VMS Workstation
Software

Graphics Programming
Guide

Order Number: AA-GI10C-TE

June 1989

This document provides programming information about the VMS
Workstation Software graphics. It describes the general concepts and
specific routine calls used to write application programs.

Revision/Update Information:  This manual 'supersedes‘the VMS
Workstation Software Graphics
Programming Guide, Version 4.0.

Software Version: : This manual contains information for
VWS Version 4.1
Operating System: VMS Version 5.0

Digital Equipment Corporation



June 1989 ‘ o

The Information In this document Is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibllity for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1989 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A,

The postpaid READER’S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet - MASSBUS VvMS

DECsystem~10 PDP vT

DECSYSTEM-20 PDT ™
DECUS RSTS Hnaﬂau
DECwriter RSX

This document was prepared using VAX DOCUMENT, Version 1.1



INSTRUCTIONS

The enclosed pages are to be placed in the VMS Workstation Software
Graphics Programming Guide as replacements for or additions to the current
pages. On replacement pages, changes and additions are indicated by

vertical bars (|).

Keep this notice in your manual to maintain an up-to-date record of

changes.

Copyright Digital Equipment Corporation 1989

All Rights Reserved.
Printed in U.S.A.

Old Page(s)

New Page(s)

Title/Copyright

Contents iiifiv through xxv/xxvi
Preface xxvii/xxviii through xxxv/xxxvi
4-7/4-8 through 4-9/4-10

13-5/13-6
15-1/15-2

16-1/16-2

17-117-2

17-7/17-8

17-13/17-14 ,
18-5/18-6 through 18-7/18-8
18-13/18-14 through 18-15/18-16
18-19/18-20

18-39/18-40 through 18-41/18-42
18-45/18-46

18-51/18-54

18-145/18-146

18-175/18-176

18-179/18-180 through 18-181/18-182
18-187/18-188

18-203/18-204

18-263/18-264 .
18-281/18-282 through 18-285/18-286
18-295/18-296

18-307/18-308

19-11/19-12
19-47/19-48

Titie/Copyright

Contents iii/iv through xxv/blank
Preface xxvii/xxviii through xxxi/blank
4-7/4-8 through 4-9/4-10

9-21/9-22 through 9-27/blank
13-5/13-6 through 13-6.1/blank
16-1/15-2 through 15-2.1/blank
16-1/16-2 through 16-2.1/blank
17-1/117-2

17-7/117-8

17-13/17-14 through 17-1 4;1/b|ank
18-5/18-6 through 18-8.1/18-8.2
18-13/18-14 through 18-16/18-16
18-19/18-20

18-39/18-40 through 18-42.1/18-42.2
18-45/18-46

18-51/18-54

18-145/18-146 through 18-146.1/blank
18-175/18-176 »

18-179/18-180 through 18-181/18-182
18-187/18-188

18-203/18-204

18-263/18-264

18-281/18-282 through 18-286.1/blank
18-295/18-296

18-307/18-308 through 18-308.1/18-
308.2 .

19-11/19-12
19-47/19-48 through 19-48.1/blank

V4.1—June 1989



Old Page(s) New Page(s)

Index-1/Index~2 through Index- Index—1/Index-2 through Index-7/Index—
7/Index-8 8

Reader's Comments/Mailer

V4.1—June 1989



Contents

Contents
PREFACE , xxvii
PARTI VMS WORKSTATION SOFTWARE GRAPHICS
CONCEPTS
CHAPTER 1 SYSTEM DESCRIPTION 1-1
1.1 OVERVIEW 1-1
1.2 VAXSTATION HARDWARE 1-1
1.2.1  System Cabinet or Box 1-2
1.2.2 Monitor : i 1-2
1.2.3 Keyboard _ 1-2
1.2.4 Mouse 1-3
1.2.5 Tablet 1-3 .
1.2.6 Communications Board 1-3
1.2.7 Printer 1-3
1.3 SOFTWARE 1-3
1.3.1 Graphics Routine Types 1-4
1.3.2 Human Interface 1-4
1.3.2.1 Terminal Emulation ¢ 1-5
1.3.2.2 Communication Tools ¢ 1-5
1.3.3 Windowing Feature 1-6
1.3.4  Graphics Capabilities 1-6
CHAPTER 2 DISPLAY MANAGEMENT CONCEPTS 2-1
2.1 OVERVIEW 2-1
2.1.1  Summary 2-1
2.2 COORDINATE SYSTEMS 2-2

V4.1—June 1989 iiii



Contents

2.2.1 Device-Independent Coordinate Systems 2-3
2211 World Coordinates ¢ 2-3
2.2.1.2 Normalized Coordinates ¢ 2-4
2.2.2 Device-Dependent Coordinate Systems 2-5
2.2.21 Absolute Device Coordinates ¢ 2-5
2.2.2.2 Viewport-Relative Device Coordinates » 2-6
2.3 VIRTUAL DISPLAYS 2-6
2.4 DISPLAY WINDOWS 2-7
2.5 DISPLAY VIEWPORTS 2-8
2.6 DISPLAY WINDOW AND VIEWPORT SCALING 2-9
2.6.1 Distortion of Graphic Objects 2-10
2.7 DISPLAY LISTS 2-10
2.8 GENERIC ENCODING AND UIS METAFILES 2-11
CHAPTER 3 GRAPHIC OBJECTS AND ATTRIBUTES 3-1
3.1 OVERVIEW 3-1
3.2 SUMMARY 3-1
3.3 GRAPHICS AND TEXT ROUTINES 3-2
3.4 ATTRIBUTES 3-2
3.4.1  General Attributes 3-2
3.4.2 Text Attributes 3-3
3.4.3 Graphics Attributes 3-4
3.4.4 Window Attribute 3-5
35 ATTRIBUTE BLOCKS 3-5
3.5.1  Attribute Block 0 3-5

iv

V4.1—June 1989



Contents

3.6 SEGMENTS 3-6

3.7 VIEWING TRANSFORMATIONS 3-6

3.8 TWO-DIMENSIONAL GEOMETRIC TRANSFORMATIONS 3-6

CHAPTER 4 COLOR CONCEPTS 4-1

4.1 OVERVIEW 4-1

4.2 COLOR HARDWARE SYSTEMS 4-1
4.3 RASTER GRAPHICS CONCEPTS 4-1

4.3.1 Hardware Interpretation of Pixel Values 4-1

4.3.2 Color Representation Models 4-7

4.3.3 Color Palette 4-7

4.4 UIS VIRTUAL COLOR MAPS 4-7

4.4.1 Reserved Hardware Color Map Entries 4-9

4.5 UIS COLOR MAP SEGMENTS 4-10

4.6 SHAREABLE VIRTUAL COLOR MAPS 4-11

4.7 MISCELLANEOUS UIS COLOR CONCEPTS 4-11

4.7.1 Standard and Preferred Colors 4-11

4.7.2 Monochrome (Bitonal), Intensity, and Color Compatibility

Features 4-11

4.7.3 Color Value Conversion 4-12

4.7.4 Set Colors and Realized Colors 4-12

4.7.5 Color Regeneration Characteristics 4-12

V4.1—June 1989



Contents

CHAPTER S5 INPUT DEVICES 5-1
5.1 OVERVIEW 5-1

5.1.1  VAXstation Input Devices 5~1

5.2 POINTERS 5-1

5.2.1 Mouse 5-1

§5.2.2 Tablet 5-2

5.3 KEYBOARDS 5-3

5.3.1 Virtual Keyboards 5-3

PARTII HOWTO PROGRAM WITH VMS
WORKSTATION SOFTWARE GRAPHICS

CHAPTER 6 PROGRAMMING CONSIDERATIONS 6-1
6.1 OVERVIEW 6-1

6.2 CALLING UIS ROUTINES 6-1

6.2.1 Calling Sequences 6-1

6.2.1.1 Call Type * 6-2
6.2.1.2 Routine Name ¢ 6-2
6.2.1.3 Argument List and Argument Characteristics » 6-2

6.2.2 VMS Usage 6-2

6.2.3 Type 6-3
6.2.3.1 VAX Standard Data Types ¢ 6-3

6.2.4 Access ' 6-4

6.2.5 Mechanism 6-5

6.2.5.1 VAX FORTRAN Built-In Functions ¢ 6-6

6.3 UIS CONSTANTS 6-8

6.4 CONDITION VALUES SIGNALED ' 6-8

vi V4.1—June 1989



Contents

6.5 ADDITIONAL PROGRAM COMPONENTS 6-8
6.6 NOTES TO PROGRAMMERS 6-9
6.6.1 VAX ADA Programmers 6-9
6.6.2 VAX C Programmers 6-10
6.6.3 VAX PASCAL Programmers 6-10
6.6.4 VAX PL/1 Programmers 6-11
6.7 PROGRAMMING EXAMPLES 6-11
6.7.1  Structure of Programming Tutorial 6-12
6.8 PROGRAM EXECUTION 6-12
6.8.1 Compiling Your Program 6-13
6.8.2 Linking the Object Module . 6-13
© 6.8.3 Running the Executable Image 6-13
CHAPTER 7 CREATING BASIC GRAPHIC OBJECTS 7-1
71 OVERVIEW 7-1
7.2 STEP 1—CREATING A VIRTUAL DISPLAY 7-1
7.2.1 Specifying Coordinate Values 7-1
7.2.2  Creating and Deleting a Virtual Display 7-2
7.2.3 Program Development 7-2
7.3 STEP 2—CREATING GRAPHICS AND TEXT 7-3
7.3.1 Graphics Drawing Operation Specifications 7-3
7.3.2 Programming Options 7-3
7.3.3 Program Development 7-5
7.4 STEP 3—CREATING A DISPLAY WINDOW 7-6
7.4.1 Programming Options 7-6
7.4.2 Program Development 7-6

7.4.3  Calling UIS$CIRCLE, UISSELLIPSE, UISSPLOT, UIS$TEXT,
and UISSCREATE_WINDOW 7-7

V4.1—June 1989 vii



Contents

CHAPTER 8 DISPLAY WINDOWS AND VIEWPORTS 8-1
8.1 OVERVIEW » 8-1
8.2 WINDOWING ROUTINES 8-1
8.3 STEP 1—CREATING MANY DISPLAY WINDOWS 8-2

8.3.1 Programming Options 8-2

8.3.2 Program Development 8-3

8.3.3 Calling UISSCREATE_WINDOW . 8-4

8.4 STEP 2—DELETING AND ERASING DISPLAY WINDOWS 8-5
8.4.1 Programming Options : : 8-6

8.4.2 Program Development 8-6

8.4.3 Calling UIS$SDELETE_WINDOW 8-7

8.5 = STEP 3—MANIPULATING DISPLAY WINDOWS AND VIEWPORTS 8-9
8.5.1 Programming Options 8-10

8.5.2 Program Development | 8-10

8.5.3 Calling UISSMOVE_WINDOW : 8-12

8.5.4 Program Development Il 8-15

8.5.5 Calling UIS$POP_VIEWPORT and UIS$PUSH_VIEWPORT _ 8-16

8.5.6 Program Development Il 8-19

8.5.7 Requesting General Placement and No Border ___ 8-21

8.5.8 Program Development IV 8-23

8.5.9 Calling UISSMOVE_AREA 8-23

8.6 WORLD COORDINATE TRANSFORMATIONS 8-25
' 8.6.1 Programming Options 8-25
8.6.2 Program Development 8-25

8.6.3 Calling UISSCREATE_TRANSFORMATION __ 8-26

CHAPTER 9 GENERAL ATTRIBUTES 9-1
9.1 OVERVIEW 9-1
9.2 ATTRIBUTES 9-1

viii V4.1—June 1989



Contents

9.2.1  Attribute Blocks 9-1
9.2.2 Modifying General Attributes 9-2
9.3 STRUCTURE OF GRAPHIC OBJECTS 9-3
9.4 UIS WRITING MODES 9-4
9.4.1  Using General Attributes 9-8
9.4.1.4 Programming Options ¢ 9-8
9.4.1.5 Program Development | ¢ 9-8
9.4.1.6 Calling UIS$SET_BACKGROUND_INDEX,
UIS$SET_WRITING_INDEX, and
UIS$SET_WRITING_MODE ¢ 9-10
9.4.1.7 Program Development Il « 9-13
9.4.1.8 Using Device-Dependent Writing Modes ¢ 9-15
9.5 USING UIS$SET_PLANE_MASK 9-21
9.5.1 Video Memory 9-21
9.5.2 Color Maps and Color Map Allocation 9-21
9.5.3  Color Indexes 9-22
9.5.4 Plane Mask - 9-22
9.5.5 Plane Mask Example 9-23
9.5.6 Piane Mask Demo 9-24
CHAPTER 10 TEXT ATTRIBUTES 10-1
10.1 OVERVIEW 10-1
10.2  STRUCTURE OF TEXT 10-1
10.2.1 Monospaced and Proportionally Spaced Fonts 10-1
10.2.2 Lines of Text 10-2
10.2.3 Character Strings 10-3
10.2.4 Character Cell 10-7
10.3 USING TEXT ATTRIBUTES 10-19
10.3.1 Modifying Text Attributes 10-19
10.4 PROGRAMMING OPTIONS 10-20
10.4.1 Program Development | 10-23
10.4.2 Calling UIS$SET_FONT and UISSNEW_TEXT_LINE 10-24

V4.1—June 1989

ix



Contents

10.4.3 Program Development Il 10-25
10.4.4 Calling UIS$SET_CHAR_SPACING ' i 10-27
10.4.5 Program Development il 10-27
10.4.6 Calling UIS$SET_POSITION and
UISSSET_ALIGNED_POSITION 10-28
10.4.7 Program Development IV 10-28
10.4.8 Calling UIS$SET_CHAR_SLANT 10-30
10.4.9 Program Development V 10-30
10.4.10 Calling UISSSET_TEXT_SLOPE 10-31
10.4.11 Program Development VI 10-32
10.4.12 Calling UIS$SET_CHAR_ROTATION 10-33
10.4.13 Program Development ViI 10-33
10.4.14 Calling UIS$SSET_CHAR_SIZE 10-36
CHAPTER 11 GRAPHICS AND WINDOWING ATTRIBUTES 11-1
11.1 OVERVIEW 11-1
11.2 USING GRAPHICS ATTRIBUTES 11-1
11.2.1 Modifying Graphics and Windowing Attributes 11-1
11.2.2 Programming Options ' 11-2
11.2.2.1  Program Development | » 11-3
11.2.2.2 Calling UIS$SET_ARC_TYPE and Using Fill Patterns * 11-5
11.2.2.3 Program Development Il ¢ 11-6
11.2.24 Calling UIS$SET_LINE_WIDTH ¢ 11-7
11.2.2.5 Program Development lil « 11-8
11.2.2.6 Calling UIS$SET_LINE_WIDTH and
v UIS$SET_LINE_STYLE » 11-9
11.2.2.7 Program Development [V ¢ 11-9
11.2.2.8 Calling UIS$SET_FONT and
UIS$SET_FILL_PATTERN ¢ 11-11
11.2.3 Using the Windowing Attribute 11-11
11.2.3.1  Programming Options ¢ 11-11
11.2.3.2  Program Development ¢ 11-13
11.2.3.3 Calling UIS$SET_CLIP ¢ 11-14
CHAPTER 12 INQUIRY ROUTINES 12-1
12.1 OVERVIEW 12-1
12.2 USING INQUIRY ROUTINES 12-1

V4.1—June 1989



Contents

12.2.1 Using Inquiry Routines 12-1

12.2.1.1

Programming Options » 12-1

12.2.1.2 Program Development | » 12-4 )
12.2.1.3  Invoking UIS$GET_FONT_SIZE, UIS$SGET_DISPLAY_SIZE,
and UISSGET_VIEWPORT_SIZE » 12-5
12.2.1.4  Program Development Il e 12-5
12.2.1.5 Invoking UISSGET_ARC_TYPE, UIS$GET_FILL_PATTERN,
and UISSGET_FONT ¢ 12-8
CHAPTER 13 DISPLAY LISTS AND SEGMENTATION 13-1
13.1 OVERVIEW 13-1
13.2 DISPLAY LISTS 13-1
13.3 SEGMENTS 13-2
13.3.1 Identifiers and Object Types 13-3
13.3.2 Programming Options 13-4
13.3.3 Program Development | 13-6
13.3.3.1  Calling UIS$DISABLE_DISPLAY_LIST and
UISSENABLE_DISPLAY_LIST ¢ 13-7
13.3.3.2 Program Development Il * 13-7
13.3.3.3 Calling UIS$GET_NEXT_OBJECT,
UIS$SGET_OBJECT_ATTRIBUTES, and
UISSGET_ROOT_SEGMENT ¢ 13-10
13.3.3.4 Program Development Il ¢ 13-12
13.3.3.5 Calling UIS$SGET_PARENT_SEGMENT ¢ 13-15
13.4 MORE ABOUT SEGMENTS 13-16
13.4.1 Programming Options 13-16
13.4.2 Program Development | 13-18
13.4.2.1  Calling UIS$SET_INSERTION_POSITION ¢ 13-21
13.4.2.2 Program Development Il » 13-21
13.4.2.3 Calling UIS$BEGIN_SEGMENT and
UISSEND_SEGMENT e 13-25
CHAPTER 14 GEOMETRIC AND ATTRIBUTE TRANSFORMATIONS 14-1
14.1 OVERVIEW 14-1

V4.1—June 1989 xi



Contents

14.2 GEOMETRIC TRANSFORMATIONS 14-1
14.2.1 Translating Graphic Objects 14-1
"14.2.2 Scaling Graphic Objects 14-1
14.2.2.1  Uniformly Scaled Graphic Objects ¢ 14-3
14.2.2.2 Differentially Scaled Graphic Objects ¢ 14-3
14.2.3 Rotating Graphic Objects 14-3
14.2.4 Programming Options 14-6
14.2.5 Program Development | 14-7
14.2.6 Calling UISSTRANSFORMATION_OBJECT 14-10
14.2.7 Program Development li 14-11
14.2.8 Calling UISSCOPY_OBJECT: 14-12
14.3 ATTRIBUTE TRANSFORMATIONS 14-12
14.3.1 Programming Options 14-12
14.3.2 Program Development 14-14
14.3.3 Requesting Attribute Transformations 14-14
I
CHAPTER 15 METAFILES AND PRIVATE DATA 15-1
15.1 OVERVIEW 15-1
16.2 DISPLAY LISTS AND UIS METAFILES 15-1
15.2.1 Generic Encoding of Graphics and Attribute Routines __ 15-1
15.2.1.1  Normalized Coordinates ¢ 15-2
15.2.1.2 Interpreting the User Buffer ¢ 15-2.1
15.2.2 Creating UIS Metafiles 15-10
15.2.3 Structure of a UIS Metafile 15-11
15.2.4 Programming Options 15-12
15.2.5 Program Development | 15-13
15.2.5.1  Calling UIS$EXTRACT_HEADER, UIS$EXTRACT_REGION,
and UISSEXTRACT_TRAILER ¢ 15-15
15.3 DISPLAY LISTS AND PRIVATE DATA 15-15
15.3.1 Using Private Data 15-15
15.3.2 Programming Options 15-16
15.3.3 Program Development Il 15-17

xii

15.3.3.1  Calling UIS$PRIVATE and
UISSEXTRACT_PRIVATE ¢ 15-21

V4.1—June 1989



Contents

CHAPTER 16 PROGRAMMING IN COLOR 16-1
16.1  OVERVIEW 16-1

16.2 COLOR AND INTENSITY ROUTINES : 16-1

16.2.1 Programming Options 16-1

16.2.2 Step 1—Creating a Virtual Color Map 16-2

16.2.3 Step 2—Setting Virtual Color Map Attributes . __________ 16-2

16.2.4 Step 3—Setting Entries in the Virtual Color Map 16-3

16.2.5 Program Development | 16-3

16.2.6 Program Development il 16-4

16.2.6.1  Program Development Ill ¢ 16-5

16.3 COLOR MAP SEGMENTS 16-7
16.3.1 Programming Options 16-8
16.3.2 Program Development 16-8
16.3.3 Calling UISSCREATE_COLOR_MAP_SEG 16-8
16.4 COLOR AND INTENSITY INQUIRY ROUTINES 16-8
16.4.1 Programming Options ~ 16-9
16.4.2 Program Development | 16-9

16.4.2.1  Calling UISSGET_COLORS, UIS$GET_HW_COLOR_INFO,
UISSGET_WRITING_INDEX ¢ 16-11

16.4.3 Program ll—Creating an HSV Color Wheel _______ . 16-11
CHAPTER 17 ASYNCHRONOUS SYSTEM TRAP ROUTINES 17-1
17.1 OVERVIEW 17-1
17.1.1 Using AST Routines 17-1

17.1.2 AST-Enabling Routines 17-2

17.2 KEYBOARD AND POINTER DEVICES 17-2
17.2.1 Using AST Routines with Virtual Keyboards ____ 17-3

17.2.2 Controlling Keyboards 17-4

17.2.3 Program Development 17-4

17.2.4 Calling Keyboard Routines 17-6

17.2.5 Using AST Routines with Pointer Devices ____ 17-7

17.2.5.1 Mouse ¢ 17-7
17.2.5.2 Tablet ¢ 17-7
17.2.6.3 Step 1—Create an AST Routine ¢ 17-8
17.2.5.4  Step 2—Enable the AST Routine ¢ 17-8

V4.1—June 1989 xiii



Contents

17.2.6 Programming Options 17-8
17.2.7 Program Development : 17-9
17.2.8 Calling UISSSET_POINTER_AST and
UIS$SET_POINTER_PATTERN 17-10
17.3 MANIPULATING DISPLAY WINDOWS AND VIEWPORTS 17-10
17.3.1 Using AST Routines to Modify the Window Options
Menu 17-12

17.3.1.1  Step 1—Create an AST Routine » 17-12
17.3.1.2 Step 2—Enable the AST Routine * 17-13

17.3.2 Programming Options 17-13
17.3.3 Program Development 17-14.1
17.3.4 Calling UIS$SET_RESIZE_AST 17-17
17.3.5 Calling UIS$SET_SHRINK_TO_ICON_AST 17-17
17.3.6 Calling UISSSET_CLOSE_AST 17-18

PARTIIl UISROUTINE DESCRIPTIONS

CHAPTER 18 UIS ROUTINE DESCRIPTIONS 18-1
18.1 OVERVIEW 18-1
18.1.1 Format Heading 18-2

18.1.2 Returns Heading 18-5

18.1.3 Arguments Heading 18-5

18.2 FUNCTIONAL ORGANIZATION OF UIS ROUTINES 18-5
18.3 ROUTINE ARGUMENTS QUICK REFERENCE 18-8.1
18.3.1 vd_id 18-8.1

18.3.2 wd_id 18-8.2

18.3.3 obj_id 18-8.2

18.3.4 seg_id 18-9

18.3.5 iatb 18-9

18.3.6 oatb 18-9

18.3.7 astprm 18-9

18.3.8 kb_id 18-10

18.3.9 devnam 18-10

xiv | V4.1—June 1989



Contents

18.4 UIS ROUTINES AND ARGUMENTS ‘ 18-10
UIS$BEGIN_SEGMENT 18-16
UISSCIRCLE 18-18
UIS$CLOSE_WINDOW 18-21
UIS$COPY_OBJECT 18-22
UISSCREATE_COLOR_MAP 18-27
VIS$CREATE_COLOR_MAP_SEG 18-30
UIS$CREATE_DISPLAY 18-33
UIS$CREATE_KB ‘ 18-35
UIS$SCREATE_TB 18-38
UIS$CREATE_TERMINAL 18-39
UIS$CREATE_TRANSFORMATION 18-42
UISSCREATE_WINDOW 18-43
UISSDELETE_COLOR_MAP 18-52
UIS$SDELETE_COLOR_MAP_SEG 18-53

UIS$DELETE_DISPLAY 18-54
UISS$DELETE_KB 18-55
VISSDELETE_OBJECT 18-56
VIS$DELETE_PRIVATE 18-57
UISSDELETE_TB 18-58
UIS$SDELETE_TRANSFORMATION 18-59
UIS$SDELETE_WINDOW 18-60
UIS$DISABLE_DISPLAY_LIST 18-61
UIS$DISABLE_KB. , 18-63
UIS$DISABLE_TB 18-64
VIS$DISABLE_VIEWPORT_KB - 18-65
UISSELLIPSE 18-66
UISSENABLE_DISPLAY_LIST 18-69
UISSENABLE_KB 18-71
UISSENABLE_TB ' - 18-72
UISSENABLE_VIEWPORT_KB 18-73
UISSEND_SEGMENT 18-74
UISSERASE 18-75
UISSEXECUTE 18-76
UISSEXECUTE_DISPLAY 18-77
UISSEXPAND_ICON 18-78
UISSEXTRACT_HEADER 18-81
UISSEXTRACT_OBJECT 18-83
UIS$EXTRACT_PRIVATE 18-85
UIS$SEXTRACT_REGION 18-87
UISSEXTRACT_TRAILER : 18-89
UISSFIND_PRIMITIVE 18-91
UISSFIND_SEGMENT 18-93
UIS$GET_ABS_POINTER_POS 18-95
UIS$GET_ALIGNED_POSITION 18-96
UIS$GET_ARC_TYPE 18-98
UIS$GET_BACKGROUND_INDEX 18-99
UISSGET_BUTTONS 18-100
UIS$GET_CHAR_ROTATION 18-101
UIS$GET_CHAR_SIZE 18-102
UIS$GET_CHAR_SLANT 18-104
UIS$SGET_CHAR_SPACING 18-106

V4.1—June 1989 XV



Contents

Xxvi

UISSGET_CLIP
UIS$GET_COLOR
UIS$GET_COLORS
UIS$GET_CURRENT_OBJECT
UIS$GET_DISPLAY_SIZE
UIS$GET_FILL_PATTERN
UIS$GET_FONT
UVISSGET_FONT_ATTRIBUTES
UIS$GET_FONT_SIZE
UIS$GET_HW_COLOR_INFO
UIS$SGET_INTENSITIES
UIS$SGET_INTENSITY
UIS$SGET_KB_ATTRIBUTES
UIS$GET_LINE_STYLE
UIS$GET_LINE_WIDTH
UIS$GET_NEXT_OBJECT
UIS$GET_OBJECT_ATTRIBUTES
UIS$GET_PARENT_SEGMENT
UVIS$GET_PLANE_MASK
UIS$GET_POINTER_POSITION
UIS$SGET_POSITION
UVIS$SGET_PREVIOUS_OBJECT
UIS$SGET_ROOT_SEGMENT
UVIS$GET_TB_INFO
UIS$SGET_TB_POSITION
UIS$GET_TEXT_FORMATTING
UIS$GET_TEXT_MARGINS
UIS$GET_TEXT_PATH
UIS$GET_TEXT_SLOPE
UIS$GET_VCM_ID
UIS$SGET_VIEWPORT_ICON
UIS$GET_VIEWPORT_POSITION
UIS$GET_VIEWPORT_SIZE
UIS$SGET_VISIBILITY
UISSGET_WINDOW_ATTRIBUTES
UIS$GET_WINDOW_SIZE
UIS$GET_WRITING_INDEX
UIS$GET_WRITING_MODE
UIS$GET_WS_COLOR
UIS$GET_WS_INTENSITY
UIS$HLS_TO_RGB
VIS$HSV_TO_RGB
UISSIMAGE
VIS$INSERT_OBJECT
UISSLINE

UISSLINE_ARRAY
UIS$MEASURE_TEXT
UISSMOVE_AREA
UIS$MOVE_VIEWPORT
UVISSMOVE_WINDOW
UISSNEW_TEXT_LINE
UIS$PLOT

UVIS$PLOT_ARRAY

18-108
18-110
18-112
18-115
18-117
18-120
18-122
18-124
18-127
18-129
18-132
18-134
18-136
18-138
18-140
18-142
18-143
18-145
18-146
18-146.1
18-147
18-149
18-151
18-153
18-155
18-156
18-157
18-159
18-161
18-163
18-164
18-166
18-167
18-169
18-170
18-171
18-172
18-174
18-175
18-176
18-178
18-180
18-182
18-186
18-187
18-190
18-192
18-197
18-199
18-200
18-201
18-202
18-205

V4.1—June 1989



Contents

UISSPOP_VIEWPORT 18-207
UIS$PRESENT 18-209
UIS$PRIVATE 18-210
UIS$PUSH_VIEWPORT 18-211
UISSREAD_CHAR 18-213
UIS$RESIZE_WINDOW 18-215
UISSRESTORE_CMS_COLORS 18-218
UISSRGB_TO_HLS 18-219
UIS$RGB_TO_HSV 18-221
UIS$SET_ADDOPT_AST 18-223
UIS$SET_ALIGNED_POSITION 18-224
UIS$SET_ARC_TYPE 18-226
UIS$SET_BACKGROUND_INDEX 18-229
UIS$SET_BUTTON_AST 18-230
UVIS$SET_CHAR_ROTATION 18-233
UIS$SET_CHAR_SIZE 18-235
UIS$SET_CHAR_SLANT 18-238
UIS$SET_CHAR_SPACING 18-240
UIS$SET_CLIP 18-244
UIS$SET_CLOSE_AST 18-247
UIS$SET_COLOR 18-249
UIS$SET_COLORS 18-251
UIS$SET_EXPAND_ICON_AST 18-253
UIS$SET_FILL_PATTERN 18-254
UIS$SET_FONT ‘ 18-258
UIS$SET_GAIN_KB_AST 18-259
UIS$SET_INSERTION_POSITION 18-260
UIS$SET_INTENSITIES 18-262
UIS$SET_INTENSITY 18-264
UIS$SET_KB_AST 18-264
UIS$SET_KB_ATTRIBUTES 18-266
UIS$SET_KB_COMPOSE2 18-269
UISSSET_KB_COMPOSE3 18-271
UIS$SET_KB_KEYTABLE 18-272
UISSSET_LINE_STYLE 18-274
UIS$SET_LINE_WIDTH 18-277
UIS$SET_LOSE_KB_AST 18-280
UIS$SET_MOVE_INFO_AST 18-281
UIS$SET_PLANE_MASK 18-282
UIS$SET_POINTER_AST 18-284
UIS$SET_POINTER_PATTERN 18-285
UIS$SET_POINTER_POSITION 18-287
UIS$SET_POSITION 18-288
UVIS$SET_RESIZE_AST 18-290
VIS$SET_SHRINK_TO_ICON_AST 18-294
UIS$SET_TB_AST 18-295
UIS$SET_TEXT_FORMATTING 18-297
UIS$SET_TEXT_MARGINS 18-300
UIS$SET_TEXT_PATH 18-302
UIS$SET_TEXT_SLOPE 18-305
UIS$SET_VP_TITLE 18-307
UIS$SET_WRITING_INDEX 18-308
VIS$SET_WRITING_MODE 18-308.1

V4.1—June 1989 xvii



Contents

UIS$SETUP
UIS$SHRINK_TO_ICON
UIS$SOUND_BELL
UIS$SOUND_CLICK
UIS$STEST_KB

UISSTEXT
UIS$TRANSFORM_OBJECT

18-308.2

18-309
18-312
18-313
18-314
18-315
18-318

PARTIV UISDEVICE COORDINATE (UISDC)

ROUTINES

CHAPTER 19 UIS DEVICE COORDINATE GRAPHICS ROUTINES 19-1
19.1 OVERVIEW 19-1
19.2 UISDC ROUTINES—HOW TO USE THEM 19-1
19.3 ROUTINE ARGUMENTS QUICK REFERENCE 19-2
19.4 UISDC ROUTINES AND ARGUMENTS 19-2

UISDCSALLOCATE_DOP 19-4

UISDC$CIRCLE 19-6

VISDCSELLIPSE 19-8

UISDCS$ERASE 19-10

UISDC$EXECUTE_DOP_ASYNCH 19-11

UISDC$EXECUTE_DOP_SYNCH 19-12

UISDC$GET_ALIGNED_POSITION 19-13

UISDC$GET_CHAR_SIZE 19-14

UISDC$GET_CLIP 19-16

UISDC$GET_POINTER_POSITION 19-17

UISDC$GET_POSITION 19-18

UISDC$GET_TEXT_MARGINS 19-19

UISDC$GET_VISIBILITY 19-20

UISDCSIMAGE 19-21

UISDCSLINE 19-24

UISDCSLINE_ARRAY 19-25

UISDC$LOAD_BITMAP 19-27

UISDC$SMEASURE_TEXT 19-29

UISDC$MOVE_AREA 19-31

UISDCSNEW_TEXT_LINE 19-32

UISDC$PLOT 19-33

UISDC$PLOT_ARRAY 19-34

UISDC$QUEUE_DOP 19-36

xviii

V4.1—June 1989



Contents

UISDC$READ_IMAGE 19-37
UISDC$SET_ALIGNED_POSITION 19-39
UISDC$SET_BUTTON_AST 19-40
UISDC$SET_CHAR_SIZE 19-42
UISDCS$SET_CLIP 19-44
UISDC$SET_POINTER_AST 19-45
UISDC$SET_POINTER_PATTERN 19-47
UISDC$SET_POINTER_POSITION 19-49
UISDCS$SET_POSITION 19-50
UISDC$SET_TEXT_MARGINS 19-51
UISDCSTEXT 19-52
APPENDIX A UIS CALLING SEQUENCES SUMMARY A-1
APPENDIXB UISDC CALLING SEQUENCES SUMMARY B-1

APPENDIX C UIS MULTINATIONAL CHARACTER AND TECHNICAL
FONTS C-1

C.1 OVERVIEW C-1

C.2 UIS MULTINATIONAL CHARACTER SET FONTS AND FONT

SPECIFICATIONS C-1

c3 UIS TECHNICAL CHARACTER SET FONTS C-16
APPENDIX D FILL PATTERNS D-1
APPENDIXE ERROR MESSAGES E-1
APPENDIX F VMS DATA TYPES F‘—1
F.1 VMS DATA TYPES F-1

V4.1—June 1989 xix



Contents

F.2 VAX BLISS IMPLEMENTATION F-13
F.3 VAX C IMPLEMENTATION F-16
F.4 VAX FORTRAN IMPLEMENTATION F-19
F.5 VAX MACRO IMPLEMENTATION F-23
F.6 VAX PASCAL IMPLEMENTATION F-25
F.7 VAX PL/I| IMPLEMENTATION F-29

INDEX

GLOSSARY Glossary-1

INDEX

FIGURES
1-1 Typical VMS Workstation Hardware 1-2
2-1 Virtual Display, Display Window, and Display Viewport 2-2
2-2 World Coordinate System and Virtual Display i 2-4
2-3 Absolute Device Coordinates 2-5
2-4 Mapping a Display Window to a Display Viewport 2-6
2-5 Display Window in a Virtual Display 2-8
2-6 Displaying a Graphic Object 2-9
2-7 Display List Extraction _ : 2-11
4-1 Bitplane Configuration in Single and Multiplane Systems 4-2
4-2 Direct Color Values ' 4-4
4-3 Hardware Color Map 4-5
4-4 Mapped Color Values in Four-Plane System 4-6
4-5 RGB and Intensity Color Values as Hardware Color Map Entries . 4-7
4-6 Swapping Virtual Color Maps 4-8
4-7 Reserved Hardware Color Map Entries in a Four-Plane Color

System 4-10

6-1 Passing Arguments 6-7

XX V4.1—June 1989



7-1
7-2
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
9-1
- 9-2
9-3
9-4
9-5
9-6
9-7
9-8
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
11-1
11-2
11-3
11-4

Mapping a Bitmap to a Raster

Contents

Display Viewport and Graphic Objects

Aspect Ratios of the Display Window and Display Viewport

Four Display Viewports
Objects Within Different Windows

Display Window Deletion
Before Panning the Virtual Display

Panning the Virtual Display
Occluding a Display Viewport

Popping a Display Viewport
Pushing a Display Viewport

General Placement and No Border

Moving Graphic Objects Within the Virtual Display
World Coordinate Transformations

Structure of Graphic Objects

UIS Device-Independent Writing Modes

Bit Set Mode

Bit Clear Mode

Bit Clear Negate Mode

Bit Set Negate Mode

Copy Mode
Copy Negate Mode

Character Cell

Monospaced and Proportionally Spaced Characters
Text Path

Text Slope

Character Spacing
Simple Character Rotation

Character Rotation with Slope Manipulation

Text Path Manipulation Without Character Rotation
Character Slanting

Character Slanting and Rotation with Slope Manipulation
Character Scaling

UIS Fonts

Character and Line Spacing

Baseline and Top of Character Cell

Character Slanting

Manipulating the Text Baseline

Character Rotation Without Slanting

Character Rotation with Slanting
Manipulating Character Size

Closing an Arc
Filling a Closed Arc

Line Width
Modifying Line Width and Style

V4.1—June 1989

7-5
7-8
8-3
8-5
8-8
8-9
8-13
8-14
8-17
8-18
8-19
8-22
8-24
8-27
9-5
9-11
9-16
9-17
9-17
9-18
9-19
9-19
10-2
10-2
10-3
10-4
10-5
10-8
10-9
10-11
10-16
10-17
10-19
10-25
10-27
10-29
10-30
10-32
10-34
10-35
10-36
11-5
11-6
11-8
11-9

xxi



Contents

xxii

11-5 Vertical Bar Graph : 11-12
11-6  Clipping rectangles 11-14
12-1 Centering Text 12-6
12-2  Pie Graph 12-9
13-1 Binary Encoded Instruction 13-1
13-2 Nested Segments 13-3
13-3  Disabling a Display List 13-7
13-4  After Display List Execution 13-8
13-5  Tree Diagram—Program WALK 13-8
13-6 Display List Elements 13-11
13-7  Contents of the Display List 13-12
13-8  Display List Structure in Program HOP 13-13
13-9  Traversing Upward Along the Segment Path 13-18
13-10 Searching Downward Through a Segment 13-16
13-11 Contents of the Display List Drawn in the Virtual Display 13-17
13-12 Pre-Edit Display List Structure - 13-19
13-13 Post-Edit Structure of the Display List 13-21
13-14 Before Display List Modification 13-22
13-15 Executing the Modified Display List 13-23
13-16 Verifying the Contents of the Display List 13-24
13-17 Text Output During Execution 13-25
13-18 Final Text Output 13-26
14-1 Translating a Graphic Object 14-2
14-2  Simple Scaling , 14-4
14-3  Complex Scaling 14-5
14-4  Uniformly Scaling a Graphic Object 14-6
14-5  Differentially Scaling a Graphic Object 14-7
14-6  Simple Rotation of a Graphic Object 14-8
14-7 Complex Rotation of a Rectangle 14-9
14-8 Complex Rotation of a Triangle 14-13
14-9  Modifying Attributes with a Transformation 14-1
14-10 Modifying Attributes with a Copy 14-2
15-1 Binary Encoded Instruction 15-2
15-2 Extended Binary Encoded Instruction : 15-2
15-3 Format of Attribute-Related Argument 15-4
15-4  Format of Graphics- and Text-Related Argument 15-5
15-5  Structure of UIS Metafile 15-12
15-6 Original Objects Drawn in the Virtual Display 15-16
15-7  After Buffer Execution 15-17
15-8  Private Data 15-21
15-9  Verifying the Contents of the Temporary Array and User Buffer _ 15-22
15-10 Hot Air Balloon 15-1
16-1 Different Types of Information Returned from Inquiry Routines _ 16-12
17-1  Writing Characters to a Display Viewport 17-7
17-2  Default Pointer Pattern 17-11

V4.1—June 1989



Contents

17-3 New Pointer Pattern 17-11
17-4  Unresized Window and Viewport 17-18
17-5 Resized Window and Viewport 17-18
17-6 lcon 17-19
C-1 Font 1 C-2
C-2 Font 2 Cc-3
Cc-3 Font 3 C-4
cC-4 Font 4 C-5
C-5 Font 5 C-6
C-6 Font 6 Cc-7
Cc-7 Font 7 C-8
Cc-8 Font 8 Cc-9
Cc-9 Font 9 C-10
C-10 Font 10 Cc-11
Cc-11 Font 11 C-12
C-12 Font 12 Cc-13
C-13 Font 13 C-14
C-14 Font 14 C-15
C-15 Font 15 ' C-16
C-16 Font 16 C-17
C-17 Font 17 C-18
C-18 Font 18 " Cc-19
C-19 Font 19 C-20
C-20 Font 20 Cc-21
C-21 Font 21 C-22
C-22 Font 22 Cc-23
C-23 Font 23 C-24
C-24 Font 24 C-25
C-25 Font 25 C-26
C-26 Font 26 Cc-27
D-1 PATT$C_VERT1_1 and PATT$C_VERT1_3 D-1
D-2 PATT$SC_VERT2_2 and PATT$C_VERT3_1 D-1
D-3 PATT$C_VERT1_7 and PATT$C_VERT2_6 D-2
D-4 PATT$C_VERT4_4 and PATT$C_VERT6_2 D-2
D-5 PATT$C_HORIZ1_1 and PATT$C_HORIZ1_3 D-2

D-6 PATT$C_HORIZ2_2 and PATT$C_HORIZ3_1 D
D-7 PATT$C_HORIZ1_7 and PATTSC_HORIZ2_6 D
D-8 PATT$C_HORIZ4_4 and PATT$C_HORIZ6_2 D
D-9 PATT$C_GRID4 and PATT$C_GRIDS8 D
D-10 PATT$C_UPDIAG1_3 and PATT$C_UPDIAG2_2 D
D-11  PATT$C_UPDIAG3_1 and PATTSC_UPDIAG1_7 D-4

D

D

D

D

D-12 PATT$C_UPDIAG2_6 and PATT$SC_UPDIAG4_4
D-13 PATT$C_UPDIAG6_2 and PATTSC_DOWNDIAG1_3
D-14 PATT$C_DOWNDIAG2_2 and PATT$C_DOWNDIAG3_1
D-15 PATT$C_DOWNDIAG1_7 and PATT$C_DOWNDIAG2_6

V4.1—June 1989 xXiii



Contents

D-16 PATT$C_DOWNDIAG4 4 and PATT$C_DOWNDIAG6.2 D-6
D-17 PATT$C_BRICK_HORIZ and PATT$C_BRICK_VERT D-6
D-18 PATT$C_BRICK_DOWNDIAG and PATT$C_BRICK_UPDIAG D-7
D-19 PATT$C_GREY4_16D and PATT$C_GREY12_16D D-7
D-20 PATT$C_BASKET_WEAVE and PATT$C_SCALE_DOWN ___ D-7
D-21 PATT$C_SCALE_UP and PATT$C_SCALE_RIGHT D-8
D-22 PATT$C_SCALE_LEFT and PATT$C_GREY1_16 D-8
D-23 PATT$C_GREY2_16 AND PATT$C_GREY3_16 D-8
D-24 PATT$C_GREY4_16 and PATT$C_GREYS_16 ‘ D-9
D-25 PATT$C_GREY6_16 and PATT$C_GREY7_16 D-9
D-29 PATT$C_GREY8_16 and PATT$C_GREY9_16 D-9
D-27 PATT$C_GREY10_16 and PATT$C_GREY11_16 D-10
D-28 PATT$C_GREY12_16 and PATT$SC_GREY13_16 D-10
D-29 PATT$C_GREY14_16 and PATT$C_GREY15_16 D-10
D-30 PATT$C_FOREGROUND __ D-11
D-31 PATT$C_BACKGROUND D-11
TABLES
4-1 Hardware Color Map Characteristics 4-5
4-2 Color Palette 4-7
6-1 VAX Standard Data Types 6-3
6-2 Entry Point and Symbol Definition Files 6-8
7-1 Coordinate Types and Values 7-1
8-1 UIS Windowing Routines 8-1
9-1 Attribute Block 0 . 9-1
9-2 Default Settings of General Attributes 9-2
9-3 UIS Writing Modes 9-6
10-1 Default Settings of Text Attributes in Attribute Block0 10-20
11-1 Default Settings of Graphics and Windowing Attributes 11-1
12-1 Inquiry Routines 12-2
15-1 Generic Encoding Symbols and Opcodes : 15-3
15-2 Arguments of Binary Encoded Instructions 15-6
15-3  Structure of UIS Metafiles : 15-10
16-1 Color and Intensity Routines 16-2
16-2 Color and Intensity Inquiry Routines - 16-9
17-1 AST-Enabling Routines 17-2
17-2 AST Routines and Descriptions 17-3
17-3  Pointer AST-Enabling Routines 17-8
17-4  Tasks and Corresponding UIS Routines 17-12
17-5  AST-Enabling Routines that Trigger AST Routine Execution 17-13
17-6  AST Routine Execution Programming Options 17-13
18-1 Main Headings in the Romine Template 18-1
18-2  General Rules of Syntax ' , - - 18-4
18-3 Functional Categories of UIS Routines ‘ 18-6

xxiv

V4.1—June 1989



18-4
19-1
A-1
B-1
C-1
C-2

C-10
Cc-11
C-12
Cc-13
C-14
C-15
C-16
c-17
Cc-18
Cc-19
Cc-20
Cc-21
Cc-22
c-23
C-24
C-25
C-26
F-1

F-2

F-3

F-4

F-5

F-6

F-7

Contents

Routine Arguments 18-10
Routine Arguments 19-2
UIS Calling Sequences A-1
UISDC Calling Sequences B-1
Font 1 C-2
Font 2 ; Cc-3
Font 3 C-4
Font 4 Cc-5
Font 5 C-6
Font 6 C-7
Font 7 Cc-8
Font 8 Cc-9
Font 9 : Cc-10
Font 10 C-11
Font 11 C-12
Font 12 C-13
Font 13 C-14
Font 14 C-15
Font 15 C-16
Font 16 C-17
Font 17 C-18
Font 18 C-19
Font 19 : : C-20
Font20 C-21
Font21 C-22
Font22 ____ Cc-23
Font23 ____ C-24
Font24 ____ _ C-25
Font 25 C-26
Font 26 : Cc-27
VMS Data Types F-1
VAX BLISS Implementation F-14
VAX C Implementation \ F-16
VAX FORTRAN Implementation F-19
VAX MACRO Implementation : F-23
VAX PASCAL Implementation f , F-26
VAX PL/I Implementation : F-29

V4.1—June 1989 ‘ XXV






Preface

This programming guide describes VMS Workstation Software graphics. It

contains general information about basic VWS graphics concepts, a tutorial

for learning to program with VWS graphics, and complete descriptions and
" reference information about the system routines for all callable functions.

Intended Audience

This guide is intended for general users and programmers who want to
learn the concepts and use appropriate routines in graphics application
programs.

Document Structure

This guide is divided into four major sections, VMS Workstation Software
Graphics Concepts, How to Program with VMS Workstation Software
Graphics, UIS Routine Descriptions, and UIS Device Coordinate (UISDC)
Routines. These sections are briefly described in the following paragraphs.
Part I—VMS Workstation Software Graphics Concepts

This section contains five chapters with a general overview of the basic
concepts of VMS workstation graphics.

¢ Chapter 1—System Description

This chapter briefly describes the hardware, software, and options that
are parts of the VMS workstation system.

¢ Chapter 2—Display Management Concepts

This chapter discusses the concepts of world coordinates, device
coordinates, virtual displays, windows, viewports, window and
viewport scaling, and distortion of graphic objects.

¢ Chapter 3—Graphic Objects and Attributes

This chapter describes and shows the relationship between graphics
routines, attribute blocks, text attributes, graphics attributes, and
segments.

¢ Chapter 4—Color Concepts

This chapter discusses the various color and intensity environments .
supported by the VAXstation color systems.

¢ Chapter 5—Input Devices

This chapter shows how the workstation input devices relate to the
workstation graphics system.

V4.1—June 1989 XXVii



Preface

xxviii

Part ll—How to Program with VMS Workstation Software Graphics

This section contains step-by-step tutorial information about writing
application programs using VMS workstation software graphics. Practical
programming examples are provided throughout this section. It is divided
according to routine functions into the following chapters:

Chapter 6—Programming Considerations

This chapter describes the programming interface and topics relating to
program execution.

Chapter 7—Creating Basic Graphic Objects

This chapter describes the underlying structures and shows how to
create graphic objects.

Chapter 8—Display Windows and Viewports

This chapter shows how to create and manipulate display windows and
display viewports. :

Chapter 9—General Attributes

This chapter describes writing modes, display background and
foreground, and the writing index.

Chapter 10—Text Attributes

This chapter describes how attributes may be used to enhance and
modify text.

Chapter 11-—Graphics Attributes

This chapter describes how attributes may be used to enhance and
modify the appearance of graphic objects.

Chapter 12—Inquiry Routines

This chapter discusses how information can be returned to the
application program.

Chapter 13—Display Lists and Segmentation

This chapter describes how to create and manipulate display lists and
segments.

Chapter 14—Geometric and Attribute Transformations

This chapter describes the various ways graphic objects and
components of graphic objects can be manipulated with the respect
to the coordinate space.

Chapter 15—Metafiles and Private Data

This chapter discusses how to extract the contents of a display list
and store the data in a buffer or external file. There is additional
information about how to associate private data with a graphics display.

Chapter 16—Programming in Color

The chapter describes how to create and display graphic objects in
color. '

Chapter 17—Asynchronous System Trap Routines
V4.1—June 1989



Preface

v

This chapter discusses how to make use of program-related events to
increase the interactive nature of your applications.

Part llI—UIS Routine Descriptions

This section contains reference material about the device-independent VMS
workstation software graphics routines.

¢ Chapter 18—UIS Routine Descriptions

¢ UIS Routine Descriptions

Part IV—-UIS Device Coordinate (UISDC) Routines

- This section contains reference material about device-dependent VMS
workstation software graphics routines.

* Chapter 19—UIS Device Coordinate Graphics Routines
¢ UISDC Routines

Appendix A—Summary of UIS Calling Sequences
Appendix B—Summary of UISDC Calling Sequences
Appendix C—UIS Fonts

Appendix D—UIS Fill Patterns

Appendix E—Error Messages

Appendix F—VMS Data Types

Glossary

How To Use This Guide

This guide is designed so different types of users can benefit by its
information:

* General users and programmers new to graphics software and VMS
workstation software graphics can use it as a learning tool.

* Programmers already familiar with graphics software in general and/or
VMS workstation software graphics can use it as a reference tool.

Inexperienced Users

If you are unfamiliar with the VMS Workstation Software graphics system,
you should begin by reading Part I of this guide. It gives you an overview
of the graphics concepts discussed in subsequent sections of the book.

The programming tutorial in Part IT provides a step-by-step approach for
learning how to write applications that take advantage of the graphics
capabilities of the VMS workstation.

Part III provides you with reference information about all of the UIS
routines used in VMS workstation software graphics. It is easier to use
after you have read Part II of this guide.

Part IV contains appendices that provide reference material about UISDC
graphics routines and error messages.

