
VMS

VMS RTL Mathematics (MTH$) Manual

Order Number: AA-LA 728-TE

VMS RTL Mathematics
(MTH$) Manual

Order Number: AA-LA72B-TE

June 1990

This manual documents the mathematics routines contained in the MTH$
facility of the VMS Run-Time Library.

Revision/Update Information: This manual supersedes the VMS RTL
Mathematics (MTH$) Manual, Version 5.0.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop-VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS
DECnet HSC ULTRIX VT
DECUS Live link UNIBUS XUI
DECwindows LN03 VAX

mama am a TM DECwriter MASS BUS VAXcluster

The following is a third-party trademark:

Postscript is a registered trademark of Adobe Systems Incorporated.

ZK4610

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE ix

CHAPTER 1 INTRODUCTION TO MTH$ 1-1

1.1 ENTRY POINT NAMES 1-1

1.2 CALLING CONVENTIONS 1-2

1.3 ALGORITHMS 1-3

1.4 CONDITION HANDLING 1-3

1.5 COMPLEX NUMBERS 1-4

1.6 MATHEMATICS ROUTINES NOT DOCUMENTED IN THE MTH$ REFERENCE
SECTION 1-4

1.7 EXAMPLES OF CALLS TO RUN-TIME LIBRARY MATHEMATICS
ROUTINES

1.7.1 BASIC Example
1.7.2 COBOL Example
1.7.3 FORTRAN Examples
1.7.4 MACRO Examples
1.7.5 Pascal Examples
1.7.6 PL/I Examples
1.7.7 Ada Example

CHAPTER 2 VECTOR ROUTINES IN MTH$

2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.1.3
2.1.1.4

BLAS - BASIC LINEAR ALGEBRA SUBROUTINES LEVEL 1

Using the BLAS Level 1

Memory Overlap • 2-5
Round-Off Effects • 2-5
Underflow and Overflow• 2-6
Notational Definitions • 2-6

1-10
1-10
1-10
1-11
1-12
1-15
1-16
1-17

2-1

2-1
2-5

v

Contents

2.2 FOLR - FIRST ORDER LINEAR RECURRENCE ROUTINES 2-7
2.2.1 FOLR Routine Name Format 2-7
2.2.2 Calling a FOLR Routine 2-8

2.3 VECTOR VERSIONS OF EXISTING SCALAR ROUTINES 2-8
2.3.1 Exceptions 2-8
2.3.2 Underflow Detection 2-9
2.3.3 Vector Routine Name Format 2-9
2.3.4 Calling a Vector Math Routine 2-10

SCALAR MTH$ REFERENCE SECTION
MTH$XACOS MTH-3

MTH$XACOSD MTH-6

MTH$XASIN MTH-9

MTH$XASIND MTH-11

MTH$XATAN MTH-13

MTH$XATAND MTH-15

MTH$XATAN2 MTH-17

MTH$XATAND2 MTH-19

MTH$XATANH MTH-21

MTH$CXABS MTH-23

MTH$CCOS MTH-26

MTH$CXCOS MTH-28

MTH$CEXP MTH-31

MTH$CXEXP MTH-33

MTH$CLOG MTH-35

MTH$CXLOG MTH-37

MTH$CMPLX MTH-40

MTl1$XCMPLX MTH-42

MTH$CONJG MTH-44

MTH$XCONJG MTH-45

MTH$XCOS MTH-47

MTH$XCOSD MTH-49

MTH$XCOSH MTH-51

MTH$CSIN MTH-53

MTH$CXSIN MTH-54

MTH$CSQRT MTH-57

MTH$CXSQRT MTH-59

MTH$CVT_X_X MTH-62

MTH$CVT_XA_XA MTH-63

vi

Contents

MTH$XEXP MTH-65

MTH$HACOS MTH-68

MTH$HACOSD MTH-70
MTH$HASIN MTH-72
MTH$HASIND MTH-74

MTH$HATAN MTH-76
MTH$HATAND MTH-78
MTH$HATAN2 MTH-80

MTH$HATAND2 MTH-82

MTH$HATANH MTH-84
MTH$HCOS MTH-86

MTH$HCOSD MTH-87

MTH$HCOSH MTH-88

MTH$HEXP MTH-90

MTH$HLOG MTH-92

MTH$HLOG2 MTH-94

MTH$HLOG10 MTH-96

MTH$HSIN MTH-98

MTH$HSIND MTH-99

MTH$HSINH MTH-100

MTH$HSQRT MTH-102

MTH$HTAN MTH-104

MTH$HTAND MTH-106

MTH$HTANH MTH-108

MTH$XIMAG MTH-110

MTH$XLOG MTH-112

MTH$XLOG2 MTH-114

MTH$XLOG10 MTH-116

MTH$RANDOM MTH-118

MTH$XREAL MTH-120

MTH$XSIN MTH-122

MTH$XSINCOS MTH-124

MTH$XSINCOSD MTH-127
MTH$XSIND MTH-131

MTH$XSINH MTH-133

MTH$XSQRT MTH-136

MTH$XTAN MTH-139

MTH$XTAND MTH-141

MTH$XTANH MTH-143

MTH$UMAX MTH-145

MTH$UMIN MTH-146

vii

Contents

VECTOR MTH$ REFERENCE SECTION
BLAS1 $VIXAMAX MTH-149

BLAS1$VXASUM MTH-152

BLAS1 $VXAXPV MTH-155

BLAS1 $VXCOPV MTH-160

BLAS1 $VXDOTX MTH-165

BLAS1 $VXNRM2 MTH-170

BLAS1 $VXROT MTH-173

BLAS1$VXROTG MTH-178

BLAS1 $VXSCAL MTH-183

BLAS1$VXSWAP MTH-187

MTH$VXFOLRV_MA_V15 MTH-192

MTH$VXFOLRV_Z_V8 MTH-197

MTH$VXFOLRLV_MA_V5 MTH-201

MTH$VXFOLRLV_Z_V2 MTH-205

APPENDIX A ADDITIONAL MTH$ ROUTINES A-1

APPENDIX B VECTOR MTH$ ROUTINE ENTRY POINTS B-1

INDEX

TABLES
1-1 Additional Mathematics Routines 1-4

2-1 Functions of the BLAS Level 1 2-3

2-2 Determining the FOLR Routine You Need 2-8

2-3 Vector Routine Format - Underflow Signaling Enabled 2-9

2-4 Vector Routine Format - Underflow Signaling Disabled 2-9

A-1 Additional MTH$ Routines A-1

B-1 Vector MTH$ Routines B-1

viii

Preface

This manual provides users of the VMS operating system with detailed
usage and reference information on mathematics routines supplied in the
MTH$ facility of the Run-Time Library.

Run-Time Library routines can only be used in programs written in
languages that produce native code for the VAX hardware. At present,
these languages include VAX MACRO and the following compiled high
level languages:

VAX Ada
VAX BASIC
VAX BLISS-32
VAXC
VAX COBOL
VAX COBOL~74
VAX CORAL
VAX DIBOL
VAX FORTRAN
VAX Pascal
VAX PIJI
VAX.RPG
VAX SCAN

Interpreted languages which can also access Run-Time Library routines
include VAX DSM and VAX DATATRIEVE.

Intended Audience
This manual is intended for system and application programmers who
want to call Run-Time Library routines.

Document Structure
This manual is organized into three parts and two appendixes. The three
parts are as follows:

Part I contains chapters that discuss the scalar and vector routines in the
MTH$ facility.

• Chapter 1 is an introductory chapter that provides guidelines on using
the MTH$ scalar routines.

• Chapter 2 provides guidelines on using the MTH$ vector routines.

Part II is the Scalar MTH$ Reference Section.

• The Scalar MTH$ Reference Section provides detailed reference
information on each scalar mathematics routine contained in the
MTH$ facility of the Run-Time Library. The routines in this part are
the same as those provided in VMS Version 5.0.

ix

Preface

Part III is the Vector MTH$ Reference Section.

• The Vector MTH$ Reference Section provides detailed reference
information on the BLAS Level 1 (Basic Linear Algebra Subroutines)
and FOLR (First Order Linear Recurrence) routines.

The reference information in Part II and Part III is presented using the
documentation format described in the Introduction to the VMS Run-Time
Library. Routine descriptions appear in alphabetical order by routine
name.

Associated Documents

x

The Run-Time Library routines are documented in a series of reference
manuals. A general overview of the Run-Time Library and a description
of how the Run-Time Library routines are accessed is presented in the
Introduction to the VMS Run-Time Library. Descriptions of the other RTL
facilities and their corresponding routines and usages are discussed in the
following books:

• The VMS RTL DECtalk (DTK$) Manual

• The VMS RTL Library (LIB$) Manual

• The VMS RTL General Purpose (0TS$) Manual

• The VMS RTL Parallel Processing (PPL$) Manual

• The VMS RTL Screen Management (SMG$) Manual

• The VMS RTL String Manipulation (STR$) Manual

The VAX Procedure Calling and Condition Handling Standard, which
is documented in the Introduction to System Routines, contains useful
information for anyone who wants to call Run-Time Library routines.

Applications programmers of any language may refer to the Guide
to Creating VMS Modular Procedures for the Modular Programming
Standard and other guidelines.

High-level language programmers will find additional information on
calling Run-Time Library routines in their language reference manual.
Additional information may also be found in the language user's guide
provided with your VAX language.

The Guide to Using VMS Command Procedures may also be useful.

For a complete list and description of the manuals in the VMS
documentation set, see the Overview of VMS Documentation.

Conventions

Preface

The following conventions are used in this manual:

()

[]

{}

red ink

boldface text

UPPERCASE TEXT

In examples, a horizontal ellipsis indicates one of the
following possibilities:

Additional optional arguments in a statement
have been omitted.

The preceding item or items can be repeated one
or more times.
Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or
all of the choices.

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on. For online versions, user input is shown in
bold.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ) or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for
a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

numbers Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary,
octal, or hexadecimal-are explicitly indicated.

Other conventions used in the documentation of Run-Time Library
routines are described in the Introduction to the VMS Run-Time Library.

xi

1 Introduction to MTH$

The Run-Time Library mathematics routines may be called to perform a
wide variety of computations including the following:

• Floating-point trigonometric function evaluation

• Exponentiation

• Complex function evaluation

• Complex exponentiation

• Miscellaneous function evaluation

The OTS$ facility provides additional language-independent arithmetic
support routines.

This introduction to Run-Time Library mathematics routines includes
examples of how to call mathematics routines from BASIC, COBOL,
FORTRAN, MACRO, Pascal, PU!, and Ada.

1.1 Entry Point Names
The names of the mathematics routines are formed by adding the MTH$
prefix to the function names.

When function arguments and returned values are of the same data
type, the first letter of the name indicates this data type. When function
arguments and returned values are of different data types, the first
letter indicates the data type of the returned value, and the second letter
indicates the data type of the argument(s).

The letters used as data type prefixes are listed below.

Letter Data Type

I Word

J Longword

D D_floating

G G_floating

H H_floating

c F _floating complex

CD D _floating complex

CG G_floating complex

1-1

Introduction to MTH$
1.1 Entry Point Names

Generally, F-:floating data types have no letter designation. For example,
MTH$SIN returns an F-:floating value of the sine of an F-:floating
argument and MTH$DSIN returns a D-floating value of the sine of a
D-floating argument. However, in some of the miscellaneous functions,
F-floating data types are referenced by the letter designation A.

1.2 Calling Conventions

1-2

For calling conventions specific to the MTH$ vector routines, refer to
Chapter 2.

All calls to mathematics routines, as described in the FORMAT section
of each routine, accept arguments passed by reference. JSB entry points
accept arguments passed by value.

All mathematics routines return values in RO or RO/Rl except those
routines for which the values cannot fit in 64 bits. D-:floating complex,
G-:floating complex and H-floating values are data structures which are
larger than 64 bits. Routines that return values which cannot fit in
registers RO/Rl return their function values into the first argument in the
argument list.

The notation JSB MTH$NAME_Rn, where n is the highest register
number referenced, indicates that an equivalent JSB entry point is
available. Registers RO:Rn are not preserved.

Routines with JSB entry points accept a single argument in RO:Rm, where
m, which is defined below, is dependent on the data type.

Data Type m

F _floating 0

D_floating

G_floating 1

H_floating 3

A routine which returns one value returns it to registers RO:Rm.

When a routine returns two values, for example MTH$SINCOS, the
first value is returned in RO:Rm and the second value is returned in
(R<m+ l>:R<2*m+l>).

Note that for routines that return a single value, n>=m. For routines that
return two values, n>=2*m + 1.

In general, CALL entry points for mathematics routines do the following:

• Disable floating-point underflow

• Enable integer overflow

• Cause no :floating-point overflow or other arithmetic traps or faults

• Preserve all other enabled operations across the CALL

1.3 Algorithms

Introduction to MTH$
1.2 Calling Conventions

JSB entry points execute in the context of the caller with the enable
operations as set by the caller. Since the routines do not cause arithmetic
traps or faults, their operation is not affected by the setting of the
arithmetic trap enables, except as noted.

For more detailed information on CALL and JSB entry points, refer to the
Introduction to the VMS Run-Time Library.

For those mathematics routines that have corresponding algorithms, the
complete algorithm can be found in the Description section of the routine
description appearing in the MTH$ Reference Section of this manual.

1.4 Condition Handling
Error conditions are indicated by using the VAX signaling mechanism.
The VAX signaling mechanism signals all conditions in mathematics
routines as SEVERE by calling LIB$SIGNAL. When a SEVERE error
is signaled, the default handler causes the image to exit after printing
an error message. A user-established condition handler can be written
to cause execution to continue at the point of the error by returning
SS$_CONTINUE. A mathematics routine returns to its caller after the
contents of RO/Rl have been restored from the mechanism argument
vector CHF$L_MCH_SAVRO/Rl. Thus, the user-established handler
should correct CHF$L_MCH_SAVRO/Rl to the desired function value to be
returned to the caller of the mathematics routine.

D-floating complex, G-floating complex, and H-floating values cannot be
corrected with a user-established condition handler, because R2/R3 are not
available in the mechanism argument vector.

Note that it is more reliable to correct RO and Rl to resemble RO and Rl
of a double-precision floating-point value. A double-precision floating-point
value correction works for both single- and double-precision values.

If the correction is not performed, the floating-point reserved operand -0.0
is returned. A floating-point reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of zero. Accessing the fioating
point reserved operand will cause a reserved operand fault. See the VMS
RTL Library (LIB$) Manual for a complete description of how to write
user condition handlers for SEVERE errors.

A few mathematics routines signal floating underflow if the calling
program (JSB or CALL) has enabled floating underflow faults or traps.

All mathematics routines access input arguments and the real and
imaginary parts of complex numbers using floating-point instructions.
Therefore, a reserved operand fault can occur in any mathematics routine.

1-3

Introduction to MTH$
1.5 Complex Numbers

1.5 Complex Numbers
A complex number y is defined as an ordered pair of real numbers r and i,
where r is the real part and i is the imaginary part of the complex number.

Y=(r,i)

VMS supports three floating-point complex types: F-floating complex,
D-floating complex, and G-floating complex. There is no H-floating complex
data type.

Run-Time Library mathematics routines that use complex arguments
require a pointer to a structure containing two x-floating values to be
passed by reference for each argument. The first x-floating value contains
r, the real part of the complex number. The second x-floating value
contains i, the imaginary part of the complex number. Similarly, Run
Time Library mathematics routines that return complex function values
return two x-floating values. Some Language Independent Support (0TS$)
routines also calculate complex functions.

Note that complex functions have no JSB entry points.

1.6 Mathematics Routines Not Documented in the MTH$ Reference
Section

1-4

The mathematics routines in Table 1-1 are not found in the reference
section of this manual. Instead, their entry points and argument
information are listed in Appendix A of this manual.

A reserved operand fault can occur for any floating-point input argument
in any mathematics routine. Other condition values signaled by each
mathematics routine are indicated in the footnotes.

Table 1-1 Additional Mathematics Routines

Entry Point Function

Absolute Value Routines

MTH$ABS

MTH$DABS

MTH$GABS

MTH$HABS

MTH$11ABS

MTH$JIABS

F-floating absolute value

D-floating absolute value

G-floating absolute value

H-floating absolute value 1

Word absolute value2

Longword absolute value2

1 Returns value to the first argument; value exceeds 64 bits.

2 Integer overflow exceptions can occur.

(continued on next page)

Introduction to MTH$
1.6 Mathematics Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point Function

Bitwise AND Operator Routines

MTH$11AND

MTH$JIAND

Bitwise AND of two word arguments

Bitwise AND of two longword arguments

F-floating Conversion Routines

MTH$DBLE

MTH$GDBLE

MTH$11FIX

MTH$JIFIX

Convert F-floating to D-floating (exact)

Convert F-floating to G-floating (exact)

Convert F-floating to word (truncated)2

Convert F-floating to longword (truncated)2

Floating-Point Positive Difference Routines

MTH$DIM

MTH$DDIM

MTH$GDIM

MTH$HDIM

MTH$11DIM

MTH$JIDIM

Positive difference of two F-floating arguments3

Positive difference of two D-floating arguments3

Positive difference of two G-floating arguments3

Positive difference of two H-floating arguments 1•
3

Positive difference of two word arguments2

Positive difference of two longword arguments2

Bitwise Exclusive OR Operator Routines

MTH$11EOR

MTH$JIEOR

Bitwise exclusive OR of two word arguments

Bitwise exclusive OR of two longword arguments

1 Returns value to the first argument; value exceeds 64 bits.

21nteger overflow exceptions can occur.

3Floating-point overflow exceptions can occur.

(continued on next page)

1-5

Introduction to MTH$
1.6 Mathematics Routines Not Documented in the MTH$ Reference Section

1-6

Table 1-1 {Cont.) Additional Mathematics Routines

Entry Point Function

Integer to Floating-point Conversion Routines

MTH$FLOATI

MTH$DFLOTI

MTH$GFLOTI

MTH$FLOATJ

MTH$DFLOTJ

MTH$GFLOTJ

Convert word to F-floating (exact)

Convert word to D-floating (exact)

Convert word to G-floating (exact)

Convert longword to F-floating (rounded)

Convert longword to D-floating (exact)

Convert longword to G-floating (exact)

Conversion to Greatest Floating-point Integer Routines

MTH$FLOOR

MTH$DFLOOR

MTH$GFLOOR

MTH$HFLOOR

Convert F-floating to greatest F-floating integer

Convert D-floating to greatest D-floating integer

Convert G-floating to greatest G-floating integer

Convert H-floating to greatest H-floating integer1

Floating-point Truncation Routines

MTH$AINT

MTH$11NT

MTH$JINT

MTH$DINT

MTH$11DINT

MTH$JIDINT

MTH$GINT

MTH$11GINT

MTH$JIGINT

MTH$HINT

MTH$11HINT

MTH$JIHINT

Convert F-floating to truncated F-floating

Convert F-floating to truncated word2

Convert F-floating to truncated longword2

Convert D-floating to truncated D-floating

Convert D-floating to truncated word2

Convert D-floating to truncated longword2

Convert G-floating to truncated G-floating

Convert G-floating to truncated word2

Convert G-floating to truncated longword2

Convert H-floating to truncated H-floating 1

Convert H-floating to truncated word2

Convert H-floating to truncated longword2

1 Returns value to the first argument; value exceeds 64 bits.

2 Integer overflow exceptions can occur.

(continued on next page)

Introduction to MTH$
1.6 Mathematics Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point Function

Bitwise Inclusive OR Operator Routines

MTH$110R

MTH$JIOR

Bitwise inclusive OR of two word arguments

Bitwise inclusive OR of two longword arguments

Maximum Value Routines

MTH$AIMAXO

MTH$AJMAXO

MTH$1MAXO

MTH$JMAXO

MTH$AMAX1

MTH$DMAX1

MTH$GMAX1

MTH$HMAX1

MTH$1MAX1

MTH$JMAX1

F-floating maximum of n word arguments

F-floating maximum of n longword arguments

Word maximum of n word arguments

Longword maximum of n longword arguments

F-floating maximum of n F-floating arguments

D-floating maximum of n D-floating arguments

G-floating maximum of n G-floating arguments

H-floating maximum of n H-floating arguments 1

Word maximum of n F-floating arguments2

Longword maximum of n F-floating arguments2

Minimum Value Routines

MTH$AIMINO

MTH$AJMINO

MTH$1MINO

MTH$JMINO

MTH$AMIN1

MTH$DMIN1

MTH$GMIN1

MTH$HMIN1

MTH$1MIN1

MTH$JMIN1

F-floating minimum of n word arguments

F-floating minimum of n longword arguments

Word minimum of n word arguments

Longword minimum of n longword arguments

F-floating minimum of n F-floating arguments

D-floating minimum of n D-floating arguments

G-floating minimum of n G-floating arguments

H-floating minimum of n H-floating arguments 1

Word minimum of n F-floating arguments2

Longword minimum of n F-floating arguments2

1 Returns value to the first argument; value exceeds 64 bits.
2 Integer overflow exceptions can occur.

(continued on next page)

1-7

Introduction to MTH$
1.6 Mathematics Routines Not Documented in the MTH$ Reference Section

1-8

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point

Remainder Routines

MTH$AMOD

MTH$DMOD

MTH$GMOD

MTH$HMOD

MTH$1MOD

MTH$JMOD

Function

Remainder of two F-floating arguments, arg1/arg236

Remainder of two D-floating arguments, arg1/arg236

Remainder of two G-floating arguments, arg1/arg23

Remainder of two H-floating arguments, arg1/arg21
•
3

Remainder of two word arguments, arg1/arg25

Remainder of two longword arguments, arg1 /arg25

Floating-point Conversion to Nearest Value Routines

MTH$ANINT

MTH$1NINT

MTH$JNINT

MTH$DNINT

MTH$11DNNT

MTH$JIDNNT

MTH$GNINT

MTH$11GNNT

MTH$JIGNNT

MTH$HNINT

MTH$11HNNT

MTH$JIHNNT

Convert F-floating to nearest F-floating integer

Convert F-floating to nearest word integer2

Convert F-floating to nearest longword integer2

Convert D-floating to nearest D-floating integer

Convert D-floating to nearest word integer2

Convert D-floating to nearest longword integer2

Convert G-floating to nearest G-floating integer

Convert G-floating to nearest word integer2

Convert G-floating to nearest longword integer2

Convert H-floating to nearest H-floating integer1

Convert H-floating to nearest word integer2

Convert H-floating to nearest longword integer2

Bitwise Complement Operator Routines

MTH$1NOT

MTH$JNOT

Bitwise complement of word argument

Bitwise complement of longword argument

1 Returns value to the first argument; value exceeds 64 bits.
2 Integer overflow exceptions can occur.
3 Floating-point overflow exceptions can occur.
5 Divide-by-zero exceptions can occur.
6 Floating-point underflow exceptions are signaled.

(continued on next page}

Introduction to MTH$
1.6 Mathematics Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point Function

Floating-point Multiplication Routines

MTH$DPROD

MTH$GPROD

D-floating product of two F-floating arguments3

G-floating product of two F-floating arguments

Bitwise Shift Operator Routines

MTH$11SHFT

MTH$JISHFT

Bitwise shift of word

Bitwise shift of longword

Floating-point Sign Function Routines

MTH$SGN

MTH$SIGN

MTH$DSIGN

MTH$GSIGN

MTH$HSIGN

MTH$11SIGN

MTH$JISIGN

F- or D-floating sign function

F-floating transfer of sign of y to sign of x

D-floating transfer of sign of y to sign of x

G-floating transfer of sign of y to sign of x

H-floating transfer of sign of y to sign of x 1

Word transfer of sign of y to sign of x

Longword transfer of sign of y to sign of x

Conversion of Double to Single Floating-point Routines

MTH$SNGL

MTH$SNGLG

Convert D-floating to F-floating (rounded)3

Convert G-floating to F-floating (rounded)314

1 Returns value to the first argument; value exceeds 64 bits.
3Floating-point overflow exceptions can occur.
4Floating-point underflow exceptions can occur.

1-9

1.7

1.7.1

1.7.2

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

Examples of Calls to Run-Time Library Mathematics Routines

BASIC Example
The following BASIC program uses the H-:f:loating data type. BASIC also
supports the D-fl.oating, F-:f:loating and G-:f:loating data types, but does not
support the complex data types.

10 !+
! Sample program to demonstrate a call to MTH$HEXP from BASIC.
!-

EXTERNAL SUB MTH$HEXP (HFLOAT, HFLOAT

DECLARE HFLOAT X,Y ! X and Y are H-floating
DIGITS$ = '###.#################################'
x = '1.2345678901234567891234567892'8
CALL MTH$HEXP (Y,X)
A$ = 'MTH$HEXP of ' + DIGITS$ + ' is ' + DIGITS$
PRINT USING A$, X, Y
END

The output from this program is as follows:

MTH$HEXP of 1.234567890123456789123456789200000
is 3.436893084346008004973301321342110

COBOL Example
The following COBOL program uses the F-:f:loating and D-:f:loating data
types. COBOL does not support the G-:f:loating and H-:f:loating data types
or the complex data types.

This COBOL program calls MTH$EXP and MTH$DEXP.

IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING POINT.

*
* Calls MTH$EXP using a Floating Point data type.
* Calls MTH$DEXP using a Double Floating Point data type.

*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT PT COMP-1.
01 ANSWER F COMP-1.
01 DOUBLE_PT COMP-2.
01 ANSWER D COMP-2.
PROCEDURE DIVISION.
PO.

MOVE 12.34 TO FLOAT PT.
MOVE 3.456 TO DOUBLE PT.

CALL "MTH$EXP" USING BY REFERENCE FLOAT PT GIVING ANSWER F.
DISPLAY " MTH$EXP of ", FLOAT_PT CONVERSION, " is ",

ANSWER F CONVERSION.

CALL "MTH$DEXP" USING BY REFERENCE DOUBLE PT GIVING ANSWER D.
DISPLAY " MTH$DEXP of ", DOUBLE PT CONVERSION, " is ", -

ANSWER D CONVERSION.
STOP RUN.

1-10

1.7.3

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

The output from this example program is as follows:

FORTRAN Examples

MTH$EXP of 1.234000E+Ol is 2.286620£+05
MTH$DEXP of 3.456000000000000E+OO is
3.168996280537917£+01

The first FORTRAN program below uses the G-floating data type. The
second FORTRAN program below uses the H-floating data type. The
third FORTRAN program below uses the F-floating complex data type.
FORTRAN supports the four floating data types and the three complex
data types.

D C+
C This FORTAN program computes the log base 2 of x, log2(x) in
C G-floating double precision by using the RTL routine MTH$GLOG2.
c
C Declare X and Y and MTH$GLOG2 as double precision values.
c
C MTH$GLOG2 will return a double precision value to variable Y.
c-

REAL * 8 X, Y, MTH$GLOG2
x = 16.0
Y = MTH$GLOG2(X)
WRITE (6,1) X, Y

1 FORMAT (' MTH$GLOG2(' ,F4.1,') is' ,F4.1)
END

The output generated by the preceding program is as follows:

MTH$GLOG2(16.0) is 4.0

~ C+
C This FORTAN program computes the log base 2 of x, log2(x) in
C H-floating precision by using the RTL routine MTH$HLOG2.
c
c Declare X and Y and MTH$GLOG2 as REAL*l6 values.
c
C MTH$HLOG2 will return a REAL*16 value to variable Y.
c-

REAL * 16 X, Y
x = 16.12345678901234567890123456789
CALL MTH$HLOG2(Y, X)
WRITE (6,1) X, Y

1 FORMAT (' MTH$HLOG2(' ,F30.27,') is ',F30.28)
END

The output generated by the preceding program is as follows:

MTH$HLOG2(16.123456789012345678901234568) is 4.0110891785623860194931388310

1-11

1.7.4

Introduction to MTH$
1.7 Examples of Calls to Run-Time Library Mathematics Routines

il C+
c
c
c
c
c
c
c
c-

C+
c
c-

c+
c
c-

C+

This FORTRAN example raises a complex base to
a NONNEGATIVE integer power using OTS$POWCJ.

Declare Zl, Z2, Z3, and OTS$POWCJ as complex values.
Then OTS$POWCJ returns the complex result of
Zl**Z2: Z3 = OTS$POWCJ(Zl,Z2),
where Zl and Z2 are passed by value.

COMPLEX Zl,Z3,0TS$POWCJ
INTEGER Z2

Generate a complex base.

Zl = (2.0,3.0)

Generate an integer power.

Z2 = 2

C Compute the complex value of Zl**Z2.
c-

Z3 = OTS$POWCJ(%VAL(REAL(Zl)), %VAL(AIMAG(Zl)), %VAL(Z2))
TYPE 1,Zl,Z2,Z3

1 FORMAT(' The value of (',Fl0.8,',',Fll.8,')**',Il,' is
+ (' ,Fll.8,' ,' ,F12.8,') .')

END

The output generated by the preceding FORTRAN program is as follows:

The value of (2.00000000, 3.00000000)**2 is
(-5. 00000000' 12. 00000000) .

MACRO Examples

D

1-12

;+

MACRO and BLISS support JSB entry points as well as CALLS and
CALLG entry points. Both MACRO and BLISS support the four floating
data types and the three complex data types.

The MACRO programs below illustrate the use of the CALLS and CALLG
instructions, as well as JSB entry points.

.TITLE EXAMPLE JSB

This example calls MTH$DEXP by using a Macro JSB command.
The JSB command expects RO/Rl to contain the quadword input value X.
The result of the JSB will be located in RO/Rl .

. EXTRN MTH$DEXP_R6 ;MTH$DEXP is an external routine .

. PSECT DATA, PIC, EXE, NOWRT
X: .DOUBLE 2.0 X is 2.0

.ENTRY
MOVQ
JSB
RET

EXAMPLE_JSB, AM<>
X, RO X is in registers RO and Rl
GAMTH$DEXP_R6 The result is returned in RO/Rl.

.END EXAMPLE JSB

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

;+

This MACRO program generates the following output:

RO <-- 732541EC
Rl <-- ED6EC6A6

That is, MTH$DEXP(2) is 7.3890560989306502

.TITLE EXAMPLE CALLG

This example calls MTH$HEXP by using a Macro CALLG command.
The CALLG command expects that the address of the return value
Y, the address of the input value X, and the argument count 2 be
stored in memory; this program stores this information in ARGUMENTS.
The result of the CALLG will be located in RO/Rl.

. EXTRN

.PSECT
ARGUMENTS:

MTH$HEXP ; MTH$HEXP is an external routine .
DATA, PIC, EXE, WRT

X:
Y:

;+

.LONG 2

.ADDRESS Y, X

. H FLOATING 2

. H FLOATING 0

The CALLG will use two arguments.
The first argument must be the address
receiving the computed value, while
the second argument is used to
compute exp (X) .

x = 2.0
Y is the result, initially set to 0 .

.ENTRY EXAMPLE_G, AM<>
CALLG ARGUMENTS, GAMTH$HEXP ; CALLG returns the value to Y.
RET
.END EXAMPLE G

The output generated by this MACRO program is as follows:

address of Y <-- D8E64003
<-- 4DDA4B8D
<-- 3A3BDCC3
<-- B68BA206

That is, MTH$HEXP of 2.0 returns
7.38905609893065022723042746057501

.TITLE EXAMPLE CALLS

This example calls MTH$HEXP by using the Macro CALLS command.
The CALLS command expects the SP to contain the H-floating address of
the return value, the address of the input argument X and the argument
count 2. The result of the CALLS will be located in registers RO-R3 .

. EXTRN MTH$HEXP ; MTH$HEXP is an external routine .

. PSECT DATA, PIC, EXE, WRT
Y: .H FLOATING 0 Y is the result, initially set to 0.
X: .H FLOATING 2 X 2

.ENTRY EXAMPLE S, AM<>
MOVAL X, -(SP) The address of Xis in the SP.
MOVAL Y, -(SP) The address of Y is in the SP
CALLS Y, GAMTH$HEXP The value is returned to the address of Y.
RET
.END EXAMPLE S

1-13

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

1-14

;+

The output generated by this program is as follows:

address of Y <-- D8E64003
<-- 4DDA4B8D
<-- 3A3BDCC3
<-- B68BA206

That is, MTH$HEXP of 2.0 returns
7.38905609893065022723042746057501

.TITLE COMPLEX EXl

This example calls MTH$CLOG by using a MACRO CALLG command.
To compute the complex natural logarithm of Z = (2.0,1.0) register
RO is loaded with 2.0, the real part of Z, and register Rl is loaded
with 1.0, the imaginary part of Z. The CALLG to MTH$CLOG
returns the value of the natural logarithm of Z in
registers RO and Rl. RO gets the real part of Z and Rl
gets the imaginary part .

. EXTRN MTH$CLOG

.PSECT DATA, PIC, EXE, NOWRT
ARGS: .LONG 1 The CALLG will use one argument.

.ADDRESS REAL The one argument that the CALLG
uses is the address of the argument
of MTH$CLOG .

REAL: . FLOAT 2 real part of Z is 2.0
IMAG: .FLOAT 1 imaginary part Z is 1.0

.ENTRY COMPLEX EXl, AM<>
CALLG ARGS, GAMTH$CLOG; MTH$CLOG return the real part of the

complex natural logarithm in RO and
the imaginary part in Rl.

RET
.END COMPLEX EXl

This program generates the following output:

RO <--- 0210404E
Rl <--- 63383FED

That is, MTH$CLOG(2.0,1.0) is
(0.8047190,0.4636476)

1.7.5

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

;+
.TITLE COMPLEX EX2

This example calls MTH$CLOG by using a MACRO CALLS command.
To compute the complex natural logarithm of Z = (2.0,1.0) register
RO is loaded with 2.0, the real part of Z, and register Rl is loaded
with 1.0, the imaginary part of Z. The CALLS to MTH$CLOG
returns the value of the natural logarithm of Z in registers RO
and Rl. RO gets the real part of Z and Rl gets the imaginary
part .

. EXTRN MTH$CLOG

.PSECT DATA, PIC, EXE, NOWRT
REAL: .FLOAT 2 real part of Z is 2.0
IMAG: .FLOAT 1 imaginary part Z is 1.0

.ENTRY
MO VAL

CALLS

RET

COMPLEX_EX2, AM<>
REAL, -(SP)

#1, GAMTH$CLOG

SP <-- address of Z. Real part of Z is
in @(SP) and imaginary part is in
@(SP)+4.

MTH$CLOG return the real part of the
complex natural logarithm in RO and
the imaginary part in Rl.

.END COMPLEX EX2

This MACRO example program generates the following output:

RO <--- 0210404E
Rl <--- 63383FED

That is, MTH$CLOG(2.0,1.0) is
(0.8047190,0.4636476)

Pascal Examples
The following Pascal programs use the D-floating and H-floating data
types. Pascal also supports the F-floating and G-floating data types.
Pascal does not support the complex data types, however.

D {+}
{ Sample program to demonstrate a call to MTH$DEXP from PASCAL.
{-}

PROGRAM CALL_MTH$DEXP (OUTPUT);

{+}
{ Declare variables used by this program.
{-}

VAR

{+}

X DOUBLE := 3.456;
Y DOUBLE;

X,Y are D-floating unless overridden }
with /DOUBLE qualifier on compilation }

{ Declare the RTL routine used by this program.
{-}

[EXTERNAL,ASYNCHRONOUS] FUNCTION MTH$DEXP (VAR value

BEGIN

DOUBLE) DOUBLE; EXTERN;

Y := MTH$DEXP (x);
WRITELN ('MTH$DEXP of ' X:5:3, ' is Y:20:16);

END•

1-15

1.7.6

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

The output generated by this Pascal program is as follows:

MTH$DEXP of 3.456 is 31.6899656462382318

~ { +}
{ Sample program to demonstrate a call to MTH$HEXP from PASCAL.
{-}

PROGRAM CALL_MTH$HEXP (OUTPUT);

{+}
{ Declare variables used by this program.
{-}

VAR
X : QUADRUPLE := 1.2345678901234567891234567892; { X is H-floating }
Y QUADRUPLE; { Y is H-f loating }

{+}
{ Declare the RTL routine used by this program.
{-}

[EXTERNAL,ASYNCHRONOUS] PROCEDURE MTH$HEXP (VAR h_exp QUADRUPLE;
value : QUADRUPLE); EXTERN;

BEGIN
MTH$HEXP (Y,X);
WRITELN ('MTH$HEXP of ' X:30:28, ' is Y:35:33);

END.

This Pascal program generates the following output:

MTH$DEXP of 3.456 is 31.6899656462382318

PL/I Examples
The following PI.JI programs use the D-fl.oating and H-fl.oating data types
to test entry points. PI.JI also supports the F-fl.oating and G-floating data
types. PI.JI does not support the complex data types, however.

D

1-16

/*
*
*
*
*/
TEST:

This program tests a MTH$D entry point

PROC OPTIONS (MAIN) ;

DCL (MTH$DEXP)
ENTRY (FLOAT(53)) RETURNS (FLOAT(53));

DCL OPERAND FLOAT(53);
DCL RESULT FLOAT(53);

/*** Begin test ***/
OPERAND = 3.456;
RESULT= MTH$DEXP(OPERAND);
PUT EDIT ('MTH$DEXP of , , OPERAND, I is , ,

RESULT) (A(l2) ,F (5, 3) ,A(4) ,F (20, 15));

END TEST;

The output generated by this PI.JI program is as follows:

MTH$DEXP of 3.456 is 31.689962805379165

*
*
*

1.7.7

~ I*
*
*
*
*
TEST:

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

This program tests a MTH$H entry point.
Note that in the PL/I statement below, the /G-float switch
is needed to compile both G- and H-floating point MTH$ routines.

PROC OPTIONS (MAIN) ;

DCL (MTH$HEXP)
ENTRY (FLOAT (113), FLOAT (113))

DCL OPERAND FLOAT (113);
DCL RESULT FLOAT (113);

*
*
*
*/

/*** Begin test ***/
OPERAND = 1.234578901234567891234567892;
CALL MTH$HEXP(RESULT,OPERAND);
PUT EDIT ('MTH$HEXP of ', OPERAND, ' is ',

RESULT) (A (12) , F (2 9, 2 7) , A (4) , F (2 9, 2 7)) ;

END TEST;

Ada Example

To run this program, use the following DCL commands:

$ PLI/G_FLOAT EXAMPLE
$ LINK EXAMPLE
$ RUN EXAMPLE

This program generates the following output:

MTH$HEXP of 1.234578901234567891234567892 is
3.436930928565989790506225633

The following Ada program demonstrates the use of MTH$ routines in a
manner that an actual program might use. The program performs the
following steps:

• Reads a floating-point number from the terminal

• Calls MTH$SQRT to obtain the square root of the value read

• Calls MTH$JNINT to find the nearest integer of the square root

• Displays the result

This example runs on VAX Adaj V2.0 or later.

