
VMS Workstation
Software
Graphics Programming
Guide

Order Number: AA-GI1 OC-TE

June 1989

This document provides programming information about the VMS
Workstation Software graphics. It describes the general concepts and
specific routine calls used to write application programs.

Revision/Update Information: This manual supersedes the VMS
Workstation Software Graphics
Programming Guide, Version 4.0.

Software Version: This manual contains information for
VWS Version 4.1

Operating System: VMS Version 5.0

Digital Equipment Corporation

June 1989

The Information In this document Is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear In
this document.

The software described In this document Is furnished under a license and may be
used or copied only In accordance with the terms of such license.

No responsibility Is assumed for the use or reliability of software on equipment that
Is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1989 by Digital Equipment Corporation

All Rights Reserved.
Printed In U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist In preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

PEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwrlter

DIBOL
EduSystem
lAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

mamaDID™
This document was prepared using VAX DOCUMENT, Version 1.1

INSTRUCTIONS

The enclosed pages are to be placed in the VMS Workstation Software
Graphics Programming Guide as replacements for or additions to the current
pages. On replacement pages, changes and additions are indicated by
vertical bars (I).
Keep this notice in your manual to maintain an up-to-date record of
changes.

Copyright Digital Equipment Corporation 1989
All Rights Reserved.
Printed in U.S.A.

Old Pege(s)

Title/Copyright

Contents iii/iv through xxvlxxvl

Preface xxviI/xxviii through xxxvlxxxvi

4-714-8 through 4-9/4-10

13-5/13-6

15-1/15-2

16-1116-2

17-1117-2

17-7/17-8

17-13/17-14

18-5118-6 through 18-7/18-8

18-13/18-14 through 18-15/18-16

18-19/18-20

18-39/18-40 through 18-41/18-42

18-45/1 8-46

18-5111 8-54

18-145/18-146

18-175/18-176

18-179/1 ~-180 through 18-181/18-182

18-187/18-188

18-203/18-204

18-263/18-264

18-281/18-282 through 18-285/18-286

18-295/18-296

18-307/18-308

19-11119-12

19-47/19-48

New Pege(s)

Tltle/Copyrlght

Contents iiiliv through xxv/blank

Preface xxviI/xxviii through xxxI/blank

4-7/4-8 through 4-9/4-10

9-21/9-22 through 9-27/blank

13-5/13-6 through 13-6.1/blank

15-1/15-2 through 15-2.1/blank

16-1116-2 through 16-2.1/blank

17-1/17-2

17-7/17-8

17-13/17-14 through 17-14.lIblank

18-5/18-6 through 18-8.1118-8.2

18-13/18-14 through 18-15/18-16

18-19118-20

18-39/18-40 through 18-42.1/18-42.2

18-45/18-46

18-51/18-54

18-145/18-146 through 18-146.lIblank

18-175/18-176

18-179/18-180 through 18-181/18-182

18-187/18-188

18-203/18-204

18-263/18-264

18-281118.;...282 through 18-286.1/blank

18-295/18-296

18-307/18-308 through 18~308.1/18-
308.2

19-11119-12

19-47/19-48 through 19-48.1/blank

V4.1-June 1989

Old Peg_(a)

Index-1I1ndex-2 through Index-
7l1ndex-8

Reader's Comments/Mailer

V4.1~June 1989

N_w Peg_(a)

Index-1I1ndex-2 through Index-7I1ndex;...
8

Contents

Contents

PREFACE xxvII

PART I VMS WORKSTATION SOFTWARE GRAPHICS
CONCEPTS

CHAPTER 1 SYSTEM DESCRIPTION

1.1 OVERVIEW

1.2 VAXSTATION HARDWARE
1.2.1 System Cabinet or Box
1.2.2 Monitor
1.2.3 Keyboard
1.2.4 Mouse
1.2.5 Tablet
1.2.6 Communications Board
1.2.7 Printer

1.3 SOFTWARE
1.3.1 Graphics Routine Types
1.3.2 Human Interface

1.3.2.1 Terminal Emulation • 1-5
1.3.2.2 Communication Tools • 1-5

1.3.3 Windowing Feature
1.3.4 Graphics Capabilities

CHAPTER 2 DISPLAY MANAGEMENT CONCEPTS

2.1 OVERVIEW
2.1.1 Summary

2.2 COORDINATE SYSTEMS

V4.1-June 1989

1-1

1-1

1-1
1-2
1-2
1-2
1-3
1-3
1-3
1-3

1-3
1-4
1-4

1-6
1-6

2-1

2-1
2-1

2-2

iii

Contents

2.3

2.4

2.5

2.6

2.7

2.8

CHAPTER 3

3.1

3.2

3.3

3.4

3.5

iv

2.2.1 Device-Independent Coordinate Systems 2-3
2.2.1.1 World Coordinates • 2-3
2.2.1.2 Normalized Coordinates • 2-4

2.2.2 Device-Dependent Coordinate Systems 2-5
2.2.2.1 Absolute Device Coordinates • 2-5
2.2.2.2 Viewport-Relative Device Coordinates • 2-6

VIRTUAL DISPLAYS

DISPLAY WINDOWS

DISPLAY VIEWPORTS

DISPLAY WINDOW AND VIEWPORT SCALING
2.6.1 Distortion of Graphic Objects

DISPLAY LISTS

GENERIC ENCODING AND UIS METAFILES

GRAPHIC OBJECTS AND ATTRIBUTES

OVERVIEW

SUMMARY

GRAPHICS AND TEXT ROUTINES

ATTRIBUTES
3.4.1 General Attributes
3.4.2 Text Attributes
3.4.3 Graphics Attributes
3.4.4 Window Attribute

ATTRIBUTE BLOCKS
3.5.1 Attribute Block 0

2-6

2-7

2-8

2-9
2-10

2-10

2-11

3-1

3-1

3-1

3-2

3-2
3-2
3-3
3-4
3-5

3-5
3-5

V4.1-June 1989

3.8 SEGMENTS

3.7 VIEWING TRANSFORMATIONS

3.8 TWO-DIMENSIONAL GEOMETRIC TRANSFORMATIONS

CHAPTER 4 COLOR CONCEPTS

4.1

4.2

4.3

4.4

4.5

4.6

4.7

OVERVIEW

COLOR HARDWARE SYSTEMS

RASTER GRAPHICS CONCEPTS
4.3.1
4.3.2
4.3.3

Hardware Interpretation of Pixel Values
Color Representation Models
Color Palette

UIS VIRTUAL COLOR MAPS
4.4.1 Reserved Hardware Color Map Entries

UIS COLOR MAP SEGMENTS

SHAREABLE VIRTUAL COLOR MAPS

MISCELLANEOUS UIS COLOR CONCEPTS
4.7.1
4.7.2

4.7.3
4.7.4
4.7.5

Standard and Preferred Colors
Monochrome (Bitonal), Intensity, and Color Compatibility
Features
Color Value Conversion
Set Colors and Realized Colors
Color Regeneration Characteristics

V4.1-June 1989

Contents

3-8

3-6

3-6

4-1

4-1

4-1

4-1
4-1
4-7
4-7

4-7
4-9

4-10

4-11

4-11
4-11

4-11
4-12
4-12
4-12

v

Contents

CHAPTER 5 INPUT DEVICES

5.1 OVERVIEW
5.1.1 VAXstation Input Devices

5.2 POINTERS
5.2.1 Mouse
5.2.2 Tablet

5.3 KEYBOARDS
5.3.1 Virtual Keyboards

PART II HOW TO PROGRAM WITH VMS
WORKSTATION SOFTWARE GRAPHICS

CHAPTER 6 PROGRAMMING CONSIDERATIONS

6.1 OVERVIEW

6.2 CALLING UIS ROUTINES
~.2.1 Calling Sequences

6.2.1.1 Call Type • 6-2
6.2.1.2 Routine Name • 6-2
6.2.1.3 Argument List and Argument Characteristics • 6-2

6.2.2 VMS Usage
6.2.3 Type

6.2.3.1 V AX Standard Data Types • 6-3
6.2.4 Access
6.2.5 Mechanism

6.2.5.1 VAX FORTRAN Built-In Functions • 6-6

6.3 UIS CONSTANTS

6.4 CONDITION VALUES SIGNALED

5-1

5-1
5-1

5-1
5-1
5-2

5-3
5-3

6-1

6-1

6-1
6-1

6-2
6-3

6-4
6-5

6-8

6-8

vi V4.1-June 1989

6.5 ADDITIONAL PROGRAM COMPONENTS

6.6 NOTES TO PROGRAMMERS
6.6.1 VAX ADA Programmers
6.6.2 VAX C Programmers
6.6.3 VAX PASCAL Programmers
6.6.4 VAX PUI Programmers

6.7 PROGRAMMING EXAMPLES
6.7.1 Structure of Programming Tutorial

6.8 PROGRAM EXECUTION
6.8.1 Compiling Your Program
6.8.2 Linking the Object Module
6.8.3 Running the Executable Image

CHAPTER 7 CREATING BASIC GRAPHIC OBJECTS

7.1

7.2

7.3

7.4

OVERVIEW

STEP 1-CREATING A VIRTUAL DISPLAY
7.2.1 Specifying Coordinate Values
7.2.2 Creating and Deleting a Virtual Display
7.2.3 Program Development

STEP 2-CREATING GRAPHICS AND TEXT
7.3.1
7.3.2
7.3.3

Graphics Drawing Operation Specifications
Programming ~ptions
Program Development

STEP 3-CREATING A DISPLAY WINDOW
7.4.1 Programming Options
7.4.2 Program Development
7.4.3 Calling UIS$CIRCLE, UIS$ELLIPSE, UIS$PLOT, UIS$TEXT,

and UIS$CREATE_WINDOW

V4.1-June 1989

Contents

8-8

6-9
6-9

6-10
6-10
6-11

6-11
6-12

6-12
6-13
6-13
6-13

7-1

7-1

7-1
7-1
7-2
7-2

7-3
7-3
7-3
7-5

7-6
7-6
7-6

7-7

vii

Contents

CHAPTER 8 DISPLAY WINDOWS AND VIEWPORTS

8.1

8.2

8.3

8.4

8.5

8.6

OVERVIEW

WINDOWING ROUTINES

STEP 1-CREATING MANY DISPLAY WINDOWS
8.3.1 Programming Options
8.3.2 Program Development
8.3.3 Calling UIS$CREATE_WINDOW

STEP 2-DELETING AND ERASING DISPLAY WINDOWS
8.4.1 Programming Options
8.4.2 Program Development
8.4.3 Calling UIS$DELETE_ WINDOW

STEP 3-MANIPULATING DISPLAY WINDOWS AND VIEWPORTS
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.5.8
8.5.9

Programming Options
Program Development I
Calling UIS$MOVE_ WINDOW
Program Development II
Calling UIS$POP _VIEWPORT and UIS$PUSH_ VIEWPORT _
Program Development III
Requesting General Placement and No Border
Program Development IV
Calling UIS$MOVE_AREA

WORLD COORDINATE TRANSFORMATIONS
8.6.1 Programming Options
8.6.2 Program Development
8.6.3 Calling UIS$CREATE_ TRANSFORMATION

CHAPTER 9 GENERAL ATTRIBUTES

9.1 OVERVIEW

9.2 ATTRIBUTES

8-1

8-1

8-1

8-2
8-2
8-3
8-4

8-5
8-6
8-6
8-7

8-9
8-10
8-10
8-12
8-15
8-16
8-19
8-21
8-23
8-23

8-25
8-25
8-25
8-26

9-1

9-1

9-1

viii V4.1-June 1989

9.3

9.4

9.5

9.2.1
9.2.2

Attribute Blocks
Modifying General Attributes

STRUCTURE OF GRAPHIC OBJECTS

UIS WRITING MODES
9.4.1 Using General Attributes

9.4.1.4 Programming Options • 9-8
9.4.1.5 Program Development I • 9-8
9.4.1.6 Calling UIS$SET _BACKGROUND.)NDEX,

UIS$SET _WRITING-,NDEX, and
UIS$SET_WRITING_MODE • 9-10

9.4.1.7 Program Development" • 9-13
9.4.1.8 Using Device-Dependent Writing Modes • 9-15

USING UIS$SET _PLANE_MASK
9.5.1 Video Memory
9.5.2 Color Maps and Color Map Allocation
9.5.3 Color Indexes
9.5.4 Plane Mask
9.5.5 Plane Mask Example
9.5.6 Plane Mask Demo

CHAPTER 10 TEXT ATTRIBUTES

10.1

10.2

10.3

10.4

OVERVIEW

STRUCTURE OF TEXT
10.2.1 Monospaced and Proportionally Spaced Fonts
10.2.2 Lines of Text
10.2.3 Character Strings
10.2.4 Character Cell

USING TEXT ATTRIBUTES
10.3.1 Modifying Text Attributes

PROGRAMMING OPTIONS
10.4.1 Program Development I
10.4.2 Calling UIS$SET _FONT and UIS$NEW _TEXT_LINE

V4.1-June 1989

Contents

9-1
9-2

9-3

9-4
9-8

9-21
9-21
9-21
9-22
9-22
9-23
9-24

10-1

10-1

10-1
10-1
10-2
10-3
10-7

10-19
10-19

10-20
10-23
10-24

Ix

Contents

10.4.3 Program Development II 10-25
10.4.4 Calling UIS$SET _CHAR_SPACING 10-27
10.4.5 Program Development III 10-27
10.4.6 Calling UIS$SET _POSITION and

UIS$SET _ALIGNED_POSITION 10-28
10.4.7 Program Development IV 10-28
10.4.8 Calling UIS$SET_CHAR_SLANT 10-30
10.4.9 Program Development V 10-30
10.4.10 Calling UIS$SET_TEXT_SLOPE 10-31
10.4.11 Program Development VI 10-32
10.4.12 Calling UIS$SET _CHAR_ROTATION 10-33
10.4.13 Program Development VII 10-33
10.4.14 Calling UIS$SET_CHAR_SIZE 10-36

CHAPTER 11 GRAPHICS AND WINDOWING ATTRIBUTES 11-1

11.1 OVERVIEW 11-1

11.2 USING GRAPHICS ATTRIBUTES 11-1
11.2.1 Modifying Graphics and Windowing Attributes 11-1
11.2.2 Programming Options 11-2

11.2.2.1 Program Development I • 11-3
11.2.2.2 Calling UIS$SET _ARC_TYPE and Using Fill Patterns • 11-5
11.2.2.3 Program Development" • 11-6
11.2.2.4 Calling UIS$SET _LINE_WIDTH • 11-7
11.2.2.5 Program Development "I • 11-8
11.2.2.6 Calling UIS$SET _LINE_WIDTH and

UIS$SET _LINE_STYLE • 11-9
11.2.2.7 Program Development IV • 11-9
11.2.2.8 Calling UIS$SET _FONT and

UIS$SET_FILL_PATTERN • 11-11
11.2.3 Using the Windowing Attribute

11.2.3.1 Programming Options • 11-11
11.2.3.2 Program Development • 11-13
11.2.3.3 Calling UIS$SET _CLIP • 11-14

11-11

CHAPTER 12 INQUIRY ROUTINES 12-1

12.1 OVERVIEW 12-1

12.2 USING INQUIRY ROUTINES 12-1

x V4.1-June 1989

Contents

12.2.1 Using Inquiry Routines 12-1
12.2.1.1 Programming Options • 12-1
12.2.1.2 Program Development I • 12-4
12.2.1.3 Invoking UIS$GET _FONT_SIZE, UIS$GET _DISPLAY_SIZE,

and UIS$GET_VIEWPORT_SIZE • 12-5
12.2.1.4 Program Development" • 12-5
12.2.1.5 Invoking UIS$GET _ARC_TYPE, UIS$GET _FILL_PATTERN,

and UIS$GET_FONT • 12-8

CHAPTER 13 DISPLAY LISTS AND SEGMENTATION 13-1

13.1

13.2

13.3

13.4

OVERVIEW

DISPLAY LISTS

SEGMENTS
13.3.1
13.3.2
13.3.3

Identifiers and Object Types
Programming Options
Program Development I
13.3.3.1 Calling UIS$DISABLE_DISPLAY _LIST and

UIS$ENABLE_DISPLAY _LIST • 13-7
13.3.3.2 Program Development II • 13-7
13.3.3.3 Calling UIS$GET _NEXT_OBJECT,

UIS$GET _OBJECT _ATTRIBUTES, and
UIS$GET_ROOT_SEGMENT • 13-10

13.3.3.4 Program Development III • 13-12
13.3.3.5 Calling UIS$GET_PARENT_SEGMENT • 13-15

MORE ABOUT SEGMENTS

13-1

13-1

13-2
13-3
13-4
13-6

13-16
13.4.1 Programming Options 13-16
13.4.2 Program Development I 13-18

13.4.2.1 Calling UIS$SET _INSERTION_POSITION • 13-21
13.4.2.2 Program Development II • 13-21
13.4.2.3 Calling UIS$BEGIN_SEGMENT and

UIS$END_SEGMENT • 13-25

CHAPTER 14 GEOMETRIC AND ATTRIBUTE TRANSFORMATIONS 14-1

14.1 OVERVIEW 14-1

V4.1-June 1989 xi

Contents

14.2 GEOMETRIC TRANSFORMATIONS 14-1
14.2.1 Translating Graphic Objects 14-1

··14.2.2 Scaling Graptlic Objects 14-1
14.2.2.1 Uniformly Scaled Graphic Objects • 14-3
14.2.2.2 Differentially Scaled Graphic Objects • 14-3

14.2.3 Rotating Graphic Objects 14-3
14.2.4 Programming Options 14-6
14.2.5 Program Development I 14-7
14.2.6 Calling UIS$TRANSFORMATION_OBJECT 14-10
14.2.7 Program Development II 14-11
14.2.8 Calling UIS$COPY _OBJECT 14-12

14.3 ATTRIBUTE TRANSFORMATIONS 14 ... 12
14.3.1 Programming Options 14-12
14.3.2 Program Development 14-14
14.3.3 Requesting Attribute Transformations 14-14

CHAPTER 15 METAFILES AND PRIVATE DATA 15-1

15.1

15.2

15.3

xii

OVERVIEW 15-1

DISPLAY LISTS AND UIS MET AFILES 15-1
15.2.1 Generic Encoding of Graphics and Attribute Routines 15-1

15.2.1.1 Normalized Coordinates • 15-2
15.2.1.2 Interpreting the User Buffer. 15-2.1

15.2.2 Creating UIS Metafiles 15-10
15.2.3 Structure of a UIS Metafile 15-11
15.2.4 Programming Options 15-12
15.2.5 Program Development I 15-13

15.2.5.1 Calling UIS$EXTRACT _HEADER, UIS$EXTRACT _REGION,
and UIS$EXTRACT_TRAILER • 15-15

DISPLAY LISTS AND PRIVATE DATA
15.3.1 USing Private Data
15.3.2 Programming Options
15.3.3 Program Development II

15.3.3.1 Calling UIS$PRIVATE and
UIS$EXTRACT_PRIVATE • 15-21

15-15
15-15
15-16
15-17

V4.1-June 1989

Contents

CHAPTER 16 PROGRAMMING IN COLOR 18-1

16.1

16.2

16.3

16.4

OVERVIEW

COLOR AND INTENSITY ROUTINES
16.2.1 Programming Options
16.2.2 Step 1-Creating a Virtual Color Map
16.2.3 Step 2-Setting Virtual Color Map Attributes
16.2.4 Step 3-Setting Entries in the Virtual Color Map
16.2.5 Program Development I
16.2.6 Program Development II

16.2.6.1 Program Development III • 16-5

COLOR MAP SEGMENTS
16.3.1 Programming Options
16.3.2 Program Development
16.3.3 Calling UIS$CREATE_COLOR_MAP _SEG

COLOR AND INTENSITY INQUIRY ROUTINES

16-1

16-1
16-1
16-2
16-2
16-3
16-3
16-4

16-7
16-8
16-8
16-8

16-8
16.4.1 Programming Options 16-9
16.4.2 Program Development I 16-9

16.4.2.1 Calling UIS$GET _COLORS, UIS$GET _HW_COLOR_INFO,
UIS$GET_WRITING_INDEX • 16-11

16.4.3 Program II-Creating an HSV Color Wheel 16-11

CHAPTER 17 ASYNCHRONOUS SYSTEM TRAP ROUTINES 17-1

17.1

17.2

OVERVIEW
17.1.1 Using AST Routines
17.1.2 AST-Enabling Routines

KEYBOARD AND POINTER DEVICES
17.2.1 Using AST Routines with Virtual Keyboards
17.2.2 Controlling Keyboards
17.2.3 Program Development
17.2.4 Calling Keyboard Routines
17.2.5 Using AST Routines with Pointer Devices

17.2.5.1 Mouse. 17-7
17.2.5.2 Tablet. 17-7
17.2.5.3 Step 1-Create an AST Routine • 17-8
17.2.5.4 Step 2-Enable the AST Routine • 17-8

V4.1-June 1989

17-1
17-1
17-2

17-2
17-3
17-4
17-4
17-6
17-7

xiii

Contents

17.2.6 Programming Options 17-8
17.2.7 Program Development 17-9
17.2.8 Calling UIS$SET _POINTER_AST and

UIS$SET _POINTER_PATTERN 17-10

17.3 MANIPULATING DISPLAY WINDOWS AND VIEWPORTS 17-10
17.3.1 Using AST Routines to Modify the Window Options

Menu 17-12
17.3.1.1 Step 1-Create an AST Routine • 17-12
17.3.1.2 Step 2-Enable the AST Routine • 17-13

17.3.2 Programming Options 17-13
17.3.3 Program Development 17-14.1
17.3.4 Calling UIS$SET _RESIZE_AST 17-17
17.3.5 Calling UIS$SET _SHRINK_ TO_ICON_AST 17-17
17.3.6 Calling UIS$SET _CLOSE_AST 17-18

PART III UIS ROUTINE DESCRIPTIONS

CHAPTER 18 UIS ROUTINE DESCRIPTIONS 18-1

18.1 OVERVIEW 18-1
18.1.1 Format Heading 18-2
18.1.2 Returns Heading 18-5
18.1.3 Arguments Heading 18-5

18.2 FUNCTIONAL ORGANIZATION OF UIS ROUTINES 18-5

18.3 ROUTINE ARGUMENTS QUICK REFERENCE 18-8.1
18.3.1 vdJd 18-8.1
18.3.2 wdJd 18-8.2
18.3.3 objJd 18-8.2
18.3.4 segJd 18-9
18.3.5 iatb 18-9
18.3.6 oatb 18-9
18.3.7 astprm 18-9
18.3.8 kbJd 18-10
18.3.9 devnam 18-10

xiv V4.1-June 1989

Contents

18.4 UIS ROUTINES AND ARGUMENTS 18-10
UIS,BEGIN_SEGMENT 18-16
UIS$CIRCLE 18-18
UIS,CLOSE_ WINDOW 18-21
UIS,COPY _OBJECT 18-22
UIS,CREATE_ COLOR_MAP 18-27
UIS,CREATE_COLOR_MAP _SEG 18-30
UIS,CREATE_DISPLA Y 18-33
UIS'CREATE_KB 18-35
UIS,CREATE_ TB 18-38
UIS,CREATE_ TERMINAL 18-39
UIS,CREATE_ TRANSFORMATION 18-42
UIS$CREATE_ WINDOW 18-43
UIS,DELETE_COLOR_MAP 18-52
UIS,DELETE_COLOR_MAP _SEG 18-53
UIS,DELETE_DISPLAY 18-54
UIS$DELETE_KB 18-55
UIS,DELETE_OBJECT 18-56
UIS$DELETE_PRIVATE 18-57
UIS$DELETE_ TB 18-58
UIS$DELETE_ TRANSFORMATION 18-59
UIS$DELETE_WINDOW 18-60
UIS$DISABLE_DISPLAY _LIST 18-61
UIS$DISABLE_KB 18-63
UIS$DISABLE_ TB 18-64
UIS$DISABLE_ VIEWPORT _KB 18-65
UIS$ELLIPSE 18-66
UIS$ENABLE_DISPLA Y _LIST 18-69
UIS$ENABLE_KB 18-71
UIS$ENABLE_ TB 18-72
UIS$ENABLE_ VIEWPORT _KB 18-73
UIS$END_SEGMENT 18-74
UIS$ERASE 18-75
UIS$EXECUTE 18-76
UIS$EXECUTE_DISPLAY 18-77
UIS$EXPAND_ICON 18-78
UIS$EXTRACT _HEADER 18-81
UIS$EXTRACT _OBJECT 18-83
U IS$EXTRACT _PRIVATE 18-85
UIS$EXTRACT _REGION 18-87
UIS$EXTRACT _TRAILER 18-89
UIS$FIND_PRIMITIVE 18-91
UIS$FIND_SEGMENT 18-93
UIS$GET _ABS_POINTER_POS 18-95
UIS$GET _ALIGNED_POSITION 18-96
UIS$GET _ARC_TYPE 18-98
UIS$GET _BACKGROUND _INDEX 18-99
UIS$GET _BUTTONS 18-100
UIS$GET _CHAR_ROTATION 18-101
UIS$GET _CHAR_SIZE 18-102
UIS$GET _CHAR_SLANT 18-104
UIS$GET _CHAR_SPACING 18-106

V4.1-June 1989 xv

Contents

UISSGET _CLIP 18-108
UIS$GET _COLOR 18-110
UIS$GET _COLORS 18-112
UIS$GET _CURRENT_OBJECT 18-115
UIS$GET _DISPLA Y _SIZE 18-117
UIS$GET _FILL_PATTERN 18-120
UIS$GET _FONT 18-122
UIS$GET _FONT _ATTRIBUTES 18-124
UIS$GET _FONT_SIZE 18-127
UIS$GET _HW _COLOR_INFO 18-129
UIS$GET _INTENSITIES 18-132
UIS$GET _INTENSITY 18-134
UIS$GET _KB_ATTRIBUTES 18-136
UIS$GET _LINE_STYLE 18-138
UIS$GET _LINE_WIDTH 18-140
UIS$GET _NEXT_OBJECT 18-142
UIS$GET _OBJECT _ATTRIBUTES 18-143
UIS$GET _PARENT_SEGMENT 18-145
UIS$GET _PLANE_MASK 18-146
UIS$GET _POINTER_POSITION 18-146.1
UIS$GET _POSITION 18-147
UIS$GET _PREVIOUS_ OBJ ECT 18-149
UIS$GET _ROOT_SEGMENT 18-151
UIS$GET _ TB_INFO 18-153
UIS$GET _ TB_POSITION 18-155
UIS$GET _TEXT_FORMATTING 18-156
UIS$GET _TEXT_MARGINS 18-157
UIS$GET _TEXT_PATH 18-159
UIS$GET _TEXT_SLOPE 18-161
UIS$GET _ VCM_ID 18-163
UIS$GET _VIEWPORT_ICON 18-164
UIS$GET _VIEWPORT_POSITION 18-166
UIS$GET _VIEWPORT_SIZE 18-167
UIS$GET _VISIBILITY 18-169
UIS$GET _WINDOW_ATTRIBUTES 18-170
UIS$GET _WINDOW_SIZE 18-171
UIS$GET _WRITING_INDEX 18-172
UIS$GET _WRITING_MODE 18-174
UIS$GET _WS_COLOR 18-175
UIS$GET _ WS_INTENSITY 18-176
UIS$HLS_ TO_RGB 18-178
UIS$HSV _ TO_RGB 18-180
UISSIMAGE 18-182
UIS$INSERT _OBJECT 18-186
UIS$LINE 18-187
UIS$LINE_ARRA Y 18-190
UIS$MEASURE_ TEXT 18-192
UIS$MOVE_AREA 18-197
UIS$MOVE_ VIEWPORT 18-199
UIS$MOVE_ WINDOW 18-200
UIS$NEW _TEXT_LINE 18-201
UIS$PLOT 18-202
UIS$PLOT _ARRAY 18-205

xvi V4.1-June 1989

Contents

UIS$POP _VIEWPORT 18-207
UIS$PRESENT 18-209
UIS$PRIVATE 18-210
UIS$PUSH_ VIEWPORT 18-211
UIS$READ_CHAR 18-213
UIS$RESIZE_ WINDOW 18-215
UIS$RESTORE_CMS_COLORS 18-218
UIS$RGB_ TO_HLS 18-219
UIS$RGB_TO_HSV 18-221
UIS$SET _ADDOPT _AST 18-223
UIS$SET _ALIGNED_POSITION 18-224
UIS$SET _ARC_TYPE 18-226
UIS$SET _BACKGROUNDJNDEX 18-229
UIS$SET _BUTTON_AST 18-230
UIS$SET _CHAR_ROTATION 18-233
UIS$SET _CHAR_SIZE 18-235
UIS$SET _CHAR_SLANT 18-238
UIS$SET _CHAR_SPACING 18-240
UIS$SET_CLIP 18-244
UIS$SET _CLOSE_AST 18-247
UIS$SET _COLOR 18-249
UIS$SET _COLORS 18-251
UIS$SET _EXPAND_ICON_AST 18-253
UIS$SET _FILL_PATTERN 18-254
UIS$SET _FONT 18-258
UIS$SET _GAIN_KB_AST 18-259
UIS$SET _INSERTION_POSITION ~8-260

UIS$SET _INTENSITIES 18-262
UIS$SET _INTENSITY 18-264
UIS$SET _KB_AST 18-264
UIS$SET _KB_ATTRIBUTES 18-266
UIS$SET _KB_COMPOSE2 18-269
UIS$SET _KB_COMPOSE3 18-271
UIS$SET _KB_KEYTABLE 18-272
UIS$SET _LINE_STYLE 18,,",274
UIS$SET _LINE_WIDTH 18-277
UIS$SET _LOSE_KB_AST 18-280
UIS$SET _MOVE_INFO _AST 18-281
UIS$SET _PLANE_MASK 18-282
UIS$SET _POINTER_AST 18-284
UIS$SET _POINTER_PATTERN 18-285
UIS$SET _POINTER_POSITION 18-287
UIS$SET _POSITION 18-288
UIS$SET _RESIZE_AST 18-290
UIS$SET _SHRINK_ TO_ICON_AST 18-294
UIS$SET _ TB_AST 18-295
UIS$SET _TEXT_FORMATTING 18-297
UIS$SET _TEXT_MARGINS 18-300
UIS$SET _TEXT_PATH 18-302
UIS$SET _TEXT_SLOPE 18-305
UIS$SET _ VP _TITLE 18-307
UIS$SET _WRITING_INDEX 18-308
UIS$SET _WRITING_MODE 18-~08~1

V4.1-June 1989 xvii

Contents

UIS$SETUP
UIS$SHRINK_ TO_ICON
UIS$SOUND _BELL
UIS$SOUND _CLICK
UIS$TEST _KB
UIS$TEXT
UIS$TRANSFORM_OBJECT

18-308.2
18-309
18-312
18-313
18-314
18-315
18-318

PART IV UIS DEVICE COORDINATE (UISDC)
ROUTINES

CHAPTER 19 UIS DEVICE COORDINATE GRAPHICS ROUTINES

19.1

19.2

19.3

19.4

OVERVIEW

UISDC ROUTINES-HOW TO USE THEM

ROUTINE ARGUMENTS QUICK REFERENCE

UISDC ROUTINES AND ARGUMENTS
UISDC$ALLOCATE_DOP
UISDC$CIRCLE
UISDC$ELLIPSE
UISDC$ERASE
UISDC$EXECUTE_DOP _ASYNCH
UISDC$EXECUTE_DOP _SYNCH
UISDC$GET _ALIGNED_POSITION
UISDC$GET _CHAR_SIZE
UISDC$GET _CLIP
UISDC$GET _POINTER_POSITION
UISDC$GET _POSITION
UISDC$GET _TEXT_MARGINS
UISDC$GET _VISIBILITY
UISDC$IMAGE
UISDC$LlNE
UISDC$L1NE_ARRA Y
UISDC$LOAD_BITMAP
UISDC$MEASURE_ TEXT
UISDC$MOVE_AREA
UISDC$NEW _TEXT_LINE
UISDC$PLOT _
UISDC$PLOT _ARRAY
UISDC$QUEUE_DOP

19-4
19-6
19-8

19-10
19-11
19-12
19-13
19-14
19-16
19-17
19-18
19-19
19-20
19-21
19-24
19-25
19-27
19-29
19-31
19-32
19-33
19-34
19-36

19-1

19-1

19-1

19-2

19-2

xviii V4.1-June 1989

UISDC$READ_IMAGE
UISDC$SET _ALIGNED_POSITION
UISDC$SET _BUTTON_AST
UISDC$SET _CHAR_SIZE
UISDC$SET _CLIP
UISDC$SET _POINTER_AST
UISDC$SET _POINTER_PATTERN
UISDC$SET _POINTER_POSITION
UISDC$SET _POSITION
UISDC$SET _TEXT_MARGINS
UISDC$TEXT

APPENDIX A UIS CALLING SEQUENCES SUMMARY

APPENDIX B UISDC CALLING SEQUENCES SUMMARY

Contents

19-37
19-39
19-40
19-42
19-44
19-45
19-47
19-49
19-50
19-51
19-52

A-1

B-1

APPENDIXC UIS MULTINATIONAL CHARACTER AND TECHNICAL
FONTS C-1

C.1 OVERVIEW C-1

C.2 UIS MULTINATIONAL CHARACTER SET FONTS AND FONT
SPECIFICA TIONS C-1

C.3 UIS TECHNICAL CHARACTER SET FONTS C-16

APPENDIX 0 FILL PATTERNS 0-1

APPENDIX E ERROR MESSAGES E-1

APPENDIX F VMS DATA TYPES F-1

F.1 VMS DATA TYPES F-1

V4.1-June 1989 xix

Contents

F.2

F.3

F.4

F.5

F.e

F.7

INDEX

GLOSSARY

INDEX

FIGURES
1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
4-1
4-2
4-3

xx

4 ... 4
4 5
4-6
4-7

6-1

VAX BLISS IMPLEMENTATION

VAX C IMPLEMENTATION

VAX FORTRAN IMPLEMENTATION

VAX MACRO IMPLEMENTATION

VAX PASCAL IMPLEMENTATION

VAX PUIIMPLEMENTATION

Typical VMS Workstation Hardware
Virtual Display, Display Window, and Display Viewport
World Coordinate System and Virtual Display
Absolute Device Coordinates
Mapping a Display Window to a Display Viewport
Display Window in a Virtual Display
Displaying a Graphic Object
Display List Extraction
Bitplane Configuration in· Single and Multiplane Systems
Direct Color Values
Hardware Color Map
Mapped Color Values in Four-Plane System

F-13

F-16

F-19

F-23

F-25

F-29

Glossary-1

1-2
2-2
2-4
2-5
2-6
2-8
2-9

RGB and IntenSity Color Values as Hardware Color Map Entries _
Swapping Virtual Color Maps

2-11
4-2
4-4
4-5
4-6
4-7
4-8

Reserved Hardware Color Map Entries in a Four-Plane Color
System
Passing Arguments

4-10
6-7

V4.1-June 1989

Contents

7-1 Mapping a Bitmap to a Raster 7-5
7-2 Display Viewport and Graphic Objects 7-8
8-1 Aspect Ratios of the Display Window and Display Viewport 8-3
8-2 Four Display Viewports 8-5
8-3 Objects Within Different Windows 8-8
8-4 Display Window Deletion 8-9
8-5 Before Panning the Virtual Display 8-13
8-6 Panning the Virtual Display 8-14
8-7 Occluding a Display Viewport 8-17
8-8 Popping a Display Viewport 8-18
8-9 Pushing a Display Viewport 8-19
8-10 General Placement and No Border 8-22
8-11 Moving Graphic Objects Within the Virtual Display 8-24
8-12 World Coordinate Transformations 8-27
9-1 Structure of Graphic Objects 9-5
9-2 UIS Device-Independent Writing Modes 9-11
9-3 Bit Set Mode 9-16
9-4 Bit Clear Mode 9-17
9-5 Bit Clear Negate Mode 9-17
9-6 Bit Set Negate Mode 9-18
9-7 Copy Mode 9-19
9-8 Copy Negate Mode 9-19
10-1 Character Cell 10-2
10-2 Monospaced and Proportionally Spaced Characters 10-2
10-3 Text Path 10-3
10-4 Text Slope 10-4
10-5 Character Spacing 10-5
10-6 Simple Character Rotation 10-8
10-7 Character Rotation with Slope Manipulation 10-9
10-8 Text Path Manipulation Without Character Rotation 10-11
10-9 Character Slanting 10-16
10-10 Character Slanting and Rotation with Slope Manipulation 10-17
10-11 Character Scaling 10-19
10-12 UIS Fonts 10-25
10-13 Character and Line Spacing 10-27
10-14 Baseline and Top of Character Cell 10-29
10-15 Character Slanting 10-30
10-16 Manipulating the Text Baseline 10-32
10-17 Character Rotation Without Slanting 10-34
10-18 Character Rotation with Slanting 10-35
10-19 Manipulating Character Size 10-36
11-1 Closing an Arc 11-5
11-2 Filling a Closed Arc 11-6
11-3 line Width 11-8
11-4 Modifying Line Width and Style 11-9

V4.1-June 1989 xxi

Contents

11-5 Vertical Bar Graph 11-12
11-6 Clipping rectangles 11-14
12-1 Centering Text 12-6
12-2 Pie Graph 12-9
13-1 Binary Encoded Instruction 13-1
13-2 Nested Segments 13-3
13-3 . Disabling a Display List 13-7
13-4 After Display List Execution 13-8
13-5 Tree Diagram-Program WALK 13-8
13-6 Display List Elements 13-11
13-7 Contents of the Display List 13-12
13-8 Display List Structure in Program HOP 13-13
13-9 Traversing Upward Along the Segment Path 13-15
13-10 Searching Downward Through a Segment 13-16
13-11 Contents of the Display List Drawn in the Virtual Display 13-17
13-12 Pre-Edit Display List Structure . 13-19
13-13 Post-Edit Structure of the Display List 13-21
13-14 Before Display List Modification 13-22
13-15 Executing the Modified Display List 13-23
13-16 Verifying the Contents of the Display List 13-24
13-17 Text Output During Execution 13-25
13-18 Final Text Output 13-26
14-1 Translating a Graphic Object 14-2
14-2 Simple Scaling 14-4
14-3 Complex Scaling 14-5
14-4 Uniformly Scaling a Graphic Object 14-6
14-5 Differentially Scaling a Graphic Object 14-7
14-6 Simple Rotation of a Graphic Object 14-8
14-7 Complex Rotation of a Rectangle 14-9
14-8 Complex Rotation of a Triangle 14-13
14-9 Modifying Attributes with a Transformation 14-1
14-10 Modifying Attributes with a Copy 14-2
15-1 Binary Encoded Instruction 15-2
15-2 Extended Binary Encoded Instruction 15-2
15-3 Format of Attribute-Related Argument 15-4
15-4 Format of Graphics- and Text-Related Argument 15-5
15-5 Structure of UIS Metafile 15-12
15-6 Original Objects Drawn in the Virtual Display 15-16
15-7 After Buffer Execution 15-17
15-8 Private Data 15-21
15-9 Verifying the Contents of the Temporary Array and User Buffer - 15-22
15-10 Hot Air Balloon 15-1

16-1 Different Types of Information Returned from Inquiry Routines 16-12
17-1 Writing Characters to a Display Viewport 17-7

17-2 Default Pointer Pattern 17-11

xxii V4.1-June 1989

Contents

17-3 New Pointer Pattern 17-11
17-4 Un resized Window and Viewport 17-18
17-5 Resized Window and Viewport 17-18
17-6 Icon 17-19
C-1 Font 1 C-2
C-2 Font 2 C-3
C-3 Font 3 C-4
C-4 Font 4 C-5
C-5 Font 5 C-6
C-6 Font 6 C-7
C-7 Font 7 C-8
C-8 Font 8 C-9
C-9 Font 9 C-10
C-10 Font 10 C-11
C-11 Font 11 C-12
C-12 Font 12 C-13
C-13 Font 13 C-14
C-14 Font 14 C-15
C-15 Font 15 C-16
C-16 Font 16 C-17
C-17 Font 17 C-18
C-18 Font 18 C-19
C-19 Font 19 C-20
C-20 Font 20 C-21
C-21 Font 21 C-22
C-22 Font 22 C-23
C-23 Font 23 C-24
C-24 Font 24 C-25
C-25 Font 25 C-26
C-26 Font 26 C-27
0-1 PATT$C_VERT1_1 and PATT$C_VERT1_3 0-1
0-2 PATT$C_VERT2_2 and PATT$C_VERT3_1 0-1
0-3 PATT$C_VERT1_7 and PATT$C_VERT2_6 0-2
0-4 PATT$C_VERT4_4 and PATT$C_VERT6_2 0-2
0-5 PATT$C_HORIZ1_1 and PATT$C_HORIZ1_3 0-2
0-6 PATT$C_HORIZ2_2 and PATT$C_HORIZ3_1 0-3
0-7 PATT$C_HORIZ1_7 and PATTSC_HORIZ2_6 0-3
0-8 PATT$C_HORIZ4_4 and PATT$C_HORIZ6_2 0-3
0-9 PATT$C_GRID4 and PATT$C_GRI08 0-4
0-10 PATT$C_UPOIAG1_3 and PATT$C_UPOIAG2_2 0-4
0-11 PATT$C_UPOIAG3_1 and PATT$C_UPOIAG1_7 0-4
0-12 PATT$C_UPOIAG2_6 and PATT$C_UPOIAG4_4 0-5

0-13 PATT$C_UPOIAG6_2 and PATT$C_OOWNOIAG1;...3 0-5

0-1.4 PATT$C_OOWNOIAG2_2 and PATT$C_OOWNOIAG3_1 0-5

0-15 PATT$C_OOWNOIAG1_7 and PATT$C_OOWNOIAG2_6 0-6

V4.1-June 1989 xxiii

Contents

0-16 PATTSC_OOWNOIAG4 ... 4 and PATT$C_OOWNOIAG6_2 0-6
0-17 PATT$C_BRICK_HORIZ and PATT$C_BRICK_VERT 0-6
0-18 PATT$C_BRICK_OOWNDIAG and PATT$C_BRICK_UPOIAG 0-7
D-19 PATT$C_GREY4_16D and PATT$C_GREY12_160 0-7
D-20 PATT$C_BASKET_WEAVE and PATT$C_SCALE_DOWN 0-7
0-21 PATT$C_SCALE_UP and PATT$C_SCALE_RIGHT 0-8
0-22 PATT$C_SCALE_LEFT and PATT$C_GREY1_16 D-8
0-23 PATT$C_GREY2_16 AND PATT$C_GREY3_16 0-8
0-24 PATT$C_GREY4_16 and PATT$C_GREY5_16 0-9
D-25 PATT$C_GREY6_16 and PATT$C_GREY7_16 0-9
0-29 PATT$C_GREY8_16 and PATT$C_GREY9_16 0-9
0-27 PATT$C_GREY10_16 and PATT$C_GREY11_16 0-10
0-28 PATT$C_GREY12_16 and PATT$C_GREY13_16 D-10
0-29 PATT$C_GREY14_16 and PATT$C_GREY1S_16 0-10
D-30 PATT$C_FOREGROUND 0-11
0-31 PATT$C_BACKGROUND 0-11

TABLES
4-1 Hardware Color Map Characteristics 4-S
4-2 Color Palette 4-7
6-1 VAX Standard Data Types 6-3
6-2 Entry Point and Symbol Definition Files 6-8
7-1 Coordinate Types and Values 7-1
8-1 UIS Windowing Routines 8-1
9-1 Attribute Block 0 9-1
9-2 Oefault Settings of General Attributes 9-2
9-3 UIS Writing Modes 9-6
10-1 Default Settings of Text Attributes In Attribute Block 0 10-20
11-1 Oefault Settings of Graphics and Windowing Attributes 11-1
12-1 Inquiry Routines 12-2
lS-l Generic Encoding Symbols and Opcodes lS-3
lS-2 Arguments of Binary Encoded Instructions 15-6
lS-3 Structure of UIS Metafiles lS-10
16-1 Color and Intensity Routines 16-2
16-2 Color and Intensity Inquiry Routines 16-9
17-1 AST-Enabling Routines 17-2
17-2 AST Routines and Descriptions 17-3
17-3 Pointer AST -Enabling Routines 17-8
17-4 Tasks and Corresponding UIS Routines 17-12

17-5 AST -Enabling Routines that Trigger AST Routine Execution 17-13

17-6 AST Routine Execution Programming Options 17-13
18-1 Main Headings in the Routine Template 18-1
18-2 General Rules of Syntax 18-4
18-3 Functional Categories of U.S Routines 18-6

xxiv V4.1-June 1989

Contents

18-4 Routine Arguments 18-10
19-1 Routine Arguments 19-2
A-1 UIS Calling Sequences A-1
B-1 UISDC Calling Sequences B-1
C-1 Font 1 C-2
C-2 Font 2 C-3
C-3 Font 3 C-4
C-4 Font 4 C-5
C-5 Font 5 C-6
C-6 Font 6 C-7
C-7 Font 7 C-8
C-8 Font 8 C-9
C-9 Font 9 C-10
C-10 Font 10 C-11
C-11 Font 11 C-12
0-12 Font 12 C-13
C-13 Font 13 C-14
C-14 Font 14 C-15
C-15 Font 15 C-16
C-16 Font 16 C-17
C-17 Font 17 C-18
C-18 Font 18 C-19
C-19 Font 19 C-20
C-2O Font 20 C-21
C~21 Pont 21 C-22
C-22 Font 22 C-23
C-23 Font 23 C-24
C-24 Font 24 C-25
C-26 Font 2S C-26
C-26 Font 26 C-27
F-1 VMS Data Types F-1
F-2 VAX BLISS Implementation F-14
F-3 VAX C Implementation F-16
F-4 VAX FORTRAN Implementation F-19
F-5 VAX MACRO Implementation F-23
F-6 VAX PASCAL Implementation F-26
F-7 VAX PUI Implementation F-29

V4.1-June 1989 xxv

Preface

This programming guide describes VMS Workstation Software graphics. It
contains general information about basic VWS graphics concepts, a tutorial
for learning to program with VWS graphics, and complete descriptions and
reference information about the system routines for all callable functions.

Intended Audience
This guide is intended for general users and programmers who want to
learn the concepts and use appropriate routines in graphics application
programs.

Document Structure
This guide is divided into four major sections, VMS Workstation Software
Graphics Concepts, How to Progranl with VMS Workstation Software
Graphics, UIS Routine Descriptions, and UIS Device Coordinate (UISDC)
Routines. These sections are briefly described in the following paragraphs.

Part I-VMS Workstation Software Graphics Concepts

This section contains five chapters with a general overview of the basic
concepts of VMS workstation graphics. '

• Chapter I-System Description

This chapter briefly describes the hardware, software, and options that
are parts of the VMS workstation system.

• Chapter 2-Display Management Concepts

This chapter discusses the concepts of world coordinates, device
coordinates, virtual displays, windows, viewports, window and
viewport scaling, and distortion of graphic objects.

• Chapter 3-Graphic Objects and Attributes

This chapter describes and shows the relationship between graphics
routines, attribute blocks, text attributes, graphics attributes, and
segments.

• Chapter 4-CoJor Concepts

This chapter discusses the various color and intensity environnlents
supported by the VAXstation color systems.

• Chapter 5-Input Devices

This chapter shows how the workstation input devices relate to the
workstation graphics system.

V4.1-June 1989 xxvii

Preface

Part II-How to Program with VMS Workstation Software Graphics

This section contains step-by-step tutorial information about writing
application programs using VMS workstation software graphics. Practical
programming examples are provided throughout this section. It is divided
according to routine functions into the following chapters:

• Chapter 6-Programming Considerations

This chapter describes the programming interface and topics relating to
program execution.

• Chapter 7 -Creating Basic Graphic Objects

This chapter describes the underlying structures and shows how to
create graphic objects.

• Chapter 8-Display Windows and Viewports

This chapter shows how to create and manipulate display windows and
display viewports.

• Chapter 9-General Attributes

This chapter describes writing modes, display background and
foreground, and the writing index.

• Chapter 10-Text Attributes

This chapter describes how attributes may be used to enhance and
modify text.

• Chapter II-Graphics Attributes

This chapter describes how attributes may be used to enhance and
modify the appearance of graphic objects.

• Chapter 12-Inquiry Routines

This chapter discusses how information can be returned to the
application program.

• Chapter 13-Display Lists and Segmentation

This chapter describes how to create and manipulate display lists and
segments.

• Chapter 14-Geometric and Attribute Transformations

This chapter describes the various ways graphic objects and
components of graphic objects can be manipulated with the respect
to the coordinate space.

• Chapter 15-Metafiles and Private Data

This chapter discusses how to extract the contents of a display list
and store the data in a buffer or external file. There is additional
information about how to associate private data with a graphics display.

• Chapter 16-Programming in Color

The chapter describes how to create and display graphic objects in
color.

• Chapter 17-Asynchronous System Trap Routines

xxviii V4.1-June 1989

Preface

This chapter discusses how to make use of program-related events to
increase the interactive nature of your applications.

Part III-UIS Routine Descriptions

This section contains reference material about the device-independent VMS
workstation software graphics routines.

• Chapter 18-UIS Routine Descriptions

• UIS Routine Descriptions

Part IV-UIS Device Coordinate (UISDC) Routines

This section contains reference material about device-dependent VMS
workstation software graphics routines.

• Chapter 19-UIS Device Coordinate Graphics Routines

• UISDC Routines

Appendix A-Summary of UIS Calling Sequences

Appendix B-Summary of UISDC Calling Sequences

Appendix C-UIS Fonts

Appendix D-UIS Fill Patterns

Appendix E-Error Messages

Appendix F-VMS Data Types

Glossary

How To Use This Guide
This guide is designed so different types of users can benefit by its
information:

• General users and programmers new to graphics software and VMS
workstation software graphics can use it as a learning tool.

• Programmers already familiar with graphics software in general and/or
VMS workstation software graphics can use it as a reference tool.

Inexperienced User$

If you are unfamiliar with the VMS Workstation Software graphics system,
you should begin by reading Part I of this guide. It gives you an overview
of the graphics concepts discussed in subsequent sections of the book.

The progranuning tutorial in Part II provides a step-by-step approach for
learning how to write applications that take advantage of the graphics
capabilities of the VMS workstation.

Part III provides you with reference information about all of the VIS
routines used in VMS workstation software graphics. It is easier to use
after you have read Part II of this guide.

Part IV contains appendices that provide reference material about UISDC
graphics routines and error messages.

V4.1-June 1989 xxix

Preface

Experienced Users

Once you have become familiar with VMS workstation graphics, you will
seldom need to refer to Part I of this guide, except when reviewing basic
concepts.

Refer to Part II for examples and suggestions on the proper use of VMS
workstation software graphics routines.

Part III is an alphabetically arranged reference section that you can use to
get detailed descriptions of VMS workstation software graphics routines.
Before using this section, you should already be familiar with Parts I and II
of this guide.

Part IV contains appendices that provide reference material about UISDC
graphics routines and error messages.

Associated Documents
The following VMS manuals are related to this guide:

• VMS Workstation Software Release Notes

• VMS Workstation Software Installation Guide

• VMS Workstation Software Guide to Printing Graphics

• VMS Workstation Software User's Guide

• VMS Workstation Sight User's Guide

• VMS Workstation Software Video Device Driver Manual

• VMS User's Manual

• VMS User's Primer

• VMS Programmer's Manual

• VMS FORTRAN Programmer's Primer

• VMS Programming Pocket Reference

• VMS Programming Support Manual

• Installing or Upgrading VMS from Diskettes

• Installing or Upgrading VMS from a Tape Cartridge

Documentation Conventions

xxx

This manual uses the following conventions:

Convention Meaning

A symbol with a one- to six-character abbreviation
indicates that you press a key on the terminal, for
example,IRETI·

V4.1-June 1989

Convention

I CTRLlx I

$ SHOW TIME
05-JUN-1986 11 :55:22

$ TYPE MYFILE.DAT

file-spec, ...

[logical-name]

quotation marks
apostrophes

New and Changed Features

Preface

Me.nlng

The phrase CTRUx Indicates that you must press
the key labeled CTRL while you simultaneously
press another key, for example, CTRUC, CTRLIY,
CTRUO.

Command examples show all output lines or
prompting characters that the system prints
or displays in black letters. All user-entered
commands are shown in red letters.

Vertical series of periods, or ellipsis, mean either
that not all the data that the system would display
in response to the particular command Is shown
or that not all the data a user would enter is
shown.

Horizontal ellipsis indicates that additional
parameters, values, or information can be
entered.

Square brackets indicate that the enclosed item
is optional. (Square brackets are not, however,
optional in the syntax of a directory name in a
file specification or in the syntax of a substring
specification In an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

The following sections describe changes to the programming interface since VWS Version 4.0.

New UIS Routines
Routines Added for Version 4.1

• UIS$GET_PLANE_MASK

• UIS$SET_PLANE_MASK

V4.1-June 1989 xxxi

New and Changed Features

(New and Changed Features) The following sections describe changes to the programming interface
since UIS Version 2.0.

New UIS Routines
The following UIS routines were added.

Function

AST-enabling

Color

Display list

Graphics

Routine
UIS$SET _ADDOPT _AST
UIS$SET _EXPAND_ICON_AST
UIS$SET _ TB_AST
UIS$SET _SHRINK_ TO_ICON_AST

UIS$CREATE_ COLOR_MAP
UIS$CREATE_COLOR_MAP _SEG
UIS$DELETE_COLOR_MAP
UIS$DELETE_ COLOR_MAP _ SEG
UIS$GET _COLORS
UIS$GET _HW_COLOR_INFO
UIS$GET _INTENSITIES
UIS$GET _ VCM_ID
UIS$HLS_ TO_RGB
UIS$HSV_ TO_RGB
UIS$RESTORE_CMS_COLORS
UIS$RGB_ TO_HLS
UIS$RGB_ TO_HSV
UIS$SET _INTENSITIES

UIS$COPY _OBJECT
UIS$DELETE_OBJECT
UIS$DELETE_PRIVATE
UIS$EXECUTE
UIS$EXECUTE_DISPLAY
UIS$EXTRACT _HEADER
UIS$EXTRACT _OBJECT
UIS$EXTRACT _PRIVATE
UIS$EXTRACT _REGION
UIS$EXTRACT _ TRAILER
UIS$FIND_PRIMITIVE
UIS$FIND_SEGMENT
UIS$GET _CURRENT_OBJECT
UIS$GET _NEXT_OBJECT
UIS$GET _OBJECT_ATTRIBUTES
UIS$GET _PARENT_SEGMENT
UIS$GET _PREVIOUS_OBJECT
UIS$GET _ROOT_SEGMENT
UIS$INSERT _OBJECT
UIS$PRIVATE
UIS$SET JNSERTION_POSITION
UIS$TRANSFOR M_ OBJECT

UIS$LlNE
UIS$LlNE_ARRAY

xxxiii

New and Changed Features

Function

Keyboard and pointer

Text

Windowing

Routine

UIS$CREATE_ TB
UIS$DELETE_ TB
UIS$DISABLE_ TB
UIS$ENABLE_ TB
UIS$GET _ TBJNFO
UIS$GET _ TB_POSITION

UIS$GET _CHAR_ROTATION
UIS$GET _CHAR_SIZE
UIS$GET _CHAR_SLANT
UIS$GET _FONT_ATTRIBUTES
UIS$GET _TEXT_FORMATTING
UIS$GET _ TEXT _MARGINS
UIS$GET _TEXT_PATH
UIS$GET _TEXT _SLOPE
UIS$SET _CHAR_ROTATION
UIS$SET _CHAR_SIZE
UIS$SET _CHAR_SLANT
UIS$SET _TEXT_FORMATTING
UIS$SET _TEXT _MARGINS
UIS$SET _TEXT_PATH
UIS$SET _ TEXT _SLOPE

UIS$EXPAND_ICON
UIS$GET _VIEWPORT JCON
UIS$GET _WINDOW_SIZE
UIS$SHRINK_ TO_ICON

New UISDC Routines
The following UISDC routines were new for Version 3.0.

• UISDC$ALLOCA TE_DOP

• UISDC$EXECUTE_DOP _ASYNCH

• UISDC$EXECUTE_DOP _SYNCH

• UISDC$GET_CHAR_SIZE

• UISDC$GET _ TEXT_MARGINS

• UISDC$LINE

• UISDC$LINE_ARRA Y

• UISDC$LOAD_BITMAP

• UISDC$QUEUE_DOP

• UISDC$SET_CHAR_SIZE

• UISDC$SET _ TEXT_MARGINS

xxxiv

New Chapters

New and Changed Features

Three new chapters describing color concepts and color programming
considerations have been added since Version 2.0.

• Color Concepts

• Geometric and Attribute Transformations

• Programming in Color

New UIS Writing Modes
Five new writing modes have been added since Version 2.0.

• UtS$C_MODE_BIC

• UIS$C_MODE_BICN

• UIS$C_MODE_BIS

• UIS$C_MODE_BISN

• UIS$C_MODE_COPYN

New Technical Character Set Fonts
Twelve new technical character set fonts have been added since Version
2.0.

New Text Attributes
The following new text attributes have been added to the programming
interface.

• Character rotation

• Character scaling

• Character slant

• Text formatting

• Text margins

• Text path

• Text slope

xxxv

New and Changed Features

Changes to Existing UIS Routines
UIS$BEGIN_SEGMENT

UIS$BEGIN_SEGMENT now returns segment identifier that can be
referenced by other display list routines. For example, this allows
traversing segments and segment paths.

UIS$MEASURE_ TEXT and UIS$TEXT

You can now use control lists with UIS$TEXT and UIS$MEASURE_ TEXT.

UIS$DISABLE_DISPLA Y _LIST and UIS$ENABLE_DISPLA Y _LIST

Additional arguments have been included that control display screen and
display list updates.

UIS$SET_POINTER_PATTERN and UISDC$SET_POINTER_PATTERN ~

1£ you are using a color system, you can now specify a pointer pattern
outline.

Display Lists and Segmentation

UIS Metafiles

The chapter on display lists and segmentation has been expanded with
more examples.

You can create and store metafiles of generically encoded instructions as
files and reexecute the file.

Shrinking Viewports and Expanding Icons
Applications can now shrink display viewports and expand icons.

Obsolete Version 2.0 UIS Routines
The following routines are obsolete.

• UIS$GET_LEFT_MARGIN

• UIS$SET _LEFT_MARGIN

• UISDC$GET_LEFT_MARGIN

• UISDC$SET_LEFT_MARGIN

xxxvi

Part I VMS Workstation Software Graphics Concepts

1.1

1.2

System Description

Overview
This chapter introduces the VMS Workstation Software graphics system.
The chapter has two parts:

• A summary of typical workstation hardware

• A description of the graphics software

VAXstation Hardware
The VMS workstation can be used as a standalone system. It has all the
components necessary to run programs and perform tasks without being
connected to a host computer. It can also be connected to a host computer
and used as a part of a network in a larger system.

The VMS workstation typically consists of a configuration of the following
hardware:

• System cabinets or boxes

• Display monitor

• Keyboard

• Tablet with puck and stylus or three-button mouse

• Communications board

• Printer

Figure 1-1 shows typical VMS workstation hardware.

1-1

1.2.1

1.2.2

1.2.3

System Description

Figure 1-1 Typical VMS Workstation Hardware

Display Monitor

Processor ~ ~p~r
\

I" "\

I--

ZK.4616·85

System Cabinet or Box

Monitor

Keyboard

1-2

The system cabinet (box) is the heart of the VMS workstation system. The
system cabinet contains the CPU, disk drives, memory, any options, and
communications hardware for the system. Usually, the cabinet or box
houses both fixed and flexible disk drives. The amount of memory can
vary, depending on the options installed.

The workstation monitor is a high-resolution, bitmap device that displays
text and graphics information. Depending on the model, you can use the
workstation monitor to display black and white (bitonal), grey scale, or
color graphics.

The workstation uses the DIGITAL LK201, a standard low-profile style
keyboard that consists of:

• A top row of user-definable function keys

• A user-definable numeric keypad

• A special keypad with arrow keys and function keys

• A standard alphanumeric keypad

1.2.4 Mouse

1.2.5 Tablet

System Description

Some of the top-row function keys are control keys that allow you to:

• Hold the screen

• Display the operator window

• Switch the windowing system

• Change the active window

The top row also has editing keys and keys that call functions such as
cancel, exit, and help.

You can program the function keys and numeric keypad keys to perform
functions suited to a particular application. You can use the arrow keys to
move the keyboard cursor within applications. The alphanumeriC keypad
is similar in function to a typewriter keyboard.

The three-button mouse is a medium-resolution, relative pointing device.
The mouse is the primary means for pointing to an object on the screen.
When you roll the mouse on a flat surface, the pointer on the screen moves
the same way. You use the buttons to make selections.

The tablet is a high-resolution, absolute positioning device. It consists of a
flat tablet, a puck with buttons, and a stylus with buttons. When you move
the puck or stylus on the tablet, the pointer on the display screen moves
the saIne way. You use the buttons to make selections.

1.2.6 Communications Board

1.2.7 Printer

1.3 Software

The communications board connects the system to other computers.

The VMS workstation can have a printer connected to the processor
console port or can access printers located at remote locations through the
network. You can print any rectangular portion of display screen.

The VMS workstation graphics software is a versatile graphics and
windowing interface. It is designed to be used on any of the MicroVAX
family of workstation products (such as VAXstations). This graphics
interface allows you to write application programs in VAX MACRO, VAX
BLISS, and many other high-level languages. Application programs written
to use graphics software can create and manipulate windows, display
multiple styles of text and sizes, receive input, and draw graphic objects in
the windows.

1-3

1.3.1

1.3.2

System Description

Graphics Routine Types
The VMS workstation graphics software contains callable routines that
can be accessed from a high-level programming language. An application
program can perform graphics and windowing functions by making calls
to appropriate routines. Routines create display windows, draw lines and
text, and build graphic objects. This software contains the following types
of routines:

I.

• AST -enabling

• Attribute

• Color

• Display list

• Graphics and text

• Inquiry

• Keyboard

• Pointer

• Sound

• Windowing

• Device coordinate

Human Interface

1-4

The VMS workstation provides an interface between you and the graphics
software. This feature is called the human interface because it helps you use
the workstation.

This interface makes it easy to create new terminal windows on the screen.
The VMS workstation provides you with the ability to have the equivalent
of many terminals at your disposal. You can easily create emulated Digital
VT200 series or Tektronix TEK4014 terminals simply by selecting a menu
item that creates a window on the screen.

To control the placement of windows on the screen, you can move them
anywhere on the screen (or even partially off it), hide them from view,
push them behind or pop them in front of other windows, and so on. The
following list shows some possible operations.

• Create a new VT200 series or TEK4014 terminal window

• Move a window to a different part of the screen

• Push a window behind other windows

• Pop a window in front of other windows

• Shrink a viewport to a icon

• Change the size of a window

• Delete a window

• Switch the keyboard from one window to another

~

1.3.2.1

1.3.2.2

System Description

• Suspend all screen activity (hold screen)

• Print any portion (or all) of a window or the screen

• Set workstation attributes

• Get online help

Terminal Emulation
You can create emulated terminals on the VMS workstation. The
programming interface and the capabilities of emulated terminals are the
same as the programming interface and capabilities of the corresponding
real terminal. The appearance of an emulated terminal on the VMS
workstation screen is similar to that of the corresponding real terminal.
(It will not be completely identical because of hardware differences.)

If you have several terminal windows, you can start a job on one terminal
window, leave it running, then start a job on another terminal window.
Based on available resources, you create as many terminal windows as you
need and switch back and forth among them at will.

VT200 Series/TEK4014

The VAXstation can emulate the Digital VT200 series or Tektronix TEK4014
terminal. Any number of VT200 series or TEK4014 windows can appear
on the screen simultaneously. However, only one window can use the
keyboard at anyone time. You assign the keyboard to the window of your
choice.

VT200 ANSI and Digital private escape sequences, and TEK4014 escape
sequences, are interpreted and translated into the appropriate graphics
routines.

Programs that run under the VAX/VMS operating system will operate in a
VT100 or VT200 series workstation window without modification.

Communication Tools
You can communicate with the software interface through the mouse,
tablet, or keyboard.

Mouse and Tabret

The mouse and tablet control a cursor called a pointer on the screen. When
you manipulate the mouse or tablet, the pointer moves on the screen. Use
the pointer to choose objects on the screen, such as an item in a menu.
Use the buttons to make selections.

Use the pointer, in combination with buttons on the mouse, to perfornl the
following tasks:

• Point to objects on the screen

• Select objects on the screen

• Move objects around on the screen

• Push and pop windows on the screen

• Call menus to the screen

• Switch the keyboard between emulated terminals or windows

1-5

1.3.3

1.3.4

System Description

• Perform application designated functions

Keyboard

Use the keyboard to perform the following functions:

• Respond to system prompts

• Provide control keys, such as !HOLD SCREEN! and !CYCLEI

• Provide special keys, such as ! HELP I

• Enter data and information into a screen window

• Move a cursor in a window on the screen

• Perform application specific functions

Windowing Feature
The graphics software allows you to create and maintain many windows
at the same time (based on available resources). Graphics routines create,
delete, and manipulate overlapping windows. You can pop windows to
the front of the screen, push them to the background, move them around
the screen to a new position, or delete them from the screen. You can also
control the amount and size of information that appears in a window.

Graphics Capabilities

1-6

Routines create new displays and draw graphics within created displays.
A display list, which is an encoded description of routines that create
the contents of a display, is kept in Inemory. The display list enables a
program to pan and zoom portions of a display easily without redrawing
the entire display. Graphics software automatically scales the display.
A display, or a portion of a display, can be mapped into one or more
windows on the screen.

2 Display Management Concepts

2.1 Overview

2.1.1 Summary

This chapter discusses basic concepts involved in creating a graphic object
and displaying it on the workstation screen. This chapter covers:

• Virtual displays

• Display windows

• Display viewports

• World and device coordinates

• Display window and viewport scaling

VMS workstation graphics software enables application programs to build
graphic objects and display them on the workstation screen.

An application program that takes full advantage of VMS workstation
graphics capabilities can perform the following tasks:

• Create a virtual display

• Draw graphics and text into the virtual display

• Open windows into the virtual display for viewing on an output device

• Map windows into display viewports on the workstation screen

• Manipulate windows and viewports to display as much or as little of
the virtual display as desired

, • Pan, zoom in and out, resize, and duplicate display windows

• Manipulate display lists

The application program must first create a virtual display in which to build
the object. Think of a virtual display as a conceptual display space that has
no actual physical size or shape. This conceptual display space, called the
world coordinate system, is defined by the application program in terms of
world coordinates. World coordinates are arbitrary units of measure selected
by the application program that specify locations (or points) in the world
coordinate system using values convenient to the application.

The graphics software automatically translates world coordinates to
normalized coordinates before it maps them to an output device. Normalized
coordinates convert world coordinates into a single device-independent
coordinate system so you do not have to deal with several coordinate
systems. Nornlalized coordinates are automatically mapped to the device­
dependent coordinates of the physical output device.

2-1

Display Management Concepts

A graphic object constructed in a virtual display is not available for display
on an output device until the application creates a display window and
display viewport.

A display window defines what portion of the virtual display graphic object
is visible. By creating the display window, the program makes information
in the virtual display potentially visible to the user. Information in tl1~
display window is not actually visible until the display window is mapped
to a display viewport.

A display viewport is the user-controlled, physical region on a screen
created by VMS workstation software. The display viewport is the physical
representation of the display window mapped to it. It enables you to
view the graphic object inside the display window. Figure 2-1 illustrates
the relationships anlong the virtual display, display wi,ndow, and display
viewport.

You use physical device coordinates to map a display window to a display
viewport. Physical device coordinates are points on the display screen
used to locate the graphic object. Viewing transformation is the process
by which the system maps a graphic object from world coordinates of
the display window to device coordinates of the display viewport. The
graphics software automatically processes viewing transformations.

To pan and zoom the graphic object in the display viewpo11, you can
manipulate the world coordinates of the display window in relation to
the world coordinates of the virtual display.

Figure 2-1 Virtual Display, Display Window, and Display Viewport

Display Window

Virtual
Display

Display Viewport

--

Device
Coordinates

ZK·2090·84

2.2 Coordinate Systems

2-2

Think of the VMS workstation graphics environlnent as a two-dhnensional
plane. Within this environment, use the Cartesian coordinate system to
describe points. Cartesian coordinates take the form of x,y, where x is the
horizonal axis and y is the vertical axis. Use a coordinate pair to specify a

2.2.1

Display Management Concepts

point on this plane. Coordinate space is the area of this plane specified by
coordinate pairs.

The VMS workstation graphics software uses four Cartesian coordinate
systems: world, normalized, absolute, and viewport-relative device
coordinates.

Device-Independent Coordinate Systems

2.2.1.1

Device-independent coordinate systems mediate between the requirements
of the application program and graphics subsystem versus those of the
output device.

World Coordinates
An application program uses world coordinates to describe a virtual display
and to build a graphic object within it. Initially, the application program
creates a virtual display and specifies a convenient world coordinate systeln
to use when referring to the virtual display. Next, the program uses the
saIne coordinates to specify size and location of objects to be created
within the virtual display.

World coordinates are device-independent Cartesian coordinates specified
by the application program. They provide a means of locating points in a
virtual display. The range of world coordinate values is specified when the
virtual display is created. Thus, the virtual display can be created to any
proportions selected by the application program. World coordinate values
are given as floating-point nunlbers.

The world coordinate system can represent any unit of measure. When
application programs construct a graphic object, world coordinates enable
them to use convenient increments of measurement. If the progra!?
accesses information from a data base, it could specify meaningful world
coordinates for the data used. For instance, if an application draws a
chart that shows holiday season product sales, the application could use
convenient measurements that represent units sold in thousands versus
time in weeks. Or, if the application program draws a graphic object, it
could use measurements that make sense for the object. Logically, a virtual
display with a map of the United States might use world coordinates that
represent measurements in miles or kilometers. A floor plan of a house
might use world coordinates that represent feet and inches or meters and
centimeters.

Figure 2-2 shows a world coordinate system that describes a virtual display
in which an object has been constructed.

2-3

Display Management Concepts

Figure 2-2 World Coordinate System and Virtual Display

2-4

y

(-1.1) (2.1)

f-------- - - __ a •• - -- -- - -- --1
I
I
I
I
I
I

-1 I

I
I
I
I

Virtual I
DISPlay~

I
I
I
I
I
I
I
I

(0.0)

-1

(1.-1)

83EE

I
I
I
I
I
I
I 2

I
I
I
I
I

x

World
Coordinates

~------- ---------------~ (-1.-2)

2.2.1.2

-2 (2.-2)

ZK-4617-85

Normalized Coordinates
Normalized coordinates are device-independent coordinates defined by the
graphics software. They describe the virtual display in physical terms that
any output device can use. An output device cannot use the arbitrary world
coordinates that an application program uses to describe a virtual display.
Instead, each type of output device has its own device-specific coordinates
to locate and build the graphic object. Normalized coordinates provide a
means for the graphics software to normalize these different coordinate
systems so that a graphic object can be mapped from a virtual display to
any output device.

Application progranls do not directly manipulate normalized coordinates.
Rather, the graphics software internally uses normalized coordinates,
mapping them into device-specific display coordinates.

Normalized coordinates provide a way to delay the mapping of application
program world coordinates to device-specific coordinates until the actual
output device is established.

2.2.2

Display Management Concepts

Device-Dependent Coordinate Systems

2.2.2.1

Output devices use device-dependent coordinate systems to map graphic
objects on the display screen or to print objects on a printer. Device­
dependent coordinates are physical device coordinates that denote some
physical unit of measure such as pixels, centimeters, or inches. Such
physical device coordinates reflect device-dependent mapping and drawing
characteristics of the output device.

Absolute Device Coordinates
Absolute device coordinates are physical, device-dependent Cartesian
coordinates that specify a position on the VMS workstation display screen.
The position is specified in cent~meters relative to the lower-left corner of
the display screen. Typically, viewport placement, pointer position, and
tablet placement use absolute coordinates. Figure 2-3 illustrates viewport
placement on the V AXstation screen.

2-5

Display Management Concepts

2.2.2.2

2-6

Figure 2-3 Absolute Device Coordinates

~ - - ~ m

Lower-Left
Corner of Viewport

Origin of
Display Screen

Viewport-Relative Device Coordinates

ZK-5429-86

Many VMS workstation graphics software routines use a special type of
physical device coordinates called viewport-relative device coordinates,
which specify positions within a display viewport relativ~ to the lower-left
corner of the viewport. Viewport-relative device coordinates are always
positive and specified in pixel units. A pixel is the smallest unit displayed
on a screen. VMS workstation graphics software maps display windows to
the display screen.

Viewport-relative device coordinates are used to map graphic objects from
a display window to a display viewport on a physical display device.

Before you can display a graphic object in a display viewport on a screen,
you must transform the world coordinates of the object to the viewport­
relative device coordinates of the screen.

2.3

Display Management Concepts

Figure 2-4 shows an object in a display window being mapped to a display
viewport on a physical display device. In this figure, the world coordinates
of the display window undergo a viewing transformation to the physical
device coordinates of the display device.

Figure 2-4 Mapping a Display Window to a Display Viewport

Display
Window

Display rerminal

Display Viewport

~. ----r::::
I m I to

!.- --~----

World
Coordinates

Virtual Displays

Physical Device
Coordinates

(Pixels)

ZK-4624-85

A virtual display is a conceptual space an application program creates in
which to construct graphic objects. The application program writes all text
and graphics output to a virtual display.

A virtual display has no physical size (dimensions of length and width).
Therefore, objects constructed in a virtual display also have no actual
physical dimensions. You cannot measure a virtual display or the graphic
objects within it. Rather, a virtual display and the objects within it have
relative sizes and proportions. The aspect ratio of an object in a virtual
display is a comparison of the relative proportions of the object's vertical
and horizontal components. Use aspect ratio to refer to an object's relative
size in a virtual display.

To create a virtual display, an application program specifies a coordinate
range in the world coordinate system. The coordinate range establishes the
relative size, or aspect ratio, of the virtual display. Objects constructed in
the virtual display are specified in terms of world coordinates and have an
aspect ratio. Later, the aspect ratio affects how the virtual display and the
objects it contains map to the display winpow.

2-7

Display Management Concepts

Refer to Figure 2-2, which shows a graphic object in a virtual display. Both
the virtual display and the graphics object are specified in terms of world
coordinates.

2.4 Display Windows
A display window shows all or part of the contents of a virtual display.
Display windows are created by an application program to control how
much of a virtual display is potentially available to view. A display window
can be the size of an entire virtual display or just a small portion of it. One
or several windows in a virtual display can be active at the same titne.

An application uses world coordinates to specify the relative proportions
and location of a display window. Therefore, the amount of virtual display
encompassed by a display window is relative to the virtual display world
coordinates. When it specifies the proportions and location of the display
window, an application program determines what portion of the graphic ~
object within a virtual display is visible. ~

World coordinate boundaries of a display window define a clipping rectangle.
Any graphic object inside the clipping rectangle is potentially visible in the
display viewport. Objects outside the clipping rectangle are not visible and
are clipped fronl the window as illustrated in Figure 2-5.

Figure 2-5 Display Window in a Virtual Display

Virtual Display

I
I
I

-~--

World
Coordinates

ZK-4625-85

2.5 Display Viewports

2-8

A display viewport is the area of the display screen where a display
window is mapped. It can vary in size and shape and be anywhere on the
display screen.

Display Management Concepts

Based on available resources, you can have as many viewports as you want
on the screen at a time. Viewports occlude in areas where they overlap.
The last viewport created is on top and visible. However, you can modify
which viewport is on top at anyone time.

Normally, the graphics software automatically maps and scales the display
window to the display viewport on a one-to-one basis. That is, the
boundaries of the display viewport implicitly default to the same size
and shape as the display window. However, the application prograln can
explicitly set the display window (or display viewport) to a different size or
shape than that of the display viewport (or display window). The effects of
such manipulation are discussed in the following sections of this chapter.

Figure 2-6 illustrates the relationships among the virtual display, the
display window, and the display viewport. This figure shows how a
graphics object in a virtual display is clipped to the display window, scaled
and mapped into a display viewport, and displayed on a display device
such as a terminal screen.

Figure 2-6 Displaying a Graphic Object

Virtual Display

Uses
World

Coordinates

Uses
Physical Device

Coordinates

2.6 Display Window and Viewport Scaling

Display Termlna.

Display Viewport

ZK·461B·B5

You can manipulate the relative sizes of the display window and the
display viewport to magnify or reduce graphic objects. The following list
describes this manipulation.

Zooming

To zoom (magnify) the graphic object:

• Decrease display window size; do not alter viewport size

• Increase display viewport size; do not alter window size

2-9

2.6.1

Display Management Concepts

Reducing

To reduce the graphic object:

• Increase display window size; do not alter viewport size

• Decrease display viewport size; do not alter window size

Panning

To pan the graphic object, move the display window within the virtual
display; do not alter the display viewport.

Changing View Size

To change the area of the virtual display being viewed, without performing
scaling:

• To increase the virtual display area being viewed, expand both the
display window and the display viewport proportionately.

• To decrease the virtual display area being viewed, contract both the
display window and the display viewport proportionately.

Distortion of Graphic Objects

2-10

Factors that determine whether a graphic object is distorted when it is
mapped to the screen are: .

• Virtual display aspect ratio

• Display window

• Display viewport

Width to height, the display viewport can have any specified proportions
(within the limits of the display device). If the proportions of the display
viewport do not match the proportions of the display window, th~ graphic
object appears to be stretched or squeezed as the graphics software
attempts to fit the display window to the display viewport. (The exact j
effect depends on proportional differences between the viewport and ~
window.) .

Transformation affects different objects in different ways.

• Straight lines remain straight, but can differ in length and slope,
depending on window size and coordinate system.

• Curved lines can change shape, depending on the characteristics of the
graphic object and the mapping (transformation) froln display window
to viewport.

• Arcs change shape and size. For instance, an ellipse can change its
proportions.

• Graphics text (specifically character size and spacing) does not adjust
to fit the required number of characters into the display viewport.
The size and spacing of text characters is fixed and will not distort.
However, the starting text position might change, depending on the
transformation between window and viewport.

2.7 Display Lists

Display Management Concepts

You can correct distortion. The application program can create a display
viewport with proportions appropriate to a particular graphics window
in world coordinate space. Because the display window can have
any proportions in world coordinate space, you can create a properly­
proportioned display viewport for a window that is square, tall and narrow,
short and wide, or any other shape.

A display list is a device-independent encoding of the exact contents of a
virtual display. The graphics software maintains and uses display lists as
follows:

• Automatic management of panning, zooming, resizing, and duplicating
display windows

• Structuring virtual display objects

• Simultaneous viewing of objects in a virtual display within several
display viewports

• Storing and reexecuting VIS pictures

• Editing VIS pictures

~ 2.8 Generic Encoding and UIS Metafiles
Whenever a graphic object is drawn in the virtual display or an attribute is
modified, an encoded entry of the object or attribute modification is added
to the display list.

Because of these list entries, an application can extract output from a
virtual display, transfer it to an intelligent application, or store it in a
metafile, which is a generically encoded file or buffer, then later execute the
generically-encoded binary stream into a new virtual display.

Generic encoding is device-independent.

When VIS routines execute, a binary-encoded packet of values is
constructed and stored as display list entries. When the binary-encoded
packet is extracted from the display list, it becomes a generically-encoded
VIS metafile. Such metafiles can be reexecuted to invoke the appropriate
generic encoding routines. -

Figure 2-7 shows a display list extraction.

2-11

Display Management Concepts

2-12

Figure 2-7 Display List Extraction

UIS Routine Call

Binary Encoded Packet

Generic Encoding Primitive

ZK-5428-86

Many VIS routines have corresponding generic encoding primitives.
However, this does not ensure a one-to-one mapping between VIS routines
and generic encoding routines or between the UIS routine arguments and ~
generic encoding routine arguments.

3 Graphic Objects and Attributes

3.1 Overview

3.2 Summary

This chapter discusses the basic building blocks used to construct graphic
objects in a virtual display:

• Text and graphics routines

• Attributes and attribute modification routines

• Attribute blocks

• Segments

Text and graphics routines (sometimes called output routines) are the
fundamental building blocks an application program uses to create graphic
objects. These routines specify lines, circles, text, or other graphic objects.

Attributes are values that define various characteristics about the appearance
of a text or graphic object. Attributes define how displayed text objects or
graphic objects look.

An attribute block is a set of attributes. Every text and graphics routine used
by an application program must specify an attribute block. The attribute
block defines an object's attributes.

An application program uses attribute routines to specify or change
the current value of an attribute. The changed attribute value affects
subsequent text and graphics routines that use the attribute block. You
must use an attribute routine to specify which attribute block is affected.

Application programs can group associated attribute, graphics, and text
routines together into a segment. Segments give the program a convenient
way to view several attribute, graphics, and text routines as a single unit.

An application program uses application-specific data to associate graphics
and text routines or even entire segments. The application program can
store application-specific data in the generic encoding stream. In this way,
if a portion of a display screen is copied, stored, and later used (restored),
the program will be able to associate internal information with the graphic
object.

3-1

Graphic Objects and Attributes

3.3 Graphics and Text Routines

3.4 Attributes

Graphics and text routines map objects directly into the virtual display.
You can use these routines to create new objects or modify existing ones.
Application programs use graphics and text routines to draw lines, circles,
text, and other graphic objects. You can combine these routines to form a
desired graphic object.

Each graphics and text routine has two required arguments: one that
specifies the virtual display where you draw a graphic object and another
that specifies the attribute block to use when you draw the graphic object.

How a graphics or text routine draws a graphic object is strongly influenced
by the attributes associated with it.

Attributes define the appearance characteristics of graphic objects created
by graphics and text routines. Attributes influence the way a graphic object
appears on a display device. Attributes can determine color intensity,
style, mode, and width, to name a few.

When you specify attribute values, they remain the same until you explicitly
change them. For example, if the application program changes line width,
all lines are drawn to the new thickness until the program changes the line
width again.

Each type of graphic and text object has a set of unique attributes. For ~
example, attributes that affect graphics do not affect text, and vice versa.
Certain general attributes, however, affect all routines. For example,
the background has an attribute you can set to determine background
appearance. Think of the background as all parts of a display not covered
by an object created by a graphics or text routine.

Attributes fall into the following general categories:

• General attributes

• Text attributes

• Graphics attributes

• Window attributes

3.4.1 General Attributes

3-2

All types of graphics and text routines have general attributes, which
include:

• Writing color

• Background color

• Writing mode

Writing Color

This attribute assigns the writing color. It is used by all graphics and text
routines (such as lines, text, and so on). To express this attribute, specify
an index into a color map.

3.4.2 Text Attributes

Graphic Objects and Attributes

Background Color

This attribute assigns the background color. To express it, specify an index
into a color map.

Writing Mode

This attribute assigns the mode of writing text or graphics. In particular,
writing mode determines how a text or graphics routine will use the writing
and background colors to display a graphic object.

Font set

This attribute specifies the font set used to define text characters. Fonts
express the size and shape of the characters in physical dimensions. This
attribute uses display routines during text plotting to enable proper-size
text to display. You can choose from a variety of multinational character
set fonts and technical character set fonts.

Character spacing

This attribute defines character spacing for width and height of character
sizes. It is the additional unit of increment beyond the normal character
size for highly spaced characters. You specify this attribute as a floating­
point number. Multiply it by the normal character size to produce the
actual spacing distance. If you specify zeros, no additional spacing is
performed. If you use negative values, the spacing is reduced instead of
increased.

NOTE: In some cases, negative values for this attribute cause the characters to
overlap. .

Text Path

Text path is the direction of text drawing. The text path attribute consists
of two parts-the major path and the minor path. Major path refers to the
direction in which characters are drawn on a line. Minor path refers to the
direction used for beginning a new line of text. The following table lists
available major and minor paths.

• Left to right (default major text path)

• Right to left

• Bottom to top

• Top to bottom (default minor text path)

Text Slope

Text slope is the angle between the actual path of text drawing and the major
text path. The actual path of text drawing connects the baseline points of
each character cell.

Text Margins

This attribute specifies a starting margin and the x coordinate distance to
the ending margin.

3-3

3.4.3

Graphic Objects and Attributes

Text Formatting

This attribute and the text margins attribute position text as follows:

• Flush against either or both margins

• Centered

• No formatting at all

UIS supports four types of text formatting modes:

• Left justification

• Right justification

• Center justification

• Full justification

Character Rotation

Individual characters rotate counterclockwise from 0 to 360 degrees. The
angle of rotation is the angle between the baseline vector of the character
cell and the actual path of the text drawing.

Character Slant

This attribute specifies the angle between the up vector and baseline vector
of the character cell. You can express the character slant angle as a negative
or positive value. 4
Character Size

Character scaling allows you to increase the height and width of characters
in the virtual display.

Graphics Attributes

3-4

Graphics or line attributes affect graphic objects such as lines,polylines, ~
polygons, rectangles, arcs, and curves. These attritubes control filling of ~
objects and deternline line style and width.

Current Line Drawing Width

This attribute sets line width in terms of world or device coordinate units.
You specify line width as a floating-point number, either interpreted as
a world coordinate width or multiplied by the standard line width for a
device to produce the desired line width.

Line Style

This attribute, a bit vector that indicates the color of each pixel drawn, sets
the current line style of line routines. You can designate the color the same
as either the foreground or the background. You repeat bit vector as often
as necessary to draw all the pixels in the line.

3.4.4

3.5

3.5.1

Graphic Objects and Attributes

Fill Pattern

This attribute specifies the fill character to be used for filling closed figures
such as polygons, circles, and ellipses. Fill pattern is specified both as a
font file and as the index of a character in that font file. You use the pattern
defined by the character to fill the figure. Refer to Appendix D for further
information about fill patterns.

Arc Type

This attribute specifies how to close an open arc of a circle or ellipse. This
attribute can have the following values:

• Open-The arc is not closed off.

• Pie-Two radii are drawn from the endpoints of the arc to the
centerpoint (forming a pie shape).

• Chord-A line is drawn between the two endpoints of the arc,
connecting them.

Window Attribute

Attribute Blocks

Clipping Rectangle

The clipping rectangle is the visible area of a virtual display. Define the
clipping rectangle as the corners of a world coordinate rectangle to which
all drawing operations are clipped. Objects or parts of objects outside the
clipping rectangle are not visible.

An attribute block is a set of attribute values that describe the appearance
of any graphic object created by an application program. Each
attribute block contains attributes for graphics, text, and general display
characteristics.

You can address up to 256 different attribute blocks at a time. You address
them with numbers from 0 to 255. Application programs assign and use
attribute block numbers.

Attribute Block 0
Attribute block 0 is a special attribute block specified by the graphics
software. This attribute block contains a standard set of text and graphics
attributes. The application program cannot modify the attributes in this
block.

Attribute block 0 is read only. There is no convention on the naming
and usage of attribute blocks, with the exception of attribute block O. The
graphics software reserves it as a default attribute block.

Attribute block 0 provides default attribute values for an application
program to use. Also, you can use it as an attribute block template to
create alternate attribute blocks.

3-5

Graphic Objects and Attributes

3.6 Segments

3.7

3.8

A segment consists of an attribute block and graphics and text objects.
With a segment, an application program can use a special attribute
without knowing if particular attribute blocks are being used by other
parts of the program. Also, with a segment, an application program can
implement transformations either on a per-segment basis or on the entire
segment tree. Segments provide programming convenience and increased
modularity .

Nested Segments

You can nest a segments. Each nested segment uses the current set of
attribute blocks of higher level segments. This feature makes it easier to
create segments without having to redefine attribute blocks. However,
modifications of attribute blocks in a segment do not affect the attribute
blocks of higher-level segments.

Extracting and Re-executing Segments

An application program can take the contents of a file that contains a
display list of a virtual display and execute it into another virtual display as
a segment. The attributes of the original virtual display should not affect
the inserted virtual display segment.

Viewing Transformations
Viewing transformation is the mapping of the display window to the display 4
viewport. It can affect the appearance of a graphic object on a screen. The
shape of the display window and display viewport affect the appearance of
displayed text and graphic objects.

Two-Dimensional Geometric Transformations

3-6

Geometric transformations can alter the appearance of graphic objects
through scaling, translation, and rotation. These methods all involve
manipulation of the object's angular orientation or shape in the virtual
display.

Scaling

Scaling is proportional expansion or reduction of graphic objects on the
screen. For example,. if the display window and display viewport shapes
are disproportional, the graphics software must squeeze or stretch the
window to fit the viewport. Distortion of the graphics window causes
distortion of the graphic objects in that window. Different graphic objects
are affected in different ways. Chapter 2 provides further information
about the distortion of graphic objects.

Graphic Objects and Attributes

Translation

Points that define the position of graphic object in a coordinate system are
translated when the object coordinates are changed but the following occur:

• The object does not change its angular relationship with other objects.

• The object does not change its implied angular relationship with the
coordinate system.

For example, translation occurs when two lines move in the coordinate
system but remain parallel.

Rotation

A graphic object rotates when it turns on a pivotal point or axis. The object
can rotate with respect to some point on its surface, or it can revolve around
some external point. To give the appearance of rotation on the display
screen, you must first translate the axis of the object to the origin or center
of the coordinate system.

3-7

~ 4

4.1

Color Concepts

Overview
Depending on your VAXstation, you can display graphic objects in black
and white (bitonal), grey scale, or color. The VAXstation offers a number of
color options. This chapter discusses color concepts and color subsystem
features in the following topics:

• Color hardware systems

• UIS virtual color maps

• Miscellaneous color concepts

See Chapter 16 for more information about programming in color.

4.2 Color Hardware Systems
UIS supports three types of VAXstation hardware systems:

• Monochrome or bitonal-Displays black and white only

• Intensity-Displays shades of grey or achromatic color

• Color-Displays shades, tints, hues, or chromatic colors

4.3 Raster Graphics Concepts

4.3.1

The V AXstation display screen consists of a set of picture elements called
pixels. Pixels are the smallest displayable unit of a graphic object. The
rectangular set of pixels on the VAXstation screen is a raster. To write
graphic objects, you illuminate the necessary pixels along the path of
points that geometrically describe the object. Each pixel has an address
and a binary value associated with it. Pixel values determine graphic object
color.

Hardware Interpretation of Pixel Values
The number of possible pixel values depends on the number of bit planes
or planes of memory that the system hardware supports. A plane is an
allocation of memory in which each bit maps to a pixel on the display
screen. Conversely, each pixel has an address in memory. The following
table shows the relationship between the number of hardware-supported
planes and the number of possible pixel values.

4-1

Color Concepts

Workstation

Monochrome

Intensity or color

Number of
Planes

4 or 8

Number of
Possible Values

2

16 or 256

Figure 4-1 shows how pixel values are represented in single and multi plane
systems.

Figure 4-1 Bitplane Configuration in Single and Multiplane Systems

4-2

Low
Order
Plane

Parallel Bit Planes

One Plane

High-Order Plane

Four Planes Eight Planes

l< 524286

In Figure 4-1, a pixel on the VAXstation screen correlates to four ~
corresponding bits in memory on each bit plane of a four-plane system. If ~
the bit settings are arranged as a binary value corresponding to the high-
and low-order planes, they appear in the following order: 10112,

Therefore, the pixel value is 1110, A pixel in a four-plane system can have
a maximum of 16 values. You can use the pixel value in two different ways,
as a direct color value or as a mapped color value.

Direct Color Value

If the pixel value is used as a direct color value, each possible pixel value
directly specifies a color. In other words, the pixel value goes directly to
system hardware (for example, a digital-to-analog converter), where it is
used as the actual color value of the graphic object. For instance, the one­
plane, V AXstation monochrome system interprets pixel values as direct
color values where 0 is black and 1 is white.

Figure 4-2 shows direct color values.

Figure 4-2 Direct Color Values

Bit Setting

\
1

One Plane

Each bit maps to a
specific pixel on the

display screen.

--

Mapped Color Value

Digital-to-Analog -Converter -

Color Concepts

II
!1

:1 Display i

\\
! i

I I ;
J =

Corresponding pixel is
illuminated using the

actual bit setting.

ZK·5240·86

When pixel values are interpreted as mapped color values, they indirectly
specify an actual color value located in a hardware color look-up table or
hardware color map. Figure 4-3 shows a hardware color map.

The pixel value is an index to an entry in the color map.

4-3

Color Concepts

4-4

Figure 4-3 Hardware Color Map

jf'---- Color Map Entry

Color Value 0 Color Map Index

Color Value

Color Value 2

Color Value 3

Color Value 4

•
•
•

Color Value

Color Value

ZK-S241-86

The hardware color map is the same size as the number of possible
pixel values; it has the maximum number of colors that can be displayed
simultaneously. Table 4-1 lists the size of the hardware color map in
intensity and color systems.

Table 4-1 Hardware Color Map Characteristics

System

Intensity

Color

Number of
Planes

Four
Eight

Four
Eight

Number of
Entries

16
256

16
256

For example, an eight-plane VAX station intensity (color) system has a
hardware color map with 256 entries. Each color map entry contains color
values that are RGB color components and that define the desired color.
Each hardware color map entry contains a color value for each pixel.
Conversely, the value of each pixel is the hardware color map index of
a color map entry with the actual color value. Use this color value to
illuminate the pixel on the V AXstation screen. Figure 4-4 shows mapped
color values in a four-plane system.

4.3.2

Figure 4-4 Mapped Color Values in Four-Plane System

Each bit maps 111:"'"""---"'1
to the same
pixel on the

display screen.

Four Planes

Hardware Color Map

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Pixel
Value

----~ 1011 2 11 10

Digital-to-Analog
Converter

Color Representation Models

Color Concepts

~ .. -~ .. -. --~~--··ll '; ,--- -===:: ,

ii '. Display i if

;~.--.-.-~ ;1

= .0-= .•... =".-=:/

Corresponding pixel
on the display screen

is illuminated using the
color value located in

the eleventh hardware color map entry.

ZK·5244·86

You express color values according to the requirements of the particular
color representation model used. Three well-known color representation
models are:

• Hue lightness saturation (HLS)

• Hue saturation value (HSV)

4-5

4.3.3

Color Concepts

• Red green blue (RGB)

The UIS base color model is the RGB model. RGB c.olor values range from
0.0 to 1.0. Red, green, and blue color cOlnponent values compose a single
color value on a V AXstation color system.

Specify intensity values (the color values associated with shades of grey), as
a single value in the range 0.0 to 1.0. Figure 4-5 shows RGB and intensity
color values as hardware color map entries.

Figure 4-5 RGB and Intensity Color Values as Hardware Color Map Entries

Blue ,

Color Palette

4-6

Green Red O-+- Color Map Index

~ ~ Color Component
Values

Intensity 0

\ Intensity Value

ZK·5239·86

The color palette is the number of possible colors you can specify. Table 4-2
shows the color palette available on each color system.

Table 4-2 Color Palette

System

Monochrome

Intensity

Color

Possible
Colors

black and white

up to 224 shades of gray

up to 224 chromatic colors

Color Palette Size and Direct Color Systems

On direct color systems, palette size is identical to the nunlber of
simultaneously displayable colors. For example, the size of the color
palette of a V AXstation monochrome system is tWo. You can display only
two possible colors, black and white, simultaneously on the screen.

Color Concepts

Color Palette Size and Mapped Color Systems

On mapped color systems, the palette size is typically much greater
than the number of simultaneously displayable colors. The palette size
is determined by the precision of color component specification. For
example, on a V AXstation color system, you can specify each color
component with eight binary bits of precision for each red, green, and
blue color component or 224 (16,777,216) possible colors.

4.4 UIS Virtual Color Maps
When an application uses hardware color resources, the hardware
color map must be aware of hardware system limitations and color
characteristics. It must know the answers to the following questions:

• Is the system direct color or mapped color?

• What is the precision of the color representation values for each RGB
color component?

• What is the range of possible pixel values?

The hardware color map contains a finite number of entries (for example,
16 entries in a four-plane system). Concurrent processes executing in the
same display space must somehow share system color resources.

Purpose of Virtual Color Maps

The virtualizatiol1 of the hardware color map solves problems that
occur when individual applications require abundant system re'sources.
Virtualization also solves the problem that occurs when many processes
compete for finite color resources. The use of virtual color maps
is analogous to the use of virtual memory in a multiprogramming
environment where Inany processes must access physical Inenlory.

When concurrent processes collectively require more color map entries
than exist in the hardware color map, the color values associated with
each competing process are swapped in and out of the hardware color
map as virtual color maps. Swapping virtual color maps in and out of the
hardware color map is a means of arbitrating hardware color map use
across applications.

The process of loading or writing values of the virtual color map into the
hardware lookup table is transparent to the user. Applications see only
a virtual color map, not the underlying hardware resources. Each virtual
display has a virtual color nlap associated with it.

Figure 4-6 illustrates the swapping of two 16-entry virtual color Inaps into a
16-entry hardware color map.

V4.1-June 1989 4-7

Color Concepts

4-8

Figure 4-6 Swapping Virtual Color Maps

Virtual Color Map'

o ,
2
3
4
5
6
7
8
9 ____ '0
'1 ----..... ____ 12
13 ----..... t--____ 14
'5 _--_-.1

Virtual Color Map 2

o ,
2
3
4
5
6
7

8
9

10 , ,
12
13
14

15

Characteristics of Virtual Color Maps

Hardware Color Map

o
1
2
3
4
5

6
7
8

9
10

" 12

13
14
15

A virtual color map is flexible enough to serve a wide range of applications.
Virtual color map size can range from two to 32,768 entries. If you do

V4.1-June 1989

4.4.1

Color Concepts

not specify a virhlfll coJor map, a two-entry virhmJ color map is created
by default. The virtual color map size does not have to match that of the
hardware color map.

NOTE: When you specify virtual color map size, be aware that UIS rounds up the
size to the next power of two. For example, when you declare a virtual
color map size of 17, UIS needs five bits to represent this in binary form;
thus, it rounds the size up to 32, or 25•

Although virtual color maps are potentially shareable among applications,
they are private by default. Virtual color maps are resident; that is, you
cannot swap them in the hardware color map. The following table shows
how virtual color map entries are initialized.

Virtual Color
Map Entry Color Value

o Default window background color

Default window foreground color

All other entries are undefined.

UIS reconciles differences transparently between the virtual color map
model and the hardware color resources. UIS manages the concurrent use
of these resources across applications.

For information about creating and using virtual color maps, see
Chapter 16.

Reserved Hardware Color Map Entries
Because of hardware limitations on mapped color systems, the hardware
color system or the UIS window management software preallocates some
of the hardware color nlap entries for special purposes. For example,
pointer colors, window background and foreground colors, and display
screen color are allocated reserved entries in the hardware color map.

Whenever a virtual color map exceeds the size of the hardware color
map less the reserved entries, the results are unpredictable. For more
information about how to use the programming interface to obtain the
hardware color map characteristics, see Chapter 16.

Figure 4-7 describes reserved entries in a hardware color map in a four­
plane system.

V4.1-June 1989 4-9

Color Concepts

Figure 4-7 Reserved Hardware Color Map Entries in a Four-Plane
Color System

-

reserved
reserved
reservea

reserved

o
1

2
3
4
5
6
7

8
9

10
11

12
13
14

15

4.5 UIS Color Map Segments
The use of color map segments represents a device-specific binding of a
virtual color map to the underlying hardware color resources, that is, the
hardware color map. In a color-mapped c()lor system, color map segments
are bound to specific hardware color map entries and swapped in and
out of the hardware color map based on system and user events. Usually,
applications need not worry about color map segments. UIS handles the
device-specific binding automatically. Applications might use color map
segments for the following reasons:

• Applications can explicitly control the binding of the virtual color map
and the hardware color map.

• Applications are not transported to different hardware configurations,
for example, four-plane to eight-plane systems or VAXstation color and
intensity systems to VAXstation monochrome systems.

4-10 V4.1-June 1989

4.6

Color Concepts

Shareable Virtual Color Maps
By default, virtual color maps are private. Yet, they can be shared among
cooperating application programs to define a uniform color reginle and
to conserve hardware color map entries. Shared virtual cqlor maps have
names, an ASCII string from. 1 to 15 characters, and a name space (UIC
group or system). For example, UIS uses a system-wide, shared color map
to display terminal emulator windows and window and screen menus.

4.7 Miscellaneous UIS Color Concepts

~ 4.7.1

4.7.2

The following sections contain additional information abollt the UIS color
subsystem.

Standard and Preferred Colors
V AXstation color and intensity systems support two sets of symbolically
defined colors. Workstation standard colors and intensity values are a set
of colors used for specific purposes within the workstation environment.
For example, the default window background and foreground, cursor
background and foreground colors, and the display screen color are the
workstation standard colors.

Workstation preferred colors are a set of colors that represent user
preference for the eight combinations of the RGB primary colors. For
example, workstation preferred colors can define a particular shade of red
rather than a full intensity red. In an intensity system,. preferred colors can
define a base white level from which preferred shades of grey are derived.
Preferred values are simply a mechanism to conveniently maintain and
communicate color preferences to an application.

Use the workstation setup mechanism to set values for standard and
preferred colors. Use UIS$GET_WS_COLOR and UIS$GET_WS_
INTENSITY to return standard and preferred color and intensity values.

Monochrome (Bitonal), Intensity, and Color Compatibility Features
Use UIS$SET_COLOR or UIS$SET_INTENSITY to change or retrieve color
map entries. Both load a single color value in a color map entry and can
be used in any of the three hardware color environments-monochrome
(bitonal), intensity, or color.

4-11

4.7.3

4.7.4

Color Concepts

Color
System

Monochrome
(bitonal)

Intensity1

Color2

Compatibility
Feature

UIS chooses the color (black or white) closest to the color
specified by the application.

UIS$SET_COLOR converts the specified RGB values to an
equivalent gray level using an equation.
UIS$SET _INTENSITY sets the requested gray level directly.

UIS$SET _COLOR sets the requested RGB color values
directly.
UIS$SET JNTENSITY converts the specified intensity value
to an equivalent RGB value using an equation.

1The color-to-intensity equation is I = 0.30R + 0.59G + 0.11B. Color television
broadcasts transmitted for reception by noncolor television sets are processed in
this manner.

2The intensity-to-color equation is R = I, G = I, B = I. 4

Color Value Conversion
UIS provides routines to convert color values in applications that use other
color representation models.

• Hue lightness saturation (HLS)

• Hue saturation value (HSV)

Hue values range from 0.0 to 360.0, where red = 0.0. Values for lightness
and saturation range from 0.0 to 1.0.

Set Colors and Realized Colors

4-12

UIS routines that set (load) color map entries in the virtual color map accept
F _floating point values between 0.0 and 1.0. The precision of the F _floating
point data type is approximately seven decimal places.

The precision for the color representation for a particular device might not
be accurate enough to represent the requested F _floating point value. In
this case, the set color value (F _floating) differs from the realized color value
(device precision). An application can determine realized color values
using UIS$GET _ COLOR(S) and including the optional parameter. See
Chapter 16 for details.

4.7.5

Color Concepts

Color Regeneration Characteristics
The color regeneration hardware characteristic specifies whether changing
a color map entry affects the color of existing graphic objects (retroactive
regeneration) or only graphic objects drawn after the color map is changed
(sequential regeneration).

The following table summarizes regeneration characteristics of direct and
mapped color systems.

System

Direct color

Mapped color

Regeneration Characteristics

Usually sequential

Usually retroactive

An application can determine the hardware color regeneration
characteristics by calling UIS$GET _HW _INFO.

4-13

5 Input Devices

5.1 Overview
This chapter discusses the devices that enable user and application
program interaction. Some of the topics covered in this chapter are:

• Pointing devices

• Virtual keyboards

• Physical keyboards

5.1.1 VAXstation Input Devices

5.2 Pointers

Application programs and users interact through input devices. Typical
V AXstation input devices are:

• Keyboard

• Mouse

• Tablet

With the keyboard, you can initiate program interaction and respond to
application program prompts by pressing a key or entering data. With the
mouse and tablet, you can communicate with an application program by
pointing to objects or items with a pointer and by making selections with
buttons.

You can use two types of pointing devices with the workstation, a mouse
and a tablet. You can use only one type of pointing device at a time.

Application programs receive input from a pointing device by polling or
soliciting interrupts from pointer input routines. Because only one pointer
input device can be used at a time, applications use the same set of pointer
input routines to receive input from either the mouse or the tablet. The
actual pointer input device used is transparent to an application.

The programming interface lets you set the pattern or the position of the
cursor that is synchronized with the pointing device.

5-1

Input Devices

5.2.1 Mouse

5.2.2 Tablet

5-2

The mouse is a small, hand-held device with three buttons on the top and
a roller-ball on the bottom. Associated with the mouse, on the display
screen, is an arrow-shaped cursor (or pointer).

You manipulate items on the display screen by using the pointer and
buttons. When you move the mouse in any direction on a flat surface,
the ball on the bottom turns and the pointer on the screen moves in
any direction you choose. You can position the pointer anywhere on the
display screen. When you press the buttons on the mouse, you can select
items in a menu and perform a variety of other functions.

The mouse is a relative pointing device. The mouse reports only its relative
movement to the workstation. You can pick up the mouse and place it
in a different position without changing the position of the pointer on the
screen. Consequently, the workstation keeps track of the current mouse ~
position only when the mouse is moved on a surface. ~

Application programs can use the mouse pointer in the following ways:

• To create menus from which the user selects items

• To read the position of the pointer and the state of the mouse buttons

The workstation human interface implements menus that allow you to
create, select, move, and delete objects on the display screen. Application
programs can create menus that do the same things. To select a menu
item, move the pointer to the region of the desired item and press one ~
of the mouse buttons. The application program predefines items and ~
specifies the action to be taken when you select an item.

Application programs can detect when the pointer is moved across the
boundary of a window or a mouse button is pressed within a window.
Programs can also read the current pointer location and current button
state. When you move the pointer to the border, or outside, of a screen
viewport, the human interface detects interrupts from the mouse. 1£ you
position the pointer inside a viewport that is mapped to an application­
created window, the application program can receive these interrupts.

The tablet is an optional input device that can be used with the workstation.
A tablet operates in much the same way as a mouse. An application
program uses the same routines to receive information from a tablet as
it does for the mouse. This is possible because the actual physical input
device being used is transparent to an application program.

The tablet is an absolute pointing device. That is, it reports all movement to
the workstation. For example, if the pen or stylus is picked up and moved
to another position on the tablet, the pointer changes its position on the
screen to match the movement.

A tablet is composed of the following parts:

• Tablet

• Puck

~ 5.3

5.3.1

Keyboards

• Stylus

Tablet

Input Devices

The tablet is a flat square device with a surface similar to a table top. It
is used in conjunction with a puck and/or stylus to locate points on the
display screen. When the puck and/or stylus are moved on the surface of
the tablet, the pointer on the display screen moves in an identical fashion.
If you pick up the puck and place it in different region of the tablet, the
pointer on the display screen reflects this change. The tablet has a grid that
senses a change in the position of the pen or stylus.

Puck

The puck is a hand-held device that you move on the tablet to locate points
on the display screen. The puck has cross-hair markings used for precision
in positioning it on the tablet. It also has four buttons that you can use for
various purposes, depending upon the application.

Stylus

The stylus is a hand-held device that resembles a pen. You move it on
the tablet to locate points on the display screen. The stylus has greater
precision than the puck in locating positions. The stylus can also have
buttons: usually one is located on the outside of the barrel and one on the
tip. The functions of these buttons are application-specific.

You should be able to distinguish between a physical keyboard (the
workstation keyboard) and a virtual keyboard (a simulated keyboard).

The physical keyboard is the workstation keyboard. You can press its keys
to respond to prompts from the application program, or you can type and
enter data into the currently active display window. A workstation can have
only one physical keyboard attached to it at anyone time.

A virtual keyboard is a conceptual keyboard that does not have an actual
physical existence. Rather, a virtual keyboard is a simulated keyboard
that exists in software and is associated with a display window. Each
application can have one or more virtual keyboards attached to it. Virtual
keyboards provide the means for applications to share the single physical
keyboard.

Virtual Keyboards
A virtual keyboard is a simulated rather than an actual physical keyboard.
Virtual keyboards are conceptual in nature and exist only in software. A
virtual keyboard has the same relationship to the physical keyboard as a
virtual display has to the physical display screen.

By using routines that establish one or more virtual keyboards, application
programs can read from the physical (workstation) keyboard, assign the
physical keyboard to a display window, and lnodify the characteristics
of a physical keyboard associated with a window. To manipulate
the workstation keyboard, applications refer to the established virtual
keyboards.

5-3

Input Devices

5-4

The V AXstation supports multiple windows with multiple processes
running simultaneously. At various times, these windows and processes
require keyboard input. Consequently, each window needs a keyboard.
Because there is only one physical keyboard, applications use virtual
keyboard routines to share the physical keyboard among several windows.

With virtual keyboards, each window can have its own keyboard. One or
more display windows and virtual keyboards can be active on the display
screen at a time. However, the physical keyboard can be connected to only
one virtual keyboard at a time. A virtual keyboard can be attached to more
than one display window at a time. However, each display window can
have only one virtual keyboard attached to it.

You control the association between the physical keyboard and the various
virtual keyboards that exist at any point in time. To connect the workstation
keyboard to different windows, manipulate the display viewports to which
the virtual keyboards are connected. When you determine which window
the workstation keyboard is attached to, you know which process is •
receiving keyboard input and thus, which window on the screen is currently ~
active.

The workstation places a small KB icon in the upper right corner of all
windows that use the keyboard. This icon is highlighted in the currently
active window. An application can restrict windows from receiving
keyboard input. Display windows that do not interact with the keyboard do
not have the KB icon.

Part II How to Program with VMS Workstation
Software Graphics

6 Programming Considerations

6.1 Overview
The User Interface Services (UIS) graphics software package allows you
to create application programs that call system routines. With UIS system
routines, you can create virtual displays, display windows, viewports,
graphic images, and text. You can access these callable routines through
high-level programming languages, VAX MACRO, and VAX BLISS.
Note that the programming examples included in succeeding chapters
to illustrate the capabilities of the UIS graphics software are written in VAX
FORTRAN.

This chapter discusses the following topics:

• UIS routine calls

• Argument characteristics

• Constants

• Condition values

• Additional program components

• Program execution

Refer to the VMS Programming Support Manual for additional information
about other callable routines.

6.2 Calling UIS Routines

6.2.1

To draw and manipulate graphic images and text, application programs
must contain references or calls to specific UIS system routines. Call
statements and language-specific function declarations invoke the UIS
system routines using the VAX Procedure Calling Standard.

Calling Sequences
The format of a call to UIS, or the calling sequence, consists of:

• The elements that make up the statement

• Their positional order

Tables A-1 and B-1 summarize UIS and UISDC calling sequences.

6-1

6..2.2

Programming Considerations

6.2.1.1

6.2.1.2

6.2.1.3

VMS Usage

6-2

Call Type
Typically, application program calls to VIS system routines specify the
function name and an argument list as follows:

vd_id=UIS$CREATE_DISPLAY(-l.O,-l.O,+l.O,+l.O,width,height)

However, some VIS routines are functions and return values to the calling
program. The preceding example shows such a call from a V AX FORTRAN
program. It also returns a value, the virtual display identifier, to the vd_
id argument. Such return values are stored in variables that are often
arguments (where applicable) in subsequent routine calls.

VIS routines that are not functions must be called using an explicit V AX
FORTRAN CALL statement.

CALL UIS$PLOT(vd_id,l,-l.O,-l.O)

Programming languages have no standard call type to invoke VIS system
routines. This manual does not describe the syntax of each high-level ~
programming language call. It uses examples of VAX FORTRAN to
describe representative call syntax. For information about other language
call syntax, refer to the specific language user's guide.

