VMS Workstation
Software

Video Device Driver
Manual

Order Number: AA-DY65E-TE

June 1989

The VMS Workstation Software Video Device Driver Manual provides
technical information about the QVSS and QDSS drivers.

This manual contains Update Notice 1, AD-DY65E-T1.

Operating System and Version: VMS Version 5.0 and later
Software Version: VMS Workstation Software Version 4.1

Digital Equipment Corporation

June 1989

The information Iin this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1989 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP

VT
DECSYSTEM-20 PDT ™
DECUS RSTS Hﬂ@ﬂﬂaﬂ
DECwriter RSX

This document was prepared using VAX DOCUMENT, Version 1.1

INSTRUCTIONS

The enclosed pages are to be placed in the VMS Workstation Software Video
Device Driver Manual as replacements for or additions to the current pages.
On replacement pages, changes and additions are indicated by vertical bars

(h-

Keep this notice in your manual to maintain an up-to-date record of

changes.

Copyright Digital Equipment Corporation 1989

All Rights Reserved.
Printed in U.S.A.

Old Page(s)

New Page(s)

Title/Copyright

iiifiv through xi/xii

1-1/1-2 through 1-3/1-4
1-9/1-10 through 1-11/1-12
2-15/2-16

2-19/2-20 through 2-23/24
Chapter 3

4-7/4-8

4-13/4-14

4-23/4-24

5-7/5-8 through 5-9/5-10
5-17/5-18 through 5-21/5-22
5-69/5~70 through 5-71/5-72
Appendix A

Appendix B

Appendix C

Index—-1/index-2 through
Index-5/Index—6

Reader's Comments/Mailer

Title/Copyright

iii/iv through xi/xii

1-1/1-2 through 1-4.1/blank
1-9/1-10 through 1-12.1/blank
2-15/2-16

2-19/2-20 through 2-24.1/blank
Chapter 3‘

4-7/4-8

4-13/4-14

4-23/4-24

5-7/5-8 through 5-9/5-10
5-17/5-18 through 5-21/5-22
5-69/5-70 through 5-71/5-72
Appendix A

Appendix B

Appendix C

‘Index—1/Index-2 through Index-5/Index—

6

Contents

Contents

PREFACE

xi

CHAPTER 1 VIDEO DEVICE DRIVER INTRODUCTION 1-1
1.1 OVERVIEW OF THE DRIVERS 1-1
1.1.1 Driver Differences 1-2
1.2 CHOOSING AN INTERFACE 1-3
1.3 HOW THE DRIVERS WORK 1-4
' 1.3.1 Defining Regions on the Screen 1-4
1.3.2 Driver Communication Mechanisms 1-4.1
1.3.2.1 QIO Interface * 1-5
1.3.2.2 Request Queue Interface ¢ 1-6
1.3.3 How Drivers Use Memory 1-6
1.3.3.1 How QVSS Uses Video Memory ¢ 1-7
1.3.3.2 How QDSS Uses Video Memory ¢ 1-9
1.3.4 How the Drivers Track Screen Events 1-12
1.3.5 Cursor Pattern List 1-12
1.3.6 Pointer Button Transition List 1-13
1.3.7 Pointer Movement List 1-13
1.3.8 Keyboard Entry List 1-14
1.3.9 Occlusion 1-15
1.3.10 Viewports 1-15
1.3.10.1 Viewport Update Regions ¢ 1-15
1.3.10.2 Using Update Regions for Occlusion ¢ 1-16
1.3.11 QDSS Drawing Operation Queues 1-16
1.3.11.1 Request Queue ¢ 1-16
1.3.11.2 Return Queue ¢ 1-17
1.3.12 Deferred Queue 1-18
L]}
CHAPTER2 PROGRAMMING TO THE DRIVER 2-1
21 INITIALIZING THE SCREEN 2-1
2.2 ACCESSING THE SYSTEM INFORMATION BLOCK 2-1

V4.1—June 1989

Contents

2.3 USING CHANNELS WITH VIDEO DEVICE DRIVERS 2-2
2.4 USING THE KEYBOARD 2-3
2.4.1 Receiving Keyboard Input 2-3
2.4.2 Keyboard Characteristics 2-6
2.4.3 Modifying the Keyboard Table 2-7

2.4.3.1 Constructing a Keyboard Table with Macros ¢ 2-7
2.43.2 Constructing a Keyboard Table Without Macros ¢ 2-9
2433 Loading a Keyboard Table ¢ 2-11

2.4.4 Composing Nonstandard Characters 2-11
2.4.5 Constructing Compose Sequence Tables 2-12
2451 Using Macros to Construct Compose Sequence
Tables » 2-15

24572 Loading a Compose Table ¢ 2-16

25 USING A POINTER DEVICE 2-17
2.6 USING THE TYPE-AHEAD BUFFER 2-20
2.6.1 Getting Input from the Type-Ahead Buffer = 2-20
2.7 INTERCEPTING INPUT 2-21
2.8 DEFINING CURSOR PATTERNS 2-21
2.8.1 Multiplane Cursor Patterns 2-22
2.9 USING AN ALTERNATE WINDOWING SYSTEM 2-24
2.10 DRAWING TO THE QVSS SCREEN 2-24
2.10.1 Manipulating Bits in Video Memory 2-24
2.10.2 Mapping Video Memory to the Screen 2-24.1
2.11 CREATING A QDSS VIEWPORT ~ 2-25
2.11.1 Assigning a Viewport Channel 2-25
2.11.2 Getting a Viewport ID 2-25
2.11.3 Defining a Viewport - 2-25
2.11.4 Starting the Viewport : 2-26
2.12 DRAWING WITH THE QDSS DRIVER 2-28

iv . V4.1—June 1989

Contents

2.13 USING BITMAPS 2-28
2.14 SYNCHRONIZING VIEWPORT ACTIVITY 2-29
2.15 HANDLING OCCLUSION 2-31
2.15.1 Redefining Viewports 2-31
2.15.2 Securing Exclusive Access to the Bitmap 2-32
2.15.3 Popping an Occluded Viewport 2-36
2.16 DELETING A VIEWPORT 2-40
2.16.1 Synchronizing Viewport Deletion 2-41
2.16.2 Erasing a Viewport 2-41
2.17 MOVING A VIEWPORT 2-45
2.18 USING THE DEFERRED QUEUE 2-45
2.19 USING COLOR 2-46
2.19.1 Informing the Driver About Color 2-47
2.19.2 Manipulating Color Map Values 2-47
CHAPTER3 QVSS/QDSS COMMON QIO INTERFACE 3-1
3.1 HOW TO USE THIS CHAPTER 3-1
3.1.1 QIO Description Format 3-2

DEFINE POINTER CURSOR PATTERN 3-3

ENABLE BUTTON TRANSITION 3-8

ENABLE DATA DIGITIZING 3-13

ENABLE FUNCTION KEYS 3-17

ENABLE INPUT SIMULATION 3-20

ENABLE KEYBOARD INPUT 3-23

ENABLE KEYBOARD SOUND 3-29

ENABLE POINTER MOVEMENT 3-31

ENABLE USER ENTRY 3-35

GET KEYBOARD CHARACTERISTICS 3-37

GET NEXT INPUT TOKEN 3-39

GET NUMBER OF LIST ENTRIES 3-40

GET SYSTEM INFORMATION 3-41

INITIALIZE SCREEN 3-42

LOAD COMPOSE SEQUENCE TABLE 3-43

LOAD KEYBOARD TABLE 3-45

MODIFY KEYBOARD CHARACTERISTICS 3-47
V4.1—June 1989 v

Contents

MODIFY SYSTEMWIDE CHARACTERISTICS 3-51
REVERT TO DEFAULT COMPOSE TABLE 3-55
REVERT TO DEFAULT KEYBOARD TABLE 3-56
R
CHAPTER 4 QDSS-SPECIFIC QIO INTERFACE 4-1
4.1 HOW TO USE THIS CHAPTER 4-1
4.2 QIO DESCRIPTION FORMAT 4-2
DEFINE VIEWPORT REGION 4-3
DELETE DEFERRED QUEUE OPERATION 4-5
EXECUTE DEFERRED QUEUE 4-6
GET COLOR MAP ENTRIES 4-7
GET FREE DOPS 4-9
GET VIEWPORT ID 4-10
HOLD VIEWPORT ACTIVITY 4-12
INSERT DOP 4-13
LOAD BITMAP - 4-14
NOTIFY DEFERRED QUEUE FULL 4-18
READ BITMAP 4-19
RELEASE HOLD 4-22
RESUME VIEWPORT ACTIVITY 4-23
SET COLOR CHARACTERISTICS 4-23
SET COLOR MAP ENTRIES 4-24
START REQUEST QUEUE 4-26
STOP REQUEST QUEUE 4-27
SUSPEND OCCLUDED VIEWPORT ACTIVITY 4-28
SUSPEND VIEWPORT ACTIVITY 4-29
WRITE BITMAP 4-30
CHAPTER S USING DRAWING OPERATION PRIMITIVES 5-1
5.1 OVERVIEW OF DOPS 5-1
5.2 DOP STRUCTURE 5-2
5.3 IMPLEMENTING DOPS IN THE UiS ENVIRONMENT 5-3
56.3.1 Allocating Storage for DOPs in the UIS Environment ___ 5-3
5.3.1.1 Allocation Mechanism ¢ 5-3
5.3.1.2 Modifying DOP Size and Number ¢ 5-4
5.3.2 Executing DOPs in the UIS Environment 5-5

vi

5.3.2.1 Execution Mechanism ¢ 5-6

V4.1—June 1989

Contents

5.4 IMPLEMENTING DOPS IN A NON-UIS ENVIRONMENT 5-6
5.4.1 Allocating Storage for DOPS in a Non-UIS Environment _ 5-7
5.4.2 Executing a DOP in a Non-UIS Environment 5-9
5.5 STRUCTURING AND INITIALIZING DOPS 5-9
5.5.1 Common Block 5-10
5.5.2 Unique Block 5-12
6§.5.3 Variable Block 5-12
5.5.4 Programming Considerations 5-12
5.6.4.1 The Predefined DOP Structure ® 5-12
5.5.4.2 Using the Examples ¢ 5-13
5.6 THE DOP REFERENCE 5-15
COMMON BLOCK 5-16
DELETE BITMAP 5-23
DRAW COMPLEX LINE 5-24
DRAW FIXED TEXT 5-28
DRAW LINES 5-31
DRAW POINTS 5-34
DRAW VARIABLE TEXT 5-37
FILL LINES 5-41
FILL POINT 5-44
FILL POLYGON 5-48
MOVE AREA 5-52
MOVE/ROTATE AREA 5-56
RESUME VIEWPORT ACTIVITY 5-61
SCROLL AREA . 5-63
START REQUEST QUEUE 5-67
STOP REQUEST QUEUE 5-69
SUSPEND VIEWPORT ACTIVITY 5-70
5.7 UISDC DOP INTERFACE 5-72
5.7.1 Loading Bitmaps into Offscreen Memory 5-72
UISDCSALLOCATE_DOP 5-74
UISDC$LOAD_BITMAP 5-76
UISDCSEXECUTE_DOP_ASYNCH 5-78
UISDCS$EXECUTE_DOP_SYNCH 5-80
UISDC$QUEUE_DOP 5-81
—— N N
APPENDIXA QVSS/QDSS DATA STRUCTURES A-1
V4.1—June 1989 vii

Contents

APPENDIXB QDSS-SPECIFIC DATA STRUCTURES B-1

APPENDIXC QDSS WRITING MODES C-1

APPENDIXD QVSS PROGRAMMING EXAMPLE D-1

D.1 PROGRAMMING D-1

D.1.1 Program Functions D-1

D.1.2 QVSS Program Example D-2

APPENDIX E KEYBOARD TABLE MACRO E-1

APPENDIXF COMPOSE TABLE MACROS F-1

APPENDIX G DEFAULT THREE-STROKE COMPOSE TABLE VALUES G-1

APPENDIXH $QIO SYSTEM SERVICE DESCRIPTION H-1

$QI0 SYSTEM SERVICE DESCRIPTION H-2

APPENDIX| DEC MULTINATIONAL CHARACTER SET -1

APPENDIX J ISO LATIN NR 1 SUPPLEMENTAL CHARACTER SET J-1
INDEX

viii va.1—June 1989

Contents

EXAMPLES
2-1 Enabling Keyboard Requests 2-5
2-2 Modifying the North American Keyboard 2-10
2-3 Loading a Keyboard Table 2-11
2-4 Loading a Three-Stroke Compose Sequence 2-15
2-5 How to Load a Three-Stroke Compose Table 2-16
2-6 How to Program a Pointer Motion AST 2-18
2-7 Typical Programming and Use of Pointer Button ASTs 2-20
2-8 Assignment of a Single-Plane Cursor Region Pattern 2-23
2-9 Creating a Viewport 2-27
2-10 Securing Bitmap Access 2-34
2-11 Popping a Viewport 2-37
2-12 Deleting a Viewport 2-42
5-1 Allocating a DOP 5-4
5-2 Queuing a DOP for Execution 5-6
5-3 Allocating a DOP 5-7
5-4 Inserting a DOP on the Request Queue 5-10
5-5 Calling Program for Example Subroutines 5-14

L

FIGURES
1-1 The Driver Interface 1-2
1-2 QVSS Video Memory and Scanline Map 1-8
1-3 Scanline Map Mapping Nonconsecutive Memory 1-9
1-4 QDSS Video Map 1-10
1-5 Cycling the Keyboard List 1-14
1-6 Viewport Update Region Data Structure 1-16
2-1 Keyboard Table Layout 2-8
2-2 Keyboard Table Description 2-10
2-3 Three-Stroke Compose Sequence Table Description 2-12
2-4 Three-Stroke Compose Sequence Table 2-13
2-5 Two-Stroke Compose Sequence Table Description 2-14
2-6 Two-Stroke Compose Sequence Table 2-15
2-7 Viewport and Update Region Definition Buffer 2-26
2-8 Synchronizing Viewport Activity 2-29
2-9 Occluded Viewport 2-31
2-10 Redefining Viewports with URDs 2-32
2-11 Indexing the Hardware Color Map 2-48
4-1 Large Font Defined Across Bitmap Blocks 4-16
5-1 How the Source Index Works 5-20
-1 DEC Multinational Character Set—I 1-2
1-2 DEC Multinational Character Set—II 1-3

V4.1—June 1989

ix

Contents

TABLES
1-1
2-1
2-2
2-3
3-1
4-1
5-1
5-2
c-1
c-2

Device Driver Differences

1-2

Key States

2-8

Diacritical Characters

2-9

Diacritical Characters

2-13

QIO Functional Groups

3-1

QDSS QIO Functional Groups
Redefinition of Logical Values

4-1

5-5

5-11

Symbolic Constants
QDSS Writing Modes

C-1

QDSS Writing Mode Modifiers

C-2

V4.1—June 1989

Preface

The VMS Workstation Software Video Device Driver Manual provides a
programmer with the necessary information for writing applications that
manipulate the QVSS and QDSS drivers.

It is structured to serve as both a tutorial manual that will bring an
experienced programmer up to speed on driver concepts and as a reference
manual that can be used for quick reference during actual application
programming.

QIOs and system routines used when you program to the driver are
provided in reference form. Data types used to program to the drivers are
illustrated in the reference sections, and all the data types are summarized
in two data-type appendixes.

Intended Audience

The information contained in this manual is for experienced graphics
programmers or systems programmers who are writing applications directly
to the driver.

Document Structure

This manual has the following structure:

* Chapter 1 describes concepts and terms needed to understand
programming to the driver interface.

¢ Chapter 2 describes how to perform driver interface tasks that are
common to both the QVSS and QDSS systems.

e Chapter 3 describes the common QVSS/QDSS QIO interface.
¢ Chapter 4 describes the QDSS-specific QIO interface.

e Chapter 5 describes how to use the Drawing Operation Primitive
interface.

¢ Appendix A describes all QVSS/QDSS common data types.

¢ Appendix B describes all QDSS-specific data types.

e Appendix C describes all multiplane writing modes.

e Appendix D contains a full QVSS driver example.

* Appendix E contains macros used to construct keyboards.

* Appendix F contains macros used to construct compose tables.

¢ Appendix G contains the default three-stroke compose table macros.
e Appendix H contains the $QIO system service description.

e Appendix I contains the DEC multinational character set table.

xi

Preface

e Appendix] contains the ISO Latin NR 1 supplemental character set.

Associated Documents

The following VMS manuals are related to this manual:
e VMS Workstation Software Graphics Programming Guide
e VMS Workstation Software User’s Guide

e VMS User’s Guide

Conventions

xii

This manual uses the following conventions in displaying the syntax
requirements of user input to the system and in displaying examples:

Conventions Meaning

RETURN key The RETURN key is not always shown in formats and
examples. Assume that you must press RETURN
after typing a command or other input to the system
unless instructed otherwise.

CTRL key The word CTRL followed by a slash followed by
a letter means that you must type the letter while
holding down the CTRL key. For example, CTRL/B
means hold down the CTRL key and type the letter B.

Lists When a format item is followed by a comma and

an ellipsis (, . . .), you can enter a single item or a
number of those items separated by commas. When
a format item is followed by a plus sign and an ellipsis
(+ ...), you can enter a single item or a number of
those items connected by plus signs. If you enter a
list (more than one item), you must enclose the list in
parentheses. A single item need not be enclosed in

parentheses.
Optional items An item enclosed in square brackets ([]) is optional.
Key Symbols In examples, keys and key sequences appear as
symbols such as |PF2| and [CTRL/Z].
Ellipsis , A vertical ellipsis indicates that some of the format or

example is not included.

Delete Key The key on the VT200 series terminal keyboard
that performs the DELETE function is labeled <X].
Assume that DELETE in text and examples refers to
both the VT100 and VT200 series delete keys.

Examples Examples show both system output (prompts,
messages, and displays) and user input. User input
is printed in red.

1

1.1

Video Device Driver Introduction

This chapter introduces the concepts and terms that describe how to write
an application to interact with the QVSS and QDSS video device drivers.

This chapter describes the following topics:
e The two available video device drivers (QVSS and QDSS).

¢ How to determine which programming interface your application
should address. (Your application might not need to write to a device
driver.)

¢ How the two drivers address the screen.

¢ How the drivers use memory.

* How an application accesses a driver.

Some of the concepts and terms described in the following sections apply

to both drivers, while others are specific to one driver. The manual clearly
notes sections that describe specific concepts.

Overview of the Drivers

A VAXstation can have one of the following two video device drivers:
e (QVSS-QBus Video Subsystem
e (QDSS-QBus Device Subsystem

Although both drivers allow you to create graphics applications with
VAXstation features, each driver requires unique hardware. Thus, a
VAXstation can be configured with either a QVSS driver or a QDSS driver
but not both.

The device drivers provide a common interface to VAXstation hardware
functions such as manipulating memory and writing to the screen. By
using a common interface, applications can guarantee that the hardware
is accessed uniformly. All VAXstation software uses the driver to access
hardware, either directly or indirectly. Figure 1-1 illustrates the layered
relationship of applications, VAXstation software, device driver, and
VAXstation hardware.

V4.1—June 1989 1-1

Video Device Driver Introduction

Figure 1-1 The Driver Interface

User Application

Z
GKS Software
AN
UIS/UISDC Interface
|]
QVSS QDSS
Driver Driver
] |
Workstation Hardware

.1.1 Driver Differences

The primary differences between the QVSS driver and the QDSS driver
are:

e Use of color
¢ Use of global sections
* Method of bitmap manipulation

* Ability to provide alternate windowing systems

Table 1-1 lists device driver capabilities.

Table 1-1 Device Driver Differences

Driver
Feature QVss QDss
Color Bitonal Gray-scale, color
Memory One-plane Multiplane
Bit Manipulation Direct DOPs
Alternate Windowing Available Not available

V4.1—June 1989

Video Device Driver Introduction

Color

The QVSS device driver is designed for use with a one-plane memory
system. It is therefore restricted to the use of black and white images.

The QDSS device driver is designed for use with multiplane memory
systems, so the QDSS driver draws color and gray-scale images.

Bitmap Manipulation

The QVSS driver supports only direct bitmap manipulation. If you write an
application to the QVSS driver, your application is completely responsible
for drawing to the bitmap.

The QDSS driver provides drawing operation primitives (DOPs) that make
drawing to the bitmap easier and faster. DOPs use additional multiplane
hardware to accelerate drawing.

Alternate Windowing

The QVSS driver provides a way to alternate between the UIS windowing
system and a windowing system of your own design. When you use an
alternate windowing system, both windowing systems share video memory.

The QDSS driver does not currently provide a way to alternate between
windowing systems; it supports only one windowing system at a time.

1.2 Choosing an Interface

When you write an application, determine which level of interface your
application should address. As shown in Figure 1-1, your application

can address the system at the UIS level, the driver level, or the hardware
level. For each successive level downward, your application increases its
degree of control but increases its difficulty and the amount of work it must
perform.

UIS and UISDC Interface

UIS, the VAXstation graphics operating system, provides a basic set of

graphic primitive, color, and windowing routines to use when you write
high-level graphics applications. UIS routines use a device-independent
world coordinate system.

If your application requires direct access to display coordinates, it can use
UISDC routines, which allow you to manipulate primitives in a device-
dependent manner. The UIS and UISDC routines are described in the
VMS Workstation Software Graphics Programming Guide.

If the UIS interface provides all the necessary functionality for your
application, address the UIS interface.

Driver Interface

Your application can bypass the UIS/UISDC interface and manipulate the
driver directly. This feature allows you to create graphics packages tailored
to your specific needs. For example, you can design your own windowing
system, or you can provide your own drawing routines.

V4.1—June 1989 : 1-3

Video Device Driver Introduction

Hardware Interface

You can bypass both the UIS interface and the driver interface and directly
address the hardware. If your application does not need a windowing
system, consider writing directly to the hardware. How to address

the hardware directly is beyond the scope of this manual. Refer to the
hardware documentation for information about the hardware interface.

.3 How the Drivers Work

Before you can write to the driver interface, you should understand the
concepts and terms explained in this section.

.3.1 Defining Regions on the Screen

Both drivers address rectangular portions of the screen called regions. The
QDSS driver accesses regions of the screen as viewports. Section 1.3.10
describes viewports. Your application uses driver interface QIOs to define
addressable screen regions.

For the driver to define a region, your application must associate the region
with a unique channel. The channel provides a logical path that connects
an application to the device driver. Before you define a region, call the
$ASSIGN system service to obtain a unique channel number for the region.
(The VAX/VMS System Services Reference Manual has more information on
$ASSIGN.)

When your application defines a region, it associates the region with one of
the following events:

e Cursor pattern

¢ Keyboard input

¢ Pointer button transition
¢ Pointer movement

* Viewport (QDSS only)

The QIO you use to define the region determines the type of event the
driver associates with the region. For example, if you want the driver to
associate a region with button transitions, define the region with the Enable
Button Transition QIO. To cause an action to occur when the event is
detected in that region, include the address of an AST action routine as

a parameter of the region-defining QIO. For example, you can define a
region, associate it with a button transition, and specify that the region be
erased when the driver detects the transition.

The driver detects when an event occurs and ensures that the proper action
takes place. Section 1.3.4 describes how the drivers manage regions and
events.

V4.1—June 1989

Video Device Dr/iver Introduction

1.3.2 Driver Communication Mechanisms

An application can use a QIO interface to access either driver. An
application can also use a mechanism called the request queue to access
the QDSS driver.

