dlilgliltlall

VAX/VMS
Real-Time User’s Guide
Order No. AA-H784A-TE

March 1980

This manual discusses VAX/VMS features of interest to real-time users. It also
provides programming examples illustrating certain important or complex
features.

VAX/VMS
Real-Time User’'s Guide
Order No. AA-H784A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.
OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's «critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 T™™S-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT

DATATRIEVE TRAX

PREFACE

CHAPTER

CHAPTER

CHAPTER

1

* e o o o
. e o o
- b W N -

o b= R e
* . L) . . .

AN DS BWNDNNDNDNN -
. . .

N e

N

NN N
.

=

.

N =

.
W

DN DNDN
.

NN

e o o o

D W

w

« o s o
. o
w N =

.

« o
o o
w N

WWwwwwwwwww
Ll

WWNNDNDN -
L]

.
—

.
N

www
.
Db W
.
—

CONTENTS

INTRODUCTION

REAL-TIME NEEDS AND VAX/VMS FEATURES
OTHER VAX/VMS TOOLS
Condition Handling
Device Allocation
SYSGEN Parameter Selection
User Authorization File Entries
Networks
REAL-TIME DEVICES
USER PRIVILEGES FOR REAL-TIME APPLICATIONS
Privilege Masks
PROCESS QUOTAS
Resource Wait Mode
PROCESS PRIORITY
Significance of Process Priority
Adjusting the Base Priority

CONTROLLING THE PROGRAM EXECUTION
ENVIRONMENT

PROCESS CREATION
Subprocesses and Detached Processes
Real-Time Uses of Detached Processes
and Subprocesses
Create Process System Service
RUN (Process) Command

PHYSICAL MEMORY CONTROL
Adjusting the Working Set Limit (SADJWSL)
Keeping Pages in the Working Set (SLKWSET)
Keeping Pages in Memory (SLCKPAG)
Keeping the Process in Memory (SSETSWM)

COMMUNICATING AND SHARING BETWEEN PROCESSES

COMMON EVENT FLAGS
Creating and Associating with Clusters
Setting Event Flags
Waiting for Event Flags
MAILBOXES
Creating a Mailbox
Other Mailbox Services
Example Using a Mailbox
ASYNCHRONOUS SYSTEM TRAP SERVICE ROUTINES
System Services with AST Service Routine
Arguments
Access Modes and AST Delivery
HIBERNATION AND SUSPENSION
Example 1: Wakeups as Needed

iii

Page

vii

—
[1
[}

[P S Tl el
i
RHOONNIINUOTOTD S LN

= O

[\S]
| |
=

N
|
N

NN NN
[
O DWW

w
1
—

WWwWwWwwwwww
i
OIS DdDwwN

wWwww
[
= O 0

CONTENTS

3.4.2 Example 2: Wakeups at Fixed Intervals
3.5 GLOBAL SECTIONS
3.5.1 Creating and Mapping a Global Section
3.5.2 Other Section-Related System Services
3.6 SHAREABLE IMAGES

CHAPTER 4 PERFORMING I/0O OPERATIONS

4.1 OVERVIEW OF THE VAX/VMS 1/0 SYSTEM
4,1.1 Queue I/0 Request System Service
4,1.2 Ancillary Control Processes

4.1.3 Device Drivers

4.1.4 I/0 Posting Routine

4,2 USER INTERFACE TO THE I/O SYSTEM
4.2.1 VAX-11 RMS Features of Interest to
Real-Time Users

4.3 USING THE QUEUE I/O REQUEST SYSTEM SERVICE

4.4 INTERRUPT-GENERATED I/0

4,5 MAPPING I/0 SPACE

4,5.1 Page Frame Number (PFN) Mapping

4.5.2 Programming Conventions for Addressing
Device Registers

4.6 CONNECTING TO AN INTERRUPT VECTOR

4.6.1 Interrupt Priority Levels

4.6.2 Performing the Connect-To-Interrupt

4.6.3 The Connect-To-Interrupt Driver

4,6.4 The Interrupt and AST Service Routines

4.6.5 Queue I/0 Request System Service for
Connect-To-Interrupt

4.6.6 Conventions for Process-Specified Routines

4.6.7 Programming Language Constraints

4.6.8 Process-Specified Device Initialization
Routine

4.6.9 Process-Specified Start I/0 Routine

4.6.10 Process-Specified Interrupt Service Routine

4.6.11 Process-Specified Cancel I/0 Routine

4.6,12 Real-Time Applications Examples

4.6.12.1 Example 1l: KW1ll-W Watchdog Timer

4.6,12.2 Example 2: AD11-K, AM11-K; A/D Converter

with Multiplexer Connected to the UNIBUS
4,6,12.3 Example 3: KW1ll-P Real Time Clock and
AD11-K Converter Connected to the UNIBUS

CHAPTER 5 USING SHARED MEMORY

1 PREPARING MULTIPORT MEMORY FOR USE

2 PRIVILEGES REQUIRED FOR SHARED MEMORY USE

.3 NAMING FACILITIES IN SHARED MEMORY

4 ASSIGNING LOGICAL NAMES AND LOGICAL NAME
TRANSLATION

5.5 HOW VAX/VMS FINDS FACILITIES IN SHARED. MEMORY
5.6 USING COMMON EVENT FLAGS IN SHARED MEMORY

5.7 USING MAILBOXES IN SHARED MEMORY

5.8 USING GLOBAL SECTIONS IN SHARED MEMORY

5.8.1 Create and Map Section System Service

iv

CONTENTS

Page
CHAPTER 6 PRIVILEGED SHAREABLE IMAGES 6-1
6.1 CODING THE PRIVILEGED SHAREABLE IMAGE 6-1
6.1.1 Change-Mode Vector 6-2
6.1.2 Entry Point to the Privileged Shareable
Image A-3
6.1.3 Kernel-Mode Lr Executive—-Mode Dispatcher 6-3
6.1.4 Enabling and Disabling User Privileges 6-3
6.2 LINKING THE PRIVILEGED SHAREABLE IMAGE h—-4
6.2.1 Specifying Protection for the Image or
Clusters 6-4
6.3 INSTALLING THE PRIVILEGED SHAREABLE IMAGE 6-5
6.4 USING THE PRIVILEGED SHAREABLE IMAGE 5-5
6.5 PROGRAM LISTINGS 6-5
CHAPTER 7 PROGRAM EXAMPLES 7-1
7.1 DATA ACQUISITION AND MANIPULATION 7-1
7.1.1 Application Overview 7-1
7.1.2 LABIO System Details 7-3
7.1.2.1 Shared Data Base 7-3
7.1.2.2 Common Event Flag Clusters 7-3
7.1.2.3 Mailboxes 7-4
7.1.2.4 Connecting to an Interrupt Vector 7-4
7.1.3 Typical LABIO User Program Logic 7-4
7.1.4 Program Listings 7-5
7.2 AIRLINE RESERVATION SYSTEM 7-45
APPENDIX A LOCKING A RESOURCE aA-1
A.l USING AN EVENT FLAG A-2
A.l.1 Shared Memory Considerations A-4
A.2 USING A QUEUE A-4
A.2.1 Shared Memory Considerations A-6
APPENDIX B LPAl11-K CONSIDERATIONS B-1
B.1 RESOURCES, CONFIGURATION, AND PERFORMANCE B-1
B.2 THROUGHPUT AND RESPONSE-TIME REQUIREMENTS B-2
B.3 PARAMETERS FOR DATA ACQUISITION CALLS B-3
APPENDIX C VAX-11 BLISS-32 PROGRAM EXAMPLE c-1
APPENDIX D REAL-TIME OPTIMIZATION CHECKLIST D-1
INDEX Index-1
FIGURES
FIGURE - Using a Mailbox to Communicate -

3-1 3
3-2 Access Modes and AST Delivery 3
4-1 Physical Address 4
5-1 Two VAX-11/780s Attached to an MA780 5-
5-2 Using a Shared Memory Mailbox 5
6-1 Change-Mode Vector Format A

CONTENTS

FIGURES (Cont.)

FIGURE A-1 Event Flag Lock Logic
A-2 Event Flag Lock Example
A-3 FIFO Queuing Policy
A-4 LIFO Queuing Policy
TABLES
TABLE - Real-Time Needs and VAX/VMS Features

Subprocess versus Detached Process

Features for Communication, Synchronization,
and Sharing

3-2 Summary of Event Flag Clusters

3-3 Temporary versus Permanent Mailboxes

3-4 Hibernation versus Suspension
3-5

A-1

1

-2 Summary of Process Quotas
1
1

Global Sections versus VAX-11 RMS
Two Methods of Creating a Lock

vi

w o

PREFACE

MANUAL OBJECTIVES

The VAX/VMS Real-Time User's Guide describes VAX/VMS features of
interest to real-time application programmers. It describes 1in
general terms functions common to a variety of real-time applications
and explains the specific VAX/VMS feacures available to perform these
functions. This manual also contains numerous examples, including
coding segments and complete programs, to illustrate certain important
or complex features.

INTENDED AUDIENCE

This manual is intended for programmers writing real-time
applications. You are assumed to have substantial programming
experience and some knowledge of basic VAX/VMS concepts (see

"Associated Documents" in this preface).

The programming examples are in VAX-11 MACRO and VAX-11 FORTRAN. Each
example, however, 1is designed to be as meaningful as possible for
programmers using any other VAX-11 language.

STRUCTURE OF THIS DOCUMENT

This manual covers a variety of topics, usually proceeding from less
complex to more complex material. Wherever appropriate, this manual
relates a topic to other topics discussed elsewhere in the manual.

Chapter 1 introduces the manual. It summarizes the real-time features
covered 1in the manual, describes other features of possible interest
and refers to appropriate documentation, and explains some significant
concepts.

Chapter 2 discusses ways to control the program execution environment,
including creating subprocesses and detached processes and affecting
the allocation of physical memory.

Chapter 3 covers mechanisms for communicating between cooperating
processes, synchronizing their activities, and sharing data and code.

Chapter 4 discusses real-time I/0, including mapping I/0 space and
connecting to a device interrupt vector. :

Chapter 5 discusses the wuse of software facilities 1located in

multiport (shared) memory -- specifically common event flag clusters,
mailboxes, and global sections.

vii

Chapter 6 explains privileged shareable images, a vehicle that allows
you, in effect, to write your own system services.

Chapter 7 provides several complete programming examples with
accompanying explanations.

The appendixes present supplementary information. Appendix A shows
how to use a common event flag or a queue as a mutual exclusion
(mutex) semaphore to lock a resource. Appendix B discusses
programming and design considerations for users of the Laboratory
Peripheral Accelerator (LPAll-K). Appendix C provides a programming
example in VAX-11 BLISS-32. Appendix D is a checklist of optimization
techniques for real-time users.

ASSOCIATED DOCUMENTS

The following manuals explain the VAX/VMS concepts that are
prerequisite knowledge for readers of this manual:

e The VAX/VMS Summary Description and Glossary explains the
major components of the VAX/VMS system and defines significant
terms.

e The VAX-11/780 Technical Summary (order number EA-15963-20)
describes the major components and features of the VAX/VMS
system.

The following manuals provide more detailed treatment of major
concepts and features described in this manual:

e The VAX/VMS System Manager's Guide discusses the system
generation (SYSGEN) wutility, the user authorization file
(UAF), system tuning, and the DISPLAY utility.

e The VAX/VMS System Services Reference Manual provides tutorial

chapters on many topics covered in this manual. It also
explains the format and requirements for each system service.

e The VAX/VMS I/0 User's Guide discusses 1I/0 programming in

detail, including chapters on several real-time devices.

e The VAX/VMS Guide to Writing a Device Driver explains how to

write your own device driver and includes detailed information
on VAX/VMS I/0.

The user's guide for each programming lanquage provides information on
using VAX/VMS features and capabilities with that language.

The following handbooks provide information on VAX-~1l architecture and
hardware:

e The VAX-11 Architecture Handbook (order number EB-17580-18)
introduces VAX-1ll1 system architecture, explains addressing
modes, and presents the native-mode instruction set.

e The VAX-11/780 Hardware Handbook (order number EB-17835-18)
explains VAX-11l hardware elements, including the high-speed

synchronous backplane interconnect (SBI1), the central
processor wunit, intelligent console subsystem, MASSBUS and
UNIBUS subsystems, main memory, and memory management. This

handbook also includes an appendix explaining restrictions on
program references to I/O space.

viii

CONVENTIONS USED IN THIS DOCUMENT

The system service formats ‘and coding example conventions are

consistent with those wused in the VAX/VMS System Services Reference
Manual:

Convention Meaning

UPPERCASE Uppercase letters in a system service format show
material that must be entered as shown.

lowercase Lowercase letters in a system service format show
variable data.

[] Brackets in a system service format indicate an
optional argument.

e Horizontal ellipsis in a coding example 1indicates
that additional arguments necessary for the system
service call but not pertinent to the example are
not shown.

. Vertical ellipsis in a coding example indicates
. that 1lines of code not pertinent to the example
. are not shown.

ix

CHAPTER 1

INTRODUCTION

"Real-time" is a term whose meaning varies with specific applications.
However, in most scientific, industrial, and commercial real-time
applications, one or both of the following are critical needs:

e High throughput
e Fast response

Applications for which high throughput 1is essential require the
continuous processing of large amounts of data. An example of a
throughput-intensive application is signal processing, which 1is wused
in speech research, electrocardiogram and electroencephalogram
research, vibration analysis, and music synthesis. As another
example, a stream of data points is required for many of the
qualitative and quantitative methods used in gas and liquid

chromatography, mass spectrometry, automatic titration, and
colorometry.

In all of these throughput-intensive applications, the primary
requirement is to obtain some number of data points equally spaced in
time. Some further computation is done, perhaps later, on the data
collected.

In other real-time applications, fast response to individual events is
the most «critical requirement. A typical example that requires fast
response is a closed-loop control system. In such a case, some event
must be identified as soon as possible; a decision is then made and
an output variable is updated. For example, before a Jjet engine is
tested, sensing instruments connected to a processor runnhing a control
program might be placed on and near the engine. After the engine is
started, the control program must be able to detect, analyze, and
correct any abnormality within a few milliseconds -- for instance, by
shutting off the engine before an explosion occurs. Applications for
which response time is a critical factor include process monitoring
and control, synchronous communications, and stimulus-response testing
in biological and psychological research.

If response time is critical, the designer must ensure that the
application has all the resources it needs immediately whenever it
needs them. These resources include:

e CPU time, the availability of which is affected by process
priority and, perhaps, interrupt latency

e Memory, which can be controlled by several system services
(see Chapter 2)

e I/0 bandwidth, which is determined by the hardware
configuration

INTRODUCTION

These two real-time requirements, high throughput and responsiveness,
are sometimes interrelated. For example, if your application must
collect large amounts of data quickly and if the data acquisition is
to be triggered by an external event, you need both fast response and
high throughput.

Specific real-time applications might involve the following types of
programming activities:

e Controlling the program's execution environment, which might
require communicating between programs and creating
subprocesses or detached processes

e Using the Queue I/0 Request system service directly, to
achieve faster response and greater throughput

e Coordinating programs running on multiple processors,
including the sharing of multiport memory units

Real-time users often employ sophisticated means to make the system
respond best to their special processing needs. The VAX/VMS system
provides tools to meet these needs.

1.1 REAL-TIME NEEDS AND VAX/VMS FEATURES

From its inception, the VAX/VMS system has heen designed to meet the
real-time processing needs of a wide user base. The VAX-11
architecture provides the necessary hardware foundation with its high
1/0 bandwidth, interrupt = responsiveness, 32-bit processing
capabilities, and real-time peripheral interfaces. These
architectural features are described in the hardware documentation for
your system (see the Preface). This manual will focus on software
features. Its approach is to identify functions common to a variety
of real-time applications, discuss these functions conceptually, and
show how specific VAX/VMS features can be used to perform these
functions.

You are assumed to be familiar with basic VAX/VMS concepts, which are
defined in the VAX/VMS Summary Description and Glossary. Do not,
however, confuse the VAX/VMS term "process" (the program image and the
software context in which it executes) with "process"™ in its generic
sense (a sequence of events), as 1in "industrial ©process-control
applications." Most instances of the word "process" in this manual
refer to the image and its context; any other wuse will be clearly
identified.

Table 1-1 summarizes common real-time needs and the features or
capabilities available with VAX/VMS to meet these needs. Each feature
listed is documented in the VAX/VMS System Services Reference Manual
unless another manual is specified. The goal of the present manual is
to organize and highlight aspects of special interest to real-time
users.

INTRODUCTION

Table 1-1

Real-Time Needs -and VAX/VMS Features

Real-Time Need

VAX/VMS Feature

Perform an operation
with or after another
operation

Change the availability
of a process for
scheduling

Keep critical code or
data highly accessible

Perform I/0 quickly or
for special purposes

Synchronize a process
with an external event
or program

Use the Create Process (SCREPRC)
service to create a subprocess or
detached process

Use the RUN command to create a
subprocess or detached process (see the
VAX/VMS Command Lanquage User's Guide)

Use the Set Priority ($SETPRI) service

Use the Adjust Working Set (SADJWSL)
system service to adjust the amount of
physical memory a process is entitled to
use

Use the Lock Pages in Memory (SLCKPAG)
system service to keep pages in physical
memory

Use the Lock Pages in
(SLKWSET) system service to keep pages
in physical memory as long as the
process is in memory

Working Set

Use the Set Process Swap Mode ($SSETSWM)
system service to keep all or part of a
process in physical memory

Use the Create and Map Section (SCRMPSC)
system service to map a file into
process address space

Use the Queue I/0 Request ($SQI0)
system service

Map I/0 space (using the $CRMPSC
service) and/or —connect to a device
interrupt vector (using the $Q010
service)

driver (see the
Writing a Device

Write your own device
VAX/VMS Guide to
Driver)

Set and wait for event flags

Code and declare asynchronous system
trap (AST) service routines

Connect to a device interrupt vector

Cause processes to hibernate or suspend,
and to awaken when needed

(continued on next page)

INTRODUCTION

Table 1-1 (Cont.)
Real-Time Needs and VAX/VMS Features

Real-Time Need VAX/VMS Feature
Share code or data Use the Create and Map Section
between processes (SCRMPSC) system service to create and

map a global section

Use shareable images (see the VAX-11
Linker Reference Manual)

Send messages to other Use mailboxes (SCREMBX system service
processes creates mailbox; RMS or I/O system
services read and write messages)

Use multiport memory Use common event flag clusters, global
(memory shared by sections, and mailboxes located 1in a
multiple processors) shared memory unit

Use special-purpose Write privileged shareable images
system services (see Chapter 6)

1.2 OTHER VAX/VMS TOOLS

There are other VAX/VMS tools which may be of interest to some
real-time wusers, but which are outside the scope of this manual.
Brief descriptions of these tools follow, with references to other
manuals for detailed information.

1.2.1 Condition Handling

A condition handler is a procedure that is given control when an
exception occurs. An exception is an event that is detected by the
hardware or software and that interrupts the execution of an image,
Examples of exceptions 1include arithmetic overflow or underflow and
reserved opcode or operand faults,

If you want to handle any or all exceptions yourself, you must code
and declare a condition handler. 1Information on condition handling is
available in the VAX/VMS System Services Reference Manual, the VAX-11
Run-Time Library Reference Manual, and the language user's guides.

1.2.2 Device Allocation

You can allocate and deallocate devices from within your program with
the Allocate Device (SALLOC) and Deallocate Device ($DALLOC) system
services. Allocating a device reserves it for exclusive use by the
requesting process. The VAX/VMS System Services Reference Manual
explains the SALLOC and S$DALLOC system services.,

INTRODUCTION

1.2.3 SYSGEN Parameter Selection

There are a number of parameters to the SYSGEN wutility whose values
affect the paging, swapping, and scheduling operations of the system.
All of these parameters have default values that DIGITAL has selected
as suitable for a wide range of users; however, real-time users may
wish to modify certain parameters or experiment with different

combinations of parameters, The VAX/VMS System Manager's Guide
discusses major SYSGEN parameters and provides some guidelines for
selecting their wvalues. That manual also discusses a number of

parameters in relation to system tuning.

1.2.4 User Authorization File Entries

The user authorization file (SYSUAF.DAT) includes entries within each
record to determine the base priority (PRIORITY), initial working set
limit (WSDEFAULT), maximum working set limit (WSQUOTA), and privileges
for that user's processes. The VAX/VMS System Manager's Guide
explains the user authorization file entries.

1.2.5 Networks

A VAX/VMS system can be connected in a communications network to other
DIGITAL processors with the same or different operating systems. The
family of software products supporting these networks 1is called
DECnet. You can use DECnet to share files and communicate between
programs on different processors; however, for faster performance you
can use one of the real-time devices mentioned in Section 1.3. For
information on the use of DECnet, see the DECnet-VAX User's Guide and
the DECnet-VAX System Manager's Guide,

1.3 REAL-TIME DEVICES

The following devices are especially suited for real-time
applications:

e Laboratory Peripheral Accelerator (LPAll-K)

e Parallel Communications Link (PCL)

e 32-bit Parallel SBI Interface (DR780)

® Synchronous Communications Line Interface (DMC11l)

e Multiport Memory (MA780)
This section discusses several of these devices only briefly. For
detailed information on wusing the MA780, see Chapter 5. For

information on the other devices, see the VAX/VMS I/0 User's Guide and
the appropriate hardware documentation.

The LPAll-K controls analog-to-digital (A/D) and digital-to-analog
(b/A) converters, digital 1I/0 registers, and real-time clocks.
Appendix B discusses programming and design considerations for LPAll-K
users.

The DR780 can be wused to 1link wuser devices to a processor or

processors to each other. The DR780 provides a very high-speed 32-bit
wide interface to the VAX-11 Synchronous Backplane Interconnect (SBI).

1-5

INTRODUCTION

The DMC1ll and the MA780 are used primarily to 1link processors. The
MA780 offers memory-access speed and greater capabilities, but the
DMC1l1l is suited for data transmission between processors separated by
a great distance. The DIGITAL Data Communications Message Protocol
(DDCMP) programmed into the DMCll's microprocessor ensures data
integrity.

1.4 USER PRIVILEGES FOR REAL-TIME APPLICATIONS

To protect the inteqrity of the system, VAX/VMS restricts certain
functions or operations to processes with the appropriate user
privileges. Each process starts with a set of privileges established
in one of the following ways:

e For each user who logs in, privileges are designated by the
system manager in the user's entry in the user authorization
file.

® For each created process, privileges are specified or
defaulted 1in the PRVADR arqument to the Create Process
(SCREPRC) system service or the /PRIVILEGES qualifier to the
RUN command.

You can change a process's privileges in two ways: at the command
level with the SET PROCESS/PRIVILEGES command and at the program level
with the Set Privileges ($SSETPRV) system service.

Most timesharing users need and are given only a 1limited set of
privileges. Real-time users, however, are normally given considerably
more privileges, because they need them to perform certain functions.
Any privileges required for functions discussed in this manual are
documented here or in the VAX/VMS System Services Reference Manual.

Some of the privileges of special interest to real-time users are as
follows:

Privilege Meaning
ALTPRI Set process base priority higher than user's own base
priority
BYPASS Bypass all UIC-based protection checks
CMEXEC Change mode to executive
CMKRNL Change mode to kernel
EXQUOTA Exceed certain quotas
GROUP Control processes in user's ownh group
GRPNAM Place entries in group logical name table
LOG IO Perform logical I/0 operations
OPER Perform operator functions
PFNMAP Map to section by physical page frame number
PHY IO Perform physical I1/0
PRMCEB Create permanent common event flag clusters
PRMGBL Create permanent global sections
PRMMBX Create permanent mailboxes
PSWAPM Change process swap mode
SETPRV Grant process privileges other than own current
privileges
SHMEM Perform certain functions in memory shared by multiple
processors
SYSNAM Place entries in system logical name table and create
system-wide global sections
SYSPRV Access resources as 1if you have a system user
identification code (UIC)
WORLD Control any process in the system

1-6

INTRODUCTION

The VAX/VMS System Manager's Guide explains these and the other
privileges in greater detail. :

1.4.1 Privilege Masks

User privileges are stored in a quadword (A4-bit) mask, in which
specific bits correspond to specific privileges. The operating system
actually maintains four separate privilege masks for each process:

e AUTHPRIV - Privileges that the process 1is authorized to
enable, as designated by the system manager or the process
creator. The AUTHPRIV mask never changes during the 1life of
the process.

e PROCPRIV - Privileges that are designated as permanently
enabled for the process., The PROCPRIV mask can be modified by
the Set Privileges ($SETPRV) system service or the SET
PROCESS/ PRIVILEGES command.

e IMAGPRIV - Privileges that the current 1image 1is installed
with.

e CURPRIV - Privileges that are currently enabled. The CURPRIV
mask can be modified by the Set Privileges ($SETPRV) system
service or the SET PROCESS/PRIVILEGES command.

When a process is created, its AUTHPRIV, PROCPRIV, and CURPRIV masks
have the same contents, Whenever a system service must check the
process's privileges, it checks the CURPRIV mask. When a process runs
a known image, the privileges that the image was installed with are
enabled in the CURPRIV mask. Whenever an image exits, the PROCPRIV
mask is copied to the CURPRIV mask.

1.5 PROCESS QUOTAS

To prevent a process from monopolizing or overusing certain resources,
VAX/VMS enforces a number of quotas (limits) on each process. These
quotas can be adjusted for each process. The system manager can set
quotas for each wuser 1in the user authorization file (UAF), and the
creator of a detached process or subprocess can specify quotas with
the QUOTA argument to the Create Process ($CREPRC) system service (see
Section 2.1.3) or with qualifiers to the RUN command (see Section
2.1.4). Default velues are used for any quotas not specified.

Each quota is deductible, pooled, or nondeductible:

e A deductible quota value 1is subtracted from its creator's
current value when a subprocess is created and returned to the
creator when the subprocess is deleted.

e A pooled quota is shared by a detached process and all its
descendent subprocesses. Charges against a pooled quota value
are subtracted from the current available total as the
resource 1is used and are added back to the total when the
resource is not being used.

e A nondeductible quota is established and maintained separately
for each detached process and subprocess.

The VAX/VMS System Services Reference Manual contains more detailed
information on process quotas.

INTRODUCTION

Table 1-2 lists each process quota, its function, the defaults used
for the user authorization file (UAF) and for process creation, and
the minimum value. The table also indicates whether the quota is
deductible, pooled, or nondeductible,

Table 1-2
Summary of Process Quotas

UAF Process
Default|Creation Min.
Quota Functionl Value Default Value

AST queue Limits the sum of ASTs and 10 6 2
limit (ASTLM) scheduled wake-up requests that

can be pending for a process at

one time (N)
Buffered I/0 count |Limits the number of I/0 oper- 6 6 2
limit (BIOLM) ations that the process can have

buffered in system memory (N)
Buffered I/0 byte Limits the number of bytes that 40946 8192 1024
count limit (BYTLM)|[the process can use for system

buffered I/0 operations (P)
CPU time limit CPU time limit in milliseconds 0 0 0
(CPUTIME) (0 means no limit) (D)
Direct I/0 count Limits the number of I/0 oper- 3 6 2
limit (DIOLM) ations that the process can have

buffered in process address

space (N)
Open file limit Limits the number of files that 20 10 2
(FILLM) the process can have open at one

time (P)
Paging file Limits the number of pages that 10000 2048 254
quota (PGFLQUOQOTA) the process can use in the system

paging file (P)
Subprocess creation|Limits the number of subprocesses| 8 8 0
limit (PRCLM) that the process can create (P)
Timer queue entry Limits the sum of timer queue 10 8 0
limit (TQELM) entries and temporary common

event flag clusters that the

process can have at one time (P)
Default working set|Sets the initial working set 150 100 50
size (WSDEFAULT) size for the process (N)
Working set size Limits the size to which the 200 120 50
limit (WSQUOTA) process's working set size can

be expanded (N)

1. After each "Function" description is a 1letter 1in parentheses
indicating whether the quota is deductible (D), pooled (P), or
nondeductible (N).

INTRODUCTION

1.5.1 Resource Wait Mode

By default, a process enters resource wait mode whenever it needs but

cannot obtain system dynamic memory or a resource controlled by any of
the following quotas:

e Direct I/0 limit (DIOLM)
e Buffered I/0 limit (BIOLM)
e Buffered I/0 byte count limit (BYTLM)

(If any other resource controlled by a quota is wunavailable, the
process receives the SS$ EXQUOTA error status code.) Resource wait
mode places the process in a wait state until the resource becomes
available.

In a real-time environment, however, it may not be practical or
desirable for a program to wait. In these cases, you can choose to
disable resource wait mode for the process, so that when a required
resource is wunavailable, control returns immediately to the calling
program with an error status code. You can disable resource wait mode
with the Set Resource Wait Mode (SSETRWM) system service.

How a program responds to the unavailability of a resource depends
very much on the application and the particular system service that is
being called. 1In some instances, the program may be able to continue
execution and retry the service call later. 1In other instances, it
may be necessary only to note that the program is being required to
wait.

1.6 PROCESS PRIORITY

At any given time, each process has a priority that affects how it
runs relative to other processes in the system., Process priorities
can range from 0 through 31, with 0 through 15 designated as
timesharing priorities and 16 through 31 designated as real-time
priorities.

The "base priority" of a process refers to its minimum priority. You
can adjust a process's base priority with the Set Priority system
service or the SET PROCESS/PRIORITY command. The priority that
affects process operations 1is 1its current priority (or simply,
priority), which the system dynamically adjusts for timesharing
processes.

The system handles timesharing and real-time priorities in different
ways. For processes with timesharing base priorities (0 through 15),
the system dynamically adjusts the priority according to the process's
state and other factors. The actual priority of a timesharing process
at any given time might be as much as 7 higher than its base priority.
However, the system will never raise a priority in the timesharing
range to a real-time level. Furthermore, the system does not alter
the priority of a process with a real-time base priority (16 through
31).

1-9

INTRODUCTION

When you log in, your initial base priority is determined by a value
in your record in the user authorization file. When you create a
subprocess or detached process, 1its initial base priority is
determined by the specified or default value for the BASPRI argument
to the Create Process (SCREPRC) system service or for the /PRIORITY
qualifier on the RUN command. To find out the base priority of your
process, you can use the SHOW PROCESS command.

1.6.1 Significance of Process Priority
The priority of a process can affect

e How quickly it is scheduled (that 1is, becomes the current
process) after it becomes executable

o Whether it will be interrupted by the scheduling of another
process

e Whether it will be swapped out of the balance set if the
system needs the physical memory for another process

e How quickly its queued I/0O requests are serviced by a device
driver

The VAX/VMS scheduler always selects the highest-priority process from
among those that are eligible to execute, that is, processes that are
"computable" (process state) and in the balance set. (Conditions that
can cause a process not to be executable include waiting for an event
flag to be set or a resource to become available, or being in a state
of hibernation or suspension.) If a lower-priority process is
executing and a higher-priority process becomes executable, the
lower-priority process is interrupted and the higher-priority process
receives control of the processor.

If the working set requirements of all processes in the balance set
exceed the system's available physical memory, the VAX/VMS swapper
process is activated to "outswap" one or more processes: that is, to
save certain information and the working set of each process to be
swapped out and to free its memory pages for use by other processes.
A real-time process requiring fast response, however, should not be
swapped out. In selecting a process for outswapping, VAX/VMS
considers the process's state and quantum value in addition to its
priority. Therefore, if you must guarantee that a real-time process
will not be swapped out, disable swapping for the process with the Set
Process Swap Mode (SSETSWM) system service (see Section 2.2.4).

The VAX/VMS system also uses process priority as the basis for
ordering I/0O requests queued to a driver, That is, the system
initiates a queued I/0 request issued by a higher-priority process
before it initiates one for the same device issued by a lower-priority
process.

Because the VAX/VMS operating system's own processes normally have
priorities of 16 or lower, real-time users must ensure that one of
these system processes is not blocked from execution if its operation
is needed by a real-time process. For example, if several real-time
processes are in the system, a priority-22 process performing disk
file I/0 can be blocked by a compute-bound priority-17 process that is
preventing the disk ACP (which might be priority 11) from executing.
If an operating system process needs to perform functions for a
real-time process, you might have to raise the priority of the
system's process.

INTRODUCTION

1.6.2 Adjusting the Base Priority

Raising process priority can decrease the time required for a program
to run to —completion. Programs running in real-time processes have
more predictable execution times, because the process usually waits
only for the completion of requests that it initiates; it does not
spend time wating for lower-priority processes to execute.

The higher the process's priority is set, the less likely it 1is the
process will have to wait. However, vyou must use discretion in
raising priorities, because as you increase the number of real-time
processes executing concurrently, vyou potentially decrease the
effectiveness of each priority designation.

User privileges are required to set the priority of any process other
than your own or to raise the priority of any process (including your
own) higher than vyour own base priority. The following user
privileges enable you to perform the indicated functions:

e The GROUP privilege allows you to change the priority of other
processes in your group.

e The WORLD privilege allows you to change the priority of any
other processes in the system.

e The ALTPRI privilege allows you to set the priority of any
process whose priority you have privilege to change (see GROUP
and WORLD privilege explanations) higher than vyour own base
priority. If you do not have the ALTPRI privilege, you can
set the priority of any process whose priority vyou have
privilege to set only equal to or lower than your own base
priority.

There are two ways to change the base priority of a process:
e At the command level with the command:
$ SET PROCESS/PRIORITY=n

e At the program level with the Set Priority ($SETPRI) system
service

The Set Priority system service is probably more useful to real-time
programmers than the SET PROCESS/PRIORITY command, because the system
service enables vyou to set ©process base priorities dynamically
according to the program's logic. This service has the following
general formats:
MACRO Format

SSETPRI [pidadr], [prcnam],pri, [prvpril
High-Level Language Format

SYSS$SSETPRI ([pidadrl, [prcnam],pri, [prvpril)

The VAX/VMS System Services Reference Manual has a detailed
explanation of the Set Priority system service.

CHAPTER 2

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

The VAX/VMS system gives you considerable control over the execution
context of vyour applications, provided vyou have suitable user
privileges. Each application runs in the context of one or more
processes and can control that context in the following ways:

e Create processes (subprocesses or detached processes) to
divide the work into related segments

e Set each process's base priority to achieve real-time
responsiveness

e Control each process's use of physical memory

You can use these features to ensure that all components of a
real-time application receive adequate processor time and physical
memory when they need them.

Process base priority is discussed in Section 1.6, Process creation
and control of physical memory are discussed in this chapter.

The DISPLAY utility allows you to monitor system activity, and thus to
obtain information that can guide you in using features discussed in
this chapter. The VAX/VMS System Manager's Guide explains the
functions and operation of the DISPLAY utility.

The Get Job/Process Information (SGETJPI) system service can also be
used to obtain information about one or more processes. The VAX/VMS
System Services Reference Manual explains the Get Job/Process
Information system service, 1including the "wild card" process
searching capability.

2.1 PROCESS CREATION

Real-time applications are often divided into a number of programs.
Each program might run concurrently with one or more others, and each
might run conditionally (for example, only when certain events occur).

The VAX/VMS system allows you to create processes to run these
programs. These created processes can be subprocesses or detached
processes, depending on your purpose and user privileges.

You can <create either type of process with the Create Process
(SCREPRC) system service or with the RUN command, although real-time
applications frequently create subprocesses with the S$SCREPRC system
service and detached processes with the RUN command (often within a
command procedure at the start of the application). Section 2.,1.3
discusses the SCREPRC system service, and Section 2.1.4 discusses the
RUN (Process) command.

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

2.1.1 Subprocesses and Detached Processes

Subprocesses and detached processes are treated the same by the
scheduling and swapping components of the operating system. For
example, each process of either type has a base priority that the
system uses in scheduling processes, allocating CPU time, and deciding
which process to swap out if necessary. Both types of process are

shown 1in the displays generated by the SHOW SYSTEM command and the
DISPLAY utility.

Subprocesses and detached processes differ, however, in their degree
of 1independence from their creator and in the privileges and quotas
required to use them. Table 2-1 summarizes the major differences
between a subprocess and a detached process.

Table 2-1
Subprocess versus Detached Process

Subprocess Detached Process
1. Shares creator's resources 1. Has own resources and
and its deductible and quotas

pooled quotas

2. Must terminate before its 2. Termination is independent
creator; automatically of its creator's
terminated when its
creator is deleted

3. No privilege required to 3. DETACH privilege required

create a subprocess to create a detached
process

4, Number of subprocesses 4. Number of detached proces-

is limited by creator's ses is limited only by the

PRCLM quota system's maximum total

process count (SYSGEN

parameter MAXPROCESSCNT)

5. Can access devices allocated 5. Must allocate devices it
by its creator needs to reserve for
exclusive use

A process does not need GROUP privilege to use system services or
commands that affect any subprocess it creates (for example, to change
the subprocess's priority). A process does need GROUP or WORLD
privilege, however, to affect a detached process (GROUP if the
detached process is in its group, otherwise WORLD).

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

2.1.2 Real-Time Uses of Detached Processes and Subprocesses

Real-time applications often create detached processes to perform
highly privileged functions and subprocesses to perform functions
requiring little or no privilege. Isolating privileged code as a
detached process makes it easier to debug and affords greater
protection for the system as a whole, Once it is created, a detached
process is more insulated than a subprocess from any errors its
creator may incur, because a detached process terminates independently
of its creator's termination, whereas a subprocess is automatically
deleted under the following conditions:

e If the subprocess was created by a process that is wusing the
command interpreter (for example, by the process created for
you at login time), the subprocess 1is deleted when its
creating process logs out.

e If the subprocess was created by a process that is not wusing
the command interpreter (for example, by another subprocess or
a detached process executing a single image), that subprocess
is deleted when its creator is deleted.

A process can explicitly delete itself or, if it has suitable
privilege, another process by using the Delete Process ($DELPRC)
system service. The WORLD privilege allows you to delete any process
in the system; the GROUP privilege allows you to delete other
processes in your own group.

2.1.3 Create Process System Service

The Create Process ($CREPRC) system service gives you program-level
control over the creation of subprocesses and detached processes. For
example, you might simply create a process at the beginning of the
program and control that created ©process's activity through the
hibernation or suspension mechanisms (see Chapter 3). On the other
hand, you might need to test values within your program or wait for
some external event before creating another process. In any case,
process creation is relatively time consuming, and therefore should be
used prudently in real-time programs.

The Create Process system service has the following general formats:

MACRO Format

SCREPRC [pidadr], [image]l, [input], [outputl, [error],
[prvadrl, [quotal, [prcnam], [baspril, [uic],
[mbxuntl, [stsflg]

High-Level Language Format

SYS$CREPRC ([pidadr], [image], [input], [output], [error],
[prvadr], [quotal, [prcnam], [baspri], [uicl,
[mbxunt], [stsflg])

The following arguments to $CREPRC are of special interest to
real-time users:

e UIC - Determines whether the created process is a subprocess
(no UIC specified -- UIC same as creator) or a detached
process (UIC specified).

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

e PRVADR - Allows you to specify privileges for the created
process. To give the <created process any privilege the
creator does not have, you must have the SETPRV privilege.

e BASPRI - Allows you to specify a base priority for the created
process. To assign the created process a base priority higher
than the creator's own, you must have the ALTPRI privilege.

e STSFLG - Allows you to specify various options for the created
process.

For a detailed explanation of the Create Process system service, see
the VAX/VMS System Services Reference Manual.

2.1.4 RUN (Process) Command

The RUN command creates a subprocess or detached process to run a
specified program if you enter any of the process-related command
qualifiers (that is, any qualifier other than /DEBUG or /NODEBUG).
The general format for the RUN command to create a subprocess or
detached process is listed as follows:

$ RUN/command-qualifiers program-file-spec

Each of the process-related command qualifiers is optional, although
you must enter at least one. The presence of the /UIC command
qualifier determines whether the created process is a detached process
(qualifier specified) or a subprocess (qualifier not specified). The
process-related command qualifiers and their default values are listed
below.

Qualifier Default (if applicable)
/ [NOJACCOUNTING /ACCOUNTING
/AST LIMIT=quota 10 (outstanding ASTs)
/ [NOTAU'THORI ZE
/BUFFER LIMIT=quota 10240 (bytes)

/DELAY=delta time

/ERROR=file~spec

/FILE LIMIT=quota 20 (files)
/INPUT=file-spec

/INTERVAL=delta-time

/10 BUFFERED=quota 4 (outstanding requests)
/10 DIRECT=quota 6 (outstanding requests)
/MATLBOX=unit

/MAXIMUM WORKING SET=quota 200 (pages)
/0UTPUT=file-spec

/PRIORITY=n (same as creator)
/PRIVILEGES=privilege-list (same as creator)
/PROCESS NAME=process-name (null name)

/QUEUE LIMIT=quota 8 (outstanding timer queue requests)
/[NOIJRESOURCE WAIT /RESOURCE WAIT
/SCHEDULE=absolute-time -

/[NO]SERVICE FAILURE /NOSERVICE_FAILURE

/SUBPROCESS LIMIT=quota 8 (subprocesses)

/[NO] SWAPPING /SWAPPING

/TIME LIMIT=limit 0 (that is, no limit)

/UIC=uic

/WORKING_SET=default 200 (pages)

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

The /UIC, /PRIVILEGES, and /PRIORITY qualifiers serve the same
purposes as the UIC, PRVADR, and BASPRI arguments to the Create
Process system service (see Section 2.1.3).

The VAX/VMS Command Language User's Guide has a complete explanation
of the RUN command and the process-related qualifiers.

You may want to include RUN commands for process creation in command
procedures. The following example shows a command procedure that
prompts for information and then creates a subprocess.

SINQUIRE DEVICE "Device name" !Specify input device

SINQUIRE TEST "Test name" . ISpecify program to be run

SINQUIRE INTERVAL "How often should it be reported? (O:mm:ss)"

SRUN/PROCESS NAME='TEST'/PRIORITY=19/INPUT='DEVICE'/OUTPUT=0PAO:-
/INTERVAL='INTERVAL' 'TEST'

2.2 PHYSICAL MEMORY CONTROL

Physical memory is one of the most valuable system resources to a
real-time user. Programs execute faster when the code and data they
need at any given instant are already in memory and do not need to be
retrieved from disk storage.

In brief, VAX/VMS memory management operates 1in the following way.
The pages of a process that are currently in physical memory (usually
a subset of all the process's pages) constitute that process's working
set. The maximum number of physical memory page frames a process can
occupy is determined by its current working set 1limit, When the
number of ©page frames in use reaches the working set limit and the
process needs additional pages, the system pages the process against
itself. That 1is, the system releases pages 1in the working set
(placing each one on the free page list or the modified page list) and
then reads the ©pages it needs from disk or finds them in memory (on
the free page list or the modified page 1list). If and when the
working set requirements of all processes in the balance set (that is,
processes currently in memory) exceed the available physical memory,
one or more lower-priority processes are swapped out (temporarily
removed from the balance set) and their page frames are made available
for use by other processes. For more detailed information on VAX/VMS
memory management, see the VAX/VMS Summary Description and Glossary or
the VAX-11/780 Technical Summary. For information on parameters to
the SYSGEN utility affecting memory management, see the VAX/VMS System
Manager's Guide.

Several system services allow you to control the operating system's
allocation of physical memory to the process. The following services
are most pertinent to real-time manipulation of physical memory:

e Adjust Working Set Limit (SADJWSL)

e Lock Pages in Memory (SLCKPAG)

e Lock Pages in Working Set (SLKWSET)

e Set Process Swap Mode (SSETSWM)
The subsections that follow give brief descriptions and general

formats for these services. For more detailed information, see the
VAX/VMS System Services Reference Manual.

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

2.2.1 Adjusting the Working Set Limit (SADJWSL)

The Adjust Working Set Limit (SADJWSL) system service allows you to
increase or decrease the maximum number of physical memory pages your
process can occupy. You can also use this system service to find your
current working set limit. (You can change and find out your working
set limit at the command level with the SET WORKING SET and SHOW
WORKING_SET commands.) -

The VAX/VMS system normally performs automatic working set adjustment.
However, automatic working set adjustment 1is inhibited for all
processes if vyou specified WSINC=0 to the SYSGEN utility, and
automatic working set adjustment is inhibited for a given process if
the process has a real-time priority (16 through 31) or if the
process's working set default value is equal to its working set quota
(maximum) value. The VAX/VMS System Manager's Guide explains
automatic working set adjustment and the SYSGEN parameters that affect
its operation.

One of the simplest forms of memory management is to change the
working set limit at different points in your program. Large programs
usually proceed in phases; for example, a program might perform a
heavily I/0-bound setup phase, then settle into localized
compute-bound processing, then do discontiguous array processing, and
so forth. If your code has definable phases, you may want to call the
SADJWSL system service at logical points to increase or decrease the
working set limit.

Another use of this system service is to prevent the excessive paging
activity that occurs when a program runs in too small a working set.

You should avoid excessive use of this system service, however,
because it incurs overhead for vyour process and perhaps for other
processes in the system.

No user privilege is required to use the $ADJWSL system service.
However, you cannot set a process's working set limit lower than the
system's minimum limit (determined by the SYSGEN parameter MINWSCNT)
or higher than the process's maximum working set size (determined by
its WSQUOTA entry in the UAF or specified when the process was
created).

