
VAX/VMS
1/0 User's Guide
Order No. AA-00288-TE

March 1980

This document contains the information necessary to interface directly with the
110 device drivers supplied as part of the VAX/VMS operating system. Several
examples of programming techniques are included. This document does not
contain information on 1/0 operations using VAX-11 Record Management Ser­
vices.

VAX/VMS
1/0 User's Guide
Order No. AA-00288-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes
the VAX/VMS 1/0 User's Guide
(Order No. AA-D028A-TE)

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, August 1978
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright ~ 1978, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
CO MT EX
DDT
DEC COMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

PREFACE

CHAPTER 1

1.1
1.2
1. 3
1.4
1. 4 .1
1. 4. 2
1. 4. 3
1. 4. 4
1. 4. 5
1. 4. 6
1. 4. 7
1. 4. 8
1. 4. 9
1.4.10
1.4.11
1. 5
1.6
1. 6 .1
1. 6. 2
1. 6. 3
1. 7
1. 7 .1
1. 7. 2
1.8
1. 8 .1
i.8.2
1.8. 3
1. 8. 4
1.8. 5
1. 8. 6
1.8.6.1
1.8.6.2
1.8.6.3
1.8.6.4
1.8.6.5
1.8.6.6
1.8.6.7
1.8. 7

1.8 .8
1.9
1. 9 .1
1. 9. 2
1. 9. 3
1.10

CONTENTS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

OVERVIEW OF VAX/VMS I/O
VAX/VMS I/O DEVICES
SUMMARY OF I/O SYSTEM SERVICES
QUOTAS, PRIVILEGES, AND PROTECTION

Buffered I/O Quota
Buffered I/O Byte Count Quota
Direct I/O Quota ·
AST Quota
Physical I/O Privilege (PHY IO)
Logical I/O Privilege (LOG IO)
Mount Privilege -
Volume Protection
Device Protection
System Privilege (SYSPRV)
Bypass Privilege (BYPASS)

SUMMARY OF VAX/VMS QIO OPERATIONS
PHYSICAL, LOGICAL, AND VIRTUAL ~/O

Physical I/O Operations
Logical I/O Operations
Virtual I/O Operations

I/O FUNCTION ENCODING
Function Codes
Function Modifiers

ISSUING I/O REQUESTS
Channel Assignments
Device Allocation
I/O Function Requests
$QIO Macro Format
$QIOW Macro Format
$QIO and $QIOW Arguments
Event Flag Number Argument
Channel Number Argument
Function Argument
I/O Status Block Argument
AST Address Argument
AST Parameter Argument
Device/Function-Dependent Arguments
$INPUT and $OUTPUT Macro Format and
Arguments
Status Returns for System Services

I/O COMPLETION
Event Flags
I/O Status Block
Asynchronous System Traps

DEVICE INFORMATION

iii

Page

xv

1-1

1-1
1-1
1-2
1-3
1-4
1-4
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6
1-6
1-6
1-7
1-7
1-7
1-10
1-12
1-12
1-12
1-13
1-13
1-14
1-14
1-15
1-10
1-Hi
1-17
1-17
1-17
1-18
1-18
1-18
1-18

1-19
1-20
1-21
1-22
1-22
1-23
1-24

CHAPTER

CHAPTER

2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.3
2.4
2.4.1
2.4.1.1

2.4.1.2
2.4.2
2.4.2.1

2.4.2.2
2.4.3
2.4.3.1
2.4.3.2

2.4.4
2.5
2.6

3

3.1
3 .1.1
3 .1. 2
3 .1. 3
3 .1. 4
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.3.1
3.4.3.2
3.4.4
3.4.5
3.5
3.6

CONTENTS

TERMINAL DRIVER

SUPPORTED TERMINAL DEVICES
TERMINAL DRIVER FEATURES AND CAPABILITIES

Type-ahead
Line Terminators
Special Operating Modes
Escape Sequences
Terminal/Mailbox Interaction
Control Characters and Special Keys
Dial-Up
Duplex Modes

DEVICE INFORMATION
TERMINAL FUNCTION CODES

Read
Function Modifier Codes for Read QIO
Functions
Read Function Terminators
Write
Function Modifier Codes for Write QIO
Functions
Write Function Carriage Control
Set Mode
Hang-Up Function Modifier
Enable CTRL/C AST and Enable CTRL/Y
AST Function Modifiers
Sense Mode

I/O STATUS BLOCK
PROGRAMMING EXAMPLE

DISK DRIVERS

SUPPORTED DISK DEVICES
RM03 Pack Disk
RP05 and RP06 Pack Disks
RK06 and RK07 Cartridge Disks
RXOl Console Disk

DRIVER FEATURES AND CAPABILITIES
Data Check
Overlapped Seeks
Error Recovery
Logical to Physical Translation (RXOl)

DEVICE INFORMATION
DISK FUNCTION CODES

Read
Write
Set Mode
Set Mode
Set Characteristic
Sense Mode
Pack Acknowledge

I/O STATUS BLOCK
PROGRAMMING EXAMPLE

iv

Page

2-1

2-1
2-1
2-2
2-2
2-2
2-3
2-4
2-5
2-9
2-9
2-10
2-13
2-14

2-15
2-10
2-17

2-18
2-18
2-22
2-23

2-23
2-24
2-25
2-27

3-1

3-1
3-2
3-2
3-2
3-2
3-2
3-3
3-3
3-4
3-4
3-5
3-7
3-11
3-12
3-13
3-13
3-13
3-14
3-14
3-14
3-18

CHAPTER

CHAPTER

CHAPTER

4

4.1
4 .1.1
4 .1. 2
4 .1. 3
4.2
4.2.1
4.2.2
4.2.3
4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.9.1
4.4.9.2
4.5
4.6

5

5.1
5 .1.1
5 .1. 2
5.2
5.2.l
5.2.2
5.3
5.4
5.4.1
5.4.1.1
5.4.2
5.4.3
5.5
5.6

6

6.1
6.2
6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.3
6.3
6.4
6.4.1
6.4.2
6.4.3

CONTENTS

MAGNETIC TAPE DRIVER

SUPPORTED MAGNETIC TAPE DEVICES
TE16 Magnetic Tape Drive
TSll Magnetic Tape Subsystem
TU45 and TU77 Magnetic Tape System

DRIVER FEATURES AND CAPABILITIES
Master Adapters and Slave Formatters
Data Check
Error Recovery

DEVICE INFORMATION
MAGNETIC TAPE FUNCTION CODES

Read
Write
Rewind
Skip File
Skip Record
Write End-of-File
Rewind Of fl i ne
Sense Tape Mode
Set Mode
Set Mode
Set Characteristic

I/O STATUS BLOCK
PROGRAMMING EXAMPLE

LINE PRINTER DRIVER

SUPPORTED LINE PRINTER DEVICES
LPll Line Printer Interface
LAll DECprinter I

DRIVER FEATURES AND CAPABILITIES
Output Character Formatting
Error Recovery

DEVICE INFORMATION
LINE PRINTER FUNCTION CODES

Write
Write Function Carriage Control
Sense Printer Mode
Set Mode

I/O STATUS BLOCK
PROGRAMMING EXAMPLE

CARD READER DRIVER

SUPPORTED CARD READER DEVICE
DRIVER FEATURES AND CAPABILITIES

Read Modes
Special Card Punch Combinations
End-of-File Condition
Set Translation Mode
Error Recovery

DEVICE INFORMATION
CARD READER FUNCTION CODES

Read
Sense Card Reader Mode
Set Mode

v

Page

4-1

4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-3
4-4
4-5
4-9
4-10
4-11
4-11
4-12
4-12
4-12
4-12
4-13
4-13
4-14
4-15
4-18

5-1

5-1
5-1
5-1
5-1
5-2
5-2
5-3
5-4
5-4
5-5
5-8
5-8
5-9
5-10

6-1

6-1
6-1
6-1
n-2
6-2
6-2
6-2
6-3
6-5
6-6
6-7
n-7

CHAPTER

CHAPTER

CHAPTER

6.4.3.1
6.4.3.2
6.5

7

7.1
7 .1.1
7 .1. 2
7 .1. 3
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.5

8

8.1
8 .1.1

8.2
8.2.1
8.2.2
8.2.3
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.3.1
8.4.3.2
8.4.3.3
8.4.3.4
8.5

9

9.1
9.2
9.2.1
9.2.2
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.3.7
9.3.7.1
9.4

CONTENTS

Set Mode
Set Characteristic

I/O STATUS BLOCK

MAILBOX DRIVER

MAILBOX OPERATIONS
Creating Mailboxes
Deleting Mailboxes
Mailbox Message Format

DEVICE INFORMATION
MAILBOX FUNCTION CODES

Read
Write
Write End-of-File Message
Set Attention AST

I/O STATUS BLOCK
PROGRAMMING EXAMPLE

DMCll SYNCHRONOUS COMMUNICATIONS LINE
INTERFACE DRIVER

SUPPORTED DMCll SYNCHRONOUS LINE INTERFACES
DIGITAL Data Communications Message
Protocol

DRIVER FEATURES AND CAPABILITIES
Mailbox Usage
Quotas
Power Failure

DEVICE INFORMATION
DMCll FUNCTION CODES

Read
Write
Set Mode
Set Mode and Set Characteristics
Enable Attention AST
Set Mode and Shut Down Unit
Set Mode and Start Unit

I/O STATUS BLOCK

QIO INTERFACE TO FILE SYSTEM ACPS

FILE INFORMATION BLOCK
ATTRIBUTE CONTROL BLOCK

ACP QIO Record Attributes Area
ACP QIO Attributes Statistics Block

ACP FUNCTIONS AND ENCODING
Create File
Access File
Deaccess File
Modify File
Delete File
Mount
ACP Control
Disk Quotas

I/O STATUS BLOCK

vi

Page

n-7
6-8
6-8

7-1

7-1
7-2
7-3
7-3
7-4
7-5
7-5
7-n
7-7
7-7
7-9
7-10

8-1

8-1

8-1
8-2
8-2
8-3
8-3
8-3
8-n
8-6
8-7
8-7
8-7
8-8
8-9
8-9
8-10

9-1

9-1
9-14
9-17
9-19
9-19
9-21
9-22
9-24
9-24
9-25
9-26
9-2fl
9-27
9-31

CHAPTER 10

10.1
10.1.1
10.1.2
10. 2
10. 3
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.5
10.5.1
10.5.1.1
10.5.1.2
10.5.2

10.5.3
10.5.4

10.5.5

10.5.6
10.5.7

10.5.8
10.5.9
10.5.10
10.5.11
10.5.12

10.5.13
10.5.14
10.5.15
io.5.in
10.5.17
10.5.18

10.5.19

10.5.20

10.5.21

10.6
10. 7
10.7.1
10.7.2
10 .8
10.8.1
10.8.2
10.8.3
10.8.4

CONTENTS

LABORATORY PERIPHERAL ACCELERATOR DRIVER

SUPPORTED DEVICE
LPAll-K Modes of Operation
Errors

SUPPORTING SOFTWARE
DEVICE INFORMATION
LPAll-K I/O FUNCTION CODES

Load Microcode
Start Microprocessor
Initialize LPAll-K
Set Clock
Start Data Transfer Request
LPAll-K Data Transfer Stop Command

HIGH LEVEL LANGUAGE INTERFACE
High-level Language Support Routines
Buff er Queue Control
Subroutine Argument Usage
LPA$ADSWP - Initiate Synchronous A/D

Page

10-1

10-1
10-1
10-2
10-3
10-4
10-7
10-7
10-8
10-8
10-9
10-10
10-12
10-13
10-13
10-14
10-14

Sampling Sweep 10-18
LPA$DASWP - Initiate Synchronous D/A Sweep 10-19
LPA$DISWP - Initiate Synchronous Digital
Input Sweep
LPA$DOSWP - Initiate Synchronous Digital
Output Sweep
LPA$LAMSKS - Set LPAll-K and NUM Buffer
LPA$SETADC - Set Channel Information For
Sweeps
LPA$SETIBF - Set IBUF Array For Sweeps
LPA$STPSWP - Stop In-progress Sweep
LPA$CLOCKA - Clock A Control
LPA$CLOCKB - Clock B Control
LPA$XRATE - Compute Clock Rate and Preset
Value
LPA$IBFSTS - Return Buffer Status
LPA$IGTBUF - Return Buffer Number
LPA$INXTBF - Set Next Buffer to Use
LPA$IWTBUF - Return Next Buffer or Wait
LPA$RLSBUF - Release Data Buff er
LPA$RMVBUF - Remove Buffer ~rom Device
Queue
LPA$CVADF - Convert A/D Input to Floating

10-20

10-21
10-22

10-22
10-23
10-24
10-24
10-25

10-26
10-27
10-27
10-28
10-29
10-30

10-30

Point 10-31
LPA$FLT16 - Convert Unsigned 16-bit Integer
to Floating Point 10-31
LPA$LOADMC - Load Microcode and Initialize
LPAll-K

I/O STATUS BLOCK
LOADING LPAll-K MICROCODE

Microcode Loader Process
Operator Process

RSX-llM VERSION 3.1 AND
Alignment and Length
Status Returns
Sweep Routines
General

vii

VAX/VMS DIFFERENCES

10-32
10-32
10-36
10-36
10-37
10-37
10-37
10-38
10-38
10-38

CHAPTER

10.9
10.9.l

10.9.2

10.9.3

11

11.l
11.l.l
11. 2
11.2.l
11. 2. 2
11.2.3
11. 2. 4
11.3
11.4
11.4.l
11.4.2
11.4.2.l
11.4.2.2
11.4.3
11.4.3.l
11.4.3.2
11.4.3.3
11.4.3.4
11.4.3.5
11.4.3.6
11.4.3.7
11.4.3.8
11.4.3.9
11.4.3.10
11.4.3.11
11.4.3.12
11.4.3.13
11.4.4
11.4.5
11.4.5.l
11.4.5.2
11.4.6
11.4.6.l
11.4.6.2
11.4.6.3
11.4.6.4
11.4.6.5
11.4.n.n
11.4.7
11.4.7.l
11.4.7.2
11.4.7.3
11.5
11.6
11.6.1
11.6.2
11.6.3
11.6.4

CONTENTS

PROGRAMMING EXAMPLES
LPAll-K High Level Language Program
(Program A)
LPAll-K High-level Language Program
(Program B)
LPAll-K QIO Functions Program
(Program C)

DR32 INTERFACE DRIVER

SUPPORTED DEVICE
DR32 Device Interconnect

DR32 FEATURES AND CAPABILITIES
Command and Data Chaining
Far End DR-device Initiated Transfers
Power Failure
Interrupts

DEVICE INFORMATION
PROGRAMMING INTERFACE

DR32 - Application Program Interface
Queue Processing
Initiating Command Sequences
Device-Initiated Command Sequences
Command Packets
Length of Device Message Field
Length of Log Area Field
Device Control Code Field
Control Select Field
Suppress Length Error Field
Interrupt Control Field
Byte Count Field
Virtual Address of Buffer Field
Residual Memory Byte Count Field
Residual DD! Byte Count Field
DR32 Status Longword (DSL)
Device Message Field
Log Area Field
DR32 Microcode Loader
DR32 I/O Function Codes
Load Microcode
Start Data Transfer
High-level Language Interface
XF$SETUP
XF$STARTDEV
XF$FREESET
XF$PKTBLD
XF$GETPKT
XF$CLEANUP
User Program - DR32 Synchronization
Event Flags
AST Routines
Action Routines

I/O STATUS BLOCK
PROGRAMMING HINTS

Command Packet Pre-fetch
Action Routines
Error Checking
Queue Retry Macro

viii

Page

10-38

10-39

10-40

10-45

11-1

11-1
11-1
11-2
11-3
11-3
11-3
11-3
11-4
11-5
11-5
11-6
11-7
11-7
11-8
11-9
11-10
11-10
11-14
11-14
11-15
11-15
11-15
11-Hi
11-H
11-17
11-18
11-19
11-19
11-20
11-20
11-21
11-23
11-24
11-20
11-28
11-29
11-32
11-33
11-34
11-34
11-34
11-35
11-36
11-40
11-40
11-41
11-41
11-41

CHAPTER

APPENDIX A

INDEX

FIGURE

11.6.5
11.6.6
11. 6. 7
11. 7
11.7.1

11.7.2

12

12.1
12.1.l
12.1.1.1
12.1.1.2
12.2
12.3
12.3.1
12.3.2
12.3.3
12.3.4
12.4

A. l
A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9
A.10
A.11

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9

2-1
2-2
2-3

CONTENTS

Diagnostic Functions
The NOP Command Packet
Interrupt Control Field

PROGRAMMING EXAMPLES
DR32 High-level Language Program
(Program A)
DR32 Queue I/O Functions Program
(Program B)

DUPll INTERFACE DRIVER

SUPPORTED DEVICE
Driver Operating Modes
BSC Mode
Binary Mode

DEVICE INFORMATION
DUPll FUNCTION CODES

Read
Write
Set Mode
Sense Mode

I/O STATUS BLOCK

I/O FUNCTION CODES

TERMINAL DRIVER
DISK DRIVERS
MAGNETIC TAPE DRIVERS
LINE PRINTER DRIVER
CARD READER DRIVER
MAILBOX DRIVER
DMCll DRIVER
ACP INTERFACE DRIVER
LPAll-K DRIVER
DR32 DRIVER
DUPll DRIVER

FIGURES

Physical I/O Access Checks
Logical I/O Access Checks
Physical, Logical, and Virtual I/O
I/O Function Format
Function Modifier Format
System Service Status Return
I/O Status Block Format
CALL Instruction Argument List
Buff er Format for $GETCHN and $GETDEV System
Services
Terminal Mailbox Message Format
Terminal Information
Short and Long Forms of Terminator Mask
Quadwords

ix

Page

11-41
11-42
11-42
11-43

11-43

11-49

12-1

12-1
12-1
12-2
12-4
12-4
12-5
12-6
12-7
12-7
12-8
12-8

A-1

A-1
A-2
A-2
A-3
A-3
A-4
A-4
A-5
A-5
A-6
A-7

Index-1

1-8
1-9
1-11
1-12
1-13
1-20
1-22
1-23

1-25
2-5
2-10

2-17

FIGURE 2-4
2-5

2-6
2-7
2-8

2-9
2-10
2-11

3-1
3-2
3-3
3-4
3-5
3-6
3-7
4-1
4-2
4-3
4-4
4-5
4-6
5-1
5-2
5-3

5-4
5-5
5-6
5-7
6-1
6-2
6-3
6-4
6-5
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
8-1
8-2
8-3
8-4
9-1
9-2
9-3
9-4
9-5
9-6

CONTENTS

FIGURES (Cont.)

P4 Carriage Control Specifier
Write Function Carriage Control
(Prefix and Postfix Coding)
Set Mode Characteristic Buffer
Sense Mode Characteristics Buffer
Sense Mode Characteristics Buffer
(Type-ahead)
IOSB Contents - Read Function
IOSB Contents - Write Function
IOSB Contents - Set Mode, Set
Characteristics, Sense Mode, and Sense
Characteristics Functions
Disk Information
Starting Physical Address
Physical Cylinder Number Format
Set Mode Characteristics Buffer
Set Characteristic Buffer
IOSB Content
IOSB Content - Sense Mode
Magnetic Tape Information
IO$ SKIPFILE Argument
IO$-SKIPRECORD Argument
Set-Mode Characteristics Buffer
Set Characteristic Buffer
IOSB Content
Printer Information
P4 Carriage Control Specifier
Write Function Carriage Control
(Prefix and Postfix Coding)
Set Mode Characteristics Buffer
Set Characteristic Characteristics Buffer
IOSB Contents - Write Function
IOSB Contents - Set Mode Function
Card Reader Information
Binary and Packed Column Storage
Set Mode Characteristics Buffer
Set Characteristic Buffer
IOSB Contents
Multiple Mailbox Channels
Typical Mailbox Message Format
Mailbox Information
Read Mailbox
Write Mailbox
Write Attention AST (Read Unsolicited Data)
Read Attention AST
IOSB Contents - Read Function
IOSB Contents - Write Function
Mailbox Message Format
DMCll Information
Pl Characteristics Block
IOSB Content
ACP QIO Interface
File Information Block Format
Typical Short File Information Block
Attribute Control Block Format
ACP QIO Record Attributes Area
ACP QIO Attributes Statistics Block

x

Page

2-19

2-21
2-22
2-25

2-25
2-25
2-26

2-26
3-6
3-11
3-11
3-13
3-14
3-15
3-15
4-4
4-11
4-12
4-13
4-14
4-15
5-3
5-5

5-7
5-8
5-8
5-9
5-9
6-4
6-6
6-7
6-8
6-9
7-3
7-4
7-4
7-6
7-7
7-8
7-9
7-9
7-10
8-3
8-3
8-8
8-10
9-1
9-2
9-2
9-15
9-18
9-19

FIGURE

TABLE

9-7
9-8

9-9
9-10
10-1

10-2
10-3
10-4
10-5
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
12-1
12-2
12-3
12-4

12-5

12-6
12-7
12-8
12-9

1-1
1-2
1-3
1-4

1-5
1-6
2-1
2-2
2-3
2-4
2-5
2-6
2-7

2-8

2-9
3-1
3-2

CONTENTS

FIGURES (Cont.)

ACP Device/Function-Dependent Arguments
ACP Device/Function Argument Descriptor
Format
Quota File Transfer Block
IOSB Contents - ACP QIO Functions
Relationship of Supporting Software to
LPAll-K
LPAll-K Information
Data Transfer Command Table
Buff er Queue Control
I/O Functions IOSB Content
Basic DR32 Configuration
DR32 Information
Command Block (Queue Headers)
DR32 Command Packet Queue Flow
DR32 Command Packet
Data Transfer Command Table
ACTION Routine Synchronization
I/O Functions IOSB Content
3780 Message Block Example
3780 Message Block Example (Modified)
Nontransparent 2780 Message Block Example
Nontransparent 2780 Message Block Example
(Modified)
Transparent 2780 Message Block Example
(Modified)
DUPll Information
Set Mode Pl Buff er
IOSB Content
IOSB Content - Sense ·Mode

TABLES

Read and Write I/O Functions
Device/Function-Independent Arguments
$INPUT and $OUTPUT Arguments
$QIO, $QIOW, $INPUT, and $OUTPUT System
Services Status Returns
$GETCHN and $GETDEV Arguments
$GETCHN and $GETDEV Status Returns
Terminal Control Characters
Special Terminal Keys
Terminal Device-Independent Characteristics
Terminal Characteristics
Read QIO Function Modifiers
Write QIO Function Modifiers
Write Function Carriage Control (FORTRAN:
Byte 0 not equal to 0)
Write Function Carriage Control
(P4 byte 0 = 0)
Terminal QIO Status Returns
Disk Devices
Disk Device Characteristics

xi

Page

9-20

9-21
9-28
9-32

10-4
10-5
10-11
10-15
10-32
11-2
11-4
11-n
11-8
11-9
11-21
11-35
11-30
12-2
12-3
12-3

12-3

12-3
12-4
12-7
12-8
12-9

1-12
1-ln
1-19

1-21
1-24
l-2n
2-6
2-8
2-11
2-12
2-15
2-18

2-19

2-20
2-20
3-1
3-6

TABLE 3-3
3-4
4-1
4-2

4-3

4-4
4-5

4-6
5-1
5-2
5-3

5-4

5-5
6-1

6-2

6-3
6-4

6-5
7-1
7-2
7-3
8-1
8-2
8-3
8-4
8-5
8-6
8-7
9-1
9-2
9-3
9-4
9-5
9-6
9-7
10-1

10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10

CONTENTS

TABLES (Cont.)

Disk I/O Functions
Status Returns for Disk Devices
Magnetic Tape Devices
Magnetic Tape Device-Independent
Characteristics
Device-Dependent Information for Tape
Devices
Magnetic Tape I/O Functions
Set Mode and Set Characteristic Magnetic
Tape Characteristics
Status Returns for Tape Devices
Printer Device-Independent Characteristics
Printer Device-Dependent Characteristics
Write Function Carriage Control (FORTRAN:
Byte 0 not equal to 0)
Write Function Carriage Control (P4 byte 0
equal to 0)
Line Printer QIO Status Returns
Card Reader Device-Independent
Characteristics
Device-Dependent Information for Card
Readers
Card Reader I/O Functions
Set Mode and Set Characteristic Card Reader
Characteristics
Status Returns for Card Reader
Mailbox Read and Write Operations
Mailbox Characteristics
Mailbox QIO Status Returns
Supported DMCll Options
DMCll Device Characteristics
DMCll Device Types
DMCll Unit Characteristics
DMCll Unit and Line Status
Error Summary Bits
Status Returns for DMCll
Contents of the File Information Block
FIB Argument Usage in ACP QIO Functions
Attribute Control Block Fields
ACP QIO Attributes
ACP Record Attributes Values
Disk Quota and Lock/Unlock Bits
ACP QIO Status Returns
Minimum and Maximum Conf iqurations per
LPAll-K
Device-independent Characteristics
Device-Dependent Characteristics
VAX-11 Procedures for the LPAll-K
Subroutine Argument Usage
LPA$IGTBUF Call - IBUFNO and IOSB Contents
LPA$IWTBUF Call - IBUFNO and IOSB Contents
LPAll-K Status Returns for I/O Functions
Program A Variables
Program B Variables

xii

Page

3-8
3-15
4-1

4-4

4-5
4-6

4-13
4-15
5-3
5-4

5-n

5-6
5-9

n-4

6-5
6-5

6-8
6-9
7-1
7-4
7-10
8-1
8-4
8-4
8-5
8-5
8-6
8-10
9-3
9-10
9-15
9-10
9-18
9-29
9-32

10-2
10-5
10-fi
10-13
10-15
10-28
10-29
10-33
10-39
10-41

TABLE 11-1
11-2
11-3
11-4
11-5
11-6

12-1
12-2
12-3
12-4

CONTENTS

TABLES (Cont.)

Device-Independent Characteristics
Device Control Code Descriptions
DR32 Status Longword (DSL) Status Bits
VAX-11 Procedures for the DR32
DR32 Status Returns
Device-Dependent IOSB Returns for I/O
Functions
Device-Independent Characteristics
DUPll I/O Functions
DUPll Status Returns
Device-Dependent Status Returns

xiii

Page

11-4
11-11
11-17
11-24
ll-3fl

11-38
12-5
12-11
12-9
12-9

PREFACE

MANUAL OBJECTIVES

This manual provides users of the VAX/VMS operating system with the
information necessary to interface directly with the I/O device
drivers supplied as part of the operating system. It is not the
objective of this manual to provide the reader with information on all
aspects of VAX/VMS input/output (I/O) operations.

INTENDED AUDIENCE

This manual is intended for system programmers who want to take
advantage of the time and/or space savings that result from direct use
of the I/O devices. Users of VAX/VMS who do not require such detailed
knowledge of I/O drivers can use the device-independent services
described in the VAX-11 Record Management Services Reference Manual
Readers are expected to have some experience with either VAX-11
FORTRAN or VAX-11 MACRO assembly language.

STRUCTURE OF THIS DOCUMENT

This manual is organized into thirteen chapters and one appendix, as
follows:

•

•

Chapter 1 contains introductory information. It provides
overviews of VAX/VMS I/O operations; I/O system services;
and I/O quotas, privileges, and protection. This chapter
describes I/O function encoding and how to make I/O requests.
It also describes how to obtain information on the different
devices.

Chapters 2 through 8 and 10 through 12 describe the use of all
the I/O device drivers supported by VAX/VMS:

- Chapter 2 deals with the terminal driver

- Chapter 3 deals with disk drivers

- Chapter 4 deals with magnetic tape drivers

- Chapter 5 deals with the line printer driver

- Chapter n deals with the card reader driver

- Chapter 7 deals with the mailbox driver

xv

- Chapter 8 deals with the DMCll driver

- Chapter 10 deals with the LPAll-K driver

- Chapter 11 deals with the DR-32 driver

- Chapter 12 deals with the DUPll driver

• Chapter 9 describes the Queue I/O (QIO) interface to file
system ancillary control processes (ACPs).

• The appendix summarizes the QIO function codes, arguments, and
function modifiers used by the different device drivers.

ASSOCIATED DOCUMENTS

The following documents may also be useful:

• VAX/-11 Information Directory and Index - contains a complete
list of all VAX-11 documents

• VAX/VMS Sys tem ___ s_~_E.~.!-~e-~···-~e f e rence Manual

• VAX-11 Linker Reference Manual

• VAX-11 Software Handbook

• PDP-11 Periphe~?ls H~ndboo~

e VAX-11 FORTRAN User's Guide

e VAX-11 MACRO User's Guide

• VAX-11 Record Management ~e!vices Reference Manual

• LPAll-K Laborat:.?!X_~-~.E!PE.C:: .. ~-~-~-·~-~<:~lerator user's Guide

• DECnet-VAX User's Guide

• VAX/VMS 2780/3780 Protocol Emulator User's Guide

CONVENTIONS USED IN THIS MANUAL

The following conventions are used in this manual.

Convention

[]

Meaning

Brackets in QIO requests enclose optional arguments.
For example:

IO$ CR EAT E P 1 , [P 2] , [P 3] , [P 4] , [P 5]

Horizontal ellipses indicate
arguments not pertinent to
omitted. For example:

(that is, 8, 16, 24, •••).

xvi

that
the

characters or QIO
example have been

Convention

<>

numbers

Meaning

Vertical ellipses in coding examples indicate that
lines of code not pertinent to the example are omitted.
For example:

TTCHAN: .BLKW 1

$ASSIGN_S DEVNAM=TTNAME,CHAN=TTCHAN

Hyphens in coding
arguments to the
following 1 ine {s).

examples indicate
QIO request are
For example:

that additional
provided on the

$QIO_S FUNC=#IO$_WRITEPBLK,-

CHAN=W"TTCHAN1,­
EFN=#l ,-
Pl=W"ASTMSG ,­
P2=#ASTMSGSIZE

; FUN CT ION IS
;WRITE PHYSICAL
;TO TTCHAN 1
;EVENT FLAG 1
;Pl BUFFER
;P2 = BUFFER SIZE

Angle brackets enclose keys on the terminal keyboard.
For example:

<O> <20-2F> ••• <40-7E>

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes -- binary,
octal, or hexadecimal -- are explicitly indicated in
coding examples.

xvii

CHAPTER 1

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

VAX/VMS supports a variety of input and output (I/O) devices,
including disks, terminals, magnetic tapes, card readers, line
printers, synchronous line interfaces, real-time I/O devices, and
software mailboxes. This manual describes the capabilities of VAX/VMS
device drivers and their programming interface, and gives several
simple programming examples that use I/O drivers to perform
input/output operations.

1.1 OVERVIEW OF VAX/VMS I/O

Input/output operations under VAX/VMS are designed to be as device­
and function-independent as possible. User processes issue I/O
requests to software channels, which form paths of communication with
a particular device. Each process can establish its own
correspondence between physical devices and channels. I/O requests
are queued when they are issued and processed according to the
relative priority of the process that issued them. I/O requests can
be handled indirectly by the VAX-11 Record Management Services (RMS)
or they can interface directly to the VAX/VMS I/O system. (VAX-11 RMS
is described in the VAX-11 Record Management Services Reference
Manual.)

To access the I/O services described in this manual, users issue
system service requests. In certain system service requests, a
function code included in the request defines the particular operation
to be performed. For example, Queue I/O (QIO) system service requests
can specify such operations as reading and writing blocks of data.

QIO requests can also specify a number of device-specific input/output
operations, for example, converting lowercase characters to uppercase
in terminal read operations or rewinding magnetic tape.

1.2 VAX/VMS I/O DEVICES

This manual describes VAX/VMS support for the following devices:

• Terminals, using the DZll Asynchronous Serial Line
Multiplexer, and the VAX-11/780 console

1-1

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

• Disk devices:

- RM03 Pack Disk

- RPOS and RP06 Pack Disks

- RK06 and RK07 Cartridge Disks

- RXOl Floppy Disk

• Magnetic tape devices:

- TE16 Magnetic Tape

- TU45 and TU77 Magnetic Tape Systems

- TSll Magnetic Tape

• Line printers:

- LPll Line Printer Interface

- LAll DECprinter

• CRll Card Reader

• DMCll Synchronous Line Interface

• Mailboxes -- virtual devices used for interprocess transfer of
information

• LPAll-K Laboratory Peripheral Accelerator

• DR32 Interface

• DUPll Synchronous Line Interface

Chapters 2 through 8 and lD through 12 describe in detail the drivers
f~r these I/O devices and the I/O operations they perform.

1.3 SUMMARY OF I/O SYSTEM SERVICES

The following system services allow the direct use of the operating
system's I/O resources:

• Assign I/O Channel ($ASSIGN)

• Deassign I/O Channel ($DASSGN)

• Queue I/O Request ($QIO)

• Queue I/O Request and Wait for Event Flag (SQIOW)

• Allocate Device ($ALLOC)

• Deallocate Device ($DALLOC)

• Get Channel Information ($GETCHN)

• Get Device Information (SGETDEV)

• Cancel I/O on Channel ($CANCEL)

1-2

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

• Create Mailbox and Assign Channel ($CREMBX)

• Delete Mailbox ($DELMBX)

• Wait for Single Event Flag ($WAITFR)

e Wait for Logical AND of Event Flags ($WFLAND)

• Wait for Logical OR of Event Flags ($WFLOR)

e Set AST Enable ($SETAST)

• Set Resource Wait Mode ($SETRWM)

This manual describes the use of system services for I/O operations.
It also describes other system services used with I/O operations such
as asynchronous system traps (ASTs) and event flag services. Section
1.8 describes the QIO request system service; ASTs and event flags,
and $GETCHN are described in Sections 1.9 and 1.10, respectively.
Section 1.8.7 describes the use of the $INPUT and $OUTPUT macros,
which perform functions similar to the $QIOW system service.

See the VAX/VMS System Services Reference Manual for detailed
information on all these system services and examples of their use.
The VAX/VMS System Services Reference Manual also contains information
on physical and logical device-naming conventions.

1.4 QUOTAS, PRIVILEGES, AND PROTECTION

To preserve the integrity of the system, VAX/VMS I/O operations are
performed under the constraints of quotas, privileges, and protection.

Quotas establish a limit on the number and type of I/O operations that
a process can perform concurrently. They ensure that all users have
an equitable share of system resources a~d usage.

Privileges are granted to a user to allow the performance of certain
I/O-related operations, for example, create a mailbox and perform
logical I/O to a file-structured device. Restrictions on user
privilege protect the integrity and performance of both the operating
system and· the services provided other users.

Protection is used to control access to files and devices. Device
protection is provided in much the same way as file protection:
shareable and nonshareable devices are protected by protection masks.

The Set Resource Wait Mode ($SETRWM) system service allows a process
to select either of two modes when an attempt to exceed a quota
occurs. In the enabled (default) mode, the process waits until the
required resource is available before continuing. In the disabled
mode, the process is notified immediately by a system service status
return that an attempt to exceed a quota has occurred. Waiting for
resources is transparent to the process when resource wait mode is
enabled; no explicit action is taken by the process when a wait is
necessary.

The different types of I/O-related quotas, privileges, and protection
are described in the following paragraphs.

1-3

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.4.l Buffered I/O Quota

The buffered I/O quota specifies the maximum number of concurrent
buffered I/O operations a process can have active. In a buffered I/O
operation, the user's data is buffered in system dynamic memory. The
driver deals with the system buffer and not the user buffer. Buffered
I/O is used for terminal, line printer, card reader, network, mailbox,
and console medium {RXOl) transfers. The user's buffer does not have
to be locked in memory for a buffered I/O operation.

The buffered I/O quota value is established in the user authorization
file by the system manager or by the process's creator. Resource wait
mode is entered if enabled by the Set Resource Wait Mode system
service and an attempt to exceed the buffered I/O quota is made.

1.4.2 Buffered I/O Byte Count Quota

The buffered I/O byte count quota specifies the maximum amount of
buff er space that can be consumed from system dynamic memory for
buffering I/O requests. All buffered I/O requests require system
dynamic memory in which the actual I/O operation takes place.

The buffered I/O byte count quota is established in the user
authorization file by the system manager or by the process's creator.
Resource wait mode is entered if enabled by the Set Resource Wait Mode
system service and an attempt to exceed the buffered I/O byte count
quota is made.

1.4.3 Direct I/O Quota

The direct I/O quota specifies the maximum number of concurrent direct
{that is, unbuffered), I/O operations that a process can have active.
In a direct I/O operation, data is moved directly to or from the user
buffer. Direct I/O is used for disk, magnetic tape, DMA real-time
devices, and non-network DMCll transfers. For direct I/O, the user's
buffer must be locked in memory during the transfer.

The direct I/O quota value is established in the user authorization
file by the system manager or by the process's creator. Resource wait
mode is entered if enabled by the Set Resource Wait Mode system
service and an attempt to exceed the direct I/O quota is made.

1.4.4 AST Quota

The AST quota specifies the maximum number of asynchronous system
traps that a process can have outstanding. The quota value is
established in the user authorization file by the system manager or by
the process's creator. There is never an implied wait for this
resource.

1.4.5 Physical I/O Privilege (PHY_IO)

Physical I/O privilege allows a process to perform physical I/O
operations on a device. Physical I/O privilege also allows a process
to perform logical I/O operations on a device. {Figures 1-1 and 1-2
show the use of physical I/O privilege in greater detail.)

1-4

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.4.6 Logical I/O Privilege {LOG_IO)

Logical I/O privilege allows a process to perform logical I/O
operations on a device. A process can also perform physical
operations on a device if the process has logical I/O privilege, the
volume is mounted foreign, and the volume protection mask allows
access to the device. (Figures 1-1 and 1-2 show the use of logical
I/O privilege in greater detail.)

1.4.7 Mount Privilege

Mount privilege allows a process to use the IO$ MOUNT function to
perform mount operations on disk and magnetic tape-devices. IO$ MOUNT
is used in ACP interface operations (see Chapter 9).

1.4.8 Volume Protection

Volume protection protects the integrity of mailboxes and both foreign
and Files-11 structured volumes. Volume protection for a foreign
volume is established when the volume is mounted. Volume protection
for a Files-11 structured volume is established when the volume is
initialized. (The protection can be overridden when the volume is
mounted if the process that is mounting the volume has the override
volume protection privilege.)

Mailbox protection is established by the SCREMBX system service
protection mask argument.

Protection for structured volumes and mailboxes is provided by a
volume protection mask that contains four 4-bit fields. These fields
correspond to the four classes of users that are permitted to access
the volume. (User classes are based on the volume owner's user
identification code, UIC.)

The 4-bit fields are interpreted differently for volumes that are
mounted as structured (that is, volumes serviced by an Ancillary
Control Process (ACP)) and volumes that are mounted as foreign.

The 4-bit fields have the following format for volumes mounted as
structured:

15 11 7 3 0

world group

/,
10

delete execute

1-5

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The 4-bit fields have the following format for volumes mounted as
foreign:

11 10 9 8

Log 1/0 Phy 1/0]
*not used

Usually, volume protection is meaningful only for read and write
operations.

1.4.9 Device Protection

Device protection protects the allocation of nonshareable devices,
such as terminals and card readers.

Protection is provided by a device protection mask similar to that of
volume protection, the difference being that only the bit
corresponding to read access is checked and determines if the process
can allocate or assign a channel to the device.

Device protection is established with the SET PROTECTION/DEVICE DCL
operator command. Both the protection mask and the device owner UIC
are set with this command.

1.4.10 System Privilege (SYSPRV}

System UIC privilege allows a process to be eligible for the volume or
device protection specified for the system protection class, even
though the process does not have a UIC in one of the system groups.

1.4.11 Bypass Privilege (BYPASS}

Bypass privilege allows a process to completely bypass volume and
device protection.

1.5 SUMMARY OF VAX/VMS QIO OPERATIONS

VAX/VMS provides QIO operations that perform three basic I/O
functions: read, write, and set mode. The read function transfers
data from a device to a user-specified buffer. The write function
transfers data in the opposite direction -- from a user-specified
buffer to the device. For example, in a read QIO function to a
terminal device, a user-specified buffer is filled with characters
received from the terminal. In a write QIO function to the terminal,
the data in a user-specified buffer is transferred to the terminal
where it is displayed.

The set mode QIO function is used to control or describe the
characteristics and operation of a device. For example, a set mode
QIO function to a line printer can specify either uppercase or
lowercase character format. Not all QIO functions are applicable to
all types of devices. The line printer, for example, cannot perform a
read QIO function.

1-n

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.6 PHYSICAL, LOGICAL, AND VIRTUAL I/O

I/O data transfers can occur in any one of three device addressing
modes: physical, logical, or virtual. Any process with device access
allowed by the volume protection mask can perform logical I/O on a
device that is mounted foreign; physical I/O requires privilege.
Virtual I/O does not require privilege; however, intervention by an
ACP to control user access may be necessary if the device is under ACP
control. (ACP functions are described in Chapter 9.)

l.n.l Physical I/O Operations

In physical I/O operations, data is read from and written to the
actual, physically addressable units accepted by the hardware; for
example, sectors on a disk or binary characters on a terminal in the
PASSALL mode. This mode allows direct access to all device-level I/O
operations.

Physical I/O requires that one of the following conditions be met:

• The issuing process has physical .I/O privilege (PHY IO) -

• The issuing process has logical I/O privilege (LOG IO) I the
device is mounted foreign, and the volume protection mask
allows physical access to the device

If neither of these conditions is met, the physical I/O operation is
rejected by the QIO system service with a status return of SS$ NOPRIV
(no privilege). Figure 1-1 illustrates the physical I/O access-checks
in greater detail.

The inhibit error-logging function modifier (IOSM INHERLOG) can be
specified for all physical I/O functions. IO$M INHERLOG inhibits the
logging of any error that occurs during the I/O operation.

l.n.2 Logical I/O Operations

In logical I/O operations, data is read from and written to logically
addressable units of the device. Logical operations can be performed
on both block-addressable and record-oriented devices. For
block-addressable devices (for example, disks), the addressable units
are 512-byte blocks. They are numbered from 0 to n where n is the
last block on the device. For record-oriented or non-block-structured
devices (for example, terminals), logical addressable units are not
pertinent and are ignored. Logical I/O requires that one of the
following conditions be met:

• The issuing process has physical I/O privilege (PHY_IO)

• The issuing process has logical I/O privilege (LOG IO)

• The volume is mounted foreign and the volume protection mask
allows access to the device

If none of these conditions is met, the logical I/O operation is
rejected by the QIO system service with a status return of SS$ NOPRIV
(no privilege). Figure 1-2 illustrates the logical I/O access -checks
in greater detail.

1-7

ALLOW
ACCESS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

START

YES

NO

NO

*Volume protection mask allows access

Figure 1-1 Physical I/O Access Checks

1-8

DENY
ACCESS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

ALLOW
ACCESS

NO

*Volume protection mask allows access

YES

YES

NO

START

NO

NO

NO

NO

NO

Figure 1-2 Logical I/O Access Checks

1-9

YES

DENY
ACCESS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.6.3 Virtual I/O Operations

Virtual I/O operations can be performed on both record-oriented
(non-file-structured) and block-addressable (file-structured) devices.
For record-oriented devices (for example, terminals), the virtual
function is the same as a logical function; the virtual addressable
units of the devices are ignored.

For block-addressable devices (for example, disks), data is read from
and written to open files. The addressable units in the file are
512-byte blocks. They are numbered starting at 1 and are relative to
a file rather than to a device. Block-addressable devices must be
mounted and structured and must contain a previously opened file.

Virtual I/O operations also require that the volume protection mask
allow access to the device (a process having either physical or
logical I/O privilege can override the volume protection mask). If
these conditions are not met, the virtual I/O operation is rejected by
the QIO system service with one of the following status returns:

Status Return

SS$ NOPRIV

SSS DEVNOTMOUNT

SS$ DEVFOREIGN

Meaning

No privilege

Device not mounted

Volume mounted foreign (a foreign
volume is a volume that does not
contain a standard file structure
understood by any of the VAX/VMS
software)

Figure 1-3 shows the relationship of physical, logical, and virtual
I/O to the driver.

1-10

error

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

YES

YES

OIO
RE OU EST

NO

YES

GOTO
ACP

TRANSLATE LOGICAL
BLOCK ADDRESS

TO PHYSICAL
BLOCK ADDRESS

MAP VIRTUAL BLOCK
ADDRESS TO LOGICAL

BLOCK ADDRESS

YES

1/0
DRIVER

*Needed to map virtual address to logical address

WAKE ACPTO
CHANGE MAPPING

WINDOW

Figure 1-3 Physical, Logical, and Virtual I/O

1-11

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.7 I/O FUNCTION ENCODING

I/O functions fall into three groups that correspond to the three I/O
device addressing modes (physical, logical, and virtual) described in
Section 1.6. Depending on the device to which it is directed, an I/O
function can be expressed in one, two, or all three modes.

I/O functions are described by 16-bit, symbolically-expressed values
that specify the particular I/O operation to be performed and any
optional function modifiers. Figure 1-4 shows the format of the
16-bit function value.

15 6 5 0

I function mod-if-ie-rs __ __._l ___ co_d_e __ J
Figure 1-4 I/O Function Format

Symbolic names for I/O function codes are defined by the $IODEF macro,
as described in the VAX/VMS System Services Reference Manual.

1.7.1 Function Codes

The low-order 6 bits of the function value are a code that specifies
the particular operation to be performed. For example, the code for
read logical block is expressed as IO$ READLBLK. Table 1-1 lists the
symbolic values for read and write I/O-functions in the three transfer
modes.

Table 1-1
Read and Write I/O Functions

Physical I/O Logical I/O Virtual I/O
··-

IO$ READPBLK IO$ READLBLK IOS READVBLK
IO$-WRITEPBLK IO$-WRITELBLK IO$-WRITEVBLK -

..... _,p

The set mode I/O function has a symbolic value of IOS_SETMODE.

Function codes are defined for all supported devices. Although some
of the function codes (for example, IOS READVBLK and IOS WRITEVBLK)
are used with several types of devices, most are device -dependent;
that is, they perform functions specific to particular types of
devices. For example, IO$ CREATE is a device-dependent function code;
it is used only with file-structured devices such as disks and
magnetic tapes. Chapters 2 through 8 and 10 through 12 provide
complete descriptions of the functions and function codes.

1.7.2 Function Modifiers

The high-order 10 bits of the function value are function modifiers.
These are individual bits that alter the basic operation to be
performed. For example, the function modifier IOSM NOECHO can be
specified with the function 10$ READLBLK to a termTnal. When used

1-12

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

together, the two values are written as IO$ READLBLK!IO$M NOECHO.
This means that data typed at the terminal keyboard is entered in the
user buffer but not echoed to the terminal. Figure 1-5 shows the
format of function modifiers.

15 13 12·

device/function
independent

device/function
dependent

6 5 J]o
--t

Figure 1~5 Function Modifier Format

As shown, bits 13 through 15 are device/function independent bits, and
bits 6 through 12 are device/function dependent bits. Device/function
dependent bits have the same meaning, whenever possible, for different
device classes. For example, the function modifier IOSM ACCESS is
used with both disk and magnetic tape devices to cause a file to be
accessed during a create operation. Device/function dependent bits
always have the same function within the same device class.

There are two device/function independent modifier bits:
IO$M INHRETRY and IO$M DATACHECK (a third bit is reserved).
IO$M-INHRETRY is u~ed to i~hibit all error recovery. If any error
occurs, and this modifier bit is specified, the operation is
immediately terminated and a failure status is returned in the I/O
status block (see Section 1.9.2). IO$M DATACHECK is used to compare
the data in memory with that on a disk or-magnetic tape.

1.8 ISSUING I/O REQUESTS

This section describes the entire process involved in issuing I/O
requests, including: assigning channels, allocating devices, and
issuing QIO requests; the $QIO, $QIOW, $INPUT, and $OUTPUT macros;
and, finally, status returns.

1.8.1 Channel Assignments

Before I/O requests can be made to a device, the user must assign a
channel to establish a link between the user process and the device.
A channel is a communication path associated with a device during
VAX/VMS I/O operations. The process uses the channel to transfer
information to and from the device.

The Assign I/O Channel ($ASSIGN) system service is used to assign a
channel to a device. To code a call to the $ASSIGN system service,
the user must supply the name of the device (physical device name or
logical name) and the address of a ·word to receive the assigned
channel number. The $ASSIGN system service returns the channel
number. The process can then request an I/O operation by calling the
Queue I/O ($QIO) system service and specifying, as one of the
arguments, the channel number returned by the $ASSIGN system service.

1-13

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

In the following example, an I/O channel is assigned to the devi~e
TTB4. The channel number is returned in the word at TTCHAN •

TTNAME:
TTCHAN:

• ASCID / TTB4/
.BLKW 1-

;TERMINAL NAME DESCRIPTOR
;TERMINAL CHANNEL NUMBER

$ASSIGN_S DEVNAM=TTNAME,CHAN=TTCHAN

If the first character in the device name (devnam) string is an
underline character (), the name is considered to be a physical
device name; otherwise: one level of logical name translation is
performed and the equivalence name, if any, is used.

The Create Mailbox and Assign Channel ($CREMBX) system service
provides another way to assign a channel to a device. In this case,
the device is a mailbox. $CREMBX creates a mailbox and then assigns a
channel to it (see Section 7.1.1).

The QIO system service can be performed only on assigned I/O channels
and only from access modes that are equal to or more privileged than
the access mode from which the original channel assignment was made.

1.8.2 Device Allocation

A device can be allocated to a process (or subprocess) by the Allocate
Device ($ALLOC) system service. The allocated device is reserved for
the exclusive use of the requesting process, any subprocesses it
creates, and subprocesses created by any related subprocess. No other
process can allocate the device until the owning process explicitly
deallocates it.

Channels can be assigned to both allocated and nonallocated devices;
however, a process cannot assign a channel to a device that is
allocated to another process. When a channel is assigned to a
nonallocated, nonshareable device (for example, a line printer or a
magnetic tape device) VAX/VMS implicitly allocates the device.

Access to device functions is controlled by physical and logical I/O
privileges, the volume protection mask, the device protection mask,
and the mountability of the device (a device is mountable if a MOUNT
command can be issued for it). Even though a device is allocated to a
process, the process cannot perform I/O operations on the device
unless access is allowed.

1.8.3 I/O Function Requests

After a channel has been assigned, the process can request I/O
functions by using the Queue I/O ($QIO) system service. The $QIO
system service initiates an input or output operation by queuing a
request to a specific device that is assigned to a channel.

Certain requirements must be met before a request is queued. For
example, a valid channel number must be included in the request, the
request must not exceed relevant quotas, and sufficient dynamic memory
must be available to complete the operation. Failure to meet such
requirements is indicated by a status return (described below in
Section 1.8.8).

1-14

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The number of pending I/O requests, the amount of buffer space, and
the number of outstanding ASTs that a process can have are controlled
by quotas.

Each I/O request causes an I/O request packet to
system dynamic memory. Additional memory is
following circumstances:

• The I/O request function is an ACP function

• The target device is a buffered I/O device

• The target device is a network I/O device

be allocated from
allocated under the

After an I/O request is queued, the system does not require the
issuing process to wait for the I/O operation to complete. If the
process that issued the QIO request cannot proceed until the I/O
completes, an event flag can be used to synchronize I/O completion
(see Sections 1.8.6.1 and 1.9.1). In this case, the process should
request the Wait for Single Event Flag ($WAITFR) system service at the
point where synchronization must occur: that is, where I/O completion
is required.

$WAITFR specifies an event flag for which the process is to wait.
(The $WAITFR event flag must have the same number as the event flag
used in the QIO request.) The process then waits while the I/O
operation is performed. On I/O completion, the event flag is set and
the process is allowed to resume operation.

Other ways to achieve this synchronization include the use of the
$QIOW system service and ASTs, described in Sections 1.8.5 and 1.9.3,
respectively. In addition, the I/O status block can be specified and
checked if the user wants to determine whether the I/O operation
completed without an error, regardless of whether or not the process
waits for I/O completion (see Section 1.9.2.)

The QIO system service is accompanied by up to six device/
function-independent and six device/function-dependent arguments.
Section 1.8.6 below describes device/function-independent arguments.
The device/function-dependent arguments (Pl through Pn) are
potentially different for each device/function combination. However,
similar functions that are performed by all devices have identical
arguments •. Furthermore, all functions performed by a particular class
of device are identical. Device/function-dependent arguments are
described in more detail for the individual devices in Chapters 2
through 8 and 10 through 12.

1.8.4 $QIO Macro Format

The general format for the $QIO macro, using position-dependent
arguments, is:

$QIO_S [efn] ,chan,func, [iosb], [astadr], [astprm] ,­
[pl], [p2], [p3J, [p4], [p5], [pn]

The first six arguments are device/function independent. If keyword
arguments are used, they can be written in any order. Arguments Pl
through P6 are device/function dependent. The chan and func arguments
must be specified in each request; arguments enclosed in brackets
([]) are optional.

1-15

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The following example illustrates a typical QIO request using keyword
arguments:

$QIO_S EFN=U ,-
CHAN=TTCHANl ,­
FUNC=#IO$ WRITEVBLK,­
Pl=BUFADD-;­
P2=#BUFSIZE

;EVENT FLAG 1
;CHANNEL
;VIRTUAL WRITE
;BUFFER ADDRESS
;BUFFER SIZE

1.8.5 $QIOW Macro Format

The Queue I/O Request and Wait For Event Flag ($QIOW) system service
macro combines the $QIO and $WAITFR system services. It eliminates
any need for explicit I/O synchronization by automatically waiting
until the I/O operation is completed before returning control to the
process. Thus, $QIOW provides a simpler way to synchronize the return
to the originating process when the process cannot proceed until the
I/O operation is completed.

The $QIOW macro has the same device/function independent and
device/function dependent arguments as the $QIO macro:

$QIOW_S [efn] ,chan,func, [iosb], [astadr], [astprm] ,­
[pl], [p2J, [p3J, [p4J, [p5J, [pnl

1.8.6 $QIO and $QIOW Arguments

Table 1-2 lists the $QIO and $QIOW device/function-independent
arguments and their meanings. Additional information is provided in
the paragraphs following the table and in the VAX/VMS System Services
Reference Manual.

Argument

efn {event
flag number)

chan {channel
number)

Table 1-2
Device/Function-Independent Arguments

Meaning

The number of the event flag that is to be
cleared when the I/O function is queued and set
when it is completed. This argument is optional
in the macro form; if not specified, efn
defaults to O.

The number of the I/O channel to which the
request is directed. The channel number is
obtained from either the $ASSIGN or $CREMBX
system service. This argument is mandatory in
the macro form.

func The 16-bit function code and modifier value that
(function value) specifies the operation to be performed. This

argument is mandatory in the macro form.

(continued on next page)

1-16

Argument

iosb (I/O
status block)

astadr (AST
address)

astprm (AST
parameter)

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-2 (Cont.)
Device/Function-Independent Arguments

Meaning

The address of a quadword I/O status block to
receive the final I/O status. This argument is
optional in the macro form.

The entry point address of an AST routine to be
asynchronously executed when the I/O completes.
This argument is optional in the macro form.

The 32-bit value to be passed to the AST routine
as an argument when the I/O completes. It can be
used to assist the routine in identifying the
particular AST. This argument is optional in the
macro form.

1.8.6.1 Event Flag Number Argument - The event flag number (efn)
argument is the number of the event flag to be associated with the I/O
operation. It is optional in a $QIO or $QIOW macro. The specified
event flag is cleared when the request is issued and set when the I/O
operation completes. The specified event flag is also set if the
service terminates without queuing the I/O request.

If the process requested the $QIOW system service, execution is
automatically suspended until the I/O completes. If the process
requested the QIO system service (with no subsequent $WAITFR, SWFLOR,
or $WFLAND macro), process execution proceeds in parallel with the
I/O. As the process continues to execute, it can test the event flag
at any point by using the Read Event Flags ($READEF) system service.

Event flag numbers must be in the range of 0 through 127 (however,
event flags 24 through 31 are reserved for system use). If no
specific event flag is desired, the efn argument can be omitted from
the macro. In that case, efn defaults to O.

Users should exercise care in the use of SQIOs and $QIOWs, for
example, when a $QIOW is used for terminal input and a $QIO is used
for terminal output. If no event flag is specified in either call,
event flag 0 is set at the completion of the output $QIO and the
waiting input SQIOW will prematurely return control to the process.

1.8.~.2 Channel Number Argument - The channel number (chan) argument
represents the channel number of the physical device to be accessed by
the I/O request. It is required for all $QIO and SQIOW requests. The
association between the physical device and the channel is specific to
the process issuing the I/O request. The channel number is obtained
from the $ASSIGN or $CREMBX system service (as described above in
Section 1.8.1).

1.8.6.3 Function Argument - The function (func) argument defines the
logical, virtual, or physical I/O operation to be performed when the
$QIO or $QIOW system service is requested. It is required for all QIO
and QIOW requests. The argument consists of a 16-bit function code

1-17

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

and function modifier. Up to 64 function codes can be defined.
Function codes are defined for all supported device types; most of
the codes are device dependent. The function arguments for each I/O
driver are described in more detail in Chapters 2 through 8 and 10
through 12.

1.8.6 .• 4 I/O Status Block Argument - The I/O status block (iosb)
argument specifies the address of the I/O status block to be
associated with the I/O request. It is optional in the QIO and QIOW
macros. If omitted, the iosb value is O which indicates no iosb
address is supplied. This block is a quadword that receives the final
completion status of the I/O request. Section 1.9.2 describes the I/O
status block in more detail.

1.8.6.5 AST Address Argument - The AST address (astadr) argument
specifies the entry point address of an AST routine to be executed
when the I/O operation is complete. If omitted, the astadr value is 0
which indicates no astadr address is supplied. This argument is
optional and can be used to interrupt a process to execute special
code at I/O completion. When the I/O operation completes, the AST
service routine is CALLed at the address specified in the astadr
argument. The AST service routine is then executed in the access mode
from which the QIO service was called.

1.8.6.6 AST Parameter Argument - The AST parameter (astprm) argument
is an optional, 32-bit arbitrary value that is passed to the AST
service routine when I/O completes, to assist the routine in
identifying the particular AST. A typical use of the astprm argument
might be the address of a user control block. If omitted, the astprm
value is O.

1.8.6.7 Device/Function-Dependent Arguments - Up to six device/
function-dependent arguments (Pl through P6) can be included in each
QIO request. The arguments for terminal read function codes show a
typical use of Pl through P6:

Pl buff er address

P2 buffer size

P3 timeout count (for read with timeout)

P4 read terminator descriptor block address

P5 prompt string buffer address

P6 prompt string buffer size

Pl is always treated as an address. Therefore, in the S form of the
macro, Pl always generates a PUSHAL instruction. P2-through P6 are
always treated as values. In the S form of the macro, these
arguments always generate PUSHL instructions.

1-18

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Inclusion of the device/function-dependent arguments in a QIO request
depends on the physical device unit and the function specified. A
user who wants to specify only a channel, an I/O function code, and an
address for AST routine might issue the following:

$QIO_S CHAN=XYCHAN,FUNC=#IO$ READVBLK,­
ASTADR=XYAST,Pl=BUFADR,P2=#BUFLEN

In this example, XYCHAN is the address of the word containing the
channel to which the request is directed; IO$ READVBLK is the
function code; and XYAST is the AST entry point address. BUFADR and
BUFLEN are the device/function-dependent arguments for an input
buffer. ,

1.8.7 $INPUT and $OUTPUT Macro Format and Arguments

The $INPUT and $OUTPUT macros simplify the use of the $QIOW macro.
These macros generate code to perform virtual operations, using the
IO$ READVBLK and IO$ WRITEVBLK function codes (the function code is
automatically specified in the request), and wait for I/O completion.
The macro formats and arguments are:

$INPUT
$OUTPUT

chan,length,buffer, [iosb], [efn]
chan,length,buffer, [iosb], [efn]

Table 1-3 lists the $INPUT and $OUTPUT arguments and their meanings.

Table 1-3
$INPUT and $OUTPUT Arguments

Argument Meaning

ch an The channel on which the I/O operation is to be
performed.

length The length of the input or output buffer.

buff er The address of the input or output buffer.

iosb The address of the quadword that receives the
completion status of the I/O operation. This
argument is optional.

ef n The number of the event flag for which the process
waits. This argument is optional; if not specified,
efn defaults to 0.

Both the iosb and efn arguments are optional; all other arguments
must be included in each macro. Note that the order of the length and
buffer arguments is opposite that of the $QIO and $QIOW Pl and P2
arguments. Also note that $INPUT and $OUTPUT do not have the astadr
and astprm arguments; neither of these operations can conclude in an
AST.

1-19

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.8.8 Status Returns for System Services

On completion of a system service call, the completion status is
returned as a longword value in register RO, shown in Figure 1-n.
(System services save the data in all registers except RO and Rl.)

31 16 15 0

RO:
c--- --~----- -· J------=atus

Figure 1-6 System Service Status Return

Completion status is indicated by a value in bits 0 through 15. The
low-order 3 bits are encoded with the error severity level; all
successful returns have an odd value:

warning
success
error

0
1
2
3
4

informational (nonstandard) success
severe error

5-7 = reserved

Each numeric status code has a symbolic name in the form SS$ code.
For example, the return might be SS$ NORMAL, which indTcates
successful completion of the system service. There are several error
conditions that can be returned. For example, SS$ IVCHAN indicates
that an invalid channel number was specified in an I/O request.

The VAX/VMS System Services Reference Manual describes the possible
returns for each system servTce. Table 1-4 lists the valid status
returns for the $QIO, $QIOW, $INPUT, and $OUTPUT system service
requests.

Status returns for system services are not the same as the I/O status
returns described in Chapters 2 through 8 and 10 through 12 for the
various I/O drivers (see Section 1.9). A system service status return
is the status of the $QIO, $QIOW, $INPUT, $OUTPUT, or other system
service call after completion of the service, that is, after the
system returns control to the user. A system service status return
does not reflect the completion (successful or unsuccessful) of the
requested I/O operation. For example, a $QIO system service read
request to a terminal might be successful (status return is
SS$ NORMAL) but fail because of a device parity error (I/O status
return is SS$ PARITY). System service error status return codes refer
only to failures to invoke the service.

An I/O status return
operation. It is
Although some of the
SS$ ACCVIO) can be
different meanings.

is the status at the completion of the I/O
returned in the quadword I/O status block (IOSB).
symbolic names (for example, SS$ NORMAL and
used in both types of status returns, they have

1-20

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-4
$QIO, $QIOW, $INPUT, and $OUTPUT System Services Status Returns

Status

SS$ NORMAL

SS$ ACCVIO

SS$_EXQUOTA

SS$ ILLEFC

SS$ INSFMEM

SS$ IVCHAN

SS$ NOPRIV

SS$ UNASEFC

SS$ ABORT

SS$ INSFARG

SS$ ILLSER

1.9 I/O COMPLETION

Meaning

The $QIO, $QIOW, $INPUT, or $OUTPUT request was
successfully completed; that is, an I/O request
was placed in the appropriate device queue.

The IOSB, the specified buffer, or the argument
list cannot be accessed by the caller.

The buffer quota, buffered I/O quota, or direct
I/O quota was exceeded and the process has
disabled resource wait mode with the $SETRWM
system service. (The $SETRWM system service is
described in Section 1.4.) SS$ EXQUOTA is also
set if the AST quota was exceeded.

An illegal event flag number was specified.

Insufficient dynamic memory is available to
complete the service and the process has
disabled resource wait mode with the $SETRWM
system service. (The $SETRWM system service is
described in Section 1.4.)

An invalid channel number was specified; that
is, a channel number larger than the number of
channels available.

The specified channel was assigned from
privileged access mode, the channel
assigned, or the user does not have the
privilege to access the device.

a more
is not
proper

A common event flag in an unassociated event
flag cluster was specified.

A network logical link was broken.

Not enough arguments were supplied to
service.

An invalid system service was called.

the

Whether an I/O request completed successfully or unsuccessfully can be
denoted by one or more return conditions. The selection of the return
conditions depends on the arguments included in the QIO macro call.
The three primary returns are:

• Event flag - an event flag is set on completion of an I/O
operation.

• I/O status block - if the iosb argument was specified in the
QIO macro call, a code identifying the type of success or
failure is returned in bits 0 through 15 of a quadword I/O
status block on completion of the I/O operation. The location
of this block is indicated by the user-supplied iosb argument.

1-21

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

• Asynchronous system trap - if an AST address argument was
specified in the I/O request, a call to the AST service
routine occurs, at the address indicated, on completion of the
I/O operation. (The I/O status block, if specified in the I/O
request, is updated prior to the AST call.)

1.9.1 Event Flags

Event flags are status posting bits used by the $QIO, $QIOW, $INPUT,
and $OUTPUT system services to indicate the completion or occurrence
of an event. The system service clears the event flag when the
operation is queued and sets it when the operation is completed.
Event flag services allow users to set or clear certain flags, test
the current status of flags, or place a program in a wait state
pending the setting of a flag or group of flags.

See the VAX/VMS System Services Reference Manual for more information
on event flags and their use.-

1.9.2 I/O Status Block

The completion status of an I/0 request is returned in the first word
of the I/O status block (IOSB), as shown in Figure 1-7.

31 16 15 0 ------------- 1-- -------------
transfer count status

------ --- ------------
device-dependent data

'------------~----~ -... ··-·--·------------------'

Figure 1-7 I/O Status Block Format

The IOSB indicates whether the operation was successfully completed,
the amount of data transferred, and additional device-dependent
information such as the number of lines printed. The status return
code has the same format and bit significance (bit O set indicates
success; bit 0 clear indicates error) as the system service status
code (see Section 1.8.8). For example, if the process attempts to
access a nonexistent disk, a status code of SS$ NONEXDRV is returned
in the I/O status block. The status returns-for the individual I/O
drivers are listed in Chapters 2 through 8 and 10 through 12.

The upper half of the first IOSB longword contains the transfer count
on completion of the I/O operation if the operation involved the
transfer of data to or from a user buffer. For example, if a read
operation is performed on a terminal, the number of bytes typed before
a carriage return is indicated here. If a magnetic tape unit is the
device and a read function is specified, the transfer count represents
the number of bytes actually transferred. The second longword of the
IOSB can contain certain device-dependent information. This
information is supplied in more detail for each I/O driver in Chapters
2 through 8 and 10 through 12.

1-22

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The status can be tested symbolically, by name. For example, the
SS$ NORMAL status is returned if the operation was completed
successfully. The following example illustrates the examination of
the I/O status block XYIOSB to determine if an error occurred:

$QIO_S

BLBC

CMPW

BNEQ

CHAN=XYCHAN,FUNC=#IO$ WRITEVBLK,­
IOSB=XYIOSB,Pl=BUFADR~P2=#BUFLEN
RO,REQERR ;CHECK SYSTEM SERVICE

;STATUS CODE

#SS$_NORMAL,XYIOSB

ERROR

;CHECK I/O STATUS
;CODE

The status block can be omitted from a QIO request if the user wishes
to assume successful completion of the request and does not want to
know how many bytes were transferred. If specified, the IOSB is
cleared when the QIO request is issued and then filled with the final
status at I/O completion.

1.9.3 Asynchronous System Traps

As an option, an AST routine can be specified in the QIO request if
the user wants to interrupt the normal execution of a process to
execute special code on completion of the request. Even if the
process is blocked for a $WAITFR or $QIOW, it will be interrupted.
When the I/O operation completes, a CALL instruction is used to
transfer control to the AST service routine at the entry point address
specified in the QIO astadr argument. The address must be the address
of an entry mask. The AST service routine is then executed at the
access mode from which the QIO request was issued. Figure 1-8 shows
the argument list for the CALL instruction.

5

astprm

RO

R1

PC

PSL

Figure 1-8 CALL Instruction Argument List

Using an AST to signal I/O completion allows the process to be
occupied with other functions during the I/O operation. The process
need not wait until some event occurs before proceeding to another
operation.

See the VAX/VMS System Services Reference Manual for more detailed
information on ASTs and their use.

1-23

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.10 DEVrCE INFORMATION

Two system services can be used to obtain information about devices:
Get Channel Information ($GETCHN) and Get Device Information ($GETDEV)
system services. The information obtained includes such categories as
device characteristics, device type, error count, and operation count.

The Get Channel Information (SGETCHN) system service is used to obtain
information about a device to which an I/O channel is assigned. The
$GETCHN system service can be performed only on assigned channels and
only from access modes that are equal to, or more privileged than, the
access mode from which the original channel assignment was made.

The Get Device Information ($GETDEV) system service is used to obtain
information about any device.

$GETCHN and $GETDEV return both primary and secondary device
characteristics. Usually, these characteristics are identical.
However, they can differ in three instances:

1. If the device is a spooled device, the primary
characteristics are those of the intermediate device and the
secondary characteristics are those of the spooled device.
See the VAX/VMS System Manager '_s Guide for information on
spooling.

2. If the device represents a logical link on a network, the
secondary characteristics contain information about the link.

3. If the device has an associated mailbox, the primary
characteristics are those of the device and the secondary
characteristics are those of the mailbox.

The macro format for a $GETCHN request is:

$GETCHN chan, [prilen], [pribuf], [scdlen], [scdbuf]

The macro format for a $GETDEV request is:

$GETDEV devnam, [prilen], [pribuf], [scdlen], [scdbuf]

Table 1-5 lists the $GETCHN and $GETDEV arguments and their meanings.

Argument

ch an

devnam

prilen

Table 1-5
$GETCHN and $GETDEV Arguments

Meaning

---·----··••m•··-~- ··-----------------~

The number of the I/O channel to which a $GETCHN
request is directed (this is not an argument for
$GETDEV) •

The address of a string descriptor for the name of
the device to which $GETDEV is directed (this is
not an argument for SGETCHN).

The address of the word to receive the
the primary characteristics. This
optional.

length
argument

of
is

(continued on next page)

1-24

Argument

pribuf

scdlen

scdbuf

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-5 (Cont.)
$GETCHN and $GETDEV Arguments

Meaning

The address of the buffer descriptor for the buffer
that is to receive the primary device
characteristics. An address of 0 indicates that no
buffer is specified. This argument is optional.

The address of the word to receive
the secondary characteristics.
optional.

the length of
This argument is

The address of the buffer descriptor for the buffer
that is to receive the secondary device
characteristics. An address of 0 indicates that no
buffer is specified. This argument is optional.

Figure 1-9 shows the format of the device information returned in the
primary and secondary buffers.

device characteristics

buffer size type class

device dependent information

offset to
unit number

device name

owner process Pl D

owner process U IC DIB$K_LENGTH

volume protection
error count

mask

operation count

offset to
volume label

* ~

disk size in blocks

Figure 1-9 Buffer Format for SGETCHN and $GETDEV System Services

1-25

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

In Figure 1-9, offsets are the displacement from the beginning of the
buffer to the specified field. Missing fields are denoted by offsets
of O. Both device name and volume label are stored in the buffer as
counted strings. They must be located through the use of their
respective offset values. Symbolic offsets for all fields are defined
by the $DIBDEF macro. If both a volume label and a device name are
returned, the buffer has a length of n4 bytes.

As much information as possible is returned for each of the primary
and secondary characteristics. If all the information does not fit in
the specified buffers, an appropriate status value is returned. Table
1-6 lists the status return values for the $GETCHN and $GETDEV system
services.

Status

SS$ NORMAL

SS$ ACCVIO

S~$ IVCHAN

SS$ NOPRIV

SS$ BUFFEROVF

Table 1-fi
$GETCHN and $GETDEV Status Returns

Meaning

The $GETCHN or $GETDEV
successfully completed.

system service

The caller cannot read a buffer descriptor,
write a buffer, or access the argument list.

An invalid channel number was specified in the
$GETCHN request, that is, a channel number
larger than the number of channels available;
the channel is nonexistent.

The caller does not have the privilege to access
the specified channel or the channel is
unassigned.

The $GETCHN or $GETDEV system service
successfully completed. The device information
returned overflowed the buffer(s) provided and
has been truncated.

i-20

CHAPTER 2

TERMINAL DRIVER

This chapter describes the use of the VAX/VMS terminal driver. This
driver supports the DZ-11 Asynchronous Serial Line Multiplexer and the
console terminal.

