
I

VMS Workstation
Software
Video Device Driver
Manual

Order Number: AA-DY65E-TE

June 1989

The VMS Workstation Software Video Device Driver Manual provides
technical information about the OVSS and ODSS drivers.

This manual contains Update Notice 1, AD-DY65E-T1.

Operating System and Version: VMS Version 5.0 and later

Software Version: VMS Workstation Software Version 4.1

Digital Equipment Corporation

June 1989

The Information In this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear In
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
Is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1989 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist In preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-1 o
DECSYSTEM-20
DEC US
DECwriter

DIBOL
EduSystem
IAS
MASS BUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

~nmnamnTM

This document was prepared using VAX DOCUMENT, Version 1.1

INSTRUCTIONS

The enclosed pages are to be placed in the VMS Workstation Software Video
Device Driver Manual as replacements for or additions to the current pages.
On replacement pages, changes and additions are indicated by vertical bars
<I).
Keep this notice in your manual to maintain an up-to-date record of
changes.

Copyright Digital Equipment Corporation 1989
All Rights Reserved.
Printed in U.S.A.

Old Page(s)

Title/Copyright

iii/iv through xi/xii

1-111-2 through 1-3/1-4

1-9/1-10 through 1-11/1-12

2-15/2-16

2-19/2-20 through 2-23/24

Chapter 3

4-7/4-8

4-13/4-14

4-23/4-24

5-7/5-8 through 5-9/5-10

5-17/5-18 through 5-2115-22

5-69/5-70 through 5-7115-72

Appendix A

Appendix B

Appendix C

lndex-1 /lndex-2 through
lndex-5/lndex-6

Reader's Comments/Mailer

New Page(s)

Title/Copyright

iii/iv through xi/xii

1-1/1-2 through 1-4.1/b1ank

1-9/1-10 through 1-12.1/blank

2-15/2-16

2-19/2-20 through 2-24.1 /blank

Chapter 3

4-7/4-8

4-13/4-14

4-23/4-24

5-7/5-8 through 5-9/5-1 O

5-17/5-18 through 5-21/5-22

5-69/5-70 through 5-71/5-72

Appendix A

Appendix B

Appendix C

lndex-1 /lndex-2 through lndex-5/lndex-
6

Contents-

Contents

PREFACE xi

CHAPTER 1 VIDEO DEVICE DRIVER INTRODUCTION 1-1

1.1 OVERVIEW OF THE DRIVERS 1-1
1.1.1 Driver Differences 1-2

1.2 CHOOSING AN INTERFACE 1-3

1.3 HOW THE DRIVERS WORK 1-4
1.3.1 Defining Regions on the Screen 1-4
1.3.2 Driver Communication Mechanisms 1-4.1

1.3.2.1 QIO Interface • 1-5
1.3.2.2 Request Queue Interface • 1-6

1.3.3 How Drivers Use Memory 1-6
1.3.3.1 How QVSS Uses Video Memory • 1-7
1.3.3.2 How QDSS Uses Video Memory • 1-9

1.3.4 How the Drivers Track Screen Events 1-12
1.3.5 Cursor Pattern List 1-12
1.3.6 Pointer Button Transition List 1-13
1.3.7 Poi.nter Movement List 1-13
1.3.8 Keyboard Entry List 1-14
1.3.9 Occlusion 1-15
1.3.10 Viewports 1-15

1.3.10.1 Viewport Update Regions • 1-15
1.3.10.2 Using Update Regions for Occlusion • 1-16

1.3.11 QDSS Drawing Operation Queues 1-16
1.3.11.1 Request Queue • · 1-16
1.3.11.2 Return Queue • 1-17

1.3.12 Deferred Queue 1-18

CHAPTER 2 PROGRAMMING TO THE DRIVER 2-1

2.1 INITIALIZING THE SCREEN 2-1

2.2 ACCESSING THE SYSTEM INFORMATION BLOCK 2-1

V4.1-June 1989 iii

Contents

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

iv

USING CHANNELS WITH VIDEO DEVICE DRIVERS

USING THE KEYBOARD
2.4.1
2.4.2
2.4.3

2.4.4
2.4.5

Receiving Keyboard Input
Keyboard Characteristics
Modifying the Keyboard Table
2.4.3.1 Constructing a Keyboard Table with Macros • 2-7
2.4.3.2 Constructing a Keyboard Table Without Macros • 2-9
2.4.3.3 Loading a Keyboard Table • 2-1 f
Composing Nonstandard Characters
Constructing Compose Sequence Tables
2.4.5.1 Using Macros to Construct Compose Sequence

Tables • 2-15
2.4.5.2 Loading a Compose Table • 2-16

USING A POINTER DEVICE

USING THE TYPE-AHEAD BUFFER
2.6.1 Getting Input from the Type-Ahead Buffer

INTERCEPTING INPUT

DEFINING CURSOR PATTERNS
2.8.1 Multiplane Cursor Patterns

USING AN ALTERNATE WINDOWING SYSTEM

DRAWING TO THE avss SCREEN
2.10.1 Manipulating Bits in Video Memory
2.10.2 Mapping Video Memory to the Screen

CREATING A ODSS VIEWPORT
2.11.1 Assigning a Viewport Channel
2.11.2 Getting a Viewport ID
2.11.3 Defining a Viewport
2.11.4 Starting the Viewport

DRAWING WITH THE QDSS DRIVER

2-2

2-3
2-3
2-6
2-7

2-11
2-12

2-17

2-20
2-20

2-21

2-21
2-22

2-24

2-24
2-24

2-24.1

2-25
2-25
2-25
2-25
2-26

2-28

V4.1-June 1989

Contents

2.13 USING BITMAPS 2-28

2.14 SYNCHRONIZING VIEWPORT ACTIVITY 2-29

2.15 HANDLING OCCLUSION 2-31
2.15.1 Redefining Viewports 2-31
2.15.2 Securing Exclusive Access to the Bitmap 2-32
2.15.3 Popping an Occluded Viewport 2-36

2.16 DELETING A VIEWPORT 2-40
2.16.1 Synchronizing Viewport Deletion 2-41
2.16.2 Erasing a Viewport 2-41

2.17 MOVING A VIEWPORT 2-45

2.18 USING THE DEFERRED QUEUE 2-45

2.19 USING COLOR 2-46
2.19.1 - Informing the Driver About Color 2-47
2.19.2 Manipulating Color Map Values 2-47

CHAPTER 3 QVSS/QDSS COMMON QIO INTERFACE 3-1

3.1 HOW TO USE THIS CHAPTER 3-1
3.1.1 010 Description Format 3-2

DEFINE POINTER CURSOR PATTERN 3-3
ENABLE BUTTON TRANSITION 3-8
ENABLE DATA DIGITIZING 3-13
ENABLE FUNCTION KEYS 3-17
ENABLE INPUT SIMULATION 3-20
ENABLE KEYBOARD INPUT 3-23
ENABLE KEYBOARD SOUND 3-29
ENABLE POINTER MOVEMENT 3-31
ENABLE USER ENTRY 3-35
GET KEYBOARD CHARACTERISTICS 3-37
GET NEXT INPUT TOKEN 3-39
GET NUMBER OF LIST ENTRIES 3-40
GET SYSTEM INFORMATION 3-41
INITIALIZE SCREEN 3-42
LOAD COMPOSE SEQUENCE TABLE 3-43
LOAD KEYBOARD TABLE 3-45
MODIFY KEYBOARD CHARACTERISTICS 3-47

V4.1-June 1989 v

Contents

CHAPTER4

4.1

4.2

MODIFY SYSTEMWIDE CHARACTERISTICS
REVERT TO DEFAULT COMPOSE TABLE
REVERT TO DEFAULT KEYBOARD TABLE

QDSS-SPECIFIC QIO INTERFACE

HOW TO USE THIS CHAPTER

QIO DESCRIPTION FORMAT
DEFINE VIEWPORT REGION
DELETE DEFERRED QUEUE OPERATION
EXECUTE DEFERRED QUEUE
GET COLOR MAP ENTRIES
GET FREE OOPS
GET VIEWPORT ID
HOLD VIEWPORT ACTIVITY
INSERT DOP
LOAD BITMAP
NOTIFY DEFERRED QUEUE FULL
READ BITMAP
RELEASE HOLD
RESUME VIEWPORT ACTIVITY
SET COLOR CHARACTERISTICS
SET COLOR MAP ENTRIES
START REQUEST QUEUE
STOP REQUEST QUEUE
SUSPEND OCCLUDED VIEWPORT ACTIVITY
SUSPEND VIEWPORT ACTIVITY
WRITE BITMAP

CHAPTER 5 USING DRAWING OPERATION PRIMITIVES

5.1 OVERVIEW OF OOPS

5.2 DOP STRUCTURE

5.3 IMPLEMENTING OOPS IN THE UIS ENVIRONMENT

3-51
3-55
3-56

4-3
4-5
4-6
4-7
4-9

4-10
4-12
4-13
4-14
4-18
4-19
4-22
4-23
4-23
4-24
4-26
4-27
4-28
4-29
4-30

4-1

4-1

4-2

5-1

5-1

5-2

5.3.1 Allocating Storage for DOPs in the UIS Environment
5-3
5-3

5.3.1. 1 Allocation Mechanism • 5-3
5.3.1.2 Modifying DOP Size and Number • 5-4

5.3.2 Executing DOPs in the UIS Environment 5-5
5.3.2.1 Execution Mechanism • 5-6

vi V4.1-June 1989

Contents

5.4 IMPLEMENTING OOPS IN A NON-UIS ENVIRONMENT 5-6
5.4.1 Allocating Storage for OOPS in a Non-UIS Environment - 5-7
5.4.2 Executing a DOP in a Non-UIS Environment 5-9

5.5 STRUCTURING AND INITIALIZING OOPS 5-9
5.5.1 Common Block 5-10
5.5.2 Unique Block 5-12
5.5.3 Variable Block 5-12
5.5.4 Programming Considerations 5-12

5.5.4.1 The Predefined DOP Structure • 5-12
5.5.4.2 Using the Examples • 5-13

5.6 THE DOP REFERENCE 5-15
COMMON BLOCK 5-16
DELETE BITMAP 5-23
DRAW COMPLEX LINE 5-24
DRAW FIXED TEXT 5-28
DRAW LINES 5-31
DRAW POINTS 5-34
DRAW VARIABLE TEXT 5-37
FILL LINES 5-41
FILL POINT 5-44
FILL POLYGON 5-48
MOVE AREA 5-52
MOVE/ROTATE AREA 5-56
RESUME VIEWPORT ACTIVITY 5-61
SCROLL AREA 5-63
START REQUEST QUEUE 5-67
STOP REQUEST QUEUE 5-69
SUSPEND VIEWPORT ACTIVITY 5-70

5.7 UISDC DOP INTERFACE 5-72
5.7.1 Loading Bitmaps into Offscreen Memory 5-72

UISDC$ALLOCATE_DOP 5-74
UISDC$LOAD_BITMAP 5-76
UISDC$EXECUTE_DOP _ASYNCH 5-78
UISDC$EXECUTE_DOP _SYNCH 5-80
UISDC$QUEUE_DOP 5-81

APPENDIX A QVSS/QDSS DATA STRUCTURES A-1

V4.1-June 1989 vii

Contents

APPENDIX B QDSS-SPECIFIC DATA STRUCTURES

APPENDIX C QDSS WRITING MODES

APPENDIX D QVSS PROGRAMMING EXAMPLE

D.1 PROGRAMMING
D.1.1 Program Functions
D.1.2 QVSS Program Example

B-1

C-1

D-1

D-1
D-1
D-2

APPENDIX E KEYBOARD TABLE MACRO E-1

APPENDIX F COMPOSE TABLE MACROS F-1

APPENDIX G DEFAULT THREE-STROKE COMPOSE TABLE VALUES G-1

APPENDIX H $010 SYSTEM SERVICE DESCRIPTION H-1
$010 SYSTEM SERVICE DESCRIPTION H-2

APPENDIX I DEC MULTINATIONAL CHARACTER SET 1-1

APPENDIX J ISO LATIN NR 1 SUPPLEMENTAL CHARACTER SET J-1

INDEX

viii V4.1-June 1989

Contents

EXAMPLES
2-1 Enabling Keyboard Requests 2-5
2-2 Modifying the North American Keyboard 2-10
2-3 Loading a Keyboard Table 2-11
2-4 Loading a Three-Stroke Compose Sequence 2-15
2-5 How to Load a Three-Stroke Compose Table 2-16
2...;6 How to Program a Pointer Motion AST 2-18
2-7 Typical Programming and Use of Pointer Button ASTs 2-20
2-8 Assignment of a Single-Plane Cursor Region Pattern 2-23
2-9 Creating a Viewport 2-27
2-10 Securing Bitmap Access 2-34
2-11 Popping a Viewport 2-37
2-12 Deleting a Viewport 2-42
5-1 Allocating a DOP 5-4
5-2 Queuing a DOP for Execution 5-6
5-3 Allocating a DOP 5-7
5-4 Inserting a DOP on the Request Queue 5-10
5-5 Calling Program for Example Subroutines 5-14

FIGURES
1-1 The Driver Interface 1-2
1-2 QVSS Video Memory and Scanline Map 1-8
1-3 Scanline Map Mapping Nonconsecutive Memory 1-9
1-4 QDSS Video Map 1-10
1-5 Cycling the Keyboard List 1-14
1-6 Viewport Update Region Data Structure 1-16
2-1 Keyboard Table Layout 2-8
2-2 Keyboard Table Description 2-10
2-3 Three-Stroke Compose Sequence Table Description 2-12
2-4 Three-Stroke Compose Sequence Table 2-13
2-5 Two-Stroke Compose Sequence Table Description 2-14
2-6 Two-Stroke Compose Sequence Table 2-15
2-7 Viewport and Update Region Definition Buffer 2-26
2-8 Synchronizing Viewport Activity 2-29
2-9 Occluded Viewport 2-31
2-10 Redefining Viewports with URDs 2-32
2-11 Indexing the Hardware Color Map 2-48
4-1 Large Font Defined Across Bitmap Blocks 4-16
5-1 How the Source Index Works 5-20
1-1 DEC Multinational Character Set-I 1-2
1-2 DEC Multinational Character Set-II 1-3

V4.1-June 1989 ix

Contents

TABLES
1-1 Device Driver Differences 1-2
2-1 Key States 2-8
2-2 Diacritical Characters 2-9
2-3 Diacritical Characters 2-13
3-1 QIO Functional Groups 3-1
4-1 QDSS QIO Functional Groups 4-1
5-1 Redefinition of Logical Values 5-5
5-2 Symbolic Constants 5-11
C-1 QDSS Writing Modes C-1
C-2 QDSS Writing Mode Modifiers C-2

x V4.1-June 1989

Preface

The VMS Workstation Software Video Device Driver Manual provides a
programmer with the necessary information for writing applications that
manipulate the QVSS and QDSS drivers.

It is structured to serve as both a tutorial manual that will bring an
experienced programmer up to speed on driver concepts and as a reference
manual that can be used for quick reference during actual application
programming.

QIOs and system routines used when you program to the driver are
provided in reference form. Data types used to program to the drivers are
illustrated in the reference sections, and all the data types are summarized
in two data-type appendixes.

Intended Audience
The information contained in this manual is for experienced graphics
programmers or systems programmers who are writing applications directly
to the driver.

Document Structure
This manual has the following structure:

·• Chapter 1 describes concepts and terms needed to understand
programming to the driver interface.

• Chapter 2 describes how to perform driver interface tasks that are
common to both the QVSS and QDSS systems.

• Chapter 3 describes the common QVSS/QDSS QIO interface.

• Chapter 4 describes the QDSS.:specific QIO interface.

• Chapter 5 describes how to use the Drawing Operation Primitive
interface.

• Appendix A describes all QVSS/QDSS common data types.

• Appendix B describes all QDSS-specific data types.

• Appendix C describes all multiplane writing modes.

• Appendix D contains a full QVSS driver example.

• Appendix E contains macros used to construct keyboards.

• Appendix F contains macros used to construct compose tables.

• Appendix G contains the default three-stroke compose table macros.

• Appendix H contains the $QIO system service description.

• Appendix I contains the DEC multinational character set table.

xi

Preface

• Appendix J contains the ISO Latin NR 1 supplemental character set.

Associated Documents

Conventions

xii

The following VMS manuals are related to this manual:

• VMS Workstation Software Graphics Programming Guide

• VMS Workstation Software User's Guide

• VMS User's Guide

This manual uses the following conventions in displaying the syntax
requirements of user input to the system and in displaying examples:

Conventions

RETURN key

CTRL key

Lists

Optional items

Key Symbols

Ellipsis

Delete Key

Examples

Meaning

The RETURN key is not always shown in formats and
examples. Assume that you must press RETURN
after typing a command or other input to the system
unless instructed otherwise.

The word CTRL followed by a slash followed by
a letter means that you must type the letter while
holding down the CTRL key. For example, CTRL/B
means hold down the CTRL key and type the letter B.

When a format item is followed by a comma and
an ellipsis (, ...), you can enter a single item or a
number of those items separated by commas. When
a format item is followed by a plus sign and an ellipsis
(+ ...), you can enter a single item or a number of
those items connected by plus signs. If you enter a
list (more than one item), you must enclose the list in
parentheses. A single item need not be enclosed in
parentheses.

An item enclosed in square brackets ([]) is optional.

In examples, keys and key sequences appear as
symbols such as IPF21 and 1-C-fRLizJ.
A vertical ellipsis indicates that some of the format or
example is not included.

The key on the VT200 series terminal keyboard
that performs the DELETE function is labeled <I].
Assume that DELETE in text and examples refers to
both the VT100 and VT200 series delete keys.

Examples show both system output (prompts,
messages, and displays) and user input. User input
is printed in red.

1 Video Device Driver Introduction

This chapter introduces the concepts and terms that describe how to write
an application to interact with the QVSS and QDSS video device drivers.

This chapter describes the following topics:

• The two available video device drivers (QVSS and QDSS).

• How to determine which programming interface your application
should address. (Your application might not need to write to a device
driver.)

• How the two drivers address the screen.

• How the drivers use memory.

• How an application accesses a driver.

Some of the concepts and terms descriped in the following sections apply
to both drivers, while others are specific to one driver. The manual clearly
notes sections that describe specific concepts.

1.1 Overview of the Drivers
A V AXstation can have one of the following two video device drivers:

• QVSS-QBus Video Subsystem

• QDSS-QBus Device Subsystem

Although both drivers allow you to create graphics applications with
VAXstation features, each driver requires unique hardware. Thus, a
V AXstation can be configured with either a QVSS driver or a QDSS driver
but not both.

The device drivers provide a common interface to V AXstation hardware
functions such as manipulating memory and writing to the screen. By
using a common interface, applications can guarantee that the hardware
is accessed uniformly. All V AXstation software uses the driver to access
hardware, either directly or indirectly. Figure 1-1 illustrates the layered
relationship of applications, VAXstation software, device driver, and
V AXstation hardware.

V4.1-June 1989 1-1

Video Device Driver Introduction

Figure 1-1 The Driver Interface

User Application

z
GKS Software

_s.
UIS/UISDC Interface

I I
QVSS QDSS
Driver Driver

I l
Workstation Hardware

.1.1 Driver Differences

I

1-2

The primary differences between the QVSS driver and the QDSS driver
are:

• Use of color

• Use of global sections

• Method of bitmap manipulation

• Ability to provide alternate windowing systems

Table 1-1 lists device driver capabilities.

Table 1-1 Device Driver Differences

Driver

Feature QVSS QDSS

Color Bi tonal Gray-scale, color

Memory One-plane Multiplane

Bit Manipulation Direct DOPs

Alternate Windowing Available Not available

V4.1-June 1989

Video Device Driver Introduction

Color

The QVSS device driver is designed for use with a one-plane memory
system. It is therefore restricted to the use of black and white images.

The QDSS device driver is designed for use with multiplane memory
systems, so the QDSS driver draws color and gray-scale images.

Bitmap Manipulation

The QVSS driver supports only direct bitmap manipulation. If you write an
application to the QVSS driver, your application is completely responsible
for drawing to the bitmap.

The QDSS driver provides drawing operation primitives (DOPs) that make
drawing to the bitmap easier and faster. DOPs use additional multiplane
hardware to accelerate drawing.

Alternate Windowing

The QVSS driver provides a way to alternate between the UIS windowing
system and a windowing system of your own design. When you use an
alternate windowing system, both windowing systems share video memory.

The QDSS driver does not currently provide a way to alternate between
windowing systems; it supports only one windowing system at a time.

1.2 Choosing an Interface
When you write an application, determine which level of interface your
application should address. As shown in Figure 1-1, your application
can address the system at the UIS level, the driver level, or the hardware
level. For each successive level downward, your application increases its
degree of control but increases its difficulty and the amount of work it must
perform.

UIS and UISDC Interface

UIS, the VAXstation graphics operating system, provides a basic set of
graphic primitive, color, and windowing routines to use when you write
high-level graphics applications. UIS routines use a device-independent
world coordinate system.

If your application requires direct access to display coordinates, it can use
UISDC routines, which allow you to manipulate primitives in a device­
dependent manner. The UIS and UIS DC routines are described in the
VMS Workstation Software Graphics Programming Guide.

If the UIS interface provides all the necessary functionality for your
application, address the UIS interface.

Driver Interface

Your application can bypass the UIS/UISDC interface and manipulate the
driver directly. This feature allows you to create graphics packages tailored
to your specific needs. For example, you can design your own windowing
system, or you can provide your own drawing routines.

V4.1-June 1989 1-3

Video Device Driver Introduction

Hardware Interface

You can bypass both the UIS interface and the driver interface and directly
address the hardware. If your application does not need a windowing
system, consider writing directly to the hardware. How to address
the hardware directly is beyond the scope of this manual. Ref er to the
hardware documentation for information about the hardware interface .

. 3 How the Drivers Work
Before you can write to the driver interface, you should understand the
concepts and terms explained in this section .

. 3.1 Defining Regions on the Screen

1-4

Both drivers address rectangular portions of the screen called regions. The
QDSS driver accesses regions of the screen as viewports. Section 1.3.10
describes viewports. Your application uses driver interface QIOs to define
addressable screen regions.

For the driver to define a region, your application must associate the region
with a unique channel. The channel provides a logical path that connects
an application to the device driver. Before you define a region, call the
$ASSIGN system service to obtain a unique channel number for the region.
(The VAXNMS System Services Reference Manual has more information on
$ASSIGN.)

When your application defines a region, it associates the region with one of
the following events:

• Cursor pattern

• Keyboard input

• Pointer button transition

• Pointer movement

• Viewport (QDSS only)

The QIO you use to define the region determines the type of event the
driver associates with the region. For example, if you want the driver to
associate a region with button transitions, define the region with the Enable
Button Transition QIO. To cause an action to occur when the event is
detected in that region, include the address of an AST action routine as
a parameter of the region-defining QIO. For example, you can define a
region, associate it with a button transition, and specify that the region be
erased when the driver detects the transition.

The driver detects when an event occurs and ensures that the proper action
takes place. Section 1.3.4 describes how the drivers manage regions and
events.

V4.1-June 1989

1.3.2

Video Device Driver Introduction

Driver Communication Mechanisms
An application can use a QIO interface to access either driver. An
application can also use a mechanism called the request queue to access
the QDSS driver.

V4.1-June 1989 1-4.1

1.3.2.1

Video Device Driver Introduction

QIO Interface
The QIO interface is the method of access common to most drivers. The
QVSS and QDSS drivers provide a number of QIOs that perform the
following driver-specific functions:

• Screen initialization

• Pointer movement region definition

• Bitmap copy performance

While the QIO interface is common to both drivers, some QIOs are
QDSS-specific. Any driver QIO can be used with the QDSS driver, (see
Chapter 4), while the QIOs that apply to both the QVSS and QDSS drivers
are a subset of the entire QIO interface (see Chapter 3).

Most QIOs are input functions. When you call them, you typically
specify 10$_SETMODE as the function parameter. In these QIOs, the
Pl parameter actually serves as the distinguishing function code.

The remaining QIOs are output functions. When you call them, you
typically specify IO$_SENSEMODE as the function parameter. In these
QIOs, the Pl parameter actually serves as the distinguishing function code.

Although the QIO interface permits a wide range of functions, some
are grouped together in functional categories. The following sections
contain general descriptions of those categories. (See Chapters 3 and 4 for
complete descriptions of all QIOs.)

Tracking Associated Events and Regions

Several input QIOs permit an application to construct list entries. To
associate regions with events, the QVSS and QDSS drivers maintain one
list for each event type. Typically, when you define a region, you use an
input QIO that passes the driver the following information:

• Region description

• Associated event

• Address of an AST routine that defines the action to take when the
event occurs

The driver uses this information to construct a list entry, which it places
on the appropriate list. When an event occurs, the driver searches the lists
and triggers the AST indicated by the appropriate list entry. Section 1.3.4
explains how the driver constructs and manages lists.

Returning System Information

Your application gets information from the system with output QIOs. The
Get System Information QIO returns the system information block, which
describes the state of the system in:

• Dimensions (and subdivisions) of video memory

• Current pointer position

• Current button status

1-5

1.3.3

Video Device Driver Introduction

1.3.2.2

The QDSS system information block contains all the same fields as
the QVSS information system block, but includes additional fields.
Appendices A and B illustrate and describe the structure of both system
blocks:

• QVB-QVSS system information block

• QDB-QDSS system information block

You can also use the Get Keyboard Characteristics QIO to inquire about
the characteristics of the current keyboard.

On QDSS systems only, you can obtain a viewport ID for use in subsequent
operations, as well as color map information. See Section 1.3.10 for
information about viewports.

Queue Manipulation

This section applies only to QDSS systems.

To manipulate the QDSS-specific queues, you use three QDSS-specific
output QIOs:

• Request queue

• Return queue

• Deferred queue

These QIOs permit an application to stop and start processing queues. The
request queue is briefly described in the next section. A full description of
the three queues appears at the end of this chapter.

Request Queue Interface
This section applies oi1ly to QDSS systems.

The request queue interface, which allows your application to perform
drawing operations and to manipulate queues, requires less overhead than
the QIO interface.

To operate the request queue, your application uses drawing operation
primitives (DOPs), structures that contain the data needed to perform a
drawing operation. Your application submits DOPs to the request queue
for execution. The request queue is a double-linked list of all the DOPs
waiting for execution. DOPs are placed on the queue in execution (drawing)
order.

Section 1.3.11 describes the QDSS-specific queues in detail. Chapter 5
describes how to use DOPs.

How Drivers Use Memory

1-6

To write to the screen, an application actually writes to video memory. ThE
driver then maps the video memory to the screen. To understand how to
program to the drivers, you must understand how the drivers use memory.

1.3.3.1

Video Device Driver Introduction

How QVSS Uses Video Memory
The V AXstation display area is 1024 x 864 pixels. The full QVSS video
memory is a 1024- x 2048-bit block of memory or, to correspond to the
screen, 2048 lines of 1024 pixels. To map lines of video memory to lines
on the screen, QVSS uses a data structure called the scanline map.

The scanline map is a contiguous-word index into video memory, which
indexes the entire screen display area (864 lines). Each entry in the scanline
map is a 0-relative, 16-bit word value that functions as an index into video
memory. The first entry in the scanline map locates the first line of the
screen display; the second entry contains the second line, and so forth.
For each bit set on an indexed line of video memory, the driver sets a
corresponding pixel on the display screen.

However, since a maximum of 864 lines of video memory can display at a
time and total video memory is 2048 lines, QVSS video memory is referred
to in two sections:

• Onscreen memory-Any portion of video memory currently displayed.
Since the largest VAXstation display is 864 lines, that is the maximum
size of onscreen memory.

• Offscreen memory-The 1184 undisplayed lines of video memory.

You use offscreen memory to store images or fonts that are not currently
being displayed, as well as to handle occlusion (see Section 1.3. 9).

NOTE: On a VAXstation 2000 monochrome monitor, system video memory is
slightly different. One screen of video memory is available (1024-bit x 864-
bit). Also, the hardware scanline map is not available. The system always
displays 864 scanlines of video memory with the first scanline starting at
the first byte of video memory. Therefore, you cannot change the scanline
order.

Figure 1-2 illustrates the layout of QVSS memory.

1-7

Video Device Driver Introduction

Figure 1-2 QVSS Video Memory and Scanline Map

1-8

2048
Lines

Video Memory

1024 Bits

Scanline Map

Mapped
Line Of
Memory

Hardware Cursor

Display

(Overlaid)

16 x 16
Bits

Hardware
Cursor

ML0-1068-87

864
Lines

The screen cursor is defined by a separate block of hardware memory as
follows:

• QVSS single-plane cursor systems-16 x 16 bits

• QDSS multiplane cursor systems-16 x 32 bits

This block stores the bitmap image of the cursor pattern. It is not part of
video memory.

The driver uses the hardware to overlay the video signal sent to the screen
(see Figure 1-2). This arrangement eliminates the need for a save and
restore operation in video memory each time the cursor moves or a write
to video memory occurs. Section 2.8 describes how to define cursor
patterns.

Scanline Map

Note that the scanline map need not index consecutive lines of video
memory. That is, an object can be represented in nonconsecutive lines
in video memory (when there is not enough consecutive memory), yet
appear on consecutive lines on the screen. Figure 1-3 illustrates how the
scanline map properly maps to the screen two objects represented in
nonconsecutive memory.

1.3.3.2

Video Device Driver Introduction

Figure 1-3 Scanline Map Mapping Nonconsecutive Memory

Video Memory

.
j_ j_ 1_~

\ I ~

.

TI ...6..

! 1 z~

_L _l

I.7__
.

.

