency indicator, 15-32
Record variable-length records

sorting, 14-8
Redefinition

implied when inspecting data, 7-19
REFERENCE

argument-passing mechanism, 18-8
Reference format

See Developing programs
Reference formats

ANSI, 2-2
terminal, 2-1

Reference modification, 5-11, D-6 to D-8
reformat

executing, 19-2
running, 19-2, 19-3

REFORMAT
converting reference format, 2-2
error messages, 19-4
purpose of, 2-2

REFORMAT Utility, 19-1
Relationship

many-to-many, 15-18, 15-19
multiset, 15-18
one-to-many, 15-25
simple set, 15-14

Relation tests
description, 4-2
nonnumeric data, 5-3

Relative file, 10-1 to 1 0-15
See also Optimization
access mode, 10-5, 10-6
access modes, 10-3
at end condition, 12-1
capabilities, 1 0-2
creating, 10-5
defining, 1 Q-4
deleting records

randomly, 10-14
sequentially, 10-13

deleting records in, 10-13
design considerations, 10-2
File Status values, using, 12-3
1/0 statements, 10-3
invalid key condition, 12-2
INVALID KEY condition, 12-2
open modes, 10-3

lndex-12

Relative file (Cont.)
organization, 10-1

advantages, 8-12
disadvantages, 8-12

random access mode, 10-6
reading, 10-7

dynamically, 10-9
randomly, 10-8
sequentially, 10-7

record cell
relative record number, 10-1

record cells, 10-1
rewriting records, 10-1 O

randomly, 10-10, 10-12
sequentially, 10-10, 10-11

sequential access mode, 10-5
tables, similarity to, 10-2
updating, 10-10
usage of, 1 0-2
VAX RMS allocation for a cell, 10-2

Relative indexing, 6-17
system overhead, 6-17

Relative record number, 10-1
Releasing locks

records, 15-50
Replacement argument, 7-31

list
interference in, 7-32
to inspect data, 7-31

Replacement value, 7-30
Replacing phrase

to inspect data, 7-29
Report

allocating a printer, 16-23
bolding items in, 16-87
bottom margin, 16-15
components of, 16-2
control footing, 16-3
control heading, 16-3
conventional, 16-7

See also Conventional Report
controlling spacing, 16-8
example, 16-10
line counter usage, 16-10
logical page, 16-7
page-overflow condition, 16-9
printing, 16-1 o

design, 16-1
detail lines, 16-3
footing area, 16-15
GROUP INDICATE clause, 16-37
Linage-file report, 16-14

See also Linage-file
controlling spacing, 16-16
example, 16-21
page advancing, 16-16
page overflow, 16-16

example, 16-17
printing, 16-20
using the LINAGE-COUNTER, 16-16

logical page, 16-7, 16-14
makeup, 16-7
modes of printing, 16-23
page body, 16-15
page footing, 16-3
page heading, 16-2

Report (Cont.)

physical page, 16-7
printing, 16-10
printing totals before detail lines, 16-86
problem solving, 16-80

bolding items, 16-87
example, 16-81, 16-84
GROUP INDICATE clause, 16-85
logical lines, 16-80
physical lines, 16-80
physical page, 16-86
printing, 16-80, 16-86

bold, 16-87
details, 16-86
totals, 16-86

underlining, 16-87
report footing, 16-3
report heading, 16-2
RESET phrase, 16-36
See also Report Writer, 16-24
spooling, 16-24
streamlining your, 16-86
top margin, 16-15
total accumulating, 16-5

crossfooting, 16-35
crossfoot totals, 16-5
defining, 16-34
incrementing, 16-34
RESET phrase, 16-36
rolled forward totals, 16-5
rolling-frward, 16-35
subtotals, 16-5, 16-34
UPON phrase, 16-36

underlining in, 16-87
UPON phrase, 16-36
USE BEFORE REPORTING statement, 16-41

Report Writer, 16-24
assigning a value in a print line, 16-31
assigning the source for a print field, 16-31
COLUMN NUMBER clause, 16-30
CONTROL clause, 16-33
detail reporting, 16-42
examples, 16-43

detail report, 16-44, 16-49, 16-57, 16-63
input data, 16-43
summary report, 16-71

footings
controlling, 16-33
generating, 16-33

GENERATE statement, 16-39
headings

controlling, 16-33
generating, 16-33

INITIATE statement, 16-38
LINE clause, 16-29
logical page

defining, 16-25
horizontal spacing, 16-30
vertical spacing, 16-29

PAGE clause, 16-25
printing

GROUP INDICATE clause, 16-37
processing a Report Writer report, 16-38

detail reporting, 16-42
GENERATE statement, 16-39
initiating, 16-38
suppressing a report group, 16-42