2.1 SUPPORTED TERMINAL DEVICES

Each DZ-11 multiplexer interfaces 8 or l~ asynchronous serial
communication lines for use with terminals. It supports programmable
baud rates; however, input and output speeds must he the same.
VAX/VMS supports the DZ-11 internal modem control.

The system console terminal is attached to the processor with a
special purpose interface.

The Remote (DECnet) Command Terminal also makes use of the features
and capabilities listed in Section 2.2.

2.2 TERMINAL DRIVER FEATURES AND CAPABILITIES

The VAX/VMS terminal driver provides the following capabilities:

• Type-ahead

• Specifiable or default line terminators

• Special operating modes, such as NOECHO and PASSALL

• American National Standard escape sequence detection

• Terminal/mailbox interaction

• Terminal control characters and special keys

• Dial-up

• Optional parity specification

• Limited full-duplex operation (simultaneously active read and
write requests)

2-1

TERMINAL DRIVER

2.2.1 Type-ahead

Input (data received) from a VAX/VMS terminal is always independent of
concurrent output (data sent) to a terminal. This capability is
called type-ahead. Type-ahead is allowed on all terminals unless
explicitly disabled by the Set Mode characteristic, inhibit type-ahead
(TT$M_NOTYPEAHD; see Section 2.4.3).

Data typed at the terminal is retained in the type-ahead buffer until
the user program issues an I/O request for a read operation. At that
time, the data is transferred to the program buffer and echoed at the
terminal where it was typed.

Def erring the echo until the read operation is active allows the user
process to specify function code modifiers that modify the read
operation. These modifiers can include, for example, noecho
(IO$M NOECHO) and convert lowercase characters to uppercase
(IO$M=CVTLOW) (see Section 2.4.1.1).

If a read operation is already in progress when the data is typed at
the terminal, the data transfer and echo are immediate.

The action of the driver when the type-ahead buffer fills depends on
the Set Mode characteristic TT$M HOSTSYNC (see Section 2.4.3). If
TT$M HOSTSYNC is not set, CTRL/G (BELL) is returned to inform the user
that- the type-ahead buffer is full. If TT$M HOSTSYNC is set, the
driver stops input by sending a CTRL/S and the terminal responds by
sending no more characters. These warning operations are begun 8
characters before the type-ahead buffer fills. The driver sends a
CTRL/Q to restart transmission when the type-ahead buffer empties
completely.

The type-ahead buffer length is variable, with possible values in the
range from 0 through 32,7n7. The length can be set on a system-wide
basis through use of the system generation parameter TTY TYPAHDSZ.

2.2.2 Line Terminators

A line terminator is the control sequence that the user types at the
terminal to indicate the end of an input line. Optionally, the user
process can specify a particular line terminator or class of
terminators for read operations.

Terminators are specified by an argument to the QIO request for a read
operation. By default, they can be any ASCII control character except
FF, VT, LF, TAB, or BS. If included in the request, the argument is a
user-selected group of characters (see Section 2.4.1.2).

All characters are 7-bit ASCII characters unless data is input on an
8-bit terminal (see Section 2.4.1). (The characteristic TT$M EIGHTBIT
determines whether a terminal uses the 7-bit or 8-bit character set;
see Table 2-4.) All input characters are tested against the selected
terminator(s). The input is terminated when a match occurs or the
user's input buffer fills.

2.2.3 Special Operating Modes

The VAX/VMS terminal driver supports many special operating modes for
terminal lines. Section 2.4.3 lists these modes. All special modes
are enabled or disabled by the Set Mode and Set Characteristics QIOs.

2-2

TERMINAL DRIVER

2.2.4 Escape Sequences

Escape sequences are strings of two or more characters, beginning with
the escape character (decimal 27 or hexadecimal lB), that indicate
that control information follows. Many terminals send and respond to
such escape sequences to request special character sets or to indicate
the position of a cursor.

The Set Mode characteristic TT$M ESCAPE (see Section 2.4.3) is used to
specify that VAX/VMS terminal lines can generate valid escape
sequences. If this characteristic is set, the terminal driver
verifies the syntax of the escape sequences. The sequence is always
considered a read function terminator and is returned in the read
buffer, that is, a read buffer can contain other characters that are
not part of an escape sequence, but a complete escape sequence always
terminates a read. The return information in the read buffer and the
I/O status block includes the position and size of the terminating
escape sequence in the data record (see Section 2.5).

Any escape sequence received from a terminal is checked for correct
syntax. If the syntax is not correct, SS$ BADESCAPE is returned as
the status of the I/O. If the escape sequence does not fit in the
user buffer, SS$ PARTESCAPE is returned. The remaining characters are
transmitted on the next read. No syntax integrity is guaranteed
across read operations. Escape sequences are never echoed. Valid
escape sequences are any of the following forms (hexadecimal
notation):

ESC <int> ••• <int> <fin>

where:

ESC is pressing the ESC key, a byte (character) of lB

<int> is an "intermediate character" in the range of 20 to 2F.
This range includes the character "space" and 15
punctuation marks. An escape sequence can contain any
number of intermediate characters, or none.

<fin> is a "final character" in the range of 30 to 7E. This
range includes uppercase and lowercase letters, numbers,
and 13 punctuation marks.

There are four additional escape sequence forms:

ESC <;> <20-2F> ••• <30-7E>
ESC <?> <20-2F> ••• <30-7E>
ESC <O> <20-2F> ••• <40-7E>
ESC <Y> <20-7E> ••• <20-7E>

For example, when the IDENTIFY escape sequence, escape z, is sent to a
VT-55 terminal, the response from the terminal is ESC <C>. (Escape
sequences are neither displayed nor echoed on the terminal.)

2-3

TERMINAL DRIVER

Control sequences, as defined by the ANSI
sequences which include control parameters.
the following format:

standard, are escape
Control sequences have

ESC [<par> ••• <par> <int> ••• <int> <fin>

where:

ESC is pressing the ESC key

denotes a control sequence

<par> is a parameter specifier in the range of 30 to 3F

<int> is an "intermediate character", as defined for escape
sequences

<fin> is a "final character" in the range of 40 to 7E

For example, the position cursor control sequence is:

ESC [Pl ; Pc H

where Pl is the desired line position and Pc is the desired column
position.

The VTlOO User Guide lists valid escape sequences for VTlOO terminals.

Section 2.2.6 describes control character functions during escape
sequences.

2.2.5 Terminal/Mailbox Interaction

Mailboxes are virtual I/O devices used for communication between
processes. The terminal I/O driver can use a mailbox to communicate
with a user process. Chapter 7 describes the mailbox driver.

A user program can use the $ASSIGN system service to
mailbox with one or more terminals. The terminal
messages to this mailbox when terminal-related events
require the attention of the user image.

associate a
driver sends

occur that

Mailboxes used in this way carry status messages, not terminal data,
from the driver to the user program. For example, when data is
received from a terminal for which no read request is outstanding
(unsolicited data), a message is sent to the associated mailbox to
indicate data availability. On rece1v1ng this message, the user
program must read the channel assigned to the terminal to obtain the
data. Messages are sent to mailboxes under the following conditions:

• Unsolicited data in the type-ahead buffer. The use of the
associated mailbox can be enabled and disabled as a
subfunction of the read and write requests (see Sections 2.4.1
and 2.4.2). Thus, the user process can enter into a dialogue
with the terminal after an unsolicited data message arrives.
Then, after the dialogue is over, the user process can
reenable the unsolicited data message function on the last I/O
exchange. The default on all terminals is enabled. Only one
message is sent between read operations.

2-4

TERMINAL DRIVER

• Terminal hang-up. Hang-up occurs when a remote line loses the
carrier signal; a message is sent to the mailbox. When
hang-up occurs on lines that have the characteristic
TT$M_REMOTE set, the line returns to local mode.

Messages placed in the mailbox have the following content and format:

• Message type. The codes MSG$ TRMUNSOLIC (unsolicited data)
and MSG$ TRMHANGUP (hang-up) identify the type of message.
Message types are identified by the $MSGDEF macro.

• Device unit number to identify the terminal that sent the
message.

• Counted string to specify the device name.

• Controller name

Figure 2-1 illustrates this format.

31 16 15 8 7 0

unit number message type

controller name* counted string

*does not include the colon(:) character

Figure 2-1 Terminal Mailbox Message Format

Interaction with a mailbox associated with a terminal occurs through
standard QIO functions and ASTs. Therefore, the process need not have
outstanding read requests to an interactive terminal to respond to the
arrival of unsolicited data. The process need only respond when the
mailbox signals the availability of unsolicited data. Section 2.n
contains an example of mailbox programming.

The ratio of terminals to mailboxes is not always one to one. One
user process can have many terminals associated with a single mailbox.

2.2.6 Control Characters and Special Keys

A control character is a character that controls action at the
terminal rather than passing data to a process. An ASCII control
character has a code between O and 31, plus 12n and 127 (hexadecimal 0
through lF, plus 7E and 7F), that is, all normal characters plus
DELETE and ALTMODE. Some control characters are typed at the terminal
by simultaneously pressing the CTRL key and a character key, that is,
CTRL/x. Other control characters, for example, RETURN, LINE FEED, and
ESCAPE, are typed by pressing a single key, that is, RET, LF, and ESC.
Table 2-1 lists the VAX/VMS terminal control characters (none of these
characters is interpreted in the PASSALL mode). Table 2-2 lists
special terminal keys.

2-5

Control
Character

CTRL/C

TAB
(CTRL/I)

LF
(CTRL/J)

VT
(CTRL/K)

FF
(CTRL/L)

CTRL/O

TERMINAL DRIVER

Table 2-1
Terminal Control Characters

Meaning

Gains the attention of the enabling process if the
user program has enabled a CTRL/C AST. If a CTRL/C
AST is not enabled, CTRL/C is converted to CTRL/Y
(see Section 2.4.3).

If echo is not disabled, the terminal performs a
newline (carriage return followed by a line feed),
types AC, and performs another newline.

Additional consequences of CTRL/C are:

• The type-ahead buffer is flushed.

• CTRL/S and CTRL/O are reset.

• The current I/O operation (if any) is successfully
completed. The status return is SS$ CONTROLC, or
SS$_CONTROLY if CTRL/C is converted to CTRL/Y.

Tabs horizontally. Advances to the next tab stop on
terminals with the characteristic TT$M MECHTAB, but
the driver assumes tab stops on MODULO 8, that is,
multiples of 8, cursor positions. On terminals
without this characteristic, enough spaces are output
to move the cursor to the next MODULO (8) position.

Performs line feed; filled if TT$M LFFILL is
set.

Terminal performs a vertical tab.

Performs form feed. Advances to the top of the page
on terminals with the characteristic TT$M MECHFORM.
On terminals without this characteristic, the driver
sends enough LF (filled) to move the paper to the top
of form position described by the length of the page
and the current position of the page. The driver
then sends a carriage return to position the cursor
at the left margin. The Set Mode or Set
Characteristics functions can be used to set page
length (see Section 2.4.3).

Discards output. Action is immediate. All output is
discarded until the next read operation, the next
write operation with a IO$M CANCTRLO modifier, or the
receipt of the next CTRL/0.- If echo is not disabled,
the terminal echoes Ao, followed by a newline. The
current write operation (if any) and write operations
performed while CTRL/O is in effect are completed
with a status return of SS$ CONTROLO.

CTRL/O, which reenables output, cancels
CTRL/C and CTRL/Y cancel CTRL/O •

CTRL/S.

...__ _______ __.__ ___ .. _______________________ -·-------··-----
(continued on next page)

2-6

Control
Character

CTRL/Q

CTRL/R

CTRL/S

CTRL/U

CTRL/X

CTRL/Y

TERMINAL DRIVER

Table 2-1 (Cont.)
Terminal Control Characters

Meaning

Controls data flow; used by terminals and the
driver. Restarts data flow to and from a terminal if
previously stopped by CTRL/S. The action occurs
immediately with no echo. CTRL/Q is also used to
solicit read operations.

CTRL/Q is meaningless if the line does not have the
characteristic TT$M TTSYNC, the characteristic
TT$M HOSTSYNC, the characteristic TT$M READSYNC, or
is not currently stopped by CTRL/S. -

Displays current input. When CTRL/R is typed during
a read operation, a newline is echoed, and the
current contents of the input buffer is displayed.
If the current operation is a read with prompt
(IO$ READPROMPT) operation, the current prompt string
is also displayed. CTRL/R has no effect if the
characteristic TT$M NOECHO is set.

Controls data flow; used by both terminals and the
driver. CTRL/S stops all data flow; the action
occurs immediat~ly with no echo. CTRL/S is also used
to stop read operations. CTRL/S is meaningful only
if the terminal has the TTSM TTSYNC, TT$M HOSTSYNC,
or TT$M READSYNC characteristTc. -

Purges current input data. When CTRL/U is typed
before the end of a read operation, the current input
is flushed. If echo is not disabled, the terminal
echoes ~U, followed by a newline. The prompt string
is displayed again if the current operation is a read
with prompt (IO$ READPROMPT). CTRL/U has no effect
on type-ahead buffer operations.

Purges the type-ahead buff er and performs a CTRL/U
operation. Action is immediate. If a read operation
is in progress, the terminal echoes ~u, followed by a
newline.

CTRL/Y is a special interrupt or attention character
that is used to gain the attention of the command
interpreter for a logged-in process. CTRL/Y can be
enabled with an IO$M CTRLYAST function modifier to a
IO$ SETCHAR or IO$ SETMODE QIO. Physical or logical
I/0- privilege, or an access mode greater than that
held by the user, is required to enable CTRL/Y ASTs.
The command interpreter's CTRL/Y AST handler always
has precedence over a user program's CTRL/Y AST
handler.

(continued on next page)

2-7

Control
Character

CTRL/Y
(Cont.}

CTRL/Z

TERMINAL DRIVER

Table 2-1 (Cont.}
Terminal Control Characters

Meaning

Typing CTRL/Y results in an AST to an enabled process
process to signify that the user typed CTRL/Y. The
terminal performs a newline, types AY, and performs
another newline if the AST and echo are enabled.
CTRL/Y is ignored (and not echoed} if the process is
not enabled for the AST.

Additional consequences of CTRL/Y are:

• The type-ahead buffer is flushed.

• CTRL/S mode is reset.

• The current I/O operation (if any} is successfully
completed with a 0 transfer count. The status
return is SS$ CONTROLY.

Echoes AZ when CTRL/Z is typed as a read terminator.
By convention, CTRL/Z constitutes end-of-file.

'--------~----'--·------·---··-

Control
Character

Table 2-2
Special Terminal Keys

Meaning
---------------------.. ------------f

ALTMODE

DEL
(DELETE}

ESC
(ESCAPE}

RET
(RETURN}

(Decimal 12n or hexadecimal 7E} Converts to escape on
terminals that do not have the lowercase
characteristic TT$M LOWER set.

(Decimal 127 or hexadecimal 7F} Removes last typed
character from input stream. DEL is ignored if there
are currently no input characters. Hard copy
terminals echo the deleted character enclosed in
backslashes. For example, if the character z is
deleted, \z\ is echoed (the second backslash is
echoed after the next non-DEL character is typed}.
CRT terminals echo DEL as a backspace followed by a
space and another backspace.

If escape sequences are recognized (the Set Mode
characteristic TT$M ESCAPE is set}, pressing ESC
signals the beginnTng of an escape sequence. On
these terminals ESC is never echoed; however, on
terminals that do not recognize escape sequences, ESC
is echoed as a dollar sign ($} if it was used as a
read terminator or as hexadecimal lB if it was not a
read terminator.

If used during a read (input} operation, RET echoes a
newline. All returns are filled on terminals with
TT$M_CRFILL specified.

,___ __________ ... _. ___ . ________________ .. ______ ,_

2-8

TERMINAL DRIVER

2.2.7 Dial-Up

VAX/VMS supports the DZ-11 internal modem control (for example, Bell
103A, Bell 113, or equivalent) in autoanswer, full duplex mode. The
terminal driver does not support half-duplex operations on modems such
as the Bell 202. Also not supported are modems that use circuit 108/l
(connect data set to line) in place of data terminal ready. All
United States modems and most European modems use the data terminal
signal which is supported. The terminal characteristic TT$M REMOTE
designates the line as being remote to the local computer. The driver
automatically sets TT$M REMOTE if the carrier signal changes from off
to on. -

Dial-up lines are monitored periodically to detect a change in the
modem carrier signal. The system generation parameter TTYSCANDELTA
establishes the dial-up monitoring period (see the VAX-11 Software
Installation Guide).

If a line's carrier signal is lost, the driver waits nine monitor
periods for the carrier signal to return or none if the system
generation parameter DIALTYPE is 1. (DIALTYPE is O by default and is
relevant to the United Kingdom only.) If the carrier signal is not
detected during this time, the line is "hungup." The hang-up action
signals the owner of the line, through a mailbox message, that the
line is no longer in use. (No dial-in message is sent; the
unsolicited character message is sufficient when the first available
data is received.) The line is not available for two monitor periods
after the hang-up sequence begins. The hang-up sequence is not
reversible. If the line hangs up, all enabled CTRL/Y ASTs are
delivered; the CTRL/Y AST P2 argument is overwritten with SS$ HANGUP.
The I/O operation in progress is cancelled and the status value
SS$ ABORT is returned in the IOSB.

When a line with the TT$M REMOTE characteristic is hung up, the
characteristics of the line-return to TT$M LOCAL.

2.2.8 Duplex Modes

The VAX/VMS terminal driver can execute in either half- or full-duplex
mode. These terms describe the terminal driver software, not the
terminal communication lines. For the communication lines, the driver
supports the DZ-11 Asynchronous Serial Line Multiplexer and the
console terminal. In terminal driver software, the terms half- and
full-duplex refer to ordering algorithms used to service read and
write requests.

In half-duplex mode, all read and write requests are inserted onto one
queue. The driver removes requests from the head of this queue and
executes them one at a time; all requests are sequentially executed
in the order they were issued.

In full-duplex mode, read requests are inserted onto one queue and
write requests onto another. The existence of two queues allows the
driver to recognize the presence of two requests -- a read and a write

at the same time. However, the driver cannot execute a read
request and a write request simultaneously. When it is ready to
service a request, the driver dynamically decides which request -- the
read or the write -- to process next.

In the VAX/VMS terminal driver, write requests normally have priority.
A write request can interrupt a current, but inactive, read request.
A read request is current when the terminal driver removes that

2-9

TERMINAL DRIVER

request from the head of the read queue. In a simple read operation,
the read request becomes active when the first input character is
received and echoed. In a read with prompt operation, the read
request becomes active when the first character of the prompt is
output to the terminal. Once a read request becomes active, all write
requests will be queued until the read completes. However, during a
simple read operation many write requests can be executed before the
first input character is typed at the terminal.

When all I/O requests are issued using SQIOW calls, there can be only
one current I/O request at any time. In this case, the order in which
requests are serviced is the same for both half- and full-duplex
modes.

The type ahead buffer always buffers input data for which there is no
current read request, in both half- and full-duplex modes.

2.3 DEVICE INFORMATION

The user process can obtain terminal characteristics by using the
$GETCHN and $GETDEV system services (see Section 1.10). The
terminal-specific information is returned in the first three longwords
of a user-specified buffer as shown in Figure 2-2 (Figure 1-9 shows
the entire buffer).

31 24 23 16 15 8 7

device characteristics

class

page length terminal characteristics

Figure 2-2 Terminal Information

The first longword contains device-independent data. The second and
third longwords contain device-dependent data.

Table 2-3 lists the device-independent characteristics returned in the
first longword.

2-10

TERMINAL DRIVER

Table 2-3
Terminal Device-Independent Characteristics

Characteristic Namel

DEV$M_AVL

DEV$M IDV

DEV$M_ODV

DEV$M SPL

DEV$M CCL

DEV$M_REC

DEV$M TRM

Meaning

Terminal is on line and available

Terminal is capable of input

Terminal is capable of output

Spooled

Carriage control

Record oriented

Terminal device

1. Defined by the $DEVDEF macro

The first byte of the second longword returns the device class
(DC$ TERM). The second byte returns the terminal type, for example,
DT$ VT52. The $DCDEF macro defines the symbols for terminal class and
type.

The third and fourth bytes of the second longword return the page
width. The page width can have a value in the range of 1 to 511. The
driver does not accept a value of O.

The third longword contains terminal characteristics in the first
three bytes and page length in the fourth byte. Terminal
characteristics are normally set at system generation time to any one
of, or a combination of, the values listed in Table 2-4. The $TTDEF
macro defines symbols for terminal characteristics. Page lengtn ca~
have a value in the range of O to 255.

The Set Mode and Set Characteristics function (see Section 2.4.3) and
the Set Terminal command are used to change terminal characteristics.
The VAX/VMS Command Language User's Guide describes the Set Terminal
command.

2-11

Value 1

TT$M CRFILL

TT$M EIGHTBIT

TT$M ESCAPE

TT$M HALFDUP

TT$M HOLDSCREEN

TT$M HOSTSYNC

TT$M LFFILL

TT$M LOWER

TT$M MBXDSABL

TT$M MECHFORM

TERMINAL DRIVER

Table 2-4
Terminal Characteristics

Meaning

Terminal requires fill after RET (the fill type
can be specified by the Set Mode function P4
argument") •

Terminal uses 8-bit ASCII character set.
Terminals without this characteristic use the
7-bit ASCII code. In this case, the eighth bit
is masked out on received characters and ignored
on output characters. The eighth bit is
meaningful only if TT$M_EIGHTBIT is set.

Terminal generates escape sequences (see Section
2.2.4). Escape sequences are validated for
syntax.

Terminal is in
2. 2. 8) • All
sequentially.

half-duplex mode
reads and writes

(see Section
are executed

Terminal is in Holdscreen Mode. The driver
automatically causes the terminal to enter or
exit from the mode when the mode is changed at
the terminal. This mode is meaningful only to
the DEC VT-52 and VT-55 terminals (see the
DECscope User's Guide) and the VT-100 terminal
(see the VTlOO User Guide).

Host/terminal synchronization. CTRL/Q and
CTRL/S are used to control data flow and thus
keep the type-ahead buffer from filling.

Terminal requires fill after LF (the fill can be
specified by the Set Mode P4 argument).

Terminal has lower case character set. Unless
the terminal is in the PASSALL mode or
IO$M NOFORMAT is specified, all input, output,
and -echoed lowercase characters (hexadecimal 61
to 7A) are converted to uppercase if TT$M LOWER
is not set.

Mailboxes associated with the terminal will not
receive unsolicited input notification or
hang-up notification {see Section 2.2.7). This
bit can be set by the IO$M DSABLMBX function
modifier for reads and ~leared by the
IO$M ENABLMBX function modifier for writes.

Terminal has mechanical form feed. The driver
passes form feeds directly to the terminal
instead of expanding to line feeds.

1. Prefix can be TT$M or TT$V •
corresponds to the specific field;

TT$M
TT$V

is a bit mask
is a bit number.

whose bit

{continued on next page)

2-12

Valuel

TT$M MECHTAB

TT$M NOBRDCST

TT$M NOECHO

TT$M NOTYPEAHD

TT$M PASSALL

TT$M READSYNC

TT$M REMOTE

TT$M SCOPE

TT$M TTSYNC

TT$M WRAP

TERMINAL DRIVER

Table 2-4 (Cont.)
Terminal Characteristics

Meaning

Terminal has mechanical tabs. In order to
accomplish correct line wrapping, MODULO (8) is
assumed.

Terminal will
messages.

not receive any broadcast

Input characters are not echoed on this terminal
line (see Section 2.2.1).

Data must be solicited by a
Data is lost if received in
outstanding read request, that
data. Disables type-ahead
Section 2.2.1).

read operation.
the absence of an
is, unsolicited
capability (see

Terminal is in PASSALL mode; all input and
output data is in binary (no data interpretation
occurs). Data termination occurs when the
buffer is full or the read data matches the
specified terminator. (See Section 2.4.1 for a
comparison with the read QIO function
!0$ _ READPBLK.)

Read synchronization. The host explicitly
solicits all read operations by issuing a CTRL/Q
and terminates the operation· by issuing a
CTRL/S.

Dial-up terminal. Terminal returns to local
mode when a hang-up 'occurs on the terminal line
(see Section 2.2.5). This characteristic cannot
be changed; it is only informational.

Terminal is a video screen display (CRT
terminal), for example, the VT-52 or VT-100.

Terminal/host synchronization. Output to the
terminal is controlled by terminal-generated
CTRL/Q and CTRL/S.

A newline should be inserted if the cursor moves
beyond the right margin. If TT$M WRAP is not
set, no newline is sent.

1. Prefix can be TT$M or TT$V •
corresponds to the specific field;

TT$M
TT$V

is a bit mask
is a bit number.

whose bit

2.4 TERMINAL FUNCTION CODES

The basic terminal I/O
characteristics (see
function modifiers.

functions are read, write, and set mode or
Section 1.5). All three I/O functions can take
There are two set mode or characteristics

functions: Set
(IO$_SETCHAR).

Mode (IO$_SETMODE) and Set Characteristic

2-13

TERMINAL DRIVER

2.4.1 Read

When a read function code is issued, the user-specified buffer is
filled with characters from the associated terminal. VAX/VMS defines
four basic read functions, which are listed with their function codes
below:

• IO$ READVBLK - read virtual block -

• IO$ READLBLK - read logical block -
• IO$ READ PROMPT - read with prompt

• IO$ READPBLK - read physical block -

• IO$ TTYREADALL - read passall (virtual or logical block) -

• IO$ TTYREADPALL - read passall with prompt (virtual or logical
block)

Read operations are terminated if either of the following conditions
occurs:

• The user buffer is full

• The received character is included in a specified terminator
mask (see Section 2.4.1.2)

The read function codes can take all six device/function-dependent
arguments (Pl through Po) on QIO requests:

• Pl = the starting virtual address of the buffer that is to
receive the data read

• P2 = the size of the buffer that is to receive the data read
in bytes. A system generation parameter, MAXBUF, limits the
maximum size of the buffer.

e P3 = read with timeout, timeout count (see
IO$M_TIMED)

Table 2-5,

• P4 = the read terminator descriptor block address (see Section
2.4.1.2)

• PS = the starting virtual address of the prompt buffer that is
to be written to the terminal. For read with prompt
operations (IO$_READPROMPT or IO$_TTYREADPALL).

• Po = the size of the prompt buffer that is to be written to
the terminal. For read with prompt operations (IOS_READPROMPT
or IO$_TTYREADPALL).

In a read with prompt operation, the P5 and Po arguments specify the
address and size of a prompt string buffer containing data to be
written to the terminal before the input data is read. In a read with
prompt operation, a write operation and a read operation are performed
on the specified terminal. The prompt string buffer is formatted like
any other write buffer, but no carriage control can be implicitly
specified. (Carriage control specifiers are described in Section
2.4.2.2.)

During a read with prompt operation, typing CTRL/O (which is turned
off at the start of any read) stops the prompt string. If CTRL/U or
CTRL/X is typed, the entire prompt string is written out again and the

2-14

TERMINAL DRIVER

current input is ignored. If CTRL/R is typed, the current prompt
string and input are written to the terminal.

Depending on the terminal type and the user's input, the prompt string
can be very simple or quite complex -- from single command prompts to
screen fills followed by input data.

In PASSALL mode, data received from the associated terminal is placed
in the user buffer as binary information without interpretation.
There are three ways to place the terminal driver in a temporary
PASSALL mode for the duration of a single read QIO:

1. IO$ READPBLK -- reads a physical block without interpreting
the-data. Physical I/O privilege is required.

2. IO$ TTYREADALL -- allows nonprivileged
terminal driver interpretation of data.

users to bypass

3. IO$ TTYREADPALL -- performs the same function as
IO$=TTYREADALL after writing a prompt string.

These functions are in contrast with the more comprehensive PASSALL
mode established by the Set Mode characteristic TTSM PASSALL. All
input and output data is in 8-bit binary format when TTSM PASSALL is
set (see Section 2.4.3).

Since IO$ READPBLK, IO$ TTYREADALL, and IO$ TTYREADPALL do not purge
the type~ahead buffer (unless requested usTng the IOSM PURGE function
modifier) the characters in the type-ahead buffer may have been
subjected to CTRL/Y/C/S/Q/O interpretation.

2.4.l.l Function Modifier Codes for Read QIO Functions - Eight
function modifiers can be specified with IO$ READVBLK, IO$ READLBLK,
IO$ READPROMPT, IO$ READPBLK, IO$ TTYREADALL- and IO$ TTYREADPALL.
Table 2-5 lists these functTon modifiers. IO$M CVTLOW and
IO$M NOFILTR are not meaningful to IO$_READPBLK, IOS_TTYREADALL, and
IO$ TTYREADPALL.

Code

IO$M CVTLOW

IO$M DSABLMBX

IO$M NOECHO

Table 2-5
Read QIO Function Modifiers

Consequence

Lowercase alphabetic characters (hexadecimal nl to
7A) are converted to uppercase when transferred to
the user buffer or echoed. Only for IO$ READLBLK,
IO$_READVBLK, and IO$_READPROMPT. -

The mailbox is disabled for unsolicited data.

Characters are not echoed (that is, displayed) as
they are entered at the keyboard. The terminal
line can also be set to a "no echo" mode by the
Set Mode characteristic TT$M NOECHO, which
inhibits all read operation echoing.

(continued on next page)

2-15

Code

IO$M NOFILTR

IO$M PURGE

IO$M REFRESH

IO$M TIMED

TERMINAL DRIVER

Table 2-5 (Cont.)
Read QIO Function Modifiers

Consequence

The terminal does not interpret CTRL/U, CTRL/R, or
DEL. They are passed to the user. Only for
IO$_READLBLK, IO$_READVBLK, and IO$ READPROMPT.

The type-ahead buffer is purged before the read
operation begins.

If the read operation is interrupted by a write
(either a write break through or any other type of
write), display the current read data when the
read function is restarted.

The P3 argument specifies the maximum time
(seconds) that can elapse between characters
received; that is, the timeout value for the
operation. If the read does not complete within
the specified time, a timeout error (SS$ TIMEOUT)
is returned. All input characters received before
the read timed out are returned in the user's
buffer.

A read with timeout operation in which the timeout
value is 0 empties the type-ahead buffer into the
user buffer until the proper termination condition
is reached (buffer full, termination character
detected, or type-ahead buffer empty). The read
operation then returns the count of characters
read and, if a terminator is read, SSS NORMAL;
SS$ TIMEOUT is returned if no terminator Ts read.
In either case the byte count in the IOSB always
indicates the number of characters read.

IO$M TRMNOECHO The termination character (if any) is not echoed.
There is no formal terminator if the buffer is
filled before the terminator is typed.

'----------""------------·-------------------------------------""

2.4.1.2 Read Function Terminators - The P4 argument to a read QIO
function either specifies the terminator set for the read function or
points to the location containing the terminator set. If P4 is O, all
ASCII characters with a code in the range O through 31 (hexadecimal 0
through lF) except LF, VT, FF, TAB, and BS, are terminators. (This is
the VAX-11 RMS standard terminator set.)

If P4 does not equal O, it contains the address of a quadword that
either specifies a terminator character bit mask or points to a
location containing that mask. The quadword has a short form and a
long form, as shown in Figure 2-3. In the short form, the
correspondence is between the bit number and the binary value of the
character; the character is a terminator if the bit is set. For
example, if bit 0 is set, NULL is a terminator; if bit 9 is set, TAB
is a terminator. If a character is not specified, it is not a.
terminator. Since ASCII control characters are in the range O through
31, the short form can be used in most cases.

2-16

TERMINAL DRIVER

The long form allows use of a more comprehensive set of terminator
characters. Any mask equal to or greater than 1 byte is acceptable.
For example, a mask size of 16 bytes allows all 7-bit ASCII characters
to be used as terminators; a mask size of 32 bytes allows all 8-bit
characters to be used as terminators for 8-bit terminals.

If the terminator mask is all O's, there are no specified terminators.
The read operation ends when the specified number of characters have
been transferred to the input buffer.

31 0

SHORT: 0

terminator character bit mask

31 16 15 0

LONG: (not used) mask size in bytes

address of mask

Figure 2-3 Short and Long Forms of Terminator Mask Quadwords

2.4.2 Write

Write operations display the contents of a user-specified
the associated terminal. VAX/VMS defines three basic
functions, which are listed with their function codes below:

• IO$ WRITEVBLK - write virtual block

e IO$ WRITELBLK - write logical block

e IO$ WRITEPBLK - write physical block

The write function codes can
device/function-dependent arguments:

take the

buff er on
write I/O

following

• Pl = the starting virtual address of the buffer that is to be
written to the terminal

• P2 = the number of bytes that are to be written to the
terminal. A system generation parameter, MAXBUF, limits the
maximum size of the buffer.

• P3 (ignored)

• P4 = carriage control specifier except
block operations. (Write function
described in Section 2.4.2.2.)

for write physical
carriage control is

P3, PS, and P6 are not meaningful for terminal write operations.

2-17

TERMINAL DRIVER

In write virtual block and write logical block operations, the buffer
(Pl and P2) is formatted for the selected terminal and includes the
carriage control information specified by P4.

All lowercase characters are converted to uppercase if the
characteristics of the selected terminal do not include TT$M LOWER
(this does not apply to write physical block operations or- when
IO$M_NOFORMAT is specified).

Unless TT$M MECHFORM is specified, multiple line feeds are generated
for form feeds. The number of line feeds generated depends on the
current page position and the length of the page. By producing a
carriage return after the last line feed, a form feed also moves the
cursor to the left margin. Multiple spaces are generated for tabs if
the characteristics of the selected terminal do not include
TT$M MECHTAB (this does not apply to write physical block operations).
Tab -stops are every 8 characters or positions (that is, 1, 8, ln,
24, •••).

2.4.2.1 Function Modifier Codes for Write QIO Functions - Four
function modifiers can be specified with IO$ WRITEVBLK, IO$ WRITELBLK,
and IO$ WRITEPBLK. Table 2-fi lists these function modifiers.

Code

IO$M CANCTRLO

IO$M ENABLMBX

IO$M NOFORMAT

IO$M REFRESH

Table 2-fi
Write QIO Function Modifiers

Consequence

Turns off CTRL/O (if it is in effect) before the
write. Otherwise, the data may not be
displayed.

Enables use of the mailbox associated with the
terminal for notification that unsolicited data
is available.

Allows nonprivileged users to write information
without interpretation or format; in effect the
terminal line is in a temporary PASSALL mode.

If a read operation is interrupted by a write
(either a write breakthrough or any other type
of write), display the current read data when
the read function is restarted.

2.4.2.2 Write Function Carriage Control - The P4 argument is a
longword that specifies carriage control. Carriage control determines
the next printing position on the terminal. P4 is ignored in a write
physical block operation. Figure 2-4 shows the P4 longword format.

Only bytes O, 2, and 3 in the longword are used. Byte 1 is ignored.
If the low-order byte (byte 0) is not O, the contents of the longword
are interpreted as a FORTRAN carriage control specifier. Table 2-7
lists the possible byte O values (in hexadecimal) and their meanings.

2-18

TERMINAL DRIVER

3 2 0

P4: POSTFIX PREFIX (not used) FORTRAN

Figure 2-4 P4 Carriage Control Specifier

Table 2-7
Write Function Carriage Control (FORTRAN: Byte 0 not equal to 0)

Byte
Value

(hexadecimal)

20

30

31

2B

24

All other
values

ASCII
Character

(space)

0

1

+

$

Meaning

Single space carriage control.
(Sequence: newline, print buffer
contents, return.)

Double-space carriage control.
(Sequence: newline, newline, print
buffer contents, return.)

Page eject carriage control.
(Sequence: form feed, print buffer
contents, return.)

Overprint carriage control.
(Sequence: print buffer contents,
return.) Allows double printing for
emphasis or special effects.

Prompt
(Sequence:
contents.)

carriage
newline,

control.
print buffer

Same as ASCII space character:
single-space carriage control.

If the low-order byte (byte 0) is O, bytes 2 and 3 of the P4 longword
are interpreted as the prefix and postfix carriage control specifiers.
The pref ix (byte 2) specifies the carriage control before the buffer
contents are printed. The postfix (byte 3) specifies the carriage
control after the buffer contents are printed. The sequence is:

Prefix carriage control - Print - Postfix carriage control

The prefix and postfix bytes, although interpreted separately, use the
same encoding scheme. Table 2-8 shows this encoding scheme in
hexadecimal.

2-19

TERMINAL DRIVER

Table 2-8
Write Function Carriage Control (P4 byte 0 0)

Prefix/Postfix Bytes
(Hexadecimal)

Bit 7 Bits 0 - h Meaning
... --~......,

0 0 No carriage control is
specified, that is, NULL.

0 1 - 7F Bits 0 through 6 are a count
of newlines (carriage return
followed by a line feed) •

Bit 7 Bit 6 Bit 5 Bits 0-4 Meaning

1 0 0 1-lF Output the single ASCII
control character specified
by the configuration of bits
0 through 4 (7-bit character
set) •

1 1 0 1-lF Output the single ASCI'I
control character specified
by the configuration of bits
0 through 4 which are
translated as ASCII
characters 128 through 159
(8-bi t character set) •

- .

Figure 2-5 shows the prefix and postfix hexadecimal coding that
produces the carriage control functions listed in Table 2-7. Prefix
and postfix coding provides an alternative way to achieve these
controls.

2-20

P4:

P4:

P4:

P4:

P4:

P4:

TERMINAL DRIVER

(Space)

BO i 0 J
"O"

BO 2 0 J
"1"

BO BC 0]
"+"

BO 0 0]
"$"

0 BA L ~r 0 l
Example: Skip 24 lines before printing

BO 1B
0-- ---J

Figure 2-5 Write Function Carriage Control
(Pref ix and Postfix Coding)

Sequence:

Prefix= NL
Print
Postfix =CR

Sequence:

Prefix= LF, LF
Print
Postfix= CR

Sequence:

Prefix= FF
Print
Postfix= CR

Sequence:

Prefix= NULL
Print
Postfix= CR

Sequence:

Prefix= NL
Print
Postfix= NULL

Sequence:

Prefix = 24N L
Print
Postfix:= CR

In the first example, the prefix/postfix hexadecimal coding for a
single-space carriage control (newline, print buffer contents, return)
is obtained by placing the value 1 in the second {pref ix) byte and the
sum of the bit 7 value (80) and the return value (D) in the third
postfix byte:

80 (bit 7 = 1)
+ D (return)

8D {postfix

2-21

return)

TERMINAL DRIVER

2.4.3 Set Mode

Set Mode operations affect the operation and characteristics of the
associated terminal line. VAX/VMS defines two types of set mode
functions:

• Set Mode

• Set Characteristics

The Set Mode function affects the mode and temporary characteristics
of the associated terminal line. Set Mode is a logical I/O function
and requires no privilege. A single function code is provided:

e IO$ SETMODE

The Set Characteristics affects the permanent characteristics of the
associated terminal line. Set Characteristics is a physical I/O
function and requires the privilege necessary to perform physical I/O.
A single function code is provided:

• IO$ SETCHAR

These functions take the following device/function-dependent arguments
if no function modifiers are specified:

• Pl address of characteristics buffer

e P3 speed specifier (bits 0 through 15 only)

• P4 fill specifier (bits 0 through 7 = CR fill count; bits 8
through 15 = LF fill count)

• PS = parity flags

The Pl argument points to a quadword block, as shown in Figure 2-n.
With the exception of terminal characteristics, the contents of the
block are the same for both Set Mode and Set Characteristic functions.

The class portion of the block contains DC$ TERM, which is defined by
the $DCDEF macro. Type values are defined by the $DCDEF macro, for
example, DT$ LA36. Page width can have a value in the range of 1 to
511. Page length can have a value in the range of 0 to 255. Table
2-4 lists the values for terminal characteristics. These values are
defined by the $TTDEF macro.

The P3 argument defines the device speed, for example, TT$C BAUD 300.
If P3 is O, the baud rate is not changed. P4 contains fill ~ounti for
the carriage return and line feed characters. Bits 0 through 7
specify the number of fill characters used after a return. Bits 8
through 15 specify the number of fill characters used after a line
feed.

31 24 23 16 15 8 7 0

page width ___ L ___ ~~·=1-....----.... ___ ~-~·-class----i
page length terminal characteristics

Figure 2-n Set Mode Characteristic Buffer

2-22

TERMINAL DRIVER

(P4 is applicable only if TT$M CRFILL or TT$M LFFILL is specified as a
terminal characteristic for the current QIO request; see Table 2-4.)

Three parity flags can be specified in the PS argument:

TT$M ALTRPAR -

TT$M PARITY

TT$M_ODD

alter parity,
change parity on
terminal line if
set

enable parity on
terminal line if
set, disable if
clear

parity is odd if
set

If parity is enabled, the DZ-11 generates a parity check bit to detect
parity mismatch. Parity errors that occur during an I/O read
operation are fatal to the operation. Parity errors that occur when
no I/O operation is in progress may result in a character loss.

The Set Mode and Set Characteristic functions can take the Enable
CTRL/C AST, Enable CTRL/Y AST, and Hang-up function modifiers that are
decribed below.

2.4.3.1 Hang-Up Function Modifier - The Hang-Up function disconnects
a terminal that is on a dial-up line. (Dial-up lines are described in
Section 2.2.7.) Two combinations of function code and modifier are
provided:

e IO$ SETMODE!IO$M HANGUP

• IO$ SETCHAR!IO$M HANGUP - -
The Hang-up function modifier takes no arguments.
returned in the I/O status block.

SS$ NORMAL is

2.4.3.2 Enable CTRL/C AST and Enable CTRL/Y AST Function
Modifiers - Both set mode functions can take the Enable CTRL/C AST and
Enable CTRL/Y AST function modifiers. These function modifiers
request the terminal driver to queue an AST for the requesting process
when the user types CTRL/C or CTRL/Y. Enable CTRL/Y AST requires the
caller to have either supervisor, executive, or kernel access mode, or
logical or physical I/O privilege. Four combinations of function code
and modifier are provided:

• IO$_SETMODE!IO$M_CTRLCAST - Enable CTRL/C AST

• IO$_SETMODE!IO$M_CTRLYAST - Enable CTRL/Y AST

• IO$ SETCHAR!IO$M CTRLCAST - Enable CTRL/C AST - -
e IO$ SETCHAR!IO$M CTRLYAST - Enable CTRL/Y AST - -

2-23

TERMINAL DRIVER

These function code modifier pairs
device/function-dependent arguments:

take the following

• Pl = address of the AST service or 0 if the corresponding AST
is disabled

• P2 AST parameter

e P3 access mode to deliver AST (maximized with caller's
access mode)

If the respective enable is in effect, typing CTRL/C or CTRL/Y gains
the attention of the enabling process (see Table 2-1).

Enable CTRL/C and CTRL/Y AST are single (one-time) enables. After the
AST occurs, it must be explicitly re-enabled by one of the four
function code combinations described above before an AST can occur
again. This function code is also used to disable the AST. The
function is subject to AST quotas.

The user can have more than one CTRL/C or CTRL/Y enabled. All ASTs
are given in their order of request, that is, first in first out, when
the character is typed. For example, typing CTRL/C results in the
delivery of all CTRL/C ASTs.

If no CTRL/C enable is present, the holder of
receive an AST when CTRL/C is typed; newline,

a CTRL/Y enable will
AY, return is echoed.

CTRL/C enables are flushed by the Cancel I/O on Channel ($CANCEL)
system service. CTRL/Y enables are flushed only during unit run down,
that is, after the last deassignment by the Deassign I/O Channel
($DASSGN) system service.

CTRL/Y is normally used to gain the attention of the command
interpreter and thus allow the user to input special commands such as
DEBUG, STOP, CONTINUE, and so on. Thus it is recommended that
programs run from a command interpreter not enable CTRL/Y. Also,
since ASTs are delivered on a first-in first-out basis, the command
interpreter's AST routine will get control first and possibly not
allow the program's AST to be delivered at all.

Section 2.2.6 describes other effects of CTRL/C and CTRL/Y.

2.4.4 Sense Mode

The Sense Mode functions sense the characteristics of the terminal and
return them to the caller in the I/O status block. Two function codes
are provided:

• IO$ SENSEMODE

• IO$ SENSECHAR

IO$ SENSEMODE returns the process-associated, that is, temporary,
characteristics of the terminal and IO$ SENSECHAR returns the
permanent characteristics of the terminal. IOS SENSEMODE is a logical
I/O function and requires no privilege. IO$ SENSECHAR is physical I/O
function and requires the privilege necessary to perform physical I/O.

2-24

TERMINAL DRIVER

These function codes take the following device/function-dependent
argument:

Pl = address of a quadword characteristics buffer

The Pl argument points to a quadword block, as shown in Figure 2-7.

31 16 15 8 7 0

buffer size type class

terminal characteristics

-------------------------------_______ ___.

Figure 2-7 Sense Mode Characteristics Buffer

The class portion of the block contains DC$ TERM, which is defined by
the $DCDEF macro. Type values are defined by the $DCDEF macro, for
example, DT$ LA3n. Table 2-4 lists the values for terminal
characteristics. These values are defined by the $TTDEF macro.

The Sense Mode and Sense Characteristic functions can take the
type-ahead count function modifier IO$M TYPEAHDCNT.

IO$M TYPEAHDCNT returns the count of characters presently in the
type=ahead buffer and a copy of the first character in the buffer. In
this case, the Pl argument points to a characteristics buffer returned
by IO$M TYPEAHDCNT. Figure 2-8 shows the format of this buffer.

31 24 23 16 15 0

first
number of

(reserved)
character

characters in type-ahead
buffer

(reserved)

Figure 2-8 Sense Mode Characteristics Buffer (Type-ahead)

2.5 I/O STATUS BLOCK

The I/O status block formats for the read, write, set mode, and sense
mode I/O functions are shown in Figures 2-9, 2-10, and 2-11. Table
2-9 lists the status returns for these functions.

+2 IOSB

offset to terminator status

terminator size terminator

+6 +4

Figure 2-9 IOSB Contents - Read Function

2-25

TERMINAL DRIVER

In Figure 2-9, the offset to terminator at IOSB+2 is the count of
characters before the terminator character (see Section 2.4.1.2). The
terminator character(s) is in the buffer at the offset specified in
IOSB+2. When the buffer is full, the offset at IOSB+2 is equal to the
requested buffer size. At the same time, IOSB+4 is equal to 0.
IOSB+6 contains the size of the terminator string, usually 1.
However, in an escape sequence, IOSB+n contains the size of the
validated escape sequence (see Section 2.2.4). The sum of IOSB+2 and
IOSB+6 is the number of characters in the buffer.

31 24 23 16-15 0

byte count status

line column Number of lines output
position position for the 1/0 function*

*o if 10$_WRITEPBLK, 10$M_NOFORMAT, or PASSALL mode

Figure 2-10 IOSB Contents - Write Function

In Figure 2-10, the line and
driver's internal computation
function has completed. Note
presently track any effects
cursor position.

column positions are the terminal
of the cursor position after the write
that the terminal driver does not
that escape sequences may have on the

0 speed status

0 parity flags
LF fill CR fill
count count

Figure 2-11 IOSB Contents - Set Mode, Set Characteristics,
Sense Mode, and Sense Characteristics Functions

Table 2-9
Terminal QIO Status Returns

....--------------------~-----·-------- -----------------------........

Status

SS$ ABORT

SS$ BADESCAPE

SS$ CONTROLC

SS$ CONTROLO

Meaning

The operation was canceled by the Cancel I/O
on Channel ($CANCEL) system service.
Applicable only if the driver was actively
involved in a terminal operation.

Invalid escape sequence terminator begins at
the offset (IOSB+2).

Read or write operation
because CTRL/C was typed.

not completed

Write operation not completed because CTRL/O
was typed •

...__ ________________ ___________ ~-----------------------'
(continued on next page)

2-211

Status

TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal QIO Status Returns

Meaning
f--------------4--------- -----------.,-~--- ------- ~-----·.,.----

SS$ CONTROLY

SS$ NORMAL

SS$ PARITY -

SS$ PARTESCAPE

SS$ TIMEOUT

Read or Write operation
because CTRL/Y was typed.

not completed

Successful completion. The operation
specified in the QIO was completed
successfully. On a read or write operation,
the second word of the IOSB can be examined
to determine the number of bytes processed.
The input or output buffer contains these
bytes.

Parity bit mismatch detected by the device
interface during a read operation. The I/O
operation stopped when the mismatch was
detected. (Data was received up to this
point in the operation.) SS$ PARITY is
meaningful only on terminal lines that have
parity enabled.

Partial escape sequence was stored. An
escape sequence was started but read-buffer
space was exhausted before the sequence was
completed. The remainder of the sequence is
available from the type-ahead buffer on the
next read unless the terminal line has the
TT$M NOTYPEAHD characteristic (see Section
2. 2. 4) •

Operation timeout. The specified terminal
could not perform the QIO read operation
because a timeout occurred at the termjnal,
that is, an interrupt was lost, or
IO$M TIMED was specified on a read operation
(see- Table 2-5), or a hardware timeout
occurred. IOSB+2 contains the number of
bytes transferred before the timeout
occurred.

>----------------'---·-···----· -·----------------------------'

2.6 PROGRAMMING EXAMPLE

The following program shows examples of several I/O operations, usinq
the full duplex capabilities of the driver. The program illustrates
some important concepts concerning terminal driver programming:
assigning an I/O channel, performing full-duplex I/O operations, and
enabling CTRL/C ASTs.

The program is designed to run with a terminal set to full-duplex
mode. The initialization code queues a read to the terminal and
enables CTRL/C ASTs. The main loop then prints out a random message
every three seconds. When the user types a message on the terminal,
the read AST routine prints an acknowledgement message and queues
another read. If the user types CTRL/C, the associated AST routine
cancels the I/O operation on the assigned channel and exits to the
command interpreter.

2-27

TERMINAL DRIVER

**

TERMINAL PROGRAM

**

.TITLE FULL DUPLEX TERMINAL PROGRAMMING EXAMPLE
• !DENT /02/-

DEFINE SYMBOLS

$IODEF ; DEFINE I/O FUNCTION CODES

ALLOCATE TERMINAL DESCRIPTOR AND CHANNEL NUMBER STORAGE

TT DESC:
.ASCID /SYS$INPUT/

DEV DESC:
PHYS NAME LEN:

.LONG 63
PHYS NAME ADR:

.LONG PHYS NAME
PHYS NAME:

.BLKB 63
TT CHAN:

.BLKW 1

ALLOCATE INPUT BUFFER

IN BUF:
.BLKB 20

IN BUFLEN=.-IN BUF
IN-IOSB:

.BLKQ 1

DEFINE CARRIAGE CONTROL SYMBOLS

CR="'XOD
LF="'XOA

DEFINE ACKNOWLEDGEMENT MESSAGE

ACK MSG:

LOGICAL NAME OF TERMINAL
TRANSLATED PHYSICAL DEVICE DESCRIPTOR

TT CHANNEL NUMBER STORAGE

20 CHARACTER BUFFER
CALCULATE LENGTH OF BUFFER

INPUT I/O STATUS BLOCK

CARRIAGE RETURN
LINE FEED

.ASCII /INPUT ACKNOWLEDGED/<CR><LF>
ACK MSGLEN=.-ACK MSG ; CALCULATE LENGTH OF MESSAGE

DEFINE OUTPUT MESSAGES

OUTPUT MESSAGES ARE ACCESSED BY INDEXING INTO A TABLE OF
LONGWORDS WITH EACH MESSAGE DESCRIBED BY A MESSAGE ADDRESS AND
MESSAGE LENGTH

2-28

ARRAY:

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

10$
15$
20$
25$
30$
35$
40$
45$

TERMINAL DRIVER

TABLE OF MESSAGE ADDRESSES AND
LENGTHS
FIRST MESSAGE ADDRESS
FIRST MESSAGE LENGTH

DEFINE MESSAGES

10$: .ASCII /RED ALERT!!! RED ALERT!!!/<CR><LF>
15$=.-10$
;
20$: .ASCII /ALL SYSTEMS GO/<CR><LF>
25$=.-20$
;
30$: .ASCII /WARNING ••••• INTRUDER ALARM/<CR><LF>
35$=.-30$
;
40$: .ASCII /***** SYSTEM OVERLOAD *****/<CR><LF>
45$=.-40$

STATIC QIO PACKET FOR MESSAGE OUTPUT USING QIO$_G FORM

WRITE QIO:
- $QIO

TIMER STORAGE

WAITIME:
.LONG

TIME:
.BLKQ

FUNC=IO$_WRITEVBLK,EFN=l QIO PACKET

-10*1000*1000*3,-l

1

3 SECOND DELTA TIME

CURRENT STORAGE TIME USED FOR
RANDOM NUMBER

**

START PROGRAM

**

THE FOLLOWING CODE PERFORMS INITIALIZATION FUNCTIONS. THE PROGRAM
ASSUMES THAT THE TERMINAL IS ALREADY IN FULL-DUPLEX MODE.

START:
.WORD
$TRNLOG

CMPB
BNEQ
SUBL

0 ENTRY MASK
S GET TERMINAL'S PHYSICAL DEVICE NAME
LOGNAM=TT DESC,-
RSLLEN=PHYS NAME LEN,-
RLSBUF=DEV DESC -
PHYS NAME,l~XlB ; DOES NAME START WITH ESCAPE ?
5$ - NO
#4,PHYS_NAME_LEN ; YES, STRIP OFF FIRST 4 CHARS

2-29

;
5$:

10$:

TERMINAL DRIVER

ADDL #4,PHYS_NAME_ADR

$ASSIGN S DEVNAM=DEV DESC,CHAN=TT CHAN ; ASSIGN

BLBS
BRW
BSBW
BSBW
MOVZWL

R0,10$
ERROR

- TERMINAL CHANNEL
NO ERROR IF SET
ERROR

ENABLE CTRLCAST
ENABLE-READ
TT_CHAN,WRITE_QI0+8

ALLOW CONTROL/C TRAPS
QUEUE READ
INSERT CHANNEL INTO STATIC
QIO PACKET

THIS LOOP OUTPUTS A MESSAGE BASED ON A RANDOM NUMBER AND THEN DELAYS
FOR 3 SECONDS

LOOP:
$GETTIM S TIMADR=TIME
BLBS -R0,10$
BRW ERROR

10$: EXTZV #6,#2,TIME,RO
MOVQ ARRAY[RO] ,WRITE_QI0+28

GET RANDOM TIME
NO ERROR IF SET

LOAD RANDOM BITS INTO SWITCH
LOAD MESSAGE ADDRESS
AND SIZE INTO QIO PACKET

ISSUE QIO WRITE USING PACKET DEFINED IN DATA AREA

$QIOW G WRITE QIO
BLBS - R0,5$-
BRW ERROR

NO ERROR IF SET

DELAY FOR 3 SECONDS BEFORE ISSUING NEXT MESSAGE

5$:
$SETIMR S EFN=#2,DAYTIM=WAITIME

BLBS R0,20$
BRW ERROR

20$: $WAITFR S EFN=#2
BLBS -RO,LOOP
BRW ERROR

ROUTINE TO ALLOW CONTROL C RECOGNITION

ENABLE CTRLCAST:
$QIOW S CHAN=TT CHAN,-

; TIMER SERVICE WILL
SET EVENT FLAG IN 3 SECONDS
NO ERROR IF SET

WAIT FOR EVENT FLAG
NO ERROR IF SET

- FUNC=#IO$ SETMODE!IO$M CTRLCAST,-
Pl=CTRLCAST,- - AST ROUTINE ADDRESS
P3=#3 USER MODE

BLBS R0,10$; NO ERROR IF SET
BRW ERROR

10$: RSB

AST ROUTINE TO EXECUTE WHEN CONTROL C IS TYPED

CTRLCAST:

2-30

TERMINAL DRIVER

.WORD AM<R2,R3,R4,R5> ; PROCEDURE ENTRY MASK
$CANCEL S CHAN=TT CHAN ; FLUSH ANY I/O ON QUEUE

WHEN USING FULL-DUPLEX, ASYNCHRONOUS I/O, THE USER MUST ISSUE CANCEL
ON ANY OUTSTANDING I/O. THIS MUST BE DONE TO PREVENT ANY
OUTSTANDING QUEUED READS FROM BLOCKING DCL'S PROMPT MESSAGE. DCL
PERFORMS ITS OWN CANCEL ON ITS OWN CHANNEL, NOT ONE DEFINED BY THE
USER.

$EXIT S

ROUTINE TO QUEUE A READ TO THE TERMINAL

ENABLE READ:
$QIO_S CHAN=TT_CHAN,-

FUNC=#IO$ READVBLK,­
IOSB=IN IOSB ,­
ASTADR=READAST ,­
Pl=IN BUF,-
P2=#IN BUFLEN

BLBS R0,10$-
BRW ERROR

EXIT TO DCL

MUST NOT BE QIOW FORM
OR READ WILL BLOCK PROCESS

AST ROUTINE TO EXECUTE ON

NO ERROR IF SET

THE QUEUED READ WILL NOT AFFECT WRITES UNTIL THE FIRST CHARACTER IS
TYPED. IF NO WRITES ARE ACTIVE AT THAT TIME, THE READ BECOMES
CURRENT AND SUBSEQUENT WRITES ARE BLOCKED UNTIL THE READ COMPLETES.
IF WRITES ARE ACTIVE, TYPED CHARACTERS ARE STORED IN THE TYPE AHEAD
BUFFER UNTIL THE WRITE QUEUE EMPTIES.

10$: RSB

AST ROUTINE TO EXECUTE ON READ COMPLETION

READAST:
.WORD
$QIO_S

AM<R2,R3,R4,R5>
CHAN=TT CHAN,­
FUNC=#IO WRITEVBLK,­
Pl=ACK MSG,-
P2=#ACK MSGLEN

PROCESS READ MESSAGE

PROCEDURE ENTRY MASK
ISSUE ACKNOWLEDGE MESSAGE

(User provided code to decode command inserted here)

BSBW
RET

ERROR ROUTINE

ERROR:

ENABLE READ QUEUE NEXT READ
RETURN TO MAINLINE LOOP

2-31

$EXIT S RO

.END START

TERMINAL DRIVER

2-32

EXIT WITH STATUS ERROR
RETURN

CHAPTER 3

DISK DRIVERS

This chapter describes the use of the
drivers support the devices listed
Section 3.1.

VAX/VMS disk drivers. These
in Table 3-1 and detailed in

Model Type 1 RPM

RM03 Pack 3600

RP05 Pack 3600

RP06 Pack 3600

RK06 Cart 2400

RK07 Cart 2400

RXOl Flex 300

Table 3-1
Disk Devices

r-

Surf aces Cylinders

r------··

5 8 23

19 411

19 815

3 411

3 815

1 77

"·-

Bytes/
Track

in' 38 4

11,204

11,264

11,264

11,264

3,328

Bytes/
Drive

n7,420,lnO

87,9n0,57n

174,423,040

13,888,512

27,550,480

2so,25n

1. Pack = pack disk; Cart
(floppy}

cartridge disk; Flex flexible diskette

All disk drivers support Files-11 Structure Level 1 and Level 2 file
structures. Access to these file structures is through the standard
MOUNT and !NIT DCL commands followed by the RMS-32 calls described in
the VAX-11 Record Management Services Manual. Files in RT-11 format
can be read or written with the file exchange facility FLX.

The contents of disk bootstrap blocks are CPU- and operating
system-dependent. For the LSI-11 Console on the VAX-11/780, the
standard bootstrap for the RT-11 operating system is used. Your
software support specialist can provide more information on the RT-11
bootstrap.

3.1 SUPPORTED DISK DEVICES

The following sections provide greater detail on each of the disk
devices listed in Table 3-1.

3-1

DISK DRIVERS

3.1.1 RM03 Pack Disk

The RM03 pack disk is a removable, moving head disk that consists of 5
data surfaces. The RM03 is connected to the system by a MASSBUS
adapter (MBA). Up to eight drives can be connected to each MBA.

3.1.2 RPOS and RP06 Pack Disks

The RP05 and RP06 pack disks consist of 19 data surfaces and a moving
read/write head. The RPOn pack disk has approximately twice the
capacity of the RPOS. These disks are connected to the system by an
MBA. Up to eight drives can be connected to each MBA.

3.1.3 RK06 and RK07 Cartridge Disks

The RK06 cartridge disk is a removable, random-access, bulk-storage
device with three data surfaces. The RK07 cartridge disk is a
double-density RK06. The RK06 and RK07 are connected to the system by
an RK611 controller which interfaces to the UNIBUS adapter (UBA). Up
to eight disk drives can be connected to each RKnll.

3.1.4 RXOl Console Disk

The RXOl floppy disk uses a flexible "diskette" or "floppy" disk. The
disk is connected to the LSI console on the VAX-11/780, which the
driver accesses using the MTPR and MFPR privileged instructions.

For read or write physical block operations, the track, sector, and
cylinder parameters shown in Figure 3-2 describe a physical, 128-byte
RXOl sector. Note that the driver does not apply track-to-track skew,
cylinder offset, or sector interleaving to this physical media
address. Sector numbers are interleaved to expedite data transfers.
Section 3.2.4 describes this feature in greater detail.

3.2 DRIVER FEATURES AND CAPABILITIES

The VAX/VMS disk drivers provide the following capabilities:

• Multiple controllers of the same type; for example, more than
one MBA or RK611 can be used on the system

• Up to eight drives per controller (depending on the device)

• Different types of drive on a single controller (MBA only)

• Overlapped seeks (except RXOl)

• Data checks on a per-request, per-file, and/or per-volume
basis (except RXOl)

• Full recovery from power failure for online drives with
volumes mounted

• Extensive error recovery algorithms; for example, error code
correction and offset (except RXOl)

3-2

DISK DRIVERS

• Dynamic, as well as static, bad block handling

• Logging of device errors in a file that can be displayed by
field service personnel or customer personnel

• Online diagnostic support for drive level diagnostics

• Multiple block, noncontiguous, virtual I/O operations at the
driver level

• Optimization of physical sector translation (RXOl only)

The following sections describe the data check, overlapped seek, error
recovery, and logical to physical translation capabilities in greater
detail.

3.2.l Data Check

A data check is made after successful completion of a read or write
operation and compares the data in memory with the data on disk to
make sure they match.

Disk drivers support data checks at three levels:

• Per request -- Users can specify the data check function
modifier (IO$M DATACHECK) on a read logical block, write
logical block, read virtual block, write virtual block, read
physical block, or write physical block operation.

• Per volume -- Users can specify the characteristics "data
check all reads"· and/or "data check all writes" when the
volume is mounted. The VAX/VMS Command Language User's Guide
describes volume mounting and d1smount1ng.

• Per file -- Users can specify the file access attributes "data
check on read" or "data check on write." File access
attributes are specified when the file is accessed. Chapter 9
of this manual and the VAX-11 Record Management Services
Reference Manual describe file access.

Offset recovery is performed during a data check but Error Code
Correctable (ECC) correction is not (see Section 3.2.3). This means
that if a read operation is performed and an ECC correction applied,
the data check would fail even though the data in memory is correct.
In this case, the driver returns a status code indicating that the
operation was successfully completed, but that the data check could
not be performed because of an ECC correction.

Data checks on read operations are extremely rare and users can either
accept the data as is, treat the ECC correction as an error, or accept
the data but immediately move it to another area on the disk volume.

3.2.2 Overlapped Seeks

A seek operation involves moving the disk read/write heads to a
specific place on the disk without any transfer of data. All transfer
functions, including data checks, are preceded by an implicit seek
operation (except when the seek is inhibited by the physical I/O
function modifier IO$M_INHSEEK). Except on RXOl drives, seek

3-3

DISK DRIVERS

operations can be overlapped. That is, when one drive performs a seek
operation, any number of other drives can also perform seek
operations.

During the seek operation, the controller is free to perform transfers
on other units. Thus, seek operations can also overlap data transfer
operations. For example, at any one time, seven seeks and one data
transfer could be in progress on a single controller.

This overlapping is possible because, unlike I/O transfers, seek
operations do not require the controller once they are initiated.
Therefore, seeks are initiated before I/O transfers and other
functions that require the controller for extended periods.

3.2.3 Error Recovery

Error recovery in VAX/VMS is aimed at performing all possible
operations to successfully complete an I/O operation. Error recovery
operations fall into four categories:

• Handling special conditions such as power
interrupt timeout

• Retrying nonfatal controller and/or drive errors

failure and

• Applying error correction information (not applicable for
RXOl)

• Offsetting read heads to try to obtain a stronger recorded
signal (not applicable for RXOl)

The error recovery algorithm uses a combination of these four types of
error recovery operations to complete an I/O operation.

Power failure recovery consists of waiting for mounted drives to spin
up and come on line followed by reexecution of the I/O operation that
was in progress at the time of the power failure.

Device timeout is treated as a nonfatal error. The operation that was
in progress when the timeout occurred is reexecuted up to eight times
before a timeout error is returned.

Nonfatal controller/drive errors are simply reexecuted up to eight
times before a fatal error is returned.

All normal error recovery (nonspecial conditions) can be inhibited by
specifying the inhibit retry function modifier (IO$M INHRETRY). If
any error occurs and this modifier is specified, the virtual, logical,
or physical I/O operation is immediately terminated, and a failure
status is returned. This modifier has no effect on power recovery and
timeout recovery.

3.2.4 Logical to Physical Translation (RXOl)

Logical block to physical sector translation on RXOl drives adheres to
the standard VAX/VMS format. For each 512-byte logical block
selected, the driver reads or writes four 128-byte physical sectors.
To minimize rotational latency, the physical sectors are interleaved.
This allows the processor time to complete a sector transfer before
the next sector in the block reaches the read/write heads. To allow

3-4

DISK DRIVERS

for track to track switch time, the next logical sector that falls on
a new track is skewed by six sectors. (There is no interleaving or
skewing on read physical block and write physical block I/O
operations.) Logical blocks are allocated starting at track l; track
0 is not used.

The translation procedure, in more precise terms, is as follows:

1. Compute an uncorrected media address using the following
dimensions:

Number of sectors per track = 26

Number of tracks per cylinder = 1

Number of cylinders per disk = 77

2. Correct the computed address for interleaving and
track-to-track skew (in that order) as shown in the following
VAX-11 FORTRAN statements. !SECT is the sector address and
ICYL is the cylinder address computed in step 1:

Interleaving:

!TEMP = ISECT*2
IF (!SECT .GT. 12) !TEMP
!SECT = !TEMP

Skew:

I SECT
!SECT

ISECT+{6*ICYL)
MOD (!SECT, 26)

ITEMP+l

3. Set the sector number in the range 1 through 26 as required
by the hardware:

!SECT = !SECT+ 1

4. Adjust the cylinder number to cylinder 1 (cylinder 0 is not
used) :

ICYL ICYL+l

3.3 DEVICE INFORMATION

Users can obtain information on all disk device characteristics by
using the $GETCHN and $GETDEV system services (see Section 1.10). The
disk-specific information is returned in the first three longwords and
in the last longword of a user-specified buffer, as shown in Figure
3-1 (Figure 1-9 shows the entire buffer).

Table 3-2 lists the device characteristics returned in the first
longword.

3-5

DISK DRIVERS

31 16 15 8 7 0 -------------·-···

device characteristics

&--------------------.-----·----------··----!

buffer size type class

cylinders tracks sectors

t.__~-----~~-- ·----------·-------~~
I disk size in blocks

'-----------·--····-------~------·----______ ____.

Figure 3-1 Disk Information

Table 3-2
Disk Device Characteristics

-·
Dynamic Bitsl

(Conditionally Set) Meaning

DEV$M AVL Device is on line and available

DEV$M_FOR Foreign device

DEV$M MNT Volume mounted

DEV$M_RCK Perform data check all reads

DEV$M WCK Perform data check all writes

Static Bits l
(Always Set) Meaning

.,.. -- -
DEV$M FOD File-oriented device

DEV$M IDV Device is capable of input

DEV$M ODV Device is capable of output

DEV$M RND Device is capable of random access

DEV$M SHR Device is shareable

·--'-·-----··-- --~,-· __ ._,,,,,. __
1. Defined by the $DEVDEF macro.

3-6

DISK DRIVERS

The second longword contains information on the device class and type,
and the buffer size. The device class for disks is DC$ DISK and the
device types are:

Device Type Disk

DT$ RM03 RM03

DT$ RP05 RP05

DT$ RPOn RPOn

DT$ RK06 RKOn

DT$ RK07 RK07

DT$ RXOl RXOl

The $DCDEF macro defines the device type and class names. The buffer
size is the default to be used for disk transfers (this default is
normally 512 bytes).

The third longword contains information on the number of cylinders per
disk, the number of tracks per cylinder, and the number of sectors per
track.

The last longword contains the maximum number of blocks (1 block 512
bytes) that can be contained on the disk.

3.4 DISK FUNCTION CODES

VAX/VMS disk drivers can perform logical, virtual, and physical I/O
functions.

Logical and physical I/O functions allow access to volume storage and
require only that the issuing process have access to the volume.
Virtual I/O functions require intervention by an Ancillary Control
Process (ACP) and must be executed in a prescribed order. The normal
procedure is to create a file and access it. Information is then
written to the file and the file is deaccessed. The file is
subsequently accessed, the information is read, and the file is
deaccessed. The file is deleted when the information it contains is
no longer useful.

Any number of blocks (up to a maximum of 64K bytes) can be read or
written by a single request. The number itself has no effect on the
applicable quotas (direct I/O, buffered I/O, and AST). Reading or
writing 1 block or 10 blocks subtracts the same amount from the quota.

The volume to which a logical or virtual function is directed must be
mounted in order for the function to actually be executed. If it is
not mounted, either a "device not mounted" or "invalid volume" status
is returned in the I/O status block.

Table 3-3 lists the logical, virtual, and physical disk I/O functions
and their function codes. Chapter 9 describes the QIO level interface
to the disk device ACP.

3-7

DISK DRIVERS

Table 3-3
Disk I/O Functions

r---------------,..-----,_, ________ .,·-----·----,-----·-·---
Function Code and

Arguments
Typel Function

Modifiers
Function

t---------------+----+---------·---+--_________ , ____ _

IO$· CREATE Pl,[P2] ,-
- [P3],[P4],[PS]

IO$ ACCESS Pl, [P2] ,-
- [P3], [P4], [PS]

IO$ DEACCESS Pl,[P2] ,-
- [P3], [P4], [PS]

IO$ MODIFY Pl, [P2] ,
- [P3], [P4], [PS]

IO$ DELETE Pl,[P2] ,-
- [P3], [P4], [PS]

IO$_ACPCONTROL Fl,­
[P2], [P3], [P4], [PS]

IO$ MOUNT

IO$ READVBLK Pl,P2,P3

IO$ READLBLK Pl,P2,P3

IO$ READPBLK Pl,P2,P3

IO$ WRITEVBLK Pl,P2,P3

IO$ WRITELBLK Pl,P2,P3

v

v

v

v

v

v

v

v

L

p

v

L

1. V = virtual; L logical; P

2. Except for RXOl

IO$M CREATE
IO$M-ACCESS
IO$M-DELETE

IO$M CREATE
IO$M-ACCESS

IO$M DELETE

IO$M DMOUNT

Create a directory
entry or a file

Search a directory
for a specified
file and access
the file if found

Deaccess a file
and if specified,
write final attri­
butes in the file
header

Modify the file
attributes and/or
allocation

Remove a directory
entry and/or file
header

Perform miscell­
aneous control
functions (see
Section 9.3)

Informs ACP when
volume is mounted;
requires mount
privilege

IO$M DATACHECK2 Read virtual block
IO$M-INHRETRY

IO$M DATACHECK2 Read logical block
IO$M-INHRETRY

IO$M DATACHECK2 Read physical block
IO$M-INHRETRY
IO$M-INHSEEK 2

IO$M DATACHECK2 Write virtual block
IO$M-INHRETRY

IO$M DATACHECK2 Write logical block
IO$M-INHRETRY

physical

(continued on next page)

3-8

Function Code and
Arguments

DISK DRIVERS

Table 3-3 (Cont.)
Disk I/O Functions

Typel Function
Modifiers

IO$ WRITEPBLK Pl,P2,P3 p IO$M DATACHECK2 - IO$M-INHRETRY
IO$M-INHSEEK 2

IO$ SETMODE Pl L -

IO$ SETCHAR Pl p -

IO$ SENSEMODE L -

IO$ SENSECHAR p
-

IO$ SEARCH Pl p -

IO$ PACKACK p -

IO$ SEEK Pl p - .,

IO$ WRITECHECK Pl,- p
P2,P3

1. V = virtual; L logical; P physical

2. Except for RXOl

Function

Write physical
block

Set disk charac-
teristics for sub-
sequent operations

Set disk charac-
teristics for sub-
sequent operations

Sense the device-
dependent
characteristics
and return them in
the I/O status
block

Sense the device-
dependent
characteristics
and return them in
the I/O status
block

Search for speci-
f ied block or
sector

Initialize volume
valid

Seek to specified
cylinder

Verify data
written to disk by
a previous write
QIO

The function-dependent arguments for IO$ CREATE,
IO$_DEACCESS, IO$_MODIFY, and IO$ DELETE are: -

IOS_ACCESS,

• Pl the address of the File Information Block (FIB)
descriptor.