400
401

800
801

1010
1011

Accessing QVSS Video Memory

Scanline Map Display

800
M1
400
401

1010
1_Q_11

.

.

ZK-5247-86

QVSS permits direct bitmap access, such that an application can set bits
directly in video memory.

An application can write to QVSS video memory with any suitable
computer language (FORTRAN, MACRO, and so forth). However, before
it writes to video memory, an application must issue the Get System
Information QIO to obtain the QVSS system block (QVB), which contains
all the information necessary to write to video memory. See Appendix A
for a complete description of the QVB.

An application should issue a QVB request for each process. Because the
address of the system block does not change, a process can obtain the
QVB address once and continue to reference fields in the QVB until the
process terminates.

How QDSS Uses Video Memory
The largest possible V AXstation display is a 1024- by 864-pixel area, or
864 lines that are 1024 pixels in length .. The full QDSS video memory is a
2048- by 1024-pixel block of memory or, to correspond to the screen, 2048
lines that are 1024 pixels in length. QDSS maps video memory directly
to the screen. In the case of the largest display, it maps the first 864 lines
of video memory to the screen. This portion of video memory is called
onscreen memory.

V4.1-June 1989 1-9

Video Device Driver Introduction

1-10

The remaining 1184 lines of video memory are called of/screen memory.
Offscreen memory handles occlusion. The offscreen portion of the video
memory is further divided into the following fixed-length sections:

• Scrolling save area

• Reserved area

• Free_ 1 area

• Bitmap storage area

Figure 1-4 illustrates the layout of QDSS memory and shows relative
coordinates for the beginning and end of each area.

Figure 1-4 QDSS Video Map

(0,863)

(O,O)

(0, -28)

(0, -34)

(0, -1114)

(O, -1184)

Onscreen Memory
864 llnes (max.)

Scrol llng Save Area
28 lines

Reserved Area
5 lines

Free_ 1 Area
1080 lines

Bitmap Storage Area
70 lines

(1023,863)

(1023, 0)

(1023, -28)

(1023, -34)

(1023,-1114)

(1023, -1184)

Note that the lower left corner of onscreen memory is assigned the
coordinate (0,0). This corresponds to the lower left corner of the display.
(All viewports are defined relative to this base.) Therefore, any coordinate
with a negative Y element is in offscreen memory.

Scroll Area

The driver uses the scroll area to process downward scrolls. This area is
reserved for the driver and cannot be accessed by the application.

Free_1 Area

Free_l is the largest area of free memory. An application can use this
memory for any operations.

V4.1-June 1989

Video Device Driver Introduction

Bitmap Storage Area

The driver uses this area to store bitmaps:

• Fonts

• Images

• Pattern fills

The area has a 70-line by 1024-bit block of memory for each memory plane on the system. To
accommodate more fonts in memory, some planes partition the 70-line blocks into two 35-line
sections. An application uses this area to load any defined bitmaps stored in VAX memory.

Use the Load Bitmap QIO or the UISDC$LOAD_BITMAP routine to load
the information in VAX memory into the bitmap storage area.

NOTE: If a bitmap does not fit into the bitmap storage area, the application must
partition the information into one 70-line section for a single-plane image
or two 35-line sections for multiplane images.

QDSS Video Memory Access

QDSS does not permit direct bitmap access. Use the DOP interface to
draw to video memory, and use the Read Bitmap and Write Bitmap QIOs
to copy images to video memory.

Viewports-The QDSS driver must direct all operations to the screen
via a viewport. An application can create viewports or use the default
systemwide viewport (the full screen). See Section 1.3.10 for more
information about viewports.

Exclusive Bitmap Access-Your application might require exclusive bitmap
access to video memory. When you perform an exclusive-access operation,
no other operation should access onscreen memory. Since the QDSS
driver controls onscreen memory access, an application must always notify
the driver of a pending exclusive bitmap operation.

Bitmap Transfers-The QDSS driver can perform three types of bitmap
transfers:

• VAX memory-to-bitmap

• Bitmap-to·V AX memory

• Bitmap-to-bitmap

Drivers use the QIO interface to execute transfers, which require exclusive bitmap access for
synchronization.

QDB-An application can issue the Get System Information QIO to obtain
the QDSS system block (QDB). The QDB contains information about video
memory that an application needs to manipulate video memory. See
Appendix B for a complete description of the QDB.

V4.1-June 1989 1-11

1.3.4

1.3.5

Video Device Driver Introduction

How the Drivers Track Screen Events
To track events that occur on the screen, the QVSS and QDSS drivers keep
a list for each of the following event types:

• Cursor pattern change

• Pointer button transition

• Pointer movement

• Keyboard entry

The drivers also manage a user entry list that your application can use for
general storage purposes.

The drivers associate each of the first three events with a specific region;
they associate the keyboard entry event with the entire screen.

When you define a region with a QIO, the driver uses the information you
pass it to construct a list entry, which it places on the appropriate list. List
entries typically contain the following information:

• Region definition

• Address of any AST routine defined to take action when the event
occurs

• Any AST parameter (token)

When an event occurs, the driver searches the appropriate list; it uses the
region definition to identify which list entry AST to issue. For example,
if the driver detects a button transition, it searches the button transition
list to determine whether the region where the transition occurred has a
button transition AST enabled. For a keyboard entry, the first entry on the
keyboard list is always invoked.

The following sections summarize how drivers handle each type of event.

Cursor Pattern List

1-12

The cursor pattern list determines the pattern of the cursor for a region.
Use the Define Pointer Cursor Pattern QIO to define the cursor shape and

, hot spot for a region. The list entry contains the following information:

• Unique channel ID

• Address of a 16 X 16 (16-word) bitmap that defines the shape of the
cursor

• Cursor hot spot, a point on the 16- by 16-pixel cursor that defines exact
placement of the cursor image

• Cursor background style

• Region definition

See the Define Pointer Cursor Pattern QIO description for more details.

V4.1-June 1989

Video Device Driver Introduction

When the driver detects cursor movement, it searches the cursor pattern
list for the appropriate ASTs to deliver. If a cursor pattern is to change, the
bitmap image of the new pattern is located and loaded into the hardware.
The new pattern is then superimposed on the appropriate area of the
screen.

V4.1-June 198 1-12.1

1.3.6

1.3.7

Video Device Driver Introduction

Pointer Button Transition List
The driver uses this list to determine what action to take when a pointer
button transition occurs. A button transition can be either up or down. It is
detected by the hardware.

A button transition event occurs when you press or release the pointer
button within a region defined with the Enable Button Transition QIO. Each
pointer button transition list entry contains the following information:

• Unique channel ID

• AST address

• Region definition

• Address of the longword to receive the input token indicating which
pointer button is activated

When a pointer button transition occurs, the driver searches the pointer
button transition list for an entry describing the new region. The AST
routine defined for that region determines what occurs when a pointer
button is pressed. A token passes to the specified AST routine to signal
the following:

• Which button made a transition

• Type of transition (up or down)

The Enable Button Transition QIO description explains how button
transitions are represented.

If regions for pointer button transitions overlap, priority is given to the first
rectangle on the list.

Pointer Movement List
The driver uses the pointer movement list to determine what action to take
when the pointing device is moved. Use the Enable Pointer Movement
QIO to define a region in which to take special action when pointer
movement occurs. Each pointer motion list entry contains the following
information:

• Unique channel ID

• AST address

• Region definition

• Address of the longword to receive the input token indicating the
current physical position of the pointer

As the driver searches the list, it compares the current pixel position of the
pointer with the region definitions of all list entries. The current pointer
location determines what event to trigger. If regions for pointer motion
events overlap, priority is given to the first region on the list.

If the pointer cursor moves outside a currently active region, a special exit
token of -1 passes to the AST to notify it of the occurrence. When the
cursor leaves the region, a process might want to perform some cleanup
functions.

1-13

1.3.8

1.3.9

Video Device Driver Introduction

Keyboard Entry List

Occlusion

1-14

The driver uses the keyboard entry list to determine the process to which
it should deliver keyboard input. An application can use the Enable
Keyboard Input QIO to request keyboard ownership. The driver then
delivers input keystrokes to the process via AST routines you specify in the
QIO. Keyboard list entries are not associated with regions. One keyboard
is associated with each assigned channel.

Each keyboard list entry contains the following information:

• Unique channel ID

• AST service routine address

• Address of the longword that receives an input token when the AST
routine is called

See the Enable Keyboard Input QIO description for more details.

This event differs from others, because when the first entry on the list
is invoked, the list is not searched. The driver always inserts the active
keyboard entry at the beginning of the list.

Popping or cycling operations cause a keyboard to become active. Cycling
moves the current first entry on the list to the back of the list. Figure 1-5
illustrates cycling.

Figure 1-5 Cycling the Keyboard List

Keyboard Entry List

Keyboard A

Keyboard B

Keyboard C

ZK·5249·86

Popping moves an entry from any position to the front of the list.

In a windowing system, more than one window can address the same area
of the screen. However, only one window can be displayed in one area at
a time. Occlusion occurs when one window display hides some or all of
another display.

2.4.5.1

Programming to the Driver

Using Macros to Construct Compose Sequence Tables
To construct a compose table, initialize it, then load the sequences you
want to define. VMS Workstation Software provides macros to generate
compose tables in SYS$LIBRARY :VWSSYSDEF .MLB:

• VC$COMPOSE_KEYINIT-Initializes the table

• VC$COMPOSE_KEY-Loads individual sequence definitions

• VC$COMPOSE_KEYEND-Terminates the table

These macros are also described in Appendix F.

Initializing a Table

Call VC$COMPOSE_KEYINIT to initialize a table. This macro has two
parameters:

• The address of the table, which it returns after it allocates space and
initializes the table. Specify this parameter and use the returned
address when you load the table.

• The Compose_2 flag, which, if set equal to YES indicates that a
two-stroke sequence table should be built. If the flag is not set, a
three-stroke table is built.

Loading a Compose Sequence

Call VC$COMPOSE_KEY to load a compose sequence. This macro has
four parameters that permit you to define the two input characters (either
the two standard keys for a three-stroke sequence or the diacritical and
standard key for a two-stroke sequence), the output string, and the output
string length. Example 2-4 illustrates loading a three-stroke compose
sequence.

Example 2-4 Loading a Three-Stroke Compose Sequence

VC$COMPOSE KEY <Aa/A/>,- input A
- <Aa/"/>,- input "

,- default output length
<Axc4> output character

Terminating a Table

Call VC$COMPOSE_KEYEND to terminate a keyboard table. This macro
returns one parameter, the length of the table. Typically, you specify this
parameter and use the returned length when you load the table.

V4.1-June 1989 2-15

I

Programming to the Driver

2-16

2.4.5.2 Loading a Compose Table
To load a compose table, use the Load Compose Sequence Table QIO
with the address and size of the table and the channel of the keyboard
entry with which you want to associate the table. The VC$COMPOSE_
KEYINIT and VC$COMPOSE_KEYEND macros return address and length,
respectively.

VMS Workstation Software is shipped with copies of the Digital standard
three-stroke and two-stroke compose tables that reside in the driver. These
tables are the default until yov load alternates.

NOTE: Digital standard two-stroke compose sequences are not supported on the
North American keyboard.

To revert to the default compose table, call the Revert to Default Compose
Table QIO.

Example 2-5 illustrates how to load a three-stroke compose table.
(Appendix D shows this example in the context of a complete application
program.)

Example 2-5 How to Load a Three-Stroke Compose Table

SET_COMPOSE3_TABLE:
MOVL
$QIOW_S

#<I0$C_QV_LOAD_COMPOSE_TABLE>, RO

BLBS
BRW

5$: RSB

CHAN = KBD_CHANl, -
FUNC = #IO$_SETMODE, -
Pl= (RO), -
P4 = #COMPOSE3_TBL_LEN,
PS = #COMPOSE3_TBL
R0,5$
ERROR

VC$COMPOSE_KEYINIT COMPOSE3_TBL

I

change the compose table

three-stroke table size
three-stroke table addr
not set on error

generate an
empty table
fill the table here

VC$COMPOSE_KEY <Aa/A/>,<Aa/"/>,,<Axc4>
VC$COMPOSE_KEY <Aa/A/>,<Aa/'/>,,<Axcl>
VC$COMPOSE_KEY <Aa/A/>,<Aa/*/>,r<Axc5>
VC$COMPOSE_KEY <Aa/A/>,<Aa/A/>,<@>
VC$COMPOSE_KEY <Aa/A/>,<Aa/E/>,,<Axc6> order sensitive
VC$COMPOSE_KEY <Aa/A/>,<Aa/A/>,,<Axc2>
VC$COMPOSE_KEY <Aa/A/>,<Aa/_/>,,<Axaa>

VC$COMPOSE_KEYEND COMPOSE3_TBL_LEN end the table
and determine its
length

V4.1-June 1989

1.3.11.4

Video Device Driver Introduction

• Use the MACRO instruction INSQUE

At specific intervals, the driver scans all request queues to check for work.
If a queue contains DOPs, the driver removes the DOPs from the queue
and performs the specified operations. The packets are stored on the
queue in drawing operation order.

Certain screen management circumstances require that request queue
processing stop. Sometimes it is appropriate to stop a single viewport
request queue; sometimes all viewport request queues must be stopped.
The QIO interface contains a number of QIOs that manipulate the request
queue. (A few DOPs also manipulate the request queue in a limited
way.) Chapter 2 describes the circumstances under which an application
manipulates the request queue.

Return Queue
A DOP is a data structure for which storage must be allocated. If you
process a large number of DOPs without any restrictions, they might
consume all available system memory (or enough to degrade performance
considerably).

The QDSS driver provides the return queue for an application to reuse
storage allocated for DOPs. The return queue, like the request queue,
is a doubly linked list. Once a DOP is completely processed, the driver
removes it from the request queue and inserts it on the return queue by
simply updating the links. A DOP on the return queue is called a free DOP.

To save space, an application can check the return queue for used DOP
storage before it allocates memory for new drawing operations.

Allocating DOPs

To allocate storage for DOPs, use either the UISDC interface (see
Chapter 5) or memory allocation system routines. When you allocate a
DOP, initialize the DOP size fields of the DOP queue structure and the
request queue structure (see Appendix B). You can choose either small or
large size.

Before it allocates new storage, an application should check the return
queue for reusable DOP storage. (The UISDC interface does this.) An
application can force the driver to wait for a DOP from the return queue by
using the Get Free DOPs QIO. One of the parameters for this QIO allows
an application to specify how many return queue DOPs to wait for before
returning control to the application. The application can then reuse the
storage by removing a DOP from the return queue.

This feature can prevent allocation of too much system memory. For
example, an application allocates 300 DOPs for processing on the request
queue; before processing is complete, the application needs more DOPs
for additional operations. If the application can allocate all the additional
DOPs it requires, the application might consume all available system
memory. However, when you specify a high number of DOPs to the
Get Free DOPs, the application halts further memory allocation until that
number of DOPs is available for reuse.

1-17

Video Device Driver Introduction

Return Queue Characteristics

Because DOPs are allocated in two sizes, it is logical to regard the return
queue as actually two queues, one where small DOPs are returned and
another where large DOPs are returned. When you issue the Get Free
DOPs QIO, you specify the number of DOPs to wait for as well as the
specific return queue.

Alternate Return Queue

By default, a return queue is associated with each viewport through the
DOP queue structure. However, you can use an alternate ~eturn queue
to share return queues on a per-process or systemwide basis. To do this,
specify the address of a return queue structure as the fourth parameter of
the Get Viewport ID QIO when you create the viewport. (In this case, the
return queue section of the viewport DOP queue structure is ignored.) See
Appendix B for a description of this structure.

1.3.12 Deferred Queue

1-18

When a portion of a viewport is occluded onscreen, one option is to write
to an update region in offscreen memory. Sometimes, however, offscreen
memory is so crowded that you cannot keep an update region there. In
that case, you must save the writing operations on the deferred queue.

The driver stores all operations directed to a portion of an unavailable
viewport to the QDSS ~ardware on the deferred queue. Deferred queue
operations can be executed whenever the previously occluded portion of
the viewport becomes available.

NOTE: To prevent the deferred queue from consuming system resources, an
application should update occluded viewports when the queue is full.
The Notify Deferred Queue Full QIO informs an application the deferred
queue is full.

The Execute Deferred Queue QIO executes the operations on the deferred
queue. Chapter 2 contains additional information on deferred queue
operations.

Programming to the Driver

2 An optional user-defined AST parameter delivered to the AST.

3 Access mode at which to deliver the AST (maximized with the
current access mode).

4 The address of a longword where the driver stores the button
transition value (token) when the AST service routine is called.

Your application uses this longword to determine which pointer
button has undergone a transition. The button transition value (the
token) is a decimal value that indicates which button is activated;
the transition values are 400, 401, 402, and 403. The system assigns
these values to the pointer buttons sequentially starting with the
select button, which is always 400. The driver stores the token
in the low-order word of the longword. Bit 15 of the high-order
longword determines whether the transition is up or down: 1
equals down and 0 equals up.

The rest of the high-order word contains more control information
that can be used to determine if the Shift, Control, or Lock keys
are pressed. You can use these keys in combination as meta-keys as
follows:

• Bit 14 corresponds to the Shift key

• Bit 13 corresponds to the Control key

• Bit 12 corresponds to the Lock key

• The address of a pointer button characteristics block that determines
whether delivery of subsequent transitions depends on all buttons
being in the up position. By default, the specified button transition
AST gets every transition until all buttons are returned to the up
position. (See the description of this data structure in Appendix A.)

• Address of a screen rectangle values block that describes the region
associated with the button transition AST.

By default, an entry is placed at the top of the list. However, you can
determine the position of the entry in the list by specifying optional
modifiers to the QIO. The modifiers can be used to perform the following
functions:

• Place the entry last on the list (QV _LAST)

• Delete the entry (QV _DELETE)

• Purge the type-ahead buffer (QV _PURG_ T AH)

If a button changes state (is clicked up or down), the driver checks the
pointer position against the region descriptors of the button list entries.
When the driver finds a region descriptor with the current pointer position,
it fires the associated button transition AST.

If two regions overlap, the first one on the list gets the AST.

V4.1-June 1989 2-19

Programming to the Driver

Example 2-7 Typical Programming and Use of Pointer Button ASTs

SET BUTTONAST:
- $ASSIGN_S DEVNAM=WS_DEVNAM,-

10$:

20$:

BLBS
BRW

CHAN=BUT_CHAN

R0,10$
ERROR

MOVL #IO$C_QV_ENABUTTON,RO
$QIOW_S CHAN=BUT_CHAN,­

FUNC=#I0$_SETMODE,­
Pl=(RO),­
P2=#BUT_BLOCK,­
P6=#BUT_REGION

BLBS R0,20$
BRW ERROR
RSB

BUT_BLOCK:

.LONG BUT_AST

.LONG 0

.LONG 0
•LONG BUTTON

BUT_ REG I ON:
.LONG 20
.LONG 20
.LONG 300
.LONG 300

assign channel using
logical name and
channel number

no error if set
error
enable button trans.
channel
QIO function code
driver function code
associated AST block
associated region
no error if set

button transition AST
specification block
AST address
AST parameter
access mode
button information
longword

associated region
lower left corner

upper right corner

Example 2-7 illustrates the typical programming and use of pointer button
ASTs. (Appendix D shows this example in the context of a complete
applications program.)

2.6 Using the Type-Ahead Buffer

2.6.1

I

From keyboard input, pointer movement, and button transitions, the
driver accepts three kinds of input: character input, pointer position, or
button transition value. Often, input is received faster than an application
processes it. When this happens, the character and button information is
stored in the type-ahead buffer. (Pointer movement inputs the new pointer
position, but if the input cannot be delivered, it is ignored, not buffered.)

The type-ahead buffer is part of each entry on the list. It is 128 bytes long,
so you can buffer 32 input tokens (each token is four bytes long).

Getting Input from the Type-Ahead Buffer

2-20

You can obtain input from the type-ahead buffer in two ways:

• When you enable the entry, associate a repeating AST with it to process
buffered input continuously. (For keyboards, you can also associate a
repeating AST when you modify the keyboard.)

V4.1-June 1989

2 Programming to the Driver

This chapter describes the following:

• How to perform programming tasks when you write to the video device
drivers

• How to perform tasks common to both drivers or specific to either the
QVSS or the QDSS driver

• How to use specific QIOs and DOPs in combination to perform tasks

Chapter 3 and Chapter 4 explain each function of the QIO interface in
detail. Chapter 5 describes the QDSS system DOPs available for drawing
to the display.

2.1 Initializing the Screen
You must initialize the screen before you can write to it. Initialization
places the VAXstation screen in a known state. Once initialization is
complete, an application can issue QIOs and begin screen operations.

NOTE: You must initialize the screen before you perform a draw operation. If you
fail to do this, the drawing operation will not work properly.

To initialize the screen, use the Initialize QIO. This QIO has no parameters
and is invoked only once for each application.

2.2 Accessing the System Information Block
The system information block (QVB or QDB, depending on your system) is
a data structure that both drivers use to store information about the current
state of video memory. This data structure consists of a number of fields;
each is associated with a symbolic constant used to reference the field. See
Appendices A and B for a full illustration and explanation of each field in
these data structures.

To obtain the address of the system information block, use the Get System
Information QIO. This QIO returns a descriptor that contains the address
and size of the block. To access any field in the block, use the returned
address and the symbolic constants defined for that field.

Using the QDB

If a QDSS application is using only the UISDC DOP interface, it does not
have to access the QDB. However, under some circumstances (for example,
if it manipulates the pointer position or requires tablet information), it
might need the system information stored in the QDB. Example 2-12,
later in this chapter, shows how an application uses the QDB to get the
systemwide viewport ID.

2-1

Programming to the Driver

2-2

Using the OVB

Typically, before a QVSS application can perform a drawing operation, it
must obtain specific video memory information from the QVB:

• Starting address of video memory to set bits (draw) in memory

• Address of the scanline map to map to the screen any lines in memory
it wants to display

Section 2.10 describes how to use the QVB for drawing operations. The
following code segment shows a call that obtains the descriptor for the
QVB.

! Declare QDB descriptor and buffer
INTEGER*4 QDB_DESC(2)

! Obtain a channel for the call
CALL SYS$ASSIGN ('SYS$WORKSTATION',
2 CHAN,,)
! Get the QVB
CODE = IO$ SENSEMODE
STATUS= SYS$QIOW (,
2 %VAL(CHAN),
2 %VAL(CODE),
2 , , ,
2 %VAL(I0$C_QV_GETSYS),
2 QVB_DESC,,,,)
IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF
1 Extract from the QVB
CALL EXTRACT_QVB (%VAL(QVB_DESC(2)),
2 VIDEO_ADDR,
2 SCANLINE_ADDR)

* EXTRACT_QVB SUBROUTINE *

FUNCTION EXTRACT_QVB (QVB, VIDEO, SCAN)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'

device name
channel

channel
QIO function code

address of descri

pass address by value
video memory buffer
scanline map buffer

! Associate the predefined structure w/ QVB
RECORD /QVB_COMMON_STRUCTURE/ QVB

VIDEO = QVB.QVB$L_MAIN_VIDE0ADDR
SCAN = QVB.QVB$L_MAIN_MAPADDR

RETURN
END

Programming to the Driver

2.3 Using Channels with Video Device Drivers
The drivers use channel numbers to identify application list entries. The
drivers track various events by listing event entries (see Section 1.3.4).
When an application uses the QIO interface to place an entry on a list, it
associates the entry with a channel number (using the chan parameter of
the QIO). To obtain a unique channel number, use the $ASSIGN system
service. (See VAXNMS System Services Reference Manual.)

For each application list entry, the channel number must be unique to that
list. That is, if a process uses channel 1 to create an entry on the keyboard
list, it cannot use channel 1 to create another entry on the keyboard list.
It must obtain another channel to create another entry. When it adds or
deletes entries, the driver uses the channel number to identify each entry
uniquely.

However, the same channel number can be used across lists. For example,
an application can use channel 1 to create an entry on the button transition
list, the keyboard entry list, and the cursor pattern list.

2.4 Using the Keyboard

2.4.1

Driver keyboard functions enable an application to perform the following
operations:

• Receive keyboard input

• Modify keyboard characteristics

• Modify keyboard character sets

• Compose characters that do not exist as standard keys

The following sections describe these capabilities.

Receiving Keyboard Input
To receive input from a keyboard, an application must explicitly enable the
keyboard for input with the Enable Keyboard Input QIO. This creates an
entry on the keyboard entry list. When you enable a keyboard, you can
specify:

• The address of a four-longword AST specification block. The four
longwords contain the following information:

1 The address of an AST routine that determines what action to take
when input is received. This is called a keystroke AST because it is
fired for each keystroke entered.

If no AST routine is specified, input is stored in the type-ahead
buffer and delivered either when an AST region is declared with
the same channel or when a Get Next Input Token QIO is issued.

2 An optional user-defined AST parameter that is delivered to the
AST.

3 Access mode at which to deliver the AST (maximized with the
current access mode).

2-3

Programming to the Driver

2-4

4 A zero.

• The address of an AST routine invoked whenever the entry is made
active (brought to the top of the list). This is called a request AST (or
control AST). It is fired only once for each entry activation. Only one
keyboard can be active at a time. Typically, the request AST performs
any necessary actions that the enabled keyboard requires; for example,
it pops an obscured window to make displayed input visible.

• The address of a keyboard characteristics block that describes the
characteristics of the keyboard. Each keyboard is associated with a
set of characteristics (key click, auto repeat, and so on) defined in this
data structure. You can choose the default characteristics or modify the
defaults. Section 2.4.2 discusses keyboard characteristics in detail.

By default, an entry is placed at the top of the list when a keyboard is
enabled. However, an application can determine the position of the entry
in the list by specifying optional modifiers to the QIO. The application can
use the modifiers to perform the following operations:

• Cycle the list, which moves the top entry to the end of the list (QV _
CYCLE)

• Place the entry last on the list (QV _LAST)

• Delete the entry (QV _DELETE)

• Purge the type-ahead buffer (QV _PURG_ T AH)

Typically, an application defines one keyboard for each window. However,
it can define the characteristics of each keyboard differently from window
to window. This feature permits you to create "virtual" keyboards.
Although there is only one physical keyboard, you can define a number
of different keyboards, and an application can enable any number of
keyboards as long as it keeps track of them. When you no longer need a
keyboard, delete it as follows:

• Use the QV _DELETE modifier with the QIO, or

• Deassign the associated channel

Example 2-1 illustrates:

• A typical assignment of two terminal channels

• Keyboard requests on those channels

• Associated AST routines

(Appendix D shows this example in the context of a complete application
program.)

Programming to the Driver

Example 2-1 Enabling Keyboard Requests

P2_BLOCK2: AST specification block 2
.LONG KBD_AST AST address
.LONG ACK2 AST parameter
.LONG 0 AST delivery mode
.LONG CHARACTER input token

ACK2: .ASCID /INPUT ACKNOWLEDGED CHANNEL 2/ ;AST parameter message

P3_BLOCK:

.LONG CTL_AST

.LONG 0

.LONG 0

.LONG 0

SET KBDAST:
- $ASSIGN_S DEVNAM=WS_DEVNAM,­

CHAN=KBD_CHAN2

BLBS R0,20$
BRW ERROR

20$: MOVL iIO$C_QV_ENAKB,R0

$QIOW_ s CHAN=KBD_CHAN2,-
FUNC=iIO$_SETMODE,-
Pl=(RO),-
P2=iP2 _BLOCK2,-
P3=iP3 BLOCK -

BLBS R0,30$
BRW ERROR

KBD_AST:
F5_AST:

.WORD
PUSHL 4(AP)
CALLS il,GALI8$PUT_LINE
BLBS RO, 10$

5$: BRW ERROR

10$: CMPW iKEY$C_F5,CHARACTER
BNEQ 20$
BSBW CYCLE_KBD
BRB 40$

20$: PUS HAL DESC
CALLS il,GALIB$PUT_LINE
BLBC R0,5$

CMPB iAA/C/,CHARACTER
BNEQ 30$
BSBW CYCLE_KBD
BRB 40$

30$: CMPB #AA/Ff ,CHARACTER
BNEQ 40$
$SETEF_ S EFN=i2

Example 2-1 Cont'd. on next page

control AST specification
block - for both ASTs
control AST address
AST parameter
AST delivery mode
must be zero

assign channel using
logical name and
channel number
no error if set
error

enable keyboard AST
request to RO
assigned channel
set mode QIO
keyboard AST request
user AST routine
control AST routine
no error if set

send acknowledgment
message

was F5 typed?

cycle the keyboard list
and exit

send character typed

was a "C" typed?

cycle the keyboard list

was an "F" typed?

yes, exit program

2-5

2.4.2

Programming to the Driver

Example 2-1 (Cont.) Enabling Keyboard Requests

40$: RET

CTL_AST:

5$:

.WORD
PUS HAL
CALLS
BLBS
BRW

10'$: RET

CYCLE
#l,G~LIB$PUT_LINE

RO, 10$
ERROR

send acknowledgment
message

Keyboard Characteristics

2-6

Keyboards have a set of default characteristics associated with them. These
default characteristics are defined by a data structure called the system
characteristics block. Appendix A illustrates this data structure and lists the
default keyboard characteristics.

Modify the default characteristics by specifying a system characteristics
block as the fourth parameter of the Modify Systemwide Characteristics
QIO. This block consists of four longwords with the following parameters:

• Longword 1-Bit mask of the characteristics to enable

• Longword 2-Bit mask of the characteristics to disable

• Longword 3-Key-click volume value in the range 1 to 8 (1 is loudest).

• Longword 4-Screen saver time, in minutes

To enable or disable default values, specify the predefined QVBDEF
constant associated with each characteristic (also listed in Appendix A)
in the proper longword. If you enable the key-click or screen saver
characteristics, their values in the third and fourth longword are used.