Report Writer
processing a Report Writer report (Cont.)

terminating processing, 16-40
USE BEFORE REPORTING statement,

16-41
REPORT clause, 16-25
Report Description entry, 16-25
Report File

defining, 16-25
report groups, 16-26
Report Section

defining, 16-25
SOURCE clause, 16-31
specifying multiple reports, 16-32
SUPPRESS statement, 16-42
TERMINATE statement, 16-40
using Declarative procedures, 16-41, 16-42
VALUE clause, 16-31

RETAINING clause, 15-34
RETENTION option, 15-3
RMS special registers, B-7 to B-11

RMS-CURRENT-FILENAME, B-7
RMS-CURRENT-ST$, 12-5, B-7
RMS-CURRENT-STV, 12-5, B-7
RMS-FILENAME, B-7 to B-11
RMS-STS, 12-5, 13-9 to 13-11, B-7 to B-11
RMS-STV, 12-5, B-7 to B-11

ROLLBACK
automatic, 15-42
DML statement, 15-42
statement, 15-3

Rounding off arithmetic results, 4-9
RUN command, 2-42, 3-3

syntax, 2-42
Running VAX COBOL programs, 2-42
Run-time

errors, B-1
input/output errors, B-7

Run-time errors, 2-43
Run unit, 15-29

s

currency indicator, 15-30, 15-32
current of, 15-32
examples of COBOL, 18-1 to 18-3
multiple COBOL program, 18-1
non-COBOL program, 18-19
nulling a currency indicator, 15-50

SCA, E-1 to E-12
integration with LSE, E-1
invoking, E-3
preparing an SCA library, E-2 to E-3

Scaling
and mixing data types, 20-4
definition, 20-4

Schema, 15-6
Scope terminator, 15-59
Screen positioning

absolute, 17-5
relative, 17-5

SEARCH ALL
advantages, 20-4
requirements, 20-4

Search argument
usage in REPLACING phrase, 7-30

Searching tables, 6-18

lndex-13

Search order
definition for object module libraries, 2-36

SEARCH statement
Format 1, 6-18
Format 2, 6-19

Selection
expression, record, 15-3

/SEQUENCE_CHECK qualifier
in compile command, 2-14

Sequential file, 9-1 to 9-9
See also Optimization
access modes, .9-3
at end condition, 12-1
creating, 9-4, 9-5
defining, 9-3
design, 9-2
end-of-file mark, 9-1
end-of-volume label, 9-1
extending, 9-4, 9-8
File Status values, using, 12-3
1/0 statements, 9-3
multiple volumes, 9-1
open modes, 9-3
organization, 9-1
organization of

advantages, 8-12
disadvantages, 8-12

print file, 9-4
reading, 9-6
rewriting records in, 9-7
storage file, 9-4
updating a, 9-7

Sequential search, 6-18 to 6-19
function of AT END statement, 6-19
requirements for, 6-18

Sequential search, see SEARCH statement
Set, 15-12

forked, 15-16
nulling a currency indicator, 15-50
simple, 15-15
single relationship, 15-14
system-owned, 15-15

SET ABORT _KEY command, 3-4
Set membership class

AUTOMATIC, 15-46
FIXED, 15-47
MANDATORY, 15-47
MANUAL, 15-46
OPTIONAL, 15-46

Set occurrence, 15-9, 15-12
Set owner

access, 15-3
SET statement, 2-44

Format 1, 6-18
Format 2, 6-18
indexing function, 6-17

Set type, 15-9
currency indicator, 15-31
current, 15-31
ordering criteria, 15-31

Shareable images, 2-37, 2-41
calling, 18-36
creating, 2-37
transfer vectors, 2-40

/SHARE qualifier, 2-37 to 2-40

lndex-14

Sharing
USE procedures, 18-16

Sharing source text, 2-5
SHOW PLACEHOLDER command (LSE), E-5
SHOW TOKEN command (LSE), E-5
Sign

conventions, 4-1
tests

description of, 4-3
Significant digits, 20-4
Simple set, 15-14, 15-15
Singular set

