
A Guide to Migrating
VWS Applications to
DECwindows

Order Number: AA-MI67A-TE

This manual aids software developers and architects in migrating existing
UIS applications to DECwindows format.

Operating System and Version: VMS VS.1 or later

Software Version: VWS V4.2

September 1989

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1989 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DOIF
DEC
DEC/CMS
DEC/MMS
DECnet
DECUS
DECwindows
DECwrite
DIBOL

lAS
MASSBUS
PDP
PDT
RSTS
RSX
ULTRIX
UNIBUS
VAX

VAXC
VAXcluster
VAXstation
VMS
VR150/160
VT

mDmDomo™
This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE

CHAPTER 1 COMPARATIVE OVERVIEW OF VWS AND
DECWINDOWS

1.1 ARCHITECTURES
1.1.1 Significant Design Differences between UIS and X11

1.2 COORDINATE SYSTEMS

1.3 WINDOWS
1.3.1

1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8

Graphics Output
1.3.1.1 Lines and Polylines • 1-5
1.3.1.2 Writing Modes • 1-5
1.3.1.3 Colormaps • 1-6
1.3.1.4 Plane Masks • 1-7
1.3.1.5 Polygons • 1-7
1 .3. 1 .6 Arcs • 1-7
1.3.1.7 Attribute Blocks and Graphic Contexts • 1-7
1 .3. 1 . 8 Text • 1-7
1.3.1.9 Regions • 1-8
1.3.1.10 Direct Manipulation Of Pixels • 1-8
1.3.1.11 Images. 1-8
Virtual Displays and Display Lists
Fonts
Input
Window Manipulation
Data Association (Context Management)
Terminal Emulation
Conclusion

CHAPTER 2 GETTING STARTED

2.1 MIGRATING A UIS APPLICATION TO A DECWINDOWS
APPLICATION
2.1.1 Writing a DECwindows Application

2. 1. 1. 1 Sample Xlib Application Port • 2-1

vii

1-1

1-1
1-2

1-3

1-3
1-4

1-9
1-9
1-9

1-10
1-10
1-11
1-11

2-1

2-1
2-1

iii

Contents

2.1.2 Differences Between UIS and DECwindows

2.2 TOOLS THAT GET YOU FROM HERE TO THERE

2.3 XLIB, THE TOOLKIT AND WIDGETS
2.3.1 Xlib
2.3.2 Window Contents

2.3.2.1 Regeneration from Data • 2-6
2.3.2.2 Display Lists • 2-6
2.3.2.3 PIXMAPS • 2-7

CHAPTER 3 THE DECWINDOWS LOOK AND FEEL

3.1 DECWINDOWS BENEFITS

3.2 DECWINDOWS STYLE GUIDE

CHAPTER 4 DECWINDOWS TOOLKIT

4.1 USING THE DECWINDOWS TOOLKIT

4.2 COPY AND PASTE

4.3 COMPOUND STRINGS

4.4 WIDGETS
4.4.1 Gadgets

4.5 INTRINSIC ROUTINES

CHAPTER 5 USER INTERFACE LANGUAGE (UIL)

5.1 DESCRIPTION OF THE UIL

iv

2-1

2-3

2-4
2-5
2-6

3-1

3-1

3-1

4-1

4-1

4-1

4-2

4-2
4-2

4-3

5-1

5-1

Contents

5.2 MODIFYING YOUR APPLICATION WITH UIL 5-1

CHAPTER 6 RESOURCE MANAGEMENT 6-1

6.1 DIGITAL RESOURCE MANAGER 6-1

APPENDIX A OVERVIEW OF VMS DECWINDOWS DOCUMENTATION A-1

APPENDIX B UIS$ ROUTINE REFERENCE B-1

B.1 INTRODUCTION TO UIS$ ROUTINES B-1

APPENDIX C UISDC$ ROUTINE REFERENCE C-1

C.1 INTRODUCTION TO UISDC$ ROUTINES C-1

APPENDIX D HCUIS$ ROUTINE REFERENCE D-1

0.1 INTRODUCTION TO HCUIS$ ROUTINES 0-1

APPENDIX E UIS FONTS TO DECWINDOW EQUIVALENTS E-1

APPENDIX F COLOR CONVERSION ROUTINES F-1

APPENDIX G COLORMAP EXAMPLE G-1

v

Contents

APPENDIX H MAPPING UIS WRITING MODES TO X11 ATTRIBUTES H-1

INDEX

TABLES
1-1
B-1
C-1
0-1
E-1

vi

UIS$C_MODE_ TRAN
UIS$C_MODE_COPY
UIS$C_MODE_COMP
UIS$C_MODE_COPYN
UIS$C_MODE_OVER
UIS$C_MODE_OVERN
UIS$C_MODE_REPL
UIS$C_MODE_REPLN
UIS$C_MODE_ERAS
UIS$C_MODE_ERASN
UIS$C_MODE_BIS
UIS$C_MODE_BIC
UIS$C_MODE_BISN
UIS$C_MODE_BICN
UIS$C_MODE_XOR

UIS Features not Implemented in OECwindows
UIS$ Routines and their Equivalent Xlib Routines
UISOC Routines and their Equivalent Xlib Routines
HCUIS Routines and their Equivalent Xlib Routines
VWS and OECwindows Fonts

H-2
H .. 3
H-4
H-5
H-6
H-7
H-8
H-9

H-10
H-11
H-12
H-13
H-14
H-15
H-16

1-12
B-1
C-1
0-1
E-1

Preface

NOTE:

DECwindows is Digital's window based, distributed application
environment. It is based on the industry standard X Window System™
Version 11, developed by Project Athena and the Laboratory for Computer
Science at the Massachusetts Institute of Technology with funding and
participation by Digital Equipment Corporation.

The X distributed windowing system provides a client-server model in
which the server provides display and input services while the client
provides the main application code. Because the system provides a
message-based interface between client and server, the physical location of
each can be on the same or different systems. Communications between
the client and server can be implemented with any number of transports,
including DECnet, TCP/IP, and shared memory. This model lends itself
well to a heterogeneous local network environment where mixed hardware
and software systems exist. The display from a VMS DECwindows
application can be directed to PCs or workstations running V AXIVMS,
MS-DOSTM, or ULTRIX, and to hardware from a range of manufacturers.

DECwindows replaces the VWS windowing software for VAXIVMS. VWS
is a tightly coupled, kernel-based windowing system for the V AXstation.
Its procedural interface, the User Interface Services (UlS), provides a
high-level programming interface to the graphic subsystem designed and .
optimized for VAX Workstations and the VMS Operating System. Because
VWS is a kernel-based procedural interface rather than the message-based,
client-server model of the X Window System, VWS does not address the
issues of mixed hardware and software in local area networks or distributed
and open computing.

DECwindows provides a further step in Digital's commitment to open
systems and distributed heterogeneous computing environments. It
provides a standard program interface across multiple hardware and
software platforms while encouraging a common look and feel for all
Digital applications. The DECwindows Applications Interface (API) has
been accepted as the standard by the Open Software Foundation. Users
and vendors can change the look and feel of the windowing system while
application programs can run without modification.

• MS-DOS is a trademark of MicroSoft.

• The X Window System is a trademark of MIT.

Intended Audience
This document provides information to aid software developers and
architects in migrating existing UIS applications to DECwindows. The
intended audience of this document is the application developer who has
written UIS applications and who is preparing to move this application to
the DECwindows platform.

vii

Preface

This document gives some general advice on how to evaluate the
application port. It provides pointers to the DECwindows documentation
you need to perform the migration.

Document Structure
This document consists of six chapters and six appendixes that contain the
following information:

• Chapter 1: Comparative Overview of VWS and DECwindows

• Chapter 2: Getting Started

• Chapter 3: The DECwindows Look and Feel

• Chapter 4: Using the Toolkit

• Chapter 5: User Interface Language (UIL)

• Chapter 6: Resource Management

• Appendix A: Overview of VMS DECwindows Doculnentation

• Appendix B: UIS$ Routine Reference

• Appendix C: UISDC$ Routine Reference

• Appendix D: HCUIS$ Routine Reference

• Appendix E: UIS Fonts to DECwindow Equivalents

• Appendix F: Color Conversion Routines

• Appendix G: Colormap Example

• Appendix H: Mapping UIS Writing Modes to X11 Attributes

Documentation Standards

viii

• Although VWS refers to the entire windowing system and UIS
refers to the runtime library interface, you can use VWS and UIS
incterchangeably.

• The terms X and X11 represent the X Window System, Version 11. You
can use them interchangeably with DECwindows if the functionality
being described is the same.

1 Comparative Overview of VWS and DECwindows

1.1 Architectures

This chapter compares VWS and DECwindows. Use this chapter to help
plan a strategy for migrating existing UIS applications to DECwindows/Xll.
This chapter covers the following aspects of the window systems:

• Architecture

• Coordinate systems

• Windows

• Graphics output

• Color

• Virtual displays and display lists

• Fonts

• Input

• Window manipulation

• Data association

• Terminal emulation

Both VWS and Xll provide window functions. The major differences
between VWS and Xll result from their respective design philosophies.

• VWS is designed as a II complete" graphics and window system.

• Xll is designed as a low-level graphics and window system in which
high-level features such as display lists, virtual displays, backing store,
and world coordinates must be implemented as user libraries. Some
of these higher-level layers are part of the base DECwindows software,
and some are part of layered applications such as GKS and PHIGS. In
addition, Xll borrows heavily from its original UNIX@l background,
and thus the approach to application design and responsibility is very
different.

Therefore, VWS applications that take advantage of the built-in, high-level
features of UIS or of VMS-specific features such as ASTs might be difficult
to port.

1 UNIX is a registered trademark of American Telephone & Telegraph.

1-1

1.1.1

Comparative Overview of VWS and DECwindows

Significant Design Differences between UIS and X11

1-2

UIS is designed as a procedural, kernel-based window system, while XII
is designed as a message-passing window system. UIS interface design
presupposes that the display hardware exists on the same system on
which the application executes. In contrast, XII is a client/server design
that relies on message-passing of graphics and input data between the
application (referred to as the client) and the graphics subsystem (referred
to as the server). The separation of the window system from the application
by means of a communication link lends itself to implementations using
high speed local area networks (LANs) as the medium for the message
exchange. By allowing this separation, clients can execute on nodes
other than the workstation, taking advantage of special or more powerful
hardware than the workstation itself.

Because of this separation of application and graphics system by a
communications medium, the hardware and operating system of both
client and server become irrelevant. Much like an asynchronous terminal
connected to a computer, as long as they both use XII and the same
transport medium, any XII client can use any XII server. A DECwindows
application makes window system calls without concern for where the
output is presented or where the application is executing. Output and
input pass between the DECwindows Client application and the XII Server
application, which executes on a workstation. The transport mechanism
can be any suitable hardware and protocol including Ethernet, token ring,
or shared memory; the protocol might be DECnet, TCP/IP, or any other
suitable communication protocol.

Because "building and decoding protocol message packets is a difficult task,
XII provides a procedural interface that builds and decodes the message
packets for the application while managing the communication link. This
procedural interface is called ' 'Xlib."

NOTE: Digital discourages direct communication at the XII llwire" protocol level.

Although XII supplies a rich set of input and output capabilities, it was
designed to be device-independent. Some graphics hardware provides
highly specialized features that XII cannot utilize. However, XII has an
extension mechanism that enables application developers to enhance the
window system to take advantage of these unique features.

XII does not protect windows against modification by other applications,
nor does it hide the window system workings from the application. Think
of XII applications as extensions to the window systems, while UIS
applications deal with a "virtual workstation" where each application
believes there are no other users of the graphic hardware.

The combination of the network-based, client-server design, a rich set of
low-level graphic routines, and fewer restrictions on what applications can
access (that is, other windows not created by the application) can provide
much more powerful (and complex) capabilities than are available under
UIS. On the other hand, UIS is more approachable for the novice and
protects each application from other windowing operations.

Comparative Overview of VWS and DECwindows

1.2 Coordinate Systems

1.3 Windows

When an application performs output to a window, it must specify the (x,y)
location in the window where the output is to be drawn. The interpretation
of the (x,y) pair is determined by the window coordinate system.

The lowest-level coordinate system that is supported by both UIS and Xli
interprets (x,y) pairs as pixel locations. In both systems, the pixel locations
are relative to the origin of the window. The origin of an Xli window is
the upper left-hand corner with the y-axis increasing downwards (this is a
natural view of a raster device). In contrast, the origin of a UIS window
is the lower left-hand corner with the y-axis increasing upwards (this is a
natural view as the upper-right quadrant of a Cartesian coordinate system).
In both systems, the x-axis increases from left to right.

Inversion of the y-axis is a simple operation that requires subtracting the
coordinate from the maximum y value for the window.

UIS also provides a world coordinate system. In this system, the
application defines any convenient unit of measure such as inches, miles
or Inicrons. Thus, the application can define its coordinates to represent
inches, kilometers, seconds, and so on, rather than pixels. To perform
output, the window system must convert from world coordinates to
device coordinates. In addition, window size and location are specified
in centimeters and are thus screen size/resolution-independent. X requires
window size and location to be specified in pixels.

Since Xli does not support the use of a world coordinate system, an
application that requires this capability must provide its own routines to
perform world-to-device coordinate conversion.

To translate world coordinates, use the maximum world coordinate value
for the window and the maximum device (pixel) coordinate value for the
window to transform the current world coordinate into a device (pixel)
coordinate as follows:

DEVICE_MAXIMUM / WORLD_MAXIMUM) * CURRENT_WORLD

To perform any input or output on the workstation, an application must
first create a window on the display. This window defines the region into
which the application can perform output. The window system ensures
that no output extends beyond the boundaries of the window. This is
known as clipping. Both UIS and Xli clip to the window boundaries in the
same manner.

Before it creates a window in Xli, the application must receive permission
from the Xli server on the desired workstation. To provide system
security, each Xli server determines which clients are permitted access
to its resources. This is implementation-dependent but is implemented on
all Digital Xli servers.

1-3

1.3.1

Comparative Overview of VWS and OECwindows

All XII windows are arranged in a hierarchy, or tree structure, of arbitrary
depth. The entire surface of the screen is covered by a single window
called the root window. All other windows are descendants of this root
window. When a window is created, its parent window must be specified.
If this new window (known as a child) extends beyond the boundaries of
the parent, the parent clips it. Thus, no window can output outside the
boundaries of any of its ancestors. A window can have multiple children,
but a child has only a single parent.

Normally, an XII window has a solid background that causes it to obscure
any window it overlaps. However, a window can be defined without
a background, which makes it transparent. Among other things, such
windows facilitate temporary overlays like gridlines.

NOTE: Transparent windows are not possible in UIS.

When any portion of an XII window that was obscured by another window
becomes visible, the application must be capable of recreating what should
be displayed in the newly exposed area. In contrast, UIS automatically
restores exposed areas so the application need not be responsible for
refreshing the window. This is known as backing store. Backing store is
guaranteed under VWS. Under XII, backing store can be provided as an
optional feature, but it is not a required function. Backing store can be
provided at the server's option and applications should not depend on it.

UIS and XII use windows in different ways.

• On UIS, a window is an onscreen representation of a virtual display.
The contents of the virtual display and any window associated with the
viewport are guaranteed to be preserved. A virtual display gives each
application the illusion that the application has exclusive use of the
workstation.

• On XII, there is no equivalent concept. Under XII, windows simply
represent a data structure to the XII Server, and when mapped, they
also represent a region on the display to which graphics operations can
write.

NOTE: UIS windows require much more overhead than Xll windows. Thus, Xll
relies on windows much more than UIS. Xll uses windows for buttons
(usually gadgets without a window), hotspots, and other functions rather
than simply as output surfaces.

Graphics Output

1-4

Window systems offer a variety of methods to create graphics output.
Most systems provide a number of primitives to draw lines, polygons, and
text. All output prinlitives have various characteristics that affect their
appearance. Some window systems also furnish other primitives such
as arcs. In addition, applications can group a set of polygons together
into a single entity known as a region. Other functions include the ability
to manipulate arbitrary rectangular areas. The following sections explore
these topics in further detail. I,

1.3.1.1

1.3.1.2

Comparative Overview of VWS and OeCwindows

Lines and Polylines
Both UIS and XII provide routines to draw a single line, multiple disjoint
lines, and multiple connected lines. You can draw these lines with any
specified width, line style, and color. In XII, when you draw a sequence
of wide, connected lines, you can use a number of methods to join thenl
smoothly at their endpoints. XII enables the application to choose from a
number of joint and cap styles. UIS provides a single method for joining
and ending lines.

Writing Modes
UIS writing modes provide a high-level means of specifying combinations
of specific attributes. Writing modes affect the appearance of graphic
objects at areas where they intersect.

In Xli, writing modes are a combination of functions and fill style. An
application specifies each attribute separately. In Xli you must set the
following attributes:

• Function

The function describes the logical operation that is performed. For
example, GXor indicates the source is logically ORed with the bitmap.

• Background pixel

The background pixel is typically drawn in replace-style operations for
off pixels.

• Foreground pixel

The foreground pixel typically specifies the source for the logical
operation.

