dlilgliltlall

VAX/VMS
/0 User’s Guide
Order No. AA-D028B-TE

March 1980

This document contains the information necessary to interface directly with the
1/0 device drivers supplied as part of the VAX/VMS operating system. Several
examples of programming techniques are included. This document does not
contain information on 1/0 operations using VAX-11 Record Management Ser-
vices.

VAX/VMS
1/0 User’s Guide
Order No. AA-D028B-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes
the VAX/VMS 1/0 User’s Guide
(Order No. AA-DO28A-TE)
OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1978, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT

DATATRIEVE TRAX

PREFACE

CHAPTER

Bt b = b b b e e b b b b e b b b b b b b e b e b e B e b e e R e e o b

1

RFFROONOUTD W -

O

e ® o o o o o o o
o o o
W N

e e
N =

COCO0OOOOWMWMOAMOWOMOMMOOMODENINJIDNANOUTE DD DD D DD DD DD W -

. . e ° o o L . . [] . . .

. e e . . . L] .
NOOAADNAIDITAANIUT S WN
* o o * o . . N

NSy d wN e

e o e o e o

CONTENTS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

OVERVIEW OF VAX/VMS I/0
VAX/VMS I/0 DEVICES

SUMMARY OF I/0 SYSTEM SERVICES

QUOTAS, PRIVILEGES, AND PROTECTION

Buffered I/0 Quota

Buffered I/0 Byte Count Quota
Direct I/0 Quota

AST Quota

Physical I/0 Privilege (PHY I0)
Logical I/0 Privilege (LOG_TO)
Mount Privilege

Volume Protection

Device Protection

System Privilege (SYSPRV)
Bypass Privilege (BYPASS)

SUMMARY OF VAX/VMS QIO OPERATIONS

PHYSICAL, LOGICAL, AND VIRTUAL I/0
Physical I/0 Operations
Logical 1/0 Operations
Virtual I/0 Operations
I/0 FUNCTION ENCODING.
Function Codes
Function Modifiers
ISSUING I/0 REQUESTS
Channel Assignments
Device Allocation
I/0 Function Requests
$QI0 Macro Format
$QIOW Macro Format
$QI0 and SQIOW Arguments
Event Flag Number Argument
Channel Number Argument
Function Argument
I/0 Status Block Argument
AST Address Argument
AST Parameter Argument
Device/Function-Dependent Arguments
SINPUT and $OUTPUT Macro Format and
Arguments
Status Returns for System Services
I/0 COMPLETION
Event Flags
I/0 Status Block
Asynchronous System Traps

DEVICE INFORMATION

iii

Page

- X
| <
-

b b e b e e e e b e R e b b b B e
L T U T Y N N I |
HFENNSNAOTAITO S S SSSWN -

1-19

1-21
1-22
1-22
1-23
1-24

CONTENTS

Page
CHAPTER 2 TERMINAL DRIVER 2-1
2.1 SUPPORTED TERMINAL DEVICES 2-1
2.2 TERMINAL DRIVER FEATURES AND CAPABILITIES 2-1
2.,2.1 Type-ahead 2-2
2.2.2 Line Terminators 2=-2
2.2.3 Special Operating Modes 2-2
2.2.4 Escape Sequences 2-3
2.2.5 Terminal/Mailbox Interaction 2-4
2.2.6 Control Characters and Special Keys 2-5
2.2.7 Dial-Up 2-9
2.2.8 Duplex Modes 2-9
2.3 DEVICE INFORMATION 2-10
2.4 TERMINAL FUNCTION CODES 2-13
2.4.1 Read 2-14
2.4.1.1 Function Modifier Codes for Read QIO
Functions 2-15
2.4.1.2 Read Function Terminators ’ 2-16
2.4.2 Write 2-17
2.4.2.1 Function Modifier Codes for Write QIO
Functions 2-18
2.4,2,2 Write Function Carriage Control 2-18
2.4.3 Set Mode 2-22
2.4.3.1 Hang-Up Function Modifier 2-23
2.4.3.2 Enable CTRL/C AST and Enable CTRL/Y
AST Function Modifiers 2-23
2.4.4 Sense Mode 2-24
2.5 I1/0 STATUS BLOCK 2=-25
2.6 PROGRAMMING EXAMPLE 2-27
CHAPTER 3 DISK DRIVERS 3-1
3.1 SUPPORTED DISK DEVICES 3-1
3.1.1 RM03 Pack Disk 3-2
3.1.2 RP0O5 and RP06 Pack Disks 3-2
3.1.3 RK0O6 and RKO7 Cartridge Disks 3-2
3.1.4 RX01 Console Disk 3-2
3.2 DRIVER FEATURES AND CAPABILITIES 3-2
3.2.1 Data Check 3-3
3.2.2 Overlapped Seeks 3-3
3.2.3 Error Recovery 3-4
3.2.4 Logical to Physical Translation (RX01) 3-4
3.3 DEVICE INFORMATION 3-5
3.4 DISK FUNCTION CODES 3-7
3.4.1 Read 3-11
3.4.2 Write 3-12
3.4.3 Set Mode 3-13
3.4.3.1 Set Mode 3-13
3.4.3.2 Set Characteristic 3-13
3.4.4 Sense Mode 3-14
3.4.5 Pack Acknowledge 3-14
3.5 I/0 STATUS BLOCK 3-14
3.6 PROGRAMMING EXAMPLE 3-18

iv

CONTENTS

Page

CHAPTER 4 MAGNETIC TAPE DRIVER

s
1
=

SUPPORTED MAGNETIC TAPE DEVICES
TE16 Magnetic Tape Drive
TS11l Magnetic Tape Subsystem
TU45 and TU77 Magnetic Tape System
DRIVER FEATURES AND CAPABILITIES
Master Adapters and Slave Formatters
Data Check
Error Recovery
DEVICE INFORMATION
MAGNETIC TAPE FUNCTION CODES
Read
Write
Rewind
Skip File
Skip Record
Write End-of-File
Rewind Offline
Sense Tape Mode 4-12
Set Mode 4-13
Set Mode 4-13
Set Characteristic 4-14
I/0 STATUS BLOCK 4-15
PROGRAMMING EXAMPLE 4-18

« o
e o o
Wi+
|

1
HEOUSWWNNDNNEF

I
e
NN

* o .
« o

w N -

| |

o

N A O S S Y g A N W~
I

AU LLLLESELLSDLSBDWNNNNEFFHF

OCWOWWOWOIANU D WN -

* e o
. o
o« o
N =

B T S S S e e S S T S o
* e o

CHAPTER

w

LINE PRINTER DRIVER

wn
|
[

SUPPORTED LINE PRINTER DEVICES
LP11l Line Printer Interface
LAll DECprinter I

DRIVER FEATURES AND CAPABILITIES
Output Character Formatting
Error Recovery

DEVICE INFORMATION

LINE PRINTER FUNCTION CODES
Write
Write Function Carriage Control
Sense Printer Mode
Set Mode

I/0 STATUS BLOCK

PROGRAMMING EXAMPLE

L] .
N
[|

o
N

|
HOWWOWUMDD_WNNHEHRE

.
[

* o o o
WN -
I

U o o uv
* 0 . . L] . . . o * o L] L] .
AU BB SR WNDNND
mmmmmmmurulmmmmm

CHAPTER

o))

CARD READER DRIVER

o)
|
—

SUPPORTED CARD READER DEVICE
DRIVER FEATURES AND CAPABILITIES
Read Modes
Special Card Punch Combinations
End-of-File Condition
Set Translation Mode
Error Recovery
DEVICE INFORMATION
CARD READER FUNCTION CODES
Read
Sense Card Reader Mode
Set Mode

1
NNV WNNNONE R

* e e & o o
« o o o
W N

e
[Nl
11 |

[o)We)le) Ne) We)We) Wer o) TorJe) o) o)

B WD DN

o) We) Bie) lie) e) B2 Wie) Biv) We) o) BEe) o) |
|

o e e
w N+

CONTENTS

Page
6.4.3.1 Set Mode 6-7
6.4.3.2 Set Characteristic 6-8
6.5 I/0 STATUS BLOCK 6-8
CHAPTER 7 MAILBOX DRIVER 7-1
7.1 MAILBOX OPERATIONS 7-1
7.1.1 Creating Mailboxes 7-2
7.1.2 Deleting Mailboxes 7-3
7.1.3 Mailbox Message Format 7-3
7.2 DEVICE INFORMATION 7-4
7.3 MAILBOX FUNCTION CODES 7-5
7.3.1 Read 7-5
7.3.2 Write 7-6
7.3.3 Write End-of-File Message 7-7
7.3.4 Set Attention AST 7-7
7.4 I/0 STATUS BLOCK 7-9
7.5 PROGRAMMING EXAMPLE 7-10
CHAPTER 8 DMC11l SYNCHRONOUS COMMUNICATIONS LINE
INTERFACE DRIVER 8-1
8.1 SUPPORTED DMC1ll SYNCHRONOUS LINE INTERFACES 8-1
8.1.1 DIGITAL Data Communications Message
Protocol 8-1
8.2 DRIVER FEATURES AND CAPABILITIES 8-2
8.2.1 Mailbox Usage 8-2
8.2.2 Quotas 8-3
8.2.3 Power Failure 8-3
8.3 DEVICE INFORMATION 8~3
8.4 DMC1ll FUNCTION CODES 8-6
8.4.1 Read 8-6
8.4.2 Write 8-7
8.4.3 Set Mode 8-7
8.4.3.1 Set Mode and Set Characteristics 8-7
8.4.3.2 Enable Attention AST 8-8
8.4.3.3 Set Mode and Shut Down Unit 8-9
8.4.3.4 Set Mode and Start Unit 8-9
8.5 I/0 STATUS BLOCK 8-10
CHAPTER 9 QIO INTERFACE TO FILE SYSTEM ACPS 9-1
9.1 FILE INFORMATION BLOCK 9-1
9.2 ATTRIBUTE CONTROL BLOCK 9-14
9.2.1 ACP QIO Record Attributes Area 9-17
9.2.2 ACP QIO Attributes Statistics Block 9-19
9.3 ACP FUNCTIONS AND ENCODING 9-19
9.3.1 Create File 9-21
9.3.2 Access File 9-22
9.3.3 Deaccess File 9-24
9.3.4 Modify File 9-24
9.3.5 Delete File 9-25
9.3.6 Mount 9-26
9.3.7 ACP Control 9-26
9.3.7.1 Disk Quotas 9-27
9.4 I/0 STATUS BLOCK 9-31

vi

CHAPTER

10.5.8
10.5.9
10.5.10
10.5.11
10.5.12

10.5.13
10.5.14
10.5.15
10.5.16
10.5.17
10.5.18

10.5.19
10.5.20
10.5.21

10.6
10.7
10.7.1
10.7.2
10.8
10.8.1
10.8.2
10.8.3
10.8.4

CONTENTS

LABORATORY PERIPHERAL ACCELERATOR DRIVER

SUPPORTED DEVICE
LPAl11-K Modes of Operation
Errors
SUPPORTING SOFTWARE
DEVICE INFORMATION
LPAl1l-K I/0 FUNCTION CODES
Load Microcode
Start Microprocessor
Initialize LPAll-K
Set Clock
Start Data Transfer Request
LPAll-K Data Transfer Stop Command
HIGH LEVEL LANGUAGE INTERFACE
High-level Language Support Routines
Buffer Queue Control
Subroutine Argument Usage
LPASADSWP - Initiate Synchronous A/D
Sampling Sweep
LPASDASWP - Initiate Synchronous D/A Sweep
LPASDISWP - Initiate Synchronous Digital
Input Sweep
LPASDOSWP - Initiate Synchronous Digital
Output Sweep

LPASLAMSKS - Set LPAl1l1-K and NUM Buffer
LPASSETADC - Set Channel Information For
Sweeps

LPASSETIBF - Set IBUF Array For Sweeps
LPASSTPSWP ~ Stop In-progress Sweep
LPASCLOCKA - Clock A Control

LPASCLOCKB - Clock B Control

LPASXRATE - Compute Clock Rate and Preset

Value

LPASIBFSTS - Return Buffer Status
LPASIGTBUF - Return Buffer Number
LPASINXTBF - Set Next Buffer to Use
LPASIWTBUF - Return Next Buffer or Wait
LPASRLSBUF - Release Data Buffer
LPASRMVBUF - Remove Buffer from Device
Queue

LPASCVADF - Convert A/D Input to Floating
Point
LPASFLT16 - Convert Unsigned 16-bit Integer
to Floating Point
LPASLOADMC - Load Microcode and Initialize
LPAl11-K

I/0 STATUS BLOCK

LOADING LPAll-K MICROCODE
Microcode Loader Process
Operator Process

RSX-11M VERSION 3,1 AND VAX/VMS DIFFERENCES
Alignment and Length
Status Returns
Sweep Routines
General

vii

Page
10-1

10-1
10-1
10-2
10-3
10-4
10-7
10-7
10-8
10-8
10-9
10-10
10-12
10-13
10-13
10-14
10-14

10-18
10-19

10-20

10-21
10-22

10-22
10-23
10-24
10-24
10-25

10-26
10-27
10-27
10-28
10-29
10-30

10-30
10-31
10-31

10-32
10-32
10-36
10-36
10-37
10-37
10-37
10-38
10-38
10-38

CHAPTER

CONTENTS

PROGRAMMING EXAMPLES
LPAl1-K High Level Language Program
(Program A)
LPAl1l1-K High-level Language Program
(Program B)
LPAl11-K QIO Functions Program
(Program C)

DR32 INTERFACE DRIVER

SUPPORTED DEVICE
DR32 Device Interconnect

DR32 FEATURES AND CAPABILITIES
Command and Data Chaining
Far End DR~device Initiated Transfers
Power Failure
Interrupts

DEVICE INFORMATION

PROGRAMMING INTERFACE
DR32 - Application Program Interface
Queue Processing
Initiating Command Sequences
Device-Initiated Command Sequences
Command Packets
Length of Device Message Field
Length of Log Area Field
Device Control Code Field
Control Select Field
Suppress Length Error Field
Interrupt Control Field
Byte Count Field
Virtual Address of Buffer Field
Residual Memory Byte Count Field
Residual DDI Byte Count Field
DR32 Status Longword (DSL)
Device Message Field
Log Area Field
DR32 Microcode Loader
DR32 I/0 Function Codes
Load Microcode
Start Data Transfer
High-level Language Interface
XF$SETUP
XFSSTARTDEV
XFSFREESET
XFSPKTBLD
XFSGETPKT
XFSCLEANUP
User Program - DR32 Synchronization
Event Flags
AST Routines
Action Routines

I/0 STATUS BLOCK

PROGRAMMING HINTS
Command Packet Pre-fetch
Action Routines
Error Checking
Queue Retry Macro

viii

Page
10-38
10-39
10-40
10-45
11-1

11-1
11-1
11-2
11-3
11-3
11-3
11-3
11-4
11-5
11-5
11-6
11-7
11-7
11-8
11-9
11-10
11-10
11-14
11-14
11-15
11-15
11-15
11-16
11-16
11-17
11-18
11-19
11-19
11-20
11-20
11-21
11-23
11-24
11-26
11-28
11-29
11-32
11-33
11-34
11-34
11-34
11-35
11-36
11-40
11-40
11-41
11-41
11-41

CONTENTS

Page
11.6.5 Diagnostic Functions 11-41
11.6.6 The NOP Command Packet 11-42
11.6.7 Interrupt Control Field 11-42
11.7 PROGRAMMING EXAMPLES 11-43
11.7.1 DR32 High-level Language Program
(Program A) 11-43
11.7.2 DR32 Queue I/0 Functions Program
(Program B) 11-49
CHAPTER 12 DUP11l INTERFACE DRIVER 12-1
12,1 SUPPORTED DEVICE 12-1
12.1.1 Driver Operating Modes 12-1
12,1.1.1 BSC Mode 12-2
12,1.1.2 Binary Mode 12-4
12.2 DEVICE INFORMATION 12-4
12.3 DUP1l FUNCTION CODES 12-5
12.3.1 Read 12-6
12.3.2 Write 12-7
12.3.3 Set Mode 12-7
12.3.4 Sense Mode 12-8
12.4 I/0 STATUS BLOCK 12-8
APPENDIX A I/0 FUNCTION CODES A-1
A.l TERMINAL DRIVER A-1
A.2 DISK DRIVERS A-2
A.3 MAGNETIC TAPE DRIVERS A-2
A.4 LINE PRINTER DRIVER A-3
A.5 CARD READER DRIVER A-3
A.6 MAILBOX DRIVER A-4
A.7 DMC1l DRIVER A-4
A.8 ACP INTERFACE DRIVER A-5
A.9 LPAl1l1-K DRIVER A-5
A.10 DR32 DRIVER A-6
A,11 DUP11 DRIVER A=-7
INDEX Index-1
FIGURES
FIGURE 1-1 Physical I/0 Access Checks 1-8
1-2 Logical I/0 Access Checks 1-9
1-3 Physical, Logical, and Virtual I/0 1-11
1-4 I/0 Function Format 1-12
1-5 Function Modifier Format 1-13
1-6 System Service Status Return 1-20
1-7 I/0 Status Block Format 1-22
1-8 CALL Instruction Argument List 1-23
1-9 Buffer Format for SGETCHN and S$GETDEV System
Services 1-25
2-1 Terminal Mailbox Message Format 2-5
2-2 Terminal Information 2-10
2-3 Short and Long Forms of Terminator Mask
Quadwords 2-17

ix

FIGURE

MU DEOEDDADWWWWWWW
i
WNFRFIIUDWNHNAN A WN -

| T O T Y A Y TR A I N

COOWOOWOWRVXOINNNNNIIIOATOTIO TN
|
STV WNNHFLOLWNNHFOOIOAUTEWNFUIBWNEIOYU D

CONTENTS

FIGURES (Cont.)

P4 Carriage Control Specifier
Write Function Carriage Control
(Prefix and Postfix Coding)

Set Mode Characteristic Buffer
Sense Mode Characteristics Buffer
Sense Mode Characteristics Buffer
(Type-ahead)

I0SB Contents - Read Function
IOSB Contents - Write Function
IOSB Contents - Set Mode, Set
Characteristics, Sense Mode, and Sense
Characteristics Functions

Disk Information

Starting Physical Address
Physical Cylinder Number Format
Set Mode Characteristics Buffer
Set Characteristic Buffer

I0SB Content

IOSB Content - Sense Mode
Magnetic Tape Information

I0$ SKIPFILE Argument

10$ SKIPRECORD Argument

Set Mode Characteristics Buffer
Set Characteristic Buffer

IOSB Content

Printer Information

P4 Carriage Control Specifier
Write Function Carriage Control
(Prefix and Postfix Coding)

Set Mode Characteristics Buffer
Set Characteristic Characteristics Buffer
IOSB Contents - Write Function
IOSB Contents - Set Mode Function
Card Reader Information

Binary and Packed Column Storage
Set Mode Characteristics Buffer
Set Characteristic Buffer

IOSB Contents

Multiple Mailbox Channels

Typical Mailbox Message Format
Mailbox Information

Read Mailbox

Write Mailbox

Write Attention AST (Read Unsolicited Data)

Read Attention AST

IOSB Contents ~ Read Function

IOSB Contents - Write Function
Mailbox Message Format

DMCll Information

Pl Characteristics Block

IOSB Content

ACP QIO Interface

File Information Block Format
Typical Short File Information Block
Attribute Control Block Format

ACP QIO Record Attributes Area

ACP QIO Attributes Statistics Block

Page
2-19

2-21
2-22
2-25

2-25
2-25
2-26

2-26
3-6

3-11
3-11
3-13
3-14
3-15
3-15
4-4

4-11
4-12
4-13
4-14

[S2100, I~

| T A A Y [N O T Y N B |
wmw -

wm

{ N T T K N O T R N N I I |
o o

WOWOWOUWOVDOROINNNIIIIIIAaadIDI oo n
|
HFRERPFRFMNFRFRFOWWHFWOWWOWOIADDWWOWOJNANDWYWWOWOOOWw-

FIGURE

TABLE

12-6
12-7
12-8
12-9

I
NoautbwN O,

CONTENTS

FIGURES (Cont.)

ACP Device/Function-Dependent Arguments
ACP Device/Function Argument Descriptor
Format

Quota File Transfer Block

IOSB Contents - ACP QIO Functions
Relationship of Supporting Software to
LPAl1l1-K

LPAll1-K Information

Data Transfer Command Table

Buffer Queue Control

I/0 Functions IOSB Content

Basic DR32 Configuration

DR32 Information

Command Block (Queue Headers)

DR32 Command Packet Queue Flow

DR32 Command Packet

Data Transfer Command Table

ACTION Routine Synchronization

I/0 Functions IOSB Content

3780 Message Block Example

3780 Message Block Example (Modified)
Nontransparent 2780 Message Block Example
Nontransparent 2780 Message Block Example
(Modified)

Transparent 2780 Message Block Example
(Modified)

DUP1ll Information

Set Mode Pl Buffer

IOSB Content

IOSB Content - Sense ‘Mode

TABLES

Read and Write I/0 Functions
Device/Function-Independent Arguments
SINPUT and SOUTPUT Arguments

$0I0, $QIOW, SINPUT, and SOUTPUT System
Services Status Returns

SGETCHN and SGETDEV Arguments

SGETCHN and SGETDEV Status Returns
Terminal Control Characters

Special Terminal Keys

Terminal Device-Independent Characteristics
Terminal Characteristics

Read QIO Function Modifiers

Write QIO Function Modifiers

Write Function Carriage Control (FORTRAN:
Byte 0 not equal to 0)

Write Function Carriage Control

(P4 byte 0 = 0)

Terminal QIO Status Returns

Disk Devices

Disk Device Characteristics

Xi

Page
9-20

9-21
9-28
9-32

10-4
10-5
10-11
10-15
10-32
11-2
11-4
11-6
11-8
11-9
11-21
11-35
11-36
12-2
12-3
12-3

12-3

12-3
12-4
12-7
12-8
12-9

TABLE

Y Oy
S R N Y T R H N |
o> W

H\O\O\O\O\O\OO@‘TD@W@(K)@\I\]\]O\
| N WO NS WNDHFWN WU

o
[

[SEREPI -
coo o
|
s W N

10-6
10-7
10-8
10-9
10-10

CONTENTS

TABLES (Cont.)

Disk I/0 Functions

Status Returns for Disk Devices

Magnetic Tape Devices

Magnetic Tape Device-Independent
Characteristics

Device-Dependent Information for Tape
Devices

Magnetic Tape I/0 Functions

Set Mode and Set Characteristic Magnetic
Tape Characteristics

Status Returns for Tape Devices

Printer Device-Independent Characteristics
Printer Device-Dependent Characteristics
Write Function Carriage Control (FORTRAN:
Byte 0 not equal to 0)

Write Function Carriage Control (P4 byte O
equal to 0)

Line Printer QIO Status Returns

Card Reader Device-Independent
Characteristics

Device-Dependent Information for Card
Readers

Card Reader I/O Functions

Set Mode and Set Characteristic Card Reader
Characteristics

Status Returns for Card Reader

Mailbox Read and Write Operations

Mailbox Characteristics

Mailbox QIO Status Returns

Supported DMCll Options

DMC1ll Device Characteristics

DMC1l1l Device Types

DMC1ll Unit Characteristics

DMC1l Unit and Line Status

Error Summary Bits

Status Returns for DMC11

Contents of the File Information Block
FIB Argument Usage in ACP QIO Functions
Attribute Control Block Fields

ACP QIO Attributes

ACP Record Attributes Values

Disk Quota and Lock/Unlock Bits

ACP QIO Status Returns

Minimum and Maximum Configurations per
LPAl1-K

Device-independent Characteristics
Device-Dependent Characteristics

VAX~11 Procedures for the LPAll-K
Subroutine Argument Usage

LPASIGTBUF Call - IBUFNO and IOSB Contents
LPASIWTBUF Call - IBUFNO and IOSB Contents
LPAl11-K Status Returns for I/0 Functions
Program A Variables

Program B Variables

xii

Page

o) o)}
[i
o

|
HHEWRHEIM O DD DO

[
o

o

| I I T I |
[
U O

OUOUWOUWOWWWMOMWOEOODODIIIIADN
| |

N

O 0

9-32

10-2

10-5

10-6

10-13
10-15
10-28
10-29
10-33
10-39
10-41

TABLE

11-1
11-2
11-3
11-4
11-5
11-6

12-1
12-2
12-3
12-4

CONTENTS

TABLES (Cont.)

Device-Independent Characteristics
Device Control Code Descriptions

DR32 Status Longword (DSL) Status Bits
VAX-11 Procedures for the DR32

DR32 Status Returns

Device-Dependent I0SB Returns for I/0
Functions

Device-Independent Characteristics
DUP1l I/0 Functions

DUP11 Status Returns

Device-Dependent Status Returns

xiii

Page

11-4

11-11
11-17
11-24
11-36

11-38
12-5
12-4
12-9
12-9

PREFACE

MANUAL OBJECTIVES

This manual provides users of the VAX/VMS operating system with the
information necessary to interface directly with the 1I/0 device
drivers supplied as part of the operating system. It is not the
objective of this manual to provide the reader with information on all
aspects of VAX/VMS input/output (I/0) operations.

INTENDED AUDIENCE

This manual is intended for system programmers who want to take
advantage of the time and/or space savings that result from direct use
of the I/0 devices. Users of VAX/VMS who do not require such detailed
knowledge of 1I/0 drivers can use the device-independent services
described in the VAX-1l1l Record Management Services Reference Manual
Readers are expected to have some experience with either VAX-11
FORTRAN or VAX-11 MACRO assembly language.

STRUCTURE OF THIS DOCUMENT

This manual is organized into thirteen chapters and one appendix, as
follows:

e Chapter 1 contains introductory information. It provides
overviews of VAX/VMS I/0 operations; I/0 system services;
and I/0 quotas, privileges, and protection. This chapter
describes I/0 function encoding and how to make I/0 requests.
It also describes how to obtain information on the different
devices.

e Chapters 2 through 8 and 10 through 12 describe the use of all
the I/0 device drivers supported by VAX/VMS:

Chapter 2 deals with the terminal driver

- Chapter 3 deals with disk drivers

- Chapter 4 deals with magnetic tape drivers

- Chapter 5 deals with the line printer driver
- Chapter 6 deals with the card reader driver

- Chapter 7 deals with the mailbox driver

XV

Chapter 8 deals with the DMC1ll driver

Chapter 10 deals with the LPAl11-K driver

- Chapter 11 deals with the DR-32 driver

Chapter 12 deals with the DUPll driver

Chapter 9 describes the Queue I/0 (QIO) interface to file
system ancillary control processes (ACPs).

The appendix summarizes the QIO function codes, arguments, and
function modifiers used by the different device drivers.

ASSOCIATED DOCUMENTS

The following documents may also be useful:

VAX/-11 Information Directory and Index - contains a complete
list of all VAX-11l documents

VAX/VMS System Services Reference Manual

VAX-11 Linker Reference Manual

VAX~-11 Software Handbook

PDP-11 Peripherals Handbook

VAX-11 FORTRAN User's Guide

VAX-11 MACRO User's Guide

VAX-11 Record Management Services Reference Manual

LPAl1-K Laboratory Peripheral Accelerator User's Guide

DECnet-VAX User's Guide

VAX/VMS 2780/3780 Protocol Emulator User's Guide

CONVENTIONS USED IN THIS MANUAL

The following conventions are used in this manual.

Convention Meaning

[]

Brackets in QIO requests enclose optional arguments.
For example:

I0$_CREATE P1,[P2],[P3],(P4],[P5]
Horizontal ellipses indicate that <characters or QIO
arguments not pertinent to the example have been

omitted. For example:

(that is, 8, 16, 24,...).

Xvi

Convention Meaning

. Vertical ellipses in coding examples indicate that
. lines of code not pertinent to the example are omitted,
. For example:

TTCHAN: .BLKW 1

$ASSIGN_S DEVNAM=TTNAME,CHAN=TTCHAN

- Hyphens in coding examples indicate that additional
arguments to the QIO request are provided on the
following line(s). For example:

SQI0O S FUNC=#I0$ WRITEPBLK,- ; FUNCTION IS
- - ;WRITE PHYSICAL
CHAN=W"TTCHAN1, - ; TO TTCHAN 1
EFN=#1,- ; EVENT FLAG 1
P1=W"ASTMSG,- ;P1 = BUFFER
P2=#ASTMSGSIZE ;P2 = BUFFER SIZE
<> Angle brackets enclose keys on the terminal keyboard.

For example:

<0> <20-2F>...<40-7E>

numbers Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes -- binary,
octal, or hexadecimal -- are explicitly indicated 1in

coding examples.

xvii

CHAPTER 1

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

VAX/VMS supports a variety of input and output (I/0) devices,
including disks, terminals, magnetic tapes, card readers, line
printers, synchronous line interfaces, real-time I/0 devices, and
software mailboxes. This manual describes the capabilities of VAX/VMS
device drivers and their programming interface, and gives several
simple programming examples that wuse 1I/0 drivers to perform
input/output operations.

1.1 OVERVIEW OF VAX/VMS I1/0

Input/output operations under VAX/VMS are designed to be as device-
and function-independent as possible. User processes issue I/0
requests to software channels, which form paths of communication with
a particular device. Each process can establish its own
correspondence between physical devices and channels. I/0 requests
are queued when they are 1issued and processed according to the
relative priority of the process that issued them. I/0 requests can
be handled indirectly by the VAX-11 Record Management Services (RMS)
or they can interface directly to the VAX/VMS I/0 system. (VAX-11 RMS
is described in the VAX-11 Record Management Services Reference
Manual.)

To access the I/0 services described in this manual, users issue
system service requests. In certain system service requests, a
function code included in the request defines the particular operation
to be performed. For example, Queue I/0 (QIO) system service requests
can specify such operations as reading and writing blocks of data.

QIO requests can also specify a number of device-specific input/output

operations, for example, converting lowercase characters to uppercase
in terminal read operations or rewinding magnetic tape.

1.2 VAX/VMS 1/0 DEVICES
This manual describes VAX/VMS support for the following devices:

e Terminals, using the DZ11 Asynchronous Serial Line
Multiplexer, and the VAX-11/780 console

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Disk devices:

RMO03 Pack Disk

RP05 and RP06 Pack Disks

RK06 and RK07 Cartridge Disks
- RX01 Floppy Disk

Magnetic tape devices:

- TE16 Magnetic Tape

- TU45 and TU77 Magnetic Tape Systems
- TS1l Magnetic Tape

Line printers:

-~ LP11 Line Printer Interface

- LAll DECprinter

CR11 Card Reader

DMC1l1l Synchronous Line Interface

Mailboxes -- virtual devices used for interprocess transfer of
information

LPAl1l1-K Laboratory Peripheral Accelerator
DR32 Interface

DUP11l Synchronous Line Interface

Chapters 2 through 8 and 10 through 12 describe in detail the drivers
for these I/0 devices and the I/0 operations they perform.

1.3 SUMMARY OF I/O SYSTEM SERVICES

The following system services allow the direct use of the operating
system's I/0 resources:

Assign I/0 Channel ($SASSIGN)

Deassign I/0 Channel ($DASSGN)

Queue I/0 Request ($QIO)

Queue I/0 Request and Wait for Event Flag (SQIOW)
Allocate Device (SALLOC)

Deallocate Device ($DALLOC)

Get Channel Information (SGETCHN)

Get Device Information (SGETDEV)

Cancel I/0 on Channel ($CANCEL)

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

e Create Mailbox and Assign Channel ($SCREMBX)

e Delete Mailbox ($SDELMBX)

e Wait for Single Event Flag (SWAITFR)

e Wait for Logical AND of Event Flags (SWFLAND)
e Wait for Logical OR of Event Flags (SWFLOR)

e Set AST Enable (SSETAST)

e Set Resource Wait Mode ($SETRWM)

This manual describes the use of system services for I/0O operations.
It also describes other system services used with I/0 operations such
as asynchronous system traps (ASTs) and event flag services. Section
1.8 describes the QIO request system service; ASTs and event flags,
and $GETCHN are described in Sections 1.9 and 1.10, respectively.
Section 1.8.7 describes the wuse of the $INPUT and $SOUTPUT macros,
which perform functions similar to the $QIOW system service.

See the VAX/VMS System Services Reference Manual for detailed
information on all these system services and examples of their use.
The VAX/VMS System Services Reference Manual also contains information
on physical and logical device-naming conventions.

1.4 QUOTAS, PRIVILEGES, AND PROTECTION

To preserve the integrity of the system, VAX/VMS 1I/0 operations are
performed under the constraints of quotas, privileges, and protection.

Quotas establish a limit on the number and type of I1I/0 operations that
a process can perform concurrently. They ensure that all users have
an equitable share of system resources and usage.

Privileges are granted to a user to allow the performance of certain
I/0-related operations, for example, <create a mailbox and perform
logical I/0 to a file-structured device. Restrictions on user
privilege protect the integrity and performance of both the operating
system and the services provided other users.

Protection is used to control access to files and devices. Device
protection is ©provided in much the same way as file protection:
shareable and nonshareable devices are protected by protection masks.

The Set Resource Wait Mode ($SSETRWM) system service allows a process
to select either of two modes when an attempt to exceed a quota
occurs. In the enabled (default) mode, the process waits wuntil the
required resource 1is available before continuing. In the disabled
mode, the process is notified immediately by a system service status
return that an attempt to exceed a quota has occurred. Waiting for
resources 1s transparent to the process when resource wait mode is
enabled; no explicit action is taken by the process when a wait is
necessary.

The different types of I/O-related quotas, privileges, and protection
are described in the following paragraphs.

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.4.1 Buffered I/O Quota

The buffered I/0 quota specifies the maximum number of concurrent
buffered 1I/0 operations a process can have active. 1In a buffered I/0
operation, the user's data is buffered in system dynamic memory. The
driver deals with the system buffer and not the user buffer. Buffered
I/0 is used for terminal, line printer, card reader, network, mailbox,
and console medium (RX01l) transfers. The user's buffer does not have
to be locked in memory for a buffered I/O operation.

The buffered I/0 quota value is established in the user authorization
file by the system manager or by the process's creator. Resource wait
mode is entered if enabled by the Set Resource Wait Mode system
service and an attempt to exceed the buffered I/O quota is made.

1.4.2 Buffered 1/0 Byte Count Quota

The buffered I/0 byte count quota specifies the maximum amount of
buffer space that can be consumed from system dynamic memory for
buffering I/0 requests. All buffered I/0 requests require system
dynamic memory in which the actual I/0 operation takes place.

The buffered I/0 byte count quota 1is established in the user
authorization file by the system manager or by the process's creator.
Resource wait mode is entered if enabled by the Set Resource Wait Mode

system service and an attempt to exceed the buffered I/0 byte count
quota is made.

1.4.3 Direct I/0 Quota

The direct I/O quota specifies the maximum number of concurrent direct
(that 1is, unbuffered), I/0 operations that a process can have active.
In a direct I/0 operation, data is moved directly to or from the user
buffer. Direct I/0 1is wused for disk, magnetic tape, DMA real-time
devices, and non-network DMCll transfers. For direct I/0, the user's
buffer must be locked in memory during the transfer.

The direct I/0 quota value is established in the user authorization
file by the system manager or by the process's creator. Resource wait
mode is entered if enabled by the Set Resource Wait Mode system
service and an attempt to exceed the direct 1/0 quota is made.

1.4.4 AST Quota

The AST quota specifies the maximum number of asynchronous system
traps that a process can have outstanding. The quota value is
established in the user authorization file by the system manager or by
the process's creator. There 1is never an inmplied wait for this
resource.

1.4.5 Physical I/0 Privilege (PHY_IO)

Physical I/0 privilege allows a process to perform physical 1I/0
operations on a device. Physical I/0 privilege also allows a process
to perform logical I/0 operations on a device. (Figures 1-1 and 1-2
show the use of physical I/0 privilege in greater detail.)

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.4.6 Logical I/0 Privilege (LOG_IO)

Logical 1I/0 privilege allows a process to perform logical 1I/0
operations on a device. A process can also perform physical
operations on a device if the process has logical I/0 privilege, the
volume is mounted foreign, and the volume protection mask allows
access to the device. (Figures 1-1 and 1-2 show the use of logical
I/0 privilege in greater detail.)

1.4.7 Mount Privilege

Mount privilege allows a process to use the IO$_MOUNT function to
perform mount operations on disk and magnetic tape devices. TIO$_MOUNT
is used in ACP interface operations (see Chapter 9).

1.4.8 Volume Protection

Volume protection protects the integrity of mailboxes and both foreign
and Files-11 structured volumes. Volume protection for a foreign
volume is established when the volume is mounted. Volume protection
for a Files-11 structured volume is established when the volume is
initialized. (The protection can be overridden when the volume is
mounted 1if the ©process that is mounting the volume has the override
volume protection privilege.)

Mailbox protection 1is established by the $CREMBX system service
protection mask argument.

Protection for structured volumes and mailboxes 1is provided by a
volume protection mask that contains four 4-bit fields. These fields
correspond to the four classes of users that are permitted to access
the volume. (User classes are based on the volume owner's user
identification code, UIC.)

The 4-bit fields are interpreted differently for volumes that are
mounted as structured (that 1is, volumes serviced by an Ancillary
Control Process (ACP)) and volumes that are mounted as foreign.

The 4-bit fields have the following format for volumes mounted as
structured:

15 11 7 3 0
world group owner system
11 10 9 8
delete execute write read

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The 4-bit fields have the following format for volumes mounted as
foreign:

1 10 9 8
Log 1/0 Phy /O * *
*not used

Usually, volume protection is meaningful only for read and write
operations.

1.4.9 Device Protection

Device protection protects the allocation of nonshareable devices,
such as terminals and card readers.

Protection is provided by a device protection mask similar to that of
volume protection, the difference being that only the bit
corresponding to read access is checked and determines if the process
can allocate or assign a channel to the device.

Device protection is established with the SET PROTECTION/DEVICE DCL

operator command. Both the protection mask and the device owner UIC
are set with this command.

1.4,10 System Privilege (SYSPRV)
System UIC privilege allows a process to be eligible for the volume or

device protection specified for the system protection class, even
though the process does not have a UIC in one of the system groups.

1.4.11 Bypass Privilege (BYPASS)

Bypass privilege allows a process to completely bypass volume and
device protection.

1.5 SUMMARY OF VAX/VMS QIO OPERATIONS

VAX/VMS provides QIO operations that perform three basic 1/0

functions: read, write, and set mode. The read function transfers
data from a device to a user-specified buffer. The write function
transfers data in the opposite direction -- from a user-specified

buffer to the device. For example, in a read QIO function to a
terminal device, a user-specified buffer is filled with characters
received from the terminal. 1In a write QIO function to the terminal,
the data in a user-specified buffer is transferred to the terminal
where it is displayed.

The set mode QIO function 1is used to <control or describe the
characteristics and operation of a device. For example, a set mode
QIO function to a 1line printer can specify either uppercase or
lowercase character format. Not all QIO functions are applicable to
all types of devices. The line printer, for example, cannot perform a
read QIO function.

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.6 PHYSICAL, LOGICAL, AND VIRTUAL I/0

I/0 data transfers can occur in any one of three device addressing
modes: physical, logical, or virtual. Any process with device access
allowed by the volume protection mask can perform logical I/0 on a
device that 1is mounted foreign; physical 1/0 requires privilege.
Virtual I/0 does not require privilege; however, intervention by an
ACP to control user access may be necessary if the device is under ACP
control. (ACP functions are described in Chapter 9.)

1.6.1 Physical 1/0 Operations

In physical I/0 operations, data is read from and written to the
actual, physically addressable units accepted by the hardware; for
example, sectors on a disk or binary characters on a terminal in the
PASSALL mode. This mode allows direct access to all device-level I/0
operations.

Physical I/0 requires that one of the following conditions be met:
e The issuing process has physical I/0 privilege (PHY_IO)

e The issuing process has logical I/0 privilege (LOG_IO), the
device is mounted foreign, and the volume protection mask
allows physical access to the device

If neither of these conditions is met, the physical I/0 operation is
rejected by the QIO system service with a status return of SS$ NOPRIV
(no privilege). Figure 1-1 illustrates the physical I/0 access checks
in greater detail.

The inhibit error-logging function modifier (IOSM_INHERLOG) can be
specified for all physical I/0 functions. TIOSM_INHERLOG inhibits the
logging of any error that occurs during the I/0 operation.

1.6.2 Logical I/0 Operations

In logical I/0 operations, data is read from and written to 1logically
addressable units of the device. Logical operations can be performed
on both block—-addressable and record-oriented devices. For
block—-addressable devices (for example, disks), the addressable units
are 512-byte blocks. They are numbered from 0 to n where n is the
last block on the device. For record-oriented or non-block-structured
devices (for example, terminals), logical addressable units are not
pertinent and are ignored. Logical 1I/0 requires that one of the
following conditions be met:

e The issuing process has physical I/0 privilege (PHY_IO)
e The issuing process has logical I/O privilege (LOG_IO)

e The volume is mounted foreign and the volume protection mask
allows access to the device

If none of these conditions is met, the 1logical I/0 operation is
rejected by the QIO system service with a status return of SS$_NOPRIV
(no privilege). Figure 1-2 illustrates the logical I/O access checks
in greater detail.

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

START

PHYSICAL
1/0

YES

PRIVILEGE
?

LOGICAL

1/0 NO

PRIVILEGE
?

NO FILE

SHAREABLE
DEVICE?

DEVICE
?

DEVICE
MOUNTED

?

MOUNTED

FOREIGN NO

PHYSICAL 1/0

PERMITTED?*

ALLOW
ACCESS

*Volume protection mask allows access

Figure 1-1

Physical I/0 Access Checks

DENY
ACCESS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

START

PHYSICAL

YES 1/0
PRIVILEGE
?
YES LOGICAL NO

1/0

PRIVILEGE
?

NO SPOOLED

*Volume protection mask allows access

Figure 1-2

DEVICE?
NO YES
DEVICE NO ,
MOUNTED
[?
SHAREABLE YES
DEVICE
?
NO MOUNTED NO
FOREIGN >
LOGICAL I/0 NO
- PERMITTED?*
Y y
ALLOW DENY
ACCESS ACCESS

Logical I/0 Access Checks

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.6.3 Virtual I/0 Operations

Virtual I/O operations can be performed on both record-oriented
(non-file-structured) and block-addressable (file-structured) devices.
For record-oriented devices (for example, terminals), the virtual
function 1is the same as a logical function; the virtual addressable
units of the devices are ignored.

For block-addressable devices (for example, disks), data is read from
and written to open files. The addressable units in the file are
512-byte blocks. They are numbered starting at 1 and are relative to
a file rather than to a device. Block-addressable devices must be
mounted and structured and must contain a previously opened file.

Virtual I/0 operations also require that the volume protection mask
allow access to the device (a process having either physical or
logical I/0 privilege can override the volume protection mask). If
these conditions are not met, the virtual I/0 operation is rejected by
the QIO system service with one of the following status returns:

Status Return Meaning

SS$_NOPRIV No privilege

SSS_DEVNOTMOUNT Device not mounted

SS$_DEVFOREIGN Volume mounted foreign (a foreign

volume is a volume that does not
contain a standard file structure
understood by any of the VAX/VMS
software)

Figure 1-3 shows the relationship of physical, logical, and virtual
I/0 to the driver.

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Qlo
REQUEST
PHYSICAL
YES
NO 1/0
REQUEST
?
LOGICAL
/0 YES
REQUEST
?
{
TRANSLATE LOGICAL
BLOCK ADDRESS
TO PHYSICAL
BLOCK ADDRESS
[
VIRTUAL YES
1/0
REQUEST \

MAP VIRTUAL BLOCK
ADDRESS TO LOGICAL

BLOCK ADDRESS 1/0
error DRIVER

ACP
INTERVENTION*

NO

GO TO
ACP

*Needed to map virtual address to logical address

WAKE ACP TO
CHANGE MAPPING
WINDOW

1

Figure 1-3 Physical, Logical, and Virtual I/0

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.7 1I/0 FUNCTION ENCODING

1/0 functions fall into three groups that correspond to the three 1I/0
device addressing modes (physical, logical, and virtual) described in
Section 1.6. Depending on the device to which it is directed, an 1I/O
function can be expressed in one, two, or all three modes.

I1/0 functions are described by 16-bit, symbolically-expressed values
that specify the particular I/0 operation to be performed and any
optional function modifiers. Figure 1-4 shows the format of the
16-bit function value.

15 6 5 0

function modifiers code

Figure 1-4 1I/0 Function Format

Symbolic names for I/0 function codes are defined by the $IODEF macro,
as described in the VAX/VMS System Services Reference Manual.

1.7.1 Function Codes

The low-order 6 bits of the function value are a code that specifies
the particular operation to be performed. For example, the code for
read logical block is expressed as I0$ READLBLK. Table 1-1 lists the
symbolic values for read and write I/0 functions in the three transfer
modes.

Table 1-1
Read and Write I/0 Functions
Physical I/0 Logical I/0 Virtual I/0
IO$_READPBLK IO$_READLBLK IOS_READVBLK
IO$_WRITEPBLK IO$_WRITELBLK IO$_WRITEVBLK

The set mode I/O0 function has a symbolic value of IO$_SETMODE.

Function codes are defined for all supported devices. Although some
of the function codes (for example, I0$ READVBLK and I0S$ WRITEVBLK)
are used with several types of devices, most are device ~dependent;
that 1is, they perform functions specific to particular types of
devices. For example, I0$ CREATE is a device-dependent function code;
it is used only with Tfile-structured devices such as disks and
magnetic tapes. Chapters 2 through 8 and 10 through 12 provide
complete descriptions of the functions and function codes,

1.7.2 PFunction Modifiers

The high-order 10 bits of the function value are function modifiers.
These are individual bits that alter the basic operation to be
performed. For example, the function modifier I0$M NOECHO can be
specified with the function I0$ READLBLK to a terminal. When used

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

together, the two values are written as I0$ READLBLK!IOSM NOECHO.
This means that data typed at the terminal keyboard is entered in the
user buffer but not echoed to the terminal. Figure 1-5 shows the
format of function modifiers.

15 13 12" 6 b5 0

~

device/function device/function
independent dependent

>
L4

Figure 1-5 Function Modifier Format

As shown, bits 13 through 15 are device/function independent bits, and
bits 6 through 12 are device/function dependent bits. Device/function
dependent bits have the same meaning, whenever possible, for different
device <classes. For example, the function modifier IOSM ACCESS is
used with both disk and magnetic tape devices to cause a file to be
accessed during a create operation. Device/function dependent bits
always have the same function within the same device class.

There are two device/function independent modifier bits:
IOSM INHRETRY and IOSM DATACHECK (a third bit 1is reserved).
IOSM:INHRETRY is used to inhibit all error recovery. If any error
occurs, and this modifier bit 1is specified, the operation is
immediately terminated and a failure status is returned in the 1I/0
status block (see Section 1.9.2). IOSM DATACHECK is used to compare
the data in memory with that on a disk or magnetic tape.

1.8 ISSUING I/0 REQUESTS

This section describes the entire process 1involved in issuing 1I/0
requests, including: assigning channels, allocating devices, and
issuing QIO requests; the $QIO, $QIOW, SINPUT, and SOUTPUT macros;
and, finally, status returns.

1.8.1 Channel Assignments

Before I/0 requests can be made to a device, the user must assign a
channel to establish a link between the user process and the device.
A channel is a communication path associated with a device during
VAX/VMS 1/0 operations. The process uses the channel to transfer
information to and from the device.

The Assign I/0 Channel ($SASSIGN) system service is used to assign a
channel to a device. To code a call to the $ASSIGN system service,
the user must supply the name of the device (physical device name or
logical name) and the address of a 'word to receive the assigned
channel number. The $ASSIGN system service returns the channel
number. The process can then request an I/O operation by calling the
Queue I/0 ($0I0) system service and specifying, as one of the
arguments, the channel number returned by the SASSIGN system service.

1-13

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

In the following example, an I/O channel is assigned to the device
TTB4. The channel number is returned in the word at TTCHAN,

TTNAME: .ASCID / TTB4/ ; TERMINAL NAME DESCRIPTOR

TTCHAN: .BLKW 1 ; TERMINAL CHANNEL NUMBER

$ASSIGN_S DEVNAM=TTNAME,CHAN=TTCHAN

If the first character in the device name (devham) string 1is an
underline character (), the name 1is considered to be a physical
device name; otherwise, one level of 1logical name translation is
performed and the equivalence name, if any, is used.

The Create Mailbox and Assign Channel ($SCREMBX) system service
provides another way to assign a channel to a device. 1In this case,
the device is a mailbox. $CREMBX creates a mailbox and then assigns a
channel to it (see Section 7.1.1).

The QIO system service can be performed only on assigned I/0 channels
and only from access modes that are equal to or more privileged than
the access mode from which the original channel assignment was made.

1.8.2 Device Allocation

A device can be allocated to a process (or subprocess) by the Allocate
Device ($SALLOC) system service. The allocated device is reserved for
the exclusive use of the requesting process, any subprocesses it
creates, and subprocesses created by any related subprocess. No other
process can allocate the device until the owning process explicitly
deallocates it.

Channels can be assigned to both allocated and nonallocated devices;
however, a process cannot assign a channel to a device that is
allocated to another process. When a channel 1is assigned to a
nonallocated, nonshareable device (for example, a line printer or a
magnetic tape device) VAX/VMS implicitly allocates the device.

Access to device functions is controlled by physical and 1logical 1I/0
privileges, the volume protection mask, the device protection mask,
and the mountability of the device (a device is mountable if a MOUNT
command can be issued for it). Even though a device is allocated to a
process, the process cannot perform I/0 operations on the device
unless access is allowed.

1.8.3 1I/0 Function Requests

After a channel has been assigned, the ©process can request I/0
functions by wusing the Queue 1I/0 ($QI0) system service., The $0QIO
system service initiates an input or output operation by queuing a
request to a specific device that is assigned to a channel.

Certain requirements must be met before a request 1is queued. For
example, a valid channel number must be included in the request, the
request must not exceed relevant quotas, and sufficient dynamic memory
must be available to complete the operation. Failure to meet such
requirements is indicated by a status return (described below in
Section 1.8.8).

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The number of pending I/O requests, the amount of buffer space, and
the number of outstanding ASTs that a process can have are controlled
by quotas.

Each I/0 request causes an I/0 request packet to be allocated from
system dynamic memory. Additional memory is allocated under the
following circumstances:

e The I/0 request function is an ACP function
e The target device is a buffered I/0 device
e The target device is a network I/O device

After an I/0 request is queued, the system does not require the
issuing process to wait for the I/0 operation to complete. 1If the
process that issued the QIO request cannot proceed until the 1I/0
completes, an event flag can be used to synchronize I/0 completion
(see Sections 1.8.6.1 and 1.9.1). 1In this case, the process should
request the Wait for Single Event Flag (SWAITFR) system service at the
point where synchronization must occur: that is, where I/O completion
is required.

SWAITFR specifies an event flag for which the process 1is to wait.
(The S$WAITFR event flag must have the same number as the event flag
used in the QIO request.) The process then waits while the 1I/0
operation 1is performed. On I/O completion, the event flag is set and
the process is allowed to resume operation.

Other ways to achieve this synchronization include the use of the
SQIOW system service and ASTs, described in Sections 1.8.5 and 1.9.3,
respectively. In addition, the I/0O status block can be specified and
checked 1if the user wants to determine whether the I/0 operation
completed without an error, regardless of whether or not the process
waits for I/0 completion (see Section 1.9.2.)

The QIO system service 1is accompanied by up to six device/
function-independent and six device/function-dependent arguments.
Section 1.8.6 below describes device/function-independent arguments.
The device/function-dependent arguments (Pl through P6) are
potentially different for each device/function combination. However,
similar functions that are performed by all devices have identical
arguments,. Furthermore, all functions performed by a particular class
of device are 1identical. Device/function-dependent arguments are
described in more detail for the individual devices 1in Chapters 2
through 8 and 10 through 12.

1.8.4 $QI0 Macro Format

The general format for the $QIO0O macro, using position-dependent
arguments, is:

$QI0_S {efn] ,chan,func, [iosb],[astadr], [astprm],-
(pll,[p21,(p31,(p4],[pP5],[ph]

The first six arguments are device/function independent. If keyword
arguments are used, they can be written in any order. Arguments Pl
through P6 are device/function dependent., The chan and func arguments
must be specified in -each request; arguments enclosed in brackets
([1) are optional.

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The following example illustrates a typical QIO request using keyword
arguments:

$QI0 S EFN=§#1,- ;EVENT FLAG 1
- CHAN=TTCHAN1 , - ;s CHANNEL
FUNC=#10$ WRITEVBLK,- :VIRTUAL WRITE
P1=BUFADD, - ; BUFFER ADDRESS
P2=#BUFSIZE ; BUFFER SIZE

1.8.5 $QIOW Macro Format

The Queue I/0 Request and Wait For Event Flag ($QIOW) system service
macro combines the $QI0 and SWAITFR system services. It eliminates
any need for explicit I/0 synchronization by automatically waiting
until the 1I/0 operation is completed before returning control to the
process. Thus, S$SQIOW provides a simpler way to synchronize the return
to the originating process when the process cannot proceed until the
I1/0 operation is completed.

The S$SQIOW macro has the same device/function independent and
device/function dependent arguments as the $QIO macro:

$QIOW_S [efn] ,chan, func, [iosb], [astadr], [astprm],-
(pll, [p21,[p3]1,[p4], (P51, [pP6]

1.8.6 $QI0 and $QIOW Arguments

Table 1-2 lists the $QI0O and $QIOW device/function-independent
arguments and their meanings. Additional information is provided in
the paragraphs following the table and in the VAX/VMS System Services
Reference Manual.

Table 1-2
Device/Function-Independent Arguments

Argument Meaning
efn (event The number of the -event flag that 1is to be
flag number) cleared when the I/0 function is queued and set
when it is completed. This argument is optional
in the macro form; if not specified, efn

defaults to 0.

chan (channel The number of the 1I/0 channel to which the
number) request 1is directed. The channel number is
obtained from either the $ASSIGN or $SCREMBX
system service. This argument is mandatory in
the macro form.

func The 16-bit function code and modifier value that
(function value)|specifies the operation to be performed. This
argument is mandatory in the macro form.

(continued on next page)

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-2 (Cont.)
Device/Function-Independent Arguments

Argument Meaning
iosb (I/0 The address of a quadword I/O status block to
status block) receive the final I/0 status. This argument is
optional in the macro form.
astadr (AST The entry point address of an AST routine to bhe
address) asynchronously executed when the I/0 completes.
This argument is optional in the macro form.
astprm (AST The 32-bit value to be passed to the AST routine
parameter) as an argument when the I/0 completes. It can be

used to assist the routine in identifying the
particular AST. This argument is optional in the
macro form.

1.8.6.1 Event Flag Number Argument - The event flag number (efn)
argument is the number of the event flag to be associated with the I/0O
operation. It is optional in a $QIO or $QIOW macro. The specified
event flag is cleared when the request is issued and set when the I/O
operation completes. The specified event flag is also set 1if the
service terminates without queuing the I/0 request.

If the process requested the $QIOW system service, execution is
automatically suspended until the 1I/0 completes. If the process
requested the QIO system service (with no subsequent $WAITFR, SWFLOR,
or SWFLAND macro), process execution proceeds in parallel with the
I/0. As the process continues to execute, it can test the event flag
at any point by using the Read Event Flags ($SREADEF) system service.

Event flag numbers must be in the range of 0 through 127 (however,
event flags 24 through 31 are reserved for system use). If no
specific event flag is desired, the efn argument can be omitted from
the macro. 1In that case, efn defaults to 0.

Users should exercise care in the use of $0I0s and S$QIOWs, for
example, when a S$QIOW is used for terminal input and a $QIO is used
for terminal output. If no event flag is specified 1in either call,
event flag 0 is set at the completion of the output $QIO and the
waiting input SQIOW will prematurely return control to the process.

1.8.6.2 Channel Number Argument - The channel number (chan) argument
represents the channel number of the physical device to be accessed by
the I/0 request., It is required for all $QIO and $SQIOW requests. The
association between the physical device and the channel is specific to
the process issuing the I/0 request. The channel number is obtained
from the $ASSIGN or $CREMBX system service (as described above in
Section 1.8.1).

1.8.6.3 Function Argument - The function (func) argument defines the
logical, wvirtual, or physical I/0 operation to be performed when the
$QI0 or SQIOW system service is requested. It is required for all QIO
and QIOW requests. The argument consists of a 16-bit function code

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

and function modifier. Up to 64 function codes can be defined.
Function codes are defined for all supported device types; most of
the codes are device dependent. The function arguments for each 1I/0

driver are described 1in more detail in Chapters 2 through 8 and 10
through 12.

1.8.6.4 1I/0 Status Block Argument - The 1I/0 status block (iosb)
argument specifies the address of the 1I/0 status block to be
associated with the I/0 request. It is optional in the QIO and QIOW
macros. If omitted, the 1iosb wvalue 1is 0 which indicates no iosb
address is supplied. This block is a quadword that receives the final
completion status of the I/0 request. Section 1.9.2 describes the I/0
status block in more detail.

1.8.6.5 AST Address Argument - The AST address (astadr) argument
specifies the entry point address of an AST routine to be executed
when the I/0 operation is complete. If omitted, the astadr value is 0
which indicates no astadr address is supplied. This argument is
optional and can be used to interrupt a process to execute special
code at I/0 completion. When the I/0 operation completes, the AST
service routine is CALLed at the address specified in the astadr
argument. The AST service routine is then executed in the access mode
from which the QIO service was called.

1.8.6,6 AST Parameter Argument - The AST parameter (astprm) argument
is an optional, 32-bit arbitrary value that is passed to the AST
service routine when I/0 completes, to assist the routine in
identifying the particular AST. A typical use of the astprm argument
might be the address of a user control block. 1If omitted, the astprm
value is 0.

1.8.6.7 Device/Function-Dependent Arguments - Up to six device/
function-dependent arguments (Pl through P6) can be included in each
QIO request., The arguments for terminal read function codes show a
typical use of Pl through P6:

Pl = buffer address

P2 = Dbuffer size

P3 = timeout count (for read with timeout)

P4 = read terminator descriptor block address
P5 = prompt string buffer address

P6 = prompt string buffer size

Pl is always treated as an address. Therefore, in the S form of the
macro, Pl always generates a PUSHAL instruction. P2 through P6 are
always treated as values. In the S form of the macro, these
arguments always generate PUSHL instructions.

1-18

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Inclusion of the device/function-dependent arguments in a QIO request
depends on the physical device unit and the function specified. A
user who wants to specify only a channel, an I/0 function code, and an
address for AST routine might issue the following:

$QI0_S CHAN=XYCHAN,FUNC=#I0$_READVBLK, -
ASTADR=XYAST ,P1=BUFADR,P2=#BUFLEN

In this example, XYCHAN is the address of the word containing the
channel to which the request 1is directed; I0$S READVBLK 1is the
function code; and XYAST is the AST entry point address. BUFADR and
BUFLEN are the device/function-dependent arguments for an input
buffer,

1.8.7 S$INPUT and $OUTPUT Macro Format and Arguments

The S$INPUT and SOUTPUT macros simplify the use of the $QIOW macro.
These macros generate code to perform virtual operations, using the
I0S_READVBLK and IO$_WRITEVBLK function codes (the function code is
automatically specified in the request), and wait for I/O completion.
The macro formats and arguments are:

SINPUT chan,length,buffer,[iosb],[efn]
SOUTPUT chan,length,buffer,[iosb], [efn]

Table 1-3 lists the SINPUT and $OUTPUT arguments and their meanings.

Table 1-3
SINPUT and S$OUTPUT Arguments

Argument Meaning

chan The channel on which the 1I/0 operation 1is to be
performed.

length The length of the input or output buffer.
buffer The address of the input or output buffer.
iosb The address of the quadword that receives the

completion status of the 1I/0 operation. This
argument is optional.

efn The number of the event flag for which the process
waits. This argument is optional; 1if not specified,
efn defaults to 0.

Both the iosb and efn arguments are optional; all other arguments
must be included in each macro. Note that the order of the length and
buffer arguments is opposite that of the $QI0 and S$QIOW Pl and P2
arguments. Also note that SINPUT and $SOUTPUT do not have the astadr
and astprm arguments; neither of these operations can conclude in an
AST.

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.8.8 ©Status Returns for System Services

On completion of a system service call, the completion status is
returned as a longword value in register RO, shown in Figure 1-6.
(System services save the data in all registers except RO and Rl.)

31 1615 0

RO: 0 status

Figure 1-6 System Service Status Return

Completion status is indicated by a value in bits 0 through 15. The
low-order 3 bits are encoded with the error severity level; all
successful returns have an odd value:

warning

success

error

informational (nonstandard) success
severe error

reserved

W un wunnn

~N DS WO

5-

Each numeric status code has a symbolic name in the form SS$ code.
For example, the return might be SS$ NORMAL, which indicates
successful completion of the system service. There are several error
conditions that <can be returned. For example, SS$ IVCHAN indicates

that an invalid channel number was specified in an I/0 request.

The VAX/VMS System Services Reference Manual describes the possible
returns for each system service. Table 1-4 lists the valid status
returns for the $QIO, $QIOW, SINPUT, and SOUTPUT system service
requests.

Status returns for system services are not the same as the I/0 status
returns described 1in Chapters 2 through 8 and 10 through 12 for the
various I/0 drivers (see Section 1.9). A system service status return
is the status of the $QIO0, $QIOW, SINPUT, SOUTPUT, or other system
service call after completion of the service, that 1is, after the
system returns control to the user. A system service status return
does not reflect the completion (successful or unsuccessful) of the
requested I/0 operation. For example, a $QIO0 system service read
request to a terminal might be successful (status return is
SS$ NORMAL) but fail because of a device parity error (I/0 status
return is SS$ PARITY). System service error status return codes refer
only to failuTres to invoke the service.

An I/0 status return is the status at the completion of the 1I/0
operation. It 1is returned in the quadword I/0 status block (IOSB).
Although some of the symbolic names (for example, SSS_NORMAL and
SS$ ACCVIO) can be wused 1in both types of status returns, they have
different meanings,

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-4
$QI0, $QIOW, SINPUT, and $OUTPUT System Services Status Returns
Status Meaning
SS$_NORMAL The $QI0, $QIOW, SINPUT, or SOUTPUT request was

successfully completed; that is, an I/0 request
was placed in the appropriate device queue,

S§S$_ACCVIO The I0SB, the specified buffer, or the argument
list cannot be accessed by the caller.

SS$_EXQUOTA The buffer quota, buffered I/0 quota, or direct
I/0 quota was exceeded and the process has
disabled resource wait mode with the $SETRWM
system service. (The SSETRWM system service is
described in Section 1.4.) SSS$ EXQUOTA 1is also
set if the AST quota was exceeded.

SS$_ILLEFC An illegal event flag number was specified.
SS$_INSFMEM Insufficient dynamic memory 1is available to
complete the service and the process has

disabled resource wait mode with the $SETRWM
system service. (The $SSETRWM system service is
described in Section 1.4.)

SS$_IVCHAN An invalid channel number was specified; that
is, a <channel number larger than the number of
channels available.

S§5S_NOPRIV The specified channel was assigned from a more
privileged access mode, the channel 1is not
assigned, or the user does not have the proper
privilege to access the device.

SS$_UNASEFC A common event flag in an wunassociated event
flag cluster was specified.

5S8$_ABORT A network logical link was broken.

SS$_INSFARG Not enough arguments were supplied to the
service,

§8$_ILLSER An invalid system service was called.

1.9 I/0O COMPLETION

Whether an I/0 request completed successfully or unsuccessfully can be
denoted by one or more return conditions. The selection of the return
conditions depends on the arguments included in the QIO macro call.
The three primary returns are:

e Event flag - an event flag is set on completion of an 1I/0
operation.

e I/0 status block - if the iosb argument was specified in the
QI0 macro call, a code 1identifying the type of success or
failure is returned in bits 0 through 15 of a quadword I/0
status block on completion of the I/0 operation. The location
of this block is indicated by the user-supplied iosb argument.

1-21

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

e Asynchronous system trap - if an AST address argument was
specified in the 1I/0 request, a call to the AST service
routine occurs, at the address indicated, on completion of the
I/0 operation. (The I/0 status block, if specified in the I1/0
request, is updated prior to the AST call.)

1.9.1 Event Flags

Event flags are status posting bits used by the $QI0O, $QIOW, S$SINPUT,
and S$OUTPUT system services to indicate the completion or occurrence
of an event. The system service clears the event flag when the
operation is queued and sets it when the operation is completed.
Event flag services allow users to set or clear certain flags, test
the current status of flags, or place a program in a wait state
pending the setting of a flag or group of flags.

See the VAX/VMS System Services Reference Manual for more information
on event flags and their use.

1.9.2 1I/0 Status Block
The completion status of an I/0 request is returned in the first word

of the I/0 status block (IOSB), as shown in Figure 1-7.

31 16 15 0

transfer count status

device-dependent data

Figure 1-7 1I/0 Status Block Format

The IOSB indicates whether the operation was successfully completed,
the amount of data transferred, and additional device-dependent
information such as the number of lines printed. The status return
code has the same format and bit significance (bit 0 set indicates
success; bit 0 clear indicates error) as the system service status
code (see Section 1.8.8). For example, if the process attempts to
access a nonexistent disk, a status code of SSS_NONEXDRV 1is returned
in the 1I/0 status block. The status returns for the individual I/0
drivers are listed in Chapters 2 through 8 and 10 through 12.

The upper half of the first IOSB longword contains the transfer count
on completion of the 1I1I/0 operation if the operation involved the
transfer of data to or from a user buffer. For example, if a read
operation is performed on a terminal, the number of bytes typed before
a carriage return is indicated here. If a magnetic tape unit 1is the
device and a read function is specified, the transfer count represents
the number of bytes actually transferred. The second longword of the
I0SB can contain certain device-dependent information. This
information is supplied in more detail for each I/0 driver in Chapters
2 through 8 and 10 through 12.

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The status can be tested symbolically, by name, For example, the
S55$_NORMAL status is returned 1if the operation was completed
successfully. The following example illustrates the examination of
the I/0 status block XYIOSB to determine if an error occurred:

$QI0 S CHAN=XYCHAN,FUNC=#I0$ WRITEVBLK,-
- I0SB=XYIOSB,P1=BUFADR,P2=#BUFLEN
BLBC RO ,REQERR ; CHECK SYSTEM SERVICE
; STATUS CODE

CMPW #SSS_NORMAL ,XYIOSB ;CHECK I/O0 STATUS

; CODE
BNEQ ERROR

The status block can be omitted from a QIO request if the user wishes
to assume successful completion of the request and does not want to
know how many bytes were transferred. If specified, the 1IO0SB is

cleared when the QIO request is issued and then filled with the final
status at I/0 completion.

1.9.3 Asynchronous System Traps

As an option, an AST routine can be specified in the QIO request 1if
the wuser wants to interrupt the normal execution of a process to
execute special code on completion of the request. Even 1if the
process is blocked for a SWAITFR or $QIOW, it will be interrupted.
When the I/0 operation completes, a CALL instruction 1is used to
transfer control to the AST service routine at the entry point address
specified in the QIO astadr argument. The address must be the address
of an entry mask. The AST service routine is then executed at the
access mode from which the QIO request was issued. Figure 1-8 shows
the argument list for the CALL instruction.

astprm

RO

R1

PC

PSL

Figure 1-8 CALL Instruction Argument List

Using an AST to signal 1I/0 completion allows the process to be
occupied with other functions during the I/0 operation. The process

need not wait until some event occurs before proceeding to another
operation.

See the VAX/VMS System Services Reference Manual for more detailed
information on ASTs and thelr use.

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.10 DEVICE INFORMATION

Two system services can be used to obtain information about devices:
Get Channel Information (SGETCHN) and Get Device Information ($GETDEV)
system services. The information obtained includes such categories as
device characteristics, device type, error count, and operation count.

The Get Channel Information (SGETCHN) system service is used to obtain
information about a device to which an I/O channel is assigned. The
SGETCHN system service can be performed only on assigned channels and
only from access modes that are equal to, or more privileged than, the
access mode from which the original channel assignment was made.

The Get Device Information (SGETDEV) system service is used to obtain
information about any device.

SGETCHN and SGETDEV return both primary and secondary device
characteristics. Usually, these characteristics are 1identical.
However, they can differ in three instances:

1. If the device is a spooled device, the primary
characteristics are those of the intermediate device and the
secondary characteristics are those of the spooled device.
See the VAX/VMS System Manager's Guide for information on
spooling.

2. If the device represents a logical link on a network, the
secondary characteristics contain information about the 1link.

3. If the device has an associated mailbox, the primary
characteristics are those of the device and the secondary
characteristics are those of the mailbox.

The macro format for a SGETCHN request is:
SGETCHN chan, [prilen],[pribuf],[scdlen}, [scdbuf]
The macro format for a SGETDEV request is:

SGETDEV devnam, [prilen],[pribuf]l,[scdlen], [scdbuf]

Table 1-5 lists the $GETCHN and SGETDEV arguments and their meanings.

Table 1-5
SGETCHN and SGETDEV Arguments

Argument Meaning

chan The number of the I/0 channel to which a $GETCHN
request is directed (this is not an argument for
SGETDEV) .

devnam The address of a string descriptor for the name of

the device to which SGETDEV is directed (this is
not an argument for SGETCHN).

prilen The address of the word to receive the 1length of
the primary characteristics. This argument 1is
optional.

{continued on next page)

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-5 (Cont.)
SGETCHN and S$GETDEV Arguments

Argument Meaning
pribuf The address of the buffer descriptor for the buffer
that is to receive the primary device

characteristics. An address of 0 indicates that no
buffer is specified. This argument is optional.

scdlen The address of the word to receive the 1length of
the secondary characteristics. This argument is
optional.

scdbuf The address of the buffer descriptor for the buffer
that is to receive the secondary device

characteristics. An address of 0 indicates that no
buffer is specified. This argument is optional.

Figure 1-9 shows the format of the device information returned in the
primary and secondary buffers.

device characteristics

buffer size type class

device dependent information

offset to

. unit number
device name

owner process PID

owner process UIC f DIB$K_LENGTH

volume protection

error count
mask

operation count

offset to
volume label

).
€9
)N
[

disk size in blocks

J

Figure 1-9 Buffer Format for SGETCHN and SGETDEV System Services

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

In Figure 1-9, offsets are the displacement from the beginning of the
buffer to the specified field. Missing fields are denoted by offsets
of 0. Both device name and volume label are stored in the buffer as
counted strings., They must be 1located through the use of their
respective offset values. Symbolic offsets for all fields are defined
by the $DIBDEF macro. If both a volume label and a device name are
returned, the buffer has a length of 64 bytes.

As much information as possible is returned for each of the primary
and secondary characteristics. If all the information does not fit in
the specified buffers, an appropriate status value is returned. Table
1-6 lists the status return values for the S$GETCHN and SGETDEV system
services.

Table 1-6A
SGETCHN and S$SGETDEV Status Returns

Status Meaning

SS$_NORMAL The SGETCHN or SGETDEV system service
successfully completed.

SS$_ACCVIO The caller cannot read a buffer descriptor,
write a buffer, or access the argument list.

SSS IVCHAN An invalid channel number was specified 1in the
- SGETCHN request, that is, a channel number
larger than the number of channels available;
the channel is nonexistent.

5S$_NOPRIV The caller does not have the privilege to access
the specified channel or the <channel is
unassigned.

S58$_BUFFEROVF The SGETCHN or SGETDEV system service
successfully completed. The device information
returned overflowed the buffer(s) provided and
has been truncated.

CHAPTER 2

TERMINAL DRIVER

This chapter describes the use of the VAX/VMS terminal driver. This

driver supports the DZ-11 Asynchronous Serial Line Multiplexer and the
console terminal.

2.1 SUPPORTED TERMINAL DEVICES

Each DZ-11 multiplexer interfaces 8 or 16 asynchronous serial
communication 1lines for use with terminals. It supports programmable
baud rates; however, input and output speeds must be the same.
VAX/VMS supports the DZ-11 internal modem control.

The system console terminal 1is attached to the processor with a
special purpose interface.

The Remote (DECnet) Command Terminal also makes use of the features
and capabilities listed in Section 2.2.

2.2 TERMINAL DRIVER FEATURES AND CAPABILITIES
The VAX/VMS terminal driver provides the following capabilities:
e Type-ahead
@ Specifiable or default line terminators
e Special operating modes, such as NOECHO and PASSALL
e American National Standard escape sequence detection
e Terminal/mailbox interaction
e Terminal control characters and special keys
e Dial-up
e Optional parity specification

e Limited full-duplex operation (simultaneously active read and
write requests)

TERMINAL DRIVER

2.2.1 Type-ahead

Input (data received) from a VAX/VMS terminal is always independent of
concurrent output (data sent) to a terminal. This capability is
called type-ahead. Type-ahead is allowed on all terminals unless
explicitly disabled by the Set Mode characteristic, inhibit type-ahead
(TTSM_NOTYPEAHD; see Section 2.4.3).