The Adjust Working Set Limit system service has the following general
formats:

MACRO Format
$ADJWSL [pagcnt], [wsetlm]
High-Level Langquage Format

SYSSADJWSL ([pagcnt], [wsetlm])

2.2.2 Keeping Pages in the Working Set ($LKWSET)

The Lock Pages in Working Set (SLKWSET) system service allows vyou to
specify that a page or range of pages should not be replaced in the
working set, perhaps because these pages are heavily used or because
the code in them must gain control and execute quickly whenever it is
needed. If the specified pages are not already in the working set,
they are brought into memory if necessary and locked in the working
set. Pages locked in the working set remain so until they are
unlocked by the Unlock Pages from Working Set (SULWSET) system
service.

2-6

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

Pages locked in the working set can be removed from physical memory,
however, 1if their process is swapped out (that is, if the process's
working set is removed from the balance set). To prevent this from
happening, use the Set Process Swaep Mode ($SETSWM) system service to
disable swapping (see Section 2.2.4).

Locking pages in the working set is normally sufficient to gquarantee
that their contents are accessible, especially if swapping is disabled
for the process, However, in a few cases you may need to lock the
pages in memory using the Lock Pages 1in Memory (SLCKPAG) system
service (see Section 2.2.3), to guarantee that the physical location
of the contents never changes. These cases include the following:

e The process must lock pages for a routine that will execute at
an elevated interrupt priority 1level (IPL). Section 4,6.1
discusses interrupt priority levels.

e The process is not using the VAX/VMS I/0 system and must lock
pages for direct I/0 operations.

If you use the SLKWSET system service, be careful not to lock so many
pages that the remaining pages in the working set incur too many page
faults. 1If excessive page faulting occurs, you may need to 1increase
the working set 1limit with the Adjust Working Set Limit (SADJWSL)
service (see Section 2.2.1). .

The Lock Pages in Working Set system service has the following general
formats:

MACRO Format
SLKWSET inadr, [retadr}, [acmode]
High-Level Lanquage Format
SYSSLKWSET (inadr, [retadr], [acmode])

The general format of the Unlock Pages from Working Set system service
is the same as the above, except that SULWSET or SYSSULWSET is used
instead of SLKWSET or SYSSLKWSET.

2.2.3 Keeping Pages in Memory ($SLCKPAG)

The Lock Pages in Memory ($LCKPAG) system service locks a virtual page
or range of wvirtual pages in physical memory. If the specified
virtual pages are not already in memory, they are brought into the
working set and then locked in memory. Locked pages are not available
for page replacement until they are unlocked by the Unlock Pages from
Memory (SULKPAG) system service or until the program terminates
(locked pages are unlocked automatically at image exit). You must
have the PSWAPM user privilege to lock pages in memory.

It is usually not necessary to lock pages in memory; locking them 1in
the working set is often sufficient. (Section 2.2.2 discusses cases
in which pages should be locked in memory.) Use caution, however,
because locking any pages in memory reduces by that number the pages
that VAX/VMS memory management can allocate among other processes in
the system. -

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

Locked pages remain in memory even if their process is swapped out.
To prevent the process from being swapped out, use the Set Process
Swap Mode ($SETSWM) system service to disable swapping (see Section
2.2.4).

The Lock Pages in Memory system service has the following general
formats:

MACRO Format
SLCKPAG inadr, [retadr], [acmode]
High~Level Language Format
SYSSLCKPAG (inadr, [retadr], [acmode])

The general format of the Unlock Pages in Memory system service is the
same as the above, except that SULKPAG or SYSSULKPAG is used instead
of SLCKPAG or SYSSLCKPAG.

2.2.4 Keeping the Process in Memory (S$SSETSWM)

The Set Process Swap Mode ($SETSWN) system service enables vyou to
prevent your process from being swapped out of memory or to allow it
to be swapped out of memory. You must have the PSWAPM user privilege
to alter process swap mode.

An example of real-time use of setting process swap mode is a process
running an image that must respond quickly to some external event
(such as an interrupt), but has nothing to do until the event occurs.
After it 1is activated, the 1image can 1lock critical pages in its
working set (see Section 2.2.2), disable swapping for the process, and
hibernate. (It 1is important to disable swapping, because being in a
hibernate state normally makes a process a good candidate for
outswapping.) When the event occurs, an AST service routine (see
Section 3.3) can awaken the process.

The Set Process Swap Mode system service has the following general
formats:

MACRO Format
$SETSWM [swpflg]
High~Level Language Format
SYSSSETSMW ([swpflg])

The SWPFLG argument can be a value of 0 (the default, to allow
swapping) or 1 (to inhibit swapping).

CHAPTER 3

COMMUNICATING AND SHARING BETWEEN PROCESSES

Real-time applications often consist of related programs running as
several processes. These processes may be detached processes, or they
may be a detached process with one or more subprocesses. These
processes usually need to communicate with each other and to share
common code or data. Interprocess communication often consists of
event notification (for example, that an I/0 operation is complete),
although it can also involve transmission of messages or other data.
Processes within the application «can synchronize their operations
through effective communication. Processes can also share code or
data to reduce the application's physical memory requirements.

Table 3-1 1lists several VAX/VMS features that <can be wused to
communicate between user processes, synchronize their operations, or
share code and data.

Table 3-1
Features for Communication, Synchronization, and Sharing

Feature Main Use
Common event flags Notify process of event completion;
synchronize access to a resource
Mailboxes Pass messages or other data between
processes
AST service routines Execute desired routine in response to an

external event, regardless of when the
event occurs

Hibernation and Activate subprocesses and detached pro-
suspension cesses only when they are needed

Global sections Share data or code

Shareable images Share data or code

Each feature listed in Table 3-1 is often used with one or more other
features. For example, an AST service routine -executing at I/0
completion might write a message to a mailbox to be read by another

process or might set an event flag for which another process is
waiting.

COMMUNICATING AND SHARING BETWEEN PROCESSES

3.1 COMMON EVENT FLAGS

Common event flags provide a simple and convenient means for event
notification. Cooperating processes can set, clear, and wait for
flags in a common event flag cluster.

Common event flags can be used to synchronize access to a resource by
multiple processes. Appendix A discusses and illustrates the use of a
common event flag as a mutual exclusion (mutex) semaphore to lock a
resource.

Event flags are status-posting bits maintained by VAX/VMS for general
programming use. Each process can manipulate up to 128 event flags,
numbered 0 through 127. The event flags are grouped 1into four
clusters of 32 flag bits each; however, whenever you set, clear, or
wait for an event flag, you specify the flag number, not a cluster
number or name. (The significance of the cluster name for common
event flag clusters is discussed later in this section.)

The first two clusters, flags 0 through 31 and 32 through 63, are
called 1local event flags because they are available only to a single
process. Two additional clusters, flags 64 through 95 and 96 through
127, are called common event flag clusters because they can be used by
cooperating processes. Table 3-2 summarizes local and common event
flag clusters.

Table 3-2
Summary of Event Flag Clusters
Event
Flag Numbers Description Restriction
0-23 Local event flag Event flags 24
32-63 clusters for through 31 are
general use by reserved for
a process system use
64-95 Common event Must be associated
96-127 flag clusters before use

Common event flag clusters are either temporary or permanent
(depending on the PERM argument value in the Associate Common Event
Flag Cluster system service call).

Temporary common event flag clusters:

e Do not require any special user privilege, but do use part of
the calling process's timer queue entries (TQELM) quota.

e Are deleted when all processes associated with the cluster
have disassociated from it. A process can disassociate
explicitly using the Disassociate Common Event Flag Cluster
(SDACEFC) service, or it can disassociate implicitly at image
exit.

COMMUNICATING AND SHARING BETWEEN PROCESSES

Permanent common event flag clusters:

o Require the creating process to have the PRMCEB user
privilege.

e Continue to exist wuntil they are explicitly marked for
deletion with the Delete Common Event Flag Cluster ($DLCEFC)
service and no processes are associated with them.

This section will present general formats and focus on aspects
pertinent to real-time applications. Chapter 5 discusses special
considerations for common event flag clusters in shared (multiport)
memory.

The VAX/VMS System Services Reference Manual has a chapter on event
flag usage and detailed description of event flag services.

3.1.1 Creating and Associating with Clusters

To create or associate with a common event flag cluster, use the
Associate Common Event Flag Cluster (SASCEFC) system service, which
has the following general formats:

MACRO Format

$ASCEFC efn,name, [prot],[perm]
High-Level Language Format

SYSSASCEFC (efn,name, [prot], [perm])

The first process specifying a given name creates the cluster and
associates with it; any other processes specifying this name
associate with the existing cluster. All processes associating with
the same common event flag cluster must specify the same name, but
they do not have to specify event flag numbers in the same 32-bit
grouping. You can allow any other process in your group to associate
with the cluster (the default) or restrict association to processes
with vyour UIC (by specifying a PROT argument value of 1), You can
make the cluster temporary (the default) or permanent (by specifying a
PERM argument value of 1).

3.1.2 Setting Event Flags

You can set event flags in a variety of ways. The following system
services accept an optional EFN argument, which specifies an event
flag to be set when the operation is completed:

e Queue I/0 Request (SQIO and S$QIOW forms, S$SINPUT and SOUTPUT
macros)

e Set Timer (SSETIMR)
e Update Section File on Disk (SUPDSEC)
e Get Job/Process Information ($SGETJPI)

Note that each of the above system services clears the specified event
flag before it begins the requested operation.

COMMUNICATING AND SHARING BETWEEN PROCESSES

You can also set an event flag using the Set Event Flag (S$SSETEF)
system service. To <clear an event flag, use the Clear Event Flag
(SCLREF) system service. Both the $SETEF and SCLREF system services

accept only one argument: EFN, a value indicating the flag to be set

or cleared.

3.1.3 Waiting for Event Flags

If a process needs to be activated only in response to one or more
events, you can use one of the following system services to place the
process in a wait state until it must execute:

e SWAITFR - The Wait for Single Event Flag system service places
the ©process 1in a wait state until a single specified event
flag has been set.

e SWFLOR - The Wait for Logical OR of Event Flags system service
places the process in a wait state until any one of a
specified group of event flags has been set.

e SWFLAND - The Wait for Logical AND of Event Flags system
service places the process in a wait state until all of a
specified group of event flags have been set.

During this wait state the process can still receive asynchronous
system trap (AST) interrupts, but after the AST service routine
completes, the process automatically reexecutes the "Wait for..."
service call.

After the flag or flags have been set and the process has responded to
the event(s), the process can reenter the wait state by looping back
to the appropriate system service call.

3.2 MAILBOXES

A mailbox is a record-oriented virtual 1I/0 device that cooperating
processes canh use to send messages, status information, return codes;
or other data to each other. A mailbox must be created using the
Create Mailbox and Assign Channel (SCREMBX) system service. Any other
process that needs to use the mailbox simply assigns an I/0 channel to
the mailbox using the $CREMBX system service or the Assign I/0 Channel
(SASSIGN) system service. Actual data transfer (reading and writing)
involving the mailbox 1is accomplished by using I/0 system services,
RMS, or high-level lanquage I/0 statements.

Mailboxes are suited to sending messages that cannot be conveyed by
the simpler and faster operations of setting and clearing event flags.
Mailboxes can hold multiple messages, which are read on a first-in
first-out (FIFO) basis, whereas with an event flag you cannot
determine from a flag's current status how many times it has been set
or cleared. Some overhead 1is 1involved, however, with the use of
mailboxes. Therefore, to pass and read messages faster you can use a
global section (see Section 3.5) to hold the messages and common event
flags to notify processes that messages are ready to be read.

COMMUNICATING AND SHARING BETWEEN PROCESSES

A special use of a mailbox is as a process termination mailbox, which
receives a process termination message for the creating process when a
subprocess or detached process 1is deleted. Process termination
mailboxes are discussed in the VAX/VMS System Services Reference
Manual.

Mailboxes are either temporary or permanent. Table 3-3 contrasts the
two types.

Table 3-3
Temporary versus Permanent Mailboxes

Temporary Permanent
1. TMPMBX user privilege 1. PRMMBX user privilege
required to create required to create
2. Creating process's buffered 2. No process quotas affected

I/0 byte count (BYTLM)
quota 1is reduced (see
Section 3.2.1)

3. Logical name entered in 3. Logical name entered in

group logical name table system logical name table

4, Automatically deleted when 4. Must be explicitly marked

no more channels are for deletion with the

assigned to it Delete Mailbox (SDELMBX)
service

Chapter 5 discusses mailboxes in shared (multiport) memory. The
chapter on the mailbox driver in the VAX/VMS I/0 User's Guide contains
information on the use of mailboxes and a programming example.

3.2,1 Creating a Mailbox

The Create Mailbox and Assign Channel system service creates a mailbox
or, 1if the specified mailbox already exists, assigns a channel to it.
This service has the following general formats:

MACRO Format

SCREMBX {prmflgl,chan, [maxmsgl, [bufquol, [promsk],
[acmode], [lognam]

High-Level Language Format

SYSSCREMBX ([prmflg],chan, [maxmsg], [bufquol, [promsk},
[acmode], [lognam])

The PRMFLG argument determines whether the mailbox is temporary (the
default) or permanent (value of 1). 1If the mailbox is temporary, the
process's buffered I/O byte count (BYTLM) quota is reduced by the sum
of the following until the mailbox is deleted:

e The number of bytes of system dynamic memory that can be used
to buffer messages sent to the mailbox

® The size of the mailbox unit control block

3-5

COMMUNICATING AND SHARING BETWEEN PROCESSES

The PROMSK argument allows you to restrict access to the mailbox by

setting specific bits in a protection mask. This mask contains four
4-bit fields:

15 1 7 3 0

WORLD | GROUP | OWNER | SYSTEM

The bits are read from right to left in each field and indicate, when
they are set, that read, write, execute, and delete access (in that
order) are denied to the particular category of user. Only read and
write access, however, are meaningful for mailbox protection. The
default setting of 0 (all bits cleared) indicates that all users have
read and write access to the mailbox.

The ACMODE argument allows a process executing at a more privileged
access mode to associate a 1less privileged access mode with the
channel assigned to the mailbox. (Kernel mode is the highest; user
mode 1is the lowest.) The access modes and their corresponding values

are listed below. The symbolic names for the values are defined by
the S$PSLDEF macro.

Access Mode Value Symbolic Name
Kernel 0 PSL$C_KERNEL
Executive 1 PSLSC_EXEC
Supervisor 2 PSLSC_SUPER
User 3 PSLSC_USER

Any ACMODE value you specify is maximized with vyour current access
mode; that is, the channel is associated with the less privileged of
the specified mode and your current mode.

The LOGNAM argument allows you to specify the logical name associated
with the mailbox. Processes using a mailbox must specify the same
logical name to identify that mailbox. When the mailbox is created,
the 1logical name 1is entered in the group logical name table if the
mailbox is temporary and in the system 1logical name table if the
mailbox is permanent.

3.2.2 Other Mailbox Services

To use an existing mailbox, your process must assign it an I/0 channel
using the Create Mailbox system service or the Assign I/0O Channel
system service. (A high-level language program, however, need only
issue an OPEN statement specifying the logical name of the mailbox.)
The Assign I/0O Channel system service has the following general
formats:

MACRO Format

SASSIGN devnam,chan, [acmode], [mbxnam]
High-Level Language Format

SYSSASSIGN (devnam,chan, [acmode], [mbxnam])

3-6

COMMUNICATING AND SHARING BETWEEN PROCESSES

The DEVNAM argument must specify the mailbox logical name. The ACMODE
argument has the same meaning as in the Create Mailbox service. The
VAX/VMS System Services Reference Manual describes the Assign 1I/0
Channel system service in detail.

To delete a permanent mailbox, you must mark it for deletion using the
Delete Mailbox ($SDELMBX) system service. Actual deletion occurs,
however, when all processes have deassigned the 1/0 channels
connecting them to the mailbox or closed the file in a high-level
language program. To deassign the I/0 channel, use the Deassign 1I/0
Channel ($SDASSGN) system service.

3.2.3 Example Using a Mailbox

Figure 3-1 is a simple illustration of cooperating processes using a
mailbox.

PROGRAM MASTERPROC W
INTEGER*4 SYSS$SCREMBX,SYS$CREPRC,STATUS,CHAN

C-- Create a mailbox and call it BOX'

@ STATUS = SYSSCREMBX(,CHAN,,,,,'MAILBOX')
IF (.NOT. STATUS) CALL LIB$STOP ($VAL (STATUS))

C-- Create a subprocess running program 'SUBPROC' and assign its input to be
C-- the mailbox and its output to be our terminal

@ STATUS = SYS$CREPRC(, 'SUBPROC', 'MAILBOX','TTD6:',,,,,$VAL(2),,,)
IF (.NOT. STATUS) CALL LIBS$STOP ($VAL (STATUS))

C~-- Send the subprocess a message (in this case the number 12345)
G) OPEN (UNIT=1,NAME="'MAILBOX',STATUS="'NEW')

WRITE(1l,*) 12345
END

PROGRAM SUBPROC

C-- Read the message from the mailbox and, in this case, just display it
¢ ACCEPT *,MESSAGE
TYPE 10,MESSAGE

10 FORMAT (' The message was: ',I5)
END

Figure 3-1 Using a Mailbox to Communicate

Notes on Figure 3-1:
One process creates a mailbox.
The process creates a subprocess.

The creating process writes a message to the mailbox.

o 00

The subprocess reads the messaqge.

COMMUNICATING AND SHARING BETWEEN PROCESSES

3.3 ASYNCHRONOUS SYSTEM TRAP SERVICE ROUTINES

An asynchronous system trap (AST) is a software-simulated interrupt
used for event notification within a process. An AST service routine
is a user-written routine that receives <control when an AST is
"delivered" after being queued to the process. The AST is delivered
to the process (that is, interrupts the process execution flow) as
soon as no higher-priority process 1is executable, unless specific
conditions temporarily prevent it from being delivered (see Section
3.3.2). When the AST service routine completes, the current image
continues executing from the point at which it was interrupted. ASTs
are thus a mechanism to allow asynchronous operations.

3.3.1 System Services with AST Service Routine Arguments

Several system services allow you to specify an AST service routine to
be executed when the requested operation is completed. The call to
the service initiates the request, and an AST is queued to the process
when the request is completed. These services are as follows:

e Queue I/0 Request ($QIO)
e Update Section File on Disk (SUPDSEC)
e Get Job/Process Information (SGETJPI)

The Set Timer (SSETIMR) system service allows you to specify (1) an
absolute or delta time for an AST to be queued to the process, and (2)
the address of an AST service routine.

The Set Power Recovery AST (SSETPRA) system service specifies the
address of an AST service routine to receive control after a power
recovery is detected.

The Declare AST (SDCLAST) system service allows a process to queue Aan
AST for itself at the same or a less privileged access mode and to
specify an AST service routine. This service is particularly useful
for testing an AST service routine and for initiating actions that
must be performed in an AST service routine.

The VAX/VMS System Services Reference Manual contains a chapter on AST

services, including a discussion on writing an AST service routine,.

3.3.2 Access Modes and AST Delivery

ASTs are queued for a process by access mode. An AST for a more
privileged access mode always takes precedence over one for a less
privileged access mode; that 1is, an AST will interrupt any AST
service routine executing at a less privileged mode. Normally, AST
service routines that you specify execute at user access mode;
however, the process can receive ASTs from more privileged access
modes (for example, a kernel-mode AST at I/0 completion).

Figure 3-2 shows a program interrupted by a user-mode AST, and the
user-mode AST service routine interrupted by a kernel-mode AST.

COMMUNICATING AND SHARING BETWEEN PROCESSES

Program
User-mode AST service
" AST routine
~ .
N
~ N Kernel-mode Kernel-mode
N AST AST service routine
N0 e ——
AN S
N ~
N ™~
N ~ -
N ~
V NV Return >~ Y Return
Legend: Execution Transfer of
flow control

‘ ———

Figure 3-2 Access Modes and AST Delivery

An AST cannot be delivered to a process, however, while any of the
following conditions are true:

® An AST service routine is currently executing at the same or a
more privileged access mode.

e The current image is executing at a more privileged access
mode than the mode for which the AST is declared.

e You have explicitly disabled AST delivery using the Set AST
Enable ($SSETAST) system service.

e The process is suspended (see Section 3.4).

3.4 HIBERNATION AND SUSPENSION

Hibernation and suspension are two synchronization mechanisms that
allow a process to control when it or another process becomes active.
Hibernation and suspension both temporarily halt the execution of a
process; however, there are differences in how the mechanisms
operate., Table 3-4 contrasts hibernation and suspension.

COMMUNICATING AND SHARING BETWEEN PROCESSES

Table 3-4
Hibernation versus Suspension

Hibernation Suspension
1., Process can cause only 1. Process can suspend
itself to hibernate itself or another

process, depending on
privilege

2. Interruptible; ASTs can 2. Not interruptible; ASTs
be delivered to the process can be queued but not
delivered

3. Reversed by S$SWAKE system 3. Reversed by SRESUME
service system service

4, Process can wake itself or 4, Process cannot cause

be awakened by another process itself to resume;

another process must

cause resumption

5. Process can schedule wakeup at 5., Process cannot schedule
absolute time or fixed time resumption
interval ($SCHDWK service)

6. Hibernate/wake complete 6. SSUSPEND service uses
quickly and require system dynamic memory;
little system overhead resumption takes longer

The next two subsections provide coding examples illustrating two
common uses of hibernate/wake:

e Activating a process as needed
e Activating a process at fixed intervals

Note that in both examples the process to be awakened is identified by
process identification number rather than by process name. Either
method is acceptable; however, when a process 1is identified by
process identification number, the system service executes slightly
faster, because it does not have to search the process name table.

3.4.1 Example 1l: Wakeups as Needed

PROCESS1 creates PROCESS2 as a subprocess or detached process, but
wants the c¢reated process to run only when certain events occur or
certain conditions are true. Therefore, PROCESS]1 sets bit 5 in the
STSFLG argument to the Create Process system service call, causing
PROCESS2 to hibernate immediately after it is created. PROCESS2 is
activated only when PROCESS1 so requests, and PROCESS2 returns to
hibernation immediately after it does whatever the specific
application requires (for example, writing information to a mailbox
used by both processes).

COMMUNICATING AND SHARING BETWEEN PROCESSES
PROCESS 1 Wakes PROCESS2 whenever necessary

PROCESS2_1ID: .BLKL 1 ;RECEIVE ID OF CREATED PROCESS
PROCESS2_NAME: .ASCID /PROCESS2/ ;NAME OF CREATED PROCESS

$CREPRC_S PIDADR=PROCESS2_ID,- ; CREATE PROCESS2
PCRNAM=PROCESS2_ NAME, - ;SPECIFY NAME
STSFLG=#"B10000, - ; PROCESS2 STARTS IN HIBERNATION
. ; (OTHER ARGUMENTS, AS NEEDED)
BSBW ERROR ;BRANCH TO ERROR-CHECKING ROUTINE
SWAKE_S PIDADR=PROCESS2_ID ; WAKE PROCESS2
BSBW ERROR ;BRANCH TO ERROR-CHECKING ROUTINE

SWAKE_S PIDADR=PROCESS2_ID ;WAKE PROCESS2
BSBW ERROR ;BRANCH TO ERROR-CHECKING ROUTINE

PROCESS2 Awakens, performs functions, then goes back to sleep

.ENTRY START,O0 ; IMAGE ENTRY POINT & MASK
. ; (PERFORM FUNCTIONS)
RET ;BACK TO HIBERNATION

3.4.2 Example 2: Wakeups at Fixed Intervals

PROCESS1, a process with a priority in the timesharing range, creates
PROCESS2 as a subprocess or detached process with a real-time base
priority. PROCESS2 will run only at a fixed interval, in this case
every hour, although 1its priority helps to ensure that when it does
run it will run without interruption.

PROCESS2 hibernates immediately after it is created. PROCESS1 used
the Schedule Wakeup (SSCHDWK) system service to schedule a wakeup for
PROCESS2 in one hour (DAYTIM argument) and every hour thereafter
(REPTIM argument). When PROCESS2 is activated, it performs its tasks
and returns to a state of hibernation.

COMMUNICATING AND SHARING BETWEEN PROCESSES
PROCESS1 Process with timesharing priority

PROCESS2_ 1ID: .BLKL 1 ;RECEIVE ID OF CREATED PROCESS
PROCESS2 NAME: .ASCID /PROCESS2/ ;NAME OF CREATED PROCESS
A1HOUR: .ASCID /0 01:00:00.00/ ;ONE HOUR (DELTA TIME) IN ASCII

B1HOUR: .BLKQ 1 ; QUADWORD TO HOLD BINARY TIME VALUE
SCREPRC S PIDADR=PROCESS2 ID,...- ; CREATFE PROCESS?2
- ,PCRNAM=PROCESSZ NAME,-
BASPRI=#17,... ;REAL-TIME PRIORITY
BSBW ERROR ;BRANCH TO ERROR-~CHECKING ROUTINE
$BINTIM S TIMBUF=A1HOUR,- ; CONVERT TIME TO BINARY
~ TIMADR=B1HOUR
BSBW ERROR ;BRANCH TO ERROR-CHECKING ROUTINE

$SCHDWK S PIDADR=PROCESS2 ID,- ;SCHEDULE WAKEUP FOR PROCESS2
T DAYTIM=BlHOUR,- ; IN ONE HOUR,
REPTIM=B1HOUR ; AND EVERY HOUR THEREAFTER
BSBW ERROR ;BRANCH TO ERROR-CHECKING ROUTINE

. ; (CONTINUE PROGRAM EXECUTION)

PROCESS2 High priority real-time process

.ENTRY START,O : IMAGE ENTRY POINT & MASK
SLEEP: SHIBER_S ;SLEEP TILL NEXT SCHEDULED WAKEUP
BSBW ERROR ;BRANCH TO ERROR-CHECKING ROUTINE
. ; (PERFORM HIGH-PRIORITY TASKS)
BRW SLEEP ;BACK TO SLEEP (FOR ONE HOUR)

A specific application of this example might involve a routine that
needs to run periodically to gather and process status information.
The routine might run for only a very short time, for example, a few
seconds every hour. To prevent the routine from being interrupted,
you can assign its process a real-time base priority and use any of
the other methods discussed in Chapter 2.

3.5 GLOBAL SECTIONS

A global section is an area of memory containing data or code that can
be shared by cooperating processes. One process "creates" the
section; subsequent processes establish their right to wuse the
section by "mapping" to it. The data or code in the section can be
from a disk file (disk file section) or in physical memory or I/0
space (page frame section). This section discusses disk file
sections. Physical page frame sections are treated in Chapter 4 in
the discussion of connecting to an interrupt vector.

COMMUNICATING AND SHARING BETWEEN PROCESSES

In many real-time applications, such as data acquisition or industrial
process-control, response time is so critical that control variables
and data readings must remain in memory. Frequently, many different
processes must use this data simultaneously. Global sections provide
a convenient mechanism for fast access to the data and for the rapid
passing of data from one process to another.

Global sections can be temporary or permanent. Temporary sections are
deleted when no processes are mapped to them, but permanent sections
must first be explicitly marked for deletion with the Delete Global
Section ($DGBLSC) system service. Most global sections that you
create from within your programs should be temporary, so that the
system resources associated with the section can be freed as soon as
they are no longer needed. Temporary global sections in real-time
applications wusually contain data rather than code. Permanent global
sections, on the other hand, usually contain routines common to

several programs. In fact, most of the permanent global sections in
the system are shareable images installed by the system manager as
known images. (Shareable 1images are discussed in Section 3.6. The

INSTALL utility is explained in the VAX/VMS System Manager's Guide.)

VAX-1ll Record Management Services (VAX-11 RMS), with its file-sharing
capabilities, provides an alternative to global sections in some cases
as a mechanism for sharing disk file data. Each method has its
advantages; however, global sections provide the faster access that
many real-time applications require. Table 3-5 shows the trade-offs
involved 1in <choosing between a global section and VAX-11 RMS for
sharing disk file data.

Table 3-5
Global Sections versus VAX-11 RMS

Global Sections VAX-11 RMS
1. Faster access to data 1. Access to data slowed by
file-system overhead
2. More programming effort 2. Programming simplified by
required; user must define VAX-11 RMS or high-level
and keep track of service language macros; most
arguments and other data internal operations and

data structures transparent
to the user

3. Greater burden on the 3. Automatic file protection
user to protect data and synchronization of
and synchronize access access, based on parameters

supplied by user

4, Especially suited for 4, FEspecially suited for large
small files files

Chapter 5 discusses global sections in shared (multiport) memory.

COMMUNICATING AND SHARING BETWEEN PROCESSES

3.5.1 Creating and Mapping a Global Section

The Create and Map Section ($SCRMPSC) system service creates a section
or maps to an existing section. The VAX/VMS System Services Reference
Manual has a detailed description of this service and a lengthy

discussion of sections in general. The present manual gives only the
general format for calling the service and discusses a few arguments
especially significant to real-time users.

The Create and Map Section system service has the following general
formats:

MACRO Format

$CRMPSC [inadr], [retadr], [acmode], [flags], [gsdnam], [ident]
¢ [relpag], [chan], [pagcent], [vbn], [prot], [pfc]

High-Level Langquage Format

SYSSCRMPSC ([inadr], [retadr], [acmode], [flags], [gsdnam], [ident]
s [relpagl, [chan], [pagcnt], [vbn], [prot], [pfcl)

The FLAGS argument specifies a mask defining the section type and
characteristics. This mask 1is the logical OR of the flag bits you
want to set. (The S$SECDEF macro defines the symbolic names for the
flag bits in the mask.) To specify a global section, you must set the
SECSM_GBL flag bit. You can set additional flag bits as needed. The
flag bit meanings and the default values they override are listed
below.

Flag Meaning Default Attribute
SECSM_GBL Global section Private section
SECSM_CRF Pages are copy-on-reference Pages are shared
SECSM_DZRO Pages are demand-zero pages Pages are not zeroed

when copied

SECSM_EXPREG Map into first available Map into range speci-

space fied by INADR arqgument
SECSM_WRT Read/write section Read-only section
SECSM“PERM Permanent Temporary
SECSM_PFNMAP Physical page frame section Disk file section
SECSM_SYSGBL System global section Group global section
The PROT argument specifies a numeric value representing the

protection mask to be applied to the section. To deny read or write
access to the section to one or more types of user, you must specify
the appropriate protection mask. If you do not specify this argument,
all users have read and write access to the section.

COMMUNICATING AND SHARING BETWEEN PROCESSES

The protection mask has four 4-bit fields:

WORLD | GROUP | OWNER | SYSTEM

Bits are read from right to left in each field and indicate, when they
are set, that read, write, execute, and delete access (in that order)
are denied for that particular category of wuser. However, the
following considerations apply to any protection mask you specify:

e Only read and write access are meaningful for section
protection. Denying execute or delete access has no effect.

e For group global sections the "World" field has no effect,
because only members of the creator's group are permitted to
map to the section. The "World" field does apply, however, to
system global sections.

For example, to allow the owner of a group global section to read and
write to the section but allow other members of the group only to read
the section (that is, to deny them write access), specify a protection
mask of 0200 (hexadecimal).

3.5.2 Other Section-Related System Services
The following system services are often used with global sections:

e Map Global Section (SMGBLSC). Maps an existing global
section.,

e Update Section File on Disk (SUPDSEC). Writes the modified
pages of a section back to the disk file. This system service
is especially useful for periodically wupdating a data base
that is being modified by multiple processes.

e Delete Virtual Address Space ($SDELTVA). "Unmaps" a global
section by deleting the process's virtual addresses into which
the section was mapped.

e Delete Global Section ($SDGBLSC). Marks a global section for
deletion. Actual deletion occurs when no processes are mapped
to the section.

3.6 SHAREABLE IMAGES

Shareable images can be used to share frequently used code or data
among multiple processes. A shareable image might contain routines
that are common to several programs. If a shareable 1image is
installed 1in the system as a permanent global section (as is normally
the case), other programs can share its contents by linking with it.
The benefits of wusing shareable images include reductions in disk
storage space, physical memory use, and system paging activity. The
VAX-11 Linker Reference Manual explains the benefits and uses of
shareable images in detail.

COMMUNICATING AND SHARING BETWEEN PROCESSES

In the airline reservation example in Chapter 7, the reservation data
base is a shareable image.

To use a shareable image effectively, you must <create the shareable
image and then permit other programs to use it.

To create a shareable image, you must perform the following steps:

1. Code the program containing the routine or data to be shared.
Design this program to meet the needs of all other programs
that will be using it (that is, all programs that will be
linked to the shareable image). Follow the programming
conventions discussed in the chapter on shareable 1images in
the VAX-11 Linker Reference Manual.

2. Assemble or compile the program containino the shareable code
or data. For example:

$ MACRO SHCODE

This command generates the object module SHCODE.OBJ in vyour
default directory (assume that this is DB1:[SMITH] for this
and the remaining steps).

3. Link the object module to produce a shareable image, using
the /SHAREABLE command qualifier. For example:

$ LINK/SHAREABLE SHCODE

This command generates the shareable image SHCODE.EXE in your
" default directory.

To permit other programs to use the shareable image, you must perform
the following steps:

1. Create a linker options file., 1Identify the shareable image
to be used with the /SHAREABLE file qualifier. For example,
create a file named A.OPT containing the following line:

DBl:[SMITH] SHCODE/SHAREABLE

2. Link each program that will use the shareable image,
identifying the 1linker options file with the /OPTIONS file
qualifier. For example:

SLINK PROGRAM1,A/OPTIONS

This command generates an executable image named PROGRAM1
that is linked with the shareable image SHCODE.

To permit multiple processes to use the same copy of the shareable
image, 1install it as a known image, using the INSTALL utility. (The
VAX/VMS System Manager's Guide explains the INSTALL utility.) It is

recommended that you copy the shareable image file to the directory
identified by the logical name SYSSSHARE (which by default is [SYSLIB]
on the system disk), and then run INSTALL:

$ RUN SYSS$SYSTEM:INSTALL
INSTALL>SYS$SHARE : SHCODE /OPEN/SHARED

The example above designates the shareable image as a permanent global
section, that is, a permanently open section potentially available to
all users of the system.

COMMUNICATING AND SHARING BETWEEN PROCESSES

Note that the VAX/VMS image activator assumes that shareable images
linked with the executable image being run are located in SYS$SHARE.
To have the image activator look for a shareable image in a different
location, define the shareable image file name as a logical name with

the file specification as the equivalence name before running the
executable image. For example:

$ DEFINE SHCODE DB1l:[SMITH]SHCODE

CHAPTER 4

PERFORMING I/O OPERATIONS

A real-time VAX/VMS process can use the VAX/VMS I1/0 system to perform
I/0 operations, or it <can bypass most of the I/O system by
manipulating device registers and responding to device interrupts
directly. Before vyou can optimize I/0 operations for a real-time
application, however, you must understand the components that form the
VAX/VMS I/0 system and how they interact,

4,1 OVERVIEW OF THE VAX/VMS I/0 SYSTEM
The VAX/VMS I/0 system has the following major components:
e The Queue I/0 Request system service
e Device drivers
e Ancillary control processes (ACPs)
e The I/0 posting routine

The following subsections describe the main functions of these
compohnents,

4.1.1 Queue I/0 Request System Service

Every I/0 request issued by a process under VAX/VMS results directly
or indirectly 1in the 1invocation of the Queue I/0 Request system
service. For example, both a FORTRAN READ statement and a VAX-11 RMS
SGET request from a VAX-1l MACRO program cause the Queue I/0 Request
system service to be called.

You can call the Queue I/0 Request system service specifying one of
three types of function code: physical, logical, or virtual. The
service validates the device-independent portions of the I/0 request.
The device driver or ancillary control process (ACP) performs any
necessary validation of the device-dependent portions of the 1I/0
request.

The VAX/VMS I/0 User's Guide lists the valid function codes for each
device driver or ACP and provides guidelines for choosing among
function codes when alternatives are available.

PERFORMING I/O OPERATIONS

4,1.2 Ancillary Control Processes
An ancillary control process (ACP) is a VAX/VMS process that performs
I/0-related functions associated with file structures and protocol,
rather than functions related to the actual transfer of data. VAX/VMS
supplies at least five ACPs:

e Two or more ACPs for Files-11 structured disk devices

e One ACP for ANSI magnetic tapes

e NETACP for network functions

e REMACP for remote terminal I/0 functions
The use of ACPs is normally transparent to your programs. VAX-11] RMS
issues the necessary Queue I/0 Request system services for virtual
functions on your behalf. You can, however, issue Queue I/0 Request
system service calls directly for Files-~1l disk and magnetic tape ACPs
to request such functions as the following:

® File creation

o File access

e Reading and writing of virtual blocks

e File deletion

The VAX/VMS I/0 User's Guide describes the wuse of ACPs by user
processes.

When a user process or VAX-11] RMS issues a Queue I/0 Request system
service for an ACP function, the Queue I/0 Request system service
passes the request to the appropriate ACP. The ACP processes the
request (if necessary), converts the function from virtual to logical
(if necessary), and queues the request to the appropriate device
driver. The driver performs the transfer, as described in Section
4.1.3.

4.1.3 Device Drivers
Device drivers are responsible for taking the information that the
Queue I/0 Request system service provides about an I/0 request and
performing the I/0 operation. To accomplish these tasks, a driver
contains the following main routines:

e Device activation routine

e Interrupt service routine

e I/0 completion routine
Drivers also contain other routines to handle request wvalidation and

such contingencies as power failure and device timeout, as described
in the VAX/VMS Guide to Writing a Device Driver.

PERFORMING I/0 OPERATIONS

The device activation routine obtains the device controller resources
needed to perform the transfer (for example, the controller data
channel), sets up device registers in I/0 space, and initiates the
transfer. Once the transfer 1is 1initiated, the device activation
routine issues a wait request that temporarily suspends the device
driver.

When the transfer is complete, the device requests an interrupt and
the system activates the driver's interrupt service routine to handle
the interrupt. (Section 4.6 discusses interrupt handling.) In
addition to handling the interrupt, the interrupt service routine may
program the device for another transfer or may activate the 1I/0
completion routine in the driver to perform device-dependent I/0
completion., The driver's I/0 completion routine, 1in turn, passes
control to the VAX/VMS I/0 posting routine.

4,1.4 1/0 Posting Routine

Once the device driver has finished the device-dependent portions of
the I/0 request, it <calls the 1I/0 posting routine. 1I/0 posting
consists of completing the device-independent portions of the 1I/0
request, setting a designated event flag (flag 0 by default), and
queuing a kernel mode AST for the process that initiated the 1I/0
request.

The next time the system schedules this process for execution, the
kernel mode AST routine executes. This routine completes the I/0
request by performing the following functions:

e If requested, writes the status of the 1I/0 request 1into a
user-specified I/0 status block.

e If requested, queues an AST at the access mode of the Queue

I/0 request for the ©process to execute a user-specified
routine.

e For read requests that were buffered in system space, copies
the data from system space into the user's bhuffer. Device
drivers determine whether the data is read directly into the
user buffer (direct 1I/0) or buffered first in system space
(buffered I/0).

The driver's I/0 posting routine has a lower priority than the
driver's start I/0 routine. Therefore, if a new I/0 request is queued
for the device before the existing I/0 request is completed, the new

I/0 1is started. This method of operation keeps the device as busy as
possible.

4.2 USER INTERFACE TO THE I/O SYSTEM

The design of the VAX/VMS I/0 system allows user-written programs to
interface with the system at a number of levels:

e VAX-11 Common Run-Time Procedure Library routines
e VAX-11 Record Management Services (VAX-11 RMS)
e Queue I/0 Request system service for a device or ACP function

® Connecting to a device interrupt vector

PERFORMING I/0 OPERATIONS

In addition, users can write device drivers to support devices not
supported by VAX/VMS and incorporate those devices into the system.

Programs written in VAX-11 MACRO can interface with the I/0 system by
using VAX-11 RMS, by using the Queue I/0 Request system service, or by
mapping to I/0 space and connecting to a device interrupt vector.
Programs written in a high-level language can interface with the I/0
system using the same methods as a VAX-11 MACRO program, or they can
issue the 1I/0 statements specific to that language. In the latter
case, the program interfaces with the I/0 system by means of the
VAX-11 Common Run-Time Procedure Library.

The following steps occur when a high-level language program, in this
case VAX-11] FORTRAN, issues a read request under VAX/VMS:

e When the program executes, the read statement results in a
call to the Run-Time Library read procedure to initiate the
read operation. To initiate the read, the procedure issues a
VAX-11 RMS SGET request.

e VAX-11 RMS gains control and, in turn, issues the appropriate
Queue I/0 Request system service.

e The Queue I/0 Request system service processes the request (as
described in Section 4.1.1) and queues it to the driver or
ACP.

e Once the driver activates the device and completes the I/0
operation, it calls the VAX/VMS I/0 posting routine.

e The VAX/VMS I1/0 posting routine then performs
device-independent I/0 completion, returns status to the user
program, and, if requested, queues an AST or sets an event
flag.

A user program can interface with the I/0 system at one of several
levels, depending on its requirements. At each level, the user
program makes trade offs between ease of use and execution speed. As
a general rule, the <closer to the VAX/VMS executive that a user
program interfaces, the less overhead 1is 1involved 1in the 1/0
operation. This manual focuses on the following lower levels of
interface: the Queue I/0 Request system service, the Create and Map
Section system service, and the connect-to-interrupt capability.

4.2.1 VAX-1ll RMS Features of Interest to Real-Time Users

VAX-11 Record Management Services has several features that may permit
certain applications to take advantage of VAX-11] RMS and still meet
their throughput and response requirements. Listed below are
descriptions of these features, with the VAX-11 RMS mechanism
associated with each feature. Complete descriptions of the features
and mechanisms are given in the VAX-11 Record Management Services
Reference Manual.

PERFORMING I/0 OPERATIONS

Mechanism Feature
SFAB ALQ=quantity Preallocation of enough blocks to hold the
entire file. Avoids time-consuming file
extensions and ACP window turns; prevents

discontiquous file extensions.

SFAB FAC=BIO Block I/0 (for SPUT operations). Faster 1/0
because no RMS buffer is used.

SFAB FOP=CTG Contiguous files. Faster access, especially for
random access and/or files with many segments.

SRAB MBF=buffers Multibuffering. Improves throughput,.

SRAB ROP=RAH Read-ahead and write-behind. Improve throughput

SRAB ROP=WBH (done by default by certain high-level 1language

compilers).

SRAB MBC=blocks Multiblock I/0. Reduces number of disk accesses
for record operations.

4.3 USING THE QUEUE I/O REQUEST SYSTEM SERVICE

The Queue I/0 Request ($QI0) system service gives programmers in any
supported language a low-level, flexible interface with the VAX/VMS
I/0 system. You must first assign an I/0 channel to the device using
the Assign 1I/0 Channel (SASSIGN) system service. Your call to the
Queue I/0 Request system service must specify this channel and a
function code identifying the operation to be performed. The optional
arguments to the Queue 1I/0 Request service allow vyou to do the
following:

e Perform asynchronous ($QI0 form) or synchronous ($QIOW form)
I1/0

e Set an event flag at I/0 completion (EFN argument)
e Receive the final completion status (IOSB argument)

® Specify an AST service routine (ASTADR argument) to be
executed when the I/0 completes and pass a parameter (ASTPRM
argument) to that routine

e Specify function-specific or device-specific parameters (P11,
P2, etc.)

There are two forms of this service: Queue I/0 Request ($QI0) and
Queue I/0 Request and Wait for Event Flag ($SQIOW). The $QIO form
returns control to the program immediately after queuing the 1I/0
request and without waiting for the I/0 to be completed; this form
allows your program to perform asynchronous I/0., The S$QIOW form waits
until the TI/0 is completed before returning control to your program.,
(The S$INPUT and $OUTPUT macros are special forms of S$SQIOW.)

PERFORMING I/0 OPERATIONS

The Queue I/0 Request system service has the following general
formats:

MACRO Format

SQIO[W] [efn],chan, func, [iosb], [astadr], [astprm],
[(pl],[p21,[p3], [p4],[p5], [p5l]

High~-Level Language Format

SYS$SQIO (W] ([efn],chan,func, [iosb], [astadr], [astprm],
[pl1,[p2]1,(p31,[p4l, (P51, ([pPH])

The VAX/VMS System Services Reference Manual has additional general
information on this system service and some examples of its use., The
VAX/VMS I/0 User's Guide has specific information and examples of this
system service for each of the device drivers it discusses.

4.4 INTERRUPT-GENERATED I/O

A process with suitable privileges can connect to a device interrupt
vector and/or map the processor's I/0 space into process virtual
address space. Connecting to a device interrupt vector allows your
process to respond to interrupts from the device with minimal
overhead. Mapping processor I/0 space allows your process to access
device registers from the main program or from an AST service routine.

A process normally uses these features for devices that do not have
VAX/VMS drivers. These devices must not be direct memory access (DMA)
devices, and they must be attached to the UNIBUS. Examples of such
devices are the AD11-K the DR11-B, and the KW11l-P.

You can use the Queue I/0 Request ($QI0) system service with an
appropriate function code to connect to a device interrupt vector and
to specify a user-supplied routine, <called an interrupt service
routine (ISR), that VAX/VMS executes when the designated device
interrupts. Connecting to a device interrupt vector allows you to do
the following:

@ Respond to an interrupt within a very short time

@ Preempt other system processing to handle a real-time event,
for example, a clock interrupt

e Buffer data from a device in real time and return the data to
the process at a later time

® Set an event flag or queue an AST to vyour process after
receiving the interrupt

The effect of user-written interrupt service routines is to allow you
to perform some of the functions normally done by a device driver, but
without requiring that you write a full device driver and without
requiring that the routine be loaded into the VAX/VMS operating system
(device drivers are part of VAX/VMS).

