
VMS

VMS Version 5.3 Small Computer System
Interface (SCSI) Device Support Manual

Order Number: AA-PAJ2A- TE

VMS Version 5.3 Small
Computer System Interface
(SCSI) Device Support
Manual

Order Number: AA-PAJ2A-TE

October 1989

This manual describes the mechanisms the VMS operating system provides
that allow a non-Digital-supplied SCSI device to be attached to a VAXstation
or MicroVAX system.

Revision/Update Information: This is a new manual.

Software Version: VMS Version 5.3

digital equipment corporation
maynard, massachusetts

October 1989

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be·
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software oh equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA
DDIF
DEC
DECnet
DECUS
DECwindows
DECwriter
DEQNA
DIGITAL
GIGI

Live Link
LN03
MASS BUS
MicroVAX
PrintServer 40
Q-bus
ReGIS
ULTRIX
UNIBUS
VAX

VAXcluster
VAX RMS
VAXserver
VAXstation
VMS
VT
XUI

Postscript is a registered trademark of Adobe Systems, Inc.

ZK5369

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE

CHAPTER 1 INTRODUCTION

1.1

1.2

1.3
1.3.1

CHAPTER 2

2.1

2.2

2.3
2.3.1
2.3.2
2.3.3
2.3.4

2.4
2.4.1

2.5

2.6

VMS SCSI CLASS/PORT ARCHITECTURE

VMS SCSI THIRD-PARTY DEVICE SUPPORT MECHANISMS

HARDWARE CONSIDERATIONS
Connecting a Non-Digital-Supplied SCSI Disk or Tape Drive
to a VMS SCSI Port

USING THE VMS GENERIC SCSI CLASS DRIVER

OVERVIEW OF THE VMS GENERIC SCSI CLASS DRIVER

ACCESSING THE VMS GENERIC SCSI CLASS DRIVER

SCSI PORT FEATURES UNDER APPLICATION CONTROL
Setting the Data Transfer Mode
Enabling Disconnection and Reselection
Disabling Command Retry
Setting Command Timeouts

CONFIGURING A DEVICE USING THE GENERIC CLASS DRIVER
Disabling the Autoconfiguration of a SCSI Device

ASSIGNING A CHANNEL TO GKDRIVER

ISSUING A $QIO REQUEST TO THE GENERIC CLASS DRIVER

xi

1-1

1-1

1-3

1-4

1-8

2-1

2-1

2-2

2-4
2-4
2-5
2-5
2-6

2-6
2-7

2-8

2-8

v

Contents

2.7 OBTAINING DEVICE INFORMATION 2-12

2.8 PROGRAMMING EXAMPLE 2-13

CHAPTER 3 WRITING A VMS SCSI CLASS DRIVER 3-1

3.1 SCSI CLASS/PORT ARCHITECTURE 3-1
3.1.1 SCSI Port Interface 3-4
3.1.2 SCSI-Specific Data Structures 3-6
3.1.3 SCSI Template Class Driver 3-8

3.2 CONNECTING TO A SCSI DEVICE 3-8

3.3 SETTING UP A SCSI COMMAND 3-9
3.3.1 Preparing a SCSI Command Descriptor Block 3-9
3.3.2 Setting Command Timeouts 3-10
3.3.3 Disabling Command Retry 3-11

3.4 PERFORMING A SCSI DATA TRANSFER 3-12
3.4.1 Setting the Data Transfer Mode 3-12
3.4.2 Enabling Disconnection and Reselection 3-13
3.4.3 Determining the Maximum Data Transfer Size 3-13
3.4.4 Initializing the SCDRP to Reflect Class Driver

Data Buffering Mechanisms 3-14
3.4.5 Making a Class Driver Data Buffer Accessible to the Port 3-15
3.4.6 Examining Port and SCSI Status 3-16
3.4.6.1 Examining Port Status • 3-16
3.4.6.2 Examining the SCSI Status Byte • 3-17
3.4.6.3 Testing for Incomplete Transfers • 3-18

3.5 OTHER SCSI CLASS DRIVER ISSUES 3-18
3.5.1 Preserving Local Context 3-18
3.5.2 Error Logging 3-19

3.6 FLOW OF A READ 1/0 REQUEST THROUGH THE SCSI CLASS
AND PORT DRIVERS 3-21

vi

3.7 COMPONENTS OF A SCSI CLASS DRIVER
3.7.1 Data Definitions
3.7.2 Driver Prologue Table
3.7.3 Driver Dispatch Table
3.7.4 Function Decision Table and FDT Routines
3.7.5 Controller Initialization Routine
3.7.6 Unit Initialization Routine
3.7.7 Start-1/0 Routine
3.7.8 Cancel-1/0 Routine
3.7.9 Register Dumping Routine

3.8 SERVICING ASYNCHRONOUS EVENTS FROM A SCSI DEVICE

3.9 CONFIGURING A SCSI THIRD-PARTY DEVICE
3.9.1 Disabling the Autoconfiguration of a SCSI Device

3.10 DEBUGGING A SCSI CLASS DRIVER
3.10.1 Selecting a SCSI Bus Analyzer

APPENDIX A SCSI DEVICE DRIVER DATA STRUCTURES

A.1 SCSI CLASS DRIVER REQUEST PACKET (SCDRP}

A.2 SCSI CONNECTION DESCRIPTOR TABLE (SCOT}

A.3 SCSI PORT DESCRIPTOR TABLE (SPOT}

APPENDIX B VMS MACROS INVOKED BY SCSI CLASS DRIVERS

B.1 STANDARD SCSI PORT INTERFACE MACROS

SPl$ABORT _COMMAND

SPl$ALLOCATE_ COMMAND _BUFFER

SPl$CONNECT

SPl$DEALLOCATE_ COMMAND _BUFFER

SPl$DISCONNECT

SP1$GET _CONNECTION_ CHAR

SPl$MAP _BUFFER

B-2

B-3

B-4

B-6

B-7

B-8

B-10

Contents

3-23
3-23
3-24
3-24
3-24
3-24
3-25
3-26
3-27
3-27

3-27

3-29
3-30

3-30
3-31

A-1

A-1

A-9

A-15

B-1

B-1

vii

Contents

SPl$RESET B-13

SPl$SEND_COMMAND B-14

SP1$SET _CONNECTION_ CHAR B-17

SPl$UNMAP _BUFFER B-19

B.2 SCSI PORT INTERFACE EXTENSION MACROS FOR
ASYNCHRONOUS EVENT NOTIFICATION

SPl$FINISH_COMMAND B-21

SPl$RECEIVE_BVTES B-22

SPl$RELEASE_BUS B-23

SPl$SEND_BVTES B-24

SPl$SENSE_PHASE B-25 ·

SPl$SET _PHASE B-26

APPENDIX C VMS TEMPLATE SCSI CLASS DRIVER

APPENDIX D INTERPRETING SCSI DRIVER ERROR LOG ENTRIES

D.1

D.2

D.3

APPENDIX E

E.1
E.1.1
E.1.2
E.1.3
E.1.4
E.1.5
E.1.6
E.1.7
E.1.8
E.1.9

viii

SCSI PORT DRIVER ERROR LOG ENTRIES

SCSI CLASS DRIVER ERROR LOG ENTRIES

RESOLVING SCSI CLASS DRIVER PROBLEMS USING ERROR
LOGS

VMS REQUIREMENTS AND RESTRICTIONS FOR
NON-DIGITAL-SUPPLIED SCSI DEVICES

VMS REQUIREMENTS
Conformance to Standards
Cabling
Connector Requirements
SCSI Bus Termination
Terminator Power
Dynamic Reconfiguration of Devices
External Boxes
Device Behavior Following Power-On
Device Behavior Following Bus Reset

B-20

C-1

D-1

D-1

D-5

D-6

E-1

E-1
E-1
E-2
E-2
E-2
E-2
E-2
E-3
E-3
E-3

E.1.10
E.1.11
E.1.12
E.1.13
E.1.14
E.1.15
E.1.16
E.1.17
E.1.18
E.1.19

GLOSSARY

INDEX

EXAMPLES
D-1

D-2

D-3

FIGURES
1-1

1-2

1-3

1-4

2-1

2-2

3-1

3-2

3-3

3-4

3-5

A-1

A-2

A-3

Data Transfer
Initiator/Target Operation
SCSI IDs and Logical Unit Numbers
Bus Phases
Disconnect and Reselection
Messages
Commands
INQUIRY Command
Status
Unsupported Features

SCSI Bus Phase Error Port Driver Error Log Entry

SCSI Bus Reset Port Driver Error Log Entry

SCSI Bus Reset Class Driver Error Log Entry

VMS SCSI Class/Port Interface

MicroVAX/VAXstation 3100 System Configuration

VAXstation 3520/3540 System Configuration

SCSI Bus Configuration

Generic SCSI Class Driver Flow

VMSD2 System Parameter

VMS SCSI Class/Port Interface

VMS SCSI Port Driver Configuration

VMS SCSI Class Driver Configuration

SCSI Driver Data Structures

VMSD2 System Parameter

SCSI Class Driver Request Packet (SCDRP)

SCSI Connection Descriptor Table (SCOT)

SCSI Port Descriptor Table (SPOT)

Contents

E-4
E-5
E-5
E-6
E-6
E-7
E-8
E-8
E-9
E-9

Glossary-1

0-7

0-8

0-9

1-2

1-5

1-6

1-7

2-3

2-8

3-2

3-3

3-4

3-7

3-30

A-1

A-10

A-15

ix

Contents

B-1

B-2

TABLES
3-1

3-2

3-3

3-4

3-5

A-1

A-2

A-3

D-1

D-2

x

SCSI Bus Phase Longword Returned to
SP1$SENSE_PHASE

SCSI Bus Phase Longword Supplied to SPl$SET _PHASE

SCSI Port Interface (SPI) Macros

Data Structures

SCSI Status Byte Format

Error Message Buffer Extension for SCSI Class Drivers

SPI Extension Macros Supporting Asynchronous Event
Notification

Contents of SCSI Class Driver Request Packet

Contents of SCSI Connection Descriptor Table

Contents of SCSI Port Descriptor Table

Key to Port Driver Error Log Entries

Key to Class Driver Error Log Entries

B-25

B-26

3-5

3-7

3-17

3-19

3-28

A-4

A-11

A-18

D-2

D-5

Preface

The American National Standard for information systems-Small
Computer System Interface-2 (SCSI-2) specification defines mechanical,
electrical and functional requirements for connecting small computers to
a wide variety of intelligent devices, such as rigid disks, flexible disks,
magnetic tape devices, printers, optical disks, and scanners. It specifies
standard electrical bus signals, timing, and protocol, as well as a standard
packet interface for sending commands to devices on the SCSI bus.

Certain VAXstation and MicroVAX systems employ the SCSI bus as an
l/O bus. For these systems, Digital offers SCSI-compliant disk and tape
drives, such as the RZ55 300MB read/write disk, the RRD40 600MB
compact disk, and the TZK50 95MB streaming tape drive. The VMS
operating system also allows non-Digital-supplied devices including disk
drives, tape drives, and scanners to be connected to the SCSI bus of such a
system. This manual describes the VMS software interfaces that must be
used to establish this connection and control the device's operation within
the VMS operating system.

SCSI has been widely adopted by manufacturers for a variety of peripheral
devices. However, because the ANSI SCSI standard is broad in scope, not
all devices that implement its specifications can fully interrelate on the
bus. Digital fully supports SCSI-compliant equipment sold or supplied
by Digital. Proper operation of products not sold or supplied by Digital
cannot be assured.

Digital intends to maintain the interfaces described in this manual,
although some unavoidable changes may occur as new features are added.
The use of internal executive interfaces other than those described in this
manual is discouraged.

Intended Audience
Programmers responsible for supporting non-Digital-supplied SCSI devices
on MicroVAXNAXstation systems require the information presented in
this manual. They should be familiar with the VMS operating system and
with the ANSI SCSI specification.

Programmers of a high-level application interface to SCSI devices on
MicroVAXNAXstation systems should understand how to use the Queue
I/O Request ($QIO) system service to initiate I/O operations and how to
manage device status return values. Programmers of a SCSI device driver
must be fluent in VAX MACRO and have some experience writing a VMS
device driver.

xi

Preface

Document Structure
Chapter 1 introduces some general SCSI concepts and defines those
terms that are used in discussions in subsequent chapters. It presents an
overview of MicroVAX/VAXstation system configurations that incorporate
the SCSI bus, summarizing and contrasting the mechanisms by which a
third-party SCSI device may be connected to these systems.

Chapter 2 describes the features and capabilities of the VMS generic SCSI
class driver. It discusses the means by which a programmer can support
a non-Digital-supplied SCSI device by writing an application that uses the
generic SCSI class driver interface.

Chapter 3 provides information on creating a third-party SCSI class
driver to support a non-Digital-supplied SCSI device. It describes the
components of the VMS SCSI class/port interface and follows the fl.ow of
an I/O operation through the class and port drivers. It introduces the SCSI
port interface (SPI) functions, SCSI-specific VMS data structures, and the
VMS template SCSI class driver-all tools that aid in the development of a
device-specific class driver. It describes the actions of the components
of such a driver, as well as the means by which the driver may be
configured and debugged. It concludes with a description of the optional
asynchronous event notification feature.

Appendix A contains a set of figures and tables that describe each data
structure referenced by SCSI class and port drivers.

Appendix B describes the macros that compose the SCSI port interface
and the extensions to the SCSI port interface for asynchronous event
notification.

Appendix C contains a listing of the VMS template SCSI class driver.

Appendix D provides a guide to reading SCSI class and port driver error
log entries.

Appendix E describes the requirements and restrictions that are necessary
for a non-Digital-supplied SCSI device to be connected to the SCSI bus of
a MicroVAX or VAXstation system.

The glossary at the end of this manual defines the vocabulary that
pertains to SCSI device drivers and their environment.

Associated Documents

xii

Before reading the VMS 'Version 5.3 Small Computer System Interface
(SCSI) Device Support Manual, you should have an understanding of the
material discussed in the following documents:

• VMS Device Support Manual, which describes the components of a
VMS device driver and the basic rules to which non-Digital-supplied
device drivers must adhere

• American National Standard for Information Systems-Small
Computer System Interface-2 (SCSI-2) specification (X3T9.2/86-109)

Conventions

Preface

The SCSI-2 specification is a draft of a proposed standard. Until it
is finally approved, copies of this document may be purchased from:
Global Engineering Documents, 2805 McGaw, Irvine, California 92714,
United States; or (800) 854-7179 or (714) 261-1455. Please refer to
document X3.131-198X.

• American National Standard for Information Systems-Small
Computer System Interface specification (X3.131-1986)

Copies of this document may be obtained from: American National
Standards Institute, Inc., 1430 Broadway, New York, New York, 10018.
This document is now known as the SCSI-1 standard.

Digital publishes two additional documents to help third-party vendors
prepare SCSI peripherals and peripheral software for use with Digital's
workstations and MicroVAX systems.

• The Small Computer System Interface: An Overview
(EK-SCSISOV-001) provides a general description of Digital's SCSI
third-party support program.

• The Small Computer System Interface: A Developer's Guide
(EK-SCSIS-SP-001) presents the details of Digital's implementation
of SCSI within its operating systems.

You may need to refer to material in the following manuals for help in
certain aspects of application and driver programming:

• VMS System Services Reference Manual for a description of the high­
level language interface to the 1/0 subsystem of the VMS operating
system

• VMS System Dump Analyzer Utility Manual for assistance in
investigating system failures

• VMS Delta I XDelta Utility Manual for information on debugging device
driver code

This manual describes code transfer operations in three ways:

1 The phrase "issues a system service call" implies the use of a CALL
instruction.

2 The phrase "calls a routine" implies the use of a JSB or BSB
instruction.

3 The phrase "transfers control to" implies the use of a BRB, BRW, or
JMP instruction.

Typographical conventions used in this book include the following:

• Generally, terms that are further explained in the glossary of this
manual first appear in italic print. For example:

Under the VMS operating system, a device driver is a set of routines
and tables that the system uses to process an 1/0 request for a
particular device type.

xiii

Preface

xiv

• Terms that serve as arguments to macros appear in boldface in the
text of the manual. For example:

If an at-sign character (@) precedes the oper argument, then the exp
argument describes the address of the data with which to initialize the
field.

• In examples, a symbol with a 1- to 6-character abbreviation indicates
that you press a key on the terminal. For instance:

driver-base-address,O;X IRetJ

• In examples, the symbol !Ctrllxl indicates that you must press the key
labeled Ctrl while you simultaneously press another key. For instance:

$ CREATE MYDRIVER.OPT
BASE=O
ICTRL/ZI

• A horizontal ellipsis indicates that additional parameters, values, or
information can be entered. For example:

$LINK /NOTRACE MYDRIVER1[,MYDRIVER2, ...],­
MYDRIVER.OPT/OPTIONS,­
SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH

• Brackets indicate that the enclosed item is optional. (Brackets
are not, however, optional in the syntax of a directory name in a
file specification or in the syntax of a substring specification in an
assignment statement.)

DSBINT [ipl] [,dst]

• In interactive examples in printed editions of this book, all output lines
or prompting characters that the system prints or displays appear in
black letters. All user-entered commands are shown in red letters. In
online editions of this book, all user-entered commands are shown in
boldface type.

For example:

>>> DEPOSIT R3 0
>>> @DMAXDT
SYSBOOT>
SYSBOOT> CONTINUE

• A vertical ellipsis means either that not all the data that the system
would display in response to the particular command is shown or that
not all the data a user would enter is shown. For example:

JSB @UCB$L_FPC(R5) ; Restore the driver process.

;Between these instructions, the interrupt service routine
;can make no assumptions about the contents of RO through R4.

POPR #AM<RO,Rl,R2,R3,R4,R5> Restore interrupt registers.

1 Introduction

The Small Computer System Interface (SCSI) provides a standard
means by which small computers and intelligent peripherals may be
interconnected.

The VMS operating system offers a native mode implementation of
the ANSI SCSI bus on its MicroVAX/VAXstation 3100 and VAXstation
3520/3540 system configurations. Although this implementation is
currently based on the SCSI-1 standard, the SCSI-1 standard is upwardly
compatible with SCSI-2, the SCSI-2 standard clarifying many of the
details specified in the SCSl-1 standard. Any non-Digital-supplied device
to be attached to the SCSI bus of a MicroVAX/VAXstation system must
implement all mandatory features of the SCSI-2 standard as described
in the specification. The device is permitted to implement any optional
features, as long as they are implemented according to the SCSl-2
standard. The device may implement vendor-unique features, as long as
they are implemented in areas clearly designated as such by the standard.

The ANSI SCSI specification is, in places, very broad and flexible. In some
cases, it is possible for a SCSI device to conform to the specification, but
be unsupported by the VMS operating system. For instance, it is possible
that a SCSI device may implement a maximum timeout value that is
incompatible with a value required by the VMS operating system. The
requirements and restrictions adopted by the VMS operating system in
support of SCSI devices appear in Appendix E. Consult this appendix prior
to attaching a non-Digital-supplied device to a VMS system.

1.1 VMS SCSI Class/Port Architecture
The VMS operating system employs a class/port driver architecture to
communicate with devices on the SCSI bus. The class/port design allows
the responsibilities for communication between the operating system and
the device to be cleanly divided between two separate driver modules (see
Figure 1-1).

The SCSI port driver transmits and receives SCSI commands and data. It
knows the details of transmitting data from the local processor's SCSI port
hardware across the SCSI bus. Although it understands SCSI bus phases,
protocol, and timing, it has no knowledge of which SCSI commands the
device supports, what status messages it returns, or the format of the
packets in which this information is delivered. Strictly speaking, the port
driver is a communications path. When directed by a SCSI class driver,
the port driver forwards commands and data from the class driver onto
the SCSI bus to the device. On any given MicroVAX/VAXstation system,
a single SCSI port driver handles bus-level communications for all SCSI
class drivers that may exist on the system.

1-1

Introduction
1.1 VMS SCSI Class/Port Architecture

Figure 1-1 VMS SCSI Class/Port Interface

$010

•
Class

Device-Level Operations
Driver

• Handles SCSI commands
• Handles SCSI status

---------------- ---------------·
Bus-Level Operations ..
• Handles SCSI phases and timing r SCSI Port Interface l
• Handles SCSI messages
• Handles data movement •

1-2

Port
Driver

~

Port Hardware

ZK-1366A-GE

The SCSI class driver acts as an interface between the user and the SCSI
port, translating an I/O function as specified in a user's $QIO request
to a SCSI command targeted to a device on the SCSI bus. Although the
class driver knows about SCSI command descriptor buffers, status codes,
and data, it has no knowledge of underlying bus protocols or hardware,
command transmission, bus phases, timing, or messages. A single class
driver can run on any given MicroVAX/VAXstation system, in conjunction
with the SCSI port driver that supports that system. The VMS operating
system supplies a standard SCSI disk class driver and a standard SCSI
tape class driver to support its disk and tape SCSI devices.

Introduction
1.2 VMS SCSI Third-Party Device Support Mechanisms

1.2 VMS SCSI Third-Party Device Support Mechanisms
The VMS operating system provides the following three mechanisms
to allow a non-Digital-supplied SCSI device to be attached to a
MicroVAX/VAXstation system. The implementor of support for a non­
Digital-supplied SCSI device can select the most appropriate method,
based on the capabilities of the device, the needs of its end users, and
available programming resources.

• A SCSI disk or tape drive may function properly using the standard
VMS SCSI disk or tape class driver and the VMS SCSI port driver,
given the restrictions and cautions presented in Section 1.3.1.

• An application program can send commands to, receive status from,
and exchange data with a device on the SCSI bus by using the VMS
generic SCSI class driver. The VMS operating system defines a special
Queue I/O Request ($QIO) system service interface that allows an
application to pass SCSI command packets to the device through the
generic SCSI class driver and the VMS SCSI port driver.

• A third-party SCSI class driver, in conjunction with the VMS SCSI
port driver, can supply the level of support most closely tailored to the
capabilities of the device. By writing a SCSI class driver, a system
programmer can implement device-specific error handling and a
simple, robust $QIO interface.

Because the VMS operating system provides a special set of macros
that initialize the SCSI port and transfer commands and data to a
SCSI device, the programmer of a SCSI class driver can focus on
coding details related to device capabilities. The VMS operating
system further facilitates the writing of a SCSI class driver by
including the online sources of a template SCSI class driver.

When selecting between writing an application program that uses the
VMS generic SCSI class driver and writing a third-party SCSI class driver,
the implementor of SCSI device support should consider the following
factors:

• Because the VMS generic SCSI class driver provides access to the
SCSI device from application code, the programmer of an application
that uses it must be familiar with a high-level language and have some
I/O programming skill. Because VMS device drivers cannot be written
in a high-level language, the programmer of a third-party SCSI class
driver must have a thorough understanding of VAX MACRO and VMS
driver internals.

• The VMS generic SCSI class driver uses a fixed $QIO interface to the
SCSI port, requiring an application to pass a SCSI command descriptor
block to the device by means of a single I/O function, IO$_DIAGNOSE.
By contrast, a SCSI class driver can define a unique $QIO interface
that conceals the details of SCSI command format from application
programs.

1-3

Introduction
1.2 VMS SCSI Third-Party Device Support Mechanisms

• A programmer typically can develop an interface to a SCSI device more
quickly by using the VMS generic SCSI class driver than by developing
a third-party SCSI class driver. Because device drivers are tightly
integrated into the VMS operating system and run in a privileged
mode at high IPL, coding errors can result in system crashes. Because
the VMS generic SCSI class driver is an established system interface,
a programmer using it can spend less time integrating the code into
the operating system and more time working on the interface.

• A third-party SCSI class driver can write entries to an error log buffer,
thus allowing the programmer to use the VMS Error Log Utility as a
debugging aid.

• A third-party SCSI class driver can implement error recovery
mechanisms that are closely associated with the abilities of the device.
It can service a device error within the context of the single $QIO
request that initiated the transaction to the device.

Because the generic SCSI class driver has no knowledge of specific
device errors, an application using that driver must manage device­
specific errors itself. 'lb service an error returned on a single
transaction, the application must issue additional $QIO requests
and initiate further transactions to the device.

• The SCSI asynchronous event notification (AEN) protocol is available
only to third-party SCSI class drivers (see Section 3.8).

For information on how to program to the VMS generic SCSI class driver's
$QIO interface, see Chapter 2. Chapter 3 describes the means by which
you can write a third-party SCSI class driver.

1.3 Hardware Considerations

1-4

MicroVAX/VAXstation 3100 systems are uniprocessing systems, providing
access to one or two SCSI buses, each under the control of an NCR
5380 SCSI controller chip that supports asynchronous data transfers.
MicroVAX/VAXstation 3100 systems support the SCSI asynchronous event
notification feature. Figure 1-2 shows a representative configuration of a
MicroVAX/VAXstation 3100 system.

Introduction
1.3 Hardware Considerations

Figure 1-2 MicroVAX/VAXstation 3100 System Configuration

Main Memory up to 32 Megabytes

128KB
OMA
Buffer

SCSI Port PKAO: SCSI Port PKBO:
(Optional)

SCSI Bus A SCSI Bus B

SCSI
Disk

(Target)

SCSI
Tape

(Target)

Other
SCSI

Logical
Unit

(Target)

Other
SCSI

Logical
Unit

(Target)

SCSI
Tape

(Target)

SCSI
Disk

(Target)

ZK-1367 A-GE

The VAXstation 3520/3540 systems are multiprocessing systems, providing
access to a single SCSI bus by means of Digital's Sii SCSI controller chip.
The Sii chip supports both asynchronous and synchronous data transfers.
VAXstation 3520/3540 systems do not support the SCSI asynchronous
event notification feature. Figure 1-3 shows a representative configuration
of the VAXstation 3520/3540 system.

1-5

Introduction
1.3 Hardware Considerations

1-6

Figure 1-3 VAXstation 3520/3540 System Configuration

Main Memory up to 64 Megabytes

128KB
OMA
Buffer

SCSI
Disk Device

(Target)

Other SCSI
SCSI Device Disk Device

Logical
Unit

(Target)

(Target)

CPU

SCSI
Tape Device

(Target)

ZK-1368A-GE

Each SCSI bus in the system is identified by a SCSI port ID (A or B) (see
Figure 1-4). The SCSI port ID uniquely identifies a SCSI port: that is,
the SCSI controller channel that controls communications to and from a
specific SCSI bus on the system.

Introduction
1.3 Hardware Considerations

Figure 1-4 SCSI Bus Configuration

DKA100
RZ23

(Target)

MKA500
TZK50

(Target)

DKA700
RRD40

Host CPU
SCI ID 6

(Target) (Initiator)

SCSI Bus

SKA200
SCSI Device

SKA201
Logical

Unit
TOSKA203

(Target)

DKAOOO
RZ22

(Target)

DKA300
RZ55

(Target)

MKA400
TZ30

(Target)

ZK-1369A-G E

Each SCSI bus supports seven devices and a processor, at SCSI IDs
0 through 7. As defined by the ANSI SCSI specification, a SCSI ID
refers to a line on the SCSI data bus (DB) on which the device uniquely
asserts itself. The VMS operating system uses the term SCSI device ID
to represent this value. Typically, a MicroVAX/VAXstation 3100 system
processor is assigned device ID 6 and asserts itself at DB(6); a VAXstation
3520/3540 system processor is assigned device ID 7 and asserts itself
at DB(7).

According to the ANSI SCSI specification, a logical unit is a physical or
virtual device accessible by means of a SCSI device. For instance, if a
peripheral controller resides on the SCSI bus, it, in turn, can control up
to eight devices. A logical unit number (LUN), an integer from 0 to 7,
uniquely identifies the device with respect to the controller's SCSI
device ID.

Transactions on the SCSI bus are between an initiator and a target. The
initiator, usually the host processor, requests that another SCSI device,
the target, perform a certain operation. In situations in which the host
processor requires notification of some unexpected event on the SCSI bus,
the ANSI specification defines the asynchronous event notification (AEN)

1-7

1.3.1

Introduction
1.3 Hardware Considerations

protocol. AEN allows a SCSI device that is usually a target to inform the
processor that an event has occurred asynchronously with respect to the
processor's current stream of execution. (Certain MicroVAX/VAXstation
implementations make the AEN protocol available to non-Digital-supplied
SCSI class drivers, as described in Section 3.8.)

As Figures 1-2 and 1-3 illustrate, the MicroVAX/VAXstation 3100 and
VAXstation 3520/3540 port hardware cannot directly access data in main
memory. In order to access command, status, and data buffers involved in
an operation on the SCSI bus, the MicroVAX/VAXstation port hardware
must refer to its own direct-memory-access (DMA) buffer. Whenever the
port hardware requires access to buffered information, the standard VMS
port driver dynamically allocates a segment of the port DMA buffer and
maps to it the pages of the buffer in main memory in a system-dependent
manner.

Connecting a Non-Digital-Supplied SCSI Disk or Tape Drive to a VMS
SCSI Port

1-8

The System Generation Utility (SYSGEN) automatically loads and
autoconfigures the SCSI port driver at system initialization. As part of
autoconfiguration, SYSGEN polls each device on each SCSI bus. If the
device identifies itself as a direct-access device, direct-access CDROM
device, or flexible disk device, SYSGEN automatically loads the VMS disk
class driver (DKDRIVER); if the device identifies itself as a sequential­
access device, SYSGEN automatically loads the VMS tape class driver
(MKDRIVER). If the autoconfiguration facility does not recognize the type
of the SCSI device, it loads no driver.

The design of the standard VMS disk class driver allows it to control
most disk drives that conform to the ANSI SCSI-2 specification. Because
the ANSI SCSI specification is not as well defined for tapes as for disks,
the standard VMS tape class driver may or may not work with a specific
non-Digital-supplied tape drive.

The ANSI SCSI specification allows some flexibility in certain
implementation details and omits others. As a result, implementations
of the SCSI standard may differ from manufacturer to manufacturer and
from device to device. (Appendix E lists Digital's requirements for SCSI
device hardware.) Although the VMS operating system allows the use of
non-Digital-supplied devices with the standard VMS disk and tape class
drivers, the fact that a specific device is less likely to operate correctly in
this manner does not imply VMS support of the device. Digital cannot
guarantee that a non-Digital-supplied device that does currently run with
a VMS class driver will continue to work with subsequent releases of the
VMS operating system.

To ensure that non-Digital-supplied devices work properly in a VMS
environment, Digital encourages the use of an established and supported
VMS interface, such as the generic SCSI class driver (see Chapter 2) or a
third-party SCSI class driver (see Chapter 3).

2 Using the VMS Generic SCSI Class Driver

The VMS generic SCSI class driver provides a mechanism by which an
application program can control a non-Digital-supplied SCSI device that
cannot be controlled by the standard VMS disk and tape class drivers.
By means of a Queue I/O Request ($QIO) system service call, a program
can pass to the generic SCSI class driver a preformatted SCSI command
descriptor block. The generic SCSI class driver, in conjunction with the
standard VMS SCSI port driver, delivers this SCSI command to the device,
manages any transfer of data from the device to a user buffer, and returns
SCSI status to the application.

2.1 Overview of the VMS Generic SCSI Class Driver
In effect, an application using the generic SCSI class driver implements
details of device control usually managed within device driver code.
The programmer of such an application must understand which SCSI
commands the device supports and which SCSI status values the device
returns. The programmer must also be aware of the device's timeout
requirements, data transfer capabilities, and command retry behavior.

The application program sets up the characteristics of the connection the
generic SCSI class driver uses when delivering commands to, exchanging
data with, and receiving status from the device. The program associates
each I/O operation the device can perform with a specific SCSI command.
When it receives a request for a particular operation, the application
program creates the specific command descriptor block that, when passed
to the device, causes it to perform that operation.

The application initiates all transactions to the SCSI device by means of
a $QIO call to the generic SCSI class driver, supplying the address and
length of the SCSI command descriptor block, plus the parameters of any
data transfer operation, in the call. When the transaction completes and
the application program regains control, it interprets the returned status
value, processes any returned data, and services any failure. To avoid
conflicts with other applications accessing the same device, an application
may need to explicitly allocate the device.

Because the generic SCSI class driver has no knowledge of specific device
errors, it neither logs device errors nor implements error recovery. An
application using the driver must manage device-specific errors itself. To
service an error returned on a single transaction, the application must
issue additional $QIO requests and initiate further transactions to the
device. If more precise or more efficient error recovery is required for a
device, the developer should consider writing a third-party SCSI class
driver, as described in Section 3.1. A third-party SCSI class driver can
log errors associated with device activity by using the method described in
Section 3.5.2.

2-1

Using the VMS Generic SCSI Class Driver
2.1 Overview of the VMS Generic SCSI Class Driver

A third-party class driver is the only means of supporting devices that
themselves generate transactions on the SCSI bus, such as notification
of a device selection or deselection event to the host processor. See the
description of asynchronous event notification (AEN) in Section 3.8.

Figure 2-1 illustrates the fl.ow of a $QIO request through the generic SCSI
class driver and the port driver.

When direct access to a target device on the SCSI bus is required,
the generic SCSI class driver is loaded for that device, as described
in Section 2.4. An application program using the generic class driver
performs the following tasks to issue a command to the target device:

1 Calls the Assign 1/0 Channel ($ASSIGN) system service to assign a
channel to the generic SCSI class driver, and allocate the device for
the application's exclusive use

2 Formats a SCSI command descriptor block

3 Formats any data to be transferred to the device

4 Calls the Queue 110 Request ($QIO) system service to request the
generic SCSI class driver to send the SCSI command descriptor block
to the port driver

5 Upon completion of the 1/0 request, interprets the SCSI status byte
and any data returned from the target device

These operations are described in subsequent sections.

Note: Because incorrect or malicious use of the generic SCSI class
driver can result in SCSI bus hangs and lead to SCSI bus resets,
DIAGNOSE and PHY_IO privileges are required to access the
driver. An application program can be designed in such a way as
to filter user 1/0 requests, thus allowing nonprivileged users access
to some device functions.

2.2 Accessing the VMS Generic SCSI Class Driver

2-2

Interactive commands and procedure calls can use the VMS generic SCSI
class driver to access devices on the SCSI bus. However, it is unlikely that
a user application would access a device on the SCSI bus by directly using
the $QIO interface of the generic SCSI class driver. First of all, any user
process directly using the $QIO interface would require DIAGNOSE and
PHY_IO privileges. Under normal circumstances, it would be a system
security risk to grant DIAGNOSE and PHY_IO privileges to many system
users. Secondly, it would be cumbersome for end users of the device to
identify, format, and issue SCSI commands to the device. Rather, it would
be more efficient to develop an interface that hides these details.

A utility program, installed with the DIAGNOSE and PHY_IO privileges,
can provide nonprivileged users with a command line interface to a SCSI
device. The utility translates interactive commands provided by the user
into the appropriate set of SCSI commands and sends them to the device

Using the VMS Generic SCSI Class Driver
2.2 Accessing the VMS Generic SCSI Class Driver

Figure 2-1 Generic SCSI Class Driver Flow

Class

Port

User
Interface

Application
Program

$010

GKDRIVER

SCSI Port Interface

Port
Driver

Port Hardware

ZK-1370A-GE

2-3

Using the VMS Generic SCSI Class Driver
2.2 Accessing the VMS Generic SCSI Class Driver

using the $QIO interface provided by the generic SCSI class driver. The
utility checks user commands to ensure that only valid SCSI commands
are sent to the device. See the Guide to VMS Programming Resources and
the VMS Install Utility Manual for information about installing images
with privileges.

A privileged shareable image can provide system applications with a
procedure interface to a SCSI device. The image contains a set of
procedures that translate operations specified by the caller into the
appropriate set of SCSI commands. The SCSI commands are sent to the
device through the $QIO interface of the generic SCSI class driver. The
privileged shareable image checks its caller's parameters to ensure that
only valid SCSI commands are sent to the device. See the Introduction to
VMS System Services for information about creating shareable images.

2.3 SCSI Port Features Under Application Control

2.3.1

The standard VMS SCSI port driver provides mechanisms by which the
generic SCSI class driver can control the nature of data transfers and
command transmission across the SCSI bus. An application uses the $QIO
interface to tailor these mechanisms to the specific device it supports.
Among the features under application program control are the following:

• Data transfer mode

• Disconnection and reselection

• Command retry

• Command timeouts

The following sections discuss these features.

Setting the Data Transfer Mode

2-4

The SCSI bus defines two data transfer modes, asynchronous and
synchronous. In asynchronous mode, for each REQ from a target there is
an ACK from the host prior to the next REQ from the target. Synchronous
mode allows higher data transfer rates by allowing a pipelined data
transfer mechanism where, for short bursts (defined by the REQ-ACK
offset), the target can pipeline data to an initiator without waiting for the
initiator to respond.

Whether or not a port or a target device allows synchronous data
transfers, it is harmless for the program to set up the connection to
use such transfers. If synchronous mode is not supported, the port driver
automatically uses asynchronous mode.

To use synchronous mode in a transfer, a programmer using the generic
SCSI class driver must ensure that both the SCSI port and the SCSI
device involved in the transfer support synchronous mode. The SCSI
port of the VAXstation 3520/3540 system allows both synchronous and
asynchronous transfers, whereas that of MicroVAX/VAXstation 3100
systems supports only asynchronous transfers.

2.3.2

2.3.3

Using the VMS Generic SCSI Class Driver
2.3 SCSI Port Features Under Application Control

To set up a connection to use synchronous data transfer mode, a program
using the generic SCSI class driver sets the syn bit in the flags field of
the generic SCSI descriptor, the address of which is passed to the driver in
the pl argument to the $QIO request.

Enabling Disconnection and Reselection
The ANSI SCSI specification defines a disconnection facility that allows
a target device to yield ownership of the SCSI bus while seeking or
performing other time-consuming operations. When a target disconnects
from the SCSI bus, it sends a sequence of messages to the initiator that
cause it to save the state of the I/O transfer in progress. Once this is done,
the target releases the SCSI bus. When the target is ready to complete
the operation, it reselects the initiator and sends to it another sequence
of messages. This sequence uniquely identifies the target and allows the
initiator to restore the context of the suspended 1/0 operation.

Whether disconnection should be enabled or disabled on a given connection
depends on the nature and capabilities of the device involved in the
transfer, as well as on the configuration of the system. In configurations
where there is a slow device present on the SCSI bus, enabling
disconnection on connections that transfer data to the device can increase
bus throughput. By contrast, systems where most of the 1/0 activity
is directed towards a single device for long intervals can benefit from
disabling disconnection. By disabling disconnection when there is no
contention on the SCSI bus, port drivers can increase throughput and
decrease the processor overhead for each I/O request.

By default, the VMS class/port interface disables the disconnect facility on
a connection. To enable disconnection, an application program using the
generic SCSI class driver sets the dis bit of the flags field of the generic
SCSI descriptor, the address of which is passed to the driver in the pl
argument to the $QIO call.

Disabling Command Retry
The SCSI port driver implements a command retry mechanism, which is
enabled on a given connection by default.

When the command retry mechanism is enabled, the port driver retries
up to three times any I/O operation that fails during the COMMAND,
Message, Data, or STATUS phases. For instance, if the port driver detects
a parity error during the Data phase, it aborts the I/O operation, logs
an error, and retries the 1/0 operation. It repeats this sequence twice
more, if necessary. If the 1/0 operation completes successfully during a
retry attempt, the port driver returns success status to the class driver.
However, if all retry attempts fail, the port driver returns failure status to
the class driver.

An application may need to disable the command retry mechanism under
certain circumstances. For example, repeated execution of a command on
a sequential device may produce different results than are intended by a

2-5

2.3.4

Using the VMS Generic SCSI Class Driver
2.3 SCSI Port Features Under Application Control

single command request. A tape drive could perform a partial write and
then repeat the write without resetting the tape position.

An application program using the generic SCSI class driver can disable
the command retry mechanism by setting the dpr bit of the :flags field of
the generic SCSI descriptor, the address of which is passed to the driver in
the pl argument to the $QIO request.

Setting Command Timeouts
The SCSI port driver implements several timeout mechanisms, some
governed by the ANSI SCSI specification and others required by the VMS
operating system. The timeouts required by the VMS operating system
include the following:

Timeout Description

Phase change timeout Maximum number of seconds for a target to change the
SCSI bus phase or complete a data transfer. (This value is
also known as the OMA timeout.)