• P2 the address of the file name string descriptor
(optional). If specified, the name is entered in the
directory specified by the FIB.

3-9

DISK DRIVERS

• P3 -- the address of the word that is to receive the length of
the resulting file name string (optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resulting file name string (optional).

• PS the
(optional).
(IO$ ACCESS),
IO$_MODIFY).

address of a list of attribute descriptors
If specified, the indicated attributes are read
or written (IO$_CREATE, IO$_DEACCESS, and

(See Chapter 9 for more information on these functions.)

The function-dependent arguments for IO$_READVBLK,
IO$_WRITEVBLK, and IO$_WRITELBLK are:

IO$_READLBLK,

• Pl -- the starting virtual address of the buffer that
receive the data in the case of a read operation; or,
case of a write operation, the virtual address of the
that is to be written on the disk.

is to
in the
buff er

• P2 -- the number of bytes that are to be read from the disk,
or written from memory to the disk. An even number must be
specified if the controller is an RK611, RLll or RX211.

• P3 -- the starting virtual/logical disk address of the data to
be transferred in the case of a read operation; or, in the
case of a write operation, the disk address of the area that
is to receive the data.

In a virtual read or write, the address is expressed as a
block number within the file, that is, block 1 of the file is
virtual block 1. (Virtual block numbers are converted to
logical block numb~rs via mapping windows set up by the file
system ACP process.)

In a logical read or write, the address is expressed as a
block number relative to the start of the disk. For example,
the first sector on the disk contains (at least the beginning
of) block O.

The function-dependent arguments for IO$_WRITECHECK, IO$_READPBLK, and
IO$ WRITEPBLK are:

• Pl -- the starting virtual address of the buffer that is to
receive the data in the case of a read operation; or in the
case of a write operation, the starting virtual address of the
buffer that is to be written on the disk.

• P2 -- the number of bytes that are to be read from the disk,
or written from memory to the disk. An even number must be
specified if the controller is an RK611, RLll, or RX211.

• P3 -- the starting physical disk address of the data to be
read in the case of a read operation; or, in the case of a
write operation, the starting physical address of the disk
area that is to receive the data. The address is expressed as
sector, track, and cylinder in the format shown in Figure 3-2.

3-10

DISK DRIVERS

31 16 15 8 7 0

P3: _I ---cyl-inde_r --~I -t-rack-~l __ sect-or ~I

Figure 3-2 Starting Physical Address

The function-dependent argument for IO$ SEARCH is:

• Pl -- the physical disk address to position to. The address
is expressed as sector, track, and cylinder in the format
shown in Figure 3-2.

The function-dependent argument for IO$ SEEK is:

• Pl -- the physical cylinder number to position to. The
address is expressed in the format shown in Figure 3-3.

31 1615 0

not used cylinder

Figure 3-3 Physical Cylinder Number Format

The function-dependent argument for IO$ SETMODE and IO$ SETCHAR is:

• Pl the address of a quadword device characteristics
descriptor

3.4.1 Read

This function reads data into a specified buffer from disk starting at
a specified disk address.

VAX/VMS provides three read function codes:

• IO$ READVBLK - read virtual block

• IO$ READLBLK - read logical block

e IO$ READPBLK - read physical block

If a read virtual block function is directed
mounted foreign, the function is converted to
'a read virtual block function is directed to a
structured, the volume is handled in the
file-structured device.

to a volume that is
read logical block. If
volume that is mounted

normal manner for a

Three function-dependent arguments are used with these codes: Pl, P2,
and P3. These arguments were described above, in the beginning of
Section 3.4.

3-11

DISK DRIVERS

The data check function modifier (IO$M DATACHECK) can be used with all
read functions. If this modifier is specified, a data check operation
is performed after the read operation has been completed. A data
check operation is also performed if the volume read, or the volume on
which the file resides (virtual read), has the characteristic "data
check all reads." Furthermore, a data check is performed after a
virtual read if the file has the attribute "data check on read." The
RXOl driver does not support the data check function.

The read check function and the data check function modifier to a dis•
or tape can return five error codes in the I/O status block:
SS$ NORMAL, SS$ CTRLERR, SS$ DRVERR, SS$ MEDOFL, and SS$ NONEXDRV. If
no errors are detected, the disk or tape-data is considered reliable.

The inhibit retry function modifier (IO$M INHRETRY) can be used with
all read functions. If this modifier is specified, all error recovery
attempts are inhibited. IO$M INHRETRY takes precedence over
IO$M DATACHECK. If both are specified and an error occurs, there is
no attempt at error recovery and no data check operation is performed.
If an error does not occur, the data check operation is performed.

3.4.2 Write

This function writes data from a specified buffer to disk starting at
a specified disk address.

VAX/VMS provides three write function codes:

• IO$ WRITEVBLK - write virtual block

• IO$ WRITELBLK - write logical block

• IO$ WRITEPBLK - write physical block

If a write virtual block function is directed to a volume that is
mounted foreign, the function is converted to write logical block. If
a write virtual block function is directed to a volume that is mounted
structured, the volume is handled in the normal manner for a
file-structured device.

Three function-dependent arguments are used with these codes: Pl, P2,
and P3. These arguments were described above, in the beginning of
Section 3.4.

The data check function modifier (IO$M DATACHECK) can be used with all
write functions. If this modifier- is specified, a data check
operation is performed after the write operation has been completed.
A data check operation is also performed if the volume written, or the
volume on which the file resides (virtual write), has the
characteristic "data check all writes." Furthermore, a data check is
performed after a virtual write if the file has the attribute "data
check on write." The RXOl driver does not support the data check
function.

The inhibit retry function modifier (IO$M INHRETRY) can be used with
all write functions. If this modifier is specified, all error
recovery attempts are inhibited. IO$M INHRETRY takes precedence over
IO$M DATACHECK. If both are specified and an error occurs, there is
no attempt at error recovery and no data check operation is performed.
If an error does not occur, the data check operation is performed.

3-12

DISK DRIVERS

3.4.3 Set Mode

Set mode operations affect the operation and
associated disk device. VAX/VMS defines
functions:

characteristics of the
two types of set mode

• Set Mode

• Set Characteristic

3.4.3.1 Set Mode - The Set Mode function affects the operation and
characteristics of the associated disk device. Set Mode is a logical
I/O function and requires the access privilege necessary to perform
logical I/O. A single function code is provided:

IO$ SETMODE

This function takes the following device/function-dependent argument
(other arguments are not valid):

Pl -- the address of a characteristics buffer

The Pl argument points to a quadword block shown in Figure 3-4.

31 16 15 8 7 0

buffer size not used

cylinders tracks sectors

Figure 3-4 Set Mode Characteristics Buffer

The buffer size is the default for disk transfers (this default is
normally 512 bytes). The second longword of the buffer contains
information on the cylinder, track, and sector configuration of the
particular device; that is, number of cylinders per mass storage
media vol~me (bits 31:16), number of tracks per cylinder (bits 15:8),
and number of sectors per track (bits 7:0).

3.4.3.2 Set Characteristic
the characteristics of the
is a physical I/O function
to perform physical I/O
provided:

IO$ SETCHAR

- The Set Characteristic function affects
associated disk device. Set Characteristic
and requires the access privilege necessary

functions. A single function code is

This function takes the following device/function-dependent argument
(other arguments are not valid):

Pl -- the address of a characteristics buffer

The Pl argument points to a quadword block as shown in Figure 3-5.

3-13

DISK DRIVERS

31 16 15 87 0

buffer size type class

cylinders tracks sectors

~- --~

Figure 3-5 Set Characteristic Buffer

The device class for disks is DC$ DISK. Disk types are listed in
Section 3.3. The buffer size is-the default for disk transfers (this
default is normally 512 bytes). The second longword of the buffer
contains information on the cylinder, track, and sector configuration
of the particular device; that is, number of cylinders per mass
storage media volume (bits 31:16), number of tracks per cylinder (bits
15:8), and number of sectors per track (bits 7:0).

3.4.4 Sense Mode

Sense mode operations obtain current disk device-dependent
characteristics and return them to the caller in the second longword
of the I/O status block (see Figure 3-7). VAX/VMS provides a single
function code:

IO$ SENSEMODE - Sense Mode

Sense Mode is a logical I/O function and requires the access privilege
necessary to perform logical I/O. No device/function-dependent
arguments are used with IO$ SENSEMODE.

3.4.5 Pack Acknowledge

This function sets the volume valid bit for all disk devices. Pack
acknowledge is a physical I/O function and requires the access
privilege to perform physical I/O. A single function code is
provided:

IO$ PACKACK

This function code takes no function-dependent arguments.

IO$ PACKACK must be the first function issued when a volume (pack,
cartridge, or diskette) is placed in a disk drive. IO$ PACKACK is
issued automatically when the INITIALIZE or MOUNT command language
commands are issued.

3.5 I/O STATUS BLOCK

Figure 3-6 shows the I/O status block (IOSB) for all disk device QIO
functions except Sense Mode. Figure 3-7 shows the I/O status block
for Sense Mode. Table 3-4 lists the status returns for all functions
and devices.

3-14

DISK DRIVERS

31 16 15 0

byte count status

device-dependent data

Figure 3-6 IOSB Content

31 16 15 87 0

0 status

cylinders tracks sectors

Figure 3-7 IOSB Content - Sense Mode

The byte count is the actual number of bytes transferred to or from
the the process buffer. Table 3-2 (in Section 3.3) lists

device-dependent data returned in the second longword.

The second longword of the I/O status block for the Sense Mode and
Sense Characteristic functions returns information on the cylinder,
track, and sector configuration for the particular device.

Status

SS$ NORMAL

SS$ CTRLERR

Table 3-4
Status Returns for Disk Devices

Meaning

Successful completion of the operation specified
in the QIO request. The second word of the IOSB
can be examined to determine the actual number of
bytes transferred to or from the buffer.

Controller-related error. For example, one or
more of the following conditions can cause this
error:

Late data

Error confirmation

Invalid map register

Interface timeout

Missed transfer

Programming error

Read timeout

(continued on next page)

3-15

Status

SS$ DATACHECK

SS$ DRVERR

SS$ FORMAT

SS$ INBUFLEN

SS$ IVADDR

SS$ MEDOFL

SS$ NONEXDRV

SS$ PARITY

DISK DRIVERS

Table 3-4 (Cont.)
Status Returns for Disk Devices

Meaning

Data check error. A mismatch between the data in
memory and the data on disk was detected during a
data check operation (see Section 3.2.1).

Drive-related error. For example, one or more of
the following conditions can cause this error:

Driver timing error

Illegal function

Illegal register

Operation incomplete

Register modify refused

Write clock failure

Format error. Format specified by driver does not
correspond to format as specified in sector
headers. Disk has been formatted for another
computer, such as DECsystem-20.

Invalid buffer length. The byte
even for UNIBUS disk devices, that

count must
is, RK07.

be

Invalid disk address error. Either an invalid
starting disk address or a disk address that was
incremented causes this error. This error occurs
for physical read and write operations or as the
result of a hardware error.

Medium offline. The addressed drive currently
does not have a volume mounted and on line.

Nonexistent drive. The addressed drive does not
exist or the drive select plug has been removed.

Parity error. For example, one or more of the
following conditions can cause this error:

Drive parity error

ECC hard error

Header compare error

Map parity error

Header CRC error

MASSBUS control parity error

MASSBUS data parity error
,___ ________ -+------------------------------,-----------'

(continued on next page)

3-16

Status

SS$ UNSAFE

SS$ VOLINV

SS$ WASECC

SS$ WRITLCK

DISK DRIVERS

Table 3-4 (Cont.)
Status Returns for Disk Devices

Meaning

Drive unsafe. The addressed
unsafe and cannot perform
result of a hardware error.

drive is currently
any operation as the

Volume invalid. The addressed drive has not been
mounted and therefore does not have volume valid
set, or a status change has occurred in the drive
so that it has changed to an unknown, and
therefore, invalid state. All logical and virtual
functions will return this status until volume
valid is set. Volume valid is set when a
IO$ PACKACK function is executed (usually by the
MOUNT command language command) and cleared when
the volume is unloaded, the respective drive
changes to an unknown state, or the power fails.
The driver automatically sets volume valid when
the proper volume is mounted and/or power is
restored.

Data check not performed. The function was a read
data that was completed successfully by applying
one or more ECC corrections. The specified data
check, however, was not performed.

Write lock error.
a write locked
protected.

3-17

An attempt was made to write on
drive. Volume is hardware

DISK DRIVERS

3.6 PROGRAMMING EXAMPLE

The following program provides an example of optimizing access time to
a disk file. The program creates a file using VAX-11 RMS, stores
information concerning the file, and closes the file. The program
then accesses the file and reads and writes to the file using the
Queue I/O system service •

• rITLE Disk Driver Proqramming ~xample
• fDENT /011

oetine necessary symbols

SFIRD~F
SIODEF
SRMSDEF

Local storage

;Uefine file Information Block Offsets
;Uefine 110 function codes
;Uefine RMS•32 Return Status Values

Define number of records to be processed

NUM-RECS=lOO ;One hundred records

Allocate storaqe for necessary data structures

Allocate File Access Block
A file access block is required by RMS•32 to open and close a tile.

FAB-BLUCK: ;
SFAB AL8 = 100,- ; Initial tile size is to be 100 blocks

FA = PUT • ;File Access Tipe is output
FNA = FILE-NAME,- ;file name str ng address
fNS = FILE-SIZE,• ;file name str ng size
FOP = CTG,• ;file is to be contiguous
MRS = 512,- ;Maximum record size is s1i bytes
NA,,. = NAM-BLOCK,• ;File name olock address
ORG = SEQ,• ;File or~anization is to be sequential
RFM = FIX ;Hecord ormat is fixed length

Allocate file information block
A file information block 1s required as an argument in the Queue l/O
system service call that accesses a tile.

flB-BLUCK:
.HLKB F' l8$K_LENGTH

Allocate file information block descriptor

l'lB-DESCR:
.LONG
.LONG

FIBSK-LENGTH
FIB-BLOCK

Allocate File Name Block

iLength ot file information block
;Address of file information block

A file name block is required by RMS•32 to return information concerning
a file ce.q. the resultant tilename string after logical name translation
and defaults have been applied).

NAM-BLOCK:
SNAM

Allocate Record Access MlocK
A record access block is required by RMS•32 for record operations on a
t !le.

HAB-HLOCK:
SRAB fAB

RAC
Riff
RSZ

: FAH-BLOCK,•
~ ~~86;o_BUFF~H,•
= 512

Allocate direct access butter

BLOCK-BUFFER:
.BLKB 1024

;file access block address
;Record access is to be sequential
;Hecord butter address
;Record buffer size

:oirect access butter is 10i4 bytes

Allocate space to store channel number returned by the Assign Channel system
service

3-18

DISK DRIVERS

DEVICE:-CHANNEL:
.BLKW

Allocate device n&~e string and descriptor

DEVICl::-DESCR:
.LONG
.LOt.JG

20$•10$
10$
/SYSSnISK/

;Length ot device name string
;Address ot device name string 10$: .ASCII ;Device on which created tile will reside
;Reference label to calculate length 20$:

! Allocate file name string and define string length symbol

F lLl::-NAME: ;
•. ASCil /SYSSDISK:MYDA.TM'IL.DA'f/ ;File name string

FlLl::-SlZE=.-FILE-NAME ;file name string length . ,
; Allocate l/O status quadword storage
;

ro_sTATUS:
.BLKQ

Allocate output record butter

RJ:;CORD-BUFFER:
.BLKB 512 iRecord butter is 512 bytes

,
; Program starting point
f , The general logic of the program is to create a file called M¥DATAFIL.DAT
~using RMS•32t store information concerning· the file, write 100 records each
, ot wnich contains its record numoer in every byte, close the file, and then

access and read and write the file directly using the Queue 1/0 system service.
It any errors are detected6 the program returns to its caller with the final
error status in reqister R •

• ENTRY DISK-EXAMPLE,-M<R2,R3,R4,R5,R6> ;Program starting address

First create the file and open it using RMS•32

$CREATE FAB = FAB-BLOCK
BLBC R0,20$

;First part of example
;Create and open file
;It low bit clear, creation failure

second connect the record access block to the created tile

$CONNECT RAA = RAB-BLOCK
ALBC R0,30$

;connect the record access block
;It low bit clear, connection failure

Now write 100 records each containing its record number

;set record write loop count

Fill each byte ot the record to oe written with its record number

10$: SURIB

MOVCS
R6,#NUM_RECS+1,R~ ;Calculate record number

#0,(R6),R5,#512,Ri::CO~D-BUFFER ;Fill record butter

Next write th~ record into the newly created file using RMS•32

$PUT
ALBC
SOBGTR

RAB : RAB-BLOCK
R0,30$
R6,10S

;Put record in file
;If low bit clear, put failure
;Any more records to write?

The file creation part of the example is almost complete. All that remains to
be done is to store the tile information returned by RMS•32 and close the tile.

MOVW
MOVW
MOVW
SCLOSE
BLBS
RET

NAM-BLOCK+NAMSW-FID,FIB-BLOCK+FIBSW-FlD 6·save file identification
NAM-BLOCK+NAMSW-fID+2,FIB-BLOCK+FIB$w_FI +2 ;Save sequence number
NAM_BLOCK+NAM$W-FlD+4,rIB-BLOCK+FIB$W_FID+4 ;save relative volume
FAB = FAB-BLLJCK ;Close tile
RO,PART-2 ;lf low bit set 1 successful close

;Return with RM~ error status

3-19

DISK DRIVERS

Record stream connection or put record failure

Close file and return status

30S: PUSHL
SC LOSE
POPL
RET

RO ;save error status
;Close tile FAB : FAB-BLUCK

RO ;Retrieve error status
;Return with RMS error status

The second part of the example illustrates accessing the previously created
file directly using the Queue l/O system service, randomly reading and writing
various parts of the file, and then deaccessing the file.

rirst assiqn a channel to the appropriate device and access the tile

PART-~:
$ASSIGN_S DEVNAM = DEVICE-DESCR,~ ;Assign a channel to file device

CHAN : DEVICE-CHANNEL ;
BLBC RO 20s ;If low bit clear, assignment failure
MOVL #FfBsM_NOWRITE!flBSM-WRlTE,- ;Set tor read/W~ite access

FIB-BLUCK+FIBSL-ACCTL ;
SOIO~ s CHAN = DEVICE-CHANN~L - ;Access file on devic~ channel

- FUNC = #IOS-ACCESS!IO~M-ACCESS,- ;I/O function is access file
IOSB = IO_STATUS,-- ;Address Of I/O status quadword
Pl = FIB-DESCR ;Address of information block descriptor

HLBC R0,10$;If low bit clear, access failure
MOVZWL IO_STATUS,RO ;Get final 1/0 completion status

tlLHS R0,30$
10$: PVSHL RO

$DASSGN_S CHAN :
;If low bit setf. successful l/O function
;save error sta us

POPL RO
DEVIC~-CHANNEL ;Deassign file device channel

;Retrieve error status
20s: RET ;Return with 1/0 error status

The tile is now ready to be read and written randomly. Since the records are
fixed length and exactly one block long, the record number corresponds to the
virtual block number ot the record in the tile. Thus a particular record can
be read or written simply by specifying its record number in the file.

The tollo~ing code reads 2 records at a time and checks to see that they contain
their respective record numbers in every byte. The records are then written back
into the tile in reverse order. This results in record 1 having the old contents
ot record 2 and record 2 the old contents ot record 1 f.etc. After the example
has been run, it is ~uggested that the file dump utili y be used to verify this
tact.

30$: MOVZBL #l,R6 ;set starting record (block) number

,
! Read next 2 records into block buffer ,
40$: sorow_s CHAN = DEVICE-CHANNEL,­

FUNC : #IDS-REAUVBLK,•
IOSB = ro_STATUS,-

;Read next 2 records from file channel
;110 function is read virtual block
;Address of l/O status quadword
;Address of l/O butter Pl = ALOCK-BUffER,•

P2 : #1024,•
P3 : R6

HSBB 50$

;Size of l/O buffer
;starting virtual block of transfer
;Check I/O completion status

ChecK each record to make sure it contains the correct data

SKPC

RNEQ
AODL3

R6,#512,8LOCK-8UffEH ;Skip over equal record numbers in data

60$;rt not equal, data match failure
#1,R6,R5 ;Calculate even record numoer

SKPC
BNEQ

R5,#512,BLUCK-BUfFER+512 ;Skip over equal record numbers in data
oos ;It not equal, data match failure

Record data matches

write records in reverse order in file

SQID~-S CHAN
FUNC
IOSB
Pl :

DEVICE-CHANNEL,•
#IOS-WRITtVBLK,•
ID-STATUS,•

LOCK-BUffER+512,•

write even numbered record in odd slot
110 tunction is write virtual block
Address of l/O status quadword
Address of even record butter

3-20

DISK DRIVERS

BSBB
ADDL3
$QIOW_S

BSBB
ACBB

BRB

P2 : #512,­
P3 : Rb
50$
#1,R6,R5

CHAN = DEVICE-CHANNEL,­
FUNC = #IO$-WRITEVBLK,•
~~s~ BL~gK:~fii~~R:-
P2 = #512,-
P3 : RS
50$ -
#NUM-RECS•1,#2,R6,40$

70$

Check 1/0 completion status

~0$: BLBC
MOVZWL
ALBC
RSB

R0,70$
IO_STATUS,RO
R0,70$

Record number mismatch in data

bOS: MNEGL #4,RO

;Length of even record buffer
;Record number of odd record
;Check 1/0 completion status
;Calculate even record number
;write odd numbered record in even slot
;110 function is write virtual block
;Address of l/O status quadword
;Address of odd record butter
;Length of odd record butter
;Record number of even record
;Check 1/0 completion status
;Any more records to be read?

;It low bit clear, service failure
;Get final I/O completion status
!lf low bit clear, I/O function failure ,

;set dummy error status value

All records have been read, verified, and odd/even pairs inverted

70$: PUSHL RO
SQIOW_S CHAN : DEVICE-CHANNEL,•

FUNC : #10$-DEACC~SS
SDASSG~-S CHAN : DEVlCE-CHANN~L
POPL RO
RET

.END DISK-EXAMPLE

Save final status
oeaccess t Ue
1/0 function is deaccess tile
Deassiqn tile device channel
Retrieve final status

3-21

CHAPTER 4

MAGNETIC TAPE DRIVER

This chapter describes the use of the VAX/VMS magnetic tape driver.
This driver supports the devices listed in Table 4-1 and detailed in
Section 4.1.

Model

TE16

TSll

TU45

TU77

1. NRZI

No. of
Tracks

9

9

9

9

Table 4-1
Magnetic Tape Devices

Recording Tape Max. Data Transfer
Density Speed Rate in Bytes Per

{bpi) {ips) Second

800 or 45 36,000 {for 800
1600 bpi); 72,000 {for

1600 bpi)
800 or 45 3fi,OOO {for 800

1600 bpi); 72,000 {for
1000 bpi)

800 or 75 fi0,000 {for 800
1600 bpi) 120,000

{for 1600 bpi)

800 or 125 100,000 {for 800
1600 bpi) 200,000

{for 1600 bpi)

non-return-to-zero-inverted; PE phase encoded.

4.1 SUPPORT~D MAGNETIC TAPE DEVICES

Recording
Method

NRZI or
PEl

NRZI or
PE

NRZI or
PE

NRZI or
PE

The following sections describe the magnetic tape drives in greater
detail.

4.1.1 TE16 Magnetic Tape Drive

The TE16 magnetic tape drive holds one, 2400-foot, 9-track reel with a
capacity of 40 million characters. The drive reads data at 45 inches
per second with an average transfer time of 14 microseconds per byte
at the 1600 bpi density. Up to eight drives can be connected to each
TM03 controller.

4-1

MAGNETIC TAPE DRIVER

4.1.2 TSll Magnetic Tape Subsystem

The TSll Magnetic Tape is a phase-encoded, 9-track magnetic tape
subsystem that operates under microprocessor control. The TSll
consists of one TSll controller and one TS04 drive.

4.1.3 TU45 and TU77 Magnetic Tape System

The TU45 and TU77 are phase-encoded, 9-track magnetic tape systems
with a capacity of 40 million characters. Tape density and character
format are program selectable.

4.2 DRIVER FEATURES AND CAPABILITIES

The VAX/VMS magnetic tape driver provides the following features:

• Multiple master adapters and slave formatters

• Different types of devices on a single MASSBUS adapter; for
example, RPOS disk and TM03 tape formatter

• Reverse read and reverse data check functions (not for TSll)

• Data checks on a per-request, per-file, and/or per-volume
basis (not for TSll)

• Full recovery from power failure for online drives with
volumes mounted, including repositioning by the driver

• Extensive error recovery algorithms; for example,
non-return-to-zero-inverted (NRZI) error correction

• Logging of device errors in a file that may be displayed by
field service or customer personnel

• Online diagnostic support for drive level diagnostics

The following sections describe master and slave controllers, and data
check and error recovery capabilities in greater detail.

4.2.1 Master Adapters and Slave Formatters

VAX/VMS supports the use of multiple master adapters of the same type
on a system. For example, more than one MASSBUS adapter (MBA) can be
used on the same system. A master adapter is a device controller
capable of performing and synchronizing data transfers between memory
and one or more slave formatters.

VAX/VMS also supports the use of multiple slave formatters per master
adapter on a system. For example, more than one TM03 Magnetic Tape
Formatter per MBA can be used on a system. A slave formatter accepts
data and/or commands from a master adapter and directs the operation
of one or more slave drives. The TM03 is a slave formatter. The TEln
Magnetic Tape Transport is a slave drive.

4-2

MAGNETIC TAPE DRIVER

4.2.2 Data Check

A data check is made after successful completion of an I/O operation
to compare the data in memory with that on the tape. After a write or
read (forward) operation, the tape drive backspaces and then performs
a write check data operation. After a read in the reverse direction,
the tape drive forward spaces and then performs a write check data
reverse operation. With the exception of the TSll, magnetic tape
drivers support data checks at three levels:

• Per request -- Users can specify the data check function
modifier (IO$M DATACHECK) on a read logical block, write
logical block, read virtual block, write virtual block, read
physical block, or write physical block I/O function.

• Per volume -- Users can sp~cify the characteristics "data
check all reads" and/or "data check all writes" when the
volume is mounted. The VAX/VMS Command Language User's Guide
describes volume mounting and dismounting.

• Per file -- Users can specify the file attributes "data check
on read" or "data check on write." File access attributes are
specified when the file is accessed. Chapter 9 of this manual
and the VAX-11 Record Management Services Reference Manual
describe file access.

4.2.3 Error Recovery

Error recovery in VAX/VMS is aimed at performing
operations to complete an I/O operation successfully.
error recovery operations fall into two categories:

• Handling special conditions such as power
interrupt timeout

• Retrying nonfatal controller and/or drive errors

all possible
Magnetic tape

failure and

The error recovery algorithm uses a combination of these two types of
error recovery operations.

Power failure recovery consists of waiting for mounted drives to be
unloaded by the operator. When the drives are reloaded, the driver
automatically spaces to the position held before the power failure.
The I/O operation that was in progress at the time of the power
failure is then re-executed. To solicit reloading of mounted drives,
device not ready messages are sent to the operator console after a
power failure.

Device timeout is treated as a fatal error with a loss of tape
position. A tape on which a timeout has occurred must be dismounted
and rewound before the drive position can be established.

Nonfatal controller/drive errors are simply re-executed up to lfi times
before returning a fatal error. The tape is repositioned as necessary
before each retry.

All normal error recovery
specifying the inhibit
any error occurs and this
immediately terminated,
modifier has no effect on

(nonspecial conditions) can be inhibited by
retry function modifier (IO$M INHRETRY). If
modifier is specified, the- operation is
and a failure status is returned. This
power failure and timeout recovery.

4-3

MAGNETIC TAPE DRIVER

Up to 16 extended interrecord gaps can be written during the error
recovery for a write operation. Except for the TSll, writing of these
gaps can be suppressed by specifying the inhibit extended interrecord
gap function modifier (IO$M_INHEXTGAP).

4.3 DEVICE INFORMATION

Users can obtain information on device characteristics by using the
$GETCHN and $GETDEV system servi~es (see Section 1.10). The
information is returned in a user-specified buffer shown in Figure
4-1. Only the first three longwords of the buffer are shown in Figure
4-1 (Figure 1-8 shows the entire buffer).

31 16 15 8 7 0

device characteristics

buffer size l . ··················-·····ty·······P··e·· 1
device-dependent information

Figure 4-1 Magnetic Tape Information

The device characteristics returned in the first longword are listed
in Table 4-2.

Table 4-2
Magnetic Tape Device-Independent Characteristics

------------'"-T"----------------------·------
Dynamic Bits 1

(Conditionally Set) Meaning
-------------+---·--~~~----·····------···-----------t

DEV$M AVL

DEV$M FOR

DEV$M MNT

DEV$M RCK

DEV$M WCK

Static Bitsl
(Always Set)

DEV$M FOD

DEV$M IDV

DEV$M ODV

DEV$M_SQD

Device is on line and available

Foreign volume

Volume mounted

Perform data check all reads

Perform data check all writes

File-oriented device

Device is capable of input

Device is capable of output

Device is sequential access
-------------··--- --··-----------------------·-·--·-----·-·----··-.. -·--.......... ..

1. Defined by the $DEVDEF macro.

4-4

MAGNETIC TAPE DRIVER

The second longword contains information on device class and type, and
the buffer size. The device class for tapes in DC$ TAPE. The device
type is DT$_TE16 for the TE16 and DT$_TS11 for the TSll.

The $DCDEF macro defines the device type and class names. The buffer
size is the default to be used for tape transfers (this default is
normally 2048 bytes).

The third longword contains device-dependent information. Table 4-3
lists this information. The $MTDEF macro defines the values listed.

Table 4-3
Device-Dependent Information for Tape Devices

Value

MT$M LOST

MT$M_HWL

MT$M_EOT

MT$M EOF

MT$M BOT

MT$M PARITY

MT$V DENSITY
MT$S-DENSITY

MT$V FORMAT
MT$S=FORMAT

Meaning

If set, the current tape position is unknown.

If set, the
write-locked.

selected drive is hardware

If set, an end-of-tape (EOT) condition was
encountered by the last operation to move tape in
the forward direction.

If set, a tape mark was encountered by the last
operation to move tape.

If set, a beginning-of-tape (BOT) marker was
encountered by the last operation to move tape in
the reverse direction.

If set, all data transfers are performed with even
parity. If clear (normal case), all data
transfers are performed with odd parity. Only
NRZI recording at 800 bpi can have even parity.

Specifies the density at which all data transfer
operations are performed. Possible density values
are:

MT$K_PE_ln00

MT$K_NRZI_800

Phase encoded, lnOO bpi.

Non-return-to-zero-inverted,
bpi.

800

Specifies the format in which all data transfers
are performed. A possible format value is:

MT$K_NORMAL11 Normal PDP-11 format. Data bytes
are recorded sequentially on tape
with each byte occupying exactly
one frame.

4.4 MAGNETIC TAPE FUNCTION CODES

The VAX/VMS magnetic tape driver can perform logical, virtual, and
physical I/O functions.

4-5

MAGNETIC TAPE DRIVER

Logical and physical I/O functions to magnetic tape devices allow
sequential access to volume storage and require only that the
requesting process have direct access to the device. Virtual I/O
functions require intervention by an ancillary control process (ACP)
and must be executed in a prescribed order. The normal procedure is
to create a file and access it. Information is then written to the
file and the file is deaccessed. The file is subsequently accessed,
the information is read, and the file is deaccessed. The file can be
written over when the information it contains is no longer useful and
the file has expired.

Any number of bytes (up to a maximum of n4K) can be read from or
written into a single block by a single request. The number of bytes
itself has no effect on the applicable quotas (direct I/O, buffered
I/O, and AST). Reading or writing any number of bytes subtracts the
same amount from a quota.

The volume to which a logical or virtual function is directed must be.
mounted in ord~r for the function to actually be executed. If it is
not, either a device not mounted or invalid volum~ status is returned
in the I/O status block.

Table 4-4 lists the logical, virtual, and physical magnetic tape I/O
functions and their function codes. These functions are described in
more detail in the following paragraphs. Chapter 9 describes the QIO
level interface to the magnetic tape device ACP.

Table 4-4
Magnetic Tape I/O Functions

Function Code and
Arguments

10$ CREATE Pl, [P2] ,-
- [P3], [P4], [PS]

IO$ ACCESS Pl,[P2] ,-
- [P3], [P4], [PS]

IO$ DEACCESS Pl,[P2] ,-
- [P3], [P4], [PS]

IO$ MODIFY Pl,[P2] ,-
- [P3], [P4], [PS]

Typel

v

v

v

v

1. v virtual; L = logical; P

Function
Modifiers

IO$M CREATE
IO$M-ACCESS

IO$M CREATE
IO$M-ACCESS

physical.

4-6

Function

Create a file

Search a tape
for a specified file
and access the file
if found and
IO$M ACCESS is set.
If the file is not
found and IO$M CREATE
is set, create-a file
at end-of-tape

Deaccess a file and,
if the file has been
written, write out
trailer records

Write user labels

(continued on next page)

Function Code and
Arguments

IO$ READVBLK Pl,P2

IO$ READLBLK Pl,P2

IO$ READPBLK Pl,P2

IO$ WRITEVBLK Pl,P2

IO$ WRITELBLK Pl,P2

IO$ WRITEPBLK Pl,P2

IO$ REWIND

IO$ SKIPFILE Pl

IO$ SKIPRECORD Pl

IO$ WRITEOF

IO$ REWINDOFF

1. V = virtual; L

2. Not for TSll

MA9NETIC TAPE DRIVER

Table 4-4 (Cont.)
Magnetic Tape I/O Functions

Type 1

v

L

p

v

L

p

L

L

L

L

L

logical; P

Function
Modifiers

Function

IO$M DATACHECK2 Read virtual block
IO$M-INHRETRY
IO$M-REVERSE

IO$M DATACHECK 2 Read logical block
IO$M-INHRETRY
IO$M-REVERSE

IO$M DATACHECK 2 Read physical block
IO$M-INHRETRY
IO$M-REVERSE

IO$M DATACHECK2 Write virtual block
IO$ M-INHRETRY
IO$ M-INHEXTGAP

IO$M DATACHECK2 Write logical block
IO$ M-INHRETRY
IO$M-INHEXTGAP

IO$M DATACHECK2 Write physical block
IO$M-INHRETRY
IO$M-INHEXTGAP

IO$M INHRETRY
IO$M-NOWAIT

IO$M INHRETRY

IO$M INHRETRY

IO$M INHRETRY
IO$M-INHEXTGAP

IO$M INHRETRY
IO$M-NOWAIT

physical.

Reposition tape to
the beginning of
tape (BOT) marker

Skip past a specified
number of tape marks
in either a forward
or reverse direction

Skip past a specified
number of blocks in
either a forward or
reverse direction

Write an extended
interrecord gap
followed by a tape
mark

Rewind and unload the
tape on the selected
drive

(continued on next page)

4-7

MAGNETIC TAPE DRIVER

Table 4-4 (Cont.)
Magnetic Tape I/O Functions

~--------- -----.. ------..------+-----------...--------------.
Function Code and

Arguments
Type 1 Function

Modifiers
Function

IO$ SENSEMODE L IO$M INHRETRY Sense the tape
characteristics
and return them
in the I/O status
blOck

IO$ SETMODE Pl L Set tape character­
istics for subsequent
operations

IO$ SETCHAR Pl p Set tape character­
istics for subsequent
operations

IO$ ACPCONTROL Pl,[P2] ,- v IO$M DMOUNT Perform miscellaneous
control functions
(see Section 9.3)

- [P3],[P4],[PS]

IO$ MOUNT v Informs ACP when
volume is mounted;
requires mount
privilege.

1. v virtual; L = logical; P physical.

The function-dependent arguments
IO$_DEACCESS, and IO$_MODIFY are:

for IO$_CREATE, IO$_ ACCESS,

• Pl the address of the File Information Block (FIB)
descriptor.

• P2 the address of the file name string descriptor
(optional). If specified with IO$ ACCESS, the name identifies
the file being sought. If specified with IOS_CREATE, the name
is the name of the created file.

• P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string (optional).

• PS the address of a list of attribute descriptors
(optional). If specified with IO$ ACCESS, the attributes of
the file are returned to the user. If specified with
IO$ CREATE, PS is the address of the attribute descriptor li~t
for-the new file. All file attributes for IO$ MODIFY are
ignored.

(See Chapter 9 for more information on these functions.)

4-8

MAGNETIC TAPE DRIVER

The function-dependent arguments for IO$ READVBLK, IO$ READLBLK,
IO$_READPBLK, IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK are:

• Pl -- the starting virtual address of the buffer that
receive the data in the case of a read operation; or,
case of a write operation, the virtual address of the
that is to be written on the tape.

is to
in the
buff er

• P2 -- the number of bytes that are to be read from the tape,
or written from memory to the tape.

The function-dependent argument for IO$ SKIPFILE and IO$ SKIPRECORD
is:

• Pl -- the number of tape marks to skip over in the case of a
skip file operation; or, in the case of a skip record
operation, the number of blocks to skip over. If a positive
number is specified, the tape moves forward; if a negative
number is specified, the tape moves in reverse. (The maximum
number of tape marks or records that Pl can specify is
32,767.)

4.4.1 Read

This function reads data into a specified buffer in the forward or
reverse direction starting at the next block position.

VAX/VMS provides three read function codes:

• IO$ READVBLK - read virtual block

• IO$ READLBLK - read logical block

• IO$ READPBLK - read physical block

A read virtual block function to a volume that is mounted foreign is
converted to a read logical block function. A read virtual block
function to a volume that is mounted structured is handled in the
normal manner for a file-structured device.

If the reverse function modifier (IO$M REVERSE) is specified, the read
operation is performed in the reverse direction instead of the forward
direction.

The data check function modifier (IO$M DATACHECK) can be used with all
read functions. If this modifier is specified, a data check operation
is performed after the read data operation has been completed. (A
space reverse or space forward is performed between the read and the
data check operation.) A data check operation is also performed if the
volume read, or the volume on which the file resides (virtual read),
has the characteristic "data check all reads." Furthermore, a data
check is performed after a virtual read if the file has the attribute
"data check on read."

If a read physical block or read logical block operation is performed
and the reverse function modifies IO$M REVERSE is not specified, an
end-of-tape status is returned if either of the following conditions
occur and no other error condition exists:

• The tape is positioned past the end-of-tape position at the
start of the read operation.

• The tape enters the end-of-tape region as a result of the read
operation.

4-9

MAGNETIC TAPE DRIVER

The transferred byte count reflects the actual number of bytes read.
If a read in the reverse direction is performed when the tape is
positioned past the end-of-tape position, an end-of-tape status is not
returned.

If a tape mark is read during a logical or physical read operation in
either the forward or reverse direction, an end-of-file status is
returned if any of the following conditions exist:

• The tape is positioned past the end-of-tape position at the
start of the read operation.

• The tape enters the end-of-tape region as a result of the read
operation.

• A tape mark is read as a result of a read operation but the
tape does not enter the end-of-tape region.

An end-of-file status is also returned if a read operation in the
reverse direction is attempted when the tape is positioned at the BOT
marker. All conditions that cause an end-of-file status result in a
transferred byte count of zero.

If an attempt is made during a logical or physical read operation to
read a block that is larger than the specified memory buffer, a data
overrun status is returned. Only the first part of the block is read
into the specified buffer. (Only the latter part of the block is read
into the buffer on a read in the reverse direction.) The transferred
byte count is equal to the actual size of the block. Read reverse
starts at the top of the buffer. Thus, the start of the block is at
Pl plus P2 minus the length read.

It is not possible to read a block that is less than 14 bytes in
length. Such records are termed "noise blocks" and are completely
ignored by the driver.

4.4.2 Write

This function writes data from a specified buffer to tape in the
forward direction starting at the next block position.

VAX/VMS provides three write function codes:

• IO$ WRITEVBLK - write virtual block

• IO$ WRITELBLK - write logical block

• IO$ WRITEPBLK - write physical block

If a write virtual block function is to a volume that is mounted
foreign, it is converted to a write logical block function. If a
write virtual block function is to a volume that is mounted
structured, it is handled in the normal manner for a file-structured
device.

The data check function modifier (IO$M DATACHECK) can be used with all
write functions. If this modifier- is specified, a data check
operation is performed after the write data operation has been
completed. (A space reverse is performed between the write and the
data check operation.) A data check operation is also performed if the
volume written, or the volume on which the file resides (virtual
write), has the characteristic "data check all writes." Furthermore, a

4-10

MAGNETIC TAPE DRIVER

data check is performed after a virtual write if the file has the
attribute "data check on write."

A data check operation is also forced by the driver when an error
occurs during a write operation. This ensures that the data can be
reread.

If a write physical block or write logical block operation is
performed, an end-of-tape status is returned if either of the
following conditions occurs and no other error condition exists:

• The tape is positioned past the end-of-tape position at the
start of the write operation.

• The tape enters the end-of-tape region as a result of the
write operation.

(The transferred byte count reflects the size of the block written.)

It is not possible to write a block less than 14 bytes in length. An
attempt to do so results in the return of a bad parameter status for
the QIO request.

4.4.3 Rewind

This function repositions the tape to the beginning-of-tape (BOT)
marker. If the IO$M NOWAIT function modifier is specified, the I/O
operation is completed when the rewind is initiated. Otherwise, I/O
completion does not occur until the tape is positioned at the BOT
marker. IO$_REWIND has no function-dependent arguments.

4.4.4 Skip File

This logical I/O function skips past a specified number of tape marks
in either a forward or reverse direction. A function-dependent
argument (Pl) is provided to specify the number of tape marks to be
skipped, as shown in Figure 4-2. If a positive file count is
specified, the tape moves forward; if a negative file count is
specified, the tape moves in reverse. (The actual number of files
skipped is returned in the I/O status block.)

31 16 15 0

Pl:

I
not used

I
file count

I
Figure 4-2 IO$ SKIP FILE Argument

Only tape marks (when the tape moves in either direction) and the BOT
marker (when the tape moves in reverse) are counted during a skip file
operation. The BOT marker terminates a skip file function in the
reverse direction. The end-of-tape (EOT) marker does not terminate a
skip file function in either the forward or reverse direction. Note
that a negative skip file function leaves the tape positioned just
before a tape mark, that is, at the end of a file, unless the BOT
marker is encountered, whereas a positive skip file function leaves
the tape positioned just past the tape mark.

4-11

MAGNETIC TAPE DRIVER

4.4.5 Skip Record

The skip record function skips past a specified number of physical
tape blocks in either a forward or reverse direction. A
device/function-dependent argument (Pl) specifies the number of blocks
to skip, as shown in Figure 4-3. If a positive block count is
specified, the tape moves forward; if a negative block count is
specified~ the ·tape moves in reverse. (The actual number of blocks
skipped is returned in the I/O status block.)

Figure 4-3 !0$ SKIPRECORD Argument

Skip record is terminated by end-of-file when the tape moves in either
direction, by the BOT marker when the tape moves in reverse, and by
the EQT marker when the tape moves forward.

4.4.6 Write End-of-File

This function writes an extended interrecord gap (of approximately 3
inches for NRZI recording and 1.5 inches for PE recording) followed by
a tape mark. No device/function-dependent arguments are used with
IO$ WRITEOF.

An end-of-tape status is returned in the I/O status block if either of
the following conditions is present and no oth~r error conditions
occur:

• A write end-of-file function is executed while the tape is
positioned past the EQT marker.

• A write end-of-file function causes the tape position to enter
the end-of-tape region.

4.4.7 Rewind Offline

The rewind offline function rewinds and unloads the tape on the
selected drive. If the IO$M NOWAIT function modifier is specified,
the I/O operation is completed as soon as the rewind is initiated. No
device/function-dependent arguments are used with IO$ REWINDOFF.

4.4.8 Sense Tape Mode

This function senses the current device-dependent tape characteristics
and returns them to the caller in the second longword of the I/O
status block (see Table 4-3). The contents of the second longword are
identical to the device-dependent information shown in Figure 4-1. No
device/function-dependent arguments are used with IO$_SENSEMODE.

4-12

MAGNETIC TAPE DRIVER

4.4.9 Set Mode

Set mode operations affect the operation and characteristics of the
associated magnetic tape device. VAX/VMS defines two types of set
mode functions:

• Set Mode

• Set Characteristic

4.4.9.1 Set Mode - The Set Mode function affects the characteristics
of the associated tape device. Set Mode is a logical I/O function and
requires the access privilege necessary to perform logical I/O. A
single function code is provided:

IO$ SETMODE

This function takes the following device/function-dependent argument
(other arguments are ignored}:

Pl -- the address of a quadword characteristics buff er

Figure 4-4 shows the quadword Set Mode characteristics buffer.

31 16 15 0

buffer size not used

tape characteristics

Figure 4-4 Set Mode Characteristics Buffer

Table 4-5 lists the tape characteristics and their meanings. The
$MTDEF macro defines the symbols listed.

Table 4-5
Set Mode and Set Characteristic Magnetic Tape Characteristics

MT$M PARITY If set, all data transfers are performed with
even parity. If clear (normal case}, all data
transfers are performed with odd parity. Even
parity can be selected only for NRZI recording at
800 bpi. Even parity cannot be selected for
phase encoded recording (tape density is
MT$K_PE_l600} and is ignored.

(continued on next page}

4-13

MAGNETIC TAPE DRIVER

Table 4-5 (Cont.)
Set Mode and Set Characteristic Magnetic Tape Characteristics

..------~---r-----~·-·-----~----------------------

MT$V DENSITY
MT$S-DENSITY

MT$V FORMAT
MT$S-FORMAT

Specifies the density at which all data transfers
are performed. Tape density can be set only when
the selected drive's tape position is at the BOT
marker. Possible density values are:

MT$K DEFAULT

MT$K PE 1600

MT$K NRZI 800 - -

Default system density

Phase encoded, 1600 bpi

Non-return-to-zero-inverted, 800
bpi

Specifies the format in which all data transfers
are performed. Possible format values are:

MT$K DEFAULT

MT$K NORMALll

Default system format

Normal PDP-11 format. Data bytes
are recorded sequentially on tape
with each byte occupying exactly
one frame

,__------~--· ----------

4.4.9.2 Set Characteristic - The
affects the characteristics of
Characteristic is a physical I/O
privilege necessary to perform
function code is provided:

IO$ SETCHAR

Set Characteristic function also
the associated tape device. Set

function and requires the access
physical I/O functions. A single

This function takes the following device/function-dependent argument
(other arguments are not valid):

Pl -- the address of a quadword characteristics buffer

Figure 4-5 shows the quadword Set Characteristic characteristics
buffer.

31 16 15 8 7 0

buffer size type class

tape characteristics

·--···---··----- _________ __.

Figure 4-5 Set Characteristic Buffer

The first longword contains information on device class and type, and
the buffer size. The device class for tapes is DC$ TAPE. The device
type is DT$ TE16.

4-14

MAGNETIC TAPE DRIVER

The $DCDEF macro defines the device type and class names. The buffer
size is the default to be used for tape transfers (this default is
normally 2048 bytes).

Table 4-5 lists the tape characteristics for the Set Characteristic
function.

4.5 I/O STATUS BLOCK

The I/O status block (IOSB) for QIO functions on magnetic tape devices
is shown in Figure 4-6. Table 4-6 lists the status returns for these
functions. Table 4-3 (in Section 4.3) lists the device-dependent data
returned in the second longword. The IO$ SENSEMODE function can be
used to return this data. -

31 16 15 0

byte count status

device-dependent data

/Figure 4-6 IOSB Content

The byte count is the actual number of bytes transferred to or from
the process buffer or the number of files or blocks skipped.

Status

SS$ NORMAL

SS$ CTRLERR

SS$ DATACHECK

Table 4-6
Status Returns for Tape Devices

Meaning

Successful completion of the operation specified
in the QIO request. The second word of the IOSB
can be examined to determine the actual number
of bytes transferred to or from the buffer or
the number of files or blocks skipped.

Controller-related error. One or more of the
following conditions can cause this error:

Data late
Error confirmation
Invalid map register
Interface timeout
Missed transfer
Programming error
Read timeout

Write check error. A mismatch between the data
in memory and the data on tape was detected
during a write check operation. (See Section
4.2.1)

(continued on next page)

4-15

MAGNETIC TAPE DRIVER

Table 4-6 (Cont.)
Status Returns for Tape Devices

Status Meaning

SS$ DRVERR

SS$ ENDOFFILE

SS$ ENDOFTAPE

SS$ ENDOFVOLUME

SS$ FORMAT

SS$ MEDOFL

SS$ NONEXDRV

-~-----,·~----·-

Drive-related error. One or more of
following conditions can cause this error:

Drive timing error
Illegal function
Illegal register
Operation incomplete
Register modify refused
Nonexecutable function
Unrecovered retriable error

the

End-of-file condition. A tape mark was
encountered during the operation. For data
transfer functions, the byte count is O; for
skip record functions, the count is the number
of blocks skipped.

End-of-tape condition. This is a normal
completion and is typically treated as such.
The end of an input tape is denoted by an
end-of-tape marker. If this marker is
encountered during an operation in the forward
direction, it may be necessary to modify the
source program to respond to the condition.

End of volume. Two consecutive tape marks were
detected during a skip file operation. This
return is also used as a logical end-of-tape
indicator. If an ASCII standard tape is mounted
foreign, this return may only indicate an empty
file within the volume and not the end of
volume.

Format error. Format specified by last set tape
characteristics function is not implemented in
slave controller.

Medium offline. The addressed drive currently
does not have a volume mounted and on line.

Nonexistent drive. The addressed drive does not
exist. __________ _._ ______ . ____ , _______ _

(continued on next page)

4-16

Status

SS$ PARITY

SS$ UNSAFE

SS$ VOLINV

SS$ WRITLCK

SS$ DATAOVERUN

MAGNETIC TAPE DRIVER

Table 4-6 (Cont.)
Status Returns for Tape Devices

Meaning

Parity error. One or more of the following
conditions can cause this error:

CRC error (NRZI only)
Control bus parity error
Correctable data error (PE only)
Correctable skew (PE only)
Data bus parity error
Incorrectable error (PE only)
Invalid tape mark (NRZI only)
Nonstandard gap
Longitudinal parity error
(NRZI only)
Format error (PE only)
Vertical parity error (NRZI only)
Map parity error
MASSBUS control parity error
MASSBUS data parity error
Read data substitute

Drive unsafe. The addressed drive is currently
unsafe and cannot perform any function.

Volume invalid. The addressed drive has not
been mounted and therefore does not have volume
valid set, or a status change has occurred in
the drive so that it has changed to an unknown,
and therefore, invalid state. All logical and
virtual functions will be rejected with this
status until volume valid is set. Volume valid
is set when a volume is mounted and cleared when
the volume is unloaded, the respective drive
changes to an unknown state, or the power fails.
The driver automatically sets volume valid when
the proper volume is mounted and/or power is
restored.

Write-lock error. An attempt was made to write
on a write-locked drive.

Data overrun. The data block read was longer
than the assigned buffer. In the case of a read
reverse, the last data on tape (that is, the
data nearest the end-of-tape at the beginning of
the operation) is the first data read. This
data is in the buffer.

4-17

MAGNETIC TAPE DRIVER

4.6 PROGRAMMING EXAMPLE

The following program is an example of how data is written to and read
from magnetic tape. In the example, QIO operations are performed
through the magnetic tape ACP. These operations could have been
performed directly on the device using the magnetic tape driver.
However, this would have involved additional programming, for example,
writing header labels and trailer labels •

• TiTLE MAGTAPE PROGRAMMING EXAMPLE
.IDENT /01/

Detine necessary symbols

SFIBDEF
SIODEF

;Define tile information block symbols
;Define 1/0 function codes

Allocate storaqe tor the necessary data structures

Allocate magtape device name string and descriptor

TAPENAME:
.LONG
.LONG

20-10
10$
/TAPE/

;
;Length of name string
;Address of name string
;Name string 10$: .ASCII ;Reference label 20$:

;
; Allocate space to store assigned channel number
,
TAPECHAN:

.BLKW
,
;Tape channel number

.
; Allocate space for the I/O status quadword
,
lUSTATUS:

.BLKO
;
;110 status quadword

;
; Allocate storage tor the input/output butter
,

.R~PT 256

.ASCII /A/

.ENDR
;Initialise butter to contain 'A'

we now define the FIB•flle information block•whlcn the ACP uses
in order to access 1 deaccess the file.we supply some information
in this blocK and the ACP will supply further information.

FlB-DESCR:
.LONG
.LONG

;start ot FIB
ENDFIB•FIB ;Length of tile information block
FIB ;Address of file information block
FIB$M_WRlTE!f'IB$M_NUWRlTE ;Read/write access allowed FIB: .LONG

.WORD

.wORD

.LONG

.WORD

.WORD

o,o,o ;file 10
o,o,o ;Directory ID
o ;context
o ;Name flags

ENDFIB:
o ;Extend control

;Reference label

,
! we now define the file name string and descriptor ,
NAME-DESCR:

.LONG

.LONG
END_NAME•NAME
NAME
"MYDATA.DAT;l"

ifile name descriptor
;Address of name string
;File name string
;Heference label

hAME: .ASCII
END-NAME:

Now the main program
The program firstly assigns a channel to the magnetic tape unit.
It then performs an access function to create and access a file
called "MYDATA.DAT". It now writes 26 blocks of data to the tape
containlnq the letters ot the alphabet. The first block contains
all A's the next all B's and so on. It starts by writing a block
of 256 bytes and each subsequent olock is reduced in size by two
bytes so by the time it writes the block containing Z's the block
size is only 206 bytes. The magtape ACP will not allow reading of
a tile that has been written until one of three things happens.
The tile is de-accessed,the tile is rewound or the file is back•
spaced. In this example the tile is oackspaced zero blocks and
then it is read in reverse (incrementing the blOCK size everr block
and the data checked against what is meant to be there. If a l ls
well the file is de-accessed and the program exits

4-18

MAGNETIC TAPE DRIVER

.ENTHY MAGTAPE-EXAMPLE,AM<R3,R4,R5,Rb,R7,R8>

first assign a channel to the tape unit

$ASSIGN_S TAPENA~ElTAPECHAN
CMPW #SSS-NORMA ,RO

;Assign tape unit
;OK?

BSBW ERRCHECK ; find out

Next create and access the tile •MYDATA.UAT'

CMPW
BSAW

CHAN=TAPECHAN - ;Channel is magtape
FUNC=#l0$-CREATE!IO$M-ACCESS!l0$M_CREATE,•;Function
IOSB=IOSTATUS,- ;Address Of I/O status word
Pl=FIB-DESCR - ;FIB descriptor
P2=#NAME_oEstR ;Name descriptor
#SS$_NORMAL,RO ;UK?
ERRCHECK ;Find out

is create

LOU~l consists of writing the alphabet to the tape as described earlier

MOVL #26 RS
MOVL #256,R3

;set up loop count

LUUPl:
;Set up initial byte count in Rl
;start of loop sorow_s CHAN=TAPECHAN,­

FUNC=#IO$_WRITEVBLK,­
P1=BUFF'ER,•
P2=R3

CMPW #SS$_NORMAL,RO
BSBw ERRCHECK

;Perform QIO to tape channel
;Function is write virtual block
;Butter address
;Byte count
;OK?
;Find out

.~ ~ Now we decrement the byte count ready tor the next write, set up a
, loop count tor updating the character and LOOP2 performs the upaate ,

#2,R3 ;Decrement byte count for next write
;Copy byte count to RS for LOOP2 count
;Get buffer address in R7

LOOP2:

SUHL2
MOVL
MDV AL
INCB
SOBGTR
SOBGTR

R3 R8
BUFFER,R7
CR7)+
R8,LOOP2
R5,LOOP1

;Increment character
; Until finished
;Repeat LOOPl until alphabet complete

we now fall throuqh LOOP1 and should update the byte count so that
it truly reflects the size ot the last block written to the tape

AUDL2 #2 ,R3 ;Update byte count

we now want to read the tape out must tirst perform one of the three
operations outlined above otherwise the ACP will not allow write
access. we will perform an ACP control tunction on it specifying
skip zero blocks. This is a special case of sKip reverse and will
cause the ACP to now allow read access.

CLRL
MOVW
SQIOW_S

CMPw

BSBW

FIB+FIBSLS-C~TRLVAL ;Set UP to space zero blocks
#FIBSC_SPAC~,flB+FlBw_CNTRLFUNC ;Set up tor space function
CHAN=TAPECHAN - ; Perform QIO to tape channel
fUNC=#IDS-ACPtONTHOL,- ;Pertorm an ACP control function
Pl=FIB-DESCR ;Define the FIB
#SS$_NORMAL,RO ;success?

ERRCl1ECK ;Find out

Now we read the file in reverse

LOUP3:

MOVL
MOVB

MOVAL
SQIOW_S

CMPW
ASBW

#26,RS ;set up loop count
#~A/Z/,R6 ;Get tirst character in R6

BUFFER,R7 ;And buffer address to R7
CHAN=TAPECHAN - ·Channel is magtape
FUNC=#IOS-REA6VHLK!l0$M_R~VERSE,- ;Function is read
IOSB:IOSTATUS,· ;Define I/O status quadword
P1=BUFFER,- :And buffer address
P2=R3 ;R3 bytes
#SS$_NORMAL,RO ;Success?
ERRCHECK ;Find out

reverse

Now we will checK the data we have read in to make sure
that it agrees with what was written

MOVL
CH~CKOATA:

CMPB
BNEQ
SOBGTR
DECB
ADDL2
SOAGTR

R3,R4
(R7)+ R6
MISMATcH
H.4,CHECKDATA
R6
#2,R3
R5,LOOP3

Copy R3 to R4 tor loop count

Check each character
Print message on error
Carry on until finished
Go backwards through alpnabet
Update byte count by 2 tor next block
Read next block

4-19

MAGNETIC TAPE DRIVER

~ow we deaccess the file

$Q IOW S CHAN=TAPECHAN •
- fUNC=#IO$_D~Atc1:::ss,­

IOSB=IOSTATUS

:Channel is maQtape
;ueaccess tunction
:110 status

Now we deassign the channel and exit

!:::XI 1': SDASSGN_S CHAN=TAPECHAN
RET

;Deassign channel
n.:xit

we are now at a place where normally we would attempt to 9enerate some error
message but for this example we will simply exit

MISMATCH:
BRB EXIT

ERRCHl:::CK:
HNEQ EXtT
RStj

.~NU MAGTAPE-EXA~PL~

Exit
lf error then exit
Exit if not UK
Else return

4-20

CHAPTER 5

LINE PRINTER DRIVER

This chapter describes the use of the VAX/VMS line printer driver.
This driver supports the LPll Line Printer Interface and the LAll
DECprinter I.

5.1 SUPPORTED LINE PRINTER DEVICES

The following sections describe the LPll Line Printer Interface and
the LAll DECprinter I.

5.1.1 LPll Line Printer Interface

The LPll is a high-speed, 132-column, line printer available in
several models. Printers are available with either a n4- or
96-character ASCII print set. The LPll-R and LPll-S are fully
buffered models that operate at a standard speed of 1110 lines per
minute. Other LPll models have 20-character print buffers, and can
print at full speed if the printed line is 20 characters or less.
Longer lines are printed at a slower rate. Forms with up to six parts
can be used for multiple copies.

5.1.2 LAll DECprinter I

The LAll DECprinter I is a medium-speed printer that operates at a
standard speed of 180 characters per second. It incorporates such
features as a forms length switch to set the top of form to any of 11
common lengths, paper-out switch and alarm, and variable forms width.
The LAll uses a 96-charactei ASCII set; the column width is 132
characters.

5.2 DRIVER FEATURES AND CAPABILITIES

The VAX/VMS line printer driver provides output character formatting
and error recovery, as described in the following sections.

5-1

LINE PRINTER DRIVER

5.2.1 Output Character Formatting

In write virtual and write logical block operations, user-supplied
characters are output as follows (write physical block data is not
formatted, but output directly):

• Rubouts are discarded.

• Tabs move the horizontal print position to the next MODULO
(8) position.

• All lowercase alphabetic characters
uppercase before printing (unless
specifying lowercase characters is set;
and Table 5-2).

are converted to
the characteristic
see Section 5.4.2

• On printers where the line feed, form feed, vertical tab, and
return characters empty the printer buffer, returns are held
back and output only if the next character is not a form
feed, line feed, or vertical tab. Returns are always output
on units that have the return function characteristic set
(see Section 5.4.3 Table 5-2).

• The horizontal print position is incremented on the output of
all nonprinting characters such as the space character.
Nonprinting characters are discarded if the horizontal print
position is equal to or greater than the carriage width.

• On printers without mechanical form feed (the form feed
function characteristic is not set; see Section 5.4.3 and
Table 5-2), a form feed is converted to multiple line feeds.
The number of line feeds is based on the current line count
and the page length.

• Print lines are counted and returned to the caller in the
second longword of the I/O status block.

5.2.2 Error Recovery

The VAX/VMS line printer driver performs the following error recovery
operations:

• If the printer is offline for 30 seconds, a "device not ready"
message is sent to the system operator process.

• If the printer runs out of paper or has a fault condition, a
"device not ready" message is sent to the system operator
every 30 seconds.

• The current operation is retried every 2 seconds to test for a
changed situation, for example, the printer coming online.

• The current I/O operation can be canceled at the next timeout
without the printer being online.

• When the printer comes online, device operation resumes
automatically.

5-2

LINE PRINTER DRIVER

5.3 DEVICE INFORMATION

The user process can obtain information on printer characteristics by
using the $GETCHN and $GETDEV system services (see Section 1.10). The
printer-specific information is returned in the first three longwords
of a user-specified buffer, as shown in Figure 5-1 (Figure 1-8 shows
the entire buffer).

31 24 23 16 15 8 7 0

device characteristics

page width type class

page length printer characteristics

Figure 5-1 Printer Information

The first longword contains device-independent data. The second and
third longwords contain device-dependent data.

Table 5-1 lists the device-independent characteristics returned in the
first longword.

Table 5-1
Printer Device-Independent Characteristics

Dynamic Bi ts l
(Conditionally Set) Meaning

"

DEV$M SPL Spooled device

DEV$M AVL Printer is online and available

Static Bi ts l
(Always Set)

DEV$M REC Record-oriented device

DEV$M CCL Carriage control

DEV$M ODV Device is capable of output
..

1. Defined by the $DEVDEF macro.

In the second longword, the device class is DC$ LP. The printer type
is a value that corresponds to the printer:- LP$ LPll or LP$ LAll.
The page width is a value in the range of 0 to 255.

The third longword contains printer characteristics and the page
length. The printer characteristics part can contain any of the
values listed in Table 5-2.

5-3

LINE PRINTER DRIVER

Table 5-2
Printer Device-Dependent Characteristics

Value Meaning
1---------~--+·-···-··---·-----------------------------

LP$M LOWER

LP$M MECHFORM

LP$M CR

Printer can print lowercase characters. If this
value is not set, all lowercase characters are
converted to uppercase when output.

Printer has mechanical form feed. This
characteristic is used when variable form length
is required, for example, check printing.
Driver sends ASCII form feed (decimal 12).
Otherwise, multiple line feeds are generated.
The page length determines the number of line
feeds.

Printer requires carriage return.
Section 5.2.1) •

(See note 4,

...._ ___________ L .•... ------------------- ---- _____ ___,

Maximum page length is 255.

The $LPDEF macro defines the values for the printer characteristics;
the $DCDEF macro defines the device class and types.

5.4 LINE PRINTER FUNCTION CODES

The basic line printer I/O functions are write, sense mode, and set
mode. None of the function codes takes function modifiers.

5.4.1 Write

The line printer write functions print the contents of the user buffer
on the designated printer.

The write functions and their QIO function codes are:

• IO$ WRITEVBLK - write virtual block

• IO$ WRITELBLK - write logical block

• IO$ WRITEPBLK write physical block (the data is not
formatted, but output directly, as in PAS SALL mode on
terminals)

The write function codes can take the following device/function
dependent arguments:

• Pl = the starting virtual address of the buffer that is to be
written

• P2 = the number of bytes that are to be written

• P3 (ignored)

• P4 = carriage control specifier except for write physical
block operations (write function carriage control is described
in Section 5.4.1.l)

5-4

LINE PRINTER DRIVER

P3, P5, and P6 are not meaningful for line printer write operations.

In write virtual block and write logical block operations, the buffer
specified by Pl and P2 is formatted for the selected line printer and
includes the carriage control information specified by P4.

If the printer is not set spooled, write virtual and write logical
perform the same function. If the printer is set spooled, a write
logical function queues the I/O to the printer and a write virtual
function queues the I/O to the intermediate device, usually a disk.

All lowercase characters are converted to uppercase if the
characteristics of the selected terminal do not include LP$M LOWER
{this does not apply to write physical block operations).

Multiple line feeds are generated for form feeds only if the printer
does not have a mechanical form feed, that is, the LP$M MECHFORM
characteristic. The number of line feeds generated depends- on the
current page position and the length of the page.

Section 5.2.1 describes character formatting in greater detail.

5.4.1.1 Write Function Carriage Control - The P4 argument is a
longword that specifies carriage control. Carriage control determines
the next printing position on the line printer.. {P4 is ignored in a
write physical block operation.) Figure 5-2 shows the P4 longword
format.

3 2 0

P4: POSTFIX PREFIX (not used) FORTRAN

Figure 5-2 P4 Carriage Control Specifier

Only bytes O, 2, and 3 in the longword are used. Byte 1 is ignored.
If the low-order byte {byte 0) is not O, the contents of the longword
are interpreted as a FORTRAN carriage control specifier. Table 5-3
lists the possible byte 0 values (in hexadecimal) and their meanings.

If the low-order byte (byte 0) is O, bytes 2 and 3 of the P4 longword
are interpreted as the prefix and postfix carriage control specifiers.
The prefix (byte 2) specifies the carriage control before the buffer
contents are printed. The postfix (byte 3) specifies the carriage
control after the buffer contents are printed. The sequence is:

Pref ix carriage control - Print - Postfix carriage control

The prefix and postfix bytes, although interpreted separately, use the
same encoding scheme. Table 5-4 shows this encoding scheme in
hexadecimal format.

5-5

LINE PRINTER DRIVER

Table 5-3
Write Function Carriage Control (FORTRAN: Byte 0 not equal to 0)

Byte 0 ASCII Meaning
Value Character

(hexadecimal)
t-----·-----··----1-·--·-·-··----.,___ _________________________ _

20 (space)

30 0

31 1

2B +

24 $

Sing le-space carriage control. (Sequence:
newline, print buffer contents, return.)

Double-space carriage control. (Sequence:
newline, newline, print buffer contents,
return.)

Page eject carriage control. (Sequence:
form feed, print buffer contents, return.)

Overprint carriage control. (Sequence:
print buffer contents, return.) Allows
double printing for emphasis or special
effects.

Prompt carriage control. (Sequence:
newline, print buffer contents.)

All other
values

Same as ASCII space character:
single-space carriage control.

Bit 7

0

0

Table 5-4
Write Function Carriage Control (P4 byte 0 equal to 0)

Prefix/Postfix Bytes
(Hexadecimal)

Bits 0 - 6 Meaning

-·----.. ---·--·-+-----------------------

0

l-7F

No carriage control is specified,
that is, NULL.

Bits 0 through n are a count of
newlines (carriage return
followed by line feed).

!---------···-· ··--·--------.. ····------r---------------------1
Bit 7 Bit 6

1 0

1 1

Bit 5

0

0

Bits
0-4 Meaning

1-lF Output the single ASCII control
character specified by the
configuration of bits 0 through 4
(7-bit character set).

1-lF Output the single ASCII control
character specified by the
configuration of bits 0 through 4
which are translated as ASCII
characters 128 through 159 (8-bit
character set) •

....___ ______ , __ """ ·- --~·--·--------·--------·- ·------------------------

s-n

LINE PRINTER DRIVER

Figure 5-3 shows the pref ix and postfix hexadecimal coding that
produces the carriage control functions listed in Table 5-3. Prefix
and postfix coding provides an alternative way to achieve these
controls.

P4:

P4:

P4:

0

2 0

BC 0

"+"

BD 0 0

"$"

0 BA 0]
Example: Skip 24 lines before printing

BD 1B 0 J
Figure 5-3 Write Function Carriage Control

(Prefix and Postfix Coding)

Sequence:

Prefix= NL
Print
Postfix= CR

Sequence:

Prefix= LF, LF
Print
Postfix= CR

Sequence:

Prefix= FF
Print
Postfix= CR

Sequence:

Prefix= NULL
Print
Postfix= CR

Sequence:

Prefix= NL
Print
Postfix= NULL

Sequence:

Prefix= 24NL
Print
Postfix:= CR

In the first example, the prefix/postfix coding for a single-space
carriage control (line feed, print buffer contents, return) is
obtained by placing the value (1) in the second (prefix) byte and the
sum of the bit 7 value (80) and the return value (D) in the third
(postfix) byte:

8 0 (bit 7 = 1)
+ D (return)

8D (postfix return)

5-7

LINE PRINTER DRIVER

5.4.2 Sense Printer Mode

This function senses the current device-dependent printer
characteristics and returns them in the second longw6rd of the I/O
status block. No device/function-dependent arguments are used with
IO$ SENSEMODE.

5.4.3 Set Mode

Set mode operations affect
associated line printer.
functions: Set Mode and
logical I/O privilege.
privilege. Two function

the operation and characteristics of the
VAX/VMS provides two types of set mode

Set Characteristics. Set Mode requires
Set Characteristics requires physical I/O

codes are provided:

• IO$ SETMODE

• IO$ SETCHAR

These functions take the following device/function-dependent argument
(other arguments are not valid):

• Pl -- the address of a characteristics buffer

Figure 5-4
IO$ SETMODE.

shows the quadword Pl characteristics buffer
Figure 5-5 shows ths same buffer for IO$ SETCHAR.

31 24 23 16 15 0

1-------pag---.--e wi~_t:_ ____ L__ oot ""d -· J
page length printer characteri:t~----____ J

Figure 5-4 Set Mode Characteristics Buff er

31 24 23 16 15 8 7 0

page w~d-th- ~- ~-·-----= J __ -_-_t:_: ~-__ -_-_-c_l_a_s~-~~~~----1-
page length printer characteristics

Figure 5-5 Set Characteristic Characteristics Buffer

for

In the buffer, the device class is DC$ LP. The printer type is a
value that corresponds to the printer: DT$ LPll or DT$ LAll. The
type can be changed by the IO$ SETCHAR function: The page width is a
value in the range of O to 255:

The printer characteristics part of the buffer can contain any of the
values listed in Table 5-2.

5-8

LINE PRINTER DRIVER

5.5 I/O STATUS BLOCK

The I/O status blocks (IOSB) for the write and set mode I/O functions
are shown in Figures 5-6 and 5-7. Table 5-5 lists the status returns
for these functions.

31 16 15 0

byte count status

number of lines the paper moved*

*O if 10$_WRITEPBLK

Figure 5-fi IOSB Contents - Write Function

31 16 15 0

0 status

0

Figure 5-7 IOSB Contents - Set Mode Function

Table 5-5
Line Printer QIO Status Returns

Status Meaning

SS$ NORMAL successful completion. The operation specified in the - QIO was completed successfully. On a write operation,
the second word of the IOSB can be examined to
determine the number of bytes written.

SS$ ABORT The operation was canceled by the Cancel I/0 on Channel - ($CANCEL) system service.