• Stipple pattern

The stipple pattern is generally a bitmap that is used for fill operations.

• Fill style

The fill style specifies the type of fill,such as solid, stippled, or
stippled-opaque. A stippled-opaque operation sets the off pixels in
the pattern to the background pixel, while a stippled fill does not
change the off pixels in a pattern. All three set the on pixels in the
pattern to the foreground.

Appendix G shows the mapping of UIS writing modes to Xli attributes.

Some of these operations might not work as expected: for example, some
are documented as device-dependent and will have different results based
on the location of the pixels in the colormap. To ensure that all writing
modes work correctly all the time, you must create a private application
colormap in which all pixel values are mapped with a starting index of
zero. If you follow the directions provided for creating colormaps, the
device-independent writing modes should always work as expected.

NOTE: Creating a private colormap can cause repercussions. The colors for
additional windows are not guaranteed.

1-5

Comparative Overview of VWS and DECwindows

1.3.1.3

1-6

Colormaps
A significant portion of the cost of graphics systems can be consumed
by the memory used to store the pixel values. Limiting the number of
planes is one means of reducing the cost of the system. Unfortunately, this
affects the number of colors that can be displayed. However, the impact
of this limitation can be reduced through the use of a color111ap. You use a
colormap to 'convert a pixel value to a color on the display. Such a system
is called a pseudocolor display.

An additional benefit of using a colormap is that it can be updated by the
application at any time. This feature is necessary to implement a number
of algorithms in fields such as image-processing and computer-aided
design (CAD).

UIS and Xll handle colormaps dissimilarly. The UIS model is to create
and manage virtual colormaps that are portions of the hardware colormap.
This allows the sharing of the hardware by allocating part (or all) of the
hardware colormap for exclusive (or shared) use by an application.

The Xll color model is designed for a wider variety of display hardware
and supports the direct use and emulation of the following types of
systems:

• Monochrome (bitonal)-Black and white.

• Pseudo color

• Direct color-Each pixel value is composed of the actual red, green,
and blue values sent to the video, rather than an index into an array of
RGB triplets used by pseudocolor. X uses colormaps for direct color.
Only the R, G, and B values are treated as three separate indexes.

Generally, Xll supports a single installed (virtual) colormap, shared by all
applications that request the allocation of contiguous or disjoint individual
colors for either shared or exclusive use. The preferred method of
colormap usage by Xll is the request of "named" colors, such as "RED,"
"Red," or "red" (it is case sensitive). Xll applications can emulate many
UIS colormap concepts directly, but these functions might not fit into
p~eferred DECwindows usage.

Because UIS virtual colormaps are allocated to guarantee the ability to
perform logical operations on the pixel values, Xll users must perform the
following specific set of operations to emulate a UIS colormap.

1 Round up the number of colors needed to the power of 2, and
determine the number of planes required (see Appendix F).

2 U sing the Allocate Color Cells call, request the number of planes found
in step one and a single color cell.

3 Using the array of plane masks and the pixel value returned, create an
array of indexes of all the permutations of the plane masks and pixels.

4 Create an XOR mask by the logical OR of all of the plane mask bits.

Appendix E contains an example code fragment that shows how this can
be accomplished. All logical operations that can be performed in UIS can
then be performed with the values in the array and/or the plane mask bits.

1.3.1.4

1.3.1.5

1.3.1.6

1.3.1.7

1.3.1.8

Comparative Overview of VWS and DECwindows

Commonly, you specify colors with one of three models: RGB, HLS,
or HSV. UIS supplies routines to convert color specifications between
systems. XII does not directly support the HLS and HSV color models.
Appendix E contains example conversion routines.

Plane Masks
Lines are drawn as a sequence of pixels. A pixel can consist of multiple bits
to produce colors or shades of gray. The number of planes in the system
determines the number of bits per pixel. Each bit within a pixel resides on
a separate plane of display memory. A plane contains all the bits from the
same bit position in every pixel. Thus, if there are four planes in a system,
each pixel value is determined by one bit from the same location in each of
the four planes.

Both UIS and Xll provide a means to limit the planes that can be
modified by a drawing command via a plane mask. The Xll mechanism is
somewhat more complex due to its generalized nature of color support.

Polygons
UIS and Xll provide methods for drawing polygons as well as lines. All
output characteristics for lines are available for polygons. Polygons can
optionally be filled. In UIS, fill patterns must be chosen from a character
font. In XII, the application has the flexibility to define the fill patterns,
although no predefined patterns are supplied. Xll also provides the
ability to perform filling through a stencil. Such stencils are called stipple
patterns. Fill patterns are also called stipples. The difference is the fill
style used.

Arcs
Another primitive supported in both UIS and XlI is an arc drawing
primitive. All the aforementioned output characteristics are available
for arcs. In UIS, the endpoints of an arc can optionally be joined with a
chord or to form a pie slice. In Xll, this option is only provided for filled
arcs.

Attribute Blocks and Graphic Contexts
All possible output characteristics are grouped into structures. UIS calls
these structures attribute blocks (A TBs) and XII calls these structures
graphics contexts (GCs). In both systems, the applications must specify
the structure to use when drawing a primitive. UIS provides a means of
querying the characteristics in an attribute block; XII does not provide
such a method.

Text
In a window system, text is also a graphics primitive. Both UIS and Xll
support a large variety of fonts. UIS provides a number of text attributes
that are not available in Xll. These attributes include the following:

• Text path

• Slope

• Character slant (sheeting)

• Scaling

1-7

Comparative Overview of VWS and DECwindows

1-8

1.3.1.9

• Rotation

• Formatting (text margins, centering, and so on)

• Character spacing

UIS can also maintain the notion of current text position for each window
to allow automatic formatting of blocks of text in separate text calls.

Regions
It is often convenient to refer to one or more polygons as a single entity.
XII enables applications to create and manipulate these entities known
as regions. These regions can be copied, moved, shrunk, and expanded.
New regions can be created from the intersection, union, subtraction, and
XOR of two other regions. Regions can also be compared. XII provides
routines to determine if an arbitrary point or rectangle is within a given
region.

NOTE: UIS does not incorporate the concept of regions.

1.3.1.10

1.3.1.11

Direct Manipulation Of Pixels
Both UIS and XII elnpower the application to manipulate rectangular areas
of pixels within a window. Arbitrary areas can be moved to any window
iocation. Images can be read from a window into the application memory
or, conversely, written from memory into a window. This differs from the
functionality of UIS, however, because XlI does not guarantee the contents
of a window; also, it is important to ensure that the window contents
are valid when read under XlI, because window occlusion destroys the
window contents.

Images
Both UIS and DECwindows provide the capability to write image data
to the display. In UIS, you can also scale images by integral multiples.
In UIS, you can write image data "as is" into the display because UIS
allocates virtual colonnaps as follows:

• The base index in the hardware colormap of the virtual colormap
contains zeros.

• The high-order bits are an offset.

In XIl, you can accomplish this only by creating a private colormap and
allocating the colors manually.

NOTE: Creating a private colormap can cause repercussions. The colors for
additional windows are not guaranteed.

When you allocate colors by using the method described here, the image
data must be translated from the image index data into actual pixel values.
If you allocate the planes by using the" contiguous" flag, you might simply
have to shift the data. Otherwise, you must use a translation table to look
up the data.

1.3.2

1.3.3

1.3.4

Comparative Overview of VWSand DECwlndows

Virtual Displays and Display Lists

Fonts

Input

The VWS concept of a virtual display is an imaginary surface onto which
objects can be drawn. The virtual display is defined by a range of values in
the world coordinate system. The entire virtual display or any subset can
be displayed in a window. Multiple windows can share the same virtual
display.

A display list is a hierarchical tree of objects in a virtual display. VWS
converts all world coordinates into a normalized device space ranging from
o to 1.0. These device-independent, normalized coordinates can then be
mapped to any window. An application can scale, translate, rotate, or edit
objects in the display list. A display list can be saved into a disk file called
a metafile for storage, printing, or later retrieval and reexecution into a UIS
window.

Since Xll does not support virtual displays or display lists, an application
that requires these capabilities must provide its own set of display list
routines or use a higher level interface such as GKS or PHIGS.

UIS uses the Common Font File Format (CFFF) for the source format of
fonts. It then compiles this into formats optimized for color or bitonal
systems.

DECwindows uses the X Logical Font Description (XLFD) or Binary
Distribution Format (BDF) for its source and compiles this into a Server
Natural Format (SNF) file. In addition, DECwindows can contain font
metric files that provide information on print-spacing that is not available
in the UIS-compiled font files.

One of the responsibilities of a window system is to receive input from
workstation devices and deliver the events to the proper processes.

Xll provides input events to applications by sending an event as a message
to the client application. The client application transport logic inserts
the Xll event message into a queue of events to be processed. This
enables the application to determine when input is to be processed by
periodically checking its event queue. In contrast, UIS uses the VMS
AST mechanism to interrupt the application's user execution and start
a concurrent thread of execution to handle the input. The input can be
queued for later processing by the user mode thread of execution, or the
application might be completely event-driven and designed so that all
execution is at the AST level. DECwindows can provide a doorbell AST for
VMS that is a general notification of an event.

This difference leads to an event processing loop design for DECwindows
application and event driven design for DIS. Because of this major
difference, the structure of an application can change significantly.

1-9

1.3.5

1.3.6

Comparative Overview of VWS and DECwindows

Both UIS and Xll enable applications to Rpeclfy which event types
they want to receive. Event types include mouse button change, mouse
movement, keyboard key pressed, and so on. Because a single queue
is used for all events, XII guarantees that the events will be delivered
in the same order in which they occurred. In addition, since XII uses a
queue, the application can extract events from the queue in any order.
Applications must service the input queue in a timely manner. If the server
cannot obtain a free input packet, it breaks· the connection between itself
and the application. Long computational loops should be broken up to
scan the input queue periodically, or the AST doorbell notification should
be used to remove the input events from the XII queue onto a private
application queue to prevent the loss of the connection (note that this is not
always possible when you are using the XII or DECwindows toolkit).

Window Manipulation
Workstation users can use a window manager to manipulate windows
on the display. Window manipulations in both UIS and XII include the
following functions:

• Move

• Pop (raise)

• Push (lower)

• Iconify

• De-iconify

In addition, the window manager in XII enables you to change the focus
of keyboard input to any window. This is similar to attaching the keyboard
to a window in UIS.

Because VWS was written as a VMS-specific window system, VWS chose to
reserve the first 5 function keys on the LI<201 for VWS specific functions.
Because XII is not bound to the LK201 for its design, the function keys
are used as normal application keys. The VMS DECwindows manager
does not provide the cycle key (F5) to allow changing of input focus, nor
is a Hold Screen function provided. To change input focus under the
DECwindowslVMS window manager, click on the window or title bar with
the mouse. The operator console can be toggled by F2 under VWS and
CONTROL-F2 under the DECwindows window manager.

Data Association (Context Management)

1-10

XII applications often use a large number of windows because of the
relatively low overhead associated with them. XII provides routines to
assist the application in managing many windows. These routines associate
window system information with the application's own information. For
instance, they can be used to help the applicatiQn determine what action to
take for a given input event.

1.3.7

1.3.8

Comparative Overview of VWS and DECwindows

Terminal Emulation

Conclusion

In many respects, UIS is "VAX/VMS with graphics." UIS does not provide
an object-oriented window system and programming toolkit and many
users still rely heavily on terminals for applications and development.
"Terminals" on UIS and on DECwindows are provided in the form of
"terminal emulation windows" that appear to the VMS systeITI as physical
terminal devices connected to the workstation. Many UIS workstations are
used primarily as multisession terminals.

VWS provides three terminal emulators:

• An enhanced VT200 emulator that provides the following functionality:

ReGIS and SIXEL graphics with from 2 to 256 colors.

ANSI color text for color workstations.

Control over a number of font styles and sizes.

Escape sequences for manipulating the terminal window.

Icon and escape sequence reports and terminal mailbox messages
for notification of window system events (moving the window,
resizing, and so on).

• A Tektronix® 4010114 emulator that provides simple monochrome
emulation of the Tektronix vector terminal.

• A Tektronix® 4125 color emulator that provides a more powerful
vector terminal emulation with display list support and ITIOst functions
provided by the actual hardware.

DECwindows provides a VT340 compatible terminal (DECterm) that offers
both ReGIS and SIXEL graphics with 16 colors. Two font sizes are available
for terminal windows and the last 100 lines scrolled off the top of the
terminal can be reviewed.

Both emulators provide copy and paste functionality between terminal
windows (DECwindows can also copy and paste between non-terminal
windows) as well as variable geometry.

DEC term and the VWS 4125 emulator are implemented using a
psuedo-terminal interface, and they both execute as normal user processes.
The VWS VT200 and TEK4014 emulators are tightly coupled to the VMS
terminal Port/Class driver architecture and execute in kernel mode as part
of the VMS system software. They provide high performance with very
little overhead.

Table 1-1 summarizes the issues discussed here. The table lists features
specific to UIS not implemented in DE~windows. UIS features are listed
with a rating estimating the amount of effort required to implement the
given feature in XII.

1-11

Comparative Overview of VWS and OECwindows

1-12

Table 1-1 UIS Features not Implemented in DECwindows

Features Difficulty 1

Asynchronous Input 2

Attribute query 1

Color segmentation 2

Color system conversion 1

Display lists 3

Metaflles 3

Geometry transformation 3

Predefined fill patterns 1

Text attributes 3

Virtual displays 3

Window damage 3

World coordinates 2

Access from kernel mode Not possible

Direct hardware access Not possible

1 DiHicuity ratings estimate the amount of effort required to implement this feature
in X11. The ratings range from one to three, with one requiring the least amount of
effort.

2 Getting Started

2.1

2.1.1

2.1.2

This chapter provides a guide for evaluating your existing application
and designing a strategy to port it to DECwindows. Be aware that there
is no easy way to convert a UIS application to DECwindows unless the
application was designed for ease of portability. In many cases, you will
have to redesign and rewrite your applications. The level of difficulty
depends on how closely the application is designed around the graphic
interface.

Migrating a UIS Application to a DECwindows Application

Writing a DECwindows Application

2.1.1.1

Before you try to determine how to port a UIS application, you should learn
how to write a DECwindows application. The DECwindows installation
provides a variety of example applications that can be modified and
used to understand the basic concepts of programming for DECwindows.
Digital's Educational Services and Software Services also offer courses,
consulting, and individual training for DECwindows programming. It
is important to understand the DECwindows programming and design
philosophy before you attempt to port an application.

Sample Xlib Application Port
A sample UIS application is included with the VWS Version 4.2
distribution. This is a simple, partially functional graphics editor called
"FREDIT" (frame editor). This application has been adapted for use under
XII by a combination of UIS "emulation" and application code changes.

The module FREDIT$Xll_UIS_EMULATION.C illustrates what UIS
functions can be accomplished in XII. It also points out differences
and possible problems. See the VMS Workstation Software Version 4.2 Release
Notes for information on installing this sample application. This release
includes the following modules:

• Application source code (in VAX C)

• Application object code

• Application executables

Differences Between UIS and DECwindows
VWS and DECwindows are very different. VWS provides the following
design functions:

• Several levels of interface to the graphic hardware from a high-level,
floating point, world coordinate interface, with display list capabilities,
backing store, and metafile support.

• Integer (pixel) coordinate device-dependent interface.

2-1

Getting Started

• Low-level, direct interface to the graphic hardware through the QIO
and drawing operation queues via the windowing system.

At all levels, UIS protects the user from the effects of other window
applications. In the XII Window System, applications have the following
characteristics:

• They are extensions of the windowing system.

• They are responsible for the maintenance and integrity of their own
windows.

• They can modify or destroy data in any other windows on the display.

XII provides access to graphic windows at a level comparable to the
UIS device-dependent (UISDC$) level and provides a rich set of drawing
primitives, many of which are not provided by UIS. The XII Window
System approach to program flow is derived fronl its UNIX origins.
Generally, XII programs are written as event-dispatch loops, and only
minimal AST support is provided.

NOTE: AST is a Digital-only extension. It is not part of the XII standard.

2-2

Converting a UIS application to DECwindows always requires some
amount of recoding, depending en ,;-vhat the application dOEs.
DECwindows does not support the following functionality:

• Guaranteed backing store (this enables UIS to maintain the contents of
each window without user intervention)

• Display lists

• Scaled or rotated text

• Colormap segments

• QIO or DOP interface

• Direct hardcopy (HCUIS)

• World coordinate systems

• Multiple views and window zooming

If your application uses the UIS device-dependent (UISDC$) routines, it
is easier to translate your application to DECwindows. In most respects,
you can consider UISDC$ drawing routines (excluding the DOP routines)
as a subset of the XII graphic capabilities. (Text attributes, which do
not exist under X, are a major exception to this statement.) Converting
higher-level UIS$ calls is more challenging, since XII does not directly
support viewports, world coordinates, and display lists. In both cases,
the immediate challenge is the application's ability to regenerate any
area of the screen on request. Under VWS, the integrity of all windows
is guaranteed by the windowing system. Under DECwindows, in an
occluded window (one that is covered by another window), the contents
of the occluded area are destroyed; when the window is later uncovered
(exposed), the X server requests the application to redraw the area's
contents.