Disconnect timeout

Upon sending the last command byte, the port driver waits
this many seconds for the target to change the bus phase
lines and assert REQ (indicating a new phase). Or, if the
target enters the DATA IN or DATA OUT phase, the transfer
must be completed within this interval.

Maximum number of seconds, from the time the initiator
receives the DISCONNECT message, for a target to
reselect the initiator so that it can proceed with the
disconnected 1/0 transfer.

An application program using the generic SCSI class driver is responsible
for maintaining both of these timeout values. It has the following options:

• Accepting a connection's default value. The default value for both
timeouts is 4 seconds.

• Altering the connection's default value. To modify the default values,
the class driver specifies nonzero values for the phase change
timeout and disconnect timeout fields of the generic SCSI
descriptor, the address of which is passed to the driver in the pl
argument to the $QIO system service call.

2.4 Configuring a Device Using the Generic Class Driver

2-6

The System Generation Utility (SYSGEN) loads the generic SCSI class
driver into system virtual memory, creates additional data structures for
the device unit, and calls the driver's controller initialization routine
and unit initialization routine. SYSGEN automatically loads and
autoconfigures the SCSI port driver at system initialization. As part of
autoconfiguration, SYSGEN polls each device on each SCSI bus. If the
device identifies itself as a direct-access device, direct-access CDROM
device, or flexible disk device, SYSGEN automatically loads the VMS disk

2.4.1

Using the VMS Generic SCSI Class Driver
2.4 Configuring a Device Using the Generic Class Driver

class driver (DKDRIVER); if the device identifies itself as a sequential­
access device, SYSGEN automatically loads the VMS tape class driver
(MKDRIVER). If the autocon:figuration facility does not recognize the type
of the SCSI device, it loads no driver.

Consequently, if a non-Digital-supplied SCSI device requires that the
generic class driver be loaded, it must be configured by an explicit
SYSGEN CONNECT command, as follows:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT GKpdOu /NOADAPTER

In this command, GK is the device mnemonic for the generic SCSI class
driver (GKDRIVER); p represents the SCSI port ID (for instance, the
controller ID A or B); d represents the SCSI device ID (a digit from 0 to 7);
0 signifies the digit zero; and u represents the SCSI logical unit number (a
digit from 0 to 7).

Multiple devices residing on any SCSI bus in the system can share
GKDRIVER as a class driver, as long as a SYSGEN CONNECT command
is issued for each target device that requires the driver.

Because just one connection can exist through the SCSI port driver to each
target, the generic class driver cannot be used for a target if a different
SCSI class driver is already connected to that target. For example, if the
SCSI disk class driver has a connection to device ID 2 on the SCSI bus
identified by SCSI port IDB (DKB200), the generic class driver cannot be
used to communicate with this disk. An attempt to connect GKDRIVER
for this target results in GKB200 being placed off line.

Disabling the Autoconfiguration of a SCSI Device
Note that, in special cases, you may need to prevent SYSGEN's
autocon:figuration facility from loading the VMS disk or tape class driver
for a device with a specific port ID and device ID. This would be the case
if a non-Digital-supplied SCSI device should identify itself as either a
random-access or sequential-access device and were to be controlled by the
generic SCSI class driver.

To disable the loading of a VMS disk or tape driver for any given device
ID, VMS Version 5.3 temporarily defines the special SYSGEN parameter
VMSD2.

The VMSD2 system parameter, as shown in Figure 2-2, stores a bit mask
of 32 bits in which the low-order byte corresponds to the first SCSI bus
(PKAO), the second byte corresponds to the second SCSI bus (PKBO), and
so on. For each SCSI bus, setting the low-order bit inhibits automatic
configuration of the device with SCSI device ID O; setting the second low­
order bit inhibits automatic configuration of the device with SCSI device
ID 1, and so forth. For instance, the value 00002000rn would prevent the
device with SCSI ID 5 on the bus identified by SCSI port ID B from being
configured. By default, all of the bits in the mask are cleared, allowing aJl
devices to be configured.

2-7

Using the VMS Generic SCSI Class Driver
2.4 Configuring a Device Using the Generic Class Driver

Figure 2-2 VMSD2 System Parameter

D c B A + SCSI Port ID

ZK-1371 A-GE

Note: A future release of VMS will provide a different mechanism for
preventing the configuration of a VMS SCSI class driver for a
given device ID. At that time, the VMSD2 system parameter will
revert to its status of a special parameter reserved to Digital.

2.5 Assigning a Channel to GKDRIVER
An application program assigns a channel to the generic SCSI class driver
using the standard call to the $ASSIGN system service, as described in the
VMS System Services Reference Manual. The application program specifies
a device name and a word to receive the channel number.

2.6 Issuing a $QIO Request to the Generic Class Driver

2-8

The format of the Queue 1/0 Request ($QIO) system service that initiates
a request to the SCSI generic class driver is as follows. This explanation
concentrates on the special elements of a $QIO request to the SCSI generic
class driver. For a detailed description of the $QIO system service, see the
VMS System Services Reference Manual.

VAX MACRO Format

$010 [efn] ,chan ,func ,iosb ,[astadr] ,[astprm) -
,p1 ,p2 [,p3] [,p4] [,p5] [,p6)

High-Level Language Format

SYS$QIO ([efn] ,chan ,func ,iosb ,[astadr] ,[astprm]
,p1 ,p2 [,p3) [,p4] [,p5] [,p6])

Arguments

ch an
1/0 channel assigned to the device to which the request is directed. The
chan argument is a word value containing the number of the channel, as
returned by the Assign 1/0 Channel ($ASSIGN) system service.

tune
Longword value containing the IO$_DIAGNOSE function code. Only the
IO$_DIAGNOSE function code is implemented in the generic SCSI class
driver.

Using the VMS Generic SCSI Class Driver
2.6 Issuing a $010 Request to the Generic Class Driver

iosb
I/O status block. The iosb argument is required in a request to the generic
SCSI class driver; it has the following format:

31

31

Transfer count
(low-order)

2423

SCSISTS

16 15

1615

VMS status code

Transfer count
(high-order)

0

IOSB 1

0

10882

ZK-1372A-GE

The VMS status code provides the final status indicating the success or
failure of the SCSI command. The SCSI status byte contains the status
value returned from the target device, as defined in the ANSI SCSI
specification. The transfer count field specifies the actual number of bytes
transferred during the SCSI bus DATA IN or DATA OUT phase.

[efn]
[astadr]
[astprm]
These arguments apply to $QIO system service completion. For an
explanation of these arguments, see the VMS System Services Reference
Manual.

2-9

Using the VMS Generic SCSI Class Driver
2.6 Issuing a $QIO Request to the Generic Class Driver

2-10

p1
Address of a generic SCSI descriptor of the following format:

31

opcode

flags

SCSI command address

SCSI command length

SCSI data address

SCSI data length

SCSI pad length

phase change timeout

disconnect timeout

reserved

0

0

4

8

12

16

20

24

28

32

36

56

ZK-1373A-GE

p2
Length of the generic SCSI descriptor.

Descriptor Fields

opcode
Currently, the only supported opcode is 1, indicating a pass-through
function. Other opcode values are reserved for future expansion.

flags
Bit map having the following format:

31 4 3 2 0

reserved

ZK-1374A-GE

Using the VMS Generic SCSI Class Driver
2.6 Issuing a $QIO Request to the Generic Class Driver

Bits in the flags bit map are defined as follows:

Field Definition

dir Direction of transfer.

If this bit is set, the target is expected at some time to enter the DATA IN phase
to send data to the host. To facilitate this, the port driver maps the specified
data buffer for write access.

If this bit is clear, the target is expected at some time to enter the DATA OUT
phase to receive data from the host. To facilitate this, the port driver maps the
specified data buffer for read access.

The generic SCSI class driver ignores the dir flag if either the SCSI data
address or SCSI data length field of the generic SCSI descriptor is zero.

dis Enable disconnection.

If this bit is set, the target device is allowed to disconnect during the execution
of the command.

If this bit is clear, the target cannot disconnect during the execution of the
command.

Note that targets that hold on to the bus for long periods of time without
disconnecting can adversely affect system performance. See Section 2.3.2 for
additional information.

syn Enable synchronous mode.

If this bit is set, the port driver uses synchronous mode for data transfers, if
both the host and target allow this mode of operation.

If this bit is clear, or synchronous mode is not supported by either the host or
target, the port driver uses asynchronous mode for data transfers.

See Section 2.3.1 for additional information.

dpr Disable port retry.

If this bit is clear, the port driver retries, up to three times, any command that
fails with a timeout, bus parity, or invalid phase transition error.

If this bit is set, the port driver does not retry commands for which it detects
failure.

See Section 2.3.3 for additional information.

SCSI command address
Address of a buffer containing a SCSI command.

SCSI command length
Length of the SCSI command. The maximum length of the SCSI command
is 128 bytes.

SCSI data address
Address of a data buffer associated with the SCSI command.

If the dir bit is set in the flags field, data is written into this buffer during
the execution of the command. Otherwise, data is read from this buffer
and sent to the target device.

If the SCSI command requires no data to be transferred, then the SCSI
data address field should be clear.

2-11

Using the VMS Generic SCSI Class Driver
2.6 Issuing a $QIO Request to the Generic Class Driver

SCSI data length
Length in bytes of the data buffer pointed to by the SCSI data address
field. For the MicroVAX/VAXstation 3100 and VAXstation 3520/3540
systems, the maximum data buffer size is 65,535 bytes.

If the SCSI command requires no data to be transferred, then this field
should be clear.

SCSI pad length
This field is used to accommodate SCSI device classes that require that the
transfer length be specified in terms of a larger data unit than the count
of bytes expressed in the SCSI data length field. If the total amount of
data requested in the SCSI command does not match that specified in the
SCSI data length field, this field must account for the difference.

For example, suppose an application program is using the generic class
driver to read the first 2 bytes of a disk block. The length field in the SCSI
READ command contains 1 (indicating one logical block, or 512 bytes),
while the SCSI data length field contains a 2. The SCSI pad length
field must contain the difference, 510 bytes.

For most transfers, this field should contain 0. Failure to initialize the
SCSI pad length field properly causes port driver timeouts and SCSI bus
resets.

phase change timeout
Maximum number of seconds for a target to change the SCSI bus phase
or complete a data transfer. A value of 0 causes the SCSI port driver's
default phase change timeout value of 4 seconds to be used.

See Section 2.3.4 for additional information.

disconnect timeout
Maximum number of seconds for a target to reselect the initiator to
proceed with a disconnected 1/0 transfer. A value of 0 causes the SCSI
port driver's default disconnect timeout value of 4 seconds to be used.

See Section 2.3.4 for additional information.

2.7 Obtaining Device Information

2-12

A call to the Get Device/Volume Information ($GETDVI) system service
returns the following information for any device serviced by the generic
SCSI class driver. (See the description of the $GETDVI system service in
VMS System Services Reference Manual.)

$GETDVI returns the following device characteristics when you specify
the item code DVI$_DEVCHAR:

DEV$M_AVL Available device

DEV$M_IDV

DEV$M_ODV

DEV$M_SHR

DEV$M_RND

Input device

Output device

Shareable device

Random-access device

DVI$DEVCLASS returns the device class, which is DC$_MISC;
DVI$DEVTYPE returns the device type, which is DT$_GENERIC_SCSI.

Using the VMS Generic SCSI Class Driver
2.8 Programming Example

2.8 Programming Example
The following application program uses the generic SCSI class driver to
send a SCSI INQUIRY command to a device.

I*
GKTEST.C

This program uses the SCSI generic class driver to send an inquiry command
to a device on the SCSI bus.

*I

#include ctype

/* Define the descriptor used to pass the SCSI information to GKDRIVER */

#define OPCODE 0
#define FLAGS 1
#define COMMAND ADDRESS 2
#define COMMAND LENGTH 3
#define DATA ADDRESS 4
#define DATA LENGTH 5
#define PAD LENGTH 6
#define PHASE TIMEOUT 7
#define DISCONNECT TIMEOUT 8

#define FLAGS READ 1
#define FLAGS DISCONNECT 2

#define GK EFN 1

#define SCSI STATUS MASK OX3E

#define INQUIRY_OPCODE Oxl2
#define INQUIRY_DATA_LENGTH Ox30

global value

short

int

char

main ()

IO$_DIAGNOSE;

gk_chan,
transfer_ length;

i,
status,
gk_device_desc[2],
gk_iosb[2],
gk_desc[15];

scsi status,
inqulry_command[6] = {INQUIRY_OPCODE, 0, 0, 0, INQUIRY_DATA_LENGTH, 0},
inquiry_data[INQUIRY_DATA_LENGTH],
gk_device[] = {"GKAO"};

/* Assign a channel to GKAO */

gk_device_desc[OJ = 4;
gk_device_desc[l] = &gk_device[O];
status= sys$assign (&gk device desc[O], &gk_chan, 0, 0);
if (!(status & 1)) sys$exit (status);

/* Set up the descriptor with the SCSI information to be sent to the target */

2-13

Using the VMS Generic SCSI Class Driver
2.8 Programming Example

gk_desc[OPCODE) = 1;
gk_desc[FLAGS) = FLAGS_READ + FLAGS_DISCONNECT;
gk_desc[COMMAND_ADDRESS) = &inquiry_comrnand[O);
gk_desc[COMMAND_LENGTH) = 6;
gk_desc[DATA_ADDRESS) = &inquiry_data[O);
gk_desc[DATA_LENGTH) = INQUIRY_DATA_LENGTH;
gk_desc[PAD_LENGTH) = O;
gk_desc[PHASE_TIMEOUT) = 0;
gk_desc[DISCONNECT_TIMEOUT) = 0;
for {i=9; i<l5; i++) gk_desc[i) = 0; /* Clear reserved fields */

/* Issue the QIO to send the inquiry comrnand and receive the inquiry data */

status sys$qiow (GK_EFN, gk_chan, IO$_DIAGNOSE, gk_iosb, 0, O,
&gk_desc [OJ, 15*4, 0, 0, 0, 0);

/* Check the various returned status values */

if (!(status & 1)) sys$exit (status);
if (! (gk iosb[OJ & 1)) sys$exit (gk iosb[O) & Oxffff);
scsi status = (gk iosb[l) >> 24) & SCSI STATUS MASK;
if (scsi_status) { - -

printf ("Bad SCSI status returned: %02.2x\n", scsi_status);
sys$exit (l);

I* The command succeeded. Display the SCSI data returned from the target */

transfer length = gk iosb[OJ >> 16;
printf (11SCSI inquiry data returned: ");
for {i=O; i<transfer length; i++) {

if (isprint (inquiry data[i)))
printf ("%c"-;- inquiry_data[i));

else
printf (".");

printf ("\n");

2-14

3 Writing a VMS SCSI Class Driver

The VMS operating system defines a mechanism by which a system
programmer can write a class driver that, in conjunction with a standard
VMS SCSI port driver, exchanges data, commands, and status with a
third-party device on the SCSI bus. Given the particular requirements
of the device, or the expectations of application programs accessing the
device, the programmer may choose to create a SCSI class driver rather
than employ the VMS generic SCSI class driver discussed in Chapter 2.

By writing a device-specific SCSI class driver, a programmer can define
a unique, simple, robust $QIO interface to a SCSI device. The generic
SCSI class driver, by contrast, provides a more complex $QIO interface,
requiring the application program to have some knowledge of the data
transfer mode and capabilities of the target device and to construct in
memory the SCSI commands to be passed to the SCSI port. A third-party
SCSI class driver conceals these details from the application program.
Additionally it can provide device-specific error recovery, full error logging,
and notification of asynchronous events from the device.

Note: A non-Digital-supplied SCSI disk device residing on the local node
and controlled by a SCSI third-party class driver cannot be served
to other nodes of the local area VAXcluster.

This chapter introduces the VMS SCSI class/port interface and discusses
the mechanisms VMS provides to facilitate the creation of a SCSI class
driver. It describes the capabilities and components of such a driver
and suggests some coding strategies. It also includes sections on driver
naming conventions, driver loading, and driver debugging techniques. It
concludes with descriptions of class driver error logging protocol and the
asynchronous event notification facility.

3.1 SCSI Class/Port Architecture
VMS uses a class/port driver architecture to communicate with devices
on the SCSI bus. The class/port design allows the responsibilities for
communication between the operating system and the device to be cleanly
divided between two separate driver images (see Figure 3-1).

3-1

Writing a VMS SCSI Class Driver
3.1 SCSI Class/Port Architecture

Figure 3-1 VMS SCSI Class/Port Interface

$010

..
Class

Device-Level Operations
Driver

• Handles SCSI commands
• Handles SCSI status

---------------- ~---------------·
Bus-Level Operations t

• Handles SCSI phases and timing [SCSI Port Interface J
• Handles SCSI messages
• Handles data movement .. _

3-2

Port
Driver

Ir

Port Hardware

ZK-1366A-GE

The SCSI port driver transmits and receives SCSI commands and data.
It knows the details of transmitting data from the local processor's SCSI
port hardware across the SCSI bus. Although it understands SCSI bus
phases, protocol, and timing, the SCSI port driver has no knowledge of the
SCSI commands the device supports, the status messages it returns,
or the format of the packets in which this information is delivered.
Strictly speaking, the port driver is a communications path. When
directed by a SCSI class driver, the port driver forwards commands and
data from the class driver onto the SCSI bus to the device. On a single
MicroVAX/VAXstation system, a single SCSI port driver handles bus-level
communications for all SCSI class drivers that may exist on the system
(see Figure 3-2).

Writing a VMS SCSI Class Driver
3.1 SCSI Class/Port Architecture

Figure 3-2 VMS SCSI Port Driver Configuration

$010 $010

DKDRIVER MKDRIVER

PKNDRIVER

SCSI
Disk

(Target)

SCSI
Tape

(Target)

Other
SCSI

(Target)

$010 $010

LKDRIVER GKDRIVER

PKSDRIVER

Other
SCSI

(Target)

SCSI
T~

(Target)

SCSI
Disk

(Target)

ZK-1379A-GE

The SCSI class driver acts as an interface between the user and the
SCSI port, translating 1/0 functions as specified in a user's $QIO request
to a SCSI command directed to a device on the SCSI bus. Although
the class driver knows about SCSI command descriptor buffers, status
codes, and data, it has no knowledge of underlying bus protocols or
hardware, command transmission, bus phases, timing, or messages (except
in asynchronous event notification mode, as described in Section 3.8).
A single SCSI class driver can run with the SCSI port driver of any
MicroVAX/VAXstation system, controlling the same set of devices on each
system (see Figure 3-3).

3-3

3.1.1

Writing a VMS SCSI Class Driver
3.1 SCSI Class/Port Architecture

Figure 3-3 VMS SCSI Class Driver Configuration

Disk Class Driver

Disk Class Driver

VAX 3100
SCSI Port

Driver

SCSI Port
Driver

Tape Class Driver

Disk Class Driver

VAX 3520
SCSI Port

Driver

ZK-1378A-GE

The design of the SCSI driver class/port interface allows a programmer
to write a class driver that is independent of any concern about the
underlying hardware. VMS supplies software tools that facilitate the
development of SCSI class drivers, including the following:

• A standard interface that all SCSI class drivers use to request work
from and transfer control to the port driver. This interface is known as
the SCSI port interface (SP!).

• SCSI-specific data structures that class and port drivers use to
exchange information and monitor the state of the device connection or
SCSI port.

• A template SCSI class driver that can serve as the basis for a third­
party SCSI class driver.

SCSI Port Interface

3-4

The SCSI port interface (SP!) consists of a group of routines within
the SCSI port driver that create and manage the connection between a
SCSI class driver and a device unit. Across this connection, SP! routines
exchange control information and data between the class driver and the
port.

Writing a VMS SCSI Class Driver
3.1 SCSI Class/Port Architecture

When a connection must be established, a SCSI command transmitted,
or data transferred, a SCSI class driver calls the appropriate routine
within the port driver by invoking one of a series of macros, defined in
SYS$LIBRARY:LIB.MLB. Each macro corresponds to a vector in the SCSI
port descriptor table (SPDT) that supplies the address of the port routine
that performs the applicable function. Table 3-1 lists the standard SPI
macros and their functions.

Table 3-1 SCSI Port Interface (SPI) Macros

Macro

SPl$ABORT _COMMAND

Description

Aborts the execution of an outstanding SCSI command over a
specified connection

SPl$ALLOCATE_COMMAND_BUFFER Allocates a buffer in which a class driver passes a SCSI
command descriptor to the port driver

SPl$CONNECT

SPl$DEALLOCATE_COMMAND_BUFFER

SPl$DISCONNECT

Creates a connection from a class driver to a SCSI device unit

Deallocates a SCSI command buffer

Breaks the connection between a class driver and a SCSI device
unit

SPl$GET _CONNECTION_CHAR Obtains the characteristics of a specified connection and places
them in the buffer specified by the class driver

SPl$MAP _BUFFER

SPl$RESET

SPl$SEND_COMMAND

Makes the process buffer involved in a data transfer available to
the port driver

Resets the port hardware and SCSI bus

Delivers a SCSI command descriptor buffer to a SCSI device,
returning status and data, if applicable

SP1$SET_CONNECTION_CHAR

SP1$UNMAP _BUFFER

Sets up the characteristics of a specified connection

Releases the SCSI port's DMA buffer space and the system
page-table entries that double-mapped a user buffer involved in
a transfer

A SCSI class driver invokes SPI macros at fork IPL, holding the fork lock.
Because the port driver routines called by SPI macros may fork or stall, a
class driver must preserve local context and local return addresses across
an SPI macro invocation. It must also ensure that the address of its caller
is at the top of the stack at the time the macro is invoked. (These issues
are more fully discussed in Section 3.5.1.)

Detailed descriptions of the functions provided by the SPI macros appear
where pertinent in the discussions of SCSI class driver operations that
follow in this chapter. Appendix B provides a condensed description of the
calling interface, functions, inputs, and returned values of each macro.

An extension to the SPI interface includes several additional macros that
enable the host to receive an asynchronous event notification from a target
on the SCSI bus. Section 3.8 describes the asynchronous event notification
(AEN) feature in greater detail, and introduces each of the macros in the
SPI interface extension.

3-5

3.1.2

Writing a VMS SCSI Class Driver
3.1 SCSI Class/Port Architecture

SCSI-Specific Data Structures

3-6

The SCSI class/port interface must maintain status and control
information relevant to each participating connection and port. Moreover,
SCSI class drivers and port drivers require a means of sharing information
about each 1/0 request that involves the port. The following data
structures accommodate these needs:

• SCSI connection descriptor table (SCDT)

• SCSI port descriptor table (SPDT)

• SCSI class driver request packet (SCDRP)

• Device and port unit control blocks (UCBs)

The SCSI connection descriptor table (SCDT) contains information specific
to a connection established between a SCSI class driver and the port,
such as phase records, timeout values, and error counters. The SCSI port
driver creates an SCDT each time a SCSI class driver, by invoking the
SPI$CONNECT macro, connects to a device on the SCSI bus. The class
driver stores the address of the SCDT in the SCSI device's UCB.

The port driver has exclusive access to the SCDT; it is not accessed by the
class driver. (The structure of the SCDT is illustrated in Figure A-2; its
contents are described in Table A-2.)

The SCSI port descriptor table (SPDT) contains information specific to a
SCSI port, such as the port driver connection database. The SPDT also
includes a set of vectors, corresponding to the SPI macros invoked by
SCSI class drivers, that point to service routines within the port driver.
The SCSI port driver's unit initialization routine creates an SPDT for
each SCSI port defined for a specific MicroVAX/VAXstation system and
initializes each SPI vector.

The port driver reads and writes fields in the SPDT. The class driver does
not write SPDT fields, but reads the SPDT indirectly when it invokes an
SPI macro. (The structure of the SPDT is illustrated in Figure A-3; its
contents are described in Table A-3.)

A SCSI class driver creates a SCSI class driver request packet (SCDRP)
to deliver to the port driver information specific to an 110 request, such
as the address of the SCSI command descriptor buffer. The class driver
also places in the SCDRP some of the data it originally received in the
1/0-request packet (IRP), such as the $QIO system service parameters,
the 1/0 function, and the length and location of any user-specified buffer
involved in a transfer. The port driver returns the actual data transfer
byte count and status information to the class driver in the SCDRP.

Both class and port drivers read and write fields in the SCDRP; the port
driver may modify fields written by the class driver. (The structure of
an SCDRP is illustrated in Figure A-1; its contents are described in
Table A-1.)

Writing a VMS SCSI Class Driver
3.1 SCSI Class/Port Architecture

Two unit control blocks (UCBs) are involved in any interaction between the
class driver and the port. The SCSI class driver maintains information in
the SCSI device UCB, such as the device type, class, and characteristics;
maximum transfer size; the address of the current SCDRP; and the
addresses of the associated SPDT and SCDT. The SCSI port driver
maintains similar information in the SCSI port UCB.

Table 3-2 summarizes the ownership of and access to these structures;
their interrelationships are pictured in Figure 3-4.

Table 3-2 Data Structures

Structure

SCORP

SCOT

SPOT

SCSI device UCB

SCSI port UCB

Allocation Owner Port Access

One per 1/0 Class driver Read/write
transfer request

One per SCSI Port driver Read/write
connection

One per SCSI Port driver Read/write
port

One per SCSI Class driver None
device unit

One per SCSI Port driver Read/write
controller port

Figure 3-4 SCSI Driver Data Structures

Vectors to
SPI routines

Class B
P~t---- SCDRP ---

SPOT

Device
UCB

1::1
~

Class Access

Read/write

None

Read

Read/write

None

ZK-1375A-GE

3-7

3.1.3

Writing a VMS SCSI Class Driver
3.1 SCSI Class/Port Architecture

SCSI Template Class Driver
The VMS operating system supplies a model for a third-party
class driver in the SCSI template class driver, located in
SYS$EXAMPLES:SKDRIVER.MAR and listed in Appendix C.

SKDRIVER is a simplified, self-documenting driver that supports the
1/0 functions 10$_AVAILABLE, 10$_DIAGNOSE, and 10$_READLBLK
on a generalized device. SKDRIVER performs most operations required
of a typical SCSI· class driver to process a typical 110 request, including
the appropriate SPI interface macro calls to establish a connection to
the port, allocate port resources, and accomplish a transfer to the SCSI
device. SKDRIVER also allocates pool for two SCDRPs. It uses one to
send a SCSI command to the device, and it uses the other to issue a SCSI
REQUEST SENSE command in the event the SCSI device returns failure
status on the original command (see Section 3.4.6.2 for information on the
interpretation of port and SCSI status return values).

In addition, SKDRIVER defines local macros that simplify common
operations, including the following:

• Preserving register contents and return addresses within the class
driver across calls to executive and port routines that may destroy this
context (INIT_UCB_STACK, SUBPOP, SUBPUSH, SUBRETURN).

• Assembling the information relevant to a supported SCSI command
such that a driver routine can easily construct the SCSI command
descriptor buffer and initialize the SCDRP fields describing transfer
buffer characteristics and timeout values (SCSI_CMD). SKDRIVER
uses this macro to define the SCSI commands TEST UNIT READY,
INQUIRY, REQUEST SENSE, and MODE SELECT. (It "invents" a
fifth command, QIO INQUIRY, to provide a device-independent read
operation servicing an 10$_READLBLK 1/0 function.)

SKDRIVER extends the device UCB to accommodate its context-saving
macros, the allocation of SCDRPs, and per-request timeout values (see
Section 3.3.2), SCSI-specific device characteristics, and the addresses of
the SCDT and the current SCDRP.

Code in the template SCSI class driver can serve as a good starting
point for the development of a third-party SCSI class driver. Subsequent
sections of this chapter refer to the template SCSI class driver,
as appropriate, to explain certain class driver concepts or possible
implementation strategies.

3.2 Connecting to a SCSI Device

3-8

As defined by the VMS SCSI class/port interface, a connection is a
logical link between a SCSI class driver and a SCSI device unit. In
MicroVAX/VAXstation systems, a SCSI device is identified by its device
mnemonic (for instance, SK), its SCSI port ID (A or B), its SCSI device ID
(an integer from 0 to 7), and its logical unit number (an integer from 0
to 7).

Writing a VMS SCSI Class Driver
3.2 Connecting to a SCSI Device

Before a SCSI class driver can issue commands to a target device on the
SCSI bus and transfer data across the bus, it must establish a logical
connection to that device. The SPI$CONNECT macro connects a SCSI
class driver with a target device, thereby establishing a linkage between
the SCSI class driver and the SCSI port driver. Once the SCSI connection
exists, the class and port drivers can intercommunicate.

A SCSI class driver's unit initialization routine invokes the
SPI$CONNECT macro at fork level, specifying the SCSI port ID (in
numeric form), the SCSI device ID, and the SCSI logical unit number
of the device to which it needs to connect. (More detailed information
about the use and functions of the SPI$CONNECT macro appears in
Section 3.7.6 and Appendix B.)

Normally a connection lasts throughout the runtime life of a system; a
SCSI class driver should never need to break a connection.

3.3 Setting Up a SCSI Command

3.3.1

This section describes the procedures a SCSI class driver follows to set
up a SCSI command for transmission to the SCSI port driver. Although
it discusses the aspects of the setup of a data transfer over the SCSI bus
that relate to the preparation of a SCSI command, you should refer to
Section 3.4 for a more complete discussion of SCSI data transfers.

Preparing a SCSI Command Descriptor Block
In preparation for sending a SCSI command to a device on the SCSI bus, a
SCSI class driver must first determine which SCSI commands it supports.
For each supported SCSI command, the driver programmer must perform
the following tasks:

• Determine the correct size and format for the command

• Define the appropriate contents for all command bytes

• Allocate a SCSI port command buffer to make the command descriptor
block and status buffer available to the port

• Create a SCSI command descriptor block in the SCSI port command
buffer

• Create a 1-byte SCSI status buffer in the SCSI port command buffer

• Establish pointers in the SCDRP to the command descriptor block and
the status buffer

• If the command involves a data transfer, store the parameters of the
transfer in the SCDRP

The SCSI template class driver (SKDRIVER) performs these operations
by means of the locally-defined SCSI_CMD macro and the SETUP_
CMD subroutine. Each invocation of the SCSI_CMD macro establishes
a data area within the driver to contain information about a specific SCSI
command, including its length and the contents of its command bytes, plus
the size, direction, and timeout values for any associated data transfer.
The SCSI template class driver uses the SCSI_CMD macro to define

3-9

3.3.2

Writing a VMS SCSI Class Driver
3.3 Setting Up a SCSI Command

the parameters of five 6-byte SCSI commands, although the macro can
describe commands of any length.

The SETUP_CMD subroutine of the template class driver Sl<__STARTIO
routine repackages command data into a SCSI command descriptor block.
Because both the command descriptor block and the SCSI status buffer
must be accessed by both the class and port drivers, it is useful to account
for the status buffer in the request to allocate the SCSI port command
buffer. Thus, the SETUP _CMD subroutine adds 2 longwords of overhead­
one for the SCSI status byte and one for the SCSI command size-to the
SCSI command size. It then invokes SPI$ALLOCATE_COMMAND_
BUFFER, causing the port driver to allocate a port command buffer and
return its address and size.

The class driver initializes the status longword to -1 and stores its address
in SCDRP$L_STS_PTR. It places the size (in bytes) of the SCSI command
in the next longword, and then constructs a SCSI command descriptor
block in the buffer, copying the command to the buffer byte by byte. It
places the address of the size longword in SCDRP$L_CMD_PTR.

Prior to invoking SPI$SEND_COMMAND to transmit the command
descriptor block to the port driver, the class driver may perform several
optional tasks to set up a data transfer operation, such as the following:

• Initializing the phase change (DMA) timeout and/or disconnect timeout
fields in the SCDRP (SCDRP$L_DMA_TIMEOUT and SCDRP$L_
DISCON_TIMEOUT), thus providing command-specific timeout values
(see Section 3.3.2 for information on how to set up timeout values)

• For a data transfer involving a user buffer, initializing fields in the
SCDRP to reflect the parameters of the buffer, and acquiring a port
mapping of that buffer

• For a data transfer requiring a system buffer, allocating the buffer
from nonpaged pool, initializing fields in the SCDRP to reflect the
parameters of the buffer, and acquiring a port mapping of that buffer

When the command has completed and the SCSI port command buffer
is no longer required, the class driver checks the command status,
as described in Section 3.4.6, and invokes the SPI$DEALLOCATE_
COMMAND_BUFFER macro to deallocate the buffer.

Setting Command Timeouts

3-10

The SCSI port driver implements several timeout mechanisms, some
governed by the ANSI SCSI specification and others required by VMS. The
timeouts required by VMS include the following:

3.3.3

Writing a VMS SCSI Class Driver
3.3 Setting Up a SCSI Command

Timeout Description

Phase change timeout Maximum number of seconds for a target to change the
SCSI bus phase or complete a data transfer. (This value is
also known as the OMA timeout.)

Upon sending the last command byte, the port driver waits
this many seconds for the target to change the bus phase
lines and assert REQ (indicating a new phase). Or, if the
target enters the DATA IN or DATA OUT phase, the transfer
must be completed within this interval.

Disconnect timeout Maximum number of seconds, from the time the initiator
receives the DISCONNECT message, for a target to
reselect the initiator so that it can proceed with the
disconnected 1/0 transfer.

The SCSI class driver is responsible for maintaining both of these timeout
values. It has the following three options:

• Accepting a connection's default value. The default value for both
timeouts is 4 seconds.

• Altering the connection's default value. To modify the default values,
the class driver specifies nonzero values in the phase change
timeout and disconnect timeout longwords of the connection
characteristics buffer and invokes the SPI$SET_CONNECTION_
CHAR macro.

• Establishing timeouts for individual commands that override the
connection's default value. If, prior to invoking the SPI$SEND _
COMMAND macro, the class driver supplies a nonzero value in either
SCDRP$L_DMA_TIMEOUT or SCDRP$L_DISCON_TIMEOUT, the
port driver uses that value, instead of the default, for the course of
that data transfer.

Disabling Command Retry
The SCSI port driver implements a command retry mechanism, which is
enabled on a given connection by default.

When the command retry mechanism is enabled, the port driver retries
up to three times any I/O operation that fails during the COMMAND,
Message, Data, or STATUS phases. For instance, if the port driver detects
a parity error during the Data phase, it aborts the I/O operation, logs
an error, and retries the I/O operation. It repeats this sequence twice
more, if necessary. If the I/O operation completes successfully during a
retry attempt, the port driver returns success status to the class driver.
However, if all retry attempts fail, the port driver returns failure status to
the class driver.

When command retry is enabled on a connection, a SCSI class driver
can control the number of retries the port attempts by supplying nonzero
values in the command retry count, busy retry count, arbitration ·
retry count, and select retry count longwords of the connection
characteristics buffer, and invoking the SPI$SET_CONNECTION_CHAR
macro.

3-11

Writing a VMS SCSI Class Driver
3.3 Setting Up a SCSI Command

A SCSI class driver may need to disable the command retry mechanism
under certain circumstances. For instance, repeated execution of a
command on a sequential device may produce different results than
are intended by a single command request. A tape drive could perform a
partial write and then repeat the write without resetting the tape position.

A SCSI class driver can disable this mechanism by setting bit 1 of the
connection :ftags longword of the connection characteristics buffer, and
invoking the SPI$SET_CONNECTION_CHAR macro.

3.4 Performing a SCSI Data Transfer

3.4.1

This section describes the procedures a SCSI class driver follows to set up
and accomplish a data transfer over the SCSI bus.

Setting the Data Transfer Mode

3-12

The SCSI bus defines two data transfer modes, asynchronous and
synchronous. In asynchronous mode, for each REQ from a target there is
an ACK from the host prior to the next REQ from the target. Synchronous
mode allows higher data transfer rates by allowing a pipelined data
transfer mechanism where, for short bursts (defined by the REQ-ACK
offset), the target can pipeline data to an initiator without waiting for the
initiator to respond.

A class driver can determine the transfer modes supported by a device
from the port capabilities longword returned from its invocation of the
SPI$CONNECT macro. Whether or not a port or a target device supports
synchronous data transfers, it is harmless for a class driver to set up the
connection to use such transfers. If synchronous mode is not supported,
the port driver automatically uses asynchronous mode.

To use synchronous mode in a transfer, the programmer of a SCSI
class driver must ensure that both the SCSI port and the SCSI device
involved in the transfer support synchronous mode. The SCSI port
of the MicroVAX. 3520/3540 systems supports both synchronous and
asynchronous transfers, whereas that of the MicroVAX/VAX.station 3100
supports only asynchronous transfers.

To set up a connection to use synchronous data transfer mode, the SCSI
class driver specifies a nonzero value in the synchronous longword
of the connection characteristics buffer, and invokes the SPI$SET_
CONNECTION_CHAR macro. The driver can also control the protocol of
synchronous data transfers by supplying nonzero values for the transfer
period and REQ-ACK offset longwords of the connection characteristics
buffer and invoking the macro.

3.4.2

3.4.3

Writing a VMS SCSI Class Driver
3.4 Performing a SCSI Data Transfer

Enabling Disconnection and Reselection
The ANSI SCSI specification defines a disconnection facility that allows
a target device to yield ownership of the SCSI bus while seeking or
performing other time-consuming operations. When a target disconnects
from the SCSI bus, it sends a sequence of messages to the initiator that
cause it to save the state of the I/O transfer in progress. Once this is done,
the target releases the SCSI bus. When the target is ready to complete
the operation, it reselects the initiator and sends to it another sequence
of messages. This sequence uniquely identifies the target and allows the
initiator to restore the context of the suspended I/O operation.

Whether disconnection should be enabled or disabled on a given connection
depends on the nature and capabilities of the device involved in the
transfer, as well as on the configuration of the system. In configurations
where there is a slow device present on the SCSI bus, enabling
disconnection on connections that transfer data to the device can increase
bus throughput. By contrast, systems where most of the I/O is directed
toward a single device for long intervals can benefit from disabling
disconnection. By disabling disconnection when there is no contention
on the SCSI bus, port drivers can increase throughput and decrease the
processor overhead for each I/O transfer.

By default, the VMS class/port interface disables the disconnect facility on
a connection. To enable disconnection, the SCSI class driver sets bit 0 of
the connection flags longword of the connection characteristics buffer,
and invokes the SPI$SET_CONNECTION_CHAR macro.

Determining the Maximum Data Transfer Size
There are two factors governing the maximum data transfer size that any
given SCSI device can accommodate.

First, there is the maximum size, supported by the device; this can be
determined from an inspection of the device's functional specification. The
SCSI class driver writes the maximum device byte count to the device's
UCB (UCB$L_MAXBCNT), usually by invoking the DPT_STORE macro
when initializing the driver prologue table (DPT).

Secondly, there is the maximum value supported by the SCSI port. The
port driver returns this value to the class driver in response to the class
driver's invocation of the SPI$CONNECT macro.

The class driver may need to adjust the value in UCB$L_MAXBCNT to
reflect the smaller of the device-specific and port-specific values.

The class driver compares the value supplied in IRP$L_BCNT with
UCB$L_MAXBCNT to determine whether to accept, reject, or segment
an I/O data transfer request.

3-13

3.4.4

Writing a VMS SCSI Class Driver
3.4 Performing a SCSI Data Transfer

Initializing the SCDRP to Reflect Class Driver Data Buffering
Mechanisms

3-14

A standard data transfer, using direct 110, involves the buffer specified
in the $QIO system service call as the source or destination of the data
involved in the transfer. Typically this buffer is in process space (PO
space) and mapped by the process's PO page table. To access this buffer
at elevated IPL, a driver calls a VMS-supplied FDT routine (such as
EXE$READ or EXE$MODIFY) that locks the buffer into memory and
returns the system virtual address of the first PO page-table entry that
maps the buffer. The servicing of the QIO_INQUIRY SCSI command by
the SCSI template class driver follows this approach. (Note that the QIO_
INQUIRY command is the means by which the template driver illustrates
the transfer of data from a SCSI device to a process buffer. Ordinarily, for
a specific SCSI device, a class driver would use a SCSI READ command.)

Other transfer operations may require that the class driver itself operate
upon the contents of the data buffer, or maintain its own data buffer.
For these operations, the class driver must allocate a system buffer from
nonpaged pool. The servicing of the INQUIRY SCSI command by the SCSI
template class driver follows this approach.