5-9

LINE PRINTER DRIVER

5.6 PROGRAMMING EXAMPLE

The following simple program is an example of I/O to the line printer
that shows how to use the different carriage control formats. This
program prints out the contents of the output buffer (OUT BUFFER) 10
times using 10 different carriage control formats. The-formats are
held in location OUTPUT FORMAT •

• TITLE LINE PRINTER PROGRAMMING EXAMPLE
.IDENT /01/

;uetine necessary symbols
1

SIODEf ;Define 110 function codes

Allocate storaqe tor the necessary data structures

Allocate output buffer and fill with required output text

UUT-BUFFER:
.ASCII "VAX-PRINTER-EXAMPLE"

OUT-~UFFER-SIZE=.·OUT-BUFFER ;Define size ot output strin9

i Allocate device name string and descriptor
;

DEVICE-DESCR:
.LONG
.LONG

lOS: .ASCII
20$:

;

2os-1os
10$
/LINE-PRINT~R/

iLength of name strin9
;Address of name strin9
;Name string of output device
;Reference label to calculate lenQth

; Allocate space to store assiqned channel number ,
D~VlCE-CHANNEL:

.BLKw ichannel number

Now set up the carriage control formats

OUTPUT-FORMAT:
.A¥TE
.BYTE
.AYTE
.BYTE
.BYTE
.R¥TE

o,o 0 0
32,6,6,0
48,0,0,0
49,0,0,0
43,0,0,0
36,0,0,0

;No carriage control
;BlanK=Lf+ ••• TEXT •• +CR
;Zero=LF+Lf+.TEXT •• +CR
;une=FF+ ••• TEXT •••• +CR
;Plus=overprint, ••• +CR
;Dollar=Lf+TEXTlPrompt)

Now tne prefix•posttix carriage control formats
.BYTE 0,0,1,141 ;LF+ ••••• TEXT ••••• +CR

.BYTE 0,0,24{141

.AYTE 0,0,2, 41

.RYTE 0,0,140,141

;24LF+ ••• TEXT ••••• +CR
;LF+LF+ •• TEXT ••••• +CR
;FF+ ••••• TEXT ••••• +CR

Program starting point
The program assigns a channel to the output device,sets up a loop
Count for the number of times it wishes to print, and performs ten
QIO and wait system services.The channel is then deassigned •

• ENTRY PRINTER-EXAMPLE,~M<R2,R3>;Program starting address

First assign a channel to the output device
SASSIGN_S DEVNAM=DEVICE-DESCR,- !Assign a channel to printer

CHAN:OEVICE-CHANNEL ,
BLBC
MOVL
MOVAL

Ro
1
sos ;It low bit cleartassignment failure

#1 R3 ;set up loop coun~
OUTPUT-FORMAT,R2 ;Set up o/p format address in R2

Start of printinq loop

JOS:

40$:
~os:

so1ow_s CHAN:DEVICE-CHA~NEL,­
FUNC=#l0$_WRITEVBLK,­
Pl=OUT-BUFfEH •
P2=#0UT-BUFFER-SIZE,•
P4:(P2)+

ALMC H0,40$
SOBGTR R3 30$
SDASSGN_S CHAN=DEVICE-CHA~NEL
RET

.END PHINTER-fXAMPLE

;Print on device cnannel
;110 tunct1on is write virtual
;Address of output buffer
;Size of buffer to print
;Format control in R2
;w~11 auto-increment.
;It low bit clear,i/o failure
;Hranch if not finished
;Deassign channel
;Return

5-10

CHAPTER 6

CARD READER DRIVER

This chapter describes the use of the VAX/VMS card reader driver.
This driver supports the CRll Card Reader.

6.1 SUPPORTED CARD READER DEVICE

The CRll Card Reader reads standard 80-column punched data cards~

6.2 DRIVER FEATURES AND CAPABILITIES

The VAX/VMS card reader driver provides the following capabilities:

• Multiple controllers of the same type; for example, more than
one CRll can be used on the system

• Binary, packed Hollerith, and translated 02n or 029 read modes

• Unsolicited interrupt support for automatic card reader input
spooling

• Special card punch combinations to indicate an end-of-file
condition and to set the translation mode

• Error recovery

The following sections describe the read modes, special card punch
combinations, and error recovery in greater detail.

6.2.1 Read Modes

VAX/VMS provides two card reader device/function-dependent modifier
bits for read data operations: read packed Hollerith (IO$M PACKED)
and read binary .(IO$M BINARY). If IO$M PACKED is set, the aata is
packed and stored Tn sequential bytes of the input buffer. If
IO$M BINARY is set, the data is read and stored in sequential words of
the Tnput buffer. IO$M_BINARY takes precedence over IO$M PACKED.

The read mode can also be set by a set translation mode card (see
Section 6.2.2.2) or by the Set Mode function {see Section n.4.3).

6-1

CARD READER DRIVER

6.2.2 Special Card Punch Combinations

The VAX/VMS card reader driver recognizes three special card punch
combinations in column 1 of a card. One combination signals an
end-of-file condition. The other two combinations set the current
translation mode.

6.2.2.1 End-of-File Condition - A card with the 12-11-0-1-n-7-8-9
holes punched in column 1 signals an end-of-file condition. If the
read mode is binary, the first eight columns must contain this punch
combination.

6.2.2.2 Set Translation Mode - If the read mode is nonbinary,
nonpacked Hollerith (the IO$M BINARY and IO$M PACKED function
modifiers are not set), the current translation mode can be set to the
026 or 029 punch code. A card with the 12-2-4-8 holes punched in
column 1 sets the translation mode to the 02n code. A card with the
12-0-2-4-6-8 holes punched in column 1 sets the translation mode to
the 029 code. The translation mode can be changed as often as
required.

If a translation mode card contains punched information in columns 2
through 80, it is ignored.

Logical, virtual, and physical read functions result in only one
card's being read. If a translation mode card is read, the read
function is not completed and another card is read immediately.

6.2.3 Error Recovery

The VAX/VMS card.reader driver performs the following error recovery
operations:

• If the card reader is offline for 30 seconds, a "device not
ready" message is sent to the system operator.

• If .a recoverable card reader failure is detected, a "device
not ready" message is sent to the system operator every 30
seconds.

• The current operation is retried every two seconds to test for
a changed situation, for example, the removal of an error
condition.

• The current I/O operation can be canceled at the next timeout
without the card reader being online. When the card reader
comes online, device operation resumes automatically.

There are four categories of card reader failures:

• Pick check -- The next card cannot be delivered from the input
hopper to the read mechanism.

• Stack check -- The card just read did not stack properly in
the output hopper.

n-2

CARD READER DRIVER

• Hopper check -- Either the output hopper is full or the input
hopper is empty.

• Read check -- The last card was read incorrectly due to torn
edges or punches before column 1 or after column 80.

Manual intervention is required if any of these errors occur. The
recovery is transparent to the user program issuing the I/O request.

When a recoverable card reader failure is detected, a "device not
ready" message is displayed on the system operator console. When this
message is received, the card reader indicator lights should be
examined to determine the reason for the failure. The indicator
lights and the respective recovery procedures are:

• Pick check -- The next card cannot be delivered to the read
mechanism. Remove the next card to be read from the input
hopper and smooth the leading edge, that is, the edge that
will enter the read mechanism first. Replace the card in the
input hopper and press the RESET button. Card reader
operation will resume automatically. If a pick check error
occurs again on the same card, remove the card from the input
hopper and repunch it. Place the duplicate card in the input
hopper and press the RESET button. If the problem persists,
either an adjustment is required or nonstandard cards are in
the input hopper.

• Stack check -- The card just read did not stack properly in
the output hopper. Remove the last card read from the output
hopper and examine the condition. If it is excessively worn
or mutilated, repunch it. Place either the duplicate or the
original card in the read station of the input hopper and
press the RESET button. Card reader operation will resume
automatically. If the stack check error recurs immediately,
an adjustment is required.

• Hopper check -- Either the input hopper is empty or the output
hopper is full. Examine the input hopper and, if empty,
either load the next deck of input cards or an end of file
card. If the input hopper is not empty, remove the cards that
have accumulated in the output hopper and press the RESET
button. Card reader operation will resume automatically.

• Read check -- The last card was read incorrectly. Remove the
last card from the output hopper and examine its condition.
If it is excessively worn, mutilated, or contains punches
before column 0 or after column 80, repunch the card
correcting any incorrect punches. Place either the original
or duplicate card in the read station of the input hopper and
press the RESET button. Card reader operation will resume
automatically. If the read check error recurs immediately, an
adjustment is necessary.

6.3 DEVICE INFORMATION

Users can obtain information on card reader characteristics by using
the $GETCHN and $GETDEV system services (see Section 1.10). The
information is returned in a user-specified buffer shown in Figure
6-1. Only the first three longwords of the buffer are shown in Figure
6-1 (Figure 1-9 shows the entire buffer).

n-3

CARD READER DRIVER

31 16 15 8 7 0
-~·- ------

device characteristics
,, ____

buffer size type class

device-dependent information

··--~-·-~- - ·---

Figure 6-1 Card Reader Information

The device characteristics returned in the first longword are listed
in Table 6-1.

Table 6-1
Card Reader Device-Independent Characteristics

Dynamic Bit l
(Conditionally Set) Meaning

- ""-····-·----~ -----------·-------·-·-·-----1

DEV$M AVL Device is online and available -
-----·-~·--' ·--·-·------·· .. ·-·-----------------1

Static Bits 1
(Always Set)

... ·---------,----·---------1
DEV$M IDV Device is capable of input

DEV$M REC Device is record oriented

·----

1. Defined by the $DEVDEF macro

The second longword contains information on device class and type, and
the buffer size. The device class for card readers is DC$ CARD. The
device type is DT$_CR11 for the CRll. -

The $DCDEF macro defines the device type and class names. The buffer
size is the default to be used for all card reader devices (this
default is 80 bytes).

The third longword contains device-dependent card reader
characteristics. Table 6-2 lists these characteristics. The $CRDEF
macro defines the characterstics values.

6-4

CARD READER DRIVER

Table 6-2
Device-Dependent Information for Card Readers

Value Meaning

CR$V TMODE Specifies the translation mode for nonbinary,
CR$S-TMODE nonpacked Hollerith data transfers.l Possible

values are:

CR$K T026 Translate according to 026 punch
code

CR$K T029 Translate according to 029 punch
code

1. Section 6.2.2.2 describes the set translation mode punch code.

6.4 CARD READER FUNCTION CODES

The VAX/VMS card reader can perform logical, virtual, and physical I/O
functions. Table 6-3 lists these functions and their function codes.
These functions are described in more detail in the following
paragraphs.

Table 6-3
Card Reader I/O Functions

Function Code and Type 1 Function Function
Arguments Modifiers

IO$ READLBLK Pl,P2 L IO$M BINARY Read logical block - IO$M-PACKED -
IO$ READVBLK Pl,P2 v IO$M BINARY Read virtual block - IO$M-PACKED -
IO$ READPBLK Pl,P2 p IO$M BINARY Read physical block - IO$M-PACKED -
IO$ SENSEMODE L Sense the card reader - characteristics and

return them in the
I/O status block

IO$ SETMODE Pl L Set card reader - characteristics for
subsequent operations

IO$ SETCHAR Pl p Set card reader - characteristics for
subsequent operations

1. v virtual; L logical; P physical

n-5

CARD READER DRIVER

6.4.1 Read

This function reads data from the next card in the card reader input
hopper into the designated memory buffer in the specified format.
Only one card is read each time a read function is specified.

VAX/VMS provides three read function codes:

• IO$ READVBLK - read virtual block

• IO$ READLBLK - read logical block

• IO$ READPBLK - read physical block

Two function-dependent arguments are used with these codes:

• Pl -- the starting virtual address of the buffer that is to
receive the data

• P2 -- the number of bytes that are to be read in the specified
format

The read binary function modifier (IO$M BINARY) and the read packed
Hollerith function modifier (IO$M PACKED) can be used with all read
functions. If IO$M BINARY is specifTed, successive columns of data
are stored in sequential word locations of the input buffer. If
IO$M PACKED is specified, successive columns of data are packed and
stored in sequential byte locations of the input buffer. If neither
of these function modifiers is specified, successive columns of data
are translated in the current mode (026 or 029) and stored in
sequential bytes of the input buffer. Figure 6-2 shows how data is
stored by IO$M_BINARY and IO$M PACKED.

Binary column (10$M_BINARY):

15 12 11

l 11211 ~-1 ·-~3-. 4 5 6

*Bits 12 - 15 are 0

Pac!<ed column (10$M_PACKED):

7 3 2 0

112 11 o g al J
*n = 0 if no punches in rows 1 - 7

= 1 if a punch in row 1
= 2 if a punch in row 2

= 7 if a punch in row 7

Figure 6-2 Binary and Packed Column Storage

Regardless of the byte count specified by the P2 argument, a maximum
of 160 bytes of data for binary read operations and 80 bytes of data
for nonbinary read operations (IO$M PACKED, or 026 or 029 modes) are
transferred to the input buffer: If P2 specifies less than the
maximum quantity for the respective mode, only the number of bytes

n-6

CARD READER DRIVER

specified are transferred;
filled with data.

any remaining buffer locations are not

6.4.2 Sense Card Reader Mode

This function senses the current device-dependent card reader
characteristics and returns them in the second longword of the I/O
status block (see Table 6-2). No device/function dependent arguments
are used with IO$ SENSEMODE.

6.4.3 Set Mode

Set mode operations affect the operation and characteristics of the
associated card reader device. VAX/VMS defines two types of set mode
functions:

• Set Mode

• Set Characteristic

6.4.3.1 Set Mode - The Set Mode function affects the characteristics
of the associated card reader. Set Mode is a logical I/O function and
requires the access privilege necessary to perform logical I/O. A
single function code is provided:

IO$ SETMODE

This function takes the following device/function dependent argument:

Pl -- the address of a characteristics buffer

Figure 6-3 shows the quadword Set Mode characteristics buffer.

31 1615 0

buffer size not used

card reader characteristics

Figure 6-3 Set Mode Characteristics Buff er

Table 6-4 lists the card reader characteristics and their meanings.
The $CRDEF macro defines the characteristics values.

n-7

CARD READER DRIVER

Table 6-4
Set Mode and Set Characteristic Card Reader Characteristicss

Value 1 Meaning

------------;-----····----- ·---
CR$V TMODE
CR$S-TMODE

Specifies
nonpacked
values are:

CR$K T026

CR$K T029

the translation
Hollerith data

mode for nonbinary,
transfers. Possible

Translate according to 026 punch
code

Translate according to 029 punch
code

'-------------'--·-------·-···----------------------------..!
1. If neither the 026 or 029 mode is specified, the default mode can
be set by the SET CARD READER command.

6.4.3.2 Set Characteristic - The Set Characteristic function also
affects the characteristics of the associated card reader device. Set
Characteristic is a physical I/O function and requires the access
privilege necessary to perform physical I/O functions. A single
function code is provided:

IO$ SETCHAR

This function takes the following device/function dependent argument:

Pl -- the address of a characteristics buffer

Figure 6-4 shows the Set Characteristic characteristics buffer.

31 16 15 8 7 0 ..-------------·-----·- ---..----------~--------

buffer size type class

card reader characteristics

.. ,,, _____________________ .,_ ----------------------'

Figure n-4 Set Characteristic Buffer

The device type value is DT$ CRll. The device class value is
DC$ CARD. Table 6-4 lists the card reader characteristics for the Set
Characteristic function.

6.5 I/O STATUS BLOCK

The I/O status block (IOSB) format for QIO functions on the card
reader is shown in Figure 6-5. Table 6-5 lists the status returns for
these functions. Table 6-2 lists the device-dependent data returned
in the second longword. The 10$ SENSEMODE function can be used to
obtain this data. -

n-8

CARD READER DRIVER

31 16 15 0

byte count status

device-dependent data

Figure 6-5 IOSB Contents

Table 6-5
Status Returns for Card Reader

Status Meaning

SS$ NORMAL Successful completion of the operation specified - in the QIO request. The second word of the IOSB
can be examined to determine the actual number
of bytes written to the buffer.

SS$ DATAOVERRUN Data overrun. Column data was delivered to the - controller data buffer before previous data had
been read by the driver.

SS$ ENDOFFILE End-of-file condition. An end-of-file card was - encountered during the read operation.

IS-9

CHAPTER 7

MAILBOX DRIVER

VAX/VMS supports a virtual device, called a mailbox, that is used for
communication between processes. Mailboxes provide a controlled and
synchronized method for .processes to exchange data. Although
mailboxes transfer information in much the same way that other I/O
devices do, they are not actual devices. Rather, mailboxes are
software-implemented devices that can perform read and write
operations.

Multiport memory mailboxes function the same as regular mailboxes.
However, they can also be used by processes on different processors
that are connected to an MA780.

The VAX/VMS Real-Time User's Guide contains additional information on
the use of mailboxes.

7.1 MAILBOX OPERATIONS

Software mailboxes can be compared to the actual metal boxes used for
mail delivery. As shown in Table 7-1, both types of mailboxes perform
similar operations.

Operation

Receive Mail

Receive
Notification
of Mail

Table 7-1
Mailbox Read and Write Operations

Use of Conventional
Mailboxes

Resident checks mailbox to
see if any mail was delivered.
If so, picks it up, opens it,
and reads it.

The mail carrier leaves noti­
fication to the resident that
mail can be picked up at the
post office.

7-1

Use of VAX/VMS
Software Mailboxes

A process initiates a read
to a mailbox to obtain data
sent by another process.
The process reads data
if a message was
previously transmitted
to the mailbox.

A process specifies that it
wants to be notified
through an AST when a
message is sent to the
mailbox.

(continued on next page)

MAILBOX DRIVER

Table 7-1 (Cont.)
Mailbox Read and Write Operations

Operation
Use of Conventional

Mailboxes

t------------+---·------------·-----·-

Send Mail
(without
notification
of receipt)

Send Mail
(with notifi­
cation of
receipt)

Reject Mail

The resident leaves mail
addressed to another person
in the mailbox, but neither
waits for nor expects notif­
ication of its delivery.

The resident leaves mail
addressed to another person
in the mailbox and asks to
be notified of its delivery.

The resident discards
junk mail.

7.1.1 Creating Mailboxes

use of VAX/VMS
Software Mailboxes

A process initiates a write
request to a mailbox to
transmit data to another
process. The sending
process does not wait until
the data is read by the
receiving process before
completing the I/O operation.

·A process initiates a write
request to a mailbox to
transmit data to another
process. The sending
process waits until the
receiving process reads the
data before completing the
I/O operation.

The receiving process reads
messages from the mailbox,
sorts out unwanted messages,
and responds only to useful
messages.

A process uses the Create Mailbox and Assign Channel ($CREMBX) system
service to create a mailbox and assign a channel and logical name to
it. The system enters the logical name in either the system
(permanent mailbox) or group (temporary mailbox) logical name table
and gives it an equivalence name of MBAn, where n is a unique unit
number.

$CREMBX also establishes the characteristics of
characteristics include a protection mask,
maximum message size, and buffer quota.

the mailbox. These
permanence indicator,

Other processes can assign additional channels to the mailbox using
either $CREMBX or the Assign I/O Channel ($ASSIGN) system service.
The mailbox is identified by its logical name both when it is created
and when it is assigned channels by cooperating processes.

Figure 7-1 illustrates the use of $CREMBX and $ASSIGN.

Creating mailboxes requires privilege. If sufficient dynamic memory
for the mailbox data structure is not available, a resource wait will
occur if resource wait mode is enabled.

The programming example at the end of this chapter (Section 7.5)
illustrates mailbox creation and interprocess communication.

7-2

USER OR
SYSTEM
PROCESS
CREATES
MAILBOX

MAILBOX DRIVER

MAILBOX

EJ

B B
Figure 7-1 Multiple Mailbox Channels

7.1.2 Deleting Mailboxes

The system maintains a count of all channels assigned to a temporary
mailbox. As each process finishes using a mailbox, it deassigns the
channel using the Deassign I/O Channel ($DASSGN) system service. The
channel count is decremented by one. The system automatically deletes
the mailbox when no more channels are assigned to it (that is,· when
the channel count reaches 0).

Permanent mailboxes must be explicitly deleted using the Delete
Mailbox ($DELMBX) system service. This can occur at any time.
However, the mailbox is actually deleted when no processes have
channels assigned to it.

When a mailbox is deleted, its message buffer quota is returned to the
process that created it.

7.1.3 Mailbox Message Format

There is no standardized format for mailbox messages and none is
imposed on users. Figure 7-2 shows a typical mailbox message format.
Other types of messages can take different formats; for an example,
see Figure 2-1 in Section 2.2.5.

7-3

MAILBOX DRIVER

31 16 15 0

not used

data

Figure 7-2 Typical Mailbox Message Format

7.2 DEVICE INFORMATION

Users can obtain information on mailbox characteristics by using the
$GETCHN and $GETDEV system services (see Section 1.10). The
information is returned in a user-specified buffer. The first three
longwords of the buffer are shown in Figure 7-3 (Figure 1-9 shows the
entire buffer).

31 16 15 8 7 0
.....-------~ ---··,.- ·-···--····

device characteristics

buffer size

unused number of messages in mailbox

Figure 7-3 Mailbox Information

The first longword in the buffer contains the device characteristics
values listed in Table 7-2. The $DEVDEF macro defines these values.

Table 7-2
Mailbox Characteristics

Dynamic Bit
(Conditionally Set)

DEV$M SHR

DEV$M AVL

Static Bits
(Always Set)

DEV$M REC

DEV$M IDV

DEV$M ODV

DEV$M MBX

Meaning

Shareable device

Device is available

Record-oriented device

Device is capable of input

Device is capable of output

Mailbox device

7-4

MAILBOX DRIVER

The second longword of the buffer contains information on the device
class and type, and the buffer size. The device class is DC$ MAILBOX
The device type is DT$ MBX. The $DCDEF macro defines these symbols.
The buffer size is the-maximum message size in bytes.

7.3 MAILBOX FUNCTION CODES

The VAX/VMS mailbox I/O functions
end-of-file, and set attention AST.

are: read, write, write

No buffered I/O byte count quota checking is performed on mailbox I/O
messages. Instead, the byte count or buffer quota of the mailbox is
checked for sufficient space to buffer the message being sent. The
buffered I/O quota and AST quota are also checked.

7.3.1 Read

Read mailbox QIO requests are used to obtain messages written by other
processes. The three mailbox functions and their codes are:

• IO$ READVBLK - read virtual block

• IO$ READLBLK - read logical block

• IO$ READPBLK - read physical block

These function codes take two device/function-dependent arguments:

• Pl -- the starting virtual address of the buffer that is to
receive the message read

• P2 -- the size of the buffer in bytes (limited by the maximum
message size for the mailbox)

One function modifier can be specified with a QIO read request:

IO$M NOW -- the I/O operation is completed immediately with no
wait-for a write request from another process

Figure 7-4 illustrates the read mailbox functions; in this figure,
Process A reads a mailbox message written by Process B. As the figure
indicates, a mailbox read request requires a corresponding mailbox
write request (except in the case of an error). The requests can be
made in any sequence; that is, the read request can either precede or
follow the ~rite request.

Two possibilities exist if Process A issues a read request before
Process B issues a write request. If Process A did not specify the
function modifier IO$M NOW, Process A's request is queued during the
wait for Process B -to issue the write request. When this request
occurs, the data is transferred from Process B, through the system
buffers, to Process A to complete the I/O operation.

However, if Process A did specify the IO$M NOW function modifier, the
read operation is completed immediately. That is, Process A's request
is not queued during the wait for the message from Process B, and no
data is transferred from Process B to Process A.

7-5

MAILBOX DRIVER

If Process B sends a message (with no function modifier; see Section
7.3.2) before Process A issues a read request (with or without a
function modifier), Process A finds a waiting message in the mailbox.
The data is transferred and the I/O operation is completed
immediately.

To issue the read request, Process A can specify any of the read QIO
function codes; all perform the same operation.

0or0 0or0

READ QIO WRITE QIO

PROCESS
MAILBOX

PROCESS
A B

DATA DATA

0 0
NOTE: Numbers indicate order of events.

Figure 7-4 Read Mailbox

7.3.2 Write

Write mailbox QIO requests are used to transfer data from a process to
a mailbox. The three mailbox functions and their QIO function codes
are:

• IO$ WRITEVBLK write virtual block

• IO$ WRITELBLK write logical block

• IO$ WRITEPBLK write physical block

These function codes take two device/function-dependent arguments:

• Pl -- the starting virtual address of the buffer that contains
the message being written

• P2 -- the size of the buffer in bytes (limited by the maximum
message size for the mailbox)

One function modifier can be specified with a QLO write request:

IO$M NOW - the I/O operati-0n is completed immediately with no
wait-for another process to read the mailbox message

Figure 7-5 illustrates the write mailbox function; in this figure,
Process A writes a message to be read by Process B. As in the read
request example above, a mailbox write request requires a
corresponding mailbox read request (unless an error occurs), and the
requests can be made in any sequence.

Two possibilities exist if Process A issues a write request before
Process B issues a read request. If Process A did not specify the
function modifier IO$M NOW, Process A's write request is queued during
the wait for Process B to issue a read request. When this request

7-n

MAILBOX DRIVER

occurs, the data is transferred from Process A to Process B to
complete the I/O operation.

However, if Process A did specify the IO$M NOW function modifier, the
write operation is completed immediately. The data is available to
Process B and is transferred when Process B issues a read request.

If Process B issues a read request (with no function modifier) before
Process A issues a write request (with or without the function
modifier), Process A finds a waiting request in the mailbox. The data
is transferred and the I/O operation is completed immediately.

To issue the write request, Process A can specify any of the write QIO
function codes; all perform the same operation.

PROCESS
A

NOTE: Numbers indicate order of events.

MAILBOX

DATA

Figure 7-5 Write Mailbox

7.3.3 Write End-of-File Message

PROCESS
B

Write End-of-File Message QIO requests are used to insert a special
message in the mailbox. The process that reads the end-of-file
message is returned the status code SS$ ENDOFFILE in the I/O status
block. No data is transferred. This function takes no arguments or
function modifiers. VAX/VMS provides a single function code:

IO$ WRITEOF write end-of-file message

7.3.4 Set Attention AST

Set Attention AST QIO requests are used to specify that an AST be
given to notify the requesting process when a cooperating process
places an unsolicited read or write request in a designated mailbox.
Because the AST only occurs when the read or write request arrives
from a cooperating process, the requesting process need not repeatedly
check the mailbox status.

The Set Attention AST functions and their function codes are:

• 10$ SETMODE!IO$M READATTN - read attention AST - -
e !0$ SETMODE!IO$M WRTATTN - write attention AST - -

7-7

MAILBOX DRIVER

These function codes take two device/function-dependent arguments:

• Pl -- AST address (request notification is disabled if the
address is O)

• P2 -- AST parameter returned in the argument list when the AST
service routine is called

• P3 -- access mode to deliver AST; maximized with requester's
mode

These functions are one-time AST enables; they must be explicitly
reenabled once the AST has been delivered if the user desires
notification of the next unsolicited request. Both types of enables,
and more than one of each type, can be set at the same time. The
number of enables is limited only by the AST quota for the process.

Figure 7-6 illustrates the write attention AST function. In this
figure, an AST is set to notify Process A when Process B sends an
unsolicited message.

Process A uses the IO$ SETMODE!IO$M WRTATTN function to request an
AST. When Process B sends a message to the mailbox, the AST is
delivered to Process A. Process A responds to the AST by issuing a
read request to the mailbox. The function modifier IO$M NOW is
included in the read request. The data is then transferred to
complete the I/O operation.

If several requesting processes have set ASTs for unsolicited messages
at the same mailbox, all ASTs are delivered when the first unsolicited
message is placed in the mailbox. However, only the first process to
respond to the AST with a read request receives the data. Thus, when
the next process to respond to an AST issues a read request to the
mailbox, it may find the mailbox empty. If this request does not
include the function modifier IOSM NOW, it will be queued during the
wait for the next message to arrive in the mailbox.

AST SPECIFIED BY
10$_SETMODE
!10$M_WRTATTN

AST

PROCESS
A

DATA

NOTE: Numbers indicate order of events.

MAILBOX
PROCESS

B

Figure 7-6 Write Attention AST (Read Unsolicited Data)

7-8

MAILBOX DRIVER

Figure 7-7 illustrates the r~ad attention AST function. In this
figure, an AST is set to notify Process A when Process B issues a read
request for which no message is available.

Process A uses the IO$ SETMODE!IO$M READATTN function to specify an
AST. When Process B Tssues a read-request to the mailbox, the AST is
delivered to Process A. Process A responds to the AST by sending a
message to the mailbox. The data is then transferred to complete the
I/O operation.

If several requesting processes have set ASTs for read requests at the
same mailbox, all ASTs are delivered when the first read request is
placed in the mailbox. Only the first process to respond with a write
request is able to transfer data to Process B.

8
AST SPECIFIED BY

10$_SETMODE
!10$M_READATTN

AST

PROCESS
A

©
NOTE: Numbers indicate order of events.

MAILBOX

Figure 7-7 Read Attention AST

7.4 I/O STATUS BLOCK

DATA

PROCESS
B

The I/O status blocks (IOSB) for mailbox read and write QIO functions
are shown in Figures 7-8 and 7-9. Table 7-3 lists the status returns
for these functions.

+2 IOSB

byte count status

sender process identification (Pl D) *

+4
*O if the sender was a system process

Figure 7-8 IOSB Contents - Read Function

7-9

MAILBOX DRIVER

+2 IOSB
-

byte count status

receiver process identification (PIO)*

~-~~

+4
*o if 10$M_NQW was specified

Figure 7-9 IOSB Contents - Write Function

Status

SS$ NORMAL

SS$ ENDOFFILE

SS$ NOPRIV

SS$ ACCVIO

SS$ MBTOOSML

SS$ MBFULL

SS$ INSFMEM

Table 7-3
Mailbox QIO Status Returns

-··---------------------------·--
Meaning

--··--""---·---·--·--··-----------------------f

Successful completion. The operation specified
in the QIO was completed successfully. The
second word of the IOSB can be examined to
determine the number of bytes transferred.

No message available at the mailbox
end-of-file (IO$_ENDOFFILE) message read.

or

Access denied. The requesting process does not
have the privilege to read or write to this
mailbox. (The protection mask is defined when
the mailbox is created.)

Buffer access violation. User buffer is not
accessible to the requesting process.

Mailbox too small. The request is for a message
that will not fit in the mailbox. Maximum
message size is established when the mailbox is
created.

Mailbox full. The mailbox is full and resource
wait mode is not enabled.

Insufficient dynamic memory for the request.
Resource wait mode is not enabled.

7.5 PROGRAMMING EXAMPLE

The following program creates a mailbox and puts some mail in it; no
matching read is pending on the mailbox. First, the program
illustrates that if the function modifier IO$M NOW is not used when
mail is deposited, the write function will waiI until a read operation
is performed on the mailbox. In this case, IO$M NOW is specified and
the program continues after the mail is left in the mailbox.

Next, the mailbox is read. If there was no mail in the mailbox the
program would wait at this point because IO$M NOW is not specified.
IO$M NOW should be specified if there is any doubt concerning the
avaiTability of data in the mailbox and it is important for the
program not to wait.

7-10

MAILBOX DRIVER

It is up to the user to coordinate what data goes into and out of
mailboxes. In this example the process reads its own message.
Normally, two mailboxes are used for interprocess communication: one
for sending data from process A to process B, and one for sending data
from process B to process A. If a program is arranged in this manner,
there is no possibility of a process reading its own message.

MAILBOX DRIVER PROGRAMMING EXAMPLE
1011

Define necessary symbols

SIDDEF ;Define 110 function codes

Allocate storage for necessary data structures

Allocate terminal device name strinq and descriptor

oi::v ICl::-DESCR:
.LONG
• LONG

lOS: .ASCII
20$:

2os-1os
10$
/TERMINAL/

;Length of name string
;Address of name string
;Name string of output device
;Reference label

; Allocate space to store assiqned channel number ,
DEV l C r.;_c HAN NE L :

.flLKW ;channel number

Allocate mailbox name ~tring and descriptor

MAILBUX_NAr-1£:
.LONG
.LONG

NAMi'.:BUX: .ASCII
ENOHOX·NAMEBOX
NA"IEAOX
/146_MAIN_ST/

;Length ot name string
;Address of name string
;Name string

~NDBOX: ;Reference label

! Allocate space to store assigned channel number ,
MAILBOX-CHANNEL:

:channel number .BLKW 1

1 Now allocate space to store the outgoing and incoming messages

fN_BOX-BUFFER:
.BLKB 40
IN-LENGTH=.•IN-AOX-BUFFl::R

;Allocate 40 bytes for received message
;Define input buffer length

OUT-BOX-BUFFER:
.ASCII /SHF.EP ARE VERY DIM/ ;Message to send

OUT-LENGTH:. •OIJT_BOX-BUFFER ;Define length of message to send

Now allocate space for the I/O status quadword

STATUS: .OUAD ;l/U status quadword

Now tne Proqram. A mailbox is created and a channel is assigned
to the terminal. A message is put in the mailbox and a message
is received from the mailbox Cthe same message).The contents of
the mailbox Are then Printed on the terminal.

STAR'f: • WORD 0 ; Entry ma sic
SCREMBX_s CHAN=~AILBOX-CHANNEL,-;Channel is tne mailbox

PROMSK=#AXOOOO,- ;No protection
BUFQUO=#AX0060,- ;Butter quota is hex 60
LDG~AM=MAILBOX-NAME,- ;Logical name descriptor
MAXMSG=#AX0060 ;Maximum message is hex 60

CMPW #SS$_NORMAL,RO ;Test for normal return
BSBW ERROR-CHECK ;See if all well
SASSIGN_s -;Assign Channel

DEVNAM=DEVICE-DESCR -;Device descriptor
CHA~=DEVICE-CHANNEL ;Channel

CMPW #SSS-NORMAL,RO ;Test tor normal return
HSBw ERROR-CHECK ;See if all is well

7-11

MAILBOX DRIVER

Now we will write the message to the mailbox using the function
modifier IOSM_NOW so that we may continue without waiting for a
read on the mailbox

SOIOw_s fUNC=#IO$_wRITEVBLK!IOSM-NOWl- ;write message NOW
CHAN=MAILBOX-CHANNEL,- ;to the mailbox Channel
Pl=OUT-BOX-BUFF~R,- ;Buffer to write
P2=#0UT-LENGTH ;How mucn to write

CMPW #SS$_NORMAL,RO ;Test for normal return
BSBW ERROR-CHECK ;see it all is well

Now the mailbox is read

sornw_s

CMP~
BSBW

FUNC=#IOS-R~ADVBLK •
CHAN:MAILBOX-CHANNEL,•
IDSB:S'f ATUS •
Pl:IN-BOX-BUFFER,•
P2=#IN-LENGTH
#SSS-NORMAL,RO
ERROR-CHECK

;read box
;Mailbox channel
;Define status to receive message length
;wnere to read it
;How much
;Test for normal return
;see if all is well

Now we find out how mucn mail was in the box and print it to the terminal
The amount of mail read is held in STATUS+2

MOVZWL STATUS+2 R2
sorow_s FUNC=#IOS-WFITEVBLK,­

CHAN=DEVICE-CHA~NEL,­
Pl:IN-AOX-BUFFER,•
P2:R2 1 •
P4:#3l

;Put brte count into R2
;Funct on is write
;To the terminal
;Address ot butter to write
;How mucn to write
;Carriage control ClH ,)

we now deassiqn the channel and exit

EXIT: SDASSGN_S CHAN=OEVICE_CHANN~L ;Deassign channel
RET ;Return

This is the error checking part of the program. Normally some Kind ot
error recovery would be attempted nere but not tor this example.

t:RROR-CHECK:
BNEO
RSB

EXIT

.END START

;Directive tailed so exit
;E:lse return

7-12

CHAPTER 8

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

This chapter describes the use of the VAX/VMS DMCll Synchronous
Communications Line Interface driver. The DMCll provides a
direct-memory-access (DMA) interface between two computer systems
using the DIGITAL Data Communications Message Protocol (see Section
8.1.l below). The DMCll supports DMA data transfers of up to 16K
bytes at rates of up to 1 million baud for local operation (over
coaxial cable) and 56,000 baud for remote operation (using modems).
Both full- and half-duplex modes are supported.

The DMCll is a message-oriented communications line interface that is
used primarily to link two separate but cooperating computer systems.

8.1 SUPPORTED DMCll SYNCHRONOUS LINE INTERFACES

Table 8-1 lists the DMCll options supported by VAX/VMS.

DMCll-AR
DMCll-AR

DMCll-AL
DMCll-AL

Table 8-1
Supported DMCll Options

Type Use

with DMCll-FA Remote DMCll and
with DMCll-DA line unit

with DMCll-MD Local DMCll and
with DMCll-MA bps

8.1.1 DIGITAL Data Communications Message Protocol

-·--

EIA

lM

or V35/DDS

bps or Sn

To ensure reliable data transmission, the DIGITAL Data Communications
Message Protocol (DDCMP) has been implemented, using a high-speed
microprocessor, on the VAX-11/780 processor. For remote operations, a
DMCll can communicate with a different type of synchronous interface
(or even a different type of computer), provided the remote system has
implemented DDCMP, version 4.

DDCMP detects errors on the communication line interconnecting the
systems using a 16-bit Cyclic Redundancy Check (CRC). Errors are
corrected, when necessary, by automatic message retransmission.
Sequence numbers in message headers ensure that messages are delivered
in the proper order with no omissions or duplications.

8-1

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

The DDCMP specification (Order No. AA-D599A-TC) provides more detailed
information on DDCMP.

8.2 DRIVER FEATURES AND CAPABILITIES

DMCll driver capabilities include:

• A nonprivileged QIO interface to the DMCll. This allows use
of the DMCll as a raw-data channel.

• Unit attention conditions transmitted through attention ASTs
and mailbox messages.

• Both full- and half-duplex operation.

• Interface design common to
supported by VAX/VMS.

all communications devices

• Error logging of all DMCll microprocessor and line unit
errors.

• Online diagnostics.

• Separate transmit and receive quotas •

• Assignment of several read buffers to the device.

The following sections describe mailbox usage and I/O quotas.

8.2.1 Mailbox Usage

The device owner process can associate a mailbox with a DMCll by using
the $ASSIGN system service (see Section 7.1.2). The mailbox is used
to receive messages that signal attention conditions about the unit.
As illustrated in Figure 8-1, these messages have the following
content and format:

• Message type; this can be any one of the following:

Message type

MSG$ XM DATAVL
MSG$-XM-SHUTDN
MSG$-XM-ATTN

Meaning

Data is available
Unit has been shutdown
A disconnect, timeout, or
check occurred

The $MSGDEF macro is used to define message types

• Physical unit number of the DMCll

• Size (count) of the ASCII device name string

• Device name string

8-2

data

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

31 16 15 8 7 0

unit type

count

device name

Figure 8-1 Mailbox Message Format

8.2.2 Quotas

Transmit operations are considered direct I/O operations and are
limited by the process's direct I/O quota.

The quotas for the receive buffer free list (see Section 8.4.3.4) are
the process's buffered I/O count and buffered I/O byte limit. After
start up, the transient byte count and the buffered I/O byte limit are
adjusted.

8.2.3 Power Failure

When a system power failure occurs, no DMCll recovery is possible.
The device is in a fatal error state and is shut down.

8.3 DEVICE INFORMATION

Users can obtain information on device characteristics by using the
$GETCHN and $GETDEV system services (see Section 1.10). The
information is returned in a user-specified buffer shown in Figure
8-2. Only the first three longwords of the buffer are shown in Figure
8-2 (Figure 1-9 shows the entire buffer).

31 24 23 16 15 8 7 0

device characteristics

maximum message size type class

-

not used error summary status characteristics

Figure 8-2 DMCll Information

The first longword in the buffer contains the device characteristics
values listed in Table 8-2. The $DEVDEF macro defines these values.

8-3

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

Table 8-2
DMCll Device Characteristics

Dynamic bit
(Conditionally Set}

DEV$M NET

Static bits
(Always Set}

DEV$M ODV
DEV$M-IDV

Meaning

Network device

Output device
Input device

The second longword contains information on the device class and type,
and the maximum message size. The device class for the DMCll is
DC$ SCOM. Table 8-3 lists the device types. The device class and
types are defined by the $DCDEF macro.

Table 8-3
DMCll Device Types

Device Type

1-------····---··· ·--·-··-·

OT$ XM ARDA

OT$ XM ARFA

DT$ XM ALMD

OT$ XM ALMA

. 1 Meaning

DMCll-AR with DMCll-DA

DMCll-AR with DMCll-FA

DMCll-AL with DMCll-MD

DMCll-AL with DMCll-MA

1. Table 8-1 describes the different device types

The maximum message size is the maximum send or receive message size
for the unit. Messages greater than 512 bytes on modem controlled
lines are more prone to transmission errors and therefore may require
more retransmissions.

The third longword contains unit characteristics and status, and an
error summary.

Unit characteristics bits govern the DDCMP operating mode. They are
defined by the $XMDEF macro and can be read or set. Table 8-4 lists
the unit characteristics values and their meanings.

8-4

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

Table 8-4
DMCll Unit Characteristics

Characteristic

XM$M CHR_M9P

XM$M CHR SLAVE

XM$M CHR HDPLX

XM$M CHR LOOPB

XM$M CHR MBX

Meaning 1

DDCMP maintenance mode

DDCMP half-duplex slave station

DDCMP half-duplex

DDCMP loop back

Shows the status of the mailbox
that can be associated with the
unit; if this bit is set, the
mailbox is enabled to receive
messages signaling unsolicited
data. (This bit can also be
changed as a subfunction of read
or write QIO functions)

1. Section 8.1.1 describes DDCMP

The status bits show the status of the unit and the line. The values
are defined by the $XMDEF macro. They can be read, set, or cleared as
indicated. Table 8-5 lists the status values and their meanings.

Table 8-5
DMCll Unit and Line Status

Status

XM$M STS ACTIVE

XM$M STS TIMO

XM$M STS ORUN

XM$M STS DCHK

XM$ M STS DISC

Meaning

Protocol is active. This bit is
set when IO$ SETMODE!IO$ STARTUP
is done and- cleared when the
unit is shut down. (Read only.)

Timeout. If set, indicates that
the receiving computer is
unresponsive. DDCMP time outs.
(Read or clear.)

Data overrun. If set, indicates
that a message was received but
lost due to the lack of a
receive buffer. (Read or
clear.)

Data check. If set, indicates
that a retransmission threshold
has been exceeded. (Read or
clear.)

If set, indicates that the Data
Set Ready (DSR) modem line went
from on to off. (Read or
clear.)

8-5

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

The error summary bits are set only when the driver must shut down the
DMCll because a fatal error occurred. These are read-only bits that
are cleared by any of the IO$ SETMODE functions (see Section 8.4.3).
The XM$M STS ACTIVE status -bit is clear if any error summary bit is
set. Table s=n lists the error summary bit values and their meanings.

Error Summary
Bit

XM$M ERR MAINT

XM$M ERR START

XM$M ERR LOST

XM$M ERR FATAL

Table 8-fi
Error Summary Bits

___ ,,.,., _________ . ___ _

DDCMP
received

Meaning

maintenance

message

DDCMP START message received

Data was lost when a message was
received that was longer than
the specified maximum message
size.

An unexpected hardware/software
error occurred.

8.4 DMCll FUNCTION CODES

The basic DMCll function codes are read, write, ·and set mode. All
three functions take function modifiers.

8.4.l Read

VAX/VMS provides three read function codes:

• IO$ READLBLK - read logical block

• IO$ READPBLK - read physical block -
• IO$ READVBLK - read virtual block

Received messages are multi-buffered in system dynamic memory and then
copied to the user's address space when the read operation is
performed.

The QIO arguments for the three function codes are:

• Pl -- the starting virtual address of the buffer that is to
receive data

• P2 -- the size of the receive buffer in bytes

The read QIO functions can take two function modifiers:

• IO$M DSABLMBX - disable use of the associated mailbox for
unsolicited data notification

• IO$M NOW - complete the read operation immediately if no
message is available

8-6

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

8.4.2 Write

VAX/VMS provides three write QIO function codes:

• !0$ WRITELBLK - write logical block

• !0$ WRITEPBLK - write physical block

• IO$ WRITEVBLK - write virtual block

Transmitted messages are sent directly from the requesting process's
buffer.

The QIO arguments for the three function codes are:

• Pl -- the starting virtual address of the buffer containing
the data to be transmitted

• P2 -- the size of the buffer in bytes

The message size specified by P2 cannot be larger than the maximum
send message size for the unit (see Section 8.3). If a message larger
than the maximum size is sent, a status of SS$ DATAOVERUN is returned
in the I/O status block.

The write QIO functions can take one function modifier:

• IO$M ENABLMBX - enable use of the associated mailbox

8.4.3 Set Mode

Set mode operations are used to perform protocol, operational, and
program/driver interface operations with the DMCll. VAX/VMS defines
five types of set mode functions:

• Set Mode

• Set Characteristics

• Enable Attention AST

• Set Mode and Shut Down Unit

• Set Mode and Start Unit

8.4.3.1 Set Mode and Set Characteristics - These functions set device
characteristics such as maximum message size. VAX/VMS provides two
function codes:

• IO$ SETMODE - set mode (requires logical I/O privilege)

• IO$ SETCHAR - set characteristics (requires
privilege)

One argument is used with these function codes:

physical I/O

Pl -- the virtual address of the quadword characteristics buffer
block if the characteristics are to be set. If this argument is
zero, only the unit status and characteristics are returned in
the I/O status block (see Section 8.5). Figure 8-3 shows the Pl
characteristics block.

8-7

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

Figure 8-3 Pl Characteristics Block

In the buffer designated by Pl the device class is DC$ SCOM. Table
8-3 (in Section 8.3) lists the device types. The maximum message size
describes the maximum send or receive message size.

The second longword contains device/function-dependent characterises:
unit characteristics, status, and error summary bits. Any of the
characteristics values and some of the status values can be set or
cleared (see Tables 8-4, 8-5, and 8-6).

If the unit is active (XM$M STS ACTIVE is set), the action of a Set
Mode or Set Characteristici fuiiction with a characteristics buffer is
to clear the status bits or the error summary bits. If the unit is
not active, the status bits or the error summary bits can be cleared,
and the maximum message size, type, device class, and unit
characteristics can be changed.

8.4.3.2 Enable Attention AST - This function enables an AST to be
queued when an attention condition occurs on the unit. An AST is
queued when the driver sets or clears either an error summary bit or
any of the unit status bits, or when a message is available and there
is no waiting read request. The Enable Attention AST function is
legal at any time, regardless of the condition of the unit status
bits.

VAX/VMS provides two function codes:

• IO$ SETMODE!IO$M ATTNAST - enable attention AST

• IO$ SETCHAR!IO$M ATTNAST - enable attention AST - -
Enable Attention AST is a single (one-time) enable. After the AST
occurs, it must be explicitly reenabled by the function before the AST
can occur again. The function code is also used to disable the AST.
The function is subject to AST quotas.

The Enable Attention AST functions take the following device/function
dependent arguments:

e Pl address of AST service routine or 0 for disable

• P2 (ignored)

e P3 access mode to deliver AST

The AST service routine is called with an argument list. The first
argument is the current value of the device/function dependent
characteristics longword shown in Figure 8-3. The access mode
specified by P3 is maximized with the requester's access mode.

8-8

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

8.4.3.3 Set Mode and Shut Down Unit - This function stops the
operation on an active unit (XM$M STS ACTIVE must be set) and then
resets the unit characteristics. - -

VAX/VMS provides two function codes:

• IO$ SETMODE!IO$M SHUTDOWN - shut down unit

e IO$ SETCHAR!IO$M SHUTDOWN - shut down unit - -
These codes take one device/function dependent argument:

Pl -- the virtual address of the quadword characteristics block
(Figure 8-3) if modes are to be set after shutdown. Pl is 0 if
modes are not to be set after shutdown.

These functions stop the DMCll microprocessor and release all
outstanding message blocks; any messages that have not been read are
lost. The characteristics are reset after shutdown. Except for the
signaling of attention ASTs and mailbox messages, the action of these
functions is the same as the action of the driver when shutdown occurs
because of a fatal error.

8.4.3.4 Set Mode and Start Unit - This
characteristics and starts the protocol on
VAX/VMS provides two function codes:

• IO$ SETMODE!IO$M STARTUP - start unit

• IO$ SETCHAR!IO$M STARTUP - start unit

function sets the
the associated unit.

These codes take the following device/function dependent arguments:

• Pl -- the virtual address of the quadword characteristics
block (Figure 8-3) if the characteristics are to be set.
Characteristics are set before the device is started.

e P2 (ignored).

• P3 the number of pre-allocated receive-message blocks to
ensure the availability of buffers to receive messages.

The total quota taken from the process's buffered I/O byte count quota
is the DMCll work space plus the number of receive-message buffers
specified by P3 times the maximum message size. For example, if six
200-byte, buffers are required, the total quota taken is 1456 bytes:

256 (DMCll work space)
+ 1200 (number of buffers X buffer size)

1456 (total quota taken)

This quota is returned to the process when shutdown occurs.

Receive-message blocks are used by the driver to receive messages that
arrive independent of QIO read request timing. When a message
arrives, it is matched with any outstanding read requests. If there
are no outstanding read requests, the message is queued and an
attention AST or mailbox message is generated.
(IO$ SETMODE!IO$M ATTNAST or IO$ SETCHAR!IO$M ATTNAST must be set to
enable an attention AST; IO$M ENABLMBX must be used to enable a
mailbox message.) -

8-9

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

When read, the receive-message block is returned to the
receive-message "free list" defined by P3. If the "free list" is
empty, no receive-messages are possible. In this case, a data lost
condition can be generated if a message arrives. This nonfatal
condition is reported by device-dependent data and an attention AST.

8.5 I/O STATUS BLOCK

The I/O status block (IOSB) usage for all DMCll QIO functions is shown
in Figure 8-4. Table 8-7 lists the status returns for these
functions.

+2 IOSB

transfer size status

device-dependent characteristics

Figure 8-4 IOSB Content

In Figure 8-4, the transfer size at IOSB+2 is the actual number of
bytes transferred. Table 8-4 lists the device-dependent
characteristics returned at IOSB+4. These characteristics can also be
obtained by using the $GETCHN and $GETDEV system services (see Section
8. 3) •

Status

SS$ ABORT

SS$ DATAOVERUN

SS$ ENDOFFILE

SS$ NORMAL

SS$ DEVOFFLINE

SS$ DEVACTIVE

Table 8-7
Status Returns for DMCll

Meaning

Fatal hardware error or
progress.

I/O canceled in

Message received overran buffer
(read), or message too big (write).

allocated

No data available (read) when IO$M NOW was
specified.

Operation was successfully completed
write, or set modes).

(read,

Device protocol not started (read or write).
The function is inconsistent with the current
state of the unit (Set Mode).

The function is inconsistent with the current
state of the unit •

. _ ____ ~ ··-·· -·····-·-·· .. ···-· ·-··· ------·· ·------ ·---------------'

8-10

CHAPTER 9

QIO INTERFACE TO FILE SYSTEM ACPS

An ancillary control process (ACP) is a process that interfaces
between the user process and the driver, and performs functions that
supplement the driver's functions. Virtual I/O ope~ations involving
file-structured devices (disks and magnetic tapes) often require ACP
intervention. In most cases, ACP intervention is requested by VAX-11
Record Management Services (RMS) and is transparent to the user
process. However, user processes can request ACP functions directly
by issuing a QIO request and specifying an ACP function code, as shown
in Figure 9-1.

The DECnet User's Guide describes network ACP (NETACP) interface
operations.

•
User

Process J l Driver

- l
ACP r .

Figure 9-1 ACP QIO Interface

This chapter describes the QIO interface to ACPs for disk and magnetic
tape devices (file system ACPs). The sample program in Chapter 4
performs QIO operations to the magnetic tape ACP.

9.1 FILE INFORMATION BLOCK

The File Information Block (FIB) contains much of the information that
is exchanged between the user process and the ACP. Figure 9-2 shows
the format of the FIB. Because the FIB is passed by a descriptor (Pl
in Figure 9-7), its length can vary. Thus a short FIB can be used in
ACP calls that do not need arguments toward the end of the FIB. The
ACP automatically zero-extends a short FIB. Figure 9-3 shows the
format of a typical short FIB, in this case one that would be used to
open an existing file. Table 9-1 lists the values of these FIB
fields.

9-1

QIO INTERFACE TO FILE SYSTEM ACPS

31 24 23 16 15 8 7 0

FIB$B_WSIZE FIB$L_ACCTL

1------' , _______________ ··--···· ·---·-·-·-·---·------------------------!

FIB$W_FID

FIB$W_DID

FIB$L_WCC

F IB$W_CNTR LFUNC/F IB$W_EXCTL FIB$W_NMCTL

FI B$L_CNTR LVAL/F I B$L_EXSZ

-------·---·-------- ----------------!

FIB$L_EXVBN

i------·--~-~-~-~- _____ ,_ _ _,,, ... __ .. _ ---- -----r------· -----.----------·-----1

FIB$B_ALALIGN FIB$B_ALOPTS

FIB$W_ALLOC

.......__________________ ------

31

Figure 9-2 File Information Block Format

24 23

FIB$B_WSIZE
[~

FIB$W_DID

16 15 8 7 0

FIB$L_ACCTL

~~-------Fl-B$_W ___ F_ID--------i

FIB$L_wcc

----·- - ·--.--------·----·--------------------- --·--·-· -------

FIB$W_NMCTL

--o
etc.

Figure 9-3 Typical Short File Information Block

9-2

Field

FIB$L ACCTL

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1
Contents of the File Information Block

Field Values

FIB$M WRITE

FIB$M NOREAD

FIB$M NOWRITE

FIB$M NOTRUNC

FIB$M DLOCK

FIB$M _SEQONLY

FIB$M REWIND

FIB$M CURPOS

FIB$M UPDATE

Meaning

Specifies field values that
control access to the file.
The following bits are defined:

Set for write access;
for read-only access.

clear

Set to deny read access to
others. (The user also must
have write privilege to the
file.)

9-3

Set to deny write access to
others.

Set to prevent the
being truncated;
allow truncation.

file from
clear to

Set to enable
(close check).
devices.

deaccess lock
Only for disk

Used to flag a file as
inconsistent in the event the
program currently modifying the
file terminates abnormally. If
the program then closes the
file without performing a write
attributes operation, the file
is marked as locked and cannot
be accessed until it is
unlocked.

Set for sequential-only access.
Only for disk devices.

Set to rewind magnetic tape
before access.

Set to create magnetic tape
file at current position (note:
a magnetic tape file will be
created at the end of the
volume set if neither
FIB$M REWIND nor FIB$M CURPOS
is set). If the tape Ts not
positioned at the end of a
file, FIB$M CURPOS creates a
file at the next file position.

Set to position at start of a
magnetic tape file when opening
file for write; clear to
position at end-of-file.

(continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Field Values Meaning
----------------------- !--------··-·-·· ·····--··---------------t

FIB$L ACCTL
(Cont:)

J.i'IB$B WSIZE

FIB$W FID

FIB$M PRSRV ATR

FIB$M READCK

FIB$M WRITECK

FIB$M EXECUTE

FIB$M RMSLOCK

FIB$W FID NUM

9-4

Set to use span attribute
recorded in system -dependent
attribute area. Only for
magnetic tape devices

Set to enable read ch ecking of
the file.

Set to enable write c hecking of
the file.

Set to access the file in
execute mode. The protection
check is made against the
EXECUTE bit instead of the READ
bit. Valid only for requBsts
issued from EXEC or KERNEL
mode.

Set to declare RMS record
locking on the file. All users
of a file must employ the same
configuration of this bit, that
is, if a file is opened with
RMS record locking, other
non-RMS users are locked out.
Valid only for requests issued
from EXEC or KERNEL mode.

Controls the size of the file
window used to map a disk file.
The ACP will use the volume
default if FIB$B WSIZE is O. A
value of 1 to 127 indicates the
number of retrieval pointers to
be allocated to the window. A
value of -1 indicates that the
window should be as large as
necessary to map the entire
file.

Specifies the file
identification. T he user
supplies the file identifier
when it is known; the ACP
returns the file identifier
when it becomes k nown, for
example, as a resu lt of a
create or director y lookup.
The following subf i elds are
defined:

File number

(continuBd on next page)

Field

FIB$W FID
(Cont:-}

FIB$W DID

FIB$L wee

FIB$W NMCTL

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.}
Contents of the File Information Block

Field Values

FIB$W FID_SEQ

FIB$W FID RVN

FIB$W DID NUM

FIB$W DID_SIQ

FIB$W DID RVN

FIB$M WILD

FIB$M ALLNAM

FIB$M ALLTYP

FIB$M ALLVER

Meaning

File sequence number

Relative volume number

Contains the fil~ identifier of
the directory file. The
following subfields are
defined:

File number

File sequence number

Relative volume number

Maintains position context when
processing wild card directory
operations

Controls the processing of a
name string in a directory
operation. The following bits
are defined:

Set if name string contains
wild cards

Set to match all name field
values

Set to match all field type
values

Set to match all version field
values

FIB$M NEWVER Set to create file of same name - with next higher version
number. Only for disk devices.

FIB$M_SUPERSEDE Set to supersede an existing
file of the same name type, and
version. Only for disk
devices.

FIB$M FINDFID

FIB$M LOWVER

Set to search a directory for
the file identifier in
FIB$W FID

Set on return from a CREATE if
a lower numbered version of the
file exists. Only for disk
devices •

.___ ________ ____,,____ ________ --'------------ -·~ --·-------'
(continued on next page}

9-5

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Field Values Meaning
!-----···-··--·--··--·· ---+-----------+----------·------------!

FIB$W NMCTL
(Cont:-)

FIB$W EXCTL

FIB$M HIGHVER

FIB$M EXTEND 1

FIB$M TRUNC l

FIB$M NOHDREXT

FIB$M ALCON

FIB$M ALCONB

FIB$M FILCON

FIBSM ALDEF

FIB$M MARKBAD

FIB$M ALLOCATR

Set on return from a CREATE if
if a higher numbered version of
the file exists. Only for disk
devices.

Specifies extend control for
disk devices. The following
bits are defined:

Set to enable extension

Set to enable truncation

Set to inhibit generation of
extension file headers

Allocate contiguous space

Allocate contiguous
best effort

Mark file contiguous

space;

Allocate the extend size
(FIB$L EXSZ) or the system
default, whichever is greater

Set to deallocate blocks to the
bad block file during a
truncate operation

Set if placement control data
is present in the attribute
list. For compatibility mode
use.

FIB$W CNTRLFUNC Controls magnetic tape
functions and disk quota file
operations. This field
overlays FIB$W EXCTL. In an
ACPCONTROL function, the
FIB$W CNTRLFUNC field can
contain one of the following
values:

FIB$C REWINDFIL Rewind to beginning of file

FIB$C POSEND Position to end of volume set

FIB$C NEXTVOL Force next volume

1. Only one of these can be set at one time; that is, extension
cannot be enabled at the same time truncation is enabled, and vice
versa.

(continued on next page)

9-n

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field

FIB$W CNTRLFUNC
(Cont7)

FIB$L EXSZ

Field Values

FIB$C SPACE

Meaning

Space n blocks forward or in
reverse

FIB$C REWINDVOL Rewind to beginning of volume
set

FIB$C_ENA_QUOTA Enable the disk quota filel

FIB$C_DSA_QUOTA Disable the disk quota filel

FIB$C_ADD_QUOTA

FIB$C_EXA QUOTA

Add an entry to the disk
filel

Examine
entryl

a disk quota

quota

file

FIB$C_MOD_QUOTA Modify a disk quota file entry 1

FIB$C_REM_QUOTA Remove a disk quota file entryl

FIB$C LOCK VOL Allocation lock the volume 1

FIB$C UNLK VOL Unlock the volume.
FIB$C LOCK VOL.1

Cancels

Specifies the number of blocks
to allocate to, or remove from,
a disk file depending on the
FIB$W EXCTL field
configuration. For truncate
operations, this field must
contain O.

The number of blocks actually
allocated or removed is
returned in this longword. The
value may differ from the
user-requested value because of
adjustments for cluster
boundaries. More blocks are
allocated and fewer blocks
removed to meet cluster
boundaries.

1. Table 9-6 describes the disk quota and lock/unlock bits in greater
detail.

(continued on next page)

9-7

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Field Values Meaning
t-------------t----------+---------------------~

FIB$L CNTRLVAL

FIB$M ALL MEM

FIB$M ALL GRP

FIB$M MOD PERM

FIB$M MOD USE

FIB$L EXVBN

Specifies magnetic tape block
movements or disk quota file
functions. This field overlays
FIB$L EXSZ.

If FIB$C SPACE is indicated,
the F!BSL CNTRLVAL field
specifies the number of
magnetic tape blocks to space
forward if positive or space
backward if negative.

The following bits are defined
for disk quota file operations:

Wild card
quota file
members

Wild
quota
groups

card
file

through the disk
and match all UIC

through the disk
and match all UIC

If FIB$C MOD QUOTA is
specified, change-the permanent
disk quota

If FIBSC MOD QUOTA is
specified, change the usage
data. The volume must be
locked by FIB$C LOCK VOL. This
operation requires write access
to the disk quota file.

Specifies the starting disk
file virtual block number at
which the allocated blocks are
to appear in an extend
operation, or the first virtual
block number to be removed in a
truncate operation. For extend
operations, this field must
contain either the end-of-file
block number plus 1, or o. For
truncate operations, this field
specifies the first virtual
block number to be removed.
The actual starting· virtual
block number of the extend or
truncate operation is returned
in this field.

,__ __________ ~ ________ ____._ __________ ,. ------···-·-----'
(continued on next page)

9-8

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Field Values Meaning
!-----------~------------· ···--+---------~·--·- ~-

FIB$B ALOPTS

FIB$M EXACT

FIB$M ONCYL

FIB$B ALALIGN

(zero)

FIB$C CYL

FIBSC LBN

FIB$C VBN

FIB$C RF!

9-9

Contains option bits
control the placement
allocated blocks.
following bits are defined:

that
of

The

Set to require exact placement;
clear to specify approximate
placement.

Set to locate allocated space
within a cylinder

Contains the interpretation
mode of
(FIB$W ALLOC)
the following
specified:

the allocation
field. One of
values can be

No placement data. The
remainder of the allocation
field is ignored.

Location is specified as a
dummy longword, followed by a
word Relative Volume Number
(RVN), followed by a longword
cylinder number.

Location is specified as a
dummy longword, followed by a
word RVN, followed by a
longword Logical Block Number
(LBN) •

Location is specified as three
dummy words followed by a
longword Virtual Block Number
(VBN) of the file being
extended. A zero VBN or one
that fails to map indicates the
end of the file.

Location is specified as a
3-word file ID, followed by a
longword VBN in that file. A
zero file ID indicates the file
being extended. A zero VBN or
one that fails to map indicates
the end of that file.

(continued on next page)

Field

FIB$W ALLOC

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Values Meaning

-1--------------------·----·--"

FIB$W LOC FID

FIB$W LOC NUM - -
FIB$W_LOC_SEQ

FIB$W LOC RVN

FIB$W LOC ADDR

Contains the desired physical
location of the blocks being
allocated. Interpretation of
the field is controlled by the
FIB$B ALALIGN field. The
following subfields are

.defined:

3-word related file ID for RFI
placement

Related file number

Related file sequence number

Related file RVN or placement
RVN

Placement LBN, cylinder, or VBN

Table 9-2 shows which FIB fields and field values are used in the
respective QIO functions. Some of the FIB fields and values are
applicable only to disk devices or only to magnetic tape devices. See
Table 9-1.

Table 9-2
FIB Argument Usage in ACP Q~O Functions

Applicable Arguments

I/O Function

FIB Field Field Values

---------------·-""-""' __ ,. ______ ., _ _,1---------------
IO$ CREATE FIB$L ACCTL FIB$M WRITE

FIB$M-NOREAD
FIB$M-NOWRITE
FIB$M-NOTRUNC
FIB$M-DLOCK
FIB$M-SEQONLY
FIB$M-REWIND
FIB$M-CURPOS
FIB$M-UPDATE
FIB$M-PRSRV ATR
FIB$M-READCK
FIB$M-WRITECK
FIB$M EXECUTE
FIB$M-RMSLOCK

...___ ___________ .. _ .. __ ,,,, __ _____ ... _ ... , .. _ .. _ ·----------·--·--·- ___ ___________ ------
(continued on next page)

9-10

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2 (Cont.)
FIB Argument Usage in ACP QIO Functions

Applicable Arguments

I/O Function

IO$ CREATE
(CONT.)

FIB Field

FIB$B WSI ZE

FIB$W FID 1

FIB$W DID

FIB$W NMCTL

FIB$W EXCTL

FIB$L EXSZ

FIBSB ALOPTS

FIB$B ALALIGN

FIB$W ALLOC

Field Values

FIB$W FID NUM
FIB$W-FID-SEQ
FIB$W-FID-RVN - -
FIB$W DID NUM
FIB$W-DID-SEQ
FIB$W-DID-RVN

FIB$M NEWVER
FIB$M-SUPERSEDE
FIB$M-FINDFID
FIB$M-LOWVER 2
FIB$M-HIGHVER 2

FIBSM EXTEND
FIB$M-NOHDREXT
FIB$M-ALCON
FIB$M-ALCONB
FIBSM-FILCON
FIB$M-ALDEF
FIB$M-ALLOCATR

FIBSM EXACT
FIB$M-ONCYL

(zero)
FIBSC CYL
FIB$C-LBN
FIB$C-VBN
FIB$C-RFI

FIBSW LOC FID
FIBSW-LOC-NUM
FIB$W-LOC-SEQ
FIB$W-LOC-RVN
FIB$W-LOC-ADDR

1. If FIB$W DID= 0 and IO$M CREATE is not set; FIB$W FID is an
output argument if IO$M CREATE is set.

2. Output argument

(continued on next page)

9-11

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2 (Cont.)
FIB Argument Usage in ACP QIO Functions

-

Applicable Arguments

I/O Function

FIB Field Field Values

t-------··----------·-·---··-·-····---·· ·-····--···--- """>._,,_, --~· ~ . .,. -""----~--.................... , _ ___ ... ~, -----···-·······-· -----··-----~. -·---I

IO$ ACCESS FIB$L ACCTL FIB$M WRITE - - FIB$M -NO READ
FIB$M-NOWRITE
FIB$M -NOTRUNC -FIB SM DLOCK
FIB$M - SEQONLY
FIB$M -REWIND
FIB$M - CURPOS
FIB$M-UPDATE
FIB$M -PRSRV ATR
FIB$M READCK
FIB$M - WRIT ECK
FIB$M EXECUTE
FIB$M - RMS LOCK -

FIB$B WSIZE -
FIB$W FID 1 FIB$W FID NUM - FIB$W-FID - SEQ

FIB$W-FID - RVN -
FIB$W DID FIB$W DID NUM

FIB$W- -DID SEQ
FIB SW-DID - RVN - -

FIB$L wee 2
-

FIB$W NMCTL FIB$M WILD - FIB$M - ALLNAM
FIB$M - ALLTYP
FIB$M - ALL VER
FIB$M - FINDFID -

IO$ DEACCESS FIB$W EXCTL FIB$M TRUNC - -
FIB$L EXVBN -

IO$ MODIFY FIB$W FID 1 FIB$W FID NUM - FIB SW-FID - SEQ
FIB$W FID - RVN -

FIB$W DID FIB$W DID NUM
FIB$W - DID - SEQ
FIBSW-DID - RVN - -

-B•·---~-•• ___ ,,_.........--..-. ____ ,_ .__ _____ , -·--· .. ----·---... ··-----......

1. If FIB$W DID is O; FIB$W FID is an output argument if FIB$W DID is
not 0. -

2. If FIB$M WILD is set.

(continued on next page)

9-12

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2 (Cont.)
FIB Argument Usage in ACP QIO Functions

Applicable Arguments

I/O Function

IO$ MODIFY
(Cont.)

IO$ DELETE

1. If FIB$M WILD is set.

FIB Field

FIB$L wee 1

FIB$W NMCTL

FIB$W EXCTL

FIB$L EXSZ

FIB$L EXVBN

FIBSB ALOPTS

FIB$B ALALIGN

FIBSW ALLOC

FIB$W FID
2

FIB$W DID

Field Values

FIB$M WILD
FIB$M-ALLNAM
FIB$M-ALLTYP
FIB$M-ALLVER
FIB$M-FINDFID

FIB$M EXTEND 3

FIBSM-TRUNC
FIB$M-NOHDREXT
FIB$M-ALCON
FIB$M-ALCONB
FIB$M-FILCON
FIBSM-ALDEF
FIB$M-MARKBAD
FIB$M-ALLOCATR

FIBSM EXACT
FIBSM-ONCYL

(zero)
FIB$C CYL
FIBSC-LBN
FIBSC-VBN
FIBSC-RFI

FIBSW LOC FID
FIB$W-LOC-NUM
FIB$W-LOC-SEQ
FIBSW-LOC-RVN
FIB$W-LOC-ADDR

FIB$W FID NUM
FIB$W-FID-SEQ
FIB$W-FID-RVN

FIBSW DID NUM
FIB SW-DID-SEQ
FIB$W-DID-RVN

2. If FIB$W DID is O; FIBSW DID is an output argument if FIB$W DID is
not 0. -

3. Only FIB$M EXTEND or FIB$ TRUNC can be set at any given time; they
cannot both be set at the same time.

(continued on next page)

9-13

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2 (Cont.)
FIB Argument Usage in ACP QIO Functions

Applicable Arguments

I/O Function

IO$ DELETE
ccont.)

IO$ MOUNT
(no-arguments used)

IO$ ACPCONTROL

1. If FIB$M WILD is set.

FIB Field

FIB$L wee 1

FIB$W NMCTL

FIB$W CNTRLFUNC

FIB$L CNTRLVAL

9.2 ATTRIBUTE CONTROL BLOCK

Field Values

FIB$M WILD
FIB$M ALLNAM
FIB$M-ALLTYP
FIB$M-ALLVER
FI B$M-FINDFID

FIB$C REWINDFIL
FIB$C-POSEND
FIB$C-NEXTVOL
FIB$C-SPACE
FIB$C-REWINDVOL
FIB$C-ENA QUOTA
FIB$C-DSA-QUOTA
FIB$C-ADD-QUOTA
FIB$C-EXA-QUOTA
FIB$C-MOD QUOTA
FIB$C-REM-QUOTA
FIB$C-LOCK VOL
FIB$C-UNLK-VOL - -
FIB$M ALL MEM
FIB$M-ALL-GRP
FIB$M-MOD-PERM
FIB$M-MOD-USE - -

The attribute control block contains the codes that control the
reading and writing of file attributes, for example, file protection
and record attributes. Device/function-dependent argument PS
specifies the address of this list. The list consists of a variable
number of 2-longword control blocks, terminated by a zero longword, as
shown in Figure 9-4. The maximum number of attribute control blocks
in one list is 14. Table 9-3 describes the attribute control block
fields.

9-14

QIO INTERFACE TO FILE SYSTEM ACPS

31 16 15 0

ATR$W_ TYPE I ATR$W_SIZE

ATR$L_ADDR

r-- -
(additional control blocks)

t--- ---I

~- ------1

0

Figure 9-4 Attribute Control Block Format

Field

ATR$W SIZE

ATR$W TYPE

ATR$W ADDR

Table 9-3
Attribute Control Block Fields

Meaning

Specifies the number of bytes of the attribute
to be transferred. Legal values are from 0 to
the maximum size of the particular attribute
(see Table 9-4).

Identifies the individual attribute to be read
or written.