PERFORMING I/0 OPERATIONS

If you must access device registers from user mode (that is, from the
main program or a user-mode AST service routine), you must use the
Create and Map Section (SCRMPSC) system service to map I/0 space,
specifying page frame number (PFN) mapping. The service creates a
global or private section that maps the specified I/0 pages into vyour
process's virtual address space. The process can then gain access to
I/0 space using virtual addresses.

You do not need to map I/0 space to access device registers from any
of the following routines specified in the $Q0I0 call connecting to an
interrupt vector: device initialization routine, start I/0 routine,
interrupt service routine, and cancel I1/0 routine. These routines
execute in system space and thus can access UNIBUS I/0 space, which is
mapped as part of system space.

The sections that follow explain how to map the VAX-11 processor's I/0
space and how to connect to a device interrupt vector.

4.5 MAPPING I/O SPACE

On a VAX-11/780 processor, I1/0 space 1is assigned physical address
locations of 20000000 (hexadecimal) and higher. I/0 space contains
device registers that a driver or user process can read and write to
control a device. Each device controller has an associated
control/status register in I/0 space. Device registers for each
device are located at an offset from the device's control/status
register (CSR).

The SIO780DEF macro defines the following symbols describing the
layout of VAX-11/780 I/0 space:

Symbol Meaning Hexadecimal
value

I0780SAL_IOBASE Start of I/0 space 20000000

I0780$AL_UBOSP Start of address space for 20100000

first UNIBUS
These symbols are contained in SYS$LIBRARY:LIB.MLB.

The number of registers and their locations vary for different
devices. The PDP-11 Peripherals Handbook provides the necessary
information for devices supplied by DIGITAL. The VAX-11/780 Hardware
Handbook contains information about the layout of I/O space.

On a VAX~-1l processor, the address of a physical memory 1location has
the format illustrated in Figure 4-1.

T T
]]

31 30:29 §§ 9||8 0
! !

page frame number byte

Figure 4-1 Physical Address

The page frame number (bits 9 through 29) specifies the number of a
physical page in memory. Bit 29 1is clear to indicate a physical
memory address and set to indicate an address in I/0 space. Bits O
through 8 specify the byte address within the page.

PERFORMING I/0 OPERATIONS

For a process to gain access to I/0 space or to any page of physical
memory, it must map that page into its virtual address space. When
your VAX/VMS process maps a page by specifying its page frame number,
it completely bypasses VAX/VMS memory management and creates its own
window to the page. As a result, the protection functions that
VAX/VMS normally performs are not performed for mapping by page frame
number:

e No checks are performed to ensure that no other VAX/VMS
processes are mapped to the page and modifying it.

e No reference count is maintained. A process can delete a
global section mapped by page frame numbers when other
processes are still using it; this is not the case when
VAX/VMS performs the mapping.

Modifying pages mapped by page frame numbers can have unpredictable
results and can adversely affect system operation, especially if the
operating system is also using these pages. Because of the
unprotected nature of mapping by page frame numbers, you must have the
PFNMAP user privilege to use this capability.

4.5.1 Page Frame Number (PFN) Mapping

When used for mapping by page frame number, the Create and Map Section
system service designates the specified page(s) as a global or private
section and maps the section into the requesting process's virtual
address space. The pages can be located anywhere in the VAX-11
processor's local memory, or in MA780 memory (if a multiport memory
unit is connected to the system), or in I/0 space.

The format and conventions for mapping by pade frame number (that Iis,
mapping a physical page frame section) are similar to those for
mapping a disk file section. The Create and Map Section system
service has the following general formats:

MACRO Format

SCRMPSC {inadr] ,([retadr] ,[acmode] ,[flags] ,[gsdnam] ,[ident]
» [relpag] ,[chan] ,[pagcnt] , [vbn] , [prot] ,[pfc]

High-Level Language Format

SYSSCRMPSC ([inadr] ,[retadr] ,[acmode] ,[flags] ,[gsdnam] ,[ident]
([relpag] ,[chan] ,[pagcnt] , [vbn] , [prot] , [pfc])

The RELPAG, CHAN, and PFC arguments are not applicable in mapping by
page frame number. The INADR, RETADR, ACMODE, GSDNAM, IDENT, and PROT
arguments have the same functions regardless of whether you specify
page frame number mapping; these arguments are described in the
VAX/VMS System Services Reference Manual.

The following arguments are affected by PFN mapping:
flags
Mask defining the section type and characteristics. This mask is

the 1logical OR of the flag bits you want to set. The SSECDEF
macro defines symbolic names for the flag bits in the mask.

pagcn

vbn

Notes

PERFORMING I/O OPERATIONS

The SEC$M PFNMAP flag bit must be set to indicate mapping by page
frame number. The SECSM PFNMAP flag setting identifies the memory
for the section as starting at the page frame number specified in
the VBN argument and extending for the number of pages specified
in the PAGCNT argument.

If appropriate, the following flags can also be set:

Flag Meaning Default

SECS_GBL Global section Private section
SEC$M_WRT Read/write section Read-only section
SECSM PERM Permanent section Temporary section

SECSM SYSGBL System global section Group global section
SEC$M:EXPREG Expand the process's Map into range
virtual address space specified by
as needed to contain INADR argument
the section.

Neither the SEC$M~CRF (copy-on-reference) nor the SECSM_DZRO
(demand-zero) bit can be set when mapping by page frame number.

The VAX/VMS System Services Reference Manual provides additional
information about the use of the flag settings.

t

Number of pages in the section; the value of this argument must
not be zero.

Page frame number of the first page to be mapped (as opposed to
this argument's normal usage identifying the starting virtual
block number within a disk file). When you are mapping more than
one page with a single Create and Map Section system service
request, the pages are physically contiguous starting with the
specified page.

l. An error in mapping UNIBUS I/0 space or a reference to a
nonexistent UNIBUS address causes a UNIBUS adaptor error.
However, this error does not cause a system failure. Rather,
an entry is made in the system error log file and the user
program continues executing (probably with erroneous results).
The process is not notified of the UNIBUS adapter error.

2., If a power failure occurs on the UNIBUS, the system continues
to run. However, if a user process accesses UNIBUS I/0O space
from user mode during a UNIBUS power failure, the process
receives a machine check exception. To handle this condition,
the process must have a condition handler to deal with machine
check exceptions. The VAX/VMS System Services Reference
Manual discusses condition handlers in detail.

3. During recovery from -a UNIBUS adaptor power failure, the
processor spends a considerable amount of time (perhaps 10 to
60 milliseconds) at interrupt priority level (IPL) 31, This
action blocks wuser processes from executing during the
recovery.

PERFORMING I/0O OPERATIONS

4.5.2 Programming Conventions for Addressing Device Registers

Once you have mapped to I/O space, you can read data from a device data
buffer register or enable interrupts by setting a bit in a
control/status register, because the device registers are now
addressable as part of your process's virtual memory. The UNIBUS
adapter performs the actual mapping of VAX-11 virtual addresses to
18-bit UNIBUS addresses that correspond to device registers.

Because UNIBUS devices are one word (16 bits) long, all instructions
referring to these registers must be word-context instructions (for
example, BISW, MOVW, and ADDW3), unless the register is byte
addressable. Instructions referring to byte-addressable registers
should be byte-context instructions, such as BISB and MOVB. Unaligned
references and references using a length attribute other than the
length of the register may produce unpredictable results; for
example, a byte reference to a word-addressable register does not
necessarily respond by supplying or modifying the byte addressed. A
longword reference to a UNIBUS location causes a machine check.

Instructions that use a UNIBUS device register as a source operand
must not be interruptible instructions. 1In some cases when a device
register is being copied, interrupting and restarting an instruction
may cause a character to be lost. To gqguarantee a noninterruptible
sequence, use only the instructions 1listed in Appendix C of the
VAX-11/780 Hardware Handbook, and do not use autoincrement deferred
addressing mode or any of the displacement deferred addressing modes.
You should always store the address of a device control register in a
general register and then gain access to the device indirectly through
the general register.

The example below defines symbolic word offsets for each device
register and gains access to them using displacement mode addressing
from R4.

Device register offsets

~. we W

LP CSR =0 ; CSR offset

LP DBR = 2 ; Buffer address offset
MOVL CSR_VA,R4 ; Get CSR address
TSTW LP_CSR(R4) ; Is printer online?

The following restrictions also apply to instructions addressing
device registers:

@ Operand types of floating, double, field, queue, or quadword
are not allowed, nor can the position, size, length, or base
of an operand be from I/0 space. For example, a field
instruction cannot be used to test a bit in a device register.

e You cannot have more than one modify or write destination, and
this modify or write destination must be the last operand.

@ Instructions referring to I/0 space must not cause an
exception after the first 1I/0 space reference. This
restriction includes deferred references to I/0 space.

PERFORMING I/0 OPERATIONS

4.6 CONNECTING TO AN INTERRUPT VECTOR

On a VAX-1ll processor, peripheral devices have interrupt vectors
associated with them. When a device interrupt occurs, the action
taken by the processor depends on the interrupt priority 1level (IPL)
associated with the device,

Connecting to an interrupt vector differs from the standard method of
programming a peripheral device. Programming a peripheral device is
normally a 3-step loop:

1. The device driver starts the device and enables interrupts
from the device.

2. The device generates an interrupt.

3. The device driver fields the interrupt, collects status and
data, and clears the interrupt condition.

Under the VAX/VMS operating system, a user program normally requests
I1/0 by means of a Queue I/0 Request ($QIQ) system service call. A
device driver, executing as part of the operating system, controls and
responds to the device. The driver returns status and data to the
requesting user process.

However, real-time application programmers can connect to an interrupt
vector to control and respond to a device without writing a full VMS
device driver, and without issuing $QI0 calls for each device
interaction. Instead, you issue a connect-to-interrupt $QIO call that
specifies code to be executed to control the device, and a data area
that the program and the device control <code can share. You
subsequently control and respond to the device without additional $QIO
calls.

The timings involved in different system activities associated with
connecting to an interrupt vector are as follows:

e The time between when the device generates an interrupt and
when the process's interrupt service routine receives control
depends upon the IPL of the processor at the time of the
interrupt. 1If the processor is executing at an IPL below that
of the device (as is the usual case), the interrupt service
routine gains control within a few microseconds. However, if
the processor is executing at an IPL above that of the device,
the interrupt service routine does not gain control until the
executing code lowers the IPL below the device IPL, (Section
4,6,1 discusses IPLs.)

e The time from the user interrupt service routine's exit to the
execution of the AST routine specified in the $0IO0 call
depends on the priority of the process and whether a context
switch is required.

4.6.1 Interrupt Priority Levels

VAX-11 processors define 32 hardware interrupt priority levels. These
interrupt priority 1levels establish the order in which peripheral
devices, error condition reporting, and various components of VAX/VMS
gain access to the processor; that is, interrupt priority levels are
a synchronization mechanism. (Interrupt priority is not related to

PERFORMING I/0 OPERATIONS

process priority, which 1is discussed 1in Section 1.6.) VAX/VMS and
VAX-11 processors assign the interrupt priority 1levels (IPLs) as
follows:

® User mode programs run at IPL 0; this is the lowest IPL.

e VAX/VMS routines and device driver processes request
interrupts at IPLs 1 through 15. (Device drivers execute as
fork processes under VAX/VMS, as described in the VAX/VMS
Guide to Writing a Device Driver.)

e Peripheral devices generate interrupts at IPLs 16 through 19.
UNIBUS peripherals generate interrupts of IPLs 20 through 23
(corresponding to UNIBUS BR levels 4 through 7).

@ Processor error conditions and the system clock generate
interrupts at IPLs 20 through 31.

Because of the way in which priority 1levels are assigned, device
interrupts almost always receive immediate service from the processor
and VAX/VMS.

A VAX-11 processor always executes the code associated with the
highest 1IPL for which an interrupt has been requested. For example,
if the processor is executing a driver process and a device requests
an interrupt, the processor stops executing the driver, saves the
driver's context for subsequent reactivation, and activates the
interrupt service routine for the interrupting device. When that
interrupt service routine terminates, VAX/VMS activates the code
associated with the next lower IPL for which an interrupt has been
requested. The routine activated can be either of the following:

e A routine that had already started execution but was
interrupted by a higher level interrupt

e A routine for which an interrupt has been pending while the
processor executed at a higher IPL but which had not been
executed previously

4.6.,2 Performing the Connect-To-Interrupt

Connecting to a device interrupt vector allows your program to receive
notification of an interrupt from a designated device by any
combination of the following means:

e By execution of a user-supplied interrupt service routine
e By the setting of an event flag

e By execution of an AST routine that 1is to gain control 1in
process context

In addition, you can specify a cancel routine that is to be executed
when the process disconnects from the interrupt vector or is deleted.

Before your program can run, the system manager must have done the
following at system generation time:

e Specify the REALTIME SPTS parameter to the SYSGEN utility,
reserving system page table entries for use by real-time
processes, These system page table entries are wused to map
process~specified buffers in system space (see the Pl arqument

PERFORMING I/0O OPERATIONS

description in Section 4.6.5). The REALTIME_SPTS parameter
value must be greater than or equal to the number of pages in
buffers specified by processes connected to interrupt vectors.

e Configure the real-time device by issuing a CONNECT command to
the SYSGEN utility. This command names the device; Iits
vector, register, and adapter addresses; and a skeletal
driver (CONINTERR) for the device.

The CONNECT command to the SYSGEN utility is explained in the VAX/VMS
System Manager's Guide.

At run time the process calls the $ASSIGN system service to associate
a channel with the device. The process can also map the page in
UNIBUS 1I/0 space containing the device registers (see Section 4.5).
To connect to the device interrupt vector, the process issues a $QIO
call specifying the I0O$ CONINTREAD or IO$ CONINTWRITE function code
and as many of the following as are appropriate:

e An interrupt service routine to be executed when the device
generates an interrupt

e A buffer containing code to be executed in system context
and/or data (This buffer must be contiguous in the process's
address space.,)

® An AST service routine to execute and/or an event flag to be
set after the interrupt service routine (if any) completes (If
an AST service routine is specified, an AST parameter may also
be specified.)

@ A device initialization routine
e A start I/0 routine
e A cancel I/0 routine

A nonprivileged process (that is, lacking the CMKRNL privilege) can
also connect to an interrupt vector, bhut it can only specify an AST
service routine to be executed or an event flag to be set (or both)
when an interrupt 1is qenerated. Section 4.6.5 explains the $QIO
format for connecting to an interrupt vector,

4,6.3 The Connect-To-Interrupt Driver

The VAX/VMS connect-to-interrupt driver (CONINTERR) provides a driver
interface to the system on behalf of the process. CONINTERR connects
the process to the device by executing the following steps:

1. Validates the $QIO system service parameters, such as the
process's access to the specified buffer, and the number of
the optional event flag.

2. Locks the physical pages of the buffer into physical memory,
and maps the pages using system page table entries allocated
by the REALTIME_SPTS parameter to the SYSGEN utility.

3. Constructs argument 1lists and calling interfaces to the
process-gspecified routines by storing values in the device's
unit control block (UCB).

PERFORMING I/O OPERATIONS

4. Allocates the specified number of AST control blocks to the
process, and 1inserts each block in a queue in the device's
UCB.

5. Transfers control to VAX/VMS to queue the connect to
interrupt I/0 packet to CONINTERR start I/0 routine.

When the CONINTERR start I/0 routine gains control, it passes control,
by means of a user-specified JSB or CALLS interface, to the
process-specified start-device routine. This routine usually
initializes the device and may also start activity on the device.

When the device generates an interrupt, the interrupt service routine
in CONINTERR gains control. This routine transfers control to the
process-supplied interrupt service routine.

4.6.4 The Interrupt and AST Service Routines

The interrupt service routine that you specify, like those supplied by
VAX/VMS, has the following characteristics:

e It is mapped in system space.
e It executes on the interrupt stack.

e It executes at the IPL of the device that requested the
interrupt.

Because of these characteristics, the interrupt service routine
executes as part of the VAX/VMS operating system rather than in the
context of your user process. As part of the operating system, the
interrupt service routine has access to system data bases not
available to user processes. However, because an interrupt service
routine has these capabilities and executes at a raised IPL, you must
code it carefully to avoid disrupting the system. Section 4.6.9
discusses conventions for process-specified interrupt service routine.

The interrupt service routine that you specify usually performs one or
more of the following steps:

1. Copies data from a device register
2. Writes to a device register to clear the interrupt condition

3. Restarts the device, or returns an offset, a byte count, or
actual data as an AST parameter

4, Returns an interrupt status to the VAX/VMS
connect-to-interrupt driver (CONINTERR)

Depending on the interrupt status, the CONINTERR interrupt service
routine queues a fork process to run at a lower IPL. Then the
interrupt service routine exits from the interrupt with an REI
instruction. When the CONINTERR fork process gains control, it queues
an AST or posts an event flag to the process (or both).

The AST service routine that you specify gains control in process
context. This routine usually performs one or more of the followina
steps:

1. Reads or writes device registers if the process mapped I/0
space (see Section 4.5),

PERFORMING I/O OPERATIONS

2. Interprets data. Use caution, however, because any
processing done by the AST service routine can be interrupted
by a device interrupt, which might store more data or modify
the buffer's contents.

3. Calls the Cancel I/0 on Channel (S$SCANCEL) system service to
disconnect the process from the interrupt.

4,6.5 Queue I/0 Request System Service for Connect-To-Interrupt

The format of the Queue I/0 Request ($SQIO) system service to connect
to an interrupt vector is given below. The explanation is limited to
connecting to an interrupt vector. For a detailed description of the
$QI0 system service, see the VAX/VMS System Services Reference Manual.

MACRO Format

$QI0 [efn] ,[chan}l ,func ,[iosb] ,[astadr] ,{astprm]
P11 , (P21 , (P31 ,[p4l ,[p5]1 ,[p6]

High-Level Language Format

SYS$QIO(([efn] ,[chan] ,func ,[iosb] ,[astadr] ,lastprm]
(P11 ,[p2] ,[p31 ,I[p4) ,Ip51 ,[p61)

efn

iosb

astadr

astprm
These arguments apply to the $QI0O system service completion, not
to device interrupt actions. For an explanation of these
arguments, see the $0I0 service description in the VAX/VMS System
Services Reference Manual.

func
Function code of I0S$_CONINTREAD or 10S_CONINTWRITE. The
I0O$_CONINTWRITE function code allows locations 1in the buffer
pointed to by the Pl argument to be modified; the I0S_CONINTREAD
function code makes the buffer contents read-only.

pl
Address of a descriptor for the buffer containing code and/or
data. The first 1longword records the number of bytes in the
buffer; the second longword records the address of the bhuffer.
(Note: The buffer size must not exceed 64K bytes.)

p2

Address of an entry point 1list. The list consists of four
longwords that contain offsets into the buffer (specified in the
Pl argument) of entry points of process-specified routines.
These longwords and their contents are as follows:

CINSL INIDEV Offset to device initialization routine
CINSL START Offset to start device routine
CINSLTISR Offset to interrupt service routine
CIN$L:CANCEL Offset to cancel I/0 routine

Note: Symbols starting with CINS are defined by the SCINDEF
macro. The definitions are in the library SYSSLIBRARY:LIB.MLB.

4-15

p3

pé

p5

ph

PERFORMING I/0 OPERATIONS

Longword containing flags and an optional event flag number
specification. The low-order word contains the logical OR of
flags describing options to the connect-to-interrupt facility.
The flags and their meanings are as follows:

CINSM EFN Set event flag on interrupt

CINSM USECAL Use CALL interface to process-specified
- routines (default is JSB interface)

CINSM REPEAT Leave process connected to the interrupt
- vector until the connection is canceled

CINSM INIDEV Process-specified device initialization
- routine 1is in the buffer specified in the P1
argument
CINSM START Process-specified start I/0 routine 1is 1in
- buffer
CIN$M_ISR Process-specified interrupt service routine

is in buffer
CINSM_CANCEL Process-specified cancel I/0 routine 1is 1in
huffer

The high-order word specifies the number of the event flag to be
set when an interrupt occurs. This number is expressed as an
of fset to CIN$V_EFNUM.

For example, to specify that your interrupt service routine is in
the buffer and to set event flag 4, code P3 as follows:

P3 = CIN$M_ISR!CIN$M_EFN!4@CIN$V_EFNUM>

See the "Notes" later in this section for additional information
on the flags.

Address of the entry mask of an AST service routine to be <called
as the result of an interrupt.

AST parameter to be passed to the AST completion routine (used as
the AST parameter only if the process-supplied interrupt service
routine does not overwrite the value).

Number of AST control blocks to preallocate in anticipation of
fast, recurrent interrupts from the device.

Return Status

S_NORMAL

System service successfully completed.

55$_ACCVIO

The caller does not have the appropriate access to the buffer
specified in the Pl argument or to the entry point list specified
in the P2 argument.

PERFORMING I/O OPERATIONS

SSS_BADPARAM
The size of the buffer specified in the Pl argument exceeds 64K
bytes, or the number of preallocated AST control blocks specified
in the P6 argument exceeds 65767.

SS$_DISCONNECT

A connection is already outstanding for the device, or a
condition described in note 2.b (see "Notes") has occurred.

S§S$_EXQUOTA

The process has exceeded its direct I/O limit quota or its AST
limit quota.

Ss$_ILLEFC
An illegal event flag number was specified.
SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
system service.

SS$_INSFSPTS
Insufficient system page table entries are available to double
map the process buffer. (The wvalue of the REALTIME_SPTS
parameter to the SYSGEN utility must be increased.)

SS$_NOPRIV

The process does not have the CMKRNL privilege. This privilege

is only required if the user specifies a buffer to be used by the

process and the process-specified kernel mode routines.
SS$~UNASEFC

The process is not associated with the cluster containing the
specified event flag.

Privilege Restrictions
The connect-to-interrupt $QI0 call does not require privileges if
no shared buffer is specified. If the request specifies a buffer
descriptor argument, the process must have the CMKRNL privilege.

Resources Required/Returned

A connect-to-interrupt request updates the process quota values
as follows:

e Subtracts the number of preallocated AST control blocks in the
P6 arqument from the number of outstanding ASTs remaining for
the process (ASTCNT)

e Subtracts 1 (for the $QI0) from the direct I/0 count (DIOCNT)

Notes

4,6.6

PERFORMING I/0 OPERATIONS

After the $0Q0IO0 call is issued, the operation is not completed
until the process or the connect-to-interrupt driver cancels
I/0 on the channel.

The connect-to-interrupt driver can cancel I/0 on the channel
for a number of reasons, including the following:

a. The driver cannot set the specified event flag, perhaps
because the process disassociated from the common event
flag cluster after requesting that a flag in that
cluster be set.

b. The driver cannot reallocate AST control blocks quickly
enough., This condition can occur because not enough AST
control blocks (P6 arqgument) were specified, because not
enough pool space is available for the requested AST
control blocks, or because the process ASTCNT quota 1is
exhausted.

c. The driver cannot queue the AST to the process.

If no event flag setting was requested in the P3 arqument and
if no AST service routine was specified in the P4 argument,
P6 if ignored and no AST control blocks are preallocated. If
you requested an event flag be set and/or an AST service
routine but did not preallocate any AST control blocks (that
is, P6 1is zero), one AST control block is automatically
preallocated, because the system needs one control block to
set any event flag or to deliver any ASTs.

If you request an event flag and/or an AST service routine
and if you preallocate any AST control blocks, the
CINSM REPEAT bit is set automatically in the longword
specified in the P3 argument,. Thus, as long as vyou
preallocate any AST control blocks, your process will
automatically remain connected to the interrupt vector to
receive repeated interrupts until the process is disconnected
from the interrupt vector.

If the CIN$M_REPEAT flag is not set, the process is
disconnected from the interrupt vector after the first
successful interrupt, and a status code of SSS*NORMAL is
returned.

Conventions for Process-Specified Routines

Any routines that the process specifies 1in the connect-to-interrupt
call are double-mapped, once in process space and once in system

space.

Each routine executes in kernel mode at an appropriate IPL:

Device initialization routine after power recovery - IPL 31
(IPLS POWER)

Start I/0 routine - IPL A (IPLS QUEUEAST)

Interrupt service routine - device IPL (assumed to be IPL 22)
Cancel routine - IPL 6 (IPL$_QUEUEAST)

The process must have the CMKRNL user privilege.

PERFORMING I/O OPERATIONS

Each routine must:

® Be position independent

Follow the rules for accessing I/0O space (see Section 4.5.3)

e Access only data within the buffer or non-pageable 1locations
in system space

e Perform any necessary synchronization of access to data in the
shared buffer

e Save any registers it uses (unless otherwise noted 1in the
remaining sections of this chapter)

e Exit properly

e Not incur exceptions

e Not perform lengthy processing

e Not dispatch to code outside the buffer specified 1in the Pl

argument to the Queue I/0 Request call

Sections 4.6.8 through 4.6.11 discuss conventions for specific process
specified routines. Section 4.6.12 describes several program examples
of connecting to an interrupt vector.

The VAX/VMS Guide to Writing a Device Driver explains how to write a
device 1initialization routine, a start I/0O routine, an interrupt
service routine, and a cancel I/0 routine. That manual also discusses
the I/0 data structures used by these routines.

4.6.7 Programming Language Constraints

Only VAX-11 MACRO or VAX-11 BLISS-32 should be used to code
process-specified routines in system space (see Section 4.6.6) or any
references to I/0 space. There 1is no assurance that the code
generated by compilers for other 1languages will satisfy all the
constraints described in this section.

The following constraints apply to process-specified routines 1in
system space (that is, in the buffer specified in the Pl argument to
the $QI0 call that establishes the <connection to the interrupt
vector):

e The compiler must generate position independent code for the
routines.

e The generated code and data must be contigquous in wvirtual
space.

e No calls can be made to any procedure outside the buffer.
(This restriction includes calls to routines in the VAX-11
Common Run-Time Procedure Library.)

For any references to I/0 space, the generated code must follow the
rules for accessing I/0 space (see Section 4.5.2). Device register
access from high-level languages usually requires that the wvariable
equivalent to the register be a 1l6-bit integer data type. You may
need to check the assembly~lanquage code generated by compilers for
languages other than VAX-11 MACRO or VAX-11 BLISS-32 to determine
whether it follows all necessary conventions.

PERFORMING I/O OPERATIONS

4,6.8 Process-Specified Device Initialization Routine

During recovery from a power failure, VAX/VMS calls the
connect-to-interrupt driver's device initialization routine. This
routine marks the device as online in the UCBSW STS field, stores the
UCB address in the IDBSL_OWNER field, and then transfers control to
the process-specified device initialization routine. The
process-specified routine executes 1in system context at IPL 31
(IPLS_POWER) .

If the process specified a JSB interface, the process routine gains
control with the following register settings:

RO address of the unit control block (UCB)

R4 address of the device status register (CSR)
R5 address of the interrupt dispatch block (IDB)
R6 address of the device data block (DDB)

R8 address of the channel request block (CRB)

If the process specified a CALL interface, the process routine gains
control with an argument list pointed to by AP:

0 (AP) argument count of 5

4 (AP) address of the device status register (CSR)

8 (AP) address of the interrupt dispatch block (IDB)
12 (AP) address of the device data block (DDB)

16 (AP) address of the channel request block (CRB)
20(AP) address of the unit control block (UCB)

The process-specified routine may 1initialize device registers.
However, it must not 1lower IPL, and it must preserve all registers
except RO through R3.

The routine exits with an RSB instruction (for a JSB interface) or a
RET 1instruction (for a CALL interface). The stack must be as it was
when the routine was entered.

4,6.9 Process-Specified Start 1/0 Routine

The process-specified start I/0 routine executes in system context at
IPL 6 (IPLS QUEUEAST). It is entered from the connect-to-interrupt
driver's start I/0 routine. The input to the process-specified start
I/0 routine is as follows:

R2 address of the counted argument list
R3 address of the I/0 request packet (IRP)
R5 address of the unit control block (UCB)

0 (AP) argqument count of 4

4 (AP) system-mapped address of the process huffer
8 (AP) address of the I/0 request packet (IRP)
12(AP) system-mapped address of the device's CSR
16 (AP) address of the unit control block (UCB)

The process-specified start I/0 routine may set up device registers.,
It can raise IPL but must not lower it below 6, and must exit at IPL
6. It must preserve all registers except RO through R4.

The routine exits with an RSB instruction (for a JSB interface) or a
RET instruction (for a CALL interface). The stack must be as it was
when the routine was entered.

PERFORMING I/0O OPERATIONS

4.6.10 Process-Specified Interrupt Service Routine

A process-specified interrupt service routine 1is entered when an
interrupt from the device occurs. This routine executes in system
context at device IPL. The input to the process-specified interrupt
service routine is as follows:

R2 address of the counted argument list
R4 address of the interrupt dispatch block (IDB)
R5 address of the unit control block (UCB)

0 (AP) argument count of 5

4 (AP) system-mapped address of the process buffer

8 (AP) address of the AST parameter

12 (AP) system-mapped address of the device status register (CSR)
16 (AP) address of the interrupt dispatch block (IDB)

20 (AP) address of the unit control block (UCRB)

This routine is responsible for clearing the interrupt condition (by
writing to some device register, for example) if such an operation is
required for the device. In addition, the routine may copy the
contents of device registers into the shared buffer or into the AST
parameter. The routine must also follow these conventions:

e Maintain an IPL equal to or higher than device IPL (If the IPL
is raised, the current IPL should first be saved on the stack
for later use in restoring IPL.)

e Save and restore all registers other than RO through R4 used
in the routine

e Restore the stack to its original state before exiting
e Place one of the following status values in RO bhefore exiting:

low bit clear -- dismiss interrupt (process is not notified of
interrupt)

low bit set -- set event flag if CINSM_EFN bit is set in P3
argument, and queue AST if P4 specifies an
AST service routine

e Exit with a RET instruction (CALL interface) or RSB
instruction (JSB interface)

4.6.11 Process-Specified Cancel I/O Routine

When the user process 1issues a cancel 1I/0 request for a device
connected to the process, the connect-to-interrupt driver's cancel I/0
routine first checks to determine whether the process can indeed
cancel I/0 for this device. 1If it can, the process-specified cancel
I/0 routine is given control. This routine executes in system context
at IPL 8 (IPLS_ FORK).

If a JSB interface was specified for the process-supplied cancel 1/0
routine, the following registers are inputs:

R2 negated value of the channel index number

R3 address of the current I/0 request packet (IRP)

R4 address of the process control block (PCB) for the process
canceling the I/0

R5 address of the unit control block (UCB)

PERFORMING I/0 OPERATIONS

If a CALL interface was specified, the argument list is as follows:

0 (AP) argument list count of 4

4 (AP) negated value of the channel index number

8 (AP) address of the current I/0 request packet (IRP)

12 (AP) address of the process control block (PCB) for the process
canceling the I1I/0

16 (AP) address of the unit control block (UCB)

The process-specified cancel I/0 routine must not lower IPL below 4
and must exit at IPL 6. It may clear device registers. It must
preserve all registers except RO and R3, and must place a completion
status in RO-R1 (which VAX/VMS will place in the I/0 status block
associated with the connect-to-interrupt $QIO call).

The process-specified cancel 1I/0 routine should not rely on the
channel 1index number unless it checks the UCBSM BSY bit in UCBSW STS
to confirm that the process is still connected to the device. ~The
routine may set the UCBSM_CANCEL bit in UCBS$W_STS.

The routine exits with an RSB instruction (for a JSB interface) or a
RET instruction (for a CALL interface). The stack must be as it was
when the routine was entered.

4.6.12 Real-Time Applications Examples

To understand how the connect-to-interrupt facility 1is useful for
programming real-time devices, consider devices used in three types of
real-time applications:

1. Asynchronous event reporting without data: devices that
generate an interrupt as the result of an external event not
initiated by a programmed request.

2. Program-driven data collection: devices that generate an
interrupt as the result of a programmed request, and make the
result of the request available as data in a device register
at the time of the interrupt.

3. Asynchronous event reporting with data: one device triggers
another device by dgenerating an interrupt that causes a
programmed request to be sent to the other device, which in
turn generates an interrupt.

Examples of these three types of real time applications and models of
programs to handle the devices follow.

NOTE
The confiqgurations described in the
exanmples in this section are not
officially supported; DIGITAL does not
provide device driver, UETP, or
diagnostic support for certain devices
mentioned. The examples are provided

merely as possible models for users who
wish to design real-time applications
using unsupported devices or
configurations.

PERFORMING I/0O OPERATIONS

Chapter 6 contains a program example illustrating data definitions and
coding used to connect to a device interrupt vector.

4.6,12.1 Example 1: KW1ll-W Watchdog Timer - This type of device
reports asynchronous external events: it generates an interrupt as a
result of an external event not initiated by a programmed request,
The only data of interest to be passed to the user process is the
occurrence of the external event. Such devices include contact and/or
solid state interrupts, and clocks or counters. The program may heed
to initiate clock and counter devices by means of a programmed
request, but any subsequent interrupts are the result of external
events only.

In this example, a dual-processor system uses two KW1ll-W watchdog
timers connected back-to-back to monitor CPU failures. Each processor
must arm its timer at reqular intervals to prevent the timer from
operating a relay that outputs an alarm signal. The alarm output of
each timer is connected to the receive input of the other watchdog.
If processor A fails and 1its watchdog times out, the alarm output
generates an interrupt on processor B via the second watchdog timer.

The watchdog control program on each processor simply addresses the
timer at regqular intervals. If the interval passes without the timer
being addressed, the timer operates an output relay that generates an
interrupt to the second CPU. For this example, assume that the
interval is 5 seconds (Example 3 later in this section addresses the
problem of a much smaller time interval).

The watchdog control program on processor A executes as follows:
1. Assigns a channel to the device

2. Calls SCRMPSC to map to the I/0 page in order to address the
device registers

3. Issues a connect-to-interrupt $QI0O call to connect the
program to the watchdog timer for processor B; specifies the
addresses of an interrupt service routine and an AST routine

4., Writes a value to a device register to start the timer

5. Calls SSETIMR to request that an event flag be set after a
specified interval (for example, 5 seconds)

6. Calls SWAITFR to wait for the event flag

7. When the event flag is set, writes a value to a device
register to reset the timer

8. Loops to step 5

The same control program runs on processor B except that it connects
to the watchdog timer for processor A. If either processor fails, the
watchdog timer generates an interrupt on the other processor.

The standby processor that receives the interrupt gains control in the
VAX/VMS connect-to-interrupt driver (CONINTERR), which calls a
process—-supplied interrupt service routine (defined in step 3 above)
that handles the interrupt as follows:

1. Sets the KWll-W switch relay register to clear the timer
interrupt condition

PERFORMING I/O OPERATIONS

2, Sets a status flag that will cause an AST to be delivered to
the control program that connected to the interrupt

3. Returns to CONINTERR
CONINTERR completes the interrupt handling as follows:

1. Schedules a fork process at a lower IPL. This fork process,
when it gains control, will queue an AST to the user program.

2., Executes an REI instruction to return from the interrupt

The timer control program on the standby processor regains control 1in
an AST routine. This routine responds to the other processor's
failure by switching over and assuming control of the other
processor's tasks (or whatever is appropriate).

4,.6.12.2 Example 2: AD11-K, AM11-K; A/D Converter with Multiplexer
Connected to the UNIBUS - This type of device provides program-driven
data collection: it generates an interrupt as the result of a
programmed request to the device, and makes the result of the request
available as data in a device register. Typical devices include A/D
converters and digital I/0 registers.

The data collection operation 1is wusually repetitive for such
applications. Therefore, the interrupt service routine must be
capable of buffering data from the device in order to ensure that no
data is lost due to the high speed data transfer rate. A typical
buffer size for this sampling technique might be 32 1A-bit words.

In this example, a user program controls an AD11-K/AM11-K combination
that accepts analog data from thermocouples. The ADl11-K converts
analog data to digital data and returns the data in a device register.
Every 10 seconds, the program samples 16 to 32 out of 64 channels at
gain settings that may vary based on the thermocouple type and
previous samplings.

To collect data efficiently, the program buffers data in a
process-specified interrupt service routine, and requests delivery of
an AST to the user process when all the requested channels have been
sampled. To perform variable sampling, the program passes parameters
to the interrupt service routine.

The program establishes a protocol to communicate between the program
and the interrupt service routine. The protocol defines a data area
shared by the main program, the interrupt service routine, and the AST
routine. The data area contains parameters from the program and data
from the ADl11-K. The data area is a 98-word array used as follows:

1. Elements 1-2 of the data area contain an index to the next
buffer 1location to be filled, and a count indicating the
number of samplings still to be taken., The main program
initializes these values before starting the device. The
interrupt service routine reads and modifies these values 1in
the process of «copying data and determining when to stop
sampling.

2. Elements 3-66 of the data area are reserved for interrupt
service routine parameters. Each pair of elements contains
the number of a channel, and a gain value. The main 'program
loads these parameters before starting the device.

PERFORMING I/0 OPERATIONS

3. Elements 67-98 of the data area receive the data that the
interrupt service routine reads from the ADl11-K data buffer
register. The AST routine later reads data from this part of
the buffer.

The program sets up for the sampling as follows:
1. Assigns a channel to the device

2. Calls SCRMPSC to map to the I/0 page in order to address the
device registers

3. 1Initializes the data area by writing a 67 (the index to the
next buffer location to be filled) into element 1, and the
number of samples to take into element 2 of the data area;
zeroes elements 3-98 of the data area

4, Writes channel numbers and gain wvalues into the parameter
section of the data area

5. Issues a connect-to-interrupt $QI0 <call to connect the
process to the A/D converter; specifies the addresses of the
area to be double mapped, an offset to the ISR, and an AST
routine

6, Sets the start and interrupt enable bits in the ADl11-K status
register to start the A/D converter

7. Calls SHIBER to place the process in a wait state

As soon as the AD11-K has converted the first sample, the device
generates an interrupt. The VAX/VMS CONINTERR routine calls the
process-specified interrupt service routine. This process-specified
routine executes as follows:

1. Computes the next location to be written 1in the buffer by
reading the first element in the data area

2. Reads 12 bits of data from the A/D buffer register into the
next location in the buffer

3. Updates the buffer offset and count elements at the beginning
of the data area

4. 1If all requested samples have been collected, writes the
address of the data area into the AST parameter, sets a
status flag that will cause an AST to be delivered to the
control program, and returns to the CONINTERR routine

5. Otherwise, sets the start bit in a device register to restart
the device and returns to the CONINTERR routine with a status
flag requesting no AST delivery or event flag setting

Based on the interrupt status from the process-specified interrupt
service routine, the CONINTERR routine completes the interrupt
processing by queuing a fork process that will queue an AST to the
user process, When the process gains control in the AST service
routine, this routine processes the samples in the following steps:

1. Clears the interrupt enable bit in the device status register

2, Examines the data collected in order to adjust channel
selection and/or gain values for the next sampling

PERFORMING I/0 OPERATIONS

3. Copies the data to a file
4, Reinitializes the data area

5. Calls S$SCHDWK to wake the process after a short interval (for
example, 10 seconds)

6. Returns

When the time interval elapses, the process regains control. The
program can then restart the sampling process by again setting the
start and interrupt enable bits in the ADl11-K status register.

4.6.12.3 Example 3: KW1l1l-P Real Time Clock and ADl1-K Converter
Connected to the UNIBUS - This type of device reports asynchronous
external events by collecting data: one device triggers another
device by generating an interrupt that causes a programmed request to
be sent to the other device, which in turn generates an interrupt. A
typical example is a <clock-driven A/D operation for precise time
sampling as required in signal processing. This processing technique
is often used in laboratories. The amount of data collected in such a
timed sampling might typically be 200 to 1000 16-bit words,

In this example, the main program sets up the real-time <clock to
generate interrupts periodically. At regular intervals, the clock
interrupt triggers a programmed request for an A/D conversion
operation. The AD11-K collects a sample, and interrupts the CPU with
a "done" interrupt and 12 bits of data. The AD11-K interrupt service
routine buffers the data and, if the buffer is full, causes an AST to
be delivered to the process. The process, gaining control in an AST
routine, copies the buffered data to another buffer or to disk.

Programming these device functions is slightly more complicated than
the previous example. The main program must specify a large buffer to
be used in ring fashion to guarantee that data is not lost between
clock-driven samplings. In addition, the program must connect to two
device interrupts -- one for the clock and one for the A/D converter.

The protocol used by the main program, the interrupt service routine,
and the AST routine is similar to the previous example. The data area
is larger: 4K words of buffer area follow the parameter area. The
A/D converter interrupt service routine and the AST routine treat the
4K-word buffer as four buffer sections of 1K words per section. The
first element in each 1K buffer section is a flag indicating whether
the section is in use. The AST resets the flag value after copying
the contents of the buffer. The interrupt service routine uses a
buffer section only if the section's flag wvalue indicates that the
buffer has been emptied.

The main program starts the sampling with the following steps:
1. Assigns channels to the clock and to the A/D converter.

2. Calls SCRMPSC to map to the I/0 page in order to address the
device registers.

3. Initializes the data buffer by writing a 67 (the index to the
next buffer 1location to be filled) into element 1, and the
number of samples to take into element 2 of the data area;
zeroes elements 3-4096 of the data area; flags each page of
the buffer as available.

9.

PERFORMING I/0 OPERATIONS

Writes channel numbers and gain values into the parameter
segments of the data area.

Issues a connect-to-interrupt $QI0 call to connect the
process to the «clock, and specifies the address of an
interrupt service routine.

Issues a connect-to-interrupt $QI0 <call to connect the
process to the A/D converter; and specifies the addresses of
the area to be double mapped, an offset to the interrupt
service routine and an AST routine,

Sets the sampling interval by writing a 16-bit value into the
KW11-P count set buffer register.

Starts the clock by setting the run, mode, rate selection,
and interrupt enable bits in the KWll-P control and status
register. Setting the mode bit causes repeated interrupts
generated at a rate specified in the time interval.

Calls S$HIBER to place the process in a wait state.

The clock interrupts when zero (underflow) occurs during a count-down

from the

preset interval count. The VAX/VMS CONINTERR routine calls

the process-specified clock interrupt service routine, This
process-specified routine starts the A/D conversion as follows:

1.

2.

3.

Starting

Starts the A/D converter by setting the start and interrupt
enable bits in the AD11-K status register

Sets interrupt status that prevents AST delivery or event
flag setting as a result of this interrupt

Returns to CONINTERR

the A/D converter results in an interrupt from the ADll-K,

and control passes, wvia CONINTERR, to the ADl1-K interrupt service

routine.

1.

This routine executes as follows:

If this sample 1is the first sample for a new buffer
(indicated by a flag in the data area), the routine moves to
the next buffer section (branches to error handling 1if the
buffer 1is still full), and sets up the first two elements of
the data area to indicate the buffer section to be written
next. Then, it sets the flag at the start of the new buffer
section and sets a flag in the data area to indicate that
sampling is occurring.

The routine computes the next location to be written in the
buffer by reading the first location in the data area.

The routine reads 12 bits of data from the A/D buffer
register into the next location in the buffer.

The routine updates the buffer offset and count values in the
data area.

If this sample fills the data sector, the routine writes the
offset of the filled sector from the start of the 4K-word
buffer into the AST parameter, sets a status flag that will
cause an AST to be delivered to the control proaram, and sets
a. flag indicating that a new data section is to be started.

The routine returns to CONINTERR.

PERFORMING I/0 OPERATIONS

The AST routine copies and zeroes the next buffer section to indicate
that the section is again available to the interrupt service routine.
When the next clock interrupt occurs, the data can be written to the

next buffer section, even if the AST routine has not yet emptied the
previous buffer section.

CHAPTER 5

USING SHARED MEMORY

The MA780 is a multiport memory wunit that can be attached to
VAX-11/780 processors. Each VAX-11/780 processor can support up to
two MA780s. FEach MA780 has four ports, thereby allowing up to four
VAX-11/780 ©processors to be attached to it. Figure 5-1 illustrates
two VAX-11/780 processors attached to an MA780,.

LOCAL VAX VAX LOCAL
MEMORY 11/780 11/780 MEMORY
SBI SBI
MA780

MA780 MA7
MBA UBA CORT MULTIPORT P0R8'|9 UBA MBA
MEMORY

Figure 5-1 Two VAX-11/780s Attached to an MA780

Using one or more multiport memory units, an application can consist
of multiple processes running on different VAX-11/780 processors.
Regardless of the processor on which they are running, these processes
can communicate the completion of an event, send messages, and share
common data and code by means of the shared memory.

5.1 PREPARING MULTIPORT MEMORY FOR USE

Before an application using multiport memory can execute under
VAX/VMS, the system manager must activate the VAX/VMS operating system
in processors connected to the multiport memory unit and initialize
that memory. The VAX/VMS System Manager's Guide explains the system
management responsibilities associated with a multiport memory unit;
the present section summarizes the system management functions for the
benefit of the application programmer.

First, the system manager activates the VAX/VMS operating system in a
VAX-11/780 and 1initializes the multiport memory unit. These actions
cause the following to occur:

e The uninitialized shared memory is connected to the VAX/VMS
system running in the processor.

USING SHARED MEMORY

e A name is defined that all processes running in all processors
can use to refer to the shared memory (see Section 5.3)

e Limits are set for the following resources in this multiport
memory unit:

- Common event flag clusters: the total number that can
be created, and the number that can be created by
processes running on this processor

- Mailboxes: the total number that can be created, and
the number that can be created by processes running on
this processor

- Global sections: the total number that can be
created, and the number that can be created by
processes running on this processor

Then the system manager activates the VAX/VMS operating system in
other processors connected to the multiport memory unit., The system
manager then connects the initialized shared memory to the VAX/VMS
system running in each of these processors and sets limits for the
number of common event flag clusters, global sections, and mailboxes
that processes on each processor can create in the multiport memory.