V4.1—June 1989 1-4.1

Video Device Driver Introduction

1.3.2.1

QIO Interface
The QIO interface is the method of access common to most drivers. The

QVSS and QDSS drivers provide a number of QIOs that perform the
following driver-specific functions:

® Screen initialization
¢ Pointer movement region definition

* Bitmap copy performance

While the QIO interface is common to both drivers, some QIOs are
QDSS-specific. Any driver QIO can be used with the QDSS driver, (see
Chapter 4), while the QIOs that apply to both the QVSS and QDSS drivers
are a subset of the entire QIO interface (see Chapter 3).

Most QIOs are input functions. When you call them, you typically
specify IO$_SETMODE as the function parameter. In these QIOs, the
P1 parameter actually serves as the distinguishing function code.

The remaining QIOs are output functions. When you call them, you
typically specify IO$_SENSEMODE as the function parameter. In these
QIOs, the P1 parameter actually serves as the distinguishing function code.

Although the QIO interface permits a wide range of functions, some

are grouped together in functional categories. The following sections
contain general descriptions of those categories. (See Chapters 3 and 4 for
complete descriptions of all QIOs.)

Tracking Associated Events and Regions

Several input QIOs permit an application to construct list entries. To
associate regions with events, the QVSS and QDSS drivers maintain one
list for each event type. Typically, when you define a region, you use an
input QIO that passes the driver the following information:

* Region description
e Associated event

e Address of an AST routine that defines the action to take when the
event occurs

The driver uses this information to construct a list entry, which it places
on the appropriate list. When an event occurs, the driver searches the lists
and triggers the AST indicated by the appropriate list entry. Section 1.3.4
explains how the driver constructs and manages lists.

Returning System Information

Your application gets information from the system with output QIOs. The
Get System Information QIO returns the system information block, which
describes the state of the system in:

¢ Dimensions (and subdivisions) of video memory
¢ Current pointer position

¢ Current button status

1-5

Video Device Driver Introduction

The QDSS system information block contains all the same fields as

the QVSS information system block, but includes additional fields.
Appendices A and B illustrate and describe the structure of both system
blocks:

¢ QVB—QVSS system information block
* QDB—QDSS system information block

You can also use the Get Keyboard Characteristics QIO to inquire about
the characteristics of the current keyboard.

On QDSS systems only, you can obtain a viewport ID for use in subsequent
operations, as well as color map information. See Section 1.3.10 for
information about viewports.

Queue Manipulation
This section applies only to QDSS systems.

To manipulate the QDSS-specific queues, you use three QDSS-specific
output QIOs:

* Request queue

* Return queue

¢ Deferred queue

These QIOs permit an application to stop and start processing queues. The

request queue is briefly described in the next section. A full description of
the three queues appears at the end of this chapter.

1.3.2.2 Request Queue Interface
This section applies only to QDSS systems.

The request queue interface, which allows your application to perform
drawing operations and to manipulate queues, requires less overhead than
the QIQ interface.

To operate the request queue, your application uses drawing operation
primitives (DOPs), structures that contain the data needed to perform a
drawing operation. Your application submits DOPs to the request queue
for execution. The request queue is a double-linked list of all the DOPs
waiting for execution. DOPs are placed on the queue in execution (drawing)
order.

Section 1.3.11 describes the QDSS-specific queues in detail. Chapter 5
describes how to use DOPs.

1.3.3 How Drivers Use Memory

To write to the screen, an application actually writes to video memory. The
driver then maps the video memory to the screen. To understand how to
program to the drivers, you must understand how the drivers use memory.

Video Device Driver Introduction

1.3.3.1

NOTE:

How QVSS Uses Video Memory

The VAXstation display area is 1024 x 864 pixels. The full QVSS video
memory is a 1024- x 2048-bit block of memory or, to correspond to the
screen, 2048 lines of 1024 pixels. To map lines of video memory to lines
on the screen, QVSS uses a data structure called the scanline map.

The scanline map is a contiguous-word index into video memory, which
indexes the entire screen display area (864 lines). Each entry in the scanline
map is a O-relative, 16-bit word value that functions as an index into video
memory. The first entry in the scanline map locates the first line of the
screen display; the second entry contains the second line, and so forth.
For each bit set on an indexed line of video memory, the driver sets a
corresponding pixel on the display screen.

However, since a maximum of 864 lines of video memory can display at a
time and total video memory is 2048 lines, QVSS video memory is referred
to in two sections:

* Onscreen memory—Any portion of video memory currently displayed.
Since the largest VAXstation display is 864 lines, that is the maximum
size of onscreen memory.

¢ Offscreen memory—The 1184 undisplayed lines of video memory.

You use offscreen memory to store images or fonts that are not currently
being displayed, as well as to handle occlusion (see Section 1.3.9).

On a VAXstation 2000 monochrome monitor, system video memory is
slightly different. One screen of video memory is available (1024-bit x 864-
bit). Also, the hardware scanline map is not available. The system always
displays 864 scanlines of video memory with the first scanline starting at
the first byte of video memory. Therefore, you cannot change the scanline
order.

Figure 1-2 illustrates the layout of QVSS memory.

1-7

Video Device Driver Introduction

Figure 1-2 QVSS Video Memory and Scanline Map

2048
Lines

Video Memory Scanline Map Display

(Overlaid)
M.apped 16 x 16| Hardware
Line Of Bit c
Memory its ursor

—
1024 Bits

MLO-1068-87

Hardware Cursor

The screen cursor is defined by a separate block of hardware memory as
follows:

* QVSS single-plane cursor systems—16 x 16 bits
¢ QDSS multiplane cursor systems—16 x 32 bits

This block stores the bitmap image of the cursor pattern. It is not part of
video memory.

The driver uses the hardware to overlay the video signal sent to the screen
(see Figure 1-2). This arrangement eliminates the need for a save and
restore operation in video memory each time the cursor moves or a write
to video memory occurs. Section 2.8 describes how to define cursor
patterns.

Scanline Map

Note that the scanline map need not index consecutive lines of video
memory. That is, an object can be represented in nonconsecutive lines
in video memory (when there is not enough consecutive memory), yet
appear on consecutive lines on the screen. Figure 1-3 illustrates how the
scanline map properly maps to the screen two objects represented in
nonconsecutive memory.

Video Device Driver Introduction

Figure 1-3 Scanline Map Mapping Nonconsecutive Memory

Video Memory Scanline Map Display
800
:
400
401
[PN 400 1010
7 = 401 1011

Fa A 800
L] FAN 801

[1010
\/ 1011

ZK-5247-86

Accessing QVSS Video Memory

QVSS permits direct bitmap access, such that an application can set bits
directly in video memory.

An application can write to QVSS video memory with any suitable
computer language (FORTRAN, MACRO, and so forth). However, before
it writes to video memory, an application must issue the Get System
Information QIO to obtain the QVSS system block (QVB), which contains
all the information necessary to write to video memory. See Appendix A
for a complete description of the QVB.

An application should issue a QVB request for each process. Because the
address of the system block does not change, a process can obtain the
QVB address once and continue to reference fields in the QVB until the
process terminates.

1.3.3.2

How QDSS Uses Video Memory

The largest possible VAXstation display is a 1024- by 864-pixel area, or
864 lines that are 1024 pixels in length. The full QDSS video memory is a
2048- by 1024-pixel block of memory or, to correspond to the screen, 2048
lines that are 1024 pixels in length. QDSS maps video memory directly
to the screen. In the case of the largest display, it maps the first 864 lines
of video memory to the screen. This portion of video memory is called
onscreen memory.

V4.1—June 1989 1-9

Video Device Driver Introduction

The remaining 1184 lines of video memory are called offscreen memory.
Offscreen memory handles occlusion. The offscreen portion of the video
memory is further divided into the following fixed-length sections:

® Scrolling save area
¢ Reserved area
® Free_1 area

¢ Bitmap storage area

Figure 1-4 illustrates the layout of QDSS memory and shows relative
coordinates for the beginning and end of each area.

Figure 1-4 QDSS Video Map

(0,863) (1023,863)

Onscreen Memory
864 lines (max.)

(0,0) (1023,0)

Scrolling Save Area
(0,-28) 28 lines (1023,-28)

Reserved Area
(0,-34) 5 lines (1023,-34)

Free_1 Area
1080 lines

(0,-1114) (1023,-1114)
Bitmap Storage Area
(0,-1184) 70 lines (1023,-1184)

Note that the lower left corner of onscreen memory is assigned the
coordinate (0,0). This corresponds to the lower left corner of the display.
(All viewports are defined relative to this base.) Therefore, any coordinate
with a negative Y element is in offscreen memory.

Scroll Area

The driver uses the scroll area to process downward scrolls. This area is
reserved for the driver and cannot be accessed by the application.

Free_1 Area

Free_1 is the largest area of free memory. An application can use this
memory for any operations.

V4.1—June 1989

Video Device Driver Introduction

Bitmap Storage Area

The driver uses this area to store bitmaps:
¢ Fonts

¢ Images

e Pattern fills

The area has a 70-line by 1024-bit block of memory for each memory plane on the system. To
accommodate more fonts in memory, some planes partition the 70-line blocks into two 35-line
sections. An application uses this area to load any defined bitmaps stored in VAX memory.

Use the Load Bitmap QIO or the UISDC$LOAD_BITMAP routine to load
the information in VAX memory into the bitmap storage area.

NOTE: If a bitmap does not fit into the bitmap storage area, the application must
partition the information into one 70-line section for a single-plane image
or two 35-line sections for multiplane images.

QDSS Video Memory Access

QDSS does not permit direct bitmap access. Use the DOP interface to
draw to video memory, and use the Read Bitmap and Write Bitmap QIOs
to copy images to video memory.

Viewports—The QDSS driver must direct all operations to the screen
via a viewport. An application can create viewports or use the default
systemwide viewport (the full screen). See Section 1.3.10 for more
information about viewports.

Exclusive Bitmap Access—Your application might require exclusive bitmap
access to video memory. When you perform an exclusive-access operation,
no other operation should access onscreen memory. Since the QDSS
driver controls onscreen memory access, an application must always notify
the driver of a pending exclusive bitmap operation.

Bitmap Transfers—The QDSS driver can perform three types of bitmap
transfers:

¢ VAX memory-to-bitmap

* Bitmap-to-VAX memory

¢ Bitmap-to-bitmap
Drivers use the QIO interface to execute transfers, which require exclusive bitmap access for
synchronization.

QDB—An application can issue the Get System Information QIO to obtain
the QDSS system block (QDB). The QDB contains information about video
memory that an application needs to manipulate video memory. See
Appendix B for a complete description of the QDB.

V4.1—June 1989 1-11

Video Device Driver Introduction

1.3.4 How the Drivers Track Screen Events

To track events that occur on the screen, the QVSS and QDSS drivers keep
a list for each of the following event types:

¢ Cursor pattern change

* Pointer button transition

* Pointer movement

* Keyboard entry

The drivers also manage a user entry list that your application can use for
general storage purposes.

The drivers associate each of the first three events with a specific region;
they associate the keyboard entry event with the entire screen.

When you define a region with a QIO, the driver uses the information you
pass it to construct a list entry, which it places on the appropriate list. List
entries typically contain the following information:

* Region definition

* Address of any AST routine defined to take action when the event
occurs

¢ Any AST parameter (token)

When an event occurs, the driver searches the appropriate list; it uses the
region definition to identify which list entry AST to issue. For example,

if the driver detects a button transition, it searches the button transition
list to determine whether the region where the transition occurred has a
button transition AST enabled. For a keyboard entry, the first entry on the
keyboard list is always invoked.

The following sections summarize how drivers handle each type of event.

1.3.5 Cursor Pattern List

1-12

The cursor pattern list determines the pattern of the cursor for a region.
Use the Define Pointer Cursor Pattern QIO to define the cursor shape and

_ hot spot for a region. The list entry contains the following information:

¢ Unique channel ID

® Address of a 16 X 16 (16-word) bitmap that defines the shape of the
cursor

¢ Cursor hot spot, a point on the 16- by 16-pixel cursor that defmes exact
placement of the cursor image

* Cursor background style

¢ Region definition

See the Define Pointer Cursor Pattern QIO description for more details.

V4.1—June 1989

Video Device Driver Introduction

When the driver detects cursor movement, it searches the cursor pattern
list for the appropriate ASTs to deliver. If a cursor pattern is to change, the
bitmap image of the new pattern is located and loaded into the hardware.
The new pattern is then superimposed on the appropriate area of the
screen.

V4.1—June 198 1-12.1

Video Device Driver Introduction

1.3.6 Pointer Button Transition List

The driver uses this list to determine what action to take when a pointer
button transition occurs. A button transition can be either up or down. It is
detected by the hardware.

A button transition event occurs when you press or release the pointer
button within a region defined with the Enable Button Transition QIO. Each
pointer button transition list entry contains the following information:

¢ Unique channel ID
* AST address
* Region definition

* Address of the longword to receive the input token indicating which
pointer button is activated

When a pointer button transition occurs, the driver searches the pointer
button transition list for an entry describing the new region. The AST
routine defined for that region determines what occurs when a pointer
button is pressed. A token passes to the specified AST routine to signal
the following:

¢ Which button made a transition

* Type of transition (up or down)

The Enable Button Transition QIO description explains how button
transitions are represented.

If regions for pointer button transitions overlap, priority is given to the first
rectangle on the list.

1.3.7 Pointer Movement List

The driver uses the pointer movement list to determine what action to take
when the pointing device is moved. Use the Enable Pointer Movement
QIO to define a region in which to take special action when pointer
movement occurs. Each pointer motion list entry contains the following
information:

* Unique channel ID

e AST address

* Region definition

* Address of the longword to receive the input token indicating the

current physical position of the pointer

As the driver searches the list, it compares the current pixel position of the
pointer with the region definitions of all list entries. The current pointer
location determines what event to trigger. If regions for pointer motion
events overlap, priority is given to the first region on the list.

If the pointer cursor moves outside a currently active region, a special exit
token of -1 passes to the AST to notify it of the occurrence. When the
cursor leaves the region, a process might want to perform some cleanup
functions.

1-13

Video Device Driver Introduction

1.3.8 Keyboard Entry List

The driver uses the keyboard entry list to determine the process to which
it should deliver keyboard input. An application can use the Enable
Keyboard Input QIO to request keyboard ownership. The driver then
delivers input keystrokes to the process via AST routines you specify in the
QIO. Keyboard list entries are not associated with regions. One keyboard
is associated with each assigned channel.

Each keyboard list entry contains the following information:
* Unique channel ID
* AST service routine address

* Address of the longword that receives an input token when the AST
routine is called

See the Enable Keyboard Input QIO description for more details.

This event differs from others, because when the first entry on the list
is invoked, the list is not searched. The driver always inserts the active
keyboard entry at the beginning of the list.

Popping or cycling operations cause a keyboard to become active. Cycling
moves the current first entry on the list to the back of the list. Figure 1-5
illustrates cycling.

Figure 1-5 Cycling the Keyboard List

Keyboard Entry List

Keyboard A

Keyboard B

Keyboard C

ZK-5249-86

Popping moves an entry from any position to the front of the list.

1.3.9 Occlusion

1-14

In a windowing system, more than one window can address the same area
of the screen. However, only one window can be displayed in one area at
a time. Occlusion occurs when one window display hides some or all of
another display.

Programming to the Driver

2.4.5.1

Using Macros to Construct Compose Sequence Tables

To construct a compose table, initialize it, then load the sequences you
want to define. VMS Workstation Software provides macros to generate
compose tables in SYSSLIBRARY:VWSSYSDEF.MLB:

¢ VC$COMPOSE_KEYINIT—Initializes the table
¢ VC$COMPOSE_KEY-Loads individual sequence definitions
* VC$COMPOSE_KEYEND—Terminates the table

These macros are also described in Appendix F.

Initializing a Table

Call VC$COMPOSE_KEYINIT to initialize a table. This macro has two
parameters:

* The address of the table, which it returns after it allocates space and
initializes the table. Specify this parameter and use the returned
address when you load the table.

e The Compose_2 flag, which, if set equal to YES indicates that a
two-stroke sequence table should be built. If the flag is not set, a
three-stroke table is built.

Loading a Compose Sequence

Call VC$COMPOSE_KEY to load a compose sequence. This macro has
four parameters that permit you to define the two input characters (either
the two standard keys for a three-stroke sequence or the diacritical and
standard key for a two-stroke sequence), the output string, and the output
string length. Example 2-4 illustrates loading a three-stroke compose
sequence.

Example 2-4 Loading a Three-Stroke Compose Sequence

VCSCOMPOSE_KEY <*a/A/>,- ; input A
<~a/"/>;- ; input "
- ; default output length
<"xc4d> :+ output character

Terminating a Table

Call VC$COMPOSE_KEYEND to terminate a keyboard table. This macro
returns one parameter, the length of the table. Typically, you specify this
parameter and use the returned length when you load the table.

V4.1—June 1989 2-15

Programming to the Driver

2.45.2 Loading a Compose Table
To load a compose table, use the Load Compose Sequence Table QIO
with the address and size of the table and the channel of the keyboard
entry with which you want to associate the table. The VC$COMPOSE_
KEYINIT and VC$COMPOSE_KEYEND macros return address and length,
respectively.

VMS Workstation Software is shipped with copies of the Digital standard
three-stroke and two-stroke compose tables that reside in the driver. These
tables are the default until you load alternates.

NOTE: Digital standard two-stroke compose sequerces are not supported on the
North American keyboard.

To revert to the default compose table, call the Revert to Default Compose
Table QIO.

Example 2-5 illustrates how to load a three-stroke compose table.
(Appendix D shows this example in the context of a complete application
program.)

Example 2-5 How to Load a Three-Stroke Compose Table

SET_COMPOSE3_TABLE:

MOVL #<I0$C_QV_LOAD_COMPOSE_TABLE>, RO
$QIOW_S CHAN = KBD_CHAN1, - ;1 change the compose table
FUNC = #IO$_SETMODE, -
P1 = (RO), - ‘
P4 = #COMPOSE3_TBL_LEN, - ; three-stroke table size
P5 = #COMPOSE3_TBL ; three-stroke table addr
BLBS RO,5$;s not set on error
BRW ERROR

5$: RSB
VCSCOMPOSE_KEYINIT COMPOSE3_TBL generate an
empty table

fill the table here

o we we ~e

r
VCSCOMPOSE_KEY <”a/A/>,<”a/"/>,,<"xcd>
VC$COMPOSE_KEY <~a/RA/>,<"a/’'/>,,<"xcl>
VC$COMPOSE_KEY <*a/A/>,<~a/*/>,,<"xc5>
VC$COMPOSE_KEY <”a/A/>,<”a/A/>,<@>
VCSCOMPOSE_KEY <~a/A/>,<*a/E/>,,<"xc6> ; order sensitive
VCS$COMPOSE_KEY <”a/A/>,<”a/~/>,,<"xc2>
VC$COMPOSE_KEY <~a/A/>,<"*a/_/>,,<"xaa>

VC$COMPOSE_KEYEND COMPOSE3_TBL_LEN end the table
and determine its

length

~e ~e ~e

2-16 V4.1—June 1989

Video Device Driver Introduction

e Use the MACRO instruction INSQUE

At specific intervals, the driver scans all request queues to check for work.
If a queue contains DOPs, the driver removes the DOPs from the queue
and performs the specified operations. The packets are stored on the
queue in drawing operation order.

Certain screen management circumstances require that request queue
processing stop. Sometimes it is appropriate to stop a single viewport
request queue; sometimes all viewport request queues must be stopped.
The QIO interface contains a number of QIOs that manipulate the request
queue. (A few DOPs also manipulate the request queue in a limited
way.) Chapter 2 describes the circumstances under which an application
manipulates the request queue.

1.3.11.4

Return Queue

A DOP is a data structure for which storage must be allocated. If you
process a large number of DOPs without any restrictions, they might
consume all available system memory (or enough to degrade performance
considerably).

The QDSS driver provides the return queue for an application to reuse
storage allocated for DOPs. The return queue, like the request queue,

is a doubly linked list. Once a DOP is completely processed, the driver
removes it from the request queue and inserts it on the return queue by
simply updating the links. A DOP on the return queue is called a free DOP.

To save space, an application can check the return queue for used DOP
storage before it allocates memory for new drawing operations.

Allocating DOPs

To allocate storage for DOPs, use either the UISDC interface (see
Chapter 5) or memory allocation system routines. When you allocate a
DOP, initialize the DOP size fields of the DOP queue structure and the
request queue structure (see Appendix B). You can choose either small or
large size.

Before it allocates new storage, an application should check the return
queue for reusable DOP storage. (The UISDC interface does this.) An
application can force the driver to wait for a DOP from the return queue by
using the Get Free DOPs QIO. One of the parameters for this QIO allows
an application to specify how many return queue DOPs to wait for before
returning control to the application. The application can then reuse the
storage by removing a DOP from the return queue.

This feature can prevent allocation of too much system memory. For
example, an application allocates 300 DOPs for processing on the request
queue; before processing is complete, the application needs more DOPs
for additional operations. If the application can allocate all the additional
DOPs it requires, the application might consume all available system
memory. However, when you specify a high number of DOPs to the
Get Free DOPs, the application halts further memory allocation until that
number of DOPs is available for reuse.

1-17

Video Device Driver Introduction

Return Queue Characteristics

Because DOPs are allocated in two sizes, it is logical to regard the return
queue as actually two queues, one where small DOPs are returned and
another where large DOPs are returned. When you issue the Get Free
DOPs QIO, you specify the number of DOPs to wait for as well as the
specific return queue.

Alternate Return Queue

By default, a return queue is associated with each viewport through the
DOP queue structure. However, you can use an alternate return queue

to share return queues on a per-process or systemwide basis. To do this,
specify the address of a return queue structure as the fourth parameter of
the Get Viewport ID QIO when you create the viewport. (In this case, the
return queue section of the viewport DOP queue structure is ignored.) See
Appendix B for a description of this structure.

1.3.12 Deferred Queue

1-18

NOTE:

When a portion of a viewport is occluded onscreen, one option is to write
to an update region in offscreen memory. Sometimes, however, offscreen
memory is so crowded that you cannot keep an update region there. In
that case, you must save the writing operations on the deferred queue.

The driver stores all operations directed to a portion of an unavailable
viewport to the QDSS hardware on the deferred queue. Deferred queue
operations can be executed whenever the previously occluded portion of
the viewport becomes available.

To prevent the deferred queue from consuming system resources, an
application should update occluded viewports when the queue is full.
The Notify Deferred Queue Full QIO informs an application the deferred
queue is full.

The Execute Deferred Queue QIO executes the operations on the deferred
queue. Chapter 2 contains additional information on deferred queue
operations.

Programming to the Driver

2 An optional user-defined AST parameter delivered to the AST.

3 Access mode at which to deliver the AST (maximized with the
current access mode).

4 The address of a longword where the driver stores the button
transition value (token) when the AST service routine is called.

Your application uses this longword to determine which pointer
button has undergone a transition. The button transition value (the
token) is a decimal value that indicates which button is activated;
the transition values are 400, 401, 402, and 403. The system assigns
these values to the pointer buttons sequentially starting with the
select button, which is always 400. The driver stores the token

.in the low-order word of the longword. Bit 15 of the high-order
longword determines whether the transition is up or down: 1
equals down and 0 equals up.