V4.1—June 1989 ' Xxix



Preface

Experienced Users

Once you have become familiar with VMS workstation graphics, you will
seldom need to refer to Part I of this guide, except when reviewing basic
concepts.

Refer to Part II for examples and suggestions on the proper use of VMS
workstation software graphics routines.

Part III is an alphabetically arranged reference section that you can use to
get detailed descriptions of VMS workstation software graphics routines.
Before using this section, you should already be familiar with Parts I and II
of this guide.

Part IV contains appendices that provide reference material about UISDC
graphics routines and error messages.

Associated Documents

The following VMS manuals are related to this guide:
* VMS Workstation Software Release Notes

® VMS Workstation Software Installation Guide

* VMS Workstation Software Guide to Printing Graphics
* VMS Workstation Software User’s Guide

®  VMS Workstation Sight User’s Guide

* VMS Workstation Software Video Device Driver Manual
e VMS User's Manual

* VMS User’s Primer

® VMS Programmer’s Manual

® VMS FORTRAN Programmer’s Primer

®  VMS Programming Pocket Reference

®  VMS Programming Support Manual

A Installing or Upgrading VMS from Diskettes

o Installing or Upgrading VMS from a Tape Cartridge

Documentation Conventions

XXX

This manual uses the following conventions:

Convention Meaning

RET A symbol with a one- to six-character abbreviation
indicates that you press a key on the terminal, for

- example, [RET].

V4.1—June 1989



Preface

Convention

$ SHOW TIME
05-JUN-1986 11:55:22

$ TYPE MYFILE.DAT

file-spec, ...

[logical-name]

quotation marks
apostrophes

The phrase CTRL/x indicates that you must press
the key labeled CTRL while you simultaneously
press another key, for example, CTRL/C, CTRL/Y,
CTRL/O.

Command examples show all output lines or
prompting characters that the system prints
or displays in black letters. All user-entered
commands are shown in red letters.

Vertical series of periods, or ellipsis, mean either
that not all the data that the system would display
in response to the particular command is shown
or that not all the data a user would enter is
shown.

Horizontal ellipsis indicates that additional
parameters, values, or information can be
entered.

Square brackets Indicate that the enclosed item
is optional. (Square brackets are not, however,
optional in the syntax of a directory name in a

file specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks (). The term
apostrophe (') is used to refer to a single
quotation mark.

New and Changed Features

The following sections describe changes to the programming interface since VWS Version 4.0.

New UIS Routines

Routines Added for Version 4.1

e UIS$GET_PLANE_MASK
e UIS$SET_PLANE_MASK

V4.1—June 1989

xxxi






New and Changed Features

(New and Changed Features) The following sections describe changes to the programming interface

since UIS Version 2.0.

New UIS Routines

The following UIS routines were added.

Function

Routine

AST-enabling

Color

Display list

Graphics

UIS$SET_ADDOPT_AST
UIS$SET_EXPAND_ICON_AST
UIS$SET_TB_AST
UIS$SET_SHRINK_TO_ICON_AST

UIS$CREATE_COLOR_MAP
UIS$CREATE_COLOR_MAP_SEG
UIS$DELETE_COLOR_MAP
UIS$DELETE_COLOR_MAP_SEG
UIS$GET_COLORS
UIS$GET_HW_COLOR_INFO
UIS$GET_INTENSITIES
UIS$GET_VCM_ID
UIS$HLS_TO_RGB
UIS$HSV_TO_RGB
UIS$RESTORE_CMS_COLORS
UIS$RGB_TO_HLS
UIS$RGB_TO_HSV
UIS$SET_INTENSITIES

UIS$COPY_OBJECT
UIS$DELETE_OBJECT
UIS$DELETE_PRIVATE
UIS$EXECUTE
UIS$EXECUTE_DISPLAY
UIS$EXTRACT_HEADER
UIS$EXTRACT_OBJECT
UIS$EXTRACT_PRIVATE
UIS$EXTRACT_REGION
UIS$EXTRACT_TRAILER
UIS$FIND_PRIMITIVE
UIS$FIND_SEGMENT
UIS$GET_CURRENT_OBJECT
UIS$GET_NEXT_OBJECT
UIS$GET_OBJECT_ATTRIBUTES
UIS$GET_PARENT_SEGMENT
UIS$GET_PREVIOUS_OBJECT
UIS$GET_ROOT_SEGMENT
UIS$INSERT_OBJECT
UIS$PRIVATE
UIS$SET_INSERTION_POSITION
UIS$TRANSFORM_OBJECT

UISSLINE
UISSLINE_ARRAY

xxxiii



New and Changed Features

Function

Routine

Keyboard and pointer

Text

Windowing

UIS$CREATE_TB
UIS$DELETE_TB
UIS$DISABLE_TB
UISSENABLE_TB
UIS$GET_TB_INFO
UIS$GET_TB_POSITION

UIS$GET_CHAR_ROTATION
UIS$GET_CHAR_SIZE
UIS$GET_CHAR_SLANT
UIS$GET_FONT_ATTRIBUTES
UIS$GET_TEXT_FORMATTING
UIS$GET_TEXT_MARGINS
UIS$GET_TEXT_PATH
UIS$GET_TEXT_SLOPE
UIS$SET_CHAR_ROTATION
UIS$SET_CHAR_SIZE
UIS$SET_CHAR_SLANT
UIS$SET_TEXT_FORMATTING
UIS$SET_TEXT_MARGINS
UIS$SET_TEXT_PATH
UIS$SET_TEXT_SLOPE

UISSEXPAND_ICON
UIS$GET_VIEWPORT_ICON
UIS$GET_WINDOW_SIZE
UIS$SHRINK_TO_ICON

New UISDC Routines

XXXiv

The following UISDC routines were new for Version 3.0.

e UISDCSALLOCATE_DOP

¢ UISDC$EXECUTE_DOP_ASYNCH
e UISDCS$EXECUTE_DOP_SYNCH

e UISDC$GET_CHAR_SIZE

e UISDC$GET_TEXT_MARGINS

e UISDCS$LINE

o UISDCS$LINE_ARRAY
e UISDC$LOAD_BITMAP
+ UISDC$QUEUE_DOP

~ o UISDC$SET_CHAR_SIZE

e UISDC$SET_TEXT_MARGINS



New and Changed Features

New Chapters

Three new chapters describing color concepts and color programming
considerations have been added since Version 2.0.

¢ Color Concepts
e Geometric and Attribute Transformations

¢ Programming in Color

New UIS Writing Modes
Five new writing modes have been added since Version 2.0.
e UIS$C_MODE_BIC
* UIS$C_MODE_BICN
* UIS$C_MODE_BIS
e UIS$C_MODE_BISN
¢ UIS$C_MODE_COPYN

New Technical Character Set Fonts

Twelve new technical character set fonts have been added since Version
2.0.

New Text Attributes

The following new text attributes have been added to the programming
interface.

¢ (Character rotation
¢ Character scaling
¢ Character slant

e Text formatting

* Text margins

¢ Text path

* Text slope

XXXV



New and Changed Features

Changes to Existing UIS Routines
UIS$BEGIN_SEGMENT

UIS$BEGIN_SEGMENT now returns segment identifier that can be
referenced by other display list routines. For example, this allows
traversing segments and segment paths.

UISSMEASURE_TEXT and UISSTEXT
You can now use control lists with UIS$TEXT and UISSMEASURE_TEXT.

U|S$DVISABLE_DISPLAY_LIST and UISSENABLE_DISPLAY_LIST

Additional arguments have been included that control display screen and
display list updates.

UISSSET_POINTER_PATTERN and UISDCS$SET_POINTER_PATTERN

If you are using a color system, you can now specify a pointer pattern
outline.

Display Lists and Segmentation

The chapter on display lists and segmentation has been expanded with
more examples.

UIS Metafiles

You can create and store metafiles of generically encoded instructions as
files and reexecute the file.

Shrinking Viewports and Expanding Icons

Applications can now shrink display viewports and expand icons.

Obsolete Version 2.0 UIS Routines
The following routines are obsolete.
e UISSGET_LEFT_MARGIN
e UIS$SET_LEFT_MARGIN
e UISDC$GET_LEFT_MARGIN
e UISDC$SET_LEFT_MARGIN

XXXVi



Partl| VMS Workstation Software Graphics Concepts






1 System Description

1.1 Overview

This chapter introduces the VMS Workstation Software graphics system.
The chapter has two parts:

A summary of typical workstation hardware

A description of the graphics software

1.2 VAXstation Hardware

The VMS workstation can be used as a standalone system. It has all the
components necessary to run programs and perform tasks without being
connected to a host computer. It can also be connected to a host computer
and used as a part of a network in a larger system.

The VMS workstation typically consists of a configuration of the following
hardware: '

[ ]

System cabinets or boxes

Display monitor

Keyboard

Tablet with puck and stylus or three-button mouse
Communications board

Printer

Figure 1-1 shows typical VMS workstation hardware.




System Description

Figure 1-1 Typical VMS Workstation Hardware

Display Monitor

Keyboard
Tablet

Mouse

Printer
Stylus

Processor

ZK-4616-85

1.2.1 System Cabinet or Box

The system cabinet (box) is the heart of the VMS workstation system. The
system cabinet contains the CPU, disk drives, memory, any options, and
communications hardware for the system. Usually, the cabinet or box
houses both fixed and flexible disk drives. The amount of memory can
vary, depending on the options installed.

1.2.2 Monitor

The workstation monitor is a high-resolution, bitmap device that displays
text and graphics information. Depending on the model, you can use the
workstation monitor to display black and white (bitonal), grey scale, or
color graphics.

1.2.3 Keyboard

The workstation uses the DIGITAL LK201, a standard low-profile style
keyboard that consists of:

* A top row of user-definable function keys
* A user-definable numeric keypad
* A special keypad with arrow keys and function keys

¢ A standard alphanumeric keypad




1.2.4

1.2.5

1.2.6

1.2.7

1.3

System Description

Some of the top-row function keys are control keys that allow you to:
* Hold the screen

¢ Display the operator window

* Switch the windowing system

* Change the active window

The top row also has editing keys and keys that call functions such as
cancel, exit, and help.

You can program the function keys and numeric keypad keys to perform

functions suited to a particular application. You can use the arrow keys to
move the keyboard cursor within applications. The alphanumeric keypad
is similar in function to a typewriter keyboard.

Mouse

The three-button mouse is a medium-resolution, relative pointing device.
The mouse is the primary means for pointing to an object on the screen.
When you roll the mouse on a flat surface, the pointer on the screen moves
the same way. You use the buttons to make selections.

Tablet

The tablet is a high-resolution, absolute positioning device. It consists of a
flat tablet, a puck with buttons, and a stylus with buttons. When you move
the puck or stylus on the tablet, the pointer on the display screen moves
the same way. You use the buttons to make selections.

Communications Board

The communications board connects the system to other computers.

Printer
The VMS workstation can have a printer connected to the processor
console port or can access printers located at remote locations through the
network. You can print any rectangular portion of display screen.
Software

The VMS workstation graphics software is a versatile graphics and
windowing interface. It is designed to be used on any of the MicroVAX
family of workstation products (such as VAXstations). This graphics
interface allows you to write application programs in VAX MACRO, VAX
BLISS, and many other high-level languages. Application programs written
to use graphics software can create and manipulate windows, display
multiple styles of text and sizes, receive input, and draw graphic objects in
the windows.



1.3.1

1.3.2

System Description

Graphics Routine Types

The VMS workstation graphics software contains callable routines that
can be accessed from a high-level programming language. An application
program can perform graphics and windowing functions by making calls
to appropriate routines. Routines create display windows, draw lines and
text, and build graphic objects. This software contains the following types
of routines:

¢ AST-enabling

¢ Attribute

¢ Color

¢ Display list

* Graphics and text

¢ Inquiry

* Keyboard
e Pointer

* Sound

¢  Windowing

e Device coordinate

Human Interface

The VMS workstation provides an interface between you and the graphics
software. This feature is called the human interface because it helps you use
the workstation.

This interface makes it easy to create new terminal windows on the screen.

The VMS workstation provides you with the ability to have the equivalent

of many terminals at your disposal. You can easily create emulated Digital
VT200 series or Tektronix TEK4014 terminals simply by selecting a menu 4
item that creates a window on the screen.

To control the placement of windows on the screen, you can move them
anywhere on the screen (or even partially off it), hide them from view,
push them behind or pop them in front of other windows, and so on. The
following list shows some possible operations.

¢ Create a new VT200 series or TEK4014 terminal window
e Move a window to a different part of the screen

¢ Push a window behind other windows

* Pop a window in front of other windows

* Shrink a viewport to a icon

¢ - Change the size of a window

"o  Delete a window

* Switch the keyboard from one window to another



System Description

e Suspend all screen activity (hold screen)
e Print any portion (or all) of a window or the screen
® Set workstation attributes

¢ Get online help

You can create emulated terminals on the VMS workstation. The
programming interface and the capabilities of emulated terminals are the
same as the programming interface and capabilities of the corresponding
real terminal. The appearance of an emulated terminal on the VMS
workstation screen is similar to that of the corresponding real terminal.
(It will not be completely identical because of hardware differences.)

If you have several terminal windows, you can start a job on one terminal
window, leave it running, then start a job on another terminal window.
Based on available resources, you create as many terminal windows as you
need and switch back and forth among them at will.

The VAXstation can emulate the Digital VT200 series or Tektronix TEK4014
terminal. Any number of VT200 series or TEK4014 windows can appear
on the screen simultaneously. However, only one window can use the
keyboard at any one time. You assign the keyboard to the window of your

VT200 ANSI and Digital private escape sequences, and TEK4014 escape
sequences, are interpreted and translated into the appropriate graphics

Programs that run under the VAX/VMS operating system will operate in a
VT100 or VT200 series workstation window without modification.

1.3.2.1 Terminal Emulation
VT200 Series/TEK4014
choice.
routines.

1.3.2.2 Communication Tools

You can communicate with the software interface through the mouse,
tablet, or keyboard.

Mouse and Tablet

The mouse and tablet control a cursor called a pointer on the screen. When
you manipulate the mouse or tablet, the pointer moves on the screen. Use
the pointer to choose objects on the screen, such as an item in a menu.
Use the buttons to make selections.

Use the pointer, in combination with buttons on the mouse, to perform the
following tasks:

* Point to objects on the screen

* Select objects on the screen

* Move objects around on the screen

® Push and pop windows on the screen
* Call menus to the screen

¢ Switch the keyboard between emulated terminals or windows



System Description

* Perform application designated functions

Keyboard

Use the keyboard to perform the following functions:

¢ Respond to system prompts

e Provide control keys, such as [HOLD SCREEN] and [CYCLE]
* Provide special keys, such as

* Enter data and information into a screen window

¢ Move a cursor in a window on the screen

¢ Perform application specific functions

1.3.3 Windowing Feature

The graphics software allows you to create and maintain many windows
at the same time (based on available resources). Graphics routines create,
delete, and manipulate overlapping windows. You can pop windows to
the front of the screen, push them to the background, move them around
the screen to a new position, or delete them from the screen. You can also
control the amount and size of information that appears in a window.

1.8.4 Graphics Capabilities

Routines create new displays and draw graphics within created displays.
A display list, which is an encoded description of routines that create
the contents of a display, is kept in memory. The display list enables a
program to pan and zoom portions of a display easily without redrawing
the entire display. Graphics software automatically scales the display.
A display, or a portion of a display, can be mapped into one or more
windows on the screen.



2

2.1

2.1.1

Display Management Concepts

This chapter discusses basic concepts involved in creating a graphic object
and displaying it on the workstation screen. This chapter covers:

e  World and device coordinates

¢ Display window and viewport scaling

Overview
* Virtual displays
* Display windows
* Display viewports
Summary

VMS workstation graphics software enables application programs to build
graphic objects and display them on the workstation screen.

An application program that takes full advantage of VMS workstation
graphics capabilities can perform the following tasks:

* Create a virtual display

¢ Draw graphics and text into the virtual display

¢ Open windows into the virtual display for viewing on an output device
* Map windows into display viewports on the workstation screen

* Manipulate windows and viewports to display as much or as little of
the virtual display as desired

‘e Pan, zoom in and out, resize, and duplicate display windows

* Manipulate display lists

The application program must first create a virtual display in which to build
the object. Think of a virtual display as a conceptual display space that has
no actual physical size or shape. This conceptual display space, called the
world coordinate system, is defined by the application program in terms of
world coordinates. World coordinates are arbitrary units of measure selected
by the application program that specify locations (or points) in the world
coordinate system using values convenient to the application.

The graphics software automatically translates world coordinates to
normalized coordinates before it maps them to an output device. Normalized
coordinates convert world coordinates into a single device-independent
coordinate system so you do not have to deal with several coordinate
systems. Normalized coordinates are automatically mapped to the device-
dependent coordinates of the physical output device.

2-1



2.2

Display Management Concepts

A graphic object constructed in a virtual display is not available for display
on an output device until the application creates a display window and

display viewport.

A display window defines what portion of the virtual display graphic object
is visible. By creating the display window, the program makes information
in the virtual display potentially visible to the user. Information in the
display window is not actually visible until the display window is mapped

to a display viewport.

A display viewport is the user-controlled, physical region on a screen
created by VMS workstation software. The display viewport is the physical
representation of the display window mapped to it. It enables you to
view the graphic object inside the display window. Figure 2-1 illustrates
the relationships among the virtual display, display window, and display

viewport.

You use physical device coordinates to map a display window to a display
viewport. Physical device coordinates are points on the display screen
used to locate the graphic object. Viewing transformation is the process

by which the system maps a graphic object from world coordinates of

the display window to device coordinates of the display viewport." The
graphics software automatically processes viewing transformations.

To pan and zoom the graphic object in the display viewport, you can
manipulate the world coordinates of the display window in relation to

the world coordinates of the virtual display.

Figure 2-1 Virtual Display, Display Window, and Display Viewport

Display Viewport

Display Window

-

World

Coordinates Virtual

Display

viewind -~

n_o_ -
ranﬁ‘og‘a"‘g -

Device
Coordinates

ZK-2090-84

Coordinate Systems

Think of the VMS workstation graphics environment as a two-dimensional
plane. Within this environment, use the Cartesian coordinate system to

describe points. Cartesian coordinates take the form of x,y, where x is the
horizonal axis and y is the vertical axis. Use a coordinate pair to specify a

(

(

1



Display Management Concepts

point on this plane. Coordinate space is the area of this plane specified by
coordinate pairs.

The VMS workstation graphics software uses four Cartesian coordinate
systems: world, normalized, absolute, and viewport-relative device
coordinates.

2.2.1 Device-Independent Coordinate Systems |

Device-independent coordinate systems mediate between the requirements
of the application program and graphics subsystem versus those of the
output device.

2.2.1.1

World Coordinates

An application program uses world coordinates to describe a virtual display
and to build a graphic object within it. Initially, the application program
creates a virtual display and specifies a convenient world coordinate system
to use when referring to the virtual display. Next, the program uses the
same coordinates to specify size and location of objects to be created
within the virtual display.

World coordinates are device-independent Cartesian coordinates specified
by the application program. They provide a means of locating points in a
virtual display. The range of world coordinate values is specified when the
virtual display is created. Thus, the virtual display can be created to any
proportions selected by the application program. World coordinate values
are given as floating-point numbers.

The world coordinate system can represent any unit of measure. When
application programs construct a graphic object, world coordinates enable
them to use convenient increments of measurement. If the program
accesses information from a data base, it could specify meaningful world
coordinates for the data used. For instance, if an application draws a
chart that shows holiday season product sales, the application could use
convenient measurements that represent units sold in thousands versus
time in weeks. Or, if the application program draws a graphic object, it
could use measurements that make sense for the object. Logically, a virtual
display with a map of the United States might use world coordinates that
represent measurements in miles or kilometers. A floor plan of a house
might use world coordinates that represent feet and inches or meters and
centimeters.

Figure 2-2 shows a world coordinate system that describes a virtual display
in which an object has been constructed.



Display Management Concepts

Figure 2-2 World Coordinate System and Virtual Display

(0.0)

Virtual

Display \A:

World

|
|
|
: Coordinates
]
|

2K-4617-85

2.2.1.2 Normalized Coordinates
Normalized coordinates are device-independent coordinates defined by the
graphics software. They describe the virtual display in physical terms that
any output device can use. An output device cannot use the arbitrary world
coordinates that an application program uses to describe a virtual display.
Instead, each type of output device has its own device-specific coordinates
to locate and build the graphic object. Normalized coordinates provide a
means for the graphics software to normalize these different coordinate

~ systems so that a graphic object can be mapped from a virtual display to

any output device.

Application programs do not directly manipulate normalized coordinates. -
Rather, the graphics software internally uses normalized coordinates,
mapping them into device-specific display coordinates.

Normalized coordinates provide a way to delay the mapping of application
program world coordinates to device-specific coordinates until the actual
output device is established.

2-4




Display Management Concepts

)

2.2.2 Device-Dependent Coordinate Systems

Output devices use device-dependent coordinate systems to map graphic
objects on the display screen or to print objects on a printer. Device-
dependent coordinates are physical device coordinates that denote some
physical unit of measure such as pixels, centimeters, or inches. Such
physical device coordinates reflect device-dependent mapping and drawing
characteristics of the output device.

2.2.2.1

Absolute Device Coordinates

Absolute device coordinates are physical, device-dependent Cartesian
coordinates that specify a position on the VMS workstation display screen.
The position is specified in centimeters relative to the lower-left corner of
the display screen. Typically, viewport placement, pointer position, and
tablet placement use absolute coordinates. Figure 2-3 illustrates viewport
placement on the VAXstation screen.



Display Management Concepts

2-6

Figure 2-3  Absolute Device Coordinates

~ ~

\ Lower-Left
Corner of Viewport

Origin of
Display Screen 7K-5429.-86

2.2.2.2

Viewport-Relative Device Coordinates

Many VMS workstation graphics software routines use a special type of
physical device coordinates called viewport-relative device coordinates,
which specify positions within a display viewport relative to the lower-left
corner of the viewport. Viewport-relative device coordinates are always
positive and specified in pixel units. A pixel is the smallest unit displayed
on a screen. VMS workstation graphics software maps display windows to
the display screen.

Viewport-relative device coordinates are used to map graphic objects from
a display window to a display viewport on a physical display device.

Before you can display a graphic object in a display viewport on a screen,
you must transform the world coordinates of the object to the viewport-
relative device coordinates of the screen.



Display Management Concepts

Figure 2-4 shows an object in a display window being mapped to a display
viewport on a physical display device. In this figure, the world coordinates
of the display window undergo a viewing transformation to the physical
device coordinates of the display device.

Figure 2-4 Mapping a Display Window to a Display Viewport

Display Terminal

Display
Window

Display Viewport

Coordinates

Physical Device
Coordinates
(Pixels)

ZK-4624-85

Virtual Displays

A virtual display is a conceptual space an application program creates in
which to construct graphic objects. The application program writes all text
and graphics output to a virtual display.

A virtual display has no physical size (dimensions of length and width).
Therefore, objects constructed in a virtual display also have no actual
physical dimensions. You cannot measure a virtual display or the graphic
objects within it. Rather, a virtual display and the objects within it have
relative sizes and proportions. The aspect ratio of an object in a virtual
display is a comparison of the relative proportions of the object’s vertical
and horizontal components. Use aspect ratio to refer to an object’s relative
size in a virtual display.

To create a virtual display, an application program specifies a coordinate
range in the world coordinate system. The coordinate range establishes the
relative size, or aspect ratio, of the virtual display. Objects constructed in
the virtual display are specified in terms of world coordinates and have an
aspect ratio. Later, the aspect ratio affects how the virtual display and the
objects it contains map to the display window.



Display Management Concepts

Refer to Figure 2-2, which shows a graphic object in a virtual display. Both
the virtual display and the graphics object are specified in terms of world
coordinates.

2.4 Display Windows

A display window shows all or part of the contents of a virtual display.
Display windows are created by an application program to control how
much of a virtual display is potentially available to view. A display window
can be the size of an entire virtual display or just a small portion of it. One
or several windows in a virtual display can be active at the same time.

An application uses world coordinates to specify the relative proportions
and location of a display window. Therefore, the amount of virtual display
encompassed by a display window is relative to the virtual display world
coordinates. When it specifies the proportions and location of the display
window, an application program determines what portion of the graphic
object within a virtual display is visible.

World coordinate boundaries of a display window define a clipping rectangle.
Any graphic object inside the clipping rectangle is potentially visible in the
display viewport. Objects outside the clipping rectangle are not visible and
are clipped from the window as illustrated in Figure 2-5.

Figure 2-5 Display Window in a Virtual Display

Virtual Display | Display
Window
r Clipped !
| | o — |
t | |
m | m [ o
R O GRS - =4
World
Coordinates
ZK-4625-85

2.5 Display Viewports

A display viewport is the area of the display screen where a display
window is mapped. It can vary in size and shape and be anywhere on the
display screen.

2-8



Display Management Concepts

Based on available resources, you can have as many viewports as you want
on the screen at a time. Viewports occlude in areas where they overlap.
The last viewport created is on top and visible. However, you can modify
which viewport is on top at any one time.

Normally, the graphics software automatically maps and scales the display
window to the display viewport on a one-to-one basis. That is, the
boundaries of the display viewport implicitly default to the same size

and shape as the display window. However, the application program can
explicitly set the display window (or display viewport) to a different size or
shape than that of the display viewport (or display window). The effects of
such manipulation are discussed in the following sections of this chapter.

Figure 2-6 illustrates the relationships among the virtual display, the
display window, and the display viewport. This figure shows how a
graphics object in a virtual display is clipped to the display window, scaled
and mapped into a display viewport, and displayed on a display device
such as a terminal screen.

Figure 2-6 Displaying a Graphic Object

Display Terminal

Virtual Display Display Display Viewport

Window

==

Uses Uses
World Physical Device
Coordinates Coordinates

ZK-4618-85

2.6 Display Window and Viewport Scaling

You can manipulate the relative sizes of the display window and the
display viewport to magnify or reduce graphic objects. The following list
describes this manipulation.

Zooming
To zoom (magnify) the graphic object:
* Decrease display window size; do not alter viewport size

¢ Increase display viewport size; do not alter window size



2.6.1

Display Management Concepts

Reducing

To reduce the graphic object:

Increase display window size; do not alter viewport size

Decrease display viewport size; do not alter window size

Panning

To pan the graphic object, move the display window within the virtual
display; do not alter the display viewport.

Changing View Size

To change the area of the virtual display being viewed, without performing
scaling:

To increase the virtual display area being viewed, expand both the
display window and the display viewport proportionately.

To decrease the virtual display area being viewed, contract both the
display window and the display viewport proportionately.

Distortion of Graphic Objects

Factors that determine whether a graphic object is distorted when it is
mapped to the screen are:

2-10

Virtual display aspect ratio
Display window

Display viewport

Width to height, the display viewport can have any specified proportions
(within the limits of the display device). If the proportions of the display
viewport do not match the proportions of the display window, the graphic
object appears to be stretched or squeezed as the graphics software
attempts to fit the display window to the display viewport. (The exact
effect depends on proportional differences between the viewport and
window.) ;

Transformation affects different objects in different ways.

Straight lines remain straight, but can differ in length and slope,
depending on window size and coordinate system.

Curved lines can change shape, depending on the characteristics of the
graphic object and the mapping (transformation) from display window
to viewport.

Arcs change shape and size. For instance, an ellipse can change its
proportions.

Graphics text (specifically character size and spacing) does not adjust
to fit the required number of characters into the display viewport.
The size and spacing of text characters is fixed and will not distort.
However, the starting text position might change, dependmg on the
transformation between window and viewport.



Display Management Concepts

You can correct distortion. The application program can create a display
viewport with proportions appropriate to a particular graphics window

in world coordinate space. Because the display window can have

any proportions in world coordinate space, you can create a properly-
proportioned display viewport for a window that is square, tall and narrow,
short and wide, or any other shape.

2.7 Display Lists

A display list is a device-independent encoding of the exact contents of a

virtual display. The graphics software maintains and uses display lists as
follows:

¢ Automatic management of panning, zooming, resizing, and duplicating
display windows

*  Structuring virtual display objects

¢ Simultaneous viewing of objects in a virtual display within several
display viewports

* Storing and reexecuting UIS pictures

* Editing UIS pictures

) 2.8 Generic Encoding and UIS Metafiles

Whenever a graphic object is drawn in the virtual display or an attribute is
modified, an encoded entry of the object or attribute modification is added
to the display list.

Because of these list entries, an application can extract output from a
virtual display, transfer it to an intelligent application, or store it in a
metafile, which is a generically encoded file or buffer, then later execute the
generically-encodec? binary stream into a new virtual display.

) Generic encoding is device-independent.

When UIS routines execute, a binary-encoded packet of values is
constructed and stored as display list entries. When the binary-encoded
packet is extracted from the display list, it becomes a generically-encoded
UIS metafile. Such metafiles can be reexecuted to invoke the appropriate
generic encoding routines. .

Figure 2-7 shows a display list extraction.

2-11



Display Management Concepts

Figure 2-7 Display List Extraction

UIS Routine Call

Binary Encoded Packet

Generic Encoding Primitive

ZK-5428-86

Many UIS routines have corresponding generic encoding primitives.
However, this does not ensure a one-to-one mapping between UIS routines
and generic encoding routines or between the UIS routine arguments and ‘
generic encoding routine arguments.

2-12



3

3.1

3.2

Graphic Objects and Attributes

Overview
This chapter discusses the basic building blocks used to construct graphic
objects in a virtual display:
* Text and graphics routines
e Attributes and attribute modification routines
¢ Attribute blocks
* Segments
Summary

Text and graphics routines (sometimes called output routines) are the
fundamental building blocks an application program uses to create graphic
objects. These routines specify lines, circles, text, or other graphic objects.

Attributes are values that define various characteristics about the appearance
of a text or graphic object. Attributes define how displayed text objects or
graphic objects look.

An attribute block is a set of attributes. Every text and graphics routine used
by an application program must specify an attribute block. The attribute
block defines an object’s attributes.

An application program uses attribute routines to specify or change

the current value of an attribute. The changed attribute value affects
subsequent text and graphics routines that use the attribute block. You
must use an attribute routine to specify which attribute block is affected.

Application programs can group associated attribute, graphics, and text
routines together into a segment. Segments give the program a convenient
way to view several attribute, graphics, and text routines as a single unit.

An application program uses application-specific data to associate graphics
and text routines or even entire segments. The application program can
store application-specific data in the generic encoding stream. In this way,
if a portion of a display screen is copied, stored, and later used (restored),
the program will be able to associate internal information with the graphic
object.



Graphic Objects and Attributes

3.3 Graphics and Text Routines

Graphics and text routines map objects directly into the virtual display.
You can use these routines to create new objects or modify existing ones.
Application programs use graphics and text routines to draw lines, circles,
text, and other graphic objects. You can combine these routines to form a
desired graphic object.

Each graphics and text routine has two required arguments: one that
specifies the virtual display where you draw a graphic object and another
that specifies the attribute block to use when you draw the graphic object.

How a graphics or text routine draws a graphic object is strongly influenced
by the attributes associated with it.

3.4 Attributes

Attributes define the appearance characteristics of graphic objects created
by graphics and text routines. Attributes influence the way a graphic object
appears on a display device. Attributes can determine color intensity,
style, mode, and width, to name a few.

When you specify attribute values, they remain the same until you explicitly
change them. For example, if the application program changes line width,
all lines are drawn to the new thickness until the program changes the line
width again.

Each type of graphic and text object has a set of unique attributes. For
example, attributes that affect graphics do not affect text, and vice versa.
Certain general attributes, however, affect all routines. For example,

the background has an attribute you can set to determine background
appearance. Think of the background as all parts of a display not covered
by an object created by a graphics or text routine.

Attributes fall into the following general categories:
 General attributes

¢ Text attributes

* Graphics attributes

¢  Window attributes

3.4.1 GenerallAttributes

All types of graphics and text routines have general attributes, which
include:

*  Writing color

¢ Background color
¢ Writing mode
Writing Color

This attribute assigns the writing color. It is used by all graphics and text
routines (such as lines, text, and so on). To express this attribute, specify
an index into a color map.



Graphic Objects and Attributes

Background Color

This attribute assigns the background color. To express it, specify an index
into a color map.

Writing Mode

This attribute assigns the mode of writing text or graphics. In particular,
writing mode determines how a text or graphics routine will use the writing
and background colors to display a graphic object.

3.4.2 Text Attributes

NOTE:

Font set

This attribute specifies the font set used to define text characters. Fonfs
express the size and shape of the characters in physical dimensions. This
attribute uses display routines during text plotting to enable proper-size
text to display. You can choose from a variety of multinational character
set fonts and technical character set fonts.

Character spacing

This attribute defines character spacing for width and height of character
sizes. It is the additional unit of increment beyond the normal character
size for highly spaced characters. You specify this attribute as a floating-
point number. Multiply it by the normal character size to produce the
actual spacing distance. If you specify zeros, no additional spacing is
performed. If you use negative values, the spacing is reduced instead of
increased.

In some cases, negative values for this attribute cause the characters to
overlap.

Text Path

Text path is the direction of text drawing. The text path attribute consists
of two parts—the major path and the minor path. Major path refers to the
direction in which characters are drawn on a line. Minor path refers to the
direction used for beginning a new line of text. The following table lists
available major and minor paths.

* Left to right (default major text path)
* Right to left
¢ Bottom to top

¢ Top to bottom (default minor text path)

Text Slope

Text slope is the angle between the actual path of text drawing and the major
text path. The actual path of text drawing connects the baseline points of
each character cell.

Text Margins

This attribute specifies a starting margin and the x coordinate distance to
the ending margin.

3-3



Graphic Objects and Attributes

Text Formatting

This attribute and the text margins attribute position text as follows:
e Flush against either or both margins

* Centered

* No formatting at all

UIS supports four types of text formatting modes:
* Left justification

* Right justification

* Center justification

¢ Full justification

Character Rotation

Individual characters rotate counterclockwise from 0 to 360 degrees. The
angle of rotation is the angle between the baseline vector of the character
cell and the actual path of the text drawing.

Character Slant

This attribute specifies the angle between the up vector and baseline vector
of the character cell. You can express the character slant angle as a negative
or positive value.

Character Size

Character scaling allows you to increase the height and width of characters
in the virtual display. ‘

3.4.3 Graphics Attributes

Graphics or line attributes affect graphic objects such as lines, polylines,
polygons, rectangles, arcs, and curves. These attritubes control filling of
objects and determine line style and width.

Current Line Drawing Width

This attribute sets line width in terms of world or device coordinate units.
You specify line width as a floating-point number, either interpreted as

a world coordinate width or multiplied by the standard line width for a
device to produce the desired line width.

Line Style

This attribute, a bit vector that indicates the color of each pixel drawn, sets
the current line style of line routines. You can designate the color the same
as either the foreground or the background. You repeat bit vector as often

as necessary to draw all the pixels in the line.

3-4



Graphic Objkects and Attributes

Fill Pattern

This attribute specifies the fill character to be used for filling closed figures
such as polygons, circles, and ellipses. Fill pattern is specified both as a
font file and as the index of a character in that font file. You use the pattern
defined by the character to fill the figure. Refer to Appendix D for further
information about fill patterns.

Arc Type

This attribute specifies how to close an open arc of a circle or ellipse. This
attribute can have the following values:

* Open—The arc is not closed off.

¢ Pie—Two radii are drawn from the endpoints of the arc to the
centerpoint (forming a pie shape).

¢ Chord—A line is drawn between the two endpoints of the arc,
connecting them.

3.4.4 Window Attribute
Clipping Rectangle

The clipping rectangle is the visible area of a virtual display. Define the
clipping rectangle as the corners of a world coordinate rectangle to which
all drawing operations are clipped. Objects or parts of objects outside the
clipping rectangle are not visible.

3.5 Attribute Blocks

An attribute block is a set of attribute values that describe the appearance
of any graphic object created by an application program. Each

attribute block contains attributes for graphics, text, and general display
characteristics.

You can address up to 256 different attribute blocks at a time. You address
them with numbers from 0 to 255. Application programs assign and use
attribute block numbers.

3.5.1 Attribute Block 0

Attribute block 0 is a special attribute block specified by the graphics
software. This attribute block contains a standard set of text and graphics

attributes. The application program cannot modify the attributes in this
block.

Attribute block 0 is read only. There is no convention on the naming
and usage of attribute blocks, with the exception of attribute block 0. The
graphics software reserves it as a default attribute block.

Attribute block 0 provides default attribute values for an application
program to use. Also, you can use it as an attribute block template to
create alternate attribute blocks.

3-5



Graphic Objects and Attributes

3.6 Segments

A segment consists of an attribute block and graphics and text objects.
With a segment, an application program can use a special attribute
without knowing if particular attribute blocks are being used by other
parts of the program. Also, with a segment, an application program can
implement transformations either on a per-segment basis or on the entire
segment tree. Segments provide programming convenience and increased
modularity.

Nested Segments

You can nest a segments. Each nested segment uses the current set of
attribute blocks of higher level segments. This feature makes it easier to
create segments without having to redefine attribute blocks. However,
modifications of attribute blocks in a segment do not affect the attribute
blocks of higher-level segments.

Extracting and Re-executing Segments

An application program can take the contents of a file that contains a
display list of a virtual display and execute it into another virtual display as
a segment. The attributes of the original virtual display should not affect
the inserted virtual display segment.

3.7 Viewing Transformations

Viewing transformation is the mapping of the display window to the display ‘
viewport. It can affect the appearance of a graphic object on a screen. The
shape of the display window and display viewport affect the appearance of
displayed text and graphic objects.

3.8 Two-Dimensional Geometric Transformations

Geometric transformations can alter the appearance of graphic objects
through scaling, translation, and rotation. These methods all involve
manipulation of the object’s angular orientation or shape in the virtual '
display.

Scaling

Scaling is proportional expansion or reduction of graphic objects on the
screen. For example, if the display window and display viewport shapes
are disproportional, the graphics software must squeeze or stretch the
window to fit the viewport. Distortion of the graphics window causes
distortion of the graphic objects in that window. Different graphic objects
are affected in different ways. Chapter 2 provides further information
about the distortion of graphic objects.

3-6



Graphic Objects and Attributes

Translation

Points that define the position of graphic object in a coordinate system are
translated when the object coordinates are changed but the following occur:

¢ The object does not change its angular relationship with other objects.

* The object does not change its implied angular relationship with the
coordinate system.

For example, translation occurs when two lines move in the coordinate
system but remain parallel.

Rotation

A graphic object rotates when it turns on a pivotal point or axis. The object
can rotate with respect to some point on its surface, or it can revolve around
some external point. To give the appearance of rotation on the display
screen, you must first translate the axis of the object to the origin or center
of the coordinate system.

3-7






4.1

4.2

4.3

4.3.1

ColorConcepts

Overview

Depending on your VAXstation, you can display graphic objects in black
and white (bitonal), grey scale, or color. The VAXstation offers a number of
color options. This chapter discusses color concepts and color subsystem
features in the following topics:

* Color hardware systems
e UIS virtual color maps

e Miscellaneous color concepts

See Chapter 16 for more information about programming in color.

Color Hardware Systems
UIS supports three types of VAXstation hardware systems:
* Monochrome or bitonal—Displays black and white only
* Intensity—Displays shades of grey or achromatic color

e Color—Displays shades, tints, hues, or chromatic colors

Raster Graphics Concepts

The VAXstation display screen consists of a set of picture elements called
pixels. Pixels are the smallest displayable unit of a graphic object. The
rectangular set of pixels on the VAXstation screen is a raster. To write
graphic objects, you illuminate the necessary pixels along the path of
points that geometrically describe the object. Each pixel has an address
and a binary value associated with it. Pixel values determine graphic object
color.

Hardware Interpretation of Pixel Values

The number of possible pixel values depends on the number of bit planes
or planes of memory that the system hardware supports. A plane is an
allocation of memory in which each bit maps to a pixel on the display
screen. Conversely, each pixel has an address in memory. The following
table shows the relationship between the number of hardware-supported
planes and the number of possible pixel values.



Color Concepts

Number of Number of

Workstation Planes Possible Values
Monochrome 1 2
Intensity or color 40r8 16 or 256

Figure 4-1 shows how pixel values are represented in single and multiplane
systems.

Figure 4-1 Bitplane Configuration in Single and Multiplane Systems

Low
Order

Plane ‘

Parallel Bit Planes

High-Order Plane

One Plane Four Planes Eight Planes

K 5242 86

In Figure 4-1, a pixel on the VAXstation screen correlates to four
corresponding bits in memory on each bit plane of a four-plane system. If ‘
the bit settings are arranged as a binary value corresponding to the high-

and low-order planes, they appear in the following order: 1011,.

Therefore, the pixel value is 111y. A pixel in a four-plane system can have
a maximum of 16 values. You can use the pixel value in two different ways,
as a direct color value or as a mapped color value.

Direct Color Value

If the pixel value is used as a direct color value, each possible pixel value
directly specifies a color. In other words, the pixel value goes directly to
system hardware (for example, a digital-to-analog converter), where it is
used as the actual color value of the graphic object. For instance, the one-
plane, VAXstation monochrome system interprets pixel values as direct
color values where 0 is black and 1 is white.

Figure 4-2 shows direct color values.

4-2



Color Concepts

Figure 4-2 Direct Color Values

Bit Setting
1
Digital-to-Analog I )
S | .
Converter | Display
One Plane
Each bit maps to a Corresponding pixel is
specific pixel on the illuminated using the
display screen. actual bit setting.

2K-5240-86

Mapped Color Value

When pixel values are interpreted as mapped color values, they indirectly
specify an actual color value located in a hardware color look-up table or
hardware color map. Figure 4-3 shows a hardware color map.

The pixel value is an index to an entry in the color map.



Color Concepts

Figure 4-3 Hardware Color Map

/——- Color Map Entry

Color Value 0t Color Map Index
Color Value 1
Color Value 2
Color Value 3
Color Value 4

L ]

.

[}
Color Value
Color Value

ZK-5241.86

The hardware color map is the same size as the number of possible
pixel values; it has the maximum number of colors that can be displayed

- simultaneously. Table 4-1 lists the size of the hardware color map in

intensity and color systems.

Table 4-1 Hardware Color Map Characteristics

Number of Number of
System Planes Entries
Intensity Four 16

Eight 256
Color Four 16

Eight 256

For example, an eight-plane VAXstation intensity (color) system has a
hardware color map with 256 entries. Each color map entry contains color
values that are RGB color components and that define the desired color.
Each hardware color map entry contains a color value for each pixel.
Conversely, the value of each pixel is the hardware color map index of

a color map entry with the actual color value. Use this color value to
illuminate the pixel on the VAXstation screen. Figure 4-4 shows mapped
color values in a four-plane system.



Color Concepts

Figure 4-4 Mapped Color Values in Four-Plane System

Each bit maps
to the same
pixel on the

display screen.

Bit Setting

Four Planes

Hardware Color Map

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Vaiue

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Vaiue

Color Value

Pixel
Value

|

—ee> 10112119

Digital-to-Analog
Converter

Corresponding pixel
" on the display screen
is illuminated using the
color value located in
the eleventh hardware color map entry.

2ZK-5244-86

Color Representation Models

You express color values according to the requirements of the particular
color representation model used. Three well-known color representation

models are:

¢ Hue lightness saturation (HLS)
* Hue saturation value (HSV)

4-5



Color Concepts

* Red green blue (RGB)

The UIS base color model is the RGB model. RGB color values range from
0.0 to 1.0. Red, green, and blue color component values compose a single
color value on a VAXstation color system.

Specify intensity values (the color values associated with shades of grey), as
a single value in the range 0.0 to 1.0. Figure 4-5 shows RGB and intensity
color values as hardware color map entries.

Figure 4-5 RGB and Intensity Color Values as Hardware Color Map Entries

Blue Green Red 0 <«— Color Map Index
\ \ X Color Component
Values
Intensity 0
N Intensity Value
ZK-5239-86

4.3.3 ColorPalette

4-6

The color palette is the number of possible colors you can specify. Table 4-2
shows the color palette available on each color system.

Table 4-2 Color Palette

; Possible
System Colors
Monochrome black and white
Intensity up to 2% shades of gray
Color ' up to 22 chromatic colors

Color Palette Size and Direct Color Systems

On direct color systems, palette size is identical to the number of
simultaneously displayable colors. For example, the size of the color
palette of a VAXstation monochrome system is two. You can display only
two possible colors, black and white, simultaneously on the screen.



Color Concepts

Color Palette Size and Mapped Color Systems

On mapped color systems, the palette size is typically much greater
than the number of simultaneously displayable colors. The palette size
is determined by the precision of color component specification. For
example, on a VAXstation color system, you can specify each color
component with eight binary bits of precision for each red, green, and
blue color component or 224 (16,777,216) possible colors.

4.4 UIS Virtual Color Maps

When an application uses hardware color resources, the hardware
color map must be aware of hardware system limitations and color
characteristics. It must know the answers to the following questions:

* Is the system direct color or mapped color?

¢ What is the precision of the color representation values for each RGB
color component?

*  What is the range of possible pixel values?

The hardware color map contains a finite number of entries (for example,
16 entries in a four-plane system). Concurrent processes executing in the
same display space must somehow share system color resources.

Purpose of Virtual Color Maps

The virtualization of the hardware color map solves problems that
occur when individual applications require abundant system resources.
Virtualization also solves the problem that occurs when many processes
compete for finite color resources. The use of virtual color maps
is analogous to the use of virtual memory in a multiprogramming
environment where many processes must access physical memory.

When concurrent processes collectively require more color map entries
than exist in the hardware color map, the color values associated with
each competing process are swapped in and out of the hardware color
map as virfual color maps. Swapping virtual color maps in and out of the
hardware color map is a means of arbitrating hardware color map use
across applications.

The process of loading or writing values of the virtual color map into the
hardware lookup table is transparent to the user. Applications see only
a virtual color map, not the underlying hardware resources. Each virtual
display has a virtual color map associated with it.

Figure 4-6 illustrates the swapping of two 16-entry virtual color maps into a
16-entry hardware color map.

V4.1—June 1989 ‘ 4-7



Color Concepts

Figure 4-6 Swapping Virtual Color Maps

Virtual Color Map 1

0
1
2
3
4
5
6
7
8 Hardware Color Map
° 0
10 1
11 2
12 3
13 4
14 5
15 6
7
Virtual Color Map 2 8
0 9
1 10
2 11
3 12
4 13
5 4 14
6 15
7
8
9
10
11
12
13
14
15

Characteristics of Virtual Color Maps

A virtual color map is flexible enough to serve a wide range of applications.
Virtual color map size can range from two to 32,768 entries. If you do

V4.1—June 1989



Color Concepts

not specify a virtual color map, a two-entry virtual color map i created
by default. The virtual color map size does not have to match that of the
hardware color map.

NOTE: When you specify virtual color map size, be aware that UIS rounds up the
size to the next power of two. For example, when you declare a virtual
color map size of 17, UIS needs five bits to represent this in binary form;
thus, it rounds the size up to 32, or 25,

Although virtual color maps are potentially shareable among applications,
they are private by default. Virtual color maps are resident; that is, you
cannot swap them in the hardware color map. The following table shows
how virtual color map entries are initialized.

Virtual Color

Map Entry Color Value
0 Default window background color
1 Default window foreground color

All other entries are undefined.

UIS reconciles differences transparently between the virtual color map
model and the hardware color resources. UIS manages the concurrent use
of these resources across applications.

For information about creating and using virtual color maps, see
Chapter 16.

4.4.1 Reserved Hardware Color Map Entries

Because of hardware limitations on mapped color systems, the hardware
color system or the UIS window management software preallocates some
of the hardware color map entries for special purposes. For example,
pointer colors, window background and foreground colors, and display
screen color are allocated reserved entries in the hardware color map.

Whenever a virtual color map exceeds the size of the hardware color
map less the reserved entries, the results are unpredictable. For more
information about how to use the programming interface to obtain the
hardware color map characteristics, see Chapter 16.

Figure 4-7 describes reserved entries in a hardware color map in a four-
plane system.

V4.1—June 1989 4-9



Color Concepts

Figure 4-7 Reserved Hardware Color Map Entries in a Four-Plane
Color System

0
1
2
3 .
4
5
6
7
8
=]
10
11
reserved 12
reserved 13
reserveq 14
reserved 15

4.5 UIS Color Map Segments

The use of color map segments represents a device-specific binding of a
virtual color map to the underlying hardware color resources, that is, the
hardware color map. In a color-mapped color system, color map segments
are bound to specific hardware color map entries and swapped in and
“out of the hardware color map based on system and user events. Usually,
applications need not worry about color map segments. UIS handles the
device-specific binding automatically. Applications might use color map
segments for the following reasons:

e Applications can explicitly control the binding of the virtual color map
and the hardware color map. '

¢ Applications are not transported to different hardware configurations,
for example, four-plane to eight-plane systems or VAXstation color and
intensity systems to VAXstation monochrome systems.

4-10 V4.1—June 1989



Color Concepts

4.6 Shareable Virtual Color Maps

By default, virtual color maps are private. Yet, they can be shared among
cooperating application programs to define a uniform color regime and

to conserve hardware color map entries. Shared virtual color maps have
names, an ASCII string from 1 to 15 characters, and a name space (UIC
group or system). For example, UIS uses a system-wide, shared color map
to display terminal emulator windows and window and screen menus.

4.7 Miscellaneous UIS Color Concepts

The following sections contain additional information about the UIS color
subsystem.

) 4.7.1 Standard and Preferred Colors

VAXstation color and intensity systems support two sets of symbolically
defined colors. Workstation standard colors and intensity values are a set
of colors used for specific purposes within the workstation environment.
For example, the default window background and foreground, cursor
background and foreground colors, and the display screen color are the
workstation standard colors.

Workstation preferred colors are a set of colors that represent user
preference for the eight combinations of the RGB primary colors. For

' example, workstation preferred colors can define a particular shade of red
rather than a full intensity red. In an intensity system, preferred colors can
define a base white level from which preferred shades of grey are derived.
Preferred values are simply a mechanism to conveniently maintain and
communicate color preferences to an application.

Use the workstation setup mechanism to set values for standard and
preferred colors. Use UIS$GET_WS_COLOR and UIS$GET_WS_
INTENSITY to return standard and preferred color and intensity values.

) 4.7.2 Monochrome (Bitonal), Intensity, and Color Compatibility Features

Use UIS$SET_COLOR or UIS$SET_INTENSITY to change or retrieve color
map entries. Both load a single color value in a color map entry and can
be used in any of the three hardware color environments—monochrome
(bitonal), intensity, or color.

4-11



Color Concepts

Color Compatibility

System Feature

Monochrome UIS chooses the color (black or white) closest to the color

(bitonal) specified by the application.