Routine Name
When you call a system routine, you must identify it by specifying its
routine (or entry point) name, for example, VIS$MOVE_AREA. The routine
name consists of a symbol prefix that identifies the system facility (UIS$)
and a symbol name that indicates what operation it performs (MOVE_
AREA).

Argument List and Argument Characteristics
The argument list contains parameters to be passed to the VIS routine.
This list follows the routine name as a parenthetical expression containing
arguments separated by commas. You can substitute your own argument
names in place of the formal parameter names. However, whenever
you invoke a UIS routine, you must maintain the positional order of the
parameters in the argument list, as follows:

You pass data to the called routine via the routine arguments. Keep
in nlind the characteristics of argulnents-VMS Vsage, type, access,
mechanism.

The VMS Usage entry contains the name of a VMS data type that has special
meaning in the VMS operating system environment.

The VMS Vsage entry is not a traditional data type such as the V AX
standard data types byte, word, longword, and so on. It is significant
only within the context of the VMS operating system environlnent and is
intended solely to expedite data declarations within application programs.

Appendix F contains a complete listing of VMS usage entries and
implementation charts for each VIS-supported VAX language. The
implementation charts describe how to code the VMS usage entry for
each programming language.

6.2.3 Type

6.2.3.1

Programming Considerations

The type characteristic refers to the standard argument data type, that is,
whether the argument is a word, longword, floating point number, and so
forth. Depending on the programming language, you might have to declare
certain data types locally within your program. These structures provide
data type definitions for the arguments in subsequent calls to UIS routines.

VAX Standard Data Types
When a calling program passes an argument to a system routine, the
routine expects the argument to be a particular data type. The routine
descriptions in Part III of this manual indicate the expected data types for
each argument.

Properly speaking, an argument does not have a data type; rather, the data
specified by an argument has a data type. The argument is merely the
vehicle to pass data to the called routine.

Nevertheless, the term "argument data type" is frequently used to describe
the type of data specified by the argument. This terminology is simpler
and more straightforward than the strictly accurate phrase II data type of the
data specified by the argument."

Table 6-1 lists data types allowed by the VAX Procedure Calling Standard.

Table 6-1 VAX Standard Data Types

Data Type

Absolute date and time

Byte integer (signed)

Bound label value

Bound procedure value

Byte (unsigned)

COBOL intermediate temporary

D_floating

D _floating complex

Descriptor

F _floating

F _floating complex

G_floating

G_floating complex

H_floating

H_floating complex

Longword integer (Signed)

Longword (unsigned)

Numeric string, left separate sign

Numeric string, left overpunched sign

Numeric string, right separate sign

Symbolic Code

DSC$K_DTYPE_ADT
DSC$K_DTYPE_B
DSC$K_DTYPE_BLV
DSC$K_DTYPE_BPV
DSC$K_DTYPE_BU
DSC$K_DTYPE_ CIT
DSC$K_DTYPE_D
DSC$K_DTYPE_DC
DSC$K_DTYPE_DSC
DSC$K_DTYPE_F
DSC$K_DTYPE_FC
DSC$K_DTYPE_G
DSC$K_DTYPE_GC
DSC$K_DTYPE_H
DSC$K_DTYPE_HC
DSC$K_DTYPE_L
DSC$K_DTYPE_LU
DSC$K_DTYPE_Nl
DSC$K_DTYPE_NlO
DSC$K_DTYPE_NR

6-3

6.2.4

Programming Considerations

Access

6-4

Table 6-1 (Cont.) VAX Standard Data Types

Data Type

Numeric string, right overpunched sign

Numeric string, unsigned

Numeric string, zoned sign

Octaword integer (signed)

Octaword (unsigned)

Packed decimal string

Quadword integer (signed)

Quadword (unsigned)

Character string

Aligned bit string

Varying character string

Unaligned bit string

Word integer (signed)

Word (unsigned)

Unspecified

Procedure entry mask

Sequence of instruction

Symbolic Code

DSC$K_DTYPE_NRO

DSC$K_DTYPE_NU

DSC$K_DTYPE_NZ

DSC$K_DTYPE_O

DSC$K_DTYPE_OU

DSC$K_DTYPE_P

DSC$K_DTYPE_Q

DSC$K_DTYPE_ au
DSC$K_DTYPE_T

DSC$K_DTYPE_V

DSC$K_DTYPE_ VT

DSC$K_DTYPE_ VU

DSC$K_DTYPE_W

DSC$K_DTYPE_WU

DSC$K_DTYPE_Z

DSC$K_DTYPE_ZEM

DSC$K_DTYPE_ZI

Refer to the VMS Programming Support Manual for more information about
VAX standard data types.

The access characteristic describes how a calling routine uses argument­
specified data. A list of the most common types of argument access
follows.

• Read only access-The UIS routine uses the data specified by the ~
argument as input only.

• Write only access-The UIS routine uses the argument as a location to
return data only.

• Modify access-The UIS routine uses the data specified by the
argument as input for its operation and then writes data to that
argument. .

6.2.5 Mechanism

Programming Considerations

VAX language extensions provide the means to reconcile the various
argument-passing mechanisms within a programming language. The VAX
Procedure Calling Standard provides three ways for application programs
to pass arguments to a system routine.

• By value-The argument contains the actual data to be used by the
routine; the actual data is said to be passed to the routine by value.

• By reference-The argument contains the address of the location in
memory of the actual data to be used by the routine; the actual data is
said to be passed to the routine by reference.

• By descriptor-The argument contains the address of a descriptor; the
actual data is said to be passed by descriptor.

Depending on its type, a descriptor consists of two or more longwords
that describe the location, length, and data type of the data to be used
by the called routine.

All language processors (except VAX MACRO and VAX BLISS) pass
arguments by default by reference or by descriptor. Some high-level
languages, including VAX FORTRAN, set up the descriptors and arrays
individually.

The following table lists VAX Procedure Calling Standard passing
mechanisms.

Passing Mechanism

By value

By reference

By reference, array reference

By descriptor

By descriptor, fixed-length

By descriptor, dynamic string

By descriptor, array

By descriptor, procedure

By descriptor, decimal string

By descriptor, noncontiguous array

By descriptor, varying string

By descriptor, varying string array

By descriptor, unaligned bit string

By descriptor, unaligned bit array

By descriptor, string with bounds

By descriptor, unaligned bit string
with bounds

Descriptor Code

DSC$K_ClASS_S

DSC$K_ CLASS_D

DSC$K_ClASS_A

DSC$K_CLASS_P

DSC$K_CLASS_SD

DSC$K_CLASS_NCA

DSC$K_CLASS_ VS

DSC$K_CLASS_ VSA

DSC$K_ClASS_UBS

DSC$K_ClASS_UBA

DSC$K_CLASS_SB

DSC$K_ClASS_UBSB

Refer to the VMS Programming Support Manual for more information about
passing mechanisms.

6-5

Programming Considerations

6.2.5.1 VAX FORTRAN Built-In Functions
VAX FORTRAN also supports explicit argument-passing mechanisms, or
built-in functions, that do not require formal data declarations. Specify
built-in functions only in the argument list of the call (with one exception)1
and use them to pass data to subroutines written languages other than VAX
FORTRAN. The VAX FORTRAN built-in functions are:

• %VAL-Specifies that the argument must be passed as a value.

• %REF-Specifies that the argument must be passed as the address of
the actual data.

• %DESCR-Specifies that the argument must be passed as the address
of a descriptor that points to the actual data.

• %LOC-Returns the virtual address of the actual data.

By default, VAX FORTRAN passes numeric data by reference and character
string data by descriptor. The built-in functions override default argument­
passing mechanisms. You might occasionally encounter an external
procedure that passes data differently from the VAX FORTRAN default. In
that case, use the built-in functions in VAX FORTRAN code.

For specific information about similar procedure argument-passing
mechanisms for other high-level programming languages, refer to the
specific language user's guide.

Figure 6-1 illustrates how arguments are placed on the stack and shows
how arguments are passed to the called routine.

1 You can use the built-in function %LOC outside an argument list to obtain the address of a variable. For example, 4
use %LOC in an assignment statement where a longword in a character string descriptor is assigned the address of the
actual character string

6-6

6.3 UIS Constants

Programming Considerations

Figure 6-1 Passing Arguments

Procedure Argument Palling Mechanisms

ARGUMENT LIST PROCeDURE ARGUMENT
PASSING MECHANISMS

(AP) I N
(e) ARGUMENT PASSED BY VALUE

ARG 1

ARG 2

ACTUAL VALUE

ARG N

I N (AP)

(b) ARGUMENT PASSE D BY REFERENCE

ARG 1

ARG 2

POINTER TO
ACTUAL VALUE DATA

I ACTUAL VALUE

ARG N

N (AP)

(c) ARGUMENT PASSED BY DESCRIPTOR

ARG 1

ARG 2

POINTER TO
DESCRIPTOR

ARG N

Note: ARG 1. ARG 2. ARG N
can be Passed by value. by
reference. or by descrip!or
In any of the above examples.

:(AP) " argument pOinter

N ~ number of arguments

POINTER

DATA

T
LENGTH

H 1

UIS constants are symbolic names for values that can be passed to, or
returned from, UIS routines. UIS constants are syntactically equivalent to
literal integer constants. Use them as follows:

• As arguments to UIS functions

6-7

Programming Considerations

• As indices into array arguments passed to, or received fronl, the UIS
subsystem

• As literals to compare to a returned value from an inquiry routine

Refer to Section 6.5 for information about UIS symbol definition files.

6.4 Condition Values Signaled
Occasionally hardware- or software-related events occur, causing errors
that could jeopardize successful program execution. Instead of returning
condition values to RO (as in VAX MACRO) or to a status variable (as in
high-level languages), the UIS routines signal a condition. In such cases,
unless you explicitly arrange to handle the signaled condition, program
execution halts by setting up condition handlers.

6.5 Additional Program Components

6-8

In addition to the usual program entities, some UIS-specific and language­
specific program components affect program execution.

Subroutines and Functions

If it uses a subroutine name as an argument to other subprograms, a VAX
FORTRAN application program must use the EXTERNAL statement to
declare the subroutine an external procedure. The subprogram can then ~
use the corresponding dummy argument in a function reference or a CALL ~
statement.

Entry Point and Symbol Definition Files

All UIS and UISDC routines are declared in an entry point file supplied
with the graphics software. In addition, depending on the programming
language, you might have to include a data description file of UIS symbol
definitions. See the specific language user manual to determine whether
you must include data description files in your program data declarations.

Table 6-2 contains a list of entry point files and symbol definition files for
each VAX programming language. All files are in SYS$LIBRARY.

Table 6-2 Entry Point and Symbol Definition Files

VAX Language Entry Point File Symbol Definition File

BLISS UISENTRY.R32 UISUSRDEF .R32

C UISENTRY.H UISUSRDEF .H

FORTRAN UISENTRY.FOR UISUSRDEF .FOR

MACRO UISUSRDEF .MAR

PASCAL UISENTRY;PAS UISUSRDEF .PAS

PL/I UISENTRY.PLI UISUSRDEF .PLI

ADA UISENTRY.ADA UISUSRDEF .ADA

Programming Considerations

Message Definition File

A language-specific message definition file called UISMSG is included in
the directory SYS$LIBRARY. This file, which is similar to the entry point
file UISENTRY, defines all possible UIS error codes. For instance, to
define message symbols in a VAX FORTRAN condition handler, you add
the following line to your program.

INCLUDE 'SYS$LIBRARY:UISMSG'

Depending on the programming language options you choose, the
appropriate version of UISMSG is copied to your disk during the
installation procedure.

All messages symbols use the prefix UIS$_.

6.6 Notes to Programmers

6.6.1

The following sections describe language-specific issues that might affect
program execution.

VAX ADA Programmers
Creating a Workable LIBRARY for VAX ADA To Use

Before you run VAX ADA application programs, you must perform the
following procedures:

1 Set your default directory as follows:

SET DEFAULT SYS$LIBRARY

2 Request a directory of .ADA files.

DIRECTORY SYS$SYSROOT:[SYSLIB]*.ADA

UISENTRY.ADA;l UISUSRDEF.ADA;l UISMSG.ADA:l VWSSYSDEF.ADA:l

Total of 4 files.

3 Copy the four files into one file as follows:

$COPY UISENTRY.ADA,UISUSRDEF.ADA,UISMSG.ADA,VWSSYSDEF.ADA UIS_.ADA

4 Edit the UIS_.ADA file.

$ EDIT UIS_.ADA

Insert the following four lines at the top of the file in the leftmost
column:

with STARLET: use STARLET;
with SYSTEM; use SYSTEM:
with CONDITION HANDLING; use CONDITION HANDLING:
package UIS is- -

Place the body of the four entry-point files here.

Insert the last line in the UIS_.ADA file as follows:

end UIS:

6-9

6.6.2

6.6.3

Programming Considerations

5 To create a library that your VAX ADA programs can use, run the
command file ADD$ADA_PREDEFINED_UNIT.COM as follows:

The compiled unit is placed in the library of predefined units for ADA
in a file called UIS.ADA.

If you create the new library, it will be available to you automatically.

6 If you have not created the new library, use the following command to
enter it into your own ADA library:

$ ACS ENTER UNIT ADA$PREDEFINED UIS

7 To use the. UIS entry points in your program, add the following
command to the beginning of your ADA program:

with UIS;

VAX C Programmers
Entry Point and Symbol Definition Files

The file UISENTRY.H defines all routine entry points in lowercase
characters, and UISUSRDEF.H defines all constants in uppercase
characters.

Floating-Point Constants

When you are programming UIS in C, it is recommended that you do not
use. floating-point constants in your C progranls. UIS expects all values
passed to it to be F _floating, or single precision. In VAX C, all· floating­
point constants are of type double (see Programming in VAX C, section
5.3.5).

VAX PASCAL Programmers
Entry Point Files

6-10

Because VAX PASCAL references arguments as formal parameters, your
calls to UIS must specify the same parameter names as those in the entry
point file UISENTRY.P AS. Therefore, specify obj_i~ as the argument
whenever the routine descriptions in Parts III. and IV allow a choice
between the obj_id and seg.Jd arguments. Refer to Tables A-1 and B-1 for
a summary of UIS and UISDC calling sequences. .

Creating Environment Files

Before you run VAX PASCAL application programs, you lnust perfonn the
following procedure.

1 Set your default directory as follows:

$ SET DEFAULT SYS$LIBRARY

6.6.4

Programming Considerations

2 Invoke the VAX PASCAL compiler with the IENVIRONMENT and
INOOBJECT qualifiers to produce an environment file of symbolic
definitions and type declarations.

NOTE: In Version 3.4 of the VAX PASCAL compiler, a bug in a parameter
declaration checking was fixed. This bug uncovered an invalid
parameter declaration in the UISENTRY.PAS file shipped with
VWS Version 3.0 and later. To maintain compatibility with all other
versions of VMS Workstation Software and PASCAL, you must add
the INOWARNING qualifier when you build the PASCAL environment
file.

$ PASCAL/ENVIRONMENT/NOOBJECT/NOWARNING UISENTRY

The result of the compilation is UISENTRY.PEN, an environment file.

3 Include the INHERIT attribute in the first line of the application
program or program module that specifies UISENTRY .PEN.

[INHERIT('UISENTRY.PEN')]

4 Repeat this procedure for the symbol definition file UISUSRDEF.PAS.

Refer to Programming in VAX PASCAL for more information about the
IENVIRONMENT and INOOBJECT qualifiers and the INHERIT attribute.

Drawing Lines and Polygons

When you draw lines and polygons, use UIS$PLOT _ARRAY instead of
UIS$PLOT and UIS$LINE_ARRA Y instead of UIS$LINE.

VAX PL/I Programmers
Entry Point Files

Because VAX PLII references arguments as formal parameters, your calls to
UIS must specify the same parameter names as those in the entry point file
UISENTRY.PL!. Therefore, specify obj_id as the argument whenever the
routine descriptions in Parts III and IV allow a choice between the obj_id
and se~id arguments. Refer to Tables A-1 and B-1 for a sunlinary of UIS
and UISDC calling sequences.

6.7 Programming Examples
The programming examples in Parts II and III of this manual use VAX
FORTRAN Version 4.4. In addition, SOine examples-particularly in Part
III - include ellipses to indicate omitted portions of code and to point out
places in the program where you can add code.

Many of the examples include the VAX FORTRAN PAUSE statelnent.
PAUSE suspends program execution and displays the DCL prompt ($).
A default message~FORTRAN PAUSE-is returned to the display screen.
The graphic images remain on the screen. Respond to the DCL prompt
($) by typing one of the following commands:

• CONTINUE-Resume program execution at the next executable
statement.

• EXIT -Terminate program execution.

6-11

6.7.1

Programming Considerations

• DEBUG-Resume program execution under the control of the
VAX/VMS Symbolic Debugger.

NOTE: If your program is running in batch mode, program execution is not
suspended. All messages are written to the system output file.

Structure of Programming Tutorial
Each chapter in Part II uses a tutorial approach to explain UIS graphics
features and programming. After discussion of the main topics, each
chapter includes:

• Programming options-Lists available features. The addition of each
new group of programming options lets you progress from simple to
complex programming tasks.

• Program development-Lists current programming objective and tasks
needed to implement the objective successfully.

Program-Contains the source module with embedded callouts.
Each callout refers to a programming feature.

Program output-Displays and explains the output from the
program.

Each programming example uses some or all of the programming options
listed. Not all routines are illustrated in the accompanying example.

6.8 Program Execution

6.8.1

Your program can run in batch mode with predefined data or interactively,
accepting input as needed. However, to execute your application progratn
successfully, you m1:lst first store it as a file using a text editor.

Invoke the text editor on your workstation as follows:

$ EDIT MYPROG.FOR

Please note that in this example you must supply a file name, for example,
MYPROG. In addition, a VAX FORTRAN file type (FOR) is added to the
file name to identify the file as a VAX FORTRAN source file. Enter your
program according to the rules of your programming language. Refer to
the specific language reference manual for detailed information.

Compiling Your Program

6-12

You must compile the newly created source file MYPROG.FOR before
execution. The language compiler (in this case the VAX FORTRAN
compiler) checks for proper syntax and initiates code optimization where
appropriate. Invoke the language compiler as follows:

$ FORTRAN/LIST MYPROG

You need not include file type. By default, the system searches for
the latest version of the file, MYPROG, with a file type of FOR. If the ~
application source file contains syntax errors, you receive compile-time error ~
messages called diagnostics. These diagnostic messages indicate the portion

6.8.2

6.8.3

Programming Considerations

of code in error as wen as an explanation. The ILIST qualifier specifies
the creation of a listing file of accounting information and diagnostics (if
present).

Some language compilers return a predetermined maximum number of
diagnostics before terminating compilation. You must correct these errors
and resubmit the source program for a successful compilation. Successful
compilation produces an object module with file type of OB J .

Linking the Object Module
The Linker resolves references to subroutines and allocates memory to
variables within your program. Invoke the Linker as follows:

$ LINK MYPROG

You need not specify the file type of the program, MYPROG. By default,
the system searches for the latest version of the file MYPROG with the file
type OBJ.

In addition, you can link object modules of programs written in different
source code.

Running the Executable Image
The Linker produces an executable image with a file type of EXE. At this
point, you can run your program. However, if you receive run-time errors,
you must correct the errors in your source code, recompile the source
module, and'relink the object modules. After you receive the $ prompt,
run the executable image as follows:

$ RUN MYPROG

6-13

7 Creating Basic Graphic Objects

7.1 Overview

7.2

7.2.1

This chapter describes how to create basic graphic objects - lines, circles,
ellipses, and text. It discusses the following topics:

• Creating a virtual display

• Creating graphics and text

• Creating a display window

You construct an interactive program to create graphic objects. You use
other windowing routines to manipulate these objects.

Refer to Section 6.7 for more information about the programming examples
in this manual.

Step 1-Creating a Virtual Display
When you use UIS to create graphic objects, you use a frame of reference
called a virtual display to establish the environment in which the graphic
objects exist.

Calls to UIS routines must reference points within the virtual display.
When you specify coordinates, the UIS subsystem generates a coordinate
system to create the virtual display and subsequent windows. You use this
coordinate system, or grid, to reference points as world coordinates along
two perpendicular axes labelled x and y. The virtual display is infinite and
you can draw graphic objects anywhere in it.

Specifying Coordinate Values
Many routines documented in this manual require coordinates to define
virtual displays, display windows, and extent rectangles. Table 7-1 lists
information about coordinate values.

7-1

7.2.2

7.2.3

Creating Basic Graphic Objects

Table 7-1 Coordinate Types and Values

Data
Coordinate Units Type Origin

Absolute cm F _floating 1 Lower-left corner of display screen or
tablet

Normalized Gutenbergs F _floating 1 Lower-left corner of virtual display

Viewport- Pixels Longword Lower-left corner of display viewport
relative (unsigned)

World User- F _floating 1 Lower-left corner of virtual display
specified

1 F _floating point numbers can have up to approximately seven decimal digits of
precision.

Creating and Deleting a Virtual Display
You use UIS$CREATE_DISPLA Y to specify the world coordinate space
in which you will draw graphic objects. The world coordinate values you
specify establish mapping and scaling factors that the system can use later
in viewport creation. Do not think of the coordinate values as the absolute
boundaries of the virtual display.

You can create an unlimited number of virtual displays, subject to system ~
and process resources. ~

You can use UIS$DELETE_DISPLA Y anywhere in your program to delete
a virtual display. However, you should remember that when you delete a
virtual display you are throwing out the medium on which you have drawn
graphic objects.

Program Development

7-2

Programming Objective

To create an executable program using the VAX FORTRAN programming
language.

Programming Tasks

To create and delete a virtual display.

PROGRAM IMAGES_l
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY' H
INCLUDE 'SYS$LIBRARY:UISUSRDEF' ~

VD_ID=UIS$CREATE_DISPLAY(+1.O,+1.O,+20.0,+20.0,lO.O,lO.0) ~

PAUSE 0
CALL UIS$DELETE_DISPLAY(VD_ID) ~

END

7.3

~ 7.3.1

Creating Basic Graphic Objects

At this point the program contains UIS entry points J] and definitions ~.
It also includes a call ~ to UIS$CREATE_DISPLA Y. The plus sign (+)
is optional for positive coordinates. The minus sign (-) is required for
negative coordinates.

Because world coordinates are Cfloating numbers, you must use a decimal
point when you specify world coordinate pairs.

See Section 6.7 for information about the VAX FORTRAN PAUSE
statement U

Call UIS$DELETE_DISPLA Y ~ to remove the virtual display before the
program ends. You need not use UIS$DELETE_DISPLA Y to terminate an
application program.

Not only does UIS$CREATE_DISPLAY specify the world coordinate
range of the virtual display, but also, in vd_id, it returns the value of
the virtual display identifier. This value, used in subsequent windowing
routines, uniquely identifies the newly created virtual display. Typically,
UIS$CREATE_DISPLA Y is the first UIS routine called in an application
program.

If your application program invokes the UIS$CREATE_DISPLAY only, the
workstation screen does not change.

Step 2-Creating Graphics and Text
You can now draw any of the following graphic objects anywhere on the
virtual display.

Graphic Object

Geometric shapes

Text

Raster images

Example

Point, line, polygon, circle, and ellipse

Characters

Any object constructed with a bitmap of varying size

Graphics Drawing Operation Specifications

• All line drawing operations are symmetrical and include both end
points.

• In the case of fill patterns, images, ellipses, moving windows, and so
forth, all region specifications include the region borders.

7-3

7.3.2

Creating Basic Graphic Objects

Programming Options

7-4

Creating Points, Lines, and Polygons

Depending on the number of times you repeat coordinate pairs in
UIS$PLOT or UIS$PLOT_ARRAY, you can draw a point, connected lines,
or a polygon.

You can draw more than one unconnected line in a single call to UIS$LINE
or UIS$LINE_ARRA Y. Each specified pair of world coordinate pairs
represents the end points of a line.

NOTE: VAX PASCAL application programs should use UIS$PLOT_ARRAYor
UIS$LINE~ARRAY to draw all lines, disconnected lines, and polygons.

Creating Circles

Use UIS$CIRCLE to create circles or circular arcs.

Creating Ellipses

Use UIS$ELLIPSE to create ellipses or elliptical arcs.

Drawing Images

Use the following procedure to create a bitmap image of a graphic object,
then draw the raster to the display screen with UIS$IMAGE.

1 Create a data structure such as an array or record in your program to ~
define the bitmap. ~

2 Set the bits in the structure to create the bitmap image by assigning
values to the elements of the structure.

3 Use UIS$IMAGE to specify pixel width and height of the raster image.

4 Use UIS$IMAGE to specify the name of the data structure.

Figure 7-1 illustrates how bitmap settings are mapped to raster images.

Raster image mapping occurs from left to right and from top to bottom.
See the UIS$IMAGE routine description for more information.

Text

Use UIS$TEXT to set the current position and create text anywhere within
a virtual display. You can use the text within a virtual display to label an
accompanying graphic object within the window. Only UIS$TEXT can write
characters in a virtual display.

7.3.3

Creating Basic Graphic Objects

Figure 7-1 Mapping a Bitmap to a Raster

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2~ i 1 0 1 1 1 0

11 0 1 0

!

i

Program Development
Programming Objective

o Jl 0 1 0

I

I

1 1

I
I
j

!

\

\s;tmap
Image

Raster
Image

lK 462785

To create an executable program using the VAX FORTRAN programming
language.

Programming Tasks

1 Create a virtual display.

2 Draw four graphic objects in the virtual display.

3 Delete the virtual display.

PROGRAM IMAGES_2
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL WIDTH, HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.O,1.O,20.0,20.0,lO.O,lO.O)

CALL UIS$CIRCLE(VD_ID,O,lO.O,lO.O,l.O) n
CALL UIS$PLOT(VD_ID,O,4.0,3.0,5.0,7.0) ~
CALL UIS$ELLIPSE(VD_ID,O,15.0,15.0,1.O,2.0) ~
CALL UIS$TEXT(VD_ID,O,'This is a test.',1.O,12.0) e

PAUSE
CALL UIS$DELETE_DISPLAY(VD_ID)
END

7-5

Creating Basic Graphic Objects

In the preceding example, you specify world coordinate pairs that describe
the exact locations of the graphic objects (circle, line, ellipse, and text) in
the virtual display, explicitly to the UIS graphics routines 8 ~ g) U

If you execute the program in its present form, the workstation display
screen shows no objects. Although your calls to the UIS graphics and text
routines are processed, you must create a window to view what is drawn.

7.4 Step 3-Creating a Display Window

7.4.1

7.4.2

You must now create a display window to define the world coordinate
range of the viewable portion of the virtual display. When you create a
display window, you also create a display viewport, an area on the physical
screen where the display window is mapped.

Programming Options
At this point, all the available programming options are provided through
UIS$CREATE_ WINDOW. The full capabilities of UIS$CREATE_ WINDOW
are discussed in more detail in Chapter 8.

Creating a Display Window and Viewport

Use UIS$CREATE_ WINDOW to create a display viewport and its
associated viewport.

Program Development

7-6

Programming Objective

To create an executable program that draws and displays graphic objects
on the V AXstation screen.

Programming Tasks

1 Create a virtual display.

2 Draw four graphic objects in the virtual display.

3 Create a display window and viewport.

4 Delete the virtual display.

PROGRAM IMAGES_2A
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL*4 WIDTH, HEIGHT

TYPE *,'ENTER DESIRED VIEWPORT WIDTH AND HEIGHT'
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.O,l.O,20.0,20.0,WIDTH,HEIGHT) 8

CALL UIS$CIRCLE(VD_ID,O,lO.O,lO.O,l.O) ~
CALL UIS$PLOT(VD ID,O,4.0,3.0,5.0,7.0) g)
CALL UIS$ELLIPSE(VD_ID,O,15.0,15.0,l.O,2.0) ~
CALL UIS$TEXT(VD_ID,O,'This is a test.',l.O,12.0) m
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') m

7.4.3

Creating Basic Graphic Objects

PAUSE

CALL UIS$DELETE_DISPLAY(VD_ID)

END

Specify the world coordinate range of the virtual display and the default
dimensions of the display viewport in a call to UIS$CREATE_DISPLA Y 0.

NOTE: The display viewport is not mapped until a display window is created.

Next, call the graphics and text routines 611 (J 1ft to draw the graphic objects.

Create a display window and viewport in a call to UIS$CREATE_ WINDOW
m. The world coordinate range of the window and the viewport width and
height are not specified. Therefore, the world coordinate space of the
display window (that is, the viewable portion of the virtual display) defaults
to the entire virtual display. You see all objects drawn in the virtual display.

Calling UIS$CIRCLE, UIS$ELLIPSE, UIS$PLOT, UIS$TEXT, and
UIS$CREATE_ WINDOW

When you run the program IMAGES_2A, you should get a single, untitled
display viewport containing text, a circle, a line, and an ellipse as shown in
Figure 7-2.

Figure 7 ~2 Display Viewport and Graphic Objects

~----~--~ ----~-----~ --

--==--------=- - - - - - --:------ -=-=-------------- ==--- -- ~ - --=====-=---- - -

o
Thi~ i~ a tesc=>

I
ZK·4533·85

7-7

8 Display Windows and Viewports

8.1 Overview
Before you manipulate graphic objects, you should know about display
windows and viewports. These features allow you to see graphic objects
drawn in the virtual display. The UIS windowing routines perform the
following operations:

• Create display windows and viewports

• Move display windows

• Manipulate display viewports

• Delete display windows

• Erase the virtual display

• Create transformations

~ 8.2 Windowing Routines
You use windowing routines to create and delete virtual displays, display
windows, and display viewports. Table 8-1 lists windowing routines and
their functions.

Table 8-1 UIS Windowing Routines

Routine

UIS$CREATE_DISPLA Y

UIS$CREATE_WINDOW

UIS$EXPAND_ICON

UIS$MOVE_AREA

UIS$MOVE_WINDOW

UIS$POP _VIEWPORT

UIS$PUSH_ VIEWPORT

UIS$SHRINK_ TOJCON

UIS$CREATE_
TRANSFORMATION

UIS$ERASE

Description

Creates a virtual display and defines default
viewport dimensions

Creates display window and viewport

Substitutes an associated viewport for an icon

Moves a specified rectangle and its contents in the
virtual display to another part of the virtual display

Pans the display window across the virtual display

Allows an occluded viewport to be fully displayed

Places a viewport behind another viewport

Substitutes an icon for a display viewport

Alters the world coordinate space of the virtual
display

Erases objects that lie completely within a specified
rectangle in the virtual display

8-1

Display Windows and Viewports

Table 8-1 (Cont.) UIS Windowing Routines

Routine

UIS$DELETE_DISPLA Y

UIS$DELETE_WINDOW

Description

Deletes a virtual display

Deletes a display window and viewport

These routines allow you to create and manage the display screen
environment and to perform certain housekeeping functions such as
erasing and deleting virtual displays and windows.

8.3 Step 1-Creating Many Display Windows

8.3.1

For every display window you create, you also create a display viewport.
A one-to-one relationship exists between each display window and its
associated viewport. An application program can create an unlimited
number of display windows and viewports, subject to system and process
resources.

Programming Options

8-2

Each display window can be unique with regard to world coordinate range.
Therefore, you can create display viewports that are also unique with
respect to dimensions and position on the display screen.

Display Window Size

By default, a newly created display window displays the full world
coordinate space specified when you create the virtual display. You can
specify world coordinate pairs in UIS$CREA TE_ WINDOW to produce
different size display windows within the virtual display.

Display Viewport Size

Similarly, the default display viewport dimensions equal the values .41
you specify in the width and height arguments in the UIS$CREATE_ ~
DISPLAY call. However, you can specify different dimensions to scale the
contents of the window. Maximum display viewport size depends on the
dhnensions of the display screen. If you specify viewport dimensions that
exceed the size of the display screen, UIS scales the viewport to the size of
the display screen.

Graphic Object Magnification

You can manipulate the world coordinate range of the display window
or the dimensions of the display viewport to increase or decrease
magnification of the object in the viewport. Magnification occurs when
the display window area is increased or decreased while the viewport size
remains the same, or when the viewport is increased or decreased while
dimensions of the window remain the same.

8.3.2

Display Windows and Viewports

Distortion

Distortion occurs whenever the aspect ratios of the display viewport and
display window are not equal.

The aspect ratio of the display window is the absolute value of the
difference between y world coordinates of the upper-right and the lower­
right corners of the window divided by the absolute value of the difference
between the x world coordinates of the lower-right and lower-left corners.
Figure 8-1 illustrates how to calculate the aspect ratios of the display
window and viewport.

Figure 8-1 Aspect Ratios of the Display Window and Display
Viewport

viewport height

viewport width

ZK-4579-85

Number of Windows and Viewports

You can create an unlimited number of display windows and, as a result,
an unlimited number of display viewports, subject to system and process
resources. In addition, you can specify the dimensions of each display
viewport.

Display Banner

The display banner appears along the top border of the display viewport
and contains the menu and keyboard icons as well as the viewport title.
The maximum length of the viewport title is 63 characters.

You can suppress display banner generation with the attributes argument
in UIS$CREATE_ WINDOW. When the display banner is suppressed, only
the viewport border displays.

Display Viewport Placement

You can either explicitly place a display viewport on the workstation screen
or allow UIS to choose a location for you. By default, display viewport
placement is random.

Program Development
Programming Objective

To create four display windows and display viewports.

8-3

8.3.3

Display Windows and Vlewports

Programming Tasks

1 Create a virtual display.

2

3

4

Draw four graphic objects in the virtual display.

Create four display windows and viewports, omitting the display
window coordinates in the calls to UIS$CREATE_ WINDOW.

Delete the virtual display.

PROGRAM IMAGES_3
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

VD_ID=UIS$CREATE_DISPLAY(1.O,1.O,20.0,20.0,lO.O,lO.O)

CALL UIS$CIRCLE(VD_ID,O,lO.O,lO.O,l.O)
CALL UIS$PLOT(VD_ID,O,4.0,3.0,S.O,7.0)
CALL UIS$ELLIPSE(VD_ID,O,lS.O,lS~O,1.O,2.0)
CALL UIS$TEXT(VD_ID,O,'This is a test.',1.O,12.0)
WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') 8

;PAUSE
WD_ID2=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') B
WD_ID3=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') ~
WD_ID4=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') e
PAUSE
CALL UIS$DELETE_DISPLAY(VD_ID)

END

Four calls to UIS$CREATE_ WINDOW 8 B ~ e are inserted to create four ~
windows. The world coordinate range of each window defaults to the ~
world coordinate range of the entire virtual display.

Calling UIS$CREATE_WINDOW

8-4

If you run this program now, your workstation screen displays the graphic
objects shown in Figure B-2.

As you can see, four display windows are created and mapped to the
display screen as four viewports. Each of the viewports contains four ~
objects. Because display window world coordinate pairs were not explicitly ,
specified in UIS$CREATE_ WINDOW, the viewports allow you to see
the entire area of the virtual display by default. In addition, because
the display viewport width and height were not explicitly specified in
the UIS$CREATE_ WINDOW call, each display viewport is, by default,
10 cm square as specified in the width and height arguments of the
UIS$CREATE_DISPLA Y call.

Display Windows and Viewports

Figure 8-2 Four Display Vlewports

o o
This is a test. is is a test. o o

/ /

o o
This is a test. This is a test. o o

/ I

8.4 Step 2-Deleting and Erasing Display Windows
Some windowing routines perform housekeeping functions; that is, they
delete unused display windows or erase graphic objects fronl the virtual
displays. When you run complicated applications, such routines are
important to manage display environment.

8-5

8.4.1

8.4.2

Display Windows and Vlewports

Programming Options
You can call certain UIS routines that cause your application program to
delete unwanted windows, viewports, and virtual displays.

Display Window Deletion

You can delete any display window without affecting other windows or
viewports. Deletion of the display window does not affect the graphic
objects in the virtual display. If you delete a display window, you also
delete the associated display viewport. To delete a display window and its
associated viewport, specify the appropriate display window identifier in
UIS$DELETE_ WINDOW.

Erasing the Virtual Display

Use UIS$ERASE at any time to delete graphic objects that lie completely
within a specified rectangle in the virtual display. If you do not specify a
rectangle, the entire virtual display is used.

Program Development

8-6

Programming Objectives

• To enclose each graphic object in its own display window.

• To delete a window and its viewport.

Programming Tasks

1 Create a virtual display.

2 Draw four graphic objects in the virtual display.

3 Create four display windows and viewports that specify display window
regions to enclose each of the graphic objects.

• Specify display window regions that enclose the graphic objects.

• Specify viewport titles that identify the graphic objects. ~

4 Delete one of the display windows and its viewport.

PROGRAM IMAGES_4
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL WIDTH, HEIGHT
TYPE *,'ENTER DISPLAY SIZE' 8
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.O,1.O,20.0,20.0,WIDTH,HEIGHT)

CALL UIS$CIRCLE(VD_ID,O,12.0,12.0,1.O)
CALL UIS$PLOT(VD_ID,O,4.0,3.0,5.0,7.0)
CALL UIS$ELLIPSE(VD_ID,O,15.0,15.0,1.O,2.0)
CALL UIS$TEXT(VD_ID,O,'This is a test.',1.O,12.0)

8.4.3

Display Windows and Viewports

WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','CIRCLE',
2 lO.O,lO.O,14.0,14.0,WIDTH,HEIGHT) ~

WD_ID2=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','LINE"
2 3.0,2.0,6.0,8.0,WIDTH,HEIGHT) !

WD ID3=UIS$CREATE WINDOW(VD ID,'SYS$WORKSTATION','TEXT',
2 - 1.0,12.0,lO.O,10.0,WIDTH,HEIGHT) e

WD ID4=UIS$CREATE WINDOW(VD ID,'SYS$WORKSTATION','ELLIPSE',
2 - 13.0,13.0~17.0,18.0~WIDTH,HEIGHT) m

PAUSE
CALL UIS$DELETE_WINDOW(WD_ID2) m

PAUSE

END

The program now accepts interactive input for the display viewport
dimensions. O.

To define each display window in the UIS$CREATE_WINDOW calls ~! e
m, you explicitly specify world coordinate space.

UIS$CREATE_ WINDOW returns the variable wd_id2, the display window
identifier!, to identify the LINE window uniquely. Note that the call to
delete the LINE window m references this variable.

Calling UIS$DELETE_WINDOW
If you run this program until the first PAUSE statement, the workstation
screen displays the graphic objects shown in Figure 8-3.

When you explicitly specify a particular world coordinate range within the
virtual display for each display window, each graphic object lies within a
separate window that maps to the physical display screen as a separate
display viewport.

To continue program execution, type CONTINUE at the DCL prompt ($).
The program continues to execute and the screen changes, as shown in
Figure 8-4.

Although the viewport LINE and its window are deleted, the actual graphic
object still exists. You have simply deleted the display window that allowed
you to view the line portion of the virtual display. If you call UIS$CREATE_
WINDOW again and specify the appropriate world coordinate space in the
virtual display, the object reappears.

8-7

Display Windows and Vlewports

Figure 8-3 Objects Within Different Windows

~ ~ - - ---- -----~- ~- - ---~ ---- ~

CD ELLIPSE

Thi~ i~ a te~to

ZK·4535·85

8-8

Display Windows and Viewports

Figure 8-4 Display Window Deletion

---~~--~- ~- -~-~~~- ~--~-- --
ELLlPSf:

- - - -~ -- ~ ~ - ---- - - -

~ --~----------~---

TEXT
-~ -~------=-=--~ ----- ------ - -

This i!S a test.

ZK·4S36·8S

8.5 Step 3-Manipulating Display Windows and Viewports
Display viewports and windows do not have to remain as static objects on
the screen. You can manipulate the newly created display windows and
viewports in many ways.

8-9

8.5.1

Display Windows and Viewports

Programming Options

8-10

Use the optional attributes argument of UIS$CREA TE_ WINDOW to
implement viewport placement features and window attributes.

NOTE: When you include the attributes argument in UIS$CREATE_WINDOW,
you do not modify attribute block O.

Attributes and attribute block 0 are discussed in detail in Chapter 9.

General and Exact Placement of View ports

Unless you specify otherwise, display viewports are placed randomly
throughout the screen. You can move a display viewport to any position on
the screen. When you create the window, you can specify general viewport
placement, that is, within a certain vicinity on the screen-top, left, right,
or bottom.

If you specify exact placement, the display viewport is positioned anywhere ~
you want it on the screen. This placement saves space by allowing
occlusion of other viewports.

Panning and Zooming the Virtual Display

You can pan across the virtual display to include either the entire virtual
display or any discrete area within it.

Pushing and Popping Display Viewports

Pushing and popping display viewports is useful when you create display 4
windows with the exact placement attribute. In this case, your application
might create two windows and purposely occlude one of the viewports.
Since you know which viewport is occluded, you can use UIS$POP_
VIEWPORT.

Otherwise, by default, the UIS subsystem places newly created windows
randomly on the screen. As a result, since you do not know where the
viewports will be placed, you should not use UIS$POP _ VIEWPORT or
UIS$PUSH_ VIEWPORT.

Moving a Display Viewport

You can use UIS$MOVE_ VIEWPORT to move an existing display viewport
anywhere on the screen.

Moving a Portion of the Virtual Display

Use UIS$MOVE_AREA to draw a graphic object in a portion of the virtual
display, then move that coordinate space to another part of the same virtual
display.

8.5.2

Display Windows and Viewports

Program Development I
Programming Objectives

To delete three display windows and viewports, then use the remaining
display window to pan the virtual display.

Programming Tasks

1 Create a virtual display.

2 Draw four graphic objects in the virtual display.

3 Create four display windows and viewports, each containing a graphic
object.

4 Specify a title for each viewport.

5 Delete three of the four display windows.

6 Use UIS$MOVE_ WINDOW to pan the virtual display with the
remaining display window.

PROGRAM IMAGES_5
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL WIDTH, HEIGHT

TYPE *,'ENTER VIEWPORT WIDTH AND HEIGHT'
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.O,1.O,20.0,20.0,lO.O,lO.O)

CALL UIS$CIRCLE(VD_ID,O,12.0,12.0,1.O) 8
CALL UIS$PLOT(VD_ID,O,4.0,3.0,5.0,7.0) ~
CALL UIS$ELLIPSE(VD_ID,O,15.0,15.0,1.O,2.0) ~
CALL UIS$TEXT(VD_ID,O,'This is a test.',1.O,12.0) ~
WD_IDl=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','CIRCLE',

2 lO.O,lO.O,14.0 r 14.0,WIDTH,HEIGHT) m
WD ID2=UIS$CREATE WINDOW(VD ID,'SYS$WORKSTATION','LINE',

2 - 3.0,2.0,6:0,8.0,WIDTH,HEIGHT) m
WD ID3=UIS$CREATE WINDOW(VD ID,'SYS$WORKSTATION','TEXT',

2 - 1.O,12.0,lO.O,lO.O,WIDTH,HEIGHT) i
WD_ID4=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','ELLIPSE',

2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT) m
PAUSE m
CALL UIS$DELETE_WINDOW(WD_IDl) ~
CALL UIS$DELETE_WINDOW(WD_ID3) DH
CALL UIS$DELETE_WINDOW(WD_ID4) ~

PAUSE fE
CALL UIS$MOVE_WINDOW(VD_ID,WD_ID2,6.0,8.0,18.0,18.0) 8a

PAUSE (E

CALL UIS$DELETE_DISPLAY(VD_ID)

END

The prograln IMAGE_5 creates four graphic objects f] ~ ~ ~ in the virtual
display.

The program prompts for the viewport width and height to override the
values specified in UIS$CREA TE_DISPLA Y.

8-11

8.5.3

Display Windows and Viewports

Each newly created display window (3 m fJ.Cl contains a graphic object. Each
display window is mapped to the physical screen as a display viewport with
an appropriate title that describes the graphic object within the window.

Program execution is suspended m. The display screen contains the four
viewports previously described.

Three calls to UIS$DELETE_ WINDOW m.1 m (B remove the windows and
their viewports CIRCLE, ELLIPSE, and TEXT from the display screen.

Program is suspended IE. The display screen contains one display
viewport LINE.

A call to UIS$MOVE WINDOW 00 has been inserted. Thus, the display
window LINE pans the virtual display.

Calling UIS$MOVE_WINDOW

8-12

The display screen initially contains all four windows as shown in
Figure 8-5.

Three of the display windows and viewports are deleted.

The display viewport LINE remains. Originally, the viewport contained a
line; now it contains the circle and the ellipse. The display window goes to
the location you specify in the virtual display. You can include any number
of calls to UIS$MOVE_ WINDOW. Your workstation screen displays the
objects shown in Figure 8-6. The circle and the ellipse still exist i!l the
virtual display. 4

Display Windows and Viewports

Figure 8-5 Before Panning the Virtual Display

[LlIPS[

-- --==.::-~ ~---==-:::::::.---==----=- - -=-- - - -- --=- ~

Thi~ i~ a te~t.

ZK·4537·85

8-13

8.5.4

Display Windows and Vlewports

Figure 8-6 Panning the Virtual Display

iEL 1.I t'H

Program Development II
Programming Objective

o
ZK~-85

To demonstrate exact placement of the display viewport on the display
screen to pop and push viewports. '~

8-14

Display Windows and Viewports

Programming Tasks

1 Specify viewport placement data to create a viewport attributes data
structure.

2 Create a virtual display.

3 Draw two graphic objects in the virtual display in separate viewports.

4 One viewport initially occludes the other.

PROGRAM IMAGES_6
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LISRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL WIDTH, HEIGHT
STRUCTURE/PLACE/ 0

INTEGER*4 CODE_l
REAL*4 ASS_POS_X
INTEGER*4 CODE_2
REAL*4 ABS_POS_Y
INTEGER*4 END_OF_LIST

END STRUCTURE
RECORD /PLACE/PLACE_LIST,ON_TOP ~

PLACE LIST.CODE l=WDPL$C ABS POS X
PLACE:LIST.ASS_POS_X=8 m- - -
PLACE LIST.CODE 2=WDPL$C ASS POS Y
PLACE-LIST.ABS POS Y=8 ~ - -
PLACE:LIST.END:OF_LIST=WDPL$C_END_OF_LIST

ON TOP.CODE l=WDPL$C ASS POS X
ON-TOP.ASS POS X=8.S-m - -
ON-TOP. cODE 2=WDPL$C ASS POS Y
ON:TOP.ABS_POS_Y=8.S-m - -
ON_TOP.END_OF_LIST=WDPL$C_END_OF_LIST

TYPE *,'ENTER DISPLAY SIZE'
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.O,1.O,20.0,20.0,lO.O,lO.O)

CALL UIS$CIRCLE(VD_ID,O,lO.O,lO.O,l.O)
CALL UIS$PLOT(VD_ID,O,4.0,3.0,S.O,7.0)
WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION', 'CIRCLE',

2 8.0,8.0,12.0,12.0,WIDTH,HEIGHT,PLACE_LIST) 6
WD_ID2=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','LINE"

2 3.0,2.0,6.0,8.0,WIDTH,HEIGHT,ON_TOP) m

PAUSE ED

CALL UIS$POP_VIEWPORT(WD_ID1) om

PAUSE

CALL UIS$PUSH_VIEWPORT(WD_ID1) 00

PAUSE

CALL UIS$DELETE_DISPLAY(VD_ID)

END

The program IMAGES_6 creates a data structure argument 0, which it gives
the symbolic name PLACE with the STRUCTURE statement. The program
arbitrarily chooses symbolic nmnes for the fields.

The program creates two type PLACE variables, PLACE_LIST and ON_
TOP, ~, which contain five longwords.

8-15

8.5.5

Display Windows and Viewports

Actual values are assigned to the different fields of the record PLACE_
LIST. In this case, the absolute coordinates of the lower-left corner II ~ of
the display viewport LINE are assigned to the fields ON_TOP.ABS_POS_X
and ON_ TOP.ABS_POS_ Y m m. The absolute coordinates of the display
viewport CIRCLE are assigned to the fields PLACEMENT.ABS_POS_X and
PLACEMENT .ABS_POS_ Y as well.

Also, the position of. calls to UIS$CREA TE_ WINDOW 6 m within the
program is important. You must execute the call to create the display
viewport CIRCLE before LINE.

At the first PAUSE statement ~, viewport LINE occludes viewport CIRCLE.

The program calls UIS$POP _ VIEWPORT ml. The display viewport CIRCLE
is placed over the viewport LINE.

A call to UIS$PUSH_ VIEWPORT m returns the viewports to their orginal
position.

Calling UIS$POP _VIEWPORT and UIS$PUSH_VIEWPORT

8-16

Initially, the viewport LINE is placed over CIRCLE. Note that display
viewports are placed on the display screen with absolute coordinates. The
lower-left corner of any viewport is the origin of the viewport rectangle.
When you request exact placement of a viewport, you are specifying the
location on display screen where the origin of the viewport rectangle is to
be placed relative to the lower-left corner of the display screen.

Program execution is suspended at the first PAUSE statement. The display ~
screen contains the graphic objects shown in Figure 8-7. ~

The display viewports LINE and CIRCLE change positions when the call
to UIS$POP _VIEWPORT is executed. The viewport CIRCLE now occludes
LINE as shown in Figure 8-8.

To return the viewports to their original positions, call UIS$PUSH_
VIEWPORT. This pushes viewport CIRCLE behind viewport LINE as
shown in Figure 8-9.

Display Windows and Viewports

Figure 8-7 Occluding a Display Viewport

ZK-4539-85

8-17

Display Windows and Viewports

Figure 8-8 Popping a Display Viewport

ZK·454Q·85

8-18

8.5.6

Display Windows and Viewports

Figure 8-9 Pushing a Display Viewport

I"
Ib'!!l --

Program Development III
Programming Objectives

LINE

ZK-4539-85

To place a viewport in a general vicinity on the display screen and to create
a display viewport with no border.

8-19

Display Windows and Vlewports

8-20

Programming Tasks

1 Create a viewport attributes list to hold the appropriate viewport
placement and attributes data.

2 Create a virtual display.

3 Draw two graphic objects in the virtual display.

4 Create two display windows and associated viewports each with a
graphic object.

S Delete the virtual display.

PROGRAM lMAGES_7
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL WIDTH, HEIGHT
STRUCTURE/PLACE/ D
INTEGER*4 CODE_5
INTEGER*4 REL_POS
INTEGER*4 CODE_6
INTEGER*4 ATTR
INTEGER*4 END_OF_LIST
END STRUCTURE
RECORD /PLACE/LOCATION(2) ~

LOCATION(l).CODE_S=WDPL$C_PLACEMENT
LOCATION(l).REL_POS=WDPL$M_TOP .OR. WDPL$M_LEFT m
LOCATION(1).CODE_6=WDPL$C_ATTRIBUTES
LOCATION(l).ATTR=WDPL$M_NOMENU_ICON
LOCATION(l).END_OF_LIST=WDPL$C_END_OF_LIST

LOCATION(2).CODE 5=WDPL$C PLACEMENT
LOCATION(2).REL_POS=WDPL$M_RIGHT ,OR. WDPL$M_BOTTOM 9
LOCATION(2).CODE_6=WDPL$C_ATTRIBUTES
LOCATION(2).ATTR=WDPL$M_NOBORDER
LOCATION(2).END_OF_LIST=WDPL$C_END_OF_LIST
TYPE *,'ENTER VIEWPORT WIDTH AND HEIGHT'
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.O,1.O,20.0,20.0,lO.O,lO.O)

CALL UIS$CIRCLE(VD_ID,O,12.0,12.0,1.O)
CALL UIS$ELLIPSE(VD_ID,O,lS.O,lS.O,l.O,2.0)
WD_IDl=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','CIRCLE',
2 lO.O,lO.O,14.0,14.0,WIDTH,HEIGHT,LOCATION(1»
WD_ID4=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','ELLIPSE',
2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT,LOCATION(2»

PAUSE

CALL UIS$DELETE_DISPLAY(VD_ID)

PAUSE

END

The program defines the name of the data structure argunlent PLACE
With the STRUCTURE statement D. It defines an array LOCATION with
two elements that are records; these records have a structure defined by
the structure PLACE fl Each record LOCATION(l) and LOCATION(2)
consists of two pairs of longwords terminated by a longword that equals
the constant WDPL$C_END _ OF_LIST.

8.5.7

Display Windows and Viewports

To place the display viewport CIRCLE in the upper-left corner of the
display screen and the borderless viewport ELLIPSE in the lower-right
corner, specify in each assignment two preference luasks for each viewport
~Hl

NOTE: Note that you must use the logical operator .OR. when you specify more
than one preference mask.

The array name LOCATION is added to the argument lists of the viewport
CIRCLE and ELLIPSE to invoke the optional attribute list.

Requesting General Placement and No Border
General display viewport placement works best on an uncluttered screen.
Your workstation screen displays the objects shown in Figure 8-10.

8-21

8.5.8

Display Windows and Vlewports

Figure 8-10 General Placement and No Border

CIRCLE

Program Development IV
Programming Objective

To move graphic objects within the virtual display.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Draw two graphic objects in the virtual display.

8-22

8.5.9

Display Windows and Viewports

4 Use UIS$MOVE_AREA to move the coordinate space that contains
each graphic object to another portion of the virtual display.

PROGRAM AREA
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,50.0,50.0,15.0,15.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','MOVE AREA')

CALL UIS$PLOT(VD_ID,O,1.O,25.0,16.0,25.0,9.0,42.0,1.O,25.0) 0
CALL UIS$CIRCLE(VD_ID,O,35.0,35.0,lO.O) ~
PAUSE
CALL UIS$MOVE_AREA(VD_ID,O.O,22.0,20.0,42.0,30.0,1.O) m
CALL UIS$MOVE_AREA(VD_ID,25.0,25.0,50.0,50.0,1.O,1.O) a
PAUSE

END

The program uses UIS$PLOT and UIS$CIRCLE 0 ~ to draw a triangle and a
circle in the upper half of the virtual display.

A rectangular area containing the triangle is moved to the lower-right area
of the virtual display m. A rectangular area containing the circle is moved to
the lower-left region in the virtual display U

Calling UIS$MOVE_AREA
Figure 8-11 illustrates how graphic objects in areas within the virtual
display can be moved to other parts of the same virtual display.

8 23

Display Windows and Viewports

Figure 8-11 Moving Graphic Objects Within the Virtual Display

tl!I IIHlvt' ,II t',l 1

l.66<385

8.6 World Coordinate Transformations

8-24

Certain applications require that you create more than one virtual display,
or world coordinate space. Depending on the requirements of the program,
you might have to map graphic objects in one virtual display to another ~
virtual display. ,

8.6.1

8.6.2

Display Windows and Viewports

Programming Options
To see the advantages of world coordinate transformations, construct
a program that creates a virtual display. Then create a circle in a
virtual display. The circle is written to new world coordinate space or
transformation space.

Two-Dimensional Transformation and Scaling

Depending on the values supplied to UIS$CREATE_ TRANSFORMATION,
you can scale graphic objects that are mapped to other coordinate spaces.
1£ the coordinates· of the new transformation space are the same as those of
the original virtual display, no scaling occurs.

Program Development
Programming Objectives

To transform a world coordinate space by altering its mapping and scaling
factors.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Draw a graphic object in the virtual display.

4 Use UIS$CREATE_TRANSFORMATION to create a new coordinate
space.

5 Redraw the graphic object: substitute the transformation
identifier of the new coordinate space returned by UIS$CREA TE_
TRANSFORMATION for the virtual display identifier of the old
coordinate space.

PROGRAM TRANS
IMPLICIT INTEGER(A-Z)
INCLUDE ' SYS$LIBRARY :UI'SENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

VD_ID=UIS$CREATE_DISPLAY(-5.0,-5.0,25.0,25.0,10.0,10.0) 0
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','TRANSFORMATION')
CALL UIS$CIRCLE(VD_ID,0,6.0,6.0,7.0) H
PAUSE

TR ID=UIS$CREATE TRANSFORMATION(VD ID,-S.O,-s.o,
2 - 17.5,17.5) ~ -

CALL UIS$CIRCLE(TR_ID,0,6.0,6.0,7.0) e
PAUSE

END

The virtual display n and the new transformation space II specify. different
coordinate ranges. You create the circles with calls to UIS$CIRCLE H e;
you substitute the tr_id argument for the vd_id argument in the second call.
The same circle is redrawn with the same world coordinates in the new
transformation space.

8-25

8.6.3

Display Windows and Viewports

Calling UIS$CREATE_TRANSFORMATION

8-26

The graphic objects appear to be superimposed one over the other. If
you manipulate the vdx1 and vdy1 arguments, the size of the arc can
increase or decrease relative to the size of the first circle. In any case, the
arc is mapped to the transformation space, which eliminates the need for
additional CODlputation and coding. Figure 8-12 shows world coordinate
transformation.

Display Windows and Viewports

Figure 8-12 World Coordinate Transformations

EE nWN~III~MfI r !lIN

ZK·4M2·85

8-27

9 General Attributes

9.1 Overview

9.2 Attributes

9.2.1 Attribute Blocks

Chapters 1 through 8 describe UIS output routines that create the basic
structures you use to produce graphic objects. Other types of routines
establish attributes that allow you to enhance the quality of graphic objects
and text. This chapter discusses general attribute routines.

Attributes enhance the appearance of graphic objects and text on the
display screen. You can modify attributes in your program at any time.

All UIS attributes are grouped in a data structure called an attribute block.
You can modify attributes within a given attribute block. Default attribute
settings reside in attribute block O. Table 9-1 lists the categories of attributes
within attribute block O.

Table 9-1 Attribute Block 0

Type Attribute

General Writing mode

Writing color index

Background color

Text Character rotation

Character spacing

Character slant

Character size

Text path

Text slope

Text formatting

Left margin

Right margin

Font

Graphics Line width

Line style

Fill pattern

Arc type

9-1

9.2.2

General Attributes

Table 9-1 (Cont.) Attribute Block 0

Type Attribute

Windowing Clipping rectangle

Modifying General Attributes

9-2

When you modify general attributes, you cannot change the default
attribute settings within attribute block 0 itself. Think of attribute block
o as a template of default settings, a copy of which you modify for use
within your program.

Attribute modification routines contain two arguments:

iatb-Input attribute block number

oatb-Output attribute block number

Table 9-2 lists the default settings of general attributes.

Table 9-2 Default Settings of General Attributes

General Default Modification
Attribute Setting Routine

Background Index 0 UIS$SET _BACKGROUND_'NDEX
index1

Writing Index2 Index 1 UIS$SET _WRITING_INDEX

Writing mode Overlay UIS$SET _WRITING_MODE

1 Background color index in the virtual color map.

2Foreground color index in the virtual color map.

Use the following procedure to modify attributes:

1 Choose an appropriate attribute modification routine.

2 Specify 0 as the iatb argument to obtain a copy of attribute block O.

3 Specify a number from 1 to 255 as the oatb argument. You can then
reference the attribute block in subsequent UIS graphics and text
routines or in any other attribute modification routine.

The following routines reference attribute blocks in the atb argument:

• Graphics and text routines

• UIS$MEASURE_ TEXT

• UIS$NEW _TEXT_LINE

• UIS$SET _ALIGNED _POSITION

9.3 Structure of Graphic Objects
There are three types of graphic objects:

• Geometric shapes, including:

Circles

Ellipses

Points

Lines

Polygons

• Text

• Raster images

General Attributes

Graphic objects are made from a pattern. In memory, the pattern represents
one or more bit settings to 0 or 1 that constitute the actual graphic object.

The VIS writing modes translate the bit settings that constitute these objects
and write them in the virtual display.

Text

In the case of text, a standard character within the default font displayed
on the workstation screen represents the bitmap image of a cell in memory.
The size of the cell depends on the type of font:

• Monospaced fonts-Vse a standard cell size for all letters within the
font; however, the standard cell size varies according to the font you
use.

• Proportionally spaced fonts-V se character cells that vary in width
according to the letter used; character cell height remains constant for
all characters within the font.

The character cell contains the pattern. The remaining bits in the cell are
set to O. All bits within the character cell are significant to VIS writing
modes.

Geometric Shapes

In the case of geometric shapes, only the bit settings that actually compose
the pattern are significant. Bit settings in the pattern can be 0 or 1. For
example, a dotted line represents bit settings of 0 and 1 in a pattern. All
bit settings, both 0 and 1 within this pattern, are significant to VIS writing
modes.

Raster Images

When you draw a raster image, set bits in a bitmap to create text characters
or geometric shapes. For example, VIS$IMAGE and VIS$SET_POINTER_
PATTERN use bitmaps to map rasters to the display screen. All bits in the
bitmap are significant to VIS writing modes. The following table shows the
underlying structures from which graphic objects are created.

9-3

General Attributes

Graphic Object

Text

Geometric shapes

Raster Image

Structure

Character cell

Pattern

Bitmap image of varying size

For a given graphic object, the current writing mode determines how bit
settings in the appropriate structure are displayed. All bit settings of a
particular structure are significant to UIS writing modes. Figure 9-1 shows
graphic objects as structures that UIS writing modes recognize:

• The letter E within a character cell

• A square as a pattern

• A bitmap that contains the letter E, a square, and a vertical dashed line
of double thickness

9.4 UIS Writing Modes

9-4

There are 14 UIS writing modes: transparent, complement copy, copy
negate, overlay, overlay negate, erase, erase negate, replace, replace
negate, bit set, bit set negate, bit clear, and bit clear negate.

Writing modes control how graphics and text routines use foreground and
background colors to display graphic objects. The default writing mode is ~
overlay. ~

Table 9-3 lists each writing mode and its functions.

General Attributes

Figure 9-1 Structure of Graphic Objects

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 000 0

o 0 o 0

o 0

o 0 o
o 0

o 0

o 0 o 0

o 0 o 0

o 0 0 0 000 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

ZK...s21-85

9-5

General Attributes

9-6

Table 9-3 UIS Writing Modes

UIS Writing Modes

Device-Independent

Device-Dependent 1

Function

Displays the current background color for each bit
position no matter what the bit settings are in the
character cell, pattern, or bitmap image.

Displays the current writing color for each bit
position no matter what the bit settings are In the
character cell, pattern, or bitmap image.

Displays the current writing color for bits set to 1
in the character cell, pattern, or bitmap image. All
bits set to 0 have no effect on the existing graphic
object. This is the default writing mode attribute
setting.

Bitwise complements the character cell, pattern, or
bitmap image that is, bits originally set to 0 are now
set to 1 and vice versa.

The bits now set to 1 in the character cell, pattern,
or bitmap image display the current writing color.
The bits that are now set to 0 in the character cell
have no effect on any existing graphic object.

Displays the current writing color for bits set to 1 in
the character cell, pattern, or bitmap image. Bits ~

set to 0 in the character cell, pattern, or bitmap ~

image display the current background color.

Bitwise complements the character cell, pattern,
or bitmap image. The bits now set to 1 in the
character cell, pattern, or bitmap image now display
the current writing color. Bits now set to 0 in the
character cell, pattern, or bitmap image now display
the current background color.

Where the two graphic objects intersect, the bits
in the character cell, pattern, or bitmap image are ~
exclusive .OR.ed with the existing graphic object. ~
Does not alter the display screen.

The bitwise complement of the character cell,
pattern, or bitmap image Is logically .AND.ed with
the existing graphic object and background. On
mapped color systems, where the two graphic
objects intersect, the bitwise complement of the
writing index of the character cell, pattern, or bitmap
image is logically .AND.ed with the pixel values of
the existing graphic object and background.

1 These UIS writing modes produce device-dependent results. Depending on the
specific operation, graphic objects drawn using these writing modes may appear
differently on VAXstation monochrome and color systems.

9.4.1

General Attributes

Table 9-3 (Cont.) UIS Writing Modes

UIS Writing Modes

Device-Dependent 1

Function

On monochrome systems, the bits In the character
cell, pattern, or bitmap image are logically .AND.ed
with the existing graphic object and background.
On mapped color systems, the writing index of the
character cell, pattern, or bitmap image is logically
.AND.ed with the pixel values of the existing graphic
object and background.

The bits in the character cell, pattern, or bitmap
image are logically .0R.ed with the existing graphic
object and background. On mapped color systems,
the writing index of the character cell, pattern,
or bitmap image is logically .0R.ed with the
pixel values of the existing graphic object and
background.

On monochrome systems, the bitwise complement
of the character cell, pattern, or bitmap image is
logically .0R.ed with the existing graphic object
and background. On color systems, the bitwise
complement of the writing index of the character
cell, pattern, or bitmap image is logically .0R.ed
with the pixel values of the existing graphic object
and background.

Displays the character cell, pattern, or bitmap image
without regard to current background and writing
color. On a VAXstation monochrome system, bits
set to 0 are black, and bits set to 1 are white. On
mapped color systems, the writing index of the
character cell, pattern, or bitmap is used directly as
an index.

Displays the character cell, pattern, or bitmap image
without regard to current background and writing
color. On monochrome systems, bits set to 0 are
white and bits set to 1 are black. On mapped color
systems, the bitwise complement of the writing
index of the character cell, pattern, or bitmap image
is used directly as an index.

1These UIS writing modes produce device-dependent results. Depending on the
specific operation, graphic objects drawn using these writing modes may appear
differently on VAXstation monochrome and color systems.

USing General Attributes
General attributes (background color, writing color or foreground, and
writing mode) affect all graphic images on the screen.

9-7

General Attributes .,

9.4.1.1

9.4.1.2

9-8

Programming Options
For application-specific reasons or simply for variety, a program can set
different background and writing colors for different display viewports.

Setting the Background Color

Modifying the background color attribute sets the value of an index into the
color map. Modifying the background color affects how the current writing
mode interprets the bits that compose the graphic object background color.
Set the background color attribute with UIS$SET_BACKGROUND_INDEX.

Setting the Writing Color

Modifying the writing color attribute sets the value of an index into the
color map. Writing color affects the color of the graphic object. Set the
writing color with UIS$SET_ WRITING_INDEX.

Setting the Writing Mode

Writing mode controls how background and foreground colors are used
to 'draw graphic objects in the virtual display. Use UIS$SET_ WRITING_
MODE to specify writing mode.

Program Development I
Programming Objective

To use the default background and writing color attribute settings to draw a
graphic object in each of the UIS device-independent writing modes.

Programming Tasks

1 Create a virtual display.

2 Create a display window and associated viewport.

3 Draw a line using the default overlay writing mode in the virtual
display.

4 Draw a character at the sanle location in each of the UIS writing modes.

5 Use UIS$ERASE to erase graphic objects in the virtual display and use ~
UIS$DELET~_ WINDOW to delete the window.

6 Repeat steps 3 through 5.

The font name MY_FONT_5 is a logical name.

PROGRAM MODE
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,3.0,3.0,6.0,5.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')

CALL UIS$PLOT(VD_ID,O,O.5,1.O,2.0,2.5)

PAUSE

C Erase the object in the virtual display and delete the window
C Display window is deleted in order to change viewport title

CALL UIS$ERASE(VD_ID,O.O,O.p,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE

General Attributes

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','OVERLAY')
CALL UIS$SET_FONT(VD_ID,O,l,'MY_FONT_S')
CALL UIS$PLOT(VD_ID,O,O.S,1.O,2.0,2.S)
CALL UIS$TEXT(VD_ID,1,'D',1.O,2.0)

PAUSE

CALL UIS$ERASE(VD_ID,O.O,O.O,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','OVERLAY NEGATE')
CALL UIS$SET_WRITING_MODE(VD_ID,1,2,UIS$C_MODE_OVERN)
CALL UIS$PLOT(VD_ID,O,0.S,1.O,2.0,2.S)
CALL UIS$TEXT(VD_ID,2,'D',1.O,2.0)

PAUSE

CALL UIS$ERASE(VD_ID,O.O,O.O,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','REPLACE')
CALL UIS$SET_WRITING_MODE(VD_ID,2,3,UIS$C_MODE_REPL)
CALL UIS$PLOT(VD_ID,O,0.5,1.0,2.0,2.S)
CALL UIS$TEXT(VD_ID,3,'D',1.0,2.0)
PAUSE

CALL UIS$ERASE(VD_ID,O.O,O.O,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','REPLACE NEGATE')
CALL UIS$SET_WRITING_MODE(VD_ID,3,4,UIS$C_MODE_REPLN)
CALL UIS$PLOT(VD_ID,O,O.5,1.0,2.0,2.5)
CALL UIS$TEXT(VD_ID,4, 'D', 1.0,2.0)

PAUSE
CALL UIS$ERASE(VD_ID,O.O,O.O,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','ERASE')
CALL UIS$SET_WRITING_MODE(VD_ID,4,5,UIS$C_MODE_ERAS)
CALL UIS$PLOT(VD_ID,O,O.5,1.O,2.0,2.5)
CALL UIS$TEXT(VD_ID,5,'D',1.O,2.0)

PAUSE

CALL UIS$ERASE(VD_ID,O.O,0.O,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE
WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION', 'ERASE NEGATE')
CALL UIS$SET_WRITING_MODE(VD_ID,S,6,UIS$C_MODE_ERASN)

CALL UIS$PLOT(VD_ID,O,O.5,1.O,2.0,2.5)
CALL UIS$TEXT(VD_ID,6,'D',1.O,2.0)

PAUSE

CALL UIS$ERASE(VD_ID,O.O,O.0,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','TRANSPARENT')
CALL UIS$SET_WRITING_MODE(VD_ID,6,7,UIS$C_MODE_TRAN)

CALL UIS$PLOT(VD_ID,O,0.5,1.O,2.0,2.5)
CALL UIS$TEXT(VD_ID,7,'D',1.O,2.0)

PAUSE
CALL UIS$ERASE(VD_ID,O.O,O.O,3.0,3.0)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE

9-9

General Attributes

9-10

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','COMPLEMENT')
CALL UIS$SET_WRITING_MODE(VD_ID,7,8,UIS$C_MODE_COMP)
CALL UIS$PLOT(VD_ID,O,O.5,1.O,2.0,2.5)
CALL UIS$TEXT(VD_ID,8,'D',1.O,2.0)

PAUSE

END

The program MODE sets the writing mode attribute ten times. The letter 0
is placed over the line. Table 9-3 describes the behavior of the UIS writing
modes when text or geometric shapes such as circles are placed on top
of an existing graphic object. Remember, character cells refer to text and
patterns refer to geometric shapes.

NOTE: Before you run the MODE demonstration program, define fonts by
invoking the file DEFFONT.COM in the directory SYS$EXAMPLES: as
follows: @SYS$EXAMPLES:DEFFONT

9.4.1.3

If the documentation pictures do not look the same as those produced with
the demonstration program, adjust the brightness on the terminal screen.

Calling UIS$SET _BACKGROUND_INDEX, UIS$SET _WRITING_INDEX,
and UIS$SET _WRITING_MODE
To illustrate the effects of writing modes, imagine that the character cell is
slowly lowered onto the virtual display containing an existing graphic object
drawn in Overlay mode-a line. As the character cell approaches the plane
of the virtual display, the writing mode of the character cell determines the
final appearance of the graphic object. See Table 9-3 for a description of
each writing mode.

The default background and writing color are in effect as shown in
Figure 9-2.

General Attributes

Figure 9-2 UIS Device-Independent Writing Modes

-

ovef'lay ovef'la~_ne9ate
--------- ----~---~- - ~------ ------

ZK-4543-85

Figure 9-2 Cont'd. on next page

9-11

General Attributes

Figure 9-2 (Cont.) UIS Device-Independent Writing Modes

--

eJ'ase negate
-~--~------ - - - - -- -- ---

/
/

ZK-4544-85 4

Figure 9-2 Cont'd. on next page

9-12

9.4.1.4

General Attributes

Figure 9-2 (Cont.) UIS Device-Independent Writing Modes

tTan5.par'ent
-------===-~--=-===---=---=-=--==----==========---=------==::::--- ~

Program Development II
Programrning Objective

ZK-4S4S-8S

To illustrate the behavior of device-dependent writing modes.

Programming Tasks

1 Create an eight-entry virtual color map containing intensity values.

2 Draw three overlapping circles-one in overlay ~ode and two in bit set
mode.

3 Redraw the same circles-one in overlay mode, one in bit clear mode,
and one ·in bit set mode.

4 Redraw two of the circles in the remaining device-dependent writing
modes. One circle is always drawn in overlay mode.' Both are drawn
with the same writing index.

PROGRAM PLANE_MODES
IMPLICIT ~NTEGER(A-Z)
I~CLUDE 'SYS$LI~~RY:UISUSRDEF'
INCLUDE 'SYS$LIBRARY:UISENTRY'
REAL*4 1_ VECTOR(8) 0
DATA I_VE9TOR/O.O,O.125,O.25,O.375,O.50,O.625,O.75,1.O/ ~
DATA VCM SIZE/8/ ~
DATA INDEX2/2/ e
DATA INDEX4/4/ 0

VCM_ID=UI~$CREATE_COLOR_MAP(VCM_SIZE)

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,40.0,40.0,15.0,15.0,VCM_ID)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')
CALL UIS$SET_INTENSITIES(VD_ID,O, 8, I_VECTOR)

CALL UIS$SET_FONT(VD_ID,O,l,'UIS$FILL_PATTERNS')
CALL UIS$SET_FILL_PATTERN(VD_ID,1, 1,PATT$C_FOREGROUND)

CALL UIS$SET_FONT(VD_ID,O,2,'UIS$FILL_PATTERNS')
CALL UIS$SET_WRITING_INDEX(VD_ID,2,2,INDEX2) m

9-13

General Attributes

9-14

CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_BIS)
CALL UIS$SET_FILL_PATTERN(VD_ID,2,2,PATT$C_FOREGROUND)
CALL UIS$SET_WRITING_INDEX(VD_ID,2,4,INDEX4)

CALL UIS$CIRCLE(VD_ID,1,lS.O,20.0,lO.O) m
CALL UIS$CIRCLE(VD_ID,2,2S.0,20.0,lO.O) ~
CALL UIS$CIRCLE(VD_ID,4,20.0,30.0,lO.O) ~

PAUSE

CALL UIS$SET_WRITING_MODE(VD_ID,4,4,UIS$C_MODE_BIC) no
CALL UIS$CIRCLE(VD_ID,4,20.0,30.0,lO.O)

PAUSE

CALL UIS$ERASE(VD_ID)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_BICN)
CALL UIS$CIRCLE(VD_ID,1,lS.O,2S.0,lO.O)
CALL UIS$CIRCLE(VD_ID,2,2S.0,2S.0,lO.O)

PAUSE

CALL UIS$ERASE(VD_ID)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_BISN)
CALL UIS$CIRCLE(VD_ID,1,15.0,25.0,lO.O) 8D
CALL UIS$CIRCLE(VD_ID,2,25.0,25.0,lO.O) D0

PAUSE

CALL UIS$ERASE(VD_ID)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_COPY)
CALL UIS$CIRCLE(VD_ID,1,15.0,20.0,lO.O) H0
CALL UIS$CIRCLE(VD_ID,2,25.0,20.0,lO.O) ~

PAUSE

CALL UIS$ERASE(VD_ID)
CALL UIS$DELETE_WINDOW(WD_ID)

PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_COPYN)
CALL UIS$CIRCLE(VD_ID,1,15.0,20.0,lO.O) 8m
CALL UIS$CIRCLE(VD_ID,2,25.0,20.0,lO.O) 8m

PAUSE
END

An array C VECTOR is declared to hold the intensity values n. Each
location in the array element is initialized with an intensity value~. The
color map size variable is initialized to the number of color map entries ~.
Color index variables il1dex2 and i11dex4 are initialized a ~.

Three circles are drawn m ~ ~ with three different indices in the virtual
color map-index 1 (the default), index 2, and index 4 ~ 6. The circles
are filled with the current foreground color. The following table lists the
circles, their writing modes and indices, and corresponding intensity ~

values. ~

9.4.1.5

General Attributes

Writing Writing Intensity
Circle Mode Index Value

Overlay 1 0.0

2 Bit Set 2 0.125

3 Bit Set 4 0.375

The three circles are redrawn with circle 3 drawn in bit clear mode m.
In subsequent drawings, only overlapping circles 1 and 2 are redrawn.
Circle 1 is always drawn in overlay mode m 00 (IJ m m, and circle 2 is
drawn in the remaining writing modes m ml WI III m.

Using Device-Dependent Writing Modes
The program PLANE_MODES produces Figures 9-3 through 9-8. In each
figure, the circle on the left(circle 1) is drawn in overlay mode and writing
index 1. The circle on the right (circle 2) is drawn in a different writing
mode with writing index 2. The top circle (circle 3), in Figures 9-3 and 9-4
only, is drawn with writing index 4. The following table lists the writing
indices, their binary value, and binary bitwise complements.

Writing Binary Bitwise
Object Index Value Complement

Background 0 0002 1112

Circle 1 0012 1102

Circle 2 2 0102 10h

Circle 3 4 1002 01h

In Figure 9-3, whenever the circles 1, 2, and 3 intersect, tHeir writing
indices 0012, 0102, and 1002 are logically .OR.ed with the pixel values of
the existing graphic objects and the background. The bit set writing mode
has the effect of combining the value of the bit plane settings of each
object. Therefore, the intersections of the circles are lighter than the rest of
the circles.

9-15

General Attributes

9-16

Figure 9-3 Bit Set Mode

ZK·5485·86

In Figure 9-4, circle 3 is drawn in bit clear mode with a writing index of 4
or 1002. Circle 2. is drawn in bit set mode in writing index 2 or 0112. The
binary bitwise complement of the wdting index of circle 3 is 0112. It is
logically .AND.ed with the pixel values of the existing graphic objects­
circle 1, circle 2, and the background. In bit clear mode, the appropriate
bit plane settings are now changed such that circle 3 appears to blend into
the background of circles 1 and 2.

General Attributes

Figure 9-4 Bit Clear Mode

ZK5486·86

In Figure 9-5, the writing index of circle 2 or 0102 is logically .AND.ed
with the pixel values of the existing circle 0012 and the background 0002 to
produce the pixel value 0002. The appropriate bit plane settings are now
changed such that all of circle 2, including the area of intersection with
circle 1, matches the background.

9-17

General Attributes

9-18

Figure 9-5 Bit Clear Negate Mode

ZK5488·86

In Figure 9-6, the binary bitwise complement of the writing index of the
circle 2 is 1012. It is logically .OR.ed with the pixel values of the existing ~
graphic object and background, which are 0012 and 0002. In bit set negate ~
mode, the appropriate bit plane settings are now changed such that all of
circle 2 is drawn in writing index 5.

Figure 9-6 Bit Set Negate Mode

ZK·5487·86

General Attributes

Figure 9-7 Copy Mode

ZK·5489·86

In Figure 9-7, the writing index of circle 2 is used as the index in the
virtual color map to draw the circle, regardless of existing graphic objects
or background.

In Figure 9-8, the binary bitwise complement of the writing index of circle
2 1012 is used as the index into the virtual color map to draw the circle
regardless of existing graphic objects or background.

9-19

General Attributes

Figure 9-8 Copy Negate Mode

ZK·5490·86

9-20

General Attributes

9.5 Using UIS$SET_PLANE_MASK

9.5.1

9.5.2

UIS$SET _PLANE_MASK gives the experienced UIS programmer an
extra level of control over the video output on 4- and 8-plane machines.
Specifically, it allows the progralnmer to tell the hardware which planes
should and should not be affected by various UIS output routines such as
UIS$ELLIPSE, UIS$PLOT, and UIS$TEXT.

NOTE: Use of the plane mask without proper coordination of color resources can
result in unexpected results.

Video Memory
The video memory that is used to store and display what you see on your
screen is divided into planes. For the purpose of discussing the plane
mask, think of each plane as a layer of video memory. For example,
a monochrome workstation has one plane or ,one layer of memory; an
8-plane color or grey scale workstation has eight layers of video memory.

Each plane or layer of video memory contains one bit for every pixel
location on your screen (864xl024 pixels).l Each bit can be either off or
on, with a value of 0 or 1 respectively. A monochrome workstation has one
plane of video memory and is capable of displaying output in two colors:
black and white. All bits in video memory that are set to 1 are displayed
white, and all bits that are set to 0 are displayed black.

Color workstations have either four or eight planes of video memory.
Again, each plane covers the entire screen and contributes one bit to every
pixel on the screen. For instance, each pixel on a 4-plane workstation
comprises four bits-one bit from each of four planes.

A monochrome (bitonal) workstation can display only two colors because
it has only one plane of video memory that represents values from zero 'to
one. Color workstations have more planes and can therefore display more
colors. A workstation can actually display 2planes colors simultaneously. A
single pixel on a 4-plane workstation comprises four individual bits-one
bit from each of four planes-for a total of 24 or 16 possible values.

Color Maps and Color Map Allocation
For the purposes of describing color maps and color map allocation, this
section assumes a 4-plane workstation with a hardware color map size of
16.

Use the UIS$CREATE_COLOR_MAP routine to create virtual color maps.
When you create a virtual color map, UIS rounds the size you request
up to the nearest power of two. If you specify a color map of size 3,
UIS actually allocates enough space for a color map of size 4. UIS binds
this virtual color map to the hardware color map only at multiples of the
adjusted color map size. In the case of the 3-entry color map, adjusted to

1 A plane of video memory is actually larger, as it also encompasses offscreen memory not visible to the user. The value
864 x 1024 refers only to the visible onscreen memory.

V4.1-June 1989 9-21

9.5.3

9.5.4

General Attributes

Color Indexes

Plane Mask

4, UIS attempts to bind your virtuaJ co1or map to the hard"\lare color map
at integral nlultiples of four, which gives either 0, 4, 8, or 12 as possible
binding locations.

By rounding virtual color map sizes to a power of two and binding your
virtual color map only to integral multiples of its adjusted size, UIS
guarantees that your color map will always reside on a plane boundary
and that it will always span an integral number of planes. Your virtual color
map actually uses a number of planes equal to the log2 map_size, where
map_size is the adjusted map size as described above.

When you use the plane mask, it is most important to remember that UIS
does not write or draw with a color; rather, it writes with an index-your
writing index. For instance, if your writing index is five, you will be writing
the binary value 101 to your screen. It is immaterial which color resides at
color map entry number five. If the color is red, a binary value of 101 will
be written. If the color is green, a binary value of 101 will still be written to
your screen.

In simple terms, the plane mask provides a means to write-protect
individual planes of video nlemory for a given drawing operation. The
plane mask value is a binary value, where each bit in the value represents
a single plane of video memory. Specifying a one for any single bit
within the plane mask value enables writing to the corresponding plane.
Specifying a zero disables writing to the corresponding plane. A plane
mask of 10102 indicates that you are writing to planes one and three but not
to planes zero and two. A plane mask of all ones allows you to write to all
planes. A plane mask of all zeros disables writing completely.

The plane mask value is sent to the driver along with your writing index.
According to the specified plane mask, the driver tells the hardware which
planes to write to.

NOTE: Planes that are not written to retain their current values.

9-22

When you write to an arbitrary location on the screen, if your index is
10102, your mask is 11002, and the contents of that location equal 11112,
then you can use the following equation with binary numbers to determine
the final result:

result = (index .AND. mask) .OR. (contents .AND. (.NOT. mask))
(1010 .AND. 1100) .OR. (1111 .AND. (.NOT. 1100))
1000 • OR. (1111 • AND . (0011))
1000 • OR. 1011
1011

The result is that you overwrite the upper two bits of the position with the
upper two bits of your writing index.

V4.1-June 1989

9.5.5

General Attributes

When you can UIS$SET_PLANE_MASK and Rpeci~ a plane mask value,
UIS adjusts the value, retaining only the portion that is relevant to the
virtual color map you are using. For instance, if your color map has an
adjusted size of eight, it has log28 or three planes. In other words, you
need three bits to specify a writing index in the range 0002 to 1112, and
only three bits are relevant when you specify a plane mask value, because
your color map spans three planes. UIS clears all bits that are not relevant.
When you call UIS$GET _PLANE_MASK, the value returned will be the
adjusted value.

If you do not explicitly call UIS$SET _PLANE_MASK, UIS uses a plane
mask of all ones within the range of your color map, which tells the driver
that writing is to occur on all planes.

Plane Mask Example

1 Given a four-entry virtual colormap filled with the colors black, red,
green and blue, you might use the following series of calls to create
your color map, populate it with the appropriate color values, and
create a window in which you will draw.

vcm_id := uis$create_color_map (4);
vd_id := uis$create_display (0.0,0.0,20.0,20.0,20.0,20.0,vcrn_id);

uis$disable_display_list (vd_~d)1

{ fill in color map }

uis$set color (vd_id, 0, 0.0,0.0,0.0);
uis$set=color (vd_id, 1, 1.0,0.0,0.0);
uis$set_color (vd_id, 2, 0.0,1.0,0.0);
uis$set_color (vd_id, 3, 0.0,0.0,1.0);

wd_id := uis$create_window (vd_id,'sys$workstation');

2 Prepare to draw a red triangle, a green filled circle, and a line of blue
text within the window, by using a different ATB number for each
object.

{ atb setup for a red triangle, use atb 1 }

uis$set_writing_index (vd_id, 0, 1, 1);

{ atb setup for a green filled circle, use atb 2 }

uis$set writing index (vd_id, 0, 2, 2);
uis$set=font - (vd_id, 2, 2 'uis$fill_patterns');
uis$set_fill_pattern (vd_id, 2, 2, patt$c_foreground);

{ atb setup for some blue te:-:t, use atb 3 }

uis$set_writing_index (vd_id, 0, 3, 3);

3 Call the various output routines actually needed to draw the objects
using the ATBs you have provided. The segment of code below also
sets the plane mask to show you how this will affect the output.

V4.1-June 1989 9-23

9.5.6

I

General Attributes

for i := 3 downto 0 do begin
for j := 1 to 3 do begin

uis$set_plane_mask (vd_id, j, j, i);
end; { for }

uis$plot (vd id, 1, 5.0, 5.0, 7.5, 15.0, 10.0, 5.0, 5.0, 5.0):
uis$circle (~d_id, 2, 10.0, 10.0, 7.5);
uis$text (vd_id, 3, 'this is blue text.'; 9.0, 10.0);

lib$pause;
uis$erase (vd_id);

end; { for }

NOTE: Remember, you are not drawing with the colors red, green, or blue.
Rather, you are using the index for these colors (1, 2, and 3 respectively).
When UIS draws your objects into the window, it draws in an index rather
than in a color.

The program should loop four times and produce the following results:

1 The first time through, the expected results should occur: a red
triangle, a green circle, and some blue text.

2 The second time, the plane mask is set to 102. This plane mask is
.AND.ed with the writing index and clears the lower bit of the writing
index. A writing index of 012 now becomes 002, and produces no
triangle. A writing index of 102 stays as it is and produces the same
green circle. A writing index of 112 becomes 102, which makes the blue
text appear in green.

3 The third time, the plane mask is set to 012' This plane mask is
.AND.ed with the writing index and clears the upper bit of the writing
index. A writing index of 012 remains the same, producing the red
triangle. A writing index of 102 becomes 002 and produces no circle. A
writing index of 112 becomes 012, which makes the blue text appear in
red.

4 The fourth time, the plane mask is set to 002' This plane mask is
.AND.ed with the writing index and clears both bits in our writing
index, which disables drawing altogether. .

Plane Mask Demo

9-24

The following demo program is included with the other demonstration
programs on your VWSDEMO kit.

V4.1-June 1989

General Attributes

program planemask
c **
c * *
c * COPYRIGHT @ 1989 BY
c * DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
c * ALL RIGHTS RESERVED.
c *

*
*
*
*

c * THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
c * ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
c * INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
c * COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
c * OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
c * TRANSFERRED. *
c *
c *
c *
c *

THE INFORMATION IN THIS SOFTWARE IS
AND SHOULD NOT BE CONSTRUED AS
CORPORATION.

SUBJECT TO CHANGE WITHOUT NOTICE
A COMMITMENT BY DIGITAL EQUIPMENT

*
*
,*
*

c * *
c * DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
c * SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
c *
c *

*
*
*

c **
c
c This program demonstrates how you can use a plane mask in the
c most general sense. It has some checks for inconsistent
c information but generally is fairly straightforward.
c

implicit integer (a-z)
include 'sys$library:uisentry'
include 'sys$library:uisusrdef'

real
real
integer*4
integer*4

xl, y1, x2, y2, width, height
red, green, blue
vcrn id, vcrn size, vd. id, wd_id, iatb, oatb
ind~x, rnask~ origmask

c ---
c First, this asks to get a color map size, theri it asks the user
c to fill the color map. If you choose a large color
c map, you will be stuck entering in many values.

c ---
print *, 'Enter the color map size :'
accept *, vcm size
if (vcrn_size :It. 2) vcm_size 2
if (vcm_size .gt. 256) vcrn_size 256
vcm_id = .uis$create_color_rnap (vcrn_size

c ---
c Create the display after being informed that there is a private
c color map. Set up the sizes to control
c how the output will look.

c ---
xl 0.0
y1 0.0
x2 100.0
y2 100.0
width = 20.0
height 20.0
vd_id = uis$create_display
1
:2
3

xl, y1,
x2, y2,
width, height,
vcm_id)

V4.1-June 1989 9-25

General Attributes

c ---
c Ask the user to input all the color map entries. Remember that
c the indexes of the color map go from 0 to the VCM_SIZE - 1.

c ---
print *, 'Enter a Red, Green, and Blue floating point number'
print *, '(number between 0.0 and 1.0) value for each color'
print *, 'index'
print *,
print *, vcm_size
do i - 1, vcm size

accept *,-red, green, blue
call uis$set_color (vd_id, i-1, red, green, blue)

end do

c ---
c Create a window after the color map has been loaded.

c ---
wd id
1 -
2

uis$create_window vd_id,
'sys$workstation',
'Plane Mask Demostration')

c ---
c Set a font to be used in writing text.

c ---
iatb - 0
oatb :II 1
call uis$set_font
1
2

vd id,
iatb, oatb,
'DTABEROM060KOOGG0001UZZZZ02AOOO')

c ---
c Set a line width wide enough to see itl

c ---
call uis$set_line_width (vd_id, oatb, oatb, 5.0)

c ---
c Get the default plane mask. This value is used during
c the reset of the window.

c ---
origmask - uis$get_plane_mask (vd_id, oatb)

c ---
c This is basically a loop that resets the window, then
c asks for two things: a color map index (1 - VCM_SIZE), and
c a plane mask.

c ---
100 call uis$set_plane_mask (vd_id, oatb, oatb, origmask)

call uis$erase (vd_id)

print *,
print *, 'You are now allowed to choose which color index that'
print *, 'will be drawn with all the planes being active. The'
print *, 'index you choose should be from 1 to the size of the'
print *, 'color map that you chose earlier'
print *,
print *, 'Which index would you like to use?
accept *, index
if (index .gt. vcrn_size) index = vcm_size

c ---
c Remember the indexes go from 0 to VCM_SIZE-1.

c ---
index = index - 1
if (index .It. 1) index = 1
if (index .gt. vcrn_size) index = vCIn_size

c ---~--------.--------
c Set the writing index to what the user wants.

c ---
call uis$set_writing_index (vd_id,
1 oatb, oatb,
2 index)

9-26 V4.1-June 1989

c ---
c Draw a line with all planes, using the index desired.

c ---
call uis$text (vd id, oatb,
1 'Original line without plane mask',
2 5.0, 25.0)

call uis$line (vd_id, oatb,
1 10.0, 20.0,
2 80.0, 20.0)

print *,
print *, 'The writing index rema~n~ng constant, now you can'
print *, 'choose to mask out any planes you desire. Note'
print *, 'what happens to the color of the line if the mask'
print *, 'you choose logically ANDed with the writing index'
print *, 'chosen changes the value of the writing index'
print *,
print *, 'What would you like to set your plane mask to'
accept *, mask

call uis$text (vd id, oatb,
1 'LIne with a plane mask set:',
2 5.0, 65.0)

call uis$set plane mask (vd id, oatb, oatb, mask)
call uis$lin~ (vd=id, oatb~
1 10.0, 60.0,
2 80.0, 60.0)

c ---
c Find out if the user wants to see it again.

c ---
print *, 'Would you like to try another combination'
print *, '(type 1 for YES, 0 for NO)'
accept *, i
if (i .eq. 1) goto 100

c ---
c If not, exit.

c ---
end

V4.1-June 1989

General Attributes

9-27

10

10.1

10.2

Text Attributes

Overview
UIS draws characters in the virtual display according to font specifications.
The appearance or shape of characters remains unaltered until you change
a text attribute. Likewise, UIS draws characters and character stJ;'ings at
user-specified locations within the coordinate space. This orientation
within the coordinate space does not change until you execute an attribute
modification routine.

Character and character string shape orientation spacially define how
UIS draws these objects on the display screen. You can use text attribute
modification routines to alter the appearance of characters and character
strings or to redefine the spatial relationship of a character to other
characters. This chapter discusses the following topics:

• Structure of text

• Text attributes

• Default text attribute settings

Structure of Text
The underlying structure of a single character is a character cell. Every
character drawn on the display screen is contained in a character cell.
Figure 10-1 illustrates a character cell and its reference points.

10.2.1 Monospaced and Proportionally Spaced Fonts
For text drawing purposes, fonts are either monospaced or proportionally
spaced. Monospaced fonts use a standard character cell size for eac~
character in the font. The character cells of proportionally spaced fonts
vary in width for each font character, although the height of each cell is the
same for each font character. Figure 10-2 shows the two types of fonts.

The character cell is a bitmap whose settings are mapped to the display
screen as a character.

10-1

Text Attributes

10.2.2 Lines of Text

10-2

Figure 10-1 Character Cell

o 0 0 0 0 0 0 0

000 0 0 0 0 0

o 0 0 0 0 000

000 0 0 0 0 0

000 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 000

o 0 0 0 0 0 0 0

000 0 0 0 0 0

o 0 0 0 0 000

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

00000 0 0 0

Baseline Point 0 0 0 0 0 0 0 0

Top of Character Cell

/

Up Vector

Baseline Vector

Figure 10-2 Monospaced and Proportionally Spaced Characters

Character Cells

o 0 0 0 0 0 o 0 0 0 0 0 0
Top of

Character Cell

o 000 0 0 0 0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 000 0 0 000

000 000 0 0 0 0 0 0 000 0

000 0 0 0 0 0 0 0 0 0 0 0 0 0

000 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0

o 0

o 0

o 0

o 0

o 0

o 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o
o
o
o
o

Character Cells

000 000 0 0 0 0 0 0 0 0 0 0

0000000000000 0 0 0

Baseline Vector
Monospaced Font Proportionally Spaced Font

ZK·5280-86

Lines of text (for example, within a paragraph) share a spatial relationship
with other lines of text. Ordinarily, you read lines of English text from left
to right. Your eyes trace an imaginary path across the page from the left ~
margin to the right margin. When you reach the end of a line, you read the
next line below the current one.

Text Attributes

By default, UIS draws a line of text in this left-to-right direction called the
default major path. To begin a new line of text, UIS performs a secondary
downward movement called the default minor path. This path is the normal
relationship between lines of English text and the direction in which they
are drawn. Figure 10-3 illustrates the two default paths that UIS uses to
draw text.

Figure 10-3 Text Path

Default I
Minor
Path

10.2.3 Character Strings

Default
Major Path

a
a

night
day at

•
at the opera

the zoo
ZK·5467·86

Characters within character strings share a spatial relationship with one
another.

Text Slope

UIS draws all character string characters at the same angle to the major
path. The actual path of text drawing is a line that contains the baseline
points of all character cells in a character string. The angle between the
actual path and the major path, measured counterclockwise, is called the
angle of text slope. UIS can draw text at any angle from 0 to 360 degrees.
Figure 10-4 shows how to manipulate text slope.

Text Margins

UIS draws character strings along the actual path of the text drawing within
certain explicit or implicit boundaries called margins. The implied text
margin for all text output is the minor text. path when the angle of text
slope is 0 degrees. The programming interface lets you set explicit text
margins that are always parallel to the implied margins.

Character Spacing

Use x and y spacing factors to increase space uniformly between characters
and lines throughout the character string. The size of the characters
remains constant, while space between them increases or decreases.

"--~

Figure 10-5 shows how text path affects character spacing.

10-3

Text Attributes

10-4

Figure 10-4 Text Slope

Actual Path -
Default Major Path

L a=O·

\

() (J () () 0

() ()

La = Negative Text Slope

'0 (J (J

() (J () () 0 (J

() () () () () ()

o (J (J

o () () (} (J

\
Default Major

Path

Figure 10-5 Character Spacing

o 0 0 0 o
o 0 0 0 0 0 0

o 0 0 0 0 000

o 0 0 0 0 000

o a 0 0 0 000

o 0 0 0 0 000

o 0 o 0

o 0 o 0

o 0 o 0

o 0 o 0

o 0 o 0

o 0 o 0

o 0 o 0

000 o 0 0

Text Attributes

o 0 0 0 0 0 0

o 0 0 0 0 000

o 0 000 0 0 0

o 0 0 0 0 000

o 0 0 0 0 000

o 0 0 0 0 000

o 0

o 0

o
o 0

o 0

o 0

o 0

o 0 0 0 0 0 0 O.r--__ - ____ O 0 0 0 0

Default
Minor path\

o 0 0 0 0 000

o 0 0 0 0 000

o 0 0 0 0 000

o 0 0 0 0 000

000 0 000

o 0 0 0 0 000

o 0

o 0

o 0

o 0

o 0

o 0

o 0

o 0 0 0 0 0 0

o 0 0 0 000 0

x Spacing

y Spacing

Figure 10-5 Cont'd. on next page

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0

0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

Default
Actual _ Major
Path - Path

0

0

0

iJ
0

0

0

0

0

0

0

0

0

0

0

ZK·5356-86

10-5

Text Attributes

10-6

Figure 10-5 (Cont.) Character Spacing

Major
Path

o 0 000 o 0 0

0 000 o 0 0 0

o 0 o 0 0 0 0 0

0 o 0 0 o 0 0 0

o 0 0 0 0 0 0 0

o 0 o 0 0 0 0 0

0 0

0 0

o 0

o 0

o 0

o 0

o 0

000 0 0 000

o 0 0 0 0 0 0 0

/ y Spacing

0

0

0

0

0

0

0

0
Baseline

Point 0

0

0

0

0

0

o 0 o 0 o 0 0

0 0 o 0 o 0 0

0 0 o 0 0 0 0

o 0 o 0 o 0 0

0 0 o 0 0 0 0

o 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 o 0 0

0 0 0 o 0 0

0 o 0 o 0 0

0 o 0 o 0 0

0 0 0 o 0 0

0 0

o 0 o 0 o 0 0

0 0 o 0 o 0 0

o 000 0 0 0 0 000 0 0 000

o 000 0 0 0 0 0 0 0 0 0 000

o 000 0 0 0 0 0 0 0 0 0 0 0 0

o 0 0 0 000 0 000 0 0 000

o 000 0 0 0 0 0 000 0 0 0 0

00000000 00000000

o 0 0 0

o 0

o 0

o 0

o 0

o 0

o 0 __

o 0 0 0 0 0 0 0

o 0 0 0 0 000

x Spacing

o 0 0 0 0 0 0 0

000 0 0 000

Minor
Path

Text Formatting

Use justification to arrange character strings on a line as follows:

• Flush against the left margin

• Flush against the right margin

• Centered between margins

• Both right and left justified (fully justified)

ZK·5357-86

10.2.4 Character Cell

Text Attributes

Character cell components share a spatial relationship with one another.
You can change orientation and shape of a single character cell in the
virtual display through character rotation, slanting, and scaling. When
you modify these attributes, you alter the character cell with respect to
its baseline vector. For example, if you modify the height of a scaled
character, its height-relationship changes. The resulting letter might appear
"squat" or vertically elongated.

Rotating Characters

You can rotate a single character around its baseline point. The angle of
character rotation is the angle between the baseline vector and the actual
path of text drawing, measured counterclockwise. Figure 10-6 shows
simple character cell rotation.

Figure 10-7 shows simultaneous character rotation and text slope
manipulation.

10-7

Text Attributes

10-8

Figure 10-6 Simple Character Rotation

o 0 0 0 0 o 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 o 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0000000 0

o 0 0 0 0 000

o 0 0 0 000

o 0 0 0 0 000

Baseline Vector
and

Actual Path

Baseline Point

o
o

o
o

o

o

L /J - Negative Character Rotation

Baseline Vector

o 0
o 0
o 0

o 0
o 0
o 0

o 0
o 0

o 0
o 0

o 0
o 0

o 0
o 0
o 0

o 0
o 0

o 0

O
0 0 0

o 0
o 0 0 0

0
00 0

o 0
o 0 0 0

0
00 0

o 0
o 0 0 0

O
0 0 0

o 0
o 0 0 0

0
00 0

o 0
o 0 0 0
00000

000

o 0
o 0

000

o 0
o

o 0

Actual Path

L {J - Positive Character Rotation

ZK·5277"

Text Attributes

Figure 10-7 Character Rotation with Slope Manipulation

Baseline Point

0 0 o 0 o 0 0 0

0 000 o 0 0 0

0 0 o 0 o 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 o 0 /)

0 000 0 0 0 0

0 000 000 :/ 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0

o 0 000 0 0 0 0 000 000 0

o 0 0 0 0 000 o 0 0 0 o d 0 0

o 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0

o 0 0 0 0 0 0 0 o 0 0 0 0 000 000 0 000 O.

00000000/ 0000 0000 o 0 000 000

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 000

o 0 0 0 0 0 0 0

000 000 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 /,0 0 0 0 0 0 0 0 •

o 0 0 000 0 0 ~ 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 a
o 0 0 0 0 a 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 000

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

Default Major Path

000 0 0 0 0 0

Figure 10-7 Cont'd. on next page

10-9

Text Attributes

10-10

Figure 10-7 (Cont.) Character Rotation with Slope Manipulation

Baseline Point

_ Q = Angle of Text Slope
'- {3 = Angle of Rotation

\._v
of Character Cell

Default Major Path

ZK·527J.86

When you set the character rotation attribute to 0 and text slope is 0
degrees, the angle of character rotation behaves in the following manner.

Slope Major Rotation
(degrees) Path (degrees)

0 Left to right (default) 0

0 Bottom to top -90

0 Right to left -180

0 Top to bottom -270

Figure 10-8 illustrates the appearance of the angle of rotation after text path
modification when default character rotation is in effect.

4

Text Attributes

Figure 10-8 Text Path Manipulation Without Character Rotation

o 0 000 0 0 0 o 000 0 000

o 0 000 0 0 0 o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0

o 0 0 0 0 000 o 0 0 0 0 000

o 000 0 000 o 0 0 0 0 000

o 0 0 0 0 0 0 0 o 0 0 0 0 000

Baseline POint 0 0 0

\:
----....... --lL~~..l!-~~~~,___---~-lL.~....!L....JL.i~..!L-.lL.._ ---__.Angle of Slope = La = 0°

LEFT

o 000 0 000 o 000 0

Actual Path = Default Major Path

I
Baseline Vector = Actual Path

L {3 = 0°

Figure 10-8 Cont'd. on next page

Baseline Vector

RIGHT

ZK·535M16

10-11

Text Attributes

10-12

Figure 10 8 (Cont.) Text Path Manipulation Without Character
Rotation

TOP Angle of Slope = Q = 00

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 000 0 000

o 0 0 0 0 0 0 0

o 0

o 0

o 0
Baseline

P"'"t\ o 0

o 0 o 0

0 o 0

0 o 0

o 0 0 0 0 0 0 0

Actual Path = 0 0 0 0 0 0 0 0
Major Path

o 0 o 0 0 0 o 0

o 0 0 0 0 0 o 0

o 0 0 0 o 0 o 0

o 0 o 0 o 0 0 0

000 o 0 0 0 0

o 0 o 0 0 0 0 0

o 0

000 o 0 o 0

000 o 0 o 0

000 o 0 o 0

000 o 0 o 0

000 o 0 o 0

o 0 o 0

000 000 o 0

000 o 0 000

BOTTOM

Actual Path =

Major Path \

Baseline Point

\

Figure 10-8 Conl'd. on next page

{J

Baseline Vector J... Actual Path
L. {J= -900

\
Baseline Vector

ZK·5361·86

Text Attributes

Figure 10-8 (Cont.) Text Path Manipulation Without Character
Rotation

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 000

o 0 0 0 0 000

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

Angle of Slope = L (l = 0°

LEFT

..

Figure 10-8 Cont'd. on next page

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 000

o 000 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o It'!?If,I~I;ij,lll\!I'I!IJf~!~l! 0 0

000 0 000

000 0 0 0 0

0000000

000 0 000

000 0 0 0 0

000 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

Actual Path ~ Major Path

L /3= -180°

Baseline Vector

RIGHT

ZK-5358-86

10-13

Text Attributes

10-14

Figure 10-8 (Cont.) Text Path Manipulation Without Character
Rotation

Actual Path -
Major Path

Baseline Point

o 0 o 0 0 0 0 0

o 0 o 0 o 0 0 0

o 0 000 000

o 0 o 0 0 0 0 0

o 0 0 0 000 0

o 0 o 0 0 0 0 0

o ·0

000 o 0 o 0

o 0 0 0 000 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

o 000 0 0 0 0

o 0 0 0 000 0

o 0 0 0 0 0 0 0

Angle of Slope - L Q - 0°

Slanting Characters

TOP

Baseline Vector

BOTTOM

Baseline Vector .L Actual Path
L{j- -270°

Character slant is a measure of the angle between the up vector and
baseline vector of the character cell. Character slant is 0.0 when this angle·
is 90 degrees. As slant increases, the up vector rotates clockwise toward
the baseline vector, until the two vectors coincide at a slant of 90 degrees.
Figure 10-9 shows a slanted character cell where the actual path and the
default major path form an angle of 0 degrees.

Text Attributes

Figure 10-9 Character Slanting

- +
~O"~

o 0 0 o 0

0 0 0 0 0

0 0 o 0 0

o 0 0 0 0

0 0 0 o 0

0 0 o 0 0

0 0 000
Up Vector

o 0 o 0 0

0 0 o 0 0

0 0 0 0 0

0 0 0 o 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Baseline Vector

o 0 0

0 0 0

o 0 0

o 0 0

o 0 0

0 0 0

o 0 0

000

000

000

000

000

000

000

000

o a a 0 0 0 0

L 9 - Negative Character Slant

000 0

o 0 0 0

o 0 0 0 0 0

000 0 000 0

o 0 0 0 0 000

o 0 0 0 0 0 0 0

o 0 0 0 0 000

o 0 0 0 0 0 0 0

000 000 0

o 000 0 0

o 0 0 0

o 0 0 0

o 000

o 0 0 0

00000 L 9 - Positive Character Slant

Figure 10-10 shows character slanting, character rotation, and text slope
operations performed simultaneously on two character cells.

10-15

Text Attributes

10-16

Figure 10-10 Character Slanting and Rotation with Slope
Manipulation

o 0 0 0 0 0 0 0

000 0 a 0 0 0

0000000 0

o 0 0 0 0 0 0 0

000 000 0 0

o 0 0 0 0 0 0 0f-_---I~_-.....-..

000 0 0 000

o 0 0 0 0 0 0 0

Figure 10-10 Cont'd. on next page

Baseline Vector

Default Major Path

Text Attributes

Figure 10-10 (Cont.) Character Slanting and Rotation with Slope
Manipulation

Actual Path

L Q z Angle of Text Slope
L /3 a Angle of Character Rotation
LOa Angle of Character Slant

Scaling Characters

"'" Default MajOr Path

Character scaling involves increasing or decreasing the size of the character
cell. Scaling factors specify the world coordinate space where the scaled
character is drawn. The character cell is expanded or contracted to fit the
specified space.

Figure 10-11 illustrates character scaling.

10-17

10.3

Text Attributes

Figure 10-11 Character Scaling

o 0 0 0 0

o 0 000

o 0 000

o 000 0 0 0 0

o 0 000 000

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

000 0 0 0 0 0

o 0 0

000 0 000

o 0 0 0 000

000 0 000

o 0 0 0 000

o 0 0 0 000

000 0 000

o 0 0

o 0 000 0 0 0

o 0 0 0 0 0 0 0

ZK·5360-86

Using Text Attributes

10-18

Several attributes are associated with text output. You can do more than
simply choose from a library of fonts. For example, you can perform the
following operations:

• Use scaling and slanting to modify the appearance of any font

• Use formatting modes and paths to change the way the system draws
text in the virtual display

The following table lists routines that provide other types of text
manipulation.

Routine

UIS$SET _ALIGNED_POSITION

UIS$SET _POSITION

Function

Moves the current text position along the
minor text path

Sets the current text position at the upper­
left corner of the character cell

Sets the current text position at the baseline
pOint of the character cell

These routines contain an atb argument, which indicates that appropriate
text attribute settings can modify their behavior.

Text Attributes

10.3.1 Modifying Text Attributes
When you modify text attributes, you do not change the default attribute
settings within attribute block 0 itself. Think of attribute block 0 as a
template of default settings; you modify a copy of this attribute block
for use within your program. Attribute modification routines contain two
arguments:

• iatb-Input attribute block number

• oatb-Output attribute block number

Table lO-lUsts all text attributes and their default settings.

Table 10-1 Default Settings of Text Attributes in Attribute Block 0

Text
Attribute

Character rotation

Character size

Character slant

Character spacing

Text formatting

Text margins

Text path

Text slope

Font

Default
Setting

0.0

Specified by the font

0.0

0.0,0.0

Normal

0.0,0.0

Left to right (default
major path)
top to bottom (default
minor path)

0.0

Multinational ASCII,
14-point, fixed pitch

Modification
Routine

UIS$SET _CHAR_ROTATION

UIS$SET _CHAR_SIZE

UIS$SET _CHAR_SLANT

UIS$SET _CHAR_SPACING

UIS$SET _TEXT_FORMATTING

UIS$SET _ TEXT_MARGINS

UIS$SET _TEXT_PATH

UIS$SET _TEXT_SLOPE

UIS$SET _FONT

Modify attributes as follows:

1 Choose an appropriate attribute routine.

2 Specify 0 as the iatb argument to obtain a copy of attribute block o.
3 Specify a number from 1 to 255 as the oatb argument. You can then

refer to the attribute block in subsequent UIS graphics and text routines
or in any other attribute modification routine.

The following routines reference modified attribute blocks in the atb
argument.

• Graphics routines

• Text routines

• UIS$MEASURE_ TEXT

• UIS$NEW _TEXT_LINE

These routines are discussed later in this chapter.

10-19

10.4

Text Attributes

Programming Options

10-20

You can modify text attributes in your application to change font type,
margin settings, and character spacing.

Fonts

Use UIS$SET _FONT to change the font type of a line of text. You must
specify th~ desired font file name in the font_id argument. Font files reside
in the directory SYS$FONT. The directory contains one file of fill patterns
(UIS$FILL_PATTERNS) and 26 font files. You can choose between two
types of fonts:

• Multinational character fonts - Contain international alphanumeric
characters, including characters with diacritical marks.

• Technical fonts - Include scientific and mathematical symbols.

Font File Names

A standard 31-character file name identifies each font file as follows:

DTERMINM060KOOPG0001UZZZZ02AOOO

The following table defines the first 16 bytes of this sample file name,
which represents unique font specifications.

Field

2-7

8

9-11

12

13-14

15
16

Field Name

Registration
code

Type family 10

Spacing

Type size

Scale factor

Style

Weight

Proportion

Value Meaning

0 Registered by Digital

TERMIN Terminal

M36 13 pitch (monos paced)

06036 24 points (240 decipoints)

K 1 (normal)

0036 Roman

P Bold

G Regular

Refer to Appendix Appendix C for more information about UIS fonts.

NOTE: You can define logical names to represent font file names.

Font File Types

The following table lists sample font file names and their device-dependent
font file types.

System

Monochrome

Intensity or color

Font File Name

lVIutinational Character Set Fonts

DTERMINM060KOOPG0001 UZZZZ02AOOO.VWS$FONT

DTERMINM060KOOPG0001 UZZZZ02AOOO.VWS$VAFONT

Text Attributes

System Font File Name

Technical Character Set Fonts

Monochrome DVWSVTOG03CKOOGG0001 QZZZZ02AOOO.VWS$FONT

Intensity or color DVWSVTOG03CKOOGG0001 QZZZZ02AOOO.VWS$VAFONT

NOTE: Whenever you reference a font file name as in UIS$SET_FONT, do not
specify the directorySYS$FONT or the file type.