The rest of the high-order word contains more control information
that can be used to determine if the Shift, Control, or Lock keys
are pressed. You can use these keys in combination as mefa-keys as
follows:

e Bit 14 corresponds to the Shift key
* Bit 13 corresponds to the Control key
¢ Bit 12 corresponds to the Lock key

* The address of a pointer button characteristics block that determines
whether delivery of subsequent transitions depends on all buttons
being in the up position. By default, the specified button transition
AST gets every transition until all buttons are returned to the up
position. (See the description of this data structure in Appendix A.)

e Address of a screen rectangle values block that describes the region
associated with the button transition AST.

By default, an entry is placed at the top of the list. However, you can
determine the position of the entry in the list by specifying optional
modifiers to the QIO. The modifiers can be used to perform the following
functions:

¢ Place the entry last on the list (QV_LAST)
¢ Deléte the entry (QV_DELETE)
® Purge the type-ahead buffer (QV_PURG_TAH)

If a button changes state (is clicked up or down), the driver checks the
pointer position against the region descriptors of the button list entries.
When the driver finds a region descriptor with the current pointer position,
it fires the associated button transition AST.

If two regions overlap, the first one on the list gets the AST.

V4.1—June 1989 2-19

Programming to the Driver

Example 2-7 Typical Programming and Use of Pointer Button ASTs

SET_BUTTONAST:

$ASSIGN_

BLBS

BRW
108: MOVL

$QIOW_S

BLBS

BRW
20$: RSB
BUT_BLOCK:

. LONG
. LONG
. LONG
+ LONG

BUT_REGION:
. LONG
. LONG
. LONG
. LONG

S DEVNAM=WS_DEVNAM, -

CHAN=BUT_CHAN

RO, 10$

ERROR
#I0$C_QV_ENABUTTON, RO
CHAN=BUT_CHAN, -
FUNC=#10$_SETMODE, -
P1l=(RO), -
P2=#BUT_BLOCK, -
P6=4BUT_REGION

RO, 20$%

ERROR

BUT_AST
0

0
BUTTON

20

300
300

~e ~e we ws we ~e =

assign channel using
logical name and
channel number

no error if set
error

enable button trans.
channel

QI0 function code
driver function code
associated AST block
associated region

no error if set

~e Ne e w6 we we me we w8 “e we ~e

button transition AST
specification block
AST address

AST parameter

access mode

button information
longword

associated region
lower left corner

upper right corner

Example 2-7 illustrates the typical programming and use of pointer button
ASTs. (Appendix D shows this example in the context of a complete
applications program.)

2.6 Using the Type-Ahead Buffer

From keyboard input, pointer movement, and button transitions, the
driver accepts three kinds of input: character input, pointer position, or
button transition value. Often, input is received faster than an application
processes it. When this happens, the character and button information is
stored in the fype-ahead buffer. (Pointer movement inputs the new pointer
position, but if the input cannot be delivered, it is ignored, not buffered.)

The type-ahead buffer is part of each entry on the list. It is 128 bytes long,
so you can buffer 32 input tokens (each token is four bytes long).

2.6.1

2-20

Getting Input from the Type-Ahead Buffer

You can obtain input from the type-ahead buffer in two ways:

* When you enable the entry, associate a repeating AST with it to process
buffered input continuously. (For keyboards, you can also associate a
repeating AST when you modify the keyboard.)

V4.1—June 1989

2 Programming to the Driver

This chapter describes the following:

¢ How to perform programming tasks when you write to the video device
drivers

* How to perform tasks common to both drivers or specific to either the
QVSS or the QDSS driver

* How to use specific QIOs and DOPs in combination to perform tasks
Chapter 3 and Chapter 4 explain each function of the QIO interface in

detail. Chapter 5 describes the QDSS system DOPs available for drawing
to the display.

2.1 Initializing the Screen

NOTE:

You must initialize the screen before you can write to it. Initialization
places the VAXstation screen in a known state. Once initialization is
complete, an application can issue QIOs and begin screen operations.

You must initialize the screen before you perform a draw operation. If you
fail to do this, the drawing operation will not work properly.

To initialize the screen, use the Initialize QIO. This QIO has no parameters
and is invoked only once for each application.

2.2 Accessing the System Information Block

The system information block (QVB or QDB, depending on your system) is
a data structure that both drivers use to store information about the current
state of video memory. This data structure consists of a number of fields;
each is associated with a symbolic constant used to reference the field. See
Appendices A and B for a full illustration and explanation of each field in
these data structures.

To obtain the address of the system information block, use the Get System
Information QIO. This QIO returns a descriptor that contains the address
and size of the block. To access any field in the block, use the returned
address and the symbolic constants defined for that field.

Using the QDB

If a QDSS application is using only the UISDC DOP interface, it does not
have to access the QDB. However, under some circumstances (for example,
if it manipulates the pointer position or requires tablet information), it
might need the system information stored in the QDB. Example 2-12,
later in this chapter, shows how an application uses the QDB to get the
systemwide viewport ID.

Programming to the Driver

2-2

Using the QVB

Typically, before a QVSS application can perform a drawing operation, it
must obtain specific video memory information from the QVB:

* Starting address of video memory to set bits (draw) in memory

* Address of the scanline map to map to the screen any lines in memory
it wants to display

Section 2.10 describes how to use the QVB for drawing operations. The
following code segment shows a call that obtains the descriptor for the
QVB.

! Declare QDB descriptor and buffer
INTEGER*4 QDB_DESC(2)

! Obtain a channel for the call

CALL SYSSASSIGN (’SYSSWORKSTATION’, ! device name
2 CHAN, ,) t{ channel

! Get the QVB

CODE = 10$_SENSEMODE

STATUS = SYSSQIOW (,

2 %VAL(CHAN) , ! channel
2 %VAL{CODE) , ! QIO function code
2 ree
2 %VAL(IO$C_QV_GETSYS),
2 QVB_DESC,,, /) ! address of descri
IF (STATUS .NE. 1) THEN
CALL LIBSSIGNAL (%VAL (STATUS))
END IF
! Extract from the QVB
CALL EXTRACT QVB (%VAL(QVB_DESC(2)), ! pass address by value
2 VIDEO_ADDR, ! video memory buffer
2 SCANLINE_ADDR) ! scanline map buffer

Kk ok oKk e ek g gk ok ok ek ok ke ok ok ke ok ok ok ok ok ok ke

]
! * EXTRACT_QVB SUBROUTINE *
]

Fe ok g ke K ke kA ke R ok ok ok ke ok ok ke ok ok ke ok ok ok A

FUNCTION EXTRACT_QVB (QVB, VIDEO, SCAN)
IMPLICIT INTEGER*4(A-Z)
INCLUDE ’VWSSYSDEF’

! Associate the predefined structure w/ QVB
RECORD /QVB_COMMON_STRUCTURE/ QVB

VIDEO = QUVB.QVB$L_MAIN_VIDEOADDR
SCAN = QVB.QVBS$L_MAIN_MAPADDR

RETURN
END

Programming to the Driver

2.3 Using Channels with Video Device Drivers

The drivers use channel numbers to identify application list entries. The
drivers track various events by listing event entries (see Section 1.3.4).
When an application uses the QIO interface to place an entry on a list, it
associates the entry with a channel number (using the chan parameter of
the QIO). To obtain a unique channel number, use the $ASSIGN system
service. (See VAX/VMS System Services Reference Manual.)

For each application list entry, the channel number must be unique to that
list. That is, if a process uses channel 1 to create an entry on the keyboard
list, it cannot use channel 1 to create another entry on the keyboard list.

It must obtain another channel to create another entry. When it adds or
deletes entries, the driver uses the channel number to identify each entry
uniquely.

~ However, the same channel number can be used across lists. For example,
an application can use channel 1 to create an entry on the button transition
list, the keyboard entry list, and the cursor pattern list.

2.4 Using the Keyboard

Driver keyboard functions enable an application to perform the following
operations:

¢ Receive keyboard input
* Modify keyboard characteristics
* Modify keyboard character sets

* Compose characters that do not exist as standard keys

The following sections describe these capabilities.

2.4.1 Receiving Keyboard Input

To receive input from a keyboard, an application must explicitly enable the
keyboard for input with the Enable Keyboard Input QIO. This creates an
entry on the keyboard entry list. When you enable a keyboard, you can
specify:

¢ The address of a four-longword AST specification block. The four
longwords contain the following information:

1 The address of an AST routine that determines what action to take
when input is received. This is called a keystroke AST because it is
fired for each keystroke entered.

If no AST routine is specified, input is stored in the type-ahead
buffer and delivered either when an AST region is declared with
the same channel or when a Get Next Input Token QIO is issued.

2 An optional user-defined AST parameter that is delivered to the
AST.

3 Access mode at which to deliver the AST (maximized with the
current access mode).

2-3

Programming to the Driver

2-4

4 A zero.

* The address of an AST routine invoked whenever the entry is made
active (brought to the top of the list). This is called a request AST (or
control AST). It is fired only once for each entry activation. Only one
keyboard can be active at a time. Typically, the request AST performs
any necessary actions that the enabled keyboard requires; for example,
it pops an obscured window to make displayed input visible.

* The address of a keyboard characteristics block that describes the
characteristics of the keyboard. Each keyboard is associated with a
set of characteristics (key click, auto repeat, and so on) defined in this
data structure. You can choose the default characteristics or modify the
defaults. Section 2.4.2 discusses keyboard characteristics in detail.

By default, an entry is placed at the top of the list when a keyboard is
enabled. However, an application can determine the position of the entry
in the list by specifying optional modifiers to the QIO. The application can
use the modifiers to perform the following operations:

* Cycle the list, which moves the top entry to the end of the list (QV_
CYCLE)

* Place the entry last on the list (QV_LAST)
* Delete the entry (QV_DELETE)
¢ Purge the type-ahead buffer (QV_PURG_TAH)

Typically, an application defines one keyboard for each window. However,
it can define the characteristics of each keyboard differently from window
to window. This feature permits you to create “‘virtual” keyboards.
Although there is only one physical keyboard, you can define a number
of different keyboards, and an application can enable any number of
keyboards as long as it keeps track of them. When you no longer need a
keyboard, delete it as follows:

¢ Use the QV_DELETE modifier with the QIO, or

¢ Deassign the associated channel

Example 2-1 illustrates:
* A typical assignment of two terminal channels
¢ Keyboard requests on those channels

e Associated AST routines

(Appendix D shows this example in the context of a complete application
program.)

Example 2-1

Enabling Keyboard Requests

Programming to the Driver

.
.

P2_BLOCK2:

AST specification block 2

I
.LONG KBD_AST ; AST address
.LONG ACK2 ; AST parameter
.LONG 0 3 AST delivery mode
.LONG CHARACTER ; input token
ACK2: .ASCID /INPUT ACKNOWLEDGED CHANNEL 2/ ;AST parameter message
P3_BLOCK: ;1 control AST specification
; block - for both ASTs
.LONG CTL_AST 7 control AST address
. LONG 0 ; AST parameter
.LONG 0 + AST delivery mode
.LONG 0 s must be zero
SET_KBDAST:
$ASSIGN_S DEVNAM=WS_DEVNAM,- ; assign channel using
CHAN=KBD_CHAN2 ; logical name and
; channel number
BLBS RO, 203 s no error if set
BRW ERROR ; error
20$: MOVL #I0$C_QV_ENAKB, RO ; enable keyboard AST
; request to RO)
$QIOW_S CHAN=KBD_CHAN2, - 3 assigned channel
FUNC=#I0$_SETMODE,- ; set mode QIO
Pl=(RO) ,- ; keyboard AST request
P2=#P2_BLOCKZ2, - ; user AST routine
P3=#P3_BLOCK ; control AST routine
BLBS RO, 30$ s no error if set
BRW ERROR
KBD_AST:
F5_AST:
+«WORD
PUSHL 4(AP) 3+ send acknowledgment
CALLS #1,G "LIBSPUT_LINE ; message
BLBS RO, 10$
5% BRW ERROR
108: CMPW #KEY$SC_F5,CHARACTER ; was F5 typed?
BNEQ 208
BSBW CYCLE_KBD ;1 cycle the keyboard list
BRB 408 ; and exit
20$: PUSHAL DESC ; send character typed
CALLS #1,G"LIBSPUT_LINE
BLBC RO,5$
CMPB #~A/C/,CHARACTER ; was a "C" typed?
BNEQ 308
BSBW CYCLE_KBD ; cycle the keyboard list
BRB 408
30$: CMPB #~A/F/,CHARACTER ; was an "F" typed?
BNEQ 408$

$SETEF_S EFN=#2

yes, exit program

Example 2-1 Cont’d. on next page

2.4.2

Programming to the Driver

Example 2-1 (Cont.) Enabling Keyboard Requests

40$:

CTL_AST:

55
10%:

RET

+«WORD
PUSHAL
CALLS
BLBS
BRW

RET

; send acknowledgment

#1,G LIBSPUT _LINE ; message
RO, 108

Keyboard Characteristics

Keyboards have a set of default characteristics associated with them. These
default characteristics are defined by a data structure called the system
characteristics block. Appendix A illustrates this data structure and lists the
default keyboard characteristics.

Modify the default characteristics by specifying a system characteristics
block as the fourth parameter of the Modify Systemwide Characteristics
QIO. This block consists of four longwords with the following parameters:

* Longword 1-Bit mask of the characteristics to enable
¢ Longword 2—Bit mask of the characteristics to disable
¢ Longword 3—Key-click volume value in the range 1 to 8 (1 is loudest).

¢ Longword 4—Screen saver time, in minutes

To enable or disable default values, specify the predefined QVBDEF
constant associated with each characteristic (also listed in Appendix A)
in the proper longword. If you enable the key-click or screen saver
characteristics, their values in the third and fourth longword are used.

Once you modify the systemwide defaults, if you enable a keyboard
without specifying characteristics, the keyboard assumes the new default
values.

To define the keyboard characteristics (auto repeat, key-click sound,
function key transition) for a particular keyboard entry, specify the address
of a keyboard characteristics block as the fourth parameter of the Enable
Keyboard Input QIO. This block also consists of four longwords with the
following parameters:

* Longword 1—Bit mask of the characteristics to enable
* Longword 2—Bit mask of the characteristics to disable

e Longword 3—Key-click volume value in the range 1 to 8 (1 is loudest).

Note that Longword 4 must be zero.

- Programming to the Driver

You can enable the same characteristics for a specific keyboard as for
the systemwide defaults, except for the screen saver time, which is a
systemwide characteristic (there is only one screen). See Appendix A.

For example, assume an application enables two keyboards, one with
autorepeat and the other without autorepeat. When one keyboard is active,
holding down any key causes it to be entered repeatedly; when the other
keyboard is active, the key is entered only once.

To modify the characteristics of an existing keyboard, specify a keyboard
characteristics block as the fourth parameter of the Modify Keyboard
Characteristics QIO. Note that you can also use this QIO to change the
keystroke AST and request AST associated with a keyboard.

2.4.3 Modifying the Keyboard Table

The keys on the main keypad array of the physical keyboard are
programmable. That is, an application can associate the keys of the
keyboard with any of the 255 characters in the multinational character
set (including diacritical characters). (Appendix I shows the multinational
character set.) An application can define several character sets to be
accessed at different times by the same physical keyboard.

To define a character set, construct a data structure (keyboard table), then
use the Load Keyboard Table QIO to load the new table.

2.4.3.1

Constructing a Keyboard Table with Macros

To construct a keyboard table, initialize it with the default table values, then
override any values you want to modify. SYSSLIBRARY:$QVBDEF.MLB
contains the following macros to generate keyboard tables:

¢ VCS$KEYINIT—Initializes the table
* VC$KEY—Loads individual key definitions
o VCS$KEYEND—Terminates the table

These macros are described in Appendix E.

Initializing a Table

Call VCSKEYINIT to initialize a table. This macro has one parameter, the
address of the table, which it refurns after allocating space and initializing
the table. Specify this parameter and use the returned address when you
load the table. By default, the system loads the North American keyboard
table.

Loading Key Definitions

Call VCSKEY to load new key definitions. Several parameters permit you
to define the various states of a given key. Note that you modify only
the keys that are different from the default keys. Loading key definitions
overrides the default definitions loaded by VC$KEYINIT.

Depending on how you press the Shift, Control, and Lock keys in
combination with it, a keyboard key can have eight different states. For
each key, the keyboard table associates each state with a one-byte ASCII
value that represents a character from the multinational character set. Each

2-7

Programming to the Driver

key is described by a quadword in the table. Table 2-1 lists the key states
and the byte within the quadword that describes each state.

Table 2-1 Key States

Byte State
Value of key

Value of key if Shift key is also pressed

Value of key if Control key is also pressed

Value of key if both Shift and Control keys are also pressed
Value of key if Lock is also pressed

Value of key if both Lock and Shift keys are also pressed
Value of key if both Lock and Control keys are also pressed
Value of key if Lock, Shift, and Control keys are also pressed

@ N OO O b~ WN -

When you use VC$KEY to load a key, you specify the following
information:

* Nine parameters
¢ Ordinal key position

* ASCII value associated with each of the eight states

Figure 2-1 shows the order of keys in the keyboard table. It illustrates the
relationship of the physical key on the keyboard to the ordinal key position
in the keyboard table (numerals in small print). This table corresponds to
the North American keyboard character layout.

Figure 2-1 Keyboard Table Layout

- 1 ! H @ 3 # H $ 3 % B A 7 & 3 * 3 (10) - 2 + 13 @

. 1 2 3 4 5 6 7 8 9 0 - =

Tab Q w E R T Y U] (o] P { } Return

14 15 .- ‘3 wll - . 2 2 2l ||l =
Ctet Lock A s D F G H J K L : " I
25 3 E) 30 2 il s B\ 3
Shift > 1z X |C vV |B N M ? St
< B 39 10 3 12 13 a3 15 3 3 / 13

Compose
Character

ZK-4450-85

Programming to the Driver

The following example shows the loading of the tenth key of the keyboard
table:

VCSKEY 10,- ; ordinal key position
<~a/9/>,- ; key = 9
<~a/)/>,~- ; Shift/key =)
<"xX0FF>,- ; Control/key = undefined
<~"x0FF>,~ ; Shift/Control/key = undefined
<~a/9/>,~ ; Lock/key = 9
<”a/)/>,- ; Lock/Shift/key =)
<"x0FF>,- ; Lock/Control/key = undefined
<~"xXOFF> + Lock/shift/Control/key = undefined

Note that the hexadecimal value O0FF denotes an undefined key (no
character is delivered).

Table 2-2 shows the decimal values that represent diacritical characters.
(Section 2.4.5 contains additional information on diacritical characters.)

Table 2-2 Diacritical Characters

Diacritical Mark Equivalent Character Decimal Value
Diaeresis (umlaut) A 128

Acute accent ’ 129

Grave accent ' 130

Circumflex accent . 131

Tilde - 132

Ring ° 133

(Reserved) 134-159

Terminating a Table

Call VC$KEYEND to terminate a keyboard table. This macro refurns one
parameter, the length of the table. Specify this parameter and use the
returned length when you load the table.

Example 2-2 shows how you can modify the North American keyboard
layout. (Appendix D shows this example in the context of a complete
application program.)

2.4.3.2

Constructing a Keyboard Table Without Macros

It is possible to construct a keyboard table without using the provided
macros. Such a keyboard table must conform to the structure illustrated in
Figure 2-2.

Programming to the Driver

2-10

Example 2-2 Modifying the North American Keyboard

VCS$SKEYINIT

KB_LAYOUT_TBL

generate the new table
modify only the characters

specified

VCSKEY 10,<”a/9/>,<”a//>),< X0FF>, < "X0FF>,~

<”a/9/>,<”al//>) <"x0FF>, < "X0FF>

VCSKEY 11,<”a/0/>,<~a/=/>,<"X0FF>,<"x0FF>, -

<~a/0/>,<~a/=/>,< x0FF>, < "XOFF>
VCSKEY 12,<7x081>,<”a/?/>,<"x0FF>,< "x0FF>, -
<~x081>,<~a/?/>,<"x0FF>, < "X0FF>
VCSKEY 13,<~x082>,<7x083>,<"x01E>,<"x01E>, -
<"X082>,<~x083>,< "x0FF>, < "xOFF>

VCSKEY 19,<”a/z/>,<”a/Z/>,<*x01A>,<~x01A>, -

<ra/z/>,<”a/Z/>,<"x01A>,<"x01A>

VCSKEY 24,<"xX0E8>,<"x0FC>,<"xX0FF>,<"X0FF>, -

VC$SKEYEND

<"XQE8>,<"X0FC>, < "X0FF>, <" "x0OFF>
VCSKEY 25,<7x080>,<"x084>,<"x0FF>,<"XO0FF>, ~
<~x080>,<"~x084>,< "XxOFF>, < "XOFF>

KB_LAYOUT_TBL_LEN

s end the table,
’

jdiacritical (')

;diacriticals (* %)

;diacriticals (" ~)

and determine its length

Figure 2-2 Keyboard Table Description

31 0
version number
char 4 char 3 char 2 char 1
char 8 char 7 char 6 char 5
A ~
T T

ZK 5347 86

e The first quadword of the table must contain the table version number.
Typically this value is 1.

¢ Each subsequent quadword describes the eight states of a key in the
main array of the keyboard, in the order shown in Figure 2-1.

* Every key must be defined.

Programming to the Driver

2.4.3.3

NOTE:

Loading a Keyboard Table

To load a keyboard table, use the Load Keyboard Table QIO, specifying
the address and size of the table and the channel of the keyboard entry
with which you associate the table. Note that the VC$KEYINIT and
VCS$KEYEND macros return address and length, respectively.

When a keyboard table is loaded and the associated keyboard becomes
active, the physical keyboard reflects the table definitions.

You can revert to the default keyboard table by calling the Revert to Default
Keyboard Table QIO.

If a private table was loaded, this QIO also returns the space used to pool.

Example 2-3 is a typical routine for loading a keyboard table. (Appendix D
shows this example in the context of a complete application program.)

Example 2-3 Loading a Keyboard Table

SET_FRENCH_KB:

MOVL #<IOSC_QV_LOAD_KEY_TABLE>, RO

$QIOW_S CHAN
FUNC
Pl
P2
P3

BLBS RO,5%
BRW ERROR

582 RSB

#KB_LAYOUT_TBL_LEN, -
#KB_LAYOUT_TBL

KBD_CHAN1, - s+ change the keyboard
= #I0$_SETMODE, - ; layout
(RO)I =

keyboard table size
keyboard table
address

no error if set

~e e ~a e

Composing Nonstandard Characters

Compose Sequences

Use compose sequences to define combinations of keys to represent
multinational characters not already defined as standard keys in the
keyboard table.

Depending on your keyboard, you can use two types of compose
sequences:

* Three-stroke sequences—Press the Compose key, then press two
standard keys. All keyboards support three-stroke sequences.

* Two-stroke sequences—Press a diacritical mark, then press a standard
key. The North American keyboard does not support two-stroke
sequences.

2-11

Programming to the Driver

Diacritical Marks
A diacritical mark is one of the following nonspacing characters:

Grave accent—E
Acute accent—E
Circumflex accent—E
Tilde—N .
Diaeresis (umlaut)—E
Ring——A

Diacritical marks are available on all but the North American keyboard.
(This is why you cannot perform two-stroke sequences on the North
American keyboard.) Diacritical marks vary among the keyboards
according to the relative usage of characters with diacritical marks. Note
that only one of several characters shown on a key cap can be a diacritical
mark; some keyboards have keys with both a standard character and a
diacritical mark.