Once you modify the systemwide defaults, if you enable a keyboard
without specifying characteristics, the keyboard assumes the new default
values.

To define the keyboard characteristics (auto repeat, key-dick sound,
function key transition) for a particular keyboard entry, specify the address
of a keyboard characteristics block as the fourth parameter of the Enable
Keyboard Input QIO. This block also consists of four longwords with the
following parameters:

• Longword 1-Bit mask of the characteristics to enable

• Longword 2-Bit mask of the characteristics to disable

• Longword 3-Key-click volume value in the range 1 to 8 (1 is loudest).

Note that Longword 4 must be zero.

2.4.3

Programming to the Driver

You can emtble the same characteristics for a specific keyboard as for
the systemwide defau,lts, except for the screen saver time, which is a
systemwide characteristic (there is only one screen). See Appendix A.

For example, assume an application enables two keyboards, one with
autorepeat and the other without autorepeat. When one keyboard is active,
holding down any key causes it to be entered repeatedly; when the other
keyboard is active, the key is entered only once.

To modify the characteristics of an existing keyboard, specify a keyboard
characteristics block as the fourth parameter of the Modify Keyboard
Characteristics QIO. Note that you can also use this QIO to change the
keystroke AST and request AST associated with a keyboard.

Modifying the Keyboard Table

2.4.3.1

The keys on the main keypad array of the physical keyboard are
programmable. That is, an application can associate the keys of the
keyboard with any of the 255 characters in the multinational character
set (including diacritical characters). (Appendix I shows the multinational
character set.) An application can define several character sets to be
accessed at different times by the same physical keyboard.

To define a character set, construct a data structure (keyboard table), then
use the Load Keyboard Table QIO to load the new table.

Constructing a Keyboard Table with Macros
To construct a keyboard table, initialize it with the default table values, then
override any values you want to modify. SYS$LIBRARY:$QVBDEF.MLB
contains the following macros to generate keyboard tables:

• VC$KEYINIT-Initializes the table

• VC$KEY-Loads individual key definitions

• VC$KEYEND-Terminates the table

These macros are described in Appendix E.

Initializing a Table

Call VC$KEYINIT to initialize a table. This macro has one parameter, the
address of the table, which it returns after allocating space and initializing
the table. Specify this parameter and use the returned address when you
load the table. By default, the system loads the North American keyboard
table.

Loading Key Definitions

Call VC$KEY to load new key definitions. Several parameters permit you
to define the various states of a given key. Note that you modify only
the keys that are different from the default keys. Loading key definitions
overrides the default definitions loaded by VC$KEYINIT.

Depending on how you press the Shift, Control, and Lock keys in
combination with it, a keyboard key can have eight different states. For
each key, the keyboard table associates each state with a one-byte ASCII
value that represents a character from the multinational character set. Each

2-7

Programming to the Driver

key is described by a quadword in the table. Table 2-1 lists the key states
and the byte within the quadword that describes each state.

Table 2-1 Key States

Byte State

1 Value of key

2 Value of key if Shift key is also pressed

3 Value of key if Control key is also pressed

4 Value of key if both Shift and Control keys are also pressed

5 Value of key if Lock is also pressed

6 Value of key if both Lock and Shift keys are also pressed

7 Value of key if both Lock and Control keys are also pressed

8 Value of key if Lock, Shift, and Control keys are also pressed

When you use VC$KEY to load a key, you specify the following
information:

• Nine parameters

• Ordinal key position

• ASCII value associated with each of the eight states

Figure 2-1 shows the order of keys in the keyboard table. It illustrates the
relationship of the physical key on the keyboard to the ordinal key position
in the keyboard table (numerals in small print). This table corresponds to
the North American keyboard character layout.

Figure 2-1 Keyboard Table Layout

ZK-4450-85

2-8

2.4.3.2

Programming to the Driver

The following example shows the loading of the tenth key of the keyboard
table:

ordinal key position
key = 9
Shift/key =)

Control/key = undefined
Shift/Control/key = undefined
Lock/key = 9

VC$KEY 10,­
<"a/9/>,­
<"a/)/>,­
<"xOFF>,­
<"xOFF>,­
<"a/9/>,­
<"a/)/>,­
<"xOFF>,­
<"xOFF>

Lock/Shift/key =)
Lock/Control/key = undefined
Lock/Shift/Control/key = undefined

Note that the hexadecimal value OFF denotes an undefined key (no
character is delivered).

Table 2-2 shows the decimal values that represent diacritical characters.
(Section 2.4.5 contains additional information on diacritical characters.)

Table 2-2 Diacritical Characters

Diacritical Mark

Diaeresis (umlaut)

Acute accent

Grave accent

Circumflex accent

Tilde

Ring

(Reserved)

Terminating a Table

Equivalent Character

0

Decimal Value

128

129

130

131

132

133

134-159

Call VC$KEYEND to terminate a keyboard table. This macro returns one
parameter, the length of the table. Specify this parameter and use the
returned length when you load the table.

Example 2-2 shows how you can modify the North American keyboard
layout. (Appendix D shows this example in the context of a complete
application program.)

Constructing a Keyboard Table Without Macros
It is possible to construct a keyboard table without using the provided
macros. Such a keyboard table must conform to the structure illustrated in
Figure 2-2.

2-9

Programming to the Driver

2-10

Example 2-2 Modifying the North American Keyboard

VC$KEYINIT KB_LAYOUT_TBL generate the new table
modify only the characters
specified

VC$KEY 10,<Aa/9/>,<Aa//>),<AxOFF>,<AxOFF>,­
<Aa/9/>,<Aa//>),<AxOFF>,<AxOFF>

VC$KEY 11,<Aa/0/>,<Aa/=/>,<AxOFF>,<AxOFF>,­
<Aa/0/>,<Aa/=/>,<AxOFF>,<AxOFF>

VC$KEY 12,<Ax081>,<Aa/?/>,<Ax0FF>,<Ax0FF>,- ;diacritical (')
<Ax081>,<Aa/?/>,<Ax0FF>,<Ax0FF>

VC$KEY 13,<Ax082>,<Ax083>,<Ax01E>,<Ax01E>,- ;diacriticals (' A)
<AX082>,<Ax083>,<Ax0FF>,<Ax0FF>

VC$KEY 19,<Aa/z/>,<Aa/Z/>,<Ax01A>,<Ax01A>,­
<Aa/z/>,<Aa/Z/>,<Ax01A>,<Ax01A>

VC$KEY 24,<Ax0E8>,<Ax0FC>,<Ax0FF>,<Ax0FF>,­
<Ax0E8>,<Ax0FC>,<Ax0FF>,<Ax0FF>

VC$KEY 25,<Ax080>,<Ax084>,<Ax0FF>,<Ax0FF>,- ;diacriticals (" -)
<Ax080>,<Ax084>,<Ax0FF>,<Ax0FF>

VC$KEYEND KB_LAYOUT_TBL_LEN end the table,
and determine its length

Figure 2-2 Keyboard Table Description

31 0

version number

char 4 char 3 char 2 char 1

char 8 char 7 char 6 char 5

"""

T T
ZK 5347 86

• The first quadword of the table must contain the table version number.
Typically this value is 1.

• Each subsequent quadword describes the eight states of a key in the
main array of the keyboard, in the order shown in Figure 2-1.

• Every key must be defined.

~.4.4

2.4.3.3

Programming to the Driver

Loading a Keyboard Table
To load a keyboard table, use the Load Keyboard Table QIO, specifying
the address and size of the table and the channel of the keyboard entry
with which you associate the table. Note that the VC$KEYINIT and
VC$KEYEND macros return address and length, respectively.

When a keyboard table is loaded and the associated keyboard becomes
active, the physical keyboard reflects the table definitions.

You can revert to the default keyboard table by calling the Revert to Default
Keyboard Table QIO.

NOTE: If a private table was loaded, this QIO also returns the space used to pool.

Example 2-3 is a typical routine for loading a keyboard table. (Appendix D
shows this example in the context of a complete application program.)

Example 2-3 Loading a Keyboard Table

SET_FRENCH_KB:

5$:

MOVL #<I0$C_QV_LOAD_KEY_TABLE>, RO
$QIOW S CHAN = KBD CHANl, - change the keyboard

- FUNC = #ro$_SETMODE, - layout

BLBS
BRW
RSB

Pl= (RO), -
P2 = #KB LAYOUT TBL LEN, -
P3 = #KB=LAYOUT=TBL-

R0,5$
ERROR

keyboard table size
keyboard table
address
no error if set

Composing Nonstandard Characters
Compose Sequences

Use compose sequences to define combinations of keys to represent
multinational characters not already defined as standard keys in the
keyboard table.

Depending on your keyboard, you can use two types of compose
sequences:

• Three-stroke sequences-Press the Compose key, then press two
standard keys. All keyboards support three-stroke sequences.

• Two-stroke sequences-Press a diacritical mark, then press a standard
key. The North American keyboard does not support two-stroke
sequences.

2-11

2.4.5

Programming to the Driver

Diacritical Marks

A diacritical mark is one of the following nonspacing characters:

Grave accent-E
Acute accent-E
Circumflex accent-E
Tilde-N
Diaeresis (umlaut)-E
Ring-A

Diacritical marks are available on all but the North American keyboard.
(This is why you cannot perform two-stroke sequences on the North
American keyboard.) Diacritical marks vary among the keyboards
according to the relative usage of characters with diacritical marks. Note
that only one of several characters shown on a key cap can be a diacritical
mark; some keyboards have keys with both a standard character and a
diacritical mark.

To define compose sequences, construct a compose sequence table data
structure (either two-stroke, three-stroke, or both), then load the table with
the Load Compose Sequence Table QIO.

Constructing Compose Sequence Tables

2-12

A compose sequence table lists a series of compose sequences. The
structures of three-stroke and two-stroke tables differ slightly.

Three-Stroke Compose Sequence Table Structure

Three-stroke compose tables have three parts:

1 A longword with the version number for the table (typically this value
is 1).

2 A series of longwords that list the two standard keys used in the
compose sequence and hold an address that points to the associated
output string, in the format shown in Figure 2-3.

Figure 2-3 Three-Stroke Compose Sequence Table Description

.-------------------------3_+_2 _____________________________ 0 By

address of output string
(output)

char 2
(input)

char 1
(input)

ZK-4451-85

3 Counted string that bytes 2 and 3 of the longword (address of output
string) point to. All counted strings must be grouped together and mus
follow the list of longwords that describe the compose sequences.

Figure 2-4 shows the structure of an entire three-stroke compose sequence
table.

Programming to the Driver

Figure 2-4 Three-Stroke Compose Sequence Table

31

~

I
1

version number

address of output string
(output) l char 2

(input)

(list of longword descriptions)

counted strings

Two-Stroke Compose Sequence Table Structure

Two-stroke compose sequence tables have four parts:

l char 1
(input)

0

J
ZK-4452-85

1 A longword with the table version number (typically this value is 1).

2 A 32-byte diacritical table that defines which characters are diacriticals.

Each bit in the diacritical table corresponds to the equivalent ASCII
character code in the multinational character set. If a bit is set in this
table, the corresponding character is considered a diacritical character.
Thus, you can define nonstandard diacritical characters. For example,
if you set bit 65 (decimal), the uppercase letter "A" is a diacritical
character. If you set bit 112 (decimal), the lowercase letter "p" is a
diacritical character.

To support standard diacritical characters, represent the characters with
the decimal values shown in Table 2-3.

Table 2-3 Diacritical Characters

Diacritical Mark

Diaeresis (umlaut)

Acute accent

Grave accent

Circumflex accent

Tilde

Ring

(Reserved)

Equivalent Character

A

0

Decimal Value

128

129

130

131

132

133

134-159

3 A series of longwords that list the diacritical key and the standard key
used in the compose sequence and hold an address that points to the
associated output string, in the format shown in Figure 2-5.

2-13

Programming to the Driver

2-14

Figure 2-5 Two-Stroke Compose Sequence Table Description

.-------------3_._2 ________________ 0 Byt1

address of output string
(output)

char 2
(input)

char 1
(input)

ZK-4451·85

Place the list of longwords in the table in ascending order by ASCII
collating sequence with both input characters, as shown in the following
example.

Incorrect Table

s s 1 B
A E 1 JE

A a 1 a
A -1 A

Correct Table

A E 1 JE

A-1 A
A a 1 a
s s 1 B

4 The series of counted strings that bytes 2 and 3 of each longword
(address of output string) point to. All the counted strings must be
grouped together and must follow the list of longwords that describe
the compose sequences.

Figure 2-6 shows the structure of an entire two-stroke compose sequence
table.

Figure 2-6 Two-Stroke Compose Sequence Table

31

l

1

address of output string
(output)

version number

diacritical table
(32 bytes)

J char 2
(input)

(list of longword descriptions)

counted strings

1 char 1
(input)

0

1

T
ZK-4453·85

2.4.5.1

Programming to the Driver

Using Macros to Construct Compose Sequence Tables
To construct a compose table, initialize it, then load the sequences you
want to define. VMS Workstation Software provides macros to generate
compose tables in SYS$LIBRARY:$VWSSYSDEF.MLB:

• VC$COMPOSE_KEYINIT-Initializes the table

• VC$COMPOSE_KEY-Loads individual sequence definitions

• VC$COMPOSE_KEYEND-Terminates the table

These macros are also described in Appendix F.

Initializing a Table

Call VC$COMPOSE_KEYINIT to initialize a table. This macro has two
parameters:

• The address of the table, which it returns after it allocates space and
initializes the table. Specify this parameter and use the returned
address when you load the table.

• The Compose_2 flag, which, if set equal to YES indicates that a
two-stroke sequence table should be built. If the flag is not set, a
three-stroke table is built.

Loading a Compose Sequence

Call VC$COMPOSE_KEY to load a compose sequence. This macro has
four parameters that permit you to define the two input characters (either
the two standard keys for a three-stroke sequence or the diacritical and
standard key for a two-stroke sequence), the output string, and the output
string length. Example 2-4 illustrates loading a three-stroke compose
sequence.

Example 2-4 Loading a Three-Stroke Compose Sequence

VC$COMPOSE KEY <Aa/A/>,- input A
- <Aa/"/>,- input "

default output length
<Axc4> output character

Terminating a Table

Call VC$COMPOSE_KEYEND to terminate a keyboard table. This macro
returns one parameter, the length of the table. Typically, you specify this
parameter and use the returned length when you load the table.

2-15

Programming to the Driver

2-16

2.4.5.2 Loading a Compose Table
To load a compose table, use the Load Compose Sequence Table QIO
with the address and size of the table and the channel of the keyboard
entry with which you want to associate the table. The VC$COMPOSE
KEYINIT and VC$COMPOSE_KEYEND macros return address and length,
respectively.

The VMS Workstation is shipped with copies of the Digital standard three­
stroke and two-stroke compose tables that reside in the driver. These
tables are the default until you load alternates.

NOTE: Digital standard two-stroke compose sequences are not supported on the
North American keyboard.

To revert to the default compose table, call the Revert to Default Compose
Table QIO.

Example 2-5 illustrates how to load a three-stroke compose table.
(Appendix D shows this example in the context of a complete application
program.)

Example 2-5 How to Load a Three-Stroke Compose Table

SET_COMPOSE3_TABLE:

5$:

MOVL f<I0$C_QV_LOAD_COMPOSE_TABLE>, RO
$QIOW_S CHAN = KBD_CHANl, - change the compose table

FUNC = f I0$_SETMODE, -
Pl = (RO), -
P4 = fCOMPOSE3 TBL LEN, three-stroke table size
P5 = fCOMPOSE3=TBL- three-stroke table addr

BLBS R0,5$ not set on error
BRW ERROR
RSB
VC$COMPOSE_KEYINIT COMPOSE3_TBL generate an

empty table
fill the table here

I

VC$COMPOSE_KEY <"a/A/>,<"a/"/>,,<"xc4>
VC$COMPOSE_KEY <"a/A/>,<"a/'/>,,<"xcl>
VC$COMPOSE_KEY <"a/A/>,<"a/*/>,,<"xc5>
VC$COMPOSE_KEY <"a/A/>,<"a/A/>,<@>
VC$COMPOSE_KEY <"a/A/>,<"a/E/>,,<"xc6> order sensitive
VC$COMPOSE_KEY <"a/A/>,<"a/"/>,,<"xc2>
VC$COMPOSE_KEY <"a/A/>,<"a/_/>,,<"xaa>

VC$COMPOSE_KEYEND COMPOSE3_TBL_LEN end the table
and determine its
length

Programming to the Driver

2.5 Using a Pointer Device
The drivers detect two pointer-related conditions:

• Pointer movement

• Pointer button transition

The QIO interface enables you to associate regions of the screen with action
ASTs the driver fires whenever it detects pointer movement or a pointer
button transition (dicking up or down). The action ASTs are application­
dependent and enable you to perform such screen manipulation as
highlighting a menu when the pointer moves into it or performing an
action once you select a menu item.

The driver uses separate lists to track pointer movement and button
transitions. The following sections describe how to create list entries
for pointer movement and button transitions.

Creating a Pointer Movement Entry

Use the Enable Pointer Movement QIO to create a pointer movement
entry. When you create a pointer movement entry, specify the following
information:

• The address of a four-longword AST specification block. The four
longwords contain the following parameters:

1 The address of an AST routine that determines what action to take
when movement is detected within the specified region.

2 An optional user-defined AST parameter delivered to the AST.

3 Access mode at which to deliver the AST (maximized with the
current access mode).

4 The address of a longword where the driver stores the new cursor
position so it is accessible to the application.

The low-order word of the longword holds the the X pixel position
and ranges from 0 to 1023, where 0 is the left side of the screen.
The high-order word holds the the Y pixel position and ranges from
0 to 863, where 0 is the bottom of the screen.

• The address of an AST routine invoked whenever the pointer exits the
specified region. Typically, this AST performs any necessary cleanup
actions. For example, it turns off a region highlighted by the action
AST.

• The address of a screen rectangle values block that describes the region
to be associated with the ASTs.

By default, an entry is placed at the top of the list. However, an application
can determine the position of the entry in the list by specifying optional
modifiers to the QIO. The modifiers can be used to perform the following
functions:

• Place the entry last on the list (QV _LAST)

• Delete the entry (QV _DELETE)

2-17

Programming to the Driver

2-18

Whenever you move the pointer (mouse, stylus, or puck), the driver
checks the pointer position against the region descriptors of the pointer
movement list entries. When the driver finds an entry whose region
descriptor includes the current pointer position, the driver fires the action
AST associated with that entry.

If you specify an exit AST, the driver fires that AST when it discovers that
the pointer position is no longer within the specified region.

If two regions overlap, the first one on the list gets the AST.

Example 2-6 illustrates how to program a pointer motion AST.
(Appendix D shows this example in the context of a complete applications
program.)

Example 2-6 How to Program a Pointer Motion AST

10$: MOVL #I0$C_QV_MOUSEMOV,RO
$QIOW_S CHAN=MOUSE_CHAN,­

FUNC=#I0$_SETMODE,­
Pl=(RO),­
P2=#MOUSE_BLOCK,­
P6=#MOUSE_REGION

BLBS R0,20$
BRW ERROR

20$: RSB
MOUSE_BLOCK:

.LONG

.LONG

.LONG

.LONG

MOUSE_REGION:
.LONG
.LONG
.LONG

• .LONG

MOUSE_AST
MOUSE_ACK
0
MOUSE_XY

400
400
800
800

enable pointer motion
channel
QIO function code
driver function code
associated AST block
associated region
no error if set

pointer region AST
specification block
AST address
AST parameter
access mode
new pointer cursor position
storage

pointer region
lower left corner

upper right corner

Creating a Pointer Button Transition Entry

Use the Enable Button Transition QIO to create a pointer button
transition. When you create a button transition entry, specify the following
information:

• The address of a four-longword AST specification block. The four
longwords contain the following parameters:

1 The address of an AST routine that determines what action to take
when a transition is detected within the specified region.

If no AST routine is specified, input (the button transition) is storec
in the type-ahead buffer and delivered either when you declare an
AST region with the same channel or when you issue a Get Next
Input Token QIO with the same channel.

Programming to the Driver

2 An optiona] user-defined AST parameter delivered· to the AST.

3 Access mode at which to deliver the AST (maximized with the
current access mode).

4 The address of a longword where the driver stores the button
transition value (token) when the AST service routine is called.

Your application uses this longword to determine which pointer
button has undergone a transition. The button transition value (the
token) is a decimal value that indicates which button is activated;
the transition values are 400, 401, 402, and 403. The system assigns
these values to the pointer buttons sequentially starting with the
select button, which is always 400. The driver stores the token
in the low-order word of the longword. Bit 15 of the high-order
longword determines whether the transition is up or down: 1
equals down and 0 equals up.

The rest of the high-order word contains more control information
that can be used to determine if the Shift, Control, or Lock keys
are pressed. You can use these keys in combination as meta-keys as
follows:

• Bit 14 corresponds to the Shift key

• Bit 13 corresponds to the Control key

• Bit 12 corresponds to the Lock key

• The address of a pointer button characteristics block that determines
whether delivery of subsequent transitions depends on all buttons
being in the up position. By default, the specified button transition
AST gets every transition until all buttons are returned to the up
position. (See the description of this data structure in Appendix A.)

• Address of a screen rectangle values block that describes the region
associated with the button transition AST.

By default, an entry is placed at the top of the list. However, you can
determine the position of the entry in the list by specifying optional
modifiers to the QIO. The modifiers can be used to perform the following
functions:

• Place the entry last on the list (QV _LAST)

• Delete the entry (QV _DELETE)

• Purge the type-ahead buffer (QV _puRG_ T AH)

If a button changes state (is clicked up or down), the driver checks the
pointer position against the region descriptors of the button list entries.
When the driver finds a region descriptor with the current pointer position,
it fires the associated button transition AST.

If two regions overlap, the first one on the list gets the AST.

Example 2-7 illustrates the typical programming and use of pointer button
ASTs. (Appendix D shows this example in the context of a complete
applications program.)

2-19

Programming to the Driver

Example 2-7 Typical Programming and Use of Pointer Button ASTs

SET BUTTONAST:
- $ASSIGN_S DEVNAM=WS_DEVNAM,-

BLBS
BRW

10$: MOVL
$QIOW_S

BLBS
BRW

20$: RSB
BUT_BLOCK:

.LONG

.LONG

.LONG

.LONG

BUT_REGION:

CHAN=BUT_CHAN

R0,10$
ERROR
#I0$C_QV_ENABUTTON,RO
CHAN=BUT CHAN,­
FUNC=#IO$_SETMODE,­
Pl=(RO),-
P2=#BUT BLOCK,­
P6=#BUT-REGION
R0;20$ -
ERROR

BUT_AST
0
0
BUTTON

.LONG 20

.LONG 20

.LONG 300

.LONG 300

assign channel using
logical name and
channel~number

no error if set
error
enable button trans.
channel
QIO function code
driver function code
associated AST block
associated region
no error if set

button transition AST
specification block
AST address
AST parameter
access mode
button information
longword

associated region
lower left corner

upper right corner

2.6 Using the Type-Ahead Buffer

2.6.1

From keyboard input, pointer movement, and button transitions, the
driver accepts three kinds of input: character input, pointer position, or
button transition value. Often, input is received faster than an application
processes it. When this happens, the character an~ button information is
stored in the type-ahead buffer. (Pointer movement inputs the new pointer
position, but if the input cannot be delivered, it is ignored, not buffered.)

The type-ahead buffer is part of each entry on the list. It is 128 bytes long,
so you can buffer 32 input tokens (each token is four bytes long).

Getting Input from the Type-ahead Buffer

2-20

You can obtain input from the type-ahead buffer in two ways:

• When you enable the entry, associate a repeating AST with it to procesf
buffered input continuously. (For keyboards, you can also associate a
repeating AST when you modify the keyboard.)

• Issue a Get Next Input Token QIO to process a single input token frorr
the buffer (this QIO can have an AST associated with it-in either case
the input is delivered in the IOSB block). This type of single-token
processing is called a "one shot."

I

Programming to the Driver

• Issue a Get Next Input Token QIO to process a single input token from
the buffer (this QIO can have an AST associated with it-in either case,
the input is delivered in the IOSB). This type of single-token processing
is called a "one shot."

Once a repeating AST is associated with an entry, attempts to issue
subsequent one-shot ASTs on that entry return an error because the results
are unpredictable. If you enable an entry without an associated AST, you
can issue one-shot ASTs to process the buffered data one character at
a time. You can associate a repeating AST with an entry at any time by
reenabling the entry (or for keyboards, modifying the keyboard). However,
any outstanding one-shot ASTs are processed first.

Note that QIO modifiers enable you to purge the type-ahead buffer. If
you delete an entry and the type-ahead buffer is not empty, the deletion
is deferred until the type-ahead buffer is empty. If an application wants to
delete an entry immediately, it must first purge the buffer.

2. 7 Intercepting Input

I

You can issue one-shot ASTs on a channel that. currently has no repeating
AST associated with it. To "intercept" input, disable the associated AST
(by reenabling the entry without the AST specification), then issue one
shots. (Note that for a keyboard you can disable an AST by modifying the
keyboard instead of reenabling it.) Later, you can reenable the repeating
AST.

To intercept the input for an entry on a list, use the Get Next Input Token
QIO; specify the type of input token (IOC_QV_ENAKB, IOC_QV_
MOUSEMOV, or IO$C_ENABUTTON) and the channel with which the
entry is associated.

You can also use one shot ASTs to process input from within an AST (ASTs
cannot be delivered in this case). An application can rely on the fact that a
one shot AST with no associated AST delivers the input to the IOSB. With
an event flag and the IOSB, the application can process the type-ahead
buff er one character at a time from within the AST.

The example in Appendix D contains instances of intercepting input.

2.8 Defining Cursor Patterns
The QIO interface enables you to associate a region of the screen with a
specific cursor pattern. Use the QIO interface to change the shape and size
of the cursor to reflect a change in functionality; for example, an editing
cursor can take one shape while a menu selection cursor takes another.
Again, the driver maintains an entry list to keep track of cursor patterns.

Use the Define Pointer Cursor Pattern QIO to create a cursor pattern entry.
When you create a cursor pattern entry, specify the following information:

• The address of a bitmap image for the new cursor pattern. This bitmap
image is a 16-word array on single-plane cursor systems or a 32-word
array on multiplane cursor systems. The QVB contains a field that
indicates whether you have a single-plane or multiplane system; use

V4.1-June 1989 2-21

2.8.1

Programming to the Driver

the Get System Information QIO to access this field. The following
section describes multiplane cursor patterns.

• The address of a longword to contain a new cursor position. This
optional parameter enables you to reposition the cursor.

• The address of the cursor hot spot definition. The hot spot is the one
position within the bitmap image of the cursor that is the actual cursor
position.

• Cursor style. This value defines how the cursor appears against the
background of the screen. (It is ignored on multiplane cursor systems.)

• Address of a screen rectangle values block that describes the region to
be associated with the cursor pattern.

By default, an entry is placed at the top of the list. However, an application
can determine the position of the entry in the list by specifying optional
modifiers to the QIO. The modifiers can be used to perform the following
functions:

• Place the entry last on the list (QV _LAST)

• Delete the entry (QV _DELETE)

As the pointer moves, the driver checks the pointer position against the
region descriptors of the cursor p~ttern list entries. When the driver finds
a region descriptor that contains the current pointer position, it changes the
cursor pattern to the one associated with the region.

Example 2-8 illustrates the typical assignment of a single-plane cursor
region pattern. (Appendix D of this manual shows this example in the
context of a complete application program.)

Multiplane Cursor Patterns

2-22

If your system uses a multiplane cursor, you can specify a 32-word array
as a cursor pattern. Multiplane cursors consist of two planes. Typically,
you use two planes to prevent the cursor from disappearing when it moves
over varying backgrounds. To understand how the two planes work, think
of the 32-word array as two 16-word arrays, array A and array B.

The bit pattern in array A is determined as follows:

• 1-Indicates that the corresponding pixel be filled.

• 0-Indicates that whatever is on the screen at the corresponding pixel
should show through (remember, the cursor is overlaid on the screen).

The bit pattern in array Buses the the bits set to 0 in array A as a mask:
those corresponding bits are ignored in array B. The remaining bit pattern
in array Bis determined as follows:

V4.1-June 1989

Programming to the Driver

Example 2-8 Assignment of a Single-Plane Cursor Region Pattern

QV$CURSOR1:

REGION!:

20$:

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.LONG

.LONG

.LONG

.LONG

MOVL
$QIOW_S

BLBS
BRW

Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllltllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll

20
20
300
300

#I0$C_QV_SETCURSOR,R0
CHAN=CUR_CHAN1,­
FUNC=#I0$ SETMODE,­
Pl =(RO),­
P2=#QV$CURSOR1,­
P6=#REGION1
R0,30$
ERROR

V4.1-June 1989

initial 16 x 16 cursor
"solid" pattern

cursor region
lower left corner

upper right corner

define cursor 1
channel
QIO function code
driver function code
cursor pattern
associated region
no error if set

2-23

Programming to the Driver

• 1-Indicates that the corresponding pixel be filled with the background
color.

• 0-Indicates that the corresponding pixel be filled with the foreground
color.

2.9 Using an Alternate Windowing System

2.10

For flexibility, the QVSS driver supports a single private graphics
application in addition to the default, VWS-supplied windowing package.
That is, you can write an alternate windowing application that takes
complete control of video memory and does not depend on VWS-supplied
window or graphics services.

To enable alternate windowing, before you invoke the STARTVWS.COM
command procedure, modify the command procedure SYST ARTUP _
VS.COM to define the logical naine UIS$WS_ALTAPPL to "TRUE."