Setting the Text Margins

Use UIS$SET_TEXT_MARGINS to set the left and right margins.

Setting the Text Formatting. Mode

Use UIS$SET_TEXT_FORMATTING to set the four text formatting modes­
left justification, right justification, center justification, and full justification.

NOTE: UIS$SET_TEXT_FORMATTING does not automatically wrap long lines of
text.

Setting the Character Spacing

Use UIS$SET_CHAR_SPACING to change the kerning (spacing between
characters) or the leading (spacing between lines).

New Text Lines

Use UIS$NEW _TEXT _LINE to move to a new line. Use UIS$SET _ CHAR_
SPACING in conjunction with UIS$NEW _ TEXT_LINE to manipulate the
space between the old and the new line.

Character Rotation

Use UIS$SET_CHAR_ROTATION to rotate characters about a pivotal point
(called the baseline point) from 0 to 360 degrees.

Aligning Text Along the Baseline and Top of Chararcter Cell

Use UIS$SET_POSITION to align text along the baseline vector; use
UIS$SET _ALIGNED _POSITION to align text along the upper-left corner of
the character cell.

Specifying Character Slant

Use UIS$SET _ CHAR_SLANT to specify the angle relative to the text
baseline vector by which text is to be slanted.

Specifying Character Scaling

Use UIS$SET_CHAR_SIZE to specify the width and height of characters in
a font.

Specifying Slope of the Text Baseline

Use UIS$SET_TEXT_SLOPE to specify the angle of the actual path of text
drawing relative to the major path.

10-21

Text Attributes

Specifying the Text Path

Use UIS$SET_TEXT_PATH to specify the direction of text drawing. You
can draw text in four directions:

• Left to right

• Right to left

• Bottom to top

• Top to bottom

You must use the direction in the context of a major text drawing path
and a minor text drawing path. The major path of text drawing is the
relationship between letters; the minor path is the relationship between
lines.

10.4.1 Program Development I

10-22

Programming Objectives

To draw the multinational character set fonts available in the directory
SYS$FONT and to show how to move to a new text line.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Modify the font attribute in attribute block O.

4 Use UIS$NEW _ TEXT_LINE and the appropriate attribute setting to
move to the beginning of a new line.

S Draw a line of text.

6 Repeat steps 3 through 5.

Note that program TEXT_l uses logical names to represent font file names. ~
Some actual font names occupy two lines. ~

PROGRAM TEXT_1
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,30.0,30.0,20.0,10.0)
WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','FONTS')

CALL UIS$SET_FONT(VD_ID,0,1,'MY_FONT_1') 0
CALL UIS$TEXT(VD_ID,1,'The quality of mercy is not strained',
2 1.0,30.0) ~
CALL UIS$SET_FONT(VD_ID,0,2,'MY_FONT_2')
CALL UIS$NEW_TEXT_LINE(VD_ID,2) m
CALL UIS$TEXT(VD_ID,2,'Long visits bring short compliments')

CALL UIS$SET_FONT(VD_ID,0,3,'MY_FONT_3')
CALL UIS$NEW_TEXT_LINE(VD_ID,3)
CALL UIS$TEXT(VD_ID,3,'Wise men make proverbs and fools')
CALL UIS$NEW_TEXT_LINE(VD_ID,3)
CALL UIS$TEXT(VD_ID,3,'repeat them')
CALL UIS$SET_FONT(VD_ID,0,4,'MY_FONT_4')
CALL UIS$NEW_TEXT_LINE(VD_ID,4)
CALL UIS$TEXT(VD_ID,4,'Je pense donc je suis')

Text Attributes

CALL UIS$SET_FONT(VD_ID,O,5,'MY_FONT_5')
CALL UIS$NEW_TEXT_LINE(VD_ID,S)
CALL UIS$TEXT(VD_ID,S,'Do well and have well')
CALL UIS$SET_FONT(VD_ID,O,6,'MY_FONT_6')
CALL UIS$NEW_TEXT_LINE(VD_ID,6)
CALL UIS$TEXT(VD_ID,6,'YoU cannot make a crab walk straight')

CALL UIS$SET_FONT(VD_ID,O,7,'MY_FONT_7')
CALL UIS$NEW_TEXT_LINE(VD_ID,7)
CALL UIS$TEXT(VD_ID,7,'Great minds think alike')

CALL UIS$SET_FONT(VD_ID,O,S,'MY_FONT_S')
CALL UIS$NEW_TEXT_LINE(VD_ID,S)
CALL UIS$TEXT(VD_ID,8,'One today is worth two tomorrows')
CALL UIS$SET_FONT(VD_ID,O,9,'MY_FONT_9')
CALL UIS$NEW_TEXT_LINE(VD_ID,9)
CALL UIS$TEXT(VD_ID,9,'With Latin, a horse, and money, you may')
CALL UIS$NEW_TEXT_LINE(VD_ID,9)
CALL UIS$TEXT(VD_ID,9,'travel the world')

CALL UIS$SET_FONT(VD_ID,O,IO,'MY_FONT_IO')
CALL UIS$NEW_TEXT_LINE(VD_ID,lO)
CALL UIS$TEXT(VD_ID,lO,'Whispered words are heard afar')
CALL UIS$SET_FONT(VD_ID,O,ll,'MY_FONT_ll')
CALL UIS$NEW_TEXT_LINE(VD_ID,ll)
CALL UIS$TEXT(VD_ID,ll,'Et tu, Brute?')
CALL UIS$NEW_TEXT_LINE(VD_ID,ll)
CALL UIS$TEXT(VD_ID,ll,'Per ardua astra')

CALL UIS$SET_FONT(VD_ID,O,12,'MY_FONT_12')
CALL UIS$NEW_TEXT_LINE(VD_ID,12)
CALL UIS$TEXT(VD_ID,12,'Velut arbor aevo')

CALL UIS$SET_FONT(VD_ID,O,13,'MY_FONT_13')
CALL UIS$NEW_TEXT_LINE(VD_ID,13)
CALL UIS$TEXT(VD_ID,13,'One mule scrubs another')
CALL UIS$SET_FONT(VD_ID,O,14,'MY_FONT_14')
CALL UIS$NEW_TEXT_LINE(VD_ID,14)
CALL UIS$TEXT(VD_ID,14,'Life is just a bowl of cherries')

PAUSE

END

The font attribute in attribute block 0 is modified in 14 calls to UIS$SET_
FONT O. An attribute block with a modified font attribute for each font in
SYS$FONT now exists. Each attribute block is identified by its creation­
time output attribute block number.

The atb argument of UIS$TEXT a uses the appropriate attribute block
number to generate text in the desired font.

A call to UIS$NEW _TEXT _LINE ~ causes each new line of text to begin on
a new line at the left margin.

NOTE: Before you run the demonstration programs, you must assign a logical
name to the font used in the demonstration program. To do this, invoke
the indirect command file SYS$EXAMPLES:DEFFONT.COM.

10-23

Text Attributes

10.4.2 Calling UIS$SET_FONT and UISSNEW_TEXT_LINE
Note the positional order of the attribute routines. Attribute routines
modify the attribute block used by the routine creating the graphic object
and, therefore, must precede that routine. The attribute routine and the
output routine must reference the same attribute block. Figure 10-12
contains examples of each UIS font.

Refer to Appendix Appendix C for a listing of UIS fonts.

Figure 10-12 UIS Fonts

fONTS

The quality of mercy is not strained
Long visits bring short compliments
Wise men roa'ke proverbs and TOO::LS

repeat the
~e pense done je suis

Do well and have well
ou cannot make a crab ~lk straight

Great Minds think alike
One today is worth two tomorrows
With Latin, a horse, and money you may
travel the world
Whispered words are heard afar

Et tu.. Brute?
Per ardua ast-ra
Ve1ut a.rbor a.evo

One mule scrubs another
L.i.oI=e ~s ·ust a bo~l 001= cherries

ZK-4546-85

10.4.3 Program Development II
Programming Objective

To increase character and line spacing in two lines of text.

10-24

Text Attributes

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport with a title.

3 Use the default character spacing factor to draw a line of text.

4 Use UIS$SET _ CHAR_SPACING to modify the character and line
spacing factors.

5 Use the modified spacing attribute to draw a line of text.

6 Use UIS$NEW _ TEXT_LINE with the modified spacing attribute to
move to the beginning of a new line.

7 Repeat steps 3 through 5.

PROGRAM SPACE_l
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,40.0,40.0,14.0,6.0)
WD_ID=UIS$CREATE_WINDOW(VD~ID,'SYS$WORKSTATION','KERNINGAND LEADIN

CALL UIS$SET_FONT(VD_ID,O,15,'MY_FONT_1') D
CALL UIS$TEXT(VD_ID,15,'The best mirror is an old friend',O.O,40.0)

CALL UIS$NEW_TEXT_LINE(VD_ID,15) ~
CALL UIS$SET_CHAR_SPACING(VD_ID,15,16,3.0,3.0) 0
CALL UIS$TEXT(VD_ID,16,'The best mirror is an old friend') 0

CALL UIS$NEW_TEXT_LINE(VD_ID,16) m
CALL UIS$TEXT(VD_ID,15,'In the coldest flint there is hot fire')

CALL UIS$NEW_TEXT_LINE(VD_ID,15)
CALL UIS$TEXT(VD_ID,16,'In the coldest flint there is hot fire')

PAUSE

END

A call to UIS$SET_FONT D sets the font attribute. The attribute block
containing the newly modified font attribute is assigned the number
15. The logical name MY_FONT_l denotes a font used throughout the
program.

The first line of text is drawn in the appropriate font PJ at the virtual display
location specified in UIS$TEXT.

When the next line of text is written, UIS$NEW _ TEXT_LINE references
attribute block 15 U UIS$NEW _ TEXT_LINE uses the new font
characteristics to determine proper line spacing. If you use attribute
block number 0, UIS$NEW_TEXT_LINE uses the characteristics of the
default font. In that case, the descenders of letters in the previous line
and the ascenders of the letters of the new line might crash into each other
or obscure portions of letters in either line. Therefore, you should call
UIS$NEW _TEXT _LINE using the appropriate attribute block number.

Attribute block 15 is further modified in a call to UIS$SET _ CHAR_
SPACING 0. Now that attribute block 15 contains the previously modified
font attribute and the newly modified character spacing attribute, it is
assigned the number 16.

NOTE: Attribute block 15 still exists and can be referenced.

10-25

Text Attributes

The character and line spacing attributes are set to a factor of 3. Characters
are spaced by a factor of three times their width. Lines of text are spaced
by a factor of three times the height of the character.

Text is drawn and spaced, character by character, according to values
specified in the font attribute and the character spacing attribute in attribute
block 16 m. The character spacing component of the character spacing
attribute, or x factor, determines spacing between characters for left-to-right
and right-to-Ieft text paths.

A call to UIS$NEW _ TEXT_LINE c;, creates a new text line using attribute
block 16. UIS$NEW _ TEXT_LINE uses the line spacing component of the
character spacing attribute, or y factor, to determine spacing between lines.
The y factor is used for top-to-bottom and bottom-to-top text paths.

10.4.4 Calling UIS$SET _CHAR_SPACING
Call UIS$SET_CHAR_SPACING as shown here to set character spacing in
one line of the previous example.

UIS$SET_CHAR_SPACING specifies a spacing factor of 3. If you run this
program with the changes described above, your workstation screen will
display the graphic objects shown in Figure 10-13.

Figure 10-13 Character and Line Spacing

The best mirror is an old friend
The b est m i r r o r

In the coldest flint there is hot fire
I nth e col d e t

ZK·4547·85

The line now extends beyond the right margin of the display viewport.

10-26

Text Attributes

10.4.5 Program Development III
Programming Objectives

To create alignment along the top of the character cell and along the
baseline vector.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport with title.

3 Draw a horizontal line the width of the viewport.

4 Use UIS$SET_ALIGNED_POSITION to set the current position for text
output at the leftmost point on the line.

S Choose a font and modify the font attribute block in attribute block O.

6 Use the new font to draw a line of text.

7 Repeat step 4 using UIS$SET_POSITION.

8 Repeat steps 5 and 6.

PROGRAM SET_POS
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,40.0,40.0,18.0,5.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','TEXT ALIGNMENT')

CALL UIS$PLOT(VD_ID,O,O.O,35.0,40.0,35.0) n
CALL UIS$SET_FONT(VD_ID,O,1,'MY_FONT_7')
CALL UIS$SET_ALIGNED_POSITION(VD_ID,1,O.O,35.0) ~

CALL UIS$TEXT(VD_ID,l,'Never refuse a good offer') ~

CALL UIS$PLOT(VD_ID,O,O.O,20.0,40.0,20.0) 0

CALL UIS$SET_POSITION(VD_ID,O.O,20.0) m
CALL UIS$SET_FONT(VD_ID,O,2,'MY_FONT_5')
CALL UIS$TEXT(VD_ID,2,'Weigh justly and sell dearly') m
PAUSE

END

Two horizontal and parallel lines are drawn with UIS$PLOT n u
Unless the current position is specified in UIS$TEXT, both calls to
UIS$SET_ALIGNED_POSITION and UIS$SET_POSITION ~ m use the
starting points of the respective lines to establish the current position for
new text output.

Text creation ~ m begins by default at the current position established in
UIS$SET _ALIGNED _POSITION and UIS$SET _POSITION.

10-27

Text Attributes

Figure 10-14 Baseline and Top of Character Cell

--------------------------- -------- ---

TEXT ALIGNMENT
-~~~-=----===::::=::::~~==========---=-=-====-===--===..:::::-::--------= -~- -- -~- --

refuse a good offer

ZK·4548·85

10.4.6 Calling UIS$SET_POSITION and UIS$SET_ALIGNEp_POSITION
In Figure 10-14, the first sentence illustrates the alignment of text along the
top of the character cell. The second sentence illustrat~s alignment on the
baseline vector.

10.4.7 Program Development IV

10-28

Programming Objective

To draw characters at three different angles relative to the baseline vector. ~
Programming Tasks

1 Create a virtual display.

2 Create a display window and a viewport with a title.

3 Choose a font and modify the font attribute in attribute block o.
4 Draw a character string at the default angle 0 degrees.

5 Use UIS$SET_CHAR_SLANT to modify the character slant attribute. ~
6 Use the modified attribute and draw the character string again.

7 Repeat step 5 and specify negative degrees.

The file name MY_FONT _12 is a logical name for a font in SYS$FONT.

PROGRAM SLANT
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,20.0,S.0,18.0,4.S)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','CHARACTER SLANTING

CALL UIS$SET_FONT(VD_IP,0,1,'MY_FONT_12') 8

CALL UIS$TEXT(VD_ID,1,'Unslanted characters do not lean',0.1,S.0) ~
PAUSE

CALL UIS$SET CHAR SLANT(VD ID,1,2,2S.0) ~
CALL UIS$TEXT(VD_ID,2,'Slanted characters lean forward',O.5,3.0) ~

PAUSE ~

Text Attributes

CALL UIS$SET_CHAR_SLANT(VD_ID,1,3,-25.0) e
CALL UIS$TEXT(VD_ID,3,'Slanted characters lean backward',O.5,1.O)

PAUSE
END

A font is selected using UIS$SET _FONT 8. A text string is drawn with the
default attribute setting in attribute block 0 ~.

N ext, the character slant attribute is modified @] to specify a 25 degree shift
to the right of a line perpendicular to the text baseline.

The character slant attribute is further modified e to specify a 25 degree
shift to the left of a line perpendicular to the text baseline.

10.4.8 Calling UIS$SET_CHAR_SLANT
First, the character string is drawn at the default slant-Odegrees. Next,
the character string is drawn twice, first slanting each character 25 degrees
to the right of a line perpendicular to the text baseline and then slanting
each character 25 degrees to the left of that line.

Figure 10-15 shows character slanting.

Figure 10-15 Character Slanting

- --- -~~---------------------------~ --- -~----

___ ~ __ -= _ _= co __ ~h~t'~ctet' __ ~~~n~in~J ____ _

Uns1ant.d characters do not 1ean

'z'a.nt.d characters .z.e.an Eorward

10.4.9 Program Development V
Programming Objective

ZK·5432·86

To draw a character string whose actual path increases at 20-degree
increments from 0 to 340 degrees.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

10-29

Text Attributes

3 Create a DO loop that increases from 0 to 360 degrees by 20-degree
increments, as follows:

• Place the slope attribute modification routine UIS$SET _TEXT_
SLOPE within the DO loop.

• Place the text drawing routine UIS$TEXT within the DO loop.

The font file name MY_FONT_13 is a logical name for a font in SYS$FONT.

PROGRAM SLOPE
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,50.0,50.0,10.0,10.0)
WD_1D=UIS$CREATE_W1NDOW(VD_ID,'SYS$WORKSTATION','text slope')

CALL UIS$SET_FONT(VD_ID,0,1,'MY_FONT_13') 0
DO 1=0,340,20 6
CALL UIS$SET_TEXT_SLOPE(VD_1D,1,2,FLOAT(I)) m
CALL UIS$TEXT(VD_ID,2,' Slope!',25.0,25.0) m
~~ m
PAUSE

END

A font is selected and the default font attribute setting is modified with
UIS$SET_FONT O.

A DO loop is established 6 m. The counter I is initialized to 0 and increases
by increments of 20. The angle argument in UIS$SET_TEXT_SLOPE
uses the value of I as the new text baseline attribute setting n The VAX ~
FORTRAN function FLOAT changes the integer counter I to a real number ~
n
From UIS$TEXT, text strings are drawn from a central point (25.0,25.0) at
20-degree intervals m.

10.4.10 Calling UIS$SET _TEXT_SLOPE

10-30

Text strings are drawn at 20-degree intervals from 0 degrees to 360 degrees. ~
The angle of each new text baseline increases by a multiple of 20. Text ~
is drawn in a counterclockwise direction from the default horizontal
baseline.

Figure 10-16 Manipulating the Text Baseline

~ 10.4.11 Program Development VI
Programming Objective

To rotate each character to offset text slope.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Create a DO loop.

4 Modify the attributes within the DO loop.

PROGRAM SLOPE_ROTATE
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

Text Attributes

ZK·5422·86

10-31

Text Attributes

VD_1D=UIS$CREATE_DISPLAY(0.0,0.0,50.0,51.0,10.0,10.0)
WD_1D=UIS$CREATE_W1NDOW(VD_1D,'SYS$WORKSTATION',
2 'TEXT SLOPE AND CHARACTER ROTATION')

CALL U1S$SET_FONT(VD_ID,0,1,'MY_FONT_13')

DO 1=0,340,20
CALL U1S$SET_TEXT_SLOPE(VD_ID,1,2,FLOAT(I)) 0
CALL UIS$SET_CHAR_ROTATION(VD_1D,2,2,FLOAT(-1)) H
CALL U1S$TEXT(VD_ID,2,' Rotate!',24.0,28.5)
ENDDO

PAUSE

END

This program is identical to the previous program SLOPE, except that this
program modifies the character rotation attribute as well as the text slope
attribute.

Within the DO loop, both attribute modification calls use the value of the
counter I to increase text slope angles and character rotation for different
purposes 0 H.

For every 20-degree increase text slope angle, the character rotation angle
of each character must be decremented by 20 degrees. Consequently, each
character baseline vector remains parallel to the default major path.

10.4.12 Calling UIS$SET _CHAR_ROTATION
The program SLOPE_ROT ATE draws a series of character strings from
a center point from 0 to 360 degrees at 20-degree intervals. Because the ~
character rotation angle exactly offsets the text slope angle, characters
maintain a readable orientation.

If you add a single call to modify the character slanting attribute, your
viewport displays character rotation and slanting as the text slopes from 0
to 360 degrees at 20-degree intervals. Figure 10-18 illustrates this character
rotation with slanting.

10.4.13 Program Development VII
Programming Objective

10-32

To manipulate the width and height of characters through scaling.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport with title.

3 Draw a character string.

4 Increase the character size for width and height by 1.

Text Attributes

Figure 10-17 Character Rotation Without Slanting

text slope and chara.cter t'ota.tion

5 Repeat steps 3 and 4.

Font names used in this program are logical names.

PROGRAM CHARSIZE
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

ZK·5423·86

REAL*4 WIDTH, HEIGHT
VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,70.0,90.0,12.0,16.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION', 'CHARACTER SCALING'

CALL UIS$SET_FONT(VD_ID,O,l,'MY_FONT_l') 0
CALL UIS$TEXT(VD_ID,l,'Great scott!',O.O,90.0) ~
CALL UIS$SET_CHAR_SIZE(VD_ID,1,2,,2.0,2.0) ~
CALL UIS$TEXT(VD_ID,2,'Great scott!',O.O,80.0) ~
CALL UIS$SET_CHAR_SIZE(VD_ID,1,2,,3.0,3.0)
CALL UIS$TEXT(VD_ID,2,'Great scott!',O.O,70.0)
CALL UIS$SET_CHAR_SIZE(VP_ID,1,2,,4.0,4.0)
CALL UIS$TEXT(VD_ID,2, 'Great scott!',O.O,60.0)
CALL UIS$SET_CHAR_SIZE(VD_ID,l,2,,5.0,5.0)
CALL UIS$TEXT(VD_ID,2,'Great scott!',O.O,50.0)

10-33

Text Attributes

10-34

Figure 10-18 Character Rotation with Slanting

slantl slope:ao and rotation

CALL UIS$SET_CHAR_SIZE(VD_ID,1,2,,6.0,6.0)
CALL UIS$TEXT(VD_ID,2,'Great scott!',O.O,40.0)
CALL UIS$SET_CHAR_SIZE(VD_ID,1,2,,7.0,7.0)
CALL UIS$TEXT(VD ID,2,'Great scott!',O.O,30.0)
CALL UIS$SET_CHAR_SIZE(VD_ID,1,2,,8.0,8.0)
CALL UIS$TEXT(VD ID,2,'Great scottl',O.O,20.0)
CALL UIS$SET_CHAR_SIZE(VD_ID,1,2,,9.0,9.O)
CALL UIS$TEXT(VD_ID,2,'Great scottl',O.O,lO.O)
PAUSE
END

A font is selected D.

I

The unsealed character string Great scott! is drawn in the virtual display ~.

The character string is redrawn as scaled text. The scale factors for the
width and height are incremented ~ each time the character string is drawn
U

Text Attributes

10.4.14 Calling UIS$SET _CHAR_SIZE
Figure 10-19 shows how the character string increases in height and width
as the scale factors increment.

Figure 10-19 Manipulating Character Size

character scaling

Great scott!

Gt"ea-t sco-t-t!

Gr"eat scott!

Gt'leat scott!

Gt"'eat seo t.t.!

GI'eat SeD t.t.!

ZK 5421 86

10-35

11

11.1

11.2

Graphics and Windowing Attributes

Overview
This chapter discusses the following topics:

• Creating dashed lines

• Creating lines of varying widths

• Using fill patterns

• U sing clipping rectangles

Using Graphics Attributes
Graphics attributes affect arc type, line width, line style, and fill pattern
use.

11.2.1 Modifying Graphics and Windowing Attributes
When you modify graphics and windowing attributes, you do not change
the default attribute settings within attribute block 0 itself. Think of
attribute block 0 as a template of default settings; you modify a copy of
this attribute block for use within your program. Attribute modification
routines contain two arguments:

• iatb-The input attribute block number

• oatb-The output attribute block number

Table ll-llists the default settings of graphics and windowing attributes.

Table 11-1 Default Settings of Graphics and Windowing Attributes

Default Modification
Attribute Setting Routine

Arc type Open UIS$SET _ARC_TYPE

Fill pattern Off UIS$SET _FILL_PATTERN

line style Solid UIS$SET _LINE_STYLE

line width 1 .0 (unscaled) UIS$SET _LINE_WIDTH

Clipping rectangle Off UIS$SET _CLIP

Use the following procedure to modify attributes:

1 Choose an appropriate attribute routine.

2 Specify 0 as the iatb argument to obtain a copy of attribute block O.

11-1

Graphics and Windowing Attributes

3 Specify a number from 1 to 255 as the oatb argument. You can then
reference the attribute block in subsequent UIS graphics and text
routines or in any other attribute modification routine.

Graphics and text routines reference modified attribute blocks in the atb
argument and in these routines:

• UIS$MEASURE_ TEXT

• UIS$NEW _TEXT_LINE

• UIS$SET _ALIGNED_POSITION

11.2.2 Programming Options

11-2

Depending on the graphic object you create-a line, a polygon, an ellipse,
or a circle-you can choose from several attributes.

Fill Patterns

Fill patterns add shading to geometric figures on the workstation screen;
you use them most often to accentuate portions of a pie graph. Fill patterns
range in coloration:

• Light fiH patterns-Represent light activity or minimum density.

• Heavy fill patterns-Represent heavy activity or maximum density.

To create your own fill pattern, select a character from any UIS font to
serve as a fill pattern glyph.

All fill patterns are stored together in a font file in the directory
SYS$FONT. For your convenience, this file name has been converted
to the logical name UIS$FILL_P ATTERNS.

Select a fill pattern as follows:

1 Using UIS$SET_FONT, specify 0 to select a copy of attribute block 0 to
modify or specify the number of a previously modified attribute block
as the input attribute block.

2

3

Assign an output attribute block number to the newly modified attribute
block in UIS$SET _FONT. This number allows you to track attributes
and to modify some other element in this attribute block later.

Specify the name of the fill pattern file in UIS$SET _FONT . Use the
predefined logical name for the fill pattern file, UIS$FILL_P A TTERNS.

To use a character from a font other than the default fill pattern file as
fill pattern glyph, specify the appropriate font name.

4 Use UIS$SET _FILL_PATTERN to specify the actual fill pattern with
a UIS symbol in the argument index. A UIS symbol in the form
P ATT$C_xxxx exists for each fill pattern and serves as an index of each
fill pattern in the file. The symbolic constant represents a hexadecimal
offset that indicates the fill pattern position in the font file.

~

Graphics and Windowing Attributes

If you create a fill pattern from a UIS font other than the default fill
pattern file, specify the ASCII code of the desired character in the
index of UIS$SET_FILL_PATTERN.

NOTE: To disable fill patterns without modifying the fill pattern attribute, do not
specify the index . argument in UIS$SET _FILL_PATTERN.

11.2.2.1

Refer to 6.6 for more information about UIS constants.

Setting the Arc Type

If you want to draw a pie chart, you can draw chords or use UIS$SET_
ARC_TYPE to request that no chord be drawn and specify one of the
constants shown in the following table.

Arc Type Description

Does not draw any chords UIS$C-ARC_OPEN

UIS$C_ARC_PIE Draws a line from both end points of the arc to the center
position

Draws a line connecting the end points of the arc

Remember that fill patterns are not drawn in the arc when the arc type
attribute is specified as OPEN.

Line Width

Use UIS$SET_LINE_ WIDTH to increase the apparent thickness of lines
displayed on the screen. Note that this routine affects the thickness of
lines created with the following routines only:

• UIS$LINE

• UIS$LINE_ARRA Y

• UIS$PLOT

• UIS$PLOT_ARRAY

• UIS$ELLIPSE

Line Style

Occasionally, you need something other than a solid line. Use UIS$SET_
LINE_STYLE to create dots, hyphens, and dashes.

Program Development I
Programming Objectives

To draw the different arc types and to demonstrate their use with fill
patterns.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport with title.

3 Use the chord arc type in attribute block 0 to modify the arc type
attribute.

11-3

Graphics and Windowing Attributes

11-4

4 Use UIS$CIRCLE to draw an arc with the modified attribute block.

S Repeat steps 3 and 4.

6 Erase the virtual display and delete the display window.

7 Create a display window and viewport with an identifying title.

8 Modify the arc type attribute. Select the pie arc type.

9 Select a fill pattern as follows:

• Modify the font attribute in attribute block O.

• Modify the fill pattern attribute block O.

10 Use the modified arc type, font, and fill pattern attribute blocks to draw
an arc.

PROGRAM ARC
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,40.0,40.0,lS.0,lS.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','CHORD AND PIE')

CALL UIS$SET_ARC_TYPE(VD_ID,O,6,UIS$C_ARC_CHORD) H
CALL UIS$CIRCLE(VD_ID,6,S.O,20.0,15.0,O.O,lS0.0)

CALL UIS$SET_ARC_TYPE(VD_ID,O,l,UIS$C_ARC_PIE) ~
CALL UIS$CIRCLE(VD_ID,1,23.0,20.0,lS.0,O.O,150.0)

PAUSE

CALL UIS$DELETE_WINDOW(WD_ID) iJ
CALL UIS$ERASE(VD_ID) e
PAUSE

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','FILLED PIE') m
CALL UIS$SET_ARC_TYPE(VD_ID,O,l,UIS$C_ARC_PIE)
CALL UIS$SET_FONT(VD_ID,1,2,'UIS$FILL_PATTERNS')
CALL UIS$SET_FILL_PATTERN(VD_ID,2,3,PATT$C_HORIZ2_6)
CALL UIS$CIRCLE(VD_ID,3,18.0,20.0,15.0,O.O,lS0.0)

PAUSE

END

The program ARC creates two arcs and specifies two ways of closing those
arcs H~.

To change the window caption, delete the display window and its
associated viewport~. Because the second part of the program draws a
new graphic object, erase existing graphic objects e.

A new display window is created and its viewport has a new title. m.

The new graphic object is another arc with a pie arc type that contains a fill
pattern m.

Graphics and Windowing Attributes

11.2.2.2 Calling UIS$SET_ARC_TYPE and Using Fill Patterns
Figure 11-1 shows two ways to close an arc.

The second part of the program ARC executes and the fill pattern is drawn
in the pie as shown in Figure 11-2.

Figure 11-1 Closing an Arc

- -----

CHORD AND PIE
- --~-----==:::------=--~-~~-=--=---=-~~-~--

ZK-4550-85

11-5

Graphics and Windowing Attributes

Figure 11-2 Filling a Closed Arc

11-6

fILLED PIE
--~--===----=-======---=====-=---=---~--~- ~ ~--~-

11.2.2.3 Program Development II
Programming Objective

To draw thickened lines.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport with a title.

ZK-4551-85

3 Draw two horizontal lines the width of the viewport-one near the
bottom of the viewport and one near the top of the viewport.

4 Draw a vertical line connecting the horizontal lines.

Graphics and Windowing Attributes

5 Modify the line width attribute in attribute block 0 by a factor of 2.

6 Repeat steps 4 and 5.

PROGRAM LINE_WIDTH
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,60.0,30.0,lS.0,lS.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','LINE WIDTH')

CALL UIS$PLOT(VD_ID,O,1.0,2S.0,60.0,2S.0) 0
CALL UIS$PLOT(VD_ID,O,1.0,S.O,60.0,S.O) ~

CALL UIS$PLOT(VD_ID,O,S.O,S.O,S.O,2S.0) ~

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,2.0) e
CALL UIS$PLOT(VD_ID,1,10.0,S.O,10.0,2S.0) ~

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,4.0)
CALL UIS$PLOT(VD_ID,1,lS.0,S.O,lS.0,2S.0)

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,6.0)
CALL UIS$PLOT(VD_ID,1,20.0,S.O,20.0,2S.0)

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,8.0)
CALL UIS$PLOT(VD_ID,1,2S.0,S.O,2S.0,2S.0)

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,10.0)
CALL UIS$PLOT(VD_ID,1,30.0,S.O,30.0,2S.0)

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,12.0)
CALL UIS$PLOT(VD_ID,1,3S.0,S.O,3S.0,2S.0)

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,14.0)
CALL UIS$PLOT(VD_ID,1,40.0,S.O,40.0,2S.0)

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,16.0)
CALL UIS$PLOT(VD_ID,1,4S.0,S.O,4S.0,2S.0)

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,18.0)
CALL UIS$PLOT(VD_ID,1,SO.O,S.O,SO.O,2S.0)

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,20.0)
CALL UIS$PLOT(VD_ID,1,SS.O,S.O,55.0,2S.0)

PAUSE

END

Two parallel lines are drawn with normal thickness the width of the display
window with UIS$PLOT 0 ~.

A vertical line of normal thickness is drawn n
Subsequent calls modify the line width attribute e and draw the resulting
line ~ from the line in the lower half of the display window to the line in
the upper half of the display screen.

11-7

Graphics and Windowing Attributes

11-8

11.2.2.4 Calling UIS$SET _LINE_WIDTH
Figure 11-3 shows lines drawn from point to point with increasing
thickness.

Figure 11-3 Line Width

line width
- - ---~ --- -- -- - - ----

-

NOTE: Use UIS$PLOT or U_IS$PLOT_ARRAY to draw extremely thick lines. Use
UIS$SET_FILL_PATTERN to draw filled rectangles.

11.2.2.5 Program Development III
Programming Objective

To draw various patterns of thickened dots and dashes.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport with a title.

3 Modify the line width attribute to a thickness of 5 pixels.

4 Draw a solid thick line.

5 Modify the line style attribute.

S Draw the dashed line.

7 Repeat steps 5 and 6.

PROGRAM LINE_STYLE
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,20.0,20.0,15.0,6.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','LINE STYLE AND WID~

Graphics and Windowing Attributes

CALL UIS$SET_LINE_WIDTH(VD_ID,O,l,S.O) 8
CALL UIS$PLOT(VD_ID,1,1.O,18.0,18.0,lO.O)

CALL UIS$SET_LINE_STYLE(VD_ID,l,l,'FFFFFFFO'X) ~
CALL UIS$PLOT(VD_ID,1,1.O,14.0,18.0,lO.O)
CALL UIS$SET_LINE_STYLE(VD_ID,1,2,'FOFOFOFO'X) ~
CALL UIS$PLOT(VD_ID,2,1.O,lO.O,18.0,lO.O)

CALL UIS$SET_LINE_STYLE(VD_ID,2,3,'90909090'X) ~
CALL UIS$PLOT(VD_ID,3,1.O,6.0,18.0,10.0)

CALL UIS$SET_LINE_STYLE(VD_ID,3,4,'lOOlOOlO'X) 0
CALL UIS$PLOT(VD_ID,4,1.O,2.0,18.0,lO.O)

PAUSE

END

Create different line styles by selecting different hexadecimal values in the
calls to UIS$SET _LINE_STYLE 8 ~ ~~. The hexadecimal values set bits in
the line style bit vector, which, in turn, generates a pattern.

11.2.2.6 Calling UIS$SET _LINE_WIDTH and UIS$SET _LINE_STYLE
When the program LINE_STYLE executes, five lines are drawll, each with
the same width but different style. The pattern of dots and dashes is
determined by the value supplied to the line style longword bit vector as
shown in Figure 11-4.

Figure 11-4 Modifying Line Width and Style

~
~- - -~-----~---~-~--- --~------ --~~

line st~le and width
- -~ - - - - - ---~ ==------

-------- ••••••••••••••••••••••••••••••••••• I
11111111111111

11111111111111111 I II
1111111111111111 I II

1111111111111111 I II
II II II II I I I

I I I I

11.2.2.7

I I I
I I I I

I I I

Program Development IV
Programming Objective

To construct a vertical bar graph.

ZK-4552-85

11-9

Graphics and Windowing Attributes

11-10

Programming Tasks

1 Load arrays from DATA statements.

2 Create a virtual display.

3 Create a display window and viewport with a title.

4 Draw the x and y axes.

5 Draw the legend.

6 Draw the information along the x axis.

7 Draw the information along the y axis.

8 Modify the font and fill pattern attributes.

9 Use the appropriate fill patterns with the arrays to draw vertical bars to
their proper heights.

PROGRAM GRAPH
IMPLICIT 1NTEGER(A-Z)
CHARACTER*4 STRING
REAL ARRAY1(8),ARRAY2(8),X,X2,HE1GHT,Y 0
DATA ARRAY1 /5.0,10.0,12.0,13.0,15.0,20.0,25.0,30.0/
DATA ARRAY2 /0.0, 1.0, 2.0, 1.0, 4.0, 9.0,15.0,21.0/
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$L1BRARY:UISUSRDEF'

VD_1D=U1S$CREATE_DISPLAY(-S.0,-5.0,SO.0,SO.0,20.0,20.0)
WD_1D=U1S$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION' ,'GRAPH')

CALL UIS$SET_LINE_WIDTH(VD_ID,0,16,S.0) ~
CALL U1S$PLOT(VD_1D,16,0,0,0,35.0) m
CALL U1S$PLOT(VD_ID,16,0,0,4S.0,0) e
CALL UIS$TEXT(VD_ID,O,'U.S. ADULT POPULATION VS. CAR OWNERSHIP',
2 10.0,-3.0) m

c Information along the y axis

DO 20 I = 1,7
Y = 5.0 * FLOAT (I) m
N = 25 * I fJ
ENCODE (3,10,STRING) N m

10 FORMAT (13)
20 CALL UIS$TEXT(VD_ID,0,STRING,-3.0,y) m

CALL UIS$TEXT(VD_ID,O,' (in millions)',-3.0,37.0)
c Information along the x axis

DO 40 I = 1,8
Y = 5.0 * FLOAT (I)
N = 1900 + (10 * I)
ENCODE (4,30,string) N

30 FORMAT (14)
40 CALL UIS$TEXT(VD_ID,0,string,y,-1.0)

CALL UIS$SET_FONT(VD_ID,O,l,'UIS$FILL_PATTERNS') DE
CALL UIS$SET_FILL_PATTERN(VD_ID,1,1,PATT$C_HOR1Z4_4) DO
CALL UIS$SET_FILL_PATTERN(VD_ID,1,2,PATT$C_GREY12_16) 8m

C PLOT POPULATION RECTANGLE

DO 100 I = 1,8

X = 5.0 * FLOAT(I)
X2 = X + 2.0
HEIGHT = ARRAY1(I) Dm
CALL U1S$PLOT (VD_1D,l, X,O.O, X,HE1GHT, X2,HEIGHT, X2,0.0)

C PLOT CAR RECTANGLE

11.2.2.8

x = x + 1.0
X2 = X + 2.0

Graphics and Windowing Attributes

HEIGHT = ARRAY2(I) na
CALL UIS$PLOT (VD_ID,2, X,O.O, X,HEIGHT, X2,HEIGHT, X2,0.0)

100 CONTINUE

PAUSE
END

Two arrays, ARRAYl and ARRAY2, are declared (J to store the height of
each vertical bar in the graph.

The x and y axes are drawn @)U However, a previous call to UIS$SET_
LINE_ WIDTH ~ modified the attribute block that controls line appearance.
Line width (x and y axes) should be five times wider than normal.

A call to UIS$TEXT m creates the graph legend.

The y world coordinate values are computed m as multiples ofS, where
I represents the number of passes through the DO loop. The adult
population numbers are written at these intervals.

The numbers along the y axis are computed and stored in the variable N 6,
then returned to the variable string as character string constants m ~
Before you create the rectangles to represent the eight vertical bars in the
graph, you must specify the fill pattern-either an existing or new one.
Because this program does not modify the font attribute, UIS$SET _FONT
uses a copy of attribute block 0 to set the font attribute ml. In this case,
specify the font 10 UIS$FILL_P ATTERNS to indicate you want the file of
fill patterns.

Now use UIS$SET_FILL_PATTER to set the fill pattern attribute. The
program must use two different fill patterns to contrast adult popUlation
vertical bars with automobile vertical bars m (E.

The values previously assigned to each element of ARRA Yl and ARRA Y2
control the height of the vertical bars ml 00.

Calling UIS$SET_FONT and UIS$SET_FILL_PATTERN
If you run the program GRAPH now, it produces the vertical bar graph as
shown in Figure 11-5.

Whenever you create a fill pattern, you must include UIS$SET _FONT and
UIS$SET_FILL_PATTERN. The positional order of the calls is important.
Calls to UIS routines that modify an attribute block must precede the call
that creates the graphic object.

To produce the desired change in the resulting graphic object, the
accompanying call to UIS$PLOT must reference the same output attribute
block number.

11.2.3 Using the Windowing Attribute
The clipping rectangle attribute modifies the size of the viewable portion
of the virtual display. It does not resize the display window or display
viewport.

11.-11

Graphics and Windowing Attributes

Figure 11-5 Vertical Bar Graph

11-12

- ~ - - ~ -------~---------------- ------------
GRAPH

- - -~ =- -~=-- ~-=---::::=----=:::::..:==:=::-====---=---~-===========-----=--~::;::-:::----==--===-==---===-=~- --=---

(in millions)

175

150

125

100

75

50

25

11.2.3.1 Programming Options
Only the clipping attribute controls what is visible through the display
window and viewport.

11.2.3.2

Graphics and Windowing Attributes

Clipping Rectangle

To restrict drawing in the virtual display to a specified rectangle, you can
use UIS$SET _ CLIP to create dipping rectangles that view a portion of
your original display window. These rectangles are not display windows,
but you can use them to partition your virtual display into discrete areas.
They create an ertvironnlent within your virtual display that can be visited
whenever you reference the appropriate attribute block with a modified
dipping rectangle attribute. Note that the dipping rectangle merely
restricts drawing to an area; it does not change mapping between the
virtual display and the display window.

Program Development
Programming Objective

To construct three dipping rectangles.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport with a title.

3 Choose a font and modify the font attribute.

4 Specify a dipping rectangle and modify the dipping attribute.

S Use the modified font attribute with dipping disabled to draw a line of
text.

6 Use the modified font attribute with dipping enable to draw a line of
text.

7 Repeat steps 3 through 6 two more times.

Logical names have been defined for font file names.

PROGRAM CLIP
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,45.0,45.0,15.0,5.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','CLIPPING')

CALL UIS$SET_FONT(VD_ID,O,1,'MY_FONT_5') 0
CALL UIS$SET_CLIP(VD_ID,1,5,1.O,1.O,lO.O,40.0) ~
CALL UIS$TEXT(VD_ID,l,'Still waters run deep',O.O,40.0)
CALL UIS$NEW_TEXT_LINE(VD_ID,l)
CALL UIS$TEXT(VD_ID,5,'Still waters run deep')
CALL UIS$SET_FONT(VD_ID,O,2,'MY_FONT_6') ~
CALL UIS$NEW_TEXT_LINE(VD_ID,2)
CALL UIS$SET_CLIP(VD_ID,2,6,15.0,15.0,35.0,40.0) e
CALL UIS$TEXT(VD_ID,2,'The sleepy fox has seldom feathered breakfas
CALL UIS$NEW_TEXT_LINE(VD_ID,2)
CALL UIS$TEXT(VD_ID,6,'Thesleepy fox has seldom feathered breakfas
CALL UIS$SET_FONT(VD_ID,O,3,'MY_FONT_10') 0
CALL UIS$NEW_TEXT_LINE(VD_ID,3)
CALL UIS$SET_CLIP(VD_ID,3,7,7.0,5.0,30.0,40.0) m
CALL UIS$TEXT(VD_ID,3, 'When the wind is west, the fish bite best')
CALL UIS$NEW_TEXT_LINE(VD_ID,3)
CALL UIS$TEXT(VD_ID,7,'When the wind is west, the fish bite best')

PAUSE

END

11-13

Graphics and Windowing Attributes

Three fonts D IJ (;J illustrate clipping rectangles. The call to UIS$SET_CLIP
modifies the attribute block that controls clipping rectangle size. Each
call to UIS$SET_CLIP ~ (I m specifies a different clipping rectangle size.
Although only one display viewport has been specified in this program,
UIS$SET _ CLIP creates many compartments within the display window.

11.2.3.3 Calling UIS$SET _CLIP
Your workstation screen displays the graphic objects shown in
Figure 11-6.

Figure 11-6 Clipping rectangles

11-14

clipping .

---- ---==--~-----:.----=------==--•• - -~

Still waters run deep
;till
e sleep, fox has seldo~ feathered breakfasts

.do~ feathered breakfasts
When tbe wind ie west~ the fish bite beet

• wind is west~ the fish t

As you can see, UIS$SET_CLIP has altered the display window of the last
three lines. Only portions of each lines are now visible.

12

12.1

12.2

12.2.1

Inquiry Routines

Overview
Inquiry routines return program-specific information to the application; in
this way, they behave like functions. However, unlike functions that return
a single value through a return variable, certain UIS inquiry routines return
data in two or more parameters in the argument list. This data can range
from current attribute settings to current state of the pointer buttons. Your
application program can use this data to establish context during program
execution, to check for true or false conditions, or to verify that a requested
operation has been performed.

USing Inquiry Routines
Many common graphics application programs rely on program-specific
data such as pointer device position or font size. Inquiry routines return
such data to the program. You can use this data as input to the application.
Inquiry routines are more properly termed functions when you use thenl
with high-level programming languages.

Using Inquiry Routines

12.2.1.1

Generally, UIS routines in the form UIS$GET _xxxx return information to
the application program. Some of these routines behave like functions and
return a single value to the program; others return more than one value
in the argument list. The routines obtain data about text and font size,
windows, keyboard attributes, pointer position, and attribute settings. You
can use this data as input to subsequent routines.

Programming Options
Your application program can request the following types of application­
specific information:

• Color information

• Display list information

• Graphics and text attributes

• Keyboard and pointer characteristics

• Windowing information

Table 12-1 groups inquiry routines by function.

12-1

Inquiry Routines

Table 12-1 Inquiry Routines

Inquiry Information Returned

Color1

UIS$~ET _BACKGROUND_INDEX

UIS$GET _COLOR

UIS$GET _COLORS

UIS$GET _HW_COLORJNFO

UIS$GET _INTENSITIES

UIS$GET _INTENSITY

UIS$GET _ VCM_ID

UIS$GET _WRITING_INDEX

UIS$GET _WRITING_MODE

UIS$GET _WS_COLOR

UIS$GET ...:.WS_INTENSITY

Color Conversion2

UIS$HLS_ TO_RGB

UIS$HSV _ TO _RGB

UIS$RGB_ TO_HLS

UIS$RGB_ TO_HSV

Display List

UIS$FIND_PRIMITIVE

UIS$FIND_SEGMENT

UIS$GET _CURRENT_OBJECT

UIS$GET _NEXT_OBJECT

UIS$GET _OBJECT_ATTRIBUTES

UIS$GET _PARENT_SEGMENT

UIS$GET _PREVIOUS_OBJECT

UIS$GET _ROOT_SEGMENT

Graphics

UIS$GET _ARC_ TYPE

UIS$GET _FILL_PATTERN

UIS$GET _LINE_STYLE

UIS$GET _LINE_WIDTH

Keyboard and Pointer

Background color index

Single RGB color value in a color map entry

RGB color values

Hardware color map characteristics

Intensity values in virtual color map

Single intensity value in a virtual color map entry

Virtual color map identifier

Writing color index

Writing mode

Workstation standard color

Workstation standard color intensity

Converts HLS values to RGB color values

Converts HSV values to RGB color values

Converts RGB values to HLS color values

Converts RGB values to HSV color values

Identifier of the next primitive in the specified rectangle

Segment identifier of the next segment that contains objects in a
specified rectangle

Identifier of last object drawn in virtual display

Identifier of next object

Object type

Parent segment identifier

Identifier of the previous object

Root segment identifier

Arc type used to close arc

Fill pattern index and status

Line style vector

Line width in pixels or as a world coordinate x-coordinate width

Absolute position of the pointer

1 See Chapter 16 for more information about color and intensity inquiry routines.

2See Chapter Chapter 16 for more information about color conversion routines.

12-2

Inquiry Routines

Table 12-1 (Cont.) Inquiry Routines

Inquiry

Keyboard and Pointer

UIS$GET _BUTTONS

UIS$GET _KB_ATTRIBUTES

UIS$GET _POINTER_POSITION

UIS$GET _ TB_INFO

UIS$GET _ TB_POSITION

UIS$TEST _KB

Text

UIS$GET _ALIGNED _POSITION

UIS$GET _CHAR_ROT

UIS$GET _CHAR_SIZE

UIS$GET _CHAR_SLANT

UIS$GET _CHAR_SPACING

UIS$GET _FONT

UIS$GET _FONT_ATTRIBUTES

UIS$GET _FONT _SIZE

UIS$GET _LEFT_MARGIN

UIS$GET _POSITION

UIS$GET _TEXT_FORMATTING

UIS$GET _TEXT _MARGINS

UIS$GET _TEXT_PATH

UIS$GET _ TEXT_SLOPE

UIS$MEASURE_ TEXT

Windowing

UIS$GET _CLIP

UIS$GET _DISPLAY_SIZE

UIS$GET ~ VIEWPORT_ICON

UIS$GET _VIEWPORT_POSITION

UIS$GET _VIEWPORT_SIZE

UIS$GET _VISIBILITY

UIS$GET _WINDOW_ATTRIBUTES

UIS$GET _WINDOW_SIZE

Information Returned

State of the pointer device buttons

Keyboard characteristics

Position of pointer in world coordinates

Characteristics of the tablet

Position on tablet in centimeters

Successful or unsuccessful connection between virtual and physical
keyboard

World coordinates along the x-height of the current position of the next
character

Angle of character rotation in degrees

If character scaling is enabled and the scaling factors used

Angle of character slant in degrees

Character and line spacing factor

Font name

All font character characteristics

Font size in centimeters

World coordinate of left margin

World coordinates of text baseline

Formatting mode

Text margin settings for a line of text

Direction of text drawing

Angle of the text baseline in degrees

Proportions of text in world coordinates

Clipping rectangle

Display screen dimensions in centimeters

Whether or not the icon is occluded

Absolute position of display viewport on display screen

Dimensions of the display viewport in centimeters

Whether or not viewport is occluded

Window and viewport attributes

Dimensions of the display window in world coordinates

12-3

Inquiry Routines

12.2.1.2

12-4

Program Development I
Programming Objective

To return font and viewport information to center text.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport with a title.

3 Obtain the font size for a particular character string, viewport size, and
display screen size.

4 Choose a font and modify the font attribute block.

S Use the modified font attribute and information from the inquiry
routines to draw a line of centered text in the viewport.

6 Print the inquiry information in the terminal emulation window.

7 Repeat steps 3 through 6.

The font file names used in this program are logical names.

PROGRAM CENTER
IMPLICIT INTEGER(a-z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL F_WIDTH,F_HEIGHT,D_WIDTH,D_HEIGHT
REAL V_WIDTH, V_HEIGHT ~

VD_ID1=UIS$CREATE_DISPLAY(1.0,1.0,15.0,2.0,15.0,2.0) ~

WD_ID1=UIS$CREATE_WINDOW(VD_ID1,'SYS$WORKSTATION','CENTERED TEXT')

CALL UIS$GET_FONT_SIZE('MY_FONT_7','Time has wings',
2 F_WIDTH,F_HEIGHT) 8
CALL UIS$GET_DISPLAY_SIZE('SYS$WORKSTATION',D_WIDTH,D HEIGHT) 6
CALL UIS$GET_VIEWPORT_SIZE(WD_ID1,V_WIDTH,V_HEIGHT) m

CALL UIS$SET_FONT(VD_ID1,0,7,'MY_FONT_7') 9
CALL UIS$TEXT(VD_ID1,7,'Time has wings',
2 (V_WIDTH-F_WIDTH)/2,
2 V_HEIGHT) ~

PAUSE
PRINT 50

50 FORMAT(T10,'FIRST LINE',T39,'WIDTH',T51,'HEIGHT')

PRINT 75
75 FORMAT(T2,'---',

2 '------')

PRINT 100, F_WIDTH, F_HEIGHT
100 FORMAT(T2,'The dimensions of the font are:',

2 T39,f5.2,T46,'cm.',T51,f5.2,T58,'cm.')
PRINT 150,D WIDTH,D HEIGHT

150 FORMAT(T2,'The dimensions of the display are:',
2 T39,f6.2,T46,'cm.',T51,f6.2,T58,'cm.')

PRINT 200, V_WIDTH, V_HEIGHT
200 FORMAT(T2,'The dimensions of the viewport are:',

2 T39,f6.2,T46,'cm.',T51,f6.2,T58,'cm.')
CALL UIS$SET_FONT(VD_ID1,7,8,'MY_FONT_5') m
CALL UIS$MEASURE_TEXT(VD_ID1,8,'four seasons',
2 F_WIDTH,F_HEIGHT)
CALL UIS$NEW_TEXT_LINE(VD_ID1,8)
CALL UIS$TEXT(VD ID1,8,'four seasons',
2 (V_WIDTH:F_WIDTH)/2,(V_HEIGHT-F_HEIGHT» 6
TYPE *,' ,

Inquiry Routines

PRINT 550
550 FORMAT(T10,'SECOND LINE',T39,'WIDTH',T51,'HEIGHT')

PRINT 575
575 FORMAT(T2,'---',

2 '------')

PRINT 610, F_WIDTH, F_HEIGHT
610 FORMAT(T2,'THE DIMENSIONS OF THE FONT ARE:',

2 T39,f5.2,T46,'cm.',T51,f5.2,T58,'em.')
PRINT 700,D WIDTH,D HEIGHT

700 FORMAT(T2,'The dimensions of the display are:',
2 T39,f6.2,T46,'cm.',T51,f6.2,T58,'em.')

PRINT 800,v WIDTH,V HEIGHT
800 FORMAT(T2,'The dimensions of the viewport are:',

2 T 39 , f 6 • 2 , T 46 , , em. ' , T 51 , f 6 • 2 , T 58, , em. ')

PAUSE
END

The three inquiry functions UIS$GET _FONT_SIZE, UIS$GET _DISPLA Y_
SIZE, and UIS$GET_ VIEWPORT_SIZE are called H ~~. Each function
returns data to uniquely specified variables within its argument list.

A logical name is defined fJ [3 to represent the 31-character font file name.
The first call to UIS$TEXT m places a text string in the window. The starting
position for creating text is calculated from the expression in the argument
list. VAX FORTRAN allows arithmetic expressions as arguments.fllf
your application is written in a programming language other than V AX
FORTRAN, refer to the appropriate language reference manual.

To center the text in this window, the length of the text is subtracted from
the total width of the viewport and the result divided by two. The distance
of the text from the lower border of the window (the y coordinate) equals
the value of the variable v_height, the height of the display viewport.

NOTE: Before you run the demonstration programs, you must invoke the indirect
command file SYS$EXAMPLES:DEFFONT.COM.

12.2.1.3 Invoking UIS$GET _FONT_SIZE, UIS$GET _DISPLA V _SIZE, and
UIS$GET _ VIEWPORT_SIZE
If you run this program now, your workstation screen will display graphic
objects as shown in Figure 12-1.

Note that output from the FORTRAN PRINT or TYPE statement is not
displayed in the window. The TYPE and PRINT statements are equivalent
to the logical names FOR$TYPE and FOR$PRINT, which translate to the
logical name SYS$OUTPUT. Only UIS$TEXT can write text to a virtual
display.

12-5

Inquiry Routines

Figure 12-1 Centering Text

12-6

-~-~-~--- -~-------------
CENTEREO TEXT

- - '=-- -=- -- - =---=--....=-----==---=---=----~------==--======~-=====--=-==-==-====-------~~~-

TiMe has ",ings
For ive and for et

--- -~---- -----------------

VTllaH Tenninal
--- -------:::::::----------==--==-~--===::::::::::-----::::--=--=====~-~-====:::--========- ---==---===~~~

$ for/li~ center
$ link center
$ run center
FORTRAN PAUSE
$ continue

FIRST LINE

The dimensions of the font are:
The dimensions of the display are:
The dimensions of the viewport are:

SECOND LINE

The dimensions of the font are:
The dimensions of the display are:
The dimensions of the viewport are:
FORTRAN PAUSE
$

12.2.1.4 Program Development II
Programming Objective

WIDTH

6.46 em.
36.90 em.
14.99 em.

WIDTH

10.33 em.
36.90 em.
14.99 em.

HEIGHT

0.85 em.
28.34 em.

1. 97 em.

HEIGHT

0.49 em.
28.34 em.

1. 97 em.

ZK-4555-85

To construct a pie graph that illustrates the operating budget of a small
New England town.

Programming Tasks

1

2

3

4

5

6

7

Create a virtual display.

Create a display window and viewport with a title.

Choose a font and modify the font attribute.

Use the modified font attribute to print the titl,e of the graph.

Obtain font information.

Modify the arc type attribute.

Choose a fill pattern and modify the font attribute and the fill pattern 4
attribute.

Inquiry Routines

8 Use the modified fill pattern attribute to draw an arc.

9 Draw part of the legend below the pie graph.

10 Obtain and print arc type and fill pattern information.

11 Repeat steps 6 through 9.

10

PROGRAM PIE_GRAPH
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
CHARACTER*32 BUFFERDESC
LOGICAL*4 FILL_E~ABLED
VD_ID=UIS$CREATE_DISPLAY(-3.0,-3.0,25.0,25.0,15.0,15.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','PIE GRAPH')

CALL UIS$SET_FONT(VD_ID,0,9,'MY_FONT_10')
CALL UIS$TEXT(VD_ID,9,'OPERATING BUDGET',6.0,24.0)
CALL UIS$TEXT(VD_IP,9,'TOWN OF GREENWICH, MASS.',4.0,22.0)
CALL UIS$GET_FONT(VD_ID,9,aUFFERDESC,LENGTH) 8

PRINT 10,BUFFERDESC
FORMAT(T2,'THE FONT NAME IS',T20,A31)

PRINT 11,LENGTH
11 FORMAT(T2,'THE LENGTH OF THE FONT NAME IS ',T33,I3,T37,'CHARACTERS'

15

CALL UIS$SET_ARC_TYPE(VD_ID,0,1,UIS$C_ARC_PIE) ~
CALL UIS$SET_FONT(VD_ID,1,1,'UIS$FILL_PATTERNS')
CALL UIS$SET_FILL_PATTERN(VD_ID,1, 1,PATT$C_BRICK_DOWNDIAG)
CALL UIS$CIRCLE(VD_ID,1,10.0,10.0,8.0,0.0,50.0)
call uis$plot(vd_id,1,0.0,0.0,2.0,0.0,2.0,-1.0,
2 0.0,-1.0,0.0,0.0)
call uis$text(vd_id,O, 'Fire',3.0,0.0)
ARC_TYPE=UIS$GET_ARC_TYPE(VD_ID,l) ~
FILL_ENABLED=UIS$GET_FILL_PATTERN(VD_ID,l,INDEX) ~

PRINT 15,ARC_TYPE
FORMAT(T2,'THE ARC TYPE IS',T25,I1)

PRINT 20,FILL_ENABLED
20 FORMAT(T2,'IS THE FILL PATTERN ENABLED?',T32,L1)

CALL UIS$SET_FONT(VD_IP,1,2,'UIS$FILL_PATTERNS')
CALL UIS$SET_FILL_PATTERN(VD_ID,2,2,PATT$C_DOWNDIAG4_4)
CALL UIS$CIRCLE(VD_ID,2,10.0,10.0,8.0,50.0,95.0)
CALL UIS$PLOT(VD_ID,2,10.0,0.0,12.0,0.0,12.0,-1.0,
2 10.0,-1.0,10.0,0.0)
CALL UIS$TEXT(VD_ID,0,'Sanitation',14.0,0.0)

CALL UIS$SET_FONT(VP_ID,2,3,'UIS$FILL_PATTERNS')
CALL UIS$SET_FILL_PATTERN(VD_ID,3,3,PATT$C_HORIZ2_6)
CALL UIS$CIRCLE(VD_ID,3,10.0,10.0,8.0,95.0,165~0)
CALL UIS$PLOT(VD_ID,3,0.0,-2.0,2.0,-2.0,2.0,-3.0,
2 0.0,-3.0,0.0,-2.0)
CALL UIS$TEXT(VD_ID,0,'Police',3.0,-2.0)

CALL UIS$SET_FONT(VD_ID,3,4,'UIS$FILL_PATTERNS')
CALL UIS$SET_FILL_PATTERN(VD_ID,4,4,PATT$C_GREY4_16D)
CALL UIS$CIRCLE(VD_ID,4,10.0,10.0,8.0,165.0,360.0)
CALL UIS$PLOT(VD_ID,4,10.0,-2.0,12.0,-2.0,12.0,-3.0,
2 10.0,-3.0,10.0,-2.0)
CALL UIS$TEXT(VD_ID,O, 'Schools',14.0,-2.0)

PAUSE
END

The program PIE_GRAPH returns il1formation about the graph heading.
A call to UIS$GET _FONT 8 identifies the font and its length~. The font
MY_FONT_i0 is a logical name for a 3i-character font file name.

12-7

Inquiry Routines

12.2.1.5

12-8

Attribute block 1 contains the modified arc type attribute 11. When a new
section of the arc is drawn, it will have a pie arc type that enables fill
pattern.

Arc type information is returned in the variable arc_type e.
A call to UIS$GET_FILL_PATTERN m tests whether fill patterns are enabled.
Fill pattern information is returned in the variable fill_enabled m as a Boolean
value.

Invoking UISGET_ARC_TVPE, UISGET_FILL_PATTERN, and
UIS$GET _FONT
The program PIE_GRAPH draws a pie graph with four fill patterns. It
requests and displays certain program-specific information as shown in
Figure 12-2.

Inquiry Routines

Figure 12-2 Pie Graph

OPERATING BUDGET

TOWN OF GREENWICH. MASS.

~ Fire Sanitation

Police Schools

-~-

VTl'-.'-' Tenninal
-~ -~ - ---~ --------

$ for/li~ pie_!raph
$ link pie_!raph
$ run pie_!raph
THE FONT NAME IS MY_FONT_10
THE LENGTH OF THE FONT NAME IS 10 CHARACTERS
THE ARC TYPE IS 1
IS THE FILL PATTERN ENABLED? T
FORTRAN PAUSE
$ I

ZK-4556-85

12-9

13

13.1

13.2

Display Lists and Segmentation

Overview

Display Lists

As your displays become more complex, you should understand display
list concepts. This chapter discusses the following topics:

• Creating and searching segments

• Editing and walking the display list

• Disabling display lists

• Creating VIS metafiles

• Attaching private data to graphic objects

Consider the creation of complex objects as a challenge to simplify and to
modularize your coding through the use of segmentation.

VIS constructs a display list of encoded commands for graphics. A display
list is a device-independent encoding of the exact contents of the virtual
display. The display list remains resident in memory for use by VIS
routines. Figure 13-1 shows the format of an entry in the display list.

Figure 13-1 Binary Encoded Instruction

Opcode Length Arguments

ZK·5436·86

VIS signals an error if it encounters an invalid opcode.

Whenever you call VIS routines to create graphic objects or modify
attribute blocks, you add an entry to a display list. Each virtual display
has only one display list.

VIS maintains display lists for the following purposes:

• Automatic management of panning, zooming, resizing, and duplication
of display windows

• High resolution printing of physical and virtual displays

• Structuring and manipulation of graphic objects in the virtual display

13-1

13.3

Display Lists and Segmentation

Segments

13-2

• Storage of the contents of the virtual display in a buffer for later
reexecution

A segment consists of calls to UIS graphics and text routines (and any nested
segments). You create a segment explicitly with a call to UIS$BEGIN_
SEGMENT; you terminate a segment with a call to UIS$END _SEGMENT.
A complex display list is a hierarchy of nested segments.

A top-level root segment contains any segment or output (graphic and text)
routine that is not in an explicitly created segment.

Segmentation of graphics routines facilitates transformations-scaling,
rotation, and translation. Segmentation also modularizes attributes. You
can construct complex graphic objects in sections, where each logical
grouping of display list entries is in a segment. You can transform or
display such segments individually and independently of the rest of the
object. Changes to attributes in a segment do not affect the attribute
settings of a higher-level segment.

For example, a house, a barn, and landscape are constructed as three
logical groupings, or subpictures, of a complex display. Each subpicture is a
segment of appropriate UIS routines. You can manipulate each subpicture
independently of one other.

Figure 13-2 shows a tree diagram of a display list containing nested ~
segments. Read the diagram from left to right and downward until there ,
are no more segments. Read each level to the right and move upward to
the next level where you left off.

13.3.1

Display Lists and Segmentation

Figure 13-2 Nested Segments

Root

I
Level 0 Circle Segment 1 Plot

Level 1 Plot Segment 2 Image

Level 2 Circle Segment 3 Plot Circle

Level 3 Plot Ellipse Plot Text Line

ZK·5459·86

Identifiers and Object Types
There are many types of UIS identifiers-for example, virtual display
identifier, virtual keyboard identifier, transformation identifier, and so
on. Identifiers allow an application to reference and manipulate internal
objects. To manage the display list, follow these steps:

1 Traverse the display list downward object by object.

2 Search a segment.

3 Traverse upward through the segment path.

Segments

UIS$BEGIN_SEGMENT returns a unique identifier to each segment. If you
do not use UIS$BEGIN_SEGMENT to declare any segments explicitly, you
can use the unique identifier of the root segment to manipulate the display
list.

Objects

Every object in the virtual display has an object identifier. However, not
all routines return identifiers explicitly. Object and segment identifiers are
useful in walking and editing the display list. Use them as reference pOints
within complex display lists.

Sometimes the identifier is not part of the calling sequence; in this case,
you must use another UIS routine to return the identifier. For example,
none of the graphics and text routines return identifiers explicitly. You can
use the routines listed in the following table to return the identifiers.

13-3

Display Lists and Segmentation

Graphic Object Identifier Routine

Segment segJd UIS$BEGIN_SEGMENT1

Root segment rootJd UIS$GET _ROOT_SEGMENT

Parent segment parenCid UIS$GET _PARENT_SEGMENT

Graphic objects prevJd UIS$GET _PREVIOUS_OBJECT
currenCid UIS$GET _CURRENT_OBJECT
nextJd UIS$GET _NEXT_OBJECT

1 UIS$BEGIN_SEGMENT returns the segment identifier in a return variable, segjd.

Object Types

Although you can use segment and object identifiers· to manipulate the
display list, you must further identify those objects within a segment. You
should know the display list entry object type. UIS categorizes graphic
objects by object type. The following table lists six object types and their
symbols.

Symbol

UIS$C_OBJECT _SEGMENT

UIS$C_OBJECT _PLOT

UIS$C_OBJECT _TEXT

UIS$C_OBJECT _ELLIPSE

UIS$C_OBJECT _IMAGE

UIS$C_OBJECT _LINE

Graphic Object

New segment

Point, line, or polygon

Text

Ellipse or circle

Raster image

Unconnected lines

UIS$GET_OBJECT_ATTRIBUTES returns object type information.

13.3.2 Programming Options

13-4

From the options available below, the following programs are constructed:

• Program to disable display lists ~
• Program to walk the display list

Creating Segments

You can use UIS$BEGIN_SEGMENT and UIS$END _SEGMENT to create
an unlimited number of segments explicitly. For each newly created
segment, UIS returns a unique identifier that appropriate UIS routines use
to locate and edit segments. You can also nest seglnents within segments.

NOTE: If you call UIS$BEGIN_SEGMENT before you call any graphics and text
routines, the segment is deleted and the returned identifier is no longer
valid. To create an empty segment, call UIS$BEGIN_SEGMENT, then
UIS$PRIVATE. This sequence places private data in the segment. Now
UIS$END_SEGMENT does not consider the segment empty.

I

Display Lists and Segmentation

Enabling and Disabling Display Lists

When you disable a display list, nothing can be added to the list. You
can enable and disable a display list explicitly any number of times
with UIS$ENABLE_DISPLAY_LIST and UIS$DISABLE_DISPLA Y _LIST.
However, to see the results of disabling a display list, you must execute
the display list. Use UIS$EXECUTE or any of the routines listed in the
following table to execute the display list.

Routine

UIS$CREATE_WINDOW

UIS$DELETE_ OBJECT1 ,5

UIS$EXECUTE2,5

UIS$MOVE_AREA3.5

Function

Creates a display window and viewport

Deletes an object in the virtual display

Executes the display list

Moves a portion of the virtual display to another part
of the virtual display

Redefines the display window coordinate space.

1UIS$OELETE_OBJECT executes the display list only when the object to be deleted
occluded another object.

2UIS$EXECUTE executes the entire display list if buflen and bufaddr are not
specified.

3UIS$MOVE_AREA executes the display list only if the specified source and
destination rectangles lie within a display window.

4UIS$MOVE_WINDOW executes the display list only If the window size Is changed.

5Thls routine checks display list flags.

The position of UIS$DISABLE_DISPLAY_LIST and UIS$ENABLE_
DISPLAY_LIST in your program is important. If the display list is disabled
after the display list is executed, the viewport displays all the graphic
objects drawn in the virtual display. If the display list is disabled before
one of the above routines is called, the viewport displays none of the
graphic objects created between calls to UIS$DISABLE_DISPLA Y _LIST
and UIS$ENABLE_DISPLAY_LIST. No binary instructions are added to the
display list.

Walking the Display List

You can traverse, or walk the entire display list from top to bottom and
from object to object with UIS$GET_ROOT_SEGMENT and UIS$GET_
NEXT_OBJECT.

Searching a Segment

If the display list contains segments, you can search the contents of any
segment in the display list with UIS$GET_NEXT_OBJECT.

V4.1-June 1989 13-5

Display Lists and Segmentation

Traversing the Segment Path

Because the root segment is the ultimate parent segment, every nested
segment has a parent segment. The root segment acts as the parent for
all level-one segments (see Figure 13-2). A segment identifier notes the
beginning of each segment in a display list. The segment identifiers within
a display list constitute its segment path. You can traverse the segment path
from the innermost segment outward with UIS$GET_PARENT_SEGMENT.

13.3.3 Program Development I
Programming Objective

To disable a display list.

13-6

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Disable the display list.

4 Draw some graphic objects in the virtual display.

S Reenable the display list.

6 Draw some graphic objects in the virtual display.

7 Create a second display window and viewport.

PROGRAM LIST
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
VD_ID=UIS$CREATE_DISPLAY(-1. 0, -1. 0,50.0,50.0,10.0,10.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','MORE') 0

c Disable the display list

CALL UIS$DISABLE_DISPLAY_LIST(VD_ID) ~

c Draw the graphic objects

CALL UIS$CIRCLE(VD_ID,0,15.0,15.0,5.0)
CALL UIS$CIRCLE(VD_ID,0,5.0,5.0,5.0)
CALL UIS$PLOT(VD_ID,0,27.0,17.0,35.0,17.0,35.0,24.0,27.0,24.0,
2 27.0,17.0)
CALL UIS$CIRCLE(VD_ID,0,35.0,35.0,8.0)
CALL UIS$PLOT(VD_ID,0,5.0,30.0,15.0,30.0,10.0,40.0,5.0,30.0)

PAUSE
c Reenable the display list

CALL UIS$ENABLE_DISPLAY_LIST(VD_ID) ~

c Draw circle and triangle

CALL UIS$CIRCLE(VD_ID,0,33.0,35.0,8.0) ~
CALL UIS$PLOT(VD_ID,0,7.0,31.0,17.0,31.0,12.0,41.0,7.0,31.0) 0

WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION', 'LESS') m
PAUSE

END

V4.1-June 1989

Display Lists and Segmentation

Initial1y, a display window and viewport lf1beled MORE are created n. The
world coordinate range of the window defaults to that of the virtual display.

The display list is disabled ~.

Five graphic objects are drawn in the virtual display-three circles, a
triangle, and a square. Although all five objects appear in the viewport
MORE, no entries are added to the display list.

After the PAUSE statement, the display list is reenabled @l and a triangle
and another circle are drawn e ~.

V4.1-June 1989 13-6.1

13.3.3.1

Display Lists and Segmentation

Because the first call to UIS $ CREATE_ WINDOW was executed before the
display list was disabled, objects drawn in the virtual display and within
the display window are displayed in the viewport but are not added to the
display list.

Finally, the second display window and viewport labeled LESS are created
m. The display list is executed, and all objects except those included within
the disable-enable request appear in the viewport LESS.

Calling UIS$DISABLE_DISPLA Y _LIST and UIS$ENABLE_DISPLA Y _LIST
When the program executes, the viewport MORE is displayed first as
shown in Figure 13-3.

Figure 13-3 Disabling a Display List

---- -~ --------~-------- ~-

MORE
------ - ~~-:::::::--- --~---

o
D

Type CONTINUE at the dollar sign prompt ($). Figure 13-4 shows
viewports MORE and LESS. Note that the second call to UIS$CREATE_
WINDOW executes the display list.

13-7

Display Lists and Segmentation

Figure 13-4 After Display List Execution

13-8

- -- --- ----~-------~~---- - ------ ~---~ -- ~~ - -- --- ----- - -

MORE LESS
~--:::::.--==::--= --==------==--~~-=-~=~ ~ ------ --~~---- - -- -- -----

A
« S

/~

U
o o

0'

13.3.3.2 Program Development II
Programming Objectives

To traverse the entire display list and examine each object type.

Programming Tasks

1 Create a virtual display.

2 Draw graphic objects in the virtual display.

3 Print output headings in the emulation window.

4 Obtain the identifier of the root segment.

5 Walk downward through the display list.

6 Examine each object type and place its identifier in one of five arrays.

Figure 13-5 shows a tree diagram of the program WALK.

Display Lists and Segmentation

Figure 13-5 Tree Diagram-Program WALK

Root

Level 0 I
I I I

Ellipse Plot Plot Plot Text Text

ZK·5464·86

The program WALK draws objects in a virtual display, then identifies
each object by walking the entire display list and examining the various
object type values. The program also shows how to collect and store object
identifiers according to object type. If you run program WALK, compile
the subroutine DETERMINE as a separate module and link it with WALK.

PROGRAM WALK
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
COMMON NEXT_ID1,TYPE1 8
VD_ID1=UIS$CREATE_DISPLAY(0.0,0.0,40.0,40.0,20.0,20.0) @

C Draw objects in virtual display

CALL UIS$CIRCLE(VD_ID1,0,15.0,15.0,6.0)
CALL UIS$PLOT(VD_ID1,0,1.0,1.0,20.0,1.0,20.0,8.0,1.0,1.0)
CALL UIS$PLOT(VD_ID1,0,20.0,20.0,40.0,20.0,30.0,35.0,20.0,
2 20.0)
CALL UIS$PLOT(VD_ID1,O,3.0,25.0,13.0,25.0,13.0,35.0,
2 3.0,35.0,3.0,25.0)
CALL UIS$TEXT(VD_ID1,0,'The footsteps of fortune are slippery',
2 0.0,38.0)
CALL UIS$NEW_TEXT_LINE(VD_ID1,0)
CALL UIS$TEXT(VD_ID1,O,'Mirth without measure is madness')
PRINT 10

10 FORMAT(T2,'DISPLAY LIST ELEMENTS')
PRINT 20

20 FORMAT(Tl,'------------------------------')
PRINT 30

30 FORMAT(T2,'IDENTIFIER',T17,'OBJECT TYPE')

ROOT_ID1=UIS$GET_ROOT_SEGMENT(VD_ID1) ~
NEXT_ID1 = ROOT_IDl

c Walk the display list

DO WHILE (NEXT_ID1 .NE. 0) ~
TYPE1=UIS$GET_OBJECT_ATTRIBUTES(NEXT_ID1) 0
CALL DETERMINE m
NEXT_ID1=UIS$GET_NEXT_OBJECT(NEXT_ID1) 6
ENDDO m
WD_ID1=UIS$CREATE_WINbOW(VD_ID1,'SYS$WORKSTATION') ~

PAUSE
END

SUBROUTINE DETERMINE 800
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
INTEGER*4 SEG_ARRAY(6),PLOT_ARRAY(6),TEXT_ARRAY(6),ELLIP ARRAY(6) 0
INTEGER*4 LINE(6),IMAGE(6) ~
DATA H,I,J,K,L,M/1,l,l,l,1,1/ Hm
COMMON NEXT_ID1,TYPE1 De

13-9

Display Lists and Segmentation

13-10

IF (TYPEl .EQ. UIS$C_OBJECT_SEGMENT) THEN
SEG_ARRAY(H)= NEXT_IDl
PRINT 40,SEG_ARRAY(H),TYPEl

40 FORMAT(T2,I6,T19,Il,T24,'SEGMENT')

50

H = H + 1
ENDIF

IF (TYPEl .EQ. UIS$C_OBJECT_PLOT) THEN
PLOT_ARRAY(I) = NEXT_IDl
PRINT 50,PLOT_ARRAY(I),TYPEl
FORMAT(T2,I6,T19,Il,T24,'PLOT')
I = I + 1
ENDIF
IF (TYPEl .EQ. UIS$C_OBJECT_TEXT) THEN
TEXT_ARRAY(J) = NEXT_IDl
PRINT 55,TEXT_ARRAY(J),TYPEl

55 FORMAT(T2,I6,T19,Il,T24,'TEXT')
J = J + 1
ENDIF

IF (TYPEl .EQ. UIS$C_OBJECT_ELLIPSE) THEN om
ELLIP_ARRAY(K) = NEXT_IDl
PRINT 60,ELLIP_ARRAY(K),TYPEl

60 FORMAT(T2,I6,T19,Il,T24,'ELLIPSE')
K = K + 1
ENDIF
IF (TYPEl .EQ. UIS$C_OBJECT_LINE) THEN om
LINE(L) = NEXT_IDl
PRINT 70,LINE(L),TYPEl

70 FORMAT(T2,I6,T19,Il,T24,'NEW TEXT LINE')
L = L + 1

80

ENDIF

IF (TYPEl .EQ~ UIS$C_OBJECT_IMAGE) THEN
IMAGE(M) z NEXT_IDl
PRINT 80,IMAGE(M),TYPEl
FORMAT(T2,I6,T19,Il,T24,'IMAGE')
M = M + 1
ENDIF

RETURN
END

The variables nextjdl and typel are used in both the main program and the
subroutine DETERMINE. The COMMON statement ensures access to data
stored in both locations by both the main program and the subroutine 0 III

A virtual display is created fl As objects are drawn in the virtual display,
display list entries in the form of encoded binary data identifying the
particular objects are added to the display list. Only one display list is
created for each virtual display.

Because the entire display list is to be traversed, the root segment will be
the starting point and its identifier must be returned n
A DOWHILE loop 9 m implements traversing the display list through
successive calls to UIS$GET_NEXT_OBJECT i.

An object type for each display list entry is returned m.

Within the DOWHILE loop, the subroutine DETERMINE is called m ml to
sort each object identifier according to its object type (g m (I) om B1l fI!l.
For more information about object type symbols such as UIS$C_OBJECT_
PLOT, see UIS$GET_OBJECT_ATTRIBUTES.

For each object type represented in the display list, five arrays are declared
III lB. Each object identifier is stored in one of these arrays. All counter
variables are initialized to the value 1 [11

13.3.3.3.

Display Lists and Segmentation

A call to UIS$CREA TE_ WINDOW creates a display window and viewport,
and executes the contents of the display list in the virtual displaym.

Calling UIS$GET _NEXT_OBJECT, UIS$GET _OBJECT _ATTRIBUTES, and
UIS$GET _ROOT_SEGMENT
The program WALK walks the display list and identifies each object.
Figure 13-6 shows how each object is returned in the terminal emulation
window.

Figure 13-6 Display List Elements

$ rl.Jn walk
DISPLAY LIST ELEMENTS

IDENTIF"IER
113992
115328
115575
115822
116069
116316
116810
117057
F"ORTRAN PAUSE

OBJECT TYPE
UIS$C_OBJECT_SEGMENT
UIS$C_OBJECT_ELLIPSE
UIS$C_OBJECT_PLOT
UIS$C_OBJECT_PLOT
UIS$C_OBJECT_PLOT
UIS$C_OBJECT_TEXT
UIS$C_OBJECT_TEXT
UIS$C_OBJECT_LINE

ZK·5255·86

The program WALK also creates a display window and viewport with the
objects in the virtual display as shown in Figure 13-7.

13-11

Display Lists and Segmentation

Figure 13-7 Contents of the Display List

13-12

---~~-~---~---------------------

The footsteps of fortune are slippery
Mirtr. without measure is madness

13.3.3.4

\
'-. /

'---------

Program Development III
Programming Objectives

! I I
I I I

I ! II
ZK·5259·86

To create a display list with a nested segment, traverse upward through the
segment path, then search downward through a specified seglnent.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Create five levels of nested segments.

4 Print output headings in the emulation window.

5

6

7

8

9

Display Lists and Segmentation

Beginn~ng at the innermost nested segment, use UIS$GET _PARENT_
SEGMENT to obtain and print the parent segment identifier.

Print output headings in the emulation window.

Choose a segment to search.

Use UIS$GET_NEXT_OBJECT to walk downward through the segment.

Call the subroutine DETERMINE to examine and store the objects in
arrays by object type.

Figure 13-8 shows the structure of the display list in the program HOP.

Figure 13-8 Display List Structure in Program HOP

Root

I
Level 0 Segment 1

rl
Level 1 Plot Segment 2

I
Level 2 Ellipse Segment 3 Plot Ellipse

I
Level 3 Ellipse Segment 4 Text

rl
Leve' 4 Text Segment 5

I
Level 5 Text Text

ZK·5460·86

To run program HOP, compile the subroutine DETERMINE from the
preceding program WALK as a separate module and link it with HOP.

PROGRAM HOP
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
COMMON NEXT_ID1,TYPEl

VD_ID2=UIS$CREATE_DISPLAY(-1.O,-1.O,40.0,40.0,15.0,15.0)

13-13

Display Lists and Segmentation

13-14

SEG_1D1=U1S$BEG1N_SEGMENT(VD_1D2)
CALL U1S$PLOT(VD_1D2,0,0.0,12.0,5.0,12.0,7.5,17.0,10.0,

2 12.0,15.0,12.0,
2 12.5,7.5,15.0,0.0,7.5,5.0,0.0,0.0,2.5,7.5,0.0,12.0)

SEG_1D2=U1S$BEG1N_SEGMENT(VD_1D2) ()
CALL UIS$C1RCLE(VD_1D2,0,7.5,8.0,8.0)

SEG_1D3=U1S$BEG1N_SEGMENT(VD_1D2)
CALLUIS$ELL1PSE(VD_1D2,O,25.0,8.0,5.0,8.0)

SEG 1D4=U1S$BEG1N SEGMENT(VD 1D2)
CALL U1S$TEXT(VD~ID2,0"M1SERY LOVES COMPANY',

2 17.0,24.0)
SEG_1D5=UIS$BEG1N_SEGMENT(VD_1D2)
CALL U1S$TEXT(VD_1D2,0,'ONE SLUMBER INVITES ANOTHER',

2 1.0,39.0)
CALL UIS$NEW_TEXT_L1NE(VD_1D2,0)
CALL UIS$TEXT(VD_ID2,0,'L1V1NG WELL IS THE BEST REVENGE')
CALL U1S$END_SEGMENT(VD_ID2)

CALL UIS$END_SEGMENT(VD_ID2)
CALL UIS$TEXT(VD_ID2,0,'SUCCESS MAKES A FOOL SEEM WISE',

2 1.0,19.0)
CALL UIS$END_SEGMENT(VD_ID2)

CALL UIS$PLOT(VD_1D2,0,20.0,25.0,35.0,25.0,35.0,35.0,20.0,35.0,
2 20.0,25.0)
CALL U1S$C1RCLE(VD_1D2,O,10.0,28.0,8.0)
CALL UIS$END_SEGMENT(VD_ID2) ~
CALL UIS$END_SEGMENT(VD_1D2)

C HOPPING UPWARD ALONG THE SEGMENT PATH
PRINT 45

45 FORMAT(T2,'SEGMENT PATH')
PRINT 55

55 FORMAT(T1,'------------------------------')
PRINT 56

56 FORMAT(T2,'IDENTIFIER',T17,'LEVEL')

60

SEG_1D=SEG_1D5
1=5
PRINT 60,SEG_ID5,1

DO 1=4,1,-1 m
PARENT_1D=U1S$GET_PARENT_SEGMENT(SEG_1D) m
SEG_ID=PARENT_1D
PRINT 60,PARENT_1D,I
FORMAT(T2,I10,T18,I2)
ENDDO

C SEARCHING DOWNWARD THROUGH A NESTED SEGMENT
PRINT 65

65 FORMAT(T2,'SEGMENT')
PRINT 70

70 FORMAT(T1,'------------------------------')
PRINT 75

75 FORMAT(T2,'IDENTIFIER',T17,'OBJECT TYPE')

NEXT_ID1=UIS$GET_NEXT_OBJECT(SEG_1D2) m
DO WHILE(NEXT_IDl .NE. 0) ~
TYPE1=U1S$GET_OBJECT_ATTR1BUTES(NEXT_1D1)
CALL DETERMINE 800
NEXTID1=UIS$GET NEXT OBJECT(NEXT ID1,UIS$M DL SAME SEGMENT) m
ENDDO - - - fE - -
WD_ID2=U1S$CREATE_W1NDOW(VD_1D2,'SYS$WORKSTAT10N')

PAUSE

END

Excluding the root segment, the program HOP contains five levels of
nesting. To walk the segment path, start at the innermost segment~. The
counter I is initialized to 5 ~, the level of nesting where you start.

13.3.3.5

Display Lists and Segmentation

A DO loop is declared; the loop 0 fl contains the call to UIS$GET_
PARENT_SEGMENT m. The seg_id argument in UIS$GET_PARENT_
SEGMENT is initialized with segment identifier 5 U As each new parent
segment identifier is returned, the counter is decremented and, in turn, is
used as the se~id argument in the next iteration of the loop.

The second purpose of the program is to search a specified segment. To
search a segment, use both parameters in UIS$GET_NEXT_OBJECT. To
start at the beginning of a segment, initialize the seg_id to the value of the
segment identifier you want to search m. When you do this, UIS$GET_
NEXT_OBJECT returns the identifier of the next object in the segment. In
this example, the second segment is chosen 8.

Another DO loop is established ~ (fJ; the loop contains a call to the
subroutine DETERMINE. ml Note that UIS$GET_NEXT_OBJECT m
now specifies both arguments. The search is performed on the specified
segment only. If the flag UIS$M_DL_SAME_SEGMENT is not specified,
the search proceeds down to the innermost nested segment.

Calling UIS$GET _PARENT_SEGMENT
Segment identifiers are returned beginning with the innermost nested
segment as shown in Figure 13-9.

Figure 13-9 Traversing Upward Along the Segment Path

$ RUN HOP
SEGMENT PATH

IDENTIFIER
122664
121576
120488
119400
115592

\ ~

LEVEL
5
4
3
2
1

ZK-S29S-86

Object identifiers in the second-level segment are displayed as shown in
Figure 13-10.

All objects drawn in the virtual display are shown in Figure 13-11.

13-15

13.4

Display Lists and Segmentation

Figure 13-10 Searching Downward Through a Segment

SEGMENT

IDENTIFIER
117175
120488
118904
119151

FORTRAN PAUSE
$

More About Segments

08JECT,TYPE
UIS$C_08JECT_ELLIPSE
UfS$C_08JECT_SEGMENT
UIS$C_08JECT_PLOT
UIS$C_08JECT_ELLIPSE

ZK·5Z96·86

When you use segments in your application programs, you create complex
objects that can be edited or searched segment-by-segment. Segments also
exhibit special behavior when they encounter attribute blocks.

13.4.1 Programming Options

13-16

You can also manipulate segments.

Editing Display Lists

You can edit display lists with or without explicitly defined segments.

NOTE: Use UIS$SET_INSERTION_POSITION to insert an object between
existing objects in a display list.

The following routines allow you to edit display lists in other ways.

Display Lists and Segmentation

Figure 13-11 Contents of the Display List Drawn in the Virtual Display

ONE SLUMBER INVITES ANOTHER
LIVING WELL IS THE BEST REVENGE

~~,

(\
II

/ MIS ERY LOVES COMPANY

~.

SUCCESS MAKES A FOOL SEEM WISE

~//\ "~
\ \

1\
/ \

/ I

~
ZK 5260 86

13-17

Display Lists and Segmentation

Routine

UIS$COPY _OBJECT

UIS$DELETE_ OBJECT

UIS$INSERT _OBJECT

UIS$TRANSFORM_OBJECT

Function

Copies an object to another part of the display list

Deletes an object from the display list

Moves an object to another part of the display list

Scales, rotates, and translates an object

Modifying Attribute Blocks Within Segments

A segment can consist of the following:

• Calls to graphics and text output routines

• Attribute routines

• Nested segments

When one attribute block is modified at two different levels of nesting,
modifications to the innermost attribute block take precedence over any
previous modifications at outer levels. Such attribute block modifications
influence graphics and text output (where applicable) at deeper levels of
nesting.

When you leave a lower-level nested segment, the original attributes of the
parent segment are restored. Therefore, you can change attributes within a
segment without affecting a higher-level segment.

13.4.2 Program Development I
Programming Objective

To edit a display list.

13-18

Programming Tasks

1 Create a virtual display.

2 Create a series of nested segments containing calls to draw graphic
objects.

3 Create a display window and viewport.

4 Delete an object in segment 1.

S Set the editing pointer to the end of segment 1.

6 Print output headings in the emulation window.

7 Add a line drawing call to the end of segment 1.

8 Verify the contents of segment 1.

9 Position the pointer to the end of segment 2.

10 Add text to segment 2.

11 Verify the contents of segment 2.

Display Lists and Segmentation

Inserting an object in a specific location in the display list affects the order
in which objects are drawn in the virtual display, not how an object is
drawn. Figure 13-12 shows the pre-edit display list structure in program
EDIT_LIST.

Figure 13-12 Pre-Edit Display List Structure

Root

Level 0 Segment 1

Level 1 Ellipse Plot Segment 2 Text

I

Level 2 Ellipse Plot

ZK·5463·86

To run program EDIT_LIST, compile subroutine DETERMINE from the
program WALK as a separate module and link it with EDIT_LIST.

PROGRAM EDIT_LIST
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
COMMON NEXT_ID1,TYPE1

C Create a virtual display
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,50.0,50.0,15.0,15.0)

c Create a segment
SEG_ID1=UIS$BEGIN_SEGMENT(VD_ID) D

CALL UIS$CIRCLE(VD_ID,0,8.0,35.0,7.0) H
CURR_ID1=UIS$GET_CURRENT_OBJECT(VD_ID) m
CALL UIS$PLOT(VD_ID,O,17.0,27.0,32.0,27.0,24.5,42.0,17.0,27.0)
CURR_ID2=UIS$GET_CURRENT_OBJECT(VD_ID)

c Create another segment
SEG_ID2=UIS$BEGIN_SEGMENT(VD_ID) e
CALL UIS$ELLIPSE(VD_ID,0,8.0,1S.0,S.0,9.0)
CURR_ID4=UIS$GET_CURRENT_OBJECT(VD_ID)
CALL UIS$PLOT(VD_ID,0,15.0,8.0,30.0,8.0,

2 35.0,22.0,20.0,22.0,15.0,8.0)
CURR ID5=UIS$GET CURRENT OBJECT(VD ID)
CALL-UIS$END_SEGMENT(VD_ID) -

CALL UIS$TEXT(VD_ID,O,'The ox when weariest treads surest',
2 5.0,47.0)

CURR_ID6=UIS$GET_CURRENT_OBJECT(VD_ID)
CALL UIS$END_SEGMENT(VD_ID)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')

PAUSE
c Delete an object from segment 1

CALL UIS$DELETE_OBJECT(CURR_ID1)

13-19

Display Lists and Segmentation

13-20

c Set the editing pointer at the end of segment 1
CALL UIS$SET_INSERTION_POSITION(SEG_ID1,) m

CALL UIS$PLOT(VD_ID,0,29.0,42.0,44.0,42.0,36.5,27.0,29.0,42.0) 6

PRINT 20
20 FORMAT(T2,'CONTENTS OF SEGMENT 1')

PRINT 25
25 FORMAT(T2,'IDENTIFIER',T14,'OBJECT',T22,'TYPE')

PRINT 30
30 FORMAT('----------------------------')

c Verify the contents of segment 1
NEXT_ID1=UIS$GET_NEXT_OBJECT(SEG_ID1)

DO WHILE(NEXT_ID1 .NE. 0)
TYPE1=UIS$GET_OBJECT_ATTRIBUTES(NEXT_ID1)
CALL DETERMINE m
NEXT_ID1=UIS$GET_NEXT_OBJECT (NEXT_ID1, UIS$M_DL_SAME_SE GMENT)
ENDDO
PAUSE

c Set the editing pointer at the end of segment 2
CALL UIS$SET_INSERTION_POSITION(SEG_ID2) m
CALL UIS$TEXT(VD_ID,O,'Old foxes want no tutors',
2 5.0,45.0) nm
PRINT 40

40 FORMAT(T2,'CONTENTS OF SEGMENT 2')
PRINT 45

45 FORMAT(T2,'IDENTIFIER',T14,'OBJECT',T22,'TYPE')
PRINT 50

50 FORMAT('----------------------------')

c Verify the contents of segment 2

NEXT_ID1=UIS$GET_NEXT_OBJECT(SEG_ID2)

DO WHILE(NEXT_ID1 .NE. 0)
TYPE1=UIS$GET_OBJECT_ATTRIBUTES(NEXT_ID1)
CALL DETERMINE on
NEXT_ID1=UIS$GET_NEXT_OBJECT(NEXT_ID1,UIS$M_DL_SAME_SEGMENT)
ENDDO

PAUSE
END

Two segments are created [J e. The second segment is nested within the
first.

Successive calls to UIS$GET_CURRENT_OBJECT (J retrieve an object ~
identifier for each object in both segments. This operation is useful if you
need to insert an object in the display list later.

A call to UIS$DELETE_OBJECT m deletes a circle ~ from segment 1 in the
display list.

The editing pointer in the display list is set at the end of segment 1 with
UIS$SET _INSERTION_POSITION m. A call to UIS$PLOT is added to
segment 1 6.

A call to the subroutine DETERMINE m verifies the addition in the display
list.

The editing pointer in the display list is set at the end of segment 2 with
UIS$SET_INSERTION_POSITION m. The binary instruction resulting from
a call to UIS$TEXT is added to segment 2 nm.
A call to the subroutine DETERMINE on verifies the changes in the display
list. ~

13.4.2.1

13.4.2.2

Display Lists and Segmentation

Figure 13-13 Post-Edit Structure of the Display List

Root

Level 0 Segment 1

I
Level 1 Plot Segment 2 Text Plot

Level 2 Ellipse Plot Text -J
New Objects

ZK·5458·86

Figure 13-13 shows the post-edit structure of the display list.

Calling UIS$SET _INSERTION_POSITION
The original objects, circle, ellipse, triangle, parallelogram, and text, are
shown in Figure 13-14.

A triangle and a line of text are added to the virtual display. The circle is
deleted from the virtual display as shown in Figure 13-15.

The contents of the segment are written to the emulation window as shown
in Figure 13-16.

Program Development II
Programming Objective

To draw text at different levels of segmentation.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Create three levels of nested segments.

4 Modify the font character spacing attributes for each level of nesting.

13-21

Display Lists and Segmentation

Figure 13-14 Before Display List Modification

13-22

-~- ----~---------------~--~~-~ ~--- ~ -- - -- - - --

- -----------------------~---- -~ - - - -

The ox when weariest treads surest

5 Draw text at each level of nesting.

Font names specified in the program are logical names.

PROGRAM SEGMENT
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,30.0,30.0,21.0,S.O)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')

CALL UIS$BEGIN_SEGMENT(VD_ID) 0

ZK·5261-116

CALL UIS$SET FONT(VD ID,O,l,'MY FONT 6') ~
CALL UIS$SET:CHAR_SPACING(VD_ID~1,1,O.O,1.0) m
CALL UIS$TEXT(VD_ID,l,'The resolved mind has no cares',O.O,30.0

~

Display Lists and Segmentation

Figure 13-15 Executing the Modified Display List

~---

- - -- --===-=----------=--============-- - - -

The ox when weariest treads surest
Old foxes want no tutors

/

CALL UIS$BEGIN_SEGMENT(VD_ID) 0

ZK·5263·86

CALL UIS$SET_FONT(VD_ID,1,1,'MY_FONT_13') m
CALL UIS$NEW_TEXT_LINE(VD_ID,l)
CALL UIS$TEXT(VD_ID,l,'The camel never sees its own hump')

PAUSE

CALL UIS$BEGIN_SEGMENT(VD_ID) m
CALL UIS$SET_FONT(VD_ID,1,1,'MY_FONT_7') ~
CALL UIS$NEW_TEXT_LINE(VD_ID,l)
CALL UIS$TEXT(VD_ID,l,'First things first')

CALL UIS$END_SEGMENT(VD_ID) ~

CALL UIS$SET_CHAR_SPACING(VD_ID,l,l,O.O,O.O) ~
CALL UIS$NEW_TEXT_LINE(VD_ID,l)
CALL UIS$TEXT(VD_ID,l,'A new broom sweeps clean') ~

CALL UIS$END_SEGMENT(VD_ID) ~
CALL UIS$NEW_TEXT_LINE(VD~ID,l,)
CALL UIS$TEXT(VD_ID,l,'NO sun without a shadow') De
CALL UIS$END_SEGMENT(VD_ID) ~

13-23

Display Lists and Segmentation

13-24

Figure 13-16 Verifying the Contents of the Display List

:$ run edit_list
FORTRAN PAUSE
:$ cant
CONTENTS OF SEGMENT 1
IDENTIFIER OBJECT TYPE

11666:3
11;3888
117404
117651
FORT~~AN PAUS E
:$: cant

UIS$C_OBJECT_PLOT
UIS$C_OBJECT_SEGMENT
UIS$C_OBJECT_TEXT
UIS$C_OBJECT_PLOT

CONTENTS OF SEGMENT 2
IDENTIFIER OBJECT TYPE

116910
117157
116416
FO~~ T~~At:·~ PAUSE

PAUSE

END

UIS$C_OBJECT_ELLIPSE
UIS$C_OBJECT_PLOT
UIS$C_OBJECT_TEXT

ZK5262·86

The first call to UIS$BEGIN_SEGMENT 8 and the final call to UIS$END_
SEGMENT m establish the limits of the first-level segment. In this
segment, there are two calls to UIS$TEXT [J m. The first call to UIS$TEXT
establishes the current position for all first-level text output.

An attribute routine UIS$SET _FONT is called ~ to modify the font attribute.
The font MY_FONT _ 6 is now the current font for all text output in the
first-level segment. First-level text is drawn with MY_FONT_6.

The calls to UIS$BEGIN_SEGMENT and UIS$END _SEGMENT m (IJ

establish the limits of the second-level segment nested within the first-level
segment. The first call to UIS$SET_FONT [ij in the second-level segment
references the same output attribute block number specified in the attribute
routine call in the first-level segment~. The modifications to attribute block
1 at the second level take precedence over any previous modifications of
attribute block 1 at outer levels.

The second-level segment further modifies the font attribute [ij. The font
MY_FONT_13 is now the current font for all text output in this second-level
segment. The first call to UIS$TEXT within the second-level segment fl
establishes the current position for text output drawn at the second level.

Display Lists and Segmentation

Calls to UIS$TEXT within this segment reference the same attribute block
1.

Once again, calls to UIS$BEGIN_SEGMENT and UIS$END _SEGMENT m
ml establish the limits of the third level of segmentation nested within the
second level. The font MY_FONT_7 is now the current font for all text
output in this segment m.
The line-spacing component of the character-spacing attribute is modified
twice moo. The first call to UIS$SET_CHAR_SPACING increases the line
spacing by a factor of 1. As the program executes, the second text drawing
routine call in levels 1 and 2 m IE require room to avoid overstriking
existing lines.

NOTE: You must invoke the indirect command file
SYS$EXAMPLES:DEFFONT.COM before you run the demonstration
programs.

13.4.2.3 Calling UIS$BEGIN_SEGMENT and UIS$END_SEGMENT
As the program SEGMENT sequentially executes each instruction, a text
string is drawn in the virtual display at the first, second, and third levels
of segmentation as shown in Figure 13-17. Note the font used in text
creation.

Figure 13-17 Text Output During Execution

The camel never sees its own hump

irst thinss first

ZK .. 5S9-85

13-25

Display Lists and Segmentation

Text strings are created in the reverse order of segmentation-second level
and then first level. Note the font used and the order of text string creation
shown in Figure 13-18 as compared with the statements in the source
program.

Figure 13-18 Final Text Output

13-26

sun without a sha40w

The camel never sees its own hump
new ~room sweeps clean

rst thlnaS ~lrst

14

14.1

14.2

Geometric and Attribute Transformations

Overview
Transformations change the appearance of graphic objects and text.
Part I discussed transformations and their possibly distorting effects on
graphic objects. In Part II, you have seen the effects of world coordinate
transformations when you modify world coordinate space, then redraw
graphic objects in the new space. This chapter describes the following
types of transformations:

• Two-dimensional geometric transformations

• Attribute transformations

Geometric Transformations
Two-dimensional geometric transformation of a graphic object involves
changing the graphic object angular orientation or shape within the virtual
display. It does not modify the coordinate system. Scaling, translation,
and rotation transform graphic objects geometrically.

14.2.1 Translating Graphic Objects
When you translate a graphic object, you move the object to another part of
the coordinate space without altering its x and y axis physical orientation.
For example, if a side of a triangle was originally parallel to the y axis, it
remains parallel to that axis even if the object is moved to another quadrant
in the coordinate space. Figure 14-1 shows graphic object translation.

14.2.2 Scaling Graphic Objects
When you scale a graphic object, you stretch or shrink it. There are two
types of scaling:

• Simple scaling

• Complex scaling

14-1

Geometric and Attribute Transformations

14-2

Figure 14-1 Translating a Graphic Object

-~~- ---- - -~---------~-- -I

I I
I I

_ -~-~ - - -- ------~_ ~_J

D

lK 5010<-86

Simple Scaling of Graphic Objects

When you perform simple scalilng, you execute a single transformation.
The position of the newly scaled graphic object in the virtual display
is always different from its original position, with one exception: if the
object center point is at the origin, the object will not move when scaled.
Figure 14-2 shows simple scaling.

(leometric and Attribute Transformations

Figure 14-2 Simple Sc,ling

lKS4OJ86

Complex Scaling of Graphic Objects

When you perform complex scaling, the newly scaled object maintains
its previous position in the virtual display. Complex scaling involves the
following steps:

1 Translate the center of the object to the coordinate system origin.

2 Scale the object.

3 Translate the object to its original position.

14-3

Geometric and Attribute Transformations

Figure 14-3 shows complex scaling.

Figure 14-3 Complex Scaling

14-4

----------------~---

- - ------

/f\
/ \

- - - -~ - - -- - -~ ~ ------ ----------------------
----==-=-=-=-=---------- ----- --

14.2.2.1

/1\
!\

/ \,
I . \

/ \
~I \\

/ \

Uniformly Scaled Graphic Objects
Compare uniform scaling to a photographic enlargelnent of a snapshot.
The enlargment renders an object with physical dimensions proportional
to the original snapshot. The scaling factor of the width of the object, Sx,
equals the scaling factor of the height of the object, Sy. Figure 14-4 shows
a uniformly scaled object.

14.2.2.2

Geometric and Attribute Transformations

Figure 14-4 Uniformly Scaling a Graphic Object

~ ~ - ~-~ - -~ - ~ - - - -]

/[\
/ \

/\
/ \

ZK 5040'·86

Differentially Scaled Graphic Objects
The height of an object can be increased, while its. width remains constant
where Sx does not equal Sy. The object is differentially scaled as shown in
Figure 14-5.

14-5

Geometric and Attribute Transformations

Figure 14-5 Differentially Scaling a Graphic ObjeCt

~ - - j

/1\
/ \

- --------------~---------- -- ----~- J

ZK !>IOC.8IS

14.2.3 Rotating Graphic Objects

14-6

Generally speaking, rotation changes an object angular orientation in the
virtual display. Rotation occurs about the origin of the coordinate system.
Positive rotation is a counterclockwise movement.

Geometric and Attribute Transformations

Simple Rotation of Graphic Objects

Simple rotation involves executing a single transformation-no translation.
In simple rotation, the object appears to revolve about the origin.
Figure 14-6 shows a rectangle rotating about the origin.

Figure 14-6 Simple Rotation of a Graphic Object

lEE --

1111111111

1111111111

14-7

Geometric and Attribute Transformations

Figure 14-7 Complex Rotation of a Rectangle

14-8

lEn
~ ~

-~

I I
I I

ZKSJIII8I

Complex Rotation of Graphic Objects

To perform complex rotation, you translate the object to the origin so the
origin and reference point share the same coordinate values-(O.O,O.O). The
object is rotated and translated to its original position in the virtual display.
Figure 14-7 illustrates complex rotation of a rectangle.

Geometric and Attribute Transformations

14.2.4 Programming Options
There are two types of geometric transformation:

• COpy

• MOVE

Two-Dimensional Geometric Transformation-COPY

You can execute a geometric transformation when you use UIS$COPY_
OBJECT to copy the graphic object. The original object remains
unchanged.

Two-Dimensional Geometric Transformations-MOVE

You can execute a geometric transformation when you use
UIS$TRANSFORM_OBJECT to transform the graphic object in the virtual
display. The original object is modified.

14.2.5 Program Development I
Programming Objective

To rotate a graphic object counterclockwise 45 degrees about its center.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Create a graphic object and obtain its identifier.

4 Declare and load a two-dimensional array with translation values.

5 Execute translation.

6 Load array with rotation values.

7 Execute rotation.

S Load array with translation values.

9 Execute the translation where the original object is erased and redraw
the object in its original position in the coordinate system.

PROGRAM GEO_TRANSFORM_ROT
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL*4 MATRIX(2,3) 0

VD_ID=UIS$CREATE_DISPLAY(-20.0,-20.0,20.0,20.0,10.0,10.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')

CALL UIS$PLOT(VD_ID,O,0.0,20.0,0.0,-20.0) ~
CALL UIS$PLOT(VD_ID,O,-20.0,0.0,20.0,0.0) ~

CALL UIS$PLOT(VD_ID,O,5.0,5.0,15.0,5.0,15.0,10.0,5.0,10.0,
2 5.0,5.0) ~

CURRENT_ID=UIS$GET_CURRENT_OBJECT(VD_ID) m
OBJ_ID=CURRENT_ID

PAUSE

14-9

Geometric and Attribute Transformations

MATRIX(l,l)=l.O m
MATRIX(2,1)=O.O
MATRIX(1,2)=O.O
MATRIX (2,2)=1. 0
MATRIX(1,3)=-lO.O
MATRIX(2,3)=~7.5

CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX) 6

PAUSE

MATRIX(1,1)=COSD(45.0) m
MATRIX(2,1)=-SIND(45.0)
MATRIX(1,2)=SIND(45.0)
MATRIX(2,2)=COSD(45.0)
MATRIX(1,3)=O.O
MATRIX(2,3)=O.O
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX) m
PAUSE
MATRIX(l,l)=l.O om
MATRIX(2,1)=O.O
MATRIX(1,2)=O.O
MATRIX (2,2) =1. 0
MATRIX(1,3)=lO.O
MATRIX(2,3)=7.5
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX) 00

PAUSE
END

A two-dimensional array is declared D.

The x and y axes are drawn ~ ~.

A rectangle is drawn using UIS$PLOT U Call UIS$GET _ CURRENT_
OBJECT to save its object identifier~. The object identifier is used as an
argument to the transformation routine.

The rectangle is rotated about its center.

The VAX FORTRAN intrinsic functions SIND and COSO accept degrees as
arguments m.
The matrix is loaded with values three times m m om to translate, rotate the
rectangle about its center, then translate it to its original position in the
virtual display.

Each transformation is performed as the original object is erased and
redrawn in its new orientation. The rectangle is redrawn with each call to
UIS$TRANSFORM_OBJECT 6 m m

14.2.6 Calling UIS$TRANSFORMATION_OBJECT

14-10

The program GEO_TRANSFORM_ROT translates, rotates, and translates
a rectangle with UIS$TRANSFORM_OBJECT. Figure 14-7 illustrates how
after each transformation the previous position of the rectangle in the
virtual display is erased.

Geometric and Attribute Transformations

14.2.7 Program Development II
Programming Objectives

To rotate a copy of the graphic object 45 degrees about its center and place
the rotated copy in another quadrant.

Programming Tasks

1 Create a virtual display.

2 Create a display window and viewport.

3 Declare and load a two~dimensional array with translation values.

4 Execute the COpy operation and the translation.

S Load the array with rotation values.

6 Execute rotation.

7 Load the array with translation values.

8 Execute translation.

PROGRAM COPY_OBJECT
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL*4 MATRIX(2,3)

VD_ID=UIS$CREATE_DISPLAY(-20.0,-20.0,20.0,20.0,10.0,10.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')

CALL UIS$PLOT(VD_ID,0,0.0,20.0,0.0,-20.0)
CALL UIS$PLOT(VD_ID,0,-20.0,0.0,20.0,0.0)

CALL UIS$PLOT(VD_ID,0,5.0,5.0,15.0,5.0,10.0,10.0,5.0,5.0)

CURRENT_ID=UIS$GET_CURRENT_OBJECT(VD_ID)
OBJ_ID=CURRENT_ID

PAUSE

MATRIX (1,1) =1. 0
MATRIX(2,1)=0.0
MATRIX(1,2)=0.0
MATRIX (2,2) =1. 0
MATRIX(1,3)=-10.0
MATRIX(2,3)=-7.5
COPY_ID=UIS$COPY_OBJECT(OBJ_ID,MATRIX) 8

PAUSE

OBJ_ID=COPY_ID H
MATRIX(1,1)=COSD(45.0) ~
MATR!X(2,1)=-SIND(45.0)
MATRIX(1;2)=SIND(45.0)
MATRIX(2,2)=COSD(45.0)
MATRIX(1,3)=0.0
MA'l'RIX(2,3)=0.0
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX) e
PAUSE

14-11

Geometric and Attribute Transformations

MATRIX(1, 1)=1.0
MATRIX(2,1)=O.0
MATRIX(1,2)=O.0
MATRIX(2,2)=1. 0
MATRIX(1,3)=-10.0 0
MATRIX(2,3)=7.5
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX)

PAUSE
END

Except for a few important differences, this program is identical to the
previous program GEO_ TRANSFORM_ROT.

The first transformation is executed n. The triangle is copied and translated
to the origin of the coordinate space. The coordinates of the center of the
triangle match those of the origin. The original triangle in the first quadrant
remains unchanged.

The identifier of the transformed object copy_id is assigned to the obLid fl
The identifier is used as an argument in the next transformation.

The VAX FORTRAN intrinsic functions SIND and COSO accept degrees as
arguments 11

A call to UIS$TRANSFORM_OBJECT rotates the translated triangle 45
degrees U The original object is erased and redrawn in its new orientation.

The final translation of the triangle places it in the second quadrant at a
45-degree angle to the original triangle 0.

14.2.8 Calling UIS$COPY _OBJECT

14.3

Transformation of the triangle is similar to that of the rectangle in the
previous example. However, the first transformation copies the triangle.
Figure 14-8 shows that the triangle remains in the virtual display. However,
the rotated copy of the triangle is translated to the second quadrant.

Attribute Transformations
An attribute transformation occurs when you modify graphic objects and
text, but you do not have to know the attribute block of the original objects.

14.3.1 Programming Options

14-12

Attribute Transformations

Ordinarily, when you modify the appearance of an existing graphic object,
you must perform the follow procedure:

1 Obtain the object identifier.

2 Call UIS$DELETE_ OBJECT with the object identifier.

3 Redraw the graphic object or text using the modified attribute block.

Geometric and Attribute Transformations

Figure 14-8 Complex Rotation of a Triangle

-------~

The above procedure requires at least two steps:

• Use UIS$ERASE to erase the virtual display.

• Redraw the object with a modified attribute block.

To modify the attributes of graphic objects and text in a single call,
call UIS$COPY_OBJECT or UIS$TRANSFORM_OBJECT and specify
the alb argument but omit the matrix argument. To disable attribute
transformation, omit the atb argument.

14-13

Geometric and Attribute Transformations

14.3.2 Program Development
Programming Objective

To mod~fy the fill pattern of a circle as a transformation.