To define compose sequences, construct a compose sequence table data
structure (either two-stroke, three-stroke, or both), then load the table with
the Load Compose Sequence Table QIO.

2.4.5 Constructing Compose Sequence Tables

2-12

A compose sequence table lists a series of compose sequences. The
structures of three-stroke and two-stroke tables differ slightly.

Three-Stroke Compose Sequence Table Structure
Three-stroke compose tables have three parts:

1 A longword with the version number for the table (typically this value
is 1).

2 A series of longwords that list the two standard keys used in the
compose sequence and hold an address that points to the associated
output string, in the format shown in Figure 2-3.

Figure 2-3 Three-Stroke Compose Sequence Table Description

3+2 1 0 By

address of output string char 2 char 1

(output) (input) (input)

ZK-4451-85

3 Counted string that bytes 2 and 3 of the longword (address of output
string) point to. All counted strings must be grouped together and mus
follow the list of longwords that describe the compose sequences.

Figure 2-4 shows the structure of an entire three-stroke compose sequence
table.

Programming to the Driver

Figure 2-4 Three-Stroke Compose Sequence Table

version number

)2

address of output string char 2 char 1
{output) (input) (input)
(list of longword descriptions)
L . ~
[. T
counted strings
~ . T
2K-4452-85

Two-Stroke Compose Sequence Table Structure

Two-stroke compose sequence tables have four parts:

1
2

A longword with the table version number (typically this value is 1).

A 32-byte diacritical table that defines which characters are diacriticals.

Each bit in the diacritical table corresponds to the equivalent ASCII
character code in the multinational character set. If a bit is set in this
table, the corresponding character is considered a diacritical character.
Thus, you can define nonstandard diacritical characters. For example,
if you set bit 65 (decimal), the uppercase letter “A”" is a diacritical

character. If you set bit 112 (decimal), the lowercase letter “p”’ is a
diacritical character.

To support standard diacritical characters, represent the characters with
the decimal values shown in Table 2-3.

Table 2-3 Diacritical Characters

Diacritical Mark Equivalent Character Decimal Value
Diaeresis (umlaut) A ’ 128

Acute accent ’ 129

Grave accent ‘ 130

Circumflex accent " 131

Tilde - 132

Ring ° 133

(Reserved) 134-159

3 A series of longwords that list the diacritical key and the standard key

used in the compose sequence and hold an address that points to the
associated output string, in the format shown in Figure 2-5.

2-13

Programming to the Driver

Figure 2-5 Two-Stroke Compose Sequence Table Description

3.2 1 0 Byt
address of output string char 2 char 1
(output) (input) (input)
ZK-4451-85

Place the list of longwords in the table in ascending order by ASCII
collating sequence with both input characters, as shown in the following

example.

Incorrect Table Correct Table
ssi1B AE1AE
AE1E A“1A

"al1a "atla

A“1A ss18B

4 The series of counted strings that bytes 2 and 3 of each longword
(address of output string) point to. All the counted strings must be
grouped together and must follow the list of longwords that describe
the compose sequences.

Figure 2-6 shows the structure of an entire two-stroke compose sequence
table.

Figure 2-6 Two-Stroke Compose Sequence Table

31 0
version number
~ diacritical table L
~w (32 bytes) T
address of output string char 2 char 1
(output) (input) (input)
(list of longword descriptions)

A . ~
T . T
counted strings
~, . ~
T : .P

ZK-4453-85

2-14

Programming to the Driver

2.4.5.1

Using Macros to Construct Compose Sequence Tables

To construct a compose table, initialize it, then load the sequences you
want to define. VMS Workstation Software provides macros to generate
compose tables in SYS$LIBRARY:$VWSSYSDEF.MLB:

* VC$COMPOSE_KEYINIT—Initializes the table
¢ VC$COMPOSE_KEY—Loads individual sequence definitions
¢ VC$COMPOSE_KEYEND—Terminates the table

These macros are also described in Appendix F.

Initializing a Table

Call VC$COMPOSE_KEYINIT to initialize a table. This macro has two
parameters:

¢ The address of the table, which it refurns after it allocates space and
initializes the table. Specify this parameter and use the returned
address when you load the table.

e The Compbse_z flag, which, if set equal to YES indicates that a
two-stroke sequence table should be built. If the flag is not set, a
three-stroke table is built.

Loading a Compose Sequence

Call VC$COMPOSE_KEY to load a compose sequence. This macro has
four parameters that permit you to define the two input characters (either
the two standard keys for a three-stroke sequence or the diacritical and
standard key for a two-stroke sequence), the output string, and the output
string length. Example 2-4 illustrates loading a three-stroke compose
sequence.

Example 2-4 Loading a Three-Stroke Compose Sequence

VCSCOMPOSE_KEY <”a/A/>,- ; input A
<ra/"/>,- ; input "

=

’

; default output length
; output character

r
<~xeéd>

Terminating a Table

Call VC$COMPOSE_KEYEND to terminate a keyboard table. This macro
returns one parameter, the length of the table. Typically, you specify this
parameter and use the returned length when you load the table.

2-15

Programming to the Driver

2-16

.2.4.5.2

NOTE:

Loading a Compose Table

To load a compose table, use the Load Compose Sequence Table QIO
with the address and size of the table and the channel of the keyboard
entry with which you want to associate the table. The VC$COMPOSE_
KEYINIT and VC% COMPOSE_KEYEND macros return address and length,
respectively.

The VMS Workstation is shipped with copies of the Digital standard three-
stroke and two-stroke compose tables that reside in the driver. These
tables are the default until you load alternates.

Digital standard two-stroke compose sequences are not supported on the
North American keyboard.

To revert to the default compose table, call the Revert to Default Compose
Table QIO.

Example 2-5 illustrates how to load a three-stroke compose table.
(Appendix D shows this example in the context of a complete application
program.)

Example 2-5 How to Load a Three-Stroke Compose Table

SET_COMPOSE3_TABLE:
MOVL #<I0$C_QV_LOAD_COMPOSE_TABLE>, RO

$QIOW_S CHAN = KBD_CHAN1l, - ; change the compose table
FUNC = #I0$_SETMODE, -
Pl = (RO), -
P4 = #COMPOSE3_TBL_LEN, - ; three-stroke table size
P5 = #COMPOSE3_TBL ; three-stroke table addr

BLBS RO, 5% ; not set on error

BRW ERROR

5% RSB

VC$COMPOSE_KEYINIT COMPOSE3_TBL ; generate an

; empty table

:+ £fill the table here
1

VC$COMPOSE_KEY <”a/A/>,<”a/"/>, ,<"xc4>

VC$COMPOSE_KEY <~a/A/>,<”a/’/>,,<"xcl>

VC$COMPOSE_KEY <~a/A/>,<”a/*/>,,<~xc5>

VC$COMPOSE_KEY <”a/A/>,<~a/R/>,<@>

VCSCOMPOSE_KEY <”a/A/>,<”a/E/>,,<”xc6> ; order sensitive
VC$COMPOSE_KEY <”a/A/>,<~a/~/>,,< xc2>

VC$COMPOSE_KEY <"a/A/>,<”a/_/>, ,<"xaa>

VC$COMPOSE_KEYEND COMPOSE3_TBL_LEN ; end the table
; and determine its
;1 length

Programming to the Driver

2.5 Using a Pointer Device
The drivers detect two pointer-related conditions:
* Pointer movement

¢ Pointer button transition

The QIO interface enables you to associate regions of the screen with action
ASTs the driver fires whenever it detects pointer movement or a pointer
button transition (clicking up or down). The action ASTs are application-
dependent and enable you to perform such screen manipulation as
highlighting a menu when the pointer moves into it or performing an
action once you select a menu item. '

The driver uses separate lists to track pointer movement and button
transitions. The following sections describe how to create list entries
for pointer movement and button transitions.

Creating a Pointer Movement Entry

Use the Enable Pointer Movement QIO to create a pointer movement
entry. When you create a pointer movement entry, specify the following
information:

¢ The address of a four-longword AST specification block. The four
longwords contain the following parameters:

1 The address of an AST routine that determines what action to take
when movement is detected within the specified region.

An optional user-defined AST parameter delivered to the AST.

Access mode at which to deliver the AST (maximized with the
current access mode).

4 The address of a longword where the driver stores the new cursor
position so it is accessible to the application.

The low-order word of the longword holds the the X pixel position
and ranges from 0 to 1023, where 0 is the left side of the screen.
The high-order word holds the the Y pixel position and ranges from
0 to 863, where 0 is the bottom of the screen.

¢ The address of an AST routine invoked whenever the pointer exifs the
specified region. Typically, this AST performs any necessary cleanup
actions. For example, it turns off a region highlighted by the action
AST.

¢ The address of a screen rectangle values block that describes the region
to be associated with the ASTs.

By default, an entry is placed at the top of the list. However, an application
can determine the position of the entry in the list by specifying optional
modifiers to the QIO. The modifiers can be used to perform the following
functions:

® Place the entry last on the list (QV_LAST)
* Delete the entry (QV_DELETE)

2-17

Programming to the Driver

2-18

Whenever you move the pointer (mouse, stylus, or puck), the driver
checks the pointer position against the region descriptors of the pointer
movement list entries. When the driver finds an entry whose region
descriptor includes the current pointer position, the driver fires the action
AST associated with that entry.

If you specify an exit AST, the driver fires that AST when it discovers that
the pointer position is no longer within the specified region.

If two regions overlap, the first one on the list gets the AST.

Example 2-6 illustrates how to program a pointer motion AST.
(Appendix D shows this example in the context of a complete applications
program.)

Example 2-6 How to Progrém a Pointer Motion AST

108: MOVL 10C_QV_MOUSEMOV, RO
$QIOW_S CHAN=MOUSE_CHAN, -
FUNC=# 10$_SETMODE,, -
P1=(RO),~
P2=#MOUSE_BLOCK, -

enable pointer motion
channel

QIO function code
driver function code
associated AST block

~e wa ~e ~o me

P6=#MOUSE_REGION : associated region
BLBS RO,20% s no error if set
BRW ERROR

208 RSB
MOUSE_BLOCK: pointer region AST
specification block
AST address

AST parameter
access mode

new pointer cursor position

. LONG MOUSE_AST
. LONG MOUSE_ACK
. LONG 0

. LONG MOUSE_XY

~e e we ne e ~e we

storage
MOUSE_REGION: ; pointer region
. LONG 400 :+ lower left corner
. LONG 400
. LONG 800 ; upper right corner
+ .LONG 800

Creating a Pointer Button Transition Entry

Use the Enable Button Transition QIO to create a pointer button
transition. When you create a button transition entry, specify the following
information:

¢ The address of a four-longword AST specification block. The four
longwords contain the following parameters:

1 The address of an AST routine that determines what action to take
when a transition is detected within the specified region.

If no AST routine is specified, input (the button transition) is store:
in the type-ahead buffer and delivered either when you declare an
AST region with the same channel or when you issue a Get Next
Input Token QIO with the same channel.

Programming to the Driver

2 An optional user-defined AST parameter delivered to the AST.

3 Access mode at which to deliver the AST (maximized with the
current access mode).

4 The address of a longword where the driver stores the button
transition value (token) when the AST service routine is called.

Your application uses this longword to determine which pointer
button has undergone a transition. The button transition value (the
token) is a decimal value that indicates which button is activated;
the transition values are 400, 401, 402, and 403. The system assigns
these values to the pointer buttons sequentially starting with the
select button, which is always 400. The driver stores the token

in the low-order word of the longword. Bit 15 of the high-order
longword determines whether the transition is up or down: 1
equals down and 0 equals up.

The rest of the high-order word contains more control information
that can be used to determine if the Shift, Control, or Lock keys
are pressed. You can use these keys in combination as mefa-keys as
follows:

* Bit 14 corresponds to the Shift key
e Bit 13 corresponds to the Control key
* Bit 12 corresponds to the Lock key

¢ The address of a pointer button characteristics block that determines
whether delivery of subsequent transitions depends on all buttons
being in the up position. By default, the specified button transition
AST gets every transition until all buttons are returned to the up
position. (See the description of this data structure in Appendix A.)

¢ Address of a screen rectangle values block that describes the region
associated with the button transition AST.

By default, an entry is placed at the top of the list. However, you can
determine the position of the entry in the list by specifying optional
modifiers to the QIO. The modifiers can be used to perform the following
functions:

¢ Place the entry last on the list (QV_LAST)
¢ Delete the entry (QV_DELETE)
e Purge the type-ahead buffer (QV_PURG_TAH)

If a button changes state (is clicked up or down), the driver checks the
pointer position against the region descriptors of the button list entries.
When the driver finds a region descriptor with the current pointer position,
it fires the associated button transition AST.

If two regions overlap, the first one on the list gets the AST.

Example 2-7 illustrates the typical programming and use of pointer button
ASTs. (Appendix D shows this example in the context of a complete
applications program.)

Programming to the Driver

Example 2-7 Typical Programming and Use of Pointer Button ASTs

SET_BUTTONAST:

SASSIGN_S DEVNAM=WS_DEVNAM,- ; assign channel using
CHAN=BUT_CHAN s logical name and
; channel number
BLBS RO, 108 ; no error if set
BRW ERROR } error
10$: MOVL #10$C_QV_ENABUTTON,RO ; enable button trans.

$QIOW_S

CHAN=BUT_CHAN, -
FUNC=$105_SETMODE, -
P1=(RO),-
P2=#BUT_BLOCK, -
P6=#BUT_REGION

I
; channel

1 Q10 function code

; driver function code
;s associated AST block
; associated region

1

BLBS RO, 20$; no error if set
BRW ERROR
208$: RSB
BUT_BLOCK: button transition AST

specification block

.LONG BUT_AST AST address

Ne we we we we wa we

. LONG 0 AST parameter

. LONG 0 access mode

. LONG BUTTON button information

longword

BUT_REGION: ; assoclated region

. LONG 20 1 lower left corner

. LONG 20

.LONG 300 ; upper right corner

.LONG 300

2.6 Using the Type-Ahead Buffer

From keyboard input, pointer movement, and button transitions, the
driver accepts three kinds of input: character input, pointer position, or
button transition value. Often, input is received faster than an application
processes it. When this happens, the character and button information is
stored in the type-ahead buffer. (Pointer movement inputs the new pointer
position, but if the input cannot be delivered, it is ignored, not buffered.)

The type-ahead buffer is part of each entry on the list. It is 128 bytes long,
so you can buffer 32 input tokens (each token is four bytes long).

2.6.1 Getting Input from the Type-ahead Buffer

2-20

You can obtain input from the type-ahead buffer in two ways:

* When you enable the entry, associate a repeating AST with it to proces:
buffered input continuously. (For keyboards, you can also associate a
repeating AST when you modify the keyboard.)

¢ Issue a Get Next Input Token QIO to process a single input token from
the buffer (this QIO can have an AST associated with it—in either case
the input is delivered in the IOSB block). This type of single-token
processing is called a ““one shot.”

Programming to the Driver

¢ Issue a Get Next Input Token QIO to process a single input token from
the buffer (this QIO can have an AST associated with it—in either case,
the input is delivered in the IOSB). This type of single-token processing
is called a ““one shot.”

Once a repeating AST is associated with an entry, attempts to issue
subsequent one-shot ASTs on that entry return an error because the results
are unpredictable. If you enable an entry without an associated AST, you
can issue one-shot ASTs to process the buffered data one character at

a time. You can associate a repeating AST with an entry at any time by
reenabling the entry (or for keyboards, modifying the keyboard). However,
any outstanding one-shot ASTs are processed first.

Note that QIO modifiers enable you to purge the type-ahead buffer. If
you delete an entry and the type-ahead buffer is not empty, the deletion
is deferred until the type-ahead buffer is empty. If an application wants to
delete an entry immediately, it must first purge the buffer.

2.7 Intercepting Input

You can issue one-shot ASTs on a channel that currently has no repeating
AST associated with it.. To “intercept’” input, disable the associated AST
(by reenabling the entry without the AST specification), then issue one
shots. (Note that for a keyboard you can disable an AST by modifying the
keyboard instead of reenabling it.) Later, you can reenable the repeating
AST. :

To intercept the input for an entry on a list, use the Get Next Input Token
QIO; specify the type of input token (IO$C_QV_ENAKB, I0$C_QV_
MOUSEMOV, or IO$C_ENABUTTON) and the channel with which the
entry is associated.

You can also use one shot ASTs to process input from within an AST (ASTs
cannot be delivered in this case). An application can rely on the fact that a
one shot AST with no associated AST delivers the input to the IOSB. With
an event flag and the IOSB, the application can process the type-ahead
buffer one character at a time from within the AST.

The example in Appendix D contains instances of intercepting input.

2.8 Defining Cursor Patterns

The QIO interface enables you to associate a region of the screen with a
specific cursor pattern. Use the QIO interface to change the shape and size
of the cursor to reflect a change in functionality; for example, an editing
cursor can take one shape while a menu selection cursor takes another.
Again, the driver maintains an entry list to keep track of cursor patterns.

Use the Define Pointer Cursor Pattern QIO to create a cursor pattern entry.
When you create a cursor pattern entry, specify the following information:

e The address of a bitmap image for the new cursor pattern. This bitmap
image is a 16-word array on single-plane cursor systems or a 32-word
array on multiplane cursor systems. The QVB contains a field that
indicates whether you have a single-plane or multiplane system; use

V4.1—June 1989 2-21

Programming to the Driver

the Get System Information QIO to access this field. The following
section describes multiplane cursor patterns.

¢ The address of a longword to contain a new cursor position. This
optional parameter enables you to reposition the cursor.

* The address of the cursor hot spot definition. The hot spot is the one
position within the bitmap image of the cursor that is the actual cursor
position.

¢ Cursor style. This value defines how the cursor appéars against the
background of the screen. (It is ignored on multiplane cursor systems.)

¢ Address of a screen rectangle values block that describes the region to
be associated with the cursor pattern. '

By default, an entry is placed at the top of the list. However, an application
can determine the position of the entry in the list by specifying optional
modifiers to the QIO. The modifiers can be used to perform the following
functions:

¢ Place the entry last on the list (QV_LAST)
* Delete the entry (QV_DELETE)

As the pointer moves, the driver checks the pointer position against the
region descriptors of the cursor pattern list entries. When the driver finds
a region descriptor that contains the current pointer position, it changes the
cursor pattern to the one associated with the region.

Example 2-8 illustrates the typical assignment of a single-plane cursor.
region pattern. (Appendix D of this manual shows this example in the
context of a complete application program.)

2.8.1 Multiplane Cursor Patterns

2-22

If your system uses a multiplane cursor, you can specify a 32-word array
as a cursor pattern. Multiplane cursors consist of two planes. Typically,
you use two planes to prevent the cursor from disappearing when it moves
over varying backgrounds. To understand how the two planes work, think
of the 32-word array as two 16-word arrays, array A and array B.

The bit pattern in array A is determined as follows:
* 1-—Indicates that the corresponding pixel be filled.

¢ O—Indicates that whatever is on the screen at the corresponding pixel
should show through (remember, the cursor is overlaid on the screen).

The bit pattern in array B uses the the bits set to 0 in array A as a mask:
those corresponding bits are ignored in array B. The remaining bit pattern
in array B is determined as follows:

- V4.1—June 1989

Programming to the Driver

Example 2-8 Assignment of a Single-Plane Cursor Region Pattern

QVSCURSOR1: :+ initial 16 x 16 cursor
s "solid" pattern

«WORD ~p1111111111111111

. WORD ~b1111111111111111

«WORD ~b1111111111111111

« WORD ~b1111111111111111

. WORD ~b1111111111111111

+«WORD ~b1111111111111111

.WORD ~"b11111111111711111

.WORD ~b1111111111111111

.WORD ~b1111111111111111

.WORD ~b1111111111111111

. WORD ~“b1111111111111111

. WORD ~bl1111111111111111

.WORD ~b1111111111111111

+WORD ~b1111111111111111

«WORD ~b1111111111111111

. WORD ~bl111111111111111

REGION1: ; cursor region 1
. LONG 20 ;s lower left corner
. LONG 20
. LONG 300 ; upper right corner
.LONG 300

define cursor 1
channel

QI0 function code
driver function code
cursor pattern
associated region

no error if set

208: MOVL #10$C_QV_SETCURSOR, RO

$QIOW_S CHAN=CUR_CHAN1,-
FUNC=# IO$_SETMODE -
Pl =(RO),-
P2=#QVSCURSORI, -
P6=#REGION1

BLBS RO, 30%

BRW ERROR

e Ne Se ne e we ~e

V4.1—June 1989 2-23

Programming to the Driver

¢ 1—Indicates that the corresponding pixel be filled with the background
color.

* 0—Indicates that the corresponding pixel be filled with the foreground
color.

2.9 Using an Alternate Windowing System

NOTE:

For flexibility, the QVSS driver supports a single private graphics
application in addition to the default, VWS-supplied windowing package.
That is, you can write an alternate windowing application that takes
complete control of video memory and does not depend on VWS-supplied
window or graphics services.

To enable alternate windowing, before you invoke the STARTVWS.COM
command procedure, modify the command procedure SYSTARTUP_
V5.COM to define the logical name UIS$WS_ALTAPPL to “TRUE.”

This instructs the driver to reserve half of video memory for a private
application. At the request of the private application, this part of video
memory is mapped to the screen and becomes available to the application.
All set mode functions issued by the application relate only to its private
video memory. A user interface key (F3) on the keyboard allows an
operator to switch dynamically between windowing systems.

Private applications are device dependent; only one private application can
be active at a time.

2.10 Drawing to the QVSS Screen

To draw to the screen using the QVSS driver, follow these steps:
1 Access the QVB.
2 Manipulate bits in video memory.

3 Map the manipulated video memory to the screen.

Section 2.2 describes how to access the QVB. The following sections
describe how to manipulate bits and map video memory to the screen.

2.10.1 Manipulating Bits in Video Memory

2-24

A QVSS application ““draws’’ by setting bits directly in video memory. To
access video memory, use the QVBSL_MAIN_VIDEOADDR address in the
QVB. The application determines how to offset into video memory. When
you manipulate memory, remember the following:

* Each scanline of video memory is 1024 bits (128 bytes) wide.

* There are 1024 scanlines in memory.

NOTE: If you use an alternate windowing system, the accessible number of

scanlines is effectively halved.

V4.1—June 1989

Programming to the Driver

2.10.2 Mapping Video Memory to the Screen

To map a scanline in memory to the screen, load an entry in the scanline
map. The scanline map consists of word-length entries whose positions in
the map correspond to line positions on the screen and whose contents are
indices of scanline positions in video memory. The index of scanlines in
memory starts at zero and is incremented by one for each scanline.

Mapping with an Alternate Windowing System

This scheme is straightforward unless you are using an alternate windowing
system, in which case memory is split in half and shared by two systems.
To ensure that you are mapping the correct portion of memory, calculate
the correct scanline base in video memory. To obtain the correct scanline
base, complete the following steps:

1 Subtract the QVB$L_VIDEOADDR address from the QVB$L_MAIN_
VIDEOADDR address.

2 Divide the result by 128 (number of bytes in a scanline).

Add the base to any scanline index before you insert it as an entry in the
scanline map.

V4.1—June 1989 2-24.1

Programming to the Driver

2.11 Creating a QDSS Viewport

The QDSS driver performs all viewport operations to the screen. If your
application is not using the UIS windowing interface, it must create a
viewport or use the systemwide viewport before it attempts to write to the
screen. Example 2-12, later in this chapter, demonstrates how to access
the systemwide viewport. ‘ ’

To create a viewport, an application must perform the following steps:
1 Assign the viewport a channel.