Depending upon the local buffering mechanism it uses to service an
1/0 request, a SCSI class driver must initialize the SCDRP with the
parameters of the transfer. When a process buffer is involved in the
transfer, the class driver initializes the following fields:

Field Contents

SCDRP$L_ABCNT 0

SCDRP$W_FUNC IRP$W_FUNC

SCDRP$W_STS IRP$W_STS

SCDRP$L_MEDIA IRP$L_MEDIA

SCDRP$L_SVAPTE IRP$L_SVAPTE

SCDRP$W_BOFF IRP$W_BOFF

SCDRP$L_BCNT IRP$L_BCNT

SCDRP$L_PAD_COUNT 0

SCDRP$L_SCSl_FLAGS SCDRP$V_SOBUF bit cleared

When a system buffer is involved in the transfer, the class driver initializes
the following fields:

Field

SCDRP$L_SVA_USER

SCDRP$L_SVAPTE

SCDRP$L_BCNT

SCDRP$L_PAD_COUNT

Contents

System virtual address of system buffer

System virtual address of the system page table entry
mapping the first page of the system buffer

Length of the transfer

0

3.4.5

Field

SCDRP$W_BOFF

SCDRP$W_STS

SCDRP$L_SCSl_FLAGS

Writing a VMS SCSI Class Driver
3.4 Performing a SCSI Data Transfer

Contents

Byte offset within page

IRP$V_FUNC set for a read operation; clear for a write
operation

SCDRP$V _SOBUF bit set

Making a Class Driver Data Buffer Accessible to the Port
Regardless of the local buffering mechanism it requires to fulfill the I/O
transfer, a SCSI class driver must make the buffer available to the SCSI
port hardware. A SCSI class driver accomplishes this by invoking the
SPI$MAP _BUFFER macro.

The SPI$MAP _BUFFER macro causes the SCSI port driver to reserve
sufficient pages of the port's DMA buffer to accomplish the transfer, plus
sufficient mapping resources, if required, to map the class driver's data
buffer to system virtual addresses. Certain ports require this mapping so
that the port driver can access a process space buff er when setting up or
completing a transfer for the SCSI port. When the class driver initiates
a write operation, the SCSI port driver uses its mapping resources to
copy the data from the class driver's user or system data buffer to this
intermediate DMA buffer, from which the SCSI port can access it. When
the class driver initiates a read operation, the SCSI device transfers the
data to the DMA buffer, from which the port driver copies it to the class
driver's data buffer.

Other ports do not require this mapping and can access the class driver's
data buffer using system page-table entries.

By convention, a SCSI class driver sets the SCDRP$V _BUFFER_MAPPED
bit in SCDRP$L_SCSI_FLAGS when it invokes SPI$MAP _BUFFER to
map a buffer; if the buffer involved in the transfer is a system buffer, it
also sets the SCDRP$V _SOBUF bit. The SCDRP$V _SOBUF flag prevents
the SPI$MAP _BUFFER port routine from double-mapping a system buffer.

The SPI$MAP _BUFFER port routine initializes the following fields in the
SCDRP:

Field

SCDRP$L_SVA_USER

SCDRP$L_SPTE_SVAPTE

Contents

System virtual address of the system buffer. When
the class driver's local buffer is a system buffer, the
contents of this field are unchanged by SPl$MAP _
BUFFER.

System virtual address of the system page-table entry
mapping the first page of the system buffer. When
the class driver's local buffer is a system buffer, the
contents of this field and SCDRP$L_SVAPTE are
identical.

3-15

3.4.6

Writing a VMS SCSI Class Driver
3.4 Performing a SCSI Data Transfer

Field

SCDRP$W_NUMREG

SCDRP$W_MAPREG

Contents

Number of pages of the port's OMA buffer allocated
for this transfer.
Starting page number of the first OMA buffer page
allocated for this transfer.

Once the SCSI command has been prepared, the SCSI class driver issues
the command to the SCSI device by invoking the SPI$SEND_COMMAND
macro.

When the data transfer has completed (or its failure has been serviced)
and the port DMA buffer and mapping resources are no longer required,
the class driver invokes the SPI$UNMAP _BUFFER macro to deallocate
these resources.

Examining Port and SCSI Status

3.4.6.1

3-16

Whether a SCSI command completes or fails, the port driver returns to
the class driver the following status values:

• Port status in RO

• SCSI command status in the low byte of the status buffer pointed to
by SCDRP$L_STS_PTR

• Actual number of bytes transferred in SCDRP$L_TRANS_CNT

The class driver should examine these returned values to determine the
success or failure of a SCSI command. If a SCSI command fails, the class
driver can pursue its recovery or retry the command, depending upon the
type and severity of the error and the nature of the device.

Examining Port Status
The port status is the primary indicator of the failure of a SCSI command;
that is, if the port failed during command preparation or transmission,
it is unlikely that the SCSI command status byte contains meaningful
information.

The port driver returns one of the following status values in RO:

Status

SS$_NORMAL

SS$_ TIMEOUT

SS$_CTRLERR

SS$_BADPARAM

SS$_LINKABORT

SS$_DEVACTIVE

Meaning

Normal successful completion
Failed during selection or arbitration
Controller error or port hardware failure
Bad parameter specified by the class driver
Connection no longer exists
Command outstanding on this connection

If RO contains anything but success status, the class driver may want to
examine it for specific status values and attempt error recovery, retry the
operation, or return a special error status to the original $QIO call. At

3.4.6.2

Writing a VMS SCSI Class Driver
3.4 Performing a SCSI Data Transfer

the very least, the class driver should log a device error, according to the
method described in Section 3.5.2.

Examining the SCSI Status Byte
If the port driver returns SS$_NORMAL status in RO, the class driver
should proceed to check the SCSI command status in the low byte of the
longword buffer pointed to by SCDRP$L_STS_PTR.

The format of a SCSI status byte is illustrated in Table 3-3. Interpretation
of the bits in this status byte is device-specific. The VMS SCSI template
driver (SKDRIVER) first clears reserved bits 0, 6, and 7. It compares the
resulting value with the CHECK CONDITION status value, to determine
if CHECK CONDITION status has been returned.

Table 3-3 SCSI Status Byte Format

Bits of Status Byte1 Status Represented

7 6 5 4 3 2 0

R R 0 0 0 0 0 R GOOD

R R 0 0 0 0 1 R CHECK CONDITION

R R 0 0 0 1 0 R CONDITION MET/GOOD

R R 0 0 1 0 0 R BUSY

R R 0 0 0 0 R INTERMEDIATE/GOOD

R R 0 0 0 R INTERMEDIATE/CONDITIO.•J MET/GOOD

R R 0 0 0 R RESERVATION CONFLICT

R R 0 0 0 R QUEUE FULL (not implemented)

1 All other codes reserved.

When CHECK CONDITION status is returned, SKDRIVER initiates a
REQUEST SENSE SCSI command to determine the specific nature of the
SCSI error. To do so, it must save the address of the SCDRP associated
with the original command (in an extension to the device UCB), and
allocate a new one for use with the REQUEST SENSE command. It
prepares and issues the command according to the procedures described
in Section 3.3. When the port driver returns status from the REQUEST
SENSE command, SKDRIVER examines its status. If the port returns
failure status or if the SCSI status byte has any error bit set, SKDRIVER
completes the I/O request, deallocating both SCDRPs and its command
and data buffers; and returns error status to the $QIO system service.

If the port returns success status from the REQUEST SENSE command,
SKDRIVER examines the request sense key in its local system buffer
(at SCDRP$L_SVA_USER). The actions of any class driver in response
to any specific request sense key are device specific. SKDRIVER merely
translates the value into a VMS success or failure status code and returns
this code in RO. For sense keys indicating fatal errors, SKDRIVER logs a
device error.

3-17

Writing a VMS SCSI Class Driver
3.4 Performing a SCSI Data Transfer

3.4.6.3 Testing for Incomplete Transfers
If both the port status value and the SCSI command status byte indicate
successful completion, the class driver performs one last test to determine
the success of any data transfer associated with the SCSI command.

The port driver returns the actual number of bytes transferred during
command processing in SCDRP$L_TRANS_CNT. The class driver should
compare the value in this field with the requested transfer size in
SCDRP$L_BCNT. If they are not equal, the class driver may return
successfully or investigate a possible error.

3.5 Other SCSI Class Driver Issues

3.5.1

The writer of a third-party SCSI class driver must deal with several
issues that are not specifically related to the tasks of setting up a SCSI
command or data transfer, but rather relate to the definition of the
class/port interface. Among these issues are the following:

• Preserving the local context of the driver across calls to the port driver

• Logging errors detected by the class driver

Subsequent sections discuss each of these issues in detail.

Preserving Local Context

3-18

VMS SCSI port drivers contain routines that execute in response to a
class driver's invocation of an SPI macro. A class driver should take into
account the fact that any SPI macro invocation may cause the port driver
routine to fork or stall while waiting for a port resource, and return to its
caller's caller. These actions eradicate the local context of the class driver
at the time it invoked the macro.

Therefore, a SCSI class driver routine must take special steps to ensure
the following:

• The address of its caller is on the top of the stack.

• All significant local context currently in registers is preserved.

• Any local return address currently on the stack is preserved.

The SCSI template class driver (SKDRIVER) resolves these needs by
allocating a 10-longword stack within its extension to the SCSI device
UCB. The symbol UCB$L_STACK_PTR functions as a stack pointer.
The template class driver defines macros that initialize the UCB stack
(INIT_UCB_STACK), push and pop registers (or data) from the UCB
stack (SUBPUSH and SUBPOP), push the return address from the top
of the interrupt stack onto the UCB stack (SUBSAVE), and pop the
return address from the UCB stack onto the interrupt stack and RSB
(SUBRETURN).

CAUTION: The class driver must be careful not to overflow its local stack.
Unless it takes precautions, it could overwrite data integral to a
transfer in progress and cause unpredictable results.

3.5.2 Error Logging

Writing a VMS SCSI Class Driver
3.5 Other SCSI Class Driver Issues

Prior to calling any routine that may destroy its context, the template
class driver issues a SUBSAVE to preserve its return address (before
any additional data is pushed on the interrupt stack), and invokes the
SUBPUSH macro for each register that must be preserved across the
call. When execution in the class driver resumes, the driver issues the
SUBPOP macro to restore the saved registers and the SUBRETURN
macro to return to its caller.

A SCSI class driver establishes error logging and uses the system
error logging routines (ERL$DEVICERR, ERL$DEVICTMO, and
ERL$DEVICEATTN) as described in the VMS Device Support Manual.

The VMS SCSI class/port interface defines SCSI port-driver and SCSI
class-driver extensions to the error message buffer, which are interpreted
and formatted by the VMS Error Log Utility. A SCSI class driver and
the associated port driver log errors independently, each supplying SCSI­
specific information as defined in its extension to the error message
buffer.

The class driver extension to the error message buffer includes the
information listed in Table 3-4.

Table 3-4 Error Message Buffer Extension for SCSI Class Drivers

Field

Longword count

Revision

Hardware revision

Error type

Length
(in bytes)

4

4

Contents

Number of longwords that follow in the error message buffer (not
including this one).

Revision level of the error message buffer. The class driver must set this
field to 1.

Hardware revision information, returned by the SCSI INQUIRY command
in ASCII format.

Type of error detected by the class driver. A SCSI class driver defines
device-specific error types according to the nature of the device it
services. The following error types are used by the VMS disk and tape
class drivers and, as such, have defined values that are interpreted by
the VMS Error Log Utility:

Error Name Description

01 CON_ERR Attempt to connect to the port driver
failed.

02 MAP_ERR Attempt to map a user buffer failed.

03 SND_ERR Attempt to send a SCSI command
failed.

04 INV_INQ Invalid inquiry data was received.

(continued on next page)

3-19

Writing a VMS SCSI Class Driver
3.5 Other SCSI Class Driver Issues

Table 3-4 (Cont.) Error Message Buffer Extension for SCSI Class Drivers

Field

SCSI ID

SCSI LUN

SCSISUBLUN

Port status

SCSI CMD

SCSISTS

Additional data

3-20

Length
(in bytes) Contents

4

n

n

Error Name

05 EXT_SNS_DAT

06 INV_MOD_SNS

07 REASSIGN_BLK

08 DIAG_DATA

Description

Extended sense data was returned
from the SCSI device.

Invalid mode sense data returned
from the SCSI device.

Reassign block.

Invalid diagnostic data returned to the
VMS SCSI tape class driver.

SCSI ID of the device to which the current command was sent. The
SCSI ID is an integer between 0 and 7.

SCSI LUN of the device to which the current command was sent. The
SCSI LUN is an integer between 0 and 7.

Not used. This field always contains 0.

Longword status returned in RO from the port driver. A value of -1 in this
field indicates that there is no valid data in this field.

Current SCSI command bytes. The SCSI command bytes are preceded
by a byte containing the length of the command.

Current SCSI status byte. A status byte of -1 in this field indicates that
the status byte does not yet contain valid information.

Additional data, preceded by a byte count of the data. A class driver
defines what additional data would be meaningful in an error log entry
based on the type of device it services. Additional data is displayed by
the VMS Error Log Utility as untranslated longwords.

Prior to calling ERL$DEVICERR to log an error associated with device
activity, or ERL$DEVICEATTN (or ERL$DEVICTMO) to log an error on
an inactive device, the class driver should perform the following tasks:

• Ensure that the DDT$W_ERRORBUF field contains a sufficient byte
count to accommodate both the standard error message buffer and
the SCSI class driver extension. The class driver can either supply
this value in the erlgbf argument to the DDTAB macro or specifically
initialize DDT$W _ERRORBUF.

• Initialize the device type (UCB$B_DEVTYPE) and device class
(UCB$B_DEVCLASS) fields to DT$_GENERIC_SCSI and DC$_MISC.
A driver normally initializes these fields by invoking the DPT_STORE
macro. If the driver must use other device type or class values, or
allows them to be changed by a user program, it may need to save and
restore the real values of these fields temporarily across calls to the
error logging routines.

ERL$DEVICERR, ERL$DEVIC'I'MO, and ERL$DEVICEATTN all result
ultimately in a call to the class driver's register dumping routine. The
register dumping routine must supply all available information about the
SCSI device error in the class driver's SCSI-specific extension to the error
message buffer.

Writing a VMS SCSI Class Driver
3.5 Other SCSI Class Driver Issues

The VMS SCSI template class driver (SKDRIVER) defines the fields of this
extension and contains a macro (LOG_ERROR) and a routine (ERROR_
LOG) that are a useful basis for the implementation of error logging in a
third-party SCSI class driver.

For a discussion of the interpretation of SCSI port and class driver error
log entries, refer to Appendix D.

3.6 Flow of a Read 1/0 Request Through the SCSI Class and Port Drivers
This section describes a hypothetical read-I/O request to a SCSI device as
it is serviced by a SCSI class driver and the port driver. The discussion
assumes that the read operation is successful.

When it is loaded, the class driver performs a one-time initialization
sequence as follows:

1 Its unit initialization routine invokes the SPI$CONNECT macro. In
response, the port driver forms a logical connection between the SCSI
device's UCB and the target on the SCSI bus. The port driver creates
an SCDT in which it inserts information describing the connection.

2 Its unit initialization routine optionally invokes the SPI$SET _
CONNECTION_CHAR macro to set the appropriate data transfer
mode or timeout values, or to enable disconnection of the connection.
In response, the port driver modifies the connection-specific
characteristics it maintains in the SCDT.

When the class driver receives a read-I/O request, it performs the following
operations:

1 Its read FDT routine verifies and interprets the parameters of the
$QIO system service call.

2 It calls a system FDT routine that locks the specified process buffer in
memory.

3 When the request becomes current, the start-I/O routine dispatches to
code that services the specified function.

4 Its start-I/0 routine allocates and initializes an SCDRP and copies to
it the fields from the IRP required by the port driver to complete the
read operation.

5 Its start-I/0 routine invokes the SPI$ALLOCATE_COMMAND_
BUFFER macro. In response, the port driver allocates a buffer
suitable for a SCSI command descriptor buffer and a SCSI status
byte.

6 Its start-I/0 routine invokes the SPI$MAP _BUFFER macro. In
response, the port driver allocates the resources required to make
the process buffer available to the port driver.

7 Its start-I/O routine builds a SCSI command in the command
descriptor buffer, initializes the status byte, and invokes the
SPI$SEND_COMMAND macro to send the command to the port
driver.

3-21

Writing a VMS SCSI Class Driver
3.6 Flow of a Read 1/0 Request Through the SCSI Class and Port Drivers

3-22

When the port driver receives the command, it sets up the connection
characteristics (data transfer mode, timeout value, and disconnect mode)
recorded in the SCDT, sends the command buffer to the device, and
responds to changes in SCSI bus phases. The port driver performs the
following specific actions:

1 It requests and obtains ownership of the port, stalling if necessary
until the port is available.

2 It arbitrates for ownership of the SCSI bus.

3 It selects a target device on the SCSI bus and sends it an IDENTIFY
message.

4 It waits for the bus COMMAND phase.

5 It sends the SCSI command descriptor buffer, byte by byte, to the
target device.

6 It waits for a SCSI bus phase change. If the next phase is not DATA
IN, the port driver proceeds with the next step. Otherwise, it accepts
data from the target device as follows:

a. It sets up and starts a DMA transfer to the port's DMA buffer.

b. It saves its context in the port UCB and waits for the target device
to interrupt, signifying the completion of the read request. If the
target device does not interrupt, the port driver sets up error
status and returns to the class driver.

7 It checks the SCSI bus phase. If the phase is unchanged, the port
driver sets up the next transfer. If the phase is STATUS, the port
driver reads the status and copies the status to the return status
buffer.

8 It waits for the MESSAGE IN phase. When the phase changes to
MESSAGE IN, the port driver reads the message. If the message
is COMMAND COMPLETE, the port driver returns SS$_NORMAL
in RO. Otherwise, it returns the appropriate port status to the class
driver.

9 It releases the port.

10 It transfers the data from the port's DMA buffer to the process buffer.

11 It returns to the class driver.

When it regains control from the port driver, the class driver performs the
following tasks to complete the read operation:

1 It checks the port status in RO.

2 It checks the SCSI status in the SCSI status byte.

3 It checks that the actual transfer length agrees with the requested
transfer length.

4 It invokes the SPI$DEALLOCATE_COMMAND_BUFFER macro to
deallocate the command buffer.

Writing a VMS SCSI Class Driver
3.6 Flow of a Read 1/0 Request Through the SCSI Class and Port Drivers

5 It invokes the SPI$UNMAP _BUFFER macro to release the port
resources mapping the user buffer.

6 It initiates device-independent postprocessing of the request by
invoking the REQCOM macro.

3. 7 Components of a SCSI Class Driver

3.7.1 Data Definitions

A SCSI class driver contains nearly all of the components of a traditional
VMS driver, as described in the VMS Device Support Manual. These
include the following:

• Data, macro, and constant definitions

• Driver prologue table

• Driver dispatch table

• Function decision table and FDT routines

• Controller initialization routine

• Unit initialization routine

• Start-I/0 routine

• Cancel-I/O routine

• Error logging routine

• Register dumping routine

A SCSI class driver contains no interrupt service routine. Moreover, it
has no access to device control and status registers (CSRs). It relies on
the port driver to initiate operations on the device and to service device
interrupts.

This section describes the special operations that must be performed by the
components of a SCSI class driver. The standard and typical operations
performed by driver routines and tables are discussed in the VMS Device
Support Manual.

A SCSI class driver must invoke the $SCDRPDEF data structure
definition macros, located in SYS$LIBRARY:LIB.MLB. $SCDRPDEF
defines the fields of the SCSI class driver request packet.

A SCSI class driver typically does not reference fields in the SCSI
connection descriptor table and, thus, does not need to invoke the
$SCDTDEF macro. Although fields in the SCSI port descriptor table
are used by the SPI macros as vectors to routines in the port driver, a
SCSI class driver need not explicitly define SPDT fields. It indirectly
obtains the SPDT definitions through its invocation of the SPI$CONNECT
macro; it is the macro that invokes $SPDTDEF.

3-23

3.7.2

3.7.3

3.7.4

3.7.5

Writing a VMS SCSI Class Driver
3. 7 Components of a SCSI Class Driver

A SCSI class driver may define an extension to the device UCB for an
internal stack or for managing the allocation of SCDRPs, depending
upon the needs of the implementation. The VMS SCSI template driver
(SKDRIVER), listed in Appendix C, illustrates uses of these additional
UCB fields. SKDRIVER also defines symbols representing SCSI-specific
data buffer offsets and status values.

Driver Prologue Table
A SCSI class driver must supply the NULL keyword as the adapter
argument to the DPTAB macro. It also must specify that the DPT$V _NO_
IDB_DISPATCH flag is set in the flags argument. The DPT$V_NO_IDB_
DISPATCH flag indicates that the IDB$L_UCBLIST field is not used to
store the addresses of UCBs for this device.

If the class driver implements error logging, it should use the DPT_
STORE macro to initialize UCB$B_DEVTYPE to DT$_GENERIC_SCSI
and UCB$B_DEVCLASS to DC$_MISC. If the class driver must use
other device type or class values, or allows them to be changed by a user
program, it may need to save and restore the real values of these fields
temporarily across calls to the error logging routines.

A SCSI class driver should not initialize CRB$L_INTD+ VEC$L_ISR or the
other interrupt vectors in the CRB. A SCSI device interrupts through a
vector serviced by the port driver; any interrupt service routine specified
by the SCSI class driver is not used.

Driver Dispatch Table
There are no special requirements for a SCSI class driver's driver dispatch
table.

Function Decision Table and FDT Routines
There are no special requirements for a SCSI class driver's function
decision table.

A class driver invokes FDT routines to preprocess 1/0 functions in
a device-specific manner. Most SCSI class drivers use the standard
VMS-supplied FDT routines (such as EXE$READ, EXE$WRITE, and
EXE$SETMODE). However, some class drivers may need to include a
special FDT routine. The VMS SCSI template class driver illustrates this
approach.

Controller Initialization Routine

3-24

There are no special requirements for a SCSI class driver's controller
initialization routine.

3.7.6 Unit Initialization Routine

Writing a VMS SCSI Class Driver
3.7 Components of a SCSI Class Driver

A SCSI class driver's unit initialization routine must perform several
special actions, as follows:

• It checks the power failure bit (UCB$V _POWER) in UCB$W _STS to
determine whether it is being called in the course of power failure
recovery. If this bit is set, the unit initialization routine returns
immediately.

• It forks twice, issuing the FORK macro twice in succession. The first
fork ensures, during system initialization or autoconfiguration, that
the SCSI port driver's initialization routines begin execution before
the class driver performs its initialization. The second fork guarantees
that a port driver initialization fork thread has created its SPD'I's and
initialized the SCSI ports.

Note that the unit initialization routine must be executing at fork IPL
when it invokes the SPl$CONNECT macro.

• It prepares for an SPI$CONNECT request by obtaining the SCSI port
ID, the SCSI device ID, and the SCSI logical unit number (LUN).

SCSI device unit numbers have the form dOu, where d is the device
ID and u is the LUN. The unit initialization routine obtains the SCSI
device unit number from UCB$W_UNIT and divides it by 100 (using
the EDIV instruction). The quotient (in Rl) is the device ID and the
remainder (in R2) is the LUN. Both should be values between 0 and 7.

SCSI port IDs are represented by the alphabetic characters A and B.
The unit initialization routine obtains this letter from the third byte in
DDB$T_NAME (for instance, A, from SKA500) and converts it to the
numeral 0 or 1.

Once it has obtained the SCSI port ID, the SCSI device ID, and the
SCSI LUN, the unit initialization routine sets up the registers for the
call to SPI$CONNECT as follows:

ID

SCSI port ID

SCSI device ID

SCSI LUN

Destination

Low-order word of R1

High-order word of R1

High-order word of R2

• It invokes the SPI$CONNECT macro. The port driver, as a result,
attempts to create a connection between the class driver and the port.

If the class driver expects notification of asynchronous events from the
target device, it supplies the address of a local callback routine in the
callback argument of the SPI$CONNECT macro. (For a discussion of
asynchronous event notification (AEN) mode, see Section 3.8.)

If the port driver returns failure status, the unit initialization
routine sets the device off line.

3-25

3.7.7

Writing a VMS SCSI Class Driver
3. 7 Components of a SCSI Class Driver

Start-1/0 Routine

3-26

If the port driver successfully creates the connection, the unit
initialization routine initializes UCB$L_MAXBCNT, UCB$L_
SCDT, and UCB$L_PDT with the values returned by the port
driver, sets the device unit on line (by setting UCB$V _ONLINE in
UCB$W _STS), and returns success status to its caller.

The VMS template SCSI class driver (SKDRIVER) unit initialization
routine performs such optional actions as setting up an internal stack in
the UCB for context-saving purposes, and allocating nonpaged pool for a
set of SCDRPs to be queued to the UCB for use by the driver's start-110
routine. See Appendix C for a listing of the template SCSI class driver.

The unit initialization routine may also invoke the SPI$GET_
CONNECTION_CHAR and SPI$SET_CONNECTION_CHAR macros
to examine (and possibly alter) the current data transfer mode, timeout,
command retry, and disconnect characteristics of the SCSI connection.
(See Section 3.4 for additional information.)

A SCSI class driver's start-110 routine must perform the following steps to
prepare a SCSI command for delivery to the port driver:

• Allocate an SCDRP from nonpaged pool. (The VMS template SCSI
class driver allocates SCDRPs in its unit initialization routine; its
start-110 routine simply removes a preallocated SCDRP from a queue
in the device UCB.)

• Insert the address of the IRP in SCDRP$L_IRP.

• Dispatch to a function-specific command preparation routine.

The command preparation routine performs the procedures described in
Section 3.3 and Section 3.4. Its actions typically involve the following:

• Invoking SPl$ALLOCATE_COMMAND_BUFFER to allocate a port
command buffer in which it assembles the SCSI command and
reserves a longword for the SCSI status byte to be returned from
command execution.

• Initializing fields in the SCDRP from the corresponding fields in the
IRP. For read-110 functions, the class driver must ensure that IRP$V_
FUNC is set in SCDRP$W_STS.

• Invoking SPI$MAP _BUFFER to make data in the process buffer
available to the port, and setting the SCDRP$V _BUFFER_MAPPED
bit in SCDRP$L_SCSI_FLAGS to indicate that the buffer has been
mapped to the port. (If it maps a system buffer, it must set both the
SCDRP$V _SOBUF and the SCDRP$V _BUFFER_MAPPED bits.)

• Invoking SPl$SEND_COMMAND to deliver the SCSI command to the
port driver.

• When the command completes, examining the port status, SCSI
status, and transfer count to determine the success or failure of the
110 operation. (See Section 3.4.6 for a detailed description of the means
by which a SCSI class driver typically responds to status information.)

3.7.8

3.7.9

Writing a VMS SCSI Class Driver
3. 7 Components of a SCSI Class Driver

If the operation fails, the class driver may take steps to obtain
additional status information from the target device, pursue error
recovery and retry the operation, enter a device-specific message in
the error log buffer, return error status to the $QIO system service, or
perform some combination of these actions.

• Invoking SPI$UNMAP _BUFFER to release port mapping resources.

• Invoking SPI$DEALLOCATE_COMMAND_BUFFER to deallocate the
port command buffer.

• Deallocating the SCDRP.

• Initiating device-independent postprocessing by invoking the REQCOM
macro.

Cancel-1/0 Routine
If a SCSI class driver receives a cancel request for an 1/0 operation
in progress on a SCSI device, its cancel-110 routine may invoke the
SPI$ABORT_COMMAND macro to terminate the 1/0 operation.

Note: VAXstation 3520/3540 systems do not implement the abort-SCSI­
command function.

Register Dumping Routine
A SCSI class driver's register dumping routine executes in the course of
a driver error logging operation. The class driver calls ERL$DEVICERR,
ERL$DEVICTMO, or ERL$DEVICEATTN, and the system error logging
routine calls the driver's register dumping routine.

The register dumping routine loads the error message buffer with all
available information about a SCSI device error in the buffer extension
reserved for SCSI class driver information (see Table 3-4). Detailed
information on SCSI class driver error logging appears in Section 3.5.2.

3.8 Servicing Asynchronous Events from a SCSI Device
Devices can perform one of two roles on the SCSI bus; either the target
role or the initiator role. Typically, the host processor serves as the
initiator and peripheral devices serve as targets. However, some devices
require that the host processor respond to an unsolicited event, such as
when the device is selected or deselected. When such an event occurs,
the target device must be capable of selecting the host and acting in the
initiator mode.

Certain MicroVAX/VAXstation systems implement the SCSI asynchronous
event notification (AEN) feature, allowing SCSI devices to act as initiators
on given connections. When AEN is enabled and the host is selected by a
target, the host

• Responds to selection

• Parses SCSI command packets

3-27

Writing a VMS SCSI Class Driver
3.8 Servicing Asynchronous Events from a SCSI Device

3-28

• Drives the SCSI bus phase as required by targets

The VMS SCSI class/port interface supports asynchronous event
notification by the SPI$CONNECT macro and an extension to the SCSI
port interface (SPI). Table 3-5 lists the SPI macros provided in the SPI
extension.

Table 3-5 SPI Extension Macros Supporting Asynchronous Event
Notification

SPl$FINISH_COMMAND1

SPl$RECEIVE_BYTES

SPl$RELEASE_BUS1

SPl$SEND_BYTES

SPl$SENSE_PHASE

SPl$SET _PHASE

Completes an 1/0 operation executing under
the AEN feature

Receives command, message, and data
bytes from a device acting as an initiator

Releases the SCSI bus

Sends command, message, and data bytes
to a device acting as an initiator

Reads the current SCSI bus phase

Sets the SCSI bus phase

1 A SCSI class driver must invoke either the SPl$FINISH_COMMAND macro or the
SPl$RELEASE_BUS macro (but not both) to complete an AEN operation.

To utilize asynchronous event notification, a SCSI class driver's unit
initialization routine must provide a callback address in the call to the
SPI$CONNECT macro. The port driver invokes the callback routine at
this address in response to selection by another device, passing to it the
address of the SPDT in R4 and the address of the SCDRP in R5.

If the SCSI class driver does not provide a callback address, no selections
are allowed on the connection that is established. If a selection does occur
on a connection that is not set up to accommodate selections, the port
driver attempts to send the BUS DEVICE RESET message to the device.
If that fails, the port driver resets the SCSI bus.

The flow of an AEN operation is as follows:

1 The class driver connects to the port driver and provides the callback
address.

2 The port driver receives a selection on an existing connection. If
selections are allowed, the port driver calls the class driver at its
callback address, holding the fork lock at IPL 8. R4 contains the
address of the SCDT and R5 contains the address of the SCDRP.

3 The class driver invokes SPI$SET_PHASE to set the SCSI bus to
COMMAND phase.

Because the target has selected the host, the host now becomes
the target. In SCSI, the target drives the phase of the SCSI bus
after selection. Thus, the class driver drives the SCSI bus to the
COMMAND phase to receive the command bytes from the initiator.

Writing a VMS SCSI Class Driver
3.8 Servicing Asynchronous Events from a SCSI Device

4 The class driver invokes SPI$RECEIVE_BYTES.

Because command packets are variable in size, the class driver
requests the first byte of the command to determine how many
additional command bytes are to be expected.

5 The class driver again invokes SPI$RECEIVE_BYTES.

Once the class driver has determined exactly how many command
bytes are expected, it requests all remaining command bytes with this
one call.

6 The class driver invokes SPI$SET_PHASE to set the SCSI bus phase
to DATA IN.

After the class driver has received all the command bytes and parsed
the command to identify it, the class driver sets the bus to the
appropriate phase. For instance, if the command is a READ BUFFER,
the class driver must set the bus phase to DATA IN.

7 The class driver invokes SPI$SEND_BYTES to return exactly the
number of data bytes requested by the initiator.

8 The class driver invokes SPI$FINISH_COMMAND.

9 The class driver returns from its callback routine.

Once the data transfer has completed, the I/O operation is done
from the class driver's perspective. The class driver completes the
I/O operation by returning status and the COMMAND COMPLETE
message to the device.

3.9 Configuring a SCSI Third-Party Device
The System Generation Utility (SYSGEN) loads a third-party SCSI class
driver into system virtual memory, creates additional data structures for
the device unit, and calls the driver's controller initialization routine
and unit initialization routine. SYSGEN automatically loads and
autoconfigures the SCSI port driver at system initialization. As part
of autoconfiguration, SYSGEN polls each device on each SCSI bus.
If the device identifies itself as a direct-access device, a direct-access
CDROM device, or a flexible disk device, SYSGEN automatically loads
the VMS disk class driver (DKDRIVER); if the device identifies itself as a
sequential-access device, SYSGEN automatically loads the VMS tape class
driver (MKDRIVER). If the autoconfiguration facility does not recognize
the type of the SCSI device, it loads no driver.

Consequently, third-party SCSI devices must be configured and their
drivers loaded by an explicit SYSGEN CONNECT command, as follows:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT rrunpdOu /NOADAPTER

In this command, mm represents the device mnemonic (for instance, SK;
p represents the SCSI port ID (for instance, the controller ID A or B); d
represents the SCSI device ID (a digit from 0 to 7); 0 signifies the digit
zero; and u represents the SCSI logical unit number (a digit from 0 to 7).

3-29

3.9.1

3.10

Writing a VMS SCSI Class Driver
3.9 Configuring a SCSI Third-Party Device

Disabling the Autoconfiguration of a SCSI Device
Note that, in special cases, you may need to prevent SYSGEN's
autoconfiguration facility from loading the VMS disk or tape class driver
for a device with a specific port ID and device ID. This would be the case
if a third-party device should identify itself as either a random-access or
sequential-access device and were to be supported by the VMS generic
SCSI class driver.

To disable the loading of a VMS disk or tape driver for any given device
ID, VMS Version 5.3 temporarily defines the special SYSGEN parameter
VMSD2.

The VMSD2 system parameter, as shown in Figure 3-5, stores a bit mask
of 32 bits in which the low-order byte corresponds to the first SCSI bus
(PKAO), the second byte corresponds to the second SCSI bus (PKBO), and
so on. For each SCSI bus, setting the low-order bit inhibits automatic
configuration of the device with SCSI device ID O; setting the second low­
order bit inhibits automatic configuration of the device with SCSI device
ID 1, and so forth. For instance, the value 00002000rn would prevent the
device with SCSI ID 5 on the bus identified by SCSI port ID B from being
configured. By default, all of the bits in the mask are cleared, allowing all
devices to be configured.

Figure 3-5 VMSD2 System Parameter

D c B A +- SCSI Port ID

ZK-1371 A-GE

Note: A future release of VMS will provide a different mechanism for
preventing the configuration of a VMS SCSI class driver for a
given device ID. At that time, the VMSD2 system parameter will
revert to its status of a special parameter reserved to Digital.

Debugging a SCSI Class Driver

3-30

VMS device drivers execute in kernel mode at elevated interrupt priority
levels. Problems in device driver code often manifest themselves in system
failures and system hangs. The VMS Device Support Manual describes
some general methods for debugging device drivers that can also be
used to debug a third-party SCSI class driver. While using the XDELTA
debugger to investigate problems in a class driver, however, you should set
breakpoints such that you can easily step over VMS SCSI port driver code.

Writing a VMS SCSI Class Driver
3.10 Debugging a SCSI Class Driver

As discussed in Section 3.5.2 and Appendix D, Digital strongly
recommends that a third-party SCSI class driver respond to port and
SCSI status return values, and that it incorporate an error logging routine
that records events significant to the device. Class driver error log entries,
as well as VMS port driver error log entries, can provide clues that are
helpful in resolving problems that may occur during the development of a
third-party SCSI class driver.

Among the problems that commonly occur in early versions of SCSI class
drivers are the following:

• The class driver has failed to deallocate a port resource, such as a
command buffer or port map registers. You should ensure that the
class driver invokes the SPI$DEALLOCATE_COMMAND_BUFFER
and the SPI$UNMAP _BUFFER macros before completing a data
transfer (that is, before invoking the REQCOM macro).

• The class driver has sent a SCSI command to a device, but the device
does not support the command. Typically, the device times out or the
port driver logs an entry for a bad phase transition event.

• The class driver has sent a misformatted SCSI command packet to a
device. This problem also results in a device timeout or phase error.

Hardware problems on a SCSI bus can cause a SCSI command to fail,
regardless of whether the device to which the command was directed is
at fault. When testing and debugging a class driver for a new device on a
SCSI bus, you should ensure that bus traffic from busy or faulty devices
elsewhere on a SCSI bus does not interfere with the device's operation.
Isolate the device by placing it on a SCSI bus reserved for it and the
processor alone or, if that is not possible, by placing it on the SCSI bus on
which the system disk does not reside.

3.10.1 Selecting a SCSI Bus Analyzer
Finally, in debugging a SCSI class driver, you may find a SCSI bus
analyzer to be a valuable aid.

A SCSI bus analyzer is a passive device that monitors all traffic on the
SCSI bus to which it is connected, and displays in a useful format the data
it has collected. Some analyzers can be used in an active mode to generate
packets on the bus; however, this is generally more useful to developers of
SCSI target devices than to writers of class drivers.

A SCSI bus analyzer is commonly used to verify that the commands the
class driver generates (or should generate) are actually being transmitted
across the SCSI bus. The most useful analyzers can interpret the SCSI
phase lines and display the phase along with the data sent during that
phase. This helps the writer of a class driver pinpoint the location of a
possible coding problem. Another common use of an analyzer is to capture
infrequent errors such as bus hangs or a target dropping off the bus.

3-31

Writing a VMS SCSI Class Driver
3.10 Debugging a SCSI Class Driver

3-32

Some features to look for in an analyzer are as follows:

• Ability to interpret the bus phase lines and display the data according
to the phase

• A "timing mode" that displays bus signals in the form of a timing
diagram

• Ability to trigger the analyzer on a specific event, such as a specific
data pattern in a specific phase or a bus reset

• Ability to dump the contents of the display to a printer

A SCSI Device Driver Data Structures

This appendix provides a condensed description of those data structures
referenced by SCSI class driver code. It lists fields in the order in which
they appear in the structures. All data structures discussed in this
appendix exist in nonpaged system memory.

Notes: Driver code must consider fields marked by asterisks to be read­
only fields. Fields marked reserved or unused are reserved for
future use by Digital unless otherwise specified.

When referring to locations within a data structure, a driver
should use symbolic offsets from the beginning of the structure
and not numeric offsets. Numeric offsets are likely to change with
each new release of the VMS operating system. The figures in
this appendix list VMS Version 5.3 numeric offsets to aid in driver
debugging.

A.1 SCSI Class Driver Request Packet (SCDRP)
The SCSI class driver allocates and builds a SCSI class driver request
packet (SCDRP) for each I/O request it services, passing it to the SCSI
port driver. The class driver routine initializes the SCDRP with the
addresses of the UCB, SCDT, and IRP and copies to it data obtained from
the IRP. The SCDRP also contains the addresses of the SCSI command
buffer and status buffer.

The SCSI class driver passes the address of the SCDRP to the port driver
in the call to SPI$SEND_COMMAND.

The SCDRP is illustrated in Figure A-1 and described in Table A-1.