Intensity’ UISSSET_COLOR converts the specified RGB values to an
equivalent gray level using an equation.
UIS$SET_INTENSITY sets the requested gray level directly.

Color? UIS$SET_COLOR sets the requested RGB color values

directly. ,
UISSSET_INTENSITY converts the specified intensity value
to an equivalent RGB value using an equation.

'The color-to-intensity equation is | = 0.30R + 0.59G + 0.11B. Color television
broadcasts transmitted for reception by noncolor television sets are processed in

this manner.

2The intensity-to-color equationis R = I,G = 1,8 = I.

4.7.3 Color Value Conversion

UIS provides routines to convert color values in applications that use other
color representation models.

¢ Hue lightness saturation (HLS)

¢ Hue saturation value (HSV)

Hue values range from 0.0 to 360.0, where red = 0.0. Values for lightness
and saturation range from 0.0 to 1.0.

4.7.4 Set Colors and Realized Colors

UIS routines that sef (load) color map entries in the virtual color map accept
F_floating point values between 0.0 and 1.0. The precision of the F_floating

4-12

point data type is approximately seven decimal places.

The precision for the color representation for a particular device might not
be accurate enough to represent the requested F_floating point value. In
this case, the sef color value (F_floating) differs from the realized color value
(device precision). An application can determine realized color values
using UIS$GET_COLOR(S) and including the optional parameter. See
Chapter 16 for details.

(



Color Concepts

4.7.5 Color Regeneration Characteristics

The color regeneration hardware characteristic specifies whether changing
a color map entry affects the color of existing graphic objects (retroactive
regeneration) or only graphic objects drawn after the color map is changed
(sequential regeneration).

The following table summarizes regeneration characteristics of direct and
mapped color systems.

System Regeneration Characteristics
Direct color Usually sequential
Mapped color Usually retroactive

An application can determine the hardware color regeneration
) characteristics by calling UISSGET_HW_INFO.

4-13






S

5.1

5.1.1

5.2

Input Devices

Overview

This chapter discusses the devices that enable user and application
program interaction. Some of the topics covered in this chapter are:

* Pointing devices
e Virtual keyboards
¢ Physical keyboards

VAXstation Input Devices

Application programs and users interact through input devices. Typical
VAXstation input devices are:

¢ Keyboard
e Mouse
e Tablet

With the keyboard, you can initiate program interaction and respond to
application program prompts by pressing a key or entering data. With the
mouse and tablet, you can communicate with an application program by
pointing to objects or items with a poinfer and by making selections with
buttons.

Pointers

You can use two types of pointing devices with the workstation, a mouse
and a tablet. You can use only one type of pointing device at a time.

Application programs receive input from a pointing device by polling or
soliciting interrupts from pointer input routines. Because only one pointer
input device can be used at a time, applications use the same set of pointer
input routines to receive input from either the mouse or the tablet. The
actual pointer input device used is transparent to an application.

The programming interface lets you set the pattern or the position of the
cursor that is synchronized with the pointing device.



Input Devices

5.2.1 Mouse

The mouse is a small, hand-held device with three buttons on the top and
a roller-ball on the bottom. Associated with the mouse, on the display
screen, is an arrow-shaped cursor (or pointer).

You manipulate items on the display screen by using the pointer and
buttons. When you move the mouse in any direction on a flat surface,
the ball on the bottom turns and the pointer on the screen moves in

any direction you choose. You can position the pointer anywhere on the
display screen. When you press the buttons on the mouse, you can select
items in a menu and perform a variety of other functions.

The mouse is a relative pointing device. The mouse reports only its relative
movement to the workstation. You can pick up the mouse and place it

in a different position without changing the position of the pointer on the
screen. Consequently, the workstation keeps track of the current mouse
position only when the mouse is moved on a surface. ‘

Application programs can use the mouse pointer in the following ways:
* To create menus from which the user selects items

¢ To read the position of the pointer and the state of the mouse buttons

The workstation human interface implements menus that allow you to
create, select, move, and delete objects on the display screen. Application
programs can create menus that do the same things. To select a menu
item, move the pointer to the region of the desired item and press one ‘
of the mouse buttons. The application program predefines items and
specifies the action to be taken when you select an item.

Application programs can detect when the pointer is moved across the
boundary of a window or a mouse button is pressed within a window.
Programs can also read the current pointer location and current button
state. When you move the pointer to the border, or outside, of a screen
viewport, the human interface detects interrupts from the mouse. If you
position the pointer inside a viewport that is mapped to an application-
created window, the application program can receive these interrupts.

5.2.2 Tablet

The tablet is an optional input device that can be used with the workstation.
A tablet operates in much the same way as a mouse. An application
program uses the same routines to receive information from a tablet as

it does for the mouse. This is possible because the actual physical input
device being used is transparent to an application program.

The tablet is an absolute pointing device. That is, it reports all movement to
the workstation. For example, if the pen or stylus is picked up and moved
to another position on the tablet, the pointer changes its position on the
screen to match the movement.

A tablet is composed of the following parts:
e Tablet
* Puck

5-2



) 5.3

5.3.1

Input Devices

e Stylus
Tablet

The tablet is a flat square device with a surface similar to a table top. It

is used in conjunction with a puck and/or stylus to locate points on the
display screen. When the puck and/or stylus are moved on the surface of
the tablet, the pointer on the display screen moves in an identical fashion.
If you pick up the puck and place it in different region of the tablet, the
pointer on the display screen reflects this change. The tablet has a grid that
senses a change in the position of the pen or stylus.

Puck

The puck is a hand-held device that you move on the tablet to locate points
on the display screen. The puck has cross-hair markings used for precision
in positioning it on the tablet. It also has four buttons that you can use for
various purposes, depending upon the application.

Stylus

The stylus is a hand-held device that resembles a pen. You move it on
the tablet to locate points on the display screen. The stylus has greater
precision than the puck in locating positions. The stylus can also have
buttons: usually one is located on the outside of the barrel and one on the
tip. The functions of these buttons are application-specific.

Keyboards

You should be able to distinguish between a physical keyboard (the
workstation keyboard) and a virtual keyboard (a simulated keyboard).

The physical keyboard is the workstation keyboard. You can press its keys
to respond to prompts from the application program, or you can type and

enter data into the currently active display window. A workstation can have
only one physical keyboard attached to it at any one time.

A virtual keyboard is a conceptual keyboard that does not have an actual
physical existence. Rather, a virtual keyboard is a simulated keyboard
that exists in software and is associated with a display window. Each
application can have one or more virtual keyboards attached to it. Virtual
keyboards provide the means for applications to share the single physical
keyboard.

Virtual Keyboards

A virtual keyboard is a simulated rather than an actual physical keyboard.
Virtual keyboards are conceptual in nature and exist only in software. A
virtual keyboard has the same relationship to the physical keyboard as a
virtual display has to the physical display screen.

By using routines that establish one or more virtual keyboards, application
programs can read from the physical (workstation) keyboard, assign the
physical keyboard to a display window, and modify the characteristics

of a physical keyboard associated with a window. To manipulate

the workstation keyboard, applications refer to the established virtual
keyboards.



Input Devices

The VAXstation supports multiple windows with multiple processes
running simultaneously. At various times, these windows and processes
require keyboard input. Consequently, each window needs a keyboard.
Because there is only one physical keyboard, applications use virfual
keyboard routines to share the physical keyboard among several windows.

With virtual keyboards, each window can have its own keyboard. One or
more display windows and virtual keyboards can be active on the display
screen at a time. However, the physical keyboard can be connected to only
one virtual keyboard at a time. A virtual keyboard can be attached to more
than one display window at a time. However, each display window can
have only one virtual keyboard attached to it.

You control the association between the physical keyboard and the various
virtual keyboards that exist at any point in time. To connect the workstation
keyboard to different windows, manipulate the display viewports to which
the virtual keyboards are connected. When you determine which window
the workstation keyboard is attached to, you know which process is
receiving keyboard input and thus, which window on the screen is currently
active.

The workstation places a small KB icon in the upper right corner of all
windows that use the keyboard. This icon is highlighted in the currently
active window. An application can restrict windows from receiving
keyboard input. Display windows that do not interact with the keyboard do
not have the KB icon.



Partll How to Program with VMS Workstation
| Software Graphics






6 Programming Considerations

6.1 Overview

The User Interface Services (UIS) graphics software package allows you

to create application programs that call system routines. With UIS system
routines, you can create virtual displays, display windows, viewports,
graphic images, and text. You can access these callable routines through
high-level programming languages, VAX MACRO, and VAX BLISS.

Note that the programming examples included in succeeding chapters

to illustrate the capabilities of the UIS graphics software are written in VAX
FORTRAN.

This chapter discusses the following topics:
¢ UIS routine calls

* Argument characteristics

¢ Constants

¢ Condition values

* Additional program components

* Program execution

Refer to the VMS Programming Support Manual for additional information
about other callable routines.

6.2 Calling UIS Routines

To draw and manipulate graphic images and text, application programs
must contain references or calls to specific UIS system routines. Call
statements and language-specific function declarations invoke the UIS
system routines using the VAX Procedure Calling Standard.

6.2.1 Calling Sequences
The format of a call to UIS, or the calling sequence, consists of:
* The elements that make up the statement

* Their positional order

Tables A-1 and B-1 summarize UIS and UISDC calling sequences.

6-1



Programming Considerations

6.2.1.1 Call Type
Typically, application program calls to UIS system routines specify the
function name and an argument list as follows:

vd_id=UIS$CREATE_DISPLAY(-1.0,-1.0,+1.0,+1.0,width,height)

However, some UIS routines are functions and return values to the calling
progtam. The preceding example shows such a call from a VAX FORTRAN
program. It also returns a value, the virtual display identifier, to the vd_
id argument. Such return values are stored in variables that are often
arguments (where applicable) in subsequent routine calls.

UIS routines that are not functions must be called using an explicit VAX
FORTRAN CALL statement.

CALL UIS$PLOT(vd_id,1,-1.0,-1.0)

Programming languages have no standard call type to invoke UIS system
routines. This manual does not describe the syntax of each high-level ‘
programming language call. It uses examples of VAX FORTRAN to

describe representative call syntax. For information about other language

call syntax, refer to the specific language user’s guide.

6.2.1.2 Routine Name
When you call a system routine, you must identify it by specifying its
routine (or entry poinf) name, for example, UISSMOVE_AREA. The routine
name consists of a symbol prefix that identifies the system facility (UIS$)

and a symbol name that indicates what operation it performs (MOVE_
AREA). ‘

6.2.1.3 Argument List and Argument Characteristics
The argument list contains parameters to be passed to the UIS routine.
This list follows the routine name as a parenthetical expression containing
arguments separated by commas. You can substitute your own argument
names in place of the formal parameter names. However, whenever
you invoke a UIS routine, you must maintain the positional order of the
parameters in the argument list, as follows:

CALL UIS$CIRCLE(VD_ID,ATB,CENTER_X,CENTER_Y,XRADIUS,START_DEG,END_DEG)

You pass data to the called routine via the routine arguments. Keep
in mind the characteristics of arguments—VMS Usage, type, access,
mechanism.

6.2.2 VMS Usage

The VMS Usage entry contains the name of a VMS data type that has special
meaning in the VMS operating system environment.

The VMS Usage entry is not a traditional data type such as the VAX
standard data types byte, word, longword, and so on. It is significant
only within the context of the VMS operating system environment and is
intended solely to expedite data declarations within application programs.

Appendix F contains a complete listing of VMS usage entries and
implementation charts for each UlS-supported VAX language. The
implementation charts describe how to code the VMS usage entry for
each programming language. ‘

6-2



Programming Considerations

6.2.3 Type

The type characteristic refers to the standard argument data type, that is,
whether the argument is a word, longword, floating point number, and so
forth. Depending on the programming language, you might have to declare
certain data types locally within your program. These structures provide
data type definitions for the arguments in subsequent calls to UIS routines.

6.2.3.1

VAX Standard Data Types

When a calling program passes an argument to a system routine, the
routine expects the argument to be a particular data type. The routine
descriptions in Part III of this manual indicate the expected data types for
each argument.

Properly speaking, an argument does not have a data type; rather, the data
specified by an argument has a data type. The argument is merely the
vehicle to pass data to the called routine.

Nevertheless, the term ““argument data type” is frequently used to describe
the type of data specified by the argument. This terminology is simpler
and more straightforward than the strictly accurate phrase “data type of the
data specified by the argument.”

Table 6-1 lists data types allowed by the VAX Procedure Calling Standard.

Table 6-1 VAX Standard Data Types

Data Type

Absolute date and time
Byte integer (signed) .
Bound label value

Symbolic Code
DSC$K_DTYPE_ADT
DSC$K_DTYPE_B
DSC$K_DTYPE_BLV
DSC$K_DTYPE_BPV
DSC$K_DTYPE_BU
DSC$K_DTYPE_CIT
DSC$K_DTYPE_D
DSC$K_DTYPE_DC
DSC$K_DTYPE_DSC
DSC$K_DTYPE_F
DSC$K_DTYPE_FC

Bound procedure value

Byte (unsigned)

COBOL intermediate temporary
D_floating

D_fioating complex

Descriptor

F_floating

F_floating complex

G_floating DSC$K_DTYPE_G
G_floating complex DSC$K_DTYPE_GC
H_floating DSC$K_DTYPE_H

H_floating complex

Longword integer (signed)
Longword (unsigned)

Numeric string, left separate sign

DSC$K_DTYPE_HC
DSC$K_DTYPE_L

DSC$K_DTYPE_LU
DSC$K_DTYPE_NL

Numeric string, left overpunched sign DSC$K_DTYPE_NLO

Numeric string, right separate sign DSC$K_DTYPE_NR

6-3



Programming Considerations

Table 6-1 (Cont.) VAX Standard Data Types

Data Type Symbolic Code
Numeric string, right overpunched sign DSC$K_DTYPE_NRO
Numeric string, unsigned DSC$K_DTYPE_NU
Numeric string, zoned sign DSC$K_DTYPE_NZ
Octaword integer (signed) DSC$K_DTYPE_O
Octaword (unsigned) DSC$K_DTYPE_OU
Packed decimal string ' DSC$K_DTYPE_P
Quadword integer (signed) DSC$K_DTYPE_Q
Quadword (unsigned) DSC$K_DTYPE_QU
Charaétér string DSC$K_DTYPE_T
Aligned bit string DSC$K_DTYPE_V
Varying character string DSC$K_DTYPE_VT {
Unaligned bit string DSC$K_DTYPE_VU
Word integer (signed) DSC$K_DTYPE_W
Word (unsigned) DSC$K_DTYPE_WU
Unspecified DSC$K_DTYPE_Z
Procedure entry mask DSC$K_DTYPE_ZEM
Sequence of instruction DSC$K_DTYPE_Zi

Refer to the VMS Programming Support Manual for more information about ‘
VAX standard data types.

6.2.4 Access

The access characteristic describes how a calling routine uses argument-
specified data. A list of the most common types of argument access
follows.

* Read only access—The UIS routine uses the data specified by the ‘
argument as input only.

*  Write only access—The UIS routine uses the argument as a location to
return data only.

* Modify access—The UIS routine uses the data specified by the
argument as input for its operation and then writes data to that
argument.



Programming Considerations

6.2.5 Mechanism

VAX language extensions provide the means to reconcile the various
argument-passing mechanisms within a programming language. The VAX
Procedure Calling Standard provides three ways for application programs
to pass arguments to a system routine.

* By value—The argument contains the actual data to be used by the
routine; the actual data is said to be passed to the routine by value.

* By reference—The argument contains the address of the location in
memory of the actual data to be used by the routine; the actual data is
said to be passed to the routine by reference.

¢ By descriptor—The argumenf contains the address of a descriptor; the
actual data is said to be passed by descriptor.

Depending on its type, a descriptor consists of two or more longwords
that describe the location, length, and data type of the data to be used
by the called routine.

All language processors (except VAX MACRO and VAX BLISS) pass
arguments by default by reference or by descriptor. Some high-level
languages, including VAX FORTRAN, set up the descriptors and arrays
individually.

The following table lists VAX Procedure Calling Standard passing
mechanisms.

Passing Mechanism Descriptor Code

By value

By reference

By reference, array reference
By descriptor

By descriptor, fixed-length
By descriptor, dynamic string
By descriptor, array

By descriptor, procedure

DSC$K_CLASS_S
DSC$K_CLASS_D
DSC$K_CLASS_A
DSC$K_CLASS_P

By descriptor,
By descriptor,
By descriptor,
By descriptor,
By descriptor,
By descriptor,
By descriptor,

By descriptor,
with bounds

decimal string
noncontiguous array
varying string
varying string array
unaligned bit string
unaligned bit array
string with bounds
unaligned bit string

DSC$K_CLASS_SD
DSC$K_CLASS_NCA
DSC$K_CLASS_VS
DSC$K_CLASS_VSA
DSC$K_CLASS_UBS
DSC$K_CLASS_UBA
DSC$K_CLASS_SB
DSC$K_CLASS_UBSB

Refer to the VMS Programming Support Manual for more information about

passing mechanisms.



Programming Considerations

6.2.5.1

VAX FORTRAN Built-In Functions
VAX FORTRAN also supports explicit argument-passing mechanisms, or
built-in functions, that do not require formal data declarations. Specify

built-in functions only in the argument list of the call (with one exception)!
and use them to pass data to subroutines written languages other than VAX
FORTRAN. The VAX FORTRAN built-in functions are:

* %VAL—Specifies that the argument must be passed as a value.

* %REF—Specifies that the argument must be passed as the address of
the actual data.

¢ %DESCR—Specifies that the argument must be passed as the address
of a descriptor that points to the actual data.

¢  %LOC—Returns the virtual address of the actual data.

By default, VAX FORTRAN passes numeric data by reference and character
string data by descriptor. The built-in functions override default argument-
passing mechanisms. You might occasionally encounter an external
procedure that passes data differently from the VAX FORTRAN default. In
that case, use the built-in functions in VAX FORTRAN code.

For specific information about similar procedure argument-passing
mechanisms for other high-level programming languages, refer to the
specific language user’s guide.

Figure 6-1 illustrates how arguments are placed on the stack and shows
how arguments are passed to the called routine.

1 You can use the built-in function %LOC outside an argument list to obtain the address of a variable. For example,
use %LOC in an assignment statement where a longword in a character string descriptor is assigned the address of the

actual character string

6-6



6.3

Programming Considerations

Figure 6-1 Passing Arguments

ARGUMENT LIST

Passing Mech

PROCEDURE ARGUMENT

| ~

PASSING MECHANISMS

(AP)

ARG 1

(a) ARGUMENT PASSED BY VALUE

ARG 2

ACTUAL VALUE

ARG N

(AP}

ARG 1!

(b) ARGUMENT PASSED B8Y REFERENCE

ARG 2

POINTER TO

DATA

ACTUAL VALUE

liCTUAL VALUE

ARG N

Note: ARG 1. ARG 2. ARG N
can be passed by value. by
reference, or by descriptor

n any of the above

examples.

{AP) - argument pointer

N = number of arguments

DATA
A
IR B
(c) ARGUMENT PASSED BY DESCRIPTOR
ARG 1 c
2]
LENGTH
ARG 2 DESCRIPTOR E
POINTER TO N -
DESCRIPTOR CLASS |D TYPE LENGTH g .
POINTER H
ARG N

UIS Constants

UIS constants are symbolic names for values that can be passed to, or

returned from, UIS routines. UIS constants are syntactically equivalent to

literal integer constants.

Use them as follows:

* As arguments to UIS functions

6-7



Programming Considerations

¢ As indices into array arguments passed to, or received from, the UIS
subsystem

* As literals to compare to a returned value from an inquiry routine

Refer to Section 6.5 for information about UIS symbol definition files.

6.4 Condition Values Signaled

Occasionally hardware- or software-related events occur, causing errors
that could jeopardize successful program execution. Instead of returning
condition values to R0 (as in VAX MACRO) or to a status variable (as in
high-level languages), the UIS routines signal a condition. In such cases,
unless you explicitly arrange to handle the signaled condition, program
execution halts by setting up condition handlers.

6.5 Additional Program Components

In addition to the usual program entities, some UIS-specific and language-
specific program components affect program execution.

Subroutines and Functions

If it uses a subroutine name as an argument to other subprograms, a VAX
FORTRAN application program must use the EXTERNAL statement to
declare the subroutine an external procedure. The subprogram can then
use the corresponding dummy argument in a function reference or a CALL
statement.

Entry Point and Symbol Definition Files

All UIS and UISDC routines are declared in an entry point file supplied
with the graphics software. In addition, depending on the programming
language, you might have to include a data description file of UIS symbol
definitions. See the specific language user manual to determine whether
you must include data description files in your program data declarations.

Table 6-2 contains a list of entry point files and symbol definition files for
each VAX programming language. All files are in SYS$LIBRARY.

Table 6-2 Entry Point and Symbol Definition Files

VAX Language Entry Point File Symbol Definition File
BLISS UISENTRY.R32 UISUSRDEF.R32

C UISENTRY.H UISUSRDEF.H
FORTRAN UISENTRY.FOR UISUSRDEF.FOR
MACRO UISUSRDEF.MAR
PASCAL UISENTRY.PAS - UISUSRDEF.PAS

PL/I UISENTRY.PLI UISUSRDEF.PLI

ADA UISENTRY.ADA UISUSRDEF.ADA




Programming Considerations

Message Definition File

A language-specific message definition file called UISMSG is included in
the directory SYS$LIBRARY. This file, which is similar to the entry point
file UISENTRY, defines all possible UIS error codes. For instance, to
define message symbols in a VAX FORTRAN condition handler, you add
the following line to your program.

INCLUDE ‘SYSSLIBRARY:UISMSG’

Depending on the programming language options you choose, the
appropriate version of UISMSG is copied to your disk during the
installation procedure.

All messages symbols use the prefix UIS$_.

6.6 Notes to Programmers

The following sections describe language-specific issues that might affect
program execution.

6.6.1 VAXADA Programmers
Creating a Workable LIBRARY for VAX ADA To Use

Before you run VAX ADA application programs, you must perform the
following procedures:

1 Set your default directory as follows:
SET DEFAULT SYS$LIBRARY
2 Request a directory of .ADA files.

DIRECTORY SYS$SYSROOT:[SYSLIB}*.ADA
UISENTRY.ADA;1 UISUSRDEF.ADA;1 UISMSG.ADA;1 VWSSYSDEF.ADA;1

Total of 4 files.
3 Copy the four files into one file as follows:

$COPY UISENTRY.ADA,UISUSRDEF.ADA,UISMSG.ADA,VWSSYSDEF.ADA UIS_.ADA
4 Edit the UIS_.ADA file.

$ EDIT UIS_.ADA

Insert the following four lines at the top of the file in the leftmost
column:

with STARLET; use STARLET;
with SYSTEM; use SYSTEM;
with CONDITION_HANDLING; use CONDITION_HANDLING;
package UIS is
Place the body of the four entry-point files here.
Insert the last line in the UIS_.ADA file as follows:

end UIS;



Programming Considerations

5§ To create a library that your VAX ADA programs ¢an use, run the
command file ADDSADA_PREDEFINED_UNIT.COM as follows:

@ADDSADA_PREDEFINED_UNIT.COM UIS_.ADA UIS

The compiled unit is placed in the library of predefined units for ADA
in a file called UIS.ADA.

If you create the new library, it will be available to you automatically.

6 If you have not created the new library, use the following command to
enter it into your own ADA library:

$ ACS ENTER UNIT ADASPREDEFINED UIS

7 To use the UIS entry points in your program, add the following
command to the beginning of your ADA program:

with UIS;

6.6.2 VAXC Programmers
Entry Point and Symbol Definition Files

The file UISENTRY.H defines all routine entry points in lowercase
characters, and UISUSRDEF.H defines all constants in uppercase
characters.

Floating-Point Constants ‘

When you are programming UIS in C, it is recommended that you do not
use floating-point constants in your C programs. UIS expects all values
passed to it to be F_floating, or single precision. In VAX C, all: floating-
point constants are of type double (see Programming in VAX C, section
5.3.5).

6.6.3 VAXPASCAL Programmers
Entry Point Files

Because VAX PASCAL references arguments as formal parameters, your
calls to UIS must specify the same parameter names as those in the entry
point file UISENTRY.PAS. Therefore, specify obj_id as the argument
whenever the routine descriptions in Parts Il and IV allow a choice
between the obj_id and seg_id arguments. Refer to Tables A-1 and B-1 for
a summary of UIS and UISDC calling sequences.

Creating Environment Files

Before you run VAX PASCAL application programs, you must perform the
following procedure.

1 Set your default directory as follows:

$ SET DEFAULT SYSS$LIBRARY

6~10



Programming Considerations

2 Invoke the VAX PASCAL compiler with the JENVIRONMENT and
INOOBJECT qualifiers to produce an environment file of symbolic
definitions and type declarations.

NOTE: In Version 3.4 of the VAX PASCAL compiler, a bug in a parameter
declaration checking was fixed. This bug uncovered an invalid
parameter declaration in the UISENTRY.PAS file shipped with
VWS Version 3.0 and later. To maintain compatibility with all other
versions of VMS Workstation Software and PASCAL, you must add
the /NOWARNING qualifier when you build the PASCAL environment
file.

$ PASCAL/ENVIRONMENT/NOOBJECT/NOWARNING UISENTRY
The result of the compilation is UISENTRY.PEN, an environment file.

3 Include the INHERIT attribute in the first line of the application
program or program module that specifies UISENTRY.PEN.

(INHERIT(CUISENTRY.PEN’)} i
4 Repeat this procedure for the symbol definition file UISUSRDEF.PAS.

Refer to Programming in VAX PASCAL for more information about the
[ENVIRONMENT and /NOOBJECT qualifiers and the INHERIT attribute.

Drawing Lines and Polygons

When you draw lines and polygons, use UISJPLOT_ARRAY instead of
UIS$PLOT and UIS$LINE_ARRAY instead of UIS$LINE.

6.6.4 VAXPL/I Programmers
Entry Point Files

Because VAX PL/I references arguments as formal parameters, your calls to
UIS must specify the same parameter names as those in the entry point file
UISENTRY.PLI. Therefore, specify obj_id as the argument whenever the
routine descriptions in Parts III and IV allow a choice between the obj_id
and seg_id arguments. Refer to Tables A-1 and B-1 for a summary of UIS
and UISDC calling sequences.

6.7 Programming Examples

The programming examples in Parts II and III of this manual use VAX
FORTRAN Version 4.4. In addition, some examples—particularly in Part
IlI—include ellipses to indicate omitted portions of code and to point out
places in the program where you can add code.

Many of the examples include the VAX FORTRAN PAUSE statement.
PAUSE suspends program execution and displays the DCL prompt ($).
A default message—FORTRAN PAUSE—is returned to the display screen.
The graphic images remain on the screen. Respond to the DCL prompt
(%) by typing one of the following commands:

¢ CONTINUE—Resume program execution at the next executable
statement.

e EXIT—Terminate program execution.

6~11



Programming Considerations

¢ DEBUG~—Resume program execution under the control of the
VAX/VMS Symbolic Debugger.

NOTE: If your program is running in batch mode, program execution is not

suspended. All messages are written to the system output file.

6.7.1  Structure of Programming Tutorial

Each chapter in Part II uses a tutorial approach to explain UIS graphics
features and programming. After discussion of the main topics, each
chapter includes:

* Programming options—Lists available features. The addition of each
new group of programming options lets you progress from simple to
complex programming tasks.

* Program development—Lists current programming objective and tasks
needed to implement the objective successfully.

- Program—Contains the source module with embedded callouts.
Each callout refers to a programming feature.

- Program output—Displays and explains the output from the
program.

Each programming example uses some or all of the programming options
listed. Not all routines are illustrated in the accompanying example.

6.8 Program Execution

Your program can run in batch mode with predefined data or interactively,
accepting input as needed. However, to execute your application program
successfully, you must first store it as a file using a text editor.

Invoke the text editor on your workstation as follows:
$ EDIT MYPROG.FOR

Please note that in this example you must supply a file name, for example,
MYPROG. In addition, a VAX FORTRAN file type (FOR) is added to the
file name to identify the file as a VAX FORTRAN source file. Enter your
program according to the rules of your programming language. Refer to
the specific language reference manual for detailed information.

6.8.1 Compiling Your Program

6-12

You must compile the newly created source file MYPROG.FOR before
execution. The language compiler (in this case the VAX FORTRAN
compiler) checks for proper syntax and initiates code optimization where
appropriate. Invoke the language compiler as follows:

$ FORTRAN/LIST MYPROG

You need not include file type. By default, the system searches for

the latest version of the file, MYPROG, with a file type of FOR. If the
application source file contains syntax errors, you receive compile-time error
messages called diagnostics. These diagnostic messages indicate the portion



Programming Considerations

of code in error as well as an explanation. The /LIST qualifier specifies
the creation of a listing file of accounting information and diagnostics (if
present).

Some language compilers return a predetermined maximum number of
diagnostics before terminating compilation. You must correct these errors
and resubmit the source program for a successful compilation. Successful
compilation produces an object module with file type of OB].

6.8.2 Linking the Object Module

The Linker resolves references to subroutines and allocates memory to
variables within your program. Invoke the Linker as follows:

$ LINK MYPROG

You need not specify the file type of the program, MYPROG. By default,
the system searches for the latest version of the file MYPROG with the file

type OB]J.

In addition, you can link object modules of programs written in different -
source code.

6.8.3 Running the Executable Image

The Linker produces an executable image with a file type of EXE. At this
point, you can run your program. However, if you receive run-time errors,
you must correct the errors in your source code, recompile the source
module, and relink the object modules. After you receive the $ prompt,
run the executable image as follows:

$ RUN MYPROG

6-13






7.1
)
7.2
)
) 7.2.1

Creating Basic Graphic Objects

Overview

This chapter describes how to create basic graphic objects — lines, circles,
ellipses, and text. It discusses the following topics:

¢ Creating a virtual display
* Creating graphics and text

¢ Creating a display window

You construct an interactive program to create graphic objects. You use
other windowing routines to manipulate these objects.

Refer to Section 6.7 for more information about the programming examples
in this manual.

Step 1—Creating a Virtual Display

When you use UIS to create graphic objects, you use a frame of reference
called a virtual display to establish the environment in which the graphic
objects exist.

Calls to UIS routines must reference points within the virtual display.
When you specify coordinates, the UIS subsystem generates a coordinate
system to create the virtual display and subsequent windows. You use this
coordinate system, or grid, to reference points as world coordinates along
two perpendicular axes labelled x and y. The virtual display is infinite and
you can draw graphic objects anywhere in it.

Specifying Coordinate Values

Many routines documented in this manual require coordinates to define
virtual displays, display windows, and extent rectangles. Table 7-1 lists
information about coordinate values.



Creating Basic Graphic Ob]eCts

Table 7-1 Coordinate Types and Vaiues

Data
Coordinate Units Type Origin
Absolute cm F_floating' Lower-left corner of display screen or

tablet

Normalized  Gutenbergs F_floating' Lower-left corner of virtual display
Viewport- Pixels Longword Lower-left corner of display viewport
relative (unsigned)
World User- F_floating' Lower-left corner of virtual display

specified

'F_floating point numbers can have up to approximately seven decimal digits of
precision.

7.2.2 Creating and Deleting a Virtual Display

You use UISSCREATE_DISPLAY to specify the world coordinate space

in which you will draw graphic objects. The world coordinate values you
specify establish mapping and scaling factors that the system can use later
in viewport creation. Do not think of the coordinate values as the absolute
boundaries of the virtual display.

You can create an unlimited number of virtual displays, subject to system
and process resources.

You can use UIS$DELETE_DISPLAY anywhere in your program to delete
a virtual display. However, you should remember that when you delete a
virtual display you are throwing out the medium on which you have drawn
graphic objects.

7.2.3 Program Development

7-2

Programming Objective

To create an executable program using the VAX FORTRAN programming
language.

Programming Tasks

To create and delete a virtual display.
PROGRAM IMAGES_1
IMPLICIT INTEGER(A-Z)

INCLUDE ‘SYSSLIBRARY:UISENTRY'
INCLUDE ‘SYS$LIBRARY:UISUSRDEF' 8

VD_ID=UIS$CREATE_DISPLAY(+1.0,+1.0,+20.0,+20.0,10.0,10.0)

PAUSE B
CALL UIS$DELETE_DISPLAY(VD_ID)

END



Creating Basic Graphic Objects

At this point the program contains UIS entry points 8 and definitions 8.
It also includes a call 8 to UISSCREATE_DISPLAY. The plus sign ( +)
is optional for positive coordinates. The minus sign (-) is required for
negative coordinates.

Because world coordinates are f_floating numbers, you must use a decimal
point when you specify world coordinate pairs.

See Section 6.7 for information about the VAX FORTRAN PAUSE
statement 8.

Call UIS$DELETE_DISPLAY B to remove the virtual display before the
program ends. You need not use UIS$DELETE_DISPLAY to terminate an
application program. ‘

Not only does UIS$CREATE_DISPLAY specify the world coordinate
range of the virtual display, but also, in vd_id, it returns the value of
the virtual display identifier. This value, used in subsequent windowing
routines, uniquely identifies the newly created virtual display. Typically,
UIS$CREATE_DISPLAY is the first UIS routine called in an application
program.

If your application program invokes the UISSCREATE_DISPLAY (;nly, the
workstation screen does not change.

7.3 Step 2—Creating Graphics and Text

You can now draw any of the following graphic objects anywhere on the
) virtual display.

Graphic Object Example

Geometric shapes Point, line, polygon, circle, and ellipse

Text Characters

Raster images Any object constructed with a bitmap of varying size

) 7.3.1 Graphics Drawing Operation Specifications

¢ All line drawing operations are symmetrical and include both end
points.

¢ In the case of fill patterns, images, ellipses, moving windows, and so
forth, all region specifications include the region borders.

7-3



Creating Basic Graphic Objects

7.3.2 Programming Options
Creating Points, Lines, and Polygons

Depending on the number of times you repeat coordinate pairs in
UIS$PLOT or UISSPLOT_ARRAY, you can draw a point, connected lines,
or a polygon.

You can draw more than one unconnected line in a single call to UIS$LINE
or UISSLINE_ARRAY. Each specified pair of world coordinate pairs
represents the end points of a line.

NOTE: VAX PASCAL application programs should use UISSPLOT_ARRAY or
UISSLINE_ARRAY to draw all lines, disconnected lines, and polygons.

Creating Circles

Use UIS$CIRCLE to create circles or circular arcs.

Creating Ellipses
Use UIS$ELLIPSE to create ellipses or elliptical arcs.

Drawing Images

Use the following procedure to create a bitmap image of a graphic object,
then draw the raster to the display screen with UIS$IMAGE.

1 Create a data structure such as an array or record in your program to
define the bitmap.

2 Set the bits in the structure to create the bitmap image by assigning
values to the elements of the structure. '

3 Use UISSIMAGE to specify pixel width and height of the raster image.
4 Use UIS$IMAGE to specify the name of the data structure.

Figure 7-1 illustrates how bitmap settings are mapped to raster images.

Raster image mapping occurs from left to right and from top to bottom.
See the UISSIMAGE routine description for more information.

Text

Use UIS$TEXT to set the current position and create text anywhere within
a virtual display. You can use the text within a virtual display to label an
accompanying graphic object within the window. Only UIS$TEXT can write
characters in a virtual display.

7-4




) 7.3.3

Creating Basic Graphic Objects

Figure 7-1 Mapping a Bitmap to a Raster

1514131211109 8 7 6 5 4 3 2 1 0
ojrjojyiri1jojriojrjiojojrj1j1i0

Bitmap
Image
1
—
2 31011100}10101
(1 0]l1]0
Raster
Image
2K 462785

Program Development

Programming Objective

To create an executable program using the VAX FORTRAN programming

language.

Programming Tasks
1 Create a virtual display.
2 Draw four graphic objects in the virtual display.

3 Delete the virtual display.

PROGRAM IMAGES_2

IMPLICIT INTEGER(A-Z)

INCLUDE ‘SYS$LIBRARY:UISENTRY’
INCLUDE 'SYSSLIBRARY:UISUSRDEF’
REAL WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0)

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0) B

CALL UIS$SELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0)

CALL UIS$TEXT(VD_ID,0,’This is a test.’,1.0,12.0) @

PAUSE
CALL UISS$DELETE_DISPLAY(VD_ID)
END



Creating Basic Graphic Objects

In the preceding example, you specify world coordinate pairs that describe
the exact locations of the graphic objects (circle, line, ellipse, and text) in
the virtual display, explicitly to the UIS graphics routines a.

If you execute the program in its present form, the workstation display
screen shows no objects. Although your calls to the UIS graphics and text
routines are processed, you must create a window to view what is drawn.

7.4 Step 3—Creating a Display Window

You must now create a display window to define the world coordinate
range of the viewable portion of the virtual display. When you create a
display window, you also create a display viewport, an area on the physical
screen where the display window is mapped.

7.4.1 Programming Options

At this point, all the available programming options are provided through
UIS$CREATE_WINDOW. The full capabilities of UISSCREATE_WINDOW
are discussed in more detail in Chapter 8.

Creating a Display Window and Viewport

Use UIS$CREATE_WINDOW to create a display viewport and its
associated viewport.

7.4.2 Program Development

7-6

Programming Objective

To create an executable program that draws and displays graphic objects
on the VAXstation screen.

Programming Tasks

1 Create a virtual display.

2 Draw four graphic objects in the virtual display.
3 Create a display window and viewport.

4 Delete the virtual display.

PROGRAM IMAGES_2A

IMPLICIT INTEGER(A-Z)

INCLUDE ‘SYSSLIBRARY:UISENTRY’
INCLUDE ’SYSSLIBRARY:UISUSRDEF'
REAL*4 WIDTH,HEIGHT

TYPE *,’ENTER DESIRED VIEWPORT WIDTH AND HEIGHT’
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,WIDTH,HEIGHT)

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0)

CALL UISS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0)

CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0) B
CALL UISSTEXT(VD_ID,0,’This is a test.’,1.0,12.0)

WD_ID=UIS$CREATE_WINDOW(VD_ID,’'SYS$SWORKSTATION’) 6}



Creating Basic Graphic Objects

PAUSE
CALL UISSDELETE_DISPLAY(VD_ID)
END

Specify the world coordinate range of the virtual display and the default
dimensions of the display viewport in a call to UISSCREATE_DISPLAY &,

NOTE: The display viewport is not mapped until a display window is created.
Next, call the graphics and text routines 8 8 @ B to draw the graphic objects.

Create a display window and viewport in a call to UISSCREATE_WINDOW
@ The world coordinate range of the window and the viewport width and
height are not specified. Therefore, the world coordinate space of the
display window (that is, the viewable portion of the virtual display) defaults
to the entire virtual display. You see all objects drawn in the virtual display.

' 7.4.3 Calling UIS$CIRCLE, UISSELLIPSE, UIS$PLOT, UIS$TEXT, and
UISSCREATE_WINDOW

When you run the program IMAGES_2A, you should get a single, untitled
display viewport containing text, a circle, a line, and an ellipse as shown in
Figure 7-2.

Figure 7-2 Display Viewport and Graphic Objects

2K-4533-85

7-7






8

8.1

) 8.2

Display Windows and Viewports

Overview

Before you manipulate graphic objects, you should know about display
windows and viewports. These features allow you to see graphic objects
drawn in the virtual display. The UIS windowing routines perform the

following operations:

* Create display windows and viewports

* Move display windows

* Manipulate display viewports

¢ Delete display windows
¢ Erase the virtual display

* Create transformations

Windowing Routines

You use windowing routines to create and delete virtual displays, display
windows, and display viewports. Table 8-1 lists windowing routines and

their functions.

Table 8-1 UIS Windowing Routines

Routine

Description

UIS$CREATE_DISPLAY

UIS$CREATE_WINDOW
UIS$EXPAND_ICON
UIS$MOVE_AREA

UIS$MOVE_WINDOW
UIS$POP_VIEWPORT
UIS$PUSH_VIEWPORT
UIS$SHRINK_TO_ICON

UIS$CREATE _
TRANSFORMATION

UIS$SERASE

Creates a virtual display and defines default
viewport dimensions

Creates display window and viewport
Substitutes an associated viewport for an icon

Moves a specified rectangle and its contents in the
virtual display to another part of the virtual display

Pans the display window across the virtual display
Allows an occluded viewport to be fully displayed
Places a viewport behind another vieWport
Substitutes an icon for a display viewport

Alters the world coordinate space of the virtual
display

Erases objects that lie completely within a specified
rectangle in the virtual display



Display Windows and Viewports

Table 8-1 (Cont.) UIS Windowing Routines

Routine Description
UIS$DELETE_DISPLAY Deletes a virtual display
UISSDELETE_WINDOW Deletes a display window and viewport

These routines allow you to create and manage the display screen
environment and to perform certain housekeeping functions such as
erasing and deleting virtual displays and windows.

8.3 Step 1—Creating Many Display Wihdows

For every display window you create, you also create a display viewport.
A one-to-one relationship exists between each display window and its
associated viewport. An application program can create an unlimited
number of display windows and viewpotts, subject to system and process
resources.

8.3.1 Programming Options

8-2

Each display window can be unique with regard to world coordinate range.
Therefore, you can create display viewports that are also unique with
respect to dimensions and position on the display screen.

Display Window Size

By default, a newly created display window displays the full world
coordinate space specified when you create the virtual display. You can
specify world coordinate pairs in UISSCREATE_WINDOW to produce
different size display windows within the virtual display.

Display Viewport Size

Similarly, the default display viewport dimensions equal the values

you specify in the width and height arguments in the UISSCREATE_
DISPLAY call. However, you can specify different dimensions to scale the
contents of the window. Maximum display viewport size depends on the
dimensions of the display screen. If you specify viewport dimensions that
exceed the size of the display screen, UIS scales the viewport to the size of
the display screen.

Graphic Object Magnification

You can manipulate the world coordinate range of the display window

or the dimensions of the display viewport to increase or decrease
magnification of the object in the viewport. Magnification occurs when
the display window area is increased or decreased while the viewport size
remains the same, or when the viewport is increased or decreased while
dimensions of the window remain the same.

{



Display Windows and Viewports

Distortion

Distortion occurs whenever the aspect ratios of the display viewport and
display window are not equal.

The aspect ratio of the display window is the absolute value of the
difference between y world coordinates of the upper-right and the lower-
right corners of the window divided by the absolute value of the difference
between the x world coordinates of the lower-right and lower-left corners.
Figure 8-1 illustrates how to calculate the aspect ratios of the display
window and viewport.

Figure 8-1 Aspect Ratios of the Display Window and Display
Viewport

|y1 - y0| viewport height

|x1 - x0| viewport width

ZK-4579-85

Number of Windows and Viewports

You can create an unlimited number of display windows and, as a result,
an unlimited number of display viewports, subject to system and process
resources. In addition, you can specify the dimensions of each display
viewport.

Display Banner

The display banner appears along the top border of the display viewport
and contains the menu and keyboard icons as well as the viewport title.
The maximum length of the viewport title is 63 characters.

You can suppress display banner generation with the attributes argument
in UISSCREATE_WINDOW. When the display banner is suppressed, only
the viewport border displays.

Display Viewport Placement

You can either explicitly place a display viewport on the workstation screen
or allow UIS to choose a location for you. By default, display viewport
placement is random.

8.3.2 Program Development
Programming Objective

To create four display windows and display viewports.

8-3



Display Windows and Viewports

Programming Tasks
1 Create a virtual display.
2 Draw four graphic objects in the virtual display.

3 Create four display windows and viewports, omitting the display
window coordinates in the calls to UISECREATE_WINDOW.

4 Delete the virtual display.

PROGRAM IMAGES_3

IMPLICIT INTEGER(A-Z)

INCLUDE ‘SYS$LIBRARY:UISENTRY’
INCLUDE ‘SYSSLIBRARY :UISUSRDEF’

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UIS$SCIRCLE(VD_ID,0,10.0,10.0,1.0)

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0)

CALL UIS$SELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0)

CALL UIS$STEXT(VD_ID,0,’This is a test.’,1.0,12.0)
WD_ID1=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION )
PAUSE
WD_ID2=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’ )
WD_ID3=UIS$CREATE_WINDOW(VD_ID, ' SYS$WORKSTATION )
WD_ID4=UIS$CREATE_WINDOW(VD_ID, ' SYS$WORKSTATION' )

-]

ooN

PAUSE
CALL UIS$DELETE_DISPLAY(VD_ID)

END
Four calls to UIS$CREATE_WINDOW B8 8 B 8 are inserted to create four

windows. The world coordinate range of each window defaults to the
world coordinate range of the entire virtual display.

8.3.3 Calling UISSCREATE_WINDOW

If you run this program now, your workstation screen displays the graphic
objects shown in Figure 8-2.

As you can see, four display windows are created and mapped to the
display screen as four viewports. Each of the viewports contains four
objects. Because display window world coordinate pairs were not explicitly
specified in UISSCREATE_WINDOW, the viewports allow you to see

the entire area of the virtual display by default. In addition, because

the display viewport width and height were not explicitly specified in

the UISSCREATE_WINDOW call, each display viewport is, by default,

10 cm square as specified in the width and height arguments of the
UIS$CREATE_DISPLAY call.

(



8.4

Display Windows and Viewports

Figure 8-2 Four Display Viewports

0

iThis is a test. f This is a test.

This is a test. This is a test.

/

ZK-4534.85

Step 2—Deleting and Erasing Display Windows

Some windowing routines perform housekeeping functions; that is, they
delete unused display windows or erase graphic objects from the virtual
displays. When you run complicated applications, such routines are
important to manage display environment.



8.4.1

8.4.2

Display Windows and Viewports

Programming Options

You can call certain UIS routines that cause your application program to

delete unwanted windows, viewports, and virtual displays.

Display Window Deletion

You can delete any display window without affecting other windows or
viewports. Deletion of the display window does not affect the graphic
objects in the virtual display. If you delete a display window, you also
delete the associated display viewport. To delete a display window and its
associated viewport, specify the appropriate display window identifier in

UIS$DELETE_WINDOW.

Erasing the Virtual Display

Use UIS$ERASE at any time to delete graphic objects that lie completely
within a specified rectangle in the virtual display. If you do not specify a

rectangle, the entire virtual display is used.

Program Development
Programming Objectives

To enclose each graphic object in its own display window.

To delete a window and its viewport.

Programming Tasks

1
2
3

Create a virtual display.
Draw four graphic objects in the virtual display.

Create four display windows and viewports that specify display window

regions to enclose each of the graphic objects.

* Specify display window regions that enclose the graphic objects.

* Specify viewport titles that identify the graphic objects.
Delete one of the display windows and its viewport.

PROGRAM IMAGES_4

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYSSLIBRARY:UISENTRY’
INCLUDE ’'SYS$LIBRARY:UISUSRDEF’
REAL WIDTH,HEIGHT

TYPE *,’ENTER DISPLAY SIZE' @

ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,WIDTH, HEIGHT)

CALL UIS$CIRCLE(VD_ID,0,12.0,12.0,1.0)

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0)

CALL UISSELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0)

CALL UIS$TEXT(VD_ID,0,’'This is a test.’,1.0,12.0)



Display Windows and Viewports

WD_ID1=UISSCREATE_WINDOW(VD_ID, ' SYS$WORKSTATION’,'CIRCLE’,

2 10.0,10.0,14.0,14.0,WIDTH, HEIGHT)

WD_ID2=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’, 'LINE’,
2 3.0,2.0,6.0,8.0,WIDTH,HEIGHT)

WD_ID3=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’, ' TEXT’,
2 1.0,12.0,10.0,10.0,WIDTH, HEIGHT) @

WD_ID4=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION',’ELLIPSE',
2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT)

PAUSE

CALL UIS$DELETE_WINDOW(WD_iD2) O
PAUSE
END

The program now accepts interactive input for the display viewport
dimensions. 8.

To define each display window in the UISSCREATE_WINDOW calls 88 8
8, you explicitly specify world coordinate space.

UIS$CREATE_WINDOW returns the variable wd_id2, the display window
identifier 8 to identify the LINE window uniquely. Note that the call to
delete the LINE window 8 references this variable.

8.4.3 Calling UISSDELETE_WINDOW

If you run this program until the first PAUSE statement, the workstation
screen displays the graphic objects shown in Figure 8-3.

When you explicitly specify a particular world coordinate range within the
virtual display for each display window, each graphic object lies within a
separate window that maps to the physical display screen as a separate
display viewport.

To continue program execution, type CONTINUE at the DCL prompt ($).
The program continues to execute and the screen changes, as shown in
Figure 8-4.

Although the viewport LINE and its window are deleted, the actual graphic
object still exists. You have simply deleted the display window that allowed
you to view the line portion of the virtual display. If you call UISSCREATE_
WINDOW again and specify the appropriate world coordinate space in the
virtual display, the object reappears.

8-7



Display Windows and Viewports

Figure 8-3 Objects Within Different Windows

~ CIRCLE

B Ewwse

This is a test,




8.5

Display Windows and Viewports

Figure 8-4 Display Window Deletion

ELLIPSE

Thie is a test.

ZK-4536-85

Step 3—Manipulating Display Windows and Viewports

Display viewports and windows do not have to remain as static objects on
the screen. You can manipulate the newly created display windows and
viewports in many ways.

8-9



Display Windows and Viewports

8.5.1 Programming Options

Use the optional attributes argument of UISSCREATE_WINDOW to
implement viewport placement features and window attributes.

NOTE: When you include the attributes argument in UISSCREATE_WINDOW,
you do not modify attribute block 0.

Attributes and attribute block 0 are discussed in detail in Chapter 9.

General and Exact Placement of Viewports

Unless you specify otherwise, display viewports are placed randomly
throughout the screen. You can move a display viewport to any position on
the screen. When you create the window, you can specify general viewport
placement, that is, within a certain vicinity on the screen—top, left, right,
or bottom.

If you specify exact placement, the display viewport is positioned anywhere ‘
you want it on the screen. This placement saves space by allowing
occlusion of other viewports.

Panning and Zooming the Virtual Display

You can pan across the virtual display to include either the entire virtual
display or any discrete area within it.

Pushing and Popping Display Viewports

Pushing and popping display viewports is useful when you create display
windows with the exact placement attribute. In this case, your application
might create two windows and purposely occlude one of the viewports.
Since you know which viewport is occluded, you can use UIS$POP_
VIEWPORT.

Otherwise, by default, the UIS subsystem places newly created windows
randomly on the screen. As a result, since you do not know where the
viewports will be placed, you should not use UIS$POP_VIEWPORT or
UIS$PUSH_VIEWPORT.

Moving a Display Viewport ‘

You can use UISSMOVE_VIEWPORT to move an existing display viewport
anywhere on the screen.