2 Get a viewport ID.

3 Define the location and size of the viewport.

4 Start the viewport.

The following sections describe how to perform each of these steps.

2.11.1 Assigning a Viewport Channel

Use the $ASSIGN system routine to obtain a unique channel for a
viewport. The actual association of the viewport with the channel occurs
when the application gets a viewport ID for the viewport.

2.11.2 Getting a Viewport ID

Use the Get Viewport ID QIO to get a viewport ID. One parameter of this
QIO specifies the address of the longword to receive the ID. The ID stored
at that address identifies which viewport is the object of all subsequent
operations. The channel the application specifies in this QIO is associated
with the viewport.

2.11.3 Defining a Viewport

A viewport is defined by one or more rectangular update regions. Update
regions are defined in Update Region Definition (URD) buffers. Each URD
buffer contains coordinate information that defines the dimensions, in
pixels, of a rectangle and its location relative to the base of QDSS memory
either onscreen or offscreen. (See Appendix B for detailed information
about this data structure.) A viewport can be defined by one or more
URDs. Figure 2-7 illustrates a 500- by 500-pixel viewport defined by a
single URD and displays the contents of the associated definition buffer.

2-25

Programming to the Driver

Figure 2-7 Viewport and Update Region Definition Buffer

0 0 | Lower Left Corner (URC)
499 499 | Upper Right Corner (VRC)
50 100 | Absoiute Base (ADC)

ZK-5348-86

Note that the base is given in absolute coordinates and the two defining
corners of the viewport are given in viewport relative coordinates. These
coordinates become important when a viewport is divided into a number of
rectangles and some (occluded) rectangles are stored in offscreen memory.
Drawing operations use the relative coordinates to perform drawing, even
when rectangles are not visible on the screen.

To define a viewport, follow these steps:

1 Allocate and initialize one or more URD buffers that describe the
viewport’s size and relative position.

2 Call the Define Viewport Region QIO once for each viewport, passing
the URD (or array of URDs if the viewport is more than one rectangle).

Parameters of the Define Viewport Region QIO specify the address and
length of the viewport definition buffer and the viewport ID.

To redefine a viewport, reinvoke the Define Viewport Region QIO with
new coordinate information and the same channel and viewport ID.

2.11.4 Starting the Viewport

2-26

When you define a viewport, it is in a “’stopped’” state. To permit
operations to the viewport, you must explicitly start the viewport request
queue with the Start Request Queue QIO.

Example 2-9 creates and starts a 100-pixel square viewport with its
lower left corner at the absolute device coordinate (10,10). Note that in

FORTRAN, you must include the IODEF library to access the QIO function
codes.

Programming to the Driver

Example 2-9 Creating a Viewport

PROGRAM CREATE_VIEWPORT
IMPLICIT INTEGER*4(A-Z)
INCLUDE ‘VWSSYSDEF'
INCLUDE ' ($IODEF)’

INTEGER*2 CHAN_VP1,
2 CHAN_VP2

! Declare URDs
INTEGER*2 URD1_VP1(6}),

2 URD1_VP2(6)

! Load URD1l_VP1l buffer

URD1_VP1l(1l) = 0O ! lower left corner
URD1_VP1(2) = 0

URD1_VP1(3) = 99 ! upper right corner
URD1_VP1(4) = 99

URD1_VP1(5) = 10 ! absolute coordinate base

URD1_VP1(6)

10

! define and start VPl
CALL VIEWPORT (URD1_VP1, CHAN_VPl, VP1_1ID)

B ek ek ko ek ok ok ok ok ok ok kb

!t Viewport Subroutine
R RoR R e ke ok e o ok ok ok ok ok Rk

SUBROUTINE VIEWPORT (VP_URD, VP_CHANNEL, VIEWPORT_ID)

IMPLICIT INTEGER*4(A-Z)
INCLUDE ’VWSSYSDEF’
INCLUDE ’ (3$IODEF)’

INTEGER*2 VP_CHANNEL

! Obtain a channel for the viewport
CALL SYSSASSIGN (’SYSSWORKSTATION', ! device name
2 VP_CHANNEL,,,) t channel

! Get a viewport ID
CODE = IO$_SENSEMODE
STATUS = SYSS$SQIOW (,

2 %VAL(VP_CHANNEL) , channel

PR

2 %VAL(CODE) , QIO function code:

2 trr

2 %VAL(IOSC_QD_GET_VIEWPORT_ID),

2 VIEWPORT_ID, ! address of ID buffer
2 %VAL(4), ! VP ID buffer length
2 re)

IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Define the Viewport Region
CODE = I0$_SETMODE
STATUS = SYS$QIOW (,

2 %VAL(VP_CHANNEL), t channel

2) %VAL(CODE) , t QIO function code

2 ree

2 %VAL(IOSC_QD_SET_VIEWPORT_REGIONS),

2 VP_URD, ! address of URD buffer
2 %VAL(URDSC_LENGTH), ! length of URD buffer
2 %VAL(VIEWPORT_ID),,) ! address of VP ID

IF (STATUS .NE. 1) THEN

CALL LIBSSIGNAL (%VAL (STATUS))
END IF

Example 2-9 Cont’d. on next page
2-27

2.12

2.13

Programming to the Driver

Example 2-9 (Cont.) Creating a Viewport

! Start the Viewport
STATUS = SYSS$SQIOW (,

N

2
2
2
2
2
I

F (STATUS .NE.

%VAL(VP_CHANNEL), ! channel
%VAL(CODE), ! QIO function code
rerv
%VAL(IOSC_QD_START), ! QD function code
%VAL(VIEWPORT_ID), ! address of ID buffer
lll)

1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))

END IF

RETURN
END

Drawing with the QDSS Driver

The QDSS driver uses data structures known as drawing operation
primitives (DOPs) to perform drawing operations. Your application loads
a DOP with all the information necessary for the hardware to perform a
drawing operation. Typically, a DOP contains the type of operation to
perform (that is, draw a line, draw text, and so on), the number of times to
perform it, and any coordinates needed to perform the operation.

You must allocate storage for DOPs, insert DOPs on the request queue

to execute them, and reuse the storage with the return queue. If your
application uses the UIS windowing environment, you can perform all
three of these functions with UISDC routines. However, if your application
does not use the UIS windowing environment, the application must
manage DOP storage and insert DOPs on the request queue.

Chapter 5 describes how to perform drawing with DOPs.

Using Bitmaps

2-28

Although the QDSS driver does not support direct manipulation of the
onscreen bitmap, it permits you to copy bitmap images from processor
memory to onscreen and offscreen memory and from onscreen and
offscreen memory to processor memory.

The driver provides the following QIOs for manipulating bitmaps:

¢ Write Bitmap—Copies a bitmap from processor memory to QDSS
screen memory and performs bitmap-to-bitmap transfers (onscreen-to-
offscreen and offscreen-to-onscreen).

* Read Bitmap—Copies a bitmap from QDSS memory to processor
memory and performs bitmap-to-bitmap transfers (onscreen-to-
offscreen and offscreen-to-onscreen).

* Load Bitmap—Loads a bitmap to be used by a text or fill pattern
drawing operation from processor memory into the reserved bitmap
area of offscreen memory (see Figure 1-4). This QIO returns a bitmap
ID that the DOPs use to reference the bitmap. Bitmaps loaded by this
QIO must follow certain criteria; see Chapter 4 for details. The UISDC
interface also provides a Load Bitmap function. (See Chapter 5.)

Programming to the Driver

To draw an image, complete the following steps:

1 Build the image in processor memory.

2 Use the Write Bitmap QIO to load the image into QDSS memory.

To store an image in processor memory, use the Read Bitmap QIO to copy
the bitmap from QDSS memory to processor memory. (Complete this

process for occluded viewport regions when offscreen memory is full; see
Section 2.18.)

Use the Load Bitmap QIO to load a bitmap for use with a DOP.

Example 2-10 later in this chapter illustrates the use of the Write Bitmap
QIO to copy a region from onscreen memotry into offscreen memory
(bitmap-to-bitmap transfer).

2.14 Synchronizing Viewport Activity

Because DOPs are queued asynchronously for processing and execution,
you must take special action to synchronize activity on a viewport.

Figure 2-8 illustrates the three DOP states:
¢ In the queue, waiting to be processed
e Currently being processed by the driver

¢ Completed and on the screen

Figure 2-8 Synchronizing Viewport Activity

In Queue Processed by On the Screen
Driver

4 e

<
o o] —

ZK-5349-86

The driver can process a number of DOPs at a time. To synchronize
activity, manipulate the queue and be aware of whether the driver is
currently processing DOPs.

2-29

Programming to the Driver

2-30

Synchronization QIOs
The QIO interface provides the following QIOs for synchronization:

¢ Stop Request Queue—Immediately halts the processing of the request
queue and waits for whatever is currently being processed to complete
before returning.

¢ Start Request Queue—Restarts processing on a stopped request queue.

* Suspend Request Queue—Immediately halts the processing of the
request queue but does not wait for whatever is currently being
processed to complete before returning.

¢ Resume Request Queue—Resumes processing on a suspended request
queue.

¢ Hold Viewport Activity—Does not permit any viewport except the
systemwide viewport to write to the screen (processing continues).

* Release Hold—Releases the hold on viewport activity.

* Insert DOP—Permits an application to insert a DOP on the request
queue and waits for completion (essentially performs a synchronous
DOP).

Request Queue Interface DOPs

In addition to the QIOs, the request queue interface permits you to submit
the following DOPs:

* Stop Viewport Activity—Halts the queue and waits for any DOPs
currently processing to complete. This differs from the Stop Request
Queue QIO in that all DOPs inserted before this one are guaranteed to
execute before the queue is stopped.

e Start Viewport Activity—Restarts processing on a stopped request
queue.

* Suspend Viewport Activity—Halts the queue but does not wait for any
DOPs currently processing to complete. This differs from the Suspend
Viewport Activity QIO in that all DOPs inserted before this one are
guaranteed to execute before the queue is stopped.

* Resume Viewport Activity—Resumes processing on a suspended
request queue.

A Stop also differs from a Suspend in that a Stop issued on a stopped
Request Quest waits for the queue to restart, then takes effect, while a
Suspend issued on a suspended viewport is ignored. The Stop is thus
useful for synchronizing multiprocess windowing activity on a single
viewport. To guarantee that no other process accesses the viewport,

a process can issue a Stop before it attempts any windowing activity
(redefining URDs and so forth). When control returns from the Stop, it
is clear that no other process DOPs can execute on the viewport and any
DOPs that were processing have completed.

Note that if you issue a Stop Request Queue QIO to an already stopped
viewport, the QIO will not complete until the viewport is started by an AST
routine or another process. However, if you issue a Stop Request Queue
QIO to a suspended viewport, the Stop Request Queue QIO will complete.

Programming to the Driver

2.15 Handling Occlusion

In multiviewport systems, two or more viewports might overlap. This
overlapping is called occlusion. Figure 2-9 illustrates one viewport (VP_A)
occluding another (VP_B).

Figure 2-9 Occluded Viewport

=TT

VPB

Occluded region of VP_B

2ZK-5350-86

Only one viewport can display the overlapped area of the bitmap at a
time. If your application permits occlusion, it must be able to handle any
operations directed to an occluded viewport region. It does this by moving
the occluded region of the viewport into offscreen memory and performing
any necessary operations there. If that portion of the screen becomes
available for display later, you can pop the viewport, or copy the up-to-date
region back to the screen. The following sections describe how to handle a
simple case of occlusion.

2.15.1 Redefining Viewports

An application uses the update region definition buffers to handle
occlusion. A viewport originally defined as one rectangle with a single
URD can be redefined as a number of rectangles (viewport regions) with
one URD for each rectangle. The URDs provide both the absolute position
of the rectangle in QDSS memory and the viewport-relative coordinates of
the rectangles in relation to one another.

Use the Define Viewport Region QIO to redefine a viewport. You can use a
negative Y coordinate to redefine an occluded region in offscreen memory;
because drawing operations use viewport-relative coordinates, the drawing
is performed properly. You must ensure that the negative Y coordinate
you use falls within the range of the free_1 area of offscreen memory (see
Figure 1-4).

Figure 2-10 illustrates partitioning of an occluded viewport. In this
example, the viewport is divided into three rectangles (A, B, and C).
The minimum, maximum, and base (X,Y) coordinate pairs are stored in
three definition buffers.

2-31

Programming to the Driver

The base coordinates of each accessible rectangle are in absolute device
coordinates relative to the base of display memory (0,0). A base value
with two positive coordinates indicates that the rectangle is in onscreen
display memory. A base value with a negative Y coordinate and a positive
X coordinate indicates that the rectangle is in offscreen memory. A base
value of (-1,-1), for instance, indicates that the rectangle is on the deferred
queue; see Section 2.18 for information about the deferred queue. Note
that rectangle A is redefined to be in offscreen memory.

Figure 2-10 Redefining Viewports with URDs

Associated URDs

X Y
o] o l
B
49| 49| /A
] 0 {-500 s
| A C
L—_ X Y
' 0] 50
99| 99 8
60 | 110
X Y
50| O
991{ 49 C
110} 60

ZK-5351-86

2.15.2 Securing Exclusive Access to the Bitmap

2-32

An application secures exclusive access to the bitmap to guarantee that two
or more overlapping viewports do not attempt to write simultaneously to
the same piece of the display. Before it creates a viewport, your application
should determine whether another viewport already exists in the area of the
screen where the viewport will be created. (The application is responsible

- for tracking each viewport on the screen.)

To secure exclusive access to a viewport bitmap follow these steps:

1 Use the Stop Request Queue QIO to stop activity on the existing
viewport to ensure a known state for the subsequent steps.

2 Use the Define Viewport Region QIO to redefine the regions of the
existing viewport.

3 Use the Write Bitmap or Read Bitmap QIO to copy the to-be-occluded

region of the existing viewport to offscreen memory.

Programming to the Driver

4 Update the URD definition of the existing viewport to reflect its new
state. Specify a negative Y coordinate in the base value of the URD
to redefine the occluded region to be offscreen. (The negative Y value
must fall within the range of the free area of offscreen memory shown
in Figure 1-4). Drawing can still be performed to offscreen memory.

5 Use the Start Request Queue QIO to restart the viewport.

Now you can create the new viewport on screen and start drawing
operations on it.

Example 2-10 illustrates how one viewport occludes another. Exclusive
access to the bitmap is guaranteed before the second viewport is created.
The occluded region of the existing viewport is copied into the offscreen
memory free area at (0,-200). Note that the transfer parameter block (TPB)
is loaded by the predefined structure in the VWSSYSDEF file.

2-33

Programming to the Driver

Example 2-10 Securing Bitmap Access

PROGRAM CREATE_VIEWPORT
IMPLICIT INTEGER*4(A-Z)
INCLUDE ’‘VWSSYSDEF'
INCLUDE '’ ($IODEF)’

INTEGER*2 CHAN_VP1,
2 CHAN_VP2

! Declare TPB
INTEGER*2 TPB(13)

! Declare URDs
INTEGER*2 URD1_VP1(6),
2 URD1_VP2(6)

t{ Load URD1_VP1l buffer

URD1_VP1(1l) = 0 ! lower left corner
URD1_VP1(2) = 0

URD1_VP1(3) = 99 ! upper right corner
URD1_VP1(4) = 99

URD1_VP1(5) = 10 ! absolute coordinate base
URD1_VP1(6) = 10

! Load URD1_VP2 buffer

URD1_VP2(1) = 0 ! lower left corner
URD1_VP2(2) = 0O

URD1_VP2(3) = 99 ! upper right corner
URD1_VP2(4) = 99

URD1l_VP2(5) = 60 ! absolute coordinate base
URD1_VP2(6) = 60

! pefine and start VP1
CALL VIEWPORT (URD1_VP1l, CHAN_VP1l, VPl_ID)

! Stop VP1
CODE = I0$_SETMODE
STATUS = SYSSQIOW (,

2 %VAL(CHAN_VP1), ¢t channel

2 %VAL(CODE) , ! QIO function code

2 rrs

2 %VAL(I0S$C_QD_STOP), t QD function code

2 %VAL(VP1_ID), ! address of ID buffer
2 Ill.)

IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Load TPB for occluded rectangle
CALL LOAD_TPB (TPB)

! Copy occluded rectangle into offscreen memory
CODE = IO$_QDWRITE
STATUS = SYSSQIOW (,
2 %VAL(CHAN_VP1), ! channel
2 %VAL(CODE), t QIO function code
2 rrerev
2 TPB, ! transfer block
2 SVAL(TPBSC_BITMAP_XFR_LENGTH),)
IF (STATUS .NE. 1) THEN
CALL LIBS$SIGNAL (%VAL (STATUS))
END IF

! Update regions of VP1
CALL UPDATE_REGIONS (CHAN_VP1l, VP1_ID)

Example 2-10 Cont’d. on next page

2-34

Programming to the Driver

Example 2-10 (Cont.) Securing Bitmap Access

! Restart VP1
CODE = IO$_SETMODE
STATUS = SYSS$SQIOW (,

2 %VAL(CHAN_VP1), t channel

2 %VAL(CODE), ! QIO function code

2 rrr

2 %VAL(IOS$SC_QD_START), ! QD function code

2 %VAL(VP1_ID), ! address of ID buffer
2 ree)

IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! pefine and start VP2
CALL VIEWPORT (URD1_VP2, CHAN_VP2, VP2_ID)

ek g Kk dok Kok kA k ok ok ok ok ok ok ok ok khkok

!
{ * LLOAD TPB SUBROUTINE *
!

W K e ok Fe ook K de o ke ek b ok ke R R ke ke ke R

SUBROUTINE LOAD_TPB (TPB)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF’

! Associate the predefined structure w/ TPB
RECORD /TPB_STRUCTURE/ TPB

! Load values
TPB.TPB$B_TYPE = TPBSC_BITMAP_XFR t type
TPB.TPB$SB_SIZE = TPB$C_LENGTH
TPB.TPB$SW_X_SOURCE = 60
TPB.TPB$W_Y_SOURCE = 60
TPB.TPB$W_WIDTH = 50
TPB.TPB$W_HEIGHT = 50
TPB.TPB$W_X_TARGET = 0
TPB.TPB$W_Y_TARGET = -200

x of lower left corner
y of lower left corner
width of source

height of source

x of lower left corner
y of lower left corner

o tm s em sm sm

RETURN
END

§ ek dek kR Ak ok ok ok ok ok ek Rk ko
! * UPDATE REGION SUBROUTINE *

1 Khkkhhkhkhhkrhhrhhkhhhdhhhhdhrk

SUBROUTINE UPDATE_REGIONS (VP_CHANNEL, VIEWPORT_ID)
IMPLICIT INTEGER*4(A-Z)

INCLUDE ‘VWSSYSDEF'

INCLUDE ‘ (S$IODEF) '’

! Declare URD
INTEGER*2 URD(18)

! Load URD buffer
! First rectangle

URD(1l) =0 ! lower left corner

URD(2) = O

URD(3) = 99 ! upper right corner
URD(4) = 49

URD(5) = 10 ! absolute coordinate base
URD(6) = 10

Example 2-10 Cont’d. on next page

2-35

Programming to the Driver

Example 2-10 (Cont.) Securing Bitmap Access

t Second rectangle
URD(7) = 0 1
URD(8) = 49

URD(9) = 49 1
URD(10) = 99
URD(11) = 10 !
URD(12) = 59

! Third rectangle
URD(13) = 49 !
URD(14) = 49
URD(15) = 99 !
URD(16) = 99
URD(17) = 0 !
URD(18) = -200 !
CODE = IO$_SETMODE
STATUS = SYSSQIOW
2

2

2

2

2

2

2

IF (STATUS .NE. 1)

lower left corner

upper right corner

! absolute coordinate base

lower left corner
upper right corner

absolute coordinate base

! (offscreen)
(r
%VAL(VP_CHANNEL), ! channel
%VAL(CODE) , ! QIO function code
rerr
%VAL(IO$C_QD_SET_VIEWPORT_REGIONS),
URD, ! address of URD buffer
%VAL(3 * URD$C_LENGTH), ! length of URD buffer
%VAL(VIEWPORT_ID),,) ! address of VP ID
THEN

CALL LIB$SIGNAL (%VAL (STATUS))

END IF

RETURN
END

2.15.3 Popping an Occluded Viewport

Bringing an occluded viewport into full view onscreen is referred to as
popping a viewport. Popping a viewport involves copying the occluding
region into offscreen memory and the occluded region from offscreen
memory onto the screen. To pop a viewport, an application must take the
following steps:

2-36

1

0 N O Gt W DN

Stop activity on the occluding viewport.

Copy the occluding region into offscreen memory.

Redefine the occluding viewport URDs.

Restart the occluding viewport.

Stop activity on the occluded viewport.

Copy the occluded region from offscreen memory onto the screen.
Redefine the occluded viewport URDs.

Restart the (formerly) occluded viewport.

Example 2-11 illustrates popping a viewport.