Contains the buffer address
memory space to or from which
to be transferred. The
function determines whether
read or written, as follows:

I/O Function Operation

Create
Access
Deaccess
Modify
Delete
Mount
ACP Control

Write
Read
Write
Write
Not used
Not used
Not used

of the user's
the attribute is
particular I/O
the attribute is

Table 9-4 lists the valid attributes for ACP QIO functions. The
maximum size (in bytes) is determined by the required attribute
configuration. For example, the file name uses only n bytes, but is
always accompanied by the file type and file version - so a total of
10 bytes is required. Each attribute has two names: one for the code
(for example, ATR$C UCHAR) and one for the size (for example,
ATR$S_UCHAR). -

9-15

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-4
ACP QIO Attributes

~----------.----~-.. ----·- --------.. ·------·--
Attribute

Name

(unnamed) 2

(unnamed) 2

ATR$C UCHAR 3

ATR$S-UCHAR

ATR$C RECATTR 3

ATR$S-RECATTR

ATR$C FILNAM
ATR$S-FILNAM

ATR$C FILTYP
ATR$S-FILTYP

ATR$C FILVER
ATR$S-FILVER

ATR$C EXPDAT 2

ATR$S-EXPDAT

ATR$C STATBLK l
ATR$S-STATBLK

ATR$C HEADER 1
ATR$S-HEADER

ATR$C BLOCKSIZE
ATR$S-BLOCKSIZE

ATR$C ASCDATES 2
ATR$S-ASCDATES

1. Read-only

Maximum
Size (bytes)

s

3

4

32

10

4

2

7

10

512

2

3S

Meaning

Two-byte file owner UIC plus the next
attribute and the first byte of
ATR$C UCHAR. Used for compatibility
mode only.

Two-byte file protection plus the
first byte of ATR$C UCHAR. Used for
compatibility mode only.

Four-byte file characteristics.

Record attribute area. Section 9.2.1
describes the record attribute area
in detail.

Six-byte Radix-SO file name
ATR$C FILTYP and ATR$C FILVER. - -
Two-byte Radix-SO file type
ATR$C FILVER

Two-byte binary version number.

Expiration date in ASCII.

plus

plus

Statistics
describes
de ta i 1.

block. Section 9.2.2
the statistics block in

Complete file header.

Magnetic tape block size.

Revision count (2 binery bytes),
revision date, creation date, and
expiration date, in ASCII. Format =
DDMMMYY (revision date), HHMMSS
(time), DDMMMYY (creation date),
HHMMSS (time)' DDMMMYY (expiration
date), HHMMSS (time). The format
contains no embedded spaces or
commas:
DDMMMYYHHMMSSDDMMMYYHHMMSSDDMMMYYHHMMSS

2. Protected (can be written to only by system or owner)

3. Locked (can not be written to while the file is locked)

(continued on next page)

9-10

Attribute
Name

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-4 (Cont.)
ACP QIO Attributes

Maximum
Size (bytes)

Meaning

----------r--------+----------------·------------
ATR$C ALCONTROL
ATR$S ALCONTROL 14

ATR$C ASCNAME
ATR$S ASCNAME

ATR$S CREDATE 2
ATR$S-CREDATE

ATR$C REVDATE 2

ATR$S-REVDATE

ATR$C EXPDATE 2

ATR$S-EXPDATE

ATR$C UIC 2

ATR$S-UIC

ATR$C FPRO 2

ATR$S-FPRO

ATR$C ACLEVEL 2

ATR$S-ACLEVEL

ATR$C UIC RO 1 - -

1. Read-only

20

8

8

8

4

2

1

4

File name, type, and
ASCII, including
name.typ;version

version, in
punctuation:

64-bit creation date and time.

64-bit revision date and time.

64-bit expiration date and time.

4-byte file owner UIC.

File protection.

File access level.

4-byte file owner UIC

2. Protected (can be written to only by system or owner)

9.2.1 ACP QIO Record Attributes Area

Figure 9-5 shows the format of the record attributes area.

9-17

QIO INTERFACE TO FILE SYSTEM ACPS

31 24 23 16 15 8 7 0

FAT$W_RSIZE I FAT$B_RATTRIB I FAT$B_RTYPE

FAT$L_HIBLK

.,.___ ___ ·---·--···---·----
FAT$l_EFBLK

FAT$B_VFCSIZE l FAT$B_BKTSIZE

FAT$W_FEFEXT

FAT$W_FFBYTE

------ ----------
FAT$W_MAXREC

(reserved for future use)

Figure 9-5 ACP QIO Record Attributes Area

Table 9-5 lists the record attributes values and their meanings.

Table 9-5
ACP Record Attributes Values

Field Value Meaning

FAT$B RTYPE

FAT$B RATTRIB

FAT$W RSIZE

FAT$L HIBLK 1

FAT$L EFBLK l

FAT$W FFBYTE

FAT$B BKTSIZE

FAT$B VFCSIZE

FAT$W MAXREC

FAT$W DEFEXT

Record type.
defined:

The following bit values are

FAT$C FIXED
FAT$C-VARIABLE
FAT$C-VFC

Fixed record type
Variable length
Variable and fixed control

Record attributes. The following bit values are
defined:

FAT$M FORTRANCC
FAT$M-IMPLIEDCC
FAT$M-PRINTCC
FAT$M-NOSPAN

Record size in bytes

Highest allocated VBN

End-of-file VBN

FORTRAN carriage control
Implied carriage control
Print file carriage control
No spanned records

First free byte in FAT$L EFBLK

Bucket size in blocks

Size in bytes of fixed length control for VFC
records

Maximum record size in bytes

Default extend quantity

1. Inverted format field

9-18

QIO INTERFACE TO FILE SYSTEM ACPS

9.2.2 ACP QIO Attributes Statistics Block

Figure 9-6 shows the format of the statistics block.

31 16 15 8 7 0

start LBN

file size

LCNT ACNT

Figure 9-6 ACP QIO Attributes Statistics Block

If the file is contiguous, the first longword contains the LBN of the
first block of the file, that is, the starting LBN. For
non-contiguous files, this field is zero. The second longword
contains the total file size in blocks. The ACNT byte contains the
total number of users who are currently accessing the file. The LCNT
byte contains the number of write locks on the file.

Both start LBN and file size appear as inverted longwords, that is,
the high- and low-order 16 bits are transposed. This is for
compatibility with PDP-11 software.

9.3 ACP FUNCTIONS AND ENCODING

All VAX/VMS ACP functions can be expressed using seven function codes
and four function modifiers. The function codes are:

• IO$ CREATE creates a directory entry or file

• IOS ACCESS searches a directory for a specified file and
accesses that file, if found

• IO$ DEACCESS -- deaccesses a file and, if specified, writes
the-final attributes in the file header

• IO$ MODIFY -- modifies the file
allocation

attributes and/or

• IO$ DELETE -- deletes a directory entry and/or file header

file

• IO$ MOUNT -- informs the ACP when a volume is
requires mount privilege

mounted;

• IO$_ACPCONTROL -- performs miscellaneous control functions

In addition to the function codes and modifiers, VAX/VMS ACPs take
five device/function-dependent arguments, as shown in Figure 9-7.

9-19

QIO INTERFACE TO FILE SYSTEM ACPS

31 0

P1: Address of FIB descriptor

t--------------------------------------··-------------------· ---·--·-·-·· ·--

P2: Address of file name string descriptor (optional)

P3: Address of word to receive resultant string length (optional)

P4: Address of resultant string descriptor (optional)

----- ------------!

P5: Address of attribute control block (optional)

.__ __ _

Figure 9-7 ACP Device/Function-Dependent Arguments

The first argument, Pl, is the address of the File Information Block
descriptor. Section 9.1 describes the FIB in detail.

The second argument, P2, is an optional argument used in directory
operations. It specifies the address of the descriptor for the file
name string to be entered in the directory. The file name itself must
be in read/write memory.

The file name string must have the following format:

name.type;version
or

name.typ.version

where name and type may be any combination of alphanumeric characters,
plus the asterisk (*) and percent (%) characters. The version must
consist of numeric characters or a single asterisk. The total number
of alphanumeric and percent characters in the name and type fields
must not exceed 9 and 3, respectively. Any number of additional
asterisks may be present.

The wild card characters % and * are not legal in IOS_CREATE requests.

If any of the bits FIB$M ALLNAM, FIB$M ALLTYP, and FIBSM ALLVER are
set, then the contents-of the corresponding field in the-name string
is ignored and assumed to be *·

Note that the file name string cannot contain a directory string.
directory is specified by the FIB$W DID field (see Table 9-1).
VAX-11 RMS can process directory strings.

The
Only

Argument P3 is the address
name string length. The
length is returned in P3.
buffer to receive the
arguments are optional.

of a word to receive the iesultant file
resultant string is not padded. The actual
P4 is the address of a descriptor for a

resultant file name string. Both these

The fifth argument, PS, is an optional argument containing the address
of the attribute control block. Section 9.2 describes the attribute
control block in detail.

9-20

QIO INTERFACE TO FILE SYSTEM ACPS

Figure 9-8 shows the format for the descriptors.

31 16 15 0

not used count

address

Figure 9-8 ACP Device/Function Argument Descriptor Format

9.3.l Create File

This virtual I/O function creates a directory entry and/or a file on a
disk device, or a file on a magnetic tape device.

The function code is:

IO$ CREATE

The function modifiers are:

• IO$M CREATE creates a file

• IO$M ACCESS opens the file on the user's channel

• IO$M DELETE deletes the file (or marks it for deletion).
ApplTcable only to disk devices.

The device/function-dependent arguments for IO$ CREATE are:

• Pl -- the address of the File Information
descriptor.

Block (FIB)

• P2 -- the address of the file name string descriptor
(optional). The file name is written into the file header;
is a directory is specified, this name is entered in the
directory. If specified for a magnetic tape file, the name is
the name of the created file.

• P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string (optional).

• P5 -- the address of a list of attribute descriptors
(optional). If specified for a disk file, the indicated
attributes are written to the file header. If specified for a
magnetic tape file, P5 is the address of the descriptor list
for the new file.

If the FIB$W DID field of the FIB is nonzero, the name string is
entered in -the disk directory specified by the field. If the
resultant string descriptor is present, a string representing the full
directory entry is returned. If the address of a word to receive the
resultant string size is specified, the size, in bytes, of the string
is returned. A disk file can also be extended if FIBSM EXTEND is set.
The number of blocks allocated is returned in the second longword of
the IOSB.

9-21

QIO INTERFACE TO FILE SYSTEM ACPS

A disk file header is created if IO$M CREATE is specified. (The file
ID is returned in FIB$W FID.) If an attribute list is present, the
indicated attributes are written to the file header. If IO$M DELETE
is specified, the disk file is marked for deletion. This function
modifier may only be used in conjunction with IO$M CREATE and
IO$M_ACCESS.

If IO$M ACCESS is
accessed, that is,

specified, the disk or magnetic
opened on the user's channel.

tape file is

In the name control field (FIB$W NMCTL) of the FIB, the FIB$M NEWVER
and FIB$M SUPERSEDE bits function as described in Table 9-1; other
flags are Ignored. The wild card context field, FIB$L_WCC, is also
ignored.

The FIB$L ACCTL and FIB$W EXCTL FIB fields are interpreted as
described In Table 9-1.

Listed below are the arguments for IO$ CREATE in the order in which
they are used. All other areguments are illegal and must be zero:

IO$M CREATE

FIB$W DID

FIB$W NMCTL

Attribute List

IO$M ACCESS

FIB$L ACCTL

FIB$M EXTEND (disk only)

FIB$W_EXCTL (disk only)

FIB$B ALOPTS

FIB$B ALALIGN

FIB$B ALLOC

IO$M DELETE (disk only)

9.3.2 Access File

This virtual I/O function searches a directory on a disk device, or a
magnetic tape, for a specified file and accesses that file if found.

The function code is:

IO$ ACCESS

The function modifiers are:

• IO$M CREATE creates a file

• IO$M ACCESS opens the file on the user's channel

9-22

QIO INTERFACE TO FILE SYSTEM ACPS

IO$M CREATE changes the IO$ ACCESS function code to IO$ CREATE if the
directory search failed ~ith a "file not found" ~ondition. The
function is then re-executed as a CREATE. In that case, the argument
interpretations for IO$ CREATE apply, rather than those for
IO$ ACCESS. If IO$M CREATE-is specified, the file is accessed. A
file must be accessed before it can be read or written.

The device/function-dependent arguments for IO$ ACCESS are:

• Pl -- the address of the File Information
descriptor.

Block (FIB)

• P2 -- the address of the file name string descriptor
(optional). If specified for disks, the directory is searched
for this name. If IO$ ACCESS is converted to IO$ CREATE, the
name is entered in -the directory specified by-the FIB. If
specified for magnetic tapes, the name identifies the file
being sought.

• P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string (optional).

• P5 -- the address of a list of attribute descriptors
(optional). If specified for disks, the indicated attributes
are read from the file header. If specified for magnetic
tapes, the file attributes are returned to the user.

If the FIB$W DID field is nonzero, a search is made for the name
string indicated in a directory specified by the field. If the
resultant string descriptor is present, a string representing the full
directory entry is returned. The size of the string is returned if
the address of the resultant string size word is present. The file
identifier is returned in FIB$W FID.

Several other FIB fields are used in IO$ ACCESS execution. In the
FIB$W NMCTL field, FIB$M ALLNAM, FIBSM ALLTYP, and FIB$M ALLVER
control matching of the name-fields. If FIB$M WILD is set, FIB$W wee
indicates the position in the directory to resume the search;- on
return, this field contains the position of the directory entry found.
The FIB$L_ACCTL field is interpreted as described in Table 9-1.

If an attribute list is present, the indicated file attributes are
read.

Listed below are the arguments for IO$ ACCESS in the order in which
they are used. All other arguments are illegal and must be O.

FIB$W DID

FIB$W NMCTL

FIB$W wee

IO$M CREATE

IO$M ACCESS

FIB$L ACCTL

Attribute List

(Extend control data is ignored)

9-23

QIO INTERFACE TO FILE SYSTEM ACPS

9.3.3 Deaccess File

This virtual I/O function deaccesses a file and, if specified, writes
final attributes in the file header.

Attributes are written to a disk file if they are present and if the
file was accessed for a write operation. (If write access and no
attributes are specified, and if FIB$M DLOCK was set when the file was
accessed, the deaccess lock bit is set in the file header, inhibiting
further access to that file.)

The function code is:

IO$ DEACCESS

The device/function-dependent arguments for IOS_DEACCESS are:

• Pl -- the address of the File Information
descriptor.

Block (FIB)

• PS -- the address of a list of
(optional). If specified, the

attribute descriptors
indicated attributes are

written to the file header.

Normally, two arguments are used with IO$ DEACCESS: the attribute
list and the FIB$L ACCTL field (in that order); the FIB$L_ACCTL flag
bits are ignored. The FIB$W FID field can be nonzero. If so, it must
match the file identifier of-the accessed file. IO$ DEACCESS takes no
function modifiers.

A truncate operation can also be performed with IO$ DEACCESS, using
the FIB$W EXCTL and FIB$L EXVBN arguments described below for
IO$ MODIFY.- In this case, the-arguments are used in the following
order:

Attribute List

FIB$W EXCTL

FIB$L EXVBN

9.3.4 Modify File

This virtual I/O function modifies the file attributes and/or
allocation of a disk file. If used with magnetic tape, modify file is
basically a NOP.

The function is:

IO$ MODIFY

The device/function-dependent arguments for IO$_MODIFY are:

• Pl -- the address of the File Information
descriptor.

Block (FIB)

• P2 -- the address of the file name string descriptor
(optional). If specified, the directory is searched for the
name.

• P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

9-24

QIO INTERFACE TO FILE SYSTEM ACPS

• P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string {optional).

• PS -- the address of a list of
(optional). If specified, the
written to the file header.

attribute descriptors
indicated attributes are

An initial search is made for the indicated file string. The search
is performed the same way, and with the same consequences, as the
IO$ ACCESS search (see Section 9.3.2). If an attribute list is
present, attributes are written. The file can be either extended or
truncated. If extended (FIB$M EXTEND is set), the amount is indicated
by the extend control data (FIBSL EXSZ) and the total number of blocks
allocated to the file is returned-in the second longword of the IOSB.
If truncated (FIB$M TRUNC is set), the file is shortened to the number
of blocks specified- in FIB$L EXVBN, minus 1. The file round-up
quantity, that is, the resuiting file size minus the requested file
size, is returned in the second longword of the IOSB.

The FIB$W EXCTL field is interpreted as described in Table 9-1.

FIB$L EXVBN and FIB$ EXSZ are
virtual block number (VBN)
allocated or truncated.

used
and

to return the actual
size, respectively, of

starting
the area

The FIB$W NMCTL and FIB$L wee fields are interpreted as described for
IO$ ACCESS. If an attribute list is present, the indicated file
attributes are written. IO$ MODIFY takes no function modifiers.

Listed below are the legal arguments for IO$ MODIFY in the order in
which they are used. All other arguments are illegal and must be O.

Attribute List

FIB$W DID (disk only)

FIB$W_NMCTL (disk only)

FIB$L_WCC (disk only)

FIB$M_EXTEND (disk only)

FIB$L_EXSZ (disk only)

FIB$W_EXCTL (disk only)

FIB$B_ALOPTS (disk only)

FIB$B_ALALIGN (disk only)

FIB$B ALLOC (disk only)

FIB$M TRUNC (disk only)

FIB$M MARKBAD (disk only)

9.3.5 Delete File

This virtual I/O function removes a directory header and/or file
header from a disk file.

9-25

QIO INTERFACE TO FILE SYSTEM ACPS

The function code is:

IO$ DELETE

The function modifier is:

IO$M DELETE -- deletes the file {or marks it for deletion)

The device/function-dependent arguments for IO$_DELETE are:

• Pl -- the address of the File Information
descriptor.

Block {FIB)

• P2 -- the address of the file
{optional). If specified, the

name string descriptor
name is removed from the

directory specified by the FIB.

• P3 -- the address of the word that is to receive the length of
the resultant file name string {optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string {optional).

A search is made for the directory entry to be deleted. The search is
performed the same way as the IO$ ACCESS search {see Section 9.3.2).
The directory entry is then removed. The function modifier
{IO$M_DELETE) deletes the file header specified by FIB$W_FID.

Listed below are the legal arguments for IO$ DELETE in the order in
which they are used. All other arguments are illegal and must be O.

FIB$W DID

FIB$W NMCTL

FIB$L wee

IO$M DELETE

9.3.6 Mount

This virtual I/O function informs the ACP when a disk or magnetic tape
volume is mounted. Mount privilege is required. IO$ MOUNT takes no
arguments or function modifiers. Note that this function is only a
part of the volume mounting operation. Most of the actual processing
is performed by the MOUNT utility.

9.3.7 ACP Control

This virtual I/O function performs miscellaneous control functions,
depending on the arguments specified.

The function code is:

IO$ ACPCONTROL

The function modifier is:

IO$M DMOUNT -- dismounts a volume

9-2n

QIO INTERFACE TO FILE SYSTEM ACPS

The device/function-dependent arguments for IOS_ACPCONTROL are:

• Pl -- the address of the File Information Block (FIB)
descriptor.

• P2 -- the address of the file name string descriptor
(opt i on a 1) .-

• P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string (optional).

• P5 -- the address of a list
(optional).

of attribute descriptors

If IO$M DMOUNT is not set, the FIB control function field
(FIB$W CNTRLFUNC) has one of its field values set. Listed below are
the legal arguments for IO$ ACPCONTROL in the order in which they are
used; all other arguments are illegal and must be 0:

IO$M DMOUNT

FIB$W CNTRLFUNC field values:

FIB$C REWINDFIL

FIB$C POSEND

FIB$C NEXTVOL

FIB$C SPACE

FIB$C REWINDVOL

FIB$C _ENA _QUOTA

FIB$C_DSA_QUOTA

FIB$C_ADD_QUOTA

FIB$C_EXA_QUOTA

FIBSC_MOD_QUOTA

FIB$C_REM_QUOTA

FIB$C LOCK VOL - -

FIB$C UNLK VOL

FIB$L CNTRLVAL

9.3.7.1 Disk Quotas - Disk quota enforcement is enabled by a quota
file on the volume, or relative volume 1 if the file is on a volume
set. The quota file appears in the volume's master file directory
(MFD) under the name QUOTA.SYS;l.

Figure 9-9 shows the format of the block used to transfer quota file
data to and from the ACP.

9-27

QIO INTERFACE TO FILE SYSTEM ACPS

31 0

Flags Longword (DQF$L_FLAGS)

User Identification Code (00F$L_UIC)

Current Usage (DQF$L_USAGE)

Permanent Quota (DOF$L_PERMOUOTA)

.,__ _______ --··--·-·-·-··"- , _____ , ,..,_

Overdraft Limit (0QF$L_OVERDRAFT)

t--------~--------- .. ·---.. --~--

(reserved for future use)

---------···· ,., ,,,. ___ _

Figure 9-9 Quota File Transfer Block

In the flags longword, the DQF$V_ACTIVE flag bit is set if this quota
file slot is in use.

IO$ ACPCONTROL functions that transfer quota
caller and the ACP use the following
arguments:

file data between the
device/function-dependent

• P2 -- the address of a descriptor for a data buffer block that
transmits quota file data to the ACP. This block has exactly
the same format as a record in the quota file.

e P3 the address of a word that returns the data length.

• P4 the address of a descriptor for a data block that
receives quota file data from the ACP. This block has exactly
the same format as a record in the quota file.

Table 9-6 describes the FIB$W CNTRLFUNC disk quota and lock/unlock
bits.

9-28

Value

FIB$C_ENA_QUOTA

FIB$C_DSA_QUOTA

FIB$C_ADD_QUOTA

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-6
Disk Quota and Lock/Unlock Bits

Meaning

Enable the disk quota file. The quota file, if
present, is accessed by the ACP and quota
enforcement is turned on. To locate the quota
file, the directory specified by FIB$W DID is
searched for the name specified in the -string
given by the P2 argument. The result string
and its length are returned in P4 and PS. The
quota file must be enabled in order to execute
any of the quota file operations listed below.
FIB$C ENA QUOTA can return the following status
values in-the IOSB:

SS$ NOPRIV
SS$-NOQFILE
SS$-BADQFILE
SS$=QFACTIVE

No access to quota file
Quota file does not exist
Quota file has bad format
Quota file is already active

(Any of the common error status values, e.g.,
SS$ BADPARAM and SS$_FCPREADERR, can also be
returned)

Disable the disk quota file. The quota file is
deaccessed and quota enforcement is turned off.
FIB$C DSA QUOTA can return the following status
values in-the IOSB:

SS$ NOPRIV No access to quota file
SS$-NOQFILE Quota file does not exist
SS$-QFNOTACT Quota file is not active
(Any of the common error status values, e.g.,
SS$ BADPARAM and SS$ FCPREADERR can also be
returned)

Add an entry to the disk quota file, using the
UIC and quota specified in the P2 argument
block. FIB$C ADD QUOTA requires write access
to the quota file: The following status values
can be returned in the IOSB:

SS$ NOPRIV
SS$=NOQFILE

No access to the quota file
Quota file does not exist, or
is not enabled

SS$_DUPDSKQUOTA Quota entry for UIC already
exists

(Any of the common error status values, e.g.,
SS$ BADPARAM and SS$ FCPREADERR can also be
returned) -

(continued on next page)

9-29

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-6
Disk Quota and Lock/Unlock Bits

Value Meaning

------------··----·-.. ···t--··- ._.,._,. .. "

FIB$C_EXA_QUOTA

FIB$C_MOD_QUOTA

Examine a disk quota file entry. The entry
whose UIC is specified in the P2 argument block
is returned in the P4 argument block, and its
length is returned in the P3 argument word.
Using two flags in FIB$L CNTRLVAL, it is
possible to wild card through the quota file.
(The ACP maintains position context in
FIB$L wee, and each examine call returns the
next matching entry.) The two flags are:

FIB$M ALL MEM
FIB$M-ALL-GRP - -

Match all UIC members
Match all UIC groups

Read access is required to examine all entries
not belonging to the user. FIBSC EXA QUOTA can
return the following status values in-the IOSB:

SS$ NOPRIV
ss(~NOQFILE

No access to quota file
Quota file does not exist, or
is not enabled

SS$_NODISKQUOTA Specified quota file entry
does not exist

(Any of the common error status values, e.g.,
SS$ BADPARAM and SS$ FCPREADERR can also be
returned)

Modify a disk quota file entry.
entry specified by the UIC in
block is modified according to
the block, as controlled by
FIB$L CNTRLVAL:

The quota file
the P2 argument
the values in

two flags in

FIB$M MOD PERM
FIB$M-MOD-USE - -

Change the permanent quota
Change the usage data

The usage data can be changed only if the
volume is locked by FIB$C LOCK VOL (see below).
FIBSC MOD QUOTA requires- write access. The
follo~ing- status values can be returned in the
IOSB:

No access to quota file SS$ NOPRIV
ss(=NOQFILE Quota file does not exist, or

is not enabled
SS$_NODISKQUOTA Specified quota file

does not exist
entry

SS$ OVRDSKQUOTA Usage is greater than quota
SS$-ACCONFLICT Volume is not lock~d (usage

change)
(Any of the common error status values, e.g.,
SS$ BADPARAM and SS$ FCPREADERR can also be
returned)

~----··--···-···-----------'-·---·--·-·------~-- ·-----~-~--~----·-

(continued on next page)

9-30

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-6 (Cont.)
Disk Quota and Lock/Unlock Bits

Value Meaning

------------+----------- ------------ --.------------!
FIB$C_REM_QUOTA

FIB$C LOCK VOL - -

FIB$C UNLK VOL

Remove a disk quota file entry whose UIC is
specified in the P2 argument block.
FIB$C REM QUOTA requires write access to the
quota-file. The following status values can be
returned in the IOSB:

SS$ NOPRIV
ss(~NOQFILE

No access to quota file
Quota file does not exist, or
is not enabled

SS$_NODISKQUOTA Specified quota file entry
does not exist

SS$ OVRDSKQUOTA Usage is non-zero
(Any of the common error status values, e.g.,
SS$ BADPARAM and SS$ FCPREADERR can also be
returned) -

Allocation lock the volume; operations which
change the file structure are not permitted.
This function must be executed prior to
rebuilding the quota file. To issue this
function, the user must either have a system
UIC or SYSPRV privilege, or be the owner of the
volume. FIB$C LOCK VOL can return the
following status-values in the IOSB:

SS$ NOPRIV No access to volume
(Any of the common error status values, e.g.,
SS$ BADPARAM and SS$ FCPREADERR can also be
returned)

Unlock the volume •. Cancels FIB$C LOCK VOL. To
issue this function, the user must either have
a system UIC or SYSPRV privilege, or be the
owner of the volume. FIB$C UNLK VOL can return
the following status values-in the IOSB:

SS$ NOPRIV No access to volume
(Any of the common error status values, e.g.,
SS$ BADPARAM and SS$ FCPREADERR can also be
returned)

9.4 I/O STATUS BLOCK

Figure 9-10 shows the I/O status block (IOSB) for ACP QIO functions.
Table 9-7 lists the status returns for these functions.

The file ACP returns a completion status in
IOSB. In an extend operation, the second
the number of blocks allocated to the file.
operation (FIB$M ALCON) fails, the second
the size of the fTle after truncation.

the first longword of the
longword is used to return
If a contiguous extend

longword is used to return

Values returned in the IOSB are most useful during operations in
compatibility mode. When executing programs in the native mode, the
user should use the values returned in FIB locations.

9-31

QIO INTERFACE TO FILE SYSTEM ACPS

+2 IOSB

not used status

+4

Figure 9-10 IOSB Contents - ACP QIO Functions

If an extend operation {including CREATE) was performed, IOSB+4
contains the number of blocks allocated, or the largest available
contiguous space if a contiguous extend operation failed. If a
truncate operation was performed, IOSB+4 contains the number of blocks
added to the file size to reach the next cluster boundary.

--------------<<-

Status

SS$ ACCONFLICT

SS$ ACPVAFUL

SS$ BADATTRIB

SS$ BADCHKSUM

SS$ BADFILEHDR

SS$ BADFILENAME

SS$ BADFILEVER

SS$ BADIRECTORY

SS$ BADPARAM

Table 9-7
ACP QIO Status Returns

Meaning

Access mode conflict. Requested access mode
conflicted with existing file accesses, for
example, an attempt to op~n a file for a write
when the file is write locked.

The magnetic tape ACP's virtual address space
is full. Since each volume set has a virtual
page assigned to it, additional volume sets
cannot be handled. Corrective action consists
of starting a different ACP using the unique
switch in MOUNT.

Invalid attribute code or size specified in
read or write attribute list.

Invalid checksum in the file header.

Invalid file header, for example, structure is
inconsistent or the storage map indicates
blocks are marked free.

Invalid syntax in file
string contains illegal
larger than 9 characters.

name string. The
characters, or is

Invalid file version number, that is, a number
greater than 32767.

Invalid directory file. The file is not a
directory or the file contains invalid data.

Invalid parameter list.
contains options not
function.

For example, the
applicable to

FIB
this

{continued on next page)

9-32

Status

SS$_BADQFILE

SS$ BLOCKCNTERR

SS$ CREATED

SS$ DEVICEFULL

SS$ DIRFULL -

SS$_DUPDSKQUOTA

SS$ DUPFILENAME

SS$ ENDOFFILE

SS$ FCPREADERR

SS$ FCPREWINDERR

SS$ FCPSPACERR

SS$ FCPWRITERR

SS$ FILELOCKED

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-7 (Cont.)
ACP QIO Status Returns

Meaning

Bad quota file. The quota file has an invalid
format.

Block count error. The number of blocks read
differs from the number of blocks recorded in
the trailer labels. There is a possibility
that a record was skipped or an extra noise
record was read.

File created by
CREATE function
return.)

an ACCESS
modifier.

function with a
(A success status

Device full. No free blocks are available on
the device or the number of contiguous blocks
specified in a contiguous request is not
available.

Directory if full. An error occurred while
creating a disk file because the directory
specified is full and cannot catalog any more
entries. A directory is limited to 1024
blocks.

Duplicate disk quota.
UIC already exists.

Duplicate file name.
with the same name,
exists.

Another quota entry for

Another directory entry
type, and version already

End-of-file. End of allocated space
encountered in a virtual I/O operation or an
attempted truncation.

FCP read error. An I/O error occurred when
file structure data, for example, a directory,
was read.

File process rewind error. An I/O error
occurred when rewinding a volume.

File process space error. An I/O error
occurred when spacing within a file or spacing
files.

FCP write error. An I/O error occurred when
file structure data, for example, a directory,
was written.

File deaccess locked. Attempted to access a
locked file. A file becomes locked when it is
accessed with FIB$M DLOCK set and then
deaccessed without wrTting attributes.

(continued on next page)

9-33

Status

SS$ FILENUMCHK

SS$_FILESEQCHK

SS$ FI LESTRUCT

SS$ FILNOTEXP

SS$ HEADERFULL

SS$ IDXFILEFULL

SS$ ILLCNTRFUNC

SS$_ NODISKQUOTA

SS$ NOMOREFILES

SS$ NOPRIV

SS$_ NOQFILE

SS$ NOSUCHFILE

SS$ NOTAPEOP

SS$ NOTLABELMT

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-7 (Cont.)
ACP QIO Status Returns

Meaning
............ _ ·······-'"· -----·---~-··-·--·~~~-.. ·--

File identifier number check. The index file
contains invalid data.

File identifier sequence check. A directory
entry points to a file that has been deleted.

Unsupported file structure. The file
structure on the accessed volume is not
compatible with the ACP. For example, an
attempt was made to use a structure level 2
ACP with a structure level 1 disk.

File not expired. A magnetic tape file that
has not expired cannot be written over unless
the override expiration qualifier was
specified to MOUNT.

File header map area is full and header
extension is inhibited. This can occur on a
volume's index file in a CREATE operation.

Volume index file is full. The maximum number
of files specified at initialization time has
been reached.

Illegal control function. An illegal function
is specified for IO$_ACPCONTROL.

No disk quota. The specified quota file entry
does not exist.

No more files exist which match the given wild
card in a file specification string. At least
one file was found, that is, one match was
made.

No privilege. Volume or file protection will
not allow the requested operation.

No quota file. The quota file does not exist.

No such file. No file with the given file
name or file identifier exists. Can be caused
by a directory entry that points to a file
that has been deleted.

No tape operator. There is no tape operator
and a need to communicate with one exists, for
example, the next volume in a volume set must
be mounted.

Magnetic tape not labeled. A request to read
a magnetic tape failed because the tape does
not have standard labels.

(continued on next page)

9-34

Status

SS$_OVRDSKQUOTA

SS$_QFACTIVE

SS$_QFNOTACT

SS$ SUPERSEDE

SS$ TAPEPOSLOST

SS$ TOOMANYVER

SS$ WRTLCK

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-7 (Cont.)
ACP QIO Status Returns

Meaning

Over disk quota. Disk usage exceeds quota.
(A success status return.)

Quota file is already active.

Quota file not active.

An existing file of the same name, type, and
version has been deleted by a CREATE function.
(A success status return.)

Magnetic tape position lost.

Too many versions. The maximum number of file
versions already exists. All are higher
versions than the one being created.

The device is software
hardware write lock
set.

9-35

write
switch

locked or the
on the drive is

CHAPTER 10

LABORATORY PERIPHERAL ACCELERATOR DRIVER

This chapter describes the use of the VAX/VMS Laboratory Peripheral
Accelerator (LPAll-K) driver and the high-level language procedure
library that interfaces with the LPAll-K driver. The procedure
library is implemented with callable assembly language routines that
translate arguments into the format required by the LPAll-K driver and
handle buffer chaining operations. Routines for microcode loading and
device initialization are also described.

This chapter is written with the understanding that the reader has
access to a copy of the LPAll-K Laboratory Peripheral Accelerator
User's Guide.

10.l SUPPORTED DEVICE

The LPAll-K is a peripheral device that controls analog-to-digital
(A/D) and digital-to-analog (D/A) converters, digital I/O registers,
and real-time clocks. It is connected to the VAX-11 processor through
the UNIBUS Adapter (UBA) •

The LPAll-K is a fast, flexible, and easy to use microprocessor
subsystem that is designed for applications requiring concurrent data
acquisition and data reduction at high rates. The LPAll-K allows
aggregate analog input and output rates up to 150,000 samples per
second. The maximum aggregate digital input and output rate is 15,000
samples per second.

Table 10-1 lists the useful minimum and maximum LPAll-K configurations
supported by VAX/VMS.

10.1.1 LPAll-K Modes of Operation

The LPAll-K operates in two
multirequest.

distinct modes: dedicated and

In dedicated mode only one user, that is, one request, can be active
at a time, and only analog I/O data transfers are supported. Up to
two A/D converters can be controlled simultaneously. One D/A
converter can be controlled at a time. Sampling is initiated either
by an overflow of the real-time clock or by an externally supplied
signal. Dedicated mode provides sampling rates of up to 150,000
samples per second.

10-1

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-1
Minimum and Maximum Configurations per LPAll-K

Minimum Maximum

-------··-··--·--·-·-··------------------4----------------------1
1 - DDll-Cx or Dx Backplane

1 - KWll-K Real Time Clock

One of the following:

ADll-K A/D Converter
AAll-K A/D Converter
DRll-K Digital I/O
Register

2 - 0011-Cx or Dx Backplanes

1 - KWll-K Real Time Clock

2 - ADll-K A/D Converters

2 - AMll-K Multiplexers
for ADll-K Converters

1 - AAll-K D/A Converter

5 - DRll-K Digital I/O
Registers

In multirequest mode, sampling from all the devices listed in Table
10-1 is supported. The LPAll-K operates like a multicontroller
device; up to eight requests (from one through eight users) can be
active simultaneously. The sampling rate for each user is a multiple
of the common real-time clock rate. Independent rates can be
maintained for each user. Both the sampling rate and the device type
are specified as part of each data transfer request. Multirequest
mode provides a maximum aggregate sampling rate of 15,000 samples per
second.

10.1.2 Errors

The LPAll-K returns three classes of errors:

1. Errors associated with the issuance of a new LPAll-K command
(SS$_DEVCMDERR).

2. Errors associated with an active data transfer request
(SS$ DEVREQERR) • -

3. Fatal hardware errors which affect all LPAll-K activity
(SS$ CTRLERR) • -

Appendix A of the LPAll-K Laboratory Peripheral Accelerator User's
Guide lists these three classes of errors and the specific error codes
for each class. The LPAll-K aborts all active requests if any of the
following conditions occur:

• Power failure

• Device timeout

• Fatal error

Power failure is reported to any active users when power is recovered.

Device timeouts are monitored only when a new command is issued. For
data transfers, the time between buffer full interrupts is not
defined. Thus, no timeout errors are reported on a buffer to buffer
basis.

10-2

LABORATORY PERIPHERAL ACCELERATOR DRIVER

If a required resource is not available to a process, an error message
is returned immediately. The driver does not place the process in the
resource wait mode.

10.2 SUPPORTING SOFTWARE

The LPAll-K is supported by a device driver, a high-level language
proc~dure library of support routines, and routines for microcode
loading and device initialization. All data transfer algorithms for
the laboratory data acquisition I/O devices are accomplished by the
LPAll-K. The only purpose for the system software and support
routines is to provide a control path for synchronizing the use of
buffers, specifying requests, and starting and stopping requests.

The LPAll-K driver and the associated I/O interface have the following
features:

• They permit multiple LPAll-K subsystems on a single UBA.

• They operate as an integral part of the VAX/VMS operating
system.

• They can be loaded on an operating VAX/VMS system without
relinking the executive.

• They handle I/O requests, function dispatching,
allocation, interrupts, and error-reporting for
LPAll-K subsystems.

UBA map
multiple

• The LPAll-K functions as a multibuffered device. Up to eight
buffer areas can be defined per request. Up to eight requests
can be handled simultaneously. Buffer areas can be reused
after the data they contain is processed.

• Since the LPAll-K chains buffer areas automatically, a start
data transfer request can transfer an infinite and continuous
amount of data.

• Multiple ASTs are dynamically queued by the driver to indicate
when a buffer has been filled (the data is available for
processing) or emptied (the buffer is available for new data).

The high-level language support routines have the following features:

• They translate arguments provided in the high-level language
calls into the format required for the Queue I/O interface.

• They provide a buffer chaining capability for a multibuffering
environment by maintaining queues of used, in use, and
available buffers.

• They adhere to all VAX/VMS conventions for calling sequences,
use of shareable resources, and reentrancy.

• They can be part of a resident global library, or be linked
into a process image as needed.

10-3

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The routines for microcode loading and device initialization have the
following features:

• They execute, as separate processes, images which issue I/O
requests. These I/O requests initiate microcode image
loading, start the LPAll-K subsystem, and automatically
configure the peripheral devices on the LPAll-K internal I/O
bus.

• They can be executed by user or operator request.

• They can be executed at the request of other processes.

• They can be executed automatically when the system is
initialized and on power recovery.

Figure 10-1 shows the relationship of the supporting software to the
LPAll-K.

µCODE LOADING
AND DEVICE

INITIALIZATION
ROUTINES

rvA""iiv'Ms OPERATING SYSTEM - - - - - -,

I I
010 REQUESTS j_ 010 L-- LPA 11-K 1--+l_.,.

-w- INTERFACE .--- DRIVER • -

HIGH LEVEL
ASSEMBLY
LANGUAGE

SUPPORT
ROUTINES

HIGH LEVEL
APPLICATION

PROGRAM

I
I
I
I
J

-

I I L ____________ .J

DATA
BUFFER
AREAS

BUFFER
CHAINING
ROUTINES

DATA

LPA 11-K

Figure 10-1 Relationship of Supporting Software to LPAll-K

10.3 DEVICE INFORMATION

Users can obtain information on all peripheral data acquisition
devices on the LPAll-K internal I/O bus by using the $GETCHN and
$GETDEV system services (see Section 1.10). The LPAll-K-specific
information is returned in the first three longwords of a
user-specified buffer, as shown in Figure 10-2 (Figure 1-9 shows the
entire buffer).

10-4

LABORATORY PERIPHERAL ACCELERATOR DRIVER

31 16 15 87 0

device characteristics

0 type class

device-dependent characteristics

Figure 10-2 LPAll-K Information

The first longword contains device-independent information. The
second and third longwords contain device-dependent data.

Table 10-2 lists the device-independent characteristics returned in
the first longword.

Table 10-2
Device-independent Characteristics

Dynamic Bi ts 1 Meaning
(Conditionally Set)

DEV$M AVL Device is online
and available

Static Bi ts 1
(Always Set)

DEV$M IDV Input device -
DEV$M ODV Output device

DEV$M RTM Real-time device

DEV$M SHR Device is shareable -

1. Defined by the $DEVDEF macro.

The second longword contains information on the device class and type.
The device class for the LPAll-K is DC$ REALTIME and the device type
is DT$ LPAll. The $LADEF macro defines these values. Buffer size is
not applicable to the LPAll-K; this word is O.

The third longword contains LPAll-K characteristics, that is,
device-dependent data. LPAll-K characteristics are set by the set
clock, initialize, and load microcode I/O functions to any one of, or
a combination of, the valu~s listed in Table 10-3.

10-5

Field l

LA$M MCVALID
LA$S-MCVALID
LA$V-MCVALID

LA$V MCTYPE
LA$S-MCTYPE

LA$V CONFIG
LA$S-CONFIG

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-3
Device-Dependent Characteristics

Meaning

The load microcode I/O function (IO$ LOADMCODE)
was performed successfully. LASM MCVALID is set
by IO$ LOADMCODE. Each microword is verified by
reading it back and comparing it with the specified
value. LA$M MCVALID is cleared if there is no
match.

The microcode type, set by the load microcode I/O
function (IO$ LOADMCODE), is one of the following
values: -

LA$K MRMCODE microcode type is in multi request
mode

LA$K ADMCODE microcode type is in dedicated A/D
mode

LA$K DAMCODE microcode type is in dedicated D/A
mode

The bit positions, set by the initialize I/O
function {IO$ INITIALIZE), for the peripheral data
acquisition ~evices on the LPAll-K internal I/O bus
are one or more of the following:

LA$V CLOCKA = Clock A
LA$M-CLOCKA

LA$V CLOCKB Clock B
LA$M-CLOCKB

LA$V ADl A/D device 1
LA$M-AD1

LA$V AD2 = A/D device 2
LA$M-AD2

LA$V DA D/A device 1
LA$M-DA

LA$V DIOl Digital I/O
LA$M-DI01

Buff er

LA$V DI02 Digital I/O Buff er
LA$M-DI02

LA$V DI03 Digital I/O Buffer
LA$M-DI03

LA$V DI04 Digital I/0 Buffer
LA$M-DI04

1

2

3

4

LA$V DIOS = Digital I/O Ruffer 5
LA$M-DI05

1. Values defined by the $LADEF macro.

(continued on next page)

10-(i

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Field 1

Table 10-3 (Cont.)
Device-Dependent Characteristics

Meaning

LA$V RATE
LA$S RATE

The Clock A rate, set by the set clock function
(IO$_SETCLOCK), is one of the following values:

0 = Stopped
l = l MHz
2 = 100 kHz
3 = 10 kHz
4 = l kHz
5 = 100 Hz
n = Schmidt trigger
7 = Line frequency

LA$V PRESET
LA$S-PRESET

The Clock A preset value set by the set clock
function (IO$ SETCLOCK). (The value is in the range
0 through 65,535 - in 2's complement form.) The
clock rate divided by the clock preset value yields
the clock overflow rate.

1. Values defined by the $LADEF macro.

10.4 LPAll-K I/O FUNCTION CODES

The LPAll-K I/O functions are:

1. Load microcode into the LPAll-K.

2. Start the LPAll-K microprocessor.

3. Initialize the LPAll-K subsystem.

4. Set the LPAll-K real-time clock rate.

5. Start a data transfer request.

The Cancel I/O on Channel ($CANCEL) system service is used to abort
data transfers.

10.4.l Load Microcode

This I/O function resets the LPAll-K and loads an
microcode. Physical I/O privilege is required.
single function code:

10$ LOADMCODE - load microcode

10-7

image of LPAll-K
VAX/VMS defines a

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The load microcode function takes three device/function dependent
arguments:

• Pl = the starting virtual address of the microcode image that
is to be loaded into the LPAll-K

• P2 the nu·mber of bytes {usually 2048) that are to be loaded

• P3 the starting microprogram address {usually 0) in the
LPAll-K that is to receive the microcode

If any data transfer requests are active at the time a load microcode
request is issued, the load request is rejected and SSS DEVACTIVE is
returned in the I/O status block.

Each microword is verified by comparing it with the specified value in
memory. If all words match, that is, if the microcode was loaded
successfully, the driver sets the microcode valid bit {LA$V MCVALID)
in the device-dependent characteristics longword {see Table 10-3). If
there is no match, SS$ DATACHECK is returned in the I/O status block
and LA$V MCVALID is -cleared to indicate that the microcode was not
properly loaded. If the microcode was loaded successfully, the driver
stores one of the microcode type values (LASK MRCODE, LASK ADCODE, or
LA$K_DAMCODE) in the characteristics longword.- -

After a load microcode function is completed, the second word of the
I/O status block contains the number of bytes loaded.

In addition to SS$ DATACHECK, IO$ LOADMCODE can return SS$ DEVACTIVE
in the I/O status olock.

10.4.2 Start Microprocessor

This I/O function resets the LPAll-K and starts {or restarts) the
LPAll-K microprocessor. Physical I/O privilege is required. VAX/VMS
defines a single function code:

IO$ STARTMPROC - start microprocessor

This function code takes no device/function-dependent arguments.

The start microprocessor function can return five error codes in the
I/O status block: SS$ DEVACTIVE, SS$ MCNOTVALID, SS$ CTRLERR,
SS$ POWERFAIL, and SS$ TIMEOUT (see Section TO.h}.

10.4.3. Initialize LPAll-K

This I/O function issues a subsystem initialize command to the
LPAll-K. This command specifies LPAll-K laboratory I/O device
addresses and other table information for the subsystem. It is issued
only once after restarting the subsystem and before any other LPAll-K
command is given. Physical I/O privilege is required. VAX/VMS
defines a single function code:

IO$ INITIALIZE - initialize LPAll-K

10-8

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The initialize LPAll-K function takes two device/function-dependent
arguments:

• Pl = the starting, word-aligned, virtual address of the
Initialize Command Table in the user process. This table is
read once by the LPAll-K during the execution of the
initialize command. See the LPAll-K Laboratory Peripheral
Accelerator User's Guide for additional information.

• P2 = length of the initialize command buffer (always 278
bytes)

If the initialize function is completed successfully, the appropriate
device configuration values are set in the device-dependent
characteristics longword (see Table 10-3).

The initialize function can return ten error codes in the I/O status
block: SS$ IVMODE, SS$ INCLENGTH, SS$ BUFNOTALIGN, SS$ CTRLERR,
SS$ DEVCMDERR: SS$ CANCEL, SS$ INSFMAPREG, SS$_MCNOTVALID,
SS$=POWERFAIL, and SS$=TIMEOUT (see Section 10.~).

If a device specified in the Initialize Command Table is not in the
LPAll-K configuration, an error condition (SS$ DEVCMDERR) occurs and
the address of the first device not found is returned in the LPAll-K
maintenance status register (see Section 10.6). A program can use
this characteristic to poll the LPAll-K and determine the current
device configuration.

10.4.4 Set Clock

This virtual function issues a clock control command to the LPAll-K.
The clock control command specifies information necessary to start,
stop, or change the sample rate at which the real-time clock runs on
the LPAll-K subsystem.

If the LPAll-K has more than one user, caution should be exercised
when the clock rate is changed. In multirequest mode, a change ,in the
clock rate will affect all users.

VAX/VMS defines a single function code:

IO$ SETCLOCK - set clock

The set clock
arguments:

function takes three device/function-dependent

• P2 = mode of operation. VAX/VMS defines the following clock
start mode word (hexadecimal) values:

1 KWll-K Clock A
11 KWll-K Clock B

• P3 clock control and status. VAX/VMS defines the following
clock status word (hexadecimal) values:

0 stop clock
143 l MHz clock rate
145 100 kHz clock rate
147 10 kHz clock rate
149 1 kHz clock rate
148 100 Hz clock rate
14D clock rate is Schmidt trigger 1
14F clock rate is line frequency

10-9

LABORATORY PERIPHERAL ACCELERATOR DRIVER

• P4 = the 2's complement of the real-time clock preset value.
The range is ln bits for the KWll-K Clock A and 8 bits for the
KWll-K Clock B.

The LPAll-K Laborator_y Peripheral Accelerator User's Guide describes
the clock start modi-word ~nd the clock status word in greater detail.

If the set clock function is completed successfully for Clock A, the
clock rate and preset values are stored in the device-dependent
characteristics longword (see Table 10-3).

The set clock function can return six error codes in
block: SS$ CTRLERR, SS$ DEVCMDERR, SS$ CANCEL,
SS$_POWERFAIL~ and SS$ TIMEOUT (see Section 10.n).

10.4.5 Start Data Transfer Request

the I/O status
SS$_MCNOTVALID,

This virtual I/O function issues a Data Transfer Start command that
specifies the buffer addresses, sample mode, and sample parameters
used by the LPAll-K. This information is passed to the Data Transfer
Command Table. VAX/VMS defines a single function code:

IO$ STARTDATA - start data transfer request

The start data transfer request function takes one function modifier:

IO$M SETEVF - set event flag

The start data transfer request function takes four
device/function-dependent arguments:

• Pl = the starting virtual address of the Data Transfer Command
Table in the user's process

• P2 = the length in bytes (always 40) of the Data Transfer
Command Table

• P3 = the AST address of the normal buffer completion AST
routine (optional)

• P4 = the AST address of the buffer overrun completion AST
routine (optional). Only used when the buffer overrun bit
(LA$M BFROVRN) is set, that is, a buffer overrun condition is
classTfied as a non-fatal error.

A buffer overrun condition is not the same as a data overrun
condition. The LPAll-K fetches data from, or stores data in, memory.
If data cannot be fetched quickly enough, for example, when there is
too much UNIBUS activity, a data underrun condition occurs. If data
cannot be stored quickly enough, a data overrun condition occurs.
After each buffer has been filled or emptied, the LPAll-K obtains the
index number of the next buff er to process from the User Status Word
(USW). (See Section 2.5 of the LPAll-K Laboratory Peripheral
Accelerator User's Guide). A buffer overrun condition occurs 1f the
LPAll-K fills - or empties buffers faster than the application program
can supply new buffers. For example, buffer overrun can occur when
the sampling rate is too high, the buffers are too small, or the
system load is too heavy.

The LPAll-K driver accesses the 10-longword Data Transfer Command
Table, shown in Figure 10-3, when the Data Transfer Start command is
processed. After the command is accepted and data transfers have
begun, the driver makes no further access to the table.

10-10

LABORATORY PERIPHERAL ACCELERATOR DRIVER

31 2423 16 15 87 0

highest available
buffer and buffer mode

overrun bit

user status word address

overall data buffer length

overall data buffer address

random channel list length

random channel list address

channel
start

channel delay
increment number

dwell number of channels

event digital
digital trigger mask mark trigger

channel channel

event mark mask

Figure 10-3 Data Transfer Command Table

In the first longword of the Data Transfer Command Table, the first
two bytes contain the LPAll-K start data transfer request mode word.
(Section 3.4.1 of the LPAll-K Laboratory Peripheral Accelerator User's
Guide describes the functions of this word.)

The third byte contains the number (0-7) of the highest buffer
available and the buffer overrun flag bit (bit 23; values:
LA$M BFROVRN and LA$V BFROVRN). If this bit is set, a buffer overrun
condTtion is a nonfatal error.

The second longword contains the User Status Word address (see Section
3.4.3 of the LPAll-K Laboratory Peripheral Accelerator User's Guide).
This virtual address points to a 2-byte area in the user process
space, and must be word-aligned.

The third longword contains the size (in bytes) of the overall buffer
area. The virtual address in the fourth longword is the beginning
address of this area. This address must be longword-aligned. The
overall buffer area contains a specified number of buffers (the number
of the highest available buffer specified in the first longword plus
one). Individual buffers are subject to length restrictions: in
multirequest mode the length must be in multiples of two bytes; in
dedicated mode the length must be in multiples of four bytes. All
data buffers are virtually contiguous for each data transfer request.

10-11

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The fifth and sixth longwords contain the Random Channel List (RCL)
length and address, respectively. The RCL address must be
word-aligned. The last word in the RCL must have bit 15 set. (See
Section 3.4.6 of the LPAll-K Laborator Peri heral Accelerator User's
Guide for additional in ormat1on on RCL.)

The seventh through· tenth longwords contain LPAll-K-specific sample
paramet~rs. The driver passes these parameters directly to the
LPAll-K. (See Sections 3.4.7 through 3.4.12 of the LPAll-K Laboratory
Peripheral Accelerator User's Guide for a detailed description of
their tunct rc,-n·s-:T--------- --~-·, ------ --

The start data transfer request function can return 15 error codes in
the I/O status block: SS$ INCLENGTH, SS$ BUFNOTALIGN, SS$ DEVCMDERR,
SS$ CTRLERR, SS$ DEVREQERR~ SS$ ABORT, - SS$ CANCEL, SS$ EXQUOTA,
SS$-INSFBUFDP, - SS$ INSFMAPREG,- SS$ INSFMEM, SS$ MCNOTVALID,
SS$=PARITY, SS$_POWERFAIL, and SS$_TIMEOUT-(see Section lO:n).

Data buffers are chained and reused as the LPAll-K and the user
process dispose of the data. As each buffer is filled or emptied, the
LPAll-K driver notifies the application process by either setting the
event flag specified by the QIO request efn argument or queueing an
AST. Since buffer use is a continuing process, the event flag is set
or the AST is queued a number of times. The user process must clear
the event flag (or receive the AST), process the data, and specify the
next buffer for the LPAll-K to use.

If the set event flag function modifier (IOSM SETEVF) is specified,
the event flag is set repeatedly: when the aata transfer request is
started, on each buffer completion, and when the request completes.
If IO$M SETEVF is not specified, the event flag is set only when the
request completes.

ASTs are preferred over event flags for synchronizing a program with
the LPAll-K because AST delivery is a queued process while setting of
event flags is not. If only event flags are used, it is possible to
lose buffer status.

Three AST addresses can be specified. For normal data buffer
transactions the AST address specified in the P3 argument is used. If
the buffer overrun bit in the Data Transfer Command Table is set and
an overrun condition occurs, the AST address specified in the P4
argument is used. The AST address specified in the astadr argument of
the QIO request is used when the entire data transfer request is
completed. The astprm argument specified in the QIO request is passed
to all three AST routines.

If insufficient dynamic memory is available to allocate an AST block,
an error (SS$ INSFMEM) is returned. If the user does not have
sufficient AST quota remaining to allocate an AST block, an error
(SS$ EXQUOTA) is returned. In either case, the request is stopped.
Normally, there are never more than three outstanding ASTs per LPAll-K
request.

10.4.6 LPAll-K Data Transfer Stop Command

The Cancel I/O on Channel ($CANCEL) system service is used to abort
data transfers for a particular process. When the LPAll-K driver
receives a $CANCEL request, a Data Transfer Stop command is issued to
the LPAll-K.

10-12

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The normal way to stop a data transfer is to set bit 14 of the user
Status Word. If this bit is set, the transfer stops at the end of the
next buffer transaction (see Section 2.5 of the LPAll-K Laboratory
Peripheral Accelerator User's Guide).

10.5 HIGH LEVEL LANGUAGE INTERFACE

VAX/VMS supports several program-callable procedures that provide
access to the LPAll-K. The formats of these calls are documented here
for VAX-11 FORTRAN users. VAX-11 MACRO users must set up a standard
VAX/VMS argument block and issue the standard procedure CALL.
(Optionally, VAX-11 MACRO users can access the LPAll-K directly
through the use of the device-specific Queue I/O functions described
in Section 10.4.) Users of other high-level languages must specify the
proper subroutine or procedure invocation.

10.5.1 High-level Language Support Routines

VAX/VMS provides 20 high-level language procedures for the LPAll-K.
These procedures are divided into four classes. Table 10-4 lists the
VAX-11 procedures for the LPAll-K.

Class

Sweep Control

Clock control

Data Buff er
Control

Miscellaneous

Table 10-4
VAX-11 Procedures for the LPAll-K

Subroutine

LPA$ADSWP
LPA$DASWP
LPA$DISWP
LPA$DOSWP
LPA$LAMSKS

LPA$SETADC
LPA$SETIBF
LPASSTPSWP

LPA$CLOCKA
LPA$CLOCKB
LPA$XRATE

LPA$ IBFSTS
LPA$IGTBUF
LPA$ INXTBF
LPA$IWTBUF
LPA$RLSBUF
LPA$RMVBUF

LPA$CVADF
LPA$FLTln

LPA$LOADMC

St
St
St
St
Sp
di
Sp
Sp
St

Se
Se
Co

Re
Re
Al
Re
Re
Re

Co
Co
po
Lo
LP

Function

art A/D converter sweep
art D/A converter sweep
art digital input sweep
art digital output sweep
ecify LPAll-K controller and
gital mask words
ecify channel select parameters
ecify buffer parameters
op sweep

t Clock A rate
t Clock B rate
mpute clock rate and preset value

turn buff er status
turn next available buffer
ter buffer order
turn next buffer or wait
lease buffer to LPAll-K
move buffer from device queue

nvert A/D input to floating point
nvert unsigned integer to floating
int
ad microcode and initialize
All-K

10-13

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.1.1 Buffer Queue Control - This section is provided for
informational purposes only. Normally, the user does not need to be
concerned with the details of buffer queues.

Buffer queue control for data transfers by LPAll-K subroutines
involves the use of three queues:

• Device queue (DVQ)

• User queue (USQ)

• In-use queue (IUQ)

Each data transfer request can specify from one through eight data
buffer areas. The user specifies these buffers by address. During
execution of the request, the LPAll-K assigns an index from 0 through
7 when a buffer is referenced.

The DVQ contains the indices of all the buffers that the user has
released, that is, made available to be filled or emptied by the
LPAll-K. For output functions (D/A and digital output), these buffers
contain data to be output by the LPAll-K. For input functions (A/D
and digital input), these buffers are empty and waiting to be filled
by the LPAll-K.

The USQ contains the indices of all buffers that are waiting to be
returned to the user. The LPA$IWTBUF and LPA$IGTBUF calls are used to
return the index of the next buffer in the USQ. For output functions
(D/A and digital output), these buffers are empty and waiting to be
filled by the application program. For input functions (A/D and
digital input), these buffers contain data to be processed by the
application program.

The IUQ contains the indices of all buffers that are currently being
processed by the LPAll-K. Normally, the IUQ contains the indices of
two buffers:

• The buffer currently being filled or emptied by the LPAll-K

• The next buffer to be filled or emptied by the LPAll-K. This
is the buffer specified by the next buffer index field in the
User Status Word.

Because the LPAll-K driver requires that at least one buffer be ready
when the input or output sweep is started, the user must call
LPA$RLSBUF before the sweep is initiated.

Figure 10-4 shows the flow between the buffer queues.

10.5.1.2 Subroutine Argument Usage - Table 10-5 describes the general
use of the subroutine arguments. The subroutine descriptions in the
following sections contain additional information on argument usage.
The IBUF, BUF, and ICHN (Random Channel List address) arguments must
be aligned on specific boundaries. (The VAX-11 FORTRAN User's Guide
describes the alignment of FORTRAN arguments.)

10-14

LABORATORY PERIPHERAL ACCELERATOR DRIVER

BUFFER 0

BUFFER OVERRUN
AST HANDLER

NORMAL BUFFER
AST HANDLER

HEAD

DEVICE
QUEUE

TAIL

LPA$RLSBUF
(FROM APPLICATION

PROGRAM)

•

NORMAL BUFFER
AST HANDLER

HEAD

IN-USE
QUEUE

TAIL

Figure 10-4 Buffer Queue Control

Table 10-5
Subroutine Argument Usage

LPA$1WTBUF
LPA$1GTBUF

(TO APPLICATION
PROGRAM)

HEAD

USER
QUEUE

TAIL

--

,--------..---------------------------~----~----~---
Argument

IBUF

LBUF

Meaning

A SO-longword array initialized by the LPASSETIBF
subroutine. IBUF is the impure area used by the
buffer management subroutines. A unique IBUF array
is required for each simultaneously active request.
IBUF must be longword-aligned.

The first quadword
block (IOSB) for
The LPA$IGTBUF and
quadword with the
Section 10.6).

in the IBUF array is an I/O status
high-level language subroutines.

LPA$IWTBUF subroutines fill this
current and completion status (see

Specifies the size of each data buffer in words (must
be even for dedicated mode sweeps}. All buffers are
the same size. The minimum value for LBUF is 1 for
multirequest mode data transfers and 258 for
dedicated mode data transfers. The aggregate size of
the assigned buffers must be less than 32,7h8 words.
Thus, the maximum size of each buffer (in words) is
limited to 32,768 divided by the number of buffers.
The LBUF argument length is one word.

(continued on next page)

10-15

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-5 (Cont.)
Subroutine Argument Usage

----------.-------·---····--··-- ··--·-·-----···----
Argument

NBUF

MODE

IRATE

IP RS ET

DWELL

Meaning

Specifies the number of times the buffers are to be
filled during the life of the request. If 0
(default) is specified, sampling is indefinite and
must be stopped with the LPA$STPSWP subroutine. The
NBUF argument length is one longword.

Specifies sampling options. MODE bit values are
listed in the appropriate subroutine descriptions.
The default is O. MODE values can be added to
specify several options. No options are mutually
exclusive although not all bits may be applicable at
the same time. The MODE argument length is one word.

Specifies the clock rate:

0 Clock B overflow or no rate
1 = 1 MHz
2 100 kHz
3 10 kHz
4 1 kHz
5 100 Hz
6 Schmidt trigger
7 Line frequency

The IRATE argument length is one longword.

Specifies the hardware clock preset value. This
value is the 2's complement of the desired number of
clock ticks between clock interrupts. (The maximum
value is the 2's complement of n5,536.) IPRSET can be
computed by the LPASXRATE· subroutine. The IPRSET
argument length is one word.

Specifies the number of hardware clock overflows
between sample sequences in multirequest mode. For
example, if DWELL is 20 and NCHN is 3, then after 20
clock overflows one channel is sampled on each of the
next three successive overflows; no sampling occurs
for the next 20 clock overflows. This allows
different users to use different sample rates with
the same hardware clock overflow rate. In dedicated
mode, the hardware clock overflow rate controls
sampling and DWELL is not accessed. Default for
DWELL is 1. The DWELL argument length is one word.

~-----~~·--·---·--~~,_
(continued on next page)

10-Hi

Argument

IEFN

LDELAY

ICHN

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-5 (Cont.)
Subroutine Argument Usage

Meaning

Specifies the event flag number or completion routine
address. The selected event flag is set at the end
of each buffer transaction. If IEFN is 0 (default),
event flag 22 is used.

IEFN can also specify the address of a completion
routine. This routine is called by the buffer
management routine when a buffer is available and
when the request is terminated, either successfully
or with an error. The standard VAX/VMS calling and
return sequences are used. The completion routine is
called from an AST routine and is therefore at AST
level.

If IEFN specifies the address of a completion
routine, the program must call LPA$IGTBUF to obtain
the next buffer. If IEFN specifies an event flag,
the program must call LPA$IWTBUF to obtain the next
buffer and must use the %VAL operator:

, %VAL (3) ,

,BFRFULL,

(Event flag 3)

(Address of completion
routine)

The IEFN argument length is one longword.

If multiple sweeps are initiated, they must use
different event flags (the software does not enforce
this policy).

Event flag 23 is reserved for use by the LPASCLOCKA
and LPA$CLOCKB subroutines. If either of these
subroutines is included in the user program, event
flag 23 cannot be used. Also, if IEFN is defaulted,
event flag 22 cannot be used in the user program.

Specifies the delay, in IRATE units, from the start
event until the first sample is taken. The maximum
value is nS,536; default is 1. The LDELAY argument
length is one word. The LPAll-K supports the LDELAY
argument in multirequest mode only.

Specifies the number of the first I/O channel to be
sampled. Default is channel O. The ICHN argument
length is one byte. The channel number is not the
same as the channel assigned to the device by the
$ASSIGN system service (see Section 1.8.1). The
LPAll-K uses the channel number to specify the
multiplexer address of an A/D, D/A, or digital I/O
device on the LPAll-K internal I/O bus.

(continued on next page)

10-17

Argument

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-5 (Cont.)
Subroutine Argument Usage

Meaning
i--------------···-----------------------------4

NCHN

IND

Specifies the number of I/O device channels to sample
in a sample sequence. Default is 1. If the NCHN
argument is 1, the single channel bit is set in the
mode word of the start Request Descriptor Array (RDA)
when the sweep is started. The RDA contains the
information needed by the LPAll-K for each command
(see the LPAll-K Laboratory Peripheral Accelerator
User's Guide). The NCHN argument length is one word.

Receives the VAX/VMS success or failure code of the
call. The IND argument length is one longword.

--~-··--·--------·--""'"'""""' __ . ___ ---------~

10.5.2 LPA$ADSWP - Initiate Synchronous A/D Sampling Sweep

The LPA$ADSWP subroutine initiates A/D sampling through an ADll-K.

The format of the LPA$ADSWP call is as follows:

CALL LPA$ADSWP (IBUF,LBUF,[NBUF], [MODE], [DWELL], [IEFNl, [LDELAY],
[ICHN], [NCHN], [IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

MODE Specifies sampling options. VAX/VMS
following sampling option values:

defines the

Value Meaning

32 Parallel A/D conversion sample algorithm is
used if dual A/D converters are specified
(value 8192). Absence of this bit
implies the serial A/D conversion sample
algorithm.

n4 Multirequest mode request. Absence of this
bit implies a dedicated mode request.

512 External trigger (Schmidt trigger 1).
Dedicated mode only. (The LPAll-K
Laboratory Peripheral Accelerator User's
Guide describe·5--· ~-use of an external
trigger.)

1024 Time stamped sampling with Clock B. The

2048

double word consists of one data word
followed by the value of the LPAll-K's
internal ln-bit counter at the time of the
sample (see Section 2.4.3 in the LPAll-K
Labor a ~~EY E>~_r ~-p_~_e r_a 1 Acee 1 er.-~ to_!;: ___ User's
Guide). Multi request mode only.

Event marking. Multirequest mode only.
(The LPAll-K Laboratory Peripheral
Accelerator User's Guide describes event _____ ______ .
marking.)

10-18

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Value Meaning

4096 Start method. If selected, digital input

8192

start. If not selected, immediate start.
Multirequest mode only.

Dual A/D converters are to
Dedicated mode only.

be used.

16384 Buffer overrun is a nonfatal error. The
LPAll-K will automatically default to fill
buffer 0 if a buffer overrun condition
occurs.

If MODE is defaulted, A/D sampling starts immediately
with absolute channel addressing in dedicated mode.
The LPAll-K does not support delays in dedicated mode.

IND Returns the success or failure status:

0 = Error in call~ Possible causes are: LPA$SETIBF
was not previously called; LPA$RLSBUF was not
previously called; size of data buffers disagrees with
the ,size computed by the LPA$SETIBF call.

1 = successful sweep started

nnn = VAX/VMS status code

10.5.3 LPA$DASWP - Initiate Synchronous D/A Sweep

The LPA$DASWP subroutine initiates D/A output to an AAll-K.

The format for the LPA$DASWP call is as follows:

CALL LPA$DASWP (IBUF,LBUF,[NBUF], [MODE], [DWELL], [IEFN], [LDELAY],
[ICHN], [NCHN], [IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

MODE Specifies the sampling options. VAX/VMS defines the
following start criteria values:

Value Meaning

0 Immediate start. This is the default value
for MODE.

64 Multirequest mode. If not selected, this
request is for dedicated mode.

4096 Start method. If selected, digital input
start. If not selected, immediate start.
Multirequest mode only.

16384 Buffer overrun is a nonfatal error. The
LPAll-K will automatically default to empty
buffer 0 if a buffer overrun condition
occurs.

10-19

LABORATORY PERIPHERAL ACCELERATOR DRIVER

IND Returns the success or failure status:

O = Error in call. Possible causes are: LPA$SETIBF
was not previously called; LPA$RLSBUF was not
previously called; size of data buffers disagrees with
the size computed by the LPA$SETIBF call.

1 = successful sweep started

nnn = VAX/VMS status code

10.5.4 LPA$DISWP - Initiate Synchronous Digital Input Sweep

The LPA$DISWP subroutine initiates digital input through a DRll-K.
LPA$DISWP is applicable in multirequest mode only.

The format of the LPA$DISWP call is as follows:

CALL LPA$DISWP (IBUF,LBUF,[NBUF], [MODE], [DWELL], [IEFN] ,[LDELAY],
[ICHN], [NCHN], [IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

MODE Specifies sampling options. VAX/VMS
following sampling option values:

Value Meaning

defines the

0 Immediate start. This is the default value
for MODE.

512 External trigger for DRll-K. (The LPAll-K
Laboratory _ Peripl'!_~ral Accelerator User's
Guide describes the use of an external
trigger.)

1024 Time stamped sampling with Clock B. The
double word consists of one data word
followed by the value of the internal
LPAll-K, lo-bit, counter at the time of the
sample (see Section 2.4.3 in the LPAll-K
Laboratory Peripheral Ac~elerator User's
Guide).

2048 Event marking. (The LPAll-K Laboratory
Peripheral Accelerator User's Guide
describes event marking.)

4096 Start method. If selected, digital input
start. If not selected, immediate start.

16384 Buffer overrun is a non-fatal error. The
LPAll-K will automatically default to fill
buffer 0 if a buffer overrun condition
occurs.

10-20

LABORATORY PERIPHERAL ACCELERATOR DRIVER

IND Returns the success or failure status:

0 = Error in call. Possible causes are: LPA$SETIBF
was not previously called; LPA$RLSBUF was not
previously called; size of data buffers disagrees with
the size computed by the LPA$SETIBF call.

1 = successful sweep started

nnn = VAX/VMS status code

10.5.5 LPA$DOSWP - Initiate Synchronous Digital Output Sweep

The LPA$DOSWP subroutine initiates digital output through a DRll-K.
LPA$DOSWP is applicable in multirequest mode only.

The format of the LPA$DOSWP call is as follows:

CALL LPA$DOSWP (IBUF,LBUF,[NBUF] ,[MODE] ,[DWELL] ,[IEFN] ,[LDELAY],
[ICHN], [NCHN], [IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

MODE Specifies the sampling options.
following values:

Value Meaning

VAX/VMS defines the

0 Immed~ate start. This is the default value
for MODE.

512 External trigger for DRll-K (The LPAll-K
Laboratory Peripheral Accelerator User's
Guide describes the use of an external
trigger.)

4096 Start method. If selected, digital input
start. If not selected, immediate start.

ln384 Buffer overrun is a non-fatal error. The
LPAll-K will automatically default to empty
buffer 0 if a buffer overrun condition
occurs.

IND Returns the success or failure status:

0 = Error in call. Possible causes are: LPA$SETIBF
was not previously called; LPA$RLSBUF was not
previously called; size of data buffers disagrees with
the size computed by the LPA$SETIBF call.

1 = successful sweep started

nnn = VAX/VMS status code

10-21

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.6 LPA$LAMSKS - Set LPAll-K Masks and NUM Buffer

The LPA$LAMSKS subroutine initializes a user buffer which contains a
number to append to the logical name LPA11$, a digital start word
mask, an event mark mask, and channel numbers for the two masks.

LPA$LAMSKS must be called:

• By users who intend to use digital input starting or event
marking

• By users who do not want to use the default of LAAO assigned
to LPA11$0

• If multiple LPAll-Ks are used

The format of the LPA$LAMSKS call is as follows:

CALL LPA$LAMSKS (LAMSKB, [NUM], [!UNIT], [!DSC], [!EMC], [IDSW],
[I E MW] , [IND])

Argument descriptions are as follows:

LAMSKB

NUM

!UNIT

!DSC

!EMC

IDSW

IEMW

IND

Specifies a 4-word array.

Specifies the number appended to LPA11$. The sweep
is started on the LPAll-K assigned to LPA11$num.

Not used. This
compatibility only.

argument is present for

Specifies the digital START word channel. Range is
0 through 4. The !DSC argument length is one byte.

Specifies the event MARK word channel. Range is 0
through 4. The !EMC argument length is one byte.

Specifies the digital START word mask. The IDSW
argument length is one word.

Specifies the event MARK word mask. The IEMW
argument length is one word.

Always equal to l (success). This argument is
present for compatibility only.