Data typed at the terminal is retained in the type-ahead buffer until
the wuser program issues an I/0 request for a read operation. At that
time, the data is transferred to the program buffer and echoed at the
terminal where it was typed.

Deferring the echo until the read operation is active allows the user
process to specify function code modifiers that modify the read
operation. These modifiers can include, for example, noecho
(I0OSM_NOECHO) and convert lowercase characters to uppercase
(IOSM_CVTLOW) (see Section 2.4.1.1).

If a read operation is already in progress when the data is typed at
the terminal, the data transfer and echo are immediate.

The action of the driver when the type-ahead buffer fills depends on
the ©Set Mode characteristic TT$M_HOSTSYNC (see Section 2.4.3). 1If
TT$SM HOSTSYNC is not set, CTRL/G (BELL) is returned to inform the user
that™ the type-ahead buffer 1is full., 1If TTSM_HOSTSYNC is set, the
driver stops input by sending a CTRL/S and the terminal responds by
sending no more characters. These warning operations are begun 8
characters before the type-ahead buffer fills, The driver sends a
CTRL/Q to restart transmission when the type-ahead buffer empties
completely.

The type-ahead buffer length is variable, with possible values in the
range from 0 through 32,767. The length can be set on a system-wide
basis through use of the system generation parameter TTY_ TYPAHDSZ.

2.2.2 Line Terminators

A line terminator is the control sequence that the user types at the
terminal to 1indicate the end of an input line. Optionally, the user
process can specify a particular 1line terminator or class of
terminators for read operations.

Terminators are specified by an argument to the QIO request for a read
operation., By default, they can be any ASCII control character except
FF, VT, LF, TAB, or BS. 1If included in the request, the argument is a
user-selected group of characters (see Section 2.4.1.2).

All characters are 7-bit ASCII characters unless data is input on an
8-bit terminal (see Section 2.4.1). (The characteristic TTSM_EIGHTBIT
determines whether a terminal uses the 7-bit or 8-bit character set;
see Table 2-4.,) All input characters are tested against the selected
terminator(s). The input is terminated when a match occurs or the
user's input buffer fills.

2.2.3 Special Operating Modes

The VAX/VMS terminal driver supports many special operating modes for
terminal lines. Section 2.4.3 lists these modes. All special modes
are enabled or disabled by the Set Mode and Set Characteristics QIOs.

TERMINAL DRIVER

2.2.4 Escape Sequences

Escape sequences are strings of two or more characters, beginning with
the escape character (decimal 27 or hexadecimal 1B), that indicate
that control information follows, Many terminals send and respond to
such escape sequences to request special character sets or to indicate
the position of a cursor.

The Set Mode characteristic TTSM ESCAPE (see Section 2.4.3) is used to
specify that VAX/VMS terminal 1lines can generate valid escape
sequences., If this characteristic 1is set, the terminal driver
verifies the syntax of the escape sequences. The sequence is always
considered a read function terminator and 1is returned in the read
buffer, that 1is, a read buffer can contain other characters that are
not part of an escape sequence, but a complete escape sequence always
terminates a read. The return information in the read buffer and the
I/0 status block includes the position and size of the terminating
escape sequence in the data record (see Section 2.5).

Any escape sequence received from a terminal is checked for ~correct
syntax. If the syntax is not correct, SS$ BADESCAPE is returned as
the status of the I/0. If the escape sequence does not fit 1in the
user buffer, SS$ PARTESCAPE is returned. The remaining characters are
transmitted on the next read. No syntax integrity is guaranteed
across read operations. Escape sequences are never echoed. Valid
escape sequences are any of the following forms (hexadecimal
notation):

ESC <int>...<int> <fin>
where:
ESC is pressing the ESC key, a byte (character) of 1B

<int> 1is an "intermediate character" in the range of 20 to 2F.
This range includes the character "space"” and 15
punctuation marks. An escape sequence can contain any
number of intermediate characters, or none.

<fin> 1is a "final character"™ in the range of 30 to 7E. This
range 1includes uppercase and lowercase letters, numbers,
and 13 punctuation marks.

There are four additional escape sequence forms:

ESC <;> <20-2F>...<30-7E>
ESC <?> <20-2F>...<30-7E>
ESC <0> <20-2F>,..<40-7E>
ESC <¥> <20-7E>...<20-7E>

For example, when the IDENTIFY escape sequence, escape Z, is sent to a
VT-55 terminal, the response from the terminal is ESC <C>. (Escape
sequences are neither displayed nor echoed on the terminal.)

TERMINAL DRIVER

Control sequences, as defined by the ANSI standard, are escape
sequences which include control parameters. Control sequences have
the following format:

ESC [<par>...<par> <int>...<int> <fin>

where:
ESC is pressing the ESC key
[denotes a control sequence

<par> 1is a parameter specifier in the range of 30 to 3F

<int> 1is an "intermediate character", as defined for escape
sequences

<fin> 1is a "final character" in the range of 40 to 7E
For example, the position cursor control sequence is:
ESC [P1 ; Pc H

where Pl is the desired line position and Pc is the desired column
position.

The VT100 User Guide lists valid escape sequences for VT100 terminals.

Section 2.2.6 describes <control character functions during escape
sequences.

2.2.5 Terminal/Mailbox Interaction

Mailboxes are virtual I/0 devices used for communication between
processes. The terminal I/0 driver can use a mailbox to communicate
with a user process. Chapter 7 describes the mailbox driver.

A user program can use the S$SASSIGN system service to associate a
mailbox with one or more terminals. The terminal driver sends
messages to this mailbox when terminal-related events occur that
require the attention of the user image.

Mailboxes used in this way carry status messages, not terminal data,
from the driver to the wuser program. For example, when data is
received from a terminal for which no read request 1is outstanding
(unsolicited data), a message 1is sent to the associated mailbox to
indicate data availability. On receiving this message, the user
program must read the channel assigned to the terminal to obtain the
data. Messages are sent to mailboxes under the following conditions:

e Unsolicited data in the type-ahead buffer. The wuse of the
associated mailbox can be enabled and disabled as a
subfunction of the read and write requests (see Sections 2.4.1
and 2.4.,2). Thus, the user process can enter into a dialogue
with the terminal after an unsolicited data message arrives.
Then, after the dialogue 1is over, the user process can
reenable the unsolicited data message function on the last I/0
exchange. The default on all terminals is enabled. Only one
message is sent between read operations.

TERMINAL DRIVER

e Terminal hang-up. Hang-up occurs when a remote line loses the
carrier signal; a message 1is sent to the mailbox. When
hang-up occurs on lines that have the characteristic
TTSM_REMOTE set, the line returns to local mode.

Messages placed in the mailbox have the following content and format:

e Message type. The codes MSGS_TRMUNSOLIC (unsolicited data)
and MSGS$_TRMHANGUP (hang-up) identify the type of message.
Message types are identified by the $MSGDEF macro.

e Device unit number to identify the terminal that sent the
message.

® Counted string to specify the device name.
e Controller name

Figure 2-1 illustrates this format.

31 16 15 8 7 0

unit number message type

controller name* counted string

*does not include the colon (:) character

Figure 2-1 Terminal Mailbox Message Format

Interaction with a mailbox associated with a terminal occurs through
standard QIO functions and ASTs. Therefore, the process need not have
outstanding read requests to an interactive terminal to respond to the
arrival of unsolicited data. The process need only respond when the
mailbox signals the availability of wunsolicited data. Section 2.6
contains an example of mailbox programming.

The ratio of terminals to mailboxes is not always one to one. One
user process can have many terminals associated with a single mailbox.

2,2.6 Control Characters and Special Keys

A control character 1is a character that controls action at the
terminal rather than passing data to a process. An ASCII control
character has a code between 0 and 31, plus 126 and 127 (hexadecimal 0
through 1F, plus 7E and 7F), that is, all normal characters plus
DELETE and ALTMODE. Some control characters are typed at the terminal
by simultaneously pressing the CTRL key and a character key, that is,
CTRL/x. Other control characters, for example, RETURN, LINE FEED, and
ESCAPE, are typed by pressing a single key, that is, RET, LF, and ESC.
Table 2-1 lists the VAX/VMS terminal control characters (none of these
characters is interpreted in the PASSALL mode). Table 2-2 lists
special terminal keys.

TERMINAL DRIVER

Table 2-1
Terminal Control Characters

Control
Character

Meaning

CTRL/C

TAB
(CTRL/I)

LF
(CTRL/J)

VT
(CTRL/K)

FF
(CTRL/L)

CTRL/O

Gains the attention of the enabling process 1if the
user program has enabled a CTRL/C AST. If a CTRL/C
AST is not enabled, CTRL/C is <converted to CTRL/Y
(see Section 2.4.3).

If echo is not disabled, the terminal performs a
newline (carriage return followed by a line feed),
types “C, and performs another newline.

Additional consequences of CTRL/C are:
e The type-ahead buffer is flushed.
e CTRL/S and CTRL/0O are reset.

e The current I/0 operation (if any) is successfully
completed. The status return is SSS_CONTROLC, or
SSS_CONTROLY if CTRL/C is converted to CTRL/Y.

Tabs horizontally. Advances to the next tab stop on
terminals with the characteristic TT$M_MECHTAB, but
the driver assumes tab stops on MODULO 8, that is,
multiples of 8, cursor positions. On terminals
without this characteristic, enough spaces are output
to move the cursor to the next MODULO (8) position.

Performs line feed; filled if TT$M_LFFILL is
set.

Terminal performs a vertical tab.

Performs form feed. Advances to the top of the page
on terminals with the characteristic TTS$M_MECHFORM.
On terminals without this characteristic, the driver
sends enough LF (filled) to move the paper to the top
of form position described by the length of the page
and the current position of the page. The driver
then sends a carriage return to position the cursor
at the 1left margin, The Set Mode or Set
Characteristics functions <can be used to set page
length (see Section 2.4.3).

Discards output. Action is immediate. All output is
discarded until the next read operation, the next
write operation with a IO$M CANCTRLO modifier, or the
receipt of the next CTRL/0.” If echo is not disabled,
the terminal echoes "0, followed by a newline. The
current write operation (if any) and write operations
performed while CTRL/0 is in effect are completed
with a status return of S5$_CONTROLO.

CTRL/0, which reenables output, cancels CTRL/S.
CTRL/C and CTRL/Y cancel CTRL/O.

(continued on next page)

TERMINAL DRIVER

Table 2-1 (Cont.)
Terminal Control Characters

Control
Character

Meaning

CTRL/Q

CTRL/R

CTRL/S

CTRL/U

CTRL/X

CTRL/Y

Controls data flow; used by terminals and the
driver., Restarts data flow to and from a terminal if
previously stopped by CTRL/S. The action occurs
immediately with no echo. CTRL/Q is also used to
solicit read operations.

CTRL/Q is meaningless if the line does not have the
characteristic TTSM TTSYNC, the characteristic
TT$M_HOSTSYNC, the characteristic TT$M_READSYNC, or
is not currently stopped by CTRL/S.

Displays current input. When CTRL/R is typed during
a read operation, a newline 1is -echoed, and the
current contents of the input buffer 1is displayed.
If the current operation 1is a read with prompt
(I0S READPROMPT) operation, the current prompt string
is also displayed. CTRL/R has no effect if the
characteristic TT$SM_NOECHO is set.

Controls data flow; wused by both terminals and the
driver. CTRL/S stops all data flow; the action
occurs immediately with no echo. CTRL/S is also used
to stop read operations. CTRL/S is meaningful only
if the terminal has the TTS$SM TTSYNC, TTSM HOSTSYNC,
or TT$M_READSYNC characteristic. -

Purges current input data. When CTRL/U is typed
before the end of a read operation, the current input
is flushed. TIf echo is not disabled, the terminal
echoes U, followed by a newline. The prompt string
is displayed again if the current operation is a read
with prompt (I0$ READPROMPT). CTRL/U has no effect
on type-ahead buffer operations.

Purges the type-ahead buffer and performs a CTRL/U
operation. Action is immediate. If a read operation
is in progress, the terminal echoes “U, followed by a
newline,

CTRL/Y is a special interrupt or attention character
that is wused to gain the attention of the command
interpreter for a logged-in process. CTRL/Y can be
enabled with an IO$M CTRLYAST function modifier to a
I0$ SETCHAR or IO$ SETMODE QIO. Physical or logical
I1/0° privilege, or an access mode greater than that
held by the user, is required to enable CTRL/Y ASTs.
The command interpreter's CTRL/Y AST handler always
has precedence over a user program's CTRL/Y AST
handler.

(continued on next page)

2-7

TERMINAL DRIVER

Table 2-1 (Cont.)
Terminal Control Characters

Control
Character

Meaning

CTRL/Y
(Cont.)

CTRL/Z

Typing CTRL/Y results in an AST to an enabled process
process to signify that the user typed CTRL/Y. The
terminal performs a newline, types "Y, and performs
another newline if the AST and echo are enabled.
CTRL/Y 1is ignored (and not echoed) if the process is
not enabled for the AST.

Additional consequences of CTRL/Y are:

e The type~ahead buffer is flushed.

e CTRL/S mode is reset.

e The current I/0 operation (if any) is successfully
completed with a 0 transfer count. The status

return is S55_CONTROLY.

Echoes "Z when CTRL/Z is typed as a read terminator.
By convention, CTRL/Z constitutes end-of-file.

Table 2-2
Special Terminal Keys

Control
Character

Meaning

ALTMODE

DEL
(DELETE)

ESC
(ESCAPE)

RET
(RETURN)

(Decimal 126 or hexadecimal 7E) Converts to escape on
terminals that do not have the lowercase
characteristic TT$M_LOWER set.

(Decimal 127 or hexadecimal 7F) Removes last typed
character from input stream. DEL is ignored if there
are currently no input characters. Hard copy
terminals echo the deleted character enclosed in
backslashes. For example, 1if the <character z is
deleted, \z\ 1is echoed (the second backslash is
echoed after the next non-DEL character is typed).
CRT terminals echo DEL as a backspace followed by a
space and another backspace.

If escape sequences are recognized (the Set Mode
characteristic TTSM ESCAPE 1is set), pressing ESC
signals the beginning of an escape sequence. On
these terminals ESC is never echoed; however, on
terminals that do not recognize escape sequences, ESC
is echoed as a dollar sign ($) if it was wused as a
read terminator or as hexadecimal 1B if it was not a
read terminator.

If used during a read (input) operation, RET echoes a
newline. All returns are filled on terminals with
TTSM_CRFILL specified.

TERMINAL DRIVER

2.2.,7 Dial-Up

VAX/VMS supports the DZ-11 internal modem control (for example, Bell
103A, Bell 113, or equivalent) in autoanswer, full duplex mode. The
terminal driver does not support half-duplex operations on modems such
as the Bell 202. Also not supported are modems that use circuit 108/1
(connect data set to line) in place of data terminal ready. All
United States modems and most European modems use the data terminal
signal which is supported. The terminal characteristic TTS$M_REMOTE
designates the line as being remote to the local computer. The driver
automatically sets TT$M_REMOTE if the carrier signal changes from off
to on.

Dial-up lines are monitored periodically to detect a change in the
modem carrier signal. The system generation parameter TTYSCANDELTA
establishes the dial-up monitoring period (see the VAX-1ll Software
Installation Guide).

If a line's carrier signal is lost, the driver waits nine monitor
periods for the carrier signal to return or none if the system
generation parameter DIALTYPE is 1. (DIALTYPE is 0 by default and is
relevant to the United Kingdom only.) If the carrier signal is not
detected during this time, the line is "hungup." The hang-up action
signals the owner of the line, through a mailbox message, that the
line is no longer in use. (No dial-in message 1is sent; the
unsolicited character message is sufficient when the first available
data is received.) The line is not available for two monitor periods
after the hang-up sequence begins. The hang-up sequence is not
reversible. If the 1line hangs up, all enabled CTRL/Y ASTs are
delivered; the CTRL/Y AST P2 argument is overwritten with SS$_HANGUP.
The I/0 operation in progress is cancelled and the status value
SS$_ABORT is returned in the IOSB.

When a line with the TT$M _REMOTE characteristic 1is hung up, the
characteristics of the line return to TTSM_LOCAL.

2.2.8 Duplex Modes

The VAX/VMS terminal driver can execute in either half- or full-duplex
mode. These terms describe the terminal driver software, not the
terminal communication lines. For the communication lines, the driver
supports the DZ-11 Asynchronous Serial Line Multiplexer and the
console terminal. 1In terminal driver software, the terms half- and
full-duplex refer to ordering algorithms wused to service read and
write requests.

In half-duplex mode, all read and write requests are inserted onto one
queue. The driver removes requests from the head of this queue and
executes them one at a time; all requests are sequentially executed
in the order they were issued.

In full-duplex mode, read requests are inserted onto one queue and
write requests onto another. The existence of two queues allows the
driver to recognize the presence of two requests -- a read and a write
--— at the same time. However, the driver cannot execute a read
request and a write request simultaneously. When it is ready to
service a request, the driver dynamically decides which request ~-- the
read or the write -- to process next.

In the VAX/VMS terminal driver, write requests normally have priority.
A write request can interrupt a current, but inactive, read request.
A read request is <current when the terminal driver removes that

TERMINAL DRIVER

request from the head of the read queue. 1In a simple read operation,
the read request becomes active when the first input character is
received and echoed. In a read with prompt operation, the read
request becomes active when the first character of the prompt is
output to the terminal. Once a read request becomes active, all write
requests will be queued until the read completes. However, during a
simple read operation many write requests can be executed before the
first input character is typed at the terminal.

When all I/0 requests are issued using $QIOW calls, there can be only
one current I/0 request at any time. 1In this case, the order in which
requests are serviced is the same for both half- and full-duplex
modes.

The type ahead buffer always buffers input data for which there is no
current read request, in both half- and full-duplex modes.

2.3 DEVICE INFORMATION

The user process can obtain terminal characteristics by wusing the
SGETCHN and SGETDEV system services (see Section 1.10). The
terminal-specific information is returned in the first three longwords
of a user-specified buffer as shown in Figure 2-2 (Figure 1-9 shows
the entire buffer).

31 223 16 15 8 7 0

device characteristics

page width type class

page length terminal characteristics

Figure 2-2 Terminal Information

The first longword contains device-independent data. The second and
third longwords contain device-dependent data.

Table 2-3 lists the device-independent characteristics returned in the
first longword.

TERMINAL DRIVER

Table 2-3
Terminal Device-Independent Characteristics
Characteristic Namel Meaning
DEVSM_AVL Terminal is on line and available
DEVSM_IDV Terminal is capable of input
DEV$M_ODV Terminal is capable of output
DEVSM_SPL Spooled
DEVSM_CCL Carriage control
DEVSM_REC Record oriented
DEVSM_TRM Terminal device

1. Defined by the $DEVDEF macro

The first byte of the second longword returns the device class
(DCS_TERM). The second byte returns the terminal type, for example,
DTS VT52. The $DCDEF macro defines the symbols for terminal class and

type. ——

The third and fourth bytes of the second longword return the page
width. The page width can have a value in the range of 1 to 511. The
driver does not accept a value of 0.

The third longword contains terminal characteristics in the first
three bytes and page length in the fourth byte. Terminal
characteristics are normally set at system generation time to any one
of, or a combination of, the values listed in Table 2-4. The STTDEF
macro defines symbols for terminal characteristics. Page length —<can'
have a value in the range of 0 to 255,

The Set Mode and Set Characteristics function (see Section 2.4.3) and
the Set Terminal command are used to change terminal characteristics.
The VAX/VMS Command Language User's Guide describes the Set Terminal
command. i

TERMINAL DRIVER

Table 2-4
Terminal Characteristics

1

Value Meaning

TT$M_CRFILL Terminal requires fill after RET (the fill type
can be specified by the Set Mode function P4
argument).

TTSM EIGHTBIT Terminal uses 8-bit ASCII character set.
. Terminals without this characteristic use the
7-bit ASCII code. 1In this case, the eighth bit
is masked out on received characters and ignored
on output characters. The eighth bit is
meaningful only if TT$M_EIGHTBIT is set.

TT$M_ESCAPE Terminal generates escape sequences (see Section
2.2.4). Escape sequences are validated for
syntax.

TTSM_HALFDUP Terminal is in half-duplex mode (see Section
2.2.8). All reads and writes are executed
sequentially.

TTSM HOLDSCREEN Terminal is in Holdscreen Mode. The driver
- automatically causes the terminal to enter or
exit from the mode when the mode is changed at
the terminal. This mode is meaningful only to
the DEC VT-52 and VT-55 terminals (see the
DECscope User's Guide) and the VT-100 terminal
(see the VT100 User Guide).

TTSM_HOSTSYNC Host/terminal synchronization. CTRL/Q and
CTRL/S are wused to control data flow and thus
keep the type-ahead buffer from filling.

TTSM_LFFILL Terminal requires fill after LF (the fill can be
specified by the Set Mode P4 argument).

TT$M_LOWER Terminal has lower case character set. Unless
the terminal is in the PASSALL mode or
I0OSM_NOFORMAT is specified, all input, output,
and echoed lowercase characters (hexadecimal 61
to 7A) are converted to uppercase if TTSM LOWER
is not set. -

TTSM MBXDSABL Mailboxes associated with the terminal will not
- receive unsolicited input notification or
hang-up notification (see Section 2.2.7). This
bit can be set by the IOS$SM DSABLMBX function
modifier for reads and cleared by the
I0SM_ENABLMBX function modifier for writes.

TT$M_MECHFORM Terminal has mechanical form feed. The driver
passes form feeds directly to the terminal
instead of expanding to line feeds.

1. Prefix can be TTSM_ or TTSV_. TTSM_ is a bit mask whose bit
corresponds to the specific field; TT$V_ is a bit number.

(continued on next page)

TERMINAL DRIVER

Table 2-4 (Cont.)
Terminal Characteristics

Valuel Meaning
TTSM_MECHTAB Terminal has mechanical tabs. In order to
accomplish correct line wrapping, MODULO (8) is
assumed.
TTSM_NOBRDCST Terminal will not receive any broadcast

messages.

TT$M_NOECHO Input characters are not echoed on this terminal
line (see Section 2.2.1).

TT$M_NOTYPEAHD Data must be solicited by a read operation.
Data 1is lost if received in the absence of an
outstanding read request, that is, unsolicited
data. Disables type-ahead capability (see
Section 2.2.1).

TT$M_PASSALL Terminal is in PASSALL mode; all input and
output data is in binary (no data interpretation
occurs) . Data termination occurs when the

buffer is full or the read data matches the
specified terminator. (See Section 2.4.1 for a
comparison with the read QIO function
I0$_READPBLK.)

TT$M_READSYNC Read synchronization. The host explicitly
solicits all read operations by issuing a CTRL/Q
and terminates the operation by issuing a
CTRL/S.

TTSM_REMOTE Dial-up terminal. Terminal returns to local
mode when a hang-up occurs on the terminal line
(see Section 2.2.5). This characteristic cannot
be changed; it is only informational.

TT$M_SCOPE Terminal is a wvideo screen display (CRT
terminal), for example, the VT-52 or VT-100.

TTSM_TTSYNC Terminal/host synchronization. Output to the
terminal 1is controlled by terminal-generated
CTRL/Q and CTRL/S.

TT$M_WRAP A newline should be inserted if the cursor moves
beyond the right margin. If TTSM_WRAP is not
set, no newline is sent.

1. Prefix can be TTSM_ or TTSV_. TT$SM_ is a bit mask whose bit
corresponds to the specific field; TT$V_ is a bit number.

2.4 TERMINAL FUNCTION CODES

The basic terminal I/0 functions are read, write, and set mode or
characteristics (see Section 1.5). All three I/O0 functions can take
function modifiers. There are two set mode or characteristics
functions: Set Mode (I0S SETMODE) and Set Characteristic
(I0S$_SETCHAR) . -

TERMINAL DRIVER

2.4.1 Read

When a read function code is issued, the user-specified buffer Iis
filled with characters from the associated terminal. VAX/VMS defines
four basic read functions, which are listed with their function codes
below:

e I0S_READVBLK - read virtual block
e I0S$_READLBLK - read logical block
e I0S_READPROMPT - read with prompt
e I0$_READPBLK - read physical block
e IO0S_TTYREADALL - read passall (virtual or logical block)

e IO0S_TTYREADPALL - read passall with prompt (virtual or logical
block)

Read operations are terminated if either of the following conditions
occurs:

e The user buffer is full

e The received character is included in a specified terminator
mask (see Section 2.4.1.2)

The read function codes can take all six device/function-dependent
arguments (Pl through P6) on QIO requests:

e Pl = the starting virtual address of the buffer that 1is to
receive the data read

e P2 = the size of the buffer that is to receive the data read
in bytes. A system generation parameter, MAXBUF, limits the
maximum size of the buffer.

e P3 = read with timeout, timeout count (see Table 2-5,
I0$M_TIMED)

e P4 = the read terminator descriptor block address (see Section
2.4.1.2)

e P5 = the starting virtual address of the prompt buffer that is
to be written to the terminal. For read with prompt
operations (IO$_READPROMPT or IOS_TTYREADPALL).

e P6 = the size of the prompt buffer that is to be written to
the terminal. For read with prompt operations (IO$_READPROMPT
or I0$_TTYREADPALL).

In a read with prompt operation, the P5 and P6 arguments specify the
address and size of a prompt string buffer containing data to be
written to the terminal before the input data is read. In a read with
prompt operation, a write operation and a read operation are performed
on the specified terminal. The prompt string buffer is formatted like
any other write buffer, but no carriage control can be implicitly
specified. (Carriage control specifiers are described 1in Section
2.4,2.2.)

During a read with prompt operation, typing CTRL/0 (which 1is turned
off at the start of any read) stops the prompt string. If CTRL/U or
CTRL/X is typed, the entire prompt string is written out again and the

TERMINAL DRIVER

current input is ignored. If CTRL/R is typed, the current prompt
string and input are written to the terminal.

Depending on the terminal type and the user's input, the prompt string
can be very simple or quite complex —-- from single command prompts to
screen fills followed by input data.

In PASSALL mode, data received from the associated terminal is placed
in the user buffer as binary information without interpretation.
There are three ways to place the terminal driver in a temporary
PASSALL mode for the duration of a single read QIO:

1. 1IO0S_READPBLK -- reads a physical block without interpreting
the data. Physical I/0 privilege is required.

2. IOS$_TTYREADALL -- allows nonprivileged users to bypass
terminal driver interpretation of data.

3. IOS_TTYREADPALL -- performs the same function as
I0$_TTYREADALL after writing a prompt string.

These functions are in contrast with the more comprehensive PASSALL
mode established by the Set Mode characteristic TTSM PASSALL. All
input and output data is in 8-bit binary format when TT3M PASSALL is
set (see Section 2.4.3). -

Since IO$_READPBLK, IO$_TTYREADALL, and IO$_TTYREADPALL do not purge
the type-ahead buffer (unless requested using the IOSM PURGE function
modifier) the characters in the type-ahead buffer may have been
subjected to CTRL/Y/C/S/Q/0 interpretation.

2.4.1.1 PFunction Modifier Codes for Read QIO Functions - Eight
function modifiers can be specified with I0$ READVBLK, I0$ READLBLK,
IOS_READPROMPT, IO$_READPBLK, I10$ TTYREADALL™ and IOS_TT?READPALL.
Table 2-5 lists these function modifiers. I0$M CVTLOW and
IO$M_NOFILTR are not meaningful to IOS$S READPBLK, I0$ TTYREADALL, and
I0$_TTYREADPALL. B -

Table 2-5
Read QIO Function Modifiers

Code Consequence

I0$SM_CVTLOW Lowercase alphabetic characters (hexadecimal 61 to
7A) are converted to uppercase when transferred to
the user buffer or echoed. Only for IOS$_READLBLK,
IO$_READVBLK, and IOS_READPROMPT.

I0$M_DSABLMBX | The mailbox is disabled for unsolicited data.

IOSM NOECHO Characters are not echoed (that is, displayed) as
- they are entered at the keyboard. The terminal
line can also be set to a "no echo" mode by the
Set Mode characteristic TTSM NOECHO, which
inhibits all read operation echoing.

(continued on next page)

TERMINAL DRIVER

Table 2-5 (Cont.)
Read QIO Function Modifiers

Code Consequence

IO$M_NOFILTR The terminal does not interpret CTRL/U, CTRL/R, or
DEL. They are passed to the wuser. Only for
IOS_READLBLK, IO$_READVBLK, and IOS_READPROMPT.

I0SM_PURGE The type-ahead buffer is purged before the read
operation begins.

I0$M_REFRESH If the read operation is interrupted by a write
(either a write breakthrough or any other type of
write), display the current read data when the
read function is restarted.

IOSM_TIMED The P3 argument specifies the maximum time
(seconds) that can elapse between characters
received; that is, the timeout wvalue for the
operation. If the read does not complete within
the specified time, a timeout error (SS$_TIMEOUT)
is returned. All input characters received before
the read timed out are returned in the user's
buffer.

A read with timeout operation in which the timeout
value 1is 0 empties the type-ahead buffer into the
user buffer until the proper termination condition
is reached (buffer full, termination character
detected, or type-ahead buffer empty). The read
operation then returns the count of characters
read and, if a terminator 1is read, SS$ NORMAL;
SS$_TIMEOUT is returned if no terminator Is read.
In either case the byte count in the IOSB always
indicates the number of characters read.

IOSM_TRMNOECHO | The termination character (if any) is not echoed.
There 1is no formal terminator if the buffer is
filled before the terminator is typed.

2.4.1.2 Read Function Terminators - The P4 argument to a read QIO
function either specifies the terminator set for the read function or
points to the location containing the terminator set. If P4 is 0, all
ASCII <characters with a code in the range 0 through 31 (hexadecimal 0
through 1F) except LF, VT, FF, TAB, and BS, are terminators. (This is
the VAX-11 RMS standard terminator set.)

If P4 does not equal 0, it contains the address of a quadword that
either specifies a terminator character bit mask or points to a
location containing that mask. The quadword has a short form and a
long form, as shown in Figure 2-3. In the short form, the
correspondence is between the bit number and the binary value of the
character; the character 1is a terminator if the bit is set. For
example, if bit 0 is set, NULL is a terminator; if bit 9 is set, TAB
is a terminator. If a character 1is not specified, it is not a
terminator., Since ASCII control characters are in the range 0 through
31, the short form can be used in most cases.

TERMINAL DRIVER

The long form allows use of a more comprehensive set of terminator
characters. Any mask equal to or greater than 1 byte is acceptable.
For example, a mask size of 16 bytes allows all 7-bit ASCII characters
to be used as terminators; a mask size of 32 bytes allows all 8-bit
characters to be used as terminators for 8-bit terminals.

If the terminator mask is all 0's, there are no specified terminators.

The read operation ends when the specified number of characters have
been transferred to the input buffer,

31 0

SHORT: 0

terminator character bit mask

31 16 15 0

LONG: (not used) mask size in bytes

address of mask

Figure 2-3 Short and Long Forms of Terminator Mask Quadwords

2.4.2 Write

Write operations display the contents of a user-specified buffer on
the associated terminal. VAX/VMS defines three basic write I/0
functions, which are listed with their function codes below:

e I0$ WRITEVBLK - write virtual block

e 1I0$ WRITELBLK - write logical block

e I0S WRITEPBLK - write physical block

The write function codes can take the following
device/function-dependent arguments:

e Pl = the starting virtual address of the buffer that is to be
written to the terminal

e P2 = the number of bytes that are to be written to the
terminal. A system generation parameter, MAXBUF, limits the
maximum size of the buffer,

e P3 (ignored)

e P4 = carriage control specifier except for write physical
block operations. (Write function carriage control is
described in Section 2.4.2.2.)

P3, P5, and P6 are not meaningful for terminal write operations.

TERMINAL DRIVER

In write virtual block and write logical block operations, the buffer
(Pl and P2) 1is formatted for the selected terminal and includes the
carriage control information specified by P4.

All lowercase characters are converted to uppercase if the
characteristics of the selected terminal do not include TTS$M_LOWER
(this does not apply to write physical block operations or when
I0SM_NOFORMAT is specified).

Unless TT$M MECHFORM is specified, multiple line feeds are generated
for form Tfeeds. The number of line feeds generated depends on the
current page position and the length of the page. By producing a
carriage return after the last line feed, a form feed also moves the
cursor to the left margin. Multiple spaces are generated for tabs if
the characteristics of the selected terminal do not include
TT$M_MECHTAB (this does not apply to write physical block operations).
Tab stops are every 8 characters or positions (that is, 1, 8, 16,
24,...). :

2.4.2.1 Function Modifier Codes for Write QIO Functions - Four
function modifiers can be specified with I0$_WRITEVBLK, IOS_WRITELBLK,
and I0$_WRITEPBLK. Table 2-6 lists these function modifiers.

Table 2-6
Write QIO Function Modifiers

Code Consequence
I0SM_CANCTRLO Turns off CTRL/O (if it is in effect) before the
write. Otherwise, the data may not be
displayed.
I0SM_ENABLMBX Enables use of the mailbox associated with the

terminal for notification that unsolicited data
is available.

I0SM_NOFORMAT Allows nonprivileged users to write information
without interpretation or format; in effect the
terminal line is in a temporary PASSALL mode.

I0SM_REFRESH If a read operation is interrupted by a write
(either a write breakthrough or any other type
of write), display the current read data when
the read function is restarted.

2,4.2.2 Write Function Carriage Control - The P4 argument 1is a
longword that specifies carriage control. Carriage control determines
the next printing position on the terminal. P4 is ignored in a write
physical block operation. Figure 2-4 shows the P4 longword format.

Only bytes 0, 2, and 3 in the longword are used. Byte 1 1is ignored.
If the low-order byte (byte 0) is not 0, the contents of the longword
are interpreted as a FORTRAN carriage control specifier. Table 2-7
lists the possible byte 0 values (in hexadecimal) and their meanings.

TERMINAL DRIVER

3 2 1 0

P4: | POSTFIX | PREFIX | (notused) | FORTRAN

Figure 2-4 P4 Carriage Control Specifier

Table 2-7
Write Function Carriage Control (FORTRAN: Byte 0 not equal to 0)
Byte
Value ASCII
(hexadecimal) Character Meaning

20 (space) Single space carriage control.
(Sequence: newline, print buffer
contents, return.)

30 0 Double-space carriage control.
(Sequence: newline, newline, print
buffer contents, return.)

31 1 Page eject carriage control.
(Sequence: form feed, print buffer
contents, return.)

2B + Overprint carriage control.
(Sequence: print buffer contents,
return.) Allows double printing for
emphasis or special effects.

24 S Prompt carriage control.
(Sequence: newline, print buffer
contents.)

All other Same as ASCII space character:
values single-space carriage control.

If the low-order byte (byte 0) is 0, bytes 2 and 3 of the P4 longword
are interpreted as the prefix and postfix carriage control specifiers.
The prefix (byte 2) specifies the carriage control before the buffer
contents are printed. The postfix (byte 3) specifies the carriage
control after the buffer contents are printed. The sequence is:

Prefix carriage control - Print - Postfix carriage control
The prefix and postfix bytes, although interpreted separately, use the

same encoding scheme. Table 2-8 shows this encoding scheme in
hexadecimal.

TERMINAL DRIVER

Table 2-8
Write Function Carriage Control (P4 byte 0 = 0)

Prefix/Postfix Bytes
(Hexadecimal)

Bit 7 Bits 0 - 6 Meaning

0 0 No carriage control is
specified, that is, NULL.

0 1 - 7F Bits 0 through 6 are a count
of newlines (carriage return
followed by a line feed).

Bit 7 Bit 6 Bit 5 Bits 0-4 Meaning

1 0 0 1-1F Output the single ASCII
control character specified
by the configuration of bits
0 through 4 (7-bit character
set).

1 1 0 1-1F Output the single ASCIT
control <character specified
by the configuration of bits
0 through 4 which are
translated as ASCII
characters 128 through 159
(8-bit character set).

Figure 2-5 shows the prefix and postfix hexadecimal coding that
produces the carriage control functions listed in Table 2-7. Prefix
and postfix coding provides an alternative way to achieve these
controls.

TERMINAL DRIVER

(Space) ' Sequence:

Prefix = NL
8D 1 - 0 Print
Postfix = CR

P4:

0" Sequence:

. Prefix = LF, LF
P4: '
8D 2 - 0 Print

Postfix = CR

1 Sequence:

Prefix = FF

8D 8C - 0 Print
Postfix = CR

P4:

et Sequence:

P4 Prefix = NULL
8D 0 — 0 Print
Postfix = CR

“g Sequence:

Pa. . 1 Prefix = NL
0 8A - 0 Print
Postfix = NULL

Example: Skip 24 lines before printing Sequence:

P4- Prefix = 24NL
8D 18 — 0 Print
Postfix:= CR

Figure 2-5 Write Function Carriage Control
(Prefix and Postfix Coding)

In the first example, the prefix/postfix hexadecimal coding for a
single-space carriage control (newline, print buffer contents, return)
is obtained by placing the value 1 in the second (prefix) byte and the
sum of the bit 7 wvalue (80) and the return value (D) in the third
postfix byte:

80 (bit 7 = 1)
+ D (return)

8D (postfix = return)

TERMINAL DRIVER

2.4.3 Set Mode
Set Mode operations affect the operation and characteristics of the
associated terminal 1line. VAX/VMS defines two types of set mode
functions:

e Set Mode

e Set Characteristics

The Set Mode function affects the mode and temporary characteristics
of the associated terminal line. Set Mode is a logical I/0 function
and requires no privilege. A single function code is provided:

e I0$ SETMODE
The Set Characteristics affects the permanent characteristics of the
associated terminal 1line. Set Characteristics 1is a physical I/0
function and requires the privilege necessary to perform physical I/O.
A single function code is provided:

e I0S_SETCHAR

These functions take the following device/function-dependent arguments
if no function modifiers are specified:

e Pl = address of characteristics buffer

e P3

speed specifier (bits 0 through 15 only)

e P4 = fill specifier (bits 0 through 7 = CR fill count; bits 8
through 15 = LF fill count)

e PS5 = parity flags

The Pl argument points to a quadword block, as shown in Figure 2-6,
With the exception of terminal characteristics, the contents of the
block are the same for both Set Mode and Set Characteristic functions.

The class portion of the block contains DC$ TERM, which is defined by
the S$DCDEF macro. Type values are defined by the $DCDEF macro, for
example, DT$ LA36. Page width can have a value in the range of 1 to
511. Page ~length can have a value in the range of 0 to 255. Table
2-4 lists the values for terminal characteristics. These values are
defined by the S$STTDEF macro.

The P3 argument defines the device speed, for example, TTSC BAUD 300.
If P3 is 0, the baud rate is not changed. P4 contains fill counts for
the carriage return and 1line feed characters. Bits 0 through 7
specify the number of fill characters used after a return. Bits 8

through 15 specify the number of fill characters used after a line
feed.

3 282 615 8 7 0

page width type class

page length terminal characteristics

Figure 2-6 Set Mode Characteristic Buffer

TERMINAL DRIVER

(P4 is applicable only if TTSM_CRFILL or TTSM _LFFILL is specified as a
terminal characteristic for the current QIO request; see Table 2-4.)

Three parity flags can be specified in the P5 argument:

TTSM_ALTRPAR - alter parity,
change parity on
terminal line if
set

TTSM_PARITY - enable parity on
terminal line if
set, disable if
clear

TTSM_ODD - parity is odd if
set

If parity is enabled, the DZ~11 generates a parity check bit to detect
parity mismatch. Parity errors that occur during an I/0 read
operation are fatal to the operation., Parity errors that occur when
no I/0 operation is in progress may result in a character loss.

The Set Mode and Set Characteristic functions <can take the Enable
CTRL/C AST, Enable CTRL/Y AST, and Hang-up function modifiers that are
decribed below.

2.4.3.1 Hang-Up Function Modifier - The Hang-Up function disconnects
a terminal that is on a dial-up line. (Dial-up lines are described in
Section 2.2.7.) Two combinations of function code and modifier are
provided:

e I0$_SETMODE!IOSM_HANGUP
e I0$ SETCHAR!IOSM_HANGUP

The Hang-up function modifier takes no arguments, SS$_NORMAL is
returned in the I/0 status block.

2.4.3.2 Enable CTRL/C AST and Enable CTRL/Y AST Function
Modifiers - Both set mode functions can take the Enable CTRL/C AST and
Enable CTRL/Y AST function modifiers. These function modifiers
request the terminal driver to queue an AST for the requesting process
when the user types CTRL/C or CTRL/Y. Enable CTRL/Y AST requires the
caller to have either supervisor, executive, or kernel access mode, or
logical or physical I/0 privilege. Four combinations of function code
and modifier are provided:

) IO$_SETMODE!IO$M_CTRLCAST Enable CTRL/C AST

e I0S SETMODE!IOSM_CTRLYAST

Enable CTRL/Y AST

] IO$_SETCHAR!IOSM_CTRLCAST Enable CTRL/C AST

[IO$_SETCHAR!IO$M_CTRLYAST

Enable CTRL/Y AST

TERMINAL DRIVER

These function code modifier pairs take the following
device/function-dependent arguments:

e Pl = address of the AST service or 0 if the corresponding AST
is disabled

e P2 = AST parameter

e P3 = access mode to deliver AST (maximized with caller's
access mode)

If the respective enable is in effect, typing CTRL/C or CTRL/Y gains
the attention of the enabling process (see Table 2-1).

Enable CTRL/C and CTRL/Y AST are single (one-time) enables. After the
AST occurs, it must be explicitly re-enabled by one of the four
function code combinations described above before an AST can occur
again. This function code 1is also used to disable the AST. The
function is subject to AST quotas.

The user can have more than one CTRL/C or CTRL/Y enabled. All ASTs
are given in their order of request, that is, first in first out, when
the character is typed. For example, typing CTRL/C results in the
delivery of all CTRL/C ASTs.

If no CTRL/C enable is present, the holder of a CTRL/Y enable will
receive an AST when CTRL/C is typed; newline, Y, return is echoed.

CTRL/C enables are flushed by the Cancel 1I/0 on Channel (SCANCEL)
system service. CTRL/Y enables are flushed only during unit run down,
that is, after the last deassignment by the Deassign 1I/0 Channel
($DASSGN) system service.

CTRL/Y 1is normally used to gain the attention of the command
interpreter and thus allow the user to input special commands such as
DEBUG, STOP, CONTINUE, and so on. Thus it 1is recommended that
programs run from a command interpreter not enable CTRL/Y. Also,
since ASTs are delivered on a first-in first-out basis, the command
interpreter's AST routine will get control first and possibly not
allow the program's AST to be delivered at all.

Section 2.2.6 describes other effects of CTRL/C and CTRL/Y.

2.4.4 Sense Mode

The Sense Mode functions sense the characteristics of the terminal and
return them to the caller in the I/0 status block. Two function codes
are provided:

e 105 SENSEMODE
e I0$_SENSECHAR

I0$ SENSEMODE returns the process-associated, that 1is, temporary,
characteristics of the terminal and 1I0$ SENSECHAR returns the
permanent characteristics of the terminal. IO§_SENSEMODE is a logical
I/0 function and requires no privilege. 1I0$ SENSECHAR is physical 1/0
function and requires the privilege necessary to perform physical I/0.

TERMINAL DRIVER

These function codes take the following device/function-dependent
argument:

Pl = address of a quadword characteristics buffer

The Pl argument points to a quadword block, as shown in Figure 2-7.

31 ' 16 15 87 0

buffer size type class

terminal characteristics

Figure 2-7 Sense Mode Characteristics Buffer

The class portion of the block contains DC$_TERM, which is defined by
the $DCDEF nmacro. Type values are defined by the $DCDEF macro, for
example, DT$_LA36, Table 2-4 lists the values for terminal
characteristics. These values are defined by the STTDEF macro.

The Sense Mode and Sense Characteristic functions can take the
type-ahead count function modifier IOSM_TYPEAHDCNT.

IO$M_TYPEAHDCNT returns the count of characters presently in the
type-ahead buffer and a copy of the first character in the buffer. 1In
this case, the Pl argument points to a characteristics buffer returned
by IOSM_TYPEAHDCNT. Figure 2-8 shows the format of this buffer.

31 | 2423 16 15 0
first number of
(reserved) character characters in type-ahead
buffer
(reserved)

Figure 2-8 Sense Mode Characteristics Buffer (Type-ahead)

2.5 1I/0 STATUS BLOCK

The I/0 status block formats for the read, write, set mode, and sense
mode I/0 functions are shown in Figures 2-9, 2-10, and 2-11. Table
2-9 lists the status returns for these functions.

+2 10SB

offset to terminator status

terminator size terminator

+6 +4

Figure 2-9 I0SB Contents - Read Function

TERMINAL DRIVER

In Figure 2-9, the offset to terminator at IOSB+2 1is the count of
characters before the terminator character (see Section 2.4.1.2). The
terminator character(s) is in the buffer at the offset specified in
I0OSB+2. When the buffer is full, the offset at IOSB+2 is equal to the
requested buffer size. At the same time, I0SB+4 is wequal to O.
IOSB+6 contains the size of the terminator string, usually 1.
However, in an escape sequence, IOSB+6 contains the size of the
validated escape sequence (see Section 2.2.4). The sum of IOSB+2 and
IOSB+6 is the number of characters in the buffer.

31 24 23 16.15 0
byte count status
line column Number of lines output
position position for the 1/0 function®

*0if IO$_WRITEPBLK, IO$M_NOFORMAT, or PASSALL mode

Figure 2-10 IOSB Contents - Write Function

In Figure 2-10, the 1line and column positions are the terminal
driver's internal computation of the cursor position after the write
function has completed. Note that the terminal driver does not
presently track any effects that escape sequences may have on the
cursor position.

0 speed status

LF fill CR fill

0 arity flags
panty Tlag count count

Figure 2-11 IOSB Contents - Set Mode, Set Characteristics,
Sense Mode, and Sense Characteristics Functions

Table 2-9
Terminal QIO Status Returns
Status Meaning
SS$_ABORT The operation was canceled by the Cancel I/0

on Channel (SCANCEL) system service.
Applicable only if the driver was actively
involved in a terminal operation.

585 _BADESCAPE Invalid escape sequence terminator begins at
the offset (IOSB+2).

§5$_CONTROLC Read or write operation not completed
because CTRL/C was typed.

SS$_CONTROLO Write operation not completed because CTRL/O
was typed.

(continued on next page)

TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal QIO Status Returns

Status Meaning

SS$_CONTROLY Read or Write operation not completed
because CTRL/Y was typed.

SS$_NORMAL Successful completion, The operation
specified in the QIO was completed
successfully. On a read or write operation,
the second word of the IOSB can be examined
to determine the number of bytes processed.
The 1input or output buffer contains these
bytes.

SS$_PARITY Parity bit mismatch detected by the device
interface during a read operation. The I/0
operation stopped when the mismatch was
detected. (Data was received up to this
point in the operation.) SS$_PARITY is
meaningful only on terminal lines that have
parity enabled.

SSS_PARTESCAPE Partial escape sequence was stored. An
escape sequence was started but read-buffer
space was exhausted before the sequence was
completed. The remainder of the sequence is
available from the type-ahead buffer on the
next read unless the terminal line has the
TT$M_NOTYPEAHD characteristic (see Section
2.2.4).

SS$_TIMEOUT Operation timeout. The specified terminal
could not perform the QIO read operation
because a timeout occurred at the terminal,
that is, an interrupt was lost, or
I08M TIMED was specified on a read operation
(see” Table 2-5), or a hardware timeout
occurred. I0SB+2 contains the number of
bytes transferred before the timeout
occurred.

2.6 PROGRAMMING EXAMPLE

The following program shows examples of several I/0O operations, using
the full duplex capabilities of the driver. The program illustrates
some important concepts concerning terminal driver programming:
assigning an 1I/0 channel, performing full-duplex I/0O operations, and
enabling CTRL/C ASTs.

The program is designed to run with a terminal set to full-duplex
mode. The initialization <code queues a read to the terminal and
enables CTRL/C ASTs. The main loop then prints out a random message
every three seconds. When the user types a message on the terminal,
the read AST routine prints an acknowledgement message and dqueues
another read. If the user types CTRL/C, the associated AST routine
cancels the I/0 operation on the assigned channel and exits to the
command interpreter.

TERMINAL DRIVER

khkkhhkkhhhkhkhhkhhhhhkhhkhhkhhkhhhhkhkhhhhkhhkhhhkhhkhhhhhhhhkhhhhkhhkhhkhhhhkhhhhhx

TERMINAL PROGRAM

khhdhkhhhhhhkhhkhhhhkhhkhdhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhdhk

~e we W we v

.TITLE FULL_DUPLEX TERMINAL PROGRAMMING EXAMPLE
.IDENT /02/

DEFINE SYMBOLS

~a we o~

$IODEF ; DEFINE I/0 FUNCTION CODES

ALLOCATE TERMINAL DESCRIPTOR AND CHANNEL NUMBER STORAGE

w. we “o

TT DESC:
- .ASCID /SYSSINPUT/ ; LOGICAL NAME OF TERMINAL
DEV_DESC: ; TRANSLATED PHYSICAL DEVICE DESCRIPTOR
PHYS NAME LEN:
.LONG 63

PHYS_NAME_ADR:
.LONG PHYS_NAME

PHYS_NAME:
.BLKB 63
TT CHAN:
- .BLKW 1 ; TT CHANNEL NUMBER STORAGE

ALLOCATE INPUT BUFFER

we we wo

IN_BUF:

.BLKB 20 ; 20 CHARACTER BUFFER
IN_BUFLEN=.-IN_BUF ; CALCULATE LENGTH OF BUFFER
IN_IOSB:

.BLKQ 1 ; INPUT I/O STATUS BLOCK

DEFINE CARRIAGE CONTROL SYMBOLS

~. we e

CR="X0D
LF="X0A

CARRIAGE RETURN
LINE FEED

~e we

DEFINE ACKNOWLEDGEMENT MESSAGE

~e wo w»

ACK_MSG:
.ASCII /INPUT ACKNOWLEDGED/<KCR><ZLF>
ACK_MSGLEN=.-ACK_MSG ; CALCULATE LENGTH OF MESSAGE

DEFINE OUTPUT MESSAGES

OUTPUT MESSAGES ARE ACCESSED BY INDEXING INTO A TABLE OF
LONGWORDS WITH EACH MESSAGE DESCRIBED BY A MESSAGE ADDRESS AND
MESSAGE LENGTH

e Ne Ne Ne Ne N N

TERMINAL DRIVER

ARRAY: TABLE OF MESSAGE ADDRESSES AND

LENGTHS

~e we we o

.LONG 108 FIRST MESSAGE ADDRESS
.LONG 153 FIRST MESSAGE LENGTH
.LONG 208
.LONG 258
.LONG 308
.LONG 358
.LONG 408
.LONG 45%

DEFINE MESSAGES

~e we wo

10$: .ASCII /RED ALERT!!! RED ALERT!!!/<CR><LF>
15$=.-10$%

i

208 JASCII /ALL SYSTEMS GO/<CR><LF>

25$=.-20$%

i

30S: .ASCII /WARNING.....INTRUDER ALARM/<CR><LF>
358=.~-30$%

i

408 JASCII /***%* GYSTEM OVERLOQOAD ****%/{CR><LF>
455=,-40%

STATIC QIO PACKET FOR MESSAGE OUTPUT USING QIOS_G FORM

~. wo we

WRITE_QIO:
$QI0 FUNC=I0$_WRITEVBLK,EFN=1 ; QIO PACKET

I

TIMER STORAGE

~e we wo

WAITIME:

. LONG -10*1000*1000%*3,-1 ; 3 SECOND DELTA TIME
TIME:

.BLKQ 1 ; CURRENT STORAGE TIME USED FOR
; RANDOM NUMBER

kkhkhhhkkhkhhhhkhkhhkhrhkhkhhdhkhkhhdhhhhhkkhhdhhhhhhhrhhhkhhhhhkhhhhhkhhhhhhhkhhdk

START PROGRAM

kkkhhkhkkhkkhkkkhkhkhkhkkhhhkhhhkkhhhhhhhkhhhkhhkhhkkhhkhhkhhhhhhhhhhhhhhhkhhhhkhk

THE FOLLOWING CODE PERFORMS INITIALIZATION FUNCTIONS. THE PROGRAM
ASSUMES THAT THE TERMINAL IS ALREADY IN FULL-DUPLEX MODE.

Ne W Ns Ne Ne Se W W e we “e

START:

.WORD 0

$TRNLOG_S -
LOGNAM=TT DESC,-
RSLLEN=PHYS_NAME_LEN, -
RLSBUF=DEV_DESC

CMPB PHYS NAME,#"X1B

BNEQ 5%

SUBL #4 ,PHYS NAME_LEN ;: YES, STRIP OFF FIRST 4 CHARS

ENTRY MASK
GET TERMINAL'S PHYSICAL DEVICE NAME

~ ~e

DOES NAME START WITH ESCAPE ?
NO '

~s we

TERMINAL DRIVER

ADDL #4,PHYS_NAME_ADR

MOVZWL TT_CHAN,WRITE_QIO+8

INSERT CHANNEL INTO STATIC

5$:
$ASSIGN_S DEVNAM= DEV DESC,CHAN=TT CHAN ;s ASSIGN
; TERMINAL CHANNEL
BLBS R0,108 ; NO ERROR IF SET
BRW ERROR ; ERROR
10S$: BSBW ENABLE CTRLCAST ; ALLOW CONTROL/C TRAPS
BSBW ENABLE READ ; QUEUE READ
r

FOR 3 SECONDS

Ns we N we

LOOP:
SGETTIM S TIMADR=TIME :
BLBS RO,10$;
BRW ERROR

10$: EXTZV #6,#2,TIME,RO

MOVQ ARRAY[RO] ,WRITE_QIO+28

~e we wo

; ISSUE QIO WRITE USING PACKET DEFINED IN

$QIOW_G WRITE_QIO
BLBS RO,5$
BRW ERROR

~

H .

; DELAY FOR 3 SECONDS BEFORE ISSUING NEXT

H

5$:
$SETIMR_S EFN=#2,DAYTIM=WAITIME

H

BLBS RO, 20$ H
BRW ERROR

205 $WAITFR_S EFN=$#2 H
BLBS RO ,LOOP ;
BRW ERROR

ROUTINE TO ALLOW CONTROL C RECOGNITION

~e we we

ENABLE CTRLCAST:
SQIOW_S CHAN=TT_CHAN,-

QIO PACKET

THIS LOOP OUTPUTS A MESSAGE BASED ON A RANDOM NUMBER AND THEN DELAYS

GET RANDOM TIME
NO ERROR IF SET

LOAD RANDOM BITS INTO SWITCH

LOAD MESSAGE ADDRESS
AND SIZE INTO QIO PACKET

DATA AREA

NO ERROR IF SET

MESSAGE

; TIMER SERVICE WILL
SET EVENT FLAG IN 3 SECONDS
NO ERROR IF SET

WAIT FOR EVENT FLAG
NO ERROR IF SET

FUNC=#I10$ SETMODE!IOSM _CTRLCAST, -

P1=CTRLCAST,- H

P3=#3 H
BLBS R0,10$;
BRW ERROR

10$: RSB

.
r

AST ROUTINE ADDRESS
USER MODE
NO ERROR IF SET

; AST ROUTINE TO EXECUTE WHEN CONTROL C IS TYPED

r

CTRLCAST:

Ne e we we wo

~. “e ~»

TERMINAL DRIVER

.WORD “M<R2,R3,R4,R5> ; PROCEDURE ENTRY MASK
$CANCEL_S CHAN=TT_CHAN ; FLUSH ANY I/O ON QUEUE

WHEN USING FULL-DUPLEX, ASYNCHRONOUS I/0, THE USER MUST ISSUE CANCEL
ON ANY OUTSTANDING I/O. THIS MUST BE DONE TO PREVENT ANY
OUTSTANDING QUEUED READS FROM BLOCKING DCL'S PROMPT MESSAGE. DCL
PERFORMS ITS OWN CANCEL ON ITS OWN CHANNEL, NOT ONE DEFINED BY THE
USER.

SEXIT_S EXIT TO DCL

e

ROUTINE TO QUEUE A READ TO THE TERMINAL

ENABLE READ:

~e Ne we we wo

[
o
R4

~e wo we

MUST NOT BE QIOW FORM
OR READ WILL BLOCK PROCESS

T $0I0_S CHAN=TT CHAN,-

~. we

FUNC=#I0$_READVBLK,-
IOSB=IN IOSB,-

ASTADR=READAST, - AST ROUTINE TO EXECUTE ON

-

P1=IN_BUF,-

P2=#IN BUFLEN
BLBS RO,108™ ; NO ERROR IF SET
BRW ERROR

THE QUEUED READ WILL NOT AFFECT WRITES UNTIL THE FIRST CHARACTER IS
TYPED. 1IF NO WRITES ARE ACTIVE AT THAT TIME, THE READ BECOMES
CURRENT AND SUBSEQUENT WRITES ARE BLOCKED UNTIL THE READ COMPLETES.
IF WRITES ARE ACTIVE, TYPED CHARACTERS ARE STORED IN THE TYPE AHEAD
BUFFER UNTIL THE WRITE QUEUE EMPTIES.

: RSB

AST ROUTINE TO EXECUTE ON READ COMPLETION

READAST:

-~ we o

.WORD “M<R2,R3,R4,R5> : PROCEDURE ENTRY MASK
$QI0_S CHAN=TT CHAN,- ; ISSUE ACKNOWLEDGE MESSAGE
FUNC=#I0 WRITEVBLK,-
P1=ACK MSG,-
P2=#ACK_MSGLEN

PROCESS READ MESSAGE

(User provided code to decode command inserted here)

~e “ove

BSBW ENABLE READ ; QUEUE NEXT READ
RET ; RETURN TO MAINLINE LOOP

ERROR ROUTINE

ERROR:

TERMINAL DRIVER

SEXIT_S RO ; EXIT WITH STATUS ERROR
; RETURN
.END START

CHAPTER 3

DISK DRIVERS

This chapter describes the use of the VAX/VMS disk drivers. These
drivers support the devices 1listed in Table 3-1 and detailed in
Section 3.1.

Table 3-1
Disk Devices
Bytes/ Bytes/

Model Type1 RPM Surfaces Cylinders Track Drive
RMO3 Pack 3600 5 823 16,384 67,420,160
RPOS Pack 3600 19 411 11,264 87,960,576
RP06 Pack 3600 19 815 11,264 | 174,423,040
RK06 Cart 2400 3 411 11,264 13,888,512
RKO7 Cart 2400 3 815 11,264 27,550,480
RX01 Flex 360 1 77 3,328 256,256

1. Pack = pack disk; Cart = cartridge disk; Flex = flexible diskette
(floppy)

All disk drivers support Files-11 Structure Level 1 and Level 2 file
structures. Access to these file structures is through the standard
MOUNT and INIT DCL commands followed by the RMS-32 calls described in
the VAX-11 Record Management Services Manual. Files in RT-11 format
can be read or written with the file exchange facility FLX.

The contents of disk bootstrap blocks are CPU- and operating
system-dependent. For the LSI-11 Console on the VAX-11/780, the
standard bootstrap for the RT-11 operating system 1is used. Your
software support specialist can provide more information on the RT-11
bootstrap.

3.1 SUPPORTED DISK DEVICES

The following sections provide greater detail on each of the disk
devices listed in Table 3-1.

DISK DRIVERS

3.1.1 RMO3 Pack Disk

The RM03 pack disk is a removable, moving head disk that consists of 5
data surfaces. The RM03 is connected to the system by a MASSBUS
adapter (MBA). Up to eight drives can be connected to each MBA.

3.1.2 RPO5 and RP06 Pack Disks

The RP05 and RP06 pack disks consist of 19 data surfaces and a moving
read/write head. The RP06 pack disk has approximately twice the
capacity of the RP0O5. These disks are connected to the system by an
MBA. Up to eight drives can be connected to each MBA.

3.1.3 RK06 and RK07 Cartridge Disks

The RK06 cartridge disk is a removable, random-access, bulk-storage
device with three data surfaces. The RKO7 cartridge disk is a
double-density RK06. The RK06 and RK07 are connected to the system by
an RK611 controller which interfaces to the UNIBUS adapter (UBA). Up
to eight disk drives can be connected to each RK61l.

3.1.4 RX01l Console Disk

The RX01 floppy disk uses a flexible "diskette" or "floppy" disk. The
disk is connected to the LSI console on the VAX-11/780, which the
driver accesses using the MTPR and MFPR privileged instructions.

For read or write physical block operations, the track, sector, and
cylinder parameters shown in Figure 3-2 describe a physical, 128-byte
RX01 sector. Note that the driver does not apply track-to-track skew,
cylinder offset, or sector interleaving to this physical media

address. Sector numbers are interleaved to expedite data transfers,
Section 3.2.4 describes this feature in greater detail.

3.2 DRIVER FEATURES AND CAPABILITIES
The VAX/VMS disk drivers provide the following capabilities:

e Multiple controllers of the same type; for example, more than
one MBA or RK61l can be used on the system

e Up to eight drives per controller (depending on the device)
e Different types of drive on a single controller (MBA only)
e Overlapped seeks (except RX01)

e Data checks on a per-request, per-file, and/or per-volume
basis (except RX01)

e Full recovery from power failure for online drives with
volumes mounted

e Extensive error recovery algorithms; for example, error code
correction and offset (except RX01)

DISK DRIVERS

e Dynamic, as well as static, bad block handling

e Logging of device errors in a file that can be displayed by
field service personnel or customer personnel

e Online diagnostic support for drive level diagnostics

e Multiple block, noncontiguous, virtual I/O operations at the
driver level

e Optimization of physical sector translation (RX0l only)

The following sections describe the data check, overlapped seek, error

recovery, and logical to physical translation capabilities in greater
detail.

3.2.1 Data Check

A data check is made after successful completion of a read or write
operation and compares the data in memory with the data on disk to
make sure they match.

Disk drivers support data checks at three levels:

e Per request -- Users can specify the data check function
modifier (IOSM DATACHECK) on a read logical block, write
logical block, read virtual block, write virtual block, read
physical block, or write physical block operation.

e Per volume -- Users can specify the characteristics "data
check all reads" and/or "data check all writes" when the
volume is mounted. The VAX/VMS Command Language User's Guide
describes volume mounting and dismounting.

e Per file -- Users can specify the file access attributes "data
check on read" or "data check on write." File access
attributes are specified when the file is accessed. Chapter 9
of this manual and the VAX-1ll Record Management Services
Reference Manual describe file access.

Offset recovery is performed during a data check but Error Code
Correctable (ECC) <correction is not (see Section 3.2.3). This means
that if a read operation is performed and an ECC correction applied,
the data check would fail even though the data in memory is correct.
In this case, the driver returns a status <code indicating that the
operation was successfully completed, but that the data check could
not be performed because of an ECC correction.

Data checks on read operations are extremely rare and users can either
accept the data as is, treat the ECC correction as an error, or accept
the data but immediately move it to another area on the disk volume,

3.2.2 Overlapped Seeks

A seek operation involves moving the disk read/write heads to a
specific place on the disk without any transfer of data. All transfer
functions, including data checks, are preceded by an implicit seek
operation (except when the seek is 1inhibited by the physical I/0
function modifier IO$M_INHSEEK). Except on RXO01 drives, seek

DISK DRIVERS

operations can be overlapped. That is, when one drive performs a seek
operation, any number of other drives can also perform seek
operations.

During the seek operation, the controller is free to perform transfers
on other units. Thus, seek operations can also overlap data transfer
operations. For example, at any one time, seven seeks and one data
transfer could be in progress on a single controller.

This overlapping is possible because, unlike I/0 transfers, seek
operations do not require the controller once they are initiated.
Therefore, seeks are 1initiated before I/0 transfers and other
functions that require the controller for extended periods.

3.2.3 Error Recovery

Error recovery in VAX/VMS 1is aimed at performing all possible
operations to successfully complete an I/0 operation. Error recovery
operations fall into four categories:

e Handling special conditions such as power failure and
interrupt timeout

e Retrying nonfatal controller and/or drive errors

e Applying error correction information (not applicable for
RX01)

e Offsetting read heads to try to obtain a stronger recorded
signal (not applicable for RX01)

The error recovery algorithm uses a combination of these four types of
error recovery operations to complete an I/0 operation.

Power failure recovery consists of waiting for mounted drives to spin
up and come on line followed by reexecution of the I/0 operation that
was in progress at the time of the power failure.

Device timeout is treated as a nonfatal error. The operation that was
in progress when the timeout occurred is reexecuted up to eight times
before a timeout error is returned.

Nonfatal controller/drive errors are simply reexecuted up to eight
times before a fatal error is returned.

All normal error recovery (nonspecial conditions) can be inhibited by
specifying the inhibit retry function modifier (IO$M_INHRETRY). If
any error occurs and this modifier is specified, the virtual, logical,
or physical I/0 operation 1is immediately terminated, and a failure
status is returned. This modifier has no effect on power recovery and
timeout recovery.

3.2.4 Logical to Physical Translation (RX01l)

Logical block to physical sector translation on RX0l drives adheres to
the standard VAX/VMS format. For each 512-byte 1logical block
selected, the driver reads or writes four 128-byte physical sectors.
To minimize rotational latency, the physical sectors are interleaved.
This allows the processor time to complete a sector transfer before
the next sector in the block reaches the read/write heads. To allow

DISK DRIVERS

for track to track switch time, the next logical sector that falls on
a new track 1is skewed by six sectors. (There is no interleaving or
skewing on read physical block and write physical block 1/0
operations.) Logical blocks are allocated starting at track 1; track
0 is not used.

The translation procedure, in more precise terms, is as follows:

1. Compute an uncorrected media address using the following
dimensions:
Number of sectors per track = 26

Number of tracks per cylinder =1
Number of cylinders per disk = 77

2. Correct the computed address for interleaving and
track-to-track skew (in that order) as shown in the following
VAX-11 FORTRAN statements. ISECT is the sector address and
ICYL is the cylinder address computed in step 1l:

Interleaving:
ITEMP = ISECT*2

IF (ISECT .GT. 12) ITEMP = ITEMP+l
ISECT = ITEMP

Skew:
ISECT = ISECT+(6*ICYL)
ISECT = MOD (ISECT, 26)

3. Set the sector number in the range 1 through 26 as required
by the hardware:

ISECT = ISECT+1

4, Adjust the cylinder number to cylinder 1 (cylinder 0 1is not
used) :

ICYL = ICYL+1

3.3 DEVICE INFORMATION

Users can obtain information on all disk device characteristics by
using the $GETCHN and S$GETDEV system services (see Section 1.10). The
disk-specific information is returned in the first three longwords and
in the 1last longword of a user-specified buffer, as shown in Figure
3-1 (Figure 1-9 shows the entire buffer).

Table 3-2 lists the device characteristics returned in the first
longword.

DISK DRIVERS

31 1815 8 7

device characteristics

buffer size type class

cylinders tracks sectors

)
CC

b))
C

disk size in blocks

Figure 3-1 Disk Information

Table 3-2
Disk Device Characteristics

Dynamic Bitsl

(Conditionally Set) Meaning
DEVSM_AVL Device is on line and available
DEV$M_FOR Foreign device
DEVSM_MNT Volume mounted
DEV$M_RCK Perform data check all reads
DEVSM_WCK Perform data check all writes

Static Bits1

(Always Set) Meaning

DEVSM_FOD File-oriented device

DEVSM_IDV Device is capable of input
DEV$M_ODV Device is capable of output
DEVSM_RND Device is capable of random access
DEVSM_SHR Device is shareable

1. Defined by the $DEVDEF macro.

DISK DRIVERS

The second longword contains information on the device class and type,
and the buffer size. The device class for disks is DC$_DISK and the
device types are:

Device Type Disk
DT$_RMO3 RMO3
DT$_RPOS5 RPO5
DT$_RPO6 RPO6
DT$_RK06 RKO6
DT$_RKO7 RKO7
DT$_RXO01 RX01

The S$DCDEF macro defines the device type and class names. The buffer
size 1is the default to be used for disk transfers (this default is
normally 512 bytes).

The third longword contains information on the number of cylinders per
disk, the number of tracks per cylinder, and the number of sectors per
track.

The last longword contains the maximum number of blocks (1 block = 512
bytes) that can be contained on the disk.

3.4 DISK FUNCTION CODES

VAX/VMS disk drivers can perform logical, virtual, and physical 1I/0
functions.

Logical and physical I/0 functions allow access to volume storage and
require only that the 1issuing process have access to the volume.
Virtual I/0 functions require intervention by an Ancillary Control
Process (ACP) and must be executed in a prescribed order. The normal
procedure is to create a file and access it. Information 1is then
written to the file and the file 1is deaccessed. The file is
subsequently accessed, the information is read, and the file is
deaccessed. The file is deleted when the information it contains is
no longer useful.

Any number of blocks (up to a maximum of 64K bytes) can be read or
written by a single request. The number itself has no effect on the
applicable quotas (direct 1/0, buffered I/0, and AST). Reading or
writing 1 block or 10 blocks subtracts the same amount from the quota.

The volume to which a logical or virtual function is directed must be
mounted in order for the function to actually be executed. 1If it is
not mounted, either a "device not mounted" or "invalid volume" status
is returned in the I/0O status block.

Table 3-3 lists the logical, virtual, and physical disk I/0 functions
and their function codes. Chapter 9 describes the QIO level interface
to the disk device ACP.

DISK DRIVERS

Table 3-3
Disk I/0 Functions

Function Code and Typel Function Function
Arguments Modifiers
I10$. CREATE P1,([P2],~- v IOSM_CREATE Create a directory
[P3],[P4], [P5] I0SM_ACCESS entry or a file
IOSM_DELETE
I0$_ACCESS pPl, [P2],- \' IOSM_CREATE Search a directory
[P3],[P4], [P5] I0OSM_ACCESS for a specified

file and access
the file if found

I0$_DEACCESS P1,[P2],- \Y Deaccess a file
[p3]1,(P4],[P5] and if specified,

write final attri-

butes in the file

header
IO$_MODIFY Pl,(P2], \Y Modify the file
[P3],[P4],[P5] attributes and/or
allocation
10$_DELETE P1,([P2],- v I0SM_DELETE Remove a directory
[p3],([P4],[P5] entry and/or file
header
I0$_ACPCONTROL P1,- v IO$M_DMOUNT Perform miscell-
[p2],[P3],([P4], [P5] aneous control

functions (see
Section 9.3)

I0$ MOUNT \' Informs ACP when
- volume is mounted;
requires mount
privilege

I0$_READVBLK P1,P2,P3 \) IO$M_DATACHECK2 Read virtual block
I0SM_INHRETRY

I0$_READLBLK P1,P2,P3 L I0SM_DATACHECKZ| Read logical block
IOS$SM_INHRETRY

I0$_READPBLK P1,P2,P3 P I0SM_DATACHECKZ| Read physical block
IOSM_INHRETRY
IO$M_INHSEEK2

I0$_WRITEVBLK P1,P2,P3 v IO$M_DATACHECK2 Write virtual block
IOSM_INHRETRY

10$_WRITELBLK P1,P2,P3 L IO$M_DATACHEC‘K2 Write logical block
I0SM_INHRETRY

1. v = virtual; L = logical; P = physical

2. Except for RX01
(continued on next page)

DISK DRIVERS

Table 3-3 (Cont.)
Disk I/0 Functions

Function Code and Type1 Function Function
Arguments Modifiers
I0$_WRITEPBLK P1,P2,P3 P I0$M_DATACHECKZ|Write physical
IO$M_INHRETRY block
IOSM_INHSEEK 2
I0$_SETMODE Pl L Set disk charac-
teristics for sub-
sequent operations
I0$_SETCHAR Pl P Set disk charac-
teristics for sub-
sequent operations
I10$_SENSEMODE L Sense the device-
dependent
characteristics
and return them in
the I/0 status
block
I0$_SENSECHAR P Sense the device-
' dependent
characteristics
and return them in
the I/0 status
block
I0$_SEARCH Pl P Search for speci-
fied block or
sector
I0$_PACKACK P Initialize volume
valid
I0S_SEEK Pl P Seek to specified
- cylinder
IOS_WRITECHECK Pl,- P Verify data
P2,P3 written to disk by
a previous write
QIO
1. Vv = virtual; L = logical; P = physical
2. Except for RX01
The function-dependent arguments for I0$_CREATE, I0S_ACCESS,
I0$_DEACCESS, I0$_MODIFY, and I0$_DELETE are:
e Pl -- the address of the File Information Block (FIB)
descriptor.
e P2 -- the address of the file name string descriptor
(optional). If specified, the name is entered in the

directory specified by the FIB.

DISK DRIVERS

P3 -- the address of the word that is to receive the length of
the resulting file name string (optional).

P4 -- the address of a descriptor for a buffer that 1is to
receive the resulting file name string (optional).

P5 -- the address of a 1list of attribute descriptors
(optional). If specified, the indicated attributes are read
(IO$ ACCESS), or written (IO$ CREATE, I0$ DEACCESS, and
I10$_MODIFY). - B

(See Chapter 9 for more information on these functions.)