Programming to the Driver

Example 2-11 Popping a Viewport

PROGRAM POP
IMPLICIT INTEGER*4(A-Z)
INCLUDE ’VWSSYSDEF'
INCLUDE '’ ($IODEF)’

INTEGER*2 CHAN_VP1,
2 CHAN_VP2

!t Declare TPBs
INTEGER*2 TPB1(13),
2 TPB2(13),
2 TPB3(13)

! Declare URDs
INTEGER*2 URD1_VP1(6),

2 URD1_VP2(6)

{ Load URD1_VP1l buffer

URD1_VP1(1l) = 0 ! lower left corner
URD1_VP1(2) = O

URD1_VP1(3) = 99 ! upper right corner
URD1_VP1(4) = 99

URD1_VP1(5) = 10 ! absolute coordinate base
URD1_VP1(6) = 10

¢ Load URD1_VP2 buffer

URD1_VP2(1l) =0 t lower left corner
URD1_VP2(2) = 0

URD1_VP2(3) = 99 ! upper right corner
URD1_VP2(4) = 99

URD1_VP2(5) = 60 { absolute coordinate base

URD1_VP2(6) = 60

! Define and start two overlapping viewports

! Stop VP2 (the occluding viewport)
CODE = IO$_SETMODE
STATUS = SYSSQIOW (,

2 %VAL(CHAN_VP2), ! channel

2 %VAL(CODE) , ! QIO function code

2 ey

2 %VAL(IOSC_QD_STOP), t QD function code

2 %VAL(VP2_ID), ! address of ID buffer
2 III)

IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Load TPB for occluded rectangle
CALL LOAD_TPB2 (TPB2)

! Copy occluding region into offscreen memory
CODE = IOS_QDWRITE
STATUS = SYSSQIOW (,

2 %VAL(CHAN_VP2), ! channel

2 %VAL(CODE), ! QIO function code
2 rerrree

2 TPB2, ! transfer block

2 %VAL(TPB$C_BITMAP_XFR_LENGTH),)

IF (STATUS .NE. 1) THEN

CALL LIBS$SIGNAL (%VAL (STATUS))
END IF

! Update regions of VP2
KEY = 2
CALL UPDATE_REGIONS (CHAN_VP2, VP2_ID, KEY)

Example 2-11 Cont’d. on next page 2-37

Programming to the Driver

Example 2-11 (Cont.) Popping a Viewport

! Restart VP2
CODE = IO$_SETMODE
STATUS = SYSS$SQIOW (,

2 S%VAL(CHAN_VP2), ! channel

2 %VAL(CODE), t QI0 function code

2 rrr

2 %VAL(IO$C_QD_START), ¢ QD function code

2 %VAL(VP2_ID), ! address of ID buffer
2 ree)

IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

t Stop VPl (the occluded viewport)
CODE = IO$_SETMODE
STATUS = SYSS$QIOW (,

2 %VAL(CHAN_VP1), { channel

2 %VAL(CODE) , ! QI0 function code

2 res

2 %VAL(IOSC_QD_STOP), ! QD function code

2 %VAL(VP1_ID), ! address of ID buffer
2 ree)

IF (STATUS .NE. 1) THEN

CALL LIBSSIGNAL (%VAL (STATUS))
END IF

! Load TPB for occluded rectangle
CALL LOAD_TPB3 (TPB3)

t Copy offscreen rectangle into screen memory
CODE = IO$_QDWRITE
STATUS = SYS$SQIOW (,

2 %VAL(CHAN_VP1), t channel

2 %VAL(CODE), t QIO function code
2 rrrrr

2 TPB3, ! transfer block

2 %VAL(TPBSC_BITMAP_XFR_LENGTH),)

IF (STATUS .NE. 1) THEN

CALL LIBS$SIGNAL (%VAL (STATUS))
END IF

! Update regions of VPl
KEY = 3
CALL UPDATE_REGIONS (CHAN_VP1l, VP1_ID, KEY)

{ Restart VP1
CODE = IO$_SETMODE
STATUS = SYSS$SQIOW (,

2 %VAL(CHAN_VP1), ! channel

2 %VAL(CODE), t QIO function code

2 rre

2 %SVAL(IO$C_QD_START), ! QP function code

2 %VAL(VP1_ID), ! address of ID buffer
2 ree)

IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! o e g e e de g e de e e ek ok Kok ek e R kK

! * LOAD TPB2 SUBROUTINE * 2

§ hhkkhkkhkkhkhkkkhhhhhhikhhkr

Example 2-11 Cont’d. on next pagé

2-38

Programming to the Driver

Example 2-11 (Cont.) Popping a Viewport

SUBROUTINE LOAD_TPB2 (TPB)
IMPLICIT INTEGER*4(A-Z)
INCLUDE ‘VWSSYSDEF’

! Associate the predefined structure w/ TPB
RECORD /TPB_STRUCTURE/ TPB

! Load values
TPB.TPB$B_TYPE = TPBSC_BITMAP_XFR !t type
TPB.TPB$B_SIZE = TPB$SC_LENGTH
TPB.TPB$W_X_SOURCE = 60
TPB.TPB$W_Y_SOURCE = 60
TPB.TPB$SW_WIDTH = 50
TPB.TPB$SW_HEIGHT = 50
TPB.TPB$W_X_TARGET = 0
TPB.TPBSW_Y_TARGET = -500

x of lower left corner
y of lower left corner
width of source
height of source
x of lower left corner
y of lower left corner

- e 1w e em sm

RETURN
END

Kk oKk Kk ke Kok ke ok Kok ke Kok ok ok ok ok kok ok ok

!
! * LOAD TPB3 SUBROUTINE * 3
!

K ek e e Wk ek e ok ke R A ok ok e ok ok ok e R

SUBROUTINE LOAD_TPB3 (TPB)
IMPLICIT INTEGER*4(A-7)
INCLUDE ’'VWSSYSDEF’

! Associate the predefined structure w/ TPB
RECORD /TPB_STRUCTURE/ TPB

! Load values
TPB.TPB$B_TYPE = TPBSC_BITMAP_XFR ! type
TPB.TPB$B_SIZE = TPB$C_LENGTH
TPB.TPB$W_X_SOURCE = 0
TPB.TPB$W_Y_SOURCE = -200
TPB.TPBSW_WIDTH = 50
TPB.TPBSW_HEIGHT = 50

x of lower left corner
y of lower left corner
width of source
height of source

e = se tm 1w em

TPB.TPB$W_X_TARGET = 60 x of lower left corner
TPB.TPB$W_Y_ TARGET = 60 y of lower left corner
RETURN

END

e A ke K K e K K Kok ke keok ok ok ok ok ke ok ok ok ke ok ok ke ok ok ok

!
! * UPDATE REGION SUBROUTINE *
1 ORARKAKRAIAKARK AR A KRR KR A KSR Ak

SUBROUTINE UPDATE_REGIONS (VP_CHANNEL, VIEWPORT_ID, KEY)
IMPLICIT INTEGER*4(A-Z)

INCLUDE ‘VWSSYSDEF’

INCLUDE ' ($IODEF)’

! Declare URD
INTEGER*2 URD(18)

! Assume long URD
URD_LENGTH = (3 * URD$C_LENGTH)

! Key determines which URD is loaded
IF (KEY .EQ. 1) THEN

ELSE IF (KEY .EQ. 2) THEN

Example 2-11 Cont’d. on next page

2-39

Programming to the Driver

Example 2-11 (Cont.) Popping a Viewport

! Redefine VP2 for occlusion
! First rectangle

URD(1) =0 ! lower left corner

URD(2) = 0

URD(3) = 49 ! upper right corner
URD(4) = 49 .

URD(5) = 0 ! absolute coordinate base
URD(6) = =500 t (offscreen)

! Second rectangle

URD(7) = 0 ! lower left corner

URD(8) = 50

URD(9) = 99 ! upper right corner
URD(10) = 99

URD(11) = 60 ! absolute coordinate base

URD(12) = 110
! Third rectangle

URD(13) = 50 ! lower left corner
URD(14) = 0

URD(15) = 99 ! upper right corner
URD(16) = 49

URD(17) = 110 ! absolute coordinate base
URD(18) = 60

ELSE IF (KEY .EQ. 3) THEN
! Redefine VPl for pop

URD(1l) = O ! lower left corner
URD(2) = 0
URD(3) = 99 ! upper right corner
URD(4) = 99
URD(5) = 10 { absolute coordinate base
URD(6) = 10
URD_LENGTH = URD$C_LENGTH
ELSE
END IF

CODE = I0O$_SETMODE
STATUS = SYS$QIOW (,

2 %VAL(VP_CHANNEL), . ! channel
2 %VAL(CODE), ! QIO function code
2 rrry
2 %VAL(I0$C_QD_SET_VIEWPORT_REGIONS),
2 URD, ! address of URD buffer
2 %VAL(URD_LENGTH), { length of URD buffer
2 %VAL(VIEWPORT _ID),,) ! address of VP ID
IF (STATUS .NE. 1) THEN)
CALL LIB$SIGNAL (%VAL (STATUS))
END IF
RETURN
END

2.16 Deleting a Viewport

When you delete a viewport, synchronization of activity is important.
Your application must guarantee that all drawing activity to a viewport is
completed before the viewport is deleted. Once drawing is completed, you
can deassign the associated channel to ensure that nothing else is written to
the viewport. Finally, you can erase the viewport. The following sections
describe each procedure.

2-40

Programming to the Driver

2.16.1 Synchronizing Viewport Deletion

Before you deassign a channel, you must ensure that all drawing to a
viewport is complete, as follows:

1

Issue a Stop Viewport Activity DOP with the Insert DOP QIO (the
QDWRITE function code with the IO$M_QD_INSERT_DOP modifier)
to stop pending operations either on the DOP request queue or in
progress before the delete. This QIO waits for the stop to occur before
returning control, which accounts for the lag time in processing DOPs.
If you do not wait for completion, you might delete the viewport while
DOPs are on the queue.

2 Use the $DASSGN system service to deassign the associated channel.

2.16.2 Erasing a Viewport

To erase a viewport, use the Fill Polygon DOP to draw a background-
colored rectangle over the viewport. The channel of the viewport to be
erased is already disassociated. You must use the systemwide viewport to
perform this operation as follows:

Assign a channel for the systemwide viewport.

Obtain the system information block using the Get System Information

QIO.
Extract the systemwide viewport ID from the system information block.

Use the Fill Polygon DOP to draw a background-colored rectangle over
the viewport (see Chapter 5 for details about DOPs). You must have
the systemwide viewport ID to perform this DOP on the systemwide
viewport.

Example 2-12 illustrates deleting a viewport.

2-41

Programming to the Driver

Example 2-12 Deleting a Viewport

PROGRAM DELETE_VIEWPORT
IMPLICIT INTEGER*4(A-Z)
INCLUDE ‘VWSSYSDEF’
INCLUDE ‘ ({S$IODEF)’

t Declare

external macro routine

EXTERNAL DOPSINSQUE

INTEGER*2
2

! Declare
INTEGER* 2

! Declare
INTEGER*2

! Declare
INTEGER*4

CHAN_VP1,
CHAN_SYS

TPB
TPB(13)

URD
URD1_VP1(6)

QDB descriptor and buffer
QDB_DESC(2)

! Load URD1_VP1l buffer

URD1_VP1(1)
URD1_VP1(2)
URD1_VP1(3)
URD1_VP1(4)
URD1_VP1(5)

URD1_VP1(6) = 10

t Define and start VPl

CALL VIEWPORT (URD1_VP1, CHAN_VP1, VP1_ID)

! Draw to

the viewport

8% e de ke oKk ok ke Fok ok ok ook ko ok ok

! Delete the Viewport
IRARE SRS AL RS REE AR L ES]

! Synchronize the deletion
! get a Stop DOP for VPl

SIZE = (DOPSC_LENGTH) ! calculate size

CALL GET_DOP (VP1_ID, SIZE, DOP2)

! Call the Stop subroutine

CALL STOP_

2
2

VP (S%VAL(DOP2), t DOP address,
SIZE, ! DOP size
VP1_1ID) t viewport ID

! Insert the DOP using Insert DOP QIO

CODE = (IOS$_QDWRITE .OR. IO$SM_QD_INSERT_DOP)

STATUS = SYS$QIOW (,

2

2
2
2
2
I

%VAL(CHAN_VP1),
%VAL(CODE), ,, ,
DOP2,
%VAL(SIZE),
SVAL(VP1_ID),,;)

F (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))

END IF

! Deassign the viewport channel

CALL SYS$DASSGN (CHAN_VP1) ! channel

! Obtain a channel for the systemwide VP

CALL SYSS$ASSIGN ('SYS$SWORKSTATION’,

2

CHAN_SYS, ,)

=0 ! lower left corner

=0

= 99 ! upper right corner

= 99

= 10 ! absolute coordinate base

by

value

channel

QIO function code
DOP address

DOP size

VP ID

device name
channel

Example 2-12 Cont’d. on next page

2-42

Programming to the Driver

Example 2-12 (Cont.) Deleting a Viewport

t Get the systemwide viewport ID
! Get the QDB

CODE = IO$_SENSEMODE

STATUS = SYS$SQIOW (.,

2 %VAL(CHAN_SYS), ! channel

2 %VAL(CODE) , ! QIO function code

2 ree

2 SVAL(I0$C_QV_GETSYS),

2 QDB_DESC,,,,) ! address of descriptor
IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Extract the ID from the QDB
SYS_ID = EXTRACT_SYS_ID (%VAL(QDB_DESC(2))) ! pass address by value

! Get a Fill Polygon DOP
SIZE = (DOP_POLY$C_LENGTH) ! calculate size
CALL GET_DOP (SYS_ID, SIZE, DOP3)

! Call the Fill Polygon subroutine to erase VPl border

CALL F_POLY (%VAL(DOP3), ! DOP address, by value
2 %VAL(DOP3+DOP$C_LENGTH) , !t var. block address

2 SIZE) ! DOP size

! Queue the DOP by calling a MACRO subroutine

CALL DOPSINSQUE (%VAL(DOP3), ! DOP address, by value

2 SYS_1ID) ! viewport ID

! de ok K ok g Kok e ke ok ok ke ek ok Kk ke ok
t Get DOP Subroutine

1 dedededkodeododk gk ok ok e ok ok ok ok
SUBROUTINE GET_DOP (VIEWPORT_ID, SIZE, DOP)
IMPLICIT INTEGER*4(A-Z)

! Declare external macro routine
EXTERNAL - DOP$REMQUE

DOP = DOP$REMQUE (VIEWPORT_ID,
2 SIZE)

t If none on return queue, calculate size and allocate one.
IF (DOP .EQ. 0) THEN
CALL TEST_SIZE (%VAL(VIEWPORT_ID), t viewport ID > return Q
2 SIZE)
! Allocate appropriate size DOP
CALL LIBSGET_VM (SIZE,
2 DOP)
END IF

RETURN
END

§ 0 ook ok e e e ok ook ke ok ok ok ek ok ke e ok ok ek ok

! * TEST_SIZE SUBROUTINE *
B ok ok e ok e ok ok ok o ok ok R ok ok ek ok K

SUBROUTINE TEST_SIZE (REQ,SIZE)
IMPLICIT INTEGER*4(A-Z)
INCLUDE ’'VWSSYSDEF’

!"Associate the predefined structure w/ REQ
RECORD /REQ_STRUCTURE/ REQ

Example 2-12 Cont’d. on next page

2-43

Programming to the Driver

Example 2-12 (Cont.) Deleting a Viewport

IF (SIZE .GT. REQ.REQS$W_SMALL_DOP_SIZE) THEN
SIZE = REQ.REQ$W_LARGE_DOP_SIZE

ELSE
SIZE = REQ.REQ$W_SMALL_DOP_SIZE

END IF

RETURN
END

§ 0 Feodedodk ok e ke ok ko ek ok e ok ek ke e e ok ke ok ok ok ke ok ok ok

! * EXTRACT_SYS_ID SUBROUTINE *
4 e e ok e ok e ok Rk o ok ok e sk ok ok ok ok ok ok ok ok ok ok

FUNCTION EXTRACT_SYS_ID (QDB)
IMPLICIT INTEGER*4(A-7)
INCLUDE ’VWSSYSDEF'

! Associate the predefined structure w/ QDB
RECORD /QVB_QDSS_STRUCTURE/ QDB

EXTRACT_SYS_ID = QDB.QDB$L_SYSVP

RETURN
END

13 P R Kk A e ok ke ke K Rk ke Rk ek ok ke e ok ok ke

! * STOP_VP SUBROUTINE *

B ek e ok ok ok ok ke ok ke e ok ke ok ok ok ke o

SUBROUTINE STOP_VP (DOP, SIZE, VIEWPORT_ID)
IMPLICIT INTEGER*4(A-~Z)
INCLUDE ’'VWSSYSDEF’

! Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

! Load the Common block
DOP.DOP$W_SIZE = SIZE
DOP.DOP$W_FLAGS = O
DOP.DOP$W_MODE = WRITS$SM_NO_SRC_COMP + 10
DOP.DOPSL_MASK = -1
DOP.DOP$L_SOURCE_INDEX = -1
DOP.DOPSL_FCOLOR = 253
DOP.DOP$L_BCOLOR = 252
DOP.DOPSW_VP_MAX_X = 99
DOP.DOP$W_VP_MAX_Y = 99
DOP.DOP$W_DELTA_X = O
DOP.DOP$W_DELTA_Y = 0
DOP.DOP$SW_VP_MIN_X = 0
DOP.DOP$W_VP_MIN_Y = O

[}

! Load the Stop values
DOP.DOP$SW_ITEM_TYPE = DOP$SC_STOP
DOP.DOP$W_OP_COUNT = 1
DOP.DOPSL_DRIVER_VP_ID = VIEWPORT_ID

RETURN
END

ek Kk ok K e ok ke Kk ke ke ok ok R ke ok ok ok ke

!
t{ * F_POLY SUBROUTINE *
B ook sk ok ok ek ok ok ok Kk ok ok kR

SUBROUTINE F_POLY (DOP, DOP_VAR, SIZE)
IMPLICIT INTEGER*4(A-Z7)
INCLUDE 'VWSSYSDEF’

Example 2-12 Cont’'d. on next page

2-44

Programming to the Driver

Example 2-12 (Cont.) Deleting a Viewport

! Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

t Associate the predefined variable structure w/ DOP_VAR
RECORD /DOP_POLY_ARRAY/ DOP_VAR

{ Load the Common block

DOP.DOP$W_SIZE = SIZE

DOP,DOPSW_FLAGS = 0

DOP.DOPS$SW_MODE = WRIT$M_NO_SRC_COMP + 10
DOP.DOP$L_MASK = -1
DOP.DOP$L_SOURCE_INDEX = -1
DOP.DOPS$SL_FCOLOR = 252

DOP.DOP$L_BCOLOR = 252

! Load the POLYGON values
DOP,DOPSW_ITEM_TYPE = DOP$C_FILL_POLYGON
DOP.DOP$W_OP_COUNT = 1

DOP.DOP$SL_BITMAP_ID = O ! no bitmap
DOP_VAR.DOP_POLYS$W_LEFT_X1 = 10
DOP_VAR.DOP_POLYS$W_LEFT Y1 = 10
DOP_VAR.DOP_POLYSW_LEFT_X2 = 10
DOP_VAR.DOP_POLY$W_LEFT_ Y2 = 110
DOP_VAR.DOP_POLY$W_RIGHT_X1 = 110
DOP_VAR.DOP_POLYSW_RIGHT_Y1 = 10
DOP_VAR.DOP_POLY$W_RIGHT_X2 = 110
DOP_VAR.DOP_POLY$W_RIGHT_Y2 = 110
RETURN

END

.17 Moving a Viewport

The QDSS driver does support moving a viewport or changirig its size.
However, an application can move a viewport as follows:

1 Copy the contents of the old viewport to an area in the offscreen
bitmap.

Delete the old viewport.
Create a new viewport.

Copy the data from the offscreen bitmap to the new viewport.

.18 Using the Deferred Queue “

An application is responsible for tracking offscreen memory use. When

a viewport is occluded and the free area of offscreen memory is already
full of occluded regions, you can ensure a drawing operation for the region
only by placing the region on the deferred queue as follows:

1 To save the state of the region until update, use the Read Bitmap QIO
to copy the region to processor memory.

2-45

2.19

Programming to the Driver

2 Use the Define Viewport Region QIO to redefine the region, setting the
absolute base coordinates to (-1,-1). When you place a region on the
deferred queue, the relative coordinates are used only to inform the
driver that operations for the region are to be stored on the deferred
queue.

Before you use the deferred queue, call the Notify Deferred Queue Full
QIO. Tiis QIO enables you to notify an application when the deferred
queue is full. (It prevents a deferred region from consuming too much
memory.)

Your application should execute operations stored on the deferred queue
either when QDSS memory becomes available or when it is notified that
the queue is full. To execute an operation on the deferred queue, follow
these steps:

1 Use the Write Bitmap QIO to copy the region back into offscreen
memory.

Use the Define Viewport Region QIO to redefine the region.

3 Use the Execute Deferred Queue QIO to execute operations stored on
the queue.

If no memory is available when the queue is full, swap another region
out of offscreen memory and onto the deferred queue until the queue is
executed.

Note that if a viewport is occluded in more than one place, you might have
to execute the same deferred queue multiple times (that is, update the first
region at one point and update the other region with the same operations
later). To do so, define a region on the deferred queue when you redefine
the first region in offscreen memory for deferred queue execution. This
step informs the driver that the viewport still has an occluded region and
prevents it from deleting the deferred queue.

After the deferred queue drawing operations are executed to all the
deferred regions of a viewport, use the Delete Deferred Queue Operation
QIO to delete the drawing operations from the deferred queue. Also, when
an application deletes a viewport with a region on the deferred queue,
delete the deferred queue drawing operations for that region.

Using Color

2-46

The QDSS driver uses several planes of memory to display color.
Corresponding points in each plane of memory map to a single pixel on
the display. The number of system-configured memory planes determines
the depth or Z-mode of a pixel and the number of colors that can be
simultaneously displayed.

A driver configured with n planes of memory can display 2**n colors.
The QDSS driver can be configured with four or eight planes of memory.
Hence, a four-plane system can display 16 simultaneous colors and an
eight-plane system can display 256.

The total number of different colors a system can display is specified

by a longword in the QDSS QVB block. The QDSS driver can define a
maximum of 2**24 colors, but only 16 or 236 colors can be on the screen
at any one time.

Programming to the Driver

Each displayable color is represented by a value in the hardware color map
(the hardware look-up table). On color systems, a color is represented by
one 16-bit intensity value for each primary color. On intensity systems, a
color is represented by only one 16-bit value. The low-order eight bits of
these values are ignored. The high-order eight bits represent the actual
intensity values, which range from 0 to 255.

2.19.1 Informing the Driver About Color

Before an application can use the hardware color map, it must tell the
driver which type of color system it is using. To identify a system as either
color- or intensity-based, use the Set Color Characteristics QIO, specifying
the second unique parameter as follows:

¢ (0—Color system
¢ 1—Intensity system
Once the identification is complete, the driver accepts only Set Color Map

Entries QIO requests that match this setting. The driver rejects all other Set
Color Map Entries QIOs.

2.19.2 Manipulating Color Map Values

The values that represent pixels onscreen are used as indexes into the
hardware color map. Pixel values are read in the Z-mode direction; for
example, if only the first three planes of a pixel are used and the bits in the
first and third planes are set, the resulting pixel value is 101 (binary). This
value indexes into the fifth value in the hardware color map. Figure 2-11
illustrates this.

2-47

Programming to the Driver

Figure 2-11 Indexing the Hardware Color Map
1024 bits wide
A
~ —
40 24
MABg EFgHIdKLMNOP ST UV WIXTY | +rpadded
ZT 45 78 0"’“‘1@#$°/o‘ ‘*()—*' with zeros
=L e b N[IKI>ablcidie [T 9
1)K niolPdAiris|t ulvwlxlYlz
32 bits
-~ W\
32 bits
8 bits
unused

2K 5477 86

2-48

If your application is not using the UIS environment, it must load any
values it uses into the hardware color map with the Set Color Map Entries
QIO, and specify the following information:

¢ Index into the color map at which to begin initialization
¢ Address of the buffer that contains the desired intensity values
¢ Length of the buffer

Call this QIO at any time to redefine the values in the color map.

To determine the current values of the hardware color map, the application
should use the Get Color Map Entries QIO and specify the following
information:

* Index into the color map at which to begin information retrieval
e Address of the buffer that holds the returned intensity values
* Length of the buffer

3 QVSS/QDSS Common QIO Interface

This chapter contains an alphabetical listing of descriptions of the QIO
calls you can use with the QVSS and QDSS drivers. Table 3-1 organizes
the QIOs in functional groups.

Table 3-1 QIO Functionai Groups

Functional Group QIO Name
. Enable Keyboard Input
I h
Controlling the Keyboard Enable Keyboard Sound }
Modify Keyboard Characteristics

Controlling Input

Controlling the Pointer
Controlling the Screen
Controlling the Tablet
Controlling User Entry Lists

Obtaining Information

Using Compose Keys

Using Soft Keys

{ Enable Input Simulation }
Get Next Input Token

Define Pointer Cursor Pattern
Enable Button Transition
Enable Pointer Movement

Initialize Screen
Modify Systemwide Characteristics
Enable Function Keys

{ Enable Data Digitizing }

{ Enable User Entry }

Get Keyboard Characteristics
Get Number of List Entries
Get System Information

{ Load Compose Sequence Table }
Revert to Default Compose Table

{ Load Keyboard Table
Revert to Default Keyboard Table

3.1 How to Use This Chapter

Before you call QIOs, become familiar with Chapters 1 and 2 and

Appendices A, B, and H.

e Chapters 1 and 2 describe the general operation of QIOs.