Getting Started

Porting an application can be an enormous chaJlenge, but if you consider
the port in terms of implementing the existing functionality rather than
translating the existing code, DECwindows provides several functions that
can make the job easier:

• If the application does very little actual graphics but interacts primarily
with the use of menus, push buttons, dialogue areas, and simple text,
you might be able to use the User Interface Language (UIL) and the
DECwindows Toolkit routines with very little programming to replace
much of the UIS code.

• If the application does extensive graphics and relies on display lists,
you might be able to rewrite it by using one of the industry standard
graphic interfaces such as GKS or PHIGS. It is important to know
whether the application requires writing to the lowest level of the
graphic subsystem (XII). Because the GKS and PHIGS interfaces are
designed to be portable across hardware and base software platforms,
code should run unchanged across both VWS and DECwindows. The
performance of GKS and PRIGS is adequate for most user applications,
while providing device- and graphic-subsystem-independence.

• The DECwindows toolkit provides many commonly used operations,
such as menus, text input, and the like. These might not need to be
coded by the application.

If your application does extensive low-level graphics or requires higher than
average performance, you might have to reimplement the code directly in
the following ways:

• By calling the Xlib procedural interface.

• By using the DECwindows toolkit routines to provide the standard
menu interface and IIlook and feel."

NOTE: Generally, DECwindows Version 1.0 applications require more memory
than UIS applications. This is true partly because of the extensive library
routines DECwindows provides for standard user interface objects such as
menus, forms, and dialog areas. Also, the Xlib interface requires virtual
address space to provide the procedural interface to the byte stream
messaging protocol.

Users with small memory systems (4mb) should consider increasing the
amount of physical memory according to the guidelines provided in the
DECwindows Installation Guide.

2.2 Tools that Get You from Here to There
You can install both DECwindows and VWS on the same V AXcluster or
standalone VAX system. Set the WINDOW_SYSTEM SYSGEN parameter
to 1 to start DECwindows at system boot; set it to 2 to start VWS. (If you
set the WINDOW_SYSTEM SYSGEN parameter to 0, you disable any
windowing system.)

2-3

Getting Started

As part of the overall Digital strategy to provide tools to assist in the
migration to DECwindows, a DECwindows Xli SeIVer has been created
to enable DECwindows to run as a UIS application. When you use the
DECwindows XII seIVer, DECwindows and Xli applications use a single
UIS window as a virtual workstation.

The seIVer is started during system boot by the standard DECwindows
startup procedures (or at any time from the SYSTEM account). This
seIVer emulates a VS2000 monochrome workstation. Although it provides
relatively low performance, it offers an exact emulation of DECwindows
output (it is in fact a real DECwindows component). You can write,
compile, and test DECwindows code under this seIVer, and only when
production testing is required must the workstation be rebooted. This
seIVer is included on the VWS Version 4.2 kit and will run on any UIS
workstation running VMS Version 5.1 or later.

To help modify your UIS data files into a format that can be used by
DECwindows applications, a . UIS to .DDIF conversion library is provided
as part of the CONVERT utility.

NOTE: UIS (User Interface Services) defines a file format for the storage and
retrieval of picture information. DDIF (Digital Document Interchange
Format) can be used by any Digital product that interprets it. It provides
users with a means of porting software from one format to another. For
more information about the CONVERT utility and DDIF, see the UIS to
DDIF Converter Installation and User's Guide.

2.3 Xlib, the Toolkit and Widgets

2-4

XII is based on a byte-stream protocol that is generally not accessible to
most applications. In fact, direct output of the XII wire protocol is actively
discouraged by Digital. Access to the graphic system is provided by
a procedural interface (X lib) that generates wire protocol messages. In
addition to converting procedural calls into protocol commands, Xlib also
provides buffering services and can compress many calls into single XII
protocol requests.

The DECwindows Toolkit provides a set of higher level routines that are
not comparable to any library routines provided by VWS. These library
routines offer a standardized method for interaction with the user.

The term widget describes window object. Widgets are created and managed
by the toolkit library. The toolkit implements widgets as semi-independent
windows providing input and output interaction to the user for such things
as menus, text Inessages, text input, and dialogue boxes. A gadget is a
widget that has no window. A gadget is managed by the toolkit as a part of
a user window. Typically, gadgets are used as buttons or hot spots that are
part of the main user display window. Gadgets are less costly (in terms of
memory and performance) than widgets.

2.3.1 Xlib

Getting Started

Xlib programming differs greatly from UIS programming. UIS
programmers· should become familiar with the following characteristics
of Xlib programming:

• The typical Xlib program is written as an event-dispatch loop, as
opposed to the typical UIS application that would rely instead on
AST -processing routines.

• UIS provides 256 attribute blocks (ATBs) per segment (with default 0),
with inquiry routines for each attribute in an A TB. Xlib provides an
unlimited number of Graphic Contexts (GCs) with no ability to inquire
the settings.

• UIS relies on virtual colormaps for each viewport, while Xlib
prefers that applications share the colormap, avoid installing private
colormaps, and request specific colors such as "red" or "Red."

• Xlib programmers must ensure that they can recreate the contents of
the window, while the contents of the display is guaranteed for UIS
programmers.

• Xlib applications must service their input event queue in a timely
manner or the connection to the server will be broken. Lengthy
computational loops must be interrupted to keep the queue clear,
or a secondary queue must be implemented within the application.

• XII uses windows, widgets, and gadgets to accomplish things done
by means of extensive user-coding under UIS. The use of regions and
child windows in XII can greatly simplify coding.

• There is no native XII metafile format. Instead, Digital has
implemented a Compound Document Architecture using DDIF as
an extension to RMS to describe a variety of textual and graphic
information.

Access to reading and writing files in DDIF format has been
simplified by the CDA toolkit, which provides prepackaged library
routines for most common input and output.

Applications are encouraged to use DDIF as their metafile data
format.

The CONVERT utility has been provided to allow DDIF encoded
files to be converted to a number of other data types such as
PostScripeM1 . Also, VMS utilities will be able to display such files.
The application programmer must determine how to represent the
drawing information as both XII and DDIF output.

• No standard display list library exists for XII. Either use a higher
level interface such as GKS or PHIGS, or write your own display list
management routines.

1 PostScript is a trademark of Adobe Systems, Inc.

2-5

2.3.2

Getting Started

The Xlib interface is described in the VMS VECwindows Guide to Xlib
Programming: V AX Binding. (The MIT: C language binding documentation is
also available.)

A typical Xlib-based program would be structured as follows:

Start:

Main:

Event!:

Event2:

End:

Initialization

Check for Event or Wait
Dispatch Event
Loop to Main

A typical UIS-based program might be structured as follows:

Start:

Initialization
•• .! L _____ ..L._

O.1.JJt::.1.J1ClLt::

End:

AST Routines:

Event!:

Event2:

Window Contents

2-6

When you use Xlib, you must first decide how to maintain an internal
representation of the application window.

NOTE: This is generally an application-specific area, and only limited advice can
be given.

2.3.2.1

2.3.2.2

Regeneration from Data
Normally, native Xli applications can regenerate a portion of the window
only if the application is structured such that the window contents can be
reconstructed simply or computed from an internal representation. This
might entail the recomputation of a spreadsheet or the redrawing of a text
array.

Display Lists
You use display lists to maintain a representation of the data drawn to the
screen. Many graphic applications already use some form of display list or
can be adapted to use one. DECwindows provides no general display list
library, so you must design and implement this logic for each application.

2.3.2.3

Getting Started

Display lists are usually implemented as a tree structure or linked list
of objects. Each object contains the information necessary to draw some
discrete portion of the display. The object might consist of XII drawing
commands or internal identifiers such as pie chart and the like. Display lists
might also suffer from unbounded memory requirements, since complex
drawings can require very large numbers of objects. Be sure each display
list element has an extent rectangle.

PIXMAPS
A PIXMAP is an offscreen bitmap that can be created by XI1. PIXMAPs
can be written to and read from; they act like windows. An application can
implement poor man's backing store by allocating a PIXMAP the same size as
the user window and doing all writes twice-once to the window and once
to the PIXMAP. On a graphic exposure, a bitmap-to-bitmap copy from the
PIXMAP to the window restores the area. PIXMAPs are a limited resource
and you cannot be guaranteed of allocating one. The use of PIXMAPS
for this purpose is an abusive practice that increases the server resource
demands and XII protocol traffic between the client and server.

2-7

3 The DECwindows Look and Feel

3.1 DECwindows Benefits
DECwindows provides several benefits, which include both a standard
application programming interface (API) and a consistent look and feel to
applications running in the DECwindows environment.

The DECwindows toolkit and the DECwindows Window Manager provide
much of an application's look and feel transparently to the programmer.

NOTE: How the application interacts with the user and the system also should also
be consistent. This is the programmer's responsibility.

3.2 DECwindows Style Guide
To promote a common feel to both Digital and customer-written
applications, DECwindows documentation comes with the XUI Style Guide.
The style guide contains the following information:

• An overall statement of the philosophy of DECwindows.

• Specifics as to how applications should respond, look, and be
organized to provide an integrated look to the DECwindows
environment.

Study the XUI Style Guide and use it as a reference when you design the
layout and behavior of a DECwindows application. UIS programmers will
find that unlike the relatively unstructured and simple human interface of
UIS (which can also lead to complications), DECwindows is very firm about
how application programs should look and behave.

3-1

4 DECwindows Toolkit

4.1 Using theDECwindows Toolkit

4.2 Copy and Paste

The DEC windows toolkit consists of a set of runtime programming routines
for building application interfaces that look and feel well integrated into the
DECwindows environment.

The toolkit provides the following routines:

• Intrinsic Routines-Enable the programmer to manage a wide variety of
toolkit components.

• Low-Level Widget-Creation Routines-Provide the most general
interface for creating widgets. By using low-level routines, you can
customize the widgets you create. These routines give the programmer
control over all the widget attributes.

• High-Level Widget-Creation Routines-Provide the programmer with
ease in creating and manipulating widgetS. These routines allow access
only to the most common attributes and provide mechanisms to obtain
information about existing widgets. These routines simplify the creation
and management of widgets that conform to DECwindows standards.

• Copy and Paste Routines-Provide access to the toolkit clipboard
facility and enable transfer of both text and graphics· between
applications.

• Digital Resource Manager (DRM) Routines-Provide a high-level
interface for applications using the output from the User Interface
Language (UIL) compiler.

• Gadget-Creation Routines-Provide the most general interface for
creating gadgets. Gadgets are simple, low-cost, windowless widgets.
These routines are similar to the low-level widget routines.

• Compound String Routines-Enable the creation and manipulation of
compound strings and font lists.

• Convenience Routines-Provide common functions that relieve the
application programmer from "reinventing the wheel".

The toolkit and its use are described in the VMS DECwitu/ows Toolkit
Reference Manual.

DECwindows provides both application-to-application copy and paste, and
a clipboard that can be copied from or pasted to. You can do a cut as well
as a copy. You can transfer any type of data, including text and graphics.
DEC windows provides data management as well as data transfer, but it
is up to the application to decode the type of data passed. A common

4-1

DECwindows Toolkit

selection /I style" has been developed. The Guide to Application Programming
and the XUI Style Guide provide guidelines and examples.

UIS does not provide user applications with any copy and paste facilities.

4.3 Compound Strings

4.4 Widgets

4.4.1 Gadgets

4-2

DECwindows defines a new type of string called a compound string. This
string can have the following features:

• Multiple fonts.

• Multiple character sets.

• Multiple font styles.

UIS does not provide this capability. You would need independent text
strings to provide it in UIS.

You use compound strings with the Toolkit. The DECwindows Guide to
Application Programming gives a description of compound strings and their
use.

The toolkit includes the following set of user interface objects:

• Menus

• Push buttons

• Scroll bars

• Text widgets

• Boxes

These objects, used as building blocks for DECwindows applications, are
called widgets.

Widgets compose an input/output window that can display text and
graphics. The predefined widgets included as part of the Toolkit can
significantly reduce the amount of work required to implement many
common programming tasks.

NOTE: The predefined widgets do not provide any graphics drawing. You must
use Xlib calls to draw graphics.

For a more detailed description of widgets, see the DECwindows Guide to
Application Programming.

Because maintaining a window and a separate context for each widget
involves some significant overhead, windowless widgets, called gadgets, are
available. A gadget has no window. Rather, it is associated with an existing
window. Thus, a collection of gadgets can all share a single window context

DECwindows Toolkit

rather than requiring a hierarchical structure of parent and child windows
for the widgets.

NOTE: Use gadgets the same way you use widgets.

4.5 Intrinsic Routines
The X Toolkit routines, called intrinsics, enable you to manipulate widgets
at runtime. Intrinsics perform the following functions:

• Initialize the toolkit.

• Map and unmap widgets to the screen.

• Process user input.

• Get information on widgets.

• Set widget attributes.

4-3

5 User Interface Language (UIL)

5.1 Description of the UIL
You use UIL to specify the initial state of the user interface for a
DECwindows application. With UIL, you can "design" the look of your
application by describing the following functions:

• Widgets and gadgets

• Callback routines

• Resources

• Widget hierarchy

5.2 Modifying your Application with UIL
When you use UIL to specify the layout of your application interface,
you can rapidly prototype the look of the application. This enables easy
modification.

The Open Software Foundation (OSF) has adopted UIL as part of its
application interface architecture, and UIL should be portable across
platforms.

For more information on UIL, refer to the VMS DECwindows User Interface
Language Reference Manual.

5-1

6 Resource Management

6.1 Digital Resource Manager
The Digital Resource Manager (DRM) manages the output from the User
Interface Language (UIL). The DRM performs the following functions:

• Initializes and registers user-defined classes and names.

• Opens the User Interface Description (UID) (output file from UIL)
hierarchy.

• Fetches the user interface widgets and gadgets.

• "Realizes" (manages and maps the windows to the display).

The DRM operates during initialization, using data that has been statically
defined by the UIL. After initialization, the application manages the user
interface via runtime calls.

By using the UIL and DRM facilities, you can design interfaces quickly,
change them easily, and enable them to be used by other applications.

6-1

A Overview of VMS DECwindows Documentation

The following overview is extracted from the Overview of VMS DECwindows.

The VMS DECwindows documentation set provides the following types of
information:

• Ceneral User-Describes the DECwindows end-user environment;
explains how to use DECwindows applications.

• Programming-Provides the information necessary to develop
DECwindows applications.

The following sections describe the manuals in the DECwindows
documentation set.

General User Documentation

The following manuals compose the general user documentation:

• VMS DECwindows User's Guide

This guide describes the DECwindows user environment. Its chapters
contain the following information:

1 Provides hands-on experience through sample sessions.

2 Describes how to use File View.

3 Explains how to manage files.

4 Explains how to customize the DECwindows environment.

The guide also provides a quick reference that explains the basic
techniques used in the DECwindows environment, such as scrolling
and selecting text.

• VMS DECwindows Desktop Applications Guide

This guide describes, in a task-oriented manner, the DECwindows
desktop applications, which include the following functionality:

Mail handling

Text editing

Terminal emulation

Calendar

Drawing screen images

Clock

Card filer

Calculator

Game

A-1

Overview of VMS DECwindows Documentation

A-2

One chapter is devoted to each application; you can read about one
application at a time without having to read the entire book.

Programming Documentation

The following manuals compose the programming documentation:

• XUI Style Guide

This guide outlines standards for the development of DECwindows
application interfaces. One of the major goals of the DECwindows
product is to provide consistent application interfaces for the user
environment. Using extensive illustrations of interface objects, this
guide establishes guidelines that developers should follow to create
applications that conform to the XUI style.

• VMS DECwindows Xlib Routines Reference Manual

This manual provides the following information:

Description of the documentation format for Xlib routines.

Instructions for calling an Xlib routine using the VMS format and
the MIT C format.

Description of each routine argument.

Description of how each routine functions.

List of values returned by the routine.

• VMS DECwindows Toolkit Routines Reference Manual

This manual provides the following information:

Description of the documentation format for XUI Toolkit routines.

Instructions for calling an XUI Toolkit routine using the VMS format
and the MIT C format.

Description of each routine argument.

Description of how each routine functions.

• VMS DECwindows Guide to Xlib Programming: MIT C Binding and VMS
DECwindows Guide to Xlib Programming: VAX binding

These guides explain how to use Xlib routines in DECwindows
applications. They include the following information:

Overview of Xlib.

Discussion of programming considerations in C, FORTRAN, ADA,
and PASCAL.

Tutorials that instruct you on how to use Xlib routines.

• VMS Guide to Application Programming

This guide explains how to use the XUI Toolkit to develop applications.
It includes an explanation of the User Interface Language (UIL)
compiler.

• VMS DECwindows User Intelface Language Reference Manual

Overview of VMS DeCwindows Documentation

This manual contains the following information:

Description of the syntax and features of the User Interface
Language (UIL).

Description of the syntax of UIL low-level elements and module
components.

Instructions on how to use the UIL compiler and how to interpret
compilation diagnostics.

• VMS DECwindows Device Driver Manual

This manual provides reference information about the DECwindows
device drivers. It explains the DECwindows device driver architecture
and provides the information necessary to write port and class drivers.