Moving a Portion of the Virtual Display

Use UIS$MOVE_AREA to draw a graphic object in a portion of the virtual
display, then move that coordinate space to another part of the same virtual
display.

8-10




Display Windows and Viewports

8.5.2 Program Development |
Programming Objectives

To delete three display windows and viewports, then use the remaining
display window to pan the virtual display.

Programming Tasks
1 Create a virtual display.
2 Draw four graphic objects in the virtual display.

3 Create four display windows and viewports, each containing a graphic
object.

Specify a title for each viewport.
Delete three of the four display windows.

6 Use UISSMOVE_WINDOW to pan the virtual display with the
remaining display window.

PROGRAM IMAGES_5

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYSSLIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF’
REAL WIDTH,HEIGHT

TYPE *,’ENTER VIEWPORT WIDTH AND HEIGHT'
ACCEPT *,WIDTH, HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UIS$CIRCLE(VD_ID,0,12.0,12.0,1.0)

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0)

CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0)

CALL UISSTEXT(VD_ID,0,’This is a test.’,1.0,12.0) @
WD_ID1=UIS$CREATE_WINDOW(VD_ID,’SYS$WORKSTATION’ ,’CIRCLE’,

2 10.0,10.0,14.0,14.,0,WIDTH, HEIGHT) B
WD_ID2=UIS$CREATE_WINDOW(VD_ID,’'SYS$SWORKSTATION’, 'LINE’,

2 3.0,2.0,6.0,8.0,WIDTH,HEIGHT) B
WD_ID3=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION', ' TEXT',

2 1.0,12.0,10.0,10.0,WIDTH,HEIGHT) @
WD_IDA4=UIS$CREATE_WINDOW(VD_ID, ’'SYS$WORKSTATION', 'ELLIPSE’,

2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT) 8
pAUSE B

CALL UIS$DELETE_WINDOW(WD_ID1)
CALL UIS$DELETE_WINDOW(WD_ID3)
CALL UIS$DELETE_WINDOW(WD_ID4)

PAUSE
CALL UIS$MOVE_WINDOW(VD_ID,WD_ID2,6.0,8.0,18.0,18.0)
PAUSE
CALL UIS$DELETE_DISPLAY(VD_ID)
END
The program IMAGE_5 creates four graphic objects 8@ B 8 in the virtual
display.

The program prompts for the viewport width and height to override the
values specified in UISSCREATE_DISPLAY.

8-11



Display Windows and Viewports

Each newly created display window 8 8 8 B contains a graphic object. Each
display window is mapped to the physical screen as a display viewport with
an appropriate title that describes the graphic object within the window.

Program execution is suspended 8. The display screen contains the four
viewports previously described. :

Three calls to UISSDELETE_ WINDOW remove the windows and
their viewports CIRCLE, ELLIPSE, and TEXT from the display screen.

Program is suspended @8. The display screen contains one display
viewport LINE.

A call to UISSMOVE_WINDOW M8 has been inserted. Thus, the display
window LINE pans the virtual display.

8.5.3 Calling UISSMOVE_WINDOW

8-12

The display screen initially contains all four windows as shown in
Figure 8-5. '

Three of the display windows and viewports are deleted.

The display viewport LINE remains. Originally, the viewport contained a
line; now it contains the circle and the ellipse. The display window goes to
the location you specify in the virtual display. You can include any number
of calls to UISSMOVE_WINDOW. Your workstation screen displays the
objects shown in Figure 8-6. The circle and the ellipse still exist in the
virtual display.



Display Windows and Viewports

Figure 8-5 Before Panning the Virtual Display

I cmoe

_BwesE

This is a test,

ZK-4537-85

8-13



Display Windows and Viewports

Figure 8-6 Panning the Virtual Display

8.5.4 Program Development |l
Programming Objective

To demonstrate exact placement of the display viewport on the dxsplay
screen to pop and push viewports.

8-14




Display Windows and Viewports

Programming Tasks

1 Specify viewport placement data to create a viewport attributes data
structure.

2 Create a virtual display.
Draw two graphic objects in the virtual display in separate viewports.

4 One viewport initially occludes the other.

PROGRAM IMAGES_6
IMPLICIT INTEGER(A-3Z)
INCLUDE ’'SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$SLIBRARY:UISUSRDEF’
REAL WIDTH, HEIGHT
STRUCTURE/PLACE/ B

INTEGER*4  CODE_1

REAL*4 ABS_POS_X
INTEGER*4  CODE_2
REAL*4 ABS_POS_Y

INTEGER*4  END_OF_LIST
END STRUCTURE
RECORD /PLACE/PLACE_LIST, ON_TOP

PLACE_LIST.CODE_1=WDPL$C_ABS_POS_X
PLACE_LIST.ABS_POS_X=8
PLACE_LIST.CODE_2=WDPL$C_ABS_POS_Y
PLACE_LIST.ABS_POS_Y=8
PLACE_LIST.END_OF_LIST=WDPL$C_END_OF_LIST

ON_TOP.CODE_1=WDPL$C_ABS_POS_X
ON_TOP.ABS_POS_X=8.5
ON_TOP.CODE_2=WDPL$C_ABS_POS_Y
ON_TOP.ABS_POS_Y=8.5 B
ON_TOP.END_OF_LIST=WDPL$C_END_OF_LIST

TYPE *,’'ENTER DISPLAY SIZE’
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0)
CALL UIS$PLOT(VD_1D,0,4.0,3.0,5.0,7.0)
WD_ID1=UISS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’ , ' CIRCLE’,

2 8.0,8.0,12.0,12.0,WIDTH, HEIGHT, PLACE_LIST)
WD_ID2=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’ ,’LINE’,
2 3.0,2.0,6.0,8.0,WIDTH,HEIGHT,ON_ToP) B
PAUSE (9]

CALL UIS$POP_VIEWPORT(WD_ID1)

PAUSE

CALL UIS$PUSH_VIEWPORT(WD_ID1)
PAUSE

CALL UISSDELETE_DISPLAY(VD_ID)
END

The program IMAGES_6 creates a data structure argument 8, which it gives
the symbolic name PLACE with the STRUCTURE statement. The program
arbitrarily chooses symbolic names for the fields.

The program creates two type PLACE variables, PLACE_LIST and ON_
TOP, B, which contain five longwords.

8-15



Display Windows and Viewports

Actual values are assigned to the different fields of the record PLACE_
LIST. In this case, the absolute coordinates of the lower-left corner 8 8 of
the display viewport LINE are assigned to the fields ON_TOP.ABS_POS_X
and ON_TOP.ABS_POS_Y B 8. The absolute coordinates of the display
viewport CIRCLE are assigned to the fields PLACEMENT.ABS_POS_X and
PLACEMENT.ABS_POS_Y as well.

Also, the position of calls to UISSCREATE_WINDOW @ 8 within the
program is important. You must execute the call to create the display
viewport CIRCLE before LINE.

At the first PAUSE statement 8, viewport LINE occludes viewport CIRCLE.

The program calls UISSPOP_VIEWPORT ®0. The display viewport CIRCLE
is placed over the viewport LINE.

A call to UIS$PUSH_VIEWPORT M returns the viewports to their orginal
position.

8.5.5 Calling UISSPOP_VIEWPORT and UIS$PUSH_VIEWPORT

8-16

Initially, the viewport LINE is placed over CIRCLE. Note that display
viewports are placed on the display screen with absolute coordinates. The
lower-left corner of any viewport is the origin of the viewport rectangle.
When you request exact placement of a viewport, you are specifying the
location on display screen where the origin of the viewport rectangle is to
be placed relative to the lower-left corner of the display screen.

Program execution is suspended at the first PAUSE statement. The display
screen contains the graphic objects shown in Figure 8-7. .

The display viewports LINE and CIRCLE change positions when the call
to UIS$POP_VIEWPORT is executed. The viewport CIRCLE now occludes
LINE as shown in Figure 8-8.

To return the viewports to their original positions, call UISSPUSH_
VIEWPORT. This pushes viewport CIRCLE behind viewport LINE as
shown in Figure 8-9.



Display Windows and Viewports

Figure 8-7 Occluding a Display Viewport

ZK-4539-85

8-17



Display Windows and Viewports -

Figure 8-8 Popping a Display Viewport

CIRCLE

ZK-4540-85

8-18




Display Windows and Viewports

Figure 8-9 Pushing a Display Viewport

ZK-4539-85

8.5.6 Program Development IlI
Programming Objectives

To place a viewport in a general vicinity on the display screen and to create
a display viewport with no border.

8-19



Display Windows and Viewports

8-20

Programming Tasks

1

Create a viewport attributes list to hold the appropriate viewport
placement and attributes data.

Create a virtual display.
Draw two graphic objects in the virtual display.

Create two display windows and associated viewports each with a
graphic object.

Delete the virtual display.

PROGRAM IMAGES_7
IMPLICIT INTEGER(A-3Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’'SYSSLIBRARY:UISUSRDEF’
REAL WIDTH,HEIGHT
STRUCTURE/PLACE/ @

INTEGER* 4 CODE_5

INTEGER*4  REL_POS

INTEGER*4  CODE_6

INTEGER*4  ATTR

INTEGER*4  END_OF_LIST

END STRUCTURE

RECORD /PLACE/LOCATION(2) B

LOCATION(1).CODE_5=WDPL$C_PLACEMENT
LOCATION(1).REL_POS=WDPL$M_TOP .OR. WDPLSM_LEFT B
LOCATION(1).CODE_6=WDPL$C_ATTRIBUTES
LOCATION(1).ATTR=WDPL$M_NOMENU_ICON
LOCATION(1).END_OF_LIST=WDPL$C_END_OF_ LIST

LOCATION(2) .CODE_5=WDPLSC_PLACEMENT
LOCATION(2).REL_POS=WDPL$M_RIGHT .OR. WDPL$M_BOTTOM 8
LOCATION(2) .CODE_6=WDPL$C_ATTRIBUTES
LOCATION(2).ATTR=WDPL$M_NOBORDER
LOCATION(2).END_OF_LIST=WDPL$C_END_OF_LIST

TYPE *,’ENTER VIEWPORT WIDTH AND HEIGHT’

ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UISS$CIRCLE(VD_ID,0,12.0,12.0,1.0)
CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0)
WD_ID1=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION', 'CIRCLE’,

2 10.0,10.0,14.0,14.0, WIDTH, HEIGHT, LOCATION(1) )
WD_ID4=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION’ ,’ELLIPSE’,
2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT,LOCATION(2))

PAUSE

CALL UISSDELETE_DISPLAY(VD_ID)
PAUSE
END

The program defines the name of the data structure argument PLACE

with the STRUCTURE statement 8. It defines an array LOCATION with

two elements that are records; these records have a structure defined by

the structure PLACE B. Each record LOCATION(1) and LOCATION(2)

consists of two pairs of longwords terminated by a lorigword that equals
the constant WDPL$C_END_OF_LIST.



Display Windows and Viewports

To place the display viewport CIRCLE in the upper-left corner of the
display screen and the borderless viewport ELLIPSE in the lower-right
corner, specify in each assignment two preference masks for each viewport
a

NOTE: Note that you must use the logical operator .OR. when you specify more
than one preference mask.

The array name LOCATION is added to the argument lists of the viewport
CIRCLE and ELLIPSE to invoke the optional attribute list.

8.5.7 Requesting General Placement and No Border

General display viewport placement works best on an uncluttered screen.
Your workstation screen displays the objects shown in Figure 8-10.

8-21



Display Windows and Viewports

Figure 8-10 General Placement and No Border

CIRCLE

8.5.8 Program Development IV
Programming Objective
To move graphic objects within the virtual display.
Programming Tasks
1 Create a virtual display.
2 Create a display window and viewport.

3 Draw two graphic objects in the virtual display.

8-22




Display Windows and Viewports

4 Use UISSMOVE_AREA to move the coordinate space that contains
each graphic object to another portion of the virtual display.

PROGRAM AREA

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’

INCLUDE ‘SYS$LIBRARY:UISUSRDEF’
VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,50.0,50.0,15.0,15.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYS$WORKSTATION’ , "MOVE AREA’)

CALL UIS$PLOT(VD_ID,0,1.0,25.0,16.0,25.0,9.0,42.0,1.0,25.0) B
CALL UIS$CIRCLE(VD_ID,0,35.0,35.0,10.0) 2]

PAUSE

CALL UIS$MOVE_AREA(VD_ID,0.0,22.0,20.0,42.0,30.0,1.0) B

CALL UIS$MOVE_AREA(VD_ID,25.0,25.0,50.0,50.0,1.0,1.0) @

PAUSE
END

The program uses UIS$PLOT and UIS$CIRCLE B8 to draw a triangle and a
circle in the upper half of the virtual display.

A rectangular area containing the triangle is moved to the lower-right area
of the virtual display B. A rectangular area containing the circle is moved to
the lower-left region in the virtual display 8.

8.5.9 Calling UISSMOVE_AREA

Figure 8-11 illustrates how graphic objects in areas within the virtual
display can be moved to other parts of the same virtual display.

8-23



Display Windows and Viewports

Figure 8-11 Moving Graphic Objects Within the Virtual Display

MOVE atea

move areaq

8.6 World Coordinate Transformations

Certain applications require that you create more than one virtual display,
or world coordinate space. Depending on the requirements of the program,
you might have to map graphic objects in one virtual display to another

virtual display.

8-24




Display Windows and Viewports

8.6.1 Programming Options

To see the advantages of world coordinate transformations, construct
a program that creates a virtual display. Then create a circle in a
virtual display. The circle is written to new world coordinate space or
transformation space.

Two-Dimensional Transformation and Scaling

Depending on the values supplied to UISSCREATE_TRANSFORMATION,
you can scale graphic objects that are mapped to other coordinate spaces.
If the coordinates of the new transformation space are the same as those of
the original virtual display, no scaling occurs.

8.6.2 Program Development
Programming Objectives

To transform a world coordinate space by altering its mapping and scaling
factors.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Draw a graphic object in the virtual display.
4

Use UIS$CREATE_TRANSFORMATION to create a new coordmate
space.

5 Redraw the graphic object: substitute the transformation
identifier of the new coordinate space returned by UISSCREATE_
TRANSFORMATION for the virtual display identifier of the old
coordinate space.

PROGRAM TRANS

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF’

VD_ID=UIS$CREATE_DISPLAY(-5.0,-5.0,25.0,25.0,10.0,10.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION' , ' TRANSFORMATION )
CALL UIS$CIRCLE(VD_1D,0,6.0,6.0,7.0)

PAUSE

TR_ID=UIS$CREATE_TRANSFORMATION(VD_ID,-5.0,-5.0,
2 17.5,17.5)
CALL UIS$CIRCLE(TR_ID,0,6.0,6.0,7.0) @

PAUSE

END
The virtual display 8 and the new transformation space B specify different
coordinate ranges. You create the circles with calls to UIS$CIRCLE 8 &
you substitute the tr_id argument for the vd_id argument in the second call.

The same circle is redrawn with the same world coordinates in the new
transformation space.

8-25



Display Windows and Viewports

8.6.3 Calling UIS$CREATE_TRANSFORMATION

The graphic objects appear to be superimposed one over the other. If
you manipulate the vdx1 and vdyl arguments, the size of the arc can
increase or decrease relative to the size of the first circle. In any case, the
arc is mapped to the transformation space, which eliminates the need for
additional computation and coding. Figure 8-12 shows world coordinate
transformation.

8-26




Display Windows and Viewports

Figure 8-12 World Coordinate Transformations

8-27






9.2

9.2.1

General Attributes

Overview
Chapters 1 through 8 describe UIS output routines that create the basic
structures you use to produce graphic objects. Other types of routines
establish attributes that allow you to enhance the quality of graphic objects
and text. This chapter discusses general attribute routines.

Attributes
Attributes enhance the appearance of graphic objects and text on the
display screen. You can modify attributes in your program at any time.

Attribute Blocks

All UIS attributes are grouped in a data structure called an attribute block.
You can modify attributes within a given attribute block. Default attribute
settings reside in attribute block 0. Table 9-1 lists the categories of attributes
within attribute block 0.

Table 9-1 Attribute Block 0

Type Attribute
General Writing mode

“Writing color index
Background color
Text Character rotation
Character spacing
Character slant
Character size
Text path
Text siope
Text formatting
Left margin
Right margin
Font
Graphics Line width
Line style
Fill pattern
Arc type



9.2.2

General Attributes

Table 9-1 (Cont.) Attribute Block 0

Type Attribute

Windowing : Clipping rectangle

Modifying General Attributes

9-2

When you modify general attributes, you cannot change the default
attribute settings within attribute block 0 itself. Think of attribute block
0 as a template of default settings, a copy of which you modify for use
within your program.

Attribute modification routines contain two arguments:

iatb—Input attribute block number
oatb—Output attribute block number

Table 9-2 lists the default settings of general attributes.

Table 9-2 Default Settings of General Attributes

General Default Modification

Attribute Setting Routine

Background " Index 0 UIS$SET_BACKGROUND_INDEX
index'

Writing Index? Index 1 UIS$SET_WRITING_INDEX
Writing mode Overlay UIS$SET_WRITING_MODE

'"Background color index in the virtual color map.
2Foreground color index in the virtual color map.

Use the following procedure to modify attributes:
1 Choose an appropriate attribute modification routine.
2 Specify 0 as the iatb argument to obtain a copy of attribute block 0.

3 Specify a number from 1 to 255 as the oatb argument. You can then
reference the attribute block in subsequent UIS graphics and text
routines or in any other attribute modification routine.

The following routines reference attribute blocks in the atb argument:
* Graphics and text routines

* UISSMEASURE_TEXT

e UISSNEW_TEXT_LINE

e UIS$SET_ALIGNED_POSITION



General Attributes

9.3 Structure of Graphic Objects
There are three types of graphic objects:
* Geometric shapes, including:
- Circles
- Ellipses
- Points
- Lines
- Polygons
e Text

* Raster images

Graphic objects are made from a pattern. In memory, the pattern represents
one or more bit settings to 0 or 1 that constitute the actual graphic object.

The UIS writing modes translate the bit settings that constitute these objects
and write them in the virtual display.

Text

In the case of text, a standard character within the default font displayed
on the workstation screen represents the bitmap image of a cell in memory.
The size of the cell depends on the type of font:

* Monospaced fonts—Use a standard cell size for all letters within the
font; however, the standard cell size varies according to the font you
use. '

* Proportionally spaced fonts—Use character cells that vary in width
according to the letter used; character cell height remains constant for
all characters within the font.

The character cell contains the pattern. The remaining bits in the cell are
set to 0. All bits within the character cell are significant to UIS writing
modes.

Geometric Shapes

In the case of geometric shapes, only the bit settings that actually compose
the pattern are significant. Bit settings in the pattern can be 0 or 1. For
example, a dotted line represents bit settings of 0 and 1 in a pattern. All
bit settings, both 0 and 1 within this pattern, are significant to UIS writing
modes.

Raster Images

When you draw a raster image, set bits in a bitmap to create text characters
or geometric shapes. For example, UISSIMAGE and UIS$SET_POINTER_
PATTERN use bitmaps to map rasters to the display screen. All bits in the
bitmap are significant to UIS writing modes. The following table shows the
underlying structures from which graphic objects are created.

9-3



General Attributes

Graphic Object Structure

Text Character cell

Geometric shapes Pattern

Raster Image Bitmap image of varying size

For a given graphic object, the cutrent writing mode determines how bit
settings in the appropriate structure are displayed. All bit settings of a
particular structure are significant to UIS writing modes. Figure 9-1 shows
graphic objects as structures that UIS writing modes recognize:

e The letter E within a character cell
* A square as a pattern

¢ A bitmap that contains the letter E, a square, and a vertical dashed line
of double thickness

9.4 UIS Writing Modes

There are 14 UIS writing modes: transparent, complement, copy, copy
negate, overlay, overlay negate, erase, erase negate, replace, replace
negate, bit set, bit set negate, bit clear, and bit clear negate.

Writing modes control how graphics and text routines use foreground and
background colors to display graphic objects. The default writing mode is
overlay. ‘

Table 9-3 lists each writing mode and its functions.




Figure 9-1

Structure of Graphic Objects

General Attributes

© © © O O © O ©O O O O O O O °
O O ©O © © © O ©O O O O O O o ©

S © © © © © © © © © © © © ©o O
S ©O O © © © O © © © © © © o ©

000000
00000 O
000000
000000

00

00

0 0

00

0 0

00

00
000000
000000O0
00000 O
00000 O
0000000O0O0GO OO
0000000 OO0
000000000
0000000
. o
0 00
0 00
0 00
0 00
0 00
0 00
00000O0GO0O
00000O0O0GOO
00000O0OCGOO0O
00000O0O OO0 O

O O O 0O O O O O © © O ©
O © © © © © © © © © © ©

0000
0000
000000

2K462185

(=]
O O © O O © © © © © © © © © ©

9-5



General Attributes

Table 9-3 UIS Writing Modes

UIS Writing Modes

Function

Device-Independent

UIS$C_MODE_ERAS
UIS$C_MODE_ERASN

UIS$C_MODE_OVER

UIS$C_MODE_OVERN

UIS$C_MODE_REPL

UIS$C_MODE_REPLN

UIS$C_MODE_COMP

UIS$C_MODE_TRAN

Displays the current background color for each bit
position no matter what the bit settings are in the
character cell, pattern, or bitmap image.

Displays the current writing color for each bit
position no matter what the bit settings are in the
character cell, pattern, or bitmap image.

Displays the current writing color for bits set to 7
in the character cell, pattern, or bitmap image. All
bits set to 0 have no effect on the existing graphic
object. This is the default writing mode attribute
setting.

Bitwise complements the character cell, pattern, or
bitmap image that is, bits originally set to 0 are now
set to 7 and vice versa.

The bits now set to 7 in the character cell, pattern,
or bitmap image display the current writing color.
The bits that are now set to 0 in the character cell
have no effect on any existing graphic. object.

Displays the current writing color for bits set to 7 in
the character cell, pattern, or bitmap image. Bits
set to 0 in the character cell, pattern, or bitmap
image display the current background color.

Bitwise complements the character cell, pattern,

or bitmap image. The bits now set to 7 in the
character cell, pattern, or bitmap image now display
the current writing color. Bits now set to 0 in the
character cell, pattern, or bitmap image now display
the current background color.

Where the two graphic objects interéect, the bits
in the character cell, pattern, or bitmap image are
exclusive .OR.ed with the existing graphic object.

Does not alter the display screen.

Device-Dependent'

UIS$C_MODE_BIC

The bitwise complement of the character csll,
pattern, or bitmap image is logically .AND.ed with
the existing graphic object and background. On
mapped color systems, where the two graphic
objects intersect, the bitwise complement of the
writing index of the character cell, pattern, or bitmap
image is logically .AND.ed with the pixel values of
the existing graphic object and background.

'"These UIS writing modes produce device-dependent results. Depending on the
specific operation, graphic objects drawn using these writing modes may appear
differently on VAXstation monochrome and color systems.



General Attributes

Table 9-3 (Cont.) UIS Writing Modes

UIS Writing Modes

Function

Device-Dependent’

UIS$C_MODE_BICN

UIS$C_MODE_BI!S

UIS$C_MODE_BISN

UIS$C_MODE_COPY

UIS$C_MODE_COPYN

On monochrome systems, the bits in the character
cell, pattern, or bitmap image are logically .AND.ed
with the existing graphic object and background.
On mapped color systems, the writing index of the
character cell, pattern, or bitmap image is logically
.AND.ed with the pixel values of the existing graphic
object and background.

The bits in the character cell, pattern, or bitmap
image are logically .OR.ed with the existing graphic
object and background. On mapped color systems,
the writing index of the character cell, pattern,

or bitmap image is logically .OR.ed with the

pixel values of the existing graphic object and
background.

On monochrome systems, the bitwise complement
of the character cell, pattern, or bitmap image is
logically .OR.ed with the existing graphic object
and background. On color systems, the bitwise
complement of the writing index of the character
cell, pattern, or bitmap image is logically .OR.ed
with the pixel values of the existing graphic object
and background.

Displays the character cell, pattern, or bitmap image
without regard to current background and writing
color. On a VAXstation monochrome system, bits
set to 0 are black, and bits set to 7 are white. On
mapped color systems, the writing index of the
character cell, pattern, or bitmap is used directly as
an index.

Displays the character cell, pattern, or bitmap image
without regard to current background and writing
color. On monochrome systems, bits set to 0 are
white and bits set to 7 are black. On mapped color
systems, the bitwise complement of the writing
index of the character cell, pattern, or bitmap image
is used directly as an index.

'These UIS writing modes produce device-dependent results. Depending on the
specific operation, graphic objects drawn using these writing modes may appear
differently on VAXstation monochrome and color systems.

9.4.1 Using General Attributes

General attributes (background color, writing color or foreground, and
writing mode) affect all graphic images on the screen.



General Attributes

9-8

For application-specific reasons or simply for variety, a program can set
different background and writing colors for different display viewports.

Setting the Background Color

Modifying the background color attribute sets the value of an index into the
color map. Modifying the background color affects how the current writing
mode interprets the bits that compose the graphic object background color.
Set the background color attribute with UISSSET_BACKGROUND_INDEX.

Mod1fymg the writing color attribute sets the value of an index into the
color map. Writing color affects the color of the graphic object. Set the
writing color with UIS$SET_WRITING_INDEX.

Setting the Writing Mode ‘

Writing mode controls how background and foreground colors are used
to draw graphic objects in the virtual display. Use UIS$SET_WRITING_
MODE to specify writing mode.

9.4.1.1 Programming Options
Setting the Writing Color
9.4.1.2

Program Development |
Programming Objective

To use the default background and writing color attribute settings to draw a
graphic object in each of the UIS device-independent writing modes. ‘

Programming Tasks
1 Create a virtual display.
2 Create a display window and associated viewport.

3 Draw a line using the default overlay writing mode in the virtual
display.

Draw a character at the same location in each of the UIS writing modes.

Use UIS$ERASE to erase graphic objects in the virtual display and use
UIS$DELETE_WINDOW to delete the window.

6 Repeat steps 3 through 5.

The font name MY_FONT_5 is a logical name.

PROGRAM MODE

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYSS$SLIBRARY:UISENTRY'’

INCLUDE ’‘SYSSLIBRARY:UISUSRDEF’
VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,3.0,3.0,6.0,5.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION' )

CALL UIS$PLOT(VD_ID,0,0.5,1.0,2.0,2.5)

PAUSE
C Erase the object in the virtual display and delete the window
C Display window is deleted in order to change viewport title
CALL UISSERASE(VD_1D,0.0,0.0,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE



General Attributes

WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION' , ' OVERLAY ‘)
CALL UIS$SET_FONT(VD_ID,0,1,’MY_FONT_5’)

CALL UIS$PLOT(VD_ID,0,0.5,1.0,2.0,2.5)

CALL UIS$TEXT(VD_ID,1,'D’,1.0,2.0)

PAUSE

CALL UISS$ERASE(VD_1D,0.0,0.0,3.0,3.0)
CALL UISSDELETE_WINDOW(WD_ID)

PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYS$WORKSTATION’ , 'OVERLAY NEGATE')
CALL UIS$SET_WRITING_MODE(VD_ID,1,2,UIS$C_MODE_OVERN)

CALL UIS$PLOT(VD_1D,0,0.5,1.0,2.0,2.5)

CALL UIS$TEXT(VD_1D,2,’D’,1.0,2.0)

PAUSE

CALL UIS$ERASE(VD_ID,0.0,0.0,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION' , ' REPLACE’ )
CALL UIS$SET_WRITING_MODE(VD_ID,2,3,UIS$C_MODE_REPL)
CALL UIS$PLOT(VD_ID,0,0.5,1.0,2.0,2.5)
CALL UISS$TEXT(VD_ID,3,’D’,1.0,2.0)
" PAUSE

CALL UIS$SERASE(VD_ID,0.0,0.0,3.0,3.0)
'CALL UISSDELETE_WINDOW(WD_ID)

PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYS$SWORKSTATION' , ' REPLACE NEGATE’)
CALL UIS$SET_WRITING_MODE(VD_ID, 3,4,UIS$C_MODE_REPLN)

CALL UIS$PLOT(VD_ID,0,0.5,1.0,2.0,2.5)

CALL UISSTEXT(VD_ID,4,'D’,1.0,2.0)

PAUSE
CALL UISS$ERASE(VD_ID,0.0,0.0,3.0,3.0)
CALL UIS$SDELETE_WINDOW(WD_ID)

PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION' , 'ERASE’)
CALL UIS$SSET_WRITING_MODE(VD_ID,4,5,UIS$C_MODE_ERAS)
CALL UIS$PLOT(VD_ID,0,0.5,1.0,2.0,2.5)

CALL UIS$TEXT(VD_ID,5,’D’,1.0,2.0)

PAUSE

CALL UIS$SERASE(VD_ID,0.0,0.0,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE
WD_ID=UIS$SCREATE_WINDOW(VD_ID, 'SYS$WORKSTATION’, 'ERASE NEGATE’)
CALL UIS$SET_WRITING_MODE(VD_ID,5,6,UIS$C_MODE_ERASN)

CALL UIS$PLOT(VD_ID,0,0.5,1.0,2.0,2.5)
CALL UISSTEXT(VD_1ID,6,’D’,1.0,2.0)

PAUSE

CALL UIS$ERASE(VD_I1D,0.0,0.0,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE .
WD_ID=UIS$CREATE_WINDOW(VD_ID,’'SYSSWORKSTATION’, ' TRANSPARENT’ )
CALL UIS$SSET_WRITING_MODE(VD_ID,6,7,UIS$C_MODE_TRAN)

CALL UISS$PLOT(VD_ID,0,0.5,1.0,2.0,2.5)
CALL UISSTEXT(VD_ID,7,’D’,1.0,2.0)

PAUSE
CALL UISSERASE(VD_ID,0.0,0.0,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE

9-9



General Attributes

9-10

NOTE:

WD_ID=UISS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’ ,  COMPLEMENT* )
CALL UIS$SET_WRITING_MODE(VD_ID,7,8,UIS$C_MODE_COMP)

CALL UIS$PLOT(VD_1D,0,0.5,1.0,2.0,2.5)

CALL UIS$TEXT(VD_ID,8,’D’,1.0,2.0)

PAUSE
END

The program MODE sets the writing mode attribute ten times. The letter D
is placed over the line. Table 9-3 describes the behavior of the UIS writing
modes when text or geometric shapes such as circles are placed on top

of an existing graphic object. Remember, character cells refer to text and
patterns refer to geometric shapes.

Before you run the MODE demonstration program, define fonts by
invoking the file DEFFONT.COM in the directory SYSSEXAMPLES: as
follows: @SYSSEXAMPLES:DEFFONT

If the documentation pictures do not look the same as those produced with
the demonstration program, adjust the brightness on the terminal screen.

9.4.1.3

Calling UIS$SET_BACKGROUND_INDEX, UIS$SET_WRITING_INDEX,

and UIS$SET_WRITING_MODE

To illustrate the effects of writing modes, imagine that the character cell is
slowly lowered onto the virtual display containing an existing graphic object
drawn in Overlay mode—a line. As the character cell approaches the plane
of the virtual display, the writing mode of the character cell determines the
final appearance of the graphic object. See Table 9-3 for a description of
each writing mode. ‘

The default background and writing color are in effect as shown in
Figure 9-2.



General Attributes

Figure 9-2 UIS Device-Independent Writing Modes

complement

overlay

ZK-4543-85

Figure 9-2 Cont’d. on next page

9-11



General Attributes

9-12

Figure 9-2 (Cont.) UIS Device-Independent Writing Modes

erase negate

repiace negate

ZK-4544-85 ‘

Figure 9-2 Cont’d. on next page



General Attributes

Figure 9-2 (Cont.) UIS Device-Independent Writing Modes

transparent

2K-4545-85

9.4.1.4

Program Development li
Programming Objective

To illustrate the behavior of device-dependent writing modes.

Programming Tasks

1
2

Create an eight-entry virtual color map containing intensity values.

Draw three overlapping circles—one in overlay mode and two in bit set
mode. '

Redraw the same circles—one in overlay mode, one in bit clear mode,
and one in bit set mode.

Redraw two of the circles in the remaining device-dependent writing
modes. One circle is always drawn in overlay mode. Both are drawn
with the same writing index.

PROGRAM PLANE_MODES

IMPLICIT INTEGER(A-Z)

INCLUDE ’'SYS$LIBRARY:UISUSRDEF’
INCLUDE 'SYSSLIBRARY:UISENTRY’

REAL*4 I_VECTOR(8)

DATA I_VECTOR/0.0,0.125,0.25,0.375,0.50,0.625,0.75,1.0/
DATA VCM_SIZE/8/
DATA INDEX2/2/ B

DATA INDEX4/4/

VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE)
VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,40.0,40.0,15.0,15.0,VCM_ID)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYS$SWORKSTATION' )

CALL UIS$SET_INTENSITIES(VD_ID,0,8,I_VECTOR)

CALL UIS$SET_FONT(VD_ID,0,1,'UISSFILL_PATTERNS’)
CALL UIS$SET_FILL_PATTERN(VD_ID,1,1,PATTS$C_FOREGROUND)

CALL UIS$SET_FONT(VD_ID,0Q,2,'UISSFILL_PATTERNS')
CALL UIS$SET_WRITING_INDEX(VD_ID, 2,2, INDEX2) 6}

9-13



General Attributes

CALL UISS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_BIS)
CALL UIS$SET_FILL_PATTERN(VD_ID,2,2,PATT$C_FOREGROUND)

CALL UIS$SET WRITING_INDEX(VD_ID,2,4,INDEX4) 7}
CALL UIS$CIRCLE(VD_ID,1,15.0,20.0,10.0) 8}

CALL UISS$CIRCLE(VD_1ID,2,25.0,20.0,10.0) 9]

CALL UIS$CIRCLE(VD_ID,4,20.0,30.0,10.0)

PAUSE

CALL UISSSET_WRITING_MODE (VD_ID,4,4,UIS$C_MODE_BIC)
CALL UISSCIRCLE(VD_ID,4,20.0,30.0,10.0)

PAUSE

CALL UIS$ERASE(VD_ID)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYS$WORKSTATION )
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_BICN)

CALL UIS$CIRCLE(VD_ID,1,15.0,25.0,10.0)
CALL UIS$CIRCLE(VD_ID,2,25.0,25.0,10.0)
PAUSE

CALL UISS$SERASE(VD_ID)
CALL UISS$DELETE_WINDOW(WD_ID)

PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION' )
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UISS$SC_MODE_BISN)

CALL UIS$CIRCLE(VD_ID,1,15.0,25.0,10.0)
CALL UIS$CIRCLE(VD_ID,2,25.0,25.0,10.0)
PAUSE

CALL UISSERASE(VD_ID)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE
WD_ID=UIS$CREATE_WINDOW(VD_ID, ’SYS$SWORKSTATION' )
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UISS$SC_MODE_COPY)

CALL UIS$CIRCLE(VD_ID,1,15.0,20.0,10.0)
CALL UISS$CIRCLE(VD_ID,2,25.0,20.0,10.0)
PAUSE

CALL UIS$ERASE(VD_ID)
CALL UIS$DELETE_WINDOW({WD_ID)

PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION')
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$SC_MODE_COPYN)

CALL UIS$CIRCLE(VD_ID,1,15.0,20.0,10.0)
CALL UIS$CIRCLE(VD_ID,2,25.0,20.0,10.0)
PAUSE

END

An array I_VECTOR is declared to hold the intensity values 8 Each
location in the array element is initialized with an intensity value 8. The
color map size variable is initialized to the number of color map entries 8.
Color index variables index2 and index4 are initialized 8 B.

Three circles are drawn ® 8 8 with three different indices in the virtual
color map—index 1 (the default), index 2, and index 4 B@. The circles
are filled with the current foreground color. The following table lists the
circles, their writing modes and indices, and corresponding intensity
values.

9-14




General Attributes

Writing Writing Intensity

Circle Mode Index Value
1 Overlay 1 0.0

2 Bit Set 2 0.125

3 Bit Set 4 0.375

The three circles are redrawn with circle 3 drawn in bit clear mode M.

In subsequent drawings, only overlapping circles 1 and 2 are redrawn.
Circle 1 is always drawn in overlay mode B M3, and circle 2 is
drawn in the remaining writing modes © 08 83 g 00.

9.4.1.5

Using Device-Dependent Writing Modes

The program PLANE_MODES produces Figures 9-3 through 9-8. In each
figure, the circle on the left (circle 1) is drawn in overlay mode and writing
index 1. The circle on the right (circle 2) is drawn in a different writing
mode with writing index 2. The top circle (circle 3), in Figures 9-3 and 9-4
only, is drawn with writing index 4. The following table lists the writing
indices, their binary value, and binary bitwise complements.

Writing Binary Bitwise

Object Index Value Complement
Background 0 000, 111,
Circle 1 1 ' 001, 1102
Circle 2 2 010, 101,
Circle 3 4 1002 011,

In Figure 9-3, whenever the circles 1, 2, and 3 intersect, their writing
indices 001, 0105, and 100, are logically .OR.ed with the pixel values of
the existing graphic objects and the background. The bit set writing mode
has the effect of combining the value of the bit plane settings of each
object. Therefore, the intersections of the circles are lighter than the rest of
the circles.



General Attributes

Figure 9-3 Bit Set Mode

R,

KRR

ZK-5485-86

In Figure 9-4, circle 3 is drawn in bit clear mode with a writing index of 4
or 100,. Circle 2 is drawn in bit set mode in writing index 2 or 011;,. The
binary bitwise complement of the writing index of circle 3 is 011;. It is
logically .AND.ed with the pixel values of the existing graphic objects—
circle 1, circle 2, and the background. In bit clear mode, the appropriate
bit plane settings are now changed such that circle 3 appears to blend into
the background of circles 1 and 2.

9-16




General Attributes

Figure 9-4 Bit Clear Mode

ZK 5486-86

In Figure 9-5, the writing index of circle 2 or 010; is logically .AND.ed
with the pixel values of the existing circle 001, and the background 000, to
produce the pixel value 000,. The appropriate bit plane settings are now
changed such that all of circle 2, including the area of intersection with
circle 1, matches the background.



Figure 9-5 Bit Clear Negate Mode

General Attributes

ZK 548886

ARk A

!
252

A

‘
:

g st
S i
I i
SR 25
R

RN

KNI
SRRRNNNLL

LT R

¢
e

it

iRt

e

SoRsites

s
il

o

&
£
S
'}

e
S A

c

%
2
o

%

s
Gt
i

s

S8
&
vhstats!
&
RN
SR
!

+...~+.,.,.++++
i
RRANESrnas, e
R SRR S
IRt
.@.&wax.%s
K
e
s L RS

2
ittt
A

t
OIS
2REEesentes

2

'
Bteed
ol

&
DERRANNN

e

<

o<
SNSRI
i

a3

RS
GRS
e

40

2
e

&N
5

%
e
S
2
5
e
ety

2%

o+
o
0

e

S
R ATATT g R S A
R ey
et ey
P oReasiae
A
R

ise complement of the writing index of the

ing index 5.

t

Figure 9~-6 Bit Set Negate Mode

in wri

le 2 is drawn

CIrc

circle 2 is 101,. It is logically .OR.ed with the pixel values of the existing

graphic object and background, which are 001; and 000,. In bit set negate
mode, the appropriate bit plane settings are now changed such that all of

In Figure 9-6, the binary bi

ZK-5487-86

9-18




General Attributes

Figure 9-7 Copy Mode

ZK-5489-86

In Figure 9-7, the writing index of circle 2 is used as the index in the
virtual color map to draw the circle, regardless of existing graphic objects
or background.

In Figure 9-8, the binary bitwise complement of the writing index of circle
2 101, is used as the index into the virtual color map to draw the circle
regardless of existing graphic objects or background.

9-19



T,
P ATITE,

e
AR ETETy

ZK-5490-86

General Attributes

Figure 9-8 Copy Negate Mode

iz
S,
SRR

R
s

>

>

9-20




9.5

9.5.1

General Attributes

Using UIS$SET_PLANE_MASK

NOTE:

UIS$SET_PLLANE_MASK gives the experienced UIS programmer an
extra level of control over the video output on 4- and 8-plane machines.
Specifically, it allows the programmer to tell the hardware which planes
should and should not be affected by various UIS output routines such as
UISSELLIPSE, UIS$PLOT, and UIS$TEXT.

Use of the plane mask without proper coordination of color resources can
result in unexpected results.

Video Memory

The video memory that is used to store and display what you see on your
screen is divided into planes. For the purpose of discussing the plane
mask, think of each plane as a layer of video memory. For example,

a monochrome workstation has one plane or one layer of memory; an
8-plane color or grey scale workstation has eight layers of video memory.

Each plane or layer of video memory contains one bit for every pixel
location on your screen ( 864x1024 pixels).! Each bit can be either off or
on, with a value of 0 or 1 respectively. A monochrome workstation has one
plane of video memory and is capable of displaying output in two colors:
black and white. All bits in video memory that are set to 1 are displayed
white, and all bits that are set to 0 are displayed black.

Color workstations have either four or eight planes of video memory.
Again, each plane covers the entire screen and contributes one bit to every
pixel on the screen. For instance, each pixel on a 4-plane workstation
comprises four bits—one bit from each of four planes.

A monochrome (bitonal) workstation can display only two colors because
it has only one plane of video memory that represents values from zero to
one. Color workstations have more planes and can therefore display more
colors. A workstation can actually display 2P!4"¢$ colors simultaneously. A
single pixel on a 4-plane workstation comprises four individual bits—one
bit from each of four planes—for a total of 24 or 16 possible values.

9.5.2 Color Maps and Color Map Allocation

For the purposes of describing color maps and color map allocation, this
section assumes a 4-plane workstation with a hardware color map size of
16.

Use the UISSCREATE_COLOR_MAP routine to create virtual color maps.
When you create a virtual color map, UIS rounds the size you request
up to the nearest power of two. If you specify a color map of size 3,
UIS actually allocates enough space for a color map of size 4. UIS binds
this virtual color map to the hardware color map only at multiples of the
adjusted color map size. In the case of the 3-entry color map, adjusted to

1 A plane of video memory is actually larger, as it also encompasses offscreen memory not visible to the user. The value
864 x 1024 refers only to the visible onscreen memory.

V4.1—June 1989 9-21



General Attributes

4, UIS attempts to bind your virtual color map to the hardware color map
at integral multiples of four, which gives either 0, 4, 8, or 12 as possible
binding locations.

By rounding virtual color map sizes to a power of two and binding your
virtual color map only to integral multiples of its adjusted size, UIS
guarantees that your color map will always reside on a plane boundary
and that it will always span an integral number of planes. Your virtual color
map actually uses a number of planes equal to the logy map_size, where
map_size is the adjusted map size as described above.

9.5.3 Colorindexes

When you use the plane mask, it is most important to remember that UIS
does not write or draw with a color; rather, it writes with an index—your
writing index. For instance, if your writing index is five, you will be writing
the binary value 101 to your screen. It is immaterial which color resides at
color map entry number five. If the color is red, a binary value of 101 will
be written. If the color is green, a binary value of 101 will still be written to
your screen.

9.5.4 Plane Mask

In simple terms, the plane mask provides a means to write-protect
individual planes of video memory for a given drawing operation. The
plane mask value is a binary value, where each bit in the value represents
a single plane of video memory. Specifying a one for any single bit
within the plane mask value enables writing to the corresponding plane.
Specifying a zero disables writing to the corresponding plane. A plane
mask of 1010, indicates that you are writing to planes one and three but not
to planes zero and two. A plane mask of all ones allows you to write to all
planes. A plane mask of all zeros disables writing completely.

The plane mask value is sent to the driver along with your writing index.
According to the specified plane mask, the driver tells the hardware which
planes to write to.

NOTE: Planes that are not written to retain their current values.

When you write to an arbitrary location on the screen, if your index is
1010,, your mask is 11005, and the contents of that location equal 11115,

~ then you can use the following equation with binary numbers to determine
the final result:

result (index .AND. mask) .OR. (contents .AND. (.NOT. mask))
(1010 .AND. 1100) .OR. (1111 .AND. (.NOT. 1100))
1000 .OR. (1111 .AND. (0011))

1000 .OR. 1011

1011

The result is that you overwrite the upper two bits of the position with the
upper two bits of your writing index.

9-22 V4.1—June 1989



General Attributes

When you call UIS$SET_PLANE_MASK and specify a plane mask value,
UIS adjusts the value, retaining only the portion that is relevant to the
virtual color map you are using. For instance, if your color map has an
adjusted size of eight, it has log; 8 or three planes. In other words, you
need three bits to specify a writing index in the range 000, to 111,, and
only three bits are relevant when you specify a plane mask value, because
your color map spans three planes. UIS clears all bits that are not relevant.
When you call UISSGET_PLANE_MASK, the value returned will be the
adjusted value.

If you do not explicitly call UISSSET_PLANE_MASK, UIS uses a plane
mask of all ones within the range of your color map, which tells the driver
that writing is to occur on all planes.

) 9.5.5 Plane Mask Example

1 Given a four-entry virtual colormap filled with the colors black, red,
green and blue, you might use the following series of calls to create
your color map, populate it with the appropriate color values, and
create a window in which you will draw.

vem_id := uis$create_color_map (4);
vd_id := uisS$create_display (0.0,0.0,20.0,20.0,20.0,20.0,vem_id);

' uiss$disable_display_list (vd_id);
{ £ill in color map }

uis$set_color (vd_id, 0, O

uis$set_color (vd_id, 1, 1.

uis$set_color (vd_id, 2, O.

uis$set_color (vd_id, 3, O
wd_id := uis$create _window (vd_id, 'sys$workstation’);

2 Prepare to draw a red triangle, a green filled circle, and a line of blue
text within the window, by using a different ATB number for each

’ object.

{ atb setup for a red triangle, use atb 1 }
uis$set_writing_index (vd_id, 0, 1, 1);
{ atb setup for a green filled circle, use atb 2 }

uis$set_writing_index (vd_id, 0, 2, 2);
uiss$set_font (vd_id, 2, 2 ’uis$fill_patterns’);
uiss$set_fill pattern (vd_id, 2, 2, patt$c_foreground);

{ atb setup for some blue text, use atb 3 }
uis$set_writing_index (vd_id, 0, 3, 3);
3 Call the various output routines actually needed to draw the objects

using the ATBs you have provided. The segment of code below also
sets the plane mask to show you how this will affect the output.

V4.1—June 1989 9-23



General Attributes

for i := 3 downto 0 do begin
for j := 1 to 3 do begin
uis$set_plane_mask (vd_id, j, j, i):
end; { for }

uisg$plot (vd_id, 1, 5.0, 5.0, 7.5, 15.0, 10.0, 5.0, 5.0, 5.0);
uis$circle (vd_id, 2, 10.0, 10.0, 7.5);
uis$text (vd_id, 3, ’‘this is blue text.’; 9.0, 10.0);

lib$pause;
uis$erase (vd_id);
end; { for }

NOTE: Remember, you are not drawing with the colors red, green, or blue.
Rather, you are using the index for these colors (1, 2, and 3 respectively).
When UIS draws your objects into the window, it draws in an index rather
than in a color.

The program should loop four times and produce the following results:

1 The first time through, the expected results should occur: a red
triangle, a green circle, and some blue text.

2 The second time, the plane mask is set to 10;. This plane mask is
.AND.ed with the writing index and clears the lower bit of the writing
index. A writing index of 01 now becomes 00;, and produces no
triangle. A writing index of 10, stays as it is and produces the same
green circle. A writing index of 11; becomes 10;, which makes the blue
text appear in green.

3 The third time, the plane mask is set to 01;. This plane mask is
.AND.ed with the writing index and clears the upper bit of the writing
index. A writing index of 01; remains the same, producing the red
triangle. A writing index of 10; becomes 00; and produces no circle. A

writing index of 11; becomes 01, which makes the blue text appear in
red.

4 The fourth time, the plane mask is set to 00,. This plane mask is
.AND.ed with the writing index and clears both bits in our writing
index, which disables drawing altogether. ’

9.5.6 Plane Mask Demo

The following demo program is included with the other demonstration
programs on your VWSDEMO kit.

9-24 ‘ V4.1—June 1989



[T o 20 o T ¢ W o Je o T o o T I o K J'o 0 T o o 0 T 0 J'o TR 0 T o J'o W0 o MR 0 N o W 0}

Q

aaaa

[o}

aaQaaq

General Attributes

program planemask
L2222 AR AR SRR d X et i st Rl XXX s 22X i X 22222 22X 2]

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

COPYRIGHT © 1989 BY *
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.,

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

This program demonstrates how you can use a plane mask in the
most general sense. It has some checks for inconeistent
information but generally is fairly straightforward.

implicit integer (a-z)
include ’sys$library:uisentry’
include ’'sys$library:uisusrdef’

real x1, yl, x2, y2, width, height

real red, green, blue

integer*4 vem_id, vem_size, vd_id, wd_id, iatb, oatb
integer*4 index, mask, origmask

First, this asks to get a color map size, then it asks the user
to £ill the color map. 1I1f you choose a large color
map, you will be stuck entering in many values.

