## . VMS

VMS RTL Mathematics (MTH\$) Manual

# VMS RTL Mathematics <br> (MTH\$) Manual 

Order Number: AA-LA72B-TE

June 1990
This manual documents the mathematics routines contained in the MTH\$ facility of the VMS Run-Time Library.

Revision/Update Information: This manual supersedes the VMS RTL Mathematics (MTH\$) Manual, Version 5.0.

Software Version: VMS Version 5.4

## June 1990

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.
© Digital Equipment Corporation 1990.
All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

| CDA | DEQNA | MicroVAX | VAX RMS |
| :--- | :--- | :--- | :--- |
| DDIF | Desktop-VMS | PrintServer 40 | VAXserver |
| DEC | DIGITAL | Q-bus | VAXstation |
| DECdtm | GIGI | ReGIS | VMS |
| DECnet | HSC | ULTRIX | VT |
| DECUS | LiveLink | UNIBUS | XUI |
| DECwindows | LNO3 | VAX |  |
| DECwriter | MASSBUS | VAXcluster | dilgitall ${ }^{\text {w }}$ |

The following is a third-party trademark:
PostScript is a registered trademark of Adobe Systems Incorporated.

# Production Note 

This book was produced with the VAX DOCUMENT electronic publishing system, a software tool developed and sold by Digital. In this system, writers use an ASCII text editor to create source files containing text and English-like code; this code labels the structural elements of the document, such as chapters, paragraphs, and tables. The VAX DOCUMENT software, which runs on the VMS operating system, interprets the code to format the text, generate a table of contents and index, and paginate the entire document. Writers can print the document on the terminal or line printer, or they can use Digital-supported devices, such as the LN03 laser printer and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality copy containing integrated graphics.

## Contents



## Contents

| 2.2 | FOLR — FIRST ORDER LINEAR RECURRENCE ROUTINES |  | $2-7$ |
| :--- | :--- | :--- | :--- |
| 2.2.1 | FOLR Routine Name Format | $2-7$ |  |
| 2.2 .2 | Calling a FOLR Routine | $2-8$ |  |
|  |  | $2-8$ |  |
| 2.3 | VECTOR VERSIONS OF EXISTING SCALAR ROUTINES | $2-8$ |  |
| 2.3 .1 | Exceptions | $2-9$ |  |
| 2.3 .2 | Underflow Detection | $2-9$ |  |
| 2.3.3 | Vector Routine Name Format | $2-9$ |  |
| 2.3.4 | Calling a Vector Math Routine | $2-10$ |  |

## SCALAR MTH\$ REFERENCE SECTION

| MTH\$XACOS | MTH-3 |
| :--- | ---: |
| MTH\$XACOSD | MTH-6 |
| MTH\$XASIN | MTH-9 |
| MTH\$XASIND | MTH-11 |
| MTH\$XATAN | MTH-13 |
| MTH\$XATAND | MTH-15 |
| MTH\$XATAN2 | MTH-17 |
| MTH\$XATAND2 | MTH-19 |
| MTH\$XATANH | MTH-21 |
| MTH\$CXABS | MTH-23 |
| MTH\$CCOS | MTH-26 |
| MTH\$CXCOS | MTH-28 |
| MTH\$CEXP | MTH-31 |

MTH\$CXEXP MTH-33
MTH\$CLOG MTH-35
MTH\$CXLOG MTH-37
MTH\$CMPLX MTH-40
MTH\$XCMPLX MTH-42
MTH\$CONJG MTH-44
MTH\$XCONJG MTH-45
MTH\$XCOS MTH-47
MTH\$XCOSD MTH-49
MTH\$XCOSH MTH-51
MTH\$CSIN MTH-53
MTH\$CXSIN MTH-54
MTH\$CSQRT MTH-57
MTH\$CXSQRT MTH-59
MTH\$CVT_X_X MTH-62
MTH\$CVT_XA_XA MTH-63

| MTH\$XEXP | MTH-65 |
| :--- | ---: |
| MTH\$HACOS | MTH-68 |
| MTH\$HACOSD | MTH-70 |
| MTH\$HASIN | MTH-72 |
| MTH\$HASIND | MTH-74 |
| MTH\$HATAN | MTH-76 |
| MTH\$HATAND | MTH-78 |
| MTH\$HATAN2 | MTH-80 |
| MTH\$HATAND2 | MTH-82 |
| MTH\$HATANH | MTH-84 |
| MTH\$HCOS | MTH-86 |
| MTH\$HCOSD | MTH-87 |
| MTH\$HCOSH | MTH-88 |
| MTH\$HEXP | MTH-90 |
| MTH\$HLOG | MTH-92 |
| MTH\$HLOG2 | MTH-94 |
| MTH\$HLOG10 | MTH-96 |
| MTH\$HSIN | MTH-98 |
| MTH\$HSIND | MTH-99 |
| MTH\$HSINH | MTH-100 |
| MTH\$HSQRT | MTH-102 |
| MTH\$HTAN | MTH-104 |
| MTH\$HTAND | MTH-106 |
| MTH\$HTANH | MTH-108 |
| MTH\$XIMAG | MTH-110 |
| MTH\$XLOG | MTH-112 |
| MTH\$XLOG2 | MTH-114 |
| MTH\$XLOG10 | MTH-116 |
| MTH\$RANDOM | MTH-118 |
| MTH\$XREAL | MTH-120 |
| MTH\$XSIN | MTH-122 |
| MTH\$XSINCOS | MTH-124 |
| MTH\$XSINCOSD | MTH-127 |
| MTH\$XSIND | MTH-131 |
| MTH\$XSINH | MTH-133 |
| MTH\$XSQRT | MTH-136 |
| MTH\$XTAN | MTH-139 |
| MTH\$XTAND | MTH-141 |
| MTH\$XTANH | MTH-143 |
| MTH\$UMAX |  |
| MTH\$UMIN | MTH |

VECTOR MTH\$ REFERENCE SECTION

| BLAS1\$VIXAMAX | MTH-149 |
| :--- | :--- |
| BLAS1\$VXASUM | MTH-152 |
| BLAS1\$VXAXPY | MTH-155 |
| BLAS1\$VXCOPY | MTH-160 |
| BLAS1\$VXDOTX | MTH-165 |
| BLAS1\$VXNRM2 | MTH-170 |
| BLAS1\$VXROT | MTH-173 |
| BLAS1\$VXROTG | MTH-178 |
| BLAS1\$VXSCAL | MTH-183 |
| BLAS1\$VXSWAP | MTH-187 |
| MTH\$VXFOLRY_MA_V15 | MTH-192 |
| MTH\$VXFOLRY_Z_V8 | MTH-197 |
| MTH\$VXFOLRLY_MA_V5 | MTH-201 |
| MTH\$VXFOLRLY_Z_V2 | MTH-205 |

APPENDIX A ADDITIONAL MTH\$ ROUTINES ..... A-1
APPENDIX B VECTOR MTH\$ ROUTINE ENTRY POINTS ..... B-1

INDEX

## TABLES

| 1-1 | Additional Mathematics Routines | 1-4 |
| :---: | :---: | :---: |
| 2-1 | Functions of the BLAS Level 1 | 2-3 |
| 2-2 | Determining the FOLR Routine You Need | 2-8 |
| 2-3 | Vector Routine Format - Underflow Signaling Enabled | 2-9 |
| 2-4 | Vector Routine Format - Underflow Signaling Disabled | 2-9 |
| A-1 | Additional MTH\$ Routines | A-1 |
| B-1 | Vector MTH\$ Routines | B-1 |

## Preface

This manual provides users of the VMS operating system with detailed usage and reference information on mathematics routines supplied in the MTH\$ facility of the Run-Time Library.
Run-Time Library routines can only be used in programs written in languages that produce native code for the VAX hardware. At present, these languages include VAX MACRO and the following compiled highlevel languages:

VAX Ada<br>VAX BASIC<br>VAX BLISS-32<br>VAX C<br>VAX COBOL<br>VAX COBOL-74<br>VAX CORAL<br>VAX DIBOL<br>VAX FORTRAN<br>VAX Pascal<br>VAX PL/I<br>VAX RPG<br>VAX SCAN

Interpreted languages which can also access Run-Time Library routines include VAX DSM and VAX DATATRIEVE.

## Intended Audience

This manual is intended for system and application programmers who want to call Run-Time Library routines.

## Document Structure

This manual is organized into three parts and two appendixes. The three parts are as follows:
Part I contains chapters that discuss the scalar and vector routines in the MTH\$ facility.

- Chapter 1 is an introductory chapter that provides guidelines on using the MTH\$ scalar routines.
- Chapter 2 provides guidelines on using the MTH\$ vector routines.

Part II is the Scalar MTH\$ Reference Section.

- The Scalar MTH\$ Reference Section provides detailed reference information on each scalar mathematics routine contained in the MTH\$ facility of the Run-Time Library. The routines in this part are the same as those provided in VMS Version 5.0.


## Preface

Part III is the Vector MTH\$ Reference Section.

- The Vector MTH\$ Reference Section provides detailed reference information on the BLAS Level 1 (Basic Linear Algebra Subroutines) and FOLR (First Order Linear Recurrence) routines.

The reference information in Part II and Part III is presented using the documentation format described in the Introduction to the VMS Run-Time Library. Routine descriptions appear in alphabetical order by routine name.

## Associated Documents

The Run-Time Library routines are documented in a series of reference manuals. A general overview of the Run-Time Library and a description of how the Run-Time Library routines are accessed is presented in the Introduction to the VMS Run-Time Library. Descriptions of the other RTL facilities and their corresponding routines and usages are discussed in the following books:

- The VMS RTL DECtalk (DTK\$) Manual
- The VMS RTL Library (LIB\$) Manual
- The VMS RTL General Purpose (OTS\$) Manual
- The VMS RTL Parallel Processing (PPL\$) Manual
- The VMS RTL Screen Management (SMG\$) Manual
- The VMS RTL String Manipulation (STR\$) Manual

The VAX Procedure Calling and Condition Handling Standard, which is documented in the Introduction to System Routines, contains useful information for anyone who wants to call Run-Time Library routines.
Applications programmers of any language may refer to the Guide to Creating VMS Modular Procedures for the Modular Programming Standard and other guidelines.

High-level language programmers will find additional information on calling Run-Time Library routines in their language reference manual. Additional information may also be found in the language user's guide provided with your VAX language.

The Guide to Using VMS Command Procedures may also be useful.
For a complete list and description of the manuals in the VMS documentation set, see the Overview of VMS Documentation.

## Conventions

The following conventions are used in this manual:

|  | In examples, a horizontal ellipsis indicates one of the following possibilities: |
| :---: | :---: |
|  | - Additional optional arguments in a statement have been omitted. <br> - The preceding item or items can be repeated one or more times. <br> - Additional parameters, values, or other information can be entered. |
|  | A vertical ellipsis indicates the omission of items from a code example or command format; the items are omitted because they are not important to the topic being discussed. |
| () | In format descriptions, parentheses indicate that, if you choose more than one option, you must enclose the choices in parentheses. |
| [] | In format descriptions, brackets indicate that whatever is enclosed is optional; you can select none, one, or all of the choices. |
| \{\} | In format descriptions, braces surround a required choice of options; you must choose one of the options listed. |
| red ink | Red ink indicates information that you must enter from the keyboard or a screen object that you must choose or click on. For online versions, user input is shown in bold. |
| boldface text | Boldface text represents the introduction of a new term or the name of an argument, an attribute, or a reason. |
| UPPERCASE TEXT | Uppercase letters indicate that you must enter a command (for example, enter OPEN/READ) or they indicate the name of a routine, the name of a file, the name of a file protection code, or the abbreviation for a system privilege. |
| - | Hyphens in coding examples indicate that additional arguments to the request are provided on the line that follows. |
| numbers | Uniess otherwise noted, all numbers in the text are assumed to be decimal. Nondecimal radixes-binary, octal, or hexadecimal-are explicitly indicated. |

Other conventions used in the documentation of Run-Time Library routines are described in the Introduction to the VMS Run-Time Library.

## 1 Introduction to MTH\$

The Run-Time Library mathematics routines may be called to perform a wide variety of computations including the following:

- Floating-point trigonometric function evaluation
- Exponentiation
- Complex function evaluation
- Complex exponentiation
- Miscellaneous function evaluation

The OTS\$ facility provides additional language-independent arithmetic support routines.
This introduction to Run-Time Library mathematics routines includes examples of how to call mathematics routines from BASIC, COBOL, FORTRAN, MACRO, Pascal, PL/I, and Ada.

### 1.1 Entry Point Names

The names of the mathematics routines are formed by adding the MTH\$ prefix to the function names.

When function arguments and returned values are of the same data type, the first letter of the name indicates this data type. When function arguments and returned values are of different data types, the first letter indicates the data type of the returned value, and the second letter indicates the data type of the argument(s).
The letters used as data type prefixes are listed below.

| Letter | Data Type |
| :--- | :--- |
| I | Word |
| J | Longword |
| D | D_floating |
| G | G_floating |
| H | H_floating |
| C | F_floating complex |
| CD | D_floating complex |
| CG | G_floating complex |

## Introduction to MTH\$

### 1.1 Entry Point Names

Generally, F-floating data types have no letter designation. For example, MTH\$SIN returns an F-floating value of the sine of an F-floating argument and MTH\$DSIN returns a D-floating value of the sine of a D-floating argument. However, in some of the miscellaneous functions, F -floating data types are referenced by the letter designation A .

### 1.2 Calling Conventions

For calling conventions specific to the MTH\$ vector routines, refer to Chapter 2.

All calls to mathematics routines, as described in the FORMAT section of each routine, accept arguments passed by reference. JSB entry points accept arguments passed by value.
All mathematics routines return values in R0 or R0/R1 except those routines for which the values cannot fit in 64 bits. D-floating complex, G-floating complex and H -floating values are data structures which are larger than 64 bits. Routines that return values which cannot fit in registers R0/R1 return their function values into the first argument in the argument list.

The notation JSB MTH\$NAME_Rn, where $n$ is the highest register number referenced, indicates that an equivalent JSB entry point is available. Registers $\mathrm{R} 0: \mathrm{Rn}$ are not preserved.
Routines with JSB entry points accept a single argument in R0:Rm, where $m$, which is defined below, is dependent on the data type.

| Data Type | $\mathbf{m}$ |
| :--- | :--- |
| F_floating | 0 |
| D_floating | 1 |
| G_floating | 1 |
| H_floating | 3 |

A routine which returns one value returns it to registers $\mathrm{R} 0: \mathrm{Rm}$.
When a routine returns two values, for example MTH\$SINCOS, the first value is returned in $\mathrm{R} 0: \mathrm{Rm}$ and the second value is returned in ( $R<m+1>: R<2 * m+1>$ ).
Note that for routines that return a single value, $n>=m$. For routines that return two values, $n>=2 * m+1$.
In general, CALL entry points for mathematics routines do the following:

- Disable floating-point underflow
- Enable integer overflow
- Cause no floating-point overflow or other arithmetic traps or faults
- Preserve all other enabled operations across the CALL


## Introduction to MTH\$

1.2 Calling Conventions

JSB entry points execute in the context of the caller with the enable operations as set by the caller. Since the routines do not cause arithmetic traps or faults, their operation is not affected by the setting of the arithmetic trap enables, except as noted.
For more detailed information on CALL and JSB entry points, refer to the Introduction to the VMS Run-Time Library.

### 1.3 Algorithms

For those mathematics routines that have corresponding algorithms, the complete algorithm can be found in the Description section of the routine description appearing in the MTH\$ Reference Section of this manual.

### 1.4 Condition Handling

Error conditions are indicated by using the VAX signaling mechanism. The VAX signaling mechanism signals all conditions in mathematics routines as SEVERE by calling LIB\$SIGNAL. When a SEVERE error is signaled, the default handler causes the image to exit after printing an error message. A user-established condition handler can be written to cause execution to continue at the point of the error by returning SS\$_CONTINUE. A mathematics routine returns to its caller after the contents of R0/R1 have been restored from the mechanism argument vector CHF\$L_MCH_SAVR0/R1. Thus, the user-established handler should correct CHF\$L_MCH_SAVR0/R1 to the desired function value to be returned to the caller of the mathematics routine.

D-floating complex, G -floating complex, and H -floating values cannot be corrected with a user-established condition handler, because R2/R3 are not available in the mechanism argument vector.
Note that it is more reliable to correct R0 and R1 to resemble R0 and R1 of a double-precision floating-point value. A double-precision floating-point value correction works for both single- and double-precision values.
If the correction is not performed, the floating-point reserved operand -0.0 is returned. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Accessing the floatingpoint reserved operand will cause a reserved operand fault. See the VMS RTL Library (LIB\$) Manual for a complete description of how to write user condition handlers for SEVERE errors.

A few mathematics routines signal floating underflow if the calling program (JSB or CALL) has enabled floating underflow faults or traps.
All mathematics routines access input arguments and the real and imaginary parts of complex numbers using floating-point instructions. Therefore, a reserved operand fault can occur in any mathematics routine.

## Introduction to MTH\$

### 1.5 Complex Numbers

### 1.5 Complex Numbers

A complex number $y$ is defined as an ordered pair of real numbers $r$ and $i$, where $r$ is the real part and $i$ is the imaginary part of the complex number.

$$
y=(r, i)
$$

VMS supports three floating-point complex types: F-floating complex, D-floating complex, and G-floating complex. There is no H-floating complex data type.
Run-Time Library mathematics routines that use complex arguments require a pointer to a structure containing two $x$-floating values to be passed by reference for each argument. The first $x$-floating value contains $r$, the real part of the complex number. The second $x$-floating value contains i, the imaginary part of the complex number. Similarly, RunTime Library mathematics routines that return complex function values return two x -floating values. Some Language Independent Support (OTS\$) routines also calculate complex functions.
Note that complex functions have no JSB entry points.

### 1.6 Mathematics Routines Not Documented in the MTH\$ Reference Section

The mathematics routines in Table 1-1 are not found in the reference section of this manual. Instead, their entry points and argument information are listed in Appendix A of this manual.
A reserved operand fault can occur for any floating-point input argument in any mathematics routine. Other condition values signaled by each mathematics routine are indicated in the footnotes.

Table 1-1 Additional Mathematics Routines

| Entry Point | Function |
| :--- | :--- |
| Absolute Value Routines |  |
|  |  |
| MTH\$ABS | F-floating absolute value |
| MTH\$DABS | D-floating absolute value |
| MTH\$GABS | G-floating absolute value |
| MTH\$HABS | H-floating absolute value ${ }^{1}$ |
| MTH\$IIABS | Word absolute value $^{2}$ |
| MTH\$JIABS | Longword absolute value $^{2}$ |

[^0]Table 1-1 (Cont.) Additional Mathematics Routines

| Entry Point | Function |
| :--- | :--- |
| Bitwise AND Operator Routines |  |
| MTH\$IIND | Bitwise AND of two word arguments |
| MTH\$JIAND | Bitwise AND of two longword arguments |
|  |  |
| F-floating Conversion Routines |  |
|  |  |
| MTH\$DBLE | Convert F-floating to D-floating (exact) |
| MTH\$GDBLE | Convert F-floating to G-floating (exact) |
| MTH\$IFIX | Convert F-floating to word (truncated) |
| MTH\$JFIX | Convert F-floating to longword (truncated) ${ }^{2}$ |

Floating-Point Positive Difference Routines

| MTH\$DIM | Positive difference of two F -floating arguments ${ }^{3}$ |
| :--- | :--- |
| MTH\$DDIM | Positive difference of two D -floating arguments ${ }^{3}$ |
| MTH\$GDIM | Positive difference of two G-floating arguments ${ }^{3}$ |
| MTH\$HDIM | Positive difference of two $H$-floating arguments ${ }^{1,3}$ |
| MTH\$IIDIM | Positive difference of two word arguments ${ }^{2}$ |
| MTH\$JIDIM | Positive difference of two longword arguments ${ }^{2}$ |

Bitwise Exclusive OR Operator Routines

| MTH\$IIEOR | Bitwise exclusive OR of two word arguments |
| :--- | :--- |
| MTH\$JEOR | Bitwise exclusive OR of two longword arguments |

[^1]
## Introduction to MTH\$

### 1.6 Mathematics Routines Not Documented in the MTH\$ Reference Section

## Table 1-1 (Cont.) Additional Mathematics Routines

| Entry Point | Function |
| :--- | :--- |
| Integer to Floating-point Conversion Routines |  |
|  |  |
| MTH\$FLOATI | Convert word to F-floating (exact) |
| MTH\$DFLOTI | Convert word to D-floating (exact) |
| MTH\$GFLOTI | Convert word to G-floating (exact) |
| MTH\$FLOATJ | Convert longword to F-floating (rounded) |
| MTH\$DFLOTJ | Convert longword to D-floating (exact) |
| MTH\$GFLOTJ | Convert longword to G-floating (exact) |

Conversion to Greatest Floating-point Integer Routines

| MTH\$FLOOR | Convert $F$-floating to greatest $F$-floating integer |
| :--- | :--- |
| MTH\$DFLOOR | Convert $D$-floating to greatest $D$-floating integer |
| MTHSGFLOOR | Convert G-floating to greatest G-floating integer |
| MTH\$HFLOOR | Convert H -floating to greatest H -floating integer ${ }^{1}$ |

Floating-point Truncation Routines

| MTH\$AINT | Convert F-floating to truncated F-floating |
| :--- | :--- |
| MTHSIINT | Convert F-floating to truncated word ${ }^{2}$ |
| MTH\$JINT | Convert F-floating to truncated longword ${ }^{2}$ |
| MTH\$DINT | Convert D-floating to truncated D-floating |
| MTHSIIDINT | Convert D-floating to truncated word ${ }^{2}$ |
| MTH\$JIDINT | Convert D-floating to truncated longword ${ }^{2}$ |
| MTH\$GINT | Convert G-floating to truncated G-floating |
| MTHSIIGINT | Convert G-floating to truncated word ${ }^{2}$ |
| MTH\$JIGINT | Convert G-floating to truncated longword ${ }^{2}$ |
| MTH\$HINT | Convert H-floating to truncated H-floating ${ }^{1}$ |
| MTH\$IIHINT | Convert H-floating to truncated word ${ }^{2}$ |
| MTH\$JIHINT | Convert H-floating to truncated longword ${ }^{2}$ |

[^2]Table 1-1 (Cont.) Additional Mathematics Routines

| Entry Point | Function |
| :--- | :--- |
| Bitwise Inclusive OR Operator Routines |  |
|  |  |
| MTHSIIOR | Bitwise inclusive OR of two word arguments |
| MTH\$JIOR | Bitwise inclusive OR of two longword arguments |

## Maximum Value Routines

| MTH\$AIMAX0 | F-floating maximum of $n$ word arguments |
| :--- | :--- |
| MTH\$AJMAX0 | F-floating maximum of $n$ longword arguments |
| MTH\$IMAX0 | Word maximum of $n$ word arguments |
| MTH\$JMAX0 | Longword maximum of $n$ longword arguments |
| MTH\$AMAX1 | F-floating maximum of $n$ F-floating arguments |
| MTH\$DMAX1 | D-floating maximum of $n$ D-floating arguments |
| MTH\$GMAX1 | G-floating maximum of $n$ G-floating arguments |
| MTH\$HMAX1 | H-floating maximum of $n$ H-floating arguments ${ }^{1}$ |
| MTH\$IMAX1 | Word maximum of $n$ F-floating arguments ${ }^{2}$ |
| MTH\$JMAX1 | Longword maximum of $n$ F-floating arguments ${ }^{2}$ |

## Minimum Value Routines

| MTH\$AIMIN0 | F-floating minimum of $n$ word arguments |
| :--- | :--- |
| MTH\$AJMIN0 | F-floating minimum of $n$ longword arguments |
| MTH\$IMIN0 | Word minimum of $n$ word arguments |
| MTH\$JMIN0 | Longword minimum of $n$ longword arguments |
| MTH\$AMIN1 | F-floating minimum of $n$ F-floating arguments |
| MTH\$DMIN1 | D-floating minimum of $n$ D-floating arguments |
| MTH\$GMIN1 | G-floating minimum of $n$ G-floating arguments |
| MTH\$HMIN1 | H-floating minimum of $n$ H-floating arguments ${ }^{1}$ |
| MTH\$IMIN1 | Word minimum of $n$ F-floating arguments ${ }^{2}$ |
| MTH\$JMIN1 | Longword minimum of $n$ F-floating arguments ${ }^{2}$ |

[^3]
## Introduction to MTH\$

### 1.6 Mathematics Routines Not Documented in the MTH\$ Reference Section

## Table 1-1 (Cont.) Additional Mathematics Routines

| Entry Point $\quad$ Function |  |
| :--- | :--- |
| Remainder Routines |  |


| MTH\$AMOD | Remainder of two F-floating arguments, $\arg 1 / \arg 2^{36}$ |
| :--- | :--- |
| MTH\$DMOD | Remainder of two D-floating arguments, $\arg 1 / \arg 2^{36}$ |
| MTH\$GMOD | Remainder of two G-floating arguments, $\arg 1 / \arg ^{3}$ |
| MTH\$HMOD | Remainder of two H-floating arguments, $\arg 1 / \arg ^{1,3}$ |
| MTH\$IMOD | Remainder of two word arguments, $\arg 1 / \operatorname{arg2}^{5}$ |
| MTH\$JMOD | Remainder of two longword $\operatorname{arguments,~} \arg 1 / \arg ^{5}$ |

Floating-point Conversion to Nearest Value Routines

| MTH\$ANINT | Convert F-floating to nearest F-floating integer |
| :--- | :--- |
| MTH\$ININT | Convert F-floating to nearest word integer ${ }^{2}$ |
| MTH\$JNINT | Convert F-floating to nearest longword integer ${ }^{2}$ |
| MTH\$DNINT | Convert D-floating to nearest D-floating integer |
| MTH\$IIDNNT | Convert D-floating to nearest word integer ${ }^{2}$ |
| MTH\$JIDNNT | Convert D-floating to nearest longword integer ${ }^{2}$ |
| MTH\$GNINT | Convert G-floating to nearest G-floating integer |
| MTH\$IIGNNT | Convert G-floating to nearest word integer ${ }^{2}$ |
| MTH\$JIGNNT | Convert G-floating to nearest longword integer ${ }^{2}$ |
| MTH\$HNINT | Convert H-floating to nearest H-floating integer ${ }^{1}$ |
| MTH\$IIHNNT | Convert H-floating to nearest word integer ${ }^{2}$ |
| MTH\$JIHNNT | Convert H-floating to nearest longword integer ${ }^{2}$ |

Bitwise Complement Operator Routines

| MTH\$INOT | Bitwise complement of word argument |
| :--- | :--- |
| MTH\$JNOT | Bitwise complement of longword argument |

[^4]
## Introduction to MTH\$

### 1.6 Mathematics Routines Not Documented in the MTH\$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

| Entry Point $\quad$ Function |
| :--- | :--- |
| Floating-point Multiplication Routines |


| MTH\$DPROD | D-floating product of two F-floating arguments ${ }^{3}$ |
| :--- | :--- |
| MTH $\$$ GPROD | G-floating product of two F-floating arguments |

Bitwise Shift Operator Routines

| MTH\$IISHFT | Bitwise shift of word |
| :--- | :--- |
| MTH\$JISHFT | Bitwise shift of longword |

Floating-point Sign Function Routines

| MTH\$SGN | F- or D-floating sign function |
| :--- | :--- |
| MTH\$SIGN | F-floating transfer of sign of $y$ to sign of $x$ |
| MTH\$DSIGN | D-floating transfer of sign of $y$ to sign of $x$ |
| MTH\$GSIGN | G-floating transfer of sign of $y$ to sign of $x$ |
| MTH\$HSIGN | H-floating transfer of sign of $y$ to sign of $x^{1}$ |
| MTH\$ISIGN | Word transfer of sign of $y$ to sign of $x$ |
| MTH\$JSIGN | Longword transfer of sign of $y$ to sign of $x$ |

## Conversion of Double to Single Floating-point Routines

MTH\$SNGL Convert D-floating to F-floating (rounded) ${ }^{3}$
MTH\$SNGLG Convert G-floating to F-floating (rounded) ${ }^{3,4}$

[^5]
## Introduction to MTH\$

### 1.7 Examples of Calls to Run-Time Library Mathematics Routines

### 1.7 Examples of Calls to Run-Time Library Mathematics Routines

### 1.7.1 BASIC Example

The following BASIC program uses the H-floating data type. BASIC also supports the D-floating, F-floating and G-floating data types, but does not support the complex data types.

10

```
!+
! Sample program to demonstrate a call to MTH$HEXP from BASIC.
!-
EXTERNAL SUB MTH$HEXP ( HFLOAT, HFLOAT )
DECLARE HFLOAT X,Y ! X and Y are H-floating
DIGITS$='###.#################################'
X = '1.2345678901234567891234567892'H
CALL MTH$HEXP (Y,X)
A$ = 'MTH$HEXP of ' + DIGITS$ + ' is ' + DIGITS$
PRINT USING A$, X, Y
END
```

The output from this program is as follows:

```
MTH$HEXP of 1.234567890123456789123456789200000
is 3.436893084346008004973301321342110
```


### 1.7.2 <br> COBOL Example

The following COBOL program uses the F -floating and D-floating data types. COBOL does not support the G-floating and H-floating data types or the complex data types.
This COBOL program calls MTH\$EXP and MTH\$DEXP.

```
IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING_POINT.
*
* Calls MTH$EXP using a Floating Point data type.
* Calls MTH$DEXP using a Double Floating Point data type.
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT_PT COMP-1.
01 ANSWER F COMP-1.
01 DOUBLE_PT COMP-2.
01 ANSWER D COMP-2.
PROCEDURE DIVISION.
PO.
    MOVE 12.34 TO FLOAT_PT.
    MOVE 3.456 TO DOUBLE_PT.
    CALL "MTH$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_E.
    DISPLAY " MTH$EXP of ", FLOAT_PT CONVERSION, " is ",
                                    ANSWER_F CONVERSION.
    CALL "MTH$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
    DISPLAY " MTH$DEXP of ", DOUBLE_PT CONVERSION, " is ",
                                    ANSWER_D CONVERSION.
    STOP RUN.
```

The output from this example program is as follows:

```
MTH$EXP of 1.234000E+01 is 2.286620E+05
MTH$DEXP of 3.456000000000000E+00 is
3.168996280537917E+01
```


### 1.7.3 FORTRAN Examples

The first FORTRAN program below uses the G-floating data type. The second FORTRAN program below uses the H-floating data type. The third FORTRAN program below uses the F-floating complex data type. FORTRAN supports the four floating data types and the three complex data types.

```
C+
    C This FORTAN program computes the log base 2 of x, log2(x) in
    C G-floating double precision by using the RTL routine MTH$GLOG2.
    C
    C Declare X and Y and MTH$GLOG2 as double precision values.
C
C MTH$GLOG2 will return a double precision value to variable Y.
C-
    REAL*8 X, Y, MTH$GLOG2
    X = 16.0
    Y = MTH$GLOG2 (X)
    WRITE (6,1) X, Y
1 FORMAT (' MTH$GLOG2(',F4.1,') is ',F4.1)
    END
The output generated by the preceding program is as follows:
\[
\text { MTH\$GLOG2 }(16.0) \text { is } 4.0
\]
2 C+
C This FORTAN program computes the \(\log\) base 2 of \(x, \log 2(x)\) in
C H-floating precision by using the RTL routine MTH\$HLOG2.
C
C Declare X and Y and MTH\$GLOG2 as REAL*16 values.
C
C MTH\$HLOG2 will return a REAL*16 value to variable \(Y\).
C-
REAL*16 X, Y
\(\mathrm{X}=16.12345678901234567890123456789\)
CALL MTH\$HLOG2 (Y, X)
WRITE \((6,1) \mathrm{X}, \mathrm{Y}\)
1 FORMAT (' MTH\$HLOG2(',F30.27,') is ', F30.28)
END
```

The output generated by the preceding program is as follows:
MTH\$HLOG2 (16.123456789012345678901234568) is 4.0110891785623860194931388310

## Introduction to MTH\$

### 1.7 Examples of Calls to Run-Time Library Mathematics Routines

```
3 C+
    C
    C
    C Declare 21, Z2, Z3, and OTS$POWCJ as complex values.
    C Then OTS$POWCJ returns the complex result of
C Z1**Z2: }\textrm{Z}3=\mathrm{ OTS$POWCJ(Z1,z2),
C where Z1 and Z2 are passed by value.
C-
    COMPLEX 21,Z3,OTS$POWCJ
    INTEGER Z2
C+
C
C-
    Generate a complex base.
    z1 = (2.0,3.0)
C+
C Generate an integer power.
C-
    z2 = 2
C Compute the complex value of z1**zz.
C-
    Z3 = OTS$POWCJ( %VAL (REAL (Z1)), %VAL (AIMAG (Z1)), %VAL (Z2))
    TYPE 1,21,Z2,Z3
    FORMAT(' The value of (',F10.8,',',F11.8,')**',I1,' is
    + (',F11.8,',',F12.8,').')
    END
```

The output generated by the preceding FORTRAN program is as follows:

```
The value of (2.00000000, 3.00000000)**2 is
(-5.00000000, 12.00000000).
```


### 1.7.4 MACRO Examples

MACRO and BLISS support JSB entry points as well as CALLS and CALLG entry points. Both MACRO and BLISS support the four floating data types and the three complex data types.

The MACRO programs below illustrate the use of the CALLS and CALLG instructions, as well as JSB entry points.
$\square$
.TITLE EXAMPLE_JSB
; +
; This example calls MTH\$DEXP by using a Macro JSB command.
; The JSB command expects R0/R1 to contain the quadword input value X.
; The result of the JSB will be located in R0/R1.
;

| . EXTRN | MTH\$DEXP_R6 | ; MTH\$DEXP is an external routine. |
| :---: | :---: | :---: |
| . PSECT | DATA, PIC, EXE, | NOWRT |
| . DOUBLE | 2.0 | ; X is 2.0 |
| . ENTRY | EXAMPLE_JSB, ${ }^{\text {M }}$ M | < |
| MOVQ | X, RO | ; X is in registers R0 and R1 |
| JSB | G^MTH\$DEXP_R6 | ; The result is returned in R0/R1. |
| RET |  |  |
| . END | EXAMPLE JSB |  |

## Introduction to MTH\$

### 1.7 Examples of Calls to Run-Time Library Mathematics Routines

This MACRO program generates the following output:

```
R0 <-- 732541EC
R1 <-- ED6EC6A6
That is, MTH$DEXP(2) is 7.3890560989306502
```

            .TITLE EXAMPLE_CALLG
    ;+
; This example calls MTH\$HEXP by using a Macro CALLG command.
The CALLG command expects that the address of the return value
$Y$, the address of the input value $X$, and the argument count 2 be
stored in memory; this program stores this information in ARGUMENTS.
The result of the CALLG will be located in R0/R1.
.EXTRN MTH\$HEXP ; MTH\$HEXP is an external routine.
.PSECT DATA, PIC, EXE, WRT
ARGUMENTS:
.LONG 2 ; The CALLG will use two arguments.
.ADDRESS $Y$, $X$; The first argument must be the address
; receiving the computed value, while
; the second argument is used to
; compute $\exp (\mathrm{X})$.
X: .H_FLOATING 2 ; $\mathrm{X}=2.0$
Y: .H_FLOATING $0 \quad$; Y is the result, initially set to 0.
.ENTRY EXAMPLE_G, ${ }^{\wedge} \mathrm{M}<>$
CALLG ARGUMENTS, G^MTH\$HEXP ; CALLG returns the value to $Y$.
RET
.END EXAMPLE_G

The output generated by this MACRO program is as follows:

```
address of Y <-- D8E64003
    <-- 4DDA4B8D
    <-- 3A3BDCC3
    <-- B68BA206
```

That is, MTH\$HEXP of 2.0 returns
7.38905609893065022723042746057501
.TITLE EXAMPLE_CALLS
$;+$
; This example calls MTH\$HEXP by using the Macro CALLS command.
The CALLS command expects the SP to contain the H-floating address of
the return value, the address of the input argument $X$ and the argument
count 2. The result of the CALLS will be located in registers R0-R3.
;
.EXTRN MTH\$HEXP ; MTH\$HEXP is an external routine.
.PSECT DATA, PIC, EXE, WRT
Y: .H_FLOATING $0 \quad ; Y$ is the result, initially set to 0 .
$\mathrm{X}: \quad . \mathrm{H}$ FLOATING $2 \quad ; \mathrm{X}=2$
.ENTRY EXAMPLE_S, ${ }^{\wedge} \mathrm{M}<>$
MOVAL $X,-(S P)^{-} \quad$; The address of $X$ is in the $S P$.
MOVAL $Y,-(S P) \quad$; The address of $Y$ is in the SP
CALLS $Y$, G^MTH\$HEXP ; The value is returned to the address of $Y$.
RET
.END EXAMPLE_S

## Introduction to MTH\$

### 1.7 Examples of Calls to Run-Time Library Mathematics Routines

The output generated by this program is as follows:

```
address of Y <-- D8E64003
    <-- 4DDA4B8D
    <-- 3A3BDCC3
    <-- B68BA206
```

That is, MTH\$HEXP of 2.0 returns
7.38905609893065022723042746057501

```
    .TITLE COMPLEX_EX1
;+
; This example calls MTH$CLOG by using a MACRO CALLG command.
; To compute the complex natural logarithm of Z = (2.0,1.0) register
; R0 is loaded with 2.0, the real part of Z, and register R1 is loaded
; with 1.0, the imaginary part of Z. The CALLG to MTH$CLOG
; returns the value of the natural logarithm of }Z\mathrm{ in
; registers R0 and R1. R0 gets the real part of }Z\mathrm{ and R1
; gets the imaginary part.
;-
.EXTRN MTHSCLOG
ARGS: .LONG 1 ; The CALLG will use one argument.
    .ADDRESS REAL ; The one argument that the CALLG
    ; uses is the address of the argument
    ; of MTH$CLOG.
REAL: .FLOAT 2 ; real part of Z is 2.0
IMAG: .FLOAT 1 ; imaginary part Z is 1.0
    .ENTRY COMPLEX EX1, ^M<>
    CALLG ARGS, G^MTH$CLOG; MTH$CLOG return the real part of the
    ; complex natural logarithm in R0 and
    ; the imaginary part in R1.
    RET
    .END COMPLEX EX1
```

This program generates the following output:

```
RO <--- 0210404E
R1 <--- 63383FED
That is, MTH$CLOG(2.0,1.0) is
(0.8047190,0.4636476)
```


## Introduction to MTH\$

### 1.7 Examples of Calls to Run-Time Library Mathematics Routines

```
.TITLE COMPLEX_EX2
;+ This example calls MTH$CLOG by using a MACRO CALLS command.
; To compute the complex natural logarithm of Z = (2.0,1.0) register
; RO is loaded with 2.0, the real part of Z, and register R1 is loaded
; with 1.0, the imaginary part of Z. The CALLS to MTH$CLOG
; returns the value of the natural logarithm of }Z\mathrm{ in registers RO
; and R1. RO gets the real part of Z and R1 gets the imaginary
; part.
    .EXTRN MTH$CLOG
        .PSECT DATA, PIC, EXE, NOWRT
REAL: .FLOAT 2 ; real part of Z is 2.0
IMAG: .FLOAT 1 ; imaginary part Z is 1.0
.ENTRY COMPLEX_EX2, ^M<>
MOVAL REAI, - (SP) ; SP <-- address of Z. Real part of }Z\mathrm{ is
; in @(SP) and imaginary part is in
CALLS #1, G^MTH$CLOG ; @(SP)+4.
    ; MTH$CLOG return the real part of the
    ; complex natural logarithm in R0 and
    ; the imaginary part in R1.
RET
.END COMPLEX_EX2
```

This MACRO example program generates the following output:

```
R0 <--- 0210404E
R1 <--- 63383FED
That is, MTH$CLOG (2.0,1.0) is
(0.8047190,0.4636476)
```


### 1.7.5 Pascal Examples

The following Pascal programs use the D-floating and H-floating data types. Pascal also supports the F-floating and G-floating data types. Pascal does not support the complex data types, however.

```
1 {+}
    { Sample program to demonstrate a call to MTH$DEXP from PASCAL.
    {-}
    PROGRAM CALL_MTH$DEXP (OUTPUT);
    {+}
    { Declare variables used by this program.
    {-}
    VAR
        X : DOUBLE := 3.456; { X,Y are D-floating unless overridden }
    Y : DOUBLE; { with /DOUBLE qualifier on compilation }
{+}
{ Declare the RTL routine used by this program.
{-}
[EXTERNAL,ASYNCHRONOUS] FUNCTION MTH$DEXP (VAR value : DOUBLE) : DOUBLE; EXTERN;
BEGIN
    Y := MTH$DEXP (x);
    WRITELN ('MTH$DEXP of ', X:5:3, ' is ', Y:20:16);
END.
```


## Introduction to MTH\$

### 1.7 Examples of Calls to Run-Time Library Mathematics Routines

The output generated by this Pascal program is as follows:

$$
\text { MTH\$DEXP of } 3.456 \text { is } 31.6899656462382318
$$

```
2 {+}
{ Sample program to demonstrate a call to MTH$HEXP from PASCAL.
{-}
PROGRAM CALL_MTH$HEXP (OUTPUT);
{+}
{ Declare variables used by this program.
{-}
VAR
    X : QUADRUPLE := 1.2345678901234567891234567892; { X is H-floating }
    Y : QUADRUPLE; { Y is H-floating }
{+}
{ Declare the RTL routine used by this program.
{-}
[EXTERNAL,ASYNCHRONOUS] PROCEDURE MTH$HEXP (VAR h_exp : QUADRUPLE;
value : QUADRUPLE); EXTERN;
BEGIN
    MTH$HEXP (Y,X);
    WRITELN ('MTH$HEXP of ', X:30:28, ' is', Y:35:33);
END.
```

This Pascal program generates the following output: MTH\$DEXP of 3.456 is 31.6899656462382318

### 1.7.6 PL/I Examples

The following PL/I programs use the D-floating and H-floating data types to test entry points. PL/I also supports the F-floating and G-floating data types. PL/I does not support the complex data types, however.
$\square$

```
/*
    * This program tests a MTH$D entry point
    */
    TEST: PROC OPTIONS (MAIN) ;
        DCL (MTH$DEXP)
            ENTRY (FLOAT(53)) RETURNS (FLOAT(53));
            DCL OPERAND FLOAT(53);
            DCL RESULT FLOAT (53);
/*** Begin test ***/
    OPERAND = 3.456;
    RESULT = MTH$DEXP (OPERAND);
    PUT EDIT ('MTH$DEXP of ', OPERAND, ' is ',
        RESULT) (A(12),F(5,3),A(4),F(20,15));
END TEST;
```

The output generated by this $\mathrm{PL} / \mathrm{I}$ program is as follows:

```
MTH$DEXP of 3.456 is 31.689962805379165
```

```
2 /*
*
* This program tests a MTH$H entry point.
* Note that in the PL/I statement below, the /G-float switch
    is needed to compile both G- and H-floating point MTH$ routines. */
TEST: PROC OPTIONS (MAIN) ;
    DCL (MTH$HEXP)
                ENTRY (FLOAT (113), FLOAT (113)) ;
    DCL OPERAND FLOAT (113);
    DCL RESULT FLOAT (113);
/*** Begin test ***/
    OPERAND = 1.234578901234567891234567892;
    CALL MTH$HEXP (RESULT,OPERAND);
    PUT EDIT ('MTH$HEXP of ', OPERAND, ' is ',
        RESULT) (A(12),F(29,27),A(4),F(29,27));
END TEST;
```

To run this program, use the following DCL commands:

```
$ PLI/G FLOAT EXAMPLE
$ LINK EXAMPLE
$ RUN EXAMPLE
```

This program generates the following output:
MTH\$HEXP of 1.234578901234567891234567892 is 3.436930928565989790506225633

### 1.7.7 Ada Example

The following Ada program demonstrates the use of MTH\$ routines in a manner that an actual program might use. The program performs the following steps:

- Reads a floating-point number from the terminal
- Calls MTH\$SQRT to obtain the square root of the value read
- Calls MTH\$JNINT to find the nearest integer of the square root
- Displays the result

This example runs on VAX Adal V2.0 or later.

## Introduction to MTH\$ <br> 1.7 Examples of Calls to Run-Time Library Mathematics Routines

```
-- This Ada program calls the MTH$SQRT and MTH$JNINT routines.
wi.th FLOAT_MATH_LIB;
    -- Package FLOAT_MATH_LIB is an instantiation of the generic package
    -- MATH_LIB for the F\overline{LOAT datatype. This package provides the most}
    -- common mathematical functions (SQRT, SIN, COS, etc.) in an easy
    -- to use fashion. An added benefit is that the VAX Ada compiler
    -- will use the faster JSB interface for these routines.
with MTH;
    -- Package MTH defines all the MTH$ routines. It should be used when
    -- package MATH_LIB is not sufficient. All functions are defined here
    -- as "valued procedures" for consistency.
with FLOAT_TEXT_IO, INTEGER_TEXT_IO, TEXT_IO;
procedure \overline{ADA_EXAMPLE is}
    FLOAT_VAL: FLOAT;
    INT_VAL: INTEGER;
begin
    -- Prompt for initial value.
    TEXT_IO.PUT ("Enter value: ");
    FLOAT_TEXT_IO.GET (FLOAT_VAL);
    TEXT_IO.NEW_LINE;
    -- Take the square root by using the SQRT routine from package
    -- FLOAT_MATH_LIB. The compiler will use the JSB interface
    -- to MTH$SQRT.
    FLOAT_VAL := FLOAT_MATH_LIB.SQRT (FLOAT_VAL);
    -- Find the nearest integer using MTH$JNINT. Argument names are
    -- the same as those listed for MTH$JNINT in the reference
    -- section of this manual.
    MTH.JNINT (F_FLOATING => FLOAT_VAL, RESULT => INT_VAL);
    -- Write the result.
    TEXT_IO.PUT ("Result is: ");
    INTEGER_TEXT_IO.PUT (INT_VAL);
    TEXT_IO.NEW LINE;
end ADA_EXAMPLE;
```

To run this example program, use the following DCL commands:

```
$ CREATE/DIR [.ADALIB]
$ ACS CREATE LIB [.ADALIB]
$ ACS SET LIB [.ADALIB]
$ ADA ADA_EXAMPLE
$ ACS LIN\overline{K}}\mathrm{ ADA EXAMPLE
$ RUN ADA_EXAMPLE
```

The preceding Ada example generates the following output:

```
Enter value: 42.0
Result is: 6
```


## 2 Vector Routines in MTH\$

This chapter discusses the three sets of routines provided by the RTL MTH\$ facility that support vector processing. These routines are as follows:

- Basic Linear Algebra Subroutines (BLAS) Level 1
- First Order Linear Recurrence (FOLR) routines
- Vector versions of existing scalar routines


### 2.1 BLAS - Basic Linear Algebra Subroutines Level 1

The BLAS Level 1 are routines that perform operations on vectors, such as copying a vector to another vector, swapping vectors, and so on. These routines help you take advantage of the speed of vector processing. BLAS Level 1 routines form an integral part of many mathematical libraries such as LINPACK and EISPACK. ${ }^{1}$ Because these routines usually occur in the innermost loops of user code, the Run-Time Library provides versions of the BLAS Level 1 that are tuned to take best advantage of the VAX vector processors.
Two versions of the BLAS Level 1 are provided. To use either of these libraries, link in the appropriate shareable image. The libraries are:

- Scalar BLAS - contained in the shareable image BLAS1RTL
- Vector BLAS (routines that take advantage of vectorization) contained in the shareable image VBLAS1RTL

Note: To call the scalar BLAS from a program that runs on scalar hardware, specify the routine name preceded by BLAS1\$ (for example, BLAS1 $\$ \mathrm{xCOPY}$ ). To call the vector BLAS from a program that runs on vector hardware, specify the routine name preceded by BLAS1\$V (for example, BLAS1\$VxCOPY).
This manual describes both the scalar and vector versions of the BLAS Level 1, but for simplicity the vector prefix (BLAS1\$V) is used exclusively. Remember to remove the letter V from the routine prefix when you want to call the scalar version.
If you are a VAX FORTRAN programmer, do not specify the BLAS vector routines explicitly. Specify the FORTRAN intrinsic function name only. The VAX FORTRAN-HPO compiler will then determine whether the vector or scalar version of a BLAS routine should be used. The FORTRAN /BLAS $=([N O] I N L I N E,[N O] M A P P E D)$ qualifier controls how the compiler processes calls to the BLAS Level 1. If /NOBLAS is specified then all BLAS calls are treated as ordinary external routines. The default of

[^6]
## Vector Routines in MTH\$

### 2.1 BLAS - Basic Linear Algebra Subroutines Level 1

INLINE means calls to the BLAS Level 1 routines will be treated as known language constructs and VAX object code will be generated to compute the corresponding operations at the call site, rather than call a user-supplied routine. If the FORTRAN qualifier /VECTOR or /PARALLEL=AUTO is in effect, the generated code for the loops may use vector instructions or be decomposed to run on multiple processors. If MAPPED is specified, these calls will be treated as calls to the optimized implementations of these routines in the BLAS1\$ and BLAS1\$V portions of the MTH\$ facility. For more information on the FORTRAN /BLAS qualifier, refer to the FORTRAN Performance Guide.