The system manager can also install global sections in shared memory
just as they are installed in local memory. The INSTALL utility can
be used to create shared memory global sections for known files. Once
the global sections are installed, a process running in any processor
connected to the multiport memory can map to the section, 1if the
process has the appropriate privilege. The process can gain access to
the global section either by using a logical name defined by the
system manager or by using the section name specified when the global
section was created. In the latter case, the section name must be
unique on this processor.

5.2 PRIVILEGES REQUIRED FOR SHARED MEMORY USE

To use facilities in memory shared by multiple processors, you must
have all of the wuser privileges required to use the equivalent
facility in local memory. For example, to create a permanent global
section, you must have the PRMGBL privilege, and to create a temporary
or permanent mailbox, you must have the TMPMBX or PRMMBX privilege,
respectively.

In addition to any other required privileges, you must have the SHMEM
privilege to create or delete a common event flag cluster, mailbox, or
global section in memory shared by multiple processors. However, vyou
do not need the SHMEM privilege to use an existing cluster, mailbox,
or global section in multiport memory.

5.3 NAMING FACILITIES IN SHARED MEMORY

To allow access to facilities in memory shared by multiple processors,
the system manager and application -programmers define names that
application programs use to refer to individual shared memory units.
During system installation, the system manager defines the name that
processes on that particular processor use to refer to the shared
memory itself. Application programs define the names that they use to
refer to common event flag clusters, global sections, and mailboxes
located in the shared memory.

USING SHARED MEMORY

By convention, facilities in shared memory have a name string in the
following format:

[memory-name:] facility-name
memory-name

Name assigned by the system manager during system installation to
the shared memory containing the facility. VAX/VMS requires the
memory name when you specify a common event flag cluster or
mailbox. The <colon is recognized as a delimiter separating the
two parts of the name string.

facility-name

Logical name assigned to the event flag cluster, global section,
or mailbox. The name must contain 15 or fewer characters, and
can consist only of alphabetic characters, numeric characters,
the dollar sign ($), and the underline ().

Examples of facility names are:

SHRMEM:GS_DATA Identifies the global section GS_DATA in the
shared memory named SHRMEM

SHRMEM: MAILBX Identifies the mailbox MAILBX in the same
shared memory

5.4 ASSIGNING LOGICAL NAMES AND LOGICAL NAME TRANSLATION

You can define a logical name for a shared memory facility with the
DEFINE or ASSIGN command or the Create Logical Name ($CRELOG) system
service., Application programs can then refer to the facility using
the 1logical name; for example, a ©process can invoke the Create
Mailbox and Assign Channel ($CREMBX) system service specifying the
logical name for an existing mailbox to which a channel is to be
assigned.

When translating a logical name for a shared memory facility, the
VAX/VMS operating system uses a slightly different approach from that
used for other logical names. The purpose of this approach 1is to
allow programmers to specify either the complete name (memory name and
facility name) or a logical name that the system will translate to the
complete name. If you define logical names properly, a program that
uses a given facility in local memory can be run without change to use
the facility in shared memory.

Whenever VAX/VMS encounters the name of a common event flag cluster,
mailbox, or global section, it performs the following special logical
name translation sequence:

1. Inserts one of the following prefixes to the name (or to the
part of the name before the colon if a colon is present):

CEFS$ for common event flag clusters
MBXS for mailboxes
LIBS for global sections

USING SHARED MEMORY

2. Subjects the resultant string to 1logical name translation.
If translation does not succeed (that is, the original name
did not use a logical name), passes the original name string
to the system service. 1If translation does succeed, goes to
step 3.

3. Appends the part of the original string after the <colon (if
any) to the translated name.

4, Repeats steps 1 to 3 (up to nine more times, 1if necessary)
until logical name translation fails. When translation
fails, passes the string to the system service.

For example, assume that you have made the following 1logical name
assignment:

$ DEFINE MBXS$CHKPNT SHRMEMS1 :CHKPNT

Assume also that your program refers to the mailbox name as CHKPNT in
a system service argument. The following logical name translation
takes place:

1. MBXS$ is prefixed to CHKPNT.
2. MBXSCHKPNT is translated to SHRMEMS1:CHKPNT.

3. No further translation is successful; therefore, the string
SHRMEMS$1 :CHKPNT is passed to the system service.

The logical name definition in the preceding example allows a program
that used a mailbox named CHKPNT in local memory to run using the
mailbox in shared memory, without being recompiled or relinked.

Note that if a process creates one or more subprocesses and they use a
mailbox or common event flag cluster in shared memory, the creator
should place the logical name in the group 1logical name table (for
example, specify the /GROUP qualifier with the DEFINE command). If
the name is defined in the process logical name table (the default),
the subprocesses will not receive the correct equivalence name,
because each subprocess has its own process logical name table.

There are two exceptions to the logical name translation method
discussed in this section:

e If the facility name starts with an underline (), the VAX/VMS
system strips the underline and considers the resultant string
to be the actual name (that 1is, no further translation is
performed).

e If the facility is a global section with a name in the format
name_nnn, VAX/VMS first strips the underline and the digits
(nnn), then translates the resultant name according to the
sequence discussed in this section, and finally reappends the
underline and digits. The system uses this method with known
images and shared files installed by the system manager.

USING SHARED MEMORY

5.5 HOW VAX/VMS FINDS FACILITIES IN SHARED MEMORY

After the VAX/VMS system performs the logical name translation
described in Section 5.4, the final equivalence name must be the name
of a facility in either the processor's local memory or in shared
memory. If the equivalence name specifies the name of a shared memory
(that is, the name 1is 1in the format name:facility-name), VAX/VMS
searches for the facility in the appropriate data base of the
specified memory.

If the equivalence name specifies a common event flag cluster or
mailbox and does not specify a memory name, VAX/VMS searches through
the common event flag cluster data base or the mailbox data base until
it locates the specified cluster or mailbox. Absence of a memory name
as part of a common event flag cluster name or mailbox name indicates
that the facility is located in local memory.

If the equivalence name specifies a global section and does not
specify a memory name, VAX/VMS looks for the section as follows:

1., First, it searches the globai section tables for sections in
the processor's local memory.

2, Then, it searches the global section tables for each
initialized shared memory connected to the processor in the
order in which they were connected and recognized by the
processor.

The result of searching in this order is that global sections in the
processor's local memory take precedence over those in shared
memories. Thus, absence of a memory name as part of a global section
name is not wused as an indication of where the global section is
located.

5.6 USING COMMON EVENT FLAGS IN SHARED MEMORY

Under VAX/VMS, any process can associate with up to two common event
flag clusters (event flag numbers 64 through 95 and 96 through 127).
These clusters can be located in shared memory or in local memory. To
create and associate with a common event flag cluster in shared memory
and manipulate flags in the cluster, you use the same steps as you
would to associate with a common event flag cluster in local memory:

1. 1Issue the Associate Common Event Flag Cluster (SASCEFC)
system service to create the cluster or to associate with an
existing cluster,

2. Issue any of the services that set, <clear, and wait for
designated event flags, as appropriate.

As with local memory clusters, the first process among cooperating
processes to issue the Associate Common Event Flag Cluster (SASCEFC)
system service causes the cluster to be created. Any other process
calling this service and specifying the same cluster associates with
that cluster. VAX/VMS implicitly qualifies cluster names with the
group number of the creator's UIC; therefore, other cooperating
processes must belong to the same group.

USING SHARED MEMORY

All of the event flag system services, with the exception of Associate
Common Event Flag Cluster and Disassociate Common Event Flag Cluster,
function identically regardless of whether they are used with local or
shared memory clusters, The only difference with the associate and
disassociate system services is that to specify a cluster in shared
memory, you must provide the memory name as well as the cluster name.
That is, after VAX/VMS performs logical name translation of the name
argument, the cluster name must have the following format:

memory-name:cluster-name

Section 5.3 describes the name format, and Section 5.4 explains the
logical name translation performed by the system.

Section 3.1 discusses common event flags and related system services.
The VAX/VMS System Services Reference Manual describes all of the
event flag services in detail.

5.7 USING MAILBOXES IN SHARED MEMORY

The first process on each processor to refer to a shared memory
mailbox must use the Create Mailbox and Assign Channel (SCREMBX)
system service to create the mailbox and assign a channel to it. Any
SCREMBX system service call referring to a shared memory mailbox must
specify a mailbox name that has or translates to the following format
(Section 5.4 explains the logical name translation procedure):

memory-name:mailbox-name

When the mailbox is created, the SCREMBX system service also creates
the mailbox-name portion of the name string as a logical name with an
equivalence name in the format MBn. For example, if the complete name
string is SHMEM:MAILBOX, the system service will create MAILBOX as a
logical name with an equivalence name of, for example, MBBO0O5.

The Assign I/0 Channel (SASSIGN) and Deassign I/0 Channel (SDASSGN)
system services require that you specify only the mailbox-name portion
of a shared memory mailbox name string. Likewise, any high-level
lanquage program statements that open, close, read from, or write to a
shared memory mailbox must specify only the mailbox-name portion.

Figure 5-2 shows two VAX-11 FORTRAN programs using a shared memory
mailbox. The memory-name in this example is SHMEM, The programs are
running in processes on separate processors,

USING SHARED MEMORY

PROGRAM ONE
INTEGER*4 SYS$SCREMBX,STATUS,CHAN

STATUS = SYSSCREMBX(,CHAN,,,,,'SHMEM:MAILBOX')
IF (.NOT. STATUS) CALL LIBSSTOP(%VAL (STATUS))

C-- Open the mailbox using the mailbox-name; write a message.

OPEN (UNIT=1,NAME='MAILBOX',STATUS='NEW')
WRITE (1,*) MESSAGE

END

PROGRAM TWO
INTEGER*4 SYSSCREMBX,STATUS,CHAN

STATUS = SYS$CREMBX(,CHAN,,,,, 'SHMEM:MAILBOX')
IF (.NOT. STATUS) CALL LIBSSTOP ($VAL (STATUS))

C-- Open the mailbox using the mailbox-name; read the message,

OPEN (UNIT=1,NAME='MAILBOX',STATUS='0LD"')
READ (1,*) MESSAGE

END

Figure 5-2 Using a Shared Memory Mailbox

A mailbox in shared memory cannot be used as process termination
mailbox.

Section 3.2 discusses mailboxes and related system services, and
includes a programming example.

5.8 USING GLOBAL SECTIONS IN SHARED MEMORY

Under VAX/VMS, processes can map global sections 1located in 1local
memory or in shared memory. A global section in shared memory can be
mapped to an image file or a data file, just like a global section in
local memory. To create a global section 1in shared memory, you
perform the same steps as you would to create a global section in
local memory:

1. Using VAX-11 RMS, open the file to be mapped.
2. Issue the Create and Map Section ($CRMPSC) system service.
The file to be mapped must reside on a disk device attached to the

local processor. Once the section is created, however, processes on
all processors attached to the shared memory can map the section.

USING SHARED MEMORY

To map an existing global section in shared memory, you issue a Map
Global Section ($MGBLSC) system service specifying the name of the
section. Once the section is mapped, processes gain access to shared
memory global sections in the same manner as they do to local memory
sections. VAX/VMS thus makes use of the shared memory unit
transparent to the process.

VAX/VMS treats the pages of a global section in shared memory
differently from pages 1in 1local memory. When a process creates a
shared-memory global section, VAX/VMS brings all of the pages of the
mapped 1image or data file into memory. Any process mapped to that
global section can gain access to those pages without incurring a page
fault because the pages are already in physical memory. Unlike
process pages in local memory, global section pages in shared memory
are not included 1in the working sets of the processes that map the
section.

Because no paging occurs, VAX/VMS never writes the contents of shared
memory dlobal section pages back to their disk file. For read/write
global sections in which you want to maintain an updated file while
the application executes, you must issue an Update Section File on
Disk ($SUPDSEC) system service. The process issuing the update request
must execute on the same processor as the process that created the
global section. You can update the disk file periodically during
execution of the application as a checkpoint precaution. The disk
file is automatically updated when the section is deleted.

Each process that has mapped a global section in shared memory can
unmap the section in either of the following ways:

e Issue a Delete Virtual Address Space ($SDELTVA) system service
to delete the process's virtual address space that maps the
section.

e Terminate the current image, thereby causing VAX/VMS to unmap
the process from the section automatically.

Deleting a global section 1in shared memory requires an explicit
deletion request, because all global sections in shared memory must be
permanent sections. The deletion request can be either a Delete
Global Section (SDGBLSC) system service issued by the application or a
deletion request issued by the system manager. In either case,
VAX/VMS does not perform the actual deletion until all processes that
have mapped the section unmap it.

The VAX/VMS System Services Reference Manual provides information on
the use of the VAX/VMS system services used with global sections, that
is, memory management system services. Section 5.8.1 of the present
manual provides information specifically related to <creating and
mapping a global section in shared memory. The S$CRMPSC, SMGBLSC,
S$SDGBLSC, and SUPDSEC system services are the only memory management
system services for which the shared memory has any direct
implications.

5.8.1 Create and Map Section System Service

The Create and Map Section System Service has the following general
formats when issued to create and/or map a global section in multiport
memory.

[$a}
!
[02]

USING SHARED MEMORY

MACRO Format

SCRMPSC [inadr], [retadr], [acmode], [flags], gsdnam
, [ident], [relpag], [chanl, [pagcnt], [vbn], [prot)

High-Level Language Format

SYSSCRMPSC ([inadrl, [retadr], [acmode], [flags], gsdnam
,[ident], [relpagl, [chan], [pagcnt], [vbn], [prot}])

With the exception of the FLAGS, GSDNAM, and PFC arquments, the
arguments of this service are not affected by MA780 considerations.

flags

Mask defining the section type and characteristics. Of the flags
defined, the following two must be set.

Flag Meaning
SECSMhQBL Global section
SEC$M_PERM Permanent section

That is, sections in shared memory must be permanent global
sections.

If appropriate, the following flags also can be set.

Flag Meaning Default

SECSM_DZRO Pages are demand- Pages are not zeroed
zero pages when copied

SECSM_WRT Read/write section Read-only

SECSM_SYSGBL System global Group global section
section

SECSM_EXPREG Map section Map section according
into the to the INADR argument

first free range
of virtual
addresses large
enough to hold
the section

Neither SECSM_CRF (copy-on-reference) nor SECSM_PFNMAP (page
frame number ~mapping) can be set when using the Create and Map
Section system service to create global sections in shared
memory. If SECSM CRF is set, VAX/VMS places the global section
in local memory. -

gsdnam

Address of a character string descriptor pointing to the text
name string for the global section. This argument is required
for creating sections in shared memory.

The string can be either the name of a global section or the

logical name of a global section. VAX/VMS performs logical name
translation as described in Section 5.4,

pfc

USING SHARED MEMORY

VAX/VMS implicitly qualifies global section names with an
identification. For group global sections, the section name is
also implicitly qualified by the group number of the process
creating the global section.

Page fault cluster size for local memory sections. This argument
is ignored for global sections in shared memory, because VAX/VMS
reads the file into memory when it creates the section and does
not allow paging for sections in shared memory.

CHAPTER 6

PRIVILEGED SHAREABLE IMAGES

A privileged shareable image is a shareable image containing one or
more routines that nonprivileged users can call to perform privileged
functions. The creator of the privileged shareable 1image codes,
compiles or assembles, links, and installs the routine; other users
can then call this routine in their programs using the standard CALL
interface, provided they have linked their object module(s) with the
privileged shareable image. Privileged shareable images thus provide
a vehicle for wusers, 1in effect, to write and use their own system
services.,

Because privileged shareable images can be written for any purpose,
their use is not 1limited to real-time applications. However,
privileged shareable images can provide real-time users with a
suitable vehicle for special-purpose routines that nonprivileged
processes in applications can use.

6.1 CODING THE PRIVILEGED SHAREABLE IMAGE

The following requirements must be met in coding a privileged
shareable image:

e It must contain a special change-mode vector identifying a
kernel-mode and/or executive-mode dispatcher.

e Its entry point must be followed by a CHMK or CHME instruction
with a negative operand.

e Any kernel-mode or executive-mode dispatcher pointed to in the
change-mode vector must validate the CHMK or CHME operand, and
must be followed by one or more routines that perform the
desired function(s).

e The privileged shareable image (or each routine in 1it) must
enable any necessary user privileges and disable them when
they are no 1longer needed. The Set Privileges ($SETPRV)
system service is used to enable and disable user privileges.

Each of the preceding considerations is discussed in the following
sections,

PRIVILEGED SHAREABLE IMAGES

6.1.1 Change-Mode Vector

One of the program sections in a privileged shareable image must start
with a change-mode vector. The purpose of this vector is to point (by
means of self-relative offsets) to the start of the kernel-mode or
executive-mode dispatch routine within the privileged shareable image.

The program section containing the change-mode vector must be assigned
the VEC attribute. (See the VAX-11l MACRO Language Reference Manual or
the VAX-11 Linker Reference Manual for a discussion of program section
attributes.)

The change-mode vector must have the format shown in Figure 6~1. The
offsets from the base of the vector to specific items are expressed by
symbols starting with PLVSL_. These symbols are defined by the
SPLVDEF macro and are contained in SYSSLIBRARY:LIB.MLB.

<pﬁ’\7s°é‘i'}¥‘r’fi%°n‘n’éo> PLVSL_TYPE
ST bee | pLust_version
Kernel Mode Dispatcher Offset PLVSL__KERNEL
Exec Mode Entry Offset PLVS$L__EXEC
Reserved
Reserved
RMS Dispatcher Offset PLVSL__RMS
Address Check PLV$L__CHECK

Figure 6-1 Change-Mode Vector Format

The significant offsets in the change-mode vector and their contents
are as follows:

e PLVSL TYPE - Contains the type code PLVSC_TYP_CMOD,
identifying this as a change-mode vector.

e PLVSL VERSION - Contains the system version number (expressed
by the wvalue SYSSK VERSION). When the privileged shareable
image is linked, the Tinker inserts the value of SYSSK VERSION
into this location. Before the privileged shareable Image is
used at run time, the VAX/VMS image activator compares this
value with the current version number of SYS.EXE; and if the
two do not match, the privileged shareable image is not used
and an error status is returned.

e PLVSL KERNEL - Contains a self-relative pointer to the
user-supplied kernel-mode dispatcher. ("Self-relative" means
relative to the start of the longword field.) A zero value
indicates there is no kernel-mode dispatcher.

e PLVSL EXEC - Contains a self-relative pointer to the
user-supplied executive-mode dispatcher. A zero value
indicates there is no executive-mode dispatcher.

PRIVILEGED SHAREABLE IMAGES

e PLVS RMS - Contains a self-relative pointer to the dispatcher
for ~VAX-11 RMS services. A zero value indicates there is no
user-supplied VAX-11 RMS dispatcher. Only one privileged
shareable 1image should specify the VAX-11 RMS vector, because
only the last value will be used. This field is intended for
use only by DIGITAL.

e PLVSL CHECK - Contains a value to verify that a privileged
shareable image that is not position independent is located at
the proper virtual address. If the image is position
independent, this field should contain zero. If the image is
not position independent, this field should contain 1its own
address,

6.1.2 Entry Point to the Privileged Shareable Image

The entry point of a privileged shareable image must be an entry mask
followed by a CHMK (change mode to kernel) or CHME (change mode to
executive) 1instruction, depending on whether vyou want control
transferred to a kernel-mode or executive-mode dispatcher (specified
in the vector). The operand of the CHMK or CHME ‘instruction must be a
negative wvalue, because positive wvalues are reserved for calling
system services supplied by DIGITAL.

6.1.3 Kernel-Mode or Executive-Mode Dispatcher
The kernel-mode or executive-mode dispatch code that you write must:

e Validate the CHMK or CHME operand, handling any 1invalid
operands.

e Transfer control to the appropriate coding segment 1if the
privileged shareable 1image <contains functionally separate
coding segments. The CASE instruction in VAX-11 MACRO or a
computed GO-TO-type statement in a high-level lanquage
provides a convenient mechanism for determining where to
transfer control.

e Precede the coding segment(s) performing the function(s) the
privileged shareable image was designed to perform.

6.1.4 Enabling and Disabling User Privileges

A privileged shareable image must enable any privileges that it needs
but that the nonpriviléeged user of the privileged shareable image
lacks. The privileged shareable image must also disable any such
privileges bhefore the nonprivileged user receives control again.

PRIVILEGED SHAREABLE IMAGES

To enable or disable a set of privileges, use the Set Privileges
(SSETPRV) system service. The following example shows the operator
(OPER) and physical I/0 (PHY_IO) privileges being enabled.

PRVMSK: .LONG <1@PRV$V_OPER>!<1@PRV$V PHY IO> ;OPER AND PHY IO
.LONG 0 ; QUADWORD MASK REQUIRED. NO BITS SET IN
;HIGH-ORDER LONGWORD FOR THESE PRIVILEGES.

SSETPRV_S ENBFLG=#1,- ; l=enable, 0=disable
PRVADR=PRVMSK ;Identifies the privileges

Any code executing in executive or kernel mode is granted an implicit
SETPRV privilege.

The VAX/VMS System Services Reference Manual contains an explanation
of the Set Privileges ($SETPRV) system service.

6.2 LINKING THE PRIVILEGED SHAREABLE IMAGE

The following conventions apply when you 1link (that 1is, create) a
privileged shareable image:

e Use the /SHAREABLE command qualifier to identify the image to
be created as shareable.

e Use the /PROTECT command qualifier or the PROTECT= option to
identify the entire image or specific clusters, respectively,
as protected against user-mode or supervisor-mode write access
(see Section 6.2.1 for further information).

e Define the privileged shareable 1image's entry point as a
universal symbol, using the UNIVERSAL= option.

The listings in Section 6.5 include the LINK command and linker
options file used to create the sample privileged shareable image.

6.2.1 Specifying Protection for the Image or Clusters

The VAX-11 Linker allows you to protect all or part of a privileged
shareable image from write access by code executing 1in user or
supervisor mode. The /PROTECT command qualifier causes all image
sections to be so protected. The PROTECT= option in a linker options
file permits you to specify protection for individual clusters, thus
allowing privileged shareable images to contain parts into which the
nonprivileged user can write.

The linker option takes the form PROTECT=YES or PROTECT=NO and
precedes the specifications for clusters that are to be protected or
unprotected, respectively. The following example shows the linker
options file entries to designate clusters A, B, and D as protected,
and cluster C as unprotected.

PROTECT=YES

CLUSTER=A,, ,MODULE1,MODULE2
CLUSTER=B,, ,MODULE3,MODULE4,MODULES
PROTECT=NO

CLUSTER=C,, ,MODULE6 ,MODULE?7
PROTECT=YES

CLUSTER=D,, ,MODULE8,MODULE9

PRIVILEGED SHAREABLE IMAGES

The VAX-1l1] Linker Reference Manual discusses linker options files and
exXplains each available option.

6.3 INSTALLING THE PRIVILEGED SHAREABLE IMAGE

To make a privileged shareable image usable by nonprivileged programs,
you must install it as a protected permanent global section. The
following procedure is recommended:

1. Move the privileged shareable image to a protected directory,
such as SYSSSHARE.,

2. Run the INSTALL utility, specifying the /PROTECT, /OPEN, and
/SHARED qualifiers. You can also specify the
/HEADER RESIDENT qualifier. The following entry could be
used to install the privileged shareable image presented in
Section 6.5 (the image name is USS):

$ RUN SYSSSYSTEM:INSTALL
INSTALL>SYS$SHARE :USS/PROTECT/OPEN/SHARED/HEADER_RES

The INSTALL utility is discussed in the VAX/VMS System
Manager's Guigde.

6.4 USING THE PRIVILEGED SHAREABLE IMAGE

To the nonprivileged user of a privileged shareable image there is no
difference between using it and using an ordinary shareable image. To
use a privileged shareable image, the user must:

e Call the privileged shareable image.

e Link the privileged shareable image into the executable image
being created. Note: If the shareable image was installed as
writeable, you cannot link it into an executable image. You
must link an uninstalled copy of the writeable shareable image
into the executable image.

6.5 PROGRAM LISTINGS

The rest of this chapter contains listings of modules in a privileged
shareable image and of a module that calls the privileged shareable
image.

USSDISP.LIS

USER_SYS_DISP

Table of contents

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

108
177
214
262
318
371
395
427

USER_SYS_DISP

V1.0

- Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-1l1 Macro V02.42 Page 0

Declarations and Egquates

Transfer Vector and Service Definitions
Change Mode Dispatcher Vector Block

Kernel Mode Dispatcher
Executive Mode Dispatcher

Get Time of Day Register Value

Set Page Fault Cluster Factor

Null Service

- Example of user

0000
ocooe
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0060
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

ot
OWOONIHIUHWN -

WWRNNNNNNDNNNN R R e b e b
HOWONOTNHEWNFOWO NI D WK -

Ne Ne NE Ne Ne oMb Ne ME Ne e Ne NE o Ne Ne NE o Ne e e Ne we Ne NE o NB Se we Ne Ne e S

system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42 Page 1
10-MAR-1980 15:48:21 _DBBZ:[HUSTVEDT.USS]USSDISP.MAR;23(1)

.TITLE USER_SYS _DISP - Example of user system service dispatcher
.IDENT /V1.0/

Copyright (C) 1980
Digital Equipment Corporation, Maynard, Massachusetts 01754

This software is furnished under a license for use only on a single
computer system and may be copied only with the inclusion of the
above copyright notice. This software, or any other copies thereof,
may not be provided or otherwise made available to any other perscn
except for use on such system and to one who agree to these license
terms. Title to and ownership of the software shall at all times
remain in DEC.

The information in the software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

DEC assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by DEC.

Facility: Example of User Written System Services

++

Abstract:
This module contains an example dispatcher for user written
system services along with several sample services. It is a
template intend to serve as the starting point for implementing
a privileged shareable image containing your own services. When used as
a template, the definitions and code for the sample services
should be removed.

SIOVWI JTdVIUVHS QIOITIAIYG

0000 32 ;
0000 33 ; Overview:
0000 34 ; User written system services are contained in privileged shareable
0000 35 ; images that are linked into user program images in exactly the
0000 36 ; same fashion as any shareable image. The creation and installation
0000 37 ; of a privileged, shareable image is slightly different from that
06000 38 ; of an ordinary shareable image. These differences are:
0000 39 ;
0000 40 ; 1. A vector defining the entry points and providing other
0000 41 ; control information to the image activator. This vector
0000 42 ; is a the lowest address in an image section with the VEC
0000 43 ; attribute.
0000 44 ;
0000 45 ; 2. The shareable image is linked with the /PROTECT option
0000 46 ; that marks all of the image sections so that they will
0000 47 ; protected and given EXEC mode ownership by the image
0000 48 ; activator.
0000 49 ;
0000 50 ; 3. The shareable image MUST be installed /SHARE /PROTECT
0000 51 ; with the INSTALL utility in order for the image activator
0000 52 ; to connect the privileged shareable image to the change mode
0000 53 ; dispatchers.
0000 54 ;
00Co 55 ; A privileged shareable image implementing user written system services is
0000 56 ; comprised of the following major components:
0000 57 ;
USER_SYS_DISP - Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42 Page 2
V1.0 10-MAR-1980 15:48:21 DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)
0000 58 ; 1. A transfer vector containing all of the entry points and
0000 59 ; collecting them at the lowest virtual address in the shareable
0000 60 ; image. This formalism enables revision of the shareable
0000 61 ; image without necessitating the relinking of images that
0000 62 ; use it.
0000 63 ;
0000 64 ; 2. A Privileged Library Vector in a PSECT with the VEC attribute
0000 65 ; that describes the entry points for dispatching EXEC and
0000 66 ; KERNEL mode services along with validation information.
0000 67 ;
0000 68 ; 3. A dispatcher for kernel mode services. This code will
0000 69 ; be called by the VMS change mode dispatcher when it
0000 70 ; fails to recognize a kernel mode service request.
0000 71 ;
0000 72 ; 4, A dispatcher for executive mode services. This code will
0000 73 ; be called by the VMS change mode dispatcher when it fails
0000 74 ; to recognize an executive mode service request.
0000 75 ;
0000 76 ; 5. Service routines to perform the various services.
’

0000 77

SIODVWI FTIVIUVHS dIOIATIAIYL

0060 78 ; The first four components are contained in this template and are
0000 79 ; most easily implemented in MACRO, while the service routines can
0000 80 ; be implemented in BLISS or MACRO. Other languages may be usable
0000 81 ; but are not recommended -- particularly if they require runtime
0000 82 ; support routines or are extravagant in their use of stack or are
0000 83 ; unable to generate PIC code.
0000 84 ;
0000 85 ; This example is position-independent (PIC) and it is good practice
0000 86 ; to implement shareable images this way whenever possible.
0000 87 ;--
0000 88 ;
0000 89 ; Link Command File Example:
0000 90 ;
0000 91 ; $!
0000 92 ; St Command file to link User System Service example.
0000 93 ; St
0000 94 ; S LINK/PROTECT/NOSYSSHR/SHARE=USS/MAP=USS/FULL SYSSINPUT/OPTIONS
0000 95 ; !
0000 96 ; ! Options file for the link of User System Service example.
0000 97 ; !
0000 98 ; SYSSSYSTEM:SYS.STB/SELECTIVE
0000 99 ; !
0000 100 ; ! Create a separate cluster for the transfer vector.
0000 101 ; !
0000 102 ; CLUSTER=TRANSTER VECTOR,,,SYSSDISK:[]USSDISP
0000 103 ; ! -
0000 104 ; GSMATCH=LEQUAL ,1,1
0000 105 ;
0000 106 ;--
USER_SYS_DISP ~ Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42 Page 3
v1l.0 Declarations and Equates 10-MAR-1980 15:48:21 _DBBZ:[HUSTVEDT.USS]USSDISP.MAR;23(l)
0000 108 .SBTTL Declarations and Equates
0000 109 ;
0000 110 ; Include Files
0000 111 ;
0000 112
0000 113 .LIBRARY "SYSSLIBRARY:LIB.MLB" ; Macro library for system structure
0000 114 ; definitions
0000 115 ;
0000 116 ; Macro Definitions
0000 117 ;
0000 118 ; DEFINE SERVICE ~ A macro to make the appropriate entries in several
0000 119 ; - different PSECTs required to define an EXEC or KERNEL
0000 120 ; mode service. These include the transfer vector,
0000 121 ; the case table for dispatching, and a table containing
0000 122 ; the number of required arguments.
0000 123 ;
0000 124 ; DEFINE_SERVICE Name,Number_of_ Arguments,Mode

SIOVWI JTdVIHVHS QIDITIAIYUG

0000 125 ;

0000 126 .MACRO DEFINE SERVICE,NAME ,NARG=0,MODE=KERNEL

0000 127 .PSECT $$STRANSFER VECTOR,PAGE,NOWRT,EXE,PIC

0000 128 JALIGN QUAD - ; Align entry points for speed and style
0000 129 . TRANSFER NAME ; Define name as universal symbol for entry
0000 130 +MASK NAME ; Use entry mask defined in main routine
0000 131 JIF IDN MODE,KERNEL

0000 132 CHMK #<KCODE BASE+KERNEL COUNTER> ; Change to kernel mode and execute
0000 133 RET - - ; Return

0000 134 KERNEL COUNTER=KERNEL COUNTER+1 ; Advance counter

0000 135 - -

0000 136 .PSECT KERNEL NARG,BYTE,NOWRT,EXE,PIC

0000 137 .BYTE NARG ; Define number of required arguments
0000 138

0000 139 .PSECT USER_KERNEL DISP1,BYTE,NOWRT,EXE,PIC

0000 140 .WORD 2+NAME-KCASE BASE ; Make entry in kernel mode CASE table
0000 141 -

0000 142 .IFF

0000 143 CHME #<ECODE BASE+EXEC COUNTER> ; Change to executive mode and execute
0000 144 RET - - ; Return

0000 145 EXEC COUNTER=EXEC COUNTER+1 ; Advance counter

0000 146 - -

0000 147 .PSECT EXEC NARG,BYTE,NOWRT,EXE,PIC

0000 148 .BYTE NARG ; Define number of required arguments
0000 149

0000 150 .PSECT USER EXEC DISP1,BYTE,NOWRT,EXE,PIC

0000 151 .WORD 2+NAME-ECASE BASE ; Make entry in exec mode CASE table
0000 152 .ENDC - ;

0000 153 .ENDM DEFINE_SERVICE ;

0000 154 ;

0000 155 ; Equated Symbols .

0000 156 ;

0000 157

0000 158 SPHDDEF Define process header offsets

;
0000 159 SPLVDEF ; Define PLV offsets and values
H

0000 160 SPRDEF Define processor register numbers
0000 161 ;
0000 162 ; Initialize counters for change mode dispatching codes
0000 163 ;
00000000 0000 164 KERNEL_COUNTER=0 ; Kernel code counter

SHOVWI JTHVIUVHS AIDITIAIYUA

01-9

USER_SYS_DISP -~ Example cf user system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42 Page 4
V1.0 Declarations and Equates 10-MAR-1980 15:48:21 _DBB2:{HUSTVEDT.USS]USSDISP.MAR;23(1)
¢00056000 0000 165 EXEC COUNTER=0 ; Exec code counter
0000 166 -
0000 167 ;
0000 168 ; Own Storage
0000 169 ;
00000000 170 +PSECT KERNEL NARG,BYTE,NOWRT,EXE,PIC
0000 171 KERNEL_NARG: - ; Base of byte table containing the
0000 172 ; number of required arguments.
00000000 173 .PSECT EXEC_NARG ,BYTE,NOWRT,EXE,PIC
0000 174 EXEC_NARG: ; Base of byte table containing the
0000 175 ; number of required arguments.
USER_SYS_DISP - Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42 Page 5
V1.0 Transfer Vector and Service Definitions 10-MAR-1980 15:48:21 _DBBZ:[HUSTVEDT.USS]USSDISP.MAR;23(1)
0000 177 .SBTTL Transfer Vector and Service Definitions
0000 178 ;++
0000 179 ; The use of transfer vectors to effect entry to the user written system services
0000 180 ; enables some updating of the shareable image containing them without necessitating
0000 181 ; a re-link of all programs that call them. The PSECT containinng the transfer
0000 182 ; vector will be positioned at the lowest virtual address in the shareable image
0000 183 ; and so lona as the transfer vector is not re-ordered, programs linked with
0000 184 ; one version of the shareable image will continue to work with the next.
0000 185 ;
0000 186 ; Thus as additional services are added to a privileged shareable image, their
0000 187 ; definitions should be added to the end of the following list to ensure that
0000 188 ; programs using previous versions of it will not need to be re-linked.
0000 189 ; To completely avoid relinking existing programs the size of the privileged
0000 190 ; shareable image must not change so some padding will be required to provide
0000 191 ; the opportunity for future growth.
0000 192 ;-—-
0000 193 DEFINE_SERVICE USER_GET TODR,1,KERNEL ; Service to get value of time
0002 194 - - ;: of day register
0002 195 DEFINE SERVICE USER SET PFC,2,KERNEL ; Service to set value of process
0004 196 - - - ; default pagefault cluster
0004 197 DEFINE SERVICE USER NULL,0,EXEC ; Null exec service
0002 198 - -
0002 199 ;
0002 200 ; The base values used to generate the dispatching codes should bhe negative for
0002 201 ; user services and must be chosen to avoid overlap with any other privileged
0002 202 ; shareable images that will be used concurrently. Their definition is
0002 203 ; deferred to this point in the assembly to cause their use in the preceding
0002 204 ; macro calls to be forward references that guarantee the size of the change
0002 205 ; mode instructions to be four bytes. This satisfies an assumption that is
0002 206 ; made by for services that have to wait and be retried. The PC for retrying
0002 207 ; the change mode instruction that invokes the service is assumed to be 4 bytes
0002 208 ; less than that saved in the change mode exception frame. Of course, the
0002 209 ; particular service routine determines whether this is possible.
0002 210 ;
FFFFFC00 0002 211 KCODE BASE=-1024 ; Base CHMK code value for these services
FFFFFC00 0002 212 ECODE:BASE=—1024 ; Base CHME code value for these services

SIOVHI JTIVIUYVHS AIDITIAIUd

I1-9

USER_SYS_DISP - Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-1l1 Macro V(02.42 Page 6

v1.0 Change Mode Dispatcher Vector Block 10-MAR-1980 15:48:21 _DBBzz[HUSTVEDT.USS]USSDISP.MAR;23(1)
0002 214 .SBTTL Change Mode Dispatcher Vector Block
0002 215 ;++
0002 216 ; This vector is used by the image activator to connect the privileged shareable
0002 217 ; image to the VMS change mode dispatcher. The offsets in the vector are self-
0002 218 ; relative to enable the construction of position independent images. The system
0002 219 ; version number will be used by the image activator to verify that this shareable
0002 220 ; image was linked with the symbol table for the current system.
0002 221 ;
0002 222 ; Change Mode Vector Format
0002 223 ;
0002 224 ; e +
0002 225 ; ! Vector Type Code ! PLVSL_TYPE
0002 226 ; ! (PLVSC TYP CMOD) !
0002 227 ; o ——————— -—= e +
0002 228 ; ! System Version Number 1 PLVSL_VERSION
0002 229 ; ! (SYSSK VERSION) !
0002 230 ; +e-——- -= —————— e ————————— +
0002 231 ; ! Kernel Mode Dispatcher Offset ! PLV$SL KERNEL
0002 232 ; ! ! -
0002 233 ; B it L e inindabadde et +
0002 234 ; ! Exec Mode Entry Offset ! PLVSL_EXEC
0002 235 ; ! !
0002 236 ; o - +
0002 237 ; 1 Reserved !
0002 238 ; ! 1
0002 239 ; e e e e +
0002 240 ; ! Reserved !
0002 241 ; ! !
0002 242 ; Fm—m e e +
0002 243 ; ! RMS Dispatcher Offset ! PLVSL RMS
0002 244 ; ! ! -
0002 245 ; o - +
0002 246 ; ! Address Check ! PLVSL CHECK
0002 247 ; ! !
0002 248 ; oo — +
0002 249 ;
0002 250 ;
00000000 251 .PSECT USER SERVICES,PAGE,VEC,PIC,NOWRT,EXE
0000 252 -
00000001 0000 253 .LONG PLVSC TYP CMOD ; Set type of vector to change mode
-7 ; dispatcher
00000000' 0004 254 .LONG SYSS$SK VERSION ; Identify system version
00000005' 0008 255 .LONG KERNEL DISPATCH-. ; Offset to kernel mode dispatcher
00000001"' 000C 256 . LONG EXEC DISPATCH-. ; Offset to executive mode dispatcher
00000000 0010 257 .LONG o - ; Reserved.
00000000 0014 258 . LONG 0 ; Reserved.
00000000 0018 259 .LONG 0 ; No RMS dispatcher
00000000 001C 260 . LONG 0 ; Address check - PIC image

SIOVWI JTIVIUVHS QIDITIAIYU

(A

USER_SYS_DISP - Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11l Macro VC2.42 Page 7

V1.0 Change Mode Dispatcher 10-MAR-1980 15:48:21 _DBB2:[HUSTVEDT.USS]USSDISP.MAR;23 (1)
0020 262 .SBTTL Kernel Mode Dispatcher
0020 263 ;++
0020 264 ; Input Parameters:
0020 265 ;
0020 266 ; (SP) - Return address if bad change mode value
0020 267 ;
0020 268 ; R0 - Chanae mode argument value.
0020 269 ;
0020 270 ; R4 - Current PCB Address. (Therefore R4 must be specified in all
0020 271 ; register save masks for kernel routines.)
0020 272 ;
0020 273 ; AP - Arqument pointer existing when the change
0020 274 ; mode instruction was executed.
0020 275 ;
0020 276 ; FP - Address of minimal call frame to exit
0020 277 ; the change mode dispatcher and return to
0020 278 ; the original mode.
0020 279 ;--
00000000 280 .PSECT USFR KERNEL DISPO,BYTE,NOWRT,EXE,PIC
0000 281 KACCVIO: - - ; Kernel access violation
50 0000'8F 3C 0000 282 MOVZWL #SS¢ ACCVIO,RO ; Set access violation status code
04 0005 283 RET - ; and return
0006 284 KINSFARG: ; Kernel insufficient arguments.
50 0000'8F 3C 0006 285 MOVZWL #SSS$ INSFARG,RO ; Set status code and
04 0008 286 RET - ; return
05 000C 287 KNOTME: RSB ; RSB to forward request
000D 288
000D 289 KERNEL DISPATCH:: ; Entry to dispatcher
51 6400 CoO 9E 000D 290 ~ MOVAB W~ -KCODE BASE (R0O),R1 ; Normalize dispatch code value
F8 19 0012 291 BLSS KNOTME ; Branch if code value too low
02 51 B1 0014 292 CMPW R1,#KERNEL COUNTER ; Check high limit
F3 1E 0017 293 BGEQU KNOTME - ; Branch if out of range
0019 294 ;
0019 295 ; The dispatch code has now been verified as being handled by this dispatcher,
0019 296 ; now the argument list will be probed and the required number of arguments
0019 297 ; verified.
0019 298 ;
51 0000'CF41 9A 0019 299 MOVZBL W KERNEL NARG[R1],R1 ; Get required argument count
51 00000004 9F41 DE O0O1lF 300 MOVAL @#4[R1],R1 ; Compute byte count including arg count
0027 301 IFNORD R1, (AP) ,KACCVIO ; Branch if arglist not readable
0400'CF40 6C 391 002D 302 CMPBR (AP) ,W"<KKERNEL NARG-KCODE BASE>[RO] ; Check for required number
D1 1F 0033 303 BLSSU KINSFARG - ;~ of arguments
50 AF 0035 304 CASEW RO, ~ ; Case on change mode
0037 305 - ; argument value
0037 306 #KCODE_RASE, - ; Base value
01 FCO0 8F 0037 307 #<KERNEL COUNTER-1> ; Limit value (number of entries)
003B 308 KCASF RASE: - ; Case table base address for DEFINE_SERVICE
0038 309 ; -
003B 310 ; Case table entries are made in the PSECT USER_KERNEL_DISPl by
003R 311 ; invocations of the DEFINE_SERVICE macro. The three PSECTS,
003B 312 ; USER_KERNEL_DISP0,1,2 will be abutted in lexical order at link-time.
003R 313 ;
00000000 314 .PSECT USER_KERNEL_DISP2,BYTE,NOWRT,EXE,PIC
05 0000 315 RSB - ; Return to reject out of

0001 314 ; range value

SIDVWI JTdVIYVHS QIDITIAIMG

TLTY

USER_SYS_DISP
V1.0

50

50

51

51

0000'8F

0000 '8F

0400 CO

F8

01 51
F3

0000'CF41

51 00000004 9F41

0400'CF40 6C

00

D1
50

FCO0O 8F

- Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-1ll Macro V02.42 Page 8
Executive Mode Dispatcher

0001 318
0001 319
0001 320
0001 321
0001 322
0001 323
0001 324
0001 325
0001 326
0001 327
0001 328
0001 329
0001 330
0001 331
0001 332
00000000 333
0000 334
3C 0000 335
04 0005 336
0006 337
3C 0006 338
04 000B 339
05 o0o00C 340
000D 341
000D 342
9E 000D 343
19 0012 344
Bl 0014 345
1E 0017 346
0019 347
0019 348
0019 349
0019 350
0019 351
SA 0019 352
DE O0O1lF 353
0027 354
91 002D 355
1F 0033 356
AF 0035 357
0037 358
0037 359
0037 360
003B 361
003B 362
003B 363
003B 364
003B 365
003B 366
00000000 367
05 0000 368
0001 369

.SBTTL
HEas

~ o~

(sP) -
RO -

AP -

N Ne Ne NE Se owe N we NeoNe e

.PSECT
EACCVIO:

MOVZWL

RET
EINSFARG:

MOV ZWL

RET
ENOTME: RSB

EXEC DISPATCH::
~ MOVAB
BLSS
CMPW
BGEQU

The dispatch

verified.

P

MOVZBL
MOVAL
IFNORD
CMPB
BLSSU
CASEW

ECASE_BASE:

~e e N owe s

.PSECT
RSB

10-MAR-1980 15:48:21 DBB2: [HUSTVEDT.USS]USSDISP.MAR;23 (1)

Executive Mode Dispatcher

Input Parameters:

Return address if bad change mode value
Change mode argument value.

Argqument pointer existing when the change
mode instruction was executed.

Address of minimal call frame to exit
the change mode dispatcher and return to
the original mode.

USER EXEC DISPO,BYTE,NOWRT,EXE,PIC

- - Exec access violation

Set access violation status code
and return

Exec insufficient arguments.

Set status code and
return

RSB to forward request

#SS$_ACCVIO,RO

#5S$_INSFARG,RO

No Ne e e we Ne N

Entry to dispatcher

W"-ECODE_BASE (RO) ,R1 Normalize dispatch code value

Ne W N we e

ENOTME Branch if code value too low
Rl,#EXEC_COUNTER Check high limit
ENOTME Branch if out of range

code has now been verified as being handled by this dispatcher,

now the argument list will be probed and the required number of arguments

W EXEC_NARG [R1],R1
@#4[R1],R1

R1, (AP) ,EACCVIO

(AP) ,W"<EXEC NARG-ECODE
EINSFARG -

RO, -

Get required argument count
Compute byte count including arg count
Branch if arglist not readable
ASE>[RO] ; Check for required number
of arguments
Case on change mode
argument value
Base value
Limit value (number of entries)
Case table base address for DEFINE_SERVICE

#ECODE_BASE, -
#<EXEC_COUNTER-1>

;
i
i
H
H
H
H
H
H

Case table entries are made in the PSECT USER_EXEC_DISP1l by
invocations of the DEFINE SERVICE macro. The three PSECTS,
USER_EXEC_DISP0,1,2 will be abutted in lexical order at link-time.