1-17

Introduction to MTH$
1. 7 Examples of Calls to Run-Time Library Mathematics Routines

-- This Ada program calls the MTH$SQRT and MTH$JNINT routines.

with FLOAT MATH LIB;
Package FLOAT MATH LIB is an instantiation of the generic package
MATH LIB for the FLOAT datatype. This package provides the most
common mathematical functions (SQRT, SIN, COS, etc.) in an easy
to use fashion. An added benefit is that the VAX Ada compiler
will use the faster JSB interface for these routines.

with MTH;
Package MTH defines all the MTH$ routines. It should be used when

-- package MATH_LIB is not sufficient. All functions are defined here
-- as "valued procedures" for consistency.

with FLOAT_TEXT_IO, INTEGER_TEXT_IO, TEXT_IO;
procedure ADA_EXAMPLE is

FLOAT_VAL: FLOAT;
INT_VAL: INTEGER;

begin
-- Prompt for initial value.
TEXT_IO.PUT ("Enter value: ");
~LOAT_TEXT_IO.GET (FLOAT_VAL);
TEXT~IO.NEW_LINE;

Take the square root by using the SQRT routine from package
-- FLOAT MATH LIB. The compiler will use the JSB interface
·--to MTH$SQRT.
FLOAT VAL:= FLOAT MATH_LIB.SQRT (FLOAT_VAL);

Find the nearest integer using MTH$JNINT. Argument names are
-- the same as those listed for MTH$JNINT in the reference
-- section of this manual.
MTH.JNINT (F_FLOATING => FLOAT_VAL, RESULT=> INT_VAL);

-~ Write the result.
TEXT_IO.PUT ("Result is: ");
INTEGER_TEXT_IO.PUT (INT_VAL);
TEXT_IO.NEW_LINE;

end ADA_EXAMPLE;

1-18

To run this example program, use the following DCL commands:

$ CREATE/DIR [.ADALIB]
$ ACS CREATE LIB [. ADALIB]
$ ACS SET LIB [.ADALIB]
$ ADA ADA EXAMPLE
$ ACS LINK ADA EXAMPLE
$ RUN ADA EXAMPLE

The preceding Ada example generates the following output:

Enter value: 42.0
Result is: 6

2 Vector Routines in MTH$

This chapter discusses the three sets of routines provided by the RTL
MTH$ facility that support vector processing. These routines are as
follows:

• Basic Linear Algebra Subroutines (BLAS) Level 1

• First Order Linear Recurrence (FOLR) routines

• Vector versions of existing scalar routines

2.1 BLAS - Basic Linear Algebra Subroutines Level 1
The BLAS Level 1 are routines that perform operations on vectors, such
as copying a vector to another vector, swapping vectors, and so on. These
routines help you take advantage of the speed of vector processing. BLAS
Level 1 routines form an integral part of many mathematical libraries such
as LINPACK and EISPACK. 1 Because these routines usually occur in the
innermost loops of user code, the Run-Time Library provides versions of
the BLAS Level 1 that are tuned to take best advantage of the VAX vector
processors.

Two versions of the BLAS Level 1 are provided. To use either of these
libraries, link in the appropriate shareable image. The libraries are:

• Scalar BLAS - contained in the shareable image BLAS lRTL

• Vector BLAS (routines that take advantage of vectorization) -
contained in the shareable image VBLASlRTL

Note: To call the scalar BLAS from a program that runs on scalar
hardware, specify the routine name preceded by BLAS1$ (for
example, BLAS1$xCOPY). To call the vector BLAS from a program
that runs on vector hardware, specify the routine name preceded
by BLAS1$V (for example, BLAS1$VxCOPY).

This manual describes both the scalar and vector versions of the BLAS
Level 1, but for simplicity the vector prefix (BLAS1$V) is used exclusively.
Remember to remove the letter V from the routine prefix when you want
to call the scalar version.

If you are a VAX FORTRAN programmer, do not specify the BLAS vector
routines explicitly. Specify the FORTRAN intrinsic function name only.
The VAX FORTRAN-RPO compiler will then determine whether the vector
or scalar version of a BLAS routine should be used. The FORTRAN
/BLAS=([NO]INLINE,[NOJMAPPED) qualifier controls how the compiler
processes calls to the BLAS Level 1. If /NOBLAS is specified then all
BLAS calls are treated as ordinary external routines. The default of

1 For more information, see Basic Linear Algebra Subprograms for FORTRAN Usage in ACM Transactions
on Mathematical Software, Vol. 5, No. 3, September 1979.

2-1

Vector Routines in MTH$
2.1 BLAS - Basic Linear Algebra Subroutines Level 1

2-2

INLINE means calls to the BLAS Level 1 routines will be treated as
known language constructs and VAX object code will be generated
to compute the corresponding operations at the call site, rather than
call a user-supplied routine. If the FORTRAN qualifier NECTOR or
/PARALLEL=AUTO is in effect, the generated code for the loops may use
vector instructions or be decomposed to run on multiple processors. If
MAPPED is specified, these calls will be treated as calls to the optimized
implementations of these routines in the BLAS1$ and BLAS1$V portions
of the MTH$ facility. For more information on the FORTRAN /BLAS
qualifier, refer to the FORTRAN Performance Guide.

Ten families of routines form the BLAS Level 1. (BLAS1$VxCOPY is
one family of routines, for example.) These routines operate at the
vector-vector operation level - this means that the BLAS Level 1
perform operations on one or two vectors. The level of complexity of the
computations (in other words, the number of operations being performed
in a BLAS Level 1 routine) is of the order n (the length of the vector).

Each family of routines in the BLAS Level 1 contains routines coded
in single precision, double precision (D and G formats), single precision
complex, and double precision complex (D and G formats). The BLAS
Level 1 can be broadly classified into three groups:

• BLAS1$VxCOPY, BLAS1$VxSWAP, BLAS1$VxSCAL and
BLAS1$VxAXPY: These routines return vector output(s) for vector
inputs. The results of all of these routines are independent of the
order in which the elements of the vector are processed. The scalar
and vector versions of these routines return the same results.

• BLAS1$VxDOT, BLAS1$VIxAMAX, BLAS1$VxASUM, and
BLAS1$VxNRM2: These routines are all reduction operations
that return a scalar value. The results of these routines (except
BLAS1$VlxAMAX) are dependent upon the order in which the
elements of the vector are processed. The scalar and vector versions of
BLAS1$VxDOT, BLAS1$VxASUM, and BLAS1$VxNRM2 can return
different results. The scalar and vector versions of BLAS1$VIxAMAX
return the same results.

• BLAS1$VxROTG and BLAS1$VxROT: These routines are used for
a particular application (plane rotations), unlike the routines in
the previous two categories. The results of BLAS1$VxROTG and
BLAS1$VxROT are independent of the order in which the elements
of the vector are processed. The scalar and vector versions of these
routines return the same results.

Table 2-1 lists the functions and corresponding routines of the BLAS
Level 1.

Vector Routines in MTH$
2.1 BLAS - Basic Linear Algebra Subroutines Level 1

Table 2-1 Functions of the BLAS Level 1

Function Routine Data Type

Copy a vector to BLAS 1 $VSCOPY Single

another vector BLAS1$VDCOPY Double (D-floating or G-floating)

BLAS 1 $VCCOPY Single complex

BLAS 1 $VZCOPY Double complex (D-floating or
G-floating)

Swap the elements BLAS1$VSSWAP Single

of two vectors BLAS1$VDSWAP Double (D-floating or G-floating)

BLAS1 $VCSWAP Single complex

BLAS 1 $VZSWAP Double complex (D-floating or
G-floating)

Scale the elements BLAS1 $VSSCAL Single

of a vector BLAS1 $VDSCAL Double (D-floating)

BLAS1 $VGSCAL Double (G-floating)

BLAS 1 $VCSCAL Single complex with complex
scale

BLAS 1 $VCSSCAL Single complex with real scale

BLAS1 $VZSCAL Double complex with complex
scale (D-floating)

BLAS1 $VWSCAL Double complex with complex
scale (G-floating)

BLAS 1 $VZDSCAL Double complex with real scale
(D-floating)

BLAS1 $VWGSCAL Double complex with real scale
(G-floating}

Multiply a vector by a BLAS1 $VSAXPY Single

scalar and add a vector BLAS1 $VDAXPY Double (D-floating)

BLAS1 $VGAXPY Double (G-floating)

BLAS 1 $VCAXPY Single complex

BLAS1 $VZAXPY Double complex (D-floating)

BLAS1 $VWAXPY Double complex (G-floating)

(continued on next page)

2-3

Vector Routines in MTH$
2.1 BLAS - Basic Linear Algebra Subroutines Level 1

Table 2-1 (Cont.) Functions of the BLAS Level 1

Function Routine Data Type

Obtain the index of the BLAS 1 $VISAMAX Single

first element of a vector BLAS1$VIDAMAX Double (D-floating)

having the largest BLAS1 $VIGAMAX Double (G-floating)

absolute value BLAS1 $VICAMAX Single complex

BLAS1 $VIZAMAX Double complex (D-floating)

BLAS1$VIWAMAX Double complex (G-floating)

Obtain the sum of the BLAS 1 $VSASUM Single

absolute values of the BLAS1$VDASUM Double (D-floating)

elements of a vector BLAS1$VGASUM Double (G-floating)

BLAS 1 $VSCASUM Single complex

BLAS 1 $VDZASUM Double complex (D-floating)

BLAS1$VGWASUM Double complex (G-floating)

Obtain the inner BLAS1 $VSDOT Single

product of two vectors BLAS1 $VDDOT Double (D-floating)

BLAS1 $VGDOT Double (G-floating)

BLAS1 $VCDOTU Single complex unconjugated

BLAS1 $VCDOTC Single complex conjugated

BLAS1 $VZDOTU Double complex unconjugated
(D-floating)

BLAS1 $VWDOTU Double complex unconjugated
(G-floating)

BLAS 1 $VZDOTC Double complex conjugated
(D-floating)

BLAS1 $VWDOTC Double complex conjugated
(G-floating)

Obtain the Euclidean BLAS1$VSNRM2 Single

norm of the vector BLAS1$VDNRM2 Double (D-floating)

BLAS1$VGNRM2 Double {G-floating)

BLAS1 $VSCNRM2 Single complex

BLAS 1 $VDZNRM2 Double complex {D-floating)

BLAS 1 $VGWNRM2 Double complex {G-floating)

(continued on next page)

2-4

2.1.1

Vector Routines in MTH$
2.1 BLAS - Basic Linear Algebra Subroutines Level 1

Table 2-1 (Cont.) Functions of the BLAS Level 1

Function

Generate the elements

for a Givens plane

rotation

Apply a Givens plane

rotation

Routine

BLAS1$VSROTG

BLAS1 $VDROTG

BLAS1$VGROTG

BLAS1 $VCROTG

BLAS 1 $VZROTG

BLAS1 $VWROTG

BLAS1$VSROT

BLAS1$VDROT

BLAS1$VGROT

BLAS1 $VCSROT

BLAS 1 $VZDROT

BLAS1 $VWGROT

Data Type

Single

Double (D-floating)

Double (G-floating)

Single complex

Double complex (D-floating)

Double complex (G-floating)

Single

Double (D-floating)

Double (G-floating)

Single complex

Double complex (D-floating)

Double complex (G-floating)

For a detailed description of these routines, refer to Part III of this
manual, the Vector MTH$ Reference Section.

Using the BLAS Level 1
The following sections provide some guidelines for using the BLAS
Level 1.

2.1.1.1 Memory Overlap
The vector BLAS produces unpredictable results when any element of the
input argument shares a memory location with an element of the output
argument. (An exception is a special case found in the BLAS1$VxCOPY
routines.)

The vector BLAS and the scalar BLAS can yield different results when the
input argument overlaps the output array.

2.1.1.2 Round-Off Effects
For some of the routines in the BLAS Level 1, the final result is
independent of the order in which the operations are performed. However,
in other cases (for example, some of the reduction operations), efficiency
dictates that the order of operations on a vector machine be different from
the natural order of operations. Because round-off errors are dependent
upon the order in which the operations are performed, some of the routines
will not return results that are bit-for-bit identical to the results obtained
by performing the operations in natural order.

Where performance can be increased by the use of a backup data type, this
has been done. This is the case for BLAS1$VSNRM2, BLAS1$VSCNRM2,
BLAS1$VSROTG, and BLAS1$VCROTG. The use of a backup data type
can also yield a gain in accuracy over the scalar BLAS.

2-5

Vector Routines in MTH$
2.1 BLAS - Basic Linear Algebra Subroutines Level 1

2-6

2.1.1.3 Underflow and Overflow
In accordance with LINPACK convention, underflow, when it occurs, is
replaced by a zero. A system message informs you of overflow. Because
the order of operations for some routines is different from the natural
order, overflow might not occur at the same array element in both the
scalar and vector versions of the routines.

2.1.1.4 Notational Definitions
The vector BLAS (except the BLAS1$VxROTG routines) perform
operations on vectors. These vectors are defined in terms of three
quantities:

• A vector length, specified as n

• An array or a starting element in an array, specified as x

• An increment or spacing parameter to indicate the distance in number
of array elements to skip between successive vector elements, specified
asincx

Suppose x is a real array of dimension ndim, n is its vector length, and
incx is the increment used to access the elements of a vector X. The
elements of vector X, Xi, i = 1, ... , n, are stored in x. If incx is greater
than or equal to 0, then xi is stored in the following location:

x(l + (i - 1) * incx)

However, if incx is less than 0, then Xi is stored in the following location:

x(l + (n - i) * lincxl)

It therefore follows that the following condition must be satisfied:

ndim~l + (n - 1) * jincxl

A positive value for incx is referred to as forward indexing and a negative
value is referred to as backward indexing. A value of zero implies that all
of the elements, of the vector are at the same location, x1.

Suppose ndim = 20 and n = 5. In this case, incx = 2 implies that X1, X2,
X3, X4, and X5 are located in array elements x1, x3, x5, x7, and x9.

If, however, incx is negative, then X1, X2, X3, X4 and Xs are located
in array elements x9, x7, x5, x3, and x1. In other words, when incx is
negative, the subscript of x decreases as i increases.

For some of the routines in BLAS Level 1, incx = 0 is not permitted. In
the cases where a zero value for incx is permitted, it means that x1 is
broadcast into each element of the vector X of length n.

You can operate on vectors that are embedded in other vectors or matrices
by choosing a suitable starting point of the vector. For example, if A is an
nl by n2 matrix, its j-th column is referenced with a length of nl, starting
point A(lj) and increment 1. Similarly, the i-th row is referenced with a
length of n2, starting point A(i,1) and increment nl.

Vector Routines in MTH$
2.2 FOLR - First Order Linear Recurrence Routines

2.2 FOLR - First Order Linear Recurrence Routines

2.2.1

The MTH$ FOLR routines provide a vectorized algorithm for the linear
recurrence relation. A linear recurrence uses the result of a previous pass
through a loop as an operand for subsequent passes through the loop and
prevents the vectorization of a loop.

The only error checking performed by the FOLR routines is for a reserved
operand.

There are four families of FOLR routines in the MTH$ facility. Each
family accepts each of four data types (longword integer, F-fioating,
D-floating, and G-floating). However, all of the arrays you specify in a
single FOLR call must be of the same data type.

For a detailed description of these routines, refer to Part III of this
manual, the Vector MTH$ Reference Section.

FOLR Routine Name Format
The four families of FOLR routines are as follows:

• MTH$VxFOLRy_MA_V15

• MTH$VxFOLRy_z_V8

• MTH$VxFOLRLy_MA_V5

• MTH$VxFOLRLy_z_V2

where:

x J for longword integer, F for F-floating, D for D-floating, or G for G-floating

y P for a positive recursion element, or N for a negative recursion element

z M for multiplication or A for addition

The FOLR entry points end with _ Vn, where n is an integer between 0 and
15 that denotes the vector registers the FOLR routine uses. For example,
MTH$VxFOLRy _z_ VS uses vector registers VO through VS.

To determine which group of routines you should use, match the task in
the left column in Table 2-2 that you need the routine to perform with the
method of storage that you need the routine to employ. The point where
these two tasks meet shows the FOLR routine you should call.

2-7

2.2.2

Vector Routines in MTH$
2.2 FOLR - First Order Linear Recurrence Routines

Table· 2-2 Determining the FOLR Routine You Need

Tasks

Multiplication AND
addition.

Multiplication OR
addition

Calling a FOLR Routine

Save each iteration in an
array

MTH$VxFOLRy _MA_ V15

MTH$VxFOLRy_z_ V8

Save only last result in a
variable

MTH$VxFOLRLy _MA_ V5

MTH$VxFOLRLy _z_ V2

Save the contents of VO through Vn before calling a FOLR routine if you
need it after the call. The variable n can be 2, 5, 8, or 15, depending on
the FOLR routine entry point. (The VAX Procedure Calling and Condition
Handling Standard, described in the Introduction to the VMS Run-17,me
Library, specifies that a called procedure may modify all of the vector
registers. The FOLR routines modify only the vector registers VO through
Vn.)

The MTH$ FOLR routines assume that all of the arrays are of the same
data type.

2.3 Vector Versions of Existing Scalar Routines

2.3.1 Exceptions

2-8

Vector forms of many MTH$ routines are provided to support vectorized
compiled applications. Vector versions of key F-fl.oating, D-fl.oating, and
G-floating scalar routines employ vector hardware, while maintaining
identical results with their scalar counterparts. Many of the scalar
algorithms have been redesigned to ensure identical results and good
performance for both the vector and scalar versions of each routine.
All vectorized routines return bit-for-bit identical results as th~ scalar
versions.

You can call the vector MTH$ routines directly if your program is
written in VAX MACRO. If you are a FORTRAN programmer, specify
the FORTRAN intrinsic function name only. The VAX FORTRAN-RPO
compiler will then determine whether the vector or scalar version of a
routine should be used. ·

You should not attempt to recover from a MTH$ vector exception. After a
MTH$ vector exception, the vector routines cannot continue execution, and
nonexceptional values might not have been computed.

2.3.2

2.3.3

Vector Routines in MTH$
2.3 Vector Versions of Existing Scalar Routines

Underflow Detection
In general, if a vector instruction results in the detection of both a floating
overflow and a floating underflow, only the overflow will be signaled.

Some scalar routines check to see if a user has enabled underflow
detection. For each of those scalar routines, there are two corresponding
vector routines: one that always enables underflow checking and one
that never enables underflow checking. (In the latter case, underflows
produce a result of zero.) The VAX FORTRAN-HPO compiler always
chooses the vector version that does not signal underflows, unless the
user specifies the appropriate VAX FORTRAN-HPO compiler switch
(the /CHECK=UNDERFLOW qualifier). This ensures that the check is
performed but does not impair vector performance for those not interested
in underflow detection.

Vector Routine Name Format
Use one of the formats in Table 2-3 to call (from VAX MACRO) a vector
math routine that enables underflow signaling. (The E in the routine
name means enabled underflow signaling.)

Table 2-3 Vector Routine Format - Underflow Signaling Enabled

Format

MTH$VxSAMPLE_E_Ry _ Vz

MTH$VCxSAMPLE_E_FJ¥~ Vz

OTS$SAMPLEq_E_Ry _ Vz

Type of Routine

Real valued math routine

Complex valued math routine

Power routine or complex multiply and divide

Use one of the formats in Table 2-4 to call (from VAX MACRO) a vector
math routine that does not enable underflow signaling.

Table 2-4 Vector Routine Format - Underflow Signaling Disabled

MTH$VxSAMPLE_Ry _ Vz

MTH$VCxSAMPLE_Ry _ Vz

OTS$SAMPLEq_Ry _ Vz

Real valued math routine

Complex valued math routine

Power routine or complex multiply/divide

In the preceding formats, the following conventions are used:

x the letter A (or blank) for F-floating, D for 0-floating, G for G-floating.

y a number between O and 11 (inclusive). Ry means that the scalar registers
RO through Ry will be used by the routine SAMPLE. You must save these
registers.

z a number between 0 and 15 (inclusive). Vz means that the vector registers
VO through Vz will be used by the routine SAMPLE. You must save these
registers.

2-9

2.3.4

Vector Routines in MTH$
2.3 Vector Versions of Existing Scalar Routines

q two letters denoting the base and power data type, as follows:

RR F-floating base raised to an F-floating power

RJ F-floating base raised to a longword power

DD D-floating base raised to a D-floating power

DJ D-floating base raised to a longword power

GG G-floating base raised to a G-floating power

GJ G-floating base raised to a longword power

JJ Longword base raised to a longword power

Calling a Vector Math Routine

2-10

You can call the vector MTH$ routines directly if your program is written
in VAX MACRO.

Note: If you are a VAX FORTRAN programmer, do not specify the MTH$
vector routines explicitly. Specify the FORTRAN intrinsic function
name only. The VAX FORTRAN-RPO compiler will then determine
whether the vector or scalar version of a routine should be used.

In the following examples, keep in mind that vector real arguments are
passed in VO, Vl, and so on, and vector real results are returned in VO.
On the other hand, vector complex arguments are passed in VO and Vl,
V2 and V3, and so on. Vector complex results are returned in VO and Vl.
To illustrate:

Argument Passed
Argument Register

Vector real arguments VO, V1 , ...

Vector complex arguments VO and V1, V2 and V3, ...

Example 1

Results Returned
Register

VO

VO and V1

The following example demonstrates how to call the vector version of
MTH$EXP. Assume that you do not want underflows to be signaled, and
you need to use the current contents of all the vector and scalar registers
after the invocation. Before you can call the vector routine from VAX
MACRO, perform the following steps:

1 Find EXP in the column of scalar names in Appendix B to determine:

• The full vector routine name: MTH$VEXP _R3_ V6

• How the routine is invoked (CALL or JSB): JSB

• The scalar registers that must be saved: RO through R3 (as
specified by R3 in MTH$VEXP _R3_ V6)

• The vector registers that must be saved: VO through V6 (as
specified by V6 in MTH$VEXP _R3_ V6)

Vector Routines in MTH$
2.3 Vector Versions of Existing Scalar Routines

• The vector register(s) used to hold the input argument(s): VO

• The vector register(s) used to hold the output argument(s): VO

• If there is a vector version that signals underflow (not needed in
this example)

2 Save the scalar registers RO, Rl, R2, and R3.

3 Save the vector registers VO, Vl, V2, V3, V 4, V5, and V6.

4 Save the vector mask register VMR.

5 Save the vector count register VCR.

6 Load the vector length register VLR.

7 Load the vector register VO with the argument for MTH$EXP.

8 JSB to MTH$VEXP _R3_ V6.

9 Store result in memory.

10 Restore all scalar and vector registers except for VO. (The results of
the "call" to MTH$VEXP_R3_V6 are stored in VO.)

The following MACRO program fragment illustrates this example. Assume
that:

• VO through V6 and RO through R3 have been saved

• R4 points to a vector of 60 input values

• R6 points to the location where the results of MTH$VEXP _R3_ V6 will
be stored

• R5 contains the stride in bytes

Note that MTH$VEXP _R3_ V6 denotes an F-floating data type because
there is no letter between V and E in the routine name. (For further
explanation, refer to Section 2.3.3.) The stride (the number of array
elements that are skipped) must be a multiple of 4 because each F-floating
value requires 4 bytes.

MTVLR #60
MOVL #4, RS
VLDL (R4), RS, VO
JSB GAMTH$VEXP_R3_V6
VSTL VO, (R6), RS

Example 2

Load VLR
Stride
Load VO with the actual arguments
JSB to MTH$VEXP
Store the results

The following example demonstrates how to call the vector version of
OTS$POWDD with a vector base raised to a scalar power. Before you can
call the vector routine from VAX MACRO, perform the following steps:

1 Find POWDD (V 8) in the column of scalar names in Appendix B to
determine:

• The full vector routine name: OTS$VPOWDD_Rl_V8

• How the routine is invoked (CALL or JSB): CALL

2-11

Vector Routines in MTH$
2.3 Vector Versions of Existing Scalar Routines

2-12

• The scalar registers that must be saved: RO through Rl (as
specified by Rl in OTS$VPOWDD_Rl_ V8)

• The vector registers that must be saved: VO through VS (as
specified by VS in OTS$VPOWDD_Rl_VS)

• The vector register(s) used to hold the input argument(s): VO, RO

• The vector register(s) used to hold the output argument(s): VO

• If there is a vector version that signals underflow (not needed in
this example)

2 Save the scalar registers RO and Rl.

3 Save the vector registers VO, Vl, V2, V3, V 4, V5, V6, V7, and VS.

4 Save the vector mask register VMR.

5 Save the vector count register VCR.

6 Load the vector length register VLR.

7 Load the vector register VO and the scalar register RO with the
arguments for OTS$POWDD.

8 Call OTS$VPOWDD_Rl_ VS.

9 Store result in memory.

10 Restore all scalar and vector registers except for VO. (The results of
the call to OTS$VPOWDD_Rl_ VS are stored in VO.)

The following MACRO program fragment illustrates how to call
OTS$VPOWDD_Rl_V8 to compute the result of raising 60 values to
the power P. Assume that:

• VO through VS and RO and Rl have been saved

• R4 points to the vector of 60 input base values

• RO and Rl contain the D-floating value P

• R6 points to the location where the results will be stored

• R5 contains the stride

Note that OTS$VPOWDD_R1_V8 raises a D-floating base to a D-floating
power, which you determine from the DD in the routine name. (For
further explanation, refer to Section 2.3.3.) The stride (the number of
array elements that are skipped) must be a multiple of 8 because each
D-floating value requires 8 bytes.

MTV LR
MOVL
VLDQ
CALL
VSTQ

#60
#8, RS
(R4), RS, VO
GAOTS$VPOWDD_Rl_V8
VO, (R6), RS

RO/Rl already contains the power
Load VLR
Stride
Load VO with the actual arguments
CALL OTS$VPOWDD
Store the results

Scalar MTH$ Reference Section
Part 11 provides detailed descriptions of the scalar routines provided by the
VMS RTL Mathematics (MTH$) Facility.

MTH$xACOS

MTH$xACOS Arc Cosine of Angle Expressed in
Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians
routine returns that angle (in radians).

MTH$ACOS cosine
MTH$DACOS cosine
MTH$GACOS cosine
Each of the above three formats accepts as input one of the floating-point
types.

MTH$ACOS R4
MTH$DACOS R7
MTH$GACOS_R7
Each of the above three JSB entries accepts as input one of the floating
point types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. The angle returned will have a value in the range

0 ~angle~ 7r

MtH$ACOS returns an F-floating number. MTH$DACOS returns a
D-floating number. MTH$GACOS returns a G-floating number.

cosine
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The cosine of the angle whose value (in radians) is to be returned. The
cosine argument is the address of a floating-point number that is this
cosine. The absolute value of cosine must be less than or equal to 1. For
MTH$ACOS, cosine specifies an F-floating number. For MTH$DACOS,
cosine specifies a D-floating number. For MTH$GACOS, cosine specifies
a G-floating number.

MTH-3

MTH$xACOS

DESCRIPTION The angle in radians whose cosine is Xis computed as:

Value of
Cosine

0

1

-1

O<X< 1

-1<x<0

1 < IXI

Value Returned

11'/2

0

11'

zAT AN(zSQRT(l - X 2
)/ X), where zATAN and zSQRT are the

Math Library arc tangent and square root routines, respectively, of
the appropriate data type

zAT AN(zSQRT(l - X2
)/ X) + 11'

The error MTH$_1NVARGMAT is signaled

The routine description for the H-fioating point version of this routine is
listed alphabetically under MTH$HACOS.

CONDITION
VALUES
SIGNALED

SS$_ROPRAND Reserved operand. The MTH$xACOS routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of one and

MTH$_1NVARGMAT

a biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of cosine is
greater than 1. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument vector
CHF$L_MCH_SAVRO/R1. The result is the floating
point reserved operand unless you have written a
condition handler to change CHF$L_MCH_SAVRO/R1.

EXAMPLES

D 100 !+
! This BASIC program demonstrates the use of
! MTH$ACOS.
!-

EXTERNAL REAL FUNCTION MTH$ACOS
DECLARE REAL COS VALUE, ANGLE

300 INPUT "Cosine value between -1 and +l "; COS VALUE
400 IF (COS VALUE < -1) OR (COS VALUE > 1)

-THEN PRINT "Invalid-cosine value"
GOTO 300

500 ANGLE= MTH$ACOS(COS VALUE)
PRINT "The angle with-that cosine is "; ANGLE; "radians"

32767 END

MTH-4

MTH$xACOS

This BASIC program prompts for a cosine value and determines the angle
that has that cosine. The output generated by this program is as follows:

$ RUN ACOS
Cosine value betwen -1 and +l ? .5
The angle with that cosine is 1.0472 radians

i PROGRAM GETANGLE(INPUT,OUTPUT);

{+}
{ This PASCAL program uses MTH$ACOS to determine
{ the angle which has the cosine given as input.
{-}

VAR
COS : REAL;

FUNCTION MTH$ACOS(COS
EXTERN;

REAL) REAL;

BEGIN

END.

WRITE('Cosine value between -1 and +l: ');
READ (COS);
WRITELN('The angle with that cosine is', MTH$ACOS(COS),
' radians') ;

This PASCAL program prompts for a cosine value and determines the
angle that has that cosine. The output generated by this program is as
follows:

$ RUN ACOS
Cosine value between -1 and +l: .5
The angle with that cosine is l.04720E+OO radians

MTH-5

MTH$xACOSD

MTH$xACOSD Arc Cosine of Angle Expressed in
Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

MTH-6

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees
routine returns that angle (in degrees).

MTH$ACOSD cosine
MTH$DACOSD cosine
MTH$GACOSD cosine
Each of the above formats accepts as input one of the floating-point types.

MTH$ACOSD R4
MTH$DACOSD R7
MTH$GACOSD _R7
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in degrees. The angle returned will have a value in the range

0 :5 angle :5 180

MTH$ACOSD returns an F-floating number. MTH$DACOSD returns a
D-floating number. MTH$GACOSD returns a G-floating number.

cosine
VMS usage: floating_point
type: F _floating, G_floating, D_floating
access: read only
mechanism: by reference
Cosine of the angle whose value (in degrees) is to be returned. The
cosine argument is the address of a floating-point number that
is this cosine. The absolute value of cosine must be less than or
equal to 1. For MTH$ACOSD, cosine specifies an F-floating number.
For MTH$DACOSD, cosine specifies a D-floating number. For
MTH$GACOSD, cosine specifies a G-floating number.

DESCRIPTION

CONDITION
VALUES
SIGNALED

EXAMPLE

MTH$xACOSD

The angle in degrees whose cosine is Xis computed as:

Value of
Cosine

0

1

-1

0<X<1

-1<x<0

1 < IXI

Angle Returned

90

0

180

zAT AND(zSQRT(l - X2)/X), where zATAND and zSQRT are the
Math Library arc tangent and square root routines, respectively, of
the appropriate data type

zAT AND(zSQRT(l -X2)/X) + 180

The error MTH$_1NVARGMAT is signaled

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HACOSD.

SS$_ROPRAND

MTH$_1NVARGMAT

Reserved operand. The MTH$xACOSD routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of one and
a biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of cosine is
greater than 1. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument vector
CHF$L_MCH_SAVRO/R1. The result is the floating
point reserved operand unless you have written a
condition handler to change CHF$L_MCH_SAVRO/R1.

PROGRAM ACOSD(INPUT,OUTPUT);

{+}
{ This PASCAL program demonstrates the use of
{ MTH$ACOSD.
{-}

FUNCTION MTH$ACOSD(COS REAL): REAL; EXTERN;

VAR
COSINE : REAL;
RET_STATUS : REAL;

BEGIN
COSINE := 0.5;
RET_STATUS := MTH$ACOSD(COSINE);
WRITELN('The angle, in degrees, is: ' RET_STATUS);

END.

MTH-7

MTH$xACOSD

The output generated by this PASCAL example program is as follows:

The angle, expressed in degrees, is: 6.00000E+Ol

MTH-8

MTH$xASIN

MTH$xASIN Arc Sine in Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the sine of an angle, the Arc Sine in Radians routine returns that angle
(in radians).

MTH$ASIN sine
MTH$DASIN sine
MTH$GASIN sine
Each of the above formats accepts as input one of the floating-point types.

MTH$ASIN R4
MTH$DASIN R7
MTH$GASIN_R7
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. The angle returned will have a value in the range

-'Ir /2 ~ angle ~ 1r /2

MTH$ASIN returns an F-floating number. MTH$DASIN returns a
D-floating number. MTH$GASIN returns a G-floating number.

sine
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The sine of the angle whose value (in radians) is to be returned. The sine
argument is the address of a floating-point number that is this sine. The
absolute value of sine must be less than or equal to 1. For MTH$ASIN,
sine specifies an F-floating number. For MTH$DASIN, sine specifies a
D-floating number. For MTH$GASIN, sine specifies a G-floating number.

MTH-9

MTH$xASIN

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-10

The angle in radians whose sine is Xis computed as:

Value of Sine

0

1

-1

o <!XI< 1

1 <!XI

Angle Returned

0

7r/2

-7r/2

zAT AN(X/ zSQRT(l - X 2
)), where zATAN and zSQRT are the

Math Library arc tangent and square root routines, respectively,
of the appropriate data type

The error MTH$_1NVARGMAT is signaled

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HASIN.

SS$_ROPRAND

MTH$_1NVARGMAT

Reserved operand. The MTH$xASIN routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of sine is
greater than 1. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument vector
CHF$L_MCH_SAVRO/R1. The result is the floating
point reserved operand unless you have written a
condition handler to change CHF$L_MCH_SAVRO/R1.

MTH$xASIND

MTH$xASIND Arc Sine in Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the sine of an angle, the Arc Sine in Degrees routine returns that angle
(in degrees).

MTH$ASIND sine
MTH$DASIND sine
MTH$GASIND sine
Each of the above formats accepts as input one of the floating-point types.

MTH$ASIND R4
MTH$DASIND R7
MTH$GASIND_R7
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in degrees. The angle returned will have a value in the range

-90 ~ angle ~ 90

MTH$ASIND returns an F-floating number. MTH$DASIND returns a
D-floating number. MTH$GASIND returns a G-floating number.

sine
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
Sine of the angle whose value (in degrees) is to be returned. The sine
argument is the address of a floating-point number that is this sine. The "
absolute value of sine must be less than or equal to 1. For MTH$ASIND,
sine specifies an F-floating number. For MTH$DASIND, sine specifies
a D-floating number. For MTH$GASIND, sine specifies a G-floating
number ..

MTH-11

MTH$xASIND

DESCRIPTION The angle in degrees whose sine is Xis computed as:

CONDITION
VALUES
SIGNALED

MTH-12

Value of Sine

0

1

-1

0 < IXI < 1

1 < IXI

Value Returned

0

90

-90

zAT AND(X/zSQRT(l - X 2)), where zATAND and zSQRT
are the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

The error MTH$_1NVARGMAT is signaled

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HASIND.

I,

SS$_ROPRAND

MTH$_1NVARGMAT

Reserved operand. The MTH$xASIND routine
encountered a floating point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of one and
a biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of sine is
greater than 1. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument vector
CHF$L_MCH_SAVRO/R1. The result is the floating
point reserved operand unless you have written a
condition handler to change CHF$L_MCH_SAVRO/R1.

MTH$xATAN

MTH$xATAN Arc Tangent in Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the tangent of an angle, the Arc Tangent in Radians routine returns that
angle (in radians).

MTH$ATAN tangent
MTH$DATAN tangent
MTH$GATAN tangent
Each of the above formats accepts as input one of the floating-point types.

MTH$ATAN_R4
MTH$DATAN_R7
MTH$GATAN_R7
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. The angle returned will have a value in the range

-'Ir /2 ~ angle ~ 7r /2

MTH$ATAN returns an F-floating number. MTH$DATAN returns a
D-floating number. MTH$GATAN returns a G-floating number.

tangent
VMS usage: floating_point
type: F _floating, D _floating, G_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in radians) is to be returned. The
tangent argument is the address of a floating-point number that is this
tangent. For MTH$ATAN, tangent specifies an F-floating number. For
MTH$DATAN, tangent specifies a D-floating number. For MTH$GATAN,
tangent specifies a G-floating number.

MTH-13

MTH$xATAN

DESCRIPTION In radians, the computation of the arc tangent function is based on the
following identities:

CONDITION
VALUE
SIGNALED

MTH-14

arctan(X) = X - X3 /3 + x5 /5 - X 7 /7 + ...
arctan(X) = X + X * Q(X2

),

where Q(Y) = -Y /3 + Y2 /5 - Y 3 /7 + ...
arctan(X) = X * P(X2

),

where P(Y) = 1 - Y /3 + Y2 /5 - Y 3 /7 + ...
arctan(X) = 11" /2 - arctan(l/ X)

arctan(X) = arctan(A) + arctan((X - A)/(1 +A* X))
for any real A

The angle in radians whose tangent is X is computed as:

Value of X

05_X$.3/32

3/32 < X:$;11

ll<X

X<O

Angle Returned

X +X* Q(X2
)

AT AN(A) + V * (P(V2
)), where A and ATAN(A) are chosen

by table lookup and V = (X -A)/(1 +A* X)

11"/2 -W * (P(W 2
)) where W = 1/X

-zAT AN(IXI)

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HATAN.

SS$_ROPRAND Reserved operand. The MTH$xATAN routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$xATAND

MTH$xATAND Arc Tangent in Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the tangent of an angle, the Arc Tangent in Degrees routine returns that
angle (in degrees).

MTH$ATAND tangent
MTH$DATAND tangent
MTH$GATAND tangent
Each of the above formats accepts as input one of the floating-point types.

MTH$ATAND R4
MTH$DATAND R7
MTH$GATAND R7
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D _floating, G_floating
access: write only
mechanism: by value

Angle in degrees. The angle returned will have a value in the range

-90 ~ angle ~ 90

MTH$ATAND returns an F-floating number. MTH$DATAND returns a
D-floating number. MTH$GATAND returns a G-floating number.

tangent
VMS usage: floating_point
type: F _floating, D _floating, G_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in degrees) is to be returned.
The tangent argument is the address of a floating-point number that
is this tangent. For MTH$ATAND, tangent specifies an F-floating
number. For MTH$DATAND, tangent specifies a D-floating number.
For MTH$GATAND, tangent specifies a G-floating number.

MTH-15

MTH$xATAND

DESCRIPTION The computation of the arc tangent function is based on the following
identities:

CONDITION
VALUE
SIGNALED

MTH-16

arctan(X) = (180/rr) * (X - X3 /3 + X5 /5 - X 7 /7 + ...)
arctan(X) = 64 * X + X * Q(X2

),

where Q(Y) = 180/rr * [(1 - 64* rr/180)] - Y /3 + Y 2 /5 - Y 3 /7 + Y 4 /9

arctan(X) = X * P(X2
),

where P(Y) = 180/rr * [1 - Y /3 + Y 2 /5 - Y 3 /7 + Y 4 /9 ...]

arctan(X) = 90 - arctan(l/ X)

arctan(X) = arctan(A) + arctan((X - A)/(1 +A* X))

The angle in degrees whose tangent is Xis computed as:

Tangent

X<!::_a/32

3/32 < X:91

ll<X

X<O

Angle Returned

64 * X + X * Q (X 2
)

AT AND(A) + V * P(V2
), where A and ATAND(A) are chosen

by table lookup and V = (X - A)/(1 +A* X)

90 - W * (P(W2
)), where W = 1/ X

-zATAND(IX I)

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HATAND.

SS$_ROPRAND Reserved operand. The MTH$xATAND routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$xATAN2

MTH$xATAN2 Arc Tangent in Radians with Two
Arguments

FORMAT

RETURNS

ARGUMENTS

Given sine and cosine, the Arc Tangent in Radians with Two Arguments
routine returns the angle (in radians) whose tangent is given by the quotient
of sine and cosine, (sine/cosine).

MTH$ATAN2 sine ,cosine
MTH$DATAN2 sine ,cosine
MTH$GATAN2 sine ,cosine
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. MTH$ATAN2 returns an F-floating number.
MTH$DATAN2 returns a D-floating number. MTH$GATAN2 returns a
G-floating number.

sine
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number
that is this dividend. For MTH$ATAN2, sine specifies an F-floating
number. For MTH$DATAN2, sine specifies a D-floating number. For
MTH$GATAN2, sine specifies a G-floating number.

cosine
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
Divisor. The cosine argument is the address of a :floating-point number
that is this divisor. For MTH$ATAN2, cosine specifies an F-:floating
number. For MTH$DATAN2, cosine specifies a D-:floating number. For
MTH$GATAN2, cosine specifies a G-:floating number.

MTH-17

MTH$xATAN2

DESCRIPTION The angle in radians whose tangent is YIX is computed as follows, where f
is defined in the description of MTH$zCOSH.

CONDITION
VALUES
SIGNALED

MTH-18

Value of Input Arguments

X = 0 or Y/X > 2(f+1l

X > 0 and Y/X-5:_ 2U+1l

X < O and Y/X~ 2(f+1l

Angle Returned

7r /2 * (signY)

zATAN(Y/X)

7r * (signY) + zAT AN(Y / X)

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HATAN2.