Ten families of routines form the BLAS Level 1. (BLAS1\$VxCOPY is one family of routines, for example.) These routines operate at the vector-vector operation level - this means that the BLAS Level 1 perform operations on one or two vectors. The level of complexity of the computations (in other words, the number of operations being performed in a BLAS Level 1 routine) is of the order $n$ (the length of the vector).
Each family of routines in the BLAS Level 1 contains routines coded in single precision, double precision ( D and G formats), single precision complex, and double precision complex ( D and G formats). The BLAS Level 1 can be broadly classified into three groups:

- BLAS1\$VxCOPY, BLAS1\$VxSWAP, BLAS1\$VxSCAL and BLAS1\$VxAXPY: These routines return vector output(s) for vector inputs. The results of all of these routines are independent of the order in which the elements of the vector are processed. The scalar and vector versions of these routines return the same results.
- BLAS1\$VxDOT, BLAS1\$VIxAMAX, BLAS1\$VxASUM, and BLAS1\$VxNRM2: These routines are all reduction operations that return a scalar value. The results of these routines (except BLAS1\$VIxAMAX) are dependent upon the order in which the elements of the vector are processed. The scalar and vector versions of BLAS1\$VxDOT, BLAS1\$VxASUM, and BLAS1\$VxNRM2 can return different results. The scalar and vector versions of BLAS1\$VIxAMAX return the same results.
- BLAS1\$VxROTG and BLAS1\$VxROT: These routines are used for a particular application (plane rotations), unlike the routines in the previous two categories. The results of BLAS1\$VxROTG and BLAS1 $\$ V x R O T$ are independent of the order in which the elements of the vector are processed. The scalar and vector versions of these routines return the same results.

Table 2-1 lists the functions and corresponding routines of the BLAS Level 1.

## Vector Routines in MTH\$ <br> 2.1 BLAS - Basic Linear Algebra Subroutines Level 1

Table 2-1 Functions of the BLAS Level 1

| Function | Routine | Data Type |
| :--- | :--- | :--- |
| Copy a vector to <br> another vector | BLAS1\$VSCOPY | Single |
|  | BLAS1\$VDCOPY | Double (D-floating or G-floating) |
|  | BLAS1\$VCCOPY | Single complex |
|  | BLAS1\$VZCOPY | Double complex (D-floating or <br> G-floating) |
| Swap the elements |  |  |
| of two vectors | BLAS1\$VSSWAP | Single |
|  | BLAS1\$VDSWAP | Double (D-floating or G-floating) |
|  | BLAS1\$VCSWAP | Single complex |

## Vector Routines in MTH\$

### 2.1 BLAS - Basic Linear Algebra Subroutines Level 1

Table 2-1 (Cont.) Functions of the BLAS Level 1

| Function | Routine | Data Type |
| :--- | :--- | :--- |
| Obtain the index of the BLAS1\$VISAMAX | Single |  |
| first element of a vector | BLAS1\$VIDAMAX | Double (D-floating) |
| having the largest | BLAS1\$VIGAMAX | Double (G-floating) |
| absolute value | BLAS1\$VICAMAX | Single complex |
|  | BLAS1\$VIZAMAX | Double complex (D-floating) |
|  | BLAS1\$VIWAMAX | Double complex (G-floating) |
| Obtain the sum of the | BLAS1\$VSASUM | Single |
| absolute values of the | BLAS1\$VDASUM | Double (D-floating) |
| elements of a vector | BLAS1\$VGASUM | Double (G-floating) |
|  | BLAS1\$VSCASUM | Single complex |
|  | BLAS1\$VDZASUM | Double complex (D-floating) |
|  | BLAS1\$VGWASUM | Double complex (G-floating) |

(continued on next page)

Table 2-1 (Cont.) Functions of the BLAS Level 1

| Function | Routine | Data Type |
| :--- | :--- | :--- |
| Generate the elements | BLAS1\$VSROTG | Single |
| for a Givens plane | BLAS1\$VDROTG | Double (D-floating) |
| rotation | BLAS1\$VGROTG | Double (G-floating) |
|  | BLAS1\$VCROTG | Single complex |
|  | BLAS1\$VZROTG | Double complex (D-floating) |
|  | BLAS1\$VWROTG | Double complex (G-floating) |
|  |  |  |
| Apply a Givens plane | BLAS1\$VSROT | Single |
| rotation | BLAS1\$VDROT | Double (D-floating) |
|  | BLAS1\$VGROT | Double (G-floating) |
|  | BLAS1\$VCSROT | Single complex |
|  | BLAS1\$VZDROT | Double complex (D-floating) |
|  | BLAS1\$VWGROT | Double complex (G-floating) |

For a detailed description of these routines, refer to Part III of this manual, the Vector MTH\$ Reference Section.

### 2.1.1 Using the BLAS Level 1

The following sections provide some guidelines for using the BLAS Level 1.

### 2.1.1.1 Memory Overlap

The vector BLAS produces unpredictable results when any element of the input argument shares a memory location with an element of the output argument. (An exception is a special case found in the BLAS1\$VxCOPY routines.)

The vector BLAS and the scalar BLAS can yield different results when the input argument overlaps the output array.

### 2.1.1.2 Round-Off Effects

For some of the routines in the BLAS Level 1, the final result is independent of the order in which the operations are performed. However, in other cases (for example, some of the reduction operations), efficiency dictates that the order of operations on a vector machine be different from the natural order of operations. Because round-off errors are dependent upon the order in which the operations are performed, some of the routines will not return results that are bit-for-bit identical to the results obtained by performing the operations in natural order.

Where performance can be increased by the use of a backup data type, this has been done. This is the case for BLAS1\$VSNRM2, BLAS1\$VSCNRM2, BLAS1\$VSROTG, and BLAS1\$VCROTG. The use of a backup data type can also yield a gain in accuracy over the scalar BLAS.

## Vector Routines in MTH\$

### 2.1 BLAS - Basic Linear Algebra Subroutines Level 1

### 2.1.1.3 Underflow and Overflow

In accordance with LINPACK convention, underflow, when it occurs, is replaced by a zero. A system message informs you of overflow. Because the order of operations for some routines is different from the natural order, overflow might not occur at the same array element in both the scalar and vector versions of the routines.

### 2.1.1.4 Notational Definitions

The vector BLAS (except the BLAS1\$VxROTG routines) perform operations on vectors. These vectors are defined in terms of three quantities:

- A vector length, specified as $\mathbf{n}$
- An array or a starting element in an array, specified as $\mathbf{x}$
- An increment or spacing parameter to indicate the distance in number of array elements to skip between successive vector elements, specified as incx

Suppose $\mathbf{x}$ is a real array of dimension ndim, $\mathbf{n}$ is its vector length, and incx is the increment used to access the elements of a vector $X$. The elements of vector $X, X_{i}, i=1, \ldots, n$, are stored in $\mathbf{x}$. If incx is greater than or equal to 0 , then $X_{i}$ is stored in the following location:
$\mathrm{x}(1+(i-1) * i n c x)$
However, if incx is less than 0 , then $X_{i}$ is stored in the following location:
$\mathrm{x}(1+(n-i) *|i n c x|)$
It therefore follows that the following condition must be satisfied:
$n d i m \geq 1+(n-1) *|i n c x|$
A positive value for incx is referred to as forward indexing and a negative value is referred to as backward indexing. A value of zero implies that all of the elements of the vector are at the same location, $x_{1}$.

Suppose $\operatorname{ndim}=20$ and $\mathbf{n}=5$. In this case, $\operatorname{incx}=2$ implies that $X_{1}, X_{2}$, $X_{3}, X_{4}$, and $X_{5}$ are located in array elements $\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{5}, \mathrm{x}_{7}$, and $\mathrm{x}_{9}$.
If, however, incx is negative, then $X_{1}, X_{2}, X_{3}, X_{4}$ and $X_{5}$ are located in array elements $x_{9}, x_{7}, x_{5}, x_{3}$, and $x_{1}$. In other words, when incx is negative, the subscript of $\mathbf{x}$ decreases as $i$ increases.

For some of the routines in BLAS Level 1, incx $=0$ is not permitted. In the cases where a zero value for incx is permitted, it means that $x_{1}$ is broadcast into each element of the vector $X$ of length $n$.
You can operate on vectors that are embedded in other vectors or matrices by choosing a suitable starting point of the vector. For example, if $A$ is an n 1 by $\mathbf{n} 2$ matrix, its j -th column is referenced with a length of n 1 , starting point $A(1, \mathfrak{j})$ and increment 1 . Similarly, the $\mathbf{i}$-th row is referenced with a length of n2, starting point $A(i, 1)$ and increment n1.

## Vector Routines in MTH\$ <br> 2.2 FOLR - First Order Linear Recurrence Routines

### 2.2 FOLR — First Order Linear Recurrence Routines

The MTH\$ FOLR routines provide a vectorized algorithm for the linear recurrence relation. A linear recurrence uses the result of a previous pass through a loop as an operand for subsequent passes through the loop and prevents the vectorization of a loop.

The only error checking performed by the FOLR routines is for a reserved operand.

There are four families of FOLR routines in the MTH\$ facility. Each family accepts each of four data types (longword integer, F-floating, D-floating, and G-floating). However, all of the arrays you specify in a single FOLR call must be of the same data type.

For a detailed description of these routines, refer to Part III of this manual, the Vector MTH\$ Reference Section.

### 2.2.1 FOLR Routine Name Format

The four families of FOLR routines are as follows:

- MTH\$VxFOLRy_MA_V15
- MTH\$VxFOLRy_z_V8
- MTH\$VxFOLRLy_MA_V5
- MTH\$VxFOLRLy_z_V2
where:
$x \quad \mathrm{~J}$ for longword integer, F for F -floating, D for D -floating, or G for G -floating
$y \quad \mathrm{P}$ for a positive recursion element, or N for a negative recursion element
$z \quad \mathrm{M}$ for multiplication or A for addition
The FOLR entry points end with _Vn, where $n$ is an integer between 0 and 15 that denotes the vector registers the FOLR routine uses. For example, MTH\$VxFOLRy_z_V8 uses vector registers V0 through V8.

To determine which group of routines you should use, match the task in the left column in Table 2-2 that you need the routine to perform with the method of storage that you need the routine to employ. The point where these two tasks meet shows the FOLR routine you should call.

## Vector Routines in MTH\$

2.2 FOLR - First Order Linear Recurrence Routines

Table 2-2 Determining the FOLR Routine You Need

| Tasks | Save each iteration in an <br> array | Save only last result in a <br> variable |
| :--- | :--- | :--- |
| Multiplication AND <br> addition | MTH\$VxFOLRy_MA_V15 | MTH\$VxFOLRLy_MA_V5 |
| Multiplication OR <br> addition | MTH\$VxFOLRy_z_V8 | MTH\$VxFOLRLy_z_V2 |

### 2.2.2 Calling a FOLR Routine

Save the contents of V0 through Vn before calling a FOLR routine if you need it after the call. The variable $n$ can be 2, 5,8 , or 15 , depending on the FOLR routine entry point. (The VAX Procedure Calling and Condition Handling Standard, described in the Introduction to the VMS Run-Time Library, specifies that a called procedure may modify all of the vector registers. The FOLR routines modify only the vector registers V0 through Vn.)
The MTH\$ FOLR routines assume that all of the arrays are of the same data type.

### 2.3 Vector Versions of Existing Scalar Routines

Vector forms of many MTH\$ routines are provided to support vectorized compiled applications. Vector versions of key F-floating, D-floating, and G-floating scalar routines employ vector hardware, while maintaining identical results with their scalar counterparts. Many of the scalar algorithms have been redesigned to ensure identical results and good performance for both the vector and scalar versions of each routine. All vectorized routines return bit-for-bit identical results as the scalar versions.
You can call the vector MTH\$ routines directly if your program is written in VAX MACRO. If you are a FORTRAN programmer, specify the FORTRAN intrinsic function name only. The VAX FORTRAN-HPO compiler will then determine whether the vector or scalar version of a routine should be used.

### 2.3.1 Exceptions

You should not attempt to recover from a MTH\$ vector exception. After a MTH\$ vector exception, the vector routines cannot continue execution, and nonexceptional values might not have been computed.

## Vector Routines in MTH\$ <br> 2.3 Vector Versions of Existing Scalar Routines

### 2.3.2 Underflow Detection

In general, if a vector instruction results in the detection of both a floating overflow and a floating underflow, only the overflow will be signaled.

Some scalar routines check to see if a user has enabled underflow detection. For each of those scalar routines, there are two corresponding vector routines: one that always enables underflow checking and one that never enables underflow checking. (In the latter case, underflows produce a result of zero.) The VAX FORTRAN-HPO compiler always chooses the vector version that does not signal underflows, unless the user specifies the appropriate VAX FORTRAN-HPO compiler switch (the /CHECK=UNDERFLOW qualifier). This ensures that the check is performed but does not impair vector performance for those not interested in underflow detection.

### 2.3.3 Vector Routine Name Format

Use one of the formats in Table 2-3 to call (from VAX MACRO) a vector math routine that enables underflow signaling. (The E in the routine name means enabled underflow signaling.)

Table 2-3 Vector Routine Format - Underflow Signaling Enabled

| Format | Type of Routine |
| :--- | :--- |
| MTH\$VxSAMPLE_E_Ry_Vz | Real valued math routine |
| MTH\$VCxSAMPLE_E_Ry_Vz | Complex valued math routine |
| OTS\$SAMPLEq_E_Ry_Vz | Power routine or complex multiply and divide |

Use one of the formats in Table 2-4 to call (from VAX MACRO) a vector math routine that does not enable underflow signaling.

Table 2-4 Vector Routine Format - Underflow Signaling Disabled

| MTH\$VxSAMPLE_Ry_Vz | Real valued math routine |
| :--- | :--- |
| MTH\$VCxSAMPLE_Ry_Vz | Complex valued math routine |
| OTS\$SAMPLEq_Ry_Vz | Power routine or complex multiply/divide |

In the preceding formats, the following conventions are used:
$x \quad$ the letter A (or blank) for F-floating, D for D-floating, G for G-floating.
$y \quad a \quad n u m b e r$ between 0 and 11 (inclusive). Ry means that the scalar registers R0 through Ry will be used by the routine SAMPLE. You must save these registers.
$z \quad$ a number between 0 and 15 (inclusive). $V z$ means that the vector registers Vo through $\mathrm{V} z$ will be used by the routine SAMPLE. You must save these registers.

## Vector Routines in MTH\$

### 2.3 Vector Versions of Existing Scalar Routines

| two letters denoting the base and power data type, as follows: |  |
| :--- | :--- |
| RR | F-floating base raised to an F-floating power |
| RJ | F-floating base raised to a longword power |
| DD | D-floating base raised to a D-floating power |
| DJ | D-floating base raised to a longword power |
| GG | G-floating base raised to a G-floating power |
| GJ | G-floating base raised to a longword power |
| JJ | Longword base raised to a longword power |

### 2.3.4 Calling a Vector Math Routine

You can call the vector MTH\$ routines directly if your program is written in VAX MACRO.

Note: If you are a VAX FORTRAN programmer, do not specify the MTH\$ vector routines explicitly. Specify the FORTRAN intrinsic function name only. The VAX FORTRAN-HPO compiler will then determine whether the vector or scalar version of a routine should be used.
In the following examples, keep in mind that vector real arguments are passed in V0, V1, and so on, and vector real results are returned in V0. On the other hand, vector complex arguments are passed in V0 and V1, V2 and V3, and so on. Vector complex results are returned in V0 and V1. To illustrate:

| Argument | Argument Passed <br> Register | Results Returned <br> Register |
| :--- | :--- | :--- |
| Vector real arguments | V0, V1,... | V0 |
| Vector complex arguments | V0 and V1, V2 and V3,... | V0 and V1 |

## Example 1

The following example demonstrates how to call the vector version of MTH\$EXP. Assume that you do not want underflows to be signaled, and you need to use the current contents of all the vector and scalar registers after the invocation. Before you can call the vector routine from VAX MACRO, perform the following steps:
1 Find EXP in the column of scalar names in Appendix B to determine:

- The full vector routine name: MTH\$VEXP_R3_V6
- How the routine is invoked (CALL or JSB): JSB
- The scalar registers that must be saved: R0 through R3 (as specified by R3 in MTH\$VEXP_R3_V6)
- The vector registers that must be saved: V0 through V6 (as specified by V6 in MTH\$VEXP_R3_V6)


## Vector Routines in MTH\$ 2.3 Vector Versions of Existing Scalar Routines

- The vector register(s) used to hold the input argument(s): V0
- The vector register(s) used to hold the output argument(s): V0
- If there is a vector version that signals underflow (not needed in this example)

2 Save the scalar registers R0, R1, R2, and R3.
3 Save the vector registers V0, V1, V2, V3, V4, V5, and V6.
4 Save the vector mask register VMR.
5 Save the vector count register VCR.
6 Load the vector length register VLR.
7 Load the vector register V0 with the argument for MTH\$EXP.
8 JSB to MTH\$VEXP_R3_V6.
9 Store result in memory.
10 Restore all scalar and vector registers except for V0. (The results of the "call" to MTH\$VEXP_R3_V6 are stored in V0.)

The following MACRO program fragment illustrates this example. Assume that:

- V0 through V6 and R0 through R3 have been saved
- R4 points to a vector of 60 input values
- R6 points to the location where the results of MTH\$VEXP_R3_V6 will be stored
- R5 contains the stride in bytes

Note that MTH\$VEXP_R3_V6 denotes an F-floating data type because there is no letter between V and E in the routine name. (For further explanation, refer to Section 2.3.3.) The stride (the number of array elements that are skipped) must be a multiple of 4 because each F -floating value requires 4 bytes.

| MTVLR | \# 60 | ; Load VLR |
| :---: | :---: | :---: |
| MOVL | \#4, R5 | ; Stride |
| VLDL | (R4), R5, V0 | ; Load V0 with the actual arguments |
| JSB | G^MTH\$VEXP R3_V6 | ; JSB to MTH\$VEXP |
| VSTL | V0, (R6), R5 | ; Store the results |

## Example 2

The following example demonstrates how to call the vector version of OTS\$POWDD with a vector base raised to a scalar power. Before you can call the vector routine from VAX MACRO, perform the following steps:

1 Find POWDD $\left(V^{S}\right)$ in the column of scalar names in Appendix B to determine:

- The full vector routine name: OTS\$VPOWDD_R1_V8
- How the routine is invoked (CALL or JSB): CALL


## Vector Routines in MTH\$ <br> 2.3 Vector Versions of Existing Scalar Routines

- The scalar registers that must be saved: R0 through R1 (as specified by R1 in OTS\$VPOWDD_R1_V8)
- The vector registers that must be saved: V0 through V8 (as specified by V8 in OTS\$VPOWDD_R1_V8)
- The vector register(s) used to hold the input argument(s): V0, R0
- The vector register(s) used to hold the output argument(s): V0
- If there is a vector version that signals underflow (not needed in this example)

2 Save the scalar registers R0 and R1.
3 Save the vector registers V0, V1, V2, V3, V4, V5, V6, V7, and V8.
4 Save the vector mask register VMR.
5 Save the vector count register VCR.
6 Load the vector length register VLR.
7 Load the vector register V0 and the scalar register R0 with the arguments for OTS\$POWDD.

8 Call OTS\$VPOWDD_R1_V8.
9 Store result in memory.
10 Restore all scalar and vector registers except for V0. (The results of the call to OTS\$VPOWDD_R1_V8 are stored in V0.)

The following MACRO program fragment illustrates how to call OTS\$VPOWDD_R1_V8 to compute the result of raising 60 values to the power P. Assume that:

- V0 through V8 and R0 and R1 have been saved
- R4 points to the vector of 60 input base values
- R0 and R1 contain the D-floating value $P$
- R6 points to the location where the results will be stored
- R5 contains the stride

Note that OTS\$VPOWDD_R1_V8 raises a D-floating base to a D-floating power, which you determine from the DD in the routine name. (For further explanation, refer to Section 2.3.3.) The stride (the number of array elements that are skipped) must be a multiple of 8 because each D -floating value requires 8 bytes.

|  |  | R0/R1 already contains the power |
| :---: | :---: | :---: |
| MTVLR | \# 60 | ; Load VLR |
| MOVL | \#8, R5 | ; Stride |
| VLDQ | (R4), R5, V0 | ; Load V0 with the actual arguments |
| CALI | G^OTS\$VPOWDD_R1_V8 | ; CALL OTS\$VPOWDD |
| VSTQ | V0, (R6), R5 | ; Store the results |

## Scalar MTH\$ Reference Section

Part II provides detailed descriptions of the scalar routines provided by the VMS RTL Mathematics (MTH\$) Facility.

## MTH\$xACOS Arc Cosine of Angle Expressed in Radians

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians routine returns that angle (in radians).

| FORMAT | MTH\$ACOS cosine |
| :--- | :--- |
|  | MTH\$DACOS cosine |
|  | MTH\$GACOS cosine |

Each of the above three formats accepts as input one of the floating-point types.

## jsb entries MTH\$ACOS R4 MTH\$DACOS_R7 MTH\$GACOS_R7

Each of the above three JSB entries accepts as input one of the floatingpoint types.

## RETURNS

VMS usage: floating_point
type: $\quad$ F_floating, $D_{-}$floating, G_floating access: write only
mechanism: by value
Angle in radians. The angle returned will have a value in the range

$$
0 \leq \text { angle } \leq \pi
$$

MTH\$ACOS returns an F-floating number. MTH\$DACOS returns a D-floating number. MTH\$GACOS returns a G-floating number.

| ARGUMENTS | cosine <br> VMS usage: floating_point <br> type: F_floating, $D$ _floating, G_floating |
| :--- | :--- |
| access: read only |  |
| mechanism: by reference |  |
| The cosine of the angle whose value (in radians) is to be returned. The |  |
| cosine argument is the address of a floating-point number that is this |  |
| cosine. The absolute value of cosine must be less than or equal to 1. For |  |
| MTH\$ACOS, cosine specifies an F-floating number. For MTH\$DACOS, |  |
| cosine specifies a D-floating number. For MTH\$GACOS, cosine specifies |  |
| a G-floating number. |  |

## MTH\$xACOS

DESCRIPTION The angle in radians whose cosine is X is computed as:

| Value of <br> Cosine Value Returned <br> 0 $\pi / 2$ <br> 1 0 <br> -1 $\pi$ <br> $0<X<1$ $z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)$, where zATAN and zSQRT are the <br>  Math Library arc tangent and square root routines, respectively, of <br> the appropriate data type <br> $-1<X<0$ $z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)+\pi$ <br> $1<\|X\|$ The error MTH\$_INVARGMAT is signaled |
| :--- | :--- |

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HACOS.

## CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xACOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floatingpoint reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

## EXAMPLES

```
1100 !+
            ! This BASIC program demonstrates the use of
            ! MTH$ACOS.
            !-
            EXTERNAL REAL FUNCTION MTH$ACOS
            DECLARE REAL COS_VALUE, ANGLE
300 INPUT "Cosine value between -1 and +1 "; COS_VALUE
400 IF (COS_VALUE < -1) OR (COS_VALUE > 1)
                        THEN PRINT "Invalid cosine value"
                    GOTO 300
500 ANGLE = MTH$ACOS( COS_VALUE )
    PRINT "The angle with that cosine is "; ANGLE; "radians"
    32767 END
```


## MTH\$xACOS

This BASIC program prompts for a cosine value and determines the angle that has that cosine. The output generated by this program is as follows:

```
$ RUN ACOS
Cosine value betwen -1 and +1 ? . 5
The angle with that cosine is 1.0472 radians
```

2 PROGRAM GETANGLE (INPUT, OUTPUT);
\{+\}
\{ This PASCAL program uses MTH\$ACOS to determine
\{ the angle which has the cosine given as input.
\{-\}
VAR
COS : REAL;
FUNCTION MTH\$ACOS (COS : REAL) : REAL;
EXTERN:
BEGIN
WRITE('Cosine value between -1 and +1: ');
READ (COS);
WRITELN('The angle with that cosine is ', MTH\$ACOS(COS),
' radians');
END.

This PASCAL program prompts for a cosine value and determines the angle that has that cosine. The output generated by this program is as follows:

```
$ RUN ACOS
Cosine value between -1 and +1: . 5
The angle with that cosine is 1.04720E+00 radians
```


## MTH\$xACOSD Arc Cosine of Angle Expressed in Degrees

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees routine returns that angle (in degrees).

## FORMAT

MTH\$ACOSD cosine
MTH\$DACOSD cosine
MTH\$GACOSD cosine
Each of the above formats accepts as input one of the floating-point types.

jsb entries

## MTH\$ACOSD_R4 <br> MTH\$DACOSD_R7 <br> MTH\$GACOSD_R7

Each of the above JSB entries accepts as input one of the floating-point types.

## RETURNS

| VMS usage: | floating_point |
| :--- | :--- |
| type: | F_floating, $D_{\text {_floating, }}$ G_floating |
| access: | write only |
| mechanism: | by value |

Angle in degrees. The angle returned will have a value in the range

$$
0 \leq \text { angle } \leq 180
$$

MTH\$ACOSD returns an F-floating number. MTH\$DACOSD returns a D-floating number. MTH\$GACOSD returns a G-floating number.

## ARGUMENTS cosine

VMS usage: floating_point
type: $\quad$ F_floating, $G_{\text {_floating, }}$ D_floating
access: read only
mechanism: by reference
Cosine of the angle whose value (in degrees) is to be returned. The cosine argument is the address of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1. For MTH\$ACOSD, cosine specifies an F-floating number.
For MTH\$DACOSD, cosine specifies a D-floating number. For MTH\$GACOSD, cosine specifies a G-floating number.

DESCRIPTION The angle in degrees whose cosine is X is computed as:

| Value of <br> Cosine | Angle Returned |
| :--- | :--- |
| 0 | 90 |
| 1 | 0 |
| -1 | 180 |
| $0<X<1$ | $z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)$, where zATAND and zSQRT are the <br> Math Library arc tangent and square root routines, respectively, of <br> the appropriate data type |
| $-1<X<0$ | $z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)+180$ |
| $1<\|X\|$ | The error MTH\$_INVARGMAT is signaled |

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HACOSD.

## CONDITION VALUES SIGNALED

SS\$_ROPRAND
Reserved operand. The MTH\$xACOSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_INVARGMAT Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floatingpoint reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

## EXAMPLE

```
PROGRAM ACOSD (INPUT,OUTPUT);
{+}
{ This PASCAL program demonstrates the use of
{ MTH$ACOSD.
{-}
FUNCTION MTH$ACOSD(COS : REAL) : REAL; EXTERN;
VAR
    COSINE : REAL;
    RET_STATUS : REAL;
BEGIN
    COSINE := 0.5;
    RET STATUS := MTH$ACOSD (COSINE);
    WRITELN('The angle, in degrees, is: ', RET_STATUS);
END.
```

MTH\$xACOSD

The output generated by this PASCAL example program is as follows:

[^7]
## MTH\$xASIN Arc Sine in Radians

Given the sine of an angle, the Arc Sine in Radians routine returns that angle (in radians).

Each of the above formats accepts as input one of the floating-point types.

Each of the above JSB entries accepts as input one of the floating-point types.

## RETURNS

| VMS usage: | floating_point |
| :--- | :--- |
| type: | F_floating, $D_{\text {_floating, }}$ G_floating |
| access: | write only |
| mechanism: | by value |

Angle in radians. The angle returned will have a value in the range

$$
-\pi / 2 \leq \text { angle } \leq \pi / 2
$$

MTH\$ASIN returns an F-floating number. MTH\$DASIN returns a D-floating number. MTH\$GASIN returns a G-floating number.

## ARGUMENTS sine

VMS usage: floating_point
type: $\quad$ F_floating, $D_{-}$floating, G_floating
access: read only
mechanism: by reference
The sine of the angle whose value (in radians) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1. For MTH\$ASIN, sine specifies an F-floating number. For MTH\$DASIN, sine specifies a D-floating number. For MTH\$GASIN, sine specifies a G-floating number.

DESCRIPTION The angle in radians whose sine is X is computed as:

| Value of Sine | Angle Returned |
| :--- | :--- |
| 0 | 0 |
| 1 | $\pi / 2$ |
| -1 | $-\pi / 2$ |
| $0<\|X\|<1$ | $z A T A N\left(X / z S Q R T\left(1-X^{2}\right)\right)$, where zATAN and zSQRT are the <br> Math Library arc tangent and square root routines, respectively, <br> of the appropriate data type |
| $1<\|X\|$ | The error MTH\$_INVARGMAT is signaled |

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HASIN.

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xASIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL. Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floatingpoint reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

## MTH\$xASIND Arc Sine in Degrees

Given the sine of an angle, the Arc Sine in Degrees routine returns that angle (in degrees).

| FORMAT | MTH\$ASIND sine |
| :--- | :--- |
|  | MTH\$DASIND sine |
|  | MTH\$GASIND sine |

Each of the above formats accepts as input one of the floating-point types.
jsb entries
MTH\$ASIND_R4
MTH\$DASIND_R7
MTH\$GASIND_R7
Each of the above JSB entries accepts as input one of the floating-point types.

## RETURNS

| VMS usage: | floating_point |
| :--- | :--- |
| type: | F_floating, $D$ floating, __floating $^{\text {access: }}$ |
| write only |  |
| mechanism: | by value |

Angle in degrees. The angle returned will have a value in the range

$$
-90 \leq \text { angle } \leq 90
$$

MTH\$ASIND returns an F-floating number. MTH\$DASIND returns a D-floating number. MTH\$GASIND returns a G-floating number.

## ARGUMENTS sine

VMS usage: floating_point
type: $\quad$ F_floating, $D_{-}$floating, G_floating
access: read only
mechanism: by reference
Sine of the angle whose value (in degrees) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1. For MTH\$ASIND, sine specifies an F-floating number. For MTH\$DASIND, sine specifies a D-floating number. For MTH\$GASIND, sine specifies a G-floating number.

## DESCRIPTION The angle in degrees whose sine is X is computed as:

| Value of Sine | Value Returned |
| :--- | :--- |
| 0 | 0 |
| 1 | 90 |
| -1 | -90 |
| $0<\|X\|<1$ | $z A T A N D\left(X / z S Q R T\left(1-X^{2}\right)\right)$, where zATAND and zSQRT <br> are the Math Library arc tangent and square root routines, <br> respectively, of the appropriate data type |
| $1<\|X\|$ | The error MTH\$_INVARGMAT is signaled |

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HASIND.

## CONDITION

VALUES SIGNALED


SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xASIND routine encountered a floating point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL. Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floatingpoint reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

## MTH\$xATAN Arc Tangent in Radians

Given the tangent of an angle, the Arc Tangent in Radians routine returns that angle (in radians).

## FORMAT

jsb entries

MTH\$ATAN tangent
MTH\$DATAN tangent
MTH\$GATAN tangent
Each of the above formats accepts as input one of the floating-point types.
MTH\$ATAN R4
MTH\$DATAN_R7
MTH\$GATAN_R7
Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS VMS usage: floating_point
type: $\quad$ F_floating, $\mathbf{D}$ _floating, G_floating $^{\prime}$
access: write only
mechanism: by value
Angle in radians. The angle returned will have a value in the range

$$
-\pi / 2 \leq \text { angle } \leq \pi / 2
$$

MTH\$ATAN returns an F-floating number. MTH\$DATAN returns a D-floating number. MTH\$GATAN returns a G-floating number.

## ARGUMENTS

## tangent

VMS usage: floating_point
type: $\quad$ F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in radians) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$ATAN, tangent specifies an F-floating number. For MTH\$DATAN, tangent specifies a D-floating number. For MTH\$GATAN, tangent specifies a G-floating number.

DESCRIPTION In radians, the computation of the arc tangent function is based on the following identities:

$$
\begin{aligned}
& \arctan (X)=X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots \\
& \arctan (X)=X+X * Q\left(X^{2}\right) \\
& \quad \text { where } Q(Y)=-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=X * P\left(X^{2}\right), \\
& \quad \text { where } P(Y)=1-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=\pi / 2-\arctan (1 / X) \\
& \arctan (X)=\arctan (A)+\arctan ((X-A) /(1+A * X)) \\
& \quad \text { for any real } A
\end{aligned}
$$

The angle in radians whose tangent is $X$ is computed as:

| Value of $X$ | Angle Returned |
| :--- | :--- |
| $0 \leq X \leq 3 / 32$ | $X+X * Q\left(X^{2}\right)$ |
| $3 / 32<X \leq 11$ | $A T A N(A)+V *\left(P\left(V^{2}\right)\right)$, where A and ATAN(A) are chosen |
|  | by table lookup and $V=(X-A) /(1+A * X)$ |
| $11<X$ | $\pi / 2-W *\left(P\left(W^{2}\right)\right)$ where $W=1 / X$ |
| $X<0$ | $-z A T A N(\|X\|)$ |

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HATAN.

Reserved operand. The MTH\$xATAN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

## MTH\$xATAND Arc Tangent in Degrees

Given the tangent of an angle, the Arc Tangent in Degrees routine returns that angle (in degrees).

## FORMAT <br> MTH\$ATAND tangent <br> MTH\$DATAND tangent <br> MTH\$GATAND tangent

Each of the above formats accepts as input one of the floating-point types.

## jsb entries

## MTH\$ATAND R4 <br> MTH\$DATAND_R7 <br> MTH\$GATAND_R7

Each of the above JSB entries accepts as input one of the floating-point types.

## RETURNS

| VMS usage: | floating_point |
| :--- | :--- |
| type: | F_floating, $D_{\text {_floating, }}$ G_floating |
| access: | write only |
| mechanism: | by value |

Angle in degrees. The angle returned will have a value in the range

$$
-90 \leq \text { angle } \leq 90
$$

MTH\$ATAND returns an F-floating number. MTH\$DATAND returns a D-floating number. MTH\$GATAND returns a G-floating number.

## ARGUMENTS tangent

VMS usage: floating_point
type: $\quad$ F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in degrees) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$ATAND, tangent specifies an F-floating number. For MTH\$DATAND, tangent specifies a D-floating number. For MTH\$GATAND, tangent specifies a G-floating number.

## MTH\$xATAND

DESCRIPTION The computation of the arc tangent function is based on the following identities:

$$
\begin{aligned}
& \arctan (X)=(180 / \pi) *\left(X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots\right) \\
& \arctan (X)=64 * X+X * Q\left(X^{2}\right), \\
& \quad \text { where } Q(Y)=180 / \pi *[(1-64 * \pi / 180)]-Y / 3+Y^{2} / 5-Y^{3} / 7+Y^{4} / 9 \\
& \arctan (X)=X * P\left(X^{2}\right), \\
& \quad \text { where } P(Y)=180 / \pi *\left[1-Y / 3+Y^{2} / 5-Y^{3} / 7+Y^{4} / 9 \ldots\right] \\
& \arctan (X)=90-\arctan (1 / X) \\
& \arctan (X)=\arctan (A)+\arctan ((X-A) /(1+A * X))
\end{aligned}
$$

The angle in degrees whose tangent is $X$ is computed as:

| Tangent | Angle Returned |
| :--- | :--- |
| $X \leq 3 / 32$ | $64 * X+X * Q\left(X^{2}\right)$ |
| $3 / 32<X \leq 11$ | ATAND(A)+V*P(V$\left.{ }^{2}\right)$, where A and ATAND(A) are chosen |
|  | by table lookup and $V=(X-A) /(1+A * X)$ |
| $11<X$ | $90-W *\left(P\left(W^{2}\right)\right)$, where $W=1 / X$ |
| $X<0$ | -zATAND $(\|X\|)$ |

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HATAND.

Reserved operand. The MTH\$xATAND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

## MTH\$xATAN2 Arc Tangent in Radians with Two Arguments

Given sine and cosine, the Arc Tangent in Radians with Two Arguments routine returns the angle (in radians) whose tangent is given by the quotient of sine and cosine, (sine/cosine).

## FORMAT MTH\$ATAN2 sine ,cosine <br> MTH\$DATAN2 sine, cosine <br> MTH\$GATAN2 sine, cosine

Each of the above formats accepts as input one of the floating-point types.

## RETURNS

| VMS usage: | floating_point |
| :--- | :--- |
| type: | F_floating, D_floating, G_floating |
| access: | write only |
| mechanism: | by value |

Angle in radians. MTH\$ATAN2 returns an F-floating number. MTH\$DATAN2 returns a D-floating number. MTH\$GATAN2 returns a G-floating number.

## ARGUMENTS sine

VMS usage: floating_point
type: $\quad$ F_floating, $D$ _floating, G_floating access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$ATAN2, sine specifies an F-floating number. For MTH\$DATAN2, sine specifies a D-floating number. For MTH\$GATAN2, sine specifies a G-floating number.

## cosine

VMS usage: floating_point
type: $\quad$ F_floating, D_floating, G_floating access: read only
mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$ATAN2, cosine specifies an F-floating number. For MTH\$DATAN2, cosine specifies a D-floating number. For MTH\$GATAN2, cosine specifies a G-floating number.

## DESCRIPTION

The angle in radians whose tangent is $Y / X$ is computed as follows, where $f$ is defined in the description of MTH\$zCOSH.

| Value of Input Arguments | Angle Returned |
| :--- | :--- |
| $X=0$ or $Y / X>2^{(f+1)}$ | $\pi / 2 *(\operatorname{sign} Y)$ |
| $X>0$ and $Y / X \leq 2^{(f+1)}$ | $z A T A N(Y / X)$ |
| $X<0$ and $Y / X \leq 2^{(f+1)}$ | $\pi *(\operatorname{sign} Y)+z A T A N(Y / X)$ |

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HATAN2.

## CONDITION VALUES SIGNALED

MTH\$_INVARGMAT

Reserved operand. The MTH\$xATAN2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. Both cosine and sine are zero. LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVR0/R1.

## MTH\$xATAND2 Arc Tangent in Degrees with Two Arguments

Given sine and cosine, the Arc Tangent in Degrees with Two Arguments routine returns the angle (in degrees) whose tangent is given by the quotient of sine and cosine, (sine/cosine).

MTH\$ATAND2 sine, cosine
MTH\$DATAND2 sine, cosine
MTH\$GATAND2 sine, cosine
Each of the above formats accepts as input one of the floating-point types.

| RETURNS | VMS usage: floating_point <br> type: F_floating, $D_{-}$floating, G_floating $^{\text {access: }}$ <br> write only  <br> mechanism: by value |
| :---: | :---: |
|  | Angle (in degrees). MTH\$ATAND2 returns an F-floating number. MTH\$DATAND2 returns a D-floating number. MTH\$GATAND2 returns a G-floating number. |

## ARGUMENTS sine

VMS usage: floating_point
type: $\quad$ F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$ATAND2, sine specifies an F-floating number. For MTH\$DATAND2, sine specifies a D-floating number. For MTH\$GATAND2, sine specifies a G-floating number.

## cosine

VMS usage: floating_point
type: $\quad$ F_floating, $D_{-}$floating, G_floating access: read only
mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$ATAND2, cosine specifies an F-floating number. For MTH\$DATAND2, cosine specifies a D-floating number. For MTH\$GATAND2, cosine specifies a G-floating number.

The angle in degrees whose tangent is $Y / X$ is computed below and where $f$ is defined in the description of MTH\$zCOSH.

| Value of Input Arguments | Angle Returned |
| :--- | :--- |
| $X=0$ or $Y / X>2^{(f+1)}$ | $90 *(\operatorname{sign} Y)$ |
| $X>0$ and $Y / X \leq 2^{(f+1)}$ | $z A T A N D(Y / X)$ |
| $X<0$ and $Y / X \leq 2^{(f+1)}$ | $180 *(\operatorname{sign} Y)+z A T A N D(Y / X)$ |

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HATAND2.

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xATAND2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. Both cosine and sine are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVR0/R1.

## MTH\$xATANH Hyperbolic Arc Tangent

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent routine returns the hyperbolic arc tangent of that angle.

## FORMAT

## MTH\$ATANH hyperbolic-tangent

 MTH\$DATANH hyperbolic-tangent MTH\$GATANH hyperbolic-tangentEach of the above formats accepts as input one of the floating-point types.

| VMS usage: | floating_point |
| :--- | :--- |
| type: | F_floating, $D_{\text {_floating, }}$ G_floating |
| access: | write only |
| mechanism: | by value |

The hyperbolic arc tangent of hyperbolic-tangent. MTH\$ATANH returns an F-floating number. MTH\$DATANH returns a D-floating number. MTH\$GATANH returns a G-floating number.

## ARGUMENTS

## hyperbolic-tangent <br> VMS usage: floating_point <br> type: $\quad$ F_floating, $D_{-}$floating, $G_{\text {_f }}$ floating <br> access: read only <br> mechanism: by reference

Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the address of a floating-point number that is this hyperbolic tangent. For MTH\$ATANH, hyperbolic-tangent specifies an F-floating number. For MTH\$DATANH, hyperbolic-tangent specifies a D-floating number. For MTH\$GATANH, hyperbolic-tangent specifies a G-floating number.

DESCRIPTION
The hyperbolic arc tangent function is computed as follows:

| Value of x | Value Returned |
| :--- | :--- |
| $\|X\|<1$ | $z A T A N H(X)=z \operatorname{LOG}((X+1) /(X-1)) / 2$ |
| $\|X\| \geq 1$ | An invalid argument is signaled |

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HATANH.

## CONDITION VALUES <br> SIGNALED <br> SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xATANH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL. Invalid argument: $|X| \geq 1$. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change $\mathrm{CHF} \$ \mathrm{~L} \_\mathrm{MCH}$ SAVR0/R1.

## MTH\$CxABS Complex Absolute Value

The Complex Absolute Value routine returns the absolute value of a complex number (r,i).

MTH\$CABS complex-number
MTH\$CDABS complex-number
MTH\$CGABS complex-number
Each of the above three formats accepts as input one of the three floatingpoint complex types.

RETURNS

```
VMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value
```

The absolute value of a complex number. MTH\$CABS returns an F-floating number. MTH\$CDABS returns a D-floating number. MTH\$CGABS returns a G-floating number.

## ARGUMENT

## complex-number

VMS usage: complex_number
type: $\quad$ F_floating complex, D_floating complex, G_floating complex
access: read only
mechanism: by reference
A complex number (r,i), where $r$ and i are both floating-point complex values. The complex-number argument is the address of this complex number. For MTH\$CABS, complex-number specifies an F-floating complex number. For MTH\$CDABS, complex-number specifies a D-floating complex number. For MTH\$CGABS, complex-number specifies a G-floating complex number.

$$
\text { result }=M A X * S Q R T\left((M I N / M A X)^{2}+1\right)
$$

## MTH\$CxABS

## CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CxABS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL. Floating-point overflow in Math Library when both $\mathbf{r}$ and $\mathbf{i}$ are large.

## EXAMPLES

```
C+
    COMPLEX Z
        COMPLEX CMPLX
        REAL*4 Z NEW,MTH$CABS
        INTEGER \overline{M}
        M = 1234567
    C+
    C Generate a random complex number with the FORTRAN generic CMPLX.
C-
        Z = CMPIX(RAN (M),RAN (M))
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
    TYPE *, ' The complex number z is',z
        TYPE *, ' It has real part',REAL(Z),'and imaginary part',AIMAG(Z)
        TYPE *, ' '
C+
C Compute the complex absolute value of }Z\mathrm{ .
C-
    Z_NEW = MTH$CABS (Z)
        TYPE *,' The complex absolute value of',z,' is',z_NEW
        END
```

This example uses an F-floating complex number for complex-number.
The output of this FORTRAN example is as follows:

```
The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex absolute value of (0.8535407,0.2043402) is 0.8776597
```

```
2 C+
C This FORTRAN example forms the absolute
C value of a G-floating complex number using
C MTH$CGABS and the FORTRAN random number
C generator RAN.
C
C Declare Z as a complex value and MTH$CGABS as a
C REAL*8 value. MTH$CGABS will return the absolute
C value of Z: Z_NEW = MTH$CGABS(Z).
C-
        COMPLEX*16 Z
        REAL*8 Z_NEW,MTH$CGABS
    C+
    C Generate a random complex number with the FORTRAN
    C generic CMPLX.
    C-
        Z = (12.34567890123,45.536376385345)
        TYPE *, ' The complex number z is',z
        TYPE *, ' '
C+
    C Compute the complex absolute value of }Z\mathrm{ .
C-
    Z_NEW = MTH$CGABS (Z)
    TYPE *, 'The complex absolute value of',z,' is',z_NEW
    END
```

This FORTRAN example uses a G-floating complex number for complexnumber. Because this example uses a G-floating number, it must be compiled as follows:
\$ FORTRAN/G MTHEX.FOR
Notice the difference in the precision of the output generated:
The complex number $z$ is (12.3456789012300,45.5363763853450)
The complex absolute value of ( $12.3456789012300,45.5363763853450$ ) is 47.1802645376230

## MTH\$CCOS Cosine of a Complex Number (F-floating Value)

The Cosine of a Complex Number (F-floating Value) routine returns the cosine of a complex number as an F-floating value.

## FORMAT

MTH\$CCOS
complex-number

## RETURNS

| VMS usage: | complex_number |
| :--- | :--- |
| type: | Ffloating complex |
| access: | write only |
| mechanism: | by value |

The complex cosine of the complex input number. MTH\$CCOS returns an F-floating complex number.

## ARGUMENTS

## complex-number

VMS usage: complex_number
type: $\quad$ F_floating complex
access: read only
mechanism: by reference
A complex number ( $\mathrm{r}, \mathrm{i}$ ) where r and i are floating-point numbers. The complex-number argument is the address of this complex number. For MTH\$CCOS, complex-number specifies an F-floating complex number.