See System-owned set
Size

fixed-length tables, 6-1
variable-length tables, 6-6

SIZE phrase, 17-16
SORT statement, 14-1 to 14-9

ASCENDING KEY phrase, 14-1
COLLATING SEQUENCE phrase, 14-6

overriding, 14-6
DESCENDING KEY phrase, 14-1
file description, 14-1
file organization, 14-6
GIVING phrase, 14-2

with the INPUT PROCEDURE phrase, 14-4
INPUT PROCEDURE phrase, 14-3

example, 14-3
with the GIVING phrase, 14-4

multiple sorts, 14-6
example, 14-6

OUTPUT PROCEDURE phrase, 14-3
example, 14-3
with the USING phrase, 14-4

preventing 1/0 aborts, 14-8
USE AFTER STANDARD declarative, 14-8

sample programs, 14-9
sorting variable-length records, 14-8
USING phrase, 14-2

with the OUTPUT PROCEDURE phrase,
14-4

WITH DUPLICATES IN ORDER phrase, 14-5
Source Code Analyzer

See SCA
Source file specification, 2-18
Source program

listing, 2-18 to 2-20
Source programs

compiling, 2-4
creating, 2-3
linking, 2-4

Source text, 2-18
Special characters

nonnumeric data, 5-2
SPECIAL-NAMES paragraph, 5-5
Special register

DB-CONDITION, 15-4, 15-58
DB-CURRENT-RECORD-ID, 15-4
DB-CURRENT-RECORD-NAME, 15-4

Stack, 15-36
/STANDARD qualifier, D-6 to D-12

DIVIDE statement, D-6
EXIT PROGRAM statement, D-10
in compile command, 2-14
INSPECT statement, D-8
OPEN EXTEND, D-12

/STANDARD qualifier (Cont.)
OPEN 1-0, D-12
overview, D-6
PERFORM statement, D-8
PIC P digits, D-9
status codes, D-11
UNSTRING statement, D-7
variable-length tables, D-1 O

Status
library return, 18-36

Status codes, D-11
Storage allocation

byte boundaries, 6-8
effect of fill bytes, 6-8
table data, 6-7
tables containing COMP or COMP SYNC items,

6-8
Storage file, 9-4
Storage map, 2-20
Storage schema, 15-6
STORE statement, 15-3
Storing numeric data, 4-1
Stream, 15-7
STRING statement, 7-1 to 7-6, D-7

commaon STRING statement errors, 7-5
DELIMITED BY phrase, 7-2
multiple sending items, 7-1
NOT ON OVERFLOW statement, 7-4
OVERFLOW statement, 7-4
POINTER phrase, 7-4

Subprogram
contained, 18-1
nested, 18-1

Subschema, 15-6
Data Storage Description Language, 15-6
entry, 15-2
map listing, 15-5
Record Definition, 15-8

SUB-SCHEMA SECTION, 15-5, 15-59
entry, 15-4

Subscript
definition, 6-14

Subscripted moves
nonnumeric data, 5-1 O

Subscript evaluation, D-6 to D-8
Subscripting

with data-names, 6-16
Success/failure tests, 4-4
Switches

checking, 2-44
controlling, 2-44
example using, 2-45
order of evaluation, 2-44
program, 2-43 to 2-45
SET statement, 2-44
setting internally, 2-44
setting switches for a process, 2-44
using, 2-43

Symbol
record, 3-3

Symbols
library condition values, 18-36
numeric editing, 4-7

System
libraries, 2-37
routines, 18-33

calling subroutine, 18-34

System
routines (Cont.)

function calls, 18-33
function results, 18-36

System-owned set, 15-15
System spooler, 16-1 O

T
Table elements

initializing, 6-11
Table handling, 6-1 to 6-25

See also Tables
Tables

See also Storage allocation
See also Subscript
accessing

with indexes, 6-14, 6-16
with literal subscripts, 6-14
with SEARCH statement, 6-18
with subscripts, 6-14

accessing table elements, 6-14
access methods, 6-14
assigning values using the SET statement, 6-17

integer value, 6-18
binary search, 6-19

with keys, 6-20
with multiple keys, 6-20

defining fixed-length
multidimensional, 6-4
one-dimensional, 6-1

defining variable-length tables, 6-6
ascending and descending keys, 6-6
size, 6-6

definition, 6-1
fixed-length

specifying size, 6-1
incrementing an index value using the SET

statement, 6-18
index data item

where defined, 6-3
index data items, 6-17
initializing, 6-11

effect of fill bytes, 6-14
INITIALIZE statement, 6-14
redefining group level, 6-12
with OCCURS clause, 6-11
with VALUE clause, 6-11