SS$_ROPRAND

MTH$_1NVARGMAT

Reserved operand. The MTH$xATAN2 routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument. Both cosine and sine are zero.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

MTH$xATAND2

MTH$xATAND2 Arc Tangent in Degrees with Two
Arguments

FORMAT

RETURNS

ARGUMENTS

Given sine and cosine, the Arc Tangent in Degrees with Two Arguments
routine returns the angle (in degrees) whose tangent is given by the quotient
of sine and cosine, (sine/cosine).

MTH$ATAND2 sine ,cosine
MTH$DATAND2 sine ,cosine
MTH$GATAND2 sine ,cosine
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Angle (in degrees). MTH$ATAND2 returns an F-floating number.
MTH$DATAND2 returns a D-floating number. MTH$GATAND2 returns a
G-floating number.

sine
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number
that is this dividend. For MTH$ATAND2, sine specifies an F-floating
number. For MTH$DATAND2, sine specifies a D-floating number. For
MTH$GATAND2, sine specifies a G-floating number.

cosine
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number
that is this divisor. For MTH$ATAND2, cosine specifies an F-floating
number. For MTH$DATAND2, cosine specifies a D-floating number. For
MTH$GATAND2, cosine specifies a G-floating number.

MTH-19

MTH$xATAND2

DESCRIPTION The angle in degrees whose tangent is Y/Xis computed below and where f
is defined in the description of MTH$zCOSH.

CONDITION
VALUES
SIGNALED

MTH-20

Value of Input Arguments

X = 0 or Y/X > 2U+1
)

X > 0 and Y/X ~ 2U+1l

X < 0 and Y/X ~ 2(/+1)

Angle Returned

90 * (signY)

zAT AN D(Y / X)

180 * (signY) + zATAND(Y /X)

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HATAND2.

SS$_ROPRAND

MTH$_1NVARGMAT

Reserved operand. The MTH$xATAND2 routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument. Both cosine and sine are zero.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

MTH$xATANH

MTH$xATANH Hyperbolic Arc Tangent

FORMAT

RETURNS

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent routine
returns the hyperbolic arc tangent of that angle.

MTH$ATANH hyperbolic-tangent
MTH$DATANH hyperbolic-tangent
MTH$GATANH hyperbolic-tangent
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: F _floating, D _floating, G_floating
access: write only
mechanism: by value

The hyperbolic arc tangent of hyperbolic-tangent. MTH$ATANH returns
an F-fioating number. MTH$DATANH returns a D-floating number.
MTH$GATANH returns a G-fl.oating number.

ARGUMENTS hyperbolic-tangent
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
Hyperbolic tangent of an angle. The hyperbolic-tangent argument is
the address of a floating-point number that is this hyperbolic tangent. For
MTH$ATANH, hyperbolic-tangent specifies an F-fl.oating number. For
MTH$DATANH, hyperbolic-tangent specifies a D-floating number. For
MTH$GATANH, hyperbolic-tangent specifies a G-fl.oating number.

DESCRIPTION The hyperbolic arc tangent function is computed as follows:

Value of x

IXI <1

1x1~1

Value Returned

zAT ANH(X) = zLOG((X + 1)/(X - 1))/2
An invalid argument is signaled

The routine description for the H-fl.oating point version of this routine is
listed alphabetically under MTH$HATANH.

MTH-21

MTH$xATANH

CONDITION
VALUES
SIGNALED

MTH-22

SS$_ROPRAND

MTH$_1NVARGMAT

Reserved operand. The MTH$xATANH routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument: IXl2::1. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R1. The result
is the floating-point reserved operand unless you have
written a condition handler to change CHF$L_MCH_
SAVRO/R1.

MTH$CxABS

MTH$CxABS Complex Absolute Value

FORMAT

RETURNS

The Complex Absolute Value routine returns the absolute value of a complex
number (r,i).

MTH$CABS complex-number
MTH$CDABS complex-number
MTH$CGABS complex-number
Each of the above three formats accepts as input one of the three floating
point complex types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The absolute value of a complex number. MTH$CABS returns an
F-fl.oating number. MTH$CDABS returns a D-fl.oating number.
MTH$CGABS returns a G-:ftoating number.

ARGUMENT complex-number
VMS usage: complex_number
type: F _floating complex, D_floating complex, G_floating

complex
access: read only
mechanism: by reference
A complex number (r,i), where r and i are both floating-point complex
values. The complex-number argument is the address of this complex
number. For MTH$CABS, complex-number specifies an F-floating
complex number. For MTH$CDABS, complex-number specifies a
D-floating complex number. For MTH$CGABS, complex-number
specifies a G-floating complex number.

DESCRIPTION The complex absolute value is computed as follows, where MAX is the
larger of I r I and I i I , and MIN is the smaller of I r I and I i I .

result= MAX* SQRT((MIN/MAX) 2 +1)

MTH-23

MTH$CxABS

CONDITION
VALUES
SIGNALED

SS$_ROPRAND Reserved operand. The MTH$CxABS routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$_FLOOVEMAT Floating-point overflow in Math Library when both r
and i are large.

EXAMPLES

D C+
c
c
c
c
c
c
c-

C+

This FORTRAN example forms the absolute value of an
F-f loating complex number using MTH$CABS and the
FORTRAN random number generator RAN.

Declare Z as a complex value and MTH$CABS as a REAL*4 value.
MTH$CABS will return the absolute value of Z: Z_NEW = MTH$CABS(Z).

COMPLEX Z
COMPLEX CMPLX
REAL*4 Z_NEW,MTH$CABS
INTEGER M
M = 1234567

C Generate a random complex number with the FORTRAN generic CMPLX.
c-

Z CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

c+

TYPE
TYPE
TYPE

*, ' The complex number z is' ,z
*, ' It has real part' ,REAL(Z),'and imaginary part' ,AIMAG(Z)

* ' ' '

C Compute the complex absolute value of Z.
c-

Z NEW= MTH$CABS(Z)
TYPE*, ' The complex absolute value of' ,z,' is' ,Z_NEW
END

This example uses an F-fl.oating complex number for complex-number.
The output of this FORTRAN example is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402

The complex absolute value of (0.8535407,0.2043402) is 0.8776597

MTH-24

c+
c
c
c
c
c
c
c
c
c-

c+

This FORTRAN example forms the absolute
value of a G-floating complex number using
MTH$CGABS and the FORTRAN random number
generator RAN.

Declare z as a complex value and MTH$CGABS as a
REAL*8 value. MTH$CGABS will return the absolute
value of Z: Z_NEW = MTH$CGABS(Z).

COMPLEX*16 Z
REAL*8 Z_NEW,MTH$CGABS

C Generate a random complex number with the FORTRAN
c generic CMPLX.
c-

c+

z = (12.34567890123,45.536376385345)
TYPE*, ' The complex number z is',z
TYPE *, ' '

C Compute the complex absolute value of Z.
c-

Z NEW= MTH$CGABS(Z)
TYPE *, ' The complex absolute value of' ,z,' is' ,Z_NEW
END

MTH$CxABS

This FORTRAN example uses a G-fioating complex number for complex
number. Because this example uses a G-fioating number, it must be
compiled as follows:

$ FORTRAN/G MTHEX.FOR

Notice the difference in the precision of the output generated:

The complex number z is (12.3456789012300,45.5363763853450)
The complex absolute value of (12.3456789012300,45.5363763853450) is

47.1802645376230

MTH-25

MTH$CCOS

MTH$CCOS Cosine of a Complex Number
(F-floating Value)

FORMAT

RETURNS

The Cosine of a Complex Number (F-floating Value) routine returns the cosine
of a complex number as an F-floating value.

MTH$CCOS complex-number

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

The complex cosine of the complex input number. MTH$CCOS returns an
F-floating complex number.

ARGUMENTS complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference
A complex number (r,i) where rand i are floating-point numbers. The
complex-number argument is the address of this complex number. For
MTH$CCOS, complex-number specifies an F-floating complex number.

DESCRIPTION The complex cosine is calculated as follows:

CONDITION
VALUES
SIGNALED

MTH-26

result= (COS(r) * COSH(i), -SIN(r) * SINH(i))

The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$CxCOS.

SS$_ROPRAND

MTH$_FLOOVEMAT

Reserved operand. The MTH$CCOS routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute
value of i is greater than about 88.029 for F-floating
values.

MTH$CCOS

EXAMPLE
C+
C This FORTRAN example forms the complex
C cosine of an F-floating complex number using
C MTH$CCOS and the FORTRAN random number
C generator RAN.
c
C Declare Z and MTH$CCOS as complex values.
C MTH$CCOS will return the cosine value of
C Z: Z_NEW = MTH$CCOS(Z)
c-

C+

COMPLEX Z,Z_NEW,MTH$CCOS
COMPLEX CMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
c-

Z CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

TYPE * ' The complex number z is' ,z ' TYPE * ' It has real part' ,REAL(Z),'and imaginary
' TYPE * ' ' '

c+
c Compute the complex cosine value of Z.
c-

Z NEW= MTH$CCOS(Z)

part' ,AIMAG (Z)

TYPE*, ' The complex cosine value of',z,' is' ,Z_NEW
END

This FORTRAN example demonstrates the use of MTH$CCOS, using the
MTH$CCOS entry point. The output of this program is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex cosine value of (0.8535407,0.2043402) is (0.6710899,-0.1550672)

MTH-27

MTH$CxCOS

MTH$CxCOS Cosine of a Complex Number

FORMAT

RETURNS

ARGUMENTS

The Cosine of a Complex Number routine returns the cosine of a complex
number.

MTH$CDCOS
MTH$CGCOS

complex-cosine ,complex-number
complex-cosine ,complex-number

Each of the above formats accepts as input one of the floating-point
complex types.

None.

complex-cosine
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
Complex cosine of the complex-number. The complex cosine routines
that have D-floating and G-floating complex input values write the
address of the complex cosine into the complex-cosine argument. For
MTH$CDCOS, the complex-cosine argument specifies a D-floating
complex number. For MTH$CGCOS, the complex-number argument
specifies a G-floating complex number.

complex-number
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference
A complex number (r,i) where r and i are floating-point numbers. The
complex-number argument is the address of this complex number. For
MTH$CDCOS, complex-number specifies a D-floating complex number.
For MTH$CGCOS, complex-number specifies a G-floating complex
number.

DESCRIPTION The complex cosine is calculated as follows:

result= (COS(r) * COSH(i), -SIN(r) * SINH(i))

MTH-28

CONDITION
VALUES
SIGNALED

EXAMPLE
C+

SS$_ROPRAND

MTH$_FLOOVEMAT

C This FORTRAN example forms the complex

MTH$CxCOS

Reserved operand. The MTH$CxCOS routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute
value of i is greater than about 88.029 for F-floating
and D-floating values or greater than 709.089 for
G-floating values.

C cosine of a D-f loating complex number using
C MTH$CDCOS and the FORTRAN random number
C generator RAN.
c
C Declare Z and MTH$CDCOS as complex values.
C MTH$CDCOS will return the cosine value of
C Z: Z NEW= MTH$CDCOS(Z)
c-

C+

COMPLEX*16 Z,Z_NEW,MTH$CDCOS
COMPLEX*16 DCMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic DCMPLX.
c-

Z DCMPLX(RAN(M),RAN(M))

C+
C z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

C+
c
c-

TYPE * ' The complex number z is' ,z ' TYPE * ' ' '

Compute the complex cosine value of z.

Z NEW= MTH$CDCOS(Z)
TYPE*, ' The complex cosine value of' ,z,' is' ,Z_NEW
END

MTH-29

MTH$CxCOS

This FORTRAN example program demonstrates the use of MTH$CxCOS,
using the MTH$CDCOS entry point. Notice the high precision of the
output generated:

The complex number z is (0.8535407185554504,0.2043401598930359)
The complex cosine value of (0.8535407185554504,0.2043401598930359) is

(0.6710899028500762,-0.1550672019621661)

MTH-30

MTH$CEXP

MTH$CEXP Complex Exponential (F-floating Value)

FORMAT

RETURNS

The Complex Exponential (F-floating Value) routine returns the complex
exponential of a complex ~umber as an F-floating value.

MTH$CEXP complex-number

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

Complex exponential of the complex input number. MTH$CEXP returns
an F-floating complex number.

ARGUMENTS complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference
Complex number whose complex expQ:Q.ential is to be returned. This
complex number has the form (r,i), wliere r is the real part and i is
the imaginary part. The complex~number argument is the address of
this complex number. For MTH$CEXP, complex-number specifies an
F-floating number.

DESCRIPTION The complex exponential is computed as follows:

CONDITION
VALUES
SIGNALED

complex - exponent= (EXP(r) * COS(i), EXP(r) * SIN(i))

The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$CxEXP.

SS$_ROPRAND

MTH$_FLOOVEMAT

Reserved operand. The MTH$CEXP routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL

Floating-point overflow in Math Library: the absolute
value of r is greater than about 88.029 for F-floating
values.

MTH-31

MTH$CEXP

EXAMPLE
C+
C This FORTRAN example forms the complex exponential
C of an F-floating complex number using MTH$CEXP
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$CEXP as complex values. MTH$CEXP
C will return the exponential value of Z: Z_NEW = MTH$CEXP(Z)
c-

C+

COMPLEX Z,Z_NEW,MTH$CEXP
COMPLEX CMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
c-

Z CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r"
C and imaginary part "i".
c-

C+

TYPE *, ' The complex number z is' ,z
TYPE*, ' It has real part' ,REAL(Z),'and imaginary part' ,AIMAG(Z)
TYPE *,

C Compute the complex exponential value of Z.
c-

MTH-32

Z NEW= MTH$CEXP(Z)
TYPE*, ' The complex exponential value of',z,' is' ,Z_NEW
END

This FORTRAN program demonstrates the use of MTH$CEXP as a
function call. The output generated by this example is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex exponential value of (0.8535407,0.2043402) is

(2.299097,0.4764476)

MTH$CxEXP

MTH$CxEXP Complex Exponential

FORMAT

RETURNS

ARGUMENTS

The Complex Exponential routine returns the complex exponential of a
complex number.

MTH$CDEXP
MTH$CGEXP

complex-exponent, complex-number
complex-exponent ,complex-number

Each of the above formats accepts as input one of the floating-point
complex types.

None.

complex-exponent
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
Complex exponential of complex-number. The complex exponential
routines that have D-fl.oating complex and G-floating complex input values
write the complex-exponent into this argument. For MTH$CDEXP,
complex-exponent argument specifies a D-floating complex number. For
MTH$CGEXP, complex-exponent specifies a G-floating complex number.

complex-number
VMS usage: complex_nurilber
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference
Complex number whose complex exponential is to be returned. This
complex number has the form (r,i), where r is the real part and i is
the imaginary part. The complex-number argument is the address of
this complex number. For MTH$CDEXP, complex-number specifies
a D-fioating number. For MTH$CGEXP, complex-number specifies a
G-floating number.

DESCRIPTION The complex exponential is computed as follows:

complex - exponent= (EXP(r) * COS(i), EXP(r) * SIN(i))

MTH-33

MTH$CxEXP

CONDITION
VALUES
SIGNALED

EXAMPLE
C+

SS$_ROPRAND

MTH$_FLOOVEMAT

Reserved operand. The MTH$CxEXP routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute
value of r is greater than about 88.029 for 0-floating
values or greater than about 709.089 for G-floating
values.

C This FORTRAN example forms the complex exponential
C of a G-floating complex number using MTH$CGEXP
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$CGEXP as complex values.
C MTH$CGEXP will return the exponential value
C of Z: CALL MTH$CGEXP(Z_NEW,Z)
c-

C+

COMPLEX*16 Z,Z_NEW
COMPLEX*l6 MTH$GCMPLX
REAL*8 R,I
INTEGER M
M = 1234567

C Generate a random complex number with the FORTRAN
C- generic CMPLX.
c-

c+

R RAN(M)
I RAN(M)
Z MTH$GCMPLX(R,I)
TYPE *, ' The complex number z is' ,z
TYPE *I ' I

C Compute the complex exponential value of Z.
c-

CALL MTH$CGEXP(Z NEW,Z)
TYPE*, I The complex exponential value of' ,z,' is' ,Z_NEW
END

This FORTRAN example demonstrates how to access MTH$CGEXP as a
procedure call. Because G-floating numbers are used, this program must
be compiled using the command "FORTRAN/G :filename".

Notice the high precision of the output generated:

The complex number z is (0.853540718555450,0.204340159893036)
The complex exponential value of (0.853540718555450,0.204340159893036) is

(2.29909677719458,0.476447678044977)

MTH-34

MTH$CLOG

MTH$CLOG Complex Natural Logarithm (F-floating
Value)

FORMAT

RETURNS

The Complex Natural Logarithm (F-floating Value) routine returns the complex
natural logarithm of a complex number as an F-floating value.

MTH$CLOG complex-number

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

The complex natural logarithm of a complex number. MTH$CLOG returns
an F-floating complex number.

ARGUMENTS complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference
Complex number whose complex natural logarithm is to be returned.
This complex number has the form (r,i), where r is the real part and i is
the imaginary part. The complex-number argument is the address of
this complex number. For MTH$CLOG, complex-number specifies an
F-floating number.

DESCRIPTION The complex natural logarithm is computed as follows:

CONDITION
VALUE
SIGNALED

CLOG(x) = (LOG(CABS(x)), AT AN2(i, r))

The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$CxLOG.

SS$_ROPRAND Reserved operand. The MTH$CLOG routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH-35

MTH$CLOG

EXAMPLE

MTH-36

Examples of using MTH$CLOG from VAX MACRO (using both the CALLS
and the CALLG instructions) appear in the introductory section of this
manual.

MTH$CxLOG

MTH$CxLOG Complex Natural Logarithm

FORMAT

RETURNS

ARGUMENTS

The Complex Natural Logarithm routine returns the complex natural logarithm
of a complex number.

MTH$CDLOG
MTH$CGLOG

complex-natural-log ,complex-number
complex-natural-log ,complex-number

Each of the above formats accepts as input one of the floating-point
complex types.

None.

complex-natural-log
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
Natural logarithm of the complex number specified by complex-number.
The complex natural logarithm routines that have D-floating complex
and G-floating complex input values write the address of the complex
natural logarithm into complex-natural-log. For MTH$CDLOG, the
complex-natural-log argument specifies a D-floating complex number.
For MTH$CGLOG, the complex-natural-log argument specifies a
G-floating complex number.

complex-number
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference
Complex number whose complex natural logarithm is to be returned.
This complex number has the form (r,i), where r is the real part and i
is the imaginary part. The complex-number argument is the address
of this complex number. For MTH$CDLOG, complex-number specifies
a D-floating number. For MTH$CGLOG, complex-number specifies a
G-floating number.

DESCRIPTION The complex natural logarithm is computed as follows:

CLOG(x) = (LOG(CABS(x)), ATAN2(i, r))

MTH-37

MTH$CxLOG

CONDITION
VALUE
SIGNALED

EXAMPLE
C+

MTH$_1NVARGMAT

SS$_FLTOVF _F

SS$_ROPRAND

Invalid argument: r = i = o. LIB$SIGNAL copies
the floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R1. The result
is the floating-point reserved operand unless you have
written a condition handler to change CHF$L_MCH_
SAVRO/R1.

Floating point overflow can occur. This condition value
is signaled from MTH$CxABS when MTH$CxABS
overflows.

Reserved operand. The MTH$CxLOG routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

c This FORTRAN example forms the complex logarithm
C of a D-floating complex number by using MTH$CDLOG
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$CDLOG as complex values. Then MTH$CDLOG
c will return the logarithm of Z: CALL MTH$CDLOG(Z_NEW,Z).
c
C Declare Z,Z_LOG, and MTH$DCMPLX as complex values,
C and R and I as real values. MTH$DCMPLX takes two real
C arguments and returns one complex number.
c
C Given a complex number z, MTH$CDLOG(Z) returns the
C complex natural logarithm of Z.
c-

C+

COMPLEX*16 Z,Z_NEW,MTH$DCMPLX
REAL*8 R,I
R 3.1425637846746565
I 7.43678469887
Z MTH$DCMPLX(R,I)

C z is a complex number (r,i) with real part "r" and imaginary
C part "i".
c-

MTH-38

TYPE
TYPE

*, ' The complex number z is' ,z
* , ' ,

CALL MTH$CDLOG(Z_NEW,Z)
TYPE*,' The complex logarithm of',z,' is',Z_NEW
END

MTH$CxLOG

This FORTRAN example program uses MTH$CDLOG by calling it as a
procedure. The output generated by this program is as follows:

The complex number z is (3.142563784674657,7.436784698870000)
The complex logarithm of (3.142563784674657,7.436784698870000) is

(2.088587642177504,1.170985519274141)

MTH-39

MTH$CMPLX

MTH$CMPLX Complex Number Made from
F-floating-Point

FORMAT

RETURNS

ARGUMENTS

The Complex Number Made from F-floating-Point routine returns a complex
number from two floating-point input values.

MTH$CMPLX real-part ,imaginary-part

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

A complex number. MTH$CMPLX returns an F-floating complex number.

real-part
VMS usage: floating_point
type: F _floating
access: read only
mechanism: by reference
Real part of a complex number. The real-part argument is the address
of a floating-point number that contains this real part, r, of (r,i). For
MTH$CMPLX, real-part specifies an F-fioating number.

imaginary-part
VMS usage: floating_point
type: F _floating
access: read only
mechanism: by reference
Imaginary part of a complex number. The imag-parg argument is the
address of a floating-point number that contains this imaginary part, i, of
(r,i). For MTH$CMPLX, imaginary-part specifies an F-fioating number.

DESCRIPTION The MTH$CMPLX routines return a complex number from two F-floating
input values. The routine descriptions for the D- and G-floating point
versions of this routine are listed alphabetically under MTH$xCMPLX.

CONDITION
VALUE
SIGNALED

MTH-40

SS$_ROPRAND Reserved operand. The MTH$CMPLX routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$CMPLX

EXAMPLE
C+
C This FORTRAN example forms two F-f loating
C point complex numbers using MTH$CMPLX
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$CMPLX as complex values, and R
C and I as real values. MTH$CMPLX takes two real
C F-floating point values and returns one COMPLEX*8 number.
c
C Note, since CMPLX is a generic name in FORTRAN, it would be
c sufficient to use CMPLX.
C CMPLX must be declare to be of type COMPLEX*8.
c
C Z = CMPLX(R,I)
c-

C+

COMPLEX Z,MTH$CMPLX,CMPLX
REAL*4 R,I
INTEGER M
M 1234567
R RAN(M)
I RAN (M)
Z MTH$CMPLX(R,I)

C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

TYPE *, ' The two input values are:' ,R,I
TYPE*, ' The complex number z is',z
z = CMPLX(RAN(M),RAN(M))
TYPE *,
TYPE *, ' Using the FORTRAN generic CMPLX with random Rand I:'
TYPE*, ' The complex number z is' ,z
END

This FORTRAN example program demonstrates the use of MTH$CMPLX.
The output generated by this program is as follows:

The two input values are: 0.8535407 0.2043402
The complex number z is (0.8535407,0.2043402)
Using the FORTRAN generic CMPLX with random R and I:
The complex number z is (0.5722565,0.1857677)

MTH-41

MTH$xCMPLX

MTH$xCMPLX Complex Number Made from D- or
G-floating-Point

FORMAT

RETURNS

ARGUMENTS

MTH-42

The Complex Number Made from 0- or G-floating-Point routine returns a
complex number from two 0- or G-floating input values.

MTH$DCMPLX
MTH$GCMPLX

complx ,real-part ,imaginary-part
complx ,real-part ,imaginary-part

Each of the above formats accepts as input one of floating-point complex
types.

None.

comp Ix
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
The floating-point complex value of a complex number. The complex
exponential functions that have D-floating complex and G-floating complex
input values write the address of this floating-point complex value into
complx. For MTH$DCMPLX, complx specifies a D-floating complex
number. For MTH$GCMPLX, complx specifies a G-floating complex
number. For MTH$CMPLX, complx is not used.

real-part
VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference
Real part of a complex number. The real-part argument is the
address of a floating-point number that contains this real part, r, of
(r,i). For MTH$DQMPLX, real-part specifies a D-floating number. For
MTH$GCMPLX, r~al-part specifies a G-floating number.

imaginary-part
VMS usage: floating_point
type: D _floating, G_floatlng
access: read only
mechanism: by reference
Imaginary part of a complex number. The imag-parg argument is the
address of a floating-point number. that contains this imaginary part, i, of
(r,i). For MTH$DCMPLX, imaginary-part specifies a D-floating number.
For MTH$GCMPLX, imaginary-part specifies a G-floating number.

MTH$xCMPLX

CONDITION
VALUE
SIGNALED

SS$_ROPRAND Reserved operand. The MTH$xCMPLX routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

EXAMPLE
C+
C This FORTRAN example forms two D-f loating
C point complex numbers using MTH$CMPLX
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$DCMPLX as complex values, and R
C and I as real values. MTH$DCMPLX takes two real
C D-f loating point values and returns one
C COMPLEX*16 number.
c
c-

C+

COMPLEX*16 Z
REAL*8 R,I
INTEGER M
M = 1234567
R = RAN(M)
I = RAN(M)
CALL MTH$DCMPLX(Z,R,I)

C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
c-

TYPE*, ' The two input values are:' ,R,I
TYPE*, ' The complex number z is',Z
END

This FORTRAN example demonstrates how to make a procedure call
to MTH$DCMPLX. Notice the difference in the precision of the output
generated.

The two input values are: 0.8535407185554504 0.2043401598930359
The complex number z is (0.8535407185554504,0.2043401598930359)

MTH-43

MTH$CONJG

MTH$CONJG Conjugate of a Complex Number
{F-floating Value)

FORMAT

RETURNS

The Conjugate of a Complex Number (F-floating Value) routine returns the
complex conjugate (r,-i} of a complex number (r,i) as an F-floating value.

MTH$CONJG complex-number

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

Complex conjugate of a complex number. MTH$CONJG returns an
F-floating complex number.

ARGUMENTS complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference
A complex number (r,i), where rand i are floating-point numbers. The
complex-number argument is the address of this floating-point complex
number. For MTH$CONJG, complex-number specifies an F-floating
number.

DESCRIPTION . The MTH$CONJG routine return the complex conjugate (r,-i) of a complex
number (r,i) as an F-floating value. The routine descriptions for the

CONDITION
VALUE
SIGNALED

MTH-44

D- and G-floating point versions of this routine are listed alphabetically
under MTH$xCONJG.

SS$_ROPRAND Reserved operand. The MTH$CONJG routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$xCONJG

MTH$xCONJG Conjugate of a Complex Number

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUE
SIGNALED

The Conjugate of a Complex Number routine returns the complex conjugate
(r,-i) of a complex number (r,i).

MTH$DCONJG
MTH$GCONJG

complex-conjugate ,complex-number
complex-conjugate ,complex-number

Each of the above formats accepts as input one of the floating-point
complex types.

None.

complex-conjugate
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
The complex conjugate (r,-i) of the complex number specified by complex
number. MTH$DCONJG and MTH$GCONJG write the address of
this complex conjugate into complex-conjugate. For MTH$DCONJG,
the complex-conjugate argument specifies the address of a D-floating
complex number. For MTH$GCONJG, the complex-conjugate argument
specifies the address of a G-floating complex number.

complex-number
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference
A complex number (r,i), where r and i are floating-point numbers. The
complex-number argument is the address of this floating-point complex
number. For MTH$DCONJG, complex-number specifies a D-floating
number. For MTH$GCONJG, complex-number specifies a G-floating
number.

SS$_ROPRAND Reserved operand. The MTH$xCONJG routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH-45

MTH$xCONJG

EXAMPLE
C+
C This FORTRAN example forms the complex conjugate
C of a G-floating complex number using MTH$GCONJG
C and the FORTRAN random number generator RAN.
c
C Declare Z, Z NEW, and MTH$GCONJG as a complex values.
C MTH$GCONJG will return the complex conjugate
C value of Z: Z_NEW = MTH$GCONJG(Z).
c-

c+

COMPLEX*16 Z,Z NEW,MTH$GCONJG
COMPLEX*16 MTH$GCMPLX
REAL*8 R,I,MTH$GREAL,MTH$GIMAG
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
c-

C+

R RAN(M)
I RAN(M)
Z MTH$GCMPLX(R,I)
TYPE *, ' The complex number z is' ,z
TYPE 1,MTH$GREAL(Z),MTH$GIMAG(Z)

1 FORMAT(' with real part ',F20.16,' and imaginary part',F20.16)
TYPE *, ' '

C Compute the complex absolute value of Z.
c-

MTH-46

Z_NEW = MTH$GCONJG(Z)
TYPE*, ' The complex conjugate value of',z,' is',Z_NEW
TYPE 1,MTH$GREAL(Z_NEW),MTH$GIMAG(Z_NEW)
END

This FORTRAN example demonstrates how to make a function call to
MTH$GCONJG. Because G-floating numbers are used, the examples must
be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.853540718555450,0.204340159893036)
with real part 0.8535407185554504
and imaginary part 0.2043401598930359

The complex conjugate value of
(0.853540718555450,0.204340159893036) is
(0.853540718555450,-0.204340159893036)
with real part 0.8535407185554504
and imaginary part -0.2043401598930359

MTH$xCOS

MTH$xCOS Cosine of Angle Expressed in Radians

FORMAT

jsb entries

RETURNS

The Cosine of Angle Expressed in Radians routine returns the cosine of a
given angle (in radians).

MTH$COS angle-in-radians
MTH$DCOS angle-in-radians
MTH$GCOS angle-in-radians
Each of the above formats accepts as input one of the floating-point types.

MTH$COS R4
MTH$DCOS R7
MTH$GCOS R7
Each of the above JSB entries accepts as input one of the floating-point
types. ·

VMS usage: floating_point
type: F _floating, D _floating, G_floating
access: write only
mechanism: by value

Cosine of the angle. MTH$COS returns an F-floating number.
MTH$DCOS returns a D-floating number. MTH$GCOS returns a
G-floating number.

ARGUMENTS angle-in-radians
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The angle in radians. The angle-in-radians argument is the address of a
floating-point number. For MTH$COS, angle-in-radians is an F-floating
number. For MTH$DCOS, angle-in-radians specifies a
D-floating number. For MTH$GCOS, angle-in-radians specifies a
G-floating number.

DESCRIPTION See the MTH$xSINCOS routine for the algorithm used to compute the
cosine.

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HCOS.

MTH-47

MTH$xCOS

CONDITION
VALUE
SIGNALED

MTH-48

SS$_ROPRAND Reserved operand. The MTH$xCOS procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$xCOSD

MTH$xCOSD Cosine of Angle Expressed in
Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

The Cosine of Angle Expressed in Degrees routine returns the cosine of a
given angle (in degrees).

MTH$COSD angle-in-degrees
MTH$DCOSD angle-in-degrees
MTH$GCOSD angle-in-degrees
Each of the above formats accepts as input one of the floating-point types.

MTH$COSD R4
MTH$DCOSD R7
MTH$GCOSD_R7
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Cosine of the angle. MTH$COSD returns an F-floating number.
MTH$DCOSD returns a D-floating number. MTH$GCOSD returns a
G-floating number.

angle-in-degrees
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of
a floating-point number. For MTH$COSD, angle-in-degrees specifies
an F-floating number. For MTH$DCOSD, angle-in-degrees specifies
a D-floating number. For MTH$GCOSD, angle-in-degrees specifies a
G-floating number.

See the MTH$SINCOSD routine for the algorithm used to compute the
cosine.

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HCOSD.

MTH-49

MTH$xCOSD

CONDITION
VALUE
SIGNALED

MTH-50

SS$_ROPRAND Reserved operand. The MTH$xCOSD procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$xCOSH

MTH$xCOSH Hyperbolic Cosine

FORMAT

RETURNS

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input value.

MTH$COSH floating-point-input-value
MTH$DCOSH floating-point-input-value
MTH$GCOSH floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The hyperbolic cosine of the input value floating-point-input-value.
MTH$COSH returns an F-floating number. MTH$DCOSH returns a
D-floating number. MTH$GCOSH returns a G-floating number.

ARGUMENTS floating-point-input-value
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of this input value. For MTH$COSH, floating-point-input
value specifies an F-floating number. For MTH$DCOSH, floating
point-input-value specifies a D-floating number. For MTH$GCOSH,
floating-point-input-value specifies a G-floating number.

DESCRIPTION Computation of the hyperbolic cosine depends on the magnitude of the
input argument. The range of the function is partitioned using four data
type-dependent constants: a(z), b(z), and c(z). The subscript z indicates
the data type. The constants depend on the number of exponent bits (e)
and the number of fraction bits({) associated with the data type (z).

The values of e and fare:

z e f

F 8 24

D 8 56

G 11 53

MTH-51

MTH$xCOSH

CONDITION
VALUES
SIGNALED

MTH-52

The values of the constants in terms of e and fare:

Variable Value

2(-J/2) a(z)

b(z)

c(z)

CEILING[(! + 1)/2 * ln(2)]

(2e-1
) * ln(2)

Based on the above definitions, zCOSH(X) is computed as follows:

Value of X

IX I < a(z)

a(z) ::; I X I < .25

.25 ::; I x I < b(z)

b(z) :::; I X I < c(z)

c(z) ::; Ix I

Value Returned

Computed using a power series expansion in IXl2

(zEXP(IXJ) + 1/ zEXP(JXJ))/2

zEXP(IXl)/2
Overflow occurs

This routine description for the H-floating point value is listed
alphabetically under MTH$HCOSH.

SS$_ROPRAND

MTH$_FLOOVEMAT

Reserved operand. The MTH$xCOSH procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute
value of floating-point-input-value is greater than
about yyy; Ll8$SIGNAL copies the reserved operand
to the signal mechanism vector. The result is the
reserved operand -0.0 unless a condition handler
changes the signal mechanism vector.

The values of yyy are:

MTH$COSH-88. 722
MTH$DCOSH-88. 722
MTH$GCOSH-709. 782

MTH$CSIN

MTH$CSIN Sine of a Complex Number (F-floating
Value)

FORMAT

RETURNS

The Sine of a Complex Number (F-floating Value) routine returns the sine of a
complex number (r,i) as an F-floating value.

MTH$CSIN complex-number

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

Complex sine of the complex number. MTH$CSIN returns an F-floating
complex number.

ARGUMENTS complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference
A complex number (r,i), where r and i are floating-point numbers. The
complex-number argument is the address of this complex number. For
MTH$CSIN, complex-number specifies an F-floating complex number.

DESCRIPTION The complex sine is computed as follow&:

CONDITION
VALUES
SIGNALED

complex - sine= (SIN(r) * COSH(i), COS(r) * SINH(i))

The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$CxSIN.

SS$_ROPRAND

MTH$_FLOOVEMAT

Reserved operand. The MTH$CSIN procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute
value of i is greater than about 88.029 for F-floating
values.

MTH-53

MTH$CxSIN

MTH$CxSIN Sine of a Complex Number

FORMAT

RETURNS

ARGUMENTS

The Sine of a Complex Number routine returns the sine of a complex number
{r,i).

MTH$CDSIN
MTH$CGSIN

complex-sine ,complex-number
complex-sine ,complex-number

Each of the above formats accepts as input one of the floating-point
complex types.

None.

complex-sine
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
Complex sine of the complex number. The complex sine routines with
D-floating complex and G-floating complex input values write the complex
sine into this complex-sine argument. For MTH$CDSIN, complex-sine
specifies a D-floating complex number. For MTH$CGSIN, complex-sine
specifies a G-floating complex number.

complex-number
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference
A complex number (r,i), where r and i are floating-point numbers. The
complex-number argument is the address of this complex number.
For MTH$CDSIN, complex-number specifies a D-floating complex
number. For MTH$CGSIN, complex-number specifies a G-floating
complex number.

DESCRIPTION The complex sine is computed as follows:

complex - sine= (SIN(r) * GOSH(i), GOS(r) * SINH(i))

MTH-54

CONDITION
VALUES
SIGNALED

EXAMPLE
c+

SS$_ROPRAND

MTH$_FLOOVEMAT

C This FORTRAN example forms the complex

MTH$CxSIN

Reserved operand. The MTH$CxSIN procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute
value of i is greater than about 88.029 for D-floating
values or greater than about 709.089 for G-floating
values.

C sine of a G-f loating complex number using
C MTH$CGSIN and the FORTRAN random number
C generator RAN.
c
C Declare Z and MTH$CGSIN as complex values.
C MTH$CGSIN will return the sine value
C of Z: CALL MTH$CGSIN(Z_NEW,Z)
c-

c+

COMPLEX*16 Z,Z_NEW
COMPLEX*16 DCMPLX
REAL*8 R,I
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic DCMPLX.
c-

c+

R RAN(M)
I RAN (M)
Z DCMPLX (R, I)

C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

TYPE * ' The complex number z is' ,z ' TYPE * ' ' '
c+
c Compute the complex sine value of z.
c-

CALL MTH$CGSIN(Z_NEW,Z)
TYPE * ' The complex sine value of' ,z,' is' ,Z_NEW

' END

MTH-55

MTH$CxSIN

This FORTRAN example demonstrates a procedure call to MTH$CGSIN.
Because this program uses G-floating numbers, it must be compiled with
the statement "FORTRAN/G :filename".

The output generated by this program is as follows:

The complex number z is (0.853540718555450,0.204340159893036)
The complex sine value of (0.853540718555450,0.204340159893036) is

(0.769400835484975,0.135253340912255)

MTH-56

MTH$CSQRT

MTH$CSQRT Complex Square Root (F-floating
Value)

FORMAT

RETURNS

The Complex Square Root (F-floating Value) routine returns the complex
square root of a complex number (r,i).

MTH$CSQRT complex-number

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

The complex square root of complex-number. MTH$CSQRT returns an
F-floating number.

ARGUMENTS complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference
Complex number (r,i). The complex-number argument contains the
address of this complex number. For MTH$CSQRT, complex-number
specifies an F-floating number.

DESCRIPTION The complex square root is computed as follows.

First, calculate ROOT and Q using the following equations:

ROOT= SQRT((ABS(r) + (OABS(r,i))/2)

Q = i/(2 *ROOT)

Then, the complex result is given as follows:

r

~o

<0

<0

Any

~o

<0

CSQRT((r,i))

(ROOT,Q)

(Q,ROOT)

(-Q,-ROOT)

The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$CxSQRT.

MTH-57

MTH$CSQRT

CONDITION
VALUE
SIGNALED

MTH-58

SS$_FLTOVF _F

SS$_ROPRAND

Floating point overflow can occur.

Reserved operand. The MTH$CSQRT procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$CxSQRT

MTH$CxSQRT Complex Square Root

FORMAT

RETURNS

ARGUMENTS

The Complex Square Root routine returns the complex square root of a
complex number (r,i).

MTH$CDSQRT
MTH$CGSQRT

complex-square-root ,complex-number
complex-square-root
,complex-number

Each of the above formats accepts as input one of the floating-point
complex types.

None.

complex-square-root
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
Complex square root of the complex number specified by complex
number. The complex square root routines that have D-floating complex
and G-floating complex input values write the complex square root into
complex-square-root. For MTH$CDSQRT, complex-square-root
specifies a D-floating complex number. For MTH$CGSQRT, complex
square-root specifies a G-floating complex number.

complex-number
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference
Complex number (r,i). The complex-number argument contains the
address of this complex number. For MTH$CDSQRT, complex-number
specifies a D-fioating number. For MTH$CGSQRT, complex-number
specifies a G-floating number.

DESCRIPTION The complex square root is computed as follows.

First, calculate ROOT and Q using the following equations:

ROOT= SQRT((ABS(r) + (CABS(r,i))/2)

Q = i/(2 *ROOT)

MTH-59

MTH$CxSQRT

Then, the complex result is given as follows:

CONDITION
VALUE
SIGNALED

EXAMPLE

c+

r

SS$_FLTOVF _F

SS$_ROPRAND

any

~o

<0

CSQRT((r,i))

(ROOT,Q)

(Q,ROOT)

(-Q,-ROOT)

Floating point overflow can occur.