The function-dependent arguments for I0$_READVBLK, IOS_READLBLK,
I0$_WRITEVBLK, and IOS_WRITELBLK are:

Pl -- the starting virtual address of the buffer that 1is to
receive the data in the case of a read operation; or, in the
case of a write operation, the virtual address of the buffer
that is to be written on the disk.

P2 -- the number of bytes that are to be read from the disk,
or written from memory to the disk. An even number must be
specified if the controller is an RK611l, RL11 or RX21l1l.

P3 -~ the starting virtual/logical disk address of the data to
be transferred in the case of a read operation; or, in the
case of a write operation, the disk address of the area that
is to receive the data.

In a virtual read or write, the address 1is expressed as a
block number within the file, that is, block 1 of the file is
virtual block 1. (Virtual block numbers are converted to
logical block numbers via mapping windows set up by the file
system ACP process.)

In a logical read or write, the address 1is expressed as a
block number relative to the start of the disk. For example,
the first sector on the disk contains (at least the beginning
of) block 0.

The function-dependent arguments for IO$_WRITECHECK, IOS_READPBLK, and
IOS_WRITEPBLK are:

Pl -- the starting virtual address of the buffer that 1is to
receive the data in the case of a read operation; or in the
case of a write operation, the starting virtual address of the
buffer that is to be written on the disk.

P2 -- the number of bytes that are to be read from the disk,
or written from memory to the disk. An even number must be
specified if the controller is an RK611], RL11l, or RX21ll1.

P3 -- the starting physical disk address of the data to be
read in the <case of a read operation; or, in the case of a
write operation, the starting physical address of the disk
area that is to receive the data. The address is expressed as
sector, track, and cylinder in the format shown in Figure 3-2.

DISK DRIVERS

31 16 15 8 7 0

P3: cylinder track sector

Figure 3-2 Starting Physical Address

The function-dependent argument for IO$_SEARCH is:
e Pl -- the physical disk address to position to. The address
is expressed as sector, track, and cylinder in the format
shown in Figure 3-2.
The function-dependent argument for IOS$_SEEK is:

e Pl -- the physical cylinder number to position to,. The
address is expressed in the format shown in Figure 3-3.

31 16 15 0

not used cylinder

Figure 3-3 Physical Cylinder Number Format

The function-dependent argument for IO$_SETMODE and IOS_SETCHAR is:

e Pl -- the address of a quadword device characteristics
descriptor
3.4.1 Read

This function reads data into a specified buffer from disk starting at
a specified disk address.

VAX/VMS provides three read function codes:

e I0S_READVBLK - read virtual block

e I0$_READLBLK - read logical block

e I0S_READPBLK - read physical block
If a read virtual block function is directed to a volume that is
mounted foreign, the function is converted to read logical block. 1If
‘a read virtual block function is directed to a volume that is mounted
structured, the volume is handled in the normal manner for a
file-structured device.
Three function-dependent arguments are used with these codes: Pl, P2,

and P3. These arguments were described above, in the beginning of
Section 3.4.

DISK DRIVERS

The data check function modifier (IO$M DATACHECK) can be used with all
read functions. If this modifier is specified, a data check operation
is performed after the read operation has been completed. A data
check operation is also performed if the volume read, or the volume on
which the file resides (virtual read), has the characteristic "data
check all reads." Furthermore, a data check is performed after a
virtual read if the file has the attribute "data check on read." The
RX01 driver does not support the data check function.

The read check function and the data check function modifier to a dis}
or tape <can return five error codes in the 1I/0 status block:
SS$_NORMAL, SS$_CTRLERR, SS$_DRVERR, SS$_MEDOFL, and SS$_NONEXDRV., If
no errors are detected, the disk or tape data is considered reliable.

The inhibit retry function modifier (IO$M_INHRETRY) can be wused with
all read functions. If this modifier is sSpecified, all error recovery
attempts are inhibited. IOSM INHRETRY takes precedence over
IO$M_DATACHECK. If both are specified and an error occurs, there is
no attempt at error recovery and no data check operation is performed.
If an error does not occur, the data check operation is performed.

3.4.2 Write

This function writes data from a specified buffer to disk starting at
a specified disk address.

VAX/VMS provides three write function codes:
e I0$ WRITEVBLK - write virtual block
e IO0O$ WRITELBLK - write logical block
e I0$_WRITEPBLK - write physical block

If a write virtual block function is directed to a wvolume that |is
mounted foreign, the function is converted to write logical block. 1If
a write virtual block function is directed to a volume that is mounted
structured, the volume is handled in the normal manner for a
file-structured device.

Three function-dependent arguments are used with these codes: Pl, P2,
and P3. These arguments were described above, in the beginning of
Section 3.4.

The data check function modifier (IOSM DATACHECK) can be used with all
write functions. If this modifier is specified, a data check
operation is performed after the write operation has been completed.
A data check operation is also performed if the volume written, or the
volume on which the file resides (virtual write), has the
characteristic "data check all writes." Furthermore, a data check is
performed after a virtual write if the file has the attribute "data
check on write." The RX0l1 driver does not support the data check
function.

The inhibit retry function modifier (IO$M INHRETRY) can be used with
all write functions. If this modifier is specified, all error
recovery attempts are inhibited. 1IOS$SM INHRETRY takes precedence over
IOSM_DATACHECK. If both are specified and an error occurs, there is
no attempt at error recovery and no data check operation is performed.
If an error does not occur, the data check operation is performed.

DISK DRIVERS

3.4.3 Set Mode

Set mode operations affect the operation and characteristics of the
associated disk device. VAX/VMS defines two types of set mode
functions:

e Set Mode

e Set Characteristic

3.4.3.1 Set Mode - The Set Mode function affects the operation and
characteristics of the associated disk device. Set Mode is a logical
I/0 function and requires the access privilege necessary to perform
logical I/0. A single function code is provided:

I10$_SETMODE

This function takes the following device/function-dependent argument
(other arguments are not valid):

Pl -- the address of a characteristics buffer

The Pl argument points to a quadword block shown in Figure 3-4,

31 16 15 87 0

buffer size not used

cylinders tracks sectors

Figure 3-4 Set Mode Characteristics Buffer

The buffer size is the default for disk transfers (this default is
normally 512 bytes). The second 1longword of the buffer contains
information on the cylinder, track, and sector <configuration of the
particular device; that is, number of cylinders per mass storage
media volume (bits 31:16), number of tracks per cylinder (bits 15:8),
and number of sectors per track (bits 7:0).

3.4.3.2 Set Characteristic - The Set Characteristic function affects
the characteristics of the associated disk device. Set Characteristic
is a physical I/0 function and requires the access privilege necessary
to perform physical I/0 functions. A single function code is
provided: ‘

I0$_SETCHAR

This function takes the following device/function-dependent argument
(other arguments are not valid):

Pl -- the address of a characteristics buffer

The Pl argument points to a quadword block as shown in Figure 3-5.

DISK DRIVERS

31 16 15 87 0

buffer size type class

cylinders tracks sectors

Figure 3-5 Set Characteristic Buffer

The device class for disks is DC$ DISK. Disk types are listed in
Section 3.3. The buffer size is the default for disk transfers (this
default is normally 512 bytes). The second 1longword of the buffer
contains information on the cylinder, track, and sector configuration
of the particular device; that 1is, number of cylinders per mass
storage media volume (bits 31:16), number of tracks per cylinder (bits
15:8), and number of sectors per track (bits 7:0).

3.4.4 Sense Mode

Sense mode operations obtain current disk device-dependent
characteristics and return them to the caller in the second longword
of the I/0 status block (see Figure 3-7). VAX/VMS provides a single
function code:

I0S_SENSEMODE - Sense Mode

Sense Mode is a logical I/0 function and requires the access privilege
necessary to perform logical 1I/0. No device/function-dependent
arguments are used with I0O$_SENSEMODE.

3.4.5 Pack Acknowledge

This function sets the volume valid bit for all disk devices. Pack
acknowledge is a physical I/0 function and requires the access
privilege to perform physical 1/0. A single function <code is
provided:

I0$_PACKACK
This function code takes no function-dependent arguments.

I0$ PACKACK must be the first function issued when a volume (pack,
cartridge, or diskette) 1is placed in a disk drive. I0$_PACKACK is
issued automatically when the INITIALIZE or MOUNT command language
commands are issued. '

3.5 I/0 STATUS BLOCK

Figure 3~-6 shows the I/O0 status block (IOSB) for all disk device QIO
functions except Sense Mode. Figure 3-7 shows the I/0 status block
for Sense Mode. Table 3-4 lists the status returns for all functions
and devices.

DISK DRIVERS

31 16 15 0

byte count status

device-dependent data

Figure 3-6 IOSB Content

31 16 15 87 0

0 status

cylinders tracks sectors

Figure 3-7 1I0SB Content - Sense Mode

The byte count is the actual number of bytes transferred to or from
the process buffer. Table 3-2 (in Section 3.3) 1lists the
device-dependent data returned in the second longword.

The second longword of the I/0 status block for the Sense Mode and
Sense Characteristic functions returns information on the cylinder,
track, and sector configuration for the particular device.

Table 3-4
Status Returns for Disk Devices
Status Meaning
SSS$_NORMAL Successful completion of the operation specified

in the QIO request. The second word of the IOSB
can be examined to determine the actual number of
bytes transferred to or from the buffer,

SS$_CTRLERR Controller-related error. For example, one or
more of the following conditions can cause this
error:

Late data

Error confirmation
Invalid map register
Interface timeout
Missed transfer

Programming error

Read timeout

(continued on next page)

DISK DRIVERS

Table 3-4 (Cont.)
Status Returns for Disk Devices

Status

Meaning

SS$_DATACHECK

SS$_DRVERR

SS$_FORMAT

SS$_INBUFLEN

SS$_IVADDR

SS$_MEDOFL
SS$_NONEXDRV

SS$_PARITY

Data check error. A mismatch between the data in
memory and the data on disk was detected during a
data check operation (see Section 3.2.1).

Drive-related error. For example, one or more of
the following conditions can cause this error:

Driver timing error

Illegal function

Illegal register

Operation incomplete

Register modify refused

Write clock failure
Format error. Format specified by driver does not
correspond to format as specified 1in sector
headers. Disk has been formatted for another

computer, such as DECsystem-20.

Invalid buffer length. The byte count must be
even for UNIBUS disk devices, that is, RKO7.

Invalid disk address error. Either an invalid
starting disk address or a disk address that was
incremented causes this error. This error occurs
for physical read and write operations or as the
result of a hardware error.

Medium offline. The addressed drive currently
does not have a volume mounted and on line.

Nonexistent drive. The addressed drive does not
exist or the drive select plug has been removed.

Parity error. For example, one or more of the
following conditions can cause this error:

Drive parity error

ECC hard error

Header compare error

Map parity error

Header CRC error

MASSBUS control parity error

MASSBUS data parity error

(continued on next page)

DISK DRIVERS

Table 3-4 (Cont.)
Status Returns for Disk Devices

Status

Meaning

SS$_UNSAFE

SS$_VOLINV

SS$_WASECC

SS$_WRITLCK

Drive unsafe. The addressed drive 1is currently
unsafe and cannot perform any operation as the
result of a hardware error.

Volume invalid. The addressed drive has not been
mounted and therefore does not have volume valid
set, or a status change has occurred in the drive
so that it has changed to an unknown, and
therefore, invalid state., All logical and virtual
functions will return this status until volume
valid 1is set. Volume wvalid 1is set when a
I0$ PACKACK function 1is executed (usually by the
MOUNT command language command) and cleared when
the wvolume is wunloaded, the respective drive
changes to an unknown state, or the power fails.
The driver automatically sets volume valid when
the proper volume is mounted and/or power is
restored.

Data check not performed. The function was a read
data that was completed successfully by applying
one or more ECC corrections, The specified data
check, however, was not performed.

Write lock error. An attempt was made to write on
a write locked drive. Volume 1is hardware
protected.

DISK DRIVERS

3.6 PROGRAMMING EXAMPLE

The follow@ng program provides an example of optimizing access time to
a disk file. The program creates a file using VAX-11 RMS, stores

information concerning the file, and closes the file.

The program

then accesses the file and reads and writes to the file using the

Queue I/0 system service.

.TITLE Disk Driver Programming Example
.IDENT 701/ 9 9 P
H
; Define necessary symbols
’
SFIRDEF ;befine File Information
S IODEF iDefine I/0 function cod
SRMSDEF jDefine RMS=32 Return St
é Local storage
E Define number of records to pbe processed
’
NUM_RECS=100 ;0ne hundred records

Allocate storage for necessary data structures
Allocate File Access Block

P AT L 1)

FAB_BLOCK:
SFAB

i

1

le name string address
le name string size

le 1s to be contiguou
X

1

1

c

e name block address

TMUNZ NN TV
d [T 2 b =3 e 4t T8 O
HOZINAQT O
enensNenenenonenev,
e e i S ha s bdes Lo
D Pt Q3 bt b o e I

Allocate file information block

A file information block is required
ses a

as
system service call that acces file

NeNansnswene

FIBLBLUCK?
.BLKB FIBSK_LENGTH

Allocate file information block descriptor

~ensne

F1B_DESCR? H
.LONG FIBSK.LENGTH sLen
.LONG FIB_BLOCK s Add

Allocate File Name Block

and defaults have been applied).

~evevsNansSeN.

NAM_BLOCK:
SNAM

~ewe

Allocate Record Access Block

wemenenenaNe

e.
- K3 H
RAB BLUCSRAB FAB = FAB.BLOCK,= ;File access block addres
RAC = SEQ,= sRecord access is to be s
RBF = SERLRD_BUFFER,= fRecord buffer address
RSZ = 512 :Record buffer size

Allocate direct access buffer

~ewewe

BLOCK.BUFFER: ;
.BLKB 1024 H

service

3-18

Block Offsets
tus Values

A file access block is required by RMS=32 to open and close a file,

tial file size is to be 100 blocks
e Access Tipe is output
e
e

s
imum record size is 512 bytes

e organization is to be sequential
ord tormat is fixed length

an argument in the Queue I/0

gth ot file information block
ress of file information block

A file name block 1s required by RMS=32 to return information concerning
a file (e.g. the resultant filename string after logical name translation

A record access block is required by RMS=32 for record operations on a
£

s
equential

Direct access buffer is 1024 bytes

Allocate space to store channel number returned by the Assign Channel system

DISK DRIVERS

DEVICE_CHANNEL:
«BLKW

.o

1

Allocate device name string and descriptor

LTL YL,

DEVICE-DEES%& 20 H

. ! $=10$ sLength of device name strin

1083 .kgg%l }gsssnls ; 1Address of device name strlgg

o8¢ . K iDevice on which created file will reside
: iReference labe]l to calculate length

“enene

Allocate file name string and define string length symbol

FILEL.NAME: H
+ASCII /SYS$DISK:MYDATAFIL.DAT/ :File name string
FILELSIZE=,=FILENAME ;File name string length

Allocate I/0 status quadword storage

~ewave

I0O.STATUS:
«BLKQ

wewe

1

Allocate output record buffer

~eveve

RECORDLBUFFER:
+BLKH

~e e

512 Record buffer is 512 bytes

Program starting point

The general logic of the pro?ram is to create a file called MYDATAFIL,.DAT

using RMS=32, store information concerning the file, write 100 records each

of which contains its record number in every byte, close the file, and then
access and read and write the file directly us ng the Queuye 1/0 sxstem service,
1t any errors are detected, the program returns to its caller with the final
error status in register R6.

LPP PR T TE PR PR R e Y

+ENTRY DISK_EXAMPLE, “M<R2,R3,R4,R5,R06> ;Program starting address

First create the file and open it using RMS=32

~swane

PARTL1S sFirst part of example
SCREATE FAB = FAB.BLOUCK ;Create and open file
BLBC R0O,20$ 3If low bit clear, creation failure

Second connect the record access block to the created file

~ewene

ect the record access block

conn
If low bit clear, connection tailure

[y
’
.
’

SCONNECT RAB = RAB.BLOCK
BLBC R0,308

Now write 100 records each containing its record number

wevene

MOVZBL #NUM_RECS; R6 ;S5et record write loop count

Fill each byte of the record to pe written with its record number

~ v e

108 SUBB3 R6, $NUM_RECS+1,R5 iCalculate record number
MOVCS #0,(R6),R5,¥512,RECORD_BUFFER ;Fill record bufter

Next write the record into the newly created file using RMS=32

SPUT RAB = RAB_BLOCK ;Put record in file

RLBC R0O,30s +1f low pit clear, put failure

SOBGTR R6,10$ 1Any more records to write?
E The file creation part of the example is almost complete, All that remains to
; be done is to store the tile information returned by RMS=32 and close the file.
’

MOVW NAM_BLOCK+NAMSW.FID,FIB_BLOCK+FIBSW.FID ;Save file identification
MOVW NAM_BLOCK+NAMsw_rID+2,EIB-BLDCK*FIBSN-F16+2 ;S5ave sequence number
MOVW NAM_BLOCK+NAMSW.LFID+4,FIB.BLOCK+FIBSW._FID+4 ;Save relative volume
SCLOSE FAB = FAB_BLUCK ;Close file
BLBS RO,PART.2 ;1£f low bit set, successful close

208 RET sReturn with RMS error status

w
I
—
o

DISK DRIVERS

Record stream connection or put record failure
Close file and return status

“avenenewe

30s: PUSHL RO ;Save error status
SCLOSE FAB = FAB.BLOCK iClose file
POPL RO iRetrieve error status
RET sReturn with RMS error status

The second Yart of the example illustrates accessing the previously created
file airectly using the Queue 1/0 system service, randomly reading and writing
various parts of the file, and then deaccessing the file,

First assign a channel to the appropriate device and access the file

Sevanuvensnene

PART.2: H
SASSIGN.S DEVNAM = DEVICE.DESCR,= ;Assign a channel to file device
CHAN = DEVICELCHANNEL H
BLBC RO ,20$;If low bit clear, assignment failure
MOVL &FfBSM-NowRITElFIBSM_wRITE,- ;Set for read/write access
) FIB_BLOCK+FIBSL.ACCTL ;
SQIOW.S CHAN = DEVICE.CHANNEL,= ;Access file on device channel
FUNC = CIDs_ACCEss:IO§H-ACCESS,- 7170 function is access file
I0OSB = IO_STATUS,= :Address of I/0 status quadword
P1 = FIB_DESCR ;Address of information block descriptor
BLBC RO,10$;If low bit clear, access fallure
MOVZWL IO.STATUS,RO sGet final 1/0 completion status

BLBS RO,308 sI1f low bit set, successful 1/0 function
10s: PUSHL R ;Save error status

$DASSGN.S CHAN = DEVICELCHANNEL ;Deassign file device channel

POPL RO sRetrieve error status
208 RET ;Return with I/0 error status

The tile is now ready to be read and written randomly. Since the records are
fixed length and exactly one block long, the record number corresponds to the
virtual block number of the record in the file, Thus a particular record can
be read or written simply by specifying its record number in the file,

The tollowin% code reads 2 records at a time and checks to see that they contain
their respective record numbers in every byte, The records are then written back
into the file in reverse order, This results in record 1 having the old contents

of record 2 and record 2 the old contents of record 1 ,etc, After the example

gastbeen run, it is suggested that the file dump utillfy be used to verify this
act.

o e Ne WEWe NP VG TE e V0 Ve Ve N

H MOVZBL #1,R6 ;Set starting record (block) number

w
(=]
"

.

Read next 2 records into block buffer

“~ewane

406 $QIOW.S CHAN = DEVICE_CHANNEL,= ;Read next 2 records from file channel
FUNC = #I0$_READVBLK,- ;I/0 function is read virtual block
10SB = I0.STATUS,= sAddress of I/0 status quadword
Pl = BLOCK.BUFFER,= sAddress of 1/0 buffer
P2 = #1024,~- :Size of 1/0 buffer
P3 = R6 ;Starting virtual block of transfer

BSBB 508 sCheck 1/0 completion status

Check each record to make sure it contains the correct data

e wane

SKPC R6,#512,BLOCK.BUFFER ;Skip over equal record numbers in data
BNEQ 608 ;1f not equal, data match failure

ADDL3 #1,R6,R5 ;Calculate even record number

SKPC RS, #512,BLUCK_.BUFFER+512 ;Sklp over equal record nuhbers in data
BNEQ 60s :If not equal, data match failure

Record data matches
write records in reverse order in file

o wsve ve e

$QIOW.S CHAN = DEVICE_CHANNEL,= ;Wwrite even numbered record in odd slot
FUNC = #IOS_WRITEVBLK,= ;1/0 tunction is write virtual block
I0S8 = I0.STATUS,~ sAddress of 1/0 status quadword
P1 = BLOCK-BUFFER+512,= ;Address of even record buffer

DISK DRIVERS

P2 = #512,~ ;Length of even record buffer
P3 = R6 tRecord number of odd record
BSBB 508 ;Check 1/0 completion status
ADDL3 #1,R6,R5 ;Calculate even record number
SQIOW.S CHAN = DEVICE.CHANNEL,= ;wWrite odd numbered record in even slot
FUNC = #I0$_.WRITEVBLK,~ ;1/0 function is write virtual block
I0SB = I0.STATUS,= sAddress of 1/0 status quadword
Pl = BLOCK-BUFFE&,- 1Address of odd record buffer
P2 = #512,~ sLength of odd record buffer
P3 = RS sRecord number of even record
BSBB 508 - sCheck 1/0 completion status
ACBB #NUM_RECS=1,#2,R6,408 7Any more records to be read?
BRB 70s H

E Check I/0 completion status

’

508: BLBC RO,708 ;If low bit clear, service failure
MOVZWL IO.STATUS,RO 1Get final I/0 completion status
gggc RO,70$ s1f low bit clear, I/0 tfunction failure

’

E Record number mismatch in data

’

60s: MNEGL #4,R0 ;Set dummy error status value

All records have been read, verified, and odd/even pairs inverted

-~ wewewe

0s: PUSHL RO ;Save final status
$QIOW.S CHAN = DEVICE.CHANNEL,= ;Deaccess file
FUNC = #I10$_DEACCESS ;170 function is deaccess file
$DASSGN.S CHAN = DEVICELCHANNEL ;Deassign file device channel
POPL RO iRetrieve final status
RET H
«END DISK_EXAMPLE

CHAPTER 4

MAGNETIC TAPE DRIVER

This chapter describes the use of the VAX/VMS magnetic tape driver.
This driver supports the devices listed in Table 4-1 and detailed in
Section 4.1.

Table 4-1
Magnetic Tape Devices
No. of Recording Tape Max. Data Transfer|Recording
Model Tracks Density Speed Rate in Bytes Per |Method
(bpi) (ips) Second
TE1l6 9 800 or 45 36,000 (for 800 NRZI or
1600 bpi); 72,000 (for |PEl
1600 bpi)
TS11 9 800 or 45 36,000 (for 800 NRZI or
1600 bpi); 72,000 (for |PE
1600 bpi)
TU45 9 800 or 75 60,000 (for 800 NRZI or
1600 bpi) 120,000 PE
(for 1600 bpi)
TU77 9 800 or 125 100,000 (for 800 NRZI or
1600 bpi) 200,000 PE
(for 1600 bpi)

1. NRZI = non-return-to-zero-inverted; PE = phase encoded.

4.1 SUPPORTED MAGNETIC TAPE DEVICES

The following sections describe the magnetic tape drives in greater
detail,

4.1,1 TEl6 Magnetic Tape Drive

The TEl6 magnetic tape drive holds one, 2400-foot, 9-track reel with a
capacity of 40 million characters. The drive reads data at 45 inches
per second with an average transfer time of 14 microseconds per byte

at the 1600 bpi density. Up to eight drives can be connected to each
TMO3 controller.

MAGNETIC TAPE DRIVER

4.1.2 TS11 Magnetic Tape Subsystem

The TS11 Magnetic Tape is a phase-encoded, 9-track magnetic tape
subsystem that operates under microprocessor control. The TsS11
consists of one TS1l controller and one TS04 drive.

4.1.3 TU45 and TU77 Magnetic Tape System

The TU45 and TU77 are phase-encoded, 9-track magnetic tape systems
with a capacity of 40 million characters. Tape density and character
format are program selectable.

4.2 DRIVER FEATURES AND CAPABILITIES
The VAX/VMS magnetic tape driver provides the following features:
e Multiple master adapters and slave formatters

e Different types of devices on a single MASSBUS adapter; for
example, RP0O5 disk and TM03 tape formatter

® Reverse read and reverse data check functions (not for TS1l)

e Data checks on a per-request, per-file, and/or per-volume
basis (not for TS11)

e Full recovery from power failure for online drives with
volumes mounted, including repositioning by the driver

e Extensive error recovery algorithms; for example,
non-return-to-zero-inverted (NRZI) error correction

e Logging of device errors in a file that may be displayed by
field service or customer personnel

e Online diagnostic support for drive level diagnostics

The following sections describe master and slave controllers, and data
check and error recovery capabilities in greater detail.

4.2.1 Master Adapters and Slave Formatters

VAX/VMS supports the use of multiple master adapters of the same type
on a system. For example, more than one MASSBUS adapter (MBA) can be
used on the same system. A master adapter 1is a device controller
capable of performing and synchronizing data transfers between memory
and one or more slave formatters.

VAX/VMS also supports the use of multiple slave formatters per master
adapter on a system. For example, more than one TM03 Magnetic Tape
Formatter per MBA can be used on a system. A slave formatter accepts
data and/or commands from a master adapter and directs the operation
of one or more slave drives. The TM03 is a slave formatter. The TEl6
Magnetic Tape Transport is a slave drive.

MAGNETIC TAPE DRIVER

4.2.2 Data Check

A data check is made after successful completion of an I/0 operation
to compare the data in memory with that on the tape. After a write or
read (forward) operation, the tape drive backspaces and then performs
a write check data operation. After a read in the reverse direction,
the tape drive forward spaces and then performs a write check data
reverse operation. With the exception of the TS1ll, magnetic tape
drivers support data checks at three levels:

e Per request -- Users can specify the data check function
modifier (IOSM DATACHECK) on a read 1logical block, write
logical block, Tead virtual block, write virtual block, read
physical block, or write physical block I/0 function.

e Per volume -- Users can specify the characteristics "data
check all reads" and/or "data check all writes"™ when the
volume is mounted. The VAX/VMS Command Language User's Guide
describes volume mounting and dismounting.

o Per file -- Users can specify the file attributes "data check
on read" or "data check on write." File access attributes are
specified when the file is accessed. Chapter 9 of this manual
and the VAX-11 Record Management Services Reference Manual
describe file access,

4.2.3 Error Recovery

Error recovery in VAX/VMS is aimed at performing all possible
operations to complete an I/0 operation successfully. Magnetic tape
error recovery operations fall into two categories:

e Handling special conditions such as power failure and
interrupt timeout

e Retrying nonfatal controller and/or drive errors

The error recovery algorithm uses a combination of these two types of
error recovery operations.

Power failure recovery consists of waiting for mounted drives to be
unloaded by the operator. When the drives are reloaded, the driver
automatically spaces to the position held before the power failure,
The I/0 operation that was 1in progress at the time of the power
failure is then re-executed. To solicit reloading of mounted drives,
device not ready messages are sent to the operator console after a
power failure.

Device timeout is treated as a fatal error with a loss of tape
position. A tape on which a timeout has occurred must be dismounted
and rewound before the drive position can be established.

Nonfatal controller/drive errors are simply re-executed up to 16 times
before returning a fatal error. The tape is repositioned as necessary
before each retry.

All normal error recovery (nonspecial conditions) can be inhibited by
specifying the inhibit retry function modifier (IOSM_INHRETRY). If
any error occurs and this modifier 1is specified, the operation is
immediately terminated, and a failure status 1is returned. This
modifier has no effect on power failure and timeout recovery.

MAGNETIC TAPE DRIVER

Up to 16 extended interrecord gaps can be written during the error
recovery for a write operation. Except for the TS1ll, writing of these
gaps can be suppressed by specifying the inhibit extended interrecord
gap function modifier (IO$SM_INHEXTGAP).

4.3 DEVICE INFORMATION

Users can obtain information on device characteristics by using the
SGETCHN and SGETDEV system services (see Section 1.10). The
information is returned in a user-specified buffer shown in Figure
4-1, Only the first three longwords of the buffer are shown in Figure
4-1 (Figure 1-8 shows the entire buffer).

31 16 15 8 7 0

device characteristics

buffer size [type l class

device-dependent information

Figure 4-1 Magnetic Tape Information

The device characteristics returned in the first longword are 1listed
in Table 4-2.

Table 4-2
Magnetic Tape Device-Independent Characteristics

Dynamic Bits!

(Conditionally Set) Meaning
DEVSM_AVL Device is on line and available
DEVS$M_FOR Foreign volume
DEVSM_MNT Volume mounted
DEVSM_RCK Perform data check all reads
DEVSM_WCK Perform data check all writes

Static Bits!
(Always Set)

DEV$M_FOD File-oriented device
DEVSM_IDV Device is capable of input
DEVSM_ODV Device is capable of output
DEVSM_SQD Device is sequential access

1. Defined by the S$DEVDEF macro.

MAGNETIC TAPE DRIVER

The second longword contains information on device class and type, and
the buffer size. The device class for tapes in DCS_TAPE. The device
type is DT$_TE16 for the TE1l6 and DT$_TS1ll for the TS1l.

The S$DCDEF macro defines the device type and class names. The buffer
size 1is the default to be used for tape transfers (this default is
normally 2048 bytes).

The third longword contains device-dependent information, Table 4-3
lists this information. The SMTDEF macro defines the values listed.

Table 4-3
Device-Dependent Information for Tape Devices

Value Meaning
MT$M_LOST If set, the current tape position is unknown.
MTSM_HWL If set, the selected drive is hardware

write-locked.

MTSM_EOT If set, an end-of-tape (EOT) condition was
encountered by the last operation to move tape in
the forward direction.

MTS$M_EOF If set, a tape mark was encountered by the last
operation to move tape.

MTS$SM_BOT If set, a beginning-of-tape (BOT) marker was
encountered by the last operation to move tape in
the reverse direction.

MT$M_PARITY If set, all data transfers are performed with even
parity. If clear (normal case), all data
transfers are performed with odd parity. Only
NRZI recording at 800 bpi can have even parity.

MTSV_DENSITY Specifies the density at which all data transfer
MTSS_DENSITY operations are performed. Possible density values

are:
MT$K_PE_1600 Phase encoded, 1600 bpi.
MT$K_NRZI_800 Non-return-to-zero-inverted, 800
bpi.
MTSV_FORMAT Specifies the format in which all data transfers
MTS$S_FORMAT are performed. A possible format value is:

MT$K_NORMAL1l Normal PDP-11 format. Data bytes
are recorded sequentially on tape
with each byte occupying exactly
one frame.

4.4 MAGNETIC TAPE FUNCTION CODES

The VAX/VMS magnetic tape driver can perform logical, wvirtual, and
physical 1/0 functions.

MAGNETIC TAPE DRIVER

Logical and physical I/0 functions to magnetic tape devices allow
sequential access to volume storage and require only that the
requesting process have direct access to the device. Virtual 1I/0
functions require intervention by an ancillary control process (ACP)
and must be executed in a prescribed order. The normal procedure is
to create a file and access it. Information is then written to the
file and the file is deaccessed. The file is subsequently accessed,
the information is read, and the file is deaccessed. The file can be
written over when the information it contains is no longer useful and
the file has expired.

Any number of bytes (up to a maximum of 64K) can be read from or
written into a single block by a single request. The number of bytes
itself has no effect on the applicable quotas (direct 1I/0, buffered
I/0, and AST). Reading or writing any number of bytes subtracts the
same amount from a quota.

The volume to which a logical or virtual function is directed must be.
mounted in order for the function to actually be executed. If it is
not, either a device not mounted or invalid volume status is returned
in the I/0 status block.

Table 4-4 lists the logical, virtual, and physical magnetic tape 1I/0
functions and their function codes. These functions are described in
more detail in the following paragraphs. Chapter 9 describes the QIO
level interface to the magnetic tape device ACP.

Table 4-4
Magnetic Tape I/O Functions

Function Code and Type1 Function Function
Arguments Modifiers
I0$_CREATE P1,[P2],- v I0SM_CREATE Create a file
[P3],[P4],[P5] IO$M_ACCESS
IO$_ACCESS Pl,[P2],- v IO$M_CREATE Search a tape
[P3],[P4],[P5] I0SM_ACCESS for a specified file

and access the file
if found and

IOSM ACCESS is set.
If the file is not
found and IOSM_CREATE
is set, create a file
at end-of-tape

I10$_DEACCESS Pl,[P2],- v Deaccess a file and,
[P31,[P4],[P5] if the file has been

written, write out

trailer records

10$_MODIFY P1,[P2],- v Write user labels
[P3],[P4],[P5]

1. Vv = virtual; L = logical; P = physical.

(continued on next page)

MAGNETIC TAPE DRIVER

Table 4-4 (Cont.)
Magnetic Tape I/0 Functions

Function Code and
Arguments

rType 1

Function
Modifiers

Function

I0S_READVBLK P1,P2

I0$_READLBLK P1,P2

IO$_READPBLK P1,P2

I0OS_WRITEVBLK P1,P2

I0OS_WRITELBLK P1,P2

I0S_WRITEPBLK P1l,P2

I0S$_REWIND

10$_SKIPFILE Pl

I0$_SKIPRECORD Pl

10$_WRITEOF

I0$_REWINDOFF

I0$M_DATACHECK 2
IOSM_INHRETRY
I0$M_REVERSE

I0$M_DATACHECK 2
IOSM_INHRETRY
IOSM_REVERSE

I0$M_DATACHECK 2
10$M_INHRETRY
I0$M_REVERSE

I0$M_DATACHECK 2
I0$M_INHRETRY
IO$SM_INHEXTGAP

I0$M_DATACHECK 2
I0$M_INHRETRY
I0$M_INHEXTGAP
I0$M_DATACHECK 2
I0SM_INHRETRY
I0$M_INHEXTGAP
IO$M_INHRETRY
I0$M_NOWAIT

IO$M_INHRETRY

I0$M_INHRETRY

I0$M_INHRETRY
IOSM_INHEXTGAP

I0$M_INHRETRY
TO$M_NOWAIT

Read virtual block

Read logical block

Read physical block

Write virtual block

Write logical block

Write physical block

Reposition tape to
the beginning of
tape (BOT) marker

Skip past a specified
number of tape marks
in either a forward

or reverse direction

Skip past a specified
number of blocks in
either a forward or
reverse direction

Write an extended
interrecord gap
followed by a tape
mark

Rewind and unload the
tape on the selected
drive

1. V = virtual; L =

2. Not for TS1l1

logical;

P =

physical.

(continued on next page)

MAGNETIC TAPE DRIVER

Table 4-4 (Cont.)
Magnetic Tape I/0 Functions

Function Code and Type
Arguments Modifiers

1 Function Function

I0$_SENSEMODE L IOSM_INHRETRY Sense the tape

characteristics
and return them
in the I/0 status
block

I0$_SETMODE Pl L Set tape character-

istics for subsequent
operations

I0$_SETCHAR Pl P Set tape character-

istics for subsequent
operations

IOS_ACPCONTROL P1,[P2],- \Y IOSM_DMOUNT Perform miscellaneous

[P3],[P4],[P5] control functions
(see Section 9.3)

I0S_MOUNT v Informs ACP when

volume is mounted;
requires mount
privilege.

The

virtual; L = logical; P = physical.

function-dependent arguments for I10$_CREATE, I0$_ACCESS,

I0$_DEACCESS, and I0$_MODIFY are:

Pl -- the address of the File Information Block (FIB)
descriptor.

P2 -- the address of the file name string descriptor
(optional). If specified with 10$ ACCESS, the name identifies
the file being sought. If specified with I0$ CREATE, the name
is the name of the created file. -

P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string (optional).

P5 -- the address of a 1list of attribute descriptors
(optional). If specified with I0O$ ACCESS, the attributes of
the file are returned to the user. If specified with
I0$ CREATE, P5 is the address of the attribute descriptor list
for the new file. All file attributes for IO$_MODIFY are
ignored.

(See Chapter 9 for more information on these functions.)

MAGNETIC TAPE DRIVER

The function-dependent arguments for . IOS_READVBLK, IO$_READLBLK,
IO$_READPBLK,,IO$_WRITEVBLK, I0$_WRITELBLK, and IOS_WRITEPBLK are:

e Pl -- the starting virtual address of the buffer that 1is to
receive the data in the case of a read operation; or, in the
case of a write operation, the virtual address of the buffer
that is to be written on the tape.

e P2 -- the number of bytes that are to be read from the tape,
or written from memory to the tape.

The function-dependent argument for IO$_SKIPFILE and IO$S_SKIPRECORD
is:

e Pl -- the number of tape marks to skip over in the case of a
skip file operation; or, in the <case of a skip record
operation, the number of blocks to skip over. If a positive
number is specified, the tape moves forward; 1if a negative
number is specified, the tape moves in reverse. (The maximum
number of tape marks or records that Pl can specify is
32,767.)

4.4.1 Read

This function reads data into a specified buffer in the forward or
reverse direction starting at the next block position.

VAX/VMS provides three read function codes:

e I0S_READVBLK

read virtual block

e I0$S_READLBLK read logical block

e I0S_READPBLK - read physical block

A read virtual block function to a volume that is mounted foreign is
converted to a read logical block function. A read virtual block
function to a volume that is mounted structured 1is handled 1in the
normal manner for a file-structured device.

If the reverse function modifier (IO$M_REVERSE) is specified, the read

operation is performed in the reverse direction instead of the forward
direction.

The data check function modifier (IOS$SM DATACHECK) can be used with all
read functions. If this modifier is specified, a data check operation
is performed after the read data operation has been completed. (A
space reverse or space forward is performed between the read and the
data check operation.) A data check operation is also performed if the
volume read, or the volume on which the file resides (virtual read),
has the characteristic "data check all reads." Furthermore, a data
check 1is performed after a virtual read if the file has the attribute
"data check on read."

If a read physical block or read logical block operation is performed
and the reverse function modifies IO$M REVERSE is not specified, an
end-of-tape status is returned if either of the following conditions
occur and no other error condition exists:

e The tape is positioned past the end-of-tape position at the
start of the read operation.

e The tape enters the end-of-tape region as a result of the read
operation.

4-9

MAGNETIC TAPE DRIVER

The transferred byte count reflects the actual number of bytes read.
If a read in the reverse direction is performed when the tape is

positioned past the end-of-tape position, an end-of-tape status is not
returned.

If a tape mark is read during a logical or physical read operation in
either the forward or reverse direction, an end-of-file status is
returned if any of the following conditions exist:

e The tape is positioned past the end-of-tape position at the
start of the read operation.

e The tape enters the end-of-tape region as a result of the read
operation.

e A tape mark is read as a result of a read operation but the
tape does not enter the end-of-tape region.

An end-of-file status is also returned if a read operation in the
reverse direction is attempted when the tape is positioned at the BOT
marker. All conditions that cause an end-of-file status result in a
transferred byte count of zero.

If an attempt is made during a logical or physical read operation to
read a block that is larger than the specified memory buffer, a data
overrun status is returned. Only the first part of the block is read
into the specified buffer. (Only the latter part of the block is read
into the buffer on a read in the reverse direction.) The transferred
byte count 1is equal to the actual size of the block. Read reverse
starts at the top of the buffer. Thus, the start of the block 1is at
Pl plus P2 minus the length read.

It is not possible to read a block that is 1less than 14 bytes in

length. Such records are termed "noise blocks"™ and are completely
ignored by the driver.

4.4.2 Write

This function writes data from a specified buffer to tape 1in the
forward direction starting at the next block position.

VAX/VMS provides three write function codes:

e I0$ WRITEVBLK - write virtual block

e TI0$ WRITELBLK - write logical block

e I0$ WRITEPBLK - write physical block
If a write virtual block function is to a volume that 1is mounted
foreign, it 1is <converted to a write logical block function. If a
write wvirtual block function is to a volume that is mounted
structured, it 1is handled in the normal manner for a file-structured

device.

The data check function modifier (IOS$SM DATACHECK) can be used with all

write functions. If this modifier is specified, a data check
operation is performed after the write data operation has been
completed. (A space reverse is performed between the write and the

data check operation.) A data check operation is also performed if the
volume written, or the volume on which the file resides (virtual
write), has the characteristic "data check all writes." Furthermore, a

MAGNETIC TAPE DRIVER

data check 1is performed after a virtual write if the file has the
attribute "data check on write."

A data check operation is also forced by the driver when an error

occurs during a write operation. This ensures that the data can be
reread.

If a write physical block or write 1logical block operation is
performed, an end-of-tape status is returned if either of the
following conditions occurs and no other error condition exists:

e The tape is positioned past the end-of-tape position at the
start of the write operation.

® The tape enters the end-of-tape region as a result of the
write operation.

(The transferred byte count reflects the size of the block written.)

It is not possible to write a block less than 14 bytes in length. An
attempt to do so results in the return of a bad parameter status for
the QIO request.

4,4.3 Rewind

This function repositions the tape to the beginning-of-tape (BOT)
marker. If the IOSM NOWAIT function modifier is specified, the I/0
operation is completed when the rewind is initiated. Otherwise, 1I/0
completion does not occur until the tape is positioned at the BOT
marker. IO$_REWIND has no function-dependent arguments.

4,4.4 Skip File

This logical I/0 function skips past a specified number of tape marks
in either a forward or reverse direction. A function-dependent
argument (Pl) is provided to specify the number of tape marks to be
skipped, as shown in Figure 4-2, If a positive file count is
specified, the tape moves forward; if a negative file count is
specified, the tape moves 1in reverse. (The actual number of files
skipped is returned in the I/0 status block.)

31 16 15 0

P1: not used file count

Figure 4-2 1I0$_SKIPFILE Argument

Only tape marks (when the tape moves in either direction) and the BOT
marker (when the tape moves in reverse) are counted during a skip file
operation. The BOT marker terminates a skip file function in the
reverse direction. The end-of-tape (EOT) marker does not terminate a
skip file function in either the forward or reverse direction. Note
that a negative skip file function leaves the tape positioned just
before a tape mark, that is, at the end of a file, unless the BOT
marker 1is encountered, whereas a positive skip file function leaves
the tape positioned just past the tape mark.

MAGNETIC TAPE DRIVER

4.4.5 Skip Record

The skip record function skips past a specified number of physical
tape blocks in either a forward or reverse direction. A
device/function~-dependent argument (Pl) specifies the number of blocks
to skip, as shown in Figure 4-3. If a positive block count is
specified, the tape moves forward; if a negative block <count is
specified, the 'tape moves in reverse. (The actual number of blocks
skipped is returned in the I/0 status block.)

31 16 15 0

P1: not used block count

Figure 4-3 1I0$_SKIPRECORD Argument

Skip record is terminated by end-of-file when the tape moves in either
direction, by the BOT marker when the tape moves in reverse, and by
the EOT marker when the tape moves forward.

4,4.6 Write End-of-File

This function writes an extended interrecord gap (of approximately 3
inches for NRZI recording and 1.5 inches for PE recording) followed by
a tape mark. No device/function-dependent argquments are used with
I0$_WRITEOF.

An end-of-tape status is returned in the I/0 status block if either of

the following conditions 1is present and no other error conditions
occur:

e A write end-of-file function is executed while the tape Iis
positioned past the EOT marker.

e A write end-of-file function causes the tape position to enter
the end-of-tape region.

4.4.7 Rewind Offline

The rewind offline function rewinds and unloads the tape on the
selected drive. If the IOSM NOWAIT function modifier is specified,
the I/0 operation is completed as soon as the rewind is initiated. No
device/function-dependent arguments are used with IO$_REWINDOFF.

4.4.8 Sense Tape Mode

This function senses the current device-dependent tape characteristics
and returns them to the <caller 1in the second longword of the I/O
status block (see Table 4-3). The contents of the second longword are
identical to the device-dependent information shown in Figure 4-1. No
device/function-dependent arguments are used with IO$_SENSEMODE.

MAGNETIC TAPE DRIVER

4.4.9 Set Mode
Set mode operations affect the operation and characteristics of the
associated magnetic tape device. VAX/VMS defines two types of set
mode functions:

e Set Mode

e Set Characteristic

4.4,9.1 Set Mode - The Set Mode function affects the characteristics
of the associated tape device. Set Mode is a logical I/0 function and
requires the access privilege necessary to perform 1logical 1I/0. A
single function code is provided:

IO$_SETMODE

This function takes the following device/function-dependent argument
(other arguments are ignored):

Pl -- the address of a quadword characteristics buffer

Figure 4-4 shows the quadword Set Mode characteristics buffer.

31 16 15 0

buffer size ‘ not used

tape characteristics

Figure 4-4 ©Set Mode Characteristics Buffer

Table 4-5 lists the tape characteristics and their meanings. The
SMTDEF macro defines the symbols listed.

Table 4-5
Set Mode and Set Characteristic Magnetic Tape Characteristics

MT$M_PARITY If set, all data transfers are performed with
even parity. If clear (normal case), all data
transfers are performed with odd parity. Even
parity can be selected only for NRZI recording at
800 bpi. Even parity cannot be selected for
phase encoded recording (tape density is
MT$K_PE_1600) and is ignored.

(continued on next page)

MAGNETIC TAPE DRIVER

Table 4-5 (Cont.)
Set Mode and Set Characteristic Magnetic Tape Characteristics

MT$V_DENSITY Specifies the density at which all data transfers
MT$S_DENSITY are performed. Tape density can be set only when
the selected drive's tape position is at the BOT
marker. Possible density values are:

MT$K_DEFAULT Default system density
MTSK_PE_1600 Phase encoded, 1600 bpi
MT$K_NRZI_800 Non-return-to-zero-inverted, 800
bpi
MT$V_FORMAT Specifies the format in which all data transfers
MT$S_FORMAT are performed. Possible format values are:
MTSK_DEFAULT Default system format

MTS$SK NORMAL11l Normal PDP-11 format. Data bytes
- are recorded sequentially on tape
with each byte occupying exactly

one frame

4.4.9.2 Set Characteristic - The Set Characteristic function also
affects the characteristics of the associated tape device. Set
Characteristic is a physical I/0 function and requires the access
privilege necessary to perform physical I/0 functions. A single
function code is provided:

I0$_SETCHAR

This function takes the following device/function-dependent argument
(other arguments are not valid):

Pl -- the address of a quadword characteristics buffer

Figure 4-5 shows the quadword Set Characteristic characteristics
buffer.

31 16 15 8 7 0

buffer size type class

tape characteristics

Figure 4-5 Set Characteristic Buffer

The first longword contains information on device class and type, and
the buffer size. The device class for tapes is DCS_TAPE. The device
type is DT$_TEl6.

MAGNETIC TAPE DRIVER

The $DCDEF macro defines the device type and class names. The buffer
size 1is the default to be used for tape transfers (this default is
normally 2048 bytes).

Table 4-5 lists the tape characteristics for the Set Characteristic
function,

4.5 1I/0 STATUS BLOCK

The I/0 status block (IOSB) for QIO functions on magnetic tape devices
is shown in Figure 4-6. Table 4-6 lists the status returns for these
functions. Table 4-3 (in Section 4.3) lists the device-dependent data

returned in the second longword. The IO$_SENSEMODE function can be
used to return this data.

31 16 15 0

byte count status

device-dependent data

‘Figure 4-6 IO0SB Content

The byte count is the actual number of bytes transferred to or £from
the process buffer or the number of files or blocks skipped.

Table 4-6
Status Returns for Tape Devices

Status Meaning

SS$ NORMAL Successful completion of the operation specified
- in the QIO request. The second word of the IOSB
can be examined to determine the actual number
of bytes transferred to or from the buffer or
the number of files or blocks skipped.

SS$_CTRLERR Controller-related error. One or more of the
following conditions can cause this error:

Data late

Error confirmation
Invalid map register
Interface timeout
Missed transfer
Programming error
Read timeout

SS$_DATACHECK Write check error. A mismatch between the data
in memory and the data on tape was detected
during a write check operation, (See Section
4.2,1)

(continued on next page)

MAGNETIC TAPE DRIVER

Table 4-6 (Cont.)
Status Returns for Tape Devices

Status

Meaning

SS$_DRVERR

SS$_ENDOFFILE

SS$_ENDOFTAPE

SS$_ENDOFVOLUME

5S$_FORMAT

SS$_MEDOFL

SS$_NONEXDRV

Drive-related error. One or more of the
following conditions can cause this error:

Drive timing error

Illegal function

Illegal register

Operation incomplete
Register modify refused
Nonexecutable function
Unrecovered retriable error

End-of-file condition. A tape mark was
encountered during the operation. For data
transfer functions, the byte count is 0; for

skip record functions, the count is the number
of blocks skipped.

End-of-tape condition. This is a normal
completion and 1is typically treated as such.
The end of an input tape is denoted by an
end-of-tape marker. If this marker is
encountered during an operation in the forward
direction, it may be necessary to modify the
source program to respond to the condition.

End of volume. Two consecutive tape marks were
detected during a skip file operation. This
return is also used as a 1logical end-of-tape
indicator. 1If an ASCII standard tape is mounted
foreign, this return may only indicate an empty
file within the volume and not the end of
volume.

Format error. Format specified by last set tape
characteristics function 1is not implemented in
slave controller.

Medium offline. The addressed drive currently
does not have a volume mounted and on line.

Nonexistent drive. The addressed drive does not
exist.

(continued on next page)

MAGNETIC TAPE DRIVER

Table 4-6 (Cont.)
Status Returns for Tape Devices

Status

Meaning

SS$_PARITY

SS$_UNSAFE

SS$_VOLINV

SS$_WRITLCK

S_DATAOVERUN

Parity error. One or more of the following
conditions can cause this error:

CRC error (NRZI only)

Control bus parity error
Correctable data error (PE only)
Correctable skew (PE only)

Data bus parity error
Incorrectable error (PE only)
Invalid tape mark (NRZI only)
Nonstandard gap

Longitudinal parity error

(NRZI only)

Format error (PE only)

Vertical parity error (NRZI only)
Map parity error

MASSBUS control parity error
MASSBUS data parity error

Read data substitute

Drive unsafe. The addressed drive is currently
unsafe and cannot perform any function.

Volume invalid. The addressed drive has not
been mounted and therefore does not have volume
valid set, or a status change has occurred 1in
the drive so that it has changed to an unknown,
and therefore, invalid state. All 1logical and
virtual functions will be rejected with this
status until volume valid is set. Volume valid
is set when a volume is mounted and cleared when
the volume is unloaded, the respective drive
changes to an unknown state, or the power fails.
The driver automatically sets volume valid when
the proper volume 1is mounted and/or power is
restored,

Write-lock error. An attempt was made to write
on a write-locked drive.

Data overrun. The data block read was longer
than the assigned buffer. 1In the case of a read
reverse, the last data on tape (that 1is, the
data nearest the end-of-tape at the beginning of
the operation) is the first data read. This
data is in the buffer.

MAGNETIC TAPE DRIVER

4.6 PROGRAMMING EXAMPLE

The following program is an example of how data is written to and read
from magnetic tape. In the example, QIO operations are performed
through the magnetic tape ACP. These operations could have been
performed directly on the device using the magnetic tape driver.
However, this would have involved additional programming, for example,
writing header labels and trailer labels.

.TITLE MAGTAPE PROGRAMMING EXAMPLE
. IDENT /01/

Define necessary symbols

w~ewene

mation block symbols
on codes

O
-

Allocate storage for the necessary data structures

wewene

Allocate magtape device name string and descriptor

Sawewe

TAPENAME: ;
<LONG 20$=108 ;Length of name string
.LONG 108 ;Address of name string
10s: <ASCI1 /TAPE/ sName strinT
208 ;Reference label

Allocate space to store assigned channel number

wewswe

TAPECHAN: H
+BLKW 1 ETape channel number

Allocate space for the I/0 status quadword

b= “evawe

OSTATUS: H
«BLKQ 1 51/0 status quadword

Allocate storage for the input/output obuffer

EYLTE

BUFFER?S
sinitialise puffer to contain ‘A’
v define the FIB-file information block=which the ACP uses

; We now
; in order to access,deac¢cess the file,we supply some information
2 in this block and the ACP will supply tuttﬁet information,

FIB_DESCR: ;Start of FIB

+LONG ENDFIB=FIB sLength of file information block
. .LONG FIB . jAddress of file information block
FIB: +«LONG FIBSM_WRITE!FIBSM_NOWRITE ;Read/write access allowed

+WORD 0,0,0 ;File ID

«WORD 0,0,0 iDirectory ID

.LONG 0 iContext

« WORD 0 iName flags

« WORD 0 jExtend control
ENDFIB: ;Reference label

we now define the file name string and descriptor

wowe e

NAME_DESCR: H
+«LONG END._NAME=NAME ;File name descriptor
.LONG_~ NAME 1Address of name string
NAME: .ASCII "MYDATA.DAT;1" tFile name string
END_.NAME ¢ tReference label

Now the main program

The groqram firstly assigns a channel to the magnetic tape unit,
1t then ﬁertorms an access function go create and access a file
called "MYDATA,DAT", It now writes 26 blocks of data to the tape
containing the letters of the alphapet., The first block contains
all A’s the next all B’s and so on, It starts by writing a block
of 256 bytes and each subsequent plock is reduced in size by two
b¥tes so bY the time it writes the block containing Z's the block
size is only 206 bytes, The magtape ACP will not allow reading ot
a file that has been written until one of three tninis happens.
The file is de-accessed,the file is rewound or the flle is back~
spaced. In this example the file is packspaced zero blocks and
then it is read in reverse (incrementing the block size everx block
and the data checked against what is meant to be there, If all is
well the file is de-accessed and the program exits

PP P P TR PR PR PR TR T] T L TE T3 PR P

4-18

«ENTRY

First assign a

~ewene

E Next create an

SQIOW.S

LOUP1 consists

e wews

MOVL
MOVL

$OIQW.S

LOUP1:

CMPW

BSBW

Now we decreme
loop count for

~ewenove

SUBL2
MOVL
MOVAL
LOOP2: INCB
SOBGTR
SOBGTR

we now fall th
it truly refle

wewanswe

ADDL2

Wwe now want to
operations out
access, We wil
skip zero bloc
cause the ACP

Sevevevensvave

Now we read th

Sewewe

LOOP3:

Now we will ch
that it agrees

~esevene

MOVL
CHECKDATA:
CcMPB

SORGTR

DECB
ADDL?2
SOBGTR

MAGNETIC TAPE DRIVER

MAGTAPELEXAMPLE, *M<R3,R4,R5,R6,R7,R8>
channel to the tape unit

ECHAN ;Assign tape unit
:2§?
’

nd out

d access the file °MYDATA.DAT’

CHAN=TAPECHAN, = ;Channel is maatape
FUNC=#10$_CREATE! 10$M_ACCESS ! 10SM_CREATE,=;Function 1s create
I0SB=IOSTATUS, = ;Address of I/0 status wor
P1=FIB_DESCR,~ +FIB descriptor

P2=#NAME_DESCR :Name descriptor

$#SSS_NORMAL,RO ;0K?

ERRCHECK sFind out

of writing the alphabet to the tape as described earlier

#26 ,R5 ;Set up loog
1256,Rr3 iset up %ni 185 byte count in R3
sotar

CHAN=TAPECHAN, sPerform QIO go tape channel
FUNC=%I0$_WRITEVBLK, sFunction is write virtual block
P1=BUFFER, = ;Buffer address

P2=R3 ;the count

#SSS..NORMAL,RO ;1 OK?

ERRCHECK iFind out

nt the byte count ready for the next write, set up a
updating the character and LOOPZ2 performs the update

¥2,R3 sDecrement byte count for next write
R3,R8 :Cogy byte count to R8 for LOOP2 count
BU#FER.R? ;Get putfer address in R7

(R7)+ sIncrement character

R8,LO0OP2 ;Until finished

RS, LO0OP1 ;Repeat LOOP1 until alphabet complete

rough LOOP1 and should update the b{te count so that
cts the size of the last block written to the tape

#2,R3 sUpdate byte count

erform one of the three
i1l not allow write
on on it specitying
kip reverse and will

read the tape pbut must tirst p
lined above otherwise the ACP w
1 perform an ACP control functi
ks. This is a special case of s
to now allow read access.,

FIB+FIBSLSSCNTRLVA Set up to space zero blocks
»FIBSC-SPACL,FIB+FIBN- NTRLFUNC s Set up for space tunction
CHAN=TAPECHAN, = H Pertorm QIO to tape channel
FUNC:»IOs_ACPéONTRUL, sPerform an ACP control function
P1=FIB.DESCR sDefine the FIB

#SSS.NORMAL,RO sSuccess?

ERRCHECK ;Find out

e file in reverse

%$26,RS ;Set up loop count

$°A/2/,R6 iGet tgrst character in R6
BUFFER,R7 ;And buffer address to R7
CHAN=TAPECHAN ,= ;Channel is magtape
FUNC=#I0$_READVBLK!I10SM_REVERSE,= jFunction is read reverse
IOSB=I0STATUS, - sDefine 1/0 status quadword
P1=BUFFER, = ;And buffer address

P2=R3 sR3 bytes

#SS$.NORMAL,RO ;Success?

ERRCHECK sFind out

eck the data we have read in to make sure
with what was written

opy R3 to R4 for loop count

heck each character
rint message on error
arry on until finlshe
0 backwards through a
pdate b{te count by 2
e block

abet
or next block

LYETL P PR L P YL Y

C
C
P
C
G
U
R

ad nex

MAGNETIC TAPE DRIVER

Now we deaccess the file

“ewune

$QIOW_S CHAN=TAPECHAN, = iChannel is magtape
FUNC=#108_DEACCESS, = iDeaccess tunction
10SB=10STRATUS ;170 status

Now we deassign the channel and exit

EYE TR

EXIT: sg%SSGN-S CHAN=TAPECHAN §De sign channel
’

we are now at a p

lace where normallY we would attempt to generate some error
message but for thi

s example we will simply exit

~s vavawe

MISMATCH:

’
BRB EXIT Exit
ERRCHECK i1f error then exit
BRNEQ EXIT sExit {f not OK
RSB tElse return
s END MAGTAPF_EXAMPLE

CHAPTER 5

LINE PRINTER DRIVER

This chapter describes the use of the VAX/VMS 1line printer driver.
This driver supports the LPl1l1 Line Printer Interface and the LAll
DECprinter I.

5.1 SUPPORTED LINE PRINTER DEVICES

The following sections describe the LP11 Line Printer Interface and
the LAll DECprinter I.

5.1.1 LPll Line Printer Interface

The LPl11l is a high-speed, 132-column, 1line printer available in
several models. Printers are available with either a 64- or
96-character ASCII print set. The LPll1-R and LPll-S are fully
buffered models that operate at a standard speed of 1110 lines per
minute. Other LPll models have 20-character print buffers, and can
print at full speed if the printed line is 20 characters or less.
Longer lines are printed at a slower rate. Forms with up to six parts
can be used for multiple copies.

5.1.2 LAll DECprinter I

The LAll DECprinter I is a medium-speed printer that operates at a
standard speed of 180 <characters per second. It incorporates such
features as a forms length switch to set the top of form to any of 11
common lengths, paper-out switch and alarm, and variable forms width.
The LAll uses a 96-character ASCII set; the column width 1is 132
characters.

5.2 DRIVER FEATURES AND CAPABILITIES

The VAX/VMS line printer driver provides output character formatting
and error recovery, as described in the following sections.

5.2.1

LINE PRINTER DRIVER

Output Character Formatting

In write virtual and write 1logical block operations, user-supplied
characters are cutput as follows (write physical block data is not
formatted, but output directly):

5.2.2

Rubouts are discarded.

Tabs move the horizontal print position to the next MODULO
(8) position.

All 1lowercase alphabetic characters are converted to
uppercase before printing (unless the characteristic
specifying lowercase characters is set; see Section 5.4.2
and Table 5-2).

On printers where the line feed, form feed, vertical tab, and
return characters empty the printer buffer, returns are held
back and output only if the next character 1is not a form
feed, 1line feed, or vertical tab. Returns are always output
on units that have the return function characteristic set
(see Section 5.4.3 Table 5-2).

The horizontal print position is incremented on the output of
all nonprinting characters such as the space character.
Nonprinting characters are discarded if the horizontal print
position is equal to or greater than the carriage width.

On printers without mechanical form feed (the form feed
function characteristic is not set; see Section 5.4.3 and
Table 5-2), a form feed is converted to multiple line feeds.
The number of line feeds is based on the current line count
and the page length.

Print lines are counted and returned to the <caller 1in the
second longword of the I/0 status block.

Error Recovery

The VAX/VMS line printer driver performs the following error recovery
operations:

If the printer is offline for 30 seconds, a "device not ready"
message is sent to the system operator process.

If the printer runs out of paper or has a fault condition, a
"device not ready" message 1is sent to the system operator
every 30 seconds.

The current operation is retried every 2 seconds to test for a
changed situation, for example, the printer coming online.

The current I/0 operation can be canceled at the next timeout
without the printer being online.

When the printer comes online, device operation resumes
automatically.

LINE PRINTER DRIVER

5.3 DEVICE INFORMATION

The user process can obtain information on printer characteristics by
using the S$GETCHN and $GETDEV system services (see Section 1.10). The
printer-specific information is returned in the first three longwords
of a user-specified buffer, as shown in Figure 5-1 (Figure 1-8 shows
the entire buffer).

31 24 23 16 15 8 7 0

device characteristics

page width type class

page length printer characteristics

Figure 5-1 Printer Information

The first longword contains device-independent data. The second and
third longwords contain device-dependent data.

Table 5-1 lists the device-independent characteristics returned in the
first longword.

Table 5-1
Printer Device-Independent Characteristics

Dynamic Bits !
(Conditionally Set) Meaning
DEV$M_SPL Spooled device
DEVSM_AVL Printer is online and available

Static Bits!
(Always Set)

DEVSM_REC Record-oriented device
DEV$M_CCL Carriage control
DEVSM_ODV Device is capable of output

1. Defined by the S$DEVDEF macro.

In the second longword, the device class is DCS_LP. The printer type
is a wvalue that corresponds to the printer: LP$_LP1ll or LP$_LAll.
The page width is a value in the range of 0 to 255.

The third longword contains printer characteristics and the page
length. The printer characteristics part can contain any of the
values listed in Table 5-2.

LINE PRINTER DRIVER

Table 5-2
Printer Device-Dependent Characteristics

Value Meaning

LPSM_LOWER Printer can print lowercase characters., If this
value 1is not set, all lowercase characters are
converted to uppercase when output.

LPSM MECHFORM Printer has mechanical form feed. This
- characteristic is used when variable form length
is required, for example, check printing.
Driver sends ASCII form feed (decimal 12).
Otherwise, multiple line feeds are generated.
The page length determines the number of line
feeds.

LPSM_CR Printer requires carriage return. (See note 4,
Section 5.2.1).

Maximum page length is 255,

The SLPDEF macro defines the values for the printer characteristics;
the S$DCDEF macro defines the device class and types.

5.4 LINE PRINTER FUNCTION CODES

The basic line printer I/0 functions are write, sense mode, and set
mode. None of the function codes takes function modifiers.

5.4.1 Write

The line printer write functions print the contents of the user buffer
on the designated printer.

The write functions and their QIO function codes are:
e IOS_WRITEVBLK - write virtual block
e I0$ WRITELBLK - write logical block
® IO0S_WRITEPBLK - write physical block (the data is not
formatted, but output directly, as in PASSALL mode on

terminals)

The write function codes can take the following device/function
dependent arguments:

e Pl = the starting virtual address of the buffer that is to be
written

e P2 = the number of bytes that are to be written
e P3 (ignored)
e P4 = carriage control specifier except for write physical

block operations (write function carriage control is described
in Section 5.4.1.1)

LINE PRINTER DRIVER

P3, P5, and P6 are not meaningful for line printer write operations.

In write virtual block and write logical block operations, the buffer
specified by Pl and P2 is formatted for the selected line printer and
includes the carriage control information specified by P4,

If the printer is not set spooled, write wvirtual and write 1logical
perform the same function. If the printer is set spooled, a write
logical function queues the I/0 to the printer and a write wvirtual
function queues the I/0 to the intermediate device, usually a disk.

All 1lowercase characters are converted to uppercase if the
characteristics of the selected terminal do not include LPSM_LOWER
(this does not apply to write physical block operations).

Multiple line feeds are generated for form feeds only if the printer
does not have a mechanical form feed, that is, the LPSM MECHFORM
characteristic. The number of line feeds generated depends on the
current page position and the length of the page.

Section 5.2.1 describes character formatting in greater detail.

5.4,1.1 Write Function Carriage Control - The P4 argument 1is a
longword that specifies carriage control. Carriage control determines
the next printing position on the line printer.. (P4 is ignored in a
write physical block operation.) Figure 5-2 shows the P4 longword
format.

3 2 1 0

P4: POSTFIX PREFIX | (notused) | FORTRAN

Figure 5-2 P4 Carriage Control Specifier

Only bytes 0, 2, and 3 in the longword are used. Byte 1 1is ignored.
If the low-order byte (byte 0) is not 0, the contents of the longword
are interpreted as a FORTRAN carriage control specifier. Table 5-3
lists the possible byte 0 values (in hexadecimal) and their meanings.

If the low-order byte (byte 0) is 0, bytes 2 and 3 of the P4 1longword
are interpreted as the prefix and postfix carriage control specifiers.
The prefix (byte 2) specifies the carriage control before the buffer
contents are printed. The postfix (byte 3) specifies the carriage
control after the buffer contents are printed. The sequence is:

Prefix carriage control - Print - Postfix carriage control
The prefix and postfix bytes, although interpreted separately, use the

same encoding scheme. Table 5-4 shows this encoding scheme in
hexadecimal format.

Write Function Carriage

LINE PRINTER DRIVER

Table 5-3
Control (FORTRAN: Byte 0 not equal to 0)

Byte 0 ASCII Meaning
vValue Character
(hexadecimal)

20 (space) Single-space carriage control. (Sequence:
newline, print buffer contents, return.)

30 0 Double-space carriage control. (Sequence:
newline, newline, print buffer contents,
return.)

31 1 Page eject carriage control. (Sequence:
form feed, print buffer contents, return.)

2B + Overprint carriage control. (Sequence:
print buffer contents, return.) Allows
double printing for emphasis or special
effects.

24 $ Prompt carriage control. (Sequence:
newline, print buffer contents.)

All other Same as ASCII space character:

values single-space carriage control.

Table 5-4
Write Function Carriage Control (P4 byte 0 equal to 0)
Prefix/Postfix Bytes
(Hexadecimal)
Bit 7 Bits 0 - 6 Meaning

0 0 No carriage control is specified,
that is, NULL.

0 1-7F Bits 0 through 6 are a count of
newlines (carriage return
followed by line feed).

Bit 7 Bit 6 Bit 5 Bits
0-4 Meaning

1 0 1-1F | Ooutput the single ASCII control
character specified by the
configuration of bits 0 through 4
(7-bit character set).

1 0 1-1F | Output the single ASCII control

character specified by the
configuration of bits 0 through 4
which are translated as ASCII
characters 128 through 159 (8-bit
character set).

LINE PRINTER DRIVER

Figure 5-3 shows the prefix and postfix hexadecimal coding that
produces the carriage control functions listed in Table 5-3. Prefix
and postfix coding provides an alternative way to achieve these
controls.

(Space) Sequence:

Prefix = NL
8D 1 - 0 Print
Postfix = CR

P4:

0 Sequence:

P4: Prefix = LF, LF
8D 2 - 0 Print

Postfix = CR

1 Sequence:
Prefix = FF

8D 8C - 0 Print
Postfix = CR

P4:

iy
+ Sequence:

P4: Prefix = NULL
8D 0 - 0 Print
Postfix = CR

“$ll
Sequence:

P4: Prefix = NL
0 8A — 0 Print
Postfix = NULL

Example: Skip 24 lines before printing Sequence:

P4: Prefix = 24NL
8D 18 - 0 Print
Postfix:= CR

Figure 5-3 Write Function Carriage Control
(Prefix and Postfix Coding)

In the first example, the prefix/postfix <coding for a single-space
carriage control (line feed, print buffer contents, return) is
obtained by placing the value (1) in the second (prefix) byte and the
sum of the bit 7 wvalue (80) and the return value (D) in the third
(postfix) byte:

80 (bit 7 = 1)
+ D (return)

8D (postfix = return)

LINE PRINTER DRIVER

5.4.2 Sense Printer Mode
This function senses the current device-dependent printer
characteristics and returns them in the second longword of the I/0

status block. No device/function-dependent arguments are used with
I10$_SENSEMODE.

5.4.3 Set Mode
Set mode operations affect the operation and characteristics of the
associated 1line printer. VAX/VMS provides two types of set mode
functions: Set Mode and Set Characteristics. Set Mode requires
logical 1I/0 privilege. Set Characteristics requires physical I/0
privilege. Two function codes are provided:

e I0$_SETMODE

e I0$_SETCHAR

These functions take the following device/function-dependent argument
(other arguments are not valid):

e Pl -- the address of a characteristics buffer

Figure 5-4 shows the quadword Pl characteristics buffer for
I0S_SETMODE. Figure 5-5 shows ths same buffer for IO$_SETCHAR.

31 24 23 16 15 Y]

page width not used

page length printer characteristics

Figure 5-4 Set Mode Characteristics Buffer

31 24 23 16 156 8 7 0

page width type class

page length printer characteristics

Figure 5-5 Set Characteristic Characteristics Buffer

In the buffer, the device class is DC$ LP. The printer type 1is a
value that corresponds to the printer: DT$_LP1ll or DT$_LAll. The
type can be changed by the I0$ SETCHAR function. The page width is a
value in the range of 0 to 255,

The printer characteristics part of the buffer can contain any of the
values listed in Table 5-2.

LINE PRINTER DRIVER

5.5 I/0 STATUS BLOCK

The I/0 status blocks (IOSB) for the write and set mode I/O functions
are shown in Figures 5-6 and 5-7. Table 5-5 lists the status returns
for these functions.

31 16 15 0

byte count status

number of lines the paper moved™

*0if IO$_WRITEPBLK
Figure 5-6 I0SB Contents - Write Function

31 16 15 0

0 status

Figure 5-7 1I0SB Contents - Set Mode Function

Table 5-5
Line Printer QIO Status Returns

Status Meaning

SS$ NORMAL Successful completion. The operation specified in the
- QIO was completed successfully. On a write operation,
the second word of the IOSB <can be examined to
determine the number of bytes written.

SS$_ABORT The operation was canceled by the Cancel I/0 on Channel
(SCANCEL) system service.

LINE PRINTER DRIVER

5.6 PROGRAMMING EXAMPLE

The following simple program is an example of I/O to the line printer
that shows how to use the different carriage control formats. This
program prints out the contents of the output buffer (OUT_BUFFER) 10
times using 10 different carriage control formats. The formats are

held in location OUTPUT_FORMAT.

«TITLE LINE PRINTER PROGRAMMING EXAMPLE
«IDENT /01/

;jbetine necessary symbols
H

SIODEF tDefine 1/0 function codes

Allocate storage for the necessary data structures
Allocate output buffer and fill with required output text

wswewmene e

OUTLBUFFER?
+ASCII "VAX_PRINTER_EXAMPLE"
OUT_BUFFER.SIZE=,=0UT.BUFFER sDefine size of output string

Allocate device name string and descriptor

~eweve

DEVICELDESCR: H
«LONG 208=10s8 sLength of name string
.LONG 108 sAddress of name string
10s: +ASCII /LINE_PRINTER/ sName strin? of output device
208 tReference label to calculate length

5 Allocate space to store assigned channel number
r
DEVICE_CHANNEL: H

.BLKW 1 sChannel number

Now set up the carriage control formats

~enewe

OUTPUT-FO

RMAT ;
.BYTE 0,0,0,0 iNo carriage control
SBYTE 32,0,6,0 $Blank=LF+,.TEXT,. . +CR
<BYTE 48,0,0,0 sZero=LF+LF+,TEXT..+CR
«BYTE 49,0,0,0 j0nesFF+,. s TEXT44ss+CR
«BYTE 43,0,0,0 sPlus=0verprint,...+CR
CBYTE 36,0,0,0 iDoilar=LF+TEXT(Prompt)
E Now the prefix-postfix carriage control formats
! LBYTE 0,0,1,141 JLF#eeeeoTEXT. 00 +CR

:24LF+...TLXT...-.*CR
E#;*L +eeTEXToueee+CR
’

«BYTE 0,0,24{g§1
+l'.l.TExT.l'.'*CR

«BYTE 0,0,2,
.BYTE 0,0,140,141

Program starting point
The program assigns a channel t e output device,sets up a loop

o th
Count for the number of times it wishes to print, and gertorms ten
QIO and wait system services.The channel is then deassigned.