initializing indexes, 6-17
multidimensional

accessing with subscripts, 6-15
defining, 6-4
OCCURS clause, 6-1

indexes, 6-1
keys, 6-1

relative indexing, 6-17
See also Index data item, 6-17
sequential search, 6-18

AT END statement, 6-18
storage allocation, 6-7

using the SYNCHRONIZED clause, 6-8
subscripting with data names, 6-16

Tally argument
to inspect data, 7-24

Tally counter
to inspect data, 7-24

lndex-15

Terminal format, 2-1
See Developing programs
advantages of, 2-1

Terminal-to-ANSI
command string, 19-3
format conversion, 19-2

Test condition
member, 15-43
owner, 15-43, 15-44

Testing
nonnumeric data items, 5-3
numeric items, 4-2

relational tests, 4-2
sample session, 15-60
VAX COBOL DML programs, 15-58

Top margin, 16-15
TRACEBACK facility, B-1
!TRACEBACK qualifier

in LINK command, 2-33
Transaction

database, 15-38
!TRUNCATE qualifier

in compile command, 2-15

u
Unstringing data, 7-6
UNSTRING statement, 7-6 to 7-17, D-7

common errors, 7-16
COUNT phrase, 7-12, 7-14
DELIMITED BY phrase, 7-8
DELIMITER phrase, 7-13
delimiters, 7-10, 7-11
function, 7-6
multiple delimiters, 7-12
multiple receiving items, 7-6, 7-9
OVERFLOW statement, 7-16
POINTER phrase, 7-14
TALLYING phrase, 7-15

UPDATE access mode, 15-40
Updating database records, 15-3
Usage mode, 15-40

BATCH RETRIEVAL, 15-40
BATCH UPDATE, 15-40
CONCURRENT RETRIEVAL, 15-40
CONCURRENT UPDATE, 15-40
EXCLUSIVE RETRIEVAL, 15-40
EXCLUSIVE UPDATE, 15-40
PROTECTED RETRIEVAL, 15-40
PROTECTED UPDATE, 15-40

USE procedure
use of, B-11

User-defined names
cross reference list of, 2-22

/USERLIBRARY qualifier
in LINK command, 2-33

User work area (UWA), 15-2, 15-5
USE statement, 15-59

FOR DB-EXCEPTION, 15-57
purpose of, 18-16
Rule 2 example, 18-18

USING phrase
usage of, 18-8

Utility
Database Query (DBQ), 15-59
DMU, 15-1

lndex-16

Utility (Cont.)
REFORMAT, 19-1

UWA
See user work area

v
VALUE

argument-passing mechanism, 18-8
VALUE OF ID clause

using the, 8-9
Variable-length records

creation of, 8-5 to 8-7
record-length field, 8-5

Variable-length tables, D-10
VARYING phrase, D-8
VAX COBOL

Debugger support, 3-9
features, 1-1 to 1-2
overview, 1-1 to 1-2

VAX COBOL compiler
function, 2-6

VAX COBOL data manipulation language
See Data manipulation language

VAX COBOL GENERATOR, E-23
See COBOL GENERATOR, E-22

VAX DBMS Data Definition Language (DDL), 15-4
VAX DEC/Code Management System

See CMS
VAX Procedure Calling and Condition Handling

Standard, 18-40
VFU printing

customizing vertical spacing, 8-18 to 8-19
rapid vertical line positioning, 8-18 to 8-19

Video forms, 17-1 to 17-34
accepting data, 17-13, 17-17, 17-18

ON EXCEPTION with CONVERSION, 17-1
ACCEPT statement, 17-2

CONTROL KEY IN phrase, 17-21
characters returned, 17-22
example, 17-28

DEFAULT phrase, 17-18
example, 17-19

EDITING phrase, 17-31
NO ECHO clause, 17-17
options, 17-13

assigning character attributes, 17-8
assigning default values to data fields, 17-18
clearing the screen, 17-3
COLUMN NUMBER phrase, 17-5

PLUS option, 17-7
CONVERSION clause, 17-10, 17-13

example, 17-10
defining keys, 17-21
designing, 17-2
displaying data, 17-10
DISPLAY statement, 17-2
editing, 17-31
ERASE phrase, 17-3

options, 17-3
LINE NUMBER phrase, 17-5

PLUS option, 17-7
positioning the cursor, 17-5

absolute, 17-5
relative, 17-5

protecting your screen, 17-15

Video forms (Cont.)

PROTECT phrase, 17-15
VMS Debugger

see Debugger
VMS Modular Programming Standard, 18-40
VMS Usages, 18-29

VAX COBOL equivalents, 18-29

w
/WARNINGS qualifier

in compile command, 2-15
WHERE clause, 15-55, 15-59
WRITE command (LSE), E-5

lndex-17

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location
Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

lnternal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact
Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VAX COBOL User Manaul
AA-H632E-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

I
I
I
I
I

- Do Not Tear - Fold Here and Tape -------------------[lllr---------------1
No Postage

~amnoma™ ~;~=i~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ... 1.11 .. 1

in the
United States

·- Do Not Tear - Fold Here --

c
.!
""' ~
c
<
~
t
I
~
41!

Reader's Comments VAX COBOL User Manual
AA-H632E-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Nametritle

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 •••• 11 1.11.1 .. 1.1 .. 1 .. 1.1 ••• 1.11 •• 1

-- Do Not Tear - Fold Here --

,.
·!'!:.-