Create the display after being informed that there is a private

print *, 'Enter the color map size 3’
accept *, vcm_size

if (vem_size .lt. 2) vem_size = 2

if (vem_size .gt. 256) vem_size = 256
vem_id = uis$create_color_map ( vcm_size )

color map. - Set up the sizes to control
how the output will look.

x1 = 0.0
yl = 0.0
x2 = 100.0

¥y2 = 100.0
width = 20.0
height = 20.0

vd_id = uisS$create_display ( x1, vi1,
1 i x2, y2,
2 width, height,
3 vem_id)

V4.1—June 1989

o e de Kk K e e o o e e e ok e ok e ok ok ok ke ok e o ok ke Rk bk e ok ke ok kR ok ok e e ke R ok ok e ok ok ok e e ok e ke o e o ke ke e ok b ok e ke R ke ok

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

9-25



General Attributes

aaaa

Ask the user to input all the color map entries. Remember that
the indexes of the color map go from 0 to the VCM_SIZE - 1.

print
print

print
print

*I
*l
print *,
*I
*

'Enter a Red, Green, and Blue floating point number’
’ (number between 0.0 and 1.0 ) value for each color’
findex’

’ ’

vem_size

do i = 1, vem_size
accept *, red, green, blue

end do

call uis$set_color ( vd_id, i-1, red, green, blue )

Q
0
H
o
o
[
[
o
%
-
3
g
%
o
(5]
ot
1]
I
[t
o g
o
Q
o
H
[¢]
]
=
o
e
=2
1]
n
oy
®
]
=]
[
0]
N
[}
[0]
o3

1
2

wd_id = uis$create_window ( vd_id,

'sysS$workstation’,
'Plane Mask Demostration’)

Q

Set a font to be used in writing text.

iatbh = 0
oatb = 1

call uis$set_font ( vd_id,

1
2

iatb, oatb,
* DTABEROMO60OK00GG0001UZZ2ZZ202A000")

aa

Set a line width wide enough to see it!

call uis$set_line_width ( vd_id, oatb, oatb, 5.0)

aaaa

Get the default plane mask. This value is used during
the reset of the window.

origmask = uis$get_plane_mask ( vd_id, oatb )

a plane mask

This is basically a loop that resets the window, then
asks for two things: a color map index (1 - VCM_SIZE), and

=QaaQqaa

[}
o

call uis$set_plane_mask ( vd_id, oétb, oatb, origmask )

call uisS$erase (vd_id)

print *
print *
print *
print *
print *
print *
print *

v g

‘You are now allowed to choose which color index that’
'will be drawn with all the planes being active. The’
'index you choose should be from 1 to the size of the’
‘color map that you chose earlier’

v g

'Which index would you like to use?

accept *, index
if (index .gt. vem_size) index = vem_size

QaQ

Remember the indexes go from O to VCM_SIZE-1.

index =

index - .1

if (index .lt. 1) index =1
if (index .gt. vem_size) index = vcm_size

QQ

- ———— ———— - e ————

Set the writing index to what the user wants.

call uis$set_writing_index ( vd_id,

1
2

9-26

oathb, oatb,
index)

V4.1—June 1989



Draw a line with all planes, using the index desired.

call uis$text ( vd_id, oatb,

1
2

'Original line without plane mask’,
5.0, 25.0)

call uis$line ( vd_id, oatb,

10.0, 20.0,
80.0, 20.0)

‘The writing index remaining constant, now you can’
'choose to mask out any planes you desire. Note '’

‘what happens to the color of the line if the mask '

'you choose logically ANDed with the writing index’
‘chosen changes the value of the writing index’
’ ’
'What would you like to set your plane mask to’
, mask

call uis$text ( vd_id, oatb,

1
2

‘Line with a plane mask set:’,
5.0, 65.0)

call uis$set plane_mask (vd_id, oatb, oatb, mask)
call uis$line ( vd_id, oatb,

1
2

10.0, 60.0,
80.0, 60.0 )

Find out if the user wants to see it again.
print *, ’‘Would you like to try another combination ’
print *, ’(type 1 for YES, 0 for NO)-’
accept *, i
if (i .eq. 1) goto 100
If not, exit.
end

V4.1—June 1989

General Attributes

9-27






)

1 0 Text Attributes

10.1

10.2

Overview

UIS draws characters in the virtual display according to font specifications.
The appearance or shape of characters remains unaltered until you change
a text attribute. Likewise, UIS draws characters and character strings at
user-specified locations within the coordinate space. This orientation
within the coordinate space does not change until you execute an attribute
modification routine.

Character and character string shape orientation spacially define how
UIS draws these objects on the display screen. You can use text attribute
modification routines to alter the appearance of characters and character
strings or to redefine the spatial relationship of a character to other
characters. This chapter discusses the following topics:

e  Structure of text
e Text attributes

¢ Default text attribute settings

Structure of Text

The underlying structure of a single character is a character cell. Every
character drawn on the display screen is contained in a character cell.
Figure 10-1 illustrates a character cell and its reference points.

10.2.1 Monospaced and Proportionally Spacéd Fonts

For text drawing purposes, fonts are either monospaced or proportionally
spaced. Monospaced fonts use a standard character cell size for each
character in the font. The character cells of proportionally spaced fonts
vary in width for each font character, although the height of each cell is the
same for each font character. Figure 10-2 shows the two types of fonts.

The character cell is a bitmap whose settings are mapped to the display
screen as a character.

10-1



Text Attributes

Figure 10-1 Character Cell

Top of Character Cell

000000070
00000000
00000000
00000000
00000000
00000000
00000000
00000000
060000000
00000000 Up Vector
00000000
000600000
00000000
00000000

Baseline Point | 0 0 0 0 0 0 0 0 Baseline Vector

2K-5279-86

Figure 10-2 Monospaced and Proportionally Spaced Characters

Character Cells ‘
/ Top of
0000O0O0OOl0O0O0O0O0O0O00O0 Character Cell
00000000000 00000 Character Celis
0000O0O0O0O0|(0OO0O0GOCO0OGO0O
00000O0O0O0[0OO0O0OCOO0O0O
0 00O0O0O0O0OOI0OO0OOCGOOO0OGO
00000O0O0Ol0oO0O0O0OOOO 0O
o ol Hliiialo ojofiio o oo o 0
00 000 0 0 0
00 000 0 0 0
0 0. 000 0 0 ‘
0 0! 000 o0 ] 0
00 00 00 0 0
< 0 0 0.0 00 0 L0
0 0000O0GOCO0(OO0OO0OOGOGOO 0
0000000 O0j00O0O0O00O0O0O0 0
Baseline Vector
Monospaced Font Proportionally Spaced Font

ZK-5280-86

10.2.2 Lines of Text

Lines of text (for example, within a paragraph) share a spatial relationship
with other lines of text. Ordinarily, you read lines of English text from left

to right. Your eyes trace an imaginary path across the page from the left ‘
margin to the right margin. When you reach the end of a line, you read the
next line below the current one.

10-2



Text Attributes

By default, UIS draws a line of text in this left-to-right direction called the
default major path. To begin a new line of text, UIS performs a secondary
downward movement called the default minor path. This path is the normal
relationship between lines of English text and the direction in which they
are drawn. Figure 10-3 illustrates the two default paths that UIS uses to
draw text.

Figure 10-3 Text Path

Malor Path .
et | @ N1ght at the opera

Minor

e | g day at the zoo

2ZK-5467-86

10.2.3 Character Strings

Characters within character strings share a spatial relationship with one
another.

’ Text Slope

UIS draws all character string characters at the same angle to the major
path. The actual path of text drawing is a line that contains the baseline
points of all character cells in a character string. The angle between the
actual path and the major path, measured counterclockwise, is called the
angle of text slope. UIS can draw text at any angle from 0 to 360 degrees.
Figure 10-4 shows how to manipulate text slope.

Text Margins

' UIS draws character strings along the actual path of the text drawing within
certain explicit or implicit boundaries called margins. The implied text
margin for all text output is the minor text path when the angle of text
slope is 0 degrees. The programming interface lets you set explicit text
margins that are always parallel to the implied margins.

Character Spacing

Use x and y spacing factors to increase space uniformly between characters
and lines throughout the character string. The size of the characters
remains constant, while space between them increases or decreases.

Figure 10-5 shows how text path affects character spacing.

10-3



Text Attributes

Figure 10-4 Text Slope

£ a = Positive Text

Actual Path

Slope

00000000 o
00000000 0
00000000 0
o0 000 000 0
00000000 o
0 o0 &»ﬁ@fj@gn 0
(] 000 0

Actual Path = o000

Default Major Path 0000

La=0°

a
0
0

00000

i
(0 " k{%&%%

0

3

Default Major
Path

< a = Negative Text Slope

Actual Path

10-4



Text Attributes

Figure 10-5 Character Spacing

S O O o O ©
S 0 © o o <
S © © © © ©
o © © © © o

© © © © © © @ © ©

© O O O O © O O ©

O QIO © © ©O O O O O o O O O ©O
O O O O O 0 O O 0O 0 o o c o
O OO O O O O O O O O O O © o
QOO O 0O 0O 0O O O O O O © O ©
O QIO O ©O O 0O O O ©C O O O O
O OO © O O 0 O 0O O C o O O °
QO QIS © O O 0O O O 0O O O O O O

x Spacin
Default pacing

Minor
Path

Default
Actual _ Major
Path  Path

y Spacing

S O O O © © ©
o O © © © ©
o o o © O O
o O O © © °

E

O Q0 0O 0O O O 0 O O o o ©
S O 0 0 O © O O ° O O o
C O 0O 0 O 0O 0 o0 o o o e

c olc o oo & o o © o o o ©
c colo o o o0 0o oo o © © o ©
o olco o o ©c oo o0 oo © o O
o olo o oo ©o 0o o000 o o o
o oo o o000 00 o o o o O
O OO0 O ©O O O O 0 O O © © © o
© ofco © © © O O O ©C O OO ©o O©

o oo © o © ©
O oo O © © O oM

ZK-5356-86

Figure 10-5 Cont’d. on next page

10-5



Text Attributes

Figure 10-5 (Cont.) Character Spacing

‘roooooooo “oooooooo
0000O0CO0CO0O 00000000V
000000O0O0O 0 0000O0O0O0O
0000O00O0C0CO 000000O0GOCO
000000O00 00000OGOCO
000000O0O0O 00000O0O0O0O0
0o o0 0o0fEo0o0O0O0O
00 00 [ 0000
00 00 Baseline 0 0000
Point

00 00 0 0000
00 00 0 0000
00 00 0 0000
loo 0.0 0 00
00 00 0000 000
00 00 0000 000

/ y Spacing

Major
Path

00000O0CO0O0 00000000
00000000 00000O000O0O0
00000000 00000000
00000000 000000O0O0O
00000000 00000O0O0COC
00000000 00000O0C0O0O0OQ
00 o0 00 0 00
00 [] 00 0 00
00 001 00 0 00
00 00 0 00
00 00100 0 000
00 00f0 0 x Spacing 0 000
Lo o100 00 0 000
000000O00O0GC0 0 000
000000O0O0GC0 000000O0O0O

Minor
Path

2ZK-5357-86

Text Formatting

Use justification to arrange character strings on a line as follows:
* Flush against the left margin

* Flush against the right margin

¢ Centered between margins

* Both right and left justified (fully justified)

10-6



Text Attributes

10.2.4 Character Cell

Character cell components share a spatial relationship with one another.
You can change orientation and shape of a single character cell in the
virtual display through character rotation, slanting, and scaling. When
you modify these attributes, you alter the character cell with respect to

its baseline vector. For example, if you modify the height of a scaled
character, its height-relationship changes. The resulting letter might appear
“squat’”’ or vertically elongated.

Rotating Characters

You can rotate a single character around its baseline point. The angle of
character rotation is the angle between the baseline vector and the actual
path of text drawing, measured counterclockwise. Figure 10-6 shows
simple character cell rotation.

Figure 10-7 shows simultanéous character rotation and text slope
manipulation.

10-7



Text Attributes

Figure 10-6 Simple Character Rotation

o ©
009
°, °
o o %0 °,
o ¢ e o o
o ° 0
oo 4 4 o
o 0o %, ©¢
Baseline Point °, o 0 o ©
%0 © %o %5 °
°, oooa o, o
°, 0,70 %6 ° Actual Path
o o o %, °
o %5 ° o 4
2 o2 [
o
00000000 o
00000000
00000000 B8 ‘
00000000
00000000
00000000 £ 3 = Negative Character Rotation
00000000
00000000 Baseline Vector
00000000
00000000 +
00000000
00000000
- Q 0000 000 e O°
00000000CO
00000000
Baseline Vector
and
Actual Path

£ (3 = Positive Character Rotation
2K-5277-88

10-8



Text Attributes

Figure 10-7 Character Rotation with Slope Manipulation

00600000GCO
0 00O0O0OO0O0OOQOC
0000000 O
00000000
00000000
00000000
00000000 00000000 .
060000000 oooooooo/
00000000 00000000
00000000 0006000000
00000000 60000000
00000000 00000000
50000000 00000000 A0 0000000,
00000000 °°°°°°°°/°°°°°°°°
Baseline Point 00000000 60000000 60000000
00000000 00000000
000000000 00000000
50000000 00000000
00000000 b0 0000000
oooooooo/°°°°°°°°
Actual Path 06000000 00000000
00000000
00000000
00000000
00000000
00000000
00000000
a

T .

Default Major Path

Figure 10-7 Cont’d. on next page

10-9



Text Attributes

Figure 10-7 (Cont.) Character Rotation with Slope Manipulation

Baseline Point

Actual Path

Baseline Vector
of Character Cell

Default Major Path -

_ o = Angle of Text Slope
.. 3 = Angle of Rotation
x 527386

When you set the character rotation attribute to 0 and text slope is 0
degrees, the angle of character rotation behaves in the following manner.

Slope Major Rotation
(degrees) Path (degrees)
0 Left to right (default) 0

0 Bottom to top -90

0 Right to left -180

0 Top to bottom -270

Figure 10-8 illustrates the appearance of the angle of rotation after text path
modification when default character rotation is in effect.

10-10



Text Attributes

Figure 10-8 Text Path Manipulation Without Character Rotation

0000O00O0O0O 0000O0CO0O0O
000000O0CO0O 000000O0CO0O0
000000O0O0TCO 00000O00O0O0O0
00000000 000000O0O0O0
000000O0O0O 000000O0COCO
00000000 00060000O0GC0
0 00 0 0.0 0u1%0 0
000 0000 00 00 00
Baseline Point 0 0 0:1.0 0 0 0 00 00 0
000 0000 o0 0
00010000 00 0
000 0000 o0 0
o;oog;}g;: 33 g Angle of Slope = £ a = 0°
00000O0O0O 00 0
Baseline Vector
Actual Path = Defauit Major Path
LEFT . RIGHT

Baseline Vector = Actual Path
Lp=0 ZK-5355-86

Figure 10-8 Cont’d. on next page

10-11



Text Attributes

Figure 10-8 (Cont.)

Text Path Manipulation Without Character

Rotation
TopP Angle of Slope = a = 0°
A} r
0 000000O0
0000000O0O
0 000000O0O
0 0000O0O0O
0 000000O
0000000O0GO
0 0% 0 0
0 0! 0 0
Baseline 00 o 0
Point 007 . 0 Baseline Vector L. Actual Path
0 0 0 0 £ B=-90°
00 0 0 ’\'
00 | 0 9 A -
00000O0CO0O
ActualPath=Jo 0 0 0 0 0 0 0 Actual Path =
Major Path Major Path
Baseline Vector
o 0 0 00000
0 0 000000
0 00 00000
o 0 0 00000
0 00000O0O
o 0000000
0 0
0 0 0 0000
o 0 0 0000
0 0 0 0000 Baseline Point
000 0000
00 0i1.00GO0O -\'
0 0 0 0 000 B -
0 0 00000OCO
000000GOCO
BOTTOM

2ZK-5361-86

Figure 10-8 Cont’d. on next page

10-12



Text Attributes

Figure 10-8 (Cont.) Text Path Manipulation Without Character

Rotation
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
001007100 o i 0o
Baseline 0 0 [ 0 0100 9.0 0780000 gaceling Vector
Point 0 01 0 00 000 000
0
0o 00 000 000
00 0o 000 000
0o 00 000 000
00 100 000 000
00000000 000 000
00000000 00000000
Angle of Slope = £ a =0°
Actual Path = Major Path
LEFT , RIGHT

£ = -180°

ZK-5358-86

Figure 10-8 Cont’d. on next page

10-13



Text Attributes

Figure 10-8 (Cont.) Text Path Manipulation Without Character

Rotation
TOP
p
0 00O0OOO OO
0 00O0O0O0OO0O
0 00O0O0O0O0CO
0 00O0CO0O0O0OO00O0
000O0OUOG©O0O
000O0O0O0OOUOO
. "o
0 0 0 Baseline Vector
0 00 000
0oo 000 / Baseline Vector L Actual Path
000 000 £ B=-270°
000 000
‘1o 0 0 000 h >
0 0 0 00 00O
0 0 0 O0O0OOUO0O
Actual Path = ,
Major Path \
000O0UOOT 0O
0 00O0O0O0OU0VO
0 00O0O0O0OO0O
0 0 0O0O0CO0TVO0O
00O0O0O0O0OO0O0
0 0 00O0O0O0O
00 0 00
00 /] 00
00 00
Baseline Point
00 0 0
00 0 0
00 0 00
[/] 0.0 h >
0000 00
00 0 00
v \j
Angle of Slope = L a = 0°
BOTTOM

ZK-5358:06

Slanting Characters

Character slant is a measure of the angle between the up vector and
baseline vector of the character cell. Character slant is 0.0 when this angle -
is 90 degrees. As slant increases, the up vector rotates clockwise toward
the baseline vector, until the two vectors coincide at a slant of 90 degrees.
Figure 10-9 shows a slanted character cell where the actual path and the
default major path form an angle of 0 degrees.

10-14



Text Attributes

Figure 10-9 Character Slanting

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

;/0‘\"' 0000000
A 0000000
0000000
000O0OO0GO 0O 0 0 0 0 00 0O
00000000 0 0 0 00000
000000O0C0O00 \&ooooooo
00000000 000000GO0
00000000 £ 8= Negative Character Slant
00000000
Up Vector 00000000
00000000
00000000
000000600
00000000
'/_oooooooo
¢ 160000000 _
00000000
00000000
Baseline Vector
00
000
0000
00000
ooooooo/ >
00000000 £ § = Positive Character Slant

IK-52715-86

Figure 10-10 shows character slanting, character rotation, and text slope
operations performed simultaneously on two character cells.

10-15



Text Attributes

Figure 10-10 Character Slanting and Rotation with Slope
Manipulation

0000O0O0OO
000000O0OQO
0000000
0000000
000 00O0O0OO0
0 000O00O00O0
00 0O0O0CO0O0OQ0
0 0 0000 O
0000000
0 0 0000 O
0000000
0 00 0000O0
0000000
0000000 ‘
0000000

00000000
0000000Q

00000000

00000000

00000000

00000000

60000000

00000000

00000000

00000000

Actual Path 000000009
00000000
00000000
00000000
00000000

Up Vector

Baseline Vector

Default Major Path

2K.527296 ‘

Figure 10-10 Cont’d. on next page

10-16



Text Attributes

Figure 10-10 (Cont.) Character Slanting and Rotation with Slope
Manipulation

Actualql \ -

Baseline Vector

£ a = Angle of Text Siope Default Major Path

£ (3 = Angle of Character Rotation
< @ = Angle of Character Slant

2K.5274.96

Scaling Characters

Character scaling involves increasing or decreasing the size of the character
cell. Scaling factors specify the world coordinate space where the scaled
character is drawn. The character cell is expanded or contracted to fit the
specified space.

Figure 10-11 illustrates character scaling.

10-17



Text Attributes

Figure 10-11 Character Scaling

S o O O O
S o O © o
S o ©o o o
S O o o o
S O O O o

© © 0O 9 0 0 o0 o o o o o o

000
000000

©C O 0 0O O 0O 0O 0 O O O O o o ©
S O 0 O 0 O T O O O 9O O O O O
2

2K-5360-86

10.3  Using Text Attributes

Several attributes are associated with text output. You can do more than
simply choose from a library of fonts. For example, you can perform the
following operations:

* Use scaling and slanting to modify the appearance of any font

¢ Use formatting modes and paths to change the way the system draws
text in the virtual display

The following table lists routines that provide other types of text

manipulation.

Routine Function

UISSNEW_TEXT_LINE Moves the current text position along the
minor text path

UIS$SET_ALIGNED_POSITION Sets the current text position at the upper-
left corner of the character cell

UIS$SET_POSITION Sets the current text position at the baseline

point of the character cell

These routines contain an atb argument, which indicates that appropriate
text attribute settings can modify their behavior.

10-18



10.3.1 Modifying Text Attributes

When you modify text attributes, you do not change the default attribute
settings within attribute block 0 itself. Think of attribute block 0 as a
template of default settings; you modify a copy of this attribute block
for use within your program. Attribute modification routines contain two

arguments:

Text Attributes

¢ jatb—Input attribute block number

* oatb—Output attribute block number

Table 10-1 lists all text attributes and their default settings.

Table 10-1 Default Settings of Text Attributes in Attribute Block 0

Text Default Modification
Attribute Setting Routine
Character rotation 0.0 UIS$SET_CHAR_ROTATION
Character size Specified by the font UIS$SET_CHAR_SIZE
Character slant 0.0 UIS$SET_CHAR_SLANT
Character spacing 0.0,0.0 UIS$SET_CHAR_SPACING
Text formatting Normal UIS$SET_TEXT_FORMATTING
Text margins 0.0,0.0 UIS$SET_TEXT_MARGINS
Text path Left to right (default UIS$SET_TEXT_PATH
major path)
top to bottom (default
minor path) :
Text slope 0.0 UIS$SET_TEXT_SLOPE
Font Multinational ASCII, UIS$SET_FONT

14-point, fixed pitch

Modify attributes as follows:

1 Choose an appropriate attribute routine.

2 Specify 0 as the iatb argument to obtain a copy of attribute block 0.

3 Specify a number from 1 to 255 as the oatb argument. You can then
refer to the attribute block in subsequent UIS graphics and text routines
or in any other attribute modification routine.

The following routines reference modified attribute blocks in the atb

argument.

¢ Graphics routines

e Text routines

3

e UIS$MEASURE_TEXT
e UIS$NEW_TEXT_LINE

These routines are discussed later in this chapter.

10-19



Text Attributes

10.4  Programming Options

You can modify text attributes in your application to change font type,
margin settings, and character spacing.

Fonts

Use UIS$SET_FONT to change the font type of a line of text. You must
specify the desired font file name in the font_id argument. Font files reside
in the directory SYSSFONT. The directory contains one file of fill patterns
(UISS$FILL_PATTERNS) and 26 font files. You can choose between two
types of fonts:

e Multinational character fonts — Contain international alphanumeric
characters, including characters with diacritical marks.

¢ Technical fonts — Include scientific and mathematical symbols.

Font File Names
A standard 31-character file name identifies each font file as follows:
DTERMINMO6OKOOPGO001UZZZZ02A000

The following table defines the first 16 bytes of this sample file name,
which represents unique font specifications.

Field Field Name Value Meaning

1 Registration D Registered by Digital
code

2-7 Type family ID TERMIN Terminal

8 Spacing Mas 13 pitch (monospaced)

9-11 Type size 06035 24 points (240 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0038 Roman

16 Weight P Bold

16 Proportion G - Regular

Refer to Appendix Appendix C for more information about UIS fonts.
NOTE: You can define logical names to represent font file names.

Font File Types‘

The following table lists sample font file names and their device-dependent

font file types.
System Font File Name
Mutinational Character Set Fonts
Monochrome DTERMINMO60OKO0O0PG0001UZZZZ02A000.VWSSFONT

Intensity or color DTERMINMO60OKO0OPG0001UZZZZ02A000.VWS$VAFONT

10-20



NOTE:

NOTE:

Text Attributes

System Font File Name
Technical Character Set Fonts
Monochrome DVWSVT0GO3CK00GG0001QZZZZ02A000.VWSSFONT

Intensity or color DVWSVTOGO3CK00GG0001QZZZZ02A000.VWS$SVAFONT

Whenever you reference a font file name as in UIS$SET_FONT, do not
specify the directory SYSSFONT or the file type.

Setting the Text Margins
Use UIS$SET_TEXT_MARGINS to set the left and right margins.

Setting the Text Formatting Mode

Use UIS$SET_TEXT_FORMATTING to set the four text formatting modes—
left justification, right justification, center justification, and full justification.

UIS$SET_TEXT_FORMATTING does not automatically wrap long lines of
text.

Setting the Character Spacing

Use UIS$SET_CHAR_SPACING to change the kerning (spacing between
characters) or the leading (spacing between lines).

New Text Lines

Use UISSNEW_TEXT_LINE to move to a new line. Use UIS$SET_CHAR_
SPACING in conjunction with UISSNEW_TEXT_LINE to manipulate the
space between the old and the new line.

Character Rotation

Use UIS$SET_CHAR_ROTATION to rotate characters about a pivotal point
(called the baseline point) from 0 to 360 degrees.

Aligning Text Along the Baseline and Top of Chararcter Cell

Use UIS$SET_POSITION to align text along the baseline vector; use
UIS$SET_ALIGNED_POSITION to align text along the upper-left corner of
the character cell.

Specifying Character Slant

Use UIS$SET_CHAR_SLANT to specify the angle relative to the text
baseline vector by which text is to be slanted.

Specifying Character Scaling

Use UIS$SET_CHAR_SIZE to specify the width and height of characters in
a font.

Specifying Slope of the Text Baseline

Use UIS$SET_TEXT_SLOPE to specify the angle of the actual path of text
drawing relative to the major path.

10-21



Text Attributes

Specifying the Text Path

Use UIS$SET_TEXT_PATH to specify the direction of text drawing. You
can draw text in four directions:

* Left to right
* Right to left
* Bottom to top

* Top to bottom

You must use the direction in the context of a major text drawing path
and a minor text drawing path. The major path of text drawing is the
relationship between letters; the minor path is the relationship between
lines.

10.4.1 Program Development!l
Programming Objectives

To draw the multinational character set fonts available in the directory
SYS$FONT and to show how to move to a new text line.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport. ‘
3 Modify the font attribute in attribute block 0.
4

Use UISSNEW_TEXT_LINE and the appropriate attribute setting to
move to the beginning of a new line.

5 Draw a line of text.

6 Repeat steps 3 through 5.

Note that program TEXT_1 uses logical names to represent font file names.
Some actual font names occupy two lines. 1

PROGRAM TEXT_1

IMPLICIT INTEGER(A-Z)

INCLUDE 'SYS$LIBRARY:UISENTRY’

INCLUDE ’SYSS$LIBRARY:UISUSRDEF’
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,30.0,30.0,20.0,10.0)
WD_ID1=UISSCREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’ , FONTS’ )

CALL UIS$SET_FONT(VD_ID,0,1,’MY_FONT_1') 8
CALL UISSTEXT(VD_ID,1,’'The quality of mercy is not strained’,
2 1.0,30.0)

CALL UIS$SET_FONT(VD_ID,O,2,'MY_FONT_Z’)
CALL UIS$NEW_TEXT_LINE(VD_ID,2) B
CALL UISSTEXT(VD_ID,2,'Long visits bring short compliments’)

CALL UISS$SET_FONT(VD_ID,0,3,'MY_FONT_3')

CALL UIS$SNEW_TEXT LINE(VD_ID,3)

CALL UISSTEXT(VD_ID,3, ‘Wise men make proverbs and fools’)

CALL UIS$NEW_TEXT_LINE(VD_ID,3)

CALL UISS$TEXT(VD_ID,3, ‘repeat them’)

CALL UIS$SET_FONT(VD_ID,0,4, 'MY_FONT_4')

CALL UIS$SNEW_TEXT_LINE(VD_ID,4) ‘
CALL UISSTEXT(VD_ID,4,'Je pense donc je suis’)

10-22



NOTE:

Text Attributes

CALL UIS$SET_FONT(VD_ID,0,5,’MY_FONT_5")

CALL UIS$NEW_TEXT_LINE(VD_ID,5)

CALL UIS$TEXT(VD_ID,5,’D0 well and have well’)

CALL UIS$SET_FONT(VD_ID,0,6,'MY_FONT_G’)

CALL UIS$NEW_TEXT_ LINE(VD_ID,6)

CALL UISS$TEXT(VD_ID,6,’You cannot make a crab walk straight’)

CALL UIS$SET_FONT(VD_ID,0,7, 'MY_FONT_7’)
CALL UIS$NEW_TEXT LINE(VD_ID,7)
CALL UISSTEXT(VD_ID,7,’Great minds think alike’)

CALL UIS$SET_FONT(VD_ID,0,8,’MY_FONT_8')

CALL UISS$NEW_TEXT _LINE(VD_ID,8)

CALL UISSTEXT(VD_ID,8,'One today is worth two tomorrows’)

CALL UIS$SET_FONT(VD_ID,0,9, 'MY_FONT_ 9")

CALL UISSNEW_TEXT_LINE(VD_ID,9)

CALL UISSTEXT(VD_ID,9,’'With Latin, a horse, and money, you may’)
CALL UIS$NEW_TEXT_LINE(VD_ID,9)

CALL UISSTEXT(VD_ID,9, 'travel the world’)

CALL UIS$SET_FONT(VD_ID,0,10,’MY_FONT_10')

CALL UISSNEW_TEXT_LINE(VD_ID,10)

CALL UIS$TEXT(VD_ID,10,’Whispered words are heard afar’)
CALL UIS$SET_FONT(VD_ID,0,11,’MY_FONT_11')

CALL UISSNEW_TEXT LINE(VD_ID,11)

CALL UISSTEXT(VD_ID,11,'Et tu, Brute?’)

CALL UIS$NEW_TEXT_LINE(VD_ID,11)

CALL UISSTEXT(VD_ID,1l,’Per ardua astra’)

CALL UIS$SET_FONT(VD_ID,0,12,'MY_FONT_12')
CALL UIS$NEW_TEXT_LINE(VD,ID,12)
CALL UISSTEXT(VD_ID,12,'Velut arbor aevo’)

CALL UIS$SET_FONT(VD_ID,0,13, 'MY_FONT_13’)

CALL UISSNEW_TEXT_LINE(VD_ID,13)

CALL UISSTEXT(VD_ID,13,’One mule scrubs another’)

CALL UIS$SET_FONT(VD_ID,0,14,’MY_FONT_14")

CALL UISSNEW_TEXT_LINE(VD_ID, 14)

CALL UISSTEXT(VD_ID,14,'Life is just a bowl of cherries’)
PAUSE

END

The font attribute in attribute block 0 is modified in 14 calls to UIS$SET_
FONT A. An attribute block with a modified font attribute for each font in
SYS$FONT now exists. Each attribute block is identified by its creation-
time output attribute block number.

The atb argument of UIS$TEXT B uses the appropriate attribute block
number to generate text in the desired font.

A call to UIS$NEW_TEXT_LINE 8 causes each new line of text to begin on
a new line at the left margin.

Before you run the demonstration programs, you must assign a logical

name to the font used in the demonstration program. To do this, invoke
the indirect command file SYSSEXAMPLES:DEFFONT.COM.

10-23



Text Attributes

10.4.2 Calling UIS$SET_FONT and UISSNEW_TEXT_LINE

Note the positional order of the attribute routines. Attribute routines
modify the attribute block used by the routine creating the graphic object
and, therefore, must precede that routine. The attribute routine and the
output routine must reference the same attribute block. Figure 10-12
contains examples of each UIS font.

Refer to Appendix Appendix C for a listing of UIS fonts.
Figure 10-12 UIS Fonts

The ualltg of mercy is not strained

Long visits bring short compliments
Wise men make proverbs arnd fools
repeat them

Je pense donc Je suis

Do well and have well

ou cannot make a crab walk straight

Great minds think alike

One today is worth two tomorrows

With Latin, a horse, and money you may
travel the world

Whispered words are heard afar

Et tu, Brute?

Per ardua astra
Velut arbor aevo

One mule scrubs another

ZK-4546-85

10.4.3 Program Development Il
Programming Objective

To increase character and line spacing in two lines of text.

10-24



Text Attributes

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport with a title.

3 Use the default character spacing factor to draw a line of text.
4

Use UIS$SET_CHAR_SPACING to modify the character and line
spacing factors. :

N

Use the modified spacing attribute to draw a line of text.

6 Use UISSNEW_TEXT_LINE with the modified spacing attribute to
move to the beginning of a new line.

7 Repeat steps 3 through 5.

PROGRAM SPACE_1

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY '
INCLUDE ’SYS$LIBRARY:UISUSRDEF’

VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,40.0,40.0,14.0,6.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$SWORKSTATION’ , ' KERNING AND LEADIN

CALL UIS$SET_FONT(VD_ID,0,15,’MY_FONT_1') a
CALL UISSTEXT(VD_ID,15,'The best mirror is an old friend’,0.0,40.0)

CALL UISSNEW_TEXT LINE(VD_ID, 15)

CALL UIS$SET_CHAR_SPACING(VD_ID,15,16,3.0,3.0) @

CALL UIS$TEXT(VD_ID,16,’'The best mirror is an old friend’) 8
CALL UIS$NEW_TEXT_LINE(VD_ID,16) B

CALL UISSTEXT(VD_ID,15,’In the coldest flint there is hot fire’)

CALL UIS$SNEW_TEXT LINE(VD_ID,15)
CALL UISSTEXT(VD_ID,16,’In the coldest flint there is hot fire’)

PAUSE
END

A call to UIS$SET_FONT M sets the font attribute. The attribute block
containing the newly modified font attribute is assigned the number
15. The logical name MY_FONT_1 denotes a font used throughout the
program.

The first line of text is drawn in the appropriate font 8 at the virtual display
location specified in UIS$TEXT.

When the next line of text is written, UISSNEW_TEXT_LINE references
attribute block 15 8. UISSNEW_TEXT_LINE uses the new font
characteristics to determine proper line spacing. If you use attribute
block number 0, UISSNEW_TEXT_LINE uses the characteristics of the
default font. In that case, the descenders of letters in the previous line
and the ascenders of the letters of the new line might crash into each other
or obscure portions of letters in either line. Therefore, you should call
UIS$NEW_TEXT_LINE using the appropriate attribute block number.

Attribute block 15 is further modified in a call to UIS$SET_CHAR_
SPACING 8. Now that attribute block 15 contains the previously modified
font attribute and the newly modified character spacing attribute, it is
assigned the number 16.

NOTE: Attribute block 15 still exists and can be referenced.

10-25



Text Attributes

‘ 1
The character and line spacing attributes are set to a factor of 3. Characters
are spaced by a factor of three times their width. Lines of text are spaced

by a factor of three times the height of the character.

Text is drawn and spaced, character by character, according to values
specified in the font attribute and the character spacing attribute in attribute
block 16 B, The character spacing component of the character spacing
attribute, or x factor, determines spacing between characters for left-to-right
and right-to-left text paths.

A call to UISSNEW_TEXT_LINE 8 creates a new text line using attribute
block 16. UISSNEW_TEXT_LINE uses the line spacing component of the
character spacing attribute, or y factor, to determine spacing between lines.
The y factor is used for top-to-bottom and bottom-to-top text paths.

10.4.4 Calling UIS$SET_CHAR_SPACING

Call UIS$SET_CHAR_SPACING as shown here to set character spacing in (
one line of the previous example.

UIS$SET_CHAR_SPACING specifies a spacing factor of 3. If you run this
program with the changes described above, your workstation screen will
display the graphic objects shown in Figure 10-13.

Figure 10-13 Character and Line Spacing

~ KERNING AND LEADING ‘

The best mior' s an old friend
T h e b [ 8 t

In the coldeat flint there is hot fire

I n t h e c o 1

ZK-4547-85

The line now extends beyond the right margin of the display viewport.

10-26



Text Attributes

10.4.5 Program Development Il
Programming Objectives

To create alignment along the top of the character cell and along the
baseline vector.

Programming Tasks

1 Create a virtual display.

Create a display window and viewport with title.
Draw a horizontal line the width of the viewport.

Use UIS$SET_ALIGNED_POSITION to set the current position for text
output at the leftmost point on the line.

& W N

Choose a font and modify the font attribute block in attribute block 0.
Use the new font to draw a line of text. '
Repeat step 4 using UIS$SET_POSITION.

Repeat steps 5 and 6.

o N O O

PROGRAM SET_POS

IMPLICIT INTEGER(A-Z)

INCLUDE ‘SYS$LIBRARY:UISENTRY'
INCLUDE ’SYS$LIBRARY:UISUSRDEF’

VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,40.0,40.0,18.0,5.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’, 'TEXT ALIGNMENT’)

CALL UISs$pPLOT(VD_ID,0,0.0,35.0,40.0,35.0) a

CALL UIS$SET_FONT(VD_ID,0,1,’MY_FONT_7")
CALL UIS$SET_ALIGNED_POSITION(VD_ID,1,0.0,35.0) @

CALL UIS$TEXT(VD_ID, 1, 'Never refuse a good offer’) B
CALL UIS$PLOT(VD_ID,0,0.0,20.0,40.0,20.0) @

CALL UIS$SET_POSITION(VD_ID,0.0,20.0) B
CALL UIS$SET_FONT(VD_ID,0,2,’MY_FONT_5')
CALL UISS$TEXT(VD_ID, 2, 'Weigh justly and sell dearly’) 6}

‘PAUSE

END
-Two horizontal and parallel lines are drawn with UIS$PLOT 8 6.

Unless the current position is specified in UIS$TEXT, both calls to
UIS$SET_ALIGNED_POSITION and UIS$SET_POSITION 8 B use the
starting points of the respective lines to establish the current position for
new text output.

Text creation 8 8 begins by default at the current position established in
UIS$SET_ALIGNED_POSITION and UIS$SET_POSITION.

10-27



Text Attributes

Figure 10-14 Baseline and Top of Character Cell

__TEXT ALIGNMENT _

7K-4548-85

10.4.6 Calling UIS$SET_POSITION and UIS$SET_ALIGNED_POSITION '

In Figure 10-14, the first sentence illustrates the alignment of text along the
top of the character cell. The second sentence illustrates alignment on the
baseline vector. -

10.4.7 Program Development IV

Programming Objective

10-28

To draw characters at three different angles relative to the baseline vector. ‘

Programming Tasks

N OO g R WN -

Create a virtual display.

Create a display window and a viewport with a title.

Choose a font and modify the font attribute in attribute block 0.

Draw a character string at the default angle 0 degrees.

Use UIS$SET_CHAR_SLANT to modify the character slant attribute. ‘
Use the modified attribute and draw the character string again.

Repeat step 5 and specify negative degrees.

The file name MY_FONT_12 is a logical name for a font in SYS$FONT.

PROGRAM SLANT

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY '

INCLUDE ’SYSSLIBRARY:UISUSRDEF’
VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,20.0,5.0,18.0,4.5)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’ , ‘CHARACTER SLANTING

CALL UIS$SET_FONT(VD_ID,0,1,’MY_FONT_ 12')

CALL UISSTEXT(VD_ID,1,’Unslanted characters do not lean’,0.1,5.0) 12
PAUSE

CALL UIS$SET_CHAR_SLANT(VD_ID,1,2,25.0) 8
CALL UIS$TEXT(VD_ID,2,'Slanted characters lean forward’,0.5,3.0) ‘

PAUSE



Text Attributes

CALL UIS$SET_CHAR_SLANT(VD_ID,1,3,-25.0) a

CALL UIS$TEXT(VD_ID,3,’'Slanted characters lean backward’,0.5,1.0)
PAUSE

END

A font is selected using UIS$SET_FONT 8. A text string is drawn with the
default attribute setting in attribute block 0 8.

Next, the character slant attribute is modified 8 to specify a 25 degree shift
to the right of a line perpendicular to the text baseline.

The character slant attribute is further modified B to specify a 25 degree
shift to the left of a line perpendicular to the text baseline.

10.4.8 Calling UISSSET_CHAR_SLANT

First, the character string is drawn at the default slant—0 degrees. Next,
the character string is drawn twice, first slanting each character 25 degrees
to the right of a line perpendicular to the text baseline and then slanting
each character 25 degrees to the left of that line.

Figure 10-15 shows character slanting.

Figure 10-15 Character Slanting

Unslanted characters do not lean

lIanted characters lean forward

Slanted characters lLlean vackuarad

10.4.9 Program DevelopmentV
Programming Objective

To draw a character string whose actual path increases at 20-degree
increments from 0 to 340 degrees.

Programming Tasks
1 Create a virtual display.

2 Create a display window and viewport.

10-29



Text Attributes

3 Create a DO loop that increases from 0 to 360 degrees by 20-degree
increments, as follows:

* Place the slope attribute modification routine UIS$SET_TEXT_
SLOPE within the DO loop.

* Place the text drawing routine UIS$TEXT within the DO loop.
The font file name MY_FONT_13 is a logical name for a font in SYS$FONT.

PROGRAM SLOPE

IMPLICIT INTEGER(A-Z)

INCLUDE ’'SYS$LIBRARY:UISENTRY'’

INCLUDE ’SYS$LIBRARY:UISUSRDEF’
VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,50.0,50.0,10.0,10.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION','text slope’)

CALL UIS$SET_FONT(VD_ID,0,1,'MY_FONT_13')

DO I=0,340,20

CALL UIS$SET_TEXT_SLOPE(VD_ID,1,2,FLOAT(I))
CALL UISSTEXT(VD_ID,2,'  Slope!’,25.0,25.0) a
ENDDO

PAUSE

END

A font is selected and the default font attribute setting is modified with
UIS$SET_FONT @.

A DO loop is established B B. The counter I is initialized to 0 and increases
by increments of 20. The angle argument in UIS$SET_TEXT_SLOPE

uses the value of I as the new text baseline attribute setting 8. The VAX ‘
FORTRAN function FLOAT changes the integer counter I to a real number

B

From UIS$TEXT, text strings are drawn from a central point (25.0,25.0) at
20-degree intervals @.

10.4.10 Calling UIS$SET_TEXT_SLOPE

Text strings are drawn at 20-degree intervals from 0 degrees to 360 degrees.
The angle of each new text baseline increases by a multiple of 20. Text

is drawn in a counterclockwise direction from the default horizontal
baseline.

10-30



Text Attributes

Figure 10-16 Manipulating the Text Baseline

- text slope

ZK-5422-86

) 10.4.11 Program Development VI
Programming Objective

To rotate each character to offset text slope.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Create a DO loop.

4 Modify the attributes within the DO loop.

PROGRAM SLOPE_ROTATE
IMPLICIT INTEGER(A-Z)
INCLUDE ‘SYS$SLIBRARY:UISENTRY'
INCLUDE ’‘SYS$LIBRARY:UISUSRDEF'

10~-31



Text Attributes

VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,50.0,51.0,10.0,10.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ‘SYS$WORKSTATION',
2 'TEXT SLOPE AND CHARACTER ROTATION'’)

CALL UIS$SET_FONT(VD_ID,0,1,"MY_FONT_13')

DO I=0,340,20

CALL UIS$SET_TEXT_SLOPE(VD_ID,1,2,FLOAT(I)) @
CALL UIS$SET_CHAR_ROTATION(VD_ID,2,2,FLOAT(-1)) @8
CALL UISSTEXT(VD_ID,2,’ Rotate!’,24.0,28.5)
ENDDO

PAUSE
END

This program is identical to the previous program SLOPE, except that this
program modifies the character rotation attribute as well as the text slope
attribute.

Within the DO loop, both attribute modification calls use the value of the
counter I to increase text slope angles and character rotation for different
purposes 88,

For every 20-degree increase text slope angle, the character rotation angle
of each character must be decremented by 20 degrees. Consequently, each
character baseline vector remains parallel to the default major path.

10.4.12 Calling UISSSET_CHAR_ROTATION

The program SLOPE_ROTATE draws a series of character strings from
a center point from 0 to 360 degrees at 20-degree intervals. Because the
character rotation angle exactly offsets the text slope angle, characters
maintain a readable orientation.

If you add a single call to modify the character slanting attribute, your
viewport displays character rotation and slanting as the text slopes from 0
to 360 degrees at 20-degree intervals. Figure 10-18 illustrates this character
rotation with slanting.

10.4.13 Program Development VII
Programming Objective
To manipulate the width and height of characters through scaling.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport with title.
3 Draw a character string.
4

Increase the character size for width and height by 1.

10-32



Text Attributes

Figure 10-17 Character Rotation Without Slanting

text slope and character rotation

ZK-5423-86

5 Repeat steps 3 and 4.

Font names used in this program are logical names.

PROGRAM CHARSIZE

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYSS$LIBRARY:UISENTRY'

INCLUDE ‘SYSS$SLIBRARY:UISUSRDEF’

REAL*4 WIDTH,HEIGHT
VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,70.0,90.0,12.0,16.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYSSWORKSTATION’, 'CHARACTER SCALING'’

CALL UIS$SET_FONT(VD_ID,0,1,’MY_FONT_1')

CALL UISSTEXT(VD_ID,l,’Great scott!’,0.0,90.0)
CALL UISS$SET_CHAR_SIZE(VD_ID,1,2,,2.0,2.0)
CALL UISSTEXT(VD_ID,2, ‘'Great scott!’,0.0,80.0) 4]

CALL UIS$SET_CHAR SIZE(VD_ID,1,2,,3.0,3.0)
CALL UISS$TEXT(VD_ID,2,’Great scott!’,0.0,70.0)
CALL UIS$SET_CHAR_SIZE(VD_ID,1,2,,4.0,4.0)
CALL UISS$TEXT(VD_ID,2;'Great scott!’,0.0,60.0)
CALL UIS$SET_CHAR SIZE(VD_1ID,1,2,,5.0,5.0)
CALL UIS$TEXT(VD_ID,2,'Great scott!’,0.0,50.0)

10-33



Text Attributes

Figure 10-18 Character Rotation with Slanting

2K -5424-86

CALL UIS$SET_CHAR_SIZE(VD_ID,1,2,,6.0,6.0)
CALL UIS$TEXT(VD_ID,2,’'Great scott!’,0.0,40.0)
CALL UIS$SET_CHAR_SIZE(VD_ID,1,2,,7.0,7.0)
CALL UIS$TEXT(VD_ID,2,’'Great scott!’,0.0,30.0)
CALL UISS$SET_CHAR SIZE(VD_ID,1,2,,8.0,8.0)
CALL UIS$TEXT(VD_ID,2, 'Great scott!’,0.0,20.0)
CALL UIS$SET_CHAR_SIZE(VD_ID,1,2,,9.0,9.0)
CALL UISS$TEXT(VD_ID,2,’'Great scott!’,0.0,10.0)
PAUSE

END

A font is selected B,
The unscaled character string Great scott! is drawn in the virtual display 8.

The character string is redrawn as scaled text. The scale factors for the
width and height are incremented 8 each time the character string is drawn
e

10-34



Text Attributes

10.4.14 Calling UISSSET_CHAR_SIZE

Figure 10-19 shows how the character string increases in height and width
as the scale factors increment.

Figure 10-19 Manipulating Character Size

Great scott!

Great scott!
Great scott!

Great scott!

Great scott!
Great scott!

Great scott!

10-35






11 Graphicsand Windowing Attributes

11.1  Overview
This chapter discusses the following topics:
* Creating dashed lines
* Creating lines of varying widths
* Using fill patterns
¢ Using clipping rectangles

11.2  Using Graphics Attributes

Graphics attributes affect arc type, line width, line style, and fill pattern
use.

) 11.2.1 Modifying Graphics and Windowing Attributes

When you modify graphics and windowing attributes, you do not change
the default attribute settings within attribute block 0 itself. Think of
attribute block 0 as a template of default settings; you modify a copy of
this attribute block for use within your program. Attribute modification
routines contain two arguments:

e jatb—The input attribute block number

¢ oatb—The output attribute block number

) Table 11-1 lists the default settings of graphics and windowing attributes.

Table 11-1 Default Settings of Graphics and Windowing Attributes

Default Modification
Attribute Setting Routine
Arc type Open UIS$SET_ARC_TYPE
Fill pattern Off UIS$SET_FILL_PATTERN
Line style Solid UIS$SET_LINE_STYLE
Line width 1.0 (unscaled) UIS$SET_LINE_WIDTH
Clipping rectangle Off UIS$SET_CLIP

Use the following procedure to modify attributes:
1 Choose an appropriate attribute routine.

2 Specify 0 as the iatb argument to obtain a copy of attribute block 0.

11-1



Graphics and Windowing Attributes

3 Specify a number from 1 to 255 as the oatb argument. You can then
reference the attribute block in subsequent UIS graphics and text
routines or in any other attribute modification routine.

Graphics and text routines reference modified attribute blocks in the atb
argument and in these routines:

e UIS$MEASURE_TEXT
e UIS$NEW_TEXT_LINE
e UIS$SET_ALIGNED_POSITION

11.2.2 Programming Options

11-2

Depending on the graphic object you create—a line, a polygon, an ellipse,
or a circle—you can choose from several attributes.

Fill Patterns

Fill patterns add shading to geometric figures on the workstation screen;
you use them most often to accentuate portions of a pie graph. Fill patterns
range in coloration:

» Light fill patterns—Represent light activity or minimum density.

* Heavy fill patterns—Represent heavy activity or maximum density.

To create your own fill pattern, select a character from any UIS font to
serve as a fill pattern glyph.

All fill patterns are stored together in a font file in the directory
SYS$FONT. For your convenience, this file name has been converted
to the logical name UIS$FILL_PATTERNS.

Select a fill pattern as follows:

1 Using UIS$SET_FONT, specify 0 to select a copy of attribute block 0 to
modify or specify the number of a previously modified attribute block
as the input attribute block.

2 Assign an output attribute block number to the newly modified attribute
block in UIS$SET_FONT. This number allows you to track attributes
and to modify some other element in this attribute block later.

3 Specify the name of the fill pattern file in UIS§SET_FONT. Use the
predefined logical name for the fill pattern file, UISSFILL_PATTERNS.

To use a character from a font other than the default fill pattern file as
fill pattern glyph, specify the appropriate font name.

4 Use UIS$SET_FILL_PATTERN to specify the actual fill pattern with
a UIS symbol in the argument index. A UIS symbol in the form
PATTS$C_xxxx exists for each fill pattern and serves as an index of each
fill pattern in the file. The symbolic constant represents a hexadecimal
offset that indicates the fill pattern position in the font file.



Graphics and Windowing Attributes

If you create a fill pattern from a UIS font other than the default fill
pattern file, specify the ASCII code of the desired character in the
index of UIS$SET_FILL_PATTERN.

NOTE: To disable fill patterns without modifying the fill pattern attribute, do not

specify the index argument in UIS$SET_FILL_PATTERN.

Refer to 6.6 for more information about UIS constants.

Setting the Arc Type

If you want to draw a pie chart, you can draw chords or use UIS$SET_
ARC_TYPE to request that no chord be drawn and specify one of the
constants shown in the following table.

Arc Type Description

UIS$C_ARC_OPEN Does not draw any chords

UIS$C_ARC_PIE , Draws a line from both end points of the arc to the center
position

UIS$C_ARC_CHORD Draws a line connecting the end points of the arc

Remember that fill patterns are not drawn in the arc when the arc type
attribute is specified as OPEN.

Line Width

Use UIS$SET_LINE_WIDTH to increase the apparent thickness of lines
displayed on the screen. Note that this routine affects the thickness of
lines created with the following routines only:

e UISSLINE
e UIS$LINE_ARRAY
e UIS$PLOT

e UIS$PLOT_ARRAY
e UISS$ELLIPSE

Line Style

Occasionally, you need something other than a solid line. Use UIS$SET_
LINE_STYLE to create dots, hyphens, and dashes.

11.2.2.1

Program Development |
Programming Objectives

To draw the different arc types and to demonstrate their use with fill
patterns.

Programming Tasks
1 Create a virtual display.
2 Create a display window and viewport with title.

3 Use the chord arc type in attribute block 0 to modify the arc type
attribute.

11-3



Graphics and Windowing Attributes

Use UIS$CIRCLE to draw an arc with the modified attribute block.
Repeat steps 3 and 4.

Erase the virtual display and delete the display window.

Create a display window and viewport with an identifying title.

Modify the arc type attribute. Select the pie arc type.