The complex cosine is calculated as follows:

$$
\text { result }=(\operatorname{COS}(r) * \operatorname{COS} H(i),-\operatorname{SIN}(r) * \operatorname{SIN} H(i))
$$

The routine descriptions for the D - and G-floating point versions of this routine are listed alphabetically under MTH\$CxCOS.

## CONDITION

Reserved operand. The MTH\$CCOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_FLOOVEMAT

Floating-point overflow in Math Library: the absolute value of $i$ is greater than about 88.029 for F-floating values.

MTH\$CCOS

## EXAMPLE

```
C+
C This FORTRAN example forms the complex
C cosine of an F-floating complex number using
C MTH$CCOS and the FORTRAN random number
C generator RAN.
C
C Declare Z and MTH$CCOS as complex values.
C MTH$CCOS will return the cosine value of
C Z: Z_NEW = MTH$CCOS (Z)
C-
        COMPLEX Z,Z_NEW,MTH$CCOS
        COMPLEX CMPLX
        INTEGER M
        M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-
    Z = CMPLX(RAN (M),RAN (M))
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *,' It has real part',REAL(Z),'and imaginary part',AIMAG(Z)
    TYPE *, ' '
C+
C Compute the complex cosine value of z.
C-
    Z_NEW = MTH$CCOS (Z)
    TYPE *, ' The complex cosine value of',z,' is',z_NEW
    END
```

This FORTRAN example demonstrates the use of MTH\$CCOS, using the MTH\$CCOS entry point. The output of this program is as follows:

The complex number $z$ is ( $0.8535407,0.2043402$ )
It has real part 0.8535407 and imaginary part 0.2043402
The complex cosine value of $(0.8535407,0.2043402)$ is $(0.6710899,-0.1550672)$

## MTH\$CxCOS Cosine of a Complex Number

The Cosine of a Complex Number routine returns the cosine of a complex number.

## FORMAT

MTH\$CDCOS complex-cosine, complex-number MTH\$CGCOS complex-cosine, complex-number
Each of the above formats accepts as input one of the floating-point complex types.

## RETURNS

None.

## ARGUMENTS

## complex-cosine

VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
Complex cosine of the complex-number. The complex cosine routines that have D-floating and G-floating complex input values write the address of the complex cosine into the complex-cosine argument. For MTH\$CDCOS, the complex-cosine argument specifies a D-floating complex number. For MTH\$CGCOS, the complex-number argument specifies a G-floating complex number.

## complex-number

VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference
A complex number ( $\mathrm{r}, \mathrm{i}$ ) where r and i are floating-point numbers. The complex-number argument is the address of this complex number. For MTH\$CDCOS, complex-number specifies a D-floating complex number. For MTH\$CGCOS, complex-number specifies a G-floating complex number.

DESCRIPTION The complex cosine is calculated as follows:

$$
\text { result }=(\operatorname{COS}(r) * \operatorname{COSH}(i),-\operatorname{SIN}(r) * S I N H(i))
$$

## MTH\$CxCOS

CONDITION
VALUES
SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CxCOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: the absolute value of $\boldsymbol{i}$ is greater than about 88.029 for F-floating and D-floating values or greater than 709.089 for G-floating values.

## EXAMPLE

```
C+
C This FORTRAN example forms the complex
C cosine of a D-floating complex number using
C MTH$CDCOS and the FORTRAN random number
C generator RAN.
C
C Declare z and MTH$CDCOS as complex values.
C MTH$CDCOS will return the cosine value of
C Z: Z_NEW = MTH$CDCOS(Z)
C-
    COMPLEX*16 Z,Z NEW,MTH$CDCOS
    COMPLEX*16 DCMPLX
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic DCMPLX.
C-
    Z = DCMPLX(RAN (M),RAN (M))
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *, ' '
C+
C Compute the complex cosine value of }Z\mathrm{ .
C-
    Z_NEW = MTH$CDCOS (Z)
    TYYPE *, 'The complex cosine value of',z,' is', Z_NEW
    END
```


## MTH\$CxCOS

This FORTRAN example program demonstrates the use of MTH\$CxCOS, using the MTH\$CDCOS entry point. Notice the high precision of the output generated:

The complex number $z$ is (0.8535407185554504,0.2043401598930359)
The complex cosine value of ( $0.8535407185554504,0.2043401598930359$ ) is ( $0.6710899028500762,-0.1550672019621661$ )

## MTH\$CEXP Complex Exponential (F-floating Value)

The Complex Exponential (F-floating Value) routine returns the complex exponential of a complex number as an F -floating value.

## FORMAT <br> MTH\$CEXP complex-number

| RETURNS | VMS usage:complex_number <br> type: <br> F_floating complex |
| :--- | :--- |
| access: write only |  |
| mechanism: by value |  |
|  | Complex exponential of the complex input number. MTH\$CEXP returns |
|  | an F-floating complex number. |

## ARGUMENTS

## complex-number

> VMS usage: complex_number type: F_floating complex access: read only Complex number whose complex exponential is to be returned. This complex number has the form (r,i), where $r$ is the real part and $i$ is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CEXP, complex-number specifies an F-floating number.

## DESCRIPTION The complex exponential is computed as follows:

$$
\text { complex-exponent }=(E X P(r) * \operatorname{COS}(i), E X P(r) * S I N(i))
$$

The routine descriptions for the D - and G-floating point versions of this routine are listed alphabetically under MTH\$CxEXP.

## CONDITION <br> VALUES <br> SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: the absolute value of $\mathbf{r}$ is greater than about 88.029 for $\mathbf{F}$-floating values.

## MTH\$CEXP

## EXAMPLE

```
C+
C This FORTRAN example forms the complex exponential
C of an F-floating complex number using MTH$CEXP
C and the FORTRAN random number generator RAN.
C
C Declare Z and MTH$CEXP as complex values. MTH$CEXP
C will return the exponential value of Z: Z_NEW = MTH$CEXP(Z)
C-
        COMPLEX Z,Z_NEW,MTH$CEXP
        COMPLEX CMPLX
        INTEGER M
        M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-
        Z = CMPLX(RAN (M),RAN (M))
C+
C Z is a complex number (r,i) with real part "r"
C and imaginary part "i".
    TYPE *, ' The complex number z is',z
    TYPE *, ', It has real part',REAL(Z),'and imaginary part',AIMAG(Z)
    TYPE *, ' '
C+
C Compute the complex exponential value of }Z\mathrm{ .
C-
    Z_NEW = MTH$CEXP (Z)
    TYPE *, ' The complex exponential value of',z,' is',Z_NEW
    END
```

This FORTRAN program demonstrates the use of MTH\$CEXP as a function call. The output generated by this example is as follows:

```
The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex exponential value of (0.8535407,0.2043402) is
    (2.299097,0.4764476)
```


## MTH\$CxEXP Complex Exponential

The Complex Exponential routine returns the complex exponential of a complex number.

## FORMAT

MTH\$CDEXP complex-exponent,complex-number MTH\$CGEXP complex-exponent,complex-number
Each of the above formats accepts as input one of the floating-point complex types.

## RETURNS None.

## ARGUMENTS

## complex-exponent

VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
Complex exponential of complex-number. The complex exponential routines that have D -floating complex and G -floating complex input values write the complex-exponent into this argument. For MTH\$CDEXP, complex-exponent argument specifies a D-fioating complex number. For MTH\$CGEXP, complex-exponent specifies a G-floating complex number.

## complex-number

VMS usage: complex_number
type: D_floating complex, G_floating complex access: read only
mechanism: by reference
Complex number whose complex exponential is to be returned. This complex number has the form (r,i), where $r$ is the real part and $i$ is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CDEXP, complex-number specifies a D-floating number. For MTH\$CGEXP, complex-number specifies a G-floating number.

$$
\text { complex }- \text { exponent }=(E X P(r) * \operatorname{COS}(i), E X P(r) * S I N(i))
$$

## MTH\$CxEXP

## CONDITION <br> VALUES SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CxEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: the absolute value of $\mathbf{r}$ is greater than about 88.029 for D-floating values or greater than about 709.089 for G-floating values.

## EXAMPLE

```
C+
C This FORTRAN example forms the complex exponential
C of a G-floating complex number using MTH$CGEXP
C and the FORTRAN random number generator RAN.
C
C Declare Z and MTH$CGEXP as complex values.
C MTH$CGEXP will return the exponential value
C Of Z: CALL MTH$CGEXP (Z_NEW, Z)
C-
COMPLEX*16 Z,Z_NEW
COMPLEX*16 MTH$GCMPLX
REAI** R,I
INTEGER M
M = 1234567
C+
C Generate a random complex number with the FORTRAN
C- generic CMPLX.
C-
        R=RAN (M)
        I = RAN (M)
        Z = MTH$GCMPLX (R,I)
        TYPE *, ' The complex number z is',z
        TYPE *, ' '
C+
C Compute the complex exponential value of Z.
C-
        CALL MTH$CGEXP (Z_NEW, Z)
        TYPE *, ' The complex exponential value of',z,' is',z_NEW
        END
```

This FORTRAN example demonstrates how to access MTH\$CGEXP as a procedure call. Because G-floating numbers are used, this program must be compiled using the command "FORTRAN/G filename".

Notice the high precision of the output generated:

```
The complex number z is (0.853540718555450,0.204340159893036)
The complex exponential value of (0.853540718555450,0.204340159893036) is
(2.29909677719458,0.476447678044977)
```


## MTH\$CLOG Complex Natural Logarithm (F-floating Value)

The Complex Natural Logarithm (F-floating Value) routine returns the complex natural logarithm of a complex number as an F -floating value.

## FORMAT <br> MTH\$CLOG complex-number

## RETURNS

| VMS usage: | complex_number |
| :--- | :--- |
| type: | F_floating complex |
| access: | write only |
| mechanism: | by value |

The complex natural logarithm of a complex number. MTH\$CLOG returns an F -floating complex number.

| ARGUMENTS | complex-number <br> VMS usage: complex_number <br> type: $\quad$ F_floating complex <br> access: read only <br> mechanism: by reference <br> Complex number whose complex natural logarithm is to be returned. This complex number has the form ( $r, i$ ), where $r$ is the real part and $i$ is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CLOG, complex-number specifies an F -floating number. |
| :---: | :---: |

DESCRIPTION The complex natural logarithm is computed as follows:

$$
C L O G(x)=(\operatorname{LOG}(C A B S(x)), \operatorname{ATAN} 2(i, r))
$$

The routine descriptions for the D - and G-floating point versions of this routine are listed alphabetically under MTH\$CxLOG.

## MTH\$CLOG

EXAMPLE

Examples of using MTH\$CLOG from VAX MACRO (using both the CALLS and the CALLG instructions) appear in the introductory section of this manual.

## MTH\$CxLOG Complex Natural Logarithm

The Complex Natural Logarithm routine returns the complex natural logarithm of a complex number.

## FORMAT

MTH\$CDLOG complex-natural-log, complex-number MTH\$CGLOG complex-natural-log,complex-number

Each of the above formats accepts as input one of the floating-point complex types.

## RETURNS <br> None.

## ARGUMENTS

## complex-natural-log

VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
Natural logarithm of the complex number specified by complex-number. The complex natural logarithm routines that have D-floating complex and G-floating complex input values write the address of the complex natural logarithm into complex-natural-log. For MTH\$CDLOG, the complex-natural-log argument specifies a D-floating complex number. For MTH\$CGLOG, the complex-natural-log argument specifies a G-floating complex number.

## complex-number

VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference
Complex number whose complex natural logarithm is to be returned.
This complex number has the form (r,i), where $r$ is the real part and $i$ is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CDLOG, complex-number specifies a D-floating number. For MTH\$CGLOG, complex-number specifies a G-floating number.

$$
C L O G(x)=(\operatorname{LOG}(C A B S(x)), \operatorname{ATAN} 2(i, r))
$$

## CONDITION <br> VALUE SIGNALED

MTH\$_INVARGMAT Invalid argument: $r=i=0$. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_ SAVR0/R1.
SS\$_FLTOVF_F Floating point overflow can occur. This condition value is signaled from MTH\$CxABS when MTH\$CxABS overflows.
SS\$_ROPRAND
Reserved operand. The MTH\$CxLOG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

## EXAMPLE

```
C+
C This FORTRAN example forms the complex logarithm
C Of a D-floating complex number by using MTH$CDLOG
C
C
C
C
C
C
C
C
C
C Given a complex number Z, MTH$CDLOG(Z) returns the
C complex natural logarithm of z.
C-
    COMPLEX*16 Z,Z_NEW,MTH$DCMP LX
    REAL*8 R,I
    R}=3.142563784674656
    I = 7.43678469887
    Z = MTH$DCMPLX (R,I)
C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-
    TYPE *,', The complex number z is',z
    TYPE *, ',
    CALL MTH$CDLOG (Z_NEW, Z)
    TYPE *,' The complex logarithm of',z,' is', z_NEW
    END
```

This FORTRAN example program uses MTH\$CDLOG by calling it as a procedure. The output generated by this program is as follows:

The complex number $z$ is (3.142563784674657,7.436784698870000)
The complex logarithm of (3.142563784674657,7.436784698870000) is (2.088587642177504,1.170985519274141)

# MTH\$CMPLX Complex Number Made from F-floating-Point 

The Complex Number Made from F-floating-Point routine returns a complex number from two floating-point input values.

| VMS usage: | complex_number |
| :--- | :--- |
| type: | Ffloating complex |
| access: | write only |
| mechanism: | by value |

A complex number. MTH\$CMPLX returns an F-floating complex number.

## ARGUMENTS real-part

VMS usage: floating_point
type: $\quad$ F_floating
access: read only
mechanism: by reference
Real part of a complex number. The real-part argument is the address of a floating-point number that contains this real part, r, of (r,i). For MTH\$CMPLX, real-part specifies an F-floating number.

## imaginary-part

VMS usage: floating_point
type: $\quad$ F_floating
access: read only
mechanism: by reference
Imaginary part of a complex number. The imag-parg argument is the address of a floating-point number that contains this imaginary part, $i$, of (r,i). For MTH\$CMPLX, imaginary-part specifies an F-floating number.

## DESCRIPTION

The MTH\$CMPLX routines return a complex number from two F-floating input values. The routine descriptions for the D- and G-floating point versions of this routine are listed alphabetically under MTH\$xCMPLX.

## CONDITION <br> VALUE <br> SIGNALED

## MTH\$CMPLX

## EXAMPLE

```
C+
C This FORTRAN example forms two F-floating
C point complex numbers using MTH$CMPLX
C and the FORTRAN random number generator RAN.
C
C Declare Z and MTH$CMPLX as complex values, and R
C and I as real values. MTH$CMPLX takes two real
C F-floating point values and returns one COMPLEX*8 number.
C Note, since CMPLX is a generic name in FORTRAN, it would be
C sufficient to use CMPIX.
C CMPLX must be declare to be of type COMPLEX*8.
C
C-
Z = CMPLX (R,I)
COMPLEX Z,MTH$CMPLX,CMPLX
REAL*4 R,I
INTEGER M
M = 1234567
R = RAN (M)
I = RAN (M)
Z = MTH$CMPLX(R,I)
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
```

```
TYPE *, ' The two input values are:',R,I
```

TYPE *, ' The two input values are:',R,I
TYPE *, ' The complex number z is',z
TYPE *, ' The complex number z is',z
z = CMPLX(RAN (M),RAN (M))
z = CMPLX(RAN (M),RAN (M))
TYPE *, ' '
TYPE *, ' '
TYPE *, ' Using the FORTRAN generic CMPIX with random R and I:'
TYPE *, ' Using the FORTRAN generic CMPIX with random R and I:'
TYPE *, ' The complex number z is',z
TYPE *, ' The complex number z is',z
END

```
END
```

This FORTRAN example program demonstrates the use of MTH\$CMPLX. The output generated by this program is as follows:

```
The two input values are: 0.8535407 0.2043402
The complex number z is (0.8535407,0.2043402)
Using the FORTRAN generic CMPLX with random R and I:
The complex number z is (0.5722565,0.1857677)
```


# MTH\$xCMPLX Complex Number Made from D- or G-floating-Point 

The Complex Number Made from D- or G-floating-Point routine returns a complex number from two D - or G-floating input values.

## FORMAT MTH\$DCMPLX complx, real-part, imaginary-part <br> MTH\$GCMPLX complx, real-part, imaginary-part <br> Each of the above formats accepts as input one of floating-point complex types.

## RETURNS None.

## ARGUMENTS complx

## VMS usage: complex_number <br> type: $\quad$ D_floating complex, G_floating complex <br> access: write only <br> mechanism: by reference

The floating-point complex value of a complex number. The complex exponential functions that have D-floating complex and G-floating complex input values write the address of this floating-point complex value into complx. For MTH\$DCMPLX, complx specifies a D-floating complex number. For MTH\$GCMPLX, complx specifies a G-floating complex number. For MTH\$CMPLX, complx is not used.

## real-part

VMS usage: floating_point
type: $\quad$ D_floating, G_floating
access: read only
mechanism: by reference
Real part of a complex number. The real-part argument is the address of a floating-point number that contains this real part, $r$, of ( $\mathrm{r}, \mathrm{i}$ ). For MTH\$DCMPLX, real-part specifies a D-floating number. For MTH\$GCMPLX, real-part specifies a G-floating number.

## imaginary-part

VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference
Imaginary part of a complex number. The imag-parg argument is the address of a floating-point number that contains this imaginary part, $i$, of (r,i). For MTH\$DCMPLX, imaginary-part specifies a D-floating number. For MTH\$GCMPLX, imaginary-part specifies a G-floating number.

## CONDITION VALUE SIGNALED

Reserved operand. The MTH\$xCMPLX routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

## EXAMPLE

```
C+
C This FORTRAN example forms two D-floating
C point complex numbers using MTH$CMPLX
C and the FORTRAN random number generator RAN.
C
C Declare Z and MTH$DCMPLX as complex values, and R
C and I as real values. MTH$DCMPLX takes two real
C D-floating point values and returns one
C COMPLEX*16 number.
C
COMPLEX*16 Z
    REAL*8 R,I
    INTEGER M
    M = 1234567
    R = RAN (M)
    I = RAN (M)
    CALI MTH$DCMPLX(Z,R,I)
C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-
    TYPE *, ' The two input values are:',R,I
    TYPE *, ' The complex number z is',z
    END
```

This FORTRAN example demonstrates how to make a procedure call to MTH\$DCMPLX. Notice the difference in the precision of the output generated.

The two input values are: $0.8535407185554504 \quad 0.2043401598930359$
The complex number $z$ is ( $0.8535407185554504,0.2043401598930359$ )

# MTH\$CONJG Conjugate of a Complex Number (F-floating Value) 

The Conjugate of a Complex Number (F-floating Value) routine returns the complex conjugate ( $\mathrm{r},-\mathrm{i}$ ) of a complex number ( $\mathrm{r}, \mathrm{i}$ ) as an F -floating value.

## FORMAT MTH\$CONJG complex-number

## RETURNS

| VMS usage: | complex_number |
| :--- | :--- |
| type: | F_floating complex |
| access: | write only |
| mechanism: | by value |

Complex conjugate of a complex number. MTH\$CONJG returns an F-floating complex number.

| ARGUMENTS | complex-number <br> VMS usage: complex_number <br> type: $\quad$ F_floating complex |
| :--- | :--- |
| access: read only |  |
| mechanism: by reference |  |
| A complex number (r,i), where $r$ and i are floating-point numbers. The |  |
| complex-number argument is the address of this floating-point complex |  |
| number. For MTH\$CONJG, complex-number specifies an F-floating |  |
| number. |  |

DESCRIPTION
The MTH\$CONJG routine return the complex conjugate (r,-i) of a complex number ( $\mathrm{r}, \mathrm{i}$ ) as an F -floating value. The routine descriptions for the D- and G-floating point versions of this routine are listed alphabetically under MTH\$xCONJG.

## CONDITION <br> VALUE SIGNALED

## MTH\$xCONJG Conjugate of a Complex Number

The Conjugate of a Complex Number routine returns the complex conjugate ( $r,-i$ ) of a complex number ( $r, i)$.

MTH\$DCONJG complex-conjugate ,complex-number MTH\$GCONJG complex-conjugate, complex-number
Each of the above formats accepts as input one of the floating-point complex types.

## RETURNS None.

## ARGUMENTS complex-conjugate

## VMS usage: complex_number

type: $\quad$ D_floating complex, G_floating complex
access: write only
mechanism: by reference
The complex conjugate (r,-i) of the complex number specified by complexnumber. MTH\$DCONJG and MTH\$GCONJG write the address of this complex conjugate into complex-conjugate. For MTH\$DCONJG, the complex-conjugate argument specifies the address of a D-floating complex number. For MTH\$GCONJG, the complex-conjugate argument specifies the address of a G-floating complex number.

## complex-number

```
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference
```

A complex number ( $\mathrm{r}, \mathrm{i}$ ), where r and i are floating-point numbers. The complex-number argument is the address of this floating-point complex number. For MTH\$DCONJG, complex-number specifies a D-floating number. For MTH\$GCONJG, complex-number specifies a G-floating number.

## CONDITION VALUE SIGNALED

Reserved operand. The MTH\$xCONJG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

## MTH\$xCONJG

## EXAMPLE

```
C+
C This FORTRAN example forms the complex conjugate
C of a G-floating complex number using MTH$GCONJG
C and the FORTRAN random number generator RAN.
C
C Declare Z, Z_NEW, and MTH$GCONJG as a complex values.
C MTH$GCONJG will return the complex conjugate
C value of Z: Z_NEW = MTH$GCONJG (Z).
C-
        COMPLEX*16 Z,Z_NEW,MTH$GCONJG
        COMPLEX*16 MTH\GCMPLX
        REAL*8 R,I,MTH$GREAL,MTH$GIMAG
        INTEGER M
        M = 1234567
C+
C Generate a random complex number with the
C
C-
    FORTRAN generic CMPLX.
        R=RAN(M)
        I = RAN (M)
        Z = MTH$GCMPLX(R,I)
        TYPE *, ' The complex number z is',z
        TYPE 1,MTH$GREAL (Z),MTH$GIMAG (Z)
        1 FORMAT(' with real part ',F20.16,' and imaginary part',F20.16)
        TYPE *, ' '
C+
C Compute the complex absolute value of }Z\mathrm{ .
    Z_NEW = MTH$GCONJG (Z)
    TYPE *, 'The complex conjugate value of',z,' is',Z_NEW
    TYPE 1,MTH$GREAL (Z_NEW),MTH$GIMAG (Z_NEW)
    END
```

This FORTRAN example demonstrates how to make a function call to MTH\$GCONJG. Because G-floating numbers are used, the examples must be compiled with the statement "FORTRAN/G filename".
The output generated by this program is as follows:

```
The complex number \(z\) is \((0.853540718555450,0.204340159893036)\)
    with real part 0.8535407185554504
    and imaginary part 0.2043401598930359
The complex conjugate value of
    ( \(0.853540718555450,0.204340159893036\) ) is
    ( \(0.853540718555450,-0.204340159893036\) )
    with real part 0.8535407185554504
    and imaginary part -0.2043401598930359
```


## MTH\$xCOS Cosine of Angle Expressed in Radians

The Cosine of Angle Expressed in Radians routine returns the cosine of a given angle (in radians).

## FORMAT

MTH\$COS angle-in-radians
MTH\$DCOS angle-in-radians
MTH\$GCOS angle-in-radians
Each of the above formats accepts as input one of the floating-point types.

## jsb entries

MTH\$COS_R4
MTH\$DCOS_R7
MTH\$GCOS_R7
Each of the above JSB entries accepts as input one of the floating-point types.

| RETURNS | VMS usage: floating_point <br> type: F_floating, $D_{-}$floating, G_floating $^{\text {access: }}$ <br> write only  <br> mechanism: by value |
| :---: | :---: |
|  | Cosine of the angle. MTH\$COS returns an F-floating number. MTH\$DCOS returns a D-floating number. MTH\$GCOS returns a G-floating number. |

## ARGUMENTS angle-in-radians

VMS usage: floating_point
type: $\quad$ F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The angle in radians. The angle-in-radians argument is the address of a floating-point number. For MTH\$COS, angle-in-radians is an F-floating number. For MTH\$DCOS, angle-in-radians specifies a
D-floating number. For MTH\$GCOS, angle-in-radians specifies a G-floating number.

See the MTH\$xSINCOS routine for the algorithm used to compute the cosine.

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HCOS.

## MTH\$xCOS

## CONDITION VALUE SIGNALED

Reserved operand. The MTH\$xCOS procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

## MTH\$xCOSD Cosine of Angle Expressed in Degrees

The Cosine of Angle Expressed in Degrees routine returns the cosine of a given angle (in degrees).

## FORMAT

jsb entries

MTH\$COSD angle-in-degrees
MTH\$DCOSD angle-in-degrees
MTH\$GCOSD angle-in-degrees
Each of the above formats accepts as input one of the floating-point types.

## MTH\$COSD R4

MTH\$DCOSD_R7
MTH\$GCOSD_R7
Each of the above JSB entries accepts as input one of the floating-point types.

| RETURNS | VMS usage: | floating_point |
| :--- | :--- | :--- |
|  | type: | F_floating, $D_{-}$floating, $G_{-}$floating |
|  | access: | write only |
|  | mechanism: | by value |

Cosine of the angle. MTH\$COSD returns an F-floating number. MTH\$DCOSD returns a D-floating number. MTH\$GCOSD returns a G-floating number.

## ARGUMENTS

## angle-in-degrees

VMS usage: floating_point
type: $\quad$ F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number. For MTH\$COSD, angle-in-degrees specifies an F-floating number. For MTH\$DCOSD, angle-in-degrees specifies a D-floating number. For MTH\$GCOSD, angle-in-degrees specifies a G-floating number.

See the MTH\$SINCOSD routine for the algorithm used to compute the cosine.

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HCOSD.

## MTH\$xCOSD

## CONDITION VALUE SIGNALED

Reserved operand. The MTH\$xCOSD procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xCOSH

## MTH\$xCOSH Hyperbolic Cosine

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input value.

## FORMAT

## MTH\$COSH floating-point-input-value <br> MTH\$DCOSH floating-point-input-value <br> MTH\$GCOSH floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

| RETURNS | VMS usage: <br> type: |
| :--- | :--- |
|  | floating_point <br> access: |
|  | writeating, $D_{\text {_ }}$ floating, G_floating |
|  | mechanism: |
| by value |  |

The hyperbolic cosine of the input value floating-point-input-value. MTH\$COSH returns an F-floating number. MTH\$DCOSH returns a D-floating number. MTH\$GCOSH returns a G-floating number.

## ARGUMENTS <br> floating-point-input-value

VMS usage: floating_point
type: $\quad$ F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of this input value. For MTH\$COSH, floating-point-inputvalue specifies an F-floating number. For MTH\$DCOSH, floating-point-input-value specifies a D-floating number. For MTH\$GCOSH, floating-point-input-value specifies a G-floating number.

## DESCRIPTION

Computation of the hyperbolic cosine depends on the magnitude of the input argument. The range of the function is partitioned using four data-type-dependent constants: $\mathrm{a}(\mathrm{z}), \mathrm{b}(\mathrm{z})$, and $\mathrm{c}(\mathrm{z})$. The subscript $z$ indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type ( $z$ ).

The values of $e$ and $f$ are:

| $\mathbf{z}$ | e | $\mathbf{f}$ |
| :--- | :--- | :--- |
| F | 8 | 24 |
| D | 8 | 56 |
| G | 11 | 53 |

## MTH\$xCOSH

The values of the constants in terms of $e$ and $f$ are:

| Variable | Value |
| :--- | :--- |
| $\mathrm{a}(\mathrm{z})$ | $2^{(-f / 2)}$ |
| $\mathrm{b}(\mathrm{z})$ | CEILING $[(f+1) / 2 * \ln (2)]$ |
| $\mathrm{c}(\mathrm{z})$ | $\left(2^{e-1}\right) * \ln (2)$ |

Based on the above definitions, $\mathrm{zCOSH}(\mathrm{X})$ is computed as follows:

| Value of X | Value Returned |
| :--- | :--- |
| $\|\mathrm{X}\|<\mathrm{a}(\mathrm{z})$ | 1 |
| $\mathrm{a}(\mathrm{z}) \leq\|\mathrm{X}\|<.25$ | Computed using a power series expansion in $\|X\|^{2}$ |
| $.25 \leq\|\mathrm{X}\|<\mathrm{b}(\mathrm{z})$ | $(z E X P(\|X\|)+1 / z E X P(\|X\|)) / 2$ |
| $\mathrm{~b}(\mathrm{z}) \leq\|\mathrm{X}\|<\mathrm{c}(\mathrm{z})$ | $z E X P(\|X\|) / 2$ |
| $\mathrm{c}(\mathrm{z}) \leq\|\mathrm{x}\|$ | Overflow occurs |

This routine description for the H -floating point value is listed alphabetically under MTH\$HCOSH.

## CONDITION

VALUES SIGNALED

| SS\$_ROPRAND | Reserved operand. The MTH\$xCOSH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL. |
| :---: | :---: |
| MTH\$_FLOOVEMAT | Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than about $y y y$, LIB $\$$ SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector. |
|  | The values of $y$ yy are: |
|  | MTH\$COSH-88.722 MTH\$DCOSH-88.722 MTH\$GCOSH-709.782 |

## MTH\$CSIN Sine of a Complex Number (F-floating Value)

The Sine of a Complex Number (F-floating Value) routine returns the sine of a complex number (r,i) as an F-floating value.

VMS usage: complex_number
type: $\quad$ F_floating complex access: write only
mechanism: by value

Complex sine of the complex number. MTH\$CSIN returns an F-floating complex number.

| ARGUMENTS | complex-number <br> VMS usage: complex_number <br> type: $\quad$ Ffloating complex <br> access: read only <br> mechanism: by reference <br> A complex number ( $r, i$ ), where $r$ and $i$ are floating-point numbers. The complex-number argument is the address of this complex number. For MTH\$CSIN, complex-number specifies an F-floating complex number. |
| :---: | :---: |

DESCRIPTION
The complex sine is computed as follows:

$$
\text { complex }-\operatorname{sine}=(S I N(r) * \operatorname{COSH}(i), \operatorname{COS}(r) * S I N H(i))
$$

The routine descriptions for the D - and G-floating point versions of this routine are listed alphabetically under MTH\$CxSIN.

## CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CSIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: the absolute value of $i$ is greater than about 88.029 for $F$-floating values.

## MTH\$CxSIN Sine of a Complex Number

The Sine of a Complex Number routine returns the sine of a complex number (r,i).

## FORMAT MTH\$CDSIN complex-sine,complex-number <br> MTH\$CGSIN complex-sine,complex-number <br> Each of the above formats accepts as input one of the floating-point complex types.

## RETURNS <br> None.

## ARGUMENTS complex-sine

```
VMS usage: complex_number
type: D_floating complex, G_floating complex access: write only
``` mechanism: by reference
Complex sine of the complex number. The complex sine routines with D-floating complex and G-floating complex input values write the complex sine into this complex-sine argument. For MTH\$CDSIN, complex-sine specifies a D-floating complex number. For MTH\$CGSIN, complex-sine specifies a G-floating complex number.

\section*{complex-number}

VMS usage: complex_number
type: \(\quad\) D_floating complex, G_floating complex
access: read only
mechanism: by reference
A complex number ( \(\mathrm{r}, \mathrm{i}\) ), where r and i are floating-point numbers. The complex-number argument is the address of this complex number. For MTH\$CDSIN, complex-number specifies a D-floating complex number. For MTH\$CGSIN, complex-number specifies a G-floating complex number.

DESCRIPTION The complex sine is computed as follows:
\[
\text { complex }-\operatorname{sine}=(S I N(r) * \operatorname{COSH}(i), \operatorname{COS}(r) * S I N H(i))
\]

\section*{CONDITION}

SS\$_ROPRAND
-

Reserved operand. The MTH\$CxSIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_FLOOVEMAT

Floating-point overflow in Math Library: the absolute value of \(\mathbf{i}\) is greater than about 88.029 for D-floating values or greater than about 709.089 for G-floating values.

\section*{EXAMPLE}
```

C+
C This FORTRAN example forms the complex
C sine of a G-floating complex number using
C MTH$CGSIN and the FORTRAN random number
C generator RAN.
C
C Declare Z and MTH$CGSIN as complex values.
C MTH$CGSIN will return the sine value
C of Z: CALI MTH$CGSIN(Z_NEW, Z)
C-
COMPLEX*16 Z, Z_NEW
COMPLEX*16 DCMPLX
REAL*8 R,I
INTEGER M
M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic DCMPLX.
C-
R=RAN(M)
I = RAN (M)
Z = DCMPLX (R,I)
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
TYPE *, ' The complex number z is',z
TYPE *,' '
C+
C Compute the complex sine value of Z.
C-
CALL MTH\$CGSIN(Z_NEW,Z)
TYPE *, ' The complex sine value of',z,' is', Z_NEW
END

```

\section*{MTH\$CxSIN}

This FORTRAN example demonstrates a procedure call to MTH\$CGSIN. Because this program uses G-floating numbers, it must be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:
The complex number \(z\) is ( \(0.853540718555450,0.204340159893036\) )
The complex sine value of \((0.853540718555450,0.204340159893036)\) is ( \(0.769400835484975,0.135253340912255\) )

\section*{MTH\$CSQRT Complex Square Root (F-floating Value)}

The Complex Square Root (F-floating Value) routine returns the complex square root of a complex number (r,i).

\section*{FORMAT \\ MTH\$CSQRT complex-number}
\begin{tabular}{|c|c|c|}
\hline RETURNS & \begin{tabular}{l}
VMS usage: \\
type: \\
access: \\
mechanism:
\end{tabular} & complex_number F_floating complex write only by value \\
\hline & The complex F-floating nu & square root of comp mber. \\
\hline
\end{tabular}

\section*{ARGUMENTS complex-number}

VMS usage: complex_number
type: \(\quad\) F_floating complex
access: read only
mechanism: by reference
Complex number ( \(\mathrm{r}, \mathrm{i}\) ). The complex-number argument contains the address of this complex number. For MTH\$CSQRT, complex-number specifies an F -floating number.

DESCRIPTION The complex square root is computed as follows.
First, calculate ROOT and \(\mathbf{Q}\) using the following equations:
\[
\begin{gathered}
R O O T=S Q R T((A B S(r)+(C A B S(r, i)) / 2) \\
Q=i /(2 * R O O T)
\end{gathered}
\]

Then, the complex result is given as follows:
\begin{tabular}{lll}
\hline \(\mathbf{r}\) & \(\mathbf{i}\) & CSQRT((r,i)) \\
\hline\(\geq 0\) & Any & (ROOT,Q) \\
\(<0\) & \(\geq 0\) & (Q,ROOT) \\
\(<0\) & \(<0\) & (-Q,-ROOT) \\
\hline
\end{tabular}

The routine descriptions for the D - and G-floating point versions of this routine are listed alphabetically under MTH\$CxSQRT.

\section*{CONDITION VALUE SIGNALED}

SS\$_FLTOVF_F
SS\$_ROPRAND

Floating point overflow can occur.
Reserved operand. The MTH\$CSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{MTH\$CxSQRT Complex Square Root}

The Complex Square Root routine returns the complex square root of a complex number (r,i).

FORMAT
MTH\$CDSQRT complex-square-root,complex-number
MTH\$CGSQRT complex-square-root
,complex-number
Each of the above formats accepts as input one of the floating-point complex types.

\section*{RETURNS \\ None.}
\begin{tabular}{ll}
\hline ARGUMENTS & \begin{tabular}{l} 
complex-square-root \\
VMS usage: complex_number \\
type: \\
access: floating complex, G_floating complex \\
mechanism: by reference
\end{tabular} \\
& \begin{tabular}{l} 
Complex square root of the complex number specified by complex- \\
number. The complex square root routines that have D-floating complex \\
and G-floating complex input values write the complex square root into \\
complex-square-root. For MTH\$CDSQRT, complex-square-root
\end{tabular} \\
specifies a D-floating complex number. For MTH\$CGSQRT, complex- \\
square-root specifies a G-floating complex number. \\
complex-number \\
& VMS usage: complex_number \\
type: \\
access: refloating complex, G_floating complex \\
mechanism: by reference \\
Complex number (r,i). The complex-number argument contains the \\
address of this complex number. For MTH\$CDSQRT, complex-number \\
specifies a D-floating number. For MTH\$CGSQRT, complex-number \\
specifies a G-floating number.
\end{tabular}

DESCRIPTION The complex square root is computed as follows.
First, calculate ROOT and \(\mathbf{Q}\) using the following equations:
\[
\begin{gathered}
R O O T=S Q R T((A B S(r)+(C A B S(r, i)) / 2) \\
Q=i /(2 * R O O T)
\end{gathered}
\]

\section*{MTH\$CxSQRT}

Then, the complex result is given as follows:
\begin{tabular}{lll}
\hline \(\mathbf{r}\) & \(\mathbf{i}\) & \(\operatorname{CSQRT}(\mathrm{r}, \mathrm{i}))\) \\
\hline\(\geq 0\) & any & (ROOT,Q) \\
\(<0\) & \(\geq 0\) & \((Q, R O O T)\) \\
\(<0\) & \(<0\) & \((-Q,-\) ROOT \()\) \\
\hline
\end{tabular}

\section*{CONDITION \\ VALUE SIGNALED}

Floating point overflow can occur.
Reserved operand. The MTH\$CxSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{EXAMPLE}
```

C+
C This FORTRAN example forms the complex square
C root of a D-floating complex number using
C MTH$CDSQRT and the FORTRAN random number
C generator RAN.
C
C Declare Z and Z_NEW as complex values. MTHSCDSQRT
C will return the complex square root of
C Z: CALL MTH$CDSQRT(Z_NEW,Z).
C-
COMPLEX*16 Z,Z_NEW
COMPLEX*16 DCMPLX
INTEGER M
M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-
Z = DCMPLX(RAN (M),RAN(M))
C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-
TYPE *, " The complex number z is',z
TYPE *, , '
C+
C Compute the complex complex square root of }Z\mathrm{ .
C-
CALL MTH\$CDSQRT (Z_NEW, Z)
TYPE *,' The complex square root of',z,' is',z_NEW
END

```

\section*{MTH\$CxSQRT}

This FORTRAN example program demonstrates a procedure call to MTH\$CDSQRT. The output generated by this program is as follows:
```

The complex number z is (0.8535407185554504,0.2043401598930359)
The complex square root of (0.8535407185554504,0.2043401598930359) is
(0.9303763973040062,0.1098158554350485)

```

\section*{MTH\$CVT_x_x Convert One Double-Precision Value}

> The Convert One Double-Precision Value routines convert one doubleprecision value to the destination data type and return the result as a function value. MTH\$CCVT_D_G converts a \(D\)-floating value to \(G\)-floating and MTH\$CVT_G_D converts a G-floating value to a D-floating value.

\section*{FORMAT \\ MTH\$CVT_D_G floating-point-input-val MTH\$CVT_G_D floating-point-input-val}

\section*{RETURNS}
\begin{tabular}{ll} 
VMS usage: & floating_point \\
type: & G_floating, \(\mathbf{D}\) _floating \\
access: & write only \\
mechanism: & by value
\end{tabular}

The converted value. MTH\$CVT_D_G returns a G-floating value. MTH\$CVT_G_D returns a D-floating value.

\section*{ARGUMENT floating-point-input-val}

VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference
The input value to be converted. The floating-point-input-val argument is the address of this input value. For MTH\$CVT_D_G, the floating-point-input-val argument specifies a D-floating number. For MTH\$CVT_ G_D, the floating-point-input-val argument specifies a G-floating number.

\section*{DESCRIPTION}

These procedures are designed to function as hardware conversion instructions. They fault on reserved operands. If floating-point overflow is detected, an error is signaled. If floating-point underflow is detected and floating-point underflow is enabled, an error is signaled.

\section*{CONDITION}

\section*{VALUES} SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$CVT_x_x procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_FLOOVEMAT Floating-point overflow in Math Library.
MTH\$_FLOUNDMAT Floating-point underflow in Math Library.

\title{
MTH\$CVT_xA_xA \\ Convert an Array of Double-Precision Values
}

The Convert an Array of Double-Precision Values routines convert a contiguous array of double-precision values to the destination data type and return the results as an array. MTH\$CVT_DA_GA converts D-floating values to G-floating and MTH\$CVT_GA_DA converts G-floating values to D-floating.

\author{
MTH\$CVT_DA_GA floating-point-input-array ,floating-point-dest-array [,array-size] MTH\$CVT_GA_DA floating-point-input-array ,floating-point-dest-array \\ [,array-size]
}

\section*{RETURNS}

MTH\$CVT_DA_GA and MTH\$CVT_GA_DA return the address of the output array to the floating-point-dest-array argument.

\section*{ARGUMENTS}

\begin{abstract}
floating-point-input-array VMS usage: floating_point
type: D_floating, G_floating access: read only mechanism: by reference, array reference
Input array of values to be converted. The floating-point-input-array argument is the address of an array of floating-point numbers. For MTH\$CVT_DA_GA, floating-point-input-array specifies an array of D-floating numbers. For MTH\$CVT_GA_DA, floating-point-input-array specifies an array of a G-floating numbers.
\end{abstract}

\section*{floating-point-dest-array}

VMS usage: floating_point
type: \(\quad\) G_floating, D_floating
access: write only
mechanism: by reference, array reference
Output array of converted values. The floating-point-dest-array argument is the address of an array of floating-point numbers. For MTH\$CVT_DA_GA, floating-point-dest-array specifies an array of G-floating numbers. For MTH\$CVT_GA_DA, floating-point-dest-array specifies an array of \(D\)-floating numbers.

\section*{MTH\$CVT_xA_xA}

\section*{array-size}

VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference
Number of array elements to be converted. The default value is 1 . The array-size argument is the address of a longword containing this number of elements.

\section*{DESCRIPTION These procedures are designed to function as hardware conversion} instructions. They fault on reserved operands. If floating-point overflow is detected, an error is signaled. If floating-point underflow is detected and floating-point underflow is enabled, an error is signaled.

\section*{CONDITION} VALUES SIGNALED
\begin{tabular}{ll} 
SS\$_ROPRAND & \begin{tabular}{l} 
Reserved operand. The MTH\$CVT_XA_XA procedure \\
encountered a floating-point reserved operand due to \\
incorrect user input. A floating-point reserved operand \\
is a floating-point datum with a sign bit of 1 and a \\
biased exponent of zero. Floating-point reserved \\
operands are reserved for future use by DIGITAL.
\end{tabular} \\
MTH\$_FLOOVEMAT & Floating-point overflow in Math Library. \\
MTH\$_FLOUNDMAT & Floating-point underflow in Math Library.
\end{tabular}

\section*{MTH\$xEXP Exponential}

The Exponential routine returns the exponential of the input value.

\section*{FORMAT \\ MTH\$EXP floating-point-input-value \\ MTH\$DEXP floating-point-input-value \\ MTH\$GEXP floating-point-input-value}

Each of the above formats accepts as input one of the floating-point types.

\author{
jsb entries
}

MTH\$EXP_R4
MTH\$DEXP_R6
MTH\$GEXP_R6
Each of the above JSB entries accepts as input one of the floating-point types.

\section*{RETURNS}

VMS usage: floating_point
type: \(\quad\) F_floating, \(D_{-}\)floating, G_floating access: write only mechanism: by value
The exponential of floating-point-input-value. MTH\$EXP returns an F-floating number. MTH\$DEXP returns a D-floating number. MTH\$GEXP returns a G-floating number.

\section*{ARGUMENTS}

\section*{floating-point-input-value}

VMS usage: floating_point
type: \(\quad\) F_floating, \(D_{-}\)floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$EXP, floating-point-input-value specifies an F-floating number. For MTH\$DEXP, floating-point-input-value specifies a D-floating number. For MTH\$GEXP, floating-point-input-value specifies a G-floating number.

\section*{DESCRIPTION}

The exponential of \(x\) is computed as:
\begin{tabular}{ll}
\hline Value of \(\mathbf{x}\) & Value Returned \\
\hline\(X>c(z)\) & Overflow occurs \\
\(X \leq-c(z)\) & 0 \\
\(|X|<2^{-(f+1)}\) & 1 \\
Otherwise & \(2^{Y} * 2^{U} * 2^{W}\) \\
\hline
\end{tabular}
where: \(Y=\operatorname{INTEGER}(x * \ln 2(E)) V=F R A C(x * \ln 2(E)) * 16\) \(U=I N T E G E R(V) / 16 W=F R A C(V) / 162^{W}=\) polynomial approximation of degree 4,8 , or 8 for \(z=F, D\), or \(G\).

See also the section on the hyperbolic cosine for definitions of \(f\) and \(c(z)\).
The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HEXP.

VALUES SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

MTH\$_FLOUNDMAT

Reserved operand. The MTH\$xEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: floating-point-input-value is greater than yyy; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector.
The values of yyy are approximately:
\[
\begin{aligned}
& \text { MTH\$EXP-88.029 } \\
& \text { MTH\$DEXP-88.029 } \\
& \text { MTH\$GEXP-709.089 }
\end{aligned}
\]

Floating-point underflow in Math Library: floating-point-input-value is less than or equal to yyy and the caller (CALL or JSB) has set hardware floating-point underflow enable. The result is set to 0.0 . If the caller has not enabled floating-point underflow (the default), a result of 0.0 is returned but no error is signaled.
The values of yyy are approximately:
MTH\$EXP— - 88.722
MTHSDEXP- - 88.722
MTH\$GEXP— - 709.774

\section*{EXAMPLE}
```

IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING_POINT.
*

* Calls MTH\$EXP using a Floating Point data type.
* Calls MTH\$DEXP using a Double Floating Point data type.
* 

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
O1 FLOAT PT COMP-1.
0 1 ~ A N S W E R ~ F ~ C O M P - 1 . ~
01 DOUBLE_PT COMP-2.
0 1 ~ A N S W E R ~ D ~ C O M P - 2 . ~
PROCEDURE DIVISION.
PO.
MOVE 12.34 TO FLOAT PT.
MOVE 3.456 TO DOUBLE_PT.
CALL "MTH$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_E.
    DISPLAY " MTH$EXP of ", FLOAT_PT CONVERSION, " is ",
ANSWER F CONVERSION.
CALL "MTH$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
    DISPLAY " MTH$DEXP of ", DOUBLE_PT CONVERSION, " is ",
ANSWER_D CONVERSION .
STOP RUN.

```

This sample program demonstrates calls to MTH\$EXP and MTH\$DEXP from COBOL.

The output generated by this program is as follows:
```

MTH$EXP of 1.234000E+01 is 2.286620E+05
MTH$DEXP of 3.456000000000000E+00 is
3.168996280537917E+01

```

\title{
MTH\$HACOS Arc Cosine of Angle Expressed in Radians (H-floating Value)
}

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians (H-floating Value) routine returns that angle (in radians) in H-floating-point precision.

\section*{FORMAT MTH\$HACOS \(h\)-radians, cosine}
jsb entries
MTH\$HACOS R8

RETURNS
None.

\section*{ARGUMENTS \(h\)-radians}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in radians) whose cosine is specified by cosine. The h-radians argument is the address of an H -floating number that is this angle. MTH\$HACOS writes the address of the angle into \(\mathbf{h}\)-radians.

\section*{cosine}

VMS usage: floating_point
type: H_floating access: read only mechanism: by reference
The cosine of the angle whose value (in radians) is to be returned. The cosine argument is the address of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1 . For MTH\$HACOS, cosine specifies an H-floating number.