This instructs the driver to reserve half of video memory for a private
application. At the request of the private application, this part of video
memory is mapped to the screen and becomes available to the application.
All set mode functions issued by the application relate only to its pritmte
video memory. A user interface key (F3) on the keyboard allows an
operator to switch dynamically between windowing systems.

NOTE: Private applications are device dependent; only one private application can
be active at a time.

Drawing to the QVSS Screen
To draw to the screen using the QVSS driver, follow these steps:

1 Access the QVB.

2 Manipulate bits in video memory.

3 Map the manipulated video memory to the screen.

Section 2.2 describes how to access the QVB. The following sections
describe how to manipulate bits and map video memory to the screen.

2.10.1 Manipulating Bits in Video Memory

2-24

A QVSS application "draws" by setting bits directly in video memory. To
access video memory, use the QVB$L_MAIN_ VIDEOADDR address in the
QVB. The application determines how to offset into video memory. When
you manipulate memory, remember the following:

• Each scanline of video memory is 1024 bits (128 bytes) wide.

• There are 1024 scanlines in memory.

NOTE: If you use an alternate windowing system, the accessible number. of
scanlines is effectively halved.

V4.1-June 1989

Programming to the Driver

2.10.2 Mapping Video Memory to the Screen

I

To map a scanline in memory to the screen, load an entry in the scanline
map. The scanline map consists of word-length entries whose positions in
the map correspond to line positions on the screen and whose contents are
indices of scanline positions in video memory. The index of scanlines in
memory starts at zero and is incremented by one for each scanline.

Mapping with an Alternate Windowing System

This scheme is straightforward unless you are using an alternate windowing
system, in which case memory is split in half and shared by two systems.
To ensure that you are mapping the correct portion of memory, calculate
the correct scanline base in video memory. To obtain the correct scanline
base, complete the following steps:

1 Subtract the QVB$L_ VIDEOADDR address from the QVB$L_MAIN_
VIDEOADDR address.

2 Divide the result by 128 (number of bytes in a scanline).

Add the base to any scanline index before you insert it as an entry in the
scanline map.

V4.1-June 1989 2-24.1

2.11

Programming to the Driver

Creating a QDSS Viewport
The QDSS driver performs all viewport operations to the screen. If your
application is not using the UIS windowing interface, it must create a
viewport or use the systemwide viewport before it attempts to write to the
screen. Example 2-12, later in this chapter, demonstrates how to access
the systemwide viewport.

To create a viewport, an application must perform the following steps:

1 Assign the viewport a channel.

2 Get a viewport ID.

3 Define the location and size of the viewport.

4 Start the viewport.

The following sections describe how to perform each of these steps.

2.11.1 Assigning a Viewport Channel
Use the $ASSIGN system routine to obtain a unique channel for a
viewport. The actual association of the viewport with the channel occurs
when the application gets a viewport ID for the viewport.

2.11.2 Getting a Viewport ID
Use the Get Viewport ID QIO to get a viewport ID. One parameter of this
QIO specifies the address of the longword to receive the ID. The ID stored
at that address identifies which viewport is the object of all subsequent
operations. The channel the application specifies in this QIO is associated
with the viewport.

2.11.3 Defining a Viewport
A viewport is defined by one or more rectangular update regions. Update
regions are defined in Update Region Definition (URD) buffers. Each URD
buffer contains coordinate information that defines the dimensions, in
pixels, of a rectangle and its location relative to the base of QDSS memory
either onscreen or offscreen. (See Appendix B for detailed information
about this data structure.) A viewport can be defined by one or more
URDs. Figure 2-7 illustrates a 500- by 500-pixel viewport defined by a
single URD and displays the contents of the associated definition buffer.

2-25

Programming to the Driver

Figure 2-7 Viewport and Update Region Definition Buffer

x
0

499

50

y

0

499

100

Lower Left Corner (URC)

Upper Right Corner (VRC)

Absolute Base (ADC)

ZK·5348·86

Note that the base is given in absolute coordinates and the two defining
corners of the viewport are given in viewport relative coordinates. These
coordinates become important when a viewport is divided into a number of
rectangles and some (occluded) rectangles are stored in off screen memory.
Drawing operations use the relative coordinates to perform drawing, even
when rectangles are not visible on the screen.

To define a viewport, follow these steps:

1 Allocate and initialize one or more URD buffers that describe the
viewport' s size and relative position.

2 Call the Define Viewport Region QIO once for each viewport, passing
the URD (or array of URDs if the viewport is more than one rectangle).

Parameters of the Define Viewport Region QIO specify the address and
length of the viewport definition buff er and the viewport ID.

To redefine a viewport, reinvoke the Define Viewport Region QIO with
new coordinate information and the same channel and viewport ID.

2.11.4 Starting the Viewport

2-26

When you define a viewport, it is in a "stopped" state. To permit
operations to the viewport, you must explicitly start the viewport request
queue with the Start Request Queue QIO.

Example 2-9 creates and starts a 100-pixel square viewport with its
lower left corner at the absolute device coordinate (10, 10). Note that in
FORTRAN, you must include the IODEF library to access the QIO function
codes.

Programming to the Driver

Example 2-9 Creating a Viewport

PROGRAM CREATE_VIEWPORT
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
INCLUDE '($IODEF)'

INTEGER*2 CHAN_VPl,
2 CHAN_VP2

1 Declare URDs
INTEGER*2 URD1_VP1(6),
2 URD1_VP2(6)

1 Load URDl_VPl buffer
URDl_VPl(l) 0 ! lower left corner
URD1_VP1(2) 0
URD1_VP1(3) 99 upper right corner
URD1_VP1(4) 99
URDl_VPl(S) 10 absolute coordinate base
URD1_VP1(6) 10

! define and start VPl
CALL VIEWPORT (URDl_VPl, CHAN_VPl, VPl_ID)

Viewport Subroutine

SUBROUTINE VIEWPORT (VP_URD, VP_CHANNEL, VIEWPORT_ID)

IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
INCLUDE '($IODEF)'

INTEGER*2 VP_CHANNEL

1 Obtain a channel for the viewport
CALL SYS$ASSIGN ('SYS$WORKSTATION',
2 VP_CHANNEL,,,)

Get a viewport ID
CODE = I0$_SENSEMODE
STATUS= SYS$QIOW (,
2 %VAL(VP_CHANNEL),
2 %VAL(CODE),
2 , , ,

device name
channel

channel
QIO function code

2 %VAL(I0$C_QD_GET_VIEWPORT_ID),
2 VIEWPORT_ID,
2 %VAL(4),
2 , ,)
IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

1 Define the Viewport Region
CODE = IO$_SETMODE
STATUS= SYS$QIOW (,
2 %VAL(VP_CHANNEL),
2 %VAL(CODE),
2 , , ,

address of ID buff er
VP ID buff er length

channel
QIO function code

2 %VAL(I0$C_QD_SET_VIEWPORT_REGIONS),
2 VP_URD, address of URD buffer
2 %VAL(URD$C_LENGTH), length of URD buffer
2 %VAL(VIEWPORT_ID),,) address of VP ID
IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

Example 2-9 Cont'd. on next page

2-27

2.12

2.13

Programming to the Driver

Example 2-9 (Cont.) Creating a Viewport

1 Start the Viewport
STATUS= SYS$QIOW (,
2 %VAL(VP_CHANNEL),
2 %VAL(CODE),
2
2
2
2
IF (STATUS .NE. 1)

CALL LIB$SIGNAL
END IF

RETURN
END

, , ,
%VAL(IO$C_QD_START),
%VAL(VIEWPORT_ID),
, , ,)
THEN
(%VAL (STATUS))

channel
I QIO function code

I QD function code
address of ID buff er

Drawing with the QDSS Driver
The QDSS driver uses data structures known as drawing operation
primitives (DOPs) to perform drawing operations. Your application loads
a DOP with all the information necessary for the hardware to perform a
drawing operation. Typically, a DOP contains the type of operation to
perform (that is, draw a line, draw text, and so on), the number of times to
perform it, and any coordinates needed to perform the operation.

You must allocate storage for DOPs, insert DOPs on the request queue
to execute them, and reuse the storage with the return queue. If your
application uses the UIS windowing environment, you can perform all
three of these functions with UISDC routines. However, if your application
does not use the UIS windowing environment, the application must
manage DOP storage and insert DOPs on the request queue.

Chapter 5 describes how to perform drawing with DOPs.

Using Bitmaps

2-28

. Although the QDSS driver does not support direct manipulation of the
onscreen bitmap, it permits you to copy bitmap images from processor
memory to onscreen and offscreen memory and from onscreen and
off screen memory to processor memory.

The driver provides the following QIOs for manipulating bitmaps:

• Write Bitmap-Copies a bitmap from processor memory to QDSS
screen memory and performs bitmap-to-bitmap transfers (onscreen-to­
offscreen and offscreen-to-onscreen).

• Read Bitmap-Copies a bitmap from QDSS memory to processor
memory and performs bitmap-to-bitmap transfers (onscreen-to­
offscreen and offscreen-to-onscreen).

• Load Bitmap-Loads a bitmap to be used by a text or fill pattern
drawing operation from processor memory into the reserved bitmap
area of offscreen memory (see Figure 1-4). This QIO returns a bitmap
ID that the DOPs use to reference the bitmap. Bitmaps loaded by this
QIO must follow certain criteria; see Chapter 4 for details. The UISDC
interface also provides a Load Bitmap function. (See Chapter 5.)

2.14

Programming to the Driver

To draw an image, complete the following steps:

1 Build the image in processor memory.

2 Use the Write Bitmap QIO to load the image into QDSS memory.

To store an image in processor memory, use the Read Bitmap QIO to copy
the bitmap from QDSS memory to processor memory. (Complete this
process for occluded viewport regions when offscreen memory is full; see
Section 2.18.)

Use the Load Bitmap QIO to load a bitmap for use with a DOP.

Example 2-10 later in this chapter illustrates the use of the Write Bitmap
QIO to copy a region from onscreen memory into offscreen memory
(bitmap-to-bitmap transfer).

Synchronizing Viewport Activity
Because DOPs are queued asynchronously for processing and execution,
you must take special action to synchronize activity on a viewport.

Figure 2-8 illustrates the three DOP states:

• In the queue, waiting to be processed

• Currently being processed by the driver

• Completed and on the screen

Figure 2-8 Synchronizing Viewport Activity

In Queue

IQ0~1 IQ0~1 --.

Processed by
Driver

•

On the Screen

I·
'·~-=============:=? =

ZK-5349·86

The driver can process a number of DOPs at a time. To synchronize
activity, manipulate the queue and be aware of whether the driver is
currently processing DOPs.

2-29

Programming to the Driver

2-30

Synchronization OIOs

The QIO interface provides the following QIOs for synchronization:

• Stop Request Queue-Immediately halts the processing of the request
queue and waits for whatever is currently being processed to complete
before returning.

• Start Request Queue-Restarts processing on a stopped request queue.

• Suspend Request Queue-Immediately halts the processing of the
request queue but does not wait for whatever is currently being
processed to complete before returning.

• Resume Request Queue-Resumes processing on a suspended request
queue.

• Hold Viewport Activity-Does not permit any viewport except the
systemwide viewport to write to the screen (processing continues).

• Release Hold-Releases the hold on viewport activity.

• Insert DOP-Permits an application to insert a DOP on the request
queue and waits for completion (essentially performs a synchronous
DOP).

Request Queue Interface DOPs

In addition to the QIOs, the request queue interface permits you to submit
the following DOPs:

• Stop Viewport Activity-Halts the queue and waits for any DOPs
currently processing to complete. This differs from the Stop Request
Queue QIO in that all DOPs inserted before this one are guaranteed to
execute before the queue is stopped.

• Start Viewport Activity-Restarts processing on a stopped request
queue.

• Suspend Viewport Activity-Halts the queue but does not wait for any
DOPs currently processing to complete. This differs from the Suspend
Viewport Activity QIO in that all DOPs inserted before this one are
guaranteed to execute before the queue is stopped.

• Resume Viewport Activity-Resumes processing on a suspended
request queue.

A Stop also differs from a Suspend in that a Stop issued on a stopped
Request Quest waits for the queue to restart, then takes effect, while a
Suspend issued on a suspended viewport is ignored. The Stop is thus
useful for synchronizing multiprocess windowing activity on a single
viewport. To guarantee that no other process accesses the viewport,
a process can issue a Stop before it attempts any windowing activity
(redefining URDs and so forth). When control returns from the Stop, it
is clear that no other process DOPs can execute on the viewport and any
DOPs that were processing have completed.

Note that if you issue a Stop Request Queue QIO to an already stopped
viewport, the QIO will not complete until the viewport is started by an AST
routine or another process. However, if you issue a Stop Request Queue
QIO to a suspended viewport, the Stop Request Queue QIO will complete.

2.15

Programming to the Driver

Handling Occlusion
In multiviewport systems, two or more viewports might overlap. This
overlapping is called occlusion. Figure 2-9 illustrates one viewport (VP _A)
occluding another (VP _B).

Figure 2-9 Occluded Viewport

.,___ VP-A

Occluded region of VP _B

ZK-5350·86

Only one viewport can display the overlapped area of the bitmap at a
time. If your application permits occlusion, it must be able to handle any
operations directed to an occluded viewport region. It does this by moving
the occluded region of the viewport into offscreen memory and performing
any necessary operations there. If that portion of the screen becomes
available for display later, you can pop the viewport, or copy the up-to-date
region back to the screen. The following sections describe how to handle a
simple case of occlusion.

2.15.1 Redefining Viewports
An application uses the update region definition buffers to handle
occlusion. A viewport originally defined as one rectangle with a single
URD can be redefined as a number of rectangles (viewport regions) with
one URD for each rectangle. The URDs provide both the absolute position
of the rectangle in QDSS memory and the viewport-relative coordinates of
the rectangles in relation to one another.

Use the Define Viewport Region QIO to redefine a viewport. You can use a
negative Y coordinate to redefine an occluded region in offscreen memory;
because drawing operations use viewport-relative coordinates, the drawing
is performed properly. You must ensure that the negative Y coordinate
you use falls within the range of the free_l area of offscreen memory (see
Figure 1-4).

Figure 2-10 illustrates partitioning of an occluded viewport. In this
example, the viewport is divided into three rectangles (A, B, and C).
The minimum, maximum, and base (X, Y) coordinate pairs are stored in
three definition buffers.

2-31

Programming to the Driver

The base coordinates of each accessible rectangle are in absolute device
coordinates relative to the base of display memory (0,0). A base value
with two positive coordinates indicates that the rectangle is in onscreen
display memory. A base value with a negative Y coordinate and a positive
X coordinate indicates that the rectangle is in off screen memory. A base
value of (-1,-1), for instance, indicates that the rectangle is on the deferred
queue; see Section 2.18 for information about the deferred queue. Note
that rectangle A is redefined to be in offscreen memory.

Figure 2-10 Redefining Viewports with URDs

B

----ij
I

A c I L __

Associated URDs

x y

0 0

49 49

0 -500

0 50

99 99

60 110

50 0

99 49

110 60

ZK·5351·86

2.15.2 Securing Exclusive Access to the Bitmap

2-32

An application secures exclusive access to the bitmap to guarantee that two
or more overlapping viewports do not attempt to write simultaneously to
the same piece of the display. Before it creates a viewport, your application
should determine whether another viewport already exists in the area of the
screen where the viewport will be created. (The application is responsible
for tracking each viewport on the screen.)

To secure exclusive access to a viewport bitmap follow these steps:

1 Use the Stop Request Queue QIO to stop activity on the existing
viewport to ensure a known state for the subsequent steps.

2 Use the Define Viewport Region QIO to redefine the regions of the
existing viewport.

3 Use the Write Bitmap or Read Bitmap QIO to copy the to-be-occluded
region of the existing viewport to offscreen memory.

Programming to the Driver

4 Update the URD definition of the existing viewport to reflect its new
state. Specify a negative Y coordinate in the base value of the URD
to redefine the occluded region to be offscreen. (The negative Y value
must fall within the range of the free area of offscreen memory shown
in Figure 1-4). Drawing can still be performed to offscreen memory.

5 Use the Start Request Queue QIO to restart the viewport.

Now you can create the new viewport on screen and start drawing
operations on it.

Example 2-10 illustrates how one viewport occludes another. Exclusive
access to the bitmap is guaranteed before the second viewport is created.
The occluded region of the existing viewport is copied into the offscreen
memory free area at (0,-200). Note that the transfer parameter block (TPB)
is loaded by the predefined structure in the VWSSYSDEF file.

2-33

Programming to the Driver

Example 2-10 Securing Bitmap Access

PROGRAM CREATE_VIEWPORT
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
INCLUDE '($IODEF)'

INTEGER*2 CHAN_VPl,
2 CHAN_VP2

! Declare TPB
INTEGER*2 TPB(l3)

! Declare URDs
INTEGER*2 URDl_VP1(6),
2 URD1_VP2(6)

! Load URDl_VPl buffer
URDl_VPl(l) 0
URDl_VP1(2) 0
URDl_VP1(3) 99
URDl_VP1(4) 99
URDl_VP1(5) 10
URD1_VP1(6) 10

! Load URDl_VP2 buffer
URD1_VP2(1) 0
URDl_VP2(2) 0
URDl_VP2(3) 99
URD1_VP2(4) 99
URDl_VP2(5) 60
URDl_VP2(6) 60

! Define and start VPl

lower left corner

upper right corner

absolute coordinate base

lower left corner

upper right corner

absolute coordinate base

CALL VIEWPORT (URDl_VPl, CHAN_VPl, VPl_ID)

! Stop
CODE =
STATUS
2

VPl
I0$_SETMODE

channel
2

SYS$QIOW (,
%VAL(CHAN_VP1),
%VAL (CODE) , QIO function code

2 , , ,
2 %VAL(IO$C_QD_STOP),
2 %VAL(VPl_ID),

QD function code
address of ID buff er

2 , , ,.)
IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Load TPB for occluded rectangle
CALL LOAD_TPB (TPB)

! Copy
CODE =
STATUS
2
2
2

occluded rectangle into offscreen memory
I0$_QDWRITE
= SYS $QIOW (,

%VAL(CHAN_ VPl),
%VAL (CODE) ,
, , , , , ,

channel
QIO function code

2 TPB, transfer block
2 %VAL(TPB$C_BITMAP_XFR_LENGTH),)
IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Update regions of VPl
CALL UPDATE_REGIONS (CHAN_VPl, VPl_ID)

Example 2-10 Cont'd. on next page

2-34

Programming to the Driver

Example 2-10 (Cont.) Securing Bitmap Access

! Restart VPl
CODE = I0$_SETMODE
STATUS= SYS$QIOW (,
2 %VAL(CHAN_VP1),
2 %VAL(CODE),
2
2
2

I I I

%VAL(IO$C_QD_START),
%VAL(VP1_ID) I

2 II I)
IF (STATUS .NE. l) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Define and start VP2
CALL VIEWPORT (URDl_VP2, CHAN_VP2, VP2_ID)

* LOAD TPB SUBROUTINE *

SUBROUTINE LOAD_TPB (TPB)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'

channel
QIO function code

QD function code
address of ID buff er

! Associate the predefined structure w/ TPB
RECORD /TPB_STRUCTURE/ TPB

! Load values
TPB.TPB$B TYPE = TPB$C_BITMAP_XFR
TPB.TPB$B=SIZE = TPB$C_LENGTH
TPB.TPB$W X SOURCE = 60
TPB.TPB$W=Y=SOURCE = 60
TPB.TPB$W_WIDTH = 50
TPB.TPB$W HEIGHT = 50
TPB.TPB$W=X_TARGET 0
TPB.TPB$W_Y_TARGET = -200

RETURN
END

! * UPDATE REGION SUBROUTINE *
! ****************************

type

x of lower left corner
y of lower left corner
width of source
height of source
x of lower left corner
y of lower left corner

SUBROUTINE UPDATE_REGIONS (VP_CHANNEL, VIEWPORT_ID)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
INCLUDE '($IODEF)'

! Declare URD
INTEGER*2 URD(l8)

! Load URD buff er
! First rectangle
URD(l) 0 lower left corner
URD(2) 0
URD(3) 99 upper right corner
URD(4) 49
URD(5) 10 absolute coordinate base
URD(6) 10

Example 2-10 Cont'd. on next page

2-35

Programming to the Driver

Example 2-10 (Cont.) Securing Bitmap Access

! Second rectangle
URD(7) = 0 ! lower left corner
URD(8) = 49
URD(9) = 49 upper right corner
URD(lO) = 99
URD(ll) = 10 absolute coordinate base
URt>(l2) = 59
! Third rectangle
URD(l3) 49 ! lower left corner
URD(14) 49
URD(lS) 99 ! upper right corner
URD(16) 99
URD(l7) 0 absolute coordinate base
URD(l8) -200 (offscreen)

CODE = IO$_SETMODE
STATUS= SYS$QIOW (,
2 %VAL(VP_CHANNEL),
2 %VAL(CODE),

','

! channel
! QIO function code

2
2
2
2
2

%VAL(I0$C_QD_SET_VIEWPORT_REGIONS),

IF (STATUS .NE. 1)
CALL LIB$SIGNAL

END IF

RETURN
END

URD, address of URD buffer
%VAL(3 * URD$C_LENGTH), length of URD buffer
%VAL(VIEWPORT_ID)' ') ! address of VP ID
THEN
(%VAL (STATUS))

2.15.3 Popping an Occluded Viewport

2-36

Bringing an occluded viewport into full view onscreen is referred to as
popping a viewport. Popping a viewport involves copying the occluding
region into offscreen memory and the occluded region from offscreen
memory onto the screen. To pop a viewport, an application must take the
following steps:

1 Stop activity on the occluding viewport.

2 Copy the occluding region into off screen memory.

3 Redefine the occluding viewport URDs.

4 Restart the occluding viewport.

5 Stop activity on the occluded viewport.

6 Copy the occluded region from offscreen memory onto the screen.

7 Redefine the occluded viewport URDs.

8 Restart the (formerly) occluded viewport.

Example 2-11 illustrates popping a viewport.

Programming to the Driver

Example 2-11 Popping a Viewport

PROGRAM POP
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
INCLUDE '($IODEF)'

INTEGER*2 CHAN_VPl,
2 CHAN_VP2

! Declare TPBs
INTEGER*2 TPB1(13),
2 TPB2(13),
2 TPB3(13)

! Declare URDs
INTEGER*2 URD1_VP1(6),
2 URD1_VP2(6)

! Load URDl_VPl buffer
URDl_VPl(l) 0 lower left corner
URD l_ VP 1 (2) 0
URD1_VP1(3) 99 upper right corner
URDl_VP1(4) 99
URDl_VP1(5) 10 absolute coordinate base
URD1_VP1(6) 10

! Load URD1_VP2 buffer
URDl_VP2(1) 0 lower left corner
URD1_VP2(2) 0
URD1_VP2(3) 99 upper right corner
URD1_VP2(4) 99
URD1_VP2(5) 60 ! absolute coordinate base
URD1_VP2(6) 60

! Define and start two overlapping viewports

! Stop VP2 (the occluding viewport)
CODE = IO$ SETMODE
STATUS SYS$QIOW (,
2 %VAL(CHAN_VP2),
2 %VAL(CODE),

2 '''

channel
QIO function code

2 %VAL(IO$C_QD_STOP),
2 %VAL(VP2_ID),

QD function code
address of ID buffer

2 "')
IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Load TPB for occluded rectangle
CALL LOAD_TPB2 (TPB2)

! Copy
CODE =
STATUS
2
2
2

occluding region into offscreen memory
IO$ QDWRITE
= SYS$QIOW ('

%VAL(CHAN_ VP2),
%VAL (CODE) ,

' ' ' ' ' '

channel
QIO function code

2 TPB2, transfer block
2
IF (STATUS .NE. 1)

CALL LI8$SIGNAL
END IF

%VAL(TPB$C_BITMAP_XFR_LENGTH),)
THEN
(%VAL (STATUS))

! Update regions of VP2
KEY = 2
CALL UPDATE_REGIONS (CHAN_VP2, VP2_ID, KEY)

Example 2-11 Cont'd. on next page
2-37

Programming to the Driver

Example 2-11 (Cont.) Popping a Viewport

1 Restart VP2
CODE = IO$ SETMODE
STATUS= SYS$QIOW (,
2 %VAL(CHAN_VP2),
2 %VAL(CODE),
2
2
2
2

, , ,
%VAL(IO$C_QD_START),
%VAL(VP2_ID),
, , ,)

IF (STATUS .NE. 1)
CALL LIB$SIGNAL

END IF

THEN
(%VAL (STATUS))

1 Stop
CODE =
STATUS
2
2
2
2
2
2

VPl (the occluded viewport)
!0$ SETMODE

SYS$QIOW (,
%VAL(CHAN_VP1),
%VAL(CODE),
, , ,
%VAL(IO$C_QD_STOP),
%VAL(VPl_ID),
, , ,)

IF (STATUS .NE. 1) THEN
CALL LIB$SIGNAL (%VAL (STATUS))

END IF

1 Load TPB for occluded rectangle
CALL LOAD_TPB3 (TPB3)

channel
QIO function code

QD function code
address of ID buffer

channel
QIO function code

I QD function code
I address of ID buffer

1 Copy
CODE =
STATUS
2

off screen rectangle into screen memory
I0$_QDWRITE

2
2

= SYS$QIOW (,
%VAL(CHAN_ VPl),
%VAL (CODE) ,
, , , , , ,

channel
QIO function code

2 TPB3, 1 transfer block
2 %VAL(TPB$C_BITMAP_XFR_LENGTH),)
IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

l Update regions of VPl
KEY = 3
CALL UPDATE_REGIONS (CHAN_VPl, VPl_ID, KEY)

1 Restart VPl
CODE = I0$_SETMODE
STATUS= SYS$QIOW (,
2 %VAL(CHAN_VP1),
2 %VAL(CODE),
2 , , ,
2 %VAL(IO$C_QD_START),
2 %VAL(VPl_ID),
2 ",)
IF (STATUS .NE. l) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

* LOAD TPB2 SUBROUTINE * 2

channel
QIO function code

QD function code
address of ID buff er

Example 2-11 Cont'd. on next page

2-38

Programming to the Driver

Example 2-11 (Cont.) Popping a Viewport

SUBROUTINE LOAD_TPB2 (TPB)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'

! Associate the predefined structure w/ TPB
RECORD /TPB_STRUCTURE/ TPB

! Load values
TPB.TPB$8 TYPE = TP8$C BITMAP XFR
TP8.TPB$B=SIZE = TP8$C=LENGTH­
TPB.TP8$W_X_SOURCE = 60
TPB.TP8$W Y SOURCE = 60
TPB.TPB$W=WIDTH = 50
TP8.TP8$W_HEIGHT = 50
TPB.TPB$W_X_TARGET 0
TPB.TPB$W_Y_TARGET = -500

RETURN
END

! * LOAD TPB3 SUBROUTINE * 3
! ***********************

SUBROUTINE LOAD_TPB3 (TPB)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'

type

x of lower left corner
y of lower left corner
width of source
height of source
x of lower left corner
y of lower left corner

! Associate the predefined structure w/ TPB
RECORD /TPB_STRUCTURE/ TPB

! Load values
TPB.TP8$B_TYPE = TP8$C_BITMAP_XFR
TPB.TP8$B_SIZE = TPB$C_LENGTH
TPB.TP8$W_X_SOURCE = 0
TP8.TP8$W_Y_SOURCE = -200
TP8.TP8$W_WIDTH = 50
TP8.TP8$W_HEIGHT = 50
TP8.TPB$W_X_TARGET 60
TPB.TPB$W_Y_TARGET = 60

RETURN
END

! * UPDATE REGION SUBROUTINE *
! ****************************

type

x of lower left corner
y of lower left corner
width of source
height of source
x of lower left corner
y of lower left corner

SUBROUTINE UPDATE_REGIONS (VP_CHANNEL, VIEWPORT_ID, KEY)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
INCLUDE '($IODEF)'

! Declare URD
INTEGER*2 URD(l8)

! Assume long URD
URD_LENGTH = (3 * URD$C_LENGTH)

! Key determines which URD is loaded
IF (KEY .EQ. 1) THEN

ELSE IF (KEY .EQ. 2) THEN

Example 2-11 Cont'd. on next page

2-39

2.16

Programming to the Driver

Example 2-11 (Cont.) Popping a Viewport

1 Redefine VP2 for occlusion
1 First rectangle
URD(l) 0 ! lower left corner
URD(2) 0
URD(3) 49 1 upper right corner
URD(4) 49
URD(S) 0 ! absolute coordinate
URD(6) -500 ! (off screen)

1 Second rectangle
URD(7) = 0 1 lower left corner
URD(8) = 50
URD(9) = 99 1 upper right corner
URD(lO) 99
URD(11) = 60 absolute coordinate
URD(12) = 110
1 Third rectangle
URD(13) 50 ! lower left corner
URD(14) 0
URD(15) 99 ! upper right corner
URD(16) 49
URD(17) 110 ! absolute coordinate
URD(18) 60

ELSE IF (KEY .EQ. 3) THEN

1 Redefine VPl for pop
URD(l) 0 ! lower left corner
URD(2) 0
URD(3) 99 ! upper right corner
URD(4) 99
URD(5) 10 ! absolute coordinate base
URD(6) 10
URD_LENGTH URD$C_LENGTH

ELSE

END IF

CODE =
STATUS
2
2
2

IO$ SETMODE
= SYS$QIOW (,

%VAL(VP_CHANNEL),
%VAL (CODE) ,
, , ,

base

base

base

channel
! QIO function code

2 %VAL(IO$C QD SET VIEWPORT REGIONS),
URD, - - - - ! address of URD buffer 2

2
2
IF (STATUS .NE. 1)

CALL LIB$SIGNAL
END IF

RETURN
END

%VAL(URD_LENGTH), ! length of URD buffer
%VAL(VIEWPORT_ID),,) ! address of VP ID
THEN
(%VAL (STATUS))

Deleting a Viewport

2-40

When you delete a viewport, synchronization of activity is important.
Your application must guarantee that all drawing activity to a viewport is
completed before the viewport is deleted. Once drawing is completed, you
can deassign the associated channel to ensure that nothing else is written to
the viewport. Finally, you can erase the viewport. The following sections
describe each procedure.