USER_EXEC_DISP2,BYTE,NOWRT,EXE,PIC
; Return to reject out of
; range value

SIOVWI JTHVIIVHS dIDIATIAI™A

y1-9

USER_SYS_DISP
V1.0

USER_SYS_DISP
V1.0

50

55

50

51 04 AC

61 1B
00000000"'8F

50 0000'8F

00000000"'9F
51 08 AC
0A

61 34 AS

7F 8F 04 AC
04

50 7F 8F

34 A5 50
00000000 "'8F

- Example of user system service dispatc 10-MAR-1980 15:48:30
Get Time of Day

0o0lcC
Do

DB
DO
04

3C
04

0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0003
0007
000D
0010
0017
0018
0018
001D

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

Register Value

e Ne Ne e N NE N Ne e we S e

10-MAR-1980 15:48:21

.SBTTL Get Time of Day Register Value
++

Functional Description:

VAX~-11 Macro V02.42 Page 9

_DBB2: [HUSTVEDT.USS]USSDISP.MAR; 23 (1)

This routine reads the content of the hardware time of day
processor register and stores the resulting value at the

specified address.

Input Parameters:

04 (AP) - Address to return time of day value

R4 - Address of current PCB

Output Parameters:
RO - Completion Status Code

.ENTRY USER_GET_TODR, "M<R2,R3,R4>

MOVL 4 (AP) ,R1 ; Get address to store time of day register
IFNOWRT #4, (R1),10$; Branch if not writable
MFPR #PR$ TODR, (R1) ; Return current time of day register
MOVL #SSS$TNORMAL ,RO ; Set normal completion status
RET - ; and return
106: MOVZWL #SS$_ACCVIO,RO ; Indicate access violation
RET ;

- Example of user system service dispatc 10-MAR-1980 15:48:30

Set Page Fault Cluster Factor

0030
DO
DO
13

9A
91
1B
90
90
DO
04

001E
001E
001E
001E
001E
001E
001E
001E
001E
001E
GO1lE
001E
001E
001E
00lE
00l1E
0020
0027
002B
002D
0033
0037
003cC
003E
0042
0046
004D

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

10-MAR-1980 15:48:21

VAX-11 Macro V02.42 Page 10
_DBB2:[HUSTVEDT.USS]USSDISP.MAR;23(1)

Get address of process header
Get address to store previous value

Set normal completion status

.SBTTL Set Page Fault Cluster Factor
s+
; Functional Description:
H This routine sets the page fault cluster to the specified value
; and returns the previous value.
H
; Input Parameters:
H 04 (AP) - New value for Page Fault Cluster factor
: 08 (AP) - Address to return previous value
; (0 means none)
; R4 - PCB address of current process
r
; Output Parameters:
; RO - Completion Status code
i
.ENTRY USER_SET_PFC, "M<R4,R5>
MOVL @#CTLSGL_PHD,R5 :
MOVL 8 (AP) ,R1 ;
BEQL 108 ; Branch if none
IFNOWRT #4,(R1),308 ; Branch if not writable
MOV ZBL PHDSB_DFPFC(RS),(RI) ; Return current value
108: CMPB 4 (AP) ,#127 ; Check for legal value
BLEQU 208 ; Branch if legal
MOVB #127,R0 ; Set to maximum value
20$: MOVB RO ,PHDSB DFPFC (R5) ; Set new value into PHD
MOVL #5S$_NORMAL ,RO ;
RET ; and return

SIOVWI dTIYIUVHS AIDITIAI™L

ST-9

004E 422
50 0000'8F 3C 004k 423 30S$: MOVZWL #SS$ ACCVIO,RO
04 0053 424 RET -
0054 425
USER_SYS_DISP - Example of user system service dispatc 10-MAR-1980
V1.0 Null Service 10-MAR-1980
0054 427 .SBTTL Null Service
0054 428 ;++
0054 429 ; Functional Description:
0054 430 ;
0054 431 ; Input Parameters:
0054 432 ;
0054 433 ; Output Parameters:
0054 434 ;
0054 435 ;-—-
0054 436
0000 0054 437 +« ENTRY USER_NULL,“M<>
50 0000 '8F- 3C 0056 438 MOVZWL #SSS$ NORMAL,RO
04 0058 439 RET -
005C 440
005C 441 . END

15
15

Indicate access violation

~ .

48:30 VAX-11l Macro V02.42 Page 11
48:21 _DBB2:[HUSTVEDT.USS]USSDISP.MAR;23(1)

; Entry definition
; Set normal completion status
; and return

SIOVWI dTdVIUVHS AIDITIAI™UCG

USER_SYS DISP

SYS] - Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11l Macro V02.42 Page 12
Symbol table

10-MAR-1980 15:48:21 _DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)

9T-9

BIT... = 00000000 PHDSL R13 000000B8 PHDSW WSQUOTA 00000018
CTLS$GL_PHD *kk ko k ok x oc PHDSL_R2 0000008C PLVSC_TYP_CMOD = 00000001
EACCVIO 00000000 R 0B PHDSL R3 00000090 PLVSC TYP MSG = 00000002
ECASE_BASE 00000038 R 0B PHDSL_R4 00000094 PLVSL_CHECK 0000001C
ECODE_BASE = FFFFFC00 PHDSL™ R5 00000098 PLVSL™ EXEC 0000000C
EINSFARG 00000006 R 0B PHDSL R6 0000009C PLVSL KERNEL 00000008
ENOTME 0000000C R 0B PHDSL”R7 000000A0 PLVSLMSGDSP 00000008
EXEC_COUNTER = 00000001 PHDSL™R8 000000A4 PLVSL™RMS 00000018
EXEC_DISPATCH 0000000D RG 0B PHDSL RY 000000A8 PLVSL TYPE 00000000
EXEC_NARG 00000000 R 04 PHDSL REFERFLT 00000014 PLVSL VERSION 00000004
GBL... = 00000000 PHDSL RESLSTH 000000F0 PR$S_SID ECO = 00000008
KACCVIO 00000000 R 09 PHDSL_SPARE 0000013C PR$S SID PL = 00000004
KCASE BASE 0000003B R 09 PHDSL™ SSP 0000007C PR$S SID SN = 0000000C
KCODE_BASE = FFFFFC00 PHDSL_TIMREF 00000100 PR$S”SID_TYPE = 00000008
KERNEL COUNTER = 00000002 PHDSL ™ USP 00000080 PRSV SID ECO = 00000010
KERNEL DISPATCH 0000000D RG 09 PHDSL WSL 00000180 PR$V SID PL = 0000000C
KERNEL™NARG 00000000 R 03 PHD$M_DALCSTX = 00000002 PRSV_SID_SN = 00000000
KINSFARG 00000006 R 09 PHDSM PFMFLG = 00000001 PRSV SID TYPE = 00000018
KNOTME 0000000C R 09 PHDS$M WSPEAKCHK= 00000004 PRS ACCR™ = 00000029
PHDSB_ASTLVL 000000CB PHD$Q AUTHPRIV ~ 000000DC PRS_ACCS = 00000028
PHD$B_CPUMODE 0000005C PHDSQ IMAGPRIV 000000E4 PR$ ASTLVL = 00000013
PHD$B DFPFC 00000034 PHD$Q PRIVMSK 00000000 PRS__CADR = 00000025
PHD$B™ PAGFIL 0000001F PHD$S ASTLVL = 00000008 PR$™ CAER = 00000027
PHDSB_ PGTBPFC 00000035 PHDS$S POLR = 00000018 PRS__CMIERR = 00000017
PHD$C LENGTH 00000180 PHDSV ASTLVL = 00000018 PR$™CSRD = 0000001D
PHD$C_PHDPAGCTX= 00000008 PHDSV_DALCSTX = 00000001 PRS_CSRS = 0000001C
PHD$K_LENGTH 00000180 PHDSV POLR = 00000000 PR$ CSTD = 0000001F
PHD$L BIOCNT 00000054 PHDS$V PFMFLG = 00000000 PR$ CSTS = 0000001E
PHD$L CPULIM 00000058 PHDSV WSPEAKCHK= 00000002 PRS™ESP = 00000001
PHDSL CPUTIM 00000038 PHDSW ASTLM 00000040 PRS_ICCS = 00000018
PHDSL DIOCNT 00000050 . PHDSW BAK 00000044 PR$TICR = 0000001A
PHDSL_ESP 00000078 PHDSW_CWSLX 000000DA PRS”IPL = 00000012
PHDSL_FREPOVA 00000028 PHDSW DFWSCNT 0000001A PRS ISP = 00000004
PHDSL FREP1VA 00000030 PHDSW EMPTPG 000000D4 PRS™_KSP = 00000000
PHDSL_FREPTECNT 0000002C PHD$W EXTDYNWS 00000072 PR$TMAPEN = 00000038
PHDSL_IMGCNT 000000F4 PHDS$W FLAGS 00000036 PR$_ MCESR = 00000026
PHDSL™ KSP 00000074 PHDSW PHVINDEX 00000042 PR$_NICR = 00000019
PHDS$L POBR 000000C4 PHDSW PRCLM 0000003E PR$_POBR = 00000008
PHDSL_POLRASTL 000000C8 PHDSW_PST 00000020 PRS_POLR = 00000009
PHDSL”P1BR 000000CC PHDSW PSTBASMAX 00000046 PRS™ P1BR = 0000000A
PHDSL_P1LR 000000D0 PHDSW_PSTFREE 00000026 PRS_PILR = 0000000B
PHDSL PAGEFLTS 00000048 PHD$W PSTLAST 00000024 PRS_ PCBB = 00000010
PHDSL PAGFIL 0000001C PHD$W PTCNTACT 0000006C PRS PME = 0000003D
PHDSL_PC 000000BC PHD$W PTCNTLCK 00000068 PRS_RXCS = 00000020
PHD$L_PCB 00000074 PHDSW PTCNTMAX 0000006E PR$ RXDB = 00000021
PHDSL™ PFLREF 000000FC PHDSW PTCNTVAL 0000006A PRS™SBIER = 00000034
PHDSL_PFLTRATE 000000F8 PHDSW QUANT 0000003C PRS™SBIFS = 00000030
PHDSL PGFLTIO 0000004C PHDSW REQPGCNT 000000D8 PR$™ SBIMT = 00000033
PHDSL™PSL 000000C0O PHDSW RESPGCNT 000000D6A PRS_SBIQC = 00000036
PHD$L PSTBASOFF 00000020 PHDSW WSAUTH 0000000A PRS SBIS = 00000031
PHDSL” PTWSLELCK 00000060 PHDSW WSDYN 0000000E PRS__SBISC = 00000032
PHD$L PTWSLEVAL 00000064 PHDS$W WSFLUID 00000070 PRS SBITA = 00000035
PHDSL™RO 00000084 PHDSW WSLAST 00000012 PR$™ SBR = 0000000C
PHDSL R1 00000088 PHDSW WSLIST 00000008 PRS__SCBB = 00000011
PHD$L_R10 000000AC PHD$W WSLOCK 0000000C PRSTSID = 0000003E
PHDSL R11 000000B0O PHDSW WSLX 00000046 PR$_SID_TYP750 = 00000002
PHDSL_R12 00000084 PHDSW_WSNEXT 00000010 PRS_SID_TYP780 = 00000001

SYOVWI J'TdVIYVYHS QIDITIAIYG

LT-9

PSER SY¥YS DISP - Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42 Page 13

Symbol table 10-MAR-1980 15:48:21 _DBB2: [HUSTVEDT.USS]USSDISP.MAR; 23 (1)
PR$_SID_TYP7ZZ = 00000003
PR$™SID TYPMAX = 00000003
PR$_SIRR = 00000014
PR$“SISR = 00000015
PR$_SLR = 0000000D
PR$_SSP = 00000002
PRS_TBDR = 00000024
PR$TTBIA = 00000039
PR$_TBIS = 0000003A
PR$™TODR = 0000001B
PR$™_TXCS = 00000022
PR$™ TXDB = 00000023
PR$”_UBRESET = 00000037
PR$_USP = 00000003
PR$_WCSA = 0000002C
PR$”WCSD = 0000002D
S8%~_ACCVIO *kkkEX*E X (09
SS$ INSFARG kkkkkkkx X 09
SS$TNORMAL *EkkkkER X QC
SYSTK_VERSION *kxkkxkR*E X 08
USER GET TODR 00000001 RG oc
USER_NULT 00000054 RG oc
USER_SET_PFC 0000001E RG oc
R et L +
! Psect synopsis 1!
R e +
PSECT name Allocation PSECT No. Attributes
. ABS . 00000000 (0.) 00 (0.) NOPIC USR CON ABS LCL NOSHR NOEXE NORD NOWRT NOVEC BYTE
. BLANK . 00000000 (0.) Ol (1l.) NOPIC USR CON REL LCL NOSHR EXE RD WRT NOVEC BYTE
$ABSS 00000184 (388.,) 02 (2.) NOPIC USR CON ABS LCL NOSHR EXE RD WRT NOVEC BYTE
KERNEL_NARG 00000002 ¢ 2.) 03 (3.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
EXEC_NARG 00000001 (1.) 04 (4.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
$$S$TRANSFER_VECTOR 00000017 (23.) 05 (5.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC PAGE
USER_KERNEL_DISP1 00000004 (4.) 06 (6.) PIC USR CON REL LCL NO3SHR EXE RD NOWRT NOVEC BYTE
USER_EXEC_DISP1 00000002 ¢ 2.) 07 ¢ 7.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
USER_SERVICES 00000020 ¢ 32.) 08 (8.) PIC USR CON REL LCL NOSHR EXE RD NOWRT VEC PAGE
USER_KERNEL DISPO 0000003B ¢ 59.) 09 (9.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
USER_KERNEL_DISP2 00000001 ¢ 1.) OA (10.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
USER_EXEC_DISPO 00000038 (59.) OB (11.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
USER_EXEC_DISP2 0000005C (92.) 0C (12.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
e e +
! Performance indicators !
B sttt it +
Phase Page faults CPU Time Elapsed Time
Initialization 8 00:00:00.04 00:00:00.18
Command processing 13 00:00:00.18 00:00:00.46
Pass 1 306 00:00:06.64 00:00:09.97
Symbol table sort 7 00:00:00.25 00:00:00.41
Pass 2 200 00:00:01.49 00:00:02.00
Symbol table output 27 00:00:00.12 00:00:00.15

Psect synopsis output 5 00:00:00.06 00:00:00.06

SIOVWI JTAVHYVHS AIOITIAIYUd

8T-9

USER_SYS_DISP - Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42 Page 14

VAX~11l Macro Run Statistics 10-MAR-1980 15:48:21 _DBBZ:[HUSTVEDT.USS]USSDISP.MAR;23(1)
Cross-reference output 0 00:00:00.00 00:00:00.00
Assembler run totals 567 00:00:08.78 00:00:13.24

The working set limit was 293 pages.

27596 bytes (54 pages) of virtual memory were used to buffer the intermediate code.

There were 10 pages of symbol table space allocated to hold 194 non-local and 4 local symbols,
441 source lines were read in Pass 1, producing 41 object records in Pass 2.

17 pages of virtual memory were used to define 15 macros.

- +
! Macro library statistics !
o +
Macro library name Macros defined
_DRAS:[SYSLIB]LIB.MLB;I 14
_DRAS5; [SYSLIB]STARLET.MLB;1 0
TOTALS (all libraries) 14

427 GETS were required to define 14 macros.
There were no errors, warnings or information messages.

USSDISP/LIS

SHOVWI J'TdVIYVHS AIDITIAI™UG

619

USSTEST.LIS

USSTEST 10-MAR-1980 15:12:23 VAX-11 Macro V02.42 Page 0
Table of contents

(1) 45 Sample invocation of user written system
USSTEST 10-MAR-1980 15:12:23 VAX-1l Macro V02.42 Page 1
V1.0 10-MAR-1980 15:02:56 DBB2:[HUSTVEDT.USS]USSTEST.MAR;5 (1)
0000 1 .TITLE USSTEST
0000 2 .IDENT /V1.0/
0000 3 ;
0000 4 ; Copyright (C) 1980
0000 5 ; Digital Eguipment Corporation, Maynard, Massachusetts 01754
0000 6 ;
0000 7 ; This software is furnished under a license for use only on a single
0000 8 ; computer system and may be copied only with the inclusion of the
0000 9 ; above copyright notice. This software, or any other copies thereof,
0000 10 ; may not be provided or otherwise made available to any other person
0000 11 ; except for use on such system and to one who agree to these license
0000 12 ; terms. Title to and ownership of the software shall at all times
0000 13 ; remain in DEC.
0000 14 ;
0000 15 ; The information in the software is subject to change without notice
0000 16 ; and should not be construed as a commitment by Digital Equipment
0000 17 ; Corporation.
0000 18 ;
0000 19 ; DEC assumes no responsibility for the use or reliability of its
0000 20 ; software on equipment which is not supplied by DEC.
0000 21 ;
0000 22 ;
0000 23 ; Facility: Example of User Written System Services
0000 24 ;++
0000 25 ; Abstract:
0000 26 ; This module contains an example of a program that invokes a sample
0000 27 ; user-written system service that is contained in a privileged
0000 28 ; shareable image. The module USSDISP contains the sample service
0000 29 ; and associated dispatching code being invoked by this simple test
0000 30 ; program.
0000 31 ;--
0000 32 ; Link Command File:
0000 33 ;
0000 34 ; $ 1
0000 35 ; $ 1 Link Command file for USSTEST
0000 36 ; S
0000 37 ; $ LINK USSTEST/MAP/FULL,SYSSINPUT/OPTIONS
0000 38 ; !
0000 39 ; ! Options file for USSTEST
0000 40 ; USS.EXE/SHARE
0000 41 ;
0000 42 ;--
B

00000000 0000 43 BUF: .LONG 0 ; Location to receive TODR contents

SIOVHWI JTIVIUVHS dIODITIAI™UAG

0Z-9

USSTEST

10-MAR-1980 15:12:23 VAX-11 Macro V02.42 Page 2

V1.0 Sample invocation of user written system 10-MAR-1980 15:02:56 _DBB2:{HUSTVEDT.USS]USSTEST.MAR;5 (1)
0004 45 .SBTTL Sample invocation of user written system service
0004 46 ;++
0004 47 ; Functional Description:
0004 48 ; This routine shows an invocation of the example user system service that
0004 49 ; will read the contents of the time of day register.
0004 50 ;
0004 51 ; As can be seen by this example, the privileged nature of the code used
0004 52 ; to implement the reading of the TODR is not visible to the caller,.
0004 53 ; For coding convenience and better maintainability, the code can be
0004 54 ; generated by macros patterned on the standard VMS system service macros.
0004 55 ;
0004 56 ;--—
0004 57
0004 58
0000 0004 59 .ENTRY USSTEST, "M<> ; Entry mask and definition
F7 AF 9F 0006 60 PUSHAB BUF ; Build argument list - set address for
0009 61 ; return value
0000C000'EF 01 FB 0009 62 CALLS #1,USER GET TODR ; Invoke routine in privileged sh. image
0010 63 -7 ; to get value from Time-of-day register
04 0010 64 RET ;
0011 65
0011 66 . END USSTEST ;
USSTEST 10-MAR-1980 15:12:23 VAX-11 Macro V02.42 Page 3
Symbol table 10-MAR-1980 15:02:56 DBB2:{HUSTVEDT.USS]USSTEST.MAR;5 (1)
BUF 00000000 R 01
USER_GET_TODR **kAEKXEX X 01
USSTEST 00000004 RG 01
Fom e +
! Psect synopsis !
o — +
PSECT name Allocation PSECT No. Attributes
« ABS . 00000000 (0.) 00 (0.) NOPIC USR CON ABS LCL NOSHR NOEXE NORD NOWRT NOVEC BYTE
. BLANK 00000011 (17.) 01 (1l.) NOPIC USR CON REL LCL NOSHR EXE RD WRT NOVEC BYTE
B e +
! Performance indicators !
B +
Phase Page faults CPU Time Elapsed Time
Initialization 9 00:00:00.05 00:00:00.16
Command processing 14 00:00:00.18 00:00:00.98
Pass 1 33 00:00:00.23 00:00:01.11
Symbol table sort 0 00:00:00.00 00:00:00.00
Pass 2 35 00:00:00.14 00:00:00.21
Symbol table output o] 00:00:00.01 00:00:00.01
Psect synopsis output 2 00:00:00.02 00:00:00.02
Cross-reference output 0 00:00:00.00 00:00:00.00
Assembler run totals 95 00:00:00.63 00:00:02.49

SHDVWI JTEVIUVYHS QIOIATIAIYC

1Z-9

The working set limit was 200 pages.

673 bytes (2 pages) of virtual memory were used to buffer the intermediate code.

There were 10 pages of symbol table space allocated to hold 3 non-local and 0 local symbols.
66 source lines were read in Pass 1, producing 13 object records in Pass 2.

0 pages of virtual memory were used to define 0 macros.

B +
! Macro library statistics !
e +

Macro library name) Macros defined

_DRA5: [SYSLIB]STARLET.MLB;1 . 0

0 GETS were required to define 0 macros.
There were no errors, warnings or information messages.

USSTEST/LIS

—

USSLNK.COM

Command file to link User System Service example.

LINK/PROTECT/NOSYSSHR/SHARE=USS/MAP=USS/FULL SYS$INPUT/OPTIONS

Options file for the link of User System Service example.

R 1 X 1 2 3

SYS$SYSTEM:SYS.STB/SELECTIVE

Create a separate cluster for the transfer vector.

— -

CLUSTER=TRANSTER_VECTOR,,,SYS$DISK:[IUSSDISP
]

éSMATCH=LEQUAL,l,1

USSTSTLNK .COM

Link Command file for USSTEST

INK USSTEST/MAP/FULL,SYS$SINPUT/OPTIONS

LIRS RORO R
tam am o=

Options file for USSTEST
USS.EXE/SHARE

SIOVWI JTIVIUVYHS AIOITIATYd

2¢-9

USS.MAP

uss 10-MAR-1980 15:

USER_SYS_DISP V1.0 275 _DBB2:[HUSTVEDT.USS]USSDISP.OBJ; 18
5YS .STB;1 0 DRAS5:[SYSEXE]SYS.STB;1

48 LINKER V02.42 Page 1

Creation Date Creator

10-MAR-1980 15:48 VAX-11l Macro V02.42
5-MAR-1980 20:17 LINK-32 V02.42

SYSVECTOR 0221 0 :DRAS:[SYSLIB]STARLET.OLB;I 5-MAR-1980 00:11 VAX-11 Macro V02.42
_DBB2: [HUSTVEDT.USS]USS.EXE; 19 16-MAR-1980 15:48 LINKER V02,42 Page 2
e +
! Image Section Synopsis !
e +
Cluster Type Pages Base Addr Disk VBN PFC Protection and Paging Global Sec., Name Match Majorid Minorid
TRANSTER_VECTOR 4 1 00060200 2 0 READ ONLY
4 1 00000400 2 0 READ ONLY
_DBB2: [HUSTVEDT.USS]USS.EXE; 19 10-MAR-1980 15:48 LINKER V02.42 Page 3
e +
! Program Section Synopsis !
e e - +
Psect Name Module Name Base End Length Align Attributes
. BLANK . 00000000 00000000 00000000 (0.) BYTE 0 NOPIC,USR,CON,REL,LCL,NOSHR, EXE, RD, WRT,XNOVEC
SYSVECTOR 00000000 00000000 00000000 (0.) BYTE 0
$$$TRANSFER_VECTOR 00000200 00000216 00000017 ¢ 23.) PAGE 9 PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC
USER_SYS_DISP 00000200 00000216 00000017 ¢ 23.) PAGE 9
. BLANK . 00000200 00000200 00000000 (0.) BYTE 0 NOPIC,USR,CON,REL,LCL,NOSHR, EXE, RD, WRT,NOVEC
USER_SYS_DISP 00000200 00000200 00000000 (0.) BYTE O
EXEC_NARG 00000217 00000217 00000001 (1.) BYTE O PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC
USER_SYS_DISP 00000217 00000217 00000001 (1.) BYTE 0
KERNEL_NARG 00000218 00000219 00000002 (2.) BYTE O PIC,USR,CON ,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC
USER_SYS_DISP 00000218 00000219 00000002 (2.) BYTE O
USER_EXEC_DISPO 0000021A 00000254 0000003B (59.) BYTE 0 PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC
USER_SYS_DISP 0000021A 00000254 0000003B ¢ 59.) BYTE O
USER_EXEC_DISPI 00000255 00000256 00000002 (2.) BYTE 0 PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC
USER_SYS DISP 00000255 00000256 00000002 (2.) RYTE 0
USER_EXEC_DISP2 00000257 000002B2 0000005C (92.) BYTE O PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC
USER_SYS_DISP 00000257 000002B2 0000005C (92.) BYTE 0
USER_KERNEL_DISPO 000002B3 000002ED 0000003B (59.) BYTE 0 PIC,USR,CON,REL,LCL ,NOSHR, EXE, RD,NOWRT,NOVEC
USER_SYS_DISP 000002B3 000002ED 0000003B (59.) BYTE 0

SIOVWI JTIVIUVHS QIDITIATI™C

€Z-9

USER_KERNEL_DISP1 000002EE 000002F1 00000004
USER_SYS_DISP 000002EE 000002F1 00000004

USER_KERNEL_DISP2 000002F2 000002F2 00000001
USER_SYS_DISP 000002F2 000002F2 00000001

USER_SERVICES 00000400 0000041F 00000020
USER_SYS_DISP 00000400 0000041F 00000020

_DBB2: [HUSTVEDT.USS]USS.EXE; 19

CTL$GL_PHD 7FFEFE88
EXEC_DISPATCH 00000227-R
KERNEL_DISPATCH 000002C0-R

Ss$_AcCCVIO 0000000C
SS$_INSFARG 00000114
SS$ NORMAL 00000001

SYSSK VERSION 35503058

USER GET TODR 00000258-RU
USER NULT 000002AB~RU
USER_SET_PFC 00000275-RU

_DBB2: [HUSTVEDT.USS]USS.EXE; 19

Value

————

00000001 SS$_NORMAL
0000000C SS$ACCVIO
00000114 SS$TINSFARG
00000227 R-EXEC DISPATCH
00000258 R-USER_GET_TODR
00000275 R-USER™ SET PFC
000002AB R-USER NULL
000002C0O R-KERNEL_DISPATCH
35503058 SYSSK_VERSION
7FFEFESS CTLSGL_PHD

Key for special character

g U S
t * -~ Undefined

! U - Universal

! R - Relocatable
! WK - Weak

B

S

above:

BYTE
BYTE

BYTE
BYTE

PAGE
PAGE

0

9

O

10-MAR-1980 15:48

10-MAR-1980 15:48

pIC,USR,CON,REL,LCL ,NOSHR, EXE,

PIC,USR,CON,REL,LCL ,NOSHR, EXE,

PIC,USR,CON,REL,LCL,NOSHR, EXE,

LINKER V02.42

Value Symbol

LINKER V02,42

RD ,NOWRT ,NOVEC

RD ,NOWRT ,NOVEC

RD ,NOWRT,

Page

Page

VEC

5

SHOVWI dTAVIUVHS AIDITIAIUC

¥2-9

_DBB2: [HUSTVEDT.USS]USS.EXE;19

Virtual memory allocated:

Stack size: 0. pages
Image header virtual block limits: 1. 1. (1. block)
Image binary virtual block limits: 2. 3. { 2. blocks)
Image name and identification: uss .STB;
Number of files: 3.
Number of modules: 3.
Number of program sections: 18.
Number of global symbols: 9.
Number of image sections: 4.
Image type: PIC, SHAREABLE. Global section match = "LESS/EQUAL",
Map format: FULL in file '_DBBZ:[HUSTVEDT.USS]USS.MAP;IQ"
Estimated map length: 43. blocks
e e L T e +
! Link Run Statistics !
B e D L +
Performance Indicators Page Faults CPU Time Elapsed Time
Command processing: 9 00:00:00.08 00:00:00.12
Pass 1: 31 00:00:01.00 00:00:01.79
Allocation/Relocation: 7 00:00:00.05 00:00:00.19
Pass 2: 3 00:00:00.22 00:00:00.72
Map data after object module synopsis: 17 00:00:00.25 00:00:00.70
Symbol table output: 0 00:00:00.04 00:00:00.33
Total run values: 67 00:00:01.64 00:00:03.85

Using a working set limited to 200 pages and 14 pages of data storage

Total number object records read (both passes): 272

10-MAR-1980 15:48

00000200 000005FF 00000400 (1024.

bytes, 2. pages)

(excluding image)

of which 51 were in libraries and 2 were DEBUG data records containing 414 bytes

Number of modules extracted explicitly =0
with 1 extracted to resolve undefined symbols

0 library searches were for symbols not in the library searched
A total of 4 global symbol table records was written

/PROTECT/NOSYSSHR/SHARE=USS/MAP=USS/FULL SYSSINPUT/OPTIONS

Ready

LINKER V02.42

Page

Ident, Major=1, Minor=1

6

SYOVWI HTAVIUYHS AIDITIAIYUA

CHAPTER 7

PROGRAM EXAMPLES

This chapter presents applications that wuse many of the features
discussed in this manual. Each application is explained, and the
program listings are given. The programs are in VAX-11l FORTRAN,
although some routines are in VAX-11 MACRO.

The following applications are included in this chapter:

e An analog-to-digital (A/D) data acquisition and manipulation
system

e An airline reservations system

7.1 DATA ACQUISITION AND MANIPULATION

This system, called LABIO, allows multiple users to receive and
manipulate analog-to-digital (A/D) data in real time. In this
example, a l6-channel A/D converter, such as the ADl11-K, is shared by
1 to 16 independent users. This example demonstrates the real-time
use of many VAX/VMS system services and features (described 1in
Sections 7.1.2 and 7.1.3). However, because each real-time
application is unique, this example does not show the only, or
necessarily the most efficient, use of these features. It is meant
only as a guideline for possible implementations,

7.1.1 Application Overview

In the LABIO system the 1l6-channel A/D converter is to be used
independently by up to 16 users; that is, each user must be able to
specify collection parameters and collect data from one or more A/D
channels without conflicting with other users. This independence is
achieved by placing a single "privileged" process (LABIO DATA ACQ) in
control of the ADl1-K. - -

The LABIO_DATA ACQ process collects data from the AD11-K and stores
the data in “buffers in a shared data array. The process runs at a
real-time priority and uses the VAX/VMS connect-to-interrupt
capability to process interrupts from a dedicated KWll-K real-time
.clock. On every clock overflow, data from the AD11-K 1is taken and
stored in the shared data array. The process uses control information
stored in the shared data array to determine how much data 1is to be
collected for each A/D channel. To protect users from other users

(and from themselves), the shared data array 1is read-only for the
users.

PROGRAM EXAMPLES

To store control information in the <control block, each user
communicates with a second "privileged" process, LABIO CONNECT. The
LABIO_CONNECT process receives, validates, and acknowledges each user
request, and modifies the data base accordingly. Simultaneous
requests from different users are serialized through the use of
mailboxes. The mailbox that receives user requests has the logical
name LABIO CONNECT. Users can issue four types of request:

e CONNECT
e ALLOCATE
e DISCONNECT
e DEALLOCATE

The first user request must be CONNECT. This request makes the user
known to the LABIO system. The user also passes the logical name of a
mailbox, which the LABIO CONNECT process will use to ackowledge the
user's requests. -

After a CONNECT request is completed, the user can issue ALLOCATE and
DEALLOCATE requests. The ALLOCATE request is used to gain ownership
of a specific A/D channel; once a channel is allocated by a user, no
other wusers can allocate it wuntil the owner specifies it in a
DEALLOCATE request. Four parameters are associated with the ALLOCATE
request:

e Channel number

e Sample rate

e Buffer size

e Buffer count (number of buffers to be acquired)

A user can allocate any number of A/D channels. The ALLOCATE request
can also be used to change collection parameters for a channel a user
already owns.

When finished with a channel, a user issues a DEALLOCATE request for
the channel; and when finished altogether, a user issues a DISCONNECT
request. The DISCONNECT request removes a user from the LABIO system
and implicitly deallocates any channels still allocated to the user.

Once connected to the LABIO system and allocated channels, a user
communicates with the data acquisition process (LABIO DATA ACQ) using
event flags. Each channel has three flags associated with Tt:

e ACTIVITY flag
e NOTIFY flag
e STATUS flag

The ACTIVITY flag determines whether data collection is enabled (flag
set by user) or disabled (flag cleared). The user process tells the
LABIO DATA ACQ process to check the ACTIVITY flag by setting the
NOTIFY flag; that is, when the NOTIFY flag is set, the LABIO_DATA_ ACQ
process checks the state of the corresponding ACTIVITY flag and
enables or disables the channel. When a data buffer is ready for user
processing, the LABIO DATA ACQ process sets the STATUS flag for the
channel. When the User process detects that the STATUS flag is set,
it clears the flag and processes the data buffer.

PROGRAM EXAMPLES

There is one utility program associated with the LABIO system:
LABIO STATUS, which displays the status of each of the A/D channels on
a VT52-compatible video terminal.

7.1.2 LABIO System Details

The LABIO system uses a number of VAX/VMS features described in this
manual. The following sections describe the major features
illustrated in this system,

7.1.2.1 Shared Data Base - The processes share data by using global
sections. The LABIO DATA ACQ process creates the global section using
the Create and Map Section (SCRMPSC) system service. A VAX-11 MACRO
routine (GBL SECTION UFO) is used to open the data file to be
associated with the global section. This global section is read/write
for processes with the same UIC (that is, LABIO DATA ACQ and
LABIO_CONNECT), but read-only for other processes in the group (that
is, the processes running the user programs). The global section is
not accessible by any processes outside the group. Other processes
map the global section using the Map Global Section (SMGBLSC) system
service, specifying the global section name LABIO_COMMON.

Because global sections are mapped by pages, it is important to ensure
that the data arrays are page aligned. To ensure this alignment, the
VAX-11 FORTRAN named-common and block-data features are used with the
VAX-11 Linker cluster option.

The shared data region contains three arrays:

e AD BLOCK, containing 16 control blocks, one for each A/D
channel

e CONNECT BLOCK, containing 16 control blocks, one for each
process that can be connected to the system (each process is
identified by its process identification)

e DATA BUFFER, the array into which the A/D data is stored

7.1.2.2 Common Event Flag Clusters - Two common event flag clusters
are used in the LABIO system:

e LABIO_EF NOTIFY, containing 16 NOTIFY flags

e LABIO EF_STATUS, containing 154 ACTIVITY flags and 16 STATUS
flags

The LABIO DATA ACQ process waits for the logical OR of the 16 NOTIFY
flags; that is, the process is activated whenever any of the flags is
set. Each user process normally waits for the 1logical OR of the
STATUS flags for the <channels it has allocated. Each user process
must set and clear the ACTIVITY flags as appropriate, and must set the
corresponding NOTIFY flag if it wants the LABIO DATA ACQ process to
check the ACTIVITY flag. The LABIO_DATA_ACQ process sets the STATUS
flag when a buffer is ready and stores the buffer index in AD BLOCK.
The user process is then responsible for clearing the STATUS flag.

PROGRAM EXAMPLES

7.1.2.3 Mailboxes - The LABIO CONNECT process creates a mailbox with
the logical name LABIO CONNECT. All user processes write their
requests to this mailbox. Each user process must also create a
mailbox, and must specify the mailbox's logical name in the CONNECT
request. If the LABIO CONNECT process accepts the CONNECT request, it
opens the user's mailbox and acknowledges the request by returning the
user request line preceded by a 2-character code:

e Zero to indicate a positive acknowledgment

e Nonzero to indicate a negative acknowledgment (the specific
code corresponds to the field containing the error)

7.1.2.4 Connecting to an Interrupt Vector - The actual
analog-to-digital I/0 1is performed by an interrupt service routine
specified in the connect-to-interrupt $QIO call. The process connects
to the interrupt wvector for the KWll-K real-time <clock, which
generates an interrupt every millisecond. On each interrupt, the
interrupt service routine does the following for each active AD11-K
channel (all control information is stored in AD BLOCK}):

1. Decrements the timer for the current channel

2. If the timer overflows, takes an A/D reading and stores the
result in DATA BUFFER

3. If the data buffer is full, switches to the next buffer

4, 1If the last buffer has been acquired, deactivates the channel
If any buffer was filled, an AST is requested and bits 0 to 15 of the
AST parameter word are set to indicate those channels that had a

buffer filled. The AST service routine SET_EF _AST sets the STATUS
event flags corresponding to the channels that had buffers filled.

7.1.3 Typical LABIO User Program Logic

A typical program running in a user process in the LABIO system would
contain the following logical steps:

1. Map the global section LABIO COMMON

2. Associate with the common event flag clusters LABIO_EF_NOTIFY
and LABIO_EF STATUS

3. Open the mailbox LABIO CONNECT

4. Create a mailbox to receive acknowledgments from the
LABIO_CONNECT process

5. Issue a CONNECT request and wait for an acknowledgment

6. Allocate channels wusing ALLOCATE requests and wait for
acknowledgments

7. Start data acquisition by setting the ACTIVITY and NOTIFY
event flags

8. Wait for buffer(s) to be filled by waiting for STATUS event
flags to be set

PROGRAM EXAMPLES

9. Process the contents of the buffers

10. Repeat steps 8 and 9 until finished

7.1.4 Program Listings

This section lists the files needed to create and use the laboratory
data acquisition application. Three programs that make up the system
and three sample programs that use the system are ©presented first,
followed by modules wused by all or some of the programs. The
remaining files are used to activate the system and to compile and
link the program.

The files are presented in the following order:

1. Three programs that make up the system. The modules in each
program are as follows (LABIOCOM.FOR, listed later, is common
to all three programs):

a. LABIOACQ.FOR, GBLSECUFO.MAR, LABIOCIN.,MAR
b. LABIOCON,FOR
¢. LABIOSTAT.FOR

2. Three sample programs to use the system. The modules in each
program are as follows (LABIOCOM.FOR, listed later, is common
to all three programs):

A. LABIOPEAK.FOR, PEAK.FOR
b. LABIOSAMP.FOR
c. TESTLABIO.FOR
3. Modules used by all or some programs
a. LABIOCOM.FOR (common routines)
b. LABMBXDEF.FOR (mailbox format)
c. LABCHNDEF,FOR (common data structures)
d. LABIOSEC.FOR (common data definitions)
4, Command procedures to activate the system
a. CONNECT.COM
b. LABIOSTRT.COM
5. Files to compile and link the programs
a. LABIOCOMP,COM
b. LABIOLINK.COM
c. LABIO.OPT

d. LABIOCIN,OPT

PROGRAM EXAMPLES

{Filet LABIOACG.FOR

- G B B B B

P B B B B P B B b= B B

Program LABIO, DATA_ACO

This {8 the program that acauires data for the LABIO system
It uses the connectwtominterrupt feature of VM5 to acquire
via a user written I/0 routine, The actual]/0 routine is
written in MACKQ, The main program monitors the event flags
and enables and disables data acaquisition for each ¢hannel,
It also notifies users via event flags when a buffer is full,

Defime the [LABIO data base
Include °LABCHNDEF,FOR®

Local Variables
Logicalxy SECTION,_FLAGS, SECTION,PROT

System Services
Logicalxd SYSSASCEFC,S5YSIMGBLSC,SYSHASSIGN,SYSSGIO0
Logicalxd SYSECLREF

External constants
Extermal SECHM_ GBL,SECEM WRT,SS5% CREATED,SS$ WASSET
Extermal SET_EF, AST

Misc,
Logicalxd AD,CIN,_UP,SUCCESS

Create the Global Section for the data buffer
This data buffer wil) be READ/WRITE for the owner, READ only for the GRC

First see if the global section already exists, if it
does just map to it, ana set the reéestart flag,

1f not, Open the Data File, This can not be opened
via FORTRAN since we need the VMS channel nrumber,

SECTIONCI) %lLoc(LABIQ QUFFER_S) iStart address of section
SECTION(2) %Loc(LABIO, BUFFER,E) = 1 JEna address

Page count for the section
SECTION,SIZE = (SECTION(2) = SECTIUN(1))/S512 + |

FLAGS for Section are GLOBAL,SHARED,NON,ZERQED,READ/WRITE, TEMP
SECTION,FLAGS = %Loc(SECHM_GBL) + XZLoc(SECSM_wRT)
Try just mapping to the global section

SUCCESS = SYSSMGALSC(SECTION,,y%Val(SECTION, FLAGS), LABIOCOMMON?,,
If(SUCCESS) Then

RESTART = ,TRUE, lSucces, this is a restart
Else

SUCCESS = GBL,SECTION, UFO(SECTION,SIZE, *LABIO_ SEC_FILE’,
1 SECTION,CHANNEL)

If(omot. SUCLESS)
1 Call FATAL, ERROR(SJCCESS, Opening Global Section File”)

30

31
32

33

—

[PORR -

o— e 8= - o

PROGRAM EXAMPLES

PROTECTION {s OWNER = READ/WRITE, GROUP = READ, SYSTEM/WORLD = none
SECTION,PROT = *F E @ F*X |Protection for section
Create and Map the Section

SUCCESS = SYSHCRMPSC(SECTIUN,), %Val(SECTION,FLAGS), LABIQCOMMON®,
i rrAVal (SECTION, CHANNEL) p%Val1 (SECTION_SIZE) s,
1 XVal(SECTION, PROT),%Val(SECTION,S5IZE))
If(4not, SUCCESS)
1 Call FATAL_ ERROR(SUCCESS,"Creating Global Section”)
RESTART = ,FALSE, lWhe are not restarting
End If

If this is not a restart, ¢lear the date Sstructures

It(ynot, RESTART) Then
Do 32 I = 1, maX AD, CHANNEL {Clear AD,BLOCK
Do 30 J = 1, 16
AD,BLOCK(J,I) =
Do 31 K = 1, BUFFER,_ COUNT IClear Data byffers
Do 31 J = 1, MAX, BUF, SIZE
DATA _BUFFER(J,K,I) = 4
Continue
Do 33 1 = 1, ™
Do 33 J = 1,2
CONMECT BLOCK(I,J) = & iClear Process connect block
Emd IF

AX,PID

Create event flag cluster EF _NOTIFY and associate with event flags 64=95
These are used to notify the Lata Acauisition orocess.

SUCCESS = SYSSASCEFC(¥VAL(EF _NGTIFY, 1), EF NOTIFY CLSTR,,)
1f (,not, SUCCESS)
1 Call FATAL,ERRQOR(SUCCESS, *CREATING EVENT FLAG CLUSTER?)