Reserved operand. The MTH$CxSQRT procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

C This FORTRAN example forms the complex square
C root of a D-f loating complex number using
C MTH$CDSQRT and the FORTRAN random number
C generator RAN.
c
C Declare Z and Z_NEW as complex values. MTH$CDSQRT
C will return the complex square root of
C Z: CALL MTH$CDSQRT(Z_NEW,Z).
c-

c+

COMPLEX*16 Z,Z_NEW
COMPLEX*16 DCMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
c-

Z DCMPLX(RAN(M),RAN(M))

c+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
c-

c+

TYPE
TYPE

*, ' The complex number z is' ,z
* I I I

C Compute the complex complex square root of Z.
c-

MTH-60

CALL MTH$CDSQRT(Z_NEW,Z)
TYPE *, ' The complex square root of' ,z,' is' ,Z_NEW
.END

MTH$CxSQRT

This FORTRAN example program demonstrates a procedure call to
MTH$CDSQRT. The output generated by this program is as follows:

The complex number z is (0.8535407185554504,0.2043401598930359)
The complex square root of (0.8535407185554504,0.2043401598930359) is

(0.9303763973040062,0.1098158554350485)

MTH-61

MTH$CVT_x_x

MTH$CVT _x_x Convert One Double-Precision Value

FORMAT

RETURNS

The Convert One Double-Precision Value routines convert one double
precision value to the destination data type and return the result as a
function value. MTH$CVT _D_G converts a D-floating value to G-floating
and MTH$CVT_G_D converts a G-floating value to a D-floating value.

MTH$CVT_D_G
MTH$CVT_G_D

floating-point-input-val
floating-point-input-val

VMS usage: floating_point
type: G_floating, D_floating
access: write only
mechanism: by value

The converted value. MTH$CVT_D_G returns a G-floating value.
MTH$CVT_G_D returns a D-floating value.

ARGUMENT floating-point-input-val
VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference
The input value to be converted. The floating-point-input-val argument
is the address of this input value. For MTH$CVT_D_G, the floating
point-input-val argument specifies a D-floating number. For MTH$CVT_
G_D, the floating-point-input-val argument specifies a G-floating
number.

DESCRIPTION These procedures are designed to function as hardware conversion
instructions. They fault on reserved operands. If floating-point overflow is
detected, an error is signaled. If floating-point underflow is detected and
floating-point underflow is enabled, an error is signaled.

CONDITION
VALUES
SIGNALED

MTH-62

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

Reserved operand. The MTH$CVT _x_x procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library.

Floating-point underflow in Math Library.

MTH$CVT_xA_xA

MTH$CVT _xA_xA
Convert an Array of Double-Precision Values

FORMAT

RETURNS

ARGUMENTS

The Convert an Array of Double-Precision Values routines convert a
contiguous array of double-precision values to the destination data type
and return the results as an array. MTH$CVT_DA_GA converts D-floating
values to G-floating and MTH$CVT _GA_DA converts G-floating values to
D-floating.

MTH$CVT _DA_ GA floating-point-input-array
, floating-point-dest-arra y
[,array-size]

MTH$CVT _ GA_DA floating-point-input-array
, floating-point-dest-array
[,array-size]

MTH$CVT_DA_GA and MTH$CVT_GA_DA return the address of the
output array to the floating-point-dest-array argument.

floating-point-input-array
VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference, array reference
Input array of values to be converted. The floating-point-input-array
argument is the address of an array of floating-point numbers. For
MTH$CVT_DA_GA, floating-point-input-array specifies an array of
D-floating numbers. For MTH$CVT_GA_DA, floating-point-input-array
specifies an array of a G-floating numbers.

floating-point-dest-array
VMS usage: floating_point
type: G_floating, D_floating
access: write only
mechanism: by reference, array reference
Output array of converted values. The floating-point-dest-array
argument is the address of an array of floating-point numbers. For
MTH$CVT_DA_GA, floating-point-dest-array specifies an array of
G-floating numbers. For MTH$CVT_GA_DA, floating-point-dest-array
specifies an array of D-floating numbers.

MTH-63

MTH$CVT _xA_xA

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-64

array-size
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference
Number of array elements to be converted. The default value is 1. The
array-size argument is the address of a longword containing this number
of elements.

These procedures are designed to function as hardware conversion
instructions. They fault on reserved operands. If floating-point overflow is
detected, an error is signaled. If floating-point underflow is detected and
floating-point underflow is enabled, an error is signaled.

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

Reserved operand. The MTH$CVT_xA_xA procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library.

Floating-point underflow in Math Library.

MTH$xEXP

MTH$xEXP Exponential

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Exponential routine returns the exponential of the input value.

MTH$EXP floating-point-input-value
MTH$DEXP floating-point-input-value
MTH$GEXP floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

MTH$EXP R4
MTH$DEXP R6
MTH$GEXP _R6
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The exponential of :floating-point-input-value. MTH$EXP returns an
F-floating number. MTH$DEXP returns a D-floating number. MTH$GEXP
returns a G-floating number.

floating-point-input-value
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The :floating-point-input-value argument is the
address of a floating-point number. For MTH$EXP, floating-point
input-value specifies an F-floating number. For MTH$DEXP, floating
point-input-value specifies a D-floating number. For MTH$GEXP,
floating-point-input-value specifies a G-floating number.

MTH-65

MTH$xEXP

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-66

The exponential of xis computed as:

Value of x Value Returned

X > c(z) Overflow occurs

x~ - c(z) 0

IXI < 2-(/+1) 1

Otherwise 2¥ * 2U * 2W

where: Y = INTEGER(x * ln2(E)) V = FRAC(x * ln2(E)) * 16
U = INTEGER(V)/16 W = FRAC(V)/16 2W =polynomial approximation
of degree 4,8, or 8 for z = F, D, or G.

See also the section on the hyperbolic cosine for definitions off and c(z).

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HEXP.

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

Reserved operand. The MTH$xEXP routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reser.ved for future use by DIGITAL.

Floating-point overflow in Math Library: floating
point-input-value is greater than yyy; LIB$SIGNAL
copies the reserved operand to the signal mechanism
vector. The result is the reserved operand -0.0 unless
a condition handler changes the signal mechanism
vector.

The values of yyy are approximately:

MTH$EXP-88.029
MTH$DEXP-88.029
MTH$GEXP-709.089

Floating-point underflow in Math Library: floating
point-input-value is less than or equal to yyy and the
caller (CALL or JSB) has set hardware floating-point
underflow enable. The result is set to 0.0. If the caller
has not enabled floating-point underflow (the default),
a result of 0.0 is returned but no error is signaled.

The values of yyy are approximately:

MTH$EXP- - 88. 722
MTH$DEXP- - 88.722
MTH$GEXP- - 709.774

EXAMPLE
IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING POINT.
*
*
*
*

Calls MTH$EXP using a Floating Point data type.
Calls MTH$DEXP using a Double Floating Point data type.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT PT COMP-1.
01 ANSWER F COMP-1.
01 DOUBLE PT COMP-2.
01 ANSWER D COMP-2.
PROCEDURE DIVISION.
PO.

MOVE 12.34 TO FLOAT PT.
MOVE 3.456 TO DOUBLE PT.

CALL 11 MTH$EXP 11 USING BY REFERENCE FLOAT PT GIVING ANSWER F.
DISPLAY 11 MTH$EXP of 11

, FLOAT_PT CONVERSION, " is 11
,

ANSWER F CONVERSION.

CALL 11 MTH$DEXP 11 USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
DISPLAY II MTH$DEXP of ", DOUBLE PT CONVERSION, II is 11

,

ANSWER D CONVERSION .
STOP RUN.

MTH$xEXP

This sample program demonstrates calls to MTH$EXP and MTH$DEXP
from COBOL.

The output generated by this program is as follows:

MTH$EXP of 1.234000E+Ol is 2.286620E+05
MTH$DEXP of 3.456000000000000E+OO is
3.168996280537917E+Ol

MTH-67

MTH$HACOS

MTH$HACOS Arc Cosine of Angle Expressed in
Radians {H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

MTH-68

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians
(H-floating Value) routine returns that angle (in radians) in H-floating-point
precision.

MTH$HACOS h-radians ,cosine

MTH$HACOS_R8

None.

h-radians
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in radians) whose cosine is specified by cosine. The h-radians
argument is the address of an H-floating number that is this angle.
MTH$HACOS writes the address of the angle into h-radians.

cosine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The cosine of the angle whose value (in radians) is to be returned. The
cosine argument is the address of a floating-point number that is this
cosine. The absolute value of cosine must be less than or equal to 1. For
MTH$HACOS, cosine specifies an H-floating number.

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH$HACOS

The angle in radians whose cosine is Xis computed as:

Value of
Cosine

0

1

-1

o <X < 1

-1<x<0
1 < IXI

SS$_ROPRAND

Value Returned

7r/2

0

zAT AN(zSQRT(l - X 2
)/ X), where zATAN and zSQRT are the

Math Library arc tangent and square root routines, respectively, of
the appropriate data type

zAT AN(zSQRT(l - X2
)/ X) + 7r

The error MTH$_1NVARGMAT is signaled

Reserved operand. The MTH$xACOS routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of one and
a biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$_1NVARGMAT Invalid argument. The absolute value of cosine is
greater than 1. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument vector
CHF$L_MCH_SAVRO/R1. The result is the floating
point reserved operand unless you have written a
condition handler to change CHF$L_MCH_SAVRO/R1.

MTH-69

MTH$HACOSD

MTH$HACOSD Arc Cosine of Angle Expressed in
Degrees (H-Floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

MTH-70

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees
(H-Floating Value) routine returns that angle (in degrees) as an H-floating
value.

MTH$HACOSD h-degrees ,cosine

MTH$HACOSD _R8

None.

h-degrees
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in degrees) whose cosine is specified by cosine. The h-degrees
argument is the address of an H-floating number that is this angle.
MTH$HACOSD writes the address of the angle into h-degrees.

cosine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Cosine of the angle whose value (in degrees) is to be returned. The
cosine argument is the address of a floating-point number that is this
cosine. The absolute value of cosine must be less than or equal to 1. For
MTH$HACOSD, cosine specifies an H-floating number.

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH$HACOSD

The angle in degrees whose cosine is Xis computed as:

Value of
Cosine

0

1

-1

0<X<1

-1<x<0

1 < IXI

SS$_ROPRAND

Angle Returned

90

0

180

zATAND(zSQRT(l -X2)/X), where zATAND and zSQRT are the
Math Library arc tangent and square root routines, respectively, of
the appropriate data type

zATAND(zSQRT(l - X2)/X) + 180

The error MTH$_1NVARGMAT is signaled

Reserved operand. The MTH$xACOSD routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of one and
a biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$_1NVARGMAT Invalid argument. The absolute value of cosine is
greater than 1. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument vector
CHF$L_MCH_SAVRO/R1. The result is the floating
point reserved operand unless you have written a
condition handler to change CHF$L_MCH_SAVRO/R1.

MTH-71

MTH$HASIN

MTH$HASIN Arc Sine in Radians (H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the sine of an angle, the Arc Sine in Radians (H-floating Value) routine
returns that angle (in radians) as an H-floating value.

MTH$HASIN h-radians ,sine

MTH$HASIN_R8

None.

h-radians
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in radians) whose sine is specified by sine. The h-radians
argument is the address of an H-floating number that is this angle.
MTH$HASIN writes the address of the angle into h-radians.

sine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The sine of the angle whose value (in radians) is to be returned. The sine
argument is the address of a floating-point number that is this sine. The
absolute value of sine must be less than or equal to 1. For MTH$HASIN,
sine specifies an H-floating number.

DESCRIPTION The angle in radians whose sine is Xis computed as:

MTH-72

Value of Sine

0

1

-1

0 < IXI < 1

1 < IXI

Angle Returned

0

7r /2
-7r/2

zAT AN(X/zSQRT(l - X 2
)), where zATAN and zSQRT are the

Math Library arc tangent and square root routines, respectively, of
the appropriate data type

The error MTH$_1NVARGMAT is signaled

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_1NVARGMAT

MTH$HASIN

Reserved operand. The MTH$xASIN routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of sine is
greater than 1. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument vector
CHF$L_MCH_SAVRO/R1. The result is the floating
point reserved operand unless you have written a
condition handler to change CHF$L_MCH_SAVRO/R1.

MTH-73

MTH$HASIND

MTH$HASIND Arc Sine in Degrees (H-Floating
Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the sine of an angle, the Arc Sine in Degrees (H-Floating Value) routine
returns that angle (in degrees) as an H-floating value.

MTH$HASIND h-degrees ,sine

MTH$HASIND_R8

None.

h-degrees
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in degrees) whose sine is specified by sine. The h-degrees
argument is the address of an H-floating number that is this angle.
MTH$HASIND writes the address of the angle into h-degrees.

sine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Sine of the angle whose value (in degrees) is to be returned. The
sine argument is the address of a floating-point number that is this
sine. The absolute value of sine must be less than or equal to 1. For
MTH$HASIND, sine specifies an H-floating number.

DESCRIPTION The angle in degrees whose sine is X is computed as:

Value of Sine

0

1

-1

0<IXI<1

1 < IXI

MTH-74

Value Returned

0

90

-90

zAT AND(X/zSQRT(l - X 2
)), where zATAND and zSQRT are the

Math Library arc tangent and square root routines, respectively, of
the appropriate data type

The error MTH$_1NVARGMAT is signaled

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_1NVARGMAT

MTH$HASIND

Reserved operand. The MTH$xASIND routine
encountered a floating point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of one and
a biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of sine is
greater than 1. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument vector
CHF$L_MCH_SAVRO/R1. The result is the floating
point reserved operand unless you have written a
condition handler to change CHF$L_MCH_SAVRO/R1.

MTH-75

MTH$HATAN

MTH$HATAN Arc Tangent in Radians (H-floating
Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the tangent of an angle, the Arc Tangent in Radians (H-floating Value)
routine returns that angle (in radians) as an H-floating value.

MTH$HATAN h-radians ,tangent

MTH$HATAN_R8

None.

h-radians
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in radians) whose tangent is specified by tangent. The h-radians
argument is the address of an H-floating number that is this angle.
MTH$HATAN writes the address of the angle into h-radians.

tangent
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in radians) is to be returned. The
tangent argument is the address of a floating-point number that is this
tangent. For MTH$HATAN, tangent specifies an H-floating number.

DESCRIPTION In radians, the computation of the arc tangent function is based on the
following identities:

MTH-76

arctan(X) = X - X3 /3 + x5 /5 -X7 /7 + ...
arctan(X) = X + X * Q(X2

),

where Q(Y) = -Y /3 + Y 2 /5 - Y 3 /7 + ...
arctan(X) = X * P(X2

),

where P(Y) = 1 - Y /3 + Y 2 /5 - Y 3 /7 + ...
arctan(X) = 7r /2 - arctan(l/ X)

arctan(X) = arctan(A) + arctan((X - A)/(1 +A* X))
for any real A

CONDITION
VALUE
SIGNALED

MTH$HATAN

The angle in radians whose tangent is Xis computed as:

Value of X

O~X9/32

3/32 < X91

11 < x
X<O

SS$_ROPRAND

Angle Returned

X + X * Q(X2-)

AT AN(A) + V * (P(V 2
)), where A and ATAN(A) are chosen

by table lookup and V = (X - A)/(1 +A* X)

7r/2 -W * (P(W 2
)) where W = 1/X

-zATAN(IXI)

Reserved operand. The MTH$xATAN routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH-77

MTH$HATAND

MTH$HATAND Arc Tangent in Degrees (H-floating
Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the tangent of an angle, the Arc Tangent in Degrees (H-floating Value)
routine returns that angle (in degrees) as an H-floating point value.

MTH$HATAND h-degrees ,tangent

MTH$HATAND _R8

None.

h-degrees
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in degrees) whose tangent is specified by tangent. The h-degrees
argument is the address of an H-floating number that is this angle.
MTH$HATAND writes the address of the angle into h-degrees.

tangent
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in degrees) is to be returned. The
tangent argument is the address of a floating-point number that is this
tangent. For MTH$HATAND, tangent specifies an H-floating number.

DESCRIPTION The computation of the arc tangent function is based on the following
identities:

MTH-78

arctan(X) = 180/7r * (X - X3 /3 + X5 /5 - X 7 /7 + ...)
arctan(X) = 64 * X + X * Q(X2

),

where Q(Y) = 180/7r * [(1 - 64 * 7r/l80) - Y /3+
y2 /5- y3 /7 + y4 /9 ...]

arctan(X) = X * P(X2
),

where P(Y) = 180/7r * [1 - Y /3 + Y 2 /5 - y 3 /7+
Y 4/9 ...]

arctan(X) = 90 - arctan(l/ X)

arctan(X) = arctan(A) + arctan((X - A)/(1 +A* X))

CONDITION
VALUE
SIGNALED

MTH$HATAND

The angle in degrees whose tangent is X is computed as:

Tangent

X9/32

3/32 < X::;ll

ll<X

X<O

SS$_ROPRAND

Angle Returned

64 * x + x * Q(x 2
)

AT AND(A)+ V *P(V2
), where A and ATAND(A) are chosen

by table lookup and V = (X -A)/(1 +A* X)

90 - W * (P(W 2
)), where W = 1/ X

-zATAND(IXI)

Reserved operand. The MTH$xATAND routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH-79

MTH$HATAN2

MTH$HATAN2 Arc Tangent in Radians (H-floating
Value) with Two Arguments

FORMAT

RETURNS

ARGUMENTS

MTH-80

Given sine and cosine, the Arc Tangent in Radians (H-floating Value) with
Two Arguments routine returns the angle (in radians) as an H-floating value
whose tangent is given by the quotient of sine and cosine, (sine/cosine).

MTH$HATAN2 h-radians ,sine ,cosine

None.

h-radians
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in radians) whose tangent is specified by (sine/cosine). The
h-radians argument is the address of an H-floating number that is this
angle. MTH$HATAN2 writes the address of the angle into h-radians.

sine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number
that is this dividend. For MTH$HATAN2, sine specifies an H-floating
number.

cosine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number
that is this divisor. For MTH$HATAN2, cosine specifies an H-floating
number.

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH$HATAN2

The angle in radians whose tangent is Y/X is computed as follows, where f
is defined in the description of MTH$zCOSH.

Value of Input Arguments

X = 0 or Y/X > 2U+1
)

X > 0 and Y / X5: 2U+1
)

X < 0 and Y/X5: 2U+1l

SS$_ROPRAND

MTH$_1NVARGMAT

Angle Returned

'Ir /2 * (signY)

zATAN(Y/X)

7r * (signY) + zAT AN(Y / X)

Reserved operand. The MTH$HATAN2 routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument. Both cosine and sine are zero.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

MTH-81

MTH$HATAND2

MTH$HATAND2 Arc Tangent in Degrees (H-floating
Value) with Two Arguments

FORMAT

RETURNS

ARGUMENTS

MTH-82

Given sine and cosine, MTH$xHTAND2 returns the angle (in degrees) whose
tangent is given by the quotient of sine and cosine, (sine/cosine).

MTH$HATAND2 h-degrees ,sine ,cosine

None.

h-degrees
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in degrees) whose tangent is specified by (sine/cosine). The
h-degrees argument is the address of an H-floating number that is this
angle. MTH$HATAND2 writes the address of the angle into h-degrees.

sine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number
that is this dividend. For MTH$HATAND2, sine specifies an H-floating
number.

cosine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number
that is this divisor. For MTH$HATAND2, cosine specifies an H-floating
number.

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH$HATAND2

The angle in degrees whose tangent is YIX is computed below. The value
off is defined in the description of MTH$zCOSH.

Value of Input Arguments

X = O or Y/X > 2U+1l

X > o and Y/ X~ 2U+1l

X < 0 and Y/X~ 2U+1l

SS$_ROPRAND

MTH$_1NVARGMAT

Angle Returned

90 * (signY)

zAT AN D(Y / X)

180 * (signY) + zATAND(Y /X)

Reserved operand. The MTH$HATAND2 routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument. Both cosine and sine are zero.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

MTH-83

MTH$HATANH

MTH$HATANH Hyperbolic Arc Tangent (H-floating
Value)

FORMAT

RETURNS

ARGUMENTS

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent
(H-floating Value) routine returns the hyperbolic arc tangent (as an
H-floating value) of that angle.

MTH$HATANH h-atanh ,hyperbolic-tangent

None.

h-atanh
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Hyperbolic arc tangent of the hyperbolic tangent specified by hyperbolic
tangent. The h-atanh argument is the address of an H-fl.oating number
that is this hyperbolic arc tangent. MTH$HATANH writes the address of
the hyperbolic arc tangent into h-atanh.

hyperbolic-tangent
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Hyperbolic tangent of an angle. The hyperbolic-tangent argument is
the address of a floating-point number that is this hyperbolic tangent. For
MTH$HATANH, hyperbolic-tangent specifies an H-fioating number.

DESCRIPTION The hyperbolic arc tangent function is computed as follows:

MTH-84

Value of x

IXI < 1

1x1~1

Value Returned

zATANH(X) = zLOG((X + 1)/(X - 1))/2
An invalid argument is signaled

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_1NVARGMAT

MTH$HATANH

Reserved operand. The MTH$xATANH routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a fldating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Invalid argument: IX I ~ 1. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R1. The result
is the floating-point reserved operand unless you have
written a condition handler to change CHF$L_MCH_
SAVRO/R1.

MTH-85

MTH$HCOS

MTH$HCOS Cosine of Angle Expressed in Radians
(H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Cosine of Angle Expressed in Radians (H-floating Value) routine returns
the cosine of a given angle (in radians) as an H-floating value.

MTH$HCOS h-cosine ,angle-in-radians

MTH$HCOS_R5

None.

h-cosine
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Cosine of the angle specified by angle-in-radians. The h-cosine
argument is the address of an H-fioating number that is this cosine.
MTH$HCOS writes the address of the cosine into h-cosine.

angle-in-radians
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The angle in radians. The angle-in-radians argument is the address of
a floating-point number. For MTH$HCOS, angle-in-radians specifies an
H-floating number.

DESCRIPTION See the MTH$xSINCOS routine for the algorithm used to compute the
cosine.

CONDITION
VALUE
SIGNALED

MTH-86

SS$_ROPRAND Reserved operand. The MTH$HCOS procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$HCOSD

MTH$HCOSD Cosine of Angle Expressed in
Degrees (H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Cosine of Angle Expressed in Degrees (H-floating Value) routine returns
the cosine of a given angle (in degrees) as an H-floating value.

MTH$HCOSD h-cosine ,angle-in-degrees

MTH$HCOSD_R5

None.

h-cosine
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Cosine of the angle specified by angle-in-degrees. The h-cosine
argument is the address of an H-floating number that is this cosine.
MTH$HCOSD writes this cosine into h-cosine.

angle-in-degrees
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of a
floating-point number. For MTH$HCOSD, angle-in-degrees specifies an
H-floating number.

DESCRIPTION See the MTH$SINCOSD routine for the algorithm used to compute the
cosine.

CONDITION
VALUE
SIGNALED

SS$_ROPRAND Reserved operand. The MTH$HCOSD procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH-87

MTH$HCOSH

MTH$HCOSH

FORMAT

RETURNS

ARGUMENTS

Hyperbolic Cosine (H-floating Value)

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input value
as an H-floating value.

MTH$HCOSH h-cosh ,floating-point-input-value

None.

h-cosh
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Hyperbolic cosine of the input value specified by floating-point-input
value. The h-cosh argument is the address of an H-floating number
that is this hyperbolic cosine. MTH$HCOSH writes the address of the
hyperbolic cosine into h-cosh.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of this input value. For MTH$HCOSH, floating-point-input
value specifies an H-floating number.

DESCRIPTION Computation of the hyperbolic cosine depends on the magnitude of the
input argument. The range of the function is partitioned using four data
type-dependent constants: a(z), b(z), and c(z). The subscript z indicates
the data type. The constants depend on the number of exponent bits (e)

and the number of fraction bits (f) associated with the data type (z).

The values of e and fare as follows:

e = 15

f = 113

MTH-88

CONDITION
VALUES
SIGNALED

MTH$HCOSH

The values of the constants in terms of e and fare:

Variable

a(z)

b(z)

c(z)

Value

2-f/2

(! + 1)/2 * ln(2)
2e-1 * ln(2)

Based on the above definitions, zCOSH(X) is computed as follows:

Value of X

!XI< a(z)

a(z)~IXI < .25

.25~IXI < b(z)

b(z)~IXI < c(z)

c(z)~IXI

SS$_ROPRAND

MTH$_FLOOVEMAT

Value Returned

Computed using a power series expansion in IXl2

(zEXP(IXI) + 1/zEXP(IXl))/2

zEXP(IXl)/2

Overflow occurs

Reserved operand. The MTH$HCOSH procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute
value of floating-point-input-value is greater than
about yyy; LIB$SIGNAL copies the reserved operand
to the signal mechanism vector. The result is the
reserved operand -0.0 unless a condition handler
changes the signal mechanism vector. The value of
yyy is 11356.523.

MTH-89

MTH$HEXP

MTH$HEXP Exponential (H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Exponential routine returns the exponential of the input value as an
H-floating value.

MTH$HEXP h-exp ,floating-point-input-value

MTH$HEXP_R6

None.

h-exp
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Exponential of the input value specified by floating-point-input-value.
The h-exp argument is the address of an H-floating number that is this
exponential. MTH$HEXP writes the address of the exponential into
h-exp.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a floating-point number. For MTH$HEXP, floating-point
input-value specifies an H-floating number.

DESCRIPTION The exponential of x is computed as:

MTH-90

Value of x Value Returned

x > c(z) Overflow occurs

x~ - c(z) 0

lxl < 2-(/+1) 1

Otherwise 2Y * 2U * 2W

where: Y = INTEGER(x * ln2(E)) V = FRAC(x * ln2(E)) * 16
U = INTEGER(V)/16 W = FRAC(V)/16 2W =polynomial approximation
of degree 14 for z = H.

See also the section on the hyperbolic cosine for definitions off and c(z).

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$HEXP

Reserved operand. The MTH$xEXP routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: floating
point-input-value is greater than yyy; LIB$SIGNAL
copies the reserved operand to the signal mechanism
vector. The result is the reserved operand -0.0 unless
a condition handler changes the signal mechanism
vector. The value of yyy is approximately 11355.830
for MTH$HEXP.

Floating-point underflow in Math Library: floating
point-input-value is less than or equal to yyy and the
caller (CALL or JSB) has set hardware floating-point
underflow enable. The result is set to 0.0. If the caller
has not enabled floating-point underflow (the default),
a result of 0.0 is returned but no error is signaled.
The value of yyy is approximately -11356.523 for
MTH$HEXP.

MTH-91

MTH$HLOG

MTH$HLOG Natural Logarithm (H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Natural Logarithm (H-floating Value) routine returns the natural (base e)
logarithm of the input argument as an H-floating value.

MTH$HLOG h-natlog ,floating-point-input-value

MTH$HLOG_R8

None.

h-natlog
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Natural logarithm of floating-point-input-value. The h-natlog
argument is the address of an H-floating number that is this natural
logarithm. MTH$HLOG writes the address of this natural logarithm into
h-natlog.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a floating-point number that is this value. For MTH$HLOG,
floating-point-input-value specifies an H-floating number.

DESCRIPTION Computation of the natural logarithm routine is based on the following:

1 ln(X * Y) = ln(X) + ln(Y)

MTH-92

2 In(1 + X) = x - X 2 /2 + x3 /3 - x4 / 4 ...
for IX I < 1

CONDITION
VALUES
SIGNALED

MTH$HLOG

3 ln(X) = ln(A) + 2 * (V + V3 /3 + V 5 /5 + V 1 /7 ...)
where V = (X - A)/(X +A), A> O,
and p(y) = 2 * (1 + y/3 + y2 /5 ...)

For x = zn * f, where n is an integer and f is in the interval of 0.5 to 1,
define the following quantities:

If n~ 1, then N = n - 1 and F = 2 f

If n::;o, then N = n and F = f

From (1) above it follows that:

4 ln(X).= N * ln(2) + ln(F)

Based on the above relationships, zLOG is computed as follows:

1 If IF - 11 < 2-5,
zLOG(X) = N * zLOG(2) + W + W * p(W),
where W = F-1.

2 Otherwise,
zLOG(X) = N * zLOG(2) + zLOG(A) + V * p(V2),
where V = (F- A)/(F +A) and A and zLOG(A)
are obtained by table look up.

SS$_ROPRAND

MTH$_LOGZERNEG

Reserved operand. The MTH$HLOG procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal to
0.0. LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

MTH-93

MTH$HLOG2

MTH$HLOG2 Base 2 Logarithm (H-floating Value)

FORMAT

RETURNS

ARGUMENTS

The Base 2 Logarithm (H-floating Value) routine returns the base 2 logarithm
of the input value specified by floating-point-input-value as an H-floating
value.

MTH$HLOG2 h-log2 ,floating-point-input-value

None.

h-log2
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Base 2 logarithm of floating-point-input-value. The h-log2 argument
is the address of an H-floating number that is this base 2 logarithm.
MTH$HLOG2 writes the address of this logarithm into h-log2.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a floating-point number that is this input value. For
MTH$HLOG2, floating-point-input-value specifies an H-floating
number.

DESCRIPTION The base 2 logarithm function is computed as follows:

zLOG2(X) = zLOG2(E) * zLOG(X)

CONDITION
VALUES
SIGNALED

MTH-94

SS$_ROPRAND Reserved operand. The MTH$HLOG2 procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$_LOGZERNEG

MTH$HLOG2

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal to
0.0. LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

MTH-95

MTH$HLOG10

MTH$HLOG10 Common Logarithm (H-floating
Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Common Logarithm (H-floating Value) routine returns the common (base
10) logarithm of the input argument as an H-floating value.

MTH$HLOG10 h-log 1 O, floating-point-input-value

MTH$HLOG1 O_R8

None.

h-log10
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Common logarithm of the input value specified by floating-point-input
value. The h-loglO argument is the address of an H-floating number
that is this common logarithm. MTH$HLOG 10 writes the address of the
common logarithm into h-loglO.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a floating-point number. For MTH$HLOG10, floating-point
input-value specifies an H-floating number.

DESCRIPTION The common logarithm function is computed as follows:

zLOGlO(X) = zLOGlO(E) * zLOG(X)

MTH-96

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_LOGZERNEG

MTH$HLOG10

Reserved operand. The MTH$HLOG10 procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument.
floating-point-input-value is less than or equal to
0.0. LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

MTH-97

MTH$HSIN

MTH$HSIN Sine of Angle Expressed in Radians
(H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Sine of Angle Expressed in Radians (H-floating Value) routine returns the
sine of a given angle (in radians) as an H-floating value.

MTH$HSIN h-sine ,angle-in-radians

MTH$HSIN_R5

None.

h-sine
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
The sine of the angle specified by angle-in-radians. The h-sine argument
is the address of an H-fioating number that is this sine. MTH$HSIN
writes the address of the sine into h-sine.

angle-in-radians
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Angle (in radians). The angle-in-radians argument is the address of
a floating-point number that is this angle. For MTH$HSIN, angle-in
radians specifies an H-floating number.

DESCRIPTION See the MTH$SINCOS routine for the algorithm used to compute this
sine.

CONDITION
VALUE
SIGNALED

MTH-98

SS$_ROPRAND Reserved operand. The MTH$HSIN procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$HSIND

MTH$HSIND Sine of Angle Expressed in Degrees
(H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Sine of Angle Expressed in Degrees (H-floating Value) routine returns the
sine of a given angle (in degrees) as an H-floating value.

MTH$HSIND h-sine ,angle-in-degrees

MTH$HSIND_R5

None.

h-sine
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Sine of the angle specified by angle-in-degrees. The h-sine argument is
the address of an H-floating number that is this sine. MTH$HSIND writes
the address of the angle into h-sine.

angle-in-degrees
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of a
floating-point number that is this angle. For MTH$HSIND, angle-in
degrees specifies an H-floating number.

DESCRIPTION See MTH$SINCOSD for the algorithm used to compute the sine.

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_FLOUNDMAT

Reserved operand. The MTH$HSIND procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point underflow in Math Library. The absolute
value of the input angle is less than 180/7r * 2-m
(where m = 16,384 for H-floating).

MTH-99

MTH$HSINH

MTH$HSINH Hyperbolic Sine (H-floating Value)

FORMAT

RETURNS

ARGUMENTS

The Hyperbolic Sine (H-floating Value) routine returns the hyperbolic sine of
the input value specified by floating-point-input-value as an H-floating value.

MTH$HSINH h-sinh ,floating-point-input-value

None.

h-sinh
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Hyperbolic sine of the input value specified by floating-point-input
value. The h-sinh argument is the address of an H-fioating number that
is this hyperbolic sine. MTH$HSINH writes the address of the hyperbolic
sine into h-sinh.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a floating-point number that is this value. For MTH$HSINH,
floating-point-input-value specifies an H-fioating number.

DESCRIPTION Computation of the hyperbolic sine function depends on the magnitude

MTH-100

of the input argument. The range of the function is partitioned using
four data type dependent constants: a(z), b(z), and c(z). The subscript z
indicates the data type. The constants depend on the number of exponent
bits (e) and the number of fraction bits (/) associated with the data type
(z).

The values of e and fare as follows:

e = 15

f = 113

CONDITION
VALUES
SIGNALED

MTH$HSINH

The values of the constants in terms of e and fare:

Variable

a(z)

b(z)

c(z)

Value

2(-f /2)

(! + 1)/2 * ln(2)
2e-1 * ln(2)

Based on the above definitions, zSINH(X) is computed as follows:

Value of X

IXI < a(z)

a(z)~IXI < i.o

i.o~IXI < b(z)

b(z):SIXI < c(z)

c(z)~IXI

SS$_ROPRAND

MTH$_FLOOVEMAT

Value Returned

x
zSINH(X) is computed using a power series
expansion in IXl2

(zEXP(X) - zEXP(-X))/2

SIGN(X) * zEXP(jXl)/2

Overflow occurs

Reserved operand. The MTH$HSINH procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute
value of floating-point-input-value is greater than
yyy. LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1. The
value of yyy is approximately 11356.523.

MTH-101

MTH$HSQRT

MTH$HSQRT Square Root (H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Square Root (H-floating Value) routine returns the square root of the input
value floating-point-input-value as an H-floating value.

MTH$HSQRT h-sqrt ,floating-point-input-value

MTH$HSQRT_R8

None.

h-sqrt
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Square root of the input value specified by floating-point-input-value.
The h-sqrt argument is the address of an H-floating number that is this
square root. MTH$HSQRT writes the address of the square root into
h-sqrt.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Input value. The floating-point-input-value argument is the address of
a floating-point number that contains this input value. For MTH$HSQRT,
floating-point-input-value specifies an H-floating number.

DESCRIPTION The square root of Xis computed as follows:

MTH-102

If X < o, an error is signaled.

Let X = 2K * F

where:

K is the exponential part of the floating-point data

F is the fractional part of the floating-point data

If K is even:
x = 2(2•P) * F,
zSQRT(X) = 2P * zSQRT(F),
1/2~F < 1, where P = K/2

CONDITION
VALUES
SIGNALED

MTH$HSQRT

If K is odd:
x = 2(2•P+1) * F = 2(2•P+2) * (F /2),
zSQRT(X) = 2(P+1l * zSQRT(F /2),
1/4~F /2 < 1/2, where p = (K-1)/2

Let F' = A * F + B, when K is even:

A = 0.95F6198 (hex)

B = 0.6BA5918 (hex)

Let F' =A* (F /2) + B, when K is odd:

A= 0.D413CCC (hex)

B = 0.4C1 E248 (hex)

Let K' = P, when K is even

Let K' = P+1, when K is odd

Let Y[O] = 2K' * F' be a straight line approximation within the given
interval using coefficients A and B which minimize the absolute error at
the midpoint and endpoint.

Starting with Y[O], n Newton-Raphson iterations are performed:

Y[n + 1] = 1/2 * (Y[n] + X/Y[n])

where n = 5 for H-fl.oating.

SS$_ROPRAND

MTH$_SQUROONEG

Reserved operand. The MTH$HSQRT procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Square root of negative number. Argument floating
point-input-value is less than 0.0. LIB$SIGNAL
copies the floating-point reserved operand to the
mechanism argument vector CHF$L_MCH_SAVRO
/R1. The result is the floating-point reserved operand
unless you have written a condition handler to change
CHF$L_MCH_SAVRO/R 1.

MTH-103

MTH$HTAN

MTH$HTAN Tangent of Angle Expressed in Radians
(H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Tangent of Angle Expressed in Radians (H-floating Value) routine returns
the tangent of a given angle (in radians) as an H-floating value.

MTH$HTAN h-tan ,angle-in-radians

MTH$HTAN_R5

None.

h-tan
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Tangent of the angle specified by angle-in-radians. The h-tan argument
is the address of an H-floating number that is this tangent. MTH$HTAN
writes the address of the tangent into h-tan.

angle-in-radians
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input angle (in radians). The angle-in-radians argument is the
address of a floating-point number that is this angle. For MTH$HTAN,
angle-in-radians specifies an H-floating number.

DESCRIPTION When the input argument is expressed in radians, the tangent function is
computed as follows:

MTH-104

1 If IXI < 2<-1/2), then zTAN(X) = X (see the section on MTH$zCOSH
for the definition of fJ

2 Otherwise, call MTH$zSINCOS to obtain zSIN(X) and zCOS(X); then

a. If zCOS(X) = 0, signal overflow

b. Otherwise, zTAN(X) = zSIN(X)/zCOS(X)

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH$HTAN

Reserved operand. The MTH$HTAN procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in math library.

MTH-105

MTH$HTAND

MTH$HTAND Tangent of Angle Expressed in
Degrees (H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Tangent of Angle Expressed in Degrees (H-floating Value) routine returns
the tangent of a given angle (in degrees) as an H-floating value.

MTH$HTAND h-tan ,angle-in-degrees

MTH$HTAND_R5

None.

h-tan
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Tangent of the angle specified by angle-in-degrees. The h-tan argument
is the address of an H-floating number that is this tangent. MTH$HTAND
writes the address of the tangent into h-tan.

angle-in-degrees
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input angle (in degrees). The angle-in-degrees argument is the
address of a floating-point number which is this angle. For MTH$HTAND,
angle-in-degrees specifies an H-floating number.

DESCRIPTION When the input argument is expressed in degrees, the tangent function is
computed as follows:

MTH-106

1 If IXI < (180/?r) * 2<-2/<e-l)) and underflow signaling is enabled,
underflow is signaled (see the section on MTH$zCOSH for the
definition of e).

2 Otherwise, if IXI < (180/?r) * 2<-f/2), then zTAND(X) = (?r/180) * X.
See the description of MTH$zCOSH for the definition off.

3 Otherwise, call MTH$zSINCOSD to obtain zSIND(X) and zCOSD(X).

a. Then, if zCOSD(X) = 0, signal overflow

b. Else, zTAND(X) = zSIND(X)/zCOSD(X)

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH$HTAND

Reserved operand. The MTH$HTAND procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in math library.

MTH-107

MTH$HTANH

MTH$HTANH Compute the Hyperbolic Tangent
{H-floating Value)

FORMAT

RETURNS

ARGUMENTS

The Compute the Hyperbolic Tangent (H-floating Value) routine returns the
hyperbolic tangent of the input value as an H-floating value.

MTH$HTANH h-tanh ,floating-point-input-value

None.

h-tanh
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Hyperbolic tangent of the value specified by floating-point-input-value.
The h-tanh argument is the address of a H-floating number that is this
hyperbolic tangent. MTH$HTANH writes the address of the hyperbolic
tangent into h-tanh.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a floating-point number that contains this input value. For
MTH$HTANH, floating-point-input-value specifies an H-floating
number.