Programming Tasks

1 Create a virtual display.

2 Create a display window and a display viewport.

3 Draw a circle using default attributes.

4 Obtain its object identifier.

5 Modify the fill pattern attribute.

6 Transform the circle attributes and draw the modified circle.

PROGRAM ATTR_TRANS
IMPLICIT INTEGER(A-Z)
+NCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

VD_ID=UIS$CREATE_DISPLAY(-10.5,-10.5,10.5,10.5,10.0,10.0)
WD_+D=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')

CALL UIS$CIRCLE(VD_ID,O,O.O,O.O,lO.O)
CURRENT_ID=UIS$GET_CURRENT_OBJECT(VD_ID)
OBJ_ID=CURRENT_ID

CALL UIS$SET_FONT(VD_ID,O,l,'UIS$FILL_PATTERNS') 0
CALL UIS$SET_FILL_PATTERN(VD_ID,1,1,PATT$C_DOWNDIAG1_7) H
PAUSE

CALL UIS$TRANSFORM_OBJECT(OBJ_ID"l) ~

PAUSE
END

This program does not declare a matrix. Therefore, the position of any
objects will be the same.

The fill pattern attribute is modified 0 H. ~

The object identifier of the original circle and attribute block number of the
newly modified attribute block are arguments in the transformation ~.

14.3.3 Requesting Attribute Transformations

14-14

Because no matrix is specified in the transformation, the resulting
transformation does not change object positions within the virtual display.
The original circle is erased and the modified circle 'is placed in its position
as shown in Figure 14-9.

If you call UIS$COPY_OBJECT rather than UIS$TRANSFORM_OBJECT,
the original circle remains visible in the virtual display. The modified circle
is still in the same position. Figure 14-10 shows attributes modified with a
copy.

Geometric and Attribute Transformations

Figure 14-9 Modifying Attributes with a Transformation

Err ~~~--- - ~

______ ~_~~ __ ~ _____ ~ ____ --I

14-15

Geometric and Attribute Transformations

Figure 14-10 Modifying Attributes with a Copy

-- ---- - -- - -- ----- I

ZK53119·86

14-16

15

15.1

15.2

Metafiles and Private Data

Overview
If you want to reuse a display you produce, you must first store it in a UIS
metafile. This chapter details metafile structure and the contents of the
binary encoded instructions.

An additional feature allows you to associate data with graphic objects.
You can specify a particular graphic object or group of objects within the
display to be associated with the user-defined data. This chapter discusses
the following topics:

• Extracting ·data from a display list

• Interpreting the user buffer

• Creating a UIS metafile

• Creating private data

Hardcopy UIS (HCUIS) translates UIS pictures to other fonnats. See the
VMS Workstation Software Guide to Printi71g Graphics for Inore information
about HCUIS.

Display Lists and UIS Metafiles
You design application programs to generate graphic objects on the screen.
You should also be concerned with program modularity and efficiency.
A new entry is added to the display list for each new object drawn in
the virtual display. You should preserve the contents of a display list as
generically encoded binary instructions for use across many applications.
Then you can extract graphics output and attribute modifications from
display lists, store them in user-defined buffers as metafile components, and
store them in files as metafiles.

15.2.1 Generic Encoding of Graphics and Attribute Routines
Binary Encoded Instruction

When you draw an object in the virtual display or modify an attribute,
a binary encoded instruction is added to the display list of the specified
virtual display. Entries in the display list are variable length instructions,
encoded as shown in Figure 15-1.

V4.1-June 1989 15-1

I

Metafiles and Private Data

15.2.1.1

15-2

Figure 15-1 Binary Encoded Instruction

Op code
16 bIts

Length
16 bIts

Extended Binary Encoded Instruction

Arguments

If the length of the binary encoded instruction is greater than 32,767 bytes,
the length field equals GER$K_LENGTH_DIFF and the actual length is
in the longword field that follows. Figure 15-2 describes the format of a
display list entry if the length field is greater than 32,767 bytes.

Figure 15-2 Extended Binary Encoded Instruction

Op code Length Extra Length
16 bIts 16 bIts 32 bIts Arguments

Normalized Coordinates
The coordinate system used in display lists and to create generically
encoded streams is known as normalized coordinates. Normalized
coordinates are floating point numbers in the range (0.0,0.0) to (max_
nc_x,max_nc_y), where (0.0,0.0) refers to lower-left corner of the virtual
display and (max_nc_x,max_nc_y) refers to the upper-right corner.

VIS uses normalized coordinates to defer the actual mapping of application
world coordinates to device-specific coordinates until the actual output
device is known. For example, the device coordinates of a printer might be
different from the device coordinates of a raster display.

V4.1-June 1989

15.2.1.2

Metafiles and Private Data

Interpreting the User Buffer
When UIS routine calls are executed, binary encoded instructions are
added to the display list. When you extract the contents of a display list
and store them in a buffer, you create metafile components-header data,
an encoded stream of binary instructions, and trailer data. Each metafile
component consists of binary encoded instructions. When you write the
contents of the buffer to a file, you create a UIS metafile. A UIS metafile is
a generically encoded binary stream; that is, all three components exist within
a single file that is executable on any V AXstation system. The buffer and
metafile contain values that describe the extracted objects. If reexecuted,
these encoded instructions cause UIS to recreate the objects drawn in the
virtual display. Note that monochrome systems cannot duplicate the color
of extracted objects created on color systems.

You can write your own binary encoded instructions and metafiles. First,
you must understand how to interpret the contents of the user-defined
buffer containing the extracted data.

V4.1-June 1989 15-2.1

Metafiles and Private Data

Opcodes

An opcode is the portion of the binary encoded instruction that specifies
the instruction action. Table lS-llists the generic encoding symbols and
the corresponding opcodes of binary encoded instructions.

Table 15-1 Generic Encoding Symbols and Opcodes

Generic Encoding Symbol

Attribute

GER$C_SET _WRITING_MODE

GER$C_SET _WRITING_INDEX

GER$C_$ET _BACKGROUND_INDEX

GER$C_SET _CHAR_SPACING

GER$C_SET_CHAR_SLANT

GER$C_SET_TEXT_SLOPE

GER$C_SET_TEXT_PATH

GER$C_SET _TEXT_FORMATTING

GER$C_SET _CHAR_ROTATION

GER$C_SET _TEXT_MARGINS

GER$C_SET _LINE_WIDTH

GER$C_SET _LINE_STYLE

GER$C_SET _FONT

GER$C_SET_ARC_TYPE

GER$C_SET _FILL_PATTERN

GER$C_SET _CLIP

GEA$C_SET _CHAR_ENCODING

GER$C_SET _CHAR_SIZE

Graphics and Text

GER$C_TEXT

GER$C_SET _POSITION

GER$C_PLOT

GER$C_ELLIPSE

GER$C_IMAGE

GER$C_ALlGN_POSITION

GER$C_LlNE

Application-specific Private Data

Display List

1This binary instruction has no arguments.

Opcode

2

3

4

5

6

7

11

12

13

14

15

17

26

37

38

39

42

19

21

23

25

29

33

52

30

31

15-3

Metafiles and Private Data

Table 15-1 (Cont.) Generic Encoding Symbols and Opcodes

Generic Encoding Symbol

Display List

GER$C_END1

GER$C_BEGIN_DISPLA Y

GER$C_END _DISPLA y1

GER$C_ VERSION

GER$C_IDENTIFICATION

GER$C_DATE

GER$C_NOP1

GER$C_PRIVATE_ECO

GER$C_DISPLA Y _EXTENTS

Color

GER$C_SET_COLORS

GER$C_SET _INTENSITIES

GER$C_CREATE_COLOR_MAP

1 This binary instruction has no arguments.

Arguments

Opcode

32

34

35

36

43

44

45

49

51

47

48

50

Figure 15-3 illustrates the format of an argument within a binary instruction
that changes attribute settings.

Figure 15-3 Format of Attribute-Related Argument

Op code Length IATS OATS Arguments
16 bits 16 bits 16 bits 16 bits

ZK·5474·86

15-4

Metafiles and Private Data

Figure 15-4 illustrates the format of an argument within a binary encoded
instruction that produces graphics or text.

Figure 15-4 Format of Graphics- and Text-Related Argument

Op code
16 bits

Length ATB Arguments
16 bits 16 bits

ZK·5475·86

Table 15-2 lists the possible arguments that can appear in a binary encoded
instruction.

Table 15-2 Arguments of Binary Encoded Instructions

Opcode Argument3

Attributes 1

iatb

oatb

GER$C_SET _ARC_ arc_type
TYPE

GER$C_SET_ backgroundJndex
BACKGROUND_
INDEX

GER$C_SET _CHAR_ char_encoding_type
ENCODING

GER$C_SET _CHAR_ char_size_flags
SIZE char_size_

enable
char_size deC

x
char_size_deCy
char_size_deC

char

char_size_example

char_size_width

char_size_height

GER$C_SET _CHAR_ char_slant_angle
SLANT

GER$C_SET _CHAR_ char_space_dx
SPACING char _space_dy

Data Type

word

word

word

word

word

word
bitfield

mask
bitfield

mask
bitfield

mask
bitfield

mask

word

F _floating

F _floating

F _floating

F _floating
F _floating

Description

Input attribute block for set operations

Output attribute block for set operations

arc type

Background index

Character encoding type

Scaling flags
Font ideal size for x
Font ideal size for y
Widest char

Example character

Character width

Character height

Character slant angle

Delta x spacing
Delta y spacing

1 All attribute-related encoding items start with input attribute block (IATB) and output attribute block (OAT B)
numbers and then contain attribute specific information.

3Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F _, or GER$G,
respectively, EXCEPT GER$L_LlNE_STYLE and GER$LJMAGE_SIZE. For example,
GERW_IATB, GERF _CHAR_SIZE_WIDTH, or GER$G_FONT _ID_STRING.

15-5

Metafiles and Private Data

Table 15-2 (Cont.) Arguments of Binary Encoded Instructions

Opcode Argument3 Data Type Description

Attributes 1

GER$C_SET _CHAR_ char_rotatiorLangle F _floating Character rotation angle
ROTATION

GER$C_SET _CLIP clip_flags word Clippin~ rectangle
clip_x 1 F -
clip_y1 floating
clip_x2 F -
cljp_y2 floating

F -
floating

F -
floating

GER$C_SET_ color_count word Number of Indices
COLORS

color_index word First index

color_values longword array R, G, and S vectors

GER$C_SET _FILL_ fill_flags word Flags
PATTERN

filUndex word Index

GER$C_SET _FONT fontJdJength word Font name length

fontJd_string character Font name string

GER$C_S~T_ intensity_count word Number of Indices
INTENSITIES

intensity_index word First index

Intensity_values longword array I vector

GER$C_SET _LlNE~ line_style longword 32-bit bitvector
STYLE

GER$C_SET _LlNE_ line_width_nc F _floating Normalized coordinates
WIDTH

line_width_dc F _floating Pixel coordinates

line_width_mode word Width mode

GER$C_SET _TEXT _ texCformacmode word Text formatting mode
FORMATTING

GER$C_SET _TEXT _ text_margin_x F _floating Starting position
MARGINS

texCmargin_y F _floating

texcmargin_distance F _floating Ending position

GER$C_SET _TEXT _ text_path_major word Major path code
PATH

1AII attribute-related encoding items start with input attribute block (IATS) and output attribute block (OATS)
numbers and then contain attribute specific information.

3Argurnents whose data type is word, longword, or ~~aracter use the prefix GER$W_, GER$F _, or GER$G,
respectively, EXCEPT G~R$L_LlNE_STYLE and GER$L_IMAGE_SIZE. For example~
GERW_IATB, GERF _CHAR_SIZE_WIDTH, or GE~$G_FONT _ID_STRING.

15-6

Metafiles and Private Data

Table 15-2 (Cont.) Arguments of Binary Encoded Instructions

Opcode Argument3 Data Type Description

Attributes 1

texcpath_minor word Minor path code

GER$C_SET _TEXT_ texCslope_angle F _floating Angle of text slope
SLOPE

GER$C_SET_ writing_mode word Writing mode
WRITING_MODE

GER$C_SET_ writingjndex word Writing index
WRITING_INDEX

Graphics and Text2

outpuCatb word ATB for graphics and text operations

GER$C_ELLIPSE ellipse_x F _floating Center point

ellipse_y F _floating

ellipse_width F _floating Radius width and height

ellipse_height F _floating

ellipse_starCdeg F _floating Starting and ending degrees

ellipse_end_deg F _floating

GER$CJMAGE image_x1 F _floating Lower-left corner of raster image

image_y1 F _floating

image_x2 F _floating Upper-right corner of raster image

image_y2 F _floating

image_width word Image width in pixels

image_height word Image height in pixels

image_bpp word Bits per pixel

image_size longword Number of bytes in image

image_data byte array Place to store actual data

GER$C_PLOT ploCcount word Number of pOints

ploCdata longword array Points

GER$C_TEXT texcencoding word 8- or 16-bit encoding

texClength word Text length in bytes

text_data character Text string

GER$C_LlNE line_count word Number of points

line_data longword array Points

1AII attribute-related encoding items start with input attribute block (IATB) and output attribute block (OAT B)
numbers and then contain attribute specific information.

2AII output-related encoding items start with an attribute block (ATB) number and are then followed by graphics
and text output information.

3Arguments whose data type is word. longword. or character use the prefix GER$W ... GER$F _. or GER$G.
respectively. EXCEPT GER$L_LlNE_STYLE and GER$L_IMAGE_SIZE. For example.
GER$W_IATB. GER$F _CHAR_SIZE_WIDTH, or GER$G_FONT JD_STRING.

15-7

Metafiles and Private Data

Table 15-2 (Cont.) Arguments of Binary Encoded Instructions

Opcode

Color Map

GER$C_CREATE_
COLOR_MAP

Private Data

GER$C_PRIVATE

Metafile

GER$C_
IDENTIFICATION

GER$C_DATE

GER$C_PRIVATE_
ECO

Miscellaneous

GER$C_DISPLAY _
EXTENTS

Argument3

colocmap_attributes
color_map_

resident
colocmap_no_

bind
color_map_

share
color_map_

system

color_map_name_size

colocmap_size

color_map_name

private_facnum

privateJength

private_data

version_major

version_minor

version_eco

identiflcationJength
identification_string

dateJength
date_string

private_eco_facnum

private_eco_major

private_eco_minor

private_eco _eco

extencminx

extencminy

extent_maxx

extent_maxy

Data Type

longword
bitfield

mask
bitfield

mask
bitfield

mask
bitfield

mask

word

word

character

word

word

byte array

word

word

word

word
character

word
character

word

word

word

word

F _floating .

F _floating

F _floating

F _floating ,

Description

Color map attributes

Virtual color map name

Facility number

Length of data

Data

Encoding version number

File creation date

Extent rectangle

3Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F _, or GER$G,
respectively, EXCEPT GEA$L_LlNE_STYLE and GER$L_IMAGE_SIZE. For example,
GERW_IATB, GERF _CHAR_SIZE_WIDTH, or GER$G_FONT _ID_STRING.

15-8

Metafiles and Private Data

Table 15-2 (Cont.) Arguments of Binary Encoded Instructions

Opcode

Miscellaneous

GER$C_SET_
POSITION

GER$C_ALlGN_
POSITION

GER$C_BEGIN_
DISPLAY

GER$C_END_
DISPLAY

Argument3

text_pos_x

texCpos_y

align_pos_atb

align_pos_x

align_pos_y

display _wc_minx

display_wc_miny

display_wc_maxx

display_wc_maxy

display_width

display_height

No arguments

Data Type Description

F _floating Text position

F _floating

word Attribute block

F _floating Position

F _floating

Cfloating Dimensions of virtual display

Cfloating

Cfloating

Cfloating

Cfloating

Cfloating

3Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F _, or GER$G,
respectively, EXCEPT GER$l_LlNE_STYlE and GER$l_IMAGE_SIZE. For example,
GERW_IATB, GERF _CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING.

15.2.2 Creating UIS Metafiles
UIS metafiles are encoded binary instructions that are generically encoded
when you use UIS$EXTRACT_OBJECT or UIS$EXTRACT_REGION to
extract them from a display list. UIS metafiles consist of the following
components:

• Header information

• Generically encoded binary instructions

• Trailer information

The header and trailer are special binary instructions that indicate the
beginning and end of a UIS metafile. The generic encoding of UIS
metafiles allows you to store the extracted contents of the display list
in a buffer or file. Table 15-3 lists the parts of a UIS metafile.

15-9

Metaflles and Private Data

Table 15-3 Structure of UIS Metafiles

Generic Encoding
Symbol

Header Information

GER$C_IDENTIFICATION

GER$C_DATE

GER$C_PRIVATE_EC01,2

GER$C_CAEATE_COLOA_
MAP

GER$C_SET _COLORS

GER$C_BEGIN_DISPLA Y

Function

Level of generic encoding syntax. The version
always appears first.

User·specified optional identification string.

Optional and user·specified.

Optional and user·specified.

Used by UIS$EXECUTE_DISPLAY.

Used by UIS$EXECUTE_DISPLAY.

Dimensions of the virtual display to be created by
UIS$EXECUTE_DISPLAY.

Encoded Binary Instructions2

GER$C DISPLAY Define bounds of an extent rectangle used in
EXTENTS3 - UIS$EXTRACT _REGION.

Segment

Attribute

Graphics and text

Application-specific

Trailer

GER$C_END _DISPLAY

1 Engineering Change Order

Express the hierarchical structure within a display
list and identify the attributes associated with a
segment.

Allow the modification of any attribute in any
attribute block. A generic encoding opcode exists
for each attribute.

Contain the data necessary to draw graphic objects.

Associate data with a user·specified facility.

Ends the UIS metafile.

2See Table 15-1 for the generic symbols in each of these categories of binary
encoded instructions.

3Generated only by UtS$EXTRACT _REGION.

15.2.3 Structure of a UIS Metafile
A VIS metafile consists of three components:

• Header information

• Binary instructions

• Trailer information

15-10

Metafiles and Private Data

Figure 15-5 illustrates the structure of a UIS metafile containing a single
extracted graphic object. Note that attribute modification instructions
precede the object and private data instructions follow it. Also, if
the extracted object were previously within a segment, segmentation
instructions must surround it in the metafile.

Figure 15-5 Structure of UIS Metafile

Header
Information

Beginning
Segmentation
Instruction

Attribute
Modification
Instructions

Extracted
Graphic Object

Private Data

Ending Segmentation
Instruction

Trailer
Information

GER$C_ VERSION Length Arguments

GER$C_I DENTIFICA TlON Length Arguments

GER$C_DATE Length Arguments

GER$C_BEGIN_DISPLAY Length Arguments

GER$C_BEGIN Length No arguments

j
GER$C_SET_FONT Length IATB OATB Arguments

GER$C_SET _FILL_PATIERN Length IATB OATB Arguments

\

GER$C_ELLI PSE Length ATB Arguments

I

1

GER$C_PRIVATE Length Arguments

GER$C_PRIVATE Length Arguments

GER$C_END Length No Arguments

GERSC_END_DISPLAY Length No arguments

ZI(547686

Private data is discussed later in this chapter.

15-11

Metaflles and Private Data

15.2.4 Programming Options
With UIS metafiles, you can save display screen output for reexecution at a
later time.

Creating UIS Metafiles

You can extract an object or the contents ofa region within a virtual display
and store the data in a buffer or file as a metafile. Use the following
procedure:

1 Use UIS$EXTRACT_HEADER, UIS$EXTRACT_OBJECT or
UIS$EXTRACT_REGION, and UIS$EXTRACT _TRAILER without the
buffer length and buffer address parameters to determine the size of
the buffer you need to store the header information, binary encoded
stream, and trailer.

2 Call UIS$EXTRACT_HEADER, UIS$EXTRACT_OBJECT or
UIS$EXTRACT_REGION, and UIS$EXTRACT_TRAILER with the
previously omitted parameters to extract the header information, binary
encoded instructions, and trailer· and to store the data in three buffers.

3 Use VAX FORTRAN OPEN and WRITE statements to write the
contents of the buffers to an external file.

Executing the Metafile

Use UIS$EXECUTE to write UIS metafiles extracted and stored in a buffer
to the same virtual display.

UIS$EXECUTE_DISPLA Y creates a new virtual display and executes the
metafile in the new display space. However, you must call UIS$CREATE_
WINDOW to view the graphic object in the virtual display.

15.2.5 Program Development I

15-12

Programming Objectives

To extract the contents of a region in the virtual display and create a UIS
metafile.

Programming Tasks

1 Initialize variables.

2 Create a virtual display.

3 Draw graphic objects in the virtual display.

4 Create a display window and viewport.

5 Determine the size of each part of the metafile.

6 Allocate the space in buffers for each part of the metafile.

7 Extract the contents of the specified region in a buffer.

Metafiles and Private Data

8 Write the contents of the buffer to an external file.

PROGRAM EXTRACT
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
DATA RETLEN1,RETLEN2,RETLEN3/3*01
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,30.0,30.0,20.0,20.0)

c Draw some objects
CALL UIS$PLOT(VD_ID,0,7.0,10.0,16.0,10.0,7.0,15.0,
2 7.0,10.0) 0
CALL UIS$ELLIPSE(VD_ID,0,20.0,20.0,9.0,5.0) ~
CALL UIS$TEXT(VD_ID,O,'Haste and wisdom are things far odd',
2 11.0,15.0) Il

c Create a display window
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')

PAUSE

c Find out how much space to allocate for each part of the metafile
CALL UIS$EXTRACT_HEADER(VD_ID" ,RETLEN1) H
CALL UIS$EXTRACT_REGION(VD_ID""",RETLEN2) ~
CALL UIS$EXTRACT_TRAILER(VD_ID",RETLEN3) m

c Virtual memory is allocated for the buffers
STATUS=LIB$GET_VM(RETLEN1,ENCODED1) 6
IF (.NOT.STATUS) CALL LIB$STOP(%VAL(STATUS» m
STATUS=LIB$GET_VM(RETLEN2,ENCODED2) m
IF (.NOT.STATUS) CALL LIB$STOP(%VAL(STATUS» OD
STATUS=LIB$GET_VM(RETLEN3,ENCODED3) 00
IF (.NOT.STATUS) CALL LIB$STOP(%VAL(STATUS» ~
RETLEN=RETLEN1+RETLEN2+RETLEN3

TYPE *,'HEADER DATA',RETLEN1,' BYTES' ~
TYPE *,'BINARY INSTRUCTION',RETLEN2,' BYTES' De
TYPE *,'TRAILING DATA',RETLEN3,' BYTES' ~

TYPE *,'NO. OF BYTES ALLOCATED = ',RETLEN om
PAUSE

C Extract the data and store it in a buffer
CALL UIS$EXTRACT_HEADER(VD_ID,RETLEN1,%VAL(ENCODED1» D6
CALL UIS$EXTRACT_REGION(VD_ID"",RETLEN2,%VAL(ENCODED2» om
CALL UIS$EXTRACT_TRAILER(VD_ID,RETLEN3,%VAL(ENCODED3» om

c Write the contents of the buffer to an external file
OPEN(UNIT=lO,FILE='$DISK:[MY_DIR]METAFILE.DAT',STATUS='NEW') fE

c Call subroutine to write the contents of the buffer
CALL BUFFERWRITE(%VAL(ENCODED1),RETLEN1,lO)
CALL BUFFERWRITE(%VAL(ENCODED2),RETLEN2,10)
CALL BUFFERWRITE(%VAL(ENCODED3),RETLEN3,10)

c Close the external file
CLOSE(UNIT=10,STATUS='SAVE')

END

SUBROUTINE BUFFERWRITE(BUFFER, LENGTH, LUN) ~
IMPLICIT INTEGER(A-Z)
BYTE BUFFER(LENGTH)
WRITE(LUN,500)BUFFER ~

500 FORMAT(T3,I7)

RETURN
END

Calls to UIS$PLOT, UIS$ELLIPSE, and UIS$TEXT 0 ~ Il draw objects in the
virtual display.

15-13

Metaflles and Private Data

15.2.5.1

15-14

Next, determine how much space to allocate for the buffers that hold the
header data, binary encoded stream, and trailing data. 8 m m. The variables
retlenl, retlen2, and retlen3 receive the length of the header data, binary
encoded stream, and trailing data.

Allocate virtual memory for the buffers and store the address of each buffer
in the pointers encodedl, encoded2, and encoded3 using LIB$GET_ VM. il m m.
Perform a test for completion status of each Run-Time Library call m ml m.
Type the length of the header data, encoded stream, and trailing data as
well as the total number of bytes allocated mJ in the emulation window ml
fI.) lB.

Extract the contents of the display list with UIS$EXTRACT _HEADER,
UIS$EXTRACT_REGION, and UIS$EXTRACT_TRAILER; store them at the
iocation indicated by pointers encodedl, encoded2, and encoded3 (fJ ml 00.
Use the VAX FORTRAN built-in function %VAL to evaluate the pointers
encodedl, encoded2, and encoded3 in terms of the actual data they store-the ~
addresses of the starting point of each buffer.

An external file is opened with the VAX FORTRAN OPEN statement for
program output fE.

the pointer encoded is implicitly declared as a longword integer. Therefore,
you cannot simply write the data to the file PRIVATE.DAT.

The subroutine BUFFERWRITE is called m fE g] three times to perform
this task. Three arguments are passed in the call fE-buffer address, buffer
size, and the VAX FORTRAN logical unit number of the output device. An ~
array BUFFER is constructed from this data. ~

The subroutine BUFFERWRITE writes the contents of BUFFER to the UIS
metafile PRIVATE.DAT~. First the header data is stored in the metafile,
then the binary encoded stream; finally, the trailing data is written to
PRIVATE.DAT.

Before the program terminates, the VAX FORTRAN CLOSE statement
closes the file m.

Calling UIS$EXTRACT_HEADER, UIS$EXTRACT_REGION, and ~
UIS$EXTRACT _TRAILER ,
A triangle, an ellipse, and text are drawn in a virtual display as shown in
Figure 15-6.

The terminal emulation window shown in Figure 15-7 shows buffer size
information for metafile components.

Metafiles and Private Data

Figure 15-6 Original Objects Drawn in the Virtual Display

---- -----=-~---::-:::---.-~--~----=-

Haste and wisdom are thin!s far odd

ZK526486

15-15

15.3

Metafiles and Private Data

Figure 15-7 After Buffer Execution

FORTRAN PAUSE

HEADER DATA
BINARY INSTRUCTION
TRAILING DATA

101 S"'lT ES
151 S·'{T ES

4 S''lT E::i
TOTAL NO, OF SYTES ALLOCATED =
FO~~ T~~AN PAU::i E
:$:

Display Lists and Private Data

256

ZK 526586

Display lists are created when graphics routines are executed. Application­
specific or private data can be bound to graphic objects. The binary
encoded instructions in the display list point to internal buffers that contain ~
private data. ~

15.3.1 Using Private Data
Use private data to include application-specific information with the
graphic objects displayed on the workstation screen. The nature of this
information is entirely at your discretion. For example, an application
that draws a vertical bar graph and plots relative humidity over a 24-
hour period might create data on an hourly basis. The private data, here ~
indicating temperature and wind speed, might be associated with each ,
vertical bar. Private data is not displayed on the workstation screen and is
not available unless extracted into a buffer or metafile and executed. You
can attach private data to any graphic object in the virtual display.

15.3.2 Programming Options

15-16

To construct a program that reads data from an external file and uses it as
private data.

Creating Private Data

Use UIS$PRIVATE to create private data.

Metafiles and Private Data

Extracting Private Data

With the following procedure, you can use UIS$EXTRACT _PRIV ATE to
extract private data and store it in a buffer.

1 Use UIS$EXTRACT _HEADER, UIS$EXTRACT _PRIV ATE, and
UIS$EXTRACT _TRAILER without the buffer length and buffer address
parameters to determine what size buffer you need to store the header
information, binary encoded stream, and trailer.

2 Call UIS$EXTRACT_HEADER, UIS$EXTRACT_PRIVATE, and
UIS$EXTRACT _ TRAILER with the previously omitted parameters
to extract the private data and store it in a buffer.

3 Use the VAX FORTRAN OPEN statement to write the contents of the
buffer to an external file.

Deleting Private Data

Use UIS$DELETE_PRIVATE to delete private data associated with a graphic
object.

15.3.3 Program Development II
Programming Objectives

1 To append private data to an object in the display list.

2 To extract the private data.

3 To create a UIS metafile containing the private data instruction.

Programming Tasks

1 Declare an array to receive the private data from an external file.

2 Type the contents of the array to verify it.

3 Create private data and append it to the last object in the display list.

4 ~etermine how large the buffers must be.

5 Allocate memory for the buffers.

6 Extract the private data.

7 Write the contents of the buffet's to an external file.

NOTE: Before you run this program, . modify the file specifications in the OPEN
statements and construct a data file similar to DATA.DAT. Your data file
must be located in the same directory as the executable demonstration
program file.

PROGRAM PRIVATE
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
BYTE PRIV(1:23) Q

c Construct a descriptor
INTEGER*4 PRIV_DESC(2) ~
PRIV_DESC(1)=23
PRIV_DESC(2)=%~OC(PRIV) ~

15-17

Metafiles and Private Data

15-18

c Open external file containing private data
OPEN(UNIT=8,FILE='$DISK:[MY_DIR]DATA.DAT',STATUS='OLD') e

c Read data into array
READ(8,50)PRIV

50 FORMAT(A7)

CLOSE(UNIT=8,STATUS='SAVE')
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,30.0,30.0,15.0,15.0) m

c draw the hot air balloon

2

c draw

2

c draw

CALL UIS$SET_FONT(VD_ID,0,2,'MY_FONT_5')
INDEX=87
CALL UIS$SET_FILL_PATTERN(VD_ID,2,2,INDEX)

CALL
CALL

house
CALL

CALL

door

UIS$CIRCLE(VD_ID,2,12.0,20.0,8.0)
UIS$LINE(VD_ID,2,10.0,12.0,10.0,8.0,14.0,12.0,14.0,8.0,

10.0,10.0,14.0,10.0,10.0,8.0,14.0,8.0)

UIS$PLOT(VD_ID,0,15.0,8.0,29.0,8.0,22.0,13.0,
15.0,8.0)

UIS$LINE(VD_ID,0,15.0,8.0,15.0,0.0,29.0,8.0,29.0,0.0)

CALL UIS$PLOT(VD_ID,0,21.0,0.0,21.0,4.0,23.0,4.0,23.0,0.0)

C create windows
CALL UIS$PLOT(VD_ID,0,17.0,2.0,17.0,6.0,19.0,6.0,19.0,2.0,

2 17.0,2.0)
CALL UIS$LINE(VD_ID,0,17.0,4.0,19.0,4.0,18.0,2.0,18.0,6.0)

CALL UIS$PLOT(VD_ID,0,25.0,2.0,2S.0,6.0,27.0,6.0,27.0,2.0,
2 25.0,2.0)

CALL UIS$LINE(VD_ID,0,25.0,4.0,27.0,4.0,26.0,2.0,26.0,6.0)

c create chimney ~
CALL UIS$LINE(VD_ID,O,26.0,11.0,28.0,11.0,26.0,11.0,26.0,10.0, ~

2 28.0,11.0,28.0,9.0)

c create smoke
CALL UIS$ELLIPSE(VD_ID,0,27.0,13.0,2.5,1.0)
CALL UIS$ELLIPSE(VD_ID,0,27.25,16.0,2.25,1.0)
CALL UIS$ELLIPSE(VD_ID,O,27.S,19.0,2.0,1.0)
CALL UIS$ELLIPSE(VD_ID,0,27.75,22.0,1.75,1.0)
CALL UIS$ELLIPSE(VD_ID,0,28.0,25.0,1.5,1.0)
CALL UIS$ELLIPSE(VD_ID,0,28.25,28.0,1.25,1.0)
CURR_ID=UIS$GET_CURRENT_OBJECT(VD_ID) ~

c type out buffer containing private data
TYPE *,PRIV m

c Create private data
FACNUM = 1
CALL UIS$PRIVATE(vd_id,FACNUM,PRIV_DESC) m
CALL UIS$SET_LINE_WIDTH(VD_ID,0,3,15.0)
CALL UIS$PLOT(VD_ID,3,1.0,29.0,4.0,i1.0)

CALL UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')

PAUSE

c Determine size of buffei
CALL UIS$EXTRACT_HEADER(VD_ID",RETLEN1) ~
CALL UIS$EXTRACT_PRIVATE(CURR_ID",RETLEN2) ~
CALL UIS$EXTRACT_TRAILER(VD_ID",RETLEN3) ~

RETLEN=RETLEN1+RETLEN2+RETLEN3

TYPE *,'BUFFER SIZE FOR HEADER INFO',RETLEN1,'BYTES' ~
TYPE *,'BUFFER SIZE REQUIRED',RETLEN2,' BYTES' ~
TYPE *,'BUFFER SIZE FOR TRAILING INFO',RETLEN3,'BYTES 80

C Allocate the virtual memory for the buffer

Metafiles and Private Data

STATUS=LIB$GET_VM(RETLEN1,EXT_PRIV1) om
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS» 86
STATUS=LIB$GET_VM(RETLEN2,EXT_PRIV2) ,om
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS» ~
STATUS=LIB$GET_VM(RETLEN3,EXT_PRIV3) ~
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS» ~

c Extract and store private data in buffer
CALL UIS$EXTRACT_HEADER(VD_ID,RETLEN1,%VAL(EXT_PRIV1» ~
CALL UIS$EXTRACT_PRIVATE(CURR_ID,RETLEN2,%VAL(EXT_PRIV2» HD
CALL UIS$EXTRACT_TRAILER(VD_ID,RETLEN3,%VAL(EXT_PRIV3» ~

CALL BUFFERTYPE(%VAL(EXT_PRIV2),RETLEN2) ~

C Open an external file
OPEN(UNIT=ll,FILE='$DISK:[MY_DIR]PRIVATE.DAT',STATUS='NEW', ~

2 FORM='FORMATTED')

c write the contents of the buffer
CALL BUFFERWRITE(%VAL(EXT_PRIV1),RETLEN1,11)
CALL BUFFERWRITE(%VAL(EXT_PRIV2),RETLEN2,11)
CALL BUFFERWRITE(%VAL(EXT_PRIV3),RETLEN3,11)

C Close the file
CLOSE(UNIT=ll,STATUS='SAVE')

500

PAUSE

END
SUBROUTINE BUFFERWRITE(BUFFER,LENGTH,LUN) ~
IMPLICIT INTEGER(A-Z)
BYTE BUFFER(LENGTH)

WRITE(LUN,500)BUFFER
FORMAT (T3, I7)

RETURN
END

SUBROUTINE BUFFERTYPE(BUFFER,length) ~
IMPLICIT INTEGER(A-Z)
BYTE BUFFER(length)

TYPE *,buffer

RETURN
END

m

A data fileDATA.DAT of priv~te data is constructed. It consists of a
sentence. Because each character requires a byte of storage, the total
number of characters in t,he data file is specified as the upper bound
of array PRIV D a~ well as the buffer length in the descriptor you must
construct for UIS$PRIV ATE fl

An exterhal file DATA.DAT is opened e and read into the array PRIV m.

A circle, a triangle, and text are drawn in the virtual display m.
UIS$GET_CURRENT_OBJECT retrieves the identifier of the last object
drawn in the virtual display fl.

The array PRIV is typed out to verify its contents m.

UIS$PRIV ATE associates the sentence contained in the array PRIV with the
objects drawn in the virtual display~. Note that the location of the array
PRIV is passed by descriptor ~.

To extract the data and store it in a buffer as a tJIS metafile,you must first
determine how much space the header data, binary encoded private data,
and trailing data will occupy. To do this, call UIS$EXTRACT_HEADER,
UIS$EXTRACT _PRIVATE, and UIS$EXTRACT _ TRAILER without the buflen
and bu£addr arguments ml m ~.

15-19

Metaflles and Private Data

15.3.3.1

15-20

Type out the variables retlenl, retlen2, and retlen3 to reveal the size of each
part of the display list IE m ~.
Call LIB$GET _ VM to allocate virtual memory for three buffers using the
value of retlenl, retlen2, and retlen3 and to store the location of each buffer in
the pointers exCprivl, exCpriv2, and exCpriv3 m mJ ml. A test for completion
status is performed for each Run-Time Library call 00 m m.
If you do not use LIB$GET_ VM, you have to declare explicitly an array with
an actual length in the beginning of the program. However, at that point in
the program, you have no idea how large such an array should be.

Call UIS$EXTRACT_HEADER, UIS$EXTRACT _PRIVATE, and
UIS$EXTRACT_TRAILER with the omitted parameters to extract the header
data, binary encoded private data, and the trailing data and to store them
in separate buffers fB g] fIt. Because exCprivl, exCpriv2, and ext-priv3 are
pointers, use the VAX FORTRAN built-in function % VAL to obtain the
actual data they store.

To look at the contents of the user buffer before you write the contents to
an external file, you cannot sitnply type the data in the user buffer because
the pointer exCpriv is implicitly declared a longword integer and functions
as a pointer.

Call subroutine BUFFERTYPE to reference the pointer ext_pl'iv2 and the size
of the buffer PB. Two arguments are passed in the call-the pointer name
and the size of the buffer. The subroutine BUFFERTYPE reads the data
from the location to which exCpriv2 points m and writes the data in the
terminal emulation window m.
The file PRIVATE.DAr is opened ~.

The subroutine BUFFERWRITE mJ is called three times to write the header,
private, and trailer data to the external file gJ FE 8!l. Three arguments are
passed in the call-buffer address, buffer size, and the VAX FORTRAN
logical unit number of the output device. An array BUFFER is declared
from this data and an association with an external file is established.

The subroutine BUFFERWRITE writes the contents of BUFFER to the file
PRIVATE.DAT m. The file is closed and saved.

Calling UIS$PRIVATE and UIS$EXTRACT _PRIVATE
Figure 15-8 shows the sample containing character string private data in
the external file DATA.DAT

Figure 15-8 Private Data

T
H
E

L

T

Metafiles and Private Data

$ I

ZK·5454·86

Figure 15-9 shows the contents of the array PRIV read from the external file
DATA.DAT. Note that each number is an ASCII code. The required buffer
size is also shown. In addition, the extracted generically encoded binary
private data instruction is shown as metafile opcodes and ASCII codes.

The private data is appended to the last ellipse drawn-the smallest cloud
of smoke rising from the chimney shown in Figure 15-10.

15-21

Metaflles and Private Data

Figure 15-9 Verifying the Contents of the Temporary Array and User Buffer

Contents of Array Containing Private Data

$ run private /
94 72 73 83 32 73 83 32 84 72 69 32 76 65 83 84
32 79 66 74 69 67 84

FORTRAN PAUSE
$ cont
BUFFER SIZE 136 BYTES

30 0 84 72 73 83 32 13 83 32
-...-...,~

66 69 84 84 72 32 79 14 61

Op Code
Extracted Private
Data as a Binary

Instruction
Z.5oI66-86

15-22

Metafiles and Private Data

Figure 15-10 Hot Air Balloon

~~WWWWWw~ c=)
HWWWWWWWWWWW~ ~

HWWWWWWWWWWWWW~ ~
"WWWWWWWWWWWWWWW ~
'WWWWWWWWWWWWWWW' 0
".JWWWWWWWWWWWWW~ ~
~~'WWWWWWWWWWW"" ~

-"'WWWWWWW'" C ~

~f"-----~

ZK·5457·86

15-23

16

16.1

16.2

Programming in Color

Overview
To change the appearance of graphic objects of text, you can modify the
settings in attribute block O. Depending on the V AXstation color system
you have, you can also draw graphic objects in over 16 million colors. This
chapter discusses the following topics:

• U sing color and intensity routines

• Setting entries in virtual color maps

• Creating shareable color maps

• U sing color map segments

• U sing color and intensity inquiry routines

This chapter is informative for V AXstation programmers with either an
intensity or color environment.

Color and Intensity Routines
Your application uses color and intensity routines to draw graphic objects
in color or shades of gray. These routines create and load the virtual color
map and color map segment structures that hold the application color
values. Color and intensity routines perform the following tasks:

• Create and delete virtual color maps

• Load virtual color map entries with color values

• Create and delete color map segments

• Load entries in color map segments

Color map segments are described later in this chapter.

16.2.1 Programming Options
When your ClpplicCltion inclndes a range (lf c(llor (lr intensities, use one or
more of the VIS routines listed in Table 16-1.

V4.1-June 1989 16-1

Programming in Color

Table 16-1 Color and Intensity Routines

Routine

Virtual Color Maps

UIS$CREATE_ COLOR_MAP

UIS$DELETE_ COLOR_MAp

Loading Virtual Color Map Entries

UIS$SET _COLOA

UIS$SET _COLORS

UIS$SET _INTENSITY

UIS$SET _INTENSITIES

Color Map Segments

UIS$CREATE_COLOR_MAP _SEG

UIS$DELETE_COLOR_MAP _SEG

Function

Creates a virtual color map

Deletes a virtual color map

Sets a single AGB color value In a virtual
color map

Sets multiple RGB color values in a virtual
color map

Sets a single intensity value in a virtual color
map

Sets multiple RGB color values in a virtual
color map

Creates a color map segment

Deletes a color map segment

16.2.2 Step 1-Creating a Virtual Color Map
In a color or an intensity environment, you must use UIS$CREATE_
COLOR_MAP to create a virtual color map, which is a storage location
similar to an artist's palette. Within the color map, you store color values
in locations known as entries. The virtual color map varies according to the
needs of your application. Specify the virtual color map attributes as you
see fit.

16.2.3 Step 2-Setting Virtual Color Map Attributes

16-2

Some virtual color map attributes are required and some are optional. You
must specify the size of the virtual color map; that is, how many color map
values it will hold. You can specify name, access, and residency for the
virtual color map if you wish.

Virtual Color Map Size

As with any storage location, size is a consideration. For every color your
application uses, you need an entry in the virtual color map. You can
specify a virtual color map with a maximum of 32,768 entries.

NOTE: When you specify virtual color map size, be aware that UIS rounds up the
size to the next power of two. For example, when you declare a virtual
color map size of 17, UIS needs five bits to represent this in binary form;
thus, it rounds the size up to 32, or 25•

V4.1-June 1989

Programming in Color

Access to Virtual Color Maps

To determine who or what process has access to a virtual color map,
designate the color map private (no other processes have access to it) or
shareable (some or all processes can share it).

Virtual Color Map Residency

You can also explicitly specify residency, which allows you to dedicate
color resources to your application. Use this feature carefully, because it
precludes sharing hardware color resources among applications.

V4.1-June 1989 16-2.1

Programming in Color

16.2.4 Step 3-Setting Entries in the Virtual Color Map

16.2.5

Depending on color environment, your application must now load color
values into the color map entries with UIS$SET""" COLOR, UIS$SET_
COLORS, UIS$SET_INTENSITIES, or UIS$SET_iNTENSITY.

Color and intensity values are expressed as floating-point numbers between
0.0 and 1.0. The color subsystem uses the red green blue (RGB) color
model. Colors that result from color values with percentages of red, green,
and blue are not always readily apparent from the value chosen. Therefore,
as you write YOUr application, you should use human-interface color setup
menus to determine the appropriate RGB color component values.

Setting Single Entries

For an application with only a few colors or intensities, you might need
only a sinall virtual color map. In this case, use UIS$SET_COLOR or
UIS$SET_INTENSITY to load color map entries each time.

Setting Multiple Entries

If your virtual color map is large, you can arrange your color map
values in an array with a single call to UIS$SET _ COLORS or UIS$SET_
INTENSITIES.

Program Development I
Programming Objective

To create and load a color map with single entries.

Programming Tasks

1 Establish a size for the virtual color map.

2 Create the virtual color map.

3 Create a virtual display.

4 Create a display window and viewport.

5 Use UIS$SET_COLOR to load a single color map entry with one color
value.

PROGRAM SINGLE~ENTRY
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL J,K
DATA J/17.0/ D
DATA K/16/ ~
DATA VCM_SIZE/8/
VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE) ~
VD_ID=UIS$CREATE_DISPLAY(1.O,1.O,40.0,40.0,15.0,15.0,VCM_ID) ~
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','WINDOW t1')

16-3

Programming in Color

CALL UIS$SET_COLOR(VD_ID,0,0.40,0.30,0.0) m
CALL UIS$SET_COLOR(VD_ID,1,0.5,0.5,0.5) m
CALL UIS$SET_COLOR(VD_ID,2,0.5,0.25,0.5) 6
CALL UIS$SET_COLOR(VD_ID,3,0.0,0.7,0.3) m
CALL UIS$SET_COLOR(VD_ID,4,0.25,0.25,0.9) m
CALL UIS$SET_COLOR(VD_ID,5,0.90,0.5,0.0) ml
CALL U1S$SET_COLOR(VD_1D,6,0.80,0.30,0.0) 00
CALL U1S$SET_COLOR(VD_1D,7,0.35,0.65,0.95) ~
CALL U1S$SET_WRIT1NG_INDEX(VD_1D,0,9,2) ~
CALL UIS$SET_WRITING_INDEX(VD_ID,0,10,3) 8D
CALL U1S$SET WRITING 1NDEX(VD 1D,0,11,4) Dm
CALL UIS$SET=WRIT1NG=INDEX(VD=ID,0,12,5) om
CALL UIS$SET WRITING INDEX(VD ID,0,13,6) 80
DO 1=9,13,1 - - -
CALL U1S$C1RCLE(VD_ID,1,J,20.0,10.0) HID
J=J+2.0
ENDDO

PAUSE

DO 1=9,13
CALL U1S$CIRCLE(VD_ID, 1,21. 0, K, 10.0) [JjJ
K=K+2.0
ENDDO
PAUSE

END

The counters j and k are declared and initialized 8 fl

An eight-entry virtual color map is created with no attributes specified n
The virtual color map is associated with the virtual display in
UIS$CREA TE_DISPLA Y ~ 'during creation of the virtual display.

Each color value is loaded into a virtual color map with successive calls to
UIS$SET_ COLOR m m 6 m m IE 00 ~.

The default writing color attribute setting in attribute block 0 is modified
such that five new default writing colors are associated with a virtual color
nlap entry ~ 8D Dm om 80.

The atb argument in the call to UIS$CIRCLE within the DO loop references
the modified attribute block. As a result, five circles are drawn horizontally
HID, each with a different default writing color.

Five circles are drawn vertically [JjJ, the same colors as the horizontally
drawn circles.

16.2.6 Program Development II
Programming Objectives

16-4

To create and load a color map with more than one entry at a time.

Programming Task

1 Load the arrays with color component values.

2 Establish color map size.

Programming in Color

3 Use UIS$SET_CO'LORS to load eight color map entries in a single call.

PROGRAM MULTIPLE_ENTRY
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL J,K
REAL R_VECTOR(8),G_VECTOR(8),B_VECTOR(8) 8
DATA J/l7.0/ ~
DATA K/l6/ ~
DATA R VECTOR/O.40,O.50,O.50,O.O,O.25,O.90,O.80,O.35/ ~
DATA G-VECTOR/O.30,O.50,O.25,O.70,O.25,O.50,O.30,O.65/ ~
DATA B-VECTOR/O.O,O.SO,O.50,O.30,O.90,O.O,O.O,O.95/ m
DATA VCM_SIZE/8/
VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE) 6
VD_ID=UIS$CREATE_DISPLAY(l.O,l.O,40.0,40.0,15.0,15.0,VCM_ID) m
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','COLOR')

CALL UIS$SET_COLORS(VD_ID,O,8,R_VECTOR,G_VECTOR,B_VECTOR) m
CALL UIS$SET_WRITING_INDEX(VD_ID,O,9,2)
CALL UIS$SET_WRITING_INDEX(VD_ID,O,10,3)
CALL UIS$SET_WRITING_INDEX(VD_ID,O,11,4)
CALL UIS$SET_WRITING_INDEX(VD_ID,O,12,5)
CALL UIS$SET_WRIT1NG_INDEX(VD_ID,O,13,6)
DO 1=9,13,1
CALL U1S$C1RCLE(VD_ID,1,J,20.0,10.0)
J=J+2.0
ENDDO

PAUSE
DO 1=9,13
CALL U1S$C1RCLE(VD_1D,1,21.0,K,10.0)
K=K+2.0
ENDDO

PAUSE

END

Three arrays are declared 8 to hold eight R, G, and B color component
values each.

The counters j and k are declared and initialized ~ U

The arrays R_ VECTOR, G_ VECTOR, and B_ VECTOR are loaded with color
component values ~ ~ m.

An eight-entry virtual color map is created 6 and associated with a newly
created virtual display m.

The R, G, and B color component values stored in the arrays are loaded in
the virtual color map using a single call to UIS$SET _ COLORS m.
The remaining portions of the program are identical to the previous
program SINGLE_ENTRY.

16-5

Programming in Color

16.2.6.1

16-6

Program Development III
Programming Objective

To create a shareable color map.

Proqramming Tasks

1 Load arrays containing color component values.

2 Create the color map attributes list, specifying the shareable attribute.

3 Create a virt1.lal display, specifying a name for the color map.

4 Create a display window and display viewport.

5 Load color values into the color map.

6 Program 2 must perform steps 2 through 4 and reference the name of
the color map specified in Progr~m '1.

PROGRAM SHAREABLE_MAP
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL J,K 8
REAL R_VECTOR(8),G_VECTOR(8),B_VECTOR(8)
INTEGER*4 VCM_ATTRIBUTES(3) ~
DATA J/17.0/ ~
DATA K/16/ e
DATA R VECTOR/O.40,O.50,O.50,O.O,O.25,O.90,O.80/
DATA G-VECTOR/O.30,O.50,O.25,O.70,O.25,O.50,O.30/
DATA B=VECTOR/O.O,O.SO,O.50,O.30,O.90,O.O,o.o/
DATA VCM SIZE/8/
VCM_ATTRIBUTES(l)=VCMAL$C_ATTRIBUTES m
VCM_ATTRIBUTES(2)=VCMAL$M_SHARE m
VCM_ATTRIBUTE$(3)=VCMAL$C_END_OF_LIST 6

VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE,'LIVING_COLOR',VCM_ATTRIBUTES)
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,40.0,40.0,15.0,lS.0,VCM_ID) m
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','PROCESS #1')

CALL UIS$SET_COLORS(VD_1D,O,8,R_VECTOR,G_V~CTOR,B_VECTOR)

CALL U1S$SET_WRITING_1NDEX(VD_ID,O,9,2) nw
CALL U1S$SET_WRIT1NG_INDEX(VD_1D,O,10,3)
CALL UIS$SET_WRITING_INDEX(VD_IP,O,11,4)
CALL UIS$SET_WRITING_INDEX(VD_ID,O,12,S)
CALL UIS$SET_WRIT1NG_1NDEX(VD_1D,O,13,6)
DO 1=9,13,1 '
CALL U1S$C1RCLE(VD_1D,1,J,20.0,10.0)
J=J+2.0
ENDDO

VD_1D2=UIS$CREATE_D1SPLAY(1.0,1.0,40.0,40.0,15.0,15.0,VCM_1D) ~
WD_1D2=UIS$CREATE_WINDOW(VD_1D2,'SYS$WORKSTATION','WINDOW #2')
CALL UIS$SET_WR1TING_1NDEX(VD_ID2,O,9,2) ~
CALL U+S$SET_WRITING_INDEX(VD_ID2,O,10,3)
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,11,4)
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,12,S)
CALL UIS$SET_WR1TING_INDEX(VD_1D2,O,13,6)

DO 1=9,13,1
CALL UIS$CIRCLE(VD_ID2,I,21.0,K,lO.O)
K=K+2.0
ENDDO

PAUSE

END

The counters j and k are declared and initialized 8 ~ U

16.3

Programming in Color

An integer array VCM_A TTRIBUTES is declared to have three elements fJ.

The array elements are assigned attribute values defined by UIS constants m
m 6. The structure contains an attribute code followed by a longword value
for that attribute. The final element contains a longword 0 to terminate the
list.

An eight-entry virtual color map is created with UIS$CREATE_ COLOR_
MAP and the array VCM_ATTRIBUTES is used as an argument m.

The newly created virtual display references the virtual color map ~.
Objects drawn in the virtual display can use this virtual color map.

Different default writing colors are defined [I!] as in previous programs, to
highlight and differentiate the objects drawn.

A second virtual display is created m. The second call to UIS$CREA TE_
DISPLAY references the same virtual color map identifier as the first. Both
virtual displays share the use of color value assignments in this virtual color
map.

You must call UIS$SET_WRITING_INDEX (E again to change the default
setting of the writing color so that objects will be the same colors as those
drawn in the first virtual display.

Here is a portion of a second program that uses the virtual color map
LIVING_ COLOR in the prograln SHAREABLE_MAP.

PROGRAM SECOND_PROGRAM

INTEGER*4 VCM_ATTRIBUTES(3) 8
DATA VCM_SIZE/8/ fJ

VCM_ATTRIBUTES(l)=VCMAL$C_ATTRIBUTES
VCM_ATTRIBUTES(2)=VCMAL$M_SHARE
VC~ATTRIBUTES(3)=VCMAL$C_END_OF_LIST

VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE,'LIVING_COLOR',VCM_ATTRIBUTES)
VD_ID2=UIS$CREATE_DISPLAY(1.O,1.O,35.0,35.0,lO.O,lO.O,VCM_ID)

WD_ID2=UIS$CREATE_WINDOW(VD_ID2,'SYS$WORKSTATION','PROCESS #2)

An array of virtual color map attributes specifies the same attributes as
those indicated in the preceding program SHAREABLE_MAP 8. The
application SECOND_PROGRAM must declare the virtual color map size fJ
as this argument is required in UIS$CREA TE_ COLOR_MAP.

The shareable color map is referenced by name in a call to UIS$CREA TE_
COLOR_MAP ~.

Color Map Segments
Use color map segments to control binding the virtual color map to the
hardware color map.

16-7

Programming in Color

16.3.1 Programming Options
You can use UIS$CREATE_ COLOR_MAP _SEG and UIS$DELETE_ COLOR_
MAP _SEG to create and delete color map segments.

16.3.2 Program Development
The program COLOR_SEG is a portion of a longer program and shows
how to bind your virtual color map to the hardware color map.

PROGRAM COLOR_SEG
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
INTEGER*4 VCM_ATTRIBUTES(3) H
DATA VCM_SIZE,PLACEMENT_DATA/8,16/

VCM_ATTRIBUTES(l)=VCMAL$C_ATTRIBUTES ~
VCM_ATTRIBUTES(2)=VCMAL$M_NOBIND e
VCM_ATTRIBUTES(3)=VCMAL$C_END_OF_LIST m
VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE"VCM_ATTRIBUTES) m
CMS_ID=UIS$CREATE_COLOR_MAP_SEG(VCM_ID,'SYS$WORKSTATION"
2 UIS$C_COLOR_EXACT,PLACEMENT_DATA) 6

VD_ID=UIS$CREATE_DISPLAY(1.O,1.O,30.0,30.0,lO.O,lO.O,VCM_ID)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')

Two declarations are established-an array VCM_ATTRIBUTES is declared
H and the virtual color map size is initialized to 8 Pl

Because the color map segment is created with exact placement, the
placement_data argument of UIS$CREATE_ COLOR_MAP _SEG must be
initialized to the starting index in the hardware color map where binding is
to occur.

The elements of array VCM_A TTRIBUTES are assigned an attribute code ~,
an attribl).te value VCMAL$M_NOBIND e, and a terminating value m.

UIS$CREATE_COLOR_MAP is called before any other UIS routine.

16.3.3 Calling UIS$CREATE_COLOR_MAP _SEG

16.4

No special graphics effects are displayed on the V AXstation screen.

Color and Intensity Inquiry Routines

16-8

As mentioned in Chapter 12, inquiry routines provide an application
with status information. Several UIS color and intensity routines return
information to the application about color setup, virtual color map,
and hardware color map. This information can be direct input to your
application.

Programming in Color

16.4.1 Programming Options
Your application can use one or more inquiry routines. Table 16-2 lists
color and intensity inquiry routines.

Table 16-2 Color and Intensity Inquiry Routines

Routine

Virtual Color Map

UIS$GET _COLOR

UIS$GET _COLORS

UIS$GET _INTENSITIES

UIS$GET _INTENSITY

Hardware Color Map

UIS$GET _HW_COLOR_
INFO

Color Value
Conversion

UIS$HLS_ TO_RGB

UIS$HSV_ TO_RGB

UIS$RGB_ TO_HLS

UIS$RGB_ TO_HSV

Workstation Standard
Colors

UIS$GET _WS_COLOR

UIS$GET _WS_
INTENSITY

Color Setup

UIS$GET_
BACKGROUND_INDEX

UIS$GET _WRITING_
INDEX

UIS$GET _WRITING_
MODE

16.4.2 Program Development I
Programming Objective

Information Returned

Single RGB value from a virtual color map

Multiple RGB values from a virtual color map

Multiple intensity values from a virtual color map

Single intensity value from a virtual color map

Device type; number of indexes; number of colors; bits
of precision for R, G, and B values; reserved entries;
and regeneration characteristics.

Converts HLS color values to RGB color values

Converts HSV color values to RGB color values

Converts RGB color values to HLS color values

Converts RGB color values to HSV color values

Workstation standard RGB color value

Workstation standard intensity value

Window background index

Window foreground index

Writing mode

To retrieve hardware color map information.

16-9

Programming in Color

16-10

Programming Tasks

1 Create a virtual color map.

2 Create a virtual display.

3 Create a display window and viewport.

4 Obtain the number of color map indices, possible colors, maps, bits of
precision for each color component, and reserved entries.

PROGRAM GET_INFO
IMPLICIT INTEGER(A-Z)
INCLUDE , SYS$LIBRARY: UISENTRY ,
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL J,K
REAL R_VECTOR(8),G_VECTOR(8),B_VECTOR(8)
REAL RETR_VECTOR(8),RETG_VECTOR(8),RETB_VECTOR(8)
INTEGER*4 VCM ATTRIBUTES(3)
DATA VCM SIZE/8/

DATA J/17.0/ -
DATA K/16/
DATA R VECTOR/0.40,0.50,O.50,0.O,O.25,O.90,O.80,O.35/
DATA G-VECTOR/O.30,0.50,O.25,O.70,0.25,0.50,0.30,0.65/
DATA B-VECTOR/0.0,0.50,O.50,O.30,O.90,O.O,O.O,O.95/
VCM_ATTRIBUTES(l)=VCMAL$C_ATTRIBUTES
VCM_ATTR1BUTES(2)=VCMAL$M_SHARE
VCM_ATTRIBUTES(3)=VCMAL$C_END_OF_LIST

VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE,VCM_ATTRIBUTES)
VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,40.0,40.0,15.0,15.0,VCM_ID)
WD_ID=UIS$CREATE_WINDOW(VD_1D,'SYS$WORKSTATION','COLOR')

CALL UIS$SET_COLORS(VD_ID,0,8,R_VECTOR,G_VECTOR,B_VECTOR)
CALL U1S$SET WRITING INDEX(VD 1D,0,9,2)
CALL U1S$SET=WRITING=1NDEX(VD=1D,0,10,3)
CALL UIS$SET_WRIT1NG_INDEX(VD_1D,0,11,4)
CALL UIS$SET_WRITING_INDEX(VD_ID,0,12,5)
CALL UIS$SET_WR1TING_INDEX(VD_ID,0,13,6)

CALL UIS$GET_COLORS(VD_ID,O,8,RETR_VECTOR,RETG_VECTOR,RETB_VECTOR)

TYPE 50
50 format(T8,'RED',T18,'GREEN' ,T30,'BLUE')

TYPE 100,RETR_VECTOR,RETG_VECTOR,RETB_VECTOR
100 FORMAT(F11.3,F11.3,F11.3)

CALL U1S$GET_HW_COLOR_INFO("
2 1NDICES,COLORS,MAPS,RBITS,GBITS,BBITS"RES_INDICES) ~

TYPE 150,INDICES,COLORS
150 FORMAT(T2,'NO. OF INDICES=',I3,T22,'NO. OF COLORS=',I8)

TYPE 200,MAPS
200 FORMAT(T2,'NO.OF MAPS=',i3)

TYPE 225,RBITS,GBITS,BBITS
225 FORMAT(T2,'NO. OF BITS OF PRECISION',T28,'RED',I3,T37,'GREEN',I3,

2 T48,'BLUE',I3)

TYPE 250,RES_INDICES
250 FORMAT(T2,'NO. OF RESERVED ENTRIES',I3)

TYPE*,'VCM Indexes Used In virtual Display l'

DO 1=9,13,1
CALL UIS$CIRCLE(VD_ID,I,J,20.0,10.0)
INDEX=UIS$GET_WRITING_INDEX(VD_ID,I) ~
TYPE*,INDEX
J=J+2.0
ENDDO
VD ID2=UIS$CREATE DISPLAY(1.0,1.0,40.0,40.0,15.0,15.0,VCM ID)
WD=ID2=UIS$CREATE=WINDOW(VD_ID2,'SYS$WORKSTATION','W1NDOW-i2')

16.4.2.1

Programming in Color

CALL UIS$SET_WRITING_INDEX(VD_ID2,O,9,2)
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,lO,3)
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,11,4)
CALL UIS$SET_WRITING_INOEX(VD_ID2,O,12,5)
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,13,6)
TYPE*,'VCM Indexes Used In virtual Display 2'
DO 1=9,13
CALL UIS$CIRCLE(VD_ID2,I,21.0,K,10.0)
INDEX=UIS$GET_WRITING_INDEX(VD_ID2,I) ~
TYPE*,INDEX
K=K+2.0
ENDDO

PAUSE

END

A great deal of information is returned from only three inquiry routines.
A call to UIS$GET_COLORS 8,returns the R, G, and B color component
values in the color map entries of the virtual color map.

A call to UIS$GET_HW_COLOR_INFO Fj returns the number of precision
binary bits for R, G, and B color map values; it also returns the total
number of hardware color map and reserved entries.

Writing color information must be returned from two program locations.
The first call to UIS$GET_WRITING_INDEX within the DO loop ~ returns
all the default writing indices as they are being used in the first virtual
display. The second call to UIS$GET_ WRITING_INDEX ~ returns each
writing index used to draw graphic objects in the second virtual display.

Calli~g UIS$GET _CO~ORS, UIS$GET _HW _COLOR_INFO,
UIS$GET _WRITING_INDEX
Figure 16-1 shows t~e information returneq in the user emulation window.

16.4.3 Program. 11-· Creating an HSV ColQr Wheel
NOTE: To abort the dem,onstration program, type ICTRL/cl, then EXIT IRET!. If

you are ronning another graphics process at an independent emulator
window, the process will not contintJ,e after you exit the COLOR_WHEEL
deptonstration program. This is known as a side effect.

PROGRAM CO~OR_WHEEL
c
c This program draws a color wheel once and then continually
c changes its appearance by upqating the virtual color map.
c

IMPLICIT INTEGER*4(A-Z)
PARAMETER DISPLAY_SIZE=4.0*2.54
REAL*4 R,G,B,H,L,S,V,START_DEG,END_DEG
REAL*4 R_VECTOR(O:255),G_VECTOR(O:255),B_VECTOR(O:255)
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

16-11

Programming in Color

Figure 16-1 Different Types of Information Returned from Inquiry Routines

16-12

;$ run get_info
red

0.400
0.000
0.800
0.500
0.250
0.000
0.500

green
0.500
0.250
0.000
0.250
0.500
0.000
0.300

blue
0.500
0.900
0.300
0.700
0.300
0.500
0.900

O. 000 .. o. 000 o. 000
no. of indices=256 no. of colors=16777216
no.of maps= 1
no. of bits of precisioh red 8 green 8
no. of reserved entries 6
VCM Indexes Used In Virtual Display 1

2
3
4
5
6

FORTRAN PAUSE

c

blue 8

ZK5453·86

c Find out some information about the workstation color characteristics
c

CALL UIS$GET_HW_COLOR_INFO("INDICES"MAPS"",RES_INDICES,REGEN)
c
c Only attempt to run this program on color map hardware systems.
c

IF (MAPS .EQ. 0 .OR. REGEN .NE. UIS$C_DEV_RETRO) STOP
c
c Make the virtual color map size dependent upon the available
c hardware, but no greater than 64 entries
c

MAP_SIZE=MIN(INDICES-RES_INDICES, 64)
VCM_ID=UIS$CREATE_COLOR_MAP(MAP_SIZE)

c
c Create the virtual display and a single window
c

VD_ID=UIS$CREATE_DISPLAY(O.O, 0.0, 1.0, 1.0,
1 DISPLAY_SIZE, DISPLAY_SIZE, VCM_ID)
WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION')

Programming in Color

c
c Establish some attributes for drawing
c

c

CALL UIS$SET_ARC_TYPE(VD_ID, 0, 1, UIS$C_ARC_PIE)
CALL UIS$SET_FONT(VD_ID, 1, 1, 'UIS$FILL_PATTERNS')
CALL UIS$SET_FILL_PATTERN(VD_ID, 1, 1, PATT$C_FOREGROUND)

c Set window background to black and draw wedges of a circle.
c The initial colors of the wedges are determined by traversing
c 360 degrees around the HSV color model, varying H, while Sand
c V are both 1.0.
c

CALL UIS$SET_COLOR(VD_ID, 0, 0.0, 0.0, 0.0)
DO I=l,MAP SIZE-1

START_DEG=(I-1)*(360.0/FLOAT(MAP_SIZE-1»
END_DEG=START_DEG+(360.0/FLOAT(MAP_SIZE-1»
CALL UIS$HSV_TO_RGB(START_DEG, 1.0, 1.0, R, G, B)
CALL UIS$SET_COLOR(VD_ID, I, R, G, B)
CALL UIS$SET_WRITING_INDEX(VD_ID, 1, 1, I)
CALL UIS$CIRCLE(VD_ID, 1, 0.5, 0.5, 0.4, START_DEG, END_DEG)

END DO
c

V=1.0
c
c The next set of sequential and nested loops
c traverse the HSV color model cone.
c
100 CONTINUE
c
c Vary S from 1.0 to 0.0 in 0.01 increments
c

c

c

c

DO IS=99,0,-1
S=FLOAT(IS)/100.0

DO I=l,MAP SIZE-l
START_DEG=(I-l)*(360.0/FLOAT(MAP_SIZE-1»
IF (S .EQ. 0.0) START_DEG=UIS$C_COLOR_UNDEFINED
CALL UIS$HSV_TO_RGB(START_DEG, S, V,

1 R_VECTOR(I), G_VECTOR(I), B_VECTOR(I»
END DO ! I
CALL UIS$SET_COLORS(VD_ID, 1, MAP_SIZE-1,
1 R_VECTOR(l), G_VECTOR(l), B_VECTOR(l»

end do ! s=1. 0,0.0

c Vary V from 1.0 to 0.0 in 0.01 increments
c

c

c

DO IV=99,0,-1
V=FLOAT(IV)/100.0

DO I=l,MAP SIZE-l
START_DEG=(I-1)*(360.0/FLOAT(MAP_SIZE-1»
IF (.8 .EQ. 0.0) START_DEG=UIS$C_COLOR_UNDEFINED
CALL UIS$HSV_TO_RGB(START_DEG, S, V,

1 R_ VECTOR(I), G_ VECTOR(I), B_ VECTOR (I))
END DO ! I
CALL UIS$SET_COLORS(VD_ID, 1, MAP_SIZE-1,
1 R_VECTOR(l), G_VECTOR(l), B_VECTOR(l»

END DO ! V=1.0,0.0

16-13

Programming in Color

16-14

c
c Vary V from 0.0 to 1.0 in 0.01 increments
c

c

c

c

DO IV=1,100, 1
V=FLOAT(IV)/tOO.O

DO I=l,MAP SIZE-1
START_DEG=(I-1)*(360.0/FLOAT(MAP_SIZE-1»
IF (S .EQ. 0.0) START_DEG=UIS$C_COLOR_UNDEFINED
CALL UIS$HSV_TO_RGB(START_DEG, S, V,

1 R_VECTOR(I), G_VECTOR(I), B_VECTOR(I»
END DO ! I
CALL UIS$SET_COLORS(VD_ID, 1, MAP_SIZE-1,
1 R_VECTOR(l), G_VECTOR(l), B_VECTOR(l»

END DO ! V=0.0,1.0

c Vary S from 0.0 to 1.0 in 0.01 increments
c

c

c

c

DO IS=1,100,1
S=FLOAT(IS)/100.0

DO I=1,MAP_~IZE-1
START_DEG=(I-1)*(360.0/FLOAT(MAP_SIZE-1»
IF (S .Eq. 0.0) S~ART_DEG=UIS$C_COLOR_UNDEFINED
~ALL UIS$HSV_TO_RGB(START_DEG, S, V,

1 R_VECTOR(I), G_VECTOR(I), B_VECTOR(I»
END DO ! I
CALL UIS$SET_COLORS(VD_ID, 1, MAP_SIZE-1,
1 R_VECTOR(l), G_VECTOR(l), B_VECTOR(l»

END DO ! S=O. 0,1. 0

c Repeat HSV color cone traversal indefinitely
c

GOTO 100
c

END

17

17.1

Asynchronous System Trap Routines

Overview
Frequently, an application program relies on certain run-time events to
trigger execution of an application-specific task. Such run-time events can
range from a power failure to a missed keystroke. Several UIS routines
enable this type of behavior for the duration of the program or until the
enabling UIS routine is explicitly disabled. ' Such routines enable the use
of asynchronous system trap (AST) routines. This chapter discusses AST
routines and how they can be used to perform the following tasks:

• Creating a virtual keyboard

• U sing a pointer

• Creating a pointer pattern

• Shrinking a display viewport to an icon

• Resizing a display window

• Closing a display window

AST routines are not limited to the tasks listed here.

17.1.1 Using AST Routines

I

Certain UIS routines associate, or bind, a specific run-time event or action
to a subroutine. When this binding occurs, control passes from the main
program to a user-written subroutine that then performs some application­
specific task. When the subroutine completes execution, control is
transferred to the next statement in the main program. However, the
association between the run-time event and the execution of the subroutine
remains in effect.

If the action occurs again during program execution, the subroutine is
recalled. The process executing the main progranl is suspended when
the run-time event occurs and until the subroutine completes execution.
Thus, execution of the subroutine occurs asynchronously with respect to
execution of the main program. The user-written subroutine is known as an
asynchronous system trap routine or AST routine.

You can code the AST routine in two ways:

• Within the main prograln according to the particular progranuning
language conventions

• Separately as a module in a library

If you code the AST routine separately, you must compile and link the
library modules with your program.

V4.1-June 1989 17-1

Asynchronous System Trap Routines

17.1.2 AST-Enabling Routines

I
17.2

Several UIS routines enable AST routine execution whenever a particular
run-time event occurs. The actual event might involve the keyboard
or pointer, or the occurrence of a program-related event such as the
movement or resizing of a window. AST-enabling routines reference AST
routines in their argument lists. Table 17-1 lists each AST-enabling routine
and the event that triggers AST routine execution.

Table 17-1 AST -Enabling Routines

Routine

UIS$SET _KB_AST

UIS$SET _LOSE_KB_AST

UIS$SET _MOVE_INFO _AST

UIS$SET _POINTER_AST

Event

An additional option Is chosen using the
human Interface.

A button Is depressed or released on a
pointer device.

A display window Is deleted using the
human Interface.

A digitizer Is moved within a specified data
region on the tablet.

An icon is expanded to display viewport
using the human interface.

A virtual keyboard is bound to a physical
keyboard.

A key is pressed.

A virtual keyboard Is disconnected from a
physical keyboard.

A window is moved In the virtual display.

A pointer moves Into or exits an area of
the virtual display.

A display window is resized using the
human interface.

The display viewport is shrunk using the
human interface.

Keyboard and Pointer Devices

17-2

Keyboard and pointer devices are resources for use within your application
program. The keyboard and pointer are mentioned here to illustrate
routines that use input from such workstation peripheral devices during
application program execution. You can use keyboard and pointer devices
effectively in conjunction with AST routines.

V4.1-June 1989

Asynchronous System Trap Routines

17.2.1 Using AST Routines with Virtual Keyboards
You can use your keyboard as a virtual device with characteristics
transportable from virtual display to virtual display. In this way, you
can create an unlimited number of virtual devices (subject to system and
process resources) with different characteristics and associate each with any
virtual display you choose.

To use AST routines with virtual keyboards, follow these steps with the
routines listed in Table 17-2.

1 Create virtual keyboard(s).

You can create an unlimited number of virtual keyboards with
UIS$CREATE_KB.

2 Bind the virtual keyboard to a display screen.

Once you create a virtual keyboard, you must bind it to a specified
display window with UIS$ENABLE_ VIEWPORT _KB or UIS$ENABLE_
KB. These routines also define how the physical and virtual keyboards
are assigned to each other.

If your display screen contains one or more display viewports and you
have assigned virtual keyboards to their associated display windows, to
keep track of which viewport is active use the ICYCLE] key to move from
viewport to viewport through the assignment list.

A viewport is active when the KB icon background color on the
viewport is highlighted. The physical keyboard is now assigned to
a virtual keyboard. The virtual keyboard and all enabled characteristics
can then be used with the physical keyboard. You can bind more. than
one display window to the same virtual keyboard. In this case, all KB
icons are highlighted simultaneously when you assign windows to a
physical keyboard.

3 Enable the AST routines.

N ow that the virtual keyboard is created and bound to a display
window, you must use UIS$SET_KB_AST to associate the keystroke
with the action taken by a subroutine.

17-3

Asynchronous System Trap Routines

Table 17-2 AST Routines and Descriptions

AST ROUTINE

UIS$CREATE_
KB

UIS$ENABLE_
VIEWPORT _KB

UIS$ENABLE_
KB

UIS$DISABLE_
VIEWPORT _KB

UIS$DISABLE_
KB

UIS$SET _KB_
AST

Description

Creates virtual keyboards

Adds the display window to the assignment list. Use the
ICYCLE I key to move from viewport to viewport.

Places the display window at the top of the assignment list.
Makes the viewport active. Use the [9Y~il key to move to
other viewports.

Removes a display window from the assignment list. Use
UIS$ENABLE_ VIEWPORT _KB or UIS$ENABLE_KB to make the
viewport active.

Places a display window at the bottom of the assignment list.
Press the ICYCLEI key to make the viewport active.

Associates a keystroke with subroutine action.

17.2.2 Controlling Keyboards
After you create the virtual keyboard, your application can verify successful
connection with the physical keyboard. You can be notified when such
connections are made or broken.

Connecting and disconnecting virtual keyboards can occur many times
within your application program. Whenever a virtual keyboard is
disconnected or lost, you might want your program to initiate some
action through a subroutine. For example, when a virtual keyboard is
disconnected, UIS$SET_GAIN_KB_AST and UIS$SET_LOSE_KB_AST
enable AST routines that allow your program to perfonn housekeeping
functions such as deleting unused virtual keyboards, display windows, and
display viewports.

The following routines control the keyboard:

• UIS$SET_KB_ATTRIBUTES-Assigns characteristics to specific virtual
keyboards.

• UIS$TEST_KB-Verifies the connection between a specified virtual
keyboard and the physical keyboard.

• UIS$DELETE_KB-Deletes a virtual keyboard.

17.2.3 Program Development

17-4

Programming Objective

To type keyboard characters directly to the virtual display using AST
routines.

Asynchronous System Trap Routines

Programming Tasks

1 Declare the subroutine and the appropriate variables to be included in
the COMMON statement.

2 Create a virtual display.

3 Create a virtual keyboard.

4 Create a display window and viewport.

5 Bind the virtual keyboard to the display window.

6 Use UIS$SET_KB_AST to enable keyboard AST routines.

7 Create a subroutine to send each keystrike to the virtual display.

PROGRAM AST
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
LOGICAL*l KEYBUF(4)
EXTERNAL KEYSTRIKE H
COMMON KB_ID,VD_ID,KEYBUF,WD_ID,COUNT ~

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,31.0,31.0,20.0,5.0)
KB_ID=UIS$CREATE_KB('SYS$WORKSTATION') ~

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','KEYBOARD AST')
CALL UIS$ENABLE_VIEWPORT_KB(KB_ID,WD_ID) ~

CALL UIS$SET_ALIGNED_POSITION(VD_ID,1,1.0,30.0)

COUNT=O

CALL UIS$SET_KS_AST(KB_ID,KEYSTRIKE,O,KEYBUf) ~
CALL SYS$HIBER() ~

END

SUBROUTINE KEYSTRIKE 6
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
LOGICAL*l KEYBUF(4)
COMMON KB ID,VD ID,KEYBUF,WD ID,COUNT m
STRUCTURE/TEXT/- m -
INTEGER*2 BUFLEN,BUFCODE
INTEGER*4 BUFADR
END STRUCTURE

RECORD/TEXT/DESC ~

DESC.BUFLEN=l
DESC.BUFADR=%LOC(KEYBUF) HH
STATUS=UIS$TEST_KB(KB_ID) ~

CALL UIS$SET_FONT(VD_ID,1,2,'MY_FONT_13')

IF «COUNT .EQ. 60) .OR. (KEYBUF(l) .EQ. 13)) THEN 8m

CALL UIS$NEW_TEXT_LINE(VD_ID,2)

COUNT=O
ELSE·
CALL UIS$TEXT(VD_ID,2,DESC)
COUNT=COUNT+1
END IF

RETURN

END

17-5

Asynchronous System Trap Routines

Use the EXTERNAL statement to declare the name of the AST routine
KEYSTRIKE D. The EXTERNAL statement defines the symbolic name
of the routine as an address. You can then use the routine name as an
argument in a parameter list, as in the astadr argument of an AST -enabling
routine.

The COMMON statement allows certain variables used in both program
units (the main program and the subroutine) to share the same storage area
fJ ID. You can use either the COMMON statement or the astprm argument
in the AST-enabling routine to pass data to the AST routine.

The virtual keyboard is created ~ and bound to a display window U

UIS$SET_KB_AST is the AST-enabling routine that references the
subroutine KEYSTRIKE m 6. Note that there is no separate call to the
subroutine KEYSTRIKE.

Whenever you press a key, the ASCII character code for that character is
stored in the variable keybuf m and subroutine KEYSTRIKE is executed. The
subroutine KEYSTRIKE is an AST routine.

The subroutine KEYSTRIKE retrieves the character code stored in the
variable keybuf. The data structure TEXT, a character string descriptor, is
created m. DESC, the variable that denotes a record, is defined with the
same structure as TEXT ml. The address of keybuf is assigned to a longword
in the descriptor 00. The subroutine KEYSTRIKE uses UIS$TEXT to write
the character to the virtual display.

After the AST routine completes execution, control returns to the next
statement in the main program. The next statement calls the SYS$HIBER ~
system service m, which allows the process to remain inactive until the next ,
time the ASTroutine is executed (when a key is pressed).

The AST routine KEYSTRIKE also verifies that the virtual and physical
keyboards are connected III

Whenever column 60 is reached or the IRETURNI key is pressed fE, text
output moves to the next line. The ASCII character code for the ~!il
key is 13. '

17.2.4 Calling Keyboard Routines

17-6

The program AST creates a viewport to which characters are written as
shown in Figure 17-l.

To display characters after you run the AST program, make sure the
pointer device is located within the bounds of the display viewport. Press
the leftmost button on the mouse. The keyboard AST display is now
activated. At this point, you can begin typing the characters and they are
displayed on the viewport.

Asynchronous System Trap Routines

Figure 17-1 Writing Characters to a Display Viewport

characters dis-
lay. Each character represents
he execution of an AST routine!

1234567890-=!@#$%Aa*()_+
ZK-4561-85

17.2.5 Using AST Routines with Pointer Devices

17.2.5.1

17.2.5.2

Pointer routines allow the pointer to act as an input device to your
application program. Typically, application programs use such data to
keep track of the location of the pointer device in the virtual display or
the location of a specified rectangle in the virtual display. AST routines
provide an effective way to use pointers in this manner.

Mouse
You can use the mouse with AST routines to return to the application status
information about mouse location.

Tablet
The digitizer is another pointing device. The tablet consists of a puck or
stylus and a tablet. You can use a digitizer only with a tablet. You cannot
use a mouse as a data digitizer. If you attempt to digitize with a mouse,
UIS will report an error.

Digitizing with a Tablet

To digitize with a tablet, establish a region on the tablet called the data
rectangle, where digitizing is active. If you do not specify a data rectangle,
the whole tablet is used.

Only one data digitizing region can be active at a time.

The pointer position on the tablet is available to the digitizing AST routine.
If the pointer is within the data rectangle, the AST routine is executed.

Only one image can own the tablet at a time. When a process connects
to the tablet, the system hardware cursor is turned off and the connected
process receives all the input from the tablet device. The process nlust use
a software cursor to track the pointer in a window. The process owns the
tablet until it makes a call to UIS$ENABLE_ TB to disconnect itself fronl the
tablet.

17-7

Asynchronous System Trap Routines

17.2.5.3

17.2.5.4

Terminating Data Digitizing

Only ~he process that issues the data digitizing request can change or
cancel the request. If the process is deleted and the channel deassigned,
data digitizing is immedia.tely canceled if a request is still outstanding.

Only one data digitizing region can be active at a time. Attempts by other
processes to initiate fail if another process has already declared a digitizing
region.

Step 1-Create an AST Routine
You must write a program that includes an AST subroutine that performs
a task. Typically, AST subroutines perform inquiry functions and return
pointet information such as location to the main program. Table 12-1
lists pointer routines. You are not restricted to using AST routines in this
manner. For example, you can use AST routines with pointers to create
menus.

Step 2-Enable the AST Routine
The AST routine executes whenever a specific run-time event occtirs. To
enable this behavior, you must include an AST -enabling routine in the
main program. Table 17-3 lists pointer AST-enabling routines.

Table 17-3 Pointer AST-Enabling Routines

Routine

UIS$SET _BUTTON_AST

UIS$SET _ TB_AST

Run-Time Event

The button on the pointer device is depressed. ~

The digitizer is moved within a specified data region ~
on the tablet.

The pointer is moved into a specified region of
virtual display.

17.2.6 Programming Options

17-8

Many graphics applications use the pointer position and movement to draw •
objects on the display screen. Graphics routines use this infonnation to ~
generate objects.

POinter Movement

Many application programs must know where the pointer is. For example,
the program might need to perform some type of action whenever the
pointer moves within certain regions of the virtual display. Use the AST­
enabling routine UIS$SET _POINTER_AST whenever pointer movement is
important.

Pointer Position

Your application might need to establish pointer position in world
coordinates. In addition, UIS$SET _POINTER_POSITION returns a status
value.

Asynchronous System Trap Routines

Pointer Pattern

You can change the appearance of the pointer cursor with UIS$SET_
POINTER_PATTERN. Normally, this cursor appears as an arrow on the
display screen. The pointer cursor, or pattern, represents bit settings within
an array of 16 words. To choose your own pointer pattern, for each word
in the array, assign a value that sets the desired bits for the new pattern.

Optionally, you can request that the pointer be bound to the region
specified in the UIS$SET_POINTER_PATTERN call. When this region
is unoccluded, the pointer pattern cannot exit after it has been positioned
within the region. The cursor can leave the bound region if it becomes
occluded.

Tablet Information

Currently, the routines UIS$GET_TB_INFO and UIS$GET_TB_POSITION
return information about tablet characteristics and position, respectively.

17.2.7 Program Development
Programming Objective

To change the default pointer pattern to a cross-hair.

Programming Tasks

1 Declare the subroutine and the appropriate variables in the COMMON
statement.

2 Create a virtual display.

3 Create a display window and viewport.

4 Use UIS$SET_POINTER_AST to enable the pointer AST routine.

S Create a subroutine that defines the new cursor pattern.

PROGRAM PATTERN
IMPLICIT INTEGER(A-Z)
EXTERNAL FIGURE 8
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
COMMON VD ID,WD ID
VD_ID=UIS$CREATE_DISPLAY(-1.O,-1.O,30.0,30.0,20.0,20.0)
WD ID=UIS$CREATE WINDOW(VD ID,'SYS$WORKSTATION',

2 - 'POINTER PATTERN') ~-

CALL UIS$SET_POINTER_AST(VD_ID,WD_ID,FIGURE,O) ~

CALL SYS$HIBER()

END
SUBROUTINE FIGURE
IMPLICIT INTEGER(A-Z)
INTEGER*2 CURSOR(16) ~
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
COMMON VD_ID,WD_ID

DATA CURSOR/7*896,65535,8*896/ 0

CALL UIS$SET_POINTER_PATTERN(VD_ID,WD_ID,CURSOR,,8,8) m
RETURN
END

17-9

Asynchronous System Trap Routines

17-10

In this program, neither world coordinates nor dimensions of the display
viewport are specified for the display window~. As a result, the display
window maps the entire virtual display space and the display viewport size
defaults to the dimensions specified in UIS$CREA TE_DISPLA Y.

The subroutine FIGURE is called whenever the pointer lies within the
specified area of the display window. In the main program, the subroutine
is declared as an external procedure o. UIS$SET _POINTER_AST, the AST­
enabling routine for the pointer devices, is called ll. Because no rectangle
is specified, the subroutine FIGURE is executed whenever the pointer is
within the display window.

The array CURSOR is declared in the subroutine FIGURE e and contains
16 elements. Each array element is declared as a word and is, therefore, 16
bits long. Imagine the array as a 16 by 16-bit pattern, or matrix. Each array
element m is assigned a value that sets certain bits in the matrix to 1. The
matrix represents the bitmap image of the new cursor pattern. The call to
UIS$SET_POINTER_P ATTERN references the new cursor pattern and the
exact bit in the new cursor pattern used to calculate current pointer positon
m.

When you run the program PATTERN, the display viewport is created. The
pointer lies outside the display viewport, and the default pointer pattern is
in effect as shown in Figure 17-2.

Figure 17-2 Default Pointer Pattern ~

-
POINT[R PATT[RN

~--------=---~~-

ZK-4614-85

17.3

Asynchronous System Trap Routines

The process that executes the main program is hibernating, or waiting for
you to move the pointer. As you can see in Figure 17-3, when you nlove
the' pointer within the display window, the pointer pattern changes from an
arrow to a cross.

Figure 17-3 New Pointer Pattern

+

Manipulating Display Windows and Viewports
Default Shrinking Operation

ZK-4562-85

By default, you use the Window Options Menu to shrink viewports. When
you choose the Shrink to an Icon menu item, UIS$SHRINK_ TO_ICON
is called. To expand icons to viewports with the user interface, place the
cursor in the icon and press the pointer button.

Default Resizing and Closing Operations

By default, you use the Window Options Menu to resize and close display
windows. When you choose the Change the Size menu item, you call
UIS$RESIZE_ WINDOW, which accepts the world coordinate values of the
newly resized window.

You also use the Window Options Menu to close display windows. When
you choose the Delete menu item, you call UIS$CLOSE_ WINDOW,
which, in turn, calls SYS$EXIT system service. SYS$EXIT performs iInage
rundown and deletes the process that owns the image.

17-11

Asynchronous System Trap Routines

17.3.1 Using AST Routines to Modify the Window Options Menu

17.3.1.1

17.3.1.2

17-12

Certain UIS routines can override the default actions listed in the Window
Options Menu and enable user-written shrinking, expanding, resizing, and
closing AST routines that are activated whenever you choose the Shrink to
an Icon, Change the size, or Delete menu items.

Using AST routines to modify the Window Options Menu requires two
steps:

1 Create an AST routine.

2 Enable the AST routine.

Step 1-Create an AST Routine
To override one of the default actions in the Window Options Menu, you
must write a program that includes an AST routine. When you execute
the program and initiate the action through the user interface, the default ~
action is no longer performed automatically.

You can code your AST routine to perform any action. Often, you modify
the action of a menu itenl by adding additional actions to the default.
To do so, include in your AST routine a call to UIS$RESIZE_ WINDOW
in addition to code to perform any other special features. When the
program executes, the AST routine performs the resize as well as any other
additional actions. Table 17-4 lists the task you want to perform and the
corresponding UIS routine you should include in your subroutine.

Table 17-4 Tasks and Corresponding UIS Routines

Routine

UIS$CLOSE_
WINDOW

UIS$EXPAND_ICON

UIS$RESIZE_
WINDOW

UIS$SHRINK_ TO_
ICON

Task

Close or delete a window

Expand an icon 1

Resize a viewport

Shrink a viewport

1 Not listed in the Window Options Menu.

Step 2-Enable the AST Routine
Your AST routine should execute whenever you want to override the
default features listed in the Window Options Menu. To execute the
AST routine, a run-thne event must occur to trigger it. Therefore, you
must include an appropriate AST -enabling routine in your main program.
Table 17-5 lists window AST -enabling routines that trigger AST routine
execution for various run-time events.

I

Asynchronous System Trap Routines

Table 17-5 AST-Enabllng Routines that Trigger AST Routine
Execution

Routine Run-Time Event

The Delete menu item is chosen using the
human interface.

The pointer pattern is placed on an Icon
and the pointer button is depressed using
the human interface.

The Change the Size menu item Is chosen
using the human Interface

The Shrink to an Icon menu Item Is chosen
using the human Interface.

17.3.2 Programming Options
Table 17~6 lists programming options for which you can also enable AST
routine execution.

Table 17-6 AST Routine Execution Programming Options

AST Routln. Programming Option Routine Called

UIS$SET _SHAINK_ TO_ICON_AST

UIS$SET _EXPAND_ICON_AST

UIS$SET _A ESIZE_WINDOW_AST

UIS$SET _CLOSE_AST

Shrink viewport to Icon

Expand icon to viewport

Aesize display window

Close display window

UIS$SHAINK_ TO_ICON

UIS$EXPAND_ICON

UIS$AESIZE_WINDOW

UIS$CLOSE_WINDOW

Shrinking Viewports to Icons

To override the default display viewport shrinking operation, call the AST­
enabling routine UIS$SET_SHRINK_ TO_ICON_AST in your l11ain program.
Your AST routine will contain UIS$SHRINK_TO_ICON, which specifies
icon attributes. Shrinking viewports to icons occurs as a four-step process
as follows:

1 Initiate the shrinking operation with the user interface.

2 Use the invisible attribute to move the viewport offscreen.

3 The subroutine creates a small virtual display and viewport with no
banner, the actual icon.

4 The subroutine using UIS$SHRINK_TO_ICON associates the icon
name with the virtual display identifier of the offscreen viewport.

Expanding Icons to Display Viewports

To override the default icon expansion operation, call the AST-enabling
routine UIS$SET_EXPAND_ICON_AST in your main program. Include
UIS$EXP AND _ICON in your AST routine to specify viewport attributes.

V4.1-June 1989 17-13

Asynchronous System Trap Routines

17-14

Resizing Display Windows

To override the default display window resize operation, call the AST­
enabling routine UIS$SET_RESIZE_AST in your main program. Resizing
occurs as a three-step process as follows:

1 Initiate the resizing operation with the user interface.

2 The user interface returns values to the addresses specified in
UIS$SET _RESIZE_AST.

3 The AST routine is called.

Your AST routine includes a call to UIS$RESIZE_ WINDOW, which
redefines the default resize behavior as follows:

• Absolute position-You can specify an absolute position, that is, a
device coordinate position on the physical screen for the newly resized
display viewport.

• Size-You can specify the dimensions of all newly resized display
viewports. All subsequent display viewports are created with these
dimensions.

• World coordinate space-You can specify the world coordinate space
as the original display window. Typically, the coordinates you specify
here match the world coordinates of the original display window.
However, this is not always the case. If your original display window
views a portion of the virtual display, you can view more or less of the
virtual display depending on the world coordinate range you specify.

Closing Display Windows

To override the default close display window operation, call the AST­
enabling routine UIS$SET_CLOSE_AST in your main program.

Instructions that you include in your AST routine override the default
window closing behavior. Closing display windows occurs as a two-step
process as follows:

1 Choose the Delete menu item in the Window Options Menu.

2 Call the AST routine.

V4.1-June 1989

Asynchronous System Trap Routines

17.3.3 Program Development
Programming Objective

To modify the display window shrinking, expanding, resizing, and closing
operations listed in the Window Options Menu, whenever the Shrink to
Icon, Change the Size, or Delete menu item is chosen.

Programming Tasks

1 Declare the subroutines and the appropriate variables in the COMMON
statement.

2 Create a virtual display.

3 Create a display window and viewport.

4 Draw two ellipses and a circle.

V4.1-June 1989 17-14.1

Asynchronous System Trap Routines

5 Use UIS$SET_SHRINK_TO_ICON_AST and UIS$SET_EXPAND_
ICON_AST to enable viewport shrinking and icon expansion AST
routines.

6 Use UIS$SET_RESIZE_AST UIS$SET_CLOSE_AST to enable window
resizing and closing AST routines.

7 Create viewport shrinking and icon expansion AST routines.

8 Create window resizing and closing AST routines.

NOTE: Before you run the OVERRIDE demonstration program, invoke the
indirect command file DEFFONT.COM to define fonts. Also, you must
link the routines RESIZER, SHRINKER, EXPANDER, and CLOSER with
the main module OVERRIDE.

PROGRAM OVERRIDE
IMPLICIT INTEGER(A-Z)
EXTERNAL RESIZER,SHRINKER,EXPANDER,CLOSER
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
COMMON VD_ID,VD_ID2,WD_Id,WD_ID2,NEW_ABS_X,NEW_ABS_Y

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,50.0,50.0,lO.O,lO.O) n
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','USER') ~

CALL UIS$ELLIPSE(VD_ID,O,O.O,20.0,15.0,20.0)

CALL UIS$CIRCLE(VD_ID,1,40.0,20.0,25.0)

CALL UIS$ELLIPSE(VD_ID,O,80.0,20.0,15.0,20.0)

CALL UIS$SET_SHRINK_TO_ICON_AST(WD_ID,SHRINKER) ~

CALL UIS$SET_EXPAND_ICON_AST(WD_ID,EXPANDER) a
CALL UIS$SET_CLOSE_AST(WD_ID,CLOSER,O) 0

CALL UIS$SET_RESIZE_AST(VD_ID,WD_ID,RESIZER,O,NEW_ABS_X,NEW_ABS_Y,
2 NEW_WIDTH,NEW_HEIGHT,NEW_WC_Xl,NEW_WC_Yl,NEW_WC_X2,
2 NEW_WC_Y2) ~

CALL SYS$HIBER()

TYPE *,'DISPLAY WINDOW HAS BEEN SUCCESSFULLY CLOSED' m
END

SUBROUTINE RESIZER
IMPLICITINTEGER(A-Z)
COMMON VD_ID,VD_ID2,WD_ID,wd_id2,NEW_ABS_X,NEW_ABS_Y

CALL UIS$RESIZE_WINDOW(VD_ID,WD_ID,NEW_ABS_X,NEW_ABS_Y"",,) ~

RETURN
END

SUBROUTINE SHRINKER nH
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
COMMON VD_ID,VD_ID2,WD_ID,WD_ID2,NEW_ABS_X,NEW_ABS_Y

STRUCTURE/AWAY/
INTEGER*4 CODEl
INTEGER*4 ATTRl
INTEGER*4 CODE2
INTEGER*4 ATTR2
INTEGER*4 END_LIST
END STRUCTURE

RECORD/AWAY/WINDOW

17-15

Asynchronous System Trap Routines

17-16

WINDOW.CODE1=WDPL$C PLACEMENT
WINDOW.ATTR1=WDPL$M=INVISIBLE
WINDOW.CODE2=WDPL$C END OF LIST
CALL UIS$MOVE_VIEWPORT(WD_ID,WINDOW)

WINDOW.CODE1=WDPL$C_ATTRIBUTES
WINDOW.ATTR1=WDPL$M_NOBANNER
WINDOW.CODE2=WDPL$C_END_OF_LIST

VD_ID2=UIS$CREATE_DISPLAY(O.O,O.O,5.0,5.0,2.54,2.54) ~
WD_ID2=UIS$CREATE_WINDOW(VD_ID2,'SYS$WORKSTATION'"
2 """WINDOW) ~
CALL UIS$SET_FONT(VD_ID2,O,2,'MY_FONT_5')
CALL UIS$TEXT(VD_ID2,2,'USER',O.5,3.5) 6m
ICON FLAGS=UIS$M ICON DEF BODY ~
CALL-UIS$SHRINK_TO_ICON(WD_ID,WD_ID2,tCON_FLAGS) ~

RETURN
END

SUBROUTINE EXPANDER
IMPLICIT INTEGER(A-Z)
COMMON VD_ID,VD_ID2,WD_ID,WD_ID2,NEW_ABS_X,NEW_ABS_Y

CALL UIS$EXPAND_ICON(WD_ID,WD_ID2)

RETURN
END

SUBROUTINE CLOSER ~
IMPLICIT INTEGER(A-Z)
COMMON VD_ID,VD_ID2,WD_ID,WD_ID2,NEW_ABS_X,NEW_ABS_Y

CALL UIS$ERASE(VD_ID)
CALL UIS$DELETE_WINDOW(WD_ID) HU

CALL UIS$DELETE_DISPLAY(VD_ID) Hm
CALL SYS$WAKE(,) ~

RETURN
END

The main program OVERRIDE creates a virtual display n and a display
window~. The world coordinate space of the display window is a portion
of the virtual display; the display window contains only those objects in the
virtual display that lie within it.

A circle is drawn between two ellipses in the virtual display and appears in ~
the display window and its associated display viewport.

Four AST-enabling routines, UIS$SET_SHRINK_TO_ICON_AST"
UIS$SET_EXPAND_ICON_AST, UIS$SET_CLOSE_AST and UIS$SET_
RESIZE_AST, @] ~ ~ m are called. The main program executes until the call
to SYS$HIBER is reached 6.

Use the pointer to invoke the Window Options Menu from the MENU
icon in the viewport WINDOW. Choose the nlenu item Change the Size.
Perform the following procedure:

1 Move the pointer to one of the flashing dots on the border of the
viewport.

2 Press the button and the border of the display viewport is highlighted.

3 Hold the button down and move the pointer until the stretchy box is
the desired size and release the pointer button.

Asynchronous System Trap Routines

The call to UIS$RESIZE_ WINDOW ml in the subroutine RESIZER m
modifies the default resize behavior. UIS$RESIZE_ WINDOW specifies the
world coordinates of the existing virtual display as the world coordinates
for all newly resized display windows. Therefore, a newly resized window
always displays the entire virtual display space. If the aspect ratios of the
virtual display and the resized display viewport are not equal, graphic
objects are scaled.

The subroutine SHRINKER m modifies the default shrinking behavior.
The window attributes data structure AWAY is created (fl. A record
WINDOW is defined to have the structure of AWAY 00. The fields of
record WINDOW are assigned values (I) fE m. Note the use of the invisible
placement attribute. A call to UIS$MOVE_ VIEWPORT (Il references the
display window identifier of the existing viewport and the current window
attributes. The viewport is moved offscreen.

New window attribute values are assigned (13 m ml to the fields of the
record WINDOW.

A virtual display and display window are created for the icon m fE.
UIS$TEXT draws the character string in the icon fE. The flag UIS$M_
ICON_DEF _BODY sets the appropriate bit in the mask icon_flags g).

When this bit is set, the area of the icon becomes a button AST region (for
later icon expansion). UIS$SHRINK_TO_ICON ~ associates the display
window identifiers of the existing viewport and the icon.

The subroutine CLOSER ~ overrides the default window closing behavior
by deleting the display window 91, display viewport, and the virtual display
ml The process that owns the main program is awakened~. The main
program continues execution with the next statement after the call to
SYS$HIBER m, types the Inessage "Display window has been successfully
closed," and terminates.

17.3.4 Calling UIS$SET_RESIZE_AST
When the main program executes, a display window and its associated
display viewport appear on the display screen as shown in Figure 17-4.

17-17

Asynchronous System Trap Routines

17-18

Figure 17-4 Unresized Window and Viewport

-~ -~ --~- -

WINOOW
---=---=- -=~..=~

ZK-4563-85

When you select the menu item Change the Size, the display window and ~
viewport are resized as shown in Figure 17 -s.

Asynchronous System Trap Routines

Figure 17-5 Resized Window and Viewport

ZK-4564-85

When you select the menu item Shrink to Icon, the display viewport is
replaced with a user-defined icon as shown in Figure 17-6.

Figure 17-6 Icon

USER

ZK548486

17.3.6 Calling UIS$SET _CLOSE_AST
When you select the menu item Delete, the display viewport, window, and
virtual display are deleted and the message "Display window has been
successfully closed" is written to the terminal emulation window.

17-19

Part III UIS Routine Descriptions

18

18.1

UIS Routine Descriptions

Overview
Each UIS and UISDC routine in Parts III and IV of this book is documented
in a structured format. This section discusses the main headings of this
format, the information presented under each heading, and the format
used to present the information.

The purpose of this section, therefore, is to explain where to find
information and how to read it correctly, not how to use it.

Some main headings in the routine template contain information that
requires no further explanation beyond what is given in Table 18-1.
However, the following main headings contain information that does
require additional discussion; this discussion takes place in the remaining
subsections of this section.

• Format heading

• Returns heading

• Arguments heading

Table 18-1 lists the main headings in the UIS routines template.

Table 18-1 Main Headings in the Routine Template

Required
or

Main Heading Optional

Routine Name Required

Routine Overview Required

Format Required

Returns Required

Arguments Required

Description

The routine entry point name is usually, though
not always, followed by the English name of the
routine.

The routine overview appears directly below the
routine name and explains, usually in one or two
sentences, what the routine does.

The format gives the routine entry point name
and the routine argument list.

The returns heading explains what information
the routine will return.

The arguments heading gives detailed
information about each argument.

18-1

UIS Routine Descriptions

18.1.1 Format Heading

18-2

Table 18-1 (Cont.) ""ain Heading$ in the Routine Template

Required
or

Main Heading Qptional Description

Description Optional The description section contains information
about specific actions the routine can take,
such as: interaction between routine arguments;
operation of the routine within the context of
VAXNMS; user privileges needed to call the
routine; system resources used by the routine;
and user quotas that can affect th~ operation of
the routine.

Note that restrictions on the use of the routine
are always discussed first; for ex~mple, any
required user privileges or necessary system
resOurces are explained first.

For some simple routines, a description section
is not necessf:l.ry because the routine overview
carries the needed information.

Examples Optional This section contains programming examples
that illustrate the use of the routine. An
explanation of the example is also given.

Note: All examples have been tested and should
run when compiled (or assembled) and linked.

Screen Output Optional The screen output heading contains either
an actual display produced by the routine or
information that the routine normally returns to
the program.

Note that in many instances screen output
contains annotations that serve only to
explain the information returned. For example,
UIS$GET _POSITION returns information about
the current text position along the actual path.
This information is displayed and described'
as an example of the kind of data that can be
returned. In many cases, for example, the inquiry
routines, the dlsp'ay~d information is formatted
with headings and annotations for presentation
in this manual only.

Illustration Optional The illustration heading contains artwork that
describes how to use the routine, how the
routine functions, or what kind of information to
expect from it. The illustrations might or might
not be annotated.

The following types of information can be present in the format heading:

• Procedure call format

~

4

~

UIS Routine Descriptions

• Explanatory text

Procedure Call Format

The procedure call format ensures that a routine call conforms to the
procedure call mechanism described in the V AX Procedure Calling and
Condition Handling Standard; for example, an entry mask is created, registers
are saved, and so on.

Procedure call formats can appear in many forms. The following four
examples illustrate the meaning of syntactical elements such as brackets
and commas. General rules of syntax governing how to use procedure call
formats are listed in Table 18-2.

Example 1

This example illustrates the standard representation of optional arguments
and best describes the use of commas as delimiters. Arguments enclosed
within square brackets are optional, but if an optional argument other than
a trailing optional argument is omitted, you must include a comma as a
delimiter for the omitted argument.

ENTRY-POINT-NAME argl [,[arg2 [,arg3]]

Typically, VAX RMS system routines use this format where up to three
arguments can appear in the argument list.

Example 2

When the argument list contains three or more optional arguments, the
syntax does not provide enough information. If the optional arguments
arg3 and arg4 are omitted and the trailing argument arg5 is specified,
commas must be used to delimit the positions of the omitted arguments.

ENTRY-POINT-NAME argl ,arg2 ,[arg3] ,nullarg [,arg4] [,arg5]

Typically, VAX/VMS system services, utility routines, and VAX Run-Time
Library routines contain call formats with more than three arguments.

Example 3

In the following call format example, the trailing four arguments are
optional as a group; that is, either you specify arg2, arg3, arg4, and arg5 or
none of them. Therefore, if you do not specify optional arguments, you do
not have to use commas to delimit unoccupied positions.

However, if you specify a hypothetical required argument or if you specify
a separate optional argument after arg5, you must use commas when arg2,
arg3, arg4, and arg5 are omitted.

ENTRY-POINT-NAME argl [,arg2 ,arg3 ,arg4 ,arg5]

Example 4

In the following example, you can specify arg2 and omit arg3. Whenever
you specify arg3, however, you must specify arg2.

ENTRY-POI NT-NAME argl [,arg2 [,arg3))

18-3

UIS Routine Descriptions

18-4

Explanatory Text

Explanatory text .can follow one or both of the above formats. Explanatory
text is present only when it is needed to clarify the format. For example, if
the arguments are optional, the call format indicates that by enclosing them
in brackets ([]). However, brackets alone cannot convey all the important
information that might apply to optional arguments. For example, in
some routines with many optional arguments, if one optional argument is
selected, another optional argument must also be selected. In such cases,
text following the format clarifies this fact.

Table 18-2 General Rules of Syntax

Element

Entry point names

Argument names

Spaces

Braces

Brackets ([])

Commas

Null arguments

Syntax Rule

Entry pOint names are always shown in uppercase
characters.

Argument names are always shown in lowercase
characters.

Use one or more spaces between the entry point name and
the first argument, and between each argument.

Braces surround two or more arguments. You must choose
one of the arguments.

Brackets surround optional arguments. Note that commas
can also' be optional (see the comma element).

Between arguments, the comma always follows the space.
If the argument is optional, the comma appears inside ~

the brackets or outside the brackets, depending on ,
the position of the argument in the list and on whether
surrounding arguments are optional or required.

A null argument is a place-holding argument. It is used for
either of the following reasons: .

1 To hold a place in the argument list for an argument
that has not yet been implemented by DIGITAL but
might be in the future.

2 To mark the position of an argument that was used
in earlier versions of the routine but is not used in
the latest version. (This ensures upward compatibility,
because arguments that follow the null argument in
the argument list keep their original positions.) A null
argument is always given the name nullarg.

In the argument list constructed on the stack, when a
procedure is called, both null arguments and omitted
optional arguments are represented by longword argument
list entries containing the value O. The programming
language syntax required to produce argument list entries
containing 0 differs from language to language, so see
the appropriate language user guide for language-specific
syntax.

I

UIS Routine Descriptions

18.1.2 Returns Heading
If any information is returned by the routine to the caller, the description
of that information appears under the returns heading. Programs written
in VAX MACRO return information in RO. Returned infonnation is a
longword value.

High-level language programmers receive status information in the return
(or status) variable they use when they make the call. The run-time
environment established for a high-level language program allows the
status information in RO to be moved automatically to the user return
variable. Returned information is always a longword value.

18.1.3 Arguments Heading

18.2

Detailed information about each argument in the call format appears under
the arguments heading. Arguments are described in the order they appear
in the call format.

The following format is used to describe each argument:

argument-name

VMS Usage:
type:
access:
mechanism:

argument-VMS-data-type
argument-data-type

argument-access
argument-passing-mechanlsm

One paragraph of structured text, followed by other
paragraphs of text as needed.

Functional Organization of UIS Routines
UIS routines perform many functions within an application program.
In addition to those that create the graphic objects you see on the display
screen, there are routines that manage input devices and return information
to the program, to name a few.

Table 18-3 lists each UIS routine by functional category.

V4.1-June 1989 ·18-5

UIS Routine Descriptions

Table 18-3 Functional Categories of UIS Routines

AST -Enabling

UIS$SET _ADDOPT _AST

UIS$SET _BUTTON_AST

UIS$SET _CLOSE_AST

UIS$SET _EXPAND_ICON_AST

UIS$SET _GAIN_KB_AST

UIS$SET _KB_AST

UIS$SET _LOSE_KB_AST

UIS$SET _MOVE_INFO _AST

UIS$SET _POINTER_AST

UIS$SET _RESIZE_AST

UIS$SET _SHRINK_ TO_ICON-AST

UIS$SET _ TB_AST

18-6

Routines By Category

Attribute

UIS$SET _ARC_ TYPE

UIS$SET _BACKGROUND_INDEX

UIS$SET _CHAR_ROTATION

UIS$SET _CHAR_SIZE

UIS$SET _CHAR_SLANT

UIS$SET _CHAR_SPACING

UIS$SET _CLIP

UIS$SET _FILL_PATTERN

UIS$SET _FONT

UIS$SET _LINE_STYLE

UIS$SET _LINE_WIDTH

UIS$SET _ TEXT _FORMATTING

UIS$SET _ TEXT_MARGINS

UIS$SET _TEXT_PATH

UIS$SET _TEXT_SLOPE

UIS$SET _WRITING_INDEX

UIS$SET _WRITING_MODE

Color

UIS$CREATE_ COLOR_MAP

UIS$CREATE_COLOR_MAP _SEG

UIS$DELETE_ COLOR_MAP

UIS$DELETE_ COLOR_MAP _SEG

UIS$HLS_ TO_RGV

UIS$HSV_ TO_RGB

UIS$RESTORE_CMS_COLORS

UIS$RGB_ TO_HLS

UIS$RGB_ TO_HSV

UIS$SET _COLOR

UIS$SET _COLORS

UIS$SET _INTENSITIES

UIS$SET _INTENSITY

UIS$SET _PLANE_MASK

V4.1-June 1989

Table 18-3 (Cont.) Functional Categories of UIS Routines

Inquiry

UIS$GET _ABS_POINTER_POS

UIS$GET _ALIGNED_POSITION

UIS$GET _ARC_TYPE

UIS$GET _BACKGROUND_'NDEX

UIS$GET _BUTTONS

UIS$GET _CHAR_ROTATION

UIS$GET _CHAR_SIZE

UIS$GET _CHAR_SLANT

UIS$GET _CHAR_SPACING

UIS$GET _CLIP

UIS$GET _COLOR

UIS$GET _COLORS

UIS$GET _CURRENT_OBJECT

UIS$GET _DISPLAY_SIZE

UIS$GET _FILL_PATTERN

UIS$GET _FONT

Routines By Category

Display List

UIS$BEGIN_SEGMENT

UIS$COPY _OBJECT

UIS$DELETE_ OBJECT

UIS$DELETE_PRIVATE

UIS$DISABLE_DISPLA Y _LIST

UIS$ENABLE_DISPLA Y _LIST

UIS$END_SEGMENT

UIS$ERASE

UIS$EXECUTE

UIS$EXECUTE_DISPLA Y

UIS$EXTRACT _HEADER

UIS$EXTRACT _OBJECT

UIS$EXTRACT _PRIVATE

UIS$EXTRACT _REGION

UIS$EXTRACT _ TRAILER

UIS$FIND_PRIMITIVE

V4.1-June 1989

UIS Routine Descriptions

Windowing

UIS$CLOSE_WINDOW

UIS$CREATE_DISPLA Y

UIS$CREATE_ TERMINAL

UIS$CREATE_
TRANSFORMATION

UIS$CREATE_WINDOW

UIS$DELETE_DISPLA Y

UIS$OELETE_
TRANSFORMATION

UIS$DELETE_WINDOW

UIS$EXPANO_ICON

UIS$MOVE_ VIEWPORT

UIS$MOVE_WINDOW

UIS$POP _VIEWPORT

UIS$PUSH_ VIEWPORT

UIS$PUSH_ VIEWPORT

UIS$RESIZE_WINDOW

UIS$SHRINK_ TO_ICON

18-7

UIS Routine Descriptions

Table 18-3 (Cont.) Functional Categories of UIS Routines

Inquiry

UIS$GET _FONT_ATTRIBUTES

UIS$GET _FONT_SIZE

UIS$GET _HW_COLOR_INFO

UIS$GET _INTENSITIES

UIS$GET _INTENSITY

UIS$GET _KB_ATTRIBUTES

UIS$GET _LINE_STYLE

UIS$GET _LINE_WIDTH

UIS$GET _NEXT_OBJECT

UIS$GET _OBJECT_ATTRIBUTES

UIS$GET _PARENT_SEGMENT

UIS$GET _POINTER_POSITION

UIS$GET _POSITION

UIS$GET _PREVIOUS_OBJECT

UIS$GET _ROOT_SEGMENT

UIS$GET _ TB_INFO

UIS$GET _ TB_POSITION

UIS$GET _TEXT_FORMATTING

UIS$GET _TEXT_MARGINS

UIS$GET _TEXT_PATH

UIS$GET _ TEXT_SLOPE

UIS$GET _ VCM_ID

UIS$GET _VIEWPORT JCON

UIS$GET _VIEWPORT_POSITION

UIS$GET _VIEWPORT_SIZE

UIS$GET _VISIBILITY

UIS$GET _WINDOW_ATTRIBUTES

UIS$GET _WINDOW_SIZE

UIS$GET _WRITING_INDEX

UIS$GET _WRITING_MODE

UIS$GET _WS_COLOR

UIS$GET _WS_INTENSITY

UIS$GET _PLANE_MASK

18-8

Routines Byeategory

Display List

UIS$FIND _SEGMENT

UIS$INSERT _OBJECT

UIS$MOVE_AREA

UIS$PRIVATE

UIS$SET _INSERTION_POSITION

UIS$TRANSFORM_OBJECT

Windowing

V4.1-June 1989

18.3

Table 18-3 (Cont.) Functional Categories of UIS Routines

Keyboard

UIS$CREATE_KB

UIS$DELETE_KB

UIS$DISABLE_KB

UIS$DISABLE_ VIEWPORT _KB

UIS$ENABLE_KB

UIS$ENABLE_ VIEWPORT _KB

UIS$READ_CHAR

UIS$SET _KB_ATTRIBUTES

UIS$SET _KB_COMPOSE2

UIS$SET _KB_COMPOSE3

UIS$SET _KB_KEYTABLE

UIS$TEST _KB

Text

UIS$MEASURE_ TEXT

UIS$NEW_ TEXT_LINE

UIS$SET _ALIGNED_POSITION

UIS$SET _POSITION

UIS$TEXT

Routines By Category

Graphics

UIS$CIRCLE

UIS$ELLIPSE

UIS$IMAGE

UIS$LlNE

UIS$LlNE_ARRAY

UIS$PLOT

UIS$PLOT _ARRAY

Sound

UIS$SOUND _BELL

UIS$SOUND _CLICK

Routine Arguments Quick Reference

UIS Routine Descriptions

PQinter

UIS$CREATE_ TB

UIS$DELETE_ TB

UIS$DISABLE_ TB

UIS$ENABLE_ TB

UIS$SET _POINTER_PATTERN

UIS$SET _POINTER_POSITION

This section is intended as a quick reference to eliminate repetition of
common argument descriptions used by many different UIS and UISDC
routines. (The arguments described separately here are referenced in the
routine descriptions.)