Programming to the Driver

2.16.1 Synchronizing Viewport Deletion
Before you deassign a channel, you must ensure that all drawing to a
viewport is complete, as follows:

1 Issue a Stop Viewport Activity DOP with the Insert DOP QIO (the
QDWRITE function code with the 10$M_ QD _INSERT _DOP modifier)
to stop pending operations either on the DOP request queue or in
progress before the delete. This QIO waits for the stop to occur before
returning control, which accounts for the lag time in processing DOPs.
If you do not wait for completion, you might delete the viewport while
DOPs are on the queue.

2 Use the $DASSGN system service to deassign the associated channel.

2.16.2 Erasing a Viewport
To erase a viewport, use the Fill Polygon DOP to draw a background­
colored rectangle over the viewport. The channel of the viewport to be
erased is already disassociated. You must use the systemwide viewport to
perform this operation as follows:

• Assign a channel for the systemwide viewport.

• Obtain the system information block using the Get System Information
QIO.

• Extract the systemwide viewport ID from the system information block.

• Use the Fill Polygon DOP to draw a background-colored rectangle over
the viewport (see Chapter 5 for details about DOPs). You must have
the systemwide viewport ID to perform this DOP on the systemwide
viewport.

Example 2-12 illustrates deleting a viewport.

2-41

Programming to the Driver

Example 2-12 Deleting a Viewport

PROGRAM DELETE_VIEWPORT
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
INCLUDE '($IODEF)'

! Declare external macro routine
EXTERNAL DOP$INSQUE

INTEGER*2 CHAN_VPl,
2 CHAN_SYS

! Declare TPB
INTEGER*2 TPB(13)

! Declare URD
INTEGER*2 URD1_VP1(6)

! Declare QDB descriptor and buffer
INTEGER*4 QDE_DESC(2)

! Load URDl_VPl buffer
URDl_VPl(l) 0 ! lower left corner
URD1_VP1(2) 0
URDl_VP1(3) 99 upper right corner
URD1_VP1(4) 99
URD1_VP1(5) 10 absolute coordinate base
URD1_VP1(6) 10

! Define and start VPl
CALL VIEWPORT (URDl_VPl, CHAN_VPl, VPl_ID)

! Draw to the viewport

!********************
! Delete the Viewport
!********************

! Synchronize the deletion
! get a Stop DOP for VPl
SIZE = (DOP$C_LENGTH) calculate size
CALL GET_DOP (VPl_ID, SIZE, DOP2)

! Call the Stop subroutine
CALL STOP_VP (%VAL(DOP2), DOP address, by value
2 SIZE, DOP size
2 VPl_ID) viewport ID

! Insert the DOP using Insert DOP QIO
CODE = (I0$_QDWRITE .OR. I0$M_QD_INSERT_DOP)
STATUS= SYS$QIOW (,
2 %VAL(CHAN_VP1),
2 %VAL(CODE),,,,
2 DOP2,
2 %VAL(SIZE),
2 %VAL(VP1_ID),,,)
IF (STATUS .NE. l) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Deassign the viewport channel
CALL SYS$DASSGN (CHAN_VPl) ! channel

! Obtain a channel for the systemwide VP

channel
QIO function code
DOP address
DOP size
VP ID

CALL SYS$ASSIGN ('SYS$WORKSTATION', device name
2 CHAN_SYS,,) channel

Example 2-12 Cont'd. on next page

2-42

Programming to the Driver

Example 2-12 (Cont.) Deleting a Viewport

! Get the systemwide viewport ID
! Get the QDB
CODE = I0$_SENSEMODE
STATUS= SYS$QIOW (,
2 %VAL(CHAN_SYS),
2 %VAL(CODE),
2 I I I

2 %VAL(IO$C_QV_GETSYS),
2 QDB_DESC,,,,)
IF (STATUS .NE. 1) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Extract the ID from the QDB
SYS_ID = EXTRACT_SYS_ID (%VAL(QDB_DESC(2)))

channel
QIO function code

address of descriptor

! pass address by value

! Get a Fill Polygon DOP
SIZE = (DOP_POLY$C_LENGTH) calculate size
CALL GET_DOP (SYS_ID, SIZE, DOP3)

! Call the Fill Polygon subroutine to erase VPl border
CALL F_POLY (%VAL(DOP3), DOP address, by value
2 %VAL(DOP3+DOP$C_LENGTH), ! var. block address
2 SIZE) ! DOP size

Queue the DOP by calling a MACRO subroutine
CALL DOP$INSQUE (%VAL(DOP3), DOP address, by value
2 SYS_ID) ! viewport ID

Get DOP Subroutine

SUBROUTINE GET_DOP (VIEWPORT_ID, SIZE, DOP)
IMPLICIT INTEGER*4(A-Z)

! Declare external macro routine
EXTERNAL DOP$REMQUE

DOP = DOP$REMQUE (VIEWPORT_ID,
2 SIZE)

! If none on return queue, calculate size and allocate one.
IF (DOP .EQ. 0) THEN

CALL TEST_SIZE (%VAL(VIEWPORT_ID), viewport ID> return Q
2 SIZE)

! Allocate appropriate size DOP
CALL LIB$GET_VM (SIZE,

2 DOP)
END IF

RETURN
END

* TEST_SIZE SUBROUTINE *

SUBROUTINE TEST_SIZE (REQ,SIZE)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'

!~ssociate the predefined structure w/ REQ
RECORD /REQ_STRUCTURE/ REQ

Example 2-12 Cont'd. on next page

2-43

Programming to the Driver

Example 2-12 (Cont.) Deleting a Viewport

IF (SIZE .GT. REQ.REQ$W_SMALL_DOP_SIZE) THEN
SIZE REQ.REQ$W_LARGE_DOP_SIZE

ELSE
SIZE REQ.REQ$W_SMALL_DOP_SIZE

END IF

RETURN
END

* EXTRACT_SYS_ID SUBROUTINE *

FUNCTION EXTRACT_SYS_ID (QDB)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'

! Associate the predefined structure w/ QDB
RECORD /QVB_QDSS_STRUCTURE/ QDB

EXTRACT_SYS_ID

RETURN
END

QDB,QDB$L_SYSVP

! * STOP_VP SUBROUTINE *
! **********************

SUBROUTINE STOP VP (DOP, SIZE, VIEWPORT_ID)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'

! Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

! Load the Common block
DOP.DOP$W_SIZE = SIZE
DOP.DOP$W_FLAGS = 0
DOP.DOP$W_MODE = WRIT$M_NO_SRC_COMP + 10
DOP.DOP$L_MASK = -1
DOP.DOP$L_SOURCE_INDEX = -1
DOP.DOP$L_FCOLOR = 253
DOp.DOP$L_BCOLOR = 252
DOP.DOP$W_VP_MAX_X = 99
DOP.DOP$W VP MAX Y = 99
DOP.DOP$W=DELTA_X = 0
DOP.DOP$W DELTA Y = 0
DOP.DOP$W=VP_MIN_X = 0
DOP.DOP$W_VP_MIN_Y = 0

! Load the Stop values
DOP.DOP$W_ITEM_rYPE = DOP$C_STOP
DOP.DOP$W_OP_COUNT = 1
DOP.DOP$L_DRIVER_VP_ID VIEWPORT_ID

RETURN
END

! * F_POLY SUBROUTINE *
! *********************

SUBROUTINE F_POLY (DOP, DOP_VAR, SIZE)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'

Example 2-12 Cont'd. on next page

2-44

Programming to the Driver

Example 2-12 (Cont.) Deleting a Viewport

1 Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

1 Associate the predefined variable structure w/ DOP_VAR
RECORD /DOP_POLY_ARRAY/ DOP_VAR

1 Load the Common block
DOP.DOP$W SIZE = SIZE
DOP.DOP~W=FLAGS = 0
DOP.DOP$W MODE = WRIT$M NO SRC COMP + 10
DOP.DOP$L=MASK = -1 - - -
DOP.DOP$L_SOURCE_INDEX = -1
DOP.DOP$L_FCOLOR = 252
DOP.DOP$L_BCOLOR = 252

1 Load the POLYGON values
DOP,DOP$W ITEM TYPE = DOP$C FILL POLYGON
DOP.DOP$W=OP_COUNT = 1 - -
DOP.DOP$L_BITMAP_ID = 0 ! no bitmap

DOP VAR.DOP POLY$W LEFT Xl 10
DOP=VAR.DOP=POLY$W=LEFT=Yl 10
DOP VAR.DOP POLY$W LEFT X2 10
DOP=VAR.DOP=POLY$W=LEFT=Y2 110

DOP_VAR.DOP_POLY$W_RIGHT_Xl 110
DOP VAR.DOP POLY$W RIGHT Yl 10
DOP-VAR.DOP-POLY$W-RIGHT-X2 110
DOP=VAR.DOP=POLY$W=RIGHT=Y2 110

RETURN
END

:.17 Moving a Viewport
The QDSS driver does support moving a viewport or changing its size.
However, an application can move a viewport as follows:

1 Copy the contents of the old viewport to an area in the offscreen
bitmap.

2 Delete the old viewport.

3 Create a new viewport.

4 Copy the data from the offscreen bitmap to the new viewport.

.18 Using the Deferred Queue
An application is responsible for tracking off screen memory use. When
a viewport is occluded and the free area of offscreen memory is already
full of occluded regions, you can ensure a drawing operation for the region
only by placing the region on the deferred queue as follows:

1 To save the state of the region until update, use the Read Bitmap QIO
to copy the region to processor memory.

2-45

2.19

Programming to the Driver

Using Color

2-46

2 Use the Define Viewport Region QIO to redefine the region, setting the
absolute base coordinates to (-1,-1). When you place a region on the
deferred queue, the relative coordinates are used only to inform the
driver that operations for the region are to be stored on the deferred
queue.

Before you use the deferred queue, call the Notify Deferred Queue Full
QIO. This QIO enables you to notify an application when the deferred
queue is full. (It prevents a deferred region from consuming too much
memory.)

Your application should execute operations stored on the deferred queue
either when QDSS memory becomes available or when it is notified that
the queue is full. To execute an operation on the deferred queue, follow
these steps:

1 Use the Write Bitmap QIO to copy the region back into offscreen
memory.

2 Use the Define Viewport Region QIO to redefine the region.

3 Use the Execute Deferred Queue QIO to execute operations stored on
the queue.

If no memory is available when the queue is full, swap another region
out of offscreen memory and onto the deferred queue until the queue is
executed.

Note that if a viewport is occluded in more than one place, you might have
to execute the same deferred queue multiple times (that is, update the first
region at one point and update the other region with the same operations
later). To do so, define a region on the deferred queue when you redefine
the first region in offscreen memory for deferred queue execution. This
step informs the driver that the viewport still has an occluded region and
prevents it from deleting the deferred queue.

After the deferred queue drawing operations are executed to all the
deferred regions of a viewport, use the Delete Deferred Queue Operation
QIO to delete the drawing operations from the deferred queue. Also, whe11
an application deletes a viewport with a region on the deferred queue,
delete the deferred queue drawing operations for that region.

The QDSS driver uses several planes of memory to display color.
Corresponding points in each plane of memory map to a single pixel on
the display. The number of system-configured memory planes determines
the depth or Z-mode of a pixel and the number of colors that can be
simultaneously displayed.

A driver configured with n planes of memory can display 2**n colors.
The QDSS driver can be configured with four or eight planes of memory.
Hence, a four-plane system can display 16 simultaneous colors and an
eight-plane system can display 256.

The total number of different colors a system can display is specified
by a longword in the QDSS QVB block. The QDSS driver can define a
maximum of 2**24 colors, but only 16 or 236 colors can be on the screen
at any one time.

Programming to the Driver

Each displayable color is represented by a value in the hardware color map
(the hardware look-up table). On color systems, a color is represented by
one 16-bit intensity value for each primary color. On intensity systems, a
color is represented by only one 16-bit value. The low-order eight bits of
these values are ignored. The high-order eight bits represent the actual
intensity values, which range from 0 to 255.

2.19.1 Informing the Driver About Color
Before an application can use the hardware color map, it must tell the
driver which type of color system it is using. To identify a system as either
color- or intensity-based, use the Set Color Characteristics QIO, specifying
the second unique parameter as follows:

• 0-Color system

• 1-Intensity system

Once the identification is complete, the driver accepts only Set Color Map
Entries QIO requests that match this setting. The driver rejects all other Set
Color Map Entries QIOs.

2.19.2 Manipulating Color Map Values
The values that represent pixels onscreen are used as indexes into the
hardware color map. Pixel values are read in the Z-mode direction; for
example, if only the first three planes of a pixel are used and the bits in the
first and third planes are set, the resulting pixel value is 101 (binary). This
value indexes into the fifth value in the hardware color map. Figure 2-11
illustrates this.

2-47

Programming to the Driver

Figure 2-11 Indexing the Hardware Color Map

2-48

1024 bits wide

------------------------"---------------------------r '
40 24

32 {1!1~ IS 191~ I§ I~ l~I~ I~ I~ ~~I~ §l~R~ I~ II 19~rfl~ 1¥ ft:.,~d::,~.
\7 ll I~ II ffil~ I~ I~ 1<1 I~ I~ 17 ll I~ bl~ IYI~ 16 I" la le I, 19 r11

32 bits

32 bits

8 bits
unused

40 bits ---------------

ZK 5477 86

If your application is not using the UIS environment, it must load any
values it uses into the hardware color map with the Set Color Map Entries
QIO, and specify the following information:

• Index into the color map at which to begin initialization

• Address of the buffer that contains the desired intensity values

• Length of the buffer

Call this QIO at any time to redefine the values in the color map.

To determine the current values of the hardware color map, the application
should use the Get Color Map Entries QIO and specify the following
information:

• Index into the color map at which to begin information retrieval

• Address of the buffer that holds the returned intensity values

• Length of the buff er

3 QVSS/QDSS Common QIO Interface

This chapter contains an alphabetical listing of descriptions of the QIO
calls you can use with the QVSS and QDSS drivers. Table 3-1 organizes
the QIOs in functional groups.

Table 3-1 010 Functional Groups

Functional Group

Controlling the Keyboard

Controlling Input

Controlling the Pointer

Controlling the Screen

Controlling the Tablet

Controlling User Entry Lists

Obtaining Information

Using Compose Keys

Using Soft Keys

3.1 How to Use This Chapter

QIO Name

{

Enable Keyboard Input }
Enable Keyboard Sound
Modify Keyboard Characteristics

{
Enable Input Simulation }
Get Next Input Token

{

Define Pointer Cursor Pattern }
Enable Button Transition
Enable Pointer Movement

{

Initialize Screen }
Modify Systemwide Characteristics
Enable Function Keys

{ Enable Data Digitizing }

{ Enable User Entry }

{

Get Keyboard Characteristics }
Get Number of List Entries
Get System Information

{
Load Compose Sequence Table }
Revert to Default Compose Table

{
Load Keyboard Table
Revert to Default Keyboard Table }

Before you call QIOs, become familiar with Chapters 1 and 2 and
Appendices A, B, and H.

• Chapters 1 and 2 describe the general operation of QIOs.

• Appendices A and B contain pictures and descriptions of the data types
you pass to the driver through the Pl to P6 parameters.

• Appendix H describes the SYS$QIO system service.

As you call QIOs, refer to the descriptions in this chapter.

V4.1-June 1989 3-1

3.1.1

QVSS/QDSS Common QIO Interface

QIO Description Format

3-2

The QIO descriptions follow a strict format. The main headings in each
QIO description and the type of information that appears there follow:

QIO Name-Name of the QIO.

Overview-Brief description of the operation the QIO performs.

Format-Format of the call you must pass to SYS$QIO to perform the
desired operation.

Arguments in brackets are optional. Some programming languages,
such as MACRO, allow you to omit optional arguments; the assembler
supplies a default value of 0. Some other programming languages,
such as FORTRAN, do not allow you to omit optional arguments;
you must pass a value of 0 for any unspecified argument. Check the
programming language documentation to see how the language handles
optional arguments.

Unique Parameters-Information that passes to the driver through
$QIO Pl to P6 parameters; also indicates whether the parameter is
required or optional.

Description-Additional QIO operation information.

Example-QIO example.

V4.1-June 1989

•

QVSS/QDSS Common Q,IO Interface
Define Pointer Cursor Pattern

Define Pointer Cursor Pattern

FORMAT

UNIQUE
PARAMETERS

Defines the pointer cursor pattern for a given region on the physical
screen. When the cursor enters that region, the new cursor pattern
takes effect. Other arguments enable you to select the cursor style and
reposition the pointer cursor.

SYS$QIO [efn] ,chan ,10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 [,p2] [,p3] [,p4] [,p5] [,p6]

P1 -10$C_QV_SETCURSOR (required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the 10$C_QV_SETCURSOR function
code with one of the following optional function modifiers:

Function Modifier

10$M_QV _BIND

10$M_ QV _DELETE

10$M_ QV _LAST

10$M_QV_LOAD_DEFAULT

10$M_QV_USE_DEFAULT

10$M_ QV _ TWO_PLANE_
CURSOR

V4.1-June 1989

Action

Binds the pointer to the region specified in P6.
Once the pointer enters the specified region,
it cannot move outside the region's borders. If
the region becomes occluded, the pointer is no
longer bound to the region.

Deletes the specified pointer cursor pattern
request. Any data contained in the type-ahead
buffer is delivered to the specified AST address
before the delete operation is executed.

Places the specified pointer cursor pattern
request last in the entry list. If 10$M_QV_LAST
is not specified, the request is placed first in
the list. If an outstanding pointer cursor pattern
request exists for the channel, it is updated to
reflect the new entry.

Makes the specified cursor pointer the system
default cursor pointer. If you specify this function
modifier, the system ignores any screen region
you specify in P6.

Requests that the system use the system default
cursor pointer when the region specified in P6
becomes active. If you specify this function
modifier, the system ignores any arguments you
specify in P2, P4, and P5.

Indicates the system is loading a multiplane
cursor pattern. Use this modifier to load a
cursor pattern on a QDSS system. Refer to
the Description section for more information on
multiplane cursors.

3-3

QVSS/QDSS Common QIO Interface
Define Pointer Cursor Pattern

3-4

•
P2-Bltmap Image address (optional)
This parameter is either a 16-word array or, on multiplane cursor systems,
a 32-word array. The QVB contains a field that informs you whether yours
is a single-plane or multiplane system. Use the Get System Information
QIO to access this field. (See Description section.) ·

P3-New cursor position address
This parameter is a longword that points to a two-longword array that
defines the new cursor position: the first specifies the X coordinate of the
new cursor position in pixels; the second specifies the Y coordinate of the
new cursor position in pixels.

If P3 is 0, the pointer cursor is not repositioned.

The following diagram shows the data structure that defines the new cursor
position.

X position on physical screen

Y position on physical screen

Field

X position on physical screen

Y position on physical screen

Use

Specifies X coordinate in pixels

Specifies Y coordinate in pixels

P4-Polnter cursor hot spot definition address
This parameter is an address that points to a two-longword array that
defines the pointer cursor hot spot, the point within the 16- x 16-pixel
cursor display region that is the actual cursor position. The following
diagram shows the data structure that defines the cursor hot spot.

X offset

Y offset

Field Use

0

4

0

4

X offset The X offset in pixels from the upper left corner of the pointer pattern
to the active point.

Y offset The Y offset in pixels from the upper left corner of the pointer pattern
to the active point.

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Define Pointer Cursor Pattern

P5-Cursor style definition value
This parameter is a longword value in the range 0 through 3 that defines
how the cursor is presented against the background screen.

This parameter is ignored for multiplane cursor systems.

The following table lists each value and the style it denotes.

Value Style

O Dynamic NANO. The background under the cursor hot spot is examined.
If it is black (all off), the cursor is NANDed with the background:· If the
background is not black, the cursor is ORed with the background.

Dynamic OR. The background under the cursor hot spot is examined.
If it is black (all off), the cursor is ORed with the background. If the
background is not black, the cursor is NANDed with the background.

2 NANO. The cursor is always NANDed with the background screen.

3 OR. The cursor is always ORed with the background screen.

P6-Screen rectangle values block address
(optional)
This parameter is a longword that points to a screen rectangle values block
that defines a rectangle on the screen. If you do not specify P6, a default
rectangle that covers the entire screen is used.

The following diagram shows the data structure that defines the screen
rectangle.

MINX (left side value)

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Field

MINX (left side value)

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Use

Pixel value for left side of rectangle

Pixel value for bottom side of rectangle

Pixel value for right side of rectangle

Pixel value for top side of rectangle

DESCRIPTION When the pointer cursor moves outside a currently active rectangle, a
special signal notifies the process that the cursor has left the region.

V 4. 1-June 1989

0

4

8

12

3-5

QVSS/QDSS Common QIO Interface
Define Pointer Cursor Pattern

EXAMPLE

3-6

The QVSS and QDSS drivers allow you to specify a pointer cursor pattern
that defines the shape of the cursor (QDSS systems use a multiplane cursor
that is described in the following section). The shape can be in the form
of a block, a cross, an arrow, or any other configuration. You can also
define the cursor style (how the cursor is presented against the background
screen) and the location of the cursor hot spot (the point within the cursor
pattern region that is the actual cursor position). In addition to moving the
cursor with the pointer, you can also reposition the cursor by specifying
new X and Y cursor coordinates.

Multiplane Cursor Patterns

If your system uses a multiplane cursor (QDSS), you can specify a 32-
word array as a cursor pattern. Currently, multiplane cursors consist of
two planes. Typically, you use two planes to prevent the cursor from
disappearing when it is moved over varying backgrounds. To understand
how the two planes work, think of the 32-word array as two 16-word arrays,
array A and array B.

The bit pattern in array A is determined as follows:

• 1-Indicates that the corresponding pixel must be filled.

• 0-Indicates that whatever is on the screen at the corresponding pixel
should show through (remember, the cursor is overlaid on the screen).

The bit pattern in array B uses the the bits set to 0 in array A as a mask;
those corresponding bits are ignored in array B. The remaining bit pattern
in array B is determined as follows:

• 1-Indicates that the corresponding pixel must be filled with the
background color.

• 0-Indicates that the corresponding pixel must be filled with the
foreground color.

The following example shows the typical assignment of a pointer cursor
region.

V4.1-June 1989

QV$CURSOR1:

REGIONl:

20$:

30$:

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.WORD Abllllllllllllllll

.LONG 20

.LONG 20

.LONG 300

.LONG 300

MOVL iIO$C_QV_SETCURSOR,RO
$QIOW_S CHAN=CUR_CHANl,-

FUNC=iIO$_SETMODE,-
Pl =(RO),-
P2=iQV$CURSOR1,-
P6=#REGION1

BLBS R0,30$
BRW ERROR

MOVL iIO$C_QV_SETCURSOR,RO
$QIOW_S CHAN=CUR_CHAN2,-

FUNC=iIO$_SETMODE,-
Pl=(RO),-
P2=iQV$CURSOR2,-
P6=#REGION2

BLBS R0,40$
BRW ERROR

V 4. 1-June 1989

QVSS/QDSS Common QIO Interface
Define Pointer Cursor Pattern

INITIAL 16 X 16 CURSOR
PATTERN

CURSOR REGION 1

DEFINE CURSOR 1
ASSIGNED CHANNEL
SET MODE QIO
CURSOR PATTERN REQUEST
CURSOR DESCRIPTION
CURSOR REGION
NO ERROR IF SET

DEFINE CURSOR 2
SECOND ASSIGNED CHANNEL

NO ERROR IF SET

3-7

QVSS/QDSS Common QIO Interface
Enable Button Transition

Enable Button Transition

FORMAT

UNIQUE
PARAMETERS

3-8

Enables repeating pointer button ASTs for the process on the specified
channel. If this request has the highest priority for the specified rectangle,
each button transition delivers an AST when the pointer cursor enters that
area of the physical screen.

SYS$QIO [efn] ,chan,10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 [,p3] f,p4] [,p5] [,p6]

P1-10$C_QV_ENABUTTON (required)
This function code identifies the action the QIO performs. This parameter
must be specified.

To modify the QIO action, "OR" the 10$C_QV_ENABUTTON function
code with one of the following optional function modifiers:

Function Modifier

10$M_ QV _DELETE

Action

Deletes the specified pointer button request. Any
data in the type-ahead buffer is delivered to the
specified AST address before the delete operation is
executed.

10$M_ QV _LAST Places the specified pointer button request last in the
list. If 10$M_QV_LAST is not specified, the request is
placed first in the list. If an outstanding pointer button
request exists for the channel, it is updated to reflect
the new priority.

10$M_QV _PURG_ TAH Purges the type-ahead buffer of any existing pointer
button transitions.

P2-Polnter button AST specification block address
(required)
This parameter is a longword that points to a pointer AST specification
block that specifies a user-supplied AST routine that is notified each time a
pointer button transition occurs.

The following diagram shows the data structure that specifies a pointer
button AST.

AST service routine address

AST parameter

access mode

0

4

8

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Enable Button Transition

input token address 12

Field Use

AST service routine address AST service routine address is O if no AST
routine is required. If no AST routine is
specified, input is stored in the type-ahead
buffer and delivered either when an AST
region is declared or when a Get Next Input
Token QIO is issued. The type-ahead buffer
holds 32 input tokens or characters.

AST parameter

Access mode

Input token address

P3-Mustbe0

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

The access mode where the AST is delivered
is maximized with the current access mode.

The address of a longword that receives an
input token when an AST routine is called.
Word 0 of the longword receives token or
character data. The token is a decimal value
that indicates which button is activated. The
values are assigned to the pointer buttons
sequentially, starting with the select button,
which is always 400. The driver stores the
token in the low-order word of the longword.

Bit 15 of the high-order word determines
whether the transition is up (0) or down
(1). The remainder of the high-order word
contains control information you can use
to determine if the [s11iltj (bit 12), fetrD (bit
13), or !Lock! (bit 14) keys are pressed. You
can use these as meta-keys (keys used in
combination). When the bit is set, the key is
down.

P4-Polnter button characteristics block address
(optional)
This parameter is a longword that points to a pointer button characteristics
block. This block specifies which button-related characteristics to enable
or disable for the button region. When the region becomes active, the
specified characteristics become active.

The following diagram shows the data structure that specifies pointer
button characteristics.

V4.1-June 1989 3-9

QVSS/QDSS Common QIO Interface
Enable Button Transition

3-10

enabled characteristics mask 0

disabled characteristics mask 4

Field

Enabled characteristics
mask

Disabled characteristics
mask

0

0

P5-Mustbe0

0

0

8

12

Use

Longword of characteristics to be enabled.

Longword of characteristics to be disabled.

The pointer button characteristics, defined by the
$QVBDEF macro, consist of the following bit:

Characteristic Meaning

QV$M_BUT_
UPTODOWN

After a pointer button down transition
occurs, the current pointer button
request receives all future pointer
button transitions until all pointer
buttons return to the up position
(regardless of the position of the
pointer cursor on the physical screen).
If this characteristic is disabled,
then each up and down transition is
delivered to whichever button request
is active for the current pointer cursor
position. Default is on.

This longword must be zero.

This longword must be zero.

PB-Screen rectangle values block address
(optional)
This parameter is a longword that points to a screen rectangle values block.
This block defines the area on the physical screen for which the specified
button transition is enabled.

If you do not specify a screen rectangle values block, a default rectangle
that covers the entire screen is used.

The following diagram shows the data structure that defines the screen
rectangle.

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Enable Button Transition

MINX (left side value) 0

MINY (bottom side value) 4

MAXX (right side value) 8

MAXY (top side value) 12

Field

MINX (left side value)

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Use

Pixel value for left side of rectangle

Pixel value for bottom side of rectangle

Pixel value for right side of rectangle

Pixel value for top side of rectangle

DESCRIPTION The QVSS and QDSS drivers support a multibutton pointer. A process
enables a pointer button request to indicate a pointer button transition, either
up or down. A token passes to the specified AST routine to signal which
button made a transition and the type of transition (up or down). Many
applications are interested only in pointer button events that occur in
a specific region of the physical screen. The P6 parameter specifies a
rectangle on the physical screen that defines the area where the application
is interested in pointer button transitions. If rectangles for pointer button
requests for multiple channels (or processes) overlap, the first rectangle on
the list gets priority.

V4.1-June 1989 3-11

QVSS/QDSS Common QIO Interface
Enable Button Transition

EXAMPLE The following example shows typical programming and use of pointer
button ASTs.