DESCRIPTION For MTH$HTANH, the hyperbolic tangent of Xis computed using a value
of 56 for g and a value of 40 for h. The hyperbolic tangent of Xis computed
as follows:

MTH--108

Value of x

IXl9-u
2-9 < 1x1:::;0.2s
0.25 < IXI < h

h:::;IXI

Hyperbolic Tangent Returned

x
zSINH(X)/zCOSH(X)

(zEXP(2 * X) -1)/(zEXP(2 * X) + 1)

sign(X) * 1

CONDITION
VALUE
SIGNALED

SS$_ROPRAND

MTH$HTANH

Reserved operand. The MTH$HTANH procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH-109

MTH$xlMAG

MTH$xlMAG

FORMAT

RETURNS

ARGUMENT

CONDITION
VALUE
SIGNALED

MTH-110

Imaginary Part of a Complex Number

The Imaginary Part of a Complex Number routine returns the imaginary part
of a complex number.

MTH$AIMAG
MTH$DIMAG
MTH$GIMAG

complex-number
complex-number
complex-number

Each of the above three formats corresponds to one of the three floating
point complex types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Imaginary part of the input complex-number. MTH$AIMAG returns
an F-floating number. MTH$DIMAG returns a D-floating number.
MTH$GIMAG returns a G-floating number.

complex-number
VMS usage: complex_number
type: F _floating complex, D _floating complex, G_floating

complex
access: read only
mechanism: by reference
The input complex number. The complex-number argument is the
address of this floating-point complex number. For MTH$AIMAG,
complex-number specifies an F-floating number. For MTH$DIMAG,
complex-number specifies a D-floating number. For MTH$GIMAG,
complex-number specifies a G-fioating number.

SS$_ROPRAND Reserved operand. The MTH$xlMAG routine
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

EXAMPLE
c+
C This FORTRAN example forms the imaginary part of
C a G-floating complex number using MTH$GIMAG
C and the FORTRAN random number generator
C RAN.
c
C Declare Z as a complex value and MTH$GIMAG as
C a REAL*8 value. MTH$GIMAG will return the imaginary
C part of Z: Z NEW = MTH$GIMAG(Z).
c-

c+

COMPLEX*l6 Z
COMPLEX*16 DCMPLX
REAL*8 R,I,MTH$GIMAG
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
c-

C+

R RAN(M)
I RAN (M)
Z DCMPLX (R, I)

C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

TYPE *, ' The complex number z is' ,z
TYPE *, ' It has imaginary part' ,MTH$GIMAG(Z)
END

MTH$xlMAG

This FORTRAN example demonstrates a procedure call to MTH$GIMAG.
Because this example uses G-floating numbers, it must be compiled with
the statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.8535407185554504,0.2043401598930359)
It has imaginary part 0.2043401598930359

MTH-111

MTH$xLOG

MTH$xLOG Natural Logarithm

FORMAT

jsb entries

RETURNS

The Natural Logarithm routine returns the natural (base e) logarithm of the
input argument.

MTH$ALOG
MTH$DLOG
MTH$GLOG

floating-point-input-value
floating-point-input-value
floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

MTH$ALOG R5
MTH$DLOG-R8
MTH$GLOG_R8
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The natural logarithm of floating-point-input-value. MTH$ALOG
returns an F-floating number. MTH$DLOG returns a D-floating number.
MTH$GLOG returns a G-floating number.

ARGUMENTS floating-point-input-value
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a floating-point number that is this value. For MTH$ALOG,
floating-point-input-value specifies an F-floating number. For
MTH$DLOG, floating-point-input-value specifies a D-floating number.
For MTH$GLOG, floating-point-input-value specifies a G-floating
number.

DESCRIPTION Computation of the natural logarithm routine is based on the following:

1 In(X * Y) = ln(X) + In(Y)

MTH-112

2 In(l + X) = x - x2 /2 + x3 /3 - x4 /4 ...
for IX I < 1

CONDITION
VALUES
SIGNALED

MTH$xLOG

3 ln(X) = ln(A) + 2 * (V + V 3 /3 +vs /5 + V7 /7 ...)
= ln(A) + V * p(V2), where V = (X - A)/(X +A),
A> 0, and p(y) = 2 * (1 + y/3 + y2/5 ...)

For x = 2n * f, where n is an integer and f is in the interval of 0.5 to 1,
define the following quantities:

If n~l, then N = n -1 and F = 2f

If n::;o, then N = n and F = f

From (1) above it follows that:

4 ln(X) = N * ln(2) + ln(F)

Based on the above relationships, zLOG is computed as follows:

1 If IF - ll < 2-5, zLOG(X) = N * zLOG(2) + W + W * p(W),
where W = F-1.

2 Otherwise, zLOG(X) = N * zLOG(2) + zLOG(A) + V * p(V2),

where V = (F - A)/(F +A) and A and zLOG(A)
are obtained by table look up.

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HLOG.

SS$_ROPRAND

MTH$_LOGZERNEG

Reserved operand. The MTH$xLOG procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal to
0.0. LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

MTH-113

MTH$xLOG2

MTH$xLOG2 Base 2 Logarithm

FORMAT

RETURNS

The Base 2 Logarithm routine returns the base 2 logarithm of the input value
specified by floating-point-input-value.

MTH$ALOG2
MTH$DLOG2
MTH$GLOG2

floating-point-input-value
floating-point-input-value
floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating__point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The base 2 logarithm of floating-point-input-value. MTH$ALOG2
returns an F-floating number. MTH$DLOG2 returns a D-floating number.
MTH$GLOG2 returns a G-floating number.

ARGUMENTS floating-point-input-value
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a floating-point number that is this input value. For
MTH$ALOG2, floating-point-input-value specifies an F-floating number.
For MTH$DLOG2, floating-point-input-value specifies a D-floating
number. For MTH$GLOG2, floating-point-input-value specifies a
G-floating number.

DESCRIPTION The base 2 logarithm function is computed as follows:

MTH-114

zLOG2(X) = zLOG2(E) * zLOG(X)

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HLOG2.

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_LOGZERNEG

MTH$xLOG2

Reserved operand. The MTH$xLOG2 procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal to
0.0. LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

MTH-115

MTH$xLOG10

MTH$xLOG10 Common Logarithm

FORMAT

jsb entries

RETURNS

The Common Logarithm routine returns the common (base 10) logarithm of
the input argument.

MTH$ALOG10
MTH$DLOG10
MTH$GLOG10

floating-point-input-value
floating-point-input-value
floating-point-input-value

Each of the above formats accepts as input one of the floating~point types.

MTH$ALOG10 RS
MTH$DLOG10-R8
MTH$GLOG1 O_R8
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The common logarithm of floating-point-input-value. MTH$ALOG 10
returns an F-floating number. MTH$DLOG 10 returns a D-floating
number. MTH$GLOG10 returns a G-floating number.

ARGUMENTS floating-point-input-value
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a floating-point number. For MTH$ALOG 10, floating-point·
input-value specifies an F-floating number. For MTH$DLOG10, floating
point-input-value specifies a D-floating number. For MTH$GLOG 10,
floating-point-input-value specifies a G-floating number.

DESCRIPTION The common logarithm function is computed as follows:

zLOGlO(X) = zLOGlO(E) * zLOG(X)

MTH-116

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HLOG10.

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_LOGZERNEG

MTH$xLOG10

Reserved operand. The MTH$xLOG10 procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal to
0.0. Ll8$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

MTH-117

MTH$RANDOM

MTH$RANDOM Random Number Generator,
Uniformly Distributed

FORMAT

RETURNS

ARGUMENT

The Random Number Generator, Uniformly Distributed routine is a general
random number generator.

MTH$RANDOM seed

VMS usage: floating_point
type: F _floating
access: write only
mechanism: by value

MTH$RANDOM returns an F-floating random number.

seed
VMS usage: longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference
The integer seed, a 32-bit number whose high-order 24 bits are converted
by MTH$RANDOM to an F-floating random number. The seed argument
is the address of an unsigned longword that contains this integer seed.
The seed is modified by each call to MTH$RANDOM.

DESCRIPTION This routine must be called again to obtain the next pseudorandom
number. The seed is updated automatically.

MTH-118

The result is a floating-point number that is uniformly distributed between
0.0 inclusively and 1.0 exclusively.

There are no restrictions on the seed, although it should be initialized
to different values on separate runs in order to obtain different random
sequences. MTH$RANDOM uses the following method to update the seed
passed as the argument:

SEED= (69069 *SEED+ l)(modulo232)

MTH$RANDOM

CONDITION
VALUE
SIGNALED

SS$_ROPRAND Reserved operand. The MTH$RANDOM procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

EXAMPLE
RAND: PROCEDURE OPTIONS (MAIN);
DECLARE FOR$SECNDS ENTRY (FLOAT BINARY (24))

RETURNS (FLOAT BINARY (24));
DECLARE MTH$RANDOM ENTRY (FIXED BINARY (31))

RETURNS (FLOAT BINARY (24));
DECLARE TIME FLOAT BINARY (24);
DECLARE SEED FIXED BINARY (31);
DECLARE I FIXED BINARY (7);
DECLARE RESULT FIXED DECIMAL (2);

I* Get floating random time value */
TIME FOR$SECNDS (OEO);

/* Convert to fixed */
SEED TIME;

/* Generate 100 random numbers between 1 and 10 */
DO I 1 TO 100;

RESULT= 1 +FIXED ((lOEO * MTH$RANDOM (SEED)),31);
PUT LIST (RESULT);
END;

END RAND;

This PL/I program demonstrates the use of MTH$RANDOM. The value
returned by FOR$SECNDS is used as the seed for the random-number
generator to insure a different sequence each time the program is run.
The random value returned is scaled so as to represent values between 1
and 10.

Because this program generates random numbers, the output generated
will be different each time the program is executed. One example of the
outut generated by this program is as follows:

7 4 6 5 9 10 5 5 3 8 8 1 3 1 3 2
4 4 2 4 4 8 3 8 9 1 7 1 8 6 9 10
1 10 10 6 3 2 2 2 6 6 3 9 5 8
6 2 3 6 10 8 5 5 4 2 8 5 9 6 4 2
8 5 4 9 8 7 6 6 8 10 9 5 9 4 5 7
1 2 2 3 6 5 2 3 4 4 8 9 2 8 5 5
3 8 1 5

MTH-119

MTH$xREAL

MTH$xREAL Real Part of a Complex Number

FORMAT

RETURNS

ARGUMENT

CONDITION
VALUE
SIGNALED

MTH-120

The Real Part of a Complex Number routine returns the real part of a complex
number.

MTH$REAL complex-number
MTH$DREAL complex-number
MTH$GREAL complex-number
Each of the above three formats accepts as input one of the three floating
point complex types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Real part of the complex number. MTH$REAL returns an F-floating
number. MTH$DREAL returns a D-floating number. MTH$GREAL
returns a G-floating number.

complex-number
VMS usage: complex_number
type: F _floating complex, D_floating complex, G_floating

complex
access: read only
mechanism: by reference
The complex number whose real part is returned by MTH$REAL. The
complex-number argument is the address of this floating-point complex
number. For MTH$REAL, complex-number is an F-floating complex
number. For MTH$DREAL, complex-number is a D-floating complex
number. For MTH$GREAL, complex-number is a G-floating complex
number.

SS$_ROPRAND Reserved operand. The MTH$xREAL procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

EXAMPLE
C+
C This FORTRAN example forms the real
C part of an F-f loating complex number using
C MTH$REAL and the FORTRAN random number
C generator RAN.
c
C Declare Z as a complex value and MTH$REAL as a
C REAL*4 value. MTH$REAL will return the real
C part of Z: Z NEW = MTH$REAL(Z).
c-

C+

COMPLEX Z
COMPLEX CMPLX
REAL*4 MTH$REAL
INTEGER M
M = 1234567

C Generate a random complex number with the FORTRAN
C generic CMPLX.

·c-
Z CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
c-

TYPE*, ' The complex number z is',z
TYPE *, ' It has real part' ,MTH$REAL(Z)
END

MTH$xREAL

This FORTRAN example demonstrates the use of MTH$REAL. The output
of this program is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407

MTH-121

MTH$xSIN

MTH$xSIN Sine of Angle Expressed in Radians

FORMAT

jsb entries

RETURNS

The Sine of Angle Expressed in Radians routine returns the sine of a given
angle (in radians).

MTH$SIN angle-in-radians
MTH$DSIN angle-in-radians
MTH$GSIN angle-in-radians
Each of the above formats accepts as input one of the floating-point types.

MTH$SIN R4
MTH$DSIN R7
MTH$GSIN_R7
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Sine of the angle specified by angle-in-radians. MTH$SIN returns an
F-floating number. MTH$DSIN returns a D-floating number. MTH$GSIN
returns a G-floating number.

ARGUMENTS angle-in-radians
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
Angle (in radians). The angle-in-radians argument is the address of a
floating-point number that is this angle. For MTH$SIN, angle-in-radians
specifies an F-floating number. For MTH$DSIN, angle-in-radians
specifies a D-floating number. For MTH$GSIN, angle-in-radians specifies
a G-floating number.

DESCRIPTION See the MTH$SINCOS routine for the algorithm used to compute this
sine.

MTH-122

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HSIN.

CONDITION
VALUE
SIGNALED

SS$_ROPRAND

MTH$xSIN

Reserved operand. The MTH$xSIN procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH-123

MTH$xSINCOS

MTH$xSINCOS Sine and Cosine of Angle
Expressed in Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

MTH-124

The Sine and Cosine of Angle Expressed in Radians routine returns the sine
and cosine of a given angle (in radians).

MTH$SINCOS angle-in-radians ,sine ,cosine
MTH$DSINCOS
MTH$GSINCOS
MTH$HSINCOS

angle-in-radians ,sine ,cosine
angle-in-radians ,sine ,cosine
angle-in-radians ,sine ,cosine

Each of the above four formats accepts as input one of the four f:loating
point types.

MTH$SINCOS RS
MTH$DSINCOS R7
MTH$GSINCOS-R7
MTH$HSINCOS R7
Each of the above four JSB entries accepts as input one of the four
floating-point types.

MTH$SINCOS, MTH$DSINCOS, MTH$GSINCOS, and MTH$HSINCOS
return the sine and cosine of the input angle by reference in the sine and
cosine arguments.

angle-in-radians
VMS usage: floating_point
type:. F _floating, D_floating, G_floating, H_floating
access: read only
mechanism: by reference
Angle (in radians) whose sine and cosine are to be returned. The angle
in-radians argument is the address of a floating-point number that
is this angle. For MTH$SINCOS, angle-in-radians is an F-:floating
number. For MTH$DSINCOS, angle-in-radians is a D-:floating number.
For MTH$GSINCOS, angle-in-radians is a G-:floating number. For
MTH$HSINCOS, angle-in-radians is an H-:floating number.

sine
VMS usage: floating_point
type: F _floating, D_floating, G_floating, H_floating
access: write only
mechanism: by reference
Sine of the angle specified by angle-in-radians. The sine argument is
the address of a :floating-point number. MTH$SINCOS writes an F-f:loating

MTH$xSINCOS

number into sine. MTH$DSINCOS writes a D-floating number into sine.
MTH$GSINCOS writes a G-fl.oating number into sine. MTH$HSINCOS
writes an H-fl.oating number into sine.

cosine
VMS usage: floating_point
type: F _floating, D_floating, G_floating, H_floating
access: write only
mechanism: by reference
Cosine of the angle specified by angle-in-radians. The cosine argument
is the address of a floating-point number. MTH$SINCOS writes an
F-floating number into cosine. MTH$DSINCOS writes a D-floating
number into cosine. MTH$GSINCOS writes a G-floating number into
cosine. MTH$HSINCOS writes an H-floating number into cosine.

DESCRIPTION All routines with JSB entry points accept a single argument in RO:Rm,
where m, which is defined below, is dependent on the data type.

Data Type m

F _floating 0

D_floating

G_floating 1

H_floating 3

In general, Run-Time Library routines with JSB entry points return one
value in RO:Rm. The MTH$SINCOS routine returns two values, however.
The sine of angle-in-radians is returned in RO:Rm and the cosine of
angle-in-radians is returned in (R<m+l>:R<2*m+l>).

In radians, the computation of zSIN(X) and zCOS(X) is based on the
following polynomial expansions:

sin(X) = X - X 3 /(3!) + X5 /(5!) - X7 /(7!) ...
= X + X * P(X2), where
P(y) = y/(3!) + y2 /(5!) + y3 /(7!) ...

cos(X) = 1- X2 /(2!) + x4 /(4!) - x6 /(6!) ...
= Q(X2), where
Q(y) = (1- y/(2!) + y2 /(4!) + y3 /(6!) ...)

1 If IXI < 2<-1 /2)'

then zSIN(X) = X and zCOS(X) = 1
(see the section on MTH$zCOSH for
the definition off)

2 If 2-f /2 ~1XI < 7r/4,
then zSIN(X) = X + P(X2)
and zCOS(X) = Q (x2)

3 If 7r/4~IXI and x > o,
a. Let J = INT(X/(7r/4))

and I = J modulo 8

MTH-125

MTH$xSINCOS

CONDITION
VALUE
RETURNED

MTH-126

4

b. If J is even, let Y = X - J * (11" / 4)
otherwise,
let Y = (J + 1) * (11" / 4) - x

With the above definitions, the following table relates zSIN(X)
and zCOS(X) to zSIN(Y) and zCOS(Y):

Value of I zSIN(X) zCOS(X)

0 zSIN(Y) zCOS(Y)

1 zCOS(Y) zSIN(Y)

2 zCOS(Y) -zSIN(Y)

3 zSIN(Y) -zCOS(Y)

4 -zSIN(Y) -zCOS(Y)

5 -zCOS(Y) -zSIN(Y)

6 -zCOS(Y) zSIN(Y)

7 -zSIN(Y) zCOS(Y)

c. zSIN(Y) and zCOS(Y) are computed as follows:
zSIN(Y) = Y + P(Y2d,
and zCOS(Y) = Q(Y)

If 1r/4slXI and x < o,
then zSIN(X) = -zSIN(IXI)
and zCOS(X) = zCOS(IXI)

SS$_ROPRAND Reserved operand. The MTH$xSINCOS procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$xSINCOSD

MTH$xSINCOSD Sine and Cosine of Angle
Expressed in Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Sine and Cosine of Angle Expressed in Degrees routine returns the sine
and cosine of a given angle (in degrees).

MTH$SINCOSD angle-in-degrees ,sine ,cosine
MTH$DSINCOSD angle-in-degrees ,sine ,cosine
MTH$GSINCOSD angle-in-degrees ,sine ,cosine
MTH$HSINCOSD angle-in-degrees ,sine ,cosine
Each of the above four formats accepts as input one of the four floating
point types.

MTH$SINCOSD R5
MTH$DSINCOSD R7
MTH$GSINCOSD-R7
MTH$HSINCOSD _R7
Each of the above four JSB entries accepts as input one of the four
floating-point types.

MTH$SINCOSD, MTH$DSINCOSD, MTH$GSINCOSD, and
MTH$HSINCOSD return the sine and cosine of the input angle by
reference in the sine and cosine arguments.

angle-in-degrees
VMS usage: floating_point
type: F _floating, D_floating, G_floating, H_floating
access: read only
mechanism: by reference
Angle (in degrees) whose sine and cosine are returned by
MTH$xSINCOSD. The angle-in-degrees argument is the address
of a floating-point number that is this angle. For MTH$SINCOSD,
angle-in-degrees is an F-floating number. For MTH$DSINCOSD,
angle-in-degrees is a D-floating number. For MTH$GSINCOSD, angle·
in-degrees is a G-floating number. For MTH$HSINCOSD, angle-in·
degrees is an H-floating number.

MTH-127

MTH$xSINCOSD

sine
VMS usage: floating_point
type: F _floating, D_floating, G_floating, H_floating
access: write only
mechanism: by reference
Sine of the angle specified by angle-in-degrees. The sine argument
is the address of a :floating-point number. MTH$SINCOSD writes an
F-:fl.oating number into sine. MTH$DSINCOSD writes a D-:fl.oating
number into sine. MTH$GSINCOSD writes a G-:fl.oating number into
sine. MTH$HSINCOSD writes an H-floating number into sine.

cosine
VMS usage: floating_point
type: F _floating, D_floating, G_floating, H_floating
access: write only
mechanism: by reference
Cosine of the angle specified by angle-in-degrees. The cosine argument
is the address of a :floating-point number. MTH$SINCOSD writes an
F-floating number into cosine. MTH$DSINCOSD writes a D-floating
number into cosine. MTH$GSINCOSD writes a G-:fl.oating number into
cosine. MTH$HSINCOSD writes an H-:floating number into cosine.

DESCRIPTION All routines with JSB entry points accept a single argument in RO:Rm,
where m, which is defined below, is dependent on the data type.

MTH-128

Data Type

F _floating

D_floating

G_floating

H_floating

m

0

3

In general, Run-Time Library routines with JSB entry points return
one value in RO:Rm. The MTH$SINCOSD routine returns two values,
however. The sine of angle-in-degrees is returned in RO:Rm and the
cosine of angle-in-degrees is returned in (R<m+l>:R<2*m+l>).

In degrees, the computation of zSIND(X) and zCOSD(X) is based on the
following polynomial expansions:

SIN D(X) = (C * X) - (C * X)3 /(3!)+
(C * xt /(5!) - (C * X)7 /(7!) ...
= X/2 + X * P(X2), where
P(y) = -y/(3!) + y2 /(5!) - y3 /(7!) ...

COSD(X) = 1- (C * X)2 /~2!)+
(C * X)4 /(4!) - (C * X) /(6!) ...
= Q(X2), where
Q(y) = 1- y/(2!) + y2 /(4!) - y3 /(6!) ...
and C = 7r/l80

MTH$xSINCOSD

1 If IXI < (180/?r) * 2-2e-l and underflow signaling is enabled,
underflow is signaled for zSIND(X) and zSINCOSD(X).
See MTH$zCOSH for the definition of e.

otherwise:

2 If IXI < (180/?r) * 2<-f/2),
then zSIN D(X) = (?r/180) * X and zCOSD(X) = 1.
(See MTH$zCOSH for the definition off.)

3 If (180I1r) * 2< - I 12> ::; I x I < 45
then zSIND(X) = X/26 + P(X2)
and zCOSD(X) = Q(X2)

4 If 45::; IXI and X > O,

a. Let J = JNT(X/(45))and
I= J modulo 8

b. If J is even, let Y = X - J * 45;
otherwise, let Y = (J + 1) * 45 - X .

c.

d.

. With the above definitions, the following table relates
zSIND(X) and zCOSD(X) to zSIND(Y) and zCOSD(Y):

Value of I zSIND(X) zCOSD(X)

0 zSIND(Y) zCOSD(Y)

1 zCOSD(Y) zSIND(Y)

2 zCOSD(Y) -zSIND(Y)

3 zSIND(Y) -zCOSD(Y)

4 -zSIND(Y) -zCOSD(Y)

5 -zCOSD(Y) -zSIND(Y)

6 -zCOSD(Y) zSIND(Y)

7 -zSIND(Y) zCOSD(Y)

zSIND(Y) and zCOSD(Y) are computed as follows:
zSIND(Y) = Y/26 + P(Y2)
zCOSD(Y) = Q(Y2)

If 45::; IXI and X < O,
then zSIND(X) = -zSIND(IXI)
and zCOSD(X) = zCOSD(IXI)

MTH-129

MTH$xSINCOSD

CONDITION
VALUES
SIGNALED

MTH-130

SS$_ROPRAND

MTH$_FLOUNDMAT

Reserved operand. The MTH$xSINCOSD procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point underflow in math library. The absolute
value of the input angle is less than 180/7r * 2-m
(where m = 128 for F-floating and D-floating, 1,024 for
G-floating, and 16,384 for H-floating).

MTH$xSIND

MTH$xSIND Sine of Angle Expressed in Degrees

FORMAT

jsb entries

RETURNS

The Sine of Angle Expressed in Degrees routine returns the sine of a given
angle (in degrees).

MTH$SIND angle-in-degrees
MTH$DSIND angle-in-degrees
MTH$GSIND angle-in-degrees
Each of the above formats accepts as input one of the floating-point types.

MTH$SIND_R4
MTH$DSIND_R7
MTH$GSIND_R7
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The sine of the angle. MTH$SIND returns an F-floating number.
MTH$DSIND returns a D-floating number. MTH$GSIND returns a
G-floating number.

ARGUMENTS angle-in-degrees
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of
a floating-point number that is this angle. For MTH$SIND, angle-in
degrees specifies an F-floating number. For MTH$DSIND, angle-in
degrees specifies a D-floating number. For MTH$GSIND, angle-in
degrees specifies a G-floating number.

DESCRIPTION See MTH$SINCOSD for the algorithm that is used to compute the sine.

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HSIND.

MTH-131

MTH$xSIND

CONDITION
VALUES
SIGNALED

MTH-132

SS$_ROPRAND

MTH$_FLOUNDMAT

Reserved operand. The MTH$SIND procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point underflow in math library. The absolute
value of the input angle is less than 180/7r * 2-m
(where m = 128 for F-floating and D-floating, and
1,024 for G-floating).

MTH$xSINH

MTH$xSINH Hyperbolic Sine

FORMAT

RETURNS

The Hyperbolic Sine routine returns the hyperbolic sine of the input value
specified by floating-point-input-value.

MTH$SINH floating-point-input-value
MTH$DSINH floating-point-input-value
MTH$GSINH floating-point-input-value
Each of the above formats accepts as input one of the :floating-point types.

VMS usage: floating__point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The hyperbolic sine of floating-point-input-value. MTH$SINH returns
an F-:floating number. MTH$DSINH returns a D-:floating number.
MTH$GSINH returns a G-fioating number.

ARGUMENTS floating-point-input-value
VMS usage: floating__point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a :floating-point number that is this value. For MTH$SINH,
floating-point-input-value specifies an F-:floating number. For
MTH$DSINH, floating-point-input-value specifies a D-fioating number.
For MTH$GSINH, floating-point-input-value specifies a G-:floating
number.

DESCRIPTION Computation of the hyperbolic sine function depends on the magnitude
of the input argument. The range of the function is partitioned using
four data type dependent constants: a(z), b(z), and c(z). The subscript z
indicates the data type. The constants depend on the number of exponent
bits (e) and the number of fraction bits (/) associated with the data type
(z).

MTH-133

MTH$xSINH

CONDITION
VALUES
SIGNALED

MTH-134

The values of e and fare:

z

F

D

G

e

8

8

11

f

24

56

53

The values of the constants in terms of e and fare:

Variable

a(z)

b(z)

c(z)

Value

2(-f /2)

CEILING[(! + 1)/2 * ln(2)]

(2(e-1) * ln(2))

Based on the above definitions, zSINH(X) is computed as follows:

Value of X

IX I < a(z)

a(z) ::;; IX I < 1.0

1.0 ::;; I x I < b(z)

b(z) :::; I XI < c(z)

c(z) ::;; IX I

Value Returned

x
zSINH(X) is computed using a
power series expansion in IXl2

(zEXP(X) - zEXP(-X))/2

SIGN(X) * zEXP(IXl)/2
Overflow occurs

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HSINH.

SS$_ROPRAND Reserved operand. The MTH$xSINH procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$_FLOOVEMAT

MTH$xSINH

Floating-point overflow in Math Library: the absolute
value of floating-point-input-value is greater than
yyy. Ll8$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector CHF$L_
MCH_SAVRO/R1. The result is the floating-point
reserved operand unless you have written a condition
handler to change CHF$L_MCH_SAVRO/R1.

The values of yyy are approximately:

MTH$SINH-88.722
MTH$DSINH-88.722
MTH$GSINH-709.782

MTH-135

MTH$xSQRT

MTH$xSQRT Square Root

FORMAT

jsb entries

RETURNS

ARGUMENTS

MTH-136

The Square Root routine returns the square root of the input value floating
point-input-value.

MTH$SQRT floating-point-input-value
MTH$DSQRT floating-point-input-value
MTH$GSQRT floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

MTH$SQRT R3
MTH$DSQRT RS
MTH$GSQRT RS
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The square root of floating-point-input-value. MTH$SQRT returns
an F-floating number. MTH$DSQRT returns a D-floating number.
MTH$GSQRT returns a G-floating number.

floating-point-input-value
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
Input value. The floating-point-input-value argument is the address of
a floating-point number that contains this input value. For MTH$SQRT,
floating-point-input-value specifies an F-floating number. For
MTH$DSQRT, floating-point-input-value specifies a D-floating number.
For MTH$GSQRT, floating-point-input-value specifies a G-floating
number.

MTH$xSQRT

DESCRIPTION The square root of Xis computed as follows:

If X < o, an error is signaled.

Let X = 2K * F

where:

K is the exponential part of the floating-point data

F is the fractional part of the floating-point data

If K is even:
x = 2<2•P) * F,
zSQRT(X) = 2P * zSQRT(F),
1/2-5:.F < 1, where P = K/2

If K is odd:
x = 2<2•P+1) * F = 2(2•P+2) * (F /2),
zSQRT(X) = 2(P+

1
) * zSQRT(F /2),

1/4-5:.F /2 < 1/2, where p = (K-1)/2

Let F' = A * F + B, when K is even:

A = 0.95F6198 (hex)

8 = 0.6BA5918 (hex)

Let F' =A* (F /2) + B, when K is odd:

A = O.D413CCC (hex)

8 = 0.4C1 E248 (hex)

Let K' = P, when K is even

Let K' = P+1, when K is odd

Let Y[o] = zK' * F' be a straight line approximation within the given
interval using coefficients A and B which minimize the absolute error at
the midpoint and endpoint.

Starting with Y[O], n Newton-Raphson iterations are performed:

Y[n + 1] = 1/2 * (Y[n] + X/Y[n])

where n = 2, 3, or 3 for z = F-:floating, D-:floating, or G-floating,
respectively.

The routine description for the H-:floating point version of this routine is
listed alphabetically under MTH$HSQRT.

MTH-137

MTH$xSQRT

CONDITION
VALUES
SIGNALED

MTH-138

SS$_ROPRAND

MTH$_SQUROONEG

Reserved operand. The MTH$xSQRT procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Square root of negative number. Argument floating
point-input-value is less than 0.0. LIB$SIGNAL
copies the floating-point reserved operand to the
mechanism argument vector CHF$L_MCH_SAVRO
/R1. The result is the floating-point reserved operand
unless you have written a condition handler to change
CHF$L_MCH_SAVRO/R1.

MTH$xTAN

MTH$xTAN Tangent of Angle Expressed in Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Tangent of Angle Expressed in Radians routine returns the tangent of a
given angle (in radians).

MTH$TAN angle-in-radians
MTH$DTAN angle-in-radians
MTH$GTAN angle-in-radians
Each of the above formats accepts as input one of the floating-point types.

MTH$TAN R4
MTH$DTAN_R7
MTH$GTAN_R7
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The tangent of the angle specified by angle-in-radians. MTH$TAN
returns an F-floating number. MTH$DTAN returns a D-floating number.
MTH$GTAN returns a G-floating number.

angle-in-radians
VMS usage: floating_point
type: F _floating, D _floating, G_floating
access: read only
mechanism: by reference
The input angle (in radians). The angle-in-radians argument is the
address of a floating-point number that is this angle. For MTH$TAN,
angle-in-radians specifies an F-floating number. For MTH$DTAN,
angle-in-radians specifies a D-floating number. For MTH$GTAN,
angle-in-radians specifies a G-floating number.

MTH-139

MTH$xTAN

DESCRIPTION When the input argument is expressed in radians, the tangent function is
computed as follows:

CONDITION
VALUES
SIGNALED

MTH-140

1 If !XI< 2<-f/2), then zTAN(X) = X (see the section on MTH$zCOSH
for the definition of fJ

2 Otherwise, call MTH$zSINCOS to obtain zSIN(X) and zCOS(X); then

a. If zGOS(X) = 0, signal overflow

b. Otherwise, zTAN(X) = zSIN(X)/zGOS(X)

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HTAN.

SS$_ROPRAND

MTH$_FLOOVEMAT

Reserved operand. The MTH$xTAN procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library.

MTH$xTAND

MTH$xTAND Tangent of Angle Expressed in
Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Tangent of Angle Expressed in Degrees routine returns the tangent of a
given angle (in degrees).

MTH$TAND angle-in-degrees
MTH$DTAND angle-in-degrees
MTH$GTAND angle-in-degrees
Each of the above formats accepts as input one of the floating-point types.

MTH$TAND_R4
MTH$DTAND R7
MTH$GTAND_R7
Each of the above JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Tangent of the angle specified by angle-in-degrees. MTH$TAND returns
an F-fioating number. MTH$DTAND returns a D-fioating number.
MTH$GTAND returns a G-fioating number.

angle-in-degrees
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The input angle (in degrees). The angle-in-degrees argument is the
address of a floating-point number which is this angle. For MTH$TAND,
angle-in-degrees specifies an F-fioating number. For MTH$DTAND,
angle-in-degrees specifies a D-fioating number. For MTH$GTAND,
angle-in-degrees specifies a G-floating number.

MTH-141

MTH$xTAND

DESCRIPTION When the input argument is expressed in degrees, the tangent function is
computed as follows:

CONDITION
VALUES
SIGNALED

MTH-142

1 If IXI < (180/?r) * 2<-2/<e-l)) and underflow signaling is enabled,
underflow is signaled (see the section on MTH$zCOSH for the
definition of e).

2 Otherwise, if IXI < (180/?r) * 2<-1/2), then zTAND(X) = (?r/180) * X.
See the description of MTH$zCOSH for the definition off.

3 Otherwise, call MTH$zSINCOSD to obtain zSIND(X) and zCOSD(X).

a. Then, if zGOSD(X) = 0, signal overflow

b. Else, zTAND(X) = zSIND(X)/zGOSD(X)

The routine description for the H-fl.oating point version of this routine is
listed alphabetically under MTH$HTAND.

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

Reserved operand. The MTH$xTAND procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero .. Floating-point reserved
operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library.

Floating-point underflow in Math Library.

MTH$xTANH

MTH$xTANH Compute the Hyperbolic Tangent

FORMAT

RETURNS

The Compute the Hyperbolic Tangent routine returns the hyperbolic tangent of
the input value.

MTH$TANH floating-point-input-value
MTH$DTANH floating-point-input-value
MTH$GTANH floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

The hyperbolic tangent of :floating-point-input-value. MTH$TANH
returns an F-floating number. MTH$DTANH returns a D-floating number.
MTH$GTANH returns a G-floating number. Unlike the other three
routines, MTH$HTANH returns the hyperbolic tangent by reference in
the h-tanh argument.

ARGUMENTS floating-point-input-value
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The :floating-point-input-value argument is the
address of a floating-point number that contains this input value. For
MTH$TANH, :floating-point-input-value specifies an F-floating number.
For MTH$DTANH, :floating-point-input-value specifies a D-floating
number. For MTH$GTANH, floating-point-input-value specifies a
G-floating number.

DESCRIPTION In calculating the hyperbolic tangent of x, the values of g and h are:

z

F

D

G

g

12

28

26

h

10

21

20

MTH-143

MTH$xTANH

CONDITION
VALUE
SIGNALED

MTH-144

For MTH$TANH, MTH$DTANH, and 1'4TH$GTANH the hyperbolic
tangent of x is then computed as follows:

Value of x

lxl9-g
2-9 < !XI < o.s

o.s~IXI < i.o

i.o <!XI< h

h~IXI

Hyperbolic Tangent Returned

x
xT ANH(X) = X + X 3 * R(X2

), where R(X2
) is a

rational function of X 2
•

xTANH(X) = xTANH(xHI)+xTANH(xLO)*C/B

where C = 1- xTANH(xHI) * xTANH(xHI),

B = 1 + xT ANH(xHI) * xT ANH(xLO),

xHI = 1/2 + N/16 + 1/32 for N=0,1, ... ,7,

and xLO = X- xHI.

xT ANH(X) = (xEXP(2* X)-1)/(xEXP(2*X)+1)

xTANH(X) = sign(X) * 1

The routine description for the H-floating point version of this routine is
listed alphabetically under MTH$HTANH.

SS$_ROPRAND Reserved operand. The MTH$xTANH procedure
encountered a floating-point reserved operand due to
incorrect user input. A floating-point reserved operand
is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved
operands are reserved for future use by DIGITAL.

MTH$UMAX

MTH$UMAX Compute Unsigned Maximum

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Compute Unsigned Maximum routine computes the unsigned longword
maximum of n unsigned longword arguments, where n is greater than or equal
to 1.

MTH$UMAX argument [argument, ... }

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Maximum value returned by MTH$UMAX.

argument
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Argument whose maximum MTH$UMAX computes. Each argument
argument is an unsigned longword that contains one of these values.

argument
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Additional arguments whose maximum MTH$UMAX computes. Each
argument argument is an unsigned longword that contains one of these
values.

MTH$UMAX is the unsigned version of MTH$JMAXO.

None.

MTH-145

MTH$UMIN

MTH$UMIN Compute Unsigned Minimum

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

MTH-146

The Compute Unsigned Minimum routine computes the unsigned longword
minimum of n unsigned longword arguments, where n is greater than or equal
to 1.

MTH$UMIN argument [argument, ...]

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Minimum value returned by MTH$UMIN.

argument
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Argument whose minimum MTH$UMIN computes. Each argument
argument is an unsigned longword that contains one of these values.

argument
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Additional arguments whose minimum MTH$UMIN computes. Each
argument argument is an unsigned longword that contains one of these
values.

MTH$UMIN is the unsigned version of MTH$JMINO.

None.

Vector MTH$ Reference Section
Part Ill provides detailed descriptions of two sets of vector routines provided
by the VMS RTL Mathematics (MTH$) Facility, BLAS Level 1 and FOLR.
The BLAS Level 1 are the Basic Linear Algebraic Subroutines designed by
Lawson, Hanson, Kincaid, and Krogh (1978). The FOLR (First Order Linear
Recurrence) routines provide a vectorized algorithm for the linear recurrence
relation.

BLAS1 $VlxAMAX

BLAS1$VlxAMAX Obtain the Index of the First
Element of a Vector Having the
Largest Absolute Value

FORMAT

RETURNS

The Obtain the Index of the First Element of a Vector Having the Largest
Absolute Value routines find the index of the first occurrence of a vector
element having the maximum absolute value.

BLAS1$VISAMAX n ,x ,incx
BLAS1 $VIDAMAX n ,x ,incx
BLAS1 $VIGAMAX n ,x ,incx
BLAS1 $VICAMAX n ,x ,incx
BLAS1$VIZAMAX n ,x ,incx
BLAS1$VIWAMAX n ,x ,incx
Use BLAS1$VISAMAX for single-precision real operations. Use
BLAS1$VIDAMAX for double-precision real (D-floating) operations and
BLAS1$VIGAMAX for double-precision real (G-floating) operations.

Use BLAS1$VICAMAX for single-precision complex operations. Use
BLAS1$VIZAMAX for double-precision complex (D-floating) operations and
BLAS1$VIWAMAX for double-precision complex (G-fl.oating) operations.

VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

For the real versions of this routine, the function value is the index of the
first occurrence of a vector element having the maximum absolute value,
as follows:

lxi I = max {!xi I for i = 1, 2,. .. , n}

For the complex versions of this routine, the function value is the index
of the first occurrence of a vector element having the largest sum of the
absolute values of the real and imaginary parts of the vector elements, as
follows:

I Re (Xi) I + !Im(Xi) I = max {I Re (x j) I + I Im(Xj) I for i = 1, 2, ... , n}

ARGUMENTS n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

MTH-149

BLAS1 $VlxAMAX

MTH-150

Number of elements in vector x. The n argument is the address of a
signed longword integer containing the number of elements. If you specify
a negative value or 0 for n, 0 is returned.

x
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array x
are accessed only if the increment argument of x, called incx, is 1. The
x argument is the address of a floating-point or floating-point complex
number that is this array. This argument is an array of length at least

1+ (n-1) * lincxl

where:

n

incx

number of vector elements specified in n

increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1 $VISAMAX

BLAS1$VIDAMAX

BLAS1$VIGAMAX

BLAS1 $VICAMAX

BLAS 1 $VIZAMAX

BLAS1 $VIWAMAX

Data Type for x

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

If n is less than or equal to 0, then imax is 0.

incx
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: · by reference
Increment argument for the array x. The incx argument is the address of
a signed longword integer containing the increment argument. If incx is
greater than or equal to 0, then xis referenced forward in array x; that is,
xi is referenced as

x(l + (i - 1) * incx)

where:

x array specified in x

element of the vector x

incx increment argument for the array x specified in incx

If you specify a negative value for incx, it is interpreted as the absolute
value of incx.