@O ©© N O O M

Select a fill pattern as follows:
* Modify the font attribute in attribute block 0.
* Modify the fill pattern attribute block 0.

10 Use the modified arc type, font, and fill pattern attribute blocks to draw
an arc. :

PROGRAM ARC

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYSS$LIBRARY:UISENTRY'
INCLUDE ’SYSSLIBRARY:UISUSRDEF’

VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,40.0,40.0,15.0,15.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYS$SWORKSTATION','CHORD AND PIE’)

CALL UISS$SET_ARC_TYPE(VD_ID,0,6,UIS$C_ARC_CHORD)
CALL UIS$CIRCLE(VD_ID,6,5.0,20.0,15.0,0.0,150.0)

CALL UIS$SET_ARC_TYPE(VD_ID,0,1,UIS$C_ARC_PIE) 8
CALL UIS$CIRCLE(VD_ID,1,23.0,20.0,15.0,0.0,150.0)

PAUSE

CALL UIS$DELETE_WINDOW(WD_ID)
CALL UISSERASE(VD_ID) @

PAUSE
WD_ID=UISSCREATE_WINDOW(VD_ID, ' SYS$SWORKSTATION’,'FILLED PIE’) 8

CALL UIS$SET_ARC_TYPE(VD_ID,0,1,UIS$C_ARC_PIE)

CALL UIS$SET_FONT(VD_ID, 1,2, 'UISSFILL_PATTERNS’)

CALL UIS$SET_FILL_PATTERN(VD_1D,2,3,PATTSC_HORIZ2 6) B
CALL UIS$CIRCLE(VD_ID,3,18.0,20.0,15.0,0.0,150.0)

PAUSE
END

The program ARC creates two arcs and specifies two ways of closing those
arcs B @.

To change the window caption, delete the display window and its
associated viewport B. Because the second part of the program draws a
new graphic object, erase existing graphic objects B.

A new display window is created and its viewport has a new title. B.

The new graphic object is another arc with a pie arc type that contains a fill
pattern B.

11-4



~w—

Graphics and Windowing Attributes

11.2.2.2 Célling UIS$SET_ARC_TYPE and Using Fill Patterns
Figure 11-1 shows two ways to close an arc.

The second part of the program ARC executes and the fill pattern is drawn
in the pie as shown in Figure 11-2.

Figure 11-1 Closing an Arc

___CHORD AND PIE

ZK-4550-85

11-5



Graphics and Windowing Attributes

Figure 11-2 Filling a Closed Arc

FILLED PIE

ZK-4551-85

11.2.2.3 Program Development Il
Programming Objective

To draw thickened lines.

Programming Tasks
1 Create a virtual display.
2 Create a display window and viewport with a title.

3 Draw two horizontal lines the width of the viewport—one near the
bottom of the viewport and one near the top of the viewport.

4 Draw a vertical line connecting the horizontal lines.

11-6



§ Modify the line width attribute in attribute block 0 by a factor of 2.

Graphics and Windowing Attributes

6 Repeat steps 4 and 5.

PROGRAM LINE_WIDTH

IMPLI

CIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY'’
INCLUDE ‘SYSSLIBRARY:UISUSRDEF’

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,60.0,30.0,15.0,15.0)

WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’,’'LINE WIDTH’)

CALL
CALL

CALL

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL

PAUSE

END

UIS$PLOT(VD_ID,0,1.0,25.0,60.0,25.0)
UIS$PLOT(VD_ID,0,1.0,5.0,60.0,5.0)

UIss$pPLOT(VD_1D,0,5.0,5.0,5.0,25.0)

UISS$SET_LINE_WIDTH(VD_ID,0,1,2.0)
UIS$PLOT(VD_ID,1,10.0,5.0,10.0,25.0)

UISS$SET_LINE_WIDTH(VD_ID,0,1,4.0)
UIS$PLOT(VD_ID,1,15.0,5.0,15.0,25.0)

UIS$SET_LINE_WIDTH(VD_ID,0,1,6.0)
UIS$PLOT(VD_1D,1,20.0,5.0,20.0,25.0)

UIS$SET_LINE_WIDTH(VD_ID,0,1,8.0)
UIS$PLOT(VD_ID,1,25.0,5.0,25.0,25.0)

UIS$SET_LINE_WIDTH(VD_ID,0,1,10.0)
uIsspLOT(VD_ID,1,30.0,5.0,30.0,25.0)

UIS$SSET _LINE_WIDTH(VD_ID,0,1,12.0)
UIS$PLOT(VD_ID,1,35.0,5.0,35.0,25.0)

UISSSET_LINE_WIDTH(VD_ID,0,1,14.0)
UIS$PLOT(VD_ID,1,40.0,5.0,40.0,25.0)

UIS$SET_LINE_WIDTH(VD_ID,0,1,16.0)
UIS$PLOT(VD_ID,1,45.0,5.0,45.0,25.0)

UIS$SET_LINE_WIDTH(VD_ID,0,1,18.0)
visspLoT(VD_1ID,1,50.0,5.0,50.0,25.0)

UIS$SET_LINE_WIDTH(VD_ID,0,1,20.0)
UIS$PLOT(VD_ID,1,55.0,5.0,55.0,25.0)

Two parallel lines are drawn with normal thickness the width of the display

window with UIS$PLOT 8 8.

A vertical line of normal thickness is drawn 8.

Subsequent calls modify the line width attribute @ and draw the resulting
line B from the line in the lower half of the display window to the line in

the upper half of the display screen.

11-7



Graphics and Windowing Attributes

11.2.2.4 Calling UIS$SET_LINE_WIDTH
Figure 11-3 shows lines drawn from point to point with increasing
thickness.

Figure 11-3 Line Width

NOTE: Use UISSPLOT or UISSPLOT_ARRAY to draw extremely thick lines. Use
UIS$SET_FILL_PATTERN to draw filled rectangles.

11.2.2.5 Program Development Il
Programming Objective

To draw various patterns of thickened dots and dashes.

Programming Tasks {
Create a virtual display.

Create a display window and viewport with a title.

Modify the line width attribute to a thickness of 5 pixels.

Draw a solid thick line.

Modify the line style attribute.

Draw the dashed line.

N OO b WD =

Repeat steps 5 and 6.

PROGRAM LINE_STYLE

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYSSLIBRARY:UISENTRY’

INCLUDE ‘SYS$LIBRARY:UISUSRDEF’
VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,20.0,20.0,15.0,6.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYS$SWORKSTATION’,’'LINE STYLE AND wxn‘

11-8



Graphics and Windowing Attributes

CALL UIS$SET_LINE_WIDTH(VD_ID,0,1,5.0)
CALL UIS$PLOT(VD_ID,1,1.0,18.0,18.0,10.0)

CALL UIS$SET_LINE_STYLE(VD_ID,1,1, 'FFFFFFFO’X)
CALL UIS$PLOT(VD_ID,1,1.0,14.0,18.0,10.0)
CALL UIS$SET_LINE_STYLE(VD_ID,1,2,’'FOFOFOF0’X)
CALL UIS$PLOT(VD_ID,2,1.0,10.0,18.0,10.0)

CALL UIS$SET_LINE_STYLE(VD_ID,2,3,’90909090'x) 8
CALL UIS$PLOT(VD_ID,3,1.0,6.0,18.0,10.0)

CALL UIS$SET_LINE_STYLE(VD_ID,3,4,’10010010'x) B
CALL UIS$PLOT(VD_ID,4,1.0,2.0,18.0,10.0)

PAUSE
END

Create different line styles by selecting different hexadecimal values in the
calls to UIS$SET_LINE_STYLE 8. The hexadecimal values set bits in
the line style bit vector, which, in turn, generates a pattern.

11.2.2.6 Calling UIS$SET_LINE_WIDTH and UIS$SSET_LINE_STYLE

When the program LINE_STYLE executes, five lines are drawn, each with
the same width but different style. The pattern of dots and dashes is
determined by the value supplied to the line style longword bit vector as
shown in Figure 11-4.

Figure 11-4 Modifying Line Width and Style

line style and width

o
SEENENENNEENNNEEANEENEEERENERERANES
muun'm:u}u'

i

ZK-4552-85

11.2.2.7 Program Development IV

Programming Objective

To construct a vertical bar graph.

11-9



Graphics and Windowing Attributes

11-10

Programming Tasks

© O N O A WON =

10
20

30

Load arrays from DATA statements.

Create a virtual display.

Create a display window and viewport with a title.
Draw the x and y axes.

Draw the legend.

Draw the information along the x axis.

Draw the information along the y axis.

Modify the font and fill pattern attributes.

Use the appropriate fill patterns with the arrays to draw vertical bars to

their proper heights.

PROGRAM GRAPH

IMPLICIT INTEGER(A-Z)

CHARACTER*4 STRING

REAL ARRAY1(8),ARRAY2(8),X,X2,HEIGHT,Y 0

DATA ARRAY1 /5.0,10.0,12.0,13.0,15.0,20.0,25.0,30.0/
DATA ARRAY2 /0.0, 1.0, 2.0, 1.0, 4.0, 9.0,15.0,21.0/
INCLUDE ’SYSSLIBRARY:UISENTRY’

INCLUDE ’SYSS$LIBRARY:UISUSRDEF’

VD_ID=UIS$CREATE_DISPLAY(~5.0,~5.0,50.0,50.0,20.0,20.0)

WD_ID=UIS$CREATE_WINDOW(VD_ID,’'SYS$SWORKSTATION’,’'GRAPH’)

CALL UIS$SET_LINE_WIDTH(VD_ID,0,16,5.0)
CALL UIS$PLOT(VD_ID,16,0,0,0,35.0)
CALL UIS$PLOT(VD_ID,16,0,0,45.0,0) B8

CALL UISSTEXT(VD_ID,0,’U.S. ADULT POPULATION VS. CAR OWNERSHIP’,

2 10.0,-3.0)
Information along the y axis

DO 20 I =1,7

Y = 5.0 * FLOAT (I) B
N=25+*1 @

ENCODE (3,10,STRING) N 8
FORMAT (I3)

CALL UISS$TEXT(VD_ID,0,STRING,-3.0,Y)

CALL UIS$TEXT(VD_ID,0,’(in millions)’,-3.0,37.0)
Information along the x axis

DO 40 I = 1,8

Y = 5.0 * FLOAT (I)

N = 1900 + (10 * I) ;

ENCODE (4,30,string) N

FORMAT (14)

CALL UISS$TEXT(VD_ID,0,string,¥,-1.0)

CALL UIS$SET_FONT(VD_ID,0,1,’UISSFILL_PATTERNS’)
CALL UIS$SET_FILL_PATTERN(VD_ID,1,1,PATT$C_HORIZ4_4)
CALL UIS$SET_FILL_PATTERN(VD_ID,1,2,PATT$C_GREY12_16)

C PLOT POPULATION RECTANGLE

DO 100 I = 1,8

X = 5,0 * FLOAT(I)
X2 = X + 2.0
HEIGHT = ARRAY1(I)

CALL UISSPLOT (VD_ID,1, X,0.0, X,HEIGHT, X2,HEIGHT, X2,0.0)
C PLOT CAR RECTANGLE



Graphics and Windowing Attributes

X=X+ 1.0

X2 = X + 2.0

HEIGHT = ARRAY2(I)

CALL UIS$PLOT (VD_ID,2, X,0.0, X,HEIGHT, X2,HEIGHT, X2,0.0)
100 CONTINUE

PAUSE
END

Two arrays, ARRAY1 and ARRAY2, are declared B to store the height of
each vertical bar in the graph.

The x and y axes are drawn 88, However, a previous call to UIS$SET_
LINE_WIDTH 8 modified the attribute block that controls line appearance.
Line width (x and y axes) should be five times wider than normal.

A call to UIS$TEXT B8 creates the graph legend.

The y world coordinate values are computed B as multiples of 5, where
I represents the number of passes through the DO loop. The adult
population numbers are written at these intervals.

The numbers along the y axis are computed and stored in the variable N 8,
then returned to the variable string as character string constants @ 8.

Before you create the rectangles to represent the eight vertical bars in the
graph, you must specify the fill pattern—either an existing or new one.
Because this program does not modify the font attribute, UIS$SET_FONT
uses a copy of attribute block 0 to set the font attribute 8@, In this case,
specify the font ID UISSFILL._PATTERNS to indicate you want the file of
fill patterns.

Now use UIS$SET_FILL_PATTER to set the fill pattern attribute. The
program must use two different fill patterns to contrast adult population
vertical bars with automobile vertical bars 08 09,

The values previously assigned to each element of ARRAY1 and ARRAY?2
control the height of the vertical bars 08 M3,

11.2.2.8 Calling UIS$SET_FONT and UIS$SET_FILL_PATTERN
If you run the program GRAPH now, it produces the vertical bar graph as
shown in Figure 11-5.

Whenever you create a fill pattern, you must include UIS$SET_FONT and
UIS$SET_FILL_PATTERN. The positional order of the calls is important.
Calls to UIS routines that modify an attribute block must precede the call
that creates the graphic object.

To produce the desired change in the resulting graphic object, the
accompanying call to UISSPLOT must reference the same output attribute
block number.

11.2.3 Using the Windowing Attribute

The clipping rectangle attribute modifies the size of the viewable portion
of the virtual display. It does not resize the display window or display
viewport.

11-11



Graphics and Windowing Attributes

Figure 11-5 Vertical Bar Graph

{in millions)

1920 1930 1940 1950 1960 1970 1980
U.S. ADULT POPULATION VS, CAR OWNERSHIP

2ZK-4553-85

11.2.3.1 Programming Options ’
Only the clipping attribute controls what is visible through the display
window and viewport.

11-12



Graphics and Windowing Attributes

Clipping Rectangle

To restrict drawing in the virtual display to a specified rectangle, you can
use UIS$SET_CLIP to create clipping rectangles that view a portion of
your original display window. These rectangles are not display windows,
but you can use them to partition your virtual display into discrete areas.
They create an environment within your virtual display that can be visited
whenever you reference the appropriate attribute block with a modified
clipping rectangle attribute. Note that the clipping rectangle merely
restricts drawing to an area; it does not change mapping between the
virtual display and the display window.

11.2.3.2

Program Development
Programming Objective

To construct three clipping rectangles.

Programming Tasks

1 Create a virtual display.

Create a display window and viewport with a title.

Choose a font and modify the font attribute.

Specify a clipping rectangle and modify the clipping attribute.

N W N

Use the modified font attribute with clipping disabled to draw a line of
text.

6 Use the modified font attribute with clipping enable to draw a line of
text.

7 Repeat steps 3 through 6 two more times.

Logical names have been defined for font file names.

PROGRAM CLIP

IMPLICIT INTEGER(A-Z)

INCLUDE ‘SYSS$LIBRARY:UISENTRY'’

INCLUDE ’SYS$LIBRARY:UISUSRDEF’
VD_ID=UIS$SCREATE_DISPLAY(0.0,0.0,45.0,45.0,15.0,5.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYS$SWORKSTATION’, 'CLIPPING')

CALL UIS$SET_FONT(VD_ID,0,1,’MY_FONT_5’)

CALL UIS$SET_CLIP(VD_ID,1,5,1.0,1.0,10.0,40.0)
CALL UISSTEXT(VD_ID,1,'Still waters run deep’,0.0,40.0)
CALL UIS$NEW_TEXT LINE(VD_ID,1)

CALL UISSTEXT(VD_ID,5,'Still waters run deep’)

CALL UISSSET_ FONT(VD_ID,0,2, MY_FONT_6')
CALL UISSNEW_TEXT_LINE(VD_ID,2)
CALL UIS$SET_CLIP(VD_ID,2,6,15.0,15.0,35.0,40.0) 8

CALL UISSTEXT(VD_ID,2,’'The sleepy fox has seldom feathered breakfas
CALL UIS$NEW_TEXT_LINE(VD_ID,2)
CALL UISSTEXT(VD_ID,6,'The sleepy fox has seldom feathered breakfas

CALL UIS$SET_FONT(VD_ID,0,3,’MY_FONT_10') 8
CALL UIS$SNEW_TEXT_LINE(VD_ID,3)
CALL UIS$SET_CLIP(VD_ID,3,7,7.0,5.0,30.0,40.0) B

CALL UISSTEXT(VD_ID,3, 'When the wind is west, the fish bite best’)
CALL UISSNEW_TEXT_LINE(VD_ID,3)
CALL UISSTEXT(VD_ID,7, "When the wind is west, the fish bite best’)

PAUSE
END

11-13



Graphics and Windowing Attributes

Three fonts illustrate clipping rectangles. The call to UIS$SET_CLIP
modifies the attribute block that controls clipping rectangle size. Each
call to UIS$SET_CLIP B 8 8 specifies a different clipping rectangle size.
Although only one display viewport has been specified in this program,
UIS$SET_CLIP creates many compartments within the display window.

11.2.3.3 Calling UIS$SET_CLIP

Your workstation screen displays the graphic objects shown in
Figure 11-6.

Figure 11-6 Clipping rectangles

e sleepy fox has seldom feathered breakfasts
dom feathered breakfasts

When the wind is west, the fish bite best
: wind is west, the fish t

As you can see, UIS$SET_CLIP has altered the display window of the last
three lines. Only portions of each lines are now visible.

11-14



12 Inquiry Routines

12.1 Overview

Inquiry routines return program-specific information to the application; in
this way, they behave like functions. However, unlike functions that return
a single value through a return variable, certain UIS inquiry routines return
data in two or more parameters in the argument list. This data can range
from current attribute settings to current state of the pointer buttons. Your
application program can use this data to establish context during program
execution, to check for true or false conditions, or to verify that a requested
operation has been performed.

12.2 Using Inquiry Routines

Many common graphics application programs rely on program-specific
data such as pointer device position or font size. Inquiry routines return
such data to the program. You can use this data as input to the application.
Inquiry routines are more properly termed functions when you use them
with high-level programming languages.

12.2.1 Using Inquiry Routines

Generally, UIS routines in the form UIS$GET_xxxx return information to
the application program. Some of these routines behave like functions and
return a single value to the program; others return more than one value

in the argument list. The routines obtain data about text and font size,
windows, keyboard attributes, pointer position, and attribute settings. You
can use this data as input to subsequent routines.

12.2.1.1

Programming Options
Your application program can request the following types of application-
specific information:

¢ Color information

* Display list information

® Graphics and text attributes

* Keyboard and pointer characteristics

* Windowing information

Table 12-1 groups inquiry routines by function.

12-1



Inquiry Routines

Table 12-1 Inquiry Routines

Inquiry

Information Returned

Color’

UIS$GET_BACKGROUND_INDEX
UIS$GET_COLOR
UIS$GET_COLORS
UIS$GET_HW_COLOR_INFO
UIS$GET_INTENSITIES
UIS$GET_INTENSITY
UIS$GET_VCM_ID
UIS$GET_WRITING_INDEX
UIS$GET_WRITING_MODE
UIS$GET_WS_COLOR
UIS$GET_WS_INTENSITY

Background color index

Single RGB color value in a color map entry
RGB color values

Hardware color map characteristics
Intensity values in virtual color map

Single intensity value in a virtual color map entry
Virtual color map identifier

Writing color index

Writing mode

Workstation standard color

Workstation standard color intensity

Color Conversion®

UIS$HLS_TO_RGB
UIS$HSV_TO_RGB
UIS$RGB_TO_HLS
UIS$RGB_TO_HSV

Converts HLS values to RGB color values
Converts HSV values to RGB color values
Converts RGB values to HLS color values
Converts RGB values to HSV color values

Display List

UIS$FIND_PRIMITIVE
UIS$FIND_SEGMENT

UIS$GET_CURRENT_OBJECT
UIS$GET_NEXT_OBJECT
UIS$GET_OBJECT_ATTRIBUTES
UIS$GET_PARENT_SEGMENT
UIS$GET_PREVIOUS_OBJECT
UIS$GET_ROOT_SEGMENT

Identifier of the next primitive in the specified rectangle

Segment identifier of the next segment that contains objects in a
specified rectangle

Identifier of last object drawn in virtual display
Identifier of next object

Obiject type

Parent segment identifier

Identifier of the previous object

Root segment identifier

Graphics

UIS$GET_ARC_TYPE
UIS$GET_FILL_PATTERN
UIS$GET_LINE_STYLE
UIS$GET_LINE_WIDTH

Arc type used to close arc

Fill pattern index and status

Line style vector

Line width in pixels or as a world coordinate x-coordinate width

Keyboard and Pointer

UIS$GET_ABS_POINTER_POS

Absolute position of the pointer

'See Chapter 16 for more information about color and intensity inquiry routines.

2See Chapter Chapter 16 for more information about color conversion routines.

12-2



Table 12-1 (Cont.)

Inquiry Routines

Inquiry Routines

Inquiry

Information Returned

Keyboard and Pointer

UIS$GET_BUTTONS
UIS$GET_KB_ATTRIBUTES
UIS$GET_POINTER_POSITION
UIS$GET_TB_INFO
UIS$GET_TB_POSITION
UIS$TEST_KB

State of the pointer device buttons
Keyboard characteristics

Position of pointer in world coordinates
Characteristics of the tablet

Position on tablet in centimeters

Successful or unsuccessful connection between virtual and physical
keyboard

Text

UIS$GET_ALIGNED_POSITION

UIS$GET_CHAR_ROT
UIS$GET_CHAR_SIZE
UIS$GET_CHAR_SLANT
UIS$GET_CHAR_SPACING
UIS$GET_FONT
UIS$GET_FONT_ATTRIBUTES
UIS$GET_FONT_SIZE
UIS$GET_LEFT_MARGIN
UIS$GET_POSITION
UIS$GET_TEXT_FORMATTING
UIS$GET_TEXT_MARGINS
UIS$GET_TEXT_PATH
UIS$GET_TEXT_SLOPE
UIS$MEASURE_TEXT

World coordinates along the x-height of the current position of the next
character

Angle of character rotation in degrees
If character scaling is enabled and the scaling factors used
Angle of character slant in degrees
Character and line spacing factor

Font name

All font character characteristics

Font size in centimeters

World coordinate of left margin

World coordinates of text baseline
Formatting mode

Text margin settings for a line of text
Direction of text drawing

Angle of the text baseline in degrees
Proportions of text in world coordinates

Windowing

UIS$GET_CLIP
UIS$GET_DISPLAY_SIZE
UIS$GET_VIEWPORT_ICON
UIS$GET_VIEWPORT_POSITION
UIS$GET_VIEWPORT_SIZE
UIS$GET_VISIBILITY
UIS$GET_WINDOW_ATTRIBUTES
UIS$GET_WINDOW_SIZE

Clipping rectangle

Display screen dimensions in centimeters

Whether or not the icon is occluded

Absolute position of display viewport on display screen
Dimensions of the display viewport in centimeters
Whether or not viewport is occluded

Window and viewport attributes

Dimensions of the display window in world coordinates

12-3



Inquiry Routines

12.2.1.2 Program Development |
Programming Objective

To return font and viewport information to center text.

Programming Tasks
1 Create a virtual display.
2 Create a display window and viewport with a title.

3 Obtain the font size for a particular character string, viewport size, and
display screen size.

Choose a font and modify the font attribute block.

Use the modified font attribute and information from the inquiry
routines to draw a line of centered text in the viewport.

6 Print the inquiry information in the terminal emulation window.

7 Repeat steps 3 through 6.

The font file names used in this program are logical names.

PROGRAM CENTER

IMPLICIT INTEGER(a-z)

INCLUDE ’SYS$LIBRARY:UISENTRY®

INCLUDE ‘SYSS$LIBRARY:UISUSRDEF'

REAL F_WIDTH,F_HEIGHT,D_WIDTH,D_HEIGHT

REAL V_WIDTH,V_HEIGHT
VD_ID1=UIS$CREATE_DISPLAY(1.0,1.0,15.0,2.0,15.0,2.0) ‘
WD_ID1=UIS$SCREATE_WINDOW(VD_ID1, ' SYS$WORKSTATION’, ' CENTERED TEXT')

CALL UIS$GET_FONT_SIZE(’MY_FONT_7’,’'Time has wings’,

2 F_WIDTH,F_HEIGHT)

CALL UISSGET_DISPLAY_SIZE(’SYS$WORKSTATION’,D_WIDTH,D_HEIGHT)
CALL UISS$GET_VIEWPORT_SIZE(WD_ID1,V_WIDTH,V_HEIGHT)

CALL UISS$SET_FONT(VD_ID1,0,7,'MY_FONT_7') @
CALL UISSTEXT(VD_ID1,7,’Time has wings’,

2 (V_WIDTH-F_WIDTH)/2,
2 V_HEIGHT) 8
PAUSE “
PRINT 50
50 FORMAT(T10, 'FIRST LINE’,T39,'WIDTH’,T51, HEIGHT')
PRINT 75
75 FORMAT(T2, ’ e —————— ',
2 F e e r)
PRINT 100, F_WIDTH, F_HEIGHT
100 FORMAT(T2,'The dimensions of the font are:’,
2 T39,£f5.2,T46,’cm.’,T51,£5.2,T58,’cm.’)
PRINT 150,D_WIDTH,D_HEIGHT
150 FORMAT(T2, 'The dimensions of the display are:’,
2 T39,f6.2,T46,'cm.’,T51,£6.2,T58,'cm.’)
PRINT 200,V_WIDTH,V_HEIGHT
200 FORMAT (T2, 'The dimensions of the viewport are:’,
2 T39,£f6.2,T46, 'cm.’,T51,£6.2,T58, 'cm.’)

CALL UIS$SET_FONT(VD_ID1,7,8, 'MY_FONT_5’) 0O

CALL UIS$MEASURE_TEXT(VD_ID1,8,’four seasons’,

2 F_WIDTH,F_HEIGHT)

CALL UIS$NEW_TEXT_LINE(VD_ID1,8)

CALL UIS$TEXT(VD_ID1,8,’'four seasons’, '
2 (V_WIDTH~F_WIDTH)/2, (V_HEIGHT-F_HEIGHT))

TYPE *,’ '

12-4



Inquiry Routines

PRINT 550
550 FORMAT (T10, ' SECOND LINE’,T39, 'WIDTH’,T51, 'HEIGHT’)

PRINT 575
575 FORMAT (T2, ! —————=mm e~ _— ,
2 . ’ )

PRINT 610, F_WIDTH, F_HEIGHT

610 FORMAT(T2, 'THE DIMENSIONS OF THE FONT ARE:’,
2 T39,£f5.2,T46,'cm.’,T51,£5.2,T58, ‘cm. ')
PRINT 700,D_WIDTH,D_HEIGHT

700 FORMAT (T2, ’'The dimensions of the display are:’,

2 T39,f6.2,T46,'cm. ’,T51,£6.2,T58, 'cm. ')
PRINT 800,V_WIDTH,V_HEIGHT

800 FORMAT(T2,’The dimensions of the viewport are:’,
2 T39,f6.2,T46,'cm.’,T51,£6.2,T58,'cm. ')
PAUSE
END

The three inquiry functions UISSGET_FONT_SIZE, UIS$GET_DISPLAY_
SIZE, and UIS$GET_VIEWPORT_SIZE are called 8 8 8. Each function
returns data to uniquely specified variables within its argument list.

A logical name is defined B B to represent the 31-character font file name.
The first call to UISSTEXT 8 places a text string in the window. The starting
position for creating text is calculated from the expression in the argument
list. VAX FORTRAN allows arithmetic expressions as arguments.@ If

your application is written in a programming language other than VAX
FORTRAN, refer to the appropriate language reference manual.

To center the text in this window, the length of the text is subtracted from
the total width of the viewport and the result divided by two. The distance
of the text from the lower border of the window (the y coordinate) equals
the value of the variable v_height, the height of the display viewport.

NOTE: Before you run the demonstration programs, you must invoke the indirect
command file SYSSEXAMPLES:DEFFONT.COM.

12.2.13 Invoking UISSGET_FONT_SIZE, UIS$GET_DISPLAY_SIZE, and
UIS$GET_VIEWPORT_SIZE
If you run this program now, your workstation screen will display graphic
objects as shown in Figure 12-1.

Note that output from the FORTRAN PRINT or TYPE statement is not
displayed in the window. The TYPE and PRINT statements are equivalent
to the logical names FOR$TYPE and FOR$PRINT, which translate to the
logical name SYS$OUTPUT. Only UIS$TEXT can write text to a virtual
display.

12-5



Inquiry Routines

Figure 12-1 Centering Text

$ for/lis center
$ link center

$ run center (
FORTRAN PAUSE

$ continue

FIRST LINE WIDTH HEIGHT
The dimensions of the font are: 6.46 cm. 0.85 cm.
The dimensions of the display are: 36.90 cm. 28.34 cm.
The dimensions of the viewport are: 14.99 cm. 1.97 cm.
SECOND LINE WIDTH HEIGHT
The dimenasions of the font are: 10.33 cm. 0.49 cm. ‘
The dimensions of the display are: 36.90 cm. 28.34 cm.
The dimensions of the viewport are: 14.99 cm. 1.97 cm.
FORTRAN PAUSE

$

12.2.1.4  Program Development Il ‘
Programming Objective

To construct a pie graph that illustrates the operating budget of a small
New England town.

Programming Tasks

Create a virtual display.

Create a display window and viewport with a title.

Choose a font and modify' the font attribute.

Use the modified font attribute to print the title of the graph.
Obtain font information.

Modify the arc type attribute.

N O O R WN -

Choose a fill pattern and modify the font attribute and the fill pattern ‘
attribute.

12-6



Inquiry Routines

8 Use the modified fill pattern attribute to draw an arc.

9 Draw part of the legend below the pie graph.

10 Obtain and print arc type and fill pattern information.

11 Repeat steps 6 through 9.

10

11

15

20

PROGRAM PIE_GRAPH

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’

INCLUDE ’SYSSLIBRARY:UISUSRDEF’

CHARACTER*32 BUFFERDESC

LOGICAL*4 FILL_ENABLED
VD_ID=UISS$SCREATE_DISPLAY(-3.0,-3.0,25.0,25.0,15.0,15.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’, 'PIE GRAPH')

CALL UIS$SET_FONT(VD_ID,0,9,'MY_FONT_10')

CALL UIS$TEXT(VD_ID,9,’OPERATING BUDGET',6.0,24.0)

CALL UISSTEXT(VD_ID,9, ’TOWN OF GREENWICH, MASS.’,4.0,22.0)
CALL UIS$GET_FONT (VD_ID,9, BUFFERDESC, LENGTH) 1]

PRINT 10,BUFFERDESC
FORMAT (T2, 'THE FONT NAME IS’,T20,A31) 12}

PRINT 11,LENGTH
FORMAT(T2,'THE LENGTH OF THE FONT NAME IS ’,T33,13,T37,’'CHARACTERS’

CALL UIS$SET_ARC_TYPE(VD_ID,0,1,UIS$C_ARC_PIE) B

CALL UIS$SET_FONT(VD_ID,1,1, UISSFILL_PATTERNS’)

CALL UIS$SET_FILL_PATTERN(VD_ID,1,1,PATT$C_BRICK_DOWNDIAG)
CALL UIS$CIRCLE(VD_ID,1,10.0,10.0,8.0,0.0,50.0)

call uis$plot(vd_id,1,0.0,0.0,2.0,0.0,2.0,-1.0,

2 0.0,-1.0,0.0,0.0)
call uis$text(vd_id,0,'Fire’,3.0,0.0)
ARC_TYPE=UIS$GET_ARC_TYPE(VD_ID,1) a

FILL_ENABLED=UISSGET_FILI_PATTERN(VD_ID, 1, INDEX) 8

PRINT 15,ARC_TYPE
FORMAT (T2, 'THE ARC TYPE IS’,T25,I1) o]

PRINT 20,FILL_ENABLED
FORMAT (T2, 'IS THE FILL PATTERN ENABLED?’,T32,Ll)

CALL UIS$SET_FONT (VD_ID, 1,2, UIS$FILL_PATTERNS’)

CALL UIS$SET_FILL_PATTERN(VD_ID,2,2,PATTSC_DOWNDIAGA4_4)
CALL UIS$CIRCLE(VD_ID,2,10.0,10.0,8.0,50.0,95.0)

CALL UIS$PLOT(VD_ID,2,10.0,0.0,12.0,0.0,12.0,-1.0,

2 10.0,-1.0,10.0,0.0)

CALL UISSTEXT(VD_ID,0,’Sanitation’,14.0,0.0)

CALL UIS$SET_FONT(VD_ID,2,3,'UIS$SFILL_PATTERNS')
CALL UIS$SET_FILL_PATTERN(VD_ID,3,3,PATT$C_HORIZZ_6)
CALL UIS$CIRCLE(VD_ID,3,10.0,10.0,8.0,95.0,165.0)
CALL UIS$PLOT(VD_ID,3,0.0,-2.0,2.0,-2.0,2.0,-3.0,

2 0.0,-3.0,0.0,-2.0)

CALL UISSTEXT(VD_ID,0,’'Police’,3.0,-2.0)

CALL UISS$SSET_FONT(VD_ID, 3,4, UIS$FILL_PATTERNS’)

CALL UIS$SET_FILL_PATTERN(VD_ID,4,4,PATTSC_GREY4_16D)
CALL UIS$CIRCLE(VD_ID,4,10.0,10.0,8.0,165.0,360.0)
CALL UISS$PLOT(VD_ID,4,10.0,-2.0,12.0,-2.0,12.0,-3.0,
2 10.0,-3.0,10.0,-2.0)

CALL UISS$TEXT(VD_ID,0,’Schools’,14.0,-2.0)

PAUSE
END

The program PIE_GRAPH returns information about the graph heading.
A call to UISSGET_FONT 8 identifies the font and its length 8. The font
MY_FONT_10 is a logical name for a 31-character font file name.

12-7



Inquiry Routines

Attribute block 1 contains the modified arc type attribute 8. When a new
section of the arc is drawn, it will have a pie arc type that enables fill
pattern,

Arc type information is returned in the variable arc_type 8.

A call to UIS$GET_FILL_PATTERN B8 tests whether fill patterns are enabled.
Fill pattern information is returned in the variable fill_enabled B as a Boolean
value.

12.2.1.5 Invoking UIS$GET_ARC_TYPE, UISSGET_FILL_PATTERN, and
UIS$GET_FONT
The program PIE_GRAPH draws a pie graph with four fill patterns. It
requests and displays certain program-specific information as shown in
Figure 12-2.

12-8



Inquiry Routines

Figure 12-2 Pie Graph

OPERATING BUDGET

MASS.

-
[$]
-
>3
&
=)
d
[- 4
(4]
e
o
=
=
Q
fmt

A TN NN NN A NI RN NN,
NN SN A XX NN DIR NI

NN,

7’

LA

DL L%

Y

DNDELLD

NI N,

Sanitation

NN

al

iin

Tetr

00

VT1

£
Q
o
'
wa
K]
0
lls
aQ
[ 1]
N -~
llp
—
~ X
“ C
0~
Y ~
- <

$ run pie_graph

THE FONT NAME IS MY_FONT_10

10 CHARACTERS

THE LENGTH OF THE FONT NAME IS

THE ARC TYPE IS

T

IS THE FILL PATTERN ENABLED?

FORTRAN PAUSE

ZK-4556-85

12-9






1 3 Display Lists and Segmentation

13.1

13.2

Overview
As your displays become more complex, you should understand display
list concepts. This chapter discusses the following topics:
* Creating and searching segments
¢ Editing and walking the display list
¢ Disabling display lists
¢ Creating UIS metafiles
* Attaching private data to graphic objects
Consider the creation of complex objects as a challenge to simplify and to
modularize your coding through the use of segmentation.
Display Lists

UIS constructs a display list of encoded commands for graphics. A display
list is a device-independent encoding of the exact contents of the virtual
display. The display list remains resident in memory for use by UIS
routines. Figure 13-1 shows the format of an entry in the display list.

Figure 13-1 Binary Encoded Instruction

Opcode

Length Arguments

ZK-5436-86

UIS signals an error if it encounters an invalid opcode.

Whenever you call UIS routines to create graphic objects or modify
attribute blocks, you add an entry to a display list. Each virtual display
has only one display list.

UIS maintains display lists for the following purposes:

* Automatic management of panning, zooming, resizing, and duplication
of display windows

¢ High resolution printing of physical and virtual displays

® Structuring and manipulation of graphic objects in the virtual display

13-1



Display Lists and Segmentation

e Storage of the contents of the virtual display in a buffer for later
reexecution

13.3 Segments

A segment consists of calls to UIS graphics and text routines (and any nested
segments). You create a segment explicitly with a call to UISSBEGIN_
SEGMENT; you terminate a segment with a call to UISSEND_SEGMENT.
A complex display list is a hierarchy of nested segments.

A top-level root segment contains any segment or output (graphic and text)
routine that is not in an explicitly created segment.

Segmentation of graphics routines facilitates transformations—scaling,
“rotation, and translation. Segmentation also modularizes attributes. You

can construct complex graphic objects in sections, where each logical ‘
grouping of display list entries is in a segment. You can transform or
display such segments individually and independently of the rest of the
object. Changes to attributes in a segment do not affect the attribute

settings of a higher-level segment.

For example, a house, a barn, and landscape are constructed as three
logical groupings, or subpictures, of a complex display. Each subpicture is a
segment of appropriate UIS routines. You can manipulate each subpicture
independently of one other.

Figure 13-2 shows a tree diagram of a display list containing nested
segments. Read the diagram from left to right and downward until there ‘
are no more segments. Read each level to the right and move upward to

the next level where you left off.

13-2



Display Lists and Segmentation

Figure 13-2 Nested Segments

Root
| |

Level 0 Circle Segment 1 Plot

I |
Level 1 Plot Segment 2 Image

I ] !
Level 2 Circle Segment 3 Plot Circle

| | | I

Level 3 Plot Ellipse Plot Text Line

ZK-5459-86

13.3.1 Identifiers and Object Types

There are many types of UIS identifiers—for example, virtual display
identifier, virtual keyboard identifier, transformation identifier, and so
on. Identifiers allow an application to reference and manipulate internal
objects. To manage the display list, follow these steps:

1 Traverse the display list downward object by object.
2 Search a segment.

3 Traverse upward through the segment path.

Segments

UIS$BEGIN_SEGMENT returns a unique identifier to each segment. If you
do not use UISSBEGIN_SEGMENT to declare any segments explicitly, you
can use the unique identifier of the root segment to manipulate the display
list.

Objects

Every object in the virtual display has an object identifier. However, not
all routines return identifiers explicitly. Object and segment identifiers are
useful in walking and editing the display list. Use them as reference points
within complex display lists.

Sometimes the identifier is not part of the calling sequence; in this case,
you must use another UIS routine to return the identifier. For example,
none of the graphics and text routines return identifiers explicitly. You can
use the routines listed in the following table to return the identifiers.

13-3



Display Lists and Segmentation

Graphic Object Identifier  Routine

Segment seg_id UIS$BEGIN_SEGMENT'

Root segment root_id UIS$GET_ROOT_SEGMENT

Parent segment parent_id UIS$GET_PARENT_SEGMENT

Graphic objects prev_id UIS$GET_PREVIOUS_OBJECT
current_id UIS$GET_CURRENT_OBJECT
next_id UIS$GET_NEXT_OBJECT

'UIS$BEGIN_SEGMENT returns the segment identifier in a return variable, seg_id.

Object Types

Although you can use segment and object identifiers to manipulate the
display list, you must further identify those objects within a segment. You
should know the display list entry object type. UIS categorizes graphic
objects by object type. The following table lists six object types and their
symbols.

Symbol , Graphic Object
UIS$C_OBJECT_SEGMENT New segment
UIS$C_OBJECT_PLOT Point, line, or polygon
UIS$C_OBJECT_TEXT Text
UIS$C_OBJECT_ELLIPSE Ellipse or circle
UIS$C_OBJECT_IMAGE Raster image
UIS$C_OBJECT_LINE Unconnected lines

UIS$GET_OBJECT_ATTRIBUTES returns object type information.

13.3.2 Programming Options

13-4

NOTE:

From the options available below, the following programs are constructed:
* Program to disable display lists
e Program to walk the display list

Creating Segments

You can use UIS$BEGIN_SEGMENT and UIS$END_SEGMENT to create
an unlimited number of segments explicitly. For each newly created
segment, UIS returns a unique identifier that appropriate UIS routines use
to locate and edit segments. You can also nest segments within segments.

If you call UISSBEGIN_SEGMENT before you call any graphics and text
routines, the segment is deleted and the returned identifier is no longer
valid. To create an empty segment, call UISSBEGIN_SEGMENT, then
UISSPRIVATE. This sequence places private data in the segment. Now
UISSEND_SEGMENT does not consider the segment empty.



Display Lists and Segmentation

Enabling and Disabling Display Lists

When you disable a display list, nothing can be added to the list. You
can enable and disable a display list explicitly any number of times
with UISSENABLE_DISPLAY_LIST and UIS$DISABLE_DISPLAY_LIST.
However, to see the results of disabling a display list, you must execute
the display list. Use UISSEXECUTE or any of the routines listed in the
following table to execute the display list.

Routine Function

UISSCREATE_WINDOW Creates a display window and viewport

UIS$DELETE_OBJECT'*® Deletes an object in the virtual display

UIS$EXECUTE?S Executes the display list

UIS$MOVE_AREA?® Moves a portion of the virtual display to another part
of the virtual display

UIS$MOVE_WINDOW* Redefines the display window coordinate space.

'UIS$DELETE_OBJECT executes the display list only when the object to be deleted
occluded another object.

2UIS$EXECUTE executes the entire display list if buflen and bufaddr are not
specified. -

SUISSMOVE_AREA executes the display list only if the specified source and
destination rectangles lie within a display window.

‘UISSMOVE_WINDOW executes the display list only if the window size is changed.

5This routine checks display list flags.

The position of UIS$DISABLE_DISPLAY_LIST and UISSENABLE_
DISPLAY_LIST in your program is important. If the display list is disabled
after the display list is executed, the viewport displays all the graphic
objects drawn in the virtual display. If the display list is disabled before
one of the above routines is called, the viewport displays none of the
graphic objects created between calls to UISSDISABLE_DISPLAY_LIST
and UISSENABLE_DISPLAY_LIST. No binary instructions are added to the
display list.

Walking the Display List

You can traverse, or walk the entire display list from top to bottom and
from object to object with UISSGET_ROOT_SEGMENT and UIS$GET_
NEXT_OBJECT. ‘ :

Searching a Segment

If the display list contains segments, you can search the contents of any
segment in the display list with UISSGET_NEXT_OBJECT.

V4.1—June 1989 ' 13-5



A Display Lists and Segmentation

' Traversing the Segment Path

Because the root segment is the ultimate parent segment, every niested
segment has a parent segment. The root segment acts as the parent for
all level-one segments (see Figure 13-2). A segment identifier notes the
beginning of each segment in a display list. The segment identifiers within
a display list constitute its segment path. You can traverse the segment path
from the innermost segment outward with UISSGET_PARENT_SEGMENT.

13.3.3 Program Development |

13-6

Programming Objective
To disable a display list.

Programming Tasks ‘

Create a virtual display.-

Create a display window and viewport.

Disable the display list.

Draw some graphic objects in the virtual display.
Reenable the display list.

Draw some graphic objects in the virtual display.

N OO AW =

Create a second display window and viewport.

PROGRAM LIST

IMPLICIT INTEGER(A-7Z)

INCLUDE ’'SYSSLIBRARY:UISENTRY’

INCLUDE ‘SYSSLIBRARY:UISUSRDEF’
VD_ID=UIS$CREATE_DISPLAY(-1.0,-1.0,50.0,50.0,10.0,10.0)
WD_ID=UISSCREATE_WINDOW(VD_ID, ' SYSSWORKSTATION' , ‘MORE’) @

c Disable the display list
CALL UIS$DISABLE_DISPLAY_LIST(VD_ID) 2]
¢ Draw the graphic objects

CALL UIS$CIRCLE(VD_ID,0,15.0,15.0,5.0)

CALL UISS$CIRCLE(VD_ID,0,5.0,5.0,5.0)

CALL UIS$PLOT(VD_1D,0,27.0,17.0,35.0,17.0,35.0,24.0,27.0,24.0,
2 27.0,17.0)

CALL UIS$CIRCLE(VD_ID,0,35.0,35.0,8.0)

CALL UIS$PLOT(VD_ID,0,5.0,30.0,15.0,30.0,10.0,40.0,5.0,30.0)

PAUSE
¢ Reenable the display list

CALL UIS$ENABLE_DISPLAY LIST(VD_ID) 3]
¢ Draw circle and triangle

CALL UIS$CIRCLE(VD_ID,0,33.0,35.0,8.0) @
CALL UIS$PLOT(VD_ID,0,7.0,31.0,17.0,31.0,12.0,41.0,7.0,31.0) B

WD_ID1=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’, 'LESS’) (6
PAUSE
END

V4.1—June 1989



Display Lists and Segmentation

Initially, a display window and viewport labeled MORE are created 8. The
world coordinate range of the window defaults to that of the virtual display.

The display list is disabled 8.

Five graphic objects are drawn in the virtual display—three circles, a
triangle, and a square. Although all five objects appear in the viewport
MORE, no entries are added to the display list.

After the PAUSE statement, the display list is reenabled B and a triangle
and another circle are drawn 8 B,

V4.1—June 1989 ’ 13-6.1






Display Lists and Segmentation

Because the first call to UISSCREATE_WINDOW was executed before the
display list was disabled, objects drawn in the virtual display and within
the display window are displayed in the viewport but are not added to the
display list.

Finally, the second display window and viewport labeled LESS are created
@ The display list is executed, and all objects except those included within
the disable-enable request appear in the viewport LESS.

13.3.3.1

Calling UIS$DISABLE_DISPLAY_LIST and UISSENABLE_DISPLAY_LIST

When the program executes, the viewport MORE is displayed first as
shown in Figure 13-3.

Figure 13-3 Disabling a Display List

2K-4557-85

Type CONTINUE at the dollar sign prompt ($). Figure 13-4 shows
viewports MORE and LESS. Note that the second call to UIS$CREATE_
WINDOW executes the display list.

13-7



Display Lists and Segmentation

Figure 13-4 After Display List Execution

13.3.3.2 Program Development i
Programming Objectives

To traverse the entire display list and examine each object type.

Programming Tasks

Create a virtual display.

Draw graphic objects in the virtual display.
Print output headings in the emulation window.
Obtain the identifier of the root segment.

Walk downward through the display list.

D N W N -

Examine each object type and place its identifier in one of five arrays.

Figure 13-5 shows a tree diagram of the program WALK.

13-8



Display Lists and Segmentation

Figure 13-5 Tree Diagram—Program WALK

Root
Level 0
I | l ! ! i
Ellipse Plot Piot Plot Text Text
ZK-5464-86

The program WALK draws objects in a virtual display, then identifies
each object by walking the entire display list and examining the various
object type values. The program also shows how to collect and store object
identifiers according to object type. If you run program WALK, compile
the subroutine DETERMINE as a separate module and link it with WALK.

PROGRAM WALK

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’

INCLUDE ‘SYS$LIBRARY:UISUSRDEF’

COMMON NEXT_ID1,TYPEL 1}
VD_ID1=UIS$CREATE_DISPLAY(0.0,0.0,40.0,40.0,20.0,20.0) B

C Draw objects in virtual display

CALL UISS$CIRCLE(VD_ID1,0,15.0,15.0,6.0)
CALL vulss$pLOT(VD_ID1,0,1.0,1.0,20.0,1.0,20.0,8.0,1.0,1.0)
CALL UIsSs$pLOT(VD_1D1,0,20.0,20.0,40.0,20.0,30.0,35.0,20.0,

2 20.0)

CALL visspLOT(VD_ID1,0,3.0,25.0,13.0,25.0,13.0,35.0,

2 3.0,35.0,3.0,25.0)

CALL UISSTEXT(VD_ID1,0,’The footsteps of fortune are slippery’,
2 0.0,38.0)

CALL UISSNEW_TEXT LINE(VD_ID1,0)
CALL UIS$TEXT(VD_ID1,0,’Mirth without measure is madness’)
PRINT 10
10 FORMAT(T2, 'DISPLAY LIST ELEMENTS')
PRINT 20
20 FORMAT(T1, ===~ ——— )
PRINT 30
30 FORMAT (T2, ’'IDENTIFIER’,T17, 'OBJECT TYPE’)

ROOT_ID1=UIS$GET_ROOT_SEGMENT(VD_ID1) 3]
NEXT_ID1 = ROOT_ID1

¢ Walk the display list

DO WHILE (NEXT_ID1 .NE. O0) 4]
TYPE1=UISSGET_OBJECT_ATTRIBUTES (NEXT_ID1) B8
CALL DETERMINE

NEXT_ID1=UIS$GET_NEXT OBJECT(NEXT_ID1) 7]

ENDDO 8]
WD_ID1=UIS$CREATE_WINDOW(VD_ID1,’'SYSSWORKSTATION') e
PAUSE

END

SUBROUTINE DETERMINE 10}

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY'

INCLUDE ’SYSS$SLIBRARY :UISUSRDEF’

INTEGER*4 SEG_ARRAY(6),PLOT_ARRAY(6),TEXT_ARRAY(6),ELLIP_ARRAY(6) 8
INTEGER*4 LINE(6),IMAGE(6) [12]

DATA H,I,J,K,L,M/1,1,1,1,1,1/ 1 3]

COMMON NEXT_ID1,TYPE1 (14]

13-9



Display Lists and Segméntation

13-10

IF (TYPEl .EQ. UIS$C_OBJECT_ SEGMENT) THEN
SEG_ARRAY (H)= NEXT_ID1
PRINT 40,SEG_ARRAY(H),TYPEL

40 FORMAT(T2,16,T19,11,T24,'SEGMENT’)
H=H+ 1
ENDIF
IF (TYPE1l .EQ. UIS$C_OBJECT_PLOT) THEN
PLOT_ARRAY(I) = NEXT_ID1
PRINT 50,PLOT_ARRAY(I),TYPE1l
50 FORMAT(T2,16,T19,I1,T24, 'PLOT’)
I =1+1
ENDIF
IF (TYPEl .EQ. UIS$C_OBJECT TEXT) THEN 1.7]

TEXT_ARRAY(J) = NEXT_ID1
PRINT 55, TEXT_ARRAY(J),TYPEl

55 FORMAT(T2,16,T19,I1,T24, TEXT')
J=J+1
ENDIF
IF (TYPEl .EQ. UIS$C_OBJECT ELLIPSE) THEN

ELLIP_ARRAY(K) = NEXT_ID1
PRINT 60,ELLIP_ARRAY(K),TYPEL

60 FORMAT(T2,16,T19,11,T24, 'ELLIPSE’)
K=K+ 1
ENDIF
IF (TYPE1l .EQ. UIS$C_OBJECT_LINE) THEN 08
LINE(L) = NEXT_ID1
PRINT 70,LINE(L),TYPEl

70 FORMAT(T2,16,T19,11,T24, 'NEW TEXT LINE’)
L=L~+1
ENDIF

IF (TYPE1l .EQ. UISS$C_OBJECT_ IMAGE) THEN [20]
IMAGE(M) = NEXT_ID1
PRINT 80,IMAGE(M),TYPE1
80 FORMAT (T2,16,T19,11,T24,'IMAGE’)
M=M+1
ENDIF

RETURN
END

The variables next_id1 and fypel are used in both the main program and the
subroutine DETERMINE. The COMMON statement ensures access to data
stored in both locations by both the main program and the subroutine 8 08,

A virtual display is created B. As objects are drawn in the virtual display,
display list entries in the form of encoded binary data identifying the
particular objects are added to the display list. Only one display list is
created for each virtual display.