Figure A-1 SCSI Class Driver Request Packet (SCDRP)

SCDRP$L_FQFL

SCDRP$L_FQBL

SCDRP$B_FLCK l SCDRP$B_CD_TYPE I
SCDRP$L_FPC

SCDRP$L_FR3

SCDRP$L_FR4

SCDRP$L_PORT _UCB

0

4

SCDRP$W_SCDRPSIZE 8

12

16

20

24

(continued on next page)
A-1

SCSI Device Driver Data Structures
A.1 SCSI Class Driver Request Packet (SCDRP)

Figure A-1 (Cont.) SCSI Class Driver Request Packet (SCDRP)

SCDRP$L_UCB 28

SCDRP$W_STS l SCDRP$W_FUNC 32

SCDRP$L_SVAPTE 36

reserved I SCDRP$W_BOFF 40

SCDRP$L_BCNT 44

SCDRP$L_MEDIA 48

SCDRP$L_ABCNT 52

SCDRP$L_SAVD_RTN 56

reserved 60

SCDRP$L_CDT 68

reserved 72

SCDRP$L_IRP 76

SCDRP$L_SVA_USER 80

SCDRP$L_CMD_BUF 84

SCDRP$L_CMD_BUF _LEN 88

SCDRP$L_CMD_PTR 92

SCDRP$L_STS_PTR 96

SCDRP$L_SCSl_FLAGS 1 00

SCDRP$L_DATACHECK 1 04

SCDRP$L_SCSl_STK_PTR 1 08

~~ SCDRP$L_SCSl_STK (32 bytes) ~ 12

SCDRP$L_CL_RETRY 1 44

SCDRP$L_DMA_ TIMEOUT 1 48

SCDRP$L_DISCON_ TIMEOUT 1 52

(continued on next page)

A-2

SCSI Device Driver Data Structures
A.1 SCSI Class Driver Request Packet (SCDRP)

Figure A-1 (Cont.) SCSI Class Driver Request Packet (SCDRP)

~

reserved

SCDRP$B_ TQE* (52 bytes)

SCDRP$L_ TQE_DELAY*

SCDRP$L_SVA_DMA *

SCDRP$L_SVA_CMD*

SCDRP$W_CMD_MAPREG*

SCDRP$W_CMD_NUMREG*

SCDRP$L_SVA_SPTE*

SCDRP$L_SCSIMSGO_PTR*

SCDRP$L_SCSIMSGl_PTR*

SCDRP$B_SCSIMSGO_BUF*

SCDRP$B_SCSIMSGl_BUF*

SCDRP$L_MSGO_PENDING*

SCDRP$L_MSGl_PENDING*

reserved

SCDRP$L_DATA_PTR*

SCDRP$L_ TRANS_CNT*

SCDRP$L_SAVE_DATA_CNT*

SCDRP$L_SAVE_DATA_PTR*

SCDRP$L_SDP _DATA_CNT*

SCDRP$L_SDP _DATA_PTR*

SCDRP$L_DUETIME*

SCDRP$L_ TIMEOUT _ADDR*

SCDRP$W_PAD_BCNT 1

~~

56

60

SCDRP$W_MAPREG*

SCDRP$W_NUMREG*

l SCDRP$B_LAST_MSGO*

212

216

220

224

228

232

236

240

244

48 2

256

260

264

268

272

276

280

284

288

SCDRP$W_BUSY_RETRY_CNT* SCDRP$W_CMD_BCNT*

292

296

300

(continued on next page)

A-3

SCSI Device Driver Data Structures
A.1 SCSI Class Driver Request Packet (SCDRP)

Figure A-1 (Cont.) SCSI Class Driver Request Packet (SCDRP)

SCDRP$W_SEL_RETRY _CNT* SCDRP$W_ARB_RETRY _CNT* 3 04

SCDRP$W_SEL_ TQE_RETRY _CNT* SCDRP$W_CMD_RETRY _CNT* 3 08

SCDRP$L_SAVER3* 3 12

SCDRP$L_SAVER6* 3 16

SCDRP$L_SAVER7* 3 20

SCDRP$L_SAVER3CL * 3 24

SCDRP$L_SAVEPCCL* 3 28

SCDRP$L_ABORTPCCL * 3 32

SCDRP$L_PO_STK_PTR* 3 36

* SCDRP$L_PO_STK* (24 bytes) *3 40

SCDRP$L_ TAG* 3 64

* reserved (40 bytes) ~ 68

Table A-1 Contents of SCSI Class Driver Request Packet

Field Name

SCDRP$L_FQFL

SCDRP$L_FQBL

SCDRP$W_SCDRPSIZE

SCDRP$B_CD_ TYPE

A-4

Contents

Fork queue forward link. This field points to the next entry in the SCSI
adapter's command buffer wait queue (ADP$L_BVPWAITFL), map register
wait queue (ADP$L_MRQFL), port wait queue (SPDT$L_PORT_WQFL), or
system fork queue.

Fork queue backward link. This field points to the previous entry in the
SCSI adapter's command buffer wait queue (ADP$L_BVPWAITFL), map
register wait queue (ADP$L_MRQFL), port wait queue (SPDT$L_PORT_
WQFL), or system fork queue.

Size of SCDRP. A SCSI class driver, after allocating sufficient nonpaged
pool for the SCDRP, writes the constant SCDRP$C_LENGTH into this
field.

Class driver type. This field is currently unused.

(continued on next page)

SCSI Device Driver Data Structures
A.1 SCSI Class Driver Request Packet (SCDRP)

Table A-1 (Cont.) Contents of SCSI Class Driver Request Packet

Field Name

SCDRP$B_FLCK

SCDRP$L_FPC

SCDRP$L_FR3

SCDRP$L_FR4

SCDRP$L_PORT _UCB

SCDRP$L_UCB

SCDRP$W_FUNC

SCDRP$W_STS

Contents

Index of the fork lock that synchronizes access to this SCDRP at fork
level. A SCSI class driver, after allocating sufficient nonpaged pool for
the SCDRP, copies to this field the value of UCB$B_FLCK. All devices
controlled by a single SCSI adapter and actively competing for shared
adapter resources must specify the same value for this field.

Address of instruction at which processing resumes when SCSI adapter
resources become available to satisfy a request stalled in an adapter
resource wait queue.

Value of R3 when the request is stalled to wait for SCSI adapter resources.
When the request is satisfied, this value is restored to R3 before the driver
resumes execution at SCDRP$L_FPC.

Value of R4 when the request is stalled to wait for SCSI adapter resources.
When the request is satisfied, this value is restored to R4 before the driver
resumes execution art SCDRP$L_FPC.

SCSI adapter's UCB address. The SCSI port driver reads and writes this
field in order to manage ownership of the SCSI port across bus reselection.

SCSI device's UCB address. The SCSI class driver initializes this field to
indicate that the SCDRP is active.

1/0 function code that identifies the function to be performed for the 1/0
request. The SCSI class driver's start-1/0 routine copies the contents of
IRP$W_FUNC to this field.

Status of 1/0 request. The SCSI class driver's start-1/0 routine copies the
contents of IRP$W_STS to this field.

Bits in the SCDRP$W_STS field correspond to the bits in the IRP$W_STS
field that describe the type of 1/0 function, as follows:

IRP$V_BUFIO Buffered-1/0 function

IRP$V_FUNC

IRP$V_PAGIO

IRP$V_COMPLX

IRP$V_VIRTUAL

IRP$V_CHAINED

IRP$V_SWAPIO

IRP$V _DIAGBUF

IRP$V_PHYSIO

IRP$V_TERMIO

IRP$V_MBXIO

IRP$V _EXTEND

IRP$V_FILACP

Read function

Paging-1/0 function

Complex-buffered-1/0 function

Virtual-1/0 function

Chained-buffered-1/0 function

Swapping-1/0 function

Diagnostic buffer present

Physical-1/0 function

Terminal 1/0 (for priority increment
calculation)

Mailbox-1/0 function

An extended IRP is linked to this IRP

File ACP 1/0

(continued on next page)

A-5

SCSI Device Driver Data Structures
A.1 SCSI Class Driver Request Packet (SCDRP)

Table A-1 (Cont.) Contents of SCSI Class Driver Request Packet

Field Name

SCDRP$L_SVAPTE

SCORP$W_BOFF

SCORP$L_BCNT

SCORP$L_MEOIA

SCORP$L_ABCNT

SCORP$L_SAVO_RTN

SCORP$L_COT

SCORP$L_IRP

SCDRP$L_SVA_USER

SCORP$L_CMO_BUF

SCDRP$L_CMD_BUF _LEN

SCDRP$L_CMD_PTR

A-6

Contents

IRP$V_MVIRP

IRP$V _SRVIO

IRP$V_KEY

Mount-verification 1/0 function

Server-type 1/0

Encrypted function (encryption key address
at IRP$L_KEYDESC)

For a direct-110 transfer, virtual address of the first page-table entry (PTE)
of the 1/0 transfer buffer. This address is originally written to IRP$L_
SVAPTE by the FDT routine that locks process pages. For a buffered-110
transfer, address of a buffer in system address space. This address is
originally written to IRP$L_SVAPTE by the class driver FDT routine that
allocates the buffer.

The class driver's start-1/0 routine copies the address from the IRP to this
field.

For a direct-110 transfer, byte offset into the first page of the buffer; for
a buffered-110 transfer, number of bytes to be charged to the process
requesting the transfer. FOT routines calculate this value and write it to
IRP$W_BOFF.

The class driver's start-1/0 routine copies the value from the IRP to this
field.

Byte count of the 1/0 transfer. Class driver FOT routines calculate this
value and write it to IRP$L_BCNT. The class driver's start-1/0 routine
copies the value from the IRP to this field.

Spare field.

Accumulated count of bytes transferred. The SCSI class driver maintains
this field to accomplish segmented transfers.

Saved return address from Level 1 JSB.

Address of the SCSI connection descriptor table (SCOT). When the SCSI
class driver's unit initialization routine invokes the SPl$CONNECT macro,
the macro returns the address of the SCOT describing the connection
it established to the SCSI port. The class driver stores that address in
SCORP$L_COT.

Address of 1/0 request block. The SCSI class driver copies the address of
the IRP to this field.

System virtual address of a process buffer as mapped in system space (SO
space). The SCSI port driver initializes this field as the result of a class
driver call to SPl$MAP _BUFFER.

Address of the port command buffer. The SCSI class driver initializes this
field with the address returned from a call to SPl$ALLOCATE_COMMANO_
BUFFER.

Length of SCSI command buffer.

Address of the SCSI command descriptor block (its length byte) in the
SCSI command buffer allocated by the SCSI port driver. The SCSI class
driver initializes this field.

(continued on next page)

SCSI Device Driver Data Structures
A.1 SCSI Class Driver Request Packet (SCDRP)

Table A-1 (Cont.) Contents of SCSI Class Driver Request Packet

Field Name

SCDRP$L_STS_pTR

SCDRP$L_SCSl_FLAGS

SCDRP$L_DATACHECK

SCDRP$L_SCSl_STK_PTR

SCDRP$L_SCSl_STK

SCDRP$L_CL_RETRY

SCDRP$L_DMA_ TIMEOUT

SCDRP$L_DISCON_ TIMEOUT

SCDRP$W_PAD_BCNT

Contents

Address of SCSI status byte in the port command buffer. The SCSI class
driver initializes this field.

SCSI flags. The SCSI class and port drivers use the following bits:

SCDRP$V_SOBUF System buffer mapped. A SCSI
class driver sets this bit, before
invoking SPl$MAP _BUFFER,

SCDRP$V_BUFFER_MAPPED

SCDRP$V _DISK_SPUN_UP

if the data transfer buffer is in
system space (SO).

Data transfer buffer mapped. A
SCSI class driver sets this bit,
after invoking SPl$MAP _BUFFER,
to indicate that the data transfer
buffer (either a system or process
space buffer) has been mapped.

START UNIT command issued.
The VMS SCSI disk class sets this
bit.

Address of buffer for datacheck operations. A SCSI class driver maintains
this field.

Stack pointer of the class driver's return address stack.

Class driver's return address stack. This stack is 32 bytes long.

Retry count.

Maximum number of seconds for a target to change the SCSI bus phase
or complete a data transfer.

Upon sending the last command byte, the port driver waits this many
seconds for the target to change the bus phase lines and assert REQ
(indicating a new phase). Or, if the target enters the DATA IN or DATA
OUT phase, the transfer must be completed within this interval.

A class driver can initialize this field to specify a per-request OMA timeout
value.

Maximum number of seconds, from the time the initiator receives the
DISCONNECT message, for a target to reselect the initiator so that it can
proceed with the disconnected 1/0 transfer. A class driver can initialize this
field to specify a per-request disconnect timeout value.

Pad byte count. This field contains the number of bytes required to
make the size of the user buffer equal to the data length value required
by a specific SCSI command. A SCSI class driver uses this field to
accommodate SCSI device classes that require that the transfer length be
specified in terms of a larger data unit than the count of bytes expressed
in the SCDRP$L_BCNT. If the total amount of data requested in the SCSI
command does not match that specified in the SCDRP$L_BCNT, this field
must account for the difference.

(continued on next page)

A-7

SCSI Device Driver Data Structures
A.1 SCSI Class Driver Request Packet (SCDRP)

Table A-1 (Cont.) Contents of SCSI Class Driver Request Packet

Field Name

SCDRP$B_ TQE*

SCDRP$L_ TQE_DELAY*

SCDRP$L_SVA_DMA *

SCDRP$L_SVA_ CMD*

SCDRP$W_MAPREG*

SCDRP$W_CMD_MAPREG*

SCDRP$W_NUMREG*

SCDRP$W_CMD_NUMREG*

SCDRP$L_SVA_SPTE*

SCDRP$L_SCSIMSGO_PTR*

SCDRP$L_SCSIMSGl_PTR*

SCDRP$B_SCSIMSGO_BUF*

SCDRP$B_SCSIMSGl_BUF*

SCDRP$L_MSGO_PENDING*

SCDRP$L_MSG l_PEN DING*

SCDRP$B_LAST_MSGO*

SCDRP$L_DATA_PTR*

SCDRP$L_ TRANS_ CNT*

A-8

Contents

Timer queue element, used by the port driver to time out pending
disconnected 1/0 transfers. When this TOE expires, the timer thread
times out expired pending 1/0 transfers.

Delay time for next TOE delay.

System address of the section of the port OMA buffer allocated for the data
transfer.

System address of the segment of the port OMA buffer allocated for the
port command buffer.

Page number of the first port OMA buffer page allocated for the data
transfer.

Page number of the first port OMA buffer page allocated for the port
command buffer.

Number of port OMA buffer pages allocated for the data transfer.

Number of port OMA buffer pages allocated for the port OMA buffer.

System virtual address of the system page-table entry that maps the first
page of the process buffer in SO space.

SCSI output message pointer.

SCSI input message pointer.

SCSI output message buffer.

SCSI input message buffer.

Output message pending flags. One or more of the following bits are set
in this longword if the port driver is to send the corresponding message:

SCDRP$V_IDENTIFY IDENTIFY message

SCDRP$V_SYNC_OUT SYNCHRONOUS DATA
TRANSFER REQUEST (out)
message

SCDRP$V _BUS_DEVICE_RESET

SCDRP$V _MESSAGE_PARITY _
ERROR

SCDRP$V _ABORT

SCDRP$V _NOP

SCDRP$V_MESSAGE_REJECT

BUS DEVICE RESET message

MESSAGE PARITY ERROR
message

ABORT message

NO OPERATION message

MESSAGE REJECT message

Input message pending flags. The only currently defined bit is SCDRP$V _
SYNC_IN, which is set when the port driver expects to receive a
SYCHRONOUS DATA TRANSFER REQUEST (in) message.

Last message sent.

Current data pointer address.

Actual number of bytes sent or received by the port driver. The port driver
returns a value in this field to the class driver when it completes a SCSI
data transfer.

(continued on next page)

SCSI Device Driver Data Structures
A.1 SCSI Class Driver Request Packet (SCDRP)

Table A-1 (Cont.) Contents of SCSI Class Driver Request Packet

Field Name Contents

SCDRP$L_SAVE_DATA_CNT* Running count of bytes (in two's-complement form) to be transferred. The
port driver maintains this count.

SCDRP$L_SAVE_DATA_PTR*

SCDRP$L_SDP _DATA_CNT*

SCDRP$L_SDP _DATA_PTR*

SCDRP$L_DUETIME*

SCDRP$L_ TIMEOUT _ADDR*

SCDRP$W_CMD_BCNT*

SCDRP$W_BUSY_RETRY_CNT*

SCDRP$W_ARB_RETRY _CNT*

SCDRP$W_SEL_RETRY _CNT*

SCDRP$W_CMD_RETRY _CNT*

SCDRP$W_SEL_TQE_RETRY_
CNT*

SCDRP$L_SAVER3*

SCDRP$L_SAVER6*

SCDRP$L_SAVER7*

SCDRP$L_SAVER3CL *

SCDRP$L_SAVEPCCL *

SCDRP$L_ABORTPCCL *

SCDRP$L_PO_STK_PTR*

SCDRP$L_PO_STK*

SCDRP$L_ TAG*

Pointer to current port DMA buffer segment. The SCSI port driver
maintains this pointer.

Storage for SOP data count.

Storage for SOP data pointer.

Timeout time for a disconnected 1/0 transfer.

Address of timeout routine.

Command byte count.

Count of remaining busy retries.

Count of remaining arbitration retries.

Count of remaining selection retries.

Count of remaining command retries.

Count of remaining TOE retries.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Stack pointer of the port driver's return address stack.

Port driver's return address stack. This stack is 24 bytes long.

Reserved to Digital.

A.2 SCSI Connection Descriptor Table (SCOT)
The SCSI connection descriptor table (SCDT) contains information specific
to a connection established between a SCSI class driver and the port,
such as phase records, timeout values, and error counters. The SCSI port
driver creates an SCDT each time a SCSI class driver, by invoking the
SPI$CONNECT macro, connects to a device on the SCSI bus. The class
driver stores the address of the SCDT in the SCSI device's UCB.

The SCSI port driver has exclusive access to the SCDT. A SCSI class
driver has no access to this structure.

The SCDT is illustrated in Figure A-2 and described in Table A-2.

A-9

SCSI Device Driver Data Structures
A.2 SCSI Connection Descriptor Table (SCDT)

Figure A-2 SCSI Connection Descriptor Table (SCDn

SCDT$L_FLINK* 0

reserved l SCDT$W_SIZE* 4

SCDT$B_FLCK* l reserved 8

SCDT$L_FPC* 12

SCDT$L_FR3* 16

SCDT$L_FR4* 20

SCDT$L_STS* 24

SCDT$W_STATE* I SCDT$W_SCDT _TYPE* 28

SCDT$L_SPDT* 32

SCDT$L_SCSl_PORT _ID* 36

SCDT$L_SCSl_BUS_ID* 40

SCDT$L_SCSl_LUN* 44

reserved 48

SCDT$L_SCDRP _ADDR* 56

SCDT$L_BUS_PHASE* 60

SCDT$L_OLD _PHASES* 64

~~ SCDT$W_PHASES* (44 bytes) * 68

SCDT$L_PHASE_STK_PTR* 112

SCDT$L_PHASE_END_STK_PTR* 116

SCDT$L_EVENTS_SEEN* 120

SCDT$L_ARB_FAIL_CNT* 124

SCDT$L_SEL_FAIL_CNT* 128

SCDT$L_PARERR_CNT* 132

(continued on next page)

A-10

SCSI Device Driver Data Structures
A.2 SCSI Connection Descriptor Table (SCOT)

Figure A-2 (Cont.) SCSI Connection Descriptor Table (SCOT)

SCDT$L_MISPHS_CNT* 1 36

SCDT$L_BADPHS_CNT* 1 40

SCDT$L_RETRY _CNT* 1 44

SCDT$L_RST _ CNT* 1 48

SCDT$L_ CTLERR_CNT* 1 52

SCDT$L_BUSERR_CNT* 1 56

SCDT$L_CMDSENT* 1 60

SCDT$L_MSGSENT* 1 64

SCDT$L_BYTSENT* 1 68

SCDT$L_ CON_FLAGS* 1 72

SCDT$L_SYNCHRONOUS* 1 76

SCDT$W_ TRANSFER_PERIOD* SCDT$W_REQACK_OFFSET* 1 80

SCDT$W_ARB_RETRY _CNT* SCOT$W_BUSY_RETRY_CNT* 1 84

SCOT$W_CMO_RETRY _CNT* SCDT$W_SEL_RETRY _CNT* 1 88

SCOT$L_OMA_ TIMEOUT* 1 92

SCOT$L_DISCON_ TIMEOUT* 1 96

SCOT$L_SEL_CALLBACK* 2 00

~ reserved { 40 bytes) *2 04

Table A-2 Contents of SCSI Connection Descriptor Table

Field Name

SCDT$L_FLINK*

Contents

SCOT forward link. This field points to the next SCOT in the port's SCOT
list {at SPOT$L_SCOT_VECTOR). The SCSI port driver initializes this field
when it creates the SCOT in response to an SP1$CONNECT call.

(continued on next page)

A-11

SCSI Device Driver Data Structures
A.2 SCSI Connection Descriptor Table (SCOT)

Table A-2 (Cont.) Contents of SCSI Connection Descriptor Table

Field Name

SCDT$W_SIZE*

SCDT$B_FLCK*

SCDT$L_FPC*

SCDT$L_FR3*

SCDT$L_FR4*

SCDT$L_STS*

SCDT$W_SCDT_TYPE*

SCDT$W_STATE*

SCDT$L_SPDT*

SCDT$L_SCSl_PORT _ID*

SCDT$L_SCSl_BUS_ID*

SCDT$L_SCSl_LUN*

SCDT$L_SCDRP _ADDR*

A-12

Contents

Size of SCOT. The port driver, after allocating sufficient nonpaged pool for
the SCOT, writes the constant SCDT$C_LENGTH into this field.

Index of the fork lock that synchronizes access to this SCOT at fork
level. The SCSI port driver, when creating the SCOT, initializes this field
with SPL$C_IOLOCK8. The SCOT fork block is used during an ABORT
command request on the connection.

Address of instruction at which the suspended port driver thread is to be
resumed.

Value of R3 when the request is stalled during disconnection. The value in
R3 is restored before a suspended driver thread is resumed.

Value of R4 when the request is stalled during disconnection. The value in
R4 is restored before a suspended driver thread is resumed.

Connection status. This field is a bit map, maintained by the port driver.
The only currently defined bit is SCDT$V_BSY (connection busy).

Type of SCOT.

SCSI connection state. The VMS SCSI port driver maintains this field,
using the following constants:

SCDT$C_CLOSED Closed

SCDT$C_OPEN

SCDT$C_FAIL

Open

Failed

Address of port descriptor table with which this SCOT is associated.

SCSI port ID of the port to which this connection is established.

SCSI device ID of the device unit to which this connection is established.

SCSI logical unit number (LUN) of the device unit to which this connection
is established.

Address of SCDRP current on the connection.

(continued on next page)

SCSI Device Driver Data Structures
A.2 SCSI Connection Descriptor Table (SCOT)

Table A-2 (Cont.) Contents of SCSI Connection Descriptor Table

Field Name

SCDT$L_BUS_PHASE*

SCDT$L_ OLD _PHASES*

SCDT$W_PHASES*

SCDT$L_PHASE_STK_PTR*

SCDT$L_PHASE_END_STK_PTR*

SCDT$L_EVENTS_SEEN*

SCDT$L_ARB_FAIL_CNT*

SCDT$L_SEL_FAIL_CNT*

SCDT$L_PARERR_CNT*

SCDT$L_M ISPHS_CNT*

Contents

Current SCSI bus phase. The VMS SCSI port driver defines the following
flags in this longword bit map:

SCDT$V _DATAOUT DATA OUT phase

SCDT$V _DATAIN DATA IN phase

SCDT$V_CMD

SCDT$V_STS

SCDT$V _INV1

SCDT$V _INV2

SCDT$V _MSGOUT

SCDT$V_MSGIN

SCDT$V_ARB

SCDT$V_SEL

SCDT$V _RESEL

SCDT$V _DISCON

SCDT$V _ TMODISCON

SCDT$V_CMD_CMPL

SCDT$V_PND_RESEL

SCDT$V_FREE

Bus phase tracking information.

COMMAND phase

STATUS phase

Invalid phase 1

Invalid phase 2

MESSAGE OUT phase

MESSAGE IN phase

ARBITRATION phase

SELECTION phase

RESELECTION phase

DISCONNECT message seen

Disconnect operation timed out

COMMAND COMPLETE message
received

Reselection interrupt pending

BUS FREE phase

Bus phase tracking information. This field is 44 bytes long.

Address of the top of the bus phase stack. The VMS SCSI port driver uses
the bus phase stack to maintain a phase histogram.

Address of the bottom of the bus phase stack. The VMS SCSI port driver
uses the bus phase stack to maintain a phase histogram.

Longword bit mask of bus events seen by the VMS SCSI port driver. VMS
defines the following bits:

SCDT$V _PARERR Parity error

SCDT$V _BSYERR

SCDT$V _MISPHS

SCDT$V _BADPHS

SCDT$V_RST

SCDT$V _CTLERR

SCDT$V _BUSERR

Count of arbitration failures.

Count of selection failures.

Count of parity errors.

Count of missing phases errors.

Bus lost during command

Missing bus phase

Bad phase transition

Bus reset during command

SCSI controller error

SCSI bus error

(continued on next page)

A-13

SCSI Device Driver Data Structures
A.2 SCSI Connection Descriptor Table {SCOT)

Table A-2 (Cont.) Contents of SCSI Connection Descriptor Table

Field Name

SCDT$L_BADPHS_CNT*

SCDT$L_RETRY _ CNT*

SCDT$L_RST _CNT*

SCDT$L_ CTLERR_ CNT*

SCDT$L_BUSERR_CNT*

SCDT$L_CMDSENT*

SCDT$L_MSGSENT*

SCDT$L_BYTSENT*

SCDT$L_CON_FLAGS*

SCDT$L_SYNCHRONOUS*

SCDT$W_REQACK_OFFSET*

SCDT$W_ TRANSFER_PERIOD*

SCDT$W_BUSY _RETRY _CNT*

SCDT$W_ARB_RETRY_CNT*

SCDT$W_SEL_RETRY _CNT*

A-14

Contents

Count of bad phase errors.

Count of retries.

Count of bus resets.

Count of controller errors.

Count of bus errors.

Number of commands sent on this connection.

Number of messages sent on this connection.

Number of bytes sent during DATA OUT phase.

Connection-specific flags. The VMS SCSI port driver sets or clears
these flags according to information the SCSI class driver supplies to the
SPl$SET_CONNECTION_CHAR macro. The following bits are defined:

SCDT$V _ENA_DISCON Enable disconnect

SCDT$V _DIS_RETRY Disable command retry

SCDT$V_TARGET_MODE Enable asynchronous event
notification from target

Synchronous data transfer enabled field. This longword contains
1 if synchronous data transfers are enabled for this connection;
otherwise it contains a 0. The VMS SCSI port driver writes this field
according to information the SCSI class driver supplies to the SPl$SET_
CONNECTION_CHAR macro.

For synchronous data transfers, maximum number of REQs outstanding on
the connection before an ACK is transmitted. The VMS SCSI port driver
writes this field according to information the SCSI class driver supplies to
the SPl$SET_CONNECTION_CHAR macro.

Number of 4-nanosecond ticks between a REQ and an ACK on this
connection. The VMS SCSI port driver writes this field according
to information the SCSI class driver supplies to the SPl$SET_
CONNECTION_CHAR macro.

Remaining number of retries allowed on this connection to successfully
send a command to the target device. The VMS SCSI port driver initially
writes this field according to information the SCSI class driver supplies to
the SP1$SET_CONNECTION_CHAR macro.

Remaining number of retries allowed on this connection while waiting for
the port to win arbitration of the bus. The VMS SCSI port driver initially
writes this field according to information the SCSI class driver supplies to
the SPl$SET_CONNECTION_CHAR macro.

Select retry count. Remaining number of retries allowed on this connection
while waiting for the port to be selected by the target device. The VMS
SCSI port driver initially writes this field according to information the SCSI
class driver supplies to the SPl$SET_CONNECTION_CHAR macro.

(continued on next page)

SCSI Device Driver Data Structures
A.2 SCSI Connection Descriptor Table (SCOT)

Table A-2 (Cont.) Contents of SCSI Connection Descriptor Table

Field Name Contents

SCDT$W_CMD_RETRY _CNT* Remaining number of retries allowed on this connection to successfully
send a command to the target device. The VMS SCSI port driver initially
writes this field according to information the SCSI class driver supplies to
the SPl$SET_CONNECTION_CHAR macro.

SCDT$L_DMA_ TIMEOUT* Timeout value (in seconds) for a target to change the SCSI bus phase or
complete a data transfer. The VMS SCSI port driver initially writes this field
according to information the SCSI class driver supplies to the SPl$SET_
CONNECTION_CHAR macro.

SCDT$L_DISCON_ TIMEOUT* Disconnect timeout. Default timeout value (in seconds) for a target to
reselect the initiator to proceed with a disconnected 1/0 transfer. The VMS
SCSI port driver initially writes this field according to information the SCSI
class driver supplies to the SPl$SET_CONNECTION_CHAR macro.

SCDT$L_SEL_CALLBACK* Address of class driver's asynchronous event notification callback routine.

A.3 SCSI Port Descriptor Table (SPOT)
The SCSI port descriptor table (SPDT) contains information specific to a
SCSI port, such as the port driver connection database. The SPDT also
includes a set of vectors, corresponding to the SPI macros invoked by
SCSI class drivers, that point to service routines within the port driver.
The SCSI port driver's unit initialization routine creates an SPDT for
each SCSI port defined for a specific MicroVAXNAXstation system and
initializes each SPI vector.

The port driver reads and writes fields in the SPDT. The class driver reads
the SPDT indirectly when it invokes an SPI macro.

The SPDT is illustrated in Figure A-3 and described in Table A-3.

Figure A-3 SCSI Port Descriptor Table (SPOT)

SPDT$L_FLINK*

reserved

SPDT$B_FLCK* lSPDT$B_SCSl_INT_MSK*

SPDT$L_FPC*

SPDT$L_FR3*

SPDT$L_FR4*

SPDT$L_SCSl_PORT _ID*

SPDT$L_SCSl_BUS_ID*

0

SPDT$W_SIZE* 4

SPDT$W_SPDT _TYPE* 8

12

16

20

24

28

(continued on next page)

A-15

SCSI Device Driver Data Structures
A.3 SCSI Port Descriptor Table (SPOT)

Figure A-3 (Cont.) SCSI Port Descriptor Table (SPOT)

SPDT$L_STS*

SPDT$L_PORT _WQFL *

SPDT$L_PORT _WQBL *

SPDT$L_MAXBYTECNT*

reserved

SPDT$L_PORT_UCB*

SPDT$L_PORT_CSR*

SPDT$L_PORT _IDB*

SPDT$L_DMA_BASE*

SPDT$L_SPTE_BASE*

SPDT$L_SPTE_SVAPTE*

SPDT$L_ADP*

* SPDT$L_PORT_RING* (64 bytes)

SPDT$L_PORT _RING_PTR*

SPDT$L_OWNERSCDT*

* SPDT$L_SCDT_VECTOR* (256 bytes)

SPDT$L_DLCK*

reserved

SPDT$L_SEL_SCDRP*

SPDT$L_ENB_SEL_SCDRP*

SPDT$L_MAP _BUFFER*

SPDT$L_UNMAP*

A-16

l SPDT$B_DIPL*

*
1

1

+i

32

36

40

44

48

56

60

64

68

72

76

80

84

48

52

56

412

4 16

424

428

432

436

(continued on next page)

SCSI Device Driver Data Structures
A.3 SCSI Port Descriptor Table (SPOT)

Figure A-3 (Cont.) SCSI Port Descriptor Table (SPOT)

SPDT$L_SEND*

SPDT$L_SET_CONN_CHAR*

SPDT$L_GET _CONN_CHAR*

SPDT$L_RESET*

SPDT$L_CONNECT*

SPDT$L_DISCONNECT*

SPDT$L_ALLOC_COMMAND_BUFFER*

SPDT$L_DEALLOC_COMMAND_BUFFER*

SPDT$L_ABORT*

SPDT$L_SET_PHASE*

SPDT$L_SENSE_PHASE*

SPDT$L_SEND_BYTES*

SPDT$L_RECEIVE_BYTES*

S PDT$L_FIN ISH_ CMD*

SPDT$L_RELEASE_BUS*

~~ reserved (52 bytes)

reserved

* SPDT$B_ TQE* (52 bytes)

SPDT$L_ TQE_DELAY*

SPDT$L_BUS_HUNG_CNT*

SPDT$L_ TARRST _CNT*

SPDT$L_RETRY _CNT*

SPDT$L_STRAY _INT_CNT*

SPDT$L_UNEXP _INT_CNT*

1 BUS_HUNG_ VEC*

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

~

5

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

00

52

~ 56

6

6

08

12

16

20

24

28

6

6

6

6

(continued on next page)

A-17

SCSI Device Driver Data Structures
A.3 SCSI Port Descriptor Table (SPOT)

Figure A-3 (Cont.) SCSI Port Descriptor Table (SPOT)

SPDT$L_NODISCON_CNT* 63 2

SPDT$W_DISCON_CNT* I reserved 63 6

SPDT$L_PORT _FLAGS* 64 0

SPOT$L_ VERSION_CHECK* 6 44

* reserved (36 bytes) 8 ~4

SPDT$B_EVENT_CNT* l SPDT$B_MODE* l SPDT$B_STATUS* l SPDT$B_CUR_STAT* 68 4

* reserved (16 bytes) ~8 8

Table A-3 Contents of SCSI Port Descriptor Table

Field Name

SPDT$L_FLINK*

SPDT$W_SIZE*

SPDT$W_SPDT _TYPE*

SPDT$B_SCSl_INT _MSK*

SPOT$B_FLCK*

SPDT$L_FPC*

SPDT$L_FR3*

SPDT$L_FR4*

SPDT$L_SCSl_PORT _ID*

SPDT$L_SCSl_BUS_ID*

A-18

Contents

SPOT forward link. This field points to the next SPOT in the system SPOT
list. The SCSI port driver initializes this field when it creates the SPDT.

Size of SPDT. The VMS SCSI port driver initializes this field to SPDT$C_
PKNLENGTH or SPDT$C_PKSLENGTH when creating the SPOT.

SPDT type. The VMS SCSI port driver initializes this field to SPOT$C_
PKN or SPDT$C_PKS when creating the SPDT.

Port-specific interrupt mask.

Index of the fork lock that synchronizes access to this SPDT at fork level.
The SCSI port driver, when creating the SPDT, copies to this field the
value of UCB$B_FLCK. The SPDT fork block is used during reselection
and disconnection.

Address of instruction at which the suspended port driver thread is to be
resumed.

Value of R3 when the request is stalled during disconnection. The value in
R3 is restored before a suspended driver thread is resumed.

Value of R4 when the request is stalled during disconnection. The value in
R4 is restored before a suspended driver thread is resumed.

SCSI port ID, an alphabetic value from A to Z.

SCSI device ID of the port, a numeric value from 0 to 7.

(continued on next page)

SCSI Device Driver Data Structures
A.3 SCSI Port Descriptor Table (SPOT)

Table A-3 (Cont.) Contents of SCSI Port Descriptor Table

Field Name

SPDT$L_STS*

SPDT$L_PORT _WQFL *

SPDT$L_PORT _WQBL *

SPDT$L_MAXBYTECNT*

SPDT$L_PORT _UCB*

SPDT$L_PORT _CSR*

SPDT$L_PORT _IDB*

SPDT$L_DMA_BASE*

SPDT$L_SPTE_BASE*

SPDT$L_SPTE_SVAPTE*

SPDT$L_ADP*

SPDT$L_PORT _RING*

SPDT$L_PORT _RING_PTR*

SPDT$L_OWNERSCDT*

SPDT$L_SCDT _VECTOR*

SPDT$L_DLCK*

SPDT$B_DIPL*

SPDT$L_SEL_SCDRP*

SPDT$L_ENB_SEL_SCDRP*

SPDT$L_MAP_BUFFER*

Contents

Port device status. This field is a bit map maintained by the port driver.
The following bits are defined:

SPDT$V_ONLINE Online

SPDT$V _ TIMOUT

SPDT$V _ERLOGIP

SPDT$V _CANCEL

SPDT$V _POWER

SPDT$V_BSY

Timed out

Error log in progress

Cancel 1/0

Power failed while unit busy

Busy

SPDT$V _FAILED Port failed operation or initialization

Port wait queue forward link. This field points to the first SCDRP waiting
for the port to be free.

Port wait queue backward link. This field points to the last SCDRP waiting
for the port to be free.

Maximum byte count tor a transfer using this port.

Address of port UCB.

Address of the port hardware's CSR.

Address of the port IDB.

Base address of the port's OMA buffer.

System virtual address of the system page-table entry mapping the first
page of the port's OMA buffer.

System virtual address of the system page-table entry that double-maps
the data transfer buffer.

Address of the adapter control block managing port resources.

64-byte field recording the PCs of port channel request and release
transactions.

Pointer to the current port channel ring buffer entry.

Address of the SCOT of the connection that currently owns the port.

256-byte vector, recording the SCOT addresses associated with
connections active tor a given SCSI device ID (0 through 7).

Address of device lock that-in a VMS multiprocessing environment­
synchronizes access to device registers and those fields at the SPOT
accessed at device IPL. The port driver initializes this field from UCB$L_
DLCK when it creates the SPOT.

Interrupt priority level (IPL) at which the device requests hardware
interrupts. The port driver initializes this field from UCB$L_DLCK when it
creates the SPOT.

SCDRP used during selection interrupt.

SCDRP used to enable selection.

Address of the port driver routine that executes in response to a class
driver's SPl$MAP _BUFFER macro call. The port driver initializes this field.

(continued on next page)

A-19

SCSI Device Driver Data Structures
A.3 SCSI Port Descriptor Table (SPOT)

Table A-3 (Cont.) Contents of SCSI Port Descriptor Table

Field Name

SPDT$L_UNMAP*

SPDT$L_SEND*

SPDT$L_SET _CONN_CHAR*

SPDT$L_GET _CONN_CHAR*

SPDT$L_RESET*

SPDT$L_CONNECT*

SPDT$L_DISCONNECT*

SPDT$L_ALLOC_COMMAND_
BUFFER*

SPDT$L_DEALLOC_COMMAND_
BUFFER*

SPDT$L_ABORT*

SPDT$L.,_SET_PHASE*

SPDT$L_SENSE_PHASE*

SPDT$L_SEND_BYTES*

SPDT$L_RECEIVE_BYTES*

SPDT$L_FINISH_CMD*

SPDT$L_RELEASE_BUS*

A-20

Contents

Address of the port driver routine that executes in response to a class
driver's SPl$UNMAP _BUFFER macro call. The port driver initializes this
field.

Address of the port driver routine that executes in response to a class
driver's SPl$SEND_COMMAND macro call. The port driver initializes this
field.

Address of the port driver routine that executes in response to a class
driver's SPl$SET_CONNECTION_CHAR macro call. The port driver
initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPl$GET _CONNECTION_CHAR macro call. The port driver
initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPl$RESET macro call. The port driver initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPl$CONNECT macro call. The port driver initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPl$DISCONNECT macro call. The port driver initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPl$ALLOCATE_COMMAND_BUFFER macro call. The port driver
initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPl$DEALLOCATE_COMMAND_BUFFER macro call. The port
driver initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPl$ABORT_COMMAND macro call. The port driver initializes this
field.

Address of the port driver asynchronous event notification (AEN) routine
that executes in response to a class driver's SPl$SET_PHASE macro call.
The port driver initializes this field.

Address of the port driver AEN routine that executes in response to a class
driver's SPl$SENSE_PHASE macro call. The port driver initializes this
field.

Address of the port driver AEN routine that executes in response to a class
driver's SPl$SEND_BYTES macro call. The port driver initializes this field.

Address of the port driver AEN routine that executes in response to a class
driver's SPl$RECEIVE_BYTES macro call. The port driver initializes this
field.

Address of the port driver AEN routine that executes in response to a class
driver's SPl$FINISH_COMMAND macro call. The port driver initializes this
field.

Address of the port driver routine that executes in response to a class
driver's SPl$RELEASE_BUS macro call. The port driver initializes this
field.

(continued on next page)

SCSI Device Driver Data Structures
A.3 SCSI Port Descriptor Table (SPOT)

Table A-3 (Cont.) Contents of SCSI Port Descriptor Table

Field Name

SPDT$B_BUS_HUNG_VEC*

SPDT$B_ TOE*

SPDT$L_ TOE_DELAY*

SPDT$L_BUS_HUNG_CNT*

SPDT$L_ TARRST _CNT*

SPDT$L_RETRY _CNT*

SPDT$L_STRAY _INT _CNT*

SPDT$L_UNEXP _INT_CNT*

SPDT$L_NODISCON_CNT*

SPDT$W_DISCON_CNT*

SPDT$L_PORT _FLAGS*

SPDT$L_ VERSION_CHECK*

SPDT$L_RSVD_LONG*

SPDT$B_CUR_STAT*

SPDT$B_STATUS*

SPDT$B_MODE*

SPDT$B_EVENT_CNT*

Contents

Vector of suspected hung connections.

Timer queue element (52 bytes long), used by the port driver to time out
pending disconnected 1/0 transfers. When this TOE expires, the timer
thread times out expired pending 110 transfers.

Delay time for next TOE delay.

Count of detected bus hangs.