Create event flag cluster EF STATUS and associate with event flags 96=127
These are ugsed to notify and report the status of the user bhuffers

SUCCESS = SYSSASCEFC(AVALCEF STATUS 1) ,EF ,STATUS, CLSTR,)
If (,not, SUCCESS)
i Cal) FATAL_ERRQK(SUCCESS, *CREATING EVENT FLAG CLUSTER®)

Make sure that we can‘t be swapped

Cal) SYSSSETSWM(%ZVal(l))

Set=yp the (Connect=towlnterrupt
First assign a VMS channel for the cdevice
Then call the connecteto=interrupt setup routine,

SUCCESS = SYSBASSIGN("LABIQ AU, CIN, CHANNEL,,)
If (,not, SUCCESS)
1 Cal) FATAL_ERROR(SUCCESS, *assigning A/D aevice’)

SUCCESS = AD,CIN,SETUP(CIN, CHANNLL,SET EF_ _AST)
IfC «NOt, SUCCESS)
1 Call FATAL, ERROR(SUCCESS, ‘connectinge=to=interrupt’)

PROGRAM EXAMPLES

| End Of Injtialfzation, Notify other processes by setting EF DATA_ACO
Call SYSHSETEF(%Val(EF,_DATA,ACQ))

I Wait for an event flag in the EF NOTIFY clustep
i Then read the EF_NOTIFY CLUSTER ama EF, STATUS_CLUSTER

2 Call SYSPWFLOR(XVal(EF NOTIFY_ 1) , %Val(°FFFF’X))

Look for the flag(s) set inm EF _NOTIFY

If the corregsponding activity flag ig set, activate the channel,
otherwise deactivate ft, Also check the buffer status flag, {f clear
clear the buffer index,

B = e Bm G M s

De 20 1 = 1,16
IfC SYSSCLREF(%Val (EF NOTIFY OFF + 1)) ,eq, %Loc(SS$, WASSET)) Then
I1#(AD_BLOCK(1,I) .ne. @) Then
If(SYSSREADEF(XVal(bF ACTIVITY_OFF % 1),EF_ STATE)
1 1€, %ALOC(S5SH WASSET)) Then
AD,BLOCK(1,1) ACTIVE
Else
AG . BLOCK(1,1) = INACTIVE
Ema §f
If(SYSSREADEF(%Val(EF, STATUS_ OFF + I1),EF_ STATE)
1 e€ad, XLOCc(SSH WASCLR)) AD,BLOCK(7,1) = @
Ena If
End It
2e Continue
Go To ¢

u

Ena
Subroutine SET_EF_AST(EVENT_FLAGS)

! This is a AST routine which is jnvoked by the
{ Interrupt service routine, Tnis routine sets
! the event flags indicated by the ISR,

Imclude *LABCHNDEF ,FOR’

Integer EVENT FLAGS

The Event flags are set jn cluster EF, STATUS,CLSTR

P

Do 1@ 1 = 1,16

If((EVENT_ FLAGS ,ann, BIT(I)) ,me, ¥)

1 Call SYSESETEF(%Val (EF, STATUS, OFF + I))
10 Continue

Return

Ema
I lEnd of Fitel

PROGRAM EXAMPLES

+TITLE GBLSECUFO Global Section UFD (User Flle Open)

1This routine opens a file to be used as a global section
sAn RMS OPEN {8 performed with the file options (FQP) of
sUser File Open (UFQ), The callimg routine specifies the
sfi{le name and number of blocks; this routine returns the
schannel number on which the file was opened,

:1f the specified file does not exist, the file is created

H
sThe calling seauence s

Call GBL,SECTION_UFOQ(blkent,f{le=name,chan)

Where
blkemt => Number of blocks in the file
file=name => filename descriptor block
chan => channel opened

Examples

Integerxd CHANNEL
H

;
;
H
;
H
7
H
H
H
;
H
H
;
H H

; Cal) GBL,SECTION,UFO(19, LABIO,DATA,DAT?, CHANNEL)
+SBTTL GBL,.SEC,UFO

;7 RMS FAB for a SCREATE

GBLFABs SFAB FACZPUT,=
FoP=<UFQ,CIF,CBT>

NUM_ ARG = 3 tNumber of arguments

JENTRY GBL,SECTION,UFO,®

MOVL #5538 , INSFARG,R2 jAssume bad arg count
cMPH CAP) , BNUM, ARG jCheck arg count
BLSS ExIT 1Too few
MOVL R(AP) R 1Get file mame address string descriptor
MOVE (K1), GBLFAB+FABSB FNS 1Store string lenath in FAB
mMOvVL 4(R1),GBLFAB+FABSIL, FNA ;Ama file name
MOVL 04(AP),GBLFAB+FABEL,ALQ jMumber of blocks to allccate
SCREATE FAB=GHBLFAB s0pen data file, Create {1t {f
;if it does nmot exist

MOVL GHLFAB+FARSL STv,212(AP)5tore channel number

EXIT: KET sReturn with error code in R)
«END

PROGRAM EXAMPLES

KW HIST = 1|
«TITLE LABIOLCIN = LABIO Connmect=to=Interrupt Module
s IDENT /ViE1/

-s

P, Programmer 1S=Nov=T79

FEXS

H

s FACILITY:

?

H LABIO demonstation system

’

; ABSTRACT:

H

H This module contains the 1/0 code for handling
H an AD1i~K, It is an example of a connect=to interrupt
; routime, This module contains code to perform the followinrg
H

H The start I/0 routine

; The interrupt service routine

H The cancel I/0 routine

H

;7 AUTHOR:

H

H

H

H

«SBTTL DATA STRUCTURES

«PSECT LABIO, SECTION PIC,QVR,REL,GBL,SHR,NOEXE,RD,#wRT,LONG

: The following data structures are also defined by a
s FORTRAN INCLUDE file, These definitions must aqgree,

;3 AD_BLOCK A/D Control Block
MAX, AD_CHANNEL = 16 tNumber of A/D chanmnels
AD, BLOCK, SLOTS = 1l6 tnumper of entries in one block

AD,BLOCK,SIZE = MAX,AD, CHANNEL®AD,BLOCK,SLOTS

sAD, BLOCK offgets (long woras)

AD, STATUS = 9 1STATUS (Unknown, {nactive, or active)
ACTIVE L= 2 s aCTIVE
INACTIVE,L = 1 1 INACTIVE
PID = d 7 PID of connected process
TICS, SAMPLE = 8 5 Rate in tics/sample
BUFFER,SIZE = 12 + User specified puffer size
BUFFER,COQUNT = 16 1 User specifieag buffer count
BUFFER ACE = 2@ ! Number of buffers acaouired
VALID, BUF JIND = 24 3 Imdex of current valid data buffer
VALID, BUF _COUNT = 28 1 Numper of data opoints in last buffer
CUR,BUF [IND = 32 ; Index to current acqg. buffer
CUR_BUF COUNT = 3 ; Mumber of deta points in last pbuffer
TICS REMAINING = 4¢ t Tics remaining to next sample
CUR_ ACQ _ UFF = 44 ; Uffset to aca point
AD,BLOCK,END T b4 1 Offset to enmno of & block
AD, BLOCK: cBLKL AD BLOCK,SIZE

: DATA_BUFFER Data buffers for LABIO

MAX BUF _COUNT =2 jNympber buffers/channel
MAX,BUF SIZE = 512 tMaximum buffer sjze (4QK0OS)

PROGRAM EXAMPLES

BUFFER_END = MAX_BUF COUNTxMAX BUF ,SIZEx2 ; Size of one set of buffers
DATA BUF,SIZE = MAX AD,CHANNEL*MAX _BUF ,SIZE*xMAX BUF COUNT
DATA,_BUFFERS o BLKW DATA, BUF SIZE

DATA,_BUFFER,OFF = DATA BUFFER=AD,BLOCK 30ffset to data buffer from
jbeginning of data structure

¢+ CONNECT_BLOCK Process Conmect control block
MAX_PID = 16 tMax mumber of processes connected
CONNECT _ SIZE = MAX PIDx2

CONNECT _BLOCK: ,BLKL CONNECT STZE

CSBTTL 1/0 DEVICES

:This section defines the constants asocciated with the KWliek clock
sand the AD11=K A/D converter

1KWwli=K Clock
sCSR bit essignments

KW11$M, GO = "0{ 160 bit

KW11$M, RATE = =0¢2 ;Rate = bits 2=4
KWi1SM INTENE = *0120 1Interrupt emable
KWii13M READY = 0200 sHeady bit
Kwii{$M_REPINT = "042¢ jrepeateq interuupts

KW11,CSR, CONS = KWI1EM REPINTIKW]{SM INTENBLI®1#KAL13M RATED
tRepeated interrupts,interrupt enable
JRate = | MH2

KWi1, PRESET = {ane, 1Preset 3> Interrupt rate of | KHz
KWIi A BUFFER = =02 ;Nffset to clock A oreset buffer
KWLl A, COUNTER = =024 jliffset to clock A counter

;AD11=K A/D converter

ADY1,0FFSET = =i s Nffget to the AD{1 from thr KWil clock CSR,
AD11 BUF s 2 3 ADL1 puffer offset from AD11 CSR

AD11,.GO = 1 ; Go bit

AD11 MUX TINCR T 044 Mux fner bit

e s

AD11,CSR, CONS AD11,6G0 Imitial CSR valye
sLimit for stopping ISR Joop

AD11,LOOP,LIMIT = AD11, MUX, INCR*€4AX AD,CHANNEL=1>{AD11,CS®, CONS

$ID8DEF ; Defimition for /0 drivers
SUCBDEF ; Data structurs

$I0DEF 7 170 fumction codes

FCINDEF 1 Commect=to=interrupt
FCRBDEF 7 CRYB stuff

SVECDEF 7 more

«SBTTL LABIC,CIN, START, Start 1/C routine

+
-+

LABIQ,CIN,_START = Starts the Kall=K

. me "o w8

Functional description:

PROGRAM EXAMPLES

This routine starts the KWwllek
Rate = | Khz
Repeated f{nterrupt

Inputs:

B(R2) = arg count of 4

4(R2) = Address of the process buffer

8(R2) = Address of the IRP (1/0 reauest packet)

12(R2) = Address of the device’s CSH

16(R2) = Address of the UCH (Lnit conmtrol nlock)
Qutputs:

none

The routine must preserve all registers except RU=R2 and R4,

ME WA W NS NE NE NG NS W WS WE WE WA WE WS VS Ne " W

JPSECT LABIC_ CIN

LABIO,CIN,START::

MOV, 12(F2) K2 1 Get address of the Kwi}l CSR
CLRW (wd3) 7 Clesr the Clock
MNEGW HKA1] PRESET,= 1 Preset count buffer
Kr11,A, BUFFER(RZ)
MOV W Grw1], CSR, CONS+KW115M GO, (RIX) 3 Set the Dits for

Repeatesd imterrupt
Interrupt Enable

D)

GO¢
MOVwW BSSE NORMAL,R# ;} Load a success code into R@,
RSH ?} Return

«SBTTL LaBIQ, CIN_ INTERRUPT, Interrupt service routine

-+
E 3

LABIO, CIN_INTERRUPRT
Functiomal description:

Inputs:

Y(R2) = arg count of 5

4(rR2) = u4adress of the corocess buffer

8(R2) = address of tne 4AST parameter

12(R2) = Address of the cevice’s (8%

16(R2) = ddaress of tre IDB (interrupt gispatch hlock)

2¢(R2) = addresg of tre UCS (Unit control plock)
Cutputs?

Sets thase hitg im the AST parameter for those
channels who had a byffer filleo

The routinme must oreserve all reaisters except Kid=R4Y

WE WO Ne NS NS WA NE NS NS NS WE WS WH V4 WL NG VA wE W2 WA NS

*omw
H

CIN BUF,ADD = 4 jAddress af CIN buffer
AST PARM = 8 ;Uffset to AST parrmeter address
CIN,CSR_ADD = 12 thddress of C8R

PROGRAM EXAMPLES

1
AD,LOOP_DATAS
183 7878 (R4) svaft for A/D conversion
BGEG 1% 1
o IF NDF KW HIST tTime histoqram don’t store actual data
MOV W AD11,.BUF(R4),(RY) [R2) jstore cdata point in buffer,
+ENDC
A1) done with thig channel, setup for the next
’
AD,LOOP, NEXT?
ADDL #AD BLOCK _END,RS tNext channel block
ADDL HBUFFER_END,R1 sNext buffer
ADDW BAD11 MUX_ INCR,R6 sImer A/D MUX
AOBLSS S8S*“#MAX_AD,_CHANNEL,R3,= jNext channe)
AD_LOOP 1Br {4 mot done
tExit routine = If any buffer overflowed, queye an AST
MOVL PAST PARM(R2),RY 11f any bit im the AST parameter
BEGL 1% 1is set we must queue an AST
MOVL #14R0 } | means queue the AST, © means don’t
18 POPR H™MCRS,R6> 3 Restore RS5,Ré6
RSB 3

«SBTTL LABIO,LCIN,CANCEL, Cance)l I/0 routine

The routine must preserve all registers except RQeR3,

te

: LABIO_CIN,_CANCEL, Cancels an 1/0 operation {n progress
H

;1 Funetional descriptions

H

H This routine turns off the Kwlle=k
}

;7 Imputs:

H RS = Addr of the UCB

}

3 Outputst

H

H

H

H

H

LABIO,CIN,CNCL32
MOVL UCBSL,CRB(RS) RV
MOVL CRESL,INTDHVECSL, IDB(RA), R
MOVL. 10B%L,CSR(RR) 4RV

Get Addaress of the CRB
Address of the IDB
Get addr of Kwil

s wa e ws ws

CLRW (RQ) Turn of the Kwll
MOVW #85% NORMAL,Ry And return
RSB

WSBTTL LABIO,_CIN,END, End of Module

e
;s Label that marks the end of the moaule

LABIO,CIN_END: : Last locatiom in mocdule
«SBTTL ADCIN_SETUP Set=un routine for LARIN connect=to=interrupt
H

; This routime issues the HIQ to comnect to the AaD11/KW1l1 interrupts,

LABIO,CIN,INT:1

PUSHR
MOovL
MOVL

MOVAL
MOVAL

MOVW
CLRL
CLRL

AD,LOOP}

3 While the A/D {s converting,

CMPL
BLSS

SO0BGTR

MOV W

PROGRAM EXAMPLES

H™M<CRS,R6>
CINLCSR_ADD(R2),R4
CIN_BUF _ADD(R2),RS

DATA_BUFFER,OFF (RS),R1

AD11_ OFFSET(R4),RY

#AD11,CSR, CONS,R6
®AST_PARM(R2)
R3

(RS),S*¥ACTIVE,L
ADLLOOP NEXT

1Service device interrupt,

save RS,Ré

tAddress of the KWil CSR

jAddress of AD,BLOCK,

control block

;for each A/D Channe)

t1Data Buffers

tAddress of the ADii CSR

$)AD11 CSR bits, GO bit on
t1Zero the AST parameter

jJIs this channel active?

INoy

TICS.REMAINING(RS),AD_ LOOP NEXT
1Decr the timer for this channe)
1Br 1f no conversion required

Ré6s (RY)

JIF DF KW _HIST

MOVZWL
ADDW
INCW
+ENDC

1Start conversfon,

tTime histogram,

try next channel

while that’s going o
stored in data byffer

KW11 AL COUNTER=AD{1 OFFSET(R4),R3 jGet current clock contents
jCelc time from {ntgerrupt

#KW11 PRESET,R®
(R1) [R@)

1 get the offset to the data pointer,
;s actfon {f we have buffer overflow,

;Buffer overfiowed,
sincrement acquired buffer count,

i186:

2%:

s Nowy

MOVL
MOVL

INCL
AOBLSS

MOVL
MOVL
MULL3
CLRL
AOBLEQ
MOVL
CLRL
INSV
AOBLSS
TSTL

BEGL
MOVL

qget

TICS,SAMPLE(RS),=
TICS.REMAINING(RS)
CURLACQ,OFF (RS),R@
CUR_ACQG,OFF (RS)
BUFFER,SIZE(RS), =
CUR_BUF _COUNT(RS),*
AD.LOOP,DATA

CUR_BUF _IND(RS), =
VALID_ BUF _IND(RS)
CUR_BUF _COUNT(RS),=
VALID_BUF _COUNT(RS)
CUR_BUF _IND(RS),=
¥MAX,BUF . SIZE,=
CUR_ACQ_OFF(RS)
CUR_BUF _COUNT (RS}
EMAX_ BUF _COUNT,=
CUR_BUF _IND(RS), 18
#1,CUR_BUF_IND(RS)
CUR_ACQ_OFF (R5)
#1,R3,41,8A5T PARM(R2)
BUFFER,_COUNT(RS),=
BUFFER_ACQ(RS5),23
BUFFER _COUNT(RS)

2%

BINACTIVE, L, (RS)

the data poimt and gstore it

reset data pointer,
termimate channel

t1Add one to that

nd update jt,

jReget timer for

1Get {ndex to nmex
jAdvence it

time bin

the tic counter for this channel,
Take appropriate

this channe!

t date point

tUpdate current data count
1Br i¢ no buffer overflow

reset buffer pointer

I70 i

{f done

}Valid data buf availadble for user

tNumber of points in buffer

j0ffset to next data point

jReset data count

jNext buffer index

juprap=around,

reset buffer {ndex

3And buffer offset

1Set pit

{m AST parameter word

tImcr buffer count

jDone with all
11f original coun
1Don’t stop

puffers?

t was zero

1Deactivate channe)l

im the buffer,

7-14

PROGRAM EXAMPLES

; It takes care of the internals associated with the connect=to=interrupt
} QI10, Input parameters the VM8 channel and the AST service poutine address,
? The connect=to=interrupt GIC condition code is returned,

+PSECT ADLCIN, SETUR

AD,CIN,SETUPy;

W WORD 2
MovL B(AP) ,USER_AST 1Get the yser AST routinme addr
AD, CIN_ QIO
$610,8 CHANzOU(AP),= :Channe)
FUNC=#I0S CONINTHARITE,= jAllow writing to the data buffer
1088=4AD CIN,T0%B, 31/70 status Block
Pi1zAD, CIN, BUF DESC,~ jBuffer descriptor
P2=#AD CIN,_ENTRY, = tEntry list
P3=#AD CIN _MASK,= iStatus bits,etc
PUSHAU CIN _AST,= 1AST service routine
Pez#il tpreallocate some AST control blocks
RET jReturn to caller
AD CIN_BUF_DESC: shuffer descriptor for CIN
» LONG LABIO, CIN _END=AD, BLOCK 35i2e of buffer and CIN handler
+LONG AR BLOCK jhddress of huffer
AD, CIN,ENTRY?
o LONG @ tto init code

LONG LABIOLCIN,START=AD BLOCK;Start code
o LONG LABIO,CIN, INT=AD BLOCK jylnterrupt service routine
» LONG LABIO CIN_CNCL=AD, BLOCK 3170 cancel routine

AD,CIN_IQSB:
» LONG PR 3 170 Status Block

; Control mask

AD,CIN,MASK = CINSM, REPEATICINGM, STARTICING™, ISRICINS™, CANCEL

~e we

AD,CIN_AST

This AST routine calls the user AST routine, The user routine
can not be called directly because the AST parameter itgelf

not {ts address is retyrned vis the connectw=to~interrupt routine,
This routime simply calls the user routime with the ADORESS of
the AST parameter,

.. e we wa w8

AD_CIN_AST::
+WORD 4

PUSHAL 4 (AP) t1Get the AST carameter agar
CaLLs 51, BLUSER, AST 1Call the USER routine
RET

USER_ AST
» LONG shdor of the user AST routine
.&NL)

PROGRAM EXAMPLES

IFilet LABIOCON,FOR

W A B S P

Program LABIQ, CONNECT

Define Labio date structures
Include *LABCHNDEF ,FOR"*

Mailbox Definitions

Incluae *LABMBXDEF,FOR’ !Defines Mailbox Data Structures
System Service Definitions

Logicelxd SYSSCREMBX,SYSSASSIGN

Logjcalx4 SUCCESS

External SS$_ ENDOFFILE
Subroutine Definitions

Integer CONNECT,DISCONNECT,ABORT,ALLCCATE,DEALLOCATE

Integer READ, MAILBOX,wRITE MAILBUX,LABIO,LOG,ACKNONLEDGE
Integer CHECK,PID,RETURN,CODE

Command Data Structures

Parameter MAX, CUMMAND = S

Characterx15S COUMMAND,COMMAND TABLE (MAX _ COMMAND)
Data COMMAND, TAHBLE /*CONNECT?,

1 *DISCONNECT?,

1 FARORT?,

1 *ALLOCATE",

1 *DEALLOCATE"/

Map to the Global Data Section "LABIO COMMON®
And Definme the Commom Event Flag ClLusters
Reaquest write access to the data base,

Call LABIOLINIT (1)

See {f mailbox LABIO_CONNECT exists by attempting to assign it, if
it does not exist, create it, Tnis majlipox §s wsed to commyunicate with
other LABIO processes, Kestrict 1t to processes within this group,

SUCCESS = SYSSASSIGN(LABIO,CONNECT?, MBX, CHANNEL /)

If (4note. SUCCESS) Then
SUCCESS = SYSSCREMBX(,M8x CHANNEL, ,,%Val(*FDuv’x),, "LABTIO, CUNNECT
If (.not, SUCCESS)

1 Call FATAL,ERROR(SUCCESS, ’*Cresting mailbox’)

Ena If

Tell other processes that we’re ready to go,
Call SYSESETEF(%val(EF, CONNECT))

Get a commang from & reauesting processes

PROGRAM EXAMPLES

10 Call READ_MAILBOX {Get a message
Call CONNECT,CHECK ICheck the database to clear
lany deleted processes,
I 1f 1/0 status is EOF then process has terminated, ABORT f{t,
If (MBX_IO0,STATUS ,ea, %Loc(SSSE_ENDQFFILE)) Go To 23

| Decode characters as a command

If (MBX _MESSAGE L .,ea, &) Go To 12
Decode (MBX MESSAGE L,100,MBX MESSAGE,ERR=14) COMMAND

| Search Command Table for Command

Do 11 COMMAND INDEX = 1,MAX COMMAND
I#(COMMAND ,ea, COMMAND TAMLE(COMMAND INDEX)) Go To 12
11 Continue

Go To 13 !I1legal command
{
| Dispatch to correct routime
{

12 Go To (21,22,23,24,25) COMMAND INDEX

{
1 1f we get heres, 1t’s an unknown command

13 Call LABIO,LUG(=1)
i

I CONNECY command
i

21 RETURN,CODE = CONNECT (MBX,PID)
Call ACKNUALEDGE(RETURN_COVE) lhcknowleage the reauest
Call LABIOLLOG (RETYRN,CODE) iLog the acknowleagement

! Disconmnect if was bad connect

If (RETURN,COUE .ne, B) Call OISCONNECT(m])
Go To 14

{ DISCONNECT Commang

22 RETURNLCODE = DISCONHECT (MEX,FID)
Cal)l LABIOLLGG (RETUKN,CODE) 1Log the acknowledgement
Go To 1®

| ABORT commanag

23 RETURN,CODE = ABORT (#Bx Flis)
Go To 4u

PROGRAM EXAMPLES

)
| ALLOCATE command
|

24 RETURN,CODE = ALLOCATE (MBX,PID)
Go To 4@

!

! DEALLOCATE command

i

25 RETURNLCODE = DEALLOCATE (MBX_ PID)
Go To 42

!

! Return status {m first character position
l

44 Cal) ACKNOWLEDGE(RETURN,CODE) lAcknowledge the request
Call LABIO_LOG(RETURN_,CODE) {Log the acknowledgement
Go To 10

{

| Formats

!

190 Format (A)
End

Subroutine CONNECT_ CHECK

This routine checks to make sure all processes
connected (in CONNECT_BLOCK) actually exist,
If a process has been deleted, this routine
removes it from the database by calling ABORT

Include ‘LABCHNDEF,FOR’
Logical*4 SYSSEGETJPI

Do 12 I = 1, MAX_PID
PID = CONNECT BLOCK(I,1)
I (PID ,ne, @) Then
If(4note SYSSGETJPI(AVal(2),PID,»®%,spe)) Call ABORT(PID)
Erng If
19 Continue

Return

End
Logicalxd Function READQ,MAILBOX
!
I This routine reads the LABIO, CONNECT mailbox
| Returns when a message is ready
{

External 103, READVBLK
Include *LABMBXDEF, FOR”
Logicalxd SYSSGIOA,SUCCESS

PROGRAM EXAMPLES

! Read for a message from amother process
i

MBX _READ=%LOC(I0% READVBLK)

MBX MESSAGE(1) = * *

READ_MAILBOX = SYSHQIOW(,%Val(MBX, CHANNEL),%Val(MBX _READ),

1 MBX, I10,STATUS,, ,MBX MESSAGE,
1 AVal (MAX _MESSAGE),p,,)
Return

End

Logical*d Function WRITE MAILBOX(MBX, CHAN,MESSAGE,MESSAGE_ LENGTH)
! This routine writes a message to a majlbox
! Input are the MBX channel, the message, and message length
}

External IQS_WRITEVBLK,IOSM NOW
Logical SYS3QIQ

| Write response buffer of MBX

MBX WRITE =%Lcc(I0S WRITEVBLK)+%Loe(TOEM NOW)

WRITE _MATLBOX = SYSSQIO(,%Val (MBEX_CHAN) ,%XVal (MBX _WRITE) sy
i MESSAGE, %XVal (MESSAGE LENGTH)ypss)

99 Return

End
Logicalxd Fumction OPEN_MAILBOX(MAILBOX,CHAN,MAILBOX NAME)

| This routine opens ma{lbox indicatec by MAILBOX, NAME, It returns
1 the VMS channel number assigned to it, The mailbox name can be
! padded on the right with blanks,

Characterx(*) MATLBOX, NAME

Integer MATLEBOX CHAN
Logical*xd SYSEASSIGN, SUCCESS

H Determine Jength of majilbox name string

MAILBOX NAME, L=Index (MAILBOX NAME,* *)=1
If (MAILBOX, NAME.L ,1t, @) MAILBOX,NAME,L=lLen(MAILBOX, NAME)

Asgsigmn & channel to mai{lbox
Returmn status to caller

— e B B

OPEN _MAILBOX =SYSHASSIGN(MATLROX, NAME (¢MATLBOX, NAME L) MATLBOX _ CHAN,)
Return

Emnd

Subroutinme ACKNOWLEDGE (ACK, CQDE)
!
I This routinme acknowlegdes a reaquest of process, by return the
! command string the process sent us, The string is preceded

PROGRAM EXAMPLES

! an acknowledge code (ACK_CODE), The ackmowledgement {s sent
via the mailbox the the sending processes had created,
1 If that process has not connected to us, we do mothing,

—

Include “LABCHNDEF,FOR’
Logical*4 WRITE MAILBOX

Include °|LABMBXDEF,FOR*
Integer CONNECT, INDEX,CHECK_PID,ACK_CODE

| If process 8 not {n CONNECT_BLOCK, do not resoond,
CONNECT_INDEX = CHECK,PID(MBX,PID)
If (CONNECT_INDEX ,me, @) Then
Encode(MBX, RESPONSE, L, 122,MBX RESPONSE) ACK_CODE
MAILBOX = CONNECT_ _BLOCK(CONNECT _ INDEX,2)
Call wRITE_MAILBOX(~AILBOX, MBX RESPONSE,
i MBX MESSAGE ,L + MBX_RESPONSE_ L)
End If
Return
120 Format (I2)
End
Subroutine LABIO.LOG(CODE)
This routine logs a message that has been processed, The message
is written to the log file, alomg with the time, process ID, I0 status

word and the message length, This routine opens the log file
if {t hasn’t been opened,

G = B G B

Include “LARMBXDEF,FOR®

Characters24 TIME
Logical LOG,OPEN
Integer CODE

Data LOG, OPEN/,false,/
Call SYSSASCTIM(,TIME,,) {Get the date and time

l
! Open Log file 1f this is the first time thru
{
It ¢ ,not, LOG,CPEN) Then
Open (Unit = 1, Namez’LABIO_LOG", Typez=®Unknown®, Access = “Appencg
LOG OPEN = ,Trye,
Write(l,160) TIME,” Labio Log Opened’

End If

10 Write(1,2¢0) TIME,MBX,PID,M8X, 10,STATUS, 4BX MESSAGE, L,
1 CODE, (MBX,MESSAGE(I),)I51,MBX MESSAGE, L)
Return

jea Format(2A)

PROGRAM EXAMPLES

280 Format(A,219,219,110/13,128A1)
End
Integer Fynction CONNECT(REG_ PID)
Include *LABCHNDEF,FUR’

Include *LABMBXDEF,FOR’
Characterx63 MAILBOX NAME

Integerwxd REQ PID,CHECK PID
Logicalxy OPEN_MAILBOX

CONNECT = 1
!
| Find an empty CONNECT_BLOCK slot
!

Do 10 I = 1, MAX,PID
I+ (CONNECT_ BLOCK(I,1) ,eas) Go To 290
10 Continue

! We should never get here, sinmce the last slot of
| the CONNECT BLOCK {s a spare for sending message
! disallowing a conmect!

Go To 99

! Open user specified MAILBOX

20 Decode (MBX MESSAGE,L,140,BX, MESSAGE) MAILBOX NAME
1f(.not, OPEN,_MAILBOX(MAILBOX, CHAN,MAILBOX,_NAME)) Go To 99

!

! Allocate the connect block, if it is not a guplicate

| PID, store tne PID and mailbox channel in CONNECT BLOCK
| If §t i8 a durlicate, store the PID ag =1,

If(CHECK_PID(REQ, PID) ,ea, ¥) Then
CONNECT BLOCK(I,1) = REG,PID
CONNECT = @

Else
CONNECT BLUOCK(I,1) = =1 jbuplicate PID] we will Disconnmect
lafter Acknowledging request
Emd If

CONNECT BLOCK(I,2) = MAILBOX, CHAN

I¢ (I .9es MAX, PID) CONNECT =] InNo room for processl!

99 Retuyrn
129 Format (15X,A)
End

Integer Function DISCONNECT(REW,PID)

Il This routine discomnects a process from the LABIO system,
I I+ 1t is a valid process, all cranmnels still allocated are

99

S B Pn o= B B P G

PROGRAM EXAMPLES

deallocated, the reauest is acknowledged, the channel assigned

to the mailbox is deagsigned, and the CONNECT,BLOCK entry is removed,

Include ?LABCHNDEF,FOR”
Integerx4 REGQ, PID,CHECK, PID

DISCONNECT = |
Fimd i{ndex {mto conrnect block

CONNECT _INDEX = CHECK, PID(REQ_PID)
If (CONNECT_INDEX ,eq, 4) Go To 99 [Not connected

Deallocate all A/D channels
Call DEALLOCATE _ALL(REQ_PID)
Acknowledge DISCONNECT request
Call ACKNOWLEDGE(®)
Close the maflbox, and zero CONNECT,BLOCK
Cal)l SYSSDASSGN(%XVal (CONNECT BLOCK(COMNECT INDEX,2)))
CONNECT BLOCK(CONNECT _INDEX,1) = 2
CONNECT BLOCK(CONNECT L INDEX,2) = &
DISCONNECT =2

Return

Emg

Integer Functionm ABORT(REG, PID)
Call DISCONNECT(REG,PID)
Return

End
Integer Functiom ALLOCATE(RER PID)

This routines allocates an A4/0 channel to a specific process,
The process request a channels by numpepr (l=16), specifing

the asample rate in tics/samole, the pyuffer size {n words, ana
the number of buffers to acquire (@ 5 infinity), The user can
default the rate to | tic/sample, Default the buffer size to
the maximum, and the cuffer count to @, If the user reallocates
the channel, the cefaults are the previous values allocated,
The channel must beem INACTIVE {f it i{s reallocated,

Include *LABCHNDEF ,FGUR®
Incluce *ILABMBXDEF,FOR”’

Irtegerxd REQ_PID {PID of requesting process
Integer*d PARM(4) l4 input parameters

Integerx2 CONNECT_ INDEX,CHECK,PID

Integer*d REG AU, CHAN,REG,TICS,RER,BUF , SIZE,REQ BUF, CUUNT

7-22

PROGRAM EXAMPLES

Logical CHECK PARM

Get index imto CONNECT_BLOCK for REQ PID
It index is not » # , igmore request

ALLOCATE = | IChecking first field

CONNECT_INDEX = CHECK,PID(REQ,PID)
If (CONNECTLINDEX .les 4) Go To 99 (Rea, Proc mot connected!

| Decode message into four fields
Decode (MBX_MESSAGE L,120,MBX _MESSAGE) PARM
REQLAD, CHAN PARM(1) |Reauested A/D channel 1s first parm
REQG,TICS = PARNM(2) ITics/sample is 2nd

REQ,BUF ,SIZE= PARM(3) I8uffer size is 3rd
REQ BUF ,COUNTSPARM(4) Nuymper of puffers is dth

ALLOCATE = 2 ICheck next parameter (channel number)
! Valid channel numbers are =16
It (REGLAD,CHAN ,1t, 1 .or, REG AD,CHAN ,qgt, 16) Go To 99

! Requested channel must not allocated, or
! allocated to the requesting process

It (AD,BLOCK(2,REQ,AD,CHAN) ,ne, @ ,and,
{ AD,BLOCK(2,REG,AD,CHAN) ,ne, REG,PID) Go To 99

{ The channel must mot be active
If (AD_BLOCK(1,REQ, AD CHAN) ,gt, INACTIVE) Go To 99

ALLOCATE = 3 IChecking mext parm (Tics/sample)
! Tics/sample must be hetween | and 2%3i=]

I#(.not, CHECK,PARM(REG,TICS,AD, BLOCK(3,REQ AD,CHAN),
1 1) *TFFFFFFF?X,1)) Go To 99

ALLOCATE = 4 }Checking parmeter (Buffer size)
l
| Buffer size between 1 ano MAX,BUF,SIZE
i
If(.mot, CHECK PARM(REG, BUF SIZE,ADL BLOGCK(4,REG AD, CHAN),
1 1o MAX BUF SIZE,MAX BUF S12ZE)) Go To 99
ALLOCATE = % ! Checking next parameter (number of buffers)

I Number of buffers to acqguire must be betweenm 1 andg 2"31»1, or
| zero to inaicate no limit

If (not, CHECK, PARM(REG,BUF COUNT,AD,BLOCK(S,REGAD,CHAN) 1y
X *TFFFFFFF?x,2)) Go To 99

ALLOCATE = © lEverything is acceptatble

| Enter info into AD, BLOCK

!
i Clear
i

99

1e0

PROGRAM EXAMPLES

AD,BLOCK(1,REQ,AD CHAN) = D lLock the data base
associated event flags

Call SYSSCLREF(XVal(EF NOTIFY,OFF + REQ, AD,CHAN))
Call SYSSCLREF(XVal(EF ACTIVITY OFF + REQ _AD,CHAN))
Call SYSSCLREF(%Val(EF,STATUS,OFF + REG,AD, CHAN))

AD,BLOCK(2,REQ AD, CHAN)
AD.BLOCK(3,REQ AD CHAN)
AD,BLOCK(4,REG,AD,CHAN)
AD,BLOCK(5,REG,AD, CHAN)

REQPID |Requesting PID

REG,.TICS ITics/sample

REQ,BUF SIZE |Requested buffer size
REQBUF .COUNT [Nymber of buffers to acqul

LI (OO (I LR LI T | |

AD,BLOCK(6,REG AD, CHAN)] INo buffers acauired
AD,BLOCK(7,REQ AD CHAN) @ INo gata buffer available
AD_BLOCK(8,REQ AD,CHAN) = @& {Number elements in last by
AD BLOCK(9,REG,LAD, CHAN) 1 ICurrent buffer jndex
AD,_BLOCK(1¥,REQ AD, CHAN) = 4 ICurrent buffer count

AD BLOCKC()1,REQ _AD, CHAN) = | ITics remaining

AD BLOCK(12,REU_AD CHAN) = ¥ l0ffset to next data point
AD_ BLOCK(1,REG AD, CHAN) = INACTIVE IChannel {3 inactive
Return

Error return

Return {Return to caller

Format(15X,41)

Eng
Integer Function DEALLOCATE(REQ,PID)

! This routine dealliocates a channrel previously allocated hy
! a process, The channe)l must be INACTIVE when deallocated,

Include *LABCHNDEF,FOR’
Incluce *LABMBXDEF,FOR’

Integer*d REQ, PID iPID of reauesting process
Integerx2 CONNECT _ INOEX,CHECK, PID
Integerxd REQ_AD_CHAN

! Get {mdex imto CONNECT BLCCK for REG_PID
! 1f index is not » @ , fgnrore reauest

! valigd

DEALLOCATE = 1 IChecking first field

CONNECT _ INDEX = CHECK,PID(PID)
If (CONNECT_ INDEX .1e. 2) Go To 99

DEALLOCATE = 2
Decode (MBX MESSAGE L,10¢,MBX MESSAGE) REG, AD CHAN
channel numbers are 1=14

I+ (REW,AD,CRAN ,1t, | ,or, REG,AD,CKAN ,9t, 16) Go To 99

! Does requesting process own the channel?

DEALLOCATE = 21

PROGRAM EXAMPLES

I+ (AD,BLOCK(2,REQ,AD,CHAN) ,ne, REG,PID) Go To 99

1 Is the ¢chanmel inactive, clear the channel parameters
DEALLOCATE = 22

If (AD,BLOCK(1,REQ_AD, CHAN) ,ne, INACTIVE) Go to 99
Call AD,CANCEL(REQ_AD _CHAN)
DEALLOCATE = @ lEverything 0K
Return
i
! ERROR returnm
!
99 Return
! This entry point is used to deallocate all channels
! allocated to a specific process,
Emtry DEALLOCATE ALL(RER, PID)
DEALLOCATE = 1
! valid PID?
CONNECT_ INDEX = CHECK PID(PID)
If (CONNECT_INDEX .ne, 2) Then
! Look for 21} A/D channels allocated to process
| and cancel a1l 1/0 unconditionally,
Do 10 AD,CHAN = 1 , MAX_AD,CHAWNEL
It (AD,BLOCK(2,AD, CHAN) ,ea, REW,PID) Call AD, CANCEL(AD_ CHAN)
10 Continue
DEALILOCATE_ALL = 2
End If
Return
199 Format (15X, I115)
Emd
Integerxd Function AD, CANMCEL(CHANNEL)
{ Clears the parameter table associated with A/l channel

Include *LABCHNDEF ,FOR’
Integer CHANNEL

AD_CANCEL =5 1} lassume error
! LLegal channel numbers are 1=ib
!
If (CHANNEL ,qe, 1| ,and, CHANNEL ,le, 16) Then

!
! Zero the AD, BLOCK for this channel

i
Do 1@ J =1, 16 {Clear everthing
12 AD BLOCK(J, CHANNEL) = ©
AD,CANCEL = ¢ lEverything ok
End IF

PROGRAM EXAMPLES

i

! Clear associatea event flags

!
Call SYSSCLREF(%Val(EF _NOTIFY_OFF + CHANNEL))
Cal) SYSSCLREF(XVal(EF_ACTIVITY, OFF + CHANNEL))
Cal) SYSPCLREF(%Val(EF, STATUS_ OFF + CHANNEL))

99 Return

End
Logical Function CHECK _PARM(IVAL,OQVAL,MIN,MAX,DEFAULT)

| This routine validates and defaults an input parameter (IVAL)

} I¢ IVAL is rot @, 1t compares {t to MIN and MAX, returminmng TRUE or FALSE,
1] If IVAL is @, amd OVAL is mot zero, IVAL = OVAL

! If IVAL is 2, and OVAL {8 zero, IVAL = DEFAULT

Integer+d IVAL,OVAL,MIN,“AX,DEFAULT
CHECK,PARM = ,false, lassume the worst

If (IVAL .,ne, @) Then
I$(IvAL ,1t, MIN ,or, IVAL .gt. MaX) Go Te 99
Else
If (OVAL .ne, 0) Then
IvalL = OvaAL
Elsge
IVAL
End It
Emd IF

DEFAULT

CHECK,PARM = ,true,
99 Return

END
Integer Funmction CHECK_PID(PID)

| This routine checks to see 1f a PID is in CONNECT BLOCK
I If {1t is, thne INDEX into CONNECT, BLOCK is returned, If
| it isn’t, & 1s returred

Include *LABCHNDEF,FOR?
Integerx4 PID

! Assume PID {8 not in database
CHECK,PID = @

! If PID is found, returm {ndex,

Do 18 I =1 , #AX PID

If(CONNECT_ BLOCK(I,1) .ea, PID) CHECK,PID = I
12 Continue

Return
End

PROGRAM EXAMPLES

IF{les LABIOSTAT,FOR

B B G B G B W= G B P Gum G B B G B

- — B

Program LABIQ,STATUS
This fs a utility routine for the LABIO system, It displays
the status of all 16 channels of the A/D, It assumes that
the tepminal is a V752 or an equivalent, e,g V7122 {n VT52 mode,
The display 18 update once every 1=9 seconds, Default is
one second, There are S commands associateac with the program

C = display status of 16 channels

P = display status by process PID

H = display help frame (timeouts after 1 min,)
E = Exit to VMS DCL

Digit(1=9) Change cycle time,

The key pad can also he used to enter commands, The special fumction
Keyg on the VIS52 or VT1A2 correspond to the first 4 commands (3 on VT52),

Typing ANY key wil) cause a display refresh,

Include "LABCHNDEF,FOR’

Characterxid STATUS(4)

Characterx8 XTIME

Characterx9 XDATE

Parameter COMMAND MAX = 4

Characterx) COMMAND, COMMAND,TABLE(COMMAND MAX,2)ESCAPE, TERMINATOR
Characterx63 COMMAND DEV

External S33 _NOTRAN,SSH NORMAL,583 PARTESCAPE
External TO0SM CVTLOW,IQ$M NOECHO, I0SM TIMED, T0$ READVBLK, IOSM PURGE

Logical SUCCESS,SYSTQIOW,SYSSASSIGN

Integer CHANNEL,QISPLAY FLAG,ULD DISPLAY,COMMAND CHAN
Integer DEF_ TIME QUT,TIME, CUT

Byte ERASE SCREEN(2) yHOME(2) ,ERASE LINE(2),VTD2, MODE(T)
Integerx2 10, STATUS(4),CHAR, COUNT

Equivalence (ESCARE,HM04E), (CHAR, COUNT, JO STATUS(2))

V152 control ESCAPE Seauences

Data HOME,ERASE, SCREEN,ERASE LINE
1 /73300, H",P33%°0,%0%,°33°0,°K/

VI108¢ control ESCAPE sequences
This ESC sea places a VT1d2 {in VT52 mode

Data VIS MODE/ 3370, ([4°2%,%2%+°1°%,°33°0,"]1"/
Data STATUS/’Unknown ","Inmactive’,’ Active *,* */
Data COMMAND TABLE/Z 7C?, P, ?E*,"H*,"P*,°Q",*78°,°R"/
Data DISPLAY FLAG,ERASE, FLAG /1,.TRUE,/
Data DEF,TIME,OUT 71/

Map to the GLOHBAL DATA section created by the I/0) program

Call LABIO,LINIT(Y)

PROGRAM EXAMPLES

{| Place VT100°s in VT52 mode
Type 588, VTS2, MODE

Initialize Command input channel

We will read the command via a G]I0Ow with a | sec timeout
Commands are single character, to simplify matters we will
read with no echo and convert lower to upper case,

- = B= P B B

Call SYSSASSIGN(“TT?,COUMMAND CHANy,,)

QIO READ = X%Loc(IOS™ NOECHO) ¢+ XLoc(IO$M_ CVTLOW) + %Loc(IO3M_ TIMED)
1 + %Loc(IDS READVBLK)

TTL.PURGE = XLoc(I0%M_PURGE)

Go To 25 I Display Something

Get a command from the user, but only wait a short time (TIME_QUT)
SO we can update the screen, The input puffer is pyurged {f a command
was deccde on the last read, (Prevents unnecessapy erase loops)

N o= o o o —

) DISPLAY_FLAG = OLD,DISPLAY iDefault is last display
TIME,OUT = DEF_TIME,OUT iDefault time out

21 TABLE_INDEX = | lAssume no escape seauence

2e Call SYSSUIOW(,%Val(COMMAND, CHAN),%Val (BI0, READ+PURGE),
1 I0,STATUS,,s%XRef(COMMAND) ,%val (1), 4Val (TIME, OUT)ssvs)
PURGE = ¢

! If escape seq,, set command table pojnter to seconmd table ana
| get character following escape,

TERMINATOR = Char(IO, STATUS(3))

If(TERMINATOR ,ne, ESCAPE) Go To 23

TABLE,_INDEX = 2

Go To 22 1Get cnar following escape

23 I#(CHAR_COUNT ,ne, ¥) Then | Char count not ©
! Check for char 19
I1f(COMMANL ,ge, *2° .and, COMMAND ,le, 9%) Then
DEF, TIME,_OUT = Ichar (COMMAND) = Jchar(*¢*)
1 Not 1=9 try a command,
Elge
ERASE,FLAG = ,true, ! Screen erase
Do 24 I = 1,COMMAND, MAX
If(COMMAND ,eq, COMMAND,TABLECI,TABLE_ _INDEX)) DISPLAY_FLAG = I

24 Comtinue
Eng If
PURGE = TT_ PURGE lPurge the input buffer next time
End 1f
!
! Get date and time, then dispatch to visplay routine
i
25 Call DATE (XDATE)

Call TIME (XTIME)

Go to (52,61,99,42) DISPLAY_ FLAG

!

! Refresh the screen (Erase and Redisplay)

!

30 DISPLAY_ FLAG = QLD DISPLAY lReaisplay last display
ERASE‘.FLAG = Jtrye,

PROGRAM EXAMPLES

Go To 2%
!
| Display the HELP froame, set the temporary time=out to 1 minute
!