SET_BUTTONAST:
$ASSIGN_S DEVNAM=WS_DEVNAM,- ; ASSIGN CHANNEL USING

BLBS
BRW

10$: MOVL
$QIOW_S

BLBS
BRW

20$: RSB
BUT_ BLOCK:

.LONG

.LONG

.LONG

.LONG

BUT_REGION:
.LONG
.LONG
.LONG
.LONG

3-12

CHAN=BUT_CHAN LOGICAL NAME AND

R0,10$
ERROR
#IO$C_QV_ENABUTTON,RO
CHAN=BUT_CHAN,-
FUNC=#I0$_SETMODE,-
Pl=(RO),-
P2=#BUT_BLOCK,-
P6=f BUT_REGION
R0,20$
ERROR

BUT_AST
0
0
BUTTON

20
20
300
300

CHANNEL NUMBER
NO ERROR IF SET
ERROR

NO ERROR IF SET

BUTTON AST
SPECIFICATION BLOCK
AST ADDRESS
AST PARAMETER
ACCESS MODE
BUTTON INFORMATION
LONGWORD

AST REGION

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Enable Data Digitizing

Enable Data Digitizing

FORMAT

UNIQUE
PARAMETERS

If the system pointing device is a tablet, the Enable Data Digitizing 010
enables you to use the tablet as a data digitizer.

SYS$QIO [efn] ,chan ,/0$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p1 ,p2 ,p3 [,p4] ,p5 [,p6]

P1-10$C_QV_ENABLE_D/GITIZING (required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the IO$C_QV_ENABLE_DIGITIZING
function code with the following optional function modifier:

Function Modifier Action

10$M_QV_DELETE Deletes the specified data digitizing request. Any data in the
type-ahead buffer is delivered to the specified AST address
before the delete operation is executed.

P2-Polnter movement AST specification block
address (optional)
This parameter is a longword that points to a pointer movement AST
specification block that specifies a user-supplied AST routine. The routine
is notified when pointer movement occurs inside the data rectangle
specified in P6. The pointer position is reported using the best granularity
in which the device can report.

The following diagram shows the data structure that specifies a pointer
movement AST for the tablet.

AST service routine address

AST parameter

access mode

0

4

8

address of new pointer cursor position 12

V4.1-June 1989 3-13

QVSS/QDSS Common QIO Interface
Enable Data Digitizing

3-14

Field

AST service routine address

AST parameter

Use

The AST service routine address is O if no
AST routine is required. No buffering of data
in the type-ahead buffer occurs for pointer
motion ASTs.

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

Access mode The access mode where the AST is delivered
is maximized with the current access mode.

New pointer cursor position address The fourth longword contains the address
of a longword that receives the new pointer
cursor position when the AST routine is
called. (If your application does not need
this information, specify a 0.) The low-order
word receives the new X pixel location of the
pointer cursor; range of X is defined in the
qvb$w _tablet_width field of the QVB block.
The high-order word receives the new Y pixel
location of the cursor; range of Y is defined
in the qvb$w _tablet_height field of the QVB
block.·

P3-Polnter button AST specification block address
(optional)
This parameter is a longword that points to a pointer button AST
specification block. This block specifies a user-supplied AST that is
notified when a button transition occurs.

The following diagram shows the data structure that specifies the pointer
button AST for the tablet.

AST service routine address

AST parameter

access mode

input token address

0

4

8

12

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Enable Data Digitizing

Field

AST service routine address

AST parameter

Access mode

Input token address

P4, P5-Must be O

Use

The AST service routine address is O if no
AST routine is required. If no AST routine is
specified, input is stored in the type-ahead
buffer and delivered either when an AST
region is declared or when a Get Next Input
Token QIO is issued. fhe type-ahead buffer
holds 32 input tokens or characters.

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

The access mode where the AST is delivered
is maximized with the current access mode.

This is the address of a longword that
receives an input token when an AST routine
is called. Word O of the longword receives
token or character data. The token is a
decimal value indicating which button was
activated. The values are assigned to the
pointer buttons sequentially starting with
the select button, Which is always 400. The
driver stores the token in the low-order word
of the longword. Bit 15 of the high-order word
determines whether the transition is up (0) or
down (1).

The rest of the high-order word contains
more control information that can be used to
determine if the jShittl (bit 14), jCtrll (bit 13),
or[~~-~~ (bit 12) keys are pressed. You can
use these keys as meta-keys (keys used in
-combination). When the bit is set, the key is
down.

P6-Data rectangle values block address
(optional)
This parameter is a longword that points to a data rectangle values block
that defines the active rectangle on the tablet. The origin (0,0) of the tablet
is the lower left-hand corner.

If you do not specify a data rectangle values block, a default rectangle that
covers the entire tablet is used.

The following diagram shows the data structure that defines a data
rectangle.

MINX (left side value) 0

V4.1-June 1989 3-15

QVSS/QDSS Common QIO Interface
Enable Data Digitizing

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Field

MINX (left side value)

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Use

Pixel value for left side of rectangle

Pixel value for bottom side of rectangle

Pixel value for right side of rectangle

Pixel value for top side of rectangle

DESCRIPTION Only the process that issues the data digitizing request can change or
cancel it. When the process is deleted, any outstanding data digitizing is
canceled.

4

8

12

Only one data digitizing region can be active at a time. When one process
has declared a data digitizing region, attempts by other processes to declare
an additional data digitizing region fail.

3-16 V4.1-June 1989

QVSS/QDSS Common QIO Interface
Enable Function Keys

Enable Function Keys

FORMAT

UNIQUE
PARAMETERS

Enables the windowing system to access function keys F1 through FS,
which are reserved for workstation control functions and should not be
used in application programs. These keys are defined by the driver, which,
in addition to informing the owner of the key of the keypress, performs
special functions.

SYS$QIO {efn] ,chan ,/0$_SETMODE ,{iosb] ,{astadr]
,[astprm] ,p 1 ,p2 ,p3 [,p4] [,p5] [,p6]

P1-10$C_QV_ENAFNKEY (required)
This function code identifies the action the QIO performs.

P2-Reserved function keystroke AST specification
block address (required)
This parameter is a longword that points to a reserved function keystroke
AST specification block. This block specifies a user-supplied AST routine
that is notified each time a keystroke occurs.

The following diagram shows the data structure that specifies a reserved
function keystroke AST.

AST service routine address 0

AST parameter 4

access mode

input token address

Field

AST service routine address

AST parameter

V4.1-June 1989

8

12

Use

Specify O if no AST routine is required. If no
AST routine is specified, input is stored in
the type-ahead buffer and delivered either
when an AST region is declared or when a
Get Next Input Token QIO is Issued. The
type-ahead buffer holds 32 input tokens or
characters.

The user-defined AST parameter delivered
to the AST routine. The driver does not
examine it.

3-17

QVSS/QDSS Common QIO Interface
Enable Function Keys

Field

Access mode

Input token address

Use

This Is the access mode where the AST is
delivered. It is maximized with the current
access mode.

This is the address of a longword that
receives an input token when an AST routine
is called; word 0 of the longword contains
token data defined by the $SMGDEF macro
for these function keys. By default, an AST is
signaled only on a down transition.

P3-Symbollc name for function key to associate
with request
This parameter is a symbolic name that indicates the function key to
associate with this request. The following bits are defined:

Key Value

QV$M_KEY_F1

QV$M_KEY _F2

QV$M_KEY _F3

QV$M_KEY _F4

QV$M_KEY _F5

Function

Driver signals AST and toggles keyboard Hold Screen lamp.

Operator screen. If the SYSGEN parameter WS_OPAO is set
to 1 , toggles between the workstation screen and the operator
screen.

Switch window. If an alternate windowing system is enabled,
the driver signals an AST and toggles between the windowing
systems. (This value applies to monochrome VAXstation I and II
workstations.)

The driver signals an AST.

The driver signals an AST.

P4, P5, P6-.. Must be 0

EXAMPLE The following example shows typical programming for the FS function key.

10$:

3-18

MOVL #IO$C QV ENAFNKEY,RO
$QIOW_S CHAN=FNKEY_F5_CHAN,­

FUNC=#IO$_SETMODE,­
Pl=(RO),-
P2=#FNKEY BLOCK,­
P3=#QV$M_KEY_F5

BLBS R0,30$
BRW ERROR

FUNC KEY REQUEST TO RO
ASSIGNED CHANNEL
SET MODE QIO
FQNCTION KEY REQUEST
AST SPEC BLOCK
KEY IS F5
NO ERROR IF SET

V4.1-June 1989

FNKEY_BLOCK:

.LONG F5_AST

.LONG F5_ACK

.LONG 0

.LONG CHARACTER

QVSS/QDSS Common QIO Interface
Enable Function Keys

FUNCTION KEY AST
SPECIFICATION BLOCK
AST ADDRESS
AST PARAMETER
ACCESS MODE
INPUT TOKEN STORAGE

V4.1-June 1989 3-19

QVSS/QDSS Common QIO Interface
Enable Input Simulation

Enable Input Simulation

FORMAT

UNIQUE
PARAMETERS

Simulates keystrokes, pointer motion, and pointer button transitions.

SYS$QIO [efn] ,chan ,10$_SETMODE ,[iosb] ,[astadr]
,{astprm] ,p1 [,p2] [,p3] [,p4] {,p5] {,p6]

P1-10$C_QV_S/MULATE (required)
This function code identifies what action the QIO performs. If you set the
TYPE field in the string descriptor you use to TYPE_ T2 (value 38), the string
is evaluated as 16-bit characters rather than 8-bit characters, and any 16-bit
value can be passed as the low word for keyboard input.

NOTE: The LENGTH field in the descriptor is the number of 16-bit characters
rather than a byte-count.

3-20

P2-ASCll text descriptor address (optional)
This parameter is a longword that points to a descriptor for the ASCII
text to send to the current keyboard region. The maximum number of
characters allowed in the text string is 32. If P2 is 0, no data is sent.

P3-New pointer position address (optional)
This parameter is a longword that points to a two-longword array that
defines a new pointer position: the first specifies the X coordinate of the
new pointer position in pixels; the second specifies the Y coordinate.

If P3 is 0, the pointer is not repositioned.

The following diagram shows the data structure that specifies the new
pointer position.

X position on physical screen

Y position on physical screen

Field

X position on the physical screen

Y position on the physical screen

Use

Specifies X coordinate in pixels

Specifies Y coordinate in pixels

P4-Button simulation block address (optional)
This parameter is a longword that points to a button simulation block that
specifies which pointer buttons are pressed or released.

If P4 is 0, the pointer buttons are not modified.

The following diagram shows a button simulation block.

0

4

V4.1-June 1989

QVSS/QDSS Com·mon QIO Interface
Enable Input Simulation

buttons to be pressed mask 0

buttons to be released mask 4

0

0

Field

Buttons to be pressed mask

Buttons to be released mask

0

0

P5, P6-Must be O

V4.1-June 1989

8

12

Use

Mask of the buttons to be pressed

Mask of the buttons to be released

Pointer button definitions used in the masks
defined by the $QVBDEF macro, consisting of
the following symbols:

Symbol

QV$M_BUTTON_ 1

QV$M_BUTTON_2

QV$M_BUTTON_3

QV$M_BUTTON_ 4

Meaning

Select button

Button 2

Button 3

Button 4

This longword must be zero.

This longword must be zero.

3-21

QVSS/QDSS Common QIO Interface
Enable Input Simulation

EXAMPLE The following example shows typical programming for input simulation.

5$: BSBW SET_ CHARACTERISTICS

BSBW SET_PERM_CURSOR

BSBW SET_MOUSEAST
BSBW SIMULATE_INPUT

$CLREF_S
$WAITFR_S

EFN=i2
EFN=i2

ERROR: $EXIT_S RO

SIMULATE_INPUT:

20$:

SIM_ACK:

MOVL
$QIOW_S

BLBS
BRW
RSB

iIO$C_QV_SIMULATE,R0
CHAN=KBD CHAN2,­
FUNC=#IO$_SETMODE,­
Pl=(RO),-
P2=iSIM ACK,-
P3=#0 -
R0,20$
ERROR

SET UP SYSTEM
CHARACTERISTICS

SET UP NEW SYSTEMWIDE
CURSOR PATTERN

SET UP MOUSE REGION AST
SIMULATE INPUT ON

KEYBOARD 2.
CLEAR EVENT FLAG #2
WAIT FOR EVENT FLAG #2

SIMULATE KEYBOARD INPUT
ON KEYBOARD CHANNEL 2

NO ERROR IF SET

.ASCID /This input SIMULATED on chan 2./

3-22 V4.1-June 1989

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

Enable Keyboard Input

FORMAT

UNIQUE
PARAMETERS

Enables repeating character input ASTs for the process on the specified
channel.

SVS$QIO [efn] ,chan ,10$_SETMODE ,[iosb] ,{astadr]
,[astprm] ,p 1 ,p2 ,[p3] ,[p4] [,p5] [,p6]

P1-10$C_QV_ENAKB (required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the 10$C_QV_ENAKB function code with
one of the following optional function modifiers:

Function Modifier

10$M_QV_CYCLE

10$M_ QV _DELETE

10$M_ QV _LAST

h)$M_QV_PURG_ TAH

Action

Removes the active keyboard from the top of the
keyboard request list and places it at the end of the
list (lowest priority). The next highest priority keyboard
request then becomes the active keyboard request and
a control AST is delivered on its behalf.

Deletes the specified keyboard request. Any data
contained in the type-ahead buffer is delivered to the
specified AST address before the delete operation Is
executed.

Places the specified keyboard request last in the list. If
10$M_ QV _LAST is not specified, the request is placed
first in the list. If an outstanding keyboard request
exists for the channel, it is updated to reflect the new
priority.

Purges the type-ahead buffer of any keyboard request
on this channel.

P2-Keystroke AST specification block address
(required)
This parameter is a longword address that points to a keystroke AST
specification block. This block specifies a user-supplied AST routine that is
notified each time a keystroke occurs.

The following diagram shows the data structure that specifies a keystroke
AST.

AST service routine address

AST parameter

0

4

V4.1-June 1989 3-23

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

3-24

access mode 8

input token address 12

Field

AST service routine address

AST parameter

Access mode

Input token address

Use

The AST service routine address is O if no
AST routine is required. If no AST routine is
specified, input is stored in the type-ahead
buffer and delivered either when an AST region
is declared or when a Get Next Input Token 010
is issued.

The user-defined AST parameter is delivered to
the AST routine. The driver does not examine it.

The access mode where the AST is delivered is
maximized with the current access mode.

This value is the address of a longword that
receives an input token when an AST routine
is called. Word O of the longword contains
token or character data. Values from O to 255
map into the Digital multinational character set.
Values from 256 to 512 map function keys into
token values. Word 1 of the longword contains
control information; bit 15 defines the status
of a token (1 equals down, O equals up). By
default, an AST is only signaled on a down
transition.

The rest of the high-order word contains
more control information that can be used to
determine if the jShiftl (bit 12), [Ctr!] (bit 13),
or I Lock! (bit 14) keys are pressed. You can
use these keys as meta-keys (keys used in
combination). When the bit is set, the key is
down.

P3-Keyboard request AST specification block
address (optional)
This parameter is a longword address that points to a keyboard request
AST specification block. This block specifies a control AST routine that
is notified when a keyboard request becomes active. A keyboard request
becomes active when the active keyboard owner is deleted or a cycle
request causes it to become active. No control AST is delivered when
the new request is already active or the owning process issued the cycle
request.

The following diagram shows the data structure that specifies a keyboard
request AST.

V4.1-June 1989

Field

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

AST service routine address 0

AST parameter 4

access mode 8

0 12

Use

AST service routine address The address of the AST service routine is O if
no AST routine is required. If no AST routine

AST parameter

Access mode

0

is specified, input is stored in the type-ahead
buffer and delivered either when an AST region
is declared or when a Get Next Input Token QIO
is issued. The type-ahead buffer holds 32 input
tokens or characters.

The user-defined AST parameter is delivered to
the AST routine. The driver does not examine it.

The access mode where the AST is delivered is
maximized with the current access mode.

The fourth longword must be zero.

P4-Keyboard characteristics block address
(optional)
This parameter is a longword address that points to t;t keyboard
characteristics block that describes keyboard-related characteristics to be
enabled or disabled for the keyboard region. The specified characteristics
are enabled or disabled when the keyboard region becomes active.

The keyboard characteristics block is ignored if the keyboard region for
this channel already exists. To modify the characteristics of an existing
keyboard region, use the Modify Keyboard Characteristics QIO.

The default characteristics are specified in the systemwide characteristics
block, which can be modified using the Modify Systemwide Characteristics
QIO. The current systemwide characteristics are stored in the
characteristics field of the QVB.

The following diagram shows the data structure that specifies the keyboard
characteristics block.

enabled characteristics mask 0

disabled characteristics mask 4

keyclick volume 8

0 12

V 4.1-June 1989 3-25

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

EXAMPLE

3-26

Field Use

Enabled The first longword is a mask of characteristics to be
characteristics mask enabled.

Disabled The second longword is a mask of characteristics to be
characteristics mask disabled.

Keyclick volume

0

The keyboard characteristics, defined by the $QVBDEF
macro, consist of the following bits:

Characteristic Default Meaning

QV$M_KEY_ On Key held down
AUTORPT automatically repeats.

QV$M_KEY_ On Keyclick sounds on each
KEYCLICK keystroke.

QV$M_KEY _UDF6 Off Function keys F6
through F1 O generate
up/down transitions.

QV$M_KEY _UDF11 Off Function keys F11
through F14 generate
up/down transitions.

QV$M_KEY _UDF17 Off Function keys F17
through F20 generate
up/down transitions.

QV$M_KEY_ Off Function keys HELP and
UDHELPDO DO generate up/down

transitions.

QV$M_KEY _UDE1 Off Function keys E1
through E6 generate
up/down transitions.

QV$M_KEY_ Off Arrow keys generate
UDARROW up/down transitions.

QV$M_Kt;Y.:_ Off Numeric keypad keys
UDNUMKEY generate up/down

transitions.

The keyclick volume is a value from 1 (loudest) to 8
(softest). If a value of 0 is specified, the current system
default keyclick volume is used.

The fourth longword must be 0.

P5, P6-Must be O

The following example shows a typical assignment of two terminal
channels, keyboard requests on those channels, and associated AST
routines.

V4.1-June 1989

P2_BLOCK1:
.LONG KBD_AST
.LONG ACKl
.LONG 0
.LONG CHARACTER

ACKl: .ASCID /INPUT ACKNOWLEDGED

P2_BLOCK2:
.LONG KBD_AST
.LONG ACK2
.LONG 0
.LONG CHARACTER

ACK2: .ASCID /INPUT ACKNOWLEDGED

P3_BLOCK:

.LONG CTL_AST

.LONG 0

.LONG 0

.LONG 0

;

AST
AST
AST
AST

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

SPECIFICATION BLOCK l
ADDRESS
PARAMETER
DELIVERY MODE

INPUT TOKEN
CHANNEL 1/

; AST SPECIFICATION BLOCK 2

CHANNEL 2/

CONTROL AST SPECIFICATION
BLOCK
CONTROL AST ADDRESS
AST PARAMETER
AST DELIVERY MODE
MUST BE ZERO

SET_KBDAST:
$ASSIGN_S DEVNAM=WS_DEVNAM,- ; ASSIGN CHANNEL USING

CHAN=KBD_CHAN2 LOGICAL NAME AND

20$:

BLBS
BRW

MOVL

$QIOW_S

S.LBS
BRW

R0,5$
ERROR

tIO$C_QV_ENAKB,RO

CHAN=KBD_CHAN2,-
FUNC=tIO$_SETMODE,-
Pl=(RO),-
P2~#P2_BLOCK2,-
P3=#P3_BLOCK
R0,30$
ERROR

V4.1-June 1989

CHANNEL NUMBER
NO ERROR IF SET
ERROR

ENABLE KEYBOARD AST
REQUEST TO RO
ASSIGNED CHANNEL
SET MODE QIO
KEYBOARD AST REQUEST
USER AST ROUTINE
CONTROL AST ROUTINE
NO ERROR IF SET

3-27

QVSS/QDSS Common QIO Interface
Enable Keyboard Input

KBD_AST:
FS_AST:

.WORD
PUSHL 4(AP)
CALLS il,GALIB$PUT_LINE
BLBS RO, 10$

5$: BRW ERROR

10$: CMPW iKEY$C_F5,CHARACTER
BNEQ 20$
BSBW CYCLE_KBD
BRB 40$

20$: PUS HAL DESC
CALLS #l,GALIB$PUT_LINE
BLBC R0,5$

CMPB #AA/C/,CHARACTER
BNEQ 30$
BSBW CYCLE_KBD
BRB 40$

30$: CMPB #AA/F/,CHARACTER
BNEQ 40$
$SETEF_S EFN=#2

40$: RET

CTL_AST:
.WORD
PUS HAL CYCLE
CALLS #1,GALIB$PUT_LINE
BLBS RO, 10$

5$: BRW ERROR

10$: RET

3-28

SEND ACKNOWLEDGMENT
MESSAGE

WAS F5 TYPED?

CYCLE THE KEYBOARD LIST
AND EXIT

SEND CHARACTER TYPED

WAS A "C" TYPED?

CYCLE THE KEYBOARD LIST

WAS AN "F" TYPED?

YES, EXIT PROGRAM

SEND ACKNOWLEDGMENT
MESSAGE

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Enable Keyboard Sound

Enable Keyboard Sound

FORMAT

UNIQUE
PARAMETERS

Enables a process to make a bell or keyclick sound on the LK201
keyboard~

SVS$QIO [efn] ,chan ,/0$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 [,p3] [,p4] [,p5] [,p6]

P1-10$C_QV_SOUND (required)
This function code identifies the action the QIO performs.

P2-Symbollc name that denotes type of sound
(required)
This parameter is a symbolic name that denotes the type of sound. The
sound types, defined by the $QVBDEF macro, consist of the following bits:

Characteristic

QV$M_SOUND_BELL

QV$M_SOUND_CLICK

Meaning

Sound bell.

Sound keyclick.

P3-Value that specifies the sound volume
(optional)
This parameter specifies the sound volume, a value from 1 (loudest) to
8 (softest). If a value of 0 is indicated, the previously specified (that is,
current) volume is used.

P4, P5, P6-Must be 0

V4.1-June 1989 3-29

QVSS/QDSS Common QIO Interface
Enable Keyboard Sound

EXAMPLE The following example shows how the bell sound can be programmed.

20$1

3-30

MOVL f I0$C QV SOUND,RO
$QIOW_S CHAN=SYS:CHAN1,­

FUNC=#I0$_SETMODE,­
Pl = (RO),­
P2=tQV$M SOUND BELL

BLBS R0,20$ - -
BRW ERROR

; SOUND REQUEST TO RO
; ASSIGNED CHANNEL

SET MODE QIO
SOUND REQUEST
SOUND TYPE IS BELL
NO ERROR IF SET

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Enable Pointer Movement

Enable Pointer Movement

FORMAT

UNIQUE
PARAMETERS

Enables repeating pointer motion ASTs for the process on the specified
channel. If this request has the highest priority for the specified rectangle,
each pointer motion delivers an AST when the pointer cursor enters the
specified area of the physical screen.

SYS$QIO {efn] ,chan ,/0$_SETMODE ,[iosb] ,{astadr]
,{astprm] ,p 1 ,p2 ,[p3] ,[p4] [,p5] [,p6]

P1-10$C_QV_MOUSEMOV (required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the 10$C_ QV _MOUSEMOV function
code with one of the following optional function modifiers:

Function Modifier Action

10$M_QV_DELETE Deletes the specified pointer motion request. Any data
contained in the type-ahead buffer is delivered to the
specified AST address before the delete operation is
executed.

10$M_QV_LAST Places the specified pointer motion request last in the list. If
10$M_QV_LAST is not specified, the request is placed first in
the list. If an outstanding pointer motion request exists for
the channel, it is updated to reflect the new priority.

P2-Polnter motion AST specification block address
(required)
This parameter is a longword that points to a pointer motion AST
specification block. This block specifies a user-supplied AST routine that is
notified when pointer motion occurs.

The following diagram shows the data structure that specifies a pointer
motion AST.

AST service routine address

AST parameter

access mode

address of new pointer cursor position

0

4

8

12

V4.1-June 1989 3-31

QVSS/QDSS Common QIO Interface
Enable Pointer Movement

3-32

Field

AST service routine address

AST parameter

Use

The AST service routine address Is O If no
AST routine Is required. No buffering of data
in the type-ahead buffer occurs for pointer
motion ASTs.

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

Access mode The access mode where the AST Is delivered
is maximized with the current access mode.

New pointer cursor position address The fourth longword contains the address
of a longword to receive the new pointer
cursor position when the AST routine is
called. (If your application does not need
this information, specify O.) The low-order
word receives the new X pixel location of the
pointer cursor; the high-order word receives
the new Y pixel location of the cursor. For
screen pointers, X is from O through 1023,
with the lowest value denoting the left side
of the screen; Y is from range O through 863
with the lowest value denoting the bottom of
the screen. For tablet pointers, the range of
X is defined in the qvb$w _tablet_width field
of tl')e QVSS block; the range of Y is defined
in the qvb$w _tablet_height field of the QVB
block.

P3-Polnter cursor exit AST specification block
address (optional)
This parameter is a longword that points to a pointer cursor exit AST
specification block. This block specifies a user-supplied control AST
routine that is notified when the pointer cursor exits from the rectangle
specified by P6.

The following diagram shows the data structure that specifies a pointer
cursor exit AST.

AST service routine address

AST parameter

access mode

0

0

4

8

12

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Enable Pointer Movement

Field

AST service routine address

AST parameter

Use

The AST service routine address Is O If no
AST routine is required.

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

Access mode The access mode where the AST is delivered
is maximized with the current access mode.

0 The fourth longword must be zero.

P4, P5-Must be O

PB-Screen rectangle values block address
(optional)
This parameter is a longword that points to a screen rectangle values block.
This block defines a rectangle on the screen.

If you do not specify P6, a default rectangle that covers the entire screen is
used.

The following diagram shows the data structure that specifies a screen
rectangle.

MINX (left side value)

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Field

MINX (left side value)

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Use

Pixel value for left side of rectangle

Pixel value for bottom side of rectangle

Pixel value for right side of rectangle

Pixel value for top side of rectangle

0

4

8

12

DESCRIPTION The QVSS and QDSS drivers track the pointer by moving the pointer
cursor on the physical screen. To minimize desktop space required to
manipulate the pointer, the driver updates the pointer cursor on the screen
proportionally to the velocity at which the pointer is being moved on the
desktop.

V4.1-June 1989 3-33

QVSS/QDSS Common QIO Interface
Enable Pointer Movement

The driver allows a process to enable a pointer motion notification request
to signal pointer motion within a selected area of the physical screen. A
token is passed to the specified AST address to indicate the new pointer
cursor physical position. An input rectangle defines the area in which the
application is interested in pointer motion. If rectangles for pointer motion
requests for multiple channels (or processes) overlap, priority is given to
the first rectangle on the list.

EXAMPLE The following example shows how a pointer motion AST could be
programmed.

10$: MOVL #IO$C QV MOUSEMOV,RO ENABLE MOUSE MOTION
$QIOW S CHAN=MOUSE CHAN,- REGION

- FUNC=#IO$_SETMODE,­
Pl=(RO) ,­
P2=#MOUSE_BLOCK,­
P6=#MOUSE_REGION

BLBS R0,20$; NO ERROR IF SET
BRW ERROR

20$: RSB
MOUSE_BLOCK: MOUSE REGION AST

.LONG

.LONG

.LONG

.LONG

MOUSE_REGION:
.LONG
.LONG
.LONG
.LONG

3-34

MOUSE_AST
MOUSE_ACK
0
MOUSE_XY

400
400
800
800

SPECIFICATION BLOCK
AST ADDRESS
AST PARAMETER
ACCESS MODE
NEW MOUSE CURSOR POSITION
STORAGE

MOUSE REGION

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Enable User Entry

Enable User Entry

FO·RMAT

UNIQUE
PARAMETERS

Assigns a control AST to each user entry in an optional graphics package
entry list. The entry at the top of the list receives a control AST when a
cycle request occurs. A cycle request is an entry control AST request that
includes the 10$M_QV_CYCLE function modifier.

SYSSQIO [efn] ,chan ,/0$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 [,p2] ,p3 [,p4] [,p5] [,p6]

P1-10$C_QV_ENAUSER (required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the 10$C_QV_ENABUSER function code
with one of the following optional function modifiers:

Function Modifier Action

10$M_QV _CYCLE Removes the active entry from the beginning of the entry
list and places it at the end of the list (lowest priority). The
next highest priority keyboard request then becomes the
active keyboard request, and a control AST is delivered on its
behalf.

10$M_QV_DELETE Deletes the specified entry control request. Any data
contained in the type-ahead buffer is delivered to the
specified AST address before the delete operation is
executed.

10$M_QV_LAST Places the specified entry control request last in the list. If
10$M_QV_LAST is not specified, the request is placed first
on the list. If an outstanding entry control request exists for
the channel, it is updated to reflect the new priority.

P2-Must be 0 (required)

P3-Actlve entry AST specification block address
(required)
This parameter is a longword that points to an active entry AST
specification block. This block specifies a user-supplied control AST
routine that is notified when this entry becomes active.

V4.1-June 1989 3-35

QVSS/QDSS Common QIO Interface
Enable User Entry

The following diagram shows the data structure that specifies an active entry AST.

3-36

AST service routine address 0

AST parameter

access mode

0

Field

AST service routine address

AST parameter

Access mode

0

P4, P5, P6-Must be 0

Use

The AST service routine address Is O if no
AST routine. is required.

4

8

12

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

The access mode where the AST is delivered
is maximized with the current access mode.

The fourth longword must be 0.

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Get Keyboard Characteristics

Get Keyboard Characteristics

FORMAT

UNIQUE
PARAMETERS

Obtains the keyboard characteristics for existing keyboard regions. The
specified keyboard region is not changed and does not become the active
keyboard region.

SVS$QIO [efn] ,chan ,/0$_SENSEMODE ,[iosb]
,[astadr] ,[astprm] ,p1 [,p2] {,p3] ,p4 [,p5]
[,p6]

P1-10$C_QV_GETKB_INFO {required)
This function code identifies the action the QIO performs.