• VMS Compound Document Architecture Ma11ual

This manual describes the concepts and tools associated with Digital
Compound Document Architecture (CDA). This manual includes'
documentation of the CDA Toolkit routines.

A-3

B UIS$ Routine Reference

B.1 Introduction to UIS$ Routines
UIS$ routines provide the highest level interface to the VWS system.
These routines use floating point coordinates that must be converted into
appropriate device coordinates before you call the equivalent Xlib routine.
Neither display list nor text-formatting UIS calls have equivalent library
functions. If a display list is required and GKS, PHIGS, or some other
interface is used, you must provide these routines independently of Xlib.

NOTE: GKS and PUIGS provide. display lists themselves.

The UIS concept of an attribute block (ATB) is roughly equivalent to the
Xll concept of a graphic context (GC). Each display list segment in UIS has
256 ATBs. The 256 ATBs from the default root are always available when
you are not using display lists. In Xll, an application can request that
any number of GCs be created. Remember, however, that depending on
system resources, the call might fail. No provisions exist for determining
the current settings within an Xll GC. Therefore, no equivalent UIS$GET ...
routines are provided for the settings.

Table B-1 shows UIS$ routines with their equivalent Xlib routines, and an
explanation of the routine functionality.

NOTE: If no equivalent Xlib routine exists, this is indicated in the table by N/A.

Table B-1 UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$BEGIN_SEGMENT N/A

UIS$CIRCLE

UIS$CLOSE_WINDOW SYS$EXIT

Explanation

X11 provides no equivalent to the UIS$
display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

You use the Xlib draw arc routine to
draw circles. See "Drawing Graphics"
in the VMS DECwindows Guide to Xlib
Programming.

The CLOSE_WINDOW routine is
equivalent to a SYS$EXIT system
service call and is the default action for
the UIS$CLOSE_AST.

B-1

UIS$ Routine Reference

Table B-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$COPY _OBJECT N/A

UIS$CREATE_COLOR_MAP X$ALLOC_ COLOR_CELLS

UIS$CREATE_DISPLAY N/A

B-2

Explanation

X11 provides no equivalent to the UIS$
display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic Interface such as GKS or
PHIGS.

X11 incorporates the concept of private
colormaps that can be created by
the application and Installed (see
X$CREATE_COLORMAP). However,
the installation of a colormap other
than the default usually alters the
colors In other windows. The use
of COLOR by X11 applications Is
described in "Using Color" In the VMS
DECwindows Guide to X/ib Programming.
In general, to allocate colors for
exclusive use (that is, you Intend to
alter the color), use X$ALLOC_COLOR_
CELLS, requesting N planes and 1
color. This provides you with a single
pixel value and a set of plane mask
bits that can then be permuted to form
a colormap that maintains the ability
to be complemented (when you use
GXxor mode with the plane mask bits).
If no arithmetic operations must be
performed on the bitmap, make the call
with 1 plane and N colors. This has
a better chance of succeeding. For
applications using static colors, you
can request "named" colors such as
"Red."

To emulate this feature, you must
create and install a private colormap
for the entire hardware colormap,
and the application must manage
this colormap. See "Using Color" in
the VMS DECwindows Guide to Xlib
Programming. Complete control over
the entire colormap is the only way to
accomplish this.

This routine has no counterpart in
X11. VWS uses this routine to Initialize
structures and create any needed
colormap. In an X11 application, this
routine would be replaced by more
generic application Initialization.

UIS$ Routine Reference

Table B-1 (Coni.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routine.

UIS$CREATE_KB

UIS$CREATE_ TERMINAL

UIS$CREATE_ TB

UIS$CREATE_
TRANSFORMATION

UIS$CREATE_WINDOW

UIS$DELETE_COLOR_MAP

UIS$DELETE_COLOR_MAP _
SEGMENT

UIS$DELETE_DISPLA Y

UIS$DELETE_KB

Xlib Routines

X$SELECT _INPUT

N/A

N/A

N/A

X$CREATE_WINDOW

X$FREE_COLORMAP

X$FREE_COLORMAP

X$CLOSE_OISPLAY

X$SELECT _INPUT

Explanation

X11 has no equivalent to the UIS virtual
keyboard. In X11, you can select the
types of Input events. See "Handling
Events" in the VMS DECwindows Guide
to Xlib Programming.

The DECterm VT340 terminal emulation
windows can only be created from the
DECwindows session manager. No
mechanism exists to create a terminal
window from within a program.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

Since X11 provides only a device­
dependent integer coordinate space
with each unit representing a pixel,
programmers must provide their own
world coordinates and transformations.

This routine performs a device
assignment to the workstation screen.
This is the equivalent of X$OPEN_
DISPLAY, which establishes the
link to the display. In addition, an
X$CREATE_WINDOW would be
performed to create and initialize
the window structures; this would
be followed by an X$MAP _WINDOW
to make the window visible. See
"Managing the Client-Server
Connection" and "Working with
Windows" in the VMS DECwindows
Guide to Xlib Programming.

See "Using Color," in the VMS
DECwindows Guide to Xlib Programming.

See "Using Color," in the VMS
DECwindows Guide to Xlib Programming.

Closing the display is the nearest
equivalent under X11. The
X$DESTROY _WINDOW call is more
like moving the viewport offscreen
under VWS. It leaves everything set
up (like the connection), but does not
leave the window.

X11 provides no equivalent to a virtual
keyboard. Types of input events can be
selected and keyboard events ignored.
See "Handling Events," in the VMS
DECwindows Guide to Xlib Programming.

8-3

UIS$ Routine Reference

Table B-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines

UIS$DELETE.:., OBJECT

UIS$DELETE_ TB

UIS$DELETE_
TRANSFORMATION

UIS$DELETE_WINDOW

UIS$DISABLE_KB

UIS$DISABLE_ TB

B-4

Xlib Routines

N/A

N/A

N/A

N/A

X$CLOSE_DISPLA Y

N/A

X$SELECT _INPUT

N/A

Explanation

X11 provides no equivalent to the UIS$
display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic interface such as GKS or
PHIGS.

X11 provides no equivalent to the UIS$
display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

Since X11 provides only a device­
dependent integer coordinate space
with each unit representing a pixel,
programmers must provide their own
world coordinates and transformations.

Closing the display is the nearest
equivalent under X11. The
X$DESTROY _WINDOW call Is more
like moving the viewport offscreen
under VWS. It leaves everything set
up (like the connection), but does not
leave the window.

X11 provides no equivalent to the UIS$
display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

X11 provides no equivalent to a virtual
keyboard. The types of Input events
can be selected and keyboard events
ignored. See "Handling Events," in
the VMS DECwindows Guide to Xlib
Programming.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

UIS$ Routine Reference

Table 8-1 (Cont.) UISS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

N/A

UIS$ElLiPSE

N/A

UIS$ENABlE_KB X$SET _INPUT _FOCUS

UIS$ENABlE_KB N/A

N/A

UIS$END_SEGMENT N/A

UIS$ERASE

Explanation

UIS uses this routine to disconnect a
virtual KB from a window and remove
the window from the list of windows that
can be cycled to. X11 has no concept
of a virtual KB. You either accept input
focus and keyboard input events or
do not choose to receive these events
of the input focus. See X$SElECT_
INPUT.

Draw ellipses by using the Xllb draw
arc routine. See "Drawing Graphics,"
in the VMS DECwindows Guide to Xlib
Programming.

X11 provides no equivalent to the UIS$
display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such. as GKS or
PHIGS.

This· call sets the input focus (the
closest concept to connecting the
physical keyboard to a window).

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

UIS uses this routine to associate a
virtual KB with a window and add the
window to the list of windows that can
be cycled to. X11 has no concept of
a virtual KB. You either accept input
focus and keyboard input events or
do not choose to receive these events
of the input focus. See X$SELECT_
INPUT.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

Both Clear Area and Clear Window
routines are provided to erase portions
of windows. You cannot use the Clear
Area function on a PIXMAP. Instead,
you should use a filled rectangle the
size of the screen' in the background
color. See "Drawing Graphics" in
the VMS DECwindows Guide to Xlib
Programming.

8-5

UIS$ Routine Reference

Table B-1 (Cont.) UISS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$EXECUTE N/A

UIS$EXECUTE_OISPLAY N/A

UIS$EXPANO-,CON

UIS$EXTRACT _HEADER N/A

UIS$EXTRACT _OBJECT N/A

UIS$EXTRACT _PRIVATE N/A

UIS$EXTRACT _REGION N/A

8-6

Explanation

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic Interface such as GKS or
PHIGS.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic Interface such as GKS or
PHIGS.

Generally, the user controls the state
of the application window. To set
the Initial state of a window, use the
property routines to communicate
to the server. In addition, the server
honors the hints after the window has
been created and mapped. Thus, If you
specify the Initial State for the window
as X$C_NORMAL_STATE with the
X$SET_WM_HINTS, a window currently
in an icon state will be expanded.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram Ina higher-level
graphic interface such as GKS or
PHIGS.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic Interface such as GKS or
PHIGS.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic interface such as GKS or
PHIGS.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic Interface such as GKS or
PHIGS.

UIS$ Routine Reference

Table B-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routine. Xllb Routines

UIS$EXTRACT _TRAILER N/A

UIS$FIND_PRIMITIVE N/A

UIS$FIND_SEGMENT N/A

UIS$GET _ALIGNED_POSITION N/A

UIS$GET _ARC_TYPE N/A

UIS$GET _BACKGROUND-,NDEX N/A

UIS$GET _BUTTONS X$QUERY _POINTER

UIS$GET _CHAR_ROTATION N/A

UIS$GET_CHAR_SIZE N/A

UIS$GET _CHAR_SPACING N/A

UIS$GET_CLlP N/A

UIS$GET _COLOR X$QUERY _COLOR

UIS$GET _COLORS X$QUERY _COLORS

Explanation

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic Interface such as GKS or
PHIGS.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic Interface such as GKS or
PHIGS.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic interface such as GKS or
PHIGS.

This function returns the position of
the pOinter relative to the window as
well as the current state of the modifier
keys and buttons. See the Xlib Routines
Reference Manual, Part 1, "Window
Routines."

X11 does not provide text formatting
functions.

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

This function returns the position of
the pOinter relative to the window as
well as the current state of the modifier
keys and buttons. See the Xlib Routines
Reference Manual, Part 1, "Window
Routines.' ,

X11 does not provide text rotation.

X11 does not provide text scaling.

X11 does not provide text formatting.

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

Provides the RGB values for the
specified index.

Provides the RGB values for the
specified index values.

8-7

UIS$ Routine Reference

Table 8-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$GET _CURRENT_OBJECT N/A

UIS$GET _DISPLAY _SIZE See "Explanation."

UIS$GET _FONT N/A

UIS$GET _INTENSITIES X$QUERY _COLORS

UIS$GET _INTENSITY X$QUERY _COLOR

UIS$GET _KB_ATTRIBUTES X$GET _KEYBOARD_
CONTROL

UIS$GET _LINE_WIDTH N/A

UIS$GET _NEXT_OBJECT N/A

UIS$GET _OBJECT_ATTRIBUTES N/A

8-8

Explanation

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic interface such as GKS or
PHIGS.

The X$DISPLAY _WIDTH, X$DISPLAY_
WIDTH_MM, X$DISPLAY _HEIGHT, and
X$DISPLAY _HEIGHT _MM calls provide
the information needed to emulate this.

X11 does not provide Inquiry functions
for GCs (the equivalent of UIS ATBs).

X11 does not provide Inquiry functions
for GCs (the equivalent of UIS ATBs).

This routine, as well as X$LOOKUP _
FONT _WITH_INFO, can return
information associated with this call.

This routine, as well as X$LOOKUP _
FONT _WITH_INFO, can return
Information associated with this call.

The information returned by this call Is
available through a number of individual
calls. See the Xlib Routines Reference
Manual, Part 1, "Display Routines."

Use the X$QUERY _COLORS routines.

Use the X$QUERY _COLOR routines.

The attributes are not specified in the
same manner but are available through
this routine.

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic interface such as GKS or
PHIGS.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

UIS$ Routine Reference

Table 8-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$GET _PARENT _SEGMENT N/A

X$QUERY _POINTER

UIS$GET _POSITION N/A

NA

NA

UIS$GET _ TB_INFO N/A

UIS$GET _ TB_POSITION N/A

UIS$GET _TEXT_FORMATTING N/A

UIS$GET _TEXT_MARGINS N/A

UIS$GET _TEXT_PATH N/A

UIS$GET _TEXT_SLOPE N/A

UIS$GET _ VCM_IO N/A

Explanation

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

This function returns the position of
the pointer relative to the window as
well as the current state of the modifier
keys and buttons. See the Xlib Routines
Reference Manual, Part 1, "Window
Routines."

X11 does not provide text formatting
functions.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

X11 does not provide text formatting
functions.

X11 does not provide text formatting
functions.

X11 does not provide text drawing path
(left-right) functions.

X11 does not provide text slope
(rotation) functions.

X11 has no equivalent function. The
colormap 10 for X11 is the nearest
equivalent and is returned when the
colormap is created or the workstation
default can be returned. In general, the
X11 colormap is not equivalent to the
UIS colormap.

8-9

UIS$ Routine Reference

Table B-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

N/A

UIS$GET _VIEWPORT_POSITION X$GET _WINDOW_
ATTRIBUTES

UIS$GET _VIEWPORT_SIZE X$GET _WINDOW_
ATTRIBUTES

UIS$GET _VISIBILITY N/A

UIS$GET _WINDOW_ATTRIBUTES X$GET _WINDOW_
ATTRIBUTES

UIS$GET _WRITING_MODE N/A

B-10

Explanation

In general, icons are managed by the
window manager. Communication and
inquiry are performed via structures that
provide "hints" to the window manager.
See "Using Properties" in the Guide
to Xlib Programming to Communicate
with the Window Manager. The X$SET_
WM_HINTS routine contains an ICON
WINDOW field that you can optionally
use to supply a window that serves
as the icon. This window 10 is user­
created. Normally, icons are supplied
when you provide a PIXMAP to be used
as the icon display data.

You can obtain a data structure
that provides Information about the
current position size and other window
attributes.

You can obtain a data structure
that provides Information about the
current position size and other window
attributes.

A direct method of obtaining this
information does not exist in X11.
Since the X11 application can be
notified of all requests to expose a
window and can be notified (after the
fact) of any window occlusion, the
application can therefore keep track of
the current state of visibility.

You can obtain a data structure
that provides information about the
current position size and other window
attributes.

You can obtain a data structure
that provides Information about the
current position size and other window
attributes.

X11 does not provide Inquiry functions
for GCs (the equivalent of UIS ATBs).

X11 does not provide Inquiry functions
for GCs (the equivalent of UIS ATBs).

UIS$ Routine Reference

Table B-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

X$LOOKUP _COLOR

X$LOOKUP _COLOR

N/A

N/A

UIS$IMAGE

UIS$INSERT _OBJECT N/A

Explanation

DECwindows contains a set of named
colors. This cal1 returns· the closest
RGB values available for the hardware,
as well as the ideal RGB values for
the specified color. Appendix C of the
Guide to X/ib Programming provides
the names of the predefined colors for
DECwindows.

The intensity is returned as RGB
values. You can use NTSC to convert
the RGB values to an intensity.
DECwindows contains a set of named
colors. This call returns the closest
RGB values available for the hardware,
as well as the ideal RGB values for
the specified color. Appendix C of the
Guide to Xlib Programming provides
the names of the predefined colors for
DECwindows.

The X11 RGB system is based on a
16-bit integer value, while the UIS RGB
system uses a floating pOint between
o and 1. HLS conversion routines are
widely available, and one is included
here in Appendix C. Xlib libraries
provide no conversion routines.

The X11 RGB system is based on a
16-bit integer value, while the UIS RGB
system uses a floating point between
o and 1. HLS conversion routines are
widely available, and one Is included
here in Appendix C. Xlib libraries
provide no conversion routines.

See "Drawing Graphics" in the VMS
DECwindows Guide to Xlib Programming.
Note that you might have to reformat
image data unless you create and
install a colormap for Images greater
than 1 bit deep.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

B-11

UIS$ Routine Reference

Table B-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines

UIS$LlNE

UIS$LlNE_ARRAY

UIS$MEASURE_ TEXT

UIS$MOVE_AREA

UIS$MOVE_ VIEWPORT

UIS$MOVE_WINDOW

UIS$PLOT

UIS$PLOT _ARRAY

UIS$POP _VIEWPORT

B-12

Xlib Routines

X$DRAW_SEGMENT

X$DRAW_SEGMENTS

N/A

N/A

Explanation

The X$DRAW_POINT routine Is also
used to draw Individual points (zero
length lines). See "Drawing Graphics"
in the VMS DECwindows Guide to Xlib
Programming.

The X$DRAW_POINTS routine Is also
used to draw individual points (zero
length lines). See "Drawing Graphics"
in the VMS DECwindows Guide to Xlib
Programming.

X11 provides an equivalent function
to measure the length of a text string.
Note that control strings and text
formatting are not provided for text
output.