P T]

+ENTRY PRINTER.LEXAMPLE, “M<R2,R3>;Program starting address

First assign a channel to the output device

Sewene

SASSIGN..S DEVNAM=DEVICE.DESCR,= ;Assign a channel to printer
CHAN=DEVICE.CHANNEL H

BLBC R0,508 s1f low bit clear,assignment failure

MOVL #11,R3 iSet up loop coun

MOVAL OUT#UT_FORMAT,RZ ;Set up o/p format address in R2

30s: $0I0W.S CHAN=DEVICE_CHANNEL,= ;Print on device channel
FUNC=$I0S.WRITEVBLK,= #1770 tunction is write virtual
P1=0UTLBUFFER,= ;Address of output buffer
P2=#0UT_BUFFER_SIZE,= :Size Of DUffer to print
P4=(R2)+ sFormat control in R2
iwill auto=increment,
BLBC RO,408 ;If low bit clear,i/0 failure
SOBGTR R3,30$;Branch if not finished
40853 SDASSGN.LS CHAN=DEVICE_CHANNEL ;Deassign channel
508: ET sReturn
<END PRINTERLEXAMPLE

5-10

CHAPTER 6

CARD READER DRIVER

This chapter describes the use of the VAX/VMS <card reader driver.
This driver supports the CR1l1l Card Reader.

6.1 SUPPORTED CARD READER DEVICE

The CR1l1l Card Reader reads standard 80-column punched data cards.

6.2 DRIVER FEATURES AND CAPABILITIES
The VAX/VMS card reader driver provides the following capabilities:

e Multiple controllers of the same type; for example, more than
one CR1l can be used on the system

e Binary, packed Hollerith, and translated 026 or 029 read modes

e Unsolicited interrupt support for automatic card reader input
spooling

® Special card punch combinations to indicate an end-of-file
condition and to set the translation mode

e Error recovery

The following sections describe the read modes, special <card punch
combinations, and error recovery in greater detail.

6.2.1 Read Modes

VAX/VMS provides two card reader device/function-dependent modifier
bits for read data operations: read packed Hollerith (IO$M PACKED)
and read binary (IOSM BINARY). If IOSM PACKED is set, the dJdata is
packed and stored 1in sequential bytes of the input buffer. 1If
IOSM BINARY is set, the data is read and stored in sequential words of
the Input buffer. IOSM_BINARY takes precedence over IOSM_PACKED.

The read mode can also be set by a set translation mode card (see
Section 6.2.2.2) or by the Set Mode function (see Section 6.4.3).

CARD READER DRIVER

6.2.2 Special Card Punch Combinations

The VAX/VMS card reader driver recognizes three special card punch
combinations in column 1 of a card. One combination signals an
end-of-file condition. The other two combinations set the current
translation mode.

6.2.2.1 End-of-File Condition - A card with the 12-11-0-1-6-7-8-9
holes punched in column 1 signals an end-of-file condition. If the
read mode is binary, the first eight columns must contain this punch
combination.

6.2.2.2 Set Translation Mode - If the read mode is nonbinary,
nonpacked Hollerith (the IOSM_BINARY and IOS$SM_PACKED function
modifiers are not set), the current translation mode can be set to the
026 or 029 punch code. A card with the 12-2-4-8 holes punched in
column 1 sets the translation mode to the 026 code. A card with the
12-0-2-4-6-8 holes punched 1in column 1 sets the translation mode to
the 029 code. The translation mode can be changed as often as
required.

If a translation mode card contains punched information in columns 2
through 80, it is ignored.

Logical, virtual, and physical read functions result in only one
card's being read. If a translation mode card is read, the read
function is not completed and another card is read immediately.

6.2.3 Error Recovery

The VAX/VMS card.reader driver performs the following error recovery
operations:

e If the card reader is offline for 30 seconds, a "device not
ready" message is sent to the system operator.

e If a recoverable card reader failure is detected, a "“device
not ready" message is sent to the system operator every 30
seconds.

e The current operation is retried every two seconds to test for
a changed situation, for -example, the removal of an error
condition.

e The current I/0 operation can be canceled at the next timeout
without the <card reader being online. When the card reader
comes online, device operation resumes automatically.

There are four categories of card reader failures:

e Pick check -- The next card cannot be delivered from the input
hopper to the read mechanism.

e Stack check -- The card just read did not stack properly in
the output hopper.

CARD READER DRIVER

e Hopper check -- Either the output hopper is full or the input
hopper is empty.

® Read check -- The last card was read incorrectly due to torn
edges or punches before column 1 or after column 80.

Manual intervention is required if any of these errors occur. The
recovery is transparent to the user program issuing the I/0 request.

When a recoverable card reader failure is detected, a "device not
ready" message is displayed on the system operator console. When this
message is received, the card reader indicator 1lights should be
examined to determine the reason for the failure. The indicator
lights and the respective recovery procedures are:

e Pick check -- The next card cannot be delivered to the read
mechanism. Remove the next card to be read from the input
hopper and smooth the leading edge, that is, the edge that
will enter the read mechanism first. Replace the card in the
input hopper and press the RESET button, Card reader
operation will resume automatically. 1If a pick check error
occurs again on the same card, remove the card from the input
hopper and repunch it. Place the duplicate card in the input
hopper and press the RESET button. If the problem persists,
either an adjustment is required or nonstandard cards are in
the input hopper.

e Stack check -- The card just read did not stack properly in
the output hopper. Remove the last card read from the output
hopper and examine the condition. 1If it is excessively worn
or mutilated, repunch it. Place either the duplicate or the
original card in the read station of the 1input hopper and
press the RESET button. Card reader operation will resume
automatically. If the stack check error recurs immediately,
an adjustment is required.

e Hopper check —-- Either the input hopper is empty or the output
hopper is full. Examine the input hopper and, if empty,
either load the next deck of input cards or an end of file
card. If the input hopper is not empty, remove the cards that
have accumulated in the output hopper and press the RESET
button., Card reader operation will resume automatically.

e Read check -- The last card was read incorrectly. Remove the
last card from the output hopper and examine its condition.
If it is excessively worn, mutilated, or contains punches
before column 0 or after «column 80, repunch the card
correcting any incorrect punches. Place either the original
or duplicate card in the read station of the input hopper and
press the RESET button. Card reader operation will resume
automatically. If the read check error recurs immediately, an
adjustment is necessary.

6.3 DEVICE INFORMATION

Users can obtain information on card reader characteristics by using
the SGETCHN and S$GETDEV system services (see Section 1,10). The
information is returned in a user-specified buffer shown in Figure
6-1., Only the first three longwords of the buffer are shown in Figure
6-1 (Figure 1-9 shows the entire buffer).

CARD READER DRIVER

31 16 15 8 7 0

device characteristics

buffer size type class

device-dependent information

Figure 6-1 Card Reader Information

The device characteristics returned in the first longword are listed
in Table 6-1.

Table 6-1
Card Reader Device-Independent Characteristics

Dynamic Bitl
(Conditionally Set) Meaning

DEV$M_AVL Device is online and available

Static Bitsl
(Always Set)

DEVSM_IDV Device is capable of input

DEVSM_REC Device is record oriented

1. Defined by the S$DEVDEF macro

The second longword contains information on device class and type, and
the buffer size. The device class for card readers is DC$_CARD. The
device type is DT$_CR1ll for the CRll.

The $DCDEF macro defines the device type and class names. The buffer

size is the default to be used for all card reader devices (this
default is 80 bytes).

The third longword contains device-dependent card reader

characteristics. Table 6-2 lists these characteristics. The SCRDEF
macro defines the characterstics values.

CARD READER DRIVER

Table 6-2
Device-Dependent Information for Card Readers

Value Meaning
CRSV_TMODE Specifies the translation mode for nonbinary,
CR$S_TMODE nonpacked Hollerith data transfers.l Possible
values are:
CRSK_T026 Translate according to 026 punch
code
CR$K_T029 Translate according to 029 punch
code

1. Section 6.2.2.2 describes the set translation mode punch code.

6.4 CARD READER FUNCTION CODES

The VAX/VMS card reader can perform logical, virtual, and physical I/0
functions. Table 6-3 lists these functions and their function codes.
These functions are described in more detail in the following
paragraphs.

Table 6-3
Card Reader I/0 Functions
Function Code and Typel Function Function
Arguments Modifiers
I0$_READLBLK Pl,P2 L IO$M_BINARY Read logical block
IO$M_PACKED
I0$_READVBLK P1l,P2 \' I0OSM_BINARY Read virtual block
I0$M_PACKED
I0$_READPBLK P1,P2 P I0O$M_BINARY Read physical block
I0$M_PACKED
I0S_SENSEMODE L Sense the card reader
characteristics and
return them in the
I/0 status block
I0$_SETMODE Pl L Set card reader
characteristics for
subsequent operations
I0$_SETCHAR Pl P Set card reader
characteristics for
subsequent operations

1. V = virtual; L = logical; P = physical

CARD READER DRIVER

6.4.1 Read
This function reads data from the next card in the card reader input
hopper into the designated memory buffer in the specified format.
Only one card is read each time a read function is specified.
VAX/VMS provides three read function codes:

e I0$ _READVBLK - read virtual block

e I0$_READLBLK - read logical block

e I0S READPBLK - read physical block

Two function-dependent arguments are used with these codes:

e Pl -- the starting virtual address of the buffer that 1is to
receive the data

e P2 -- the number of bytes that are to be read in the specified
format

The read binary function modifier (IOSM_BINARY) and the read packed
Hollerith function modifier (IO$SM PACKED) can be used with all read
functions. If IOSM BINARY is specified, successive columns of data
are stored in sequential word locations of the input buffer. 1If
I0SM_PACKED is specified, successive columns of data are packed and
stored in sequential byte locations of the input buffer. If neither
of these function modifiers is specified, successive columns of data
are translated in the current mode (026 or 029) and stored in
sequential bytes of the input buffer. Figure 6-2 shows how data is
stored by IO$M_BINARY and IO$M_PACKED.

Binary column (IOSM_BINARY):
15 121 0

* 1211 0 1 2 3 45 6 7 89

*Bits 12- 15are 0

Packed column (I0$M__PACKED):
7 3 2 0

12110 9 8 n*

*n=0if no punches inrows 1-7
= 1ifapunch in row 1
= 2 if a punch in row 2

=7 if apunch in row 7
Figure 6-2 Binary and Packed Column Storage

Regardless of the byte count specified by the P2 argument, a maximum
of 160 bytes of data for binary read operations and 80 bytes of data
for nonbinary read operations (IO$M PACKED, or 026 or 029 modes) are
transferred to the input buffer, If P2 specifies less than the
maximum quantity for the respective mode, only the number of bytes

CARD READER DRIVER

specified are transferred; any remaining buffer locations are not
filled with data.

6.4.2 Sense Card Reader Mode
This function senses the current device-dependent card reader
characteristics and returns them in the second longword of the I/O

status block (see Table 6-2). No device/function dependent arguments
are used with IO$_SENSEMODE.

6.4.3 Set Mode

Set mode operations affect the operation and characteristics of the
associated card reader device., VAX/VMS defines two types of set mode
functions:

e Set Mode

® Set Characteristic

6.4.3.1 Set Mode - The Set Mode function affects the characteristics
of the associated card reader. Set Mode is a logical I/0 function and
requires the access privilege necessary to perform logical 1I/0. A
single function code is provided:
I10$_SETMODE
This function takes the following device/function dependent argument:
Pl ~- the address of a characteristics buffer

Figure 6-3 shows the quadword Set Mode characteristics buffer.

31 1615 0

buffer size not used

card reader characteristics

Figure 6-3 Set Mode Characteristics Buffer

Table 6-4 lists the card reader characteristics and their meanings.
The SCRDEF macro defines the characteristics values.

CARD READER DRIVER

Table 6-4
Set Mode and Set Characteristic Card Reader Characteristicss

1

Value Meaning
CRSV_TMODE Specifies the translation mode for nonbinary,
CR$S_TMODE nonpacked Hollerith data transfers. Possible
values are:
CR$K_T026 Translate according to 026 punch
code
CR$K_T029 Translate according to 029 punch
code

1. If neither the 026 or 029 mode is specified, the default mode can
be set by the SET CARD_READER command.

6.4.3.2 Set Characteristic - The Set Characteristic function also
affects the characteristics of the associated card reader device. Set
Characteristic is a physical 1I/0 function and requires the access
privilege necessary to perform physical I/0 functions. A single
function code is provided:
10$_SETCHAR
This function takes the following device/function dependent argument:
Pl -- the address of a characteristics buffer

Figure 6-4 shows the Set Characteristic characteristics buffer.

31 16 15 8 7 0

buffer size type class

card reader characteristics

Figure 6-4 Set Characteristic Buffer

The device type value 1is DT$_CRII. The device class value 1is
DC$_CARD. Table 6-4 lists the card reader characteristics for the Set
Characteristic function.

6.5 I/0 STATUS BLOCK

The I/0O status block (I0OSB) format for QIO functions on the card
reader is shown in Figure 6-5. Table 6-5 lists the status returns for
these functions. Table /-2 lists the device-dependent data returned
in the second longword. The I0$ SENSEMODE function can be used to
obtain this data. -

CARD READER DRIVER

31 16 15 0
byte count status
device-dependent data
Figure 6-5 1IOSB Contents
Table 6-5
Status Returns for Card Reader
Status Meaning
SSS$_NORMAL Successful completion of the operation specified

SS$_DATAOVERRUN

SS$_ENDOFFILE

in the QIO request. The second word of the IOSB
can be examined to determine the actual number
of bytes written to the buffer.

Data overrun. Column data was delivered to the
controller data buffer before previous data had
been read by the driver.

End-of-file condition. An end-of-file card was
encountered during the read operation.

CHAPTER 7

MAILBOX DRIVER

VAX/VMS supports a virtual device, called a mailbox, that is used for
communication between processes. Mailboxes provide a controlled and
synchronized method for processes to exchange data. Although
mailboxes transfer information in much the same way that other I/0
devices do, they are not actual devices. Rather, mailboxes are

software-implemented devices that can perform read and write
operations.

Multiport memory mailboxes function the same as regular mailboxes.
However, they can also be used by processes on different processors
that are connected to an MA780.

The VAX/VMS Real-Time User's Guide contains additional information on
the use of mallboxes.

7.1 MAILBOX OPERATIONS

Software mailboxes can be compared to the actual metal boxes used for

mail delivery. As shown in Table 7-1, both types of mailboxes perform
similar operations.

Table 7-1
Mailbox Read and Write Operations

Use of Conventional Use of VAX/VMS
Operation Mailboxes Software Mailboxes
Receive Mail Resident checks mailbox to A process initiates a read

see if any mail was delivered. | to a mailbox to obtain data
If so, picks it up, opens it, sent by another process,
and reads it. The process reads data

if a message was

previously transmitted

to the mailbox.

Receive The mail carrier leaves noti- A process specifies that it
Notification fication to the resident that wants to be notified
of Mail mail can be picked up at the through an AST when a
post office. message is sent to the
mailbox.

(continued on next page)

MAILBOX DRIVER

Table 7-1 (Cont.)
Mailbox Read and Write Operations

Use of Conventional Use of VAX/VMS
Operation Mailboxes Software Mailboxes
Send Mail The resident leaves mail A process initiates a write
(without addressed to another person request to a mailbox to
notification in the mailbox, but neither transmit data to another
of receipt) waits for nor expects notif- process. The sending
ication of its delivery. process does not wait until

the data is read by the
receiving process before
completing the I/O operation,

Send Mail The resident leaves mail "A process initiates a write
(with notifi- addressed to another person request to a mailbox to
cation of in the mailbox and asks to transmit data to another
receipt) be notified of its delivery. process. The sending

process waits until the
receiving process reads the
data before completing the
I/0 operation.

Reject Mail The resident discards The receiving process reads
junk mail. messages from the mailbox,
sorts out unwanted messages,
and responds only to useful
messages.

7.1.1 Creating Mailboxes

A process uses the Create Mailbox and Assign Channel ($SCREMBX) system
service to «create a mailbox and assign a channel and logical name to
it. The system enters the 1logical name in either the system
(permanent mailbox) or group (temporary mailbox) logical name table
and gives it an equivalence name of MBAn, where n 1is a wunique unit
number.

SCREMBX also establishes the characteristics of the mailbox. These
characteristics include a protection mask, permanence indicator,
maximum message size, and buffer quota.

Other processes can assign additional channels to the mailbox wusing
either SCREMBX or the Assign I/0 Channel (SASSIGN) system service.
The mailbox is identified by its logical name both when it is created
and when it is assigned channels by cooperating processes.

Figure 7-1 illustrates the use of $CREMBX and $ASSIGN.
Creating mailboxes requires privilege. If sufficient dynamic memory

for the mailbox data structure is not available, a resource wait will
occur if resource wait mode is enabled.

The programming example at the end of this chapter (Section 7.5)
illustrates mailbox creation and interprocess communication.

MAILBOX DRIVER

USER OR
SYSTEM $CREMBX
PROCESS ASSIGNS PROCESS
CREATES vy
MAILBOX
COOPERATING
_ PROCESSES USE
! $ASSIGN OR $CREMBX
MAILBOX TO DEFINE ADDITIONAL
G:::::::T:] CHANNELS
PROCESS PROCESS

Figure 7-1 Multiple Mailbox Channels

7.1.2 Deleting Mailboxes

The system maintains a count of all channels assigned to a temporary
mailbox. As each process finishes using a mailbox, it deassigns the
channel using the Deassign I/0 Channel ($SDASSGN) system service, The
channel count is decremented by one. The system automatically deletes
the mailbox when no more channels are assigned to it (that 1is, when
the channel count reaches 0).

Permanent mailboxes must be explicitly deleted using the Delete
Mailbox (SDELMBX) system service. This can occur at any time.
However, the mailbox is actually deleted when no processes have
channels assigned to it.

When a mailbox is deleted, its message buffer quota is returned to the
process that created it.

7.1.3 Mailbox Message Format

There is no standardized format for mailbox messages and none 1is
imposed on users. Figure 7-2 shows a typical mailbox message format.
Other types of messages can take different formats; for an example,
see Figure 2-1 in Section 2.2.5.

MAILBOX DRIVER

31 16 15 4 0

not used l message type

Figure 7-2 Typical Mailbox Message Format

7.2 DEVICE INFORMATION

Users can obtain information on mailbox characteristics by wusing the
SGETCHN and SGETDEV system services (see Section 1.10). The
information is returned in a user-specified buffer. The first three
longwords of the buffer are shown in Figure 7-3 (Figure 1-9 shows the
entire buffer).

31 16 15 8 7 0

device characteristics

buffer size type class

unused number of messages in mailbox

Figure 7-3 Mailbox Information

The first longword in the buffer contains the device characteristics
values listed in Table 7-2. The S$SDEVDEF macro defines these values.

Table 7-2

Mailbox Characteristics
Dynamic Bit Meaning
{(Conditionally Set)

DEVSM_SHR Shareable device
DEV$M_AVL Device is available

Static Bits
(Always Set)

DEVSM_REC Record-oriented device
DEVSM_IDV Device is capable of input
DEVSM_ODV Device is capable of output
DEVSM_MBX Mailbox device

7-4

MAILBOX DRIVER

The second longword of the buffer contains information on the device
class and type, and the buffer size. The device class is DC$_MAILBOX
The device type is DT$ MBX. The S$DCDEF macro defines these symbols,
The buffer size is the maximum message size in bytes.

7.3 MAILBOX FUNCTION CODES

The VAX/VMS mailbox I/0 functions are: read, write, write
end-of-file, and set attention AST.

No buffered I/O0 byte count quota checking is performed on mailbox I/O
messages. Instead, the byte count or buffer quota of the mailbox is
checked for sufficient space to buffer the message being sent. The
buffered I/0 quota and AST quota are also checked.

7.3.1 Read

Read mailbox QIO requests are used to obtain messages written by other
processes., The three mailbox functions and their codes are:

e I0$_READVBLK - read virtual block
e I0$_READLBLK - read logical block
e I0S_READPBLK - read physical block
These function codes take two device/function-dependent arguments:

e Pl -- the starting virtual address of the buffer that 1is to
receive the message read

® P2 -- the size of the buffer in bytes (limited by the maximum
message size for the mailbox)

One function modifier can be specified with a QIO read request:

IO$M_NOW -- the I/0 operation is completed immediately with no
wait for a write request from another process

Figure 7-4 illustrates the read mailbox functions; in this figure,
Process A reads a mailbox message written by Process B. As the figure
indicates, a mailbox read request requires a corresponding mailbox
write request (except in the case of an error). The requests can be

made in any sequence; that is, the read request can either precede or
follow the write request.

Two possibilities exist if Process A 1issues a read request before
Process B issues a write request. If Process A did not specify the
function modifier IOSM_NOW, Process A's request is queued during the
wait for Process B to 1issue the write request. When this request
occurs, the data is transferred from Process B, through the system
buffers, to Process A to complete the I/0 operation.

However, if Process A did specify the IOSM NOW function modifier, the
read operation is completed immediately. That is, Process A's request
is not queued during the wait for the message from Process B, and no
data is transferred from Process B to Process A.

MAILBOX DRIVER

If Process B sends a message (with no function modifier; see Section
7.3.2) before Process A 1issues a read request (with or without a
function modifier), Process A finds a waiting message in the mailbox.
The data is transferred and the 1I/0 operation 1is completed
immediately.

To issue the read request, Process A can specify any of the read QIO
function codes; all perform the same operation.

O« @ OX4o

READ QIO WRITE QIO

PROgESS MAILBOX PROSESS

DATA DATA

O ®

NOTE: Numbers indicate order of events.

Figure 7-4 Read Mailbox

7.3.2 Write

Write mailbox QIO requests are used to transfer data from a process to
a mailbox. The three mailbox functions and their QIO function codes
are:

e I0$ WRITEVBLK -- write virtual block
e I0$ WRITELBLK -- write logical block
e I0$ WRITEPBLK -- write physical block

These function codes take two device/function-dependent arguments:

e Pl -- the starting virtual address of the buffer that contains
the message being written

e P2 -- the size of the buffer in bytes (limited by the maximum
message size for the mailbox)

One function modifier can be specified with a QIO write request:

I0SM_NOW - the I/O operation is completed immediately with no
wait for another process to read the mailbox message

Figure 7-5 illustrates the write mailbox function; in this figure,
Process A writes a message to be read by Process B. As in the read
request example above, a mailbox write request requires a
corresponding mailbox read request (unless an error occurs), and the
requests can be made in any sequence.

Two possibilities exist if Process A issues a write request before
Process B issues a read request. If Process A did not specify the
function modifier IOSM NOW, Process A's write request is queued during
the wait for Process B to issue a read request. When this request

MAILBOX DRIVER

occurs, the data is transferred from Process A to Process B to
complete the I/O operation.

However, if Process A did specify the IOSM_NOW function modifier, the
write operation 1is completed immediately. The data is available to
Process B and is transferred when Process B issues a read request.

If Process B issues a read request (with no function modifier) before
Process A issues a write request (with or without the function
modifier), Process A finds a waiting request in the mailbox. The data
is transferred and the I/0 operation is completed immediately.

To issue the write request, Process A can specify any of the write QIO
function codes; all perform the same operation.

O @) OXO)

PROCESS MAILBOX PROCESS
A B
DATA DATA

® ®

NOTE: Numbers indicate order of events.

Figure 7-5 Write Mailbox

7.3.3 Write End-of-File Message

Write End-of-File Message QIO requests are used to insert a special
message in the mailbox. The process that reads the end-of-file
message is returned the status code SS$ ENDOFFILE in the I/0O status
block. No data is transferred. This function takes no arguments or
function modifiers. VAX/VMS provides a single function code:

I0$_WRITEOF -- write end-of-file message

7.3.4 Set Attention AST

Set Attention AST QIO requests are used to specify that an AST be
given to notify the requesting process when a cooperating process
places an unsolicited read or write request in a designated mailbox.
Because the AST only occurs when the read or write request arrives
from a cooperating process, the requesting process need not repeatedly
check the mailbox status.

The Set Attention. AST functions and their function codes are:
e I0$_SETMODE!IO$M READATTN - read attention AST

e I0$ SETMODE!IOSM WRTATTN - write attention AST

MAILBOX DRIVER

These function codes take two device/function-dependent arguments:

e Pl -- AST address (request notification 1is disabled 1if the
address is 0)
e P2 -- AST parameter returned in the argument list when the AST
service routine is called
e P3 -- access mode to deliver AST; maximized with requester's
mode
These functions are one-time AST enables; they must be explicitly

reenabled once the AST has been delivered if the wuser desires
notification of the next unsolicited request. Both types of enables,
and more than one of each type, can be set at the same time. The
number of enables is limited only by the AST quota for the process.

Figure 7-6 illustrates the write attention AST function. In this

figure, an AST 1is set to notify Process A when Process B sends an
unsolicited message.

Process A uses the I0$ SETMODE!IOSM WRTATTN function to request an
AST. When Process B sends a message to the mailbox, the AST is
delivered to Process A. Process A responds to the AST by issuing a
read request to the mailbox. The function modifier IOSM NOW is
included in the read request. The data 1is then transferred to
complete the I/O operation.

If several requesting processes have set ASTs for unsolicited messages
at the same mailbox, all ASTs are delivered when the first unsolicited
message is placed in the mailbox. However, only the first process to
respond to the AST with a read request receives the data. Thus, when
the next process to respond to an AST issues a read request to the
mailbox, it may £find the mailbox empty. If this request does not
include the function modifier IO$M NOW, it will be queued during the
wait for the next message to arrive in the mailbox.

@/ ®

AST SPECIFIED BY
10$_SETMODE ° @

1OSM_WRTATTN

®

READ QIO UNSOLICITED
PROCESS MAILBOX PROCESS
A B
DATA DATA

© ®

NOTE: Numbers indicate order of events.

Figure 7-6 Write Attention AST (Read Unsolicited Data)

MAILBOX DRIVER

Figure 7-7 illustrates the read attention AST function. In this
figure, an AST is set to notify Process A when Process B issues a read
request for which no message is available.

‘Process A uses the IO$_SETMODE!IOSM READATTN function to specify an
AST. When Process B Issues a read request to the mailbox, the AST is
delivered to Process A. Process A responds to the AST by sending a

message to the mailbox. The data is then transferred to complete the
I/0 operation.

If several requesting processes have set ASTs for read requests at the
same mailbox, all ASTs are delivered when the first read request is
placed in the mailbox. Only the first process to respond with a write
request is able to transfer data to Process B.

@/ ®

AST SPECIFIED BY.
10$_SETMODE

NO$M_READATTN @ @

WRITE QIO
PROCESS MAILBOX PROCESS
A B
DATA DATA

® ®©

NOTE: Numbers indicate order of events.

Figure 7-7 Read Attention AST

7.4 I/0 STATUS BLOCK

The I/0 status blocks (IOSB) for mailbox read and write QIO functions

are shown in Figures 7-8 and 7-9. Table 7-3 lists the status returns
for these functions.

+2 10SB

byte count status

sender process identification (PID)*

+4
*0 if the sender was a system process

Figure 7-8 1IOSB Contents - Read Function

MAILBOX DRIVER

+2 0SB

byte count status

receiver process identification (PID)*

+4
*0 if IO$M_NOW was specified

Figure 7-9 1IOSB Contents ~ Write Function

Table 7-3
Mailbox QIO Status Returns

Status Meaning

SS$_NORMAL Successful completion. The operation specified
in the QIO was completed successfully. The
second word of the TIO0OSB can be examined to
determine the number of bytes transferred.

SS$_ENDOFFILE No message available at the mailbox or
end-of-file (IO$_ENDOFFILE) message read.

SS$ NOPRIV Access denied. The requesting process does not
- have the privilege to read or write to this
mailbox. (The protection mask is defined when
the mailbox is created.)

SS$_ACCVIO Buffer access violation. User buffer 1is not
accessible to the requesting process.

SS$_MBTOOSML Mailbox too small, The request is for a message
that will not fit in the mailbox. Maximum
message size is established when the mailbox is
created.

SS$_MBFULL Mailbox full. The mailbox is full and resource
wait mode is not enabled.

SS$_INSFMEM Insufficient dynamic memory for the request.
Resource wait mode is not enabled.

7.5 PROGRAMMING EXAMPLE

The following program creates a mailbox and puts some mail in it; no
matching read is pending on the mailbox. First, the program
illustrates that if the function modifier IOSM NOW is not used when
mail is deposited, the write function will wait until a read operation
is performed on the mailbox. 1In this case, IOSM NOW is specified and
the program continues after the mail is left in the mailbox.

Next, the mailbox is read. If there was no mail in the mailbox the
program would wait at this point because IO$M NOW is not specified.
IOSM NOW should be specified if there is any doubt concerning the
avaiTability of data in the mailbox and it is important for the
program not to wait.

MAILBOX DRIVER .

It is up to the user to coordinate what data goes 1into and out of
mailboxes. In this example the process reads 1its own message,
Normally, two mailboxes are used for interprocess communication: one

for sending data from process A to process B, and one for sending data
from process B to process A., If a program is arranged in this manner,
there is no possibility of a process reading its own message,

MAILBOX DRIVER PROGRAMMING EXAMPLE

/701/

Define necessary symbols

~ewave

SIODEF

~ewene

~evewe

DEVICELDESCR:
«LONG 208=-108
« LONG 10s
éggi «ASCII /TERMINAL/

Sewene

DEVICELCHANNEL:
«BLKW 1

~ewewe

MATLBUXLNAME :
«LONG ENDBOX=NAMEBOX
«LONG NAMEBOX
NAMEBOX$.ASCII /146 _MAIN_ST/

ENDBOX:

~evase

MATLBUOX_CHANNEL
« BLKW 1

sDefine I/0 function codes

Allocate storage for necessary data structures

Allocate terminal device name string and descriptor

gth of name strinq

ress of name strin

e string of output device
erence label

Sevevanens
x>
L3 WX)
w33

Allocate space to store assigned channel numper

.
’
.
’

Channel number

Allocate mailbox name string and descriptor

Length of name string
ﬁgdress of name strin

ng
me string

wewename

jReference label

Allocate space to store assigned channel number

N
’
.
’

Channel number

3 Now allocate space to store the outgoing and incoming messages

iN BOX.BUFFER:
+«BLKB 40
INZLENGTH=, = IN_BOX.BUFFER

BOX- BUFFER'
ASCII

OUTL.LENGTH=

OUT.l
/SHEEP ARE VERY DIM/

«=0UT_BOX.BUFFER

Now allocate space for the I/0 status

~ewew,

STATUS: .QUAD 1

Now the program. A
to the terminal, A
is received from the mai

“eveveve ve e

START: ,WORD 0

SCREMBX..S CHAN=MAILBOXL.CHANNEL,=
PROMSK=#2X0000,=
BUFQUD=#~X0060,=
LOGNAM=MAILBOX.NAME, =
MAXMSG=%#2X0060

CMPW #55$_NORMAL,RO

BSBW ERROR-CHECK

$ASSIGNLS
DEVNAM=DEVICE..DESCR
CHAN=DEVICE.CHANNEL

CMPW #5SS_NORMAL,RO

BSBW ERRORLCHECK

mailbox is created
messa?e is put in the mailbox _and a message

box (the same message),The contents of
the mailbox are then printed on the terminal,

iAllocate 40 bytes for received message
;Define input buffer length

sMessaqe to send
;Define length of message to send

quadword
;170 status guadword

and a channel is assigned

try mask
anhel is the mailbox
protection

ffer quota is hex 60
gical name descriptor
ximum message is hex 60
st for normal return

e 1f all well

sign channel

vice descriptor
annel

st for normal return
e if all {s well

C=EATI»PLEICT20m
OOITONDADPRLOCOTD

e vaNeveNe Ne Ve ve e Ve -. ~e

~evans Nevenenewe

~emevene

Sevene

MAILBOX DRIVER

Now we will write the message to the mailbox using the function
modifier IO$SM_NOW so that we may continue without waiting for a
read on the mailbox

$OI0OW.S FUNC=#I0S_WRITEVBLK!IOSMLNUW,= ;Write message NOW
CHAN=MAILBOX-CHANNEL,= :To the mailbox channel
P1=0UT.BOX_BUFFER,= sBuffer to write
) P2=40UT_LENGTH sHow mucn to write
CMPW #SS$.NORMAL,RO ;Test for normal return
BSBwW ERRORLCHECK ;See it all s well
Now the mailbox is read
SQIOW.S FUNC=#I0$_READVBLK,= sread box
CHAN=MAILBOX_CHANNEL,= Maillbox channel
IOSB=STATUS, = iDefine status to receive message length
P1=IN_BOX_BOFFER, = ;Where to read it
P2=# IN_LENGTH sHow much
CMPH #SSS.NORMAL,RO ;Test for normal return
BSBW ERRORLCHECK :See 1f all is well
Now we find out how much mail was in the box and print it to the terminal
The amount of mail read is held in STATUS+2

MOVZWL STATUS+2,R2 ;Put byte count into R2
SOIOW.S FUNC:#IOﬁ-NRITEVBLK,- sFunctlon is write
CHAN=DEVICE.CHANNEL, = ;To the terminal
P1=INLBOX_BUFFER, = jAddress of buffer to write
P2=R2,~ jHow mucn to write
Pa=432 ;Carriage control (1H ,)

we now deassign the channel and exit

EXIT: gg%SSGN_S CHAN=DEVICE.CHANNEL ;Deassign channel

weweveve

;Return

This 1s the error checking part of the program. Normally some kind of
error recovery would be attempted here but not for this example,

ERRORLCHECK ’
BNEQ EXIT sDirective failed so exit
RSB sElse return
+END START

CHAPTER 8

DMC11 SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

This chapter describes the wuse of the VAX/VMS DMCll Synchronous
Communications Line Interface driver. The DMCll provides a
direct-memory-access (DMA) interface between two computer systems
using the DIGITAL Data Communications Message Protocol (see Section
8.1.1 below). The DMCll supports DMA data transfers of up to 16K
bytes at rates of up to 1 million baud for local operation (over
coaxial cable) and 56,000 baud for remote operation (using modems).
Both full- and half-duplex modes are supported.

The DMC1ll is a message-oriented communications line interface that is
used primarily to link two separate but cooperating computer systems.

8.1 SUPPORTED DMCll SYNCHRONOUS LINE INTERFACES

Table 8-1 lists the DMCll options supported by VAX/VMS.

Table 8-1
Supported DMCll Options
Type Use
DMC11-AR with DMC1l1-FA Remote DMC1ll and EIA or V35/DDS
DMC11-AR with DMC1l1l-DA line unit
DMCl1-AL with DMC11-MD Local DMCll and 1M bps or 56
DMC1l1-AL with DMCl1-MA bps

8.1.1 DIGITAL Data Communications Message Protocol

To ensure reliable data transmission, the DIGITAL Data Communications
Message Protocol (DDCMP) has been implemented, using a high-speed
microprocessor, on the VAX-11/780 processor. For remote operations, a
DMCll can communicate with a different type of synchronous interface

(or even a different type of computer), provided the remote system has
implemented DDCMP, version 4,

DDCMP detects errors on the communication 1line interconnecting the
systems wusing a 16-bit Cyclic Redundancy Check (CRC). Errors are
corrected, when necessary, by automatic message retransmission.
Sequence numbers in message headers ensure that messages are delivered
in the proper order with no omissions or duplications.

DMC11 SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

The DDCMP specification (Order No. AA-DS599A-TC) provides more detailed
information on DDCMP.

8.2 DRIVER FEATURES AND CAPABILITIES
DMC11l driver capabilities include:

e A nonprivileged QIO interface to the DMCll. This allows use
of the DMC1ll as a raw-data channel,

e Unit attention conditions transmitted through attention ASTs
and mailbox messages.

e Both full- and half-duplex operation.

e Interface design common to all communications devices
supported by VAX/VMS.

e Error logging of all DMCll microprocessor and 1line unit
errors,

e Online diagnostics.
e Separate transmit and receive quotas.
e Assignment of several read buffers to the device.

The following sections describe mailbox usage and I/0 quotas.

8.2.1 Mailbox Usage

The device owner process can associate a mailbox with a DMCll by using
the SASSIGN system service (see Section 7.1.2). The mailbox is used
to receive messages that signal attention conditions about the unit.
As illustrated in Fiqure 8-1, these messages have the following
content and format:

e Message type; this can be any one of the following:

Message type Meaning

MSGS$ XM DATAVL Data is available

MSGS$_XM_SHUTDN Unit has been shutdown

MSGS$_XM_ATTN A disconnect, timeout, or data

check occurred
The $MSGDEF macro is used to define message types
e Physical unit number of the DMC1ll
e Size (count) of the ASCII device name string

e Device name string

DMC11 SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER
31 16 15 8 7 0

unit type

count

device name

Figure 8-1 Mailbox Message Format

8.2.2 Quotas

Transmit operations are considered direct I/0 operations and are
limited by the process's direct I/O quota.

The quotas for the receive buffer free list (see Section 8.4.3.4) are
the process's buffered I/0 count and buffered I/O byte limit. After
start up, the transient byte count and the buffered I/0 byte limit are
adjusted.

8.2.3 Power Failure

When a system power failure occurs, no DMCll recovery 1is possible,.
The device is in a fatal error state and is shut down.

8.3 DEVICE INFORMATION

Users can obtain information on device characteristics by using the
SGETCHN and SGETDEV system services (see Section 1.10). The
information is returned in a user-specified buffer shown 1in Figure
8-2. Only the first three longwords of the buffer are shown in Figure
8-2 (Figure 1-9 shows the entire buffer).

31 24 23 16 15 8 7 0

device characteristics

maximum message size type class

not used error summary status characteristics

Figure 8-2 DMC1ll Information

The first longword in the buffer contains the device characteristics
values listed in Table 8-2. The S$DEVDEF macro defines these values.

DMC11l SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

Table 8-2
DMC11 Device Characteristics

Dynamic bit Meaning
(Conditionally Set)

DEVSM_NET Network device
Static bits
(Always Set)
DEVSM_ODV Output device
DEV$M_IDV Input device

The second longword contains information on the device class and type,
and the maximum message size. The device class for the DMCll is
DC$ SCOM. Table 8-3 lists the device types. The device class and
types are defined by the S$DCDEF macro.

Table 8-3
DMC11 Device Types
Devi .o 1
evice Type Meaning
DT$_XM_ARDA DMC11-AR with DMC11-DA
DT$_XM_ARFA DMC11-AR with DMC11-FA
DTS_XM_ALMD DMC1l1-AL with DMC1l1-MD
DT$_XM_ALMA DMC11-AL with DMC11-MA

1. Table 8-1 describes the different device types

The maximum message size is the maximum send or receive message size
for the unit. Messages greater than 512 bytes on modem controlled

lines are more prone to transmission errors and therefore may require
more retransmissions.

The third longword contains unit characteristics and status, and an
error summarye.

Unit characteristics bits govern the DDCMP operating mode. They are
defined by the $XMDEF macro and can be read or set. Table 8-4 lists
the unit characteristics values and their meanings.

DMC11 SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

Table 8-4
DMC1l1l Unit Characteristics

Characteristic Meaning1
XM$M_CHR_MQP DDCMP maintenance mode
XMSM_CHR_SLAVE DDCMP half-duplex slave station
XM$M_CHR_HDPLX DDCMP half-duplex
XM$M_CHR_LOOPB DDCMP loop back
XM$M_CHR_MBX Shows the status of the mailbox

that can be associated with the
unit; 1if this bit is set, the
mailbox 1is enabled to receive
messages signaling unsolicited
data. (This bit <can also be
changed as a subfunction of read
or write QIO functions)

1. Section 8.1.1 describes DDCMP

The status bits show the status of the unit and the line. The values
are defined by the S$XMDEF macro. They can be read, set, or cleared as
indicated. Table 8-5 lists the status values and their meanings.

Table 8-5
DMC1ll Unit and Line Status

Status Meaning

XM$SM STS ACTIVE Protocol is active. This bit is
- set when I0O$ SETMODE!IOS$ STARTUP
is done and cleared when the
unit is shut down. (Read only.)

XM$M_STS_TIMO Timeout. If set, indicates that
- the receiving computer is
unresponsive. DDCMP time outs.
(Read or clear.)

XMSM_STS_ORUN Data overrun. If set, indicates
that a message was received but
lost due to the lack of a

receive buffer. (Read or

clear.)
XMSM_STS_DCHK Data check. If set, indicates
- that a retransmission threshold
has been exceeded. (Read or

clear.)
XMSM STS DISC If set, indicates that the Data
- Set Ready (DSR) modem line went
from on to off,. (Read or

clear.)

DMCl1l SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

The error summary bits are set only when the driver must shut down the
DMC1l1l because a fatal error occurred. These are read-only bits that
are cleared by any of the I0$ SETMODE functions (sSee Section 8.,4.3).
The XM$M STS ACTIVE status bit is clear if any error summary bit is
set. Table 8-6f lists the error summary bit values and their meanings.

Table 8-6
Error Summary Bits

Error Summary Meaning
Bit
XMSM_ERR_MAINT DDCMP maintenance message
received
XM$M_ERR_START DDCMP START message received
XMSM_ERR_LOST Data was lost when a message was

received that was 1longer than
the specified maximum message
size.

XMSM_ERR_FATAL An unexpected hardware/software
error occurred.,

8.4 DMCll FUNCTION CODES

The basic DMCll function codes are read, write, -and set mode. All
three functions take function modifiers.

8.4.1 Read
VAX/VMS provides three read function codes:

e I0S READLBLK - read logical block

e IO0S_READPBLK - read physical block

e T0S_READVBLK - read virtual block
Received messages are multi-buffered in system dynamic memory and then
copied to the wuser's address space when the read operation is
performed.

The QIO arguments for the three function codes are:

e Pl -- the starting virtual address of the buffer that 1is to
receive data

e P2 -- the size of the receive buffer in bytes
The read QIO functions can take two function modifiers:

e IOS$SM DSABLMBX - disable use of the associated mailbox for
unsolicited data notification

e TOSM NOW - complete the read operation immediately if no
message is available

DMC11 SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

8.4.2 Write

VAX/VMS provides three write QIO function codes:
e I0$ WRITELBLK - write logical block
e IOS_WRITEPBLK - write physical block
e I0S _WRITEVBLK - write virtual block

Transmitted messages are sent directly from the requesting process's
buffer.

The QIO arguments for the three function codes are:

® Pl -- the starting virtual address of the buffer containing
the data to be transmitted

® P2 —-- the size of the buffer in bytes
The message size specified by P2 cannot be 1larger than the maximum
send message size for the unit (see Section 8.3). If a message larger
than the maximum size is sent, a status of SS$_DATAOVERUN is returned
in the I/0 status block.

The write QIO functions can take one function modifier:

° IO$M_ENABLMBX - enable use of the associated mailbox

8.4.3 Set Mode

Set mode operations are used to perform protocol, operational, and
program/driver interface operations with the DMCl1l. VAX/VMS defines
five types of set mode functions:

e Set Mode

e Set Characteristics

e Enable Attention AST

e Set Mode and Shut Down Unit

e Set Mode and Start Unit

8.4.3.1 ©Set Mode and Set Characteristics - These functions set device

characteristics such as maximum message size. VAX/VMS provides two
function codes:

e I0$ SETMODE - set mode (requires logical I/0 privilege)

e I0$_SETCHAR - set characteristics (requires physical I/0
privilege)

One argument is used with these function codes:

Pl -- the virtual address of the quadword characteristics buffer
block if the characteristics are to be set. If this argument is
zero, only the unit status and characteristics are returned in
the I/0 status block (see Section 8.5). Figure 8-3 shows the Pl
characteristics block.

DMCl11 SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

31 24 23 16 15 8 7 0

maximum message size type class

not used error summary status characteristics

Figure 8-3 Pl Characteristics Block

In the buffer designated by Pl the device class is DCS$_SCOM, Table
8-3 (in Section 8.3) lists the device types. The maximum message size
describes the maximum send or receive message size.

The second longword contains device/function-dependent characteriscs:
unit characteristics, status, and error summary bits. Any of the
characteristics values and some of the status values can be set or
cleared (see Tables 8-4, 8-5, and 8-6).

If the unit is active (XMSM STS ACTIVE is set), the action of a Set
Mode or Set Characteristics function with a characteristics buffer is
to clear the status bits or the error summary bits. If the unit Iis
not active, the status bits or the error summary bits can be cleared,
and the maximum message size, type, device class, and unit
characteristics can be changed.

8.4.3.2 Enable Attention AST - This function enables an AST to be
queued when an attention condition occurs on the unit. An AST is
queued when the driver sets or clears either an error summary bit or
any of the unit status bits, or when a message is available and there
is no waiting read request. The Enable Attention AST function is
legal at any time, regardless of the condition of the unit status

bits.
VAX/VMS provides two function codes:

e I0$_SETMODE!IOSM ATTNAST - enable attention AST

e TI0$ SETCHAR!IOSM ATTNAST - enable attention AST
Enable Attention AST is a single (one-time) enable. After the AST
occurs, it must be explicitly reenabled by the function before the AST
can occur again. The function code is also used to disable the AST.

The function is subject to AST quotas.

The Enable Attention AST functions take the following device/function
dependent arguments:

e Pl -- address of AST service routine or 0 for disable
e P2 -- (ignored)
e P3 -- access mode to deliver AST

The AST service routine is called with an argument 1list. The first
argument 1is the current value of the device/function dependent
characteristics 1longword shown in Figure 8-3. The access mode
specified by P3 is maximized with the requester's access mode.

DMC1ll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

8.4.3.3 Set Mode and Shut Down Unit - This function stops the
operation on an active wunit (XMSM_STS_ACTIVE must be set) and then
resets the unit characteristics.

VAX/VMS provides two function codes:

° IO$_SETMODE!IO$M_SHUTDOWN - shut down unit

e IO0$_SETCHAR!IOSM_SHUTDOWN - shut down unit
These codes take one device/function dependent argument:

Pl -- the virtual address of the quadword characteristics block
(Figure 8-3) if modes are to be set after shutdown. Pl is 0 if
modes are not to be set after shutdown.

These functions stop the DMCll microprocessor and release all
outstanding message blocks; any messages that have not been read are
lost. The characteristics are reset after shutdown. Except for the
signaling of attention ASTs and mailbox messages, the action of these
functions is the same as the action of the driver when shutdown occurs
because of a fatal error.

8.4.3.4 Set Mode and Start Unit - This function sets the
characteristics and starts the protocol on the associated unit.
VAX/VMS provides two function codes:

e I0S_SETMODE!IOSM_STARTUP - start unit
e I0S_SETCHAR!IOS$M_STARTUP - start unit
These codes take the following device/function dependent arguments:

e Pl -- the virtual address of the quadword characteristics
block (Figure 8-3) 1if the characteristics are to be set.
Characteristics are set before the device is started.

e P2 -- (ignored).

e P3 -- the number of pre-allocated receive-message blocks to
ensure the availability of buffers to receive messages.

The total quota taken from the process's buffered I/0 byte count quota
is the DMCll work space plus the number of receive-message buffers
specified by P3 times the maximum message size. For example, if six
200-byte, buffers are required, the total quota taken is 1456 bytes:

256 (DMC1l1l work space)
+ 1200 (number of buffers X buffer size)

1456 (total quota taken)
This quota is returned to the process when shutdown occurs.

Receive-message blocks are used by the driver to receive messages that
arrive independent of QIO read request timing. When a message
arrives, it is matched with any outstanding read requests, If there
are no outstanding read requests, the message 1is queued and an
attention AST or mailbox message is generated,
(IO$_SETMODE!IO$M ATTNAST or I0$ SETCHAR!IOSM ATTNAST must be set to
enable an attention AST; IOSM ENABLMBX must bDe used to enable a
mailbox message.) -

DMCl1l SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

When read, the receive-message block is returned to the
receive-message "free 1list" defined by P3. 1If the "free list" is
empty, no receive-messages are possible. 1In this case, a data lost
condition can be generated if a message arrives. This nonfatal
condition is reported by device-dependent data and an attention AST.

8.5 1I/0 STATUS BLOCK

The I/O0 status block (IOSB) usage for all DMCll QIO functions is shown
in Figure 8-4. Table 8-7 1lists the status returns for these
functions.

+2 1058

transfer size status

device-dependent characteristics

4

Figure 8-4 IOSB Content

In Figure 8-4, the transfer size at IOSB+2 is the actual number of
bytes transferred. Table 8-4 lists the device-dependent
characteristics returned at I0SB+4. These characteristics can also be
obtained by using the $GETCHN and SGETDEV system services (see Section
8.3) .

Table 8-7
Status Returns for DMC1ll1

Status Meaning
SS$_ABORT Fatal hardware error or 1/0 canceled in
progress.
SS$_DATAOVERUN Message received overran buffer allocated

(read), or message too big (write).

SS$_ENDOFFILE No data available (read) when IOSM NOW was
specified.

SS$S_NORMAL Operation was successfully completed (read,
write, or set modes).

SS$_DEVOFFLINE Device protocol not started (read or write).
The function 1is inconsistent with the current
state of the unit (Set Mode).

SS$_DEVACTIVE The function is inconsistent with the current
state of the unit.

CHAPTER 9

QIO INTERFACE TO FILE SYSTEM ACPS

An ancillary control process (ACP) 1is a process that interfaces
between the user process and the driver, and performs functions that
supplement the driver's functions. Virtual I/0 opetations involving
file-structured devices (disks and magnetic tapes) often require ACP
intervention. 1In most cases, ACP intervention is requested by VAX-11
Record Management Services (RMS) and 1is transparent to the user
process. However, user processes can request ACP functions directly

by issuing a QIO request and specifying an ACP function code, as shown
in Figure 9-1,

The DECnet User's Guide describes network ACP (NETACP) interface
operations.

User

Process Driver
- - ACP B L.

Figure 9-1 ACP QIO Interface

This chapter describes the QIO interface to ACPs for disk and magnetic
tape devices (file system ACPs). The sample program in Chapter 4
performs QIO operations to the magnetic tape ACP,

9.1 FILE INFORMATION BLOCK

The File Information Block (FIB) contains much of the information that
is exchanged between the user process and the ACP. Figure 9-2 shows
the format of the FIB. Because the FIB is passed by a descriptor (Pl
in Figure 9-7), its length can vary. Thus a short FIB can be used in
ACP calls that do not need arguments toward the end of the FIB. The
ACP automatically zero-extends a short FIB. Figure 9-3 shows the
format of a typical short FIB, in this case one that would be used to

open an existing file. Table 9-1 1lists the values of these FIB
fields.

QIO INTERFACE TO FILE SYSTEM ACPS

31 24 23 16 16 8 7
FIB$SB_WSIZE FIBSL_ACCTL
FIBSW_FID
FIBSW_DID
FIBSL_WCC
FIBSW_CNTRLFUNC/FIB$W_EXCTL FIBSW_NMCTL

FIBSL_CNTRLVAL/FIB$L_EXSZ

FIBSL_EXVBN

FIB$B_.ALALIGN FIB$B_ALOPTS

FIBSW_ALLOC

Figure 9-2 File Information Block Format
31 24 23 B 16 15 8 7 0
FIB$SB_WSIZE J FIBSL_ACCTL
- -mwv1 FIBSW_FID
FIBSW_DID
FIBSL_WCC
- 0 FIBSW_NMCTL

Figure 9-3 Typical Short File

-—0

etc.

Information Block

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1
Contents of the File Information Block

Field Field Values Meaning

FIBSL ACCTL Specifies field wvalues that
control access to the file.
The following bits are defined:

FIBSM_WRITE Set for write access; clear
for read-only access.

FIB$SM_NOREAD Set to deny read access to
others. (The wuser also must
have write privilege to the
file.)

FIB$M_NOWRITE Set to deny write access to
others.

FIBSM_NOTRUNC Set to prevent the file from
being truncated; clear to

allow truncation.

FIB$M_DLOCK Set to enable deaccess lock
(close check). Only for disk
devices.

Used to flag a file as
inconsistent in the event the
program currently modifying the
file terminates abnormally. If
the program then <closes the
file without performing a write
attributes operation, the file
is 'marked as locked and cannot
be accessed until it is
unlocked.

FIBSM_SEQONLY Set for sequential-only access.
Only for disk devices.

FIBSM_REWIND Set to rewind magnetic tape
before access.

FIBSM_CURPOS Set to <create magnetic tape
file at current position (note:
a maghetic tape file will be
created at the end of the
volume set if neither
FIBSM REWIND nor FIBSM CURPOS
is set). If the tape 1Is not
positioned at the end of a
file, FIBSM CURPOS creates a
file at the next file position.

FIBSM UPDATE Set to position at start of a
- magnetic tape file when opening
file for write; clear to
position at end-of-file,

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Field Values Meaning
FIBSL_ACCTL FIBSM_PRSRV_ATR Set to use span attribute
(Cont.) recorded 1in system-dependent
attribute area, Only for
magnetic tape devices.
FIBSM_READCK Set to enable read checking of
the file.
FIBSM_WRITECK Set to enable write checking of
the file.
FIBSM_EXECUTE Set to access the file in

execute mode. The protection
check 1is made against the
EXECUTE bit instead of the READ
bit., Valid only for requests
issued from EXEC or KERNEL
mode.

FIBSM_RMSLOCK Set to declare RMS record
locking on the file. All users
of a file must employ the same
configuration of this bit, that
is, if a file 1is opened with
RMS record locking, other
non-RMS users are locked out.
Valid only for requests issued
from EXEC or KERNEL mode.

FIBSB_WSIZE Controls the size of the file
window used to map a disk file.
The ACP will wuse the volume
default if FIBSB WSIZE is 0. A
value of 1 to 127 indicates the
number of retrieval pointers to
be allocated to the window. A
value of -1 indicates that the
window should be as large as
necessary to map the entire

file.
FIBSW FID Specifies the file
- identification. The user
supplies the file identifier
when it 1is known; the ACP
returns the file identifier
when it becomes known, for

example, as a result of a
create or directory lookup.
The following subfields are
defined:

FIBSW_FID NUM File number

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (
Contents of the File

Cont.)
Information Block

Field Field Vvalues Meaning
FIBSW_FID FIBSW_FID_SEQ File sequence number
(Cont.)
FIBSW_FID_RVN Relative volume number
FIBSW _DID Contains the file identifier of
the directory file. The
following subfields are
defined:
FIBSW DID_NUM File number
FIBSW DID_SIQ File sequence number
FIBSW DID_RVN Relative volume number
FIBSL WCC Maintains position context when

FIBSW_NMCTL

FIB$SM_WILD

FIB$M_ALLNAM
FIBSM_ALLTYP
FIBSM_ALLVER

FIB$M_NEWVER

FIBSM_SUPERSEDE

FIB$M_FINDFID

FIBSM_LOWVER

processing wild card directory
operations

Controls the processing of a
name string in a directory
operation. The following bits
are defined:

Set if name string contains
wild cards

Set to match all name field
values

Set to match all field type
values

Set to match all version field
values

Set to create file of same name
with next higher version
number. Only for disk devices.

Set to supersede an existing
file of the same name type, and
version. Only for disk
devices,

Set to search a directory for
the file identifier in
FIBSW_FID

Set on return from a CREATE if
a lower numbered version of the
file exists. Only for disk
devices.

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Field values Meaning
FIBSW NMCTL FIBSM_HIGHVER Set on return from a CREATE |if
(Cont.) if a higher numbered version of
the file exists. Only for disk
devices,
FIBSW _EXCTL Specifies extend control for

disk devices. The following
bits are defined:

FIBSM_EXTEND 1 | Set to enable extension

1

FIBSM_TRUNC Set to enable truncation

FIBSM_NOHDREXT Set to 1inhibit generation of
extension file headers

FIBSM_ALCON Allocate contiguous space

FIBSM_ALCONB Allocate contiguous space;
best effort

FIBSM_FILCON Mark file contiguous

FIBSM_ALDEF Allocate the extend size

(FIBSL_EXSZ) or the system
default, whichever is greater

FIBSM_MARKBAD Set to deallocate blocks to the
bad block file during a
truncate operation

FIBSM_ALLOCATR Set if placement control data
is present in the attribute
list., For compatibility mode

use.

FIB$W_CNTRLFUNC Controls magnetic tape
functions and disk quota file
operations. This field
overlays FIB$W EXCTL. In an
ACPCONTROL function, the
FIBSW CNTRLFUNC field can
contain one of the following
values:

FIBSC_REWINDFIL | Rewind to beginning of file

FIBSC_POSEND Position to end of volume set
FIBSC_NEXTVOL Force next volume
1. Only one of these can be set at one time; that 1is, extension

cannot be enabled at the same time truncation is enabled, and vice
versa.

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field

Field values

Meaning

FIBSW_CNTRLFUNC
(Cont.)

FIB$L_EXSZ

FIBSC_SPACE
FIBSC_REWINDVOL

FIBSC_ENA_ QUOTA
FIB$SC_DSA_QUOTA

FIBSC_ADD_QUOTA
FIB$C_EXA QUOTA

FIBSC_MOD_QUOTA
FIBSC_REM_QUOTA
FIBSC_LOCK_VOL

FIB$C_UNLK_VOL

Space n blocks forward or in

reverse
Rewind to beginning of volume
set

Enable the disk quota filel

Disable the disk quota file1

Add an entry to the disk quota
filel

Examine a disk file

quota
entryl

Modify a disk quota file entry1

Remove a disk quota file entry1

Allocation lock the volume1

Unlock the wvolume, Cancels

FIB$SC_LOCK_VOL.1

blocks
or remove from,

Specifies the number of
to allocate to,

a disk file depending on the
FIBSW EXCTL field
configuration. For truncate
operations, this field must
contain 0.

The number of blocks actually
allocated or removed is
returned in this longword. The
value may differ from the

user-requested value because of

adjustments for cluster
boundaries. More blocks are
allocated and fewer Dblocks
removed to meet cluster
boundaries.

1. Table 9-6 describes the disk quota and lock/unlock bits in greater

detail.

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Field Vvalues Meaning

FIBSL CNTRLVAL Specifies magnetic tape Dblock
movements or disk quota file
functions. This field overlays
FIBSL_ EXSZ.

If FIBSC SPACE is indicated,
the FIBSL CNTRLVAL field
specifies the number of
magnetic tape blocks to space
forward if positive or space
backward if negative.

The following bits are defined
for disk quota file operations:

FIBSM ALL MEM Wild card through the disk
quota file and match all UIC
members

FIBSM_ALL_GRP Wild card through the disk
quota file and match all UIC

groups

FIB$M_MOD_PERM | If FIB$C_MOD_QUOTA is
specified, change the permanent
disk quota

FIBSM_MOD_USE If FIBSC_MOD_QUOTA is
specified, change the usage
data. The wvolume must be

locked by FIBSC_LOCK_VOL. This
operation requires write access
to the disk quota file.

FIBSL_ EXVBN Specifies the starting disk
file wvirtual block number at
which the allocated blocks are
to appear in an extend
operation, or the first virtual
block number to be removed in a
truncate operation. For extend
operations, this field must
contain either the end-of-file
block number plus 1, or 0. For
truncate operations, this field
specifies the first wvirtual
block number to be removed.
The actual starting wvirtual
block number of the extend or
truncate operation is returned
in this field.

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Field Values Meaning

FIBSB_ALOPTS Contains option bits that
control the placement of
allocated blocks. The
following bits are defined:

FIBSM_EXACT Set to require exact placement;
clear to specify approximate
placement.

FIBSM_ONCYL Set to locate allocated space
within a cylinder

FIBSB_ALALIGN Contains the interpretation
mode of the allocation
(FIBSW ALLOC) field. One of
the following values can be
specified:

(zero) No placement data. The
remainder of the allocation
field is ignored.

FIBSC_CYL Location is specified as a
dummy longword, followed by a
word Relative Volume Number
(RVN), followed by a longword
cylinder number.

FIBSC_ LBN Location 1is specified as a
dummy longword, followed by a
word RVN, followed by a
longword Logical Block Number
(LBN) .

FIBSC_VBN Location is specified as three
dummy words followed by a
longword Virtual Block Number
(VBN) of the file being
extended., A zero VBN or onhe
that fails to map indicates the
end of the file.

FIBSC RFI Location 1is specified as a
- 3-word file 1ID, followed by a
longword VBN in that file. A
zero file ID indicates the file
being extended. A zero VBN or
one that fails to map indicates
the end of that file.

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Field values Meaning

FIBSW_ALLOC Contains the desired physical
location of the blocks being
allocated. Interpretation of
the field is controlled by the

FIBSB_ALALIGN field. The
following subfields are
.defined:

FIBSW_LOC_FID 3-word related file ID for RFI

placement
FIBSW_LOC_NUM Related file number
FIBSW_LOC_SEQ Related file sequence number
FIBSW_LOC_RVN gséated file RVN or placement

FIBSW_LOC_ADDR Placement LBN, cylinder, or VBN

Table 9-2 shows which FIB fields and field values are used in the
respective QIO functions, Some of the FIB fields and values are
applicable only to disk devices or only to magnetic tape devices. See
Table 9-1.

Table 9-2
FIB Argument Usage in ACP QIO Functions

Applicable Arguments
I/0 Function

FIB Field Field values

I0S CREATE FIBSL ACCTL FIBSM WRITE

- - FIBSM NOREAD
FIBSM_NOWRITE
FIBSM NOTRUNC
FIB$SM DLOCK
FIB$SM_SEQONLY
FIBSM REWIND
FIBSM CURPOS
FIBSM UPDATE
FIBSM PRSRV ATR
FIBSM READCK
FIBSM WRITECK
FIB$M EXECUTE
FIB$SM_RMSLOCK

{(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2 (Cont,)
FIB Argument Usage in ACP QIO Functions

Applicable Arguments

I/0 Function

FIB Field Field values
10$_CREATE FIB$B_WSIZE
(CONT.)
FIBSW_FID 1 FIBSW_FID_NUM

FIBSW_FID_SEQ
FIBSW_FID_RVN

FIBSW_DID FIBSW_DID_NUM
FIBSW_DID_SEQ
FIBSW_DID_RVN

FIB$W_NMCTL FIBSM NEWVER
FIB$SM SUPERSEDE
FIBSM FINDFID
FIBSM LOWVER 2
FIBSM_HIGHVER 2

FIBSW_EXCTL FIBSM_EXTEND
FIB$SM_NOHDREXT
FIBSM_ALCON
FIBSM_ALCONB
FIBSM_FILCON
FIBSM_ALDEF
FIBSM_ALLOCATR

FIBSL_EXSZ

FIB$B_ALOPTS FIBSM_EXACT
FIBSM_ONCYL

FIB$B_ALALIGN (zero)
FIB$C_CYL
FIBSC_LBN
FIBS$C_VBN
FIBSC_RFI

FIB$W_ALLOC FIBSW LOC FID

FIBSW_LOC_NUM
FIBSW_LOC_SEQ
FIBSW_LOC_RVN
FIBSW_LOC_ADDR

l. If FIBSW DID = 0 and IO$M_CREATE is not set; FIB$W_FID is an
output argument if IOSM_CREATE is set.

2. Output argument

(continued on next page)

9-11

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2 (Cont.)
FIB Argument Usage in ACP QIO Functions

Applicable Arguments
I/0 Function

FIB Field Field Values

I0$_ ACCESS FIBSL ACCTL FIBSM WRITE

- FIBSM_NOREAD
FIBSM NOWRITE
FIBSM NOTRUNC
FIBSM_DLOCK
FIB$M SEQONLY
FIBSM REWIND
FIBSM CURPOS
FIBSM_UPDATE
FIB$SM_PRSRV_ATR
FIBSM READCK
FIB$M WRITECK
FIBSM_EXECUTE
FIB$SM_RMSLOCK

FIB$SB_WSIZE

FIBSW_FID 1 FIBSW_FID_NUM
FIBSW_FID_SEQ
FIBSW_FID_RVN

FIBSW_DID FIBSW_DID_NUM
FIBSW_DID_SEQ
FIBSW_DID_RVN

FIBSL_WCC 2
FIBSW_NMCTL FIBSM_WILD
FIBSM_ALLNAM
FIBSM_ALLTYP
FIBSM_ ALLVER
FIBSM_FINDFID
10$ DEACCESS FIBSW_EXCTL FIB$M_TRUNC

FIB$L_EXVBN

I0$_MODIFY FIB$W_FID 1 FIBSW_FID_NUM
FIBSW_FID_SEQ
FIBSW_FID_RVN

FIBSW_DID FIBSW_DID_NUM
FIBSW DID_SEQ
FIBSW_DID_RVN

1. If FIBSW DID is 0; FIBSW _FID is an output argument if FIBSW _DID is
not 0.

2. If FIBSM WILD is set.

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2 (Cont.)
FIB Argument Usage in ACP QIO Functions

Applicable Arguments
I/0 Function

FIB Field Field Values

10$ MODIFY FIBSL wcc !
(Cont.) -
FIBSW NMCTL FIBSM WILD

- FIBSM ALLNAM
FIBSM_ALLTYP
FIBSM ALLVER
FIBSM_FINDFID
FIBSW EXCTL FIBSM EXTEND >
- FIBSM TRUNC
FIBSM_NOHDREXT
FIBSM ALCON
FIBSM_ALCONB
FIBSM FILCON
FIBSM ALDEF
FIBSM MARKBAD
FIBSM_ALLOCATR

FIBSL_EXSZ
FIBSL_ EXVBN

FIBSB_ALOPTS FIBSM EXACT
FIBSM ONCYL

FIB$B ALALIGN (zero)

- : FIBSC CYL
FIBSC LBN
FIBSC VBN
FIBSC_RFI

FIBSW ALLOC FIBSW_LOC_FID
B FIBSW_LOC_NUM
FIBSW_LOC_SEQ
FIBSW_LOC_RVN
FIBSW_LOC_ADDR
2 FIBSW_FID_NUM
FIBSW_FID_SEQ
FIBSW _FID_RVN

IO$_DELETE FIBSW_FID

FIBSW_DID FIBSW_DID_NUM
FIBSW_DID_SEQ
FIBSW_DID_RVN

1, I1If FIB$M_WILD is set.

2. If FIBSW DID is 0; FIBSW DID is an output argument if FIBSW DID is
not 0. - - -

3. Only FIBSM EXTEND or FIB$ TRUNC can be set at any given time; they
cannot both be set at the same time.

(continued on next page)

9-13

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2 (Cont.)
FIB Argument Usage in ACP QIO Functions

Applicable Arguments

I/0 Function

FIB Field Field values
10$ DELETE FIBSL_Wcc !
(Cont.)
FIBSW_NMCTL FIBSM_WILD
FIBSM_ALLNAM
FIBSM_ALLTYP
FIBSM_ALLVER
FIBSM_FINDFID
I0O$_MOUNT

(no arguments used)

I0$_ACPCONTROL FIBSW_CNTRLFUNC FIBSC_REWINDFIL
- - FIBSC_POSEND
FIBSC NEXTVOL
FIBSC_SPACE
FIBSC_REWINDVOL
FIBSC_ENA QUOTA
FIBSC_DSA_ QUOTA
FIBSC_ADD_QUOTA
FIBSC_EXA_OUOTA
FIB$C_MOD_QUOTA
FIBSC_REM_QUOTA
FIBSC_LOCK_VOL
FIB$SC_UNLK_VOL

FIBSL CNTRLVAL FIBSM_ALL_MEM
- FIBSM ALL GRP
FIBSM MOD PERM
FIBSM_MOD_USE

1. If FIBSM WILD is set.

9.2 ATTRIBUTE CONTROL BLOCK

The attribute control block contains the codes that control the
reading and writing of file attributes, for example, file protection
and record attributes. Device/function-dependent argument P5
specifies the address of this list. The list consists of a variable
number of 2-longword control blocks, terminated by a zero longword, as
shown in Figure 9-4. The maximum number of attribute control blocks
in one list is 14. Table 9-3 describes the attribute control block
fields.

QIO INTERFACE TO FILE SYSTEM ACPS

31 16 15 0

ATRSW_TYPE ATRSW_SIZE

ATRSL_ADDR

(additional control blocks)

Figure 9-4 Attribute Control Block Format

Table 9-3
Attribute Control Block Fields

Field Meaning

ATRSW_SIZE Specifies the number of bytes of the attribute
to be transferred. Legal values are from 0 to
the maximum size of the particular attribute
(see Table 9-4).

ATRSW_TYPE Identifies the individual attribute to be read
or written.

ATRSW_ADDR Contains the buffer address of the user's
memory space to or from which the attribute is
to be transferred. The particular 1/0

function determines whether the attribute is
read or written, as follows:

I/0 Function Operation

Create Write
Access Read
Deaccess Write
Modify Write
Delete Not used
Mount Not used
ACP Control Not used

Table 9-4 lists the valid attributes for ACP QIO functions. The
maximum size (in bytes) 1is determined by the required attribute
confiqguration. For example, the file name uses only 6 bytes, but Iis
always accompanied by the file type and file version - so a total of
10 bytes is required. Each attribute has two names: one for the code
(for example, ATRS$SC UCHAR) and one for the size (for example,
ATR$S_UCHAR). -

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-4
ACP QIO Attributes
Attribute Maximum Meaning
Name Size (bytes)
(unnamed) 2 5 Two-byte file owner UIC plus the next

attribute and the first byte of
ATRSC _UCHAR. Used for compatibility
mode only.

(unnamed) 2 3 Two-byte file protection plus the
first byte of ATRSC_UCHAR. Used for
compatibility mode only.

ATR$C_UCHAR 3 Four-byte file characteristics.

ATR$S_UCHAR 4

ATR$C_RECATTR3 Record attribute area. Section 9.2.1

ATRSS_RECATTR 32 describes the record attribute area
in detail.

ATR$SC_FILNAM Six-byte Radix-50 file name plus

ATR$S_FILNAM 10 ATR$C_FILTYP and ATRSC_FILVER.

ATR$C_FILTYP Two-byte Radix-50 file type ©plus

ATR$S_FILTYP 4 ATRSC_FILVER

ATRSC_FILVER Two-byte binary version number.

ATR$S_FILVER 2

ATR$C_EXPDAT 2 Expiration date in ASCII.

ATR$S_EXPDAT 7

ATRSC_STATBLK1 Statistics block. Section 9.2.2

ATR$S_STATBLK 10 describes the statistics block in
detail.

ATR$C_HEADER 1 Complete file header.

ATR$S_HEADER 512

ATRSC_BLOCKSIZE Magnetic tape block size.

ATR$S_BLOCKSIZE 2

ATR$C_ASCDATES 2 Revision count (2 binery bytes),
ATRS$S ASCDATES 35 revision date, creation date, and
- expiration date, in ASCII. Format =
DDMMMYY (revision date), HHMMSS
(time), DDMMMYY (creation date),
HHMMSS (time), DDMMMYY (expiration
date), HHMMSS (time). The format
contains no embedded spaces or
commas:
DDMMMYYHHMMSSDDMMMYYHHMMSSDDMMMYYHHMMSS

1. Read-only
2. Protected (can be written to only by system or owner)
3. Locked (can not be written to while the file is locked)

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-4 (Cont.)
ACP QIO Attributes

Attribute Maximum Meaning
Name Size (bytes)

ATR$C ALCONTROL

ATR$S_ALCONTROL 14

ATRSC_ASCNAME File name, type, and version, in

ATRSS_ASCNAME 20 ASCII, including punctuation:
name.typ;version

ATR$S_CREDATE2 64-bit creation date and time.

ATR$S_CREDATE 8

ATR$C_REVDATE 2 64-bit revision date and time.

ATRSS_REVDATE 8

ATRSC__EXPDATE2 64-bit expiration date and time.

ATR$S_EXPDATE 8

ATR$C_UIC2 4-byte file owner UIC.

ATR$S_UIC 4

ATR$C_FPRO2 File protection.

ATR$S_FPRO 2

ATR$C_ACLEVEL2 File access level.

ATR$S_ACLEVEL 1

ATRSC_UIC_RO1 4 4-byte file owner UIC

1. Read-only

2. Protected (can be written to only by system or owner)

9.2.1 ACP QIO Record Attributes Area

Figure 9-5 shows the format of the record attributes area.

QIO INTERFACE TO FILE SYSTEM ACPS

31 24 23 16 15 87 0
FAT$SW_RSIZE FAT$B__RATTRIB FAT$B__RTYPE
FAT$L_HIBLK
FAT$L__EFBLK
FAT$B__VFCSIZE FAT$B__BKTSIZE FATSW__FFBYTE
FAT$W__FEFEXT FATSW_MAXREC
(reserved for future use)

Figure 9-5 ACP QIO Record Attributes Area

Table 9-5 lists the record attributes values and their meanings.

Table 9-5
ACP Record Attributes Vvalues
Field Vvalue Meaning

FAT$B_RTYPE Record type. The following bit values are
defined:
FATSC_FIXED Fixed record type
FATSC_VARIABLE Variable length
FATSC_VFC Variable and fixed control

FAT$SB_RATTRIB Record attributes. The following bit values are
defined:
FAT$M_FORTRANCC FORTRAN carriage control
FATSM_IMPLIEDCC Implied carriage control
FATSM_PRINTCC Print file carriage control
FATSM_NOSPAN No spanned records

FATSW _RSIZE Record size in bytes

FAT$L HIBLK 1 Highest allocated VBN

FAT$L_EFBLK 1 End-of-file VBN

FAT$W_FFBYTE First free byte in FAT$L_EFBLK

FAT$SB_ BKTSIZE Bucket size in blocks

FAT$B_VFCSIZE Size in bytes of fixed length control for VFC
records

FATSW_MAXREC Maximum record size in bytes

FATSW_DEFEXT Default extend quantity

1. Inverted format field

QIO INTERFACE TO FILE SYSTEM ACPS

9.2.2 ACP QIO Attributes Statistics Block

Figure 9-6 shows the format of the statistics block.