* Appendices A and B contain pictures and descriptions of the data types
you pass to the driver through the P1 to P6 parameters.

* Appendix H describes the SYS$QIO system service.

As you call QIOs, refer to the descriptions in this chapter.

V4.1—June 1989

4

QVSS/QDSS Common QIO Interface

3.1.1 QIO Description Format

3-2

The QIO descriptions follow a strict format. The main headings in each
QIO description and the type of information that appears there follow:

QIO Name—Name of the QIO.
Overview—Brief description of the operation the QIO performs.

Format—Format of the call you must pass to SYS$QIO to perform the
desired operation.

Arguments in brackets are optional. Some programming languages,
such as MACRO, allow you to omit optional arguments; the assembler
supplies a default value of 0. Some other programming languages,
such as FORTRAN, do not allow you to omit optional arguments;

you must pass a value of 0 for any unspecified argument. Check the
programming language documentation to see how the language handles
optional arguments.

Unique Parameters—Information that passes to the driver through
$QIO P1 to P6 parameters; also indicates whether the parameter is
required or optional.

Description—Additional QIO operation information.

Example—QIO example.

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Define Pointer Cursor Pattern

Define Pointer Cursor Pattern

Defines the pointer cursor pattern for a given region on the physical
screen. When the cursor enters that region, the new cursor pattern
takes effect. Other arguments enable you to select the cursor style and
reposition the pointer cursor.

FORMAT SYS$QIO [efn],chan 10$_SETMODE ,[iosb] ,[astadr]
[astprm] ,p1 [,p2] [,p3] [,p4] [,p5] [,p6]

UNIQUE P1 — 10$C_QV_SETCURSOR (required)
PARAMETERS This function code identifies the action the QIO performs.

To modify the QIO action, “OR”’ the IO$C_QV_SETCURSOR function
code with one of the following optional function modifiers:

Function Modifier Action

1I0$M_QV_BIND Binds the pointer to the region specified in P6.
Once the pointer enters the specified region,
it.cannot move outside the region’s borders. If
the region becomes occluded, the pointer is no
longer bound to the region.

I0$M_QV_DELETE Deletes the specified pointer cursor pattern
request. Any data contained in the type-ahead
buffer is delivered to the specified AST address
before the delete operation is executed.

IO$M_QV_LAST Places the specified pointer cursor pattern
request last in the entry list. if IO$M_QV_LAST
is not specified, the request is placed first in
the list. If an outstanding pointer cursor pattern
request exists for the channel, it is updated to
reflect the new entry.

1I0$M_QV_LOAD_DEFAULT Makes the specified cursor pointer the system
default cursor pointer. If you specify this function
modifier, the system ignores any screen region
you specify in P6.

10$M_QV_USE_DEFAULT Requests that the system use the system default
cursor pointer when the region specified in P6
becomes active. If you specify this function
modifier, the system ignores any arguments you
specify in P2, P4, and PS5.

IO$M_QV_TWO_PLANE_ Indicates the system is loading a multiplane

CURSOR cursor pattern. Use this modifier to load a
cursor pattern on a QDSS system. Refer to
the Description section for more information on
multiplane cursors.

V4.1—June 1989 3-3

QVSS/QDSS Common QIO Interface
Define Pointer Cursor Pattern

P2—Bitmap image address (optional)

This parameter is either a 16-word array or, on multiplane cursor systems,
a 32-word array. The QVB contains a field that informs you whether yours
is a single-plane or multiplane system. Use the Get System Information
QIO to access this field. (See Description section.))

P3—New cursor position address

This parameter is a longword that points to a two-longword array that
defines the new cursor position: the first specifies the X coordinate of the
new cursor position in pixels; the second specifies the Y coordinate of the
new cursor position in pixels.

If P3 is 0, the pointer cursor is not repositioned.

The following diagram shows the data structure that defines the new cursor

position.
X position on physical screen 0
Y position on physical screen 4
Field Use
X position on physical screen Specifies X coordinate in pixels
Y position on physical screen Specifies Y coordinate in pixels

P4—Pointer cursor hot spot definition address
This parameter is an address that points to a two-longword array that
defines the pointer cursor hot spot, the point within the 16- x 16-pixel
cursor display region that is the actual cursor position. The following
diagram shows the data structure that defines the cursor hot spot.

X offset 0
Y offset 4
Field Use
X offset The X offset in pixels from the upper left corner of the pointer pattern
to the active point.
Y offset The Y offset in pixels from the upper left corner of the pointer pattern

to the active point.

3-4 V4.1—June 1989

QVSS/QDSS Common QIO Interface
Define Pointer Cursor Pattern

P5—Cursor style definition value

This parameter is a longword value in the range 0 through 3 that defines
how the cursor is presented against the background screen.

This parameter is ignored for multiplane cursor systems.

The following table lists each value and the style it denotes.

Value Style

0 Dynamic NAND. The background under the cursor hot spot is examined.
If it is black (all off), the cursor is NANDed with the background:- If the
background is not black, the cursor is ORed with the background.

1 Dynamic OR. The background under the cursor hot spot is examined.
If it is black (all off), the cursor is ORed with the background. If the
background is not black, the cursor is NANDed with the background.

2 NAND. The cursor is always NANDed with the background screen.
OR. The cursor is always ORed with the background screen.

P6—Screen rectangle values block address
(optional)

This parameter is a longword that points to a screen rectangle values block
that defines a rectangle on the screen. If you do not specify P6, a default
rectangle that covers the entire screen is used.

The following diagram shows the data structure that defines the screen

rectangle.
K MINX (eft side value) 0
MINY (bottom side value) 4
MAXX (right side value) 8
MAXY (top side value) 12
Field Use
MINX (left side value) Pixel value for left side of rectangle
MINY (bottom side value) Pixel value for bottom side of rectangle
MAXX (right side value) Pixel value for right side of rectangle
MAXY (top side value) Pixel value for top side of rectangle

DESCRIPTION When the pointer cursor moves outside a currently active rectangle, a
special signal notifies the process that the cursor has left the region.

V4.1—June 1989 3-5

QVSS/QDSS Common QIO Interface

Define Pointer Cursor Pattern

The QVSS and QDSS drivers allow you to specify a pointer cursor pattern
that defines the shape of the cursor (QDSS systems use a multiplane cursor
that is described in the following section). The shape can be in the form
of a block, a cross, an arrow, or any other configuration. You can also
define the cursor style (how the cursor is presented against the background
screen) and the location of the cursor hot spot (the point within the cursor
pattern region that is the actual cursor position). In addition to moving the
cursor with the pointer, you can also reposition the cursor by specifying
new X and Y cursor coordinates.

Multiplane Cursor Patterns

If your system uses a multiplane cursor (QDSS), you can specify a 32-
word array as a cursor pattern. Currently, multiplane cursors consist of
two planes. Typically, you use two planes to prevent the cursor from
disappearing when it is moved over varying backgrounds. To understand
how the two planes work, think of the 32-word array as two 16-word arrays,
array A and array B.

The bit pattern in array A is determined as follows:
¢ 1—Indicates that the corresponding pixel must be filled.

* 0O—Indicates that whatever is on the screen at the corresponding pixel
should show through (remember, the cursor is overlaid on the screen).

The bit pattern in array B uses the the bits set to 0 in array A as a mask;
those corresponding bits are ignored in array B. The remaining bit pattern
in array B is determined as follows:

* 1—Indicates that the corresponding pixel must be filled with the
background color.

* 0O—Indicates that the corresponding pixel must be filled with the
foreground color.

EXAMPLE

The following example shows the typical assignment of a pointer cursor
region.

V4.1—June 1989

QVSCURSOR1:

REGION1:

208:

30$:

. WORD
«WORD
« WORD
«WORD
«WORD
«WORD
«WORD
«WORD
«WORD
«WORD
. WORD
+WORD
«WORD
+WORD
-WORD
+«WORD

+ LONG
+ LONG
. LONG
. LONG

MOVL
$QIOW_S

BLBS
BRW

MOVL,
$QIOW_S

BLBS
BRW

~b1111111111111111
~b1111111111111111
~b1111111111111111
~b1111111111111111
~b1111111111111111
~b1111111111111111
~“b1111111111111111
~b1111111111111111
~b1111111111111111
~b1111111111111111
~b1111111111111111
~b1111111111111111
~b1111111111111111
~b1111111111111111
~b1111111111111111
~b1111111111111111

20

300
300

#10$C_QV_SETCURSOR, RO
CHAN=CUR_CHAN1, -
FUNC=#IO$_SETMODE,—
Pl =(RO),-
P2=#QV$CURSOR1, -
P6=#REGION1

RO, 308

ERROR

#$I0$C_QV_SETCURSOR, RO
CHAN=CUR_CHAN2Z, -
FUNC=#10$_SETMODE, -
P1=(RO},-
P2=#QV$CURSOR2 , -
P6=#REGION2

RO, 408

ERROR

~e ~e

.
r

~e we wo we ~e we we

~e ~e

~

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Define Pointer Cursor Pattern

INITIAL 16 X 16 CURSOR
PATTERN

CURSOR REGION 1

DEFINE CURSOR 1

ASSIGNED CHANNEL

SET MODE QIO

CURSOR PATTERN REQUEST
CURSOR DESCRIPTION
CURSOR REGION

NO ERROR IF SET

DEFINE CURSOR 2

SECOND ASSIGNED CHANNEL

NO ERROR IF SET

QVSS/QDSS Common QIO Interface
Enable Button Transition

Enable Button Transition

Enables repeating pointer button ASTs for the process on the specified
channel. If this request has the highest priority for the specified rectangle,
each button transition delivers an AST when the pointer cursor enters that
area of the physical screen.

FORMAT

SYS$QIO [efn],chan,|O$_SETMODE ,[iosb] ,[astadr]
[astprm] ,p1,p2 [,p3] [,p4] [,p5] [,p6]

UNIQUE
PARAMETERS

P1—I0$C_QV_ENABUTTON (required)

This function code identifies the action the QIO performs. This parameter
must be specified.

To modify the QIO action, ““OR” the IO$C_QV_ENABUTTON function
code with one of the following optional function modifiers:

Function Modifier Action

I0$M_QV_DELETE Deletes the specified pointer button request. Any
data in the type-ahead buffer is delivered to the
specified AST address before the delete operation is
executed.

IO$M_QV_LAST Places the specified pointer button request last in the
list. If IO$M_QV_LAST is not specified, the request is
placed first in the list. if an outstanding pointer button
request exists for the channel, it is updated to reflect
the new priority.

I0$M_QV_PURG_TAH Purges the type-ahead buffer of any existing pointer
button transitions.

P2—Pointer button AST specification block address
(required)

This parameter is a longword that points to a pointer AST specification
block that specifies a user-supplied AST routine that is notified each time a
pointer button transition occurs.

The following diagram shows the data structure that specifies a pointer
button AST.

AST service routine address 0

AST parameter 4

access mode 8

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Button Transition

input token address 12

Field Use

AST service routine address AST service routine address is 0 if no AST
routine is required. If no AST routine is
specified, input is stored in the type-ahead
buffer and delivered either when an AST
region is declared or when a Get Next Input
Token QIO is issued. The type-ahead buffer
holds 32 input tokens or characters.

AST parameter The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

Access mode The access mode where the AST is delivered

is maximized with the current access mode.

Input token address The address of a longword that receives an
input token when an AST routine is called.
Word 0 of the longword receives token or
character data. The token is a decimal value
that indicates which button is activated. The
values are assigned to the pointer buttons
sequentially, starting with the select button,
which is always 400. The driver stores the
token in the low-order word of the longword.

Bit 15 of the high-order word determines
whether the transition is up (0) or down

(1). The remainder of the high-order word
contains control information you can use

to determine if the [Shift] (bit 12), [Cirl] (bit
13), or [Lock] (bit 14) keys are pressed. You
can use these as meta-keys (keys used in
combination). When the bit is set, the key is
down.

P3—Must be 0

P4—Pointer button characteristics block address
(optional)

This parameter is a longword that points to a pointer button characteristics
block. This block specifies which button-related characteristics to enable
or disable for the button region. When the region becomes active, the
specified characteristics become active.

The following diagram shows the data structure that specifies pointer
button characteristics.

V4.1—June 1989 3-9

QVSS/QDSS Common QIO Interface

Enable Button Transition

enabled characteristics mask 0
disabled characteristics mask 4
0 8
0 12
Field Use
Enabled characteristics Longword of characteristics to be enabled.
mask
Disabled characteristics Longword of characteristics to be disabled.
mask The pointer button characteristics, defined by the
$QVBDEF macro, consist of the following bit:
Characteristic Meaning
QVSM_BUT_ After a pointer button down transition
UPTODOWN occurs, the current pointer button
request receives all future pointer
button transitions until all pointer
buttons return to the up position
(regardless of the position of the
pointer cursor on the physical screen).
If this characteristic is disabled,
then each up and down transition is
delivered to whichever button request
is active for the current pointer cursor
position. Default is on.
0 This longword must be zero.
0 This longword must be zero.
P5—Must be 0

P6—Screen rectangle values block address

(optional)

This parameter is a longword that points to a screen rectangle values block.
This block defines the area on the physical screen for which the specified
button transition is enabled.

If you do not specify a screen rectangle values block, a default rectangle
that covers the entire screen is used.

The following diagram shows the data structure that defines the screen

rectangle.

3-10

V4.1—June 1989

QVSS/QDSS Common QIO Interface

Enable Button Transition

MINX (left side value)

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

12

Field Use
MINX (left side value) Pixel value for left side of rectangle
MINY (bottom side value) Pixel value for bottom side of rectangle

MAXX (right side value)

MAXY (top side value) Pixel value for top side of rectangle

Pixel value for right side of rectangle

DESCRIPTION

The QVSS and QDSS drivers support a multibutton pointer. A process
enables a poinfer button request to indicate a pointer button transition, either
up or down. A token passes to the specified AST routine to signal which
button made a transition and the type of transition (up or down). Many

applications are interested only in pointer button events that occur in
a specific region of the physical screen. The P6 parameter specifies a

rectangle on the physical screen that defines the area where the application
is interested in pointer button transitions. If rectangles for pointer button
requests for multiple channels (or processes) overlap, the first rectangle on

the list gets priority.

V4.1—June 1989

3-11

QVSS/QDSS Common QIO Interface
Enable Button Transition

EXAMPLE

SET_BUTTONAST:

$ASSIGN_

BLBS
BRW

108: MOVL
$QIOW_S

BLBS

BRW

20%: RSB
BUT_BLOCK:

. LONG
. LONG
«LONG
.LONG

BUT_REGION:
. LONG
. LONG
.LONG
. LONG

3-12

The following example shows typical programming and use of pointer

button ASTs.

S DEVNAM=WS_DEVNAM, -

CHAN=BUT_CHAN

RO,10$
ERROR

#10$C_QU_ENABUTTON, RO

CHAN=BUT_CHAN, -
FUNC=$#10%_SETMODE, -
P1=(RO),~
P2=#BUT_BLOCK, -
P6=#BUT_REGION
RO,20%

ERROR

BUT_AST
0

0
BUTTON

20

300
300

.
’
.
’
.
12
.
r

~

~e we Ne we Ne we we

; ASSIGN CHANNEL USING

LOGICAL NAME AND

CHANNEL NUMBER
NO ERROR IF SET
ERROR

NO ERROR IF SET

BUTTON AST
SPECIFICATION BLOCK
AST ADDRESS

AST PARAMETER
ACCESS MODE

BUTTON INFORMATION
LONGWORD

AST REGION

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Data Digitizing

Enable Data Digitizing

If the system pointing device is a tablet, the Enable Data Digitizing QIO
enables you to use the tablet as a data digitizer.

FORMAT SYS$QIO [efn],chan ,IO$_SETMODE ,[iosb] ,[astadr]
[astorm] ,p1,p2,p3 [,p4] ,p5 [,p6]

UNIQUE P1—I0$C_QV_ENABLE_DIGITIZING (required)

PARAMETERS This function code identifies the action the QIO performs.

To modify the QIO action, “OR"’ the IO$C_QV_ENABLE_DIGITIZING
function code with the following optional function modifier:

Function Modifier Action

IO$M_QV_DELETE Deletes the specified data digitizing request. Any data in the
' type-ahead buffer is delivered to the specified AST address
before the delete operation is executed.

P2—Pointer movement AST specification block
address (optional)

This parameter is a longword that points to a pointer movement AST
specification block that specifies a user-supplied AST routine. The routine
is notified when pointer movement occurs inside the data rectangle
specified in P6. The pointer position is reported using the best granularity
in which the device can report.

The following diagram shows the data structure that specifies a pointer
movement AST for the tablet.

AST service routine address 0
AST parameter 4

access mode 8

address of new pointer cursor position 12

V4.1—June 1989 3-13

QVSS/QDSS Common QIO Interface
Enable Data Digitizing

Field

Use

AST service routine address

AST parameter

Access mode

New pointer cursor position address

The AST service routine address is 0 if no
AST routine is required. No buffering of data
in the type-ahead buffer occurs for pointer
motion ASTs.

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

The access mode where the AST is delivered
is maximized with the current access mode.

The fourth longword contains the address
of a longword that receives the new pointer
cursor position when the AST routine is
called. (if your application does not need
this information, specify a 0.) The low-order
word receives the new X pixel location of the
pointer cursor; range of X is defined in the
qvbsw_tablet_width field of the QVB block.
The high-order word receives the new Y pixel
location of the cursor; range of Y is defined
in the qub$w_tablet_height field of the QVB
block.

P3—Pointer button AST specification block address

(optional)

This parameter is a longword that points to a pointer button AST
specification block. This block specifies a user-supplied AST that is
notified when a button transition occurs.

The following diagram shows the data structure that specifies the pointer

button AST for the tablet.

AST service routine address 0
AST parameter 4
access mode 8

input token address 12

3-14

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Data Digitizing

Field Use

AST service routine address The AST service routine address is 0 if no
AST routine is required. If no AST routine is
specified, input is stored in the type-ahead
buffer and delivered either when an AST
region is declared or when a Get Next Input
Token QIO is issued. The type-ahead buffer
holds 32 input tokens or characters.

AST parameter The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

Access mode The access mode where the AST is delivered
is maximized with the current access mode.

Input token address This is the address of a longword that

receives an input token when an AST routine
is called. Word 0 of the longword receives
token or character data. The token is a
decimal value indicating which button was
activated. The values are assigned to the
pointer buttons sequentially starting with

the select button, which is always 400. The
driver stores the token in the low-order word
of the longword. Bit 15 of the high-order word
determines whether the transition is up (0) or
down (1).

The rest of the high-order word contains
more control information that can be used to
determine if the [Shift] (bit 14), (bit 13),
or [Lock] (bit 12) keys are pressed. You can
use these keys as meta-keys (keys used in
combination). When the bit is set, the key is
down,

P4, P5—Must be 0

P6—Data rectangle values block address
(optional)
This parameter is a longword that points to a data rectangle values block

that defines the active rectangle on the tablet. The origin (0,0) of the tablet
is the lower left-hand corner.

If you do not specify a data rectangle values block, a default rectangle that
covers the entire tablet is used.

The following diagram shows the data structure that defines a data
rectangle.

MINX (left side value) 0

V4.1—June 1989 3-15

QVSS/QDSS Common QIO Interface
Enable Data Digitizing

MINY (bottom side value) 4
MAXX (right side value) 8
MAXY (top side value) 12
Field Use
MINX (left side value) Pixel value for left side of rectangle
MINY (bottom side value) Pixel value for bottom side of rectangle
MAXX (right side value) Pixel value for right side of rectangle
MAXY (top side value) Pixel value for top side of rectangle

DESCRIPTION

3-16

Only the process that issues the data digitizing request can change or
cancel it. When the process is deleted, any outstanding data digitizing is
canceled.

Only one data digitizing region can be active at a time. When one process
has declared a data digitizing region, attempts by other processes to declare
an additional data digitizing region fail.

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Function Keys

Enable Function Keys

Enables the windowing system to access function keys F1 through F5,
which are reserved for workstation control functions and should not be
used in application programs. These keys are defined by the driver, which,
in addition to informing the owner of the key of the keypress, performs
special functions.

FORMAT SYS$QIO [efn],chan,lIO$_SETMODE ,[iosb] ,[astadI]
[astprm] ,p1,p2,p3 [,p4] [,p5] [,P6]

UNIQUE P1—I0$C_QV_ENAFNKEY (required)

PARAMETERS This function code identifies the action the QIO performs.

P2—Reserved function keystroke AST specification
block address (required)

This parameter is a longword that points to a reserved function keystroke
AST specification block. This block specifies a user-supplied AST routine
that is notified each time a keystroke occurs.

The following diagram shows the data structure that specifies a reserved
function keystroke AST.

AST service routine address 0
AST parameter 4
access mode 8
input token address 12
Field Use

AST service routine address Specify 0 if no AST routine is required. If no
: AST routine is specified, input is stored in
the type-ahead buffer and delivered either
when an AST region is declared or when a
Get Next Input Token QIO is issued. The
type-ahead buffer holds 32 input tokens or
characters.

AST parameter The user-defined AST parameter delivered
to the AST routine. The driver does not
examine it.

V4.1—June 1989 3-17

QVSS/QDSS Common QIO Interface

Enable Function Keys

Field

Use

Access mode

Input token address

This is the access mode where the AST is
delivered. It is maximized with the current
access mode.

This is the address of a longword that
receives an input token when an AST routine
is called; word 0 of the longword contains
token data defined by the $SMGDEF macro
for these function keys. By default, an AST is
signaled only on a down transition.

P3—Symbolic name for function key to associate
with request

This parameter is a symbolic name that indicates the function key to
associate with this request. The following bits are defined:

Key Value

Function

QV$M_KEY_F1
QVSM_KEY_F2

QV$M_KEY_F3

QV$M_KEY_F4
QV$M_KEY_F5

Driver signals AST and toggles keyboard Hold Screen lamp.

Operator screen. If the SYSGEN parameter WS_OPAO is set
to 1, toggles between the workstation screen and the operator
screen.

Switch window. If an alternate windowing system is enabled,
the driver signals an AST and toggles between the windowing
systems. (This value applies to monochrome VAXstation | and Il
workstations.)

The driver signals an AST.

The driver signals an AST.

P4, P5, P6—Must be 0

EXAMPLE The following example shows typical programming for the F5 function key.

10%: MOVL #I10SC_QV_ENAFNKEY, RO

$QIOW_S CHAN=FNKEY F5_CHAN, -
FUNC=#10$_SETMODE, -
P1=(RO) ,-
P2=#FNKEY_BLOCK, -
P3=#QVSM_KEY_F5

BLBS RO, 30%

BRW ERROR

~e we we we we we S

FUNC KEY REQUEST TO RO
ASSIGNED CHANNEL

SET MODE QIO

FUNCTION KEY REQUEST
AST SPEC BLOCK

KEY IS F5

NO ERROR IF SET

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Function Keys

FUNCTION KEY AST
SPECIFICATION BLOCK
AST ADDRESS

AST PARAMETER
ACCESS MODE

INPUT TOKEN STORAGE

FNKEY_BLOCK:

.LONG F5_AST
.LONG F5_ACK
.LONG O

.LONG CHARACTER

Ne Ne Ne Na we we

V4.1—June 1989 3-19

QVSS/QDSS Common QIO Interface

Enable Input Simulation

Enable Input Simulation

Simulates keystrokes, pointer motion, and pointer button transitions.