\section*{DESCRIPTION}

The angle in radians whose cosine is X is computed as:
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
Value of \\
Cosine
\end{tabular} & Value Returned \\
\hline 0 & \(\pi / 2\) \\
1 & 0 \\
-1 & \(\pi\) \\
\(0<X<1\) & \begin{tabular}{l}
\(z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)\), where zATAN and zSQRT are the \\
Math Library arc tangent and square root routines, respectively, of \\
the appropriate data type
\end{tabular} \\
\(-1<X<0\) & \(z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)+\pi\) \\
\(1<|X|\) & The error \(M T H \$\) INVARGMAT is signaled
\end{tabular}

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xACOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floatingpoint reserved operand unless you have written a condition handler to change CHFSL_MCH_SAVR0/R1.

\section*{MTH\$HACOSD Arc Cosine of Angle Expressed in Degrees (H-Floating Value)}

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees (H-Floating Value) routine returns that angle (in degrees) as an H -floating value.

\section*{FORMAT MTH\$HACOSD \(n\)-degrees, cosine}
jsb entries MTH\$HACOSD_R8

\section*{RETURNS None.}

\section*{ARGUMENTS}

\section*{h-degrees}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in degrees) whose cosine is specified by cosine. The h-degrees argument is the address of an H -floating number that is this angle. MTH \(\$ H A C O S D\) writes the address of the angle into \(h\)-degrees.

\section*{cosine}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Cosine of the angle whose value (in degrees) is to be returned. The cosine argument is the address of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1 . For MTH\$HACOSD, cosine specifies an H -floating number.

\section*{DESCRIPTION The angle in degrees whose cosine is X is computed as:}
\begin{tabular}{ll}
\begin{tabular}{l} 
Value of \\
Cosine
\end{tabular} & Angle Returned \\
\hline 0 & 90 \\
1 & 0 \\
-1 & 180 \\
\(0<X<1\) & \begin{tabular}{l}
\(z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)\), where zATAND and zSQRT are the \\
Math Library arc tangent and square root routines, respectively, of \\
the appropriate data type
\end{tabular} \\
\(-1<X<0\) & \(z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)+180\) \\
\(1<|X|\) & The error MTH\$_INVARGMAT is signaled
\end{tabular}

\section*{CONDITION VALUES SIGNALED}

MTH\$_INVARGMAT

Reserved operand. The MTH\$xACOSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floatingpoint reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

\section*{MTH\$HASIN Arc Sine in Radians (H-floating Value)}

Given the sine of an angle, the Arc Sine in Radians (H-floating Value) routine returns that angle (in radians) as an H -floating value.

\section*{FORMAT \\ MTH\$HASIN h-radians, sine}
jsb entries MTH\$HASIN_R8

RETURNS None.

\section*{ARGUMENTS \(\boldsymbol{h}\)-radians}

VMS usage: floating_point
type: \(\quad\) H_floating access: write only mechanism: by reference
Angle (in radians) whose sine is specified by sine. The h-radians argument is the address of an H -floating number that is this angle. MTH\$HASIN writes the address of the angle into h-radians.

\section*{sine}

VMS usage: floating_point
type: \(\quad\) H_floating
access: read only
mechanism: by reference
The sine of the angle whose value (in radians) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1. For MTH\$HASIN, sine specifies an H -floating number.

\section*{DESCRIPTION}

The angle in radians whose sine is X is computed as:
\begin{tabular}{ll}
\hline Value of Sine & Angle Returned \\
\hline 0 & 0 \\
1 & \(\pi / 2\) \\
-1 & \(-\pi / 2\) \\
\(0<|X|<1\) & \begin{tabular}{l}
\(z A T A N\left(X / z S Q R T\left(1-X^{2}\right)\right)\), where zATAN and zSQRT are the \\
Math Library arc tangent and square root routines, respectively, of \\
the appropriate data type
\end{tabular} \\
\(1<|X|\) & The error MTH\$_INVARGMAT is signaled
\end{tabular}

\section*{CONDITION}

VALUES
SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xASIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floatingpoint reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

\title{
MTH\$HASIND Arc Sine in Degrees (H-Floating Value)
}

Given the sine of an angle, the Arc Sine in Degrees (H-Floating Value) routine returns that angle (in degrees) as an H -floating value.

\section*{FORMAT \\ MTH\$HASIND h-degrees, sine}
jsb entries
MTH\$HASIND_R8

RETURNS None.

\section*{ARGUMENTS h-degrees}

VMS usage: floating_point
type: H_floating access: write only mechanism: by reference
Angle (in degrees) whose sine is specified by sine. The \(\mathbf{h}\)-degrees argument is the address of an H -floating number that is this angle. MTH\$HASIND writes the address of the angle into \(\mathbf{h}\)-degrees.

\section*{sine}

VMS usage: floating_point
type: H_floating access: read only
mechanism: by reference
Sine of the angle whose value (in degrees) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1 . For MTH\$HASIND, sine specifies an H -floating number.

\section*{DESCRIPTION The angle in degrees whose sine is X is computed as:}
\begin{tabular}{ll}
\hline Value of Sine & Value Returned \\
\hline 0 & 0 \\
1 & 90 \\
-1 & -90 \\
\(0<|X|<1\) & \begin{tabular}{l}
\(z A T A N D\left(X / z S Q R T\left(1-X^{2}\right)\right)\), where zATAND and zSQRT are the \\
Math Library arc tangent and square root routines, respectively, of \\
the appropriate data type
\end{tabular} \\
\(1<|X|\) & The error MTH\$_INVARGMAT is signaled
\end{tabular}

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xASIND routine encountered a floating point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL. Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floatingpoint reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

\section*{MTH\$HATAN Arc Tangent in Radians (H-floating Value)}

Given the tangent of an angle, the Arc Tangent in Radians (H-floating Value) routine returns that angle (in radians) as an H -floating value.

\section*{FORMAT \\ jsb entries \\ MTH\$HATAN_R8}

\section*{RETURNS \\ None.}

\section*{ARGUMENTS h-radians}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in radians) whose tangent is specified by tangent. The h-radians argument is the address of an H -floating number that is this angle.
MTH\$HATAN writes the address of the angle into \(\mathbf{h}\)-radians.

\section*{tangent}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in radians) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$HATAN, tangent specifies an H -floating number.

DESCRIPTION In radians, the computation of the arc tangent function is based on the following identities:
\[
\begin{aligned}
& \arctan (X)=X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots \\
& \arctan (X)=X+X * Q\left(X^{2}\right), \\
& \quad \text { where } Q(Y)=-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=X * P\left(X^{2}\right), \\
& \quad \text { where } P(Y)=1-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=\pi / 2-\arctan (1 / X) \\
& \arctan (X)=\arctan (A)+\arctan ((X-A) /(1+A * X)) \\
& \text { for any real A }
\end{aligned}
\]

\section*{MTH\$HATAN}

The angle in radians whose tangent is \(X\) is computed as:
\begin{tabular}{ll}
\hline Value of \(X\) & Angle Returned \\
\hline \(0 \leq X \leq 3 / 32\) & \(X+X * Q\left(X^{2}\right)\) \\
\(3 / 32<X \leq 11\) & \(A T A N(A)+V *\left(P\left(V^{2}\right)\right)\), where A and ATAN(A) are chosen \\
& by table lookup and \(V=(X-A) /(1+A * X)\) \\
\(11<X\) & \(\pi / 2-W *\left(P\left(W^{2}\right)\right)\) where \(W=1 / X\) \\
\(X<0\) & \(-z A T A N(|X|)\) \\
\hline
\end{tabular}

CONDITION
VALUE SIGNALED

Reserved operand. The MTH\$xATAN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{MTH\$HATAND Arc Tangent in Degrees (H-floating Value)}

Given the tangent of an angle, the Arc Tangent in Degrees ( H -floating Value) routine returns that angle (in degrees) as an H -floating point value.

\section*{FORMAT}
jsb entries

RETURNS
None.

\section*{ARGUMENTS} identities:
\[
\begin{aligned}
& \arctan (X)=180 / \pi *\left(X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots\right) \\
& \arctan (X)=64 * X+X * Q\left(X^{2}\right), \\
& \quad \text { where } Q(Y)=180 / \pi *[(1-64 * \pi / 180)-Y / 3+ \\
& \left.Y^{2} / 5-Y^{3} / 7+Y^{4} / 9 \ldots\right] \\
& \arctan (X)=X * P\left(X^{2}\right), \\
& \text { where } P(Y)=180 / \pi *\left[1-Y / 3+Y^{2} / 5-Y^{3} / 7+\right. \\
& \left.Y^{4} / 9 \ldots\right] \\
& \arctan (X)=90-\arctan (1 / X) \\
& \arctan (X)=\arctan (A)+\arctan ((X-A) /(1+A * X))
\end{aligned}
\]

The angle in degrees whose tangent is \(X\) is computed as:
\begin{tabular}{ll}
\hline Tangent & Angle Returned \\
\hline\(X \leq 3 / 32\) & \(64 * X+X * Q\left(X^{2}\right)\) \\
\(3 / 32<X \leq 11\) & \begin{tabular}{l} 
ATAND(A)+V*P( \(\left.V^{2}\right)\), where A and ATAND(A) are chosen \\
by table lookup and \(V=(X-A) /(1+A * X)\) \\
\(11<X\)
\end{tabular} \\
\(X<0-W *\left(P\left(W^{2}\right)\right)\), where \(W=1 / X\) \\
\(X<0\) & \(-z A T A N D(|X|)\)
\end{tabular}

Reserved operand. The MTH\$xATAND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{MTH\$HATAN2 Arc Tangent in Radians (H-floating Value) with Two Arguments}

Given sine and cosine, the Arc Tangent in Radians (H-floating Value) with Two Arguments routine returns the angle (in radians) as an H -floating value whose tangent is given by the quotient of sine and cosine, (sine/cosine).

\section*{FORMAT \\ MTH\$HATAN2 \(h\)-radians, sine, cosine}

\section*{RETURNS \\ None.}
\begin{tabular}{ll}
\hline ARGUMENTS \(\quad\)\begin{tabular}{l} 
h-radians \\
VMS usage: floating_point \\
type: \(\quad\) H_floating \\
access: write only
\end{tabular} \\
mechanism: by reference \\
Angle (in radians) whose tangent is specified by (sine/cosine). The \\
h-radians argument is the address of an H-floating number that is this \\
angle. MTH\$HATAN2 writes the address of the angle into h-radians. \\
sine \\
VMS usage: floating_point \\
type: \\
access: refloating \\
mechanism: read only reference \\
Dividend. The sine argument is the address of a floating-point number \\
that is this dividend. For MTH\$HATAN2, sine specifies an H-floating \\
number.
\end{tabular}

\section*{cosine}

VMS usage: floating_point
type: \(\quad\) H_floating
access: read only
mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$HATAN2, cosine specifies an H-floating number.

DESCRIPTION The angle in radians whose tangent is \(Y / X\) is computed as follows, where \(f\) is defined in the description of MTH\$zCOSH.
\begin{tabular}{ll}
\hline Value of Input Arguments & Angle Returned \\
\hline\(X=0\) or \(Y / X>2^{(f+1)}\) & \(\pi / 2 *(\operatorname{sign} Y)\) \\
\(X>0\) and \(Y / X \leq 2^{(f+1)}\) & \(z A T A N(Y / X)\) \\
\(X<0\) and \(Y / X \leq 2^{(f+1)}\) & \(\pi *(\operatorname{sign} Y)+z A T A N(Y / X)\) \\
\hline
\end{tabular}

\section*{CONDITION}

VALUES
SIGNALED
```

SS\$_ROPRAND

```

MTH\$_INVARGMAT

Reserved operand. The MTH\$HATAN2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. Both cosine and sine are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVR0/R1.

\section*{MTH\$HATAND2 Arc Tangent in Degrees (H-floating Value) with Two Arguments}

Given sine and cosine, MTH\$xHTAND2 returns the angle (in degrees) whose tangent is given by the quotient of sine and cosine, (sine/cosine).

\section*{FORMAT \\ MTH\$HATAND2 \(h\)-degrees, sine , cosine}

\section*{RETURNS \\ None.}

\section*{ARGUMENTS h-degrees}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in degrees) whose tangent is specified by (sine/cosine). The
\(\mathbf{h}\)-degrees argument is the address of an H -floating number that is this angle. MTH\$HATAND2 writes the address of the angle into \(\mathbf{h}\)-degrees.

\section*{sine}

VMS usage: floating_point
type: \(\quad H_{\text {_floating }}\)
access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$HATAND2, sine specifies an H-floating number.

\section*{cosine}

VMS usage: floating_point
type: \(\quad \quad \quad \mathrm{H}\) floating
access: read only
mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$HATAND2, cosine specifies an H-floating number.

DESCRIPTION The angle in degrees whose tangent is \(Y / X\) is computed below. The value of \(f\) is defined in the description of MTH\$zCOSH.
\begin{tabular}{ll}
\hline Value of Input Arguments & Angle Returned \\
\hline\(X=0\) or \(Y / X>2^{(f+1)}\) & \(90 *(\operatorname{sign} Y)\) \\
\(X>0\) and \(Y / X \leq 2^{(f+1)}\) & \(z A T A N D(Y / X)\) \\
\(X<0\) and \(Y / X \leq 2^{(f+1)}\) & \(180 *(\operatorname{sign} Y)+z A T A N D(Y / X)\) \\
\hline
\end{tabular}

CONDITION
VALUES SIGNALED

SS\$_ROPRAND Reserved operand. The MTH\$HATAND2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_INVARGMAT

Invalid argument. Both cosine and sine are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

\section*{MTH\$HATANH Hyperbolic Arc Tangent (H-floating Value)}

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent (H-floating Value) routine returns the hyperbolic arc tangent (as an H -floating value) of that angle.

\section*{FORMAT}

MTH\$HATANH \(h\)-atanh, hyperbolic-tangent

\section*{RETURNS None.}

\section*{ARGUMENTS \(h\)-atanh}

VMS usage: floating_point
type: H_floating access: write only mechanism: by reference
Hyperbolic arc tangent of the hyperbolic tangent specified by hyperbolictangent. The \(\mathbf{h}\)-atanh argument is the address of an H -floating number that is this hyperbolic arc tangent. MTH\$HATANH writes the address of the hyperbolic arc tangent into \(\mathbf{h}\)-atanh.

\section*{hyperbolic-tangent}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the address of a floating-point number that is this hyperbolic tangent. For MTH\$HATANH, hyperbolic-tangent specifies an H-floating number.

DESCRIPTION The hyperbolic arc tangent function is computed as follows:
\begin{tabular}{ll}
\hline Value of x & Value Returned \\
\hline\(|X|<1\) & \(z A T A N H(X)=z L O G((X+1) /(X-1)) / 2\) \\
\(|X| \geq 1\) & An invalid argument is signaled \\
\hline
\end{tabular}

CONDITION
VALUES
SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xATANH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a fldating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument: \(|X| \geq 1\). LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHFSL_MCH_ SAVR0/R1.

\section*{MTH\$HCOS Cosine of Angle Expressed in Radians (H-floating Value)}

The Cosine of Angle Expressed in Radians (H-floating Value) routine returns the cosine of a given angle (in radians) as an H -floating value.

\section*{FORMAT}

MTH\$HCOS \(h\)-cosine, angle-in-radians
jsb entries
MTH\$HCOS_R5

\section*{RETURNS \\ None.}

\section*{ARGUMENTS h-cosine}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Cosine of the angle specified by angle-in-radians. The h-cosine argument is the address of an H -floating number that is this cosine. MTH\$HCOS writes the address of the cosine into h-cosine.

\section*{angle-in-radians}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The angle in radians. The angle-in-radians argument is the address of a floating-point number. For MTH \(\$\) HCOS, angle-in-radians specifies an H -floating number.

\section*{DESCRIPTION}

See the MTH\$xSINCOS routine for the algorithm used to compute the cosine.

Reserved operand. The MTH MHCOS procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{MTH\$HCOSD Cosine of Angle Expressed in Degrees (H-floating Value)}

The Cosine of Angle Expressed in Degrees (H-floating Value) routine returns the cosine of a given angle (in degrees) as an H -floating value.

\section*{FORMAT}

MTH\$HCOSD \(h\)-cosine, angle-in-degrees
jsb entries
MTH\$HCOSD_R5
RETURNS None.

\section*{ARGUMENTS}

\section*{h-cosine}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Cosine of the angle specified by angle-in-degrees. The \(\mathbf{h}\)-cosine argument is the address of an H -floating number that is this cosine. MTH\$HCOSD writes this cosine into h-cosine.

\section*{angle-in-degrees}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number. For MTH\$HCOSD, angle-in-degrees specifies an H -floating number.

\section*{DESCRIPTION}

See the MTH\$SINCOSD routine for the algorithm used to compute the cosine.

Reserved operand. The MTH\$HCOSD procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\title{
MTH\$HCOSH Hyperbolic Cosine (H-floating Value)
}

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input value as an H -floating value.

MTH\$HCOSH \(h\)-cosh, floating-point-input-value

\section*{RETURNS \\ None.}

\section*{ARGUMENTS}
h-cosh
VMS usage: floating_point
type: \(\quad\) H_floating
access: write only
mechanism: by reference
Hyperbolic cosine of the input value specified by floating-point-inputvalue. The \(\mathbf{h}\)-cosh argument is the address of an H -floating number that is this hyperbolic cosine. MTH\$HCOSH writes the address of the hyperbolic cosine into h-cosh.

\section*{floating-point-input-value}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of this input value. For MTH\$HCOSH, floating-point-inputvalue specifies an H -floating number.

Computation of the hyperbolic cosine depends on the magnitude of the input argument. The range of the function is partitioned using four data-type-dependent constants: \(\mathrm{a}(\mathrm{z}), \mathrm{b}(\mathrm{z})\), and \(\mathrm{c}(\mathrm{z})\). The subscript \(z\) indicates the data type. The constants depend on the number of exponent bits ( \(e\) ) and the number of fraction bits \((f)\) associated with the data type ( \(z\) ).
The values of \(e\) and \(f\) are as follows:
\[
\begin{aligned}
& e=15 \\
& f=113
\end{aligned}
\]

The values of the constants in terms of \(e\) and \(f\) are:
\begin{tabular}{ll}
\hline Variable & Value \\
\hline \(\mathrm{a}(\mathrm{z})\) & \(2^{-f / 2}\) \\
\(\mathrm{~b}(\mathrm{z})\) & \((f+1) / 2 * \ln (2)\) \\
\(\mathrm{c}(\mathrm{z})\) & \(2^{e-1} * \ln (2)\) \\
\hline
\end{tabular}

Based on the above definitions, \(\mathrm{zCOSH}(\mathrm{X})\) is computed as follows:
\begin{tabular}{ll}
\hline Value of X & Value Returned \\
\hline\(|X|<a(z)\) & 1 \\
\(a(z) \leq|X|<.25\) & Computed using a power series expansion in \(|X|^{2}\) \\
\(.25 \leq|X|<b(z)\) & \((z E X P(|X|)+1 / z E X P(|X|)) / 2\) \\
\(b(z) \leq|X|<c(z)\) & \(z E X P(|X|) / 2\) \\
\(c(z) \leq|X|\) & Overflow occurs \\
\hline
\end{tabular}

Reserved operand. The MTH\$HCOSH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_FLOOVEMAT

Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than about yyy, LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand - 0.0 unless a condition handler changes the signal mechanism vector. The value of yyy is 11356.523 .

\section*{MTH\$HEXP Exponential (H-floating Value)}

The Exponential routine returns the exponential of the input value as an H -floating value.

\section*{FORMAT \\ MTH\$HEXP h-exp,floating-point-input-value}
jsb entries MTH\$HEXP_R6

RETURNS None.

\section*{ARGUMENTS \(h\)-exp}

VMS usage: floating_point
type: \(\quad\) H_floating
access: write only
mechanism: by reference
Exponential of the input value specified by floating-point-input-value.
The h-exp argument is the address of an H-floating number that is this exponential. MTH\$HEXP writes the address of the exponential into h-exp.

\section*{floating-point-input-value}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$HEXP, floating-point-input-value specifies an H -floating number.

\section*{DESCRIPTION The exponential of \(x\) is computed as:}
\begin{tabular}{ll}
\hline Value of \(\mathbf{x}\) & Value Returned \\
\hline\(x>c(z)\) & Overflow occurs \\
\(x \leq-c(z)\) & 0 \\
\(|x|<2^{-(f+1)}\) & 1 \\
Otherwise & \(2^{Y} * 2^{U} * 2^{W}\) \\
\hline
\end{tabular}
where: \(Y=\operatorname{INTEGER}(x * \ln 2(E)) V=F R A C(x * \ln 2(E)) * 16\) \(U=\operatorname{INTEGER(V)/16W}=F R A C(V) / 162^{W}=\) polynomial approximation of degree 14 for \(\mathrm{z}=\mathrm{H}\).
See also the section on the hyperbolic cosine for definitions of \(f\) and \(c(z)\).

CONDITION VALUES SIGNALED

MTH\$_FLOOVEMAT

MTH\$_FLOUNDMAT

Reserved operand. The MTH\$xEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: floating-point-input-value is greater than yyy; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector. The value of \(y y y\) is approximately 11355.830 for MTH\$HEXP.
Floating-point underflow in Math Library: floating-point-input-value is less than or equal to yyy and the caller (CALL or JSB) has set hardware floating-point underflow enable. The result is set to 0.0 . If the caller has not enabled floating-point underflow (the default), a result of 0.0 is returned but no error is signaled. The value of yyy is approximately -11356.523 for MTH\$HEXP.

\section*{MTH\$HLOG Natural Logarithm (H-floating Value)}

The Natural Logarithm (H-floating Value) routine returns the natural (base e) logarithm of the input argument as an H -floating value.

\section*{FORMAT}
jsb entries
MTH\$HLOG \(h\)-natlog, floating-point-input-value

MTH\$HLOG_R8

\section*{RETURNS}

None.

\section*{ARGUMENTS \(h\)-natlog}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Natural logarithm of floating-point-input-value. The h-natlog argument is the address of an H -floating number that is this natural logarithm. MTH\$HLOG writes the address of this natural logarithm into \(h\)-natlog.

\section*{floating-point-input-value}

VMS usage: floating_point
type: \(\quad\) H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$HLOG, floating-point-input-value specifies an H -floating number.

\section*{DESCRIPTION Computation of the natural logarithm routine is based on the following:}
\(1 \quad \ln (X * Y)=\ln (X)+\ln (Y)\)
\(2 \ln (1+X)=X-X^{2} / 2+X^{3} / 3-X^{4} / 4 \ldots\)
for \(|\mathrm{X}|<1\)
\(3 \ln (X)=\ln (A)+2 *\left(V+V^{3} / 3+V^{5} / 5+V^{7} / 7 \ldots\right)\) where \(V=(X-A) /(X+A), A>0\), and \(p(y)=2 *\left(1+y / 3+y^{2} / 5 \ldots\right)\)
For \(x=2^{n} * f\), where n is an integer and f is in the interval of 0.5 to 1 , define the following quantities:
\[
\begin{gathered}
\text { If } n \geq 1, \text { then } N=n-1 \text { and } F=2 f \\
\text { If } n \leq 0, \text { then } N=n \text { and } F=f
\end{gathered}
\]

From (1) above it follows that:
\(4 \quad \ln (X)=N * \ln (2)+\ln (F)\)
Based on the above relationships, zLOG is computed as follows:
1 If \(|F-1|<2^{-5}\),
\(z L O G(X)=N * z L O G(2)+W+W * p(W)\), where \(\mathrm{W}=\mathrm{F}-1\).

2 Otherwise,
\(z L O G(X)=N * z L O G(2)+z L O G(A)+V * p\left(V^{2}\right)\), where \(V=(F-A) /(F+A)\) and A and zLOG(A) are obtained by table look up.

\section*{CONDITION VALUES SIGNALED}

SS\$_ROPRAND

Reserved operand. The MTH\$HLOG procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_LOGZERNEG

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0 . LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVR0/R1.

\section*{MTH\$HLOG2 Base 2 Logarithm (H-floating Value)}

The Base 2 Logarithm (H-floating Value) routine returns the base 2 logarithm of the input value specified by floating-point-input-value as an H -floating value.

FORMAT MTH\$HLOG2 \(h\)-log2,floating-point-input-value

\section*{RETURNS None.}

\section*{ARGUMENTS h-log2}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Base 2 logarithm of floating-point-input-value. The h-log2 argument is the address of an H -floating number that is this base 2 logarithm. MTH\$HLOG2 writes the address of this logarithm into \(\mathbf{h}\)-log2.

\section*{floating-point-input-value}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this input value. For MTH\$HLOG2, floating-point-input-value specifies an H-floating number.

\section*{DESCRIPTION}

The base 2 logarithm function is computed as follows:
\[
z \operatorname{LOG} 2(X)=z \operatorname{LOG} 2(E) * z \operatorname{LOG}(X)
\]

\section*{CONDITION VALUES SIGNALED}

Reserved operand. The MTH\$HLOG2 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$_LOGZERNEG

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.
MTH\$HLOG10 Common Logarithm (H-floating Value)
The Common Logarithm (H-floating Value) routine returns the common (base 10) logarithm of the input argument as an H -floating value.
FORMAT MTH\$HLOG10 \(h\)-log10,floating-point-input-value
jsb entries MTH\$HLOG10 ..... R8
RETURNS None.
ARGUMENTS h-log10VMS usage: floating_pointtype: H_floatingaccess: write onlymechanism: by referenceCommon logarithm of the input value specified by floating-point-input-value. The \(\mathbf{h}\)-log10 argument is the address of an H -floating numberthat is this common logarithm. MTH\$HLOG10 writes the address of thecommon logarithm into \(\mathbf{h}\)-log10.
floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is theaddress of a floating-point number. For MTH\$HLOG10, floating-point-input-value specifies an H -floating number.

DESCRIPTION The common logarithm function is computed as follows:
\[
z L O G 10(X)=z \operatorname{LOG} 10(E) * z L O G(X)
\]

\section*{MTH\$HLOG10}

\section*{CONDITION VALUES SIGNALED \\ SS\$ ROPRAND}

MTH\$_LOGZERNEG

Reserved operand. The MTH\$HLOG10 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB \(\$\) SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVR0/R1.

\section*{MTH\$HSIN Sine of Angle Expressed in Radians (H-floating Value)}

The Sine of Angle Expressed in Radians (H-floating Value) routine returns the sine of a given angle (in radians) as an H -floating value.

\section*{FORMAT}
jsb entries

\section*{MTH\$HSIN_R5}

RETURNS
None.

\section*{ARGUMENTS \(h\)-sine}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
The sine of the angle specified by angle-in-radians. The \(\mathbf{h}\)-sine argument is the address of an H-floating number that is this sine. MTH\$HSIN writes the address of the sine into \(\mathbf{h}\)-sine.

\section*{angle-in-radians}

VMS usage: floating_point
type: \(\quad\) H_floating access: read only mechanism: by reference
Angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$HSIN, angle-inradians specifies an H -floating number.

DESCRIPTION See the MTH\$SINCOS routine for the algorithm used to compute this sine.

\section*{CONDITION \\ VALUE SIGNALED}

Reserved operand. The MTH\$HSIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{MTH\$HSIND Sine of Angle Expressed in Degrees (H-floating Value)}

The Sine of Angle Expressed in Degrees (H-floating Value) routine returns the sine of a given angle (in degrees) as an H -floating value.

\section*{FORMAT \\ MTH\$HSIND \(h\)-sine, angle-in-degrees}
jsb entries
MTH\$HSIND_R5

RETURNS
None.

\section*{ARGUMENTS \(h\)-sine}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Sine of the angle specified by angle-in-degrees. The \(\mathbf{h}\)-sine argument is the address of an H-floating number that is this sine. MTH\$HSIND writes the address of the angle into \(\mathbf{h}\)-sine.

\section*{angle-in-degrees}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number that is this angle. For MTH\$HSIND, angle-indegrees specifies an H -floating number.

DESCRIPTION See MTH\$SINCOSD for the algorithm used to compute the sine.

\section*{CONDITION}

VALUES
SIGNALED

SS\$_ROPRAND

MTH\$_FLOUNDMAT

Reserved operand. The MTH\$HSIND procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point underflow in Math Library. The absolute value of the input angle is less than \(180 / \pi * 2^{-m}\) (where \(\mathrm{m}=16,384\) for H -floating).

\section*{MTH\$HSINH Hyperbolic Sine (H-floating Value)}

The Hyperbolic Sine ( H -floating Value) routine returns the hyperbolic sine of the input value specified by floating-point-input-value as an H -floating value.

\section*{FORMAT \\ MTH\$HSINH \(h\)-sinh,floating-point-input-value}

\section*{RETURNS None.}

\section*{ARGUMENTS \(\boldsymbol{h}\)-sinh}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Hyperbolic sine of the input value specified by floating-point-inputvalue. The \(\mathbf{h}\)-sinh argument is the address of an H -floating number that is this hyperbolic sine. MTH\$HSINH writes the address of the hyperbolic sine into \(h\)-sinh.

\section*{floating-point-input-value}

VMS usage: floating_point
type: \(\quad\) H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$HSINH, floating-point-input-value specifies an H -floating number.

DESCRIPTION Computation of the hyperbolic sine function depends on the magnitude of the input argument. The range of the function is partitioned using four data type dependent constants: \(\mathrm{a}(\mathrm{z}), \mathrm{b}(\mathrm{z})\), and \(\mathrm{c}(\mathrm{z})\). The subscript \(z\) indicates the data type. The constants depend on the number of exponent bits ( \(e\) ) and the number of fraction bits ( \(f\) ) associated with the data type (z).

The values of \(e\) and \(f\) are as follows:
\[
\begin{aligned}
e & =15 \\
f & =113
\end{aligned}
\]

The values of the constants in terms of \(e\) and \(f\) are:
\begin{tabular}{ll}
\hline Variable & Value \\
\hline \(\mathrm{a}(\mathrm{z})\) & \(2^{(-f / 2)}\) \\
\(\mathrm{b}(\mathrm{z})\) & \((f+1) / 2 * \ln (2)\) \\
\(\mathrm{c}(\mathrm{z})\) & \(2^{e-1} * \ln (2)\) \\
\hline
\end{tabular}

Based on the above definitions, \(\operatorname{zSINH}(\mathrm{X})\) is computed as follows:
\begin{tabular}{ll}
\hline Value of X & Value Returned \\
\hline\(|X|<a(z)\) & \(X\) \\
\(a(z) \leq|X|<1.0\) & \begin{tabular}{l} 
zSINH \((X)\) is computed using a power series \\
\\
expansion in \(|X|^{2}\)
\end{tabular} \\
\(1.0 \leq|X|<b(z)\) & \((z E X P(X)-z E X P(-X)) / 2\) \\
\(b(z) \leq|X|<c(z)\) & \(S I G N(X) * z E X P(|X|) / 2\) \\
\(c(z) \leq|X|\) & Overflow occurs \\
\hline
\end{tabular}

CONDITION

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$HSINH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than yyy. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVR0/R1. The value of yyy is approximately 11356.523 .

\section*{MTH\$HSQRT Square Root (H-floating Value)}

The Square Root (H-floating Value) routine returns the square root of the input value floating-point-input-value as an H -floating value.

\section*{FORMAT}

MTH\$HSQRT
h-sqrt ,floating-point-input-value
jsb entries
MTH\$HSQRT_R8

RETURNS
None.

\section*{ARGUMENTS \(\boldsymbol{h}\)-sqrt}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Square root of the input value specified by floating-point-input-value.
The \(\mathbf{h}\)-sqrt argument is the address of an H -floating number that is this square root. MTH\$HSQRT writes the address of the square root into h-sqrt.

\section*{floating-point-input-value}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$HSQRT, floating-point-input-value specifies an H -floating number.

DESCRIPTION The square root of \(X\) is computed as follows:
If \(X<0\), an error is signaled.
Let \(X=2^{K} * F\)
where:
K is the exponential part of the floating-point data
\(F\) is the fractional part of the floating-point data
If \(K\) is even:
\[
\begin{aligned}
& X=2^{(2 * P)} * F, \\
& z S Q R T(X)=2^{P} * z S Q R T(F), \\
& 1 / 2 \leq F<1 \text {, where } \mathrm{P}=\mathrm{K} / 2
\end{aligned}
\]

If K is odd:
\[
\begin{aligned}
& X=2^{(2 * P+1)} * F=2^{(2 * P+2)} *(F / 2), \\
& z S Q R T(X)=2^{(P+1)} * z S Q R T(F / 2), \\
& 1 / 4 \leq F / 2<1 / 2, \text { where } \mathrm{p}=(\mathrm{K}-1) / 2
\end{aligned}
\]

Let \(F^{\prime}=A * F+B\), when \(K\) is even:
A = 0.95F6198 (hex)
\(\mathrm{B}=0.6 \mathrm{BA} 5918\) (hex)
Let \(F^{\prime}=A *(F / 2)+B\), when K is odd:
\(A=0 . D 413 C C C\) (hex)
\(B=0.4 \mathrm{C} 1 \mathrm{E} 248\) (hex)
Let \(K^{\prime}=P\), when \(K\) is even
Let \(K^{\prime}=P+1\), when \(K\) is odd
Let \(Y[0]=2^{K^{\prime}} * F^{\prime}\) be a straight line approximation within the given interval using coefficients A and B which minimize the absolute error at the midpoint and endpoint.

Starting with Y[0], n Newton-Raphson iterations are performed:
\[
Y[n+1]=1 / 2 *(Y[n]+X / Y[n])
\]
where \(\mathrm{n}=5\) for H-floating.

\section*{CONDITION \\ VALUES \\ SIGNALED}

MTH\$_SQUROONEG

Reserved operand. The MTH\$HSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Square root of negative number. Argument floating-point-input-value is less than 0.0 . LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO /R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVR0/R1.

\section*{MTH\$HTAN Tangent of Angle Expressed in Radians (H-floating Value)}

The Tangent of Angle Expressed in Radians (H-floating Value) routine returns the tangent of a given angle (in radians) as an H -floating value.

\section*{ARGUMENTS h-tan}

VMS usage: floating_point
type: H_floating access: write only mechanism: by reference
Tangent of the angle specified by angle-in-radians. The \(\mathbf{h}\)-tan argument is the address of an H -floating number that is this tangent. MTH\$HTAN writes the address of the tangent into \(\mathbf{h}\)-tan.

\section*{angle-in-radians}

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$HTAN, angle-in-radians specifies an H -floating number.

When the input argument is expressed in radians, the tangent function is computed as follows:

1 If \(|X|<2^{(-f / 2)}\), then \(z \operatorname{TAN}(X)=X\) (see the section on MTH\$zCOSH for the definition of \(f\) )

2 Otherwise, call MTH\$zSINCOS to obtain zSIN(X) and zCOS(X); then
a. If \(z \operatorname{COS}(X)=0\), signal overflow
b. Otherwise, \(z \operatorname{TAN}(X)=z \operatorname{SIN}(X) / z \operatorname{COS}(X)\)

\section*{MTH\$HTAN}

\section*{CONDITION \\ VALUES \\ SIGNALED \\ SS\$_ROPRAND}

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$HTAN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in math library.

\title{
MTH\$HTAND Tangent of Angle Expressed in Degrees (H-floating Value)
}

The Tangent of Angle Expressed in Degrees (H-floating Value) routine returns the tangent of a given angle (in degrees) as an H -floating value.

\section*{FORMAT}
jsb entries

\section*{RETURNS}

MTH\$HTAND \(h\)-tan, angle-in-degrees

MTH\$HTAND_R5

None.

\section*{ARGUMENTS}
\(h\)-tan
VMS usage: floating_point
type: H_floating access: write only mechanism: by reference
Tangent of the angle specified by angle-in-degrees. The \(\mathbf{h}\)-tan argument is the address of an H -floating number that is this tangent. MTH\$HTAND writes the address of the tangent into \(\mathbf{h}\)-tan.

\section*{angle-in-degrees}

VMS usage: floating_point
type: H_floating access: read only mechanism: by reference
The input angle (in degrees). The angle-in-degrees argument is the address of a floating-point number which is this angle. For MTH\$HTAND, angle-in-degrees specifies an H -floating number.

\section*{DESCRIPTION}

When the input argument is expressed in degrees, the tangent function is computed as follows:
1 If \(|X|<(180 / \pi) * 2^{(-2 /(e-1))}\) and underflow signaling is enabled, underflow is signaled (see the section on MTH\$zCOSH for the definition of \(e\) ).
2 Otherwise, if \(|X|<(180 / \pi) * 2^{(-f / 2)}\), then \(z \operatorname{TAND}(X)=(\pi / 180) * X\). See the description of MTH \(\$ \mathrm{zCOSH}\) for the definition of \(f\).
3 Otherwise, call MTH\$zSINCOSD to obtain \(\mathrm{zSIND}(\mathrm{X})\) and \(\mathrm{zCOSD}(\mathrm{X})\).
a. Then, if \(z \operatorname{COSD}(X)=0\), signal overflow
b. Else, \(z \operatorname{TAND}(X)=z \operatorname{SIN} D(X) / z \operatorname{COSD}(X)\)

\section*{MTH\$HTAND}

\section*{CONDITION}

VALUES SS\$_ROPRAND
SIGNALED
Reserved operand. The MTH\$HTAND procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_FLOOVEMAT
Floating-point overflow in math library.

\section*{MTH\$HTANH Compute the Hyperbolic Tangent (H-floating Value)}

The Compute the Hyperbolic Tangent (H-floating Value) routine returns the hyperbolic tangent of the input value as an H -floating value.

\section*{FORMAT MTH\$HTANH \(h\)-tanh, floating-point-input-value}

\section*{RETURNS None.}

\section*{ARGUMENTS \(\boldsymbol{h}\)-tanh}

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Hyperbolic tangent of the value specified by floating-point-input-value. The h-tanh argument is the address of a H-floating number that is this hyperbolic tangent. MTH\$HTANH writes the address of the hyperbolic tangent into h-tanh.

\section*{floating-point-input-value}

VMS usage: floating_point
type: \(\quad\) H_floating access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$HTANH, floating-point-input-value specifies an H -floating number.

For MTH\$HTANH, the hyperbolic tangent of \(X\) is computed using a value of 56 for \(g\) and a value of 40 for \(h\). The hyperbolic tangent of \(X\) is computed as follows:
\begin{tabular}{ll}
\hline Value of \(\mathbf{x}\) & Hyperbolic Tangent Returned \\
\hline\(|X| \leq 2^{-g}\) & \(X\) \\
\(2^{-g}<|X| \leq 0.25\) & \(z S I N H(X) / z \operatorname{COSH}(X)\) \\
\(0.25<|X|<h\) & \((z E X P(2 * X)-1) /(z E X P(2 * X)+1)\) \\
\(h \leq|X|\) & \(\operatorname{sign}(X) * 1\) \\
\hline
\end{tabular}

\title{
MTH\$HTANH
}

\section*{CONDITION}

VALUE SS\$_ROPRAND
SIGNALED
Reserved operand. The MTH\$HTANH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{MTH\$xIMAG Imaginary Part of a Complex Number}

The Imaginary Part of a Complex Number routine returns the imaginary part of a complex number.

MTH\$AIMAG complex-number
MTH\$DIMAG complex-number
MTH\$GIMAG complex-number
Each of the above three formats corresponds to one of the three floatingpoint complex types.

\section*{RETURNS}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating access: write only
mechanism: by value
Imaginary part of the input complex-number. MTH\$AIMAG returns an F-floating number. MTH\$DIMAG returns a D-floating number. MTH\$GIMAG returns a G-floating number.

\section*{ARGUMENT}

\section*{complex-number}

VMS usage: complex_number
type: \(\quad\) F_floating complex, D_floating complex, G_floating complex
access: read only
mechanism: by reference
The input complex number. The complex-number argument is the address of this floating-point complex number. For MTH\$AIMAG, complex-number specifies an F-floating number. For MTH\$DIMAG, complex-number specifies a D-floating number. For MTH\$GIMAG, complex-number specifies a G-floating number.

\section*{CONDITION \\ VALUE SIGNALED}

Reserved operand. The MTH\$xIMAG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{EXAMPLE}
```

C+
C This FORTRAN example forms the imaginary part of
C a G-floating complex number using MTH$GIMAG
C and the FORTRAN random number generator
C RAN.
C
C Declare Z as a complex value and MTH$GIMAG as
C a REAL*8 value. MTH$GIMAG will return the imaginary
C part of Z: Z_NEW = MTH$GIMAG(Z).
C-
COMPLEX*16 Z
COMPLEX*16 DCMPLX
REAL*8 R,I,MTH$GIMAG
        INTEGER M
        M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-
        R=RAN (M)
        I = RAN (M)
        Z = DCMPIX (R,I)
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C
    TYPE *, ' The complex number z is',z
    TYPE *, ' It has imaginary part',MTH$GIMAG(Z)
END

```

This FORTRAN example demonstrates a procedure call to MTH\$GIMAG. Because this example uses G-floating numbers, it must be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:
The complex number \(z\) is (0.8535407185554504,0.2043401598930359)
It has imaginary part 0.2043401598930359

\section*{MTH\$xLOG Natural Logarithm}

The Natural Logarithm routine returns the natural (base e) logarithm of the input argument.

\section*{MTH\$ALOG floating-point-input-value \\ MTH\$DLOG floating-point-input-value \\ MTH\$GLOG floating-point-input-value}

Each of the above formats accepts as input one of the floating-point types.
jsb entries

\section*{MTH\$ALOG R5 \\ MTH\$DLOG_R8 \\ MTH\$GLOG_R8}

Each of the above JSB entries accepts as input one of the floating-point types.

\section*{RETURNS}

VMS usage: floating_point
type: \(\quad\) F_floating, \(D_{-}\)floating, G_floating access: write only mechanism: by value
The natural logarithm of floating-point-input-value. MTH\$ALOG returns an F-floating number. MTH\$DLOG returns a D-floating number. MTH\$GLOG returns a G-floating number.

\section*{ARGUMENTS floating-point-input-value}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$ALOG, floating-point-input-value specifies an F-floating number. For MTH\$DLOG, floating-point-input-value specifies a D-floating number. For MTH\$GLOG, floating-point-input-value specifies a G-floating number.

DESCRIPTION Computation of the natural logarithm routine is based on the following:
\[
\begin{array}{ll}
1 & \ln (X * Y)=\ln (X)+\ln (Y) \\
2 & \ln (1+X)=X-X^{2} / 2+X^{3} / 3-X^{4} / 4 \ldots \\
& \text { for }|\mathrm{X}|<1
\end{array}
\]
\(3 \ln (X)=\ln (A)+2 *\left(V+V^{3} / 3+V^{5} / 5+V^{7} / 7 \ldots\right)\)
\(=\ln (A)+V * p\left(V^{2}\right)\), where \(V=(X-A) /(X+A)\), \(\mathrm{A}>0\), and \(p(y)=2 *\left(1+y / 3+y^{2} / 5 \ldots\right)\)
For \(x=2^{n} * f\), where n is an integer and f is in the interval of 0.5 to 1 , define the following quantities:
\[
\begin{gathered}
\text { If } n \geq 1, \text { then } N=n-1 \text { and } F=2 f \\
\text { If } n \leq 0, \text { then } N=n \text { and } F=f
\end{gathered}
\]

From (1) above it follows that:
\(4 \quad \ln (X)=N * \ln (2)+\ln (F)\)
Based on the above relationships, zLOG is computed as follows:
1 If \(|F-1|<2^{-5}, z L O G(X)=N * z L O G(2)+W+W * p(W)\), where \(\mathrm{W}=\mathrm{F}-1\).

2 Otherwise, \(z L O G(X)=N * z L O G(2)+z L O G(A)+V * p\left(V^{2}\right)\), where \(V=(F-A) /(F+A)\) and A and zLOG(A) are obtained by table look up.

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HLOG.

Reserved operand. The MTH\$xLOG procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_LOGZERNEG

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0 . LIB \(\$\) SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

\section*{MTH\$xLOG2 Base 2 Logarithm}

The Base 2 Logarithm routine returns the base 2 logarithm of the input value specified by floating-point-input-value.

\section*{FORMAT}

\section*{MTH\$ALOG2 floating-point-input-value \\ MTH\$DLOG2 floating-point-input-value \\ MTH\$GLOG2 floating-point-input-value}

Each of the above formats accepts as input one of the floating-point types.
\begin{tabular}{ll} 
RETURNS & \begin{tabular}{l} 
VMS usage: \\
type: \\
access: \(\quad\)\begin{tabular}{l} 
floating_point \\
F_floating, \\
write only
\end{tabular} \\
\\
mechanism:
\end{tabular} by value
\end{tabular}

\section*{ARGUMENTS floating-point-input-value}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this input value. For MTH\$ALOG2, floating-point-input-value specifies an F-floating number. For MTH\$DLOG2, floating-point-input-value specifies a D-floating number. For MTH\$GLOG2, floating-point-input-value specifies a G-floating number.

DESCRIPTION The base 2 logarithm function is computed as follows:
\[
z \operatorname{LOG} 2(X)=z \operatorname{LOG} 2(E) * z \operatorname{LOG}(X)
\]

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HLOG2.

CONDITION
VALUES SS\$_ROPRAND
SIGNALED

MTH\$_LOGZERNEG

Reserved operand. The MTH\$xLOG2 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

\section*{MTH\$xLOG10 Common Logarithm}

The Common Logarithm routine returns the common (base 10) logarithm of the input argument.

\section*{FORMAT}
jsb entries
MTH\$ALOG10 floating-point-input-value
MTH\$DLOG10 floating-point-input-value
MTH\$GLOG10 floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.
MTH\$ALOG10_R5 MTH\$DLOG10_R8 MTH\$GLOG10_R8
Each of the above JSB entries accepts as input one of the floating-point types.

\section*{RETURNS}
\begin{tabular}{ll} 
VMS usage: & floating_point \\
type: & F_floating, \(D_{\text {_floating, }}\) G_floating \\
access: & write only \\
mechanism: & by value
\end{tabular}

The common logarithm of floating-point-input-value. MTH\$ALOG10 returns an F-floating number. MTH\$DLOG10 returns a D-floating number. MTH\$GLOG10 returns a G-floating number.

\section*{ARGUMENTS}
floating-point-input-value
VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the
address of a floating-point number. For MTH\$ALOG10, floating-point-
input-value specifies an F-floating number. For MTH\$DLOG10, floating-
point-input-value specifies a D-floating number. For MTH\$GLOG10,
floating-point-input-value specifies a G-floating number.
\[
z \operatorname{LOG} 10(X)=z \operatorname{LOG} 10(E) * z \operatorname{LOG}(X)
\]

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HLOG10.

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_LOGZERNEG

Reserved operand. The MTH\$xLOG10 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0 . LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_ MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

\section*{MTH\$RANDOM Random Number Generator, Uniformly Distributed}

The Random Number Generator, Uniformly Distributed routine is a general random number generator.

\section*{FORMAT MTH\$RANDOM seed}

\section*{RETURNS}
\begin{tabular}{ll} 
VMS usage: & floating_point \\
type: & F_floating \\
access: & write only \\
mechanism: & by value
\end{tabular}

MTH\$RANDOM returns an \(F\)-floating random number.

\section*{ARGUMENT}
seed
VMS usage: longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference
The integer seed, a 32 -bit number whose high-order 24 bits are converted by MTH\$RANDOM to an F-floating random number. The seed argument is the address of an unsigned longword that contains this integer seed. The seed is modified by each call to MTH\$RANDOM.

This routine must be called again to obtain the next pseudorandom number. The seed is updated automatically.
The result is a floating-point number that is uniformly distributed between 0.0 inclusively and 1.0 exclusively.