31 16 15 87 0

start LBN

file size

LCNT ACNT

Figure 9-6 ACP QIO Attributes Statistics Block

If the file is contiquous, the first longword contains the LBN of the
first block of the file, that is, the starting LBN. For
non-contiquous files, this field 1is zero. The second longword
contains the total file size in blocks. The ACNT byte contains the
total number of users who are currently accessing the file. The LCNT
byte contains the number of write locks on the file.

Both start LBN and file size appear as inverted longwords, that Iis,

the high- and 1low-order 16 bits are transposed. This is for
compatibility with PDP-11 software.

9.3 ACP FUNCTIONS AND ENCODING

All VAX/VMS ACP functions can be expressed using seven function codes
and four function modifiers. The function codes are:

e I0S CREATE -- creates a directory entry or file

e TI0S$ ACCESS -- searches a directory for a specified file and
accesses that file, if found

° IO$_DEACCESS —-- deaccesses a file and, 1if specified, writes
the final attributes in the file header

e I0S MODIFY -- modifies the file attributes and/or file
allocation

e 105 DELETE -- deletes a directory entry and/or file header

e I0$ MOUNT -- informs the ACP when a volume is mounted;

requires mount privilege
e IO$_ACPCONTROL -- performs miscellaneous control functions

In addition to the function codes and modifiers, VAX/VMS ACPs take
five device/function-dependent arguments, as shown in Figure 9-7.

e}

-19

QIO INTERFACE TO FILE SYSTEM ACPS

3 0
P1: Address of FIB descriptor
P2: Address of file name string descriptor (optional)
P3: - Address of wc;;d to receive resultant string length (optional) _u
P4: Address of resultant string descriptor (optional)
P5: Address of attribute control block (optional)

Figure 9-7 ACP Device/Function-Dependent Arguments

The first argument, Pl, is the address of the File Information Block
descriptor. Section 9.1 describes the FIB in detail.

The second argument, P2, is an optional argument used in directory
operations. It specifies the address of the descriptor for the file
name string to be entered in the directory. The file name itself must
be in read/write memory.

The file name string must have the following format:

name.type;version
or
name.typ.version

where name and type may be any combination of alphanumeric characters,
plus the asterisk (*) and percent (%) characters. The version must
consist of numeric characters or a single asterisk. The total number
of alphanumeric and percent characters in the name and type fields
must not exceed 9 and 3, respectively. Any number of additional
asterisks may be present.

The wild card characters % and * are not legal in I0S_CREATE requests.

If any of the bits FIBSM_ALLNAM, FIBSM ALLTYP, and FIBSM_ALLVER are
set, then the contents of the corresponding field in the name string
is ignored and assumed to be *.

Note that the file name string cannot contain a directory string. The
directory is specified by the FIBSW DID field (see Table 9-1). Only
VAX-11 RMS can process directory strings.

Argument P3 is the address of a word to receive the resultant file
name string length. The resultant string is not padded. The actual
length is returned in P3. P4 is the address of a descriptor for a
buffer to receive the resultant file name string. Both these
arguments are optional.

The fifth argument, P5, is an optional argument containing the address
of the attribute control block. Section 9.2 describes the attribute
control block in detail.

QIO INTERFACE TO FILE SYSTEM ACPS

Figure 9-8 shows the format for the descriptors.

31 16 156 0

not used count

address

Figure 9-8 ACP Device/Function Argument Descriptor Format

9.3.1 Create File

This virtual I/0 function creates a directory entry and/or a file on a
disk device, or a file on a magnetic tape device.

The function code is:
IO$_CREATE

The function modifiers are:

e IOSM _CREATE -- creates a file
e TI0SM ACCESS -- opens the file on the user's channel
e IOSM DELETE -- deletes the file (or marks it for deletion).

Applicable only to disk devices.
The device/function-dependent arguments for IO$_ CREATE are:

e Pl -- the address of the File Information Block (FIB)
descriptor.

e P2 -- the address of the file name string descriptor
(optional). The file name is written into the file header;
is a directory is specified, this name 1is entered 1in the
directory. If specified for a magnetic tape file, the name is
the name of the created file.

e P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

e P4 —-- the address of a descriptor for a buffer that 1is to
receive the resultant file name string (optional).

e P5 —- the address of a list of attribute descriptors
(optional). If specified for a disk file, the indicated
attributes are written to the file header. 1If specified for a
magnetic tape file, P5 is the address of the descriptor list
for the new file.

If the FIBSW DID field of the FIB is nonzero, the name string Iis
entered in the disk directory specified by the field. If the
resultant string descriptor is present, a string representing the full
directory entry is returned. 1If the address of a word to receive the
resultant string size is specified, the size, in bytes, of the string
is returned. A disk file can also be extended if FIBSM EXTEND is set.

The number of blocks allocated is returned in the second longword of
the IOSB.

QIO INTERFACE TO FILE SYSTEM ACPS

A disk file header is created if IO$M CREATE is specified. (The file
ID is returned in FIBSW FID.) If an attribute list is present, the
indicated attributes are written to the file header. If IOS$M DELETE
is specified, the disk file is marked for deletion. This function
modifier may only be wused in conjunction with IO$M CREATE and
IO$M_ACCESS. B

If IOSM ACCESS is specified, the disk or magnetic tape file is
accessed, that is, opened on the user's channel.

In the name control field (FIBSW NMCTL) of the FIB, the FIBSM NEWVER
and FIBSM_SUPERSEDE bits function as described in Table 9-1; other
flags are ignored. The wild card context field, FIBSL WCC, 1is also
ignored. -

The FIBSL ACCTL and FIBSW_EXCTL FIB fields are interpreted as
described Tn Table 9-1.

Listed below are the arguments for IO$_CREATE in the order in which
they are used. All other areguments are illegal and must be zero:

IO$M_CREATE

FIBSW_DID

FIBSW_NMCTL

Attribute List
I0O$M_ACCESS
FIB$L_ACCTL
FIBSM_EXTEND (disk only)
FIBSW_EXCTL (disk only)
FIBSB_ALOPTS
FIB$B_ALALIGN
FIB$B_ALLOC

IOSM_DELETE (disk only)

9.3.2 Access File

This virtual I/0 function searches a directory on a disk device, or a
magnetic tape, for a specified file and accesses that file if found.

The function code is:
I0$_ACCESS
The function modifiers are:
e IOS$SM CREATE -- creates a file

e IOS$SM_ACCESS -- opens the file on the user's channel

QIO INTERFACE TO FILE SYSTEM ACPS

IOSM CREATE changes the I0$ ACCESS function code to IO$ CREATE if the
directory search failed with a "file not found" condition. The
function is then re-executed as a CREATE. In that case, the argument
interpretations for 10$ CREATE apply, rather than those for
I0$_ACCESS. 1If IO$M CREATE is specified, the file 1is accessed. A
file must be accessed before it can be read or written.

The device/function-dependent arguments for IOS_ACCESS are:

e Pl -- the address of the File 1Information Block (FIB)
descriptor.

e P2 -- the address of the file name string descriptor
(optional). 1If specified for disks, the directory is searched
for this name. 1If IO$ ACCESS is converted to IOS_CREATE, the
name 1is entered in ~the directory specified by the FIB. If
specified for magnetic tapes, the name identifies the file
being sought.

e P3 -- the address of the word that is to receive the length of
the resultant file name string (optional). ’

e P4 -- the address of a descriptor for a buffer that 1is to
receive the resultant file name string (optional).

e P5 -- the address of a list of attribute descriptors
(optional). If specified for disks, the indicated attributes
are read from the file header. If specified for magnetic
tapes, the file attributes are returned to the user.

If the FIBSW DID field is nonzero, a search is made for the name
string 1indicated in a directory specified by the field. 1If the
resultant string descriptor is present, a string representing the full
directory entry 1is returned. The size of the string is returned if
the address of the resultant string size word is present. The file
identifier is returned in FIBS$W_FID.

Several other FIB fields are used in I0$ ACCESS execution. In the
FIB$W_NMCTL field, FIBSM ALLNAM, FIBSM ALLTYP, and FIBSM_ALLVER
control matching of the name fields. If FIB$M WILD is set, FIBSW WCC
indicates the position in the directory to resume the search; on
return, this field contains the position of the directory entry found.
The FIBSL ACCTL field is interpreted as described in Table 9-1,

If an attribute list is present, the 1indicated file attributes are
read.

Listed below are the arguments for I0S_ACCESS in the order in which
they are used. All other arguments are illegal and must be 0.

FIBSW_DID
FIBSW_NMCTL
FIBSW_WCC
IO$M_CREATE
I0SM_ACCESS
FIBSL ACCTL
Attribute List

(Extend control data is ignored)

9-23

QIO INTERFACE TO FILE SYSTEM ACPS

9.3.3 Deaccess File

This virtual I1/0 function deaccesses a file and, if specified, writes
final attributes in the file header.

Attributes are written to a disk file if they are present and 1if the
file was accessed for a write operation. (If write access and no
attributes are specified, and if FIBSM DLOCK was set when the file was
accessed, the deaccess lock bit is set in the file header, inhibiting
further access to that file.)
The function code is:

I0$_DEACCESS

The device/function-dependent arguments for IOS_DBACCESS are:

e Pl -- the address of the File Information Block (FIB)
descriptor.

e P5 -- the address of a list of attribute descriptors
(optional). If specified, the 1indicated attributes are

written to the file header.

Normally, two arguments are used with IOS_DEACCESS: the attribute
list and the FIBSL ACCTL field (in that order); the FIBSL_ACCTL flag
bits are ignored. The FIBsw_FID field can be nonzero. If so, it must
match the file identifier of the accessed file. 1IOS$S_DEACCESS takes no
function modifiers.
A truncate operation can also be performed with TI0S_DEACCESS, using
the FIBSW_EXCTL and FIBSL_EXVBN arguments described below for
IOS_MODIFY. In this case, the arguments are wused in the following
order:

Attribute List

FIBSW_EXCTL

FIBSL EXVBN

9.3.4 Modify File

This wvirtual 1I/0 function modifies the file attributes and/or
allocation of a disk file. 1If used with magnetic tape, modify file is
basically a NOP.

The function is:

I0$_MODIFY

The device/function-dependent argqguments for IOS_MODIFY are:

e Pl -- the address of the File Information Block (FIB)
descriptor.

e P2 —-- the address of the file name string descriptor
(optional). If specified, the directory is searched for the
name.

® P3 -- the address of the word that is to receive the length of

the resultant file name string (optional).

QIO INTERFACE TO FILE SYSTEM ACPS

@ P4 -- the address of a descriptor for a buffer that 1is to
receive the resultant file name string (optional).

e P5 -- the address of a list of attribute descriptors
(optional). If specified, the indicated attributes are
written to the file header.

An initial search is made for the indicated file string. The search
is performed the same way, and with the same consequences, as the
I0S_ACCESS search (see Section 9.3.2). If an attribute 1list is
present, attributes are written. The file can be either extended or
truncated. TIf extended (FIBSM_EXTEND is set), the amount is indicated
by the extend control data (FIBSL_EXSZ) and the total number of blocks
allocated to the file is returned in the second longword of the IOSB.
If truncated (FIBSM TRUNC is set), the file is shortened to the number
of blocks specified in FIBSL EXVBN, minus 1. The file round-up
quantity, that 1is, the resulting file size minus the requested file
size, is returned in the second longword of the IOSB.

The FIBSW_EXCTL field is interpreted as described in Table 9-1.

FIBSL EXVBN and FIBS EXSZ are used to return the actual starting

virtual block number (VBN) and size, respectively, of the area
allocated or truncated.

The FIBSW_NMCTL and FIBSL WCC fields are interpreted as described for
I0$_ACCESS. If an attribute 1list 1is present, the indicated file
attributes are written. 1IO0OS$_MODIFY takes no function modifiers.

Listed below are the legal arguments for IO$_MODIFY in the order in
which they are used. All other arguments are illegal and must be 0.

Attribute List

FIBSW DID (disk only)
FIB$W_NMCTL (disk only)
FIB$L_WCC (disk only)
FIBSM_EXTEND (disk only)
FIB$L_EXSZ (disk only)
FIBSW_EXCTL (disk only)
FIB$B_ALOPTS (disk only)
FIBSB_ALALIGN (disk only)
FIB$B_ALLOC (disk only)
FIBSM TRUNC (disk only)

FIBSM_MARKBAD (disk only)

9.3.5 Delete File

This virtual I/0 function removes a directory header and/or file
header from a disk file.

QIO INTERFACE TO FILE SYSTEM ACPS

The function code is:
IO$_DELETE
The function modifier is:
I0SM_DELETE -- deletes the file (or marks it for deletion)

The device/function-dependent arqguments for IOS_DELETE are:

e Pl -- the address of the File 1Information Block (FIB)
descriptor.

e P2 -- the address of the file name string descriptor
(optional). If specified, the name 1is removed from the

directory specified by the FIB.

e P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

e P4 -- the address of a descriptor for a buffer that 1is to
receive the resultant file name string (optional).

A search is made for the directory entry to be deleted. The search is
performed the same way as the I0S$S ACCESS search (see Section 9.3.2).
The directory entry 1is then removed. The function modifier
(IOSM_DELETE) deletes the file header specified by FIBSW_FID.

Listed below are the legal arguments for IO$ DELETE in the order in
which they are used. All other arguments are illegal and must be 0.

FIBSW_DID
FIBSW_NMCTL
FIBSL_WCC

IOSM_DELETE

9.3.6 Mount

This virtual I/0 function informs the ACP when a disk or magnetic tape
volume 1is mounted. Mount privilege is required. TI0$_MOUNT takes no
arguments or function modifiers. Note that this function 1is only a

part of the volume mounting operation. Most of the actual processing
is performed by the MOUNT utility.

9.3.7 ACP Control

This virtual 1/0 function performs miscellaneous control functions,
depending on the arguments specified.

The function code is:
IO$_ACPCONTROL
The function modifier is:

I0OSM_DMOUNT -- dismounts a volume

QIO INTERFACE TO FILE SYSTEM ACPS

The device/function-dependent arguments for IO$_ACPCONTROL are:

e Pl -- the address of the File Information Block (FIB)
descriptor.

e P2 -- the address of the file name string descriptor
(optional).

e P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

@ P4 -- the address of a descriptor for a buffer that 1is to
receive the resultant file name string (optional).

e P5 -- the address of a list of attribute descriptors
(optional). .

If TIOSM_DMOUNT is not set, the FIB control function field
(FIBSW_CNTRLFUNC) has one of its field values set. Listed below are
the legal arguments for IO$ ACPCONTROL in the order in which they are
used; all other arguments are illegal and must be 0:
I0$M_DMOUNT
FIBSW_CNTRLFUNC field values:
FIB$C_REWINDFIL
FIB$C_POSEND
FIBSC_NEXTVOL
FIBSC_SPACE
FIB$C_REWINDVOL
FIBSC_ENA QUOTA
FIB$C_DSA_QUOTA
FIB$C_ADD_QUOTA
FIBSC_EXA QUOTA
FIBSC_MOD_QUOTA
FIBSC_REM_QUOTA
FIBSC_LOCK_VOL
FIBSC_UNLK_VOL

FIBSL_CNTRLVAL

9.3.7.1 Disk Quotas - Disk quota enforcement is enabled by a gquota
file on the volume, or relative volume 1 if the file is on a volume
set, The quota file appears in the wvolume's master file directory
(MFD) under the name QUOTA.SYS;1l.

Figure 9-9 shows the format of the block used to transfer quota file
data to and from the ACP.

QIO INTERFACE TO FILE SYSTEM ACPS

31 0

Flags Longword (DQF$L_FLAGS)

User Identification Code (DQF$L_UIC)

Current Usage (DQF$L_USAGE)

Permanent Quota (DQF$L_PERMQUOTA)

Overdraft Limit (DQF$L__OVERDRAFT)

(reserved for future use)

Figure 9-9 Quota File Transfer Block

In the flags longword, the DQFSV_ACTIVE flag bit is set if this quota
file slot is in use.

108 ACPCONTROL functions that transfer quota file data between the

caller and the ACP use the following device/function-dependent
arguments:

® P2 -- the address of a descriptor for a data buffer block that
transmits quota file data to the ACP. This block has exactly
the same format as a record in the quota file.

e P3 -- the address of a word that returns the data length.
e P4 —-- the address of a descriptor for a data block that
receives quota file data from the ACP. This block has exactly

the same format as a record in the quota file.

Table 9-6 describes the FIBSW CNTRLFUNC disk quota and lock/unlock
bits.

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-6
Disk Quota and Lock/Unlock Bits

Value Meaning

FIBSC_ENA QUOTA Enable the disk quota file. The quota file, if
present, is accessed by the ACP and quota
enforcement is turned on. To locate the quota
file, the directory specified by FIBSW DID is
searched for the name specified in the " string
given by the P2 argument. The result string
and its length are returned in P4 and P5. The
quota file must be enabled in order to execute
any of the quota file operations listed below.
FIBSC ENA QUOTA can return the following status
values in the IOSB:

SSS NOPRIV No access to quota file

SS$ T NOQFILE Quota file does not exist
SS$ BADQFILE Quota file has bad format
SS$_QFACTIVE Quota file is already active

(Any of the common error status values, e.g.,
SS$_BADPARAM and SS$_FCPREADERR, can also be
returned)

FIBSC_DSA QUOTA Disable the disk quota file. The quota file is
deaccessed and quota enforcement is turned off.
FIBSC DSA QUOTA can return the following status
values in the IOSB:

SS$_NOPRIV No access to quota file
SSS_NOQFILE Quota file does not exist
SS$ QFNOTACT Quota file is not active

(Ad§ of the common error status values, e.qg.,
SSS_BADPARAM and SSS_FCPREADERR can also be
returned)

FIBSC_ADD_ QUOTA Add an entry to the disk quota file, using the
UIC and quota specified in the P2 argument
block. FIBSC ADD QUOTA requires write access
to the quota file. The following status values
can be returned in the IOSB:

SS$ NOPRIV No access to the quota file

SS$ NOQFILE Quota file does not exist, or
- is not enabled

SS$ DUPDSKQUOTA Quota entry for UIC already
- exists

(Any of the common error status values, e.qg.,

5SS BADPARAM and SS$ FCPREADERR can also be

returned) -

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-6
Disk Quota and Lock/Unlock Bits

Value Meaning

FIBSC_EXA QUOTA Examine a disk quota file entry.
whose UIC is specified in the P2 argument block
is returned in the P4 argument block,
length 1is returned in the P3 argument word.
Using two flags in FIBSL CNTRLVAL,
possible to wild card through the quota file.
(The ACP maintains position
FIBSL WCC, and each examine call returns the
next matching entry.) The two flags are:

returned)

FIBSC_MOD_QUOTA Modify a disk quota file entry.
entry specified by the UIC in the P2 argument
block is modified according to

the block, as controlled by

FIB$L_CNTRLVAL:

change)

returned)

FIBSM_ALL_MEM Match all UIC members
FIBSM_ALL GRP Match all UIC groups

Read access is required to examine all
not belonging to the user. FIBSC_EXA QUOTA can
return the following status values in the IOSB:

The usage data can be changed
volume is locked by FIBSC LOCK VOL (see below).
FIBSC MOD QUOTA requires write
following status values can be returned in the

is not enabled
SS$ NODISKQUOTA Specified quota
- does not exist
SSS OVRDSKQUOTA Usage is greater than quota
SS$__ACCONFLICT Volume is not

(Any of the common error status
SS$ BADPARAM and SSS_FCPREADERR

entry

and its

it is

context in

entries

SS$ NOPRIV No access to quota file

SS$ NOQFILE Quota file does not exist, or
- is not enabled

SS$ NODISKQUOTA Specified quota entry
- does not exist

(Any of the common error status €.9.,

SS$_BADPARAM and SSS$_FCPREADERR also be

The quota file
values in
flags in

FIB$M_MOD_PERM Change the permanent quota
FIBSM_MOD_USE Change the usage data

if the

access. The

IOSB:
SS$_NOPRIV No access to quota file
SS$_NOQFILE Quota file does not exist, or

entry

(usage

e.g.,
also be

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-6 (Cont.)
Disk Quota and Lock/Unlock Bits

Value Meaning
FIBSC_REM_QUOTA Remove a disk quota file entry whose UIC Iis
specified in the P2 argument block.

FIBSC_REM_QUOTA requires write access to the
quota file. The following status values can be
returned in the IOSB:

SS$ NOPRIV No access to quota file

SS$ T NOQFILE Quota file does not exist, or
- is not enabled

SS$ NODISKQUOTA Specified quota file entry
- does not exist

SS$ OVRDSKQUOTA Usage is non-zero

(An? of the common error status values, e.g.,

SS$_BADPARAM and SS$_FCPREADERR can also be

returned)

FIBSC_LOCK_VOL Allocation lock the volume; operations which
change the file structure are not permitted.
This function must be executed prior to
rebuilding the quota file. To 1issue this
function, the user must either have a system
UIC or SYSPRV privilege, or be the owner of the
volume. FIBSC LOCK VOL can return the
following status values in the IOSB:

SS$_NOPRIV No access to volume

(Any of the common error status values, e.g.,
SS$ BADPARAM and SS$ FCPREADERR can also be
returned) -

FIBSC_UNLK VOL Unlock the volume. Cancels FIBSC LOCK VOL. To
- issue this function, the user must either have
a system UIC or SYSPRV privilege, or be the
owner of the volume. FIBSC UNLK VOL can return
the following status values in the IOSB:

SS$ NOPRIV No access to volume

(Any of the common error status values, e.g.,
SS$ BADPARAM and SS$ FCPREADERR can also be
returned) -

9.4 1I/0 STATUS BLOCK

Figure 9-10 shows the I/0 status block (IOSB) for ACP QIO functions.
Table 9-7 lists the status returns for these functions.

The file ACP returns a completion status in the first longword of the
I0SB. In an extend operation, the second longword is used to return
the number of blocks allocated to the file. If a contiguous extend
operation (FIBSM ALCON) fails, the second longword is used to return
the size of the file after truncation.

Values returned in the I0OSB are most useful during operations in
compatibility nmode. When executing programs in the native mode, the
user should use the values returned in FIB locations.

QIO INTERFACE TO FILE SYSTEM ACPS

+2 10SB

not used status

+4

Figure 9-10 IOSB Contents -~ ACP QIO Functions

If an extend operation (including CREATE) was performed, IO0SB+4
contains the number of blocks allocated, or the largest available
contiquous space if a contiguous extend operation failed. If a
truncate operation was performed, IOSB+4 contains the number of blocks
added to the file size to reach the next cluster boundary.

Table 9-7
ACP QIO Status Returns

Status Meaning

SS$_ACCONFLICT Access mode conflict. Requested access mode
conflicted with existing file accesses, for
example, an attempt to open a file for a write
when the file is write locked.

SS$ ACPVAFUL The magnetic tape ACP's virtual address space
- is full. Since each volume set has a virtual
page assigned to it, additional volume sets
cannot be handled. Corrective action consists
of starting a different ACP using the unique
switch in MOUNT.

SS$_BADATTRIB Invalid attribute code or size specified in
read or write attribute list.

SS$_BADCHKSUM Invalid checksum in the file header.

S5$ BADFILEHDR Invalid file header, for example, structure is

inconsistent or the storage map 1indicates
blocks are marked free.

SS$_BADFILENAME Invalid syntax in file name string. The
string contains 1illegal characters, or |is
larger than 9 characters.

SS$_BADFILEVER Invalid file version number, that is, a number
greater than 32767.

SS$_BADIRECTORY Invalid directory file. The file 1is not a
directory or the file contains invalid data.

SS$_BADPARAM Invalid parameter list. For example, the FIB
contains options not applicable to this
function.

PRV R K o —— T p—

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-7 (Cont.)
ACP QIO Status Returns

Status Meaning
SS$_BADQFILE Bad quota file. The quota file has an invalid
format.
SS$_BLOCKCNTERR Block count error. The number of blocks read

differs from the number of blocks recorded in
the trailer labels. There 1is a possibility
that a record was skipped or an extra noise
record was read.

SS$_CREATED File created by an ACCESS function with a
CREATE function modifier. (A success status
return.)

SS$_DEVICEFULL Device full. No free blocks are available on

the device or the number of contiguous blocks
specified 1in a contiguous request 1is not
available.

SS$ DIRFULL Directory if full. An error occurred while
- creating a disk file because the directory
specified is full and cannot catalog any more
entries. A directory is 1limited to 1024

blocks.

SS$_DUPDSKQUOTA Duplicate disk quota. Another quota entry for
UIC already exists,

SS$_DUPFILENAME Duplicate file name. Another directory entry
with the same name, type, and version already
exists.

SS$_ENDOFFILE End-of-file. End of allocated space

encountered in a virtual I/0 operation or an
attempted truncation.

SS$_FCPREADERR FCP read error. An I/0 error occurred when
file structure data, for example, a directory,
was read.

S§5$_FCPREWINDERR File process rewind error. An I/0 error
occurred when rewinding a volume.

SS$_FCPSPACERR File process space error. An I/0 error
occurred when spacing within a file or spacing
files.

SSSwFCPWRITERR FCP write error. An I/O error occurred when

file structure data, for example, a directory,
was written.

SS$ FILELOCKED File deaccess locked. Attempted to access a
- locked file. A file becomes locked when it is
accessed with FIBSM DLOCK set and then
deaccessed without writing attributes.

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-7 (Cont.)
ACP QIO Status Returns

Status Meaning

SS$_FILENUMCHK File identifier number check. The index file
contains invalid data.

SS$_FILESEQCHK File identifier sequence check. A directory
entry points to a file that has been deleted.

58%_FILESTRUCT Unsupported file structure. The file
structure on the accessed volume 1is not
compatible with the ACP. For example, an
attempt was made to use a structure level 2
ACP with a structure level 1 disk.

SSS_FILNOTEXP File not expired. A magnetic tape file that
has not expired cannot be written over unless
the override expiration qualifier was

specified to MOUNT.

SS$_HEADERFULL File header map area 1is full and header
extension 1is inhibited. This can occur on a
volume's index file in a CREATE operation.

SS$_IDXFILEFULL Volume index file is full. The maximum number
of files specified at initialization time has
been reached.

SS$_ILLCNTRFUNC Illegal control function. An illegal function
is specified for IO$_ACPCONTROL.

SS$_NODISKQUOTA No disk quota. The specified quota file entry
does not exist.

SS$_NOMOREFILES No more files exist which match the given wild
card in a file specification string. At least
one file was found, that 1is, one match was

made.
SS$_NOPRIV No privilege. Volume or file protection will
not allow the requested operation.
SS$S_NOQFILE No quota file. The quota file does not exist,
SS$_NOSUCHFILE No such file. No file with the given file

name or file identifier exists. Can be caused
by a directory entry that points to a file
that has been deleted.

SS$_NOTAPEOP No tape operator. There is no tape operator
and a need to communicate with one exists, for
example, the next volume in a volume set must
be mounted.

SS$_NOTLABELMT Magnetic tape not labeled. A request to read
a magnetic tape failed because the tape does
not have standard labels.

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-7 (Cont.)
ACP QIO Status Returns

Status Meaning
SS$_OVRDSKQUOTA Over disk quota. Disk usage exceeds dquota.
(A success status return.)
5S$_QFACTIVE Quota file is already active.
SS$_QFNOTACT Quota file not active.
SSS_SUPERSEDE An existing file of the same name, type, and

version has been deleted by a CREATE function.
(A success status return.)

SS$_TAPEPOSLOST Magnetic tape position lost.
SS$_TOOMANYVER Too many versions. The maximum number of file

versions already exists. All are higher
versions than the one being created.

SS$_WRTLCK The device is software write 1locked or the
hardware write 1lock switch on the drive is
set.

CHAPTER 10
LABORATORY PERIPHERAL ACCELERATOR DRIVER

This chapter describes the use of the VAX/VMS Laboratory Peripheral
Accelerator (LPAll-K) driver and the high-level language procedure
library that interfaces with the LPAl11-K driver. The procedure
library is implemented with callable assembly language routines that
translate arguments into the format required by the LPAl1-K driver and
handle buffer chaining operations. Routines for microcode loading and
device initialization are also described.

This chapter is written with the understanding that the reader has

access to a copy of the LPAll-K Laboratory Peripheral Accelerator
User's Guide,

10.1 SUPPORTED DEVICE

The LPAll-K is a peripheral device that controls analog-to-digital
(A/D) and digital-to-analog (D/A) converters, digital I/0 registers,
and real-time clocks., It is connected to the VAX-11 processor through
the UNIBUS Adapter (UBA).

The LPAll-K is a fast, flexible, and easy to use microprocessor
subsystem that is designed for applications requiring concurrent data
acquisition and data reduction at high rates. The LPAll-K allows
aggregate analog input and output rates up to 150,000 samples per
second. The maximum aggregate digital input and output rate is 15,000
samples per second.

Table 10-1 lists the useful minimum and maximum LPAl1-K configurations
supported by VAX/VMS.

10.1.1 LPAll1-K Modes of Operation

The LPAll-K operates in two distinct modes: dedicated and
multirequest.

In dedicated mode only one user, that is, one request, can be active
at a time, and only analog I/O data transfers are supported. Up to
two A/D converters can be controlled simultaneously. One D/A
converter can be controlled at a time. Sampling is initiated either
by an overflow of the real-time clock or by an externally supplied
signal. Dedicated mode provides sampling rates of up to 150,000
samples per second.

10-1

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-1
Minimum and Maximum Configurations per LPAl1l-K
Minimum Maximum

1 - DD11-Cx or Dx Backplane 2 - DD11-Cx or Dx Backplanes
1 - KW11l-K Real Time Clock 1 - KW11-K Real Time Clock
One of the following: 2 - AD11-K A/D Converters

AD11-K A/D Converter 2 - AM11-K Multiplexers

AAll1-K A/D Converter for AD11-K Converters

DR11-K Digital I/0

Register 1 - AAll-K D/A Converter

5 - DR11-K Digital I/0
Registers

In multirequest mode, sampling from all the devices 1listed in Table
10-1 is supported. The LPAll1-K operates 1like a multicontroller
device; up to eight requests (from one through eight users) can be
active simultaneously. The sampling rate for each user is a multiple
of the common real-time <clock rate. Independent rates can be
maintained for each user. Both the sampling rate and the device type
are specified as part of each data transfer request. Multirequest

mode provides a maximum aggregate sampling rate of 15,000 samples per
second.

10.1.2 Errors
The LPAll1-K returns three classes of errors:

1. Errors associated with the issuance of a new LPAll-K command
(SS$_DEVCMDERR) .

2. Errors associated with an active data transfer request
(SS$_DEVREQERR).

3. Fatal hardware errors which affect all LPAll1-K activity
(SS$_CTRLERR) .

Appendix A of the LPAl1-K Laboratory Peripheral Accelerator User's
Guide lists these three classes of errors and the specific error codes
for each class. The LPAll1-K aborts all active requests if any of the
following conditions occur:

e Power failure

e Device timeout

e Fatal error
Power failure is reported to any active users when power is recovered.
Device timeouts are monitored only when a new command is issued. For
data transfers, the time between buffer full interrupts 1is not

defined. Thus, no timeout errors are reported on a buffer to buffer
basis.

10-2

LABORATORY PERIPHERAL ACCELERATOR DRIVER

If a required resource is not available to a process, an error message
is returned immediately. The driver does not place the process in the
resource wait mode.

10.2 SUPPORTING SOFTWARE

The LPAll-K is supported by a device driver, a high-level language
procedure 1library of support routines, and routines for microcode
loading and device initialization. All data transfer algorithms for
the 1laboratory data acquisition I/0 devices are accomplished by the
LPAll-K. The only purpose for the system software and support
routines 1is to provide a control path for synchronizing the use of
buffers, specifying requests, and starting and stopping requests.

The LPAll-K driver and the associated I/0 interface have the following
features:

o They permit multiple LPAl1l-K subsystems on a single UBA.

e They operate as an integral part of the VAX/VMS operating
system.

e They can be loaded on an operating VAX/VMS system without
relinking the executive.

e They handle 1I/0 requests, function dispatching, UBA map
allocation, interrupts, and error-reporting for multiple
LPAl11-K subsystems.

e The LPAll-K functions as a multibuffered device. Up to eight
buffer areas can be defined per request. Up to eight requests
can be handled simultaneously. Buffer areas can be reused
after the data they contain is processed.

e Since the LPAll-K chains buffer areas automatically, a start
data transfer request can transfer an infinite and continuous
amount of data.

e Multiple ASTs are dynamically queued by the driver to indicate
when a buffer has been filled (the data is available for
processing) or emptied (the buffer is available for new data).

The high-level language support routines have the following features:

e They translate arguments provided in the high-level 1language
calls into the format required for the Queue I/O interface.

e They provide a buffer chaining capability for a multibuffering
environment by maintaining queues of wused, in wuse, and
available buffers.

e They adhere to all VAX/VMS conventions for calling sequences,
use of shareable resources, and reentrancy.

e They can be part of a resident global library, or be 1linked
into a process image as needed.

10-3

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The routines for microcode loading and device initialization have the
following features:

e They execute, as separate processes, images which 1issue 1I/0
requests. These I/0 requests 1initiate microcode image
loading, start the LPAl1l1-K subsystem, and automatically

configure the peripheral devices on the LPAl1-K internal I/O
bus.

e They can be executed by user or operator request.
e They can be executed at the request of other processes,

e They <can be executed automatically when the system is
initialized and on power recovery.

Figure 10-1 shows the relationship of the supporting software to the
LPAll1-K.

JLCODE LOADING
AND DEVICE
INITIALIZATION
ROUTINES

o em e oo ————

AX/VMS OPERATING SYSTEM

QIO REQUESTS
1 Qio LPA11-K 1
i INTERFACE - DRIVER i - LPA11-K
HIGH LEVEL
ASSEMBLY BUFFER
LANGUAGE CHAINING
SUPPORT ROUTINES
ROUTINES
|
HIGH LEVEL ! DATA DATA
APPLICATION | BUFFER
PROGRAM AREAS
J |

Figure 10-1 Relationship of Supporting Software to LPAll1-X

10.3 DEVICE INFORMATION

Users can obtain information on all peripheral data acquisition
devices on the LPAl1l1-K internal I/0 bus by using the $GETCHN and
SGETDEV system services (see Section 1.10). The LPAll-K-specific
information is returned in the first three 1longwords of a
user-specified buffer, as shown in Figure 10-2 (Figure 1-9 shows the
entire buffer).

10-4

LABORATORY PERIPHERAL ACCELERATOR DRIVER

31 16 15 87 0

device characteristics

0 type class

device-dependent characteristics

Figure 10-2 LPAll-K Information

The first longword contains device-independent information, The
second and third longwords contain device-dependent data.

Table 10-2 lists the device-independent characteristics returned in
the first longword.

Table 10-2
Device-independent Characteristics

Dynamic Bits! Meaning
(Conditionally Set)

DEVSM_AVL Device is online
and available

Static Bitsl
(Always Set)

DEVSM_IDV Input device
DEVSM_ODV Output device
DEVSM_RTM Real-time device
DEVSM_SHR Device is shareable

1. Defined by the S$DEVDEF macro.

The second longword contains information on the device class and type.
The device «class for the LPAl1l1-K is DC$ REALTIME and the device type
is DT$ LPAll. The SLADEF macro defines these values. Buffer size |is
not applicable to the LPAll-K; this word is 0.

The third 1longword contains LPAll-K. characteristics, that is,
device-dependent data. LPAl11-K characteristics are set by the set
clock, initialize, and load microcode I/0 functions to any one of, or
a combination of, the values listed in Table 10-3.

10-5

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-3

Device-Dependent Characteristics

Field !l

acquisition devices on the LPAll-
are one or more of the following:

LA$V_CLOCKA = Clock A
LA$SM_CLOCKA
LASV CLOCKB = Clock B

LASM_CLOCKB

LASV_ADl = A/D device 1

LASM_AD1

LASV_AD2 = A/D device 2

LASM_AD2

LASV_DA = D/A device 1

LASM_DA

LA$V_DI01 = Digital I/0 Buffer 1
LASM DIO1

LASV_DIO2 = Digital I/0 Buffer 2
LASM_DIO2

LASV_DIO3 = Digital I/O Buffer 3
LASM_DIO3

LASV_DIO4 = Digital I/O Buffer 4
LASM_DIO4

LASV _DIO5 = Digital I/0 Buffer 5
LA$M_DIOS

Meaning
LASM_MCVALID | The load microcode 1I/0 function (IOS$_LOADMCODE)
LASS MCVALID | was performed successfully. LASM_MCVALID is set
LASV_MCVALID | by IO$_LOADMCODE. Each microword 1is verified by
reading it back and comparing it with the specified
value. LASM MCVALID is cleared if there 1is no
match.
LASV_MCTYPE The microcode type, set by the load microcode I/O
LASS MCTYPE function (IO$_LOADMCODE), is one of the following
values:
LASK _MRMCODE = microcode type is in multirequest
mode
LASK_ADMCODE = microcode type is in dedicated A/D
mode
LASK _DAMCODE = microcode type is in dedicated D/A
mode
LASV_CONFIG The bit positions, set by the initialize 1I/0
LASS_CONFIG function (IO$_INITIALIZE), for the peripheral data

K internal I/0 bus

1. Values defined by the SLADEF macro.

(continued on next page)

10-6

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-3 (Cont.)
Device-Dependent Characteristics

Fieldl Meaning
LASV_RATE The Clock A rate, set by the set clock function
LA$S_RATE (IOS_SETCLOCK), is one of the following values:
0 = Stopped
1 =1 MHz
2 = 100 kHz
3 = 10 kHz
4 = 1 kHz
5 = 100 Hz
6 = Schmidt trigger
7 = Line frequency
LASV PRESET The Clock A preset value set by the set clock
LAS$SS PRESET function (I0OS SETCLOCK). (The value is in the range
- 0 through 65,535 - in 2's complement form.) The
clock rate divided by the clock preset value vyields
the clock overflow rate.

1. Values defined by the S$LADEF macro.

10.4 LPAll-K I/O FUNCTION CODES
The LPAll-K I/O functions are:
1. Load microcode into the LPAll-K.
2., Start the LPAll-K microprocessor.
3. Initialize the LPAll-K subsystem,
4., Set the LPAll-K real-time clock rate.
5. Start a data transfer request.

The Cancel I/0 on Channel (SCANCEL) system service is
data transfers.

10.4.1 Load Microcode

This I/0 function resets the LPAl11-K and loads an i
microcode. Physical 1I/0 privilege 1is required.
single function code:

I0$_LOADMCODE - load microcode

10-7

used to abort

mage of LPAll-K
VAX/VMS defines a

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The load microcode function takes three device/function dependent
arguments:

e Pl = the starting virtual address of the microcode image that
is to be loaded into the LPAll-K

e P2 = the number of bytes (usually 2048) that are to be loaded

e P3 = the starting microprogram address (usually 0) in the
LPAll1-K that is to receive the microcode

If any data transfer requests are active at the time a load microcode
request is issued, the load request is rejected and SSS_DEVACTIVE is
returned in the I/0 status block.

Each microword is verified by comparing it with the specified value in
memory. If all words match, that is, if the microcode was loaded
successfully, the driver sets the microcode valid bit (LASV_MCVALID)
in the device-dependent characteristics longword (see Table 10-3). 1If
there is no match, SS$ DATACHECK is returned in the I/0 status block
and LASV_MCVALID is “cleared to indicate that the microcode was not
properly loaded. If the microcode was loaded successfully, the driver
stores one of the microcode type values (LASK MRCODE, LAS$SK ADCODE, or
LASK_DAMCODE) in the characteristics longword.™ a

After a load microcode function is completed, the second word of the
I/0 status block contains the number of bytes loaded.

In addition to SS$ DATACHECK, I0OS$S LOADMCODE can return SS$_DEVACTIVE
in the I/0 status block. -

10.4.2 Start Microprocessor

This I/0 function resets the LPAl11-K and starts (or restarts) the
LPAll1-K microprocessor. Physical I1/0 privilege is required. VAX/VMS
defines a single function code:

IOS_STARTMPROC - start microprocessor
This function code takes no device/function-dependent arguments.
The start microprocessor function can return five error codes 1in the

1/0 status block: SS$_DEVACTIVE, SS$_MCNOTVALID, SS$ CTRLERR,
SS$_POWERFAIL, and SS$_TIMEOUT (see Section 10.6).

10.4.3 - Initialize LPAll-K

This I/0 function 1issues a subsystem initialize command to the
LPAll1-K. This command specifies LPAll1-K laboratory 1I/0 device
addresses and other table information for the subsystem. It is issued
only once after restarting the subsystem and before any other LPAll-K
command is given. Physical 1I/0 privilege 1is required. VAX/VMS
defines a single function code:

IO$~INITIALIZE - initialize LPAll-K

10-8

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The initialize LPAll-K function takes two device/function-dependent
arguments:

e Pl = the starting, word-aligned, virtual address of the
Initialize Command Table in the user process. This table is
read once by the LPAll-K during the execution of the
initialize command. See the LPAll1-K Laboratory Peripheral
Accelerator User's Guide for additional information,

e P2 = length of the initialize command buffer (always 278
bytes)

If the initialize function is completed successfully, the appropriate
device configuration values are set in the device-dependent
characteristics longword (see Table 10-3).

The initialize function can return ten error codes in the I/0 status
block: SS$_IVMODE, SS$_INCLENGTH, SS$_BUFNOTALIGN, SS$_CTRLERR,
SS$ DEVCMDERR, SS$ CANCEL, SS$ INSFMAPREG, SS$ MCNOTVALID,
SS$_POWERFAIL, and SS$_TIMEOUT (see Section 10.6). B

If a device specified in the Initialize Command Table is not in the
LPAll1-K configuration, an error condition (SS$ DEVCMDERR) occurs and
the address of the first device not found is returned in the LPAll-K
maintenance status register (see Section 10.6). A program can use
this characteristic to poll the LPAll-K and determine the current
device configuration.

10.4.4 Set Clock

This virtual function issues a clock control command to the LPAll-K,
The clock control command specifies information necessary to start,
stop, or change the sample rate at which the real-time clock runs on
the LPAll1-K subsystem.

If the LPAll-K has more than one user, caution should be exercised
when the clock rate is changed. 1In multirequest mode, a change in the
clock rate will affect all users.
VAX/VMS defines a single function code:

I0$_SETCLOCK - set clock

The set clock function takes three device/function-dependent
arguments:

e P2 = mode of operation. VAX/VMS defines the following clock
start mode word (hexadecimal) values:

1 = KW1l1l-K Clock A

11 = KW1ll-K Clock B

e P3 = clock control and status, VAX/VMS defines the following

clock status word (hexadecimal) values:
0 = stop clock

143 = 1 MHz clock rate

145 = 100 kHz clock rate

147 = 10 kHz clock rate

149 = 1 kHz clock rate

14B = 100 Hz clock rate

14D = clock rate is Schmidt trigger 1

14F = clock rate is line frequency

10-9

LABORATORY PERIPHERAL ACCELERATOR DRIVER

e P4 = the 2's complement of the real-time clock preset value.
The range is 16 bits for the KW11l-K Clock A and 8 bits for the
KW1l1-K Clock B.

The LPAll-K Laboratory Peripheral Accelerator User's Guide describes
the clock start mode word and the clock status word in greater detail.

If the set clock function is completed successfully for Clock A, the
clock rate and preset values are stored 1in the device-dependent
characteristics longword (see Table 10-3).

The set clock function can return six error codes in the I/0 status
block: SS$_CTRLERR, SS$_DEVCMDERR, SS$_CANCEL, SSS_MCNOTVALID,
SS$_POWERFAIL, and SS$ TIMEOUT (see Section 10.6).

10.4.5 Start Data Transfer Request

This virtual I/0 function issues a Data Transfer Start command that
specifies the buffer addresses, sample mode, and sample parameters
used by the LPAll-K. This information is passed to the Data Transfer
Command Table. VAX/VMS defines a single function code:

I0$_STARTDATA - start data transfer request
The start data transfer request function takes one function modifier:
IOSM_SETEVF - set event flag

The start data transfer request function takes four
device/function-dependent arguments:

e Pl = the starting virtual address of the Data Transfer Command
Table in the user's process

e P2 = the length in bytes (always 40) of the Data Transfer
Command Table

e P3 = the AST address of the normal buffer completion AST
routine (optional)

e P4 = the AST address of the buffer overrun completion AST
routine (optional). Only wused when the buffer overrun bit
(LASM BFROVRN) is set, that is, a buffer overrun condition is
classified as a non-fatal error.

A buffer overrun condition is not the same as a data overrun
condition. The LPAl1-K fetches data from, or stores data in, memory.
If data cannot be fetched quickly enough, for example, when there |is
too much UNIBUS activity, a data underrun condition occurs. If data
cannot be stored quickly enough, a data overrun condition occurs.
After each buffer has been filled or emptied, the LPAll1-K obtains the
index number of the next buffer to process from the User Status Word
(USW) . (See Section 2.5 of the LPAll-K Laboratory Peripheral
Accelerator User's Guide). A buffer overrun condition occurs 1f the
LPAll-K fills or empties buffers faster than the application program
can supply new buffers. For example, buffer overrun can occur when
the sampling rate is too high, the buffers are too small, or the
system load is too heavy.

The LPAll-K driver accesses the 10-longword Data Transfer Command
Table, shown in Figure 10-3, when the Data Transfer Start command is
processed. After the command is accepted and data transfers have
begun, the driver makes no further access to the table.

10-10

LABORATORY PERIPHERAL ACCELERATOR DRIVER

31 24 23 16 15 87 0
highest available
buffer and buffer mode
overrun bit

user status word address

overall data buffer length

overall data buffer address

random channel list length

random channel list address

start
channel
i channel delay
increment
number
dwetl number of channels
event digital
digital trigger mask mark trigger
channel channel
event mark mask

Figure 10-3 Data Transfer Command Table

In the first longword of the Data Transfer Command Table, the first
two bytes <contain the LPAll-K start data transfer request mode word.
(Section 3.4.1 of the LPAl1-K Laboratory Peripheral Accelerator User's
Guide describes the functions of this word.)

The third byte contains the number (0-7) of the highest buffer
available and the buffer overrun flag bit (bit 23; values:
LASM BFROVRN and LA$V_BFROVRN). If this bit is set, a buffer overrun
condition is a nonfatal error.

The second longword contains the User Status Word address (see Section
3.4.3 of the LPAll-K Laboratory Peripheral Accelerator User's Guide).
This virtual address points to a 2-byte area in the user process
space, and must be word-aligned.

The third longword contains the size (in bytes) of the overall buffer
area. The wvirtual address in the fourth longword is the beginning
address of this area. This address must be longword-aligned. The
overall buffer area contains a specified number of buffers (the number
of the highest available buffer specified in the first longword plus
onhe) . Individual buffers are subject to length restrictions: in
multirequest mode the length must be in multiples of two bytes; in
dedicated mode the 1length must be in multiples of four bytes. All
data buffers are virtually contiquous for each data transfer request.

10-11

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The fifth and sixth longwords contain the Random Channel List (RCL)
length and address, respectively. The RCL address must be
word-aligned. The last word in the RCL must have bit 15 set. (See
Section 3.4.6 of the LPAll-K Laboratory Peripheral Accelerator User's
Guide for additional information on the RCL.)

The seventh through tenth longwords contain LPAll-K-specific sample
parameters. The driver passes these parameters directly to the
LPAl1-K. (See Sections 3.4.7 through 3.4.12 of the LPAll-K Laboratory
Peripheral Accelerator User's Guide for a detailed description of
their functions.) T

The start data transfer request function can return 15 error codes in
the 1I/0 status block: SS$ INCLENGTH, SS$_BUFNOTALIGN, SS$_DEVCMDERR,
SS$_CTRLERR, SS$_DEVREQERR, SS$_ABORT, = SS$_CANCEL, SS$_EXQUOTA,
SS$__INSFBUFDP, SS$_INSFMAPREG, SS$_INSFMEM, SS$_MCNOTVALID,

SS$”PARITY, SS$ POWERFAIL, and SS$ _TIMEOUT (see Section 107,6).

Data buffers are chained and reused as the LPAll1-K and the user
process dispose of the data. As each buffer is filled or emptied, the
LPAl11-K driver notifies the application process by either setting the
event flag specified by the QIO request efn argument or queueing an
AST. Since buffer use is a continuing process, the event flag is set
or the AST is queued a number of times. The user process must clear
the event flag (or receive the AST), process the data, and specify the
next buffer for the LPAll-K to use.

If the set event flag function modifier (IOSM SETEVF) 1is specified,
the event flag is set repeatedly: when the data transfer request is
started, on each buffer completion, and when the request completes.
If 1IOSM SETEVF is not specified, the event flag is set only when the
request completes.

ASTs are preferred over event flags for synchronizing a program with
the LPAll-K because AST delivery is a queued process while setting of
event flags is not. 1If only event flags are used, it is possible to
lose buffer status.

Three AST addresses can be specified. For normal data Dbuffer
transactions the AST address specified in the P3 argument is used. 1If
the buffer overrun bit in the Data Transfer Command Table is set and
an overrun condition occurs, the AST address specified in the P4
argument is used. The AST address specified in the astadr argument of
the QIO request 1is used when the entire data transfer request is
completed. The astprm argument specified in the QIO request is passed
to all three AST routines.

If insufficient dynamic memory is available to allocate an AST block,
an error (SSS INSFMEM) is returned. If the user does not have
sufficient AST Quota remaining to allocate an AST block, an error
(5S$_EXQUOTA) is returned. In either case, the request is stopped.
Normally, there are never more than three outstanding ASTs per LPAll-K
request,

10.4.6 LPAll-K Data Transfer Stop Command

The Cancel I/0 on Channel (SCANCEL) system service is wused to abort
data transfers for a particular process. When the LPAl1-K driver
receives a $CANCEL request, a Data Transfer Stop command is issued to
the LPAll-K.

10-12

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The normal way to stop a data transfer is to set bit 14 of the
Status Word.

User
If this bit is set, the transfer stops at the end of the

next buffer transaction (see Section 2.5 of the LPAll1-K Laboratory
Peripheral Accelerator User's Guide).

10.5 HIGH LEVEL LANGUAGE INTERFACE

VAX/VMS supports several program-callable procedures that provide

access to the LPAll-K. The formats of these calls are documented here

for VAX-11 FORTRAN users. VAX-11 MACRO users must set up a standard
VAX/VMS argument block and 1issue the standard procedure CALL.
(Optionally, VAX-11 MACRO users can access the LPAll-K directly

through the wuse of the device-specific Queue I/0 functions described
in Section 10.4.) Users of other high-level languages must specify the

proper subroutine or procedure invocation.

10.5.1

VAX/VMS provides 20 high-level language procedures for the
procedures are divided into four classes.

These

High-level Language Support Routines

VAX-11 procedures for the LPAll-K.

Table 10-4
VAX-11 Procedures for the LPAll-K
Class Subroutine Function
Sweep Control| LPASADSWP Start A/D converter sweep
LPASDASWP Start D/A converter sweep
LPASDISWP Start digital input sweep
LPASDOSWP Start digital output sweep
LPASLAMSKS Specify LPAl11-K controller and
digital mask words
LPASSETADC Specify channel select parameters
LPASSETIBF Specify buffer parameters
LPASSTPSWP Stop sweep
Clock control| LPASCLOCKA Set Clock A rate
LPASCLOCKB Set Clock B rate
LPASXRATE Compute clock rate and preset value
Data Buffer LPASIBFSTS Return buffer status
Control LPASIGTBUF Return next available buffer
LPASINXTBF Alter buffer order
LPASIWTBUF Return next buffer or wait
LPASRLSBUF Release buffer to LPAll-K
LPASRMVBUF Remove buffer from device queue
Miscellaneous| LPASCVADF Convert A/D input to floating point
LPASFLT16 Convert unsigned integer to floating
point
LPASLOADMC Load microcode and initialize
LPAl1l1-K

10-13

LPAl1-K.
Table 10-4 lists the

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.1.1 Buffer Queue Control - This section is provided for
informational purposes only. Normally, the user does not need to be
concerned with the details of buffer queues.

Buffer queue control for data transfers by LPAll1-K subroutines
involves the use of three queues:

e Device queue (DVQ)
e User queue (USQ)
e In-use queue (IUQ)

Each data transfer request can specify from one through eight data
buffer areas. The wuser specifies these buffers by address. During
execution of the request, the LPAll-K assigns an index from 0 through
7 when a buffer is referenced.

The DVQ contains the indices of all the buffers that the user has
released, that 1is, made available to be filled or emptied by the
LPAll-K. For output functions (D/A and digital output), these buffers
contain data to be output by the LPAll1-K. For input functions (A/D
and digital input), these buffers are empty and waiting to be filled
by the LPAll-K.

The USQ contains the indices of all buffers that are waiting to be
returned to the user. The LPASIWTBUF and LPASIGTBUF calls are used to
return the index of the next buffer in the USQ. For output functions
(D/A and digital output), these buffers are empty and waiting to be
filled by the application program. For input functions (A/D and
digital 1input), these buffers contain data to be processed by the
application program.

The IUQ contains the indices of all buffers that are currently being
processed by the LPAll-K, Normally, the IUQ contains the indices of
two buffers:

e The buffer currently being filled or emptied by the LPAll-K

e The next buffer to be filled or emptied by the LPAll-K. This
is the buffer specified by the next buffer index field in the
User Status Word.

Because the LPAll-K driver requires that at least one buffer be ready
when the input or output sweep 1is started, the user must call
LPASRLSBUF before the sweep is initiated.

Figure 10-4 shows the flow between the buffer queues.

10.5.1.2 Subroutine Argument Usage - Table 10-5 describes the general
use of the subroutine arguments. The subroutine descriptions in the
following sections contain additional information on argument usage.
The IBUF, BUF, and ICHN (Random Channel List address) arguments must
be aligned on specific boundaries. (The VAX-11 FORTRAN User's Guide
describes the alignment of FORTRAN arguments.)

10-14

LABORATORY PERIPHERAL ACCELERATOR DRIVER

BUFFER O

BUFFER OVERRUN

AST HANDLER

LPASIWTBUF
LPASIGTBUF

NORMAL BUFFER NORMAL BUFFER (TO APPLICATION

AST

HANDLER AST HANDLER PROGRAM)

A

HEAD

DEVICE
QUEUE

TAIL

HEAD HEAD

IN-USE USER
QUEUE QUEUE

TAIL TAIL

A

LPA$RLSBUF

(FROM APPLICATION

PROGRAM)

Figure 10-4 Buffer Queue Control

Table 10-5
Subroutine Argument Usage

Argument

Meaning

IBUF

LBUF

A 50-longword array initialized by the LPASSETIBF
subroutine. IBUF is the impure area used by the
buffer management subroutines. A unique IBUF array
is required for each simultaneously active request.
IBUF must be longword-aligned.

The first quadword in the IBUF array is an I/O status
block (I0SB) for high-level language subroutines.
The LPASIGTBUF and LPASIWTBUF subroutines fill this
quadword with the current and completion status (see
Section 10.6). '

Specifies the size of each data buffer in words (must
be even for dedicated mode sweeps). All buffers are
the same size. The minimum value for LBUF is 1 for
multirequest mode data transfers and 258 for
dedicated mode data transfers. The aggregate size of
the assigned buffers must be less than 32,768 words.
Thus, the maximum size of each buffer (in words) is
limited to 32,768 divided by the number of buffers.
The LBUF argument length is one word.

(continued on next page)

10-15

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-5 (Cont.)
Subroutine Argument Usage

Argument Meaning

NBUF Specifies the number of times the buffers are to be
filled during the 1life of the request. If 0
(default) is specified, sampling 1is indefinite and
must be stopped with the LPAS$SSTPSWP subroutine. The
NBUF argument length is one longword.

MODE Specifies sampling options. MODE bit wvalues are
listed in the appropriate subroutine descriptions.
The default is 0. MODE values can be added to
specify several options. No options are mutually
exclusive although not all bits may be applicable at
the same time. The MODE argument length is one word.

IRATE Specifies the clock rate:

0 = Clock B overflow or no rate

1l =1 MHz

2 = 100 kHz

3 = 10 kHz

4 = 1 kHz

5 = 100 Hz

6 = Schmidt trigger

7 = Line frequency

The IRATE argument length is one longword.

IPRSET Specifies the hardware clock preset value. This
value 1is the 2's complement of the desired number of
clock ticks between clock interrupts. (The maximum
value is the 2's complement of 65,536.) IPRSET can be
computed by the LPASXRATE- subroutine. The IPRSET
argument length is one word.

DWELL Specifies the number of hardware <clock overflows

between sample sequences in multirequest mode. For
example, if DWELL is 20 and NCHN is 3, then after 20
clock overflows one channel is sampled on each of the
next three successive overflows; no sampling occurs
for the next 20 clock overflows. This allows
different users to use different sample rates with
the same hardware clock overflow rate. In dedicated
mode, the hardware <clock overflow rate controls
sampling and DWELL is not accessed. Default for
DWELL is 1. The DWELL argument length is one word.

‘(continued on next page)

10-16

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-5 (Cont.)
Subroutine Argument Usage

Argument

Meaning

IEFN

LDELAY

ICHN

Specifies the event flag number or completion routine
address. The selected event flag is set at the end
of each buffer transaction. If IEFN is 0 (default),
event flag 22 is used.

IEFN can also specify the address of a completion
routine. This routine 1is called by the buffer
management routine when a buffer 1is available and
when the request is terminated, either successfully
or with an error. The standard VAX/VMS calling and
return sequences are used. The completion routine is
called from an AST routine and is therefore at AST
level.

If IEFN specifies the address of a completion
routine, the program must call LPASIGTBUF to obtain
the next buffer. If IEFN specifies an event flag,
the program must call LPASIWTBUF to obtain the next
buffer and must use the %$VAL operator:

,SVAL(3), (Event flag 3)
,BFRFULL, (Address of completion
routine)

The IEFN argument length is one longword.

If multiple sweeps are initiated, they must use
different event flags (the software does not enforce
this policy).

Event flag 23 is reserved for use by the LPASCLOCKA
and LPASCLOCKB subroutines. If either of these
subroutines is included in the wuser program, event
flag 23 cannot be used. Also, if IEFN is defaulted,
event flag 22 cannot be used in the user program.

Specifies the delay, in IRATE units, from the start
event wuntil the first sample is taken. The maximum
value is 65,536; default is 1. The LDELAY argument
length 1is one word. The LPAll-K supports the LDELAY
argument in multirequest mode only.

Specifies the number of the first I/0 channel to be
sampled. Default 1is channel 0. The ICHN argument
length is one byte. The channel number 1is not the
same as the channel assigned to the device by the
SASSIGN system service (see Section 1,8.1). The
LPAl1l1-K uses the <channel number to specify the
nultiplexer address of an A/D, D/A, or digital 1I/0
device on the LPAll-K internal I/O0 bus.

(continued on next page)

10-17

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-5 (Cont.)
Subroutine Argument Usage

Arqument

Meaning

NCHN

IND

Specifies the number of I/0 device channels to sample
in a sample sequence. Default is 1. If the NCHN
argument is 1, the single channel bit is set in the
mode word of the start Request Descriptor Array (RDA)
when the sweep is started. The RDA contains the
information needed by the LPAll1-K for each command
(see the LPAl11-K Laboratory Peripheral Accelerator
User's Guide). The NCHN argument length is one word.

Receives the VAX/VMS success or failure code of the
call, The IND argument length is one longword.

10.5.2 LPASADSWP - Initiate Synchronous A/D Sampling Sweep

The LPASADSWP subroutine initiates A/D sampling through an AD11-K.

The format of the LPASADSWP call is as follows:

CALL LPASADSWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN], (LDELAY],

Arguments are as described in Section 10.5.1.2, with the following

additions:

MODE

[ICHN]}, [NCHN], [IND])

Specifies sampling options. VAX/VMS defines the

following sampling option values:

Value Meaning

32 Parallel A/D conversion sample algorithm is
used if dual A/D converters are specified
(value = 8192). Absence of this bit
implies the serial A/D conversion sample
algorithm.

64 Multirequest mode request. Absence of this

bit implies a dedicated mode request.

512 External trigger (Schmidt trigger 1).
Dedicated mode only. (The LPAl11-K
Laboratory Peripheral Accelerator User's

Guide describes the wuse of an external

trigger.)

1024 Time stamped sampling with Clock B. The
double word consists of one data word
followed by the wvalue of the LPAll-K's
internal 16-bit counter at the time of the
sample (see Section 2.4.3 in the LPAll-K
Laboratory Peripheral Accelerator User's

Guide). Multirequest mode only.

2048 Event marking. Multirequest mode only.
(The LPA11-K Laboratory Peripheral

Accelerator User's Guide describes event

marking.)

10-18

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Value Meaning

4096 Start method. 1If selected, digital input
start. If not selected, immediate start.
Multirequest mode only.

8192 Dual A/D converters are to be used.
Dedicated mode only.

16384 Buffer overrun is a nonfatal error. The
LPAl11-K will automatically default to fill
buffer 0 if a buffer overrun condition
occurs.

If MODE is defaulted, A/D sampling starts immediately

with absolute channel addressing 1in dedicated mode.

The LPAl1-K does not support delays in dedicated mode.
IND Returns the succeés or failure status:

0 = Error in call. Possible causes are: LPASSETIBF

was not previously called; LPASRLSBUF was not

previously called; size of data buffers disagrees with

the ‘size computed by the LPASSETIBF call.

1 = successful sweep started

nnn = VAX/VMS status code

10.5.3 LPASDASWP - Initiate Synchronous D/A Sweep
The LPASDASWP subroutine initiates D/A output to an AAll-K.
The format for the LPASDASWP call is as follows:

CALL LPASDASWP (IBUF,LBUF, [NBUF], [MODE], [DWELL], [IEFN],[LDELAY],
[ICHN], [NCHN], [IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

MODE Specifies the sampling options. VAX/VMS defines the
following start criteria values:
Value Meaning
0 Immediate start, This is the default value
for MODE.
64 Multirequest mode. 1If not selected, this

request is for dedicated mode.

4096 Start method. If selected, digital input
start. If not selected, immediate start.
Multirequest mode only.

16384 Buffer overrun is a nonfatal error. The
LPAl11-K will automatically default to empty
buffer 0 if a buffer overrun condition
occurs.

10-19

LABORATORY PERIPHERAL ACCELERATOR DRIVER

IND Returns the success or failure status:

0 = Error in call. Possible causes are: LPASSETIBF

was not

previously called; LPASRLSBUF was not

previously called; size of data buffers disagrees with
the size computed by the LPASSETIBF call.

1 = successful sweep started

nnn = VAX/VMS status code

10.5.4 LPASDISWP - Initiate Synchronous Digital Input Sweep

The LPASDISWP subroutine initiates digital input through a DR11-K.
LPASDISWP is applicable in multirequest mode only.

The format of the LPASDISWP call is as follows:

CALL LPASDISWP (IBUF,LBUF, [NBUF],[MODE}, [DWELL],[IEFN], [LDELAY],
[ICHN], [NCHN], [IND])

Arguments are as described in Section 10.5.1.2, with the following

additions:

MODE Specifies

sampling options. VAX/VMS defines the

following sampling option values:

Value

0

512

1024

2048

4096

16384

Meaning

Immediate start. This is the default value
for MODE.

External trigger for DR11-K. (The LPAll-K
Laboratory Peripheral Accelerator User's
Guide describes the wuse of an external
trigger.)

Time stamped sampling with Clock B. The
double word consists of one data word
followed by the wvalue of the internal
LPAl11-K, 16-bit, counter at the time of the
sample (see Section 2.4.3 in the LPAll-K
Laboratory Peripheral Accelerator User's
Guide) .)

Event marking. (The LPAll-K Laboratory
Peripheral Accelerator User's Guide
describes event marking.)

Start method. If selected, digital input
start., If not selected, immediate start.

Buffer overrun is a non-fatal error. The
LPAl1l1-K will automatically default to fill
buffer 0 if a buffer overrun condition
occurs.

10-20

LABORATORY PERIPHERAL ACCELERATOR DRIVER

IND Returns the success or failure status:
0 = Error in call. Possible causes are: LPASSETIBF
was not previously called; LPASRLSBUF was not
previously called; size of data buffers disagrees with
the size computed by the LPASSETIBF call.
1 = successful sweep started

nnn = VAX/VMS status code

10.5.5 LPASDOSWP - Initiate Synchronous Digital Output Sweep

The LPA$SDOSWP subroutine initiates digital output through a DR11-K.
LPASDOSWP is applicable in multirequest mode only.

The format of the LPASDOSWP call is as follows:

CALL LPASDOSWP (IBUF,LBUF, [NBUF],[MODE], [DWELL],[IEFN], [LDELAY],
[ICHN], [NCHN], [IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

MODE Specifies the sampling options. VAX/VMS defines the
following values:

Value Meaning

0 Immediate start. This is the default value
for MODE.

512 External trigger for DR11-K (The LPAll-K
Laboratory Peripheral Accelerator User's
Guide describes the use of an external
trigger.)

4096 Start method. If selected, digital input
start. If not selected, immediate start.

16384 Buffer overrun is a non-fatal error,. The
LPAl11-K will automatically default to empty
buffer 0 if a buffer overrun condition
occurs.
IND Returns the success or failure status:

0 = Error in call. Possible causes are: LPASSETIBF

was not previously called; LPASRLSBUF was not

previously called; size of data buffers disagrees with

the size computed by the LPASSETIBF call.

1 = successful sweep started

nnn = VAX/VMS status code

10-21

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.6 LPASLAMSKS - Set LPAl1-K Masks and NUM Buffer

The LPASLAMSKS subroutine initializes a user buffer which contains a
number to append to the logical name LPAll$, a digital start word
mask, an event mark mask, and channel numbers for the two masks.

LPASLAMSKS must be called:

® By users who intend to use digital input starting or event
marking

e By users who do not want to use the default of LAA0 assigned
to LPA11$0

e If multiple LPAll-Ks are used
The format of the LPASLAMSKS call is as follows:

CALL LPA$LAMSKS (LAMSKB, [NUM], [IUNIT],[IDSC],[IEMC],[IDSW],
[IEMW], [IND])

Argument descriptions are as follows:
LAMSKB Specifies a 4-word array.

NUM Specifies the number appended to LPAll$. The sweep
is started on the LPAl11-K assigned to LPAllS$num.

IUNIT Not used. This argument is present for
compatibility only.

IDSC Specifies the digital START word channel. Range is
0 through 4. The IDSC argument length is one byte.

IEMC Specifies the event MARK word channel. Range is 0
through 4. The IEMC argqument length is one byte.

IDSW Specifies the digital START word mask. The IDSW
arqument length is one word.

IEMW Specifies the event MARK word mask. The IEMW
argument length is one word.

IND Always equal to 1 (success). This argument is
present for compatibility only.

10.5.7 LPASSETADC - Set Channel Information For Sweeps
The LPASSETADC subroutine establishes channel start and increment
information for the sweep control subroutines (see Table 10-4). The
LPASSETIBF subroutine must be <called to 1initialize IBUF before
LPASSETADC is called.
The two formats for the LPASSETADC call are as follows:

CALL LPASSETADC (IBUF,[IFLAG],[ICHN], [NCHN],[INC],[IND])

or

IND=LPASSETADC (IBUF,[IFLAG],[ICHN],[NCHN], [INC])

10-22

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Argument descriptions are as follows:
IND Returns the success or failure status:

0 = LPASSETIBF was not <called prior to the
LPASSETADC call

1 = LPASSETADC call successful
IBUF The IBUF array specified in the LPASSETIBF call

IFLAG Reserved. This argument is present for
compatibility only.

ICHN Specifies the first channel number. Range is 0
through 255; default is 0. The ICHN argument
length is one longword.

If INC = 0, ICHN 1is the address of a Random
Channel List. This address must be word-aligned.

NCHN Specifies the number of samples taken per sample
sequence. Default is 1.

INC Specifies the channel increment. Default is 1.
If INC 1is 0, ICHN 1is the address of a Random
Channel List. The INC argument 1length is one
longword.

10.5.8 LPASSETIBF - Set IBUF Array For Sweeps

The LPASSETIBF subroutine initializes the IBUF array for use with the
LPASADSWP, LPASDISWP, LPASDOSWP, LPASDASWP, LPASSTPSWP, LPASIWTBUF,
LPASIGTBUF, LPASIBFSTS, LPASRLSBUF, LPASINXTBF, LPASSETADC, and
LPASRMVBUF subroutines.

The format of the LPASSETIBF call is as follows:
CALL LPASSETIBF (IBUF,[IND], [LAMSKB],BUFO,[BUFl,...,BUF7])

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF Specifies a 50-longword array that is initialized
by this subroutine, IBUF must be
longword-aligned. (See Table 10-5 for additional
information on IBUF.)

IND Returns the success or failure status:
0 = Error 1in call. Possible causes are:
incorrect number of arguments; IBUF array not
longword-aligned; buffer addresses not

equidistant.
1 = IBUF initialized successfully

LAMSKB Specifies the name of a 4-word array. This array
allows the use of multiple LPAll-Ks within the
same program because the argument used to start
the sweep 1is specified by the LPASLAMSKS call,.
(See Section 10.5.6 for a description of the
LPASLAMSKS subroutine.)

10-23

LABORATORY PERIPHERAL ACCELERATOR DRIVER

BUFO, etc. Specify the names of the buffers. A maximum of
eight buffers can be specified. At least two
buffers must be specified to provide continuous

sampling. The LPAll1-K driver requires that all
buffers be contiguous. To ensure this, LPASSETIBF
verifies that all buffer addresses are
equidistant. Buffers must be longword-aligned.

10.5.9 LPASSTPSWP - Stop In-progress Sweep

The LPASSTPSWP subroutine allows a user to stop a sweep that is in
progress.

The format of the LPASSTPSWP call is as follows:
CALL LPASSTPSWP (IBUF, [IWHEN],[IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF THE IBUF array specified in the LPASADSWP,
LPASDASWP, LPASDISWP, or LPASDOSWP call that
initiated the sweep.

IWHEN Specifies when to stop the sweep. VAX/VMS defines
the following values:

0 = Abort sweep immediately. Uses the S$CANCEL
system service. This is the default sweep stop.

1 = Stop sweep when the current buffer transaction
is completed. (This is the preferred way to stop
requests.)

IND Receives a success or failure code in the standard
VAX/VMS format:

1 = Success

nnn = VAX/VMS error code 1issued by the SCANCEL
system service

10.5.10 LPASCLOCKA - Clock A Control
The LPASCLOCKA subroutine sets the clock rate for Clock A.
The format of the LPASCLOCKA call is as follows:

CALL LPASCLOCKA (IRATE,IPRSET, [IND], [NUM])

10-24

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Arguments are as described in Section 10.5.1.2, with the following

additions:

IRATE

IPRSET

IND

NUM

Specifies the clock rate. One of the following
values must be specified:

Clock B overflow or no rate
1 MHz

100 kHz

10 kHZ

1 kHz

100 Hz

Schmidt trigger 1

Line frequency

NSO U WNNEO

L LI T | | O Y 1}

Specifies the clock preset value. Maximum of 16
bits. The LPASXRATE subroutine can be used to
calculate this value. The clock rate divided by
the clock preset value yields the clock overflow
rate.

Receives a success or failure code as follows:

1 = Clock A set successfully

nnn = VAX/VMS error code indicating an I/0 error
Specifies the number to be appended to the logical
name LPAllS. If defaulted, NUM 1is 0. This

subroutine sets Clock A on the LPAll-K assigned to
LPAllS$num.

10.5.11 LPASCLOCKB - Clock B Control

The LPASCLOCKB subroutine provides the user with control of the KW1l-K

Clock B.

The format of the LPASCLOCKB call is as follows:

CALL LPASCLOCKB ([IRATE],IPRSET,MODE,[IND],[NUM])

Arguments are as described in Section 10.5.1.2, with the following

additions:

IRATE

IPRSET

Specifies the clock rate. One of the following
values must be specified:

Stops Clock B

1l MHz

100 kHz

10 kHz

1 kHz

100 Hz

Schmidt trigger 3
Line frequency

~NomdbdwNE O

If IRATE is 0 (default), the clock is stopped and
the IPRSET and MODE arguments are ignored.

Specifies the preset value by which the clock rate
is divided to yield the overflow rate. Maximum of
8 bits. Overflow events can be wused to drive
Clock A. The LPASXRATE subroutine can be used to
calculate the IPRSET value.

10-25

LABORATORY PERIPHERAL ACCELERATOR DRIVER

following

MODE Specifies options. VAX/VMS defines the
values:
1 = Clock B operates in noninterrupt mode.

2 = The feed B to A bit in the Clock
register will be set (see Section

B status

3.3 of the

LPA11-K Laboratory Peripheral Accelerator User's

Guide).

IND Receives a success or failure code as follows:

1 = Clock B set successfully

nnn = VAX/VMS error code indicating an I/0 error

NUM Specifies the number to be appended to the logical

name LPAl1lS. If defaulted, NUM is

0. This

subroutine sets Clock B on the LPAll-K assigned to

LPAllSnun.