Descriptions of frequently-occurring arguments follow.

VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Virtual display identifier. The vd_id argument is the address of a longword
that uniquely identifies a virtual display. The longword value is returned as

V4.1-June 1989 18-8.1

UIS Routine Descriptions

18.3.3 obj_id

18-8.2

the virtual dispJay identifier in the variabJe 'lJdjd or RO (VAX MACRO). The
virtual display identifier uniquely identifies the virtual display and is used
as a parameter in all output and attribute routines.

VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Display window identifier. The wd_id argument is the address of a
longword that uniquely identifies a display window. If this argUJ;nent is
specified, it must be a valid wd_id associated with the virtual display. The
colors returned are the realized colors for the specific device for which
the window was created. The longword value is returned as the display
window identifier in the variable wd_id or RO (VAX MACRO).

If wd_id is not specified, the set color values, that is, the actual color values
in the specified color map entry, are returned.

VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Object identifier. The obj_id argument is the address of a longword that
uniquely identifies an object.

V4.1-June 1989

18.3.5 iatb

18.3.6 oatb

18.3.7 astprm

UIS Routine Descriptions

seg_id
VMS Usage:
type:
access:
mechanism:

identifier
longword (unsigned)
read only
by reference

Segment identifier. The segjd argument is the address of a longword that
uniquely identifies the segment. In UIS$BEGIN_SEGMENT, the longword
value is returned as the segment identifier in the variable setjd or RO (VAX
MACRO).

iatb
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Input attribute block number. The iatb argument is the address of a
longword integer that identifies an attribute block to be modified.

oatb
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Output attribute block number. The oatb argument is the address of a
longword that identifies a newly modified attribute block.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by reference

AST parameter. The astprm argument is the address of a single argument
or data structure such as an array or record to be used by the AST routine.
In VAX FORTRAN application programs, code calls to AST routines as
follows: %REF(%LOC(astprm».

18-9

UIS Routine Descriptions

kb_id
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Virtual keyboard identifier. The kb _id argument is the address of a
IOl'\gword thiit uniquely identifies a virtual keyboard. This represents the
longword value returned as the virtual keyboard identifier in the variable
kbjd or RO (VAX MACRO).

18.3.9 devnam

18.4

devnam
VMS Usage:
type:
access:
mechanism:

device_name
character string
read only
by descriptor

Device name string. The devnam argument is the character string
descriptor address of the workstation device name. Specify the device
name SYS$WORKSTATION in the devnam argument.

UIS Routines and Arguments
Table 18-3 lists each argument and the routines it uses.

18-10

UIS Routine Descriptions

Table 18-3 Routine Arguments

Routine

UIS$BEGIN_SEGMENT

UIS$CIRCLE

UIS$CLOSE_WINDOW

UIS$COPY _OBJECT

UIS$CREATE_COLOR_MAP

UIS$CREATE_COLOR_MAP _
SEG

UIS$CREATE_DISPLA Y

UIS$CR.EATE_KB

UIS$CREATE_ TB

UIS$CREATE_ TERMINAL

UIS$CREATE_
TRANSFORMATION

UIS$CREATE_WINDOW

UIS$DELETE_ COLOR.:.,.MAP

UIS$DELETE_COLOR_MAP _
SEG

UIS$DELETE_DISPLAY

UIS$DELETE_KB

UIS$DELETE_ OBJECT

UIS$DELETE_PRIVATE

UIS$DELETE_ TB

UIS$DELETE_
TRANSFORMATION

UIS$DELETE_WINDOW

UIS$DISABLE_DISPLA Y _LIST

UIS$DISABLE_KB

UIS$DISABLE_ TB

UIS$DISABLE_ VIEWPORT _KB

UIS$ELLIPSE

UIS$ENABLE_DISPLAY _LIST

UIS$ENABLE_KB

UIS$ENABLE_ TB

UIS$ENABLE_ VIEWPORT _KB

UIS$END _SEGMENT

UIS$ERASE

UIS$EXECUTE

Arguments

vdjd

vdjd, atb, center_x, center_y, xradius, starCdeg,
end_deg

wd_id

obLid, segjd, matrix, atb

vcm_size, vcm_name, vcm_attributes

vcm_id, devnam, place_mode, place_data

X1, Y1, X2, Y2, width, height, vcmjd

devnam

devnam

termtype, title, attributes, devnam, devlen

vdjd, X1, Y1, X2, Y2, VdX1, VdY1, VdX2, VdY2

vd_id, devnam, title, X1, Y1, X2, Y2, width, height,
attributes

vcmjd

cmsjd

vd_id

kb_id

objjd, seg_id

obLid, seg_id

tbjd

trjd

wd_id

vd_id, display_flags

kbjd

tb_id

wd_id

vdjd, atb, center_x, center_y, xradius, yradius,
start_deg, end_deg

vd_id, display_flags

kbjd, wdjd

tb_id

kbjd, wdjd

vd_id

vd_id, X1, Y1, X2, Y2

vdjd, buflen, bufaddr

18-11

UIS Routine Descriptions

Table 18-3 (Cont.) Routine Arguments

18-12

Routine

UIS$EXECUTE_DISPLA Y

UIS$EXPAND_ICON

UIS$EXTRACT _HEADER

UIS$EXTRACT _OBJECT

UIS$EXTRACT _PRIVATE

UIS$EXTRACT _REGION

UIS$EXTRACT _TRAILER

UIS$FIND_PRIMITIVE

UIS$FIND_SEGMENT

UIS$GET _ABS_POINTER_POS

UIS$GET _ALIGNED_POSITION

UIS$GET _ARC_ TYPE

UIS$GET _BACKGROUND_
INDEX

UIS$GET _BUTTONS

UIS$GET _CHAR_ROTATION

UIS$GET _CHAR_SIZE

UIS$GET _CHAR_SLANT

UIS$GET _CHAR_SPACING

UIS$GET _CLIP

UIS$GET _COLOR

UIS$GET _COLORS

UIS$GET _CURRENT _OBJECT

UIS$GET _DISPLAY_SIZE

UIS$GET _FILL_PATTERN

UIS$GET _FONT

UIS$GET _FONT_ATTRIBUTES

UIS$GET _FONT_SIZE

UIS$GET _HW_COLOR_INFO

UIS$GET _INTENSITIES

UIS$GET _INTENSITY

UIS$GET _KB_ATTRIBUTES

UIS$GET _LINE_STYLE

UIS$GET _LINE_WIDTH

UIS$GET _NEXT_OBJECT

Arguments

buflen, bufaddr

wdjd, icon_wdjd, attributes

vd_id, buflen, bufaddr, retlen

objjd, seg_id, buflen, bufaddr, retlen

objjd, segjd, buflen, bufaddr, retlen

vdjd, X1, Y1, X2, Y2, buflen, bufaddr, retlen

vd_id, buflen, bufaddr, retlen

vd_id, X1, Y1, X2, Y2, context, extent

vd_ld, X1. Y1, X2, Y2, context, extent

devnam, retx, rety

vdjd, atb, retx, rety

vdjd, atb

vdjd, atb

wdjd, restate

vdjd, atb

vdjd, atb, char, width, height

vd_id, atb

vdjd, atb, dx, dy

vdjd, atb, X1, Y1. X2, Y2

vdjd, index, retr, retg, retb, wdjd

vd_id, index, count, retr_vector, retg_vector,
retb_vector, wdjd

vdjd

devnam, retwidth, retheight, retresolx, retresoly,
retpwidth, retpheight

vd_id, atb, Index

vdjd, atb, bufferdesc, length

fontjd, ascender, descender, height, maximum_
width, itemJist

fontid, text_string, retwidth, retheight

devnam, type, indices, colors, maps, rbits, gbits,
bbits, ibits, res_indices, regen

vd_id, index, count, reti_vector, wd_id

vdjd, index, reti, wdjd

kbjd, enablejtems, disable_items, Click_volume

vd_id, atb

vd_id, atb, mode

objjd, segjd, flags

I

UIS Routine Descriptions

Table 18-4 (Cont.) Routine Arguments

Routine

UIS$GET _OBJECT_
ATTRIBUTES

Arguments

objjd, segjd, extent

UIS$GET _PARENT_SEGMENT objjd, segjd

UIS$GET _PLANE_MASK vdjd, atb

UIS$GET _POINTER_POSITION

UIS$GET _POSITION

UIS$GET _PREVIOUS_OBJECT

UIS$GET _ROOT _SEGMENT

UIS$GET _ TBJNFO

UIS$GET _ TB_POSITION

UIS$GET _TEXT_FORMATTING

UIS$GET _TEXT_MARGINS

UIS$GET _TEXT_PATH

UIS$GET _ TEXT_SLOPE

UIS$GET _ VCMJD

UIS$GET _VIEWPORT _ICON

UIS$GET _VIEWPORT_
POSITION

UIS$GET _VIEWPORT _SIZE

UIS$GET _VISIBILITY

UIS$GET _WINDOW_
ATTRIBUTES

UIS$GET _WINDOW_SIZE

UIS$GET _WRITING_INDEX

UIS$GET _WRITING_MODE

UIS$GET _WS_COLOR

UIS$GET _WS_INTENSITY

UIS$HLS_ TO_RGB

UIS$HSV_ TO_RGB

UIS$IMAGE

UIS$INSERT _OBJECT

UIS$LlNE

UIS$LlNE_ARRAY

UIS$MEASURE_ TEXT

UIS$MOVE_AREA

UIS$MOVE_ VIEWPORT

V4.1-June 1989

vd_ld, wd_ld, retx, rety

vd_ld, retx, rety

objjd, segjd, flags

vdjd

devnam, retwidth, rethelght, retresolx, retresoly,
retpwldth, retpheight

tbjd, retx, rety

vdjd, atb

vd_ld, atb, x, y, margin_length

vd_ld, atb, major, minor

vdJd, atb

vdjd

wdjd, icon_wd_id

wd_id, retx, rety

wdjd, retwidth, retheight

vdjd, wdjd, Xl, y1. X2, Y2

wd_ld

vdjd, wdjd, X1, Y1, X2, Y2

vdjd, atb

vdjd, atb

vdjd, color_id, retr, retg, retb, wdjd

vdjd, colorjd, reti, wdjd

H,L, S, retr, retg, retb

H, S, V, retr, retg, retb

vdjd, atb, X1. Y1, X2, Y2, rasterwldth, rasterhelght,
bitsperpixel, rasteraddr

obLid, segjd

vdjd, atb, X1, Y1

vdjd, atb, count, x_vector, y_vector

vdjd, atb, texcstring, retwidth, retheight, ctllist,
ctllen, posarray

vdjd, X1, Y1, X2, Y2, new_x, new_y

wdjd, attributes

18-13

UIS Routine Descriptions

Table 18-4 (Cont.) Routine Arguments

18-14

Routine

UIS$MOVE_WINDOW

UIS$NEW_ TEXT_LINE

UIS$PLOT

UIS$PLOT _ARRAY

UIS$POP _VIEWPORT

UIS$PRESENT

UIS$PRIVATE

UIS$PUSH_ VIEWPORT

UIS$READ_CHAR

UIS$RESIZE_WINDOW

UIS$RESTORE_CMS_COLORS

UIS$RGB_ TO_HLS

UIS$RGB_ TO_HSV

UIS$SET _ADDOPT _AST

UIS$SET _ALIGNED_POSITION

UIS$SET _ARC_TYPE

UIS$SET _BACKGROUND_
INDEX

UIS$SET _BUTTON_AST

UIS$SET _CHAR_ROTATION

UIS$SET _CHAR_SIZE

UIS$SET _CHAR_SLANT

UIS$SET _CHAR_SPACING

UIS$SET _CLIP

UIS$SET _CLOSE_AST

UIS$SET _COLOR

UIS$SET _COLORS

UIS$SET _EXPAND_ICON_AST

UIS$SET _FILL_PATTERN

UIS$SET _FONT

UIS$SET _GAIN_KB_AST

UIS$SET _INSERTION_
POSITION

UIS$SET -,NTENSITIES

UIS$SET -,NTENSITY

UIS$SET _KB_AST

UIS$SET _KB_ATTRIBUTES

Arguments

vdJd, wdJd, X1, Yh X2, Y2

vd_ld, atb

vdJd, atb, x, Y

vd_ld, atb, count, x_vector, y_vector

wd-'d

major_version, minor_version

obj-,d, vd_id, facnum, buffer

wd_id

kb_id, flags

vd_id, wd_id, new_abs_x, new_abs_y, new_width,
new_height, new_wc_x1' new_wc_Y1, new_wc_x2'
new_wc_Y2

cms_ld

R, G, B, reth, retl, rets

R, G, B, reth, rets, retv

wd_id, astadr, astprm

vdJd, atb, x, y

vdJd, iatb, oatb, arc_type

vdJd, iatb, oatb, Index

vdJd, wd_id, astadr, astprm, keybuf, X1, Y1, X2, Y2

vdJd, iatb, oatb, angle

vdJd, latb, oatb, char, width, height

vdJd, iatb, oatb, angle

vdJd, iatb, oatb, dx, dy

vd_id, iatb, oatb, X1, Y1, X2, Y2

wd_id, astadr, astprm

vdJd, index, R, G, B

vd_id, index, count, r_vector, g_vector, b_vector

wd_id, astadr, astprm

vdJd, iatb, oatb, index

vdJd, iatb, oatb, fonCid

kbJd, astadr, astprm

obLid, segJd, vd_id, flags

vdJd, index, count, i_vector

vdJd, index, I

kbJd, astadr, astprm, keybuf

kbJd, enableJtems, disableJtems, Click_volume

V4.1-June 1989

UIS Routine Descriptions

Table 18-3 (Cont.) Routine Arguments

Routine

UIS$SET _KB_COMPOSE3

UIS$SET _KB_KEYTABLE

UIS$SET _LINE_STYLE

UIS$SET _LINE_WIDTH

UIS$SET _LOSE_KB_AST

UIS$SET _MOVE_INFO _AST

UIS$SET _POINTER_AST

UIS$SET _POINTER_POSITION

U!S$SET _POSITION

UIS$SET _RESIZE_AST

UIS$SET _SHRINK_ TO_ICON_
AST

UIS$SET _ TB_AST

UIS$SET _TEXT_FORMATTING

UIS$SET _ TEXT_MARGINS

UIS$SET _TEXT_PATH

UIS$SET _ TEXT_SLOPE

UIS$SET _WRITING_INDEX

UIS$SET _WRITING_MODE

UIS$SHRINK_ TO-,CON

UIS$SOUND_BELL

UIS$SOUND _CLICK

UIS$TEST _KB

UIS$TEXT

UIS$TRANSFORM_OBJECT

Arguments

kb_id, table, tablelen

kb_id, table, tablelen

vd_id, iatb, oatb, style

vd_id, iatb, oatb, width, mode

kbjd, astadr, astprm

wd_id, astadr, astprm

vdjd, wdjd, astadr, astprm, X1, Y1, X2, Y2,
exitastadr, exitastprm

vdjd, wdjd, pattern_array, pattern_count,
activex, activey, X1, Y1, X2, Y2, flags

vdjd, wd_id, x, y

vd_id, x, y

vdjd, wdjd, astadr, astprm, new_abs_x, new_
abs_y, new_width, neW_height, new_wc_x1, new_
WC_Y1, new_wc_x2, new_wc_Y2

wd_id, astadr, astprm

tbjd, data_astadr, data_astprm, x_pos, y_pos,
data_x 1 , data_Y1, data_x2, data_Y2, button_
astadr, button_astprm, button_keybuf

vdjd, iatb, oatb, mode

vd_id, iatb, oatb, x, y, margin-,e~gth

vdjd, iatb, oatb, major, minor

vdjd, iatb, oatb, angle

vdjd, iatb, oatb, ind~x

vdjd, iatb, oatb, mode

wdjd, icon_wdJd, icon_flags, icon_name,
attributes

devnam, bell_volume

devnam, click_volume

kbjd

vdjd, atb, texCstring, x, y, ctllist, ctllen

objjd, segjd, matrix, atb

18-15

UIS Routine Descriptions
UIS$BEGIN_SEGMENT

UIS$BEGIN_SEGMENT

FORMAT

RETURNS

ARGUMENT

ROUTINE
DESCRIPTION

18-16

Begins a new segment in the virtual display.

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the segment identifier in the variable segjd or
RO (VAX MACRO). The segment identifier uniquely identifies a segment
and is used as an argument in other routines.

UIS$BEGIN_SEGMENT signals all errors; no condition values are returned.

vd Id
SeeSection 18.3.1 for a description of this argument.

All values of attribute blocks 0 to 255 are propagated to the new segment,
but all changes to attribute blocks in this segment are local to this segment
only and not to the parent.

You can also nest segments.

illustration

UIS Routine Descriptions
UIS$BEGIN_SEGMENT

First-Level Segment
UIS$BEGIN_SEGMENT -----------------,

Second-Level Segment
UIS$BEGIN_SEGMENT ----------~

UIS$END_SEGMENT

UIS$BEGIN_SEGMENT
Second-Level Segment

UIS$BEGIN_SEGMENT
Third-Level Segment

UIS$END_SEGMENT

UIS$END_SEGMENT

UIS$END_SEGMENT

ZK·537186

18-17

UIS Routine Descriptions
UIS$CIRCLE

UIS$CIRCLE

FORMAT

RETURNS

ARGUMENTS

18-18

Draws an arc along the circumference of a circle.

UIS$CIRCLE vd_id, atb, center_x, center-y, xradius
l,start_deg ,end_deg]

UIS$CIRCLE signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

afb
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that specifies an attribute block that controls the appearance of the ~
circle or arc.

cenfer_x
Cenfer_y
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Center position x and y world coordinates. The center_x and center_y ~
argunlents are the addresses of Cfloating point numbers that define a point
in the virtual display that is the center of the arc or circle.

xradlus
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Radius of the circle specified as an x world coordinate width. The xradius
argument is the address of an Cfloating point number that defines the
distance from the center of the circle to the circumference of the circle.

Sfarf_deg
end_deg
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

DESCRIPTION

UIS Routine Descriptions
UIS$CIRCLE

Degrees at which the arc starts and ends. The start_deg and end_deg
arguments are the addresses of Cfloating point nunlbers that define the
starting and ending points on the circumference of the circle where the
arc or circle will be drawn. Degrees are measured clockwise from the top
of the circle. If these arguments are not specified, 0.0 degrees and 360.0
degrees are assumed, respectively.

UIS$CIRCLE draws an arc specified by a center position and a radius for
the range of the degrees specified.

The arc can be closed by drawing one or more lines between the
endpoints. The arc type associated with the attribute block specifies
the way in which the arc, is closed. The arc is not closed off by default. See
UIS$SET_ARC_TYPE for details.

The points are drawn with the current line pattern and width, and filled
with the current fill pattern if enabled.

UIS$CIRCLE does not support the following combination of attributes:

• Line width not equal to 1 and line style not equal to FFFFFFFF16

• Line width not equal to 1 and complement writing mode

Circles are distorted by differences between the aspect ratios of the display
window and display viewport.

UIS Routine Descriptions
UIS$CIRCLE

screen output

tE
---------~~---~----- - ---- -- ---- -~--- -

CIRCL[
- - - - -

ZK·5390·86 ~

18-20

UIS Routine Descriptions
UIS$CLOSE_WINDOW

UIS$CLOSE_WINDOW

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

Calls the system service SYS$EXIT to exit the current image.

UIS$CLOSE WINDOW wd_id

UIS$CLOSE_ WINDOW signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for a description of this argument.

UIS$CLOSE_ WINDOW is invoked as the default action taken by the Delete
menu item in the Window Options Menu. See UIS$SET _ CLOSE_AST for
information about overriding this routine.

18-21

UIS Routine Descriptions
UIS$COPY _OBJECT

UIS$COPY _OBJECT

FORMAT

RETURNS

ARGUMENTS

18-22

Copies the specified object and its private data within the virtual display.
Also transforms the coordinates or attributes or both of the specified
object. The original object remains unchanged in the virtual display.

copy_id = UIS$COPY _OBJECT { obi_i? } l matrix]
seg_'d I

[,atb]

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the copy identifier in the variable copy jd or
RO (VAX MACRO). The copy identifier uniquely identifies a newly copied
object.

UIS$COPY_OBJECT signals all errors; no condition values are returned.

obj_ld
See Section 18.3.3 for a description of this argument.

seg_ld
See Section 18.3.4 for a description of this argument.

matrix
VMS Usage: vector _Iongword_signed
type: f_floating
access: read only
mechanism: by reference

Transformation matrix. The matrix argument is the address of a 2 x 3
matrix of longwords containing scaling, translation, and/or rotation data.

Structure of a VAX FORTRAN Two-Dimensional Array

A two-dimensional array declared as ARRA Y(2,3) has the following
structure.

1,1 1,2 1,3

2,1 2,2 2,3

ZK·5492·86

uiS Routine Descriptions
UIS$COPY OBJECT

Different languages allocate memory for array elements ih different orders.
rhis description assumes the order used by VAX FORTRAN. If you call
UIS$COPY_OBJECT from another language, make sure that the array
elements are in the same order.

Memory addresses of array elements range from lowest to highest in the
following order: (1,1),(2,1), (1,2),(2,2),(1,3), and (2,3). The following figure
shows the order of array elements.

3 5

4 6

ZK·5493·86

Pairs of array elements govern how displayed objects are scaled, rotated,
and translated. UIS computes the transformed coordinates in the following
manner.

Translation

Xl = A(l,l)*x + A(l,2)*y + A(l,3)
Yl = A(2,l)*x + A(2,2)*y + A(2,3)

When translation alone is performed, the following array elements are
assigned values. Dx and Dy represent distances between the original
coordinates and the new coordinates.

o Ox

o Oy

ZK·5494·86

Scaling

When scaling alone is performed, the following array elements are assigned
values.

Sx o o

o Sy o

ZK5495·86

18-23

UIS Routine Descriptions
UIS$COPY _OBJECT

DESCRIPTION

18-24

Rotation

When rotation alone is performed, the following array elements are
assigned values, where "@" is the desired angle of rotation measured
clockwise. The values returned from the VAX FORTRAN SIN and COS
functions are stored in the appropriate array elements.

cos (@) sin (@) 0

-sin (@) cos (@) 0

ZK·5496-86

An unlimited number of transformations can be performed at one time by
simply multiplying the matrices together into a single matrix using matrix
multiplication.

In order to multiply two matrices together, you must add a row to the
bottom of each matrix.

o o

ZK546186

After the multiplication is performed, remove the last row of the result.

arb
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block whose attribute settings override current
segment attributes.

Either the coordinates can be transformed, or the attributes can be
overridden or both.

After a transformation, occluded objects might not appear correctly on the
display screen. To correct this, call UIS$EXECUTE to refresh the display
screen correctly.

screen output

-I- 6 -~
-~
-I--
-I---

UIS Routine Descriptions
UIS$COPY _OBJECT

~ ---~---~---- ----~-----,

-r-
-I-

-~ -r---

_>- 1\
-~ ~
-~
-I--
-I---

18-25

I

UIS Routine Descriptions
UIS$CREATE_COLOR_MAP

FORMAT

RETURNS

ARGUMENTS

18-26

Creates a virtual color map of the specified size and with the specified
attributes.

vem_id= UIS$CREATE_COLOR_MAP vem size
[, vem_name}
[, vem_attributes}

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the virtual color map identifier in the variable
vcmjd or RO (VAX MACRO). The virtual color map identifier uniquely
identifies the virtual color map and must be specified in UIS$CREATE_
DISPLAY. It is also used as an argument in other color routines.

UIS$CREATE_ COLOR_MAP signals all errors; no condition values are
returned.

vem size
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Size of the virtual color map. The vern_size argument is the address of a
longword that defines the number of entries in the virtual color map.

vem_name
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the virtual color map. The vern_name argument is the address
of a string descriptor of the name of the virtual color map. Specify the
name of an existing shareable color map. If your application is creating the
shareable color map I specify a valid color Inap naine.

The virtual color map name should not exceed 15 characters.

vern_attributes
VMS Usage: itemJist_pair
type: longword (unsigned)
access: read only
mechanism: by descriptor

UIS Routine Descriptions
UIS$CREATE_COLOR_MAP

Virtual color map attributes. The vern_attributes argument is the address of
data structure of longword pairs that specify virtual color attributes.

The following figure describes the structure of this argument.

Attribute code
(VCMAL$C-xxxx)

Longword value for attribute
specified in previous longword

2nd attribute code

2nd attribute value

· · ·
End of list = 0

(VCMAL$C_END_OF _LIST)

ZK·5367·86

All of the following virtual color map attributes are optional.

Attributes Function

VCMAL$C_ATTRIBUTES
VCMAL$M_RESIDENT
VCMAL$M SHARE
VCMAL$M=SYSTEM1,2

VCMAL$M_NO_BIND

General attributes

1VCMAL$M_SHARE must also be set.

2SYSGBL privilege is required.

Set for resident virtual color map
Set for shareable virtual color map
Set for system shareable virtual color map
Set to disable automatic hardware color map binding

18-27

UIS Routine Descriptions
UIS$CREATE_ COLOR_MAP

illustration , Color Map Entry

0

1

2

3

4

5

L..-..-___ ----011 •
Color Map Index

18-28

ZKS370·86

FORMAT

RETURNS

UIS Routine Descriptions
UIS$CREATE_COLOR_MAP _SEG

Allocates one or more hardware color map indices and binds them to a
virtual color map.

cms_id= UIS$CREATE_COLOR_MAP _SEG vcm_id
[,devnamJ
[,place_m
[,place_da

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the color map segment identifier in the
variable cmsjd or RO (VAX MACRO). The color map segment identifier
uniquely identifies the color map segment and is used as an argument in
other routines.

UIS$CREATE_ COLOR_MAP _SEC signals all errors; no condition values
are returned.

ARGUMENTS vcm Id
VMS Usage:
type:
access:
mechanism:

identifier
longword (unsigned)
read only
by reference

Virtual color map identifier. The vcm_id argument is the address of a
longword that uniquely identifies the virtual color map. See UIS$CREATE_
COLOR_MAP for more information about the vcm_id argument.

NOTE: This routine can be used only once for each virtual color map identifier.

devnam
See Section 18.3.9 for more information about this argument.

place_mode
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Placement mode. The place_mode argument is the address of a longword
that specifies the placement mode; that is, which hardware color map
entries can be allocated. The following table lists valid placelnent modes.

18-29

UIS Routine Descriptions
UIS$CREATE_COLOR_MAP _SEG

DESCRIPTION

Symbol

UIS$C_GENERAL

UIS$C_ COLOR_BASED

place_data

Function

General placement-Allocates any available entries
in the hardware color map.

Exact placement-Allocates map entries starting at
the specified entry and aligned on a natural entry
boundary. Given the size of the virtual color map,
UIS computes a working size that is the smallest
power of 2 greater than or equal to the requested
size. The natural alignment of a map is a starting
index that is a multiple of the working size. For
example, a six-entry color map could be placed at
indices 0, 8, 16, and so on.

Based placement (default)-Allocates entries
such that writing modes using Boolean logic
operations on pixel values can correctly display
color intersections.

VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Placement data. The place_data argument is the address of a longword that
contains the first index to be allocated. The place_data argument is used ~
with exact placement mode. ~

For hardware that supports bit plane write lllasks, the segment is based
at an index that is a power of 2; that write operation is performed with
the appropriate mask. The virtual color map entry index specified in the
place_data argument indicates the binding between the virtual color map
and the hardware color map entries allocated by UIS$CREATE_ COLOR_
MAP_SEC. The default value is 0; that is, the first allocated map entry
is bound to virtual color map entry 0, the second allocated map entry is
bound to virtual color map entry 1, and so on.

If the appropriate entries cannot be allocated, an error is signaled. In
addition to resource depletion failure, a call to UIS$CREATE_COLOR_
MAP_SEC can fail because UIS has already issued this call for the
application. This occurs if internal processing requires binding to hardware
resources and the flag VCMAL$M_NO_BIND is not set when the virtual
color map is created. For example, UIS$CREATE_ WINDOW allocates and
binds hardware color map resources when it creates a display viewport.

Conversely, if VCMAL$M_NO_BIND is set but UIS$CREATE_COLOR_
MAP_SEC was not called, calls to some UIS routines such as UIS$SET_
COLOR and UIS$SET_INTENSITY might fail.

NOTE: Use this routine as follows:

18-30

1 When you create the virtual color map with UIS$CREATE_COLOR_
MAP, specify the flag VCMAL$M_NO_BIND.

2 Before you call any other UIS routine, invoke UIS$CREATE_COLOR_ ~
MAP..:,SEG.

UIS Routine Descriptions
UIS$CREATE_COLOR_MAP _SEG

3 Initialize the color map with UIS$SET_COLORS. (By definition all
colors are black.)

18-31

UIS Routine Descriptions
UIS$CREATE_DISPLA v

U IS$CREATE_DISPLA Y

FORMAT

RETURNS

ARGUMENTS

18-32

Creates a virtual display.

vd_id= UIS$CREATE_DISPLAY x 11 Y11 x21 Y21 width,
height [, vcm_idJ

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the virtual display identifier in the variable
vdjd or RO (VAX MACRO). The virtual display identifier uniquely identifies
the virtual display and is used as a parameter in all output and attribute
routines.

UIS$CREATE_DISPLA Y signals all errors; no condition values are returned.

X1J Y1
X2J Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of the virtual display space. The Xl and Yl arguments
are the addresses of Cfloating point numbers that define the lower-left
corner of the virtual display space. The X2 and Y2 arguments are the
addresses of Cfloating point numbers that define the upper-right corner of
the virtual display.

These arguments define mapping and scaling factors and are not the
boundaries of the virtual display.

width
height
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Width and height of the display viewport. The width and height argulnents
are the addresses of Cfloating point numbers that define both the width
and height of the display viewport in centimeters.

vcm_ld
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

DESCRIPTION

UIS Routine Descriptions
UIS$CREATE_DISPLAV

Virtual color map identifier. The vcm_id argument is the address of a
longword that uniquely identifies the virtual color map. See UIS$CREA TE_
COLOR_MAP for more information about the vcm_id argument.

If vcm_id is not specified, a two-entry virtual color map is created for the
virtual display by default.

To avoid distortion of the resulting graphic image, the aspect ratio of the
world coordinate range of the display window must be equal to the aspect
ratio of the display viewport. See UIS$CREA TE.,... WINDOW for more
information about aspect ratios.

18-33

UIS Routine Descriptions
UI'S$CREATE_K6

UIS$CREATE_KB

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

EXAMPLE

Creates a virtual keyboard on the specified device.

kb_id= UIS$CREATE_KB devnam

VMS Usage: identifier
type: longword (un$igned)
access: write only
mechanism: by value

Longword value returned as the virtual keyboard identifier in the variable ~
kbjd or RO (VAX MACRO). The virtual keyboard identifier uniquely ~
identifies the virtual keyboard. The variable kbjd is used as an argument in
other routines.

UIS$CREA TE_KB signals all errors; no condition values are returned.

devnam
See Section 18.3.9 for more information about this argument.

UIS$CREA TE_KB generates a value for the kb _id argument that is
referenced in subsequent routines that use kb _id as a parameter.

VD_ID=UIS$CREATE_DISPLAY(-5.0,-5.0,50.0,45.0,15.0,15.0)

KB_ID=UIS$CREATE_KB('SYS$WORKSTATION') 0

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','VIEWPORT TITLE',
2 10.0,10.0,25.0,25~O)

CALL UIS$ENABLE_VIEWPORT_KB(KB_ID,WD_ID) ~

18-34

The preceding example creates a virtual keyboard 0 and binds the virtual
keyboard to a display window ~ .. In order to use the virtual keyboard' and
its characteristics with the desired viewport, you must assign the physical
keyboard to the desired virtual keyboard and viewport. Press the F5 or
I CYCLE I key until the KB icon in the appropriate viewport is highlighted.

UIS Routine Descriptions
UIS$CREATE_KB

The call to UIS$DISABLE_ VIEWPORT _KB ~ explicitly disables the binding
between the virtual keyboard and the display window. Also, the ability to
assign the physical keyboard to the appropriate virtual keyboard, that is, to
cycle from viewport to viewport, is disabled.

If UIS$ENABLE_KB is called after UIS$ENABLE_ VIEWPORT_KB, the KB
icon is highlighted as soon as the program executes.

18-35

UIS Routine Descriptions
UIS$CREATE_KB

illustration

18-36

Virtual
Keyboards

Physical Keyboard

I

ZK·S452·86

UIS Routine Descriptions
UIS$CREATE_TB

UIS$CREATE_ TB

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

Creates a tablet digitizer identifier that allows you to connect your process
to the tablet.

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Longword value returned as the tablet identifier in the variable tbjd or RO
01 AX MACRO). The tablet identifier uniquely identifies the tablet device
and can be used in other routines where appropriate.

UIS$CREATE_ TB signals all errors; no condition values are returned.

devnam
See Section 18.3.9 for more information about this argument.

UIS$CREATE_ TB creates a tablet digitizer identifier. When you want
to connect to the tablet, you must specify this identifier in a call to
UIS$ENABLE_ TB.

18-37

UIS Routine Descriptions
UIS$CREATE_ TERMINAL

UIS$CREATE_ TERMINAL

FORMAT

RETURNS

ARGUMENTS

18-38

Creates a terminal emulation window of the specified type.

UIS$CREATE TERMINAL termtype [,title] [,attributes]
[,devnam] [,devlen] [,term
attributes]

UIS$CREATE_ TERMINAL signals all errors; no condition values are
returned.

term typ e
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Terminal type. The termtype argument is the address of a character string
descriptor of the terminal type. Specify either WT for a VT220 emulation
window or TK for a TEK4010/4014 emulation window.

title
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Window title. The title argument is the address of a descriptor of a
character string that is the title of the terminal emulation window.

attributes
VMS Usage: item_list_pair
type: longword
access: read only
mechanism: by reference

Window attributes list. The attributes argument is the address of a data
structure that contains two or more longwords. The list consists of one or
more longword pairs, or doublets. The first longword contains an attribute
code, while the second longword holds an attribute value (which can be
real or integer). The constant WDPL$C_END_OF _LIST ternlinates the list.

The window attributes list has the same format as defined in the
UIS$CREATE_ WINDOW service. If your application program is written in
FORTRAN, use the RECORD data type to construct the attribute list. Refer
to UIS$CREATE_ WINDOW for a description of the attribute list.

devnam
VMS Usage: device_name
type: character string
access: write only
mechanism: by descriptor

UIS Routine Descriptions
UIS$CREATE_TERMINAL

New terminal emulation device name. The devnam argument is the
character string descriptor address of a location that receives the new
terminal emulation device name string.

devlen
VMS Usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

Length of the terminal emulation device name string. The devlen argument
is the address of a word that receives the length of the terminal device
name character string.

termattrlbutes
VMS Usage: item.Jlst_pair
type: longword
access: read only
mechanism: by reference

Terminal attributes list. The termattributes argument is the address of a
data structure that contains longword pairs or doublets. The first longword
stores an attribute ID code, and the second longword holds the attribute
value (which can be real or integer). The constant UIS$C_TERM_END_OF_
LIST terminates this list. FORTRAN application programs should create
a record using the RECORD statement to construct this list. It has the
following format:

V4.1-June 1989 18-39

UIS Routine Descriptions
UIS$CREATE_ TERMINAL

Attribute

Attrlbut e I D Code
(UISSC_ TERM_xxx)

Longword value for attrlbut e
Identified In previous 10ng\IVord

2nd attribute ID code

2nd attrlbut e value

End of list = 0
(UISSC_TERM_END_OF_LlST)

Description

Provides information about whether the terminal is
monochrome (bitonal) or color.

This attribute is expressed as an integer value. If this
longword value is zero or unspecified, the terminal is
monochrome or bitonal (that Is, a VT220 window that
uses the shared global colormap). If this longword is
greater than zero, its value is the plane count and a
private colormap is created with 2n colormap entries.
(The default in the UISBG.DAT command file for color
windows is three planes.)

UIS$C_ TERM_LENGTH Provides the page length for the terminal.

This length overrides any other defaults. This
attribute is expressed as an integer value.

UIS$C_ TERM_WIDTH Provides the page width for the terminal.

This width overrides any other defaults. This attribute
is expressed as an integer value.

UIS$C_ TERM_KB_ATTRIB Provides keyboard creation attributes.

This attribute is expressed as a bit mask value.
This data structure argument provides the following
keyboard creation attributes:

• UIS$M_ TERM_KB_NOBIND/BINO-(Oo not)
enable the KB on create (value = 1)

• UIS$M_ TERM_KB_NOCREATE/CREATE-(Do
not) create a keyboard (value = 2)

18-40 V4.1-June 1989

Attribute

UIS$C_ TEAM_END_OF_
LIST

UIS Routine Descriptions
UIS$CREATE_ TERMINAL

Description

Terminates attribute list.

This must be the last longword In the attribute list. It
does not require an associated longword value.

DESCRIPTION UIS$CREATE_TERMINAL creates a pseudodevice in the VMS database
and returns the device name string for the device. The window might not
appear on the screen until a channel is assigned to the device using the
SYS$ASSIGN system service and the first write to the device is performed.

The pseudodevice is created without any initial owner. Once a channel
is assigned to the device, it is owned by that process, which is usually
the same process that issued the UIS$CREATE_ TERMINAL call. After
all channels have been deassigned, the pseudodevice will be removed
automatically from the system. If a permanent pseudodevice is required,
the application should specify a process that maintains a permanent
channel to the device.

V4.1-June 1989 18-41

UIS Routine Descriptions
UIS$CREATE_ TRANSFORMATION

UIS$CREATE_ TRANSFORMATION

FORMAT

RETURNS

ARGUMENTS

18-42

Creates a two-dimensional world coordinate transformation Into an
existing virtual display's coordinate space. It provides for two-dimensional
translation and scaling, but not rotation.

t,_id= UIS$CREATE_TRANSFORMATION vd_id, X11
Y11 X21 Y2
[, VdX11

VMS Usage: Identifier
type: longword (unsigned)
access: write only
mechanism: by value

VdY11 vdx21
vdy21

Longword value returned as the transformation identifier in the variable
tr jd or RO (VAX MACRO). The transformation identifier uniquely identifies
a transformation coordinate space. See the Description section below for
more information about trjd. This routine signals all errors; no condition
values are returned.

See Section lS.3.1 for a description of this argument.

x1' Y1
X2, Y2
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

World coordinates Qf the new coordinate space. The Xl and Yl arguments
and the x2 and Y2 arguments are the addresses of Cfloating point llUlllbers
that define the lower-left corner and upper-right corner of the new
transformation coordinate space, respectively.

V4.1-June 1989

DESCRIPTION

VdX11 VdY1

VdX21 VdY2
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

UIS Routine Descriptions
UIS$CREATE_ TRANSFORMATION

World coordinates of the original virtual display space. The VdXl and VdYl
arguments are the addresses of Cfloating point numbers that define the
lower-left corner of the corresponding virtual display space. The Vdx2 and
VdY2 arguments are the addresses of Cfloating point numbers that define
the upper-right corner of the corresponding virtual display space. If these
optional arguments are not specified, the world coordinates specified in
UIS$CREATE_DISPLA Yare used.

Once the transformation is created, it can be used in any routine that
accepts a vd_id argument except UIS$DELETE_DISPLA Y by substituting
the tr_id argument instead. When the tr_id value is used, it indicates
the same virtual display but that the coordinates are nlapped relative to
the transformation coordinate space, and not the original virtual display
coordinate space. Each routine automatically performs the transformation.

V4.1-June 1989 18-42.1

UIS Routine Descriptions
UIS$CREATE_ TRANSFORMATION

Illustration

(50;30)

Original
World Coordinate

Space

tr_ld· UIS$CREATE_ TRANSFORMATION

18-42.2

New World Coordl nate
Space

V4.1-June 1989

UIS Routine Descriptions
UIS$CREATE_WINDOW

UIS$CREATE_ WINDOW

FORMAT

RETURNS

ARGUMENTS

Creates a display window and an associated display viewport. See
UIS$GET _WINDOW_ATTRIBUTES for information about window attributes.

wd_id= UIS$CREATE_WINDOW vd_id, devnam
[, title] [,x l' Y l' x2,

Y'2i [,width, height]
[, attributes]

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the display window identifier in the variable
wdjd or RO (VAX MACRO). The display window identifier uniquely
identifies the display window and is used as an argument in other routines.

UIS$CREATE_ WINDOW signals all errors; no condition values are
returned.

vd_ld
See Section 18.3.1 for a description of this argument.

devnam
See Section 18.3.9 for more information about this argument.

title
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Banner title. The title argument is the address of a descriptor of the
character string to be inserted into the banner of the display viewport. If
the argument title is not specified, the display banner is created without a
title.

18-43

UIS Routine Descriptions
UIS$CREATE_WINDOW

18-44

X1' Y1
x2J Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of the display window. The Xv Yl 'and x2, Y2 arguments
are addresses of Cfloating point numbers that define the lower-left corner
and upper-right corner of the display window rectangle. The display
window rectangle defines the visible portion of the virtual display. The
world coordinate space of the display window rectangle is mapped to the
display screen as the display viewport.

If these coordinates are not specified, the entire world coordinate space
specified in the UIS$CREATE_DISPLA Y routine is used.

width
height
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Initial dimensions of the display viewport. The width and height arguments
are addresses of Cfloating point numbers that define the width and height
of the display viewport in centimeters. If the width and height arguments ~
of the display viewport specified in UIS$CREATE_ WINDOW are different ~
from the width and height arguments specified in the UIS$CREATE_
DISPLAY routine, the default values of UIS$CREATE_DISPLA Yare
overridden and scaling occurs.

If the world coordinates of the display window are specified and the width
and height arguments are not specified, the default dimensions of the
display viewport are calculated from the ratios of the world coordinate
values and the width and height specified in UIS$CREA TE_DISPLA Y. See
the Description section for more information about calculating the default
display viewport dimensions. ~

Display viewports that are too large to fit on the screen are automatically
proportionally scaled in size.

attributes
VMS Usage: item_list_pair
type: longword integer (signed) or f_floating
access: read only
mechanism: by reference

Display viewport attribute list. The attributes argument is the address of a
data structure that contains longword pairs, or doublets. The first longword
stores an attribute ID code and the second longword holds the attribute
value (which can be real or integer). The constant WDPL$C_END_OF_
LIST terminates this list. FORTRAN application progranls should create
a record using the RECORD statement to construct this list. It has the
following format.

Attribute 10 code
(WOPL$C_xxx)

UIS Routine Descriptions
UIS$CREATE_WINDOW

Longword value for attrlbut e
Identified In previous longword

2nd attribute 10 code

2nd attribute value

'.

End of list = 0
(WOPL$C_ENO_OF _usn

Window attributes are optional and control window placement and
attributes.

Attribute

V4.1-June 1989

Description

Exact x placement on the screen.

This attribute defines the x origin of the viewport
relative to the lower-left corner of the screen. The
value is expressed as an Cfloating point number of
centimeters. Note that the actual point WDPL$C_
ABS_POS_X defines is the lower-left corner of the
display viewport without the border. Along with
WDPL$C_ABS_POS_ Y, this provides the ability to
place exactly a new viewport at a specific position
anywhere on the workstation screen.

Exact y placement on the screen.

This attribute defines the y origin of the viewport
relative to the lower-left corner of the screen. The
value is expressed as an Cfloating point number of
centimeters. Note that the actual point WDPL$C_
ABS_POS_ Y defines is the lower-left corner of the
display viewport without the border. Along with
WDPL$C_ABS_POS_X, this attribute provides the
ability to place exactly a new viewport at a specific
position anywhere on the workstation screen.

18-45

DESCRIPTION

Attribute

UISRoutine Descriptions
UIS$CREATE WINDOW

Description

• WDPL$M_ALlGNED-The left inner edge of
the display viewport is to be aligned on byte
boundaries. Applications, such as the VT220
terminal emulator, can use WDPL$M_ALlGNED
to take advantage of text drawing performance
optimiza,tions when 8-bit characters are written
on byte boundaries.

• WDPL$M_NOBANNER-The display viewport is
created without a banner. If a banner title was
specified, it is ignored.

• WDPL$M_NOBORDER-The display viewport
is created without a border. When you specify
WDPL$M_NOBORDER, the attribute WPPL$M_
NOBANNER is implied. A viewport created
without a b9rder cannot be moved with the user
interface.

• WDPL$M_NOKB_ICON-The display viewport
banner is created without a KB icon. Specify this
attribute, if you are sure the application will never
require a KB icon or if you wish to add more
space in the banner for the title. Otherwise, UIS
saves an extra quarter of an inch in the banner
for the KB icon.

• WDPL$M_NOMENU_ICON-The display viewport
banner is created without a menu icon.
Therefor(3, the Window Options Menu cannot
be activated.

• Other bits-The remaining bits are reserved to
DIGITAL and must be zero.

Terminates attributes list.

This must be the last longword in the attribute list. It
does not require an associated longword value.

UIS$CREATE_ WINDOW defines a portion of the virtual display that lies
within the display window and that is mapped to the displ'lY screen as the
display viewport.

Default Dimensions of the Display Viewport

Whenever the world coordinates of the display window are defined, but the
dim~nsions of the display viewport are not specified, the systen1 calculates
the default dimensions of the display viewport using the appropriate
arguments from each routine as shown in the following figure. The size
of the display viewport is based on the width and height arguments in
UIS$CREATE_DISPLA Y in the following manner:

18-47

UIS Routine Descriptions
UIS$CREATE_WINDOW

18-48

UISSCREATE_DISPLAY UISSCREATE_WINDOW

width new_width

height new_height

ZK5462·86

The variables new_width and new_height represent unknown quantities,
the default dimensions of the display viewport. All other variables are the
parameters used in the respective routine calls.

For example, the viewport that is created in the following example is 4
centimeters wide and 2 centimeters . high.

vd_id=UIS$CREATE_DISPLAY(0.0,0.0,1.0,1.0,8.0,4.0)
wd_id=UIS$CREATE_WINDOW(vd_id,'SYS$WORKSTATION','TEST WINDOW',

0.0,0.0,0.5,0.5)

Otherwise, these values can be overridden with the optional width and
height arguments in UIS$CREATE_ WINDOW.

Display Viewport Creation

Display viewportsare always created completely on or off the display
screen.

Distortion of Graphic Objects

To avoid distortion of graphic objects, the aspect ratios of the display
window and the display viewport must be equal.

,.-----------------, (x1.y1)

Height

(xO.yO) (x1.yO) Width

ZK-4582·85

In the preceding illustration, the aspect ratio of the display window on the
left does not appear to be equal to the aspect ratio of the viewport on the
right.

UIS Routine Descriptions
UIS$CREATE_ WINDOW

You can compare aspect ratios using the following equation.

viewport height

viewport width

ZK-4579-85

The aspect ratio of the display viewport is the absolute value of the height
divided by the absolute value of the width.

18-49

UIS Routine Descriptions
UIS$CREATE_WINDOW

EXAMPLE

PROGRAM EXAMPLE_A

STRUCTURE/STRUCT/ D
INTEGER*4 CODE 1
REA1.*4 ATTRIB=l
INTEGER*4 CODE_2
REAL*4 ATTRIB_2
INTEGER*4 CODE_3
INTEGER*4 ATTRIB_3
INTEGER*4 END

END STRUCTURE

RECORD/STRUCT/WINDOW ~

WINDOW.CODE_l=WDPL$C_ABS_POS_X
WINDOW.ATTRIB 1=10.5
WINDOW.CODE_2:WDPL$C_ABS_POS_Y
WINDOW.ATTRIB 2=13.25
WINDOW.CODE 3:WDPL$C ATTRIBUTES
WINDOW.ATTRIB_3=WDPL$M_NOKB_ICON .OR. WDPL$M_NOMENU_ICON
WINDOW.END=WDPL$C_END_OF_LIST

VD_ID=UIS$CREATE_DISPLAY(-10.0,-10.0,35.5,35.5,16.0,16.0) ~

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','LOOK',2.0,2.0,28.0,28.0
2 20.0,20.0,WINDOW) ~

18-50

This example describes how to construct the data structure argument
used in UIS$CREA TE_ WINDOW to enable vh:~wport placement and
characteristics D~. In addition, the example illustrates the minimum
number of calls used to create a display window ~ ~.

screen output

UIS Routine Descriptions
UIS$CREATE_ WINDOW

/~----------- Viewport Titt~
~-----------~ - --~--- -- -------

title ---Banner
--~.-----

___ -Border

ZK·S278-l

V 4.1--June 1989 18-51

I

UIS Routine Descriptions
UIS$DELETE_COLOR_MAP

FORMAT

RETURNS

ARGUMENT

Deletes a virtual color map.

UIS$DELETE_COLOR_MAP signals all errors; no condition values are
returned.

vcm_ld
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Virtual color map identifier. The vcm_id argument is the address of a
longword that uniquely identifies the virtual color map. See UIS$CREA TE_
COLOR_MAP for more information about the vcm_id argument.

DESCRIPTION An attempt to delete an active virtual color map (that is, a virtual color map
associated with one or more virtual displays) signals an error.

18-52

This routine deletes the color map segment.

Use UIS$DELETE_DISPLAY first to delete all virtual displays that reference
the virtual color map.

V4.1-June 1989

I

FORMAT

RETURNS

UIS Routine Descriptions
UIS$DELETE_COLOR_MAP _SEG

Deletes the specified color map segment.

UIS$DELETE_ COLOR_MAP _SEG signals all errors; no condition values are
returned.

ARGUMENT cms_ld
VMS Usage: Identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Color map segment identifier. The cms_id argument is the address of a
longword that uniquely identifies the color map segment to be deleted. See
UIS$CREA TE_ COLOR_MAP _SEG for more information about the cms_id
argument.

DESCRIPTION Color map segment deletion has no effect on the colors being mapped by
the hardware color map. The deletion of color map segments marks the
corresponding entries as available for allocation.

An attempt to delete an active color map segment, that is, a color map
segment referenced by a virtual color map I signals an error.

NOTE: If you have already made a call to UIS$DELETE_COLOR_MAP, the color
map has been deleted.

V4.1-June 1989 18-53

UIS Routine Descriptions
UIS$DELETE_DISPLA v

UIS$DELETE_DISPLAY

Deletes the virtual display, all associated windows, and viewports.

FORMAT

RETURNS UIS$DELETE_DISPLA Y signals all errors; no condition values are returned.

ARGUMENT

See Section 18.3.1 for a description of this argument.

DESCRIPTION You cannot substitute the tr_id argument for the virtual display identifier in
this routine.

18-54 V4.1-June 1989

UIS Routine Descriptions
UIS$DELETE_KB

U IS$DELETE_KB

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

Deletes a virtual keyboard. If the specified virtual keyboard is bound to a
window or to the physical keyboard, those bindings are terminated.

UIS$DELETE_KB signals all errors; 110 conditiori values are returned.

kb Id
See-Section 18.3.8 for more information about the kb_id argument.

You can use UIS$DELETE_KB to delete a virtual keyboard at any time
within a program.

18-55

UIS Routine Descriptions
UIS$DELETE_OBJECT

UIS$DELETE_OBJECT

Deletes the specified object from the virtual display.

FORMAT U IS$DELETE_OBJ ECT

RETURNS UIS$DELETE_OBJECT signals all errors; no condition values are returned.

ARGUMENTS obj_ld

DESCRIPTION

18-56

C:oo C:ot"'Hnn 1 Sl ':l ':l fnl" !3 ,-Ioot"'l"''''.'nn nf .h.o !3l"n11~on",""'''' ''' "'.v.""" .a.,-",.&. """""""t''' ... " "".a. ".L"'&V 1:)"'" ":"'

seg_ld
See Section 18.3.4 for a description of this argument.

The screen is updated immediately to reflect the new state of the virtual
display. If it is impossible to modify only the changed portions, the entire
display can be replotted. Occluded objects are always refreshed. ~

FORMAT

UIS Routine Descriptions
UIS$DELETE_PRIVATE

Deletes the private data associated with the object.

RETURNS UIS$DELETE_PRIVATE signals all errors; no condition values are returned.

ARGUMENTS obj_ld
See Section 18.3.3 for a description of this argument.

seg_ld
See Section 18.3.4 for a description of this argument.

DESCRIPTION If more than one private data item exists, all private data items are deleted.

18-57

UIS Routine Descriptions
UIS$DELETE_ TB

UIS$DELETE_ TB

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

18-58

Deletes the tablet digitizer identifier and disconnects the application from
the tablet.

UIS$DELETE_ TB signals all errors; no condition values are returned.

tb Id
VMS Usage: identifier
t\lno' l"nl'nA,,,rri illnC!il"lnori\
·11""· ·~··II·· · , ,
access: read only
mechanism: by reference

Tablet identifier. The tb _id argument is the address of a longword that
uniquely identifies the tablet device, See UIS$CREA TE_ TB for more
information about the tb_id argument.

UIS$DELETE_ TB deletes a tablet digitizing identifier, When your process ~
has completed digitizing, you should call this routine to delete the
identifier,

UIS Routine Descriptions
UIS$DELETE_ TRANSFORMATION

UIS$DELETE_ TRANSFORMATION

FORMAT

RETURNS

ARGUMENT

Deletes a world coordinate transformation of a virtual display. The
corresponding virtual display is not affected.

UIS$DELETE TRANSFORMATION tr_id

UIS$DELETE_ TRANSFORMATION signals all errors; no condition values
are returned.

tr Id
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Transformation identifier. The tr_id argument is the address of a
longword that uniquely identifies the transformation to be deleted. See
UIS$CREATE_ TRANSFORMATION for more information about the tr_id
argument.

18-59

UIS Routine Descriptions
UIS$DELETE_WINDOW

UIS$DELETE_WINDOW

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

18-60

Deletes an existing display window and viewport.

UIS$DELETE_ WINDOW signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for a description of this argument.

UIS$DELETE_ WINDOW deletes the display window specified by the wd_
id argument. The associated viewport is removed from the screen. The
virtual display associated with this display window is neither modified nor
destroyed during the execution of this service.

UIS Routine Descriptions
UIS$DISABLE_DISPLAY _LIST

UIS$DISABLE_DISPLAY _LIST

FORMAT

RETURNS

ARGUMENTS

Disables specified display list functions.

U IS$DISABLE_DISPLAV _LIST vd_id [, display_flags]

UIS$DISABLE_DISPLAY_LIST signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

dIsplay_flags
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Display list flags. The display_flags argument is the address of a longword
mask that controls display screen and display list updates.

The following table describes the flags and masks.

Flag Description

Controls making additions to the display list.
When disabled, no new display list entries
are made. This flag Is set by default when a
virtual display is created.

Controls display list modifications. When
disabled, no display list editing is allowed.
This flag is set by default when a virtual
display is created.

Controls drawing. When disabled, no
drawing or update occurs. This flag is
set by default when a virtual display is
created.

The following table lists UIS routines that check the flags.

18-61

UIS Routine Descriptions
UIS$DISABLE_DISPLA Y _LIST

DESCRIPTION

EXAMPLE

18-62

Flag UIS Routine
UIS$COPY _OBJECT
UIS$DELETE_OBJECT
UIS$ERASE
UIS$INSERT _OBJECT
UIS$MOVE_AREA
UIS$TRANSFORM_OBJECT

UIS$CIRCLE
UIS$ELLIPSE
UIS$EXECUTE
UIS$EXECUTE_DISPLAY
UIS$IMAGE
UIS$LlNE
UIS$LlNE_ARRAY
UIS$PLOT
UIS$PLOT _ARRAY
UIS$TEXT

1 All routines listed under UIS$M_DL_ENHANCE_LlST and UIS$M_DL_MODIFY _LIST
will also check the state of UIS$M_DL_UPDATE_WINDOW before doing any screen
updates.

If a bit is set in the mask, the corresponding function is disabled. If the
bit is 0, the corresponding function is not changed. See UIS$ENABLE_
DISPLAY_LIST for information on how to enable functions.

If display_flags is not specified, UIS$M_DL_ENHANCE_LIST is disabled. ~

UIS$DISABLE_DISLAY_LIST is useful in applications such as animation.
In such a case, display list additions are neither necessary nor desired
because of the additional overhead.

At some point in your application you might want to perform several
modifications to the display list without seeing the screen change.

Insert your modifications here

CALL UIS$EXECUTE(VD_ID) ! Erases and redraws the virtual display

UIS Routine Descriptions
UIS$DISABLE_KB

UIS$DISABLE_KB

FORMAT

RETURNS

ARGUMENT

Disconnects the physical keyboard from the specified virtual keyboard.
See the example in UIS$CREATE_KB for more information.

UIS$DISABLE_KB signals all errors; no condition values are returned.

kb Id
See-Section 18.3.8 for more information about the kb_id argument.

18-63

UIS Routine Descriptions
UIS$DISABLE_ TB

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

18-64

Disconnects the digitizing tablet.

UIS$DISABLE_ TB signals all errors; no condition values are retur~ed.

tb Id
vMs Usage: identifier
type: longword (unsigned)
access: read on!y
mechanism: by reference

Tablet identifier. The tb_id argument is the address of longword that
uniquely identifies the tablet device. See UIS$CREATE_ TB for more
information about the tb _id argument.

UIS$DISABLE_ TB disconnects your process from the tablet. This routine
reenables the system pointer and frees the tablet for use by another
process.

UIS Routine Descriptions
UIS$DISABLE_ VIEWPORT _KB

UIS$DISABLE_ VIEWPORT _KB

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

Prevents the user from assigning the physical keyboard to a viewport. See
the example in UIS$CREATE_KB for more information.

UIS$DISABLE_ VIEWPORT_KB signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for a description of this argument.

UIS$DISABLE_ VIEWPORT _KB removes the display window from the
assignment list. You can no longer use the IgYG_~~1 key to make the viewport
active. Use UIS$ENABLE_ VIEWPORT_KB or UIS$ENABLE_KB to place
the display window on the assignment list.

18-65

UIS Routine Descriptions
UIS$ELLIPSE

UIS$ELLIPSE

FORMAT

RETURNS

ARGUMENTS

18-66

Draws an arc along the circumference of an ellipse.

UIS$ELLIPSE vd_id, atb, centery, center-y, xradius,
yradius l,start_deg ,end_degJ

UIS$ELLIPSE signals all, errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

afb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies the attribute block that will modify the ellipse. If you ~
specify 0 in the atb argument, the default settings of attribute block 0 are ~
used.

center_x
cenfer_y
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Center position x and y world coordinates. The center_x and center_y
arguments are the addresses of Cfloating point numbers that define a point
in the virtual display that is the center of the ellipse or arc.

xradlus
yradlus
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Radii of the ellipses specified as x and y world coordinate widths. The
xradius argument is the address of an Cfloating point number that defines
the distance from the center of the ellipse to the circumference of the
ellipse or arc. The yradius argument is the address of an Cfloating point
number that defines the distance frOln the center of the ellipse to the
circumference of the ellipse or arc.

DESCRIPTION

start_deg
end_deg
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

UIS Routine Descriptions
UIS$ELLIPSE

Degree at which the arc starts and ends. The start_deg and end_deg
arguments are the addresses of Cfloating numbers that define the starting
point and ending point in degrees on the circumference of the ellipse
where the arc or ellipse will be drawn. Degrees are measured clockwise
from the top of the ellipse. If you do not specify start_deg, 0.0 degrees is
assumed; if you do not specify end_deg, 360.0 degrees is assumed. If you
specify neither argument, a complete ellipse is drawn.

UIS$ELLIPSE uses center position coordinates and x and y radii to
construct an ellipse. Along the circumference of this ellipse, UIS$ELLIPSE
draws an arc for a specified range of degrees.

The arc is closed by drawing one or more lines between the endpoints.
The type of arc associated with the attribute block specifies the way in
which the arc is closed. See the UIS$SET_ARC_TYPE routine.

The points are drawn with the current line pattern and width, and filled
with the current fill pattern, if enabled.

UIS$ELLIPSE does not support the following combination of attributes:

• Line width not equal to 1 and line style not equal to FFFFFFFF16

• Line width not equal to 1 and complement writing lTIode

Ellipses are distorted by differences between the aspect ratios of the virtual
display and display window.

18-67

UIS Routine Descriptions
UIS$ELLIPSE

screen output

18-68

ZK·5418·86

UIS Routine Descriptions
UIS$ENABLE_DISPLAV _LIST

UIS$ENABLE_DISPLAY _LIST

FORMAT

RETURNS

ARGUMENTS

Reenables automatic additions to the display list.

UIS$ENABLE_DISPLA Y_LIST signals all errors; no condition values are
returned.

vd Id
See Section 18.3.1 for a description of this argument.

display_flags
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Display list flags. The display_flags argument is the address of a longword
mask that controls display screen and display list updates.

The following table describes the flags and masks.

Flag Description

Controls making additions to the display list.
When disabled, no new display list entries
are made. This flag is set by default when a
virtual display is created.

Controls display list modifications. When
disabled, no display list editing is allowed.
This flag is set by default when a virtual
display is created.

Controls drawing. When disabled, no
drawing or update occurs. This flag is
set by default when a virtual display is
created.

The following table lists UIS routines that check the flags.

18-69

UIS Routine Descriptions
UIS$ENABLE_DISPLAV _LIST

EXAMPLE

18-70

Flag UIS Routine

UIS$COPY _OBJECT
UIS$DELETE_ OBJECT
UIS$ERASE
UIS$INSERT _OBJECT
UIS$MOVE_AREA
UIS$TRANSFORM_OBJECT

UIS$CIRCLE
UIS$ELLIPSE
UIS$EXECUTE
UIS$EXECUTE_DISPLAY
UIS$IMAGE
UIS$LlNE
UIS$LlNE_ARRAY
UIS$PLOT
UIS$PLOT _ARRAY
UIS$TEXT

1 All routines listed under UIS$M_DL_ENHANCE_LlST and UIS$M_DL_MODIFY _LIST
will also check the state of UIS$M_DL_UPDATE_WINDOW before doing any screen
updates.

If a bit is set in the mask, the corresponding function is disabled. If the bit
is 0, the corresponding function is not changed.

If display_flags is not specified, UIS$M_DL_ENHANCE_LIST is disabled.

At some point in your application you might wish to perform several
modifications to the display list without seeing the screen change.

Insert your modifications here

CALL UIS$EXECUTE(VD_ID) ! Erases and redraws the virtual display

UIS Routine Descriptions
UIS$ENABLE_KB

UIS$ENABLE_KB

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Connects the physical keyboard to the specified virtual keyboard. See the
example in UIS$CREATE_KB for more information.

UIS$ENABLE KB kb_id {,wd_idJ

UIS$ENABLE_KB signals all errors; no condition values are returned.

kb Id
See-Section 18.3.8 for more information about the kb_id argument.

wd_ld
See Section 18.3.2 for more information about the wd_id argument.

Because you should be able to control the keyboard, it is recommended
that you use theUIS$ENABLE_KB as little as possible. However, there are
times when you might want to use it:

• When you start up a new application-In this case, you might want the
workstation keyboard to be inlplicitly connected to a new application.

• When the physical keyboard is already connected to the application
(as determined by the UIS$TEST_KB routine)-In this case, the
application might have to facilitate movement of the keyboard between
its windows.

Note that these are not restrictions imposed by the workstation software.

18-71

UIS Routine Descriptions
UIS$ENABLE_TB

UIS$ENABLE_ TB

FORMAT

RETURNS

. ARGUMENT

DESCRIPTION

18-72

Assigns the tablet to the calling process.

UIS$ENABLE_ TB signals. all errors; no condition values are returned.

tb Id
VMS Usage: identifier
type: longword (unsigned)
~,.,.,,,,,..,..,,,. 1 ...
"",",,",V<W'<W'. I vaUi UI II,

mechanism: by reference

. Tablet identifier. The tb_id argument is the address of a longword
that uniquely identifies a tablet device. See UIS$CREATE_TB for more
information about the tb _id argument.

Only one application at a time can own the tablet. When a process ~
connects to the tablet, the system hardware cursor is turned off and the ~
connected process receives all input from the tablet device. The process
owns the tablet until it calls UIS$DISABLE_ TB to disconnect itself from the
tablet.

The process must use a software cursor to track the pointer in a display
window.

UIS Routine Descriptions
UIS$ENABLE_ VIEWPORT _KB

UIS$ENABLE_ VIEWPORT _KB

FORMAT

RETURNS

ARGUMENTS

Allows the user to assign a virtual keyboard to the physical keyboard
and signals binding through the KB icon in the viewport banner. See the
example in UIS$CREATE_KB for more information.

UIS$ENABLE_ VIEWPORT_KB signals all errors; no condition values are
returned.

kb Id
See-Section 18.3.8 for more information about the kb_id argument.

wd_ld
See Section 18.3.2 for a description of this argument.

DESCRIPTION UIS$ENABLE_ VIEWPORT_KB makes the display window as a KB handle.

The viewport contains a nonhighlighted KB icon.

18-73

UIS Routine Descriptions
UIS$END_SEGMENT

UIS$END_SEGMENT

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

18-74

Ends a current segment in a virtual display.

UIS$END _SEGMENT signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

Context is returned to the parent segment. All values of attribute blocks 0
to 255 are restored to the current values of the parent's attribute blocks.

UIS$ERASE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

UIS Routine Descriptions
UIS$ERASE

Erases the specified rectangle in the virtual display and removes all entities
that lie completely within the rectangle from the display list.

UIS$ERASE signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

Xl' Y1
X2, Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinate pairs. The Xl and Yl arguments are the addresses of
Cfloating point numbers that define the lower-left corner of the rectangle
in the virtual display. The X2 and Y2 arguments are the addresses of
Cfloating point numbers that define the upper-right corner of the rectangle
in the virtual display. If no rectangle is specified, the entire virtual display
is erased.

UIS$ERASE removes all graphics entities that lie completely within the
rectangle from the display list as if they had never been written. Objects
that do not lie completely within the specified rectangle are not erased.
Empty segments are not deleted.

Areas within the display window affected by this routine are filled with
color specified by entry 0 in the color map of the virtual display.

18-75

UIS Routine Descriptions
UIS$EXECUTE

UIS$EXECUTE

FORMAT

RETURNS

ARGUMENTS

Executes a binary encoding stream in a specified virtual display.

UIS$EXECUTE vd_id [,buflenj {,bufaddrj

UIS$EXECUTE signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

butlen
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Length of the binary encoding stream. The buflen argument is the address
of longword that contains the length of the binary encoding stream.

bufaddr
VMS Usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: reference

! Binary encoding stream. The bufaddr argument is the address of an array
of longwords that conlpose the binary encoding stream.

DESCRIPTION If the buffer is omitted, all display windows are erased and refreshed. ~

Note the effects of the display list flags.

18-76

UIS Routine Descriptions
UIS$EXECUTE_DISPLAV

UIS$EXECUTE_DISPLA Y

FORMAT

RETURNS

ARGUMENTS

Creates a virtual display from a display list.

vd_id = UIS$EXECUTE_DISPLAV buf/en, bufaddr

VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by value

Longword value returned as the virtual display identifier in the variable
vdjd or RO 01 AX MACRO).

UIS$EXECUTE_DISPLA Y signals all errors; no condition values are
returned.

buflen
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Buffer length. The buflen argument is the address of a longword that
defines the length of the buffer.

bufaddr
VMS Usage: vector _byte_unsigned
type: byte integer (unsigned)
access: read only
mechanism: by reference

Buffer address. The bufaddr argument is the address of an array of integer
bytes that contains the binary encoded stream.

The binary encoded stream is executed in the virtual display.

18-77

UIS Routine Descriptions
UIS$EXPAND_ICON

UIS$EXPAND_ICON

FORMAT

RETURNS

ARGUMENTS

18-78

Replaces an icon with its associated viewport.

UIS$EXPAND ICON wd_id l,icon_wd_id}l,attributes}

UIS$EXP AND _ICON signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for a description of this argument.

I~nn wrl Irl _ _
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Icon window identifier. The icon_ wdJd argument is the address of a
longword that uniquely identifies the icon window.

If the icon_ wd_id argument is specified, it must match the value of the
icon_ wd_id argument specified in UIS$SHRINK_ TO_ICON. .

attributes
VMS Usage: item_list_pair
type: longword integer (signed) or f_floating
access: read only
mechanism: by reference

Viewport attributes list. The attributes argument is the address of a data
structure such as an array or record. The attributes can be used to specify ~
exact placement of the display viewport. ~

UIS Routine Descriptions
UIS$EXPAND_ICON

Attribute 10 code
(WDPL$C-xxx)

Longword value for attribute
identified in previous longword

2nd attribute 10 code

2nd attribute value

•
•
•

End of list = 0
(WOPL$C_ENO_OF _LIST)

ZK-4S81-85

See the attributes argument in UIS$CREA TE_ WINDOW for more
information.

18-19

UIS Routine Descriptions
UIS$EXPAND_ICON

screen output

USER

18-80

USER

~I
I~'

ZK·544786

UIS Routine Descriptions
UIS$EXTRACT _HEADER

UIS$EXTRACT HEADER
. -

FORMAT

RETURNS

ARGUMENTS

Returns the header information needed to create a UIS metafile.

UIS$EXTRACT_HEADER vd_id, [buflen, bufaddr]
[,retlen]

UIS$EXTRACT_HEADER signals all errors; no condition values are
returned.

vd /d
See~Section 18.3.1 for a description of this argument.

but/en
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Buffer length. The buflen argument is the address of a longword that
defines the length of the buffer.

butaddr
VMS Usage: vector _byte_unsigned
type: byte integer (unsigned)
access: read only
mechanism: by reference

Buffer address. The bufaddr argument is the address of an array of bytes
that receives the binary encoding stream.

ref/en
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Return length. The retlen argument is the address of a longword that
receives the length of the buffer.

DESCRIPTION Header information must be at the beginning of all UIS Inetafiles.

Allocating Space for the Buffer

If you want to know how much space to allocate for the buffer, specify
obj_id and retlen only.

18-81

UIS Routine Descriptions
UIS$EXTRACT _HEADER

Format of Header Information

The format of hea~er binary instructions is as follows:

Op code
16 bits

Length
16 bits

Arguments

ZK·5472·86

18-82

If the length field exceeds 32,767 bytes, an extended fonnat is used. The
length field should be set to UIS$C_LENGTH_DIFF and the extra length
field should be set to the total number of bytes in the binary instruction.

Op code Length Extra ~ength Arguments
16 bits 16 bits 32 bits

• I

ZK·5473·86

I

UIS Routine Descriptions
UIS$EXTRACT _OBJECT

UIS$EXTRACT _OBJECT

FORMAT

RETURNS

ARGUMENTS

Returns the binary encoding stream for the desired object (segment or
primitive) .

UIS$EXTRACT _OBJECT { obi_i? } l buflen
seg_'d 1

,bufaddr] [,retlen]

UIS$EXTRACT_OBJECT signals all errors; no condition values are
returned.

obj_ld
See Section 18.3.3 for a description of this argument.

seg_ld
See Section 18.3.4 for a description of this argument.

buflen
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Length of buffer. The buflen argument is the address of a longword that
specifies the length of the buffer that receives the binary encoding stream.

bufaddr
VMS Usage: vector _byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Name of an array. The bufaddr argument is the address of an array of
bytes that receives the binary encoding stream.

reflen
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Length of the binary encoding stream. The retlen argunlent is the address
of a longword that receives the length of the binary encoding stream.

18-83

UIS Routine Descriptions
UIS$EXTRACT _OBJECT

DESCRIPTION

18-84

If you want to know how much space to allocate for the buffer, specify
obj_id and retlen only.

If the extracted object lies within a segment, a binary instruction denoting
the beginning of the segnlent precedes all binary instructions associated
with the extracted object. A binary instruction denoting the end of the
segment follows the binary instructions associated with the extracted
object.

UIS Routine Descriptions
UIS$EXTRACT _PRIVATE

UlS$·EXTRACT _PRIVATE

FORMAT

RETURNS

ARGUMENTS

Returns the binary data associated with the specified object.

UIS$EXTRACT PRIVATE { obi_i? } l buflen
seg_'d I

,bufaddr] [, retlen]

UIS$EXTRACT_PRIVATE signals all errors; no condition values are
returned.

obj_ld
See Section 18.3.3 for a description of this argument.

seg_ld
See Section 18.3.4 for a description of this argument.

buf/en
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Length of the buffer. The buflen argument is the address of a longword
that contains the length of the buffer that receives the binary encoding
stream.

bufaddr
VMS Usage: vector _byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Buffer address. The bufaddr argument is the address of an array of bytes
that receives the binary encoding stream.

ret/en
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Length of the binary encoding streanl. The retlen is the address of
longword that receives the length of the binary encoding strealTI.

18-85

UIS Routine Descriptions
UIS$EXTRACT _P~IVATE

DESCRIPTION

18-86

If more than one private data item is associated with the specified object,
all private data items are returned. The following figure describes the
format of the data. If you want to know how much space to allocate for the
returned encoding, specify the obj_id and retlen arguments only.

Format of a Private Data Binary Instruction

The format of binary encoding returned is as follows:

Op code Length ATB Arguments
16 bits 16 bits 16 bits

ZK·5475·86

If the length field exceeds 32,767 bytes, an extended format is used. The
l.ono.h fit:>lriClhnll1ri ht:> Clt:> •• n T nc:4:r T P1\T~Tl-T nT"P"P "'nrl .. 1-.0 OV '" 1"" ... ,.. .. 1-.
.. - ... ~ _ ... - _ __ - -, _, _.&...1 'Ifa. _.......,L L ",.&L'- """"".I." ... """ ... LO '

field should be set to the total number of bytes in the binary instruction.

Op code Length Extra Length
Arguments

16 bits 16 bits 32 bits

ZK·5473·86

Attribute modification instructions precede the binary instruction of the
extracted object. The binary instructions of any private data associated with
the extracted object follow the binary instruction of the extracted object.

~

UIS Routine Descriptions
UIS$EXTRACT REGION

UIS$EXTRACT _REGION

FORMAT

RETURNS

ARGUMENTS

Locates all output primitives and portions of output primitives that lie
entirely within the specified rectangle, and returns the binary encoding
stream for the selected display.

UIS$EXTRACT_REGION vd_id [,X1'Y1, x2,Y21 [,buflen
,bufaddr] [,retlen]

UIS$EXTRACT _REGION signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

X1J Y1
X2J Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of the specified rectangle. The XltYl and x2,Y2
arguments are the addresses of Cfloating point numbers that define the
lower-left and upper-right corners of the specified rectangle.

If you specify a region within the virtual display, UIS$EXTRACT_REGION
returns the entire display list except for the following:

• Objects that do not lie completely within the specified region

• Segments that do not contain any objects that fall completely within the
specified region

If these arguments are not specified, the coordinates of the entire virtual
display are used.

buflen
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: . by reference

Length of a buffer. The buflen is the address of a longword that contains
the length of the buffer that receives the binary encoding stream.

bufaddr
VMS Usage: vector_byte_unsigned
type: byte_unsigned
access: read only
mechanism: by reference

18-87

UIS Routine Descriptions
UIS$EXTRACT _REGION

DESCRIPTION

18-88

Buffer address. The bufaddr argument is the address of an array of bytes
that receives the binary encoding stream.

retlen
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Length of the binary encoding stream. The retlenargument is the address
of a longword that receives the length of the binary encoding stream.

If you want to know how much space to allocate for the returned encoding,
do not specify the buflen and bufaddr arguments.

Format of Binary Instructions

The format of binary instructions is as follows:

Op code
16 bits

Length
16 bits

Arguments

ZK·5472·86

If the length field exceeds 32,767 bytes, an extended format is used. The ~
length field should be set to UIS$C_LENGTH_DIFF and the extra length
field should be set to the total number of bytes in the binary instruction.

Op code Length Extra Length
Arguments

16 bits 16 bits 32 bits

ZK·5473·86

UIS Routine Descriptions
UIS$EXTRACT _TRAILER

UIS$EXTRACT _TRAILER

FORMAT

RETURNS

ARGUMENTS

Returns trailer information needed to create a UIS metafile.

UIS$EXTRACT_TRAILER vd_id [,buflen, bufaddr]
[,retlen]

UIS$EXTRACT_TRAILER signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

butlen
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Buffer length. The buflen argunlent is the address of a longword that
defines the length of the buffer.

butaddr
VMS Usage: vector _byte_unsigned
type: byte integer (unsigned)
access: read only
mechanism: by reference

Buffer address. The bufaddr argument is the address of an array of bytes
that receive the binary encoded stream.

retlen
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Return length. The retlen argument is the address of a longword that
defines the returned length of the buffer.

DESCRIPTION Trailer information must appear at the end of all UIS metafiles.

Allocating Space for the Buffer

If you want to know how much space to allocate for the buffer, specify
obj_id and retlen only.

18-89

UIS Routine Descriptions
UIS$EXTRACT TRAILER

18-90

Format of Trailer Information

The format of trailer binary instructions is as follows:

Op code
16 bits

Length
16 bits

Arguments

ZK·5472·86

if the length field exceeds 32,767 bytes, an extended format is used. The
length field should be set to UIS$C_LENGTH_DIFF and the extra length
field should be set to the total number of bytes in the binary instruction.

Op code Length Extra Length
Arguments

16 bits 16 bits 32 bits

ZK·5473·86

UIS Routine Descriptions
UIS$FIND_PRIMITIVE

UIS$FIND_PRIMITIVE

FORMAT

RETURNS

ARGUMENTS

Locates the next output primitive that intersects the specified rectangle.

obj_id = UIS$FIND_PRIMITIVE vd_id, X 1/Y11 X2/Y2

[, context] [, extent]

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the object identifier in the variable objjd or RO
(VAX MACRO). The object identifier uniquely identifies the object and is
used as an argument in other routines.

UIS$FIND _PRIMITIVE signals all errors; no condition values are returned.

vd_ld
See Section 18.3.1 for a description of this argument.

x1, Y1
X2' Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of the selection rectangle. The XtrYl and x2,Y2 are
the addresses of Cfloating points numbers that define the lower-left and
upper-right corners of the rectangle.

context
VMS Usage: context
type: longword (signed)
access: modify
mechanism: by reference

Context value. The context argument is the address of a longword that
stores the state of the search and should not be modified if repetitive
searches are desired. If this argument is omitted, . only the first match can
be found in the display list.

You must initialize the context argument to 0 before starting a search
operation.

extent
VMS Usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

18-91

UIS Routine Descriptions
UIS$FIND_PRIMITIVE

DESCRIPTION

18-92

Address of the extent rectangle array. The extent argument is an array of
four longwords that receives the world, coordinate values of the lower-left
and upper-right corner of the extent rectangle.

When you try to locate the specified object closest to the specified
location, the size of the rectangle controls the object or primitive matching
granularity. Normally, when you search for the primitive nearest a position,
the rectangle would surround the position, and have a small width and
height (perhaps equivalent to 1 to 10 pixels), depending on the desired
granularity.

Once the primitive is located, it returns an object identifier which can be
used later to reference the primitive, for example, UIS$EXTRACT_OBJECT
or UIS$DELETE_OBJECT.

Each time UIS$FIND _PRIMITIVE is called, it continues the search
operation from where it left off, using the context longword to keep track of
the curre!1t state.

Generally, in order to find all matches, UIS$FIND_PRIMITIVE is called
repeatedly with the same context longword until it returns a value of o.

UIS Routine Descriptions
UIS$FIND_SEGMENT

UIS$FIND_SEGMENT

FORMAT

RETURNS

ARGUMENTS

Locates the next segment that contains any objects or primitives that
intersect with the specified rectangle.

seg_id= UIS$FIND_SEGMENT vd_id, X1' Y1, X2' Y2
[, context] [, extent]

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the segment identifier in the variable segjd or
RO (VAX MACRO). The segment identifier uniquely identifies the segment
and is used as an argument in other routines.

UIS$FIND_SEGMENT signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

x1, Y1

X2' Y2
VMS Usage:
"type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of the selection rectangle. The xvYt and x2,Y2
arguments are the addresses of Cfloating point numbers that define the
lower-left and upper-right corners of the rectangle.

context
VMS Usage: context
type: longword (signed)
access: modify
mechanism: by reference

Context value. The context argument is the address of a longword that
stores the state of the search and should not be tnodified if repetitive
searches are desired. If this argument is onlitted, only the first tnatch can
be found in the display list.

You must initialize the context argument to 0 before starting a search
operation.

18-93

UIS Routine Descriptions
UIS$FIND_SEGMENT

DESCRIPTION

18-94

extent
VMS Usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Address of the extent rectangle array. The extent argument is the address
of an array of four longwords that receives the world coordinate pairs
that define the lower-left and upper-right corners of the extent rectangle
containing the segment.

The size of the rectangle controls the matching granularity when trying
to locate the prinlitive closest to a specific position. Nornlally, when
searching for the primitive nearest a position, the rectangle would surround
the position, and have a small width and height (perhaps equivalent to 1 to
10 pixels), depending on the desired granularity.

Once the object is located, UIS$FIND _SEGiviENT returns the object
identifier for the segment containing that object.

Each time this routine is called, it continues the search operation from
where it left off, using the context longword to keep track of the search
state.

Generally, in order to find all matches, UIS$FIND _SEGMENT is called
repeatedly with the same context longword until it returns a value of O.

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$GET _ASS_POINTER_POS

Returns the current pointer position relative to the lower-left corner of the
workstation screen.

UIS$GET_ABS_POINTER_POS signals all errors; no condition values are
returned.

devnam
See Section 18.3.9 for more information about this argument.

retx
rety
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
write only
by reference

Absolute device coordinate pair. The retx and rety arguments are the
addresses of Cfloating point longwords that receive the x and y coordinate
positions of the pointer in centimeters relative to the lower-left corner of
the display screen.

18-95

UIS Routine Descriptions
UIS$GET _ALIGNED_POSITION

UIS$GET _ALIGNED_POSITION

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-96

Returns the current position for text output which is the upper-left corner
of the character cell.

UIS$GET_ALIGNED_POSITION vd_id, atb, retx, rety

UIS$GET _ALIGNED _POSITION signals all errors; no condition values are
returned.

vd_ld
See Section IS.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block. The atb argument is the address of a longword integer that ~
identifies an attribute block that contains the font to use in calculating the ,
aligned position.

retx
rety
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
write only
by reference

World coordinate pair. The retx and rety arguments are the addresses of
Cfloating point longwords that receive the current position as x and y world
coordinate positions.

UIS$GET_ALIGNED_POSITION differs from UIS$GET_POSITION in that
the current position refers to the upper-left corner of the character cell of
the next character to be output. This is useful for applications that require
the position of the upper-left corner, but do not know enough about the
font baseline to determine the proper alignment point. The position is
converted into the proper alignment point using the font specified in the
given attribute block. See UIS$SET_ALIGNED_POSITION.

screen output

$ run get_aligned

UIS Routine Descriptions
UIS$GET _ALIGNED_POSITION

x world coordinate = 18.19 Y world coordinate = 5.02
FORTRAN PAUSE
$

Iron with use grows bright

Text Alignment
Point

Current position
after text
drawing

(18.19.5.02)

ZK 529386

18-97

UIS Routine Descriptions
UIS$GET _ARC_TYPE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-98

Returns the current arc type attribute code. See UIS$SET _ARC_TYPE for
more information about arc types.

VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the current arc type code in the variable
arcjype _ The ~r(' type code is an integer value representing one of the
following UIS constants: UISC_ARC_OPEN, UISC_ARC_PIE, and
UIS$C_ARC_CHORD. See UIS$SET_ARC_TYPE for a description of the
constants.

UIS$GET_ARC_ TYPE signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block identifier. Theatb argument is the address of a longword
integer that identifies the attribute block from which the arc type is
obtained.

Refer to 6.6 for more information about UIS symbols !lnd symbol definition
files.

UIS Routine Descriptions
UIS$GET _BACKGROUND_INDEX

UIS$GET _BACKGROUND_INDEX

FORMAT

RETURNS

ARGUMENTS

Returns the background color index for text and graphics output.

index = UIS$GET_BACKGROUND_INDEX vd_id, atb

VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the color map index in the variable index or RO
(VAX MACRO).

UIS$GET_BACKG~OUND_INDEX signals all errors; no condition values
are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

afb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies the attribute block from which the background color
index is obtained.

18-99

UIS Routine Descriptions
UIS$GET _BUTTONS

UIS$GET _BUTTONS

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-100

Returns the current state of the pointer buttons.

status = UIS$GET _BUTTONS wd_id, retstate

VMS Usage: Boolean
type: longword (unsigned)
access: write only
mechanism: by value

Boolean value is returned in the variable status or RO (VAX MACRO). A
value of 1 is returned, if the pointer is within the visible portion of the
viewport. If thf:' pointf:'T is OlJt~ide the vi~ible portion of the viewport: a
value of 0 is returned.

UIS$GET_BUTTONS signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for a description of this argument.

retstate
VMS Usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

State of the pointer buttons. The retstate argument is the address of a
longword that receives the current state of the pointer buttons. The state
of pointer buttons is returned in a longword whose bits indicate the state
of each pointer button, for example, 1 is up and 0 is down. The symbolic
definitions for these bits are UIS$M_POINTER_BUTTON_1, and UIS$M_
POINTER_BUTTON_2, UIS$M_POINTER_BUTTON_3, and
UIS$M_POINTER_BUTTON_ 4.

When you use this function always test the returned status value, because
the pointer could be outside the window when the function is called.

UIS Routine Descriptions
UIS$GET _CHAR_ROTATION

UIS$GET _CHAR_ROTATION

FORMAT

RETURNS

ARGUMENTS

Returns the angle of character rotation in degrees.

VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by value

Longword value returned as the angle of character rotation in degrees in
the variable angle· or RO (VAX MACRO). The baseline vector and the actual
path of text drawing form the angle of character rotation. The character
rotates on its baseline point.

UIS$GET _ CHAR_ROTATION signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

afb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The ath argument is the address of a number that
identifies an attribute block containing the character rotation attribute used
to calculate character rotation.

18-101

UIS Routine Descriptions
UIS$GET _CHAR_SIZE

FORMAT

RETURNS

ARGUMENTS

18-102

Returns both a value indicating whether or not character scaling is enabled
and the character size used.

Boolean = UIS$GET _CHAR_SIZE vd_id, atb
,[char], [width] [, height

VMS Usage: Boolean
type: longword (unsigned)
access: write only
mechanism: by value

Booiean vaiue returned to indicate the status of character scaling in a status
variable or RO (VAX MACRO).

UIS$GET_CHAR_SIZE signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block that contains the character size attribute
setting.

char
VMS Usage: char_string
type: character_string
access: write only
mechanism: by descriptor

Single character. The char argument is the address of a character string
descriptor of a single char. The char is specified only for proportionally
spaced fonts. It is used as a reference point against which other characters
are scaled.

width
height
VMS Usage:
type:
access:
mechanism:

floati ng_poi nt
f_floating
write only
by reference

UIS Routine Descriptions
UIS$GET _CHAR_SIZE

Character width and height. The width argument is the address of an
Cfloating point longword that receives the character width in world
coordinates. The height argument is the address of an Cfloating point
longword that receives the character height in world coordinates.

18-103

UIS Routine Descriptions
UIS$GET _CHAR_SLANT

FORMAT

RETURNS

ARGUMENTS

18-104

Returns the angle of character slant in degrees.

VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by value

Longword value returned as the angle of character slant in degrees in the
variable angle or RO (VAX MACRO). The character cell up vector and the
baseline vector form the angie of character slant.

UIS$GET _ CHAR_SLANT signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a number that
identifies an attribute block containing the character slant attribute setting
to be returned.

screen output

UIS Routine Descriptions
UIS$GET _CHAR_SLANT

$ run ~et_charslant
The angle of character slant is
FORTRAN PAUSE
$

35.00 de~rees

18-105

UIS Routine Descriptions
UIS$GET _CHAR_SPACING

FORMAT

RETURNS

ARGUMENTS

18-106

Returns the character spacing factors.

UIS$GET_CHAR_SPACING signals all errors; no condition values are
returned.

vd Id
SeeSection 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies the attribute block from which the character spacing ~
factors are obtained. ~

dx
dy
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
write only
by reference

Additional x and y spacing factor: The dx argument is the address of an ~
Cfloating point longword that receives the x spacing factor. The x spacing ~
factor represents the relative width of the character cell. If 0 is returned,
no additional spacing factor was specified. The dy argument is the address
of an Cfloating point longword that receives the y spacing factor. The y
spacing factor represents the relative height of the character cell. If 0 is
returned, no additional spacing factor was specified.

screen output

$ run get_charspace
x spacing factor = 0.00
x spacing factor = 3.00
x spacing factor = 0.00
x spacing factor = 4.00

y
Y
y

Y

UIS Routine Descriptions
UIS$GET _CHAR_SPACING

spacin!; factor = 0.00
spacing factor = 5.00
spacing factor = 0.00
spacing factor = 6.00

FORTRAN PAUSE
$

Great wits have short memories
rea t wit s

ever spur a willing horse
e v e r p

lK·5291·86

18-107

UIS Routine Descriptions
UIS$GET _CLIP

UIS$GET _CLIP

FORMAT

RETURNS

ARGUMENTS

18-108

Returns the clipping mode.

VMS Usage: Boolean
type: longword
access: write only
mechanism: by value

Boolean value returned as the clipping mode in a status variable or RO
(VAX MACRO). If clipping is enabled, a Boolean TRUE is returned. If
dippirrg is disabled, a Boolean F~L\ALSE is returned.

UIS$GET_CLIP signals all errors; no condition values are returned.

vd Id
See Section 18.3.1 for a description of this argument.

arb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The ath argument is the address of a longword
integer that identifies the attribute block from which the clipping rectangle
and mode are obtained.

X1J Y1
X2J Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
write only
by reference

World coordinate pair. The Xl and Yl arguments are addresses of Cfloating
point longwords that receive the coordinates of the lower-left corner of
the world coordinate clipping rectangle. The x2 and Y2 arguments are the
addresses of Cfloating point longwords that receive the coordinates of the
upper-right corner of the world coordinate dipping rectangle.

screen output

UIS Routine Descriptions
UIS$GET _CLIP

$ run set_c lip
Is clippinS enabled? ~ ~ALSE T TRUE
~

~ORTRAN PAUSE
$

~ORTRAN PAUSE
$ cont
I~ clippinS enabled? ~ ~ALSE T TRUE

T
~ORTRAN PAUSE
$

\

18-109

UIS Routine Descriptions
UIS$GET _COLOR

UIS$GET _COLOR

FORMAT

RETURNS

ARGUMENTS

18-110

Returns a single red green blue (RGB) color value associated with an entry
in a virtual color map.

UIS$GET COLOR vd_id, index, retr, retg, retb l,wd_idJ

UIS$GET_COLOR signals all errors; no condition values are returned.

vd Id
SeeSection 18.3.1 for a description of this argument.

Index
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Virtual color map index. The index argunlent is the address of a longword
that specifies the index of the virtual color map entry to be returned.

retr
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Red value. The retr argument is the address of an Cfloating point longword
that receives the red value. The red value is in the range of 0.0 to 1.0,
inclusive.

retg
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
write only
by reference

Green value. The retg argument is the address of an Cfloating point
longword that receives the green value. The green value is in the range of
0.0 to 1.0, inclusive.

illustration

UIS Routine Descriptions
UIS$GET _COLOR

retb
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Blu~ value. The retb argument is the address of an Cfloating point
longword that receives the blue value. The blue value is in the range
of 0.0 to 1.0, inclusive.

wd_ld
See Section 18.3.2 for a description of this argument.

. .
Color Value ,.. 8
Color Value 9 0.10 Red Value

Color Value 10 0.20 Green Value

Color Value 11 0.30 Blue Value

. .
'" Color Map Index

'" Virtual Color Map

ZK·5444·86

18-111

UIS Routine Descriptions
UIS$GET _COLORS

UIS$GET _COLORS

FORMAT

RETURNS

ARGUMENTS

18-112

Returns red, green, and blue (RGB) color values associated with one or
more entries in the virtual color map.

UIS$GET COLORS vd_id, index, count, retr_vector,
retg_vector, retb_vector {,wd_idJ

UIS$GET_COLORS signals all errors; no condition values are returned.

vd_ld
St=t= St=dion 18.3.1 for a description of this argument.

Index
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Starting color map index. The index argument is the address of a longword ~
that specifies the index of the first color map entry to be returned. ~

If the specified index exceeds the maximum index for the virtual color map,
an error is signaled.

count
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of virtual color map indices. The count argument is the address of
a longword that defines the total number of color map entries in the virtual
color map to be returned including the starting index.

If the total number of indices exceeds the maximum number of indices in
the virtual color, an error is signaled.

retr _vector
VMS Usage: vector _Iongword_signed
type: f_floating
access: write only
mechanism: by reference

Red values. The retr_vector argument is the address of an array of
Cfloating point longwords that receives the red color values. Each red
value is in the range of 0.0 to 1.0, inclusive.

illustration

UIS Routine Descriptions
UIS$GET _COLORS

retg_vector
VMS Usage: vector _Iongword_signed
type: f_floating
access: write only
mechanism: by reference

Green values. The rets-vector argument is the address of an array of
Cfloating point longwords that receives the green color values. Each green
value is in the range of 0.0 to 1.0, inclusive.

retb_vector
VMS Usage: vector _Iongword_signed
type: f_floating
access: write only
mechanism: by reference

Blue values. The retb_vector argument is the address of an array of
Cfloating point longwords that receives the blue color values. Each blue
value is in the range of 0.0 to 1.0, inclusive.

wd_ld
See Section 18.3.2 for a description of this argument.

If the wd_id argument is not specified, the red, green, and blue color
values returned are the set color values originally established by UIS$SET_
COLOR or UIS$SET_COLORS.

Color Map
Index

4

5

6

7

8

9

Red Value

Red Value

Red Value

Red Value

Red Value

Red Value

Red Value

· · ·
0.10

0.40

0.70

Green Value

Green Value

Green Value

Green Value

Green Value

Green Value

Green Value

· · ·
0.20

0.50

0.80

Blue Value

Blue Value

Blue Value

Blue Value

Blue Value

I Count

Blue Value

Blue Value

· · ·
0.30

0.60

0.90

ZK 5365·86

18-113

UIS Routine Descriptions
UIS$GET _CURRENT_OBJECT

UIS$GET _CURRENT_OBJECT

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

18-114

Returns the identifier of the last object drawn in the virtual display and
added to the display list.

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the identifier of the current object in the
variabie currentjd or RG [vAX lviACRO).

UIS$GET_CURRENT_OBJECT signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

If there are no objects in the display list, the root segment identifier
is returned. If UIS$GET_CURRENT_OBJECT is called after a call to
UIS$SET _INSERTION_POSITION, the returned identifier is based on
the current insertion position in the segment.

screen output

UIS Routine' Descriptions
UIS$GET _CURRENT _OBJECT

'$ run get_currobj
Identifier of current object: 114752
FORTRAN PAUSE
$

ZK·5397·86

18-115

UIS Routine Descriptions
UIS$GET _DISPLAY_SIZE

U IS$G ET _DISPLAY_SIZE

FORMAT

RETURNS

ARGUMENTS

18-116

Obtains the dimensions of the workstation display screen.

UIS$GET _DISPLAY_SIZE devnam, retwidth,
retheight [, retresolx,
retresoly] [, retpwidth,
retpheight]

UIS$GET_DISPLAY_SIZE signals all errors; no condition values are
returned.

devnam
See Section 18.3.9 for more information about this argument.

refwldfh
refhelghf
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

VAXstation display screen size. The retwidth and retheight arguments
are the addresses of Cfloating point longwords that receive the physical
display screen width and height in centimeters.

refreso/x
refresoly
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

V AXstation display screen resolution. The retresolx and retresoly
arguments are the addresses of Cfloating point longwords that receive
the x and y resolution in pixels per centimeters.

refpwldfh
refphelghf
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

VAXstation screen size in pixels. The retpwidth and retpheight argunlents
are the addresses of integer longwords that receive the width and height of
the screen in pixels.

DESCRIPTION

UIS Routine Descriptions
UIS$GET _DISPLAY_SIZE

Use height and width dimensions to determine the size of a virtual display
or viewport. Use resolution values when it is important for the application
to determine the exact physical size (or world coordinate dimensions) that
map to a single pixel.

18-117

UIS Routine Descriptions
UIS$GET _DISPLAY_SIZE

screen output

$ run !et_display
Display screen characteristics
width = 33.58 cm heisht = 28.34 cm
x resolution = 30.49 pixels/em
y resolution = 30.49 pixels/em
width = 1024 pixels hei!ht = 864 pixels
F'ORTRAN PAUSE
$

I ~

----------------------------Z-KS449.86 ~

18-118

FORMAT

RETURNS

ARGUMENTS

Returns the index of the fill pattern.

UIS Routine Descriptions
UIS$GET FILL PATTERN - -

status = UIS$GET _FILL_PATTERN vd_id, atb [,index]

VMS Usage: Boolean
type: longword
access: write only
mechanism: by value

Boolean value returned as the filling mode in a status variable or RO (VAX
MACRO). The Boolean TRUE is returned if filling is enabled, otherwise the
Boolean value is FALSE.

UIS$GET_FILL_PATTERN signals all errors; no condition values are
returned.

vd_ld
See Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies the attribute block from which the fill pattern index is
obtained.

Index
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Index of the fill pattern. The index argument is the address of a longword
that receives the value of the fill pattern symbol index. This is the index of
a glyph in a fill pattern font.

18-119

UIS Routine Descriptions
UIS$GET _FILL_PATTERN

screen output

18-120

-
$ run get_fill
Are fill patterns enabled? F = FALSE T = TRUE

T
What is the index of the current fill pattern?

7
FORTRAN PAUSE
$

• I I I IIIIII I I •

lK·5391·86

UIS Routine Descriptions
UIS$GET _FONT

UIS$GET _FONT

FORMAT

RETURNS

ARGUMENTS

Returns the name of font file.

UIS$GET _FONT vd_id, atb, bufferdesc [,length]

UIS$GET_FONT signals all errors; no condition values are returned.

vd_ld
See Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies the attribute block from which the font file name is
obtained.

bufferdesc
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

Font file name string. The bufferdesc argument is the address of a
character string descriptor of a location that receives the font file name
character string.

length
VMS Usage:
type:
access:
mechanism:

word_signed
word (signed)
write only
by reference

Length of the font file character string. The length argulnent is the address
of a word that receives the length of font file nalne character string.

18-121

UIS Routine Descriptions
UIS$GET_FONT

screen output
$ run get_fontname
font name is DTABEROR07SKOOGG0001UZZZZ02AOOO

18-122

length of font name is
FORTRAN PAUSE
$

31 characters

... - --- .. - - . ne more ~ne merr1e
ZK·5392·86

UIS Routine Descriptions
UIS$GET _FONT_ATTRIBUTES

UIS$GET _FONT_ATTRIBUTES

FORMAT

RETURNS

ARGUMENTS

Returns information about the ascender, descender, height, width, and
font parameters.

UIS$GET_FONT_ATTRIBUTES font_id, ascender,
descender, height
[, maximum_width]
[item _list]

UIS$GET_FONT_ATTRIBUTES signals all errors; no condition values are
returned.

font Id
VMS Usage:
type:
access:
mechanism:

char_string
character string
read only
by descriptor

Font file name. The font_id argument is the address of a string descriptor
of the font file name only. UIS searches the directory SYS$FONT for the
correct file type.

ascender
descender
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Character ascender and descender. The ascender argument is the address
of a longword that receives the distance between the font baseline and the
top of the character cell in pixels. The descender argument is the address
of a longword that receives the distance between the font baseline and the
bottom of the character cell in pixels.

height
VMS Usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
write only
by reference

Height of the character cell. The height argument is the address of a
longword that receives the height of the character cell in pixels.

18-123

UIS Routine Descriptions
UIS$GET _FONT_ATTRIBUTES

18-124

maximum_width
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Maximum width of a character cell. The maximum_width argument is the
address of a longword that receives the maximum width of a character cell
in the font in pixels.

Item_list
VMS Usage: itemJist_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying additional font information to be returned. The item
list argument is the address of a list of item descriptors, each of which
describes an item of information. A iongword vaiue of 0 terminates the iist
of item descriptors.

The structure of the item list is described in the following figure.

31 15

item code I buffer length

buffer address

return length address

ZK-1705-E

The following table lists valid item codes.

Item Code

Character Information

UIS$C_FNT _FIRST_CHAR

UIS$C_FNT _LAST_CHAR

UIS$C_FNT _GUTPERPIX_X

UIS$C_FNT _GUTPERPIX_ Y

UIS$C_FNT _AVERAGE_GUTl

UIS$C_FNT _WIDTH

Font Flags2

Information Returned

First character in the font

Last defined character in the font

x resolution of the font in gutenbergs per pixel

y resolution of the font in gutenbergs per pixel

Average width of a character in the font

Width in pixels of all glyphs in the font, if the
font is monospaced_ A zero is returned, if the
font is proportionally spaced_

lThe font designer assigns this number. Although, the graphics subsystem copies
the number, no interpretation is applied to it. UIS does not use the number.

2The value 1 is returned, if TRUE, and 0, if FALSE.

screen output

UIS Routine Descriptions
UIS$GET _FONT_ATTRIBUTES

Item Code Information Returned

Font Flags2

True, if the font is monospaced
False, if the font is proportionally spaced.

UIS$C_FNT _CELLEQRAST True, if the cell width of all glyphs in the font
equals the width the glyph's raster.

True, if this is a VA font.

Font Name

Font identifier string

2The value 1 is returned, if TRUE, and 0, if FALSE.

$ run get_fontattr
font name is DTABEROR07SKOOGG0001UZZZZ02AOOO
length of font name is
FORTRAN PAUSE
$ cont
length of ascender
length of descender
eight of character cell

FORTRAN PAUSE
$

31 characters

26 pixels
4 pixels

30 pixels

~ ~~~-------~-----------------

The more the • merr1er

ZK·5282·86

18-125

UIS Routine Descriptions
UIS$GET _FONT_SIZE

UIS$GET _FONT_SIZE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-126

Obtains the size of a character or string of characters in the specified font
in physical dimensions.

UIS$GET_FONT_SIZE fontid, text_string, retwidth,
retheight

UIS$GET ~FONT _SIZE signals all errors; no condition values are returned.

fontla
VMS Usage:
type:
access:
mechanism:

char_string
character string
read only
by descriptor

Font identifier. The fontid argument is the address of a character string
descriptor of a font file name. Specify only the font file name. VIS
searches the directory SYS$FONT for the correct file type.

text_string
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Text string. The texCstring argument is the address of a descriptor of a
character or character string.

retwldth
rethelght
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

String width and height. . The retwidth and retheight arguments are the
addresses of Cfloating point longwords that receive the width and height
of the character or character string in centimeters.

UIS$GET _FONT _SIZE can be used to determine the proper size of a
display viewport based on the size of the characters in a given font.

screen output

UIS Routine Descriptions
UIS$GET _FONT_SIZE

$ run ~et_fontsize
string length = 11.01970 em
character height = 0.4919507 cm
FORTRAN PAUSE
$

- --~ - - - -- - -- -- - - -- - - - - - - -- - - -- - - - -

Bad news trave1s fast

ZK·5283·86

18-127

UIS Routine Descriptions
UIS$GET _HW_COLOR_INFO

FORMAT

Da::TIIDf\I~
I I VIII"~

ARGUMENTS

18-128

Returns information about the hardware color map.

UIS$GET_HW_COLOR_INFO devnam [,type}
[, indices} [, colors}
[, maps} [, rbits}
[,gbits} [,bbits} [,ibits}
[, res_indices} [, regen}

TTT~~C:RT HW rOTOR Tl\TPO Qlo-n~lQ ~11 P1"'f'n'f'Q' nn ("nnrHHnn ,,~111PQ ~'f'P ----r---_--. ¥_------_-- ... - - --0- ... _ ... - _ ... _- ----- , _ ... -- --- ... _ ... - ... --_,----- ---

returned.

devnam
See Section 18.3.9 for more information about this argument.

type
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
write only
by reference

Device type. The type argument is the address of a longword that receives
the device type. The following table lists device type values.

Device Type

Monochrome

Intensity

Color

Indices

Value

UIS$C_DEV _MONO

UIS$C_DEV _INTENSITY

UIS$C_DEV_COLOR

VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Possible
Colors

Black and white

Up to 224 gray tones

Up to 224 chromatic colors

Number of entries or simultaneous colors. The indices argument is the
address of longword that receives the nUlllber of entries or sinlultaneous
colors in the hardware color map.

colors
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

UIS Routine Descriptions
UIS$GET _HW_COLOR_INFO

Number of possible colors. The colors argument is the address of a
longword that receives the number of possible colors represented in the
color Inap. For example monochrome equals 2.

maps
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
write only
by reference

Number of hardware color maps. The maps argument is the address of a
longword that receives the number of hardware color maps.

rblts
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Number of binary bits of precision for red. The rbits argument is the
address of a longword that receives the number of binary bits of precision
for the color red.

gblts
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
write only
by reference

Number of binary bits of precision for green. The gbits argument is the
address of a longword that receives the number of binary bits of precision
for the color green.

bblts
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Number of binary bits of precision "for blue. The bbits argument is the
address of a longword that receives the number of binary bits of precision
for the color blue.

Iblts
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Number of binary bits of precision for intensity. The ibits argument is the
address of a longword that receives the number of binary bits of precision
for intensity.

18-129

UIS Routine Descriptions
UIS$GET_HW_COLOR_INFO

18-130

res_Indices
VMS Usage: ,ongword_signed
type: longword (signed)
access: write only
mechanism: by reference

Number entries in the hardware color map reserved for special use. The
res_indices argument is the address of a longword that receives the number
entries in the hardware color map reserved for special use.

regen
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
write only
by reference

Color regeneration characteristics. The regen argument is the address
of a longword that receives the color regeneration characteristics. The
regen argument indicate9 whpth~r thE' colo!' a!1d inte!1sity changes affe~t
previously drawn display objects that specified the same color index in. the
hardware look up table. The following symbols are valid values: UIS$C_
DEV_RETRO or UIS$C_DEV_NONRETRO.

The following table summarizes regeneration characteristics of direct and
mapped color systems.

System

Direct color

Mapped color

Regeneration Characteristics

Usually sequential

Usually retroactive

UIS Routine Descriptions
UIS$GET _INTENSITIES

UIS$GET _INTENSITIES

FORMAT

RETURNS

ARGUMENTS

Returns intensity values associated with one or more entries in the virtual
color map.

UIS$GET INTENSITIES vd_id, index, count,
reti_vector [, wd_idJ

UIS$GET_INTENSITIES signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

Index
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Starting color map index. The index argument is the address of a longword
that specifies the index of the first color map entry to be returned. If the
specified index exceeds the maximum index of the virtual color map, an
error is signaled.

count
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of indices. The count argument is the address of a longword that
specifies the total number of color map entries to be returned including
the starting index. If the specified count exceeds the maximum number of
virtual color map entries, an error is signaled.

retl_vector
VMS Usage: vector _Iongword_signed
type: f_floating
access: write only
mechanism: by reference

Intensity values. The retCvector argument is the address of an array of
Cfloating point longwords that receives the intensity values. Each intensity
value is in the range of 0.0 to 1.0, inclusively.

wd_Id
See Section 18.3.2 for a description of this argument.

If the wd_id argument is not specified, the intensity values returned are
set color values originally established by a call to UIS$SET_INTENSITY or
UIS$SET _INTENSITIES.

18-131

UIS Routine Descriptions
UIS$GET _INTENSITIES

illustration

10

11

12

13

14

15

<16
"

18-132

· ·
Intensity Value

Intensity Value

Intensity Value

Intensity Value

Intensity Value

Intensity Value

Intensity Value

· ·
Color Map Index

/count

0.10

0.15

0.26

ZK·5445·86

UIS Routine Descriptions
UIS$GET _INTENSITY

UIS$GET _INTENSITY

FORMAT

RETURNS

ARGUMENTS

Returns the intensity value associated with a single entry in the color map.

UIS$GET _INTENSITY vd_id, index, reti, [, wd_idJ

UIS$GET _INTENSITY signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

index
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Color map index. The index argument is the address of a longword integer
that identifies the index of an entry in the color map associated with the
virtual display. If the specified index exceeds the maximum number of
indices in the virtual color lllap, an error is signaled.

refl
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Intensity value. The reti argument is the address of an Cfloating point
longword that receives the intensity value. The intensity value is in the
range of 0.0, to 1.0, inclusive.

wd_ld
See Section 18.3.2 for a description of this argument.

If the wd_id argument is not specified, the returned intensity values are set
to the intensity originally established by a call to UIS$SET _INTENSITY or
UIS$SET _INTENSITIES.

18-133

UIS Routine Descriptions
UIS$GET _INTENSITY

illustration

6

7

8

9

10

18-134

· ·
Intensity Value

Intensity Value

Intensity Value

Intensity Value

Intensity Value

Intensity Value
0.55

· ·
r"_I __ .. .a __ 1_ _ ...
vVIVI IVla.., "IUCA

ZK5446·86

UISRoutine Descriptions
UIS$GET _KB_ATTRI8UTES

U IS$G ET _KB_ATTRI BUTES

FORMAT

RETURNS

ARGUMENTS

Returns the virtual keyboard characteristics.