10.5.7 LPA$SETADC - Set Channel Information For Sweeps

The LPA$SETADC subroutine establishes channel start and increment
information for the sweep control subroutines (see Table 10-4). The
LPA$SETIBF subroutine must be called to initialize IBUF before
LPA$SETADC is called.

The two formats for the LPA$SETADC call are as follows:

CALL LPA$SETADC (IBUF, [!FLAG], [ICHN], [NCHN], [INC], [IND])

or

IND=LPA$ SET ADC (IBUF, [I FLAG] , [ICHN] , [NCHN] , [INC])

10-22

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Argument descriptions are as follows:

IND

IBUF

I FLAG

ICHN

NCHN

Returns the success or failure status:

0 LPASSETIBF was not called prior to the
LPA$SETADC call

1 = LPA$SETADC call successful

The IBUF array specified in the LPASSETIBF call

Reserved. This argument is present for
compatibility only.

Specifies the first channel number. Range is O
through 255; default is O. The ICHN argument
length is one longword.

If INC = O,
Channel List.

ICHN is the address of a Random
This address must be word-aligned.

Specifies the number of samples taken per sample
sequence. Default is 1.

INC Specifies the channel increment. Default is 1.
If INC is O, ICHN is the address of a Random
Channel List. The INC argument length is one
longword.

10.5.8 LPA$SETIBF - Set IBUF Array For Sweeps

The LPA$SETIBF subroutine initializes the IBUF array for use with the
LPA$ADSWP, LPA$DISWP, LPA$DOSWP, LPA$DASWP, LPA$STPSWP, LPA$IWTBUF,
LPA$IGTBUF, LPA$IBFSTS, LPA$RLSBUF, LPA$INXTBF, LPA$SETADC, and
LPA$RMVBUF subroutines.

The format of the LPA$SETIBF call is as follows:

CALL LPA$SETIBF (IBUF, [IND], [LAMSKB] ,BUFO, [BUFl, ••• ,BUF7])

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF

IND

LAMSKB

Specifies a 50-longword array that is
by this subroutine. IBUF
longword-aligned. (See Table 10-5 for
information on IBUF.)

Returns the success or failure status:

initialized
must be
additional

0 Error in call.
of

Possible causes are:
incorrect number
longword-aligned;
equidistant.

arguments; IBUF array not
buffer addresses not

l = IBUF initialized successfully

Specifies the name of a 4-word array. This array
allows the use of multiple LPAll-Ks within the
same program because the argument used to start
the sweep is specified by the LPA$LAMSKS call.
(See Section 10.5.n for a description of the
LPA$LAMSKS subroutine.)

10-23

BUFO, etc.

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Specify the names of the buffers. A maximum of
eight buffers can be specified. At least two
buffers must be specified to provide continuous
sampling. The LPAll-K driver requires that all
buffers be contiguous. To ensure this, LPA$SETIBF
verifies that all buffer addresses are
equidistant. Buffers must be longword-aligned.

10.5.9 LPA$STPSWP - Stop In-progress Sweep

The LPA$STPSWP subroutine allows a user to stop a sweep that is in
progress.

The format of the LPA$STPSWP call is as follows:

CALL LPA$STPSWP (IBUF,[IWHEN], [IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF

I WHEN

IND

THE IBUF array specified
LPA$DASWP, LPA$DISWP, or
initiated the sweep.

in the
LPA$DOSWP

LPA$ADSWP,
call that

Specifies when to stop the sweep. VAX/VMS defines
the following values:

O = Abort sweep
system service.

immediately. Uses the $CANCEL
This is the default sweep stop.

1 = Stop sweep when the current buffer transaction
is completed. (This is the preferred way to stop
requests.)

Receives a success or failure code in the standard
VAX/VMS format:

1 = Success

nnn = VAX/VMS error code issued by the $CANCEL
system service

10.5.10 LPA$CLOCKA - Clock A Control

The LPA$CLOCKA subroutine sets the clock rate for Clock A.

The format of the LPA$CLOCKA call is as follows:

CALL LPA$CLOCKA (IRATE,IPRSET, [IND], [NUM])

10-24

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Arguments are as described in Section 10.5.1.2, with the following
additions:

IRATE

IP RS ET

IND

Specifies the clock rate. One of the following
values must be specified:

0 Clock B overflow or no rate
1 1 MHz
2 100 kHz
3 10 kHZ
4 1 kHz
5 100 Hz
n Schmidt trigger 1
7 Line frequency

Specifies the clock preset value. Maximum of 16
bits. The LPA$XRATE subroutine can be used to
calculate this value. The clock rate divided by
the clock preset value yields the clock overflow
rate.

Receives a success or failure code as follows:

1 = Clock A set successfully

nnn = VAX/VMS error code indicating an I/O error

NUM Specifies the number to be appended to the logical
name LPA11$. If defaulted, NUM is O. This
subroutine sets Clock A on the LPAll-K assigned to
LPA11$num.

10.5.11 LPA$CLOCKB - Clock B Control

The LPA$CLOCKB subroutine provides the user with control of the KWll-K
Clock B.

The format of the LPA$CLOCKB call is as follows:

CALL LPA$CLOCKB ([IRATE] ,IPRSET,MODE,[IND] ,[NUM])

Arguments are as described in Section 10.5.1.2, with the following
additions:

IRATE

IP RS ET

Specifies the clock rate. One of the following
values must be specified:

0 Stops Clock B
1 1 MHz
2 100 kHz
3 10 kHz
4 1 kHz
5 100 Hz
6 Schmidt trigger 3
7 Line frequency

If IRATE is 0 (default), the clock is stopped and
the IPRSET and MODE arguments are ignored.

Specifies the preset value by which the clock rate
is divided to yield the overflow rate. Maximum of
8 bits. Overflow events can be used to drive
Clock A. The LPA$XRATE subroutine can be used to
calculate the IPRSET value.

10-25

MODE

IND

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Specifies options. VAX/VMS defines the following
values:

1 Clock B operates in noninterrupt mode.

2 The feed B to A bit in
register will be set (see
LPAll-K Laboratory Peripheral
Guide).

the Clock B status
Section 3.3 of the
Accelerator User's

Receives a success or failure code as follows:

1 = Clock B set successfully

nnn = VAX/VMS error code indicating an I/O error

NUM Specifies the number to be appended to the logical
name LPA11$. If defaulted, NUM is o. This
subroutine sets Clock B on the LPAll-K assigned to
LPA11$num.

10.5.12 LPA$XRATE - Compute Clock Rate and Preset Value

The LPA$XRATE subroutine computes the clock rate and preset value for
the LPA$CLOCKA and LPA$CLOCKB subroutines using the specified
intersample interval (AINTRVL).

The two formats for the LPA$XRATE call are as follows:

CALL LPA$XRATE (AINTRVL,IRATE,IPRSET,IFLAG)

or

ACTUAL=LPA$XRATE(AINTRVL,IRATE,IPRSET,IFLAG)

Arguments are as described in Section 10.5.1.2, with the following
additions:

AINTRVL

IRATE

IP RS ET

!FLAG

ACTUAL

Specifies the intersample time selected by the
user. The time is expressed in decimal seconds.
Data type is floating point.

Receives the computed clock rate as a value from 1
throuqh 5.

Receives the computed clock preset value.

If the computation is for Clock A, !FLAG is O; if
for Clock B, !FLAG is not 0 (the maximum preset
value is 255). The !FLAG argument length is one
byte.

Receives the actual intersample time if called as
a function. Data type is floating point. If
there are truncation and roundoff errors, this
time can be different from the specified
intersample time. Note that when LPA$XRATE is
called from VAX-11 FORTRAN programs as a function,
it must be explicitly declared a real function.
Otherwise, LPA$XRATE defaults to an integer
function.

10-20

LABORATORY PERIPHERAL ACCELERATOR DRIVER

If AINTRVL is too large or too small to be achieved, both IRATE and
ACTUAL are returned to O.

10.5.13 LPA$IBFSTS - Return Buffer Status

The LPA$IBFSTS subroutine returns information on the buffers used in a
swee~.

The format of the LPA$IBFSTS call is as follows:

CALL LPA$IBFSTS (IBUF,ISTAT)

Argument descriptions are as follows:

IBUF

!STAT

The IBUF array specified in the
initiated the sweep.

call that

Specifies a longword array with as many elements
as there are buffers involved in the sweep
(maximum of eight). LPA$IBFSTS fills each array
element with the status of the corresponding
buffer:

+2 = Buffer in device queue. LPASRLSBUF has been
called for this buffer.

+l = Buffer in user queue. The LPAll-K has filled
(data input) or emptied (data output) this buffer.

0 = Buffer is not in any queue.

-1 = Buffer is in the in-use queue, that is, it is
either being filled or emptied or is the next to
be filled or emptied by the LPAll-K.

10.5.14 LPA$IGTBUF - Return Buffer Number

The LPA$IGTBUF subroutine returns the number of the next buffer to be
processed by the application program, that is, the buffer at the head
of the user queue (see Figure 10-4). LPA$IGTBUF should be called by a
completion routine at AST level to determine the next buffer to
process. If an event flag was specified in the start sweep call,
LPA$IWTBUF, not LPA$IGTBUF, should be called.

The formats of the LPA$IGTBUF call are as follows:

CALL LPA$IGTBUF (IBUF,IBUFNO)

or

IBUFNO=LPA$IGTBUF(IBUF)

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF

IBUFNO

The IBUF array specified in the
initiated the sweep.

call that

Returns the number of the next buffer to be filled
or emptied by the application program.

10-27

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-6 lists the possible combinations of IBUFNO and IOSB contents
on the return from a call to LPASIGTBUF. The first four words of the
IBUF array contain the IOSB. If IBUFNO is -1, the IOSB must be
checked to determine the reason.

Table 10-6
LPA$IGTBUF Call - IBUFNO and IOSB Contents

------.. ------------.
IBUFNO IOSB (1) IOSB (2) IOSB (3), (4) Meaning

_,, ___ •«----- -··----~ .. --.............. --·- !--·----·· ---·M-·••••••• f--····•-""

n 0 (byte count) 0

-1 0 0 0

-1 1 0 0

-1 VAX/VMS 0 LPAll-K
error code ready-out

and ma int.
registers

(only if
SS$ DEVREQERR
SS$=CTRLERR,

or
SS$ DEVCMDERR
is returned)

.. _.__ __ ... _. ___ .. __ .__ .. ___ ... --·-···· .. -··---------·

Normal buffer complete.

No buffers in queue.
Request still active.

No buffers in queue.
Sweep terminated
normally.

No buffers in queue.
Sweep terminated due to
error condition.
Section 10.n describes
the VAX/VMS error codes;

, Appendix A of the
LPAll-K Laboratory
Peripheral Accelerator
User's Guide lists
the LPAll-K error codes •

10.5.15 LPA$INXTBF - Set Next Buffer to Use

The LPA$INXTBF subroutine alters the normal buffer selection algorithm
to allow the user to specify the next buffer to be filled or emptied.
The specified buffer is reinserted at the head of the device queue.

The two formats of the LPA$INXTBF call are as follows:

CALL .LPA$INXTBF (IBUF,IBUFNO,IND)

or

IND=LPA$INXTBF(IBUF,IBUFNO)

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF

IBUFNO

IND

The IBUF array specified in the
initiated the sweep.

call that

Specifies the number of the next buffer to be
filled or emptied. The buffer must already be in
the device queue.

Returns the result of the call:

0 Specified buffer was not in the device queue

1 Next buffer was successfully set

10-28

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.16 LPA$IWTBUF - Return Next Buffer or Wait

The LPA$IWTBUF subroutine returns the next buffer to be processed by
the application program, that is, the buffer at the head of the user
queue. If the user queue is empty, LPA$IWTBUF waits until a buffer is
available. If a completion routine was specified in the call that
initiated the sweep, LPA$IGTBUF, not LPA$IWTBUF, should be called.

The two formats of the LPA$IWTBUF call are as follows:

CALL LPA$IWTBUF (IBUF,[IEFN] ,IBUFNO)

or

IBUFNO=LPA$IWTBUF(IBUF,[IEFN])

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF

IEFN

IBUFNO

The IBUF array specified in the
initiated the sweep.

call that

Not used. This argument is present for
compatibility only. (The event flag is the one
specified in the start sweep call.)

Returns the number of the next buffer to be filled
or emptied by the application program.

Table 10-7 lists the possible combinations of IBUFNO and IOSB contents
on the return from a call to LPA$IWTBUF. The first four words of the
IBUF array contain the IOSB. If IBUFNO is -1, the IOSB must be
checked to determine the reason.

Table 10-7
LPA$IWTBUF Call - IBUFNO and IOSB Contents

IBUFNO IOSB(l) IOSB(2) IOSB(3), (4)

n 0 (byte count) 0

-1 1 0 0

-1 VAX/VMS 0 LPAll-K
error code ready-out

and maint.
registers
(only if

SS$ DEVREQERR,
SS$=CTRLERR,

or
SS$ DEVCMDERR
is returned)

10-29

Meaning

Normal buffer complete.

No buffers in queue.
Sweep terminated
no rma 11 y.

No buffers in queue.
Sweep terminated due to
error condition.
Section 10.n describes
the VAX/VMS error codes;
Appendix A of the LPAll-K
Laboratory Peripheral
Accelerator User's Guide
lists the LPAll-K error
codes.

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.17 LPA$RLSBUF - Release Data Buffer

The LPA$RLSBUF subroutine declares one or more buffers available to be
filled or emptied by the LPAll-K. LPA$RLSBUF inserts the buffer at
the tail of the device queue (see Figure 10-4).

The format of the LPA$RLSBUF call is as follows:

CALL LPA$RLSBUF (IBUF,[IND] ,INDEXO,INDEXl, ••• ,INDEXN)

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF

IND

INDEXO, etc.

The IBUF array specified in the
initiated the sweep.

Returns the success or failure status:

call that

0 = Illegal buffer number or incorrect number of
arguments specified, or a double buffer overrun
occurred. A double buffer overrun can occur if
buffer overrun was specified as a nonfatal error,
a buffer overrun occurs, and buffer 0 was not
released {probably on the user queue after a
previous buff er overrun) • LPA$RLSBUF can return a
double buffer overrun error only if buffer overrun
was specified as a nonfatal error.

1 = Buffer(s) released successfully

Specify the indexes (0-7) of the
released. A maximum of eight
specified.

buffers to be
indexes can be

The LPA$RLSBUF subroutine must be called to release a buffer (or
buffers) to the device queue before the sweep is initiated. (See
Section 10.5.1.1 for a discussion on buffer management.) Note that
LPA$RLSBUF does not verify whether or not the specified buffers are
already in a queue. If a buffer is released when it is already in a
queue, the queue pointers will be invalidated. This can cause
unpredictable results.

If buffer overrun is specified as a nonfatal error, buffer 0 should
not be released before the sweep is initiated. However, if either
LPA$IGTBUF or LPA$IWTBUF returns buffer O, it should be released.
Note that, in this case, buffer 0 is set aside (not placed on a queue)
until the buffer overrun occurs. If a buffer overrun occurs and
buffer 0 was not released, the LPA$RLSBUF routine returns an error the
next time buffer 0 is released.

10.5.18 LPA$RMVBUF - Remove Buffer from Device Queue

The LPASRMVBUF subroutine removes a buffer from the device queue.

The format of the LPA$RMVBUF call is as follows:

CALL LPA$RMVBUF (IBUF,IBUFNO, [IND])

10-30

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF

IBUFNO

IND

The IBUF array specified in the
initiated the sweep.

call that

Specifies the number of the buffer to remove from
the device queue.

Returns the success or failure status:

0 Buff er not found in the device queue

1 Buffer successfully removed from the device
queue

10.5.19 LPA$CVADF - Convert A/D Input to Floating Point

The LPA$CVADF subroutine converts A/D input values to floating point
numbers. LPA$CVADF is provided for compatibility reasons.

The formats of the LPA$CVADF call are as follows:

CALL LPA$CVADF (IVAL,VAL)

or

VAL=LPA$CVADF(IVAL)

Argument descriptions are as follows:

!VAL Contains the value (bits 11:0) read from the A/D
input. Bits 15:12 are O.

VAL Receives the floating point value.

10.5.20 LPA$FLT16 - Convert Unsigned 16-bit Integer to Floating Point

The LPA$FLP16 subroutine converts unsigned 16-bit integers to floating
point. LPA$FLT16 is provided for compatibility reasons.

The formats of the LPA$FLT16 call are as follows:

CALL LPA$FLT16 (IVAL,VAL)

or

VAL=LPA$FLT16(IVAL)

Argument descriptions are as follows:

!VAL An unsigned 16-bit integer.

VAL Receives the converted value.

10-31

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.21 LPA$LOADMC - Load Microcode and Initialize LPAll-K

The LPA$LOADMC subroutine provides a program interface to the LPAll-K
microcode loader. LPA$LOADMC sends a load request through a mailbox
to the loader process to load microcode and initialize an LPAll-K
(Section 10.7.1 describes the microcode loader process).

The format of the LPA$LOADMC call is as follows:

CALL LPA$LOADMC {[ITYPE] [,NUM] [,IND] [,!ERROR])

Argument descriptions are as follows:

I TYPE

NUM

IND

I ERROR

The type of microcode to be loaded.
defines the following values:

Value Meaning

1 Multirequest mode

2 Dedicated A/D mode

3 Dedicated D/A mode

VAX/VMS

If the ITYPE argument is defaulted, multirequest
mode microcode is loaded.

The number to be appended to the logical name
LPA11$. If defaulted, NUM is o.

Receives the completion status:

1 = Microcode loaded successfully.

nnn = VAX/VMS error code

Provides additional error information. Receives
the second longword of the IOSB if either
SS$ CTRLERR, SS$ DEVCMDERR, or SS$ DEVREQERR is
returned in IND. Otherwise, the- contents of
!ERROR is undefined.

10.6 I/O STATUS BLOCK

The I/O status block format for the load microcode, start
microprocessor, initialize LPAll-K, set clock, and start data transfer
request QIO functions is shown in Figure 10-5.

31

byte count

LPA11·K
maintenance status

Figure 10-5

16 15 0

status

LPA 11 ·K ready-out

I/O Functions IOSB Content

10-32

LABORATORY PERIPHERAL ACCELERATOR DRIVER

VAX/VMS status values and the byte count are returned in the first
longword. Status values are defined by the $SSDEF macro. The byte
count is the number of bytes transferred by a IO$ LOADMCODE request.
If SS$ CTRLERR, SS$ DEVCMDERR, or SS$ DEVREQERR is returned in the
status word, the second longword contains the LPAll-K Ready-Out
Register and LPAll-K Maintenance Status Register values present at the
completion of the request. The high byte of the Ready-Out Register
contains the specific LPAll-K error code (see Appendix A of the
LPAll-K Laboratory Peripheral Accelerator User's Guide}. Table 10-8
lists the status returns for LPAll-K I/O functions.

If high-level language library procedures are used, the status returns
listed in Table 10-8 can be returned from the resultant QIO functions.
Since buffers are filled by these procedures asynchronously, two I/O
status blocks are provided in the IBUF array: one for the high-level
language procedures and one for the LPAll-K driver. The first four
words of the IBUF array contain the IOSB for the high-level language
procedures.

Table 10-8
LPAll-K Status Returns for I/O Functions

Status

SS$_ABORT

SS$ BUFNOTALIGN

SS$ CANCEL

SS$ CTRLERR

Meaning

Request aborted. A request in progress was
cancelled by the $CANCEL system service. (Only
for start data transfer request functions.}

Alignment error. If this error occurs for an
initialize LPAll-K request, the initialize
command table was not word-aligned. If this
error occurs for a start data transfer request,
there are several possible causes:

• User status word (USW} not word-aligned

• Buffer area not longword-aligned

• Random Channel List (RCL) not word-aligned

Request cancelled by the $CANCEL system service
before it started. (Only for the initialize
LPAll-K, set clock, and start data transfer
request functions.)

Controller error. (Only for the start
microprocessor, initialize LPAll-K, set clock,
and start data transfer request functions.) This
is a fatal error that affects all LPAll-K
activity. If this error occurs, the LPAll-K
terminates all active requests. The third and
fourth words of the IOSB contain the LPAll-K
Ready-out Status Register and Maintenance
Register contents. In particular, the high byte
of the third word contains the specific LPAll-K
error code (see Appendix A in the LPAll-K
Laboratory Peripheral Accelerator User's Guide).

(continued on next page)

10-33

Status

SS$ DATACHECK

SS$ DEVACTIVE

SS$ DEVCMDERR

SS$_DEVREQERR

SS$_EXQUOTA

SS$ INSFBUFDP

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-8 (Cont.)
LPAll-K Status Returns for I/O Functions

Meaning

Data check error. (Only for the load microcode
function.) A mismatch between the microcode in
memory and the microcode loaded into the LPAll-K
was detected. The second word of the IOSB
contains the number of bytes successfully
loaded.

Device is active. (Only for the load microcode
and start microprocessor functions.) The
microcode cannot be loaded or the microprocessor
cannot be started because there is an active
data transfer request.

LPAll-K command error. (Only for the initialize
LPAll-K, set clock, and start data transfer
request functions.) This error is associated
with the issuance of a new LPAll-K command. The
third and fourth words of the IOSB contain the
LPAll-K Ready-Out Status Register and
Maintenance Register contents. In particular,
the high byte of the third word contains the
specific LPAll-K error code. (See Appendix A in
the LPAll-K Laboratory Peripheral Accelerator
User's Guide).

LPAll-K user request error. (Only for start
data transfer requests.) The third and fourth
words of the IOSB contain the LPAll-K Ready-Out
Status Register and Maintenance Register
contents. In particular, the high byte of the
third word contains the specific LPAll-K error
code. (See Appendix A in the LPAll-K Laboratory
Peripheral Accelerator User's Guide).

AST quota exceeded. (Only for start data
transfer requests.) An AST cannot he queued for
a buffer full/empty AST. Normally, a start data
transfer request can require no more than three
AST blocks at a time.

A UBA-buf f ered datapath was not
allocation. (Only for start
requests in dedicated mode.)

available for
data transfer

SS$ INSFMAPREG Insufficient UBA map registers to map the
command table or buffer areas. (Only for the
initialize LPAll-K and start data transfer
request functions.) If the map registers were
preallocated when the driver was loaded, the
preallocation should be increased.

SS$ INSFMEM Insufficient dynamic memory to start request or
allocate an AST block. (Only for start data
transfer requests.)

(continued on next page)

10-34

Status

SS$ IVBUFLEN

SS$ IVMODE

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-8 (Cont.)
LPAll-K Status Returns for I/O Functions

Meaning

Incorrect length. If this error occurs for an
initialize LPAll-K request, the initialize
command table length is not the required 278
bytes. If this error occurs for a start data
transfer request, there are several possible
causes:

• Command table length is not the required 40
bytes

• Buffer area size is not evenly divisible by
the number of buffers assigned

• Individual buffer size is O

• Individual buffer size is not a multiple of
2 for a multirequest mode request, or 4 for
a dedicated mode request

• Random Channel List length is 0 or not a
multiple of 2

• Bit 15 in the last word of the Random
Channel List is not set

Invalid mode. (Only for the initialize LPAll-K
function.) The first three bits (2:0) of the
first word in the command table, that is, the
mode word, are not O.

SS$ MCNOTVALID Microcode has not been successfully loaded.
(Only for the start microprocessor, initialize
LPAll-K, set clock, and start data transfer
request functions.)

SS$ PARITY

SS$ POWERFAIL

SS$ TIMEOUT

Parity error. (Only for start data transfer
request in deicated mode.) A parity error
occurred in a USA-buffered datapath.

A power failure occurred while a request was
active. (Only for the start microprocessor,
initialize LPAll-K, set clock, and start data
transfer request functions.)

Device timeout. (Only for the start
microprocessor, initialize LPAll-K, set clock,
and start data transfer request functions.) An
interrupt was not received within one second
after the request was issued.

10-35

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.7 LOADING LPAll-K MICROCODE

The microcode loading and device initialization routines automatically
load microcode on system initialization (if specified in the system
manager's startup file) and on power recovery. These routines also
allow a nonprivileged user to load microcode and restart the system.

The LPAll-K loader and initialization routines consist of three parts:

• A microcode loader process which loads any of the three
microcode versions, initializes the LPAll-K, and sets the
clock rate. Loading is initiated by either a mailbox request
or a power recovery AST. This process requires permanent
mailbox (PRMMBX) and physical I/O privileges.

• An operator process which accepts operator commands or
indirect file commands to load microcode and initialize an
LPAll-K. This process uses a mailbox to send a load request
to the loader process; temporary mailbox (TMPMBX) privilege
is required.

• An LPAll-K procedure library routine that provides a program
interface to the LPAll-K microcode loader. The procedure
sends a load request through a mailbox to the loader process
to load microcode and initialize an LPAll-K. Section 10.5.21
describes this routine in greater detail.

10.7.1 Microcode Loader Process

The microcode loader process loads microcode, initializes a specific
LPAll-K, and sets the clock at the default rate (10 kHz interrupt
rate). A bit set in a controller bitmap indicates that the specified
controller was loaded. The process specifies a power recovery AST,
creates a mailbox whose name {LPASLOADER) is entered in the system
logical name table, and then hibernates.

The correct device configuration is determined automatically. When
LPAll-K initialization is performed, every possible device {see Table
10-1) is specified as present on the LPAll-K. If the LPAll-K returns
a device not found error, the LPAll-K is reinitialized with that
device omitted.

On receipt of a power recovery AST, the loader process examines the
controller bitmap to determine which LPAll-Ks have been loaded. For
each LPAll-K, the loader process performs the following functions:

• Obtains device characteristics

• Reloads the microcode previously loaded

• Reinitializes the LPAll-K

• Sets Clock A to the previous rate and preset value

10-36

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.7.2 Operator Process

The operator process loads microcode and initializes an LPAll-K
through the use of either terminal or indirect file commands. The
command input syntax is as follows:

devname/type

Devname is the device name of the LPAll-K to be loaded. A logical
name can be specified. However, only one level of logical name
translation is performed. If devname is omitted, LAAO is the default
name. If /type appears, it specifies one of three types of microcode
to load:

/MULTI REQUEST = multirequest mode
/ANALOG DIGITAL dedicated A/D mode
/DIGITAL_ANALOG = dedicated D/A mode

If /type is omitted, /MULTI_REQUEST is the default.

After receiving the command, the operator process formats a message
and sends it to the loader process. Completion status is returned
through a return mailbox.

10.8 RSX-llM VERSION 3.1 AND VAX/VMS DIFFERENCES

This section lists those areas where the VAX/VMS and RSX-llM Version
3.1 LPAll-K high-level language support routines differ. The RSX-llM
I/O Drivers Reference Manual provides a detailed description of the
RSX-llM LPAll-K support routines. The exact differences between the
VAX/VMS and RSX-llM routines can be determined by comparing the
descriptions in the RSX-llM manual with the descriptions for the
VAX/VMS routines in the preceding sections of this guide.

10.8.1 Alignment and Length

In VAX/VMS:

• Buffers must be contiguous.

• Buffers must be longword-aligned.

• The Random Channel List must be word-aligned.

• The IBUF array length is 50
longword-aligned.

10-37

longwords and must be

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.8.2 Status Returns

In VAX/VMS:

• The I/O Status Block length is 8 bytes;
errors are different.

numeric values of

• Several routines return:

1 - Success

0 - Failure detected in support routine

nnn - VAX/VMS status code.
service.

10.8.3 Sweep Routines

In VAX/VMS:

Failure detected in system

• If an event flag is specified, it must be within a %VAL(
construction.

• A tenth argument, IND, has been added to return the success or
failure status.

10.8.4 General

In VAX/VMS:

• The LUN argument is not used.
specifies the number to be
LPA11$.

Instead, the NUM argument
appended to the logical name

• All routine names have the prefix LPA$.

• In the LPA$SETIBF routine, buffer addresses are checked for
contiguity.

• In the LPA$LAMSKS routine, the IUNIT argument is not used.

• In the LPA$IWTBUF routine, the IEFN argument is not used. The
event flag specified in the sweep routine is used.

• The combinations
returned by the
different.

10.9 PROGRAMMING EXAMPLES

of IBUFNO and
LPA$IWTBUF and

I/O Status
LPA$IGTBUF

Block values
routines are

The following program examples use LPAll-K high level language
procedures and LPAll-K Queue I/O functions.

Appendix B of the VAX/VMS Real-Time User's Guide contains information
on LPAll-K programming --and design cons ide·r-at ions.

10-38

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.9.l LPAll-K High Level Language Program (Program A)

This program is an example of how the LPAll-K high level language
procedures perform an A/D sweep using three buffers. The program uses
default arguments whenever possible to illustrate the simplest
possible calls. The program assumes that dedicated mode microcode has
previously been loaded into the LPAll-K. Table 10-9 lists the
variables used in this program.

Variable

BUFFER

IBUF

BUFNUM

!STAT

Table 10-9
Program A Variables

Description

The data buffer array. BUFFER is a common area to
guarantee longword-alignment.

The LPAll-K high level language procedures use the
IBUF array for local storage.

BUFNUM contains the buffer number returned by
LPA$IWTBUF. In this example, the possible values are
0, 1, and 2.

!STAT contains the status return from the high level
language calls.

'--------'------------------------------------________ _,

c ***
c
C PROGRAM A
c
c **************************************~***************************

c

INTEGER* 2
INTEGER*4

BUFFER(l000,0:2) ,IOSB(4)
IBUF(50) ,ISTAT,BUFNUM

COMMON/AREAl/BUFFER

EQUIVALENCE (IOSB(l) ,IBUF(l))

C SET CLOCK RATE TO 100 KHZ, CLOCK PRESET TO -10
c

c

CALL LPA$CLOCKA(2,-10,ISTAT)
IF (.NOT. !STAT) GO TO 950

C INITIALIZE IBUF ARRAY FOR SWEEP
c

c

CALL LPA$SETIBF (IBUF, I STAT,, BUFFER (l, 0) , BUFFER (l, l) , BUFFER (l, 2))
IF (.NOT. !STAT) GO TO 950

C RELEASE ALL THE BUFFERS. NOTE USE OF BUFFER NUMBERS RATHER THAN
C BUFFER NAMES.
c

c

CALL LPA$RLSBUF(IBUF,ISTAT,O,l,2)
IF (.NOT. !STAT) GO TO 950

C START A/D SWEEP
c

10-39

c

LABORATORY PERIPHERAL ACCELERATOR DRIVER

CALL LPA$ADSWP(IBUF,1000,50,,,,,,,ISTAT)
IF (.NOT. !STAT) GO TO 950

C GET NEXT BUFFER FILLED WITH DATA. IF BUFNUM IS NEGATIVE, THERE
C ARE NO MORE BUFFERS AND THE SWEEP IS STOPPED.
c
100 BUFNUM = LPA$IWTBUF(IBUF)

IF (BUFNUM .LT. 0) GO TO 800
c
C PROCESS DATA IN BUFFER(l,BUFNUM) TO BUFFER (1000,BUFNUM)

(Application-dependent code is inserted at this point)

C RELEASE BUFFER TO BE FILLED AGAIN
c
200 CALL LPA$RLSBUF(IBUF,ISTAT,BUFNUM)

IF (.NOT. !STAT) GO TO 950
GO TO 100

c
C THERE ARE NO MORE BUFFERS TO PROCESS. CHECK TO ENSURE THAT THE
C SWEEP ENDED SUCCESSFULLY. IOSB(l) CONTAINS EITHER 1 OR A
C VAX/VMS STATUS CODE.
c
800 IF (.NOT. IOSB(l)) CALL LIB$STOP(%VAL(IOSB(l)))

PRINT *,'SUCCESSFUL COMPLETION'
GO TO 2000

c
C ERROR RETURN FROM SUBROUTINE. !STAT CONTAINS EITHER 0 OR
C VAX/VMS ERROR CODE.
c
950 IF (!STAT .NE. 0) CALL LIB$STOP(%VAL(ISTAT))

PRINT *,'ERROR IN LPAll-K SUBROUTINE CALL'
2000 STOP

END

c ***

10.9.2 LPAll-K High-level Language Program (Program B)

This program is a more complex example of LPAll-K operations performed
by the LPAll-K high-level language procedures. The following
operations are demonstrated:

• Program-requested loading of LPAll-K microcode

• Setting the clock at a specified rate

• Use of nondefault arguments whenever possible

• An A/D sweep that uses an event flag

• A D/A sweep that uses a completion routine

• Buffer overrun set (buffer overrun is a non-fatal error)

• Random Channel List addressing

• Sequential Channel addressing

10-40

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-10 lists the variables used in this program.

Variable

AD

DA

IBUFAD

I BU FDA

RCL

ADIOSB

DAIOSB

I STAT

Table 10-10
Program B Variables

Description

An array of buffers for an A/D sweep (8 buffers of
500 words each)

An array of buffers for a D/A sweep (2 buffers of
2000 words each)

The IBUF array for an A/D sweep

The IBUF array for a D/A sweep

The array containing the Random Channel List

The array that contains the I/O status block for the
A/D sweep. Equivalenced to the beginning of IBUFAD.

The array that contains the I/O status block for the
D/A sweep. Equivalenced to the beginning of IBUFDA.

Contains the status return from the high-level
language calls

·--T~~

c ***
c
C PROGRAM B
c
c ***

c

EXTERNAL FILLBF
REAL*4 LPA$XRATE

INTEGER*2 AD(500,0:7) ,DA(2000,0:l) ,RCL(5) ,MODE,IPRSET
INTEGER*2 ADIOSB(4) ,DAIOSB(4)

INTEGER*4 IBUFAD(50),IBUFDA(50) ,LAMSKB(2)
INTEGER*4 ISTAT,IERROR,IRATE,BUFNUM

REAL*4 PERIOD

COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

EQUIVALENCE (IBUFAD(l) ,ADIOSB(l)) ,(IBUFDA(l) ,DAIOSB(l))

PARAMETER MULTI=l, HBIT='8000'X, LSTCHN=HBIT+7

C SET UP RANDOM CHANNEL LIST. NOTE THAT THE LAST WORD MUST HAVE BIT
C 15 SET.
c

DATA RCL/2,6,3,4,LSTCHN/

10-41

LABORATORY PERIPHERAL ACCELERATOR DRIVER

c ***
c
C LOAD MULTIREQUEST MODE MICROCODE AND SET THE CLOCK OVERFLOW RATE
C TO 5 KHZ
c
c ***
c
C LOAD MICROCODE ON LPAll-K ASSIGNED TO LPA11$3
c

c

CALL LPA$LOADMC(MULTI,3,ISTAT,IERROR)
IF (.NOT. !STAT) GO TO 5000

C COMPUTE CLOCK RATE AND PRESET. SET CLOCK 'A' ON LPAll-K
C ASSIGNED TO LPA11$3.
c

PERIOD = LPA$XRATE(.0002,IRATE,IPRSET,O)
IF (PERIOD .EQ. 0.0) GO TO 5500

CALL LPA$CLOCKA(IRATE,IPRSET,ISTAT,3)
IF (.NOT. ISTAT) GO TO 5000

c ***
c
C SET UP FOR A/D SWEEP
c
c ***
c
C INITIALIZE IBUF ARRAY. NOTE THE USE OF THE LAMSKB ARGUMENT BECAUSE
C THE LPAll-K ASSIGNED TO LPA11$3 IS USED.
c

CALL LPA$SETIBF(IBUFAD,ISTAT,LAMSKB,AD(l,O) ,AD(l,l) ,AD(l,2) I

1 AD (1 , 3) , AD < 1 , 4) , AD (1 , 5) , AD (1 , n) , AD < 1 , 7))
IF (.NOT. !STAT) GO TO 5000

CALL LPA$LAMSKS(LAMSKB,3)
c
C SET UP RANDOM CHANNEL LIST SAMPLING (20 SAMPLES IN A SAMPLE
C SEQUENCE)
c

c

CALL LPA$SETADC(IBUFAD,,RCL,20,0,ISTAT)
IF (.NOT. !STAT) GO TO 5000

c RELEASE BUFFERS FOR A/D SWEEP. NOTE THAT BUFFER 0 rs NOT
C RELEASED BECAUSE BUFFER OVERRUN WILL BE SPECIFIED AS NON-FATAL.
c

CALL LPA$RLSBUF(IBUFAD,ISTAT,l,2,3,4,5,~,7)
IF (.NOT. !STAT) GO TO 5000

c ***
c
C SET UP FOR D/A SWEEP
c
c ***
c
C NOTE THAT THE SAME LAMSKB ARRAY CAN BE USED BECAUSE THE LAMSKB
C CONTENTS APPLY TO BOTH A/D AND D/A SWEEPS
c

c

CALL LPA$SETIBF(IBUFDA,ISTAT,LAMSKB,DA(l,O) ,DA(l,l))
IF (.NOT. !STAT) GO TO 5000

C SET UP SAMPLING PARAMETERS AS FOLLOWS: INITIAL CHANNEL = 1.
C NUMBER OF CHANNELS SAMPLED EACH SAMPLE SEQUENCE = 2, CHANNEL
C INCREMENT = 2, THAT IS, SAMPLE CHANNELS 1 AND 3 EACH SAMPLE
C SEQUENCE.

10-42

c

c

LABORATORY PERIPHERAL ACCELERATOR DRIVER

CALL LPA$SETADC(IBUFDA,,l,2,2,ISTAT)
IF (.NOT. !STAT) GO TO 5000

C FILL BUFFERS WITH DATA FOR OUTPUT TO D/A
c

(Application dependent code is inserted here to fill buffers
DA(l,O) through DA(2000,0) and DA(l,l) through DA(2000,l) with data)

c
C RELEASE BUFFERS FOR D/A SWEEP
c

CALL LPA$RLSBUF (IBUFDA,ISTAT,O,l)
IF (.NOT. !STAT) GO TO 5000

c ***
c
C START BOTH SWEEPS
c
c ***
c
C START A/D SWEEP. MODE BITS SPECIFY BUFFER OVERRUN IS NON-FATAL AND
C MULTIREQUEST MODE. SWEEP ARGUMENTS SPECIFY 500 SAMPLES/BUFFER,
C INDEFINITE SAMPLING, DWELL = 10 CLOCK OVERFLOWS, SYNCHRONIZE USING
C EVENT FLAG 15, AND A DELAY OF 50 CLOCK OVERFLOWS.
c

c

MODE = 16384 + 64
CALL LPA$ADSWP(IBUFAD,500,0,MODE,10,%VAL(l5) ,50,,,ISTAT)
IF (.NOT. !STAT) GO TO 5000

C START D/A SWEEP. MODE SPECIFIES MULTIREQUEST MODE. OTHER
C ARGUMENTS SPECIFY 2000 SAMPLES/BUFFER, FILL 15 BUFFERS, DWELL = 25
C CLOCK OVERFLOWS, SYNCHRONIZE BY CALLING THE COMPLETION ROUTINE
C 'FILLBF', AND DELAY = 10 CLOCK OVERFLOWS. (SEE THE FILLBF LISTING
C AFTER THE PROGRAM B LISTING.)
c

MODE = 64
CALL LPA$DASWP(IBUFDA,2000,15,MODE,25,FILLBF,10,,,ISTAT)
IF (.NOT. !STAT) GO TO 5000

c ***
c
C WAIT FOR AN A/D BUFFER AND THEN PROCESS THE DATA IT CONTAINS. D/A
C BUFFERS ARE FILLED ASYNCHRONOUSLY BY THE COMPLETION ROUTINE FILLBF.
c
c ***
c
C WAIT FOR A BUFFER TO BE FILLED BY A/D. IF BUFNUM IS LESS THAN
C ZERO, THE SWEEP HAS STOPPED (EITHER SUCCESSFULLY OR WITH AN ERROR).
c
100 BUFNUM = LPA$IWTBUF(IBUFAD)

IF (BUFNUM .LT. 0) GO TO 1000
c
C THERE IS A/D DATA IN AD(l,BUFNUM) THROUGH AD(500,BUFNUM)
c

10-43

LABORATORY PERIPHERAL ACCELERATOR DRIVER

(Process the A/D data with the application dependent code inserted
here)

c
C ASSUME SWEEP SHOULD BE STOPPED WHEN THE LAST SAMPLE IN BUFFER
C EQUALS O. NOTE THAT THE SWEEP ACTUALLY STOPS WHEN THE BUFFER
C CURRENTLY BEING FILLED IS FULL. ALSO NOTE THAT LPASIWTBUF
C CONTINUES TO BE CALLED UNTIL THERE ARE NO MORE BUFFERS TO PROCESS.
c

c

IF (AD(500,BUFNUM) .NE. 0) GO TO 200
CALL LPA$STPSWP(IBUFAD,l,ISTAT)
IF (.NOT. !STAT) GO TO 5000

C AFTER THE DATA HAS BEEN PROCESSED, THE BUFFER IS RELEASED TO BE
C FILLED AGAIN. THEN THE NEXT BUFFER IS OBTAINED FROM A/D.
c
200 CALL LPA$RLSBUF(IBUFAD,ISTAT,BUFNUM)

IF (.NOT. !STAT) GO TO 5000

c
c
c
c

GO TO 100

ENTER HERE WHEN A/D SWEEP HAS ENDED. CHECK FOR ERROR OR
SUCCESSFUL END. (NOTE: ASSUME THAT THE D/A SWEEP HAS ALREADY
ENDED - SEE COMPLETION ROUTINE FILLBF)

c
1000 IF (ADIOSB (l)) GO TO 6000

CALL LIB$STOP(%VAL(ADIOSB(l)))

c
c
c
c

ENTER HERE IF THERE WAS AN ERROR RETURNED FROM ONE OF THE
LPAll-K HIGH LEVEL LANGUAGE CALLS. !STAT CONTAIN~ EITHER 0
OR A VAX/VMS STATUS CODE.

c
5000
5500

IF (!STAT .NE. 0) CALL LIBSSTOP (%VAL(ISTAT))
PRINT *,'ERROR IN LPAll-K SUBROUTINE CALL'
GO TO 7000

6000 PRINT *,'SUCCESSFUL COMPLETION'
7000 STOP

END

c ***
c
C SUBROUTINE FILLBF
c
c ***
c
C THE FILLBF SUBROUTINE IS CALLED WHENEVER THE D/A HAS EMPTIED A
C BUFFER, AND THAT BUFFER IS AVAILABLE TO BE REFILLED. THIS
C SUBROUTINE GETS THE BUFFER, FILLS IT, AND RELEASES IT BACK TO THE
C LPAll-K. NOTE THAT THE D/A SWEEP IS STOPPED AUTOMATICALLY AFTER
C 15 BUFFERS HAVE BEEN FILLED. ALSO NOTE THAT FILLBF IS CALLED BY
C . AN AST HANDLER. IT IS THEREFORE CALLED ASYNCHRONOUSLY FROM THE
C MAIN PROGRAM AT AST LEVEL. CARE SHOULD BE EXERCISED WHEN ACCESSING
C VARIABLES THAT ARE COMMON TO BOTH LEVELS.
c

INTEGER*2 AD(500,0:7) ,DA(2000,0:l) ,DAIOSB(4)
INTEGER*4 IBUFAD(50) ,IBUFDA(50) ,BUFNUM,ISTAT
EQUIVALENCE (IBUFDA(l),DAIOSB(l))
COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

10-44

LABORATORY PERIPHERAL ACCELERATOR DRIVER

c
C GET BUFFER NUMBER OF NEXT BUFFER TO FILL
c

c

BUFNUM = LPA$IGTBUF(IBUFDA)
IF (BUFNUM .LT. 0) GO TO 3000

C FILL BUFFER WITH DATA FOR OUTPUT TO D/A

(Application dependent code is inserted here to fill buffer
DA(l,BUFNUM) through DA(2000,BUFNUM) with data)

c
C RELEASE BUFFER
c

CALL LPA$RLSBUF(IBUFDA,ISTAT,BUFNUM)
GO TO 4000

c
C CHECK FOR SUCCESSFUL END OF SWEEP
c
3000 IF(DAIOSB(l)) GO TO 4000

c
C ERROR IN SWEEP
c

4000

CALL LIB$STOP(%VAL(DAIOSB(l)))

RETURN
END

c ***

10.9.3 LPAll-K QIO Functions Program (Program C)

This sample program uses QIO functions to start an A/D data transfer
from an LPAll-K. (The program assumes multirequest mode microcode has
been loaded.) Sequential channel addressing is used. The data
transfer is stopped after 100 buffers have been filled; no action is
taken with the data as the buffers are filled. Note that this program
starts the data transfer and then waits until the QIO operation
completes.

PROGRAM C

.TITLE LPAll-K EXAMPLE PROGRAM

.IDENT /VOl/

.PSECT LADATA,LONG

IOSB: • BLKQ
COUNT: • LONG

1
0

10-45

I/O STATUS BLOCK
COUNT OF BUFFERS FILLED

LABORATORY PERIPHERAL ACCELERATOR DRIVER

CBUFF:

.WORD "'X20A

.WORD 3

.LONG usw

.LONG 4000

.LONG DATA BUFFERO

.LONG 0

.LONG 0

.WORD 10

.BYTE 0

.BYTE l

.WORD 16

.WORD l

.BYTE 0

.BYTE 0

.WORD 0

.WORD 0

.WORD 0

USW: .WORD 0

.ALIGN LONG

DATA BUFFERO: .BLKW 500
DATA-BUFFER!: .BLKW 500
DATA-BUFFER2: .BLKW 500
DATA-BUFFER3: .BLKW 500

DEVNAME: .LONG 4,LANAME

CHANNEL: .BLKW l

LANAME: .ASCII /LAAO/

.PSECT LACODE,NOWRT

START: .WORD 0
$ASSIGN S DEVNAME,CHANNEL -BLBS R0,5$
BRW ERROR

5$:

$QIOW_S ,CHANNEL,#IO$ SETCLOCK,-
IOSB,,,,#l,#"'Xl43,#-500

BLBC RO,ERROR
MOVZWL IOSB,RO
BLBC RO,ERROR

CLRW usw

MOVL #100 ,COUNT

COMMAND BUFFER FOR START
DATA QIO
MODE = SEQUENTIAL CHANNEL
ADDRESSING, A/D, MULTI-
REQUEST MODE
VALID BUFFER MASK (4
BUFFERS)
USER STATUS WORD ADDRESS
AGGREGATE BUFFER LENGTH
ADDRESS OF DATA BUFFERS
NO RANDOM CHANNEL LIST
LENGTH
NO RANDOM CHANNEL LIST
ADDRESS
DELAY
START CHANNEL
CHANNEL INCREMENT
NUMBER OF SAMPLES IN
SAMPLE SEQUENCE
DWELL
START WORD NUMBER
EVENT MARK WORD
START WORD MASK
EVENT MARK MASK
FILLS OUT COMMAND BUFFER

USER STATUS WORD

;BUFFERS MUST BE

i

LONGWORD ALIGNED

DATA BUFFERS

CONTAINS CHANNEL NUMBER

ASSIGN CHANNEL
NO ERROR
ERROR

SET CLOCK OVERFLOW RATE
TO 2 KHZ. (1 MHZ RATE
DIVIDED BY 500 PRESET)

ERROR
PICK UP I/O STATUS
ERROR

START DATA TRANSFER
CLEAR USW (START WITH
BUFFER 0)
FILL 100 BUFFERS

$QIOW_ s ,CHANNEL, #IO$ STARTDATA,--

10-46

LABORATORY PERIPHERAL ACCELERATOR DRIVER

IOSB,,,CBUFF,#40,#BFRAST
BLBC RO,ERROR ERROR

NOTE THAT THE QIO WAITS UNTIL IT FINISHES. NORMALLY, THE DATA IS
PROCESSED HERE AS THE BUFFERS ARE FILLED. CHECK FOR ERROR WHEN
THE QIO COMPLETES.

ERROR:

BFRAST:

10$:

20$:

MOVZWL
BLBC
RET

PUSHL
CALLS

.WORD
INCB
CMPZV

BLEQ
CLRB

DECL
BGTR
BISB

BICB
RET

.END

IOSB,RO
RO,ERROR

RO
#1 ,LIB$STOP

0
USW+l
#0,#3,USW+l,#3

10$
USW+l

COUNT
20$
#"X40, USW+l

rxso ,usw+1

START

PICK UP I/O STATUS
ERROR
ALL DONE - EXIT

ENTER HERE IF ERROR.
STATUS IN RO.
PUSH ONTO STACK
SIGNAL ERROR

BUFFER AST ROUTINE.
BFRAST IS CALLED WHENEVER
A BUFFER IS FILLED.

ADD 1 TO BUFFER NUMBER
HANDLE WRAPAROUND

USE BUFFER 0

DECREMENT BUFFER COUNT

ENOUGH BUFFERS FILLED -
SET STOP BIT
CLEAR DONE BIT

10-47

CHAPTER 11

DR32 INTERFACE DRIVER

11.1 SUPPORTED DEVICE

The DR32 is an interface adapter that connects the internal memory bus
of a VAX-11 processor to a user-accessible bus called the DR32 Device
Interconnect (DOI). Two DR32s can be connected to form a VAX-11
processor-to-processor link. Figure 11-1 shows the relationship of
the DR32 to the VAX 11/780 and the DOI.

As a general purpose data port, the DR32 is cap~ble of moving
continuous streams of data to or from memory at high speed. Data from
a user device to disk storage must go through an intermediate buffer
in main memory.

11.1.1 DR32 Device Interconnect

The DR32 Device Interconnect (DOI) is a bidirectional path for the
transfer of data and control signals. Control signals sent over the
DOI are asynchronous and interlocked; data transfeYs are synchronized
with clock signals. Any connection to the DOI is called a DR-device.
The DDI provides a point-to-point connection between two DR-devices,
one of which must be a VAX-11 processor. The DR-device connected to
the external end of the DDI is called the far end DR-device.

11-1

DR32 INTERFACE DRIVER

r------~;~~~~-----~

MEMORY i---

VAX 11/780
1----

PROCESSOR

DR-32 DEVICE

DR32 -- INTERCONNECT (FAR END)
~

(DOI) - DR-DEVICE

MASS BUS
MBA i----

SBI

UNIBUS
UBA I----

L-----------------~
Figure 11-1 Basic DR32 Configuration

11.2 DR32 FEATURES AND CAPABILITIES

The DR32 provides the following features and capabilities:

• 32-bit parallel data transfers

• High bandwidth (6 megabytes/second on the DD! with a VAX
11/780)

• Word or byte alignment of data

• Half-duplex operation

• Hardware-supported (I/O driver-independent) memory mapping

• Separate Control and Data Interconnects

• Command and data chaining

• Direct software link hetween the DR32 and the user process

• Synchronization of the user program with DR32 data transfers

• Transfers initiated by an external device

The following sections describe the capabilities.

11-2

DR32 INTERFACE DRIVER

11.2.l Command and Data Chaining

Command chaining is the execution of commands without software
intervention for each command. Commands are chained in the sense that
they follow each other on a queue. After a QIO function starts the
DR32, any number of DR32 commands can be executed during that QIO
operation. This process continues until the transfer is halted (a
command packet is fetched that specifies a halt command) or an error
occurs.

Command packets can specify data chaining. In data chaining, a number
of main memory buffers appear as one large buffer to the far end
DR-device. Data chaining is completely transparent to this device;
transfers are seen as a continuous stream of data. Chained buffers
can be of arbitrary byte alignment and length. The length of a
transfer appears to the far end DR-device to be the total of all the
byte counts in the chain, and since chains in the DR32 can be of
unlimited length, the device sees the byte count as potentially
infinite.

11.2.2 Far End DR-device Initiated Transfers

The DR32 provides the capability for the far end DR-device to initiate
data transfers to the VAX-11 memory, that is, it provides for random
access mode. Random access consists of data transfers to or from the
VAX-11 memory without notification of the VAX-11 processor. This mode
is used when two DR32s are connected to form a processor-to-processor
link. You can discontinue random access by specifying a command
packet with random access disabled. It can also be discontinued by an
abort from either the controlling process or the far end DR-device.

11.2.3 Power Failure

If power fails on the DR32 but not on the system, the DR32 driver
aborts the active data transfer and returns the status code
SS$ POWERFAIL in the I/O status block. If a system power-failure
occurs, the DR32 driver completes the active data transfer when power
is recovered and returns the status code SS$ POWERFAIL.

11.2.4 Interrupts

The DR32 can interrupt the DR32 driver for any of the following
reasons:

• An abort has occurred. The QIO is completed.

• A DR32 power-down or power-up sequence has occurred

• An unsolicited control message has been sent to the DR32. If
this command packet's interrupt control field is properly set
up, a packet AST interrupt occurs. The interrupt occurs after
the command packet obtained from FREEQ is placed on TERMQ.

• The DR32 enters the halt state. The QIO is completed.

11-3

DR32 INTERFACE DRIVER

• A command packet that specifies an unconditional interrupt has
been placed onto TERMQ. The result is a packet AST.

• A command packet with the "interrupt when TERMQ empty" bit set
was placed on an empty TERMQ. The result is a packet AST.

11.3 DEVICE INFORMATION

Users. can obtain
$GETDEV system
information is
user-specified
entire buffer).

information on the DR32 by using the $GETCHN and
services (see Section 1.10). The DR32-specific

returned in the first three longwords of a
buffer, as shown in Figure 11-2 (Figure 1-9 shows the

31 16 15 8 7 0

device characteristics

0 type class

0 data rate

Figure 11-2 DR32 Information

The first longword contains device-independent information. The
second and third longwords contain device-dependent data.

Table 11-1 lists the device-independent characteristics returned in
the first longword.

Table 11-1
Device-Independent Characteristics

Dynamic Bitl
(Conditionally Set)

DEV$M AVL

Static Bitsl
(Always Set)

DEV$M IDV

DEV$M ODV

DEV$M RTM

Meaning

Device is available

Input device

Output device

Real time device

1. Defined by the $DEVDEF macro.

11-4

DR32 INTERFACE DRIVER

The second longword contains information on the device class and type.
The device class for the DR32 is DC$ REALTIME and the device type for
the DR780 is DT$ DR780. The $XFDEF macro defines these values.

The low order byte of the third longword contains the last data rate
value loaded into the DR32 data rate register.

11.4 PROGRAMMING INTERFACE

The DR32 is supported
procedure library of
loading.

by a device driver, a high-level language
support routines, and a program for microcode

After issuing a IO$ STARTDATA QIO to the DR32 driver, application
programs communicate directly with the DR32 by inserting command
packets onto queues. This direct link between the application program
and the DR32 provides faster.communication by avoiding the necessity
of going through the I/O driver.

Two interfaces are provided for accessing the DR32: a QIO interface
and a support routine interface. The QIO interface requires that the
application program build command packets and insert them onto the
DR32 queues. The support routine interface, on the other hand,
provides procedures for these functions and, in addition, performs
housekeeping functions, such as maintaining command memory.

The support routine interface was designed to be called from
high-level languages, such as FORTRAN, where the data manipulation
required by the QIO interface might be awkward. Note, however, that
the user of the support routines must be equally as sophisticated as
the user of the QIO interface in terms of knowledge of the DR32 and
the meaning of the fields in the command packets.

11.4.1 DR32 - Application Program Interface

The application program interfaces with ihe DR32 through two memory
areas. These areas are called the command block and the buffer block.
The addresses and sizes of the blocks are determined by the
application program and passed to the DR32 driver as arguments to the
IO$ STARTDATA function. This QIO function starts the DR32 (see
Section 11.4.5.2). Both blocks are locked into memory while the DR32
is active. The buffer block defines the area of memory that is
accessible to the DR32 for the transfer of data between the far end
DR-device and the DR32. The command block contains the headers for
the three queues that provide the communication path between the DR32
and the application program, and space in which to build command
packets.

The interface between the DR32 and the application program contains
three queues: the input queue (INPTQ), the termination queue (TERMQ),
and the free queue (FREEQ). Information is transferred between the
DR32 and the far end DR-device through the use of command packets.
The three queue structures control the flow of command packets to and
from the DR32. The application program builds a command packet and
inserts it onto INPTQ. The DR32 removes the packet, executes the
specified command, enters some status information, and then inserts
the packet onto TERMQ. Unsolicited input from the far end DR-device
is placed in packets removed from FREEQ and inserted onto TERMQ.

11-5

DR32 INTERFACE DRIVER

The INPTQ, TERMQ, and FREEQ headers are located in the first six
longwords of the command block. Since the queues are self-relative,
that is, they use the VAX-11 self-relative queue instructions, the
headers must be quadword aligned. The application program must
initialize all queue headers. Figure 11-3 shows the position of the
queue headers in the command block. Section 11.4.2 describes queue
processing in greater detail.

input queue forward link (INPTQ head) 0

input queue backward link (INPTQ tail) 4

--
termination queue forward link (TERMQ head) 8

termination queue backward link (TERMQ tail) 12

free queue forward link (FREEQ head) 16

. -~·

free queue backward link (FREEQ tail) 20

command packet space

Figure 11-3 Command Block (Queue Headers)

11.4.2 Queue Processing

Three queue structures control the flow of command packets to and from
the DR32:

• Input queue (INPTQ)

• Termination queue (TERMQ)

• Free queue (FREEQ)

The DR32 removes command packets from the heads of FREEQ and INPTQ and
inserts command packets onto the tail of TERMQ. For command sequences
initiated by the application program, the DR32 removes command packets
from the head of INPTQ, processes them, and returns them to the tail
of TERMQ. Queue processing is performed by the DR32 with the
equivalent of the INSQTI and REMQHI instructions. To remove a packet
from INPTQ, the DR32 executes the equivalent of REMQHI HDR, CMDPTR
where CMDPTR is a DR32 register used as a pointer to the current
command packet and HDR specifies the INPTQ header. To insert a packet
onto TERMQ, the DR32 executes the equivalent of INSQTI CMDPTR, HDR.
The user process performs similar operations with the queues,
inserting packets onto the head or tail of INPTQ and normally removing
packets from the head of TERMQ.

11-6

DR32 INTERFACE DRIVER

If any of the queues are currently being accessed
program's interlocked queue instructions will
following reasons:

by the DR32, the
fail for one of the

1. The DR32 is currently removing a packet from INPTQ or FREEQ,
or inserting a packet onto TERMQ, and the operation will be
completed shortly.

2. The DR32 detects an error condition, for example, an
unaligned queue, that prevents it from completing the queue
operation. In this case, the transfer is aborted and the I/O
status block contains the error that caused the abort.

To distinguish between these two conditions, the application program
must include a queue retry mechanism that retries the queue operation
a reasonable number of times, for example 25, before determining that
an error condition exists. An example of a queue retry mechanism is
shown in the program example (see Section 11.7).

If the DR32 discerns that any of the queues are interlocked, it
retries the operation until it completes or the DR32 is aborted.

11.4.2.l Initiating Command Sequences - If a command packet is
inserted onto an empty INPTQ, the application program must notify the
DR32 of this event. This is accomplished by setting bit O in a DR32
register, the GO bit. The IO$ STARTDATA QIO returns the GO bit's
address to the application program. After notification by the GO bit
that there are command packets on its INPTQ, the DR32 continues to
process the packets until INPTQ is empty.

The GO bit can be safely set at any time. While processing command
packets, the DR32 ignores the GO bit. If the GO bit is set when the
DR32 is idle, the DR32 will attempt to remove a command packet from
INPTQ. If INPTQ is empty at this time, the DR32 clears the GO bit and
returns to the idle state.

11.4.2.2 Device-Initiated Command Sequences - If the DR-device that
interfaces the far end of the DDI is capable of transmitting
unsolicited control messages, messages of this type can be transmitted
to the local DR32. These messages are not synchronized to the
application program command flow. Therefore, the DR32 uses a third
queue, FREEQ, to handle unsolicited messages. Normally, the
application program inserts a number of empty command packets onto
FREEQ to allow the external device to transmit control messages.

If a control message is received from the far end DR-device, the DR32
removes an empty command packet from the head of FREEQ, fills the
device message field of this packet with the control message and, when
the transmission is completed, inserts the packet onto the tail of
TERMQ. (The device message field in this command packet must be large
enough for the entire message or a length error will occur.) The
application program then removes the packet from TERMQ. If the
command packet is from FREEQ, the XF$M PKT FREQPK bit in the DR32
Status Longword is set. - -

Figure 11-4 shows the DR32 queue flow.

11-7

DR32 INTERFACE DRIVER

r
unsolicited control messages .. INSQTI CMDPTR,HDR

DR32

REMQHI HDR,CMDPTR ,----,
1 I

HEAD I HEAD TAIL

I
FREE INPUT I TERMINATION

QUEUE QUEUE I QUEUE
(FREEQ) (INPTQ)

I
(TERMQ)

I
TAIL HEAD TAIL I

~
l_J

I
I
l CONTROLLING -PROCESS -

Figure 11-4 DR32 Command Packet Queue Flow

11.4.3 Command Packets

To provide for direct communication between the controlling process
and the DR32, the DR32 fetches commands from user-constructed command
packets located in main memory. Command packets contain commands for
the DR32, such as the direction of transfer, and/or messages to be
sent to the far end DR-device. The DR32 is simply the conveyer of
these messages; it does not examine or add to their content. The
controlling process builds command packets and manipulates the three
queues, using the four VAX-11 self-relative queue instructions.
Figure 11-5 shows the contents of a DR32 command packet.

11-8

DR32 INTERFACE DRIVER

31 30 29 28 27 26 24 23 20 19 16 15 8 7 0

self-relative forward link 0

self-relative backward link 4

interrupt I len I contml l 0 0 w I 0 0 0 0 I device control code .. l length of log area l length of device message
control err select

8

byte count 12

virtual address of buffer 16

residual memory byte count 20

residual DDI byte count 24

--

DR32 status longword 28

32

~ DR-device messa e "' g

{,______-'--------logarea ___ f
*Bits 31:24 =Packet Control Byte

**Bits 23: 16 =Command Control Byte

Figure 11-5 DR32 Command Packet

11.4.3.1 Length of Device Message Field - This field describes the
length of the DR-device message in byte&. The message length must be
less than 256 bytes. Note, however, that the length of device message
field itself must always be an integral number of quadwords long. For
example, if the application program requires a 5-byte device message,
it must write a 5 in the length of device message field, but allocate
8 bytes for the device message field itself. In this case, the last
three bytes of the field are ignored by the DR32 when transmitting a
message, or written as zeros when receiving a message:

DR32 status longword (DSL)

3 l 2 l 1 0 :XF$8_PKT _DEVMSG

(ignored or all O's) 4

log area

11-9

DR32 INTERFACE DRIVER

The symbolic offset for the length of device message field is
XF$B PKT MSGLEN.

11.4.3.2 Length of Log Area Field - This field describes the length
of the log area in bytes. The length specified must be less than 250
bytes. Note, however, that the length of log area field itself must
be an integral number of quadwords long. For example, if the
application program requires a 5-byte log area field, it must write a
5 in the length of log area field, but allocate 8 bytes for the log
area field itself. In this case, the last three bytes of the field
are written as zeros when receiving a log message (log messages are
always received). The symbolic offset for the length of log area
field is XF$B PKT LOGLEN.

11.4.3.3 Device Control Code Field - The device control field
describes the function performed by the DR32. The field occupies the
lower half of the command control byte (bits lo through 23). VAX/VMS
defines the following values:

Symbol

XF$K PKT RD
XF$K-PKT-RDCHN
XF$K-PKT-WRT
XF$K-PKT-WRTCHN
XF$K-PKT-WRTCM

XF$K PKT SETTST
XF$K-PKT-CLRTST
XF$K-PKT-NOP
XF$K-PKT-DIAGRI
XF$K-PKT-DIAGWI
XF$K-PKT-DIAGRD
XF$K-PKT-DIAGWC
XF$K-PKT-SETRND
XFSK-PKT-CLRRND
XF$K-PKT-HALT

Value

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Function

Read device
Read device chained
Write device
Write device chained
Write device control message
(reserved)
Set self-test
Clear self-test
No-op
Diagnostic read internal
Diagnostic write internal
Diagnostic read DDI
Diagnostic write control message
Set random enable
Clear random enable
Set HALT

Table 11-2 describes the functions performed by the different device
control codes.

11-10

DR32 INTERFACE DRIVER

Table 11 2
Device Control Code Descriptions

Function Meaning

!--------------------------------""" _______ _
Read Device

Read Device
Chained

Write Device and
Write Device
Chained

Write Device
Control Message

Set Self-Test

Clear Self-Test

No Op~ration

This function
the far end
control select
describes the
prior to the
transfer.

specifies a data transfer from
DR-device to the DR32. The
field (see Section 11.4.3.4)
information to be transferred
initiation of the data

This function specifies a data transfer from
the far end DR-device to the DR32. The DR32
data chains to the buffer specified in the
next command packet in INPTQ. A command
packet that specifies read device chained
must be followed by a command packet that
specifies either read device chained or read
device. All other device control codes
cause an abort. If read device chained is
specified, the chain continues. However, if
read device is specified, that command
packet is the last packet in the chain.

These functions specify data transfers from
the DR32 to the far end DR-device. Other­
wise, they are similar to Read Device and
Read Device Chained.

This function specifies the transfer of a
control message to the far end DR-device.
This message is contained in the device
message field of this command packet. The
Write Device Control Message function
directs the controlling DR32 to ignore the
byte count and virtual address fields in
this command packet.

This function directs the DR32 to set an
internal self test flag and to set a disable
signal on the DDI. This signal informs the
far end DR-device that the DR32 is in
self-test mode. In this condition the DR32
can no longer communicate with the far end
DR-device.

This function directs the DR32 to clear the
internal self test flag set by the Set Self
Test function and return to the normal mode
of operation.

The NOP function specifically does nothing.

(continued on next page)

11-11

Function

Diagnostic Read
Internal

Diagnostic Write
Internal

Diagnostic Read
DDI

DR32 INTERFACE DRIVER

Table 11-2 (Cont.)
Device Control Code Descriptions

Meaning

This function directs the DR32 to fill the
memory buffer, which is described by the
virtual address and byte count specified in
the current command packet, with the data
that is stored in the DR32 data silo. The
buffer is filled in a cyclic manner. For
example, on the DR780 every 128-byte section
of the buffer receives the silo data. The
amount of data stored in the buffer equals
the DDI byte count minus the SBI byte count.
The DDI byte count is equal to the original
byte count.

No data transmission takes place on the DDI
for this function.

On the DR780, the Diagnostic Read Internal
function destroys the first four bytes in
the silo before storing the data in the
buffer.

This function, together with the Diagnostic
Read Internal function, is used to test the
DR32 read and write capability. The
Diagnostic Write Internal function directs
the DR32 to store data, which is contained
in the memory buffer described by the
current command packet, in the DR32 data
silo, a fifo-type buffer. No data
transmission takes place on the DDI for this
function. The Diagnostic Write Internal
function terminates when either of the
following conditions occur:

• The memory buffer is empty (the SBI
byte count is 0).

• An abort has occurred.

At the time the function terminates, the
amount of data in the silo equals the DDI
byte count minus the SBI memory byte count
(Sections 11.4.3.9 and 11.4.3.·10 describe
these values).

This function tests transmissions over the
data portion of the DDI. The DR32 must be
in the self-test mode. If not, an abort
will occur. On the DR780, the Diagnostic
Read DDI function transmits the contents of
DR32 data silo locations O - 127 over the
DDI and returns the data to the same
locations. If data transmission is normal,
that is, without errors, the residual memory
count is equal to the original byte count,
the residual DDI count is O, and the
contents of the silo remain unchanged.

(continued on next page)

11-12

DR32 INTERFACE DRIVER

Table 11-2 (Cont.)
Device Control Code Descriptions

Function

Diagnostic Write
Control Message

Set Random Enable
and Clear Random
Enable

Set HALT

Meaning

This function tests transmissions over the
control portion of the DDI. The DR32 must
be in self-test mode. If not, an abort will
occur. The Diagnostic Write Control Message
function directs the DR32 to remove the
command packet on FREEQ and check the length
of message field. Then the first byte of
the message in the command packet on INPTQ
is transmitted and read back on the control
portion of the DDI. This byte is then
written into the message space of the packet
from FREEQ. The updated packet from FREEQ
is inserted onto TERMQ and is followed by
the packet from INPTQ.

The Set Random Enable function directs the
DR32 to accept read and write commands sent
by the far end DR-device. Range checking is
performed to verify that all addresses
specified by the far end DR-device for
access are within the buffer block. Far end
DR-device initiated transfers to or from the
VAX-11 memory are conducted without
notification of the VAX-11 processor or the
application program.

The Clear Random Enable function directs the
DR32 to reject far end DR~device initiated
transfers.

Random access mode must be enabled when the
DR32 is used in a processor-to-processor
link.

This function places the DR32 in a halt
state. The Set Halt function always
generates a packet interrupt regardless of
the value in the interrupt control field
(see Section 11.4.3.n). If an AST routine
was requested on completion of the QIO
function (see Sections 11.4.5.2 and
11.4.n.2), the routine is called after the
command packet containing the Set HALT
function has been processed by the DR32.

The following symbolic offsets are defined for the device control code
field:

Symbol

XF$B PKT CMDCTL - -
XF$V PKT FUNC
XF$S-PKT-FUNC

Meaning

Byte offset from the beginning of the command
packet
Bit offset from XF$B PKT CMDCTL
Size of this bit field

11-13

DR32 INTERFACE DRIVER

11.4.3.4 Control Select Field - This field describes what part of the
command packet will be transmitted to the far end DR-device. The
control select field is examined only for the read device, read device
chained, write device, and write device chained functions; for all
others, it is ignored. VAX/VMS defines the following values:

Symbol Value Function

XF$K PKT NOTRAN - -

XF$K PKT CB -

XF$K PKT CBDM - -

XF$K PKT CBDMBC

0 No transmission. Nothing is transmitted over
the control portion of the DDI. However, if
the command packet specifies a data transfer,
data can be transmitted over the data portion
of the DOI. The primary use of this code is
during data chaining.

1 Command control byte (bits 23:1'1) only. This
code directs the DR32 to transmit the
contents of the command control byte, which
includes the device control code field, to
the far end DR-device. This code is used
primarily at the start of data chains or
nondata chain commands.

2 Command control byte and device message.
This code directs the DR32 to transmit the
command control byte, and then the device
message. The primary use of this code is
when an interface requires more than one byte
of command.

3 Command control byte, device message, and
byte count. This code directs the DR32 to
transmit the command control byte, the device
message, and the byte count (in that order).
The primary use of this code is during
processor-to-processor link operations. In
this case the device message must be exactly
four bytes in length and contain the virtual
address of the buffer in the far end
processor's memory.

The following symbolic offsets are defined for the control select
field:

Symbol

XF$B PKT PKTCTL

XF$V PKT CISEL
XF$S-PKT-CISEL

Meaning

Byte offset from the beginning of the command
packet
Bit offset from XF$B PKT PKTCTL
Size of this bit fieid

11.4.3.5 Suppress Length Error Field - This function prevents the
DR32 from aborting if the data transfer on the DDI is terminated by
the far end DR-device before the DDI byte counter has reached zero.

11-14

DR32 INTERFACE DRIVER

The following symbolic offsets are defined for the suppress length
error field:

Symbol

XF$B PKT PKTCTL - -
XF$V PKT SLNERR
XF$S-PKT-SLNERR - -

Meaning

Byte offset from the beginning of the command
packet
Bit offset from XF$B PKT PKTCTL
Size of this bit field

11.4.3.6 Interrupt Control Field - This field determines the
conditions under which an interrupt is generated, on a packet by
packet basis, when the DR32 places this command packet onto TERMQ.
Depending on the conditions specified in the IO$ STARTDATA call, the
interrupt can set an event flag and/or call an AST-routine.

Symbol Value Function

XF$K PKT UNCOND 0 Interrupt unconditionally
- -

XF$K PKT_TMQMT 1 Interrupt only if TERMQ was previously - empty

XF$K PKT NOINT 2,3 No interrupt - -
If the function is Set Halt, this field is ignored. The Set Halt
function unconditionally causes a packet interrupt. The following
symbolic offsets are defined for the interrupt control field:

Symbol

XF$B PKT PKTCTL - -
XF$V PKT INTCTL
XF$ S-PKT-INTCTL - -

Meaning

Byte offset from the beginning of the command
packet
Bit offset from XF$B PKT PKTCTL
Size of this bit fieid

11.4.3.7 Byte Count Field - This field specifies the size in bytes of
the data buffer for this data transfer. Together with the virtual
address of buffer field, this field describes the buffer in the buffer
block that the DR32 will read from or write into.