10.5.12 LPASXRATE - Compute Clock Rate and Preset Value

The LPASXRATE subroutine computes the clock rate and preset value for

the LPASCLOCKA and LPASCLOCKB subroutines wusing the
intersample interval (AINTRVL).

The two formats for the LPASXRATE call are as follows:
CALL LPASXRATE (AINTRVL,IRATE,IPRSET,IFLAG)
or

ACTUAL=LPASXRATE (AINTRVL ,IRATE,IPRSET, IFLAG)

specified

Arguments are as described in Section 10.5.1.2, with the following
additions:
AINTRVL Specifies the intersample time selected by the
user. The time is expressed in decimal seconds.
Data type is floating point.
IRATE Receives the computed clock rate as a value from 1
through 5.
IPRSET Receives the computed clock preset value.
IFLAG If the computation is for Clock A, IFLAG is 0; if

for Clock B, IFLAG is not 0 (the maximum preset

value is 255). The IFLAG argument length is one
byte.
ACTUAL Receives the actual intersample time if called as

a function. Data type 1is floating point. If
there are truncation and roundoff errors, this

time can be different from the

specified

intersample time. Note that when LPASXRATE is
called from VAX-1l1 FORTRAN programs as a function,

it must be explicitly declared a real
Otherwise, LPASXRATE defaults to
function.

10-26

function.
integer

LABORATORY PERIPHERAL ACCELERATOR DRIVER

If AINTRVL is too large or too small to be achieved, both IRATE and
ACTUAL are returned to 0.

10.5.13 LPASIBFSTS - Return Buffer Status

The LPASIBFSTS subroutine returns information on the buffers used in a
sweep.

The format of the LPASIBFSTS call is as follows:
CALL LPASIBFSTS (IBUF,ISTAT)
Argument descriptions are as follows:

IBUF The IBUF array specified in the call that
initiated the sweep.

ISTAT Specifies a longword array with as many elements
as there are buffers involved in the sweep
(maximum of eight). LPASIBFSTS fills each array
element with the status of the corresponding
buffer:

+2 = Buffer in device queue. LPASRLSBUF has been
called for this buffer.

+1 = Buffer in user queue. The LPAll-K has filled
(data input) or emptied (data output) this buffer.

0 = Buffer is not in any queue,.
-1 = Buffer is in the in-use queue, that is, it is

either being filled or emptied or is the next to
be filled or emptied by the LPAll-K.

10.5.14 LPASIGTBUF - Return Buffer Number
The LPASIGTBUF subroutine returns the number of the next buffer to be
processed by the application program, that is, the buffer at the head
of the user queue (see Figure 10-4). LPASIGTBUF should be called by a
completion routine at AST 1level to determine the next buffer to
process., If an event flag was specified 1in the start sweep call,
LPASIWTBUF, not LPASIGTBUF, should be called.
The formats of the LPASIGTBUF call are as follows:

CALL LPASIGTBUF (IBUF,IBUFNO)
or

IBUFNO=LPASIGTBUF (IBUF)

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF The IBUF array specified in the call that
initiated the sweep.

IBUFNO Returns the number of the next buffer to be filled
or emptied by the application program.

10-27

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-6 lists the possible combinations of IBUFNO and IOSB contents

on the return from a call to LPASIGTBUF. The first four words of the
IBUF array contain the I0OSB. If IBUFNO is -1, the 1IOSB must be
checked to determine the reason.
Table 10-6
LPASIGTBUF Call - IBUFNO and IOSB Contents
IBUFNO| IOSB(1) I0OSB(2) IOSB(3),(4) Meaning
n 0 (byte count) 0 Normal buffer complete.
-1 0 0 0 No buffers in queue.
Request still active.
-1 1 0 0 No buffers in queue.
Sweep terminated
normally.
-1 VAX/VMS 0 LPAll1-K No buffers in queue,
error code ready-out Sweep terminated due to
and maint. error condition.
registers Section 10.6 describes
(only if the VAX/VMS error codes;
SS$_DEVREQERR, |Appendix A of the
S§S$_CTRLERR, LPAll-K Laboratory
or Peripheral Accelerator
SS$_DEVCMDERR |User's Guide lists
is returned) the LPAl1-K error codes.
10.5.15 LPASINXTBF - Set Next Buffer to Use
The LPASINXTBF subroutine alters the normal buffer selection algorithm
to allow the user to specify the next buffer to be filled or emptied.
The specified buffer is reinserted at the head of the device queue.
The two formats of the LPASINXTBF call are as follows:
CALL LPASINXTBF (IBUF,IBUFNO,IND)
or

Arguments are as described in Section

addi

IND=LPAS INXTBF (

tions:

IBUF

IBUFNO

IND

IBUF,IBUFNO)

10.5.1.2, with the following
The IBUF array specified 1in the call that
initiated the sweep.
Specifies the number of the next buffer to be

filled or emptied.
the device queue.

The buffer must already be in

Returns the result of the call:

0

1

]

10-28

Specified buffer was not in the device queue

Next buffer was successfully set

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.16 LPASIWTBUF - Return Next Buffer or Wait

The LPASIWTBUF subroutine returns the next buffer to be processed by
the application program, that is, the buffer at the head of the user
queue. If the user queue is empty, LPASIWTBUF waits until a buffer is
available. If a completion routine was specified in the call that
initiated the sweep, LPASIGTBUF, not LPASIWTBUF, should be called.

The two formats of the LPASIWTBUF call are as follows:
CALL LPASIWTBUF (IBUF, [IEFN],IBUFNO)

or
IBUFNO=LPASIWTBUF (IBUF, [IEFN])

Arguments are as described in Section 10.,5.1.2, with the following
additions:

IBUF The IBUF array specified 1in the call that
initiated the sweep.

IEFN Not used. This argument is present for
compatibility only. (The event flag is the one
specified in the start sweep call.)

IBUFNO Returns the number of the next buffer to be filled
or emptied by the application program.

Table 10-7 lists the possible combinations of IBUFNO and IOSB contents
on the return from a call to LPASIWTBUF. The first four words of the
IBUF array contain the IOSB., If IBUFNO is =~1, the IOSB must be
checked to determine the reason.

Table 10-7
LPASIWTBUF Call - IBUFNO and IOSB Contents
IBUFNO| IOSB(1) IOSB (2) IOSB(3),(4) Meaning
n 0 (byte count) 0 Normal buffer complete.
-1 1 0 0 No buffers in queue.
Sweep terminated
normally.
-1 VAX/VMS 0 LPAll-K No buffers in queue.
error code| ready-out Sweep terminated due to
and maint. error condition,
registers Section 10.A describes
(only if the VAX/VMS error codes;
SSS_DEVREQERR, Appendix A of the LPAll-K
S§S$_CTRLERR, Laboratory Peripheral
or Accelerator User's Guide
S5S$_DEVCMDERR lists the LPAll-K error
is returned) codes.,

10-29

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.17 LPASRLSBUF - Release Data Buffer
The LPASRLSBUF subroutine declares one or more buffers available to be
filled or emptied by the LPAll1-K. LPASRLSBUF inserts the buffer at
the tail of the device queue (see Figure 10-4).
The format of the LPASRLSBUF call is as follows:

CALL LPASRLSBUF (IBUF,[IND],INDEX0,INDEX1l,...,INDEXN)

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF The IBUF array specified in the call that
initiated the sweep.

IND Returns the success or failure status:
0 = Illegal buffer number or incorrect number of

arguments specified, or a double bhuffer overrun
occurred. A double buffer overrun can occur |if
buffer overrun was specified as a nonfatal error,
a buffer overrun occurs, and buffer 0 was not
released (probably on the user queue after a
previous buffer overrun)., LPASRLSBUF can return a
double buffer overrun error only if buffer overrun
was specified as a nonfatal error.

1 = Buffer(s) released successfully

INDEXO0, etc. Specify the indexes (0-7) of the buffers to be
released. A maximum of eight indexes can be
specified.

The LPASRLSBUF subroutine must be called to release a buffer (or
buffers) to the device gqueue before the sweep is initiated. (See
Section 10.5.1.1 for a discussion on buffer management.) Note that
LPASRLSBUF does not verify whether or not the specified buffers are
already in a queue. 1If a buffer is released when it is already in a
queue, the queue pointers will be invalidated. This can cause
unpredictable results.

If buffer overrun is specified as a nonfatal error, buffer 0 should
not be released before the sweep is initiated. However, if either
LPASIGTBUF or LPASIWTBUF returns buffer 0, it should be released.
Note that, in this case, buffer 0 is set aside (not placed on a gqueue)
until the buffer overrun occurs. If a buffer overrun occurs and

buffer 0 was not released, the LPASRLSBUF routine returns an error the
next time buffer 0 is released.

10.5.18 LPASRMVBUF - Remove Buffer from Device Queue
The LPASRMVBUF subroutine removes a huffer from the device gqueue.
The format of the LPASRMVBUF call is as follows:

CALL LPA$RMVBUF (IBUF,IBUFNO, [IND])

10-30

LABORATORY PERIPHERAL ACCELERATOR .DRIVER

Arguments are as described in Section 10.5.1.2, with the following

additions:

IBUF

IBUFNO

IND

The IBUF array specified in the call that
initiated the sweep.

Specifies the number of the buffer to remove from
the device queue.

Returns the success or failure status:

0

Buffer not found in the device queue

1 = Buffer successfully removed from the device
queue

10.5.19 LPASCVADF - Convert A/D Input to Floating Point

The LPASCVADF subroutine converts A/D input values to floating point
numbers. LPASCVADF is provided for compatibility reasons.

The formats of the LPASCVADF call are as follows:

CALL LPASCVADF (IVAL,VAL)

or

VAL=LPASCVADF (IVAL)

Argument descriptions are as follows:

IVAL

VAL

Contains the value (bits 11:0) read from the A/D
input. Bits 15:12 are 0.

Receives the floating point value.

10.5.20 LPASFLT16 - Convert Unsigned 16-bit Integer to Floating Point

The LPASFLP16 subroutine converts unsigned 16-bit integers to floating
point. LPASFLT16 is provided for compatibility reasons.

The formats of the LPASFLT16 call are as follows:

CALL LPASFLT16 (IVAL,VAL)

or

VAL=LPASFLT16 (IVAL)

Argument descriptions are as follows:

IVAL

VAL

An unsigned 16-bit integer.

Receives the converted value.

10-31

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.21 LPASLOADMC - Load Microcode and Initialize LPAl1-K
The LPASLOADMC subroutine provides a program interface to the LPAll1-K
microcode 1loader. LPASLOADMC sends a load request through a mailbox
to the loader process to load microcode and initialize an LPAl1l-K
(Section 10.7.1 describes the microcode loader process).
The format of the LPASLOADMC call is as follows:

CALL LPASLOADMC ([ITYPE][,NUM][,IND]{,IERROR])

Argument descriptions are as follows:

ITYPE The type of microcode to be 1loaded. VAX/VMS
defines the following values:
Value Meaning
1 Multirequest mode
2 Dedicated A/D mode
3 Dedicated D/A mode

If the ITYPE argument is defaulted, multirequest
mode microcode is loaded.

NUM The number to be appended to the 1logical name
LPAl1l1S. 1If defaulted, NUM is 0.

IND Receives the completion status:
1 = Microcode loaded successfully.
nnn = VAX/VMS error code

IERROR Provides additional error information. Receives
the second longword of the IOSB if either
SS$ CTRLERR, SS$ DEVCMDERR, or SS$ DEVREQERR is

returned in IND. Otherwise, the contents of
IERROR is undefined.

10.6 I/0 STATUS BLOCK

The I/0 status block format for the load microcode, start
microprocessor, initialize LPAll-K, set clock, and start data transfer
request QIO functions is shown in Figure 10-5.

31 16 15 0
byte count status
LPA11-K
maintenance status LPAT1-K ready-out

Figure 10-5 1I/O Functions IOSB Content

10-32

LABORATORY PERIPHERAL ACCELERATOR DRIVER

VAX/VMS status values and the byte count are returned in the first
longword. Status values are defined by the $SSDEF macro. The byte
count is the number of bytes transferred by a IO$_LOADMCODE request.
If SS$_CTRLERR, SS$_DEVCMDERR, or SS$_DEVREQERR is returned in the
status word, the second 1longword contains the LPAl11-K Ready-Out
Register and LPAll-K Maintenance Status Register values present at.the
completion of the request. The high byte of the Ready-Out Register
contains the specific LPAl1-K error code (see Appendix A of the
LPAl1-K Laboratory Peripheral Accelerator User's Guide). Table 10-8
lists the status returns for LPAl1-K I/0 functions.

If high-level language library procedures are used, the status returns
listed in Table 10-8 can be returned from the resultant QIO functions.
Since buffers are filled by these procedures asynchronously, two I/0
status blocks are provided in the IBUF array: one for the high-level
language procedures and one for the LPAll-K driver. The first four
words of the IBUF array contain the IOSB for the high-level language
procedures.

Table 10-8
LPAl1l1-K Status Returns for I/O0 Functions

Status Meaning

SS$_ABORT Request aborted. A request 1in progress was
cancelled by the S$CANCEL system service. (Only
for start data transfer request functions.)

SS$_BUFNOTALIGN Alignment error. If this error occurs for an
initialize LPAl11-K request, the initialize
command table was not word-aligned. If this
error occurs for a start data transfer request,
there are several possible causes:

° User status word (USW) not word-aligned
. Buffer area not longword-aligned
° Random Channel List (RCL) not word-aligned

SS$_CANCEL Request cancelled by the S$CANCEL system service
before it started. (Only for the initialize
LPAll-K, set <clock, and start data transfer
request functions.,)

SS$_CTRLERR Controller error. (Only for the start
microprocessor, initialize LPAll1-K, set clock,
and start data transfer request functions.) This
is a fatal error that affects all LPAll1-K
activity. If this error occurs, the LPAll-K
terminates all active requests. The third and
fourth words of the 1IOSB contain the LPAll-K
Ready-out Status Register and Maintenance
Register contents. 1In particular, the high byte
of the third word contains the specific LPAll-K
error code (see Appendix A in the LPAll-K
Laboratory Peripheral Accelerator User's Guide).

(continued on next page)

10-33

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-8 (Cont.)

LPAll1-K Status Returns for I/0 Functions

Status

Meaning

SS$_DATACHECK

SS$_DEVACTIVE

SS$_DEVCMDERR

55$_DEVREQERR

SS$_EXQUOTA

SS$_INSFBUFDP

SS$_INSFMAPREG

§5$_INSFMEM

Data check error. (Only for the load microcode
function.) A mismatch between the microcode in
memory and the microcode loaded into the LPAll-K
was detected. The second word of the IOSB
contains the number of bytes successfully
loaded.

Device is active. (Only for the load microcode
and start microprocessor functions.) The
microcode cannot be loaded or the microprocessor
cannot be started because there is an active
data transfer request.

LPAll1-K command error. (Only for the initialize
LPAll1-K, set «clock, and start data transfer
request functions.) This error 1is associated
with the issuance of a new LPAll1-K command. The
third and fourth words of the IOSB <contain the
LPAl11-K Ready-0ut Status Register and
Maintenance Register contents. In particular,
the high byte of the third word contains the
specific LPAl1l-K error code. (See Appendix A in
the LPAll-K Laboratory Peripheral Accelerator
User's Guide).

LPAl11-K user request error. (Only for start
data transfer requests.) The third and fourth
words of the IOSB contain the LPAl11-K Ready-0Out
Status Register and Maintenance Register
contents. In particular, the high byte of the
third word <contains the specific LPAl11-K error
code, (See Appendix A in the LPAll1-K Laboratory
Peripheral Accelerator User's Guide).

AST quota exceeded. (Only for start data
transfer requests,) An AST cannot be queued for
a buffer full/empty AST. Normally, a start data
transfer request can require no more than three
AST blocks at a time.

A UBA-buffered datapath was not available for
allocation. (Only for start data transfer
requests in dedicated mode.)

Insufficient UBA map registers to map the
command table or Dbuffer areas. (Only for the
initialize LPAl11-K and start data transfer
request functions.) If the map registers were
preallocated when the driver was loaded, the
preallocation should be increased.

Insufficient dynamic memory to start request or
allocate an AST block. (Only for start data
transfer requests.)

(continued on next page)

10-34

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-8 (Cont.)
LPAll1-K Status Returns for I/0 Functions

Status Meaning

SS$_IVBUFLEN Incorrect length. 1If this error occurs for an
initialize LPAl11-K request, the initialize
command table length is not the required 278

bytes. If this error occurs for a start data
transfer request, there are several possible
causes:

e Command table length is not the required 40
bytes

e Buffer area size is not evenly divisible by
the number of buffers assigned

e Individual buffer size is 0

@ Individual buffer size is not a multiple of
2 for a multirequest mode request, or 4 for
a dedicated mode request

e Random Channel List length is 0 or not a
multiple of 2

e Bit 15 in the 1last word of the Random
Channel List is not set

SS$_IVMODE Invalid mode. (Only for the initialize LPAll-K
function.) The first three bits (2:0) of the
first word in the command table, that is, the
mode word, are not O.

SS$ MCNOTVALID Microcode has not been successfully loaded.
- (Only for the start microprocessor, initialize
LPAll1-K, set <clock, and start data transfer
request functions.)

SS$_PARITY Parity error. (Only for start data transfer
request in deicated mode.) A parity error
occurred in a UBA-buffered datapath.

SS$ POWERFAIL A power failure occurred while a request was
- active. (Only for the start microprocessor,
initialize LPAll-K, set clock, and start data
transfer request functions.)

SS$ TIMEOUT Device timeout. (Only for the start
- microprocessor, initialize LPAl1-K, set clock,
and start data transfer request functions.) An
interrupt was not received within one second
after the request was issued.

10-35

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.7 LOADING LPAl11-K MICROCODE

The microcode loading and device initialization routines automatically
load microcode on system initialization (if specified in the system
manager's startup file) and on power recovery. These routines also
allow a nonprivileged user to load microcode and restart the system.

The LPAll-K loader and initialization routines consist of three parts:

e A microcode loader process which 1loads any of the three
microcode versions, initializes the LPAll-K, and sets the
clock rate. Loading is initiated by either a mailbox request
or a power recovery AST. This process requires permanent
mailbox (PRMMBX) and physical I1/0 privileges.

e An operator process which accepts operator commands or
indirect file commands to load microcode and initialize an
LPAll-K. This process uses a mailbox to send a 1load request
to the 1loader process; temporary mailbox (TMPMBX) privilege
is required.

e An LPAll1-K procedure library routine that provides a program
interface to the LPAll1-K microcode 1loader. The procedure
sends a load request through a mailbox to the loader process
to 1load microcode and initialize an LPAl1-K. Section 10.5.21
describes this routine in greater detail.

10.7.1 Microcode Loader Process

The microcode loader process loads microcode, initializes a specific
LPAll1-K, and sets the clock at the default rate (10 kHz interrupt
rate). A bit set in a controller bitmap indicates that the specified
controller was 1loaded. The process specifies a power recovery AST,
creates a mailbox whose name (LPASLOADER) is entered in the system
logical name table, and then hibernates.

The correct device configuration is determined automatically. When
LPAl1-K initialization is performed, every possible device (see Table
10-1) is specified as present on the LPAll-K. 1If the LPAll-K returns
a device not found error, the LPAl1-K is reinitialized with that
device omitted.
On receipt of a power recovery AST, the loader process examines the
controller bitmap to determine which LPAll-Ks have been loaded. For
each LPAll-K, the loader process performs the following functions:

e Obtains device characteristics

® Reloads the microcode previously loaded

® Reinitializes the LPAll-K

e Sets Clock A to the previous rate and preset value

10-36

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.7.2 Operator Process

The operator process 1loads microcode and initializes an LPAll-K
through the use of either terminal or indirect file commands. The
command input syntax is as follows:

devname/type
Devname is the device name of the LPAll-K to be 1loaded. A logical
name can be specified. However, only one level of logical name
translation is performed. If devname is omitted, LAAO is the default
name. If /type appears, it specifies one of three types of microcode
to load:

/MULTI_REQUEST = multirequest mode
/ANALOG_DIGITAL dedicated A/D mode
/DIGITAL_ANALOG dedicated D/A mode

If /type is omitted, /MULTI_REQUEST is the default.

After receiving the command, the operator process formats a message

and sends it to the loader process, Completion status is returned
through a return mailbox.

10.8 RSX-11M VERSION 3.1 AND VAX/VMS DIFFERENCES

This section lists those areas where the VAX/VMS and RSX-11M Version
3.1 LPAll-K high-level language support routines differ, The RSX-11M
I/0 Drivers Reference Manual provides a detailed description of the
RSX-11M LPAll-K support routines. The exact differences between the
VAX/VMS and RSX-11M routines can be determined by comparing the
descriptions in the RSX-11M manual with the descriptions for the
VAX/VMS routines in the preceding sections of this guide.

10.8.1 Alignment and Length
In VAX/VMS:
e Buffers must be contiquous.
e Buffers must be longword-aligned.
e The Random Channel List must be word-aligned.

e The IBUF array 1length is 50 longwords and must be
longword-aligned.

10-37

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.8.2 Status Returns
In VAX/VMS:

e The I/O Status Block length is 8 bytes; numeric values of
errors are different.

® Several routines return:
1 - Success
0 - Failure detected in support routine

nnn - VAX/VMS status code. Failure detected in system
service.

10.8.3 Sweep Routines
In VAX/VMS:

e If an event flag is specified, it must be within a $VAL()
construction.

e A tenth argument, IND, has been added to return the success or
failure status.

10.8.4 General

In VAX/VMS:

e The LUN argument is not wused. Instead, the NUM argument
specifies the number to be appended to the logical name
LPAllS.

e All routine names have the prefix LPAS.

e In the LPASSETIBF routine, buffer addresses are checked for
contiguity.

e In the LPASLAMSKS routine, the IUNIT argument is not used.

e In the LPASIWTBUF routine, the IEFN argument is not used. The
event flag specified in the sweep routine is used.

e The combinations of IBUFNO and I/0O Status Block values

returned by the LPASIWTBUF and LPASIGTBUF routines are
different.

10.9 PROGRAMMING EXAMPLES

The following program examples use LPAl1l1-K high 1level language
procedures and LPAll1-K Queue I/O functions.

Appendix B of the VAX/VMS Real-Time User's Guide contains information
on LPAll-K programming and design considerations.

10-38

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.9.1 LPAll-K High Level Language Program (Program A)

This program is an example of how the LPAll-K high 1level 1language
procedures perform an A/D sweep using three buffers. The program uses
default arguments whenever possible to illustrate the simplest
possible calls, The program assumes that dedicated mode microcode has

previously been 1loaded into the LPAll-K. Table 10-9 1lists the
variables used in this program.

Table 10-9
Program A Variables

Variable Description

BUFFER The data buffer array. BUFFER is a common area to
guarantee longword—-alignment,

IBUF The LPAll-K high level language procedures wuse the
IBUF array for local storage.

BUFNUM BUFNUM contains the buffer number returned by

LPASIWTBUF. 1In this example, the possible values are
0, 1, and 2.

ISTAT ISTAT contains the status return from the high level
language calls.

kkkkkhhhhhhhhhhhhkhhkhkhhhhhhkkhhhhkhkhhkhkhkhhkhhhkhkkhhkkhkkhhhkkhhkkhhkhkk

PROGRAM A

a0 a

khkkkkkkhkhhhhhhhhkhhhhkkhhhhhhkhhhkhhkhhkhhhNhhkhkhhkhkkhhhkhhhhkhkkhhkhkkhkkkk

INTEGER*2 BUFFER(1000,0:2) ,I0SB(4)
INTEGER*4 IBUF (50) ,ISTAT,BUFNUM

COMMON/AREA1 /BUFFER

EQUIVALENCE (I0OSB (1) ,IBUF (1))

SET CLOCK RATE TO 100 KHZ, CLOCK PRESET TO -10

aOn

CALL LPASCLOCKA(2,-10,ISTAT)
IF (.NOT. ISTAT) GO TO 950

INITIALIZE IBUF ARRAY FOR SWEEP

aaoon

CALL LPASSETIBF (IBUF,ISTAT, ,BUFFER(1,0),BUFFER(1,1) ,BUFFER(1,2))
IF (.NOT. ISTAT) GO TO 950

RELEASE ALL THE BUFFERS. NOTE USE OF BUFFER NUMBERS RATHER THAN
BUFFER NAMES,

OO

CALL LPASRLSBUF (IBUF,ISTAT,0,1,2)
IF (.NOT. ISTAT) GO TO 950

START A/D SWEEP

[eNeXe!

10-39

LABORATORY PERIPHERAL ACCELERATOR DRIVER

CALL LPASADSWP(IBUF,1000,50,,,,,,,ISTAT)
IF (.NOT. ISTAT) GO TO 950

c
C GET NEXT BUFFER FILLED WITH DATA. IF BUFNUM IS NEGATIVE, THERE
C ARE NO MORE BUFFERS AND THE SWEEP IS STOPPED.
C
100 BUFNUM = LPASIWTBUF (IBUF)
IF (BUFNUM .LT. 0) GO TO 800
C

C PROCESS DATA IN BUFFER(1,BUFNUM) TO BUFFER (1000,BUFNUM)

(Application-dependent code is inserted at this point)

C RELEASE BUFFER TO BE FILLED AGAIN

C

200 CALL LPASRLSBUF (IBUF,ISTAT,BUFNUM)
IF (.NOT. ISTAT) GO TO 950
GO TO 100

THERE ARE NO MORE BUFFERS TO PROCESS. CHECK TO ENSURE THAT THE
SWEEP ENDED SUCCESSFULLY. IOSB(l1) CONTAINS EITHER 1 OR A
VAX/VMS STATUS CODE.

L XeNeEeNeK?!

00 IF (.NOT. IOSB(l)) CALL LIBS$STOP(%VAL(IOSB(1l)))
PRINT *,'SUCCESSFUL COMPLETION'
GO TO 2000

ERROR RETURN FROM SUBROUTINE. ISTAT CONTAINS EITHER 0 OR
VAX/VMS ERROR CODE.

oo

50 IF (ISTAT .NE. 0) CALL LIBSSTOP($VAL (ISTAT))
PRINT * ,'ERROR IN LPAl1-K SUBROUTINE CALL'

2000 STOP

END

C hhkkhhkhkhkhkhhkhhhkhhkhhhhhhhhhhhhhhhhhhhkhhhhhhdhhhhhhhhhhhhhhhkhhkhhkhhkk

10.9.2 LPAll1-K High-level Language Program (Program B)
This program is a more complex example of LPAll-K operations performed
by the LPAl11-K high~-level 1language procedures. The following
operations are demonstrated:

® Program-requested loading of LPAll1-K microcode

e Setting the clock at a specified rate

@ Use of nondefault arguments whenever possible

e An A/D sweep that uses an event flag

e A D/A sweep that uses a completion routine

e Buffer overrun set (buffer overrun is a non-fatal error)

e Random Channel List addressing

e Sequential Channel addressing

10-40

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-10 lists the variables used in this program.

Table 10-10
Program B Variables

Variable Description

AD An array of buffers for an A/D sweep (8 buffers of
500 words each)

DA An array of buffers for a D/A sweep (2 buffers of
2000 words each)

IBUFAD The IBUF array for an A/D sweep

IBUFDA The IBUF array for a D/A sweep

RCL The array containing the Random Channel List

ADIOSB The array that contains the I/0 status block for the

A/D sweep. Equivalenced to the beginning of IBUFAD.

DAIOSB The array that contains the I/0 status block for the
D/A sweep. Equivalenced to the beginning of IBUFDA.

ISTAT Contains the status return from the high~-level
language calls

hhkhhhkhhhhkhhhkhhhhkkhhkkhkhhhkhkhhhkhkhhhhkhhhkhhkhkhhhhkhhhkhkhkhkkkhhhhhkhkik

PROGRAM B

[eKeEeNeNe!

hhkhhhkhkhhhhkhhhhhhkkhhhhhhhhkhhhhkhkhhhkhhhhhhkhkhhhhhhhhhhhhhhhrhhhhhhhkx

EXTERNAL FILLBF
REAL*4 LPASXRATE

INTEGER*2 AD(500,0:7) ,DA(2000,0:1),RCL(5) ,MODE, IPRSET
INTEGER*2 ADIOSB(4) ,DAIOSB(4)

INTEGER*4 IBUFAD(50) ,IBUFDA(50),LAMSKB(2)
INTEGER*4 ISTAT,IERROR,IRATE,BUFNUM

REAL*4 PERIOD

COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

EQUIVALENCE (IBUFAD({(1l) ,ADIOSB(1)), (IBUFDA(1),DAIOSB(1))
PARAMETER MULTI=1, HBIT='8000'X, LSTCHN=HBIT+7

SET UP RANDOM CHANNEL LIST. NOTE THAT THE LAST WORD MUST HAVE BIT
15 SET.

oo NoKe!

DATA RCL/2,6,3,4,LSTCHN/

10-41

oo an

oo ao0n oNeoNe e

anNnan anaon

oo

aaoaoan

LABORATORY PERIPHERAL ACCELERATOR DRIVER

khkkkhhkhkhkhhkkhhkhhhkhhhkhhkkhkhhkhkhhhhkhhhhkhkhkhhkhkhhhhkdhkdhrhhhdhhrhhdk

LOAD MULTIREQUEST MODE MICROCODE AND SET THE CLOCK OVERFLOW RATE
TO 5 KHZ

LR L L s E T T T T T)
LOAD MICROCODE ON LPAll-K ASSIGNED TO LPA11$3

CALL LPASLOADMC (MULTI,3,ISTAT,IERROR)
IF (.NOT. ISTAT) GO TO 5000

COMPUTE CLOCK RATE AND PRESET. SET CLOCK 'A' ON LPAll-K
ASSIGNED TO LPA11S3.

PERIOD = LPASXRATE(.0002,IRATE,IPRSET,0)
IF (PERIOD .EQ. 0.0) GO TO 5500

CALL LPASCLOCKA (IRATE,IPRSET,ISTAT,3)
IF (.NOT. ISTAT) GO TO 5000

khkhhkhkhhhkhkhkkhkhkkhhhkhhkhhhkhhhhhhhhhhkhhbhkhhhkhhdhhhhhhhhdhhhhhhhhhhhhkid

SET UP FOR A/D SWEEP

Fhkkhkkhkhkhkhkhhhkhhkhhkkhhhkhhhhhhhhhhhhkhhkhhkhkhhhhhhkhhhhhhhhkhhhhkhhhkhkhkhhkhk

INITIALIZE IBUF ARRAY. NOTE THE USE OF THE LAMSKB ARGUMENT BECAUSE
THE LPAll-K ASSIGNED TO LPA11$3 IS USED.

CALL LPAS$SETIBF (IBUFAD,ISTAT,LAMSKB,AD(1,0),AD(1,1),AD(1,2),
1 AD(1,3),AD(1,4),AD(1,5),AD(1,6) ,AD(1,7))

IF (.NOT. ISTAT) GO TO 5000

CALL LPASLAMSKS (LAMSKB, 3)

SET UP RANDOM CHANNEL LIST SAMPLING (20 SAMPLES IN A SAMPLE
SEQUENCE)

CALL LPASSETADC (IBUFAD,,RCL,20,0,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

RELEASE BUFFERS FOR A/D SWEEP. NOTE THAT BUFFER 0 IS NOT
RELEASED BECAUSE BUFFER OVERRUN WILL BE SPECIFIED AS NON-FATAL.

CALL LPASRLSBUF (IBUFAD,ISTAT,1,2,3,4,5,6,7)
IF (.NOT. ISTAT) GO TO 5000

LR E R RS EEEEEEEEEEEEEEEEEREE R SRR EEEREEEEEEREEREREEEREREEEEESESR]

SET UP FOR D/A SWEEP

Ahkhkkhkkhkkhkhkhkhhhkhhkhhhhhhhkhhhohkhhkhhhhrhkkhhhhhdhhhhhhhhhhhrhrhrhhhkhxkx

NOTE THAT THE SAME LAMSKB ARRAY CAN BE USED BECAUSE THE LAMSKB
CONTENTS APPLY TO BOTH A/D AND D/A SWEEPS

CALL LPASSETIBF (IBUFDA,ISTAT,LAMSKB,DA(1,0),DA(1,1))
IF (.NOT. ISTAT) GO TO 5000

SET UP SAMPLING PARAMETERS AS FOLLOWS: INITIAL CHANNEL = 1.
NUMBER OF CHANNELS SAMPLED EACH SAMPLE SEQUENCE = 2, CHANNEL
INCREMENT = 2, THAT IS, SAMPLE CHANNELS 1 AND 3 EACH SAMPLE
SEQUENCE.

10-42

LABORATORY PERIPHERAL ACCELERATOR DRIVER

C
CALL LPASSETADC (IBUFDA,,1,2,2,ISTAT)
IF (.NOT. ISTAT) GO TO 5000
C
C FILL BUFFERS WITH DATA FOR OUTPUT TO D/A
C

(Application dependent code is inserted here to fill buffers
DA(1,0) through DA(2000,0) and DA(l,1) through DA(2000,1) with data)

RELEASE BUFFERS FOR D/A SWEEP

aaon

CALL LPASRLSBUF (IBUFDA,ISTAT,0,1)
IF (.NOT. ISTAT) GO TO 5000

khkhkhhkkhkhkhhkkhhkhhhkhkhkkhhhkhkhhhhhhhhhhkhkhhhhhhhhkhhhhkhhhhkhkhhkhhhhkhkhk

START BOTH SWEEPS

khkhhkkkkhkhkhkhkhkhhhkkhhkhkhhhhkhhkhhhhkhhkhhhkhhhhkhhhhhhhhhhhrhhhhhhkhhhkk

START A/D SWEEP. MODE BITS SPECIFY BUFFER OVERRUN IS NON-FATAL AND
MULTIREQUEST MODE. SWEEP ARGUMENTS SPECIFY 500 SAMPLES/BUFFER,
INDEFINITE SAMPLING, DWELL = 10 CLOCK OVERFLOWS, SYNCHRONIZE USING
EVENT FLAG 15, AND A DELAY OF 50 CLOCK OVERFLOWS.

QOO0 000n0n

MODE = 16384 + 64
CALL LPASADSWP (IBUFAD,500,0,MODE,10,%VAL(15),50,,,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

START D/A SWEEP. MODE SPECIFIES MULTIREQUEST MODE. OTHER
ARGUMENTS SPECIFY 2000 SAMPLES/BUFFER, FILL 15 BUFFERS, DWELL = 25
CLOCK OVERFLOWS, SYNCHRONIZE BY CALLING THE COMPLETION ROUTINE
'FILLBF', AND DELAY = 10 CLOCK OVERFLOWS. (SEE THE FILLBF LISTING
AFTER THE PROGRAM B LISTING.)

QOO0

MODE = 64
CALL LPASDASWP (IBUFDA,2000,15,MODE,25,FILLBF,10,,,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

khkhkhhkhhhhhhhhhhhhkhhhhkhkhhhhkhhhhkdhhkhkhhhhhhhkhhhhkhkhhhhhhhhhhhkhrdhhi

WAIT FOR AN A/D BUFFER AND THEN PROCESS THE DATA IT CONTAINS. D/A
BUFFERS ARE FILLED ASYNCHRONOUSLY BY THE COMPLETION ROUTINE FILLBF.

LR R EE SRR SE RS EEEEEEEEE RS E SRS E RS R RS EE SRR RS EE R S RS R

WAIT FOR A BUFFER TO BE FILLED BY A/D, IF BUFNUM IS LESS THAN
ZERO, THE SWEEP HAS STOPPED (EITHER SUCCESSFULLY OR WITH AN ERROR).

HOOOOOOOOO0A0n

00 BUFNUM = LPASIWTBUF (IBUFAD)
IF (BUFNUM .LT. 0) GO TO 1000
C

C THERE IS A/D DATA IN AD(1l,BUFNUM) THROUGH AD(500,BUFNUM)
C

10-43

LABORATORY PERIPHERAL ACCELERATOR DRIVER

(Process the A/D data with the application dependent code inserted
here)

C
C ASSUME SWEEP SHOULD BE STOPPED WHEN THE LAST SAMPLE IN BUFFER
C EQUALS 0. NOTE THAT THE SWEEP ACTUALLY STOPS WHEN THE BUFFER
C CURRENTLY BEING FILLED IS FULL. ALSO NOTE THAT LPASIWTBUF
C CONTINUES TO BE CALLED UNTIL THERE ARE NO MORE BUFFERS TO PROCESS.
C
IF (AD(500,BUFNUM) .NE. 0) GO TO 200
CALL LPASSTPSWP(IBUFAD,1,ISTAT)
IF (.NOT. ISTAT) GO TO 5000
C
C AFTER THE DATA HAS BEEN PROCESSED, THE BUFFER IS RELEASED TO BE
C FILLED AGAIN. THEN THE NEXT BUFFER IS OBTAINED FROM A/D.
C
200 CALL LPASRLSBUF (IBUFAD,ISTAT,BUFNUM)
IF (.NOT. ISTAT) GO TO 5000
GO TO 100
C
C ENTER HERE WHEN A/D SWEEP HAS ENDED. CHECK FOR ERROR OR
C SUCCESSFUL END. (NOTE: ASSUME THAT THE D/A SWEEP HAS ALREADY
C ENDED - SEE COMPLETION ROUTINE FILLBF)
c
1000 IF (ADIOSB(1l)) GO TO 6000

CALL LIBSSTOP ($VAL (ADIOSB(1l)))

C
C ENTER HERE IF THERE WAS AN ERROR RETURNED FROM ONE OF THE
C LPAll-K HIGH LEVEL LANGUAGE CALLS. ISTAT CONTAINS EITHER 0
C OR A VAX/VMS STATUS CODE.
C
5000 IF (ISTAT .NE. 0) CALL LIBSSTOP (%VAL(ISTAT))
5500 PRINT *,'ERROR IN LPAll-K SUBROUTINE CALL'
GO TO 7000
6000 PRINT *,'SUCCESSFUL COMPLETION'
7000 STOP
END
C khkkhkhhhhhkhhhhhhhhhkhhkhhhhhkhhhhhhhhhhhhhhhkhhhhkhhkhhhhhhhhkhhhhkhhhkhkd
c
C SUBROUTINE FILLBF
C .
(o) khkhkkhkhhkhhhhkhkhhhhhhhhhhhhhhhhhhhhhhkhhhhhhkhhhhhhhhhhhhhhkhhhkkkkhkh
c
C THE FILLBF SUBROUTINE IS CALLED WHENEVER THE D/A HAS EMPTIED A
C BUFFER, AND THAT BUFFER IS AVAILABLE TO BE REFILLED. THIS
C SUBROUTINE GETS THE BUFFER, FILLS IT, AND RELEASES IT BACK TO THE
C LPAll-K. NOTE THAT THE D/A SWEEP IS STOPPED AUTOMATICALLY AFTER
C 15 BUFFERS HAVE BEEN FILLED. ALSO NOTE THAT FILLBF IS CALLED BY
C. AN AST HANDLER. IT IS THEREFORE CALLED ASYNCHRONOUSLY FROM THE
C MAIN PROGRAM AT AST LEVEL. CARE SHOULD BE EXERCISED WHEN ACCESSING
C VARIABLES THAT ARE COMMON TO BOTH LEVELS.
c

INTEGER*2 AD(500,0:7) ,DA(2000,0:1) ,DAIOSB(4)
INTEGER*4 IBUFAD(50),IBUFDA(50) ,BUFNUM,ISTAT
EQUIVALENCE (IBUFDA(1l),DAIOSB(1l))
COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

10-44

LABORATORY PERIPHERAL ACCELERATOR DRIVER

c
C GET BUFFER NUMBER OF NEXT BUFFER TO FILL
C
BUFNUM = LPASIGTBUF (IBUFDA)
IF (BUFNUM .LT. 0) GO TO 3000
C
C FILL BUFFER WITH DATA FOR OUTPUT TO D/A

(Application dependent code is inserted here to fill buffer
DA (1,BUFNUM) through DA(2000,BUFNUM) with data)

RELEASE BUFFER

[NP

CALL LPASRLSBUF (IBUFDA,ISTAT,BUFNUM)
GO TO 4000

C
C CHECK FOR SUCCESSFUL END OF SWEEP
C
3

000 IF (DAIOSB(1)) GO TO 4000
C
C ERROR IN SWEEP
‘ CALL LIBS$STOP (%VAL (DAIOSB(1)))
4000 RETURN

END
C *khkkhhkhkdhhhhhhkhhhhhhhhkhhdhhhhhhhhhhhhhhhhhhhhkhhkhhkhhkhhhhkhkhhhkhhhhhhhkk

10.9.3 LPAll-K QIO Functions Program (Program C)

This sample program uses QIO functions to start an A/D data transfer
from an LPAll1-K. (The program assumes multirequest mode microcode has
been 1loaded.) Sequential channel addressing 1is used. The data
transfer 1is stopped after 100 buffers have been filled; no action is
taken with the data as the buffers are filled. Note that this program
starts the data transfer and then waits wuntil the QIO operation
completes.

LR R ER LR R AL EEEEEEEE SRR RS R R R R R EE R R R R EREEEREREESS]

PROGRAM C

~e “o we we we

kkhkhhkkhkhkhkhkhkhhhkhkhhhkhkhkhhhhhhhhhhhhhhhhkhhhrhhkhhhhhdhhhhhhdhkhhhhkhhhrhd

.TITLE LPAll-K EXAMPLE PROGRAM
.IDENT /VOl/

+PSECT LADATA,LONG

I0SB: «BLKQ 1 ; I/0 STATUS BLOCK
COUNT: .LONG 0 ; COUNT OF BUFFERS FILLED

10-45

CBUFF: ; COMMAND BUFFER FOR START
; DATA QIO
.WORD “X20A ; MODE = SEQUENTIAL CHANNEL
; ADDRESSING, A/D, MULTI-
; REQUEST MODE
.WORD 3 ; VALID BUFFER MASK (4
; BUFFERS)
.LONG usw ; USER STATUS WORD ADDRESS
.LONG 4000 ; AGGREGATE BUFFER LENGTH
.LONG DATA BUFFERO : ADDRESS OF DATA BUFFERS
.LONG 0o - ; NO RANDOM CHANNEL LIST
; LENGTH
.LONG 0 ; NO RANDOM CHANNEL LIST
; ADDRESS
.WORD 10 ; DELAY
.BYTE 0 ; START CHANNEL
.BYTE 1 ; CHANNEL INCREMENT
.WORD 16 ; NUMBER OF SAMPLES IN
; SAMPLE SEQUENCE
.WORD 1 ; DWELL
.BYTE 0 ; START WORD NUMBER
.BYTE 0 ; EVENT MARK WORD
.WORD 0 ; START WORD MASK
.WORD 0 ; EVENT MARK MASK
.WORD 0 ; FILLS OUT COMMAND BUFFER
USW: .WORD 0 ; USER STATUS WORD
.ALIGN LONG ; BUFFERS MUST BE
; LONGWORD ALIGNED
DATA BUFFERO: .BLKW 500 ; DATA BUFFERS
DATA BUFFER1: .BLKW 500
DATA BUFFER2: .BLKW 500
DATA_BUFFER3: .BLKW 500
DEVNAME: .LONG 4,LANAME
CHANNEL: .BLKW 1 ; CONTAINS CHANNEL NUMBER
LANAME: .ASCII /LAAO/
.PSECT LACODE,NOWRT
START: .WORD 0
$ASSIGN S DEVNAME,CHANNEL ; ASSIGN CHANNEL
BLBS “RO,5$; NO ERROR
BRW ERROR ; ERROR
5$: SET CLOCK OVERFLOW RATE

LABORATORY PERIPHERAL ACCELERATOR DRIVER

$QIOWnS ,CHANNEL,#IOS_SETCLOCK,—
IOSBI re I#lI#AX143I#—SOO

BLBC RO ,ERROR
MOVZWL IOSB,RO
BLBC RO, ERROR
CLRW USW

MOVL #100,COUNT

$SQIOW_S ,CHANNEL,#I0$_STARTDATA,-

10-46

~e we we ~e w8 we

.. wo we W

TO 2 KHZ. (1 MHZ RATE
DIVIDED BY 500 PRESET)

ERROR
PICK UP I/0 STATUS
ERROR

START DATA TRANSFER
CLEAR USW (START WITH
BUFFER 0))

FILL 100 BUFFERS

BLBC

LABORATORY PERIPHERAL ACCELERATOR DRIVER

I0sB,,,CBUFF,#40,#BFRAST

RO ,ERROR

.

[

ERROR

; NOTE THAT THE QIO WAITS UNTIL IT FINISHES. NORMALLY, THE DATA IS
; PROCESSED HERE AS THE BUFFERS ARE FILLED. CHECK FOR ERROR WHEN
; THE QIO COMPLETES.

MOV ZWL
BLBC
RET

ERROR:

PUSHL
CALLS

BFRAST:

.WORD
INCB
CMPZV

BLEQ

CLRB
10$: DECL
BGTR
BISB
20$: BICB
RET

.END

IOSB,RO
RO, ERROR

RO
#1,LIBSSTOP

0
USW+1
#0,#3,USW+1,#3

108
USwW+1

COUNT
208
#°X40 ,USW+1

#7X80,USW+1

START

~e wo o

~e wo we ~»

~e weo wo

~e we

~e we o

PICK UP I/0O STATUS
ERROR
ALL DONE - EXIT

ENTER HERE IF ERROR.
STATUS IN RO.

PUSH ONTO STACK
SIGNAL ERROR

BUFFER AST ROUTINE.
BFRAST IS CALLED WHENEVER
A BUFFER IS FILLED.

ADD 1 TO BUFFER NUMBER
HANDLE WRAPAROUND

USE BUFFER O

DECREMENT BUFFER COUNT
ENOUGH BUFFERS FILLED -

SET STOP BIT
CLEAR DONE BIT

: khkkhkhkhkhkhkhhhkkhhhkhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhrhhdhhkhrhhhdd

10-47

CHAPTER 11

DR32 INTERFACE DRIVER

11.1 SUPPORTED DEVICE

The DR32 is an interface adapter that connects the internal memory bus
of a VAX-1l processor to a user-~accessible bus called the DR32 Device
Interconnect (DDI). Two DR32s can be connected to form a VAX-11
processor-to-processor 1link. Figure 11-1 shows the relationship of
the DR32 to the VAX 11/780 and the DDI.

As a general purpose data port, the DR32 1is capable of moving
continuous streams of data to or from memory at high speed. Data from
a user device to disk storage must go through an intermediate buffer
in main memory.

11.1.1 DR32 Device Interconnect

The DR32 Device Interconnect (DDI) is a bidirectional path £for the
transfer of data and control signals. Control signals sent over the
DDI are asynchronous and interlocked; data transfers are synchronized
with clock signals. Any connection to the DDI is called a DR-device.
The DDI provides a point-to-point connection between two DR-devices,
one of which must be a VAX-1l processor. The DR-device connected to
the external end of the DDI is called the far end DR-device.

11-1

DR32 INTERFACE DRIVER

'— DR-DEVICE (VAX 11/780) —I

MEMORY

I I
I |
| I
| |
I I
I I
I I
| VAX 11/780 |
| PROCESSOR |
| DR I |£¢Egégﬁxg§i (FAR END)
| | (DDI) DR-DEVICE
I MASSBUS I
| —MASSEYS 1 wea I
I I
I I
I UNIBUS UBA I
I I
| I
e o o o -J

Figure 11-1 Basic DR32 Configuration

11.2 DR32 FEATURES AND CAPABILITIES
The DR32 provides the following features and capabilities:
e 32-bit parallel data transfers

e High bandwidth (6 megabytes/second on the DDI with a VAX
11/780)

® Word or byte alignment of data

e Half-duplex operation

e Hardware-supported (I/O driver-independent) memory mapping

e Separate Control and Data Interconnects

e Command and data chaining

e Direct software link bhetween the DR32 and the user process

e Synchronization of the user program with DR32 data transfers
e Transfers initiated by an external device

The following sections describe the capabilities.

11-2

DR32 INTERFACE DRIVER

11.2.1 Command and Data Chaining

Command chaining is the execution of commands- without software
intervention for each command. Commands are chained in the sense that
they follow each other on a queue. After a QIO function starts the
DR32, any number of DR32 commands can be executed during that QIO
operation. This process continues until the transfer is halted (a

command packet is fetched that specifies a halt command) or an error
occurs.

Command packets can specify data chaining. 1In data chaining, a number
of main memory buffers appear as one large buffer to the far end
DR-device, Data chaining is completely transparent to this device;
transfers are seen as a continuous stream of data. Chained buffers
can be of arbitrary byte alignment and length. The 1length of a
transfer appears to the far end DR-device to be the total of all the
byte counts in the chain, and since chains in the DR32 can be of
unlimited 1length, the device =sees the byte count as potentially
infinite.

11.2.2 Far End DR-device Initiated Transfers

The DR32 provides the capability for the far end DR-device to initiate
data transfers to the VAX-1ll memory, that is, it provides for random
access mode. Random access consists of data transfers to or from the
VAX-11 memory without notification of the VAX-1l1 processor. This mode
is used when two DR32s are connected to form a processor-to-processor
link. You can discontinue random access by specifying a command
packet with random access disabled. It can also be discontinued by an
abort from either the controlling process or the far end DR-device,

11.2.3 Power Failure

If power fails on the DR32 but not on the system, the DR32 driver
aborts the active data transfer and returns the status code
SS$_POWERFAIL in the I/O status block. If a system power-failure

occurs, the DR32 driver completes the active data transfer when power
is recovered and returns the status code SS$_POWERFAIL.

11.2.4 Interrupts

The DR32 can interrupt the DR32 driver for any of the following
reasons:

e An abort has occurred. The QIO is completed.

e A DR32 power—-down or power—-up sequence has occurred

e An unsolicited control message has been sent to the DR32. If
this command packet's interrupt control field is properly set
up, a packet AST interrupt occurs. The interrupt occurs after

the command packet obtained from FREEQ is placed on TERMQ.

e The DR32 enters the halt state. The QIO is completed.

11-3

DR32 INTERFACE DRIVER

e A command packet that specifies an unconditional interrupt has
been placed onto TERMQ. The result is a packet AST.

e A command packet with the "interrupt when TERMQ empty" bit set
was placed on an empty TERMQ. The result is a packet AST.

11.3 DEVICE INFORMATION

Users. can obtain information on the DR32 by wusing the SGETCHN and
SGETDEV system services (see Section 1.10). The DR32-specific
information is returned in the first three longwords of a
user-specified buffer, as shown in Figure 11-2 (Figure 1-9 shows the
entire buffer).

31 16 15 87 0

device characteristics

0 type class

0 data rate

Figure 11-2 DR32 Information
The first longword contains device-independent information. The
second and third longwords contain device-dependent data.
Table 11-1 lists the device-independent characteristics returned in

the first longword.

Table 11-1
Device-Independent Characteristics

Dynamic Bitl Meaning
(Conditionally Set)

DEVSM_AVL Device is available

Static Bitsl
(Always Set)

DEVSM 1DV Input device
DEV$M_ODV Output device
DEVSM RTM Real time device

1. Defined by the $DEVDEF macro.

11-4

DR32 INTERFACE DRIVER

The second longword contains information on the device class and type.
The device class for the DR32 is DC$_REALTIME and the device type for
the DR780 is DT$S_DR780. The $XFDEF macro defines these values.

The low order byte of the third longword contains the last data rate
value loaded into the DR32 data rate register.

11.4 PROGRAMMING INTERFACE

The DR32 is supported by a device driver, a high-level language
procedure library of support routines, and a program for microcode
loading.

After issuing a I0O$ STARTDATA QIO to the DR32 driver, application
programs communicate directly with the DR32 by inserting command
packets onto queues. This direct link between the application program
and the DR32 provides faster communication by avoiding the necessity
of going through the I/0 driver.

Two interfaces are provided for accessing the DR32: a QIO interface
and a support routine interface. The QIO interface requires that the
application program build command packets and insert them onto the
DR32 queues., The support routine 1interface, on 'the other hand,
provides procedures for these functions and, in addition, performs
housekeeping functions, such as maintaining command memory.

The support routine interface was designed to be called from
high-level languages, such as FORTRAN, where the data manipulation
required by the QIO interface might be awkward. Note, however, that
the wuser of the support routines must be equally as sophisticated as
the user of the QIO interface in terms of knowledge of the DR32 and
the meaning of the fields in the command packets.

11.4.1 DR32 - Application Program Interface

The application program interfaces with the DR32 through two memory
areas., These areas are called the command block and the buffer block.
The addresses and sizes of the blocks are determined by the
application program and passed to the DR32 driver as arguments to the
I0S_STARTDATA function. This QIO function starts the DR32 (see
Section 11.4.5.2). Both blocks are locked into memory while the DR32
is active. The buffer block defines the area of memory that is
accessible to the DR32 for the transfer of data between the far end
DR-device and the DR32. The command block contains the headers for
the three queues that provide the communication path between the DR32

and the application program, and space 1in which to build command
packets.

The interface between the DR32 and the application program contains
three queues: the input queue (INPTQ), the termination queue (TERMQ),
and the free queue (FREEQ). Information is transferred between the
DR32 and the far end DR-device through the use of command packets.
The three queue structures control the flow of command packets to and
from the DR32. The application program builds a command packet and
inserts it onto INPTQ. The DR32 removes the packet, executes the
specified command, enters some status information, and then inserts
the packet onto TERMQ. Unsolicited input from the far end DR-device
is placed in packets removed from FREEQ and inserted onto TERMQ.

11-5

DR32 INTERFACE DRIVER

The INPTQ, TERMQ, and FREEQ headers are located in the first six
longwords of the command block. Since the queues are self-relative,
that is, they use the VAX-11 self-relative queue instructions, the
headers must be quadword aligned. The application program must
initialize all queue headers. Figure 11-3 shows the position of the
queue headers 1in the command block. Section 11.4.2 describes queue
processing in greater detail.

input queue forward link (INPTQ head) 0
input queue backward link (INPTQ tail) 4
termination queue forward link (TERMQ head) 8
termination queue backward link (TERMQ tail) 12
free queue forward link (FREEQ head) 16
free queue backward link (FREEQ tail) 20
command packet space

Figure 11-3 Command Block (Queue Headers)

11.4.2 Queue Processing

Three queue structures control the flow of command packets to and from
the DR32:

e Input queue (INPTQ)
e Termination queue (TERMQ)
e Free queue (FREEQ)

The DR32 removes command packets from the heads of FREEQ and INPTQ and
inserts command packets onto the tail of TERMQ. For command sequences
initiated by the application program, the DR32 removes command packets
from the head of INPTQ, processes them, and returns them to the tail
of TERMQ. Queue processing 1is performed by the DR32 with the
equivalent of the INSQTI and REMQHI instructions. To remove a packet
from INPTQ, the DR32 executes the equivalent of REMQHI HDR, CMDPTR
where CMDPTR is a DR32 register used as a pointer to the current
command packet and HDR specifies the INPTQ header. To insert a packet
onto TERMQ, the DR32 executes the equivalent of INSQTI CMDPTR, HDR.
The user process performs . similar operations with the queues,
inserting packets onto the head or tail of INPTQ and normally removing
packets from the head of TERMQ.

11-6

DR32 INTERFACE DRIVER

If any of the queues are currently being accessed by the DR32, the
program's interlocked queue instructions will fail for one of the
following reasons:

1. The DR32 is currently removing a packet from INPTQ or FREEQ,
or inserting a packet onto TERMQ, and the operation will be
completed shortly.

2. The DR32 detects an error condition, for example, an
unaligned queue, that prevents it from completing the queue
operation. 1In this case, the transfer is aborted and the I/0
status block contains the error that caused the abort.

To distinguish between these two conditions, the application program
must include a queue retry mechanism that retries the queue operation
a reasonable number of times, for example 25, before determining that
an error condition exists. An example of a queue retry mechanism is
shown in the program example (see Section 11.7).

If the DR32 discerns that any of the queues are interlocked, it
retries the operation until it completes or the DR32 is aborted.

11.4.2.1 Initiating Command Sequences - If a command packet is
inserted onto an empty INPTQ, the application program must notify the
DR32 of this event. This is accomplished by setting bit 0 in a DR32
register, the GO bit. The I0$ STARTDATA QIO returns the GO bit's
address to the application program.” After notification by the GO bit
that there are command packets on its INPTQ, the DR32 continues to
process the packets until INPTQ is empty.

The GO bit can be safely set at any time. While processing command
packets, the DR32 ignores the GO bit. If the GO bit is set when the
DR32 is idle, the DR32 will attempt to remove a command packet from

INPTQ. If INPTQ is empty at this time, the DR32 clears the GO bit and
returns to the idle state.

11.4.2.2 Device-Initiated Command Sequences - If the DR-device that
interfaces the far end of the DDI 1is —capable of transmitting
unsolicited control messages, messages of this type can be transmitted
to the local DR32, These messages are not synchronized to the
application program command flow. Therefore, the DR32 wuses a third
queue, FREEQ, to handle unsolicited messages. Normally, the
application program inserts a number of empty command packets onto
FREEQ to allow the external device to transmit control messages.

If a control message is received from the far end DR-device, the DR32
removes an empty command packet from the head of FREEQ, fills the
device message field of this packet with the control message and, when
the transmission is completed, inserts the packet onto the tail of
TERMQ. (The device message field in this command packet must be large
enough for the entire message or a length error will occur.,) The
application program then removes the packet from TERMQ. If the
command packet is from FREEQ, the XFSM_PKT_FREQPK bit in the DR32
Status Longword is set.

Figure 11-4 shows the DR32 queue flow.

11-7

DR32 INTERFACE DRIVER

-

unsolicited control messages DR32 INSQTI CMDPTR,HDR

REMQHI HDR,CMDPTR

r_—__'__—j
{ | |
HEAD HEAD | TAIL
|
FREE INPUT I TERMINATION
QUEUE QUEUE | QUEUE
(FREEQ) (INPTQ) I (TERMQ)
|
TAIL TAIL | HEAD
_

A

CONTROLLING
PROCESS

Figure 11-4 DR32 Command Packet Queue Flow

11.4.3 Command Packets

To provide for direct communication between the controlling process
and the DR32, the DR32 fetches commands from user-constructed command
packets located in main memory. Command packets contain commands for
the DR32, such as the direction of transfer, and/or messages to be
sent to the far end DR-device. The DR32 is simply the conveyer of
these messages; it does not examine or add to their content. The
controlling process builds command packets and manipulates the three
queues, using the four VAX-11 self-relative queue instructions.
Figure 11-5 shows the contents of a DR32 command packet.

11-8

DR32 INTERFACE DRIVER

31 30 29 28 2726 2423 20 19 16 15

87 0

self-relative forward link

self-relative backward link

interrupt len
control err

control

select 000 0000

device control code** length of log area length of device message-

byte count

virtual address of buffer

residual memory byte count

residual DDI byte count

DR32 status longword

DR-device message

log area

* Bits 31:24 = Packet Control Byte
**Bits 23:16 = Command Control Byte

Figure 11-5

DR32 Command Packet

16

20

24

28

32

11.4.3.1 Length of Device Message Field -~ This field describes the
length of the DR-device message in bytes.
less than 256 bytes. Note,

field itself must always be an integral number of quadwords long.
example, if the application program requires a 5-byte device

The message length must be
however, that the length of device message

For
message,

it must write a 5 in the length of device message field, but allocate
In this case, the last
of the field are ignored by the DR32 when transmitting a
message, or written as zeros when receiving a message:

8 bytes for the device message field itself.

three bytes

DR32 status longword (DSL)

0 :XF$B_PKT_DEVMSG

(ignored or all 0's)

log area

11-9

DR32 INTERFACE DRIVER

The symbolic offset for the 1length of device message field is
XF$B_PKT MSGLEN.

11.4.3.2 Length of Log Area Field - This field describes the 1length
of the log area in bytes. The length specified must be less than 256
bytes. Note, however, that the length of log area field itself must
be an integral number of quadwords long. For example, 1if the
application program requires a 5-byte log area field, it must write a
5 in the 1length of log area field, but allocate 8 bytes for the log
area field itself. 1In this case, the last three bytes of the field
are written as zeros when receiving a log message (log messages are
always received). The symbolic offset for the 1length of log area
field is XF$SB_PKT LOGLEN.

11.4.3.3 Device Control Code Field -~ The device control field
describes the function performed by the DR32. The field occupies the
lower half of the command control byte (bits 16 through 23). VAX/VMS
defines the following values:

Symbol Value Function

XFS$K PKT RD 0 Read device

XF$K PKT RDCHN 1 Read device chained

XF$K_PKT_WRT 2 Write device

XF$K PKT WRTCHN 3 Write device chained

XF$K_PKT WRTCM 4 Write device control message
- 5 (reserved)

XF$SK PKT SETTST 6 Set self-test

XF$K_PKT_CLRTST 7 Clear self-test

XF$K_PKT_NOP 8 No-op

XFSK_PKT_DIAGRI 9 Diagnostic read internal

XF$K_PKT_DIAGWI 10 Diagnostic write internal

XFSK_PKT_DIAGRD 11 Diagnostic read DDI

XFSK PKT DIAGWC 12 Diagnostic write control message

XF$K_PKT_SETRND 13 Set random enable

XF$SK_PKT_CLRRND 14 Clear random enable

XF$K_PKT_HALT 15 Set HALT

Table 11-2 describes the functions performed by the different device
control codes.

11-10

DR32 INTERFACE DRIVER

Table 11-2

Device Control Code Descriptions

Function

Meaning

Read Device

Read Device
Chained

Write Device and
Write Device
Chained

Write Device
Control Message

Set Self-Test

Clear Self-Test

No Operation

This function specifies a data transfer from
the far end DR-device to the DR32. The
control select field (see Section 11.4.3.4)
describes the information to be transferred
prior to the initiation of the data
transfer.

This function specifies a data transfer from
the far end DR-device to the DR32. The DR32
data chains to the buffer specified in the
next command packet in INPTQ. A command
packet that specifies read device chained
must be followed by a command packet that
specifies either read device chained or read
device. All other device control codes
cause an abort. If read device chained is
specified, the chain continues. However, if
read device 1is specified, that command
packet is the last packet in the chain.

These functions specify data transfers from
the DR32 to the far end DR-device. Other-
wise, they are similar to Read Device and
Read Device Chained.

This function specifies the transfer of a
control message to the far end DR-device.
This message 1is contained 1in the device
message field of this command packet. The
Write Device Control Message function
directs the controlling DR32 to ignore the
byte count and virtual address fields in
this command packet.

This function directs the DR32 to set an
internal self test flag and to set a disable
signal on the DDI. This signal informs the
far end DR-device that the DR32 1is in
self-test mode. In this condition the DR32
can no longer communicate with the far end
DR-device.

This function directs the DR32 to clear the
internal self test flag set by the Set Self
Test function and return to the normal mode
of operation.

The NOP function specifically does nothing.

(continued on next page)

11-11

DR32 INTERFACE DRIVER

Table 11-2 (Cont.)

Device Control Code Descriptions

Function

Meaning

Diagnostic Read
Internal

Diagnostic Write
Internal

Diagnostic Read
DDI

This function directs the DR32 to fill the
memory buffer, which 1is described by the
virtual address and byte count specified in
the current command packet, with the data
that 1is stored in the DR32 data silo. The
buffer is filled in a «cyclic manner. For
example, on the DR780 every 128-byte section
of the buffer receives the silo data. The
amount of data stored in the buffer equals
the DDI byte count minus the SBI byte count.
The DDI byte count is equal to the original
byte count.

No data transmission takes place on the DDI
for this function.

On the DR780, the Diagnostic Read 1Internal
function destroys the first four bytes in
the silo before storing the data 1in the
buffer.

This function, together with the Diagnostic
Read Internal function, is used to test the
DR32 read and write capability. The
Diagnostic Write Internal function directs
the DR32 to store data, which is contained
in the memory buffer described by the
current command packet, in the DR32 data

silo, a fifo-type buffer. No data
transmission takes place on the DDI for this
function. The Diagnostic Write Internal

function terminates when either of the
following conditions occur:

° The memory buffer is empty (the SBI
byte count is 0).

° An abort has occurred.

At the time the function terminates, the
amount of data in the silo equals the DDI
byte count minus the SBI memory byte count
(Sections 11.4.3.9 and 11.4.3.10 describe
these values).

This function tests transmissions over the
data portion of the DDI. The DR32 must be
in the self-test mode. If not, an abort
will occur. On the DR780, the Diagnostic
Read DDI function transmits the contents of
DR32 data silo locations 0 - 127 over the
DDI and returns the data to the same
locations. If data transmission is normal,
that is, without errors, the residual memory
count is equal to the original byte count,
the residual DDI count 1is 0, and the
contents of the silo remain unchanged.

(continued on next page)

11-12

DR32 INTERFACE DRIVER

Table 11-2 (Cont.)

Device Control Code Descriptions

Function

Meaning

Diagnostic Write
Control Message

Set Random Enable
and Clear Random
Enable

Set HALT

This function tests transmissions over the
control portion of the DDI. The DR32 must
be in self-test mode. 1If not, an abort will
occur. The Diagnostic Write Control Message
function directs the DR32 to remove the
command packet on FREEQ and check the length
of message field. Then the first byte of
the message in the command packet on INPTQ
is transmitted and read back on the control
portion of the DDI. This byte is then
written into the message space of the packet
from FREEQ. The updated packet from FREEQ
is inserted onto TERMQ and is followed by
the packet from INPTQ.

The Set Random Enable function directs the
DR32 to accept read and write commands sent
by the far end DR-device. Range checking is
performed to wverify that all addresses
specified by the far end DR-device for
access are within the buffer block. Far end
DR-device initiated transfers to or from the
VAX-11 memory are conducted without
notification of the VAX-1ll processor or the
application program.

The Clear Random Enable function directs the
DR32 to reject far end DR-device initiated
transfers.

Random access mode must be enabled when the

DR32 is used in a processor-to-processor
link.

This function places the DR32 in a halt
state. The Set Halt function always
generates a packet interrupt regardless of
the wvalue 1in the interrupt control field
(see Section 11.4.3.6). If an AST routine
was requested on completion of the QIO
function (see Sections 11.4.5.2 and
11.4.6.2), the routine is called after the
command packet containing the Set HALT
function has been processed by the DR32.

The following symbolic offsets are defined for the device control code

field:
Symbol
XF$B~PKT_CMDCTL

XF$V_PKT_FUNC
XF$S_PKT_FUNC

Meaning

Byte offset from the beginning of the command

packet
Bit offset from XF$SB_PKT_CMDCTL
Size of this bit field

11-13

DR32 INTERFACE DRIVER

11.4.3.4 Control Select Field - This field describes what part of the
command packet will be transmitted to the far end DR-device. The
control select field is examined only for the read device, read device
chained, write device, and write device chained functions; for all
others, it is ignored. VAX/VMS defines the following values:

Symbol Value Function

XFSK_PKT_NOTRAN 0 No transmission. Nothing is transmitted over
the control portion of the DDI. However, if
the command packet specifies a data transfer,
data can be transmitted over the data portion
of the DDI. The primary use of this code Iis
during data chaining.

XFSK PKT CB 1 Command control byte (bits 23:16) only. This
-7 code directs the DR32 to transmit the
contents of the command control byte, which
includes the device control code field, to
the far end DR-device. This code 1is used
primarily at the start of data chains or

nondata chain commands.

XF$K_PKT_CBDM 2 Command control byte and device message.
This code directs the DR32 to transmit the
command control byte, and then the device
message. The primary use of this code is
when an interface requires more than one byte
of command.

XFSK PKT CBDMBC 3 Command control byte, device message, and
-7 byte count. This code directs the DR32 to
transmit the command control byte, the device
message, and the byte count (in that order).
The primary use of this code is during
processor-to-processor link operations. 1In
this case the device message must be exactly
four bytes in length and contain the virtual
address of the buffer 1in the far end
processor's memory.

The following symbolic offsets are defined for the «control select
field:

Symbol Meaning
XF$B_PKT_PKTCTL Byte offset from the beginning of the command
packet
XF$V_PKT_CISEL Bit offset from XF$B_PKT PKTCTL
XF$S_PKT_CISEL Size of this bit field

11.4.3.5 Suppress Length Error Field - This function prevents the
DR32 from aborting if the data transfer on the DDI is terminated by
the far end DR-device before the DDI byte counter has reached zero.

11-14

DR32 INTERFACE DRIVER

The following symbolic offsets are defined for the suppress 1length
error field:

Symbol Meaning
XF$B_PKT_PKTCTL Byte offset from the beginning of the command
packet
XF$V_PKT_SLNERR Bit offset from XF$B_PKT PKTCTL
XF$S__PKT_SLNERR Size of this bit field

11.4.3.6 Interrupt Control Field - This field determines the
conditions under which an interrupt 1is generated, on a packet by
packet basis, when the DR32 places this command packet onto TERMQ.
Depending on the conditions specified in the IO$_STARTDATA call, the
interrupt can set an event flag and/or call an AST routine,

Symbol Value Function
XF$K_PKT_UNCOND 0 Interrupt unconditionally
XFSK_PKT_ TMQMT 1 Interrupt only if TERMQ was previously
empty
XF$SK_PKT _NOINT 2,3 No interrupt

If the function is Set Halt, this field 1is ignored. The Set Halt
function unconditionally causes a packet interrupt. The following
symbolic offsets are defined for the interrupt control field:

Symbol Meaning
XF$SB_PKT_PKTCTL Byte offset from the beginning of the command
packet
XF$V_PKT INTCTL Bit offset from XF$B_PKT_ PKTCTL
XF$S_PKT_INTCTL Size of this bit field

11.4.3.7 Byte Count Field - This field specifies the size in bytes of
the data buffer for this data transfer. Together with the virtual
address of buffer field, this field describes the buffer in the buffer
block that the DR32 will read from or write into.

The following symbolic offset is defined for the byte count field:
Symbol Meaning

XF$B_PKTuBFRSIZ Byte offset from the beginning of the command
packet

11.4.3.8 Virtual Address of Buffer Field - This field specifies the
virtual address of the data buffer for this data transfer. Together
with the byte count field, this field describes the buffer 1in the
buffer block that the DR32 will read from or write into.

11-15

DR32 INTERFACE DRIVER

The following symbolic offset is defined for the virtual address of
buffer field:

Symbol Meaning

XF$B_PKT_ BFRADR Byte offset from the beginning of the command
packet

11.4.3.9 Residual Memory Byte Count Field - After completion of a
read device, read device chained, write device, write device chained,
diagnostic read internal, diagnostic write internal, or diagnostic
read DDI command specified in this command packet, the DR32 places the
packet onto TERMQ for return to the controlling process. At that
time, this field will contain a byte count. The difference between
the count specified in the byte count field and the count in this
field represents the number of bytes transferred to or from main
memory, depending on the direction of transfer.

The following symbolic offset is defined for the residual memory byte
count field:

Symbol Meaning

XF$L _PKT RMBCNT Byte offset from the beginning of the command
packet

(See also the descriptions of the Diagnostic Read Internal and
Diagnostic Write Internal functions in Table 11-2,)

11.4.3.10 Residual DDI Byte Count Field - After completion of a read
device, read device chained, write device, write device chained,
diagnostic read internal, diagnostic write internal, or diagnostic
read DDI command specified in this command packet, the DR32 places the
packet onto TERMQ for return to the controlling process. At that
time, this field contains a byte count., The difference between the
count specified in the byte count field and the count in this field
represents the number of bytes transferred to or from the far end
DR-device over the DDI, depending on the direction of transfer.

The following symbolic offset is defined for the residual DDI byte
count field:

Symbol Meaning

XF$SL PKT RDBCNT Byte offset from the beginning of the command
packet

(See also the descriptions of the Diagnostic Read 1Internal and
Diagnostic Write Internal functions in Table 11-2.)

11-16

DR32 INTERFACE DRIVER

11.4.3.11 DR32 Status Longword (DSL) - The DR32 stores the final
status for a command packet in the DR32 status longword before
inserting the packet onto TERMQ. The longword contains two distinct
status fields:
31 2423 16 15 0
0 DDl status 16 bits of status
Table 11-3 lists the names for the status bits returned in the DR32
status longword.
Table 11-3
DR32 Status Longword (DSL) Status Bits
Name Meaning
16 bits of status
XFSV_PKT_SUCCESS If set, the command was performed suc-
XF$M_PKT_SUCCESS cessfully. If not set, one of the
following bits must be set:
XFS$M_PKT_INVPTE
XFSM_PKT_RNGERR
XF$M_PKT_UNGERR
XF$M_PKT_INVPKT
XF$M_PKT_FREQMT
XF$M_PKT_DDIDIS
XF$M_PKT_INVDDI
XFSM_PKT_LENERR
XF$M_PKT_DRVABT
XF$M_PKT_PARERR
XF$M_PKT_DDIERR
XF$V_PKT_CMDSTD If set, the command specified 1in this
XF$M_PKT CMDSTD packet was started.
XFSV_PKT_INVPTE If set, the DR32 accessed an invalid page
XF$SM_PKT_INVPTE table entry.
XF$V_PKT_FREQPK If set, this command packet was removed
XF$M_PKT_FREQPK from FREEQ.
XF$V_PKT_DDIDIS If set, the far end DR-device is disabled.
XF$M_PKT DDIDIS.
XF$V_PKT_ SLFTST If set, the DR32 is in self-test mode.
XF$M_PKT_SLFTST,
XF$V_PKT_RNGERR Range error, If set, a user-provided.
XF$M_PKT_RNGERR address was outside the command block or
buffer block.