UIS$GET_KB_ATTRIBUTES kb_id [,enable_items}
[, disable _items} [, click_vol

UIS$GET_KB_ATTRIBUTES signals all errors; no condition values are
returned.

kb Id
See-Section 18.3.8 for more information about the kb_id argument.

enab'e_'tems
VMS Usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Enabled keyboard characteristics. The enable_items argument is the
address of a longword mask that receives the bit mask of the enabled
keyboard characteristics.

d'sable_'tems
VMS Usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Disabled keyboard characteristics. The disable_items argument is the
address of a longword mask that receives the bit mask of the disabled
keyboard characteristics.

click_volume
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Key click volume level. The click_volume argument is the address of a
longword that receives the key click volume level. The key click volume is
in the range of 1 to 8, inclusively, where 1 is quiet and 8 is loud.

18-135

UIS Routine Descriptions
UIS$GET _KB_ATTRIBUTES

DESCRIPTION

18-136

The enable and disable item lists are longword masks containing bits
designating the characteristics to be enabled or disabled. The valid bits in
the keyboard characteristics enable and disable masks are:

Symbol

UIS$M_KB_AUTORPT

UIS$M_KB_KEYCLICK

UIS$M_KB_UDF6

UIS$M_KB_AAAOW

UIS$M_KB_KEYPAD

Description 1

Enable/disable keyboard autorepeat

Enable/disable keyboard keyclick

Enable/disable up button transitions for ~ to IF101
keys

Enable/disable up button transitions for [ill to 1 F141
keys

Enable/disable up button transitions for IF171 to IF201
keys

Enable/disable up button transitions for IHELPI and [56-1
keys

Enable/disable up button transitions for [[I] to [§]
keys

Enable/disable up button transitions for arrow keys

Enable/disable up button transitions for numeric
keypad keys

1 By default down button transitions are enabled.

FORMAT

RETURNS

ARGUMENTS

Returns the line style patterns.

UIS Routine Descriptions
UIS$GET LINE STYLE - -

style = UIS$GET_LINE_STYLE vd_id, atb

VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by value

Longword value returned as the line style bit vector in the variable style or
RO (VAX MACRO).

UIS$GET_LINE_STYLE signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

arb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies an attribute block from which the line style pattern or
bit vector is obtained.

18-137

UIS Routine Descriptions
UIS$GET _LINE_STYLE

screen output

18-138

$ run get_linestyle
line no.1 style = FOFOFOFO
line no.2 style = FOOFOOFO
line no.3 style = COCOCOCO
FORTRAN PAUSE
$

I
l

...
l

l

l
I /

I /

I
I /

I / ~ ~
1/ ~ ~

.'

I
I

I
I

I

I

l
I

I

/

/

I
I

I

I
I

I

I

I

I
I

I
I /

I /

I
/

I

/
/

/

/
~~

""
.'"

....

/

/

/

/
/

/

/
/

/

ZK·5396·86

UIS Routine Descriptions
UIS$GET _LINE_WIDTH

UIS$GET _LINE_WIDTH

FORMAT

RETURNS

ARGUMENTS

Returns the line width.

width = UIS$GET_LINE_WIDTH vd_id, atb [,model

VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by value

F _floating point value returned as the line width in the variable width or RO
(VAX MACRO).

UIS$GET_LINE_WIDTH signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

afb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies the attribute block from which the line width is
obtained.

mode
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Line width mode. The optional mode argument is the address of a
longword that receives the line width specification mode (UIS$C_ WIDTH_
WORLD or UIS$C_ WIDTH_PIXELS). If UIS$C_ WIDTH_WORLD is
returned, the line width is interpreted as world coordinates. If UIS$C_
WIDTH_PIXELS is returned, the line width is interpreted as pixels.

18-139

UIS Routine Descriptions
UIS$GET _LINE_WIDTH

screen output

18-140

$ run get_linewidth
line width = 1.00 pixels
line width = 2.00 pixel~
line width = 2.00 pixels
line width = 3.00 pixels
line width = 4.00 pixels
line width = 5.00 pixel~
line width = 6.00 pixels
FORTRAN PAUSE
$

ZK·5395·86

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$GET _NEXT_OBJECT

Returns the identifier of the next object in the display list.

next_id= UIS$GET_NEXT_OBJECT

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Longword value returned as the next object identifier in the variable
nextjd or RO (VAX MACRO). The next object identifier uniquely identifies
the next specified object in the display list and is used as an argument in
other routines.

UIS$GET_NEXT_OBJECT signals all errors; no condition values are
returned.

obj_ld
See Section 18.3.3 for a description of this argument.

seg_ld
See Section 18.3.4 for a description of this argument.

flags
VMS Usage:
type:
access:
mechanism:

maskJongword
longword (unsigned)
read only
by reference

Flags. The flags argument is the address of a longword that controls how
the display list is searched. If the flags argument is set using UIS$M_DL_
SAME_SEGMENT, the next object in the segment containing the object
specified is returned.

If the flags argument is omitted, the next object in the display list,
regardless of the segment in which it is contained, is returned.

DESCRIPTION If a zero is returned, the next object was not found.

18-141

UIS Routine Descriptions
UIS$GET _OBJECT_ATTRIBUTES

UIS$GET _OBJECT_ATTRIBUTES

FORMAT

RETURNS

18-142

Returns the type and extent of the specified object.

type = UIS$GET_OBJECT_ATTRIBUTES

VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by value

Longword value returned as the object type in the variable type or RO
(VAX MACRO). An object type identifies a graphic object such as images,
points lines, or ellipses, a display list structure such as a segnlent, or the
occurrence of an event such as movement to a new text line. Possible valid
objects are listed in the following table.

Symbol

UIS$C_OBJECT _SEGMENT

UIS$C_OBJECT _PLOT

UIS$C_OBJECT _TEXT

UIS$C_OBJECT _ELLIPSE

UIS$C_OBJECT _IMAGE

UIS$C_OBJECT _LINE

Description

Segment

Point, line, connected lines, or polygon

Characters

Elliptical or circular arcs, circles and ellipses

Raster image

Unconnected lines

UIS$C_OBJECT _NEW_TEXT _ New text line
LINE

UIS$GET_OBJECT_ATTRIBUTES signals all errors; no condition values are
returned.

ARGUMENTS

UIS Routine Descriptions
UIS$GET _OBJECT_ATTRIBUTES

obj_ld
See Section 18.3.3 for a description of this argument.

seg_ld
See Section 18.3.4 for a description of this argument.

extent
VMS Usage: vector _Iongword_signed
type: f_floating
access: write only
mechanism: by reference

World coordinates of the extent rectangle. The extent argument is the
address of an array of four longwords that receives the values of the world
coordinates of the lower-left corner and the upper-right corner· of the extent
rectangle containing the object.

18-143

UIS Routine Descriptions
UIS$GET _OBJECT_ATTRIBUTES

screen output

18-144

$ RUN WALK
DISPlAY LIST ELEMENTS

IDENTIFIER
113992
115328
115575
115822
116069
116316
116810
117057
FORTRAN PAUSE
$

OBJECT TYPE
UIS$C_OBJECT_SEGMENT
UIS$C_OBJECT_ELLIPSE
UIS$C_OBJECT_PLOT
UIS$C_OBJECT_PLOT
UIS$C_OBJECT_PLOT
UIS$C_OBJECT_TEXT
UIS$C_OBJECT_TEXT
UIS$C_OBJECT_LINE

-- -- - ~ ~----- ------------- --------~----~-

--~- - -----~~----- ----- -- ------------~----- -

The foot~tep~ of fortune are ~lippery
Mirth without mea~ure i~ madne~~

I I

~ II

UIS Routine Descriptions
UIS$GET _PARENT_SEGMENT

UIS$GET _PARENT_SEGMENT

FORMAT

RETURNS

ARGUMENTS

Returns the parent segment identifier of the specified object.

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the parent segment identifier in the variable
parenCid or RO (VAX MACRO). The parent segment identifier uniquely
identifies a parent segment and is used as an argument in other routines.

UIS$GET_PARENT_SEGMENT signals all errors; no condition values are
returned.

See Section 18.3.3 for a description of this argument.

See Section 18.3.4 for a description of this argument.

DESCRIPTION If the specified object is the outermost segment or root segment, its own
object identifier is returned.

V4.1-June 1989 18-145

UIS Routine Descriptions
UIS$GET _PLANE_MASK

FORMAT

RETURNS

ARGUMENTS

Returns the mask value that identifies on which planes UIS writes.

VMS Usage: bitfield mask
type: mask (Iongword)
access: write only
mechanism: by reference

A 32~bit mask that identifies which planes are being written to. This value
is extracted from the ATB and returned in RO.

vd_ld
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Virtual display identifier. The vd_id argument is the address of a longword
that uniquely identifies a virtual display.

arb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Input attribute block number. The atb argument is the address of a
longword integer that identifies an attribute block to be modified.

DESCRIPTION UIS$GET_PLANE_MASK returns the mask value that identifies which
planes are being written to.

NOTE: UIS retains only the significant portion of the plane mask provided.

18-146 V4.1-June 1989

UIS Routine Descriptions
UIS$GET _POINTER_POSITION

UIS$GET _POINTER_POSITION

FORMAT

RETURNS

ARGUMENTS

Returns the current pointer position in world coordinates.

status = UIS$GET_POINTER_POSITION vd_id,
wd_id, retx,
rety

VMS Usage: Boolean
type: longword
access: write only
mechanism: by value

Boolean value returned as the current position of the pointer in a status
variable. UIS$GET_POINTER_POSITION returns the Boolean true value 1
if the pointer is within the visible portion of the viewport, 0 is returned if
the pointer is outside the visible portion of the viewport. In the latter case,
the x and y values are returned as 0,0.

UIS$GET _POINTER_POSITION signals all errors; no condition values are
returned.

See Section 18.3.1 for a description of this argument.

See Section 18.3.2 for a description of this argument.

retx
rety
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

World coordinate pair. The retx and rety argl1l11ents are the addresses of C
floating point longwords that receive the pointer x and y world coordinates.

DESCRIPTION Note that when you use this routine you should always test the returned
status value, since if the pointer is outside the window when the service is
called, the returned x, y values would be meaningless.

V4.1-June 1989 18-146.1

UIS Routine Descriptions
UIS$GET _POSITION

UIS$GET _POSITION

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Returns the current baseline position for text output.

UIS$GET POSITION vd_id, retx, rety

UIS$GET_POSITION signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

retx
rety
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
write only
by reference

World coordinate pair. The retx and rety arguments are addresses of
Cfloating point longwords that receive the x and y world coordinate
positions.

UIS$TEXT and UIS$NEW _ TEXT_LINE recognize the concept of current
position. The position refers to the alignment point on the baseline of the
next character to be output.

18-147

UIS Routine Descriptions
UIS$GET _POSITION

screen output

$ run set_pos
What is the current text pos it ion in wor·ld coord inates?
x coordinate = 18.10
Y coordinate = 13.58
What is the current text position in world coordinates?
x coordina.te = 18.10
Y coordinate = 3.54
FORTRAN PAUSE

Current position after
text drawing (18.10. 13.58)

18-148

Current position after
text drawing (18.10. 3.54)

Baseline Vector

ZK·5ot13·86

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$GET _PREVIOUS_OBJECT

Returns the identifier of the previous object in the display list.

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the previous object identifier in the variable
prevjd or RO (V AX MACRO). The previous object identifier uniquely
identifies the previous object in the display list and is used as an argument
in other routines.

UIS$GET_PREVIOUS_OBJECT signals all errors; no condition values are
returned.

obj_ld
See Section 18.3.3 for a description of this argument.

seg_ld
See Section 18.3.4 for a description of this argument.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by reference

Flags. The flags argument is the address of a longword that controls how
the display list is searched. If the flags argument is specified using UIS$M_
DL_SAME_SEGMENT, the previous object in the segment containing the
object specified is returned.

If the flags argument is omitted, the previous object in the display list,
regardless of the segment in which it is contained, is returned.

DESCRIPTION If no previous object is found, a zero is returned.

18-149

UIS Routine Descriptions
UIS$GET _PREVIOUS_OBJECT

illustration

level 0

level 1

level 0

level 1

18-150

The following figure illustrates how UIS$GET_PREVIOUS_OBJECT returns
the object identifier of each previous object within the same segment.

Root Segment

Plot Ellipse Text Segment Text

Segment Image New Text line Text Ellipse
t'--f""- t "'--t~ t

prev_id prev_id prev_id prev_id current_id

ZK5363·86

The following figure illustrates how UIS$GET_PREVIOUS_OBJECT returns
the object identifier of all objects in the display list.

Root Segment

Plot Ellipse Text Segment Text
• '--- t '--- • '----- t "--- t

prev_id prev_id prev_id prev_id prev_id

I
Plot New Text Line Text Ellipse
.~ • ~t~.

prev_id prev_id prev_id current_id

ZK 5364 86

UIS Routine Descriptions
UIS$GET ROOT SEGMENT - -

UIS$GET _ROOT _SEGMENT

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

Returns the root segment of the specified virtual display.

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the root segment identifier in the variable mof_
id or RO 01 AX MACRO). The root segment identifier uniquely identifies the
root segment.

UIS$GET_ROOT_SEGMENT signals all errors; no condition values are
returned.

vd_ld
See Section 18.3.1 for a description of this argument.

Use UIS$GET_ROOT_SEGMENT with UIS$EXTRACT_OBJECT to extract
an entire display list.

18-151

UIS Routine Descriptions
UIS$GET _ROOT_SEGMENT

screen output

18-152

$ run get_root~eg
The root segment identifier for virtual display is 112968
FORTRAN PAUSE
$

- ~~- ~ - -~ ~~- -------~- -- ~ -

Root Segment I 'ooU"

Ellipse Plot Ellipse

ZK·5366-86

UIS Routine Descriptions
UIS$GET TB INFO

UIS$GET _ TB_INFO

FORMAT

RETURNS

ARGUMENTS

Returns the characteristics of the tablet device.

status = UIS$GET_TB_INFO devnam, retwidth,
retheight, re{resolx,
retresoly [, retpwidth,
retpheight]

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword value returned in a status variable. If the value 1 is returned, the
pointing device is a tablet. If the value 0 is returned, the pointing device is
a mouse and the returned information will be zeros. A tablet is required
for digitizing.

UIS$GET_ TB_INFO signals all errors; no condition values are returned.

devnam
See Section 18.3.9 for more information about this argument.

refwldfh
refheighf
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Tablet width and height. The retwidth argument is the address of an C
floating point longword that receives the width of the tablet in centimeters.
The retheight argument is the address of an Cfloating point longword that
receives the height of the tablet in centimeters.

refreso/x
refresoly
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Tablet x and y resolution. The retresolx argU111ent is the address of an C
floating longword that receives the x resolution of the tablet in centimeters
per pixel. The retresoly argun1ent is the address of an Cfloating point
longword that receives the y resolution of the tablet in centitneters per
pixel.

18-153

UIS Routine Descriptions
UIS$GET _ TB_INFO

DESCRIPTION

/

18-154

refpwldfh
retphelght
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Tablet width and height. The retpwidth argument. is the address of a
longword that receives the width of the tablet in pixels. The retpheight
argument is the address of a longword that receives the height of the tAblet
in pixels.

Call UIS$GET_TB_INFO before you establish digitizing. UIS$GET_TB_
INFO returns a value indicating whether the device is a mouse or tablet. A
tablet is required for digitizing.

Note'that if you unplug the tablet and replace it with a mouse while running
an application, you might invalidate the results of this call.

UIS Routine Descriptions
UIS$GET _ TB_POSITION

UIS$GET _ TB_POSITION

FORMAT

RETURNS

ARGUMENTS

Polls for the position of the pointing device on the tablet.

UIS$GET _ TB_POSITION tb_id ,retx ,rety

UIS$GET_ TB_POSITION signals all errors; no condition values are
returned.

tb Id
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Tablet identifier. The tb _id argument is the address of a longword that
uniquely identifies the tablet. See UIS$CREA TE_ TB for more information
about the tb _id argument.

retx
rety
VMS Usage: floating_point
type: . f_floating
access: write only
mechanism: by reference

Digitizer position. The retx, rety arguments are the addresses of Cfloating .
numbers that define the current digitizer position.

DESCRIPTION The digitizer position is not available if the pointing device is a mouse.

If the pointer is not on the tablet, UIS$GET_TB_POSITION returns the last
reported pointer.

18-155

UIS Routine Descriptions
UIS$GET _TEXT _FORMATTING

UIS$GET _TEXT _FORMATTING

FORMAT

RETURNS

ARGUMENTS

18-156

Returns a mask describing the enabled text formatting modes.

formatting = UIS$GET_TEXT_FORMATTING vd_id,
atb

VMS Usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by value

Longword mask returned as the current formatting mode in the variable
formatting or RO (VAX MACRO). The following table lists the formatting
modes.

Formatting Mode

UIS$C_ TEXT _FORMAT_LEFT

UIS$C_ TEXT _FORMAT_RIGHT

UIS$C_ TEXT _FORMAT_CENTER

UIS$C_ TEXT _FORMAT_JUSTIFY

UIS$C_ TEXT_FORMAT _NOJUSTIFY

Function

Left justified, ragged right (default)

Right justified, left ragged

Centered line between left and right
margin

Justified lines, space filled to right
margin

No text justification

UIS$GET_TEXT_FORMATTING signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argunlent is the address of a longword
that identifies an attribute block containing the text fonnatting attribute
setting to be returned.

UIS Routine Descriptions
UIS$GET _TEXT_MARGINS

UIS$GET_ TEXT _MARGINS

FORMAT

RETURNS

ARGUMENTS

Returns the text margins for a line of text.

UIS$GET_TEXT_MARGINS vd_id ,atb ,x ,Y
[, margin_length]

UIS$GET_TEXT_MARGINS signals all errors; no condition values are
returned.

vd Id
See Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: fongword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block containing the modified text margins
attribute.

x
y
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
write only
by reference

Starting nlargin position. The x,y arguments are the addresses of Cfloating
longwords that receive the starting margin relative to the direction of text
drawing.

margin_'ength
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Ending margin position. The margin_length is the address of an Cfloating
longword that receives the distance to the end Inargin. The Inargin is
measured along the actual path of text drawing in the direction of the major
text path.

18-157

UIS Routine Descriptions
UIS$GET _TEXT_MARGINS

screen output

$ run !et_mar!in~
mar~in settings
left mar~in x coordinate 5,00
left margin y coordinate 15,00
di~tance from left margin to ri!ht mar!in
FORTRAN PAUSE
$

20,00

--- ---------------~--------------------- - - -- - -

18-158

----- -- --- -------- ~--- ----~- - -- ----

~oist your sail when the wind is fa.ir
Hoist your sail when the wind is fair
Hoist your sail when the wind is fair
Hoist your sail when the wind is fair
Hoist your sail when the wind is fa.ir

ZK5281·86

UIS Routine Descriptions
UIS$GET TEXT PATH - -

UIS$GET _TEXT _PATH

FORMAT

RETURNS

ARGUMENTS

Returns text path types. See UIS$SET _TEXT _PATH for information about
valid text path types.

UIS$GET_TEXT_PATH vd_id, atb [,major] [,minor]

UIS$GET_TEXT_PATH signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a number that
identifies an attribute block containing the text path attribute setting to be
returned.

major
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
write only
by reference

Major text path type. The major argument is the address of a code that
identifies a major text path type. The major text path of text drawing is the
direction of text drawing along a line.

minor
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Minor text path type. The minor argument is the address of a code that
identifies a minor text path type. The minor path of text drawi,ng is the
direction used for new text line creation.

18-159

UIS Routine Descriptions
UIS$GET_TEXT_PATH

DESCRIPTION The following table contains symbols for valid character drawing directions.

18-160

Path

UIS$C_ TEXT _PATH_RIGHT

UIS$C_ TEXT _PATH_LEFT

UIS$C_ TEXT _PATH_UP

UIS$C_ TEXT _PATH_DOWN

Direction

Left to right (default major text path)

Right to left

Bottom to top

Top to bottom (default minor text path)

UIS Routine Descriptions
UIS$GET _TEXT_SLOPE

UIS$GET _ TEXT_SLOPE

FORMAT

RETURNS

ARGUMENTS

Returns the angle of the actual path of text drawing relative to the major
path in degrees.

angle=UIS$GET_TEXT_SLOPE vd_id, atb

VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by value

Longword value returned as the angle of the actual path of text drawing
relative to the major path in degrees in the variable angle or RO (VAX
MACRO). Degrees are measured counterclockwise.

UIS$GET _TEXT _SLOPE signals all errors; no condition values are returned.

vd id
See-Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block from which the text slope attribute setting
is to be returned.

18-161

UIS Routine Descriptions
UIS$GET _TEXT_SLOPE

screen output
$ run get_slope
The an!5le of the
The an!le of the
The an!5 le of the
The ansle of the
The angle of th~
The ~.n!le of the
The angle of the
The ansle of the
The an!5 l e of the
The angle of the
The an!5le of the
F'ORTRAN PAUS E .
$

text baseline is 0.00
text baseline is 34.00
text baseline is 68.00
text ba~eline i~ 102.00
text baseline is 136.00
text ba~eline is 170.00
text baseline is 204.00
text baseline is 238.00
text baseline is 272.00
text baseline is 306.00
-+:ext baseline is 340.00

----~---- - -- -- - --- - -- - - -

_____ ------c ~ _____ ~~;.;t slope __ _

. ..-

18-162

desrees
de!rees
desrees
de!rees
desrees
de!rees
desrees
de!ree~

desrees
de!rees
desrees

FORMAT

RETURNS

ARGUMENT

UIS Routine Descriptions
UIS$GET VCM 10 - -

Returns the virtual color map identifier used by the specified virtual display.

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the virtual color map identifier in the
variable vcmjd or RO (VAX MACRO). The virtual color map identifier
uniquely identifies a virtual color map for a specified virtual display.
See UIS$CREATE_ COLOR_MAP for more infonnation about the vCffi_id
argument.

UIS$GET_ VCM_ID signals all errors; no condition values are returned.

vd_ld
See Section 18.3.1 for a description of this argument.

18-163

UIS Routine Descriptions
UIS$GET _VIEWPORT _IC9N

UIS$GET _VIEWPORT _ICON

FORMAT

RETURNS

ARGUMENTS

screen output

18-164

Returns Boolean value indicating whether an icon has replaced a .viewport.

Boolean = UIS$GET _VIEWPORT_ICON wd_id
[,icon_wd_idJ

VMS Usage: Boolean
type: longword (unsigned)
access: write only
mechanism: by value

Boolean value returned in a status variable or RO (VAX MACRO) indicating
whether an icon has replaced a viewport. A 1 denotes a TRUE condition; 0
denotes a FALSE condition.

UIS$GET_ VIEWPORT_ICON signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for a description of this argument.

Icon_wd_ld
VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Icon identifier. The icon_wd_id argument is the address of a longword that
uniquely identifies the icon.

$ run window_options
Is the icon is visible?F = FALSE T = TRUE

T

•
l.COn

ZK5270-86

UIS Routine Descriptions
UIS$GET _VIEWPORT_POSITION

UIS$GET _VIEWPORT _POSITION

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

screen output

Returns the position of the lower-left corner of the display viewport relative
to the lower-left corner of the screen.

UIS$GET _VIEWPORT_POSITION wd_id, retx, rety

UIS$GET_ VIEWPORT_POSITION signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for a description of this argument

retx
rety
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
write only
by reference

Absolute device coordinate pair. The retx and rely arguments are the
addresses of Cfloating point longwords that receive the x and y coordinates
of the display viewport origin in centimeters.

These coordinates refer to the inside of the viewport and do not include
the border.

UIS$GET _ VIEWPORT _POSITION is useful in the exact placement of
windows.

See UIS$GET_ VIEWPORT_SIZE.

18-165

UIS Routine Descriptions
UIS$GET _VIEWPORT_SIZE

UIS$GET _VIEWPORT _SIZE

FORMAT

RETURNS

ARGUMENTS

18-166

Returns the size of the display viewport associated with the specified
display window.

UIS$GET_VIEWPORT_SIZE wd_id, retwidth,
retheight

UIS$GET_ VIEWPORT_SIZE signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for a description of this argument.

retwldth
rethelght
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Display viewport width and height. The retwidth and retheight arguments
are the addresses of Cfloating point longwords that receive the display
viewport width· and height in centimeters.

screen output

UIS Routine Descriptions
UIS$GET _VIEWPORT_SIZE

$ run ~et_viewpo~_~ize
The viewport position on the display screen in ab~olute coordinates
x coordinate = 12.86 cm y coordinate = 1.97cm
The phy~ical dimen~ion~ of the display viewport
width of viewport 9.97 cm hei~ht of viewport 9.97 cm
FORTRAN PAUSE

- ~~ ----- -------------

- -

lK 525186

18-167

UIS Routine Descripti,ons
UIS$GET _VISIBILITY

UIS$GET _VISIBILITY

FORMAT

RETURNS

ARGUMENTS

18-168

Returns a Boolean value that indicates whether or not the specified
rectangle in the display window is visible.

status = UIS$GET_VISIBILITV vd_id, wd_id f,x1, Y1
[,x2, y.jJ

VMS Usage: Boolean
type: longword
access: write only
mechanism: by value

Boolean value returned in a status variable or RO 01AX MACRO). The
returned value, the visibility status, is a Boolean TRUE only if the entire
area is visible, and a Boolean FALSE if even a portion of the area is
occluded or clipped.

UIS$GET_ VISIBILITY signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

wd_ld
See Section 18.3.2 for a description of this argument.

x1, Y1

X2, Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of a rectangle in the display window. The xl and YI
arguments are addresses of Cfloating point numbers that define the lower­
left corner of a rectangle in the display window. The X2 and Y2 argulnents
are addresses of Cfloating point numbers that define the upper-right corner
of a rectangle in the display window.

If the coordinates of the rectangle are not specified, the diInensions of the
entire display window are used by default.

If only one point is specified, only that point is checked.

UIS Routine Descriptions
UIS$GET _WINDOW _ATTRIBUTES

UIS$GET _WINDOW_ATTRIBUTES

FORMAT

RETURNS

ARGUMENT

Returns the value of the mask WDPL$C_ATTRIBUTES used in the creation
of the specified window. See UIS$CREATE_WINDOW for more information
about window and viewport attributes.

attributes = UIS$GET_WINDOW_ATTRIBUTES wd_id

VMS Usage: mask_longword
type: longword
access: write only
mechanism: by value

Longword mask representing one or m.ore attributes of the specified
display window and returned in the variable attributes or RO (V AX
MACRO). See UIS$CREATE_WINDOW for more information.

UIS$GET _ WINDOW _ATTRIBUTES signals all errors; no condition values
are returned.

wdld
See Section 18.3.2 for a description of this argument.

18-169

UIS Routine Descriptions
UIS$GET _WINDOW_SIZE

FORMAT

RETURNS

ARGUMENTS

18-170

Returns the dimensions of the display window.

UIS$GET _ WINDOW _SIZE signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

wd_ld
See Section 18.3.2 for a description of this argument.

X1' Y1
X2, Y2
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

World coordinate pairs. The XtrYt and the x2,Y2 arguments are the
addresses of Cfloating longwords that receive the locations of the lower-left
and upper-right corners of the display window in world coordinates.

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$GET _WRITING_INDEX

Returns the writing color index for text and graphics output.

VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by value

Longword value returned as the color map index in the variable index or RO
01 AX MACRO).

UIS$GET_ WRITING_INDEX signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

arb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies an attribute block from which the writing color index
is obtained.

18-171

UIS Routine Descriptions
UIS$GET _WRITING_INDEX

screen output

18-172

• run get_writindex
The current writing index is 1
FORTRAN PAUSE
$

ZK·5269·86

FORMAT

RETURNS

ARGUMENTS

Returns the writing mode.

VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by value

UIS Routine Descriptions
UIS$GET _WRITING_MODE

Longword value returned as a UIS writing mode in the variable mode or RO
01 AX MACRO). See Section 9.4 for more infornlation about writing modes.

UIS$GET _ WRITING_MODE signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

arb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies an attribute block from which the writing mode is
obtained.

18-173

UIS Routine Descriptions
UIS$GET _WS_COLOR

FORMAT

RETURNS

ARGUMENTS

18-174

Returns the R (red), G (green), and B (blue) values associated with the
workstation standard color.

UIS$GET_WS_COLOR vd_id, color_id, retr, retg, retb
[,wd_idJ

UIS$GET _ WS_ COLOR signals all errors; no condition values are returned.

vd Id
SeeSection 18.3.1 for a description of this argument.

COIOf_ld
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Workstation standard color. The color_id argunlent is the address of 4
a longword integer that identifies a symbolic code for the workstation
standard color. If the color_id argument is invalid, an error is signaled.

The following table lists possible workstation standard color symbols and
their current values.

Standard
Color Symbol

Background UIS$C_WS_BCOLOR

Foreground UIS$C_WS_FCOLOR

Black UIS$C_WS_BLACK

White UIS$C_WS_WHITE

Red UIS$C_WS_RED

Green UIS$C_WS_GREEN

Blue UIS$C_WS_BLUE

Cyan UIS$C_WS_CYAN

Yellow UIS$C_WS_ YELLOW

Magenta UIS$C_WS_MAGENTA

Grey (25%) UIS$C_WS_GREY25

Grey (50%) UIS$C_WS_GREY50

Grey (75%) UIS$C_WS_GREY75

refr
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

UIS Routine Descriptions
UIS$GETWS COLOR - -

Red value. The retr argun1ent is the address of an Cfloating point longword
that receives the red value. The red value is in the range of 0.0 to 1.0,
inclusive.

refg
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Green value. The retg argument is the address of an Cfloating point
longword that receives the green value. The green value is in the range of
0.0 to 1.0, inclusive.

refb
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Blue value. The retb argument is the address of an Cfloating point
longword that receives the blue value. The blue value is in the range
of 0.0 to 1.0, inclusive.

wd_ld
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by 1'eference

Display window identifier. The wd_id argument is the address of a
longword that uniquely identifies a display window. If this argument is
specified, it must be a valid wd_id associated with the virtual display. The
returned values are the realized colors for the specific device for which the
window was created. See UIS$CREATE_ WINDOW for more information
about the wd_id argument.

V4.1-June 1989 18-175

UIS Routine Descriptions
UIS$GET _WS_INTENSITV

FORMAT

RETURNS

ARGUMENTS

18-176

Returns the intensity values associated with a workstation standard color.

UIS$GET_WS_INTENSITY vd_id, color_id, reti
[,wd_idJ

UIS$GET_ WS_INTENSITY signals all errors; no condition values are
returned.

See Section 18.3.1 for a description of this argunlent.

color_ld
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Workstation standard color identifier. The color_id argument is the address
of a longword that identifies a symbolic code for the workstation standard
color. If the color_id argument is invalid, an error is signaled.

The following table lists possible workstation standard color symbols.

Standard
Color Symbol

Background UIS$C_WS_BCOLOR

Foreground UIS$C_WS_FCOLOR

Black UIS$C_WS_BLACK

White UIS$C_WS_WHITE

Red UIS$C_WS_RED

Green UIS$C_WS_GREEN

Blue UIS$C_WS_BLUE

Cyan UIS$C_WS_CYAN

Yellow UIS$C_WS_ YELLOW

Magenta UIS$C_WS_MAGENTA

Grey (25%) UIS$C_WS_GREY25

Grey (50%) UIS$C_WS_GREY50

Grey (75%) UIS$C_WS_GREY75

V4.1-June 1989

retl
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

UIS Routine Descriptions
UIS$GET _ WS_INTENSITY

Intensity value. The reti argument is the address of an Cfloating longword
that receives the intensity value. The intensity value is in the range of 0.0
to 1.0, inclusive.

wd_ld
See Section 18.3.2 for a description of this argument.

If this argument is specified, then it must be a valid wd_id associated with
the virtual display, and the returned values are the realized intensities for
the specific device for which the window was created.

18-177

UIS Routine Descriptions
UIS$HLS_TO_RGB

FORMAT

RETURNS

ARGUMENTS

18-178

Converts color representation values of hue, lightness, and saturation
(HLS) to red, green, and blue (RGB) values.

UIS$HLS_ TO_RGB H, L, S, retr, retg, retb

UIS$HLS_TO_RGB signals all errors; no condition values are returned.

H
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Hue. The H argument is the address of an Cfloating number that defines
the hue of a color.

L
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Lightness. The L argument is the address of an Cfloating number that
defines the lightness of a color.

S
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Saturation. The S argument is the address of an Cfloating number that
defines color saturation.

retr
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Red value. The retr argument is the address of an Cfloating point longword
that receives the red value.

•

DESCRIPTION

refg
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

UISRoutine Descriptions
UIS$HLS_TO_RGB

Green value. The retg argument is the address of an Cfloating point
longword that receives the green value.

refb
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Blue value. The retb argument is the address of an Cfloating point
longword that receives the blue value.

NOTE: When you call the UIS$HLS_TO_RGB routine with the saturation
parameter equal to 0.0, you must set the hue parameter to a floating
point value of -1.0.

V4.1-June 1989 18-179

UIS Routine Descriptions
UIS$HSV_TO~RGB

FORMAT

RETURNS

ARGUMENTS

18-180

Converts color representation values of hue, saturation,and value (HSV) to
red, green, and blue (RGB) values.

UIS$HSV _ TO_RGB H, 8, V, retr, retg,retb

UIS$HSV _ TO_RGB signals all errors; no condition values are returned.

H
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Hue. The H argument is the address of an Cfloating number that defines
the hue of a color.

S
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Saturation. The S argument is the address of an Cfloating number that
defines the saturation of a color.

V
VMS Usa;ge: floating_point
type: f_floating
access: read only
mechanism: by reference

Value. The V argument is the address of an Cfloating number that defines
the value of a color.

retr
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Red value. The retr argument is the address of an Cfloating longword that
receives the red color value.

V4.1-June 1989

I

DESCRIPTION

retg
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

UIS Routine Descriptions
UIS$HSV _ TO_RGB

Green value. The retg argument is the address of an Cfloating longword
that receives the green color value.

retb
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference
Blue value. The retb argument is the address of an Cfloating longword that
receives the blue color value.

NOTE: When you call the UIS$HSV _TO_RGB routine with the saturation
parameter equal to 0.0, you must set the hue parameter to a floating
point value of -1.0. '

V4.1-June 1989 18-181

UIS Routine Descriptions
UIS$IMAGE

UIS$IMAGE

FORMAT

RETURNS

ARGUMENTS

18-182

Draws a raster Image in a specified rectangle In the display viewport.

UIS$IMAGE vd_id, atb, x 1, Y1' x2, Y2' rasterwidth,
rasterheight, bitsperpixel, rasteraddr

UIS$IMAGE signals all errors; no condition values are returned.

See Section 18.3.1 for a description of this argument.

afb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: ,by reference

Attribute block nUlllber. The atb argunlent is the address of a longword
integer that identifies an attribute block that modifies the image.

X11 Y1
X21 Y2
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

World coordinates of the rectangle in the virtual display. The Xl and Yl
arguments are the addresses of Cfloating point numbers that define the
lower-left corner of the rectangle in the virtual display. The X2 and Y2
arguments are the addresses of Cfloating point numbers that define the
upper-right corner of the rectangle in the virtual display.

rasterwldfh
rasterhelghf
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Width and height of the raster image. The rasterwidth argument is the
address of a longword that defines the width of the raster image in pixels.
The rasterheight is the address of a longword that defines the height of the
raster image in pixels.

V4.1-June 1989

DESCRIPTION

b/fsperplxel
VMS Usage: IOilgword_signed
type: longword (signed)
access: read only
mechanism: by reference

UIS Routine Descriptions
UIS$IMAGE

Number of bits per pixel in the raster image. The bitsperpixel argument is
the address of a longword that defines the number of bits per pixel in the
raster image. The bitsperpixel argument is currently required to be 1 or 8.

If the value 8 is specified for bitsperpixel on a single plane system, the
results are unpredictable.

rasferaddr
VMS Usage: vector Jongword_unsigned
type: longword_unsigned
access: read only
mechanism: by reference

Bitmap image. The rasteraddr argument is the address of an array that
defines a bitmap image. You must first create a bitmap by defining a data
structure such' as a record or array. When you assign values to the field or
array element it:l the data structure, you are setting the bits of the image
to be drawn by UIS$IMAGE. See the Description section for infonnation
about setting bits.

The bitmap image is drawn to the display viewport as a raster image. The
raster image dimensions are described by width, height, and bits per pixel.
Width and height give the number of pixels in each dimension, and bits
per pixel represents the number of bits in each pixel. The raster is read
from memory as "height" bit vectors; each vector is "width" pixels long
and each pixel is "bits/pixel" bits long.

If the destination rectangle is larger than the raster size by at least an
integer multiple, the raster is automatically scaled on a per pixel basis to
the space available. Thus, a 1 x 1 raster can be written into an arbitrarily
large destination rectangle, and the entire region is filled with the pattern.

If the destination rectangle is not an exact Inultiple of the raster size, then
the remaining space on the right and top will not be written.

The procedure to map values in the bitmap to the raster image is as
follows:

1 Each bit in the raster is set from left-most bit to the right-most bit

2 Each row is filled from the top row to the bottom row.

NOTE: The raster image is not byte- or word-aligned.

The following figure illustrates the setting of bits in the bihnap.

18-183

UIS Routine Descriptions
UIS$IMAGE

EXAMPLE

18-184

1 0 1 1 1 0

1 0 1 0

INTEGER*2 BITMAP(20)

0 1 0 1 0 1 i

I
I

I

\ B;tmap
Image

\ Raster
Image

ZK462185

DATA BITMAP/2*O,2*16380,5*12,2*1020,7*12,2*O/

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,40.0,40.0,lO.O,lO.O)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION')

CALL UIS$IMAGE(VD_ID,O,O.O,O.O,20.0,20.0,16,20,1,BITMAP)

screen output

UIS Routine Descriptions
UIS$IMAGE

ZK526786

18-185

UIS Routine Descriptions
UIS$INSERT _OBJECT

UIS$INSERT _OBJECT

FORMAT

RETURNS

ARGUMENTS

18-186

Inserts the specified object into the display list at the position specified
by the insertion pointer. See UIS$SET -,NSERTION_POSITION for
Information about setting the pointer in the display list.

UIS$INSERT _OBJECT

UIS$INSERT_OBJECT signals all errors; no condition values are returned.

obj_ld
See Section 18.3.3 for a description of this argument.

seg_ld
See Section 18.3.4 for a description of this argument.

UIS$LINE

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$LINE

Draws an unfilled point, line, or series of unconnected lines depending on
the number of positions specified.

UIS$LINE signals all errors; no condition values are returned.

See Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies an attribute block that modifies line style and line
width or both.

X1

Y1
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

World coordinate pair. The Xl and Yl arguments are the addresses of
Cfloating point numbers that define a point in the virtual display. If the
arguments are repeated to specify a second position, a line is created.
You can specify up to 126 world coordinate pairs as arguments. See the
Description section below for more information about this argument.

DESCRIPTION If one position is specified, a point is drawn. If two positions are specified,
a single vector is drawn. If more than two positions are specified,
unconnected lines are drawn. Up to 252 argunlents can be specified, a
maximum of a 126 unconnected lines are drawn using this. routine. If a
larger number of points must be specified in a single call, UIS$LINE_
ARRAY should be used.

The points or lines are drawn with the line pattern and width for the
attribute block. UIS$LINE ignores the fill pattern attribute.

V4.1-June 1989 18-187

I

UIS Routine Descriptions
UIS$LINE

NOTE: Because ADA cannot deal with a variable number of parameters, UIS$LINE
accepts only two points. VAX ADA application programs that draw
multiple disconnected lines in a single UIS call should use UIS$LINE_
ARRAY.

EXAMPLE

call uis$line(vd_id,0,3.0,S.0,S.0,1S.0,S.0,S.0,7.0,1S.0,7.0,5.0,
2 9.0,15.0,
2 9.0,5.0,11.0,15.0,11.0,5.0,13.0,15.0,
2 13.0,5.0,15.0,15.0,15.0,5.0,17.0,15.0)

A single call to UIS$LINE draws seven unconnected lines.

18-188 V4.1-June 1989

screen output

UIS Routine Descriptions
UIS$LINE

I II

ZK·5419·86

18-189

UIS Routine Descriptions
UIS$LINE_ARRAV

UIS$LINE_ARRAY

FORMAT

RETURNS

ARGUMENTS

18-190

Draws an unfilled point, line, or series of unconnected lines depending
on the number of positions specified. This routine performs the same
functions as UIS$LlNE except that x and y coordinates are stored in
arrays.

UIS$LINE_ARRAV vd_id, atb, count, x_vector,
y_vector

UIS$LINE_ARRA Y signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argunlent.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies an attribute block that modifies line style or line
width or both.

count
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of points. The count argument is the address of longword
integer that denotes the number of world coordinate pairs defined in
the arguments x_vector and y _vector.

x_vector
y_vector
VMS Usage:
type:
access:
mechanism:

vector _Iongword_signed
f_floating
read only
by reference

Array of x and y world coordinates. The x_vector argument is the
address of an array of Cfloating numbers whose elements are the x world
coordinate values of points defined in the virtual display. The y_vector
argument is the address of an array of Cfloating nUlnbers whose elements
are the y world coordinate values of points defined in the virtual display.

DESCRIPTION

UIS Routine Descriptions
UIS$LINE_AFlRAV

You can plot up to 32,767 points in a single call. UIS$LINE_ARRAY is the
same as UIS$LINE, except that you specify the x and y coordinates with
two arrays, each of length count points.

18-191

UIS Routine Descriptions
UIS$MEASURE_ TEXT

UIS$MEASURE_ TEXT

FORMAT

RETURNS

ARGUMENTS

18-192

Measures a text string as if it were output in a virtual display.

UIS$MEASURE_ TEXT vd_id, atb, text_string,
retwidth, retheight, [,ctllist,
ctllen] [, posarray]

UIS$MEASURE_TEXT signals all errors; no condition values are returned.

vd_ld
See Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies an attribute block that lnodifies text output.

text_string
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Text string. The texCstring argument is the address of a character string
descriptor of a text string.

retwldth
rethelght
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

World coordinate width and height. The retwidth and retheight arguments
are the addresses of Cfloating point longwords that receive the world
coordinate width and height of the text.

ctillst
VMS Usage: vector Jongword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Text formatting control list. The ctllist argument is the address of an array
of longwords that describe the font, text rendition, format, and positioning

UIS Routine Descriptions
UIS$MEASURE_ TEXT

of fragments of the text string. See UIS$TEXT for a description of the
control list and its comnlands.

The control list consists of a sequence of data elements, each two
longwords in length. The first longword of each element is a tag. The
second longword is either a value particular to the type of element
specified or zero. The following diagram shows the sbucture of a text
control list.

UIS$C_ TEXT --A TB

Attribute Block Number

UIS$C_ TEXT _SAVEPOSITION

0

UIS$C_ TEXT _IGNORE

Command Value

ZK-5426-86

The following table lists valid formatting commands and functions.

Formatting Command

Commands Without Values 1

UIS$C_ TEXT _NOP

UIS$C_ TEXT _RESTORE_POSITION

UIS$C_ TEXT _SAVE_POSITION

Commands Requiring Values

UIS$C_ TEXT _ATB

UIS$C_ TEXT _HPOS_ABSOLUTE

UIS$C_ TEXT _HPOS_RELATIVE

UIS$C_ TEXT JGNORE

UIS$C_ TEXT _NEW_LINE

1 Second longword must be zero.

Function

Nil operation

Restores the current writing position

Saves the current writing position

Specifies an attribute block number

Specifies a new current x position

Modifies the current x position by a delta

Skips n characters

Skips n new lines and positions at the left
margin

18-193

UIS Routine Descriptions
UI$$I\IIEASURE_ TEXT

18-194

Formatting Command

commands Requiring Values

UIS$C_ TEXT _ VPOS_ABSOLUT~

UIS$C_ TEXT _ VPOS_RELA TIVE

UIS$C_ TEXT _WRITE

Fun~tion

Writes white space to the new absolute
position

Writes white space to the new relative
position

Writes a new current y position

Modifies the current y position by a delta

Writes n characters

Commands Not Reqliiring a Second Longword

UIS$C_ TEXT _END_OF _LIST Terminates the control list

When UIS encounters illegal commands and values within the control list,
it skips the invalid item anq. signals an error.

ctllen
VMS Usage: longword.-signed
type: . longword(signed)
access: read only
mechanism: by r~fe~ence

Length of the text formatting control list. The ctllen argument is the
address of a longword· that specifies the length of the text formatting
control list in longw~rds.

posarray
VMS Usage:
type:
access:
mechanism:

vector Jongword_signed
f_floating
write only
by reference

Character position array. The posarray argument is the address of an array
of longwords that receives the character positions in world coordinates, ~
that is, relative offsets at which each character would have been displayed. ~
Following is a diagraln showing the format of the character ppsition array.

DESCRIPTION

Relative Position Xl

Relative Position Y 1

Relative Position x2

Relative Position Y2

Relative Position xn

Relative Position Yn

UIS Routine Descriptions
UIS$MEASURE_ TEXT

> Character Cell 1

> Character Cell 2

> Character Cell n

ZK·5425·86

The width and height of the text string is calculated according to the
formatting described in the atb and ctllist arguluents.

You use UIS$MEASURE_ TEXT in justification and text positioning
applications. The routine returns the height and width of the text string
in world coordinates.

18-195

UIS Routine Descriptions
UIS$MEASURE_ TEXT

screen output

$ run measure
~trins width in world coordinates = 16,95
string height in world coordinates = 4,92
The content~ of the character po~ition array are
x coordinate = 0,00 y coordinate 0,00

x coordinate = 0,81 Y coordinate 0,00

x coordinate = 1,61 Y coordinate 0,00 Positions of the
first six characters
including the space

X coordinate = 2,42 Y coordinate 0,00 relative to the
x axis

X coordinate = 3,23 Y coordinate 0,00

x coordinate = 4.04 Y coordinate 0,00

FORTRAN PAUSE
$

- -~-------------------- --~-~- - -----

far awa and Ion
lK 5266·86

18-196

UIS Routine Descriptions
UIS$MOVE_AREA

UIS$MOVE_AREA

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Shifts a portion of a virtual display to another position in the display
window.

UIS$MOVE_AREA signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

x1J Y1

X2J Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of the source rectangle. The xl and YI arguments are
the addresses of Cfloating point numbers that define the lower-left corner
of the source rectangle. The X2 and Y2 are the addresses of Cfloating point
numbers that define the upper-right corner of the source rectangle.

new_x
new_y
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinate pair. The new _X and new _Y arguments are the addresses
of Cfloating point numbers that define the lower-left corner of the
destination rectangle. The proportions of the coordinate space of the
destination rectangle are the same as those of the source rectangle.

Note that display objects only partially contained within the specified
source rectangle, although partially moved within existing display windows,
are completely moved within the display list.

The nonoccluding portion of the source rectangle (if any) is erased after the
operation.

NOTE: To avoid distortion within the destination rectangle, the aspect ratios of
the source rectangle and the display viewport must be equal.

18-197

UIS Routine Descriptions
UIS$MOVE_AREA

screen output

18-198

ZK 5305·86

UIS Routine Descriptions
UIS$MOVE_ VIEWPORT

U IS$MOVE_ VI EWPORT

FORMAT

RETURNS

ARGUMENTS

Moves the display viewport on the workstation screen.

UIS$MOVE_VIEWPORT wd_id, attributes

UIS$MOVE_ VIEWPORT signals all errors; no condition values are returned.

wd Id
See S~ction 18.3.2 for a description of this argument.

attributes
VMS Usage: item_list_pair
type: longw~:)rd
access: read only
mechanism: by 'r~ference

Display viewport attribute list. The attributes argument is the address of
data structure that contains longword pairs, or doublets. The first longword
stores an attribute ID code and the second longword holds the attribute
value (which can be real or integer).

The following figure describes the structure of the window attributes list.

Attribute 10 code
(WOPL$C_xxx)

Longword value for attribute
identified in previous longword

2nd attribute 10 code

2nd attribute value

•

•

•
End of list - 0

(WOPL$C_ENO_OF _LIST)

ZK-4581-85

Only positional attributes are significant.

18-199

UIS Routine Descriptions
UIS$MOVE_WINDOW .

UIS$MOVE_WINDOW

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-200

Redefines the world coordinates of the specified display window.

UIS$MOVE_ WINDOW signals all errors; no condition values are returned.

vd_ld
See Section 18.3.1 for a description of this argument.

wd_ld
See Section 18.3.2 for a description of this argument.

X 1' Y1
X2, Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of the new display window. The xl and YI arguments
are the addresses of Cfloating point numbers that define that lower-left
corner of the display window. The X2 and Y2 arguments are the addresses
of Cfloating point numbers that define the upper-right corner of the new
display window.

UIS$MOVE_ WINDOW redefines the world coordinates of the specified
display window. As a result, what is displayed in the associated display
viewport can change. You can pan around a virtual display or scroll
through a virtual display. 1£ the display window rectangle changes
dimensions or aspect ratio, then scaling is performed to map the new
window size to the existing display viewport size.

UIS Routine Descriptions
UIS$NEW _TEXT_LINE

UIS$NEW_ TEXT_LINE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Moves the current text position along the actual path of text drawing
to the starting margin, and then in the direction of the minor text path.
Depending on the minor text path, the width or height of the character cell
is used for spacing between characters and lines.

UIS$NEW_TEXT_LINE signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies an attribute block that modifies text output.

Font, text path, character spacing, and text slope attributes influence the
behavior.

18-201

UIS Routine Descriptions
UIS$PLOT

UIS$PLOT

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-202

Draws a filled or unfilled point, line, or polygon depending on the number
of positions specified.

UIS$PLOT signals all errors; no condition values are returned.

vd_ld
See Section 18.3.1 for a 9.escription of this argument.

afb
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies an attribute block that modifies line style and line
width or both.

x
y
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinate pair. The x and y arguments are the addresses of C
floating point numbers that define a point in the virtual display. If the
aq~~ments are repeated to specify a second position, a line is created.
You can specify up to 126 world coordinate pairs as arguments. See the
Description section below for more information about this argument.

If you specify one position, a point is drawn. If you specify more than one
position, a vector is drawn between the new point and the last point. For
a connected polygon to be drawn, the last vector drawn must point back
to the first set of points. When you use this routine, you can specify up
to 252 arguments. This would produce a maxiInuln 126-point polygon.
If you wish to specify a larger number of points in a single call, use the
UIS$PLOT _ARRAY routine.

The points or lines are drawn with the line pattern and width for the
attribute block, and if the fill pattern attribute is enabled for the attribute
block, the enclosed area is filled with the current fill pattern. Note that 4
it is not necessary to have a connected polygon in order to have a filled
polygon. The fill pattern will go only as far as what the boundary appears
to be for the particular polygon.

I
EXAMPLE

UIS Routine Descriptions
UIS$PLOT

NOTE: Because ADA cannot deal with a variable number of parameters,
UIS$PLOT accepts only one point. VAX ADA application programs
that draw multiple disconnected lines in a single UIS call should use
UIS$LINE_ARRA Y.

NOTE: VAX PASCAL application programs should use UIS$PLOT_ARRAY to
create lines and polygons.

REAL*4 I

VD_ID=UIS$CREATE_DISPLAY(0.0,-1.1,360.0,1.1,lO.0,10.O)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','SINE CURVE')
CALL UIS$PLOT(VD_ID,O,O.O,O.O,360.0,O.0)

DO I=1,360
CALL UIS$PLOT(VD_ID,O,I,SIND(I»
ENDDO

This example draws a sine curve.

V4.1-June 1989 18-203

UIS Routine Descriptions
UIS$PLOT

screen output

18-204

1"lnu .- sine cUlve

'.
:.

, ~

I J , , , ~

\, /

'''J
ZK·5257·86

V4.1-June 1989

UIS Routine Descriptions
UIS$PLOT _ARRAY

UIS$PLOT _ARRAY

FORMAT

RETURNS

ARGUMENTS

Draws an unfilled or filled point, line or polygon depending on the number
of positions specified. This routine performs the same functions as
UIS$PLOT.

UIS$PLOT ARRAY vd_id, atb, count, x_vector,
y_vector

UIS$PLOT_ARRAY signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that identifies an attribute block that modifies line style or line
width or both.

count
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of points. The count argument is the address of longword
integer that denotes the number of world coordinate pairs defined in
the arguments x_vector and y_yector.

x_vector
v_vector
VMS Usage:
type:
access:
mechanism:

vector _Iongword_signed
f_floating
read only
by reference

Array of x and y world coordinates. The x_vector argument is the
address of an array of Cfloating numbers whose elements are the x world
coordinate values of points defined in the virtual display. The y_vector
argument is the address of an array of Cfloating numbers whose elements
are the y world coordinate values of points defined in the virtual display.

18-205

UIS Routine Descriptions
UIS$PLOT _ARRAY

DESCRIPTION

18-206

You can plot up to 65,535 points in a single call. UIS$PLOT_ARRAY is the
same as UIS$PLOT except that you specify the x and y coordinates with
two arrays, each of length count points.

UIS Routine Descriptions
UIS$POP _VIEWPORT

UIS$POP _VIEWPORT

FORMAT

RETURNS

ARGUMENT

Pops the viewport associated with the display window to the forefront of
the screen, over any other viewports that currently occlude it.

UIS$POP VIEWPORT wd id - -

UIS$POP _VIEWPORT signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for a description of this argument.

18-207

UIS Routine Descriptions
UIS$POP _VIEWPORT

screen output
1m tt i(\Ilql~
_____ ~cz~i_~!_~ __ ~ __ _

~ --~

tr-i<.Hl91c
r ------~-- ----------

18-208

UIS Routine Descriptions
UIS$PRESENT

UIS$PRESENT

FORMAT

RETURNS

ARGUMENTS

Verifies that UIS software is installed on the system.

status = UIS$PRESENT [major _version][,minor _version]

VMS Usage: cond_ value
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned in the variable status or RO (V AX MACRO). A
value of 1 TRUE indicates that UIS is installed on the system. Otherwise,
the error status SHR$_PROD _NOTINS is returned if UIS$PRESENT is
executed on a VAX/VMS system running the stub UIS shareable image.
The stub shareable image is currently installed on non-VAXstation systems.

major_version
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Major version number. The major_version argument is the address of a
word that receives the major version number. For UIS Version 3.0, the
major version number 3 is returned.

minor_version
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Minor version number. The minor_version argument is the address of a
word that receives the minor version number. For UIS Version 3.0, the
minor version number 0 is returned.

18-209

UIS Routine Descriptions
UIS$PRIVATE

UIS$PRIVATE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-210

Associates application-specific data with the most recently output graphic
information (graphics or text) or with the specified graphic object.

UIS$PRIVATE { Obj_id} facnum buffer
vd_id 1 1

UIS$PRIV A TE signals all errors; no condition values are returned.

obj_ld
See Section 18.3.3 for a description of this argument.

vd_ld
See Section 18.3.1 for a description of this argument.

facnum
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Facility number. The facnum argument is the address of a longword that
identifies the creator of the private data.

Values defined with the high bit set are reserved to DIGITAL.

buffer
VMS Usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by descriptor

Location of the private data. The buffer argument is a descriptor of an
array of bytes. The byte array contains the private data.

If you select a graphic item and store it in a file, the application-specific
data is copied with it. If nothing is output after the beginning of a segnlent,
the data is associated with the seglnent.

Many private data items can be associated with the sanle graphic object.

UIS Routine Descriptions
UIS$PUSH_ VIEWPORT

U IS$PUSH_ VI EWPORT

FORMAT

RETURNS

ARGUMENTS

Pushes the viewport associated with the display window to the background
of the screen, behind any other viewports it occludes.

UIS$PUSH_ VIEWPORT wd_id

UIS$PUSH_ VIEWPORT signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for a description of this argument.

18-211

UIS Routine Descriptions
UIS$PUSH_VIEWPORT

screen output

18-212

I~ tr'i~\nqle I
~ ~ __ ~~~l~,,-r ~_ =_-=--==--=-__ __

tri'-\1l91c r ---=--=-=--~~-=~--

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$READ CHAR

Allows an application to read a single character from the keyboard.

keybuf= UIS$READ_CHAR kb_id [,flags]

VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword integer returned key information in the variable keybuf or RO
(VAX MACRO). The keybuf variable is the address of a longword buffer
that receives the key information. The low two bytes are the key code.
The key codes are based on the codes found in the module $SMGDEF in
SYS$LIBRARY:STARLET.MLB. Bit <31> is set to 1 to indicate that the
key is down. For additional information about keybuf, see the Description
section.

UIS$READ _ CHAR signals all errors; no condition values are returned.

kb_ld
See Section 18.3.8 for more information about the kb_id argument.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by reference

Flags. The flags argument is the address of a longword mask that controls
whether UIS$READ _ CHAR executes hnmediately or until a character is
received. 1£ bit < 0 > is clear, UIS$READ _ CHAR waits until a character is
typed. If bit < 0 > is set and no character is currently waiting, UIS$READ_
CHAR returns a value of O.

Specify UIS$M_NOWAIT to set bit < 0 > in the longword mask.

DESCRIPTION The following table defines the bits in the high- and lower-order word.

18-213

UIS Routine Descriptions
UIS$READ_CHAR

18-214

Field Symbol

1-16 UIS$W_KEY _CODE

28 UIS$V _KEY _SHIFT1

29 UIS$V _KEY _ CTRL 1

30 UIS$V _KEY _LOCK1

31 UIS$V _KEY _DOWN 1

1 This symbol is returned as SET if the corresponding key on the keyboard was
down when the input event occurred.

UIS Routine Descriptions
UIS$RESIZE_WINDOW

UIS$RESIZE_WINDOW

FORMAT

RETURNS

ARGUMENTS

Deletes the old display window and creates a new window. The routine
reexecutes the display list of the virtual display, if it exists.

UIS$RESIZE_WINDOW vd_id, wd_id [,new_abs_x,
new_abs_y] [,new_width,
new_height] f,new_wCY1,
new_wc-Y1, new_wc_x2,
new_wc_Y2,]

UIS$RESIZE_ WINDOW signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

wd_ld
See Section 18.3.2 for a description of this argument.

new_abs_x
new_abs_y
VMS Usage: floating_point
type: f_floating·
access: read only
mechanism: by reference

Absolute device coordinate pair. The new_abs_x and new_abs_y arguments
are the addresses of Cfloating point nUlubers that define the location of the
newly resized display viewport in centimeters.

new_width
new_height
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Width and height of the newly resized display viewport. The width and
height arguments are the addresses of Cfloating point nU111bers that define
the width and height of the newly resized display viewport in centimeters.

18-215

UIS Routine Descriptions
UIS$RESIZE_WINDOW

DESCRIPTION

18-216

new_wc_x1' new_wc_Y1
new_wc_x2' new_wc_Y2
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

World coordinates of the newly resized display window. The xl and Yl
arguments are the addresses of Cfloating point numbers that define the
location of the lower-left corner of the resized display window in world
coordinates. The X2 and Y2 arguments are the addresses of Cfloating point
numbers that define the location of the upper-right corner of the resized
display window in world coordinates.

The viewport resize operation of the user interface uses UIS$RESIZE_
WINDOW by default.

If UIS$RESIZE_ WINDOW is called outside an AST routine, the value of
all unspecified parameters defaults to those specified in UIS$CREATE_
WINDOW.

If UIS$RESIZE_ WINDOW is called within an AST routine, the value of all
unspecified parameters defaults to the current values associated with the
absolute position, dimensions, and world coordinate range of the stretchy
box.

ASTs established for pointer movements, mouse button transitions, and ~
custom cursor patterns must be reestablished to include screen area added ~
to the window.

screen output

UIS Routine Descriptions
UIS$RESIZE_WINDOW

~--------------~

ZK 5J02 86

18-217

UIS Routine Descriptions
UIS$RESTORE ... CMS_COLORS

FORMAT

RETURNS

ARGUMENT

Resets the appropriate entries in the hardware color map to the current
RGB values in the color map segment.

UIS$RESTORE_ CMS_ COLORS signals all errors; no condition values are
returned. -

ems Id
VMS Usage:
type:
access:
mechanism:

identifier
longword (unsigned)
read only
by reference

Color map segnlent identifier. The cms_id argument is the address
of a longword that uniquely identifies the color map segment. See
UIS$CREA TE_ COLOR_MAP _SEG for more information about the cms_
id argument.

--------------------------------~----~ DESCRIPTION

18-218

An application running in an unfavorable environment (where
other applications are sharing hardware color map entries) can use
UIS$RESTORE_ CMS_ COLORS to reestablish all its entries when it is
the active application. Normally, this call is not l'equired since the UIS
window nlanagement software transparently handles the nlultiplexing of
the hardware color Inap. If possible, the update is synchronized to the
display's vertical retrace.

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$RGB_TO_HLS

Converts red, green, and blue (RGB) color representation values to hue,
lightness, and saturation (HLS) color values.

UIS$RGB_TO_HLS R, G, B, reth, retl, rets

UIS$RGB_ TO_HLS signals all errors; no condition values are returned.

R
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Red value. The R argument is the address of a longword that defines the
red color value.

G
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Green value. The G argument is the address of a longword that defines the
green color value.

B
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Blue value. The B argument is the address of a longword that defines the
blue color value.

reth
VMS Usage: floating_point
type: . f_floating
access: write only
mechanism: by reference

Hue. The reth argument is the address of an Cfloating point longword that
receives the hue color value.

18-219

UIS Routine De$criptions
UIS$RGB_ TO_HLS

18-220

refl
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Lightness. The retl argument is the address of an Cfloating point longword
that receives the lightness value.

refs
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Saturation. The rets argument is the address of an Cfloating point
longword that receives the color saturation value.

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$RGB_TO_HSV

Converts color representation values of red, green, and blue (RGB) to hue,
saturation, and value (HSV).

UIS$RGB_ TO_HSV R, G, B, reth, rets, retv

UIS$RGB_ TO_HSV signals all errors; no condition values are returned.

R
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Red value. The R argument is the address of an Cfloating number that
defines the red color value.

G
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Green value. The G argument is the address of an Cfloating number that
defines the green color value.

B
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Blue value. TheB argument is th~ address of an Cfloating number that
defines the blue color value.

reth
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Hue. The reth argument is the address of an Cfloating longword that
receives the hue value.

18-221

UIS Routine Descriptions
UIS$RGB_TO_HSV

18-222

refs
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Saturation. The rets argument is the address of an Cfloating longword that
receives the saturation value.

refv
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Value. The retv argument is the address of an Cfloating longword that
receives the value of the color.

UIS Routine Descriptions
UIS$SET _ADDOPT _AST

UIS$SET _ADDOPT _AST

FORMAT

RETURNS

ARGUMENTS

Specifies execution of a user-requested AST routine whenever the
Additional Options menu item is selected in the Window Options Menu.

UIS$SET_ADDOPT_AST wd_id, [astadr [,astprmll

UIS$SET_ADDOPT_AST signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for a description of this argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the address of a procedure entry
mask of a user-supplied subroutine that is called at AST level whenever
you select the Additional Options item in the Window Options Menu.

astprm
See Section 18.3.7 for a description of this argument.

DESCRIPTION Additional options are disabled by default.

18-223

UIS Routine Descriptions
UIS$SET _ALIGNED_POSITION

UIS$SET _ALIGNED_POSITION

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-224

Sets the current position for text output at the upper-left corner of the
character cell of the next character. See UIS$GET _ALIGNED_POSITION
for information about returning text alignment data.

UIS$SET _ALIGNED _POSITION signals all errors; no condition values are
returned.

vd_ld
See Section 18.3.1 for a description of this argument.

afb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb is the address of a longword that identifies ~
an attribute block.

x
y
VMS Usage:
type:
access:
mechanism:

floating_number
f_floating
read only
by reference

World coordinate pair. The x and y arguments are the addresses of C
floating point numbers that define the current position for text output.

UIS$SET _ALIGNED _POSITION is useful in applications that know the
position of the upper left corner· but do not know enough about the
font baseline to detennine the proper alignment point. The position is
converted into the proper alignment point using the font specified in the
given attribute block.

UIS maintains the current text position as a baseline position.

screen output

UIS Routine Descriptions
UIS$SET _ALIGNED_POSITION

is as good as fifty

Text alignment
along top of the

character cell

lK 5384 86

18-225

UIS Routine Descriptions
UIS$SET _ARC_TYPE

UIS$SET _ARC_ TYPE

FORMAT

~ETURNS

ARGUMENTS

18-226

Sets the current arc type used in the UIS$ELLIPSE and UIS$CIRCLE
routines. . '.

UIS$SET_ARC_ TYPE signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

latb
VMS Usage: longword_signed
type: longword (signed)
access: rE~ad only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

oatb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

arc_type
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Arc type code. The arc_type argument is the address of a longword value
that redefines the attribute setting of the input attribute block. Specify one
of the following constants UISC_ARC_PIE, UISC_CHORD, or UIS$C_
ARC_OPEN.

The following table lists symbols for arc types and their functions.

Symbol

UIS$C_ARC_CHORD

UIS$C_ARC_ OPEN

UIS$C_ARC_PIE

Function

Draws a line connecting the end points of the arc

Does not draw any lines (default)

Draws radii to the end points of the arc

screen output

UIS Routine Descriptions
UIS$SET _ARC_TYPE

pie, open, and chol"d

ZK·5256-86

18-227

UIS Routine Descriptions
UIS$SET _BACKGROUND_INDEX

FORMAT

RETURNS

ARGUMENTS

18-228

Sets the background color index for text and graphics output.

UIS$SET_BACKGROUND_INDEX vd_id, iatb, oatb,
index

UIS$SET_BACKGROUND_INDEX signals all errors; no conditio'n values
are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

latb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

oatb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

Index
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Color map index. The index argument is the address of a longword that
specifies the color map index. If the index exceeds the maximum index for
the associated color map, an error is signaled.

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$SET _BUTTON_AST

Allows an application to find out when a button on the pointing devic,e is
depressed or released in a given rectangle within a display viewport.

UIS$SET_BUTTON_AST vd_id, wd_id [,astadr
[, astprmj , keybufj [, X 11 Y l'
X2, Y2i

UIS$SET _BUTTON_AST signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

wd_ld
See Section 18.3.2 for a description of this argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the address of an entry mask to a
procedure that is called at AST level whenever you depress or release a
pointer button. To cancel the AST-enabling request of UIS$SET_BUTTON_
AST, specify 0 in the astadr argument.

astprm
See Section 18.3.7 for a description of this argument.

keybuf
VMS Usage:
type:
access:
mechanism:

address
longword (unsigned)
write only
by reference

Key buffer. The keybuf argument is the address of a lon~,yord buffer that
receives button information whenever a pointer button is depressed or
released. The low two bytes are the key code. The buttons are located
on the left, center, and right of the device and are defined as UIS$C_
POINTER_BUTTON_1, UIS$C_POINTER_BUTTON_2, UIS$C_POINTER_
BUTTON_3, and UIS$C_POINTER_BUTTON_ 4, respectively.

The bit < 31 > is set to 1 if the button has been pressed and to 0 if the
button has been released. The buffer is not overwritten with subsequent
button transitions until the AST routine completes.

18-229

UIS Routine Descriptions
UIS$SET _BUTTON_AST

DESCRIPTION

18-230

The following table defines the bits in the high- and lower-order word.

Field Symbol

1-1.6 UIS$W_KEY _CODE

28 UIS$V _KEY _SHIFT1

29 UIS$V _KEY _CTRL 1

30 UIS$V _KEY _LOCK1

31 UIS$V _KEY _DOWN 1

1ThiS symbol is returned as SET it the corresponding key on the keyboard was
down when the input event occurred.

x1, Y1

x2, Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of a rectangle in the display window. The xl and Yl
arguments are the addresses of Cfloating point numbers that define the
lower-left corner of a rectangle in the display window. The X2 and Y2

arguments are the addresses of Cfloating point numbers that define the
upper-right corner of a rectangle in the display window. If no rectangle is ~
specified, the entire display window is assumed.

This function can be called any number of times for different rectangles
within the same display window or many display windows.

To disable UIS$SET_BUTTON_AST, omit the astadr, astprm, and keybuf
arguments.

Pointer Region Priorities

UIS pointer regions are placed on the V AXstation screen in the order in
which they are created. Therefore, if you create two overlapping viewports,
and then use UIS$SET_POINTER_PATTERN, UIS$SET_BUTTON_AST,
or UIS$SET _POINTER_AST to define different pointer patterns for each
viewport, the correctness of the result will depend on the order in which you
both created the viewports and defined the cursor regions. For example,
if you create the viewports and define the cursor patterns in the following
manner, the viewport 1 cursor pattern will have a higher priority than
viewport 2 cursor pattern in the overlapping region.

1 Create viewport 1

2 Create overlapping viewport 2

3 Define viewport 2 cursor pattern

4 Define viewport 1 cursor pattern

UIS Routine Descriptions
UIS$SET _BUTTON_AST

The preceding example causes the unexpected result that the viewport
1 cursor pattern will take priority over the viewport 2 cursor pattern
in the overlapping region. This problem can be corrected by creating
the viewports and defining the cursor patterns in the same order. To
correct the problem, create the viewports and define cursor patterns in the
following order:

1 Create viewport 1

2 Define viewport 1 cursor pattern

3 Create overlapping viewport 2

4 Define viewport 2 cursor pattern

The solution is for either UIS or your application to always pop the
viewport before ,jefining the cursor region for it.

18-231

UIS Routine Descriptions
UIS$SET _CHAR_ROTATION

UIS$SET _CHAR_ROTATION

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-232

Sets the angle of character rotation, measured counterclockwise relative
to the actual path of text drawing.

UIS$SET_CHAR_ROTATION vd_id ,iatb ,oatb ,angle

UIS$SET_CHAR_ROTATION signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

latb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

oatb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

angle
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Angle of character rotation. The angle argument is the address of an
Cfloating point number that defines the angle of character rotation in
degrees counterclockwise about the baseline point relative to the actual
path of text drawing.

For example, an angle of 0 degrees (the default) means that the character's
baseline vector and the actual path of text drawing fornl an angle of 0
degrees.

EXAMPLE

screen output

Slow
Slow
Slow
Slow
Slow
Slow
Slow
Slow
Slow
Slow

UIS Routine Descriptions
UIS$SET _CHAR_ROTATION

CALL UIS$SET_FONT(VD_ID,O,l,'MY_FONT_5')
CALLUIS$SET_TEXT_MARGINS(VD_ID,l,l,l.O,20.O,18.0)
CALL UIS$SET_ALIGNED_POSITION(VD_ID,l,l.O,20.0)

DO 1=0,360,40
CALL UIS$TEXT(VD ID,l,'Slow down---')
CALL UIS$SET CHAR ROTATION(VD ID,l,2,FLOAT(I))
CALL UIS$TEXT(VD_ID,2,'Avoid ;kiddingl')
CALL UIS$NEW_TEXT_LINE(VD_ID,2)
ENDDO

ZK ,25886

18-233

UISRoutine Descriptions
UIS$SET _CHAR_SIZE

FORMAT

RETURNS

ARGUMENTS

18-234

Sets the world coordinate size of a specified character.

UISSSET _CHAR_SIZE vd_id, iatb, oatb [,char]
[, width] [, height]

UIS$SET,.. CHAR_SIZE signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

latb
vrv,s Usage: ,ongword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

oafb
VMS Usage: longword_signed
type: longword (signed)
access: read only
l11echClnism: by reference

See Section 18.3.6 for a description of this argument.

char
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Single character. The char argument is the address of a descriptor of a
single character.

If char is not specified, the widest character in the font is chosen.

DESCRIPTION

width
height
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

UIS Routine Descriptions
UIS$SET CHAR SIZE - -

Character width and height. The width argulnent is the address of an
Cfloating point longword that defines the character width in world
coordinates. The height argument is the address of an Cfloating point
longword that defines the character height in world coordinates.

See DESCRIPTION section for information about omitting the width
argument and height argument.

To disable character scaling, omit all of the following arguments: char,
width, and height.

To scale characters to their nominal size as specified in the font, do
not specify width and height. Scaling is only visible when you use a
window that does not have the same aspect ratio as the virtual display. The
particular character you specify in the argument char makes no difference
in this case.

If you specify either width or height only, characters are scaled to the size
you specify and in the direction you specify. In the unspecified direction,
characters are scaled to maintain the same ratio of width and height as the
unsealed characters.

Note that if you use this routine, you will not change the size of a single
character only. Rather, all the characters in the font will be scaled to the
correct proportion.

18-235

UIS Routine Descriptions
UIS$SET _CHAR_SIZE

screen output

18-236

character' scaling

oday is tbe scbolat" of' yesterday

oday is the scholar of' yeste

oday is the scholar of'

oday is the schola

.oday is the sch

oday is the s

oday is the
ZK·5456·86

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$SET _CHAR_SLANT

Sets the character slant angle.

UIS$SET_CHAR_SLANT vd_id, iatb, oatb, angle

UIS$SET_CHAR_SLANT signals all errors; no condition values are
returned.

vd Id
SeeSection 18.3.1 for a description of this argument.

latb
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

oatb
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

angle
VMS Usage:
type:
access:
mechanism:

floati ng_poi nt
f_floating
read only
by reference

Angle of character slant. The angle argument is the address of an Cfloating
point number that defines the angle of character slant in degrees.

The character slant angle refers to an angle formed by the character's up
vector and baseline vector.

For example, 0 degrees (the default) indicates that the character up vector
is perpendicular to the baseline vector, and the character is not slanted. A
counterclockwise movement from 0 degrees produces a negative angle of
character slant. A clockwise movement from 0 degrees produces a positive
angle of character slant.

18-237

UIS Routine Descriptions
UIS$SET _CHAR_SLANT

screen output
- ------~~~---~-~--~-----~-- - - ---~~-

18-238

~ ___ ~~ _.=---~~_~ _______ ~~a~~~_t~~ S_l_~~l~i~g~-=-~=_---=--=-=- ___ -=--__ _ _ _ _

~~ "'~~~~~~~~, .
~'t\. "J \..(:.:~()~ \..()~, ,

en ,"ic;to~ious,
When victorious,
When vic~orious,

Vhen v.:icror.:ious"
A?Je./7 v.z"ceo.r.zouB.,.

~"" ~"'-~~~~,

,~~~~ ~'-"'~~~~'"
,,=,-()~~ ~'\:\.1..~~'\\.~~~ \
snout R\\l~L\\~R1:\
shout RHINEHART!
shou~ RHINEHART!
shour HHIHEHARTI
anoue RH'..r.NEh.!4RT./

ZK·5455·86

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$SET _CHAR_SPACING

Sets the attribute that controls the amount of additional spacing between
text characters (x factor) and between text lines (y factor) when the
UIS$NEW_LlNE_ TEXT routine is used.

UIS$SET_CHAR_SPACING signals all errors; no condition values are
returned.

vd_ld
See Section 18.3.1 for a description of this argument.

lafb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argulnent.

You can specify either the attribute block 0 or a previously modified
attribute block.

oafb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Output attribute block number. The oatb argument is the address of a
longword value that identifies the newly modified attribute block that
controls the spacing between characters.

dx
dy
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Additional x and y spacing factor. The dx argulnent is the address of
an Cfloating point longword value that defines the x spacing factor. If
this argument is 0.0, no additional spacing is perfoflned. The dy is
the argument of an Cfloating point longword value that defines the y
spacing factor. If this argument is 0.0, no additional spacing is perfornled.
Negative values are allowed, and characters can overlap.

18-239

UIS Routine Descriptions
UIS$SET _CHAR_SPACING

DESCRIPTION The values of the x and y factors are multiplied by the width or height
of the character, and the resulting value is used as the additional spacing
distance.

screen output

18-240

Proportionally spaced characters maintain their appropriate spacing.

The default is no extra spacing.

80 ",hat! !
80 what!
S 0 \II h a t
S 0 \II h a t
8 a w h a t I I . .
8 a w h a t I .
S a w h a t
s 0 \AI h a
s 0 'VI h a
s 0 \II h

t

a
ZI(525486

UIS Routine Descriptions
UIS$SET _CHAR_SPACING

--
~ spacing

Nature does nothing in vain
Nature does nothing in vain

Nature does nothing in vain

Nature does nothing in vain

Nature does nothing in vain

Nature does nothing in vain

Nature does nothing in vain

ZK 5253 86

18-241

UIS Routine Descriptions
UIS$SET _CHAR_SPACING

atch out!
atch out

ate h out

ate h out

ate h out

a t c h o u

a t c h o

18-242

I
•

lK5252·86

UIS Routine Descriptions
UIS$SET _CLIP

UIS$SET _CLIP

FORMAT

RETURNS

ARGUMENTS

Sets a clipping rectangle in the virtual display and enables clipping for this
attribute block.

UIS$SET _ CLIP signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

latb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

Specify either the attribute block 0 or a previously modified attribute block.

oatb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

Xl' Yl
X2, Y2
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of the clipping rectangle. The Xl and Yl arguments are
the addresses of Cfloating point numbers that define the lower left corner
of the clipping rectangle in world coordinates. The X2 and Y2 arguments
are the addresses of Cfloating point numbers that define the upper right
corner of the clipping rectangle in world coordinates. Only graphic objects
and portions of graphic objects drawn within the clipping rectangle are
seen.

If the world coordinates of the clipping rectangle corners are not specified,
then clipping is disabled for this attribute block.

18-243

UIS Routine Descriptions
UIS$SET _CLIP

EXAMPLE

18-244

WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','AFTER')
CALL UIS$ERASE(VD_ID)
CALL UIS$SET_CLIP(VD_ID,0,1,S.0,S.0,lS.0,lS.0)

CALL UIS$PLOT(VD_ID,1,2.0,2.0,18.0,2.0,18.0,18.0,2.0,18.0,
.2 2.0,2.0)
CALL UIS$PLOT(VD_ID,1,2.0,2.0,18.0,18.0,)
CALL UIS$PLOT(VD_ID,1,2.0,18.0,18.0,2.0)

screen output

UIS Routine Descriptions
UIS$SET _CLIP

~ ~ ~ - - - -~ - - -- - -- - --

befor e
--~-----:::~~~----=-==-----~

after"
-- - - ---~---- - - -

ZK S30686

18-245

UIS Routine Descriptions
UIS$SET _CLOSE_AST

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-246

Specifies a user-requested AST routine to be executed when the "Delete"
menu item is selected in the Window Options Menu.

UIS$SET_CLOSE_AST wd_id [,astadr [,astprm]]

UIS$SET _ CLOSE_AST signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for a description of this argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the address of a procedure entry
mask of a user-supplied subroutine that is called at AST level whenever you ~
select the delete item in the Window Options Menu. See the Description ,
section for more information about disabling close AST routines.

astprm
See Section 18.3.7 for more information on this argument.

Typically, you call UIS$SET_CLOSE_AST to override the default window
closing behavior. If you do not specify a CLOSE AST routine, UIS calls
UIS$CLOSE_ WINDOW by default. If this behavior is not sufficient, the
application program can use its own close routine to call VIS$SET _ CLOSE_ ~
AST.

If the application has previously enabled close ASTs but no longer needs
to do special tasks when closing a window, it can specify UIS$CLOSE_
WINDOW as the astadr parameter to reenable the default UIS action.

You can completely disable the ability to close a window in any of the.
following ways:

• Specify 0 in the astadr ~rgument

• Specify only the wd_id argulnent.

• Omit the astadr and astprm argunlents.

When window closing is disabled, the "Delete" lnenu itenl in the Window
Options Menu changes from boldface to lightface.

To reenable the default window closing behavior, specify UIS$C_ ~
DEFAULT_CLOSE as the astadr argument in a subsequent call to UIS$SET_ ~
CLOSE_AST.

UIS Routine Descriptions
UIS$SET _COLOR

UIS$SET_COLOR

FORMAT

RETURNS

ARGUMENTS

Sets a single entry in the virtual color map associated with the virtual
display. The color map entry is an RGB value for a specific color.

UIS$SET _COLOR vd_id, index, R, G, B

UIS$SET_COLOR signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

Index
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Color map index. The index argument is the address of a longword value
that identifies an entry in the color map. If the index exceeds the maximum
index for the associated color map, an error is signaled.

R
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Red value. The R argument is the address of an Cfloating point number
that defines the red value. The red value is in the range of 0.0 to 1.0,
inclusive.

G
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Green value. The G argument is the address of an Cfloating point number
that defines the green value. The green value is in the range of 0.0 to 1.0,
inclusive.

B
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Blue value. The B argument is the address of an Cfloating point number
that defines the blue value. The blue value is in the range of 0.0 to 1.0,
inclusive.

18-247

UIS Routine Descriptions
UIS$SET _COLOR

DESCRIPTION

illustration

18-248

To maximize compatibility between monochrome and color display
devices, UIS$SET_COLOR performs an internal transformation of the
red, green, and blue values when the actual workstation display is
monochromatic .

A single intensity value in the range of 0.0 to 1.0 is derived using the
following formula.

I = (0.30*R) + (0.59*G) + (0.11*8)

On nlonochrome systems, this derived intensity value is then compared
to 0.5. If the value is greater than or equal to 0.5, then white pixels are
written. Otherwise, black pixels are written.

·
Color Value

Color Value

Color Value

Color Value

•
•

3

4

5

6

7

8

9

t

Red
0.10

Color Map Index
ZK·5443·86

UIS Routine Descriptions
UIS$SET _COLORS

UIS$SET _COLORS

FORMAT

RETURNS

ARGUMENTS

Sets more than one color entry in the virtual color map.

UIS$SET COLORS vd_id, index, count, r_vector,
g_vector, b_vector

UIS$SET_COLORS signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

Index
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Starting color map index. The index argument is the address of a longword
that defines the starting index in the virtual color map.

If the index exceeds the maximum index for the virtual color map, an error
is signaled.

count
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of indices. The count argulnent is the address of a longword that
contains the number of indices including the starting index of the color
map. If the count exceeds the maximum number of virtual color nlap
entries, an error is signaled.

r_vector
VMS Usage: vector_longword_signed
type: f_floating
access: read only
mechanism: by reference

Red values. The r_vector argument is the address of an array of Cfloating
point numbers that define the red values.

18-249

UIS Routine Descriptions
UIS$SET _COLORS

g_vector
VMS Usage:
type:
access:
mechanism:

vector _Iongword_signed
f_floating
read only
by reference

Green values. The ~vect(jr argument is the address of an array of C
floating point numbers that define the green values.

b_vector
VMS Usage: vector_longwoi'd_signed
type: f_floating
access: read only
mechanism: by reference

Blue values. The b_vector argument is the address of an array of Cfloating
point numbers that define the blue values.

DESCRIPTION On color and intensity systems,color map updates of greater than
approximately 80 entries cause visible screen disturbance, whkh appears
as a black bar across the top inch of the display screen. This anomaly is
caused by a hardware restrktion that precludes large lookup table updates
within the vertical blanking interval of the raster scan.

illustration
Red Green Blue

0.0 0.25
0.36]

0.15 0.38 0.40 Count

Red Value Green Value Blue Value 0.30 0.50 0.65
3

Red Value Green Value Blue Value
4

Red Value Green Value Blue Value
5

6

1

8

9

t
Color Map Index

ZK·5442·86

18-250

~

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

UIS Routine Descriptions
UIS$SET _EXPAND_ICON_AST

Specifies a user-requested AST routine to be executed whenever an icon
is to be replaced with its associated display viewport.

UIS$SET_EXPAND_ICON_AST wd_id [,astadr
[,astprmjj

UIS$SET_EXPAND_ICON_AST signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for a description of this argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the entry mask address of a user­
written procedure called at AST level whenever you select the Expand Icon
iteln in the Window Options Menu.

To cancel the AST-enabling request of UIS$SET_EXPAND_ICON_AST,
specify 0 in the astadr argument.

astprm
See Section 18.3.7 for more information on this argument.

To disable the user interface for replacing an icon with a display viewport,
call UIS$SET_EXPAND_ICON_AST with the wd_id argument only.

To reenable the default behavior of UIS$SET_EXPAND_ICON_AST,
specify the constant UIS$C_DEFAULT_EXPAND_ICON as the astadr
argument or specify only the wd_id argument.

18-251

UIS Routine Descriptions
UIS$SET_FILL_PATTERN

FORMAT

RETURNS

ARGUMENTS

18-252

Sets the current fill pattern used in area fill operations.

UIS$SET _FILL_PATTERN signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

latb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

You can specify either the attribute block 0 or a previously modified
attribute block.

oatb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

Identifies the newly modified attribute block that controls the fill pattern. ~

Index
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Index of the fill pattern in the current font. The index argument is the
address of a longword value that identifies a character glyph in the current
font. The value specified in the index argunlent modifies the current fill
pattern index specified in the input attribute block.

If the index argument is not specified, fill patterns are disabled.

UISRoutine Descriptions
UIS$SET _FILL_PATTERN

DESCRIPTION The fill pattern is expressed as a character glyph in the font currently
associated with the same attribute block. Several font files are usually
reserved to store fill patterns (rasters). At present, UIS does not support
fill patterns greater than 32 bits wide.

UIS provides a font file containing a variety of fill patterns. This font file is
referenced by UIS$FILL_PATTERNS. Entries in the UIS$FILL_PATTERNS
font are symbolically referenced by the symbols P A TT$C_xxx.

To get a listing of all fill pattern symbols available to application programs,
see 6.6 for a list of symbol definition files.

Refer to Appendix Appendix D for illustrations of each UIS fill pattern.

EXAMPLE

PROGRAM FILL
IMPLICIT INTEGER(A-Z)

C
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

VD_ID=UIS$CREATE_DISPLAY(-s.0,-s.0,so.0,SO.0,20.0,20.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','FILL')

C create an unfilled polygon with 4 vertices
CALL UIS$PLOT (VD_ID,O, 2.0, 2.0,
1 18.0, 2.0,
1 18.0,18.0,
1 2.0,18.0)

C create an unfilled polygon with S vertices
CALL UIS$PLOT (VD_ID,O, 22.0, 2.0,
1 38.0, 2.0,
1 38.0,18.0,
1 22.0,18.0,
1 22.0, 2.0)

C set up polygons for fill patterns
CALL UIS$SET_FONT(VD_ID,O,l,'UIS$FILL_PATTERNS')

C set font to UIS$FILL_PATTERNS
C

CALL UIS$SET_FILL_PATTERN(VD_ID,1,1,PATT$C_UPDIAG1_7)
C ATB *1
C

CALL UIS$SET_FILL_PATTERN(VD_ID,1,2,PATT$C_FOREGROUND)
C ATB *2
C
C create a filled polygon with 4 vertices

CALL UIS$PLOT (VD_ID,1, 2.0,22.0,

C

C

1 18.0,22.0,
1 18.0,38.0,
1 2.0,38.0)

ATB *1

18-253

UIS Routine Descriptions
UIS$SET _FILL_PATTERN

C create a filled polygon with 5 vertices
CALL UIS$PLOT (VD_ID,2, 22.0,22.0,

C
C

1 38.0,22.0,
1 38.0,38.0,
1 22.0,38.0,
1 22.0,22.0)

PAUSE
END

18-254

ATB *2

The preceding example draws four squares (polygons).

• An open-ended square

• A closed square

• A square with a diagonal FILL pattern

• A square with the foreground FILL pattern.

The squares on the left (see next page) are each drawn with four vertices.
Note that the .fill pattern goes only as far as the boundary of the four
vertices already drawn. The squares on the right are each drawn with five
vertices. Note that despite the five vertices, the square is still filled as in
the case of the four-vertex, unconnected square.

To enable fill patterns for a single graphic object, you must complete the
following two-step process:

1 Modify the font attribute specifying the fill pattern file in SYS$FONT.
Use the logical name UIS$FILL_PATTERNS.

2 Modify the fill pattern file specifying the fill pattern to be used.

Note the different ATB (attribute block) associated with the two filled
polygons.

UIS Routine Descriptions
UIS$SET _FONT

UIS$SET_FONT

FORMAT

RETURNS

ARGUMENTS

Specifies the fonts to be used in text drawing (UIS$TEXT) and area filling
(UIS$PLOT).

UIS$SET _FONT vd_id, iatb, oatb, font_id

UIS$SET_FONT signals all errors; no condition values are returned.

vd Id
Se;-Section 18.3.1 for a description of this argument.

lafb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

The font attribute in the input attribute block is modified to reflect the
new font file specified in the fonCid argument. Specify either the attribute
block 0 or a previously modified attribute block.

oafb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

fonf_ld
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Font file name string. The fonCid argument is the address of a character
string descriptor pointing to a file specification that identifies the desired
font. System font files are located in the SYS$FONT directory. Fonts
should be specified using only the file name. You do not need to specify
the file type.

DESCRIPTION See UIS$SET_FILL_PATTERN.

18-256

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$SET GAIN KB AST - --

Specifies an AST routine to be executed when the specified virtual
keyboard is attached to the physical keyboard.

UIS$SET_GAIN_KB_AST signals all errors; no condition values are
returned.

kb Id
See-Section 18.3.8 for more information about the kb_id argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the entry mask address of a procedure
called at AST level whenever a specified virtual keyboard is attached to the
physical keyboard.

astprm
See Section 18.3.7 for more information on this argument.

DESCRIPTION To disable UIS$SET_GAIN_KB_AST, omit the astadr and astprm
arguments.

18-257

UIS Routine Descriptions
UIS$SET _INSERTION_POSITION

FORMAT

RETURNS

ARGUMENTS

18-258

Positions the editing pointer in the display list.

UIS$SET _INSERTION_POSITION { ~~b~~ }
vd_id

[,flags]

UIS$SET _INSERTION_POSITION signals all errors; no condition values
are returned.

obj_ld
See Section 18.3.3 for a description of this argument.

seg_ld
See Section 18.3.4 for a description of this argument. Note that when you
specify seg_id as the first argument, the second argument is not specified.

vd_ld
See Section 18.3.1 for a description of this argument.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by refer$nce

Flags. The flags argument is the address of a longword mask whose bits
define how entries are added to the display list.

The following table lists the flags and their functions.

Flags

UIS$M_Dl_INSERT _AFTER_
OBJECT

UIS$M_Dl-,NSERT _BEFORE_
OBJECT

Description

Inserts object before first object in the
specified structure.

Inserts object before specified object in the
same segment as the specified object.

Inserts object after specified object in the
same segment as the specified object.

See the DESCRIPTION section for more information about how these flags
are evaluated.

DESCRIPTION

UIS Routine Descriptions
UIS$SET _INSERTION_POSITION

UIS$SET_INSERTION_OBJECT examines different options in the flags
argument depending on the type of object you specify in the first argulnent.
The following table lists the effect of the flags on the different types of
objects.

Flags Checked Effect

Specifying the Virtual Display Identifier

UIS$M_DLJNSERT _AT _BEGIN1 If this bit is set, the editing pointer is placed
at the beginning of the root segment and

Specifying the Segment Identifier

all new objects are inserted there. If this
bit is not set, the editing pointer is placed
at the end of the root segment and all new
objects are appended to the end of the root
segment.

All three bits2 If any bit is set, UIS$SET JNSERTION_
POSITION sets the editing pointer at the
place directed by that bit. If no bits are set,
the editing pointer is placed at the end of
the specified segment and any new objects
are appended to the end of the specified
segment.

Specifying the Object Identifier

UIS$M DL INSERT AFTER
OBJECT1 - - -

UIS$M_DLJNSERT _BEFORE_
OBJECT

If any bit is set, UIS$SET _INSERTION_
POSITION sets the editing painter at the
place directed by that bit. If no bits are set,
the editing pointer is placed at the specified
object and any new objects are inserted
before the specified object.

11f UIS$M_DL_INSERT _BEFORE_OBJECT or UIS$M_DL_INSERT _AFTER_OBJECT
are set, the routine signals an error.

21f two bits are set, the routine signals an error.

18-259

UIS Routine Descriptions
UIS$SET _INTENSITIES

UIS$SET _INTENSITIES

FORMAT

RETURNS

ARGUMENTS

18-260

Loads one or more intensity values in the virtual color map.

UIS$SET_INTENSITIES vd_id, index, count, i_vector

UIS$SET_INTENSITIES signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

Index
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Starting color map index. The index argument is the address of a longword
that identifies the starting color map index in the virtual color map.

If an index exceeds the maximum index for the virtual color map, an error ~
is signaled. ~

count
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of indices. The count argument is the address of a longword
that defines the number of indices in the virtual color map (including the ~
starting index) whose entries are to be loaded with intensity values. ,

If count exceeds the maximum number of virtual color map entries, an
error is signaled.

I_vector
VMS Usage: vector_longword_signed
type: f_floating
access: read only
mechanism: by reference

Intensity values. The Cvector argument is the address of an array of C
floating point numbers that define the intensity values of the virtual color
map entries.

illustration

·
Intensity Vall -3

Intensity Value

•
•
•

9

10

11

12

13

14

t

UIS Routine Descriptions
UIS$SET _INTENSITIES

Count

Color Map Index

ZK5440-86

18-261

UIS Routine Descriptions
UIS$SET _INTENSITY

UIS$SET _INTENSITY

FORMAT

RETURNS

ARGUMENTS

18-262

Loads a single entry in the virtual color map with an Intensity value.

UIS$SET_INTENSITY vd_id, index, I

UIS$SET_INTENSITY signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

Index
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Color map index. The index argument is the address of a longword value
that identifies an entry in the color map. If the index exceeds the maxiInum
index for the associated color map, an error is signaled.

I
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Intensity value. The I argument is the address of an Cfloating point
number that defines the intensity. The intensity value is in the range of 0.0
to 1.0, inclusive.

illustration

Intensity Value

V 4.1-June 1989

UIS Routine Descriptions
UIS$SET INTENSITY

0.75 Intensity Value

:~
6

7

8

t
Color Map Index

18-263

I

UIS Routine Descriptions
UIS$SET _KB_AST

FORMAT

RETURNS

ARGUMENTS

18-264

Forces a user-written AST routine execution when you press a key on the
keyboard.

UIS$SET_KB_AST kb_id l,astadr [,astprm] ,keybuf]

UIS$SET_KB_AST signals all errors; no condition values are returned.

See Section 18.3.8 for more information about the kb_id argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the entry mask address of a procedure
that is called at AST level whenever you strike a key. To cancel a previous
AST-enablingrequest of UIS$SET_KB_AST, specify 0 as the astap~
argument.

astprm

See Section 18.3.7 for more information on this argument.

keybuf
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Key buffer. The keybuf argument is the address of a longword buffer that
receives the key information with the execution of each AST routine. The
low two bytes are the key code. The key codes are based on the codes
found in the module $SMGDEF in SYS$LIBRARY:STARLET.MLB. Bit
<31> is set to 1 to indicate that the key is down. The AST routine is
called only on the downstroke of the key. The buffer is not overwritten
with subsequent keys until the AS"'! routine completes.

The following table defines theibits in the high- and lower-order word.

V4.1-June 1989

DESCRIPTION

Field

1-16

28

29

30

31

Symbol

UIS$W_KEY _CODE

UIS$V _KEY _SHIFT1

UIS$V_KEY_CTRL1

UIS$V_KEY _LOCK 1

UIS$V _KEY _DOWN 1

UIS Routine Descriptions
UIS$SET _KB_AST

1 This symbol is returned as SET if the corresponding key on the keyboard was
down when the input event occurred.

The terminal emulators use this routine to get all keyboard input. Other
applications that perform asynchronous single character input can also use
UIS$SET _KB _AST.

To disable UIS$SET_KB_AST, omit the astadr and astprm arguments.

18-265

UIS Routine Descriptions
UIS$SET _KB_ATTRIBUTES

UIS$SET _KB_ATTRIBUTES

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-266

Modifies the keyboard characteristics.

UIS$SET_KB_ATTRIBUTES kb_id [,enable_items}
[, disable_items}
[, click_volume}

UIS$SET_KB_ATTRIBUTES signals all ~rrors; no condition values are
returned.

kb Id
S~e-Section 18.3.8 for more information about the kb_id argument.

enable_Items
disable_Items
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Keyboard characteristic~ to be enabled. The enable_items argument is the
address of a longword mask that identifies the keyboard characteristics
to be enabled. The disable_items argument is the address of a longword
lllask that identifies the keyboard characteristics to be disabled.

click_volume
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Click volume level. The click_volume argument is the address of a
longword value that modifies the keyboard click volume for keyboard
input to this window. The value is in the range 1 to 8, where the value
1 is the minimum volume level, and the value 8 is the maximum volume
level. The default volume level is controlled by the workstation setup menu
mechanism.

All keyboard characteristics will be in effect only when the physical
keyboard is attached to the specified virtual keyboard. Each virtual
keyboard maintains its own keyboard characteristics and the human
interface automatically switches the characteristics when the keyboard
is associated with another virtual keyboard.

UIS Routine Descriptions
UIS$SET _KB_ATTRIBUTES

The enable and disable item lists are longword masks containing bits
designating the characteristics to be enabled or disabled. The valid bits in
the keyboard characteristics enable and disable masks are:

Symbol

UIS$M_KB_AUTORPT

UIS$M_KB_KEYCLICK

UIS$M_KB_UDF6

UIS$M KB_ARROW

UIS$M_KB_KEYPAD

Description 1

Enable/disable keyboard autorepeat

Enable/disable keyboard keyclick

Enable/disable up button transitions for ~ to [fj.QJ
keys

Enable/disable up button transitions for L~1_!J to '-!::1_~1
keys

Enable/disable up button transitions for IF171 to [F2ol
keys

Enable/disable up button transitions for [HEL~ and ll?9J
keys

Enable/disable up button transitions for [[I] to ~
keys

Enable/disable up button transitions for arrow keys

Enable/disable up button transitions for numeric
keypad keys

1 By default down button transitions are enabled.

18-267

UIS Routine Descriptions
UIS$SET _KB_ATTRIBUTES

EXAMPLE

enable items=UIS$M KB HELPOO .OR. UIS$M KB VOEl .OR. UIS$M KB ARROW
disable items=UIS$M KB AUTORPT .OR. UIS$M KB KEYCLICK
CALL UIS$SET_KB_ATTRIBUTES(KB_IO, ENABLE_ITEMS,OISABLE_ITEMS)

18-268

The preceding exarnple describes how to enable and disable rnore than
one keyboard characteristic at a tirne.

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

UIS Routine Descriptions
UIS$SET KB COMPOSE2

Loads a two-stroke compose sequence table for the specified virtual
keyboard.

UIS$SET _KB_COMPOSE2 kb_id [,table, tablelen]

UIS$SET_KB_COMPOSE2 signals all errors; no condition values are
returned.

kb Id
See-Section 18.3.8 for more information about the kb_id argument.

table
VMS Usage: vector _Iongword_unsigned
type: longword array
access: read only
mechanisrlJ: by reference

Compose table. The table argument is the address of an array that
identifies the compose table. If no table is specified, the systenl default
table is reestablished.

tablelen
VMS Usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the compose table in bytes. The tablelen argument is the address
of word that defines the length of the compose table in bytes.

You can use compose sequences to create characters that do not exist as
standard keys on your keyboard.

Two-stroke sequences can be used on all keyboards except the North
American keyboard. Two-stroke sequences do not use the [COMP6SE] key.
Although faster to use than the three-stroke sequence, two-stroke sequences
are limited to sequences starting with the following nonspacing diacritical
marks: grave accent ('), acute accent ('), circumflex accent C), tilde mark
C), dieresis mark ("), and the ring mark. Instead of using the IC:;OMPq~E.1
key, as in a three-stroke sequence, you use a nonspacing diacritical mark to
initiate the two-stroke sequence. You then enter a standard character that,
together with that diacritical mark, results in a valid compose sequence.

Please refer to the VMS Workstation Video Device Driver Manual for a
description of this table and the macros to generate it. An application
wishing to modify a table can use these macros to build a new table.

18-269

UIS Routine Descriptions
UIS$SET _KB_COMPOSE2

18-270

The DigitaJ standard two-stroke compose table resides within the
workstation driver. To change that, call the SYS$QIO system service to
the QVSS device driver.

NOTE: DIGITAL standard two-stroke compose sequences are not supported on
the North American keyboard.

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

UIS Routine Descriptions
UIS$SET _KB_COMPOSE3

Loads a three~stroke compose sequence for the specified virtual keyboard.

UIS$SET_KB_COMPOSE3 kb_id [,table, tablelen]

UIS$SET_KB_COMPOSE3 signals all errors; no condition values are
returned.

kb Id
See-Section 18.3.8 for more information about the kb_id argument.

table
VMS Usage: vector _Iongword_unsigned
type: longword array
access: read only
mechanism: by reference

Compose table. The table argument is the address of an array that
identifies the compose table.

tablelen
VMS Usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the compose table in bytes. The tablelen argument is the address
of a word that defines the length of the compose table in bytes.

You can use compose sequences to create characters that do not exist
as standard keys on your keyboard. There are two types of compose
sequences: two-stroke sequences and three-stroke sequences

You can perform three-stroke sequences on all keyboards by first pressing
the iCOMPOSE) key and then pressing two standard keys.

Refer to the VMS Workstation Video Device Driver Manual for a description of
this table and the macros to generate it. An application wishing to modify
a table can use these macros to build a new table.

The Digital standard two-stroke cOlnpose table resides within the
workstation driver. To change that, call the SYS$QIO systeln service to
the QVSS device driver.

18-271

UIS Routine Descriptions
UIS$SET _KB_KEVTABLE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-272

Loads a keyboard equivalence table for the specified virtual keyboard.

UIS$SET_KB_KEVTABLE kb_id [,table, tablelen]

UIS$SET_KB_KEYTABLE signals all errors; no condition values are
returned.

kb Id
SeeSection 18.3.8 for more information about the kb_id argument.

table
VMS Usage: vector_longword_unsigned
type: longword array
access: read only
mechanism: by reference

Keyboard table. The table argument is the address of an array that contains
the keyboard table. If no table is specified, the system default table is
reestablished.

tablelen
VMS Usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the keyboard table. The tablelen argument is the address of a
word that specifies the length of the keyboard table in bytes.

UIS$SET_KB_KEYTABLE lets you change the ASCII character returned by
a key on the keyboard.

Keyboard Table Description and Macros

Refer to the VMS Workstation Video Device Driver Manual for a description
of the table and the macro to build it. An application wishing to modify a
table can use these Inacros to build a new table.

Keyboard Table Modification Using the Programming Interface

The VMS workstation contains a copy of the North American table
established as the default keyboard table. You can modify the default
keyboard table at the driver (QVSS) level by calling the SYS$QIO system
service.

UIS Routine Descriptions
UIS$SET _KB_KEVTABLE

Keyboard Table Modification Through the User Interface

If you want to create a keyboard table that any user can load using the
Workstation Setup menus, see the command file DVORAK.COM in the
directory SYS$EXAMPLES. It provides an example of how to create,
compile, and install the DVORAK simplified keyboard. The user interface
can be used to modify the default key table.

18-273

UIS Routine Descriptions
UIS$SET _LINE_STYLE

FORMAT

RETURNS

ARGUMENTS

18-274

Sets the line style bit vector.

UIS$SET_LINE_STYLE signals all errors; no condition values are returned.

vd id
See-Section 18.3.1 for a description of this argulnent.

iatb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argulnent.

oafb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

Controls the line style.

style
VMS Usage:
type:
access:
mechanism:

mask_longword
longword
read only
by reference

Line style bit vector. The style argument is the address of a Iongword
bit vector that specifies whether to use foreground or background when
drawing each pixel. It is repeated as many times as necessary to draw all
the pixels in the line.

EXAMPLE

CALL UIS$SET_LINE_STYLE(VD_ID,O,l,'FFFFFFFO'X)
CALL UIS$PLOT(VD_ID,1,O.O,O.O,5.0,20.0)

CALL UIS$SET_LINE_STYLE(VD_ID,O,2,'FFFOFFFO'x)
CALL UIS$PLOT(VD_ID,2,O.O,O.O,lO.O,20.0)

UIS Routine Descriptions
UIS$SET _LINE_STYLE

The preceding example produces the first two dashed lines shown in the
next section.

18-275

UIS Routine Descriptions
UIS$SET LINE STYLE - -

screen output

I
/
I
I
I /

I /
/

I /
/

II / " "
" " t I // " " /,," " "

" "" ".

"".

18-276

/
/

/
/

/
/

/

"
" " " " " "
" " " " "

/ "
" / " " " " " " "

"

ZK·5285·86

~

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$SET_LINE_WIDTH

Sets the width of lines drawn on the screen.

UIS$SET _LINE_WIDTH vd_id, iatb, oatb, width
[,model

UIS$SET_LINE_ WIDTH signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

latb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

oatb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

Controls line width.

width
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Width of the line. The width argument is the address of an Cfloating point
number that defines the line width. See the Description section for more
information about specifying the line width with UIS$C_ WIDTH_WORLD.
The default value is 1.

mode
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Mode. The mode argument is the address of a longword that indicates
whether the line width should be interpreted as an absolute number of
pixels or as an x world coordinate width. Specify the mode using one of
the following constants:

18-277

UIS Routine Descriptions
UIS$SET _LINE_WIDTH

• UIS$C_ WIDTH_PIXELS

• UIS$C_ WIDTH_WORLD

If mode is not specified, line width is interpreted as an absolute number of
pixels (UIS$C_ WIDTH_PIXELS).

See the Description section for more information about the constant
UIS$C_ WIDTH_WORLD.

DESCRIPTION The line width is specified as a floating point nunlber that is multiplied by
the normal line width to produce line width actually drawn.

If you specify 0.0 in the width argument when the mode argument is
UIS$C_WIDTH_WORLD, the minimum line width is generated.

EXAMPLE

18-278

CALL UIS$SET_LINE_WIDTH(VD_ID,O,1,2.0,WDPL$C_WIDTH_WORLD)
CALL UIS$PLOT(VD_ID,1,O.O,O.O,lO.O,20.0)

CALL UIS$SET_LINE_WIDTH(VD_ID,O,2,4.0,WDPL$C_WIDTH_WORLD)
CALL UIS$PLOT(VD_ID,2,O.O,O.O,15.0,20.0)

The preceding example describes how to specify line width as x world
coordinate width.

screen output

UIS Routine Descriptions
UIS$SET_LINE_WIDTH

ZK·5286·86

18-279

UIS Routine Descriptions
UIS$SET _LOSE_KB_AST

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-280

Enables an AST routine that is executed when the specified virtual
keyboard is detached from the phys'ical keyboard.

UIS$SET_LOSE_KB_AST signals all errors; no condition values are
returned.

kb Id
SeeSection 18.3.8 for more information about the kb_id argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the entry mask address to a procedure ~
that is called at AST level whenever the virtual keyboard is disconnected ~
from the physical keyboard.

astprm
See Section 18.3.7 for more information on this argument.

To cancel the AST-enabling request of UIS$SET_LOSE_KB_AST, specify 0
in the astadr argument or omit the astadr and astprm arguments.

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

UIS Routine Descriptions
UIS$SET _MOVE_INFO_AST

Forces an AST rQutine execution whenever the ~pecified display viewport
has been moved.

UIS$SET_MOVE_INFO_AST wd_id, [,astadr
[,astprmjj

UIS$SET _MOVE_INFO _AST signals all errors; no condition values are
returned.

See Section 18.3.2 for a description of this argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the entry mask address to a procedure
that is called at AST level whenever the specified display viewport is
moved.

astprm

See Section 18.3.7 for more information on this argument.

A MOVE notification AST can be used when an image needs to keep
several display viewports in a particular arrangenlent. If one is lnoved,
the AST routine can recreate the other display viewports in the correct
positions around the moved viewport.

To cancel the AST-enabling request of UIS$SET_MOVE_INFO_AST,
perform any of the following actions:

• Specify the wd_id argument only.

• Specify 0 in the optional astadr argument.

• Omit the astadr and astprm arguments.

V4.1-June 1989 18-281

UIS Routine Descriptions
UIS$SET _PLANE_MASK

FORMAT

RETURNS

ARGUMENTS

18-282

Sets a mask value that defines on which planes UIS will write.

UIS$SET _PLANE_MASK vd_id, iatb, oatb,
plane_mask

UIS$SET_PLANE_MASK signals all errors; no condition values are
returned.

vd_ld
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Virtual display identifier. The vd_id argument is the address of a longword
that uniquely identifies a virtual display.

latb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Input attribute block number. The iatb argument is the address of a
longword integer that identifies an attribute block to be modified.

oatb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Output attribute block number. The oatb argument is the address of a
longword that identifies a newly modified attribute block.

plane_mask
VMS Usage: mask_longword
type: mask (Iongword)
access: read only
mechanism: by reference

The plane_mask argument specifies the planes that are to be written to.

V4.1-June 1989

UIS Routine Descriptions
UIS$SET PLANE MASK - -

DESCRIPTION UIS$SET_PLANE_MASK sets a mask value that defines which planes are
to be -written to.

A bit set to 1 within the mask indicates that writing to the corresponding
plane is enabled. A bit set to 0 indicates that writing to the corresponding
plane is disabled.

If you supply an invalid mask value, UIS adjusts that value, masking out
the portion of the longword that is not significant for the current operation.

NOTE: If the value you supply requires alteration, the altered mask value will
appear when you call UIS$GET_PLANE_MASK,

V4.1-June 1989 18-283

UIS Routine Descriptions
UIS$SET _POINTER_AST

FORMAT

RETURNS

ARGUMENTS

18-284

Forces an AST routine execution when the pointer is moved within, into,
and out of a specified rectangle in the display window. This signals the
appropriate application.

UIS$SET _POINTER_AST vd_id, wd_id [,astadr
[,astprmjj [,X11 Y11 X21 Y,j
I, exitastadr I, exitastprmjj

UIS$SET _POINTER_AST signals all errors; no condition values are
returned.

See Section 18.3.1 for a description of this argument.

See Section 18.3.2 for a description of this argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the entry mask address to a procedure
that is called at AST level whenever you move the pointer within a
rectangle in the virtual display.

To cancel the AST -enabling request of UIS$SET _POINTER_AST for this
argument only, specify 0 in the astadr argument and the coordinates of the
rectangle.

astprm

See Section 18.3.7 for more infonnation on this argument.

X1J Y1
X2J Y2
VMS Usage: floating_point
type: f_floating
access: .read only
mechanism: by reference

World coordinates of the rectangle. The Xl and Yl arguments are the
addresses of Cfloating point numbers that define the lower-left corner of

V4.1-June 1989

UIS Routine Descriptions
UIS$SET _POINTER_AST

the rectangle of the di~plny window. The x2 and Y2 arguments are the
addresses of Cfloating point numbers that define the upper-right corner of
the rectangle of the display window.

If no rectangle is specified, the entire display window is assumed.

To cancel an AST-enabling request, specify 0 in either the astadr or the
exitastadr arguments or both and the coordinates of the rectangle.

ex/tastadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

Exit AST routine. The exitastadr argument is the address of the entry mask
to a procedure that is called at AST level whenever the pointer leaves the
rectangle.

To cancel the AST-enabling request of UIS$SET_POINTER_AST for the
EXIT AST routine only, specify 0 in the exitastadr argument and the
coordinates of the rectangle.

ex/tastprm
VMS Usage: user _arg
type: longword (unsigned)
access: read only
mechanism: by reference

Exit AST parameter. The exitastprm argument is the address of a single
argument or data structure, such as an array or record, to be passed to the
AST routine. Calls to UIS$SET_POINTER_AST in FORTRAN application
programs should be coded as follows: %REF(%LOC(exitastprm».

DESCRIPTION The Set Pointer AST routine allows an application to keep track of the
pointer. This routine can be called any number of times for different
rectangles.

Note that an application can specify one AST routine or the other.

The application can use UIS$SET_POINTER_AST to highlight the display
or some other application-specific function as you move the pointer over
specific areas of the display window. Use this to define a number of
regions within a menu and execute an AST routine when the pointer enters
or leaves any of these regions.