Because the entire display list is to be traversed, the root segment will be
the starting point and its identifier must be returned B.

A DOWHILE loop 8 8 implements traversing the display list through
successive calls to UISSGET_NEXT_OBJECT @.

An object type for each display list entry is returned B.

Within the DOWHILE loop, the subroutine DETERMINE is called 8 8® to
sort each object identifier according to its object type 208
For more information about object type symbols such as UIS$C_OBJECT_
PLOT, see UIS$GET_OBJECT_ATTRIBUTES.

For each object type represented in the display list, five arrays are declared
M. Each object identifier is stored in one of these arrays. All counter
variables are initialized to the value 1 8.



Display Lists and Segmentation

A call to UISSCREATE_WINDOW creates a display window and viewport,
and executes the contents of the display list in the virtual display®.

13.3.3.3.

Calling UISSGET_NEXT_OBJECT, UISSGET_OBJECT_ATTRIBUTES, and
UIS$GET_ROOT_SEGMENT

The program WALK walks the display list and identifies each object.
Figure 13-6 shows how each object is returned in the terminal emulation
window.

Figure 13-6 Display List Elements

$ run walk
DISPLAY LIST ELEMENTS

- e e e  E W e e e W e T o e e o o e e =

IDENTIFIER NDBJECT TYPE

113992 UIS$C_OBJECT_SEGMENT
115328 UIS$C_OBJECT_ELLIPSE
116575 UIS4C_OBJECT_PLOT
116322 UIS$C_OBJECT_PLOT
116069 UIS$C_OBJECT_PLOT
116316 LJIS$C_OBJECT_TEXT
116310 UIS4C_OBJECT_TEXT
117067 UIS$C_OBJECT_LINME

FORTRAMN PAUSE

ZK-5255-86

The program WALK also creates a display window and viewport with the
objects in the virtual display as shown in Figure 13-7.

13-11



Display Lists and Segmentation

Figure 13-7 Contents of the Display List

The footsteps of fortune are slippery
Mirth without measure is madness

2K-5259-86

13-12

13.3.3.4

Program Development Il
Programming Objectives

To create a display list with a nested segment, traverse upward through the
segment path, then search downward through a specified segment.

Programming Tasks

1

2
3
4

Create a virtual display.
Create a display window and viewport.
Create five levels of nested segments.

Print output headings in the emulation window.



© ® N o

Display Lists and Segmentation

Beginnin at the innermost nested segment, use UIS§GET_PARENT_
SEGMEI&I to obtain and print the parent segment identifier.

Print outpiit headings in the emulation window.
Choose a segment to search.
Use UIS$GET_NEXT_OBJECT to walk downward through the segment.

Call the subroutine DETERMINE to examine and store the objects in
arrays by object type.

Figure 13-8 shows the structure of the display list in the program HOP.
Figure 13-8 Display List Structure in Program HOP

Root
Level 0 Segment 1
Level 1 Plot Segment 2
I I 1
Level 2 Ellipse Segment 3 Piot Ellipse
| |
Level 3 Ellipse Segment 4 Text
' :
Level 4 Text Segment 5
, | |
Level § Text Text

ZK-5460-86

To run program HOP, compile the subroutine DETERMINE from the
preceding program WALK as a separate module and link it with HOP.

PROGRAM HOP

IMPLICIT INTEGER(A-Z)

INCLUDE 'SYSSLIBRARY:UISENTRY'
INCLUDE ‘SYSSLIBRARY:UISUSRDEF’
COMMON NEXT_ID1,TYPE1l

VD_ID2=UIS$CREATE_DISPLAY(-1.0,-1.0,40.0,40.0,15.0,15.0)

13-13



Display Lists and Segmentation

SEG_ID1=UIS$BEGIN_SEGMENT (VD_ID2)
CALL UIS$PLOT(VD_ID2,0,0.0,12.0,5.0,12.0,7.5,17.0,10.0,

2 12.0,15.0,12.0,
2 12.5,7.5,15.0,0.0,7.5,5.0,0.0,0.0,2.5,7.5,0.0,12.0)
SEG_ID2=UIS$BEGIN_SEGMENT (VD_ID2) 1}

CALL UIS$CIRCLE(VD_ID2,0,7.5,8.0,8.0)
SEG_ID3=UIS$SBEGIN_SEGMENT(VD_ID2)
CALL UISSELLIPSE(VD_ID2,0,25.0,8.0,5.0,8.0)
SEG_ID4=UISS$BEGIN_SEGMENT (VD_ID2)
CALL UIS$TEXT(VD_ID2,0,'MISERY LOVES COMPANY',
2 17.0,24.0)
SEG_IDS=UISSBEGIN_SEGMENT (VD_ID2)
CALL UIS$TEXT(VD_ID2,0,’ONE SLUMBER INVITES ANOTHER’,
2 1.0,39.0)
CALL UIS$NEW_TEXT_LINE(VD_ID2,0)
CALL UISSTEXT(VD_ID2,0,’LIVING WELL IS THE BEST REVENGE’)
CALL UIS$SEND_SEGMENT (VD_ID2)
CALL UIS$END_SEGMENT(VD_ID2)
CALL UIS$TEXT(VD_ID2,0,’SUCCESS MAKES A FOOL SEEM WISE',
2 1.0,19.0)
CALL UIS$END_SEGMENT (VD_ID2)
CALL UIS$PLOT(VD_ID2,0,20.0,25.0,35.0,25.0,35.0,35.0,20.0,35.0,
2 20.0,25.0)
CALL UIS$CIRCLE(VD_1D2,0,10.0,28.0,8.0)
CALL UISSEND_SEGMENT (VD_ID2) 2]
CALL UISSEND_SEGMENT (VD_ID2)
C HOPPING UPWARD ALONG THE SEGMENT PATH
PRINT 45
45 FORMAT (T2, ' SEGMENT PATH')
PRINT 55
55 FORMAT (T1, /= ——— e mmm e e mmmmmmm e )
PRINT 56
56 FORMAT (T2, ' IDENTIFIER’ ,T17, 'LEVEL’)

SEG_1D=SEG_ID5 B ‘
I1=5 4]

PRINT 60,SEG_ID5,I

DO 1=4,1,-1 B
PARENT_ID=UIS$GET_PARENT SEGMENT (SEG_ID) @

SEG_ID=PARENT_ID

PRINT 60,PARENT_ID, I

60 FORMAT(T2,I10,T18,12)

ENDDO 7]
C SEARCHING DOWNWARD THROUGH A NESTED SEGMENT

PRINT 65

65 FORMAT (T2, ' SEGMENT ' )
PRINT 70

70 FORMAT(T1, ' === me et e e e e ")
PRINT 75

75 FORMAT (T2, ' IDENTIFIER’,T17,’OBJECT TYPE')
NEXT_ID1=UIS$GET_NEXT_OBJECT(SEG_ID2) 8]
DO WHILE(NEXT_IDL1 .NE. 0) (9
TYPE1=UIS$GET_OBJECT_ ATTRIBUTES (NEXT_ID1)
CALL DETERMINE 10}
NEXT_ID1=UIS$GET_NEXT_ OBJECT(NEXT_ID1,UIS$M_DI_SAME_SEGMENT) 11 1]
ENDDO 12}
WD_ID2=UIS$CREATE_WINDOW(VD_ID2, ' SYSSWORKSTATION' )
PAUSE
END

Excluding the root segment, the program HOP contains five levels of
nesting. To walk the segment path, start at the innermost segment B. The
counter [ is initialized to 5 B, the level of nesting where you start.

13-14



Display Lists and Segmentation

A DO loop is declared; the loop contains the call to UIS$GET_
PARENT_SEGMENT 8. The seg_id argument in UISSGET_PARENT_
SEGMENT is initialized with segment identifier 5 8. As each new parent
segment identifier is returned, the counter is decremented and, in turn, is
used as the seg_id argument in the next iteration of the loop.

The second purpose of the program is to search a specified segment. To
search a segment, use both parameters in UISSGET_NEXT_OBJECT. To
start at the beginning of a segment, initialize the seg_id to the value of the
segment identifier you want to search 8 When you do this, UIS$GET_
NEXT_OBJECT returns the identifier of the next object in the segment. In
this example, the second segment is chosen 8,

Another DO loop is established 8 83 the loop contains a call to the
subroutine DETERMINE. Note that UIS$GET_NEXT_OBJECT
now specifies both arguments. The search is performed on the specified
segment only. If the flag UISSM_DL_SAME_SEGMENT is not specified,
the search proceeds down to the innermost nested segment.

13.3.3.5

Calling UISSGET_PARENT_SEGMENT

Segment identifiers are returned beginning with the innermost nested
segment as shown in Figure 13-9.

Figure 13-9 Traversing Upward Along the Segment Path

$ RUN HOP

SEGMENT PATH

IDENTIFIER LEVEL
122664 5
121576 4
120488 3
119400 2
115592 1

ZK-5295-86

Object identifiers in the second-level segment are displayed as shown in
Figure 13-10.

All objects drawn in the virtual display are shown in Figure 13-11.

13-15



Display Lists and Segmentation

Figure 13-10 Searching Downward Through a Segment

SEGMENT
IDENTIFIER OBJECT.TYPE
117175 UIS$C_DBJECT_ELLIPSE
120488 UISS$C_OBIECT_SEGMENT
118904 UIS$C_OBJECT_PLOT
119151 UISS$C_OBJECT_ELLIPSE

FORTRAN PAUSE

13.4  More About Segments

When you use segments in your application programs, you create complex
objects that can be edited or searched segment-by-segment. Segments also
exhibit special behavior when they encounter attribute blocks.

13.4.1 Programming Options

You can also manipulate segments.
Editing Display Lists
You can edit display lists with or without explicitly defined segments.

NOTE: Use UIS$SET_INSERTION_POSITION to insert an object between
existing objects in a display list.

The following routines allow you to edit display lists in other ways.

13-16



Display Lists and Segmentation

Figure 13-11 Contents of the Display List Drawn in the Virtual Display

OMNE SLUMBER INVITES ANOTHER
LIVING WELL IS THE BEST REVENGE

/

/MISERY LOVES COMPANY

SUCCESS MAKES A FOOL SEEM WISE

13-17



Display Lists and Segmentation

Routine Function

UIS$COPY_OBJECT Copies an object to another part of the display list
UIS$DELETE_OBJECT Deletes an object from the display list
UISSINSERT_OBJECT Moves an object to another part of the display list

UIS$TRANSFORM_OBJECT Scales, rotates, and translates an object

Modifying Attribute Blocks Within Segments
A segment can consist of the following:

¢ Calls to graphics and text output routines

* Attribute routines

* Nested segments

When one attribute block is modified at two different levels of nesting,
modifications to the innermost attribute block take precedence over any
previous modifications at outer levels. Such attribute block modifications
influence graphics and text output (where applicable) at deeper levels of
nesting.

When you leave a lower-level nested segment, the original attributes of the
parent segment are restored. Therefore, you can change attributes within a
segment without affecting a higher-level segment.

13.4.2 Program Development |
Programming Objective
To edit a display list.

Programming Tasks
1 Create a virtual display.

2 Create a series of nested segments containing calls to draw graphic
objects.

Create a display window and viewport.

Delete an object in segment 1.

Set the editing pointer to the end of segment 1.
Print output headings in the emulation window.
Add a line drawing call to the end of segment 1.

Verify the contents of segment 1.

0w O N O W

Position the pointer to the end of segment 2.
10 Add text to segment 2.

11 Verify the contents of segment 2.

13-18



Display Lists and Segmentation

Inserting an object in a specific location in the display list affects the order
in which objects are drawn in the virtual display, not how an object is
drawn. Figure 13-12 shows the pre-edit display list structure in program
EDIT_LIST.

Figure 13-12 Pre-Edit Display List Structure

Root
Level 0 Segment 1
Level 1 Ellipse Pllot Segment 2 Teit
|
Level 2 Elli;|>se Plot

ZK-5463-86

To run program EDIT_LIST, compile subroutine DETERMINE from the
program WALK as a separate module and link it with EDIT_LIST.

PROGRAM EDIT_LIST

IMPLICIT INTEGER(A-Z)

INCLUDE 'SYSS$SLIBRARY:UISENTRY’
INCLUDE ’'SYS$SLIBRARY:UISUSRDEF’
COMMON NEXT_ID1,TYPE1l

C Create a virtual display
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,50.0,50.0,15.0,15.0)
¢ Create a segment

SEG_ID1=UIS$BEGIN_SEGMENT (VD_ID)
CALL UIS$CIRCLE(VD_ID,0,8.0,35.0,7.0) @
CURR_ID1=UIS$GET_CURRENT_OBJECT (VD_ID)

CALL UIs$pPLOT(VD_ID,0,17.0,27.0,32.0,27.0,24.5,42.0,17.0,27.0)
CURR_ID2=UIS$GET_CURRENT OBJECT(VD_ID)
¢ Create another segment
SEG_ID2=UIS$BEGIN_SEGMENT(VD_ID) a8
CALL UISSELLIPSE(VD_ID,0,8.0,15.0,5.0,9.0)
CURR_ID4=UIS$GET_CURRENT_OBJECT(VD_ID)
CALL UIS$PLOT(VD_1D,0,15.0,8.0,30.0,8.0,
2 35.0,22.0,20,.,0,22.0,15.0,8.0)
CURR_ID5=UIS$GET_CURRENT_OBJECT(VD_ID)
CALL UIS$END_SEGMENT(VD_ID)
CALL UISS$TEXT(VD_ID,0,'The ox when weariest treads surest’,
2 5.0,47.0)
CURR_ID6=UIS$GET_CURRENT_OBJECT(VD_ID)
CALL UIS$SEND_SEGMENT(VD_ID)
WD_ID=UIS$CREATE_WINDOW(VD_ID,’'SYS$SWORKSTATION')

PAUSE
c Delete an object from segment 1
CALL UISSDELETE_OBJECT(CURR_ID1) 8

13-19



Display Lists and Segmentation

13-20

c Set the editing pointer at the end of segment 1

CALL UIS$SET_INSERTION_POSITION(SEG_ID1,) (6]
CALL UIS$PLOT(VD_ID,0,29.0,42.0,44.0,42.0,36.5,27.0,29.0,42.0) @
PRINT 20
20 FORMAT (T2, ' CONTENTS OF SEGMENT 1°)
PRINT 25
25 FORMAT (T2, ' IDENTIFIER’,T14,’OBJECT’,T22, ' TYPE')
PRINT 30
30 FORMAT (=== === ——mm e e )

c Verify the contents of segment 1
NEXT_ID1=UIS$GET_NEXT_OBJECT(SEG_IDI1)

DO WHILE(NEXT_ID1 .NE. 0)
TYPE1=UIS$GET_OBJECT_ATTRIBUTES(NEXT_ID1)

CALL DETERMINE 8]
NEXT_ID1=UIS$GET_NEXT_OBJECT(NEXT_ID1,UIS$M_DI_SAME_ SEGMENT)
ENDDO .
PAUSE
c Set the editing pointer at the end of segment 2

CALL UIS$SET_INSERTION_POSITION(SEG_ID2) 9]
CALL UIS$TEXT(VD_ID,0,’0ld foxes want no tutors’,
2 5.0,45.0) [1O]
PRINT 40

40 FORMAT (T2, 'CONTENTS OF SEGMENT 2')
PRINT 45

45 FORMAT (T2, ’IDENTIFIER’,T14,'OBJECT’,T22, 'TYPE’)
PRINT 50

50 FORMAT ( / ——————————— )

c Verify the contents of segment 2
NEXT_ID1=UIS$SGET_NEXT OBJECT (SEG_ID2)

DO WHILE(NEXT_ID1 .NE. 0)
TYPE1=UIS$GET_OBJECT_ATTRIBUTES(NEXT_ID1)

CALL DETERMINE m
NEXT_ID1=UIS$GET_NEXT OBJECT (NEXT_ID1,UIS$M_DI_SAME_SEGMENT)
ENDDO

PAUSE

END

Two segments are created BB. The second segment is nested within the
first.

Successive calls to UISSGET_CURRENT_OBJECT 8 retrieve an object
identifier for each object in both segments. This operation is useful if you
need to insert an object in the display list later.

A call to UIS$DELETE_OBJECT B deletes a circle B from segment 1 in the
display list.

The editing pointer in the display list is set at the end of segment 1 with
UIS$SET_INSERTION_POSITION 8. A call to UISSPLOT is added to
segment 1 @.

A call to the subroutine DETERMINE 8 verifies the addition in the display
list.

The editing pointer in the display list is set at the end of segment 2 with
UIS$SET_INSERTION_POSITION @&. The binary instruction resulting from
a call to UIS$TEXT is added to segment 2 0.

A call to the subroutine DETERMINE M verifies the changes in the display
list.

(



Display Lists and Segmentation

Figure 13-13 Post-Edit Structure of the Display List

Root
Level 0 Segment 1
! | 1
Level 1 Plot Segment 2 Text Plot
I L
Level 2 Ellipse Plot Text
New Objects
ZK-5458-86

Figure 13-13 shows the post-edit structure of the display list.

13.4.2.1

Calling UIS$SET_INSERTION_POSITION
The original objects, circle, ellipse, triangle, parallelogram, and text, are
shown in Figure 13-14.

A triangle and a line of text are added to the virtual display. The circle is
deleted from the virtual display as shown in Figure 13-15.

The contents of the segment are written to the emulation window as shown
in Figure 13-16.

13.4.2.2

Program Development Ii
Programming Objective

To draw text at different levels of segmentation.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.
3 Create three levels of nested segments.
4

Modify the font character spacing attributes for each level of nesting.

13-21



Display Lists and Segmentation

Figure 13-14 Before Display List Modification

aurest

5 Draw text at each level of nesting.

Font names specified in the program are logical names.

PROGRAM SEGMENT

IMPLICIT INTEGER(A-Z)

INCLUDE ‘SYSSLIBRARY:UISENTRY'’

INCLUDE ’SYSSLIBRARY:UISUSRDEF'
VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,30.0,30.0,21.0,5.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’ )

CALL UIS$BEGIN_SEGMENT(VD_ID)
CALL UIS$SET FONT(VD_ID,0,1,’MY_FONT_6')
CALL UIS$SET_CHAR_SPACING(VD_ID,1,1,0.0,1.0)
CALL UISSTEXT(VD_ID,1,’'The resolved mind has no cares’,0.0,30.0

13-22



Display Lists and Segmentation

Figure 13-15 Executing the Modified Display List

The ox when weariest treads surest
0ld foxes want no tutors

ZK-5263-86

CALL UIS$BEGIN_SEGMENT(VD_ID) (5]

CALL UIS$SET_FONT(VD_ID,1,1,’My FONT_13‘) B

CALL UIS$NEW_TEXT_LINE(VD_ID,1)

CALL UISSTEXT(VD_ID,1,’'The camel never sees its own hump’)

CALL UIS$SBEGIN_SEGMENT(VD_ID) B

CALL UISS$SSET_FONT(VD_ID,1,1,'MY_FONT 7') 8
CALL UISSNEW_TEXT LINE(VD_ID,1) ,
CALL UISSTEXT(VD_ID,1,’First things first’)

CALL UISSEND_SEGMENT(VD_ID)
PAUSE .
CALL UIS$SET_CHAR_SPACING(VD_ID,1,1,0.0,0.0)
CALL UISSNEW_TEXT_LINE(VD_ID,1)
CALL UISS$TEXT(VD_ID,1,’A new broom sweeps clean’)

CALL UISS$SEND_SEGMENT(VD_ID)
CALL UIS$NEW_TEXT_LINE(VD_ID,1,)

CALL UISS$TEXT(VD_ID,1,'No sun without a shadow’)
CALL UIS$SEND_SEGMENT(VD_ID)

13-23



Display Lists and Segmentation

13-24

Figure 13-16 Verifying the Contents of the Display List

$ run edit_list

FORTRAN PAUSE

$ cont

COMTENTS DF SEGMENT 1

IDENTIFIER - OBJECT TYPE

116663 UIS$C_OBJECT_PLOT
11338588 JISSC_OBJIECT_SEGMENT
117404 UIS3C_0OBJECT_TEXT
117651 UISSC_0OBJECT_PLOT
FORTRAN PAUSE

$ cont

COMTEMTS OF SEGMEMT 2

IDEMTIFIER OBJECT TYPE

1163910 UIS4C_OBJECT_ELLIPSE
117167 JIS$C_0OBJECT_PLOT
116416 JIS$C_OBJECT_TEXT
FORTRAM PAUSE

hi

ZK-5262-86

PAUSE

END

The first call to UIS$BEGIN_SEGMENT 8 and the final call to UIS$END_
SEGMENT ®B establish the limits of the first-level segment. In this
segment, there are two calls to UIS$TEXT 8 ®. The first call to UIS$TEXT
establishes the current position for all first-level text output.

An attribute routine UIS$SET_FONT is called B to modify the font attribute.
The font MY_FONT_6 is now the current font for all text output in the
first-level segment. First-level text is drawn with MY_FONT_6.

The calls to UIS$BEGIN_SEGMENT and UIS$END_SEGMENT
establish the limits of the second-level segment nested within the first-level
segment. The first call to UISSSET_FONT 8 in the second-level segment
references the same output attribute block number specified in the attribute
routine call in the first-level segment 8. The modifications to attribute block
1 at the second level take precedence over any previous modifications of
attribute block 1 at outer levels.

The second-level segment further modifies the font attribute 8 The font
MY_FONT_13 is now the current font for all text output in this second-level
segment. The first call to UIS$TEXT within the second-level segment @
establishes the current position for text output drawn at the second level.



Display Lists and Segmentation

Calls to UIS$TEXT within this segment reference the same attribute block
1.

Once again, calls to UIS$BEGIN_SEGMENT and UIS$END_SEGMENT 8
establish the limits of the third level of segmentation nested within the
second level. The font MY_FONT_7 is now the current font for all text
output in this segment 8.

The line-spacing component of the character-spacing attribute is modified
twice 8 8. The first call to UIS$SET_CHAR_SPACING increases the line
spacing by a factor of 1. As the program executes, the second text drawing
routine call in levels 1 and 2 8@ B require room to avoid overstriking
existing lines.

NOTE: You must invoke the indirect command file
SYS$EXAMPLES:DEFFONT.COM before you run the demonstration
programs.

13.4.2.3 Calling UISSBEGIN_SEGMENT and UISSEND_SEGMENT
As the program SEGMENT sequentially executes each instruction, a text
string is drawn in the virtual display at the first, second, and third levels
of segmentation as shown in Figure 13-17. Note the font used in text
creation.

Figure 13-17 Text Output During Execution

IK-4558-85

13-25



Display Lists and Segmentation

1
Text strings are created in the reverse order of segmentation—second level

and then first level. Note the font used and the order of text string creation

shown in Figure 13-18 as compared with the statements in the source
program.

Figure 13-18 Final Text Output

'The camel never sees its own hump

new broom sweeps clean
irst th‘:’ngs ﬂrst P

2K-4560-85

13-26



14

14.1

14.2

14.2.1

14.2.2

Geometric and Attribute Transformations

Overview

Transformations change the appearance of graphic objects and text.
Part I discussed transformations and their possibly distorting effects on
graphic objects. In Part II, you have seen the effects of world coordinate
transformations when you modify world coordinate space, then redraw
graphic objects in the new space. This chapter describes the following
types of transformations:

¢ Two-dimensional geometric transformations

e Attribute transformations

Geometric Transformations

Two-dimensional geometric transformation of a graphic object involves
changing the graphic object angular orientation or shape within the virtual
display. It does not modify the coordinate system. Scaling, translation,
and rotation transform graphic objects geometrically.

Translating Graphic Objects

When you translate a graphic object, you move the object to another part of
the coordinate space without altering its x and y axis physical orientation.
For example, if a side of a triangle was originally parallel to the y axis, it
remains parallel to that axis even if the object is moved to another quadrant
in the coordinate space. Figure 14-1 shows graphic object translation.

Scaling Graphic Objects

When you scale a graphic object, you stretch or shrink it. There are two
types of scaling:

¢ Simple scaling

¢ Complex scaling

14-1



Geometric and Attribute Transformations

Figure 14-1 Translating a Graphic Object

Simple Scaling of Graphic Objects

When you perform simple scalilng, you execute a single transformation.
The position of the newly scaled graphic object in the virtual display

is always different from its original position, with one exception: if the
object center point is at the origin, the object will not move when scaled.
Figure 14-2 shows simple scaling.

14-2



Geometric and Attribute Transformations

Figure 14-2 Simple Scaling

Complex Scaling of Graphic Objects

When you perform complex scaling, the newly scaled object maintains
its previous position in the virtual display. Complex scaling involves the
following steps:

1 Translate the center of the object to the coordinate system origin.
2 Scale the object.

3 Translate the object to its original position.

14-3



Geometric and Attribute Transformations

Figure 14-3 shows complex scaling.
Figure 14-3 Complex Scaling

14.2.2.1 Uniformly Scaled Graphic Objects
Compare uniform scaling to a photographic enlargement of a snapshot.
The enlargment renders an object with physical dimensions proportional
to the original snapshot. The scaling factor of the width of the object, Sy,
equals the scaling factor of the height of the object, Sy. Figure 14-4 shows
a uniformly scaled object.

14-4



Geometric and Attribute Transformations

Figure 14-4 Uniformly Scaling a Graphic Object

14.2.2.2 Differentially Scaled Graphic Objects
The height of an object can be increased, while its width remains constant

where sx does not equal sy. The object is differentially scaled as shown in
Figure 14-5.

14-5



Geometric and Attribute Transformations

Figure 14-5 Differentially Scaling a Graphic Object

14.2.3 Rotating Graphic Objecfs

N Generally speaking, rotation changes an object angular orientation in the
virtual display. Rotation occurs about the origin of the coordinate system.
Positive rotation is a counterclockwise movement.

14-6



Geometric and Attribute Transformations

Simple Rotation of Graphic Objects

Simple rotation involves executing a single transformation—no translation.
In simple rotation, the object appears to revolve about the origin.
Figure 14-6 shows a rectangle rotating about the origin.

Figure 14-6 Simple Rotation of a Graphic Object

14-7



Geometric and Attribute Transformations

Figure 14-7 Complex Rotation of a Rectangle

2% 539886

14-8

Complex Rotation of Graphic Objects

To perform complex rotation, you translate the object to the origin so the
origin and reference point share the same coordinate values—(0.0,0.0). The
object is rotated and translated to its original position in the virtual display.
Figure 14-7 illustrates complex rotation of a rectangle.



Geometric and Attribute Transformations

14.2.4 Programming Options
There are two types of geometric transformation:
e COPY
e MOVE

Two-Dimensional Geometric Transformation—COPY

You can execute a geometric transformation when you use UIS$COPY_
OBJECT to copy the graphic object. The original object remains
unchanged.

Two-Dimensional Geometric Transformations—MOVE

You can execute a geometric transformation when you use
UIS$TRANSFORM_OBJECT to transform the graphic object in the virtual
display. The original object is modified.

14.2.5 Program Developmentl|
Programming Objective

To rotate a graphic object counterclockwise 45 degrees about its center.

Programming Tasks

Create a virtual display.

Create a display window and viewport.

Create a graphic object and obtain its identifier.

Declare and load a two-dimensional array with translation values.
Execute translation. '

Load array with rotation values.

Execute rotation.

Load array with translation values.

W O N O 0 A WM =

Execute the translation where the original object is erased and redraw.
the object in its original position in the coordinate system.

PROGRAM GEO_TRANSFORM_ROT
IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYSSLIBRARY:UISUSRDEF’
REAL*4 MATRIX(2,3)

VD_ID=UIS$CREATE_DISPLAY(-20.0,-20.0,20.0,20.0,10.0,10.0)
WD_ID=UISSCREATE_WINDOW(VD_ID, 'SYS$SWORKSTATION’)

CALL UIS$PLOT(VD_1D,0,0.0,20.0,0.0,-20.0)
CALL UIS$PLOT(VD_ID,0,-20.0,0.0,20.0,0.0})

CALL UIS$PLOT(VD_I1D,0,5.0,5.0,15.0,5.0,15.0,10.0,5.0,10.0,
2 5.0,5.0) : 4]

CURRENT_ID=UIS$GET_CURRENT_OBJECT(VD_ID)
OBJ_ID=CURRENT_ID

PAUSE

14-9



Geometric and Attribute Transformations

MATRIX(1,1)=1.0 6]
MATRIX(2,1)=0.0

MATRIX(1,2)=0.0

MATRIX(2,2)=1.0

MATRIX(1,3)=-10.0

MATRIX(2,3)=-7.5

CALL UIS$TRANSFORM_OBJECT (OBJ_ID,MATRIX) @

PAUSE

MATRIX(1,1)=COSD(45.0) 8]
MATRIX(2,1)=-SIND(45.0)
MATRIX(1,2)=SIND(45.0)
MATRIX(2,2)=COSD(45.0)

MATRIX(1,3)=0.0

MATRIX(2,3)=0.0

CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX) 8

PAUSE

MATRIX(1,1)=1.0 (10]
MATRIX(2,1)=0.0

MATRIX(1,2)=0.0

MATRIX(2,2)=1.0

MATRIX(1,3)=10.0

MATRIX(2,3)=7.5

CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX) 08

PAUSE
END

A two-dimensional array is declared 8,
The x and y axes are drawn 8 B,

A rectangle is drawn using UIS$PLOT 8. Call UISSGET_CURRENT_
OBJECT to save its object identifier B. The object identifier is used as an
argument to the transformation routine.

The rectangle is rotated about its center.

The VAX FORTRAN intrinsic functions SIND and COSD accept degrees as
arguments B.

The matrix is loaded with values three times B 8 8@ to translate, rotate the
rectangle about its center, then translate it to its original position in the
virtual display.

~ Each transformation is performed as the original object is erased and

redrawn in its new orientation. The rectangle is redrawn with each call to
UIS$TRANSFORM_OBJECT ag@m. -

14.2.6 Calling UISSTRANSFORMATION_OBJECT

14-10

The program GEO_TRANSFORM_ROT translates, rotates, and translates
a rectangle with UISSTRANSFORM_OBJECT. Figure 14-7 illustrates how
after each transformation the previous position of the rectangle in the
virtual display is erased.



Geometric and Attribute Transformations

14.2.7 Program Development Il
Programming Objectives

To rotate a copy of the graphic object 45 degrees about its center and place
the rotated copy in another quadrant.

Programming Tasks

O N O O A WN -

Create a virtual display.

Create a display window and viewport.

Declare and load a two-dimensional array with translation values.
Execute the COPY operation and the translation.

Load the array with rotation values.

Execute rotation.

Load the array with translation values.

Execute translation.

PROGRAM COPY_OBJECT
IMPLICIT INTEGER(A-7Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF’
REAL*4 MATRIX(2,3)

VD_ID=UIS$CREATE_DISPLAY(-20.0,-20.0,20.0,20.0,10,0,10.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’ )

CALL UIS$PLOT(VD_ID,0,0.0,20.0,0.0,-20.0)
CALL UIS$PLOT(VD_ID,0,-20.0,0.0,20.0,0.0)

CALL UIS$PLOT(VD_ID,0,5.0,5.0,15.0,5.0,10.0,10.0,5.0,5.0)

CURRENT_ID=UIS$GET_CURRENT_OBJECT(VD_ID)
OBJ_ID=CURRENT_ID

PAUSE

MATRIX(1,1)=1.0

MATRIX(2,1)=0.0

MATRIX(1,2)=0.0

MATRIX(2,2)=1.0

MATRIX(1,3)=-10.0

MATRIX(2,3)==7.5
COPY_ID=UIS$COPY_OBJECT(OBJ_ID,MATRIX) 0

PAUSE
OBJ_ID=COPY_ID 12}

MATRIX(1,1)=COSD(45.0) 3]
MATRIX(2,1)=-SIND(45.0)
MATRIX(1;2)=SIND(45.0)
MATRIX(2,2)=COSD(45.0)

MATRIX(1,3)=0.0

MATRIX(2,3)=0.0

CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX) @

PAUSE

14-11



Geometric and Attribute Transformations

MATRIX(1,1)=1.0

MATRIX(2,1)=0.0

MATRIX(1,2)=0.0

MATRIX(2,2)=1.0

MATRIX(1,3)=-10.0 8
MATRIX(2,3)=7.5

CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX)

PAUSE
END

Except for a few important differences, this program is identical to the
previous program GEO_TRANSFORM_ROT.

The first transformation is executed 8. The triangle is copied and translated
to the origin of the coordinate space. The coordinates of the center of the
triangle match those of the origin. The original triangle in the first quadrant
remains unchanged.

The identifier of the transformed object copy_id is assigned to the obj_id 8.
The identifier is used as an argument in the next transformation.

The VAX FORTRAN intrinsic functions SIND and COSD accept degrees as
arguments 8.

A call to UISSTRANSFORM_OBJECT rotates the translated triangle 45
degrees @. The original object is erased and redrawn in its new orientation.

The final translation of the triangle places it in the second quadrant at a
45-degree angle to the original triangle B.

14.2.8 Calling UISSCOPY_OBJECT

Transformation of the triangle is similar to that of the rectangle in the
previous example. However, the first transformation copies the triangle.
Figure 14-8 shows that the triangle remains in the virtual display. However,
the rotated copy of the triangle is translated to the second quadrant.

14.3 Attribute Transformations

An attribute transformation occurs when you modify graphic objects and
text, but you do not have to know the attribute block of the original objects.

14.3.1 Programming Options
Attribute Transformations

Ordinarily, when you modify the appearance of an existing graphic object,
you must perform the follow procedure: '

1 Obtain the object identifier.
2 Call UIS$DELETE_OBJECT with the object identifier.
3 Redraw the graphic object or text using the modified attribute block.

14-12



~—

Geometric and Attribute Transformations

Figure 14-8 Complex Rotation of a Triangle

The above procedure requires at least two steps:
e Use UIS$ERASE to erase the virtual display.
* Redraw the object with a modified attribute block.

To modify the attributes of graphic objects and text in a single call,
call UIS$COPY_OBJECT or UIS$STRANSFORM_OBJECT and specify
the atb argument but omit the matrix argument. To disable attribute
transformation, omit the atb argument.

14-13



Geometric and Attribute Transformations

14.3.2 Program Development

Programming Objective

To modify the fill pattern of a circle as a transformation.

Programming Tasks

Create a virtual display.

Create a display window and a display viewport.
Draw a circle using default attributes.

Obtain its object identifier.

Modify the fill pattern attribute.

D N AW N -

Transform the circle attributes and draw the modified circle.

PROGRAM ATTR_TRANS

IMPLICIT INTEGER(A-~Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYSSLIBRARY:UISUSRDEF”

VD_ID=UIS$CREATE_DISPLAY(~10.5,-10.5,10.5,10.5,10.0,10.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,’SYS$WORKSTATION')

CALL UIS$CIRCLE(VD_ID,0,0.0,0.0,10.0)
CURRENT_ID=UIS$GET_CURRENT_OBJECT (VD_ID)
OBJ_ID=CURRENT_ID

CALL UIS$SET_FONT(VD_ID,0,1, UIS$FILL_PATTERNS’)
CALL UIS$SET_FILL_PATTERN(VD_ID,1,1,PATT$C_DOWNDIAG1_7)

PAUSE
CALL UISS$TRANSFORM_OBJECT(OBJ_ID,,1) B

PAUSE
END

This program does not declare a matrix. Therefore, the position of any
objects will be the same.

The fill pattern attribute is modified 8 8.

The object identifier of the original circle and attribute block number of the
newly modified attribute block are arguments in the transformation @.

14.3.3 Requesting Attribute Transformations

14-14

Because no matrix is specified in the transformation, the resulting
transformation does not change object positions within the virtual display.
The original circle is erased and the modified circle i is placed in its position
as shown in Figure 14-9.

If you call UIS$COPY_ OBJECT rather than UISSTRANSFORM_OBJECT,
the original circle remains visible in the virtual display. The modified circle
is still in the same position. Figure 14-10 shows attributes modified with a

copy.









1 5 Metafiles and Private Data

15.1

15.2

Overview

If you want to reuse a display you produce, you must first store it in a UIS
metafile. This chapter details metafile structure and the contents of the
binary encoded instructions.

An additional feature allows you to associate data with graphic objects.
You can specify a particular graphic object or group of objects within the
display to be associated with the user-defined data. This chapter discusses
the following topics:

* Extracting data from a display list

* Interpreting the user buffer

* Creating a UIS metafile

¢ Creating private data

Hardcopy UIS (HCUIS) translates UIS pictures to other formats. See the

VMS Workstation Software Guide to Printing Graphics for more information
about HCUIS.

Display Lists and UIS Metafiles

You design application programs to generate graphic objects on the screen.
You should also be concerned with program modularity and efficiency.

A new entry is added to the display list for each new object drawn in

the virtual display. You should preserve the contents of a display list as
generically encoded binary instructions for use across many applications.
Then you can extract graphics output and attribute modifications from
display lists, store them in user-defined buffers as metafile components, and
store them in files as metafiles.

15.2.1 Generic Encoding of Graphics and Attribute Routines

Binary Encoded Instruction

When you draw an object in the virtual display or modify an attribute,
a binary encoded instruction is added to the display list of the specified
virtual display. Entries in the display list are variable length instructions,
encoded as shown in Figure 15-1.

V4.1—June 1989 15-1



Metafiles and Private Data

Figure 15-1 Binary Encoded Instruction

Op code Length
16 bits 16 bits Arguments

Extended Binary Encoded Instruction

If the length of the binary encoded instruction is greater than 32,767 bytes,
the length field equals GERSK_LENGTH_DIFF and the actual length is

in the longword field that follows. Figure 15-2 describes the format of a
display list entry if the length field is greater than 32,767 bytes.

Figure 15-2 Extended Binary Encoded Instruction

Opcode| Length Extra Length
16 bits 16 bits 32 bits Arguments

15.2.1.1

15-2

Normalized Coordinates

The coordinate system used in display lists and to create generically
encoded streams is known as normalized coordinates. Normalized
coordinates are floating point numbers in the range (0.0,0.0) to (max_
nc_x,max_nc_y), where (0.0,0.0) refers to lower-left corner of the virtual
display and (max_nc_x,max_nc_y) refers to the upper-right corner.

UIS uses normalized coordinates to defer the actual mapping of application
world coordinates to device-specific coordinates until the actual output
device is known. For example, the device coordinates of a printer might be
different from the device coordinates of a raster display.

V4.1—June 1989



Metafiles and Private Data

15.2.1.2

interpreting the User Buffer

When UIS routine calls are executed, binary encoded instructions are
added to the display list. When you extract the contents of a display list
and store them in a buffer, you create metafile components—header data,
an encoded stream of binary instructions, and trailer data. Each metafile
component consists of binary encoded instructions. When you write the
contents of the buffer to a file, you create a UIS metafile. A UIS metafile is
a generically encoded binary stream; that is, all three components exist within
a single file that is executable on any VAXstation system. The buffer and
metafile contain values that describe the extracted objects. If reexecuted,
these encoded instructions cause UIS to recreate the objects drawn in the
virtual display. Note that monochrome systems cannot duplicate the color
of extracted objects created on color systems.

You can write your own binary encoded instructions and metafiles. First,
you must understand how to interpret the contents of the user-defined
buffer containing the extracted data.

V4.1—June 1989 15-2.1






Metafiles and Private Data

Opcodes

An opcode is the portion of the binary encoded instruction that specifies
the instruction action. Table 15-1 lists the generic encoding symbols and
the corresponding opcodes of binary encoded instructions.

Table 15-1 Generic Encoding Symbols and Opcodes

Generic Encoding Symbol Opcode
Attribute '
GERS$C_SET_WRITING_MODE 1
GER$C_SET_WRITING_INDEX 2
GER$C_SET_BACKGROUND_INDEX 3
GER$C_SET_CHAR_SPACING 4
GER$C_SET_CHAR_SLANT 5
GER$C_SET_TEXT_SLOPE 6
GER$C_SET_TEXT_PATH 7
GER$C_SET_TEXT_FORMATTING 11
GER$C_SET_CHAR_ROTATION 12
GER$C_SET_TEXT_MARGINS 13
GER$C_SET_LINE_WIDTH 14
GER$C_SET_LINE_STYLE 15
GER$C_SET_FONT 17
GER$C_SET_ARC_TYPE 26
GER$C_SET_FILL_PATTERN 37
GER$C_SET_CLIP 38
GER$C_SET_CHAR_ENCODING 39
GER$C_SET_CHAR_SIZE 42
Graphics and Text

GER$C_TEXT 19
GER$C_SET_POSITION 21
GER$C_PLOT 23
GER$C_ELLIPSE 25
GER$C_IMAGE 29
GER$C_ALIGN_POSITION 33
GER$C_LINE 52
Application-specific Private Data
GER$C_PRIVATE 30
Display List

GER$C_BEGIN' ' 31

'This binary instruction has no arguments.

15-3



Metafiles and Private Data

Table 15-1 (Cont.) Generic Enéoding Symbols and Opcodes

Generic Encoding Symbol Opcode
Display List

GER$C_END' 32
GER$C_BEGIN_DISPLAY 34
GER$C_END_DISPLAY' 35
GER$C_VERSION 36
GERS$C_IDENTIFICATION 43
GER$C_DATE 44
GER$C_NOP' 45
GER$C_PRIVATE_ECO 49
GER$C_DISPLAY_EXTENTS : 51
Color

GER$C_SET_COLORS 47
GER$C_SET_INTENSITIES 48

GER$C_CREATE_COLOR_MAP 50

'This binary instruction has no arguments.

Arguments

Figure 15-3 illustrates the format of an argument within a binary instruction
that changes attribute settings.

Figure 15-3 Format of Attribute-Related Argument

Op code Length IATB OATB Arguments
16 bits 16 bits 16 bits 16 bits

ZK-5474.86

15-4



Metafiles and Private Data

Figure 15-4 illustrates the format of an argument within a binary encoded
instruction that produces graphics or text.

Figure 15-4 Format of Graphics- and Text-Related Argument

Op code
16 bits

16 bits

Length ATB
16 bits

Arguments

ZK-5475-86

Table 15-2 Arguments of Binary Encoded Instructions

Table 15-2 lists the possible arguments that can appear in a binary encoded

instruction.

Opcode Argument® Data Type Description
Attributes’
iatb word Input attribute block for set operations
oatb word Output attribute block for set operations
GER$C_SET_ARC_ arc_type word arc type
TYPE
GER$C_SET_ background_index word Background index
BACKGROUND_
INDEX
GER$C_SET_CHAR_ char_encoding_type word Character encoding type
ENCODING
GER$C_SET_CHAR_ char_size_flags word Scaling flags
SIZE char_size_ bitfield Font ideal size for x
enable mask Font ideal size for y
char_size_def_ bitfield Widest char
X mask
char_size_def_y bitfield
char_size_def_ mask
char bitfield
mask
char_size_example word Example character
char_size_width F_floating Character width
char_size_height F_floating Character height
GER$C_SET_CHAR_ char_slant_angle F_floating Character slant angle
SLANT
GER$C_SET_CHAR_ char_space_dx F_fioating Delta x spacing
SPACING: char_space_dy F_floating Delta y spacing

TAll attribute-related encoding items start with input attribute block (IATB) and output attribute block (OATB)
numbers and then contain attribute specific information.

SArguments whose data type is word, ongword, or character use the prefix GER$W_, GER$F_, or GER$G,
respectively, EXCEPT GER$L_LINE_STYLE and GER$L_IMAGE_SIZE. For example,
GERS$W_IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING.

15-5



Metafiles and Private Data

Table 15-2 (Cont.)

Arguments of Binary Encoded Instructions

Opcode Argument® Data Type Description
Attributes’ ' ‘ '
GERS$C_SET_CHAR_ char_rotation_angle F_floating Character rotation angle
ROTATION
GER$C_SET_CLIP clip_flags word Clipping rectangle
clip_x1 F_
clip_y1 floating
clip_x2 F_
clip_y2 floating
F_
floating
F_
floating
GER$C_SET_ color_count word Number of indices
COLORS
color_index word First index
color_values longword array R, G, and B vectors
GER$C_SET_FILL_ fill_flags word Flags
PATTERN
fill _index word Index
GER$C_SET_FONT font_id_length word Font name length
font_id_string character Font name string
GERS$C_SET_ intensity_count word Number of indices
INTENSITIES
intensity_index word First index
intensity_values longword array I vector

GER$C_SET_LINE_
STYLE

GERS$C_SET_LINE_
WIDTH

GER$C_SET_TEXT_
FORMATTING
GER$C_SET_TEXT_
MARGINS

GER$C_SET_TEXT_
PATH

line_style
line_width_nc

line_width_dc
line_width_mode
text_format_mode

text_margin_x

text_margin_y
text_margin_distance
text_path_major

longword
F_floating

F_floating
word
word

F_fioating

F_floating
F_floating
word

32-bit bitvector
Normalized coordinates

Pixel coordinates
Width mode
Text formatting mode

Starting position

Ending position
Major path code

'All attribute-related encoding items start with inpu!‘t attribute block (IATB) and output attribute block (OATB)

numbers and then contain attribute specific information

SArguments whose data type is word, longword, or character use the prefix GER$W

respectively, EXCEPT GER$L_LINE_ STYLE and GERS$L_IMAGE_SIZE. For example,
GER$W IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G FONT_ID_ STRING

15-6

, GER$F_, or GER$G,



Table 15-2 (Cont.)

Metafiles and Private Data

Arguments of Binary Encoded Instructions

Opcode Argument® Data Type Description
Attributes’
text_path_minor word Minor path code
GER$C_SET_TEXT_ text_slope_angle F_floating Angle of text slope
SLOPE
GER$C_SET_ writing_mode word Writing mode
WRITING_MODE
GER$C_SET_ writing_index word Wiriting index
WRITING_INDEX
Graphics and Text?
output_atb word ATB for graphics and text operations
GER$C_ELLIPSE ellipse_x F_floating Center point
ellipse_y F_floating
ellipse_width F_floating Radius width and height
ellipse_height F_floating
ellipse_start_deg F_floating Starting and ending degrees
ellipse_end_deg F_floating
GER$C_IMAGE image_x1 F_floating Lower-left corner of raster image
image_y1 F_floating
image_x2 F_floating Upper-right corner of raster image
image_y2 F_floating
image_width word Image width in pixels
image_height word Image height in pixels
image_bpp word Bits per pixel
image_size longword Number of bytes in image
image_data byte array Place to store actual data
GER$C_PLOT plot_count word Number of points
plot_data longword array  Points
GER$C_TEXT text_encoding word 8- or 16-bit encoding
text_length word Text length in bytes
text_data character Text string
GERS$C_LINE line_count word Number of points
line_data longword array Points

'All attribute-related encoding items start with input attribute block (IATB) and output attribute block (OATB)
numbers and then contain attribute specifi¢ information.
2All output-related encoding items start with an attribute block (ATB) number and are then followed by graphics
and text output information.
3Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F_, or GERS$G,

respectively, EXCEPT GER$L_LINE_STYLE and GER$L_IMAGE_SIZE. For example,
GER$W_IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING.

15-7



Metafiles and Private Data

Table 15-2 (Cont.) Arguments of Binary Encoded Instructions

Opcode Argument® Data Type Description
Color Map
GER$C_CREATE_ color_map_attributes longword Color map attributes
COLOR_MAP color_map_ bitfield
resident mask
color_map_no_ bitfield
bind mask
color_map_ bitfield
share mask
color_map_ bitfield
system mask
color_map_name_size word
color_map_size word
color_map_name character Virtual color map name
Private Data
GER$C_PRIVATE private_facnum word Facility number
private_length word Length of data
private_data byte array Data
Metafile
GER$C_VERSION version_major word Encoding version number
version_minor word
version_eco word -
GER$C_ identification_length word
IDENTIFICATION identification_string character
GER$C_DATE date_length word File creation date
date_string character
GER$C_PRIVATE_ private_eco_facnum word
ECO
private_eco_major word
private_eco_minor word
private_eco_eco word
Miscellaneous
GERS$C_DISPLAY_ extent_minx F_floating Extent rectangle
EXTENTS ’ '
extent_miny F_floating
extent_maxx F_floating
extent_maxy

F_floating °

3Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F_, or GER$G,

respectively, EXCEPT GER$L_LINE_STYLE and GER$L_IMAGE_SIZE. For example,
GER$W_IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING.

15-8



15.2.2

Metafiles and Private Data

Table 15-2 (Cont.) Arguments of Binary Encoded Instructions

Opcode Argument® Data Type Description
Miscellaneous
GER$C_SET_ text_pos_x F_floating Text position
POSITION
text_pos_y F_floating
GERS$C_ALIGN_ align_pos_atb word Attribute block
POSITION
align_pos_x F_floating Position
align_pos_y F_floating
GER$C_BEGIN_ display_wc_minx f_floating Dimensions of virtual display
DISPLAY
display_wc_miny f_floating
display_wc_maxx f_floating
display_wc_maxy f_floating
display_width f_floating
display_height t_floating
GER$C_END_ No arguments
DISPLAY

SArguments whose data type is word, longword, or character use the prefix GER$W_, GERS$F_, or GER$G,
respectively, EXCEPT GERS$L_LINE_STYLE and GER$L_IMAGE_SIZE. For example,
GER$W_IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING.

Creating UIS Metafiles

UIS metafiles are encoded binary

instructions that are generically encoded

when you use UIS$EXTRACT_OBJECT or UIS$EXTRACT_REGION to
extract them from a display list. UIS metafiles consist of the following

components:

¢ Header information

¢ Generically encoded binary instructions

e Trailer information

The header and trailer are special binary instructions that indicate the
beginning and end of a UIS metafile. The generic encoding of UIS
metafiles allows you to store the extracted contents of the display list
in a buffer or file. Table 15-3 lists the parts of a UIS metafile.