(continued on next page)

11-17

DR32

DR32 INTERFACE DRIVER

Table 11-3 (Cont.)

Status Longword (DSL) Status Bits

Name

Meaning

XF$V_PKT_UNQERR
XF$M_PKT_UNQERR

XF$V_PKT_INVPKT
XF$M_PKT_INVPKT

XF$V_PKT_FREQMT
XF$M_PKT_FREQMT

XF$V_PKT_RNDENB
XFSM_PKT RNDENB

XF$V_PKT_INVDDI
XF$M_PKT_INVDDI

XF$V_PKT_LENERR
XF$M_PKT_LENERR

XF$V_PKT_DRVABT
XF$SM_PKT_DRVABT

XF$V_PKT_PARERR
XF$M_PKT_PARERR

If set, a queue element was not aligned on
a quadword boundary.

If set, this packet was not a wvalid DR32
command packet.

If set, a message was received from the far
end DR-device and FREEQ was empty.

If set, random access mode is enabled.

If set, a protocol error occurred on the
DDI.

If set, the far end DR-device terminated
the data transfer before the required
number of bytes were sent, or a message was
received from the far end DR-device and the
device message field in the command packet
at the head of FREEQ was not 1large enough
to hold it.

The I/0 driver aborted the transfer.
Usually the result of a Cancel 1/0
(SCANCEL) system service request.

A parity error occurred on the data or
control portion of the DDI.

DDI Status

XF$V_PKT_DDISTS
XF$S_PKT_DDISTS

XFSV_PKT_ NEXREG
XFSM_PKT NEXREG

XF$V_PKT_LOG
XF$M_PKT_LOG

XFSV_PKT _DDIERR
XF$SM_PKT DDIERR

DDI status. This field is the 1-byte DDI
register 0 of the far end DR-device. The
following three bits are offsets to this
field.

An attempt was made to access a non-
existent register in the far end DR-device.

The far end DR-device registers are stored
in the log area.

An error occurred on the far end DR-device.

11.4.3.12 Device

Message Field - This field contains control
information to be sent to the far end DR-device.
than one byte of command is required. The number of bytes 1in the

It is used when more

device message is specified in the length of device message field (see
Section 11.4.3.1). (The number of bytes allocated for the 1length of
device message field must be rounded up to an integral number of
quadwords.)

11-18

DR32 INTERFACE DRIVER

If the far end DR-device is a DR32 that 1is connected to another
processor, a device message can be sent only if the function specified
in the device control code field of this command packet 1is read
device, read device chained, write device, write device chained, or
write device control message.

In the case of a write device control message, the data in the device
message field 1is treated as unsolicited input and written into the
device message field of a command packet taken from the far end DR32's
FREEQ.

In the case of a read or write (either chained or unchained) function,
the only message allowed is the address of the buffer in the far end
processor that either contains or will receive the data to be
transferred. This device message must be exactly four bytes in
length. In this case the device message is not stored in the command
packet from the far end DR32's FREEQ, but is used by the far end DR32
to perform the data transfer.

The device message field is also used in command packets placed on
FREEQ to convey unsolicited control messages from the far end
DR-device.

The symbolic offset for the device message field is XF$SB_PKT DEVMSG.

11.4.3.13 Log Area Field - This field receives the return status and
other information from the far end DR-device's DDI registers. Logging
must be initiated by the far end DR-device., The presence of a log
area does not automatically cause logging to occur.

If the DR32 is connected in a processor-to-processor confiquration,
the log area field is not used.

11.4.4 DR32 Microcode Loader

The DR32 microcode loader program XFLOADER must be executed prior to
using the DR32. Running XFLOADER requires CMKRNL and LOG IO
privileges. Typically, a command to run XFLOADER is placed in the
site-specific system starting file, XFLOADER locates the file
containing the DR32 microcode in the following manner:

1. XFLOADER attempts to open a file wusing the logical name
XFcSWCS, where "c" is the DR32 controller designator. For
example, to load microcode on device XFAO, XFLOADER attempts
to open a file with the logical name XFASWCS.

2. 1If the opening procedure described in Step 1 fails, XFLOADER

attempts to open the file SYS$SYSTEM:XF780.ULD which is the
default location and filename for the DR780 microcode.

11-19

DR32 INTERFACE DRIVER

After loading microcode into all available DR32s, XFLOADER either
exits or hibernates, according to the following:

e If XFLOADER was run with an ordinary RUN command, that is, RUN
XFLOADER, it exits after loading microcode.

e If XFLOADER was run as a separate process, as with the command
RUN/UIC=[1,1]/PROCESS=XFLOADER SYSS$SYSTEM:XFLOADER

then it hibernates after loading microcode. In this case,
XFLOADER automatically reloads microcode into the DR32s after
a power recovery.

XFLOADER performs a load microcode QIO to the DR32 driver.

11.4.5 DR32 I/0 Function Codes

The DR32 I/0 functions are:
e Load microcode into the DR32.
e Start a DR32 data transfer.

Normally, the controlling process stops data transfers with a Set HALT
command packet. However, the Cancel I/0 on Channel (SCANCEL) system
service can be used to abort data transfers and complete the 1/0
operation.

11.4.5.1 Load Microcode - This I/0 function resets the DR32 and loads
an image of DR32 microcode. The load microcode function also sets the
DR32 data rate to the last specified value. Physical I/0 privilege is
required. VAX/VMS defines a single function code:

I0$_LOADMCODE - load microcode

The load microcode function takes two device/function-dependent
arguments:

e Pl = the starting virtual address of the microcode image that
is to be loaded into the DR32

e P2 = the number of bytes to be loaded (maximum of 5120 for the
DR780)

If any data transfer requests are active at the time a load microcode
request 1is issued, the load request is rejected and SSS_DEVACTIVE is
returned in the I/0 status block.

The microcode is verified by addressing each microword and checking
for a parity error. (The microcode is not compared to the buffer
image.) If there are no parity errors, then the microcode was 1loaded
successfully and the driver sets the microcode valid bit in one of the
DR32 registers, If there is a parity error, SS$ PARITY is ‘returned in
the I/0 status block. (The wvalid bit 1is ~cleared by the reset
operation.)

In addition to SSS_PARITY, three other status codes can be returned in
the I/0 status block: SS$_NORMAL, SS$_DEVACTIVE, and SS$_POWERFAIL.

11-20

DR32 INTERFACE DRIVER

11.4.5.2 Start Data Transfer - This function specifies a command
table that holds the parameters required to start the DR32. 1In
addition to several other parameters, the command table contains the
size and address of the command and buffer blocks, and the address of
a command packet AST routine. No user privilege is required. VAX/VMS
defines a single function code:

I0$_STARTDATA - start data transfer
The start data transfer function takes one function modifier:
IO$M_SETEVF - set event flag
If I0$M_SETEVF is included with the function code, the specified event
flag 1is set whenever a command packet interrupt occurs, and when the
start data transfer QIO 1is completed. If TIOSM_SETEVF is not
specified, the event flag is set only when the QIO is completed.

IOSM_SETEVF should not be used with the $QIOW macro because the SQIOW
will return after the event flag is set the first time.

The start data transfer function takes two device/function-dependent
arguments:

e Pl = the starting virtual address of the Data Transfer Command
Table in the user's process

e P2 = the length in bytes (always 32) of the Data Transfer
Command Table. (The symbolic name is XFSK_CMT_LENGTH.)

The format of the Data Transfer Command Table is shown in Figure 11-6
(offsets are shown in parentheses).

0
command block size (XF$L__CMT_CBLKSZ)
4
command block address (XF$L_CMT__CBLKAD)
8
buffer block size (XF$L_CMT_BBLKSIZ)
12
buffer block address (XF$L__CMT_BBLKAD)
16
command packet AST routine address (XF$L__CMT_PASTAD)
20
command packet AST parameter (XF$L__CMT_PASTPM)
24
flags data rate
(XF$B_CMT_FLAGS) (XF$B_CMT_RATE)
28
address of the location to store the GO bit address
(XF$L_CMT_GBITAD)

Figure 11-6 Data Transfer Command Table

11-21

DR32 INTERFACE DRIVER

Since the command block contains the queue headers for INPTQ, TERMQ,

and FREEQ, 1its address 1in the second 1longword must be quadword
aligned.

The command packet AST routine specified in the fifth 1longword is
called whenever the DR32 signals a command packet interrupt. A
command packet AST should be distinguished from a QIO AST (astadrs
argument). A command packet interrupt occurs whenever the DR32
completes a function and returns a packet that specifies an interrupt
(see Section 11.4.3.6) by inserting it onto TERMQ. The astadrs
argument address is called when the QIO is completed. If either the
command packet AST address or the astadrs address is 0, the respective
AST is not delivered. 1If the command packet specifies the Set HALT
function, a command packet interrupt occurs regardless of the state of
the packet interrupt bits.

The seventh longword contains the data rate byte and a flags byte.
The data rate byte controls the DR32 clock rate. The data rate value
is considered to be an unsigned integer.

For the DR780, the relationship between the value of the data rate
byte and the actual data rate is given by the following formula:

40

Data rate (in megabytes/sec) =
(256 - value of data rate byte)

For example, a data rate value of 236 corresponds to an actual data

rate of 2.0 Megabytes/sec. Note that the DR780 ignores data rate
values greater than 251.

The parameter XFMAXRATE set at system generation 1limits the maximum
data rate that can be set. This parameter limits the maximum data
rate because very high data rates on certain configurations can cause
a processor timeout. If the user attempts to set the data rate higher
than the rate allowed by XFMAXRATE, the error status SS$_BADPARAM is
returned in the I/0O status block.

VAX/VMS defines the following flag bit values:

XF$V CMT SETRTE If set, XF$B CMT RATE specifies the data
-7 rate. If clear, the data rate established by
a previous $IO_STARTDATA QIO 1is used. The
I0$ LOADMCODE function sets the data rate to
the last value used. If the data rate has
not been previously set, a value of 0 is
used.

XFSV_CMT DIPEAB If set, parity errors on the data portion of
- the DDI do not cause device aborts. If
clear, a parity error results in a device

abort.

The eighth longword contains the address of a location to store the
address of the GO bit. This bit must be set whenever the application
program inserts a command packet onto an empty INPTQ. The GO bit
register is mapped in system memory space and the address is returned
to the user.

11-22

DR32 INTERFACE DRIVER

The I0$ STARTDATA function locks the command and buffer blocks into
memory and starts the DR32. Whenever the DR32 interrupts with a
command packet interrupt, the driver queues a packet AST (if an AST
address is specified) and, if IOSM SETEVF is specified, sets the event
flag. The QIO remains active until one of the following events occur:

1. A Set HALT command packet is processed by the DR32.
2. The data transfer aborts.

3. A Cancel I/O (SCANCEL) system service 1is 1issued on this
channel.

If an abort occurs, the second 1longword of the 1I/0 status block
contains additional bits that 1identify the cause of the abort (see
Section 11.5).

The start data transfer function can return twelve error codes in the
1/0 status block: SS$ BUFNOTALIGN, SS$_CTRLERR, SS$_ABORT,
SS$_CANCEL, SS$ EXQUOTA, SS$ _INSFMEM, SS$_MCNOTVALID, SS$_NORMAL,
SS$_IVBUFLEN, SSS_DEVREQERR, SS$_PARITY, and SS$_POWERFAIL.

11.4.6 High-level Language Interface

VAX/VMS supports a set of program-callable procedures that provide
access to the DR32. The formats of these calls are documented here
for VAX-11 FORTRAN users. VAX-11 MACRO users must set up a standard
VAX/VMS argument block and issue the standard procedure CALL.
(Optionally, VAX-11 MACRO users canh access the DR32 directly by
issuing a 1I0S STARTDATA QIO, building command packets, and inserting
them onto INPTQ.) Users of other high-level languages can also specify
the proper subroutine or procedure invocation.

VAX/VMS provides six high-level 1langquage procedures for the DR32,
They are contained in the default system library, STARLET.OLB. Table
11-4 lists these procedures. Procedure arguments are either input or
output arguments, that is, arguments supplied by the user or arguments
that will contain information stored by the procedure. Except for
those that are 1indicated as output arguments, all arguments in the
following call descriptions are input arguments. By default, all
procedure arguments are integer variables unless otherwise indicated.

VAX/VMS high-level language support routines for the DR32 do the
following:

e Issue QIOs
e Allocate and manage the command memory

e Build command packets, insert them onto INPTQ, and set the GO
bit

e Remove command packets from TERMQ and return the information
they contain to the controlling process

e Use ACTION routines for program - device synchronization

11-23

DR32 INTERFACE DRIVER

Table 11-4
VAX-11 Procedures for the DR32
Subroutine Function
XF$SETUP Defines command and buffer areas; initializes
queues
XF$SSTARTDEV Issues a QIO that starts the DR32
XFSFREESET Releases command packets onto FREEQ
XFSPKTBLD Builds command packets; releases them onto INPTQ
XF$SGETPKT Removes a command packet from TERMQ
XF$SCLEANUP Deassigns the device channel and deallocates the
command area

VAX/VMS also provides a FORTRAN parameter file, SYSSLIBRARY:XFDEF.FOR,
that can be included in FORTRAN programs. This file defines many (but
not all) of the XF$... symbolic names described in this chapter. For
example, SYSSLIBRARY:XFDEF.FOR contains symbolic definitions for
function codes (that is, device control codes), interrupt control
codes, command control codes, and masks for error bits set in the I/0
status block and the DR32 Status Longword. To include these
definitions in a FORTRAN program, insert the following statement in
the source code:

INCLUDE 'SYS$SLIBRARY:XFDEF.FOR'

11.4.6.1 XFSSETUP - The XF$SETUP subroutine defines memory space for
the command and buffer areas, and initializes INPTQ, TERMQ, and FREEQ.
The call to XFSSETUP must be made prior to any calls to other DR32
support routines.

The format of the XF$SETUP call is as follows:

CALL XF$SETUP(contxt,barray,bufsiz,numbuf, [idevmsg],[idevsiz],
(ilogmsg],[ilogsiz],[cmdsiz],[status])

Argument descriptions are as follows:

contxt A 30-longword user-supplied array that is maintained by
the support routines and is used to contain context and
status information concerning the current data transfer
(see Section 11.4.6.5). The contxt array provides a
common storage area that all support routines share.
For increased performance, contxt should be
longword-aligned.

11-24

barray

bufsiz

numbuf

idevmsg

idevsiz

ilogmsg

ilogsiz

cmdsiz

DR32 INTERFACE DRIVER

Specifies the starting virtual address of an array of
buffers that, in the case of an output operation
contain information for transfer by the DR32, or in the
case of an input operation, will contain information
transferred by the DR32. For example, if barray is
declared INTEGER*2 BARRAY (I,J), I is the size of each
data bBuffer in words and J is the number of buffers.
The lower bound on both indices is assumed to be 1.
All buffers in the array must be contiguous to each
other and of fixed size.

Specifies the size in bytes of each buffer in the
array. All buffers are the same size. If the barray
argument is declared as stated above, bufsiz = I*2,
The bufsiz argument length is one longword.

Specifies the number of buffers in the array. If the
barray argument is declared as 1in the preceding
paragraph, numbuf = J. The area of memory described by
the barray, bufsiz, and numbuf arguments is used as the
buffer block for DR32 data transfers, The numbuf
argument length is one longword.

Specifies an array, declared by the application
program, that 1is wused to store an unsolicited input
device message from the far end DR-device. The DR32
stores unsolicited input in the device message field of
a command packet from FREEQ and places that packet onto
TERMQ. When XFSGETPKT removes such a packet from
TERMQ, it copies the device message field into the
idevmsg array. The <calling program is then notified
that information has been stored in the idevmsg array.
The idevmsg argument is optional; the argument must be
given if any unsolicited input is anticipated.

Specifies the size in bytes of the idevmsg array. The
maximum size of a device message is 256 bytes. The
idevsiz argument is optional; if idevmsg is specified,
idevsiz must be specified. The idevsiz argument length
is one word.

Specifies an array, declared by the application
program, that is used to store log information from the
far end DR~device contained in the log area field of
the command packet. Log information is
hardware~-dependent data that is returned by the far end
DR-device. The XF$SETUP routine stores the address and
size of the ilogmsg array; the log information is
stored in the ilogmsg array by the XFSGETPKT routine.
The ilogmsg argument is optional; the argument must be
given if any log information is anticipated.

Specifies the size in bytes of the ilogmsg array. The
maximum size of a log message 1is 256 bytes. The
ilogsiz argument is optional. However, if ilogmsg is
specified, 1ilogsiz must be specified. The ilogsiz
argument length is one word.

Specifies the amount of memory space to be allocated
from which command packets are to be built. The user
must consider the following factors when deciding how
much memory to allocate for this purpose:

1. The number of command packets that the
application program will be using.

11-25

status

DR32 INTERFACE DRIVER

2, That the device message and log area fields in
command packets are rounded up to quadword
boundaries.

3. That the size of the command packet itself is
rounded up to an 8-byte boundary.

4. That cmdsiz will be rounded up to a page
boundary.

The cmdsiz argument is optional; argument length is
one longword. If defaulted, the allocated space is
equal to:

(numbuf)*(32+idevsiz+ilogsiz)*(3)

which is rounded up to a full page.

Memory space for command packets is obtained by calling
LIBSGET_VM.

This output argument receives the VAX/VMS success or
failure code of the XF$SETUP call:

SSS_NORMAL Normal successful completion
SS$_BADPARAM Invalid input argument
Error returns from LIBSGET_VM

The status argument is optional; argument length is
one longword.

11.4.6.2 XFSSTARTDEV - The XFS$STARTDEV subroutine issues the QIO
request that starts the DR32 data transfer.

The format of the XF$STARTDEV call is as follows:

CALL XF$STARTDEV (contxt,devnam, [pktast], [astparm],[efn], [modes],

[datart],[status}])

Argument descriptions are as follows:

contxt

devnam

pktast

Specifies the array that contains context and status
information (see Section 11.4.6.1).

Specifies the device name (logical name or actual
device name) of the DR32. All letters in the resultant
string must be capitalized and the device name must
terminate with a colon, for example, "XFAO0:". The
devnam datatype is character string.

Specifies the address of an AST routine that is «called
each time a command packet that specifies an interrupt
in its interrupt control field is returned by the DR32,
that 1is, placed onto TERMQ (see Section 11.4.7.2).
This AST routine is also called on completion of the
QIO request. Normally, the AST routine would call
XFSGETPKT to remove command packets from TERMQ until
TERMQ is empty. The pktast argument is optional.

11-26

astparm

efn

modes

datart

status

DR32 INTERFACE DRIVER

Specifies a longword parameter that is included in the
call to the pktast-specified AST routine. The format
used to call the AST routine is:

CALL pktast(astparm)

The astparm argument is optional; argument 1length is
one longword. If astparm is not specified, pktast is
called with no parameter.

If the event flag must be determined by the application
program, efn specifies the number of the event flag
that is set when a packet interrupt 1is -delivered.
Otherwise, it is not necessary to include this argument
in a XF$STARTDEV call. 1If defaulted, efn is 21. The
efn argument length is one word.

The event flag (either the default or the event flag
specified by this argument) 1is set for every packet
interrupt, and also when the QIO completes.

Specifies the mode of operation. VAX/VMS defines the
following value:

2 = parity errors on the data portion of the DDI do not
cause the device to abort.

If defaulted, modes is 0 (a parity error causes the
device to abort)

Specifies the data rate. The data rate controls the
speed at which the transfer takes place. The data rate
is considered to be an unsigned integer in the range 0
to 255. The relationship between the specified data
rate value and the actual data rate 1is given by the
following formula:

40
Data rate =
(in megabytes/sec) (256 - value of data
rate byte)

For example, a data rate value of 236 corresponds to an
actual data rate of 2.0 megabytes/sec. Note that the
DR780 ignores data rate values greater than 251,

If datart is defaulted, the previously set data rate is
used. The datart argument length is one byte.

This output argument receives the VAX/VMS success or
failure code of the XFSSTARTDEV call:

SS$ NORMAL Normal successful completion

SS$™ BADPARAM Required parameter defaulted

Error returns from $CREATE (which 1is called to
assign a channel to the device) and $QIO

The status argument is optional; argument length is
one longword.

11-27

DR32 INTERFACE DRIVER

11.4.6.3 XFSFREESET - The XFSFREESET subroutine releases command
packets onto FREEQ. These packets are then available to the DR780 to
store any unsolicited input from the far end DR-device. If
unsolicited input from the far end DR-device 1is expected, the
XFSFREESET call should be made before the XF$SSTARTDEV call is issued.

Idevsiz, the argument that specifies the size of the idevmsg array in
the call to XF$SETUP, defines the size of the device message field in
command packets inserted onto FREEQ. This 1is because unsolicited
device messages are copied from the device message field of the
command packet to the idevmsg array.

Note that the XF$FREESET subroutine may occasionally disable ASTs for
a very short period.

The format of the XFSFREESET call is as follows:

CALL XFSFREESET (contxt, [numpkt],[intctrl], [action],[actparm],
[status])

Argument descriptions are as follows:

contxt Specifies the array that contains context and status
information (see Section 11.4.6.1).

numpk t Specifies the number of command packets to be released
onto FREEQ. The numpkt argument is optional; argument
length is one word. If defaulted, numpkt is 1,

intctrl Specifies the conditions under which an AST is
delivered (and the event flag set) when the DR32 places
this command packet (or packets) on TERMQ (see Section
11.4.6.2). VAX/VMS defines the following values:

0 = unconditional AST delivery and event flag set

1 = AST delivery and event flag set only if TERMQ Iis
empty '
2 = no AST interrupt or event flag set

The intctrl argument is optional; argument length is
one word., If defaulted, intctrl is 0.

action Specifies the address of a routine that is called when
any command packet built by this call to XF$SFREESET is
removed from TERMQ by XFSGETPKT (see Section 11.4.7.3).
The action argument is optional.

actparm A longword parameter that 1is passed to the action

routine when the action routine is called (see Section
11.4.7.3). The actparm argument is optional.

11-28

DR32 INTERFACE DRIVER

status This output argument receives the VAX/VMS success or
failure code of the XFSFREESET call:

SS$ NORMAL Normal successful completion
SS$ BADQUEUEHDR FREEQ interlock timeout
SS$TINSFMEM Insufficient memory to build
- command packets
SHR$ NOCMDMEM Command memory is not allocated
- (usually because the data
transfer has stopped and

XFSCLEANUP has been called, or
because XFS$SETUP has not been
called)

11.4.6.4 XFSPKTBLD - The XFSPKTBLD subroutine builds command packets
and releases them onto INPTQ.

Note that the XFS$PKTBLD subroutine may occasionally disable ASTs for a
very short period.

The format of the XFSPKTBLD call is as follows:

CALL XF$PKTBLD (contxt,func, [index], [size], [devmsg], [devsiz],
[logsiz], [modes], [action], [actparm], [status])

Argument descriptions are as follows:

contxt Specifies the array that contains context and status
information (see Section 11.4.6.1).

func Specifies the device control code. Device control
codes describe the function the DR32 is to perform.
The func argument length is one word. VAX/VMS defines
the following values (Table 11-2 describes the
functions in greater detail):

Symbol Value Function

XF$K_PKT RD
XF$K_PKT_RDCHN
XF$K_PKT_WRT
XFSK_PKT WRTCHN
XF$K_PKT_WRTCM

Read device

Read device chained

Write device

Write device chained

Write device control message
(reserved)

Set self-test

Clear self-test

XFSK PKT SETTST
XF$K_PKT_CLRTST
XF$K_PKT NOP No-op

XFSK_PKT_DIAGRI Diagnostic read internal
XF$K_PKT_DIAGWI 10 Diagnostic write internal
XF$K_PKT—DIAGRD 11 Diagnostic read DDI

XF$K PKT DIAGWC 12 Diagnostic write control message
XF$K_PKT SETRND 13 Set random enable

XFSK_PKT CLRRND 14 Clear random enable

XF$K_PKT HALT 15 Set HALT

oUW NDHO

11-29

index

size

devmsg

devsiz

logsiz

modes

DR32 INTERFACE DRIVER

Specifies the index of a data buffer specified by the
barray argument (see Section 11.4.6.1). The specific
index value given means that elements barray (1,index)
through barray (size,index) will be transferred, that
is, one buffer full of data. The index argument is
optional and only used when the function specifies a
data transfer, that is, a read device, read device
chained, write device, or write device chained
function. The index argument length is one word.

Specifies a byte count to be transferred. This
argument 1is optional and only used when the function
specifies a data transfer. If defaulted, the number of
bytes to be transferred is assumed to be the size of
the buffer (specified by the bufsiz argument in the
call to XF$SETUP). 1If the size argument is given, then
the specified number of bytes of data (barray (1,index)
through barray (size,index)) will be transferred. 1If
size is defaulted and the function specifies a data
transfer, then barray (1,index) through barray
(bufsiz,index) will be transferred. The size argument
length is one longword.

Specifies a variable that contains the device message
to be sent to the far end DR-device. Provides
additional control of the far end DR-device see Section
11.4.3.12. The devmsg argument is optional.

Specifies the size in bytes of the devmsg variable., If
the modes argument specifies that a device message is
to be sent over the control portion of the DDI, devsiz
specifies the number of bytes of devmsg that will be
sent to the far end DR-device.

Specifies the size of the log message expected from the
far end DR-device. The logsiz argument is optional,
argument length is one word. If defaulted, logsiz 1is
0.

Provides additional control of the transaction.
VAX/VMS defines the following values:

Value Meaning

+8 Only the function code 1is sent over the
control portion of the DDI to the far end
DR~device. Only for read device, read device
chained, write device, and write device
chained functions.

+16 The function code and the device message are
sent over the control portion of the DDI to
the far end DR-device. Only for read device,
read device chained, write device, and write
device chained functions.

11-30

action

actparm

status

DR32 INTERFACE DRIVER

+24 The function code, the device message, and
the buffer size are sent over the control
portion of the DDI to the far end DR-device.
Only for read device, read device chained,
write device, and write device chained
functions.

If none of the above three values is
selected, nothing 1is transmitted over the
control portion of the DDI to the far end
DR-device.

+32 Length errors are suppressed. If not
selected, a length error results in an abort.

+64 An AST should be delivered (and an event flag
set) when this command packet is inserted
onto TERMQ, provided TERMQ is empty.

+128 No AST is delivered or event flag set for
this command packet.

If both +64 and +128 are selected, +128 takes
precedence.

If neither of the above two values is
selected, ASTs are delivered and the event
flag 1is set unconditionally, that is,
whenever this command packet is placed onto
TERMQ.

+256 Insert this command packet at the head of
INPTQ. If not selected, insert the packet at
the tail of INPTQ.

The modes argument default value is 0.

Specifies the address of a routine that is called when
XFSGETPKT removes this command packet from TERMQ. This
occurs after the DR32 has completed the command
specified in the packet (see Section 11.4.7.3). The
action argument length is one longword.

A longword parameter that 1is passed to the action
routine when the action routine is called (see Section
11.4.7.3). The actparm argument is optional.

This output argument receives the VAX/VMS success or
failure code of the XFSPKTBLD call:

SSS_NORMAL Normal successful completion

SS$ BADPARAM Input parameter error

SS$™ BADQUEUEHDR INPTQ interlock timeout

SS$T INSFMEM Insufficient memory to build
- command packets

SHR$S NOCMDMEM Command memory hot allocated
- (usually because the data

transfer has stopped and

XFSCLEANUP has been called, or
because XFS$SETUP has not been
called)

11-31

DR32 INTERFACE DRIVER

11.4.6.5 XFSGETPKT - The XFSGETPKT subroutine removes a command
packet from TERMQ.

Note that the XFSGETPKT subroutine may occasionally disable ASTs for a
very short period.

The format of the XFSGETPKT call is as follows:

CALL XFSGETPKT (contxt, [waitflg],[func],{index],[devflag],
[logflag], [status])

Argument descriptions are as follows:

contxt Specifies the array that contains the context and
status information (see Section 11.4.6.1). On return
from XFSGETPKT, the first eight longwords of the contxt
array are filled with the status of the data transfer:

:CONTXT
— 170 status block —
4
control information 8
byte count 12
M--:iyrtual address of buffer 16
residual memory byte count 20
vvvvvv) residual DDI byte count 24
DR32 status longword (DSL) 28

The first two longwords are the I/0 status block. The
next six 1longwords are copied directly from bytes 8
through 31 of the command packet.

This information is returned by the DR32 as status in
each command packet. With the exception of the I/0
status block, the information is copied by XFSGETPKT
into the contxt array whenever XFS$SGETPKT removes a
command packet from TERMOQ.

The I/0 status block is stored only after the data
transfer has halted and it contains the final status of
the transfer. Section 11.5 describes the 1I/0 status
block.

See Section 11.4.2 for a description of the remaining
fields.

11-32

DR32 INTERFACE DRIVER

waitflg Specifies the consequences of an attempt by XFSGETPKT
to remove a command packet from an empty TERMQ. 1If
waitflg is 0 (default), XFSGETPKT waits for the event
flag to be set and then removes a packet from TERMQ.
If waitflg is 1, XFSGETPKT returns immediately with a
failure status. Normally, waitflg is set to 1 (.TRUE.)
for AST synchronization and set to 0 (.FALSE.) for
event flag synchronization (see Section 11.4.7). The
waitflg argument is optional.

func This output argument receives the device control code
specified in this command packet (see Section
11.4.6.4). The func argument 1is optional; argument

length is one word.

index If this command packet specified a data transfer, this
output argument receives the buffer index specified
when this command packet was -built by XF$SPKTBLD (see
Section 11.4.6.4). The index argument is optional;
argument length is one word.

devflag If set to .TRUE. (255), this output argument indicates
that a device message was stored in the idevmsg array,
which is described in the XF$SETUP call (see Section
11.4.6.1). The devflag argument is optional; argument
length is one byte.

logflag If set to .TRUE. (255), this output argument indicates
that a 1log message was stored in the ilogmsg array,
which is described in the XF$SETUP call (see Section
11.4.6.1)., The logflag argument is optional; argument
length is one byte.

status This output argument receives the status of the
XFSGETPKT call:

SSS_NORMAL Normal successful completion
SS$ BADQUEUEHDR TERMQ interlock timeout
SHRS_QEMPTY The TERMQ was empty but the

transfer is still in progress.
Oonly returned if waitflg is
.TRUE.
SHRS HALTED TERMQ was empty, the transfer is
- complete, and the I/0 status
block contains the final status.
XFSCLEANUP has been called
-automatically. Subsequent calls

to XFSGETPKT return
SHRS NOCMDMEM.
SHRS NOCMDMEM Command memory not allocated.
- Usually indicates either:
1. XF$SETUP was not
called.

2. XFSCLEANUP was called.

11.4.6.6 XFSCLEANUP - The XFS$SCLEANUP subroutine deassigns the channel
and deallocates the command area allocated by XFSSETUP. If XFSGETPKT
detects a TERMQ empty condition and the transfer has halted, it will
automatically call XFSCLEANUP. However, 1if the transfer either
terminates in a SS$_ CTRLERR or SS$_BADQUEHDR error, or is

11-33

DR32 INTERFACE DRIVER

intentionally terminated, XF$GETPKT may not detect these conditions
and XFSCLEANUP should be called explicitly.

The format of the XFSCLEANUP call is as follows:
CALL XFS$SCLEANUP (contxt, [status])
Argument descriptions are as follows:

contxt Specifies the array that contains context and status
information (see Section 11.4.6.1).

status This output argument receives the status of the
XFSCLEANUP call:

SSS$ NORMAL Normal successful completion
SHRS_NOCMDMEM Command memory not allocated
Error returns from LIBSFREE_VM and $DASSIGN

11.4.7 User Program - DR32 Synchronization

Synchronization of high-level language application programs with the
DR32 can be achieved in three ways:

e Event flags
e AST routines

e Action routines

11.4.7.1 Event Flags - Event flag synchronization 1is attained by
calling the XFSGETPKT routine (see Section 11.4.6.5) with the waitflg
argument set to 0 (default). The pktast argument in the XFS$STARTDEV
routine (see Section 11.4.6.2) 1is normally defaulted. If the
XFSGETPKT routine is called and the termination queue 1is empty, the
routine waits until the DR32 places a command packet on the queue and
sets the event flag. The packet is then removed from the queue and
returned to the caller.

11.4.7.2 AST Routines - If a call to the XF$STARTDEV routine includes
the pktast argument, the specified AST routine is called each time an
AST 1is delivered. AST delivery can be controlled on a
packet-by-packet basis through wuse of the intctrl argument in the
XFSFREESET routine and by specifying appropriate values in the modes
argument of the XFSPKTBLD routine (see Sections 11.4.6.3 and
11.4.6.4). For a particular command packet, ASTs can be delivered:

1. Unconditionally when the packet is placed onto TERMQ.
2. Only if TERMQ is empty when the packet is placed on it.

3. Not at all. That is, there is no AST when the packet Iis
placed on TERMQ.

There is no guarantee that an AST will be delivered for every command
packet, even when the astctrl arqument indicates unconditional AST
delivery. 1In particular, if packet interrupts are <closely spaced,
several packets may be placed onto TERMQ even though only one AST is

11-34

DR32 INTERFACE DRIVER

delivered. Therefore, the AST routine should continue to <call the
XFSGETPKT routine until all command packets are removed from TERMQ.

11.4.7.3 Action Routines - The action argument specified in the
XFSFREESET and XFSPKTBLD routines (see Sections 11.4.6.3 and 11.4.6.4)
can be used for a more automated synchronization of the program with
the DR32. Routines specified by action arguments can be used for both
event flag and AST routine synchronization.

The address of the action routine is included in the command packet.
This routine is automatically called by the XFSGETPKT routine when it
removes that packet from TERMQ. This allows the user to define, at
the time it is built, how the command packet will be handled once it
is removed from TERMQ. In addition to specifying different action
routines for different types of command packets, the user can also
specify an action routine parameter (actparm) to further identify the
command packet and/or the action to be taken on completion of the
command. Figure 11-7 shows the use of action-specified routines for
program synchronization.

An important difference between AST routine and action routine use is
the number of times the respective routines are specified., Command
packet AST routines are specified only once, in a XF$STARTDEV call; a
single AST routine 1is implied. Action routines, however, are
specified in each command packet. This allows a different action
routine to be designed for each type of command packet.

APPLICATION
PROGRAM
XF$GETPKT
CP:LL | REMOVE PACKET
FROM TERMQ ACTION
XFSGETPKT CALL ACTION
' . T PACKET-
SPECIFIC
I PROCEDURE
ACTION Routines with Event Flag Synchronization
APPLICATION
PROGRAM
AST ROUTINE
XF$GETPKT
REMOVE PACKET
CALL FROM TERMQ ACTION

PACKET-

SPECIFIC
l PROCEDURE

XF$GETPKT CALL ACTION

ACTION Routines with AST Routine Synchronization

Figure 11-7 ACTION Routine Synchronization

11-35

DR32 INTERFACE DRIVER

Routines specified by the action argument are supplied by the user.
The format of the calling interface is as follows:

CALL action-routine (contxt,actparm,devflag,logflag,func,
index,status)

With the exception of actparm, all arguments are the same as those
described for the XFSGETPKT routine. 1In effect, the action routine
will receive the same information XFSGETPKT optionally returns to its
calling program, along with the actparm argument that was specified
when the packet was built. If these variables are to be passed as
inputs to the action routine, they must be supplied as output
variables in the call to the XFSGETPKT routine.

11.5 I/0 STATUS BLOCK

The I/0 status block for the load microcode and start data transfer
QIO functions 1is shown in Figqgure 11-8., The I/0 status block used in
the first two longwords of the contxt array for high-level 1language
calls also employs this format.

31 27 26 24 23 16 15 0

0 status

status 0 DDI status 16 status bits
bits

Figure 11-8 I/O Functions IOSB Content

VAX/VMS status values are returned in the first longword. Table 11-5
lists these values. If either SS$ CTRLERR, SS$ DEVREQERR, or
SS$ PARITY is returned in the status word, the second longword
contains additional returns, that is, device-dependent data. Table
11-6 lists these returns.

The I/0 status block for a QIO function is returned after the function
completes. Status is not stored on the completion of every command
packet because any number of packets can pass between the application
program and the DR32 during the execution of a single QIO.

Table 11-5
DR32 Status Returns

Status Meaning

SS$_ABORT Request aborted. A request in progress was
aborted by the $CANCEL system service. (Only
for start data transfer functions.)

SS$ BADPARAM Bad parameter. An attempt was made to set the
- data rate higher than the rate allowed by the
SYSGEN parameter XFMAXRATE. (Only for start
data transfer functions.)

(continued on next page)

11-36

DR32 INTERFACE DRIVER

Table 11-5 (Cont.)
DR32 Status Returns

Status

Meaning

SS$_BADQUEHDR

SS$_BUFNOTALIGN

SS$_CANCEL

SS$_CTRLERR

SS$_DEVACTIVE

SS$_DEVREQERR

SS$_EXQUOTA

SS$_INSFMEM

Bad queue header. An INPTQ or TERMQ interlock
timeout occurred.

Alignment error. The command block address in
the Data Transfer Command Table was not
quadword aligned. (Only for start data
transfer functions.)

Request cancelled by the SCANCEL system
service before it started. (Only for the
start data transfer functions.)

Controller error. A fatal hardware
malfunction occurred that stops all DR32
activity. (Only for start data transfer

functions.,) The second 1longword of the IOSB
contains additional information pertaining to
this error; the following bit wvalues are
associated with SS$_CTRLERR:

XFS$V_IOS_INVPTE
XF$V_I0S_SBIERR
XF$V_I0S_RDSERR

Device is active, The microcode cannot be
loaded because there 1is an active data
transfer request. (Only for the load

microcode function.)

DR32 user request error. A programming error
or an error associated with the far end
DR-device is indicated. The second 1longword
of the 1I/0 status block contains additional
information pertaining to the error; the
following bit wvalues are associated with
SS$ DEVREQERR:

XF$V_I0S_DDIDIS
XFSV_IOS_RNGERR
XF$V_IOS_UNQERR
XF$V_I0S_INVPKT
XF$V_I0S_FREQMT
XFS$V_IOS_INVDDI
XF$V_IOS_LENERR
XF$V_I0S_DDIERR

AST quota exceeded. A command packet AST
cannot be queued because the process AST quota
was exceeded. (Only for start data transfer
functions.)

Insufficient dynamic memory to initiate a
start data transfer request, build a command
packet, or queue a command packet AST.

(continued on next page)

11-37

DR32 INTERFACE DRIVER

Table 11-5 (Cont.)
DR32 Status Returns

Status

Meaning

SS$_IVBUFLEN

SS$_MCNOTVALID

SS$_NORMAL

§S$_PARITY

SS$_POWERFAIL

Incorrect length. Either the command block
size or the buffer block size is 0 or equal to
or greater than 2**29, or the command table
length is not XF$K_CMT_LENGTH.

Microcode has not yet been successfully loaded
or has become invalid. (Only for start data
transfer functions.)

QIO request or support routine call completed
successfully. Either the microcode was loaded
successfully or the data transfer was
completed successfully.

Parity error. Either the microcode was not
loaded successfully or the DR32 controller
detected a parity error and a hardware
malfunction is indicated. The second longword
of the I/0 status block contains additional
information pertaining to this malfunction;
the following bit values are associated with
SS$_PARITY:

XF$V_I0S_WCSPE
XF$V_I10S_CIPE
XF$V_I10S_DIPE
XF$V_I0S~PARERR

A power failure occurred while a data transfer
request was active or the DR32 is powered
down.

Table 11-6

Device-Dependent IOSB Returns for I/O Functions

Symbolic Name

Meaning

16 Status Bits

XF$V_PKT_SUCCESS

XF$V_I0S_CMDSTD

XF$V_I0S_INVPTE
XF$V_I0S_FREQPK
XF$V_I0S_DDIDIS

XFS$V_I0S_SLFTST

The command was performed successfully

Command specified in the command packet
started.

Invalid page table entry.
This command packet came from FREEQ.
The far end DR-device is disabled.

The DR32 is in self-test mode.

(continued on next page)

11-38

DR32 INTERFACE DRIVER

Table 11-6 (Cont.)

Device-Dependent IOSB Returns for I/O Functions

Symbolic Name

Meaning

XF$V_IOS_RNGERR

XF$V_IOS_UNQERR

XF$V_I0S_INVPKT

XF$V_I0S_FREQMT

XF$V_I0S_RNDENB
XF$V_I0S_INVDDI

XF$V_I0S_LENERR

XF$V_I0S_DRVABT

XF$V_PKT_PARERR

Range error. The user-provided address is
outside the command block range or the buffer
block range.

A queue element was not aligned on a quadword
boundary.

A packet was not a valid DR32 command packet.

A message was received from the far end
DR-device and FREEQ was empty.

Random access mode is enabled.
A protocol error occurred on the DDI.

The far end DR-device terminated the data
transfer before the required number of bytes
were sent, or a message was received from the
far end DR-device and the device message
field in the command packet at the head of
FREEQ was not large enough to hold it.

The I/0 driver aborted the DR32 function.

A parity error occurred on the data or
control portion of the DDI.

DDI Status

XF$V_IOS_DDISTS

XF$V_I0S_NEXREG
XF$V_10S_LOG

XF$V_I0S_DDIERR

The l-byte status register 0 for the far end
DR-device. XFSV_IOS NEXREG, XF$V I10S LOG,
and XF$V I0S DDIERR are returns from this
register.

An attempt was made to access a nonexistent
register on the far end DR-device.

The far end DR-device registers are stored in
the log area.

An error occurred on the far end DR-device.

5 Status Bits

XF$V_I0S_BUSERR
XF$V_I0S_RDSERR
XF$V_I0S_WCSPE

XF$V_IOS_CIPE

XF$V_I0S_DIPE

An error on the processor's internal CPU memory
bus occurred.

A noncorrectable memory error occurred (Read
Data Substitutex.

Writeable Control Store parity error.
Control Interconnect parity error. A parity
error occurred on the control portion of the

DDI.

Data Interconnect parity error. A parity error
occurred on the data portion of the DDI.

11-39

DR32 INTERFACE DRIVER

11.6 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the DR32 driver described in this
chapter.

11.6.1 Command Packet Pre-fetch

The DR32 has the capability of pre-fetching command packets from
INPTQ. While executing the command specified in one packet, the DR32
can pre-fetch the next packet, decode it, and be ready to execute the
specified command at the first opportunity. When the command is
executed depends on which command is specified. For example, if two
read device or write device command packets are on INPTQ, the DR32
fetches the first packet, decodes the command, verifies that the
transfer is 1legal, and starts the data transfer. While the transfer
is taking place, the DR32 pre-fetches the next read device or write
device command packet, decodes it, and verifies the transfer legality.
The second transfer begins as soon as the first transfer is completed.

On the other hand, if the two command packets on INPTQ are read device
(or write device) and write device control message, in that order, the
DR32 pre-fetches the second packet and immediately executes the
command, because control messages can be overlapped with data
transfers. The DR32 then pre-fetches the next command packet. 1In an
extreme case, the DR32 can send several control messages over the
control portion of the DDI while a single data transfer takes place on
the data portion of the DDI.

The pre-fetch capability and the overlapping of control and data
transfers can cause unexpected results when programming the DR32. For
instance, if the application program calls for a data transfer to the
far end DR-device followed by notification of the far end DR-device
that data is present, the program cannot simply insert a write device
command packet and then a write control message command packet onto
INPTQ -~ the control message may very likely arrive before the data
transfer completes.

A better way to synchronize the data transfer with notification of
data arrival is to request an interrupt in the interrupt control field
of the data transfer command packet. Then, when the data transfer
command packet 1is removed from TERMQ, the application program can
insert a write control message command packet onto INPTQ to notify the
far end DR-device that the data transfer has completed.

Another consequence of command packet pre-fetching occurs when, for
example, two write device command packets are inserted onto INPTQ.
While the first data transfer takes place, the second command packet
is pre~fetched and decoded. If an unusual event occurs and the
application program must send an immediate control message to the far
end DR-device, the application program may insert a write device
control message packet onto INPTQ. However, this packet is not sent
immediately because the second write device command packet has already
been pre-fetched; the control message is sent after the second data
transfer starts.

If the application program requires the ability to send a control
message with minimum delay, use one of the following techniques:

e Insert only one data transfer function onto INPTQ at a time.

If this 1is done, a second transfer function will not be
pre-fetched and a control message can be sent at any time,

11-40

DR32 INTERFACE DRIVER

e Use smaller buffers or a faster data rate to reduce the time
necessary to complete a given command packet.

e Issue a S$CANCEL system service <call followed by another
IOS_STARTDATA QIO.

11.6.2 Action Routines

Action routines provide a useful DR32 programming technique. They can
be used in application programs written in either assembly language or
a high-level language. When a command packet is built, the address of
a routine to be executed when the packet is removed from TERMQ is
appended to the end of the packet. Then, rather than having to
determine what action to perform for a particular packet when it is
removed from TERMQ, the specified action routine is called.

11.6.3 Error Checking

Bits 0 through 23 in the second 1longword of the 1I/0 status block
correspond to the same bits in the DR32 status longword (DSL).
Although the I/0 status block is written only after the QIO function
completes, the DSL is stored 1in every command packet. However,
because there is no command packet in which to store a DSL for certain
error conditions, for example, FREEQ empty, some errors are reported
only in the I/0 status block. To <check for an error under these
conditions, the user should examine the DSL in each packet for success
or failure only. Then, if a failure occurs, the specific error can be
determined from the I/0 status block. The I/O status block should
also be checked to verify that the QIO has not completed prior to a
wait for the insertion of additional command packets onto TERMQ. 1In
this way, the application program can detect asynchronous errors for
which there is no command packet available.

11.6.4 Queue Retry Macro

When an interlocked queue instruction is included in the application
program, the code should perform a retry if the queue is locked.
However, the code should not execute an indefinite number of retries.
Consequently, all retry 1loops should contain a maximum retry count.
The macro programming example provided 1in Section 11.7 contains a
convenient queue retry macro.

11.6.5 Diagnostic Functions
The diagnostic functions listed in Table 11-2 can be used to test the
DR32 without the presence of a far end DR-device. For the DR780, the
user should perform the following test sequence:

1. Insert a set self-test command packet onto INPTQ.

2. Insert a diagnostic write 1internal command packet that

specifies a 128-byte buffer onto INPTQ. This packet copies
128 bytes from memory into the DR780 internal data silo.

11-41

DR32 INTERFACE DRIVER

3. 1Insert a diagnostic read DDI command packet onto INPTQ. This
packet transmits the 128 bytes of data from the silo over the
DDI and returns it to the silo.

4, Insert a diagnostic read 1internal command packet that
specifies another 128-byte buffer in memory onto INPTQ. This
packet copies 128 bytes of data from the silo into memory.

5. Compare the two memory buffers for equality. Note that on
the DR780, the diagnostic read internal function destroys the
first four bytes in the silo before storing the data in
memory. Therefore, compare only the last 124 bytes of the
two buffers.

6. Insert a clear self-test command packet onto INPTOQ.

11.6.6 The NOP Command Packet

It is often useful to insert a NOP command packet onto INPTQ to test
the state of the DDI disable bit (XF$M PKT DDIDIS in the DSL). By
checking this bit before initiating a data transfer, an application
program can determine if the far end DR-device is ready to accept
data.

11.6.7 1Interrupt Control Field

As described ih Section 11.4.3.6, the interrupt control field
determines the <conditions wunder which an interrupt is generated:
unconditionally, if TERMQ was empty, or never. There are several
general applications of this field:

1. If a program performs five data transfers and requires
notification of completion only after all five have
completed, the first four command packets should specify no
interrupt and the fifth command packet should specify an
unconditional interrupt.

2. If a program performs a continuous series of data transfers,
for example, each command packet can specify interrupt only
if TERMQ was empty. Then, every time an event flag or AST
notifies the program that a command packet was inserted onto
TERMQ, the program removes and processes all packets on TERMQ
until it is empty.

3. Command packets that specify no interrupt should never be
mixed with command packets that specify interrupt if TERMQ
was empty. If this were done, a command packet that
specifies no interrupt could be inserted onto TERMQ followed
by a command packet that specifies interrupt 1if TERMQ was
empty. Then the 1latter packet would not interrupt and the
program would never be notified that command packets were
inserted onto TERMQ.

11-42

DR32 INTERFACE DRIVER

11.7 PROGRAMMING EXAMPLES

The program examples in the following two sections use DR32 high-level
language procedures and DR32 Queue I/0 functions.

11.7.1 DR32 High-level Langauge Program (Program A)

This program is an example of how the DR32 high-level language
procedures perform a data transfer from a far end DR-device. The
program reads a specified number of data buffers from an undefined far
end DR-device, which is assumed to be a data source, into the VAX-11
memory. The number of buffers is controlled by the MAXBUF parameter.
The program contains examples of the read data chained function code
and DR32 application program synchronization using AST routines and
action routines.

C *hkhhhhhhhhhhkhhhhhhhhdhhhhhhhhhhhhhhh kR hkhhhhhhhhhhhhhhhhhhhhhhhk
C
C PROGRAM A
C
C khhkhhhhhhhhkhhhhhhhhhhkkkhkhkkkkhhkhhhhkhkkkk Ak khkkhkhhhhhkrkhhhhkkhh*
INCLUDE 'XFDEF.FOR' ;DEFINE XF CONSTANTS
PARAMETER BUFSIZ = 1024 !SIZE OF EACH BUFFER
PARAMETER NUMBUF = 8 INUMBER OF BUFFERS IN
tRING
PARAMETER ILOGSIZ = 4 !SIZE OF INPUT LOG
! ARRAY
PARAMETER EFN = 0 !EVENT FLAG SYNCHRON-

IIZING MAIN LEVEL WITH
{AST ROUTINE

INTEGER*2 BUFARRAY (BUFSIZ,NUMBUF) !THE RING OF BUFFERS
INTEGER*2 INDEX {REFERS TO BUFFER
!IN BUFARRAY
INTEGER*2 COUNT {COUNTS NUMBER OF
IBUFFERS FILLED
INTEGER*2 DATART ‘ !DR32 CLOCK RATE
INTEGER*4 CONTXT (30) ICONTEXT ARRAY USED BY SUPPORT
INTEGER*4 ILOGMSG (ILOGSIZ) !LOG MESSAGES FROM DEVICE
!STORED HERE
INTEGER*4 STATUS !RETURNS FROM SUBROUTINES
INTEGER*4 DEVMSG {FAR END DR-DEVICE CODE
EXTERNAL ASTRTN IAST ROUTINE
EXTERNAL AST$PROCBUF IACTION ROUTINE TO HANDLE

{COMPLETION OF READ DATA
! COMMAND PACKET

EXTERNAL ASTSHALT !ACTION ROUTINE TO HANDLE
{COMPLETION OF A HALT
{COMMAND PACKET

COMMON /MAIN_ AST/ CONTXT, INDEX
COMMON /MAIN ACTION/ BUFARRAY, ILOGMSG, COUNT
EXTERNAL SS$_NORMAL !SUCCESS STATUS RETURN

C khhkkhhhhhhhhhhhkhhrhhhhhdhhhhhhhhhhhhhkhhkdhhhvhhhhdhhhhhdkhhkrrhdhhhdd

C
C THE CALL TO THE SETUP ROUTINE

11-43

(@] anonoan

aoaon

aaoaoaan

[eNeNPRe]

DR32 INTERFACE DRIVER

kkhhkhhhkhrhkkhhkhkhdhkhhhhhhhhhhhhkhkhhhhkhhhhkhhhkhhhhkhhhhkhhhhhhhkhhkhhkk

CALL XF$SETUP (CONTXT,BUFARRAY,BUFSIZ*2,NUMBUF,,,ILOGMSG,
1 ILOGSIZ*4,,STATUS)
IF (STATUS .NE. $LOC(SS$_NORMAL)) CALL LIBSSTOP (%VAL (STATUS))

PRE-LOAD THE INPUT QUEUE BEFORE STARTING THE DR32 IN ORDER TO AVOID
A DELAY IN THE DATA TRANSFER

hhkhkkhkhkhkhkhhhkhhkhhhhhhkhhkkkkhkhhkhkhkhkhkhhkhkhhhkhhhhhkkhhkhhkhhhkhhkhkhhhkhkkk

BUILD COMMAND PACKETS

khkkhkhkhkhhhkhhhhkhkhkhkhhhkhhhhhhkhkhhhhkhhhhhhhhkkhhhhhhhhhhkkhhhhkhdkhhhhkkkd

BUILD THE COMMAND PACKET THAT WILL INSTRUCT THE FAR END DR-DEVICE
TO START SAMPLING. ARBITRARILY ASSUME THAT THE FAR END DR-DEVICE
WILL RECOGNIZE THIS DEVICE MESSAGE. INSERT THIS PACKET ON THE
INPUT QUEUE (INPTQ).

DEVMSG = 25 ISIGNAL FAR END DR-DEVICE
! IIGOII
CALL XFSPKTBLD (
1 CONTXT, ITHE CONTEXT ARRAY
1 XF$K_PKT WRTCM, !WRITE CONTROL MESSAGE
- IFUNCTION
1 . INO INDEX OR SIZE
1 DEVMSG, ISIGNAL "GO" A
1 4, ISIZE OF DEVMSG IN BYTES
1 ILOGSIZ*4 ISPACE FOR INPUT LOG
IMESSAGE
1 XF$K_PKT_UNCOND IMODES: UNCONDITIONAL
- ! INTERRUPT
1 + XF$K_PKT_CBDM ! : SEND FUNC AND DEVMSG
1 + XF$K_PKT_INSTL ! : INSERT PACKET AT INPTQ
! TAIL
1 " INO ACTION ROUTINE OR ACTPARM

1 STATUS)
IF (STATUS .NE. %LOC(SSS_NORMAL)) CALL LIBSSTOP (%VAL (STATUS))

IN A LOOP, BUILD THE COMMAND PACKETS THAT WILL PERFORM THE CHAINED
READ TO INITIALLY FILL THE BUFFERS

DO 10 INDEX = 1, NUMBUF {FOR ALL BUFFERS DO

CALL XFSPKTBLD (
1 CONTXT, !'THE CONTEXT ARRAY
1 XF$K PKT RDCHN, IREAD DATA CHAINED
1 INDEX, I IDENTIFIES BUFFER
1 . INO SIZE, DEVMSG, OR DEVSIZ
1 ILOGSIZ*4, ISPACE FOR INPUT LOG MESSAGE
1 XFS$SK PKT UNCOND IMODES: UNCONDITIONAL

-7 INTERRUPT

—

+ XF$K PKT CB SEND FUNCTION CODE

e oo

1 + XF$K_PKT_INSTL, INSERT PACKET AT INPTQ
TAIL

1 ASTS$PROCBUF, {ACTION ROUTINE

1 , INO ACTPARM

11-44

10

[eNeKe!

[eNeNo RO Ne]

oNoNoNe!

eNoKe Ko Ke!

oNeoNoNe!

10

DR32 INTERFACE DRIVER

1 STATUS)
IF (STATUS .NE. $LOC(SS$_NORMAL)) CALL LIBSSTOP ($VAL (STATUS))
CONTINUE

THE INPUT QUEUE IS LOADED

khkhkkhkhhhhkhhhhhhkhhkhhkhhhhhhhhhkhhhhhhkhhhdhhhhhhhhdkhhhhhkrhkhkhrhhdhhdd

START THE DR32

kkkhkhhhkkkhhhhhkhhhkhhkhkhkhhkhkhhkhhhkkhhhkhhkkhkhhhhhhkhhhkhhhhhkhhhhhkhhkkhkk

DATART = 0 !DATA TRANSFER RATE

COUNT = 0 INUMBER OF BUFFERS THAT HAVE
{BEEN FILLED

CALL SYSSCLREF (%VAL (EFN)) ICLEAR EVENT FLAG BEFORE START

CALL XF$STARTDEV (CONTXT,'XFAO:',ASTRTN,,,,DATART,STATUS)

IF (STATUS .NE. $LOC(SSS_NORMAL)) CALL LIBSSTOP ($VAL (STATUS))
FROM THIS POINT, ROUTINES AT THE AST LEVEL ASSUME CONTROL. WAIT
FOR THEM TO SIGNAL COMPLETION OF THE SAMPLING SWEEP.

CALL SYSSWAITFR (%VAL (EFN))

STOP
END

khkhkhkhkhhhkkhkhhkhhkhhkhhkhhhhhhkhhhhkhhhhhkhhhhhhhkhhhhhhhhhkhhhkhhhkhkkki

AST ROUTINES

kkkkhkkkhhkkhhhkhhhhhkhkhhhhhhkdhhkhhhkhkhhhhkhhkhhhhhhhhhhkhhkdhhkrhhhkhhhk

SUBROUTINE ASTRTN (ASTPARM)

INCLUDE 'XFDEF.FOR/NOLIST'

INTEGER*2 ASTPARM !UNUSED PARAMETER
INTEGER*4 CONTXT (30) ICONTEXT ARRAY
INTEGER*4 STATUS !FOR CALL TO XF$GETPKT
LOGICAL*1 WAITFLG !INPUT TO XFSGETPKT
LOGICAL*1 LOGFLAG 'INPUT TO XFSGETPKT
COMMON /MAIN_AST/ CONTXT, INDEX

EXTERNAL SS$_NORMAL

CALL XFS$GETPKT IN A LOOP UNTIL TERMQ IS EMPTY. XFSGETPKT WILL CALL
THE APPROPRIATE ACTION ROUTINE FOR EACH COMMAND PACKET.

WAITFLG
LOGFLAG

.TRUE. !DO NOT WAIT FOR EVENT FLAG
.TRUE. !REQUEST NOTIFICATION IF LOG
{MESSAGE IS IN PACKET

CALL XFSGETPKT (CONTXT,WAITFLG,,INDEX,,LOGFLAG,STATUS)
IF (STATUS .EQ. %LOC(SSS_NORMAL)) !PACKET FROM TERMQ

11-45

oNeReREeNe!

eNoNeNe N Koo N RO KD

DR32 INTERFACE DRIVER

1 GOTO 10
IF (STATUS .EQ. SHR$_QEMPTY)
1 GOTO 20

!TERMQ EMPTY - TRANSFER
ISTILL IN PROGRESS

IF (STATUS .EQ. SHR$_HALTED .OR. STATUS .EQ. SHR$_NOCMDMEM)

1 GOTO 20

CALL LIBS$STOP (%VAL(STATUS))

! TRANSFER COMPLETE. NO MORE
1COMMAND PACKETS. ASTS MAY
ISTILL BE DELIVERED

IERROR IN XFSGETPKT

0 RETURN
END
I Z E XX EER RS R XEEEEEEZ RS EEEEEE R ESE R RS ZE RS ESES R RS S EEE RS S S L REE R
ACTION ROUTINE
AR AAAXXKAARAIXX AR AR A kA hhhkhhhhhhhhkhhhhkhkhkhhhhhkhhhhkhhhkhhhhkhhhhkhhrhkhk
SUBROUTINE ASTS$PROCBUF (CONTXT,ACTPARM,DEVFLAG,LOGFLAG,
1 FUNC,INDEX,STATUS)
THIS IS THE ACTION ROUTINE CALLED BY XFSGETPKT WHEN IT REMOVES A
COMMAND PACKET FROM TERMQ. THIS PACKET HAS JUST COMPLETED A READ
DATA OPERATION FROM THE BUFFER SPECIFIED BY INDEX. THE BUFFER IS
PROCESSED, AND IF MORE DATA IS REQUIRED (I.E., BUFCOUNT .LE.
MAXCOUNT), ANOTHER PACKET IS BUILT. THE BUFFER IN THIS PACKET IS
THEN REFILLED AND THE PACKET IS INSERTED ONTO INPTOQ.
IF BUFCOUNT .GT. MAXCOUNT, THE SAMPLING SWEEP IS FINISHED AND A
HALT PACKET IS INSERTED ONTO INPTQ.
INCLUDE 'XFDEF.FOR/NOLIST'
PARAMETER MAXCOUNT = 10 INUMBER OF BUFFERS IN SWEEP
PARAMETER ILOGSIZ = 4 ISIZE OF INPUT LOG MESSAGE
ARRAY
PARAMETER BUFSIZ = 1024 ISIZE OF EACH BUFFER (IN
WORDS)
PARAMETER NUMBUF = 8 INUMBER OF BUFFERS
INTEGER*2 INDEX IREFERS TO A BUFFER IN
BUFARRAY
INTEGER*2 FUNC IFUNCTION CODE FROM PACKET
INTEGER*2 BUFCOUNT 1COUNTS NUMBER OF BUFFERS
FILLED
INTEGER*2 BUFARRAY (BUFSIZ,NUMBUF) !THE ARRAY OF BUFFERS
INTEGER#*4 ACTPARM IACTION PARAMETER (NOT USED)
INTEGER*4 STATUS ISTATUS OF XF$GETPKT (NOT
USED)
INTEGER*4 STAT ISTATUS OF CALL TO XFSPKTBLD
INTEGER*4 CONTXT (30) ICONTEXT ARRAY USED BY SUPPORT
INTEGER*4 ILOGMSG (ILOGSIZ) ! STORES LOG MESSAGES FROM
DEVICE
LOGICAL*1 DEVFLAG INOT USED IN THIS EXAMPLE
LOGICAL*1 LOGFLAG ISIGNALS LOG MESSAGE PRESENT
COMMON /MAIN_ACTION/ BUFARRAY,ILOGMSG,BUFCOUNT
EXTERNAL SS$ NORMAL
EXTERNAL ASTSHALT

11-46

DR32 INTERFACE DRIVER

c
C PROCESS THE BUFFER
C
DO 10 I = 1, BUFSIZ
C hkhkhkhkhhkkhhhhkhhhkhkhhhkhhhkhkhhhkhhhkhhhkhhkhkhhkhkhhhkhhkhkhhhkhkhkhhhkhkhhkhkhhhkhhhkhkihik
o
C AT THIS POINT INSERT THE CODE TO PROCESS ELEMENT (I,INDEX) OF
C BUFARRAY
C
C khkkhkkhhkhhhkhkhkhhhhhkhkhkhkhhhhhhhkhhkhhhkhhkhhhhkhhkhhhhhkhhkhhhkhhkhhohkhhhhhhhhkhhk
10 CONTINUE
C kkhkkhkhhkkhkhkhhhhhkhhkhhhkhhkhhhkhhkhhhkhkhhkhhkhhkhhhhhkhhhkhhhhkhhhkhkkhhkhkkkkkk
C
C AT THIS POINT INSERT THE CODE TO LOOK AT THE LOG MESSAGE
C
C hkhkkkhkhkkkhhhkhkhkhhkhkhhkhkhhhkhhhkhhhhhkhhkdbhhkhhhkhkhhkhkrdhhhdhkhhkhkrbhkhhhkhhkhhk
o
C IS THIS THE LAST BUFFER IN THE SWEEP?
C .
BUFCOUNT = BUFCOUNT + 1
IF (BUFCOUNT .LT. MAXCOUNT) THEN 'BUILD A PACKET TO
IREFILL THE BUFFER
CALL FAKES$PKTBLD (INEED INTERVENING ROUTINE
1 CONTXT, ITHE CONTEXT ARRAY
1 XF$K_PKT_RDCHN, IREAD DATA CHAINED
1 INDEX, IBUFFER INDEX
1 . INO SIZE, DEVMSG, OR DEVSIZ
1 ILOGSIZ*4, 1SPACE FOR LOG MESSAGE
1 XF$K_PKT_UNCOND IMODES: UNCONDITIONAL
! INTERRUPT
1 + XF$K_PKT CB ! : SEND CONTROL BYTE
1 + XF$K_PKT_INSTL, ! : INSERT AT TAIL
1 ,y IACTION GIVEN IN FAKESPKTBLD
1 STAT)
IF (STAT .NE. $LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL (STAT))
ELSE IF (BUFCOUNT .EQ. MAXCOUNT) THEN 1END OF CHAIN
CALL FAKESPKTBLD (INEED INTERVENING ROUTINE
1 CONTXT, !THE CONTEXT ARRAY
1 XF$K_PKT_RD, IREAD DATA FUNCTION
1 INDEX, IBUFFER INDEX
1 . INO SIZE, DEVMSG, OR DEVSIZ
1 ILOGSIZ*4, ISPACE FOR LOG MESSAGE
1 XF$K_PKT UNCOND !MODES: UNCONDITIONAL
! INTERRUPT
1 + XF$K_PKT_CB ! : SEND CONTROL BYTE
1 + XF$K_PKT_INSTL, ! : INSET AT TAIL
1 ’ IACTION GIVEN IN FAKE$PKTBLD
1 STAT)
IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL (STAT))
ELSE IBUILD A HALT PACKET
CALL XF$PKTBLD (
1 CONTXT, ITHE CONTEXT ARRAY
1 XF$K_PKT HALT, {ALL DONE
1 R IDEFAULT VALUES

11-47

oo NN NS

[eNeNe NS NP

oo NeEeNe]

oo NeNe NS KSR

DR32 INTERFACE DRIVER

1 ILOGSIZ*1, ISPACE FOR INPUT LOG MESSAGE
1 ASTS$HALT, IACTION ROUTINE

1 ’ INO ACTPARM

1 STAT)

IF (STAT .NE. $LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL (STAT))
END IF

RETURN

END

khkkkhkkkhkkhkkhhhhkhhhhkhhhhkhhhhhhhkhhhdrhhhhhhhhhhhdhhhhhhhkdhhhkhhhrhidk

PASS ADDRESS OF ACTION ROUTINE TO COMMAND PACKET

kkkhhkkhhkhkkhhkhkhhkhkhkhkhhkhkhhhhhhhkhkhhhhhhhhhhhkhhhhhhhhhhhkhhhhkhkhhkhhdtk

SUBROUTINE FAKESPKTBLD (A,B,C,D,E,F,G,H,I,J,K)

\

ASTSPROCBUF CALLS THIS SUBROUTINE IN ORDER TO PASS THE ADDRESS OF
AST$PROCBUF TO XFS$PKTBLD. (ASTS$SPROCBUF CANNOT REFER TO ITSELF
WITHIN THE SCOPE OF ASTS$PROCBUF)

EXTERNAL ASTSPROCBUF

CALL XF$PKTBLD (A,B,C,D,E,F,G,H,ASTSPROCBUF,J,K)

RETURN
END

dhkkkhkkhkkhhkhhhhhhkhhhhhhhkhhhhhhkhhhhkhhkhkhhhkhhhhhhdhhhhhhhdhkhhkdhhdhkdhdd

HALT ACTION ROUTINE

2RSSR R EEEEEE RS ERRRER R R RS RS E RS EE RS RS EEEREEEEERERESESES]

SUBROUTINE ASTSHALT (CONTXT,ACTPARM,DEVFLAG,LOGFLAG,

FUNC,INDEX,STATUS)

THIS IS THE ACTION ROUTINE CALLED BY XFSGETPKT WHEN IT REMOVES A
HALT PACKET FROM TERMQ. THIS ROUTINE PRINTS STATUS INFORMATION,
CALLS XFS$SCLEANUP TO PERFORM FINAL HOUSEKEEPING FUNCTIONS, AND SETS
THE EVENT FLAG THAT SIGNALS THE TRANSFER IS COMPLETE.

PARAMETER EFN = 0

INTEGER*2 FUNC INOT USED

INTEGER*2 INDEX INOT USED

INTEGER*4 ACTPARM INOT USED

INTEGER*4 STATUS INOT USED

INTEGER*4 STAT IRETURN FROM XF$CLEANUP
INTEGER*4 CONTXT (30) ICONTEXT ARRAY USED BY SUPPORT
LOGICAL*1 DEVFLAG INOT USED

LOGICAL*1 LOGFLAG ISIGNALS LOG MESSAGE

11-48

DR32 INTERFACE DRIVER

EXTERNAL SS$_NORMAL ISUCCESS STATUS RETURN
C
C PRINT FINAL STATUS
C
PRINT *, 'FINAL STATUS IN I/O STATUS BLOCK'
PRINT *, CONTXT (1), CONTXT(2)
C
C CLEAN UP
C

CALL XFSCLEANUP (CONTXT,STAT)
IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIBSSTOP (%VAL (STAT))

CALL SYSSSETEF (%VAL (EFN))

RETURN
END

11.7.2 DR32 Queue I/0 Functions Program (Program B)
This sample program uses QIO functions to send a device message to the
far end DR-device and then waits for a message returned in a command

packet on FREEQ. The returned message is copied into another command
packet and that packet writes a data buffer to the far end DR-device.

hhkkkhhhhkhkhkhhhkhhhkhhhhhhhkkhhkhkhkhkhhhhhkhhdhhhhhhhkhhhhdhhhhhohhhkhhhhhhhhkk

PROGRAM B

Ne e Ne we we

khkhkhkhhkhhkhhhhhhhkhhkhhkhkhhhkhhhkhkhhhhhhhkhhhhhhdhhhhhhhrhhhhhhhhhhkthk

.TITLE DR32 PROGRAMMING EXAMPLE
.IDENT /01/

DEFINE SYMBOLS

~e wo ~o

SXFDEF

QRETRY - THIS MACRO EXECUTES AN INTERLOCKED QUEUE INSTRUCTION AND
RETRIES THE INSTRUCTION UP TO 25 TIMES IF THE QUEUE IS
LOCKED.