Count of target-initiated bus resets.

Total of retry attempts.

Count of interrupts occurring when channel is unowned.

Count of unexpected interrupts occurring when channel is owned.

Count of reselections when port is not disconnected.

Count of outstanding disconnects.

Port-specific flags. The following bits are defined:

SPDT$V _SYNCH

SPDT$V _ASYNCH

SPDT$V _MAPPING_REG

SPDT$V_BUF _DMA

SPDT$V _DIR_DMA

SPDT$V_AEN

SPDT$V _LUNS

Value used to check driver versions.

Reserved to Digital.

Copy of CUR_STAT register.

Copy of STATUS register.

Copy of MODE register.

Port supports synchronous mode
data transfers.

Port supports asynchronous mode
data transfers.

Port supports map registers.

Port supports buffered DMA
transfers.

Port supports direct DMA
transfers.

Port supports asynchronous event
notification.

Port supports logical unit numbers.

Count of events while servicing current interrupt.

A-21

B VMS Macros Invoked by SCSI Class Drivers

This appendix describes the macros used by third-party SCSI class drivers.
It includes the following sections:

• Standard SCSI port interface macros

• Extended SCSI port interface macros, enabling asynchronous event
notification (AEN)

B.1 Standard SCSI Port Interface Macros
The macros described in this section are used by all SCSI class drivers to
communicate with the SCSI port.

A SCSI class driver invokes SPI macros at fork IPL, holding the fork lock.
Because the port driver routines called by SPI macros may fork or stall, a
class driver must preserve local context and local return addresses across
an SPI macro invocation. It must also ensure that the address of its caller
is at the top of the stack at the time of the invocation. (These issues are
more fully discussed in Section 3.5.1.)

B-1

VMS Macros Invoked by SCSI Class Drivers
SPl$ABORT_COMMAND

SPl$ABORT _COMMAND

Aborts execution of the outstanding SCSI command on a given connection.

FORMAT SPl$ABORT_COMMAND

DESCRIPTION The SPI$ABORT_COMMAND macro aborts the outstanding SCSI
command on the connection specified in SCDRP$L_CDT. The SCSI port
driver's abort routine sends the SCSI ABORT command to the target
device.

B-2

Note: VAXstation 3520/3540 systems do not implement the abort-SCSI-
command function. ·

Inputs to the SPI$ABORT_COMMAND macro include the following:

Location

R4

R5

SCORP$L_COT

Contents

Address of the SPOT

Address of the SCORP

Address of the SCOT

The port driver returns SS$_NORMAL status in RO, and preserves the
contents of R3, R4, and R5. The original SPI$SEND_COMMAND call
completes with SS$_ABORT status.

VMS Macros Invoked by SCSI Class Drivers
SPl$ALLOCATE_COMMAND_BUFFER

SPl$ALLOCATE_ COMMAND _BUFFER

Allocates a port command buffer for a SCSI command descriptor block.

FORMAT SPl$ALLOCATE_COMMAND_BUFFER

DESCRIPTION The SPI$ALLOCATE_COMMAND_BUFFER macro allocates a port
command buffer for a SCSI command descriptor block.

Typically a SCSI class driver requests two additional longwords when
specifying the size of the requested buffer, the first for the SCSI status
byte and the second for the length of the SCSI command. The port
command buffer allows the SCSI port driver to access both the SCSI
command descriptor block and the SCSI status byte during the SCSI
COMMAND and STATUS phases.

Inputs to the SPI$ALLOCATE_COMMAND_BUFFER macro include the
following:

Location

R1

R4

R5

SCORP$L_COT

SCORP$W_CMO_
MAP REG

SCORP$W_CMO_
NUMREG

Contents

Size of requested buffer. This value should include the
size of the SCSI command, plus 4 bytes reserved for the
SCSI status byte and 4 bytes in which the SCSI class
driver places the size of the SCSI command.

Address of the SPOT.

Address of the SCORP.

Address of the SCOT.

Page number of the first port OMA buffer page allocated
for the port command buffer.

Number of port OMA buffer pages allocated for the port
OMA buffer.

The port driver returns the following values to the class driver, preserving
the contents of R3, R4, and R5:

Location

RO
R1

R2

Contents

SS$_NORMAL

Size of port command buffer

Address of port command buffer

B-3

VMS Macros Invoked by SCSI Class Drivers
SPl$CONNECT

SPl$CONNECT

Creates a connection from a class driver to a SCSI device.

FORMAT SPl$CONNECT [callback]

PARAMETERS callback
Address of a routine in the class driver that executes in response to
asynchronous event notification from the target device. When the SCSI
port driver receives a selection on an existing connection, it calls the class
driver at this address, holding the fork lock and no other locks at IPL 8.

If the SCSI class driver does not provide a callback address, no selections
are allowed on the connection that is established.

DESCRIPTION The SPI$CONNECT macro establishes a connection between the class
driver and a SCSI device. It also links a SCSI class driver to the port
driver. Before a SCSI class driver can exchange commands and data with
a SCSI device, it must invoke SPI$CONNECT.

B-4

In response to the call to SPI$CONNECT, the port driver allocates and
links an SCDT for the connection. It marks the connection state open and
initializes default connection information. If the connection already exists,
it returns SS$_DEVALLOC status to the class driver.

Inputs to the SPI$CONNECT macro include the following:

Location

R1

R2

Contents

SCSI device ID (bits <31:16>) and SCSI port ID (bits
<15:0>). Valid SCSI device IDs are integers from 0 to 7;
valid SCSI port IDs are integers 0 and 1, corresponding
to controller IDs A and B.

SCSI logical unit number (bits <31 :16>). Bits <15:0> are
reserved. Valid SCSI logical unit numbers are integers
from 0 to 7.

VMS Macros Invoked by SCSI Class Drivers
SPl$CONNECT

The port driver returns the following values to the class driver:

Location

RO

R2

R3

R4

Contents

Port status. The port driver returns one of the following
values:
SS$_0EVALLOC Connection already open

for this target.

SS$_0EVOFFLINE

SS$_1NSFMEM

SS$_NORMAL

SS$_NOSUCHOEV

Address of the SCOT.

Port is off line and allows
no connections.

Insufficient memory to
allocate SCOT.

Connection formed.

Port not found.

Port capability mask. The following bits are defined by
the $SPOTOEF macro (in SYS$LIBRARY:LIB.MLB):

SPOT$M_SYNCH Supports synchronous
mode.

SPOT$M_ASYNCH

SPOT$M_MAPPING_REG

SPOT$M_BUF _OMA

SPOT$M_OIR_OMA

SPOT$M_AEN

SPOT$M_LUNS

Address of the SPOT.

Supports asynchronous
mode.

Supports map registers.

Supports buffered OMA.

Supports direct OMA.

Supports asynchronous
event notification.

Supports LUNs (logical unit
numbers).

B-5

VMS Macros Invoked by SCSI Class Drivers
SP1$DEALLOCATE_COMMAND_BUFFER

SPl$DEALLOCATE_ COMMAND _BUFFER

FORMAT

DESCRIPTION

B-6

Deallocates a port command buffer.

SP1$DEALLOCATE_COMMAND_BUFFER

The SPl$DEALLOCATE_COMMAND_BUFFER macro deallocates a port
command buffer.

Inputs to the SPl$DEALLOCATE_COMMAND_BUFFER macro include
the following:

Location

R4

R5

SCORP$L_COT

SCORP$W_CMO_
MAP REG

SCORP$W_CMO_
NUMREG

Contents

Address of the SPOT.

Address of the SCORP.

Address of the SCOT.

Page number of the first port OMA buffer page allocated
for the port command buffer.

Number of the port OMA buffer pages allocated for the
port OMA buffer.

The port driver returns SS$_NORMAL status in RO, and preserves the
contents of R3, R4, and R5.

SPl$DISCONNECT

VMS Macros Invoked by SCSI Class Drivers
SPl$DISCONNECT

Breaks a connection between a class driver and a SCSI port.

FORMAT SPl$DISCONNECT

DESCRIPTION The SPI$DISCONNECT macro breaks a connection between a class
driver and a SCSI device unit and deallocates the associated SCDT. The
connection must not be busy when it is being disconnected.

Normally a connection between a class driver and a SCSI device unit lasts
throughout the runtime life of a system. A SCSI class driver should never
need to invoke this macro.

Inputs to the SPI$DISCONNECT macro include the following:

Location

R1

R2

R4

RS

Contents

SCSI device ID (bits <31 :16>) and SCSI port ID (bits
<15:0>). Valid SCSI device IDs are integers from 0 to 7;
valid SCSI port IDs are integers 0 and 1, corresponding
to controller IDs A and 8.

SCSI logical unit number (bits <15:0>). Valid SCSI
logical unit numbers are integers from 0 to 7.

Address of the SPDT.

Address of the SCDT.

The port driver returns SS$_NORMAL status in RO, and preserves the
contents of R3, R4, and R5.

B-7

VMS Macros Invoked by SCSI Class Drivers
SPl$GET _ CONNECTION_CHAR

SPl$GET_CONNECTION_CHAR

Returns characteristics of an existing connection to a specified buffer.

FORMAT SPl$GET_CONNECTION_CHAR

DESCRIPTION The SPl$GET_CONNECTION_CHAR macro returns characteristics of an
existing connection to a specified buffer.

B-8

The connection characteristics buffer has the following format:

Longword

2

3

4

5

6

7

8

Contents

Number of longwords in the buffer, not including this
longword. The value of this field must be 10.

Connection flags. Bits in this longword are defined as
follows:

Bit Description

0 ENA_DISCON. When set, this bit indicates
that disconnect and reselection are enabled
on this connection.

DIS_RETRY. When set, this bit indicates
that command retry is disabled on this
connection.

Synchronous. When this longword contains 0, the
connection supports asynchronous data transfers; when
it contains a nonzero value, the connection supports
synchronous data transfers.

Transfer period. If the synchronous parameter is
nonzero, this field contains the number of 4-nanosecond
ticks between a REQ and an ACK. The default is Mio.
REQ-ACK offset. If the synchronous parameter is
nonzero, this field contains the maximum number of
REQs outstanding before there must be an ACK.

Busy retry count. Maximum number of retries allowed on
this connection while waiting for the bus to become free.

Select retry count. Maximum number of retries allowed
on this connection while waiting for the port to be
selected by the target device.

Arbitration retry count. Maximum number of retries
allowed on this connection while waiting for the port to
win arbitration of the bus.

VMS Macros Invoked by SCSI Class Drivers
SPl$GET_CONNECTION_CHAR

Longword

9

10

11

Contents

Command retry count. Maximum number of retries
allowed on this connection to successfully send a
command to the target device.

Phase change timeout. Default timeout value (in
seconds) tor a target to change the SCSI bus phase
or complete a data transfer. This value is also known as
the DMA timeout.

Upon sending the last command byte, the port driver
waits this many seconds for the target to change the bus
phase lines and assert REQ (indicating a new phase).
Or, if the target enters the DATA IN or DATA OUT phase,
the transfer must be completed within this interval.

If this value is not specified, the default value is 4
seconds.

Disconnect timeout. Default timeout value (in seconds)
tor a target to reselect the initiator to proceed with a
disconnected 1/0 transfer.

If this value is not specified, the default value is 4
seconds.

Inputs to the SPI$GET_CONNECTION_CHAR macro include the
following:

Location

R2

R4

R5

SCDRP$L_CDT

Contents

Address of the connection characteristics buffer.

Address of the SPOT.

Address of the SCDRP.

Address of the SCOT.

The port driver returns the following values to the class driver, preserving
R3, R4, and R5:

Location

RO

R2

Contents

Port status. The port driver returns one of the following
values:

SS$_NORMAL

SS$_NOSUCHID

Normal, successful completion

No connection tor this SCSI
connection ID

Address of the connection characteristics butter in which
device characteristics are returned.

B-9

VMS Macros Invoked by SCSI Class Drivers
SPl$MAP _BUFFER

SPl$MAP _BUFFER

Makes the process buffer involved in a data transfer available to the port
driver.

FORMAT SPl$MAP _BUFFER

DESCRIPTION The SPI$MAP _BUFFER macro makes the process buffer involved in a
data transfer accessible to the port driver. Typically, the I/O buffer is
specified in the $QIO call, is in process space (PO space), and is mapped
by process page-table entries. Because a port driver executes in system
context, it cannot access a process's page table.

B-10

The means by which the SPI$MAP _BUFFER macro makes a process
buffer available to the port driver depends upon the port hardware. For
certain implementations, it allocates a segment of the port's DMA buffer
and a set of system page-table entries that double-map the process buffer.
In others, it obtains a set of port map registers and loads them with the
page-frame numbers of the process buffer pages.

VMS Macros Invoked by SCSI Class Drivers
SPl$MAP _BUFFER

Inputs to the SPI$MAP _BUFFER macro include the following:

Location

R4

R5

Contents

Address of the SPDT.

Address of the SCDRP. The class driver must provide
values in the following fields:
SCDRP$L_BCNT Size in bytes of the buffer

to be mapped. The largest
single transfer that can be
mapped is determined by
the port driver in the call
to SPl$CONNECT. The
SPl$CONNECT macro
returns this value to the
class driver in R1. If
the class driver must
accomplish transfers larger
than this value, it must
segment them.

SCDRP$W_BOFF Byte offset into the first
page of the buffer.

SCDRP$L_SVAPTE System virtual address of
the page-table entry that
maps the first byte of the
user buffer.

SCDRP$L_SCSl_FLAGS SCSI mapping flags. If
SCDRP$V_SOBUF is set,
SPl$MAP _BUFFER does
not double-map the buffer
into system space.

SCDRP$W_STS Transfer direction flags.
IRP$V _FUNC must be set
for read 1/0 functions and
clear for write 1/0 functions.

The port driver returns the following values to the class driver, preserving
R3, R4, and R5:

Location

RO

Contents

Port status. The port driver returns one of the following
values:

SS$_NORMAL

SS$_BADPARAM

Normal, successful completion

Bad parameter provided by class
driver

B-11

VMS Macros Invoked by SCSI Class Drivers
SPl$MAP _BUFFER

Location

R5

B-12

Contents

Address of the SCORP. The port driver initializes the
following fields:

SCORP$L_SVA_USER System virtual address
of the process buffer as
mapped in system space
(SO space)

SCORP$L_SVA_SPTE

SCORP$W_NUMREG

SCORP$W_MAPREG

System virtual address
of the system page-table
entry that maps the first
page of the process buffer
in SO space

Number of port OMA buffer
pages allocated

Page number of the first
port OMA buffer page
allocated

SPl$RESET

VMS Macros Invoked by SCSI Class Drivers
SPl$RESET

Resets the SCSI bus and SCSI port hardware.

FORMAT SPl$RESET

DESCRIPTION The SPI$RESET macro first resets the SCSI bus and then resets the port
hardware. A SCSI class driver should rarely invoke this macro; those class
drivers that do use it should be aware of the impact of a reset operation
on other devices on the same bus. The VMS SCSI port driver logs an error
when a class driver invokes the SPI$RESET macro.

Inputs to the SPI$RESET macro include the following:

Location

RO

R4

RS

SCORP$L_COT

Contents

Reset bit mask. The only supported value is RESET$M_
BUS.

Address of the SPOT.

Address of the SCORP.

Address of the SCOT.

The port driver returns the following value to the class driver, preserving
R3, R4, and R5:

Location

RO

Contents

Port status. The port driver returns one of the following
values:

SS$_NORMAL

SS$_ABORT

Normal, successful completion.

Reset aborted before completion.

B-13

VMS Macros Invoked by SCSI Class Drivers
SPl$SEND_COMMAND

SPl$SEND_COMMAND

Sends a command to a SCSI device.

FORMAT SPl$SEND_COMMAND

DESCRIPTION The SPI$SEND_COMMAND macro sends a command to a SCSI device.

B-14

A class driver invokes this macro, after calling SPI$ALLOCATE_
COMMAND_BUFFER to allocate a port command buffer and formatting a
SCSI command descriptor block in it.

The port driver responds to the SPI$SEND_COMMAND macro call by
arbitrating for ownership of the SCSI bus, selecting the target device,
sending the SCSI command descriptor block to the target, and waiting for
a response. Prior to returning to the class driver, the port driver sends
data to or receives data from the target device, obtains command status,
processes SCSI message bytes, and transfers the data. When it returns
from the SPI$SEND_COMMAND call, the port driver returns port status
and SCSI status to the class driver.

VMS Macros Invoked by SCSI Class Drivers
SPl$SEND_COMMAND

Inputs to the SPI$SEND_COMMAND macro include the following:

Location

R4

R5

SCDRP$L_CDT

Contents

Address of the SPDT.

Address of the SCDRP. The class driver must provide
values in the following fields:

SCDRP$L_CMD_PTR Address of the port
command buffer. The
first longword of the
port command buffer
contains the number
of bytes in the buffer
(not including the count
longword). Subsequent
bytes contain the SCSI
command descriptor block.

SCDRP$L_BCNT Size in bytes of the
mapped process buffer.

SCDRP$L_SVA_USER

SCDRP$L_STS_PTR

SCDRP$W_FUNC

Address of the SCOT.

System virtual address
of the process buffer as
mapped in system space
(SO space).

Address of the status
longword. The port driver
copies the SCSI status
byte it receives in the
bus STATUS phase into
the low-order byte of this
buffer.

Read or write operation.

The port driver ret":lrns the following values to the class driver, preserving
R3, R4, and R5:

Location

RO

Contents

Port status. The port driver returns one of the following
status values:

SS$_BADPARAM

SS$_CTRLERR

SS$_DEVACTIVE

SS$_LINKABORT

SS$_NORMAL

SS$_ TIMEOUT

Bad parameter specified by the
class driver.

Controller error or port hardware
failure.

Command outstanding on this
connection.

Connection no longer exists.

Normal, successful completion.

Failed during selection or
arbitration.

B-15

VMS Macros Invoked by SCSI Class Drivers
SPl$SEND COMMAND

Location

RS

B-16

Contents

Address of the SCDRP. The port driver provides
information in the following fields:
SCDRP$L_STS_PTR Address of the status

longword. The port driver
copies the SCSI status
byte it receives in the
bus STATUS phase into
the low-order byte of this
buffer.

SCDRP$L_TRANS_CNT Actual number of bytes
sent or received by the
port driver during the Data
phase.

VMS Macros Invoked by SCSI Class Drivers
SPl$SET _CONNECTION_ CHAR

SPl$SET _CONNECTION_ CHAR

Sets characteristics of an existing connection.

FORMAT SPl$SET_CONNECTION_CHAR

DESCRIPTION The SPI$SET_CONNECTION_CHAR macro sets characteristics of an
existing SCSI connection. Prior to altering the characteristics of a
connection, a SCSI class driver should read and examine the current
connection characteristics using the SPI$GET_CONNECTION_CHAR
macro.

The class driver specifies the characteristics to be set for the connection in
a connection characteristics buffer. The buffer has the following format:

Longword

2

3

4

5

6

7

Contents

Number of longwords in the buffer, not including this
longword. The value of this field must be 10.

Connection flags. Bits in this longword are defined as
follows:

Bit Description

0 ENA_DISCON. When set, this bit enables
disconnect and reselection on the
connection.

DIS_RETRY. When set, this bit disables
command retry on the connection.

Synchronous. When this longword contains 0, the
connection uses asynchronous data transfer mode;
when it contains a nonzero value, the connection uses
synchronous data transfer mode.

Transfer period. If the synchronous parameter is
nonzero, this field controls the number of 4-nanosecond
ticks between a REQ and an ACK. The default is 6410 •

REQ-ACK offset. If the synchronous parameter is
nonzero, this field controls the maximum number of
REQs outstanding before there must be an ACK.

Busy retry count. Maximum number of retries allowed on
this connection while waiting for the port to become free.

Select retry count. Maximum number of retries allowed
on this connection while waiting for the port to be
selected by the target device.

B-17

VMS Macros Invoked by SCSI Class Drivers
SPl$SET _CONNECTION_ CHAR

B-18

Longword

8

9

10

11

Contents

Arbitration retry count. Maximum number of retries
allowed on this connection while waiting for the port to
win arbitration of the bus.

Command retry count. Maximum number of retries
allowed on this connection to successfully send a
command to the target device.

Phase change timeout. Default timeout value (in
seconds) for a target to change the SCSI bus phase
or complete a data transfer. This value is also known as
the DMA timeout.

Upon sending the last command byte, the port driver
waits this many seconds for the target to change the bus
phase lines and assert REQ (indicating a new phase).
Or, if the target enters the DATA IN or DATA OUT phase,
the transfer must be completed within this interval.

If this value is not specified, the default value is 4
seconds.

Disconnect timeout. Default timeout value (in seconds)
for a target to reselect the initiator to proceed with a
disconnected 1/0 transfer.

If this value is not specified, the default value is 4
seconds.

Inputs to the SPI$SET_CONNECTION_CHAR macro include the
following:

Location

R2

R4

R5

SCDRP$L_CDT

Contents

Address of the connection characteristics buffer.

Address of the SPDT.

Address of the SCDRP.

Address of the SCDT.

The port driver returns the following values to the class driver, preserving
R3, R4, and R5:

Location

RO

Contents

Port status. The port driver returns one of the following
values:
SS$_NORMAL Normal, successful completion

SS$_NOSUCHID No connection for this SCSI
connection ID

VMS Macros Invoked by SCSI Class Drivers
SPl$UNMAP _BUFFER

SPl$UNMAP _BUFFER

Releases port mapping resources and deallocates port OMA buffer space, as
required to unmap a process buffer.

FORMAT SPl$UNMAP _BUFFER

DESCRIPTION The SPl$UNMAP_BUFFER macro releases mapping resources and
deallocates port DMA buffer space, as required to unmap a process buffer.

Inputs to the SPI$UNMAP _BUFFER macro include the following:

Location

R4

R5

Contents

Address of the SPDT.

Address of the SCDRP. The class driver must provide
values in the following fields:
SCDRP$W_NUMREG Number of port DMA buffer

pages allocated

SCDRP$W_MAPREG Page number of the first
port OMA buffer page

The port driver returns the following values to the class driver, preserving
R3, R4, and R5:

Location

RO

R5

Contents

SS$_NORMAL.

Address of the SCDRP. The port driver clears
SCDRP$W_NUMREG and SCDRP$W_MAPREG.

B-19

VMS Macros Invoked by SCSI Class Drivers
B.2 SCSI Port Interface Extension Macros for Asynchronous Event Notification

B.2 SCSI Port Interface Extension Macros for Asynchronous Event
Notification

8-20

This section describes SPI extensions that support asynchronous event
notification.

VMS Macros Invoked by SCSI Class Drivers
SPl$FINISH_COMMAND

SPl$FINISH_COMMAND

Completes an 1/0 operation initiated with asynchronous event notification.

FORMAT SPl$FINISH_COMMAND

DESCRIPTION The SPI$FINISH_COMMAND macro allows the host acting as a target
to send a status byte, return the COMMAND COMPLETE message, and
drive the SCSI bus to BUS FREE. The class driver's callback routine
should invoke SPI$FINISH_COMMAND or SPI$RELEASE_BUS, but not
both, before exiting.

The SPI$FINISH_COMMAND function is a higher-level function that
class drivers can use to finish an I/O operation that is executing with
asynchronous event notification.

Inputs to the SPI$FINISH_COMMAND macro include the following:

Location

R1

R4

R5

Contents

Address of the system buffer containing the SCSI status
byte

Address of the SPOT

Address of the SCDRP

The port driver returns SS$_NORMAL status in RO, destroys R2, and
preserves all other registers.

B-21

VMS Macros Invoked by SCSI Class Drivers
SPl$RECEIVE_BYTES

SPl$RECEIVE_BYTES

Receives command, message, and data bytes from a device acting as an
initiator on the SCSI bus.

FORMAT SPl$RECEIVE_BVTES

DESCRIPTION The SPl$RECEIVE_BYTES macro allows the host to receive information
from the device acting as an initiator. A class driver uses SPI$RECEIVE_
BYTES to receive command, message, and data bytes. This macro

B-22

uses DMA operations for the transfer of large segments of data where
appropriate.

Inputs to the SPI$RECEIVE_BYTES macro include the following:

Location

RO

R1

R4

Contents

Size of the system buffer into which the target returns
the requested bytes

Address of the system buffer into which the target device
returns the requested bytes

Address of the SPOT

The port driver returns the following values to the class driver, destroying
R2, and preserving all other registers:

Location

RO

R1

Contents

Port status. The port driver returns one of the following
values:
SS$_NORMAL

SS$_CTRLERR

Normal, successful completion.

Timeout occurred during the
operation.

Actual number of bytes received.

VMS Macros Invoked by SCSI Class Drivers
SP1$RELEASE_BUS

SPl$RELEASE_BUS

Releases the SCSI bus.

FORMAT SPl$RELEASE_BUS

DESCRIPTION The SPI$RELEASE_BUS macro allows the host acting as a target to
release the SCSI bus. The class driver's callback routine should invoke
either SPI$RELEASE_BUS or SPI$FINISH_COMMAND, but not both,
before exiting.

The class driver should use SPI$RELEASE_BUS instead of SPl$FINISH_
COMMAND if it must explicitly send the SCSI status byte and
COMMAND COMPLETE message using SPI$SEND_BYTES, or if it
simply wants to drop off the bus and terminate the thread in certain error
conditions.

Inputs to the SPl$RELEASE_BUS macro include the following:

Location

R4

R5

Contents

Address of the SPOT

Address of the SCDRP

The port driver returns SS$_NORMAL status in RO, destroys R2, and
preserves all other registers.

B-23

VMS Macros Invoked by SCSI Class Drivers
SPl$SEND _BYTES

SPl$SEND _BVTES

Sends command, message, and data bytes to a device acting as an initiator
on the SCSI bus.

FORMAT SP1$SEND_BVTES

DESCRIPTION The SPI$SEND_BYTES macro allows the host to send information to

B-24

the device acting as an initiator. A class driver uses SPI$SEND_BYTES to
send command, message, and data bytes. This macro uses DMA operations
for the transfer of large segments of data where appropriate.

Inputs to the SPI$SEND_BYTES macro include the following:

Location

RO

R1

R4

Contents

Size of the system buffer that contains the bytes to be
sent

Address of the system buffer that contains the bytes to
be sent

Address of the SPDT

The port driver returns the following values to the class driver, destroying
R2, and preserving all other registers:

Location

RO

R1

Contents

Port status. The port driver returns one of the following
values:

SS$_NORMAL Normal, successful completion.

SS$_CTRLERR Timeout occurred during the
operation.

Actual number of bytes sent.

VMS Macros Invoked by SCSI Class Drivers
SPl$SENSE_PHASE

SPl$SENSE_PHASE

Returns the current phase of the SCSI bus.

FORMAT SPl$SENSE_PHASE

DESCRIPTION The SPI$SENSE_PHASE macro allows the host to read the current SCSI
bus phase, and the state of the ATN signal, while using the asynchronous
event notification feature.

A class driver must supply the address of the SPDT in R4 as input to the
SPI$SENSE_PHASE macro.

The port driver returns the following values to the class driver, destroying
R2, and preserving all other registers:

Location

RO
R1

Contents

SS$_NORMAL.

SCSI bus phase (and ATN signal). This SCSI-defined
longword has the format illustrated in Figure B-1.

Figure B-1 SCSI Bus Phase Longword Returned to SPl$SENSE_PHASE

31 30 3 2 1 0

0

ZK-1377A-GE

B-25

VMS Macros Invoked by SCSI Class Drivers
SPl$SET _PHASE

SPl$SET _PHASE

Sets the bus to a new phase.

FORMAT SPl$SET_PHASE

DESCRIPTION The SPI$SET_PHASE macro allows the host to set the SCSI bus to a new
phase. A class driver uses this macro to drive the phase transitions of the
SCSI bus while using the asynchronous event notification feature.

B-26

Inputs to the SPI$SET_PHASE macro include the following:

Location

RO

R4

Contents

New SCSI bus phase. This SCSI-defined longword has
the format shown in Figure B-2.

Address of the SPOT.

Figure B-2 SCSI Bus Phase Longword Supplied to SPl$SET _PHASE

31 3 2 1 0

must be zero

ZK-1376A-GE

The port driver returns SS$_NORMAL status in RO, destroys R2, and
preserves all other registers.

C VMS Template SCSI Class Driver

This appendix J.ists the contents of the VMS SCSI template class driver.
The code in this template can serve as the starting point for a new third­
party SCSI class driver. You can obtain a machine-readable copy of this
driver from SYS$EXAMPLES:SKDRIVER.M.AR .

. TITLE SKDRIVER - VAX/VMS Sample SCSI Class Driver

. IDENT 'X-3'

.LIST MEB

;**
. * ' . * ,
. * ,
. * ,
·* ,

COPYRIGHT (c) 1989 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
ALL RIGHTS RESERVED.

*
*
*
*
*

;* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
;* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
;* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
;* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
;* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
; * TRANSFERRED . *
. * ,
•* ,
. * ,
. * ,

THE INFORMATION IN THIS SOFTWARE IS
AND SHOULD NOT BE CONSTRUED AS
CORPORATION.

SUBJECT TO CHANGE WITHOUT NOTICE
A COMMITMENT BY DIGITAL EQUIPMENT

*
*
*
*

; * *
;* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
;* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
. * ,
. * , *

*
;**

;++

FACILITY:

VAX/VMS Sample SCSI Class Driver

ABSTRACT:

This module contains a sample SCSI class driver. This template
supports two modes of operation: either the SCSI command
packets are formatted in the application program (passthru mode) or
the SCSI command packets are formatted within the driver. In the
latter case, command processing and error recovery are implemented
within a third-party SCSI class driver derived from this driver.

Passthru mode is the method of access used by the generic SCSI
class driver (GKDRIVER) . GKDRIVER provides access to a SCSI device
from an application program. The QIO interface of the GKDRIVER
is fixed. However, third-party SCSI class drivers can define a
unique QIO interface. Third-party class drivers can have device
specific error recovery, log device errors and implement asynchronous
event notification (AEN) . Third-party class drivers have direct access
to the SCSI Port Interface (SPI) routines, while using the passthru

C-1

VMS Template SCSI Class Driver

;+

function provides access to SCSI without writing a driver.

The code to perform the IO$ DIAGNOSE function is included in this
driver for informational pu;poses only. Typical third-party SCSI
class drivers do not require this function. If the IO$ DIAGNOSE
function is required, you should use the VMS-supported- SCSI
generic class driver (GKDRIVER) .

SKDRIVER supports three I/O functions:

IO$ AVAILABLE
IO$-DIAGNOSE
IO$~)EADLBLK

.SBTTL +

- Inquiry and Test Unit Ready sequence,
- Passthru function
- Return Inquiry data to user

.SBTTL + SYMBOL DEFINITIONS

.SBTTL +

.SBTTL External symbol definitions

; External symbols
;-

$CRBDEF
$DDBDEF
$DEVDEF
$EMBDEF
$DYNDEF
$FKBDEF
$IODEF
$IPLDEF
$IRPDEF
$PCBDEF
$PRVDEF
$SCDRPDEF
$SSDEF
$UCBDEF
$VECDEF

Channel request block
Device data block
Device characteristics
Error log message buffer
Data structure types
Define fork block symbols
I/O function codes
Hardware IPL definitions
I/O request packet
Process control block
Privilege mask
SCSI SCDRP symbols
System status codes
Unit control block
Interrupt vector block

.SBTTL Miscellaneous local symbols
;+
; Local symbols
;-

;+
; Argument list (AP) offsets for device-dependent QIO parameters
;-
Pl
P2
P3
P4
PS
P6

C-2

0
4
8
12
16
20

First QIO parameter
Second QIO parameter
Third QIO parameter
Fourth QIO parameter
Fifth QIO parameter
Sixth QIO parameter

VMS Template SCSI Class Driver

SCDRPS PER UNIT
UCB STACK SIZE

2
10

Number of SCDRPs to allocate per unit
Size of internal stack in UCB

MAX BCNT AXFFFF Maximum byte count
.IIF NDF DT$ GENERIC_SCSI, DT$_GENERIC_SCSI = 5 ; GENERIC SCSI DEVICE
ASSEMBLE PASSTHRU 0 If 0 don't assemble DIAG code, if 1 do.
SCSI$M_STS AXCl Used to extract vendor unique STS bits.
DIAG BUF LEN 60 Length in bytes of DIAGNOSE input buffer.
MAX CMD LEN 248 Maximum size in bytes of a SCSI CMD.
INQ_DATA_LEN 36 Exact number of INQUIRY bytes required.
NUM ARGS 10 Number of SET/GET CONNECTION CHAR arguments .

. SBTTL SCSI Peripheral Device Types

;+
; Define SCSI Peripheral Device Types

;+

SCSI C DA
SCSI C SA
SCSI C PT
SCSI C PR
SCSI C WR
SCSI C RO

.SBTTL Sense key codes

; Define SCSI sense key codes.
I

SCSI C NO SENSE
SCSI C RECOVERED ERROR
SCSI C NOT READY
SCSI C MEDIUM ERROR
SCSI C HARDWARE ERROR - - -
SCSI_C_ILLEGAL_REQUEST
SCSI C UNIT ATTENTION
SCSI C DATA PROTECT - - -
SCSI C BLANK CHECK
SCSI_C_VENDOR_UNIQUE
SCSI C COPY ABORTED
SCSI C ABORTED COMMAND - - -
SCSI_C_EQUAL
SCSI C VOLUME OVERFLOW - - -
SCSI C MISCOMPARE

;++

0
1
2
3
4
5

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Direct Access
Sequential Access
Printer
Processor
Write-once Read-multiple
Read-only direct access

No sense data
Recovered error (treated as success)
Device not ready
Medium (parity) error
Hardware error
Illegal request
Unit attention (media change, reset)
Data protection (write lock error)
Blank check (advance past end of data)
Vendor unique key
Copy operation aborted
Command aborted
Compare operation, data match
Write beyond physical end of tape
Compare operation, data mismatch

; Define offsets in various SCSI command packets.
;--

C-3

VMS Template SCSI Class Driver

;+
; REQUEST SENSE data offsets.
;-

SCSI XS B ERR CODE - - -
SCSI XS B KEY
SCSI XS V KEY - - -
SCSI XS S KEY - - -SCSI XS B ADDNL INFO - - -SCSI XS B ADDNL CODE - - - -
SCSI XS B ADDNL CODE30 - - - -SCSI XS B ADDNL CODESO - - - -
SCSI XS M EOF - - -
SCSI XS M EOM
SCSI XS M ILI
SCSI XS V ADDNL VALID - - - -

;+
; INQUIRY data offsets.
;-

;+
; MODE
;-

;+

SCSI_INQ_B_DEVTYPE
SCSI_INQ_B_DEVQUAL
SCSI_INQ_V_DEVQUAL
SCSI_INQ_S_DEVQUAL

SCSI_INQ_V_REMOVABLE

SCSI SKIP B CNT - - -

SELECT/SENSE data offsets.

SCSI MSNS B WP - - -SCSI MSNS V WP

SCSI MSEL W RSVDO - - -SCSI MSEL B SPEED - - -SCSI MSEL B MODE - - -SCSI MSEL B DSCLEN - - -SCSI MSEL C DSCLEN - - -SCSI MSEL B DENS - - -SCSI MSEL B BLOCKS - - -SCSI MSEL B RSVDl - - -SCSI MSEL B BLKLEN - - -SCSI MSEL B VULEN - - -SCSI_MSEL_B_VU
SCSI MSEL M BUF - - -
SCSI_MSEL_M_NOF
SCSI MSEL M NOF50 - - -SCSI MSEL M NOF30 - - -
SCSI MSEL M RESEL - - -

0
2
0
4
3
12
8
8
"X80
"X40
"X20
7

0
1
0
7

7

2

2
7

0
2
2
3
8
4
5
8
9
12
13
"XlO
7
7
"XOF
"X40

Extended sense error code
Extended sense KEY field
Extended sense KEY bit number
Extended sense KEY length
Extended sense additional code
Extended sense additional code
" " (TZ30)
" " (TZK50)
Extended sense end of file
Extended sense end of medium
Extended sense illegal length indicator
Extended sense additional data valid

Inquiry device type
Inquiry device qualifier field
Inquiry device qualifier starting bit
Inquiry device qualifier length

Inquiry removable bit

Skip record count

Mode sense write protect field
Mode sense write protect bit

Mode select reserved
Mode select speed field
Mode select buffered mode
Mode select record descriptor length
Mode select record descriptor length
Mode select density
Mode select number of blocks
Mode select reserved
Mode select block length
Mode select vendor unique length
Mode select vendor unique field
Mode select buffered mode
Number of fillers for generic device
Number of fillers for TZK50
Number of fillers for TZ30
Reselection timeout flag

; SPI interface, Get/set connect characteristics symbols.
·-,

SET CON L LEN - - -SET CON L CON FLAGS - - - -
SET CON M DISC
SET CON M NORETRY - - -SET CON L SYN FLAG - - - -SET CON M SYN

0
4
1
2
8
1

Length field
Flags field
Enable disconnect flag
Disable command retry flag
Synchronous flag field
Synchronous flag

VMS Template SCSI Class Driver

.SBTTL Template class driver extensions to the UCB
;+
; Template class driver extensions to the UCB.

$DEF
$DEF
$DEF
$DEF
$DEF

$DEF
$DEF
$DEF
$DEF

$DEF
$DEF
$DEF
$DEF

$DEF

;+

$DEFINI UCB

.=UCB$K_LCL DISK LENGTH -

UCB L STACK PTR .BLKL 1
UCB L STACK .BLKL UCB
UCB L SCDRP .BLKL 1
UCB L SCDT .BLKL 1
UCB L SK FLAGS .BLKL 1

VIELD UCB,O,<­
<DISCONNECT,,M>,­
<DISABL_ERRLOG,,M>,­
<SYNCHRONOUS,,M>>

UCB W PHASE TMO .BLKW 1 - - -
UCB W DISC TMO .BLKW 1
UCB_L_SCDRPQ_FL .BLKL 1
UCB_L_SCDRPQ_BL .BLKL 1

UCB L SAVER6 .BLKL
UCB L SAVER7 .BLKL
UCB L SCDRP SAVl .BLKL
UCB B LUN

UCB K SK UCBLEN

$DEFEND UCB

.BLKB

1
1
1
1

Start of UCB definitions

Position at end of UCB

Internal stack pointer
STACK SIZE ; Internal stack

-Address of active SCDRP
SCDT address
Class driver flags

Device supports disconnect
Disable error logging
Device supports synchronous operation
Phase change timeout
Disconnect timeout
Queue of free SCDRPs used to
send SCSI commands

Safe place for R6.
Safe place for R7.
Safe place for SCDRP address.
Save device LUN

Length of extended UCB

End of UCB definitions

.SBTTL Error log packet formats

The following are the definitions for class driver error log packets.
The VMS error log formatter formats third-party SCSI class driver
error log packets. The ERF utility formats a standard error
log packet for third-party class drivers. The standard packet is defined
below. If a user would like to dump additional data to the error log, simply
increase the size of the error log packet defined. The additional data
will be dumped as untranslated longwords in the error log.

;-
$DEFINI ERROR_PACKETS

= EMB$L DV REGSAV

$DEF ERR LW CNT .BLKL
$DEF ERR REVISION .BLKB
$DEF ERR HW REV .BLKL
$DEF ERR TYPE .BLKB
$DEF ERR SCSI ID .BLKB
$DEF ERR SCSI LUN .BLKB - -
$DEF ERR SCSI SUBLUN .BLKB
$DEF ERR PORT STATUS .BLKL
$DEF ERR CMD LEN .BLKB
$DEF ERR CMD BYTES .BLKB
$DEF ERR SCSI STS .BLKB
$DEF ERR TXT LEN .BLKB
$DEF ERR TXT BYTES .BLKB

1
1
1
1
1
1
1
1
1
12
1
1
60

Start of area to dump error info

Count of number of longwords that follow
Revision level
Hardware revision
Error type
SCSI ID
SCSI logical unit
SCSI sublogical unit
Port status code
SCSI command length field
Maximum possible command bytes
SCSI status byte
Error message text size
Maximum possible text bytes

.=.+4 Reserve one longword after end of defined
packet.