This Is equivalent to an X$COPY _AREA
followed by one or more X$CLEAR_
AREA operations to clear the area no
longer covered by the area moved.
See "Drawing Graphics" in the VMS
DECwindows Guide to Xlib Programming.

This function changes the location of
the window on the screen. In X11, this
function can move the window partially
offscreen. This feature Is not possible
with the UIS call.

X11 provides no equivalent function,
since this relocates the display list.
When no display list is used, It works
much like UIS$MOVE_AREA.

X11 does not provide text formatting
functions.

The X$DRAW_POINT routine is also
used to draw individual pOints (zero
length lines). See "Drawing Graphics"
in the VMS DECwindows Guide to Xlib
Programming.

The X$DRAW_POINTS routine is also
used to draw Individual pOints (zero
length lines). See "Drawing Graphics"
in the VMS DECwindows Guide to Xlib
Programming.

These are directly equivalent.

UIS$ Routine Reference

Table B-1 (Cont.) UISS Routines and their Equivalent Xlib Routines

UIS$ Routines

UIS$PRESENT

UIS$PRIVATE

UIS$PUSH_ VIEWPORT

UIS$READ _CHAR

UIS$RESIZE_WINDOW

UIS$RESTORE_CMS_COLORS

Xlib Routines

N/A

N/A

X$LOWER_WINDOW

N/A

X$CHANGE_WINDOW_
ATTRIBUTES

X$INSTALL_COLORMAP

N/A

N/A

Explanation

DECwindows applications are
generally started with SYS$OUTPUT
and given a device class of DC$_
WORKSTATION (device controller type
WS). Applications should first check for
this device class as SYS$OUTPUT. If
the class is not DC$_WORKSTATION,
the application should check for a
logical name DECW$DISPLAY to be
defined. If this logical is present, the
X$OPENDISPLAY call uses this as
the display destination. If both of
these options fail, and your application
supports both UIS and DECwindows,
you can call UIS$PRESENT to see if
UIS is available.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

These are directly equivalent.

Keyboard input is delivered via the X
EVENT mechanism.

You can use this call to resize the X11
window.

This X11 function Installs a colormap.
When you use a private colormap, you
can use this function to do the binding
to the hardware. Note that all colors
are affected by this call.

The X11 RGB system is based on a
16-blt integer value, while the UIS RGB
system uses a floating point between
o and 1. HLS conversion routines are
widely available, and one is included
here in Appendix C. Xlib libraries
provide no conversion routines.

The X11 RGB system is based on a
16-bit integer value, while the UIS RGB
system uses a floating point between
o and 1. HLS conversion routines are
widely available, and one is included
here in Appendix C. Xlib libraries
provide no conversion routines.

8-13

UIS$ Routine Reference

Table 8-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routine. Xllb Routine.

UIS$SET _ADDOPT _AST N/A

UIS$SET _ALIGNED_POSITION N/A

UIS$SET _BACKGROUNO-,NDEX X$SET _BACKGROUND

UIS$SET _BUTTON_AST N/A

UIS$SET _CHAR_ROTATION N/A

UIS$SET _CHAR_SPACING N/A

UIS$SET _CLIP X$SET _CLIP _RECTANGLES

UIS$SET _CLOSE_AST N/A

UIS$SET _COLORS X$STORE_COLORS

UIS$SET _EXPAND-,CON_AST N/A

8-14

Explanation

DECwlndows has no additional options
selection. Use the DECwlndows Toolkit
and the appropriate widget set to find
equivalent functionality.

X11 does not provide text formatting
functions.

Most of the ARC drawing styles are
available In X11.

This Is provided by the appropriate GC
creation or modification command. See
the Xlib Routines Reference Manual,
Part 1, IIGraphlcs Context Routines."
The background Index Is specified In
the BACKGROUND value In the GC
Values data structure.

This is Included In X EVENT
processing. See the Xlib Reference
Manual, Part 1, "Event Routines."

X11 does not provide character
rotation.

X11 does not provide character
shearing.

X11 does not provide text formatting
functions.

This provides a superset of UIS
clipping.

The DECwindows Toolkit contains
the only equivalent concept +n
DECwindows.

X$STORE_COLOR sets the RGB value
in a previously allocated color cell.
The RGB values must be converted
Into 16-blt integer values. See the
Xlib Reference Manual, Part 1, IIColor
Routines."

X$STORE_COLORS sets RGB values
in a list of previously allocated color
celis. The RGB values must be
converted into 16-blt Integer values.
See theXlib Reference Manual, Part 1,
"Color Routines."

You can obtain equivalent X EVENTS
by using the EVENT MASK In the
X$CHANGE_WINDOW_ATTAIBUTES
cali. See the Xlib Routines Reference
Manual, Part 1, IIWindow Routines," for
more Information.

UIS$ Routine Reference

Table B-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$SET _INSERTION_POSITION N/A

UIS$SET _INTENSITIES X$SiORE_COLOR

UIS$SET _INTENSITY X$STORE_COLORS

Explanation

UIS fill patterns are the equivalent of
stipple patterns in X11. A stipple is a
single-bit deep PIXMAP. The PIXMAP
must be created and the pattern drawn
into It. Usually this is accomplished
with the X$PUT _IMAGE operation. The
stipple can then be used in a GC as a
pattern or mask.

This routine sets a font 10 into a GC.
You must use the X$LOAD_FONT
routine to obtain the font 10. See the
Xlib Routines Reference Manual, Part 1,
"Graphics Context Routines" and Part
2, "Font Routines" for information on
these routines.

Equivalent X EVENTS exist for
obtaining INPUT FOCUS. See
"Handling Events" in the Guide to
Xlib Programming.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
mU$t supply their own display list
routines or reprogram in a higher-level
graphic interface such as GKS or
PHIGS.

X$STORE_COLOR sets an RGB value
in a previously allocated color cell.
RGB values must be converted into
16-bit integer values. Derive RGB
values by using the intensity value for
each of the RGB components. See the
Xlib Routines Reference Manual, Part 1,
"Color Routines."

X$STORE_COLORS sets a list of
RGB values in a list of previously
allocated color cells. RGB values
must be converted into 16-bit integer
values. Derive RGB values by using
the intensity value for each of the RGB
components. See the Xlib Routines
Reference Manual, Part 1, "Color
Routines."

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_WINDOW_ATTRIBUTES
call. See the Xlib Routines Reference
Manual, Part 1, "Window Routines" for
more information.

B-15

UIS$ Routine Reference

Table 8-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines

8-16

Xlib Routines

X$CHANGE_KEYBOARD_
CONTROL

X$SET _MODIFIER_MAPPING

X$CHANGE_KEYBOARD_
MAPPING

X$SET _LINE_ATTRIBUTES

X$SET _LINE_ATTRIBUTES

N/A

N/A

N/A

Explanation

The KB can be remapped as
appropriate. Note that this is done
in a completely different fashion in X11.
See the Xlib Routines Reference Manual,
Part 2, "Window and Session Manager
Routines" for more Information.

Along with the X$CHANGE_
KEYBOARD_MAPPING routine, this
can remap the keyboard input. See
the Xlib Routines Reference Manual,
Part 2, "Window and Session Manager
Routines" for more information.

Along with the X$CHANGE_
KEYBOARD_MAPPING routine, this
can remap the keyboard Input. See
the Xlib Routines Reference Manual,
Part 2, "Window and Session Manager
Routines" for more information.

Along with the X$SET _KEYBOARD_
MAPPING routine, this can remap the
keyboard input. See the Xlib Routines
Reference Manual, Part 2; "Window and
Session Manager Routines" for more
information.

See the Xlib Routines Reference Manual,
Part 1, "Graphic Context Routines" for
more information.

See the Xlib Routines Reference Manual,
Part 1, "Graphic Context Routines" for
more information.

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_WINDOW_ATTRIBUTES
call. See the Xlib Routines Reference
Manual, Part 1, "Window Routines" for
more information.

You can obtain equivalent X EVENTS
by using. the EVENT MASK in the
X$CHANGE_WINDOW_ATTRIBUTES
call. See the Xlib Routines Reference
Manual, Part 1, "Window Routines" for
more information.

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_WI NDOW_ATTRI BUTES
call. See the Xlib Routines Reference
Manual, Part 1, "Window Routines" for
more information.

UIS$ Routine Reference

Table B-1 (Cont.) UISS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$SET _POINTER_POSITION X$WARP _POINTER

UIS$SET _POSITION N/A

N/A

UIS$SET _ TEXT _FORMATTING N/A

UIS$SET _TEXT_MARGINS N/A

N/A

N/A

UIS$SET _WRITING_MODE X$SET _FUNCTION

Explanation

See the Xlib Routines Reference Manual,
Part 2, "Cursor Routines," for more
information.

See the Xlib Routines Reference Manual,
Part 2, "Window and Session Manager
Routines" for more information.

X11 does not provide text formatting
functions.

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_WINDOW_ATTRIBUTES
call. See the Xlib Routines Reference
Manual, Part 1, "Window Routines" for
more information.

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_WINDOW_ATTRIBUTES
call. See the Xlib Routines Reference
Manual, Part 1, "Window Routines" for
more information.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

X11 does not provide text formatting
functions.

X11 does not provide text formatting
functions.

X11 does not provide text formatting
functions.

X11 does not provide text formatting
functions.

This is provided by the appropriate GC
creation or modification command.
See the Xlib Routines Reference
Manual, Part 1, "Graphics Context
Routines" for more information. The
FUNCTION is the actual logical
operator used for the operation.
UIS "modes" are a combination
of FUNCTION, FILL STYLE, FILL
STIPPLE, FOREGROUND, and
BACKGROUND pixel values. A
routine that shows the mapping for
most UIS writing modes is provided in
Appendix G.

B-17

UIS$ Routine Reference

Table 8-1 (Cont.) UIS$ Routines and their Equivalent Xlib Routines

UIS$ Routines

UIS$SOUND _BELL

UIS$SOUND _CLICK

UIS$TEST _KB

UIS$TEXT

UIS$TAANSFOAM_OBJECT

8-18

Xlib Routines

X$BELL

N/A

N/A

X$DRAWTEXT

N/A

Explanation

The state of the application is generally
controlled exclusively by the user. Set
the Initial state of a window by using
the property routines to communicate
to the server. In addition, the server
honors the hints after the window has
been created and mapped. Thus, If
you specify the Initial State for the
window as X$C-,CONIC_STATE, a
window currently In a window state will
be iconified.

See the Xlib Routines Reference Manual,
Part 2, "Window and Session Manager
Routines" for more Information.

The keyclick cannot be sounded In X11 .

Applications should keep track of this
through the X EVENT mechanism for
INPUT focus gain and lose events.

X11 routines doe not provide any of the
text formatting or control lists provided
by UIS.

X11 provides no equivalents to the
UIS$ display list routines. Programmers
must supply their own display list
routines or reprogram In a higher-level
graphic Interface such as GKS or
PHIGS.

C UISDC$ Routine Reference

C.1 Introduction to UISDC$ Routines
In addition to the world coordinate interface (UIS), VWS provides a
device-coordinate, or pixel-level, interface (UISDC) to the graphics system
services.

When an application programs in device coordinates, it must make mixed
use of UIS and UISDC routines. Only UIS routines that use or modify
world coordinate positions are duplicated as UISDC routines. Most
informational, attribute, windowing, and display routines exist only in
UIS format and are shared by the two programming levels.

Table C-l gives UISDC routines with their equivalent Xlib routines, and an
explanation of the routine functionality.

NOTE: If an equivalent Xlib routine does not exist, this is indicated in the table
by N/A.

Table C-1 UISDC Routines and their Equivalent Xlib Routines

UISDC Routines Xlib Routines

UISDC$ALLOCATE_DOP N/A

UISDC$CIRCLE

UISDC$ELLIPSE

UISDC$ERASE

Explanation

The DOP interface is a
device-dependent mechanism that
queues drawing packets to the
VSII/GPX and VS2000/GPX. No
comparable hardware interface exists
under X11.

Use the Xlib draw arc routine to draw
circles. See "Drawing Graphics" in
the VMS DECwindows Guide to Xlib
Programming for more information.

Use the Xlib draw arc routine to draw
ellipses. See "Drawing Graphics" in
the VMS DECwindows Guide to Xlib
Programming for more information.

Clear Area and Clear Window routines
are both provided to erase portions of
windows. Note that you cannot use
the Clear Area function on a PIXMAP;
instead, a filled rectangle the size of
the screen in the background color
is also equivalent. See "Drawing
Graphics" in the VMS DECwindows
Guide to Xlib Programming for more
information.

C-1

UISDC$ Routine Reference

Table C-1 (Cont.) UISDC Routines and their Equivalent Xlib Routines

UISDC Routines Xlib Routines

UISDC$EXECUTE_DOP _ASYNCH N/A

UISDC$EXECUTE_DOP _SYNCH N/A

UISDC$GET _ALIGNED_POSITION N/A

UISDC$GET _CHAR_SIZE N/A

UISDC$GET _CLIP N/A

UISDC$GET _POSITION N/A

UISDC$GET _TEXT_MARGINS N/A

UISDC$GET _VISIBILITY N/A

UISDC$IMAGE X$PUT _IMAGE

UISDC$lINE X$DRAW_SEGMENT

UISDC$lINE_ARRAY X$DRAW_SEGMENTS

C-2

Explanation

The DOP interface is a
device-dependent mechanism that
queues drawing packets to the
VSII/GPX and VS2000/GPX. No
comparable hardware Interface exists
under X11.

The DOP interface is a
device-dependent mechanism that
queues drawing packets to the
VSII/GPX and VS2000/GPX. No
comparable hardware interface exists
under X11.

X11 provides no text formatting or
the concept of a current text-writing
position.

X11 does not provide text scaling.

X11 does not provide query routines
for GCs.

This function returns the position of
the pointer relative to the window. It
also returns the the current state of
the modifier keys and buttons. See
the Xlib Routines Reverence Manual,
Part 1, "Window Routines."

X11 provides no text formatting.

X11 provides no text formatting or the
concept of text margins.

Since an X11 application can be
notified of all requests to expose a
window and can be notified of the
occluding of a window after the fact,
there is no direct way to obtain this
information. However, the application
can keep track of the current state of
visibility.

See "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming. Note that image data
might require reformatting unless
you create and install a colormap for
images greater than 1 bit deep.

See "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming for more information.

See "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming for more information.

UISDC$ Routine Reference

Table C-1 (Cont.) UISDC Routines and their Equivalent Xlib Routines

UISDC Routines

UISDC$LOAD_BITMAP

UISDC$MEASURE_ TEXT

UISDC$MOVE_AREA

UISDC$NEW_ TEXT_LINE

UISDC$PLOT

UISDC$PLOT _ARRAY

UISDC$QUEUE_DOP

Xlib Routines

N/A

N/A

X$DRAW_L1NE

N/A

UISDC$READ_IMAGE X$GET _IMAGE

UISDC$SET _ALIGNED_POSITION N/A

UISDC$SET _CHAR_SIZE N/A

UISDC$SET _CLIP X$SET _CLIP _RECTANGLES

Explanation

This routine loads a user bitmap
into offscreen video memory. In
some ways, this is similar to the
X11 concept of a PIXMAP, but the
concepts differ. The principal use for
this under UIS is to load font data for
drawing with OOPs.

X11 provides an equivalent function to
measure the length of a text string.
Note that control strings and text
formatting are not provided for text
output.

See "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming for more Information.

X11 provides no text formatting.

See "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming for more information.

See "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming for more information.

The DOP interface is a
device-dependent mechanism that
queues drawing packets to the
VSIIIGPX and VS2000/GPX. No
comparable hardware interface exists
under X11.

Since the bitmap contents are not
guaranteed under X11, be extremely
cautious when you use this function.

X11 provides neither text formatting
nor the concept of a current
text-writing position.

This is part of X EVENT processing.
See the Xlib Routines Reference
Manual, Part 1, "Event Routines."

X11 does not provide text scaling.

X11 provides a superset of UIS
clipping.

You can accomplish equivalent
X EVENTS by using the
EVENT MASK in the
X$CHANGE_WINDOW_ATTRIBUTES
call. See the Xlib Routines Reference
Manual, Part 1, "Window Routines,"
for more information.

C-3

UISDC$ Routine Reference

Table C-1 (Cont.) UISDC Routines and their Equivalent Xlib Routines

UISDC Routines Xlib Routines

UISDC$SET _POSITION N/A

UISDC$SET _ TEXT_MARGINS N/A

UISDC$TEXT X$DRAW_ TEXT

C-4

Explanation

See the Xlib Routines Reference
Manual, Part 2, "Cursor Routines,"
for more information.

This function returns the position of
the pointer relative to the window; It
also returns the current state of the
modifier keys and buttons. See the
Xlib Routines Reference Manual, Part
1, "Window Routines."

X11 provides no text formatting.

X11 provides no text formatting or the
concept of text margins.

The X11 routines do not provide any
of the text formatting or control lists
provided by UIS.

D HCUIS$ Routine Reference

0.1 Introduction to HCUIS$ Routines
In addition to the world coordinate interface (UIS) and device-coordinate,
or pixel-level, interface (UISDC) to the graphics system services, VWS
provides a hard copy (HCUIS) interface.