INPUTS:

OPCODE = OPCODE NAME: INSQHI,INSQTI,REMQHI ,REMQTI
OPERAND1l = FIRST OPERAND FOR OPCODE
OPERAND2 = SECOND OPERAND FOR OPCODE
SUCCESS = LABEL TO BRANCH TO IF OPERATION SUCCEEDS

ERROR = LABEL TO BRANCH TO IF OPERATION FAILS
OUTPUTS:

RO = DESTROYED

Ne We Ne We We N N Ne We N e W& Ne Ne Ne Ne “we W

11-49

e NE N NI Ne W Ne Wp We e we Wi N W wo

LOOP:

OK:

.
r

C-BIT

REMQTI

INSQTI

«MACRO
CLRL

OPCODE
.IF
BCC
.IFF
BCC

. ENDC
AOBLSS
.IF
BRW
«ENDC

. ENDM

DR32 INTERFACE DRIVER

CLEAR IF OPERATION SUCCEEDED
SET IF OPERATION FAILED - QUEUE LOCKED
(MUST BE CHECKED BEFORE V-BIT OR Z-BIT)

OR REMQHI:
V-BIT = CLEAR IF AN ENTRY REMOVED FROM QUEUE; SET
IF NO ENTRY REMOVED FROM QUEUE.
OR INSQHI:
Z-BIT = CLEAR IF ENTRY IS NOT FIRST IN QUEUE; SET
IF ENTRY IS FIRST IN QUEUE.
QRETRY OPCODE,OPERAND1 ,OPERAND2,SUCCESS,ERROR, ?LOOP,
?0K
RO
OPERANDI1 ,0PERAND2
NB SUCCESS
SUCCESS
OK
#25,R0,LOOP
NB ERROR
ERROR
QORETRY

; ALLOCATE STORAGE FOR DATA STRUCTURES

.
1

CMDBLK:

INPTQ:
TERMOQ:
FREEQ:

MSGPKT:

WRTPKT:

.PSECT

.BLKQ
.BLKQ
.BLKQ

.BLKQ
.BYTE
.BYTE
.BYTE

.BYTE
.BLKL
«BLKL
.BLKL
.BLKL

. LONG
. LONG

+ALIGN

DATA ,QUAD

[P

1

12

0
XF$SK_PKT_WRTCM

XF$K_PKT NOINT@-
XF$V_PKT_INTCTL
1

1

2

1

11111,22222,33333
0

QUAD

11-50

NS we we Ne Ne W e W v

e w6 We Ne N we we W

COMMAND BLOCK

INPUT QUEUE
TERMINATION QUEUE
FREE QUEUE

THIS PACKET SENDS A 12 BYTE
DEVICE MESSAGE

QUEUE LINKS

LENGTH OF DEVICE MESSAGE
LENGTH OF LOG AREA

COMMAND = WRITE CONTROL
MESSAGE

PACKET CONTROL = NO
INTERRUPT

BYTE COUNT

BUFFER ADDRESS

RESIDUAL MEMORY AND DDI BYTE
COUNTS

DR32 STATUS LONGWORD

DEVICE MESSAGE

EXTEND DEVICE MESSAGE TO
QUADWORD LENGTH

THIS PACKET DOES A WRITE
DEVICE

DR32 INTERFACE

<XF$K_PKT CBDMBC@-

CISEL>!-

NOINT@-

XF$V_PKT_INTCTL>

PKT HALT,O

236 ,XF$M_CMT_SETRTE,0,0

.BLKO 1
.BYTE 4
.BYTE 0
.BYTE XF$K_PKT WRT
.BYTE
XF$V_PKT _
<XF$K_PKT
.LONG 1000
.LONG WRTBFR
.BLKL 2
.BLKL 1
WDVMSG: .BLKQ 1
.ALIGN QUAD
HLTPKT:
.BLKQ 1
.BYTE 0,0,XF$K_
\BLKL 5
.ALIGN QUAD
FREPKT:
.BLKQ 1
.BYTE 4,0,0,0
.BLKL 4
.BLKL 1
.BLKQ 1
CMDBLKSIZ=.-CMDBLK
BFRBLK:
WRTBFR: .BLKB 1000
BFRBLKSIZ=.-BFRBLK
CMDTBL: .LONG CMDBLKSIZ
.LONG CMDBLK
.LONG BFRBLKSIZ
.LONG BFRBLK
.LONG PKTAST
.LONG 0
.BYTE 5
.LONG GOBITADR
GOBITADR:
.BLKL 1
XFIOSB: .BLKL 2
XFNAMEDSC:
.LONG XFNAMESIZ
.LONG XFNAME
XFCHAN: .BLKW 1

11-51

DRIVER

we We Ne Ne N We we wo e

~e wo e

~. e we

~s we wo we

Ne Ne Ne we we “we we

Ne Mo W6 N Ne Ne we we wo

~ ~

~

QUEUE LINKS
LENGTH OF DEVICE MESSAGE
LENGTH OF LOG AREA

COMMAND = WRITE

PACKET CONTROL = SEND
COMMAND BYTE,

DEVICE MESSAGE, AND BYTE

COUNT
AND NO INTERRUPT

BYTE COUNT

BUFFER ADDRESS

RESIDUAL MEMORY AND DDI BYTE
COUNTS

DR32 STATUS LONGWORD

SPACE FOR DEVICE MESSAGE

THIS PACKET HALTS THE DR32
QUEUE LINKS

COMMAND = HALT

UNUSED FIELDS IN THIS PACKET

PACKET FOR FREE QUEUE

QUEUE LINKS

LENGTH OF DEVICE MESSAGE
FIELD

UNUSED FIELDS IN THIS PACKET
DR32 STATUS LONGWORD

SPACE FOR DEVICE MESSAGE

BUFFER BLOCK

COMMAND BLOCK SIZE
COMMAND BLOCK ADDRESS
BUFFER BLOCK SIZE

BUFFER BLOCK ADDRESS
PACKET AST ADDRESS

PACKET AST PARAMETER

DATA RATE (2.0 MBYTES/SEC)
ADDRESS TQO STORE THE GO
BIT ADDRESS

I/0 STATUS BLOCK

NAME DESCRIPTOR

CHANNEL NUMBER

DR32 INTERFACE DRIVER

XFNAME: ,ASCII /XFAO/
XFNAMESIZE=.-XFNAME

PROGRAM STARTING POINT

e Ne e wo N

.PSECT CODE,NOWRT
.ENTRY DREXAMPLE,M<R2,R3>

$ASSIGN_S DEVNAM = XFNAMEDSC,-

CHAN = XFCHAN
BLBS RO,10$
BRW ERROR
10$: MOVAB CMDBLK,R2
CLRQ (R2)+
CLRQ (R2) +
CLRQ (R2)

~e we we

QRETRY ERROR=BADQUEUE,-
INSQTI FREPKT,FREEQ
H
; START DEVICE
i
$QI0 S FUNC = #I0$_STARTDATA,-
CHAN = XFCHAN,-
IOSB = XFIOSB,-
EFN = #1,-
Pl = CMDTBL,-
P2 = #XF$K_CMT LENGTH
BLBC RO ,ERROR

SEND MESSAGE TO FAR END DR-DEVICE

~o we wo

ORETRY ERROR=BADQUEUE,-
INSQTI MSGPKT,INPTQ
MOVL #1,@GOBITADR

SWAITFR_S #1

CHECK FOR SUCCESSFUL COMPLETION

~e wo W

MOVZWL XFIOSB,RO
BEQL BADQUEUE
BLBC RO ,ERROR
RET

11-52

-

~. we we

~e w

~

~s s o

Ahkkhkdkdhhkhhhhhhhhkhhhhhhhh kA hhhkhhhhhhhhhhkhhhhhhkhhhhrhdkhkhhhhhhhdx

IR R AR R R RS EEE R EEEEEE RS ERRE RS R R RS R R R EREEEEEEE]

ASSIGN A CHANNEL TO DR32

SUCCESSFUL ASSIGN

INITIALIZE INPTQ
INITIALIZE TERMQ
INITIALIZE FREEQ

INSERT COMMAND PACKET ONTO FREEQ FOR RETURN MESSAGE

SET GO BIT
WAIT UNTIL QIO COMPLETES

I/0 NOT DONE YET - BAD QUEUE

ERROR IN AST ROUTINE
ERROR
SUCCESSFUL COMPLETION

BADQUEUE:
MOV ZWL

N e Ne e we we wo

ERROR: RET

.
’

; COMMAND PACKET AST ROUTINE

’

PKTAST: .WORD

NXTPKT: QRETRY
REMQHI
BVC
RET

10$: BLBC
BBC

~e we wo we

MOVL
QRETRY
INSQTI
ORETRY
INSQTI
MOVL
508 : RET

~e e we we

708 $SETEF_S

RET

. END

DR32 INTERFACE DRIVER

#55$_BADQUEUEHDR,RO

AN ERROR HAS OCCURRED. NORMALLY, THE USER MIGHT PERFORM MORE
EXTENSIVE ERROR CHECKING AT THIS POINT. IN PARTICULAR, IF THE ERROR
IS ss$_CTRLERR, SS$ DEVREQERR, OR SS$_PARITY, THE SECOND LONGWORD

OF THE I/0 STATUS BLOCK CAN PROVIDE ADDITIONAL INFORMATION. IN THIS
EXAMPLE, THE PROGRAM EXITS WITH THE ERROR STATUS IN RO.

0

ERROR=70§$, - ; GET NEXT PACKET FROM QUEUE
TERMQ,R1

108 PACKET OBTAINED FROM QUEUE

QUEUE IS EMPTY

RETURN IF PACKET ERROR
RETURN IF PACKET NOT FROM
FREEQ

XF$L_PKT_DSL (R1) ,50%
#XF$V_PKT FREQPK,-
XF$L_PKT DSL(R1),50$

~e we wo we e

COMMAND PACKET OBTAINED FROM FREEQ. COPY DEVICE MESSAGE AND QUEUE
WRITE PACKET.

XFSB PKT DEVMSG (R1) ,WDVMSG
ERROR=70% , -

WRTPKT, INPTQ

ERROR=70$, -

HLTPKT, INPTQ

#1,QGOBITADR ; SET GO BIT

BAD QUEUE ERROR IN AST ROUTINE - WAKE UP MAIN LEVEL. QIO MAY
OR MAY NOT HAVE COMPLETED.

#1 ; WAKE UP MAIN LEVEL

DREXAMPLE

11-53

CHAPTER 12

DUP11 INTERFACE DRIVER

This chapter describes the use of the DUPll Device 1Interface driver.
The driver is category C software, which is not supported. The DUP11
is the lowest-level user interface to the VAX/VMS 2780/3780 Protocol
Emulator. (The user can also access the 2780/3780 through the command
language interface and the record-oriented interface. See the VAX/VMS
2780/3780 Protocol Emulator User's Guide.)

12.1 SUPPORTED DEVICE

The DUPll is a single line, program-controlled communications device
that interfaces a VAX-11 ©processor to a serial, synchronous
communications line. Data transmission occurs at a maximum speed of
9600 baud. Although the DUP11 functions 1in either full- or
half-duplex mode, the DUPl1ll driver operates 1logically only in
half-duplex mode; only one I/0 request is processed at any given time
but many may be queued.

The DUP1ll driver transfers output data from the VAX/VMS system to the
DUP11. The DUPll then shifts the data onto the communications line.
Input data from the communications line modem 1is shifted 1into the
DUP1l where it is made available to the DUPll driver on an interrupt
basis,

12.1.1 Driver Operating Modes

The device driver functions 1in two operating modes: binary
synchronous communications (BSC) mode and binary mode. BSC mode
operations are described in Appendix C of the VAX/VMS 2780/3780
Protocol Emulator User's Guide. The preface of the same manual also
provides a list of related documents.

In BSC mode, the driver observes standard point-to-point BSC protocol
in send and receive operations. 1In binary mode, the driver does not
observe any protocol; the only operation performed on the data is the
insertion or deletion of PAD and SYN characters. An operation is
completed when the buffer count reaches zero or the I/0 is cancelled.

Function modifiers, which are included in all read and write requests
to the driver, define the operating mode for each I/O operation.

If the only reason for not using the record-oriented interface is the
blocksize restriction (the application is compatible with all other
2780/3780 communications protocols), the DUP1ll driver should be used
primarily in BSC mode rather than binary mode. Binary mode is used
only if the user requires direct control of some aspect of the

12-1

DUP11 INTERFACE DRIVER

communications protocol handled by the driver when in BSC mode. All
line protocol messages, for example, bids and sending EOTs, must be
transmitted in binary mode.

12.1.1.1 BSC Mode - If the IOS$SM_PTPBSC function modifier is included
in a read or write QIO request, data is read or written in BSC mode.
The DUP1ll driver performs the following operations:

1. Inserts in the output data, and removes from the input data,
BSC data-link control characters, for example, STX and ITB.

2. Checks input message blocks for transmission errors. Adds
cyclic redundancy check (CRC) characters to output message
blocks to support error checking by the communications
processor in the remote system.

3. Manages line protocols, for example, ACK, NAK, and ENQ
responses, that determine whether a message block must be
retransmitted because of transmission errors.

4, Inserts in the output data, and removes from the input data,
DLE information in transparent mode.

The DUPll driver does not modify the input or output data in any way.
All necessary processing, for example, data translation and space
compression or expansion, must be included in the user program. The
user program builds the message block to be transmitted into a single
buffer. This buffer must start with a 2-byte count that includes all
data up to the point where a CRC will be placed, and end with a 2-byte
count field equal to -1, The driver inserts an ITB character in front
of internal CRC characters.

Figures 12-1 through 12-5 illustrate how the DUPll driver reformats
user-formatted output message blocks into standard 2780/3780 message
blocks. The driver deblocks input messages in the reverse order of
that shown in these figures.

All COUNT and CRC fields in these examples are two bytes long. Each
record count results 1in the generation of a CRC character. An ITB
character precedes all internal CRC characters. An ETB precedes the
last CRC in a block unless the I0O$M LASTBLOCK function modifier is
specified. 1In that case, an ETX precedes the CRC. If in transparency
mode (specified by I0O$ SETMODE), all data-link control characters are
preceded by a DLE character and all DLE characters in the data buffers
are changed to DLE DLE. Also, the control character sequence of SYN,
SYN, DLE, STX is inserted between records within the message block.

Message blocks transmitted by the DUPll driver include a prefix of SYN
characters (as specified by the set mode QIO) and a suffix of a PAD
character (hexadecimal FF).

Figure 12-1 shows the format of wuser-built message buffers that
simulate 3780 processing. The wuser must pass the buffers to the
device driver by issuing QIO requests that include the IOSM_PTPBSC

function modifier. 2-byte

count field

COUNT1 RECORD1 IRS RECORD2 IRS RECORD3 -1 -1

Figure 12-1 3780 Message Block Example

12-2

DUP11 INTERFACE DRIVER

The DUP1l driver transmits the message block after modifying the
format, as shown in Figure 12-2. The driver does not modify the data
records in the two buffers; they are identical,

STX RECORD1 IRS RECORD?2 IRS RECORD3 | ETB | CRC

Figure 12-2 3780 Message Block Example (Modified)

To simulate 2780 processing in nontransparent mode, the user builds
message buffers in the format shown in Figure 12-3. The user must
include the IOSM PTPBSC function modifier in the QIO requests that
pass the buffers to the DUP1ll driver. 2-byte

count field
A —

COUNT1 RECORD1 COUNT 2 RECORD2 COUNTS3 RECORD3 -1 -1

Figure 12-3 Nontransparent 2780 Message Block Example

The DUPll driver transmits the message block after modifying the
format, as shown in Figure 12-4.

STX RECORD1 ITB | CRC| RECORD2 ITB | CRC | RECORD3 | ETB | CRC

Figure 12-4 Nontransparent 2780 Message Block
Example (Modified)

To simulate 2780 processing in transparent mode, the user must specify
the transparency modifier 1in a set mode QIO request, build message
buffers in the format shown in Figure 12-3, and include the
IOSM PTPBSC function modifier in the write QIO reguests that pass the
buffers to the DUPll driver. The driver transmits the message block
after modifying the format, as shown in Fiqgure 12-5. The driver adds
a duplicate DLE character to any DLE character encountered in the data
records.

DLE | STX | RECORD1 | DLE | ITB | CRC | SYN | SYN | DLE } STX RECORD2 | DLE | ITB | CRC

SYN | SYN| DLE | STX { RECORD3 | DLE | ETB { CRC

Figure 12-5 Transparent 2780 Message Block
Example (Modified)

12-3

DUP11 INTERFACE DRIVER

12.1.1.2 Binary Mode - If the IOSM SRRUNOUT function modifier is
included in a read or write request, data is read or written in binary
mode. In binary mode, the DUPll driver performs no processing
operations on the user-supplied message block buffer. Except for the
insertion in output message blocks, and deletion from input message
blocks, of 1leading SYN and trailing PAD characters, data passes
through the DUPll driver as unprocessed, binary information. The user
program directly controls all data transmitted or received by the
driver. QIO requests 1in the wuser program provide all necessary
communications to the remote system. The user program must perform
the following functions:

1. Explicitly issue all protocol messages, for example, ACK,
NAK, and ENQ responses, to the DUPll driver.

2. Perform all validity checking calculations and comparisons.

3. Handle the insertion and removal of any message-framing and
inter-record control characters in the message blocks.

4., Repeat write QIO requests until the operation 1is successful
or the program's error threshold is reached.

12.2 DEVICE INFORMATION

Users can obtain information on DUPll characteristics by using the
SGETCHN and SGETDEV system services (see Section 1.10). The
DUPll-specific information is returned in the first three longwords of
a user-specified buffer, shown in Figure 12-6 (Figure 1-9 shows the
entire buffer).

31 16 15 87 0

device characteristics

device buffer size (not used)

SYN

line characteristics
character

time

Figure 12-6 DUPl1l Information

The first 1longword contains device-independent information. The
second and third longwords contain device-dependent data.

Table 12-1 lists the device-independent characteristics returned in
the first longword.

12-4

DUP11 INTERFACE DRIVER

Table 12-1
Device-Independent Characteristics

Dynamic Bitsl

(Conditionally Set) Meaning
XJSM_CHA_ FDX Full-duplex line
XJ$M_CHA_ XPR Transparency mode
XJ$M_CHA DSR Data set ready

Static Bits?
(always Set)

DEVSM_AVL Device available
DEVSM_IDV Input device
DEV$M_ODV Output device

1. Defined by the $XJDEF macro.

2. Defined by the $DEVDEF macro.

The second longword contains the device buffer size (default is 520
bytes). The third longword contains the line characteristics, the SYN
character, and the time, in seconds, to wait for clear to send (CTS).
The SYN character 1is that character selected to precede all message
blocks transmitted by the DUPll driver. The 1line characteristics
returned in the third longword are:

® XJSM_CHA DSC -- Sense state of data terminal ready (DTR)
signal line. Meaningful only to I0S_SENSEMODE.

e XJSM CHA FDX -- full duplex mode. Do not drop request to send
(RTS) after each segment is transmitted.

® XJSM_CHA XPR -- transparent mode. Used only when IO$M PTPBSC
is specified with a write QIO function.

The device buffer size and the third longword contents are established
by I0$_SETMODE (see Section 12.3.3).

12.3 DUPl1l FUNCTION CODES

The DUP1l can perform logical and physical I/0 operations. The basic
I/0 functions are read, write, set mode, and sense mode. Table 12-2
lists these functions and their function codes. The following
paragraphs describe these functions in greater detail.

12-5

DUP11l INTERFACE DRIVER

Table 12-2
DUP11 I/0 Functions

Function Code and Type1 Function Function
Arguments Modifiers

IOS_READLBLK P1,P2 L I0SM_SRRUNOUT Read logical block
I0S$SM_PTPBSC

I0$_READPBLK P1,P2 P I0SM_SRRUNOUT Read physical
IO$M_PTPBSC block

IO$_WRITELBLK Pl,P2 L IOSM_SRRUNOUT Write logical
I0$M_PTPBSC block
I0$M_LASTBLOCK 2

I0OS_WRITEPBLK P1,P2 P IOSM_SRRUNOUT Write physical
I0OSM PTPBSC block

I0$M_LASTBLOCK 2

IO$_SETMODE Pl L IO$M_STARTUP Set line state or
IO$M_NODSRWAIT3 line parameters
10$M_SHUTDOWN

I0$_SENSEMODE L Sense line state;
return status

1. L = logical, P = physical
2. Use only with IOSM PTPBSC

3. Use only with IOSM_STARTUP

12.3.1 Read
Read functions provide for the transfer of data from the DUPll into
the user process's virtual memory address space. VAX/VMS provides two
function codes:

e I0S_READLBLK -- read logical block

e I0S$_READPBLK -- read physical block

The read function codes take two device/function-dependent arguments:

e Pl = the starting virtual address of the buffer that 1is to
receive data

e P2 = the size of the data buffer in bytes
The read QIO functions can take two function modifiers:

e I0OSM SRRUNOUT -- read data in binary format (see Section
12.171.2).

e 1IOSM PTPBSC -- read data in BSC mode (see Section 12.1.1.1).

12-6

DUP11 INTERFACE DRIVER

12.3.2 Write
Write functions provide for the transfer of data to the DUPll from the
user process's virtual memory address space. VAX/VMS provides two
function codes:

e IOS_WRITELBLK -- write logical block

e TI0S WRITEPBLK -- write physical block

The write function codes take two device/function-dependent arguments:

e Pl = the starting virtual address of the buffer that 1is to
send data to the DUP11

e P2 = the size of the data buffer in bytes

The write QIO functions can take three function modifiers:

e IOSM_SRRUNOUT -- write data in binary format (see Section
12.1.1.2).

° IO$M_PTPBSC -- write data in BSC mode (see Section 12.1.1.1).

e IOSM LASTBLOCK -- terminate the data block with an ETX
character. This function modifier can be used only in

conjunction with IO$M_PTPBSC.

12.3.3 Set Mode

The set mode function is used to change the state of the communication
line or the parameters that control the line. VAX/VMS provides one
function code:

I0$_SETMODE

This function code takes the following device/function-dependent
argument:

Pl = points to a quadword buffer block that contains the new
communication line parameters

Figure 12-7 shows the format of the Pl buffer.

31 24 23 16 15 0

blocksize not used

SYN

line characteristics
character

time

Figure 12-7 Set Mode Pl Buffer

In the first longword, blocksize is the largest buffer expected. This
parameter is included 1in the buffer block only when an I0$_READLBLK
request includes the IO$M_PTPBSC function modifier.

12-7

DUP11 INTERFACE DRIVER

The first word of the second longword specifies the following 1line
characteristics:

° XJ$M_CHA DSC -- sense state of data terminal ready (DTR)
signal 1ine. Meaningful only to IO$_SENSEMODE.

e XJSM _CHA_FDX -- full duplex mode. Do not drop request to send
(RTS) after each segment is transmitted.

e XJSM_CHA XPR -- transparent mode. Used only when IO$M_PTPBSC
is specified with a write QIO function.

The third byte of the second longword 1is the SYN character that
precedes all message blocks transmitted by the DUPll driver. The
fourth byte specifies the time, in seconds, to wait for clear to send
(CTS). This parameter is included in the buffer block only when a
read or write request specifies the IO$M_SRRUNOUT function modifier.

The Set Mode function can take three function modifiers:

° IO$M_STARTUP -- enable the communication 1line (assert data
terminal ready (DTR) and wait for data set ready (DSR).

e IO$M NODSRWAIT -- complete this function without regard to the

state of DSR. Used only in conjunction with the IOSM_STARTUP
function modifier.

° IO$M_SHUTDOWN -~ disable the communication line (disable DTR)

12.3.4 Sense Mode

The sense mode function senses the current state of the communication
line and returns the line characteristics and status in the I/O status
block (see Figure 12-9)., VAX/VMS provides one function code:

I0$_SENSEMODE

12.4 I/0 STATUS BLOCK

Figure 12-8 shows the I/0 status block for all DUPll QIO functions
except sense mode. Figure 12-9 shows the I/0 status block for the
sense mode function. Table 12-3 lists the status returns for all
functions.

31 16 15 0

transfer size status

device-dependent data

Figure 12-8 1IO0SB Content

12-8

DUP1l INTERFACE DRIVER

31 24 23 16 15 0

not used status

SYN

ime
tim character

line characteristics

Figure 12-9 1IOSB Content - Sense Mode

Table 12-3
DUPl1l Status Returns

Status Meaning

SSS_ABORT Request -aborted. A request in progress was aborted
by the $CANCEL system service.

SS$_ACCVIO Buffer access violation. An attempt was made to
read from or write to a location in memory that is
protected against the current mode.

SS$_EXQUOTA Buffered I/0 quota exceeded. A request cannot be
queued because the buffered I/0 quota was exceeded.

SS$_INSFMEM Insufficient dynamic memory to initiate a data
transfer request.

SS$_NORMAL QIO transfer request completed successfully; the
specified data was transferred.

In Figure 12-8, the second word of the first longword contains the
size of the transfer in bytes. For transmit (write) operations, the
transfer size is the value specified in the P2 argument, For read
(receive) operations, transfer size is the amount of data received as
the result of the read request. Table 12-4 lists the device-dependent
data returned in the second longword.

Table 12-4
Device-Dependent Status Returns

Value Meaning

XJ$M_BADCHAIN A RECORD LIST was incorrectly found in a BSC
(I0OSM_PTPBSC) write request. This is a fatal
error condition.

XJ$M_CONACK A BSC (IOSM_PTPBSC) write request was completed
with a conversational ACK character. The data
block is considered acknowledged. However, the
data received with the ACK character is lost.

(continued on next page)

12-9

DUP11 INTERFACE DRIVER

Table 12-4 (Cont.)
Device-Dependent Status Returns

Value Meaning
XJSM_DATACK Retry threshold exceeded. This is a fatal error
condition.
XJ$M_DISCON BSC disconnect sequence received, that is, DLE,
EOT. This is a fatal error condition.
XJSM_EOT EOT received. This is a fatal error condition.
XJSM_EXTEND A BSC (IOSM PTPBSC) read request completed

successfully.,” The read data included a block
that ended with an EXT character.

XJ$M_ILLMOD Illegal QIO function modifier detected. This is
a fatal error condition.

XJ$M_NODSR Request aborted because of DSR loss. This is a
fatal error condition.

XJSM_PIPE_MARK A BSC (IOSM_PTPBSC) transfer aborted because of
a previous failure. This is a fatal error
condition.

XJ$M_RVI A BSC (IOSM_PTPBSC) write request completed with
a received RVI.

XJ$M_TRABINTMO A timeout occurred during a binary
(IOSM_SRRUNOUT) data transfer. This is a fatal
error condition.

XJSM_XPR A BSC (IO$M_PTPBSC) read request was satisfied
with a transparent block. The received
information was transmitted (written) in

transparency mode.

In Figure 12-9, the first longword contains the current status of the
communication 1line. Table 12-3 1lists the status return values and
their meaning.

The first word of the second longword returns one or more of the
following line characteristics:

e XJSM _CHA DSC -- state of DTR line

e XJ$M_CHA FDX -- full duplex mode. (Do not drop RTS after each
segment tranmitted.)

e XJSM_CHA XPR -- transparent mode. Used only when IOSM_PTPBSC
is specified with a write QIO function.

The third byte of the second longword is the SYN character selected to
precede all message blocks transmitted by the DUP1ll driver. The
fourth byte specifies the time, in seconds, to wait for clear to send
(CTS). This parameter is included in the buffer block only when the
I0SM SRRUNOUT function modifier is specified in a read or write
request. :

12-10

This appendix lists the

in the S$IODEF nmacro.
listed.
A.l1 TERMINAL DRIVER

Function

I0$_READVBLK
I0$_READLBLK
10$_READPBLK
I0S_READPROMPT
I0$_TTYREADALL
I0$_TTYREADPALL

I0$_WRITEVBLK
I0$_WRITELBLK
I0$_WRITEPBLK

I10$_SETMODE
I0$_SETCHAR

I0$_SETMODE!IOSM_HANGUP
I0S$_SETCHAR!IO$M_HANGUP

APPENDIX A

1/0 FUNCTION CODES

function codes and function modifiers

The arguments
Arguments

Pl - buffer address

P2 - buffer size

P3 - timeout

P4 - read terminator
block address

P5 - prompt string
buffer addressl

P6 - prompt string
buffer sizel

Pl - buffer address

P2 - buffer size

P3 - (ignored)

P4 - carriage control
specifier 2

Pl - characteristics
buffer address

P3 - speed specifier

P4 - fill specifier

P5 - parity flags

(none)

I0$_SETMODE!IO$M_CTRLCAST Pl
I0$_SETMODE!IO$M_CTRLYAST P2
I0$_SETCHAR!IOSM_CTRLCAST P3
I0$_SETCHAR!IOSM_CTRLYAST

I10$_SENSEMODE
I0$_SENSECHAR

Pl

defined

for these functions are also

Modifier

I10$M NOECHO
10$M CVTLOW 3
I0$M NOFILTR 3
I0$M TIMED
I0SM PURGE
I0$M DSABLMBX
I0$M TRMNOECHO
I0$M_REFRESH

I0O$M_CANCTRLO
IOSM ENABLMBX
I0$SM NOFORMAT
IO$M_REFRESH

AST service routine address

AST parameter

access mode to deliver AST

Characteristics
buffer address

1. Only for IO$_READPROMPT and IO$_TTYREADPALL

2. Only for IOS$_WRITELBLK and IO$_WRITEVBLK

I0SM_TYPEAHDCNT

3. Only for IO$_READLBLK,IO$_READVBLK, and IOS$S_READPROMPT

I/0 FUNCTION CODES

A.2 DISK DRIVERS

Functions Arguments
I10$_READVBLK Rl - buffer address
I0S_READLBLK P2 - byte count
I0S_READPBLK P3 - disk address
IO$_WRITBVBLK
IO$_WRITELBLK
IO$_WRITEPBLK
I0S_WRITECHECK Pl - buffer address

P2 - byte count
P3 - disk address
I10S_SETMODE Pl - characteristic
I0$_SETCHAR address
IO$_SENSECHAR (none)
IOS_SENSEMODE
I0$_PACKACK
I0$~_MOUNT
IOS_SEARCH Pl - read/write hea
I10$_SEEK Pl - seek to specif
10$_CREATE Pl - FIB descriptor
I0$_ACCESS P2 - file name stri
I10S_DEACCESS address
I0S_MODIFY P3 - result string
I0S_DELETE address
I0$_ACPCONTROL P4 - result string
address
P5 - attribute list
1. Only for IOS_READPBLK and IO$_W
2. Only for IO$ CREATE and I0$_ACC
3. Only for IO$_CREATE and IO$_DEL
4. Only for IOS_ACPCONTROL
A.3 MAGNETIC TAPE DRIVERS
Functions Arguments

I0$_READVBLK
I0$_READLBLK
I0$_READPBLK
I0$_WRITEVBLK
10$_WRITELBLK
I0$_WRITEPBLK

Pl - buffer address
P2 - byte count

1. Not for TS1l1
2. Only for read functions

3. Only for write functions

Modifiers
I0S$SM DATACHECK

IO$M_INHRETRY
T0$M_INHSEEK 1

buffer

d position

ied cylinder

address IO$SM_CREATE 2

ng IO$M_ACCESS 2
I0$M_DELETE 3

length T0$M_DMOUNT 4
descriptor

address
RITEPBLK
ESS

ETE

Modifiers

I0$M_DATACHECK 1
I0$M_INHRETRY
IO$M_REVERSE 2
IO$M_INHEXTGAP 3

Functions

I0$_SETMODE
10$_SETCHAR

I0$_CREATE
I0$_ACCESS
10$_DEACCESS

I0$_MODIFY
10$_ACPCONTROL

I0$_SKIPFILE
I0$_SKIPRECORD
I0$_MOUNT

I0S_REWIND
I0S_REWINDOFF

I0$_WRITEOF

IO$_SENSEMODE

Arguments

Pl - characteristics buffer
address

Pl - FIB descriptor address

P2 - file name string
address

P3 - result string length
address

P4 - result string descriptor
address

P5 - attribute list address

Pl - skip n tape marks

Pl - skip n records

(none)

(none)

(none)

(none)

I/0 FUNCTION CODES

1. Only for IO$_CREATE and IOS$_ACCESS

2. Only for IO$_ACPCONTROL

A4
Functions
I0$ WRITEVBLK

I10$_WRITELBLK
I0$_WRITEPBLK

I10$_SETMODE
I0$_SETCHAR

Pl
P2
P3
P4

Pl

LINE PRINTER DRIVER

Arguments

buffer address
buffer size
(ignored)
carriage control
specifierl

characteristics buffer
address

1Only for I0$_WRITEVBLK and IO$_WRITELBLK

A.5
Functions
I0$_READLBLK
I0$_ READVBLK
I0$_READPBLK

I0$_SETMODE
I0$_SETCHAR

10$_SENSEMODE

CARD READER DRIVER

Arguments

Pl - buffer address
P2 - byte count

Pl - characteristics

buffer address

(none)

Modifiers

I0$M_CREATE !
I0$M_ACCESS 1
I0S$M_DMOUNT 2

IO$M_INHRETRY

I0SM_INHRETRY

I0OSM_INHRETRY
IOSM_NOWAIT

I0$M_INHEXTGAP
IO$M_INHRETRY

IOSM_INHRETRY

Modifiers

(none)

(none)

Modifiers

I0$M_BINARY
I0$M_PACKED

(none)

A.6 MAILBOX DRIVER

Functions

10$_READVBLK
I0$_READLBLK
I10$_READPBLK
I0$_WRITEVBLK
I0$_WRITELBLK
I10$_WRITEPBLK

I0$_WRITEOF

IO$_SETMODE!IO$M_READATTN
IOS_SETMODE!IO$M_WRTATTN

A.7 DMCl1l1l DRIVER

Functions

I10$_READLBLK
I0$_READPBLK
I0$__READVBLK
I0$_WRITELBLK
10$_WRITEPBLK
I0$_WRITEVBLK

I10S_SETMODE
I0$_SETCHAR

I0$_SETMODE!IOSM_ATTNAST
I10$_SETCHAR!IOSM_ATTNAST

I0$_SETMODE!IOS$M_SHUTDOWN
I0$_SETCHAR!IOS$M_SHUTDOWN

I0$_SETMODE!IOSM_STARTUP
IO$_SETCHAR!IOS$M_STARTUP

1. Only for read functions

2. Only for I0$_WRITELBLK

1/0

FUNCTION CODES

Arguments
Pl - buffer address
P2 - buffer size
(none)
Pl - AST address
P2 - AST parameter
P3 - Access mode
Arguments
Pl - buffer address
P2 - message size
Pl - characteristics
buffer address
Pl - AST service
routine address
P2 - (ignored)
P3 - AST access mode
Pl - characteristics
block address
Pl - characteristics
block address
P2 - (ignored)
P3 - receive message
blocks
and IO$_WRITEPBLK

Modifiers

I0$M_NOW

Modifiers

I0$M_DSABLMBX 1
I0$M_Nowl
TO$M_ENABLMBX 2

I/0 FUNCTION CODES

A.8 ACP INTERFACE DRIVER

Functions

I0$ CREATE Pl
I0$ ACCESS P2
I0$_DEACCESS
I0$_MODIFY P3
I0$ DELETE

10$_ACPCONTROL P4

P5

Arguments

FIB descriptor address
file name string
address

result string length

Modifiers

I0$M CREATEL
108M ACCESs 1
I0$M DELETE 2
10$M_DMOUNT3

address

result string descriptor

address

attribute list address

I0$_MOUNT (none)

1. Only for IO$_CREATE and IO$_ACCESS

2. Only for IO$_CREATE and IO$_DELETE

3. Only for IO$_ACPCONTROL

A.9 LPAll-K DRIVER

QIO Functions

I0S_LOADCODE

I10$_STARTMPROC

I0S_INITIALIZE

I0 _SETCLOCK

I10$_STARTDATA

Arguments Modifier
Pl - starting address of (none)
microcode to be loaded
P2 - load byte count
P3 - starting microprogram
address to receive
microcode
(none) (none)
Pl - address of Initialize (none)
Command Table
P2 - initialize command
buffer length
P2 - mode of operation (none)
P3 - clock control and
status
P4 - real-time clock preset
value (2's complement)
Pl - Data Transfer Command I0SM_SETEVF
Table address
P2 - Data Transfer Command
Table length
P3 - normal completion AST
address
P4 - overrun completion AST

address

High Level Language

Subroutines

LPASADSWP
LPASDASWP
LPASDISWP
LPASDOSWP
LPASLAMSKS
LPASSETADC
LPASSETIBF
LPASSTPSWP
LPASCLOCKA
LPASCLOCKB
LPASXRATE
LPASIBFSTS
LPAS IGTBUF
LPAS INXTBF
LPASIWTBUF
LPASRLSBUF
LPASRMVBUF
LPASCVADF
LPASFLT16
LPASLOADMC

A.10 DR32 DRIVER
QIO Functions

I10$_LOADMCODE

I0$_STARTDATA

High Level Language

Subroutines

XF$SETUP

XF$STARTDEV
XF$FREESET

XFSPKTBLD

I/0 FUNCTION CODES

Functions

Start A/D converter sweep

Start D/A converter sweep

Start digital input sweep

Start digital output sweep

Specify LPAll-K controller and digital mask words
Specify channel select parameters

Specify buffer parameters

Stop sweep

Set Clock A rate

Set Closk B rate

Compute clock rate and present value
Return buffer status

Return next available buffer

Alter buffer order

Return next buffer or wait

Release buffer to LPAll-K

Remove buffer from device queue

Convert A/D input to floating point
Convert unsigned integer to floating point
Load microcode and initialize LPA-11K

Arguments Modifier

Pl - Starting address
of microcode to
be loaded

P2 - load byte count

Pl - starting address
of Data Transfer
Command Table

P2 - length of the
Data Transfer
Command Table

I0$M_SETEVF

Function
Defines command and buffer areas;
initializes queues
Issues a QIO that starts the DR32
Releases command packets onto FREEQ

Builds command packets; releases
them onto INPTQ

I/0 FUNCTION CODES

XFSGETPKT Removes a command packet from TERMQ

XFSCLEANUP Deassigns the device channel and deallocates

the command area

A.1ll1 DUP1ll DRIVER

Functions Arguments
I0$ READLBLK Pl - buffer address
I10$ READVBLK P2 - byte count

I0$ WRITELBLK
I10$ WRITEVBLK

I0$ SETMODE Pl - line parameters block

I0S$ SENSEMODE (none)
1. Only for write functions with IOSM PTPBSC

2., Use only with IOS$SM STARTUP

Modifiers

IO$SM SRRUNOUT
I10SM PTPBSC
I0$M LASTBLOCK L

I0SM STARTUP
I0SM NODSRWAIT 2
I0$M SHUTDOWN

INDEX

A

1-5, 1-14

9-23, A-2, A-5

ACP control function, 9-26, 9-27

ACP QIO functions, 9-19 to 9-31
arguments, 9-20 to 9-28
attributes, 9-15 to 9-17
modifiers for, 9-19 to 9-28
status returns, 9-32

Action routines, DR32, 11-35,

Access, 1-3,
file, 9-22,

11-41
Allocate Device ($ALLOC) system
service, 1-14

Allocation of blocks, FIB,
ALTMODE, 2-5, 2-8
Analog-to-digital converter, 10-1
Ancillary Control Process (ACP),
1-5, 9-1
functions,
interface,
Arguments,
ACP device/function-dependent,
9-20, 9-21
AST address (astadr), 1-18
AST parameter (astprm), 1-18
buffer, 1-19
channel number,
1-19, 1-24
device/function-dependent,
1-16, 1-18, 2-14
device/function-independent,
1-15, 1-16
SINPUT, 1-19
souTpUT, 1-19
$010, 1-15 to 1-17
$QoIow, 1-16, 1-17
event flag number, 1-17, 1-19
function, 1-15 to 1-17, 1-18,
A-1
function-dependent,
to 3-13
I/0 status block (iosb),
1-19
keyword, 1-16
length, 1-19
position dependent,
SGETCHN, 1-24, 1-25
SGETDEV, 1-24 1-25
CALL instruction, 1-23
Assigning channels, 1-13
Assign I/0 Channel ($ASSIGN)
system service, 1-13, 1-16,
1-17, 7-2, 8-2
AST,
address, 1-17
parameter arguments,
quota, 1-4, 7-5
routine, 1-23

9-7

9-2
9-1

1-15 to 1-17,

1-15,

disks, 3-9

1-18,

1-15

1-17, 1-18

Asynchronous system trap, 1-22,
1-23
Attention AST,
enable, DMC1ll1, 8-7, 8-8
read, mailbox, 7-7 to 7-9
write, mailbox, 7-7 to 7-9
Attribute Control Block,
explanation of, 9-14
fields, 9-15
format, 9-15
record attributes area, 9-17,
9-18

statistics block, 9-19
Attributes Statistics Block, ACP
QI0, 9-19

Beginning-of-tape (BOT), 4-11
Binary mode, DUPll, 12-1, 12-4
Bits,
device/function-dependent, 1-13
device/function-independent,
1-13
Block-addressable devices,
1-10
BSC mode, DUP1ll, 12-1, 12-2
Buffered I/0 byte count quota,
1-4
Buffered I1/0 quota, 1-4,
Buffer overrun, 10-10,

C

1-7,

7-5
10-11

CALL, 1-23
Card punch combinations,
Card reader,
device characteristics,
6-5
driver, 6-1
end-of-file, 6-2
error recovery, 6-2, 6-
I/0 functions, 6-5, 6-6
I/0 status block, 6-8
read,
function,
mode, 6-1, 6-2
sense mode, 6-7, 6-8
set characteristics,
set mode, 6-1, 6-2,
status returns, 6-9
translation mode, 6-2
Carriage control,
line printer, 5-5 to 5-7
terminal, 2-18
Chaining, command and data, DR32,
11-3

6-2

6-3 to

3

6-2, 6-6

6-8
6-8

6-7,
6-7,

Index-1

Channel, 1-13, 1-14
assignments, 1-13
number argument, 1-15 to 1-17
Character
bit mask terminator, terminal,
2-16, 2-17

Character formatting, line printer,

5-2

Characteristics, (see Device char-

acteristics)
Check,
close, 9-3
file identifier number, 9-34
file identifier sequence, 9-34
read, 9-4
write, 9-4
Command packets, DR32, 11-8
Completion status, 1-20, 1-22,
1-23
Console terminal, 2-1
Control characters, terminal,
2-2, 2-5 to 2-8
CTRL/C, 2-6, 2-23
CTRL/C AST, enable, 2-6, 2-23,
2-24
CTRL/G, 2~
CTRL/I, 2-
CTRL/J, 2-
CTRL/K, 2-
CTRL/L, 2-
CTRL/0, 2-
CTRL/Q, 2-
CTRL/R, 2-
CTRL/S, 2-
CTRL/U, 2~
CTRL/X, 2-
CTRL/Y, 2- , 2-23
CTRL/Y AST, enable, 2-7, 2-23,
2-24
CTRL/Z, 2-8
Create file, 9-21, 9-22

NN Yo

N W N N N NN

Create Mailbox and Assign Channel
(SCREMBX) system service, 1-4,

1-17, 7-2

Cyclic Redundancy Check (CRC), 8-1

D

Data check,
disk, 3-3, 3-9, 3-10
magnetic tape, 4-3, 4-9, 4-10
Data overrun, 10-10
Data Set Ready (DSR) modem line,
DMCl11, 8-5

Data Transfer Command Table, 10-10,

10-11, 11-21

Data Transfer Start Command, 10-10
Data Transfer Stop Command, 10-12,

10-13

INDEX

DDI (DR32 Device Interconnect),
11-1
Deaccess locked file, 9-33
Deaccess file, 9-19, 9-24, A-5
Deassign I/0 Channel ($DASSGN)
system service, 2-24, 7-3
Dedicated mode, LPAll-K, 10-1
DELETE, 2-5, 2-8
Delete file, 9-25, 9-26, A-5
Delete Mailbox ($DELMBX) system
service, 7-3
Device allocation, 1-14
Device characteristics,
card reader, 6-3 to 6-5
disk, 3-5 to 3-7
DMC1l1, 8-3 to 8-6
DR32, 11-3
DUP1l, 12-4
line printer, 5-3, 5-4
LPAll1-K, 10-4 to 10-8
magnetic tape, 4-4, 4-5
mailbox, 7-4
terminal, 2-10 to 2-13
Device/function-dependent,
arguments, 1-18, 1-19
bits, 1-13
Device/function-independent,
arguments, 1-16, 1-17
bits, 1-13
Device information, 1-24, 1-25

Device queue (DVQ), LPAll-K, 10-14

Devices, 1-1, 1-2
Dial=-up, 2-9 2-13

DIGITAL Data Communications Message

. Protocol (DDCMP), 8-1, 8-4
Digital-to-analog converter, 10-1
Direct I/0 quota, 1-4, 8-3
Direct Memory Access (DMA), 8-1
Directory File, 9-5
Disk,

device characteristics, 3-5 to
3-7
devices, 3-1
device types, 3-7
drivers, 3-1
capabilities of, 3-2, 3-3
error recovery, 3-4 .
I/0 function, 3-7 to 3-11, A-2
arguments, 3-9 to 3-11
interleaving, 3-4, 3-5
I/0 status block, 3-14, 3-15
lock /unlock bits, 9-31

logical to physical translation,

3-4, 3-5
overlapped seeks, 3-3, 3-4

quota filg, FIB, 9-7, 9-8, 9-27,

9-28
read function, 3-7 to 3-12
sense mode, 3-14
set characteristic, 3-13, 3-14

Index-2

Disk,

DSL (DR32 Status Longword),

DR-device,

INDEX

(Cont.)
set mode, 3-13
skew, 3-5
status,
block, 3-14, 3-15
returns, 3-15, 3-16
write function, 3-8, 3-12

DMC11,

device characteristics, 8-3 to
8-6

device types, 8-4

enable attention AST, 8-7, 8-8

error summary bits, 8-6

features of, 8-2

I/0 functions, 8-6, 8-7, A-4

I/0 status block, 8-10

mailbox usage, 8-2, 8-3

message size, 8-4

quotas, 8-3

read function, 8-6

set characteristics,

set mode, 8-7, 8-8

shut down unit, 8-9

start unit, 8-9

status returns, 8-10

synchronous communications line
interface driver, 8-1, 8-9

unit characteristics, 8-5

write function, 8-7

$CRDEF, 6-3, 6-7

$DCDEF, 2-11, 2-22, 2-25, 3-7,

8-7

4-5, 4-15, 5-4, 6-4
$DEVDEF, 3-6, 4-4, 5-3, 6-4,
7-4, 8-3, 10-5
$LADEF, 10-5, 10-6
SLPDEF, 5-4

$MSGDEF, 2-5, 8-2
SMTDEF, 4-5, 4-13
$SSDEF, 10-33
$TTDEF, 2-22, 2-25
$XMDEF, 8-4, 8-5
11-17,
11-41

DR32, 11-1,

11-3, 11-5,

11-7

DR32,

action routines, 11-35, 11-41
AST routines, 11-22, 11-34
buffer block, 11-5
command and data chaining,
command block, 11-5
command packets, 11-5,
11-7, 11-8
AST routine, 11-22,
Pre-fetch, 11-40
contol (command) messages,
data transfers, 11-3, 11-5,
Data Transfer Command Table,
11-21
data rate,

11-3

l1-6,

11-34

11-7
11-21

11-22, 11-27

DR 32, {(Cont.)

device characteristics, 11-3

device control codes, 11-10

device-dependent IOSB returns
11-38

diagnostic tests, 11-41

DR-device (definition),

DR32 Device Interconnect
11-1

DR32 Status Longword (DSL),
11-17, 11-41

error checking, 11-41

event flags, 11-21, 11-34

far-end DR-device, 11-1,
11-5, 11-7

free queue (FREEQ),

GO bit, 11-7, 11-22

high-level language interface
11-5, 11-23

synchronization, 11-34

input queue (INPTQ), 11-5,

INSQTI instruction, 11-6

interrupts, 11-3, 11-15,
11-42

I/0 functions, 11-20

I/0 status block, 11-36, 11-4

load microcode function (IOS$S
LOADMCODE), 11-20 -

microcode loader (XFLOADER),
11-19

11-1
(DDI

11-3

11-5, 11-

11

11-2

programming hints, 11-40
programming interface, 11-5,
queue headers, 11-6

queue processing, 1l1-6

queue retry, 11-7, 11-41
random access, 11-3

REMQHI instruction, 11-6

start data transfer function
(I0$ STARTDATA), 11-5,
11-2T
status returns, 11-36, 11-41
termination queue (TERMQ),
11-5, 11-6
XF$CLEANUP, 11-33
XFSFREESET, 11-28
XFSGETPKT, 11-32
XF$PKTBLD, 11-29
XFS$SETUP, 11-24
XF$STARTDEV, 11-26
DUP11,
binary mode, 12-1, 12-4
BSC mode, 12-1, 12-2
device characteristics,
full/half-duplex mode,
I/0 functions, 12-5
I/0 status block, 12-8
message blocks, 12-2,
message buffers, 12-2
nontransparent mode,
protocol, BSC, 12-1

12-4
12-1

12-3

12-3

Index-3

r

),

r

6

r

-6

2,

1

11-23

INDEX

DUP1l1l, (Cont.)
transparent mode, 12-2, 12-3
VAX/VMS 2780/3780 Protocol
Emulator, 12-1
Duplex modes, terminal, 2-9
DZ-11 Asynchronous Serial Line
Multiplexer, 2-1, 2-9
DZ-11 Internal Modem Control, 2-1,
2-9

E

Eight-bit ASCII, 2-12
Enable attention AST,

bpmMcl11i, 8-7, 8-8
mailbox, 7-8
Enable CTRL/C AST, 2-6, 2-23,
2-24
Enable CTRL/Y AST, 2-7, 2-23,
2-24
End-of-file,
card reader, 6-2, 6-9
message, mailbox, 7-7, 7-10
status, 4-10
End-of-tape status, 4-9, 4-10

Error Code Correctable (ECC),
disk, 3-3
Error recovery,
card reader,
disk, 3-4
line printer,
magnetic tape,
Error,
severity level, 1-20
summary bits, DMC11,
ESCAPE, 2-5, 2-8
Escape sequences,
Event flag, 1-15,
number argument,
1-19

6-2, 6-3
5-2
4-3

8-6

F

File Information Block
3-9, 9-1 to 9-10
argument usage in QIO functions,
9-10 to 9-14
contents of, 9-3 to 9-10
field values, 9-3 to 9-14
format, 9-2
file name string, 9-20
Fill specifier, terminal,
Foreign volume, 1-10
FORM FEED (FF), 2-6
Form feeds, 2-18, 5-5
Full-duplex mode,
buUP11l, 12-1
terminals,

(FIB),

2-22

2-9

Function
arguments, 1-15 to 1-17, A-1
code, 1-1, 1-12, A-1
modifier, 1-12, 1-13, 1-18, A-1
requests, 1-14

Function-dependent arguments,
3-9 to 3-13
Function codes,

I0$ ACCESS, 3-8, 4-6, 9-12

I0$ ACPCONTROL, 3-8, 4-8, 9-14

10$ CREATE, 1-12, 3-8, 4-6,
T9-10

10$ DEACCESS, 3-8, 4-6,

I1I0$" DELETE, 3-8, 9-13

I0$TINITIALIZE, 10-6, 10-8

I10$" LOADMCODE, 10-6, 10-7,
~10-33, 11-20

1I0$ MODIFY, 3-8, 4-6, 9-12

I0$ MOUNT, 3-8, 4-8, 9-14

I0$ PACKACK, 3-9, 3-14

I0$ READLBLK, 1-12, 2-14,
~2-15, 3-8, 3-10, 3-11, 4-7,

6-5, 6-6, 7-5, 8-6

I0$ READPBLK, 1-12, 2-14, 3-8,

—3-10, 3-11, 4-7, 6-5, 6-6,

disk,

9-12

7-5, 8-6
10$_READPROMPT, 2-7, 2-14,
2-15
10$_READVBLK, 1-12, 2-14, 2-15,

—3-8, 3-10, 3-11, 4-7, 6-5,
6-6, 7-5, 8-6
10$ REWIND, 4-7
I0$S REWINDOFF, 4-7
10$" SEARCH, 3-9, 3-11
I0$ SEEK, 3-9, 3-11
I0$ SENSECHAR, 2-24, 3-9
10$_SENSEMODE, 2-24, 3-9, 3-14,
4-8, 4-12, 5-8, 6-5
I1I0$ SETCHAR, 2-7, 2-13, 2-22,
~3-9, 3-11, 4-8, 4-14, 5-8,
6-5, 6-8, 8-7
10$ SETCLOCK, 10-7
I0$_SETMODE, 2-7, 2-13, 2-22,
3-9, 3-11, 4-8, 4-13, 5-8,
6-5, 6-7, 7-7, 8-6
I0$ SKIPFILE, 4-7, 4-11
10$ SKIPRECORD, 4-7
10$ STARTDATA, 10-10, 11-5,
T11-21
10$ STARTMPROC, 10-8
I10$ TTYREADALL, 2-14
I10$" TTYREADPALL, 2-14
I10$ WRITECHECK, 3-9, 3-10
I0$ WRITELBLK, 1-12, 3-8, 3-10
~3-12, 4-7, 5-4, 7-6, 8-17
10$ WRITEOF, 4-7, 4-12, 7-7
I0$ WRITEPBLK, 1-12, 3-9, 3-10
—3-12, 4-7, 5-4, 7-6, 8-7
I10$ WRITEVBLK, 1-12, 3-8, 3-10,
~3-12, 4-7, 5-4, 7-6, 8-7

Index-4

INDEX

Function modifiers,
I0$M ACCESS, 1-13
I0$M ATTNAST, 8-8
I0$M BINARY, 6-1, 6-5, 6-6
IO$M_CANCTRLO, 2-6, 2-18
I0SM CTRLCAST, 2-23
I0$M CTRLYAST, 2-7, 2-23
I0$M CVTLOW, 2-2, 2-15

I0$M DATACHECK, 1-13, 3-3, 3-12,

-3, 4-7
IOSM_DMOUNT, 4-8, 9-27
I0$M_DSABLMBX, 2-12, 2-15
IOSM_ENABLMBX, 2-12, 2-18, 8-7
IOSM_HANGUP, 2-23
I0$M INHERLOG, 1-7
IOSM_INHEXTGAP, 4-4, 4-7
IOSM_INHRETRY, 1-13, 3-4, 3-12,
4-3, 4-7
IO$M INHSEEK, 3-3
IO$M_NOECHO, 1-12, 2-2, 2-15
I0$M NOFILTR, 2-16
I05M NOFORMAT, 2-12, 2-18
I0$M NOW, 7-5, 8-6
I0$M NOWAIT, 4-7, 4-12
I0$M PACKED, 6-1, 6-5, 6-6
I10$M PURGE, 2-15, 2-16
I0$M READATTN, 7-7
I0$M REFRESH, 2-16, 2-18
I0$M_REVERSE, 4-7
IO$M_SETEVF, 10-10, 11-21
IOSM_SHUTDOWN, 8-9
I0$M_STARTUP, 8-9
IOSM_TIMED, 2-16
I0SM TRMNOECHO, 2-16
IO$M_TYPEAHDCNT, 2-25
IOSM WRTATTN, 7-7
free queue (FREEQ), DR32, 11-5,
11-6

G

Get Channel Information ($GETCHN)
system service, 1-24, 2-10,

3-5, 4-4, 5-3, 6-3, 7-4, 8-3,

10-4
Get Device Information (SGETDEV)

system service, 1-24, 2-10, 3-5,

4-4, 5-3, 6-3, 7-4, 8-3, 10-4
GO bit, DR32, 11-7, 11-22

H

Half-duplex mode,
DUP1l1l, 12-1
terminals, 2-9
Hang-up,
modifier, 2-23
terminal, 2-5, 2-9, 2-13

Holdscreen mode, 2-12
Host/terminal synchronization,
2-12

Information,
device, 1-24, 1-25
device-dependent, 1-25
Initialize Command Table, 10-9
Input/Output operations, 1l-1
Input queue (INPTQ),DR32, 11-5,
11-6
Interleaving, disk, 3-4, 3-5
In-use queue (IUQ),LPAll-K, 10-14
I/0 completion, 1-21
I/0 function,
arguments, 1-15 to 1-17, A-1
code, 1-1, 1-12, A-1
modifier, 1-12, 1-13, 1-18, A-1
requests, 1-14
I/0 Functions,
card reader, 6-
disk, 3-7 to 3-
pMCll, 8-6, 8-7
DR32, 11-20
DUP1l, 12-5
line printer, 5-4 to 5-8, A-3
LPAll1~-K, 10-7 to 10-12, A-5
maghetic tape, 4-5 to 4-9, A-2
mailbox, 7-5 to 7-9, A-4
terminal, 2-13, 2-25, 2-26, A-1
I/0 operations, 1-6
logical, 1-7
physical, 1-7
virtual, 1-7, 1-10
I/0 quota,
buffered, 1-4, 7-5
byte count, 1-4
direct, 1-4, 8-3
1/0 requests, 1-1, 1-13, 1-15,
1-16
I08B, 1-22
I/0 status block, 1-17, 1-21, 1-22
argument, 1-18
1/0 status,
ACP QIO interface, 9-31 to 9-35
card reader, 6-8, 6-9
disk devices, 3-14 to 3-16
DMC1l1l, 8-10
DR32, 11-36
DUPll, 12-8
line printer, 5-9
LPAll-K, 10-32 to 10-35
magnetic tape devices, 4-15
mailbox, 7-9
terminal, 2-25
I/0 status returns, 1-20, 1-21
1/0 system services, 1-2, 1-10

Index-5

INDEX

K

Keyword arguments,

L

Laboratory Peripheral Accelerator,
LPAll1-K, 10-1
LINE FEED, 2-5
Line feeds, 2-18
Line printer,
carriage control, 5-5 to 5-7
character formatting, 5-2
device characteristics, 5-3, 5-4
driver, 5-1
error recovery, 5-2
I/0 functions, 5-4 to 5-8, A-3,
A-5
I/0 status block, 5-9
sense printer mode, 5-8
set characteristics, 5-8
set mode, 5-8
status returns, 5-9

1-16

types, 5-1
write function, 5-4, 5-5
Line, remote, 2-5, 2-9, 2-13

Line terminators, 2-2
Logical Block Number (LBN), 9-9
Logical 1/0,
operations, 1-7
privilege, 1-5, 1-6
Logical name, 1-14
Logical to physical translation,
RX01, 3-4
Lowercase, characters,
5-2, 5-4
LPAll-K,
AST addresses, 10-10, 10-12
buffer overrun, 10-10, 10-11
buffer queue control, 10-14,
10-15
data acquisition devices, 10-4
Data Transfer Command Table,
10-10, 10-11
Data Transfer Start Command,
10-10
Data Transfer Stop Command,
10-12, 10-13
device characteristics, 10-4
to 10-8
device configurations, 10-2
device initialization routines,

2-12, 2-17,

10-4, 10-36
driver, 10-1, 10-3
errors, 10-2
high-level language support
routines, 10-3, 10-13

I/0 functions, 10-7 to 10-12
I/0 status block, 10-32
Initialize Command Table, 10-9

LPAl1l-K, (Cont.)
initialize function, 10-8
load microcode function, 10-5,

10-7

Maintenance Status Register,
10-33

microcode loading routines,
10-4, 10-36

modes of operation, 10-2
Random Channel List (RCL), 10-12
Ready-out Register, 10-33
Request Descriptor Array (RDA),
10-18
RSX-11M differences,
10-38
set clock function, 10-7,
10-9
set event flag modifier,
10-12
start data transfer request
function, 10-10, 10-11
start microprocessor function,
10-8
status returns,
subroutines,
LPASADSWP, 10-18
LPASCLOCKA, 10-24
LPASCLOCKB, 10-25
LPASCVADF, 10-31
LPASDASWP, 10-19
LPASDISWP, 10-20
LPASDOSWP, 10-21
LPASFLP16, 10-31
LPASFLT16, 10-31
LPASIBFSTS, 10-27
LPASIGTBUF, 10-27
LPASINXTBF, 10-28
LPASIWTBUF, 10-29
LPASLAMSKS, 10-22
LPASLOADER, 10-36
LPASLOADMC, 10-32
LPASRLSBUF, 10-30
LPASRMVBUF, 10-30
LPASSETADC, 10-22
LPASSETIBF, 10-23
LPASSTPSWP, 10-24
LPASXRATE, 10-26
subroutine arguments, 10-14 to
10-18
supporting software,

l0-37,

10-10,

10-33 to 10-35

10-3

Magnetic tape,
data check, 4-3, 4-9, 4-10
device characteristics, 4-4,
4-5
device types, 4-1
driver, 4-2

Index-~6

INDEX

Magnetic tape, (Cont.)
error recovery, 4-3
file, 9-3
I/0 functions, 4-5 to 4-9, A-2,
A-3
I/0 status block, 4-15
master adapters, 4-2
read function, 4-9, 4-10
rewind, 4-11, 4-12
sense mode, 4-12
set characteristics, 4-13 to
4-15
set mode, 4-13, 4-14
skip function, 4-11, 4-12
slave formatters, 4-2
Magnetic tape,
status returns, 4-15 to 4-17
write function, 4-10, 4-11
Mailbox,
creation of, 1-14, 7-2
deletion of, 7-3
device characteristics, 7-4
driver, 7-1, A-4
explanation of, 7-1, 7-2
I1/0 functions, 7-5 to 7-9, A-4
I/0 status block, 7-9
message format, 2-5, 7-3, 7-4
protection, 1-5
QIO requests,
read, 7-5, 7-6
write, 7-6, 7-7
read attention AST, 7-7 to 7-9
set attention AST, 7-7 to 7-9
status returns, 7-9, 7-10
terminal, 2-4, 2-5
usage,
DMCl1l1l, 8-2, 8-3
LPAl11K, 10-32, 10-36
write attention AST, 7-7 to

7-9
write end-of-file message, 7-7,
7-10
Master adapter, magnetic tape,
4-2

Mechanical,
form feed, 2-12, 5-4
tabs, 2-13
Message,
format, mailbox, 2-5, 7-3, 7-4
size, DMC1ll1l, 8-4
control, DR32, 11-7
Modem control, 2-1, 2-9
Modify file, 9-24, 9-25, A-5
MOUNT, 1-14
Mount,
privilege, 1-5
virtual I/0 function, 9-26
Mounted,
foreign 1-7, 1-10, 3-12
structured, 3-11, 3-12

Multirequest mode, LPAll-K, 10-1,
10-2

N

Name string, 9-5
NULL, 2-16

o)

Offset, 1-26
recovery, 3-3
Overlapped seeks, disk, 3-3, 3-4

P

Pack acknowledge, 3-14

Page,
length, 2-11
width, 2-11

Parity flags, terminal, 2-23
PASSALL, 2-5, 2-13, 2-15
Physical,

device name, 1-14

I/0 operation, 1-7

I/0 privilege, 1-4 to 1-7
Printer, (see Line Printer)
Privilege, 1-3

logical 1/0, 1-5, 1-6

mount, 1-5

physical 1/0, 1-4 to 1-7
Prompt buffer, terminal, 2-14
Protection, 1-3, 1-5, 1-6

mask, 1-5 to 1-7, 1-10
protocol,

DDCMP, 8-1, 8-4

BSC, DuUPll, 12-1

Q

QIO
arguments, 1-15 to 1-17
macro, 1-15 to 1-17
QIOW
arguments, 1-16, 1-17
macro, 1-16, 1-17
Queue I/0 (QIO),
interface to ACPs, 9-1
macro, 1-15
operations, 1-6
system service ($QI0), 1-1,
1-13, 1-14
Queue processing, DR32, 11-6
Quota file transfer block, disk,
9-28

Index~7

INDEX

Quotas, 1-3,
disk,

3-7, 4-6,
9-27 to 9-31

7-5, 8-3,

R

Random Channel List (RCL),
Read,
access, 9-30
attention AST, 7-7 to 7-9
binary, card reader, 6-1,
checking, 9-4
function codes, 2-14
mailbox QIO requests,
packed Hollerith,
6-1, 6-6
with prompt, 2-14
with timeout, 2-14
Read Event Flags (SREADEF) system
service, 1-17
Read function,

10-12

6-6

7-5, 7-6
card reader,

card reader, 6-2, 6-6
disk devices, 3-7 to 3-12
DMC1ll, 8-6

DUP11l, 12-6

magnhetic tape devices, 4-10
mailbox, 7-5 to 7-9
terminal, 2-9, 2-14

Read QIO function, 1-6

Receive buffer free list, DMC1l1,

4-9,

Set attention AST,
DMC1l1l, 8-8
mailbox, 7-7 to 7-9
Set characteristics,
card reader, 6-7, 6-8
disk devices, 3-13, 3-14
DMCll, 8-7
line printer, 5-8
magnetic tape devices,
4-15
terminal,
Set mode,
card reader, 6-1,
disk devices, 3-13
pMCll, 8-7, 8-8
DUP11l, 12-6, 12-7
line printer, 5-8
magnetic tape devices, 4-13, 4-14
QIO function, 1-6, 1-12
terminal, 2-15, 2-22
Set Resource Wait Mode (SSETRWM)
system service, 1-3, 1-4, 1-21
Set terminal command, 2-11
Severity level error, 1-20
Shut down unit, DMCll1l, 8-9
Skew disk, 3-5
Skip, magnetic tape,
file, 4-11
record, 4-12
Slave formatter, magnetic tapes, 4-2

4-13 to

2-15, 2-22

6-2, 6-7, 6-8

8-3, 8-10 Software channels, 1-1
Receive-message blocks, DMC1l1, Speed specifier, terminal, 2-22

8-9, 8-10 Spooled device characteristics, 1-24
Record attributes area, ACP QIO, Start unit, DMCll, 8-9

9-17 Statistics block, ACP QIO Attributes,
Record Management Services (RMS), 9-19

1-1 Status block, I1/0, 1-17, 1-21, 1-22,
Record-oriented devices, 1-7, 1-10 argument, 1-18
Relative Volume Number (RVN), 9-5, Status codes,

9-9 SHRS HALTED, 11-33
Remote line, 2-5, 2-9, 2-13 SHR$ NOCMDMEM, 11-31, 11-33,
Requests, I/0, 1-1, 1-13, 1-15, 1-16 T1-34
RESET button, card reader, 6-3 SHRS_QEMPTY, 11-33
Resource wait mode, 1-3, 7-2, 10-3 SS$ ABORT, 1-21, 2-9, 2-26,

RETURN, 2-5
Rewind offline, 4-12
RSX-11M Version 3.1, differences
with VAX/VMS LPAll-K, 10-37,
10-38

~5-9, 8-10, 10-12, 10-33, 11-36
SS$ ACCONFLICT, 9-30, 9-32
SSs$ accvio, 1-20, 1-21, 1-26, 7-10
SSS$TACPVAFUL, 9-32
SS$_BADATTRIB, 9-32
SS BADCHKSUM, 9-32
SS$ BADESCAPE, 2-3, 2-26
S SS$”_BADFILEHDR, 9-32

SS$ BADFILENAME, 9-32

Seek capability, 3-2, 3-3 SS$TBADFILEVER, 9-32
Sense mode, SS$_BADIRECTORY, 9-32
card reader, 6-7, 6-8 SS$ BADPARAM, 9-29, 9-32, 11-36
disk, 3-14 SS$ BADQFILE, 9-29, 9-33
DUP11, 12-6 SS$ BADQUEHDR, 11-37
tape, 4-12 SS$” BLOCKCNTERR, 9-33

terminal, 2-24 SS$_BUFFEROVF, 1-26

Index-8

Status codes, (Cont.)

INDEX

Status codes, (Cont.)

SS$ BUFNOTALIGN, 10-9, 10-33,
T11-37
‘88$ CANCEL, 10-9, 10-33, 11-37
SS$TCONTROLC, 2-6, 2-26
SS$__CONTROLO, 2-6, 2-26
SS$ CONTROLY, 2-6, 2-8, 2-27
SS$TCREATED, 9-33
SS$_CTRLERR, 3-12, 3-15, 4-15,
10-2, 10-8, 10-28, 10-33,
11-37
SS$ DATACHECK, 3-16, 4-15,
T10-34
SS$ DATAOVERUN, 4-17, 6-9, 8-10

10-8,

SS$ DEVACTIVE, 8-10, 10-8, 10-34,
T11-37

SS$ DEVCMDERR, 10-2, 10-9, 10-28,
T10-34

SS$ DEVFOREIGN, 1-10

SS$ DEVICEFULL, 9-33

SS$”DEVNOTMOUNT, 1-10

SS$ DEVOFFLINE, 8-10

SS$__DEVREQERR, 10-2, 10-28,
10-34, 11-37

S DIRFULL, 9-33

SS$ DRVERR, 3-12, 3-16, 4-16

SS$ DUPDSKQUOTA, 9-29, 9-33

SS$ DUPFILENAME, 9-33

SS$_ENDOFFILE, 4-16, 6-9, 7-10,
8-10, 9-33

SS$ ENDOFTAPE, 4-16

SS$_ENDOFVOLUME, 4-16

5 EXQUOTA, 1-21, 10-12, 10-34,

T11-37

SS$_FCPREADERR, 9-29, 9-33

SS$ FCPREWINDERR, 9-33

SS$”FCPSPACERR, 9-33

SS$” FCPWRITERR,

SS$TFILELOCKED, 9-33

S8S$ FILENUMCHK, 9-34

SS$” FILESEQCHK, 9-34

SS$ FILESTRUCT, 9-34

SS$” FILNOTEXP, 9-34

SSS$” FORMAT, 3-16, 4-16

SS$ HEADERFULL, 9-34

SS$ IDXFILEFULL, 9-34

SSS$TILLCNTRFUNC, 9-34

SS$TILLEFC, 1-21

SS$ ILLSER, 1-21

SS$TINBUFLEN, 3-16

SS$”INCLENGTH, 10-9

SS$ INSFARG, 1-21

SS$TINSFBUFDP, 10-12, 10-34

SS$_INSFMAPREG, 10-9, 10-12,
10-34

SS8$ INSFMEM, 1-21, 7-10,

T10-34, 11-37

SS$ IVADDR, 3-16

SS$TIVBUFLEN, 10-35, 11-38

SS$_IVCHAN, 1-21, 1-26

10-12,

Index 9

SS$_IVMODE, 10-9, 10-35
SS$_MBFULL, 7-10
SS$_MBTOOSML, 7-10
SS$ MCNOTVALID, 10-8, 10-12,
~10-35, 11-38
S§S$_MEDOFL, 3-12, 3-16, 4-16
SS$_NODISKQUOTA, 9-34
SS$ NOMOREFILES, 9-34
SS$__NONEXDRV, 1-22, 3-12, 3-16,
4-16
§S$ NOPRIV, 1-7, 1-10, 1-21, 1-26,
~7-10, 9-29, 9-34
SS$ NOQFILE, 9-29, 9-34
SS$ NORMAL, 1-20, 1-21, 1-26,
T2-16, 2-27, 3-12, 3-15, 4-15,
5-9, 6-9, 7-10, 8-10, 11-38
SS$ NOSUCHFILE, 9-34
SS$TNOTAPEOP, 9-34
SS$_NOTLABELMT, 9-34
SSS$ OVRDSKQUOTA, 9-30, 9-35
SS$ PARITY, 2-27, 3-16, 4-17,
~10-12, 10-35, 11-38
SS$ PARTESCAPE, 2-3, 2-27
SS$” POWERFAIL, 10-8, 10-12,
~10-35, 11-38
SS$ QFACTIVE, 9-35
SS$_QFNOTACT, 9-29, 9-35
SS$__SUPERSEDE, 9-35
SS$ TAPEPOSLOST, 9-35
Ss$__TIMEOUT, 2-16, 2-27, 10-8,
10-35
SS$_TOOMANYVER, 9-35
SS UNASEFC, 1-21
SS$_UNSAFE, 3-17, 4-17
§S8$ VOLINV, 3-17, 4-17
s_WASECC, 3-17
SS$_WRITLCK, 3-17, 4-17
5 WRTLCK, 9-35

Status completion, 1-20, 1-22,

1-23

Status returns,

ACP QIO interface,
9-35

card reader, 6-9

disk devices, 3-15,

DMCll, 8-10

DUP11l, 12-8

I1/0, 1-20, 1-21

line printer, 5-9

9-31 to

3-16

LPAll1-K, 10-33 to 10-35

magnetic tape devices, 4-15 to
4-17

mailbox, 7-9, 7-10

system services, 1-20

terminal, 2-26, 2-27

System services,

SALLOC, 1-14

SASSIGN, 1-13, 1-16, 1-17, 7-2,
8-2

INDEX

System services, (Cont.) Terminator set, 2-16
SCANCEL, 2-24, 2-26, 10-7, Transfer count, 1-22
10-12, 10-33 Translation, logical to physical,
SCREMBX, 1-14, 1-17, 7-2 RX01, 3-4
SDASSGN, 2-24, 7-3 Translation mode, card reader, 6-2
$DELMBX, 7-3 Transparent mode, DUPll, 12-2, 12-3
SGETCHN, 1-24, 2-10, 3-5, 4-4, Truncate operations, FIB, 9-3, 9-7
5-3, 6-3, 7-4, 8-3, 10-4 Type-ahead, 2-1, 2-4, 2-13, 2-15,
SGETDEV, 1-24, 2-10, 3-5, 4-4, 2-25
5-3, 6-3, 7-4, 8-3, 10-4
SINPUT, 1-19
SOUTPUT, 1-19 U
$QI10, 1-1, 1-14 to 1-16
SQIOW, 1-15 to 1-17 Unsolicited data, 2-4
SREADEF, 1-17 Uppercase, characters, 2-12, 2-17,
SSETRWM, 1-3, 1-4, 1-21 5-2, 5-4
SWAITFR, 1-15 to 1-17 User queue (USQ), LPAll-K, 10-14
SWFLAND, 1-17 User Status Word (USW), 10-10
SWFLOR, 1-17
System services,
1/0, 1-2, 1-10 \")
status returns, 1-20, 1-21
VAX-11 Record Management Services
(RMS), 1-1
T' VAX/VMS System Services Reference
Manual, 1-3
TAB, 2-6 Version,
Tabs, 2-6, 2-13, 2-18 name, 9-20
Tape, (see Magnetic tape) type, 9-20
Terminal, Vertical tab, 2-6
carriage cbntrol, 2-18 Virtual Block Number (VBN), 9-8
characteristics, 2-2, 2-10 Virtual I/0 operation, 1-7, 1-10
to 2-13 Volume protection, 1-5
control characters, 2-2, 2-5 VT100 User's Guide, 2-4
to 2-8
driver, 2-1
enable CTRL/C AST, 2-6, 2-23, w
2-24
enable CTRL/Y AST, 2-7, 2-23, Wait for Single Event Flag (SWAITFR)
2-24 system service, 1-15 to 1-17
function modifiers, 2-15 Wild card,
hang-up, 2-5, 2-9 bits for disk quota file, 9-8
hang-up function modifier, 2-23 Write,
I/0 functions, 2-13, A-1 access, FIB, 9-3, 9-8, 9-30
I/0 status block, 2-25 attention AST, mailbox, 7-7 to
mailbox, 2-24, 2-5 7-9
read function, 2-9, 2-10, 2-14 checking, 9-4
read terminator set, 2-16, mailbox QIO requests, 7-5 to 7-7
sense mode, 2-24 QIO function, 1-6
set characteristic, 2-22 Write End-of-File,
set mode, 2-22 magnetic tape, 4-12
special keys, 2-8 message, mailbox, 7-7, 7-10
status returns, 2-26, 2-27 Write function,
write function, 2-9 disk, 3-8, 3-12
2-10, 2-17 DMC1l1, 8-7
Terminal/host synchronization, 2-12 DUP1l1l, 12-7
Termination queue (TERMQ), DR32, line printer, 5-4, 5-5
11-5, 11-6 magnetic tape, 4-10, 4-11
Terminator character bit mask, mailbox, 7-6 to 7-9
2-16, 2-17 terminal, 2-9 , 2-17

Index-10

INDEX

V4

026 code, card reader, 6-2
029 code, card reader, 6-2

Index~-11

VAX/VMS
I/0 User's Guide
AA~D028B-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please cut along this line.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

QOooogdo

Other (please specify)

Name Date

Organization

Street

City State Zip Code
or
Country

—~ — — Do Not Tear - Fold Here and Tape

Vi

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

- — Do Not Tear - Fold Here

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary
if Mailed in the
United States