$DEF ERR K COMMAND LENGTH Length of packet containing SCSI command

$DEFEND ERROR PACKETS

C-5

VMS Template SCSI Class Driver

.SBTTL SCSI Class driver error log types.
;+
; SCSI class driver error log types. Each error that is logged by the
; class driver should have a unique error type.
;-
CLS DRV ERROR 01 1 Class driver specific error type. - - -
CLS DRV ERROR 02 2 Class driver specific error type. - - -
CLS DRV ERROR 03 3 Class driver specific error type. - - -
CLS DRV ERROR 04 4 Class driver specific error type. - - -CLS DRV ERROR 05 5 Class driver specific error type.
CLS DRV ERROR 06 6 Class driver specific error type.

;+

.SBTTL +

.SBTTL +MACRO DEFINITIONS

.SBTTL +

.SBTTL SCSI CMD - Define a SCSI command packet

SCSI CMD

This macro defines the contents of a SCSI command packet. Each SCSI command
can have associated with it a DMA buffer used during the DATAIN/DATAOUT bus
phases. A DMA length of zero indicates there is no DATA(IN/OUT) phase
associated with this command (except in the case of a read/write SCSI command,
which is handled specially.)
Class drivers can specify on a command by command basis the DMA Timeout and
Disconnect Timeout values. The disconnect timeout is the maximum number
of seconds that an I/0 can be disconnected from the bus. A timeout of -1
allows an infinite timeout. The DMA timeout is the maximum timeout for
a DMA transfer to complete or a phase change on the SCSI bus to occur;
this timeout is also in units of seconds.
The SETUP_CMD routine uses this information in preparing to send a SCSI
command. The macro generates a label and the SCSI command information as
follows:

+-----------------------+
I SCSI cmd length I 1 byte
+-----------------------+
I SCSI cmd bytes I n bytes
+-----------------------+
I DMA buffer length I 2 bytes
+-----------------------+
I DMA direction I 1 byte
+-----------------------+
I DMA Timeout I 1 longword
+-----------------------+
I Disconnect Timeout I 1 longword
+-----------------------+

DMA direction is defined as: O=write, l=read.
;-

.MACRO SCSI_CMD, NAME, CMD_BYTES, DMA_LEN=O, DMA_DIR=READ,­
DMA_TMO=O, DISCON_TMO=O

'NAME' CMD:
$$$BYTE_COUNT=O

C-6

.IRP CMD BYTE, <CMD BYTES>
$$$BYTE COUNT = $$$BYTE COUNT + 1
.IIF EQ-$$$BYTE_COUNT-l~ SCSI C 'NAME'
.ENDR
.BYTE $$$BYTE_COUNT
.IRP CMD_BYTE, <CMD_BYTES>
.BYTE CMD BYTE

CMD BYTE Define opcode

;+

;-

;+

;-

L:

VMS Template SCSI Class Driver

.ENDR

.WORD OMA LEN
$$$DIRECTION = 0
.IIF IDN OMA DIR, READ, $$$DIRECTION 1
.BYTE $$$DIRECTION
.LONG OMA TMO
.LONG DISCON TMO
.ENDM SCSI CMD

.SBTTL LOG ERROR - Log a SCSI class driver error

LOG ERROR

This macro logs a SCSI class driver error. The error type and VMS status
code are placed in R7 and RB respectively, and the LOG ERROR routine is
called.

.MACRO LOG_ERROR,TYPE,VMS_STATUS,UCB=R3,MESSAGE='' ,?LABEL_l

.SHOW EXPANSIONS
PUSHR #AM<R5,R7,R8,Rll>
.IF DIF UCB,R5
MOVL UCB,R5
.ENDC

Save registers

Get UCB address

MOVL #'TYPE' ,R7 Get error code
MOVL VMS_STATUS,R8 And VMS status code
.IF LESS THAN 60-%LENGTH(MESSAGE) ; Maximum size message is 60
.ERROR ;-Message text is greater than 60 characters
.ENDC
.SAVE PSECT LOCAL BLOCK
.PSECT $$$lll_TEXT
LABEL 1:
.ASCIC /'MESSAGE'/
.RESTORE PSECT
MO VAL
BSBW

LABEL_l,Rll
LOG ERROR

POPR #AM<R5,R7,R8,Rll>
.NOSHOW EXPANSIONS

.ENDM LOG ERROR

Write an error log entry
Restore registers

.SBTTL WORD BRANCHES - Define word displacement branches

WORD BRANCHES

This macro defines for each Bxxx (conditional branch) instruction an equivalent
macro named BxxxW with a word displacement. The macro takes as an argument
a list of tuples, each tuple containing 3 items: 1) a conditional branch
opcode; 2) the opcode with the opposite polarity; and 3) the number of
arguments required by the opcode.

.MACRO WORD BRANCHES LIST

.MACRO WORD_BRANCHES2, OPCODEl, OPCODE2, ARGCNT

.IF EQ ARGCNT-0

.MACRO OPCODEl, DST, ?L
OPCODE2 L
BRW DST
.ENDM OP COD El
.ENDC

C-7

VMS Template SCSI Class Driver

.IF EQ ARGCNT-1

.MACRO OPCODEl, FIELD, DST, ?L
OPCODE2 FIELD,L
BRW DST

L: .ENDM OPCODEl
.ENDC

.IF EQ ARGCNT-2

.MACRO OPCODEl, BIT, FIELD, DST, ?L

OPCODE2 BIT,FIELD,L
BRW DST

L: .ENDM OPCODEl
.ENDC

;+

;-

.ENDM WORD BRANCHES2

.MACRO WORD_BRANCHESl, OPCODEl, OPCODE2, ARGCNT

WORD_BRANCHES2 'OPCODEl'W, OPCODE2, ARGCNT
WORD_BRANCHES2 'OPCODE2'W, OPCODEl, ARGCNT

.ENDM WORD BRANCHESl

.!RP ENTRY, <LIST>
WORD BRANCHESl ENTRY
.ENDR

.ENDM WORD BRANCHES

WORD BRANCHES <-
<BBC, BBS,
<BBCC, BBSC,
<BBCS, BBSS,
<BCC, BCS,
<BEQL, BNEQ,
<BEQLU, BNEQU,
<BGEQ, BLSS,
<BGEQU, BLSSU,
<BGTR, BLEQ,
<BGTRU, BLEQU,
<BLBC, BLBS,
<BVC, BVS,

2>,-
2>,-
2>,-
O>,-
0>,-
O>,-
0>,-
0>,-
0>,-
O>,-
1>,-
0>>

.SBTTL !NIT UCB STACK - Initialize the internal UCB stack

.SBTTL SUBPUSH - Push an item on the UCB stack

.SBTTL SUBPOP - Pop an item from the UCB stack

.SBTTL SUBSAVE - Save a return address on the UCB stack

.SBTTL SUBRETURN - Return to the address saved on the UCB stack

!NIT UCB STACK
SUBPUSH
SUBPOP
SUBSAVE
SUBRETURN

These macros manipulate the UCB internal stack, which is used to save
routine return address and temporary variables.

.MACRO INIT_UCB_STACK,UCB=RS,?Ll

MOVAL UCB_L_STACK-4(UCB),­
UCB_L_STACK_PTR(UCB)

.ENDM !NIT UCB STACK

.MACRO SUBPUSH,ARG,UCB=R3,?Ll,?L2

C-8

;+

;-

L:

;+

;-

VMS Template SCSI Class Driver

ADDL #4,UCB_L_STACK_PTR(UCB)
MOVL ARG,@UCB_L_STACK_PTR(UCB)

.ENDM SUBPUSH

.MACRO SUBPOP,ARG,UCB=R3,?Ll,?L2

MOVL @UCB L STACK PTR(UCB),ARG
SUBL #4,UCB=L_STACK_PTR(UCB)

.ENDM SUBPOP

.MACRO SUBSAVE,UCB=R3,?Ll,?L2

SUBPUSH (SP)+,UCB

.ENDM SUBSAVE

.MACRO SUBRETURN,UCB=R3,?Ll,?L2

SUBPOP -(SP),UCB
RSB

.ENDM SUBRETURN

.SBTTL SK WAIT - Stall a thread for a specific number of seconds

SK WAIT

This macro uses the device timeout mechanism to stall a thread for a specified
number of seconds. The UCB address and stall time are required as inputs.

.MACRO SK_WAIT,SECONDS,UCB=R5,SCRATCH=RO,?L

.IF DIF UCB,R5
MOVL RS, SCRATCH
MOVL UCB,R5
MOVL SCRATCH, UCB
.ENDC
DSBINT ENVIRON=UNIPROCESSOR
PUSHL SECONDS
BSBW SK WAIT
.WORD L-.
IOFORK
BICW #UCB$M TIMOUT,-

UCB$W_STS (R5)
.IF DIF UCB,R5

MOVL UCB, SCRATCH
MOVL R5,UCB
MOVL SCRATCH, RS
.ENDC

.ENDM SK WAIT

.SBTTL +
,SBTTL + DRIVER TABLES
.SBTTL +
.SBTTL Driver prologue table

Driver prologue table

This table provides various information about the driver, such as its name

and length, and causes initialization of various fields in the I/O database
when the driver is loaded.

.IIF NDF DPT$M_NO_IDB_DISPATCH, DPT$M_NO_IDB_DISPATCH "XlOOO

C-9

VMS Template SCSI Class Driver

;+

;+

DP TAB
END=SK_END,-
ADAPTER=NULL,­
UCBSIZE=<UCB_K_SK_UCBLEN>,­
NAME=SKDRIVER,­
FLAGS=<DPT$M_SMPMOD!-

DPT$M NO IDB DISPATCH> - - -
DPT STORE INIT

DPT-creation macro
End of driver label
Adapter type
Length of UCB
Driver name
Driver runs in SMP environment
Don't fill in IDB$L_UCBLST
Start of load
initialization table

DPT STORE UCB,UCB$L MAXBCNT,L,MAX BCNT Maximum byte count
DPT STORE UCB,UCB$B-FLCK,B,SPL$C IOLOCK8 ; Device FORK LOCK
DPT STORE UCB,UCB$B=DIPL,B,22 - Device interrupt IPL
DPT STORE UCB,UCB$L DEVCHAR,L,<- Device characteristics

DEV$M AVL!-- Available
DEV$M=IDV!- Input device
DEV$M ODV!- Output device
DEV$M=SHR!- Shareable Device
DEV$M_ELG!- Error logging enabled
DEV$M_RND> Random Access Device

DPT STORE UCB,UCB$L DEVCHAR2,L,<- Device characteristics
- DEV$M_NNM> - Prefix name with "node$"

DPT STORE UCB,UCB$B DEVTYPE,B,DT$ GENERIC_SCSI ; Generic SCSI device
DPT STORE UCB,UCB$B-DEVCLASS,B,DC$ MISC Sample device class
DPT STORE UCB,UCB$W-DEVSTS,W,- - Set no logical to physical

UCB$M_NOCNVRT block number conversion
DPT STORE REINIT Start of reload

DPT STORE DDB,DDBL_DDT,D,SKDDT
DPT STORE CRB,­

CRB$L_INTD+VEC$L_INITIAL,­
D,SK_CTRL_INIT

DPT_STORE CRB,-
CRB$L_INTD+VEC$L_UNITINIT,­
D,SK_UNIT_INIT

DPT STORE CRB,CRBB_FLCK,B,IPL_IOLOCK8

DPT STORE END

.SBTTL Driver dispatch table

Driver dispatch table

initialization table
Address of DDT
Address of controller
initialization routine

Address of device
unit initialization
routine
Initialize fork lock field

End of initialization
tables

This table defines the entry points into the driver.

DD TAB
DEVNAM=SK,­
START=SK_STARTIO, -
FUNCTB=SK_FUNCTABLE,­
REGDMP=SK REG DUMP

.SBTTL Function decision table

Function decision table

DDT-creation macro
Name of device
Start I/O routine
FDT address
Register dump routine

This table lists the $QIO function codes implemented by the driver and the
preprocessing routines used by each function.

C-10

VMS Template SCSI Class Driver

SK FUNCTABLE:
FUNCTAB,-

<AVAILABLE,­
READLBLK,­
READVBLK,­
DIAGNOSE>

FUNCTAB,<>

FUNCTAB SK_READ,<READLBLK,READVBLK>
FUNCTAB +EXE$ZEROPARM,<AVAILABLE>
FUNCTAB SK_DIAGNOSE,<DIAGNOSE>

FDT for driver
Valid I/O functions
Inquiry and Test Unit Ready
Perform a "read" function
Perform a "read" function
Special pass-through function

Buffered I/O functions

Issue SCSI INQUIRY command.
Issue SCSI INQUIRY command.
Special pass-through function

.SBTTL SCSI Command Packet Definition Table

SK CMD DEFS::
SCSI CMD -

NAME = TEST_UNIT_READY,­
CMD_BYTES = <0, 0, 0, O, O, 0>

SCSI_CMD NAME = INQUIRY,-
CMD BYTES= <18 I 0, 0, 0, 36, O>,­
DMA LEN 36,-
DMA DIR= READ,-
DMA_TMO = 0,- Use default
DISCON TMO = 0 Use default

SCSI_CMD NAME = REQUEST_SENSE,-
CMD BYTES = <3, 0, O, 0, 18, 0>, -
DMA LEN 18,-
DMA DIR= READ,-
DMA_TMO = 0,- Use default
DISCON TMO = 0 Use default

SCSI_CMD NAME = MODE_SELECT,-
CMD BYTES= <21, O, O, O, 4, O>,­
DMA LEN 4,-
DMA DIR= WRITE,­
DMA_TMO = 0,­
DISCON TMO = 0

SCSI_CMD NAME = QIO_INQUIRY,-

Use default
Use default

Normally this would be
CMD BYTES = <18 I 0, 0, 0, 0, O>,-; a read/write command.

SK CMD DEFS END

DMA LEN -1,­
DMA DIR= READ,­
DMA_TMO = 0,­
DISCON TMO = 0

.SBTTL +

.SBTTL + DRIVER ENTRY POINTS

.SBTTL +

If data goes to user buffer,
then use -1 here.
Use default
Use default

C-11

VMS Template SCSI Class Driver

.SBTTL SK CTRL INIT - Controller initialization routine - -
;++

SK CTRL INIT

This routine is called to perform controller-specific initialization and
is called by the operating system in three places:

- at system startup
- during driver loading and reloading
- during recovery from a power failure

Currently this routine is a NOP.

INPUTS:

R4 - address of the CSR (controller status register)
RS - address of the IDB (interrupt data block)
R6 - address of the DDB (device data block)
RS - address of the CRB (channel request block)

OUTPUTS:

All registers preserved
;--

SK CTRL INIT:

;++

MOVZWL #SS$_NORMAL,RO
RSB

.SBTTL SK UNIT INIT

SK UNIT INIT

Set success status
Return to caller

- Unit initialization routine

This routine allocates a set of SCDRPs and places them on a queue in the
UCB, forms a connection to the port driver by calling SPI$CONNECT, and
sets the unit online.

INPUTS:

R~ - UCB address

OUTPUTS:

RO-R3 - Destroyed
All other registers preserved

;--

SK UNIT INIT:

BBC

RSB

;+

#UCB$V POWER,­
UCB$W_STS(R5) ,2$

Initialize unit

Branch if we're not here due to a
powerfail
Otherwise, exit immediately

; Fork twice for now to allow the port driver's unit init routine to execute
; before ours.
;-
2$:

C-12

FORK
FORK

INIT UCB STACK

Fork to drop IPL to SYNCH
2nd Fork synchronizes with port driver.

Initialize the internal stack in the UCB

VMS Template SCSI Class Driver

MOVAL UCB_L_SCDRPQ_FL(RS),RO Initialize the SCDRP queue header
MOVL RO, (RO) in the UCB
MOVL R0,4(R0)
MOVL #SCDRPS PER UNIT,R4 Number of SCDRPs allocated per unit

10$: MOVL #<SCDRP$C_LENGTH>,Rl Length of SCDRP

;+

;-

MOVL R5,R3 Copy UCB address
BSBW ALLOC POOL Go allocate an SCDRP
MOVW Rl,SCDRP$W SCDRPSIZE(R2); Save length of SCDRP
INSQUE SCDRP$L_FQFL(R2),- Place SCDRP in UCB queue

UCB L SCDRPQ FL(RS)
SOBGTR R4, l0$ - Repeat for all SCDRPs

All SCSI device unit numbers should be of the form "n0m" where n is the SCSI
ID between 0 and 7 and mis the LUN between 0 and 7. Extract the ID from the
LUN by dividing the unit number by 100. The quotient is then used as the ID
while the remainder is the LUN. Note that the unit number contains three
digits because early versions of SCSI provided for sublogical unit numbers.
This feature has since been removed and the second digit in the unit number
is not used.

MOVZWL #SS$_BADPARAM,R0
MOVZWL UCB$W_UNIT(R5),Rl
CLRL R2
EDIV #100,Rl,Rl,R2
CMPL Rl,#7
BGTRUW 20$
CMPL R2,#7
BGTRUW 20$
MULB3 #<1@5>,R2,UCB_B_LUN(R5)

ASHL #16, Rl, Rl
ASHL #16,R2,R2
MOVL UCB$L_DDB(R5),RO
SUBB3 #"A'A' ,-

DDB$T_NAME+3(R0),Rl
SPI$CONNECT
BLBC R0,20$
CMPL Rl,UCB$L_MAXBCNT(R5)
BGEQ 15$
MOVL Rl,UCB$L_MAXBCNT(RS)

Assume bad LUN or SUBLUN specified
Get device unit number
Prepare for extended divide
Extract SCSI bus ID from LUN
Valid SCSI ID (0 <= n <= 7)?
Branch if not
Valid LUN (0 <= n <= 7)?
Branch if not
Save LUN (shifted left 5 bits for use
later in SETUP CMD)
Place SCSI ID In high-order word of Rl
Place LUN in high-order word of R2
Get DDB address
Translate controller letter to
SCSI bus ID
Connect to the port driver

15$: MOVL R2,UCB_L_SCDT(R5)

Branch if connect attempt failed
For MAXBCNT, use minimum supported
value of port and class drivers
Save maximum byte count in UCB
Save SCDT address

20$:

MOVL R4,UCB$L_PDT(R5) Save PDT address

BISW #UCB$M ONLINE,- Set unit online
UCB$W_STS (RS)

RSB Return to caller

.SBTTL +

.SBTTL + QIO FDT INTERFACE ROUTINES

.SBTTL +

. SBTTL SK READ - FDT preprocessing for sending SCSI Inquiry command .
;++

SK READ

This routine performs FDT preprocessing including:

C-13

VMS Template SCSI Class Driver

- Validating access to, and locking, the read/write buffer

INPUTS:

RO - Address of FDT routine
R3 - IRP address
R4 - PCB address
RS - UCB address
R6 - CCB address
R7 - Bit number of user-specified I/O function code
RS - Address of current entry in FDT
AP - Address of first function-dependent argument (Pl)

OUTPUTS:

;--
SK READ:

;+
; Use system routines to execute I/O preprocessing.

TSTL
BEQL
JMP

P2 (AP)
BADPARAM
G"EXE$MODIFY

There must be bytes to receive.
Bad input parameters.
Lock down pages, set up IRP,
JUMP to EXE$QIODRVPKT, etc ...

BADPARAM:

;++

MOVZWL
JMP

.SBTTL

#SS$ BADPARAM,RO
G"EXE$ABORTIO

SK DIAGNOSE

Set bad parameter status
Abort the I/O with status in RO

- FDT preprocessing for special pass-through function

SK DIAGNOSE

This routine performs FDT preprocessing including:

- Validating ac_cess to the descriptor buffer
- Validating access to, and locking, the read/write buffer
- Copying the SCSI command to a buffer in nonpaged pool

INPUTS:

RO - Address of FDT routine
R3 - IRP address
R4 - PCB address
RS - UCB address
R6 - CCB address
R7 - Bit number of user-specified I/O function code
RS - Address of current entry in FDT
AP - Address of first function-dependent argument (Pl)

OUTPUTS:

;--

C-14

DSC_OPCODE = 0
DSC FLAGS = 4
DSC CMDADR = S

DSC CMDLEN 12
DSC DATADR 16
DSC DATLEN 20
DSC PADCNT 24
DSC PHSTMO 28
DSC DSCTMO 32

SK DIAGNOSE:

;+

.IF NOT EQUAL ASSEMBLE PASSTHRU
IFPRIV -DIAGNOSE,10$ -
MOVZWL #SS$_NOPRIV,RO
BRW 50$

VMS Template SCSI Class Driver

Flag to control assembly of IO$_DIAGNOSE
Branch if process has DIAGNOSE priv
Set no privilege status
Branch to abort the I/O

; First, check that we have read access to the user's descriptor.

10$: MOVQ (AP) ,RO
MOVL R0,R9
CMPL Rl,#DIAG_ BUF LEN
BL SSW 40$
JSB G"EXE$WRITECHK

CMPL DSC_OPCODE(R9),#l
BNEQW 40$

CMPL DSC DATLEN(R9),-
UCB$L_MAXBCNT(R5)

BGTRUW 40$
CMPL DSC_PADCNT(R9),#511
BGTRU 40$

MOVQ DSC_CMDADR(R9),RO
CMPL Rl,#MAX_CMD_LEN
BGTRU 40$
JSB G"EXE$WRITECHK

ADDL #8,Rl
JSB G"EXE$ALONONPAGED

BLBC R0,50$
MOVL Rl, (R2)+
MOVL R2,IRP$L_MEDIA(R3)
MOVL DSC_CMDLEN(R9),R0
MOVL RO, (R2) +
PUS HR #"M<R2,R3,R4,R5>
MOVC3 RO,@DSC_CMDADR(R9), (R2)

POPR #"M<R2,R3,R4,R5>
CLRL IRP$L_BCNT (R3)
MOVL DSC_DATADR(R9),R0
BEQL 30$
MOVL DSC_DATLEN(R9),Rl
BEQL 30$
MO VAL G"EXE$READLOCKR,R2
BLBS DSC FLAGS(R9),20$
MO VAL G"EXE$WRITE LOCKR,R2

20$: JSB (R2)
BLBC R0,60$

30$: MO VAL IRP$C_CDRP(R3),RO
MOVL DSC_FLAGS(R9), (RO)+

Get user descriptor address, length
Save a copy of descriptor address
Valid descriptor length
Branch if not
Check for read access to the descriptor
buffer (don't return if no access)

Valid opcode?
Branch if not

Reasonable read/write data buffer
length?
Branch if not
Reasonable pad count?
Branch if not

Get SCSI command buffer address, length
Valid command length?
Branch if not
Check for read access to the command
buffer (don't return if no access)
Reserve space for command buffer overhead
Allocate a buffer in which to copy
the SCSI command
Branch on error
Save length of buffer
Save the command buff er address
Get length of the SCSI command
Save it in the command buffer
Save registers
Copy the SCSI command from the user's
buffer to the buffer in pool
Restore registers
Assume no user read/write data
Get address of user data buff er
Branch if no user read/write data
Get length of user data buff er
Branch if no user read/write data
Assume user is performing a read
Branch if this is a read operation
Other check for read access
Check access to and lock down buffer
Branch on error
Get address of SCDRP within IRP
Save flags field in IRP/SCDRP

C-15

VMS Template SCSI Class Driver

MO VAL DSC_PADCNT(R9),Rl Get address of pad count field
.REPT 3
MOVL (Rl)+, (RO)+ Save pad count, timeout values
.ENDR
JMP G"EXE$QIODRVPKT Queue the packet to the driver

40$: MOVZWL #SS$_BADPARAM,RO Set bad parameter status
50$: JMP G"EXE$ABORTIO Abort the I/O with status in RO

;+

·-,

We arrive here if the last FDT operation - checking access to and locking
down the user's read/write buffer - fails. EXE$READLOCKR or EXE$WRITE LOCKR
returns to us through a coroutine call to allow us to give up any resources
which we have allocated during FDT processing. Deallocate the buffer
containing a copy of the SCSI command, then return from the coroutine call.
RO and Rl must be preserved.

60$: PUSHQ
MOVL

RO
IRP$L_MEDIA(R3),RO

Save registers

;++

MOVL
JSB
POPQ
RSB
.ENDC

-(RO),Rl
G"EXE$DEANONPGDSIZ
RO

. IF EQUAL ASSEMBLE PASSTHRU
MOVZBL #SS$ ILLIOFUNC,RO
JMP G"EXE$ABORTIO
.ENDC

.SBTTL +

Get address of nonpaged pool buffer
containing SCSI command
Get length of buff er
Deallocate the packet
Restore registers
Return from coroutine call
IF ASSEMBLE_PASTHRU

IF IO$ DIAGNOSE not assembled, do this ..
Specify the error type
Abort the I/O with status in RO

.SBTTL + STARTIO SCSI COMMAND EXECUTION ROUTINES

.SBTTL +

.SBTTL SK STARTIO - Driver STARTIO entry point

SK STARTIO

This routine is the STARTIO entry point into the driver. Its main function
is to dispatch to the function-code-specific routine that starts a specific
I/O function.

INPUTS:

R3 - IRP address
RS - UCB address

OUTPUTS:

RO - 1st longword of I/O status: contains status code and
number of bytes transferred

Rl - 2nd longword of I/O status: low-order word contains high-order
word of number of bytes transferred

R4 - Destroyed
All other registers preserved

;--

SK STARTIO:

C-16

.ENABLE LSB

INIT UCB STACK

SK STARTIO

Initialize the internal stack in the UCB

VMS Template SCSI Class Driver

;+

MOVL
MOVL
MOVL
BSBW
MOVL

EXTZV

ASSUME

UCB$L_PDT(R5),R4
R3,R2
R5,R3
ALLOC SCDRP
R2,SCDRP$L_IRP(R5)

#IRP$V FCODE,­
#IRP$S-FCODE,­
IRP$W FUNC(R2),Rl
IRP$S=FCODE LE 7

Get PDT address
Copy IRP address
Copy UCB address
Allocate an SCDRP
Save IRP address in SCDRP

Extract I/O function code

DISPATCH Rl,TYPE=B,<­
<IO$_DIAGNOSE,
<IO$ READPBLK,
<IO$=AVAILABLE,

Allow byte mode dispatch
Dispatch according to function

IO_DIAGNOSE>,-
IO_READ>,-
IO_INQUIRY>>

; Bogus I/O function code will fall through. Set illegal function code
; status and complete the I/O.

IO BOGUS:
MOVZBL #SS$_ILLIOFUNC,R0 Specify the error type
BRB COMPLETE IO

COMPLETE IO:
BSBW DEALLOC SCDRP
MOVL R3,R5
REQCOM
.DISABLE LSB

. SBTTL IO_INQUIRY
;++

IO_INQUIRY

Fall through to exit path for
if other error then uncomment.

Deallocate the SCDRP
Copy UCB address
Complete the I/O
SK STARTIO

- Send SCSI INQUIRY command .

This routine is intended as an example of how to write a STARTIO
routine for a SCSI class driver.

This routine sends an inquiry command to the target. If
errors occur during the execution of this operation no retries
occur. However, this class driver issues a REQUEST SENSE to
determine the nature of the event. If the event is fatal, the
error is logged and the I/O fails. If the event is
benign, then the I/O completes with a REQCOM.

IO_INQUIRY calls the port driver to allocate command buffer areas,
maps the system or user buffer such that the port driver has access
to these areas, and then calls the port driver's SEND_CMD entry point
to send the SCSI command to a target.
When the port driver returns from this call, the INQUIRY data has been
moved, the command status is in the status-in buffer and the SCSI
bus is free. The class driver checks the transfer count, releases
its resources and completes the I/0 with a call to REQCOM.

INPUTS:

R3 - UCB address
R4 - PDT address

C-17

VMS Template SCSI Class Driver

R5 - SCDRP address

OUPUTS:

RO - Status

;--

SS$ NORMAL - I/0 completed successfully.
SS$-ILLSEQOP - I/O failed, bad sense key.
SS$-IVSTSFLG - Invalid SCSI status returned.
SS$=0PINCMPL - I/O failed, insufficient data returned.

IO_INQUIRY:

;+

.ENABLE LSB
MO VAL
BSBW
BLBC
BSBW

INQUIRY_CMD,R2
SETUP CMD
R0,35$
SEND COMMAND

IO_INQUIRY
Address of INQUIRY command
Perform setup for SCSI command

Send the SCSI command

Determine by sending the INQUIRY command, what target is at this ID.

After a call to the port driver, when the port status (RO) and SCSI
command status have been checked, the class driver must verify that
the number of bytes that were to be received or sent have been delivered
by the port driver. SCDRP$L_TRANS_CNT contains the actual number of bytes
of data transferred by the port driver.

;-

·*** ,
30$:
;+

BLBC
CMPL

BLSSUW
MOVL
CMPB

BNEQ
BSBW

R0,35$
SCDRP$L_TRANS CNT(R5),­
#INQ_DATA_LEN
34$
SCDRP$L SVA USER(R5),Rl
#SCSI_C=DA,-:­
SCSI_INQ_B_DEVTYPE(Rl)
SOMEWHERE
CLEANUP CMD

Branch on error
Sufficient inquiry data returned?

Branch if not
Get address of inquiry data
Is this a SCSI disk device?
Check INQUIRY data
If it's not the target you want.
Clean up from the SCSI command

; Now that the class driver knows what target is out there, determine if
; the target is ready by sending a TEST UNIT READY command.

MO VAL TEST_UNIT_READY_CMD,R2 Test Unit Ready command
BSBW SETUP CMD Perform setup for SCSI command
BLBC R0,35$ Branch on error
BSBW SEND COMMAND Send the SCSI command
BLBC R0,3S$ Branch on error
BSBW CLEANUP CMD Clean up from the SCSI command
CLRL Rl Clean up Rl
BRW COMPLETE IO Complete the user's I/O.

;+
; Any error the class driver encounters is logged.
; RO contains the VMS status.

34$:
35$:

C-18

MOVZWL #SS$_0PINCOMPL,RO
LOG ERROR -

TYPE=CLS DRV ERROR_Ol,-
Log an invalid inquiry data error

VMS_STATUS=RO,- I/O operation failed
UCB=R3,-
MESSAGE=<ERROR DURING INQUIRY_TEST UNIT RDY SEQUENCE>

BSBW CLEANUP CMD Clean up from the SCSI command

CLRL Rl
BRW COMPLETE IO
.DISABLE LSB

Clean up Rl
Complete the user's I/O.
IO_INQUIRY

VMS Template SCSI Class Driver

.SBTTL IO READ - Send SCSI INQUIRY command and return data.
;++

IO READ

This routine is intended as an example of how to write a STARTIO
routine that reads data from a target device and returns the data
to a user buffer. Normally, some form of read command would be used
to retrieve data from a target; however the format of read commands
varies depending on the SCSI device class. Therefore, this
example uses the INQUIRY command to get data from the target; the
INQUIRY command is one of the few commands that is common among
all device types.

Third-party class drivers traditionally do NOT return the INQUIRY
data to the application. Rather, the class driver uses this
information to establish the characteristics of the SCSI target
and the class driver's connection to this target.

IO READ calls the port driver to allocate command buffer areas,
maps user read buffer such that the port driver has access to these
areas and then calls the port driver's SEND_CMD entry point
to send the SCSI command to a target. When the port driver returns from
this call, the INQUIRY data has been moved to the user's buffer,
the command status is in the status-in buffer and the SCSI bus is free.
The class driver checks the transfer count, releases its resources and
complete the I/O with a call to REQCOM.

INPUTS:

R3 - UCB address
R4 - PDT address
RS - SCDRP address

OUPUTS:

RO - Status

SS$ NORMAL - I/O completed successfully.
SS$-ILLSEQOP - I/O failed, bad sense key.
SS$-IVSTSFLG - Invalid SCSI status returned.
SS$=0PINCMPL - I/O failed, insufficient data returned.

IO READ:
.ENABLE LSB IO READ

;+
WARNING: If the user provides the wrong byte count the SCSI bus may hang.

; SCSI port drivers can recover from this error; however, the recovery mechanism
; may be severe and this I/0 request will fail.

MOVL #SCDRP$M BUFFER MAPPED,-; Set buffer mapped flag to prevent
SCDRP$L_SCSI_FLAGS(R5) allocation of SO buffer for data

MO VAL QIO_INQUIRY_CMD,R2 Address of INQUIRY command for user data

C-19

VMS Template SCSI Class Driver

;+

BSBW SETUP CMD
BLBC R0,300$
SPI$MAP_BUFFER
BSBW SEND COMMAND

Perform setup for SCSI command
Setup failed
Map the user buffer
Send the SCSI command

The port driver has been called to send the command and now returns
with the data moved to the user's buffer, the port status in RO, and SCSI
status in the STATUSIN buffer. The class driver checks the port driver
and SCSI command status and then verifies that the number of bytes that were
received equals the BCNT. SCDRP$L_TRANS_CNT contains the actual number
of bytes of data transferred by the port driver.

BLBC R0,35$ Branch on error
CMPL SCDRP$L_TRANS CNT(R5),- Sufficient inquiry data returned?

SCDRP$L_BCNT(R5)
BNEQUW 34$ Branch if not

30$: MOVL SCDRP$L_TRANS_CNT(R5),Rl; Return transaction count in IOSB
BSBW CLEANUP CMD Clean up from the SCSI command
BRW COMPLETE IO Complete the user's I/O

;+
; Errors the class driver encounters are logged.
; RO contains the VMS status.
;-
34$:
35$:

MOVZWL #SS$_0PINCOMPL,RO
LOG ERROR - Log an invalid inquiry data error

;+

BSBW
CLRL
BRW

TYPE=CLS DRV ERROR_04,­
VMS_STATUS=RO,­ I/O operation failed
UCB=R3,­
MESSAGE=<ERROR DURING READ QIO FUNCTION>
CLEANUP CMD
Rl
COMPLETE IO

Clean up from the SCSI command
Clean up Rl
Complete the user's I/O

; The template driver does not support segmented I/O. This exercise
; is left to the user.
;-
300$: BICL #SCDRP$M BUFFER MAPPED,-;

SCDRP$L_SCSI_FLAGS(R5)
No buffer mapped, so don't unmap.

;++

LOG ERROR - Log an invalid inquiry data error
TYPE=CLS_DRV_ERROR_05,­
VMS_STATUS=RO,- I/O operation failed.

CLRL
BRW

UCB=R3,­
MESSAGE=<ERROR
Rl
COMPLETE IO

.DISABLE LSB

.SBTTL IO DIAGNOSE

I 0 OPERATION NOT PROPERLY SEGMENTED>
Clean up Rl
Complete the user's I/O
IO READ

- Special pass-through function

IO DIAGNOSE

STARTIO routine for the passthru function of the template SCSI
class driver. This routine assumes that the user has provided
a buffer that contains the SCSI command packet and that the
FDT routines in the driver have made the appropriate checks
during I/0 preprocessing to allow access to the user data areas
during STARTIO.

C-20

VMS Template SCSI Class Driver

IO DIAGNOSE makes calls into the port driver to allocate command
buffer areas, maps the user buffer such that the port driver
can access user areas, and then calls the port driver's SEND CMD
entry point to send the SCSI command to a target. When the port driver
returns from this call, the user's data has been moved, the
command status is in the status-in buffer and the SCSI bus
is free. The class driver releases its resources and
completes the I/O with a call to REQCOM.

INPUTS:

R2 - IRP address
R3 - UCB address
R4 - PDT address
RS - SCDRP address

OUTPUTS:

RO - Status
Rl,R2 - Destroyed
All other registers preserved

;--

IO DIAGNOSE:
.ENABLE LSB
. IF NOT EQUAL ASSEMBLE PASSTHRU
MOVL -IRP$L MEDIA(R2),­

MOVL

MOVL

MOVW

MOVW

MO VAL
EXTZV
INSV

EXTZV
INSV

ADDL
MOVL

SCDRP$L MEDIA(RS)
IRP$L SVAPTE(R2),­
SCDRP$L SVAPTE(RS)
IRP$L BCNT(R2),­
SCDRP$L BCNT (RS)
IRP$W BOFF(R2),­
SCDRP$w BOFF (RS)
IRP$W STS(R2),-
SCDRP$w STS (RS)
IRP$C CDRP(R2),RO
u, u~ (RO>, Rl
Rl,#UCB V DISCONNECT,­
#1,UCB L SK FLAGS(R3)
#2,U,(RO),Rl
Rl,#UCB V SYNCHRONOUS,­
#1,UCB L SK FLAGS(R3)
*4,RO - - -
(RO)+,-
SCDRP$L PAD BCNT(RS)

IO DIAGNOSE
IF assemble IO$_DIAGNOSE if ASSM PASS .
Copy command buffer from IRP to
SCDRP
and SVAPTE,

BCNT,

and BOFF

and STS

Get address of SCDRP portion of IRP
Get disconnect flag
Fill in disconnect flag in UCB

Get synchronous flag
Fill in synchronous flag in UCB

Advance to pad count field
Fill in the pad count in the SCDRP

MOVL (RO)+,-- - Fill in the phase change (DMA) timeout
SCDRP$L OMA TIMEOUT(RS) in the SCDRP

MOVL (RO)+,-- - Fill in the disconnect timeout in the
SCDRP$L DISCON TIMEOUT(RS) ; SCDRP

BSBW SET_CONN_CHAR - Set up the connect characteristics

MOVL SCDRP$L_MEDIA(RS),Rl
MOVL (Rl)+,Rl
ADDL #8,Rl
SPI$ALLOCATE COMMAND BUFFER
MOVL R2,SCDRP$L CMo BUF(RS)
CLRL (R2) + - -
MOVB #AXFF,-l(R2)

Get address of SCSI command in pool
Get length of SCSI command
Account for overhead
Allocate a command buffer
Save address of command buffer
Reserve a longword for status
Initialize status field

C-21

VMS Template SCSI Class Driver

10$:

20$:

MOVAL -l(R2),-
SCDRP$L_STS_PTR(R5)

MOVL R2,SCDRP$L CMD PTR(R5)
MOVL SCDRP$L_MEDIA(R5),RO
MOVL (RO), (R2)+
PUSHR #AM<R0,R2,R3,R4,R5>
MOVC3 (RO), 4 (RO), (R2)
POPR #AM<RO,R2,R3,R4,R5>
MOVL -(RO),Rl
JSB GAEXE$DEANONPGDSIZ
TSTL SCDRP$L BCNT(R5)
BEQL 10$ -
SPI$MAP BUFFER
SPI$SEND_COMMAND
PUSHL RO
TSTL SCDRP$L BCNT(R5)
BEQL 20$ -
SPI$UNMAP BUFFER
MOVL SCDRP$L_CMD_BUF(R5),RO
PUSHL (RO)
SPI$DEALLOCATE_COMMAND_BUFFER
POPL Rl
POPL RO
INSV SCDRP$L TRANS CNT(RS),-

#16, #16-;RO -
.ENDC
BRW COMPLETE IO
.DISABLE LSB

.SBTTL +

.SBTTL + UTILITY ROUTINES

.SBTTL +

Address to save status byte

Address of SCSI command in cmd buff er
Get SCSI command in pool again
Copy SCSI command length
Save registers
Copy SCSI command to command buffer
Restore registers
Get length of command buffer in pool
Deallocate the buffer
Any user data buffer?
Branch if not
Map the user's data buffer
Send the SCSI command
Save returned port status
User buffer mapped?
Branch if not
Unmap the user's data buffer
Get the command buffer address
Save the SCSI status byte
Deallocate the command buffer
Restore the SCSI status byte
Restore the port status
Copy the transfer count to the
high-order word of RO
If ASS DIAG FALSE don't assemble
Complete the QIO
IO DIAGNOSE

.SBTTL SEND COMMAND - Send a SCSI command
;++

SEND COMMAND

This routines sends a command to the SCSI device. It returns any failing
port status to the caller. If the port status is success, it checks the
SCSI status byte. If a check condition status is returned, a request
sense command is sent to the target and the sense key is translated into a
VMS status code, which is returned as status.

INPUTS:

R3 - UCB address
R4 - PDT address
RS - SCDRP address

OUTPUTS:

;--

RO - Status
SS$ IVSTSFLG - Invalid SCSI status returned.
SS$=ILLSEQOP - I/O operation failed.

Rl,R2 - Destroyed
All other registers preserved

SEND COMMAND:

C-22

VMS Template SCSI Class Driver

.ENABLE LSB
SUB SAVE
SPI$SEND_COMMAND
BLBC R0,10$
MOVZBL @SCDRP$L STS PTR(R5),Rl
BICB #SCSI$M STS,Rl
BNEQ 20$ -

SEND COMMAND
Save return address
Send the SCSI command
If port failed, return
Get SCSI status byte
Clear reserved, vendor-unique bits
Branch if bad status

10$: SUBRETURN Return to caller

;+
A bad SCSI status code was returned. If the code is a check condition, then

; send a request sense command to the device. Otherwise, the status code is
; something unexpected. Log an error and return SS$_MEDOFL status.