There are no restrictions on the seed, although it should be initialized to different values on separate runs in order to obtain different random sequences. MTH\$RANDOM uses the following method to update the seed passed as the argument:
\[
S E E D=(69069 * S E E D+1)\left(\text { modulo }^{32}\right)
\]

\section*{CONDITION VALUE \\ SS\$_ROPRAND SIGNALED}

Reserved operand. The MTH\$RANDOM procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{EXAMPLE}
```

RAND: PROCEDURE OPTIONS (MAIN);
DECLARE FOR$SECNDS ENTRY (FLOAT BINARY (24))
            RETURNS (ELOAT BINARY (24));
DECLARE MTH$RANDOM ENTRY (FIXED BINARY (31))
RETURNS (FLOAT BINARY (24));
DECLARE TIME FLOAT BINARY (24);
DECLARE SEED FIXED BINARY (31);
DECLARE I FIXED BINARY (7);
DECLARE RESULT FIXED DECIMAL (2);
/* Get floating random time value */
TIME = FOR$SECNDS (OEO);
    /* Convert to fixed */
SEED = TIME;
    /* Generate 100 random numbers between I and 10 */
DO I = 1 TO 100;
    RESULT = 1 + FIXED ( (10EO * MTH$RANDOM (SEED) ), 31 );
PUT LIST (RESULT);
END;
END RAND;

```

This PL/I program demonstrates the use of MTH\$RANDOM. The value returned by FOR\$SECNDS is used as the seed for the random-number generator to insure a different sequence each time the program is run. The random value returned is scaled so as to represent values between 1 and 10.

Because this program generates random numbers, the output generated will be different each time the program is executed. One example of the outut generated by this program is as follows:
\begin{tabular}{rrrrrrrrrrrrrr}
7 & 4 & 6 & 5 & 9 & 10 & 5 & 5 & 3 & 8 & 8 & 1 & 3 & 1 \\
4 & 4 & 2 & 4 & 4 & 8 & 3 & 8 & 9 & 1 & 7 & 1 & 8 & 6 \\
1 & 10 & 10 & 6 & 7 & 3 & 2 & 2 & 1 & 2 & 6 & 6 & 3 & 9 \\
6 & 2 & 3 & 6 & 10 & 8 & 5 & 5 & 4 & 2 & 8 & 5 & 9 & 6 \\
8 & 5 & 4 & 9 & 8 & 7 & 6 & 6 & 8 & 10 & 9 & 5 & 9 & 4 \\
1 & 2 & 2 & 3 & 6 & 5 & 2 & 3 & 4 & 4 & 8 & 9 & 2 & 8 \\
3 & 8 & 1 & 5 & & & & & & & 5 & 7 \\
\hline
\end{tabular}

\section*{MTH\$xREAL Real Part of a Complex Number}

The Real Part of a Complex Number routine returns the real part of a complex number.

\section*{FORMAT}

MTH\$REAL complex-number
MTH\$DREAL complex-number MTH\$GREAL complex-number
Each of the above three formats accepts as input one of the three floatingpoint complex types.

\section*{RETURNS}
\begin{tabular}{ll} 
VMS usage: & floating_point \\
type: & F_floating, \(D_{-}\)floating, G_floating \(^{\text {access: }}\) \\
write only \\
mechanism: & by value
\end{tabular}

Real part of the complex number. MTH\$REAL returns an F-floating number. MTH\$DREAL returns a D-floating number. MTH\$GREAL returns a G-floating number.
\begin{tabular}{|c|c|}
\hline ARGUMENT & \begin{tabular}{l}
complex-number \\
VMS usage: complex_number \\
type: \(\quad\) F_floating complex, D_floating complex, G_floating \\
access: complex \\
mechanism: by reference \\
The complex number whose real part is returned by MTH\$REAL. The complex-number argument is the address of this floating-point complex number. For MTH\$REAL, complex-number is an F-floating complex number. For MTH\$DREAL, complex-number is a D-floating complex number. For MTH\$GREAL, complex-number is a G-floating complex number.
\end{tabular} \\
\hline
\end{tabular}

CONDITION
VALUE
SIGNALED
SS\$_ROPRAND
Reserved operand. The MTH\$xREAL procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{EXAMPLE}
```

C+
C This FORTRAN example forms the real
C part of an F-floating complex number using
C MTH$REAL and the FORTRAN random number
C generator RAN.
C
C Declare Z as a complex value and MTH$REAL as a
C REAL*4 value. MTH$REAL will return the real
C part of Z: Z_NEW = MTH$REAL(Z).
COMPLEX Z
COMPLEX CMPLX
REAL*4 MTH$REAL
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the FORTRAN
C generic CMPLX.
C-
    Z = CMPLX(RAN (M),RAN (M))
C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *, ' It has real part',MTH$REAL(Z)
END

```

This FORTRAN example demonstrates the use of MTH\$REAL. The output of this program is as follows:

The complex number \(z\) is \((0.8535407,0.2043402)\)
It has real part 0.8535407

\section*{MTH\$xSIN Sine of Angle Expressed in Radians}

The Sine of Angle Expressed in Radians routine returns the sine of a given angle (in radians).

MTH\$SIN angle-in-radians
MTH\$DSIN angle-in-radians
MTH\$GSIN angle-in-radians
Each of the above formats accepts as input one of the floating-point types.
MTH\$SIN R4
MTH\$DSIN R7
MTH\$GSIN_R7
Each of the above JSB entries accepts as input one of the floating-point types.

\section*{RETURNS}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating
access: write only
mechanism: by value
Sine of the angle specified by angle-in-radians. MTH\$SIN returns an F-floating number. MTH\$DSIN returns a D-floating number. MTH\$GSIN returns a G-floating number.

\section*{ARGUMENTS}

\section*{angle-in-radians}

VMS usage: floating_point
type: \(\quad\) F_floating, \(D_{-}\)floating, G_floating \(^{\prime}\)
access: read only
mechanism: by reference
Angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$SIN, angle-in-radians specifies an F-floating number. For MTH\$DSIN, angle-in-radians specifies a D-floating number. For MTH\$GSIN, angle-in-radians specifies a G-floating number.

See the MTH\$SINCOS routine for the algorithm used to compute this sine.

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HSIN.

CONDITION

\section*{VALUE}

SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xSIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\title{
MTH\$xSINCOS Sine and Cosine of Angle Expressed in Radians
}

The Sine and Cosine of Angle Expressed in Radians routine returns the sine and cosine of a given angle (in radians).

\section*{FORMAT}
jsb entries
MTH\$SINCOS angle-in-radians, sine, cosine
MTH\$DSINCOS angle-in-radians , sine , cosine
MTH\$GSINCOS angle-in-radians, sine ,cosine
MTH\$HSINCOS angle-in-radians ,sine, cosine
Each of the above four formats accepts as input one of the four floatingpoint types.


Each of the above four JSB entries accepts as input one of the four floating-point types.

MTH\$SINCOS, MTH\$DSINCOS, MTH\$GSINCOS, and MTH\$HSINCOS return the sine and cosine of the input angle by reference in the sine and cosine arguments.

\section*{ARGUMENTS angle-in-radians}

VMS usage: floating_point
type: . F_floating, D_floating, G_floating, H_floating
access: read only
mechanism: by reference
Angle (in radians) whose sine and cosine are to be returned. The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$SINCOS, angle-in-radians is an F-floating number. For MTH\$DSINCOS, angle-in-radians is a D-floating number. For MTH\$GSINCOS, angle-in-radians is a G-floating number. For MTH\$HSINCOS, angle-in-radians is an H -floating number.

\section*{sine}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating, H_floating access: write only mechanism: by reference
Sine of the angle specified by angle-in-radians. The sine argument is the address of a floating-point number. MTH\$SINCOS writes an F-floating
number into sine. MTH\$DSINCOS writes a D-floating number into sine. MTH\$GSINCOS writes a G-floating number into sine. MTH\$HSINCOS writes an H -floating number into sine.

\section*{cosine}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating, H_floating
access: write only
mechanism: by reference
Cosine of the angle specified by angle-in-radians. The cosine argument is the address of a floating-point number. MTH\$SINCOS writes an F-floating number into cosine. MTH\$DSINCOS writes a D-floating number into cosine. MTH\$GSINCOS writes a G-floating number into cosine. MTH\$HSINCOS writes an H -floating number into cosine.

All routines with JSB entry points accept a single argument in \(\mathrm{R} 0: \mathrm{Rm}\), where \(m\), which is defined below, is dependent on the data type.
\begin{tabular}{ll}
\hline Data Type & \(\mathbf{m}\) \\
\hline F_floating & 0 \\
D_floating & 1 \\
G_floating & 1 \\
H_floating & 3 \\
\hline
\end{tabular}

In general, Run-Time Library routines with JSB entry points return one value in \(\mathrm{R} 0: \mathrm{Rm}\). The MTH\$SINCOS routine returns two values, however. The sine of angle-in-radians is returned in \(\mathrm{R} 0: \mathrm{Rm}\) and the cosine of angle-in-radians is returned in ( \(R<m+1>: R<2 * m+1>\) ).
In radians, the computation of \(\mathrm{zSIN}(\mathrm{X})\) and \(\mathrm{zCOS}(\mathrm{X})\) is based on the following polynomial expansions:
\[
\begin{aligned}
& \sin (X)=X-X^{3} /(3!)+X^{5} /(5!)-X^{7} /(7!) \ldots \\
& =X+X * P\left(X^{2}\right), \text { where } \\
& P(y)=y /(3!)+y^{2} /(5!)+y^{3} /(7!) \ldots \\
& \cos (X)=1-X^{2} /(2!)+x^{4} /(4!)-X^{6} /(6!) \ldots \\
& =Q\left(X^{2}\right), \text { where } \\
& Q(y)=\left(1-y /(2!)+y^{2} /(4!)+y^{3} /(6!) \ldots\right) \\
& 1 \quad \text { If }|X|<2^{(-f / 2)}, \\
& \text { then } z S I N(X)=X \text { and } z \operatorname{COS}(X)=1 \\
& \text { (see the section on MTH } \$ \text { ZCOSH for } \\
& \text { the definition of } \mathrm{f} \text { ) }
\end{aligned}
\]

2 If \(2^{-f / 2} \leq|X|<\pi / 4\),
then \(\operatorname{zSIN}(X)=X+P\left(X^{2}\right)\)
and \(\mathrm{zCOS}(\mathrm{X})=Q\left(X^{2}\right)\)
3 If \(\pi / 4 \leq|X|\) and \(X>0\),
a. Let \(J=I N T(X /(\pi / 4))\)
and \(I=J m o d u l o 8\)

\section*{MTH\$xSINCOS}
b. If J is even, let \(Y=X-J *(\pi / 4)\)
otherwise,
let \(Y=(J+1) *(\pi / 4)-X\)
With the above definitions, the following table relates \(\mathrm{zSIN}(\mathrm{X})\) and \(\mathrm{zCOS}(\mathrm{X})\) to \(\mathrm{zSIN}(\mathrm{Y})\) and \(\mathrm{zCOS}(\mathrm{Y})\) :
\begin{tabular}{|c|c|c|}
\hline Value of I & zSIN(X) & \(\mathrm{zCOS}(\mathrm{X})\) \\
\hline 0 & \(z S I N(Y)\) & \(z \operatorname{COS}(\mathrm{Y})\) \\
\hline 1 & \(z \mathrm{COS}(\mathrm{Y})\) & \(z \operatorname{SIN}(Y)\) \\
\hline 2 & \(z \cos (\mathrm{Y})\) & \(-\mathrm{zSIN}(\mathrm{Y})\) \\
\hline 3 & zSIN(Y) & \(-\mathrm{zCOS}(\mathrm{Y})\) \\
\hline 4 & \(-z S I N(Y)\) & \(-\mathrm{zCOS}(\mathrm{Y})\) \\
\hline 5 & \(-\mathrm{zCOS}(\mathrm{Y})\) & \(-z S I N(Y)\) \\
\hline 6 & \(-z \operatorname{COS}(\mathrm{Y})\) & \(z \operatorname{SIN}(Y)\) \\
\hline 7 & -zSIN(Y) & zCOS(Y) \\
\hline
\end{tabular}
c. \(\mathrm{zSIN}(\mathrm{Y})\) and \(\mathrm{zCOS}(\mathrm{Y})\) are computed as follows:
\(z S I N(Y)=Y+P\left(Y^{2}\right)\),
and \(z \operatorname{COS}(Y)=Q\left(Y^{2}\right)\)
4 If \(\pi / 4 \leq|X|\) and \(X<0\),
then \(z S I N(X)=-z S I N(|X|)\)
and \(z \operatorname{COS}(X)=z \operatorname{COS}(|X|)\)
CONDITION
VALUE SS\$_ROPRAND
RETURNED
Reserved operand. The MTH\$xSINCOS procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{MTH\$xSINCOSD Sine and Cosine of Angle Expressed in Degrees}

The Sine and Cosine of Angle Expressed in Degrees routine returns the sine and cosine of a given angle (in degrees).
\begin{tabular}{ll} 
FORMAT & MTH\$SINCOSD angle-in-degrees , sine , cosine \\
& MTH\$DSINCOSD angle-in-degrees , sine , cosine \\
& MTH\$GSINCOSD angle-in-degrees , sine ,cosine \\
& MTH\$HSINCOSD angle-in-degrees , sine , cosine \\
jsb entries & \begin{tabular}{l} 
Each of the above four formats accepts as input one of the four floatin \\
point types.
\end{tabular} \\
\\
& MTH\$SINCOSD_R5 \\
& MTH\$DSINCOSD_R7 \\
& MTH\$GSINCOSD_R7 \\
& MTH\$HSINCOSD_R7 \\
& Each of the above four JSB entries accepts as input one of the four \\
floating-point types.
\end{tabular}

\section*{RETURNS}

MTH\$SINCOSD, MTH\$DSINCOSD, MTH\$GSINCOSD, and MTH\$HSINCOSD return the sine and cosine of the input angle by reference in the sine and cosine arguments.
\begin{tabular}{ll} 
ARGUMENTS & \begin{tabular}{l} 
angle-in-degrees \\
VMS usage: floating_point \\
type: F_floating, D_floating, G_floating, H_floating \\
access: read only
\end{tabular} \\
& mechanism: by reference \\
& \begin{tabular}{l} 
Angle (in degrees) whose sine and cosine are returned by \\
MTH\$xSINCOSD. The angle-in-degrees argument is the address \\
of a floating-point number that is this angle. For MTH\$SINCOSD, \\
angle-in-degrees is an F-floating number. For MTH\$DSINCOSD, \\
angle-in-degrees is a D-floating number. For MTH\$GSINCOSD, angle- \\
in-degrees is a G-floating number. For MTH\$HSINCOSD, angle-in- \\
degrees is an H-floating number.
\end{tabular}
\end{tabular}

\section*{sine}

VMS usage: floating_point type: \(\quad\) F_floating, \(D\) _floating, G_floating, \(^{\text {H_floating }}\) access: write only mechanism: by reference
Sine of the angle specified by angle-in-degrees. The sine argument is the address of a floating-point number. MTH\$SINCOSD writes an F-floating number into sine. MTH\$DSINCOSD writes a D-floating number into sine. MTH\$GSINCOSD writes a G-floating number into sine. MTH\$HSINCOSD writes an H-floating number into sine.

\section*{cosine}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating, H_floating access: write only mechanism: by reference
Cosine of the angle specified by angle-in-degrees. The cosine argument is the address of a floating-point number. MTH\$SINCOSD writes an F-floating number into cosine. MTH\$DSINCOSD writes a D-floating number into cosine. MTH\$GSINCOSD writes a G-floating number into cosine. MTH\$HSINCOSD writes an H-floating number into cosine.

All routines with JSB entry points accept a single argument in R0:Rm, where \(m\), which is defined below, is dependent on the data type.
\begin{tabular}{ll}
\hline Data Type & \(\mathbf{m}\) \\
\hline F_floating & 0 \\
D_floating & 1 \\
G_floating & 1 \\
H_floating & 3 \\
\hline
\end{tabular}

In general, Run-Time Library routines with JSB entry points return one value in \(\mathrm{R} 0: \mathrm{Rm}\). The MTH \(\$\) SINCOSD routine returns two values, however. The sine of angle-in-degrees is returned in \(\mathrm{R} 0: \mathrm{Rm}\) and the cosine of angle-in-degrees is returned in ( \(R<m+1>: R<2^{*} m+1>\) ).
In degrees, the computation of \(\operatorname{zSIND}(\mathrm{X})\) and \(\mathrm{zCOSD}(\mathrm{X})\) is based on the following polynomial expansions:
\[
\begin{aligned}
& \text { SIND } D(X)=(C * X)-(C * X)^{3} /(3!)+ \\
& (C * X)^{5} /(5!)-(C * X)^{7} /(7!) \ldots \\
& =X / 2^{6}+X * P\left(X^{2}\right), \text { where } \\
& P(y)=-y /(3!)+y^{2} /(5!)-y^{3} /(7!) \ldots \\
& \operatorname{COSD}(X)=1-(C * X)^{2} /(2!)+ \\
& (C * X)^{4} /(4!)-(C * X)^{6} /(6!) \ldots \\
& =Q\left(X^{2}\right), \text { where } \\
& Q(y)=1-y /(2!)+y^{2} /(4!)-y^{3} /(6!) \ldots \\
& \text { and } C=\pi / 180
\end{aligned}
\]

1 If \(|X|<(180 / \pi) * 2^{-2^{e-1}}\) and underflow signaling is enabled, underflow is signaled for \(\mathrm{zSIND}(\mathrm{X})\) and \(\mathrm{zSINCOSD}(\mathrm{X})\).
See MTH\$zCOSH for the definition of \(e\).
otherwise:
2 If \(|X|<(180 / \pi) * 2^{(-f / 2)}\), then \(z S I N D(X)=(\pi / 180) * X\) and \(z \operatorname{COSD}(X)=1\). (See MTH \(\$\) zCOSH for the definition of \(f\).)
3 If \((180 / \pi) * 2^{(-f / 2)} \leq|X|<45\)
then \(z S I N D(X)=X / 2^{6}+P\left(X^{2}\right)\)
and \(z \operatorname{COS} D(X)=Q\left(X^{2}\right)\)
4 If \(45 \leq|X|\) and \(X>0\),
a. Let \(J=I N T(X /(45))\) and
\[
I=J \text { modulo } 8
\]
b. If J is even, let \(Y=X-J * 45\); otherwise, let \(Y=(J+1) * 45-X\).
With the above definitions, the following table relates \(\mathrm{zSIND}(\mathrm{X})\) and \(\mathrm{zCOSD}(\mathrm{X})\) to \(\mathrm{zSIND}(\mathrm{Y})\) and \(\mathrm{zCOSD}(\mathrm{Y})\) :
\begin{tabular}{lll}
\hline Value of \(\boldsymbol{I}\) & \(\mathrm{zSIND}(\mathrm{X})\) & \(\mathrm{zCOSD}(\mathrm{X})\) \\
\hline 0 & \(\mathrm{zSIND}(\mathrm{Y})\) & \(\mathrm{zCOSD}(\mathrm{Y})\) \\
1 & \(\mathrm{zCOSD}(\mathrm{Y})\) & \(\mathrm{zSIND}(\mathrm{Y})\) \\
2 & \(\mathrm{zCOSD}(\mathrm{Y})\) & \(-\mathrm{zSIND}(\mathrm{Y})\) \\
3 & \(\mathrm{zSIND}(\mathrm{Y})\) & \(-\mathrm{zCOSD}(\mathrm{Y})\) \\
4 & \(-\mathrm{zSIND}(\mathrm{Y})\) & \(-\mathrm{zCOSD}(\mathrm{Y})\) \\
5 & \(-\mathrm{zCOSD}(\mathrm{Y})\) & \(-\mathrm{zSIND}(\mathrm{Y})\) \\
6 & \(-\mathrm{zCOSD}(\mathrm{Y})\) & \(\mathrm{zSIND}(\mathrm{Y})\) \\
7 & \(-\mathrm{zSIND}(\mathrm{Y})\) & \(\mathrm{zCOSD}(\mathrm{Y})\) \\
\hline
\end{tabular}
c. \(\mathrm{zSIND}(\mathrm{Y})\) and \(\mathrm{zCOSD}(\mathrm{Y})\) are computed as follows:
\[
\begin{aligned}
& z S I N D(Y)=Y / 2^{6}+P\left(Y^{2}\right) \\
& z \operatorname{COSD}(Y)=Q\left(Y^{2}\right)
\end{aligned}
\]
d. If \(45 \leq|X|\) and \(X<0\), then \(z S I N D(X)=-z S I N D(|X|)\) and \(z \operatorname{COS} D(X)=z \operatorname{COSD}(|X|)\)

\section*{MTH\$xSINCOSD}

\section*{CONDITION \\ VALUES SIGNALED \\ SS\$_ROPRAND}


MTH\$_FLOUNDMAT

Reserved operand. The MTH\$xSINCOSD procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point underflow in math library. The absolute value of the input angle is less than \(180 / \pi * 2^{-m}\) (where \(m=128\) for F-floating and D-floating, 1,024 for G-floating, and 16,384 for H -floating).

\section*{MTH\$xSIND Sine of Angle Expressed in Degrees}

The Sine of Angle Expressed in Degrees routine returns the sine of a given angle (in degrees).

MTH\$SIND_R4
MTH\$DSIND_R7
MTH\$GSIND_R7
Each of the above JSB entries accepts as input one of the floating-point types.
\begin{tabular}{|c|c|c|}
\hline RETURNS & VMS usage: type: access: mechanism: & \begin{tabular}{l}
floating_point \\
F_floating, D_floating, \(G_{-}\)floating write only by value
\end{tabular} \\
\hline
\end{tabular}

The sine of the angle. MTH\$SIND returns an F-floating number. MTH\$DSIND returns a D-floating number. MTH\$GSIND returns a G-floating number.

\section*{ARGUMENTS angle-in-degrees}

> VMS usage: floating_point type: \(\quad\) F_floating, D_floating, G_floating access: \(\quad\) read only mechanism: by reference Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number that is this angle. For MTH\$SIND, angle-indegrees specifies an F-floating number. For MTH\$DSIND, angle-indegrees specifies a D-floating number. For MTH\$GSIND, angle-indegrees specifies a G-floating number.

See MTH\$SINCOSD for the algorithm that is used to compute the sine.
The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HSIND.

\section*{MTH\$xSIND}

CONDITION VALUES SIGNALED

SS\$ ROPRAND

MTH\$_FLOUNDMAT

Reserved operand. The MTH\$SIND procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point underflow in math library. The absolute value of the input angle is less than \(180 / \pi * 2^{-m}\) (where \(m=128\) for F-floating and D-floating, and 1,024 for G -floating).

\section*{MTH\$xSINH Hyperbolic Sine}

The Hyperbolic Sine routine returns the hyperbolic sine of the input value specified by floating-point-input-value.

\section*{MTH\$SINH floating-point-input-value}

MTH\$DSINH floating-point-input-value
MTH\$GSINH floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

\section*{RETURNS}
\begin{tabular}{ll} 
VMS usage: & floating_point \\
type: & F_floating, \(D_{\text {_floating, }}\) G_floating \\
access: & write only \\
mechanism: & by value
\end{tabular}

The hyperbolic sine of floating-point-input-value. MTH\$SINH returns an F-floating number. MTH\$DSINH returns a D-floating number. MTH\$GSINH returns a G-floating number.

\section*{ARGUMENTS floating-point-input-value}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$SINH, floating-point-input-value specifies an F-floating number. For MTH\$DSINH, floating-point-input-value specifies a D-floating number. For MTH\$GSINH, floating-point-input-value specifies a G-floating number. of the input argument. The range of the function is partitioned using four data type dependent constants: \(\mathrm{a}(\mathrm{z}), \mathrm{b}(\mathrm{z})\), and \(\mathrm{c}(\mathrm{z})\). The subscript \(z\) indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits ( \(f\) ) associated with the data type (z).

The values of \(e\) and \(f\) are:
\begin{tabular}{lll}
\hline\(z\) & \(e\) & \(f\) \\
\hline\(F\) & 8 & 24 \\
D & 8 & 56 \\
G & 11 & 53 \\
\hline
\end{tabular}

The values of the constants in terms of \(e\) and \(f\) are:
\begin{tabular}{ll}
\hline Variable & Value \\
\hline\(a(z)\) & \(2^{(-f / 2)}\) \\
\(b(z)\) & CEILING[ \((f+1) / 2 * \ln (2)]\) \\
\(c(z)\) & \(\left(2^{(e-1)} * \ln (2)\right)\) \\
\hline
\end{tabular}

Based on the above definitions, \(\mathrm{zSINH}(\mathrm{X})\) is computed as follows:
\begin{tabular}{ll}
\hline Value of X & Value Returned \\
\hline\(|\mathrm{X}|<\mathrm{a}(\mathrm{z})\) & \(X\) \\
\(\mathrm{a}(\mathrm{z}) \leq|\mathrm{X}|<1.0\) & \\
& \(\mathrm{zSINH}(\mathrm{X})\) is computed using a \\
& power series expansion in \(|X|^{2}\) \\
\(1.0 \leq|\mathrm{X}|<\mathrm{b}(\mathrm{z})\) & \((z E X P(X)-z E X P(-X)) / 2\) \\
\(\mathrm{~b}(\mathrm{z}) \leq|\mathrm{X}|<\mathrm{c}(\mathrm{z})\) & \(S I G N(X) * z E X P(|X|) / 2\) \\
\(\mathrm{c}(\mathrm{z}) \leq|\mathrm{X}|\) & Overflow occurs \\
\hline
\end{tabular}

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HSINH.

\section*{CONDITION VALUES SIGNALED}

Reserved operand. The MTH\$xSINH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{MTH\$xSINH}

MTH\$_FLOOVEMAT
Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than yyy. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVR0/R1.

The values of yyy are approximately:
MTH\$SINH-88.722
MTHSDSINH-88.722
MTH\$GSINH—709.782

\section*{MTH\$xSQRT Square Root}

The Square Root routine returns the square root of the input value floating-point-input-value.

\section*{FORMAT \\ MTH\$SQRT floating-point-input-value \\ MTH\$DSQRT floating-point-input-value \\ MTH\$GSQRT floating-point-input-value}

Each of the above formats accepts as input one of the floating-point types.
jsb entries
MTH\$SQRT R3 MTH\$DSQRT_R5 MTH\$GSQRT_R5
Each of the above JSB entries accepts as input one of the floating-point types.

\section*{RETURNS}
\begin{tabular}{ll} 
VMS usage: & floating_point \\
type: & F_floating, \(D\) floating, G_floating \\
access: & write only \\
mechanism: & by value
\end{tabular}

The square root of floating-point-input-value. MTH\$SQRT returns an F-floating number. MTH\$DSQRT returns a D-floating number. MTH\$GSQRT returns a G-floating number.
\begin{tabular}{|c|c|}
\hline ARGUMENTS & \begin{tabular}{l}
floating-point-input-value \\
VMS usage: floating_point \\
type: \(\quad\) F_floating, D_floating, G_floating \\
access: read only \\
mechanism: by reference \\
Input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$SQRT, floating-point-input-value specifies an F-floating number. For MTH\$DSQRT, floating-point-input-value specifies a D-floating number. For MTH\$GSQRT, floating-point-input-value specifies a G-floating number.
\end{tabular} \\
\hline
\end{tabular}

DESCRIPTION The square root of \(X\) is computed as follows:
If \(X<0\), an error is signaled.
Let \(X=2^{K} * F\)
where:
K is the exponential part of the floating-point data
\(F\) is the fractional part of the floating-point data
If \(K\) is even:
\[
\begin{aligned}
& X=2^{(2 * P)} * F, \\
& z S Q R T(X)=2^{P} * z S Q R T(F) \\
& 1 / 2 \leq F<1, \text { where } \mathrm{P}=\mathrm{K} / 2
\end{aligned}
\]

If K is odd:
\[
\begin{aligned}
& X=2^{(2 * P+1)} * F=2^{(2 * P+2)} *(F / 2) \\
& z S Q R T(X)=2^{(P+1)} * z S Q R T(F / 2) \\
& 1 / 4 \leq F / 2<1 / 2, \text { where } \mathrm{p}=(\mathrm{K}-1) / 2
\end{aligned}
\]

Let \(F^{\prime}=A * F+B\), when K is even:
\(\mathrm{A}=0.95 \mathrm{~F} 6198\) (hex)
\(\mathrm{B}=0.6 \mathrm{BA} 5918\) (hex)
Let \(F^{\prime}=A *(F / 2)+B\), when K is odd:
\(A=0 . D 413 C C C\) (hex)
\(B=0.4\) C1E248 (hex)
Let \(K^{\prime}=P\), when \(K\) is even
Let \(K^{\prime}=P+1\), when \(K\) is odd
Let \(Y[0]=2^{K^{\prime}} * F^{\prime}\) be a straight line approximation within the given interval using coefficients \(A\) and \(B\) which minimize the absolute error at the midpoint and endpoint.
Starting with Y[0], n Newton-Raphson iterations are performed:
\[
Y[n+1]=1 / 2 *(Y[n]+X / Y[n])
\]
where \(\mathrm{n}=2\), 3 , or 3 for \(\mathrm{z}=\mathrm{F}\)-floating, D-floating, or G-floating, respectively.

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HSQRT.

VALUES
SIGNALED

SS\$_ROPRAND

MTH\$_SQUROONEG

Reserved operand. The MTH\$xSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Square root of negative number. Argument floating-point-input-value is less than 0.0 . LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0 /R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

\section*{MTH\$xTAN Tangent of Angle Expressed in Radians}

The Tangent of Angle Expressed in Radians routine returns the tangent of a given angle (in radians).
\begin{tabular}{ll} 
FORMAT & MTH\$TAN angle-in-radians \\
& MTH\$DTAN angle-in-radians \\
& MTH\$GTAN angle-in-radians
\end{tabular}

Each of the above formats accepts as input one of the floating-point types.
jsb entries MTH\$TAN_R4

MTH\$DTAN_R7
MTH\$GTAN_R7
Each of the above JSB entries accepts as input one of the floating-point types.

\section*{RETURNS}
\begin{tabular}{ll} 
VMS usage: & floating_point \\
type: & F_floating, \(D_{\text {_floating, }}\) G_floating \\
access: & write only \\
mechanism: & by value
\end{tabular}

The tangent of the angle specified by angle-in-radians. MTH\$TAN returns an F-floating number. MTH\$DTAN returns a D-floating number. MTH\$GTAN returns a G-floating number.

\section*{ARGUMENTS}

\section*{angle-in-radians}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating access: read only
mechanism: by reference
The input angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$TAN, angle-in-radians specifies an F-floating number. For MTH\$DTAN, angle-in-radians specifies a D-floating number. For MTH\$GTAN, angle-in-radians specifies a G-floating number.

\section*{MTH\$xTAN}

DESCRIPTION When the input argument is expressed in radians, the tangent function is computed as follows:
1 If \(|X|<2^{(-f / 2)}\), then \(z T A N(X)=X\) (see the section on MTH\$zCOSH for the definition of \(f\) )
2 Otherwise, call MTH\$zSINCOS to obtain \(z \operatorname{SIN}(\mathrm{X})\) and \(\mathrm{zCOS}(\mathrm{X})\); then
a. If \(z \operatorname{COS}(X)=0\), signal overflow
b. Otherwise, \(z \operatorname{TAN}(X)=z \operatorname{SIN}(X) / z \operatorname{COS}(X)\)

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HTAN.

CONDITION
VALUES SIGNALED

SS\$_ROPRAND Reserved operand. The MTH\$xTAN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_FLOOVEMAT Floating-point overflow in Math Library.

\section*{MTH\$xTAND Tangent of Angle Expressed in Degrees}

The Tangent of Angle Expressed in Degrees routine returns the tangent of a given angle (in degrees).
\begin{tabular}{ll} 
FORMAT & MTH\$TAND angle-in-degrees \\
& MTH\$DTAND angle-in-degrees \\
& MTH\$GTAND angle-in-degrees
\end{tabular}

Each of the above formats accepts as input one of the floating-point types.
\begin{tabular}{ll} 
jsb entries & MTH\$TAND_R4 \\
& MTH\$DTAND_R7 \\
& MTH\$GTAND_R7
\end{tabular}

Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating
access: write only
mechanism: by value
Tangent of the angle specified by angle-in-degrees. MTH\$TAND returns an F-floating number. MTH\$DTAND returns a D-floating number. MTH\$GTAND returns a G-floating number.

\section*{ARGUMENTS angle-in-degrees}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating access: read only
mechanism: by reference
The input angle (in degrees). The angle-in-degrees argument is the address of a floating-point number which is this angle. For MTH\$TAND, angle-in-degrees specifies an F-floating number. For MTH\$DTAND, angle-in-degrees specifies a D-floating number. For MTH\$GTAND, angle-in-degrees specifies a G-floating number.

DESCRIPTION
When the input argument is expressed in degrees, the tangent function is computed as follows:
1 If \(|X|<(180 / \pi) * 2^{(-2 /(e-1))}\) and underflow signaling is enabled, underflow is signaled (see the section on MTH\$zCOSH for the definition of e).
2 Otherwise, if \(|X|<(180 / \pi) * 2^{(-f / 2)}\), then \(z \operatorname{TAND}(X)=(\pi / 180) * X\). See the description of MTH\$zCOSH for the definition of \(f\).
3 Otherwise, call MTH\$zSINCOSD to obtain \(\mathrm{zSIND}(\mathrm{X})\) and \(\mathrm{zCOSD}(\mathrm{X})\).
a. Then, if \(z \operatorname{COSD}(X)=0\), signal overflow
b. Else, \(z \operatorname{TAND}(X)=z S I N D(X) / z \operatorname{COS} D(X)\)

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HTAND.

\section*{CONDITION VALUES SIGNALED}
\begin{tabular}{ll} 
SS\$_ROPRAND & \begin{tabular}{l} 
Reserved operand. The MTH\$xTAND procedure \\
encountered a floating-point reserved operand due to \\
incorrect user input. A floating-point reserved operand \\
is a floating-point datum with a sign bit of 1 and a a \\
biased exponent of zero.. Floating-point reserved \\
operands are reserved for future use by DIGITAL.
\end{tabular} \\
MTH\$_FLOOVEMAT & \begin{tabular}{l} 
Floating-point overilow in Math Library.
\end{tabular} \\
MTH\$_FLOUNDMAT & Floating-point underflow in Math Library.
\end{tabular}

\section*{MTH\$xTANH Compute the Hyperbolic Tangent}

The Compute the Hyperbolic Tangent routine returns the hyperbolic tangent of the input value.

\section*{FORMAT}

\section*{MTH\$TANH floating-point-input-value MTH\$DTANH floating-point-input-value MTH\$GTANH floating-point-input-value}

Each of the above formats accepts as input one of the floating-point types.

\section*{RETURNS}
\begin{tabular}{ll} 
VMS usage: & floating_point \\
type: & F_floating, \(D_{-}\)floating, G_floating \\
access: & write only \\
mechanism: & by value
\end{tabular}

The hyperbolic tangent of floating-point-input-value. MTH\$TANH returns an F-floating number. MTH\$DTANH returns a D-floating number. MTH\$GTANH returns a G-floating number. Unlike the other three routines, MTH \(\$\) HTANH returns the hyperbolic tangent by reference in the \(\mathbf{h}\)-tanh argument.

\section*{ARGUMENTS}

\section*{floating-point-input-value}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH \(\$\) TANH, floating-point-input-value specifies an F-floating number. For MTH\$DTANH, floating-point-input-value specifies a D-floating number. For MTH\$GTANH, floating-point-input-value specifies a G-floating number.

\section*{DESCRIPTION}

In calculating the hyperbolic tangent of \(x\), the values of \(g\) and \(h\) are:
\begin{tabular}{lll}
\hline \(\mathbf{z}\) & \(\mathbf{g}\) & \(\mathbf{h}\) \\
\hline F & 12 & 10 \\
D & 28 & 21 \\
G & 26 & 20 \\
\hline
\end{tabular}

For MTH\$TANH, MTH\$DTANH, and MTH\$GTANH the hyperbolic tangent of \(x\) is then computed as follows:
\begin{tabular}{|c|c|}
\hline Value of x & Hyperbolic Tangent Returned \\
\hline \(|x| \leq 2^{-g}\) & \(X\) \\
\hline \(2^{-g}<|X|<0.5\) & \(x \operatorname{TANH}(X)=X+X^{3} * R\left(X^{2}\right)\), where \(R\left(X^{2}\right)\) is a rational function of \(X^{2}\). \\
\hline \(0.5 \leq|X|<1.0\) & \[
\begin{aligned}
& x T A N H(X)=x T A N H(x H I)+x T A N H(x L O) * C / B \\
& \text { where } C=1-x T A N H(x H I) * x T A N H(x H I), \\
& B=1+x T A N H(x H I) * x T A N H(x L O), \\
& x H I=1 / 2+N / 16+1 / 32 \text { for } N=0,1, \ldots, 7, \\
& \text { and } x L O=X-x H I .
\end{aligned}
\] \\
\hline \(1.0<|X|<h\) & \(x T A N H(X)=(x E X P(2 * X)-1) /(x E X P(2 * X)+1)\) \\
\hline \(h \leq|X|\) & \(x T A N H(X)=\operatorname{sign}(X) * 1\) \\
\hline
\end{tabular}

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HTANH.

\section*{CONDITION \\ VALUE \\ SIGNALED}

SS\$_ROPRAND

Reserved operand. The MTH\$xTANH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

\section*{MTH\$UMAX Compute Unsigned Maximum}

The Compute Unsigned Maximum routine computes the unsigned longword maximum of \(n\) unsigned longword arguments, where \(n\) is greater than or equal to 1 .

\section*{FORMAT \\ MTH\$UMAX argument [argument,...]}
\(\left.\begin{array}{ll}\text { RETURNS } & \begin{array}{l}\text { VMS usage: } \\ \text { type: } \\ \text { access: } \\ \text { mechanism: }\end{array} \\ & \text { longword_unsigned } \\ \text { longword (unsigned) } & \text { brite value }\end{array}\right]\)

\section*{ARGUMENTS argument}

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Argument whose maximum MTH\$UMAX computes. Each argument argument is an unsigned longword that contains one of these values.

\section*{argument}

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Additional arguments whose maximum MTH\$UMAX computes. Each argument argument is an unsigned longword that contains one of these values.

DESCRIPTION MTH\$UMAX is the unsigned version of MTH\$JMAX0.

\section*{MTH\$UMIN Compute Unsigned Minimum}

The Compute Unsigned Minimum routine computes the unsigned longword minimum of \(n\) unsigned longword arguments, where n is greater than or equal to 1.

\section*{FORMAT MTH\$UMIN argument[argument,...]}
\begin{tabular}{ll} 
RETURNS & \begin{tabular}{l} 
VMS usage: \\
type: \\
access: \\
longword unsigned \\
longword (unsigned) \\
write only
\end{tabular} \\
& mechanism: by value \\
& Minimum value returned by MTH\$UMIN.
\end{tabular}

\section*{ARGUMENTS argument}

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Argument whose minimum MTH\$UMIN computes. Each argument argument is an unsigned longword that contains one of these values.

\section*{argument}

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Additional arguments whose minimum MTH\$UMIN computes. Each argument argument is an unsigned longword that contains one of these values.

DESCRIPTION MTH\$UMIN is the unsigned version of MTH\$JMIN0.

\section*{Vector MTH\$ Reference Section}

Part III provides detailed descriptions of two sets of vector routines provided by the VMS RTL Mathematics (MTH\$) Facility, BLAS Level 1 and FOLR. The BLAS Level 1 are the Basic Linear Algebraic Subroutines designed by Lawson, Hanson, Kincaid, and Krogh (1978). The FOLR (First Order Linear Recurrence) routines provide a vectorized algorithm for the linear recurrence relation.

\section*{BLAS1\$VIxAMAX Obtain the Index of the First Element of a Vector Having the Largest Absolute Value}

The Obtain the Index of the First Element of a Vector Having the Largest Absolute Value routines find the index of the first occurrence of a vector element having the maximum absolute value.

\section*{FORMAT}

BLAS1\$VISAMAX \(n, x, i n c x\)
BLAS1\$VIDAMAX \(n, x\),incx
BLAS1\$VIGAMAX \(n, x\),incx
BLAS1\$VICAMAX \(n, x\),incx
BLAS1\$VIZAMAX \(n, x\),incx
BLAS1\$VIWAMAX \(n, x\), incx
Use BLAS1\$VISAMAX for single-precision real operations. Use
BLAS1\$VIDAMAX for double-precision real (D-floating) operations and BLAS1\$VIGAMAX for double-precision real (G-floating) operations.
Use BLAS1\$VICAMAX for single-precision complex operations. Use BLAS1\$VIZAMAX for double-precision complex (D-floating) operations and BLAS1\$VIWAMAX for double-precision complex (G-floating) operations.

\section*{RETURNS}
\begin{tabular}{ll} 
VMS usage: & longword_signed \\
type: & longword integer (signed) \\
access: & write only \\
mechanism: & by value
\end{tabular}

For the real versions of this routine, the function value is the index of the first occurrence of a vector element having the maximum absolute value, as follows:
\(\left|x_{i}\right|=\max \left\{\left|x_{j}\right|\right.\) for \(\left.j=1,2, \ldots, n\right\}\)
For the complex versions of this routine, the function value is the index of the first occurrence of a vector element having the largest sum of the absolute values of the real and imaginary parts of the vector elements, as follows:
\[
\left|\operatorname{Re}\left(x_{i}\right)\right|+\left|\operatorname{Im}\left(x_{i}\right)\right|=\max \left\{\left|\operatorname{Re}\left(x_{j}\right)\right|+\left|\operatorname{Im}\left(x_{j}\right)\right| \text { for } j=1,2, \ldots, n\right\}
\]

\section*{ARGUMENTS \(\boldsymbol{n}\)}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of elements in vector \(x\). The \(\mathbf{n}\) argument is the address of a signed longword integer containing the number of elements. If you specify a negative value or 0 for \(\mathbf{n}, 0\) is returned.
\(\boldsymbol{X}\)
VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \(\mathbf{x}\) are accessed only if the increment argument of \(\mathbf{x}\), called incx, is 1 . The \(\mathbf{x}\) argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least
\(1+(n-1) *|i n c x|\)
where:
\begin{tabular}{ll}
\(n\) & number of vector elements specified in \(\mathbf{n}\) \\
incx & increment argument for the array \(\mathbf{x}\) specified in incx
\end{tabular}

Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for x \\
\hline BLAS1\$VISAMAX & F-floating real \\
BLAS1\$VIDAMAX & D-floating real \\
BLAS1\$VIGAMAX & G-floating real \\
BLAS1\$VICAMAX & F-floating complex \\
BLAS1\$VIZAMAX & D-floating complex \\
BLAS1\$VIWAMAX & G-floating complex \\
\hline
\end{tabular}

If \(\mathbf{n}\) is less than or equal to 0 , then imax is 0 .

\section*{incx}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{x}\). The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then \(x\) is referenced forward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced as
\(x(1+(i-1) * i n c x)\)
where:
\begin{tabular}{ll}
\(x\) & array specified in \(\mathbf{x}\) \\
\(i\) & element of the vector \(x\) \\
incx & increment argument for the array \(\mathbf{x}\) specified in incx
\end{tabular}

If you specify a negative value for incx, it is interpreted as the absolute value of incx.

\section*{BLAS1\$VIxAMAX}

\section*{DESCRIPTION}

BLAS1\$VISAMAX, BLAS1\$VIDAMAX, and BLAS1\$VIGAMAX find the index, \(i\), of the first occurrence of a vector element having the maximum absolute value. BLAS1\$VICAMAX, BLAS1\$VIZAMAX, and BLAS1\$VIWAMAX find the index, \(i\), of the first occurrence of a vector element having the largest sum of the absolute values of the real and imaginary parts of the vector elements.

Vector \(x\) contains \(\mathbf{n}\) elements that are accessed from array \(\mathbf{x}\) by stepping incx elements at a time. The vector \(x\) is a real or complex single-precision or double-precision ( D and G ) \(n\)-element vector. The vector can be a row or a column of a matrix. Both forward and backward indexing are permitted.
BLAS1\$VISAMAX, BLAS1\$VIDAMAX, and BLAS1\$VIGAMAX determine the smallest integer \(i\) of the \(n\)-element vector \(x\) such that:
\(\left|x_{i}\right|=\max \left\{\left|x_{j}\right|\right.\) for \(\left.j=1,2, \ldots, n\right\}\)
BLAS1\$VICAMAX, BLAS1\$VIZAMAX, and BLAS1\$VIWAMAX determine the smallest integer \(i\) of the \(n\)-element vector \(x\) such that:
\(\left|\operatorname{Re}\left(x_{i}\right)\right|+\left|\operatorname{Im}\left(x_{i}\right)\right|=\max \left\{\left|\operatorname{Re}\left(x_{j}\right)\right|+\left|\operatorname{Im}\left(x_{j}\right)\right|\right.\) for \(\left.j=1,2, \ldots, n\right\}\)
You can use the BLAS1\$VIxAMAX routines to obtain the pivots in Gaussian elimination.

The public-domain BLAS Level 1 IxAMAX routines require a positive value for incx. The Run-Time Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for incx \(=0\). Therefore, specifying 0 for incx has the effect of setting imax equal to 1 using vector operations.

\section*{EXAMPLE}
```

C
C To obtain the index of the element with the maximum
C absolute value.
C
INTEGER IMAX,N, INCX
REAL X (40)
INCX $=2$
$N=20$
IMAX $=$ BLAS1\$VISAMAX $(N, X, I N C X)$

```

\section*{BLAS1\$VxASUM Obtain the Sum of the Absolute Values of the Elements of a Vector}

The Obtain the Sum of the Absolute Values of the Elements of a Vector routines determine the sum of the absolute values of the elements of the \(n\)-element vector \(x\).
\begin{tabular}{ll} 
FORMAT & BLAS1\$VSASUM \(n, x\), incx \\
& BLAS1\$VDASUM \(n, x, i n c x\) \\
& BLAS1\$VGASUM \(n, x, i n c x\) \\
& BLAS1\$VSCASUM \(n, x\), incx \\
& BLAS1\$VDZASUM \(n, x, i n c x\) \\
& BLAS1\$VGWASUM \(n, x\), incx
\end{tabular}

Use BLAS1\$VSASUM for single-precision real operations. Use BLAS1\$VDASUM for double-precision real (D-floating) operations and BLAS1\$VGASUM for double-precision real (G-floating) operations.

Use BLAS1\$VSCASUM for single-precision complex operations. Use BLAS1\$VDZASUM for double-precision complex (D-floating) operations and BLAS1\$VGWASUM for double-precision complex (G-floating) operations.

\section*{RETURNS}
\begin{tabular}{ll} 
VMS usage: & floating_point \\
type: & F_floating, \(D_{\text {_floating, or }}\) G_floating real \\
access: & write only \\
mechanism: & by value
\end{tabular}

The function value, called sum, is the sum of the absolute values of the elements of the vector \(x\). The data type of the function value is a real number; for the BLAS1\$VSCASUM, BLAS1\$VDZASUM, and BLAS1\$VGWASUM routines, the data type of the function value is the real data type corresponding to the complex argument data type.

\section*{n}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector \(x\) to be added. The \(\mathbf{n}\) argument is the address of a signed longword integer containing the number of elements.