P2, P3-Mustbe O

P4-Keyboard characteristics block address
(required)
This parameter is a longword that points to a keyboard characteristics
block. This block receives the keyboard-related characteristics for this
keyboard region.

The following diagram shows the data structure where the driver returns
the keyboard characteristics.

enabled characteristics mask

disabled characteristics mask

keyclick volume

0

Field Use

0

4

8

12

Enabled characteristics
mask

The first longword is a mask of characteristics that are
enabled.

V4.1-June 1989 3-37

QVSS/QDSS Common QIO Interface
Get Keyboard Characteristics

3-38

Fie Id

Disabled characteristics
mask

Keyclick volume

0

Use

The second longword is a mask of characteristics that
are disabled.

The keyboard characteristics, defined by the $QVBDEF
macro, consist of the following bits:

Characteristic Default Meaning

QV$M_KEY_ On Key held down
AUTORPT automatically repeats.

QV$M_KEY_ On Keyclick sounds on
KEYCLICK each keystroke.

QV$M_KEY _UDF6 Off Function keys F6
through F1 O generate
up/down transitions.

QV$M_KEY _UDF11 Off Function keys F11
through F14 generate
up/down transitions.

QV$M_KEY _UDF17 Off Function keys F17
through F20 generate
up/down transitions.

QV$M_KEY_ Off Function keys HELP
UDHELPDO and DO generate

up/down transitions.

QV$M_KEY _UDE1 Off Function keys E1
through E6 generate
up/down transitions.

QV$M_KEY_ Off Arrow keys generate
UDARROW up/down transitions.

QV$M_KEY_ Off Numeric keypad keys
UDNUMKEY generate up/down

transitions.

The keyclick volume must be between 1 (loudest) to 8
(softest). If you specify 0, the current system default
keyclick volume is used.

The fourth longword must be 0.

P5, P6-Must be O

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Get Next Input Token

Get Next Input Token

FORMAT

Intercepts the next Input event for an entry on a list and returns it in the
second longword of the 1/0 status block.

SYS$QIO [efn] ,chan ,10$_READVBLK ,iosb ,[astadr]
,[astprm] ,[p1] ,p2 [,p3] [,p4] [,p5] [,p6]

UNIQUE P1-Must be 0 (required)
PARAMETERS

P2-Symbollc name of list from which token Is
Intercepted (required).
This parameter specifies the list on which the get function is performed.
Specify one of the following lists:

List

10$C_QV_ENABUTTON

10$C_QV_ENAKB

10$C_QV _MOUSEMOV

Function Performed

Get next pointer button change.

Get next token entered from the keyboard.

Get next pointer motion.

P3, P4, P5, P6-Must be 0

DESCRIPTION If the type-ahead buffer for that entry is empty, the QIO is held and then
delivered as soon as the next token is obtained. If the type-ahead buffer is
not empty, the first character is removed and delivered. Only one token is
returned for each QIO issued.

Regarding the decision as to where to deliver the next input token, this
QIO preempts the AST routine for the entry. Several Get Next Input
Token QIOs can be queued on a single entry.

This QIO cannot be issued if the entry has an AST routine currently
enabled~ However, an AST routine can be enabled even though one or
more of

1

these QIOs is outstanding on the entry.

V4.1-June 1989 3-39

QVSS/QDSS Common QIO Interface
Get Number of List Entries

Get Number of List Entries

Enables you to obtain the number of AST entries contained in any of the
following lists:

• Keyboard entry list

• Pointer button transition list

• Pointer motion list

• User entry list

FORMAT SYS$QIO [efn] ,chan ,/0$_SENSEMODE ,iosb
,[astadr] ,[astprm] ,p 1 ,p2 ,p3 [,p4] [,p5] [,p6]

UNIQUE P1-10$C_QV_GET _ENTRIES (required)
PARAMETERS

3-40

P2-Symbollc name of list from which you want to
get entry count (required)
This parameter specifies the list on which the get function is performed.
Specify one of the following lists:

List

10$C_ QV _ENAKB

10$C_QV_ENABUTTON

10$C_QV _MOUSEMOV

10$C_QV _ENAUSER

Function Performed

Get number of entries in the keyboard entry list

Get number of entries in the pointer button transition
list

Get number of entries in the pointer motion list

Get number of entries in the user entry list

P3-Address of a longword to receive the number of
entries (required)

P4, P5, P6-Must be 0

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Get System Information

Get System Information

FORMAT

UNIQUE
PARAMETERS

Returns the address of the system information block, which a process
can use to obtain dynamic video-related information. The address of the
system information block does not change. Therefore, a process need only
obtain the address once and can reference it until the process terminates.

SVS$QIO [efn] ,chan ,/0$_SENSEMODE ,[iosb]
,{astadr] ,{astprm] ,p1 ,p2 ,p3 [,p4] {,p5] [,p6]

P1-10$C_QV_GETSVS (required)
The function code that identifies the action that the QIO performs.

P2-Quadword block address (required)
This parameter is a longword that points to a quadword block to receive
the address and length of the system information block. The structure is
user read, kernel read/write.

P3, P4, P5, P6-Must be 0

DESCRIPTION The system information block differs according to the system:

• QVSS-QVB system information block (see Appendix A)

• QDSS-QDB system information block (see Appendix B)

Both structures contain fields that hold information about video memory.
Some of the information is static, such as the address of onscreen memory;
other information is dynamic, such as the current pointer position.

V4.1-June 1989 3-41

QVSS/QDSS Common QIO Interface
Initialize Screen

Initialize Screen

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

3-42

Initializes the screen to a known state.

SVS$QIO [efn] ,chan ,/0$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 [,p2] [,p3] [,p4] [,p5] [,p6]

P1-10$C_QV_INITIALIZE function code (required)
This function code identifies the action the QIO performs.

P2, P3, P4, P5, PB-Must be 0

This QIO initializes the workstation screen. You must initialize the screen
whenever you initialize a windowing system to use the QVSS or QDSS
screen. The windowing system should issue this QIO only once, before it
issues any other QI Os to the driver.

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Load Compose Sequence Table

Load Compose Sequence Table

FORMAT

UNIQUE
PARAMETERS

Loads two- and three-stroke compose sequence tables.

SYS$QIO [efn] ,chan ,10$_SETMODE ,[iosb] ,[astadr}
,[astprm] ,p 1 [,p2] [,p3} [,p4] [,p5] [,p6]

P1-10$C QV LOAD COMPOSE TABLE - - - -(required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the 10$C_ QV _LOAD_ COMPOSE_ TABLE
function code with the following optional function modifier:

Function Modifier

10$M_QV_LOAD_DEFAULT

Action

If the 10$M_QV_LOAD_DEFAUL T modifier is
specified, this table becomes the default table for
the entire workstation. Specify this modifier only
once after you initialize the workstation when you
load the first table.

P2-Two-stroke compose sequence table size
(optional)
This parameter is a longword that contains the size (in bytes) of the two­
stroke compose sequence table.

P3-Two-stroke compose sequence table address
(optional)
This parameter is a longword that points to the two-stroke compose
sequence table. Chapter 2 describes the two-stroke compose sequence
table.

P4-Three-stroke compose sequence table size
(optional)
This parameter is a longword that contains the size (in bytes) of the three­
stroke compose sequence table.

P5-Three-stroke compose sequence table address
(optional)
This parameter is a longword that points to the three-stroke compose
sequence table. Chapter 2 describes the three-stroke compose sequence
table.

P6-Mustbe0

V4.1-June 1989 3-43

QVSS/QDSS Common QIO Interface
Load Compose Sequence Table

DESCRIPTION If only one table is to be loaded, specify values of 0 for the parameters of
the other table.

A keyboard region has two tables associated with it for each type of
compose sequence:

• Default table-Taken from the workstation default

• Private table-If one is loaded

EXAMPLE The following example shows how to load a three-stroke compose sequence
table.

SET_COMPOSE3_TABLE:

5$:

3-44

MOVL i<I0$C QV LOAD COMPOSE TABLE>, RO
$QIOW_S CHAN =-KBD_CHANl, - - CHANGE THE COMPOSE TABLE

FUNC = #IO$_SETMODE, -
Pl= (RO), -
P4 = #COMPOSE3_TBL_LEN, - three-stroke TABLE SIZE

BLBS
BRW

PS = #COMPOSE3_TBL
R0,5$
ERROR

RSB
VC$COMPOSE_KEYINIT COMPOSE3..:.TBL

'

three-stroke TABLE ADDR
NOT SET ON ERROR

GENERATE AN
EMPTY TABLE
FILL THE TABLE HERE

VC$COMPOSE_KEY <Aa/A/>,<Aa/"/>,,<Axc4>
VC$COMPOSE KEY <Aa/A/>,<Aa/'/>,,<Axcl>
VC$COMPOSE-KEY <Aa/A/>,<Aa/*/>,,<Axc5>
VC$COMPOSE=KEY <Aa/A/>,<Aa/A/>,<@>
VC$COMPOSE KEY <Aa/A/>,<Aa/E/>,,<Axc6> ORDER SENSITIVE
VC$COMPOSE-KEY <Aa/A/>,<Aa/A/>,,<Axc2>
VC$COMPOSE=REY <Aa/A/>,<Aa/_/>,,<Axaa>

VC$COMPOSE_KEYEND COMPOSE3_TBL_LEN END THE TABLE
AND DETERMINE ITS
LENGTH

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Load Keyboard Table

Load Keyboard Table

FORMAT

UNIQUE
PARAMETERS

Loads a keyboard table.

SYS$QIO [efn] ,chan ,10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 ,p3 [,p4] [,p5] [,p6]

P1-10$C_QV_LOAD_KE.Y_TABLE (required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the 10$C_QV_LOAD_KEY_TABLE
function code with the following optional function modifier:

Function Modifier

10$M_QV_LOAD_DEFAULT

Action

If the 10$M_QV_LOAD_DEFAULT modifier is
specified, this table becomes the workstation
default. Specify this modifier only once when
you load the first table after you initialize the
workstation.

P2-Keyboard table size (required)
This parameter is a longword that contains the size (in bytes) of the
keyboard table.

P3-Keyboard table address (required)
This parameter is a longword that points to the keyboard table. Chapter 2
describes keyboard tables.

P4, P5, P6-Must be 0

DESCRIPTION Each window has two associated tables:

• Default table-Taken from the workstation default

• Private table-If one is loaded

V4.1-June 1989 3-45

QVSS/QDSS Common QIO Interface
Load Keyboard Table

EXAMPLE The following example shows how to load a keyboard table.

SET FRENCH KB:
- MOVL i<I0$C QV LOAD KEY TABLE>, RO

$QIOW_S CHAN =-KBD_CHANl, : CHANGE THE KEYBOARD

5$:

3-46

BLBS
BRW
RSB

FUNC = #IO$_SETMODE, - LAYOUT
Pl = (RO), -
P2 = #KB_LAYOUT_TBL_LEN, - KEYBOARD TABLE SIZE
P3 = #KB_LAYOUT_TBL KEYBOARD TABLE

ADDRESS
R0,5$
ERROR

NO ERROR IF SET

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Modify Keyboard Characteristics

Modify Keyboard Characteristics

FORMAT

Changes the keyboard characteristics for an existing keyboard region.

SVS$QIO [efn] ,chan ,10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p1 [,p2] [,p3] [,p4] [,p5J [,p6]

UNIQUE P1-10$C_QV_MODIFYKB (required)
PARAMETERS . This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the 10$C_QV_MODIFYKB function code
with the following optional function modifier:

Function Modifier

10$M_QV _ACTIVE

Action

Removes the active keyboard from the beginning of the
keyboard request list and places it at the end of the
list (lowest priority). The keyboard region just modified
becomes the active keyboard request and a control AST
is delivered on Its behalf.

P2-Keystroke AST specification block address
(optional)
This parameter is a longword that points to a keystroke AST specifica~ion
block. This block specifies a user-supplied AST routine that is notified
each time a keystroke occurs.

The following diagram shows the data structure that specifies a keystroke
AST.

AST service routine address

AST parameter

access mode

0

8

input token address 12

V4.1-June 1989 3-47

QVSS/QDSS Common QIO Interface
Modify Keyboard Characteristics

3-48

Field

AST service routine address

AST parameter

Use

The AST service routine address Is O if no
AST routine is required. If no AST routine Is
specified, input is stored in the type-ahead
buffer and delivered either when an AST
region is declared or when a Get Next Input
Token QIO is issued. The type-ahead buffer
holds 32 input tokens or characters.

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

Access mode The access mode where the AST is delivered
is maximized with the current access mode.

Input token address This is the address of a longword that
receives an input token when an AST routine
is called. Word 0 of the longword contains
token or character data. Values from O
to 255 map into the Digital multinational
character set. Values from 256 to 512 map
function keys into token values. Word 1 of
the longword contains control information;
bit 15 defines the status of a token (1 equals
down, O equals up). By default, an AST is
signaled only on a down transition.

P3-Keyboard request AST specification block
address (optional)
This parameter is a longword address that points to a keyboard request
AST specification block. This block specifies a control AST routine that
is notified when a keyboard request becomes active. A keyboard request
becomes active when the active keyboard owner is deleted or a cycle
request causes the keyboard request to become active. No control AST is
delivered when the new request is already active or the owning process
issued the cycle request.

The following diagram shows the data structure that specifies a keyboard
request AST.

AST service routine address

AST parameter

access mode

0

4

8

0 12

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Modify Keyboard Characteristics

Field

AST service routine address

AST parameter

Access mode

0

Use

The address of the AST service routine is O if
no AST routine is required. If no AST routine
is specified, input is stored in the type-ahead
buffer and delivered either when an AST
region is declared or when a Get Next Input
Token QIO is issued. The type-ahead buffer
holds 32 input tokens or characters.

The user-defined AST parameter is delivered
to the AST routine. The driver does not
examine it.

The access mode where the AST is delivered
is maximized with the current access mode.

The fourth longword must be zero.

P4-Keyboard characteristics block address
(optional)
This parameter is a longword address that points to a keyboard
characteristics block, which describes keyboard-related characteristics to
be enabled or disabled for the keyboard region when the keyboard region
becomes active.

The default characteristics are those specified in the systemwide
characteristics block, which you can modify with the Modify Systemwide
Characteristics QIO. The current systemwide characteristics are stored in
the characteristics field of the QVB.

The following diagram shows the data structure that specifies the keyboard
characteristics.

enabled characteristics mask

disabled characteristics mask

keyclick volume

Field

Enabled characteristics
mask

V4.1-June 1989

0

Use

The first longword is a mask of characteristics to
enable.

0

4

8

12

3-49

QVSS/QDSS Common QIO Interface
Modify Keyboard Characteristics

3-50

Field

Disabled characteristics
mask

Keyclick volume

0

Use

The second longword Is a mask of characteristics to
disable.

The keyboard characteristics, defined by the $QVBDEF
macro, consist of the following bits:

Characteristic Default Meaning

OV$M_KEY_ On Key held down
AUTO APT automatically repeats.

QV$M_KEY_ On Keyclick sounds on
KEYCLICK each keystroke.

QV$M_KEY _UDF6 Off Function keys F6-
F1 O generate up/down
transitions.

QV$M_KEY_ Off Function keys F11-
UDF11 F14 generate up/down

transitions.

QV$M_KEY_ Off Function keys F17-
UDF17 F20 generate up/down

transitions.

QV$M_KEY_ Off Function keys HELP
UDHELPDO and DO generate

up/down transitions ..

QV$M_KEY _UDE1 Off Function keys E1-
E6 generate up/down
transitions.

QV$M_KEY_ Off Arrow keys generate
UDARROW up/down transitions.

QV$M_KEY_ Off Numeric keypad keys
UDNUMKEY generate up/down

transitions.

The keyclick volume must be between 1 (loudest) and
8 (softest). If you specify 0, the current system default
keyclick volume Is used.

The fourth longword must be 0.

P5, P6-Must be O

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Modify Systemwide Characteristics

Modify Systemwide Characteristics

FORMAT

UNIQUE
PARAMETERS

Changes the systemwide windowing characteristics.

SVS$QIO [efn] ,chan ,10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p1 [,p2] [,p3] [,p4] [,pS] [,p6]

P1-10$C_QV_MODIFYSYS (required)
This function code identifies the action the QIO performs.

P2, P3-Must be O

P4-System characteristics block address
(optional)
This parameter is a longword address that points to a system characteristics
block, which specifies system-related characteristics to enable or disable.

The following diagram shows the data structure that specifies system
characteristics.

enabled characteristics mask

disabled characteristics mask

keyclick volume

screen saver timeout value

Field Use

0

4

8

12

Enabled characteristics The first longword is a mask of characteristics to enable.
mask

V4.1-June 1989 3-51

QVSS/QDSS Common QIO Interface
Modify Systemwide Characteristics

3-52

Field

Disabled characteristics
mask

Keyclick volume

Screen saver timeout
value

Use

The second longword Is a mask of characteristics to
disable.

The system characteristics, defined by the $QVBDEF
macro, consist of the following bits:

Characteristic Default Meaning

QV$M_KEY_ On Key held down
AUTORPT automatlcally repeats.

QV$M_KEY_ On Keyclick sounds on each
KEYCLICK keystroke.

QV$M_KEY _UDF6 Off Function keys F6-
F1 O generate up/down
transitions.

QV$M_KEY_ Off Function keys F11-
UDF11 F14 generate up/down

transitions.

QV$M_KEY_ Off Function keys F17-
UDF17 F20 generate up/down

transitions.

QV$M_KEY_ Off Function keys HELP and
UDHELPDO DO generate up/down

transitions.

QV$M_KEY _UDE1 Off Function keys E1-
E6 generate up/down
transitions.

QV$M_KEY_ Off Arrow keys generate
UDARROW up/down transitions.

QV$M_KEY_ Off Numeric keypad keys
UDNUMKEY generate up/down

transitions.

QV$M_SYS_ On Video output to monitor
SCRSAV is disabled if no input

activity occurs in the time
specified in the fourth
longword. Any keystroke,
pointer button transition,
or pointer motion resets
the timer and reactivates
a disabled screen.

The keyclick volume must be a value from 1 (loudest) to
8 (softest). Default is 3.

This value represents the number of minutes of inactivity
that must elapse before the screen saver is activated.
The value must be from 1 to 1440. If the value Is 0, the
timeout value stays unchanged. Default is 15.

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Modify Systemwide Characteristics

P5-Polnter characteristics block address
(optional)
This parameter is a longword address that points to a pointer characteristics
block that specifies the pointer-related characteristics you enable or disable.

The following diagram shows the data structure that specifies pointer
characteristics.

enabled characteristics mask 0

disabled characteristics mask 4

0

0

Field

Enabled characteristics mask

Disabled characteristics mask

0

0

P6-Mustbe0

V4.1-June 1989

8

12

Use

The first longword is a mask of characteristics to
be enabled.

The second longword is a mask of characteristics
to be disabled.

The pointer characteristics, defined by the
$QVBDEF macro, consist of the following bits:

Characteristic

QV$M_PTR_
LEFT_HAND

QV$M_PTR_
INVERT _STYLUS

Must be 0

Must be O

Meaning

Inverts buttons on mouse or
puck. (Buttons 1 and 3 are
switched.)

Inverts buttons on stylus.
(Buttons 1 and 3 are
switched.)

3-53

QVSS/QDSS Common QIO Interface
Modify Systemwide Characteristics

EXAMPLE The following example shows how the system windowing characteristics
could be changed.

SET_ CHARACTERISTICS:
MOVL fIO$C QV MODIFYSYS,RO CHANGE SYSTEM
$QIOW S CHAN=SYS-CHANl,- CHARACTERISTICS

- FUNC=tIOS_SETMODE,-
Pl = (RO),-
P4 = tCHAR BLOCK

BLBS R0,10$ - NO ERROR IF SET
BRW ERROR

CHAR_BLOCK: ; CHARACTERISTICS BLOCK

3-54

.LONG <QV$M_SYS_AUTORPT!QV$M_SYS_KEYCLICK> ; ENABLE
; THESE CHARACTERISTICS

.LONG <QV$M_SYS_UDF6!QV$M_SYS_UDARROW> ; DISABLE
THESE CHARACTERISTICS

.LONG 5

.LONG 30
KEYCLICK VOLUME
SCREEN SAVER TIMEOUT

V4.1-June 1989

QVSS/QDSS Common QIO Interface
Revert to Default Compose Table

Revert to Default Compose Table

FORMAT

UNIQUE
PARAMETERS

Reverts to the two-stroke or three-stroke default compose table.

SYS$QIO [efn] ,chan ,/0$_SETMODE ,[iosb] ,{astadr]
,[astprm] ,p1 [,p2] [,p3] [,p4] [,p5] [,p6]

P1-10$C_QV_USE_DEFAULT_TABLE (required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the 10$C_QV_USE_DEFAULT_TABLE
function code with one of the following optional function modifiers:

Function Modifier

10$M_QV _COMPOSE2

10$M_QV _COMPOSE3

Action

Reverts to the two-stroke default compose table.

Reverts to the three-stroke default compose table.

P2, P3, P4, P5, P6-Must be 0

D ESC RI PTI ON This QIO also returns the space used by a private table (if one was loaded)
to pool.

V4.1-June 1989 3-55

QVSS/QDSS Common QIO Interface
Revert to Default Keyboard Table

Revert to Default Keyboard Table

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

3-56

Reverts to the default keyboard table.

SYS$QIO [efn] ,chan ,/0$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 [,p2] [,p3] {,p4] [,p5] [,p6]

P1-10$C_QV_USE_DEFAULT_TABLE!/0$M_QV_KEYS
(required)
This function code identifies the action the QIO performs. The exclamation
point (!) indicates that you must OR the 10$C_ QV _USE_ DEFAULT_ TABLE
function code and the 10$M_ QV _KEYS function modifier to perform the
QIO.

P2, P3, P4, P5, P6-Must be 0

This QIO also returns the space used by a private table (if one was loaded)
to pool.

V4.1-June 1989

4 QDSS-Specific QIO Interface

This chapter describes the QIOs you use only with the QDSS driver. The
QIO descriptions appear in alphabetical order. Table 4-1 organizes the
QIOs in functional groups.

Table 4-1 QDSS 010 Functional Groups

Functional Group

Controlling Color

Defining Viewports

Manipulating the DOP Queues

Obtaining Information

Transferring Bitmaps

4.1 How to Use This Chapter

QIO Name

{
Set Color Characteristics }
Set Color Map Entries

{ Define Viewport Region }

Delete Deferred Queue Operation
Execute Deferred Queue
Hold Viewport Activity
Insert DOP
Release Hold
Resume Viewport Activity
Start Request Queue
Stop Request Queue
Suspend Occluded Viewport Activity
Suspend Viewport Activity

{

Get Color Map Entries }
Get Free DOPs
Get Viewport ID
Notify Deferred Queue Full

{

Load Bitmap }
Read Bitmap
Write Bitmap

Before you call QIOs, read Chapters 1 and 2 and familiarize yourself with
Appendices A, B, and H.

• Chapters 1 and 2 describe the general operation of QIOs.

• Appendices A and B contain diagrams and descriptions of the data
types you pass to the driver through the Pl to P6 parameters.

• Appendix H describes the SYS$QIO system service.

Then, as you call QIOs, refer to the descriptions in this chapter.

4-1

QDSS-Specific QIO Interface

4.2 QIO Description Format

4-2

The QIO descriptions follow a strict format. The main headings in each
QIO description and the type of information that appears there follow.

QIO Name-Name of the QIO.

Overview-Brief description of the operation the QIO performs.

Format-Format of the call you must pass to SYS$QIO to perform the
desired operation.

Arguments in brackets are optional. Some programming languages,
such as MACRO, allow you to omit optional arguments; the assembler
supplies a default value of 0. Some other programming languages,
such as FORTRAN, do not allow you to omit optional arguments;
you must pass a value of 0 for any unspecified argument. Check the
programming language documentation to see how the language handles
optional arguments.

Unique Parameters-Routines that pass information to the driver
through $QIO Pl to P6 parameters, which are noted as required or
optional.

Description-Additional QIO operation information.

Example-QIO example.

QDSS-Specific QIO Interface
Define Viewport Region

Define Viewport Region

FORMAT

UNIQUE
PARAMETERS

Creates or changes the update regions that compose a viewport.

SVS$QIO [efn] ,chan, 10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 ,p3 ,p4 [,p5] [;p6]

P1-10$C_ QD _SET_ VIEWPORT _REGIONS
(required)
This function code identifies the action the QIO performs.

P2-Update region definition buffer address
(required)
This longword points to the buffer that describes the update regions that
define the viewport.

The following diagram shows the data structure that specifies each region.

The following list describes the contents of each field in the update region
definition block.

Field

URD$W_X_MIN

URD$W_Y_MIN

Use
Viewport-relative X coordinate of the lower left corner of
defined region (in pixels)

Viewport-relative Y coordinate of the lower left corner of
defined region (in pixels)

URD$W_X_MAX Viewport-relative X coordinate of the upper right corner of
defined region (in pixels)

URD$W_ Y _MAX Viewport-relative Y coordinate of the upper right corner of
defined region (in pixels)

URD$W_X_BASE

URD$W_ Y _BASE

Absolute X coordinate from lower left corner (in pixels)

Absolute Y coordinate from lower left corner (in pixels)

P3-Update region definition buffer length
(required)
This parameter specifies the predefined constant URD$C_LENGTH
multiplied by the number of update regions.

P4-Vlewport ID (required)
This parameter is the ID of the viewport you are defining or changing.
Use the Get Viewport ID QIO to obtain a unique viewport ID for any new
viewport you want· to define.

P5, PB-Must be 0

4-3

QDSS-Specific QIO Interface
Define Viewport Region

DESCRIPTION

4-4

This function creates or modifies viewport update region definitions. The
viewport that appears on the screen can consist of a number of update
regions.

To access a viewport, you must call this function once. (A viewport must
contain at least one update region.) If a viewport contains a number of
regions, you make this call once, specifying a URD buffer (an array or
record) that contains all the URDs.

Before you call Define Viewport Region QIO, you must call Stop Request
Queue QIO.

A viewport management system uses this function to control the screen
layout. When a drawing operation is executed, the function is performed
to each update region specified in the viewport definition.

QDSS-Specific QIO Interface
Delete Deferred Queue Operation

Delete Deferred Queue Operation

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

Deletes any entries in the specified deferred queue.

SVS$QIO [efn] ,chan, /0$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 [,p3] [,p4] [,p5] [,p6]

P1-10$C_QD _DELETE_DEFERRED (required)
This function code identifies the action the QIO performs.

P2-Viewport_ld (required)
This parameter is the ID of the viewport associated with the deferred
queue. The Get Viewport ID QIO returns the viewport ID during the
creation of the viewport.

P3, P4, P5, P6-Must be 0

This function deletes all operations on the deferred queue associated with
the specified viewport.

Typically, you use this QIO when you pop an occluded viewport. Call it
after you execute an Execute Deferred Queue QIO for every update region
previously stored in processor memory.

4-5

QDSS-Specific QIO Interface
Execute Deferred Queue

Execute Deferred Queue

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

4-6

Processes any DOPs on the specified viewport deferred queue.

SYS$QIO [efn] ,chan, 10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 [,p3] [,p4] [,p5] [,p6]

P1-10$C_QD_EXECUTE_DEFERRED (required)
This function code identifies the action the QIO performs.

P2-Vlewport_ld (required)
This parameter is the ID of the targeted viewport. The Get Viewport ID
QIO returns the viewport ID during the creation of the viewport.

P3, P4, P5, P6-Must be 0

This function executes all operations on the deferred queue. All operations
executed when the viewport was not accessible are replayed to the
specified viewport buffer.

The driver puts operations on the deferred queue when an operation is
specified for a screen region that the QDSS hardware cannot currently
access. The QDSS hardware cannot access a region stored in processor
memory.

Operations on the def erred queue are executed into the currently defined
set of region descriptors. If the buffer identifies visible screen locations,
some unusual visual effects might occur.

I

QDSS-Specific QIO Interface
Get Color Map Entries

Get Color Map Entries

FORMAT

UNIQUE
PARAMETERS

Returns the values in the color map.

SVS$QIO [efn] ,chan ,10$_SENSEMODE ,[iosb]
,{astadr] ,{astprm] ,p 1 ,p2 ,p3 ,p4 [,p5] [,p6}

P1-10$C_QD_GET_COLOR (required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the 10$C_QD_GET_COLOR function
code with one of the following optional function modifiers:

Function Modifier Action

10$M_QD_INTENSITY

10$M_QD_RESERVED_COLORS

Gets a map entry on an intensity system.

Interprets the starting color map entry (P4) as
the 10$C_QD_ TWO_COLOR_CURSOR (set
two-color cursor) parameter if the 10$M_QD_
RESERVED_COLORS modifier is specified.
The buffer here contains two map entries'
worth of data: two words for Intensity systems,
six words for color systems.

P2-Color buffer address (required)
This longword points to a buffer to hold the returned entries of the color
map.

The size of the color buffer depends on the system:

• Color system-The buffer must have an "RGB triple" for each map
entry you want to read. An "RGB triple" contains three word-long
values-one for red, one for green, and one for blue. For example, for
five color map entries, the color buffer must be 15 words long.

• Intensity system-The buffer must have a single word-long value for
each map entry you want to read. For example, for five color map
entries, the color buffer must be five words long.

Only the eight most significant bits are used for color definition.

P3-Length of the color buffer, in bytes (required)
The multiple you use depends on the system: color-6, intensity-2.

P4-Startlng color map entry must be O (required)
This parameter is the color map index you use for the first RGB or intensity
value specified in the buffer.