20$: CMPB
BNEQ

Rl,#2
90$

Check condition status?
Branch if not

;+

;-

A check condition status code was returned. Save the original SCDRP address,
allocate a second one and send a request sense command. If the request
sense succeeds, translate the sense key to a VMS status code and return that
as the status code for the original command.

45$: MOVL
BSBW
BSBW
BLBC

R5,UCB_L_SCDRP_SAVl(R3)
ALLOC SCDRP
REQUEST_SENSE

Save original SCDRP address
Allocate an additional SCDRP
Send a request sense command
Branch on error R0,50$
a VMS status code in RO

;+
; Look at the results of the request sense to determine the exact nature
; of the event.
;-

;+

MOVL
BICB3

BNEQ
BICB3

SCDRP$L SVA USER(R5),Rl; Get address of REQUEST SENSE DATA.
#AXFO,SCSI XS B ERR CODE(Rl),-; First check ERROR CODE.
RO - - - - In this case zero is good, but this
50$ is really device specific.
#AXFO,SCSI_XS_B_KEY(Rl),-; Mask off SENSE KEY.
RO

; Depending on the value of the sense key, dispatch to the appropriate
; error recovery.

DISPATCH RO,TYPE=B,<­
<SCSI_C_NO_SENSE,SK_OK>,­
<SCSI_C_RECOVERED_ERROR,SK_OK>,-;
<SCSI_C_NOT_READY,SK_BAD>,­
<SCSI_C_MEDIUM_ERROR,SK_BAD>,­
<SCSI_C_HARDWARE_ERROR,SK_BAD>,­
<SCSI_C_ILLEGAL_REQUEST,SK_BAD>,­
<SCSI_C_UNIT_ATTENTION,SK_BAD>,-;
<SCSI_C_DATA__PROTECT,SK_BAD>,­
<SCSI_C_BLANK_CHECK,SK_BAD>,­
<SCSI_C_VENDOR_UNIQUE,SK_BAD>,­
<SCSI_C_COPY_ABORTED,SK_BAD>,­
<SCSI_C_ABORTED_COMMAND,SK_BAD>,­
<SCSI_C_EQUAL,SK_BAD>,­
<SCSI_C_VOLUME_OVERFLOW,SK_BAD>,­
<SCSI_C_MISCOMPARE,SK_BAD>>

Dispatch according to SENSE KEY.
No sense data

;+

Recovered error
Device not ready
Medium (parity) error
; Hardware error
; Illegal request
Unit attention (reset ...)
Data protection (write lock)
Blank check
Vendor unique key
Copy operation aborted
; Command aborted
Data match
; Write past physical end
Data mismatch

; Either the sense key was bad or the key was invalid. In either case

C-23

VMS Template SCSI Class Driver

indicate that the command failed. Some class drivers will want
to translate each bad sense key to a unique class driver SS$ XXXXX
status code. Here we will always return SS$_ILLSEQOP. -

;-
SK BAD:

;+

MOVL
BRB

#SS$ ILLSEQOP,RO
50$ -

I/O operation failed
cleanup and return error

; If the sense key indicated that the operation completed successfully,
; then return success.
;-
SK OK:

MOVL
BRB

#SS$ NORMAL,RO
50$ -

I/O operation succeeded
Clean up and return error

50$: BSBW
BSBW
MOVL
MOVL
BRW

CLEANUP CMD
DEALLOC SCDRP

Clean up the request sense command
Deallocate the request sense SCDRP
Restore original SCDRP address
Copy it to the UCB

;+

UCB L SCDRP SAVl(R3),R5
RS,UCB L SCDRP(R3)
10$ - - Return to caller

If the status returned for the last command was anything other than
; check condition, log an error and return a status of SS$ IVSTSFLG to
; indicate that command failed and that there is no request sense data.
;-
90$: MOVL #SS$_IVSTSFLG,RO Return a generic status code

LOG ERROR - Log a send command error
TYPE=CLS ORV ERROR_02,- Generic user class driver error
VMS_STATUS=RO,-
UCB=R3,-
MESSAGE=<ERROR BAD SCSI COMMAND STATUS>

BRW 10$
.DISABLE LSB SEND COMMAND

.SBTTL REQUEST_SENSE - Send a request sense command
;++

REQUEST_SENSE

This routine is called by SEND COMMAND when a command fails with check
condition status. A request sense command is sent to the target.

INPUTS:

R3 - UCB address
R4 - PDT address
RS - SCDRP address

OUTPUTS:

RO - Status
SS$_IVSTSFLG - Bad SCSI status returned during

REQUEST SENSE.
Rl,R2 - Destroyed
All other registers preserved

;--

REQUEST_SENSE:
.ENABLE LSB

C-24

REQUEST_SENSE

VMS Template SCSI Class Driver

SUBSAVE
MOVAL REQUEST_SENSE_CMD,R2
BSBW SETUP CMD
BLBC R0,10$
SPI$SEND COMMAND
BLBC R0,10$
MOVZBL @SCDRP$L STS PTR(R5),Rl
BICB #SCSI$M STS,Rl
BNEQ 20$ -

Save return address
Address of REQUEST_SENSE command
Perform setup for SCSI command
Branch on error
Send the SCSI command
Return on error
Get SCSI status byte
Clear reserved, vendor unique bits
Branch if bad status

10$:

20$:

SUBRETURN

MOVZWL
BRB

#SS$_IVSTSFLG,RO
10$

Return to caller

Return bad SCSI status to caller.

.DISABLE LSB REQUEST_SENSE

.SBTTL SET CONN CHAR - Modify connection characteristics
;++

SET CONN CHAR

This routine is called to initialize the connection characteristics, which
specify such things as whether the device supports disconnect and
synchronous operation, and the bus busy, arbitration, selection, and
conunand retry counters.

This routine first does a SPI$GET CONNECTION CHAR to get the current
values of the connection characteristics, modifies the values of interest,
then does a SPI$SET CONNECTION CHAR to set up the new values. This allows
the class driver to-change a subset of the characteristics and leave the
rest unmodified.

INPUTS:

R3 - UCB address
R4 - SPDT address
RS - SCDRP address

OUTPUTS:

R0-R2 - Destroyed
All other registers preserved

;--

SET CONN CHAR:
.ENABLE LSB SET CONN CHAR

;+

SUBSAVE
MOVL #<<NUM_ARGS+l>*4>,Rl
BSBW ALLOC POOL
SUBPUSH R2
MOVL #NUM ARGS, (R2)
SPI$GET CONNECTION CHAR
BLBC -R0,10$ -

- -
Save return address
Size of get/set connection char buffer
Allocate the buffer
Save address of buffer
Set argument count in buffer
Get current connection characteristics
Branch on error

Some devices won't select if selected with attention.

NOTE: It is strongly suggested that targets and devices
support the disconnect/reselection sequence. All
Digital-supplied devices support this feature to
ensure consistent bus performance.

C-25

VMS Template SCSI Class Driver

10$:

20$:

;++

EXTZV #UCB_V_DISCONNECT,#1,- Fill in disconnect flag
UCB_L_SK_FLAGS(R3),4(R2);

EXTZV #UCB_V_SYNCHRONOUS,#1,- ;
UCB_L_SK_FLAGS(R3),8(R2);

SPI$SET_CONNECTION CHAR
PUSHL RO
SUBPOP RO
BSBW DEALLOC POOL
POPL RO
BLBS R0,20$
MOVL #SS$_CTRLERR,RO
SUBRETURN
.DISABLE LSB

Fill in synchronous flag

Set the connection characteristics
Save return status
Get address of characteristics buffer
Deallocate the buffer
Restore return status
Branch if success status
Otherwise, return a reasonable status
Return to caller
SET CONN CHAR

.SBTTL SK WAIT - Stall for the specified number of seconds

SK WAIT

This routine is used by the SK_WAIT macro to stall a thread for a specified
number of seconds. It sets the timeout bit in the UCB and relies on the
device timeout mechanism to resume the stalled thread.

INPUTS:

IPL
R5
(SP)
4 (SP)
8(SP)
12(SP)

- 31
- UCB address
- Return address
- Wait time in seconds
- Saved IPL
- Address of caller's caller

OUPUTS:

SK WAIT:

;++

Stack - Return address, wait time, IPL removed
Control returns to caller's caller
All registers preserved

NOTE: The use of the SK WAIT macro destroys R0-R3

MOVQ
ADDL3
BISW
ADDL3

BICW

ENBINT
RSB

R3,UCB$L FR3(R5)
#2, (SP)+~UCB$L FPC(R5)
#UCBM_TIM,UCBW_STS(R5);
(SP)+,GAEXE$GL_ABSTIM,­

UCB$L DUETIM(R5)
#UCB$M_TIMOUT,­
UCB$W_STS (R5)

Save R3 and R4 in fork block
Save return address in fork block
Set timer expected bit
Set up timeout time in UCB

Clear timer expired bit

Reenable interrupts
Return to caller's caller

.SBTTL ALLOC SCDRP - Allocate an SCDRP

ALLOC SCDRP

This routine allocates an SCDRP by attempting to remove one from the queue
in the UCB. If the queue is empty (which should never happen), then bugcheck.
The entire SCDRP is zeroed and various fields are initialized.

C-26

VMS Template SCSI Class Driver

INPUTS:

R3 - UCB address

UCB_L_SCDRPQ_FL - Queue of SCDRPs

OUTPUTS:

RS - SCDRP address
All other registers preserved

SCDRP$L_UCB - UCB address
SCDRP$L IRP - IRP address
SCDRP$L=CDT - SCDT address
SCDRP$L_SCSI FLAGS - Initialized
SCDRP$L_CL_SSK_PTR - Initialized

ALLOC SCDRP:
.ENABLE LSB
REMQUE @UCB_L_SCDRPQ FL(R3),RS
PUS HR
MOVCS

POPR
MOVL
MOVL
MOVB

MOVL

MO VAL

RSB

#AM<R0,Rl,R2,R3,R4,RS>
#0,.,#0,­
#SCDRP$C_LENGTH-12,-
12(RS)
#AM<R0,Rl,R2,R3,R4,RS>
RS,UCB L SCDRP(R3)
R3,SCDRP$L UCB(RS)
UCB$B FLCK(R3),­
SCDRP$B_FLCK (RS)
UCB L SCDT(R3),­
SCDRP$L_CDT(RS)
SCDRP$L_SCSI_STK-4(RS),-;
SCDRP$L_SCSI_STK_PTR(RS);

.DISABLE LSB

ALLOC SCDRP
Remove an SCDRP from the queue
Save registers
Initialize the SCDRP

Restore registers
Save SCDRP address in UCB
Save UCB address in SCDRP
Copy the fork lock field from the
UCB to the SCDRP
Save SCDT address in SCDRP

Initialize the SCDRP stack pointer

ALLOC SCDRP

.SBTTL DEALLOC SCDRP - Deallocate an SCDRP
;++

DEALLOC SCDRP

This routine deallocates an SCDRP by returning it to the queue in the
UCB. A sanity check is made to ensure that any map registers for this
command have been deallocated.

INPUTS:

R3 - UCB address
RS - SCDRP address

OUTPUTS:

R3 - UCB address
RS - UCB address (for RS entry point)
All other registers preserved

UCB L SCDRP - Cleared to indicate no active SCDRP

DEALLOC SCDRP:

C-27

VMS Template SCSI Class Driver

.ENABLE LSB DEALLOC SCDRP
INSQUE SCDRP$L_FQFL(R5),- Insert SCDRP in UCB queue

UCB 1 SCDRPQ FL(R3)
CLRL UCB::::1::::scDRP (R3) No active SCDRP for this UCB
RSB

.DISABLE LSB DEALLOC SCDRP

.SBTTL ALLOC POOL - Allocate a block of nonpaged pool
;++

ALLOC POOL

This routine allocates a block of nonpaged pool no smaller than the
size of a fork block (allowing COM$DRVDEALMEM to fork on this block
during deallocation.) An extra quadword at the top of the block is reserved
to save the size field, relieving the caller of this responsibility.
The caller is presented with the address just beyond the reserved quadword.
Although a word would be sufficient for this field, a quadword is used for
alignment purposes (some blocks are used as IRPs, which are placed on
self-relative queues and require quadword alignment.)

If an allocation failure occurs, the thread is stalled and wakes up once a
second to retry the allocation.

INPUTS:

Rl - Size of block to allocate
R3 - UCB address

OUTPUTS:

;--

RO - Destroyed
Rl - Size of block allocated
R2 - Address of allocated block
-8(R2) - Length of allocated block (used by DEALLOC_POOL)
All other registers preserved

ALLOC_POOL:

10$:

C-28

.ENABLE LSB
ADDL
CMPL
BGEQ
MOVL
PUSHL
PUSHL
JSB
POPL
BLBC
ADDL
PUS HR
MOVCS
POPR
MOVL
ADDL
RSB

#8,Rl
Rl,#FKB$C LENGTH
10$ -
#FKB$C_LENGTH,Rl
Rl
R3
GAEXE$ALONONPAGED
R3
R0,20$
#4,SP
#AM<R0,Rl,R2,R3,R4,R5>
0, . , # 0, Rl, (R2)
#AM<R0,Rl,R2,R3,R4,R5>
Rl, (R2)+
#4,R2

ALLOC POOL
Reserve a quadword to save size
Requested size smaller than fork block?
Branch if not
Use fork block size as minimum
Save allocation length
Save UCB address
Allocate a block
Restore register
Branch if error
Remove allocation length from stack
Save registers
Initialize the packet
Restore registers
Save size of block
Skip a longword
Return to caller

VMS Template SCSI Class Driver

;+
; A pool allocation failure occurred. Come back once a second and retry the
; operation until successful.
;-
20$: SUBPUSH (SP)+ Save allocation length (PUSHL Rl above)

Save return address SUBSAVE
SK WAIT #l,UCB=R3
SUBPOP -(SP)
SUBPOP Rl
BRW 10$
.DISABLE LSB

Wait a second
Restore return address
Restore allocation length
Try again
ALLOC POOL

.SBTTL DEALLOC POOL - Deallocate a block of nonpaged pool
;++

DEALLOC POOL

This routine deallocates a block of nonpaged pool. The size of the block
is stored in the reserved quadword at a negative offset from the beginning
of the block.

INPUTS:

RO - Address of block to deallocate
-8(RO) - Length of block to deallocate

OUTPUTS:

RO - Destroyed
All other registers preserved

;--

DEALLOC POOL:

.ENABLE LSB
PUSHQ Rl
SUBL #4,RO
MOVL -(R0),IRP$W SIZE(RO)
CLRB IRP$B_TYPE(R0)

JSB GAEXE$DEANONPAGED
POPQ Rl
RSB
.DISABLE LSB

DEALLOC POOL
Save Rl,R2
Skip a longword
Copy size field
Clear type field (prevents block from
being interpreted as shared memory
during deallocation)
Deallocate the block
Restore Rl,R2

DEALLOC POOL

.SBTTL SETUP CMD - Common setup for all SCSI commands
;++

SETUP CMD

This routine performs common setup prior to the sending of a SCSI command.
Setup includes allocating a command buffer, filling in the pointers in the
SCDRP to the command and status fields, copying the SCSI command to the
command buffer, allocating an SO "user" buffer if the command requires
transferring data to or from the class driver, filling in the SCDRP fields
used to map this buffer, and mapping the buffer.

Since this routine calls SPI$ALLOCATE COMMAND BUFFER, which can suspend
the thread, the return PC must be saved in the SCDRP.

C-29

VMS Template SCSI Class Driver

INPUTS:

R2 - Pointer to entry in SCSI CMD table
R4 - PDT address
RS - SCDRP address

OUTPUTS:

RO
Rl,R2

- Status
- Destroyed

SCDRP$L CMD BUF - Address of SCSI command buffer
SCDRP$L-CMD-PTR - Address of SCSI command
SCDRP$L-STS-PTR - Address to save SCSI status byte
SCDRP$L-SVA-USER- Address of SO "user" buffer
SCDRP$L-BCNT - Length of SO "user" buffer
SCDRP$W-BOFF - Byte offset of SO "user" buffer
SCDRP$L-SVAPTE - SVAPTE of so "user" buffer
IRP$V FUNC - SET/CLEAR to indicate READ/WRITE from SO "user" buffer
SCDRP$L OMA TIMEOUT - Time in seconds for a OMA timeout.
SCDRP$L=DISCON_TIMEOUT - Time in seconds for a disconnect to time out.

;--
.ENABLE LSB SETUP CMD

SETUP CMD:

SCSI_CMD_BUF_OVHD 4 + 4 4 bytes to save status byte +

SUBSAVE
MOVZBL (R2),Rl
ADDL #SCSI_CMD_BUF OVHD,Rl
SUBPUSH R2
SPI$ALLOCATE COMMAND BUFFER
MOVL R2,Rl -
SUBPOP R2
MOVB #"XFF, (Rl)
MOVAL (Rl)+,-

SCDRP$L STS PTR(RS)
MOVL Rl,SCDRP$L_CMD_PTR(R5)
MOVZBL (R2)+,RO
MOVL RO, (Rl)+
ASHL #-1,RO,RO

4 bytes for SCSI command length
Save return address
Get size SCSI command
Add in command buffer overhead
Save R2
Allocate a command buff er
Copy command buffer address
Restore R2
Initialize status field
Address to put SCSI status byte

Save address of SCSI command
Get SCSI command length

10$: MOVW (R2)+, (Rl)+
SOBGTR R0,10$

Save length in command buff er
Change byte count to word count
Copy a byte of SCSI command
Repeat for entire SCSI command

;+

;-

;+

There is a dependency here that the format of the SCSI COMMAND record
does not change.
Copy the per command timeout values from the SCSI CMD block to the
SCSI Class Driver Request Packet.

R2 points at the direction field in the SCSI CMD block.

MOVL 3(R2),- Time in seconds for a OMA timeout.

MOVL
SCDRP$L DMA_TIMEOUT(RS)

7(R2),- - Disconnect timeout in seconds.
SCDRP$L_DISCON_TIMEOUT(R5)

Determine if a buffer has already been mapped. If no buffer has been mapped,
then allocate a system buffer and map it to receive the data from the
target device.

C-30

;-

;+

VMS Template SCSI Class Driver

BBC #SCDRP$V BUFFER MAPPED,-; If buffer is mapped then do special
SCDRP$L SCSI FLAGS(RS),-; setup for this command.
20$ - -

During the STARTIO operation in the class driver, the user's QIO parameters
must be copied from the IRP to SCDRP (SCSI Class Driver Request Packet) .
The user data is then mapped, the SCSI CMD packet is allocated, and the
command is sent to a target, over the connection established during UNIT INIT.

I

MOVL UCB$L IRP(R3),R2
CLRL SCDRP$L ABCNT(RS)
MOVW IRP$W FUNC(R2),-

SCDRP$W FUNC (RS)
MOVW IRP$W_STS(R2) ,-

SCDRP$W STS(RS)
MOVL IRP$L_MEDIA(R2),-

SCDRP$L MEDIA(RS)
MOVL IRP$L SVAPTE(R2),-

SCDRP$L SVAPTE(RS)
MOVW IRP$W BOFF(R2),-

SCDRP$W BOFF (RS)
MOVL IRP$L_BCNT(R2),-

SCDRP$L BCNT(RS)
CMPL SCDRP$L-BCNT(RS),-

UCB$L_MAXBCNT(R3)
BGTR 300$
CLRL SCDRP$L_PAD_BCNT(RS)
ADDL3 #<4+4>,-

SCDRP$L_CMD_PTR(RS),Rl
MOVB SCDRP$L_BCNT(RS), (Rl)
BRW SO$

20$: CVTWL (R2) ,Rl
BLSS SO$

BEQL 30$
SUBPUSH R2
BSBW ALLOC POOL
MOVL R2,Rl
SUBPOP R2
MOVL Rl,SCDRP$L SVA USER(RS)
MOVZWL (R2)+,SCDRP$L BCNT(RS)
CLRL SCDRP$L PAD BCNT(RS)
BICW3 #"C<"XlFF>,Rl,-

SCDRP$W BOFF (RS)
INSV (R2),#IRP$V_FUNC,#l,-

SCDRP$W_STS (RS)
PUSHL R3
MOVL SCDRP$L_SVA_USER(RS),R2
JSB G"MMG$SVAPTECHK
MOVL R3,SCDRP$L_SVAPTE(RS)
POPL R3
BISB #SCDRP$M SOBUF!-

SCDRP$M-BUFFER MAPPED,-;
SCDRP$L_SCSI_FLAGS(RS)

SPI$MAP_BUFFER

SO$: MOVZWL #SS$_NORMAL,RO
S2$: SUBRETURN

30$: CLRL SCDRP$L_BCNT(RS)
BRB 50$

Get current I/O's IRP address
Initialize accumulated byte count
Copy function code and modifiers,
MEDIA, SVAPTE, and BOFF fields,
and STS

from the IRP to the SCDRP

Copy user's BCNT from IRP to SCDRP.

Transfer length greater than maximum
supported?
GTR, therefore I/O must be segmented
No padding of last page required
Address of transfer length field in
SCSI command
Copy user-supplied byte count to command.
Setup finished.

Get length of send data buff er
Branch if negative, no system buffer
involved, leave SCDRP$L_BCNT unchanged
Branch if zero length, zero SCDRP$L_BCNT
Save R2
Allocate a buffer to receive response
Copy buff er address
Restore R2
Save address of allocated buffer
Save length of transfer
No padding required
And byte offset within page

Set/clear FUNC bit to indicate READ/
WRITE function
Save R3
Get user buffer address
Get SVAPTE of allocated system buff er
Save SVAPTE in SCDRP
Restore R3
This buffer is an SO "user" buffer
and it has been mapped

Map the "user" buffer for read access

Set success status

No data being transferred
Use common exit

C-31

VMS Template SCSI Class Driver

300$: MOVZWL #SS$ IVBUFLEN,RO
BRB 52$ -

Bad byte count

.DISABLE LSB SETUP CMD

.SBTTL CLEANUP_CMD - Common cleanup for all SCSI commands
;++

CLEANUP CMD

This routine performs common cleanup after the sending of a SCSI command,
including unmapping the user buffer and deallocating the command buffer.

INPUTS:

R4 - PDT address
RS - SCDRP address

OUTPUTS:

R2 - Destroyed
All other registers preserved

;--

CLEANUP_CMD:

.ENABLE LSB

10$:

20$:

30$:

PUSHR #AM<R0,Rl,R3>
BBCC #SCDRP$V BUFFER MAPPED,-;

SCDRP$L SCSI FLAGS(RS),-;
10$ - -

SPI$UNMAP BUFFER
BBCC #SCDRP$V SOBUF,-

SCDRP$L SCSI FLAGS(RS),-;
20$ - -

MOVL SCDRP$L SVA USER(RS),RO
CLRL SCDRP$L=SVA=USER(R5)
BSBW DEALLOC POOL
MOVL SCDRP$L-CMD BUF(R5),RO
SPI$DEALLOCATE COMMAND BUFFER
POPR #AM<RO~Rl,R3> -
RSB
.DISABLE LSB

CLEANUP CMD
Save registers
Branch if no buffer has been mapped

Unmap the mapped buffer
Branch if this is not an SO "user"
buffer

Get address of SO user buffer
Buffer no longer owned
Deallocate the buffer
Get address of command buff er
Deallocate the command buffer
Restore registers

CLEANUP CMD

.SBTTL LOG ERROR - Write an entry to the error log file
;++

LOG ERROR

This routine writes an entry to the error log file. If the device is offline,
no error is logged. This prevents the error log file from being filled up while
the class driver does its periodic polling of devices that have been set
offline. The assumption is that the initial error that caused the device to
be placed off line has been logged and that subsequent error log entries would
be redundant.

INPUTS:

C-32

RS - UCB address
R7 - Error type
RB - VMS status code

OUTPUTS:

All registers preserved
;--

LOG ERROR:
.ENABLE
PUS HR
MOVB

10$:

30$:
40$:

MOVB
MOVL
MOVW

JSB
BBCC

MOVL
BEQL
JSB
POPR
RSB

LSB
#AM<R0,R2,R9,R10>
UCB$B DEVTYPE(R5),R9
UCB$B-DEVCLASS(R5),R10
UCB$L-DDT(R5),R0
#ERR K COMMAND LENGTH,­
DDT$W ERRORBUF(RO)
GAERL$DEVICERR
#UCB$V ERLOGIP,-
UCB$W STS(RS),30$
UCB$L-EMB(R5),R2
30$ -
GAERL$RELEASEMB
#AM<RO,R2,R9,Rl0>

.DISABLE LSB

VMS Template SCSI Class Driver

LOG ERROR
Save registers
Save SCSI device type
Save DEVCLASS field
Get DDT address
Length of packet containing SCSI command
in the DDT
Log a device error
Clear error log in progress

Get address of error message buffer
Branch if none available
Release the error log buff er
Restore registers
Return to caller
LOG ERROR

.SBTTL SK REG DUMP - Device register dump routine

C-33

VMS Template SCSI Class Driver

;++
SK REG DUMP

This routine dumps device-specific information into an error log packet.
The format of this information is as follows:

+-----------------------+
I Longword count I 4 bytes
+-----------------------+
I Revision I 1 byte
+-----------------------+
I HW revision I 4 bytes
+-----------------------+
I Error Type I 1 byte
+-----------------------+
I SCSI ID I 1 byte
+-----------------------+
I SCSI LUN I 1 byte
+-----------------------+
I SCSI SUBLUN I 1 byte
+-----------------------+
I Port status I 4 bytes
+-----------------------+

SCSI CMD LENGTH 1 byte
+-----------------------+
I SCSI CMD BYTES I Up to 12 bytes
+-----------------------+
I SCSI STS I 1 byte
+-----------------------+
I Error Text Count I 1 byte
+-----------------------+
I Error Text I Up to 60 bytes
+-----------------------+

Inputs:

RO - Output buffer address
RS - UCB address

Outputs:

Rl-R3 - Destroyed
All other registers preserved

·--'

C-34

VMS Template SCSI Class Driver

SK REG DUMP:
.ENABLE LSB ; SK REG DUMP
MOVL #<<ERR_K_COMMAND_LENGTH/4>+1>,-

(RO)+ Length of error log packet in words
MOVB #0, (RO)+ Save revision level
CLRL (RO)+ Save hardware revision level
MOVB R7, (RO)+ Save error type
MOVZWL UCB$W_UNIT(R5),Rl Get unit number
CLRL R2 Prepare for extended divide
EDIV #100,Rl,Rl,R2 Extract SCSI bus ID from unit number
MOVB Rl, (RO)+ Save SCSI bus ID
MOVL R2,Rl Copy LUN, SUBLUN
CLRL R2 Prepare for extended divide
EDIV #10,Rl,Rl,R2 Extract LUN and SUBLUN
MOVB Rl, (RO)+ Save LUN field
MOVB R2, (RO)+ Save SUBLUN field
MOVL RS, (RO)+ Save port status code
MOVL UCB_L_SCDRP(R5),Rl Get active SCDRP address
BEQL 50$ Branch if none active
MOVL SCDRP$L_CMD_PTR(Rl),R2 Get address of SCSI command
BEQL 50$ Branch if none active
MOVL (R2)+,R3 Get number of SCSI command bytes
MOVB R3, (RO)+ Save command length

10$: MOVB (R2)+, (RO)+ Save a command byte
SOBGTR R3,10$ Continue for entire SCSI command
MOVL SCDRP$L_STS_PTR(Rl),R2 Get address of status byte
MOVB (R2), (RO)+ Save SCSI status byte
MOVB (Rll)+,R3 Get count of number of text bytes.
BEQL 50$ If no text finished
MOVB R3, (RO)+ Save text length

20$: MOVB (Rll)+, (RO)+ Save a text byte in error packet
SOBGTR R3,20$ Continue for entire text string command

50$: RSB
.DISABLE

SK PATCH:
.BLKB

SK END:
.END

200

Return
LSB SK REG DUMP

Patch space

Last location in driver

C-35

D Interpreting SCSI Driver Error Log Entries

As dictated by the VMS SCSI class/port driver architecture, a VMS SCSI
port driver logs port-specific events in a defined form. Port driver error log
entries can provide clues that are helpful in resolving problems that may
occur during the development of a third-party SCSI class driver.

The VMS SCSI class/port driver architecture also specifies a form for
class driver error log entries. Because of the value of the error log in
debugging, Digital highly recommends that a third-party SCSI class driver
incorporate an error logging routine that records events significant to the
device. (See Section 3.5.2 for a discussion of the procedures by which class
drivers interpret status, format events, and register error log entries.)

You can use the VMS Error Log Utility, as described in the VMS Error
Log Utility Manual, to list and format SCSI port and class driver error log
entries.

D.1 SCSI Port Driver Error Log Entries
The SCSI port driver is responsible for all low-level activity associated
with sending commands to a target SCSI device. The standard format
of an error log entry generated by a port driver has two parts: a port­
common section and a port-specific section. All VMS port drivers provide
the same type of information in the port-common section of the entry. The
information a port driver supplies in the port-specific section depends upon
the SCSI port hardware that is in use.

Table D-1 describes the contents of a formatted port driver error log entry.
A reference number in the table associates each table item with an entry
in the representative error logs presented in Examples D-1 and D-2.

When inspecting a SCSI port driver error log entry, you should :first
examine the error type and error subtype. These :fields indicate the nature
of the event that occurred. You should also check the SCSI ID field to
determine the device for which the event has been reported. Although
the SCSI ID may not always identi:fY the device responsible for the event,
it may help you interpret the significance of the information in this and
other error log entries.

Next, you should examine the SCSI CMD field to determine which SCSI
command was current at the time of the logged event. The phase queue
entry lists those SCSI bus phases that have been successfully completed
during execution of this command. You can derive the current phase of the
SCSI bus by referring to the description of the phase signals defined for
the command in the ANSI SCSI specification. In addition, the port-specific
section of the error log entry of certain VMS port drivers lists the currently
asserted bus lines.

D-1

Interpreting SCSI Driver Error Log Entries
D.1 SCSI Port Driver Error Log Entries

Finally, the sets of counters that appear in a port driver error log entry
can help you discern patterns of activity on the SCSI bus. For instance, a
large number of parity errors are a symptom of a bus termination problem
or other hardware problem.

Table D-1 Key to Port Driver Error Log Entries

Fleld1

General Event Information

Error type 8
Error subtype 8

Description

Error type and subtype. The following types and subtypes are defined.
Error2 Definition Description

01 BUS_HUNG SCSI bus was continuously busy during an
arbitration attempt.

02 ARB_FAIL Arbitration of SCSI bus failed due to activity of
higher priority devices.

03 SEL_FAIL Selection failed.

04

05

06

TIMEOUT

PARITY _ERROR

PHASE_ERROR

Timeout occurred.

Parity error detected.

SCSI bus phase error. A phase error results
from a missing SCSI bus phase, a phase that
is entered more than once, or a bad phase
sequence.

Subtype2 Description

01 Missing phase error

02 Bad phase transition

03 Timeout waiting for phase interrupt

04 Unexpected phase change during
DATA IN; error during REQ-ACK

05 Unexpected phase change during
DATA OUT; error during REQ-ACK

06 Phase change timeout during DATA
IN

07 Phase change timeout during DATA
OUT

08 Timeout waiting for phase change

09 Phase change timeout during
COMMAND OUT

10 Bus freed during command phase

1 Reference numbers refer to Examples D-1 and D-2.

2Error type and subtype values are rendered in hexadecimal format.

(continued on next page)

D-2

Interpreting SCSI Driver Error Log Entries
D.1 SCSI Port Driver Error Log Entries

Table D-1 (Cont.) Key to Port Driver Error Log Entries

Field1

General Event Information

SCSI ID t)

SCSI CMD8

SCSI MSG@t

SCSI STATUS 0

Port Error Counters3

Bus busy count 0

Description

07

08

09

10

11

12

13

14-19

BUS_RESET

UNEXPECTED -
INTERRUPT

BUS_RESET_
ISSUED

RESEL_ERR

CTL_ERR

BUS_ERR

ILLEGAL_MSG

Bus reset detected.
Subtype2 Description

01 Reset occurred while no 1/0
operation was active

Unexpected interrupt received.

Bus reset initiated.

Error following a device disconnect.

Subtype2 Description

01 Bad parity during reselect

02 No target ID during reselect

03 Multiple target IDs during reconnect

04 No connection to this target

05 Failed while no reselect was
pending

08 SEL failed to clear during reselect

09 REQ failed to set during reselect

1 O Bad RES EL message

Error detected by controller.

Controller detected a SCSI bus protocol error.

Illegal message received.

Reserved.

SCSI ID of the device to which the current command is being sent. Valid SCSI
IDs range from 0 to 7. A value of FF16 in this entry indicates that the SCSI ID is
unknown or not relevant (as in the case of a spurious bus reset).

Current SCSI command.

Current SCSI message.

Current SCSI status. A status value of FF16 indicates that the SCSI bus has not
yet returned status.

Number of times the port driver has attempted to arbitrate for the SCSI bus and
has found the bus hung for an extended period of time. A value in this field
indicates either that the bus is extremely busy or a device on the bus is hung.

1 Reference numbers refer to Examples D-1 and D-2.

2Error type and subtype values are rendered in hexadecimal format.

3The port error counters record errors that cannot be attributed to a specific device on the SCSI bus.

(continued on next page)

D-3

Interpreting SCSI Driver Error Log Entries
D.1 SCSI Port Driver Error Log Entries

Table D-1 (Cont.) Key to Port Driver Error Log Entries

Fleld1

Port Error Counters3

Unsolicited reset count e

Unsolicited interrupt count •

Connection Error Counters4

Arbitration fail count I>

Selection fail count e

Parity error count 41

Phase error count 8

Bus reset count e

Bus error count e
Controller error count 8

Retry Counters

Arbitration retry count •

Selection retry counter 8

Bus busy retry counter 8

Phase Queue

Description

Number of times the port driver has received a reset interrupt that is not due to its
own pulling of the bus reset line. This could be due to noise on the reset line or to
a device (or another Initiator) pulling the bus reset llne.

Number of times the port driver has received an unsolicited interrupt.

Number of times the port driver has attempted to arbitrate for the SCSI bus
and has failed. Arbitration Is attempted only when a bus free condition is
detected. Thus, this counter reflects the number of times a low priority device
loses arbitration to a higher priority device.

Number of times the port driver has attempted to select a target device and has
failed. This could happen just after a target device has been reset, if it has been
powered off or disconnected from the bus, or if it is hung in such a way that it is
not also hanging the bus.

Number of times the port driver has detected a parity error while sending a
command to a target SCSI device.

Number of times the port driver has detected a phase error while sending a
command to a target SCSI device.

Number of times the port driver has reset the bus because it was unable to send
a command to a target SCSI device. The port driver resets the bus for a number
of reasons: for instance when it detects a bus hang or a phase error.

Number of times the SCSI controller has detected an error on the SCSI bus. This
field is not used by SCSI controllers on MicroVAX/VAXstation 3100 systems.

Number of times the SCSI controller has reported an internal error. This field is
not used by SCSI controllers on MicroVAX/VAXstation 3100 systems.

Number of arbitration retries attempted. A value of -1 indicates that the counter
contains no valid data.

Number of selection retries attempted. A value of -1 indicates that the counter
contains no valid data.

Number of bus busy retries attempted. A value of -1 indicates that the counter
contains no valid data.

1 Reference numbers refer to Examples D-1 and D-2.

3The port error counters record errors that cannot be attributed to a specific device on the SCSI bus.

4The connection error counters record errors that can be attributed to a specific device on the SCSI bus. The SCSI ID field
specifies the devices to which the command was being sent when the error occurred.

(continued on next page)

D-4

Interpreting SCSI Driver Error Log Entries
D.1 SCSI Port Driver Error Log Entries

Table D-1 (Cont.) Key to Port Driver Error Log Entries

Fleld1

Phase Queue

Element phase queue 9

Port dependent data •

Description

Lists the SCSI phases that have been entered and completed during the execution
of the current command. The digit preceding the list indicates the number of
phases that have been completed.

Contents of port controller registers. This section of the error log entry contains
information specific to the SCSI port controller employed by the system.

1 Reference numbers refer to Examples D-1 and D-2.

D.2 SCSI Class Driver Error Log Entries
A SCSI class driver logs device-specific events in the manner described in
Section 3.5.2. Although all class drivers use a common extension to the
standard error message buffer when logging errors, the types of events
detected and reported by class drivers are specific to the devices they
control.

Table D-2 describes the contents of a formatted class driver error log
entry. Each item in this table is likewise associated with a field in the
error log contained in Example D-3.

Table D-2 Key to Class Driver Error Log Entries

Field1

Hardware revision 9
Error type 9

Description

Hardware revision information, returned by the SCSI INQUIRY command.

Type of error detected by the class driver. A SCSI class driver defines device­
specific error types according to the nature of the device it services. The following
error values are interpreted by the VMS Error Log Utility:
Error2 Name Description

01

02

03

04

05

CON_ERR

MAP_ERR

SND_ERR

INV_INQ

EXT_SNS_DAT

Attempt to connect to the port driver failed

Attempt to map a user buffer failed

Attempt to send a SCSI command failed

Invalid inquiry data was received

Extended sense data was returned from the
SCSI device

1 These numbers refer to Example D-3.
2Error type values are rendered in hexadecimal format.

(continued on next page)

D-5

Interpreting SCSI Driver Error Log Entries
D.2 SCSI Class Driver Error Log Entries

Table D-2 (Cont.) Key to Class Driver Error Log Entries

Field1

SCSI IDG

SCSI LUN 9

SCSI SUBLUN e
Port status fl
SCSI CMD9

SCSI STS I)

Additional data e

Description

06 INV_MOD_SNS

07 REASSIGN_BLK

08 DIAG_DATA

Invalid mode sense data returned from the
SCSI device

Reassign block

Invalid diagnostic data returned to the VMS
SCSI tape class driver

SCSI ID of the device to which the current command was sent. The SCSI ID is an
integer between 0 and 7.

SCSI logical unit number of the device to which the current command was sent.
The SCSI LUN is an integer between 0 and 7.

Not used. This field always contains 0.

Current port status. A value of -1 indicates that there is no valid data in this field.

Current SCSI command.

Current SCSI status. A value of -1 indicates that there is no valid data in this
field.

Additional data, preceded by a byte count of the data. A class driver defines what
additional data would be meaningful in an error log entry based on the type of
device it services. Additional data is displayed by the VMS Error Log Utility as
untranslated longwords.

Note that the VMS Error Log Utility can interpret extended sense data values when
the extended sense data received error type is reported in the log and the driver's
error logging routine places the sense data in this field of its error message buffer.
Thus, the error log entry that appears in Example D~3 interprets the logged sense
data as a unit attention message signifying a power on or reset condition.

1 These numbers refer to Example D-3.

D.3 Resolving SCSI Class Driver Problems Using Error Logs

D-6

Taken as a unit, Examples D-1 through D-3 illustrate a standard event
sequence that may occur during a SCSI bus transaction. This sequence
involves the following actions:

1 The port detects an abnormal event, such as a timeout. (Example D-1)

2 The port driver resets the SCSI bus. (Example D-2)

3 A class driver receives extended sense data from the device informing
it of the reset event. (Example D-3)

These events typically occur for one of the following reasons:

• The class driver has sent a SCSI command to a device that the device
does not understand or does not support.

• The class driver has sent a misformatted SCSI command packet to a
device.

• The class driver has failed to deallocate a port resource, such as a
command buffer or port map registers.

Interpreting SCSI Driver Error Log Entries
D.3 Resolving SCSI Class Driver Problems Using Error Logs

• A hardware failure has occurred on the SCSI bus.

Example D-1 SCSI Bus Phase Error Port Driver Error Log Entry

V A X I V M S SYSTEM ERROR REPORT COMPILED 13-SEP-1989 15:05
PAGE 1.

******************************* ENTRY
ERROR SEQUENCE 43028.
DATE/TIME 13-SEP-1989 15:03:35.08
SCS NODE:

DEVICE ATTENTION KA420 CPU REV# 6.