\section*{BLAS1\$VxASUM}
\(\boldsymbol{X}\)
VMS usage: floating_point or complex_number type: \(\quad\) F_floating, D_floating, G_floating real or F_floating, \(D_{-}^{-}\)floating, \(G_{-}^{-}\)floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \(\mathbf{x}\) are accessed only if the increment argument of \(\mathbf{x}\), called incx, is 1 . The \(\mathbf{x}\) argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least
\(1+(n-1) *|i n c x|\)
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{x}\) \\
\hline BLAS1\$VSASUM & F-floating real \\
BLAS1\$VDASUM & D-floating real \\
BLAS1\$VGASUM & G-floating real \\
BLAS1\$VSCASUM & F-floating complex \\
BLAS1\$VDZASUM & D-floating complex \\
BLAS1\$VGWASUM & G-floating complex \\
\hline
\end{tabular}

If \(\mathbf{n}\) is less than or equal to 0 , then sum is 0.0 .
incx
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{x}\). The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then \(x\) is referenced forward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(i-1) * i n c x)\)
where:
\(x \quad\) array specified in \(\mathbf{x}\)
\(i \quad\) element of the vector \(x\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
If you specify a negative value for incx, it is interpreted as the absolute value of incx.

BLAS1\$VSASUM, BLAS1\$VDASUM, and BLAS1\$VGASUM obtain the sum of the absolute values of the elements of the \(n\)-element vector \(x\). BLAS1\$VSCASUM, BLAS1\$VDZASUM, and BLAS1\$VGWASUM obtain the sum of the absolute values of the real and imaginary parts of the elements of the \(n\)-element vector \(x\).
Vector \(x\) contains \(\mathbf{n}\) elements that are accessed from array \(\mathbf{x}\) by stepping incx elements at a time. The vector \(x\) is a real or complex single-precision. or double-precision (D and G) \(n\)-element vector. The vector can be a row or a column of a matrix. Both forward and backward indexing are permitted.
BLAS1\$VSASUM, BLAS1\$VDASUM, and BLAS1\$VGASUM compute the sum of the absolute values of the elements of \(x\), which is expressed as follows:
\(\sum_{i=1}^{n}\left|x_{i}\right|=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|\)
BLAS1\$VSCASUM, BLAS1\$VDZASUM, and BLAS1\$VGWASUM compute the sum of the absolute values of the real and imaginary parts of the elements of \(x\), which is expressed as follows:
\(\sum_{i=1}^{n}\left(\left|a_{i}\right|+\left|b_{i}\right|\right)=\left(\left|a_{1}\right|+\left|b_{1}\right|\right)+\left(\left|a_{2}\right|+\left|b_{2}\right|\right)+\ldots+\left(\left|a_{n}\right|+\left|b_{n}\right|\right)\)
where \(\left|x_{i}\right|=\left(a_{i}, b_{i}\right)\)
and \(\left|a_{i}\right|+\left|b_{i}\right|=\mid\) real \(|+|\) imaginary \(\mid\)
The public-domain BLAS Level 1 xASUM routines require a positive value for incx. The Run-Time Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.
The algorithm does not provide a special case for incx \(=0\). Therefore, specifying 0 for incx has the effect of computing \(n *\left|x_{1}\right|\) using vector operations.
Rounding in the summation occurs in a different order than in a sequential evaluation of the sum, so the final result may differ from the result of a sequential evaluation.

\section*{EXAMPLE}
```

C
C To obtain the sum of the absolute values of the
C elements of vector x:
C
INTEGER N, INCX
REAL X(20),SUM
INCX = 1
N = 20
SUM = BLASI\$VSASUM (N,X,INCX)

```

\section*{BLAS1\$VxAXPY \\ Multiply a Vector by a Scalar and Add a Vector}

The Multiply a Vector by a Scalar and Add a Vector routines compute \(a x+y\), where \(\mathbf{a}\) is a scalar number and \(x\) and \(y\) are \(n\)-element vectors.

\section*{FORMAT}

BLAS1\$VSAXPY \(n, a, x\), incx, \(y\),incy
BLAS1\$VDAXPY \(n, a, x\),incx,\(y\),incy BLAS1\$VGAXPY \(n, a, x\), incx, \(y\),incy BLAS1\$VCAXPY \(n, a, x\), incx,\(y\),incy BLAS1\$VZAXPY \(n, a, x\),incx, \(y\), incy BLAS1\$VWAXPY \(n, a, x\), incx, \(y\),incy
Use BLAS1\$VSAXPY for single-precision real operations. Use BLAS1\$VDAXPY for double-precision real (D-floating) operations and BLAS1\$VGAXPY for double-precision real (G-floating) operations.
Use BLAS1\$VCAXPY for single-precision complex operations. Use BLAS1\$VZAXPY for double-precision complex (D-floating) operations and BLAS1\$VWAXPY for double-precision complex (G-floating) operations.

\section*{RETURNS None.}

\section*{ARGUMENTS \\ n}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vectors \(x\) and \(y\). The \(\mathbf{n}\) argument is the address of a signed longword integer containing the number of elements. If \(\mathbf{n}\) is less than or equal to 0 , then \(\mathbf{y}\) is unchanged.

\section*{a}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, D_floating, G_floating real or F_floating, \(D_{-}\)floating, \(G_{-}\)floating complex
access: read only
mechanism: by reference, array reference
Scalar multiplier for the array \(\mathbf{x}\). The a argument is the address of a floating-point or floating-point complex number that is this multiplier. If \(\mathbf{a}\) equals 0 , then \(\mathbf{y}\) is unchanged. If a shares a memory location with any element of the vector \(y\), results are unpredictable. Specify the same data type for arguments \(\mathbf{a}, \mathbf{x}\), and \(\mathbf{y}\).

\section*{\(\boldsymbol{X}\)}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, \(D_{-}\)floating, \(G_{-}\)floating real or \(F_{-}\)floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \(\mathbf{x}\) are accessed only if the increment argument of \(\mathbf{x}\), called incx, is 1 . The \(\mathbf{x}\) argument is the address of a floating-point or floating-point complex number that is this array. The length of this array is at least
\[
1+(n-1) *|i n c x|
\]
where:
\begin{tabular}{ll}
\(n\) & number of vector elements specified in \(\mathbf{n}\) \\
incx & increment argument for the array \(\mathbf{x}\) specified in incx
\end{tabular}

Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{x}\) \\
\hline BLAS1\$VSAXPY & F-floating real \\
BLAS1\$VDAXPY & D-floating real \\
BLAS1\$VGAXPY & G-floating real \\
BLAS1\$VCAXPY & F-floating complex \\
BLAS1\$VZAXPY & D-floating complex \\
BLAS1\$VWAXPY & G-floating complex \\
\hline
\end{tabular}

If any element of \(x\) shares a memory location with an element of \(y\), the results are unpredictable.

\section*{incx}

VMS usage: longword_signed type: longword integer (signed) access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{x}\). The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then \(x\) is referenced forward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(i-1) * i n c x)\)
where:
\begin{tabular}{ll}
\(x\) & array specified in \(\mathbf{x}\) \\
\(i\) & element of the vector \(x\) \\
incx & increment argument for the array \(\mathbf{x}\) specified in incx
\end{tabular}

If incx is less than 0 , then \(x\) is referenced backward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\[
x(1+(n-i) *|i n c x|)
\]
where:
\begin{tabular}{ll}
\(x\) & array specified in \(\mathbf{x}\) \\
\(n\) & number of vector elements specified in \(\mathbf{n}\) \\
\(i\) & element of the vector \(x\) \\
incx & increment argument for the array \(\mathbf{x}\) specified in incx
\end{tabular}

\section*{\(y\)}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
On entry, array containing the elements to be accessed. All elements of array \(\mathbf{y}\) are accessed only if the increment argument of \(\mathbf{y}\), called incy, is 1 . The \(y\) argument is the address of a floating-point or floating-point complex number that is this array. The length of this array is at least
\(1+(n-1) *|i n c y|\)
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incy increment argument for the array \(y\) specified in incy
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{y}\) \\
\hline BLAS1\$VSAXPY & F-floating real \\
BLAS1\$VDAXPY & D-floating real \\
BLAS1\$VGAXPY & G-floating real \\
BLAS1\$VCAXPY & F-floating complex \\
BLAS1\$VZAXPY & D-floating complex \\
BLAS1\$VWAXPY & G-floating complex \\
\hline
\end{tabular}

If \(\mathbf{n}\) is less than or equal to 0 , then \(\mathbf{y}\) is unchanged. If any element of \(x\) shares a memory location with an element of \(y\), the results are unpredictable.
On exit, \(y\) contains an array of length at least
\(1+(n-1) *|i n c y|\)
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incy increment argument for the array \(y\) specified in incy
After the call to BLAS1 \(\$ V x A X P Y, y_{i}\) is set equal to
\(y_{i}+a * x_{i}\).

\section*{BLAS1\$VxAXPY}
where:
\begin{tabular}{ll}
\(y\) & the vector \(y\) \\
\(i\) & element of the vector \(x\) or \(y\) \\
\(a\) & scalar multiplier for the vector \(x\) specified in a \\
\(x\) & the vector \(x\)
\end{tabular}

\section*{incy}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{y}\). The incy argument is the address of a signed longword integer containing the increment argument. If incy is greater than or equal to 0 , then \(y\) is referenced forward in array \(\mathbf{y}\); that is, \(y_{i}\) is referenced in
\(y(1+(i-1) * i n c y)\)
where:
```

y array specified in y
i element of the vector }
incy increment argument for the array y specified in incy

```

If incy is less than 0 , then \(y\) is referenced backward in array \(\mathbf{y}\); that is, \(y_{i}\) is referenced in
\[
y(1+(n-i) *|i n c y|)
\]
where:
\begin{tabular}{ll}
\(\boldsymbol{y}\) & array specified in \(\mathbf{y}\) \\
\(n\) & number of vector elements specified in \(\mathbf{n}\) \\
\(i\) & element of the vector \(y\) \\
incy & increment argument for the array \(\mathbf{y}\) specified in incy
\end{tabular}

\section*{DESCRIPTION}

BLAS1\$VxAXPY multiplies a vector \(x\) by a scalar, adds to a vector \(y\), and stores the result in the vector \(y\). This is expressed as follows:
\[
y \leftarrow a x+y
\]
where \(\mathbf{a}\) is a scalar number and \(x\) and \(y\) are real or complex singleprecision or double-precision ( D and G ) \(n\)-element vectors. The vectors can be rows or columns of a matrix. Both forward and backward indexing are permitted. Vectors \(x\) and \(y\) contain \(\mathbf{n}\) elements that are accessed from arrays \(\mathbf{x}\) and \(\mathbf{y}\) by stepping incx and incy elements at a time.

The routine name determines the data type you should specify for arguments \(\mathbf{a}, \mathbf{x}\), and \(\mathbf{y}\). Specify the same data type for each of these arguments.
The algorithm does not provide a special case for incx \(=0\). Therefore, specifying 0 for incx has the effect of adding the constant \(a * x_{1}\) to all elements of the vector \(y\) using vector operations.

\section*{EXAMPLE}
```

C
C To compute y=y+2.0*x using SAXPY:
C
INTEGER N,INCX,INCY
REAL X(20), Y(20),A
INCX = 1
INCY = 1
A = 2.0
N = 20
CALL BLAS1\$VSAXPY(N, A,X,INCX,Y,INCY)

```

\section*{BLAS1\$VxCOPY Copy a Vector}

The Copy a Vector routines copy \(n\) elements of the vector \(x\) to the vector \(y\).

FORMAT
BLAS1\$VSCOPY \(n, x\),incx, \(y\),incy
BLAS1\$VDCOPY \(n, x\),incx,y,incy
BLAS1\$VCCOPY \(n, x\), incx, \(y\),incy
BLAS1\$VZCOPY \(n, x\), incx,\(y\),incy
Use BLAS1\$VSCOPY for single-precision real operations and BLAS1\$VDCOPY for double-precision real (D or G) operations.
Use BLAS1\$VCCOPY for single-precision complex operations and BLAS1\$VZCOPY for double-precision complex (D or G) operations.

\section*{RETURNS}

None.

\section*{ARGUMENTS}

\section*{n}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector \(x\) to be copied. The \(\mathbf{n}\) argument is the address of a signed longword integer containing the number of elements in vector \(x\). If \(\mathbf{n}\) is less than or equal to 0 , then \(y\) is unchanged.

\section*{X}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, \(D_{\text {_ floating, }} G_{-}\)floating real or \(F_{-}\)floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \(\mathbf{x}\) are accessed only if the increment argument of \(\mathbf{x}\), called incx, is 1 . The \(\mathbf{x}\) argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least
\(1+(n-1) *|i n c x|\)
where:
\begin{tabular}{ll}
\(n\) & number of vector elements specified in \(\mathbf{n}\) \\
incx & increment argument for the array \(\mathbf{x}\) specified in incx
\end{tabular}

\section*{BLAS1\$VxCOPY}

Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{x}\) \\
\hline BLAS1\$VSCOPY & F-floating real \\
BLAS1\$VDCOPY & D-floating or G-floating real \\
BLAS1\$VCCOPY & F-floating complex \\
BLAS1\$VZCOPY & D-floating or G-floating complex \\
\hline
\end{tabular}

\section*{incx}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{x}\). The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then \(x\) is referenced forward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(i-1) * i n c x)\)
where:
\(x \quad\) array specified in \(\mathbf{x}\)
\(i\) element of the vector \(x\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
If incx is less than 0 , then \(x\) is referenced backward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\[
x(1+(n-i) *|i n c x|)
\]
where:

\[
1+(n-1) *|i n c y|
\]
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incy increment argument for the array y specified in incy
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{y}\) \\
\hline BLAS1\$VSCOPY & F-floating real \\
BLAS1\$VDCOPY & D-floating or G-floating real \\
BLAS1\$VCCOPY & F-floating complex \\
BLAS1\$VZCOPY & D-floating or G-floating complex \\
\hline
\end{tabular}

If \(\mathbf{n}\) is less than or equal to 0 , then \(\mathbf{y}\) is unchanged. If incx is equal to 0 , then each \(y_{i}\) is set to \(x_{1}\). If incy is equal to 0 , then \(y_{i}\) is set to the last referenced element of \(x\). If any element of \(x\) shares a memory location with an element of \(y\), the results are unpredictable. (See the Description section for a special case that does not cause unpredictable results when the same memory location is shared by input and output.)

\section*{incy}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(y\). The incy argument is the address of a signed longword integer containing the increment argument. If incy is greater than or equal to 0 , then \(y\) is referenced forward in array \(y\); that is, \(y_{i}\) is referenced in
\(y(1+(i-1) * i n c y)\)
where:
\(y \quad\) array specified in \(\mathbf{y}\)
\(i \quad\) element of the vector \(y\)
If incy is less than 0 , then \(y\) is referenced backward in array \(\mathbf{y}\); that is, \(y_{i}\) is referenced in
\(y(1+(n-i) *|i n c y|)\)
where:
\(y \quad\) array specified in \(\mathbf{y}\)
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
\(i \quad\) element of the vector \(y\)
incy increment argument for the array y specified in incy

\section*{BLAS1\$VxCOPY}

DESCRIPTION BLAS1\$VSCOPY, BLAS1\$VDCOPY, BLAS1\$VCCOPY, and BLAS1\$VZCOPY copy \(n\) elements of the vector \(x\) to the vector \(y\). Vector \(x\) contains \(\mathbf{n}\) elements that are accessed from array \(\mathbf{x}\) by stepping incx elements at a time. Both \(x\) and \(y\) are real or complex single-precision or double-precision (D and G) \(n\)-element vectors. The vectors can be rows or columns of a matrix. Both forward and backward indexing are permitted.
If you specify 0 for incx, BLAS1\$VxCOPY initializes all elements of \(y\) to a constant.

If you specify -incx for incy, the vector \(x\) is stored in reverse order in \(y\). In this case, the call format is as follows:
```

CALL BLASI\$VxCOPY (N,X,INCX,Y,-INCX)

```

It is possible to move the contents of a vector up or down within itself and not cause unpredictable results even though the same memory location is shared between input and output. To do this when \(i\) is greater than \(j\), call the routine BLAS1\$VxCOPY with incx \(=\) incy \(>0\) as follows:
CALL BLAS1\$VXCOPY ( \(\mathrm{N}, \mathrm{X}(\mathrm{I}), \operatorname{INCX}, \mathrm{X}(\mathrm{J}), I N C X)\)
The preceding call to BLAS1\$VxCOPY moves
\(x(i), x(i+1 * i n c x), \ldots x(i+(n-1) * i n c x)\) to
\(x(j), x(j+1 * i n c x), \ldots x(j+(n-1) * i n c x)\)
If \(i\) is less than \(j\), specify a negative value for incx and incy in the call to BLAS1\$VxCOPY, as follows. The parts that do not overlap are unchanged.
CALL BLAS1\$VxCOPY ( \(\mathrm{N}, \mathrm{X}(\mathrm{I}),-\operatorname{INCX}, \mathrm{X}(\mathrm{J}),-\operatorname{INCX})\)
Note: BLAS1\$VxCOPY does not perform floating operations on the input data. Therefore, floating reserved operands are not detected by BLAS1\$VxCOPY.

\section*{BLAS1\$VxCOPY}

\section*{EXAMPLE}
```

C
C To copy a vector }x\mathrm{ to a vector y using BLAS1$VSCOPY:
C
        INTEGER N,INCX,INCY
        REAL X(20),Y(20)
        INCX = 1
        INCY = 1
        N = 20
        CALL BLAS1$VSCOPY(N,X,INCX,Y,INCY)
C
C To move the contents of X(1),X(3),X(5),...,X(2N-1)
C to }X(3),X(5),···,X(2N+1) and leave x unchanged
C
CALL BLAS1$VSCOPY(N,X,-2,X(3),-2))
C
C To move the contents of X(2),X(3),...,X(100) to
C X(1),X(2),\ldots,X(99) and leave x(100) unchanged:
C
    CALL BLAS1$VSCOPY(99,X(2),1,X,1))
C
C To move the contents of X(1),X(2),X(3),···,X(N) to
C Y(N),Y(N-1),···,Y
C
CALL BLAS1\$VSCOPY(N,X,1,Y,-1))

```

\section*{BLAS1\$VxDOTx Obtain the Inner Product of Two Vectors}

The Obtain the Inner Product of Two Vectors routines return the dot product of two \(n\)-element vectors, \(x\) and \(y\).

\section*{FORMAT}

BLAS1\$VSDOT \(n, x\),incx, \(y\),incy BLAS1\$VDDOT \(n, x\),incx, \(y\),incy BLAS1\$VGDOT \(n, x\),incx, \(y\),incy BLAS1\$VCDOTU \(n, x\), incx,y,incy BLAS1\$VCDOTC \(n, x\),incx,y,incy BLAS1\$VZDOTU \(n, x\), incx,\(y\),incy
BLAS1\$VWDOTU \(n, x\),incx, \(y\),incy BLAS1\$VZDOTC \(n, x\), incx,\(y\),incy BLAS1\$VWDOTC \(n, x\),incx, \(y\),incy
Use BLAS1\$VSDOT to obtain the inner product of two single-precision real vectors.

Use BLAS1\$VDDOT to obtain the inner product of two double-precision (D-floating) real vectors. Use BLAS1\$VGDOT to obtain the inner product of two double-precision (G-floating) real vectors.

Use BLAS1\$VCDOTU to obtain the inner product of two single-precision complex vectors (unconjugated).
Use BLAS1\$VCDOTC to obtain the inner product of two single-precision complex vectors (conjugated).

Use BLAS1\$VZDOTU to obtain the inner product of two double-precision (D-floating) complex vectors (unconjugated). Use BLAS1\$VWDOTU to obtain the inner product of two double-precision (G-floating) complex vectors (unconjugated).
Use BLAS1\$VZDOTC to obtain the inner product of two double-precision (D-floating) complex vectors (conjugated). Use BLAS1\$VWDOTC to obtain the inner product of two double-precision (G-floating) complex vectors (conjugated).

\section*{RETURNS}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, \(D \_f l o a t i n g, ~ G \_f l o a t i n g ~ r e a l ~ o r ~ F \_f l o a t i n g, ~\) D_floating, \(\mathbf{G}^{-}\)floating complex
access: write only
mechanism: by value
The function value, called dotpr, is the dot product of two \(n\)-element vectors, \(x\) and \(y\). Specify the same data type for dotpr and the argument \(\mathbf{x}\).

\section*{BLAS1\$VxDOTx}

\section*{ARGUMENTS \\ n}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector \(x\). The \(\mathbf{n}\) argument is the address of a signed longword integer containing the number of elements. If you specify a value for \(\mathbf{n}\) that is less than or equal to 0 , then the value of dotpr is 0.0 .

\section*{X}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \(\mathbf{x}\) are accessed only if the increment argument of \(\mathbf{x}\), called incx, is 1 . The \(\mathbf{x}\) argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least
\(1+(n-1) *|i n c x|\)
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{x}\) \\
\hline BLAS1\$VSDOT & F-floating real \\
BLAS1\$VDDOT & D-floating real \\
BLAS1\$VGDOT & G-floating real \\
BLAS1\$VCDOTU and & F-floating complex \\
BLAS1\$VCDOTC & \\
BLAS1\$VZDOTU and & D-floating complex \\
BLAS1\$VZDOTC & \\
BLAS1\$VWDOTU & G-floating complex \\
and \\
BLAS1\$VWDOTC & \\
\hline
\end{tabular}

\section*{BLAS1\$VxDOTx}

\section*{incx}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{x}\). The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than 0 , then \(x\) is referenced forward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(i-1) * i n c x)\)
where:
\(x \quad\) array specified in \(\mathbf{x}\)
\(i \quad\) element of the vector \(x\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
If incx is less than 0 , then \(x\) is referenced backward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(n-i) *|i n c x|)\)
where:
\(x \quad\) array specified in \(\mathbf{x}\)
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
\(i \quad\) element of the vector \(x\)
incx increment argument for the array \(\mathbf{x}\) specified in incx

\section*{\(y\)}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \(\mathbf{y}\) are accessed only if the increment argument of \(\mathbf{y}\), called incy, is 1 . The \(\mathbf{y}\) argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least
\(1+(n-1) *|i n c y|\)
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incy increment argument for the array \(y\) specified in incy

Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(y\) \\
\hline BLAS1\$VSDOT & F-floating real \\
BLAS1\$VDDOT & D-floating real \\
BLAS1\$VGDOT & G-floating real \\
\begin{tabular}{ll} 
BLAS1\$VCDOTU and & F-floating complex \\
BLAS1\$VCDOTC & \\
BLAS1\$VZDOTU and & D-floating complex \\
\begin{tabular}{ll} 
BLAS1\$VZDOTC
\end{tabular} & \\
\begin{tabular}{l} 
BLAS1\$VWDOTU \\
and
\end{tabular} & G-floating complex \\
BLAS1\$VWDOTC & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{incy}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{y}\). The incy argument is the address of a signed longword integer containing the increment argument. If incy is greater than or equal to 0 , then \(y\) is referenced forward in array \(\mathbf{y}\); that is, \(y_{i}\) is referenced in
\(y(1+(i-1) * i n c y)\)
where:
\(y \quad\) array specified in \(\mathbf{y}\)
\(i \quad\) element of the vector \(y\)
incy increment argument for the array \(y\) specified in incy
If incy is less than 0 , then \(y\) is referenced backward in array \(\mathbf{y}\); that is, \(y_{i}\) is referenced in
\(y(1+(n-i) *|i n c y|)\)
where:
\begin{tabular}{ll}
\(y\) & array specified in \(\mathbf{y}\) \\
\(n\) & number of vector elements specified in \(\mathbf{n}\) \\
\(i\) & element of the vector \(y\) \\
incy & increment argument for the array \(\mathbf{y}\) specified in incy
\end{tabular}

\section*{DESCRIPTION}

The unconjugated versions of this routine, BLAS1\$VSDOT, BLAS1\$VDDOT, BLAS1\$VGDOT, BLAS1\$VCDOTU, BLAS1\$VZDOTU, and BLAS1\$VWDOTU return the dot product of two \(n\)-element vectors, \(x\) and \(y\), expressed as follows:
\(x \cdot y=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\)
The conjugated versions of this routine, BLAS1\$VCDOTC, BLAS1\$VZDOTC, and BLAS1\$VWDOTC return the dot product of the conjugate of the first \(n\)-element vector with a second \(n\)-element vector, as follows:
\[
\bar{x} \cdot y=\bar{x}_{1} y_{1}+\bar{x}_{2} y_{2}+\ldots+\bar{x}_{n} y_{n}
\]

Vectors \(x\) and \(y\) contain \(\mathbf{n}\) elements that are accessed from arrays \(\mathbf{x}\) and \(\mathbf{y}\) by stepping incx and incy elements at a time. The vectors \(x\) and \(y\) can be rows or columns of a matrix. Both forward and backward indexing are permitted.
The routine name determines the data type you should specify for arguments \(\mathbf{x}\) and \(\mathbf{y}\). Specify the same data type for these arguments.
Rounding in BLAS1\$VxDOTx occurs in a different order than in a sequential evaluation of the dot product. The final result may differ from the result of a sequential evaluation.

\section*{EXAMPLE}
```

C
C To compute the dot product of two vectors, }x\mathrm{ and y,
C and return the result in DOTPR:
C
INTEGER INCX,INCY
REAL X(20),Y(20),DOTPR
INCX = 1
INCY = 1
N=20
DOTPR = BLASI\$VSDOT (N,X,INCX,Y,INCY)

```

\section*{BLAS1\$VxNRM2 Obtain the Euclidean Norm of a Vector}

The Obtain the Euclidean Norm of a Vector routines obtain the Euclidean norm of an \(n\)-element vector \(x\), expressed as follows:
\(\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}\)

BLAS1\$VSNRM2
\(n, x\), incx
BLAS1\$VDNRM2
\(n, x\),incx
BLAS1\$VGNRM2
\(n, x\),incx
BLAS1\$VSCNRM2 \(n, x\),incx
BLAS1\$VDZNRM2 \(n, x\),incx
BLAS1\$VGWNRM2 \(n, x\),incx
Use BLAS1\$VSNRM2 for single-precision real operations. Use BLAS1\$VDNRM2 for double-precision real (D-floating) operations and BLAS1\$VGNRM2 for double-precision real (G-floating) operations.
Use BLAS1\$VSCNRM2 for single-precision complex operations. Use BLAS1\$VDZNRM2 for double-precision complex (D-floating) operations and BLAS1\$VGWNRM2 for double-precision complex (G-floating) operations.

RETURNS
VMS usage: floating_point
type: \(\quad\) F_floating, \(D\) _floating, or G_floating real
access: write only
mechanism: by value
The function value, called e_norm, is the Euclidean norm of the vector \(x\). The data type of the function value is a real number; for the BLAS1\$VSCNRM2, BLAS1\$VDZNRM2, and BLAS1\$VGWNRM2 routines, the data type of the function value is the real data type corresponding to the complex argument data type.

\section*{ARGUMENTS}
n
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector \(x\) to be processed. The \(\mathbf{n}\) argument is the address of a signed longword integer containing the number of elements.

\section*{BLAS1\$VxNRM2}

\section*{X}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \(\mathbf{x}\) are accessed only if the increment argument of \(\mathbf{x}\), called incx, is 1. The \(\mathbf{x}\) argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least
\(1+(n-1) *|i n c x|\)
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{x}\) \\
\hline BLAS1\$VSNRM2 & F-floating real \\
BLAS1\$VDNRM2 & D-floating real \\
BLAS1\$VGNRM2 & G-floating real \\
BLAS1\$VSCNRM2 & F-floating complex \\
BLAS1\$VDZNRM2 & D-floating complex \\
BLAS1\$VGWNRM2 & G-floating complex \\
\hline
\end{tabular}

If \(\mathbf{n}\) is less than or equal to 0 , then \(\mathbf{e}\) _norm is 0.0 .

\section*{incx}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{x}\). The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then \(x\) is referenced forward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(i-1) * i n c x)\)
where:
\(x \quad\) array specified in \(\mathbf{x}\)
\(i \quad\) element of the vector \(x\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
If you specify a negative value for incx, it is interpreted as the absolute value of incx.

\section*{DESCRIPTION}

BLAS1\$VxNRM2 obtains the Euclidean norm of an \(n\)-element vector \(x\), expressed as follows:
\(\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}\)
Vector \(x\) contains \(\mathbf{n}\) elements that are accessed from array \(\mathbf{x}\) by stepping incx elements at a time. The vector \(x\) is a real or complex single-precision or double-precision ( D and G ) \(n\)-element vector. The vector can be a row or a column of a matrix. Both forward and backward indexing are permitted.
The public-domain BLAS Level 1 xNRM 2 routines require a positive value for incx. The Run-Time Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.
The algorithm does not provide a special case for incx \(=0\). Therefore, specifying 0 for incx has the effect of using vector operations to set e_norm as follows:
e_norm \(=n^{0.5} *\left|x_{1}\right|\)
For BLAS1\$VDNRM2, BLAS1\$VGNRM2, BLAS1\$VDZNRM2, and BLAS1\$VGWNRM2 (the double-precision routines), the elements of the vector \(x\) are scaled to avoid intermediate overflow or underflow. BLAS1\$VSNRM2 and BLAS1\$VSCNRM2 (the single-precision routines) use a backup data type to avoid intermediate overflow or underflow.
Rounding in BLAS1\$VxNRM2 occurs in a different order than in a sequential evaluation of the Euclidean norm. The final result may differ from the result of a sequential evaluation.

\section*{EXAMPLE}
```

C
C To obtain the Euclidean norm of the vector x:
C
INTEGER INCX,N
REAL X(20),E_NORM
INCX = 1
N = 20
E_NORM = BLAS1\$VSNRM2 (N,X,INCX)

```

\section*{BLAS1\$VxROT Apply a Givens Plane Rotation}

The Apply a Givens Plane Rotation routines apply a Givens plane rotation to a pair of \(n\)-element vectors \(x\) and \(y\).

BLAS1\$VSROT \(n, x\),incx, \(y\),incy \(c, s\)
BLAS1\$VDROT \(n, x\),incx, \(y\),incy, \(c, s\)
BLAS1\$VGROT \(n, x\),incx, \(y\),incy, \(c, s\)
BLAS1\$VCSROT \(n, x\),incx, \(y\), incy \(, c, s\)
BLAS1\$VZDROT \(n, x\), incx, \(y\),incy \(, c, s\) BLAS1\$VWGROT \(n, x\), incx, \(y\),incy, \(c, s\)
Use BLAS1\$VSROT for single-precision real operations. Use BLAS1\$VDROT for double-precision real (D-floating) operations and BLAS1\$VGROT for double-precision real (G-floating) operations.

Use BLAS1\$VCSROT for single-precision complex operations. Use BLAS1\$VZDROT for double-precision complex (D-floating) operations and BLAS1\$VWGROT for double-precision complex (G-floating) operations. BLAS1\$VCSROT, BLAS1\$VZDROT, and BLAS1\$VWGROT are real rotations applied to a complex vector.

\section*{RETURNS}

None.

\section*{ARGUMENTS \\ n \\ VMS usage: longword_signed \\ type: longword integer (signed) \\ access: read only \\ mechanism: by reference \\ Number of elements in vectors \(x\) and \(y\) to be rotated. The \(n\) argument is the address of a signed longword integer containing the number of elements to be rotated. If \(\mathbf{n}\) is less than or equal to 0 , then \(\mathbf{x}\) and \(\mathbf{y}\) are unchanged. \\ \(\boldsymbol{X}\) \\ VMS usage: floating_point or complex_number \\ type: \(\quad\) F_floating, D_floating, G_floating real or F_floating, D_floating, \(G_{-}\)floating complex \\ access: modify \\ mechanism: by reference, array reference \\ Array containing the elements to be accessed. All elements of array \(\mathbf{x}\) are accessed only if the increment argument of \(\mathbf{x}\), called incx, is 1 . The \(\mathbf{x}\) argument is the address of a floating-point or floating-point complex number that is this array. On entry, this argument is an array of length at least \\ \(1+(n-1) *|i n c x|\)}
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{x}\) \\
\hline BLAS1\$VSROT & F-floating real \\
BLAS1\$VDROT & D-floating real \\
BLAS1\$VGROT & G-floating real \\
BLAS1\$VCSROT & F-floating complex \\
BLAS1\$VZDROT & D-floating complex \\
BLAS1\$VWGROT & G-floating complex \\
\hline
\end{tabular}

If \(\mathbf{n}\) is less than or equal to 0 , then \(\mathbf{x}\) and \(\mathbf{y}\) are unchanged. If \(\mathbf{c}\) equals 1.0 and \(\mathbf{s}\) equals 0 , then \(\mathbf{x}\) and \(\mathbf{y}\) are unchanged. If any element of \(x\) shares a memory location with an element of \(y\), then the results are unpredictable.
On exit, \(\mathbf{x}\) contains the rotated vector \(x\), as follows:
```

xi\leftarrowc* 和 +s* (yi

```
where:
\begin{tabular}{ll}
\(\boldsymbol{x}\) & array \(\mathbf{x}\) specified in \(\mathbf{x}\) \\
\(\boldsymbol{y}\) & array \(\mathbf{y}\) specified in \(\mathbf{y}\) \\
\(i\) & \(i=1,2, \ldots, n\) \\
\(c\) & rotation element generated by the BLAS1\$V×ROTG routines \\
\(s\) & rotation element generated by the BLAS1\$V×ROTG routines
\end{tabular}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{x}\). The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then \(x\) is referenced forward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(i-1) * i n c x)\)
where:
\begin{tabular}{ll}
\(x\) & array specified in \(\mathbf{x}\) \\
\(i\) & element of the vector \(x\) \\
incx & increment argument for the array \(\mathbf{x}\) specified in incx
\end{tabular}

If incx is less than 0 , then \(x\) is referenced backward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(n-i) *|i n c x|)\)

\section*{BLAS1\$VxROT}
where:
\begin{tabular}{|c|c|}
\hline \(x \quad\) arr & array specified in \(\mathbf{x}\) \\
\hline \(n \quad\) num & number of vector elements specified in \(\mathbf{n}\) \\
\hline \(i\) ele & element of the vector \(x\) \\
\hline incx inc & increment argument for the array \(\mathbf{x}\) specified in incx \\
\hline \multicolumn{2}{|l|}{\(y\)} \\
\hline \multicolumn{2}{|l|}{VMS usage: floating_point or complex_number} \\
\hline type: & F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex \\
\hline access: & modify \\
\hline mechanism: & m: by reference, array reference \\
\hline
\end{tabular}

Array containing the elements to be accessed. All elements of array \(y\) are accessed only if the increment argument of \(y\), called incy, is 1 . The \(\mathbf{y}\) argument is the address of a floating-point or floating-point complex number that is this array. On entry, this argument is an array of length at least
\(1+(n-1) *|i n c x|\)
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{y}\) \\
\hline BLAS1\$VSROT & F-floating real \\
BLAS1\$VDROT & D-floating real \\
BLAS1\$VGROT & G-floating real \\
BLAS1\$VCSROT & F-floating complex \\
BLAS1\$VZDROT & D-floating complex \\
BLAS1\$VWGROT & G-floating complex \\
\hline
\end{tabular}

If \(\mathbf{n}\) is less than or equal to 0 , then \(\mathbf{x}\) and \(\mathbf{y}\) are unchanged. If \(\mathbf{c}\) equals 1.0 and \(s\) equals 0 , then \(\mathbf{x}\) and \(\mathbf{y}\) are unchanged. If any element of \(x\) shares a memory location with an element of \(y\), then the results are unpredictable.
On exit, \(y\) contains the rotated vector \(y\), as follows:
\(y_{i} \leftarrow-s * x_{i}+c * y_{i}\)
where:
\begin{tabular}{ll}
\(x\) & array \(\mathbf{x}\) specified in \(\mathbf{x}\) \\
\(y\) & array \(\mathbf{y}\) specified in \(\mathbf{y}\) \\
\(i\) & \(i=1,2, \ldots\), n
\end{tabular}
real rotation element (can be generated by the BLAS1\$VxROTG routines)
\(s \quad\) complex rotation element (can be generated by the BLAS1\$VxROTG routines)

\section*{incy}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(y\). The incy argument is the address of a signed longword integer containing the increment argument. If incy is greater than or equal to 0 , then \(y\) is referenced forward in array \(\mathbf{y}\); that is, \(y_{i}\) is referenced in
\(y(1+(i-1) * i n c y)\)
where:
\begin{tabular}{ll}
\(y\) & array specified in \(\mathbf{y}\) \\
\(i\) & element of the vector \(y\) \\
\(i n c y\) & increment argument for the array \(\mathbf{y}\) specified in incy
\end{tabular}

If incy is less than 0 , then \(y\) is referenced backward in array \(\mathbf{y}\); that is, \(y_{i}\) is referenced in
\(y(1+(n-i) *|i n c y|)\)
where:
\begin{tabular}{ll}
\(y\) & array specified in \(\mathbf{y}\) \\
\(n\) & number of vector elements specified in \(\mathbf{n}\) \\
\(i\) & element of the vector \(y\) \\
incy & increment argument for the array \(\mathbf{y}\) specified in incy
\end{tabular}

C
VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, or G_floating real
access: read only
mechanism: by reference
First rotation element, which can be interpreted as the cosine of the angle of rotation. The \(\mathbf{c}\) argument is the address of a floating-point or floatingpoint complex number that is this vector element. The cargument is the first rotation element generated by the BLAS1\$VxROTG routines.

Specify the data type (which is always real) as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{c}\) \\
\hline BLAS1\$VSROT and & F-floating real \\
BLAS1\$VCSROT & \\
BLAS1\$VDROT and & D-floating real \\
BLAS1\$VZDROT & \\
\begin{tabular}{ll} 
BLAS1\$VGROT and & G-floating real \\
BLAS1\$VWGROT
\end{tabular} \\
\hline
\end{tabular}
```

S
VMS usage: floating_point or complex_number
type: F_floating, D_floating, G__floating real or F_floating,
D_floating, G_floating complex
access: read only
mechanism: by reference
Second rotation element, which can be interpreted as the sine of the angle of rotation. The $\mathbf{s}$ argument is the address of a floating-point or floatingpoint complex number that is this vector element. The $\mathbf{s}$ argument is the second rotation element generated by the BLAS1\$VxROTG routines.
Specify the same data type for arguments $\mathbf{s}$ and $\mathbf{c}$.

```

\section*{DESCRIPTION}

BLAS1\$VSROT, BLAS1\$VDROT, and BLAS1\$VGROT apply a real Givens plane rotation to a pair of real vectors. BLAS1\$VCSROT, BLAS1\$VZDROT, and BLAS1\$VWGROT apply a real Givens plane rotation to a pair of complex vectors. The vectors \(x\) and \(y\) are real or complex single-precision or double-precision ( \(D\) and \(G\) ) vectors. The vectors can be rows or columns of a matrix. Both forward and backward indexing are permitted. The routine name determines the data type you should specify for arguments \(\mathbf{x}\) and \(\mathbf{y}\). Specify the same data type for each of these arguments.

The Givens plane rotation is applied to \(\mathbf{n}\) elements, where the elements to be rotated are contained in vectors \(x\) and \(y\) ( \(i\) equals \(1,2, \ldots, n\) ). These elements are accessed from arrays \(\mathbf{x}\) and \(\mathbf{y}\) by stepping incx and incy elements at a time. The cosine and sine of the angle of rotation are \(\mathbf{c}\) and \(\mathbf{s}\), respectively. The arguments \(\mathbf{c}\) and \(\mathbf{s}\) are usually generated by the BLAS Level 1 routine BLAS1\$VxROTG, using \(a=x\) and \(b=y\) :
\[
\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right] \longleftarrow\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]
\]

The BLAS1\$VxROT routines can be used to introduce zeros selectively into a matrix.

\section*{EXAMPLE}
```

C
C To rotate the first two rows of a matrix and zero
C out the element in the first column of the second row:
C
INTEGER INCX,N
REAL X (20,20),A,B,C,S
INCX = 20
N=20
A = X (1, 1)
B = X (2,1)
CALL BLAS1$VSROTG (A,B,C,S)
    CALL BLAS1$VSROT (N,X,INCX,X (2,1),INCX,C,S)

```

\section*{BLAS1\$VxROTG Generate the Elements for a Givens Plane Rotation}

The Generate the Elements for a Givens Plane Rotation routines construct a Givens plane rotation that eliminates the second element of a two-element vector.

\section*{FORMAT}

\begin{abstract}
BLAS1\$VSROTG \(a, b, c, s\)
BLAS1\$VDROTG \(a, b, c, s\)
BLAS1\$VGROTG \(a, b, c, s\)
BLAS1\$VCROTG \(a, b, c, s\) BLAS1\$VZROTG \(a, b, c, s\) BLAS1\$VWROTG \(a, b, c, s\)
\end{abstract}

Use BLAS1\$VSROTG for single-precision real operations. Use BLAS1\$VDROTG for double-precision real (D-floating) operations and BLAS1\$VGROTG for double-precision real (G-floating) operations.
Use BLAS1\$VCROTG for single-precision complex operations. Use BLAS1\$VZROTG for double-precision complex (D-floating) operations and BLAS1\$VWROTG for double-precision complex (G-floating) operations.

\section*{RETURNS \\ None.}

\section*{ARGUMENTS \\ a}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, \(D_{\text {_floating, }} \quad G_{-}\)floating real or \(F_{-}\)floating, D_floating, G_floating complex
access: modify
mechanism: by reference
On entry, first element of the input vector. On exit, rotated element \(r\). The a argument is the address of a floating-point or floating-point complex number that is this vector element.
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for a \\
\hline BLAS1\$VSROTG & F-floating real \\
BLAS1\$VDROTG & D-floating real \\
BLAS1\$VGROTG & G-floating real \\
BLAS1\$VCROTG & F-floating complex \\
BLAS1\$VZROTG & D-floating complex \\
BLAS1\$VWROTG & G-floating complex \\
\hline
\end{tabular}

\section*{b}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, \(D\) _floating, G_floating real or F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference
On entry, second element of the input vector. On exit from BLAS1\$VSROTG, BLAS1\$VDROTG, and BLAS1\$VGROTG, reconstruction element \(z\). (See the Description section for more information about \(z\).) The \(\mathbf{b}\) argument is the address of a floating-point or floating-point complex number that is this vector element.
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for b \\
\hline BLAS1\$VSROTG & F-floating real \\
BLAS1\$VDROTG & D-floating real \\
BLAS1\$VGROTG & G-floating real \\
BLAS1\$VCROTG & F-floating complex \\
BLAS1\$VZROTG & D-floating complex \\
BLAS1\$VWROTG & G-floating complex \\
\hline
\end{tabular}

\section*{C}

VMS usage: floating_point
type: \(\quad\) F_floating, D_floating, or G_floating real
access: write only
mechanism: by reference
First rotation element, which can be interpreted as the cosine of the angle of rotation. The \(\mathbf{c}\) argument is the address of a floating-point or floating-point complex number that is this vector element.

Specify the data type (which is always real) as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for c \\
\hline BLAS1\$VSROTG and & F-floating real \\
BLAS1\$VCROTG & \\
BLAS1\$VDROTG and & D-floating real \\
BLAS1\$VZROTG & \\
BLAS1\$VGROTG and & G-floating real \\
BLAS1\$VWROTG & \\
\hline
\end{tabular}

\section*{\(S\)}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, \(D\) _floating, G_floating real or F_floating, D_floating, G_floating complex
access: write only
mechanism: by reference

Second rotation element, which can be interpreted as the sine of the angle of rotation. The \(\mathbf{s}\) argument is the address of a floating-point or floating-point complex number that is this vector element.
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for s \\
\hline BLAS1\$VSROTG & F-floating real \\
BLAS1\$VDROTG & D-floating real \\
BLAS1\$VGROTG & G-floating real \\
BLAS1\$VCROTG & F-floating complex \\
BLAS1\$VZROTG & D-floating complex \\
BLAS1\$VWROTG & G-floating complex \\
\hline
\end{tabular}

BLAS1\$VSROTG, BLAS1\$VDROTG, and BLAS1\$VGROTG construct a real Givens plane rotation. BLAS1\$VCROTG, BLAS1\$VZROTG, and BLAS1\$VWROTG construct a complex Givens plane rotation. The Givens plane rotation eliminates the second element of a two-element vector. The elements of the vector are real or complex single-precision or doubleprecision ( D and G ) numbers. The routine name determines the data type you should specify for arguments \(\mathbf{a}, \mathbf{b}\), and \(\mathbf{s}\). Specify the same data type for each of these arguments.
BLAS1\$VSROTG, BLAS1\$VDROTG, and BLAS1\$VGROTG can use the reconstruction element \(z\) to store the rotation elements for future use. There is no counterpart to the term \(z\) for BLAS1\$VCROTG, BLAS1\$VZROTG, and BLAS1\$VWROTG.

The BLAS1\$VxROTG routines can be used to introduce zeros selectively into a matrix.

For BLAS1\$VDROTG, BLAS1\$VGROTG, BLAS1\$VZROTG, and BLAS1\$VWROTG (the double-precision routines), the elements of the vector are scaled to avoid intermediate overflow or underflow. BLAS1\$VSROTG and BLAS1\$VCROTG (the single-precision routines) use a backup data type to avoid intermediate underflow or overflow, which may cause the final result to differ from the original FORTRAN routine.

\section*{BLAS1\$VSROTG, BLAS1\$VDROTG, and BLAS1\$VGROTG - Real Givens Plane Rotation}

Given the elements \(a\) and \(b\) of an input vector, BLAS1\$VSROTG, and BLAS1\$VDROTG, BLAS1\$VGROTG calculate the elements \(c\) and \(s\) of an orthogonal matrix such that:
\[
\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]
\]

A real Givens plane rotation is constructed for values \(a\) and \(b\) by computing values for \(r, c, s\), and \(z\), as follows:
\(r=p \sqrt{a^{2}+b^{2}}\)
where:
\[
\begin{aligned}
& p=\operatorname{SIGN}(a) \text { if }|a|>|b| \\
& p=\operatorname{SIGN}(b) \text { if }|a| \leq|b| \\
& c=\frac{a}{r} \text { if } r \neq 0 \\
& c=1 \text { if } r=0 \\
& s=\frac{b}{r} \text { if } r \neq 0 \\
& s=0 \text { if } r=0 \\
& z=s \text { if }|a|>|b| \\
& z=\frac{1}{c} \text { if }|a| \leq|b| \text { and } c \neq 0 \text { and } r \neq 0 \\
& z=1 \text { if }|a| \leq|b| \text { and } c=0 \text { and } r \neq 0 \\
& z=0 \text { if } r=0
\end{aligned}
\]

BLAS1\$VSROTG, BLAS1\$VDROTG, and BLAS1\$VGROTG can use the reconstruction element \(z\) to store the rotation elements for future use. The quantities \(c\) and \(s\) are reconstructed from \(z\) as follows:
For \(|z|=1, c=0\) and \(s=1.0\)
For \(|z|<1, c=\sqrt{1-z^{2}}\) and \(s=z\)
For \(|z|>1, c=\frac{1}{z}\) and \(s=\sqrt{1-c^{2}}\)
The arguments \(\mathbf{c}\) and \(\mathbf{s}\) can be passed to the BLAS1 \(\$ \mathrm{VxROT}\) routines.