40 Type 600, HOME,ERASE, SCREEN IDisplay the help frame
TIME_OUT = 60 I1Give the user 1 minute to reed 1t
DISPLAY_FLAG = OLD_DISPLAY IWwhen it times out, default old
ERASE_FLAG = ,true,
Go To 21

!
| Generate the Status Line for each A/D channel
H
50 I+ (ERASE_FLAG) Type 300, MOME,ERASE_ SCREEN
Type 120, HOME,XTIME,XDATE
CHANNEL _COUNY = 2
Do 51 CHANNEL = 1,MAX_AD_CHANNEL
I1¢(AD,BLOCK(2,CHANNEL) ,ne, 2) Then {If allocated, display {nfo
Type 200,CHANNEL, STATUS(CAD_BLOCK(1,CHANNELI*1),
{1 (AD_BLOCK(J,CHANNEL),» J = 2,6)
CHANNEL_COUNT = CHANNEL _COUNT + 1

Else {1f not allocated, say so
Type 90@, CHANNEL-‘’<Unused>’,ERASE_LINE
End If¢
S1 Continve

PID,COUNT = @
Do 52 PID, INDEX = 1, MAX,PID

PID ® CONNECT,BLOCK(PID,INDEX,1)

It ¢ PID ,ne, @) PID,COUNT = PID,COUNT + {
52 Continue

Type U4PQ,ERASE_LINE, PID,_COUNT,CHANNEL _COUNT
OLD,DISPLAY = DISPLAY_FLAG
ERAgE*FLAG z ,false,
Go to 20
|
| Stetus display vie process (PID)
|

60 If ¢ ERASE,FLAG) Type 300, HOME,ERASE_SCREEN
Type 100, HOME,XTIME,XDATE
PID,COUNT = p | Number of conmected processess
CHANNEL _COUNT = 2 | Number of allocated channels

Do 61 PID, INDEX = 1, MAX,PID
PID = CONNECT BLOCK(PID_INDEX,1)
I* (PID e,y @) Then
PID,COUNT = PID,COUNT + |
OLD,COUNT = CHANNEL _COUNT
Do 62 CHANNEL = 1, MAX,_AD,_CHANNEL
It(AD_BLOCK(2,CHANNEL) ,ea, PID) Then 1f right PID, display info
Type 283, CHANNEL, STATUS(AD_BLOCK(1,CHANNELI+1),
1 (AD, BLOCK(J,CHANNEL), J = 2,6)
CHANNEL,COUNT = CHANNEL,COUNT + 1

Eng IF
62 Continue
I+ (OLD,_COUNT ,eq, CHANNEL,COUNT) Type 803, “<None>’,PID,ERASE_LINE
End IF
61 Continue

Type 40@,ERASE_ LINE,PID, COUNT,CHANNEL,COUNT,ERASE _SCREEN
OLD,DISPLAY = DISPLAY,FLAG

ERASE_FLAG = ,false,

Go to 2¢

PROGRAM EXAMPLES

!
I Exit
i

99 Call Exit
|

! Format Statments
i

104 Format(1X,2A1," Lab I0 Status as of *,A," *,A//
{1* Channetl Status PID Ties/Sample PBuffer Size
1 Buffers /)
20a For'mat(IS,SX,AG,ZUA.QIIZ)
309 Format(® “,4A1)
400 Format(”® °2A1/* Totals: ’,12," Processes connected “y12,’ Channe)
1 allocated”/”’ <Type an H for help>’2Als)
500 Format(*® *77A1)
600 Format (” 7441/
1* The following commands are availatle:®//
1’ V7149 vTsSe any*/
1' T T L) -- ey ---'/
1° PF1 red C Channel Display®/
1’ PFe2 blye P Process Display®/
1’ PF3 qrey H Help Cigplay’/
1” PFY n/a E Exit®//

1 To change display time, type a digit 4=9 for the desirec time’//
7002 Format (A)

800 Format(’ *,A6,11X,21d,2A1)
909 Format(15,5x,48,241)
End

LlEnd of File]

IFite: LABINPEAK,FOR

Program LABIO_ PEAK
! This routime continuously samples channel %1 search for peaks,
! The sample pate s 1/7IC. It reports the PELK height and position
| to logical channel “LABIOQ_PEAK DATA’

Incluoe “LABCHNDEF,FOR’

Parpameter MBX _NAME = ‘LARIQ,PEHAK’
Characterx]3i® RETURN

Characterx15 COMMAND

Characterx24 DATE, TIME

Logjcalxd SUCCESS,SYSPICREMBX

Parameter AD, CHANNEL = 1 I Channel Number

— = - -

PROGRAM EXAMPLES
Parameter AD_RATE s | ! Rate
Parameter AD_ BUF,SIZE = 512 | Buffer Size
Parameter MAX PEAKS = 10
Integerxd ITABLE(10), INLAST,INPTR,OUTPUT(2,MAX PEAKS),IDIMD,NPEAKS
IntegerXx2 INPUT(AD, BUF, SIZEx2)

Dr-a ITABLE/1G*Q/
Data INLAST,INPTR,IDIMO,NPEAKS/B,2,MAX PEAKS, B/

Map To the Global Date Base and the event #lags

Call LABIO,INIT(D)
Open Maflbox to LABIO_CONNECT

Open (Unit = 1, Name = °LABIQ,CONNECT” , Type = *0OLD")
Create Mailbox for response from LABIQ, CONNECT

SUCCESS = SYSBCREMBX(,"BX CHANNEL,y) %Val("FDBAx), ,MBX NAME)
It (,mot, SUCCESS) Cal) FATAL,ERROR(SUCCESS, °*CREATING MAILBOX’)

Open via FORTRAN

Open (Unit = 2, Name = MBX, NAME, Type = ‘0LD")
Deassign the channel assigned when we created it

Call SYSHDASSGN(%4Val (MBX,CHANNEL))
Openm A Data File

Open(Unft = 3, Name = *LABIG PEAK,DATA® ,Type = “NEW’)
Connect to the LABIU system

COMMAND = *CONNECT’
Weite(1,100) COMMAND, M3X NAME

walt for Regponse from LABIOC system

Read(2,299) RETURN_CODE,RETURN
10 RETURN,CQODE ,re, ¥) Go To 99 IFailed to conmmect!

Allocate Channel AD,CHANNEL
Rate = AD RATE
Buffer size = AD, BUF, SIZE
COMMAND = *ALLOCATE”
ArPite(l,420) COMMANDG,AD CHANNEL, AR RATE, AD, BUF, SIZ2E,2
Read(2,222) RETURN,CODE,RETURN
1f(RETURN,L,CODE ,ne, ¥) Go To 99 IFailed to allocatel
Enable data acqusition by setting event flag ACTIVITY ang NOTIFY

Cell SYSSSETEF(XVal(EF ACTIVITY_ GFF+AD,CHANNEL))
Call SYSBIETEF(%Ve)(EF MOTIFY OFF+AD,CHANNEL))

Now, wait for buffer to be filled, event flag STATUS will be set

7-31

PROGRAM EXAMPLES

| when data are ready
) Call SYSSWAITFR(%XVal(EF STATUS_ OFF+AD,CHANNEL))

Buffer is filled, get the buffer index

-

INDEX = AD_BLOCK(7,AD, CHANNEL)
! Move data from gata buffer to peak processing buffer

Do 12 I = 1, AD,BUF.SIZE
10 INPUT(I+INLAST) = DATA,BUFFER(I, INDEX,AD CHANNEL)
INLAST = INLAST + AD,BUF,SIZE

! Clear the STATUS event flag and motify the 1/0 process
!
Call SYSSCLREF(Xval(EF_ STATUS_ OFF+AD,CHANNEL))
{(DEBUG) only
l Wwrite (3,6@2) (DATA,BUFFER(I,INDEX,AD CHANNEL),I=1,AD BUF_ SIZE)
l
| Call the peak processinag routine

iS Cal) PEAK(ITABLE, INPUT, INLAST, INPTR,QUTRPUT, MAX PEAKS, NPEAKS)
| Report the peak info
PEAK SWITCH = NPEAKS lkemember the peak switch
If(NPEAKS ,nme, #) Then lWe have some peaks
1¢(NPEAKS ,1t, 2) NPEAKS = MAX,PEAKS |WE have the max

Do 22 I = {, NPEAKS
TOTAL,PEAKS = TOTAL,PEAKS + 1 !0Une more

20 wpite(3,548) TOTAL, PEAKS, (QUTPUT(J, 1)y J = 1,2)
Emgd I¢
NPEAKS = @ {Reset the pointer

T1¢(PEAK_SWITCH ,1t, ¥) Go To 15 lMore peaks to find
! Move amy umprocessed data to the reginning of the input array

It ((INPTR ,gt, @) ,and, (INPTR ,1t, INLAST)) Then
Do 33 I = 1, INLAST=I~PTR

3v INPUTCI) = INPUT(INPTR+]) {Maove the data
INLAST = 1 lLast element stored
Else
INLAST = 2
Empo It
INPTR = @ lLast element processed

! Go wait for more data
Go To S

{ All donme, Call the exit routine

99 Cal) EXITC(1) 1Exit
100 Format(® *.4,4)

28 Format(12,A)

409 Format(*® *,4,4])

PROGRAM EXAMPLES

Sge Format(31I11)
600 Format(15S)
End

1[(End of File)

IFile PEAK,FOR

Subroutine PEAK(ITABLE, INPUT,INLAST,INPTR,OUTPUT, IDIMO,NPEAKS)
1A trivia) peak=picking routine, The calling seguence {3 patterned
lafter the LSPLIB routine PEAK,

Integer*d JTABLE(10),0UTPUT(2,IDIMO),INLAST,INPTR,IDIMO,NPEAK
Integer+«2 INPUT(!)
Parameter NOISE a2 5 INoise value = S A/D units

1Inftialize some parameters, {f necesary
I¢4(NPEAKS ,1t, 4) NPEAKS = @
I4¢C INPTR ,1t, @) INPTR =1

IFiret time thru?

I¢(INPTR ,1t, INLAST ,anmd, ITABLE(1) ,ea, @) Then
INPTR = INPTR ¢ 1
ITABLE(1) = {Assume we’re rising
ITABLE(2) = 1 lfirst point
ITABLE(3) = INPUT(INPTR)

End I1f

{Any date to process?
I+(INPTR ,1t, INLAST) Then
Do 10 I = INPTR+1, INLAST
IfC ITABLEC(1) .g9t, @) Then (we’re rising, look for a fall
I¢C INPUTC(I) 4Vt, ITABLE(3)=NOISE) Then lWe found a peak
I$(NPEAKS ,1t, IDIMO) Then lAmy room to store {t?
NPEAKS = NPEAKS + 1|
QUTPUTC(1,NPEAKS) = ITABLE(3)
QUTPUT(2,NPEAKS) = ITABLE(2)
ITABLE(1) = =1
Else {No, tell user
INPTR = [= |
NPEAKS = =IDIMO
Return
Eng If
End If
Else lne’re falling, see {f we found a valley
I¢(C INPUT(TI) ,gt. ITASLE(3)+NOQISE) ITABLE(L) =
End 1f
ITABLE(3) = INPUT(I)
10 ITABLE(2) = ITABLE(R) + 1
Ermd If

INPTR s =1 lnormral exit all data processed,
Return

End

PROGRAM EXAMPLES

{Filet LABIOSAMP,FOR
Program LABIO_SAMPLE

This program samples channel #2 once every 1@ gseconds,

It acquires 1@ points at {/tic, averages them ang then
Reports the date, time, and average value on logcial device
LABIO, SAMPLE DATA

— = = B B

Include *LABCHNDEF,FOR"’

Parameter MBX _NAME = “LABIO_SAMPLE’
Character*x13@ RETURN

CharacterxiS COMMAND

Characterx2y DATE_ TIME

Logical*d SUCCESS,SYSSCREMBX
Integepxd DELTA_TIME(R2),NEXT_ TIME(2)
Integerxd AVERAGE

Parameter AD,CHANNEL = 2 | Channel
Parameter AD_RATE = | {
Parameter AD, BUF,SIZE 3 1¢

Parameter SAMPLE,RATE 3 *9 Vil

Parametepr MAX_ SAMPLE = 1@ Qv Maximum # samples

-

| Map To the Global Data Base and the event flags

Call LABIO_ INIT(d)
| Open Majilbox to LABIO _CONNECT

Upen (Unit = 1, Name = ‘LABIO CONNECT® , Type = *0LD")
Il Create Mailbox for response from LABIO, COMNECT

SUCCESS = SYSSCREMBX(,MBX_CHANNEL,s s %Val("FDOP2%x),,“BX NAME)
If (.mot, SUCCESS) Call FATAL,ERROR(SUCCESS, "CREATING MAILBOX'®)

| Open via FORTRAN
Open (Unit = 2, Name = MBX_NAME, Type = *014°)
| Deassigmn the channel assigned when we created it
Call SYSSPDASSGN(%val (MBX CHAMNEL))
| Upen A Data File
Open(Unit = 3, Name = "LAB_ SAMPLE LATA’, Type 3 “New’)
| Conmect to the LABIC system

COMMAND = *CONNECT?
wpite(l,140) COMMAND, BX _NAME

| Wait for Response from LABIO system

PROGRAM EXAMPLES

Read(2,200) RETURN,CODE,RETURN
If(RETURNL_CODE ,nme, 3) Go To 99 {Failed to conmnectl!

Allocate Channe) AD_ CHANNEL
Rate = AD,RATE
Buffer size = AD _BUF,SIZE
Collect 1| buffer at a time

COMMAND = ‘ALLOCATE’
Write(l,4@0) COMMAND,AD, CHANNEL,AD, RATE,AD, BUF,SIZE,}
If(RETURNLCODE ,ne, 0) Go To 99 IFailed to allocatel!

| Every SAMPLE_RATE secs, we will collect one buffer of data

| Convert ASCII delta time to binmary
Call SYSSBINTIM(SAMPLE_RATE, DELTA_TIME)

| Schedule wake=ups every delt time interval
! But first cance) any previous wake=ups
Cal)l SYSSCANWAK(,)
Call SYSSSCHOWK(,,DELTA,_ TIME,DELTA, TINE)

! Wait for scheduled time interval
10 Call SYSSHIBER()

| Emable data acaoysition by setting event flag ACTIVITY and NOTIFY
{

Cal) SYSSSETEF(%Val(EF ACTIVITY GFF+AD,CHANNEL))

Call SYSSSETEF(%Val(EF NOTIFY, UFF+AD,CHANNEL))

Cal SY5$ASCTIH(pDATE*TIMEIl)

{ Now, wait for buffer to be filled, event flag STATUS will be set
| when data are ready
Coll SYSSWAITFR(%Val(EF,STATUS,OFF+AD,CHANNEL))

i Buffer 1s filled, get the huffer index
INDEX = AD_ BLOCK(7,A0, CHANNEL)

! Clear the STATUS event flag ana notify the I/0 process
Call SYSSCLREF(%Val(EF, STATUS OFF+AD, CHANNEL))
Call SYSHSETEF(%Val(EF NCTIFY_OFF+AD, CrANNEL))
{ Average the points

AVERAGE = ©
Do 28 I = 1, AD,BUF,SIZE

20 AVERAGE = AVERAGE + DATA,BUFFERCI, INDEX, AD,CHANNEL)
AVERAGE = AVERAGE/AD,BUF,SIZE

I write out average with the acqa, date/time
Write(3,424d) DATE, TIME,AVERAGE

| If we're all dorme, close files and exit
If(0 AD,BLOCK(6,AD, CHANNEL) ,1t, MAX_SANPLE) Go To 18

! A1) dome, Cal)l the exit routine
99 Call EXITC(L) VExit

100 Format(”® *,A,A)

PROGRAM EXAMPLES

2080 Format(I2,4)
409 Format(” *,A,41)
End

L[End of File]

IFile:s TESTLABIO,FOR

! Tests the LABIO system by allocating upto 16 channes
! Enter the number of channels, rate, and buffer size

Program TEST_LABIO
Include "LABCHNDEF,FOR”
Parameter MBX,NAME = “TEST,LAKBICZ2’
Characterx13@ RETURN
Characteprx1S COMMAND
Character*2d DATE,TIME
LLogicalxy SUCCESS,SYSECREMBX
Integerxd TEST CHAN,TEST RATE,TEST BUF _ SIZE
! Map To the Global Dasta Base and the event flags
Call LABIOQ_INIT(2)
| Open Majlbox to LABIO,CONNECT
Open (Unit = 1, Name = *LABID, CONNECT® , Type = ‘0LD")

Create Mailbox for response from LABIO, CONNECT

N N

SUCCESS = SYSHCREMBX(,4HX, CHANNEL,), %Val ("FDAB’ x),) MBX NAME)
If (4not., SUCCESS) Call FATAL_ ERRCR(SUCCESS, “CREATING MAILBOX’:

! Open via FORTRAHN

Open (Unit = 2, Name 3= MEX_NAME, Type = °0LD")
| Deassign the channel assioned when we created it

Call SYSSDASSGN(Zval (MBX, CHANNEL))
! Comnect to the LARIO system

COMMAND = °CONNECT®
write(1,168) COMHMAND, Mdx NAME

| Waft for Regsponse from LABID system

Read(2,22¢) RETURMN,CODE,RETURN
I#(RETURNM,CUDE ,ne, ¥) Go To 99 IFailed to conmnmect!

Get parameters from operator

T B e -

2 LAST,TEST, CHAN=TEST,CHAN

PROGRAM EXAMPLES

Type 600,° Enter number of channels, rate(in tics), and buffer size*
Accept 70@2, TEST, CHAN,TEST,_RATE,TEST_ BUF_SIZE
If (TEST _CHAN ,eq, @) CA1) Exit(1)
!
| Deallocate Channels from last time
{
Do 20 AD_CHANMEL=1,LAST_ TEST CHAN

Call SYSSCLREF(%Val(EF ACTIVITY_ QFF+AD,CHANNEL)) [Stop Acaq,
Call SYSSSETEF(%Val(EF NOTIFY, OFF+AD,CHANNEL))

COMMAND = *DEALLOCATE”’
write(1l,40%) COMMAND,AD,CHANNEL
Read(2,200) RETURN_CODE,RETURN
If(RETURN,CODE ,ne, 2)
1 Type S08, * Deallocation fajlure’ ,KETURN, CODE,RETURN
e Continue
!
! Allocate Channels
l
Do 32 AD,CHANNEL=1,TEST_ CHAN

COMMAND = *ALLOCATE"’

Write(1,000) COMMAND, AD CHANNEL,TEST, RATE, TEST BUF,SIZE,0
Read(2,280) RETURN,CODE,RETURN

14(RETURNL,CODE ,ne, 7)

1 Type 508, ° Allocation failure’,RETURN,CODE,RETURN

| Enable data acausition bty settinmg event flag ACTIVITY and NOTIFY
!
Call SYSSSETEF(%Va)(EF ACTIVITY_ OFF+AD_CHANNEL))
3@ Call SYSHSETEF(4Val(EF NOTIFY OFF+AD, CHANNEL))
6o To 12
{
! Connect Failure
!

99 Tvype S50¢, * Connect failure’,RETURN,_CODE,RETURN
Go To 10

120 Format(’ *,A,A)

222 Format(12,A)

49v Format(® *,A,41)

500 Format(A/® *,12,4)

6@ Format(A)

T80 Format(3I19)
End

IF{les LABIOCOM,FOR
Logical Function LABIO_INITC PRIVILEGE)

This routime is used to attach a LABID user program to the
LABIQ system, It associated the two event flag clusters and
maps to the LABIO globa) data section,

INPUTS PRIVILEGE = Privileged LABIC ysers can set this

O e B Pem B Ben B B

PROGRAM EXAMPLES

to 1 to allow write access to the data base,
A1l others must set this to @,

OUTPUT: None = Currently wil) always return with success code,
1f an error occurs, FATALERR {s called to display
the error messages and STOP THE PROCESS)

Include *LABCHNDEF,FOR*
Logical*4 SYSSASCEFC,SYSSMGBLSC,SUCCESS,SYSSWAITFR
External SECHM, WRT

Create event flag cluster EF NOTIFY and associate with event flags 64d=95
These are used to notify the Data Acouisition process,

SUCCESS = SYSSASCEFC(XVALCEF NOTIFY,1),EF NOTIFY,CLSTR,,)
If (,not, SUCCESS)
1 Call FATAL,ERRQR(SUCCESS, °CREATING EVENT FLAG CLUSTER?)

Create event flag cluster EF , STATUS and associate with event flags 96=12
These are used to nmnotify and report the status of the usep buffers

SUCCESS = SYSSASCEFC(%VAL(EF,STATUS,1),EF,STATUS,CLSTR,,)
If+ ¢ ,not, SUCCESS)
1 Call FATAL,ERROR(SUCCESS, “CREATING EVENT FLAG CLUSTER®)

Map to the GLOBAL DATA section created by the I/Q oroqgram
Wwait for event flag EF,CONNECT (nonsprivileged) or
EF,.DATA_ACQ (privileged) before attempting maopimg,

SECTION(CY)
SECTIONC(2)

“Loc(LABIQ BUFFER,S)
“Loc(LARIO, BUFFER,E) = 1

SECTION_FLAGS = @ Ilefault flags
If(PRIVILEGE ,re, %) Then
SECTION_FLAGS=X%XLoc(SECEM, wKkT)
Call SYSEWAITFR(%Val(bF_DATA_ACC))
Else
Call SYSHSWAITFR(%val(EF _CONMECT))
Ermad If

SUCCESS = SYSSMGESBLSC(SECTION,»p% Vel (SECTION, FLAGS), "LABIOQCOMMQON?,,
If(.mot, SUCCESS) Cal) FATAL ERROR(SUCCESS, " mapping data gection’

LABIO,INIT = SUCCESS
Return

Emd
FATAL,ERROR = FATAL ERROR HANDLER

This routime is used to report a fatal error and exit the image

INPUTY ERROR,CODE = SYSTE™ ERPKCOR CODE TO REPORT
ERROR MESSAGE = ERROR MESSAGE TO BE PRINTED

QUTPUTs NONE

7-38

PROGRAM EXAMPLES

l
l >»>> THIS ROUTINE DOES NOT RETURN «<<<<«
|
i FUNCTION: TYPEs the message
i
| *process name=FATAL ERROR = erropr, message’
{
l Then prints system message corresponding to ERROR,CODE
i
l
| Finally, exits image by calling LIBSSTOP
i
Subroutine FATAL,ERROR(error codeserror message)
Integerx4 ERROR,CODE
Character ERROR, MESSAGEX (%)
Logfcalxd4 SUCCESS,SYSICREMBX,SYSRGETJPI
Integerx2 JPI2(8),PROCESS NAME L
Integer+d JPI4(U)
Characterx1S PROCESS _ NAME
Eauivalence (JPI2,JPI4)
Parameter JPIS_PRCNAM=’31C°X
{
{ Get the process name
!
JPI2(1) = 15 INumber of elements {n name
JPI2(2) = JPIS_PRCNAM , lvant process name
JPI4(2) = %Loc(PROCESS NAME) JlAddress of orocess name
JPI4(3) = %Loc(PROCESS NAME L) |Address of process name length
JPI4C(Y) = @ ITermimnate 11st
Call SYSSGETJPICrssJdPI4ysy)
|

| Print the process name and error message
Type 1902, PROCESS NAME()1:PROCESS NAME _L),ERROR_ MESSAGE
| Print the error message corresponding to ERROR_CODE and exit
Call LIBISTOP(%Val(ERROR, CODE))
109 Format(” 7A,” = FATAL ERROR ‘,A)
Stop

END
} lEng of File]

JFiler LABMBXDEF,FOR
iDefine mailbox plock for LAB,IC

Parpameter MAX, MESSAGE = 128 IMaximum message length
Parameter MBEX, RESPUNSE, L = 2 iResponse lLength
Parameter MBX_ACK_ L = MAX MESSAGE+MEX, RESPONSE, L

Integerx2 MBX, TO,STATUS, MBX MESSAGE,L

PROGRAM EXAMPLES

Integerxd4 MBX,PID
Byte MBX_RESPONSE(MBX_ _RESPONSE_ L)
Byte MBX _MESSAGE(MAX _MESSAGE)

Common /MBX,_BLOCK/ MBEX, CHANNEL, MBX,IC,STATUS, MBX,MESSAGE,L,

1 MBX,PID, MBX_RESPONSE, “BX _MESSAGE
{ > MBX_BLOCK <
i MBX CHANNEL { word =2
1 L X L L X N L BN &2 KX XL KX XN BN ERXEELYLLLLERER X
{ | MBX_MESSAGE L ! MBX_ TO_STATUS | Word 3=4
‘ L A L L L LR XX 8 LA X AR EERXNERESREZSNLELELRLELREEELNLYLS 3]
! | MBX PID | Word S=é6
l LA L A L B 2 L X KA 2 X L A X X X B L& X & & X & L L L & X & 2 J
! i MBX ,RESPONSE | Word 7=8
1 LA L LK R L B B L A XX E XX X KX 8 E X N B L & K L X 8 X B X & X J
! i !
l i l
l i MBX,MESSAGE | word 9=MAX,MESSAGE+S
i l !
! i i
l E L A L & B E 2 B L K L N & 8 & K B B R L B B L B B I B B 0L B R R K J
i
{LEnd of File]

IFile: LABCHNDEF,FOR
!
Implicit Integer (A=Z)

LAD,CHANNEL STATUS BLOCK defined the parameters associated
Iwith each A/D cnanne)

!

IFor each A/D chanmnel:

I 1) Status of the channel (ACTIVE or INACTIVE)

1 2) PID of the connecteg process allocated the channel
1 3) Tics/sample (time between sample in tics)

1 4) Buffer size in words

I 9) Byuffer count (@ §if no 1imit)

! 6) Buffers acquired

IS Ingdex to the last full puffer containing valid data
! 4 => No buffer availabple

! 8) Number of data points in the last full byffer

The following elements are yseg by the qcata acquisition fnterrypt service
routine, In general, they will not te used by an application process,

9) Index to the current data acouisition buffep

14) Numbepr of data points in the current cata acquisition buffer

11) Number of tics until the next sample

12) (ffset to the next data point to pe acquired (wrst buyuffer #1)
(NOTE: Qffset = Index = 1)

= B B B B G B

Parameter MAX,AD CHANNEL = 18 IMaximum mumber of channels
Parameter MaxX, 3UF ,SIZE = 512 lmaximum buffer size
Parameter INACTIVE = 1 I3tatus values fopr AD, BLOCK

PROGRAM EXAMPLES

Parameter ACTIVE s 2 !
Integerxy AD, BLOCK(MAX _AD,CHANNEL,16)

i
{ Data buffers
{
Parameter BUFFER,COUNT = 2 ! Number of buffers/channel

Integer*2 DATA, BUFFER(MAX, BUF,SIZE,BUFFER _COUNT,MAX AD _ CHANNEL)

IThis modyle defines the common data structures
lfor the privileged LABIO processes,

JCONNECT BLOCK used to {dentify processes currently
lconnected to the LABIO process,

i

I{For easch process CONNECT,BLOCK containss

| Process ID (PID)

! Internal VM8 I/0 channe)l of the connected processes mai{lbox
Parameter MAX, PID = 16 IMaximum number of processes
Integerxd CONNECT _BLOCK(MAX PID,2)

!

{

! DATA COMMON SECTION

{ This will be mapped as & global data section
!

Common /LABIO_SECTION/ AD_BLOCK, DATA,BUFFER, CONNECT_BLOCK

Common /LABIO_SECTION/ LABIO,BUFFERLE llLast element of DATA section
Eauivalence (AD_BLOCK,LABIO_BUFFER,S) IFirst element of DATA section
Integerxd SECTION(2),SECTION,SIZE

Define Global Event Flag Cluster rames and numbers

EFLNOTIFY, CLUSTER {s used to notify the oriveleged LABIO process
that change of status has occured, {,e, channel has

become ACTIVE or INACTIVE, or a buffer has been freed,

Flags 0=15 of the cluster correspond to CHANNELS 1=~16

Flags 16=31 are not used,

Parameter EF_ NOTIFY,_CLSTR = °LABIO,EF _NOTIFY’
| First flag of notify

Parameter EF _NOTIFY_ 1 = 64~
| Offset to Notify

Parameter EF NOTIFY OFF = 63

| Event Flag EF ,DATA_ACQ {s set when LABIQO,_DATA_ACQ nhas completed inftialization

Parameter EF_ DATA_ACQG = EF _ NOTIFY_ 1417

PROGRAM EXAMPLES

| Event Flag EF _CONNECT {3 set when LABIO,_CONNECT has completed inftialization
Parameter EF, CONNECT = EF _NOTIFY_ 1418

EF_STATUS {s used to notify a applications process
that a buffer {s available, and used by an applicationr
process to inicate the status (ACTIVE op INACTIVE) of
a channel,

Flags 0=1S of the cluster are the ACTIVITY flags

{f set (by the application process), the corregponding
channel (i=16) s active, If ¢clear, the channel {s {nactive,
When a change of atate {8 made the corresponding flag must
also be set in Cluster EF _NOTIFY_CLUSTER,

Flags 16=31 are the buffer status flags, when set,

a buffer for the corresponding channel (i=16) is avatlable,

The application process mus clear the flag and set the corresponding
flag in EF _NOTIFY,CLUSTER when {t is finished with the buffer,

G B G Gur B P P Gem B Gun G P Pm = G

Parameter EF _STATUS_CLSTR = °LABIO_EF_STATUS’
IFirst avent flag in Activity and Status

Parameter EF ACTIVITY,1 = 96

Parameter EF_STATUS.1 s EF_ACTIVITY_ 1 ¢ 16
l10ftaet to Activity and Status

Parameter EF_ACTIVITY_OFF = 95

Parameter EF*STATUSLO?F s EF_ACTIVITY_OFF ¢+ 16

| BIT array, BIT(I) = has bit I set (I =21 to 32)

Integerxyd BIT(32)

Data BIT/ *1°X,°2°X,°4°X,°8°X,°10°X,°20°X,740"°%X,°80°X,
100X, °200°X, 400’ X, *8RR°X,*°1000°X,*2000° X,
‘4pB0°X,’8000°X,’10000°X,"200080°X,°40002"X,
‘BRCRD"X,*100000°X, 200000°X, " 400000°X,
'800000°X,*1000000°X,°2000000°X,°4000000"X,
’8000000°X,*10000000°X,°20000000°X,*40000000°X,
‘8popoARR X/

P Pn Pub i e P

l
{(End of File)

IF{les LABIOSEC,FOR

| Bloek Data Routine to place the LABIO,SECTION Common
| on a page boundary, This {s necessary because we will
1 remap {t, We could have used a MACRO program to

| declare the PSECT LABIO,SECTION to be paged aligned,
1 but the LINKer would then give us a warning message,

Block Data LABIO,SECTION
Common /LABIO,SECTION/ AD, BLOCK
End

l

{1 (End of File)

PROGRAM EXAMPLES

JIFILESCONNECT,COM

| This command file loads the comnect=toe{nterrupt handler (CONINTERR) ang
! then conmnects the Kwil=K to to it,

!

$ R SYSSSYSTEM3SYSGEN

LLOAD CONINTERR

CONNECT KWAQ /ADAPTER=3/CSR=z%0774444/VEC=X0U004/DRIVERZCONINTERR

$ Exit

{Files LABIOSTRT,COM

|

|Starts up the LABIO SYSTEM

lRuns the data acauisition process and connect process
las detsched tasks, Then runs the status program,

i

{Make the logice! name assignments
SAssign/Group LABIO,LO0G LABIO,LOG
SAssign/Group LABIO,DAT LABIO, SEC,FILE
SAssign/Group KWAUR LABIO_AD

38et Noon

s

lLog file

iGlobal Section File
iConnect=to=Interupt device {8 KWwi}
{Don’t abort {f we can’t run 8 program
{It {s probably already runningl!

$1Run the data acquisition orogram

s

$Run/Uics 'FSUSER()*= {Run as a deatched process
/Ast . Limit= 20= iWe need a large AST quote
/0utput = LABIOACQ,DAT= I1SYSSOUTPUT
/Prioritys 17= {High, Real=Time priority
/Process, names |ABIQ DATA _ACQ= IName of Process
/Privilegess SAME= |Same privileges

LABIOQACG lImage to run

$

${Run the connect progranm

$
$ RUN/Uie= ‘FSUSER()’= {Run as a detached process
/Outpute LABIOCON,DAT= 1SYSSOUTPUT
/Prior{tys 15= iGive it a high but not mighty priority
/Privilegesn SAME=
/Process namex LABIO, CONNECT= IName of the process
sLABIDCON

$/Run the status program

SRum LABIOSTAT
$Set On

1F{les

LABIOCOMP,COM

{ Command procedure to compile and assemble

! the modules of the LABIO

@ &S *

system,

Fortran LABIOACQ,LABIOCON,LABIOSTAY,LABIQCOM, LABIOSEC
Macro/List LABIOCIN+SyssLiorary:LIB ,MLB/Library
Mecro/L tet GBLSECUFOD

PROGRAM EXAMPLES

${ Demo Programs
$ Fortran LABIOSAMP,LABIQPEAK,PEAK,TESTLABIO

lFile; LABIOLINK,COM

! Command procedure to LINK the LABIO system

3 Link/Map LABICACQ,GBLSECUFO,LABIOCOM,LABIOCIN/Option
$ Link/Map LABIOCON,LABIQ/Option

$ Link/Map LABIOSTAT,LABIQ/COptionm

3} Demo Programs

3 Link/Map LABIOUPEAK,PEAK,LABIQ/Opt

3 Link/Map LABIOSAMP,LABIQ/0Opt

$ Link/Map TESTLABIO,LABIO/OPt

IFiles LABID,OPT

ILinker OPTICON file for Yinking any process to be usea with LABIO
LABIOCOM

Cluster = LABIO_CLUSTER,,,LABIQSEC

IFiley LABIOCIN,QPT
ILinker OPTION file for JinkinmQ LABIU,DATA, ACO
Cluster = Labio,cluster,,,Lablocin

PROGRAM EXAMPLES

7.2 AIRLINE RESERVATION SYSTEM

This example shows a series of programs to make and cancel airline
reservations. This is not a "real-time" example in the same sense as
the data acquisition and manipulation example 1in Section 7.1,
However, the airline reservation system does show a shareable image
data base, access to which is synchronized by the use of common event

flags. It also shows the use of a shared memory common event flag
cluster.

The following commands define the logical names and install the global
section for the airline reservation system (FORTRAN program examples).
The shared memory is named SHM.

$ COPY DATABASE.EXE SYS$SHARE:DATABASE.EXE !PUT IT IN LIBRARY

S DEFINE GBLSDATABASE SHM:DATABASE !LOGICAL NAME DEF. FOR SECTION
$ RUN SYS$SYSTEM:INSTALL

INSTALL> SYSSSHARE:DATABASE/OPEN/HEADER RESIDENT/SHARED

INSTALL> [CTRL/Z] -

$ DEFINE/SYSTEM CEFS$CEFN1 SHM:CEFN1 !LOG. NAME DEF. FOR CLUSTER

$ RUN [desired program in the reservation system]

(9] oo 0onn

PROGRAM EXAMPLES

DATADESC.FOR
VMS AIRLINE RESEVATION SYSTEM

BEING A SIMPLE DEMONSTRATION OF THE USE OF A GLOBAL
DATABASE AS A SHAREABLE IMAGE UNDER VAX/VMS.

DISCLAIMER: THIS SOFTWARE IS FOR DEMONSTRATION PURPOSES

——————————— ONLY. NO AIRLINE IS EXPECTED TO HONQUR THESE
RESERVATIONS. FURTHER, IT IS INTENDED ONLY TO
DEMONSTRATE SOME OF THE TECHNIQUES AVAILABLE
WITH VAX/VMS AND VAX-11 FORTRAN.

PARAMETER NDESTS = 4

PARAMETER NDAYS = 3

PARAMETER NSEATS = 10

PARAMETER ITOTSEATS = NDESTS*NDAYS*NSEATS*2

CHARACTER DESTINS (NDESTS) *6,SEATS (NSEATS, 2,NDESTS ,NDAYS) *20
CHARACTER DAYS (NDAYS) *3

INTEGER HOWPAID (ITOTSEATS)

COMMON /FLIGHTDATA/SEATS,DAYS,DESTINS
COMMON /PAIDDATA/HOWPAID

BLOCK DATA DATABASE
INCLUDE 'DATADESC.FOR’

DATA DESTINS/'BOSTON','SYDNEY', 'LONDON', '"MADRID'/
DATA DAYS/'MON','TUE','WED'/
DATA SEATS/ITOTSEATS*' v

END

SUBROUTINE LOCKFLIGHT (IDEST,IDAY)
INCLUDE 'DATADESC.FOR'

EXTERNAL SS$_WASSET
INTEGER PREVSTATE,EVFLAG
INTEGER SYSS$SETEF,SYS$CLREF,SYS$SASCEFC

EVFLAG = 63 + NDAYS*(IDEST - 1) + IDAY
IF (.NOT. SYSSASCEFC ($VAL (EVFLAG) ,$%DESCR('FLIGHTLOCKS'),,)) GO TO 900
10 PREVSTATE = SYS$SRTEF ($VAL (EVFLAG))

IF (PREVSTATE .EQ. %LOC(SS$_WASSET)) THEN
GO TO 10

ELSE
IF (.NOT. PREVSTATE) GO TO 900
RETURN

END IF

ENTRY UNLOCKFLIGHT

IF (.NOT. SYSSCLREF (%VAL (EVFLAG))) GO TO 900

RETURN

200 TYPE 910

910 FORMAT (' **** EVENT FLAG SERVICE FAILURE ****!)
END

@]

PROGRAM EXAMPLES

PROGRAM DISPLAY
INCLUDE 'DATADESC.FOR'

CHARACTER DESTIN*6,DAY*3,HOMERASE*4 ,BLANKS*6 ,SMOKE*1
CHARACTER TIMEDELAY*13,TOPOFSCREEN*6G

INTEGER SYSSBINTIM,SYSSSETIMR,SYSSWAITFR,SYSSCLREF,DELAY (2)
BYTE CTLERASE (4),CTLTOS (4)
EQUIVALENCE (HOMERASE,CTLERASE(1l)), (TOPOFSCREEN,CTLTOS (1))
DATA CTLERASE/'1B'X,'H','1B'X,'J'/,BLANKS/’ '/
DATA TIMEDELAY/'0 00:00:10.00'/
DATA CTLTOS/'1B'X,'Y"',"'22'X,'20'X/

1000 FORMAT (' Enter flight destination: ',$S)

1010 FORMAT (A)

1020 FORMAT (' There are no flights to ',3d)
1030 FORMAT (' On what day? ',$)

1040 FORMAT(' ',A,'DESTIN DAY SEAT PASSENGER NAME CREDIT
1 CARD NO. (0 IF CASH)',/,' =—==== === —r—e —mcmmr— e
1 e '/

1050 FORMAT('+',A,"' ',A,' ',A,I2,' ',A,Il0,/)

1060 FORMAT (' ',A)

10 TYPE 1000

ACCEPT 1010, DESTIN

DO 20 IDEST = 1,NDESTS

IF (DESTIN(1:2) .EQ. DESTINS(IDEST) (1:2)) GO TO 40
20 CONTINUE

TYPE 1020, DESTIN
GO TO 10

40 TYPE 1030
ACCEPT 1010, DAY
DO 60 IDAY = 1,NDAYS
IF (DAY (1:2) .EQ. DAYS(IDAY) (1:2)) GO TO 80

60 CONTINUE
IF (DAY (1:3) .EQ. 'ALL') THEN
IDAY = -1
GO TO 80
END IF
GO TO 40
80 CONTINUE
IF (IDEST .EQ. -1) THEN
JDEST = 1
KDEST = NDESTS
ELSE
JDEST = IDEST
KDEST = IDEST
END IF
IF (IDAY .EQ. -1) THEN
JDAY = 1
KDAY = NDAYS
ELSE
JDAY = IDAY
KDAY = IDAY
END IF
TYPE 1040, HOMERASE
90 LINES = O
DO 500 IDEST = JDEST,KDEST
ILOOP = 0

DO 400 IDAY = JDAY,KDAY
JLOOP = 0

DO 300 ISEAT = 1,2*NSEATS
ILOOP = ILOOP + 1

JLOOP = JLOOP + 1

IF (ISEAT .LE. NSEATS) THEN

SMOKE = 'N'

ISMOKE = 1

JSEAT = ISEAT
ELSE

SMOKE = 'S'

ISMOKE = 2

JSEAT = ISEAT - NSEATS
END IF

LSEAT = ISEAT + (IDEST-1)*2*NSEATS + (IDAY-1)*NDESTS

PROGRAM EXAMPLES

IF (LINES) 100,100,99

99 IF (ILOOP - 2) 100,120,140
100 DESTIN = DESTINS (IDEST)
GO TO 140
120 DESTIN = BLANKS
140 CONTINUE

IF (LINES) 160,160,150

150 IF (JLoop - 2) 160, 180, 200
160 DAY = DAYS (IDAY)
GO TO 200
180 DAY = BLANKS
200 CONTINUE
IF (SEATS(JSEAT,ISMOKE,IDEST,IDAY) (1:4) .EQ. ' ') THEN
IF (ISEAT .NE. 1) THEN
GO TO 300
END IF
END IF

TYPE 1050, DESTIN,DAY,SMOKE,ISEAT,SEATS (JSEAT,ISMOKE,IDEST,IDAY),
1 HOWPAID (LSEAT)
LINES = LINES + 1
IF (LINES .GE. 19) THEN
TYPE 1060, TOPOFSCREEN
LINES = 0
END IF
300 CONTINUE
400 CONTINUE
500 CONTINUE

END

PROGRAM RESERVATION
INCLUDE 'DATADESC.FOR'
CHARACTER DESTIN*6,DAY*3,SMOKE*3,PAYMENT*4

1000 FORMAT (' Enter destination: ',$)

1010 FORMAT (A)

1020 FORMAT (' There are no flights to ',A)

1030 FORMAT (' On what day? ',$)

1040 FORMAT (' Do you want a smoking area seat? ',$)

1050 FORMAT(' The flight to ',A,' is full on ',A)

1060 FORMAT (' No smoker seats left. Is non-smoking acceptible ?',%)
1070 FORMAT (' Non-smoking is full. Is smoking area acceptible ?',3)
1080 FORMAT (' Your seat is number ',I4,' on the ',A,' flight next ',A)
1090 FORMAT (' Enter passenger name: ',$)

1100 FORMAT (' Payment by cash or credit card? ',S$)

1110 FORMAT(' Enter credit card number: ',$)

1120 FORMAT(I10)

1130 FORMAT (' *** INVALID CREDIT CARD NUMBER ***')

10 TYPE 1000
ACCEPT 1010, DESTIN
DO 20 IDEST = 1,NDESTS
IF (DESTIN(1:2) .EQ. DESTINS(IDEST) (1:2)) THEN
GO TO 40
END IF
20 CONTINUE

TYPE 1020, DESTIN
GO TO 10

40

60

80

100

170

200

220

260

900

PROGRAM EXAMPLES

TYPE 1030

ACCEPT 1010, DAY

DO 60 IDAY = 1,NDAYS

IF (DAY (1l:2) .EQ. DAYS(IDAY) (1:2)) THEN
GO TO 80

END IF

CONTINUE

GO TO 40

TYPE 1040
ACCEPT 1010, SMOKE
IF (SMOKE(l:1) .EQ. 'Y') THEN

ISMOKE = 1
ELSE IF (SMOKE(l:1) .EQ. 'N'") THEN
ISMOKE = 0
ELSE
GO TO 80

END IF
CALL LOCKFLIGHT(IDEST,IDAY)

DO 100 ISEAT = 1,NSEATS

IF (SEATS(ISEAT,ISMOKE+1,IDEST,IDAY) (1:4) .EQ. ' ') THEN
GO TO 200

END IF

CONTINUE

JSMOKE = ISMOKE .XOR. 1

DO 110 ISEAT = 1,NSEATS

IF (SEATS(ISEAT,JSMOKE+1,IDEST,IDAY) (1:4) .EQ. ' ') THEN
GO TO 150

END IF

CONTINUE

TYPE 1050, DESTINS (IDEST),DAYS (IDAY)

CALL UNLOCKFLIGHT

GO TO 900

IF (ISMOKE .EQ. 1) THEN
TYPE 1060
GO TO 170

ELSE
TYPE 1070

END IF

ACCEPT 1010, SMOKE

IF (SMOKE(1:1) .EQ. 'N') THEN
GO TO 120

END IF

ISMOKE = JSMOKE

JSEAT = ISEAT + (NSEATS*ISMOKE)
KSEAT = JSEAT + (IDEST-1)*2*NSEATS + (IDAY-1)*NDESTS
TYPE 1080, JSEAT,DESTINS(IDEST),DAYS (IDAY)
TYPE 1090
ACCEPT 1010, SEATS(ISEAT,ISMOKE+1,IDEST,IDAY)
TYPE 1100
ACCEPT 1010, PAYMENT
IF (PAYMENT(1:2) .EQ. 'CA') THEN
HOWPAID (KSEAT) = 0
ELSE IF (PAYMENT(1:2) .NE, 'CR') THEN

GO TO 220

ELSE
TYPE 1110
ACCEPT 1120, HOWPAID (KSEAT)
IF (HOWPAID (KSEAT) .NE. 0) GO TO 260
TYPE 1130
GO TO 240

END IF

CONTINUE

GO TO 120

CONTINUE

END

1000
1010
1020
1030
1040
1050

1090

10

20

40

60

80
90

100

200

900

PROGRAM CANCEL

INCLUDE 'DATADESC.FOR'

PROGRAM EXAMPLES

CHARACTER DESTIN*6,DAY*3,NAME*20 ,BLANKS*20

DATA BLANKS/'

FORMAT(' Enter destination: ',$)

FORMAT (A)

FORMAT (' There are no flights to

FORMAT (' On what day? ',$)
FORMAT(' ',A' does not hold a seat to ',A,' on ',A,' flight!')