BLAS1 $VlxAMAX

DESCRIPTION BLAS1$VISAMAX, BLAS1$VIDAMAX, and BLAS1$VIGAMAX find
the index, i, of the first occurrence of a vector element having the
maximum absolute value. BLAS1$VICAMAX, BLAS1$VIZAMAX, and
BLAS1$VIWAMAX find the index, i, of the first occurrence of a vector
element having the largest sum of the absolute values of the real and
imaginary parts of the vector elements.

EXAMPLE

c

Vector x contains n elements that are accessed from array x by stepping
incx elements at a time. The vector xis a real or complex single-precision
or double-precision (D and G) n-element vector. The vector can be a row or
a column of a matrix. Both forward and backward indexing are permitted.

BLAS1$VISAMAX, BLAS1$VIDAMAX, and BLAS1$VIGAMAX determine
the smallest integer i of the n-element vector x such that:

I Xi I = max { I Xj I for i = 1, 2, ... , n}

BLAS1$VICAMAX, BLAS1$VIZAMAX, and BLAS1$VIWAMAX determine
the smallest integer i of the n-element vector x such that:

I Re (Xi) I + !Im(Xi) I = max {I Re (xi) I + I Im(xi) I for i = 1, 2, ... , n}

You can use the BLAS1$VIxAMAX routines to obtain the pivots in
Gaussian elimination.

The public-domain BLAS Level 1 IxAMAX routines require a positive
value for incx. The Run-Time Library BLAS Level 1 routines interpret a
negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for incx = 0. Therefore,
specifying 0 for incx has the effect of setting imax equal to 1 using vector
operations.

C To obtain the index of the element with the maximum
C absolute value.
c

INTEGER IMAX,N,INCX
REAL X (40)
INCX = 2
N = 20
IMAX= BLAS1$VISAMAX(N,X,INCX)

MTH-151

BLAS1$VxASUM

BLAS1 $VxASUM Obtain the Sum of the Absolute
Values of the Elements of a
Vector

FORMAT

RETURNS

ARGUMENTS

MTH-152

The Obtain the Sum of the Absolute Values of the Elements of a Vector
routines determine the sum of the absolute values of the elements of the
n-element vector x.

BLAS1 $VSASUM n ,x ,incx
BLAS1 $VDASUM n ,x ,incx
BLAS1 $VGASUM n ,x ,incx
BLAS1 $VSCASUM n ,x ,incx
BLAS1 $VDZASUM n ,x ,incx
BLAS1$VGWASUM n ,x ,incx
Use BLAS1$VSASUM for single-precision real operations. Use
BLAS1$VDASUM for double-precision real CD-floating) operations and
BLAS1$VGASUM for double-precision real CG-floating) operations.

Use BLAS1$VSCASUM for single-precision complex operations. Use
BLAS1$VDZASUM for double-precision complex CD-floating) operations
and BLAS1$VGWASUM for double-precision complex CG-floating)
operations.

VMS usage: floating_point
type: F _floating, D_floating, or G_floating real
access: write only
mechanism: by value

The function value, called sum, is the sum of the absolute values of
the elements of the vector x. The data type of the function value is
a real number; for the BLAS1$VSCASUM, BLAS1$VDZASUM, and
BLAS1$VGWASUM routines, the data type of the function value is the
real data type corresponding to the complex argument data type.

n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector x to be added. Then argument is the
address of a signed longword integer containing the number of elements.

BLAS1$VxASUM

x
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array x
are accessed only if the increment argument of x, called incx, is 1. The
x argument is the address of a floating-point or floating-point complex
number that is this array. This argument is an array of length at least

1 + (n - 1) * lincxl
where:

n number of vector elements specified in n

incx increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1 $VSASUM

BLAS1 $VDASUM

BLAS1 $VGASUM

BLAS1 $VSCASUM

BLAS1 $VDZASUM

BLAS1 $VGWASUM

Data Type for x

F-floating real

D-floating real

G:-floating real

F-floating complex

D-floating complex

G-floating complex

If n is less than or equal to 0, then sum is 0.0.

incx
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array x. The incx argument is the address of
a signed longword integer containing the increment argument. If incx is
greater than or equal to 0, then xis referenced forward in array x; that is,
xi is referenced in

x(l + (i - 1) * incx)

where:

x array specified in x

element of the vector z

incx increment argument for the array x specified in incx

If you specify a negative value for incx, it is interpreted as the absolute
value of incx.

MTH-153

BLAS1$VxASUM

DESCRIPTION BLAS1$VSASUM, BLAS1$VDASUM, and BLAS1$VGASUM obtain the
sum of the absolute values of the elements of the n-element vector x.
BLAS1$VSCASUM, BLAS1$VDZASUM, and BLAS1$VGWASUM obtain
the sum of the absolute values of the real and imaginary parts of the
elements of the n-element vector x.

EXAMPLE

c

Vector x contains n elements that are accessed from array x by stepping
incx elements at a time. The vector xis a real or complex single-precision
or double-precision (D and G) n-element vector. The vector can be a row or
a column of a matrix. Both forward and backward indexing are permitted.

BLAS1$VSASUM, BLAS1$VDASUM, and BLAS1$VGASUM compute the
sum of the absolute values of the elements of x, which is expressed as
follows:

Ef=1 lxil = lx1I + lx2I + · · · + lxnl

BLAS1$VSCASUM, BLAS1$VDZASUM, and BLAS1$VGWASUM compute
the sum of the absolute values of the real and imaginary parts of the
elements of x, which is expressed as follows:

Ef=1(lail + lbil) = (la1I + lb11) + (la2I + lb21) + · · · + (lanl + lbnl)

where lxil = (ai, bi)

and !ail+ lbil = lreall +!imaginary!

The public-domain BLAS Level 1 xASUM routines require a positive
value for incx. The Run-Time Library BLAS Level 1 routines interpret a
negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for incx = 0. Therefore,
specifying 0 for incx has the effect of computing n * lx1 I using vector
operations.

Rounding in the summation occurs in a different order than in a sequential
evaluation of the sum, so the final result may differ from the result of a
sequential evaluation.

C To obtain the sum of the absolute values of the
C elements of vector x:
c

MTH-154

INTEGER N,INCX
REAL X (20), SUM
INCX = 1
N = 20
SUM= BLAS1$VSASUM(N,X,INCX)

BLAS1 $VxAXPV

BLAS1 $VxAXPV Multiply a Vector by a Scalar and
Add a Vector

FORMAT

The Multiply a Vector by a Scalar and Add a Vector routines compute ax+ y,
where a is a scalar number and x and y are n-element vectors.

BLAS1$VSAXPV
BLAS1 $VDAXPV
BLAS1$VGAXPV
BLAS1$VCAXPV
BLAS1$VZAXPV
BLAS1 $VWAXPV

n ,a ,x ,incx ,y ,incy
n ,a ,x ,incx ,y ,incy
n ,a ,x ,incx ,y ,incy
n ,a ,x ,incx ,y ,incy
n ,a ,x ,incx ,y ,incy
n ,a ,x ,incx ,y ,incy

Use BLAS1$VSAXPY for single-precision real operations. Use
BLAS1$VDAXPY for double-precision real CD-floating) operations and
BLAS1$VGAXPY for double-precision real CG-floating) operations.

Use BLAS1$VCAXPY for single-precision complex operations. Use
BLAS1$VZAXPY for double-precision complex CD-floating) operations
and BLAS1$VWAXPY for double-precision complex CG-floating) operations.

RETURNS None.

ARGUMENTS n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vectors x and y. The n argument is the address of
a signed longword integer containing the number of elements. If n is less
than or equal to 0, then y is unchanged.

a
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Scalar multiplier for the array x. The a argument is the address of a
floating-point or floating-point complex number that is this multiplier. If
a equals 0, then y is unchanged. If a shares a memory location with any
element of the vector y, results are unpredictable. Specify the same data
type for arguments a, x, and y.

MTH-155

BLAS1$VxAXPY

MTH-156

x
VMS usage: floating_point or complex_number
type: F _floating, D _floating, G_floating real or F _floating,

D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array x
are accessed only if the increment argument of x, called incx, is 1. The
x argument is the address of a floating-point or floating-point complex
number that is this array. The length of this array is at least

1 + (n - 1) * lincxl

where:

n

incx

number of vector elements specified in n

increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS 1 $VSAXPY F-floating real

BLAS1 $VDAXPY D-floating real

BLAS1 $VGAXPY G-floating real

BLAS1$VCAXPY F-floating complex

BLAS 1 $VZAXPY D-floating complex

BLAS1 $VWAXPY G-floating complex

If any element of x shares a memory location with an element of y, the
results are unpredictable.

incx
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array x. The incx argument is the address of
a signed longword. integer containing the increment argument. If incx is
greater than or equal to 0, then x is referenced forward in array x; that is,
xi is referenced in

x(l + (i - 1) * incx)

where:

x array specified in x

element of the vector x

incx increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, Xi
is referenced in

x(l + (n - i) * lincxl)

BLAS1 $VxAXPY

where:

x array specified in x
n number of vector elements specified in n

element of the vector x

incx increment argument for the array x specified in incx

y
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
On entry, array containing the elements to be accessed. All elements of
array y are accessed only if the increment argument of y, called incy, is 1.
They argument is the address of a floating-point or floating-point complex
number that is this array. The length of this array is at least

1 + (n - 1) * lincyl

where:

n number of vector elements specified in n

incy increment argument for the array y specified in incy

Specify the data type as follows:

Routine Data Type for y

BLAS1$VSAXPY F-floating real

BLAS1 $VDAXPY D-floating real

BLAS1 $VGAXPY G-floating real

BLAS1 $VCAXPY F-floating complex

BLAS1$VZAXPY D-floating complex

BLAS1 $VWAXPY G-floating complex

If n is less than or equal to 0, then y is unchanged. If any element
of x shares a memory location with an element of y, the results are
unpredictable.

On exit, y contains an array of length at least

1 + (n - 1) * lincyl

where:

n number of vector elements specified in n

incy increment argument for the array y specified in incy

After the call to BLAS1$VxAXPY, Yi is set equal to

Yi+ a* Xi·

MTH-157

BLAS1$VxAXPY

DESCRIPTION

MTH-158

where:

y the vector y

element of the vector z or y

a scalar multiplier for the vector x specified in a

x the vector z

incy
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array y. The incy argument is the address of
a signed longword integer containing the increment argument. If incy is
greater than or equal to 0, then y is referenced forward in array y; that is,
Yi is referenced in

y(l + (i - 1) * incy)

where:

y array specified in y

element of the vector y

incy increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, Yi
is referenced in

y(l + (n - i) * lincyl)

where:

y array specified in y

n number of vector elements specified in n

element of the vector y

incy increment argument for the array y specified in incy

BLAS1$VxAXPY multiplies a vector x by a scalar, adds to a vector y, and
stores the result in the vector y. This is expressed as follows:

y+-ax + y

where a is a scalar number and x and y are real or complex single
precision or double-precision (D and G) n-element vectors. The vectors
can be rows or columns of a matrix. Both forward and backward indexing
are permitted. Vectors x and y contain n elements that are accessed from
arrays x and y by stepping incx and incy elements at a time.

The routine name determines the data type you should specify for
arguments a, x, and y. Specify the same data type for each of these
arguments.

The algorithm does not provide a special case for incx = 0. Therefore,
specifying 0 for incx has the effect of adding the constant a * x1 to all
elements of the vector y using vector operations.

EXAMPLE

c
C To compute y=y+2.0*x using SAXPY:
c

INTEGER N,INCX,INCY
REAL X(20), Y(20),A
INCX = 1
INCY = 1
A = 2.0
N = 20
CALL BLAS1$VSAXPY(N,A,X,INCX,Y,INCY)

BLAS1$VxAXPY

MTH-159

BLAS1 $VxCOPY

BLAS1 $VxCOPY Copy a Vector

FORMAT

RETURNS

ARGUMENTS

MTH-160

The Copy a Vector routines copy n elements of the vector x to the vector y.

BLAS1 $VSCOPY
BLAS1 $VDCOPY
BLAS1 $VCCOPY
BLAS1$VZCOPY

n ,x ,incx ,y ,incy
n ,x ,incx ,y ,incy
n ,x ,incx ,y ,incy
n ,x ,incx ,y ,incy

Use BLAS1$VSCOPY for single-precision real operations and
BLAS1$VDCOPY for double-precision real (Dor G) operations.

Use BLAS1$VCCOPY for single-precision complex operations and
BLAS1$VZCOPY for double-precision complex (Dor G) operations.

None.

n
VMS usage: longword_signed
type: longword integer (signed}
access: read only
mechanism: by reference
Number of elements in vector x to be copied. Then argument is the
address of a signed longword integer containing the number of elements in
vector x. If n is less than or equal to 0, then y is unchanged.

x
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array x
are accessed only if the increment argument of x, called incx, is 1. The
x argument is the address of a floating-point or floating-point complex
number that is this array. This argument is an array of length at least

1 + (n - 1) * lincxl

where:

n number of vector elements specified in n

incx increment argument for the array x specified in incx

BLAS1$VxCOPY

Specify the data type as follows:

Routine

BLAS1 $VSCOPY

BLAS1 $VDCOPY

BLAS1 $VCCOPY

BLAS 1 $VZCOPY

incx

Data Type for x

F-floating real

D-floating or G-floating real

F-floating complex

D-floating or G-floating complex

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array x. The incx argument is the address of
a signed longword integer containing the increment argument. If incx is
greater than or equal to 0, then xis referenced forward in array x; that is,
Xi is referenced in ·

x(l + (i - 1) * incx)

where:

x array specified in x

element of the vector x

incx increment argument for the array x specified in incx

If incx is less than 0, then xis referenced backward in array x; that is, xi
is referenced in

x(l + (n - i) * lincxl)

where:

x array specified in x

n number of vector elements specified in n

element of the vector x

incx increment argument for the array x specified in incx

y
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: write only
mechanism: by reference, array reference
Array that receives the copied elements. All elements of array y receive
the copied elements only if the increment argument of y, called incy, is 1.
The y argument is the address of a floating-point or floating-point complex
number that is this array. This argument is an array of length at least

1 + (n - 1) * Ii ncy I

MTH-161

BLAS1$VxCOPY

MTH-162

where:

n number of vector elements specified in n

incy increment argument for the array y specified in incy

Specify the data type as follows:

Routine

BLAS1$VSCOPY

BLAS1$VDCOPY

BLAS1 $VCCOPY

BLAS1 $VZCOPY

Data Type for y

F-floating real

D-floating or G-floating real

F-floating complex

D-floating or G-floating complex

If n is less than or equal to 0, then y is unchanged. If incx is equal to 0,
then each Yi is set to x1. If incy is equal to 0, then Yi is set to the last
referenced element of x. If any element of x shares a memory location
with an element of y, the results are unpredictable. (See the Description
section for a special case that does not cause unpredictable results when
the same memory location is shared by input and output.)

incy
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array y. The incy argument is the address of
a signed longword integer containing the increment argument. If incy is
greater than or equal to 0, then y is referenced forward in array y; that is,
Yi is referenced in

y(l + (i - 1) * incy)

where:

y array specified in y

element of the vector y

If incy is less than 0, then y is referenced backward in array y; that is, Yi
is referenced in

y(l + (n - i) * lincyl)

where:

y array specified in y

n number of vector elements specified in n

element of the vector y

incy increment argument for the array y specified in incy

DESCRIPTION

BLAS1$VxCOPY

BLAS1$VSCOPY, BLAS1$VDCOPY, BLAS1$VCCOPY, and
BLAS1$VZCOPY copy n elements of the vector x to the vector y. Vector
x contains n elements that are accessed from array x by stepping incx
elements at a time. Both x and y are real or complex single-precision or
double-precision (D and G) n-element vectors. The vectors can be rows or
columns of a matrix. Both forward and backward indexing are permitted.

If you specify 0 for incx, BLAS1$VxCOPY initializes all elements of y to a
constant.

If you specify -incx for incy, the vector xis stored in reverse order in y.
In this case, the call format is as follows:

CALL BLAS1$VxCOPY (N,X,INCX,Y,-INCX)

It is possible to move the contents of a vector up or down within itself and
not cause unpredictable results even though the same memory location is
shared between input and output. To do this when i is greater thanj, call
the routine BLAS1$VxCOPY with incx = incy > 0 as follows:

CALL BLAS1$VxCOPY (N,X(I),INCX,X(J),INCX)

The preceding call to BLAS1$VxCOPY moves

x(i), x(i + 1 * incx), ... x(i + (n - 1) * incx) to

x(j), x(j + 1 * incx), ... x(j + (n - 1) * incx)

If i is less thanj, specify a negative value for incx and incy in the call to
BLAS1$VxCOPY, as follows. The parts that do not overlap are unchanged.

CALL BLAS1$VxCOPY (N,X(I),-INCX,X(J),-INCX)

Note: BLAS1$VxCOPY does not perform floating operations on the input
data. Therefore, floating reserved operands are not detected by
BLAS1$VxCOPY.

MTH-163

BLAS1$VxCOPV

EXAMPLE

c
C To copy a vector x to a vector y using BLAS1$VSCOPY:
c

c

INTEGER N,INCX,INCY
REAL X(20),Y(20)
INCX = 1
INCY = 1
N = 20
CALL BLAS1$VSCOPY(N,X,INCX,Y,INCY)

C To move the contents of X(l),X(3),X(5), ... ,X(2N-1)
C to X(3),X(5), ... ,X(2N+l) and leave x unchanged:
c

CALL BLAS1$VSCOPY(N,X,-2,X(3),-2))
c
C To move the contents of X(2),X(3), ... ,X(lOO) to
C X(l),X(2), ... ,X(99)and leave x(lOO) unchanged:
c

CALL BLAS1$VSCOPY(99,X(2),1,X,1))
c
C To move the contents of X(l),X(2),X(3), ... ,X(N) to
C Y(N),Y(N-1), ... ,Y
c

CALL BLAS1$VSCOPY(N,X,1,Y,-1))

MTH-164

BLAS1 $VxDOTx

BLAS1 $VxDOTx Obtain the Inner Product of Two
Vectors

FORMAT

RETURNS

The Obtain the Inner Product of Two Vectors routines return the dot product
of two n-element vectors, x and y.

BLAS1$VSDOT n ,x ,incx ,y ,incy
BLAS1$VDDOT n ,x ,incx ,y ,incy
BLAS1$VGDOT n ,x ,incx ,y ,incy
BLAS1$VCDOTU
BLAS1 $VCDOTC
BLAS1 $VZDOTU
BLAS1 $VWDOTU
BLAS1 $VZDOTC
BLAS1$VWDOTC

n ,x ,incx ,y ,incy
n ,x ,incx ,y ,incy
n ,x ,incx ,y ,incy
n ,x ,incx ,y ,incy

n ,x ,incx ,y ,incy
n ,x ,incx ,y ,incy

Use BLAS1$VSDOT to obtain the inner product of two single-precision
real vectors.

Use BLAS1$VDDOT to obtain the inner product of two double-precision
(D-fioating) real vectors. Use BLAS1$VGDOT to obtain the inner product
of two double-precision (G-fioating) real vectors.

Use BLAS1$VCDOTU to obtain the inner product of two single-precision
complex vectors (unconjugated).

Use BLAS1$VCDOTC to obtain the inner product of two single-precision
complex vectors (conjugated).

Use BLAS1$VZDOTU to obtain the inner product of two double-precision
(D-floating) complex vectors (unconjugated). Use BLAS1$VWDOTU to
obtain the inner product of two double-precision (G-floating) complex
vectors (unconjugated).

Use BLAS1$VZDOTC to obtain the inner product of two double-precision
(D-fioating) complex vectors (conjugated). Use BLAS1$VWDOTC to obtain
the inner product of two double-precision (G-floating) complex vectors
(conjugated).

VMS usage:
type:

access:
mechanism:

floating_point or complex_number
F _floating, D _floating, G_floating real or F _floating,
D_floating, G_floating complex
write only
by value

The function value, called dotpr, is the dot product of two n-element
vectors, x and y. Specify the same data type for dotpr and the
argument x.

MTH-165

BLAS1 $VxDOTx

ARGUMENTS n

MTH-166

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector x. Then argument is the address of a
signed longword integer containing the number of elements. If you specify
a value for n that is less than or equal to 0, then the value of dotpr is 0.0.

x
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array x
are accessed only if the increment argument of x, called incx, is 1. The
x argument is the address of a floating-point or floating-point complex
number that is this array. This argument is an array of length at least

1 + (n - 1) * lincxl

where:

n number of vector elements specified in n

incx increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1$VSDOT F-floating real

BLAS1$VDDOT D-floating real

BLAS1$VGDOT G-floating real

BLAS1$VCDOTU and F-floating complex
BLAS1 $VCDOTC

BLAS 1 $VZDOTU and D-floating complex
BLAS 1 $VZDOTC

BLAS 1 $VWDOTU G-floating complex
and
BLAS 1 $VWDOTC

BLAS1 $VxDOTx

incx
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array x. The incx argument is the address
of a signed longword integer containing the increment argument. If incx
is greater than 0, then xis referenced forward in array x; that is, Xi is
referenced in

x(l + (i - 1) * incx)

where:

x array specified in x

element of the vector z

incx increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, Xi
is referenced in

x(l + (n - i) * jincxl)

where:

x array specified in x

n number of vector elements specified in n

element of the vector z

incx increment argument for the array x specified in incx

y
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array y
are accessed only if the increment argument of y, called incy, is 1. The
y argument is the address of a floating-point or floating-point complex
number that is this array. This argument is an array of length at least

1 + (n - 1) * jincyj

where:

n number of vector elements specified in n

incy increment argument for the array y specified in incy

MTH-167

BLAS1$VxDOTx

MTH-168

Specify the data type as follows:

Routine

BLAS1 $VS DOT

BLAS1 $VD DOT

BLAS1$VGDOT

BLAS1$VCDOTU and
BLAS1 $VCDOTC

BLAS1$VZDOTU and
BLAS1 $VZDOTC

BLAS1 $VWDOTU
and
BLAS 1 $VWDOTC

incy

Data Type for y

F-floating real

D-floating real

G-floating real

F-floating complex

D-floating complex

G-floating complex

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array y. The incy argument is the address of
a signed longword integer containing the increment argument. If incy is
greater than or equal to 0, then y is referenced forward in array y; that is,
Yi is referenced in

y(l + (i - 1) * incy)

where:

y array specified in y
element of the vector y

incy increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, Yi
is referenced in

y(l + (n - i) * lincyl)

where:

y array specified in y

n number of vector elements specified in n

element of the vector y

incy increment argument for the array y specified in incy

BLAS1 $VxDOTx

DESCRIPTION The unconjugated versions of this routine, BLAS1$VSDOT,
BLAS1$VDDOT, BLAS1$VGDOT, BLAS1$VCDOTU, BLAS1$VZDOTU,
and BLAS1$VWDOTU return the dot product of two n-element vectors, x
and y, expressed as follows:

EXAMPLE

c

X · Y = XlYl + X2Y2 + · · · + XnYn

The conjugated versions of this routine, BLAS1$VCDOTC,
BLAS1$VZDOTC, and BLAS1$VWDOTC return the dot product of the
conjugate of the first n-element vector with a second n-element vector, as
follows:

x · Y = 'X1Y1 + 'X2Y2 + · · · + XnYn

Vectors x and y contain n elements that are accessed from arrays x and y
by stepping incx and incy elements at a time. The vectors x and y can
be rows or columns of a matrix. Both forward and backward indexing are
permitted.

The routine name determines the data type you should specify for
arguments x and y. Specify the same data type for these arguments.

Rounding in BLAS1$VxDOTx occurs in a different order than in a
sequential evaluation of the dot product. The final result may differ
from the result of a sequential evaluation.

C To compute the dot product of two vectors, x and y,
C and return the result in DOTPR:
c

INTEGER INCX,INCY
REAL X(20),Y(20),DOTPR
INCX = 1
INCY = 1
N = 20
DOTPR = BLAS1$VSDOT(N,X,INCX,Y,INCY)

MTH-169

BLAS1$VxNRM2

BLAS1 $VxNRM2 Obtain the Euclidean Norm of a
Vector

FORMAT

RETURNS

ARGUMENTS

MTH-170

The Obtain the Euclidean Norm of a Vector routines obtain the Euclidean
norm of an n-element vector x, expressed as follows:

V x~ + x~ + ... + x~

BLAS1$VSNRM2
BLAS1 $VDNRM2
BLAS1$VGNRM2
BLAS1 $VSCNRM2
BLAS1 $VDZNRM2
BLAS1 $VGWNRM2

n ,x ,incx
n ,x ,incx
n ,x ,incx

n ,x ,incx
n ,x ,incx
n ,x ,incx

Use BLAS1$VSNRM2 for single-precision real operations. Use
BLAS1$VDNRM2 for double-precision real (D-floating) operations and
BLAS1$VGNRM2 for double-precision real (G-floating) operations.

Use BLAS1$VSCNRM2 for single-precision complex operations. Use
BLAS1$VDZNRM2 for double-precision complex (D-floating) operations
and BLAS1$VGWNRM2 for double-precision complex (G-floating)
operations.

VMS usage: floating_point
type: F _floating, D_floating, or G_floating real
access: write only
mechanism: by value

The function value, called e_norm, is the Euclidean norm of the
vector x. The data type of the function value is a real number; for the
BLAS1$VSCNRM2, BLAS1$VDZNRM2, and BLAS1$VGWNRM2 routines,
the data type of the function value is the real data type corresponding to
the complex argument data type.

n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector x to be processed. Then argument is the
address of a signed longword integer containing the number of elements.

BLAS1$VxNRM2

x
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array x
are accessed only if the increment argument of x, called incx, is 1. The
x argument is the address of a floating-point or floating-point complex
number that is this array. This argument is an array of length at least

1 + (n - 1) * lincxl

where:

n number of vector elements specified in n

incx increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1$VSNRM2 F-floating real

BLAS1$VDNRM2 D-floating real

BLAS1$VGNRM2 G-floating real

BLAS1$VSCNRM2 F-floating complex

BLAS1 $VDZNRM2 D-floating complex

BLAS 1 $VGWNRM2 G-floating complex

If n is less than or equal to 0, then e_norm is 0.0.

incx
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array x. The incx argument is the address of
a signed longword integer containing the increment argument. If incx is
greater than or equal to 0, then xis referenced forward in array x; that is,
xi is referenced in

x(l + (i - 1) * incx)

where:

x array specified in x
element of the vector x

incx increment argument for the array x specified in incx

If you specify a negative value for incx, it is interpreted as the absolute
value of incx.

MTH-171

BLAS1$VxNRM2

DESCRIPTION BLAS1$VxNRM2 obtains the Euclidean norm of an n-element vector x,
expressed as follows:

EXAMPLE

c

. I 2 2 2 v Xl + X2 + .. • + Xn

Vector x contains n elements that are accessed from array x by stepping
incx elements at a time. The vector xis a real or complex single-precision
or double-precision (D and G) n-element vector. The vector can be a row or
a column of a matrix. Both forward and backward indexing are permitted.

The public-domain BLAS Level 1 xNRM2 routines require a positive
value for incx. The Run-Time Library BLAS Level 1 routines interpret a
negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for incx = 0. Therefore,
specifying 0 for incx has the effect of using vector operations to set
e_norm. as follows:

e_norm = n°·5 * lx1I

For BLAS1$VDNRM2, BLAS1$VGNRM2, BLAS1$VDZNRM2, and
BLAS1$VGWNRM2 (the double-precision routines), the elements of
the vector x are scaled to avoid intermediate overflow or underflow.
BLAS1$VSNRM2 and BLAS1$VSCNRM2 (the single-precision routines)
use a backup data type to avoid intermediate overflow or underflow.

Rounding in BLAS1$VxNRM2 occurs in a different order than in a
sequential evaluation of the Euclidean norm. The final result may differ
from the result of a sequential evaluation.

C To obtain the Euclidean norm of the vector x:
c

MTH-172

INTEGER INCX,N
REAL X(20),E_NORM
INCX = 1
N = 20
E_NORM = BLAS1$VSNRM2(N,X,INCX)

BLAS1 $VxROT

BLAS1 $VxROT Apply a Givens Plane Rotation

FORMAT

The Apply a Givens Plane Rotation routines apply a Givens plane rotation to
a pair of n-element vectors x and y.

BLAS1 $VSROT n ,x ,incx ,y ,incy ,c ,s
BLAS1$VDROT n ,x ,incx ,y ,incy ,c ,s
BLAS1$VGROT n ,x ,incx ,y ,incy ,c ,s
BLAS1$VCSROT n ,x ,incx ,y ,incy ,c ,s
BLAS1 $VZDROT n ,x ,incx ,y ,incy ,c ,s
BLAS1$VWGROT n ,x ,incx ,y ,incy ,c ,s
Use BLAS1$VSROT for single-precision real operations. Use
BLAS1$VDROT for double-precision real (D-floating) operations and
BLAS1$VGROT for double-precision real (G-floating) operations.

Use BLAS1$VCSROT for single-precision complex operations. Use
BLAS1$VZDROT for double-precision complex (D-floating) operations and
BLAS1$VWGROT for double-precision complex (G-floating) operations.
BLAS1$VCSROT, BLAS1$VZDROT, and BLAS1$VWGROT are real
rotations applied to a complex vector.

RETURNS None.

ARGUMENTS n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vectors x and y to be rotated. Then argument
is the address of a signed longword integer containing the number of
elements to be rotated. If n is less than or equal to 0, then x and y are
unchanged.

x
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array x
are accessed only if the increment argument of x, called incx, is 1. The
x argument is the address of a floating-point or floating-point complex
number that is this array. On entry, this argument is an array of length at
least

1 + (n - 1) * lincxl

MTH-173

BLAS1$VxROT

MTH-174

where:

n number of vector elements specified in n

incx increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1 $VSROT F-floating real

BLAS1 $VDROT D-floating real

BLAS1$VGROT G-floating real

BLAS1 $VCSROT F-floating complex

BLAS1 $VZDROT D-floating complex

BLAS1 $VWGROT G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If c equals 1.0
and s equals 0, then x and y are unchanged. If any element of x shares a
memory location with an element of y, then the results are unpredictable.

On exit, x contains the rotated vector x, as follows:

Xi +--c * Xi + s * Yi

where:

x array x specified in x

y array y specified in y

i = 1,2, ... ,n

c rotation element generated by the BLAS1 $VxROTG routines

s rotation element generated by the BLAS1 $VxROTG routines

incx
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array x. The incx argument is the address of
a signed longword integer containing the increment argument. If incx is
greater than or equal to 0, then x is referenced forward in array x; that is,
Xi is referenced in

x(l + (i - 1) * incx)

where:

x array specified in x

element of the vector z

incx increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, Xi
is referenced in

x(l + (n - i) * lincxl)

BLAS1 $VxROT

where:

x array specified in x

n number of vector elements specified in n

element of the vector x

incx increment argument for the array x specified in incx

y
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array y
are accessed only if the increment argument of y, called incy, is 1. The
y argument is the address of a floating-point or floating-point complex
number that is this array. On entry, this argument is an array of length at
least

1 + (n - 1) * lincxl

where:

n number of vector elements specified in n

incx increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for y

BLAS1$VSROT F-floating real

BLAS1 $VD ROT D-floating real

BLAS1 $VG ROT G-floating real

BLAS1 $VCSROT F-floating complex

BLAS1 $VZDROT D-floating complex

BLAS1 $VWGROT G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If c equals 1.0
and s equals 0, then x and y are unchanged. If any element of x shares a
memory location with an element of y, then the results are unpredictable.

On exit, y contains the rotated vector y, as follows:

Yi-+- - s * Xi + c * Yi

where:

x array x specified in x

y array y specified in y
i = 1,2, ... ,n

MTH-175

BLAS1$VxROT

MTH-176

c real rotation element (can be generated by the BLAS1 $VxROTG routines)

s complex rotation element (can be generated by the BLAS1$VxROTG
routines)

incy
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array y. The incy argument is the address of
a signed longword integer containing the increment argument. If incy is
greater than or equal to 0, then y is referenced forward in array y; that is,
Yi is referenced in

y(l + (i - 1) * incy)

where:

y array specified in y

element of the vector y

incy increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, Yi
is referenced in

y(l + (n - i) * lincyl)

where:

y array specified in y

n number of vector elements specified in n

element of the vector y

incy increment argument for the array y specified in incy

c
VMS usage: floating_point
type: F _floating, D_floating, or G_floating real
access: read only
mechanism: by reference
First rotation element, which can be interpreted as the cosine of the angle
of rotation. The c argument is the address of a floating-point or floating
point complex number that is this vector element. The c argument is the
first rotation element generated by the BLAS1$VxROTG routines.

Specify the data type (which is always real) as follows:

Routine

BLAS1$VSROT and
BLAS1 $VCSROT

BLAS1$VDROT and
BLAS1 $VZDROT

BLAS1 $VG ROT and
BLAS1 $VWGROT

Data Type for c

F-floating real

D-floating real

G-floating real

BLAS1 $VxROT

s
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: read only
mechanism: by reference
Second rotation element, which can be interpreted as the sine of the angle
of rotation. The s argument is the address of a floating-point or floating
point complex number that is this vector element. The s argument is the
second rotation element generated by the BLAS 1$VxROTG routines.

Specify the same data type for arguments s and c.

DESCRIPTION BLAS1$VSROT, BLAS1$VDROT, and BLAS1$VGROT apply a real
Givens plane rotation to a pair of real vectors. BLAS1$VCSROT,
BLAS1$VZDROT, and BLAS1$VWGROT apply a real Givens plane
rotation to a pair of complex vectors. The vectors x and y are real or
complex single-precision or double-precision (D and G) vectors. The vectors
can be rows or columns of a matrix. Both forward and backward indexing
are permitted. The routine name determines the data type you should .
specify for arguments x and y. Specify the same data type for each of
these arguments.

EXAMPLE

c

The Givens plane rotation is applied ton elements, where the elements
to be rotated are contained in vectors x and y (i equals 1,2, ... ,n). These
elements are accessed from arrays x and y by stepping incx and incy
elements at a time. The cosine and sine of the angle of rotation are c and
s, respectively. The arguments c and s are usually generated by the BLAS
Level 1 routine BLAS1$VxROTG, using a= x and b = y:

The BLAS1$VxROT routines can be used to introduce zeros selectively
into a matrix.

C To rotate the first two rows of a matrix and zero
C out the element in the first column of the second row:
c

INTEGER INCX,N
REAL X(20,20),A,B,C,S
INCX = 20
N = 20
A = X (1, 1)
B = X(2,1)
CALL BLAS1$VSROTG(A,B,C,S)
CALL BLAS1$VSROT(N,X,INCX,X(2,1),INCX,C,S)

MTH-177

BLAS1$VxROTG

BLAS1 $VxROTG Generate the Elements for a
Givens Plane Rotation

FORMAT

The Generate the Elements for a Givens Plane Rotation routines construct
a Givens plane rotation that eliminates the second element of a two-element
vector.

BLAS1$VSROTG
BLAS1$VDROTG
BLAS1$VGROTG
BLAS1$VCROTG
BLAS1 $VZROTG
BLAS1 $VWROTG

a,b,c,s
a,b,c,s
a,b,c,s
a ,b ,c,s
a,b,c,s
a,b,c,s

Use BLAS1$VSROTG for single-precision real operations. Use
BLAS1$VDROTG for double-precision real CD-floating) operations and
BLAS1$VGROTG for double-precision real CG-floating) operations.

Use BLAS1$VCROTG for single-precision complex operations. Use
BLAS1$VZROTG for double-precision complex CD-floating) operations and
BLAS1$VWROTG for double-precision complex CG-floating) operations.

RETURNS None.

ARGUMENTS a

MTH-178

VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: modify
mechanism: by reference
On entry, first element of the input vector. On exit, rotated element r.
The a argument is the address of a floating-point or floating-point complex
number that is this vector element.

Specify the data type as follows:

Routine Data Type for a

BLAS1 $VSROTG F-floating real

BLAS1 $VDROTG D-floating real

BLAS1$VGROTG G-floating real

BLAS 1 $VCROTG F-floating complex

BLAS 1 $VZROTG D-floating complex

BLAS1 $VWROTG G-floating complex

BLAS1$VxROTG

b
VMS usage: floating_point or complex_number
type: F _floating, D _floating, G_floating real or F _floating,

D_floating, G_floating complex
access: modify
mechanism: by reference
On entry, second element of the input vector. On exit from
BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG,
reconstruction element z. (See the Description section for more
information about z.) The b argument is the address of a floating-point or
floating-point complex number that is this vector element.

Specify the data type as follows:

Routine Data Type for b

BLAS 1 $VSROTG F-floating real

BLAS 1 $VDROTG D-floating real

BLAS1$VGROTG G-floating real

BLAS 1 $VCROTG F-floating complex

BLAS 1 $VZROTG D-floating complex

BLAS 1 $VWROTG G-floating complex

c
VMS usage: floating_point
type: F _floating, D_floating, or G_floating real
access: write only
mechanism: by reference
First rotation element, which can be interpreted as the cosine of the
angle of rotation. The c argument is the address of a floating-point or
floating-point complex number that is this vector element.

Specify the data type (which is always real) as follows:

Routine Data Type for c

BLAS1 $VSROTG and F-floating real
BLAS1 $VCROTG

BLAS1 $VDROTG and D-floating real
BLAS 1 $VZROTG

BLAS1 $VGROTG and G-floating real
BLAS1 $VWROTG

s
floating_point or complex_number VMS usage:

type: F _floating, D _floating, G_floating real or F _floating,
D_floating, G_floating complex

access:
mechanism:

write only
by reference

MTH-179

BLAS1$VxROTG

Second rotation element, which can be interpreted as the sine of the
angle of rotation. The s argument is the address of a floating-point or
floating-point complex number that is this vector element.

Specify the data type as follows:

Routine Data Type for s

BLAS1 $VSROTG F-floating real

BLAS1$VDROTG D-floating real

BLAS1 $VGROTG G-floating real

BLAS1 $VCROTG F-floating complex

BLAS 1 $VZROTG D-floating complex

BLAS1$VWROTG G-floating complex

DESCRIPTION BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG construct

MTH-180

a real Givens plane rotation. BLAS1$VCROTG, BLAS1$VZROTG, and
BLAS1$VWROTG construct a complex Givens plane rotation. The Givens
plane rotation eliminates the second element of a two-element vector.
The elements of the vector are real or complex single-precision or double
precision (D and G) numbers. The routine name determines the data type
you should specify for arguments a, b, and s. Specify the same data type
for each of these arguments.

BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG can use
the reconstruction element z to store the rotation elements for future
use. There is no counterpart to the term z for BLAS1$VCROTG,
BLAS1$VZROTG, and BLAS1$VWROTG.

The BLAS1$VxROTG routines can be used to introduce zeros selectively
into a matrix.

For BLAS1$VDROTG, BLAS1$VGROTG, BLAS1$VZROTG, and
BLAS1$VWROTG (the double-precision routines), the elements of
the vector are scaled to avoid intermediate overflow or underflow.
BLAS1$VSROTG and BLAS1$VCROTG (the single-precision routines)
use a backup data type to avoid intermediate underflow or overflow, which
may cause the final result to differ from the original FORTRAN routine.

BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG - Real Givens
Plane Rotation

Given the elements a and b of an input vector, BLAS1$VSROTG, and
BLAS1$VDROTG, BLAS1$VGROTG calculate the elements c ands of an
orthogonal matrix such that:

[~. :][:] = [~]

BLAS1$VxROTG

A real Givens plane rotation is constructed for values a and b by computing
values for r, c, s, and z, as follows:

r = pVa2 + b2

where:

p =SIGN(a) if JaJ > JbJ

p = SIGN(b) if JaJ~JbJ

c =~if r~O

c=lifr=O

s =~if r~O

s=Oifr=O

z = s if Jal > Jbl

z = i if Jal~ Jbl and c~O and r~O

z = 1 if Jal~lbl and c = 0 and r~O

z=Oifr=O

BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG can use the
reconstruction element z to store the rotation elements for future use. The
quantities c ands are reconstructed from z as follows:

For lzl = 1, c = 0 ands= 1.0

For Jzl < 1, c = ~ and s = z

For jzj > 1, c = ~ and s = ~

The arguments c and s can be passed to the BLAS1$VxROT routines.

BLAS1$VCROTG, BLAS1$VZROTG, and BLAS1$VWROTG - Complex
Givens Plane Rotation

Given the elements a and b of an input vector, BLAS1$VCROTG,
BLAS1$VZROTG, and BLAS1$VWROTG calculate the elements c and
s of an orthogonal matrix such that:

There are no BLAS Level 1 routines with which you can use complex c
and s arguments.

MTH-181

BLAS1 $VxROTG

EXAMPLE

c
C To generate the rotation elements for a vector of
C elements a and b:
c

REAL A,B,C,S
CALL SROTG(A,B,C,S)

MTH-182

BLAS1$VxSCAL

BLAS1 $VxSCAL Scale the Elements of a Vector

FORMAT

RETURNS

ARGUMENTS

The Scale the Elements of a Vector routines compute a* x where a is a scalar
number and x is an n-element vector.

BLAS1 $VSSCAL n ,a ,x ,incx
BLAS1$VDSCAL n ,a ,x ,incx
BLAS1 $VGSCAL n ,a ,x ,incx
BLAS1 $VCSCAL n ,a ,x ,incx
BLAS1 $VCSSCAL n ,a ,x ,incx
BLAS1 $VZSCAL n ,a ,x ,incx
BLAS1$VWSCAL n ,a ,x ,incx
BLAS1 $VZDSCAL n ,a ,x ,incx
BLAS1 $VWGSCAL n ,a ,x ,incx
Use BLAS1$VSSCAL to scale a real single-precision vector by a real
single-precision scalar.

Use BLAS1$VDSCAL to scale a real double-precision (D-floating) vector
by a real double-precision (D-floating) scalar. Use BLAS1$VGSCAL to
scale a real double-precision (G-floating) vector by a real double-precision
(G-floating) scalar.

Use BLAS1$VCSCAL to scale a complex single-precision vector by a
complex single-precision scalar. Use BLAS1$VCSSCAL to scale a complex
single-precision vector by a real single-precision scalar.

Use BLAS1$VZSCAL to scale a complex double-precision (D-floating)
vector by a complex double-precision (D-floating) scalar. Use
BLAS1$VWSCAL to scale a complex double-precision (G-floating) vector
by a complex double-precision (G-floating) scalar. Use BLAS1$VZDSCAL
to scale a complex double-precision CD-floating) vector by a real double
precision CD-floating) scalar. Use BLAS1$VWGSCAL to scale a complex
double-precision (G-floating) vector by a real double-precision (G-floating)
scalar.

None.

n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector x to be scaled. Then argument is the
address of a signed longword integer containing the number of elements to
be scaled. If you specify a value for n that is less than or equal to 0, then
x is unchanged.

MTH-183

BLAS1$VxSCAL

MTH-184

a
VMS usage: floating_point or complex_number
type: F _floating, D _floating, G_floating real or F _floating,

D_floating, G_floating complex
access: read only
mechanism: by reference
Scalar multiplier for the elements of vector x. The a argument is the
address of a floating-point or floating-point complex number that is this
multiplier.

Specify the data type as follows:

Routine Data Type for a

BLAS1 $VSSCAL and F-floating real
BLAS 1 $VCSSCAL

BLAS 1 $VDSCAL and D-floating real
BLAS 1 $VZDSCAL

BLAS1 $VGSCAL and G-floating real
BLAS1 $VWGSCAL

BLAS1 $VCSCAL F-floating complex

BLAS 1 $VZSCAL D-floating complex

BLAS 1 $VWSCAL G-floating complex

If you specify 1.0 for a, then xis unchanged.

x
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D _floating, G_floating complex
access: modify
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array x
are accessed only if the increment argument of x, called incx, is 1. The
x argument is the address of a floating-point or floating-point complex
number that is this array. On entry, this argument is an array of length at
least

1 + (n - 1) * lincxl
where:

n number of vector elements specified in n

incx increment argument for the array x specified in incx

Specify the data type as follows:

Routine

BLAS1 $VSSCAL

BLAS1 $VDSCAL

BLAS 1 $VGSCAL

Data Type for x

F-floating real

D-floating real

G-floating real

DESCRIPTION

BLAS1 $VxSCAL

Routine Data Type for x

BLAS1$VCSCAL and F-floating complex
BLAS1 $VCSSCAL

BLAS1$VZSCAL and D-floating complex
BLAS 1 $VZDSCAL

BLAS1$VWSCAL and G-floating complex
BLAS1 $VWGSCAL

On exit, x is an array of length at least

1 + (n - 1) * jincxl

where:

n number of vector elements specified in n

incx increment argument for the array x specified in incx

After the call to BLAS1$VxSCAL, xi is replaced by a* xi. If a shares
a memory location with any element of the vector x, results are
unpredictable.

incx
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array x. The incx argument is the address
of a signed longword integer containing the increment argument. If incx
is greater than 0, then xis referenced forward in array x; that is, Xi is
referenced in

x(l + (i - 1) * incx)

where:

x array specified in x

element of the vector x

incx increment argument for the array x specified in incx

If you specify a negative value for incx, it is interpreted as the absolute
value of incx. If incx equals 0, the results are unpredictable.

BLAS1$VxSCAL computes a* x where a is a scalar number and xis an
n-element vector. The computation is expressed as follows:

[I] ~a [I]
Vector x contains n elements that are accessed from array x by stepping
incx elements at a time. The vector x can be a row or a column of a
matrix. Both forward and backward indexing are permitted.

MTH-185

BLAS1$VxSCAL

EXAMPLE

c

The public-domain BLAS Level 1 xSCAL routines require a positive
value for incx. The Run-Time Library BLAS Level 1 routines interpret a
negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for a= 0. Therefore,
specifying 0 for a has the effect of setting to zero all elements of the
vector x using vector operations.

C To scale a vector x by 2.0 using SSCAL:
c

MTH-186

INTEGER INCX,N
REAL X(20),A
INCX = 1
A = 2
N = 20
CALL BLAS1$VSSCAL(N,A,X,INCX)

BLAS1 $VxSWAP

BLAS1$VxSWAP Swap the Elements of Two
Vectors

FORMAT

RETURNS

ARGUMENTS

The Swap the Elements of Two Vectors routines swap n elements of the
vector x with the vector y.

BLAS1$VSSWAP
BLAS1$VDSWAP
BLAS1 $VCSWAP
BLAS1 $VZSWAP

n ,x ,incx ,y ,incy
n ,x ,incx ,y ,incy
n ,x ,incx ,y ,incy
n ,x ,incx ,y ,incy

Use BLAS1$VSSWAP for single-precision real operations and
BLAS1$VDSWAP for double-precision real (D or G) operations.

Use BLAS1$VCSWAP for single-precision complex operations and
BLAS1$VZSWAP for double-precision complex (Dor G) operations.

None.

n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector x to be swapped. Then argument is the
address of a signed longword integer containing the number of elements to
be swapped.

x
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array x
are accessed only if the increment argument of x, called incx, is 1. The
x argument is the address of a floating-point or floating-point complex
number that is this array. On entry, this argument is an array of length at
least

1 + (n - 1) * lincxl
where:

n number of vector elements specified in n

incx increment argument for the array x specified in incx

MTH-187

BLAS1$VxSWAP

MTH-188

Specify the data type as follows:

Routine

BLAS1 $VSSWAP

BLAS1$VDSWAP

BLAS1$VCSWAP

BLAS1$VZSWAP

Data Type for x

F-floating real

D-floating or G-floating real

F-floating complex

D-floating or G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If any element
of x shares a memory location with an element of y, the results are
unpredictable.

On exit, x is an array of length at least

1 + (n - 1) * lincxl

where:

n number of vector elements specified in n

incx increment argument for the array x specified in incx

After the call to BLAS1$VxSWAP, n elements of the array specified by x
are interchanged with n elements of the array specified by y.

incx
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array x. The incx argument is the address of
a signed longword integer containing the increment argument. If incx is
greater than or equal to 0, then xis referenced forward in array x; that is,
Xi is referenced in

x(l + (i - 1) * incx)

where:

x array specified in x

element of the vector x

incx increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, xi
is referenced in

x(l + (n - i) * lincxl)

where:

x array specified in x
n number of vector elements specified in n

element of the vector x

incx increment argument for the array x specified in incx

BLAS1$VxSWAP

y
VMS usage: floating_point or complex_number
type: F _floating, D_floating, G_floating real or F _floating,

D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array y
are accessed only if the increment argument of y, called incy, is 1. The
y argument is the address of a floating-point or floating-point complex
number that is this array. On entry, this argument is an array of length at
least

1 + (n - 1) * lincyl

where:

n number of vector elements specified in n

incy increment argument for the array y specified in incy

Specify the data type as follows:

Routine

BLAS1$VSSWAP

BLAS1 $VDSWAP

BLAS1 $VCSWAP

BLAS1 $VZSWAP

Data Type for y

F-floating real

D-floating or G-floating real

F-floating complex

D-floating or G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If any element
of x shares a memory location with an element of y, the results are
unpredictable.

On exit, y is an array of length at least

1 + (n - 1) * JincyJ

where:

n number of vector elements specified in n

incy increment argument for the array y specified in incy

After the call to BLAS1$VxSWAP, n elements of the array specified by x
are interchanged with n elements of the array specified by y.

incy
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array y. The incy argument is the address of
a signed longword integer containing the increment argument. If incy is
greater than or equal to 0, then y is referenced forward in array y; that is,
Yi is referenced in

y(l + (i - 1) * incy)

MTH-189

BLAS1$VxSWAP

where:

y array specified in y

element of the vector y

incy increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, 'Yi
is referenced in

y(l + (n - i) * lincyl)

where:

y array specified in y
n number of vector elements specified in n

element of the vector y

incy increment argument for the array y specified in incy

DESCRIPTION BLAS1$VSSWAP, BLAS1$VDSWAP, BLAS1$VCSWAP, and
BLAS1$VZSWAP swap n elements of the vector x with the vector y.
Vectors x and y contain n elements that are accessed from arrays x
and y by stepping incx and incy elements at a time. Both x and y are
real or complex single-precision or double-precision (D and G) n-element
vectors. The vectors can be rows or columns of a matrix. Both forward
and backward indexing are permitted.

MTH-190

You can use the routine BLAS1$VxSWAP to invert the storage of elements
of a vector within itself. If incx is greater than 0, then Xi can be moved
from location

x(l + (i - 1) * incx) to x(l + (n - i) * incx)

The following code fragment inverts the storage of elements of a vector
within itself:

NN = N/2
LHALF = l+(N-NN)*INCX
CALL BLAS1$VxSWAP(NN,X,INCX,X(LHALF),-INCX)

BLAS1$VxSWAP does not check for a reserved operand.

BLAS1$VxSWAP

EXAMPLE

c
C To swap the contents of vectors x and y:
c

c

INTEGER INCX,INCY,N
REAL X(20),Y(20)
INCX = 1
INCY = 1
N = 20
CALL BLAS1$VSSWAP(N,X,INCX,Y,INCY)

C To invert the order of storage of the elements of x within
C itself; that is, to move x(l), ... ,x(lOO) to x(lOO), ... ,x(l):
c

INCX = 1
INCY = -1
N = 50
CALL BLAS1$VSSWAP(N,X,INCX,X(51),INCY)

MTH-191

MTH$VxFOLRy_MA_V15

MTH$VxFOLRy_MA_V15 First Order Linear
Recurrence -
Multiplication and
Addition

FORMAT

The First Order Linear Recurrence - Multiplication and Addition routines
provide a vectorized algorithm for the linear recurrence relation that includes
both multiplication and addition operations.

MTH$VJFOLRP_MA_V15
MTH$VFFOLRP _MA_V15
MTH$VDFOLRP_MA_V15
MTH$VGFOLRP_MA_V15
MTH$VJFOLRN_MA_V15
MTH$VFFOLRN_MA_V15
MTH$VDFOLRN_MA_V15
MTH$VGFOLRN_MA_V15

n, a, inca, b, incb, c, in cc
n,a,inca,b,incb,c,incc
n,a,inca,b,incb,c,incc
n, a, inca,b, incb, c, incc
n,a,inca,b,incb,c,incc
n,a,inca,b,incb,c,incc
n,a,inca,b,incb,c,incc
n,a,inca,b,incb,c,incc

To obtain one of the preceding formats, substitute the following for x and y
in MTH$VxFOLRy_MA_V15:

x J for longword integer, F for F-floating, D for 0-floating, G for G-floating

y P for a positive recursion element, N for a negative recursion element

RETURNS None.

ARGUMENTS n

MTH-192

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Length of the linear recurrence. The n argument is the address of a signed
longword integer containing the length.

a
VMS usage: longword_signed or floating_point
type: longword integer (signed), F _floating, D_floating, or

G_floating
access: read only
mechanism: by reference, array reference
Array of length at least

1+ (n-1) *inca

MTH$VxFOLRy _MA_ V15

where:

n length of the linear recurrence specified in n

inca increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that
is this array.

inca
VMS usage: long.word_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array a. The inca argument is the address
of a signed longword integer containing the increment argument. For
contiguous elements, specify 1 for inca.

b
VMS usage: longword_signed or floating_point
type: longword integer (signed), F _floating, D _floating, or

G_floating
access: read only
mechanism: by reference, array reference
Array of length at least

1 + (n - 1) * incb

where:

n length of the linear recurrence specified in n

incb increment argument for the array b specified in incb

The b argument is the address of a longword integer or floating-point
number that is this array.

incb
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array b. The inch argument is the address
of a signed longword integer containing the increment argument. For
contiguous elements, specify 1 for incb.

c
VMS usage: longword_signed or floating_point
type: longword integer (signed), F _floating, D _floating, or

G_floating
access: modify
mechanism: by reference, array reference
Array of length at least

MTH-193

MTH$VxFOLRy_MA_V15

where:

n length of the linear recurrence specified in n

incc increment argument for the array c specified in incc

The c argument is the address of a longword integer or :floating-point
number that is this array.

incc
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array c. The incc argument is the address
of a signed longword integer containing the increment argument. For
contiguous elements, specify 1 for incc. Do not specify 0 for incc.

DESCRIPTION MTH$VxFOLRy _MA_ V15 is a group of routines that provides a vectorized
algorithm for computing the following linear recurrence relation:

MTH-194

C(I + 1) = +/-C(I) * A(I) + B(I)

Note: Save the contents of vector registers VO through V15 before you
call this routine.

Call this routine to utilize vector hardware when computing the
recurrence. As an example, the call from VAX FORTRAN is as follows:

Kl = ••••

K2 =
K3 =

CALL MTH$VxFOLRy_MA_Vl5(N,A(Kl),INCA,B(K2),INCB,C(K3),INCC)

The preceding FORTRAN call replaces the following loop:

Kl =
K2 = ••••

K3 =
DO I = 1, N
C(K3+I*INCC) = {+/-}C(K3+(I-l)*INCC) * A(Kl+(I-l)*INCA)

+ B(K2+(I-l)*INCB)
END DO

The arrays used in a FOLR expression must be of the same data type
in order to be vectorized and user callable. The MTH$ FOLR routines
assume that all of the arrays are of the same data type.

This group of routines, MTH$VxFOLRy _MA_ V15 (and also
MTH$VxFOLRy _z_ VS) save the result of each iteration of the linear
recurrence relation in an array. This is different from the behavior of
MTH$VxFOLRLy_MA_V5 and MTH$VxFOLRLy_z_V2, which return only
the result of the last iteration of the linear recurrence relation.

MTH$VxFOLRy_MA_V15

For the output array (c), the increment argument (incc) cannot be 0.
However, you can specify 0 for the input increment arguments (inca
and inch). In that case, the input will be treated as a scalar value and
broadcast to a vector input with all vector elements equal to the scalar
value.

In MTH$VxFOLRy_MA_V15, array c can overlap array a and array b, or
both, as long as the address of array element Cz is not also the address
of an element of a orb that will be referenced at a future time in the
recurrence relation. For example, in the following code fragment you must
ensure that the address of c(l +i *incc) does not equal the address of either
a(j * inca) or b(k * incb) for

l~i~n and i?:.i + 1.

DO I = 1,N
C(l+I*INCC) = C(l+(I-l)*INCC) * A(l+(I-l)*INCA) + B(l+(I-l)*INCB)
END DO

EXAMPLES
D c

c The following FORTRAN loop computes
C a linear recurrence.
c

c

INTEGER I
DIMENSION A(200), B(50), C(50)
EQUIVALENCE (B,C)

C(4)
DO I 5, 50
C(I) C((I-1)) * A(I*3) + B(I)
END DO

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c

DIMENSION A(200), B(50), C(50)
EQUIVALENCE (B,C)

c (4)
CALL MTH$VFFOLRP_MA_Vl5(46, A(l5), 3, B(5), 1, C(4), 1)

MTH-195

MTH$VxFOLRy _MA_ V15

MTH-196

c
C The following FORTRAN loop computes
c a linear recurrence.
c

c

INTEGER K,N,INCA,INCB,INCC,I
DIMENSION A(30), B(6), C(50)
K = 44
N = 6
INCA 5
INCB 1
INCC 1
DO I 1, N
C(K+I*INCC)
END DO

-C(K+(I-l)*INCC) * A(I*INCA) + B(I*INCB)

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c

INTEGER K,N,INCA,INCB,INCC
DIMENSION A(30), B(6), C(50)
K = 44
N = 6
INCA 5
INCB 1
INCC 1
CALL MTH$VFFOLRN_MA_V15(N, A(INCA), INCA, B(INCB), INCB, C(K), INCC)

MTH$VxFOLRy_z_V8

MTH$VxFOLRy_z_V8 First Order Linear Recurrence
- Multiplication or Addition

FORMAT

The First Order Linear Recurrence - Multiplication or Addition routines
provide a vectorized algorithm for the linear recurrence relation that includes
either a multiplication or an addition operation, but not both.

MTH$VJFOLRP _M_V8 n,a,inca,b,incb
MTH$VFFOLRP _M_V8 n,a,inca,b,incb
MTH$VDFOLRP _M_ V8 n,a,inca,b,incb
MTH$VGFOLRP _M_ V8 n,a,inca,b,incb
MTH$VJFOLRN_M_ V8 n,a,inca,b,incb
MTH$VFFOLRN_M_ V8 n,a,inca,b,incb
MTH$VDFOLRN_M_ V8 n,a,inca,b,incb
MTH$VGFOLRN_M_ V8 n,a,inca,b,incb
MTH$VJFOLRP _A_V8 n,a,inca,b,incb
MTH$VFFOLRP _A_V8 n,a,inca,b,incb
MTH$VDFOLRP _A_ VS n,a,inca,b,incb
MTH$VGFOLRP _A_ VS n,a,inca,b,incb
MTH$VJFOLRN_A_ V8 n,a,inca,b,incb
MTH$VFFOLRN A VS n,a,inca,b,incb
MTH$VDFOLRN_A_ V8 n,a,inca,b,incb
MTH$VGFOLRN_A_ V8 n,a,inca,b,incb
To obtain one of the preceding formats, substitute the following for x, y,
and z in MTH$VxFOLRy _z_ V8:

x J for longword integer, F for F-floating, D for D-floating, G for G-floating

y P for a positive recursion element, N for a negative recursion element

z M for multiplication, A for addition

RETURNS None.

ARGUMENTS n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Length of the linear recurrence. The n argument is the address of a signed
longword integer containing the length.

MTH-197

MTH$VxFOLRy _z_ V8

MTH-198

a
VMS usage: longword_signed or floating_point
type: longword integer {signed), F _floating, D_floating, or

G_floating
access: read only
mechanism: by reference, array reference
Array of length at least

l+(n-l)*inca

where:

n length of the linear recurrence specified in n

inca increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that
is this array.

inca
VMS usage: longword_signed
type: longword integer {signed)
access: read only
mechanism: by reference
Increment argument for the array a. The inca argument is the address
of a signed longword integer containing the increment argument. For
contiguous elements, specify 1 for inca. ·

b
VMS usage: longword_signed or floating_point
type: longword integer {signed), F _floating, D_floating, or

G_floating
access: modify
mechanism: by reference, array reference
Array of length at least

1 + (n - 1) * i ncb

where:

n length of the linear recurrence specified in n

incb increment argument for the array b specified in incb

The h argument is the address of a longword integer or floating-point
number that is this array.

incb
VMS usage: longword_signed
type: longword integer {signed)
access: read only
mechanism: by reference
Increment argument for the array h. The inch argument is the address
of a signed longword integer containing the increment argument. For
contiguous elements, specify 1 for inch.

MTH$VxFOLRy_z_V8

DESCRIPTION MTH$VxFOLRy _z_ VS is a group of routines that provide a vectorized
algorithm for computing one of the following linear recurrence relations:

B(I) = +/-B(I - 1) * A(I)

or

B(I) = +/-B(I -- 1) + A(I)

For the first relation, specify M for z in the routine name to denote
multiplication; for the second relation, specify A for z in the routine
name to denote addition.

Note: Save the contents of vector registers VO through VS before you call
this routine.

Call this routine to utilize vector hardware when computing the
recurrence. As an example, the call from VAX FORTRAN is as follows:

CALL MTH$VxFOLRy_z_V8(N,A(Kl),INCA,B(K2),INCB)

The preceding FORTRAN call replaces the following loop:

Kl = ••••

K2 = ••••
DO I = 1, N
B(K2+I*INCB) = {+/-}B(K2+(I-l)*INCB) {+/*} A(Kl+(I-l)*INCA)
END DO

The arrays used in a FOLR expression must be of the same data type
in order to be vectorized and user callable. The MTH$ FOLR routines
assume that all of the arrays are of the same data type.

This group of routines, MTH$VxFOLRy _z_ V8 (and also MTH$VxFOLRy _
MA_ V15) save the result of each iteration of the linear recurrence relation
in an array. This is different from the behavior of MTH$VxFOLRLy _MA_
V5 and MTH$VxFOLRLy_z_ V2, which return only the result of the last
iteration of the linear recurrence relation.

For the output array (b), the increment argument (inch) cannot be 0.
However, you can specify 0 for the input increment argument (inca). In
that case, the input will be treated as a scalar and broadcast to a vector
input with all vector elements equal to the scalar value.

EXAMPLES

D c
C The following FORTRAN loop computes
C a linear recurrence.
c
C D FLOA'J.1

INTEGER N,INCA,INCB,I
DIMENSION A(30), B(l3)
N = 6
INCA = 5
INCB = 2
DO I = 1, N
B(l+I*INCB) -B(l+(I-l)*INCB) * A(I*INCA)
END DO

MTH-199

MTH$VxFOLRy _z_ V8

MTH-200

c
C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C D FLOAT

c

INTEGER N,INCA,INCB
REAL*8 A(30), B(13)
N = 6
INCA 5
INCB 2
CALL MTH$VDFOLRN_M_V8(N, A(INCA), INCA, B(l), INCB)

C The following FORTRAN loop computes
C a linear recurrence.
c
C G FLOAT

c

INTEGER N,INCA,INCB
DIMENSION A(30), B(l3)
N = 5
INCA 5
INCB = 2
DO I = 2, N
B (l+I*INCB)
END DO

B((I-l)*INCB) + A(I*INCA)

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C G FLOAT

INTEGER N,INCA,INCB
REAL*8 A(30), B(13)
N = 5
INCA 5
INCB 2
CALL MTH$VGFOLRP_A_V8(N, A(INCA), INCA, B(INCB), INCB)

MTH$VxFOLRLy _MA_ V5

MTH$VxFOLRLy_MA_V5 First Order Linear
Recurrence -
Multiplication and
Addition - Last Value

FORMAT

RETURNS

The First Order Linear Recurrence - Multiplication and Addition - Last
Value routines provide a vectorized algorithm for the linear recurrence relation
that includes both multiplication and addition operations. Only the last value
computed is stored.

MTH$VJFOLRLP_MA_V5
MTH$VFFOLRLP_MA_V5
MTH$VDFOLRLP_MA_V5
MTH$VG.FOLRLP _MA_ VS
MTH$VJFOLRLN MA VS - -
MTH$VFFOLRLN_MA_ V5
MTH$VDFOLRLN_MA_V5
MTH$VGFOLRLN_MA_V5

n,a,inca,b,incb,t
n,a,inca,b,incb,t
n,a,inca,b,incb,t
n,a,inca,b, incb, t
n,a,inca,b,incb,t
n,a,inca,b,incb,t
n,a,inca,b,incb,t
n,a,inca,b,incb,t

To obtain one of the preceding formats, substitute the following for x and y
in MTH$VxFOLRLy_MA_V5:

x J for longword integer, F for F-floating, D for D-floating, G for G-floating

y P for a positive recursion element, N for a negative recursion element

VMS usage: longword_signed or floating_point
type: longword integer (signed}, F _floating, D_floating or

G_floating
access: write only
mechanism: by value

The function value is the result of the last iteration of the linear
recurrence relation. The function value is returned in RO or RO and
Rl.

ARGUMENTS n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Length of the linear recurrence. The n argument is the address of a signed
longword integer containing the length.

MTH-201

MTH$VxFOLRLy_MA_ V5

MTH-202

a
VMS usage: longword_signed or floating_point
type: longword integer (signed), F _floating, D_floating, or

G_floating
access: read only
mechanism: by reference, array reference
Array of length at least

1 + (n - 1) * inca

where:

n length of the linear recurrence specified in n

inca increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that
is this array.

inca
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array a. The inca argument is the address
of a signed longword integer containing the increment argument. For
contiguous elements, specify 1 for inca.

b
VMS usage: longword_signed or floating_point
type: longword integer (signed), F _floating, D_floating, or

G_floating
access: read only
mechanism: by reference, array reference
Array of length at least

l+(n-l)*incb

where:

n length of the linear recurrence specified in n

incb increment argument for the array b specified in incb

The h argument is the address of a longword integer or floating-point
number that is this array.

incb
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array h. The inch argument is the address
of a signed longword integer containing the increment argument. For
contiguous elements, specify 1 for inch.

DESCRIPTION

MTH$VxFOLRLy _MA_ V5

t
VMS usage: longword_signed or floating_point
type: longword integer (signed), F _floating, D _floating, or

G_floating
access: modify
mechanism: by reference
Variable containing the starting value for the recurrence; overwritten with
the value computed by the last iteration of the linear recurrence relation.
The t argument is the address of a longword integer or floating-point
number that is this value.

MTH$VxFOLRLy _MA_ V5 is a group of routines that provide a vectorized
algorithm for computing the following linear recurrence relation. (The T
on the right side of the equation is the result of the previous iteration of
the loop.)

T = +/-T * A(I) + B(I)

Note: Save the contents of vector registers VO through V5 before you call
this routine.

Call this routine to utilize vector hardware when computing the
recurrence. As an example, the call from VAX FORTRAN is as follows:

CALL MTH$VxFOLRy_MA_V5(N,A(Kl),INCA,B(K2),INCB,T)

The preceding FORTRAN call replaces the following loop:

Kl
K2 = •••

DO I = 1, N
T = {+/-}T * A(Kl+(I-l)*INCA) + B(Kl+(I-l)*INCB)
END DO

The arrays used in a FOLR expression must be of the same data type
in order to be vectorized and user callable. The MTH$ FOLR routines
assume that all of the arrays are of the same data type.

This group of routines, MTH$VxFOLRLy _MA_ V5 (and also
MTH$VxFOLRLy _z_ V2) returns only the result of the last iteration of
the linear recurrence relation. This is different from the behavior of
MTH$VxFOLRy _MA_ V15 (and also MTH$VxFOLRy _z_ V8), which save
the result of each iteration of the linear recurrence relation in an array.

If you specify 0 for the input increment arguments (inca and inch), the
input will be treated as a scalar and broadcast to a vector input with all
vector elements equal to the scalar value.

MTH-203

MTH$VxFOLRLy_MA_V5

EXAMPLES
D

MTH-204

c
c
c
c

The following FORTRAN loop computes
a linear recurrence.

C G FLOAT

c

INTEGER N,INCA,INCB,I
REAL*8 A(30), B(6), T
N = 6
INCA = 5
INCB = 1
T = 78.9847562
DO I = 1, N
T = -T * A(I*INCA) + B(I*INCB)
END DO

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C G FLOAT

c

INTEGER N,INCA,INCB
DIMENSION A(30), B(6), T
N = 6
INCA = 5
INCB = 1
T 78.9847562
T = MTH$VGFOLRLN_MA_V5(N, A(INCA), INCA, B(INCB), INCB, T)

C The following FORTRAN loop computes
C a linear recurrence.
c
C G FLOAT

c

INTEGER N,INCA,INCB,I
REAL*8 A(30) I B(6) I T
N = 6
INCA = 5
INCB = 1
T = 78.9847562
DO I = 1, N
T = T * A(I*INCA) + B(I*INCB)
END DO

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C G FLOAT

INTEGER N,INCA,INCB
DIMENSION A(30), B(6), T
N = 6
INCA = 5
INCB = 1
T 78.9847562
T = MTH$VGFOLRLP_MA_V5(N, A(INCA), INCA, B(INCB), INCB, T)

MTH$VxFOLRLy_z_ V2

MTH$VxFOLRLy_z_V2 First Order Linear
Recurrence - Multiplication
or Addition - Last Value

FORMAT

RETURNS

The First Order Linear Recurrence - Multiplication or Addition - Last Value
routines provide a vectorized algorithm for the linear recurrence relation that
includes either a multiplication or an addition operation. Only the last value
computed is stored.

MTH$VJFOLRLP _M_ V2 n,a,inca,t
MTH$VFFOLRLP _M_V2 n,a,inca,t
MTH$VDFOLRLP _M_ V2 n,a,inca,t
MTH$VGFOLRLP _M_ V2 n,a,inca,t
MTH$VJFOLRLN_M_ V2 n,a,inca,t
MTH$VFFOLRLN_M_ V2 n,a,inca,t
MTH$VDFOLRLN_M_ V2 n,a,inca,t
MTH$VGFOLRLN_M_ V2 n,a,inca, t
MTH$VJFOLRLP _A_ V2 n,a,inca,t
MTH$VFFOLRLP _A_V2 n,a,inca,t
MTH$VDFOLRLP _A_V2 n,a,inca,t
MTH$VGFOLRLP _A_ V2 n,a,inca,t
MTH$VJFOLRLN_A_ V2 n,a,inca,t
MTH$VFFOLRLN_A_ V2 n,a,inca,t
MTH$VDFOLRLN_A_ V2 n,a,inca,t
MTH$VGFOLRLN_A_ V2 n,a,inca,t
To obtain one of the preceding formats, substitute the following for x, y,
and z in MTH$VxFOLRLy _z_ V2:

x J for longword integer, F for F-floating, D for D-floating, G for G-floating

y P for a positive recursion element, N for a negative recursion element

z M for multiplication, A for addition

VMS usage: longword_signed or floating_point
type: longword integer (signed), F _floating, D_floating or

G_floating
access: write only
mechanism: by value

The function value is the result of the last iteration of the linear
recurrence relation. The function value is returned in RO or RO and
Rl.

MTH-205

MTH$VxFOLRLy_z_ V2

ARGUMENTS n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Length of the linear recurrence. The n argument is the address of a signed
longword integer containing the length.

a
VMS usage: longword_signed or floating_point
type: longword integer (signed), F _floating, D_floating, or

G_floating
access: read only
mechanism: by reference, array reference
Array of length at least

n * inca

where:

n length of the linear recurrence specified in n

inca increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that
is this array.

inca
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array a. The inca argument is the address
of a signed longword integer containing the increment argument. For
contiguous elements, specify 1 for inca.

t
VMS usage: longword_signed or floating_point
type: longword integer (signed), F _floating, D_floating, or

G_floating
access: modify
mechanism: by reference
Variable containing the starting value for the recurrence; overwritten with
the value computed by the last iteration of the linear recurrence relation.
The t argument is the address of a longword integer or floating-point
number that is this value.

DESCRIPTION MTH$VxFOLRLy_z_V2 is a group of routines that provide a vectorized
algorithm for computing one of the following linear recurrence relations.
(The T on the right side of the following equations is the result of the
previous iteration of the loop.)

T = +/-T * A(I)

or

MTH-206

MTH$VxFOLRLy_z_ V2

T = +/-T + A(I)

For the first relation, specify M for z in the routine name to denote
multiplication; for the second relation, specify A for z in the routine
name to denote addition.

Note: Save the contents of vector registers VO, Vl, and V2 before you call
this routine.

Call this routine to utilize vector hardware when computing the
recurrence. As an example, the call from VAX FORTRAN is as follows:

CALL MTH$VxFOLRLy_z_V2(N,A(Kl),INCA,T)

The preceding FORTRAN call replaces the following loop:

Kl = ••.•
DO I = 1, N
T = {+/-}T {+/*} A(Kl+(I-l)*INCA)
END DO

The arrays used in a FOLR expression must be of the same data type
in order to be vectorized and user callable. The MTH$ FOLR routines
assume that all of the arrays are of the same data type.

This group of routines, MTH$VxFOLRLy_z_V2 (and also
MTH$VxFOLRLy_MA_ V5) return only the result of the last iteration
of the linear recurrence relation. This is different from the behavior of
MTH$VxFOLRy _MA_ V15 (and also MTH$VxFOLRy _z_ VS), which save
the result of each iteration of the linear recurrence relation in an array.

If you specify 0 for the input increment argument (inca), the input will be
treated as a scalar and broadcast to a vector input with all vector elements
equal to the scalar value.

EXAMPLES

D c
c
c
c

The following FORTRAN loop computes
a linear recurrence.

C D FLOAT

c

INTEGER I,N
REAL*8 A(200), T
T = 78.9847562
N = 20
DO I = 4, N
T = -T * A(I*lO)
END DO

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C D FLOAT

INTEGER N
REAL*8 A(200), T
T = 78.9847562
N = 20
T = MTH$VDFOLRLN_M_V2(N-3, A(40), 10, T)

MTH-207

MTH$VxFOLRLy_z_ V2

MTH-208

c
C The following FORTRAN loop computes
C a linear recurrence.
c
C D FLOAT

c

INTEGER I,N
REAL*8 A(200), T
T = 78.9847562
N = 20
DO I = 4, N
T = T + A(I*lO)
END DO

C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
c
C D FLOAT

INTEGER N
REAL*8 A(200), T
T 78.9847562
N 20
T MTH$VDFOLRLP_A_V2(N-3, A(40), 10, T)

.A Additional MTH$ Routines

The following supported MTH$ routines are not included with the routines
in Part II, the Scalar MTH$ Reference Section because they are used
rarely. The majority of these routines serve to satisfy external references
when intrinsic functions in FORTRAN and other languages are passed as
parameters. Otherwise, the functions are performed by inline code.

Table A-1 lists all of the entry point and argument information for the
MTH$ routines not documented in Part II, the Scalar MTH$ Reference
Section of this manual.