\section*{BLAS1\$VCROTG, BLAS1\$VZROTG, and BLAS1\$VWROTG - Complex Givens Plane Rotation}

Given the elements \(a\) and \(b\) of an input vector, BLAS1\$VCROTG, BLAS1\$VZROTG, and BLAS1\$VWROTG calculate the elements \(c\) and \(s\) of an orthogonal matrix such that:
\[
\left[\begin{array}{cc}
c & s_{1}+i * s_{2} \\
-s_{1}+i * s_{2} & c
\end{array}\right]\left[\begin{array}{c}
a_{1}+i * a_{2} \\
b_{1}+i * b_{2}
\end{array}\right]=\left[\begin{array}{c}
r_{1}+i * r_{2} \\
0
\end{array}\right]
\]

There are no BLAS Level 1 routines with which you can use complex c and \(s\) arguments.

\section*{BLAS1\$VxROTG}

\section*{EXAMPLE}
```

C
C To generate the rotation elements for a vector of
c elements a and b:
C
REAL A,B,C,S
CALI SROTG (A,B,C,S)

```

\section*{BLAS1\$VxSCAL Scale the Elements of a Vector}

The Scale the Elements of a Vector routines compute \(a * x\) where \(\mathbf{a}\) is a scalar number and \(x\) is an \(n\)-element vector.

BLAS1\$VSSCAL \(n, a, x, i n c x\)
BLAS1\$VDSCAL \(n, a, x\), incx
BLAS1\$VGSCAL \(n, a, x\),incx
BLAS1\$VCSCAL \(n, a, x\),incx BLAS1\$VCSSCAL \(n, a, x, i n c x\) BLAS1\$VZSCAL \(n, a, x, i n c x\) BLAS1\$VWSCAL \(n, a, x\), incx BLAS1\$VZDSCAL \(n, a, x, i n c x\) BLAS1\$VWGSCAL \(n, a, x, i n c x\)
Use BLAS1\$VSSCAL to scale a real single-precision vector by a real single-precision scalar.

Use BLAS1\$VDSCAL to scale a real double-precision (D-floating) vector by a real double-precision (D-floating) scalar. Use BLAS1\$VGSCAL to scale a real double-precision (G-floating) vector by a real double-precision (G-floating) scalar.

Use BLAS1\$VCSCAL to scale a complex single-precision vector by a complex single-precision scalar. Use BLAS1\$VCSSCAL to scale a complex single-precision vector by a real single-precision scalar.
Use BLAS1\$VZSCAL to scale a complex double-precision (D-floating) vector by a complex double-precision (D-floating) scalar. Use BLAS1\$VWSCAL to scale a complex double-precision (G-floating) vector by a complex double-precision (G-floating) scalar. Use BLAS1\$VZDSCAL to scale a complex double-precision (D-floating) vector by a real doubleprecision (D-floating) scalar. Use BLAS1\$VWGSCAL to scale a complex double-precision (G-floating) vector by a real double-precision (G-floating) scalar.
RETURNS None.

\section*{\(a\)}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, \(D_{\text {_floating, }}\) G_floating real or F_floating, D_floating, G_floating complex
\(\begin{array}{ll}\text { access: } & \text { read only } \\ \text { mechanism: } & \text { by reference }\end{array}\)
Scalar multiplier for the elements of vector \(x\). The a argument is the address of a floating-point or floating-point complex number that is this multiplier.
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for a \\
\hline BLAS1\$VSSCAL and & F-floating real \\
BLAS1\$VCSSCAL & \\
BLAS1\$VDSCAL and & D-floating real \\
BLAS1\$VZDSCAL & \\
BLAS1\$VGSCAL and & G-floating real \\
BLAS1\$VWGSCAL & \\
BLAS1\$VCSCAL & F-floating complex \\
BLAS1\$VZSCAL & D-floating complex \\
BLAS1\$VWSCAL & G-floating complex \\
\hline
\end{tabular}

If you specify 1.0 for \(\mathbf{a}\), then \(\mathbf{x}\) is unchanged.

\section*{\(\boldsymbol{X}\)}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \(\mathbf{x}\) are accessed only if the increment argument of \(\mathbf{x}\), called incx, is 1 . The \(\mathbf{x}\) argument is the address of a floating-point or floating-point complex number that is this array. On entry, this argument is an array of length at least
\(1+(n-1) *|i n c x|\)
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{x}\) \\
\hline BLAS1\$VSSCAL & F-floating real \\
BLAS1\$VDSCAL & D-floating real \\
BLAS1\$VGSCAL & G-floating real
\end{tabular}
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{x}\) \\
\hline BLAS1\$VCSCAL and & F-floating complex \\
BLAS1\$VCSSCAL & \\
BLAS1\$VZSCAL and & D-floating complex \\
BLAS1\$VZDSCAL & \\
\begin{tabular}{ll} 
BLAS1\$VWSCAL and & G-floating complex \\
BLAS1\$VWGSCAL & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

On exit, \(\mathbf{x}\) is an array of length at least
\(1+(n-1) *|i n c x|\)
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
After the call to BLAS1 \(\$ \mathrm{VxSCAL}, x_{i}\) is replaced by \(a * x_{i}\). If a shares a memory location with any element of the vector \(x\), results are unpredictable.

\section*{incx}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(x\). The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than 0 , then \(x\) is referenced forward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(i-1) * i n c x)\)
where:
\(x \quad\) array specified in \(\mathbf{x}\)
\(i \quad\) element of the vector \(x\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
If you specify a negative value for incx, it is interpreted as the absolute value of incx. If incx equals 0 , the results are unpredictable.

BLAS1\$VxSCAL computes \(a * x\) where \(a\) is a scalar number and \(x\) is an \(n\)-element vector. The computation is expressed as follows:
\[
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \longleftarrow a\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
\]

Vector \(x\) contains \(\mathbf{n}\) elements that are accessed from array \(\mathbf{x}\) by stepping incx elements at a time. The vector \(x\) can be a row or a column of a matrix. Both forward and backward indexing are permitted.

\section*{BLAS1\$VxSCAL}

The public-domain BLAS Level \(1 \times S C A L\) routines require a positive value for incx. The Run-Time Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for \(\mathbf{a}=0\). Therefore, specifying 0 for a has the effect of setting to zero all elements of the vector \(x\) using vector operations.

\section*{EXAMPLE}
```

C
C To scale a vector x by 2.0 using SSCAL:
C
INTEGER INCX,N
REAL X(20),A
INCX = 1
A=2
N}=2
CAIL BLAS1\$VSSCAL (N,A,X,INCX)

```

\section*{BLAS1\$VxSWAP Swap the Elements of Two Vectors}

The Swap the Elements of Two Vectors routines swap \(n\) elements of the vector \(x\) with the vector \(y\).

FORMAT BLAS1\$VSSWAP \(n, x\),incx, \(y\),incy BLAS1\$VDSWAP \(n, x\),incx, \(y\),incy BLAS1\$VCSWAP \(n, x, i n c x, y\),incy BLAS1\$VZSWAP \(n, x\), incx, \(y\),incy
Use BLAS1\$VSSWAP for single-precision real operations and BLAS1\$VDSWAP for double-precision real (D or G) operations.
Use BLAS1\$VCSWAP for single-precision complex operations and BLAS1\$VZSWAP for double-precision complex (D or G) operations.

\section*{RETURNS None.}

\section*{ARGUMENTS \(\boldsymbol{n}\)}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector \(x\) to be swapped. The \(\mathbf{n}\) argument is the address of a signed longword integer containing the number of elements to be swapped.

\section*{X}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, \(D_{\text {_floating, } G_{-} \text {floating real or } F_{-} \text {floating, }}\) D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \(\mathbf{x}\) are accessed only if the increment argument of \(\mathbf{x}\), called incx, is 1 . The \(\mathbf{x}\) argument is the address of a floating-point or floating-point complex number that is this array. On entry, this argument is an array of length at least
\(1+(n-1) *|i n c x|\)
where:
\begin{tabular}{ll}
\(n\) & number of vector elements specified in \(\mathbf{n}\) \\
incx & increment argument for the array \(\mathbf{x}\) specified in incx
\end{tabular}

Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{x}\) \\
\hline BLAS1\$VSSWAP & F-floating real \\
BLAS1\$VDSWAP & D-floating or G-floating real \\
BLAS1\$VCSWAP & F-floating complex \\
BLAS1\$VZSWAP & D-floating or G-floating complex \\
\hline
\end{tabular}

If \(\mathbf{n}\) is less than or equal to 0 , then \(\mathbf{x}\) and \(\mathbf{y}\) are unchanged. If any element of \(x\) shares a memory location with an element of \(y\), the results are unpredictable.

On exit, \(\mathbf{x}\) is an array of length at least
\(1+(n-1) *|i n c x|\)
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
After the call to BLAS1\$VxSWAP, \(\mathbf{n}\) elements of the array specified by \(\mathbf{x}\) are interchanged with \(\mathbf{n}\) elements of the array specified by \(\mathbf{y}\).

\section*{incx}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{x}\). The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then \(x\) is referenced forward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(i-1) * i n c x)\)
where:
\(x \quad\) array specified in \(\mathbf{x}\)
\(i \quad\) element of the vector \(x\)
incx increment argument for the array \(\mathbf{x}\) specified in incx
If incx is less than 0 , then \(x\) is referenced backward in array \(\mathbf{x}\); that is, \(x_{i}\) is referenced in
\(x(1+(n-i) *|i n c x|)\)
where:
\begin{tabular}{ll}
\(x\) & array specified in \(\mathbf{x}\) \\
\(n\) & number of vector elements specified in \(\mathbf{n}\) \\
\(i\) & element of the vector \(x\) \\
\(i n c x\) & increment argument for the array \(\mathbf{x}\) specified in incx
\end{tabular}

\title{
BLAS1\$VxSWAP
}

\section*{\(y\)}

VMS usage: floating_point or complex_number
type: \(\quad\) F_floating, \(D_{-}\)floating, \({\text {G_floating real or } F_{-} \text {floating, }}^{\text {flo }}\) D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \(\mathbf{y}\) are accessed only if the increment argument of \(\mathbf{y}\), called incy, is 1 . The \(\mathbf{y}\) argument is the address of a floating-point or floating-point complex number that is this array. On entry, this argument is an array of length at least
\[
1+(n-1) *|i n c y|
\]
where:
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
incy increment argument for the array \(y\) specified in incy
Specify the data type as follows:
\begin{tabular}{ll}
\hline Routine & Data Type for \(\mathbf{y}\) \\
\hline BLAS1\$VSSWAP & F-floating real \\
BLAS1\$VDSWAP & D-floating or G-floating real \\
BLAS1\$VCSWAP & F-floating complex \\
BLAS1\$VZSWAP & D-floating or G-floating complex \\
\hline
\end{tabular}

If \(\mathbf{n}\) is less than or equal to 0 , then \(\mathbf{x}\) and \(\mathbf{y}\) are unchanged. If any element of \(x\) shares a memory location with an element of \(y\), the results are unpredictable.

On exit, \(\mathbf{y}\) is an array of length at least
\(1+(n-1) *|i n c y|\)
where:
\(n \quad\) number of vector elements specified in \(\boldsymbol{n}\)
incy increment argument for the array y specified in incy
After the call to BLAS1\$VxSWAP, \(\mathbf{n}\) elements of the array specified by \(\mathbf{x}\) are interchanged with \(\mathbf{n}\) elements of the array specified by \(\mathbf{y}\).

\section*{incy}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{y}\). The incy argument is the address of a signed longword integer containing the increment argument. If incy is greater than or equal to 0 , then \(y\) is referenced forward in array \(\mathbf{y}\); that is, \(y_{i}\) is referenced in
\(y(1+(i-1) * i n c y)\)
where:
\(y \quad\) array specified in \(\mathbf{y}\)
\(i \quad\) element of the vector \(y\)
incy increment argument for the array \(y\) specified in incy
If incy is less than 0 , then \(y\) is referenced backward in array \(\mathbf{y}\); that is, \(y_{i}\) is referenced in
\(y(1+(n-i) *|i n c y|)\)
where:
\(y \quad\) array specified in \(\mathbf{y}\)
\(n \quad\) number of vector elements specified in \(\mathbf{n}\)
\(i \quad\) element of the vector \(y\)
incy increment argument for the array \(y\) specified in incy

BLAS1\$VSSWAP, BLAS1\$VDSWAP, BLAS1\$VCSWAP, and BLAS1\$VZSWAP swap \(n\) elements of the vector \(x\) with the vector \(y\). Vectors \(x\) and \(y\) contain \(\mathbf{n}\) elements that are accessed from arrays \(\mathbf{x}\) and \(y\) by stepping incx and incy elements at a time. Both \(x\) and \(y\) are real or complex single-precision or double-precision (D and G) \(n\)-element vectors. The vectors can be rows or columns of a matrix. Both forward and backward indexing are permitted.
You can use the routine BLAS1\$VxSWAP to invert the storage of elements of a vector within itself. If incx is greater than 0 , then \(x_{i}\) can be moved from location
\(x(1+(i-1) * i n c x)\) to \(x(1+(n-i) * i n c x)\)
The following code fragment inverts the storage of elements of a vector within itself:
```

NN = N/2
LHALF = 1+(N-NN)*INCX
CALL BLAS1\$VXSWAP (NN,X,INCX,X(LHALF), -INCX)

```

BLAS1\$VxSWAP does not check for a reserved operand.

\section*{EXAMPLE}
```

C
C To swap the contents of vectors x and y:
C
INTEGER INCX,INCY,N
REAL X(20),Y(20)
INCX = 1
INCY = 1
N = 20
CALL BLAS1$VSSWAP (N,X,INCX,Y,INCY)
C
C To invert the order of storage of the elements of x within
C itself; that is, to move x(1),...,x(100) to x(100),...,x(1):
C
        INCX = 1
        INCY = -1
        N = 50
        CALL BLAS1$VSSWAP (N,X,INCX,X(51),INCY)

```

\title{
MTH\$VxFOLRy_MA_V15 First Order Linear Recurrence Multiplication and Addition
}

The First Order Linear Recurrence - Multiplication and Addition routines provide a vectorized algorithm for the linear recurrence relation that includes both multiplication and addition operations.

\section*{FORMAT}
\[
\begin{aligned}
& \text { MTH\$VJFOLRP_MA_V15 n,a,inca,b,incb, } c, \text { incc } \\
& \text { MTH\$VFFOLRP_MA_V15 } n \text {, } a, \text { inca, }, \text {,incb, } c, i n c c \\
& \text { MTH\$VDFOLRP_MA_V15 } n, a, i n c a, b, i n c b, c, i n c c \\
& \text { MTH\$VGFOLRP_MA_V15 } n, a, i n c a, b, i n c b, c, i n c c \\
& \text { MTH\$VJFOLRN_MA_V15 } n \text {,a,inca,b,incb, } c, i n c c \\
& \text { MTH\$VFFOLRN_MA_V15 } n, a, i n c a, b, i n c b, c, i n c c \\
& \text { MTH\$VDFOLRN_MA_V15 } n, a, i n c a, b, i n c b, c, i n c c \\
& \text { MTH\$VGFOLRN_MA_V15 } n, a, i n c a, b, i n c b, c, i n c c
\end{aligned}
\]

To obtain one of the preceding formats, substitute the following for \(x\) and \(y\) in MTH\$VxFOLRy_MA_V15:
\(x \quad J\) for longword integer, F for F-floating, D for D-floating, G for G-floating
\(y \quad P\) for a positive recursion element, N for a negative recursion element

\section*{RETURNS None.}

\section*{ARGUMENTS}
where:
\begin{tabular}{ll}
\(n\) & length of the linear recurrence specified in \(\mathbf{n}\) \\
inca & increment argument for the array a specified in inca
\end{tabular}

The a argument is the address of a longword integer or floating-point that is this array.

\section*{inca}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array a. The inca argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for inca.
b
VMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating
access: read only
mechanism: by reference, array reference
Array of length at least
\(1+(n-1) * i n c b\)
where:
\(n \quad\) length of the linear recurrence specified in \(\boldsymbol{n}\)
incb increment argument for the array \(\mathbf{b}\) specified in incb
The \(\mathbf{b}\) argument is the address of a longword integer or floating-point number that is this array.

\section*{incb}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{b}\). The incb argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for incb.

\section*{C}

VMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating
access: modify
mechanism: by reference, array reference
Array of length at least
\(1+n * i n c c\)
where:
\begin{tabular}{ll}
\(n\) & length of the linear recurrence specified in \(\mathbf{n}\) \\
incc & increment argument for the array \(\mathbf{c}\) specified in incc
\end{tabular}

The \(\mathbf{c}\) argument is the address of a longword integer or floating-point number that is this array.

\section*{ince}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array c. The ince argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for incc. Do not specify 0 for incc.

\section*{DESCRIPTION}

MTH\$VxFOLRy_MA_V15 is a group of routines that provides a vectorized algorithm for computing the following linear recurrence relation:
\(C(I+1)=+/-C(I) * A(I)+B(I)\)
Note: Save the contents of vector registers V0 through V15 before you call this routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from VAX FORTRAN is as follows:
```

K1 = ....
K2 = ....
K3 = ....
CALL MTH\$VxFOLRy_MA_V15 (N,A(K1),INCA,B(K2),INCB,C (K3),INCC)

```

The preceding FORTRAN call replaces the following loop:
```

K1 = ...
K2 = ....
K3 = ....
DO I = 1, N
C(K3+I*INCC) = {+/-}C(K3+(I-1)*INCC) * A(K1+(I-1)*INCA)
+ B(K2+(I-1)*INCB)
ENDDO

```

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user callable. The MTH\$ FOLR routines assume that all of the arrays are of the same data type.
This group of routines, MTH \(\$ V \times F O L R y \_M A \_V 15 ~(a n d ~ a l s o ~\) MTH \(\left.\$ V x F O L R y \_z \_V 8\right)\) save the result of each iteration of the linear recurrence relation in an array. This is different from the behavior of MTH\$VxFOLRLy_MA_V5 and MTH\$VxFOLRLy_z_V2, which return only the result of the last iteration of the linear recurrence relation.

For the output array (c), the increment argument (incc) cannot be 0 . However, you can specify 0 for the input increment arguments (inca and incb). In that case, the input will be treated as a scalar value and broadcast to a vector input with all vector elements equal to the scalar value.

In MTH\$VxFOLRy_MA_V15, array \(\mathbf{c}\) can overlap array \(\mathbf{a}\) and array \(\mathbf{b}\), or both, as long as the address of array element \(c_{x}\) is not also the address of an element of \(\mathbf{a}\) or \(\mathbf{b}\) that will be referenced at a future time in the recurrence relation. For example, in the following code fragment you must ensure that the address of \(c(1+i * i n c c)\) does not equal the address of either \(a(j * i n c a)\) or \(b(k * i n c b)\) for
\(1 \leq i \leq n\) and \(j \geq i+1\).
DO \(I=1, N\)
\(C(1+I * I N C C)=C(1+(I-1) * I N C C) * A(1+(I-1) * I N C A)+B(1+(I-1) * I N C B)\) ENDDO

\section*{EXAMPLES}

I
```

C The following FORTRAN loop computes
C a linear recurrence.
C
INTEGER I
DIMENSION A(200), B(50),C(50)
EQUIVALENCE (B,C)
:
C(4) = ....
DO I = 5, 50
C(I) = C((I-1))*A(I*3) + B(I)
ENDDO
C
C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
C
DIMENSION A(200), B(50), C(50)
EQUIVALENCE (B,C)
:
C(4) = ...
CALL MTH\$VFFOLRP_MA_V15(46, A(15), 3, B(5), 1, C(4), 1)

```

\section*{MTH\$VxFOLRy_MA_V15}
```

|

```
```

C

```
C
C The following FORTRAN loop computes
C The following FORTRAN loop computes
C a linear recurrence.
C a linear recurrence.
C
C
INTEGER K,N,INCA,INCB,INCC,I
INTEGER K,N,INCA,INCB,INCC,I
DIMENSION A(30), B(6), C(50)
DIMENSION A(30), B(6), C(50)
K = 44
K = 44
N = 6
N = 6
INCA = 5
INCA = 5
INCB = 1
INCB = 1
INCC = 1
INCC = 1
DO I = 1, N
DO I = 1, N
C(K+I*INCC) = -C (K+(I-1)*INCC) * A(I*INCA) + B(I*INCB)
C(K+I*INCC) = -C (K+(I-1)*INCC) * A(I*INCA) + B(I*INCB)
ENDDO
ENDDO
C
C
C The following call from FORTRAN to a FOLR
C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
C routine replaces the preceding loop.
C
C
INTEGER K,N,INCA,INCB,INCC
INTEGER K,N,INCA,INCB,INCC
DIMENSION A(30), B(6), C(50)
DIMENSION A(30), B(6), C(50)
K = 44
K = 44
N=6
N=6
INCA = 5
INCA = 5
INCB = 1
INCB = 1
INCC = 1
INCC = 1
CALL MTH$VFFOLRN_MA_V15(N, A(INCA), INCA, B(INCB), INCB, C (K), INCC)
```

CALL MTH\$VFFOLRN_MA_V15(N, A(INCA), INCA, B(INCB), INCB, C (K), INCC)

```

\section*{MTH\$VxFOLRy_z_V8 First Order Linear Recurrence - Multiplication or Addition}

The First Order Linear Recurrence - Multiplication or Addition routines provide a vectorized algorithm for the linear recurrence relation that includes either a multiplication or an addition operation, but not both.

\section*{FORMAT}
\begin{tabular}{|c|c|}
\hline 8 & n,a,inca,b,incb \\
\hline \$VFFOLRP_M_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VDFOLRP_M_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VGFOLRP_M_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VJFOLRN_M_V8 & n,a,inca,b,incb \\
\hline MTH\$VFFOLRN_M_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VDFOLRN_M_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VGFOLRN_M_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VJFOLRP_A_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VFFOLRP_A_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VDFOLRP_A_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VGFOLRP_A_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VJFOLRN_A_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VFFOLRN_A_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VDFOLRN_A_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline MTH\$VGFOLRN_A_V8 & \(n, a, i n c a, b, i n c b\) \\
\hline
\end{tabular}

To obtain one of the preceding formats, substitute the following for \(x, y\), and \(z\) in MTH\$VxFOLRy_z_V8:
\(x \quad J\) for longword integer, \(F\) for \(F\)-floating, \(D\) for \(D\)-floating, \(G\) for \(G\)-floating
\(y \quad P\) for a positive recursion element, \(N\) for a negative recursion element
\(\boldsymbol{z} \quad \mathrm{M}\) for multiplication, A for addition

\section*{RETURNS}

None.

\section*{ARGUMENTS \\ \(n\)}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Length of the linear recurrence. The \(\mathbf{n}\) argument is the address of a signed longword integer containing the length.

\section*{a}

VMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating
access: read only
mechanism: by reference, array reference
Array of length at least
\(1+(n-1) *\) inca
where:
\(n \quad\) length of the linear recurrence specified in \(n\) inca increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that is this array.

\section*{inca}

VMS usage: longword_signed
type: longword integer (signed) access: read only mechanism: by reference
Increment argument for the array \(\mathbf{a}\). The inca argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for inca.

\section*{b}

VMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating
access: modify
mechanism: by reference, array reference
Array of length at least
\(1+(n-1) * i n c b\)
where:
\(n \quad\) length of the linear recurrence specified in \(\mathbf{n}\)
incb increment argument for the array \(\mathbf{b}\) specified in incb
The \(\mathbf{b}\) argument is the address of a longword integer or floating-point number that is this array.

\section*{incb}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{b}\). The incb argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for incb.

DESCRIPTION MTH\$VxFOLRy_z_V8 is a group of routines that provide a vectorized algorithm for computing one of the following linear recurrence relations:
\(B(I)=+/-B(I-1) * A(I)\)
or
\[
B(I)=+/-B(I-1)+A(I)
\]

For the first relation, specify M for \(z\) in the routine name to denote multiplication; for the second relation, specify A for \(z\) in the routine name to denote addition.

Note: Save the contents of vector registers V0 through V8 before you call this routine.
Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from VAX FORTRAN is as follows:
```

CALL MTH\$VxFOLRy_z_V8(N,A(K1),INCA,B(K2),INCB)

```

The preceding FORTRAN call replaces the following loop:
```

K1 = ....
K2 = ....
DO I = 1,N
B(K2+I*INCB) = {+/-}B(K2+(I-1)*INCB) {+/*} A(K1+(I-1)*INCA)
ENDDO

```

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user callable. The MTH\$ FOLR routines assume that all of the arrays are of the same data type.
This group of routines, MTH\$VxFOLRy_z_V8 (and also MTH\$VxFOLRy_ MA_V15) save the result of each iteration of the linear recurrence relation in an array. This is different from the behavior of MTH\$VxFOLRLy_MA_ V5 and MTH\$VxFOLRLy_z_V2, which return only the result of the last iteration of the linear recurrence relation.

For the output array (b), the increment argument (incb) cannot be 0 . However, you can specify 0 for the input increment argument (inca). In that case, the input will be treated as a scalar and broadcast to a vector input with all vector elements equal to the scalar value.

\section*{EXAMPLES}

1
```

The following FORTRAN loop computes
a linear recurrence.
D_FLOAT'
INTTEGER N,INCA,INCB,I
DIMENSION A(30), B(13)
N=6
INCA = 5
INCB = 2
DO I = 1, N
B(1+I*INCB)=-B(1+(I-1)*INCB) * A(I*INCA)
ENDDO

```

\section*{MTH\$VxFOLRy_z_V8}
```

C
C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
C
C D_FLOAT
INTTEGER N,INCA,INCB
REAL*8 A (30), B(13)
N = 6
INCA = 5
INCB = 2
CALL MTH\$VDFOLRN_M_V8(N, A(INCA), INCA, B(1), INCB)

```
[
```

C
C The following FORTRAN loop computes
C a linear recurrence.
C G_FLOAT
INTTEGER N,INCA,INCB
DIMENSION A(30), B(13)
N = 5
INCA = 5
INCB = 2
DO I = 2, N
B(1+I*INCB) = B((I-1)*INCB) + A(I*INCA)
ENDDO
C
C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
C
C G FLOAT
INTEGER N,INCA,INCB
REAL*8 A(30), B(13)
N = 5
INCA = 5
INCB = 2
CALL MTH\$VGFOLRP_A_V8(N, A(INCA), INCA, B(INCB), INCB)

```

\section*{MTH\$VxFOLRLy_MA_V5 First Order Linear Recurrence Multiplication and Addition - Last Value}

The First Order Linear Recurrence - Multiplication and Addition - Last Value routines provide a vectorized algorithm for the linear recurrence relation that includes both multiplication and addition operations. Only the last value computed is stored.
\begin{tabular}{ll} 
MTH\$VJFOLRLP_MA_V5 & \(n, a\), inca, \(b\), incb, \(t\) \\
MTH\$VFFOLRLP_MA_V5 & \(n, a, i n c a, b, i n c b, t\) \\
MTH\$VDFOLRLP_MA_V5 & \(n, a\), inca, \(b\), incb, \(t\) \\
MTH\$VGFOLRLP_MA_V5 & \(n, a, i n c a, b\), incb, \(t\) \\
MTH\$VJFOLRLN_MA_V5 & \(n, a, i n c a, b, i n c b, t\) \\
MTH\$VFFOLRLN_MA_V5 & \(n, a, i n c a, b, i n c b, t\) \\
MTH\$VDFOLRLN_MA_V5 & \(n, a, i n c a, b, i n c b, t\) \\
MTH\$VGFOLRLN_MA_V5 & \(n, a, i n c a, b, i n c b, t\)
\end{tabular}

To obtain one of the preceding formats, substitute the following for \(x\) and \(y\) in MTH\$VxFOLRLy_MA_V5:
\begin{tabular}{ll}
\(x\) & \(J\) for longword integer, F for F -floating, D for D -floating, G for G -floating \\
\(y\) & P for a positive recursion element, N for a negative recursion element
\end{tabular}

RETURNS
VMS usage: longword_signed or floating_point type: longword integer (signed), F_floating, D_floating or G_floating
access: write only
mechanism: by value
The function value is the result of the last iteration of the linear recurrence relation. The function value is returned in R0 or R0 and R1.

Length of the linear recurrence. The \(\mathbf{n}\) argument is the address of a signed longword integer containing the length.
a
VMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating
access: read only
mechanism: by reference, array reference
Array of length at least
\(1+(n-1) * i n c a\)
where:
\(n \quad\) length of the linear recurrence specified in \(\mathbf{n}\)
inca increment argument for the array a specified in inca
The a argument is the address of a longword integer or floating-point that is this array.

\section*{inca}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array a. The inca argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for inca.

\section*{b}

VMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating
access: read only
mechanism: by reference, array reference
Array of length at least
\(1+(n-1) * i n c b\)
where:
\(n \quad\) length of the linear recurrence specified in \(\mathbf{n}\)
incb increment argument for the array \(\mathbf{b}\) specified in incb
The \(\mathbf{b}\) argument is the address of a longword integer or floating-point number that is this array.

\section*{incb}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \(\mathbf{b}\). The incb argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for incb.
\(t\)
VMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating
access: modify
mechanism: by reference
Variable containing the starting value for the recurrence; overwritten with the value computed by the last iteration of the linear recurrence relation. The \(t\) argument is the address of a longword integer or floating-point number that is this value.

\section*{DESCRIPTION}

MTH\$VxFOLRLy_MA_V5 is a group of routines that provide a vectorized algorithm for computing the following linear recurrence relation. (The \(T\) on the right side of the equation is the result of the previous iteration of the loop.)
\(T=+/-T * A(I)+B(I)\)
Note: Save the contents of vector registers V0 through V5 before you call this routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from VAX FORTRAN is as follows:

CALL MTH\$VxFOLRY_MA_V5 (N, A (K1), INCA, B (K2), INCB, T)
The preceding FORTRAN call replaces the following loop:
```

K1 = ...
K2 = ...
DO I = 1, N
T = {+/-}T * A(K1+(I-1)*INCA) + B(K1+(I-1)*INCB)
ENDDO

```

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user callable. The MTH\$ FOLR routines assume that all of the arrays are of the same data type.
This group of routines, MTH\$VxFOLRLy_MA_V5 (and also MTH\$VxFOLRLy_z_V2) returns only the result of the last iteration of the linear recurrence relation. This is different from the behavior of MTH\$VxFOLRy_MA_V15 (and also MTH\$VxFOLRy_z_V8), which save the result of each iteration of the linear recurrence relation in an array.

If you specify 0 for the input increment arguments (inca and incb), the input will be treated as a scalar and broadcast to a vector input with all vector elements equal to the scalar value.

\section*{MTH\$VxFOLRLy_MA_V5}

\section*{EXAMPLES}
```

C
C The following FORTRAN loop computes
C a linear recurrence.
C
C. G_FLOAT
INTEGER N,INCA,INCB,I
REAL*8 A(30), B(6), T
N = 6
INCA = 5
INCB = 1
T = 78.9847562
DO I = I, N
T = -T * A(I*INCA) + B(I*INCB)
ENDDO
C
C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
C
C
G_FLOAT
INTEGER N, INCA, INCB
DIMENSION A(30), B(6), T
N=6
INCA = 5
INCB = 1
T = 78.9847562
T = MTH\$VGFOLRLN_MA_V5(N, A(INCA), INCA, B(INCB), INCB, T)

```
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
    The following FORTRAN loop computes
    a linear recurrence.
C G_FLOAT
    INTEGER \(N\), INCA, INCB, I
    REAI*8 \(A(30), B(6), T\)
    \(\mathrm{N}=6\)
    INCA \(=5\)
    INCB \(=1\)
    \(\mathrm{T}=78.9847562\)
    DO \(I=1, N\)
    \(T=T * A(I * I N C A)+B(I * I N C B)\)
    ENDDO
C
C The following call from FORTRAN to a FOLR
C
C
    routine replaces the preceding loop.
    G_FLOAT
    INTEGER N, INCA, INCB
    DIMENSION \(\mathrm{A}(30), \mathrm{B}(6), \mathrm{T}\)
    \(\mathrm{N}=6\)
    INCA \(=5\)
    INCB \(=1\)
    \(T=78.9847562\)
    \(T=M T H \$ V G F O L R L P \quad M A \_V 5(N, A(I N C A), I N C A, B(I N C B)\), INCB, \(T)\)

\title{
MTH\$VxFOLRLy_z_V2 First Order Linear Recurrence - Multiplication or Addition - Last Value
}

The First Order Linear Recurrence - Multiplication or Addition - Last Value routines provide a vectorized algorithm for the linear recurrence relation that includes either a multiplication or an addition operation. Only the last value computed is stored.

FORMAT
\begin{tabular}{lll} 
MTH\$VJFOLRLP_M_V2 & \(n, a\), inca, \(t\) \\
MTH\$VFFOLRLP_M_V2 & \(n, a\), inca, \(t\) \\
MTH\$VDFOLRLP_M_V2 & \(n, a\), inca, \(t\) \\
MTH\$VGFOLRLP_M_V2 & \(n, a\), inca, \(t\) \\
MTH\$VJFOLRLN_M_V2 & \(n, a\), inca, \(t\) \\
MTH\$VFFOLRLN_M_V2 & \(n, a\), inca, \(t\) \\
MTH\$VDFOLRLN_M_V2 & \(n, a\), inca, \(t\) \\
MTH\$VGFOLRLN_M_V2 & \(n, a\), inca, \(t\) \\
MTH\$VJFOLRLP_A_V2 & \(n, a, i n c a, t\) \\
MTH\$VFFOLRLP_A_V2 & \(n, a, i n c a, t\) \\
MTH\$VDFOLRLP_A_V2 & \(n, a, i n c a, t\) \\
MTH\$VGFOLRLP_A_V2 & \(n, a, i n c a, t\) \\
MTH\$VJFOLRLN_A_V2 & \(n, a, i n c a, t\) \\
MTH\$VFFOLRLN_A_V2 & \(n, a, i n c a, t\) \\
MTH\$VDFOLRLN_A_V2 & \(n, a, i n c a, t\) \\
MTH\$VGFOLRLN_A_V2 & \(n, a, i n c a, t\)
\end{tabular}

To obtain one of the preceding formats, substitute the following for \(x, y\), and \(z\) in MTH\$VxFOLRLy_z_V2:
\(x \quad J\) for longword integer, \(F\) for \(F\)-floating, \(D\) for D-floating, \(G\) for \(G\)-floating
\(y \quad \mathrm{P}\) for a positive recursion element, N for a negative recursion element
\(\boldsymbol{z} \quad \mathrm{M}\) for multiplication, A for addition

\section*{RETURNS}

VMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating or G_floating
access: write only
mechanism: by value
The function value is the result of the last iteration of the linear recurrence relation. The function value is returned in R0 or R0 and R1.

\section*{ARGUMENTS}

\section*{П}

VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Length of the linear recurrence. The \(\mathbf{n}\) argument is the address of a signed longword integer containing the length.

\section*{a}

VMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating
access: read only
mechanism: by reference, array reference
Array of length at least
\(n * i n c a\)
where:
\(n \quad\) length of the linear recurrence specified in \(\mathbf{n}\)
inca increment argument for the array a specified in inca
The a argument is the address of a longword integer or floating-point that is this array.

\section*{inca}

VMS usage: longword_signed
type: longword integer (signed)
access: read only mechanism: by reference
Increment argument for the array \(\mathbf{a}\). The inca argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for inca.
\(t\)
VMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating
access: modify
mechanism: by reference
Variable containing the starting value for the recurrence; overwritten with the value computed by the last iteration of the linear recurrence relation. The \(t\) argument is the address of a longword integer or floating-point number that is this value.

\section*{DESCRIPTION}

MTH\$VxFOLRLy_z_V2 is a group of routines that provide a vectorized algorithm for computing one of the following linear recurrence relations. (The \(T\) on the right side of the following equations is the result of the previous iteration of the loop.)
\[
T=+/-T * A(I)
\]
\(T=+/-T+A(I)\)
For the first relation, specify M for \(z\) in the routine name to denote multiplication; for the second relation, specify A for \(z\) in the routine name to denote addition.

Note: Save the contents of vector registers V0, V1, and V2 before you call this routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from VAX FORTRAN is as follows:
```

CALL MTH\$VxFOLRLy_z_V2(N,A (KI),INCA,T)

```

The preceding FORTRAN call replaces the following loop:
```

K1 = ....
DO I = 1,N
T = {+/-}T {+/*} A(K1+(I-1)*INCA)
ENDDO

```

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user callable. The MTH\$ FOLR routines assume that all of the arrays are of the same data type.
This group of routines, MTH \(\$ V_{x F O L R L y \_z}^{-}\)V2 (and also MTH\$VxFOLRLy_MA_V5) return only the result of the last iteration of the linear recurrence relation. This is different from the behavior of MTH\$VxFOLRy_MA_V15 (and also MTH\$VxFOLRy_z_V8), which save the result of each iteration of the linear recurrence relation in an array.
If you specify 0 for the input increment argument (inca), the input will be treated as a scalar and broadcast to a vector input with all vector elements equal to the scalar value.

\section*{EXAMPLES}
```

I

```
```

C

```
C
The following FORTRAN loop computes
The following FORTRAN loop computes
a linear recurrence.
a linear recurrence.
D FLOAT
D FLOAT
INTEGER I,N
INTEGER I,N
REAL*8 A(200), T
REAL*8 A(200), T
T = 78.9847562
T = 78.9847562
N}=2
N}=2
DO I = 4, N
DO I = 4, N
T = -T* A(I*10)
T = -T* A(I*10)
ENDDO
ENDDO
C
C
C The following call from FORTRAN to a FOLR
C The following call from FORTRAN to a FOLR
C
C
C
C
C D_ELOAT
C D_ELOAT
INTTEGER N
INTTEGER N
REAL*8 A(200), T
REAL*8 A(200), T
T = 78.9847562
T = 78.9847562
N = 20
N = 20
T = MTH$VDFOLRLN_M_V2(N-3, A(40), 10, T)
```

T = MTH\$VDFOLRLN_M_V2(N-3, A(40), 10, T)

```

\section*{MTH\$VxFOLRLy_z_V2}
```

\

```
```

C

```
C
C The following FORTRAN loop computes
C The following FORTRAN loop computes
a linear recurrence.
a linear recurrence.
C D_FLOAT
C D_FLOAT
    INTTEGER I,N
    INTTEGER I,N
    REAL*8 A(200), T
    REAL*8 A(200), T
    T = 78.9847562
    T = 78.9847562
    N = 20
    N = 20
    DO I = 4, N
    DO I = 4, N
    T=T+A(I*10)
    T=T+A(I*10)
    ENDDO
    ENDDO
C
C
C The following call from FORTRAN to a FOLR
C The following call from FORTRAN to a FOLR
C routine replaces the preceding loop.
C routine replaces the preceding loop.
C
C
D_FLOAT
D_FLOAT
INTTEGER N
INTTEGER N
REAL*8 A(200), T
REAL*8 A(200), T
T = 78.9847562
T = 78.9847562
N = 20
N = 20
T = MTH$VDFOLRLP_A_V2(N-3, A(40), 10, T)
```

T = MTH\$VDFOLRLP_A_V2(N-3, A(40), 10, T)

```

\section*{Additional MTH\$ Routines}

The following supported MTH\$ routines are not included with the routines in Part II, the Scalar MTH\$ Reference Section because they are used rarely. The majority of these routines serve to satisfy external references when intrinsic functions in FORTRAN and other languages are passed as parameters. Otherwise, the functions are performed by inline code.

Table A-1 lists all of the entry point and argument information for the MTH\$ routines not documented in Part II, the Scalar MTH\$ Reference Section of this manual.

Table A-1 Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline MTH\$ABS & & F-floating Absolute Value Routine \\
\hline & Format: & MTH\$ABS f-floating \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline MTH\$DABS & & D-floating Absolute Value Routine \\
\hline & Format: & MTH\$DABS d-floating \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & d-floating: & floating_point, D_floating, read only, by reference \\
\hline MTH\$GABS & & G-floating Absolute Value Routine \\
\hline & Format: & MTH\$GABS g-floating \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & g-floating: & floating_point, G_floating, read only, by reference \\
\hline MTH\$HABS & & H-floating Absolute Value Routine \\
\hline & Format: & MTH\$HABS h-abs-val, h-floating \\
\hline & Returns: & None \\
\hline & h-abs-val: & floating_point, H_floating, write only, by reference \\
\hline & h -floating: & floating_point, H_floating, read only, by reference \\
\hline
\end{tabular}
(continued on next page)

\section*{Additional MTH\$ Routines}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline \multirow[t]{4}{*}{MTH\$IIABS} & & Word Absolute Value Routine \\
\hline & Format: & MTH\$IIABS word \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & word: & word_signed, word (signed), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$JIABS} & & Longword Absolute Value Routine \\
\hline & Format: & MTH\$JIABS longword \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & longword: & longword_signed, longword (signed), read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$IIAND} & & Bitwise AND of Two Word Parameters Routine \\
\hline & Format: & MTH\$IIAND word1, word2 \\
\hline & Returns: & word_unsigned, word (unsigned), write only, by value \\
\hline & word1: & word_unsigned, word (unsigned), read only, by reference \\
\hline & word2: & word_unsigned, word (unsigned), read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$JIAND} & & Bitwise AND of Two Longword Parameters Routine \\
\hline & Format: & MTH\$JIAND longword1, longword2 \\
\hline & Returns: & longword_unsigned, longword (unsigned), write only, by value \\
\hline & longword1: & longword_unsigned, longword (unsigned), read only, by reference \\
\hline & longword2: & longword_unsigned, longword (unsigned), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$DBLE} & & Convert F-floating to D-floating (Exact) Routine \\
\hline & Format: & MTH\$DBLE f-floating \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$GDBLE} & & Convert F-floating to G-floating (Exact) Routine \\
\hline & Format: & MTH\$GDBLE f-floating \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$DIM} & & Positive Difference of Two F-floating Parameters Routine \\
\hline & Format: & MTH\$DIM f-floating1, f-floating2 \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & f-floating1: & floating_point, F_floating, read only, by reference \\
\hline & f-floating2: & floating_point, F_floating, read only, by reference \\
\hline
\end{tabular}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline \multirow[t]{5}{*}{MTH\$DDIM} & & Positive Difference of Two D-floating Parameters Routine \\
\hline & Format: & MTH\$DDIM d-floating1, d-floating2 \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & d-floating1: & floating_point, D_floating, read only, by reference \\
\hline & d-floating2: & floating_point, D_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$GDIM} & & Positive Difference of Two G-floating Parameters Routine \\
\hline & Format: & MTH\$GDIM g-floating1, g-floating2 \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & g-floating1: & floating_point, G_floating, read only, by reference \\
\hline & g-floating2: & floating_point, G_floating, read only, by reference \\
\hline \multirow[t]{6}{*}{MTH\$HDIM} & & Positive Difference of Two H-floating Parameters Routine \\
\hline & Format: & MTH\$HDIM h-floating, h-floating1, h-floating2 \\
\hline & Returns: & None \\
\hline & \(h\)-floating: & floating_point, H_floating, write only, by reference \\
\hline & h -floating1: & floating_point, H_floating, read only, by reference \\
\hline & \(h\)-floating2: & floating_point, H_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$IIDIM} & & Positive Difference of Two Word Parameters Routine \\
\hline & Format: & MTH\$IIDIM word1, word2 \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & word1: & word_signed, word (signed), read only, by reference \\
\hline & word2: & word_signed, word (signed), read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$JIDIM} & & Positive Difference of Two Longword Parameters Routine \\
\hline & Format: & MTH\$JIDIM longword1, longword2 \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & longword1: & longword_signed, longword (signed), read only, by reference \\
\hline & longword2: & longword_signed, longword (signed), read only, by reference \\
\hline
\end{tabular}

\section*{Additional MTH\$ Routines}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline MTH\$IIEOR & & Bitwise Exclusive OR of Two Word Parameters Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
word1: \\
word2:
\end{tabular} & \begin{tabular}{l}
MTH\$IIEOR word1, word2 \\
word_unsigned, word (unsigned), write only, by value word_unsigned, word (unsigned), read only, by reference word_unsigned, word (unsigned), read only, by reference
\end{tabular} \\
\hline MTH\$JIEOR & & Bitwise Exclusive OR of Two Longword Parameters Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
longword1: \\
longword2:
\end{tabular} & \begin{tabular}{l}
MTH\$JIEOR longword1, longword2 \\
longword_unsigned, longword (unsigned), write only, by value longword_unsigned, longword (unsigned), read only, by reference longword_unsigned, longword (unsigned), read only, by reference
\end{tabular} \\
\hline MTH\$IIFIX & & Convert F-floating to Word (Truncated) Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
f-floating:
\end{tabular} & \begin{tabular}{l}
MTH\$IIFIX f-floating \\
word_signed, word (signed), write only, by value floating_point, F_floating, read only, by reference
\end{tabular} \\
\hline MTH\$JIFIX & & Convert F-floating to Longword (Truncated) Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
f-floating:
\end{tabular} & MTH\$JIFIX f-floating longword_signed, longword (signed), write only, by value floating_point, F_floating, read only, by reference \\
\hline MTH\$FLOATI & & Convert Word to F-floating (Exact) Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
word:
\end{tabular} & MTH\$FLOATI word floating_point, F_floating, write only, by value word_signed, word (signed), read only, by reference \\
\hline MTH\$DFLOTI & & Convert Word to D-floating (Exact) Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
word:
\end{tabular} & MTH\$DFLOTI word floating_point, D_floating, write only, by value word_signed, word (signed), read only, by reference \\
\hline MTH\$GFLOTI & & Convert Word to G-floating (Exact) Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
word:
\end{tabular} & MTH\$GFLOTI word floating_point, G_floating, write only, by value word_signed, word (signed), read only, by reference \\
\hline
\end{tabular}
(continued on next page)

\section*{Additional MTH\$ Routines}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Routine Name} & Entry Point Information \\
\hline \multirow[t]{4}{*}{MTH\$FLOATJ} & & Convert Longword to F-floating (Rounded) Routine \\
\hline & Format: & MTH\$FLOATJ longword \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & longword: & longword_signed, longword (signed), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$DFLOTJ} & & Convert Longword to D-floating (Exact) Routine \\
\hline & Format: & MTH\$DFLOTJ longword \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & longword: & longword_signed, longword (signed), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$GFLOTJ} & & Convert Longword to G-floating (Exact) Routine \\
\hline & Format: & MTH\$GFLOTJ longword \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & longword: & longword_signed, longword (signed), read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$FLOOR} & & Convert F-floating to Greatest F-floating Integer Routine \\
\hline & Format: & MTH\$FLOOR f-floating \\
\hline & JSB: & MTH\$FLOOR_R1 f-floating \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$DFLOOR} & & Convert D-floating to Greatest D-floating Integer Routine \\
\hline & Format: & MTH\$DFLOOR d-floating \\
\hline & JSB: & MTH\$DFLOOR_R3 d-floating \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & d-floating: & floating_point, \(D_{\text {_floating, }}\) read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$GFLOOR} & & Convert G-floating to Greatest G-floating Integer Routine \\
\hline & Format: & MTH\$GFLOOR g-floating \\
\hline & JSB: & MTH\$GFLOOR_R3 g-floating \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & g-floating: & floating_point, G_floating, read only, by reference \\
\hline
\end{tabular}