Table D-l gives HCUIS routines with their equivalent Xlib routines, and an
explanation of the routine functionality.

NOTE: If an equivalent Xlib routine does not exist, this is indicated in the table
by N/A.

Table 0-1 HCUIS Routines and their Equivalent Xlib Routines

HCUIS Routines Xlib Routines Explanation

HCUIS$BEGIN_ TRANSLATOR N/A No equivalent routine exists.

HCUIS$END _ TRANSLATOR N/A No equivalent routine exists.

HCUIS$READ_BUFFER N/A No equivalent routine exists.

HCUIS$READ_DISPLAY N/A No equivalent routine exists.

HCUIS$TRANSLA TE N/A No equivalent routine exists.

HCUIS$WRITE_BUFFER N/A No equivalent routine exists.

HCUIS$WRITE_DISPLAY N/A No equivalent routine exists.

0-1

E UIS Fonts to DECwindow Equivalents

Table E-1 gives VWS fonts with their nearest DECwindows equivalent.

Table E-1 VWS and OECwindows Fonts

VWS Font

DTABEROI03WKOOGG0001 UZZZZ02AOOO

DEUISPAT AAAAAAFOOOOOOOOODA

DTABER0003WKOOGG0001 UZZZZ02AOOO

DTABER0003WKOOPG0001 UZZZZ02AOOO

DTABEROG03CKOOGG0001UZZZZ02AOOO

DTABEROI03WKOOGG0001 UZZZZ02AOOO

DTABEROI03WKOOPG0001 UZZZZ02AOOO

DTABEROM03CKOOGG0001 UZZZZ02AOOO

DTABEROM060KOOGG0001 UZZZZ02AOOO

DTABEROR03WKOOGG0001 UZZZZ02AOOO

DTABEROR03WKOOPG0001 UZZZZ02AOOO

DTABEROR07SKOOGG0001UZZZZ02AOOO

DTABEROR07SKOOPG0001UZZZZ02AOOO

DTERMING03CKOOPG0001 UZZZZ02AOOO

DTERMINM03CKOOPG0001 UZZZZ02AOOO

DTEAMINM060KOOPG0001 UZZZZ02AOOO

DVVVSVTOAOOKKOOGG0001UZZZZ02AOOO

DVVVSVTOG03CKOOGG0001 QZZZZ02AOOO

DVVVSVTOG03CKOOGG0001UZZZZ02AOOO

DVVVSVTOG03CKOOPG0001QZZZZ02AOOO

DVVVSVTOG03CKOOPG0001UZZZZ02AOOO

DVVVSVTOG05AKOOGG0001 QZZZZ02AOOO

DVVVSVTOG05AKOOGG0001 UZZZZ02AOOO

DVVVSVTOG05AKOOPG0001QZZZZ02AOOO

DVVVSVTOG05AKOOPG0001UZZZZ02AOOO

DVVVSVTOI03WKOOGG0001 QZZZZ02AOOO

DVVVSVTOI03WKOOPG0001 QZZZZ02AOOO

DVVVSVTOJ05AKOOGG0001UZZZZ02AOOO

DVVVSVTOJ05AKOOPG0001UZZZZ02AOOO

DVVVSVTOK05AKOOGG0001QZZZZ02AOOO

DVVVSVTOK05AKOOGG0001UZZZZ02AOOO

Nearest DECwindows Equivalent

-*-Courier-Medium-R-Normal- *-140- *- *-M- *-*- *

There is no DECwindows pattern font.

-*-Helvetica-Medium-R-Normal-*-140-*-*-P-*-*-*

- * -Helvetica-Bold-R-Normal- * -140- * - * -P- * - * - *

-*-Courier-Medium-R-Normal-*-120- *-*-M-*-*-*

- * -Courler-Medium-R-Normal- * -140- * -* -M- * - * - *

-* -Courier-Bold-R-Normal- * -140- * - * -M- * - * -*

-*-Courier-Medium-R-Normal-*-120-*-*-M-*-*-*

-*-Courier-Medium-R-Normal-*-240-*-*-M-*-*-*

-*-Courler-Medium-R-Normal-*-140-*-*-M-*-*-*

-*-Courier-Bold-R-Normal-* -140- * -*-M- *- *-*

- * -Courier-Medium-R-Normal- * -240- * - * -M- * - * - *

-* -Courier-Bold-R-Normal- * -240- * -* -M- * - *-*

-*-Times-Bold-R-Normal-*-120-*-*-P-*-*-*

- * -Times-Bold-R-Normal- * -120- * -* -P- * - * - *

- * -Times-Bold-R-Normal- * -240- * -* -P- * - * - *

-*-Times-Medium-R-Normal-*-20-*-*-P-*-*-*

-* -Terminal-Medium-R-Narrow- * -140- * - * -C- * -DEC-DECtech

- * -Terminal-Medium-R-Narrow- * -140- * - * -C- * - * - *

-* -Termlnal-Bold-R-Narrow- * -140- * - * -C- * -DEC-DECtech

- * -Terminal-Bold-R-Narrow- * -140- * - * -C- * - * - *

-*-Terminal-Medium-R-Narrow-*-180-*-*-C-*-DEC-DECtech

- * -Terminal-Medium-R-Narrow- * -180- * - * -C- * - * - *

- *-Terminal-Bold-R-Narrow- *-180- * - *-C- * -DEC-DECtech

-*-Terminal-Bold-R-Narrow-*-180-*-*-C-*-*-*

-* -Terminal-Medium-R-Normal- * -140- * - * -C- * -DEC-DECtech

- * -Terminal-Bold-R-Normal- * -140- * - * -C- * -DEC-DECtech

- *-Terminal-Medium-R-Normal- * -180- * - *-C- * - *-*

-* -T erminal-Bold-R-Normal- * -180- * - * -C- * - * - *

- * -Terminal-Medium-R-Normal- * -180- * -* -C- * -DEC-DECtech

-*-Terminal-Medium-A-Normal-*-180-*- *-C- *.*- *

E-1

UIS Fonts to OECwindow Equivalents

Table E-1 (Cont.) VWS and OECwindows Fonts

VWS Font

DVVVSVTOK05AKOOPG0001QZZZZ02AOOO

DVVVSVTOK05AKOOPG0001UZZZZ02AOOO

DVVVSVTON03CKOOGG0001QZZZZ02AOOO

DVVVSVTON03CKOOGG0001 UZZZZ02AOOO

DVVVSVTON03CKOOPG0001QZZZZ02AOOO

DVVVSVTON03CKOOPG0001UZZZZ02AOOO

DVVVSVTON05AKOOGGOOO 1 UZZZZ02AOOO

DVVVSVTON05AKOOPG0001UZZZZ02AOOO

DVWSVTON060KOOGG0001 QZZZZ02AOOO

DVVVSVTON060KOOGG0001 UZZZZ02AOOO

DVVVSVTON060KOOPG0001 QZZZZ02AOOO

DVVVSVTON060KOOPG0001 UZZZZ02AOOO

DVVVSVTONOAKKOOGG0001UZZZZ02AOOO

DVWSVTONOAKKOOPG0001UZZZZ02AOOO

DVVVSVTOR03WKOOGG0001 QZZZZ02AOOO

DVVVSVTOR03WKOOPG0001 QZZZZ02AOOO

DVWSVTOR07SKOOGG0001QZZZZ02AOOO

DVVVSVTOR07SKOOPG0001QZZZZ02AOOO

DVVVSVTOV05AKOOGG0001UZZZZ02AOOO

DVVVSVTOV05AKOOPG0001UZZZZ02AOOO

DVVVSVTOVOAKKOOGG0001UZZZZ02AOOO

DVVVSVTOVOAKKOOPG0001UZZZZ02AOOO

DVVVSVT1 G03CKOOGG0001 UZZZZ02AOOO

DVVVSVT1G05AKOOGG0001UZZZZ02AOOO

DVVVSVT1103WKOOGG0001 UZZZZ02AOOO

DVVVSVT1 J05AKOOGG0001 UZZZZ02AOOO

DVVVSVT1J05AKOOPG0001UZZZZ02AOOO

DVVVSVT1 K05AKOOGG0001 UZZZZ02AOOO

DWSMENU003WKOOGG0001 UZZZZ02BOOO

DWSMENU003WKOOPGOOO 1 UZZZZ02BOOO

DWSMENU003WK01 GG0001 UZZZZ02BOOO

DWYSIFPJ03CKOOGG0001 UZZZZ02AOOO

DWYSIFPJ03CKOOPG0001 UZZZZ02AOOO

DWYSIFPJ03CK02GG0001 UZZZZ02AOOO

DWYSIFPL02SKOOGG0001 UZZZZ02AOOO

DWYSINS001 OKOOGG0001 UZZZZ02AOOO

DWYSINS001 OKOOPG0001 UZZZZ02AOOO

DWYSINS001 OK01 GG0001 UZZZZ02AOOO

E-2

Nearest DECwindows Equivalent

-*-Terminal-Bold-R-Normal-*-180-*-*-C- *-DEC-DECtech

- *-Terminal-Bold-R-Normal- *-180- *-*-C- *- *- *

-* -Terminal-Medium-R-Wide- * -140- *- *-C- *-DEC-DECtech

-* -Terminal-Medium-R-Wide-* -140-*-*-C-* -*-*

-* -Terminal-Bold-R-Wide- * -140- * - * -C- * -DEC-DECtech

-* -Terminal-Bold~R-Wlde- * -140- * - *-C- * - *- *

-*-Terminal-Medium-R-Normal- *-180- *- *-C- *-*-*

-*-Terminal-Bold-R-Normal- *-180-*-*-C-*- *-*

-* -Term i n al-M ed i u m-R-Narrow- * -280- * - * -C- * -DEC-DECtec h

-* -T flr~inal-Medium-R-Narrow- * -280- * - * -C- * -* -*

-*-Terminal-Bold-R-Narrow-*-280-*-*-C-*-DEC-DECtech

-* -Terminal-Bold-R-Narrow- * -280- * - * -C- * - * - *

-*-Terminal-Medium-R-Narrow-*-360-*-*-C-*-*-*

-* -Terminal-Bold-R-Narrow- * -360- * -* -C- * - * - *

-*-Termlnal-Medium-R-Double- *-140- *-*-C-*-DEC-DECtech

-* -Terminal-Bold-R-Double- * -140- * -* -C- * -DEC-DECtech

-*-Terminal-Medium-R-Normal-*-280-*-*-C-*-DEC-DECtech

-* -Terminal-Bold-R-Normal- * -280- * -* -C- * -DEC-DECtech

-*-Terminal-Medium-R-Double-*-180-*-*-C-*- *-*

-*-Terminal-Bold-R-Double- *-180-*- *-C-*-*-*

-*-Terminal-Medium-R-Normal-*-360-*-*-C-*-*-*

-*-Terminal-Bold-R-Normal- *-360-* - * -C- *- * -*

-*-Termlnal-Medium-R-Narrow-*-120-*- *-C- *-*-*

-* -Terminal-Medium-R-Narrow- * -180- * - * -C- * - * -*

-*-Terminal-Medlum-R-Normal- *-140- *-*-C- *-*-*

-*-Terminal-Medium-R-Normal- *-180-*-*-C-*-*-*

-*-Terminal-Bold-R-Normal-*-180-*-*-C-*-*- *

-* -Termlnal-Medium-R-Normal- * -180- * - * -C- * - * - *

-* -Times-Medium-R-Normal-*-140- * - *-P-* - *- *

-*-Times-Bold-R-Normal-*-140-*- *-P-*-*-*

-* -Times-Medium-I-Normal- * -140- * - * -P- * - * - *

-* -Courier-Medium-R-Normal- * -120- * - * -M- * -* - *

- * -Courier-Bold-R-Normal- *-120- * - *-M-* - *- *

-*-Courier-Medium-I-Normal-*-120-*- *-M-*-*-*

-*-Courier-Medium-R-Normal-*-1 00-* -* -M-* -*-*

-*-Times-Medium-R-Normal- *-120- *- * -P- * - *-*

-*-Times-Bold-R-Normal- *-120- *-*-P- *-*-*

-*-Times-Medium-I-Normal-*-120-*-*-P-*-*-*

UIS Fonts to DECwindow Equivalents

Table E-1 (Cont.) VWS and OECwindows Fonts

VWS Font

DWYSINS0028KOOGG0001 UZZZZ02AOOO

DWYSINS0028KOOPG0001UZZZZ02AOOO

DWYSINS0028K01 GG0001 UZZZZ02AOOO

DWYSINS002SKOOGG0001 UZZZZ02AOOO

DWYSINS002SKOOPG0001 UZZZZ02AOOO

DWYSINS002SK01 GG0001 UZZZZ02AOOO

DWYSINS003CKOOGG0001 UZZZZ02AOOO

DWYSINS003CKOOPG0001 UZZZZ02AOOO

DWYSINS003CK01 GG0001 UZZZZ02AOOO

DWYSINS003WKOOGG0001 UZZZZ02AOOO

DWYSINS003WKOOPG0001 UZZZZ02AOOO

DWYSINS003WK01 GG0001 UZZZZ02AOOO

DWYSINS0050KOOGG0001 UZZZZ02AOOO

DWYSINS0050KOOPG0001UZZZZ02AOOO

DWYSINS0050K01 GG0001 UZZZZ02AOOO

DWYSINS0060KOOGG0001 UZZZZ02AOOO

DWYSINS0060KOOPG0001 UZZZZ02AOOO

DWYSINS0060K01 GG0001 UZZZZ02AOOO

DWYSINSOOAOKOOGG0001 UZZZZ02AOOO

DWYSINSOOAOKOOPG0001 UZZZZ02AOOO

DWYSINSOOAOK01 GG0001 UZZZZ02AOOO

DWYSISS001 OKOOGG0001 UZZZZ02AOOO

DWYSISS001 OKOOPG0001 UZZZZ02AOOO

DWYSISS001 OK02GG0001 UZZZZ02AOOO

DWYSISS0028KOOGG0001 UZZZZ02AOOO

DWYSISS0028KOOPG0001 UZZZZ02AOOO

DWYSISS0028K02GG0001 UZZZZ02AOOO

DWYSISS002SKOOGG0001 UZZZZ02AOOO

DWYSISS002SKOOPG0001 UZZZZ02AOOO

DWYSISS002SK02GG0001 UZZZZ02AOOO

DWYSISS003CKOOGG0001 UZZZZ02AOOO

DWYSISS003CKOOPG0001 UZZZZ02AOOO

DWYSISS003CK02GG0001 UZZZZ02AOOO

DWYSISS003WKOOGG0001 UZZZZ02AOOO

DWYSISS003WKOOPG0001 UZZZZ02AOOO

DWYSISS003WK02GG0001 UZZZZ02AOOO

DWYSISS0050KOOGG0001 UZZZZ02AOOO

DWYSISS0050KOOPG0001 UZZZZ02AOOO

Nearest OECwindows Equivalent

- * -Times-Medium-R-Normal- * -80- * - * -p- * -" -"

-* -Times-Bold-R-Normal-" -80- * - * -p- * - * - *

-"-Times-Medium-I-Normal-*-80-*-*-P-"-"-*

-*-Times-Medium-R-Normal-"-1 00- *- ,,-p- *- *-"

- *-Times-Bold-R-Normal-*-', OO-*-*-P- "-*-"

-" -Times-Medium-I-Normal- * -100- * - * -P-" -* -*

-*-Times-Medium-R-Normal- *-120- *- *-P- "- "-*

-* -Ti mes-Bold-R-Normal-" -120- * - * -p- * - * - *

-* -Times-Medium-I-Normal- * -120- * - * -p- * - * - *

- * -Times-Medium-R-Normal- * -140- * - * -p- * -" -"

-*-Tlmes-Bold-R-Normal-*-140-*-*-P-*-*-*

-*-Times-Medium-I-Normal- *-140-*- o,-P-"-*-*

-* -Times-Medium-R-Normal- * -180- * -* -p- * -* - *

-* -Times-Bolci-P-Normal- * -180- * -* -p- * - * - *

-*-Times-Medlum-I-Normal-*-180-*-*-P-*-*-*

-*-Times-Medium-R-Normal-*-240-o,-*-p-*-,,-*

- * -Times-Bold-R-Normal- * -240- * -" -p- * -" - *

- * -Times-Medium-I-Normal- * -240- * - * -p- * - * - *

-*-Times-Medium-R-Normal-*-180-*-*-P- *- "-*

-*-Times-Bold-R-Normal-*-180-*-*-P-*- *-*

-*-Times-Medium-I-Normal- * -180- *. * .p- "- *-*

- *-Helvetica-Medium-R-Normal- * -120- * - * -p- * -." -"

- * -Heivetica-Bold-A~Normal-" -120-" -" -p-" -" - *

-*-Helvetica-Medium-R-Normal-* -120- * - * -p- * - *-*

-* -Helvetica-Medium-R-Normal- * -80-" -* -P-" - * -"