The following symbolic offset is defined for the byte count field:

Symbol

XF$B PKT BFRSIZ - -

Meaning

Byte offset from the beginning of the command
packet

11.4.3.8 Virtual Address of Buffer Field - This field specifies the
virtual address of the data buffer for this data transfer. Together
with the byte count field, this field describes the buffer in the
buffer block that the DR32 will read from or write into.

11-15

DR32 INTERFACE DRIVER

The following symbolic offset is defined for the virtual address of
buffer field:

Symbol

XF$B PKT BFRADR

Meaning

Byte offset from the beginning of the command
packet

11.4.3.9 Residual Memory Byte Count Field - After completion of a
read device, read device chained, write device, write device chained,
diagnostic read internal, diagnostic write internal, or diagnostic
read DDI command specified in this command packet, the DR32 places the
packet onto TERMQ for return to the controlling process. At that
time, this field will contain a byte count. The difference between
the count specified in the byte count field and the count in this
field represents the number of bytes transferred to or from main
memory, depending on the direction of transfer.

The following symbolic offset is defined for the residual memory byte
count field:

Symbol

XF$L PKT RMBCNT

Meaning

Byte offset from the beginning of the command
packet

(See also the descriptions of the Diagnostic Read Internal and
Diagnostic Write Internal functions in Table 11-2.)

11.4.3.10 Residual DDI Byte Count Field - After completion of a read
device, read device chained, write device, write device chained,
diagnostic read internal, diagnostic write internal, or diagnostic
read DDI command specified in this command packet, the DR32 places the
packet onto TERMQ for return to the controlling process. At that
time, this field contains a byte count. The difference between the
count specified in the byte count field and the count in this field
represents the number of bytes transferred to or from the far end
DR-device over the DDI, depending on the direction of transfer.

The following symbolic offset is defined for the residual DD! byte
count field:

Symbol

XF$L PKT RDBCNT

Meaning

Byte offset from the beginning of the command
packet

(See also the descriptions of the Diagnostic Read Internal and
Diagnostic Write Internal functions in Table 11-2.)

11-10

DR32 INTERFACE DRIVER

11.4.3.11 DR32 Status Longword
status for a command packet
inserting the packet onto TERMQ.
status fields:

(DSL} - The DR32 stores the final
in the DR32 status longword before
The longword contains two distinct

31 24 23 16 15 0

0 DOI status 16 bits of status

Table 11-3 lists the names for the status bits returned in the DR32
status longword.

Table 11-3
DR32 Status Longword (DSL) Status Bits

Name

XF$V PKT SUCCESS
XF$M-PKT-SUCCESS

XF$V PKT CMDSTD
XF$M-PKT-CMDSTD

XF$V PKT INVPTE
XF$M-PKT-INVPTE - -
XF$V PKT FREQPK
XF$M-PKT=FREQPK

XF$V PKT DDIDIS
XF$M-PKT-DDIDIS. - -
XF$V PKT SLFTST
XF$M-PKT-SLFTST. - -
XF$V PKT RNGERR
XF$M-PKT-RNGERR - -

Meaning

lo bits of status

If set, the command was performed suc­
cessfully. If not set, one of the
following bits must be set:

XF$M PKT INVPTE
XF$M-PKT-RNGERR
XF$M-PKT-UNGERR
XF$ M-PKT-INVPKT
XF$M-PKT-FREQMT
XF$ M-PKT-DD ID IS
XF$M-PKT-INVDDI
XF$M-PKT-LENERR
XF$M-PKT-DRVABT
XF$M-PKT-PARERR
XF$M-PKT-DDIERR

If set, the command specified in this
packet was started.

If set, the DR32 accessed an invalid page
table entry.

If set, this command packet was removed
from FREEQ.

If set, the far end DR-device is disabled.

If set, the DR32 is in self-test mode.

Range error. If set, a user-provided.
address was outside the command block or
buff er block •

.__ __________ __._ _______ " ··--··--------~-~-----__....
(continued on next page)

11-17

DR32 INTERFACE DRIVER

Table 11-3 (Cont.)
DR32 Status Longword (DSL) Status Bits

Name Meaning

---------------------+----------------------------~

XF$V PKT UNQERR
XF$M~)KT=UNQERR

XF$V PKT INVPKT
XF$M PKT-INVPKT

X1',$V PKT FREQMT
XF$M-PKT=FREQMT

XF$V PKT RNDENB
XF$M-PKT-RNDENB

XF$V PKT INVDDI
XF$M-PKT-INVDDI

XF$V PKT LENERR
XF$M PKT-LENERR - -

XF$V PKT DRVABT
XF$M-PKT-DRVABT

XF$V PKT PARERR
XF$M-PKT-PARERR

If set, a queue element was not aligned on
a quadword boundary.

If set, this packet was not a valid DR32
command packet.

If set, a message was received from the far
end DR-device and FREEQ was empty.

If set, random access mode is enabled.

If set, a protocol error occurred on the
DDI.

If set, the far end DR-device terminated
the data transfer before the required
number of bytes were sent, or a message was
received from the far end DR-device and the
device message field in the command packet
at the head of FREEQ was not large enough
to hold it.

The I/O driver aborted the transfer.
Usually the result of a Cancel I/O
($CANCEL) system service request.

A parity error occurred on the data or
control portion of the DDI.

t--------· .. -------·-------------------------------

XF$V PKT DDISTS
XF$S-PKT-DDISTS

XF$V PKT NEXREG
XF$M-PKT-NEXREG

XF$V PKT LOG
XF$M-PKT-LOG - -
XF$V PKT DDIERR
XF$M-PKT-DDIERR

DOI Status

DDI status. This field is the 1-byte DDI
register 0 of the far end DR-device. The
following three bits are offsets to this
field.

An attempt was made to access a non­
existent register in the far end DR-device.

The far end DR-device registers are stored
in the log area.

An error occurred on the far end DR-device.

__________ .. __ ,. ______ .. ,,. ---------'---------~--~------------~---------~

11.4.3.12 Device Message Field - This field contains control
information to be sent to the far end DR-device. It is used when more
than one byte of command is required. The number of bytes in the
device message is specified in the length of device message field (see
Section 11.4.3.1). (The number of bytes allocated for the length of
device message field must be rounded up to an integral number of
quadwords.)

11-18

DR32 INTERFACE DRIVER

If the far end DR-device is a DR32 that is connected to another
processor, a device message can be sent only if the function specified
in the device control code field of this command packet is read
device, read device chained, write device, write device chained, or
write device control message.

In the case of a write device control message, the data in the device
message field is treated as unsolicited input and written into the
device message field of a command packet taken from the far end DR32's
FREEQ.

In the case of a read or write (either chained or unchained) function,
the only message allowed is the address of the buffer in the far end
processor that either contains or will receive the data to be
transferred. This device message must be exactly four bytes in
length. In this case the device message is not stored in the command
packet from the far end DR32's FREEQ, but is used by the far end DR32
to perform the data transfer.

The device message field is also used in command
FREEQ to convey unsolicited control messages
DR-device.

packets placed on
from the far end

The symbolic offset for the device message field is XF$B PKT DEVMSG.

11.4.3.13 Log Area Field - This field receives the return status and
other information from the far end DR-device's DDI registers. Logging
must be initiated by the far end DR-device. The presence of a log
area does not automatically cause logging to occur.

If the DR32 is connected in a processor-to-processor configuration,
the log area field is not used.

11.4.4 DR32 Microcode Loader

The DR32 microcode loader program XFLOADER must be executed prior to
using the DR32. Running XFLOADER requires CMKRNL and LOG IO
privileges. Typically, a command to run XFLOADER is placed in the
site-specific system starting file. XFLOADER locates the file
containing the DR32 microcode in the following manner:

1. XFLOADER attempts to open a file using the logical name
XFc$WCS, where "c" is the DR32 controller designator. For
example, to load microcode on device XFAO, XFLOADER attempts
to open a file with the logical name XFA$WCS.

2. If the opening procedure described in Step 1 fails, XFLOADER
attempts to open the file SYS$SYSTEM:XF780.ULD which is the
default location and filename for the DR780 microcode.

11-19

DR32 INTERFACE DRIVER

After loading microcode into all available DR32s, XFLOADER either
exits or hibernates, according to the following:

• If XFLOADER was run with an ordinary RUN command, that is, RUN
XFLOADER, it exits after loading microcode.

• If XFLOADER was run as a separate process, as with the command

RUN/UIC=[l,l]/PROCESS=XFLOADER SYS$SYSTEM:XFLOADER

then it hibernates after loading microcode. In this case,
XFLOADER automatically reloads microcode into the DR32s after
a power recovery.

XFLOADER performs a load microcode QIO to the DR32 driver.

11.4.5 DR32 I/O Function Codes

The DR32 I/O functions are:

• Load microcode into the DR32.

• Start a DR32 data transfer.

Normally, the controlling process stops data transfers with a Set HALT
command packet. However, the Cancel I/O on Channel ($CANCEL) system
service can be used to abort data transfers and complete the I/O
operation.

11.4.5.l Load Microcode - This I/O function resets the DR32 and loads
an image of DR32 microcode. The load microcode function also sets the
DR32 data rate to the last specified value. Physical I/O privilege is
required. VAX/VMS defines a single function code:

IO$ LOADMCODE - load microcode

The load microcode function takes two
arguments:

device/function-dependent

• Pl = ·the starting virtual address of the microcode image that
is to be loaded into the DR32

• P2 = the number of bytes to be loaded (maximum of 5120 for the
DR780)

If any data transfer requests are active at the time a load microcode
request is issued, the load request is rejected and ssS_DEVACTIVE is
returned in the I/O status block.

The microcode is verified by addressing each microword and checking
for a parity error. (The microcode is not compared to the buffer
image.) If there are no parity errors, then the microcode was loaded
successfully and the driver sets the microcode valid bit in one of the
DR32 registers. If there is a parity error, SS$ PARITY is ·returned in
the I/O status block. (The valid bit is cleared by the reset
operation.)

In addition to SSS PARITY, three other status codes can be returned in
the I/O status block: ssS_NORMAL, SS$_DEVACTIVE, and SSS POWERFAIL.

11-20

DR32 INTERFACE DRIVER

11.4.5.2 Start Data Transfer - This function specifies a command
table that holds the parameters required to start the DR32. In
addition to several other parameters, the command table contains the
size and address of the command and buffer blocks, and the address of
a command packet AST routine. No user privilege is required. VAX/VMS
defines a single function code:

IO$ STARTDATA - start data transfer

The start data transfer function takes one function modifier:

IO$M_SETEVF - set event flag

If IO$M SETEVF is included with the function code, the specified event
flag is set whenever a command packet interrupt occurs, and when the
start data transfer QIO is completed. If IO$M SETEVF is not
specified, the event flag is set only when the QIO is-completed.

IO$M SETEVF should not be used with the $QIOW macro because the $QIOW
will-return after the event flag is set the first time.

The start data transfer function takes two device/function-dependent
arguments:

• Pl = the starting virtual address of the Data Transfer Command
Table in the user's process

• P2 = the length in bytes (always 32) of the Data Transfer
Command Table. (The symbolic name is XF$K CMT LENGTH.)

The format of the Data Transfer Command Table is shown in Figure 11-~
(offsets are shown in parentheses).

0

command block size (XF$L_CMT _CBLKSZ)

4

command block address (XF$L_CMT _CBLKAD)

8

buffer block size (XF$L_CMT _BBLKSIZ)

12

buffer block address (XF$L_CMT _BBLKAD)

16

command packet AST routine address (XF$L_CMT_PASTAD)

20

command packet AST parameter (XF$L_CMT _PASTPM)

24
flags data rate

(XF$B_CMT _FLAGS) (XF$B_CMT _RATE)

28
address of the location to store the GO bit address

(XF$L_CMT _GBITAD)

Figure 11-6 Data Transfer Command Table

11-21

DR32 INTERFACE DRIVER

Since the command block contains the queue headers for INPTQ, TERMQ,
and FREEQ, its address in the second longword must be quadword
aligned.

The command packet AST routine specified in the fifth longword is
called whenever the DR32 signals a command packet interrupt. A
command packet AST should be distinguished from a QIO AST (astadrs
argument). A command packet interrupt occurs whenever the DR32
completes a function and returns a packet that specifies an interrupt
(see Section 11.4.3.6) by inserting it onto TERMQ. The astadrs
argument address is called when the QIO is completed. If either the
command packet AST address or the astadrs address is O, the respective
AST is not delivered. If the command packet specifies the Set HALT
function, a command packet interrupt occurs regardless of the state of
the packet interrupt bits.

The seventh longword contains the data rate byte
The data rate byte controls the DR32 clock rate.
is considered to be an unsigned integer.

and a flags byte.
The data rate value

For the DR780, the relationship between the value of the data rate
byte and the actual data rate is given by the following formula:

40
Data rate (in megabytes/sec)

(256 - value of data rate byte)

For example, a data rate value of 236 corresponds to an actual data
rate of 2.0 Megabytes/sec. Note that the DR780 ignores data rate
values greater than 251.

The parameter XFMAXRATE set at system generation limits the maximum
data rate that can be set. This parameter limits the maximum data
rate because very high data rates on certain configurations can cause
a processor timeout. If the user attempts to set the data rate higher
than the rate allowed by XFMAXRATE, the error status SS$ BADPARAM is
returned in the I/O status block.

VAX/VMS defines the following flag bit values:

XF$V CMT SETRTE

XF$V CMT DIPEAB

If set, XF$B CMT RATE specifies the data
rate. If clear, the data rate established by
a previous $IO STARTDATA QIO is used. The
IO$ LOADMCODE -function sets the data rate to
the-last value used. If the data rate has
not been previously set, a value of 0 is
used.

If set, parity errors on the data portion of
the DDI do not cause device aborts. If
clear, a parity error results in a device
abort.

The eighth longword contains the address of a location to store the
address of the GO bit. This bit must be set whenever the application
program inserts a command packet onto an empty INPTQ. The GO bit
register is mapped in system memory space and the address is returned
to the user.

11-22

DR32 INTERFACE DRIVER

The IO$ STARTDATA function locks the command and buffer blocks into
memory -and starts the DR32. Whenever the DR32 interrupts with a
command packet interrupt, the driver queues a packet AST (if an AST
address is specified) and, if IO$M SETEVF is specified, sets the event
flag. The QIO remains active until one of the following events occur:

1. A Set HALT command packet is processed by the DR32.

2. The data transfer aborts.

3. A Cancel I/O ($CANCEL) system service is issued on this
channel.

If an abort occurs, the second
contains additional bits that
Section 11.5).

longword of the I/O status block
identify the cause of the abort (see

The start data transfer function can return twelve error codes in the
I/O status block: SS$ BUFNOTALIGN, SS$ CTRLERR, SS$ ABORT,
SS$ CANCEL, SS$ EXQUOTA, SSS INSFMEM, SS$ MCNOTVALID, SS$ NORMAL,
ss$=IVBUFLEN, ss$_DEVREQERR, ss$_PARITY, and-SS$ PQWERFAIL. -

11.4.6 High-level Language Interface

VAX/VMS supports a set of program-callable procedures that provide
access to the DR32. The formats of these calls are documented here
for VAX-11 FORTRAN users. VAX-11 MACRO users must set up a standard
VAX/VMS argument block and issue the standard procedure CALL.
(Optionally, VAX-11 MACRO users can access the DR32 directly by
issuing a IO$ STARTDATA QIO, building command packets, and inserting
them onto INPTQ:) Users of other high-level languages can also specify
the proper subroutine or procedure invocation.

VAX/VMS provides six high-level language procedures for the DR32.
They are contained in the default system library, STARLET.OLB. Table
11-4 lists these procedures. Procedure arguments are either input or
output arguments, that is, arguments supplied by the user or arguments
that will contain information stored by the procedure. Except for
those that are indicated as output arguments, all arguments in the
following call descriptions are input arguments. By default, all
procedure arguments are integer variables unless otherwise indicated.

VAX/VMS high-level language support routines for the DR32 do the
following:

• Issue QIOs

• Allocate and manage the command memory

• Build command packets, insert them onto INPTQ, and set the GO
bit

• Remove command packets from TERMQ and return the information
they contain to the controlling process

• Use ACTION routines for program - device synchronization

11-23

Subroutine

XF$SETUP

XF$STARTDEV

XF$FREESET

XF$PKTBLD

XF$GETPKT

XF$CLEANUP

DR32 INTERFACE DRIVER

Table 11-4
VAX-11 Procedures for the DR32

Function

Defines command and buffer areas; initializes
queues

Issues a QIO that starts the DR32

Releases command packets onto FREEQ

Builds command packets; releases them onto INPTQ

Removes a command packet from TERMQ

Deassigns the device channel and deallocates the
command area

VAX/VMS also provides a FORTRAN parameter file, SYS$LIBRARY:XFDEF.FOR,
that can be included in FORTRAN programs. This file defines many (but
not all) of the XF$ ••• symbolic names described in this chapter. For
example, SYS$LIBRARY:XFDEF.FOR contains symbolic definitions for
function codes (that is, device control codes), interrupt control
codes, command control codes, and masks for error bits set in the I/O
status block and the DR32 Status Longword. To include these
definitions in a FORTRAN program, insert the following statement in
the source code:

INCLUDE 'SYS$LIBRARY:XFDEF.FOR'

11.4.6.1 XF$SETUP - The XF$SETUP subroutine defines memory space for
the command and buffer areas, and initializes INPTQ, TERMQ, and FREEQ.
The call to XF$SETUP must be made prior to any calls to other DR32
support routines.

The format of the XF$SETUP call is as follows:

CALL XF$SETUP(contxt,barray,bufsiz,numbuf,[idevmsg] ,[idevsiz],
[ilogmsg], [ilogsiz), [cmdsiz), [status))

Argument descriptions are as follows:

contxt A 30-longword user-supplied array that is maintained by
the support routines and is used to contain context and
status information concerning the current data transfer
(see Section 11.4.6.5). The contxt array provides a
common storage area that all support routines share.
For increased performance, contxt should be
longword-aligned.

11-24

bar ray

bufsiz

numbuf

idevmsg

idevsiz

ilogmsg

ilogsiz

cmdsiz

DR32 INTERFACE DRIVER

Specifies the starting virtual address of an array of
buffers that, in the case of an output operation
contain information for transfer by the DR32, or in the
case of an input operation, will contain information
transferred by the DR32. For example, if barray is
declared INTEGER*2 BARRAY (I,J), I is the size of each
data buffer in words and J is the number of buffers.
The lower bound on both indices is assumed to be 1.
All buffers in the array must be contiguous to each
other and of fixed size.

Specifies the size in bytes of each buffer in the
array. All buffers are the same size. If the barray
argument is declared as stated above, bufsiz = I*2.
The bufsiz argument length is one longword.

Specifies the number of buffers in the array. If the
barray argument is declared as in the preceding
paragraph, numbuf = J. The area of memory described by
the barray, bufsiz, and numbuf arguments is used as the
buffer block for DR32 data transfers. The numbuf
argument length is one longword.

Specifies an array, declared by the application
program, that is used to store an unsolicited input
device message from the far end DR-device. The DR32
stores unsolicited input in the device message field of
a command packet from FREEQ and places that packet onto
TERMQ. When XF$GETPKT removes such a packet from
TERMQ, it copies the device message field into the
idevmsg array. The calling program is then notified
that information has been stored in the idevmsg array.
The idevmsg argument is optional; the argument must be
given if any unsolicited input is anticipated.

Specifies the size in bytes of the idevmsg array. The
maximum size of a device message is 25n bytes. The
idevsiz argument is optional; if idevmsg is specified,
idevsiz must be specified.' The idevsiz argument length
is one word.

Specifies an array, declared by the application
program, that is used to store log information from the
far end DR-device contained in the log area field of
the command packet. Log information is
hardware-dependent data that is returned by the far end
DR-device. The XF$SETUP routine stores the address and
size of the ilogmsg array; the log information is
stored in the ilogmsg array by the XFSGETPKT routine.
The ilogmsg argument is optional; the argument must be
given if any log information is anticipated.

Specifies the size in bytes of the ilogmsg array. The
maximum size of a log message is 256 bytes. The
ilogsiz argument is optional. However, if ilogmsg is
specified, ilogsiz must be specified. The ilogsiz
argument length is one word.

Specifies the amount of memory space to be allocated
from which command packets are to be built. The user
must consider the following factors when deciding how
much memory to allocate for this purpose:

1. The number of command packets that the
application program will be using.

11-25

status

DR32 INTERFACE DRIVER

2. That the device message and log area fields in
command packets are rounded up to quadword
boundaries.

3. That the size of the command packet itself is
rounded up to an 8-byte boundary.

4. That cmdsiz will be rounded up to a page
boundary.

The cmdsiz argument is optional;
one longword. If defaulted,
equal to:

argument length is
the allocated space is

(numbuf)*(32+idevsiz+ilogsiz)*(3)

which is rounded up to a full page.

Memory space for command packets is obtained by calling
LIB$GET VM.

This output argument receives the VAX/VMS success or
failure code of the XF$SETUP call:

SS$ NORMAL Normal successful completion
SS$-BADPARAM Invalid input argument
Error returns from LIB$GET VM

The status argument is optional;
one longword.

argument length is

11.4.6.2 XF$STARTDEV - The XF$STARTDEV subroutine issues the QIO
request that starts the DR32 data transfer.

The format of the XF$STARTDEV call is as follows:

CALL XF$STARTDEV(contxt,devnam,[pktast], [astparm], [efn], [modes],
[data rt], [status])

Argument descriptions are as follows:

contxt

devnam

pktast

Specifies the array that contains context and status
information (see Section 11.4.f>.l).

Specifies the device name (logical name or actual
device name) of the DR32. All letters in the resultant
string must be capitalized and the device name must
terminate with a colon, for example, "XFAO:". The
devnam datatype is character string.

Specifies the address of an AST routine that is called
each time a command packet that specifies an interrupt
in its interrupt control field is returned by the DR32,
that is, placed onto TERMQ (see Section 11.4.7.2).
This AST routine is also called on completion of the
QIO request. Normally, the AST routine would call
XF$GETPKT to remove command packets from TERMQ until
TERMQ is empty. The pktast argument is optional.

11-26

astparm

DR32 INTERFACE DRIVER

Specifies a longword parameter that is included in the
call to the pktast-specified AST routine. The format
used to call the AST routine is:

CALL pktast(astparm)

The astparm argument is optional; argument length is
one longword. If astparm is not specified, pktast is
called with no parameter.

efn If the event flag must be determined by the application
program, efn specifies the number of the event flag
that is set when a packet interrupt is delivered.
Otherwise, it is not necessary to include this argument
in a XF$STARTDEV call. If defaulted, efn is 21. The
efn argument length is one word.

modes

data rt

status

The event flag (either the default or the event flag
specified by this argument) is set for every packet
interrupt, and also when the QIO completes.

Specifies the mode of operation. VAX/VMS defines the
following value:

2 = parity errors on the data portion of the DD! do not
cause the device to abort.

If defaulted, modes is 0 (a parity error causes the
device to abort)

Specifies the data rate. The data rate controls the
speed at which the transfer takes place. The data rate
is considered to be an unsigned integer in the range 0
to 255. The relationship between the specified data
rate value and the actual data rate is given by the
following formula:

Data rate =
(in megabytes/sec)

40

(256 - value of data
rate byte)

For example, a data rate value of 23n corresponds to an
actual data rate of 2.0 megabytes/sec. Note that the
DR780 ignores data rate values greater than 251.

If datart is defaulted, the previously set data rate is
used. The datart argument length is one byte.

This output argument receives the VAX/VMS success or
failure code of the XF$STARTDEV call:

SS$ NORMAL Normal successful completion
SS$-BADPARAM Required parameter defaulted
Error returns from $CREATE (which is called to
assign a channel to the device) and $QIO

The status argument is optional;
one longword.

11-27

argument length is

DR32 INTERFACE DRIVER

11.4.6.3 XF$FREESET - The XF$FREESET subroutine releases command
packets onto FREEQ. These packets are then available to the DR780 to
store any unsolicited input from the far end DR-device. If
unsolicited input from the far end DR-device is expected, the
XF$FREESET call should be made before the XF$STARTDEV call is issued.

Idevsiz, the argument that specifies the size of the idevmsg array in
the call to XF$SETUP, defines the size of the device message field in
command packets inserted onto FREEQ. This is because unsolicited
deviae messages are copied from the device message field of the
command packet to the idevmsg array.

Note that the XF$FREESET subroutine may occasionally disable ASTs for
a very short period.

The format of the XF$FREESET call is as follows:

CALL XF$FREESET(contxt, [numpkt], [intctrl], [action], [actparm],
[status])

Argument descriptions are as follows:

contxt

numpkt

intctrl

action

act pa rm

Specifies the array that contains context and status
information (see Section 11.4.6.1).

Specifies the number of command packets to be released
onto FREEQ. The numpkt argument is optional; argument
length is one word. If defaulted, numpkt is 1.

Specifies the conditions under which an AST is
delivered (and the event flag set) when the DR32 places
this command packet (or packets) on TERMQ (see Section
11.4.6.2). VAX/VMS defines the following values:

0 = unconditional AST delivery and event flag set
1 = AST delivery and event flag set only if TERMQ is
empty
2 = no AST interrupt or event flag set

The intctrl argument is optional; argument length is
one word. If defaulted, intctrl is 0.

Specifies the address of a routine that is called when
any command packet built by this call to XF$FREESET is
removed from TERMQ by XF$GETPKT (see Section 11.4.7.3).
The action argument is optional.

A longword parameter that is passed to the action
routine when the action routine is called (see Section
11.4.7.3). The actparm argument is optional.

11-28

status

DR32 INTERFACE DRIVER

This output argument receives the VAX/VMS success or
failure code of the XF$FREESET call:

SS$ NORMAL
SS$-BADQUEUEHDR
SS$-INSFMEM

SHR$ NOCMDMEM

Normal successful completion
FREEQ interlock timeout
Insufficient memory to build
command packets
Command memory is not allocated
(usually because the data
transfer has stopped and
XFSCLEANUP has been called, or
because XF$SETUP has not been
called)

11.4.6.4 XF$PKTBLD - The XF$PKTBLD subroutine builds command packets
and releases them onto INPTQ.

Note that the XF$PKTBLD subroutine may occasionally disable ASTs for a
very short period.

The format of the XF$PKTBLD call is as follows:

CALL XF$PKTBLD(contxt,func, [index], [size], [devmsg], [devsiz],
[logsiz], [modes], [action], [actparm], (status])

Argument descriptions are as follows:

contxt Specifies the array that contains context and status
i n for ma t ion (see Sect ion 11 • 4 • n • 1) •

func Specifies the device control code. Device control
codes describe the function the DR32 is to perform.
The func argument length is one word. VAX/VMS defines
the following values (Table 11-2 describes the
functions in greater detail):

Symbol

X,F$K PKT RD
XF$K-PKT-RDCHN
XF$K-PKT-WRT
XF$K-PKT-WRTCHN
XF$K-PKT-\'ITRTCM

XF$K PKT SETTST
XF$K-PKT-CLRTST
XF$K-PKT-NOP
XF$K-PKT-DIAGRI
XF$K-PKT-DIAGWI
XF$K-PKT-DIAGRD
XF$K-PKT-DIAGWC
XF$K-PKT-SETRND
XF$K-PKT-CLRRND
XF$K-PKT-HALT - -

Value Function

0 Read device
1 Read device chained
2 Write device
3 Write device chained
4 Write device control message
5 (reserved)
6 Set self-test
7 Clear self-test
8 No-op
9 Diagnostic read internal

10 Diagnostic write internal
11 Diagnostic read DDI
12 Diagnostic write control message
13 Set random enable
14 Clear random enable
15 Set HALT

11-29

index

size

devmsg

devsiz

logsiz

modes

DR32 INTERFACE DRIVER

Specifies the index of a data buffer specified by the
barray argument {see Section 11.4.6.l). The specific
index value given means that elements barray (l,index)
through barray (size,index) will be transferred, that
is, one buffer full of data. The index argument is
optional and only used when the function specifies a
data transfer, that is, a read device, read device
chained, write device, or write device chained
function. The index argument length is one word.

Specifies a byte count to be transferred. This
argument is optional and only used when the function
specifies a data transfer. If defaulted, the number of
bytes to be transferred is assumed to be the size of
the buffer (specified by the bufsiz argument in the
call to XF$SETUP). If the size argument is given, then
the specified number of bytes of data {barray (l,index)
through barray (size,index)) will be transferred. If
size is defaulted and the function specifies a data
transfer, then barray (l,index) through barray
(bufsiz,index) will be transferred. The size argument
length is one longword.

Specifies a variable that contains the device message
to be sent to the far end DR-device. Provides
additional control of the far end DR-device see Section
11.4.3.12. The devmsg argument is optional.

Specifies the size in bytes of the devmsg variable. If
the modes argument specifies that a device message is
to be sent over the control portion of the DDI, devsiz
specifies the number of bytes of devmsg that will be
sent to the far end DR-device.

Specifies the size of the log message expected from the
far end DR-device. The logsiz argument is optional,
argument length is one word. If defaulted, logsiz is
0.

Provides additional control of the
VAX/VMS defines the following values:

transaction.

Value

+8

+16

Meaning

Only the function code
control portion of the
DR-device. Only for read
chained, write device,
chained functions.

is sent over the
DOI to the far end

device, read device
and write device

The function code and the device message are
sent over the control portion of the DDI to
the far end DR-device. Only for read device,
read device chained, write device, and write
device chained functions.

11-30

action

act pa rm

status

+24

DR32 INTERFACE DRIVER

The function code, the device message, and
the buff er size are sent over the control
portion of the DDI to the far end DR-device.
Only for read device, read device chained,
write device, and write device chained
functions.

If none of the above three values is
selected, nothing is transmitted over the
contrbl portion of the DDI to the far end
DR-device.

+32 Length errors are suppressed. If not
selected, a length error results in an abort.

+n4 An AST should be delivered (and an event flag
set) when this command packet is inserted
onto TERMQ, provided TERMQ is empty.

+128

+25n

No AST is delivered or event flag set for
this command packet.

If both +64 and +128 are selected, +128 takes
precedence.

If neither of
selected, ASTs
flag is set
whenever this
TERMQ.

the above two values is
are delivered and the event

unconditionally, that is,
command packet is placed onto

Insert this command packet at the head of
INPTQ. If not selected, insert the packet at
the tail of INPTQ.

The modes argument default value is O.

Specifies the address of a routine that is called when
XF$GETPKT removes this command packet from TERMQ. This
occurs after the DR32 has completed the command
specified in the packet (see Section 11.4.7.3). The
action argument length is one longword.

A longword parameter that is passed to the action
routine when the action routine is called (see Section
11.4.7.3). The actparm argument is optional.

This output argument receives the VAX/VMS success or
failure code of the XF$PKTBLD call:

SS$ NORMAL
88$-BADPARAM
88$-BADQUEUEHDR
88$-IN8FMEM

8HR$ NOCMDMEM

11-31

Normal successful completion
Input parameter error
INPTQ interlock timeout
Insufficient memory to build
command packets
Command memory not allocated
(usually because the data
transfer has stopped and
XF$CLEANUP has been called, or
because XF$8ETUP has not been
called)

DR32 INTERFACE DRIVER

11.4.6.5 XF$GETPKT - The XF$GETPKT subroutine removes a
packet from TERMQ.

command

Note that the XF$GETPKT subroutine may occasionally disable ASTs for a
very short period.

The format of the XFSGETPKT call is as follows:

CALL X F $GET PKT (cont x t , [w a i t fl g] , [fun c] , [index] , [de v flag] ,
[logflag], [status])

Argument descriptions are as follows:

contxt Specifies the array that contains the context and
status information (see Section 11.4.6.1). On return
from XF$GETPKT, the first eight longwords of the contxt
array are filled with the status of the data transfer:

.--------·---·-.. ----------------------------.
:CONTXT

1/0 status block

4

~---------------.. ·-·------ --------------t

control information 8

---------··· ----·---·-------------------------!
byte count 12

---------------------- ---------------·----"·------------ ,, _____ -----------1

virtual address of buffer 16

residual memory byte count 20

residual DOI byte count 24

DR32 status longword (DSL) 28

~-------------

The first two longwords are the I/O status block. The
next six longwords are copied directly from bytes 8
through 31 of the command packet.

This information is returned by the DR32 as status in
each command packet. With the exception of the I/O
status block, the information is copied by XF$GETPKT
into the contxt array whenever XF$GETPKT removes a
command packet from TERMQ.

The I/O status block is stored only after the data
transfer has halted and it contains the final status of
the transfer. Section 11.5 describes the I/O status
block.

See Section 11.4.2 for a description of the remaining
fields.

11-32

waitflg

f unc

index

devf lag

logf lag

status

DR32 INTERFACE DRIVER

Specifies the consequences of an attempt by XF$GETPKT
to remove a command packet from an empty TERMQ. If
waitflg is 0 (default), XF$GETPKT waits for the event
flag to be set and then removes a packet from TERMQ.
If waitflg is 1, XF$GETPKT returns immediately with a
failure status. Normally, waitflg is set to 1 (.TRUE.)
for AST synchronization and set to 0 (.FALSE.) for
event flag synchronization (see Section 11.4.7). The
waitflg argument is optional.

This output argument receives the device control code
specified in this command packet (see Section
11.4.6.4). The func argument is optional; argument
length is one word.

If this command packet specified a data transfer, this
output argument receives the buffer index specified
when this command packet was ·built by XF$PKTBLD (see
Section 11.4.6.4). The index argument is optional;
argument length is one word.

If set to .TRUE. (255), this output argument indicates
that a device message was stored in the idevmsg array,
which is described in the XF$SETUP call (see Section
11.4.6.1). The devflag argument is optional; argument
length is one byte.

If set to .TRUE. (255), this output argument indicates
that a log message was stored in the ilogmsg array,
which is described in the XF$SETUP call (see Section
11.4.6.1). The logflag argument is optional; argument
length is one byte.

This output argument receives the status of
XF$GETPKT call:

the

SS$ NORMAL
SS$-BADQUEUEHDR
SHRS_QEMPTY

SHR$ HALTED

SHR$ NOCMDMEM

Normal successful completion
TERMQ interlock timeout
The TERMQ was empty but the
transfer is still in progress.
Only returned if waitflg is
.TRUE.
TERMQ was empty, the transfer is
complete, and the I/O status
block contains the final status.
XF$CLEANUP has been called
automatically. Subsequent calls
to XF$GETPKT return
SHR$ NOCMDMEM.
Command memory not allocated.
Usually indicates either:

1. XF$SETUP
called.

was not

2. XF$CLEANUP was called.

11.4.6.6 XF$CLEANUP - The XF$CLEANUP subroutine deassigns the channel
and deallocates the command area allocated by XF$SETUP. If XF$GETPKT
detects a TERMQ empty condition and the transfer has halted, it will
automatically call XF$CLEANUP. However, if the transfer either
terminates in a SS$.CTRLERR or SS$_BADQUEHDR error, or is

11-33

DR32 INTERFACE DRIVER

intentionally terminated, XF$GETPKT may not detect these conditions
and XF$CLEANUP should be called explicitly.

The format of the XF$CLEANUP call is as follows:

CALL XF$CLEANUP(contxt, [status])

Argument descriptions are as follows:

contxt Specifies the array that contains context and status
information (see Section 11.4.6.1).

status This output argument receives the status of
XF$CLEANUP call:

SS$ NORMAL Normal successful completion
SHRS NOCMDMEM Command memory not allocated
Error returns from LIBSFREE VM and SDASSIGN

11.4.7 User Program - DR32 Synchronization

the

Synchronization of high-level language application programs with the
DR32 can be achieved in three ways:

• Event flags

• AST routines

• Action routines

11.4.7.1 Event Flags - Event flag synchronization is attained by
callin'g the XFSGETPKT routine (see Section 11.4.6.5) with the waitflg
argument set to 0 (default). The pktast argument in the XF$STARTDEV
routine (see Section 11.4.6.2) is normally defaulted. If the
XF$GETPKT routine is called and the termination queue is empty, the
routine waits until the DR32 places a command packet on the queue and
sets the event flag. The packet is then removed from the queue and
returned to the caller.

11.4.7.2 AST Routines - If a call to the XF$STARTDEV routine includes
the pktast argument, the specified AST routine is called each time an
AST is delivered. AST delivery can be controlled on a
packet-by-packet basis through use of the intctrl argument in the
XF$FREESET routine and by specifying appropriate values in the modes
argument of the XF$PKTBLD routine (see Sections 11.4.~.3 and
11.4.6.4). For a particular command packet, ASTs can be delivered:

1. Unconditionally when the packet is placed onto TERMQ.

2. Only if TERMQ is empty when the packet is placed on it.

3. Not at all. That is, there is no AST when the packet is
placed on TERMQ.

There is no guarantee that an AST will be delivered for every command
packet, even when the astctrl argument indicates unconditional AST
delivery. In particular, if packet interrupts are closely spaced,
several packets may be placed onto TERMQ even though only one AST is

11-34

DR32 INTERFACE DRIVER

delivered. Therefore, the AST routine should continue to call the
XF$GETPKT routine until all command packets are removed from TERMQ.

11.4.7.3 Action Routines - The action argument specified in the
XF$FREESET and XF$PKTBLD routines (see Sections 11.4.n.3 and 11.4.n.4)
can be used for a more automated synchronization of the program with
the DR32. Routines specified by action arguments can be used for both
event flag and AST routine synchronization.

The address of the action routine is included in the command packet.
This routine is automatically called by the XF$GETPKT routine when it
removes that packet from TERMQ. This allows the user to define, at
the time it is built, how the command packet will be handled once it
is removed from TERMQ. In addition to specifying different action
routines for different types of command packets, the user can also
specify an action routine parameter (actparm) to further identify the
command packet and/or the action to be taken on completion of the
command. Figure 11-7 shows the use of action-specified routines for
program synchronization.

An important difference between AST routine and action routine use is
the number of times the respective routines are specified. Command
packet AST routines are specified only once, in a XF$STARTDEV call; a
single AST routine is implied. Action routines, however, are
specified in each command packet. This allows a different action
routine to be designed for each type of command packet.

APPLICATION
PROGRAM

CALL
XF$GETPKT

APPLICATION
PROGRAM

XF$GETPKT

REMOVE PACKET
FROM TERMQ
CALL ACTION

ACTION Routines with Event Flag Synchronization

AST ROUTINE

CALL
XF$GETPKT

ACTION

PACKET­
SPECIFIC

PROCEDURE

XF$GETPKT

REMOVE PACKET
FROM TERMQ
CALL ACTION

ACTION Routines with AST Routine Synchronization

Figure 11-7 ACTION Routine Synchronization

11-35

ACTION

PACKET­
SPECIFIC

PROCEDURE

DR32 INTERFACE DRIVER

Routines specified by the action argument are supplied by the user.
The format of the calling interface is as follows:

CALL action-routine (contxt,actparm,devflag,logflag,func,
index,status)

With the exception of actparm, all arguments are the same as those
described for the XF$GETPKT routine. In effect, the action routine
will receive the same information XF$GETPKT optionally returns to its
calling program, along with the actparm argument that was specified
when the packet was built. If these variables are to be passed as
inputs to the action routine, they must be supplied as output
variables in the call to the XF$GETPKT routine.

11.5 I/O STATUS BLOCK

The I/O status block for the load microcode and start data transfer
QIO functions is shown in Figure 11-8. The I/O status block used in
the first two longwords of the contxt array for high-level language
calls also employs this format.

31 27 26 24 23 16 15 0

O status

5
status

bits
-:--r_ DOI status

L....-____ ..___:__i ________ _ 16 status bits

Figure 11-8 I/O Functions IOSB Content

VAX/VMS status values are returned in the first longword. Table 11-5
lists these values. If either SS$ CTRLERR, SS$ DEVREQERR, or
SS$ PARITY is returned in the status word, the second longword
contains additional returns, that is, device-dependent data. Table
11-6 lists these returns.

The I/O status block for a QIO function is returned after the function
completes. Status is not stored on the completion of every command
packet because any number of packets can pass between the application
program and the DR32 during the execution of a single QIO.

Status

SS$ ABORT

SS$ BADPARAM

Table 11-5
DR32 Status Returns

Meaning

Request aborted. A request in progress was
aborted by the $CANCEL system service. (Only
for start data transfer functions.)

Bad parameter. An attempt was made to set the
data rate higher than the rate allowed by the
SYSGEN parameter XFMAXRATE. (Only for start
data transfer functions.)

(continued on next page)

ll-3n

Status

DR32 INTERFACE DRIVER

Table 11-5 (Cont.)
DR32 Status Returns

Meaning
------------1~---·~- .. ----~ ~--------------------!

SS$_BADQUEHDR

SS$ BUFNOTALIGN

SS$ CANCEL

SS$ CTRLERR

SS$ DEVACTIVE

SS$_DEVREQERR

SS$_EXQUOTA

SS$ INSFMEM

Bad queue header. An INPTQ or TERMQ interlock
timeout occurred.

Alignment error. The command block address in
the Data Transfer Command Table was not
quadword aligned. (Only for start data
transfer functions.)

Request cancelled by the $CANCEL system
service before it started. (Only for the
start data transfer functions.)

Controller error. A fatal hardware
malfunction occurred that stops all DR32
activity. (Only for start data transfer
functions.) The second longword of the IOSB
contains additional information pertaining to
this error; the following bit values are
associated with SS$ CTRLERR:

XF$V !OS INVPTE
XF$V-IOS-SBI ERR
XF$V-IOS-RDSERR

The microcode cannot
there is an active

(Only for the

Device is active.
loaded because
transfer request.
microcode function.)

be
data
load

DR32 user request error. A programming error
or an error associated with the far end
DR-device is indicated. The second longword
of the I/O status block contains additional
information pertaining to the error; the
following bit values are associated with
SS$_DEVREQERR:

XF$V !OS DDIDIS
XF$V-IOS-RNGERR
XF$V-IOS-UNQERR
XF$V-I OS-INVPKT
XF$V-IOS FREQMT
XF$V-I OS-INVDD I
XF$V-IOS-LENERR
XF$V-IOS-DDIERR

AST quota exceeded. A command packet AST
cannot be queued because the process AST quota
was exceeded. (Only for start data transfer
functions.)

Insufficient dynamic memory to initiate a
start data transfer request, build a command
packet, or queue a command packet AST.

(continued on next page)

11-37

DR32 INTERFACE DRIVER

Table 11-5 (Cont.)
DR32 Status Returns

----.-----··-----------------------------.
Status

SS$ IVBUFLEN

SS$ MCNOTVALID

SS$ NORMAL

SS$ PARITY

SS$ POWERFAIL

Meaning

Incorrect length. Either the command block
size or the buffer block size is 0 or equal to
or greater than 2**29, or the command table
length is not XF$K CMT LENGTH.

Microcode has not yet been successfully loaded
or has become invalid. (Only for start data
transfer functions.)

QIO request or support routine call completed
successfully. Either the microcode was loaded
successfully or the data transfer was
completed successfully.

microcode was not
the DR32 controller

and a hardware
The second longword

contains additional
to this malfunction;
are associated with

Parity error. Either the
loaded successfully or
detected a parity error
malfunction is indicated.
of the I/O status block
information pertaining
the following bit values
SS$ PARITY:

XF$V !OS WCSPE
XF$V-IOS-CIPE
XF$V-IOS-DIPE
XF$V-IOS-PARERR

A power failure occurred while a data transfer
request was active or the DR32 is powered
down.

Table 11-n
Device-Dependent IOSB Returns for I/O Functions

~-·-~-"-'"'------·····

Symbolic Name Meaning

16 Status Bits
----~-'""'~-,.---·---·

XF$V PKT SUCCESS The command was performed successfully - -
XF$V !OS CMDSTD Command specified in the command packet - - started.

XF$V !OS INVPTE Invalid page table entry. - -
XF$V !OS FREQ PK This command packet came from FREEQ. - -
XF$V !OS DD ID IS The far end DR-device is disabled. - -
XF$V !OS SLFTST The DR32 is in self-test mode. - -

... __________ .,..i._ _______ ,, _, ________

(continued on next page)

11-38

DR32 INTERFACE DRIVER

Table 11-n (Cont.)
Device-Dependent IOSB Returns for I/O Functions

Symbolic Name

XF$V IOS RNG ERR

XF$V_IOS_UNQERR

XF$V IOS INVPKT - -
XF$V_IOS_FREQMT

XF$V IOS RNDENB

XF$V IOS INVDDI - -
XF$V IOS LENERR - -

XF$V IOS DRVABT

XF$V PKT PARERR - -

XF$V IOS DDISTS

XF$V IOS NEXREG

XF$V IOS LOG - -

XF$V IOS DDIERR - -

XF$V_IOS_BUSERR

XF$V IOS RDSERR

XF$V IOS WCSPE

XF$V IOS CIPE

XF$V IOS DIPE

Meaning

Range error. The user-provided address is
outside the command block range or the buffer
block range.

A queue element was not aligned on a quadword
boundary.

A packet was not a valid DR32 command packet.

A message was received from the far end
DR-device and FREEQ was empty.

Random access mode is enabled.

A protocol error occurred on the DDI.

The far end DR-device terminated the data
transfer before the required number of bytes
were sent, or a message was received from the
far end DR-device and the device message
field in the command packet at the head of
FREEQ was not large enough to hold it.

The I/O driver aborted the DR32 function.

A parity error occurred on the data or
control portion of the DDI.

DDI Status

The 1-byte status register O for the far end
DR-device. XF$V IOS NEXREG, XF$V IOS LOG,
and XF$V IOS DDIERR are returns from -this
register:- -

An attempt was made to access a nonexistent
register on the far end DR-device.

The far end DR-device registers are stored in
the log area.

An error occurred on the far end DR-device.

5 Status Bits

An error on the processor's internal CPU memory
bus occurred.

A noncorrectable memory error occurred (Read
Data Substitute).

Writeable Control Store parity error.

Control Interconnect parity error. A parity
error occurred on the control portion of the
DDI.

Data Interconnect parity error. A parity error
occurred on the data portion of the DDI.

11-39

DR32 INTERFACE DRIVER

11.6 PROGRAMMING HINTS

This section
considerations
chapter.

contains information on important programming
relevant to users of the DR32 driver described in this

11.6.1 Command Packet Pre-fetch

The DR32 has the capability of pre-fetching command packets from
INPTQ. While executing the command specified in one packet, the DR32
can pre-fetch the next packet, decode it, and be ready to execute the
specified command at the first opportunity. When the command is
executed depends on which command is specified. For example, if two
read device or write device command packets are on INPTQ, the DR32
fetches the first packet, decodes the command, verifies that the
transfer is legal, and starts the data transfer. While the transfer
is taking place, the DR32 pre-fetches the next read device or write
device command packet, decodes it, and verifies the transfer legality.
The second transfer begins as soon as the first transfer is completed.

On the other hand, if the two command packets on INPTQ are read device
(or write device) and write device control message, in that order, the
DR32 pre-fetches the second packet and immediately executes the
command, because control messages can be overlapped with data
transfers. The DR32 then pre-fetches the next command packet. In an
extreme case, the DR32 can send several control messages over the
control portion of the DD! while a single data transfer takes place on
the data portion of the DDI.

The pre-fetch capability and the overlapping of control and data
transfers can cause unexpected results when programming the DR32. For
instance, if the application program calls for a data transfer to the
far end DR-device followed by notification of the far end DR-device
that data is present, the program cannot simply insert a write device
command packet and then a write control message command packet onto
INPTQ -- the control message may very likely arrive before the data
transfer completes.

A better way to synchronize the data transfer with notification of
data arrival is to request an interrupt in the interrupt control field
of the data transfer command packet. Then, when the data transfer
command packet is removed from TERMQ, the application program can
insert a write control message command packet onto INPTQ to notify the
far end DR-device that the data transfer has completed.

Another consequence of command packet pre-fetching occurs when, for
example, two write device command packets are inserted onto INPTQ.
While the first data transfer takes place, the second command packet
is pre-fetched and decoded. If an unusual event occurs and the
application program must send an immediate control message to the far
end DR-device, the application program may insert a write device
control message packet onto INPTQ. However, this packet is not sent
immediately because the second write device command packet has already
been pre-fetched; the control message is sent after the second data
transfer starts.

If the application program requires the ability to send a control
message with minimum delay, use one of the following techniques:

• Insert only one data transfer function onto INPTQ at a time.
If this is done, a second transfer function will not be
pre-fetched and a control message can be sent at any time.

11-40

DR32 INTERFACE DRIVER

• Use smaller buffers or a faster data rate to reduce the time
necessary to complete a given command packet.

• Issue a $CANCEL system service call followed by another
IO$_STARTDATA QIO.

11.6.2 Action Routines

Action routines provide a useful DR32 programming technique. They can
be used in application programs written in either assembly language or
a high-level language. When a command packet is built, the address of
a routine to be executed when the packet is removed from TERMQ is
appended to the end of the packet. Then, rather than having to
determine what action to perform for a particular packet when it is
removed from TERMQ, the specified action routine is called.

11.6.3 Error Checking

Bits 0 through 23 in the second longword of the I/O status block
correspond to the same bits in the DR32 status longword (DSL).
Although the I/O status block is written only after the QIO function
completes, the DSL is stored in every command packet. However,
because there is no command packet in which to store a DSL for certain
error conditions, for example, FREEQ empty, some errors are reported
only in the I/O status block. To check for an error under these
conditions, the user should examine the DSL in each packet for success
or failure only. Then, if a failure occurs, the specific error can be
determined from the I/O status block. The I/O status block should
also be checked to verify that the QIO has not completed prior to a
wait for the insertion of additional command packets onto TERMQ. In
this way, the application program can detect asynchronous errors for
which there is no command packet available.

11.6.4 Queue Retry Macro

When an interlocked queue instruction is included in the application
program, the code should perform a retry if the queue is locked.
However, the code should not execute an indefinite number of retries.
Consequently, all retry loops should contain a maximum retry count.
The macro programming example provided in Section 11.7 contains a
convenient queue retry macro.

11.6.5 Diagnostic Functions

The diagnostic functions listed in Table 11-2 can be used to test the
DR32 without the presence of a far end DR-device. For the DR780, the
user should perform the following test sequence:

1. Insert a set self-test command packet onto INPTQ.

2. Insert a diagnostic write internal command packet that
specifies a 128-byte buffer onto INPTQ. This packet copies
128 bytes from memory into the DR780 internal data silo.

11-41

DR32 INTERFACE DRIVER

3. Insert a diagnostic read DDI command packet onto INPTQ. This
packet transmits the 128 bytes of data from the silo over the
DDI and returns it to the silo.

4. Insert a diagnostic read internal command packet that
specifies another 128-byte buffer in memory onto INPTQ. This
packet copies 128 bytes of data from the silo into memory.

5. Compare the two memory buffers
the DR780, the diagnostic read
first four bytes in the silo
memory. Therefore, compare
two buffers.

for equality. Note that on
internal function destroys the
before storing the data in
only the last 124 bytes of the

6. Insert a clear self-test command packet onto INPTQ.

11.6.6 The NOP Command Packet

It is often useful to insert a NOP command packet onto INPTQ to test
the state of the DDI disable bit (XF$M PKT DDIDIS in the DSL). By
checking this bit before initiating a data- transfer, an application
program can determine if the far end DR-device is ready to accept
data.

11.6.7 Interrupt Control Field

As described ih Section 11.4.3.6, the
determines the conditions under which
unconditionally, if TERMQ was empty, or
general applications of this field:

interrupt control field
an interrupt is generated:

never. There are several

1. If a program performs five data transfers and requires
notification of completion only after all five have
completed, the first four command packets should specify no
interrupt and the fifth command packet should specify an
unconditional interrupt.

2. If a program performs a continuous series of data transfers,
for example, each command packet can specify interrupt only
if TERMQ was empty. Then, every time an event flag or AST
notifies the program that a command packet was inserted onto
TERMQ, the program removes and processes all packets on TERMQ
until it is empty.

3. Command packets that specify no interrupt should never be
mixed with command packets that specify interrupt if TERMQ
was empty. If this were done, a command packet that
specifies no interrupt could be inserted onto TERMQ followed
by a command packet that specifies interrupt if TERMQ was
empty. Then the latter packet would not interrupt and the
program would never be notified that command packets were
inserted onto TERMQ.

11-42

DR32 INTERFACE DRIVER

11.7 PROGRAMMING EXAMPLES

The program examples in the following two sections use DR32 high-level
language procedures and DR32 Queue I/O functions.

11.7.1 DR32 High-level Langauge Program (Program A)

This program is an example of how the DR32 high-level language
procedures perform a data transfer from a far end DR-device. The
program reads a specified number of data buffers from an undefined far
end DR-device, which is assumed to be a data source, into the VAX-11
memory. The number of buffers is controlled by the MAXBUF parameter.
The program contains examples of the read data chained function code
and DR32 application program synchronization using AST routines and
action routines.

c ***
c
C PROGRAM A
c
c ***

INCLUDE 'XFDEF.FOR' ;DEFINE XF CONSTANTS
SIZE OF EACH BUFFER
NUMBER OF BUFFERS IN
RING

PARAMETER BUFSIZ 1024
PARAMETER NUMBUF 8

PARAMETER

PARAMETER

INTEGER* 2
INTEGER*2

INTEGER*2

INTEGER* 2

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4

EXTERNAL
EXTERNAL

EXTERNAL

ILOGSIZ = 4

EFN = 0

SIZE OF INPUT LOG
ARRAY
EVENT FLAG SYNCHRON­
IZING MAIN LEVEL WITH
AST ROUTINE

BUFARRAY(BUFSIZ,NUMBUF) !THE RING OF BUFFERS
INDEX !REFERS TO BUFFER

! IN BUFARRAY
COUNT !COUNTS NUMBER OF

!BUFFERS FILLED
DATART !DR32 CLOCK RATE

CONTXT(30) !CONTEXT ARRAY USED BY SUPPORT
ILOGMSG(ILOGSIZ)!LOG MESSAGES FROM DEVICE

!STORED HERE
STATUS !RETURNS FROM SUBROUTINES
DEVMSG !FAR END DR-DEVICE CODE

ASTRTN
AST$PROCBUF

AST$HALT

AST ROUTINE
ACTION ROUTINE TO HANDLE
COMPLETION OF READ DATA
COMMAND PACKET
ACTION ROUTINE TO HANDLE
COMPLETION OF A HALT
COMMAND PACKET

COMMON /MAIN AST/ CONTXT, INDEX
COMMON /MAIN-ACTION/ BUFARRAY, ILOGMSG, COUNT
EXTERNAL - SS$ NORMAL !SUCCESS STATUS RETURN

c **
c
C THE CALL TO THE SETUP ROUTINE

11-43

DR32 INTERFACE DRIVER

c
c **

CALL XF$SETUP (CONTXT,BUFARRAY,BUFSIZ*2,NUMBUF,,,ILOGMSG,
1 ILOGSIZ*4,,STATUS)
IF (STATUS .NE .• %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

c
C PRE-LOAD THE INPUT QUEUE BEFORE STARTING THE DR32 IN ORDER TO AVOID
C A DELAY IN THE DATA TRANSFER
c

c
**

c
C BUILD COMMAND PACKETS
c
c **

C BUILD THE COMMAND PACKET THAT WILL INSTRUCT THE FAR END DR-DEVICE
C TO START SAMPLING. ARBITRARILY ASSUME THAT THE FAR END DR-DEVICE
C WILL RECOGNIZE THIS DEVICE MESSAGE. INSERT THIS PACKET ON THE
C INPUT QUEUE (INPTQ).
c

c

DEVMSG = 25

CALL XF$PKTBLD (
1 CONTXT,
1 XFSK PKT_WRTCM,

1
1
1
1

1

1
1

, ,
DEVMSG,
4,
ILOGSIZ*4

XF$K PKT UNCOND

+ XF$K PKT CBDM
+ XF$K-PKT-INSTL

!SIGNAL FAR END DR-DEVICE
! "GO"

!THE CONTEXT ARRAY
'WRITE CONTROL MESSAGE
FUNCTION
NO INDEX OR SIZE
SIGNAL "GO"
SIZE OF DEVMSG IN BYTES
SPACE FOR INPUT LOG
MESSAGE
MODES: UNCONDITIONAL

INTERRUPT
SEND FUNC AND DEVMSG
INSERT PACKET AT INPTQ
TAIL

1 11 NO ACTION ROUTINE OR ACTPARM
1 STATUS)
IF (STATUS .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

C IN A LOOP, BUILD THE COMMAND PACKETS THAT WILL PERFORM THE CHAINED
C READ TO INITIALLY FILL THE BUFFERS
c

DO 10

1
1
1
1
1
1

1
1

1
1

INDEX= 1, NUMBUF
CALL XF$PKTBLD(
CONTXT,
XF$K PKT RDCHN,
INDEX, -
, , ,
ILOGSIZ*4,
XF$K PKT UNCOND

+ XF$K PKT CB
+ XF$K=PKT=INSTL,

AST$PROCBUF,

11-44

!FOR ALL BUFFERS DO

THE CONTEXT ARRAY
READ DATA CHAINED
IDENTIFIES BUFFER
NO SIZE, DEVMSG, OR DEVSIZ
SPACE FOR INPUT LOG MESSAGE
MODES: UNCONDITIONAL

INTERRUPT
SEND FUNCTION CODE
INSERT PACKET AT INPTQ
TAIL

ACTION ROUTINE
NO ACTPARM

DR32 INTERFACE DRIVER

1 STATUS)
IF (STATUS .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

10 CONTINUE

c
C THE INPUT QUEUE IS LOADED
c

c ***
c
C START THE DR32
c
c ***

c

DATART = 0
COUNT = 0

CALL SYS$CLREF (%VAL(EFN))

!DATA TRANSFER RATE
!NUMBER OF BUFFERS THAT HAVE
!BEEN FILLED
!CLEAR EVENT FLAG BEFORE START

CALL XF$STARTDEV (CONTXT,'XFAO:' ,ASTRTN,,,,DATART,STATUS)

IF (STATUS .NE. %LOC(SSS_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

C FROM THIS POINT, ROUTINES AT THE AST LEVEL ASSUME CONTROL. WAIT
C FOR THEM TO SIGNAL COMPLETION OF THE SAMPLING SWEEP.
c

CALL SYS$WAITFR (%VAL(EFN))

STOP
END

c ***
c
C AST ROUTINES
c
c ***

c

SUBROUTINE ASTRTN (ASTPARM)

INCLUDE 'XFDEF.FOR/NOLIST'
INTEGER*2 ASTPARM

INTEGER*4
INTEGER*4

LOGICAL*l
LOGICAL*l

CONTXT(30)
STATUS

WAITFLG
LOG FLAG

COMMON /MAIN_AST/ CONTXT, INDEX

EXTERNAL SS$ NORMAL

!UNUSED PARAMETER

!CONTEXT ARRAY
!FOR CALL TO XFSGETPKT

!INPUT TO XFSGETPKT
!INPUT TO XF$GETPKT

C CALL XF$GETPKT IN A LOOP UNTIL TERMQ IS EMPTY. XFSGETPKT WILL CALL
C THE APPROPRIATE ACTION ROUTINE FOR EACH COMMAND PACKET.
c

WAITFLG
LOG FLAG

.TRUE.

.TRUE.
!DO NOT WAIT FOR EVENT FLAG
!REQUEST NOTIFICATION IF LOG
!MESSAGE IS IN PACKET

10 CALL XF$GETPKT (CONTXT,WAITFLG,,INDEX,,LOGFLAG,STATUS)
IF (STATUS .EQ. %LOC(SS$_NORMAL)) !PACKET FROM TERMQ

11-45

1 GOTO 10
IF (STATUS .EQ.
1 GOTO 20
IF (STATUS .EQ.
1 GOTO 20

DR32 INTERFACE DRIVER

SHR$_QEMPTY) !TERMQ EMPTY - TRANSFER
!STILL IN PROGRESS

SHR$ HALTED .OR. STATUS .EQ. SHR$ NOCMDMEM)
!TRANSFER COMPLETE. NO MORE
!COMMAND PACKETS. ASTS MAY
!STILL BE DELIVERED

CALL LIB$STOP (%VAL(STATUS)) !ERROR IN XFSGETPKT

20 RETURN
END

c ***
c
C ACTION ROUTINE
c
c ***

c

SUBROUTINE
1

AST$PROCBUF (CONTXT,ACTPARM,DEVFLAG,LOGFLAG,
FUNC,INDEX,STATUS)

C THIS IS THE ACTION ROUTINE CALLED BY XF$GETPKT WHEN IT REMOVES A
C COMMAND PACKET FROM TERMQ. THIS PACKET HAS JUST COMPLETED A READ
C DATA OPERATION FROM THE BUFFER SPECIFIED BY INDEX. THE BUFFER IS
C PROCESSED, AND IF MORE DATA IS REQUIRED (I.E., BUFCOUNT .LE.
C MAXCOUNT), ANOTHER PACKET IS BUILT. THE BUFFER IN THIS PACKET IS
C THEN REFILLED AND THE PACKET IS INSERTED ONTO INPTQ.
C IF BUFCOUNT .GT. MAXCOUNT, THE SAMPLING SWEEP IS FINISHED AND A
C HALT PACKET IS INSERTED ONTO INPTQ.
c

ARRAY

WORDS)

INCLUDE
PARAMETER
PARAMETER

PARAMETER

PARAMETER

INTEGER*2
BUFARRAY

INTEGER*2
INTEGER*2

FILLED

USED)

DEVICE

INTEGER* 2

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4

LOGICAL*l
LOGICAL*l

'XFDEF.FOR/NOLIST'
MAXCOUNT = 10 !NUMBER OF BUFFERS IN SWEEP
ILOGSIZ = 4 !SIZE OF INPUT LOG MESSAGE

BUFSIZ = 1024

NUMBUF

INDEX

FUNC
BUFCOUNT

8

!SIZE OF EACH BUFFER (IN

!NUMBER OF BUFFERS

!REFERS TO A BUFFER IN

!FUNCTION CODE FROM PACKET
!COUNTS NUMBER OF BUFFERS

BUFARRAY(BUFSIZ,NUMBUF) !THE ARRAY OF BUFFERS

ACTPARM
STATUS

!ACTION PARAMETER (NOT USED)
!STATUS OF XF$GETPKT (NOT

STAT !STATUS OF CALL TO XF$PKTBLD
CONTXT(30) !CONTEXT ARRAY USED BY SUPPORT
ILOGMSG(ILOGSIZ)!STORES LOG MESSAGES FROM

DEV FLAG
LOG FLAG

!NOT USED IN THIS EXAMPLE
!SIGNALS LOG MESSAGE PRESENT

COMMON /MAIN_ACTION/ BUFARRAY,ILOGMSG,BUFCOUNT

EXTERNAL
EXTERNAL

SS$ NORMAL
ASTSHALT

11-46

DR32 INTERFACE DRIVER

c
C PROCESS THE BUFFER
c

DO 10 I = 1, BUFSIZ

c ***
c
C AT THIS POINT INSERT THE CODE TO PROCESS ELEMENT {!,INDEX) OF
C BUFARRAY
c
c ***

10 CONTINUE

c ***
c
C AT THIS POINT INSERT THE CODE TO LOOK AT THE LOG MESSAGE
c
c ***

c
C IS THIS THE LAST BUFFER IN THE SWEEP?
c

BUFCOUNT BUFCOUNT + 1
IY (BUFCOUNT .LT. MAXCOUNT) THEN

CALL
1
1
1
1
1
1

FAKE$PKTBLD (
CONTXT,

XF$K PKT RDCHN,
INDEX, -
, , ,
ILOGSIZ*4,
XF$K PKT UNCOND

1 + XF$K PKT CB
1 + XF$K=PKT=INSTL,
1 , ,
1 STAT)

!BUILD A PACKET TO
REFILL THE BUFFER
NEED INTERVENING ROUTINE
THE CONTEXT ARRAY
READ DATA CHAINED
BUFFER INDEX
NO SIZE, DEVMSG, OR DEVSIZ
SPACE FOR LOG MESSAGE
MODES: UNCONDITIONAL

INTERRUPT
SEND CONTROL BYTE
INSERT AT TAIL

ACTION GIVEN IN FAKESPKTBLD

IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))

ELSE IF

1
1
1
1
1
1

(BUFCOUNT .EQ. MAXCOUNT)
CALL FAKE$PKTBLD (
CONTXT,
XF$K PKT RD,
INDEX, -
, , ,
ILOGSIZ*4,
XF$K PKT UNCOND - -

1 + XF$K PKT CB
1 + XF$K=PKT=INSTL,
1 , ,
1 STAT)

THEN !END OF CHAIN
NEED INTERVENING ROUTINE
THE CONTEXT ARRAY
READ DATA FUNCTION
BUFFER INDEX
NO SIZE, DEVMSG, OR DEVSIZ
SPACE FOR LOG MESSAGE
MODES: UNCONDITIONAL

INTERRUPT
SEND CONTROL BYTE
INSET AT TAIL

ACTION GIVEN IN FAKE$PKTBLD

IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))

ELSE

1
1
1

CALL XF$PKTBLD
CONTXT,
XF$K_PKT_HALT,
, , , ,

11-47

!BUILD A HALT PACKET

!THE CONTEXT ARRAY
!ALL DONE
!DEFAULT VALUES

l
l

DR32 INTERFACE DRIVER

ILOGSIZ*l,
AST$HALT,

!SPACE FOR INPUT LOG MESSAGE
! ACTION ROUTINE

l I !NO ACTPARM
l STAT)
IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))

END IF

RETURN
END

c ***
c
C PASS ADDRESS OF ACTION ROUTINE TO COMMAND PACKET
c
c ***

SUBROUTINE FAKE$PKTBLD(A,B,C,D,E,F,G,H,I,J,K)

c
C AST$PROCBUF CALLS THIS SUBROUTINE IN ORDER TO PASS THE ADDRESS OF
C AST$PROCBUF TO XF$PKTBLD. (AST$PROCBUF CANNOT REFER TO ITSELF
C WITHIN THE SCOPE OF AST$PROCBUF)
c

EXTERNAL AST$PROCBUF

CALL XF$PKTBLD (A,B,C,D,E,F,G,H,AST$PROCBUF,J,K)

RETURN
END

c **
c
C HALT ACTION ROUTINE
c
c **

SUBROUTINE

c

AST$HALT (CONTXT,ACTPARM,DEVFLAG,LOGFLAG,
FUNC,INDEX,STATUS)

C THIS IS THE ACTION ROUTINE CALLED BY XF$GETPKT WHEN IT REMOVES A
C HALT PACKET FROM TERMQ. THIS ROUTINE PRINTS STATUS INFORMATION,
C CALLS XF$CLEANUP TO PERFORM FINAL HOUSEKEEPING FUNCTIONS, AND SETS
C THE EVENT FLAG THAT SIGNALS THE TRANSFER IS COMPLETE.
c

PARAMETER

INTEGER*2
INTEGER*2

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

LOGICAL*l
LOGICAL*l

EFN = 0

FUNC
INDEX

ACTPARM
STATUS
STAT
CONTXT(30)

DEV FLAG
LOG FLAG

11-48

!NOT USED
!NOT USED

!NOT USED
!NOT USED
!RETURN FROM XF$CLEANUP
!CONTEXT ARRAY USED BY SUPPORT

!NOT USED
!SIGNALS LOG MESSAGE

DR32 INTERFACE DRIVER

EXTERNAL SS$ NORMAL !SUCCESS STATUS RETURN

c
C PRINT FINAL STATUS
c

c

PRINT *, 'FINAL STATUS IN I/O STATUS BLOCK'
PRINT *, CONTXT(l), CONTXT(2)

C CLEAN UP
c

CALL XF$CLEANUP (CONTXT,STAT)
IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))

CALL SYS$SETEF (%VAL(EFN))

RETURN
END

11.7.2 DR32 Queue I/O Functions Program (Program B)

This sample program uses QIO functions to send a device message to the
far end DR-device and then waits for a message returned in a command
packet on FREEQ. The returned message is copied into another command
packet and that packet writes a data buffer to the far end DR-device.

**

PROGRAM B

**

.TITLE DR32 PROGRAMMING EXAMPLE

.!DENT /01/

DEFINE SYMBOLS

$XFDEF

QRETRY - THIS MACRO EXECUTES AN INTERLOCKED QUEUE INSTRUCTION AND
RETRIES THE INSTRUCTION UP TO 25 TIMES IF THE QUEUE IS
LOCKED.

INPUTS:

OPCODE OPCODE NAME: INSQHI,INSQTI,REMQHI,REMQTI
OPERANDl = FIRST OPERAND FOR OPCODE
OPERAND2 = SECOND OPERAND FOR OPCODE
SUCCESS = LABEL TO BRANCH TO IF OPERATION SUCCEEDS
ERROR = LABEL TO BRANCH TO IF OPERATION FAILS

OUTPUTS:

RO DESTROYED

11-49

LOOP:

OK:

C-BIT

DR32 INTERFACE DRIVER

CLEAR IF OPERATION SUCCEEDED
SET IF OPERATION FAILED - QUEUE LOCKED
(MUST BE CHECKED BEFORE V-BIT OR Z-BIT)

REMQTI OR REMQHI:

V-BIT = CLEAR IF AN ENTRY REMOVED FROM QUEUE; SET
IF NO ENTRY REMOVED FROM QUEUE.