\section*{Additional MTH\$ Routines}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline \multirow[t]{6}{*}{MTH\$HFLOOR} & & Convert H-floating to Greatest H-floating Integer Routine \\
\hline & Format: & MTH\$HFLOOR max-h-float, \(h\)-floating \\
\hline & JSB: & MTH\$HFLOOR_R7 h-floating \\
\hline & Returns: & None \\
\hline & max-h-float: & floating_point, H_floating, write only, by reference \\
\hline & h-floating: & floating_point, H_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$AINT} & & Convert F-floating to Truncated F-floating Routine \\
\hline & Format: & MTH\$AINT f-floating \\
\hline & JSB: & MTH\$AINT_R2 f-floating \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$DINT} & & Convert D-floating to Truncated D-floating Routine \\
\hline & Format: & MTH\$DINT d-floating \\
\hline & JSB: & MTH\$DINT_R4 d-floating \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & d-floating: & floating_point, D_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$IIDINT} & & Convert D-floating to Word (Truncated) Routine \\
\hline & Format: & MTH\$IIDINT d-floating \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & d-floating: & floating_point, D_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$JIDINT} & & Convert D-floating to Longword (Truncated) Routine \\
\hline & Format: & MTH\$JIDINT d-floating \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & d-floating: & floating_point, D_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$GINT} & & Convert G-floating to Truncated G-floating Routine \\
\hline & Format: & MTH\$GINT g-floating \\
\hline & JSB: & MTH\$GINT_R4 g-floating \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & g-floating: & floating_point, G_floating, read only, by reference \\
\hline
\end{tabular}
(continued on next page)

\section*{Additional MTH\$ Routines}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline MTH\$IIGINT & & Convert G-floating to Word (Truncated) Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
g-floating:
\end{tabular} & \begin{tabular}{l}
MTH\$IIGINT g-floating \\
word_signed, word (signed), write only, by value floating_point, G_floating, read only, by reference
\end{tabular} \\
\hline MTH\$JIGINT & & Convert G-floating to Longword (Truncated) Routine \\
\hline & Format: & MTH\$JIGINT g-floating \\
\hline & \begin{tabular}{l}
Returns: \\
g-floating:
\end{tabular} & longword_signed, longword (signed), write only, by value floating_point, G_floating, read only, by reference \\
\hline MTH\$HINT & & Convert H-floating to Truncated H-floating Routine \\
\hline & Format: & MTH\$HINT trunc-h-flt, h-floating \\
\hline & JSB: & MTH\$HINT_R8 h-floating \\
\hline & Returns: & \\
\hline & trunc-h-flt: & floating_point, H_floating, write only, by reference \\
\hline & h-floating: & floating_point, H_floating, read only, by reference \\
\hline MTH\$IIHINT & & Convert H-floating to Word (Truncated) Routine \\
\hline & Format: & MTH\$IIHINT h-floating \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & h-floating: & floating_point, H_floating, read only, by reference \\
\hline MTH\$JIHINT & & Convert H-floating to Longword (Truncated) Routine \\
\hline & Format: & MTH\$JIHINT h-floating \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & h-floating: & floating_point, H_floating, read only, by reference \\
\hline MTH\$IINT & & Convert F-floating to Word (Truncated) Routine \\
\hline & Format: & MTH\$IINT f-floating \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline MTH\$JINT & & Convert F-floating to Longword (Truncated) Routine \\
\hline & Format: & MTH\$JINT f-floating \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline
\end{tabular}
(continued on next page)

\section*{Additional MTH\$ Routines}
\begin{tabular}{|c|c|c|}
\hline Table A-1 (Cont.) & \multicolumn{2}{|l|}{Additional MTH\$ Routines} \\
\hline Routine Name & & Entry Point Information \\
\hline \multirow[t]{5}{*}{MTH\$IIOR} & & Bitwise Inclusive OR of Two Word Parameters Routine \\
\hline & Format: & MTH\$IIOR word1, word2 \\
\hline & Returns: & word_unsigned, word (unsigned), write only, by value \\
\hline & word1: & word_unsigned, word (unsigned), read only, by reference \\
\hline & word2: & word_unsigned, word (unsigned), read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$JIOR} & & Bitwise Inclusive OR of Two Longword Parameters Routine \\
\hline & Format: & MTH\$JIOR longword1, longword2 \\
\hline & Returns: & longword_unsigned, longword (unsigned), write only, by value \\
\hline & longword1: & longword_unsigned, longword (unsigned), read only, by reference \\
\hline & longword2: & longword_unsigned, longword (unsigned), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$AIMAXO} & & F-floating Maximum of \(N\) Word Parameters Routine \\
\hline & Format: & MTH\$AIMAX0 word, . . \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & word: & word_signed, word (signed), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$AJMAXO} & & F-floating Maximum of \(N\) Longword Parameters Routine \\
\hline & Format: & MTH\$AJMAXO longword, . . \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & longword: & longword_signed, longword (signed), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$IMAXO} & & Word Maximum of \(N\) Word Parameters Routine \\
\hline & Format: & MTH\$IMAXO word, . . . \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & & \\
\hline \multirow[t]{4}{*}{MTH\$JMAXO} & & Longword Maximum of \(N\) Longword Parameters Routine \\
\hline & Format: & MTH\$JMAXO longword, . . . \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & longword: & longword_signed, longword (signed), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$AMAX1} & & F-floating Maximum of N F-floating Parameters Routine \\
\hline & Format: & MTH\$AMAX1 f-floating, . . \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline
\end{tabular}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Routine Name} & Entry Point Information \\
\hline \multirow[t]{4}{*}{MTH\$DMAX1} & & D-floating Maximum of \(N\) D-floating Parameters Routine \\
\hline & Format: & MTH\$DMAX1 d-floating, \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & d-floating: & floating_point, D_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$GMAX1} & & G-floating Maximum of N G-floating Parameters Routine \\
\hline & Format: & MTH\$GMAX1 g-floating, \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & g-floating: & floating_point, G_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$HMAX1} & & H-floating Maximum of NH -floating Parameters Routine \\
\hline & Format: & MTH\$HMAX1 h-float-max, h-floating, \\
\hline & Returns: & None \\
\hline & h-float-max: & floating_point, H_floating, write only, by reference \\
\hline & h -floating: & floating_point, H_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$IMAX1} & & Word Maximum of \(N\) F-floating Parameters Routine \\
\hline & Format: & MTH\$IMAX1 f-floating, . . \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$JMAX1} & & Longword Maximum of N F-floating Parameters Routine \\
\hline & Format: & MTH\$JMAX1 f-floating, \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$AIMINO} & & F-floating Minimum of \(N\) Word Parameters Routine \\
\hline & Format: & MTH\$AIMINO word, . \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & word: & word_signed, word (signed), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$AJMINO} & & F-floating Minimum of \(N\) Longword Parameters Routine \\
\hline & Format: & MTH\$AJMINO longword, . . \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & longword: & longword_signed, longword (signed), read only, by reference \\
\hline
\end{tabular}

\section*{Additional MTH\$ Routines}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Routine Name} & Entry Point Information \\
\hline \multirow[t]{4}{*}{MTH\$IMINO} & & Word Minimum of \(N\) Word Parameters Routine \\
\hline & Format: & MTH\$IMINO word, . . . \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & & word_signed, word (signed), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$JMINO} & & Longword Minimum of \(N\) Longword Parameters Routine \\
\hline & Format: & MTH\$JMINO longword, \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & longword: & longword_signed, longword (signed), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$AMIN1} & & F-floating Minimum of N F-floating Parameters Routine \\
\hline & Format: & MTH\$AMIN1 f-floating, . . \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTHSDMIN1} & & D-floating Minimum of N D-floating Parameters Routine \\
\hline & Format: & MTH\$DMIN1 d-floating, \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & d-floating: & floating_point, D_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$GMIN1} & & G-floating Minimum of N G-floating Parameters Routine \\
\hline & Format: & MTH\$GMIN1 g-floating, . . \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & \(g\)-floating: & floating_point, G_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$HMIN1} & & \(H\)-floating Minimum of NH -floating Parameters Routine \\
\hline & Format: & MTH\$HMIN1 h-float-max, h-floating, \\
\hline & Returns: & None \\
\hline & h-float-max: & floating_point, H_floating, write only, by reference \\
\hline & \(h\)-floating: & floating_point, H_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$IMIN1} & & Word Minimum of \(N\) F-floating Parameters Routine \\
\hline & Format: & MTH\$IMIN1 f-floating, . . \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline
\end{tabular}
(continued on next page)

\section*{Additional MTH\$ Routines}

\section*{Table A-1 (Cont.) Additional MTH\$ Routines}
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline \multirow[t]{4}{*}{MTH\$JvilN1} & & Longword Minimum of N F-floating Parameters Routine \\
\hline & Format: & MTH\$JMIN1 f-floating, \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$AMOD} & & Remainder from Division of Two F-floating Parameters Routine \\
\hline & Format: & MTH\$AMOD dividend, divisor \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & dividend: & floating_point, F_floating, read only, by reference \\
\hline & divisor: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$DMOD} & & Remainder from Division of Two D-floating Parameters Routine \\
\hline & Format: & MTH\$DMOD dividend, divisor \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & dividend: & floating_point, D_floating, read only, by reference \\
\hline & divisor: & floating_point, D_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$GMOD} & & Remainder from Division of Two G-floating Parameters Routine \\
\hline & Format: & MTH\$GMOD dividend, divisor \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & dividend: & floating_point, G_floating, read only, by reference \\
\hline & divisor: & floating_point, G_floating, read only, by reference \\
\hline \multirow[t]{6}{*}{MTH\$HMOD} & & Remainder from Division of Two H-floating Parameters Routine \\
\hline & Format: & MTH\$HMOD h-mod, dividend, divisor \\
\hline & Returns: & None \\
\hline & h-mod: & floating_point, H_floating, write only, by reference \\
\hline & dividend: & floating_point, H_floating, read only, by reference \\
\hline & divisor: & floating_point, H_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$IMOD} & & Remainder from Division of Two Word Parameters Routine \\
\hline & Format: & MTH\$IMOD dividend, divisor \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & dividend: & word_signed, word (signed), read only, by reference \\
\hline & divisor: & word_signed, word (signed), read only, by reference \\
\hline
\end{tabular}

\section*{Additional MTH\$ Routines}

\section*{Table A-1 (Cont.) Additional MTH\$ Routines}
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline MTH\$JMOD & & Remainder of Two Longword Parameters Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
dividend: \\
divisor:
\end{tabular} & MTH\$JMOD dividend, divisor longword_signed, longword (signed), write only, by value longword_signed, longword (signed), read only, by reference longword_signed, longword (signed), read only, by reference \\
\hline MTH\$ANINT & & Convert F-floating to Nearest F-floating Integer Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
f-floating:
\end{tabular} & \begin{tabular}{l}
MTH\$ANINT f-floating \\
floating_point, F_floating, write only, by value floating_point, F_floating, read only, by reference
\end{tabular} \\
\hline MTH\$DNINT & & Convert D-floating to Nearest D-floating Integer Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
d-floating:
\end{tabular} & \begin{tabular}{l}
MTH\$DNINT d-floating \\
floating_point, D_floating, write only, by value floating_point, D_floating, read only, by reference
\end{tabular} \\
\hline MTH\$IIDNNT & & Convert D-floating to Nearest Word Integer Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
d-floating:
\end{tabular} & \begin{tabular}{l}
MTH\$IIDNNT d-floating \\
word_signed, word (signed), write only, by value floating_point, D_floating, read only, by reference
\end{tabular} \\
\hline MTH\$JIDNNT & & Convert D-floating to Nearest Longword Integer Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
d-floating:
\end{tabular} & MTH\$JIDNNT d-floating longword_signed, longword (signed), write only, by value floating_point, D_floating, read only, by reference \\
\hline MTH\$GNINT & & Convert G-floating to Nearest G-floating Integer Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
\(g\)-floating:
\end{tabular} & \begin{tabular}{l}
MTH\$GNINT g-floating \\
floating_point, G_floating, write only, by value floating_point, G_floating, read only, by reference
\end{tabular} \\
\hline MTH\$IIGNNT & & Convert G-floating to Nearest Word Integer Routine \\
\hline & \begin{tabular}{l}
Format: \\
Returns: \\
g-floating:
\end{tabular} & \begin{tabular}{l}
MTH\$IIGNNT g-floating \\
word_signed, word (signed), write only, by value floating_point, G_floating, read only, by reference
\end{tabular} \\
\hline
\end{tabular}

\section*{Additional MTH\$ Routines}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline MTH\$JIGNNT & & Convert G-floating to Nearest Longword Integer Routine \\
\hline & Format: & MTH\$JIGNNT g-floating \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & g-floating: & floating_point, G_floating, read only, by reference \\
\hline MTH\$HNINT & & Convert H-floating to Nearest H-floating Integer Routine \\
\hline & Format: & MTH\$HNINT nearst-h-flt, h-floating \\
\hline & Returns: & None \\
\hline & nearst-h-flt: & floating_point, H_floating, write only, by reference \\
\hline & \(h\)-floating: & floating_point, H_floating, read only, by reference \\
\hline MTH\$IIHNNT & & Convert H-floating to Nearest Word Integer Routine \\
\hline & Format: & MTH\$IIHNNT h-floating \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & \(h\)-floating: & floating_point, H_floating, read only, by reference \\
\hline MTH\$JIHNNT & & Convert H-floating to Nearest Longword Integer Routine \\
\hline & Format: & MTH\$JIHNNT h-floating \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & \(h\)-floating: & floating_point, H_floating, read only, by reference \\
\hline MTH\$ININT & & Convert F-floating to Nearest Word Integer Routine \\
\hline & & MTH\$ININT f-floating \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline MTH\$JNINT & & Convert F-floating to Nearest Longword Integer Routine \\
\hline & Format: & MTH\$JNINT f-floating \\
\hline & Returns: & longword_signed, longword (signed), write only, by value \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline MTH\$INOT & & Bitwise Complement of Word Parameter Routine \\
\hline & Format: & MTH\$INOT word \\
\hline & Returns: & word_unsigned, word (unsigned), write only, by value \\
\hline & word: & word_unsigned, word (unsigned), read only, by reference \\
\hline
\end{tabular}

\section*{Additional MTH\$ Routines}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline \multirow[t]{4}{*}{MTH\$JNOT} & & Bitwise Complement of Longword Parameter Routine \\
\hline & Format: & MTH\$JNOT longword \\
\hline & Returns: & longword_unsigned, longword (unsigned), write only, by value \\
\hline & longword: & \\
\hline \multirow[t]{5}{*}{MTH\$DPROD} & & D-floating Product of Two F-floating Parameters Routine \\
\hline & Format: & MTH\$DPROD f-floating1, f-floating2 \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & \(f\)-floating1: & floating_point, F_floating, read only, by reference \\
\hline & f-floating2: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$GPROD} & & G-floating Product of Two F-floating Parameters Routine \\
\hline & Format: & MTH\$GPROD f-floating1, f-floating2 \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & f-floating1: & floating_point, F_floating, read only, by reference \\
\hline & f-floating2: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$SGN} & & F-floating Sign Function \\
\hline & Format: & MTH\$SGN f-floating \\
\hline & Returns: & longword_signed, longword (signed), write only, by reference \\
\hline & f-floating: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$SGN} & & D-floating Sign Function \\
\hline & Format: & MTH\$SGN d-floating \\
\hline & Returns: & longword_signed, longword (signed), write only, by reference \\
\hline & d-floating: & floating_point, D_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$IISHFT} & & Bitwise Shift of Word Routine \\
\hline & Format: & MTH\$IISHFT word, shift-cnt \\
\hline & Returns: & word_unsigned, word (unsigned), write only, by value \\
\hline & word: & word_unsigned, word (unsigned), read only, by reference \\
\hline & shift-cnt: & word_signed, word (signed), read only, by reference \\
\hline
\end{tabular}

\section*{Additional MTH\$ Routines}

Table A-1 (Cont.) Additional MTH\$ Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline \multirow[t]{5}{*}{MTH\$JISHFT} & & Bitwise Shift of Longword Routine \\
\hline & Format: & MTH\$JISHFT longword, shift-cnt \\
\hline & Returns: & longword_unsigned, longword (unsigned), write only, by value \\
\hline & longword: & longword_unsigned, longword (unsigned), read only, by reference \\
\hline & shift-cnt: & longword_signed, longword (signed), read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$SIGN} & & F-floating Transfer of Sign of \(Y\) to Sign of \(X\) Routine \\
\hline & Format: & MTH\$SIGN f-float-x, f-float-y \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & f-float-x: & floating_point, F_floating, read only, by reference \\
\hline & f-float-y: & floating_point, F_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$DSIGN} & & D-floating Transfer of Sign of \(Y\) to Sign of \(X\) Routine \\
\hline & Format: & MTH\$DSIGN d-float-x, d-float-y \\
\hline & Returns: & floating_point, D_floating, write only, by value \\
\hline & d-float-x: & floating_point, D_floating, read only, by reference \\
\hline & d-float-y: & floating_point, D_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$GSIGN} & & G-floating Transfer of Sign of \(Y\) to Sign of \(X\) Routine \\
\hline & Format: & MTH\$GSIGN g-float-x, g-float-y \\
\hline & Returns: & floating_point, G_floating, write only, by value \\
\hline & g-float-x: & floating_point, G_floating, read only, by reference \\
\hline & g-float-y: & floating_point, G_floating, read only, by reference \\
\hline \multirow[t]{6}{*}{MTH\$HSIGN} & & \(H\)-floating Transfer of Sign of \(Y\) to Sign of \(X\) Routine \\
\hline & Format: & MTH\$HSIGN h-result, h-float-x, h-float-y \\
\hline & Returns: & None \\
\hline & \(h\)-result: & floating_point, H_floating, write only, by reference \\
\hline & h-float-x: & floating_point, H_floating, read only, by reference \\
\hline & h-float-y: & floating_point, H_floating, read only, by reference \\
\hline \multirow[t]{5}{*}{MTH\$IISIGN} & & Word Transfer of Sign of \(Y\) to Sign of \(X\) Routine \\
\hline & Format: & MTH\$IISIGN word-x, word-y \\
\hline & Returns: & word_signed, word (signed), write only, by value \\
\hline & word-x: & word_signed, word (signed), read only, by reference \\
\hline & word-y: & word_signed, word (signed), read only, by reference \\
\hline
\end{tabular}

\section*{Additional MTH\$ Routines}

\section*{Table A-1 (Cont.) Additional MTH\$ Routines}
\begin{tabular}{|c|c|c|}
\hline Routine Name & & Entry Point Information \\
\hline \multirow[t]{5}{*}{MTH\$JISIGN} & & Longword Transfer of Sign of \(Y\) to Sign of \(X\) Routine \\
\hline & Format: & MTH\$JISIGN longwrd-x, longwrd-y \\
\hline & Returns: & longword_signed, longword (signed), write only, by reference \\
\hline & longwrd-x: & longword_signed, longword (signed), read only, by reference \\
\hline & longwrd-y: & longword_signed, longword (signed), read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$SNGL} & & Convert D-floating to F-floating (Rounded) Routine \\
\hline & Format: & MTH\$SNGL d-floating \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & d-floating: & floating_point, D_floating, read only, by reference \\
\hline \multirow[t]{4}{*}{MTH\$SNGLG} & & Convert G-floating to F-floating (Rounded) Routine \\
\hline & Format: & MTH\$SNGLG g-floating \\
\hline & Returns: & floating_point, F_floating, write only, by value \\
\hline & g-floating: & floating_point, G_floating, read only, by reference \\
\hline
\end{tabular}

\section*{B} Vector MTH\$ Routine Entry Points

Table B-1 contains all of the vector MTH\$ routines that you can call from VAX MACRO. Be sure to read Section 2.3.3 and Section 2.3.4 before using the information in this table.

Table B-1 Vector MTH\$ Routines
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scalar Name & Call or JSB & Vector Input Registers & Vector Output Registers & Vector Name (Underflows Not Signaled) & Vector Name (Underflows Signaled) \\
\hline AINT & JSB & Vo & Vo & MTH\$VAINT_R0_V1 & \\
\hline DINT & JSB & Vo & Vo & MTH\$VDINT_R3_V3 & \\
\hline GINT & JSB & Vo & Vo & MTH\$VGINT_R3_V3 & \\
\hline DPROD & Call & V0,V1 & Vo & MTH\$VVDPROD_R1_V1 & \\
\hline GPROD & Call & V0,V1 & Vo & MTH\$VVGPROD_R1_V1 & \\
\hline ACOS & JSB & vo & Vo & MTH\$VACOS_R6_V7 & \\
\hline DACOS & JSB & Vo & Vo & MTH\$VDACOS_R2_V7 & \\
\hline GACOS & JSB & Vo & Vo & MTH\$VGACOS_R2_V7 & \\
\hline ACOSD & JSB & Vo & Vo & MTH\$VACOSD_R6_V7 & \\
\hline DACOSD & JSB & Vo & Vo & MTH\$VDACOSD_R2_V7 & \\
\hline GACOSD & JSB & Vo & Vo & MTH\$VGACOS_R2_V7 & \\
\hline ASIN & JSB & Vo & Vo & MTH\$VASIN_R2_V6 & \\
\hline DASIN & JSB & Vo & Vo & MTH\$VDASIN_R2_V6 & \\
\hline GASIN & JSB & Vo & Vo & MTH\$VGASIN_R2_V6 & \\
\hline ASIND & JSB & Vo & Vo & MTH\$VASIND_R2_V6 & \\
\hline DASIND & JSB & Vo & Vo & MTH\$VDASIND_R2_V6 & \\
\hline GASIND & JSB & vo & Vo & MTH\$VGASIND_R2_V6 & \\
\hline ATAN & JSB & Vo & Vo & MTH\$VATAN_R0_V4 & \\
\hline DATAN & JSB & Vo & Vo & MTH\$VDATAN_R0_V6 & \\
\hline GATAN & JSB & Vo & Vo & MTH\$VGATAN_R0_V6 & \\
\hline ATAND & JSB & Vo & Vo & MTH\$VATAND_RO_V4 & \\
\hline DATAND & JSB & Vo & Vo & MTH\$VDATAND_R0_V6 & \\
\hline GATAND & JSB & vo & Vo & MTH\$VGATAND_R0_V6 & \\
\hline ATAN2 & JSB & V0, V1 & Vo & MTH\$VVATAN2_R4_V7 & \\
\hline DATAN2 & JSB & V0, V1 & Vo & MTH\$VVDATAN2_R4_V9 & \\
\hline GATAN2 & JSB & V0, V1 & Vo & MTH\$VVGATAN2_R4_V9 & \\
\hline ATAND2 & JSB & V0, V1 & Vo & MTH\$VVATAND2_R4_V7 & \\
\hline
\end{tabular}

\section*{Vector MTH\$ Routine Entry Points}

Table B-1 (Cont.) Vector MTH\$ Routines
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scalar Name & \[
\begin{aligned}
& \text { Call } \\
& \text { or } \\
& \text { JSB }
\end{aligned}
\] & Vector Input Registers & Vector Output Registers & Vector Name (Underflows Not Signaled) & Vector Name (Underflows Signaled) \\
\hline DATAND2 & JSB & V0,V1 & Vo & MTH\$VVDATAND2_R4_V9 & \\
\hline GATAND2 & JSB & V0, V1 & Vo & MTH\$VVGATAND2_R4_V9 & \\
\hline CABS & Call & V0,V1 & Vo & MTH\$VCABS_R1_V5 & \\
\hline CDABS & Call & V0, V1 & Vo & MTH\$VCDABS_R1_V6 & \\
\hline CGABS & Call & V0, V1 & Vo & MTH\$VCGABS_R1_V6 & \\
\hline CCOS & Call & V0, V1 & V0,V1 & MTH\$VCCOS_R1_V11 & \\
\hline CDCOS & Call & V0, V1 & V0,V1 & MTH\$VCDCOS_R1_V11 & \\
\hline CGCOS & Call & V0, V1 & V0,V1 & MTH\$VCGCOS_R1_V11 & \\
\hline COS & JSB & Vo & Vo & MTH\$VCOS_R4_V7 & \\
\hline DCOS & JSB & Vo & Vo & MTH\$VDCOS_R4_V8 & \\
\hline GCOS & JSB & vo & Vo & MTH\$VGCOS_R4_V8 & \\
\hline COSD & JSB & Vo & Vo & MTH\$VCOSD_R4_V6 & \\
\hline DCOSD & JSB & Vo & Vo & MTH\$VDCOSD_R4_V6 & \\
\hline GCOSD & JSB & Vo & Vo & MTH\$VGCOSD_R4_V6 & \\
\hline CEXP & Call & V0, V1 & V0,V1 & MTH\$VCEXP_R1_V8 & \\
\hline CDEXP & Call & V0, V1 & V0, V1 & MTH\$VCDEXP_R1_V10 & \\
\hline CGEXP & Call & V0, V1 & V0,V1 & MTH\$VCGEXP_R1_V10 & \\
\hline CLOG & Call & V0, V1 & V0,V1 & MTH\$VCLOG_R1_V8 & \\
\hline CDLOG & Call & V0, V1 & V0, V1 & MTH\$VCDLOG_R1_V10 & \\
\hline CGLOG & Call & V0, V1 & V0, V1 & MTH\$VCGLOG_R1_V10 & \\
\hline AMOD & JSB & V0,R0 & Vo & MTH\$VMOD_R4_V5 & MTH\$VMOD_E_R4_V5 \\
\hline DMOD & JSB & V0,R0 & Vo & MTH\$VDMOD_R7_V6 & MTH\$VDMOD_E_R7_V6 \\
\hline GMOD & JSB & V0,R0 & Vo & MTH\$VGMOD_R7_V6 & MTH\$VGMOD_E_R7_V6 \\
\hline CSIN & Call & V0, V1 & V0,V1 & MTH\$VCSIN_R1_V11 & \\
\hline CDSIN & Call & V0,V1 & Vo,V1 & MTH\$VCDSIN_R1_V11 & \\
\hline CGSIN & Call & V0,V1 & V0,V1 & MTH\$VCGSIN_R1_V11 & \\
\hline CSQRT & Call & V0, V1 & V0, V1 & MTH\$VCSQRT_R1_V7 & \\
\hline CDSQRT & Call & \(\mathrm{V} 0, \mathrm{~V}_{1}\) & V0, V1 & MTH\$VCDSQRT_R1_V8 & \\
\hline CGSQRT & Call & V0, V1 & V0, V1 & MTH\$VCGSQRT_R1_V8 & \\
\hline COSH & JSB & Vo & Vo & MTH\$VCOSH_R5_V8 & \\
\hline DCOSH & JSB & Vo & Vo & MTH\$VDCOSH_R5_V8 & \\
\hline GCOSH & JSB & Vo & Vo & MTH\$VGCOSH_R5_V8 & \\
\hline EXP & JSB & Vo & V0 & MTH\$VEXP_R3_V6 & MTH\$VEXP_E_R3_V6 \\
\hline DEXP & JSB & Vo & Vo & MTH\$VDEXP_R3_V6 & MTH\$VDEXP_E_R3_V6 \\
\hline GEXP & JSB & Vo & Vo & MTH\$VGEXP_R3_V6 & MTH\$VGEXP_E_R3_V6 \\
\hline
\end{tabular}

\title{
Vector MTH\$ Routine Entry Points
}

Table B-1 (Cont.) Vector MTH\$ Routines
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scalar Name & \[
\begin{aligned}
& \text { Call } \\
& \text { or } \\
& \text { JSB }
\end{aligned}
\] & Vector Input Registers & Vector Output Registers & Vector Name (Underflows Not Signaled) & Vector Name (Underflows Signaled) \\
\hline ALOG & JSB & Vo & Vo & MTH\$VALOG_R3_V5 & \\
\hline DLOG & JSB & Vo & Vo & MTH\$VDLOG_R3_V7 & \\
\hline GLOG & JSB & Vo & Vo & MTH\$VGLOG_R3_V7 & \\
\hline ALOG10 & JSB & Vo & vo & MTH\$VALOG10_R3_V5 & \\
\hline DLOG10 & JSB & Vo & vo & MTH\$VDLOG10_R3_V7 & \\
\hline GLOG10 & JSB & Vo & Vo & MTH\$VGLOG10_R3_V7 & \\
\hline ALOG2 & JSB & Vo & Vo & MTH\$VALOG2_R3_V5 & \\
\hline DLOG2 & JSB & Vo & Vo & MTH\$VDLOG2_R3_V7 & \\
\hline GLOG2 & JSB & Vo & Vo & MTH\$VGLOG2_R3_V7 & \\
\hline RANDOM & JSB & Vo & Vo & MTH\$VRANDOM_R2_Vo & \\
\hline SIN & JSB & Vo & Vo & MTH\$VSIN_R4_V6 & \\
\hline DSIN & JSB & Vo & V0 & MTH\$VDSIN_R4_V8 & \\
\hline GSIN & JSB & Vo & V0 & MTH\$VGSIN_R4_V8 & \\
\hline SIND & JSB & Vo & vo & MTH\$VSIND_R4_V6 & MTH\$VSIND_E_R6_V6 \\
\hline DSIND & JSB & Vo & Vo & MTH\$VDSIND_R4_V6 & MTH\$VDSIND_E_R6_V6 \\
\hline GSIND & JSB & Vo & Vo & MTH\$VGSIND_R4_V6 & MTH\$VGSIND_E_R6_V6 \\
\hline SINCOS & JSB & Vo & V0,V1 & MTH\$VSINCOS_R4_V7 & \\
\hline DSINCOS & JSB & Vo & \(\mathrm{V} 0, \mathrm{~V} 1\) & MTH\$VDSINCOS_R4_V8 & \\
\hline GSINCOS & JSB & Vo & V0, V1 & MTH\$VGSINCOS_R4_V8 & \\
\hline SINCOSD & JSB & Vo & \(\mathrm{V} 0, \mathrm{~V} 1\) & MTH\$VSINCOSD_R4_V6 & MTH\$VSINCOSD_E_R6_V6 \\
\hline DSINCOSD & JSB & Vo & \(\mathrm{V} 0, \mathrm{~V} 1\) & MTH\$VDSINCOSD_R4_V7 & MTH\$VDSINCOSD_E_R6_V7 \\
\hline GSINCOSD & JSB & Vo & Vo, V1 & MTH\$VGSINCOSD_R4_V7 & MTH\$VGSINCOSD_E_R6_V7 \\
\hline SINH & JSB & Vo & vo & MTH\$VSINH_R5_V9 & \\
\hline DSINH & JSB & Vo & Vo & MTH\$VDSINH_R5_V9 & \\
\hline GSINH & JSB & Vo & Vo & MTH\$VGSINH_R5_V9 & \\
\hline SQRT & JSB & Vo & Vo & MTH\$VSQRT_R2_V4 & \\
\hline DSQRT & JSB & Vo & Vo & MTH\$VDSQRT_R2_V5 & \\
\hline GSQRT & JSB & Vo & Vo & MTH\$VGSQRT_R2_V5 & \\
\hline TAN & JSB & Vo & Vo & MTH\$VTAN_R4_V5 & \\
\hline DTAN & JSB & Vo & Vo & MTH\$VDTAN_R4_V5 & \\
\hline GTAN & JSB & Vo & Vo & MTH\$VGTAN_R4_V5 & \\
\hline TAND & JSB & Vo & Vo & MTH\$VTAND_R4_V5 & MTH\$VTAND_E_R4_V5 \\
\hline DTAND & JSB & Vo & Vo & MTH\$VDTAND_R4_V5 & MTH\$VDTAND_E_R4_V5 \\
\hline GTAND & JSB & Vo & Vo & MTH\$VGTAND_R4_V5 & MTH\$VGTAND_E_R4_V5 \\
\hline TANH & JSB & Vo & Vo & MTH\$VTANH_R3_V10 & \\
\hline
\end{tabular}

\section*{Vector MTH\$ Routine Entry Points}

Table B-1 (Cont.) Vector MTH\$ Routines
\begin{tabular}{llllll}
\hline Scalar & \begin{tabular}{l} 
Call \\
or \\
Name
\end{tabular} & JSB
\end{tabular} \begin{tabular}{l} 
Vector \\
Input \\
Registers
\end{tabular}\(\quad\)\begin{tabular}{l} 
Vector \\
Output \\
Registers
\end{tabular}\(\quad\)\begin{tabular}{l} 
Vector Name (Underflows \\
Not Signaled)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Vector Name (Underflows \\
Signaled)
\end{tabular}

\section*{Index}
\begin{tabular}{l} 
Absolute value • 1-4 \\
of complex number • MTH-23 \\
Additional routines \\
list of •1-4 to 1-9 \\
Algorithm • 1-3 \\
Arc cosine \\
in degrees \(\cdot\) MTH-6, MTH-70 \\
in radians \(\cdot\) MTH-3, MTH-68 \\
Arc sine \\
in degrees \(\cdot\) MTH-11, MTH-74 \\
in radians \(\cdot\) MTH-9, MTH-72 \\
Arc tangent \\
hyperbolic \(\cdot\) MTH-21, MTH-84 \\
in degrees \(\cdot\) MTH-15, MTH-19, MTH-78, MTH-82 \\
in radians \(\cdot\) MTH-13, MTH-17, MTH-76, MTH-80 \\
Arrays \\
conversion of \(\cdot\) MTH-63 \\
\hline
\end{tabular}

\section*{B}

Backward indexing • 2-6
Bitwise AND operator - 1-5
Bitwise complement operator • 1-8
Bitwise exclusive OR operator • 1-5
Bitwise inclusive OR operator - 1-7
Bitwise shift • 1-9
BLAS
definition of •2-1
BLAS Level 1
BLAS1\$VIxAMAX • MTH-149
BLAS1\$VxASUM •MTH-152
BLAS1\$VXAXPY • MTH-155
BLAS1\$VxCOPY •MTH-160
BLAS1\$VxDOT • MTH-165
BLAS1\$VxNRM2•MTH-170
BLAS1\$VxROT • MTH-173
BLAS1\$VxROTG •MTH-178
BLAS1\$VxSCAL•MTH-183
BLAS1\$VxSWAP • MTH-187
c

Calling convention \(\cdot 1-2\)
Complex number •1-4, MTH-57, MTH-59, MTH-110, MTH-120
absolute value of •MTH-23
complex exponential of \(\cdot\) MTH-31, MTH-33
conjugate of \(\cdot \mathrm{MTH}-44\), MTH-45
cosine of •MTH-26, MTH-28
made from floating-point \(\cdot\) MTH-40, MTH-42
natural logarithm of •MTH-35, MTH-37
sine of • MTH-53, MTH-54
Condition handling • 1-3
Conjugate of complex number • MTH-44, MTH-45
Conversion of double to single floating-point value • 1-9
Conversion to greatest floating-point integer • 1-6
Copying
vector • MTH-160
Cosind
in radians • MTH-124
Cosine
hyperbolic •MTH-51, MTH-88
in degrees \(\cdot\) MTH-49, MTH-87, MTH-127
in radians • MTH-47, MTH-86
of complex number •MTH-26, MTH-28


Double-precision value
converting •MTH-62
converting an array of \(\cdot \mathrm{MTH}-63\)

\section*{E}

Entry point name - 1-1
Error checking
in FOLR routines •2-7
Euclidean norm of a vector •MTH-170
Exceptions
recovering from \(\cdot 2-8\)

\section*{Index}
```

Exponential • MTH-65, MTH-90
of complex number •MTH-31, MTH-33

```
\(E\)

F-floating conversion \(\cdot 1-5\)
First Order Linear Recurrence - MTH-192, MTH-197, MTH-201, MTH-205
Floating-point conversion to nearest value - 1-8
Floating-point multiplication • 1-9
Floating-point positive difference •1-5
Floating-point sign function - 1-9
FOLR
definition of •2-7
FOLR routine •MTH-192, MTH-197, MTH-201, MTH-205
FOLR routines
error checking - 2-7
naming conventions \(\cdot 2-7\)
FORTRAN
/BLAS qualifier •2-1
Forward indexing • 2-6

\section*{G}

Givens plane rotation
applying to a vector \(\cdot \mathrm{MTH}-173\)
generating the elements for \(\cdot \mathrm{MTH}-178\)


Hyperbolic arc tangent •MTH-21, MTH-84
Hyperbolic cosine • MTH-51, MTH-88
Hyperbolic sine • MTH-100, MTH-133
Hyperbolic tangent • MTH-108, MTH-143


Inner product
of a vector •MTH-165
Integer to floating-point conversion -1-6

\section*{J}

JSB entry point •1-2

Linear recurrence
definition of •2-7
Logarithm
base 2•MTH-94, MTH-114
common • MTH-96, MTH-116
natural • MTH-92, MTH-112
natural complex •MTH-35, MTH-37

M

Mathematics routine additional routines • \(\mathrm{A}-1\) to \(\mathrm{A}-16\)
Maximum value \(\cdot 1-7\)
Minimum value • 1-7
MTH\$ACOS • MTH-3
MTH\$ACOSD • MTH-6
MTH\$AIMAG • MTH-110
MTH\$ALOG • MTH-112
MTH\$ALOG10•MTH-116
MTH\$ALOG2 • MTH-114
MTH\$ASIN • MTH-9
MTH\$ASIND • MTH-11
MTH\$ATAN • MTH-13
MTH\$ATAN2 • MTH-17
MTH\$ATAND • MTH-15
MTH\$ATAND2 • MTH-19
MTH\$ATANH • MTH-21
MTH\$CABS • MTH-23
MTH\$CCOS • MTH-26
MTH\$CDABS • MTH-23
MTH\$CDCOS • MTH-28
MTH\$CDEXP • MTH-33
MTH\$CDLOG • MTH-37
MTH\$CDSIN • MTH-54
MTHSCDSQRT • MTH-59
MTH\$CEXP • MTH-31

MTH\$CGABS • MTH-23
MTH\$CGCOS • MTH-28
MTH\$CGEXP • MTH-33
MTH\$CGLOG \(\cdot\) MTH-37
MTHSCGSIN • MTH-54
MTH\$CGSQRT • MTH-59
MTH\$CLOG • MTH-35
MTH\$CMPLX • MTH-40
MTH\$CONJG • MTH-44
MTHSCOS • MTH-47
MTH\$COSD • MTH-49
MTH\$COSH • MTH-51
MTHSCSIN • MTH-53
MTHSCSQRT • MTH-57
MTH\$CVT_DA_GA•MTH-63
MTH\$CVT_D_G•MTH-62
MTH\$CVT_GA_DA \(\cdot\) MTH-63
MTH\$CVT_G_D•MTH-62
MTH\$DACOS • MTH-3
MTH\$DACOSD • MTH-6
MTH\$DASIN • MTH-9
MTH\$DASIND • MTH-11
MTH\$DATAN • MTH-13
MTHSDATAN2 • MTH-17
MTH\$DATAND • MTH-15
MTH\$DATAND2 • MTH-19
MTH\$DATANH • MTH-21
MTH\$DCMPLX •MTH-42
MTH\$DCONJG•MTH-45
MTH\$DCOS • MTH-47
MTH\$DCOSD • MTH-49
MTHSDCOSH • MTH-51
MTH\$DEXP • MTH-65
MTH\$DIMAG • MTH-110
MTH\$DLOG • MTH-112
MTH\$DLOG10 • MTH-116
MTH\$DLOG2 • MTH-114
MTHSDREAL • MTH-120
MTH\$DSIN • MTH-122
MTH\$DSINCOS • MTH-124
MTH\$DSINCOSD • MTH-127
MTHSDSIND • MTH-131
MTHSDSINH • MTH-133
MTH\$DSQRT • MTH-136
MTH\$DTAN • MTH-139
MTH\$DTAND • MTH-141
MTH\$DTANH • MTH-143
MTH\$EXP • MTH-65
MTH\$GACOS • MTH-3
MTH\$GACOSD • MTH-6
MTH\$GASIN • MTH-9

MTH\$GASIND • MTH-11
MTH\$GATAN • MTH-13
MTH\$GATAN2 • MTH-17
MTH\$GATAND • MTH-15
MTH\$GATAND2 • MTH-19
MTH\$GATANH • MTH-21
MTH\$GCMPLX •MTH-42
MTH\$GCONJG • MTH-45
MTH\$GCOS • MTH-47
MTH\$GCOSD • MTH-49
MTH\$GCOSH • MTH-51
MTH\$GEXP • MTH-65
MTH\$GIMAG • MTH-110
MTH\$GLOG • MTH-112
MTH\$GLOG10 • MTH-116
MTH\$GLOG2 • MTH-114
MTH\$GREAL • MTH-120
MTH\$GSIN • MTH-122
MTH\$GSINCOS • MTH-124
MTH\$GSINCOSD • MTH-127
MTH\$GSIND • MTH-131
MTH\$GSINH • MTH-133
MTH\$GSQRT • MTH-136
MTH\$GTAN • MTH-139
MTH\$GTAND • MTH-141
MTH\$GTANH • MTH-143
MTH\$HACOS • MTH-68
MTH\$HACOSD • MTH-70
MTH\$HASIN • MTH-72
MTH\$HASIND • MTH-74
MTH\$HATAN • MTH-76
MTH\$HATAN2 • MTH-80
MTH\$HATAND • MTH-78
MTH\$HATAND2 • MTH-82
MTH\$HATANH • MTH-84
MTH\$HCOS • MTH-86
MTH\$HCOSD • MTH-87
MTH\$HCOSH • MTH-88
MTH\$HEXP • MTH-90
MTH\$HLOG • MTH-92
MTH\$HLOG10 • MTH-96
MTH\$HLOG2 • MTH-94
MTHSHSIN • MTH-98
MTH\$HSINCOS • MTH-124
MTH\$HSINCOSD • MTH-127
MTH\$HSIND • MTH-99
MTH\$HSINH • MTH-100
MTH\$HSQRT • MTH-102
MTH\$HTAN • MTH-104
MTH\$HTAND • MTH-106
MTH\$HTANH • MTH-108

\section*{Index}
```

MTH$RANDOM - MTH-118
MTH$REAL • MTH-120
MTH$SIN • MTH-122
MTH$SINCOS • MTH-124
MTH$SINCOSD • MTH-127
MTH$SIND • MTH-131
MTH$SINH • MTH-133
MTH$SQRT • MTH-136
MTH$TAN • MTH-139
MTH$TAND • MTH-141
MTH$TANH • MTH-143
MTH$UMAX • MTH-145
MTH$UMIN • MTH-146
MTH$VxFOLRLy_MA_V5 •MTH-201
MTH$VxFOLRLy_z_V2 • MTH-205
MTH$VxFOLRy_MA_V15-MTH-192
MTH\$VxFOLRy_z_V8•MTH-197
Multiplying
vector • MTH-155

```
Naming conventions
    FOLR routines • \(2-7\)
    vector routines •2-9
Norm
    Euclidean
            of a vector •MTH-170

\section*{0}

Overflow detection •2-9

\section*{P}

Plane rotation
applying Givens plane rotation to a vector • MTH-173
generating the elements for a Givens plane rotation • MTH-178
Product
of a vector • MTH-165

R

Random number generator - MTH-118
Recurrence
linear
definition of •2-7
Remainder • 1-8
Rotation applying to a vector \(\cdot\) MTH-173

\section*{S}

Scaling vector •MTH-183
Sine
hyperbolic • MTH-100, MTH-133
in degrees • MTH-99, MTH-127, MTH-131 in radians •MTH-98, MTH-122, MTH-124 of complex number •MTH-53, MTH-54
Square root •MTH-102, MTH-136
Sum of absolute values of a vector • MTH-152
Swapping vector •MTH-187


Tangent •MTH-104, MTH-106, MTH-139, MTH-141 hyperbolic • MTH-108, MTH-143
Truncation of floating-point value - 1-6
U

Underflow detection •2-9
V

VAX FORTRAN
/BLAS qualifier •2-1
VAX FORTRAN-HPO compiler •2-1, 2-10

\footnotetext{
Vector
applying Givens plane rotation \(\cdot \mathrm{MTH}-173\)
copying • MTH-160
generating the elements for a Givens plane rotation • MTH-178
multiplying • MTH-155
obtaining the Euclidean norm of \(\cdot \mathrm{MTH}-170\)
obtaining the index of \(\cdot\) MTH-149
obtaining the inner product of \(\cdot\) MTH-165
obtaining the sum of the absolute values of -MTH-152
scaling \(\cdot\) MTH-183
swapping \(\cdot\) MTH-187
Vectorization of a loop
preventing•MTH-192, MTH-197, MTH-201, MTH-205
Vectorizing FORTRAN compiler • 2-8
Vector routines
table of entry points \(\cdot \mathrm{B}-1\) to \(\mathrm{B}-4\)
}

\section*{How to Order Additional Documentation}

\section*{Technical Support}

If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing your electronic, telephone, or direct mail order.

\section*{Electronic Orders}

To place an order at the Electronic Store, dial \(800-\) DEC-DEMO (800-332-3366) using a \(1200-\) or 2400 -baud modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

\section*{Telephone and Direct Mail Orders}
\begin{tabular}{|c|c|c|}
\hline Your Location & Call & Contact \\
\hline Continental USA, Alaska, or Hawaii & 800-DIGITAL & \begin{tabular}{l}
Digital Equipment Corporation P.O. Box CS2008 \\
Nashua, New Hampshire 03061
\end{tabular} \\
\hline Puerto Rico & 809-754-7575 & Local Digital subsidiary \\
\hline Canada & 800-267-6215 & \begin{tabular}{l}
Digital Equipment of Canada \\
Attn: DECdirect Operations KAO2/2 \\
P.O. Box 13000 \\
100 Herzberg Road \\
Kanata, Ontario, Canada K2K 2A6
\end{tabular} \\
\hline International & \(\longrightarrow\) & Local Digital subsidiary or approved distributor \\
\hline Internal \({ }^{1}\) & \(\longrightarrow\) & \begin{tabular}{l}
USASSB Order Processing - WMO/E15 or \\
U.S. Area Software Supply Business \\
Digital Equipment Corporation \\
Westminster, Massachusetts 01473
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) For internal orders, you must submit an Internal Software Order Form (EN-01740-07).
}

Please use this postage-paid form to comment on this manual. If you require a written reply to a software problem and are eligible to receive one under Software Performance Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.
\begin{tabular}{lcccc} 
I rate this manual's: & Excellent & Good & Fair & Poor \\
Accuracy (software works as manual says) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
Completeness (enough information) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
Clarity (easy to understand) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
Organization (structure of subject matter) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
Figures (useful) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
Examples (useful) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
Index (ability to find topic) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
Page layout (easy to find information) & \(\square\) & \(\square\) & \(\square\) & \(\square\)
\end{tabular}

I would like to see more/less \(\qquad\)
\(\qquad\)

What I like best about this manual is \(\qquad\)
\(\qquad\)

What I like least about this manual is \(\qquad\)
\(\qquad\)

I found the following errors in this manual:
Page Description
\(\qquad\)
Additional comments or suggestions to improve this manual:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
I am using Version \(\qquad\) of the software this manual describes.
\begin{tabular}{lll} 
Name/Title & Dept. & \\
Company \\
Mailing Address \\
\hline
\end{tabular}

```


[^0]:    ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
    ${ }^{2}$ Integer overflow exceptions can occur.

[^1]:    ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
    ${ }^{2}$ Integer overflow exceptions can occur.
    ${ }^{3}$ Floating-point overflow exceptions can occur.

[^2]:    ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
    ${ }^{2}$ Integer overfiow exceptions can occur.

[^3]:    ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
    ${ }^{2}$ Integer overflow exceptions can occur.

[^4]:    ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
    ${ }^{2}$ Integer overflow exceptions can occur.
    ${ }^{3}$ Floating-point overflow exceptions can occur.
    ${ }^{5}$ Divide-by-zero exceptions can occur.
    ${ }^{6}$ Floating-point underflow exceptions are signaled.

[^5]:    ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
    ${ }^{3}$ Floating-point overflow exceptions can occur.
    ${ }^{4}$ Floating-point underflow exceptions can occur.

[^6]:    ${ }^{1}$ For more information, see Basic Linear Algebra Subprograms for FORTRAN Usage in ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979.

[^7]:    The angle, expressed in degrees, is: $6.00000 \mathrm{E}+01$