FORMAT

SYS$QIO [efn] ,chan,|0$_SETMODE ,[iosb] ,[astadr]
[astprm] ,p1 [,p2] [,p3] [,p4] [,p5] [,p6]

UNIQUE
PARAMETERS

NOTE:

P1—I10$C_QV_SIMULATE (required)

This function code identifies what action the QIO performs. If you set the

TYPE field in the string descriptor you use to TYPE_T2 (value 38), the string
is evaluated as 16-bit characters rather than 8-bit characters, and any 16-bit
value can be passed as the low word for keyboard input.

The LENGTH field in the descriptor is the number of 16-bit characters
rather than a byte-count.

P2—ASCII text descriptor address (optional)

This parameter is a longword that points to a descriptor for the ASCII
text to send to the current keyboard region. The maximum number of
characters allowed in the text string is 32. If P2 is 0, no data is sent.

P3—New pointer position address (optional)

This parameter is a longword that points to a two-longword array that
defines a new pointer position: the first specifies the X coordinate of the
new pointer position in pixels; the second specifies the Y coordinate.

If P3 is 0, the pointer is not repositioned.

The following diagram shows the data structure that specifies the new
pointer position.

o

X position on physical screen

N

Y position on physical screen

Field Use

X position on the physical screen Specifies X coordinate in pixels
Y position on the physical screen Specifies Y coordinate in pixels

P4—Buiton simulation block address (optional)

This parameter is a longword that points to a button simulation block that
specifies which pointer buttons are pressed or released.

If P4 is 0, the pointer buttons are not modified.

The following diagram shows a button simulation block.

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Input Simulation

buttons to be pressed mask 0
buttons to be released mask 4
0 8
[l
0 12
Field Use
Buttons to be pressed mask Mask of the buttons to be pressed
Buttons to be released mask Mask of the buttons to be released

Pointer button definitions used in the masks
defined by the $QVBDEF macro, consisting of
the following symbols:

Symbol Meaning

QVSM_BUTTON_1 Select button
QV$M_BUTTON_2 Button 2
QV$M_BUTTON_3 Button 3
QV$M_BUTTON_4 Button 4

This longword must be zero.
This longword must be zero.

P5, P6—Must be 0

V4.1—June 1989 3-21

QVSS/QDSS Common QIO Interface
Enable Input Simulation

EXAMPLE The following example shows typical programming for input simulation.

SET UP SYSTEM
CHARACTERISTICS

SET UP NEW SYSTEMWIDE
CURSOR PATTERN

5% BSBW SET_CHARACTERISTICS

~e ~e ~e we

BSBW SET_PERM_CURSOR

SET UP MOUSE REGION AST
SIMULATE INPUT ON
KEYBOARD 2.

CLEAR EVENT FLAG #2

WAIT FOR EVENT FLAG #2

BSBW SET_MOUSEAST
BSBW SIMULATE_INPUT

SCLREF_S EFN=#2
$WAITFR_S EFN=42

Ne ~e me ~e we

ERROR: S$EXIT_S RO

SIMULATE_INPUT:
MOVL #10$C_QV_SIMULATE, RO ;5 SIMULATE KEYBOARD INPUT
$QIOW_S CHAN=KBD_CHAN2, -~ 3 ON KEYBOARD CHANNEL 2

FUNC=#10$_SETMODE, -
P1=(RO),-
P2=#SIM_ACK,-
P3=#0
BLBS RO,20$% ; NO ERROR IF SET
BRW ERROR ‘
20$: RSB

SIM_ACK:
.ASCID /This input SIMULATED on chan 2./

3-22 V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

Enable Keyboard Input

Enables repeating character input ASTs for the process on the specified
channel.

FORMAT SYS$QIO [efn],chan,|O$_SETMODE ,[iosb] ,[astadr]
[astprm] ,p1,p2,[p3] ,[p4] [,p5] [,P6]

UNIQUE P1—I0$C_QV_ENAKB (required)

PARAMETERS This function code identifies the action the QIO performs.

To modify the QIO action, “OR”’" the IO$C_QV_ENAKB function code with
one of the following optional function modifiers:

Function Modifier Action

I0$M_QV_CYCLE Removes the active keyboard from the top of the
keyboard request list and places it at the end of the
list (lowest priority). The next highest priority keyboard
request then becomes the active keyboard request and
a control AST is delivered on its behalf.

I0$M_QV_DELETE Deletes the specified keyboard request. Any data
contained in the type-ahead buffer is delivered to the
specified AST address before the delete operation is
executed. f

1I0$M_QV_LAST Places the specified keyboard request last in the list. If
: I0$M_QV_LAST is not specified, the request is placed
first in the list. If an outstanding keyboard request
exists for the channel, it is updated to reflect the new
priority.

1D$M_QV_PURG_TAH Purges the type-ahead buffer of any keyboard request
on this channel.

P2—Keystroke AST specification block address
(required)

This parameter is a longword address that points to a keystroke AST
specification block. This block specifies a user-supplied AST routine that is
notified each time a keystroke occurs.

The following diagram shows the data structure that specifies a keystroke
AST.

AST service routine address

o

AST parameter

H

V4.1—June 1989 3-23

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

3-24

access mode 8
input token address 12
Field Use
AST service routine address The AST service routine address is 0 if no

AST routine is required. If no AST routine is
specified, input is stored in the type-ahead
buffer and delivered either when an AST region
is declared or when a Get Next Input Token QIO

is issued.

AST parameter The user-defined AST parameter is delivered to
the AST routine. The driver does not examine it.

Access mode The access mode where the AST is delivered is
maximized with the current access mode.

Input token address This value is the address of a longword that

receives an input token when an AST routine

is called. Word 0 of the longword contains
token or character data. Values from 0 to 255
map into the Digital multinational character set.
Values from 256 to 512 map function keys into
token values. Word 1 of the longword contains
control information; bit 15 defines the status
of a token (1 equals down, 0 equals up). By
default, an AST is only signaled on a down
transition.

The rest of the high-order word contains
more control information that can be used to
determine if the (bit 12), [Ctrl] (bit 13),
or (bit 14) keys are pressed. You can
use these keys as meta-keys (keys used in
combination). When the bit is set, the key is
down.

P3—Keyboard request AST specification block
address (optional)

This parameter is a longword address that points to a keyboard request
AST specification block. This block specifies a control AST routine that
is notified when a keyboard request becomes active. A keyboard request
becomes active when the active keyboard owner is deleted or a cycle
request causes it to become active. No control AST is delivered when
the new request is already active or the owning process issued the cycle
request.

The following diagram shows the data structure that specifies a keyboard
request AST.

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

AST service routine address 0
- AST parameter 4
access mode 8
0 12
Field Use
AST service routine address The address of the AST service routine is 0 if

no AST routine is required. If no AST routine

is specified, input is stored in the type-ahead
buffer and delivered either when an AST region
is declared or when a Get Next Input Token QIO
is issued. The type-ahead buffer holds 32 input
tokens or characters.

AST parameter The user-defined AST parameter is delivered to
the AST routine. The driver does not examine it.
Access mode The access mode where the AST is delivered is

maximized with the current access mode.
0 The fourth longword must be zero.

P4—Keyboard characteristics block address
(optional)

This parameter is a longword address that points to a keyboard
characteristics block that describes keyboard-related characteristics to be
enabled or disabled for the keyboard region. The specified characteristics
are enabled or disabled when the keyboard region becomes active.

The keyboard characteristics block is ignored if the keyboard region for
this channel already exists. To modify the characteristics of an existing
keyboard region, use the Modify Keyboard Characteristics QIO.

The default characteristics are specified in the systemwide characteristics
block, which can be modified using the Modify Systemwide Characteristics
QIO. The current systemwide characteristics are stored in the
characteristics field of the QVB.

The following diagram shows the data structure that specifies the keyboard
characteristics block.

enabled characteristics mask 0
disabled characteristics mask 4
keyclick volume 8

0 ' 12

V4.1—June 1989 3-25

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

Field Use

Enabled The first longword is a mask of characteristics to be
characteristics mask enabled.

Disabled The second longword is a mask of characteristics to be

characteristics mask

Keyclick volume

disabled.

The keyboard characteristics, defined by the $QVBDEF
macro, consist of the following bits:

Characteristic Default Meaning
QVSM_KEY_ On Key held down
AUTORPT automatically repeats.
QV$M_KEY_ On Keyclick sounds on each
KEYCLICK keystroke.
QV$M_KEY_UDF6 Off Function keys F6
: through F10 generate
up/down transitions.
QV$M_KEY_UDF11 Off Function keys F11
through F14 generate
up/down transitions.
QV$M_KEY_UDF17 Off Function keys F17
through F20 generate
up/down transitions.
QV$M_KEY_ Off Function keys HELP and
UDHELPDO DO generate up/down
transitions.
QV$M_KEY_UDEH1 Off Function keys E1
through E6 generate
up/down transitions.
QV$M_KEY_ Off Arrow keys generate
UDARROW up/down transitions.
QV$M_KEY_ Off Numeric keypad keys
UDNUMKEY generate up/down

transitions.

The keyclick volume is a value from 1 (loudest) to 8

(softest). If a value of 0 is specified, the current system
default keyclick volume is used.

0 The fourth longword must be 0.

P5, P6—Must be 0

EXAMPLE

The following example shows a typical assignment of two terminal
channels, keyboard requests on those channels, and associated AST
routines.

3-26 V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

P2_BLOCK1: ; AST SPECIFICATION BLOCK 1
. LONG KBD_AST ; AST ADDRESS
. LONG ACK1 ; AST PARAMETER
. LONG 0 ; AST DELIVERY MODE
I’

. LONG CHARACTER INPUT TOKEN
ACK1l: .ASCID /INPUT ACKNOWLEDGED CHANNEL 1/

P2_BLOCK2: ; AST SPECIFICATION BLOCK 2
.LONG KBD_AST
.LONG ACK2
.LONG 0

. LONG CHARACTER
ACK2: .ASCID /INPUT ACKNOWLEDGED CHANNEL 2/

P3_BLOCK: CONTROL AST SPECIFICATION
BLOCK

. LONG CTL_AST CONTROL - AST ADDRESS

~e ~s e ~e we ~e

«LONG 0 AST PARAMETER

. LONG 0 AST DELIVERY MODE

. LONG 0 MUST BE ZERO
SET_KBDAST:

SASSIGN_S DEVNAM=WS_DEVNAM,-~ ; ASSIGN CHANNEL USING

CHAN=KBD_CHAN2 LOGICAL NAME AND
CHANNEL NUMBER
NO ERROR IF SET

ERROR

BLBS RO,5$
BRW ERROR

~e ~e ~o ~e

20%: MOVL #I0S$C_QV_ENAKB, RO ENABLE KEYBOARD AST
REQUEST TO RO
ASSIGNED CHANNEL

SET MODE QIO
KEYBOARD AST REQUEST
USER AST ROUTINE
CONTRQOL AST ROUTINE
NO ERROR IF SET

$QIOW_S CHAN=KBD_CHANZ, -
FUNC=#10$_SETMODE, ~
P1=(R0),-
P2=#P2_BLOCKZ, -
P3=¢P3_BLOCK

BLBS RO, 30%

BRW ERROR

~e me me we we we we we

V4.1—June 1989 3-27

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

KBD_AST:
F5_AST:

5%
108

20%:

30$:

40%:

CTL_AST:

5%
10s:

3-28

«WORD
PUSHL
CALLS
BLBS
BRW

CMPW
BNEQ
BSBW
BRB

PUSHAL
CALLS
BLBC

CMPB
BNEQ
BSBW
BRB

CMPB
BNEQ

4(AP)

#1,G LIB$PUT_LINE
RO, 10%

ERROR

#KEY$C_F5, CHARACTER
20$

CYCLE_KBD

40%

DESC
#1,G "LIB$PUT_LINE
RO,5$

#~n/C/,CHARACTER
308

CYCLE_KBD

408%

#~A/F/,CHARACTER
403

$SETEF_S EFN=#2

RET

«WORD
PUSHAL
CALLS
BLBS
BRW

RET

CYCLE
#1,GALIB$SPUT_LINE
RO, 10%

ERROR

~e ~e

~ ~ ~

~

SEND ACKNOWLEDGMENT
MESSAGE

WAS F5 TYPED?

CYCLE THE KEYBOARD LIST
AND EXIT

SEND CHARACTER TYPED

WAS A "C" TYPED?

CYCLE THE KEYBOARD LIST

WAS AN "F" TYPED?

YES, EXIT PROGRAM

SEND ACKNOWLEDGMENT
MESSAGE

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Keyboard Sound

Enable Keyboard Sound

Enables a process to make a bell or keyclick sound on the LK201
keyboard:

FORMAT SYS$QIO [efn],chan,IO$_SETMODE ,[iosb] ,[astadr]
[astorm] ,p1,p2[,p3] [p4] [,PS] [,p6]

UNIQUE P1—I0$C_QV_SOUND (required)

PARAMETERS This function code identifies the action the QIO performs.

P2—Symbolic name that denotes type of sound
(required)

This parameter is a symbolic name that denotes the type of sound. The
sound types, defined by the $QVBDEF macro, consist of the following bits:

Characteristic Meaning

QV$M_SOUND_BELL Sound bell.
QV$M_SOUND_CLICK Sound keyclick.

P3—Value that specifies the sound volume
(optional)

This parameter specifies the sound volume, a value from 1 (loudest) to
8 (softest). If a value of 0 is indicated, the previously specified (that is,
current) volume is used.

P4, P5, P6—Must be 0

V4.1—June 1989 3-29

QVSS/QDSS Common QIO Interface
Enable Keyboard Sound

EXAMPLE

20$: MOVL
$QIOW_S
BLBS
BRW

3-30

The following example shows how the bell sound can be programmed.

10C_QV_SOUND, RO
CHAN=SYS_CHAN1, -
FUNC=#10S_SETMODE, ~
Pl = (RO),-
P2=QVM_SOUND_BELL
RO, 20$

ERROR

~e we we Ns we we

SOUND REQUEST TO RO
ASSIGNED CHANNEL
SET MODE QIO

SOUND REQUEST

SOUND TYPE IS BELL
NO ERROR IF SET

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Pointer Movement

Enable Pointer Movement

Enables repeating pointer motion ASTs for the process on the specified
channel. If this request has the highest priority for the specified rectangle,
each pointer motion delivers an AST when the pointer cursor enters the
specified area of the physical screen.

FORMAT SYS$QIO [efn],chan ,lIO$_SETMODE ,[iosb] ,[astadr]
[astprm] ,p1,p2,[p3] ,[p4] [,p5] [,P6]

UNIQUE P1—IO$C_QV_MOUSEMOV (required)

PARAMETERS This function code identifies the action the QIO performs.

To modify the QIO action, “OR” the IO$C_QV_MOUSEMOV function
code with one of the following optional function modifiers:

Function Modifier Action

I0$M_QV_DELETE Deletes the specified pointer motion request. Any data
contained in the type-ahead buffer is delivered to the
specified AST address before the delete operation is
executed.

IOSM_QV_LAST Places the specified pointer motion request last in the list. If
I0O$M_QV_LAST is not specified, the request is placed first in
the list. If an outstanding pointer motion request exists for
the channel, it is updated to reflect the new priority.

P2—Pointer motion AST specification block address
(required) |

This parameter is a longword that points to a pointer motion AST
specification block. This block specifies a user-supplied AST routine that is
notified when pointer motion occurs.

The following diagram shows the data structure that specifies a pointer
motion AST.

AST service routine address 0
AST parameter 4

access mode 8

address of new pointer cursor position 12

V4.1—June 1989 3-31

QVSS/QDSS Common QIO Interface

Enable Pointer Movement

Field

Use

AST service routine address

AST parameter

Access mode

New pointer cursor position address

The AST service routine address Is 0 if no
AST routine is required. No buffering of data
in the type-ahead buffer occurs for pointer
motion ASTs.

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

The access mode where the AST is delivered
is maximized with the current access mode.

The fourth longword contains the address
of a longword to receive the new pointer
cursor position when the AST routine is
called. (if your application does not need
this information, specify 0.) The low-order
word receives the new X pixel location of the
pointer cursor; the high-order word receives
the new Y pixel location of the cursor. For
screen pointers, X is from 0 through 1023,
with the lowest value denoting the left side
of the screen; Y is from range 0 through 863
with the lowest value denoting the bottom of
the screen. For tabiet pointers, the range of
X is defined in the qub$w_tablet_width field
of the QVSS block; the range of Y is defined
in the qvb$w_tablet_height field of the QVB
block.

P3—Pointer cursor exit AST specification block

address (optional)

This parameter is a longword that points to a pointer cursor exit AST
specification block. This block specifies a user-supplied control AST
routine that is notified when the pointer cursor exits from the rectangle

specified by P6.

The following diagram shows the data structure that specifies a pointer

cursor exit AST.

AST service routine address 0
AST parameter 4
access mode 8

0 12

3-32

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable Pointer Movement

Field Use

AST service routine address The AST service routine address is 0 if no
AST routine is required.

AST parameter The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

Access mode The access mode where the AST is delivered
is maximized with the current access mode.

0 The fourth longword must be zero.

P4, P5—Must be 0

P6—Screen rectangle values block address
(optional)

This parameter is a longword that points to a screen rectangle values block.
This block defines a rectangle on the screen.

If you do not specify P6, a default rectangle that covers the entire screen is

used.
The following diagram shows the data structure that specifies a screen
rectangle.
MINX (left side value) 0
MINY (bottom side value) 4
MAXX (right side value) 8
MAXY (top side value) 12
Field Use
MINX (left side value) Pixel value for left side of rectangle
MINY (bottom side value) Pixel value for bottom side of rectangle
MAXX (right side value) Pixel value for right side of rectangle
MAXY (top side value) Pixel value for top side of rectangle

S

DESCRIPTION The QVSS and QDSS drivers track the pointer by moving the pointer
cursor on the physical screen. To minimize desktop space required to
manipulate the pointer, the driver updates the pointer cursor on the screen
proportionally to the velocity at which the pointer is being moved on the
desktop.

V4.1—June 1989 3-33

QVSS/QDSS Common QIO Interface
Enable Pointer Movement

The driver allows a process to enable a pointer motion notification request
to signal pointer motion within a selected area of the physical screen. A
token is passed to the specified AST address to indicate the new pointer
cursor physical position. An input rectangle defines the area in which the
application is interested in pointer motion. If rectangles for pointer motion
requests for multiple channels (or processes) overlap, priority is given to
the first rectangle on the list.

EXAMPLE The following example shows how a pointer motion AST could be
programmed.
108 MOVL #10$C_QV_MOUSEMOV, RO ; ENABLE MOUSE MOTION
$QIOW_S CHAN=MOUSE_CHAN, - ; REGION
FUNC=#10$_SETMODE, -
P1=(RO}),~

P2=#MOUSE_BLOCK, -
P6=#MOUSE_REGION

BLBS RO, 20$; NO ERROR IF SET
BRW ERROR
20S: RSB

MOUSE_BLOCK: MOUSE REGION AST
SPECIFICATION BLOCK
AST ADDRESS

AST PARAMETER
ACCESS MODE

NEW MOUSE CURSOR POSITION

.LONG MOUSE_AST
.LONG MOUSE_ACK
. LONG 0

.LONG MOUSE_XY

~e Ne Ne wa ~e wa ~e

STORAGE
MOUSE_REGION: ; MOUSE REGION
+LONG 400
»LONG 400
+LONG 800

.LONG 800

3-34 V4.1—June 1989

QVSS/QDSS Common QIO Interface
Enable User Entry

Enable User Entry

Assigns a control AST to each user entry in an optional graphics package
entry list. The entry at the top of the list receives a control AST when a
cycle request occurs. A cycle request is an entry control AST request that
includes the IO$M_QV_CYCLE function modifier.

FORMAT

SYS$QIO [efn],chan,lO$_SETMODE ,[iosb] ,[astadr]
[astorm] ,p1 [,p2] ,p3 [,p4] [,p5] [,p6]

UNIQUE
PARAMETERS

P1—I0$C_QV_ENAUSER (required)

This function code identifies the action the QIO performs.

To modify the QIO action, ““OR"’ the IO$C_QV_ENABUSER function code
with one of the following optional function modifiers:

Function Moditier Action

IO$M_QV_CYCLE Removes the active entry from the beginning of the entry
list and places it at the end of the list (lowest priority). The
next highest priority keyboard request then becomes the
active keyboard request, and a control AST is delivered on its
behalf.

IO$M_QV_DELETE Deletes the specified entry control request. Any data
contained in the type-ahead buffer is delivered to the
specified AST address before the delete operation is
executed. .

I0O$M_QV_LAST Places the specified entry control request last in the list. If
I0$M_QV_LAST is not specified, the request is placed first
on the list. If an outstanding entry control request exists for
the channel, it is updated to reflect the new priority.

P2—Must be 0 (required)

P3—Active entry AST specification block address
(required)

This parameter is a longword that points to an active entry AST
specification block. This block specifies a user-supplied control AST
routine that is notified when this entry becomes active.

V4.1—June 1989 3-35

QVSS/QDSS Common QIO Interface

Enable User Entry

The following diagram shows the data structure that specifies an active entry AST.

AST service routine address 0
AST parameter 4
access mode 8

0 12

3-36

Field

Use

AST service routine address

AST parameter

Access mode

The AST service routine address is 0 if no
AST routine is required.

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

The access mode where the AST is delivered
is maximized with the current access mode.

The fourth longword must be 0.

P4, P5, P6—Must be 0

V4.1—June 1989

QVSS/QDSS Common QIO Interface
Get Keyboard Characteristics

Get Keyboard Characteristics

Obtains the keyboard characteristics for existing keyboard regions. The
specified keyboard region is not changed and does not become the active
keyboard region.

FORMAT SYS$QIO [efn] ,chan,I0$_SENSEMODE ,fiosb]
,[astadr] ,[astprm] ,p1 [,p2] [,p3] ,p4 [,p5]
[,p6]

UNIQUE P1—I0$C_QV_GETKB_INFO (required)

PARAMETERS This function code identifies the action the QIO performs.

P2, P3—Must be 0

P4—Keyboard characteristics block address
(required)

This parameter is a longword that points to a keyboard characteristics
block. This block receives the keyboard-related characteristics for this
keyboard region.

The following diagram shows the data structure where the driver returns
the keyboard characteristics.

enabled characteristics mask 0
disabled characteristics mask 4
keyclick volume 8
0 12
Field Use
Enabled characteristics The first longword is a mask of characteristics that are
mask enabled.

V4.1—June 1989 3-37

QVSS/QDSS Common QIO Interface
Get Keyboard Characteristics

3-38

Field

Use

Disabled characteristics
mask

Keyclick volume

0

The second longword is a mask of characteristics that

are disabled.

The keyboard characteristics, defined by the $QVBDEF
macro, consist of the following bits:

Characteristic Default Meaning
QVSM_KEY_ On Key held down
AUTORPT automatically repeats.
QV$M_KEY_ On Keyclick sounds on
KEYCLICK each keystroke.
QV$M_KEY_UDF6 Off Function keys F6
through F10 generate
up/down transitions.
QV$M_KEY_UDF11 Off Function keys F11
through F14 generate
up/down transitions.
QV$M_KEY_UDF17 Off Function keys F17
through F20 generate
up/down transitions.
QV$M_KEY_ Oft Function keys HELP
UDHELPDO and DO generate
up/down transitions.
QV$M_KEY_UDE1 O