~ * -Helvetica-Bold-R-Normal-" -80- * - * -P-" -" -*

-*-Helvetica-Medium-A-Normal-*-80-"-*-P-*-*-*

- * -Helvetica-Medium-R-Normal- * -100- *- * -p- *- *- *

-* -Helvetica-Bold-R-Normal- * -1 00- * -* -p- * - * - *

-"-Helvetica-Medium-R-Normal-*-100-*-"-P-*-*-*

-*-Helvetica-Medium-R-Normal-"-120-*-*-P-*-"-*

-" -Helvetica-Bold-R-Normal-" -120-" -" -p- * -" -"

- * -Helvetlca-Medium-R-Normal-" -120- * - * -P-" -" -*

- * -Helvetica-Medium-R-Normal- * -140-" - * -P- * - * -"

-* -Helvetica-Bold-R-Normal-" -140- *-" -p-* -* - *

-*-Helvetica-Medium-A-Normal- "-140- "- "-P- *- *- *

-"-Helvetica-Medium-R-Normal-"-180-o,-,,-P-*-,,-*

-*-Helvetica-Bold-R-Normal- o,-180-"-"-P- "-*-"

E-3

UIS Fonts to DECwindow Equivalents

Table E-1 (Cont.) VWS and OECwindows Fonts

VWS Font

DWYSISS0050K02GG0001 UZZZZ02AOOO

DWYSISS0060KOOGG0001 UZZZZ02AOOO

DWYSISS0060KOOPG0001 UZZZZ02AOOO

DWYSISS0060K02GG0001 UZZZZ02AOOO

DWYSISSOOAOKOOGG0001 UZZZZ02AOOO

DWYSISSOOAOKOOPG0001 UZZZZ02AOOO

DWYSISSOOAOK02GG0001 UZZZZ02AOOO

RCOURIRG03WKOOGG0001 QZZZZ02BOOO

RCOURIRG03WKOOGG0001 UZZZZ02BOOO

RCOURIRG03WKOOPG0001 QZZZZ02BOOO

RCOURIRG03WKOOPG0001 UZZZZ02BOOO

RCOURIRI03WKOOGG0001 QZZZZ02BOOO

RCOURIRI03WKOOGG0001 UZZZZ02BOOO

RCOURIRI03WKOOPG0001 QZZZZ02BOOO

RCOURIRI03WKOOPG0001 UZZZZ02BOOO

RCOURIRN03WKOOGG0001 QZZZZ02BOOO

RCOURIRN03WKOOGG0001 UZZZZ02BOOO

RCOURIRN03WKOOPG0001 QZZZZ02BOOO

RCOURIRN03WKOOPG0001 UZZZZ02BOOO

RCOURIRN07SKOOGG0001 QZZZZ02BOOO

RCOURIRN07SKOOGG0001 UZZZZ02BOOO

RCOURIRN07SKOOPG0001 QZZZZ02BOOO

RCOURIRN07SKOOPG0001 UZZZZ02BOOO

RCOURIRR03WKOOGG0001 QZZZZ02BOOO

RCOURIRR03WKOOGG0001 UZZZZ02BOOO

RCOURIRR03WKOOPG0001 QZZZZ02BOOO

RCOURIRR03WKOOPG0001 UZZZZ02BOOO

RCOURIRR07SKOOGG0001 QZZZZ02BOOO

RCOURIRR07SKOOGG0001 UZZZZ02BOOO

RCOURIRR07SKOOPG0001 QZZZZ02BOOO

RCOURIRR07SKOOPG0001 UZZZZ02BOOO

E-4

Nearest DECwlndows Equivalent

- *-Helvetica-Medium-R-Normal- * -180- * - *-p- * - *- *

- * -Helvetica-Medium-R-Normal- * -240- * - * -p- * - *. *

- * -Helvetlca-Bold-R-Normal- * -240- * - * -p_ .. _ .. _ ..

- * -Helvetica-Medium-R-Normal-" -240-" _ .. -p_ .. _ .. _.

_ .. -Helvetica-Medium-R-Normal- "-180-" - .. _p_. _ .. _.

•• -Helvetica-Bold-R-Normal-" -180-· _. -p_ -*

- * -Helvetica-Medium-R-Normal- * -180- *- ._p-* - *_.

-"-Terminal-Medium-R-Narrow-·-140-·_·-C-"-DEC-DECtech

-·-Terminal-Medium-R-Narrow-*-140-·_· -C- "-*- *

_.-Terminal-Bold-R-Narrow-·-140-" _. -C- "-DEC-DECtech

_ .. -Terminal-Bold-R-Narrow-· -140- *. * -C- * _. -"

-·-Terminal-Medium-R-Normal-*-140-*-·-C-"-DEC-DECtech

-"-Termlnal-Medium-R-Normal-·-140- *- ·-C-"-·- *

_. -Terminal-Bold-R-Normal-· -140-· _. -C- .. -DEC-DECtech

- * -Terminal-Bold-R-Normal-" -140-" - * -C- * _. -"

·"-Terminal-Medlum-R-Wide-·-140-·-*-C-·-DEC-DECtech

_. -Terminal-Medium-R-Wide-" -140- * _. -C-· - * _.

_ •. Terminal-Bold-R-Wide-· -140-· _. -C-· -DEC-DECtech

_. -Terminal-Bold-R-Wide-· -140-· _. -C- * - * _.

-·-Terminal-Medium-R-Narrow-·-280-*-·-C-·-DEC-DECtech

_ .. -Terminal-Medlum-R-Narrow-" -280-" _. -C- * _. - *

-" -Terminal-Bold-R-Narrow- * -280-· _. -C-" -DEC-DEC tech

_. -Termlnal-Bold-R-Narrow-· -280- * _. -C- * _. -*

_. -Terminal-Medium-R-Double-· -140- * _. -C- * -DEC-DECtech

-*-Terminal-Medium-R-Double- *-140- *- ·-C-* - *-.

-*-Terminal-Bold-R-Double-*-140-*-*-C-*-DEC-DECtech

- *-Terminal-Bold-R-Double- *-140- * - * -C- *- * -*

-·-Terminal-Medium-R-Normal-·-280-·_·-C-*-DEC-DECtech

-·-Terminal-Medium-R-Normal-·-280-*-·-C-·_*_·

_. -Terminal-Bold-R-Normal-· -280-· _. -C- * -DEC-DECtech

-*-Terminal-Bold-R-Normal-·-280-·_·-C-*_·_·

F Color Conversion Routines

tmodule Color_Conversion "V01.0-000"

/*

*
* Facility:
*
* Color_cConversion

*
* Abstract:
*
* General usage conversion routines for HLS and HSV and RGB.
* The routines use the UIS conventions for Hue in HLS (centered
* at RED instead of BLUE).
*
* Environment:
*
* VMS/VAX-C
*
* Entry Points:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

All values are passed by reference, and F Floating.

Hue is always from 0 to 360, unless Saturation = 0
in which case it is ignored as input, and returns a
-1.0 as output.

All other values are expressed as a percentage from
0.0 to 1.0 inclusive.

HSV_to_RGB(Hue, Saturation, Value, Red, Green, Blue)

Hue.rf.r
Saturation.rf.r
Value.rf.r
Red.rf.w
Green.rf.w
Blue.rf.w

Hue, from 0 to 360
Saturation, from 0 to 1
Value, from 0 to 1
Red, from 0 to 1
Green, from 0 to 1
Blue, from 0 to 1

HLS_to_RGB(Hue, Lightness, Saturation, Red, Green, Blue)

Hue.rf.r
Lightness.rf.r
Saturation.rf.r
Red.rf.w
Green.rf.w
Blue.rf.w

Hue, from 0 to 360
Lightness, from 0 to 1
Saturation, from 0 to 1
Red, from 0 to 1
Green, from 0 to 1
Blue, from 0 to 1

RGB_to_HSV(Red, Green, Blue, Hue, Saturation, Value)

Red.rf.r
Green.rf.r
Blue.rf.r
Hue.rf.w
Saturation.rf.w
Value.rf.w

Red, from 0 to 1
Green, from 0 to 1
Blue, from 0 to 1
Hue, from 0 to 360, -1.0 if Saturation
Saturation, from 0 to 1
Value, from 0 to 1

RGB_to_HLS(Red, Green, Blue, Hue, Lightness, Saturation)

Red.rf.r
Green.rf.r
Blue.rf.r

Red, from 0 to 1
Green, from 0 to 1
Blue, from 0 to 1

0.0

F-1

Color Conversion Routines

*
*
*
*

Hue.rf.w
Lightness.rf.w
Saturation.rf.w

Hue, from 0 to 360, -1.0 if Saturation
Lightness, from 0 to 1

* Modification History:

*
*/

extern void HSV_to_RGB() ~
extern void HLS_to_RGB() ~
extern void RGB_to_HSV() ~
extern void RGB_to_HLS() ~
static float VALUE() ~

idefine mine(x,y,z)
idefine max3(x,y,z)

Saturation, from 0 to 1

(x < y)
(x > y)

? x:y
? x:y

< z
> z

?
?

(x < y) ? x:y
(x > y) ? x:y

void RGB_to_HSV (Red, Green, Blue, Hue, Saturation, Value)

float *Red, *Green, *Blue, *Hue, *Saturation, *Value~

/*

*
*

RGB_to_HSV - converts RGB values as input into HSV as output.

{

* All parameters are passed by reference and are floating point.

*
* RGB are read only, HSV are write only.

*
* A Saturation of 0 returns -1.0 as the Hue

*
*/

float max_value, min_value,
color_span,
red_content, green_content, blue_content~

/*
* Get the max and min values for RGB

*
*/

max value
min=value

/*
* Value

*
*/

max3(*Red, *Green, *Blue)~

mine(*Red, *Green, *Blue)~

max_value

*Value = max_value~

/*
* Now compute Saturation

*
*/

if (max_value 1= 0.0)
{

}
else

{

}

/*

*Saturation = (max_value - min_value) / max_value~

*Saturation O.O~

* And finally the Hue

*
*/

if (*Saturation 1= 0.0)
{

F-2

0.0

z)
z)

Color Conversion Routines

}

}
else

{

red_content
green content
blue_;ontent

(max_value - *Red) / color_span;
(max_value - *Green) / color_span;
(max_value - *Blue) / color_span;

if (*Red
{

max_value)

*Hue blue_content - green_content;
}

else
{

if (*Green = max_value)
{

*Hue 2.0 + red_content - blue_content;
}

else
{

*Hue 4.0 + green_content - red_content;
}

}

*Hue = *Hue * 60.0;
if (*Hue < 0.0) *Hue *Hue + 360.0;

/*

*
*
*

A Saturation of zero results in UIS$C_COLOR_UNDEFINED which
is a -1.0 in floating point

*/

*Hue -1.0;

void HSV_to_RGB(Hue, Saturation, Value, Red, Green, Blue)

float *Hue, *Saturation, *Value, *Red, *Green, *Blue;

/*

*
*

HSV_to_RGB - converts HSV values as input into RGB as output.

* All parameters are passed by reference and are floating point.

{

*
* HSV are read only, RGB are write only.

*
*/

int integer_hue;
float fractional_hue, p, q, t, h;

if (*Saturation == 0)
{
/*

}
else

{

* Strictly speaking, a Saturation of 0 means that Hue should
* contain UIS$C COLOR UNDEFINED, but the standard industry
* practice is t~ ignore Hue if the Saturation is o. The UIS
* call will signal an error if Hue is not -1.0

*
* This is the anachromatic case, where R = G = B
*/

*Red
*Green
*Blue

*Value;
*Value;
*Value;

h *Hue; /* A local copy of the Hue */

Value.

F-3

Color Conversion Routines

while (h < 0.0) h = h + 360.0~ /* Need a positive angle */
while (h >= 360.0) h = h - 360.0: /* Need it from 0-360, make 360 o */

h = h / 60.0~ /* Make it a value between 0 - 5.999999 */

integer_hue = h; /* Truncate Hue to a integer from 0-5 */
fractional_hue = *Hue - (float) integer_hue; /* Get the fractional part */

}

p *Value * (1.0 - *Saturation);
q *Value * (1.0 - (*Saturation * fractional_hue))~
t = *Value * (1.0 - (*Saturation * (1.0 - fractional_hue)))~

• Ih · h sw~tc (~nteger_ ue)
{

case 0:
case 6:

*Red
*Green
*Blue
break;

case 1:

*Red
*Green
*Blue
break;

case 2:

*Red
*Green
*Blue
break;

case 3:

*Red
*Green
*Blue
break;

case 4:

*Red
*Green
*Blue
break;

case 5:

*Red
*Green
*Blue
break;

}

*Value;
t~

p~

q~

*Value~

p~

p~

*Value~

t~

p;
q;
*Value~

t;
p~

*Value~

*Value~

p~

q;

void RGB_to_HLS (Red, Green, Blue, Hue, Lightness, Saturation)

float *Red, *Green, *Blue, *Hue, *Lightness, *Saturation~

F-4

Color Conversion Routines

/*

{

* RGB_to_HLS - converts RGB values as input into HLS as output.

*
* All parameters are passed by reference and are floating point.

*
* RGB are read only, HLS are write only.

*
* A Saturation of 0 returns -1.0 as the Hue, otherwise Hue is from 0 - 360

*
*
* ** NOTE ** This routine follows the UIS convention of RED at 0°
* instead of the industry standard convention of locating
* BLUE at 0°. To convert to industry standards, add 120°
* to the Hue result.

*
*/

float max_value, min_value,
color_span,
red_content, green_content, blue_content;

/*
* Get the max and min values for RGB

*
*/

max value
mtn:value

max3(*Red, *Green, *Blue);
mine(*Red, *Green, *Blue);

/*
* Compute Lightness

*
*/

*Lightness = (max_value + min_value) / 2;

if (max_value = min_value)
{

/*
* This is Red = Green = Blue: anachromatic

*
* A Saturation of zero results in UIS$C COLOR UNDEFINED for Hue
* which is a -1.0 in floating point. - -

*
*/

*Saturation
*Hue

0.0;
-1.0;

}
else

{
color_span

/*
* Compute Saturation

*
*/

if (*Lightness < 0.5)
{

}
else

{

}

/*

*Saturation = color_span / (max_value + min_value);

*Saturation

* Compute Hue

*
*/

F-5

Color Conversion Routines

}
}

red_content
green_content
blue_content

if (*Red
{

(max_value - *Red) / color_span;
(max_value - *Green) / color_span;
(ma:x_value - *Blue) / color_span;

*Hue blue_content - green_content;

else
{

}

if (*Green = max_value)
{

*Hue 2.0 + red_content - blue_content;

else

*Hue 4.0 + green_content - red_content;

*Hue = *Hue * 60.0;

if (*Hue < 0.0) *Hue *Hue + 360.0;

void HLS_to_RGB(Hue, Lightness, Saturation, Red, Green, Blue)

float *Hue, *Lightness, *Saturation, *Red, *Green, *Blue;

/*

*
*

HLS_to_RGB - converts HSV values as input into RGB as output.

{

* All parameters are passed by reference and are floating point.

*
* HLS are read only, RGB are write only.

*
* ** NOTE ** This routine follows the UIS convention of RED at 0°
* instead of the industry standard convention of locating
* BLUE at 0°. To convert to industry standards, the input
* Hue should have 120° subtracted from it.

*
*/

float m1, m2;

if (*Lightness < 0.5)
{

m2 = *Lightness * (1.0 + *Saturation);
}

else

m2 = *Lightness + *Saturation - (*Lightness * *Saturation);

m1 = (*Lightness * 2.0) - m2;

if (*Saturation 0)
{

/*
*
*
*
*
*

Strictly speaking, a Saturation of 0 means that Hue should
contain UIS$C_COLOR_UNDEFINED, but the standard industry
practice is to ignore Hue if the Saturation is o. The UIS
routine will signal an error if Hue is not -1.0, this will not.

* This is the anachromatic case, where R = G = B = Lightness.
*/

F-6

Color Conversion Routines

"'Red "'Lightness
"'Green "'Lightness
"'Blue = "'Lightness

else

"'Red = VALUE(ml, m2, "'Hue + 120.0):
"'Green = VALUE(ml, m2, "'Hue) :
"'Blue = VALUE(ml, m2, "'Hue - 120.0) :

static float VALUE(nl, n2, Hue)

float nl, n2, Hue:

while (Hue < 0.0) Hue += 360.0: /'" Need a positive angle "'/
while (Hue >= 360.0) Hue -= 360.0: /'" Need it from 0-360 "'/

if (Hue < 60.0) return(nl + «(n2 - nl) '" Hue) / 60.0»:
else

if (Hue < 180.0) return(n2);
else

if (Hue < 240.0) return(nl + «(n2 - nl) '" (240.0 - Hue» / 60.0»:
else return (nl);

/'" End of color_conversion module "'/

F-7

G Colormap Example

The following C code example illustrates a model to allocate Xll colors
that can have logical operations performed on the pixel values returned.
This enables such functions as COMPLEMENT mode.

/*
* The following module will allocate Xll colors that can have logical
* operations done on the pixel values returned - allowing such things
* as COMPLEMENT mode.

*
*/

tinclude <SSDEF>
tinclude <decw$include:Xlib.h>
tinclude <decw$include:Xutil.h>

/*
* This a virtual colormap structure. It contains the information needed
* for Xll use.