Table A-1 Additional MTH$ Routines

Routine Name

MTH$ABS
Format:

Returns:

f-floating:

MTH$DABS
Format:

Returns:

d-floating:

MTH$GABS
Format:

Returns:

g-floating:

MTH$HABS
Format:

Returns:

h-abs-val:

h·floating:

Entry Point Information

F-floating Absolute Value Routine

MTH$ABS f-floating

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

D-floating Absolute Value Routine

MTH$DABS d-floating

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

G-f/oating Absolute Value Routine

MTH$GABS g-floating

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

H-floating Absolute Value Routine

MTH$HABS h-abs-val, h-floating

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

(continued on next page)

A-1

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$11ABS

Format:

Returns:

word:

MTH$JIABS

Format:

Returns:

longword:

MTH$11AND

Format:

Returns:

word1:

word2:

MTH$JIAND

Format:

Returns:

longword1:

longword2:

MTH$DBLE

Format:

Returns:

f-floating:

MTH$GDBLE

Format:

Returns:

f-floating:

MTH$DIM

Format:

Returns:

t-floating1 :

t-floating2:

A-2

Entry Point Information

Word Absolute Value Routine

MTH$11ABS word

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

Longword Absolute Value Routine

MTH$JIABS longword

longword_signed, longword (signed), write only, by value

longword_signed, longword (signed), read only, by reference

Bitwise AND of Two Word Parameters Routine

MTH$11AND word1 , word2

word_unsigned, word (unsigned), write only, by value

word_unsigned, word (unsigned), read only, by reference

word_unsigned, word (unsigned), read only, by reference

Bitwise AND of Two Longword Parameters Routine

MTH$JIAND longword1, longword2

longword_unsigned, longword (unsigned), write only, by value

longword_unsigned, longword (unsigned), read only, by reference

longword_unsigned, longword (unsigned), read only, by reference

Convert F-floating to D-f/oating (Exact) Routine

MTH$DBLE f-floating

floating_point, D_floating, write only, by value

floating_point, F _floating, read only, by reference

Convert F-floating to G-f/oating (Exact) Routine

MTH$GDBLE f-floating

floating_point, G_floating, write only, by value

floating_point, F _floating, read only, by reference

Positive Difference of Two F-floating Parameters Routine

MTH$DIM f-floating1, f-floating2

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$DDIM

Format:

Returns:

d-floating1:

d-floating2:

MTH$GDIM

Format:

Returns:

g-tloating1:

g-floating2:

MTH$HDIM

Format:

Returns:

h-floating:

h-floating1:

h-floati ng2:

MTH$11DIM

Format:

Returns:

word1:

word2:

MTH$JIDIM

Format:

Returns:

longword1:

longword2:

Entry Point Information

Positive Difference of Two D-floating Parameters Routine

MTH$DDIM d-floating1 , d-floating2

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

floating_point, D_floating, read only, by reference

Positive Difference of Two G-floating Parameters Routine

MTH$GDIM g-floating1, g-floating2

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

floating_point, G_floating, read only, by reference

Positive Difference of Two H-floating Parameters Routine

MTH$HDIM h-floating, h-floating1, h-floating2

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

floating_point, H_floating, read only, by reference

Positive Difference of Two Word Parameters Routine

MTH$11DIM word1, word2

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

word_signed, word (signed), read only, by reference

Positive Difference of Two Longword Parameters Routine

MTH$JIDIM longword1, longword2

longword_signed, longword (signed), write only, by value

longword_signed, longword (signed), read only, by reference

longword_signed, longword (signed), read only, by reference

(continued on next page)

A-3

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$11EOR

Format:

Returns:

word1:

word2:

MTH$JIEOR

Format:

Returns:

longword1:

longword2:

MTH$11FIX

Format:

Returns:

f-floating:

MTH$JIFIX

Format:

Returns:

f-floating:

MTH$FLOATI

Format:

Returns:

word:

MTH$DFLOTI

Format:

Returns:

word:

MTH$GFLOTI

Format:

Returns:

word:

A-4

Entry Point Information

Bitwise Exclusive OR of Two Word Parameters Routine

MTH$11EOR word1, word2

word_unsigned, word (unsigned), write only, by value

word_unsigned, word (unsigned), read only, by reference

word_unsigned, word (unsigned), read only, by reference

Bitwise Exclusive OR of Two Longword Parameters Routine

MTH$JIEOR longword1, longword2

longword_unsigned, longword (unsigned), write only, by value

longword_unsigned, longword (unsigned), read only, by reference

longword_unsigned, longword (unsigned), read only, by reference

Convert F-floating to Word (Truncated) Routine

MTH$11FIX f-floating

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

Convert F-floating to Longword (Truncated) Routine

MTH$JIFIX f-floating

longword_signed, longword (signed), write only, by value

floating_point, F _floating, read only, by reference

Convert Word to F-floating (Exact) Routine

MTH$FLOATI word

floating_point, F _floating, write only, by value

word_signed, word (signed), read only, by reference

Convert Word to D-floating (Exact) Routine

MTH$DFLOTI word

floating_point, D_floating, write only, by value

word_signed, word (signed), read only, by reference

Convert Word to G-floating (Exact) Routine

MTH$GFLOTI word

floating_point, G_floating, write only, by value

word_signed, word (signed), read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$FLOATJ

Format:

Returns:

longword:

MTH$DFLOTJ

Format:

Returns:

longword:

MTH$GFLOTJ

Format:

Returns:

longword:

MTH$FLOOR

Format:

JSB:

Returns:

f-floating:

MTH$DFLOOR

Format:

JSB:

Returns:

d-floating:

MTH$GFLOOR

Format:

JSB:

Returns:

g-floating:

Entry Point Information

Convert Longword to F-floating (Rounded) Routine

MTH$FLOAT J longword

floating_point, F _floating, write only, by value

longword_signed, longword (signed), read only, by reference

Convert Longword to D-f/oating (Exact) Routine

MTH$DFLOT J longword

floating_point, D_floating, write only, by value

longword_signed, longword (signed}, read only, by reference

Convert Longword to G-floating (Exact) Routine

MTH$GFLOT J longword

floating_point, G_floating, write only, by value

longword_signed, longword (signed), read only, by reference

Convert F-floating to Greatest F-floating Integer Routine

MTH$FLOOR f-floating

MTH$FLOOR_R1 f-floating

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

Convert D-floating to Greatest D-f/oating Integer Routine

MTH$DFLOOR d-floating

MTH$DFLOOR_R3 d-floating

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

Convert G-floating to Greatest G-floating Integer Routine

MTH$GFLOOR g-floating

MTH$GFLOOR_R3 g-floating

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

(continued on next page)

A-5

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$HFLOOR

Format:

JSB:

Returns:

max-h-float:

h·floating:

MTH$AINT

Format:

JSB:

Returns:

f-floating:

MTH$DINT

Format:

JSB:

Returns:

d-floating:

MTH$11DINT

Format:

Returns:

d-floating:

MTH$JIDINT

Format:

Returns:

d·floating:

MTH$GINT

Format:

JSB:

Returns:

g-floating:

A-6

Entry Point Information

Convert H-floating to Greatest H-floating Integer Routine

MTH$HFLOOR max-h-float, h-floating

MTH$HFLOOR_R7 h-floating

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

Convert F-floating to Truncated F-floating Routine

MTH$AINT f-floating

MTH$AINT _R2 f-floating

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

Convert D-floating to Truncated D-f/oating Routine

MTH$DINT d-floating

MTH$DINT _R4 d-floating

floating_point, D_floating, write only, by value

floating_point, O_floating, read only, by reference

Convert D-f/oating to Word (Truncated) Routine

MTH$11DINT d-floating

word_signed, word (signed), write only, by value

floating_point, D_floating, read only, by reference

Convert D-floating to Longword (Truncated) Routine

MTH$JIDINT d-floating

longword_signed, longword (signed), write only, by value

floating_point, D _floating, read only, by reference

Convert G-floating to Truncated G-f/oating Routine

MTH$GINT g-floating

MTH$GINT_R4 g-floating

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$11GINT

Format:

Returns:

g-floating:

MTH$JIGINT

Format:

Returns:

g-floating:

MTH$HINT

Format:

JSB:

Returns:

trunc-h-flt:

h-floating:

MTH$11HINT

Format:

Returns:

h-floating:

MTH$JIHINT

Format:

Returns:

h-floating:

MTH$11NT

Format:

Returns:

f-floating:

MTH$JINT

Format:

Returns:

f-floating:

Entry Point Information

Convert G-f/oating to Word (Truncated) Routine

MTH$11GINT g-floating

word_signed, word (signed), write only, by value

floating_point, G_floating, read only, by reference

Convert G-floating to Longword (Truncated) Routine

MTH$JIGINT g-floating

longword_signed, longword (signed), write only, by value

floating_point, G_floating, read only, by reference

Convert H-floating to Truncated H-floating Routine

MTH$HINT trunc-h-flt, h-floating

MTH$HINT _R8 h-floating

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

Convert H-f/oating to Word (Truncated) Routine

MTH$11HINT h-floating

word_signed, word (signed), write only, by value

floating_point, H_floating, read only, by reference

Convert H-floating to Longword (Truncated) Routine

MTH$JIHINT h-floating

longword_signed, longword (signed), write only, by value

floating_point, H_floating, read only, by reference

Convert F-floating to Word (Truncated) Routine

MTH$11NT f-floating

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

Convert F-floating to Longword (Truncated) Routine

MTH$JINT f-floating

longword_signed, longword (signed), write only, by value

floating_point, F _floating, read only, by reference

(continued on next page)

A-7

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$110R

Format:

Returns:

word1:

word2:

MTH$JIOR

Format:

Returns:

longword1:

longword2:

MTH$AIMAXO

Format:

Returns:

word:

MTH$AJMAXO

Format:

Returns:

longword:

MTH$1MAXO

Format:

Returns:

word:

MTH$JMAXO

Format:

Returns:

longword:

MTH$AMAX1

Format:

Returns:

f-floating:

A-8

Entry Point Information

Bitwise Inclusive OR of Two Word Parameters Routine

MTH$110R word1, word2

word_unsigned, word (unsigned), write only, by value

word_unsigned, word (unsigned), read only, by reference

word_unsigned, word (unsigned), read only, by reference

Bitwise Inclusive OR of Two Longword Parameters Routine

MTH$JIOR longword1, longword2

longword_unsigned, longword (unsigned), write only, by value

longword_unsigned, longword (unsigned), read only, by reference

longword_unsigned, longword (unsigned), read only, by reference

F-floating Maximum of N Word Parameters Routine

MTH$AIMAXO word, ...

floating_point, F _floating, write only, by value

word_signed, word (signed), read only, by reference

F-floating Maximum of N Longword Parameters Routine

MTH$AJMAXO longword, ...

floating_point, F _floating, write only, by value

longword_signed, longword (signed), read only, by reference

Word Maximum of N Word Parameters Routine

MTH$1MAXO word, ...

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

Longword Maximum of N Longword Parameters Routine

MTH$JMAXO longword, ...

longword_signed, longword (signed), write only, by value

longword_signed, longword (signed), read only, by reference

F-floating Maximum of N F-floating Parameters Routine

MTH$AMAX1 f-floating, ...

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$DMAX1

Format:

Returns:

d-floating:

MTH$GMAX1

Format:

Returns:

g-floating:

MTH$HMAX1

Format:

Returns:

h-float-max:

h-floating:

MTH$1MAX1

Format:

Returns:

f-floating:

MTH$JMAX1

Format:

Returns:

f-floating:

MTH$AIMINO

Format:

Returns:

word:

MTH$AJMINO

Format:

Returns:

longword:

Entry Point Information

D-floating Maximum of N D-floating Parameters Routine

MTH$DMAX1 d-floating, ...

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

G-floating Maximum of N G-floating Parameters Routine

MTH$GMAX1 g-floating, ...

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

H-f/oating Maximum of N H-floating Parameters Routine

MTH$HMAX1 h-float-max, h-floating, ...

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

Word Maximum of N F-f/oating Parameters Routine

MTH$1MAX1 f-floating, ...

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

Longword Maximum of N F-floating Parameters Routine

MTH$JMAX1 f-floating, ...

longword_signed, longword (signed), write only, by value

floating_point, F _floating, read only, by reference

F-floating Minimum of N Word Parameters Routine

MTH$AIMINO word, ...

floating_point, F _floating, write only, by value

word_signed, word (signed), read only, by reference

F-f/oating Minimum of N Longword Parameters Routine

MTH$AJMINO longword, ...

floating_point, F _floating, write only, by value

longword_signed, longword (signed), read only, by reference

(continued on next page)

A-9

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$1MINO

Format:

Returns:

word:

MTH$JMINO

Format:

Returns:

longword:

MTH$AMIN1

Format:

Returns:

f-floating:

MTH$DMIN1

Format:

Returns:

d-floating:

MTH$GMIN1

Format:

Returns:

g-floating:

MTH$HMIN1

Format:

Returns:

h-float-max:

h-floating:

MTH$1MIN1

Format:

Returns:

f-floating:

A-10

Entry Point Information

Word Minimum of N Word Parameters Routine

MTH$1MINO word, ...

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

Longword Minimum of N Longword Parameters Routine

MTH$JMINO longword, ...

longword_signed, longword (signed), write only, by value

longword_signed, longword (signed), read only, by reference

F-floating Minimum of N F-floating Parameters Routine

MTH$AMIN1 f-floating, ...

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

D-floating Minimum of N D-floating Parameters Routine

MTH$DMIN1 d-floating, ...

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

G-f/oating Minimum of N G-f/oating Parameters Routine

MTH$GMIN1 g-floating, ...

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

H-floating Minimum of N H-f/oating Parameters Routine

MTH$HMIN1 h-float-max, h-floating, ...

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

Word Minimum of N F-floating Parameters Routine

MTH$1MIN1 f-floating, ...

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$JMIN1

MTH$AMOD

MTH$DMOD

MTH$GMOD

MTH$HMOD

MTH$1MOD

Format:

Returns:

f-floating:

Format:

Returns:

dividend:

divisor:

Format:

Returns:

dividend:

divisor:

Format:

Returns:

dividend:

divisor:

Format:

Returns:

h-mod:

dividend:

divisor:

Format:

Returns:

dividend:

divisor:

Entry Point Information

Longword Minimum of N F-floating Parameters Routine

MTH$JMIN1 f-floating, ...

longword_signed, longword (signed), write only, by value

floating_point, F _floating, read only, by reference

Remainder from Division of Two F-f/oating Parameters Routine

MTH$AMOD dividend, divisor

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

Remainder from Division of Two D-f/oating Parameters Routine

MTH$DMOD dividend, divisor

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

floating_point, D_floating, read only, by reference

Remainder from Division of Two G-floating Parameters Routine

MTH$GMOD dividend, divisor

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

floating_point, G_floating, read only, by reference

Remainder from Division of Two H-floating Parameters Routine

MTH$HMOD h-mod, dividend, divisor

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

floating_point, H_floating, read only, by reference

Remainder from Division of Two Word Parameters Routine

MTH$1MOD dividend, divisor

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

word_signed, word (signed), read only, by reference

(continued on next page)

A-11

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$JMOD

Format:

Returns:

dividend:

divisor:

MTH$ANINT

Format:

Returns:

f-floating:

MTH$DNINT

Format:

Returns:

d-floating:

MTH$11DNNT

Format:

Returns:

d-floating:

MTH$JIDNNT

Format:

Returns:

d-floating:

MTH$GNINT

Format:

Returns:

g-floating:

MTH$11GNNT

Format:

Returns:

g-floating:

A-12

Entry Point Information

Remainder of Two Longword Parameters Routine

MTH$JMOD dividend, divisor

longword_signed, longword (signed), write only, by value

longword_signed, longword (signed), read only, by reference

longword_signed, longword (signed), read only, by reference

Convert F-floating to Nearest F-floating Integer Routine

MTH$ANINT f-floating

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

Convert D-floating to Nearest D-floating Integer Routine

MTH$DNINT d-floating

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

Convert D-floating to Nearest Word Integer Routine

MTH$11DNNT d-floating

word_signed, word (signed), write only, by value

floating_point, D_floating, read only, by reference

Convert D-floating to Nearest Longword Integer Routine

MTH$JIDNNT d-floating

longword_signed, longword (signed), write only, by value

floating_point, D_floating, read only, by reference

Convert G-floating to Nearest G-floating Integer Routine

MTH$GNINT g-floating

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

Convert G-f/oating to Nearest Word Integer Routine

MTH$11GNNT g-floating

word_signed, word (signed), write only, by value

floating_point, G_floating, read only, by reference

(continued on next page)

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$JIGNNT

Format:

Returns:

g-floating:

MTH$HNINT

Format:

Returns:

nearst-h-flt:

h-floating:

MTH$11HNNT

Format:

Returns:

h-floating:

MTH$JIHNNT

Format:

Returns:

h-floating:

MTH$1NINT

Format:

Returns:

f-floating:

MTH$JNINT

Format:

Returns:

f-floating:

MTH$1NOT

Format:

Returns:

word:

Entry Point Information

Convert G-floating to Nearest Longword Integer Routine

MTH$JIGNNT g-floating

longword_signed, longword (signed), write only, by value

floating__point, G_floating, read only, by reference

Convert H-f/oating to Nearest H-floating Integer Routine

MTH$HNINT nearst-h-flt, h-floating

None

floating__point, H_floating, write only, by reference

floating__point, H_floating, read only, by reference

Convert H-floating to Nearest Word Integer Routine

MTH$11HNNT h-floating

word_signed, word (signed), write only, by value

floating__point, H_floating, read only, by reference

Convert H-floating to Nearest Longword Integer Routine

MTH$JIHNNT h-floating

longword_signed, longword (signed), write only, by value

floating__point, H_floating, read only, by reference

Convert F-floating to Nearest Word Integer Routine

MTH$1NINT f-floating

word_signed, word (signed), write only, by value

floating__point, F _floating, read only, by reference

Convert F-f/oating to Nearest Longword Integer Routine

MTH$JNINT f-floating

longword_signed, longword (signed), write only, by value

floating__point, F _floating, read only, by reference

Bitwise Complement of Word Parameter Routine

MTH$1NOT word

word_unsigned, word (unsigned), write only, by value

word_unsigned, word (unsigned), read only, by reference

(continued on next page)

A-13

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$JNOT

Format:

Returns:

longword:

MTH$DPROD

Format:

Returns:

f-floating1 :

f.floating2:

MTH$GPROD

Format:

Returns:

f-floating1:

f-floating2:

MTH$SGN

Format:

Returns:

f-floating:

MTH$SGN

Format:

Returns:

d-floating:

MTH$11SHFT

Format:

Returns:

word:

shift-cnt:

A-14

Entry Point Information

Bitwise Complement of Longword Parameter Routine

MTH$JNOT longword

longword_unsigned, longword (unsigned), write only, by value

longword_unsigned, longword (unsigned), read only, by reference

D-floating Product of Two F-floating Parameters Routine

MTH$DPROD f-floating1, f-floating2

floating_point, D_floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

G-f/oating Product of Two F-floating Parameters Routine

MTH$GPROD f-floating1, f-floating2

floating_point, G_floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

F-floating Sign Function

MTH$SGN f-floating

longword_signed, longword (signed), write only, by reference

floating_point, F _floating, read only, by reference

D-floating Sign Function

MTH$SGN d-floating

longword_signed, longword (signed), write only, by reference

floating_point, D_floating, read only, by reference

Bitwise Shift of Word Routine

MTH$11SHFT word, shift-cnt

word_unsigned, word (unsigned), write only, by value

word_unsigned, word (unsigned), read only, by reference

word_signed, word (signed), read only, by reference

(continued on next page}

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$JISHFT

Format:

Returns:

longword:

shift-cnt:

MTH$SIGN

Format:

Returns:

f-float-x:

f-float-y:

MTH$DSIGN

Format:

Returns:

d-float-x:

d-float-y:

MTH$GSIGN

Format:

Returns:

g-float-x:

g-float-y:

MTH$HSIGN

Format:

Returns:

h-result:

h-float-x:

h-float-y:

MTH$11SIGN

Format:

Returns:

word-x:

word-y:

Entry Point Information

Bitwise Shift of Longword Routine

MTH$JISHFT longword, shift-cnt

longword_unsigned, longword (unsigned}, write only, by value

longword_unsigned, longword (unsigned), read only, by reference

longword_signed, longword (signed}, read only, by reference

F-floating Transfer of Sign of Y to Sign of X Routine

MTH$SIGN f-float-x, f-float-y

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

D-floating Transfer of Sign of Y to Sign of X Routine

MTH$DSIGN d-float-x, d-float-y

floating_point, D_floating, write only, by value

floating_point, D _floating, read only, by reference

floating_point, D_floating, read only, by reference

G-floating Transfer of Sign of Y to Sign of X Routine

MTH$GSIGN g-float-x, g-float-y

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

floating_point, G_floating, read only, by reference

H-floating Transfer of Sign of Y to Sign of X Routine

MTH$HSIGN h-result, h-float-x, h-float-y

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

floating_point, H_floating, read only, by reference

Word Transfer of Sign of Y to Sign of X Routine

MTH$11SIGN word-x, word-y

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

word_signed, word (signed), read only, by reference

(continued on next page)

A-15

Additional MTH$ Routines

Table A-1 (Cont.) Additional MTH$ Routines

Routine Name

MTH$JISIGN

MTH$SNGL

MTH$SNGLG

A-16

Format:

Returns:

longwrd-x:

longwrd-y:

Format:

Returns:

d-floating:

Format:

Returns:

g-floating:

Entry Point Information

Longword Transfer of Sign of Y to Sign of X Routine

MTH$JISIGN longwrd-x, longwrd-y

longword_signed, longword (signed), write only, by reference

longword_signed, longword (signed), read only, by reference

longword_signed, longword (signed}, read only, by reference

Convert 0-floating to F-floating (Rounded) Routine

MTH$SNGL d-floating

floating_point, F _floating, write only, by value

floating_point, D_floating, read only, by reference

Convert G-floating to F-floating (Rounded) Routine

MTH$SNGLG g-floating

floating_point, F _floating, write only, by value

floating_point, G_floating, read only, by reference

B Vector MTH$ Routine Entry Points

Table B-1 contains all of the vector MTH$ routines that you can call from
VAX MACRO. Be sure to read Section 2.3.3 and Section 2.3.4 before using
the information in this table.

Table B-1 Vector MTH$ Routines

Call Vector Vector
Scalar or Input Output Vector Name (Underflows Vector Name (Underflows
Name JSB Registers Registers Not Signaled) Signaled)

AINT JSB VO VO MTH$VAINT_RO_ V1
DINT JSB VO VO MTH$VDINT _R3_ V3
GINT JSB VO VO MTH$VGINT_R3_V3
DP ROD Call VO,V1 VO MTH$VVDPROD_R1_ V1
GP ROD Call VO,V1 VO MTH$VVGPROD_R1_ V1
ACOS JSB VO VO MTH$VACOS_R6_ V7
DA COS JSB VO VO MTH$VDACOS_R2_V7
GA COS JSB VO VO MTH$VGACOS_R2_V7
ACOSD JSB VO VO MTH$VACOSD_R6_V7
DACOSD JSB VO VO MTH$VDACOSD_R2_V7
GACOSD JSB VO VO MTH$VGACOS_R2_V7
ASIN JSB VO VO MTH$VASIN_R2_ V6
DASIN JSB VO VO MTH$VDASIN_R2_ V6
GASIN JSB VO VO MTH$VGASIN_R2_ V6
ASIND JSB VO VO MTH$VASIND_R2_ V6
DASI ND JSB VO VO MTH$VDASIND_R2_V6
GAS IND JSB VO VO MTH$VGASIND_R2_ V6
ATAN JSB VO VO MTH$VATAN_RO_ V4
DATAN JSB VO VO MTH$VDATAN_RO_V6
GATAN JSB VO VO MTH$VGATAN_RO_V6
ATAND JSB VO VO MTH$VATAND_RO_V4
DATAND JSB VO VO MTH$VDATAND_RO_V6
GATAND JSB VO VO MTH$VGATAND_RO_V6
ATAN2 JSB VO,V1 VO MTH$VVATAN2_R4_V7
DATAN2 JSB VO,V1 VO MTH$VVDATAN2_R4_V9
GATAN2 JSB VO,V1 VO MTH$VVGATAN2_R4_V9
ATAND2 JSB VO,V1 VO MTH$VVATAND2_R4_V7

(continued on next page)

B-1

Vector MTH$ Routine Entry Points

Table B-1 (Cont.) Vector MTH$ Routines

Call Vector Vector
Scalar or Input Output Vector Name (Underflows Vector Name (Underflows
Name JSB Registers Registers Not Signaled) Signaled)

DATAND2 JSB VO,V1 VO MTH$VVDATAND2_R4_V9

GATAND2 JSB VO,V1 VO MTH$VVGATAND2_R4_V9

CABS Call VO,V1 VO MTH$VCABS_R1_ V5

CD ABS Call VO,V1 VO MTH$VCDABS_R1_ V6

CGABS Call VO,V1 VO MTH$VCGABS_R1_V6

ccos Call VO,V1 VO,V1 MTH$VCCOS_R1_V11

CD COS Call VO,V1 VO,V1 MTH$VCDCOS_R1_V11

CG COS Call VO,V1 VO,V1 MTH$VCGCOS_R1_ V11

cos JSB VO VO MTH$VCOS_R4_ V7

DCOS JSB VO VO MTH$VDCOS_R4_ V8

GCOS JSB VO VO MTH$VGCOS_R4_ V8

COSD JSB VO VO MTH$VCOSD_R4_V6

DCOSD JSB VO VO MTH$VDCOSD_R4_V6

GCOSD JSB VO VO MTH$VGCOSD_R4_ V6

CEXP Call VO,V1 VO,V1 MTH$VCEXP _R1_ V8

CD EXP Call VO,V1 VO,V1 MTH$VCDEXP_R1_V10

CG EXP Call VO,V1 VO,V1 MTH$VCGEXP _R1_V10

CLOG Call VO,V1 VO,V1 MTH$VCLOG_R1_V8

CD LOG Call VO,V1 VO,V1 MTH$VCDLOG_R1_ V10

CG LOG Call VO,V1 VO,V1 MTH$VCGLOG_R1_V10

AMOD JSB VO,RO VO MTH$VMOD_R4_ V5 MTH$VMOD_E_R4_ V5

DMOD JSB VO.RO VO MTH$VDMOD_R7 _ V6 MTH$VDMOD_E_R7 _ V6

GMOD JSB VO,RO VO MTH$VGMOD_R7 _VG MTH$VGMOD_E_R7 _VG

CSIN Call VO,V1 VO,V1 MTH$VCSIN_R1_ V11

CDSIN Call VO,V1 VO,V1 MTH$VCDSIN_R1_ V11

CGSIN Call VO,V1 VO,V1 MTH$VCGSIN_R1_V11

CSQRT Call VO,V1 VO,V1 MTH$VCSQRT_R1_V7

CD SQRT Call VO,V1 VO,V1 MTH$VCDSQRT_R1_V8

CG SQRT Call VO,V1 VO,V1 MTH$VCGSQRT_R1_V8

COSH JSB VO VO MTH$VCOSH_R5_ V8

DCOSH JSB VO VO MTH$VDCOSH_R5_V8

GCOSH JSB VO VO MTH$VGCOSH_R5_ V8

EXP JSB VO VO MTH$VEXP _R3_ V6 MTH$VEXP_E_R3_V6

DEXP JSB VO VO MTH$VDEXP _R3_ V6 MTH$VDEXP_E_R3_V6

GEXP JSB VO VO MTH$VGEXP _R3_ VG MTH$VGEXP_E_R3_VG

(continued on next page)

B-2

Vector MTH$ Routine Entry Points

Table B-1 (Cont.) Vector MTH$ Routines

Call Vector Vector
Scalar or Input Output Vector Name (Underflows Vector Name (Underflows
Name JSB Registers Registers Not Signaled) Signaled)

ALOG JSB VO VO MTH$VALOG_R3_ V5

DLOG JSB VO VO MTH$VDLOG_R3_ V7

GLOG JSB VO VO MTH$VGLOG_R3_ V7

ALOG10 JSB VO VO MTH$VALOG1 O_R3_ V5

DLOG10 JSB VO VO MTH$VDLOG1 O_R3_ V7

GLOG10 JSB VO VO MTH$VGLOG10_R3_V7

ALOG2 JSB VO VO MTH$VALOG2_R3_ V5

DLOG2 JSB VO VO MTH$VDLOG2_R3_ V7

GLOG2 JSB VO VO MTH$VGLOG2_R3_V7

RANDOM JSB VO VO MTH$VRANDOM_R2_ VO

SIN JSB VO VO MTH$VSIN_R4_ V6

DSIN JSB VO VO MTH$VDSIN_R4_ V8

GSIN JSB VO VO MTH$VGSIN_R4_V8

SINO JSB VO VO MTH$VSIND_R4_V6 MTH$VSIND_E_R6_ V6

DSIND JSB VO VO MTH$VDSIND_R4_V6 MTH$VDSIND_E_R6_ V6

GSIND JSB VO VO MTH$VGSIND_R4_ V6 MTH$VGSIND_E_R6_ V6

SINCOS JSB VO VO,V1 MTH$VSINCOS_R4_ V7

DSINCOS JSB VO VO,V1 MTH$VDSINCOS_R4_ V8

GSINCOS JSB VO VO,V1 MTH$VGSINCOS_R4_ V8

SINCOSD JSB VO VO,V1 MTH$VSINCOSD_R4_ V6 MTH$VSINCOSD_E_R6_ V6

OSINCOSO JSB VO VO,V1 MTH$VOSINCOSO_R4_ V7 MTH$VOSINCOSO_E_R6_ V7

GSINCOSO JSB VO VO,V1 MTH$VGSINCOSD_R4_ V7 MTH$VGSINCOSO_E_R6_ V7

SINH JSB VO VO MTH$VSINH_R5_ V9

OSINH JSB VO VO MTH$VDSINH_R5_ V9

GSINH JSB VO VO MTH$VGSINH_R5_ V9

SQRT JSB VO VO MTH$VSQRT _R2_ V4

DSQRT JSB VO VO MTH$VDSQRT_R2_V5

GSQRT JSB VO VO MTH$VGSQRT_R2_V5

TAN JSB VO VO MTH$VTAN_R4_ V5

DTAN JSB VO VO MTH$VDTAN_R4_ V5

GTAN JSB VO VO MTH$VGTAN_R4_ V5

TAND JSB VO VO MTH$VTANO_R4_ V5 MTH$VTANO_E_R4_V5

OTANO JSB VO VO MTH$VOTAND_R4_V5 MTH$VOTANO_E_R4_V5

GTAND JSB VO VO MTH$VGTAND_R4_V5 MTH$VGTAND_E_R4_V5

TANH JSB VO VO MTH$VTANH_R3_V10

(continued on next page)

B-3

Vector MTH$ Routine Entry Points

Table B-1 (Cont.) Vector MTH$ Routines

Call Vector Vector
Scalar or Input Output Vector Name (Underflows Vector Name (Underflows
Name JSB Registers Registers Not Signaled) Signaled)

DTANH JSB VO VO MTH$VDTANH_R3_V10

GTANH JSB VO VO MTH$VGTANH_R3_V10

DIVC Call VO,V1 ,V2,V3 VO,V1 OTS$VVDIVC_R1_ V6

DIVCD Call VO,V1 ,V2,V3 VO,V1 OTS$VVDIVCD_R1_ V7

DIVCG Call VO,V1 ,V2,V3 VO,V1 OTS$VVDIVCG_R1_ V7

MULC Call VO,V1 ,V2,V3 VO,V1 OTS$VVMULC_R1_V4

MU LCD Call VO,V1,V2,V3 VO,V1 OTS$VVMULCD_R1_ V4

MULCG Call VO,V1 ,V2,V3 VO,V1 OTS$VVMULCG_R1_V4

POWJJ Call VO,RO VO OTS$VPOWJJ_R1_ V1

POWRJ Call VO,RO VO OTS$VPOWRJ_RO_ V1 OTS$VPOWRJ_E_RO_ V1

POW DJ Call VO,RO VO OTS$VPOWDJ_RO_ V1 OTS$VPOWDJ_E_RO_ V1

POWGJ Call VO,RO VO OTS$VPOWGJ_RO_ V1 OTS$VPOWGJ_E_RO_ V1

POW RR Call VO,RO VO OTS$VPOWRR_R1_V4 OTS$VPOWRR_E_R 1_ V4

POW DD Call VO,RO VO OTS$VPOWDD_R1_V8 OTS$VPOWDD_E_R1_ V8

POWGG Call VO,RO VO OTS$VPOWGG_R1_V9 OTS$VPOWGG_E_R1_ V9

B-4

Index

A
Absolute value• 1-4

of complex number • MTH-23
Additional routines

list of• 1-4 to 1-9
Algorithm • 1-3
Arc cosine

in degrees• MTH-6, MTH-70
in radians • MTH-3, MTH-68

Arc sine
in degrees• MTH-11, MTH-74
in radians • MTH-9, MTH-72

Arc tangent
hyperbolic • MTH-21,, MTH-84
in degrees• MTH-15, MTH-19, MTH-78, MTH-82
in radians• MTH-13, MTH-17, MTH-76, MTH-80

Arrays
conversion of • MTH-63

B
Backward indexing • 2-6
Bitwise AND operator • 1-5
Bitwise complement operator • 1-8
Bitwise exclusive OR operator• 1-5
Bitwise inclusive OR operator• 1-7
Bitwise shift• 1-9
BLAS

definition of • 2-1
BLAS Level 1

BLAS1$VlxAMAX • MTH-149
BLAS1$VxASUM • MTH-152
BLAS 1 $VxAXPY • MTH-155
BLAS1 $VxCOPY • MTH-160
BLAS 1 $VxDOT • MTH-165
BLAS 1 $VxN RM2 • MTH-170
BLAS 1 $VxROT • MTH-173
BLAS1$VxROTG • MTH-178
BLAS 1 $VxSCAL • MTH-183
BLAS1 $VxSWAP • MTH-187

c
Calling convention • 1-2
Complex number• 1-4, MTH-57, MTH-59,

MTH-110, MTH-120
absolute value of• MTH-23
complex exponential of • MTH-31 , MTH-33
conjugate of • MTH-44, MTH-45
cosine of• MTH-26, MTH-28
made from floating-point • MTH-40, MTH-42
natural logarithm of• MTH-35, MTH-37
sine of• MTH-53, MTH-54

Condition handling • 1-3
Conjugate of complex number• MTH-44, MTH-45
Conversion of double to single floating-point value •

1-9
Conversion to greatest floating-point integer• 1-6
Copying

vector • MTH-160
Cosind

in radians • MTH-124
Cosine

hyperbolic• MTH-51, MTH-88
in degrees• MTH-49, MTH-87, MTH-127
in radians• MTH-47, MTH-86
of complex number• MTH-26, MTH-28

D
Double-precision value

converting • MTH-62
converting an array of• MTH-63

E
Entry point name• 1-1
Error checking

in FOLR routines• 2-7
Euclidean norm

of a vector • MTH-170
Exceptions

recovering from • 2-8

lndex-1

Index

Exponential • MTH-65, MTH-90
of complex number• MTH-31, MTH-33

F
F-floating conversion • 1-5
First Order Linear Recurrence• MTH-192, MTH-197,

MTH-201, MTH-205
Floating-point conversion to nearest value • 1-8
Floating-point multiplication • 1-9
Floating-point positive difference • 1-5
Floating-point sign function • 1-9
FOLR

definition of• 2-7
FOLR routine• MTH-192, MTH-197, MTH-201,

MTH-205
FOLR routines

error checking • 2-7
naming conventions • 2-7

FORTRAN
/BLAS qualifier• 2-1

Forward indexing• 2-6

G
Givens plane rotation

applying to a vector• MTH-173
generating the elements for• MTH-178

H
Hyperbolic arc tangent• MTH-21, MTH-84
Hyperbolic cosine • MTH-51, MTH-88
Hyperbolic sine • MTH-100, MTH-133
Hyperbolic tangent • MTH-1 08, MTH-143

I
Index

of a vector • MTH-149
Indexing

backward • 2-6
forward • 2-6

lndex-2

Inner product

of a vector • MTH-165
Integer to floating-point conversion • 1-6

J
JSB entry point • 1-2

L
Linear recurrence

definition of• 2-7
Logarithm

base 2 • MTH-94, MTH-114
common• MTH-96, MTH-116
natural• MTH-92, MTH-112
natural complex • MTH-35, MTH-37

M
Mathematics routine

additional routines • A-1 to A-16
Maximum value• 1-7
Minimum value• 1-7
MTH$ACOS • MTH-3
MTH$ACOSD • MTH-6
MTH$AIMAG • MTH-110
MTH$ALOG • MTH-112
MTH$ALOG10 • MTH-116
MTH$ALOG2 • MTH-114
MTH$ASIN • MTH-9
MTH$ASIND • MTH-11
MTH$ATAN • MTH-13
MTH$ATAN2 • MTH-17
MTH$ATAND • MTH-15
MTH$ATAND2 • MTH-19
MTH$ATANH • MTH-21
MTH$CABS • MTH-23
MTH$CCOS • MTH-26
MTH$CDABS • MTH-23
MTH$CDCOS • MTH-28
MTH$CDEXP • MTH-33
MTH$CDLOG • MTH-37
MTH$CDSIN • MTH-54
MTH$CDSQRT • MTH-59
MTH$CEXP • MTH-31

MTH$CGABS • MTH-23
MTH$CGCOS • MTH-28
MTH$CGEXP • MTH-33
MTH$CGLOG • MTH-37
MTH$CGSIN • MTH-54
MTH$CGSQRT • MTH-59
MTH$CLOG • MTH-35
MTH$CMPLX • MTH-40
MTH$CONJG • MTH-44
MTH$COS • MTH-4 7
MTH$COSD • MTH-49
MTH$COSH • MTH-51
MTH$CSIN • MTH-53
MTH$CSQRT • MTH-57
MTH$CVT _DA_GA • MTH-63
MTH$CVT_D_G • MTH-62
MTH$CVT_GA_DA • MTH-63
MTH$CVT_G_p • MTH-62
MTH$DACOS • MTH-3
MTH$DACOSD•MTH-6
MTH$DASIN • MTH-9
MTH$DASIND • MTH-11
MTH$DATAN • MTH-13
MTH$DATAN2 • MTH-17
MTH$DATAND • MTH-15
MTH$DATAND2 • MTH-19
MTH$DATANH • MTH-21
MTH$DCMPLX • MTH-42
MTH$DCONJG • MTH-45
MTH$DCOS • MTH-47
MTH$DCOSD • MTH-49
MTH$DCOSH • MTH-51
MTH$DEXP • MTH-65
MTH$DIMAG • MTH-110
MTH$DLOG • MTH-112
MTH$DLOG10 • MTH-116
MTH$DLOG2 • MTH-114
MTH$DREAL • MTH-120
MTH$DSIN • MTH-122
MTH$DSINCOS • MTH-124
MTH$DSINCOSD • MTH-127
MTH$DSIND • MTH-131
MTH$DSINH • MTH-133
MTH$DSQRT • MTH-136
MTH$DTAN • MTH-139
MTH$DTAND • MTH-141
MTH$DTANH • MTH-143
MTH$EXP • MTH-65
MTH$GACOS • MTH-3
MTH$GACOSD•MTH-6
MTH$GASIN • MTH-9

MTH$GASIND • MTH-11
MTH$GATAN • MTH-13
MTH$GATAN2 • MTH-17
MTH$GATAND • MTH-15
MTH$GATAND2 • MTH-19
MTH$GATANH • MTH-21
MTH$GCMPLX • MTH-42
MTH$GCONJG • MTH-45
MTH$GCOS • MTH-47
MTH$GCOSD • MTH-49
MTH$GCOSH • MTH-51
MTH$GEXP • MTH-65
MTH$GIMAG • MTH-110
MTH$GLOG • MTH-112
MTH$GLOG 10 • MTH-116
MTH$GLOG2 • MTH-114
MTH$GREAL • MTH-120
MTH$GSIN • MTH-122
MTH$GSINCOS • MTH-124
MTH$GSINCOSD • MTH-127
MTH$GSIND • MTH-131
MTH$GSINH • MTH-133
MTH$GSQRT • MTH-136
MTH$GTAN • MTH-139
MTH$GTAND • MTH-141
MTH$GTANH • MTH-143
MTH$HACOS • MTH-68
MTH$HACOSD • MTH-70
MTH$HASIN • MTH-72
MTH$HASIND • MTH-74
MTH$HATAN • MTH-76
MTH$HATAN2 • MTH-80
MTH$HATAND • MTH-78
MTH$HATAND2•MTH-82
MTH$HATANH • MTH-84
MTH$HCOS • MTH-86
MTH$HCOSD • MTH-87
MTH$HCOSH • MTH-88
MTH$HEXP • MTH-90
MTH$HLOG • MTH-92
MTH$HLOG10 • MTH-96
MTH$HLOG2 • MTH-94
MTH$HSIN • MTH-98
MTH$HSINCOS • MTH-124
MTH$HSINCOSD • MTH-127
MTH$HSIND • MTH-99
MTH$HSINH • MTH-100
MTH$HSQRT • MTH-102
MTH$HTAN • MTH-104
MTH$HTAND • MTH-106
MTH$HTANH • MTH-108

Index

lndex-3

Index

MTH$RANDOM • MTH-118
MTH$REAL • MTH-120
MTH$SIN • MTH-122
MTH$SINCOS • MTH-124
MTH$SINCOSD • MTH-127
MTH$SIND • MTH-131
MTH$SINH • MTH-133
MTH$SQRT • MTH-136
MTH$TAN • MTH-139
MTH$TAND • MTH-141
MTH$TANH • MTH-143
MTH$UMAX • MTH-145
MTH$UMIN • MTH-146
MTH$VxFOLRLy_MA_ V5 • MTH-201
MTH$VxFOLRLy_z_ V2 • MTH-205
MTH$VxFOLRy_MA_ V15 • MTH-192
MTH$VxFOLRy_z_V8 • MTH-197
Multiplying

vector • MTH-155

N
Naming conventions

FOLR routines • 2-7
vector routines • 2-9

Norm
Euclidean

of a vector • MTH-170

0
Overflow detection • 2-9

p
Plane rotation

applying Givens plane rotation to a vector•
MTH-173

generating the elements for a Givens plane
rotation • MTH-178

Product
of a vector • MTH-165

lndex-4

R
Random number generator• MTH-118
Recurrence

linear
definition of• 2-7

Remainder • 1-8
Rotation

applying to a vector • MTH-173

s
Scaling

vector • MTH-183
Sine

hyperbolic• MTH-100, MTH-133
in degrees• MTH-99, MTH-127, MTH-131
in radians• MTH-98, MTH-122, MTH-124
of complex number• MTH-53, MTH-54

Square root• MTH-102, MTH-136
Sum of absolute values

of a vector • MTH-152
Swapping

vector • MTH-187

T
Tangent• MTH-104, MTH-106, MTH-139, MTH-141

hyperbolic • MTH-108, MTH-143
Truncation of floating-point value• 1-6

u
Underflow detection • 2-9

v
VAX FORTRAN

/BLAS qualifier• 2-1
VAX FORTRAN-HPO compiler• 2-1, 2-10

Vector
applying Givens plane rotation• MTH-173
copying • MTH-160
generating the elements for a Givens plane

rotation • MTH-178
multiplying• MTH-155
obtaining the Euclidean norm of • MTH-170
obtaining the index of• MTH-149
obtaining the inner product of• MTH-165
obtaining the sum of the absolute values of•

MTH-152
scaling• MTH-183
swapping • MTH-187

Vectorization of a loop
preventing• MTH-192, MTH-197, MTH-201,

MTH-205
Vectorizing FORTRAN compiler• 2-8
Vector routines

table of entry points • 8-1 to 8-4

Index

lndex-5

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/El5
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS RTL Mathematics
(MTH$) Manual
AA-LA728-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Namefl'i.tle

Company

Mailing Address

Good Fair Poor

D D D
D 0 0
D 0 0
D 0 0
D 0 0
D 0 0
D 0 0
D 0 0

Dept.

Date

Phone

- Do Not Tear - Fold Here and Tape -------------------[lllr--------------
No Postage

~amaoma™ ~==

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 II 1. II .1 .. 1, 1 .. 1 .. 1.1, .. 1.11 .. I

in the
United States

·- Do Not Tear - Fold Here --

!
I
I
I
I