FORMAT (' Seat number

flight next ',A)

FORMAT (' Enter passenger name:

TYPE 1090
ACCEPT 1010, NAME
TYPE 1000

ACCEPT 1010, DESTIN
DO 20 IDEST = 1,NDESTS
IF (DESTIN(1:2) .EQ. DESTINS(IDEST)(1:2)) THEN

GO TO 40
END IF
CONTINUE

TYPE 1020, DESTIN
GO TO 10

TYPE 1030
ACCEPT 1010, DAY

DO 60 IDAY = 1,NDAYS
IF (DAY(l:2) .EQ. DAYS(IDAY) (1:2)) THEN

GO TO 80
END IF
CONTINUE
GO TO 40

ISMOKE = 0

DO 100 ISEAT = 1,NSEATS
IF (SEATS(ISEAT,ISMOKE+1,IDFST,IDAY) (1:10) .EQ. NAME(1:10))
CALL LOCKFLIGHT (IDEST,IDAY)

1

’

NAME ,

GO TO 200
END IF
CONTINUE
IF (ISMOKE .EQ. 0) THEN
ISMOKE =
GO TO 920
ELSE
TYPE 1040
GO TO 900
END IF
JSEAT =
KSEAT =

I'14’|

DESTIN,

ISEAT + (NSEATS*ISMOKE)
JSEAT + (IDEST-1)*2*NSEATS +

t/

IIA)

DAY

cancelled on the ',A,

%)

(IDAY-1) *NDESTS

TYPE 1050, JSEAT,DESTINS(IDEST),DAYS (IDAY)
SEATS (ISEAT, ISMOKE+1,IDEST,IDAY) (1:20) = BLANKS(1:20)

HOWPAID (KSEAT) =
CALL UNLOCKFLIGHT
CONTINUE

END

0

THEN

1000
1010
1020
1030
1040

1050
1060

10

20

40

60

80

90

1

PROGRAM EXAMPLES

PROGRAM MONITOR
INCLUDE 'DATADESC.FOR'

CHARACTER DESTIN*6,DAY*3,HOMERASE*4,BLANKS*A,SMOKE*1
CHARACTER TIMEDELAY*13,TOPOFSCREEN*A

INTEGER SYSSBINTIM,SYSSSETIMR,SYSSWATTFR,SYSSCLREF,DELAY (2)
BYTE CTLERASE (4),CTLTOS (%)
EQUIVALENCE (HOMERASE,CTLFRASE (1)), (TOPOFSCREEN,CTLTOS (1))

DATA CTLERASE/'1B'X,'H',6 '1B'X,'J'/,RLANKS/" '/
DATA TIMEDELAY/'0 00:00:10.00'/
DATA CTLTOS/'1B'X,'Y','22'X,'20'X,'1B'X,'J"'/

FORMAT (' Enter flight destination: ',$)

FORMAT (A)

FORMAT (' There are no flights to ',A)

FORMAT (' On what day? ',$)

FORMAT(' ',A,'DESTIN DAY SEAT PASSENGER NAME CREDIT

1 CARD NO. (0 IF CASH)',/,' ====== === =——= —m———eemm
1

FORMAT ('+',A,' ',A,' ',A,I2,' ',A,I110,/)
FORMAT (' ',A)

TYPE 1000

ACCEPT 1010, DESTIN

DO 20 IDEST = 1,NDESTS

IF (DESTIN(l:2) .EQ. DESTINS(IDEST) (1:2)) THEN
GO TO 40

END IF

CONTINUE

IF (DESTIN(1:3) .EQ. 'ALL') THEN
IDEST = -1
GO TO 40

END IF

TYPE 1020, DESTIN

GO TO 10

TYPE 1030

ACCEPT 1010, DAY

DO 60 IDAY = 1,NDAYS

IF (DAY (1l:2) .EQ. DAYS(IDAY) (1:2)) THEN

GO TO 80
END IF
CONTINUE
IF (DAY (1:3) .EQ. 'ALL') THEN
IDAY = -1
GO TO 80
END IF
GO TO 40
CONTINUE
IF (IDEST .EQ. -1) THEN
JDEST = 1
KDEST = NDESTS
ELSE
JDEST = IDEST
KDEST = IDEST
END IF
IF (IDAY .EQ. -1) THEN
JbAY = 1
KDAY = NDAYS
ELSE
JDAY = IDAY
KDAY = IDAY
END IF
TYPE 1040, HOMERASE
LINES = 0
DO 500 IDEST = JDEST,KDEST
ILOOP = 0

PROGRAM EXAMPLES

DO 400 IDAY = JDAY,KDAY
JLOOP = 0

DO 300 ISEAT = 1,2*NSEATS
ILOOP = ILOOP + 1

JLOOP = JLOOP + 1

IF (ISEAT .LE. NSEATS) THEN

SMOKE = 'N!'

ISMOKE = 1

JSEAT = ISEAT
ELSE

SMOKE = 'S’

ISMOKE = 2

JSEAT = ISEAT - NSEATS
END IF

LSEAT = ISEAT + (IDEST-1)*2*NSEATS + (IDAY-1)*NDESTS

IF (LINES) 100,100,99

99 IF (ILOOP - 2) 100,120,140
100 DESTIN = DESTINS (IDEST)
GO TO 140
120 DESTIN = BLANKS
140 CONTINUE

IF (LINES) 160,160,150

150 IF (JLOOP - 2) 160, 180, 200
160 DAY = DAYS (IDAY)
GO TO 200
180 DAY = BLANKS
200 CONTINUE
IF (SEATS(JSEAT,ISMOKE,IDEST,IDAY) (1:4) .EQ. ' ') THEN
IF (ISEAT .NE. 1) THEN
GO TO 300
END IF
END IF

TYPE 1050, DESTIN,DAY,SMOKE,ISEAT,SFEATS (JSEAT,ISMOKE,IDEST,IDAY),
1 HOWPAID (LSEAT)
LINES = LINES + 1
IF (LINES .GE. 19) THEN
IX = SYSSBINTIM (¥DESCR(TIMEDELAY) ,DELAY)
IF (.NOT. IX) GO TO 900

IX = SYSSCLREF ($VAL (1))

IF (.NOT. IX) GO TO 900

IX = SYSS$SSETIMR(3VAL(1),DELAY,,)
IF (.NOT. IX) GO TO 900

IX = SYSSWAITFR($VAL (1))

IF (.NOT. IX) GO TO 900
TYPE 1060, TOPOFSCREEN
LINES = 0
END IF
300 CONTINUE
400 CONTINUE
500 CONTINUE

IX = SYS$BINTIM ($DESCR(TIMEDELAY) ,DELAY)
IF (.NOT. IX) GO TO 900

IX = SYSSCLREF ($VAL (1))

IF (.NOT. IX) GO TO 900

IX = SYSSSETIMR (SVAL(1),DELAY,,)

IF (.NOT. IX) GO TO 900

IX = SYSSWAITFR(SVAL (1))

IF (.NOT. IX) GO TO 900
TYPE 1060, TOPOFSCREEN

GO TO 90
900 CALL LIBS$SIGNAL ($VAL (IX))
END

PROGRAM EXAMPLES

$1 BLDVMSAIR.COM

$1

$1 COMMAND FILE TO REBUILD FROM SOURCE

$1 THE AIRLINE RESERVATION SYSTEM WHICH IS

$1 A DEMO .OF SHAREABLE IMAGES

$1

$ FORTRAN/LIST/MACHINE_CODE DATABASE

$ FORTRAN/LIST/MACHINE_CODE INTERLOCK

$ FORTRAN/LIST/MACHINE_CODE RESERVE

$ FORTRAN/LIST/MACHINE_CODE DISPLAY

$ FORTRAN/LIST/MACHINE_CODE CANCEL

$ FORTRAN/LIST/MACHINE_CODE MONITOR

$ LINK/SHAREABLE/MAP/FULL/CROSS DATABASE,INTERLOCK,DATABASE/OPTIONS
$ LINK/MAP/FULL/CROSS RESERVE,GETSHRIMG/OPTIONS

$ LINK/MAP/FULL/CROSS DISPLAY,GETSHRIMG/OPTIONS

$ LINK/MAP/FULL/CROSS MONITOR,GETSHRIMG/OPTIONS

$ LINK/MAP/FULL/CROSS CANCEL,GETSHRIMG/OPTIONS

$ PURGE *.*

! DATABASE.OPT

1

! LINK TIME OPTIONS DESCRIPTION FILE TO BUILD

! THE SHARABLE IMAGE CONTAINING THE DATA BASE AND
! THE INTERLOCK ROUTINE

1

UNIVERSAL=LOCKFLIGHT,UNLOCKFLIGHT MAKE ROUTINE ENTRY POINTS

GSMATCH=LEQUAL,0,0000

DATABASE/SHARE=NOCOPY

!
! ACCESSIBLE TO USER PROGRAMS
! SET GLOBAL SECTION MATCH CONTROL

GETSHRIMG.OPT

LINK TIME OPTIONS FILE TO ACQUIRE THE SHARED
DATABASE AND INTERLOCKING ROUTINE.

! MAPPED INTO ADDRESS SPACE

APPENDIX A

LOCKING A RESOURCE

A semaphore is a metering device that provides the capability of
controlling access to a set of resources. A semaphore that controls
access to a single resource is called a mutex (mutual exclusion) or,
more commonly, a lock.

You can perform two operations on a mutual exclusion semaphore (lock):

e Lock - Test to see if the resource is free. If it 1is, then
take (use) it and proceed with execution. 1If the resource is
not free, execution is stalled until the resource becomes
available.

e Unlock - Give the resource back (make it available to others)
when it 1s no 1longer needed. If any other processes are
stalled waiting for the resource, they are awakened.

Locking and unlocking must be interlocked operations, so that no race
conditions result. An example of a race condition is as follows: in
the middle of the first process's test for a resource's availability,
the resource 1is returned by another process, but the return goes
unnoticed by the first process.

Two methods of creating a lock are (1) using a common event flag or
(2) using a queue. In selecting either method, you must consider how
you want to service requests for the resource, how important 1is ease
of use, and how quickly the method must execute, Table A-1 contrasts
the two methods.

Table A-1
Two Methods of Creating a Lock

Event Flag Queue
1. Requests serviced according 1. Requests serviced on a
to process priority first-in first-out (FIFO)

or a last-in first-out
(LIFO) basis

2. FEasy to use 2. More complicated to use
(requires a global sec-
tion and special data
structures)

3. Uses time manipulating 3. Executes at hardware
the event flag instruction speed when no
conflict occurs

LOCKING A RESOURCE

A.1 USING AN EVENT FLAG

Cooperating processes can control access to a resource by using a
common event flag as a lock. The procedure is as follows:

1. An initialization process is run to create a permanent common
event flag cluster and to set the initial state of all 32
flags to 1. This provides 32 individual locks.

2. Each cooperating process must associate with the common event
flag cluster.

3. Before any process uses the resource represented by a

particular event flag, it must execute the logic shown in
Figure A-1l.

\

Clear event flag S5¢: $CLREF_S EFN=#G%5

Was previous CHMPL RO#55% WAGSET

state of flag = 1 BEQL 10%
?
No
Wait for event FWAITFR.ES EFN=#33
flag BRW 5%
\
Proceed to 10%: f iProceed
access '
resource
Y
Set event flag $SETEF..S EFN=#G5

$

Figure A-1 Event Flag Lock Logic

Because the initial state of the event flag is 1, only ohe process at
a time will be able to clear the event flag and find its previous
state to be a 1. All subsequent processes will find the ©previous
state to be 0, and thus will wait until the owner process sets the
flag. (This occurs when the owner process 1is finished with the
resource and returns it.)

LOCKING A RESOURCE

Setting the event flag causes all the waiting processes to awaken and
compete for CPU time according to their process priority (unless an
outstanding 1I/0 request or some other factor prevents a
higher-priority process from becoming computable). However, only one
waiting process will be able to clear the event flag and find its
previous state to be a 1. (Note: Clearing an event flag is an
interlocked operation implemented by VAX/VMS.)

Figure A-2 is a VAX-11 FORTRAN example using a common event flag as a
lock. Note that in Figure A-2 it 1is not necessary to run an
initialization process (step 1 at the beginning of this section),
because the program logic prevents a race condition from occurring
during lock initialization.

INTEGER*4 SYS$SASCEFC,SYSSSETEF,SYS$CLREF,SYSSWAITFR,STATUS
EXTERNAL SS$_WASSET,SS$_WASCLR

C-- Associate with a common event flag cluster to be used as a mutual exclusion
C-- semaphore. If the cluster does not exist, it is created. The first two
C-- flags are used to avoid any race conditions during initialization.

STATUS = SYSSASCEFC(%VAL(64),'MUTEX',,)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL (STATUS))
IF (SYSSSETEF ($VAL(64)) .EQ. %LOC(SSS_WASCLR)) THEN | If creator

CALL SYSSSETEF (%VAL (66)) ! Init mutex

CALL SYS$SETEF (%VAL (65)) ! Set initialized
ELSE

CALL SYSSWAITFR ($VAL(65)) ! Initialized wait
END IF

C-- Perform any other program initialization
CONTINUE

C-- Obtain exclusive access to the mutex to make sure no other process
C-- will execute its critical section while we do. If the mutex cannot be
C-- obtained, wait for it to be released.
50 STATUS = SYSSCLREF (%VAL (66))
IF (STATUS .EQ. $LOC(SS$ WASSET)) GOTO 100

STATUS = SYS$WAITFR (%VALT(66))
GOTO 50

C-- Execute the critical section of the program
100 CONTINUE
C-- Release the mutex and unblock any other processes that might have
C-- been waiting. If more than one is waiting, the first one to obtain the
C-- the mutex will get it, and the others will fail and wait again.
CALL SYSSSETEF (%VAL (66))
GOTO 50

END

Figure A-~2 Event Flag Lock Example

LOCKING A RESOURCE

A.l1.1 Shared Memory Considerations

You can use an event flag in a shared memory common event flag cluster
to guarantee that only one process uses a resource at a time.
However, because of potential differences in the speeds and workloads
of the processors connected to the shared memory, there 1is no
assurance that the highest-priority waiting process will get the
resource each time it becomes available.

A.2 USING A QUEUE

Cooperating processes can use a queue to lock a resource and, after
unlocking, make the resource available on either a first-in first-out
(FIFO) or last-in first-out (LIFO) Dbasis. (Queues and the queue
instructions are explained in the VAX-1l Architecture Handbook.) The
procedure is as follows.

1. An initialization process must be run to create a permanent
global section and initialize a queue header.

2. To use the resource represented by the queue header, each
process must map the global section. Each process must also
create a 3-longword description with the following format 1in
the global section:

Forward link

Backward link

Process 1ID

3. Before any process uses the resource represented by the queue
header, it must execute the 1logic shown in Fiqure A-3.
(Figure A-3 shows a FIFO queuing policy. Figure A-4 later in
this appendix shows a LIFO policy.)

LOCKING A RESOURCE

{

Insert its description
into queue at tail

Is its
entry first
in queue

Hibernate

Is its
entry first
in queue
?

Yes

L —
-

Access resource

!

Remove its description
from queue at head

Is queue
empty
?

Yes

Wake first process
in queue

S ——

Proceed with
execution

Figure A-3

INSQUE DESC+@RHEADER+d

BEQL 10%

5%z $HIBER_S
CMPL DESC +HEADER
BNEQ 3%

10%: :
REMOUE EHEADER «RO
BEOL 204
MOWL HEADER sR1
$WAKE..S PIDADR=8B(R1)
20%

FIFO Queuing Policy

Because the initial state of the queue is empty, only one process will
to insert its entry in the queue and find it to be the first

be able
entry.

inserting itself,

Each subsequent process will find more than one entry
and thus will hibernate.

after

LOCKING A RESOURCE

When the owner process is finished wusing the resource, it simply
removes its description from the head of the queue. If the queue is
then empty, no process is waiting. If the queue is not empty, the
process whose 1ID is first in the queue is awakened, and that process
can now use the resource. (Note: The Qqueue instructions are
interlocked operations implemented by the VAX-11l processor.)

Figure A-3 and 1its explanation described a FIFO queuing policy.
Figure A-4 shows the logic for a LIFO queuing policy.

A.2.1 Shared Memory Considerations

The logic and coding in Section A.2 cannot be used with a queue in
shared memory for the following reasons:

e The Wake (SWAKE) system service cannot be used to wake a
process running on another processor.

e The interlocked queue instructions must be used (INSQHI,
INSQTI, REMQHI, REMQTI).

To use a queue in shared memory, you must devise a more complicated
mechanism. (Such a mechanism is beyond the scope of this manual.)

LOCKING A RESOURCE

'

Insert its description
into queue at tail INSQUE DESC,@GHEADER+4

Is its

entry first BEGL 10%
in queue
No
Hibernate 5S¢ $HIBER..S
Is its
entry first CHMPL DESC yHEADER
in queue BNEQ 54
?
Yes
- 1046 R
Access resource f
Y
Remove entry from REMQUE BHEADER+4 R 1
queue at tail
Yes Was that) -
its own entry BEGL 204
?
Insert that entry in
queue at head REMOUE EHEADER yRO
f:gm;’je'asewn entry INSOUE (K1) ,BHEADER
Wake entry moved to SWAKE.S PIDADR=8(R1)
head of queue
.
Proceed with T
execution "

A-4 LIFO Queuing Policy

APPENDIX B

LPA11-K CONSIDERATIONS

Users should consider three factors in selecting and wusing the
Laboratory Peripheral Accelerator (LPA11-K) for a real-time
application:

e The effect on performance of resource availability and
hardware configuration

e Throughout and response-time requirements of the application

e The LPAll-K driver's use of parameters in data acquisition
calls

The remainder of this appendix discusses each of these considerations,

B.1l RESOURCES, CONFIGURATION, AND PERFORMANCE

One factor that determines the performance of the LPAll-K 1is its
interaction with other devices and applications in the system. The
LPAll-K is designed as a real-time device. Its function is to sample
data synchronously with a real-time clock. However, if for any reason
the LPAll-K cannot maintain this synchronous transfer of data, a
nonretriable error 1is generated. This method of operation contrasts
with that of a disk, which can perform a retry because the original
data 1s still available (in memory for a write or on disk for a read).
In a real-time application, however, after the event of interest has
passed it may no longer be of interest.

Therefore, the resources needed to carry out an application in real
time must be guaranteed to be available. Some of the resources that
must be available to use the LPAll-K in real time are UNIBUS adaptor
map registers to map the buffers, UNIBUS adaptor data path, UNIBUS
direct memory access (DMA) transfer bandwidth, processor interrupt
response time, memory in the working set for data buffers, and CPU
execution time for the application program. If the application
buffers the data for storage on disk, the following resources must
also be available: the disk controller and drive, and sufficient
bandwidth and adaptors for the MASSBUS or UNIBUS (depending on where
the disk is interfaced).

The VAX/VMS system gives the application program control over many
system resources, to guarantee their availability when these resources
are needed. Processes can lock «critical pages, thus ensuring the
availability of that memory. Processes can adjust their priority to
guarantee access to CPU execution time and to mass storage
controllers,

LPAl1-K CONSIDERATIONS

In other areas, however, control over resources is difficult, often
because the resources are being used concurrently and involve
interrupt handling and contention for bandwidth on 1I/0 buses. In
fact, several studies have concluded that the major impact on LPAll1-K
performance is UNIBUS I/O bandwidth contention.

The LPAll-K detects two classes of errors associated with real-time
performance:

e Buffer overrun/underrun -- deals with the ability of the
application program to supply new memory buffers fast enough
(for example, to process data at least as fast as it is coming
in)

e Data overrun/underrun -- deals with the ability of the device
to arbitrate for UNIBUS cycles and to transfer data to and
from main memory

Buffer overrun/underrun errors often reflect inadequate application
control over resources; data overrun/underrun errors are usually
caused by I/0 contention. .

The first class of errors, buffer overrun/underrun, is a function of
the application. The application must run at a priority high enough
to guarantee it sufficient CPU time. It must also have a working set
large enough to hold in physical memory the data buffers and the code
that performs computation on the data, to prevent excessive paging (or
perhaps to prevent any paging at all). However, if these control
measures have been taken and the buffers are 1large enough, and 1if
buffer overrun/underrun errors still occur repeatedly, then the data
rate is too fast for the work that needs to be done. In this case,
the solution might be to buffer the data to intermediate mass storage
for future processing.

The second class of errors, data overrun/underrun, is a function of
UNIBUS and memory I/O contention. As other DMA devices on the UNIBUS
become concurrently active, the effective throughput rate of the
LPAl11-K can be significantly reduced. 1If LPAll-K throughput falls
below the application's requirements, an additional UNIBUS adaptor may
be needed.

B.2 THROUGHPUT AND RESPONSE-TIME REQUIREMENTS

The LPAll-K and its support under VAX/VMS are tailored primarily for
throughput-intensive applications. This device can recognize a simple
event, such as a single digital signal, and start data acquisition
when the event occurs. However, 1f the application must respond
quickly to events represented by the contents of the data being
acquired, the LPAll-K might not be suitable for two reasons:

e The LPAll-K samples analog or digital data and stores it in
large data buffers 1in main memory, generating an interrupt
only when a buffer is full. Thus, if the application must
detect a particular data value and respond quickly, it might
have to wait for an entire buffer to be filled before it could
start searching for the value.

e VAX/VMS 1is designed to manage LPAl11-K data buffers
transparently for application programs. This buffer
management involves some software overhead. Thus, 1if data
buffers were made very small (the smallest being one data
point per buffer) in an effort to access data points sooner,
the software overhead would grow considerably.

B-2

LPA11-K CONSIDERATIONS

B.3 PARAMETERS FOR DATA ACQUISITION CALLS

The LPAll-K uses parameters in some data acquisition procedures. For
example, assume that an application must acquire a stream of analog
data from several points at a specific rate per point, store the
digitized data in memory, and stop when enough data has been taken.

To accomplish these goals, you must specify the following parameters:
analog-to-digital conversion, the analog data channels to sample, the
sample rate, the place in memory to store the data, and the amount of
data to be taken. At the start of each data acquisition session, the
application provides these values as parameters to the LPAll-K driver.

Data acquisition calls wusing parameters have the advantages of
isolating the application from the actual hardware and simplifying the
programming: the application programmer does not need to write
interrupt service routines 1in assembly language or microcode.
However, this approach might not be adequate for certain complicated
applications requiring a sophisticated sampling algorithm or complex
interactions between multiple data acquisition streams. If the
application requires capabilities not provided by the LPAll-K
parameters, other devices should be investigated.

APPENDIX C

VAX-11 BLISS-32 PROGRAM EXAMPLE

This appendix shows a VAX-11 BLISS-32 program using the
connect-to-interrupt capability. The functions performed by the
program are described in the "Abstract" near the beginning of the
listing and in comments throughout the program. This program is only
a simple illustration of connecting to an interrupt vector and does
not reflect a typical real-time situation (for example, the line
printer is not a real-time device).

MODULE lpmultast (3TITLE'line printer driver' MAIN=lp main, IDENT='X02')=

COPYRIGHT (c) 1980 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY 1IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HERERY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

++

FACILITY:
A sample program that illustrates the use of the connect to
interrupt facility.

ABSTRACT:

This program assigns a channel to a line printer device, and
then connects to the device via the connect to interrupt
facility. The program then requests the name of a file from
the user, and outputs that file on the line printer.

b o m S S Sw 4 S= G Sw S s e 4 S bm Bee b Ome G P S G 4 P b b S am o=

!

!-_

¥SBTTL 'External and local symbol definitions'
BEGIN

LIBRARY 'SYS$LIBRARY:LIB'; ! Get important definitions

PSECT

VAX-11 BLISS-32 PROGRAM EXAMPLE

1+
! Define some PSECTs which we will need to refer to later

OWN= sharedata (ALIGN (9) ,WRITE),
OWN= data;
LINKAGE
intrupt= JSB(REGISTER=2, REGISTER=4, REGISTER=5):
NOPRESERVE(0,1,2,3,4) NOTUSED(6,7,8,9,10,11),
cancel= JSB(REGISTER=2, REGISTER=3, REGISTER=4, REGISTER=5):

NOTUSED(6,7,8,9,10,11);

FORWARD ROUTINE

lp_interrupt: intrupt PSECT(sharedata), ! Interrupt server
lp_cancel: NOVALUE cancel PSECT(sharedata), ! Cancel I/0
lp_main,

lp_isr_ast,
1p_iodone_ast;

! Static Definitions
1

LITERAL

true = 1,

false = 0,

io_page_count =1, ! Pages needed in UNIBUS I/0 space

io_space_base = %x'20100000"', ! Physical address of UBA 0 space
! for VAX-11/780. Other processors
! need different magic number...

unibus_1lp_addr= %0'777514"', ! 18-bit addr of LP11 CSR

!

! Calculate the page-frame number to map to get the physical address

! that the unibus is mapped on.

1

io_page_pfn = (lo_space_base + unibus_lp_addr)/512,

lp_csr_offset = %0'514"', ! Offset to printer CSRs.

filename_length = 100,

record_bufsiz = 256,
prompt_length = 28;
OWN
lpchan: WORD, ! Line printer channel number.
filename_buffer: VECTOR[filename_length,BYTE],
file_descr: VECTOR[2] INITIAL(filename‘length, filename*buffer),
fdlen: WORD,
record_buffer: VECTOR [record_bufsiz,BYTE],
file_fab: Sfab(! Input file fab

VAX-11 BLISS-32 PROGRAM EXAMPLE

Functional description:

This routine services an interrupt from the line printer

device. If the interrupt was expected, the routine disables
output interrupts. The disable is an optimization to prevent one
interrupt per character. With output interrupts disabled, the
line printer buffers characters until the device needs to output
the characters. Then the main program enables output interrupts
only for the period of time necessary for the device to empty
the buffer.

Then the interrupt service routine loads a success status into
RO and returns.

If the interrupt was not expected, the routine just loads
an error status into RO to prevent delivery of an AST to the
owning process and returns.

Inputs:
R2 - address of a counted argument list
R4 - address of the IDB
R5 - address of the UCB

The counted argument list is as follows:

0(R2) - count of arguments (4)
4(R2) - the system-mapped address of the user buffer
8(R2) - the system-mapped address of the device's CSR
12(R2) =~ the IDB address
16 (R2) - the UCB address
Outputs:
The routine must preserve all registers except R0O-R4.
BEGIN
MAP
arglist: REF VECTOR[,LONG],
ucb: REF BLOCK([,BYTE],
idb: REF BLOCK[,BYTE};
BIND
bufadr = arglist[1l]: REF BLOCK FIELD (buf); ! System adr of buffer
BUILTIN
TESTBITCC;
IF TESTBITCC(bufadr [buf$l_flags])
THEN
RETURN O0; ! No interrupt expected, no AST wanted
(.idb[idb$1_csr})<0,16> = 0; ! Disable the output interrupt

14+
! Functional description:

!
!

ss$_normal
END;

$SBTTL 'LP_CANCEL, Cancel I/O on Line Printer'

ROUTINE 1lp_cancel(chan_idx, irp, pcb, ucb): NOVALUE cancel PSECT(sharedata)=

This routine disables output interrupts from the line printer.

VAX~-11 BLISS-32 PROGRAM EXAMPLE

fac=get,
fna=filename_buffer,
org=seq,

rfm=var,
dnm='TEST.LIS"'),

file_rab: $rab(
fab=file fab,
rac=seq,
ubf=record buffer,
usz=record_bufsiz),

io_page_limits: VECTOR[2] ! Addresses of process-mapped
INITIAL (200, ! UNIBUS 1/0 page. 200 tells S$SCRMPSC
!

200); to map pages in PO space
BIND
onesecond_delta= ! Delta time format for one
UPLIT(-10*1000*1000,~1); ! second.

+

]

! Define offsets into the buffer that will be shared by the user
! process and the process routines that execute in kernel mode.
1

FIELD
buf=
SET
buf$l flags= (0,0,32,01, ! Flags longword.
buf$v_int= [0,0,1,01, ! Interrupt expected
buf$w_charcount=[4,0,16,0], ! Number of chars in buffer
buf$l startdata=(8,0,32,0] ! Start of data in buffer.
TES,
1p=
SET
lp_csr= [0,0,16,11, ! Offset to line printer CSR
1p_dbr= [2,0,8,0] ! Offset to line printer data
TES;
%SBTTL ‘'Double Mapped Page Buffers'
OWN
output_buffer: BLOCK[512,BYTE] FIELD(buf) PSECT(sharedata);
PSECT
OWN= sharedata,
PLIT= sharedata;
!
! The routines to be executed in kernel mode must follow directly
! after this allocation of bytes to hold output data.
!
$SBTTL ‘LP_INTERRUPT, Interrupt service routine'

ROUTINE 1lp_interrupt(arglist, idb, ucb): intrupt PSECT(sharedata)=
L+

VAX-11 BLISS-32 PROGRAM EXAMPLE

!
! Inputs:
!
! R2 - negated value of the channel index number
! R3 - address of the current IRP (I/0 request packet)
! R4 - address of the PCB (process control block) for the
! process canceling 1/0
! R5 - address of the UCB (unit control block)
!
! Outputs:
!
! none
!
!__
BEGIN
MAP
irp: REF BLOCK[,BYTE],
pcb: REF BLOCK{,BYTE],
ucb: REF BLOCK[,BYTE];
BIND
crb= .ucb [ucbh$l_crb]: BLOCK[,BYTE];
LOCAL
csr: REF BLOCKI[,BYTE] FIELD(1lp); ! UNIBUS addr.
csr = ..(crblcrb$l_intd]) + BLOCK[O, vecSl_idb;O,BYTE]); ! Addr of CSR
csr(lp_csr] =0 ! Disable output interrupts.
END;

$SBTTL 'LP_MAIN, the main routine’

ROUTINE 1lp_main: PSECT(SCODES$)=

1 ++

! LP_MAIN, the routine that controls the others

Functional description:

]
]
!
! 1. Assign a channel to the line printer.
! 2. Map the process to the I/0 page.
! 3. Issue a connect to interrupt QIO to get the line printer.
! 4, Prompt the user for a file name.
! 5. Open and connect to the file.
! 6. Write the contents of the file to the line printer.
!
! Inputs:
!
! none
!
! Outputs:
]
! RO - status code
! S5S$ NORMAL - success
! RMS code - error in opening or reading
! the file
! SS$_DEVOFFLINE -~ error is writing to printer
1
!__
BEGIN
PSECT

1

P

VAX-11 BLISS-32 PROGRAM EXAMPLE

OWN= SOWNS;

OWN

buffer desc: VECTOR[2] INITIAL(

entry list: VECTOR[4] INITIAL (

LOCAL

| Descriptor of buffer shared
512+512, ! by process and kernel mode
output_buffer), ! process routines.

List of offsets to kernel

mode routines: init device;
start device;
interrupt servicing;
cancel 1/0.

0,

o,

lp interrupt-output buffer,
lp_cancel-output_buffer);

csr: REF BLOCK[,BYTE] FIELD(lp) VOLATILE,
status;

EXTERNAL ROUTINE
lib$get_input;

Assign a channel to the line printer.

status

IF NOT

= $assign(! Assign channel to line
devnam=$DESCRIPTOR ('LPAD"'), ! printer
chan=1lpchan);

.status THEN RETURN .status;

Map the UNIBUS I/0 page to the process so that the line printer's
device registers are accessible.

status

IF NOT

= Scrmpsc(! Map I/0 page to process.
inadr=io page limits,
retadr=io_page limits,
flags=sec3m wrt OR sec$m pfnmap OR sec$m expreg,
pagcnt=io_paqe_count, -
vbn=io_page_pfn);

.status THEN RETURN .status;

Issue a connect to interrupt QIO to the line printer device. This
connection will allow the program to control and handle interrupts

from the

status

IF NOT

device.

= $qgio(! Connect the process to the
chan=.1lpchan, ! line printer device.
func=io$ conintread, ! Specify a read only buffer.
astadr=1p iodone ast, ! Specify an AST routine.
pl=buffer desc, ! Specify a shared buffer.
p2=entry Ilist, ! Specify routine entry points.
p3=cin$m_isr OR cin$m_cancel,
! Specify ISR, cancel routines.
pd=1p isr ast, ! Specify an interrupt AST.
p6=5); ! Specify an AST count.

.status THEN RETURN .status;

9
I
N

VAX-11 BLISS-32 PROGRAM EXAMPLE

! Ask user what file to print.
!

status = lib$get_input (file_descr,
$descriptor ('Name of file to be printed: '),
file_descr[0]);

IF NOT .status THEN RETURN .status;

!
! Open and connect file.
1

file_fab[fab$b_fns] = .file_descr[0]; ! Length of spec.

status = $open(fab=file_fab); ! Open file.

IF NOT .status THEN RETURN .status;

status = $connect(rab = file_rab); ! Connect file.

IF NOT .status THEN RETURN .status;

Get a record at a time until end of file. Surround record's contents
with a linefeed and a carriage return.

[—

WHILE status = S$get(rab=file_rab) DO

BEGIN
LOCAL
inp,
outp;
outp = output_buffer [buf$l startdatal; ! Target for first character
CHSWCHAR_A(3CHAR (3%X'A'), outp); ! Start with a line-feed

inp = record_buffer;

!
! Load length of this output buffer in the buffer header. Then copy

! the contents of the input buffer to the output buffer. Translate all
! lower case alphabetics to upper case characters.

1

output_buffer [buf$w_charcount] = .file_rab[rab$w_rsz] + 2;

DECR i FROM .file_rab[rab$w_rsz]-1 TO 0 DO
BEGIN -
LOCAL
char;

char = CH$RCHAR A(inp);

SELECTONE .char OF
SET
[¢C'a' TO %C'z']: char = .,char - $X'20'; ! Upcase
TES;

CH$WCHAR_A (.char, outp)

VAX-11 BLISS-32 PROGRAM EXAMPLE

END;

CHSWCHAR_A (%CHAR ($X'0D'), outp); ! Put CR at end.

Send characters one at a time to the line printer. Before sending a
character, see if the line printer is still in ready state. If not,
set a timer to go off in one second, and go to sleep. When an AST
occurs -- either because of a line printer interrupt, or because
the timer runs out, the AST routine will wake the process up again.

If the line printer is still in ready state, just send the next
character.

outp = output_buffer [buf$l_startdatal; ! Addr of output string
csr = .io_page_limits + 1p_csr_offset; ! Addr of LP's CSR

DECR i FROM .output_buffer [buf$w_charcountl-1 TO 0 DO
WHILE 1 DO
BEGIN
BIND
devbits= csr(lp_csr]: VOLATILE SIGNED WORD;

CASE SIGN(.devbits) FROM -1 TO 1 OF

SET
[-1]: RETURN ss$_devoffline; ! Paper problem, maybe
[1]: BEGIN { Output a character
csr{lp_dbr] = CHSRCHAR_A(outp);
EXITLOOP ! Back for next char
END;
[01: I+
! Line printer is not ready. See whether it's in
! trouble, or just busy. If it's in trouble, stop
! program with error status. Otherwise, just wait
! until it comes ready again.
|
BEGIN

output buffer[buf$Sv int] = true;

csr(lp esr] = .csrfIp csrl OR $X'40';

status = $setimr (-
daytim=onesecond delta,
astadr=1p_isr_ast);

Interrupt expected
Enable LP interrupts
Set a one second timer.

IF NOT .status THEN RETURN .status;

Shiber; ! Go to sleep.
Scantim() ! Cancel timer request
END
TES
END
END; ! End $GET loop

IF .status NEQ ss$_endoffile
THEN
RETURN .status;

APPENDIX D

REAL-TIME OPTIMIZATION CHECKLIST

This appendix lists suggestions that usually improve real-time program
performance. There 1is no guarantee, however, that any suggestion is
appropriate for all applications. You must consider the needs of each
application and the overall system activity when you evaluate any
suggestion.

1.

Avoid costly operations in time-critical code. Costly
operations include:

a. File opens or extensions

b. Mailbox creation

c. Common event flag cluster creation

d. Device allocation

e. Error reporting

Avoid window turns on critical files. Suggestions:
a. Use contiguous files

b. Specify a large window size

Inhibit system paging. Specify parameter values to the
SYSGEN utility to:

a. Disable system code paging (SYSPAGING = 0)

b. Disable paging of pageable dynamic pool (POOL PAGING = 0)
c. Specify a large system working set (SYSMWCNT)

However, before adjusting any of the parameter values, read

the explanation of the parameter and any cautions in the
VAX/VMS System Manager's Guide.

Use the Queue I/0 Request ($SQI0) system service directly for
1/0.

a. Setting an event flag is the fastest means of signalling
I1/0 completion

b. Using an AST is more time-consuming

REAL-TIME OPTIMIZATION CHECKLIST

Global sections provide the
interprocess communication.

Waiting for an event flag and

lowest-overhead means of

using hibernate/wake

the fastest methods of interprocess signalling.

provide

INDEX

A

Accessing device registers, 4-10

ACP (ancillary control process),
4-2

Adjust Working Set Limit
(SADJWSL) system service, 2-6

Airline reservation system
(example), 7-45 to 7-53

Allocation, device, 1-4

Ancillary control process
4-2

Associate Common Event Flag Clus-
ter (SASCEFC) system service,

(ACP} ,

3-3
Asynchronous system trap (AST),
3-8

conditions preventing delivery,
3-9

effect of access mode on deli-
very, 3-8, 3-9

service routine, 3-8, 3-9

B

Balance set, 2-5

lock working set in, 2-8
Base priority (process), 1-9, 1-11
BLISS-32 example, C-1 to C-8

C

Change-mode vector, 6-2, 6-3
Common event flags, 3-2 to 3-4
associating with a cluster,

creating a cluster, 3-3
mutex use, A-2 to A-4
shared memory, 5-5, 5-
permanent clusters, 3-
setting, 3-3, 3-4
temporary clusters, 3-2
waiting for, 3-4

Condition handling, 1-4

CONINTERR, 4-13, 4-14

Connect-to-interrupt capability,

3-3

2
3

AST service routine, 4-14 to
4-16

benefits, 4-6, 4-7

cancel I/0 routine, 4-21, 4-22

conventions for user routines,
4-18 to 4-22
device initialization routine,

4-20

disconnecting, 4-15, 4-18, 4-21,
4-22

driver, 4-13, 4-14

Connect-to-interrupt
capability, (Cont.)
examples, 4-22 to 4-28,
7-44, C-1 to C-11
interrupt service routine,

7-6 to

4-14, 4-15, 4-16, 4-18,
4-19, 4-21

IPL, significance of, 4-11,
4-12

language constraints, 4-19

overview, 4-11

performing, 4-12, 4-13, 4-15
to 4-18

4-15 to 4-18
4-20

$QI1I0 format,
start I/0 routine,
timings, 4-11
Create Mailbox and Assign Channel
(SCREMBX) system service,
3-5, 3-6
Create Process (SCREPRC)
service, 2-3, 2-4

D

system

Data acquisition example,
explanation, 7-1 to 7-5
listings, 7-5 to 7-44

Deductible quotas, 1-7, 1-8

Detached process, 2-1 to 2-5
contrasted with subprocess,

2-2, 2-3
creating, 2-3 to 2-5
real-time programming uses, 2-3
Device allocation, 1-4
Device drivers, 4-2, 4-3

connect-to-interrupt, 4-13, 4-14
Device registers, 4-10
DMC1ll, 1-6
Drivers, 4-2, 4-3
connect-to-interrupt, 4-13,
4-14
E
Event flags, common (see "Common

event flags™")
Examples,

accessing device register, 4-10

airline reservation system,
7-45 to 7-53

BLISS-32, C-1 to C-8

connect-to-interrupt, 4-22 to
4-28, 7-6 to 7-44, C-1 to
c-11

create process,
event flag, A-3

2-5, 3-7

Index-1

INDEX

Examples, (Cont.)
hibernate/wake, 3-11, 3-12
LABIO system, 7-6 to 7-44
lock (resource), A-3, A-5, A-7
mailbox, 3-7, 5-7
multiple features,

7-45 to 7-53
mutex, A-3, A-5, A-7
privileged shareable image,

6-5 to 6-24
queue (for mutex), A-5, A-7
RUN (process), 2-5
scheduled wakeups,

G

Global sections, 3-12 to 3-15
advantages in using, 3-13,
contrasted with VAX-11 RMS,

3-13
creating,
deleting,
mapping, 3-12,
permanent, 3-13
shared memory,
temporary, 3-13
updating, 3-15

H

7-6 to 7-44,

3-11, 3-12

D-2

3-12, 3-15

3-15

3-14,
3-14, 3-15

5-7 to 5-10

Hibernation, 3-9 to 3-12
contrasted with suspension,
examples, 3-10 to 3-12

3-10

1/0 posting routine, 4-3
1/0 space, 4-7, 4-8
accessing, 4-8 to 4-10
Interrupt priority level
4-11, 4-12
Interrupt service routine
specified), 4-14,
4-21

(IPL),

(user-—
4-15, 4-18,

L

LABIO system (example),
explanation, 7-1 to 7-5
listings, 7-5 to 7-44

Laboratory Peripheral Accelerator

(LPA11-K), 1-5, B~1 to B-3

Lock (resource), A-1 to A-7

shared memory considerations,
A-4, A-6

using a queue, A-4 to A-7

using an event flag, A-2 to A-4

Lock Pages in Memory (SLCKPAG)
system service, 2-7, 2-8

Lock Pages in Working Set (SLKWSET)
system service, 2-6, 2-7

Logical name translation (shared
memory facilities), 5-3,

5-4

LPAl11-K (Laboratory Peripheral

Accelerator), 1-5, B-1 to B-3

M

MA780 (See "Shared (multiport)
memory")
Mailboxes, 3-
creating, 3
examples, 3-7,
permanent, 3-5
process termination, 3-5
shared memory, 5-6, 5-7
temporary, 3-5
Memory,
lock pages in, 2-7, 2-8
lock process working set in,
2-8
Memory management,
overview, 2-5
system services, 2-5 to 2-8
Multiport memory (see "Shared
(multiport) memory")
Mutex, A-1 to A-7
shared memory considerations,
A-4, A-6
using a queue, A-4 to A-7
using an event flag, A-2 to A-4

N

4 to 3-7

-5
-7, 5-7

2-5 to 2-8

Name string format (shared memory
facilities), 5-3

Networks, 1-5

Nondeductible quotas,

o)

Optimization checklist, D-1, D-2

1-7, 1-8

P

Page frame number (PFN)
4-8 to 4-10

Permanent event flag clusters,

Permanent global sections, 3-13

Permanent mailboxes, 3-5

PFN mapping, 4-8 to 4-10

Physical memory control,
2-8

mapping,

3-3

2-5 to

Index-2

INDEX

Pooled quotas, 1-7, 1-8
Priority, 1-9 to 1-11
adjusting base priority, 1-11
base, 1-9, 1-11
privileges required to adjust,
1-11
significance, 1-10
timesharing vs. real-time, 1-9
Privileged shareable image,
change-mode vector, 6-2, 6-3
coding, 6-1 to 6-4
dispatcher, 6-3
example, 6-5 to 6-24
installing, 6-5
linking, 6-4, 6-5
purpose, 6-1
using, 6-5
Privileges, 1-6, 1-7
masks, 1-7
partial listing, 1-6
setting, 6-3, 6-4
Process creation, 2«1 to 2-5
Process ID (programming sugges-
tion), 3-10
Process priority (See "Priority")
Process quotas (See "Quotas")
Process swap mode, 2-8
Program examples (see "Examples")
Programming suggestions, 3-10,
D-1, D-2
Protection (privileged shareable
image), 6-4, 6-5

Q

Queue I/0 Request (SQIO) system
service, 4-1, 4-5, 4-6
connect~to-interrupt format,
4-15 to 4-18
Quotas, 1-7 to 1-9
deductible, 1-7
nondeductible, 1-7

pooled, 1-7
resource wait mode, effect on,
« 1-9

summary, 1-8

Real~time application needs, 1~1
to 1-4
responsiveness, 1-1, 1-2
throughput, 1-1, 1-2
VAX/VMS features, 1-2 to 1-4
REALTIME_ SPTS parameter, 4~-12,
4-13
Registers (device), 4-10
Reservation system (example),
7-45 to 7-53

Resource wait mode, 1-9
Response time (real-time need),
1-1, 1-2
RMS (see VAX-11] RMS)
RUN - (process) command, 2-4, 2-5
example, 2-5

S

Scheduled wakeups, 3-10 to 3-12
Sections, global (see "Global
sections™")
Semaphore (mutex), A-1 to A-7
shared memory considerations,
A-4, A-6
using a queue, A-4 to A-7
using an event flag, A-2 to A-4
Set Priority ($SETPRI) system
service, 1-11
Set Privileges ($SETPRV) system
service, 6-3, 6-4
Set Process Swap Mode ($SETSWM)
system service, 2-8
Setting event flags, 3-3, 3-4
Shareable images, 3-15 to 3-17
privileged, 6-~1 to 6-16
Shared (multiport) memory, 5-1

to 5-10
common event flag clusters,
5-5, 5-6
global sections, 5-5, 5-7 to
5-9
logical name translation, 5-3,
5-4

mailboxes, 5-5 to 5-7
mutex considerations, A-4, A-6
name, 5-2, 5-3
preparing for use, 5-1, 5-2
privileges required to use,
5-2
search for facilities in, 5-5
Subprocess, 2-1 to 2-5
contrasted with detached pro-
cess, 2-2, 2-3
creating, 2-3 to 2-5
real-time programming uses,
2-3
Suspension, 3-9, 3-10
contrasted with hibernation,
3-10
Swap mode (process), 2-8
SYSGEN utility,
parameter selection, 1-5, D-1
REALTIME SPTS parameter, 4-12,
4-13
System services (see individual
service names),
user~written (see "Privileged
shareable image")

Index-3

INDEX

T

Temporary event flag clusters,
3-2

Temporary global sections, 3-13

Temporary mailboxes, 3-5

Throughput, 1-1, 1-2

U

UNIBUS,
access errors, 4-9
power failure, 4-9
User Authorization File
1-5
User privileges (See "Privileges")
User-written system services (see
"privileged shareable image")

(UAF) ,

'}

VAX-11 BLISS-32 example, C-1 to
Cc-8
VAX-11 RMS,
contrasted with global section
use, 3-13
features of real-time interest,
4-4, 4-5
opening section file, 5-7

w

Waiting for event flags, 3-4
Waking a process, 3-10 to 3-12
Working set, 2-5
adjusting the limit, 2-6
locking pages in, 2-6, 2-7

Index-4

1 ITUIT LU MIVilY HHTE 11T e

VAX/VMS
Real-Time
User's Guide
AA-H784A~TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

Qooogo

Other (please specify)

Name Date

Organization

Street

City. State Zip Code
or
Countrv

— =~ — -— Do Not Tear - Fold Here and Tape — — — — — — — — —

No Postage

) Necessary
if Mailed in 1

United Stat

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

- — — Do Not Tear - Fold Here — e — e ——— — — — — — _— —— -