INSQTI OR INSQHI:

Z-BIT = CLEAR IF ENTRY IS NOT FIRST IN QUEUE; SET
IF ENTRY IS FIRST IN QUEUE •

• MACRO QRETRY OPCODE,OPERAND1,0PERAND2,SUCCESS,ERROR,?LOOP,
?OK

CLRL RO

OPCODE
.IF
BCC
.IFF
BCC
.ENDC
AOBLSS
.IF
BRW
.ENDC

.ENDM

OPERAND1,0PERAND2
NB SUCCESS
SUCCESS

OK

#25,RO,LOOP
NB ERROR
ERROR

QRETRY

ALLOCATE STORAGE FOR DATA STRUCTURES

.PSECT DATA,QUAD
CMDBLK: COMMAND BLOCK

INPTQ:
TERMQ:
FREEQ:

MSGPKT:

.BLKQ

.BLKQ

.BLKQ

.BLKQ

.BYTE

.BYTE

.BYTE

.BYTE

.BLKL

.BLKL

.BLKL

.BLKL

.LONG

.LONG

1
1
1

1
12
0
XF$K PKT WRTCM

XF$K PKT NOINT@-

XF$V PKT INTCTL
1
1
2

1
11111,22222,33333
0

.ALIGN QUAD

INPUT QUEUE
TERMINATION QUEUE
FREE QUEUE

THIS PACKET SENDS A 12 BYTE
DEVICE MESSAGE
QUEUE LINKS
LENGTH OF DEVICE MESSAGE
LENGTH OF LOG AREA
COMMAND = WRITE CONTROL
MESSAGE
PACKET CONTROL NO
INTERRUPT

BYTE COUNT
BUFFER ADDRESS
RESIDUAL MEMORY AND DDI BYTE
COUNTS
DR32 STATUS LONGWORD
DEVICE MESSAGE
EXTEND DEVICE MESSAGE TO
QUADWORD LENGTH

WRTPKT: THIS PACKET DOES A WRITE
DEVICE

11-50

DR32 INTERFACE DRIVER

1
4
0
XF$K PKT WRT

.BLKQ

.BYTE

.BYTE

.BYTE

.BYTE <XF$K PKT CBDMBC@-

.LONG

.LONG

.BLKL

.BLKL
WDVMSG: • BLKQ

- -
XF$V PKT CISEL>!-

<XF$K PKT NOINT@­
XF$V PKT INTCTL>
1000- -
WRTBFR
2

1
1

.ALIGN QUAD

HLTPKT:
1 .BLKQ

.BYTE
,BLKL

O,O,XF$K PKT HALT,O
5 -

.ALIGN QUAD
FREPKT:

.BLKQ

.BYTE

.BLKL

.BLKL

.BLKQ

1
4,0,0,0

4
1
1

CMDBLKSIZ=.-CMDBLK

BFRBLK:

WRTBFR: • BLKB 1000

BFRBLKSIZ=.-BFRBLK

CMDBLKSIZ
CMDBLK
BFRBLKSIZ
BFRBLK
PKTAST
0

CMDTBL: • LONG
.LONG
.LONG
.LONG
.LONG
.LONG
.BYTE
.LONG

236,XF$M CMT SETRTE,O,O
GOBITADR-

GOBITADR:
.BLKL 1

XFIOSB: .BLKL

XFNAMEDSC:
.LONG
.LONG

XFCHAN: • BLKW

2

XFNAMESIZ
XFNAME

1

11-51

QUEUE LINKS
LENGTH OF DEVICE MESSAGE
LENGTH OF LOG AREA
COMMAND = WRITE
PACKET CONTROL = SEND
COMMAND BYTE,
DEVICE MESSAGE, AND BYTE
COUNT
AND NO INTERRUPT

BYTE COUNT
BUFFER ADDRESS
RESIDUAL MEMORY AND DDI BYTE
COUNTS
DR32 STATUS LONGWORD
SPACE FOR DEVICE MESSAGE

THIS PACKET HALTS THE DR32
QUEUE LINKS
COMMAND = HALT
UNUSED FIELDS IN THIS PACKET

PACKET FOR FREE QUEUE
QUEUE LINKS
LENGTH OF DEVICE MESSAGE
FIELD
UNUSED FIELDS IN THIS PACKET
DR32 STATUS LONGWORD
SPACE FOR DEVICE MESSAGE

BUFFER BLOCK

COMMAND BLOCK SIZE
COMMAND BLOCK ADDRESS
BUFFER BLOCK SIZE
BUFFER BLOCK ADDRESS
PACKET AST ADDRESS
PACKET AST PARAMETER
DATA RATE (2.0 MBYTES/SEC)
ADDRESS TO STORE THE GO
BIT ADDRESS

I/O STATUS BLOCK

NAME DESCRIPTOR

CHANNEL NUMBER

DR32 INTERFACE DRIVER

XFNAME: .ASCII /XFAO/
XFNAMESIZE=.-XFNAME

**

PROGRAM STARTING PO'INT

**

.PSECT

.ENTRY

$ASSIGN

BLBS
BRW

10$: MOVAB
CLRQ
CLRQ
CLRQ

CODE,NOWRT

DREXAMPLE,M<R2,R3>

S DEVNAM = XFNAMEDSC,-
CHAN = XFCHAN

R0,10$
ERROR

CMDBLK,R2
{R2)+
{R2)+
{R2)

ASSIGN A CHANNEL TO DR32

SUCCESSFUL ASSIGN

INITIALIZE INPTQ
INITIALIZE TERMQ
INITIALIZE FREEQ

INSERT COMMAND PACKET ONTO FREEQ FOR RETURN MESSAGE

QR ET RY
INSQTI

START DEVICE

ERROR=BADQUEUE,­
FREPKT,FREEQ

$QIO_S FUNC #IQ$_ STARTDATA, -

CHAN = XFCHAN,­
IOSB = XFIOSB,­
EFN = #1,-
Pl = CMDTBL,-

BLBC
P2 = #XF$K CMT LENGTH
RO,ERROR - -

SEND MESSAGE TO FAR END DR-DEVICE

QRETRY ERROR=BADQUEUE,­
INSQTI MSGPKT,INPTQ
MOVL #1,@GOBITADR
$WAITFR S #1

CHECK FOR SUCCESSFUL COMPLETION

MOVZWL
BEQL

BLBC
RET

XFIOSB,RO
BADQUEUE

RO,ERROR

11-52

SET GO BIT
WAIT UNTIL QIO COMPLETES

I/O NOT DONE YET - BAD QUEUE

ERROR IN AST ROUTINE
ERROR
SUCCESSFUL COMPLETION

DR32 INTERFACE DRIVER

BADQUEUE:
MOVZWL #SS$_BADQUEUEHDR,RO

AN ERROR HAS OCCURRED. NORMALLY, THE USER MIGHT PERFORM MORE
EXTENSIVE ERROR CHECKING AT THIS POINT. IN PARTICULAR, IF THE ERROR
IS SS$ CTRLERR, SS$ DEVREQERR, OR SS$ PARITY, THE SECOND LONGWORD
OF THE-I/O STATUS BLOCK CAN PROVIDE ADDITIONAL INFORMATION. IN THIS
EXAMPLE, THE PROGRAM EXITS WITH THE ERROR STATUS IN RO.

ERROR: RET

COMMAND PACKET AST ROUTINE

PKTAST: .WORD 0
NXTPKT: QRETRY ERROR=70$,- GET NEXT PACKET FROM QUEUE

REMQHI TERMQ,Rl
BVC 10$ PACKET OBTAINED FROM QUEUE
RET QUEUE IS EMPTY

10$: BLBC XF$L PKT DSL(Rl) ,50$ RETURN IF PACKET ERROR
BBC #XF$V PKT FREQPK,- RETURN IF PACKET NOT FROM

XF$L_PKT_DSL(Rl) ,50$ FREEQ

COMMAND PACKET OBTAINED FROM FREEQ. COPY DEVICE MESSAGE AND QUEUE
WRITE PACKET.

50$:

MOVL
QRETRY
INS QT I
QRETRY
INSQTI
MOVL
RET

XF$B PKT DEVMSG(Rl) ,WDVMSG
ERROR=70$,-
WRTPKT, INPTQ
ERROR=70$,-
HLTPKT, INPTQ
#1,@GOBITADR SET GO BIT

BAD QUEUE ERROR IN AST ROUTINE - WAKE UP MAIN LEVEL. QIO MAY
OR MAY NOT HAVE COMPLETED.

7 0$: $SETEF S #1
RET -

.END DREXAMPLE

WAKE UP MAIN LEVEL

11-53

CHAPTER 12

DUPll INTERFACE DRIVER

This chapter describes the use of the DUPll Device Interface driver.
The driver is category C software, which is not supported. The DUPll
is the lowest-level user interface to the VAX/VMS 2780/3780 Protocol
Emulator. (The user can also access the 2780/3780 through the command
language interface and the record-oriented interface. See the VAX/VMS
2780/3780 Protocol Emulator User's Guide.)

12.1 SUPPORTED DEVICE

The DUPll is a single line, program-controlled communications device
that interfaces a VAX-11 processor to a serial, synchronous
communications line. Data transmission occurs at a maximum speed of
9600 baud. Although the DUPll functions in either full- or
half-duplex mode, the DUPll driver operates logically only in
half-duplex mode; only one I/O request is processed at any given time
but many may be queued.

The DUPll driver transfers output data f rorn the VAX/VMS system to the
DUPll. The DUPll then shifts the data onto the communications line.
Input data from the communications line modern is shifted into the
DUPll where it is made available to the DUPll driver on an interrupt
basis.

12.1.1 Driver Operating Modes

The device driver functions in two operating modes: binary
synchronous communications (BSC) mode and binary mode. BSC mode
operations are described in Appendix C of the VAX/VMS 2780/3780
Protocol Emulator User's Guide. The preface of the same manual also
provides a list of related documents.

In BSC mode, the driver observes standard point-to-point BSC protocol
in send and receive operations. In binary mode, the driver does not
observe any protocol; the only operation performed on the data is the
insertion or deletion of PAD and SYN characters. An operation is
completed when the buffer count reaches zero or the I/O is cancelled.

Function modifiers, which are included in all read and write requests
to the driver, define the operating mode for each I/O operation.

If the only reason for not using the record-oriented interface is the
blocksize restriction (the application is compatible with all other
2780/3780 communications protocols), the DUPll driver should be used
primarily in BSC mode rather than binary mode. Binary mode is used
only if the user requires direct control of some aspect of the

12-1

DUPll INTERFACE DRIVER

communications protocol handled by the driver when in BSC mode. All
line protocol messages, for example, bids and sending EOTs, must be
transmitted in binary mode.

12.1.1.1 SSC Mode - If the IO$M PTPBSC function modifier is included
in a read or write QIO request~ data is read or written in BSC mode.
The DUPll driver performs the following operations:

1. Inserts in the output data, and removes from the input data,
BSC data-link control characters, for example, STX and !TB.

2. Checks input message blocks for transmission errors. Adds
cyclic redundancy check (CRC) characters to output message
blocks to support error checking by the communications
processor in the remote system.

3. Manages line protocols, for example, ACK, NAK, and ENQ
responses, that determine whether a message block must be
retransmitted because of transmission errors.

4. Inserts in the output data, and removes from the input data,
DLE information in transparent mode.

The DUPll driver does not modify the input or output data in any way.
All necessary processing, for example, data translation and space
compression or expansion, must be included in the user program. The
user program builds the message block to be transmitted into a single
buffer. This buffer must start with a 2-byte count that includes all
data up to the point where a CRC will be placed, and end with a 2-byte
count field equal to -1. The driver inserts an ITB character in front
of internal CRC characters.

Figures 12-1 through 12-5 illustrate how the DUPll driver reformats
user-formatted output messag~ blocks into standard 2780/3780 message
blocks. The driver deblocks input messages in the reverse order of
that shown in these figures.

All COUNT and CRC fields in these examples are two bytes long. Each
record count results in the generation of a CRC character. An !TB
character precedes all internal CRC characters. An ETB precedes the
last CRC in a block unless the IO$M LASTBLOCK function modifier is
specified. In that case, an ETX preced~s the CRC. If in transparency
mode (specified by IO$ SETMODE), all data-link control characters are
preceded by a DLE character and all DLE characters in the data buffers
are changed to DLE DLE. Also, the control character sequence of SYN,
SYN, DLE, STX is inserted between records within the message block.

Message blocks transmitted by the DUPll driver include a prefix of SYN
characters (as specified by the set mode QIO) and a suffix of a PAD
character (hexadecimal FF).

Figure 12-1 shows the format of user-built message buffers that
simulate 3780 processing. The user must pass the buffers to the
device driver by issuing QIO requests that include the IO$M PTPBSC
function modifier. 2-byte

count field

~-c_o_u_N_r_1~-RECORD1 l __ '._Rs __ ·-R-E_c_o_R_o2 ___ 1R_s_~ ,-R::~rJ-1 l
Figure 12-1 3780 Message Block Example

12-2

DUPll INTERFACE DRIVER

The DUPll driver transmits the message block after modifying the
format, as shown in Figure 12-2. The driver does not modify the data
records in the two buffers; they are identical.

STX RECOR01 IRS RECOR02 IRS RECOR03 ETB CRC

Figure 12-2 3780 Message Block Example (Modified)

To simulate 2780 processing in nontransparent mode, the
message buffers in the format shown in Figure 12-3.
include the IO$M PTPBSC function modifier in the QIO
pass the buffers-to the DUPll driver.

user builds
The user must

requests that

COUNT1 RECOR01 COUNT 2 RECOR02 COUNT3 RECOR03

2-byte
count field
~

-1 -1

Figure 12-3 Nontransparent 2780 Message Block Example

The DUPll driver transmits the message block after modifying the
format, as shown in Figure 12-4.

STX RECOR01 ITB CRC RECOR02 ITB CRC RECOR03 ETB

Figure 12-4 Nontransparent 2780 Message Block
Example (Modified)

CRC

To simulate 2780 processing in transparent mode, the user must specify
the transparency modifier in a set mode QIO request, build message
buffers in the format shown in Figure 12-3, and include the
IO$M PTPBSC function modifier in the write QIO requests that pass the
buffers to the DUPll driver. The driver transmits the message block
after modifying the format, as shown in Figure 12-5. The driver adds
a duplicate DLE character to any DLE character encountered in the data
records.

OLE STX RECOR01 OLE ITB CRC SYN ·SYN OLE STX RECOR02

I SYN I SYN I OLE I STX I RECOR03 I OLE I ETB I CRC I
Figure 12-5 Transparent 2780 Message Block

Example (Modified)

12-3

OLE ITB · CRC

DUPll INTERFACE DRIVER

12.1.1.2 Binary Mode - If the IO$M SRRUNOUT function modifier is
included in a read or write request, aata is read or written in binary
mode. In binary mode, the DUPll driver performs no processing
operations on the user-supplied message block buffer. Except for the
insertion in output message blocks, and deletion from input message
blocks, of leading SYN and trailing PAD characters, data passes
through the DUPll driver as unprocessed, binary information. The user
program directly controls all data transmitted or received by the
driver. QIO requests in the user program provide all necessary
communications to the remote system. The user program must perform
the following functions:

1. Explicitly issue all protocol messages, for example, ACK,
NAK, and ENQ responses, to the DUPll driver.

2. Perform all validity checking calculations and comparisons.

3. Handle the insertion and removal of any message-framing and
inter-record control characters in the message blocks.

4. Repeat write QIO requests until the operation is successful
or the program's error threshold is reached.

12.2 DEVICE INFORMATION

Users can obtain information on DUPll characteristics by using the
$GETCHN and $GETDEV system services (see Section 1.10). The
DUPll-specific information is returned in the first three longwords of
a user-specified buffer, shown in Figure 12-6 (Figure 1-9 shows the
entire buffer).

31 16 15 a'1 0

device characteristics

device buffer size (not used)

.•.

time SYN line characteristics
character

"_....... ______

Figure 12-6 DUPll Information

The first longword contains device-independent information. The
second and third longwords contain device-dependent data.

Table 12-1 lists the device-independent characteristics returned in
the first longword.

12-4

DUPll INTERFACE DRIVER

Table 12-1
Device-Independent Characteristics

Dynamic Bitsl
(Conditionally Set)

XJ$M CHA FDX

XJ$M CHA XPR - -
XJ$M CHA DSR - -

Static Bits2
(always Set)

DEV$M AVL

DEV$M IDV

DEV$M ODV

Meaning

Full-duplex line

Transparency mode

Data set ready

Device available

Input device

Output device

1. Defined by the $XJDEF macro.

2~ Defined by the $DEVDEF macro.

The second longword contains the device buffer size (default is 520
bytes). The third longword contains the line characteristics, the SYN
character, and the time, in seconds, to wait for clear to send (CTS).
The SYN character is that character selected to precede all message
blocks transmitted by the DUPll driver. The line characteristics
returned in the third longword are:

• XJ$M CHA DSC -- Sense state of data terminal ready (DTR)
signal lTne. Meaningful only to IO$ SENSEMODE.

• XJ$M CHA FDX -- full duplex mode. Do not drop request to send
(RTS) after each segment is transmitted.

• XJ$M CHA XPR -- transparent mode. Used only when IO$M PTPBSC
is specified with a write QIO function.

The device buffer size and the third longword contents are established
by IO$_SETMODE (see Section 12.3.3).

12.3 DUPll FUNCTION CODES

The DUPll can perform logical and physical I/O operations.
I/O functions are read, write, set mode, and sense mode.
lists these functions and their function codes. The
paragraphs describe these functions in greater detail.

12-5

The basic
Table 12-2

following

DUPll INTERFACE DRIVER

Table 12-2
DUPll I/O Functions

Function Code and
Arguments

Type 1

IO$ READLBLK Pl,P2 L

IO$ READPBLK Pl,P2 P

IO$ WRITELBLK Pl,P2 L

IO$ WRITEPBLK Pl,P2 P

IO$ SETMODE Pl L

IO$ SENSEMODE L

1. L = logical, P = physical

2. Use only with IO$M PTPBSC

3. Use only with IO$M STARTUP

12.3.l Read

-----.--·· ····-- .

Function
Modifiers

-

IO$M SRRUNOUT -IO$M PTPBSC -
IO$M SRRUNOUT -IO$M PTPBSC -
IOSM SRRUNOUT -IOSM PTPBSC
IO$M-LASTBLOCK 2

-

IO$M SRRUNOUT
IOSM-PTPBSC
IO$M-LASTBLOCK 2

IOSM STARTUP
IO$M-NODSRWAIT 3
IO$M SHUTDOWN -

Function

Read logical block

Read physical
block

Write logical
block

Write physical
block

Set line state or
line parameters

Sense line state;
return status

Read functions provide for the transfer of data from the DUPll into
the user process's virtual memory address space. VAX/VMS provides two
function codes:

• IO$ READLBLK read logical block

• IO$ READPBLK read physical block

The read function codes take two device/function-dependent arguments:

• Pl = the starting virtual address of the buffer that is to
receive data

• P2 = the size of the data buffer in bytes

The read QIO functions can take two function modifiers:

• IO$M SRRUNOUT -- read data in binary format (see Section
12.1:1.2).

• IO$M PTPBSC -- read data in BSC mode (see Section 12.1.1.1).

12-n

DUPll INTERFACE DRIVER

12.3.2 Write

Write functions provide for the transfer of data to the DUPll from the
user process's virtual memory address space. VAX/VMS provides two
function codes:

• IO$ WRITELBLK write logical block

e IO$ WRITEPBLK write physical block

The write function codes take two device/function-dependent arguments:

• Pl = the starting virtual address of the buffer that is to
send data to the DUPll

• P2 = the size of the data buffer in bytes

The write QIO functions can take three function modifiers:

• IO$M SRRUNOUT -- write data in binary format (see Section
12 • 1 -:-i. 2) •

• IO$M PTPBSC write data in BSC mode (see Section 12.1.1.1).

• IO$M LASTBLOCK -- terminate the data
character. This function modifier
conjunction with IO$M PTPBSC.

12.3.3 Set Mode

block with
can be used

an ETX
only in

The set mode function is used to change the state of the communication
line or the parameters that control the line. VAX/VMS provides one
function code:

IO$ SETMODE

This function code takes the following device/function-dependent
argument:

Pl = points to a quadword buffer block that contains the new
communication line parameters

Figure 12-7 shows the format of the Pl buffer.

31 24 23 16 15 0

block size not used

time
SYN line characteristics

character

Figure 12-7 Set Mode Pl Buffer

In the first longword, blocksize is the largest buffer expected. This
parameter is included in the buffer block only when an IO$ READLBLK
request includes the IO$M PTPBSC function modifier.

12-7

DUPll INTERFACE DRIVER

The first word of the second longword specifies the following line
characteristics:

• XJ$M CHA DSC -- sense state of data terminal ready (DTR)
signal lTne. Meaningful only to IO$ SENSEMODE.

• XJSM CHA FDX -- full duplex mode. Do not drop request to send
(RTS) after each segment is transmitted.

• XJ$M CHA XPR -- transparent mode. Used only when IO$M PTPBSC
is specitied with a write QIO function.

The third byte of the second longword is the SYN character that
precedes all message blocks transmitted by the DUPll driver. The
fourth byte specifies the time, in seconds, to wait for clear to send
(CTS). This parameter is included in the buffer block only when a
read or write request specifies the IOSM_SRRUNOUT function modifier.

The Set Mode function can take three function modifiers:

• IO$M STARTUP -- enable the communication line (assert data
terminal ready (DTR) and wait for data set ready (DSR).

• IO$M NODSRWAIT -- complete this function without regard to the
state of DSR. Used only in conjunction with the IO$M STARTUP
function modifier.

• IO$M SHUTDOWN -- disable the communication line (disable DTR)

12.3.4 Sense Mode

The sense mode function senses the current state of the communication
line and returns the line characteristics and status in the I/O status
block (see Figure 12-9). VAX/VMS provides one function code:

IO$ SENSEMODE

12.4 I/O STATUS BLOCK

Figure 12-8 shows the I/O status block far all DUPll QIO functions
except sense mode. Figure 12-9 shows the I/O status block for the
sense mode function. Table 12-3 lists the status returns far all
functions.

31 16 15 0

transfer size status

device-dependent data

Figure 12-8 IOSB Content

12-8

31

time

Status

SS$ ABORT

SS$ ACCVIO

SS$_EXQUOTA

SS$ INSFMEM

SS$ NORMAL

DUPll INTERFACE DRIVER

24 23 16 15

not used status

SYN
line characteristics

character

Figure 12-9 IOSB Content - Sense Mode

Table 12-3
DUPll Status Returns

Meaning

0

Request ·aborted. A request in progress was aborted
by the $CANCEL system service.

Buffer access violation. An attempt was made to
read from or write to a location in memory that is
protected against the current mode.

Buffered I/O quota exceeded. A request cannot be
queued because the buffered I/O quota was exceeded.

Insufficient dynamic memory to initiate a data
transfer request.

QIO transfer request completed successfully;
specified data was transferred.

the

In Figure 12-8, the second word of the first longword contains the
size of the transfer in bytes. For transmit (write) operations, the
transfer size is the value specified in the P2 argument. For read
(receive) operations, transfer size is the amount of data received as
the result of the read request. Table 12-4 lists the device-dependent
data returned in the second longword.

Value

XJ$M BADCHAIN

XJ$M_CONACK

Table 12-4
Device-Dependent Status Returns

Meaning

A RECORD LIST was incorrectly
(I 0$M _PTPBSC) write request.
error condition.

found
This

A BSC (IO$M PTPBSC) write request was

in a BSC
is a fatal

completed
with a conversational ACK character. The data
block is considered acknowledged. However, the
data received with the ACK character is lost.

(continued on next page)

12-9

DUPll INTERFACE DRIVER

Table 12-4 (Cont.)
Device-Dependent Status Returns

.------·--------...------·-····--·-·------ ---·-·-· ------
Value

XJ$M DATACK

XJ$M DISCON

XJ$M EOT

XJ$M EXTEND

XJ$M ILLMOD

XJ$M NODSR

XJ$M PIPE MARK

XJ$M RVI

XJ$M TRABINTMO

XJ$M XPR

Meaning

Retry threshold exceeded. This is a fatal error
condition.

BSC disconnect sequence received, that is, OLE,
EOT. This is a fatal error condition.

EOT received. This is a fatal error condition.

A BSC (IO$M PTPBSC) read request completed
successfully.- The read data included a block
that ended with an EXT character.

Illegal QIO function modifier detected. This is
a fatal error condition.

Request aborted because of DSR loss. This is a
fatal error condition.

A BSC (IO$M_PTPBSC) transfer aborted because of
a previous failure. This is a fatal error
condition.

A BSC (IO$M PTPBSC) write request completed with
a received RVI.

A timeout occurred during a binary
(IO$M SRRUNOUT) data transfer. This is a fatal
error-condition.

A BSC (IO$M PTPBSC) read request
with a transparent block.
information was transmitted
transparency mode.

was satisfied
The received

(written) in

·---·----·--·· -··--------------'
In Figure 12-9, the first longword contains the current status of the
communication line. Table 12-3 lists the status return values and
their meaning.

The first word of the second longword returns one or more of the
following line characteristics:

e XJ$M CHA DSC state of DTR line

• XJ$M CHA FDX full duplex mode. (Do not drop RTS after each
segment tranmitted.)

• XJ$M CHA XPR -- transparent mode. Used only when IOSM PTPBSC
is s~eciiied with a write QIO function.

The third byte of the second longword is the SYN character selected to
precede all message blocks transmitted by the DUPll driver. The
fourth byte specifies the time, in seconds, to wait for clear to send
(CTS). This parameter is included in the buffer block only when the
IO$M SRRUNOUT function modifier is specified in a read or write
request.

12-10

APPENDIX A

I/O FUNCTION CODES

This appendix lists the function codes and function modifiers defined
in the $IODEF macro. The arguments for these functions are also
listed.

A.l TERMINAL DRIVER

Function

IO$ READVBLK
IO$-READLBLK
10$-READPBLK
10$-READPROMPT
IO$-TTYREADALL
10$-TTYREADPALL

10$ WRITEVBLK
10$-WRITELBLK
!0$-WRITEPBLK

10$ SETMODE
l0$=SETCHA.R

IO$ SETMODE!I0$M HANGUP
IO$-SETCHAR!IO$M-HANGUP - -
IO$ SETMODE!IO$M CTRLCAST
IO$-SETMODE!IO$M-CTRLYAST
IO$-SETCHAR!IO$M-CTRLCAST
IO$-SETCHAR!IO$M-CTRLYAST - -
10$ SENSEMODE
!0$-SENSECHAR

Arguments

Pl - buffer address
P2 - buffer size
P3 - timeout
P4 - read terminator

block address
PS - prompt string

buffer address 1
P6 - prompt string

buffer size 1

Pl - buff er address
P2 - buffer size
P3 - (ignored)
P4 - carriage control

specifier 2

Pl - characteristics
buffer address

P3 - speed specifier
P4 - fill specifier
PS - parity flags

(none)

Modifier

10$M NOECHO
10$M-CVTLOW 3
IO$M-NOFILTR 3
IO$M-TIMED
IO$M-PURGE
IO$M-DSABLMBX
IO$M-TRMNOECHO
IO$M-REFRESH

10$M CANCTRLO
IO$M-ENABLMBX
10$M-NOFORMAT
10$M-REFRESH

Pl - AST service routine address
P2 - AST parameter
P3 - access mode to deliver AST

Pl - Characteristics
buff er address

IO$M TYPEAHDCNT

1. Pnly for IO$ READPROMPT and IO$ TTYREADPALL

2. Only for IO$_WRITELBLK and IO$_WRITEVBLK

3. Only for IO$_READLBLK,IO$_READVBLK, and IO$ READPROMPT

A-1

r/o FUNCTION CODES

A.2 DISK DRIVERS

Functions

IO$ READVBLK
IO$-READLBLK
IO$-READPBLK
IO$-WRITEVBLK
IO$-WRITELBLK
IO$-W'RITEPBLK

Arguments

Rl - buff er address
P2 - byte count
P3 - disk address

IO$ WRITECHECK Pl - buff er address
P2 - byte count
P3 - disk address

IO$ SETMODE Pl - characteristic buffer
IO$-SETCHAR address

IO$ SENSECHAR {none)
IO$-SENSEMODE
IO$-PACKACK
IO$-MOUNT

IO$ SEARCH Pl - read/write head position

IO$ SEEK Pl - seek to specified cylinder

IO$ CREATE
IO$-ACCESS
IO$-DEACCESS
IO$-MODIFY
IO$-DELETE
IO$-ACPCONTROL

Pl - FIB descriptor address
P2 - file name string

address
P3 - result string length

address
P4 - result string descriptor

address
PS - attribute list address

1. Only for IO$ READPBLK and IO$ WRITEPBLK

2. Only for IO$ CREATE and IO$ ACCESS

3. Only for IO$ CREATE and IO$ DELETE

4. Only for IO$ ACPCONTROL

A.3 MAGNETIC TAPE DRIVERS

Functions

IO$ READVBLK
IO$-READLBLK
IO$-READPBLK
IO$-WRITEVBLK
IO$-WRITELBLK
!0$-WRITEPBLK

1. Not for TSll

Arguments

Pl - buffer address
P2 - byte count

2. Only for read functions

3. Only for write functions

A-2

Modifiers

IO$M DATACHECK
IO$M-INHRETRY
IO$M-INHSEEK 1

IO$M CREATE 2
IO$M-ACCESS 2
IO$M-DELETE 3
IO$M-DMOUNT 4

Modifiers

IO$M DATACHECK 1
IO$M-INHRETRY
IO$M-REVERSE 2
IO$M-INHEXTGAP 3

Functions

IO$ SETMODE
IO$-SETCHAR

IO$ CREATE
IO$-ACCESS
IO$-DEACCESS
IO$-MODIFY
IO$-ACPCONTROL

IO$ SKIPFILE

I/O FUNCTION CODES

Arguments

Pl - characteristics buffer
address

Pl - FIB descriptor address
P2 - file name string

address
P3 - result string length

address
P4 - result string descriptor

address
PS - attribute list address

Pl - skip n tape marks

IO$ SKIPRECORD Pl - skip n records

IO$ MOUNT (none)

IO$ REWIND (none)
IO$-REWINDOFF

IO$ WRITEOF (none)

IO$ SENSEMODE (none)

1. Only for IO$ CREATE and IO$ ACCESS

2. Only for IO$ ACPCONTROL

A.4 LINE PRINTER DRIVER

Functions

IO$ WRITEVBLK
IO$-WRITELBLK
IO$-WRITEPBLK

IO$ SETMODE
IO$-SETCHAR

Arguments

Pl - buffer address
P2 - buffer size
P3 - (ignored)
P4 - carriage control

specifier 1

Pl - characteristics buffer
address

lonly for IO$ WRITEVBLK and IO$ WRITELBLK

A.5 CARD READER DRIVER

Functions

IO$ READLBLK
!0$-READVBLK
IO$-READPBLK

IO$ SETMODE
IO$-SETCHAR

Arguments

Pl - buffer address
P2 - byte count

Pl - characteristics
buffer address

IO$ SENSEMODE (none)

A-3

Modifiers

IO$M CREATE' 1
IO$M-ACCESS 1
IO$M-DMOUNT 2

IO$M INHRETRY

I 0$ M INHRETRY

IO$M INHRETRY
IO$M-NOWAIT

IO$M INHEXTGAP
IO$M-INHRETRY

IO$M INHRETRY

Modifiers

(none)

(none)

Modifiers

IQ$M BINARY
IO$M-PACKED

(none)

A.6 MAILBOX DRIVER

Functions

IO$ READVBLK
IO$-READLBLK
IO$-READPBLK
IO$-WRITEVBLK
IO$-WRITELBLK
IO$-WRITEPBLK

IO$ WRITEOF

IO$ SETMODE!IO$M READATTN
IO$-SETMODE!IO$M-WRTATTN - -

A.7 DMCll DRIVER

Functions

IO$ READLBLK
IO$-READPBLK
!0$-READVBLK
!0$-WRITELBLK
IO$-WRITEPBLK
!0$-WRITEVBLK

IO$ SETMODE
IO$-SETCHAR

IO$ SETMODE!IO$M ATTNAST
IO$-SETCHAR!IO$M-ATTNAST

IO$ SETMODE!IO$M SHUTDOWN
IO$-SETCHAR!IO$M-SHUTDOWN

IO$ SETMODE!IO$M STARTUP
IO$-SETCHAR!IO$M-STARTUP

1. Only for read functions

I/O FUNCTION CODES

Arguments

Pl - buffer address
P2 - buffer size

(none)

Pl - AST address
P2 - AST parameter
P3 - Access mode

Arguments

Pl - buffer address
P2 - message size

Pl - characteristics
buffer address

Pl - AST service
routine address

P2 - (ignored)
P3 - AST access mode

Pl - characteristics
block address

Pl - characteristics
block address

P2 - (ignored)
P3 - receive message

blocks

2. Only for IO$ WRITELBLK and IO$ WRITEPBLK

A-4

Modifiers

IO$M NOW

Modifiers

IO$M DSABLMBX 1
IOSM-Nowl
IO$M-ENABLMBX 2

I/O FUNCTION CODES

A.8 ACP INTERFACE DRIVER

Functions

IO$ CREATE Pl -
!0$-ACCESS P2 -
IO$-DEACCESS
!0$-MODIFY P3 -
IO$-DELETE
IO$=ACPCONTROL P4 -

PS -

Arguments

FIB descriptor address
file name string
address
result string length
address
result string descriptor
address
attribute list address

Modifiers

IO$M CREATE!
IO$M-ACCESS 1
IO$M-DELETE 2
IO$M-DMOUNT 3

IO$ MOUNT (none)

1. Only for IO$ CREATE and IO$ ACCESS

2. Only for IO$ CREATE and IO$ DELETE

3. Only for IO$ ACPCONTROL

A.9 LPAll-K DRIVER

QIO Functions

IO$ LOADCODE

IO$ STARTMPROC

IO$ INITIAL! ZE

IO SETCLOCK .

IO$ STARTDATA

Arguments

Pl - starting address of
microcode to be loaded

P2 - load byte count
P3 - starting microprogram

address to receive
microcode

(none)

Pl - address of Initialize
Command 'f.able

P2 - initialize command
buff er length

P2 - mode of operation
P3 - clock control and

status
P4 - real-time clock preset

value (2's complement)

Pl - Data Transfer Command
Table address

P2 - Data Transfer Command
Table length

P3 - normal completion AST
address

P4 - overrun completion AST
address

A-5

Modifier

(none)

(none)

(none)

(none)

IO$M SETEVF

High Level Language
Subroutines

1/0 FUNCTION CODES

Functions

Start A/D converter sweep
Start D/A converter sweep
Start digital input sweep
Start digital output sweep

LPA$ADSWP
LPA$DASWP
LPA$DISWP
LPA$DOSWP
LPA$LAMSKS
LPA$SETADC
LPA$S.ETIBF
LPA$STPSWP
LPA$CLOCKA
LPA$CLOCKB
LPA$XRATE
LPA$IBFSTS
LPA$IGTBUF
LPA$INXTBF
LPA$IWTBUF
LPA$RLSBUF
LPA$RMVBUF
LPA$CVADF
LPA$FLT16
LPA$LOADMC

Specify LPAll-K controller and digital mask words
Specify channel select parameters
Specify buffer parameters
Stop sweep
Set Clock A rate
Set Closk B rate
Compute clock rate and present value
Return buff er status
Return next available buffer
Alter buffer order
Return next buffer or wait
Release buff er to LPAll-K
Remove buffer from device queue
Convert A/D input to floating point
Convert unsigned integer to floating point
Load microcode and initialize LPA-llK

A.10 DR32 DRIVER

QIO Functions

IO$ LOADMCODE

IO$ STARTDATA

Arguments

Pl - Starting address
of microcode to
be loaded

P2 - load byte count

Pl - starting address
of Data Transfer
Command Table

P2 - length of the
Data Transfer
Command Table

High Level Language Function
Subroutines

XF$SETUP Defines command and buffer areas;
initializes queues

XF$STARTDEV Issues a QIO that starts the DR32

XF$FREESET Releases command packets onto FREEQ

XF$PKTBLD Builds command packets; releases
them onto INPTQ

A-n

Modifier

IO$M SETEVF

XF$GETPKT

XF$CLEANUP

A.11 DUPll DRIVER

Functions

IO$ READLBLK
IO$ READVBLK
IO$ WRITELBLK
IO$ WRITEVBLK

IO$ SETMODE

IO$ SENSEMODE

I/O FUNCTION CODES

Removes a command packet from TERMQ

Deassigns the device channel and deallocates
the command area

Arguments

Pl - buff er address
P2 - byte count

Pl - line parameters block

(none)

Modifiers

IO$M SRRUNOUT
IO$M PTPBSC
IO$M LASTBLOCK 1

IO$M STARTUP
IO$M NODSRWAIT 2
IO$M SHUTDOWN

1. Only for write functions with IOSM PTPBSC

2. Use only with IO$M STARTUP

A-7

INDEX

A
Access, 1-3, 1-5, 1-14

file, 9-22, 9-23, A-2, A-5
ACP control function, 9-26, 9-27
ACP QIO functions, 9-19 to 9-31

arguments, 9-20 to 9-28
attributes, 9-15 to 9-17
modifiers for, 9-19 to 9-28
status returns, 9-32

Action routines, DR32, 11-35,
11-41

Allocate Device {$ALLOC} system
service, 1-14

Allocation of blocks, FIB, 9-7
ALTMODE, 2-5, 2-8
Analog-to-digital converter, 10-1
Ancillary Control Process (ACP},

1-5, 9-1
functions, 9-2
interface, 9-1

Arguments,
ACP device/function-dependent,

9-20, 9-21
AST address (astadr}, 1-18
AST parameter (astprm}, 1-18
bu ff er , 1-1 9
channel number, 1-15 to 1-17,

1-19, 1-24
device/function-dependent, 1-15,

1-16, 1-18, 2-14
device/function-independent,

1-15, 1-16
$INPUT, 1-19
$OUTPUT, 1-19
$QIO, 1-15 to 1-17
$QIOW, 1-16, 1-17
event flag number, 1-17, 1-19
function, 1-15 to 1-17, 1-18,

A-1
function-dependent, disks, 3-9

to 3-13
I/O status block (iosb}, 1-18,

1-19
keyword, 1-16
length, 1-19
position dependent, 1-15
$GETCHN, 1-24, 1-25
$GETDEV, 1-24 1-25
CALL instruction, 1-23

Assigning channels, 1-13
Assign I/O Channel ($ASSIGN}

system service, 1-13, 1-16,
1-17, 7-2, 8-2

AST,
address, 1-17
parameter arguments, 1-17, 1-18
quota, 1-4, 7-5
routine, 1-23

Asynchronous system trap, 1-22,
1-23

Attention AST,
enable, DMCll, 8-7, 8-8
read, mailbox, 7-7 to 7-9
write, mailbox, 7-7 to 7-9

Attribute Control Block,
explanation of, 9-14
fields, 9-15
f o r ma t , 9 -1 5
record attributes area, 9-17,

9-18
statistics block, 9-19

Attributes Statistics Block, ACP
QIO, 9-19

B
Beginning-of-tape {BOT}, 4-11
Binary mode, DUPll, 12-1, 12-4
Bits,

device/function-dependent, 1-13
device/function-independent,

1-13
Block-addressable devices, 1-7,

1-10
BSC mode, DUPll, 12-1, 12-2
Buffered I/O byte count quota,

1-4
Buffered I/O quota, 1-4, 7-5
Buffer overrun, 10-10, 10-11

c
CALL, 1-23
Card punch combinations, 6-2
Card reader,

device characteristics, 6-3 to
6-5

driver, 6-1
end-of-file, 6-2
error recovery, 6-2, 6-3
I/O functions, 6-5, 6-6
I/O status block, 6-8
read,

function, 6-2, 6-6
mode , 6 -1 , 6- 2

sense mode, 6-7, 6-8
set characteristics, 6-7, 6-8
set mode, 6-1, 6-2, 6-7, 6-8
status returns, 6-9
translation mode, 6-2

Carriage control,
line printer, 5-5 to 5-7
terminal, 2-18

Chaining, command and data, DR32,
11-3

Index-1

INDEX

Channel, 1-13, 1-14
assignments, 1-13
number argument, 1-15 to 1-17

Character
bit mask terminator, terminal,

2-16, 2-17
Character formatting, line printer,

5-2
Characteristics, (see Device char­

acteristics)
Check,

close, 9-3
file identifier number, 9-34
file identifier sequence, 9-34
read, 9-4
write, 9-4

Command packets, DR32, 11-8
Completion status, 1-20, 1-22,

1-23
Console terminal, 2-1
Control characters, terminal,

2-2, 2-5 to 2-8
CTRL/C, 2-6, 2-23
CTRL/C AST, enable, 2-6, 2-23,

2-24
CTRL/G, 2-2
CTRL/I, 2-6
CTRL/J, 2-6
CTRL/K, 2-fi
CTRL/L, 2-6
CTRL/O, 2-6, 2-14
CTRL/Q, 2-2, 2-7, 2-12
CTRL/R, 2-7, 2-15
CTRL/S, 2-2, 2-6, 2-13
CTRL/U, 2-7, 2-14
CTRL/X, 2-7, 2-14
CTRL/Y, 2-7, 2-8, 2-23
CTRL/Y AST, enable, 2-7, 2-23,

2-24
CTRL/Z, 2-8

Create file, 9-21, 9-22
Create Mailbox and Assign Channel

($CREMBX) system service, 1-4,
1-17, 7-2

Cyclic Redundancy Check (CRC), 8-1

D
Data check,

disk, 3-3, 3-9, 3-10
magnetic tape, 4-3, 4-9, 4-10

Data overrun, 10-10
Data Set Ready (DSR) modem line,

DMCll, 8-5
Data Transfer Command Table, 10-10,

10-11, 11-21
Data Transfer Start Command, 10-10
Data Transfer Stop Command, 10-12,

10-13

DDI (DR32 Device Interconnect),
11-1

Deaccess locked file, 9-33
Deaccess file, 9-19, 9-24, A-5
Deassign I/O Channel ($DASSGN)

system service, 2-24, 7-3
Dedicated mode, LPAll-K, 10-1
DELETE, 2-5, 2-8
Delete file, 9-25, 9-26, A-5
Delete Mailbox ($DELMBX) system

service, 7-3
Device allocation, 1-14
Device characteristics,

card reader, 6-3 to 6-5
disk, 3-5 to 3-7
DMCll, 8-3 to 8-6
DR32, 11-3
DUPll, 12-4
line printer, 5-3, 5-4
LPAll-K, 10-4 to 10-8
magnetic tape, 4-4, 4-5
mailbox, 7-4
terminal, 2-10 to 2-13

Device/function-dependent,
arguments, 1-18, 1-19
bits, 1-13

Device/function-independent,
arguments, 1-16, 1-17
bits, 1-13

Device information, 1-24, 1-25
Device queue (DVQ), LPAll-K, 10-14
Devices, 1-1, · 1-2
Dial-up, 2-9 2-13
DIGITAL Data Communications Message

Protocol (DDCMP), 8-1, 8-4
Digital-to-analog converter, 10-1
Direct I/O quota, 1-4, 8-3
Direct Memory Access (OMA), 8-1
Directory File, 9-5
Disk,

device characteristics, 3-5 to
3-7

devices, 3-1
device types, 3-7
drivers, 3-1

capabilities of, 3-2, 3-3
error recovery, 3-4 .
I/O function, 3-7 to 3-11, A-2

arguments, 3-9 to 3-11
interleaving, 3-4, 3-5
I/O status block, 3-14, 3-15
lock/unlock bits, 9-31
logical to physical translation,

3-4, 3-5
overlapped seeks, 3-3, 3-4
quota file, FIB, 9-7, 9-8, 9-27,

9-28 .
read function, 3-7 to 3-12
sense mode, 3-14
set characteristic, 3-13, 3-14

Index-2

INDEX

Disk, (Cont.)
set mode, 3-13
skew, 3-5
status,

DR 3 2 , (Cont.)

block, 3-14, 3-15
returns, 3-15, 3-16

write function, 3-8, 3-12
DMCll,

device characteristics, 8-3 to
8-6

device types, 8-4
enable attention AST, 8-7, 8-8
error summary bits, 8-6
features of, 8-2
I/O functions, 8-6, 8-7, A-4
I/O status block, 8-10
mailbox usage, 8-2, 8-3
message size, 8-4
quotas, 8-3
read function, 8-6
set characteristics, 8-7
set mode, 8-7, 8-8
shut down unit, 8-9
start unit, 8-9
status returns, 8-10
synchronous communications line

interface driver, 8-1, 8-9
unit characteristics, 8-5
write function, 8-7
$CRDEF, 6-3, 6-7
$DCDEF, 2-11, 2-22, 2-25, 3-7,

4-5, 4-15, 5-4, 6-4
$DEVDEF, 3-6, 4-4, 5-3, 6-4,

7-4, 8-3, 10-5
$LADEF, 10-5, 10-6
$LPDEF, 5-4
$MSGDEF, 2-5, 8-2
$MTDEF, 4-5, 4-13
$SSDEF, 10-33
$TTDEF, 2-22, 2-25
$XMDEF, 8-4, 8-5

DSL (DR32 Status Longword), 11-17,
11-41

DR-device, DR32, 11-1, 11-3, 11-5,
11-7

DR32,
action routines, 11-35, 11-41
AST routines, 11-22, 11-34
buffer block, 11-5

device characteristics, 11-3
device control codes, 11-10
device-dependent IOSB returns,

11-38
diagnostic tests, 11-41
DR-device (definition), 11-1
DR32 Device Interconnect (DDI),

11-1
DR32 Status Longword (DSL),

11-17, 11-41
error checking, 11-41
event flags, 11-21, 11-34
far-end DR-device, 11-1, 11-3,

11-5, 11-7
free queue (FREEQ), 11-5, 11-6
GO bit, 11-7, 11-22
high-level language interface,

11-5, 11-23
synchronization, 11-34

input queue (INPTQ), 11-5, 11-fi
INSQTI instruction, 11-6
interrupts, 11-3, 11-15, 11-22,

11-42
I/O functions, 11-20
I/O status block, 11-36, 11-41
load microcode function (IO$

LOADMCODE), 11-20 -
microcode loader (XFLOADER),

11-19
programming hints, 11-40
programming interface, 11-5, 11-23
queue headers, 11-6
queue processing, 11-6
queue retry, 11-7, 11-41
random access, 11-3
REMQHI instruction, 11-6
start data transfer function

(IO$ STARTDATA), 11-5,
11-2I

status returns, 11-36, 11-41
termination queue (TERMQ),

11-5, 11-6
XF$CLEANUP, 11-33
XF$FREESET, 11-28
XF$GETPKT, 11-32
XF$PKTBLD, 11-29
XF$SETUP, 11-24
XF$STARTDEV, 11-26

command and data chaining, 11-3
command block, 11-5

DUPll I

command packets, 11-5, 11-6,
11-7, 11-8

AST routine, 11-22, 11-34
Pre-fetch, 11-40
contol (command) messages, 11-7
data transfers, 11-3, 11-5, 11-21
Data Transfer Command Table,

11-21
data rate, 11-22, 11-27

Index-3

binary mode, 12-1, 12-4
BSC mode, 12-1, 12-2
device characteristics, 12-4
full/half-duplex mode, 12-1
I/O functions, 12-5
I/O status block, 12-8
message blocks, 12-2, 12-3
message buffers, 12-2
nontransparent mode, 12-3
protocol, BSC, 12-1

INDEX

DUPll, (Cont.)
transparent mode, 12-2, 12-3
VAX/VMS 2780/3780 Protocol

Emulator, 12-1
Duplex modes, terminal, 2-9
DZ-11 Asynchronous Serial Line

Multiplexer, 2-1, 2-9
DZ-11 Internal Modem Control, 2-1,

2-9

E
Eight-bit ASCII, 2-12
Enable attention AST,

DMCll I 8-7 I 8-8
mailbox, 7-8

Enable CTRL/C AST, 2-6, 2-23,
2-24

Enable CTRL/Y AST, 2-7, 2-23,
2-24

End-of-file,
card reader, 6-2, 6-9
message, mailbox, 7-7, 7-10
status, 4-10

End-of-tape status, 4-9, 4-10
Error Code Correctable (ECC),

disk, 3-3
Error recovery,

card reader, 6-2, 6-3
disk, 3-4
line printer, 5-2
magnetic tape, 4-3

Error,
severity level, 1-20
summary bits, DMCll, 8-6

ESCAPE, 2-5, 2-8
Escape sequences, 2-2, 2-3, 2-12
Event flag, 1-15, 1-22

number argument, 1-16, 1-17,
1-19

F
File Inf or mat ion Block (FIB) ,

3-9, 9-1 to 9-10
argument usage in QIO functions,

9-10 to 9-14
contents of, 9-3 to 9-10
field values, 9-3 to 9-14
format, 9-2

file name string, 9-20
Fill specifier, terminal, 2-22
Foreign volume, 1-10
FORM FEED (FF), 2-6
Form feeds, 2-18, 5-5
Full-duplex mode,

DUPll, 12-1
te rmi na ls, 2-9

Function
arguments, 1-15 to 1-17, A-1
code, 1-1, 1-12, A-1
modifier, 1-12, 1-13, 1-18, A-1
requests, 1-14

Function-dependent arguments, disk,
3-9 to 3-13

Function codes,
IO$ ACCESS, 3-8, 4-6, 9-12
IO$-ACPCONTROL, 3-8, 4-8, 9-14
IO$-CREATE, 1-12, 3-8, 4-6,

-9-10
IO$ DEACCESS, 3-8, 4-6, 9-12
IO$-DELETE, 3-8, 9-13
IO$-INITIALIZE, 10-6, 10-8
IO$-LOADMCODE, 10-6, 10-7,

-10-33, 11-20
IO$ MODIFY, 3-8, 4-6, 9-12
IO$-MOUNT, 3-8, 4-8, 9-14
IO$-PACKACK, 3-9, 3-14
IO$-READLBLK, 1-12, 2-14,

-2-15, 3-8, 3-10, 3-11, 4-7,
6-5, 6-6, 7-5, 8-6

IO$ READPBLK, 1-12, 2-14, 3-8,
-3-10, 3-11, 4-7, 6-5, 6-6,

7-5, 8-6
IO$ READPROMPT, 2-7, 2-14,

-2-15
IO$ READVBLK, 1-12, 2-14, 2-15,

-3-8, 3-10, 3-11, 4-7, 6-5,
6-6, 7-5, 8-6

IO$ REWIND, 4-7
IO$-REWINDOFF, 4-7
IO$-SEARCH, 3-9, 3-11
IO$-SEEK, 3-9, 3-11
IO$-SENSECHAR, 2-24, 3-9
IO$-SENSEMODE, 2-24, 3-9, 3-14,

-4-8, 4-12, 5-8, 6-5
IO$ SETCHAR, 2-7, 2-13, 2-22,

-3-9, 3-11, 4-8, 4-14, 5-8,
6-5 f o-8 I 8-7

IO$ SETCLOCK, 10-7
IO$-SETMODE, 2-7, 2-13, 2-22,

-3-9, 3-11, 4-8, 4-13, 5-8,
6-5, 6-7, 7-7, 8-6

IO$ SKIPFILE, 4-7, 4-11
IO$-SKIPRECORD, 4-7
IO$-STARTDATA, 10-10, 11-5,

-11-21
IO$ STARTMPROC, 10-8
IO$-TTYREADALL, 2-14
IO$-TTYREADPALL, 2-14
IO$-WRITECHECK, 3-9, 3-10
IO$-WRITELBLK, 1-12, 3-8, 3-10

-3-12, 4-7, 5-4, 7-6, 8-7
IO$ WRITEOF, 4-7, 4-12, 7-7
IO$-WRITEPBLK, 1-12, 3-9, 3-10

-3-12, 4-7, 5-4, 7-n, 8-7
IO$ WRITEVBLK, 1-12, 3-8, 3-10,

-3-12, 4-7, 5-4, 7-6, 8-7

Index-4

INDEX

Function modifiers,
IO$M ACCESS, 1-13
IO$M-ATTNAST, 8-8
IO$M-BINARY, 6-1, 6-5, 6-6
IO$M-CANCTRLO, 2-6, 2-18
IO$M-CTRLCAST, 2-23
IO$M-CTRLYAST, 2-7, 2-23
IO$M-CVTLOW, 2-2, 2-15
IO$M-DATACHECK, 1-13, 3-3, 3-12,

4-3, 4-7
IO$M DMOUNT, 4-8, 9-27
IO$M-DSABLMBX, 2-12, 2-15
IO$M-ENABLMBX, 2-12, 2-18, 8-7
IO$M-HANGUP, 2-23
IO$M-INHERLOG, 1-7
IO$M-INHEXTGAP, 4-4, 4-7
IO$M-INHRETRY, 1-13, 3-4, 3-12,

4-3, 4-7
IO$M INHSEEK, 3-3
IO$M-NOECHO, 1-12, 2-2, 2-15
IO$M-NOFILTR, 2-16
IO$M-NOFORMAT, 2-12, 2-18
IO$M-NOW, 7-5, 8-6
IO$M-NOWAIT, 4-7, 4-12
IO$M-PACKED, 6-1, 6-5, 6-6
IO$M-PURGE, 2-15, 2-16
IO$M-READATTN, 7-7
IO$M-REFRESH, 2-16, 2-18
IO$M-REVERSE, 4-7
IO$M-SETEVF, 10-10, 11-21
IO$M-SHUTDOWN, 8-9
IO$M-STARTUP, 8-9
IO$M-TIMED, 2-16
IO$M-TRMNOECHO, 2-16
IO$M-TYPEAHDCNT, 2-25
IO$M-WRTATTN, 7-7

free queue (FREEQ), DR32, 11-5,
11-6

G
Get Channel Information ($GETCHN)

system service, 1-24, 2-10,
3-5, 4-4, 5-3, 6-3, 7-4, 8-3,
10-4

Get Device Information ($GETDEV)
system service, 1-24, 2-10, 3-5,
4-4, 5-3, 6-3, 7-4, 8-3, 10-4

GO bit, DR32, 11-7, 11-22

H
Half-duplex mode,

DUPll, 12-1
terminals, 2-9

Hang-up,
modifier, 2-23
terminal, 2-5, 2-9, 2-13

Holdscreen mode, 2-12
Host/terminal synchronization,

2-12

I
Information,

device, 1-24, 1-25
device-dependent, 1-25

Initialize Command Table, 10-9
Input/Output operations, 1-1
Input queue(INPTQ) ,DR32, 11-5,

11-6
Interleaving, disk, 3-4, 3-5
In-use queue (IUQ),LPAll-K, 10-14
I/O completion, 1-21
I/O function,

arguments, 1-15 to 1-17, A-1
code, 1-1, 1-12, A-1
modifier, 1-12, 1-13, 1-18, A-1
requests, 1-14

I/O Functions,
card reader, 6-5, 6-6, A-3
disk, 3-7 to 3-11, A-2
DMCll, 8-6, 8-7, A-4
DR32, 11-20
DUPll, 12-5
line printer, 5-4 to 5-8, A-3
LPAll-K, 10-7 to 10-12, A-5
magnetic tape, 4-5 to 4-9, A-2
mailbox, 7-5 to 7-9, A-4
terminal, 2-13, 2-25, 2-26, A-1

I/O operations, 1-6
logical, 1-7
physical, 1-7
virtual, 1-7, 1-10

I/O quota,
buffered, 1-4, 7-5
byte count, 1-4
direct, 1-4, 8-3

I/O requests, 1-1, 1-13, 1-15,
1-lfi

IOSB, 1-22
I/O status block, 1-17, 1-21, 1-22

argument, 1-18
I/O status,

ACP QIO interface, 9-31 to 9-35
card reader, 6-8, 6-9
disk devices, 3-14 to 3-16
DMCll, 8-10
DR32, 11-36
DUPll, 12-8
line printer, 5-9
LPAll-K, 10-32 to 10-35
magnetic tape devices, 4-15
mailbox, 7-9
terminal, 2-25

I/O status returns, 1-20, 1-21
I/O system services, 1-2, 1-10

Index-5

INDEX

K
Keyword arguments, 1~16

L
Laboratory Peripheral Accelerator,

LPAll-K, 10-1
LINE FEED, 2-5
Line feeds, 2-18
Line printer,

carriage control, 5-5 to 5-7
character formatting, 5-2
device characteristics, 5-3, 5-4
driver, 5-1
error recovery, 5-2
I/O functions, 5-4 to 5-8, A-3,

A-5
I/O status block, 5-9
sense printer mode, 5-8
set characteristics, 5-8
set mode, 5-8
status returns, 5-9
types, 5-1
write function, 5-4, 5-5

Li n e , remote , 2- 5 , 2- 9 , 2-13
Line terminators, 2-2
Logical Block Number (LBN), 9-9
Logical I/O,

operations, 1-7
privilege, 1-5, 1-6

Logical name, 1-14
Logical to physical translation,

RXOl, 3-4
Lowercase, characters, 2-12, 2-17,

5-2, 5-4
LPAll-K,

AST addresses, 10-10, 10-12
buffer overrun, 10-10, 10-11
buffer queue control, 10-14,

10-15
data acquisition devices, 10-4
Data Transfer Command Table,

10-10' 10-11
Data Transfer Start Command,

10-10
Data Transfer Stop Command,

10-12, 10-13
device characteristics, 10-4

to 10-8
device configurations, 10-2
device initialization routines,

10-4, 10-36
driver, 10-1, 10-3
errors, 10-2
high-level language support

routines, 10-3, 10-13
I/O functions, 10-7 to 10-12
I/O status block, 10-32
Initialize Command Table, 10-9

LPAll-K, (Cont.)
initialize function, 10-8
load microcode function, 10-5,

10-7
Maintenance Status Register,

10-33
microcode loading routines,

10-4, 10-36
modes of operation, 10-2
Random Channel List (RCL), 10-12
Ready-out Register, 10-33
Request Descriptor Array (RDA),

10-18
RSX-llM differences, 10-37,

10-38
set clock function, 10-7,

10-9
set event flag modifier, 10-10,

10-12
start data transfer request

function, 10-10, 10-11
start microprocessor function,

10-8
status returns, 10-33 to 10-35
subroutines,

LPA$ADSWP, 10-18
LPA$CLOCKA, 10-24
LPA$CLOCKB, 10-25
LPA$CVADF, 10-31
LPA$DASWP, 10-19
LPA$DISWP, 10-20
LPA$DOSWP, 10-21
LPA$FLP16, 10-31
LPA$FLT16, 10-31
LPA$IBFSTS, 10-27
LPA$IGTBUF, 10-27
LPA$INXTBF, 10-28
LPA$IWTBUF, 10-29
LPA$LAMSKS, 10-22
LPA$LOADER, 10-36
LPA$LOADMC, 10-32
LPA$RLSBUF, 10-30
LPA$RMVBUF, 10-30
LPA$SETADC, 10-22
LPA$SETIBF, 10-23
LPA$STPSWP, 10-24
LPA$XRATE, 10-26

subroutine arguments, 10-14 to
10-18

supporting software, 10-3

M
Magnetic tape,

data check, 4-3, 4-9, 4-10
device characteristics, 4-4,

4-5
device types, 4-1
driver, 4-2

Index-6

INDEX

Magnetic tape, (Cont.)
error recovery, 4-3
file, 9-3
I/O functions, 4-5 to 4-9, A-2,

A-3
I/O status block, 4-15
master adapters, 4-2
read function, 4-9, 4-10
rewind, 4-11, 4-12
sense mode, 4-12
set characteristics, 4-13 to

4-15
set mode, 4-13, 4-14
skip function, 4-11, 4-12
slave formatters, 4-2

Magnetic tape,
status returns, 4-15 to 4-17
write function, 4-10, 4-11

Mailbox,
creation of, 1-14, 7-2
deletion of, 7-3
device characteristics, 7-4
driver, 7-1, A-4
explanation of, 7-1, 7-2
I/O functions, 7-5 to 7-9, A-4
I/O status block, 7-9
message format, 2-5, 7-3, 7-4
protection, 1-5
QIO requests,

read, 7-5, 7-n
write, 7-6, 7-7

read attention AST, 7-7 to 7-9
set attention AST, 7-7 to 7-9
status returns, 7-9, 7-10
terminal, 2-4, 2-5
usage,

DMCll, 8-2, 8-3
LPAllK, 10-32, 10-36

write attention AST, 7-7 to
7-9

write end-of-file message, 7-7,
7-10

Master adapter, magnetic tape,
4-2

Mechanical,
form feed, 2-12, 5-4
tabs, 2-13

Message,
format, mailbox, 2-5, 7-3, 7-4
size, DMCll, 8-4
control, DR32, 11-7

Modem control, 2-1, 2-9
Modify file, 9-24, 9-25, A-5
MOUNT, 1-14
Mount,

privilege, 1-5
virtual I/O function, 9-26

Mounted,
foreign 1-7, 1-10, 3-12
structured, 3-11, 3-12

Multirequest mode, LPAll-K, 10-1,
10-2

N
Name string, 9-5
NULL, 2-16

0
Offset, 1-26

recovery, 3-3
Overlapped seeks, disk, 3-3, 3-4

p
Pack acknowledge, 3-14
Page,

length, 2-11
width, 2-11

Parity flags, terminal, 2-23
PASSALL, 2-5, 2-13, 2-15
Physical,

device name, 1-14
I/O operation, 1-7
I/O privilege, 1-4 to 1-7

Printer, (see Line Printer)
Privilege, 1-3

logical I/O, 1-5, 1-6
mount, 1-5
physical I/O, 1-4 to 1-7

Prompt buffer, terminal, 2-14
Protection, 1-3, 1-5, 1-6

mask, 1-5 to 1-7, 1-10
protocol,

DDCMP, 8-1, 8-4
BSC, DUPll, 12-1

Q
QIO

arguments, 1-15 to 1-17
macro, 1-15 to 1-17

QIOW
arguments, 1-16, 1-17
macro, 1-16, 1-17

Queue I/O (QIO),
interface to ACPs, 9-1
macro, 1-15
operations, 1-6
system service ($QIO), 1-1,

1-13, 1-14
Queue processing, DR32, 11-6
Quota file transfer block, disk,

9-28

Index-7

INDEX

Quotas, 1-3, 3-7, 4-6, 7-5, 8-3,
disk, 9-27 to 9-31

R
Random Channel List (RCL), 10-12
Read,

access, 9-30
attention AST, 7-7 to 7-9
binary, card reader, 6-1, 6-6
checking, 9-4
function codes, 2-14
mailbox QIO requests, 7-5, 7-6
packed Hollerith, card reader,

6-1, 6-6
with prompt, 2-14
with timeout, 2-14

Read Event Flags ($READEF) system
service, 1-17

Read function,
card reader, 6-2, 6-6
disk devices, 3-7 to 3-12
DMCll, 8-6
DUPll, 12-6
magnetic tape devices, 4-9, 4-10
mailbox, 7-5 to 7-9
terminal, 2-9, 2-14

Read QIO function, 1-6
Receive buffer free list, DMCll,

8-3, 8-10
Receive-message blocks, DMCll,

8-9, 8-10
Record attributes area, ACP QIO,

9-17
Record Management Services (RMS),

1-1
Record-oriented devices, 1-7, 1-10
Relative Volume Number (RVN), 9-5,

9-9
Remote line, 2-5, 2-9, 2-13
Requests, I/O, 1-1, 1-13, 1-15, 1-16
RESET button, card reader, 6-3
Resource wait mode, 1-3, 7-2, 10-3
RETURN, 2-5
Rewind offline, 4-12
RSX-llM Version 3.1, differences

with VAX/VMS LPAll-K, 10-37,
10-38

s
Seek capability, 3-2, 3-3
Sense mode,

card reader, 6-7, 6-8
disk, 3-14
DUPll, 12-6
tape, 4-12
terminal, 2-24

Set attention AST,
DMCll, 8-8
mailbox, 7-7 to 7-9

Set characteristics,
card reader, 6-7, 6-8
disk devices, 3-13, 3-14
DMCll, 8-7
line printer, 5-8
magnetic tape devices, 4-13 to

4-15
terminal, 2-15, 2-22

Set mode,
card reader, 6-1, 6-2, 6-7, 6-8
disk devices, 3-13
DMCll, 8-7, 8-8
DUPll, 12-6, 12-7
line printer, 5-8
magnetic tape devices, 4-13, 4-14
QIO function, 1-6, 1-12
terminal, 2-15, 2-22

Set Resource Wait Mode ($SETRWM)
system service, 1-3, 1-4, 1-21

Set terminal command, 2-11
Severity level error, 1-20
Shut down unit, DMCll, 8-9
Skew disk, 3-5
Skip, magnetic tape,

file, 4-11
record, 4-12

Slave formatter, magnetic tapes, 4-2
Software channels, 1-1
Speed specifier, terminal, 2-22
Spooled device characteristics, 1-24
Start unit, DMCll, 8-9
Statistics block, ACP QIO Attributes,

9-19
Status block, I/O, 1-17, 1-21, 1-22,

argument, 1-18
Status codes,

SHR$ HALTED, 11-33
SHR$-NOCMDMEM, 11-31, 11-33,

Tl-34
SHR$ QEMPTY, 11-33
SS$ ABORT, 1-21, 2-9, 2-26,

-5-9, 8-10, 10-12, 10-33, 11-36
SS$ ACCONFLICT, 9-30, 9-32
SS$-ACCVIO, 1-20, 1-21, 1-26, 7-10
SS$-ACPVAFUL, 9-32
SS$-BADATTRIB, 9-32
SS$-BADCHKSUM, 9-32
SS$-BADESCAPE, 2-3, 2-26
SS$-BADFILEHDR, 9-32
SS$-BADFILENAME, 9-32
SS$-BADFILEVER, 9-32
SS$-BADIRECTORY, 9-32
SS$-BADPARAM, 9-29, 9-32, ll-3n
SS$-BADQFILE, 9-29, 9-33
SS$-BADQUEHDR, 11-37
SS$-BLOCKCNTERR, 9-33
SS$=BUFFEROVF, 1-26

Index-8

INDEX

Status codes, (Cont.)
SS$ BUFNOTALIGN, 10-9, 10-33,

-11-37
SS$ CANCEL, 10-9, 10-33, 11-37
SS$-CONTROLC, 2-6, 2-26
SS$-CONTROLO, 2-6, 2-26
SS$-CONTROLY, 2-6, 2-8, 2-27
SS$-CREATED, 9-33
SS$-CTRLERR, 3-12, 3-15, 4-15,

-10-2, 10-8, 10-28, 10-33,
11-37

SS$ DATACHECK, 3-16, 4-15, 10-8,
-10-34

SS$ DATAOVERUN, 4-17, 6-9, 8-10
SS$-DEVACTIVE, 8-10, 10-8, 10-34,

-11-37
SS$ DEVCMDERR, 10-2, 10-9, 10-28,

-10-34
SS$ DEVFOREIGN, 1-10
SS$-DEVICEFULL, 9-33
SS$-DEVNOTMOUNT, 1-10
SS$-DEVOFFLINE, 8-10
SS$-DEVREQERR, 10-2, 10-28,

-10-34, 11-37
SS$ DIRFULL, 9-33
SS$-DRVERR, 3-12, 3-16, 4-16
SS$-DUPDSKQUOTA, 9-29, 9-33
SS$-DUPFILENAME, 9-33
SS$-ENDOFFILE, 4-16, 6-9, 7-10,

-8-10, 9-33
SS$ ENDOFTAPE, 4-16
SS$-ENDOFVOLUME, 4-16
SS$-EXQUOTA, 1-21, 10-12, 10-34,

-11-37
SS$ FCPREADERR, 9-29, 9-33
SS$-FCPREWINDERR, 9-33
SS$-FCPSPACERR, 9-33
SS$-FCPWRITERR, 9-33
SS$-FILELOCKED, 9-33
SS$-FILENUMCHK, 9-34
SS$-FILESEQCHK, 9-34
SS$-FILESTRUCT, 9-34
SS$-FILNOTEXP, 9-34
SS$-FORMAT, 3-16, 4-16
SS$-HEADERFULL, 9-34
SS$-IDXFILEFULL, 9-34
SS$-ILLCNTRFUNC, 9-34
SS$-ILLEFC, 1-21
SS$-ILLSER, 1-21
SS$-INBUFLEN, 3-16
SS$-INCLENGTH, 10-9
SS$-INSFARG, 1-21
SS$-INSFBUFDP, 10-12, 10-34
SS$-INSFMAPREG, 10-9, 10-12,

-10-34
SS$ INSFMEM, 1-21, 7-10, 10-12,

-10-34, 11-37
SS$ IVADDR, 3-16
SS$-IVBUFLEN, 10-35, 11-38
SS$=IVCHAN, 1-21, 1-26

Status codes, (Cont.)
SS$ IVMODE, 10-9, 10-35
SS$-MBFULL, 7-10
SS$-MBTOOSML, 7-10
SS$-MCNOTVALID, 10-8, 10-12,

-10-35, 11-38
SS$ MEDOFL, 3-12, 3-16, 4-16
SS$-NODISKQUOTA, 9-34
SS$-NOMOREFILES, 9-34
SS$-NONEXDRV, 1-22, 3-12, 3-16,

-4-16
SS$ NOPRIV, 1-7, 1-10, 1-21, 1-26,

-7-10, 9-29, 9-34
SS$ NOQFILE, 9-29, 9-34
SS$-NORMAL, 1-20, 1-21, 1-26,

-2-16, 2-27, 3-12, 3-15, 4-15,
5-9, 6-9, 7-10, 8-10, 11-38

SS$ NOSUCHFILE, 9-34
SS$-NOTAPEOP, 9-34
SS$-NOTLABELMT, 9-34
SS$-OVRDSKQUOTA, 9-30, 9-35
SS$-PARITY, 2-27, 3-16, 4-17,

-10-12, 10-35, 11-38
SS$ PARTESCAPE, 2-3, 2-27
SS$-POWERFAIL, 10-8, 10-12,

-10-35, 11-38
SS$ QFACTIVE, 9-35
SS$-QFNOTACT, 9-29, 9-35
SS$-SUPERSEDE, 9-35
SS$-TAPEPOSLOST, 9-35
SS$-TIMEOUT, 2-16, 2-27, 10-8,

-10-35
SS$ TOOMANYVER, 9-35
SS$-UNASEFC, 1-21
SS$-UNSAFE, 3-17, 4-17
SS$-VOLINV, 3-17, 4-17
SS$-WASECC, 3-17
SS$-WRITLCK, 3-17, 4-17
SS$-WRTLCK, 9-35

Status completion, 1-20, 1-22,
1-23

Status returns,
ACP QIO interface, 9-31 to

9-35
card reader, 6-9
disk devices, 3-15, 3-16
DMCll, 8-10
DUPll, 12-8
I/O, 1-20, 1-21
line printer, 5-9
LPAll-K, 10-33 to 10-35
magnetic tape devices, 4-15 to

4-17
mailbox, 7-9, 7-10
system services, 1-20
terminal, 2-26, 2-27

System services,
$ALLOC, 1-14
$ASSIGN, 1-13, 1-16, 1-17, 7-2,

8-2

Index 9

INDEX

System services, (Cont.)
$CANCEL, 2-24, 2~2~, 10-7,

10-12, 10-33
$CREMBX, 1-14, 1-17, 7-2
$DASSGN, 2-24, 7-3
$DELMBX, 7-3
$GETCHN, 1-24, 2-10, 3-5, 4-4,

5-3, 6-3, 7-4, 8-3, 10-4
$GETDEV, 1-24, 2-10, 3-5, 4-4,

5-3, 6-3, 7-4, 8-3, 10-4
$INPUT, 1-19
$OUTPUT, 1~19
$QIO, 1-1, 1-14 to 1-16
$QIOW, 1-15 to 1-17
$READEF, 1-17
$SETRWM, 1-3, 1-4, 1-21
$WAITFR, 1-15 to 1-17
$WFLAND, 1-1 7
$WFLOR, 1-1 7

System services,
I/O, 1-2, 1-10
status returns, 1-20, 1-21

T
TAB, 2-6
Tabs, 2-6, 2-13, 2-18
Tape, (see Magnetic tape)
Terminal,

carriage c?ntrol, 2-18
characteristics, 2-2, 2-10

to 2-13'
control characters, 2-2, 2-5

to 2-8
driver, 2-1
enable CTRL/C AST, 2~6, 2-23,

2-24
enable CTRL/Y AST, 2-7, 2-23,

2-24
function modifiers, 2-15
hang-up, 2-5, 2-9
hang-up function modifier, 2-23
I/O functions, 2-13, A-1
I/O status block, 2-25
mailbox, 2-24, 2-5
read function, 2-9, 2-10, 2-14
read terminator set, 2-16,
sense mode, 2-24
set characteristic, 2-22
set mode, 2-22
special keys, 2-8
status returns, 2-26, 2-27
write function, 2-9

2-10, 2-17
Terminal/host synchronization, 2-12
Termination queue (TERMQ}, DR32,

11-5, 11-11
Terminator character bit mask,

2-16, 2-17

Terminator set, 2-16
Transfer count, 1-22
Translation, logical to physical,

RXOl, 3-4
Translation mode, card reader, 6-2
Transparent mode, DUPll, 12-2, 12-3
Truncate operations, FIB, 9-3, 9-7
Type-ahead, 2-1, 2-4, 2-13, 2-15,

2-25

u
Unsolicited data, 2-4
Uppercase, characters, 2-12, 2-17,

5-2, 5-4
User queue (USQ}, LPAll-K, 10-14
User Status Word (USW}, 10-10

v
VAX-11 Record Management Services

(RMS) , 1-1
VAX/VMS System Services Reference

Manual, 1-3
Version,

name, 9-20
type, 9-20

Vertical tab, 2-6
Virtual Block Number (VBN), 9-8
Virtual I/O operation, 1-7, 1-10
Volume protection, 1-5
VTlOO User's Guide, 2-4

w
Wait for Single Event Flag ($WAITFR}

system service, 1-15 to 1-17
Wild card,

bits for disk quota file, 9-8
Write,

access, FIB, 9-3, 9-8, 9-30
attention AST, mailbox, 7-7 to

7-9
checking, 9-4
mailbox QIO requests, 7-5 to 7-7
QIO function, 1-6

Write End-of-File,
magnetic tape, 4-12
message, mailbox, 7-7, 7-10

Write function,
disk, 3-8, 3-12
DMCll, 8-7
DUPll, 12-7
line printer, 5-4, 5-5
magnetic tape, 4-10, 4-11
mailbox, 7-6 to 7-9
terminal, 2-9 , 2-17

Index-10

z
026 code, card reader, 6-2
029 code, card reader, 6-2

INDEX

Index-11

.
~
c

m
c
0

0

READER'S COMMENTS

VAX/VMS
I/O User's Guide

AA-D028B-TE

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement •

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify)~~~~~~~~~~~~~~~~~~~

CitY--------------------~------State _____________ Zip Code ____________ _
or

Country

- - - DoNotTear-FoldHereandTape - - - - - - - - - - - -

Do Not Tear - Fold Here

I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

II No Postage
Necessary

if Mailed in the
United States