SCSI PORT SUB-SYSTEM, UNIT PKAO:

PORT

ERROR TYPE 06

SCSI ID 02

SCSI CMD CA810208
0019

SCSI MSG 00

SCSI STATUS FF

PORT ERROR CNT 00000000
00000000
00000000

CONN ERROR CNT 00000000
00000000
00000000
00000001
00000000
00000000
00000000

SCSI RETRY CNT 00000000
0000

PHASE QUEUE 0908

DEPENDENT DATA~

CNTLR INI CMD 02

CNTLR MODE 20

208. *******************************
LOGGED ON: SID 0A000005

SCSI BUS PHASE ERROR ..

SYS TYPE 04010102
VAx/VMS X5.2-1C

SUB-ERROR TYPE = 02(X).

SCSI ID = 2.8

READO

COMMAND COMPLETE0

NO STATUS RECEIVEDCit

BUS BUSY CNT = 0,fj
UNSOL RESET CNT = o.@>
UNSOL INTRPT CNT = O.@l

ARB FAIL CNT = o.41!>
SEL FAIL CNT = O.~
PARITY ERR CNT = o.4')
PHASE ERR CNT 1.~
BUS RESET CNT = o.41>
BUS ERROR CNT = o.Gi'
CONTROLLER ERROR CNT = O.~

ARB RETRY CNT = o.4f>
SEL RETRY CNT = o.Gi)
BUSY RETRY CNT = o.4&>

2. ELEMENT PHASE QUEUEti
ARBITRATION
SELECTION -

ATN ASSERTED

PARITY CHECK ENABLED

(continued on next page)

D-7

Interpreting SCSI Driver Error Log Entries
D.3 Resolvlng SCSI Class Driver Problems Using Error Logs

Example D-1 (Cont.) SCSI Bus Phase Error Port Driver Error Log Entry

CNTLR TAR CMD 00
CNTLR CURR STS 78

CNTLR STATUS

DMA CNT
DMA ADDRESS
DMA DIR

02

00000000
00004200

01

C/D ASSERTED
MSG ASSERTED
REQ ASSERTED
BUSY ASSERTED

ATN ASSERTED

Example D-2 SCSI Bus Reset Port Driver Error Log Entry

READ OPERATION
******************************* ENTRY 209. *******************************
ERROR SEQUENCE 43029. LOGGED ON: SID OAOOOOOS
DATE/TIME 13-SEP-1989 15:03:35.08 SYS TYPE 04010102
scs NODE: VAX/VMS xs.2-1c

DEVICE ATTENTION KA420 CPU REV# 6.

SCSI PORT SUB-SYSTEM, UNIT _PKAO:

D-8

ERROR TYPE 09

SCSI ID 02

SCSI CMD CA810208
0019

SCSI MSG 00

SCSI STATUS FF

PORT ERROR CNT 00000000
00000000
00000001

CONN ERROR CNT 00000000
00000000
00000000
00000001
00000001
00000000
00000000

SCSI RETRY CNT 00000000
0000

PHASE QUEUE 0908

BUS RESET INITIATEott
SUB-ERROR TYPE= 00(X)41

SCSI ID • 2 ••

READ.

COMMAND COMPLETE ..

NO STATUS RECEIVEDC8

BUS BUSY CNT • o.ft
UNSOL RESET CNT • a.flt
UN SOL INTRPT CNT • 1..

ARB FAIL CNT • 0.419
SEL FAIL CNT • O.~
PARITY ERR CNT • O.~
PHASE ERR CNT • 1.GD
BUS RESET CNT • 1.~
BUS ERROR CNT • o.Gt
CONTROLLER ERROR CNT = O.~

ARB RETRY cNT - o.I
SEL RETRY CNT • 0.
BUSY RETRY CNT = o.GD
2. ELEMENT PHASE QUEUEt&

(continued on next page)

Interpreting SCSI Driver Error Log Entries
D.3 Resolving SCSI Class Driver Problems Using Error Logs

Example D-2 (Cont.) SCSI Bus Reset Port Driver Error Log Entry

PORT DEPENDENT DATA~
CNTLR INI CMD 00
CNTLR MODE 00
CNTLR TAR CMD 00
CNTLR CURR STS 00
CNTLR STATUS 08

DMA CNT
DMA ADDRESS
DMA DIR

00000000
00004200

01

ARBITRATION
:)ELECTION

PHASE MATCH

READ OPERATION

Example D-3 SCSI Bus Reset Class Driver Error Log Entry

******************************* ENTRY
ERROR SEQUENCE 43030.
DATE/TIME 13-SEP-1989 15:03:35.49
SCS NODE:

DEVICE ERROR KA420 CPU REV# 6.

RZ23 SUB-SYSTEM, UNIT _DKA200:

HW REVISION 38313630

ERROR TYPE 05

SCSI ID 02

SCSI LUN 00

SCSI SUBLUN 00

PORT STATUS 00000001

SCSI CMD CA810208
0019

SCSI STATUS 02

EXTENDED SENSE DATAC&

EXTENDED SENSE 00060070
ocoooooo
00000000
00000029

0000

210. *******************************
LOGGED ON: SID OA000005

HW REVISION = 0618~

SYS TYPE 04010102
VAX/VMS X5.2-1C

EXTENDED SENSE DATA RECEIVED~

SCSI ID = 2 ••

SCSI LUN = o.fi

SCSI SUBLUN = O.~

%SYSTEM-S-NORMAL, NORMAL SUCCESSFUL
COMPLETIONti

CHECK CONDITIO~

UNIT ATTENTION
POWER ON OR RESET OCCURRED

(continued on next page)

D-9

Interpreting SCSI Driver Error Log Entries
D.3 Resolving SCSI Class Driver Problems Using Error Logs

Example D-3 (Cont.) SCSI Bus Reset Class Driver Error Log Entry

UCB$B_ERTCNT 00

UCB$B_ERTMAX 00

ORB$L_OWNER 00010001

UCB$L_CHAR 1C4D4008

UCB$W_STS 0010

UCB$L_OPCNT 0000104E

UCB$W_ERRCNT 0001

IRP$W_BCNT 3200

IRP$W_BOFF 0000

IRP$L_PID OOOlOOOD

IRP$Q_IOSB 00000000
00000000

******************************* ENTRY
ERROR SEQUENCE 43031.
DATE/TIME 13-SEP-1989 15:04:51.53
SCS NODE:

TIME STAMP KA420 CPU REV# 6.

0-10

0. RETRIES REMAINING

0. RETRIES ALLOWABLE

OWNER UIC (001,001]

DIRECTORY STRUCTURED
FILE ORIENTED
SHARABLE
AVAILABLE
MOUNTED
ERROR LOGGING
CAPABLE OF INPUT
CAPABLE OF OUTPUT
RANDOM ACCESS

ONLINE

4174. QIO'S THIS UNIT

1. ERRORS THIS UNIT

TRANSFER SIZE 12800. BYTE(S)

TRANSFER PAGE ALIGNED

REQUESTOR "PID"

IOSB, 0. BYTE(S) TRANSFERRED

211. *******************************
LOGGED ON: SID 0A000005

SYS TYPE 04010102
VAX/VMS XS.2-lC

E VMS Requirements and Restrictions for
Non-Digital-Supplied SCSI Devices

The VMS operating system offers a compliant implementation of the ANSI
SCSI bus. Every effort has been made to support the widest possible
variety of SCSI peripherals. However, the SCSI standard is so flexible
that additional requirements and restrictions are necessary. Any SCSI
device that does not conform to these requirements cannot be used on a
MicroVAX/VAXstation system.

This appendix describes all the requirements and restrictions necessary
for writing a third-party SCSI class driver. It does not enumerate the
additional rules necessary for devices that use the VMS disk and tape
class drivers, as that information is beyond the scope of this appendix.

Note that some of these restrictions may be removed in the future,
when new SCSI features are supported in the SCSI port drivers. New
restrictions may also be added as they are found necessary.

E.1 VMS Requirements

E.1.1

This section describes the requirements and restrictions that a SCSI device
must meet in order to run properly on a MicroVAX/VAXstation system.

Conformance to Standards
The VMS SCSI implementation is currently based on the SCSI-1
standard. However, the SCSI-2 standard is compatible with SCSI-1,
and clarifies many gray areas in the SCSI-1 standard. Therefore, all
VMS requirements for non-Digital-supplied SCSI devices are based on the
SCSI-2 standard.

The device must implement all of the mandatory features of the
SCSI-2 standard as described in the specification. The device is permitted
to implement any optional features, as long as they are implemented
according to the SCSI-2 standard. The device may implement vendor­
unique features, as long as they are implemented in areas clearly
designated as such by the standard.

The SCSI-2 standard is the official guide to what must be implemented
and how it must be implemented by the device. The remainder of this
appendix is not intended to replace the SCSI-2 standard, but rather to
specify which options of the SCSI-2 standard must be implemented, and
to impose additional restrictions when necessary.

E-1

E.1.2

E.1.3

E.1.4

E.1.5

E.1.6

Requirements and Restrictions
E.1 VMS Requirements

Cabling
MicroVAXNAX.station systems do not support the wide-SCSI option.
Therefore, only the A Cable is used.

Only single-ended drivers and receivers can be used on
MicroVAXNAX.station systems.

The fast synchronous data transfer option is not supported, so the cables
do not need to match the requirements for this option. (See Section 4.2.3
of the SCSI-2 standard.)

Connector Requirements
Alternative 2 (low-density) nonshielded A Cable connectors are used inside
the system box. (See Section 4.3.1.2 of the SCSI-2 standard.)

Alternative 2 (low-density) shielded A Cable connectors are used between
device enclosures. (See Section 4.3.2.2 of the SCSI-2 standard.)

The connectors should be shrouded and keyed in order to protect users
from cabling errors.

SCSI Bus Termination
MicroVAXNAX.station systems implement single-ended termination. Near­
end termination is provided within the system enclosure. The far-end
termination for the external bus should be provided by a terminating
connector plugged into the last SCSI jack. There shall be no other
terminators on the bus. The device should not terminate the bus internal
to itself, even if it is the last device on the bus. If all devices follow this
rule, the user can reconfigure his bus with a much higher probability of
proper bus termination. Failure to terminate the bus properly leads to
system crashes that are difficult to pinpoint and to corruption of data.

Vendors who want to install devices inside system enclosures must contact
the appropriate Digital hardware engineering group for details.

Terminator Power
Each device enclosure (whether it contains initiators, targets, or both)
must provide terminator power to the TERMPWR pin.

A 1-amp current limiter is required.

Dynamic Reconfiguration of Devices

E-2

Devices on the MicroVAXNAX.station SCSI bus may not be added to the
bus, removed from the bus, or recabled while the system is in operation.
Failure to meet this requirement may cause loss of user data or system
failure.

E.1.7

E.1.8

E.1.9

External Boxes

Requirements and Restrictions
E.1 VMS Requirements

Devices residing outside the main system box should remain powered on
at all times while the system is in operation, because

• Some powered-off SCSI devices fail to present high impedance to the
SCSI bus, leaving the bus unusable.

• A powered-off device can reduce the terminator power on the bus to
unacceptable levels, causing user data corruption or system failure.

• The device can spike various SCSI bus signals during power-on or
power-off, leading to user data corruption or system failure.

Many users cycle the power on external boxes while the system is running
despite warnings, because it often "seems to work." For this reason, the
device should be designed to minimize the possibility of these problems.
However, the fact remains that powering off boxes can lead to serious
consequences, and Digital strongly recommends that external devices
remain powered on at all times during system operation.

Device Behavior Following Power-On
The device must meet the following requirements after it is powered on.

• Within 5 seconds of power-on, the device must be able to respond
to a SCSI bus selection so that the VMS operating system is aware
that there is an active device at this SCSI ID. However, the device
is permitted to return any of the following errors until it is ready for
normal operation:

• BUSY status.

• CHECK CONDITION status, followed by NOT READY sense key
in response to the next REQUEST SENSE command.

• CHECK CONDITION status, followed by UNIT ATTENTION
sense key in response to the next REQUEST SENSE command.
(Note that UNIT ATTENTION may only be returned once per
power-up/bus-reset, as described in the SCSI-2 standard.)

• Within 15 seconds of power-on, the device must be able to successfully
complete an INQUIRY command so the device can be identified.

• The VMS operating system does not specify a minimum value by
which devices must respond to normal commands following power-on,
because this value is determined by the third-party SCSI class driver.

Device Behavior Following Bus Reset
A SCSI bus reset is a serious event that may cause some devices such as
tape drives to lose user data. Therefore, only the MicroVAX/VAXstation
processor may set the SCSI RST signal, and even then only as a last
resort. The device must never set the SCSI RST signal. The device must
behave as follows after a SCSI bus reset, except when the reset occurs as
the result of power-on (see Section E.1.8).

E-3

Requirements and Restrictions
E.1 VMS Requirements

E.1.10 Data Transfer

E-4

• · The device must be able to respond to a SCSI bus selection within
5 seconds of the bus reset. However, the device is permitted to
return one of the following status values once it begins to accept
bus selections:

• BUSY status

• CHECK CONDITION status followed by NOT READY sense key
in response to the next REQUEST SENSE command.

• CHECK CONDITION status, followed by UNIT ATTENTION
sense key in response to the next REQUEST SENSE command.
(Note that UNIT ATTENTION may only be returned once per
power-up/bus-reset, as described in the SCSI-2 standard.)

The device may not return any other status values or sense keys,
unless it is ready for normal operation.

• The device must be able to respond to normal commands within 10
seconds of the bus reset.

The device must be able to handle multiple bus resets in succession, with
no ill effects. The device must recover within the time limits specified
above, following the last bus reset.

The following modes of data transfer are supported on
MicroVAX/VAXstation systems:

System

VAXstation 3100
MicroVAXNAXserver 3100

VAXstation 3520/3540

Data Transfer Mode(s)

Asynchronous

Asynchronous and synchronous

The fast synchronous transfer option is not supported on any systems.
(See Section 4.8 of the SCSI-2 standard for a description of this option.)

The device must generate odd parity during all information transfer
phases in which the device writes data to the SCSI bus, and check odd
parity during all information transfer phases in which it reads data from
the bus.

Current MicroVAX/VAXstation systems use an intermediate buffer for
all incoming and outgoing SCSI data. When a system performs an I/O
transfer involving a SCSI device, it allocates a portion of this buffer for
the duration of the operation. Because the VMS operating system allows
multiple concurrent I/O operations to the SCSI bus, the VMS operating
system cannot allocate the full buffer to a single device. The following list
shows the intermediate buffer size, the maximum data transfer size and
the recommended data transfer size on supporting VAX systems:

• Intermediate buffer size - 128 KB on all systems supported today,
which include the VAXstation 3100, MicroVAX/VAXserver 3100, and
VAXstation 3520/3540.

Requirements and Restrictions
E.1 VMS Requirements

• Maximum data transfer size - 64 kilobytes on all systems supported
today. If a device needs to transfer more than the maximum transfer
size, the device must be modified to allow the data to be returned
across multiple SCSI commands. A single SCSI command cannot
transfer more than the maximum size.

• Recommended data transfer size - For the best overall system
throughput, the device should only transfer 16 kilobytes per SCSI
command.

E.1.11 lnitiatorfTarget Operation
Normally, the MicroVAX/VAXstation processor is the only entity that
may act as an initiator on the SCSI bus. However, the user's device is
also permitted to act as an initiator, as long as it is for the purpose of
selecting and sending a command to the processor. This feature is called
"asynchronous event notification" in the SCSI-2 specification. The device
may not select or issue a command to any other device on the bus.

E.1.12 SCSI IDs and Logical Unit Numbers
The SCSI ID is a value ranging from 0 to 7 that determines the logical
position of the device controller on the SCSI bus. The device must have
user-accessible switches or jumpers so that the SCSI ID can be changed
easily in the field.

The SCSI ID assignments vary from system to system. However, the
following SCSI ID assignments are used for most systems:

• SCSI ID 7 is used for the CPU on the VAXstation 3520/3540.

• SCSI ID 6 is used for the CPU on the MicroVAX/VAXstation 3100,
MicroVAX 3100, and VAXserver 3100.

• SCSI ID 5 is used for the tape drive.

• SCSI IDs 2 to 4 are used for disks.

• SCSI IDs 0 and 1 are free.

A non-Digital-supplied device may use any SCSI ID that does not conflict
with another SCSI ID on the same bus.

The device logical unit number (LUN) distinguishes between multiple
units attached to a single SCSI controller. The VMS operating system
supports logical unit numbers ranging from 0 to 7, and stores the logical
unit number in the IDENTIFY message that is sent prior to every
command. However, the VMS operating system does not support sub­
LUNs, a feature described in the SCSI-1 standard but whose use is
discouraged in the SCSI-2 standard.

E-5

Requirements and Restrictions
E.1 VMS Requirements

E.1.13 Bus Phases
The device must conform to the bus state transition table shown in Section
5.3 of the SCSI-2 standard, "Phase Sequences." In addition, the device
must meet the following criteria:

• RESELECTION phase - When the host responds to a target
reselection by asserting the BSY signal, the target must deassert
the SEL signal within 500 microseconds of the BSY assertion. The
target should also assert REQ for the first command or message byte
within 500 microseconds of the BSY assertion.

• COMMAND phase - The device may only enter the command phase
once per command. For instance, linked commands may not be issued
to the device.

• ATTENTION response -The device must respond to an ATN
condition at every phase transition, as long as the processor sets
the ATN signal before it asserts the ACK signal for the last byte of the
previous phase. During the data phase, the device should also respond
to an ATN condition at least once per millisecond.

• STATUS phase - The device must enter the status phase once (no
more, no less) per command. The only exception is during error cases
when the device immediately enters the BUS FREE phase, as defined
in the SCSI-2 standard. Storage devices should not enter the status
phase following a WRITE BUFFER command until the data has been
written to nonvolatile media, in order to avoid accidental loss of user
data.

• BUS FREE - The target must not drive any SCSI bus lines after the
deassertion of BSY, except during selection or reselection, as outlined
in the SCSI-2 standard.

E.1.14 Disconnect and Reselection

E-6

The device must adhere to the following rules for disconnecting from the
bus and reselecting the initiator.

• The device should proceed quickly through all phases of a SCSI
command, and should not hold the bus for long periods without
disconnecting.

• While a device is disconnected from the bus, it must respond to a
selection with ATN by entering the MESSAGE OUT phase and
accepting the message from the processor. The device must be
prepared to properly handle either the ABORT or the BUS DEVICE
RESET message at this time.

• If the initiator fails to respond to reselection, the device must time
out the reselection attempt after 250 milliseconds as described in the
Reselection Timeout Procedure, Section 5.1.4.2 of the SCSI-2 standard.
The device must employ the second option described in this section of
the SCSI-2 standard to release the bus; that is, the device may not
assert the RST signal.

E.1.15 Messages

Requirements and Restrictions
E.1 VMS Requirements

• After a reselection timeout, the target should retry the host at least
four times, but not more than 10 times. If the device retries more than
10 times, it can unnecessarily tie up the bus in an error condition. In
order to prevent the retries from timing out other devices, the device
should delay at least 20 microseconds between retry attempts.

The device should not hold the bus busy in a single state before
disconnecting for longer than the following periods of time:

• 500 microseconds is recommended for best system performance.

• 3 milliseconds is required for performance reasons.

The VMS operating system accepts the following messages during the
MESSAGE IN phase. The target device must not generate any messages
except those stated in this list:

• COMMAND COMPLETE

• DISCONNECT

• IDENTIFY

• RESTORE POINTERS

• SAVE DATA POINTER

• SYNCHRONOUS DATA TRANSFER REQUEST (only for the
VAXstation 3520/3540)

The VMS operating system generates the following messages, which the
target must accept and process as described in the SCSI-2 standard.

• ABORT

• BUS DEVICE RESET

• IDENTIFY

• INITIATOR DETECTED ERROR

• MESSAGE PARITY ERROR

• MESSAGE REJECT

• NO OPERATION

• SYNCHRONOUS DATA TRANSFER REQUEST (only for devices that
support synchronous data transfers)

When a device selects the host for the purpose of performing an
asynchronous event notification, the host accepts the following messages
in addition to those stated above. When one of these messages is received,
the VMS operating system notifies the third-party SCSI class driver of the
received message.

• ABORT

• BUS DEVICE RESET

E-7

Requirements and Restrictions
E.1 VMS Requirements

E.1.16 Commands

• INITIATOR DETECTED ERROR

• MESSAGE PARITY ERROR

• MESSAGE REJECT

• NO OPERATION

The following messages have additional requirements:

• ABORT - The ABORT message must be implemented as described in
the SCSI-2 standard. When the target receives an ABORT message,
it must terminate the current operation. The device must stop in a
manner that does not cause side effects; for example, no parity errors
should be written to the media, and devices such as tape drives, which
store user data in nonvolatile memory, must write the data back to
nonvolatile media before honoring the ABORT message. Following the
abort operation, the device must use the recovery guidelines described
in Section E.1.9.

• COMMAND COMPLETE - The device may not hold the BSY
signal for more than 10 microseconds after sending the COMMAND
COMPLETE message or the DISCONNECT message.

• SAVE DATA POINTER - This message is used to save the context of
an operation while a device is disconnected from the bus. However,
this message is not necessary or useful when the target disconnects
before starting to transfer data. In this case, the target should not use
this message as it can waste roughly 200 microseconds of VMS CPU
time per I/O operation. Once the device transfers data, it must issue
the SAVE DATA POINTER message before disconnecting.

• RESTORE POINTERS - the VMS operating system always performs
an implicit restore pointers operation when the target reselects.
The target should not use this message as it can waste roughly
200 microseconds of VMS CPU time per I/O operation. Note that
the RESTORE POINTERS message cannot be used to retry the
COMMAND or STATUS phases.

The VMS operating system allows commands up to 128 bytes in length.
Otherwise, there are no restrictions on the size or type of commands that
may be sent, as long as they conform to the SCSI-2 standard.

E.1.17 INQUIRY Command

E-8

The INQUIRY command must return one of the following values in the
ANSI-Approved Version field:

01 The device complies with ANSI X3.131-1986 (SCSl-1).

02 The device complies with ANSI X3.131-198X (SCSl-2).

E.1.18 Status

Requirements and Restrictions
E.1 VMS Requirements

The contents of the SCSI status byte must conform to rules of the SCSI-2
standard. Otherwise, there are no restrictions on the use of this byte.

E.1.19 Unsupported Features
In addition to the restrictions mentioned above, the following features are
not supported in the VMS operating system:

• Wide SCSI is not supported. Only the 8-bit data path is supported by
the VMS operating system.

• Linked commands are not supported.

• Queued commands are not supported.

• The soft reset alternative is not supported. The device must implement
the hard reset option.

If a device implements a feature such as queued commands, users can
operate the device on a MicroVAX/VAXstation system, but will find that
they are unable to invoke queued commands on the device.

E-9

Glossary

AEN: See Asynchronous event notification.

Asynchronous event notification (AEN): SCSI protocol allowing a SCSI device that
is usually a target to inform the processor (usually the initiator) that an event
has occurred asynchronously with respect to the processor's current stream of
execution.

Class driver: See SCSI class driver.

Command descriptor block: Structure created by a SCSI class driver (or an
application using the VMS generic SCSI class driver) in order to initiate a
request of a device on the SCSI bus.

Connection: Logical link between a SCSI class driver and a device on the SCSI
bus, involving the binding of the class driver to the VMS SCSI port driver. The
connection allows the driver to issue commands to the SCSI device.

The class driver invokes the SPI$CONNECT macro to perform this linkage. A
connection lasts throughout the runtime life of a system; a SCSI class driver
should never need to break a connection.

Device ID: See SCSI device ID.

Initiator: A SCSI device (usually the host processor) that requests another SCSI
device (the target) to perform an operation.

Logical unit number (LUN): Unique value, from 0 to 7, that identifies a physical or
virtual device accessible by means of a SCSI device with respect to that device's
SCSI device ID.

LUN: See Logical unit number.

Port: See SCSI port.

Port driver: See SCSI port driver.

Port ID: See SCSI port ID.

SCDRP: See SCSI class driver request packet.

SCOT: See SCSI connection descriptor table.

SCSI: Refers to the American National Standard for Information Systems Small
Computer System Interfac~l (X3.131-1986) or the ANSI Small Computer
System Interfac~2 (X3.131-1989). This standard defines mechanical, electrical,
and functional requirements for attaching small computers to each other and to
intelligent peripheral devices.

Glossary-1

Glossary

Glossary-2

SCSI class driver: Component of the VMS SCSI class/port architecture that acts
as an interface between the user and the SCSI port, translating I/O functions as
specified in a user's $QIO request to a SCSI command targeted to a device on
the SCSI bus. Although the class driver knows about SCSI command descriptor
buffers, status codes, and data, it has no knowledge of underlying bus protocols
or hardware, command transmission, bus phases, timing, or messages. A single
class driver can run on any given MicroVAX/VAXstation system, in conjunction
with the SCSI port driver that supports that system.

SCSI class driver request packet (SCDRP): A VMS data structure that contains
information specific to an I/O request that a SCSI class driver must deliver to
the port driver, such as the address of the SCSI command descriptor buffer. The
class driver allocates the SCDRP, and places in it data it originally received in
the I/O request packet (IRP), such as the $QIO system service parameters, I/O
function, and the length and location of any user-specified buffer involved in a
transfer.

SCSI connection descriptor table (SCOT): A VMS data structure that contains
information describing a connection established between a SCSI class driver
and the port, such as phase records, timeout values, and error counters. The
SCSI port driver creates an SCDT each time a SCSI class driver, by invoking the
SPI$CONNECT macro, connects to a device on the SCSI bus. The class driver
stores the address of the SCDT in the SCSI device's UCB.

SCSI device ID: Unique value, from 0 to 7, representing a device on a specific SCSI
bus. A VMS SCSI device ID corresponds to the line on the SCSI data bus on
which a given device asserts itself and thus is an analog for the term SCSI ID.

Typically, a MicroVAX/VAXstation 3100 system processor is assigned device ID 6
and asserts itself at DB(6); a VA.Xstation 3520/3540 system processor is assigned
device ID 7, and asserts itself at DB(7).

SCSI ID: See SCSI device ID.

SCSI port: The SCSI controller channel that controls communications to and from a
specific SCSI bus in the system.

SCSI port descriptor table (SPOT): A VMS data structure that contains information
specific to a SCSI port, such as the port driver connection database. The SPDT
also includes a set of vectors, corresponding to the SPI macros invoked by SCSI
class drivers, that point to service routines within the port driver. The SCSI port
driver's unit initialization routine creates an SPDT for each SCSI port defined
for a specific MicroVAX/VAXstation system and initializes each SPI vector.

SCSI port driver: Component of the VMS SCSI class/port architecture that
transmits and receives SCSI commands and data. It knows the· details of
transmitting data from the local processor's SCSI port hardware across the
SCSI bus. Although it understands SCSI bus phases, protocol, and timing, the
SCSI port driver has no knowledge of which SCSI commands a given device
supports, what status messages it returns, or the format of the packets in
which this information is delivered. Strictly speaking, the port driver is a
communications path. When directed by a SCSI class driver, the port driver
forwards commands and data from the class driver onto the SCSI bus to the
device. On any given MicroVAX/VAXstation system, a single SCSI port driver

Glossary

handles bus-level communications for all SCSI class drivers that may exist on
the system.

SCSI port ID: A unique representation of a SCSI port (see SCSI port) identifying
the SCSI bus it controls. Current legal port IDs are A and B, corresponding to a
VMS controller ID.

Small Computer System Interface: See SCSI.

SPOT: See SCSI port descriptor table.

Target: A SCSI device that performs an operation requested by an initiator.

Glossary-3

Index

A
AEN

See Asynchronous event notification
Asynchronous event notification • 1-8, 3-27 to

3-29, B-4, B-20 to B-26
example • 3-28 to 3-29

Asynchronous SCSI data transfer mode
enabling• 2-4, 2-11, 3-12, B-17

Autoconfiguration
of SCSI device• 1-8, 2-6, 3-29

c
Cancel-1/0 routine

of SCSI third-party class driver• 3-27
Class driver• 1-2, 3-3
Command

See SCSI command
Connection • 3-4, 3-8

breaking• 8-7
obtaining characteristics of• B-8 to B-9
requesting • 3-25, B-4 to B-5
setting characteristics of• B-17 to B-18

Connection characteristics buffer• B-17

D
Data transfer

buffering mechanisms• 3-14
incomplete• 3-18
mapping local buffer for• 3-26
mapping local buffer for SCSI port• 3-15 to

3-16, B-10 to B-12
maximum size of• 3-13, 3-18, E-4
performing • 3-12 to 3-18
unmapping local buffer• 3-16, 3-27, B-19

Data transfer mode • E-4
as controlled by a third-party SCSI class driver•

3-12, B-17
as controlled by the generic SCSI class driver•

2-4, 2-11

Data transfer mode (cont'd.)

asynchronous• 2-4, 2-11, 3-12, B-17
determining setting of• B-8
synchronous • 2-4, 2-11, 3-12, B-17

DDT$W_ERRORBUF • 3-20
Device

See SCSI device
Disconnect feature

determining setting of• B-8
enabling• 2-5, 2-11, 3-13, B-17

Disk class driver
disabling the loading of• 2-7, 3-30
using for non-Digital-supplied device• 1-8

DPT$V _NO_IDB_DISPATCH • 3-24
Driver prologue table (DPT)

of third-party SCSI class driver• 3-24

E
Error log entry

examining the contents of• D-1 to D-10
Error logging routine

in SCSI third-party class driver• 3-19 to 3-21
Error message buffer

of third-party SCSI device driver• 3-19 to 3-20

G
Generic SCSI class driver• 2-1 to 2-14

assigning a channel to • 2-8
compared to SCSI third-party class driver· 1-3
flow of• 2-2
1/0 status block returned by • 2-9
loading• 2-7
obtaining device information from• 2-12
programming example• 2-13 to 2-14
$010 system service format for• 2-8 to 2-12
security considerations • 2-2

Generic SCSI descriptor
format of• 2-10 to 2-12

lndex-1

Index

I
1/0 request

as serviced by SCSI class and port drivers• 3-21
to 3-23

1/0 status block
returned by generic SCSI class driver• 2-9

Initiator• 1-7
completing an operation (in AEN mode)• B-21
enabling selection of• 3-27 to 3-29, 8-4, 8-20

to 8-26
operation of• E-5
receiving data from target (in AEN mode)• 8-22
sending bytes to target (in AEN mode)• 8-24

L
LUN (logical unit number)• 1-7, E-5

M
MicroVAX/VAXstation 3100 systems

support for SCSI devices• 1-4

N
NCR 5380 controller• 1-4
Non-Digital-supplied SCSI class driver

See Third-party SCSI class driver

p
Port• 1-6

OMA buffer• 1-8, 3-15, 3-26, B-10 to 8-12
examining status of• 3-16 to 3-17
resetting • 8-13

Port capabilities longword • 3-12
Port command buffer

allocating• 3-10, 3-26, 8-3
deallocating• 3-10, 3-27, 8-6

Port driver • 1-1, 3-2

lndex-2

R
Register dumping routine

of SCSI third-party class driver• 3-20, 3-27
REQCOM macro• 3-27
Request sense key • 3-17

s
SCDRP$L_A8CNT • 3-14
SCDRP$L_8CNT • 3-14, 3-18, 8-11, 8-15
SCDRP$L_CMD_PTR • 3-10, 8-15
SCDRP$L_DISCON_TIMEOUT • 3-10, 3-11
SCDRP$L_DMA_TIMEOUT • 3-10, 3-11
SCDRP$L_IRP • 3-26
SCDRP$L_MEDIA • 3-14
SCDRP$L_PAD_COUNT • 3-14
SCDRP$L_SCSl_FLAGS • 3-14, 3-15, 3-26, 8-11
SCDRP$L_SPTE_SVAPTE • 3-15
SCDRP$L_STS_PTR • 3-10, 3-17, 8-15, B-16
SCDRP$L_SVAPTE • 3-14, B-11
SCDRP$L_SVA_SPTE • 8-12
SCDRP$L_SVA_USER • 3-14, 3-15, B-12, B-15
SCDRP$L_TRANS_CNT • 3-18, 8-16
SCDRP$V_8UFFER_MAPPED • 3-15, 3-26
SCDRP$V_S08UF • 3-15, 3-26
SCDRP$W_80FF• 3-14, 8-11
SCDRP$W_FUNC • 3-14, 8-15
SCDRP$W_MAPREG • 3-16, 8-12
SCDRP$W_NUMREG • 3-15, 8-12
SCDRP$W_STS • 3-14, 3-15, 8-11
SCDRP (SCSI class driver request packet)• 3-6,

A-1 to A-9
allocating• 3-26
deallocating• 3-27
defining fields of • 3-23
initializing• 3-14 to 3-15, 3-26

$SCDRPDEF macro • 3-23
SCOT (SCSI connection descriptor table)• 3-6, A-9

to A-15
SCSI (Small Computer System Interface)

definition • 1-1
SCSI bus

phases of • E-6
releasing in AEN operation • 8-23
resetting • 8-13
sensing phase of • 8-25
setting phase of • 8-26

SCSI bus (cont'd.)

termination requirements • E-2
SCSI bus analyzer• 3-31
SCSI class driver

See Class driver, Disk class driver, Generic SCSI
class driver, Tape class driver, Template class
driver, Third-party SCSI class driver

SCSI class driver request packet

See SCDRP
SCSI class/port architecture • 1-1, 3-1 to 3-4

summary of 1/0 request servicing • 3-21 to 3-23
SCSI command

controlling the number of retries• 3-11
determining timeout setting for• B-9
disabling retry• 2-5, 3-11, B-8, B-17
enabling retry • 2-11, B-8
examining status of• 3-16 to 3-18, 3-26
padding, when required• 2-12
preparing to issue • 3-9 to 3-12
sending to SCSI device• 3-10, B-14 to B-16
setting disconnect timeout for• 2-6, 2-12, 3-10,

3-11, B-9, 8-18
setting DMA timeout for• 2-6, 2-12, 3-10, 3-11,

B-9, B-18
setting phase change timeout for • 2-6, 2-12,

3-10, 3-11, 8-9, B-18
size of • 3-1 0
terminating• 3-27, B-2

SCSI command byte
buffering• 3-10, 3-26, B-3

SCSI command descriptor block
creating • 3-10
initializing pointer to• 3-10

SCSI connection descriptor table

See SCOT
SCSI controller

NCR 5380 • 1-4
Sii • 1-5

SCSI device
connecting to • 3-8

SCSI device ID• 1-7
SCSI device UCB• 3-7

extending • 3-24
SCSI ID• 1-7, E-5
SCSI messages

as implemented in VMS• E-7 to E-8, E-8
SCSI port descriptor table

See SPOT
SCSI port driver

See Port driver
SCSI port ID• 1-6

SCSI port interface

See SPI
SCSI port UCB• 3-7
SCSI status byte

examining • 3--17
initializing • 3-10

Index

servicing CHECK CONDITION status• 3-17
Sii controller• 1-5
Small Computer System Interface

See SCSI
SPOT (SCSI port descriptor table)• 3-6, A-15 to

A-21
creation of • 3-25

SPl$ABORT_COMMAND macro• 3-5, 3-27, B-2
SPl$ALLOCATE_COMMAND_BUFFER macro• 3-5,

3-10, 3-26, B-3
SPl$CONNECT macro• 3-5, 3-9, 3-25, 3-28, B-4

to B-5
SPl$DEALLOCATE_COMMAND_BUFFER macro•

3-5, 3-10, 3--27, B-6
SPl$DISCONNECT macro• 3-5, B-7
SPl$FINISH_COMMAND macro• 3-28, B-21
SPl$GET_CONNECTION_CHAR macro• 3-5, B-8

to B-9, 8-17
SPl$MAP _BUFFER macro• 3-5, 3-15 to 3-16,

3-26, B-10 to 8-12
SPl$RECEIVE_BYTES macro· 3-28, B-22
SPl$RELEASE_BUS macro• 3-28, B-23
SPl$RESET macro• 3-5
SPl$SEND_BYTES macro• 3-28, B-24
SPl$SEND_COMMAND macro• 3-5, 3-10, 3-16,

3-26, B-14 to B-16
SPl$SENSE_PHASE macro • 3-28, B-25
SPl$SET_CONNECTION_CHAR macro· 3-5, 3-11,

3-12, 3-13, 3-26, B-17 to B-18
SP1$SET_PHASE macro• 3-28, B-26
SPl$UNMAP _BUFFER macro• 3-5, 3-16, B-19
SPI (SCSI port interface)• 3-4 to 3-5, B-1 to

B-26
calling protocol for • 3-5, B-1
extensions to • 3-28 to 3-29, B-20 to B-26

Start-1/0 routine
of third-party SCSI class driver· 3-26 to 3-27

Status
See SCSI command, Port, SCSI status byte

Synchronous SCSI data transfer mode
determining REQ-ACK offset setting• B-8
determining transfer period setting • B-8
enabling• 2-4, 2-11, 3-12, B-17
setting REQ-ACK offset • 3-12, 8-17
setting transfer period• 3-12, B-17

lndex-3

Index

SYS$GETDVI

SCSI generic class driver• 2-12
SYS$QIO

format for request to SCSI generic class driver•
2-8

System Generation Utility {SYSGEN)
configuring SCSI devices• 1-8, 2-6, 3-29

T
Tape class driver

disabling the loading of• 2-7, 3-30
using for non-Digital-supplied device • 1-8

Target• 1-7
enabling selection from• 3-27 to 3-29, B-4,

B-20 to B-26
operation of • E-5

Target mode

See Asynchronous event notification
Template class driver • 3-8

listing of • C-1 to C-35
Third-party SCSI class driver

cancel-1/0 routine of • 3-27
compared to SCSI generic class driver• 1-3
components • 3-23 to 3-27
data definitions • 3-23
debugging • 3-30 to 3-32
driver prologue table • 3-24
error logging• 3-19 to 3-21
loading • 3-29
maintaining local context of• 3-18 to 3-19
receiving notification of asynchronous events on

target• 3-27 to 3-29, B-4, B-20 to B-26
register dumping routine of• 3-20, 3-27
start-1/0 routine of• 3-26 to 3-27
unit initialization routine of• 3-25 to 3-26
writing• 3-1 to 3-32

Third-party SCSI device
bus-reset behavior• E-3
cabling requirements • E-2
connector requirements• E-2
dynamic reconfiguration of • E-2
external box restrictions • E-3
hardware requirements and restrictions• E-1 to

E-9
power-on behavior • E-3
rules for disconnect and reselection • E-6
SCSI command requirements • E-8
SCSI message requirements• E-7 to E-8
SCSI status requirements• E-9

lndex-4

Third-party SCSI device {cont'd.)

summary of VMS support mechanisms • 1-3 to
1-4

terminator power requirement• E-2
using VMS disk or tape class driver• 1-8

Timeout
for SCSI device• 2-6, 2-12, 3-10, B-18

u
UCB$B_DEVCLASS • 3-20, 3-24
UCB$B_DEVTYPE • 3-20, 3-24
UCB$L_MAXBCNT• 3-13, 3-25
UCB$L_PDT • 3-25
UCB$L_SCDT • 3-25
UCB$V _POWER• 3-25
UCB$W_STS • 3-25
UCB (unit control block)

See SCSI device UCB, SCSI port UCB
Unit control block {UCB)

See SCSI device UCB, SCSI port UCB
Unit initialization routine

of third-party SCSI class driver• 3-25 to 3-26

v
VAXstation 3520/3540 system

support for SCSI devices• 1-5
VMSD2 system parameter• 2-7, 3-30

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location
Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call
800-DIGITAL

809-754-7575

800-267-6215

Contact
Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS Version 5.3 Small
Computer System Interface

(SCSI) Device Support Manual
AA-PAJ2A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name!I'i.tle

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

--;;~·;;~:M &ff ud Ta~ ------------------~nT-------~~=~~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ••• 1.11 .. 1

-- Do Not Tear - Fold Here -------------------~------------------------

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

.... i ::s .
u

Reader's Comments VMS Version 5.3 Small
Computer System Interface

(SCSI) Device Support Manual
AA-PAJ2A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Nametritle

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

·-;;;~;~:d H~ md Ta~ ------------------~nT-------s~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 •••• 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

·- Do Not Tear - Fold Here --

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I
I
I

.... :s
u

Printed in U.S.A.