If both AST routines are enabled and the value 0 is specified in the astadr
argument, the first AST routine is canceled.

To disable AST -enabling behavior for pointers entering a region, omit the
astadr and astprm arguments.

To disable AST -enabling behavior for pointers leaving a region, omit the
exitastadr and exitastprm arguments.

V4.1-June 1989 18-284.1

UIS Routine Descriptions
UIS$SET _POINTER_AST

18-284.2

Pointer Region Priorities

UIS pointer regions appear on the V AXstation screen in the order they
are created. Therefore, if you create two overlapping viewports, then use
UIS$SET _POINTER_PATTERN, UIS$SET_BUTTON_AST, or UIS$SET_
POINTER_AST to define different pointer patterns for each viewport, the
correctness of the result will depend on the order in which you created the
viewports and defined the cursor regions. For example, the viewport 1
cursor pattern will have a higher priority than the viewport 2 cursor pattern
in the overlapping region if you create the viewports and define the cursor
patterns as follows:

1 Create viewport 1

2 Create overlapping viewport 2

3 Define viewport 2 cursor pattern

4 Define viewport 1 cursor pattern

In preceding example, the viewport 1 cursor pattern takes priority over the
viewport 2 cursor pattern in the overlapping region. This is an undesired
result, and you can correct it by creating the viewports and defining the
cursor patterns in the same order, as follows:

1 Create viewport 1

2 Define viewport 1 cursor pattern

3 Create overlapping viewport 2

4 Define viewport 2 cursor pattern

To avoid this problem, have UIS or your application pop the viewport
before you define the cursor region for it.

V4.1-June 1989

FORMAT

RETURNS

UIS Routine Descriptions
UIS$SET _POINTER_PATTERN

Enables an application to specify a special pointer cursor pattern for a
specified rectangle in the virtual display.

UIS$SET_POINTER_PATTERN vd_id, wd_id
[,pattern_array,
pattern_count,
activex, activeyJ [, x l'
Y1, X2' Y21[,flagsJ

UIS$SET_POINTER_PATTERN signals all errors; no condition values are
returned.

ARGUMENTS

See Section 18.3.1 for a description of this argument.

See Section 18.3.2 for a description of this argument.

pattern_array
VMS Usage: vector_word_unsigned
type: word_unsigned
access: read only
mechanism: by reference

16- x 16-bit cursor pattern. The pattern_array argument is the address of
one or more 16-bit arrays of 16 words that represents a bitmap image of
the cursor pattern.

You can define two patterns that are executable on color and intensity
systems using two arrays-a color plane and a mask plane. However,
monochrome systems use a single array to specify the cursor pattern.

If two arrays are specified in an application nlnning on a single-plane
systenl, the first array is used.

NOTE: The bitmap image of the new pointer pattern is mapped in reverse order
to the display screen.

pattern_count
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

V4.1-June 1989 18-285

UIS Routine Descriptions
UIS$SET _POINTER_PATTERN

Number of 16- x 1.6-bit cursor patterns defined. The pattern_count
argument is the address of a longword that contains the nUlllber of cursor
pattern arrays defined in the pattern_array argument.

actlvex
actlvey
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

The activex and activey arguments are used to specify the actual bit in the
cursor pattern that should be used to calculate the current pointer position.
The arguments are expressed as bit offsets from the lower-left corner of the
cursor pattern.

X1' Y1
X2, Y2
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

World coordinates of the rectangle in the virtual display. The xl and YI
arguments are the addresses of Cfloating point numbers that define the
lower-left corner of the rectangle in the display window. The X2 and Y2
arguments are the addresses of Cfloating point numbers that define the
upper-right corner of the rectangle in the display window.

flags
VMS Usage: longword_mask
type: longword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of a longword mask whose bits
determine whether or not the cursor is confined to the display window
rectangle.

When specified, UIS$M_BIND _POINTER sets the appropriate bit in the
mask.

DESCRIPTION UIS$SET_POINTER_PATTERN enables an application to specify a special
pointer pattern to be used when the pointer is within the display window
region specified by the optional rectangle. If no rectangle is given, then the
entire display window is assumed. This function can be called any number
of times for different rectangles.

18-286 V4.1-June 1989

UIS Routine Descriptions
UIS$SET _POINTER_PATTERN

To disable UIS$SET_POTNTER_PATTERN, omit the pattern_array, pattern_
count, activex, activey, and flags arguments.

NOTE: The mouse is different from the tablet. This is apparent when you use the
UIS$M_BIND _POINTER flag. When you are using a tablet and BINDing
the cursor to a region or window with the UIS$SET_POINTER_PATTERN
statement, the lower-level drivers map the entire tablet surface to the
region in parameters XvYt , X2,Y2 if specified. If you do not specify the
region, the tablet surface is mapped to the entire window.

V4.1-June 1989 18-286.1

UIS Routine Descriptions
UIS$SET _POINTER_POSITION

UIS$SET _POINTER_POSITION

FORMAT

RETURNS

ARGUMENTS

Specifies a new current pointer position in world coordinates. It is only
effective if the new pointer position is within the specified display window
and visible.

status = UIS$SET_POINTER_POSITION vd_id,
wd_id, x, Y

VMS Usage: Boolean
type: longword
access: write only
mechanism: by value

Boolean value returned in a status variable or RO 01 AX MACRO). A status
of 1 is returned, if the operation is successful, otherwise a 0 is returned.

UIS$SET_POINTER_POSITION signals all errors; no condition values are
returned.

vd Id
SeeSection 18.3.1 for a description of this argument.

wd_ld
See Section 18.3.2 for a description of this argument.

x
y
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

World coordinates of the new pointer position. The x and yarguments
are the addresses of Cfloating point numbers that define the new pointer
position.

18-287

UIS Routine Descriptions
UIS$SET _POSITION

UIS$SET _POSITION

FORMAT

RETURNS

ARGUMENTS

EXAMPLE

18-288

Sets the current position for text output. The current position is the point
of alignment on the baseline of the next character to be output.

UIS$SET_POSITION signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

x
y
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

X and y world coordinate position. The x and y arguments are the
addresses of Cfloating point numbers that define the current position
for text output.

REAL*4 Y
DATA Y/4.0/

DO 1=1,5
CALL U1S$SET_POS1T10N(VD_1D,FLOAT(1),Y)
CALL U1S$PLOT(VD_1D,1,O.O,Y,FLOAT(1),Y)
Y=Y-l. 0
CALL U1S$SET_FONT(VD_1D,l,l,'MY_FONT_11')
CALL U1S$TEXT(VD_1D,l,'Full speed ahead!')
ENDDO

UIS Routine Descriptions
UIS$SET _POSITION

screen output

1,...--Fu11 ~p~~d 4h~4d!

II~_ FuJ.J. speed ahead!
1,~ __ FuJ..1 speed ahead!

3peed ahead!

Text Baseline Current Text Position

ZK·5386·86

18-289

UIS Routine Descriptions
UIS$SET _RESIZE_AST

FORMAT

RETURNS

ARGUMENTS

18-290

Specifies a user-requested AST routine to be executed when a display
window has been resized using the user interface.

UIS$SET_RESIZE_AST vd_id, wd_id [,astadr
f,astprm]] [,new_abs_x,
new_abs-y] f,new_width,
new_height] [,new_wc_x1,
new_wc-Y1' new_wc_x2,

new_wc--Y2I

UIS$SET_RESIZE_AST signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

wd_ld
See Section 18.3.2 for a description of this argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the entry mask address of a procedure
that is called at AST level whenever you select the Change the Size item in
the Window Options Menu and a display window has been resized.

See the Description section for information about disabling
UIS$SET_RESIZE_AST.

astprm
See Section 18.3.7 for more information on this argulnent.

new_abs_x
new_abs_y
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Absolute device coordinate pair. The new_abs_x and new_abs_y argulnents
are the addresses of Cfloating point longwords that receive the exact
location of the newly resized display window in centimeters.

UIS Routine Descriptions
UIS$SET _RESIZE_AST

new~wldth
new_height
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

Width and height of the resized window. The new_width and new_height
arguments are the addresses of Cfloating point longwords that receive the
dimensions of the newly resized display window in centimeters.

new_wc_x1J new_wc_Y1
new_wc_x2J new_wc_Y2
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

World coordinates of the resized window. The new_wc_xl and
new _ wC_Yl arguments are the addresses of Cfloating point longwords
that receive the world coordinates of the lower-left corner of the newly
resized display window. The new_wc_x2 and new_wc_Y2 arguments are the
addresses of Cfloating point longwords that receive the world coordinates
of the upper-right corner of the newly resized display window.

DESCRIPTION Typically, a call to UIS$SET_RESIZE_AST in an application program
indicates that the default resizing behavior is to be overridden.

By default, if a resize AST has not been enabled in an application progrmTI,
UIS calls UIS$RESIZE_ WINDOW. If this behavior is not sufficient, the
application progralTI can call UIS$SET _RESIZE_AST with its own resize
routine.

To reenable the default behavior, specify UIS$C_DEFAULT_RESIZE as the
astadr argument in a subsequent call to UIS$SET _RESIZE_AST.

You can completely disable the ability to resize a window in the following
ways:

• Specify the required wd_id argument and a value of 0 in the astadr
argument

• Specify only the required wd_id argument

• Omit the astadr and astprm arguments.

When window resizing is disabled, the option, "Change the size"
displayed in the Window Options Menu changes fronl boldface to halftone.

The parameters for the resized window's new location, dimensions, and
world coordinate range will not be overwritten with subsequent values until
the AST has completed.

18-291

UIS Routine Descriptions
UIS$SET _RESIZE_AST

EXAMPLE

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,40.0,40.0,15.0,15.0) 8
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','RESIZE',
2 5.0,5.0,25.0,25.0) ~

CALL UIS$SET_RESIZE_AST(VD_ID,WD_ID,RESIZE_ME,O,NEW_ABS_X,NEW_ABS_Y,
2 NEW WIDTH,NEW HEIGHT,NEW WC Xl,NEW WC Yl,
2 NEW:WC_X2,NEW=WC_Y2) ~ - - --

CALL SYS$HIBER()

END lend of main program

SUBROUTINE RESIZE_ME ~

CALL UIS$RESIZE_WINDOW(VD_ID,WD_ID,NEW_ABS_X,NEW_ABS_Y",
2 1.0,1.0,40.0,40.0) m

RETURN
END

18-292

In the preceding example, the call to UIS$CREATE_DISPLA Y 8 establishes
the initial viewport size as a square.

The coordinate space of the initial display window is defined to be a subset
of the virtual display~. When the original window is displayed it will show
only a portion of the virtual display. ~

The call to UIS$SET _RESIZE_AST ~ indicates that the program will override
the default window resizing operation by enabling a user-written AST
routine RESIZE_ME ~.

The parameter list of UIS$RESIZE_ WINDOW m indicates how the resize
operation is redefined. The absolute position and size of all viewports will
default as usual to the final position and dimensions of the stretchy box.

However, the world coordinate range of the newly resized window is
defined explicitly as the coordinate range of the virtual display. All newly
resized windows will show the entire virtual display. If you tried to resize
a previously resized window, you would still see the contents of the entire
virtual display.

Distortion of objects displayed in the viewport will occur whenever the
aspect ratio of the newly resized viewport does not equal the aspect ratio
of the newly resized display window.

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

UIS Routine Descriptions
UIS$SET _SHRINK_ TO_ICON_AST

Specifies a user-requested AST routine to be executed whenever a display
viewport is shrunk using the human interface.

UIS$SET_SHRINK_ TO_ICON_AST wd~id [,astadr
[,astprm]]

UIS$SET_SHRINK_TO_ICON_AST signals all errors; no condition values
are returned.

wdld
See Section 18.3.2 for a description of this argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the entry mask address of a procedure
called at AST level whenever you select the Shrink to Icon item in the
Window Options Menu.

astprm
See Section 18.3.7 for more information on this argument.

The user interface for replacing a display viewport with an icon can be
disabled by calling UIS$SET_SHRINK_TO_ICON_AST with the wd_id
only.

To reenable the default behavior of UIS$SET_SHRINK_TO_ICON_AST,
specify the constant UIS$C_DEFAULT_SHRINK_TO_ICON in the astadr
argument.

18-293

UIS Routine Descriptions
UIS$SET _ TB_AST

UIS$SET _ TB_AST

FORMAT

RETURNS

ARGUMENTS

18-294

Specifies a user-requested AST routine to be executed whenever the
digitizer lies within a specified rectangle on the tablet.

UIS$SET _ TB_AST tb_id, [,data_astadr,
[data_astprmJJ, [,X-POS ,Y-P0SJ
[data_x 1, data_y 1, data_x 2' data-y 2i
[, button_astadr
[, button _astprmJ, button _ke ybuf]

UIS$SET_ TB_AST signals all errors; no condition values are returned.

tb Id
VMS Usage:
type:
access:
mechanism:

identifier
longword (unsigned)
read only
by reference

Tablet identifier. The tb_id argulnent is the address of a longword that ~
uniquely identifies the tablet. See UIS$CREA TE_ TB for more information
about the tb _id argument.

data_astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The data_astadr argument is the address of an entry mask of
a procedure that is called at AST level for each data point whenever the
digitizer is moved within the specified active data region defined on the
tablet.

See the Description section for information about disabling the digitizing
region.

data_astprm
VMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: reference

AST parameter. The data_astprm is the address of a single argument or
data structure, such as an array or record, to be passed to the AST routine.
Calls to UIS$SET _ TB _AST in VAX FORTRAN application programs should
be coded as follows: %REF(%LOC(astprm)).

x-P0S
y-pos
VMS Usage: floating_point
type: f_floating
access: write only
mechanism: by reference

UIS Routine Descriptions
UIS$SET TB AST

Absolute device coordinate pair. The x_pos, y_pos arguments are the
addresses of Cfloating longwords that receive the current x and y tablet
positions in centimeters relative to the lower-left corner of the tablet, when
a data AST occurs.

data_x1, data_Y1
data_x2, data_Y2
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Absolute device coordinate pair. The data_xlfdata_Yt arguments are the
addresses of Cfloating point numbers that define the lower-left corner
of the data or digitizer region specified on the tablet. The data rectangle
defines an area on the tablet in which data should be collected.

button_astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The button_astadr argument is the address of an entry mask
of a procedure that is called at AST level whenever a button is depressed
or released within the specified active data region defined on the tablet.

See the Description section for information about disabling the digitizing
region.

button_astprm
VMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: reference

AST parameter. The button_astprm is the address of a single argument or
data structure, such as an array or record, to be passed to the AST routine.
Calls to UIS$SET_TB_AST in VAX FORTRAN application programs should
be coded as follows: %REF(%LOC(astprn1».

V 4.1-June 1989 18-295

UIS Routine Descriptions
UIS$SET _ TB_AST

button_keybuf
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Button information. The button_keybuf argument is the address of a
longword that receives button information.

DESCRIPTION The data rectangle specifies the active data region on the tablet. Only
points within this rectangle are returned to the application. The data
rectangle is specified using a centimeter coordinate system that is based at
the lower-left corner of the tablet.

18-296

If no data rectangle is specified, the entire tablet is assumed.

AST Routines

The UIS$SET_TB_AST call enables you to have a button AST and/or a data
AST.

To disable data AST routines, specify 0 in the data_astadr argument. To
disable button AST routines, specify 0 in the button_astadr argunlent.

To disable data-digitizing, specify the tb_id argument only. This does not
free up the tablet for use by another process but nlerely deactivates the
data region on the tablet. To free up the tablet for use by another process,
use the UIS$DISABLE_ TB routine.

V4.1-June 1989

UIS Routine Descriptions
UIS$SET _TEXT _FORMATTING

UIS$SET _ TEXT_FORMATTING

FORMAT

RETURNS

ARGUMENTS

Sets the text formatting justification mode.

UIS$SET_TEXT_FORMATTING vd_id, iatb, oatb,
mode

UIS$SET_TEXT_FORMATTING signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

latb
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

oatb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

mode
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Text formatting mode. The mode argument is the address of a longword
mask that sets the text formatting mode. The following table lists valid text
formatting modes.

18-297

UIS Routine Descriptions
UIS$SET _TEXT_FORMATTING

Formatting Mode

UIS$C_ TEXT _FORMAT _LEFT

UIS$C_ TEXT _FORMAT_RIGHT

UIS$C_ TEXT _FORMAT_CENTER

Function

Left justified, ragged right

Right justified, left ragged

Centered line between left and right
margin

Justified lines, space filled to right
margin

No text justification (default)

All other values are reserved to DIGITAL for future use.

DESCRIPTION Text justification occurs at the end of every UIS$TEXT or UIS$MEASURE_
TEXT call. Text justification also occurs when a UIS$C_TEXT_NEW_LINE
item is encountered in a UIS$TEXT or UIS$MEASURE_ TEXT control

EXAMPLE

18-298

list. The formatting mode and margins that are used are based on either
the attribute block specified in the routine call or the last attribute block
specified before the UIS$C_TEXT_NEW_LINE item code is encountered.

NOTE: Lines of text that do not fit completely within the margins will extend
beyond the margin.

CALL UIS$SET_TEXT_MARGINS(VD_ID,O,1,3.0,27.0,24.0)
CALL UIS$PLOT(VD_ID,O,3.0,30.0,3.0,O.O)
CALL UIS$PLOT(VD_ID,O,27.0,30.0,27.0,O.O)

CALL UIS$SET_TEXT_FORMATTING(VD_ID,1, 1,UIS$C_TEXT_FORMAT_JUSTIFY)
CALL UIS$SET_ALIGNED_POSITION(VD_ID,1,3.0,28.0)

CALL UIS$SET_FONT(VD_ID,1,2,'MY_FONT_8')

DO 1= 1,4
CALL UIS$TEXT(VD_ID,2,'What has been, may be')
CALL UIS$NEW_TEXT_LINE(VD_ID,2)
ENDDO

screen output

UIS Routine Descriptions
UIS$SET _TEXT_FORMATTING

~ooner be!'un, ,ooner done
!sooner be!'un, ,ooner done
!sooner be!'un, ,ooner done
~ooner be!'un, ,ooner done

- - --

t'ight ju~tificd

The biter i, ,ometime~ bit
The bi ter is sometimes bi t
The bi ter is sometimes bi t
The bi ter is sometimes bi t

has been, may
has been, may
ha.s been, ma.y
has been, ma.y

lK 529186

18-299

UIS Routine Descriptions
UIS$SET _TEXT_MARGINS

UIS$SET _ TEXT _MARGINS

FORMAT

RETURNS

ARGUMENTS

18-300

Sets the text margins for a line of text.

UIS$SET _TEXT_MARGINS vd_id ,iatb ,oatb ,x ,Y
,margin_length

UIS$SET_TEXT_MARGINS signals all errors; no condition values are
returned.

vd Id
See-Section 18.3.1 for a description of this argument.

latb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

oatb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

x
y
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Starting margin position. The x, y arguments are the addresses of Cfloating
numbers that define a point on the margin. The margin is the minor text
path when slope equals zero.

margin_'ength
VMS Usage: floating_point
type: f_floating
access: read only
mechanism: by reference

Ending margin position. The margin_length is the address of anCfloating
number that defines the distance in world coordinates frool the starting
margin to the end margin.

UIS Routine Descriptions
UIS$SET _TEXT_MARGINS

DeSCRIPTION Lines of text do not automatically wrap to the next line.

18-301

UIS Routine Descriptions
UIS$SET _TEXT _PATH

UIS$SET _TEXT_PATH

FORMAT

RETURNS

ARGUMENTS

18-302

Sets the direction of text drawing and the direction of new text lines.

UIS$SET_TEXT_PATH vd_id, iatb, oatb, major
[,minor]

UIS$SET _ TEXT_PATH signal all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

lafb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

oafb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

major
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Major text path. The major argument is the address of a symbol that
identifies the major text path type. The major path of text drawing is the
direction of text drawing along a line. See the Description section for more
information.

minor
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Minor text path. The minor argunlent is the address of a synlbol that
identifies the minor text path type. The minor path of text drawing refers
to the direction of new text line creation. See the Description section for
more information.

UIS Routine Descriptions
UIS$SET _TEXT _PATH

DESCRIPTION The following table contains symbols for valid character drawing directions.

EXAMPLE

Path

UIS$C_ TEXT _PATH_RIGHT

UIS$C_TEXT_PATH_LEFT

UIS$C_ TEXT _PATH_UP

UIS$C_ TEXT _PATH_DOWN

Direction

Left to right (default major text path)

Right to left

Bottom to top

Top to bottom (default minor text path)

CALL UIS$SET_TEXT_PATH(VD_ID,O,l,UIS$C_TEXT_PATH_LEFT,
2 UIS$C_TEXT_PATH_DOWN)

CALL UIS$SET_FONT(VD_ID,1,1,'MY_FONT_5')

CALL UIS$SET_ALIGNED_POSITION(VD_ID,1,38.0,38.0)

CALL UIS$TEXT(VD_ID,l,'Knowledge is power!')
CALL UIS$NEW_TEXT_LINE(VD_ID,l)

The preceding example illustrates how to alter the default major text
drawing path to produce the output shown in the next section.

screen output

!rewop • egdelwon Sl.

!rewop • egdelwon Sl..

!rewop • egdelwon 8l..

!rewop • egdelwon 8l..

!rewop • egdelwon 8l..

ZK5287·86

18-303

UIS Routine Descriptions
UIS$SET _TEXT_SLOPE

UIS$SET _ TEXT _SLOPE

FORMAT

RETURNS

ARGUMENTS

EXAMPLE

18-304

Sets the angle of the actual path of text drawing relative to the major path.

UIS$SET_TEXT_SLOPE vd_id ,iatb ,oatb ,angle

UIS$SET_ TEXT_SLOPE signals all errors; no condition values are returned.

vd Id
See-Section 18.3.1 for a description of this argument.

lafb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.5 for a description of this argument.

oafb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

See Section 18.3.6 for a description of this argument.

angle
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Angle of text slope. The angle argument is the address of an Cfloating
point number that defines the angle of the actual path of text drawing
relative to the major path measured counterclockwise in degrees. The
default angle of text slope is 0 degrees.

CALL U1S$SET_FONT(VD_1D,0,1,'MY_FONT_13')
CALL U1S$SET_TEXT_SLOPE(VD_1D,1,2,45.0)

DO 1=1,10
CALL U1S$SET_ALIGNED_POSITION(VD_ID,2,0.0,y)
CALL U1S$TEXT(VD_1D,2,'water seeks its own level!')
Y=Y-2.0
ENDDO

UIS Routine Descriptions
UIS$SET _TEXT_SLOPE

PAUSE

DO 1=1,10
CALL U1S$SET_ALIGNED_POS1T10N(VD_1D,2,X,1.0)
CALL UIS$TEXT(VD_ID,2,'water seeks its own levell')
X=X+2.0
ENDDO

18-305

UIS Routine Descriptions
UIS$SET _TEXT_SLOPE

screen output

18-306

ZK·5288·86

UIS Routine Descriptions
UIS$SET_VP _TITLE

UIS$SET _ VP _ TITLE

FORMAT

RETURNS

ARGUMENT

restrictions:

UIS$SET _ VP _TITLE places a string of up to 63 characters in the window
banner and redraws the border.

UIS$SET_ VP _TITLE signals all errors; no condition values are returned.

See Section 18.3.2 for a description of this argument.

string
VMS Usage: char_string
type: character string
access: read only
mechanism: by description

Banner title. The string argument is the address of a descriptor of the
character string to be inserted into the banner of the display viewport.

If the string argument is not specified, the display banner is created without
a title.

If the length of the character string is greater than 63, the string is truncated
to 63 characters.

V4.1-June 1989 18-307

UIS Routine Descriptions
UIS$SET _WRITING_INDEX

UIS$SET _WRITING_INDEX

FORMAT

RETURNS

ARGUMENTS

18-308

Sets the writing color index for text and graphics output.

UIS$SET_WRITING_INDEX vd_id, iatb, oatb, index

UIS$SET_ WRITING_INDEX signals all errors; no condition values are
returned.

See Section 18.3.1 for a description of this argument.

larb

See Section 18.3.5 for a description of this argument.

oafb

See Section 18.3.6 for a description of this argument.

Index
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Color map index. The index argulnent is the address of a longword integer
that specifies a color map index. If the index exceeds the DlaxiDluDl index
for the associated color map, an error is signaled.

V4.1-June 1989

UIS Routine Descriptions
UIS$SET _WRITING_MODE

UIS$SET _WRITING_MODE

FORMAT

RETURNS

ARGUMENTS

Sets the text and graphics mode.

UIS$SET_WRITING_MODE vd_id, iatb, oatb, mode

UIS$SET_ WRITING_MODE signals all errors; no condition values are
returned.

See Section 18.3.1 for a description of this argument.

latb

See Section 18.3.5 for a description of this argument.

oatb

See Section 18.3.6 for a description of this argument.

Controls the writing mode.

mode
VMS Usage: longword_slgned
type: longword (signed)
access: read only
mechanism: by reference

Writing mode. The mode argument is the address of a longword that
specifies the writing mode (UIS$C_MODE_xxxx). The default writing mode
is overlay.

DESCRIPTION Section 9.4 lists and describes all UIS writing modes.

V4.1-June 1989 18-308.1

UIS Routine Descriptions
UIS$SETUP

UIS$SETUP

Invokes the Workstation Options Menu.

FORMAT UIS$SETUP

R ETU R N S UIS$SETUP signals all errors; no condition values are returned.

DESCRIPTION The UIS$SETUP call invokes the Workstation Options Menu and returns
immediately. For more details on the Workstation Options Menu, see the
VMS Workstation Software User's Guide.

18-308.2 V4.1-June 1989

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$SHRINK_ TO_ICON

Replaces a display viewport with its associated icon.

UIS$SHRINK_ TO_ICON wd_id [,icon_wd_id]
[, icon_flags] [, icon_name]
[, attributes]

UIS$SHRINK_TO_ICON signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for a description of this argument.

Icon_wd_ld
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Icon window identifier. The icon_wd_id argument is the address of a
longword that uniquely identifies an icon.

Icon_flags
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Icon flags. The icon_flags is the address of a longword mask of flags that
can be used to specify whether default icon behavior should be extended
to an application-supplied icon. By default, no modifications are made to
the application-supplied icon. The following table lists valid icon flags.

Flag

All other bits

Function

UIS manages keyboard ownership. If the display
window is enabled for keyboard ownership,
UIS$DISABLE_ VIEWPORT _KB is called during
window shrinking and UIS$ENABLE_KB is called
during icon expansion.

UIS places a button AST region over the body
of the icon window and uses that AST to trigger
Icon expansion.

The remaining bits are set to 0 and are reserved
to DIGITAL.

18-309

UIS Routine Descriptions
UIS$SHRINK_TO_ICON

18-310

VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Icon name. The icon_name argument.is the address of a descriptor of the
text to be used as the icon name.

attributes
VMS Usage: itemJist_pair
type: longword (unsigned)
access: read only
mechanism: by reference

Window attributes list. The attributes argument is the address of data
structure, such as an array or record. You can use the attributes argument
to specify exact placement of the icon on the display screen.

The following figure describes the structure of the window attributes list.

Attribute 10 code
(WOPL$C_xxx)

Longword value for attribute
identified in previous longword

2nd attribute 10 code

2nd attribute value

•

•
•

End of list 0
(WOPL$C_ENO_OF _LIST)

ZK-4581-85

See UIS$CREATE_ WINDOW for more information.

screen output

USER

UIS Routine Descriptions
UIS$SHRINK_ TO_ICON

USER

ZK5448·86

18-311

UIS Routine Descriptions
UIS$SOUND_BELL

UIS$SOUND_BELL

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

18-312

Actuates the keyboard bell to ring once.

UIS$SOUND_BELL devnam [,bell_volume]

UIS$SOUND _BELL signals all errors; no condition values are returned.

devnam
See Section 18.3.9 for more information about this argument.

bell_volume
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Bell volume level. The bell_volume argument is the address of a longword
that specifies the bell volume. The bell_volume argument can be supplied
explicitly as a number from 0 to 8, where 0 is the most quiet; and 8 is the ~
loudest. If the bell_volume argument is not specified, the default volume
specified in the workstation setup menu is used.

On the LK201 keyboard, the bell sound differs from a key click sound in
the frequency and tone.

UIS Routine Descriptions
UIS$SOUND_CLICK

UIS$SOUND_CLICK

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Actuates the keyboard click sound once.

UIS$SOUND_CLICK devnam [,click_volume]

UIS$SOUND_CLICK signals all errors; no condition values are returned.

devnam
See Section 18.3.9 for more information about this argument.

click_volume
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Key click volume level. The click_volume argument is the address of
a longword that specifies the key click volume level. The click_volume
argument is specified explicitly as a number from 0 to 8, where 0 is the
most quiet and 8 is the loudest. If the click_volume argument is not
specified, the default volume is used from the workstation setup menu
mechanism.

On the LK201 keyboard, the key click sound differs froln a bell sound in
the frequency and tone.

18-313

UIS Routine Descriptions
UIS$TEST _KB

UIS$TEST _KB

FORMAT

RETURNS

ARGUMENTS

18-314

Returns a Boolean value indicating whether the physical keyboard is
currently bound to the specified virtual keyboard.

status = UIS$TEST_KB kb_id

VMS Usage: BocUeari
type: longword
access: write only
mechanism: by value

Boolean value returned in a status variable or RO 01 AX MACRO). The
Boolean value TRUE is returned if the physical keyboard is bound to the
virtual keyboard, otherwise a Boolean value FALSE is returned.

UIS$TEST _KB signals all errors; no condition values are returned.

kb Id
See-Section 18.3.8 for more information about the kb_id argument.

UIS$TEXT

FORMAT

RETURNS

ARGUMENTS

UIS Routine Descriptions
UIS$TEXT

Draws a series of characters. Supports 16-bit text (for example, 2-byte
Kanji fonts). To enable 16-bit functions, set the DTYPE field (DSC$B_
DTYPE) in the descriptor of the text string to DSC$K_DYPTE_ T2.

UIS$TEXT vd_id, atb, text_string [,x,y] [,ctl/ist ,ctl/en]

UIS$TEXT signals all errors; no condition values are returned.

vd_ld
See Section 18.3.1 for a description of this argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that specifies an attribute block that modifies text output. When
a control list is specified, the atb argument defines the initial attribute
settings of the text string.

text_string
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Text string. The text_string argument is the address of a character string
descriptor of a text string.

x
y
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Starting point of text output. The x and y arguments are the addresses of C
floating point numbers that define in world coordinates of the starting point
of text output. The starting point is the upper-left corner of the character
cell of the next character to be drawn.

If this argument is not specified, the current text position is used. (See the
UIS$SET_ALIGNED_POSITION routine for lllore infonnation.)

When a control list is specified, the x, y arguments specify the starting
coordinate for the first character of the character string.

18-315

UIS Routine Descriptions
UIS$TEXT

18-316

Cfllisf
VMS Usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Text formatting control list. The ctllist argument is the address of an
array of longwords that define the font, text rendition, text formatting, and
positioning of fragments of the text string. When a control list is specified,
the atb argulnent defines the initial attribute settings of the text string

If ctllist is not specified, text rendition and position are the values specified
in the arguments atb and x, y.

The control list consists of a sequence of data elements, each two
longwords in length. The first longword of each element is a tag. The
sec,ond longword is either a value particular to the type of element
specified or zero. Following is a diagram showing the structure of a text
control list.

UIS$C_ TEXT -A TB

Attribute Block Number

UIS$C_ TEXT _SAVEPOSITION

0

UIS$C_ TEXT_IGNORE

Command Value

ZK5426·86

The following table describes valid formatting commands.

Formatting Command Function

Commands Without Values 1

UIS$C_ TEXT _NOP Nil operation

UIS$C_ TEXT _RESTORE_ Restores the current writing position
POSITION

UIS$C_ TEXT _SAVE_POSITION Saves the current writing position

1 Second longword must be zero

DESCRIPTION

UIS Routine Descriptions
UIS$TEXT

Formatting Command Function

Commands Requiring Values

UIS$C_ TEXT _ATB Specifies an attribute block number

UIS$C_ TEXT _HPOS_ Specifies a new current x position
ABSOLUTE

UIS$C_ TEXT _HPOS_RELATIVE Modifies the current x position by a delta

UIS$C_ TEXT _IGNORE Skips n characters

UIS$C_ TEXT _NEW_LINE Skips n new lines and positions at the left margin

UIS$C_TEXT_TAB_ABSOLUTE Writes white space to the new absolute position

UIS$C_ TEXT _TAB_RELATIVE Writes white space to the new relative position

UIS$C_ TEXT _ VPOS_ Writes a new current y position
ABSOLUTE

UIS$C_TEXT_VPOS_RELATIVE Modifies the current y position by a delta

UIS$C_ TEXT _WRITE Writes n characters

Commands Not Requiring a Second Longword

UIS$C_ TEXT _END_OF _LIST Terminates the control list

When UIS encounters illegal commands and values within the control list,
it skips the invalid item and signals an error.

etl/en
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Length of formatting control list. The ctllen argument is the address
of a longword that specifies the length of the formatting control list in
longwords.

N onprinting characters such as tab and line feed are not handled in any
special way. The character is obtained from the font and is displayed like
any other character.

18-317

UIS Routine Descriptions
UIS$TRANSFORM_OBJECT

UIS$TRANSFORM_OBJECT

FORMAT

RETURNS

Transforms the coordinates or attributes or both of the specified object
within the display list.

UIS$TRANSFORM OBJECT { Ob.1_ic! } l matrix]
seg_'d '

[,atb]

UIS$TRANSFORM_OBJECT signals all errors; no condition values are
returned.

ARGUMENTS obj_ld

18-318

See Section 18.3.3 for a description of this argument.

seg_ld
See Section 18.3.4 for a description of this argument.

matrix
VMS Usage: vector _Iongword_signed
type: F _floating
access: read only
mechanism: by reference

Transformation matrix. The matrix argument is the address of an
array of Cfloating point numbers that define the values to be used for
scaling, rotation, and/or translation. A two-dimensional array declared as
ARRAY(2,3) has the following structure.

1,1 1,2 1,3

2,1 2,2
i

2,3

ZK-5492-86

VAX FORTRAN allocates memory for the array elements. Memory
addresses of array elements range fro111 lowest to highest in the following
order: (1,1),(2,1), (1,2),(2,2),(1,3), and (2,3). VIS assigns values to array
elements in the order shown in the following illustration.

NOTE: For the purposes of assigning values to array elements, UIS treats all
transformation matrices as VAX FORTRAN arrays regardless of the
programming language of the application.

2

UIS Routine Descriptions
UIS$TRANSFORM_OBJECT

3 5

4 6

ZK·S493·86

Pairs of array elem~nts govern how displayed objects are scaled, rotated,
and translated. UIS computes the transformed coordinates in the following
manner.

Translation

Xl = A(l,l)*x + A(1,2)*y + A(1,3)
Yl = A(2,1)*x + A(2,2)*y + A(2,3)

When translation !=ilone is performed, the following array elements are
assigned values. Dx and Dy represent distances between the original
coordinates and the new coordinates.

o Ox

o Oy

ZK·S494·86

Scaling

When scaling alone is performed, the following array elements are assigned
values.

Sx o o

o Sy o

ZK·S495·86

Rotation

When rotation alone is performed, the following array elements are
assigned values, where II @" is the desired angle of rotation. The values
returned from the FORTRAN SIN and COS functions are stored in the
appropriate array elements. (The following example matrix for rotation
causes a clockwise rotation of the object.)

18-319

UIS Routine Descriptions
UIS$TRANSFORM_OBJECT

cos (@) sin (@) 0

-sin (@) cos (@) 0

ZK5496-86

An unlimited number of transformations can be performed at one time by
simply multiplying the matrices together into a single matrix using matrix
multiplication.

In order to multiply two matrices together, you must add a row to the
bottom of each matrix.

o o

ZK5461-86

After the multiplication is performed, renlove the last row of the result.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The ath argument is the address of a longword
that identifies an attribute block to override current attribute settings.

DESCRIPTION Either the coordinates can be transformed, or the attributes can be
overridden or both.

After a transformation, occluded objects might not appear correctly. This
can be corrected by calling UIS$EXECUTE to refresh the display screen.

EXAMPLE

18-320

REAL*4 MATRIX(2,3)

CALL UIS$PLOT(VD_ID,O,5.0,5.0,15.0,5.0,lO.O,15.0,5.0,5.0)

CURRENT_ID=UIS$GET_CURRENT_OBJECT(VD_ID)
OBJ_ID=CURRENT_ID

CALL UIS$SET_FONT(VD_ID,O,l,'UIS$FILL_PATTERNS')
CALL UIS$SET_FILL_PATTERN(VD_ID,1, l,PATT$C_HORIZ1_7)

PAUSE
MATRIX (1,1) =1. 0
MATRIX(2,1)=0.0
MATRIX(1,2)=0.0
MATRIX(2,2) =1. 0
MATRIX(1,3)=-10.0
MATRIX(2,3)=-10.0
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX,1)

PAUSE

MATRIX(1,1)=2.0
MATRIX(2,1)=0.0
MATRIX(1,2)=0.0
MATRIX(2,2)=2.0
MATRIX(1,3)=0.0
MATRIX(2,3)=0.0
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX,1)

PAUSE

CALL UIS$SET_FONT(VD_ID,0,2,'UIS$FILL_PATTERNS')
CALL UIS$SET_FILL_PATTERN(VD_ID,2,2,PATT$C_VERT1_7)

MATRIX (1, 1)=1.0
MATRIX(2,1)=0.0
MATRIX(1,2)=0.0
MATRIX(2,2)=1.0
MATRIX(1,3)=-13.0
MATRIX(2,3)=-13.0
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX,2)

UIS Routine Descriptions
UIS$TRANSFORM_OBJECT

18-321

UI$ Routine Descriptions

screen output
-- - -~ -~- --------~---~

~ --- --------~-----~----~---- - - - - ~

-I-- f-

- I--

~----------

-f-- r-- f--- r--- I--

ZK5<l1786

18-322

Part IV UIS Device Coordinate (UISDC) Routines

19

19.1

19.2

UIS Device Coordinate Graphics Routines

Overview
This chapter introduces the VMS Workstation Software UISDC (device
coordinate) graphics system services. It describes all UISDC routines and
how they are used.

UISDC Routines-How to Use Them
VMS workstation software provides, in addition to the world coordinate
interface (UIS), a device-coordinate, or pixel-level, interface (UISDC) to the
graphics system services. UISDC gives applications the ability to create
UIS windows and to manipulate the contents of those windows at the pixel
level.

When an application programs in device coordinates, it must make mixed
use of UIS and UISDC routines. Only UISroutines that use or modify
world coordinate positions are duplicated as UISDC routines. Most
informational, attribute, windowing, and display routines exist only in
UIS format and are shared by the two programming levels.

The principal differences between UISDC and UIS follow.

• The UISDC drawing surface is a display window; the UIS drawing
surface is a virtual display. Therefore, UISDC output routines use
display window identifiers rather than virtual display identifiers.

• Most UISDC positions are expressed in viewport-relative device
coordinates.

The lower-left corner of the display viewport is pixel (0,0).

The upper-right corner is: width multiplied by x resolution, height
multiplied by y resolution, where width and height are expressed in
centimeters and resolution is expressed in pixels per centimeter.

• UISDC does not maintain or manage a display list and thus does not
support automatic zooming, panning, or display playback.

You can mix use of UIS and UISDC output routines. Therefore, you can
perform the following UIS and UISDC operations simultaneously:

• Use virtual coordinates to draw to a virtual display that contains a
window.

• Use viewport-relative device coordinates to draw directly to the same
window.

Each coordinate system has separate current text positions, character size,
text margins, and clipping rectangles.

19-1

19.3

19.4

UIS Device Coordinate Graphics Routines

Routine Arguments Quick Reference
The UISDC routine descriptions in this chapter refer to the Quick
Reference, Section 18.3 in Chapter 18, for nlore detailed explanations
of arguments common to many different routines.

UISDC Routines and Arguments

19-2

Table 19-1 lists each routine and the arguments it uses.

Table 19-1 Routine Arguments

Routine Arguments

UISDC$ALLOCATE_DOP

UISDC$CIRCLE

UISDC$ELLIPSE

UISDC$ERASE

UISDC$EXECUTE_DOP _
ASYNCH

UISDC$EXECUTE_DOP _
SYNCH

UISDC$GET _ALIGN ED_
POSITION

UISDC$GET _CHAR_SIZE

UISDC$GET _CLIP

UISDC$GET _POINTER_
POSITION

UISDC$GET _POSITION

UISDC$GET _TEXT _MARGINS

UISDC$GET _VISIBILITY

UISDC$IMAGE

UISDC$LlNE

UISDC$LlNE_ARRAY

UISDC$LOAD_BITMAP

UISDC$MEASURE_ TEXT

UISDC$MOVE_AREA

UISDC$NEW_ TEXT_LINE

UISDC$PLOT

UISDC$PLOT _ARRAY

UISDC$QUEUE_DOP

wdjd, size, atb

wdjd, atb, center_x, center_y, xradius, start_
deg, end_deg

wdjd, atb, center_x, center_y, xradius, yradius,
start_deg, end_deg

wdjd, X1, Y1, X2, Y2

wdjd, dop, iosb

wdjd, atb, retx, rety

wdjd, atb, char, width, height

wd_id, atb, X1, Y1, X2, Y2

wdjd, retx, rety

wd_id, retx, rety

wdjd, atb, x, y, marginJength

wdjd, X1, Y1, X2, Y2

wdjd, atb, X1, Y1, X2, Y2, rasterwidth,
rasterheight, bitsperpixel, rasteraddr

wdjd, atb, x, y

wdjd, atb, count, x_vector, y_vector

wd_id, bitmap_adr, bitmap_len, bitmap_width,
bits_per _pixel

wdjd, atb, texcstring, retwidth, retheight, ctllist,
ctllen, posarray

wdjd, X1, Y1, X2, Y2, new_x, new_y

wdjd, atb

wdjd, atb, x, y

wdjd, atb, count, x_vector, y_vector

wdjd,dop

UIS Device Coordinate Graphics Routines

Table 19-1 (Cont.) Routine Arguments

Routine

UISDC$READ_IMAGE

UISDC$SET _ALIGN ED_
POSITION

UISDC$SET _BUTTON_AST

UISDC$SET _CHAR_SIZE

UISDC$SET _CLIP

UISDC$SET _POINTER_AST

UISDC$SET _POINTER_
PATTERN

UISDC$SET _POINTER_
POSITION

UISDC$SET _POSITION

UISDC$SET _TEXT_MARGINS

UISDC$TEXT

Arguments

wdJd, X1, Y1, X2, Y2, rasterwidth, rasterheight,
bitsperpixel, rasteraddr, rasterlen

wd_id, atb, x, y

wdJd, astadr, astprm, keybuf, Xl, Yl, X2, Y2

wdJd, iatb, oatb, char, width, height

wd_id, iatb, oatb, X1, Y1, X2, Y2

wdJd, astadr, astprm, X1, Y1, X2, Y2, exitastadr,
exitastprm

wdJd, pattern_array, pattern_count, activex,
activey, Xl. Y1, X2, Y2, flags

wd_id, X, y

wdJd, X, Y

wd_id, iatb, oatb, X, y, marginJength

wd_id, atb, texCstring, X, y, ~tllist, ctllen

The following section contains the UISDC routines with their arguments
and descriptions.

19-3

UISDC Routine Descriptions
UISDC$ALLOCATE_DOP

U ISDC$ALLOCATE_DOP

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

19-4

Allocates a DOP (drawing operation primitive) for a particular display
window in V AXstation color and intensity systems.

dop = UISDC$ALLOCATE_DOP wd_id ,size ,atb

VMS Usage: address
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the address of the drawing operation primitive
in the variable dop or RO (VAX MACRO).

UISDC$ALLOCATE_DOP signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

size
VMS Usage: longword_signed
type: longword (signed)
access: modify
mechanism: by reference

Size of the variable portion of the DOP. The size argument is the address
of a number that defines the size of the variable portion of the DOP to be
allocated.

The size of the variable portion of the allocated DOP is returned in the size ~
field. The size of the allocated DOP may be smaller than the requested
size.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argulnent is the address of an attribute
block.

UISDC$ALLOCA TE_DOP writes the following infonnation from the
specified attribute block into portions of the DOP data structure and
returns the DOP address.

• Clipping rectangle

• Writing mode

UISDC Routine Descriptions
UISDC$ALLOCATE_DOP

• Writing mask

See the VMS Workstation Software Video Device Driver Manual for more
information.

19-5

UISDC Routine Descriptions
UISDC$CIRCLE

UISDC$CIRCLE

FORMAT

RETURNS

ARGUMENTS

19-6

Draws an arc along the circumference of a circle.

UISDC$CIRCLE wd_id, atb, center_x, center-y,
xradius [,start_deg, end_degJ

UISDC$CIRCLE signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
integer that specifies an attribute block that controls the appearance of the ~
circl~r arc. ~

center_x
center_y
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Center position x and y viewport-relative device coordinates. The center_x ~
and center_y arguments are the integer addresses defining a point in the ,
virtual display that is the center of the arc or circle.

xradlus
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Radius of the circle specified as an x viewport-relative device coordinate
width. The xradius argument is the integer address that defines the
distance from the center to the circumference of the circle.

start_deg
end_deg
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

DESCRIPTION

UISDC Routine Descriptions
UISDC$CIRCLE

Degree where the arc starts. The start_deg and end_deg arguments are the
addresses of Cfloating numbers that define the start- and end-point on the
circumference of the circle where the arc or circle is drawn. Degrees are
measured clockwise from the top of the circle. If these arguments are not
specified, 0.0 degrees and 360.0 degrees are assumed.

UISDC$CIRCLE draws an arc specified by a center position and a radius
for the range of the degrees specified.

The arc is closed by drawing one or more lines between the endpoints.
The arc type associated with the attribute block specifies how the arc is
closed. The arc is not closed by default. See UISDC$SET _ARC_ TYPE for
more information.

The points are drawn with the current line pattern and width, and filled
with the current fill pattern, if enabled.

UISDC$CIRCLE does not support the following combination of attributes:

• Line width not equal to 1 and line style not equal to FFFFFFFF16

• Line width not equal to 1 and complement writing mode

Circles are distorted by virtual display/display window aspect ratio
distortion.

19-7

UISDC Routine Descriptions
UISDC$ELLIPSE

UISDC$ELLIPSE

FORMAT

RETURNS

ARGUMENTS

19-8

Draws an arc at a starting position along the circumference of an ellipse.

UISDC$ELLIPSE wd_id, atb, center_x, centers,
xradius, yradius [, start_deg
,end_deg]

UISDC$ELLIPSE signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword ~
that identifies the attribute block that modifies the ellipse. If you specify 0
in the atb argument, the default settings of attribute block 0 are used.

cenfer_x
center_y
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Center position x and y viewport-relative device coordinates. The center_x
and center_y arguments are the addresses of integers that define a point in
the display window that is the center of the ellipse or arc.

xradlus
yradlus
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Radius of the ellipse specified as an x and y device coordinate width. The
xradius argument is the integer address that defines the distance from
the ellipse center to the circumference of the ellipse or arc. The yradius
argument is the integer address that defines the distance from the center of
the ellipse to the circumference of the ellipse or arc.

DESCRIPTION

UISDC Routine Descriptions
UISDC$ELLIPSE

starf_deg
end_deg
VMS Usage:
type:
access:
mechanism:

floating_point
f_floating
read only
by reference

Degree where the arc starts and ends. The start_deg and end_deg
arguments are the addresses of Cfloating numbers that define the starting
point and ending point in degrees on the circumference of the ellipse
where the arc or ellipse is drawn. Degrees are measured clockwise from
the top of the ellipse. If these arguments are not specified, 0.0 and 360.0
degrees are assumed. If neither argument is specified, a complete ellipse
is drawn.

UISDC$ELLtPSE uses center position coordinates and x and y radii
to construct an ellipse. Along the circumference of this ellipse,
UISDC$ELLIPSE draws an arc for a specified range of degrees. To close
the arc, draw one or more lines between the endpoints. The type of arc
associated with the attribute block specifies the way the arc is closed. See
the UISDC$SET _ARC_TYPE routine for more information. The points are
drawn with the current line pattern and width and filled with the current
fill pattern if enabled. UISDC$ELLIPSE does not create thick patterned
ellipses and thick ellipses that are undefined in complement mode.

UISDC$ELLIPSE does not support the following combination of attributes:

• Line width not equal to 1 and line style not equal to FFFFFFFF16

• Line width not equal to 1 and complement writing mode

19-9

UISDC Routine Descriptions
UISDC$ERASE

UISDC$ERASE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

19-10

Erases the specified rectangle in the display window.

UISDC$ERASE signals all errors; no condition values are returned.

wd_ld
See Section 18.3.2 for more information about the wd_id argument.

x1' Y1
X2, Y2
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Viewport-relative device coordinate pairs. The Xl and Yl argunlents are the
integer addre~ses that define the lower-left corner of the rectangle in the ~
display window. The X2 and Y2 arguments are the integer addresses that
define the upper-right corner of the rectangle in the display window. If no
rectangle is specified, the entire display window is erased.

Areas within display windows affected by this call are filled with the color
specified by entry 0 in the virtual display color map.

UISDC Routine Descriptions
UISDC$EXECUTE_DOP _ASVNCH

UISDC$EXECUTE_DOP _ASYNCH

FORMAT

RETURNS

ARGUMENTS

Starts execution of the specified drawing operation primitive (DOP) in the
specified display window of V AXstation color and intensity systems and
Immediately returns control to the application.

UISDC$EXECUTE_DOP _ASVNCH wd_id ,dop ,iosb

UISDC$EXECUTE_DOP _ASYNCH signals all errors; no condition values
are returned.

wd_ld
See Section 18.3.2 for more information about the wd_id argument.

dop
VMS Usage: vector _byte_unsigned
type: byte_unsigned
access: read only
mechanism: by reference

Drawing operation primitive. The dop argument is the address of an array
of bytes that compose the drawing operation primitive.

losb
VMS Usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

110 status block. The iosb argument is the I/O status block address that
receives a value indicating that the DOP is queued for execution.

DESCRIPTION UISDC$EXECUTE_DOP_ASYNCH queues the specified DOP for execution
in the specified window.

You can later use the SYS$SYNCH system service to determine when the
DOr has been drawn. See the VMS Workstatioll Software Video Device Driver
Manual for more infornlation.

V4.1-June 1989 19-11

I

UISDC Routine Descriptions
UISDC$EXECUTE_DOP _SVNCH

UISDC$EXECUTE_DOP _SYNCH

FORMAT

RETURNS

ARGUMENTS

Queues the drawing operation primitive (DOP), walts for the specified DOP
to complete execution in the specified display window, then returns control
to the application.

UISDC$EXECUTE_DOP _SVNCH wd_id, dop

UISDC$EXECUTE_DOP _SYNCH signals all errors; no condition values are
returned.

wd_ld
See Section 18.3.2 for more information about the wd_id argument.

dop
VMS Usage: vector_byte_unsigned
type: byte_unsigned
access: read only
mechanism: by reference

Drawing operation primitive. The dop. argument is the address of an array
of bytes that compose the drawing operation primitive.

DESCRIPTION UISDC$EXECUTE_DOP_SYNCH queues the specified drawing operation
primitive for execution in the specified window and returns when the
drawing operation is complete.

19-12

The symbol UIS$C_EFN_SYNCH defines the event flag used by
UISDC$EXECUTE_DOP_SYNCH. Use this symbol in the call to
the $SYNCH system service to synchronize with the completion of
UISDC$EXECUTE_DOP _SYNCH.

See the VMS Workstation Software Video Device Driver Manual for more '
information.

V4.1-June 1989

UISDC Routine Descriptions
UISDC$GET _ALIGNED_POSITION

UISDC$GET _ALIGNED_POSITION

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Returns the current position for text output-the upper-left corner of the
next character cell.

UISDC$GET_ALIGNED_POSITION wd_id, atb, retx,
rety

UISDC$GET _ALIGNED _POSITION signals all errors; no condition values
are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Attribute block. The atb argument is the address of a longword that
identifies an attribute block that contains a modified font attribute.

retx
rety
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
write only
by reference

Viewport-relative device coordinate pair. The retx and rety arguments are
the addresses of longwords that receive the current position as x and y
viewport-relative device coordinate positions.

UISDC$GET _ALIGNED _POSITION differs from UISDC$GET _POSITION
in that the current position refers to the upper-left corner of the next
character to be output by using the specified attribute block. This feature is
useful for applications that require the position of the upper-left corner but
do not have enough information about the font baseline to determine the
proper alignment point. Applications use the font specified in the given
attribute block to convert the position into the proper alignment point. See
UISDC$SET _ALIGNED _POSITION.

19-13

UISDC Routine Descriptions
UISDC$GET _CHAR_SIZE

FORMAT

RETURNS

ARGUMENTS

19-14

Returns both a value indicating whether or not character scaling is enabled
and the character size used.

Boolean = UISDC$GET_CHAR_SIZE wd_id, atb
I,[,height]

VMS Usage: boolean
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as a Boolean to indicate the status of character
scaling in the variable Boolean or RO (VAX MACRO).

UISDC$GET_CHAR_SIZE signals all errors; no condition values are
returned.

wd.ld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block that contains the character size attribute
setting. ~

char
VMS Usage: char_string
type: character_string
access: write only
mechanism: by descriptor

Single character. The char argument is the address of a character string
descriptor of a single char.

width
height
VMS Usage:
type:
access:
mechanism:

longword_signed
long·word (signed)
write only
by reference

Character width and height. The width argument is the address of a
longword that receives the character width in viewport-relative device

UISDC Routine Descriptions
UISPC$GET _CHAR_SIZE

coordinates. The height argument is the address of a longword that
receives the character height in viewport-relative device coordinates.

19-15

UISDC Routine Descriptions
UISDC$GET _CLIP

UISDC$GET_CLIP

FORMAT

RETURNS

ARGUMENTS

19-16

Returns the clipping mode.

VMS Usage: boolean
type: (unsigned)
access: write only
mechanism: by value

Boolean value returned as the clipping mode in a status variable· or RO
01 AX MACRO). If clipping is enabled, a Boolean TRUE is returned. If
clipping is disabled, a Boolean FALSE is returned.

UISDC$GET_CLIP signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies the attribute block that modifies the clipping mode.

X1J Y1
X2J Y2
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
write only
by reference

Viewport-relative device coordinate pairs. The Xl and YI arguments are the
longword addresses that receive the viewport-relative device coordinates
of the lower-left corner of the clipping rectangle. The X2 and Y2 arguments
are the longword addresses that receive the viewport-relative device
coordinates of the upper-right corner of the clipping rectangle.

UISDC Routine Descriptions
UISDC$GET _POINTER_POSITION

UISDC$GET _POINTER_POSITION

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Returns the current pointer position in viewport-relative device coordinates.

status = UISDC$GET _POINTER_POSITION wd_id,
retx, rety

VMS Usage: boolean
type: longword (unsigned)
access: write only
mechanism: by value

Boolean value returned as the current position of the pointer in a status
variable. UISDC$GET_POINTER_POSITION returns the Boolean TRUE
value 1 if the pointer is within the visible portion of the viewport; 0 is
returned if the pointer is outside the visible portion of the viewport and the
x and y values are returned as 0,0.

UISDC$GET _POINTER_POSITION signals all errors; no condition values
are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

retx
rety
VMS Usage:
type:
access:
mechanism:

longword_signed
longword(signed)
write only
by reference

Viewport-relative device coordinate pair. The retx and rety arguments are
the addresses of longwords that receive the current position as x and y
viewport-relative device coordinate positions.

Always test the returned status value when you use this routine, since the
pointer could be outside the window when the service is called and the x,y
values would be meaningless.

19-17

UISDC Routine Descriptions
UISDC$GET _POSITION

UISDC$GET _POSITION

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

19-18

Returns the current baseline position for text output.

UISDC$GET POSITION wd_id, retx, rety

UISDC$GET_POSITION signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

retx
rety
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
write only
by reference

Viewport-relative device coordinate pair. The retx and rety arguments are ~
the addresses of longwords that receive the current position of text output ~
in viewport-relative device coordinate positions.

UISDC$NEW _ TEXT_LINE and UISDC$TEXT recognize the concept of
current position, which refers to the alignment point on the baseline of the
next output character. (See the UISDC$SET_POSITION routine.)

UISDC Routine Descriptions
UISDC$GET _TEXT_MARGINS

UISDC$GET _ TEXT _MARGINS

FORMAT

RETURNS

ARGUMENTS

Returns text margins for a line of text. See UISDC$SET _TEXT_MARGINS
for more information.

UISDC$GET_TEXT_MARGINS wd_id ,atb ,x ,Y
[, margin_length]

UISDC$GET_TEXT_MARGINS signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block.

x
y
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
write only
by teference

Starting margin position. The x, y arguments are the longword addresses
that receive the starting margin relative to the direction of text drawing in
viewport-relative device coordinates.

margin_'ength
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Ending margin position. The margin_length is the longword address
that receives the distance to the end 111argin in viewport-relative device
coordinates. The margin is measured along the actual path of text drawing.

19-19

UISDC Routine Descriptions
UISDC$GET _VISIBILITY

UISDC$GET _ VISIBILITY

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

19-20

Returns a Boolean value that indicates whether the specified rectangle in
the display window is visible.

Boolean = UISDC$GET _VISIBILITY wd_id f,x1' Y1
[,x2, Y21J

VMS Usage: boolean
type: longword(unsigned)
access: write only
mechanism: by value

Boolean value returned in a status variable or RO (VAX MACRO). The
returned value, the visibility status, is a Boolean TRUE only if the entire
area is visible and a Boolean FALSE if even a portion of the area is
occluded or clipped.

UISDC$GET_ VISIBILITY signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

X1' Y1
X2, Y2
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Viewport-relative device coordinates of a rectangle in the display window.
The xl and Yl arguments are integer addresses that define the lower-left
corner of a rectangle in the display window. The x2 and Y2 arguments are
integer addresses that define the upper-right corner of a rectangle in the
display window.

If you do not specify the coordinates of the rectangle, the dimensions of
the entire display window are used by default.

UISDC$GET _ VISIBILITY detennines if a single position is visible by
specifying the same coordinate for both mini111u111 and Inaximu111 values.

UISDC Routine Descriptions
UISDC$IMAGE

UISDC$IMAGE

FORMAT

RETURNS

ARGUMENTS

Draws a raster image into a specified display rectangle.

UISDC$IMAGE wd_id, atb, x 1, Y1' x2, Y2' rasterwidth,
rasterheight, bitsperpixel, rasteraddr

UISDC$IMAGE signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block that defines the writing mode.

X1' Y1
X2, Y2
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Viewport-relative device coordinates of the rectangle in the display window.
The Xl and YI argunlents are the addresses of integers that define the
lower-left corner of the rectangle in the display window. The x2 and Y2
arguments are the addresses of integer pixels that define the upper-right
corner of the rectangle in the display window.

rasterwldth
rasterhelght
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Width and height of the raster image. The rasterwidth argulllent is the
address of the longword that defines the width of the raster image in
pixels. The rasterheight is the address of the longword that defines the
height of the raster image in pixels.

19-21

UISDC Routine Descriptions
UISDC$IMAGE

DESCRIPTION

b/fsperplxel
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of bits per pixel in the raster image. The bitsperpixel argument is
the address of the longword that defines the number of bits per pixel in the
raster image. Currently, the bitsperpixel argument must be either 1 or 8.

If bitsperpixel is specified as 8 on a single-plane system, the results are
unpredictable.

rasferaddr
VMS Usage: vector_longword_unsigned
type: longword_unsigned
access: read only
mechanism: by reference

Raster image. The rasteraddr argument is the array address that defines a
raster image.

Raster dimensions are described by the width, height, and bits per
pixel parameters. Width and height give the number of pixels in each
dimension, and bits per pixel represents the number of bits that make
up each pixel. The raster is read from menlory as height bit vectors; each
vector is width pixels long; each pixel is bits/pixel bits long.

UISDC$IMAGE never scales. If the size of the destination rectangle is
larger than the size of the raster, the remaining space on the right and top
is not written.

UISDC$IMAGE assigns bits in the bitmap is as follows:

1 Each bit in the array is set from left-most bit to right-most bit.

2 Each row is filled from the top to the bottom row.

NOTE: The bitmap is not byte- or word-aligned.

Figure 19-1 illustrates bit setting in the bitmap.

19-22

UISDC Routine Descriptions
UISDC$IMAGE

Figure 19-1 Bit Setting in the Bitmap

1

1 0 1 1 1 0 0

1 0 1 0

1 0 1 0 1

\

\ Bitmap
Image

Raster
Image

ZK·4627·85

19-23

UISDC Routine Descriptions
UISDC$LINE

UISDC$LINE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

19-24

Draws a line or series of unconnected lines.

UISDC$LINE signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

arb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block that modifies line style or line width or
both.

x
y
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Viewport-relative device coordinate pair. The x and y arguments are integer
addresses that define a point in the display window.

If the arguments are repeated to specify a second position, a line is created.

If one coordinate pair is specified, a point is drawn. If any other odd
number of coordinate pairs is specified, the final coordinate pair is ignored.

You can specify up to 126 world coordinate pairs as arguments.

If you specify one position, a point is drawn. If you specify two positions,
a single vector is drawn.

You can specify up to 252 arguillents; that is, it is possible to draw 63
unconnected lines. Use UISDC$LINE_ARRA Y to specify a greater number
of points in a single call.

Draw points or lines with the line pattern and width for the attribute block.
Fill pattern attribute settings are ignored.

UISDC Routine Descriptions
UISDC$LINE_ARRAV

UISDC$LINE_ARRAY

FORMAT

RETURNS

ARGUMENTS

Draws an unfilled pOint, line, or a series of unconnected lines depending
on the number of positions specified.

UISDC$LINE ARRAY wd_id, atb, count, x_vector,
y_vector

UISDC$LINE_ARRA Y signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block that modifies line style or line width or
both.

count
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of points. The count argument is the longword integer address
that denotes the number of viewport-relative device coordinate pairs
defined in the arguments x_vector and y _vector.

x_vector
y_vector
VMS Usage:
type:
access:
mechanism:

vector Jongword_signed
longword (signed)
read only
by reference

Array of x and y viewport-relative device coordinates. The x_vector and
y_vector arguments are the integer array addresses whose elements define,
in viewport-relative device coordinates, the start- and end-points of lines
drawn in the display window.

19-25

UISDC Routine Descriptions
UISDC$LINE_ARRAV

DESCRIPTION

19-26

UISDC$LINE_ARRA Y performs the same functions as UISDC$LINE except
that in UISDC$LINE_ARRAY, x and y coordinates are stored in arrays.

You can plot up to 32,767 points in a single call. UISDC$LINE_ARRAY is
the same as UISDC$LINE except that in UISDC$LINE_ARRA Y, x and y
coordinates are specified using two arrays, each count points long.

UISDC Routine Descriptions
UISDC$LOAD_BITMAP

UISDC$LOAD_BITMAP

FORMAT

RETURNS

ARGUMENTS

Loads a bitmap into offscreen memory on V AXstation color and intensity
systems.

bitmap_id = UISDC$LOAD_BITMAP wd_id
,bitmap_adr
,bitmap_len
,bitmap_width
,bits-per -pixel

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the bitmap identifier in the variable bitmap jd
or RO (VAX MACRO) for use in DOP$L_BITMAP _ID field of a drawing
operation primitive (DOP).

UISDC$LOAD _BITMAP signals all errors; no condition values are
returned.

wdid
See Section 18.3.2 for more information about the wd_id argument.

bltmap_adr
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Bitmap address. The bitmap_adr argument is the address of a bitmap.

bitmap_len
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Bitmap length. The bitmap_len argument is the address of the number that
defines the length of the bitmap in bytes. The length lllust be a multiple
of 2.

bitmap_width
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

19-27

UISDC Routine Descriptions
UISDC$LOAD_BITMAP

DESCRIPTION

19-28

Width of the bitmap. The bitmap_width argument is the address of a
number that defines the width of the bitmap in pixels. If the number of
bits per pixel is 1, the specified width must be a multiple of 16.

If the width of the bitmap should not exceed 1024.

blts-per -pIxel
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

The bits_per_pixel argument is the address of a number that defines the
number of bits per pixel. Currently, the values 1 and 8 are supported.

See the VMS Workstation Software Video Device Driver Manual for more
information.

UISDC Routine Descriptions
UISDC$MEASURE_ TEXT

UISDC$MEASURE_ TEXT

FORMAT

RETURNS

ARGUMENTS

Measures a text string as if it were output in a display window.

UISDC$MEASURE TEXT wd_id, atb, text_string,
retwidth, retheight, [, ctl/ist,
etl/en] [,posarray]

UISDC$MEASURE_ TEXT signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block that modifies text output.

text_string
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Text string. The text_string argument is the address of a character string
descriptor of a text string.

retwldth
rethelght
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Width and height of the text string. The retwidth and retheight arguments
are longword addresses that receive the width and height of the text in
pixels.

ctllist
VMS Usage: vector _Iongword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

19-29

UISDC Routine Descriptions
UISOC$MEASURE_ TEXT

DESCRIPTION

19-30

Text formatting list. The ctHist argument is the address of a longword array
that describes the font, text rendition, format, and positioning of text string
fragments. See UISDC$TEXT for a complete description of the fonnatting
control list.

efl/en
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Length of the text formatting control list. The ctllen argument is the
address of a longword that defines the length of the text formatting control
list.

posarray
VMS Usage:
type:
access:
mechanism:

vector _Iongword_unsigned
longword (unsigned)
write only
by reference

Character position array. The posarray argument is the longword array
address that receives character positions in pixels that are relative offsets
where each character is displayed. See UISDC$MEASURE_ TEXT for a
complete description of the character position array.

Use UISDC$MEASURE_ TEXT in justification and text-positioning
applications. UISDC$MEASURE_ TEXT returns the height and width of
the text string in viewport-relative device coordinates.

UISDC Routine Descriptions
UISDC$MOVE AREA

UISDC$MOVE_AREA

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Shifts a portion of a display window to another pOSition in the window.

UISDC$MOVE_AREA wd_id, x 1, Y1, x2, Y2' new_x,
new_y

UISDC$MOVE_AREA signals all errors; no condition values are returned.

wdid
See Section 18.3.2 for more information about the wd_id argument.

x1, Y1

X2 ' Y2
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Viewport-relative device coordinates of the source rectangle. The Xl and
Yl arguments are the addresses of integers that define the lower-left corner
of the source rectangle. The x2 and Y2 are the addresses of integers that
define the upper-right corner of the source rectangle.

new_x
new_y
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Viewport-relative device coordinate pair. The new_x and new_y arguments
are the addresses of integers that define the lower-left corner of the
destination rectangle. The height and width of the destination rectangle is
implied from the height and width of the source rectangle.

Some display objects are only partially contained within the specified
source rectangle but are partially lTIoved within existing display windows.
These display objects will be moved completely within the display list.

The nonoccluding portion of the source rectangle (if any) is erased after the
operation.

19-31

UISDC Routine Descriptions
UISDC$NEW _TEXT_LINE

UISDC$NEW_ TEXT_LINE

FORMAT

RETURNS

ARGUMENTS

19-32

Moves the current text position along the actual text path, drawing to the
starting margin, then along the margin in the direction of the minor text
path. Depending on the minor text path, either the width or height of the
character cell is used for spacing between characters and lines.

UISDC$NEW_TEXT_LINE signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block.

UISDC Routine Descriptions
UISDC$PLOT

UISDC$PLOT

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Draws a filled or unfilled point, line, or polygon depending on the number
of positions specified.

UISDC$PLOT signals all errors; no condition values are returned.

wd_ld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block that modifies line style and line width.

x
y
VMS Usage:
type:
access:
mechanism:

longword_sig ned
longword (signed)
read only
by reference

Viewport-relative device coordinate pair. The x and y arguments are the
addresses of integers that define a point in the display window. If the
argument is used to specify a second position, a line is created. Up to 126
viewport-relative device coordinate pairs can be specified as arguments.
See the Description section for more information about this argument.

If you specify one position, a point is drawn. If you specify two positions, a
single vector is drawn. If you specify more than two positions, a connected
polygon is drawn. You can specify up to 252 arguments; this routine gives
a maximum 126-point polygon. If you must specify a larger number of
points in a single call, use UISDC$PLOT _ARRA Y.

You draw points or lines with the line pattern and width for the attribute
block. If FILL is enabled for the attribute block, the enclosed area is filled
with the current fill pattern.

NOTE: For VAX PASCAL application programs that draw lines and polygons, use
UISDC$PLOT _ARRAY.

19-33

UISDC Routine Descriptions
UISDC$PLOT _ARRAY

UISDC$PLOT _ARRAY

FORMAT

RETURNS

ARGUMENTS

19-34

Draws an unfilled or filled point, line, or polygon depending on the number
of positions specified. This routine performs the same functions as
UISDC$PLOT.

UISDC$PLOT _ARRAY wd_id, atb, count, x_vector,
y_vector

UISDC$PLOT _ARRAY signals all errors; no condition values are returned.

wd_id
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block that modifies line style or line width or
both.

count
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of points. The count argument is the address of the longword that ~
denotes the number of viewport-relative device coordinate pairs defined in
the x_vector and y_vector arguments.

x_vector
y_vector
VMS Usage:
type:
access:
mechanism:

vector _Iongword_signed
longword_signed
read only
by reference

Array of x and y viewport-relative device coordinates. The x_vector
argument is the integer array address whose elements are the x viewport­
relative device coordinate values of points defined in the window display.
The y_vector argument is the integer array address whose elelnents are
the y viewport-relative device coordinate values of points defined in the
display window.

DESCRIPTION

UISDC Routine Descriptions
UISDC$PLOT _ARRAY

You can plot a maximum of 65,535 points in a single call.
UISDC$PLOT_ARRAY is the same as UISDC$PLOT, except that you
specify the x and y viewport-relative device coordinates using two arrays,
each of length 11 points.

19-35

UISDC Routine Descriptions
UISDC$QUEUE_DOP

UISDC$QUEUE_DOP

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

19-36

Queues the specified drawing operation primitive (DOP) for execution in
the specified window and then returns control to the application.

UISDC$QUEUE_DOP signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

dop
VMS Usage:
type:
access:
mechanism:

vector _byte_unsigned
byte_unsigned
read only
by reference

Drawing operation primitive. The dop argument is the address of an array
of bytes that contains the drawing operation primitive. ~

UISDC$EXECUTE_DOP _ASYNCH queues the specified DOP for
execution in the specified window. To obtain notification that the DOP
has completed execution, see UISDC$EXECUTE_DOP _ASYNCH and
UISDC$EXECUTE_DOP _SYNCH. See the VMS Workstation Software Video
Device Driver Manual for more information about DOPs.

UISDC Routine Descriptions
UISDC$READ_IMAGE

UISDC$READ_IMAGE

FORMAT

RETURNS

ARGUMENTS

Reads a raster image from within a specified rectangle contained by a
display window.

UISDC$READ_IMAGE wd_id, X1, Y1, x2, Y2,

rasterwidth, rasterheight,
bitsperpixe/,[rasteraddr},
raster/en

UISDC$READ _IMAGE signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

x1

Y1
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Viewport-relative device coordinates of lower-left and upper-right corners
of the specified rectangle. The Xv Yl arguments are the addresses of
integers that define the lower-left corner of the rectangle in the display
window. The x2,Y2 arguments are the addresses of integers that define the
upper-right corner of the specified rectangle in the display window.

rasferwldfh
raSferhelghf
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Width and height in pixels of the raster image. The rasterwidth argument
is the address of a longword that receives the width of the raster image
in pixels. The rasterheight argument is the address of a longword that
receives the height of the raster image in pixels.

b/fsperplxel
VMS Usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Number of bits per pixel in the raster image. The bitsperpixel argument is
the address of a longword that receives the number of bits per pixel in the
raster image.

19-37

UISDC Routine Descriptions
UISDC$READ_IMAGE

DESCRIPTION

19-38

rasteraddr
VMS Usage: vector_byte_unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

Address of buffer in which to return the raster image. The rasteraddr
argument is the address of an array of bytes that receives the raster image.

raster/en
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Size in bytes of the buffer. The rasterlen argument is the address of a
longword that specifies the size in bytes of the buffer.

The raster image contained within the rectangle described by Xl, Yl and X2,
Y2 is returned in the specified buffer. The actual dimensions, in pixels, of
the returned buffer is written to rasterwidth and rasterheight. The number
of bits per pixel is written to bitsperpixel. If the size of the buffer specified
by rasterlen is not large enough to accept the entire bitInap raster, then
rasterwidth, rasterheight, and bitsperpixel are returned as 0 and no data is
written to the buffer.

If you specify the buffer length as 0, values are returned in rasterwidth,
rasterheight, and bitsperpixel. Use these values to calculate the size of the
buffer you need to contain the raster image. Specify a buffer length of 0 to
obtain the width, height, and bits per pixel. Use these returned values to
do the following:

1 Calculate the correct buffer size

2 Reissue the call with the correct data

UISDC Routine Descriptions
UISDC$SET _ALIGNED_POSITION

UISDC$SET _ALIGNED_POSITION

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Sets the current position for text output. This routine differs from
UISDC$SET _POSITION in that the position refers to the upper-left corner
of the next character to the output.

UISDC$SET_ALIGNED_POSITION wd_id, atb, x, y

UISDC$SET_ALIGNED_POSITION signals all errors; no condition values
are returned.

wd_ld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword
that identifies an attribute block that contains the appropriate font attribute
text attribute setting.

x
y
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Viewport-relative device coordinate pair. The x and y arguments are the
addresses of integers that define the current position for text output.

UISDC$SET_ALIGNED_POSITION is useful in applications that know
the position of the upper-left corner but do not know enough about the
font baseline to determine the proper alignment point. The position is
converted into the proper alignment point using the font specified in the
given attribute block. The alignment point is stored internally.

19-39

UISDC Routine Descriptions
UISDC$SET _BUTTON_AST

UISDC$SET _BUTTON_AST

FORMAT

RETURNS

ARGUMENTS

19-40

Allows an application to determine when a button on the pointing device is
depressed or released in a given rectangle of the display window.

UISDC$SET _BUTTON_AST wd_id [,astadr, [astprm]
,keybuf] [,X1, Y1' X2, Y2]

UISDC$SET_BUTTON_AST signals all errors; no condition values are
returned.

wdid
See Section 18.3.2 for more information about the wd_id argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the entry mask address to a procedure ~
called at AST level whenever you release or depress a pointer button. To
cancel the AST-enabling request of UISDC$SET_BUTTON_AST, specify
o in the astadr argument. To disable UIS$SET_BUTTON_AST, omit the
astadr argument.

astprm
See Section 18.3.7 for more information about the astprm argument.

keybuf
VMS Usage:
type:
access:
mechanism:

address
longword (unsigned)
write only
by reference

Key buffer. The keybuf argument is the address of a longword buffer that
receives button information whenever a pointer button is depressed or
released. The low two bytes are the key code. The buttons are located
on the left, center, and right of the pointing device and are defined as
UISDC$C_POINTER_BUTTON_1, UISDC$C_POINTER_BUTTON_2,
UISDC$C_POINTER_BUTTON_3, and UISDC$C_POINTER_BUTTON_ 4,
respectively. Bit < 31> is set to 1 if the button has been pressed, and
to 0 if the button has been released. The buffer is not overwritten with
subsequent button transitions until the AST routine completes.

x1' Y1
X2, Y2
VMS Usage: longword_signed
type: longword (signed)

DESCRIPTION

access: read only
mechanism: by reference

UISDC Routine Descriptions
UISDC$SET _BUTTON_AST

Viewport-relative device coordinates of a rectangle in the display window.
The Xl and Yl arguments are the addresses of integers that define the
lower-left corner of a rectangle in the display window. The X2 and Y2
arguments are the addresses of integer pixels that define the upper-right
corner of a rectangle in the display window.

If no rectangle is specified, the entire display window is assumed.

This function can be called any number of times for different rectangles
within the same display window or many display windows.

See the Description section of UISDC$SET_BUTTON_AST for infonnation
about pointer region priorities.

19-41

UISDC Routine Descriptions
UISDC$SET _CHAR_SIZE

FORMAT

RETURNS

ARGUMENTS

19-42

Sets the viewport-relative device coordinate size of the specified character.

UISDC$SET _CHAR_SIZE wd_id, iatb,
oatb,,[, widthJ[,heightJ

UISDC$SET _ CHAR_SIZE signals all errors; no condition values are
returned.

wd_id
See Section 18.3.2 for more information about the wd_id argument.

iatb
See Section 18.3.5 for more information on the iatb argument.

oatb
See Section 18.3.6 for more information on the oatb argument.

char
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Single character. The char argument is a single character descriptor
address. You can specify any character in the font. Choose this argument
when you use proportionally spaced fonts to establish spacing and scaling
factors among characters within the font. The char argument has no effect
on monospaced fonts.

If you do not specify char or if the specified character is invalid, the widest
character in the font is chosen.

width
height
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Character width and height. The width argument is the address of
an integer that defines the character width in viewport-relative device
coordinates. The height argument is the address of an integer that defines
the character height in viewport-relative device coordinates.

UISDC Routine Descriptions
UISDC$SET _CHAR_SIZE

DESCRIPTION To disable character scaling, omit the char, width, and height arguments.

To scale characters to their nominal size as specified in the font, do not
specify width or height. Scaling is visible only when you use a window that
does not have the same proportions as the virtual display.

If you specify only width or height, characters are scaled to the size you
specify and in the direction you specify. In the unspecified direction,
characters are scaled to maintain the same ratio of height and width as the
unsealed character.

Note that this routine does not change the size of only one character.
Rather, all characters in the font are scaled to the direct proportion.

19-43

UISDC Routine Descriptions
UISDC$SET _CLIP

UISDC$SET _CLIP

FORMAT

RETURNS

ARGUMENTS

19-44

Sets a clipping rectangle within the display window.

UISDC$SET _ CLIP signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

lafb
See Section 18.3.5 for more information on the iatb argument.

oafb
See Section 18.3.6 for more information on the oatb argument.

X1' Y1
X2, Y2
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Viewport-relative device coordinates of the clipping rectangle. The xl and
Yl arguluents are the addresses of integers that define the lower-left corner
of the clipping rectangle in viewport-relative device coordinates. The X2
and Y2 arguments are the addresses of integers that define the upper-right
corner of the clipping rectangle in viewport-relative device coordinates.
Only graphic objects and portions of graphic objects drawn within the
clipping rectangle are seen.

If you do not specify the device coordinates of the clipping rectangle
corners, clipping is disabled for this attribute block.

FORMAT

RETURNS

ARGUMENTS

UISDC Routine Descriptions
UISDC$SET _POINTER_AST

Allows an application to determine when the pointer is moved in a given
rectangle of the display window.

UISDC$SET_POINTER_AST wd_id [,astadr
[,astprmII [,x1, Y11

x2, Y2i [,exitastadr
[, exitastprmII

UISDC$SET _POINTER_AST signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

AST routine. The astadr argument is the entry mask address to a procedure
called at AST level whenever you move the pointer within a rectangle in
the display window.

To cancel the AST-enabling request of UISDC$SET_POINTER_AST for this
argument only, specify 0 in the astadr argument and the coordinates of the
rectangle.

astprm
See Section 18.3.7 for more information on theastprm argument.

X1' Y1
X2 , Y2
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Viewport-relative device coordinates of the rectangle of the display
window. The Xl and Yl argunlents are the addresses of integers that
define the lower-left corner of the rectangle of the display window. The
X2 and Y2 arguments are the addresses of integer pixels that define the
upper-right corner of the rectangle of the display window.

If no rectangle is specified, the entire display window is assunled.

19-45

UISDC Routine Descriptions
UISDC$SET _POINTER_AST

DESCRIPTION

19-46

To cancel an AST-enabling request, specify 0 in either the astadr or the
exitastadr arguments, or both, and the coordinates of the rectangle.

exltastadr
VMS Usage: ast_procedure
type: procedure entry mask
access: read only
mechanism: by reference

Exit AST routine. The exitastadr argument is the address of the entry
mask to a procedure called at AST level whenever the pointer leaves the
rectangle.

To cancel the AST-enabling request of UISDC$SET_POINTER_AST for
the EXIT AST routine only, specify 0 in the exitastadr argument and the
coordinates of the rectangle.

exltastprm
VMS Usage: user _arg
type: longword (unsigned)
access: read only
mechanism: by reference

Exit AST parameter. The exitastprm argument is the address of a
single argulnent or data structure, such as an array or record, to be
passed to the AST routine. Calls to UISDC$SET _POINTER_AST in
VAX FORTRAN application programs should be coded as follows:
%REF(%LOC(exitastprm».

UISDC$SET_POINTER_AST also allows an application to track the pointer
in its own way. This routine can be called any number of times for different
rectangles.

Note that an application need not enable both AST routines. It can specify
one or the other.

The application can use UISDC$SET _POINTER_AST to highlight the
display or some other application-specific function, when you move the
pointer over specific areas of the display window. You Inight use this
feature to define a number of regions within a menu and execute an AST
when the pointer enters or leaves any of these regions.

If both AST routines are enabled and the value 0 is specified in the astadr
argument, the first AST routine is canceled.

See the Description section of UISDC$SET_BUTTON_AST for information
about pointer region priorities.

FORMAT

RETURNS

UISDC Routine Descriptions
UISDC$SET POINTER PATTERN - -

Enables an application to specify a special pointer cursor pattern.

UISDC$SET_POINTER_PATTERN wd_id
[,pattern_array,
pattern_count,
activex, activey]
[X1' Y1, X2' y21
[flags]

UISDC$SET_POINTER_PATTERN signals all errors; no condition values
are returned.

ARGUMENTS wd_ld
See Section 18.3.2 for more information about the wd_id argument.

pattern_array
VMS Usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

The 16- x 16-bit cursor pattern. The pattern_array argument is the address
of one or Olore arrays of 16 words that represent a bihnap image of the
cursor.

Color and intensity applications can define two patterns that are also
executable on monochrome systems.

If two arrays are specified in an application that runs on a single-plane
system, the first array is used.

NOTE: The bitmap image of the new pointer pattern is mapped in reverse order
to the display screen.

pattern_count
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of 16- x 16-bit cursor pattern. The pattern_count argument is the
address of a longword that contains the nUlnber of cursor pattern arrays
defined in the pattern_array argulnent.

V4.1-June 1989 19-47

UISDC Routine Descriptions
UISDC$SET _POINTER_PATTERN

actlvex
actlvey
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

The activex and activey arguments specify the actual bit in the cursor
pattern that should be used to calculate the current pointer position. The
arguments are expressed as bit offsets fronl the lower~left corner of the
cursor pattern.

x1J Y1
X2J Y2
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Viewport·relative device coordinates of the rectangle in the display window.
The xl and Yl argulnents are the addresses of integer pixels that define the
lower-left corner of the rectangle in the display window. The X2 and Y2
arguments are the addresses of integer pixels that define the upper-right
corner of the rectangle in the display window.

flags
VMS Usage: longword_mask
type: longword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of a longword mask whose bits
determine whether or not the cursor is confined to the display window
rectangle.

UIS$M_BIND _POINTER sets the appropriate bit in the mask.

DESCRIPTION UISDC$SET_POINTER_PATTERN enables an application to specify a
special pointer pattern to be used when the pointer is within the display
window region specified by the optional rectangle. If no rectangle is given,
the entire display window is assumed. You can call this function any
number' of times for different rectangles.

To disable UISDC$SET_POINTER_PATTERN, Olnit the pattern_array,
pattern_count, activex, and activey arguments.

See the Description section of UISDC$SET_BUTTON_AST for information
about pointer region priorities.

19-48 V4.1-June 1989

UISDC Routine Descriptions
UISDC$SET _POINTER_PATTERN

NOTE: The mouse is different from the tablet. This is apparent when you use the
UIS$M_BIND_POINTER flag. When you are using a tablet and BINDing
the cursor to a region or window with the UISDC$SET_POINTER_
PATTERN statement, the lower-level drivers map the entire tablet surface
to the region in parameters XtrYtr X2 ,Y2 if specified. If you do not specify
the region, the tablet surface is mapped to the entire window.

V4.1-June 1989 19-48.1

UISDC Routine Descriptions
UISDC$SET _POINTER_POSITION

UISDC$SET _POINTER_POSITION

FORMAT

RETURNS

ARGUMENTS

Specifies a new current pointer position in device coordinates. It is only
effective if the new pointer position is visible within the specified display
window.

status = UISDC$SET _POINTER_POSITION wd_id, X,

y

Longword value returned as Boolean in the variable status or RO (VAX
MACRO) to indicate that the position is set.

UISDC$SET _POINTER_POSITION signals all errors; no condition values
are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

x
y
VMS Usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
read only
by reference

Viewport-relative device coordinates of the new pointer position. The x
and y arguments are the addresses of integers that define the new pointer
position.

19-49

UISDC Routine Descriptions
UISDC$SET _POSITION

UISDC$SET _POSITION

FORMAT

RETURNS

ARGUMENTS

19-50

Sets the current position for text output. The current position is the point
of alignment on the baseline of the next output character.

UISDC$SET _POSITION wd_id, X,Y

UISDC$SET_POSITION signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

x
y
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Viewport-relative device coordinate pair. The x and y arguments are the ~
addresses of integers that define the current position for text output.

UISDC Routine Descriptions
UISDC$SET _TEXT_MARGINS

UISDC$SET _ TEXT_MARGINS

FORMAT

RETURNS

ARGUMENTS

Sets the text margins for a line of text.

UISDC$SET_TEXT_MARGINS wd_id ,iatb ,oatb ,x ,Y
,margin_length

UISDC$SET_TEXT_MARGINS signals all errors; no condition values are
returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

latb
See Section 18.3.5 for more information on the iatb argument.

oatb
See Section 18.3.6 for more information on the oatb argument.

x
y
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Starting margin position. The x,y arguments are the addresses of integers
that define a point on the starting margin in viewport-relative device
coordinates. The starting margin is the minor text path when the angle of
text slope equals 0 degrees.

margin_length
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Ending margin position. The margin_length is the address of a number
that defines the distance from the starting margin to the end 111al'gin in
viewport-relative device coordinates.

19-51

UISDC Routine Descriptions
UISDC$TEXT

UISDC$TEXT

FORMAT

RETURNS

ARGUMENTS

19-52

Draws a series of encoded characters. Supports 16-bit text (for example,
2-byte Kanji fonts). To enable 16-bit text functions, set the DTYPE field
(DSC$B_DTYPE) in the descriptor of the text string to DSC$K_DTYPE_ T2.

UISDC$TEXT wd_id, atb, text_string [,x,y] [,et/list
,ctllen]

UISDC$TEXT signals all errors; no condition values are returned.

wdld
See Section 18.3.2 for more information about the wd_id argument.

atb
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Attribute block number. The atb argument is the address of a longword ~
that identifies an attribute block that modifies text output.

text_string
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Text string. The text_string argument is the address of a text string
character string descriptor.

x
y
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by reference

Viewport-relative device coordinates pair. The x and y argunlents are the
addresses of integers that define the viewport-relative device coordinates
of the starting point of text output at the upper-left corner of the character
cell.

If this argument is not specified, the current text position is used. (See the
UISDC$SET_ALIGNED_POSITION routine for more infonnation.)

DESCRIPTION

UISDC Routine Descriptions
UISDC$TEXT

ctilist
VMS Usage: vector _Iongword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Text control formatting list. The ctllist argument is the address of an array
of longwords that describe the font, text rendition, format, and positioning
of text string fragments. See UISDC$TEXT for a complete description of
the text formatting control list.

etl/en
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Length of the text formatting control list. The ctIlen argument is the
address of an integer that defines the length of the text formatting control
list in longwords.

Nonprinting characters such as tab and linefeed are not handled in any
special way. The character is obtained from the font and displayed like any
other character.

19-53

A UIS CALLING SEQUENCES SUMMARY

Table A-l lists return values, entry point names, and parameter lists of all
UIS routines.

Table A-1 UIS Calling Sequences

Return
Value

copyjd

vcmjd

cmsjd

vdjd

wdjd

Routine

UIS$BEGIN_SEGMENT

UIS$CIRCLE

UIS$CLOSE_WINDOW

UIS$COPY _OBJECT1

UIS$CREATE_COLOR_MAP

UIS$CREATE_ COLOR_
MAP_SEG

UIS$CREATE_DISPLA Y

UIS$CREATE_KB

UIS$CREATE_ TERMINAL

UIS$CREATE_ TB

UIS$CREATE_
TRANSFORMATION

UIS$CREATE_WINDOW

Argument List

vd_id

vdjd, atb, center_x, center_y, xradius, [,starCdeg] [,end_deg]

wdjd

{
obj id} .
seg~id [,matnx] [,atb]

vern_size [,vern_name]
[,vem_attributes]

vcmjd, [,devnam] [,place_mode] [,plaee_data]

X1, Y1, X2, Y2, width, height
[,vem_id]

devnam

termtype [,title] [,attributes] [,devnam] [,devlen]

devname

vdjd, X1, Y1, X2, Y2 [VdX1, VdY1, VdX2, VdY2]

vdjd, devnam [,title] [,X1, Y1. X2, Y2] [, width,height]
[,attributes]

UIS$DELETE_COLOR_MAP vcmjd

UIS$DELETE_COLOR_ cmsjd
MAP_SEG

UIS$DELETE_DISPLA Y

UIS$DELETE_KB

UIS$DELETE_ OBJECT1

UIS$DELETE_PRIVATE

UIS$DELETE_ TB

UIS$DELETE_
TRANSFORMATION

vdjd

kbjd
{ objjd

segjd

objjd

tbjd

trjd

UIS$DELETE_WINDOW wdjd

}

1VAX PASCAL and VAX PUI applications must specify the objJd argument.

A-1

UIS CALLING SEQUENCES SUMMARY

Table A-1 (Cont.) UIS Calling Sequences

Return
Value

vdjd

objjd.

segjd

arc_type

index

status

angle

boolean

angle

Routine

UIS$DISABLE_DISPLAY _
LIST

UIS$DISABLE_KB

UIS$DISABLE_ TB

UIS$PISABLE_ VIEWPORT_
KB

UIS$ELLIPSE

UIS$ENABLE_DISPLAY _
LIST

UIS$ENABLE_KB

UIS$ENABLE_ TB

UIS$ENABLE_vIEWPORT _
KB

UIS$END_SEGMENT

UIS$ERASE

UIS$EXECUTE

UIS$EXECUTE_DISPLA Y

UIS$EXP~ND _ICON

UIS$EXTRACT _HEADER

UIS$EXTRACT _OBJECT1

UIS$EXTRACT _PRIVATE1

UIS$EXTRACT _REGION

UIS$EXTRACT _ TRAILER

UIS$FIND_PRIMITIVE

UIS$FIND_SEGMENT

UIS$GET _ABS_POINTER_
POS

UIS$GET _ALlGNED_
POSITION

UIS$GET _ARC_TYPE

UIS$GET _BACKGROUND_
INDEX

UIS$GET _BUTTONS

UIS$GET _CHAR_ROTATION

UIS$GET _CHAR_SIZE

UIS$GET _CHAR_SLANT

Argument List

kbjd

tbjd

wd_id

vdjd, atb, centecx, center_y, xradius, yradius, [,starCdeg]
[,end_deg]

vdjd [,display_flags]

kb_id [,wdjd]

tbjd

kbjd, wdjd

vdjd

vdjd [,X1 y1. X2, Y2]

vdjd [,buflen] [,bufaddr]

buflen, bufaddr

wdjd [,Icon_wd.)d] [,attributes]

vd_id [,buflen, bufaddr] [,retlen]

{
b' 'd } OJ_I'd [,buflen ,bufaddr] [,retlen]

seg_1

{
b' 'd } OJ_I'd [,buflen ,bufaddr] [,retlen]

seg_1 .

vdjd [,X1 ,Y1 ,X2,Y2] [,buflen ,bufaddr] [,retlen]

vdjd [,buflen, bufaddr] (,retlen]

vdjd,X1, Y1,X2,Y2 [·,context] [,extent]

vdjd, X1. Y1, X2, Y2, [,context] [,extent]

devnam, retx, rety

vdjd, atb, retx, rety

vdjd, atb

vdjd, atb

wd_id, retstate

vdjd, atb

vdjd, atb [,char], [width, height]

vdjd, atb

1VAX PASCAL and VAX PLII applications must specify the obLid argument.

A-2

UIS CALLING SEQUENCES SUMMARY

Table A-1 (Cont.) UIS Calling Sequences

Return
Value

status

status

style

width

nexCid

type

parenCid

status

formatting

Routine

UIS$GET _CHAR_SPACING

UIS$GET _CLIP

UIS$GET _COLOR

UIS$GET _COLORS

UIS$GET _CURRENT_
OBJECT

UIS$GET _DISPLAY_SIZE

UIS$GET _FILL_PATTERN

UIS$GET _FONT

UIS$GET _FONT _
ATTRIBUTES

UIS$GET _FONT_SIZE

UIS$GET _HW_COLOR_
INFO

UIS$GET _INTENSITIES

UIS$GET _INTENSITY

UIS$GET _KB_ATTRIBUTES

UIS$GET _LINE_STYLE

UIS$GET _LINE_WIDTH

UIS$GET _NEXT _OBJECT1

UIS$GET _OBJECT __
ATTRIBUTES1

UIS$GET _PARENT_
SEGMENT1

UIS$GET _POINTER_
POSITION

UIS$GET _POSITION

UIS$GET _PREVIOUS_
OBJECT1

UIS$GET _ROOT_SEGMENT

UIS$GET _ TB_INFO

UIS$GET _ TB_POSITION

UIS$GET _TEXT _
FORMATTING

UIS$GET _ TEXT _MARGINS

Argument List

vdJd, atb, dx, dy

vdJd, atb [,X1, Y1, X2, Y2]

vdJd, index, retr, retg, retb [,wdJd]

vd_id, index, count, retr_vector, retg_vector, retb_vector [,wd_
id]

vdJd

devnam, retwidth, retheight [,retresolx, retresoly] [,retpwidth
retpheight]

vd_id, atb [,index]

vdJd, atb, bufferdesc [,length]

vd_id, ascender, descender, height, [,maximum_width] [,item_
list]

fontid, texcstring, retwidth, retheight

devnam [,type] [,indices] [,colors] [,maps] [,rbits] [,gbits]
[,bbits] [,ibits] [,resJndicesj [,regen]

vdJd, index, count, reti_vector [,wdJd]

vdJd, index, reti [,wdJd]

kbJd [,enableJtems]
[,disableJtems] [,click_volume]

vdJd, atb

vdJd, atb [,mode]

{
obj id }
seg~Jd (,flags]

{
{

obLid } [,extent]
segJd

objJd }
segJd

vdJd, wdJd, retx, rety

vdJd, retx, rety

{
obj id }
seg~id [,flags]

vdJd

devnam, retwidth, retheight,retresolx, retresoly (,retpwidth,
retpheight]

wd_id, retx, rety

vdJd, atb

vdJd, atb, x, y [,marginJength]

1VAX PASCAL and VAX PLII applications must specify the obLid argument.

A-3

UIS CALLING SEQUENCES SUMMARY

Table A-1 (Cont.) UIS Calling Sequences

Return
Value

angle

vcmjd

boolean

status

attributes

index

mode

status

keybuf

Routine

UIS$GET _TEXT_PATH

UIS$GET _TEXT_SLOPE

UIS$GET _ VCM_ID

UIS$GET _VIEWPORT JCON

UIS$GET _VI EWPORT_
POSITION

UIS$GET _VIEWPORT _SIZE

UIS$GET _VISIBILITY

UIS$GET _WINDOW_
ATTRIBUTES

UIS$GET _WINDOW_SIZE

UIS$GET _WRITING_INDEX

UIS$GET _WRITING_MODE

UIS$GET _WS_COLOR

UIS$GET _W$_INTENSITY

UIS$HLS_ TO_RGB

UIS$HSV_ TO_RGB

UIS$IMAGE

UIS$INSERT _OBJECT1

UIS$LlNE

UIS$LlNE_ARRAY

UIS$MEASURE_ TEXT

UIS$MOVE_AREA

UIS$MOVE_ VIEWPORT

UIS$MOVE_WINDOW

UIS$NEW_ TEXT_LINE

UIS$PLOT

UIS$PLOT _ARRAY

UIS$POP _VIEWPORT

UIS$PRESENT

UIS$PRIVATE1

UIS$PUSH_ VIEWPORT

UIS$READ _CHAR

Argument List

vdjd, atb [,major][,minor]

vdjd, atb

vdjd

wdjd [icon_wdjd]

wdjd, retx, rety

wdjd, retwidth, retheight

vdjd, wdjd [,X1, Y1 [,X2, Y2))

wdjd

vdjd, wdjd, X1, Y1, X2, Y2

vdjd, atb

vdjd, atb

vdjd, colorjd, retr, retg, retb [,wdjd]

vdjd, colorjd, reti [,wdjd]

H, L, S, retr, retg, retb

H, S, V, retr, retg, retb

vdjd, atb, X1, Y1, X2, Y2, rasterwidth, rasterheight, bitsperpixel, ~
rasteraddr

{
Objj? }
seg_ld

vdjd, atb, X1, Y1 [,X2, Y2 [, ... xn, Yn))

vdjd, atb, count, x_vector,
y_vector

vdjd, atb, texCstring, retwidth, retheight ,[ctllist, ctllen]
[,posarray]

vdjd, X1, Y1, X2, Y2, new_x, new_y

wdjd, attributes

vdjd, wdjd, X1, Y1, X2, Y2

vdjd, atb

vdjd, atb, X1, Y1 [,X2, Y2 [, ... Xn, Yn))

vdjd, atb, count, x_vector,
y_vector

wdjd

[major_version], [minor_version]

{~~~i~d }, facnum, buffer

wd_id

kbjd [,flags]

1VAX PASCAL and VAX PUI applications must specify the objJd argument.

A-4

UIS CALLING SEQUENCES SUMMARY

Table A-1 (Cont.) UIS Callinu Sequences

Return
ValUe Routine

UIS$RESIZE_WINDOW

UIS$RESTORE_CMS_
COLORS

UIS$RGB_ TO_HLS

UIS$RGB_ TO_HSV

UIS$SeT _ADDOPT _AST

UIS$SET _ALlGNED_
POSITION

UIS$SET _ARC_TYPE

UIS$SET _BACKGROUND_
INDEX

UIS$SET _BUTTON_AST

UIS$SET _CHAR_ROTATION

UIS$SET _CHAR_SIZE

UIS$SET _CHAR_SLANT

UIS$SET _CHAR_SPACING

UIS$SET _CLIP

UIS$SET _ CLOSE_AST

UIS$SET _COLOR

UIS$SET _COLORS

UIS$SET _EXPAND_ICON_
AST

UIS$SET _FILL_PATTERN

UIS$SET _FONT

UIS$SET _GAIN_KB_AST

UIS$SET _INSERTION_
POSITION 1

UIS$SET _INTENSITIES

UIS$SET _INTENSITY

UIS$SET _KB_AST

UIS$SET _KB_ATTRIBUTES

UIS$SET _KB_COMPOSE2

UIS$SET _KB_COMPOSE3

UIS$SET _KB_KEYTABLE

UIS$SET _LINE_STYLE

Argument List

vdJd, wd_id [,new_abs_x, new_abs_y] [,new.;..width new_height]
[,hew_wc_x1, new_wc_Y1, new_wc_x2, new_wc_Y2)

cmsJd

R, G, B, reth, retl, rets

R, G, a, reth, rets, retv

vdJd [,astadr [,astprm))

vdJd, atb, x, y

vdJd, iatb; oatb, arc)ype

vdJd, iatb, oatb, index

vdJd, wdJd [,astadr [,astprm] ,keybuf] [,X1, Y1, X2, Y2]

vdJd, iatb, oatb, angle

vdJd, iatb; oatb [,char] [,width)[,height]

vdJd, iatb, oatb, angle

vdJd, iatb, oatb, dx, dy

vdJd, iatb, oatb [,Xlo Ylo X2, Y2]

wdJd [,astadr [,astprm]j

vdJd, index, R, G, B

vdJd, index, count, r_vector,
g_vector, b_vector

wdJd [,astadr [,astprmj]

vdJd, iatb, oatb [,index]

vdJd, iatb, oatb, fontJd

kbJd [,astadr [,astprm))

{ ~~~~~ } [,flags]
vdJd

vdJd, index, count, '_vector

vdJd, index, I

kbJd [,astadr [,astprm], keybuf]

kbJd [,enableJtems]
[,diSableJtems] [click_volume]

kbJd [,table, tablelen]

kbJd [,table, tablelen]

kbJd [,table, tablelen]

vdJd, iatb, oatb, style

1VAX PASCAL and VAX PUI applications must specify the objJd argument.

A-5

UIS CALLING SEQUENCES SUMMARY

Table A-1 (Cont.) UIS Calling Sequences

Return
Value

status

status

Routine

UIS$SET _LINE_WIDTH

UIS$SET _LOSE_KB_AST

Argument List

vdjd, itab, oatb, width [,mode]

kbjd [,astadr [,astprm]]

UIS$SET _MOVE_INFO_AST wdjd [,astadr [,astprm]]

UIS$SET _POINTER_AST vdjd, wdjd [,astadr [,astprm]] [,X1, Y1, X2, Y2] [exitastadr
[,exitastprm]]

UIS$SET _POINTER_
PATTERN·

UIS$SET _POINTER_
POSITION

UIS$SET _POSITION

UIS$SET _RESIZE_AST

UIS$SET _SHRINK_ TO_
ICON_AST

UIS$SET _ TB_AST

UIS$SET _TEXT _
FORMATTING

UIS$SET _ TEXT_MARGINS

UIS$SET _TEXT_PATH

UIS$SET _TEXT_SLOPE

UIS$SET _WRITING_INDEX

UIS$SET ~WRITING_MODE

UIS$SHRINK_ TO_ICON

UIS$SOUND _BELL

UIS$SOUND _CLICK

UIS$TEST _KB

UIS$TEXT

UIS$TRANSFORM_
OBJECT1

vdjd, wdjd [,pattern_array, pattern_count, activex, activey]
[,X1, Y1. X2, Y2] [,flags]

vdjd, wd_id, x, y

vd_id, x, y

vdjd, wdjd [,astadr [,astprm)) [,new_abs_x, new_abs_y]
[,new_width, new_height] [,new_wc_x1, new_wc_Y1, new_wc_
X2,
new_wc_Y2]

wdjd [,astadr [,astprm))

tbjd, [,data_astadr, [data_astprm)), [,x_pos,y_pos] [,data_
X1, data_Y1, data_x2, data_Y2] [,button_astadr [,button_
astprm] ,button_keybuf]

vdJd, iatb, oatb,mode

vd_id, iatb, oatb, x, y,
marginJength

vdJd, iatb, oatb, major[,minor]

vdjd, iatb, oatb, angle

vdJd, iatb, oatb, index

vd_id, iatb, oatb, mode

wdjd [,icon_wdjd] [,icon_flags] [,icon_name] [,attributes]

devnam [,bell_vOlume]

devnam [,click_volume]

kbjd

vdjd, atb, text_string [,x, y], [ctllist, ctllen]

{ ~:~~~d } [,matrix] [,atb]

1VAX PASCAL and VAX PUI applications must specify the obLid argument.

A-6

B UISDC CALLING SEQUENCES SUMMARY

Table B-1 summarizes UISDC calling sequences.

Table 8-1 UISDC Calling Sequences

Return
Value

dop

boolean

status

status

status

bitmapjd

Routine

UISDC$ALLOCATE_DOP

UISDC$CIRCLE

UISDC$ELlIPSE

UISDC$ERASE

UISDC$EXECUTE_DOP _ASYNCH

UISDC$EXECUTE_DOP _SYNCH

UISDC$GET _ALIGNED_POSITION

UISDC$GET _CHAR_SIZE

UISDC$GET _CLIP

UISDC$GET _POINTER_POSITION

UISDC$GET _POSITION

UISDC$GET _ TEXT_MARGINS

UISDC$GET _VISIBILITY

UISDC$IMAGE

UISDC$lINE

UISDC$lINE_ARRAY

UISDC$LOAD _BITMAP

UISDC$MEASURE_ TEXT

Argument List

wdjd, size, atb

wdjd, atb, center_x,
center_y, xradius [,starC
deg] [,end_deg]

wdjd, atb, center_x,
center_y, xradius, yradius,
[,start_deg]
[,end_deg]

wdjd [,X1 ,yl,X2, Y2]

wdjd, dop, iosb

wdjd, dop

wdjd, atb, retx, rety

wdjd, atb
[,char] ,[wictth] [,height]

wd_id, atb [,X1 ,Y1, X2,Y2]

wdjd, retx, rety

wdjd, retx, rety

wdjd, atb, x, y [,margin_
length]

wdjd [,X1,Y1 [,X2,Y2]]

wdjd, atb, X1, Y1, X2, Y2,
rasterwidth, rasterheight,
bitsperpixel, rasteraddr

wdjd, atb, X1 ,Y1, [,X2,Y2
[, ... xn, Yn))

wd_id, atb, count, x_
vector,
y_vector

wdjd, bitmap_adr,
bitmapJen, bitmap_
width, bits_per_pixel

wdjd, atb, text_string,
retwidth, . retheight [,ctllist
,ctllen] [,posarray]

8-1

l)ISDC CALLING SEQUENCES SUMMARY

Table B-1 (Cont.) UISDC Calling Sequences

Ret~.lrn

Value Routine Argu~ent List

UISDC$MOVE_AREA wdJd, X1 ,Y1 ,X2, Y2, new_x,
new_y

UISDC$NEW_ TEXT_LINE wdJd, atb

UISDC$PLOT wd_id, atb, X1 ,Y1, [,X2,Y2
[, ... Xn, Yn))

UISDC$PLOT _ARRAY wdJd, atb, count, x_
vector,
y_vector

UISDC$QUEUE_DOP wdJd,dop

UISDC$READ_IMAGE wdJd, X1, Y1, X2, Y2,
rasterwidht, rasterhelght,
bitsperpixeJ, rasteraddr,
rasterlen

UISDC$SET _ALIGNED_POSITION wdJd, atb, x, y

UISDC$SET _BUTTON_AST ,wdJd [,astadr, [astprm],
keybuf] [,X1. Y1, ~2, Y2]

UISDC$SET _C~AR_SIZE wdJd, 'Iatb, oatb
[,char] [,width] [,height]

U!SDC$SJ:T _CLIP wdJd, iatb, oatb [,X1, yl,
X2, Y2] ~

UISDC$SET _POINTER_AST wdJd [,astadr [astprm))
[,X1, Y1. X2, Y2] [,exitastadr
[,exitastprm))

UISDC$SET _POINTER_PATTERN wdJd [,pattern_array,
pattern_count, activex,
activey]
[,X1, Y1, X2, Y2)[,flags]

status UISDC$SET _POINTER_POSITION vvdJd, x, y

UISDC$SET _POSITION wdJd,x,y

UISDC~SET _TEXT_MARGINS wdJd, iatb, oatb, x, y,
margin-,ength

lJISDC$TEXT wdJd atb, texcstring [,x,
y]
(,ctllist, ctllen]

B-2

C UIS Multinational Character and Technical Fonts

C.1 Overview
This appendix contains figures and tables that illustrate the UIS
multinational character and technical fonts and font names in the directory
SYS$FONT.

C.2 UIS Multinational Character Set Fonts and Font Specifications
The SYS$FONT directory has 14 multinational character set font files.
The following figure captions identify each UIS font with an arbitrarily
assigned font number. Each figure caption has an accompanying table
with additional typographical information. The tables analyze the first 16
characters of the font file name.

C-1

UIS Multinational Character and Technical Fonts

C-2

Figure C-1 Font 1

ABC 0 EFG H IJ kLM H 0 PQ RS T U V WXYZ
abcdefghijklmnopqrstuvwxyz
1234567890-=! @ .. tx"'a.* () _ +
< > 6. /1 6 II; :, I [] {}

ZK-4565-85

Table C-1 Font 1

Field Field Name Value Meaning

Registration code D Registered by DIGITAL

2-7 Type Family ID TABERO Taber

8 Spacing 0 Proportionally spaced

9-11 Type size 03W36 14 points (140 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

UIS Multinational Character and Technical Fonts

Figure C-2 Font 2

A8CDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890-=I@~$%A&*()_+
< >, I 17; : ' II \ I [] {}

ZK-4566-85

Table C-2 Font 2

Field Field Name Value Meaning

1 Registration code 0 Registered by DIGITAL

2-7 Type Family 10 TABERO Taber

8 Spacing 9 pitch (monospaced)

9-11 Type size 03W36 14 points (140 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

C-3

UIS Multinational Character and Technical Fonts

C-4

Figure C-3 Font 3

ABCDEFGHI~KLMNOPQRSTUVWXV2
abcdeTghi~K1mnopqratuvwxyz
1234667a90--I@#.%~&~()_+
<>,. /7;,.: 'II, I elf}

ZK-4567-85

Table C-3 Font 3

Field Field Name Value Meaning

Registration code D Registered by DIGITAL

2-7 Type Family ID TABERO Taber.