*
*/

typedef struct _vmap_struct {
short int type;
short int ref_count;
long int size;
Colormap id;
long int contig;
unsigned long int *masks;
long int num planes;
unsigned long int pixel;
long int num colors;
unsigned long int or mask;
long int slot_size; -
unsigned long indices[2];
} vmap_struct ;

tdefine XUIS __ CMAP_S_SIZE sizeof(vmap_struct)

0-1

Colormap Example

/*
* Routine:

*
* Description: Allocate colors for Xll so that logical operations can
* be done on the pixels.

*
* Inputs: virtual Colormap size

*
*
*
*
*
*/

outputs: A pointer to a structure containing the colormap
information. If the pointer is zero, the routine
failed.

unsigned long int xuis_create_color_map(display_id, vmap_size)

Display *display_id;
long int *vmap_size;

{

Screen *screen_id;
Visual *visual_id;
vmap_struct *pCmap;

long int

char

/*

status,
cmapSize
planes,
max,
color,
loop,
cbits,
black,
white;

*temp;

* Initialize to no map

*
*/
pCmap = 0;

/*
* UIS colormaps are emulated by allocating color cells for exclusive use.

*
* In reality, UIS rounds the size of the colormap up to a power of two so
* that all logical operators on the pixels will work. It then allocates
* the map as a multiple of this rounded size. The result is a color map
* which starts at a power of 2, so that the first entry's low-order bits are
* clear, and there is a fixed "offset" that is composed of the upper bits.
* all the operations mask the upper bits and operate on the low-order bits.

*
* For DECwindows, it's a little tricky. To be able to do logical operations
* (needed for things like complement mode) that rely on the current value
* of a pixel, we need to allocate colors so that the logical operation will
* yield a value that is valid (allocated to us). To do this we ask for
* n PLANES with a single color. Logical operations are done on the PLANE
* BITS and the PIXEL value is the constant (that is, pretty much the
* reverse of UIS). We'll create a virtual colormap that is an array of the
* PIXEL value with every permutation of the PLANE MASK bits arranged so
* that a complement of the zero'th entry results in the pixel value in the
* LAST entry.

*
* Note that if the system is Bitonal (single plane buffer), the array will
* be filled with the white pixel/black pixel values (which "should"
* complement to each otherl).

*
*/
if ((max

{
/*

*vmap_size - 1) < 1)

* Under UIS this would signal a error, the size must be greater

G-2

Colormap Example

* than 1. However, this will simple bump the plane count to 1.
*
*/
planes 1;

}
else

{

}

/*

/*
* Figure out how may planes by shifting right and incrementing the count
* until the value is zero.
*
*/
for (planes = 0; max> 0; max »= max)

{
planes += 1;

}

* Add the size of the colormap to the colormap structure (in LONGS)
* AND add that number of LONGWORDS for the plane arrays. There will be a
* pointer to the masks which is really within the block.
*
*/
cmapSize += (1 « planes) * 8;

/*
* Create the colormap structure and initialize it.
*
*/
if «status = lib$get_vm(&cmapSize, &pCmap»

{

}

pCmap->id = 0; /* No ID yet */

pCmap->size = cmapSize; /* Make sure the structure has a size */
pCmap->ref_count = 0; /* Reference count of ZERO */

pCmap->num_planes
pCmap->num_colors =
pCmap->pixel = 0;
pCmap->contig = 0;
pCmap->slot_size

/*

planes; /* Set the plane count */
1; /* Use 1 color and n planes */
/* Clear the PIXEL cell */
/* They do not have to be contiguous */

1 « planes; /* VMAP slot size */

* Calculate the address of the mask array area
*
*/
temp = pCmap;
temp += XUIS __ CMAP_S_SIZE + «1 « planes) * 4);
pCmap->masks = temp;

else
{
/*
* Error getting the virtual memory
*
*/
lib$signal(status);
return (0);

/*
* Get the default screen and visual for the display
*
*/
screen_id
visual_id

XDefaultScreenOfDisplay(display_id);
XDefaultVisualOfScreen(screen_id);

G-3

Colormap Example

/*
* use the default colormap, and allocate color cells for
* exclusive use •••

*
*/
pCmap->id = XDefaultColormapOfScreen(screen_id);

if ((visual_id)->class == PseudoColor)
{
/*

G-4

*
*
*
*
*
*/

This is ONLY done for psuedo color. We will treat
all other visuals as bitonal. This can change later,
since this should also work for direct color and static
grey.

if «status XAllocColorCells(display_id,
pCmap->id,
pCmap->contig,
pCmap->masks,
pCmap->num_planes,
&pCmap->pixel,
pCmap->num_colors))

{

}
else

{

0)

return (0);

/*
* Now, we need to build our virtual colormap.
* This is done by building an array of index
* values that are all the permutations of the
* 1 pixel and the 'n' planes. We do it such
* that the array is complementary. So when we
* do logical operations (like to do a complement
* mode write) we simply do it on the plane
* mask portion of the index.
*
* The main loop is for every entry in the colormap
* rounded up to the slot size.
*
* Example:
*
* 4 colors
*

2 planes + 1 color

* Allocation returns: PIXEL = 1, PLANES
*
* index
*
*
*
*
*
*

o
1
2
3

pixel value

1
11
21
31

10, 20 (hex)

* XORing this with the plane mask of 30, will always
* end up with the complement, and a valid pixel value.
*
*/
for (color

{
/*

0; color < pCmap->slot_size; color += 1)

* Start with the PIXEL and clone a copy of the
* current index
*
*/
pCmap->indices[color]
cbits = color;

pCmap->pixel;

}

}

/*
* For each plane, if the low bit of the cloned
* copy of the index count is set, or the plane
* mask bit into the pixel value. The cloned
* index count is then right shifted. The result
* is that for each bit in the current index value,
* the corresponding plane mask bit is ORed into the
* pixel value.
*
*/
for (loop = 0; loop < pCmap->num_planes; loop += 1)

{

}

if (cbi t.s & 1)
{

pCmap->indices[color] 1= (pCmap->masks) [loop];

cbits »= 1;

/*

else
{

* OR all the plane mask bits together to form a
* single plane mask
*
*/
pCmap->or_mask = 0;

for (loop = 0; loop < pCmap->num_planes; loop += 1)
{

pCmap->or_mask 1= (pCmap->masks)[loop];

/*

}

* Monochrome WS, use black and white pixel! propagate it
* as the default.
*
*/
black = XBlackPixelOfScreen(screen_id);
white = XWhitePixelOfScreen(screen_id):

for (color = 0: color < pCmap->slot_size; color += 2)
{

}

pCmap->indices[color]
pCmap->indices[color+1]

black;
white;

pCmap->or_mask = black 1 white;

return (pCmap);

Colormap Example

G-5

H Mapping UIS Writing Modes to X11 Attributes

This appendix provides information on how to map device-independent
and device-dependent writing modes to Xli attributes.

NOTE: To document its writing mode logical operations, UIS uses a notation that
is read right to left with the logical operation first. For example, read
DSNA = Destination Source Not And as follows:

(NOT Source) AND Destination

where:

D = Destination
S = Source
A = AND
N = NOT
0= OR
X = XOR

Both the UIS notation and the actual operations are explained in the
following section.

H-1

Mapping Device-Independent UIS Writing Modes to X11
UIS$C_MODE_ TRAN

function =

fill type =

H-2

Transparent mode uses the function GXnoop. The logical UIS operation Is
D (dst). The fill type and foreground/background have no meaning.

GXnoop

FillSolid

foreground

background

function =

fill type =

Mapping Device-Independent UIS Writing Modes to X11
UIS$C_MODE_COPY

Copy mode is the function GXcopy. The logical UIS operation is S (src).
The fill type is Opaque Stippled and the foreground and background are
normal.

GXcopy

FillOpaqueStippled

foreground

background

H-3

Mapping Device-Independent UIS Writing Modes to X11
UIS$C_MODE_COMP

function =

fill type =

H-4

Complement mode is the UIS function DSX (src XOR dst). With the plane
mask used as the source, the colormap is set up to enable this. Thus,
you can use XOR mode in Opaque Stipple fill with the plane mask as the
source.

GXxor

FillOpaqueStippled

plane mask

plane mask

function =

fill type =

Mapping Device-Independent UIS Writing Modes to X11
UIS$C_MODE_COPYN

This is the UIS function SN (NOT src). It is identical to "copy," except that
it has the GXlnverted function.

GXcopylnverted

FillOpaqueStippled

foreground

background

H-5

Mapping Device-Independent UIS Writing Modes to X11
UIS$C_MODE_OVER

function =

fill type =

H-6

In UIS, Overlay mode is the function you use to write all ONES using the
secondary MASK 2 as a stencil. In X11, you accomplish this by using
Fill Stippled with the GXcopy function. This uses the source as a mask
and writes foreground to the destination, masking off any bits not in the
foreground. (These bits remain unchanged.)

GXcopy

FillStippled

foreground

background

function =

fill type =

Mapping Device-Independent UIS Writing Modes to X11
UIS$C_MODE_OVERN

This is the inverse function of Overlay mode (above). In UIS, it is described
as follows: ONES use (NOT MASK_2).

GXcopyInverted

FillStippled

foreground

background

H-7

Mapping Device-Independent UIS Writing Modes to X11
UIS$C_MODE_REPL

function =

fill type =

H-8

Replace mode In UIS Is S (src). It Is simply the copy function with opaque
stipple and the correct background and foreground.

GXcopy

FillOpaqueStippled

foreground

background

function =

fill type =

Mapping Device-Independent UIS Writing Modes to X11
UIS$C_MODE_REPLN

This is the inverse function of UIS$C_MODE_REPL, SN (NOT src).

GXcopylnverted

FillOpaqueStippled

foreground

background

H-9

M~pping Device-Independent UIS Writing Modes to X11
UIS$C_MODE_ERAS

function =

fill type =

H-10

In UIS, this would be equivalent to write ZEROS, with the plane mask used
as the virtual colormap. InX11, this is simply GXcopy with solid fill and
both background and foreground set to the background pixeL

GXcopy

FillSolid

background

background

function =

fill type =

f_pixel =

b_pixel =

Mapping Device-Independent UIS Writing Modes to X11
UIS$C_MODE_ERASN

This is the inverse of UIS$C_MODE_ERAS (ONES). The only difference is
that you use the foreground pixel instead of the background pixel.

GXcopy

FillSolid

foreground

foreground

H-11

Mapping Device-Dependent UIS Writing Modes to X11
. UIS$C_MODE_BIS

function =

fill type =

H-12

This function is DSO (src OR dst) in UIS. This is device-dependent and
unless you create and use a private colormap, there is no guarantee that
you will achieve the desired results.

GXor

FillStippled

foreground

background

function =

fill type =

Mapping Device-Dependent UIS Writing Modes to Xt1
UIS$C_MODE_BIC

This device-dependent mode Is DSNA (NOT src AND dst) in UIS.

GXandlnverted

FillStippled

foreground

background

H-13

Mapping Device-Dependent UIS Writing Modes to X11
UIS$C_MODE_BISN

This DSNO (NOT src OR dst) in UIS.

function = GXorInverted

fill type = FillStippled

foreground

background

H-14

function =

fill type =

Mapping Device-Dependent UIS Writing Modes to X11
UIS$C_MODE_BICN

This is DSA (src AND dst) in UIS.

GXand

FillStippled

foreground

background

H-15

Mapping Device-Dependent UIS Writing Modes to X11
UIS$C_MODE_XOR

This is the final device-dependent mode, DSX (src XOR dst).

function = GXxor

fill type = FillStippled

foreground

background

H-16

Index

A
Application coordinates

in inches • 1-3
in kilometers • 1-3
in pixels • 1-3
in seconds • 1-3

Application port • viii
Applications

difficulty in porting • 1-1
ATB. B-1
ATBs. 1-7

B
Backing store

under VWS • 1-4
under X11 • 1-4

Byte-stream protocol • 2-4

c
CDA. 2-5
Clipping

UIS· 1-3
X11 • 1-3

Colormap
benefits • 1-6

Colormaps
UIS use of. 1-6
X11 use of • 1-6

Color specification • 1-7
Compound document architecture • 2-5
Compound string

features. 4-2
CONVERT utility • 2-4
Coordinates

device. 1-3
world· 1-3

D
DDIF • 2-4, 2-5
DECwindows • vii

clipboard • 4-1
ease of translation from UISDC$.• 2-2
event processing loop • 1-9
fonts • 1-9
gadget. 2-4
memory requirements • 2-3
no window integrity for occluded areas • 2-2
replacement for VWS • vii
running with MS-DOS • vii
running with UL TRIX • vii
running with VAXNMS • vii
standard program interface • vii
unsupported functionality • 2-2
widget. 2-4

DECwindows application
writing • 2-1

DECwindows toolkit
contents • 2-3, 4-1
objects. 4-2

Digital Resource Manager
functions • 6-1

Display list implementation
tree structure • 2-7

Display lists • 1-9
Doorbe" AST • 1-9
Drawing primitives

function • 1-4
DRM

functions • 6-1

E
Event-dispatch loops • 2-2

G
Gadget. 2-4
GC. 8-1

Index-1

Index

GCs. 1-7

H
Hardware applicability • vii
Hierarchy

X11 windows. 1-4

I
Input events • 1-9
Interface

kernel-based, procedural • vii
message-based • vii
message-based, procedural • vii

K
Keyboard

attaching in UIS • 1-10
changing focus in X11 • 1-10

L
Line drawing

UIS • 1-5
X11 • 1-5

Local area network
mixed hardware • vii
mixed software • vii

M
Migration tools • 2-4
Modifying X11

protection • 1-2

o
Open Software Foundation

Index-2

Open Software Foundation (Cont.)

UIL and. 5-1
OSF

UIL and. 5-1
Overhead • 1-4

X11·1-10

p
Polygon drawing • 1-7
Polygons

as regions in X11 • 1-8
Porting applications

ease of. 2-3
Primitives

drawing • 1-4
Private colormap

consequences • 1-5
Protocol message packets

building • 1-2

T
Terminal emulators

DECwindows. 1-11
VWS. 1-11

Transparent window. 1-4
Tree structure

X11 windows • 1-4

u
UIS

Cartesian coordinate system • 1-3
design. 1-2
event driven design • 1-9
fonts • 1-9
world coordinate system • 1-3

UIS-based program structure • 2-6
UIS colormap emulation • 1-6
UIS data files

modification to DECwindows format • 2-4
UIS notation • H-1

v
Virtual display. 1-4
VMS Compound Document Architecture Manual. A-3
VMS DECwindows Desktop Applications Guide • A-1
VMS DECwindows Device Driver Manual· A-3
VMS DECwindows Guide to Xlib Programming: MIT C

Binding • A-2
VMS DECwindows Guide to Xlib Programming: VAX

Binding. A-2
VMS DECwindows Toolkit Routines Reference Manual

• A-2
VMS DECwindows User's Guide • A-1
VMS DECwindows User Interface Language

Reference Manual • A-2
VMS DECwindows Xlib Routines Reference Manual •

A-2
VMS Guide to Application Programming • A-2
VWS

design • 1-1
design functions • 2-1
virtual display • 1-9
window integrity • 2-2

w
Widget. 2-4
Widgets • 4-2

manipulating • 4-3
Window

transparent • 1-4
Window origin

pixel locations • 1-3
UIS window • 1-3
X11 window. 1-3

Windows
UIS usage • 1-4
X11 usage. 1-4

Workstation input
prerequisites • 1-3

Workstation output
prerequisites • 1-3

World coordinates
translation • 1-3

x
X11

access to graphic windows • 2-2
application characteristics • 2-2
child • 1-4
design. 1-1, 1-2
device-independent design • 1-2
mapping • 1-4
parent window • 1-4
unsupported features • 2-2
window hierarchy • 1-4
window tree structure • 1-4
writing modes • 1-5

X11 input events • 1-9
X11 overhead • 1-10
Xlib

procedural interface • 1-2
Xlib-based program structure • 2-6
Xlib interface

virtual address space • 2-3
Xlib programming

characteristics • 2-5
XUI Style Guide • A-2

Index

Index-3

VWS V4.2
A Guide to Migrating VWS Applications to DECwindows

AA-MI67A-TE

Reader's
Comments

This form is for document comments only. Digital will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible
to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other(p~asespecijy)~~~~~~~~~~~~~~~~~~~~~~

Name __ ~Date~~~~~~_

Organization ___ _

Street~ __ _

City __ ~~ _____________ State, ______ Zip Code, _____ _

or Country

I
----------------- D() N()t Tear - 1'()ld Here and Tape ------------------------1

1

1

1

1

1

1

~DmDDmDTM

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MA YN.A.RD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

VWS Engineering/Documentation
Digital Equipment Corporation
5 Wentworth Drive GFS/L20
Hudson, NH 03051-4929

111 ••••• 11.11 •••• 1.1 •••• 111.1 •• 1.1 ••• 1 •• 11.1 •• 11 ••• 1

No Postage

Necessary

if Mailed in the

United States

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

I
I
I
I
I
I
I
I
I

---------------------. D() N()t Tear -1'()ld Here --------------------- I
1

I
I
I
I
I
I
I
I
I
1

I
I
I
I
I
I