15-9



Metafiles and Private Data

Table 15-3 Structure of UIS Metafiles

Generic Encoding

Symbol Function
Header Information ;
GER$C_VERSION Level of generic encoding syntax. The version

always appears first.
GER$C_IDENTIFICATION User-specified optional identification string.
GER$C_DATE Optional and user-specified.
GER$C_PRIVATE_ECO'? Optional and user-specified.
GER$C_CREATE_COLOR_ Used by UISSEXECUTE_DISPLAY.

MAP
GER$C_SET_COLORS Used by UIS$EXECUTE_DISPLAY.
GER$C_BEGIN_DISPLAY Dimensions of the virtual display to be created by

UISSEXECUTE_DISPLAY.

Encoded Binary Instructions?

GERS$C_DISPLAY_ Define bounds of an extent rectangle used in

EXTENTS?® UIS$EXTRACT_REGION.

Segment Express the hierarchical structure within a display
list and identify the attributes associated with a
segment.

Attribute Allow the modification of any attribute in any

attribute block. A generic encoding opcode exists
for each attribute.

Graphics and text Contain the data necessary to draw graphic objects.
Application-specific Associate data with a user-specified facility.

Trailer

GER$C_END_DISPLAY Ends the UIS metafile.

'Engineering Change Order

2See Table 15-1 for the generic symbols in each of these categories of binary
encoded instructions.

3Generated only by UISSEXTRACT_REGION.

15.2.3 Structure of a UIS Metafile
A UIS metafile consists of three components:
* Header information
¢ Binary instructions

® Trailer information

15-10



Metafiles and Private Data

Figure 15-5 illustrates the structure of a UIS metafile containing a single
extracted graphic object. Note that attribute modification instructions
precede the object and private data instructions follow it. Also, if

the extracted object were previously within a segment, segmentation

instructions must surround it in the metafile.

Figure 15-5 Structure of UIS Metafile

Header
Information

Beginning
Segmentation
Instruction

Attribute
Modification
Instructions

Extracted
Graphic Object

Private Data

Ending Segmentation
Instruction

Trailer
Information

GERS$SC_VERSION Length Arguments
GERSC_IDENTIFICATION Length Arguments

GERSC_DATE Length Arguments
GER$C_BEGIN_DISPLAY Length Arguments

GERS$C_BEGIN Length No arguments
GERS$C_SET_FONT Length IATB OATB Arguments
GER$C_SET_FILL _PATTERN Length IATB OATB Arguments
GERSC_ELLIPSE Length ATB Arguments
GERS$C_PRIVATE Length Arguments

GERSC_.PRIVATE Length Arguments

GER$C_END Length No Arguments
GERSC_END_DISPLAY Length No arguments

2K 5476 86

Private data is discussed later in this chapter.

15-11



Metafiles and Private Data

15.2.4 Programming Options

With UIS metafiles, you can save display screen output for reexecution at a
later time.

Creating UIS Metafiles

You can extract an object or the contents of a region within a virtual display
and store the data in a buffer or file as a metafile. Use the following
procedure:

1 Use UISSEXTRACT_HEADER, UISSEXTRACT_OBJECT or
UIS$EXTRACT_REGION, and UISSEXTRACT_TRAILER without the
buffer length and buffer address parameters to determine the size of
the buffer you need to store the header information, binary encoded
stream, and trailer.

2 Call UISSEXTRACT_HEADER, UIS$EXTRACT_OBJECT or
UIS$EXTRACT_REGION, and UISSEXTRACT_TRAILER with the
previously omitted parameters to extract the header information, binary
encoded instructions, and trailer and to store the data in three buffers.

3 Use VAX FORTRAN OPEN and WRITE statements to write the
contents of the buffers to an external file.

Executing the Metafile

Use UIS$EXECUTE to write UIS metafiles extracted and stored in a buffer
to the same virtual display.

UIS$EXECUTE_DISPLAY creates a new virtual display and executes the
metafile in the new display space. However, you must call UISSCREATE_
WINDOW to view the graphic object in the virtual display.

15.2.5 Program Development |
Programming Objectives

To extract the contents of a region in the virtual display and create a UIS
metafile.

Programming Tasks ‘

Initialize variables.

Create a virtual display.

Draw graphic objects in the virtual display.
Create a display window and viewport.
Determine the size of each part of the metafile.

Allocate the space in buffers for each part of the metafile.

N OO g bR WON -

Extract the contents of the specified region in a buffer.

15-12



8

Metafiles and Private Data

Write the contents of the buffer to an external file.

PROGRAM EXTRACT

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF’
DATA RETLEN1,RETLEN2,RETLEN3/3*0/

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,30.0,30.0,20.0,20.0)

Draw some objects
CALL UIS$PLOT(VD_ID,0,7.0,10.0,16.0,10.0,7.0,15.0,

2 7.0,10.0)
CALL UIS$ELLIPSE(VD_ID,0,20.0,20.0,9.0,5.0)

(1]

2]

CALL UIS$TEXT(VD_ID,0,’Haste and wisdom are things far odd’,
8

2 11.0,15.0)

Create a display window

WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION' )
PAUSE

Find out how much space to allocate for each part of the metafile

CALL UIS$EXTRACT_HEADER(VD_ID,,,RETLEN1) 8
CALL UIS$SEXTRACT REGION(VD_ID,,,,,,,RETLEN2)
CALL UISSEXTRACT_TRAILER(VD_ID,,,RETLEN3) @

Virtual memory is allocated for the buffers

STATUS=LIB$GET_VM(RETLEN1,ENCODED1)

IF (.NOT.STATUS) CALL LIBSSTOP(%VAL(STATUS)) B

STATUS=LIB$GET_VM(RETLEN2 , ENCODED2)

IF (.NOT.STATUS) CALL LIB$STOP(%VAL(STATUS)) f®
STATUS=LIBSGET_VM(RETLEN3, ENCODED3)

IF (.NOT.STATUS) CALL LIB$STOP(%VAL(STATUS)) 0¥
RETLEN=RETLEN1+RETLEN2+RETLEN3

“TYPE *,'HEADER DATA’,RETLEN1,’ BYTES’ 1 3]

TYPE *,’BINARY INSTRUCTION',RETLENZ,’ BYTES’' B3
TYPE *, 'TRAILING DATA’,RETLEN3,’ BYTES'’ (15}

TYPE *,’NO, OF BYTES ALLOCATED = ’,RETLEN 1 6]
PAUSE

Extract the data and store it in a buffer
CALL UIS$EXTRACT_ HEADER(VD_ID,RETLEN1,%VAL(ENCODED1)) @0
CALL UIS$EXTRACT_REGION(VD_ID,,,,,RETLEN2,%VAL(ENCODED2))
CALL UIS$SEXTRACT_TRAILER(VD_ID,RETLEN3,%VAL(ENCODED3) )

Write

the contents of the buffer to an external file

8

[19]

OPEN(UNIT=10,FILE=’$DISK: [MY_DIR]METAFILE.DAT',STATUS='NEW’) B0

Call subroutine to write the contents of the buffer

Close

500

CALL BUFFERWRITE (%VAL(ENCODED1),RETLEN1, 10)
CALL BUFFERWRITE (%VAL(ENCODED2),RETLEN2,10)
CALL BUFFERWRITE (%VAL(ENCODED3),RETLEN3,10)

the external file
CLOSE(UNIT=10, STATUS='SAVE')

END

SUBROUTINE BUFFERWRITE(BUFFER,LENGTH,LUN) 68
IMPLICIT INTEGER(A-3Z)

BYTE BUFFER(LENGTH)

WRITE{LUN, 500 ) BUFFER 2.6}
FORMAT(T3,17)

RETURN
END

121]
23}

122

24}

Calls to UIS$PLOT, UIS$ELLIPSE, and UIS$TEXT @@ B draw objects in the
virtual display.

15-13



Metafiles and Private Data

Next, determine how much space to allocate for the buffers that hold the
header data, binary encoded stream, and trailing data. 88 ® The variables
retlenl, retlen2, and reflen3 receive the length of the header data, binary
encoded stream, and trailing data.

Allocate virtual memory for the buffers and store the address of each buffer
in the pointers encodedl, encoded2, and encoded3 using LIBSGET_VM. 0 & 88,
Perform a test for completion status of each Run-Time Library call 8 0@ 88.

Type the length of the header data, encoded stream, and trailing data as
well as the total number of bytes allocated 83 in the emulation window
15}

Extract the contents of the display list with UISSEXTRACT_HEADER,
UIS$EXTRACT_REGION, and UISSEXTRACT_TRAILER; store them at the
location indicated by pointers encodedl, encoded2, and encoded3 1.9}

Use the VAX FORTRAN built-in function %VAL to evaluate the pointers
encodedl, encoded2, and encoded3 in terms of the actual data they store—the ‘
addresses of the starting point of each buffer.

An external file is opened with the VAX FORTRAN OPEN statement for
program output

The pointer encoded is implicitly declared as a longword integer. Therefore,
you cannot simply write the data to the file PRIVATE.DAT.

The subroutine BUFFERWRITE is called 20 88 88 three times to perform

this task. Three arguments are passed in the call B3—buffer address, buffer
size, and the VAX FORTRAN logical unit number of the output device. An
array BUFFER is constructed from this data. ‘

The subroutine BUFFERWRITE writes the contents of BUFFER to the UIS
metafile PRIVATE.DAT #6. First the header data is stored in the metafile,
then the binary encoded stream; finally, the trailing data is written to
PRIVATE.DAT.

Before the program terminates, the VAX FORTRAN CLOSE statement
closes the file 88.

15.2.5.1 Calling UISSEXTRACT_HEADER, UISSEXTRACT_REGION, and
UISSEXTRACT_TRAILER ‘

A triangle, an ellipse, and text are drawn in a virtual display as shown in
Figure 15-6.

The terminal emulation window shown in Figure 15-7 shows buffer size
information for metafile components.

15-14



Metafiles and Private Data

Figure 15-6 Original Objects Drawn in the Virtual Display

Haste and wisdom are things far odd

15-15



Metafiles and Private Data

Figure 15-7 After Buffer Execution

2 run extract
FORTRAM PARUSE

$ cont

HERDER DATA 101 EBYTES

BIMARY IMSTRUCTIONM 151 EBYTES
TRAILIMG DARTA 4 EBYTES

[
i
[ni]

TOTAL MO, OF BYTES ALLOCATED =
FORTRAM FAUSE

ZK 5265 86

15.3 Display Lists and Private Data

Display lists are created when graphics routines are executed. Application-

~ specific or private data can be bound to graphic objects. The binary
encoded instructions in the display list point to internal buffers that contain
private data. ‘

15.3.1 Using Private Data

Use private data to include application-specific information with the
graphic objects displayed on the workstation screen. The nature of this
information is entirely at your discretion. For example, an application
that draws a vertical bar graph and plots relative humidity over a 24-

~ hour period might create data on an hourly basis. The private data, here
indicating temperature and wind speed, might be associated with each ‘
vertical bar. Private data is not displayed on the workstation screen and is
not available unless extracted into a buffer or metafile and executed. You
can attach private data to any graphic object in the virtual display.

15.3.2 Programming Options

To construct a program that reads data from an external file and uses it as
private data.

Creating Private Data
Use UIS$PRIVATE to create private data.

15-16



Metafiles and Private Data

Extracting Private Data

With the following procedure, you can use UISSEXTRACT_PRIVATE to
extract private data and store it in a buffer.

1 Use UISSEXTRACT_HEADER, UIS$EXTRACT_PRIVATE, and
UISSEXTRACT_TRAILER without the buffer length and buffer address
parameters to determine what size buffer you need to store the header
information, binary encoded stream, and trailer.

2 Call UISSEXTRACT_HEADER, UIS$EXTRACT_PRIVATE, and
UIS$SEXTRACT_TRAILER with the previously omitted parameters
to extract the private data and store it in a buffer.

3 Use the VAX FORTRAN OPEN statement to write the contents of the
buffer to an external file.
Deleting Private Data

Use UIS$DELETE_PRIVATE to delete private data associated with a graphic
object. '

15.3.3 Program Development |l

NOTE:

N O s W N =

Programming Objectives
1 To append private data to an object in the display list.
2 To extract the private data.

3 To create a UIS metafile containing the private data instruction.

Programming Tasks

Declare an array to receive the private data from an external file.
Type the contents of the array to verify it.

Create private data and append it to the last object in the display list.
Determine how large the buffers must be.

Allocate memory for the buffers.

Extract the private data.

~ Write the contents of the buffers to an external file.

Before you run this program, modify the file specifications in the OPEN
statements and construct a data file similar to DATA.DAT. Your data file
must be located in the same directory as the executable demonstration
program file. '

PROGRAM PRIVATE

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYSSLIBRARY:UISENTRY'
INCLUDE ’‘SYS$LIBRARY:UISUSRDEF'

BYTE PRIV(1:23) (1]

¢ Construct a descriptor
INTEGER*4 PRIV_DESC(2) 2]
PRIV_DESC(1)=23

PRIV_DESC (2 )=%LOC (PRIV)

15-17



Metafiles and Private Data

c Open external file containing private data
OPEN(UNIT=8,FILE='$DISK: [MY_DIR]DATA.DAT’,STATUS='OLD’) 4]

c Read data into array
READ(8,50) PRIV 8
50 FORMAT (A7)

_CLOSE (UNIT=8,STATUS='SAVE’ )
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,30.0,30.0,15.0,15.0) 6}

c draw the hot air balloon
CALL UIS$SET_FONT(VD_ID,0,2,’MY_FONT_5')
INDEX=87
CALL UIS$SET_FILL_PATTERN(VD_ID, 2,2, INDEX)

CALL UIS$CIRCLE(VD_ID,2,12.0,20.0,8.0)
CALL UIS$LINE(VD_ID,2,10.0,12.0,10.0,8.0,14.0,12.0,14.0,8.0,
2 10.0,10.0,14.0,10.0,10.0,8.0,14.0,8.0)

¢ draw house
CALL UISspLOT(VD_1D,0,15.0,8.0,29.0,8.0,22.0,13.0,
2 15.0,8.0)
CALL UISSLINE(VD_ID,0,15.0,8.0,15.0,0.0,29.0,8.0,29.0,0.0) ‘

c draw door
CALL Uiss$pLOT(VD_ID,0,21.0,0.0,21.0,4.0,23.0,4.0,23.0,0.0)

C create windows
CALL UIS$PLOT(VD_ID,0,17.0,2.0,17.0,6.0,19.0,6.0,19.0,2.0,
2 17.0,2.0)
CALL UIS$LINE(VD_ID,0,17.0,4.0,19.0,4.0,18.0,2.0,18.0,6.0)

CALL UIS$PLOT(VD_iID,0,25.0,2.0,25.0,6.0,27.0,6.0,27.0,2.0,
2 25.0,2.0)
CALL UIS$LINE(VD_ID,0,25.0,4.0,27.0,4.0,26.0,2.0,26.0,6.0)

c create chimney ‘
CALL UISSLINE(VD_ID,0,26.0,11.0,28.0,11.0,26.0,11.0,26.0,10.0,
2 28.0,11.0,28.0,9.0)

c create smoke

CALL UIS$ELLIPSE(VD_1ID,0,27.0,13.0,2.5,1.0)
CALL UIS$ELLIPSE(VD_ID,0,27.25,16.0,2.25,1.0)
CALL UISSELLIPSE(VD_ID,0,27.5,19.0,2.0,1.0)
CALL UISSELLIPSE(VD_1D,0,27.75,22.0,1.75,1.0)
CALL UISSELLIPSE(VD_ID,0,28.0,25.0,1.5,1.0)
CALL UIS$SELLIPSE(VD_ID,0,28.25,28.0,1.25,1.0)
CURR_ID=UISS$GET_CURRENT_OBJECT(vVD_ID) @

¢ type out buffer containing private data
TYPE *,PRIV 8]

c Create private data
FACNUM = 1
CALL UIS$PRIVATE(vd_id, FACNUM,PRIV_DESC) (9]

CALL UIS$SET_LINE_WIDTH(VD_ID,0,3,15.0)
CALL UIS$PLOT(VD_ID,3,1.0,29.0,4.0,11.0)

CALL UIS$SCREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’)

PAUSE

¢ Determine size of buffer
CALL UIS$EXTRACT_HEADER(VD_ID,,,RETLENI) 10}
CALL UIS$EXTRACT_PRIVATE(CURR-ID,,,RETLEN2) 11]

CALL UIS$SEXTRACT TRAILER(VD_ID,,,RETLEN3) D@
RETLEN=RETLEN1+RETLEN2+RETLEN3

TYPE *,’BUFFER SIZE FOR HEADER INFO’,RETLEN1,’BYTES’ B8
TYPE *,’BUFFER SIZE REQUIRED’,RETLEN2,’ BYTES’ m
TYPE *,’BUFFER SIZE FOR TRAILING INFO’,RETLEN3,’BYTES 08

C Allocate the virtual memory for the buffer ‘

15-18



Metafiles and Private Data

STATUS=LIBSGET VM(RETLEN1,EXT_pRIV1) 03

IF (.NOT. STATUS) CALL LIBSSTOP(%VAL(STATUS))
STATUS=LIB$GET_VM(RETLENZ, EXT_PRIV2) 18]
IF (.NOT. STATUS) CALL LIBS$STOP(S%VAL(STATUS))
STATUS=LIBSGET VM(RETLEN3 EXT_PRIV3) 20
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

c Extract and store private data in buffer
CALL UISS$EXTRACT HEADER(VD_ID, RETLEN1,%VAL(EXT_PRIV1))
CALL UISSEXTRACT_PRIVATE(CURR_ID,RETLEN2,%VAL(EXT_PRIV2))
CALL UISSEXTRACT TRAILER(VD_ID,RETLEN3,%VAL(EXT_PRIV3))

CALL BUFFERTYPE(%VAL(EXT_PRIV2),RETLEN2)

C Open an external file
OPEN(UNIT=11,FILE=’$DISK=[MY_DIR]PRIVATE.DAT',STATUS='NEW’, 26]
2 FORM='FORMATTED' )

¢ Write the contents of the buffer
CALL BUFFERWRITE(%VAL(EXT_PRIV1),RETLEN1,11)
CALL BUFFERWRITE(%VAL(EXT_PRIV2),RETLEN2,11)
CALL BUFFERWRITE(%VAL(EXT_PRIV3),RETLEN3,11)

RIS
) (g &

C Close the file
CLOSE(UNIT=11, STATUS='SAVE' )

PAUSE

END -

SUBROUTINE BUFFERWRITE(BUFFER, LENGTH, LUN) 130]
IMPLICIT INTEGER(A-Z)

BYTE BUFFER(LENGTH)

WRITE(LUN, 500 ) BUFFER [31]
500 FORMAT (T3,17)

RETURN

END

SUBROUTINE BUFFERTYPE(BUFFER, length)
IMPLICIT INTEGER(A-Z)
BYTE BUFFER(length)

TYPE *,buffer
RETURN
END

A data file DATA.DAT of private data is constructed. It consists of a
sentence. Because each character requires a byte of storage, the total
number of characters in the data file is specified as the upper bound
of array PRIV 8 as well as the buffer length in the descriptor you must
construct for UISSPRIVATE 8.

An external file DATA.DAT is opened 8 and read into the array PRIV 8.

A circle, a triangle, and text are drawn in the virtual display 8.

UIS$GET_CURRENT_OB]ECT retrieves the identifier of the last object
drawn in the virtual display .

The array PRIV is typed out to verify its contents 8.

UIS$PRIVATE associates thé senterice contairied in the array PRIV with the
objects drawn in the virtual display 8. Note that the location of the array
PRIV is passed by descriptor 8.

To extract the data and store it in a buffer as a UIS metafile, you must first
determine how much space the header data, binary encoded private data,

and trailing data will occupy. To do this, call UISSEXTRACT_HEADER,
UIS$EXTRACT_PRIVATE, and UIS$EXTRACT_TRAILER without the buflen
and bufaddr arguments 00 0¥ 08,

15-19



Metafiles and Private Data

16-20

Type out the variables retlenl, retlen2, and retlen3 to reveal the size of each
part of the display list 15]

Call LIB$GET_VM to allocate virtual memory for three buffers using the
value of retlenl, retlen2, and retlen3 and to store the location of each buffer in
the pointers ext_privl, ext_priv2, and ext_priv3 #9. A test for completion
status is performed for each Run-Time Library call 02 89 @8,

If you do not use LIBSGET_VM, you have to declare explicitly an array with
an actual length in the beginning of the program. However, at that point in
the program, you have no idea how large such an array should be.

“Call UISSEXTRACT_HEADER, UISSEXTRACT_PRIVATE, and

UIS$EXTRACT_TRAILER with the omitted parameters to extract the header
data, binary encoded private data, and the trailing data and to store them
in separate buffers #. Because ext_privl, ext_priv2, and ext_priv3 are
pointers, use the VAX FORTRAN built-in function %VAL to obtain the
actual data they store. :

To look at the contents of the user buffer before you write the contents to

an external file, you cannot simply type the data in the user buffer because
the pointer ext_priv is implicitly declared a longword integer and functions
as a pointer.

Call subroutine BUFFERTYPE to reference the pointer ext_priv2 and the size
of the buffer 8. Two arguments are passed in the call—-the pointer name
and the size of the buffer. The subroutine BUFFERTYPE reads the data
from the location to which exf_priv2 points 88 and writes the data in the
terminal emulation window B8.

The file PRIVATE.DAT is opened 86.

The subroutine BUFFERWRITE 8®is called three times to write the header,
private, and trailer data to the external file 82 88 80, Three arguments are
passed in the call—buffer address, buffer size, and the VAX FORTRAN
logical unit number of the output device. An array BUFFER is declared
from this data and an association with an external file is established.

The subroutine BUFFERWRITE writes the contents of BUFFER to the file
PRIVATE.DAT 88, The file is closed and saved.

15.3.3.1

Calling UIS$PRIVATE and UISSEXTRACT_PRIVATE

Figure 15-8 shows the sample containing character string private data in
the external file DATA.DAT



Metafiles and Private Data

Figure 15-8 Private Data

m I

— U T r

“wr 4 0O0maamo

ZK-5454-86

Figure 15-9 shows the contents of the array PRIV read from the external file
DATA.DAT. Note that each number is an ASCII code. The required buffer
size is also shown. In addition, the extracted generically encoded binary
private data instruction is shown as metafile opcodes and ASCII codes.

The private data is appended to the last ellipse drawn—the smallest cloud
of smoke rising from the chimney shown in Figure 15-10.

15-21



Metafiles and Private Data

Figure 15-9 Verifying the Contents of the Temporary Array and User Buffer

Contents of Array Containing Private Data

$ run private
84 72 73 83 32 73 83 32 84 72 69 32 76 65 83 84 |
32 79 66 74 69 67 84

FORTRQN PAUSE

$ cont )
BUFFER SIZE REQUIRED 136 BYTES. |
[9) 31 Q 1 0 23 ) 84 72 73 83 32 73 83 32
N — Sa— . A
69 66 74 69 67 84

Length of Facility Length of Extracted Private
Op Code Binary Instruction Number Actual Private Data as a Binary
in Bytes Data in Instruction
Bytes 2K 546686

15-22



Metafiles and Private Data

Figure 15-10 Hot Air Balloon

dWWWWWWWy,
SWWWWWWWWWW W
JWWWWWWWWWWWW WL
WWWWWWWWWWWWWWY
WWWWWWWWWWWWWWY
TWWWWWWWWWWWWWY

TWWWWWWWWWWWY
TWWWWWWWY

15-23






16 Programmingin Color

16.1  Overview

To change the appearance of graphic objects of text, you can modify the
settings in attribute block 0. Depending on the VAXstation color system
you have, you can also draw graphic objects in over 16 million colors. This
chapter discusses the following topics:

¢ Using color and intensity routines -
K Setting entries in virtual color maps
e Creating shareable color maps

¢ Using color map segments

¢ Using color and intensity inquiry routines

This chapter is informative for VAXstation programmers with either an
intensity or color environment. '

16.2  Color and Intensity Routines

Your application uses color and intensity routines to draw graphic objects
in color or shades of gray. These routines create and load the virtual color
map and color map segment structures that hold the application color
values. Color and intensity routines perform the following tasks:

® Create and delete virtual color maps
* Load virtual color map entries with color values
¢ Create and delete color map segments

¢ Load entries in color map segments

Color map segments are described later in this chapter.

16.2.1 Programming Options

When your application incliides a range of color or intensities, ‘use one or
more of the UIS routines listed in Table 16-1.

V4.1—June 1989 16-1



Programming in Color

Table 16-1 Color and Intensity Routines

Routine Function

Virtual Color Maps

UIS$CREATE_COLOR_MAP Creates a virtual color map
UIS$DELETE_COLOR_MAP Deletes a virtual color map

Loading Virtual Color Map Entries

UIS$SET_COLOR Sets a single RGB color value In a virtual
color map

UIS$SET_COLORS " Sets multiple RGB color values in a virtual
color map

UISSSET_INTENSITY Sets a single intensity value in a virtual color
map

UIS$SET_INTENSITIES Sets multiple RGB color values in a virtual
color map

Color Map Segments

UIS$CREATE_COLOR_MAP_SEG Creates a color map segment
UIS$DELETE_COLOR_MAP_SEG Deletes a color map segment

16.2.2 Step 1—Creating a Virtual Color Map

In a color or an intensity environment, you must use UISSCREATE_
COLOR_MAP to create a virtual color map, which is a storage location
similar to an artist’'s palette. Within the color map, you store color values
in locations known as entries. The virtual color map varies according to the
needs of your application. Specify the virtual color map attributes as you
see fit.

16.2.3 Step 2—Setting Virtual Color Map Attributes

Some virtual color map attributes are required and some are optional. You
must specify the size of the virtual color map; that is, how many color map
values it will hold. You can specify name, access, and residency for the
virtual color map if you wish.

Virtual Color Map Size

As with any storage location, size is a consideration. For every color your
application uses, you need an entry in the virtual color map. You can
specify a virtual color map with a maximum of 32,768 entries.

NOTE: When you specify virtual color map size, be aware that UIS rounds up the
size to the next power of two. For example, when you declare a virtual
color map size of 17, UIS needs five bits to represent this in binary form;
thus, it rounds the size up to 32, or 25,

16-2 | Va.1—June 1989



Programming in Color

Access to Virtual Color Maps

To determine who or what process has access to a virtual color map,
designate the color map private (no other processes have access to it) or
shareable (some or all processes can share it).

Virtual Color Map Residency

You can also explicitly specify residency, which allows you to dedicate
color resources to your application. Use this feature carefully, because it
precludes sharing hardware color resources among applications.

V4.1—June 1989 16-2.1






-Programming in Color

16.2.4 Step 3—Setting Entries in the Virtual Color Map

Depending on color environment, your application must now load color
values into the color map entries with UIS$SET_COLOR, UIS$SET_
COLORS, UIS$SET_INTENSITIES, or UIS$SET_INTENSITY.

Color and intensity values are expressed as floating-point numbers between
0.0 and 1.0. The color subsystem uses the red green blue (RGB) color
model. Colors that result from color values with percentages of red, green,
and blue are not always readily apparent from the value chosen. Therefore,
as you write your application, you should use human-interface color setup
menus to determine the appropriate RGB color component values.

Setting Single Entries

For an application with only a few colors or intensities, you might need
only a small virtual color map. In this case, use UIS$SET_COLOR or
UIS$SET_INTENSITY to load color map entries each time.

Setting Multiple Entries

If your virtual color map is large, you can arrange your color ma
values in an array with a single call to UIS$SET_COLORS or UIS$SET_
INTENSITIES.

16.2.5 Program Development|
Programming Objective

To create and load a color map with single entries.

Programming Tasks

1 Establish a size for the virtual color map.
Create the virtual color map.

Create a virtual display.

Create a display window and viewport.

Use UIS$SET_COLOR to load a single color map entry with one color
value.

g A W DN

PROGRAM SINGLE_ENTRY
IMPLICIT INTEGER(A-Z)
INCLUDE ’SYS$LIBRARY:UISENTRY'
INCLUDE ’SYSSLIBRARY:UISUSRDEF’

REAL J,K
DATA J/17.0/

DATA K/16/

DATA VCM_SIZE/8/
VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE)

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,40.0,40.0,15.0,15.0,vCM_ID) @
WD_ID=UISSCREATE_WINDOW(VD_ID, ' SYSSWORKSTATION', 'WINDOW #1)

16-3



Programming in Color

CALL UIS$SET_COLOR(VD_ID,0,0.40,0.30,0.0)
0.

— !
CALL UIS$SET_COLOR(VD_ID,1,0.5,0.5,0.5) (6]
CALL UIS$SET_COLOR(VD_ID,2,0.5,0.25,0.5)
CALL UIS$SET_COLOR(VD_ID,3,0.0,0.7,0.3) 8 -
CALL UIS$SET_COLOR(VD_ID,4,0.25,0.25,0.9) 9]
CALL UIS$SET_COLOR(VD_ID,5,0.90,0.5,0.0)
CALL UISS$SET_COLOR(VD_ID,6,0.80,0.30,0.0)

CALL UIS$SET_COLOR(VD_ID,7,0.35,0.65,0.95) @8
CALL UIS$SET_WRITING_INDEX(VD_ID,0,9,2)
CALL UIS$SSET_WRITING_INDEX(VD_ID,0,10,3)
CALL UIS$SET WRITING_INDEX(VD_ID,0,11,4) m
CALL UIS$SET_WRITING_INDEX(VD_ID,0,12,5) 16]
CALL UIS$SET_WRITING_INDEX(VD_ID,0,13,6)
DO I=9,13,1

CALL UISSCIRCLE(VD_ID,I,J,20.0,10.0) 1 8]
J=J+2.0

ENDDO

PAUSE

DO I=9,13

CALL UIS$CIRCLE(VD_ID,1,21.0,K,10.0) 19}
K=K+2.0

ENDDO

PAUSE

END
The counters j and k are declared and initialized B 8.
An eight-entry virtual color map is created with no attributes specified 8.

The virtual color map is associated with the virtual display in
UIS$CREATE_DISPLAY 8 during creation of the virtual display.

Each color value is loaded into a virtual color map with successive calls to
UIS$SET_COLOR BBB 89 128

The default writing color attribute setting in attribute block 0 is modified
such that five new default writing colors are associated with a virtual color
map entry 178

The atb argument in the call to UISSCIRCLE within the DO loop references
the modified attribute block. As a result, five circles are drawn horizontally
88, each with a different default writing color.

Five circles are drawn vertically 89, the same colors as the horizontally
drawn circles.

16.2.6 Program Developmentli
Programming Objectives
To create and load a color map with more than one entry at a time.
Programming Task
1 Load the arrays with color component values.

2 Establish color map size.

16-4



Programming in Color

3 Use UIS$SET_COLORS to load eight color map entries in a single call.

PROGRAM MULTIPLE_ENTRY

IMPLICIT INTEGER(A-3Z)

INCLUDE ’SYSSLIBRARY:UISENTRY’

INCLUDE ’SYSSLIBRARY:UISUSRDEF’

REAL J,K

REAL R_VECTOR(8),G_VECTOR(8),B_VECTOR(8) a

DATA J/17.0/ 2]

DATA K/16/ 3]
DATA R_VECTOR/0.40,0.50,0.50,0.0,0.25,0.90,0.80,0.35/ 4]
DATA G_VECTOR/0.30,0.50,0.25,0.70,0.25,0.50,0.30,0.65/ B8
DATA B_VECTOR/0.0,0.50,0.50,0.30,0.90,0.0,0.0,0.95/ 6}
DATA VCM_SIZE/8/

VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE) 7]
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,40.0,40.0,15.0,15.0,vCcM_ID) 8
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’ , ' COLOR’)

CALL UIS$SET_COLORS(VD_ID,0,8,R_VECTOR,G_VECTOR,B_VECTOR) 9]

CALL UIS$SET_WRITING_INDEX(VD_ID,0,9,2)

CALL UIS$SET_WRITING_INDEX(VD_ID,0,10,3)

CALL UIS$SSET_WRITING_INDEX(VD_ID,0,11,4)

CALL UIS$SET_WRITING_INDEX(VD_ID,0,12,5)

CALL UIS$SET_WRITING_INDEX(VD_ID,0,13,6)

DO I=9,13,1

CALL UIS$CIRCLE(VD_ID,I,J,20.0,10.0)
=J+2.0

ENDDO

PAUSE

DO I=9,13

CALL UIS$CIRCLE(VD_ID,I,21.0,K,10.0)
K=K+2.0

ENDDO

PAUSE"

END

Three arrays are declared B to hold eight R, G, and B color component
values each.

The counters j and k are declared and initialized 8 B.

The arrays R_VECTOR, G_VECTOR, and B_VECTOR are loaded with color
component values @ B G.

An eight-entry virtual color map is created @ and associated with a newly
created virtual display 8.

The R, G, and B color component values stored in the arrays are loaded in
the virtual color map using a single call to UIS$SET_COLORS @.

The remaining portions of the program are identical to the previous
program SINGLE_ENTRY.

16-5



Programming in Color

16.2.6.1 Program Development ill
Programming Objective

To create a shareable color map.

Programming Tasks

Load arrays containing color component values. |

Create the color map attributes list, specifying the shareable attribute.
Create a virtual display, specifying a name for the color map.

Create a display window and display viewport.

Load color values into the color map.

O N A W IN -

Program 2 must perform steps 2 through 4 and reference the name of
the color map specified in Program 1.

PROGRAM SHAREABLE_MAP

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY'’

INCLUDE ’SYS$LIBRARY :UISUSRDEF’

REAL J,K

REAL R_VECTOR(8),G_VECTOR(8),B_VECTOR(8)

INTEGER*4 VCM_ATTRIBUTES (3)

DATA J/17.0/ 3]
DATA K/16/ B
DATA R_VECTOR/0.40,0.50,0.50,0.0,0.25,0.90,0.80/

DATA G_VECTOR/0.30,0.50,0.25,0.70,0.25,0.50,0.30/
DATA B_VECTOR/0.0,0.50,0.50,0.30,0.90,0.0,0.0/

DATA VCM_SIZE/8/

VCM_ATTRIBUTES ( 1) =VCMALS$C_ATTRIBUTES
VCM_ATTRIBUTES (2 ) =VCMAL$M_SHARE 8
VCM_ATTRIBUTES (3)=VCMALSC_END_OF_LIST

VCM_ID=UIS$CREATE_COLOR_MAP (VCM_SIZE, 'LIVING_COLOR’,VCM_ATTRIBUTES)
VD_TD=UIS$CREATE_DISPLAY(1.0,1.0,40.0,40.0,15.0,15.0,VCM_ID) o]
WD_ID=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION', 'PROCESS #17)

CALL UIS$SET_COLORS(VD_ID,0,8,R_VECTOR,G_VECTOR,B_VECTOR)

CALL UIS$SET_WRITING_INDEX(VD_ID,0,9,2) (10]
CALL UIS$SET_WRITING_INDEX(VD_ID,0,10,3)

CALL UIS$SET_WRITING_INDEX(VD_ID,0,11,4)

CALL UIS$SET_WRITING_INDEX(VD_1ID,0,12,5)

CALL UIS$SET_WRITING_INDEX(VD_ID,0,13,6)

Do 1=9,13,1 ‘

CALL UIS$CIRCLE(VD_ID,I,J,20.0,10.0)

J=J+2.0

ENDDO _

VD_ID2=UIS$CREATE_DISPLAY(1.0,1.0,40.0,40.0,15,0,15.0,VCM_ID)
WD_ID2=UIS$SCREATE_WINDOW(VD_ID2, ' SYS$WORKSTATION', "WINDOW #2')
CALL UIS$SET_WRITING_INDEX(VD_ID2,0,9,2) ‘

CALL UIS$SET WRITING INDEX(VD_ID2,0,10,3)

CALL UIS$SET WRITING_INDEX(VD_ID2,0,11,4)

CALL UIS$SET_WRITING_INDEX(VD_ID2,0,12,5)

CALL UISSSET WRITING_INDEX(VD_ID2,0,13,6)

DO 1=9,13,1

CALL UISSCIRCLE(VD_ID2,1,21.0,K,10.0)
K=K+2.0

ENDDO

PAUSE

END
The counters j and k are declared and initialized 8 B @.

16-6



Programming in Color

An integer array VCM_ATTRIBUTES is declared to have three elements 8.

The array elements are assigned attribute values defined by UIS constants 8
B @. The structure contains an attribute code followed by a longword value

for that attribute. The final element contains a longword 0 to terminate the

list.

An eight-entry virtual color map is created with UISSCREATE_COLOR_
MAP and the array VCM_ATTRIBUTES is used as an argument 8.

The newly created virtual display references the virtual color map @.
Objects drawn in the virtual display can use this virtual color map.

Different default writing colors are defined #® as in previous programs, to
highlight and differentiate the objects drawn.

A second virtual display is created M. The second call to UISSCREATE_
DISPLAY references the same virtual color map identifier as the first. Both
virtual displays share the use of color value assignments in this virtual color
map.

You must call UIS$SET_WRITING_INDEX M again to change the default
setting of the writing color so that objects will be the same colors as those
drawn in the first virtual display.

Here is a portion of a second program that uses the virtual color map
LIVING_COLOR in the program SHAREABLE_MAP,

PROGRAM SECOND_PROGRAM

INTEGER*4 VCM_ATTRIBUTES(3)
DATA VCM_SIZE/8/

VCM_ATTRIBUTES (1)=VCMAL$C_ATTRIBUTES

VCM_ATTRIBUTES (2 ) =VCMALSM_SHARE

VCM_ATTRIBUTES ( 3) =VCMALS$C_END_OF_LIST
VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE, ’'LIVING_COLOR’,VCM_ATTRIBUTES)
VD_ID2=UIS$CREATE_DISPLAY(1.0,1.0,35.0,35.0,10.0,10.0,VCM_ID)

WD_ID2=UIS$CREATE_WINDOW(VD_ID2, ' SYSSWORKSTATION', ' PROCESS #2)

An array of virtual color map attributes specifies the same attributes as
those indicated in the preceding program SHAREABLE MAP 8. The
application SECOND_PROGRAM must declare the virtual color map size
as this argument is required in UISSCREATE_COLOR_MAP.

The shareable color map is referenced by name in a call to UISSCREATE_
COLOR_MAP B.

16.3 Color Map Segments

Use color map segments to control binding the virtual color map to the
hardware color map.

16-7



Programming in Color

16.3.1 Programming Options

You can use UIS$CREATE_COLOR_MAP_SEG and UIS$DELETE_COLOR_
MAP_SEG to create and delete color map segments.

16.3.2 Program Development

The program COLOR_SEG is a portion of a longer program and shows
how to bind your virtual color map to the hardware color map.

PROGRAM COLOR_SEG

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’

INCLUDE ’SYS$LIBRARY:UISUSRDEF’

INTEGER*4 VCM_ATTRIBUTES(3) 8

DATA VCM_SIZE, PLACEMENT DATA/8,16/ 2]

VCM_ATTRIBUTES (1) =VCMAL$C_ATTRIBUTES

VCM_ATTRIBUTES (2 ) =VCMAL$M_NOBIND 4]
VCM_ATTRIBUTES ( 3 ) =VCMAL$C_END_OF_LIST
VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE, ,VCM_ATTRIBUTES) 6]
CMS_ID=UIS$CREATE_COLOR_MAP_SEG (VCM_ID, ' SYSSWORKSTATION',

2 UIS$C_COLOR_EXACT, PLACEMENT DATA)

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,30.0,30.0,10.0,10.0,VCM_ID)
WD_ID=UIS$CREATE_WINDOW(VD_ID,’SYS$SWORKSTATION')

Two declarations are established—an array VCM_ATTRIBUTES is declared |
and the virtual color map size is initialized to 8 8.

Because the color map segment is created with exact placement, the
placement_data argument of UISSCREATE_COLOR_MAP_SEG must be
initialized to the starting index in the hardware color map where binding is
to occur.

The elements of array VCM_ATTRIBUTES are assigned an attribute code B,
an attribute value VCMAL$M_NOBIND 8, and a terminating value 8.

UIS$CREATE_COLOR_MAP is called before any other UIS routine.

16.3.3 Calling UISSCREATE_COLOR_MAP_SEG

No special graphics effects are displayed on the VAXstation screen.

16.4  Color and Intensity Inquiry Routines

16-8

As mentioned in Chapter 12, inquiry routines provide an application
with status information. Several UIS color and intensity routines return
information to the application about color setup, virtual color map,
and hardware color map. This information can be direct input to your
application.



16.4.1 Programming Options

Programming in Color

Your application can use one or more inquiry routines. Table 16-2 lists
color and intensity inquiry routines.

Table 16-2 Color and Intensity Inquiry Routines

Routine

Information Returned

Virtual Color Map

UIS$GET_COLOR
UIS$GET_COLORS
UIS$GET_INTENSITIES
UIS$GET_INTENSITY

Single RGB value from a virtual color map
Multiple RGB values from a virtual color map
Multiple intensity values from a virtual color map
Single intensity value from a virtual color map

Hardware Color Map

UISSGET_HW_COLOR_
INFO

Device type; number of indexes; number of colors; bits
of precision for R, G, and B values; reserved entries;
and regeneration characteristics.

Color Value
Conversion

UIS$HLS_TO_RGB
UIS$HSV_TO_RGB
UIS$RGB_TO_HLS
UIS$RGB_TO_HSV

Converts HLS color values to RGB color values
Converts HSV color values to RGB color values
Converts RGB color values to HLS color values
Converts RGB color values to HSV color values

Workstation Standard
Colors

UIS$GET_WS_COLOR

UIS$GET_WS_
INTENSITY

Workstation standard RGB color value
Workstation standard intensity value

Color Setup

UIS$GET_
BACKGROUND_INDEX

UIS$GET_WRITING_
INDEX

UIS$GET_WRITING_
MODE

Window background index
Window foreground index

Writing mode

16.4.2 Program Development |
Programming Objective

To retrieve hardware color map information,

16-9



Programming in Color

16-10

Programming Tasks

1 Create a virtual color map.

Create a virtual display.

2
3 Create a display window and viewport.
4

Obtain the number of color map indices, possible colors, maps, bits of
precision for each color component, and reserved entries.

PROGRAM GET_INFO

IMPLICIT INTEGER(A-Z)

INCLUDE ‘SYS$LIBRARY:UISENTRY’

INCLUDE ‘SYS$LIBRARY:UISUSRDEF’

REAL J,K

REAL R_VECTOR(8),G_VECTOR(8),B_VECTOR(8)

REAL RETR_VECTOR(8),RETG_VECTOR(8),RETB_VECTOR(8)
INTEGER*4 VCM_ATTRIBUTES (3)

DATA VCM_SIZE/8/

DATA J/17.0/

50

100

150

200

225

250

DATA K/16/

DATA R_VECTOR/0.40,0.50,0.50,0.0,0.25,0.90,0.80,0.35/
DATA G_VECTOR/0.30,0.50,0.25,0.70,0.25,0.50,0.30,0.65/
DATA B_VECTOR/0.0,0.50,0.50,0.30,0.90,0.0,0.0,0.95/
VCM_ATTRIBUTES ( 1)=VCMAL$C_ATTRIBUTES

VCM_ATTRIBUTES (2 ) =VCMALS$M_SHARE :

VCM_ATTRIBUTES (3)=VCMAL$C_END_OF_LIST

VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE,VCM_ATTRIBUTES)
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,40.0,40.0,15.0,15.0,VCM_ID)
WD_ID=UIS$CREATE_WINDOW(VD_ID, ' SYSSWORKSTATION’, 'COLOR’)

CALL UIS$SET_COLORS(VD_ID,0,8,R_VECTOR,G_VECTOR,B_VECTOR)
CALL UIS$SET_WRITING_INDEX(VD_ID,0,9,2)

CALL UIS$SET WRITING_INDEX(VD_ID,0,10,3)

CALL UIS$SET_WRITING_INDEX(VD_ID,0,11,4)

CALL UIS$SET_WRITING_INDEX(VD_ID,0,12,5)

CALL UIS$SET_WRITING_INDEX(VD_ID,0,13,6)

CALL UIS$GET_COLORS(VD_1D,0,8,RETR_VECTOR,RETG_VECTOR,RETB_VECTOR)

TYPE 50

format(T8,’RED’,T18, 'GREEN’,T30, 'BLUE’)

TYPE 100,RETR_VECTOR,RETG_VECTOR,RETB_VECTOR
FORMAT(F11.3,F11.3,F11.3)

CALL UIS$GET_HW_COLOR_INFO(,,
2 INDICES, COLORS, MAPS, RBITS, GBITS, BBITS, , RES_ INDICES) 2]

TYPE 150, INDICES, COLORS

FORMAT (T2, ’'NO. OF INDICES=’,I3,T22,’'NO. OF COLORS=',I8)
TYPE 200,MAPS

FORMAT (T2, ‘NO.OF MAPS=',i3)

TYPE 225,RBITS,GBITS,BBITS
FORMAT (T2, ‘NO. OF BITS OF PRECISION’,T28,'RED',I13,T37,’GREEN’,I3,
2 T48, 'BLUE’, 13)

TYPE 250,RES_INDICES
FORMAT (T2, 'NO. OF RESERVED ENTRIES’,I3)
TYPE*,’VCM Indexes Used In Virtual Display 1’

DO I1=9,13,1

CALL UIS$CIRCLE(VD_ID,I1,J,20.0,10.0)
INDEX=UIS$GET_WRITING_INDEX(VD_ID,I) 3]

TYPE*, INDEX

J=J+2.0

ENDDO
VD_ID2=UIS$CREATE_DISPLAY(1.0,1.0,40.0,40.0,15.0,15.0,VCM_ID)
WD ID2=UIS$CREATE _WINDOW(VD_ID2,’ SYSSWORKSTATION', "WINDOW #21)



Programming in Color

CALL UISSSET_WRITING_INDEX(VD_1D2,0,9,2)
CALL UIS$SET_WRITING_INDEX(VD_IDZ2,0,10,3)
CALL UISSSET_WRITING_INDEX(VD_ID2,0,11,4)
CALL UISS$SET_WRITING_INDEX(VD_ID2,0,12,5)
CALL UIS$SET_WRITING_INDEX(VD_ID2,0,13,6)
TYPE*, 'VCM Indexes Used In Virtual Display 2’
DO I=9,13

CALL UIS$CIRCLE(VD_ID2,I,21.0,K,10.0)
INDEX=UIS$GET_WRITING_INDEX(VD_ID2,I) 4]
TYPE*, INDEX

K=K+2.0

ENDDO

PAUSE

END

A great deal of information is returned from only three inquiry routines.
A call to UISSGET_COLORS 8returns the R, G, and B color component
values in the color map entries of the virtual color map.

A call to UIS$GET_HW_COLOR_INFO B8 returns the number of precision
binary bits for R, G, and B color map values; it also returns the total
number of hardware color map and reserved entries.

Writing color information must be returned from two program locations.
The first call to UISSGET_WRITING_INDEX within the DO loop 8returns
all the default writing indices as they are being used in the first virtual
display. The second call to UISSGET_WRITING_INDEX @ returns each
writing index used to draw graphic objects in the second virtual display.

16.4.2.1

| Calling UIS$GET_ COLORS, UIS$GET_HW_COLOR_INFO,

UISSGET_WRITING_INDEX
Figure 16-1 shows the information returned in the user emulation window.

16.4.3 Program ll—Creating an HSV Color Wheel

NOTE: To abort the demonstration program, type [CTRL/C], then EXIT [RET]. If

you are running another graphics process at an independent emulator
window, the process will not continue after you exit the COLOR_ WHEEL
demonstration program. This is known as a side effect.

PROGRAM COLOR_WHEEL

This program draws a color wheel once and then continually
changes its appearance by updating the virtual color map.

QaaQaa

IMPLICIT INTEGER*4(A-7)

PARAMETER DISPLAY_SIZE=4.0%2.54

REAL*4 R,G,B,H,L,S,V,START_DEG, END_DEG

REAL*4 R_VECTOR(0:255),G_VECTOR(0:255),B_VECTOR(O0:255)
INCLUDE ’SYS$LIBRARY:UISUSRDEF’

16-11



Programming in Color

Figure 16-1 Different Types of Information Returned from Inquiry Routines

4 run get_info

red green blue
0,400 0,800 0,500
0,000 0,280 0,900
0,800 Q, 000 0,300
Q.500 0,280 0,700
Q, 280 0,500 0,300
0,000 0.000 Q. 500
0,800 0,300 0, 9090
O, 000 © 0,000 Q0,000
Nno. of indices=2856 no. of colors=16777216
Nno.of mapss 1

no., of bitas of precision red 8 green 3 blue 8
no., of reserved entries 6
VCM Indexes Used In Virtual Display 1

M WM

FORTRAN PAUSE

ZK-5453-86

Find out some information about the workstation color characteristics

Q

CALL UIS$GET_HW_COLOR_INFO(,,INDICES, ,MAPS,,,,,RES_INDICES, REGEN)

QQ

Only attempt to run this program on color map hardware systems.

Q

IF (MAPS .EQ. 0 .OR. REGEN .NE. UIS$C_DEV_RETRO) STOP

Make the virtual color map size dependent upon the available
hardware, but no greater than 64 entries

QaaQQa

MAP_SIZE=MIN(INDICES-RES_INDICES, 64)
VCM_ID=UIS$CREATE_COLOR_MAP(MAP_SIZE)

Q

¢ Create the virtual display and a single window
VD_ID=UIS$CREATE_DISPLAY(0.0, 0.0, 1.0, 1.0,

1 DISPLAY_SIZE, DISPLAY_SIZE, VCM_ID)
WD_ID=UISSCREATE WINDOW(VD_ID, ’SYS$SWORKSTATION’)

16-12



Programming in Color

Q

Establish some attributes for drawing

Q

CALL UIS$SET_ARC_TYPE(VD_ID, 0, 1, UISS$C_ARC_PIE)
CALL UIS$SET_FONT(VD_ID, 1, 1, ’'UIS$FILL_PATTERNS’)
CALL UIS$SET_FILL_PATTERN(VD_ID, 1, 1, PATT$C_FOREGROUND)

c
¢ Set window background to black and draw wedges of a circle.

¢ The initial colors of the wedges are determined by traversing

¢ 360 degrees around the HSV color model, varying H, while S and

¢ V are both 1.0.

< )

CALL UIS$SET_COLOR(VD_ID, 0, 0.0, 0.0, 0.0)

DO I=1,MAP_SIZE-1
START_DEG=(I-1)*(360.0/FLOAT(MAP_SIZE-1))
END_DEG=START_DEG+(360.0/FLOAT (MAP_SIZE-1))

CALL UIS$HSV_TO_RGB(START DEG, 1.0, 1.0, R, G, B)

CALL UIS$SET_COLOR(VD_ID, I, R, G, B)

CALL UIS$SET_WRITING_INDEX(VD_ID, 1, 1, I)

CALL UIS$CIRCLE(VD_ID, 1, 0.5, 0.5, 0.4, STA