8 Spacing M 13 pitch (monos paced)

9-11 Type size 03C36 12 points (120 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

UIS Multinational Char~cter and Technical Fonts

Figure C-4 Font 4

ABCDEFGHI~KLMNOPQRSTUVWXYZ
abcde~ghijklmnOpqrst~VWXYZ
1234S67890--!@~$%A&* ()_+"
(), . ./?; : ,. 'I" I [] {)-

ZK-4568-85

Table C-4 Font 4

Field Field Name Value Meaning

1 Registration code. 0 Registered by DIGiTAL

2-7 Type Family 10 TABERO Taber

8 Spacing R 16 pitch (monospaced)

9-11 Type size 03W36 14 points (140 q~cipoi!1ts)

12 Scale factor K 1 (normal)

13,-14 Style 0036 Roman

15 Weight G Regular

16 Proportiol1 G Regular

C-5

UIS Multinational Character and Technical Fonts

Figure C-5 Font 5

C-6

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890-=!@#$%A&*() +
<>,. . I?; : ' II \ I [] {}

ZK-4569-.85

Table C-S FontS

Field Field Name Value Meaning

1 Registration code 0 Registered by DIGITAL

2-7 Type Family 10 TABERO Taber

8 Spacing R 18 pitch (monospaced)

9-11 Type size 07S36 28 points (280 declpoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

"

UIS Multinational Character and Technical Fonts

Figure C-6 Font 6

Table C-6 Font 6

Field Field Name

ABCDEFGHllKL~OPQRSTUYWXYZ
a~cdefghiJkl~opq~stu¥~z
12345'7890-=lm.~M()_+
<>,.I?::'-\I[]{}

ZK-4570-85

Value Meaning

Registration code D Registered by DIGITAL

2-7 Type Family ID TERMIN Terminal

8 Spacing G 7 pitch (monospaced)

9-11 Type size 03C36 12 points (120 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

C-7

UIS Multinational Character and Technical Fonts

C-8

Figure C-7 Font 7

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcde~ahijkl~nopqrstuu~xyz
12i4567B90·:lm#$X~&*()_+
<),.I?::'·'I[](}

ZK-4571-85

Table C-7 Font 7

Field Field Name Value Meaning

1 Registration code D Registered by DIGITAL

2-7 Type Family ID TERMIN Terminal

8 Spacing M 13. pitch (monospaced)

9-11 Type siz!3 06036 24 points (240 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

UIS Multinational Character and Technical Fonts

Figure C-8 Font 8

ABC D E F G H IJ KLM Nap a R STU U WY;:(Z
ab c d e T!'h ij1<.l m n 0 p q r~ t u v '11)(Y Z

1234S67890-=I@~.~~&*()_+

< > J .I? JI '" \ I [] {}

ZK-4572-85

Table C-8 Font 8

Field Field Name Value Meaning

Registration code 0 Registered by DIGITAL

2-7 Type Family 10 TABERO Taber

8 Spacing 0 proportionally spaced

9~11 Type size 03W36 14 points (140 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

C-9

UIS Multinational Character and Technical Fonts

C-10

Figure C-9 Font 9

Table C-9 Font 9

Field Field Name

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqr!tuvwxyz
1234567890--!QI+XA &*()_+
< >, I I? ~ : '" \ I [] { }

ZK-4573-85

Value Meaning

Registration code D Registered by DIGITAL

2-7 Type Family ID TABERO Taber

8 Spacing G 7 pitch (monos paced)

9-11 Type size 03C36 12 points (120 declpoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

UIS Multinational Character and Technical Fonts

Figure C-10 Font 10

ABCDEFGHIlKLMNOPQRSTUUWXYZ
abcdefghijklmnopqr.tuvwxyz
1234567890-.19~.~A~()_+
(> ~ . /1; : ~ ", I [] {}

ZK-4574-85

Table C-10 Font 10

Field Field Name Value Meaning

Registration code 0 Registered by DIGITAL

2-7 Type Family 10 TABERO Taber

8 Spacing 9 (monospaced)

9-11 Type size 03W36 14 points (140 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

C-11

UIS Multinational Character and Technical Fonts

C-12

Figure C-11 Font 11

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklrnnopqrstuvlJ.lxyZ
1234567890-=!@#$%A&*()_+
<> I?;: '11\ I []{}

ZK-4575-85

Table C-11 Font 11

Field Field Name Value Meaning

1 Registration code 0 Registered by DIGITAL

2-7 Type Family 10 TABERO Taber

8 Spacing M 13 pitch (monospaced)

9-11 Type size 06036 24 points (240 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

UIS Multinational Character and Technical Fonts

Figure C-12 Font 12

A_CDEFGHZ~KLMNOPQRSTUVWXYZ
abcde£ghi3~1mnopqrstuvwxyz
1234S&7890~=!~M$%~&*() +
<> .. ~ /?; : ' .. '- I []' {} -

ZK-4S76-85

Table C-12 Font 12

Field Field N~me Value Me~ning

1 Registration code 0 Registered by DIGITAL

2-7 Type Family 10 TABERO T~ber

8 Spacing R 18 pitch (monospaced)

9-11 Type size 03W36 14 points (140 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

UIS Multinational Character and Technical Fonts

Figure C-13 Font 13

C-14

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890-=!@#$%~&*() + -<>.,. I?;: ~ 11\1 [] {}

ZK-4577-85

Table C-13 Font 13

Field Field Name Value Meaning

1 Registration code 0 Registered by DIGITAL

2-7 Type Family 10 TABERO Taber

8 Spacing R 18 pitch (monospaced)

9-11 Type size 07S36 28 pOints (280 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

UIS Multinational Character and Technical Fonts

Figure C-14 Font 14

ABCDEFGHZ~KLmNOPQRSTUV~XYZ
.bcd.~ahiJklMnqpqrs~uu~xyz
1234567B90-=lm#$X~&*()_.
<>,_/?~:~-'I~~(~

ZK-4578-85

Table C-14 Font 14

Field Field Name Value Meaning

Registration code 0 Registered by DIGITAL

2-7 Type Family 10 TERMIN Terminal

8 Spacing M 13 pitch (monospaced)

9-11 Type size 03C36 12 pOints (120 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

C-1S

C.3 UIS Technical Character Set Fonts

C-16

The SYS$FONT directory contains i2 technical chara.cter set font files.
The following figure captions identify each UIS font with an arbitrarily
assigned font number. Each figure caption has an accompanying table
with additional typographical information. The tables analyze the first 16
characters of the font file name.

Figure C-15 Font 15

Table C-15 Font 15

Field

2-7

8

9-11

12

13-14

15

16

Field Name

Registration
code

Type Family ID

Spacing

Type size

Scale factor

Style

Weight

Proportion

ZK·5376·86

Value Meaning

D Registered by Digital

VWSVTO VAXstation Technical Character Set

G 7 pitch (monos paced)

12 points (120 decipoints)

1 (normal)

Roman

Regular

Regular

UIS Multinational Character and Technical Fonts

Figure C-16 Font 16

ZK·5375·86

Table C-16 Font 16

Field Field Name Value Meaning

1 Registration code 0 Registered by Digital

2-7 Type F~mily 10 VWSVTO VAXstation Technical Character
Set

8 Spacing G 7 pitch (monospaced)

9-11 Type size 03C36 12 points (120 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

C-17

UIS Multinational Character and Technical Fonts

C-18

Figure C-17 Font 17

~ ~ ~ 6 E .~ ~ n L 8 k) ~ V b n ~ p a f i
We\)~ "L'/.., > ~l-lJ ~ rn:l U

ZK·5374·86

Table C-17 Font 17

Field Field Name Value Meaning

Registration code 0 Registered by Digital

2-7 Type Family 10 VWSVTO VAXstatlon Technical Character
Set

8 Spacing 9 pitch (monospaced)

9-11 Type size 03W36 14 points (140 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

UIS Multinational Character and Technical Fonts

Figure C-18 Font 18

u ~ ~ , E • ; ~ L • ~ ~ M u ~ n ~ P
• f I w e y ; ~ ~ , / ~ - > t 1 • L
J i rn::lu

ZK·5373·86

Table C-18 Font 18

Field Field Name Value Meaning

Registration code 0 Registered by Digital

2-7 Type Family 10 VWSVTO VAXstation Technical Character
Set

8 Spacing 9 pitch (monospaced)

9-11 Type size 03W36 14 points (140 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

C-19

UIS Multinational Character and Technical Fonts

Figure C-19 Font 19

0: 8 >=: 0 . e: !Zi -y n 1- -9 lc:= }-. .c:...:It l) "='""

~ :rr -+- F=' <:I 1:" J (.) ~ U 2; ~ L. /e -, > ~ 1 =- l J ~ r .-. =- U

ZK·5372·86

Table C-19 Font 19

Field Field Name Value Meaning

Registration code 0 Registered by Digital

2-7 Type Family 10 VWSVTO VAXstation Technical Character
Set

8 Spacing N 14 pitch (monospaced)

9-11 Type size 03C36 120 pOints (120 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

C-20

UIS Moltinational Character and Technical Fonts

Figure C-20 Font 20

a 8 .x • IE • a 'k It-a

* D :r. :rT P •:- ., w e
J f II::: , / ... - ;-)- 1 .- l

r n ::::I U
ZK·5382·86

Table C-20 Font 20

Field Field Name Value Meaning

Registration code 0 Registered by Digital

2-7 Type Family 10 VWSVTO VAXstation Technical Character
Set

8 Spacing N 14 pitch (monoSpaced)

9-11 Type size 03C36 12 points (120 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

C-21

UIS Multinational Character and Technical Fonts

FigureC-21 Font 21

a B)(c5 e: IZi 'Y 11 1., 8 1< :n
@ lJ Zl JT + P ~ -r J (.J t u
~
~

£ \ / ..,) ~ 1 ~ l
J r n :J U

ZK·5381·86

Table C-21 Font 21

Field Field Name Value Meaning

1 Registration code 0 Registered by Digital

2-7 Type Family 10 VWSVTO VAXstation Technical Character
Set

8 Spacing N 14 pitch (monospaced)

9-11 Type size 06036 24 pOints (240 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

C-22

UIS Multinational Character and Technical Fonts

Figure C-22 Font 22

tJ: 6 X , E • i' " L- a](),

N 11 it JI + tJ d 'I' I ~ e v

j i
, \ I) ~ 1 -L
r n ::I u

ZK-5383-86

Table C-22 Font 22

Field Field Name Value Meaning

Registration code 0 Registered by Digital

2-7 Type Family 10 VWSVTO VAXstation Technical Character
Set

8 Spacing N 14 pitch (monospaced)

9-11 Type size 06036 24 points (240 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

"16 Proportion G Regular

C-23

UIS Multinational Character and Technical Fonts

Figure C-23 Font 23

Dc ~ >t 0 e: ~ y ..., L 8 'k
.:>. +=+ "l.J ""b Tf .~ P a -r .F (..,)

e "U l J
.::::: /" ---. ---II > ~

1 =- ~ r n :::;) u

ZK·5380·86

Table C-23 Font 23

Field Field Name Value Meaning

1 Registration code D Registered by Digital

2-7 Type Family ID VWSVTO VAXstation Technical Character
Set

8 Spacing R 18 pitch (monospaced)

. 9-11 Type size 03W36 14 points (140 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

C-24

UIS Multinational Character and Technical Fonts

Figure C-24 Font 24

ICC ~ ~ • e: .. ,.. L • 'Ie:

.:>. ... :u ,. lIT P r,.

.e: t --=:: ..c; '-- / > t
1 =- J i r n =- u

ZK·S379·86

Table C-24 Font 24

Field Field Name Value Meaning

1 Registration code D Registered by Digital

2-7 Type Family ID VWSVTO VAXstation Technical Character
Set

8 Spacing R 18 pitch (monospaced)

9-11 Type size 03W36 14 points (140 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight P Bold

16 Proportion G Regular

C-2S

UIS Multinational Character and Technical Fonts

Figure C-25 Font 25

OC ~ ~ 0 e: ~ ¥ 11 L 8
k) * 1) 1) JT '" P (J r

t. •

f (J e \) ~ L
...... / ...,

> } J f
.

..... 1 ;e r n
::l U

. ZK·S378·86

Table C-25 Font 25

Field· Field Name Value Meaning

Registration code 0 Registered by Digital

2-7 Type Family 10 VWSVTO VAXstation Technical Character
Set

8 Spacing R 18 pitch (monospaced)

9-11 Type size 07S36 28 pOints (280 decipoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

C-26

UIS Multinational Character and Technical Fonts

Figure C-26 Font 26

ex I)f , E " P 11 L a
"k) * lJ 11 II ~ P tJ f
r t ~ ~

~ , / ~ w ~ > t 1 L J i r n =
:J U

ZK·5377-86

Table C-26 Font 26

Field Field Name Value Meaning

Registration code 0 Registered by Digital

2-7 Type Family 10 VWSVTO VAXstation Technical Character
Set

8 Spacing R 18 pitch (monospaced)

9-11 Type size 07S36 28 points (280 declpoints)

12 Scale factor K 1 (normal)

13-14 Style 0036 Roman

15 Weight G Regular

16 Proportion G Regular

C-27

D FILL PATTERNS

All fill patterns are located in directory SYS$FONT, in a separate file
named DEUISP ATAAAAAAFOOOOOOOOODA. VWS$FONT. Access this file
with the logical name UIS$FILL_PATTERNS.

The pairs of fill patterns shown in the following figures are drawn in
overlay writing mode on a white background. The figure caption contains
the symbol name for each fill pattern. The symbol name represents an
index to the appropriate fill pattern.

Symbol names are located in language-specific symbol definition files in
SYS$LIBRARY. 6.2 lists symbol definition files.

Figure 0-1 PATT$C_VERT1_1 and PATT$C_VERT1_3

ZK-4584-85

0-1

FILL PATTERNS

ZK-4585-85

ZK-4586-85

0-2

FILL PATTERNS

ZK-4587-85

ZK-4588-85

0-3

FILL PATTERNS

ZK-4589-85

ZK-4590-85

0-4

FILL PATTERNS

ZK-4591-85

Figure 0-9 PATT$C_GRI04 and PATT$C_GRI08

ZK-4592-85

0-5

FILL PATTERNS

ZK-4593-85

ZK-4594-85

0-6

FILL PATTERNS

ZK-4595-85

1'<-4596-85

0-7

FILL PATTERNS

ZK-4597-85

ZK-4598-85

0-8

FILL PATTERNS

Figure 0-16 PATT$C_OOWNOIAG4_4 and PATT$C_OOWNOIAG6_2

ZK-4599-85

ZK-4600-85

0-9

FILL PATTERNS

Figure 0-18 PATT$C_BRICK_OOWNOIAG and PATT$C_BRICK_UPDIAG

~ ~~ ~~ ~

ZK-4601-85

ZK-4602-85

0-10

FILL PATTERNS

ZK·4603·85

ZK·4604·85

0-11

FILL PATTERNS

0-12

................................

................................
ZK-4606-85

ZK-4607-85

FILL PATTERNS

ZK-4608-85

ZK-4609-85

0-13

FILL PATTERNS

ZK-4610-85

ZK-4611-85

0-14

FILL PATTERNS

ZK-4612-85

ZK-4613-8'i

0-15

E ERROR MESSAGES

This appendix lists the error messages generated by Micro VMS workstation
graphics software. Each message description consists of the message text,
a brief explanation of the message, and the possible remeqy.

BAD_ATB, Illegal attempt to modify attribute block 0 (read-only).

Explanation: An attempt is made to modify an attribute in attribute block
#0, which is defined to be read-only. The modification requ~st is ignored.

User Action: Check for a programming error.

BAD_COLOR_VALUE, Color value out of range.

Explanation: An attempt is made to specify one or more color values that
are out of range.

User Action: Check for a programming error.

BAD_CMS, Illegal color map segment identifier.

Explanation: An illegal color map segment identifier is given to a UIS
routine as an argument.

User Action: Check for a programming error.

BAD _DISP, Display list has been corrupted.

Explanation: An illegal display list type code is encountered while the
program traverses a display list.

User Action: Check the validity of the UIS metafile you are executing.

BAD_DOP, Illegal drawing packet (DOP) format.

Explanation: An attempt is made to pass a drawing operation primitive
that is 0, the type field is not UIS$C_DYN_DOP, or the size field is less
than DOP$C_LENGTH.

User Action: Check for a programming error.

BAD_FONT, !AS is not a valid font.

Explanation: An attempt is made to reference an activated but invalid VWS
font. The font is not placed in the specified attribute block. The program
continues after this error.

User Action: Check for a programming error.

BAD_ICON_WD, Invalid icon window identifier.

Explanation: An attempt is made to specify the icon WD _ID that does not
match the one saved by UIS. UIS saves the icon WD _ID when it shrinks a
viewport to an icon or when UIS$ASSOCIATE_ICON_ WITH_ VP is called.

User Action: Check for a programming error.

E-1

ERROR MESSAGES

E-2

BAD _KB, Illegal virtual keyboard identifier.

Explanation: An illegal virtual keyboard identifier is given to a UIS routine
as an argument.

User Action: Check for a programming error.

BAD_OBLID, Illegal object identifier.

Explanation: An illegal object (segment or primitive) identifier is given to a
UIS routine as an argument.

User Action: Check for a programming error.

BAD_OPCODE, Unrecognized generi~ encoding item.

Explanation: The generic encoding interpreter detects an unknown item
opcode. The rest of the generic encoding streanl is skipped.

User Action: Check-for a programming error.

BAD_STRING, String too long.

Explanation: An attempt is made to pass a string that is too long.

User Action: Shorten the string.

BAD _ TB, Illegal tablet identifier.

Explanation: An illegal tablet identifier is given to a UIS routine as an
argument.

User Action: Check for a programming error.

BAD_TEXT_ITEM, Unrecognized text control item, item = !XL.

Explanation: An illegal text control item is specified.

User Action: Check for a programming error.

BADTITLE, Illegal window title string.

Explanation: An illegal window title string is passed when a user attempts
to create a window.

User Action: Check for a programming error.

BAD _ TR, Illegal transformation identifier.

Explanation: An illegal transformation identifier is given to a UIS routine
as an argument.

User Action: Check for a programming error.

BAD _ VD, Illegal virtual display identifier.

Explanation: An illegal virtual display identifier is given to a UIS routine as
an argument.

User Action: Check for a programming error.

ERROR MESSAGES

BAD _ VCM, Illegal virtual color map identifier.

Explanation: An illegal virtual color map index is given to a UIS routine as
an argument. The color map index must be less than the VCM size.

User Action: Check for a progralnming error.

BAD_ VCM_ATTR, Illegal or missing virtual color map attributes.

Explanation: One or more illegal virtual color map attributes are given to a
UIS routine as an argument, or one or more attributes are missing.

User Action: Check for a programming error.

BAD _ VCM_INDEX, Virtual color map index out of range.

Explanation: An illegal virtual color map index is given to a UIS routine as
an argument.

User Action: Check for a programming error.

BAD _ VCM_NAME, Illegal or missing virtual color map name.

Explanation: An illegal virtual color map name is given to a UIS routine as
an argument, or the name is missing.

User Action: Check for a programming error.

BAD _ VCM_SIZE, Virtual color map size out of range or illegal.

Explanation: An illegal virtual color map size is given to a UIS routine as
an argument, or the process references an existing shareable virtual color
map that specifies a different size than that of the existing map.

User Action: Check for a programming error.

BAD _ VER, Bad display list version number.

Explanation: An attempt is made to pass an unsupported version of the
display list to UIS$EXECUTE.

User Action: Use a supported display list.

BAD_VOLUME, Illegal volume level specified.

Explanation: An illegal volume level is given to the UIS$SOUND routine.
The volume must be in the range of 1 to 8.

User Action: Check for a programming error.

BAD_ WD, Illegal display window identifier.

Explanation: An illegal display window identifier is given to a UIS routine
as an argument.

User Action: Check for a programming error.

BADWDPL,Window placement attribute list has an invalid fonnat.

Explanation: An illegal window attribute list is passed when a user
attempts to create a window.

User Action: Check for illegal item types in the window attribute list.

E-3

ERROR MESSAGES

E-4

CMS_ACTIVE, Color map segment is still referenced by virtual color map(s).

Explanation: An attempt is made to delete a color map segment that is still
referenced by one or more virtual color maps.

User Action: Check for a programming error.

CMS_ CREATE_ERR, Requested color map segment cannot be created as
specified.

Explanation: An attempt to create a color map segment fails because
of illegal, missing, or incompatible parameters or insufficient hardware
resources.

User Action: Check for a programming error.

DIGIT_ACTIVE, Digitizing already active.

Explanation: An attempt is made to begin a new digitizing program while
another digitizing program is still running. The current digitizing program
must be disabled or deleted before a new program can be declared.

User Action: Exit from first digitizing program to run the second.

FONT_TOO_BIG, Specified font is too big for driver font block.

Explanation: An attempt is made to specify a font that does not fit into a
QDSS driver font block. The font must at least fit the top raster or each
glyph into a single QDSS font block (currently 1024 x 35 pixels).

User Action: Change either the font or the driver font block routines.

INSFARG, Insufficient arguments.

Explanation: A required argument is not specified.

User Action: Check for a programming error.

IN_SEG, Object not in segment.

Explanation: An attempt is made to specify an object that is not in the
specified segment.

User Action: Check for a programming error.

NODEFFONT, The default font, !AD, is not in the system font queue.

Explanation: An attempt is made to request a font in attribute block 0 that
is not present in the system font queue.

User Action: Check SYS$SYSTEM:UISMEMFONTS.COM.

NO_DEL, Root segment cannot be deleted.

Explanation: An attempt is made to delete the root segment.

User Action: Check for a programming error.

NODEV, No physical display device.

Explanation: An attempt is made to create a display window for a virtual
display that has no physical display device associated with it.

User Action: Check your hardware configuration.

ERROR MESSAGES

NO_END, Root segment not ended.

Explanation: An attempt is made to end the root segment.

User Action: Check for a programming error.

NO_FONT, The font cannot be found.

Explanation: An attempt is made to reference a font that cannot be
satisfied, even by looking for other similar fonts. All references to the
attribute block that specifies this font produce this error. The progralu
continues after this error.

User Action: Specify font contained in the SYS$FONT directory.

NO_INSERT, Segment cannot be inserted in itself.

Explanation: An attempt is made to insert a segment in itself.

User Action: Check for a programming error.

NO_KB, No keyboard is bound to the specified display window.

Explanation: An attempt is made to specify a display window that is not
bound to a keyboard with UIS$BIND _KB.

User Action: Check for a programming error.

NO_TABLET, No tablet device.

Explanation: An attempt is made to use a mouse as a pointing device
rather than a tablet. Only a tablet can be used for digitizing.

User Action: Replace the mouse with a tablet.

NOTV AFONT, Font !AS is not a VA font.

Explanation: An attempt is made to load a font or intensity that is invalid
for the color workstation.

User Action: Check for a programming error.

NOURG, Cannot disable region AST because no matching region can be
found.

Explanation: An attempt is made to disable a user region AST with an
AST ADR = 0 and the region boundary used in the original enable request.
However, no entry is found with matching boundary coordinates. The
program must ensure that the boundary coordinates match exactly to
disable an existing request.

User Action: Check for a programluing error.

SHRINK_ICON, Request to shrink an icon to another icon ignored.

Explanation: An attempt is made to delete a request that an application
shrink an icon to an icon. UIS ignores the request.

User Action: Check for a programming error.

E-5

ERROR MESSAGES

E-6

TOODEEP, Cannot internlpt allocation more than 5 levels deep.

Explanation: An attempt is made to allocate storage when the allocation
routines are already five levels deep.

User Action: Check for an error in the graphics services.

UNSUP_FONT, Font !AS is an unsupported version.

Explanation: An attempt is made to request an activated but unsupported
version of a font. The font is not placed in the specified attribute block.
The program continues after this error.

User Action: Check for a programming error.

VAFONTERR, Error loading !AS.VWS$VAFONT into the driver.

Explanation: Internal error.

User Action: Submit a Software Performance Report (SPR).

VCM_ACTIVE, Virtual color map is still active.

Explanation: An attempt is made to delete a virtual color map that is still
referenced by one or more virtual displays.

User Action: Check for a programming error.

VCM_BOUND, Virtual color map is already bound to a color map segment.

Explanation: An attempt is made to create a color map segment for a
virtual color map that is already bound to another color map segment.

User Action: Check for a programming error.

VCM_EXISTS, Virtual color map already accessed by process.

Explanation: An attempt is made to create a virtual color map that already
exists.

User Action: Check for a programming error.

VCM_NOTBOUND, Virtual color map is not bound to a color map segment.

Explanation: An attempt is made to create a window to which the virtual
display virtual color map is not bound and the NOBIND attribute is
specified for the virtual color map.

User Action: Check for a programming error.

VPTOOSMALL, Requested size of the viewport is too small.

Explanation: The desired· size of the viewport is too slnall to be displayed
on the screen.

User Action: Request larger viewport.

F VMS Data Types

F.1 VMS Data Types

The VMSU sage entry in the documentation format for system routines
indicates the argument VMS data type. Each VMS data type has only one
storage representation. For example, the VMS data type access_mode is
an unsigned byte. In addition, a VMS data type might or might not have a
conceptual meaning.

Most VMS data types are conceptual; that is, their meaning is unique
in the context of the VMS operating system. For example, the storage
representation of data type access_mode is an unsigned byte. This
unsigned byte designates a hardware access mode and therefore has
only four valid values:

0-Kernel mode
1-Executive mode
2-Supervisor mode
3-User mode

However, some VMS data types are not conceptual; that is, they specify a
storage representation but carry no other VAX/VMS semantic content. For
example, byte_signed is not a conceptual data type.

NOTE: The VMS Usage entry is not a traditional data type such as byte, word,
longword, and so on. The VMS Usage entry is significant only in the
context of the VMS operating system environment and is intended solely
to expedite data declarations within application programs.

To use the VMS Usage entry, perform the following procedure:

1 Find the data type in Table F-l and read its definition.

2 Find the same VMS data type in the appropriate VAX language
implementation (Tables F-2 through F-7) and corresponding source
language type declaration.

3 Use this code as your application program type declaration. Note that,
in some instances, you might have to modify the declaration.

Table F-llists and describes the VMS data types.

F-1

VMS Data Types

Table F-1 VMS Data Types

Data Type Definition

address

address_range

argJist

ascprocedure

boolean

byte_unsigned

channel

char_string

F-2

Each 32 quadword descriptor defines the name of one of the 32 bits in an access
mask. The first descriptor. names bit < 0 >, the second descriptor names bit < 1 > ,
and so on.

This unsigned byte denotes a hardware access mode; takes four values: 0, kernel
mode; 1, executive mode; 2, supervisor mode; 3, user mode.

This unsigned longword denotes virtual memory address of either data or code, but
not of a procedure entry mask (which is of type procedure).

This unsigned quadword denotes' a range of virtual addresses that identify an area of
memory. The first longword specifies the beginning address in the range; the second
longword specifies the ending address in the range.

This procedure argument list consists of 1 to 256 longwords. The first longword
contains an unsigned integer count of the number of successive, contiguous
longwords, each of which is an argument to be passed to a procedure by means
of a VAX CALL instruction.

The argument list has the following format:

IN
AAG 1

AAG 2

•
•
•

AAG N

MLO-1072-87

This unsigned longword integer denotes the entry mask to a procedure to be called at
AST level. (Procedures not to be called at AST level are of type procedure.)

This unsigned longword denotes a Boolean truth value flag with only two values: 1
(true) and 0 (false).

This VMS data type is the same as byte integer (signed) in Introduction to VAXNMS
System Routines, Table 1-3. .

This VMS data type is the same as type byte (unsigned) in Introduction to VAXNMS
System Routines, Table 1-3.

This unsigned word integer is an index to an I/O channel.

This VMS data type is a string of from 0 to 65,535 8-bit characters, the same as
character string in Introduction to VAXNMS System Routines, Table 1-3. The following
diagram shows the character string XYZ.

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type

complex_number

Definition

7 o
:A

"y" :A+1

"z" :A+2

MLo-l013-87

This number denotes one of the VAX standard complex floating-point data types:
F _floating complex, Djioatirig complex, and G_floating complex.

An F _floating complex number (r,i) consists of two F _floating point numbers:

1 The real part (r) of the complex number

2 The imaginary part (i)

The structure of an F _floating complex number is as follows:

my_tree

I

1st (STRING) '1010' '111 '

I h
2nd (INTEGER) -1 2 10 o 1000

n I In
3rd (STRING) 'a' 'b' 'e' 'd' 'x' 'x' 'y'

values (0) (11) (5) (-5) (44) (22) (6)

MLo-1074-87

A D_floating complex number (r,i) consists of two D_floating pOint numbers:

1 The real part (r) of the complex number and

2 The imaginary part (i)

The structure of a D_floating complex number is as follows:

F-3

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type

F-4

Definition

REAL

PART

IMAGINARY

PART

15 14 7 6 o
s lEXPONENTI FRACTION

FRACTION

FRACTION

FRACTION

s IEXPONENTI FRACTION'

FRACTION

FRACTION

FRACTION

:A

:A8

: A+10

: A+12

: A+14

MLO-1075-87

A G_floating complex number (r,i) consists of two G_floating point numbers:

1 The real part (r) of the complex number and

2 The imaginary part (i)

The structure of a G_floating complex number is as follows:

REAL

PART

IMAGINARY

PART

15 14

sl

sJ

4 3

EXPONENT I FRACTION

FRACTION

FRACTION

FRACTION

EXPONENT I FRACTION

FRACTION

FRACTION

FRACTION

o
:A

:A+2

:A+4

:A+6

:A8

: A+10

: A+12

: A+14

MLQ-1076-87

This unsigned longword integer denotes a condition value (that is, a return status or
system condition code), typically returned by a procedure in RD. The structure of a
condition value is as follows:

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type

context

eCnumber

exit_handlecblock

Definition

31 28 27 3 2 o

cntrl condition identification severity

27 16 15 3

facility number I message number

MLQ-1077-87

Depending on your needs, you can test just the low-order bit, the low-order three bits,
or the entire value.

• The low-order bit indicates successful (1) or unsuccessful (0) completion of the
service.

• The low-order three bits, taken together, represent the severity of the error.

• The remaining bits <31 :3> classify the return condition and the operating system
component that issued the condition value.

Each numeric condition value has a unique symbolic name in the following format,
where code is a mnemonic that describes the return condition.

This unsigned longword is used by a called procedure to maintain position over an
iterative sequence of calls. It is usually initialized by the caller, but is thereafter
manipulated by the called procedure.

This 64-bit unsigned, binary integer denotes a date and time as the number of elapsed
100-nanosecond units since 00:00 o'clock, November 17, 1858. This VMS data type
is the same as absolute date and time in Introduction to VAXNMS System Routines,
Table 1-3.

This character string denotes the 1- to 15-character name of a device. If the string is
a logical name, it must translate to a valid device name. If the device name contains
a colon (:), the colon and the characters after it are ignored. When an underscore (_)
precedes device name string, it indicates the string is a physical device name.

This character string denotes the 1- to 15-character name of an event flag cluster. If
the string is a logical name, it must translate to a valid event flag cluster name.

This unsigned longword integer denotes the number of an event flag. Local event
flags numbered 32 to 63 are available to your programs.

This variable-length structure denotes an exit handler control block. The following
diagram depicts the control block, which describes the exit handler.

F-5

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type Definition

fab

file_protection

F-6

31 0

forward link (used by VMS only)

exit handler address

these 3 bytes must be 0 I argo count

Address of condition value (written by VMS)

- -- -

1
additional arguments for the
exit handler; these are optional;
one argument per longword

This structure denotes an RMS file access block.

r
MlQ-1078-87

This unsigned word is a 16-bit mask that specifies file protection. The mask contains
four 4-bit fields, each specifying the protection to be applied to file access attempts
by one of the four categories of users. From the right-most field to the left-most field: ~

1 System users

2 File owner

3 Users in the same ule group as the owner

4 All other users (the world)

Each field specifies, from the right-most bit to the left-most bit:

1 Read access

2 Write access

3 Execute access

4 Delete access

Set bits indicate that access is denied.

The following diagram depicts the 16-bit
file-protection mask:

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type

floating_point

Definition

WORLD GROUP OWNER SYSTEM

R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

MLo-1079-87

This parameter denotes one of the VAX standard floating-point data types: F _floating,
D_floating, G_floating, and H_floating. The structure of an F _floating number is as
follows:

15 14 7 6 0

S IEXPONENTI FRACTION : A

FRACTION :A+2

31 16

MLo-10S0-87

The structure of a D_floating number is as follows:

15 14 7 6 o
S IEXPONENTI FRACTION : A

FRACTION : A+2

~----------------~ FRACTION : A+4

FRACTION : A+6

63 48

MLo-1081-87

The structure of a G_floating number is as follows:

15 14

SI

63

4 3 o
EXPONENT IFRACTION :A

FRACTION

FRACTION

FRACTION

:A+2

:A+4

:A+6

48

MLo-1082-S7

F-7

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type

function_code

identifier

lo_status_block

F-8

Definition

The structure of an H_floating number is as follows:

15 14

sl EXPONENT

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

127

o

113

:A

:A+2

:A+4

:A+6

:A+8

: A+10

: A+12

: A+14

MLQ-1083-87

This unsigned longword specifes the exact operations a procedure is to perform. This
longword has two word-length fields: (1) A number to specify the major operation and
(2) A mask or bit vector to specify various suboperations within the major operation. ~
This unsigned longword identifies an object returned by the system.

This quadword structure contains information returned by a procedure that completes
asynchronously. The returned information varies, depending on the procedure.
The following figure illustrates the format of the information written in the IOS8 for
SYS$QIO.

31 16 15

count condition value

device-dependent information

o

MLQ-1084-87

The first word contains a condition value that indicates the success or failure of the
operation. The condition values are the same as those used for all returns from
system services; for example, SS$_NORMAL indicates successful completion.

The second word contains the number of bytes actually transferred in the 110
operation. Note that for some devices this word contains only the low-order word
of the count.

The second longword contains device-dependent return information.

To ensure successful 1/0 completion and the integrity of data transfers, check the
IOS8 should following 110 requests, particularly for device-dependent 110 functions.

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type

31

item_lise3

31

Definition

This structure consists of one or more item descriptors and is terminated by a
longword containing O. Each item descriptor is a 2-longword structure with three
fields. The following diagram depicts a single item descriptor.

15

item code I component length

component address

o

Mlo-l086-81

Field 1 is a word in which the service writes the length (in characters) of the requested
component. If the service does not locate the component, it returns the value 0 in this
field and in the component address field.

Field 2 contains a user-supplied, word-length symbolic code that specifies the
component desired. The item codes are defined by the macros specific to the
service.

Field 3 is a longword where the service writes the starting address of the component.
This address is within the input string itself.

This structure consists of one or more item descriptors and is terminated by a
longword containing O. Each item descriptor is a 3-longword structure that contains
four fields. The following diagram depicts the format of a single item descriptor.

15

item code I buffer length

buffer address

return length address

o

MLo-l088-81

Field 1 is a word containing a user-supplied integer that specifies the length (in bytes)
of the buffer in which the service writes the information. The length of the buffer
depends upon the item code specified in the item code field of the item descriptor. If
the value of buffer length is too small, the service truncates the data.

Field 2 is a word with a user-supplied symbolic code that specifies the item of
information the service is to return. This code is defined by macros specific to the
service.

Field 3 is a longword with the user-supplied address of the buffer where the service
writes the information.

Field 4 is a longword with the user-supplied address of a word where the service writes
the length in bytes of the information it actually returns.

F-9

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type

longword_signed

longword_unsigned

F-10

Definition

This structure consists of one or more longword pairs, or doublets, and is terminated
by a longword containing O. Typically, the first longword contains an integer value,
such as a code. The second longword can contain a real or integer value.

This structure consists of one or more quota descriptors and is terminated by a byte
with a value defined by the symbolic name PQL$_LlSTEND. Each quota descriptor
consists of a 1-byte quota name followed by an unsigned longword with the value for
that quota.

This unsigned longword integer denotes a lock identifier, assigned by ~he lock
manager facility to a lock when the lock is granted.

The lock manager facility writes status information about a lock into this structure. A
lock status block always contains at least two longwords: the first word of the first
longword contains a condition value; the second word of the first longword is reserved
to DIGITAL; the second longword contains the lock Identifier.

The lock status block receives the final condition value and the lock identification,
and optionally contains a lock value block. When a request is queued, the lock
identification is stored in the lock status block, even if the lock has not been granted.
This allows a procedure to dequeue locks that have not been granted.

The condition value is placed in the lock status block only when the lock is granted
(or when errors occur in granting the lock).

The following diagram depicts a lock status block that includes the optional 16-byte
lock value block.

reserved condition value

lock identification

16 byte lock value block

only used when LCK$M_ VALBLK is set

MLQ-1087-87

The lock manager facility includes this 16-byte block in a lock status block if the
user requests it. The contents of the lock value block are user-defined and are not
interpreted by the lock manager facility.

This character string from 1 to 255 characters identifies a logical name or equivalence
name to be manipulated by VMS logical name system services. Logical names that
denote specific VMS objects have their own VMS types: for example, a logical name
identifying a device has the VMS type device_name.

This VMS data type is the same as longword integer (signed) in Introduction to
VAXlVMS System Routines, Table 1-3.

This VMS data type is the same as longword (unsigned) in Introduction to VAXNMS
System Routines, Table 1-3.

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type

mask-,ongword

mask_quadword

octaword_signed

octaword_unsigned

page_protection

procedure

Definition

This unsigned byte has each bit interpreted by the called procedure. A mask is also
referred to as a set of flags or as a bit mask.

This unsigned longword has each bit interpreted by the called procedure. A mask is
also referred to as a set of flags or as a bit mask.

This unsigned quadword has each bit interpreted by the called procedure. A mask is
also referred to as a set of flags or as a bit mask.

This unsigned word has each bit interpreted by the called procedure. A mask is also
referred to as a set of flags or bit mask.

This unsigned longword denotes a null argument that holds a place in the argument
list.

This VMS data type is the same as octaword integer (signed) in Introduction to
VAXNMS System Routines, Table 1-3.

This VMS data type is the same as octaword (unsigned) in Introduction to VAXNMS
System Routines, Table 1-3.

Th~s unsigned longword specifies page protection to be applied by the VAX hardware.
Protection values are specified using bits <3:0>; bits <31 :4> are ignored.

The $PRTDEF macro defines the following symbolic names for the protection codes:

Symbol

PRT$C_NA

PRT$C_KR

PRT$C_KW

PRT$C_ER

PRT$C_EW

PRT$C_SR

PRT$C_SW

PRT$C_UR

PRT$C_UW

PRT$C_ERKW

PRT$C_SRKW

PRT$C_SREW

PRT$C_URKW

PRT$C_UREW

PRT$C_URSW

Description

No access

Kernel read only

Kernel write

Executive read only

Executive write

Supervisor read only

Supervisor write

User read only

User write

Executive read; kernel write

Supervisor read; kernel write

Supervisor read; executive write

User read; kernel write

User read; executive write

User read; supervisor write

If the protection is specified as 0, the protection defaults to kernel read only.

This unsigned longword denotes the entry mask to a procedure that is not to be called
at AST level. (Arguments that specify procedures to be called at AST level have the
VMS type sst_procedure.)

This unsigned longword integer denotes a process identifier (PID). This process
identifier is aSSigned by VMS to a process when the process is created.

F-11

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type

process_name .

quadword_signed

quadword_unsigned

rights_holder

rightsJd

rab

section_id

F-12

Definition

This character string contains 1 to 15 characters that specify the name of a process.

This VMS data type Is the same as quadword integer (signed) in Introduction to
VAXNMS System Routines, Table 1-3.

This VMS data type is the same as quadword (unsigned) In Introduction to VAXNMS
System Routines, Table 1-3.

This unsigned quadword specifes user access rights to a system object contains two
fields: (1) An unsigned longword identifier (VMS type rights_id) and (2) A longword
bit mask where each bit specifies an access right. The following diagram shows the
format of a rights holder.

UIC Identifier of Holder

o

~o-1088-87

This unsigned longword denotes an interest group rights identifier in the context of
the VMS security environment. This rights environment can consist of all or part of a
UIC (user identification code).

Identifiers have two formats in the rights data base: UIC format (VMS type uic) and ID
format. The high-order bits of the identifier value specify the format of the identifier. ~
Two high-order zero bits identify a UIC format identifier; bit <31>, set to 1, identifies
an ID format identifier.

Bit <31 >, set to 1, specifies ID format. Bits <30:28> are reserved by DIGITAL. The
remaining bits specify the identifier value. The following diagram depicts the 10 format
of a rights identifier.

31 o

identifier

10 Format

MLo-1089-87

To the system, an identifier is a binary value; however, to make identifiers easy to use,
the system translates the binary identifier value into an identifier name. The binary
value and the identifier name are associated in the rights data base.

An identifier name consists of 1 to 31 alphanumeric characters and contains at
least one nonnumeric character. An identifier name cannot consist entirely of
numeric characters. It can include the characters A through Z, dollar signs ($)
and underscores L), as well as the numbers 0 through 9. Any lowercase characters
are automatically converted to uppercase.

This structure denotes an RMS record access block.

This unsigned quadword denotes a global section identifier. This identifier specifies
the version of a global section and the criteria to be used in matching that global
section.

VMS Data Types

Table F-1 (Cont.) VMS Data Types

Data Type

vector _byte_sig ned

vector_byte_unsigned

vector Jongword_
signed

vectoclongword_
unsigned

vector_quadword_
signed

vector _quadword_
unsigned

vector_word_signed

vector_word_
unsigned

word_signed

word_unsigned

Definition

This character string denotes a 1- to 43-character global-section name. This character
string can be a logical name but It must translate to a valid global-section name.

This unsigned quadword denotes a system identification value that is to be associated
with a rights data base.

This character string specifies a time value in VMS format.

This unsigned longword denotes a ule. Each ule is unique and represents a system
user. The ule identifier contains two high-order bits that designate format, a member
field, and a group field. Member numbers range from 0 to 65,534; group numbers
range from 1 to 16,382. Tl:"le following diagram depicts the ule format.

31 o

group member I
ule Format

MLo-1090-87

This unsigned longword denotes a user-defined argument. This longword is passed
to a procedure as an argument, but the contents of the longword are defined and
interpreted by the user.

This unsigned longword denotes a variable argument. A variable argument can have
variable types, depending on specifications made for other arguments in the call.

The elements of this homogeneous array are all signed bytes.

The elements of this homogeneous array are all unsigned bytes.

The elements of this homogeneous array are all signed longwords.

The elements of this homogeneous array are all unsigned longwords.

The elements of this homogeneous array are all signed quadwords.

The elements of this homogeneous array are all unsigned quadwords.

The elements of this homogeneous array are all signed words.

The elements of this homogeneous array are all unsigned words.

This VMS data type is the same as word integer (signed) in Introduction to VAXNMS
System Routines, Table 1-3.

This VMS data type is the same as word (unsigned) in Introduction to VAXNMS
System Routines, Table 1-3.

F.2 VAX BLISS Implementation
Table F-2 lists VMS data types and their corresponding VAX BLISS data
type declarations.

F-13

VMS Data Types

Table F-2 VAX BLISS Implementation

VMS Data Type

access_bit_names

access_mode

address

address_range

arg-,ist

asCprocedure

boolean

byte_signed

byte_unsigned

channel

char_string

complex_number

cond_value

context

date_time

device_name

eCnumber

exit_hand ler _block

fab

file_protection

floating_point

function_code

identifier

io_status_block

item_lisC2

item-,isC3

F-14

VAX BLISS DeclaraJion

BLOCKVECTOR[32,8,BYTE]

UNSIGNED BYTE

UNSIGNED LONG

VECTOR[2,LONG,UNSIGNED]

VECTOR[n,LONG,UNSIGNED]
where n is the number of arguments + 1

UNSIGNED LONG

UNSIGNED LONG

SIGNED BYTE

UNSIGNED BYTE

UNSIGNED WORD

VECTOR [65536,BYTE,UNSIGNED]

F _Complex: VECTOR[2,LONG]
D_Complex: VECTOR[4,LONG]
G_Complex: VECTOR[4,LONG]
H_Complex: VECTOR[8,LONG]

UNSIGNED LONG

UNSIGNED LONG

VECTOR[2,LONG,UNSIGNED]

VECTOR[n,BYTE,UNSIGNED]
where n is the length of the device name

VECTOR [n ,BYTE ,UNSIGNED]
where n is the length of the event flag cluster name

UNSIGNED LONG

BLOCK[n,BYTE]
where n is the size of the exit handler control block

$FAB_DECL (from STARLET.REO)

BLOCK[2,BYTE]

F _Floating: VECTOR[1,LONG]
D _Floating: VECTOR [2, LONG]
G_Floating: VECTOR[2,LONG]
H_Floating: VECTOR[4,LONG]

BLOCK[2,WORD]

UNSIGNED LONG

BLOCK[8,BYTE]

BLOCKVECTOR[n ,8,BYTE]
where n is the number of the item descriptors +

BLOCKVECTOR[n,12,BYTE]
where n is the number of the item descriptors +

$ITMLST _DECLI$ITMLST -'NIT
from STARLET.REO

Table F-2 (Cont.) VAX BLISS Implementation

VMS Data Type

lockjd

lock_status_block

lock_value_block

logical_name

longword_signed

longword_unsigned

mask_byte

maskJongword

mask_quadword

mask_word

null_arg

octaword_signed

octaword_unsigned

page_protection

procedure

processjd

process_name

quadword_signed

quadword_unsigned

rights_holder

rightsjd

rab

sectionjd

section_name

system_accessjd

time_name

uic

user_arg

varying_arg

vector_byte_signed

VAX BLISS Declaration

BLOCKVECTOR[n,2,LONG]
where n is the number of the item descriptors +

BLOCKVECTOR[n,5,BYTE]
where n is the number of the quota descriptors +

UNSIGNED_LONG

BLOCK[n,BYTE]
where n is the size of the lock_status_block -at least 8

BLOCK[16,BYTE]

VECTOR[255,BYTE,UNSIGNED]

SIGNED LONG

UNSIGNED LONG

BITVECTOR[8]

BITVECTOR [32]

BITVECTOR[64]

BITVECTOR[16]

UNSIGNED LONG

VECTOR[4,LONG,UNSIGNED]

VECTOR[4,LONG,UNSIGNED]

UNSIGNED LONG

UNSIGNED LONG

UNSIGNED LONG

VECTOR [n ,BYTE, UNSIGNED]
where n is the length of the process name

VECTOR[2,LONG,UNSIGNED]

VECTOR[2,LONG,UNSIGNED]

BLOCK[8,BYTE]

UNSIGNED LONG

$RAB_DECL
from STARLET.REO

VECTOR[2,LONG,UNSIGNED]

VECTOA[n,BYTE,UNSIGNED]
where n is the length of the global section name

VECTOR[2,LONG,UNSIGNED]

VECTOR[n,BYTE,UNSIGNED]
where n is the length of the time value in VMS format

UNSIGNED LONG

UNSIGNED LONG

UNSIGNED LONG

VECTOR [n ,BYTE ,SIGNED]
where n is the size of the array

VMS Data Types

F-15

VMS Data Types

Table F-2 (Cont.) VAX BLISS Implementation

VMS Data Type

vectocbyte_unsigned

vectorJongword_signed

vector _Iongword_
unsigned

vector_quadword_
signed

vectocquadword_
unsigned

vector_word_signed

vector_word_unsigned

word_signed

word_unsigned

VAX BLISS Declaration

VECTOR[n,BYTE,UNSIGNED]
where n is the size of the array

VECTOR[n,LONG,SIGNED]
where n is the size of the array

VECTOR[n,LONG,UNSIGNED]
where n is the size of the array

BLOCKVECTOR [n,2,LONG]
where n is the size of the array

BLOCKVECTOR[n,2,LONG]
where n is the size of the array

VECTOR[n,BYTE,SIGNED]
where n is the size of the array

VECTOR[n,BYTE,UNSIGNED]
where n is the size of the array

SIGNED WORD

UNSIGNED WORD

F.3 VAX C Implementation
Table F-3 lists VMS data types and their corresponding VAX Cdata type
declarations.

Table F-3 VAX C Implementation

VMS Data Type VAX C Declaration

access_biCnames User-defined 1

access_mode unsigned char

address int* pointer 2,3

address_range int * array [2] 2,3,4

arg_list User-defined 1

ast_procedure Pointer to function 2

boolean unsigned long int

byte_Signed char

byte_unsigned unsigned char

channel unsigned short int

1The declaration of a user-defined data structure depends on how the data is used. You can declare such
data structures in a variety of ways, each suitable to specific applications.

2The term pOinter refers to several declarations involving pointers. Pointers are declared with special syntax
and associated with the data type of the object being pointed to. This object is often user-defined.

3The data type specified can be changed to any valid VAX C data type.

4The term array denotes the syntax of a VAX C array declaration.

F-16

Table F-3 (Cont.) VAX C Implementation

VMS Data Type

char_string

complex_number

cond_value

context

date_time

device_name

eCclustecname

eCnumber

exit_handler_block

fab

file_protection

floating_point

function_code

identifier

io_status_block

itemJisL2

itemJisL3

item_list_pair

item_quota_list

lock_id

lock_status_block

lock_value_block

logical_name

longword_signed

longword_unsigned

mask_byte

mask_longword

mask_quadword

mask_word

nulLarg

octaword_signed

octaword_unsigned

VAX C Declaration

char array[n] 4,5

User-defined 1

unsigned long int

unsigned long int

User-defined 1

char array[n] 4,5

char array[n] 4,5

unsigned long int

User-defined 1

#include fab from text library
struct FAB

unsigned short int, or User-defined 1

float or double

Unsigned long. int or User-defined 1

int* pointer 2,3

User-defined 1

User-defined 1

User-defined 1

User-defined 1

User-defined 1

unsigned long int

User-defined 1

User-defined 1

char array[n] 4,5

long int

unsigned long int

unsigned char

unsigned long int

User-defined 1

unsigned short int

unsigned long int

User-defined 1

User-defined 1

VMS Data Types

1The declaration of a user-defined data structure depends on how the data is used. You can declare such
data structures in a variety of ways, each suitable to specific applications.

2The term pointer refers to several declarations involving pointers. Pointers are declared with special syntax
and associated with the data type of the object being pOinted to. This object is often user-defined.

3The data type specified can be changed to any valid VAX C data type.

4The term array denotes the syntax of a VAX C array declaration.

5The size of the array must be substituted for n.

F-17

VMS Data Types

Table F-3 (Cont.) VAX C Implementation

VMS Data Type

page_protection

procedure

process_id

process_name

quadword_signed

quadword_unsigned

rights_holder

rights_id

rab

section_id

section_name

system_access_id

time_name

uic

user_arg

varying_arg

vector_byte_signed

vector _byte_unsigned

vector_longword_
signed

vector _Iongword_
unsigned

vector_quadword_
signed

vector _quadword_
unsigned

vector_word_signed

vector_word_
unsigned

word_signed

word_unsigned

VAX C Declaration

unsigned long int

Pointer to function 2

unsigned long int

char array[n) 4,5

User-defined 1

User-defined 1

User-defined 1

unsigned long int

#include rab from text library
struct RAB

User-defined 1

char array[n) 4,5

User-defined 1

char array[n) 4,5

unsigned long int

User-defined 1

User-defined 1

char array[n) 4,5

unsigned char array[n) 4,5

long int array[n) 4,5

unsigned long int array[n) 4,5

User-defined 1

User-defined 1

short int array[n) 4,5

unsigned short int array[n) 4,5

short int

unsigned short int

1The declaration of a user-defined data structure depends on how the data is used. You can declare such
data structures in a variety of ways, each suitable to specific applications.

2The term pointer refers to several declarations involving pointers. Pointers are declared with special syntax
and associated with the data type of the object being pointed to. This object is often user-defined.

4The term array denotes the syntax of a VAX C array declaration.

5The size of the array must be substituted for n.

F-18

VMS Data Types

F.4 VAX FORTRAN Implementation
Table F-4 lists VMS data types and their corresponding VAX FORTRAN
data type declarations.

Table F-4 VAX FORTRAN Implementation

VMS Data Type

access_mode

address

address_range

arg_list

ast_procedure

boolean

byte_signed

byte_unsigned

channel

chacstring

complex_number

cond_value

context

date_time

device_name

eCcluster _name

eCnumber

VAX FORTRAN Declaration

INTEGER *4(2,32)
or
STRUCTURE laccess_biCnamesl

INTEGER*4 access_nameJen
INTEGER * 4 access_name_buf

END STRUCTURE !access_bit_names
RECORD laccess_bit_namesl my_names(32)

BYTE

INTEGER*4

INTEGER * 4(2)
or
STRUCTURE laddress_rangel

INTEGER * 4 low_address
INTEGER *4 high_address

END STRUCTURE

INTEGER*4(n)

EXTERNAL

LOGICAL*4

BYTE

BYTE 1

INTEGER*2

CHARACTER*n

COMPLEX*8
COMPLEX*16

INTEGER*4

INTEGER*4

INTEGER * 4(2)

CHARACTER*n

CHARACTER*n

INTEGER*4

1Unsigned data types are not directly supported by VAX FORTRAN. However, in most cases you can substitute
the signed equivalent so long as you do not exceed the range of the signed data structure.

F-19

VMS Data Types

Table F-4 (Cont.) VAX FORTRAN Implementation

VMS Data Type

fab

file_protection

floating_point

function_code

identifier

io_status_block

F-20

VAX FORTRAN Declaration

STRUCTURE lexhblockl
INTEGER*4 flink
INTEGER * 4 exiChandler _addr
BYTE(3) 101
BYTE arg_count
INTEGER*4 cond_value
!
! . (optional arguments ...
! . one argument per longword)
I

END STRUCTURE !cntrlblk

RECORD lexhblockl myexh_block

INCLUDE '($FABDEF)'
RECORD Ifabdef/ myfab

INTEGER*4

REAL*4
REAL*8
DOUBLE PRECISION
REAL*16

INTEGER*4

INTEGER*4

STRUCTURE liosbl
INTEGER*2 iostat, Ireturn status
2 term_offset, !Loc. of line te~minator
2 terminator, !value of terminator
2 term_size !size of terminator

END STRUCTURE

RECORD liosbl myjosb

STRUCTURE litmlst/
UNION
MAP
INTEGER*2 buflen,code
INTEGER*4 bufadr
END MAP
MAP
INTEGER*4 end_list 101
END MAP
END UNION

END STRUCTURE !itmlst

RECORD litmlst/ myjtmlst_2(n)
(Allocate n records where n is the number item codes plus an extra element for the
end-of-list item)

VMS Data Types

Table F-4 (Cont.) VAX FORTRAN Implementation

VMS Data Type

lockjd

lock_status_block

lock_value_block

logical_name

longword_signed

VAX FORTRAN Declaration

STRUCTURE IitmlsV
UNION
MAP
INTEGER*2 buflen,code
INTEGER*4 bufadr,retlenadr
END MAP
MAP
INTEGER*4 endJist 101
END MAP
END UNION

END STRUCTURE litmlst

RECORD fitmlstl myjtmlsC2(n)
(Allocate n records where n is the number item codes plus an extra element for the

end-of-list item)

STRUCTURE litmliscpairl
UNION
MAP

INTEGER*4 code
INTEGER * 4 value

END MAP
MAP.

INTEGER * 4 end_list 101
END MAP
END UNION

END STRUCTURE litmlst_pair

RECORD fitmlst_pairl myjtmlscpair(n)
(Allocate n records where n is the number item codes plus an extra element for the
end-of-list item)

STRUCTURE fitem_quotaJistl
MAP
BYTE quota_name
INTEGER *4 quota_value
END MAP
MAP
BYTE end_quotaJist
END MAP

END STRUCTURE litem_quotaJist

INTEGER*4

STRUCTUREllksbl
INTEGER*2 cond_value
INTEGER *2 unused
INTEGER * 4 lockjd
BYTE(16)

END STRUCTURE Ilock_statusJock

BYTE(16)

CHARACTER*n

INTEGER*4

F-21

VMS Data Types

Table F-4 (Cont.) VAX FORTRAN Implementation

VMS Data Type

longword_unsigned

mask_byte

mask_longword

mask_quadword

mask_word

null_arg

octaword_signed

octaword_unsigned

page_protection

procedure

process_id

process_name

quadword_signed

quadword_unsigned

rights_holder

section_id

section_name

system_accessjd

time_name

uic

user_arg

varying_arg

vector_byte_signed

vector_byte_unsigned

vector Jongword_signed

vector Jongword_
unsigned

vector _quadword_
signed

vector _quadword_
unsigned

VAX FORTRAN Declaration

INTEGER*4 1

INTEGER*1

INTEGER*4

INTEGER * 4(2)

INTEGER*2

%VAL(O)

INTEGER *4(4)

INTEGER * 4(4) 1

INTEGER*4

INTEGER*4

INTEGER*4

CHARACTER*n

INTEGER *4(2)

INTEGER *4(2) 1

INTEGER *4(2)
or
STRUCTURE frights_holderf

INTEGER*4 rightsjd
INTEGER*4 rights_mask

END STRUCTURE Irights_holder

INTEGER*4

INCLUDE '($RABDEF)'
RECORD frabdef/ myrab

INTEGER *4(2)

CHARACTER*n

INTEGER *4(2)

CHARACTER * 23

INTEGER*4

Any longword quantity

INTEGER*4

BYTE(n)

BYTE(n) 1

INTEGER * 4(n)

INTEGER *4(n) 1

INTEGER*4(2, n)

INTEGER * 4(2 ,n) 1

1 Unsigned data types are not directly supported by VAX FORTRAN. However, in most cases you can substitute
the Signed equivalent so long as you do not exceed the range of the signed data structure.

F-22

Table F-4 (Cont.) VAX FORTRAN Implementation

VMS Data Type

vector _word_signed

vector_word_unsigned

word_signed

word_unsigned

VAX FORTRAN Declaration

INTEGER*2(n)

INTEGER * 2(n) 1

INTEGER*2(n)

INTEGER*2(n) 1

VMS Data Types

1 Unsigned data types are not directly supported by VAX FORTRAN. However, in most cases you can substitute
the signed equivalent so long as you do not exceed the range of the signed data structure.

F.S VAX MACRO Implementation
Table F-5 lists VMS data types and their corresponding V AX MACRO data
type declarations.

Table F-5 VAX MACRO Implementation

VMS Data Type

access_mode

address

address_range

arg_list

ast_procedure

boolean

byte_signed

byte_unsigned

channel

chacstring

complex_number

cond_value

context

date_time

device_name

eCcluster_name

eCnumber

VAX MACRO Declaration

.ASCID Iname_for_bitOl

.ASCID Iname_for_bit11

.ASCID Iname_for_bit31 I

.BYTE PSL$C_xxxx

.ADDRESSS virtual_address

.ADDRESS start_address,end_address

.LONG n_args, arg1, arg2, ...

.ADDRESS asCprocedure

.LONG 1 or .LONG 0

.SIGNED_BYTE byte_value

.BYTE byte_value

.WORD channel_number

.ASCID Istringl

NA

.LONG cond_value

.LONG 0

.QUAD date_time

.ASCID Iddcu:1

.ASCID leCcluster_namel

.LONG eCnumber

F-23

VMS Data Types

Table F-5 (Cont.) VAX MACRO Implementation

VMS Data Type

exiChandlecblock

fab

file_protection

floating_point

fu nction_code

identifier

io _status_block

item_lisC2

itemJisCpair

lock_id

lock_status_block

lock_value_block

logical_name

longword_signed

longword_unsigned

mask_byte

mask_longword

mask_quadword

mask_word

null_arg

octaword_signed

octaword_unsigned

page_protection

procedure

process_id

process_name

quadword_signed

F-24

VAX MACRO Declaration

.LONG 0

.ADDRESS exit_handler_routine

.LONG 1

.ADDRESS status
STATUS: .BLKL 1

MYFAB: $FAB

.WORD procvalue

.FLOAT, .G_FLOAT, or .H_FLOAT

.LONG code!mask

.ADDRESSS virtual_address

.QUAD 0

.WORD componentJength

.WORD item_code

.ADDRESS componenCaddress

.WORD bufferJength

.WORD item_code

.ADDRESS buffer_address

.ADDRESS return_length_address

.LONG item_code

.LONG data

.BYTE PQL$_xxxx

.LONG value_for_quota

.BYTE pql$Jistend

.LONG 10ckJd

.QUAD 0

.BLKB 16

.ASCID IlogicaLnamel

.LONG value

.LONG value

.BYTE mask_byte

.LONG maskJongword

.QUAD mask_quadword

.WORD mask_word

.LONG 0

NA

.OCTA value

.LONG page_protection

.ADDRESS procedure

.LONG processJd

.ASCID Iprocess_namel

NA

VMS Data Types

Table F-5 (Cont.) VAX MACRO Implementation

VMS Data Type

quadword_unsigned

rights_holder

rights_id

rab

sectlonjd

section_name

system_access_id

time_name

uic

user_arg

varying_arg

vector_byte_signed

vectocbyte_unsigned

vector_longword_
signed

vector_longword_
unsigned

vectocquadword_
signed

vector_quadword_
unsigned

vector_word_signed

vector_word_
unsigned

word_signed

word_unsigned

VAX MACRO Declaration

.QUAD value

.LONG identifier, access_righCbitmask

.LONG rightsjd

MYRAB:$RAB

.LONG sec$k_matXXX, version_number

.ASCID Isection_namel

.QUAD system_accessjd

.ASCID Idd-mmm-yyyy:hh:mm:ss.ccl

.LONG uic

.LONG data

Dependent upon application

.SIGNED_BYTE val1 ,vaI2, ... vaIN

.BYTE val1 ,vaI2, ... vaIN

.LONG val 1 ,vaI2, ... vaIN

.LONG val1 ,vaI2, ... vaIN

NA

.QUAD val1

.QUAD val2

.QUAD vaiN

.SIGNED_WORD val1 ,vaI2, ... vaIN

.WORD val 1 ,vaI2, ... vaIN

.SIGNED_WORD value

.WORD value

F.6 VAX PASCAL Implementation
Table F-6 lists VMS data types and their corresponding VAX PASCAL data
type declarations:

F-25

VMS Data Types

Table F-6 VAX PASCAL Implementation

VMS Data Type

access_bit_names

access_mode

address

address_range

arg-,ist

ascprocedure

boolean

byte_signed

byte_unsigned

channel

chacstring

complex_number

cond_value

context

date_time

device_name

eCcluster_name

eCnumber

exit_handler_block

fab

file_protection

floating_point

function_code

identifier

io_status_block

F-26

VAX PASCAL Declaration

PACKED ARRAY [1 .. 32] OF [QUAD] RECORD END; 1.2

[BYTE] 0 .. 3; 2

UNSIGNED;

PACKED ARRAY [1 .. 2] OF UNSIGNED; 2

PACKED ARRAY [1 .. n] OF UNSIGNED; 2

UNSIGNED;

BOOLEAN; 3

[BYTE] -128 .. 127; 2

[BYTE] 0 .. 255; 2

[WORD] 0 .. 65535; 2

[CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

[LONG(2)] RECORD END; • F _Floating Complex • 1,2

[QUAD(2)] RECORD END; • DIG_Floating Complex •
[OCTA(2)] RECORD END; • H_Floating Complex •

UNSIGNED;

UNSIGNED;

[QUAD] RECORD END; 1,2

[CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

[CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

UNSIGNED;

PACKED ARRAY [1 .. n] OF UNSIGNED; 2

FAB$TYPE; 5

[WORD] RECORD END; 1,2

REAL; { F _Floating }
SINGLE; { F _Floating }
DOUBLE; { D_Floating/G_Floating } 6

QUADRUPLE; { H_Floating }

UNSIGNED;

UNSIGNED;

[QUAD] RECORD END; 1,2

VMS Data Types

Table F-6 (Cont.) VAX PASCAL Implementation

VMS Data Type VAX PASCAL Declaration

1This type is not available in VAX PASCAL and an empty record has been inserted. To manipulate the
contents, declare with explicit field components. If you pass an empty record as a parameter to a PASCAL
routine, you must use the VAR keyword.

2VAX PASCAL expects either a type identifier or conformant schema. Declare this under the TYPE declaration
and use the type Identifier in the formal parameter declaration.

3VAX PASCAL allocates a byte for a BOOLEAN variable. Use the [LONG] attribute when passing to routines
that expect a longword.

4Thls parameter declaration accepts VARYING OF CHAR or PACKED ARRAY OF CHAR and produces the
CLASS_S descriptor required by system services.

5The program must inherit the STARLET environment file located in SYS$LlBRARY:STARLET.PEN.

61f the [G_FLOATING] attribute is used in compiling, double-precision variables and expressions are
represented in G_floating format. The IG_FLOATING command line qualifier can also be used. Both methods
default to no G_floating.

F-27

VMS Data Types

Table F-6 (Cont.) VAX PASCAL Implementation

VMS Data Type

item-,isC2

10ckJd

lock_status_block

lock_value_block

10gicaLname

longword_signed

longword_unsigned

VAX PASCAL Declaration

PACKED ARRAY [1 .. n] OF PACKED RECORD 2
CASE INTEGER OF
1: (
FIELD1 : [WORD] 0 .. 65535;
FIELD2 : [WORD] 0 .. 65535;
FIELD3 : UNSIGNED);
2: (
TERMINATOR: UNSIGNED);
END;

PACKED ARRAY [1 .. n] OF PACKED RECORD 2
CASE INTEGER OF
1: (
FIELD1 : [WORD] 0 .. 65535;
FIELD2 : [WORD] 0 .. 65535;
FIELD3 : UNSIGNED;
FIELD4: UNSIGNED);
2: (
TERMINATOR: UNSIGNED);
END;

PACKED ARRAY [1 .. n) OF PACKED RECORD 2
CASE INTEGER OF
1: (
FIELD1 : INTEGER;
FIELD2 : INTEGER);
2: (
TERMINATOR: UNSIGNED);
END;

PACKED ARRAY [1 .. n] OF PACKED RECORD 2
CASE INTEGER OF
1: (
QUOTA_NAME: [BYTE] 0 .. 255;
QUOTA_VALUE: UNSIGNED);
2: (
QUOTA_TERM: [BYTE] 0 .. 255);
END;

UNSIGNED;

[BYTE(24)] RECORD END; 1,2

[BYTE(16)] RECORD END; 1,2

[CLASS_Sl PACKED ARRAY [L .. U:INTEGER] OF CHAR; 4

INTEGER;

UNSIGNED;

1This type is not available in VAX PASCAL and an empty record has been inserted. To manipulate the
contents, declare with explicit field components. If you pass an empty record as a parameter to a PASCAL
routine, you must use the VAR keyword.

2VAX PASCAL expects either a type identifier or conformant schema. Declare this under the TYPE declaration
and use the type identifier in the formal parameter declaration.

4This parameter declaration accepts VARYING OF CHAR or PACKED ARRAY OF CHAR and produces the
CLASS_S descriptor required by system services.

F-28

VMS Data Types

Table F-6 (Cont.) VAX PASCAL Implementation

VMS Data Type

mask_byte

maskJongword

mask_quadword

mask_word

null_arg

octaword_signed

octaword_unsigned

page_protection

procedure

processjd

process_name

quadword_signed

quadword_unsigned

rights_holder

rightsjd

rab

section_id

section_name

system_accessjd

time_name

uic

user_arg

varying_arg

vector _byte_sig ned

vector_byte_unsigned

vectorJongword_signed

vector Jongword_
unsigned

vector_quadword_signed

vector_quadword_
unsigned

VAX PASCAL Declaration

[BYTE,UNSAFE] PACKED ARRAY [1 .. 8] OF BOOLEAN; 2

[LONG,UNSAFE] PACKED ARRAY [1 .. 32] OF BOOLEAN; 2

[QUAD,UNSAFE] PACKED ARRAY [1 .. 64] OF BOOLEAN; 2

[WORD,UNSAFE] PACKED ARRAY [1 .. 16] OF BOOLEAN; 2

UNSIGNED;

[OCTA] RECORD END; 1,2

[OCTA] RECORD END; 1,2

[LONG] 0 .. 7; 2

UNSIGNED;

UNSIGNED;

[CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

[QUAD] RECORD END; 1,2

[QUAD] RECORD END; 1,2

[QUAD] RECORD END; 1,2

UNSIGNED;

RAB$TYPE; 5

[QUAD] RECORD END; 1,2

[CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

[QUAD] RECORD END; 1,2

[CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

UNSIGNED;

[UNSAFE] UNSIGNED;

[UNSAFE,REFERENCE] PACKED ARRAY [L .. U:INTEGER] OF [BYTE] 0 .. 255;

PACKED ARRAY [1 .. n] OF [BYTE] -128 .. 127; 2

PACKED ARRAY [1 .. n] OF [BYTE] 0 .. 255; 2

PACKED ARRAY [1 .. n] OF INTEGER; 2

PACKED ARRAY [1 .. n] OF UNSIGNED; 2

PACKED ARRAY [1 .. n] OF [QUAD] RECORD END; 1,2

PACKED ARRAY [1 .. n] OF [QUAD] RECORD END; 1,2

1This type is not available in VAX PASCAL and an empty record has been inserted. To manipulate the
contents, declare with explicit field components. If you pass an empty record as a parameter to a PASCAL
routine, you must use the VAR keyword.

2VAX PASCAL expects either a type identifier or conform ant schema. Declare this under the TYPE declaration
and use the type identifier in the formal parameter declaration.

4Th is parameter declaration accepts VARYING OF CHAR or PACKED ARRAY OF CHAR and produces the
CLASS_S descriptor required by system services.

5The program must inherit the STARLET environment file located in SYS$LlBRARY:STARLET.PEN.

F-29

VMS Data Types

Table F-6 (Cont.) VAX PASCAL Implementation

VMS Data Type

vectocword_signed

vector_word_unsigned

word_signed

word_unsigned

VAX PASCAL Declaration

PACKED ARRAY [1 .. n] OF [WORD] -32768 .. 32767; 2

PACKED ARRAY [1 .. n] OF [WORD] 0 .. 65535; 2

[WORD] -32768 .. 32767; 2

[WORD] 0 .. 65535; 2

2VAX PASCAL expects either a type identifier or conformant schema. Declare this under the TYPE declaration
and use the type identifier in the formal parameter declaration.

F.7 VAX PL/llmplementation
Table F-7 lists VMS data types and their corresponding VAX PLII data type
declarations.

Table F-7 VAX PL/I Implementation

VMS Data Type

address

address_range

argJist

VAX PL/I Declaration

1 ACCESS_BIT _NAMES(32),
2 LENGTH FIXED BINARY(15),
2 DTYPE FIXED BINARY(7) INITIAL«32)DSC$K_
DTYPE_T),
2 CLASS FIXED BINARY(7) INITIAL«32)DSC$K_
CLASS_S),
2 CHAR_PTR POINTER; 1

The length of the LENGTH field in each element of the array should correspond
to the length of a string of characters pOinted to by the CHAR_PTR field. The
constants DST$K_CLASS_S and DST$K_DTYPE_ T can be used by Including
the module $DSCDEF from PLiSTARLET or by declaring it GLOBALREF FIXED
BINARY(31) VALUE.

FIXED BINARY(7)
(The constants for this type- PSLC_KERNEL, PSLC_EXEC, PSL$C_SUPER,
PSL$C_USER-are declared in module $PSLDEF in PLiSTARLET.)3

POINTER

(2) POINTER 1

1 ARG_LlST BASED,
2 ARGCOUNT FIXED BINARY(31),
2 ARGUMENT (X REFER (ARGCOUNT»
POINTER; 1

1 Routines declared in PLiSTARLET often use ANY, so you can declare the data structure in the most
convenient way for the application. ANY might be necessary in some cases, since PLII does not allow
parameter declarations for some data types used by VMS. (In particular, PLII parameters with arrays passed by
reference cannot be declared to have nonconstant bounds.)

3System routines are often written so the parameter passed occupies more storage than the object requires.
For example, some system services have parameters that return a bit value as a longword. Those variables
must be declared BIT(32) ALIGNED (not BIT(n) ALIGNED) so adjacent storage is not overwritten by return
values or incorrectly used as input. (Longword parameters are always declared BIT(32) ALIGNED.)

F-30

VMS· Data Types

Table F-7 (Cont.) VAX PL/llmplementation

VMS Data Type

ast_procedure

boolean

byte_signed

byte_unsigned

channel

char_string

complex_number

cond_value

context

date_time

device_name

et..cluster_name

et..number

exit_handler_block

fab

VAX PL/I Declaration

If the arguments are passed by value, it may be appropriate to change the type of
the ARGUMENT field of the structure. Alternatively, you can use the POSINT, INT,
or UNSPEC built-in functions/pseudovariables to access the data. X should be an
expression with a value in the range 0-255 at the time the structure is allocated.

PROCEDURE or ENTRY 2

BIT ALIGNED 3

FIXED BINARY(7)

FIXED BINARY(7) 4

FIXED BINARY(15)

CHARACTER(n) 5

(2) FLOAT BINARY(n) (See floating_point for values
of n.)

See module STS$VALUE in PLiSTARLET 1

FIXED BINARY(31)

BIT(64) ALIGNED 6

CHARACTER(n) 5

CHARACTER(n) 5

FIXED BINARY(31)

1 EXIT _HANDLER_BLOCK BASED,
2 FORWARD_LINK POINTER,
2 HANDLER POINTER,

2 ARGCOUNT FIXED BINARY(31),
2 ARGUMENT (n REFER
(ARGCOUNT» POINTER; 1

Replace n with an expression that will yield a value between 0 and 255 at the time
the structure is allocated.

See module $FABDEF in PLiSTARLET 1

1Routines declared in PLiSTARLET often use ANY, so you can declare the data structure in the most
convenient way for the application. ANY might be necessary in some cases, since PLII does not allow
parameter declarations for some data types used by VMS. (In particular, PUI parameters with arrays passed by
reference cannot be declared to have nonconstant bounds.)

2AST procedures and those passed as parameters of type ENTRY VALUE or ANY VALUE must be external
procedures. This applies to all system routines that take procedure parameters.

3System routines are often written so the parameter passed occupies more storage than the object requires.
For example, some system services have parameters that return a bit value as a longword. Those variables
must be declared BIT(32) ALIGNED (not BIT(n) ALIGNED) so adjacent storage is not overwritten by return
values or incorrectly used as input. (Longword parameters are always declared BIT(32) ALIGNED.)

4This is actually an unsigned integer. This declaration is interpreted as a signed number; use the POSINT
function to determine the actual value.

5System services require CHARACTER string representation for parameters. Most other system routines allow
either CHARACTER or CHARACTER VARYING. For parameter declarations, n should be an asterisk.

6VAX PUI does not support FIXED BINARY numbers with precisions greater than 32. To use larger values,
declare variables to be BIT variables of the appropriate size and use the POSINT and SUBSTR bits as
necessary to access the values, or declare the item as a structure. The RTL routines L1B$ADDX and
L1B$SUBX might be useful if you perform arithmetic on these types.

F-31

VMS Data Types

Table F-7 (Cont.) VAX PUllmplementation

VMS Data Type

file_protection

floating_point

function_code

identifier

io_status_block

itemJisC2

VAX PL/I Declaration

BIT(16) ALIGNED 3 -

FLOAT BINARY(n)
The values for n are as follows:
1 < = n < = 24 - F floating
25 < = n < = 53 - D floating
25 < = n < = 53 - G floating (with IG_FLOAT)
94 < = n < = 113 - H floating

BIT(32) ALIGNED

POINTER

Since there are different formats for 110 status blocks for various system services,
different definitions will be appropriate for different uses. Some of the common
formats are shown here. 1

See p. SYS-229
1 10SB_SYS$GETSYI,

2 STATUS FIXED BINARY(31),
2 RESERVED FIXED BINARY(31);

See Fig. 8-16 in Part I of the I/O User's Guide
1 10SB_ TTDRIVER_A,

2 STATUS FIXED BINARY(15),
2 BYTE_COUNT FIXED BINARY(15),
2 MBZ FIXED BINARY(31) INITIAL(O);

See Fig. 8-16 in Part I of the I/O User's Guide
1 10SB_ TTDRIVER_B,

2 STATUS FIXED BINARY(15),
2 TRANSMIT_SPEED FIXED BINARY(7),
2 RECEIVE_SPEED FIXED BINARY(7),
2 CR_FILL FIXED BINARY(7),
2 LF ,..FILL FIXED BINARY(7),
2 PARITY_FLAGS FIXED BINARY(7),
2 MBZ FIXED BINARY(7) INITIAL(O);

1 ITEM_LIST _2,
2ITEM(SIZE),

3 COMPONENT_LENGTH FIXED BINARY(15),
FIXED BINARY(15),

3 COMPONENT ADDRESS POINTER,
2 TERMINATOR FIXED BINARY(31) INITIAL(O);1

Replace SIZE with the number of items you want.

3 ITEM_CODE

1 Routines declared in PliSTARLET often use ANY, so you can declare the data structure in the most
convenient way for the application. ANY might be necessary in some cases, since PL/I does not allow
parameter declarations for some data types used by VMS. (In particular, PL/I parameters with arrays passed by
reference cannot be declared to have nonconstant bounds.)

3System routines are often written so the parameter passed occupies more storage than the object requires.
For example, some system services have parameters that return a bit value as a longword. Those variables
must be declared BIT(32) ALIGNED (not BIT(n) ALIGNED) so adjacent storage is not overwritten by return
values or incorrectly used as input. (Longword parameters are always declared BIT(32) ALIGNED.)

F-32

VMS Data Types

Table F-7 (Cont.) VAX PL/llmplementation

VMS Data Type

lock_id

lock_status_block

logical_name

longword_signed

longword_unslgned

mask_byte

maskJongword

mask_quadword

VAX PLII Declaration

1 ITEM_LIST _3,
2 ITEM(SIZE),

3 BUFFER_LENGTH FIXED BINARY(15),
3 ITEM_CODE FIXED BINARY(15),
3 BUFFER_ADDRESS POINTER,
3 RETURN_LENGTH POINTER,

2 TERMINATOR FIXED BINARY(31) INITIAL(O);1

Replace SIZE with the number of items you want.

1 ITEM_LIST _PAIR,
2 ITEM(SIZE),

3 ITEM_CODE FIXED BINARY(31),
3 ITEM UNION,

4 INTEGER FIXED BINARY(31),
o REAL FLOAT BINARY(24),

2 TERMINATOR FIXED BINARY(31) INITIAL(O);1

Replace SIZE with the number of items you want.

1 ITEM_ QUOTA_LIST,
2 QUOTA(SIZE),

3 NAME FIXED BINARY(7),
3 VALUE FIXED BINARY(31),

2 TERMINATOR FIXED BINARY(7)
INITIAL(PQL$_LlSTEND); 1

Replace SIZE with the number of quota entries that you want to use. The
constant PQL$_LlSTEND can be used by including the module $PQLDEF from
PLISTARLET or by declaring it GLOBALREF FIXED BINARY(31) VALUE.

FIXED BINARY(31)

1 LOCK_STATUS_BLOCK,
2 STATUS_CODE FIXED BINARY(15),
2 RESERVED FIXED BINARY(15),
2 LOCK_ID FIXED BINARY(31); 1

The declaration of an item of this structure will depend on the use of the structure,
since VMS does not interpret the value. 1

CHARACTER(n) 5

FIXED BINARY(31)

FIXED BINARY(31) 4

BIT(8) ALIGNED

BIT(32) ALIGNED

BIT(64) ALIGNED

1Routines declared in PLISTARLET often use ANY, so you can declare the data structure in the most
convenient way for the application. ANY might be necessary in some cases, since PUI does not allow
parameter declarations for some data types used by VMS. (In particular, PLII parameters with arrays passed by
reference cannot be declared to have nonconstant bounds.)

4This is actually an unsigned integer. This declaration is interpreted as a signed number; use the POSINT
function to determine the actual value.
5System services require CHARACTER string representation for parameters. Most other system routines allow
either CHARACTER or CHARACTER VARYING. For parameter declarations, n should be an asterisk.

F-33

VMS Data Types

Table F-7 (Cont.) VAX PL/llmplementation

VMS Data Type

mask_word

null_arg

octaword_signed

octaword_unsigned

page_protection

procedure

processjd

process_name

quadword_signed

quadword_unsigned

rights_holder

rightsjd

rab

sectionjd

section_name

system_accessjd

time_name

ulc

user_arg

varying_arg

vector_byte_signed

vector_byte_unsigned

VAX PL/I Declaration

BIT(16) ALIGNED

Omit the corresponding parameter in the call. For example, FOO(A"B) would omit
the second parameter.

BIT(128) ALIGNED 6

BIT(128) ALIGNED 4,6

FIXED BINARY(31) (The constants for this type are declared in module $PRTDEF
in PLISTARLET.)

PROCEDURE or ENTRY 2

FIXED BINARY(31)

CHARACTER(n) 5

BIT(64) ALIGNED 6

BIT(64) ALIGNED 4,6

1 RIGHTS_HOLDER,
2 RIGHTS_ID FIXED BINARY(31),
2 ACCESS_RIGHTS BIT(32) ALIGNED; 1

FIXED BINARY(31)

See module $RABDEF in PLISTARLET 1

BIT(64) ALIGNED

CHARACTER(n) 5

BIT(64) ALIGNED

CHARACTER(n) 5

FIXED BINARY(31)

ANY

ANY with OPTIONS(VARIABLE) on the routine declaration.

(n) FIXED BINARY(7) 7

(n) FIXED BINARY(7) 4,7

1Routines declared in PLISTARLET often use ANY, so you can declare the data structure in the most
convenient way for the application. ANY might be necessary in some cases, since PLII does not allow
parameter declarations for some data types used by VMS. (In particular, PLII parameters with arrays passed by
reference cannot be declared to have nonconstant bounds.)

2AST procedures and those passed as parameters of type ENTRY VALUE or ANY VALUE must be external
procedures. This applies to all system routines that take procedure parameters.

4This is actually an unsigned integer. This declaration is interpreted as a signed number; use the POSINT
function to determine the actual value.
5System services require CHARACTER string representation for parameters. Most other system routines allow
either CHARACTER or CHARACTER VARYING. For parameter declarations, n should be an asterisk.

6VAX PLII does not support FIXED BINARY numbers with precisions greater than 32. To use larger values,
declare variables to be BIT variables of the appropriate size and use the POSINT and SUBSTR bits as
necessary to access the values, or declare the item as a structure. The RTL routines LlB$ADDX and
LlB$SUBX might be useful if you perform arithmetic on these types.

7For parameter declarations, the bounds must be constant for arrays passed by reference. For arrays passed
by descriptor, use asterisks for the array extent instead. (VMS system routines almost always take arrays by
reference.)

F-34

VMS Data Types

Table F-7 (Cont.) VAX PL/llmplementation

VMS Data Type

vectorJongword_signed

vector_longword_
unsigned

vector_quadword_signed

vector_quadword_
unsigned

vector word_signed

vector_word_unsigned

word_signed

word_unsigned

VAX PLII DeciCuation

(n) FIXED BINARY(31) 7

(n) FIXED BINARY(31) 4,7

(n) BIT(64) ALIGNED 6,7

(n) BIT(64) ALIGNED 4,6,7

(n) FIXED BINARY(15) 7

(n) FIXED BINARY(15) 4,7

FIXED BINARY(15)

FIXED BINARY(15) 4

4This is actually an unsigned integer. This declaration is interpreted as a signed number; use the POSINT
function to determine the actual value.
6VAX PUI does not support FiXED BINARY numbers with precisions greater than 32. To use larger values,
declare variables to be BIT variables of the appropriate size and use the POSINT and SUBSTR bits as
necessary to access the values, or declare the item as a structure. The RTL routines L1B$ADDX and
L1B$SUBX might be useful if you perform arithmetic on these types.

7For parameter declarations, the bounds must be constant for arrays passed by reference. For arrays passed
by descriptor, use asterisks for the array extent instead. (VMS system routines almost always take arrays by
reference.)

NOTE: All system services and many system constants and data structures are
declared in PLISTARLET.TLB. For examples of system services, see either
the VAX-ll PLII User's Guide or Prog,.amming in VAX-ll PLII.

Important note: While the current version of VAX PLII Version 2 does
not support unsigned fixed binary numbers or fixed binary numbers with
a precision greater than 31, future versions may support these features. If
VAX PLII is extended to support these types, declarations in PLISTARLET
will change to use the new data types where appropriate.

F-35

Glossary

absolute pointing device: A pointing device that reports all movement to the
workstation.

array: Any organized arrangement of related elements.

address: A 32-bit VAX address positioned in a longword item.

argument list: A vector of longwords that represents a procedure parameter list and
possibly a function value.

aspect ratio: The ratio between the height and width of a graphic object. In
reference to a virtual display, the aspect ratio is a comparison of the relative
proportions of the vertical and horizontal components of objects in the virtual
display.

attribute: A quality or characteristic that determines the appearance of an object
displayed on the screen. For example, the attributes of a line are its width, style,
and color.

baseline: The side of a geometric object or drawing from which the object is
constructed or drawn.

call: The transfer of processing control to a specified subroutine.

Cartesian coordinate system: A system of measuring distances in which the
location of a point is defined as its distance from two straight lines that intersect
at right angles. It is used as the basis of coordinate measurements in computer
graphics systems.

clipping: Any graphic data outside a specified boundary that are removed from the
display or the file. It is often used in mapping applications to remove data that
would otherwise confuse the image being represented.

clipping rectangle: The physical limit in a graphics file beyond which data are
either not visible or automatically deleted.

color palette: Number of possible colors you can specify.

condition value: A 32-bit value used to identify uniquely an exception condition.
A condition value can be returned to a calling progratn as a function value or
signaled using the VAX signaling tnechanism.

coordinate system origin: Center of the coordinate system.

current text position: The world coordinate position that defines the current
drawing location for VIS text routines.

cursor: A position indicator used on a display screen to pinpoint where data will be
displayed. The cursor is often represented by a blinking block character.

Glossary-1

Glossary

Glossary-2

data tablet: The name for a variety of data entry devices consisting of a stylus (pen)
or puck, and a board with a coordinate grid superimposed on its surface. When
the input object (pen or puck) touches the board, graphic information describing
the location of the point touched is transmitted as input information. The data
tablet is an absolute pointing device.

descriptor: A mechanism for passing parameters in which the address of a
descriptor is provided in the longword argument list entry. The descriptor
contains the address of the parameter, the data type, size, and additional
information needed to describe fully the data passed.

device coordinates: The device-dependent Cartesian coordinates that specify
positions on the VMS display screen. Sometimes referred to as physical device
coordinates, these coordinates are involved in mapping of the display window to
the display screen.

direct color value: Each pixel value directly specifies a color.

display viewport: The area of the physical display screen into which a display
window is mapped. It is the physical region on the terminal screen that is created
by the VMS workstation and controlled by the user.

display window: The portion of world coordinate space mapped to the graphics
viewport. The display window is used to control how much of the virtual display
is potentially available for the user to view.

emulated terminal: A virtual 110 device whose programming interface matches the ~
programming interface of a specific physical terminal and whose appearance on ~
the VMS workstation screen is similar to the appearance of the physical terminal.

exception condition: A hardware- or software-detected event that alters the normal
flow of instruction execution.

font: A specific representation of a text character. The attributes of a font are family
(type face), type size, and rendition.

function: A procedure that returns a single value according to standard conventions.
If additional values are returned, they are returned by means of the argument list.

graphics data tablet: An optional input device that consists of a rigid tablet and
a puck containing a crosshair cursor and a number of buttons, or a pen. The
position of the cursor can be read by application programs. The tablet is an
absolute pointing device.

graphics display: Describes any graphics data output device that can present an
inlage of graphic data derived from a computer graphics system. An exanlple of
a graphics display is a display screen or a printer.

graphic object: The graphic image constructed by an application program using
VIS routines. A graphic object could be a simple line or a complex drawing.

graphics text: Text output primitives displayed using the VIS routines.

grey scale: The level of brightness that describes the illumination of a cathode-ray
tube screen.

HLS: Hue lightness saturation.

Glossary

HSV: Hue saturation value.

image: The output form of on-line graphics data. That is, a displayed or drawn
representation of a graphics file.

language-support procedures: Procedures called implicitly to implement high­
level language constructs. They are not intended to be called explicitly fronl user
programs.

library procedures: Procedures called explicitly using the equivalent of a CALL
statement or function reference. They are usually language independent.

major path: Direction in which characters are drawn on a line.

mapped color value: Pixels that indirectly specify an active color value.

mapping: Any process by which a graphics system translates graphic data from one
coordinate systenl into a form useful on another coordinate system.

minor path: Direction used for beginning a new line of text.

mouse: A data entry device consisting of a small control box, on rollers, that is
pushed along a surface and transmits its changing position to the workstation.
Often, function keys or buttons are mounted on the device and can be used to
enter information or make selections. This device is the user's means for pointing
to and selecting objects on the screen. The mouse is a relative pointing device.

output primitive: A part of an image created with UIS procedures, such as a
graphics object or a text string, that has a specific appearance. Values of attributes
determine some aspects of this appearance.

physical device coordinates: Device-dependent Cartesian coordinates that specify
the addressable points on a physical device.

pixel: The density of one picture element. The smallest displayable unit on a display
screen.

pointer: The cursor on the screen that tracks movements of the mouse. The shape
of the pointer depends upon its current use.

primitives: The most basic graphic entities available on a graphics system, such as
points, line segments, or characters.

procedure: A closed sequence of instructions that is entered from, and returns
control to, the calling program.

puck: A hand-held graphics device with a cross hair sight used to pinpoint
coordinates on a data tablet or digitizer.

raster: A pattern of scanning lines in a cathode-ray tube that divide the display area
into addressable points.

reference: A mechanism for passing parameters in which the address of the
parameter is provided in the longword argulnent list by the calling program.

Glossary-3

Glossary

Glossary-4

relative pointing device: A pointing device that reports movement to the
workstation based how far and in what direction the device is moved from
one point to another.

resizing: The process of scaling or changing the size of a graphics viewport
according to predetermined data.

RGB: Red Green Blue

rotation: A graphic object turning on an axis.

scaling: Proportional expansion or reduction of a graphic object on the screen.

stretchy box: The outline of a clipping rectangle used in the UIS functions PRINT
SCREEN and RESIZE WINDOW. This rectangle can be manipulated to assume
practically any rectangular dimensions and is limited only by the display screen
size.

subroutine: A procedure that does not return a value according to the standard
conventions. If values are returned, they are returned by the argument list.

text path: Direction of text drawing.

text slope: The angle between the actual path of text drawing and the major text
path.

tablet: A device that can convert a stylus position into Cartesian coordinates. When
connected to a graphic display screen, it can control the real-time positioning of a
cursor or pointer.

transformations: The ability of the UIS graphics system to manipulate coordinate
data. Transformations occur when mapping one coordinate system into another
coordinate system.

translation: Defining the position of the graphic object in a coordinate system.

UIS: The graphics software called User Interface Services.

value: A mechanism for passing input parameters in which the actual value is
provided in the longword argument list entry by the calling program.

viewport: A rectangle that maps the image defined by a window into a virtual
display onto the display screen. The user controls the visibility and placement of
viewports on the physical screen.

viewing transformation: The viewing transformation is the process of mapping
the world coordinates of a graphic object in a display window to the device
coordinates of a display viewport on a physical display device.

virtual color maps: Color maps swapped in and out of memory-this follows the
same concepts as virtual Inemory.

virtual display: The world coordinate space defined by an application program. An
application program uses a virtual display as a place in which to build graphic
images. It can be thought of as a virtual output device that has the properties of a
physical screen, but is not necessarily visible on a physical screen.

Glossary

virtual keyboard: A virtual input device associated with a window. When users
select a window into a virtual display with a virtual keyboard, input from the
physical keyboard is directed to the virtual keyboard and can be read by an
application program.

window: A defined area within a virtual display that can be used for viewing the
virtual display. A window is the area of the virtual display that is to be mapped
to a viewport.

world coordinates: Device-independent Cartesian coordinates defined by the
application program in order to describe objects to UIS.

x axis: The reference line of a rectangular coordinate systeln used to determine
horizontal distance and positions.

x-height: The height of lowercase characters excluding descenders and ascenders.

y axis: The reference line of a rectangular coordinate system used to detennine
vertical distance and positions.

zooming: The process by which the perspective on a displayed graphics file moves
rapidly closer or farther from the operator.

Glossary-5

Index

A
Arc type

See Attribute
Argument

characteristics of
passing mechanism. 6-3

Argument passing mechanism
%DESCA· 6-6
OJoLOC. 6-6
OJoREF. 6-6
OJoVAL. 6-6

Aspect ratio· 8-3
AST-enabllng routine. 17-2
AST routine. 17-1
Asynchronous system trap (AST) routine. 17-1
Attribute. 3-2, 9-1

See also Attribute block
See also Attribute block 0
See also Segment
description of. 3-2
general. 3-2, 9-8

background color index· 3-2, 9-8
modifying. 9-2, 11-1
writing color Index. 3-2, 9-8
writing mode· 3-2, 9-8

graphics. 3-2, 3-4, 11-1
arc type. 3-4, 11-3
fill patterns. 3-4, 11-2
line style. 3-4, 11-3
line width. 3-4, 11-3

text· 3-2,3-3,10-19
centering. 10-22
character rotation. 10-22
character scaling. 10-22
character slant. 1 0-22
character spacing. 3-3, 10-22
fonts· 3-3, 10-21
formatting mode. 10-22
justification. 10-22
kerning. 10-22
leading· 10-22
left margin. 3-3
line spacing. 10-22
modifying. 10-19
path. 10-22

Attribute
text (cont'd.)

slope. 10-22
text margin. 10-22

window
clipping rectangle. 3-4

windowing
clipping rectangle. 11-13

Attribute block· 3-5, 9-1
See also Attribute

Attribute block o. 3-5, 9-1
See also Attribute

Attribute routine· 9-2, 10-19, 11-1

B
Background color index

See Attribute
Baseline

See Text output
BLISS implementation table

See Implementation table
Built-in function

See Argument passing mechanism

c
Callable routine. 6-1
Calling sequence. 6-1

argument characteristics. 6-2
argument list. 6-2
call type. 6-2
entry point name· 6-2
routine name. 6-2
summary

UIS. A-1
UISDC. 8-1

CALL statement· 6-1
Character rotation

See Attribute
Character scaling

See Attribute
Character slant

Index-1

Index

Character slant (cont'd.)

See Attribute
Character spacing

See Attribute
C Implementation table

See Implementation table
Clipping rectangle

see Attribute
Color

See color system
Color map

See Color system
Color map segment

See Color system
Color system

bitonal. 4-1
color. 4-1

preferred. 4-11
standard. 4-11

color map
hardware. 4-4
segment· 4-10
virtual. 4-7

color regeneration
characteristics. 4-12

color value conversion. 4-12
compatibility feature

color. 4-11
Intensity. 4-11
monochrome. 4-11

hardware color map
reserved entries. 4-9

intensity. 4-1
model

color. 4-7
HLS. 4-7
HSV. 4-7
RGB. 4-7

monochrome. 4-1
palette. 4-7
palette size

direct color. 4-8
mapped color· 4-7

pixels. 4-1
planes. 4-1
realized color· 4-12
set color. 4-12
value

color. 4-7
direct color. 4-2
intensity. 4-7

Index-2

Color system
value (cont'd.)

mapped color. 4-4
pixel. 4-1

virtual color map. 4-7
characteristics .4-8
Initialization. 4-8
private. 4-11
shareable. 4-11
swapping. 4-7

Communication tool. 1-5
keyboard. 1-6
pointer

mouse· 1-5
tablet. 1-5

Condition value signaled. 6-8
Constant· 6-8
Coordinate

device-dependent
absolute· 2-5
viewport-relative. 2-6

device-independent
normalized. 2-4
world· 2-3

types of. 7-1
Coordinate system

Cartesian. 2-2
device-dependent ~ 2-5

absolute· 2-2
viewport-relative. 2-2

device-Independent. 2-3

D

normalized. 2-2
world. 2-2

Data definition file
See Data description file

Data description file
entry point. 6-8
message· 6-9
symbol definition. 6-8

Data type
VMS

definition of. F-1
description of. F-1 to F-13

Display list. 2-10,13-1
disabling. 13-5
editing. 13-16
enabling. 13-5

Display list (cont'd.)

generic encoding. 2-11
metafile. 2-11

private data· 15-15
root segment. 13-2
segment. 13-1

-creating. 13-4
modifying attributes. 13-18

walking. 13-5
Display list routine. 13-1
Display viewport. 2-8,7-6

banner· 8-3
creating· 7-6, 8-2 to 8-4
mapping windows to. 2-8
number· 8-3
placement· 8-3, 8-9 to 8-21
popping. 8-10
pushing· 8-10
scaling. 2-9
shrinking. 17-10
size. 8-2

Display window. 2-7, 7-6
clipping rectangle. 2-7
closing. 17-10
creating. 7-6, 8-2 to 8-4
deletion· 8-6
distortion. 8-2
magnification. 8-2
number· 8-3
placement· 8-9 to 8-21
resizing. 17-10
scaling. 2-9
size. 8-2
viewing objects. 2-7

Distortion
See Distortion of graphic objects

Distortion of graphic objects. 2-10
cause of. 2-10
correction of. 2-1 0
transformations. 2-1 0

E
Error messages. E-1

F
Fill pattern. 11-2, 0-1

Fill pattern (cont'd.)

See also Attribute
Font

See also Attribute
font file names. 10-21
multinational. 10-21
multinational character. C-1
SYS$FONT. 10-21
technical. 10-21, C-16

Format heading

See Routine format
FORTRAN built-in function. 6-6
FORTRAN implementation table

See Implementation table
Function reference. 6-1

G
General attribute

See Attri bu te
Generic encoding

See Display list
GER$C_AUGN_POSITION. 15-3
GER$C_BEGIN. 15-4
GER$C_BEGIN_DISPLAY. 15-4
GER$C_CREATE_COLOR_MAP. 15-4
GER$C_DATE. 15-4
GER$C_DISPLAY _EXTENTS. 15-4
GER$C_ELUPSE. 15-3
GER$C_END. 15-4
GER$C_END_DISPLAY. 15-4
GER$C_IDENTIFICATION. 15-4
GER$C_IMAGE· 15-3
GER$C_UNE. 15-3
GER$C_NOP. 15-4
GER$C_PLOT. 15-3

Index

GER$C_PRIVATE. 15-3
GER$C_PRIVATE_ECO· 15-4
GER$C_SET_ARC_TYPE. 15-3
GER$C_SET _BACKGROUNDJNDEX· 15-3
GER$C_SET _CHAR_ENCODING. 15-3
GER$C_SET _CHAR_ROTATION· 15-3
GER$C_SET _CHAR_SIZE· 15-3
GER$C_SET _CHAR_SLANT. 15-3
GER$C_SET _CHAR_SPACING· 15-3
GER$C_SET _CUP. 15-3
GER$C_SET _COLORS. 15-4
GER$C_SET _FILL_PATTERN. 15-3
GER$C_SET _FONT. 15-3

Index-3

Index

GER$C_SET _INTENSITIES· 15-4
GEA$C_SET _LINE_STYLE. 15-3
GER$C_SET _LINE_WIDTH. 15-3
GER$C_SET _POSITION. 15-3
GER$C_SET _TEXT_FORMATTING. 15-3
GER$C_SET _ TEXT _MARGINS. 15-3
GER$C_SET_TEXT_PATH· 15-3
GER$C_SET_TEXT_SLOPE. 15-3
GER$C_SET _WRITING_INDEX. 15-3
GER$C_SET _WRITING_MODE. 15-3
GER$C_ TEXT. 15-3
GER$K_LENGTH_DIFF. 15-2
Graphic object. 3-2, 7-3 to 7-6

attributes. 3-2
creating. 7-3
geometric shapes

circle. 7-4
ellipse· 7-4
line. 7-3
point. 7-3
polygon. 7-3

raster Image. 7-4
text· 7-5
viewing transformation. 3-6

Graphics attribute

See Attribute
Graphics capability. 1-6
Graphics routine· 7-3

description of. 3-2

H
Hardware color map

See Color system
Human Interface. 1-4

I

See also Terminal emulation
capabilities· 1-4
Interaction with user. 1-4

Implementation table
VAX BLISS. F-13
VAX C. F-16
VAX FORTRAN. F-19
VAX MACRO. F-23
VAX PASCAL. F-25

Index-4

Implementation table (cont'd.)

VAX PUI. F-29
VMS Usage. F-1

Inquiry routine. 12-1
Invoking. 12-5

K
KB Icon

See Virtual keyboard
Keyboard

See Physical keyboard

See Virtual keyboard
Keyboard routine. 17-2

L
Line spacing

See Attribute
Line style

See Attribute
Line width

See Attribute

M
MACRO implementation table

See Implementation table
Mapping

See Display viewport
Mapping display window

See·· Display viewport
Margin setting

See Attribute
Message definition file

See data description file
Metafile

See Display list
Mouse. 5-1

menu selection. 5-1

p
PASCAL Implementation table

See Implementation table
Physical keyboard. 5-3
Pixel

See Color system
PUI Implementation table

See Implementation table
Pointer. 5-1, 17-7

See also Mouse
See also Tablet
alternate pattern. 17-9

Pointer routine. 17-7
Preferred color

See Color system
Private data

See display list
Program execution. 6-12

compiling. 6-13
Invoking the editor. 6-12
linking. 6-13
running. 6-13

Programming example. 6-11
Puck. 5-2

R
Routine

Inquiry
AST-enabllng. 17-2
attribute· 9-2, 10-19, 11-1
display list. 13-1
graphics. 7-3
keyboard. 17-2
pointer. 17-7
windowing. 8-1

Routine format
format heading. 18-2

s
Scaling

See display viewport

See Display window

Segment. 3-6

See also Attribute
See Display list

Segmentation

See Display list
Standard color

See Color system
Stylus. 5-2
Swapping color map

See Color system
Symbol definition file

See data description file

T
Tablet. 5-2

puck. 5-2
stylus· 5-2

Terminal emulation. 1-5
TEK4014. 1-5
VT220. 1-5

Text attributes
See Attribute

Text centering

See Attribute
Text justification

See Attribute
Text output. 7-3 to 7-6

alignment. 10-22
baseline. 10-22

creating. 7-3
Text path

See Attribute
Text routine

decription of· 3-2
Text slope

See Attribute
Transformation

attribute. 14-12
geometric· 3-6, 14-1

complex rotation· 14-5
complex scaling· 14-3
COpy. 14-6
differential scaling. 14-3
MOVE. 14-7
rotation. 14-3
scaling. 14-1
simple rotation. 14-3

Index

Index-5

Index

Transformation
geometric (cont'd.)

simple scaling. 14-3
translation. 14-1
uniform scaling. 14-3

viewing· 2-1, 3-6
world coordinate. 8-25

u
UIS$BEGIN_SEGMENT. 18-16
UIS$CIRCLE. 18-18
UIS$CLOSE_WINDOW. 18-21
UIS$COPY _OBJECT· 18-22
UIS$CREATE_COLOR_MAP. 18-27
UIS$CREATE_COLOR_MAP _SEG. 18-30
UIS$CREATE_DISPLAY. 18-33
UIS$CREATE_KB. 18-35
UIS$CREATE_ TB. 18-38
UIS$CREATE_ TERMINAL. 18-39
UIS$CREATE_ TRANSFORMATION. 18-42
UIS$CREATE_WINDOW. 18-43
UIS$C_OBJECT SEGMENT. 13-4
UIS$C_OBJECT _ELLIPSE. 13-4
UIS$C_OBJECT_IMAGE. 13-4
UIS$C_OBJECT _LINE. 13-4
UIS$C_OBJECT _PLOT. 13-4
UIS$C_OBJECT_TEXT. 13-4
UIS$DELETE_COLOR_MAP. 18-52
UIS$DELETE_COLOR_MAP _SEG. 18-53
UIS$DELETE_DISPLA y. 18-54
UIS$DELETE_KB· 18-55
UIS$DELETE_OBJECT. 18-56
UIS$DELETE_PRIVATE· 18-57
UIS$DELETE_ TB. 18-58
UIS$DELETE_ TRANSFORMATION. 18-59
UIS$DELETE_WINDOW· 18-60
UIS$DISABLE_DISPLA Y _LIST. 18-61
UIS$DISABLE_KB. 18-63
UIS$DISABLE_ TB. 18-64
UIS$DISABLE_ VIEWPORT _KB. 18-65
UIS$ELLlPSE· 18-66
UIS$ENABLE_DISPLA Y _LIST. 18-69
UIS$ENABLE_KB. 18-71
UIS$ENABLE_ TB. 18-72
UIS$ENABLE_ VIEWPORT _KB. 18-73
UIS$END_SEGMENT· 18-74
UIS$ERASE. 18-75
UIS$EXECUTE. 18-76
UIS$EXECUTE_DISPLA y. 18-77

Index-6

UIS$EXPAND_ICON. 18-78
UIS$EXTRACT _HEADER. 18-81
UIS$EXTRACT _OBJECT. 18-83
UIS$EXTRACT _PRIVATE. 18-85
UIS$EXTRACT _REGION. 18-87
UIS$EXTRACT _ TRAILER. 18-89
UIS$FIND_PRIMITIVE. 18-91
UIS$FIND_SEGMENT· 18-93
UIS$GET _ABS_POINTER_POINTER_POS. 18-95
UIS$GET _ALIGNED_POSITION· 18-96
UIS$GET _ARC_ TYPE. 18-98
UIS$GET _BACKGROUND_INDEX· 18-99
UIS$GET _BUTTONS· 18-100
UIS$GET _CHAR_ROTATION. 18-101
UIS$GET_CHAR_SIZE. 18-102
UIS$GET _CHAR_SLANT. 18-104
UIS$GET _CLIP. 18-108
UIS$GET_COLOR. 18-110
UIS$GET_COLORS. 18-112
UIS$GET _CURRENT_OBJECT. 18-115
UIS$GET _DISPLAY_SIZE. 18-117
UIS$GET _FILL_PATTERN. 18-120
UIS$GET _FONT. 18-122
UIS$GET _FONT_ATTRIBUTES. 18-124
UIS$GET_FONT_SIZE. 18-127
UIS$GET_HW_COLOR_INFO. 18-129
UIS$GET _INTENSITIES. 18-132
UIS$GET_INTENSITY· 18-134
UIS$GET_KB_ATTRIBUTES. 18-136
UIS$GET_L1NE_STYLE. 18-138
UIS$GET_L1NE_WIDTH. 18-140
UIS$GET_NEXT_OBJECT. 18-142
UIS$GET _OBJECT_ATTRIBUTES. 18-143
UIS$GET_PARENT_SEGMENT. 18-145
UIS$GET_PLANE_MASK. 18-146
UIS$GET_POINTEA_POSITION. 18-146.1
UIS$GET_POSITION. 18-147
UIS$GET_PREVIOUS_OBJECT. 18-149
UIS$GET _ROOT_SEGMENT. 18-151
UIS$GET_TB_INFO. 18-153
UIS$GET_TB_POSITION. 18-155
UIS$GET _ TEXT _FORMATTING. 18-156
UIS$GET _ TEXT_MARGINS. 18-157
UIS$GET _TEXT _PATH· 18-159
UIS$GET _TEXT_SLOPE· 18-161
UIS$GET_VCMJO· 18-163
UIS$GET _VIEWPORT JCON. 18-164
UIS$GET _VIEWPORT _POSITION· 18-166
UIS$GET _VIEWPORT _SIZE. 18-167
UIS$GET _VISIBILITY. 18-169
UIS$GET_WINOOW_ATTRIBUTES. 18-170

UIS$GET _WINDOW_SIZE. 18-171
UIS$GET_WRITING_INDEX. 18-172
UIS$GET _WRITING_MODE. 18-174
UIS$GET_WS_COLOR· 18-175
UIS$GET_WS_INTENSITY· 18-176
UIS$HLS_ TO_RGB. 18-178
UIS$HSV_TO_RGB. 18-180
UIS$IMAGE. 18-182
UIS$INSERT_OBJECT. 18-186
UIS$L1NE. 18-187
UIS$L1NE_ARRAY. 18-190
UIS$MEASURE_TEXT. 18-192
UIS$MOVE_AREA. 18-197
UIS$MOVE_ VIEWPORT· 18-199
UIS$MOVE_WINDOW. 18-200
UIS$NEW_ TEXT_LINE. 18-201
UIS$PLOT. 18-202
UIS$PLOT _ARRAY. 18-205
UIS$POP _VIEWPORT. 18-207
UIS$PRESENT. 18-209
UIS$PRIVATE. 18-210
UIS$PUSH_VIEWPORT. 18-211
UIS$READ_CHAR. 18-213
UIS$RESIZE_WINDOW. 18-215
UIS$RESTORE_CMS_COLORS. 18-218
UIS$RGB_ TO_HLS· 18-219
UIS$RGB_ TO_HSV. 18-221
UIS$SET _ADDOPT _AST. 18-223
UIS$SET _ALIGNED_POSITION. 18-224
UIS$SET ..ARC_TYPE. 18-226
UIS$SET _BACKGROUND_INDEX. 18-229
UIS$SET _BUTTON_AST. 18-230
UIS$SET _CHAR_ROTATION. 18-233
UIS$SET _CHAR_SIZE. 18-235
UIS$SET_CHAR_SLANT· 18-238
UIS$SET _CHAR_SPACING. 18-240
UIS$SET _CLIP. 18-244
UIS$SET _CLOSE_AST. 18-247
UIS$SET_COLOR. 18-249
UIS$SET _COLORS. 18-251
UIS$SET _EXPAND_ICON_AST. 18-253
UIS$SET_FILL_PATTERN. 18-254
UIS$SET _FONT· 18-258
UIS$SET _GAIN_KB_AST. 18-259
UIS$SET _INSERTION_POSITION. 18-260
UIS$SET _INTENSITIES. 18-262
UIS$SET _INTENSITY. 18-264
UIS$SET _KB_AST. 18-264
UIS$SET _KB_ATTRIBUTES. 18-266
UIS$SET _KB_COMPOSE2. 18-269
UIS$SET _KB_COMPOSE3. 18-271

UIS$SET _KB_KEYTABLE· 18-272
UIS$SET _LINE_STYLE. 18-274
UIS$SET _LINE_WIDTH. 18-277
UIS$SET _LOSE_KB_AST. 18-280
UIS$SET _MOVE_INFO_AST. 18-281
UIS$SET _PLANE_MASK. 18-282
UIS$SET _POINTER_AST. 18-284
UIS$SET _POINTER_PATTERN· 18-285
UIS$SET _POINTER_POSITION. 18-287
UIS$SET _POSITION. 18-288
UIS$SET _RESIZE_AST. 18-290

Index

UIS$SET _SHRINK_ TO_ICON_AST. 18-294
UIS$SET _ TB_AST. 18-295
UIS$SET _TEXT_FORMATTING. 18-297
UIS$SET _TEXT_MARGINS. 18-300
UIS$SET_TEXT_PATH. 18-302
UIS$SET _TEXT_SLOPE. 18-305
UIS$SET _WRITING_INDEX. 18-308
UIS$SET _WRITING_MODE. 18-308.1
UIS$SHRINK_ TO_ICON. 18-309
UIS$SOUND_BELL. 18-312
UIS$SOUND_CLlCK. 18-313
UIS$TEST _KB. 18-314
UIS$TEXT. 18-315
UIS$TRANSFORM_OBJECT. 18-318
UISDC$ALLOCATE_DOP. 19-4
UISDC$CIRCLE. 19-6
UISDC$ELLIPSE. 19-8
UISDC$ERASE. 19-10
UISDC$EXECUTE_DOP _ASYNCH. 19-11
UISDC$EXECUTE_DOP _SYNCH. 19-12
UISDC$GET _ALIGNED_POSITION. 19-13
UISDC$GET_CHAR_SIZE· 19-14
UISDC$GET _CLIP. 19-16
UISDC$GET _POINTER_POSITION. 19-17
UISDC$GET _POSITION· 19-18
UISDC$GET _TEXT_MARGINS. 19-19
UISDC$GET _VISIBILITY. 19-20
UISDC$IMAGE. 19-21
UISDC$L1NE. 19-24
UISDC$L1NE_ARRAY. 19-25
UISDC$LOAD_BITMAP. 19-27
UISDC$MEASURE_ TEXT. 19-29
UISDC$MOVE_AREA. 19-31
UISDC$NEW_ TEXT_LINE. 19-32
UISDC$PLOT. 19-33
UISDC$PLOT _ARRAY. 19-34
UISDC$QUEUE_DOP. 19-36
UISDC$READ_IMAGE. 19-37
UISDC$SET _ALIGNED_POSITION. 19-39
UISDC$SET _BUTTON_AST. 19-40

Index-7

Index

UISDC$SET _CHAR_SIZE· 19-42
UISDC$SET _CLIP· 19-44
UISDC$SET _POINTER_AST. 19-45
UISDC$SET _POINTER_PATTERN. 19-47
UISDC$SET _POINTER_POSITION. 19-49
UISDC$SET _POSITION. 19-50
UISDC$SET _ TEXT _MARGINS. 19-51
UISDC$TEXT· 19-52

v
VAX language implementation table

See Implementation table
VAX Procedure Calling Standard. 6-1
Viewing object

See Display window
Viewport

See Display viewport
Virtual display. 2-6,7-1

aspect ratio. 2-6
creating. 2-6, 7-3
description of. 2-6
panning. 8-10
world coordinates. 2-6
zooming. 8-10

Virtual keyboard. 5-3
assignment list. 17-3
binding. 17-3
creating. 17-3
KB icon. 5-3

VMS usage. 6-2
VMS Usage Implementation table

See Implementation table

w
Window

See Display window
Windowing

See Display window
Windowing feature. 1-6
Windowing routine. 8-1
Workstation hardware. 1-,1

communications board. 1-3
keyboard. 1-2
monitor. 1-2
mouse. 1-3

Index-8

Workstation hardware (cont'd.)

printer. 1-3
system cabinet or box. 1-2
tablet. 1-3

Workstation standard color
See Color system

World coordinate transformation. 8-25
scaling· 8-25
two-dimensional. 8-25

Writing color index

See Attribute
Writing mode

See Attribute

Update Notice 1

VMS Workstation
Software
Graphics Programming
Guide

Order Number: AO-GI1 OC-T1

June 1989

NEW INFORMATION

This update contains changes to the VMS Workstation Software
Graphics Programming Guide, AI-GI10C-TE.

Digital Equipment Corpc>ration

Printed in U.S.A.