P5, P6-Must be O

V4.1-June 1989 4-7

QDSS-Specific QIO Interface
Get Color Map Entries

DESCRIPTION This function enables an application to read the color map. Color map
information is stored in the QDB, which you access by issuing a Get
System Information QIO. Appendix B describes the QDB.

4-8 V4.1-June 1989

QDSS-Specific QIO Interface
Get Free DOPs

Get Free DOPs

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

Indicates how many DOPs must be on the specified return queue for
request queue processing to continue.

SYS$QIO [efn] ,chan ,10$_SENSEMODE ,[iosb]
,[astadr] ,[astprm] ,p 1 ,p2 ,p3 ,p4 [,pS] [,p6]

P1-10$C_QD_GET _FREE_DOPS (required)
This function code identifies the action the QIO performs.

P2-Number of DOPs (required)
This parameter is the number of DOPs on the return queue that the driver
should wait for before resuming request queue processing.

P3-Queue flag (required)
This flag specifies which return queue to await:

• 0-Normal (small DOP) queue

• 1-Large DOP queue

P4-Vlewport_ld (required)
This parameter is the ID of the targeted viewport. The Get Viewport ID
QIO returns the viewport ID during the creation of the viewport.

P5, PB-Must be 0

This function causes a process to wait until a specified number of drawing
output primitives (DOPs) are on the specified viewport return queue.

Use this function to suspend operations until the driver returns a set of
DOPs. This way, the storage space for the DOPs can be reused. Note that
you specify the number and size of the DOPs to await.

When this QIO completes and/or the associated AST is fired, the
application uses the REMQUE instruction to allocate storage from the
specified return queue. Sometimes, this QIO completes and nothing is oil
the return queue. When this occurs, reissue the QIO until the REMQUE
succeeds.

4-9

QDSS-Specific QIO Interface
Get Vlewport ID

Get Viewport ID

FORMAT

UNIQUE
PARAMETERS

4-10

Returns a unique viewport identifier called a viewport ID.

SVS$QIO [efn] ,chan, 10$_SENSEMODE ,[iosb]
,[astadr] ,[astprm] ,p 1 ,p2 ,p3 [,p4] [,p5] [,p6]

P1-10$C_QD_GET VIEWPORT _ID (required)
This function code identifies the action the QIO performs.

P2-Vlewport ID buffer address (required)
This longword points to a longword buffer where the driver returns the
viewport ID.

P3-Vlewport ID buffer length, In bytes
The value of this parameter must be 4.

P4-Alternate return queue address (optional)
By default (if this parameter is 0), each viewport is associated with two
return queues. You can specify an address for an alternate return queue.
For example, you might want to share return queues on a per-process basis
instead of a per-viewport basis or you might want a systemwide return
queue.

The following diagram shows the data structure that specifies an alternate
return queue ..

The following list describes the contents of each field in the request queue
definition.

Field

RET$L_RETURN_FLINK

RET$L_RETURN_BLINK

RET$L_RETURN_LARGE_FLINK

RET$L_RETURN_LARGE_BLINK

RET$W_LARGE_DOP _SIZE

RET$W_SMALL_DOP _SIZE

RET$L_APPLICATION_RESERVED

P5, P6-Must be O

Use
Foiward link for the ordinary return queue

Backward link for the ordinary return
queue

Foiward link for the large DOP return
queue

Backward link for the large DOP return
queue

Size of a DOP returned to the large DOP
return queue

Size of a DOP returned to the ordinary
return queue

A longword reserved for use by the
application

QDSS-Specific QIO Interface
Get Viewport ID

This function returns the unique viewport identifier, which must be
supplied as a parameter to several QIO functions. Note that this identifier
is also the address of the DOP queue data structure (that contains the
request queue and the return queue structures).

Call this function at viewport creation time after you have an assigned
channel, before you call any function that requires a viewport ID. Call it
only once for each chann~l; multiple calls result in multiple viewports.

4-11

QDSS-Specific QIO Interface
Hold Viewport Activity

Hold Viewport Activity

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

4-12

Stops activity on all viewports except the systemwide viewport.

SVS$QIO [efn] ,chan, 10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 [,p2] [,p3] [,p4] {,p5] [,p6]

P1-10$C_QD_HOLD (required)
This function code identifies the action the QIO performs.

P2, P3, P4, P5, PB-Must be 0

This function stops all activity on all viewports except the systemwide
viewport. Use this function when you move a viewport or implement a
hold screen function.

Insert DOP

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

QDSS-Specific QIO Interface
Insert DOP

Inserts a DOP on the request queue of the specified viewport. Optionally,
it notifies the caller of a request queue entry completion.

SVS$QIO [efn] ,chan
,/0$_QD_WRITE!/0$M_QD_INSERT_DOP
,[iosb] ,[astadr] ,[astprm] ,p 1 ,p2 ,p3 [,p4]
[,p5] [,p6]

P1-Address of the DOP entry (required)
This longword points to the DOP entry for which you want completion
notification.

P2-DOP entry length (required)
This longword contains the length of the DOP you are inserting into the
queue.

P3-Viewport_ld (required)
This parameter is the ID of the targeted viewport. The Get Viewport ID
QIO returns the viewport ID during the creation of the viewport.

P4, P5, P6-Must be 0

NOTE: The exclamation point (!) in the function code above indicates that you
must 110R" 10$_QD_WRITE and 10$M_QD_INSERT_DOP to perform the
Insert DOP QIO.

The Insert DOP QIO enables you to enter a drawing operation primitive
(DOP) on the request queue of a specified viewport. If you specify the
IOSB parameter, the system notifies your application when the request
queue entry finishes executing.

You can use the Insert DOP to synchronize drawing. If you insert a Stop
Viewport Activity DOP on the queue (rather than issuing a Stop Request
Queue QIO), you guarantee that the DOPs inserted before the stop are
executed.

Use this QIO only when your application requires notification that the
request queue entry has finished executing. An INSQUE instruction or a
UISDC$QUEUE_DOP routine is much more efficient.

V4.1-June 1989 4-13

I

QDSS-Specific QIO Interface
Load Bitmap

Load Bitmap

FORMAT

UNIQUE
PARAMETERS

4-14

Makes a bitmap available for use by a subsequent text, patterned line,
move, or fill operation.

SVS$QIO [efn] ,chan ,10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p1 ,p2 ,p3 ,p4 ,p5 ,p6

P1-10$C_QD_LOAD_BITMAP (required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR1
' the IO$C_QD_LOAD_BITMAP function

code with the following optional function modifier:

Function Modifier

10$M_QD_SYSTEM_WIDE

Action

Defines a bitmap that lasts for the life of the
system. (By default, the bitmap is invalid after the
channel it is originally returned on is deassigned.)

P2-Address of the bitmap block (required)
This longword points to the area of processor memory that describes the
desired bitmap. You can also specify a zero in this parameter to postpone
dynamic loading of the bitmap (see the Description section for details).

P3-Bltmap block length, In bytes (required)
This longword contains the length of the bitmap block in bytes. This value
must be a multiple of 2.

P4-Address of a longword for the returned bitmap
ID (required)
This longword is where the driver returns the bitmap ID. Subsequent
drawing operations reference the loaded bitmap with the bitmap ID. All
viewports and processes using the bitmap should refer to the bitmap with
this bitmap ID.

P5-Bltmap width, In pixels (required)
This longword contains the width of the bitmap in pixels. The maximum
bitmap width is 1024. If the bitmap is a single bit per pixel, you must
specify a multiple of 16.

P6-Blts per pixel (required)
This longword contains the number of bits per pixel. Currently 1 and 8 are
supported:

• 1-When a foreground and background color are sufficient (that is, for
writing text)

• 8-When you want the full use of color (that is, for natural images)

V4.1-June 1989

DESCRIPTION

QDSS-Specific QIO Interface
Load Bitmap

The Load Bitmap QIO makes a bitmap available to a drawing operation.
Bitmaps specify the following features:

Fonts
Line styles
Fill patterns
Images

You load a bitmap from VAX memory to off screen memory. Once the
bitmap is in offscreen memory, drawing operations can access it with
the bitmap ID. You load the bitmap only once each time the system is
bootstrapped (unless you explicitly delete it with the Delete Bitmap DOP).

Passing the Bitmap

You must pass the bitmap to Load Bitmap in specific form because it is
addressed with the X,Y coordinates rather than a single index.

Bitmap storage is defined in blocks of video memory. The size of a bitmap
block depends on whether you use a single-plane or multiplane image.

• Single-plane bitmap-Blocks are 70 bits by 1024 bits. Think of them as
70 lines, each 128 bytes wide.

• Multiplane bitmap-Blocks are 35 bits by 8180 bits. Think of them
as 35 lines, each 1024 bytes long. Each consecutive eight bits in a
line describes one pixel (in four-plane systems the high four bits are
ignored).

If a bitmap requires more room than can be provided by a single bitmap
block, store the bitmap in multiple blocks by getting a separate bitmap ID
for each block and tracking them in your application.

Bitmaps are passed in blocks to the driver as follows:

• Each bitmap character (glyph) is stored in a rectangle within the bitmap.
Glyphs are stored sequentially and can be packed to the bit; however,
it is more efficient to start each character on a byte boundary. (The
nature of multiplane bitmaps is such that this occurs naturally.)

• If the total width of all glyphs exceeds the bitmap block limit, you must
use another bitmap block, which you load separately.

• Any unused portion of a single-plane bitmap line must be padded with
zeros to the nearest word boundary. (Again, the nature of multiplane
bitmaps is such that this occurs naturally.)

Figure 4-1 shows a large font that uses more than one single-plane bitmap
block. Each character is 32 bits high by 40 bits wide. (To include the
lowercase letters, you have to use another bitmap block.) Notice that the
characters are aligned on word boundaries for better performance. If space
is a greater consideration than performance, you can pack the characters
in each bitmap block. Remember, your application must load each block
separately and track the different bitmap IDs.

4-15

QDSS-Specific QIO Interface
Load Bitmap

Figure 4-1 Large Font Defined Across Bitmap Blocks

4-16

1024 bits wide

______________________ ..,.,,A-~----------------------........
r ~
40 24

32ilfl~ I~ 19 ll I~ I~ l~lb I~ I~ ~&I~ ~I§~~ f II 19W ~I~~ f f.;~d~:!.
17 ll I~ II ffil~ I~ I~~ I; lg 11 ll I~ bl~ IYI~ 15 IC Id le 1119 r11

32 bits

32 bits

8 bits
unused

40 bits

Loading the Bitmap

Use Load Bitmap in two ways:

ZK·5477-86

1 The bitmap is copied from the user buffer into a driver-maintained
buffer. When the application accesses the bitmap, it is copied from the
driver-maintained buffer into offscreen memory.

• To have the driver maintain the bitmap, sp~cify the address of the
bitmap in process memory as the bitmap address parameter.

• To access the bitmap in a subsequent DOP, load the bitmap_ID
field of the DOP Common block with the bitmap ID returned by
Load Bitmap. The system handles the storage of this bitmap.

• When the system manages bitmap storage, it uses the bitmap
glyph as a backing store address if it must swap the bitmap out
of offscreen memory. That is, when the bitmap is accessed, the
system uses the address in the bitmap glyph to swap the bitmap
back into off screen memory.

2 A handle (identifier) is created for the bitmap, but the application must
supply the bitmap when it is accessed.

• To load a bitmap dynamically, specify zero as the bitmap address
parameter, but specify the correct length, width, and bits-per-pixel.

QDSS-Specific QIO Interface
Load Bitmap

• To access the bitmap in a subsequent DOP, load the bitmap_ID
field of the DOP Common block with the bitmap ID returned by
Load Bitmap and load the bitmap_glyph field of the DOP Common
block with the address of the bitmap in processor memory.

• When you specify a bitmap address of 0 and put the actual address
in the bitmap_glyph field, you save system resources. The bitmap
is not loaded until it is accessed, and the application, not the
system, is responsible for saving the bitmap (when it is swapped
out, it is unknown by the system).

The second method saves space because a bitmap is not loaded into
offscreen memory until an application accesses it.

Systemwide Bitmaps

Usually, a bitmap is defined as temporary. That is, the bitmap ID
associated with it is not valid once you deassign the channel on which
it was loaded. To define a bitmap to last for the life of the system, issue
this QIO using the IO$M_ QD _SYSTEM_ WIDE function modifier.

4-17

QDSS-Specific QIO Interface
Notify Deferred Queue Full

Notify Deferred Queue Full

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

4-18

Notifies the application when a deferred queue is full.

SVS$QIO [efn] ,chan ,10_$SENSEMODE ,[iosb]
,[astadr] ,[astprm} ,p 1 ,p2 ,p3 [,p4] [,p5] [,p6]

P1-10$C _ QD _DEFERRED _HOLD (required)
This function code identifies the action the QIO performs.

P2-Waltlng period (required)
This longword contains the number of SO-millisecond intervals to wait
after the queue is full before notification. (One second is equivalent to
seventeen SO-millisecond intervals.)

P3-Vlewport_ld (required)
This parameter is the ID of the targeted viewport. The Get Viewport ID
QIO returns the viewport ID during viewport creation.

P4, P5, P6-Must be 0

This function notifies an application that the deferred queue is full. The
number of deferred drawing operations for any one viewport is limited, so
a viewport cannot consume system resources.

When an application is notified of a full queue, it can load the viewport into
memory, execute the deferred operations and delete the deferred queue to
free up memory. If necessary, the application can then put the viewport
back in a def erred state.

Notification can be by QIO AST, an event flag, or a wait.

QDSS-Specific QIO l~terface
Read Bitmap

Read Bitmap

FORMAT

UNIQUE
PARAMETERS

Copies data from video memory to a user-specified buffer in VAX memory
and performs bitmap-to-bitmap transfers.

SYS$QIO [efn] ,chan ,10$_QDREAD ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 ,[p3] ,p4 ,p5 [,p6]

P1-Buffer address (required)
This parameter is the buffer address in VAX memory where the driver
should copy the bitmap. This buffer must be large enough to hold the
bitmap specified by P4. For a bitmap-to-bitmap transfer, specify a 0 in this
parameter.

P2-Buffer length
This longword contains the length in bytes of the buffer specified by Pl.

P3-Mustbe0

P4-Transfer parameter block (required)
The transfer parameter block (TPB) describes the bitmap to be read into
VAX memory. The TPB contains:

• Coordinates for the lower left corner of the bitmap

• Bitmap height and width

• Predefined constant indicating the type of transfer

• For a bitmap-to-bitmap transfer, the coordinates for the lower left
corner of the target bitmap

The following diagram shows the data structure that specifies the transfer
parameters.

The following table lists the contents of each field in the Transfer Parameter
block.

4-19

QDSS-Specific QIO Interface
Read Bitmap

DESCRIPTION

4-20

Field

TPB$B_TYPE

TPB$B_SIZE

TPB$W_X_SOURCE

TPB$W_ Y _SOURCE

TPB$W_WIDTH

TPB$W_HEIGHT

TPB$W_X_ TARGET

TPB$W_ Y _TARGET

TPB$W_X_ TARGET _VEC1

TPB$W_ Y _TARGET _VEC1

TPB$W_L_ TARGET_ VEC1

TPB$W_X_ TARGET _VEC2

TPB$W_Y_TARGET_VEC2

TPB$W_L_ TARGET_ VEC2

Use

Type of transfer being performed, either bitmap­
to-processor (BTP) or bitmap-to-bitmap (BTB).
Use the constants defined later to load this field.

Reserved to Digital

X coordinate of lower left corner of source bitmap

Y coordinate of lower left corner of source bitmap

Width of source bitmap

Height of source bitmap

X coordinate of lower left corner of target bitmap
(only specified for bitmap-to-bitmap transfer)

Y coordinate of lower left corner of target bitmap
(only specified for bitmap-to-bitmap transfer)

Reserved to Digital

Reserved to Digital

Reserved to Digital

Reserved to Digital

Reserved to Digital

Reserved to Digital

The following table defines the constants in conjunction with the TPB.

Constant

TPB$C_BITMAP _XFR

TPB$C_SOURCE_ONLY

TPB$C_SOURCE_LENGTH

TPB$C_BITMAP _XFR_LENGTH

TPB$C_LENGTH

Value

Bitmap-to-bitmap transfer

BTP or PTB transfer

Structure length for BTP or PTB transfers

Structure length for a bitmap-to-bitmap
transfer

Full length of TPB structure

P5-TPS length (required)
This longword contains the length in bytes of the transfer parameter block
specified in P4.

P6-Mustbe0

The Read Bitmap QIO reads data from the QDSS video memory into
a specified buffer in VAX memory. This function transfers all available
planes of memory at once. If this operation is to affect more than one
viewport, it must be preceded by a Stop Request Queue QIO.

You can also use this function to perform bitmap-to-bitmap transfers
by specifying a source and target location in the TPB and omitting the
processor buff er.

QDSS-Specific QIO Interface
Release Hold

Release Hold

FORMAT

UNIQUE
PARAMETERS

Releases all viewports from the hold state.

SVS$QIO [efn] ,chan, 10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 [,p2] [,p3] [,p4] [,p5] [,p6]

P1-10$C_QD_NOHOLD (required)
This function code identifies the action the QIO performs.

P2, P3, P4, P5, PB-Must be 0

DESCRIPTION The Release Hold QIO function releases viewports from the hold state.

A viewport is put into the hold state when the Hold Viewport Activity QIO
is issued. All viewports except the systemwide viewport are affected by a
Hold Viewport Activity QIO.

The driver maintains a count of the number of hold requests. When the
number of release hold requests equals the number of hold requests, the
driver releases the screen.

4-21

QDSS-Specific 010 Interface
Resume Viewport Activity

Resume Viewport Activity

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

4-22

Resumes activity in a previously suspended viewport.

SVS$QIO [efn] ,chan, 10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 [,p3] [,p4] [,p5] {,p6]

P1-10$C_QD_RESUME_VP (required)
This function code identifies the action the QIO performs.

P2-Vlewport_ld (required)
This parameter is the ID of the targeted viewport. The Get Viewport ID
QIO returns the viewport ID during viewport creation.

P3, P4, P5, P6-Must be 0

This function resumes activity on a viewport that was previously suspended
with the Suspend Viewport Activity QIO function.

QDSS-Specific QIO Interface
Set Color Characteristics

Set Color Characteristics

FORMAT

UNIQUE
PARAMETERS

Identifies a system as either color or intensity based.

SVS$QIO [efn] ,chan ,/0$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 [,p3] [,p4] [,p5] [,p6]

P1-10$C_QD_COLOR_CHAR (required)
This function code identifies the action the QIO performs.

P2-System flag (required)
This longword indicates whether the system is color or intensity based:

• 0-Color (RGB)

• 1-Intensity (monochrome)

P3, P4, P5, P6-Must be 0

DESCRIPTION This function identifies a system as either color or intensity based. Your
application must use this call to inform the driver which type of color
system it is using. Once this function is specified, the driver accepts only
Set Color Map Entries QIO requests that match this setting and rejects all
other Set Color Map Entries QIOs.

V4.1-June 1989 4-23

I

QDSS-Specific QIO Interface
Set Color Map Entries

Set Color Map Entries

FORMAT

UNIQUE
PARAMETERS

4-24

Defines (or alters) the color map.

SYS$QIO [efn] ,chan ,10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 ,p3 ,p4 ,p5 [,p6]

P 1-10$C _ QD _SET_ COLOR (required)
This function code identifies the action the QIO performs.

To modify the QIO action, "OR" the 10$C_QD_SET_COLOR function
code with one of the following optional function modifiers:

Function Modifier Action

10$M_QD_INTENSITY A map entry is added on an intensity system.

10$M_QD_RESERVED_COLORS The starting color map entry (P4) is interpreted
as the 10$C_QD...;.TWO_COLOR_CURSOR (set
two-color cursor) parameter. The buffer must
contain two map entries of data: two words for
intensity systems, six words for color systems.

P2-Address of the color buffer (required)

P4-Mustbe 1
The color buffer differs depending on the system:

• Color system-The buffer must have an "RGB triple" for each map
entry you set. An "RGB triple" contains three word-long values: one
for red, one for green, and one for blue. For five color map entries, the
color buffer must be 15 words long.

• Intensity system-The buffer must have a single word-long value for
each map entry you set. For five color map entries, the color buffer
must be five words long.

Only the eight most significant bits are used for color definition.

P3-Color buffer length, In bytes (required)
This longword contains the length of the color buffer, in bytes. The
multiple to use depends on the system:

• Color-6

• Intensity-2

P4-Startlng color map entry (must be 1)
This longword contains the color map index to use for the first RGB or
intensity value specified in the buffer.

V4.1-June 1989

DESCRIPTION

P6-Mustbe0

QDSS-Specific QIO Interface
Set Color Map Entries

This function enables an application to define or alter the color map. Color
map information is stored in the QDB. You can access the QDB by issuing
the Get System Information QIO. See Appendix B for a full description of
the QDB.

4-25

QDSS-Specific QIO Interface
Start Request Queue

Start Request Queue

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

4-26

Starts the processing of any packets on the request queue.

SYS$QIO [efn] ,chan, 10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p1 ,p2 [,p3] [,p4] {,p5] [,p6]

P1-10$C_QD_START (required)
This function code identifies the action the QIO performs.

P2-Vlewport_ld (required)
This parameter is the ID of the targeted viewport. The Get Viewport ID
QIO returns the viewport ID during the creation of the viewport.

P3, P4, P5, P6-Must be 0

This function starts (or restarts) the processing of packets on the request
queue of the specified viewport. Typically, an application makes this
call after the queue has been stopped with the Stop Request Queue QIO
function or after initial viewport creation.

QDSS-Specific QIO Interface
Stop Request Queue

Stop Request Queue

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

Stops the processing of any packets on the request queue.

SYS$QIO [efn] ,chan, 10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 [,p3] [,p4] [,p5} [,p6]

P1-/0$C_QD_STOP (required)
This function code identifies the action the QIO performs.

P2-Vlewport_ld (required)
This parameter is the ID of the targeted viewport. The Get Viewport ID
QIO returns the viewport ID during the creation of the viewport.

P3, P4, P5, P6-Must be 0

The Stop Request Queue QIO stops all processing on the request queue of
the specified viewport to give the calling process complete control over the
viewport bitmap. Stopping a viewport request queue ensures that no other
processes can modify the bitmap of the stopped viewport.

A viewport management task typically uses this function when changing the
position of any viewport in the system (using the Set Viewport Region QIO
function). An application can also use it to freeze the screen for printing
displayed data.

Once the Stop Request Queue QIO is invoked, no further commands can
be executed from the request queue unless the request queue is explicitly
restarted with the Start Request Queue QIO.

A Stop Request Queue QIO differs from a Suspend Viewport Activity QIO
in that it waits for currently processing DOPs to complete before returning
control.

4-27

QDSS-Specific QIO Interface
Suspend Occluded Viewport Activity

Suspend Occluded Viewport Activity

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

4-28

Suspends all operations to a specified (occluded) viewport when certain
operations are requested.

SVS$QIO [efn] ,chan ,/0$_SENSEMODE ,[iosb]
,[astadr] ,[astprm] ,p 1 ,p2 [,p3] [,p4] [,p5]
[,p6]

P1-10$C_QD_OCCLUDED_SUSPEND (required)
This function code identifies the action the QIO performs.

P2-Vlewport_ld (required)
This parameter is the ID of the targeted viewport. The Get Viewport ID
QIO returns the viewport ID during the creation of the viewport.

P3, P4, P5, PB-Must be 0

The Suspend Occluded Viewport Activity QIO suspends operations to an
occluded viewport when a DOP that the driver cannot process is executed.

Operations the driver cannot perform on occluded viewports are typically
Scroll, Move Area, and Move/Rotate operations in which the source is not
a bitmap ID.

The application must handle the operatic;m then issue a Resume Viewport
Activity QIO to continue request queue processing. You can handle the
operation in the associated AST. The address of the DOP is returned in the
second longword of the IOSB block. For example, if a Scroll is attempted
on an occluded viewport, the driver detects the condition and fires the
AST associated with Suspend Occluded Viewport Activity QIO. The AST
uses the DOP address returned in the IOSB to determine what action to
take and issues a Resume Viewport Activity QIO for the viewport when it
completes.

QDSS-Specific QIO Interface
Suspend Viewport Activity

Suspend Viewport Activity

FORMAT

UNIQUE
PARAMETERS

DESCRIPTION

Suspends activity in a specified viewport.

SVS$QIO [efn] ,chan, 10$_SETMODE ,[iosb] ,[astadr]
,[astprm] ,p 1 ,p2 [,p3] [,p4] [,p5] [,p6]

P1-10$C_QD _SUSPEND_ VP (required)
This function code identifies the action the QIO performs.

P2-Vlewport_id (required)
This parameter is the ID of the targeted viewport. The Get Viewport ID
QIO returns the viewport ID during the creation of the viewport.

P3, P4, P5, P6-Must be 0

This function suspends all activity on a specified viewport. Use this call
to synchronize drawing operations. When any necessary operations are
completed, you can resume activity on the viewport by calling the Resume
Viewport Activity QIO function.

A Suspend Viewport Activity QIO differs from a Stop Request Queue QIO
in that it does not wait for currently processing DOPs to complete before
returning control.

4-29

QDSS-Specific QIO Interface
Write Bitmap

Write Bitmap

FORMAT

UNIQUE
PARAMETERS

4-30

Writes data from a user-specified buffer in VAX memory to a bitmap in
video memory and performs bitmap-to-bitmap transfers.

SYS$QIO [efn] ,chan ,/0$_QDWRITE ,[iosb] ,[astadr]
,[astprm} ,p 1 ,p2 ,[p3] ,p4 ,p5 [,pB]

P1-Buffer address (required)
This parameter is the buffer address in VAX memory from which the
bitmap is written. This buffer must be large enough to hold the bitmap
specified in the transfer parameter block (P4). In a bitmap-to-bitmap
transfer, specify a zero in this parameter.

P2-Buffer length (required)
This longword contains the length of the buffer specified in Pl, in bytes.

P3-Must beO

P4-Transfer parameter block
This parameter is the transfer parameter block (TPB) that describes the
bitmap to be written into video memory. The TPB contains:

• Coordinates for the lower left corner of the bitmap

• Height and width of the bitmap

• Predefined constant indicating the type of transfer

• For bitmap-to-bitmap transfer, the coordinates for the lower left corner
of the target bitmap

The following diagram shows the data structure that specifies transfer
parameters.

The following list describes the contents of each field in the Transfer
Parameter block.

DESCRIPTION

Field

TPB$B_TYPE

TPB$B_SIZE

TPB$W_X_SOURCE

TPB$W_ Y _SOURCE

TPB$W_WIDTH

TPB$W_HEIGHT

TPB$W_X_ TARGET

TPB$W_ Y _TARGET

TPB$W_X_TARGET_VEC1

TPB$W_ Y _TARGET_ VEC 1

TPB$W _L_ TARGET_ VEC1

TPB$W _X_ TARGET_ VEC2

TPB$W_Y_TARGET_VEC2

TPB$W_L_ TARGET_ VEC2

QDSS-Specific QIO Interface
Write Bitmap

Use
Type of transfer being performed, either processor­
to-bitmap (PTB) or bitmap-to-bitmap (BTB). Use the
constants defined later to load this field.

Reserved to Digital

X coordinate of lower left corner of source bitmap

Y coordinate of lower left corner of source bitmap

Width of source bitmap

Height of source bitmap

X coordinate of lower left corner of target bitmap
(Only specified for bitmap-to-bitmap transfer)

Y coordinate of lower left corner of target bitmap
(Only specified for bitmap-to-bitmap transfer)

Reserved to Digital

Reserved to Digital

Reserved to Digital

Reserved to Digital

Reserved to Digital

Reserved to Digital

The following table defines the constants in conjunction with the TPB.

Constant

TPB$C_BITMAP _XFR

TPB$C_SOURCE_ONLY

TPB$C_SOURCE_LENGTH

TPB$C_BITMAP _XFR_LENGTH

TPB$C_LENGTH

P5-TPB length

Value

Bitmap-to-bitmap transfer

BTP or PTB transfer

Structure length for BTP or PTB transfers

Structure length for a bitmap-to-bitmap
transfer

Full length of TPB structure

This longword contains the length of the transfer parameter block specified
in P4, in bytes.

P6-Mustbe0

This function writes data from a specified buffer in VAX memory to QDSS
video memory. This QIO transfers all available planes of memory at once.
If this operation is to affect more than one viewport, it must be preceded
by a Stop Request Queue QIO.

An application can also use this function to perform bitmap-to-bitmap
transfers in a bitmap-to-bitmap transfer, specifying a source and target
location in the TPB and omitting the processor buffer.

4-31

5 Using Drawing Operation Primitives

This chapter includes the following topics:

• Overview of drawing primitives (DOPs)

• Drawing operations with DOPs

• Window management operations with DOPs

• UISDC interface features to use when implementing DOPs

5.1 Overview of DOPs
Drawing operation primitives (DOPs) are data structures created by your
application that contain information the QDSS hardware uses to perform
drawing operations on the screen. Some DOPs are also used to perform
window management tasks; for example, to suspend and resume request
queue activity on a specific viewport.

DOPs provide a fast and simple way of performing basic drawing and
window management operations. Use DOPs to perform the following
drawing operations:

• Draw a simple line, a complex line, a series of lines, or a polygon

• Draw a point, or a series of points

• Draw a filled polygon using a bitmap pattern

• Fill points using an associated bitmap pattern

• Move a rectangular area within a viewport

• Move, rotate, and scale a rectangular area within a viewport

• Scroll a rectangular area

• Draw fixed-width text to the screen

• Draw variable-width text to the screen

Use DOPs to perform the following window management operations:

• Stop removing entries from a window request queue

• Start removing entries from a stopped request queue

• Suspend drawing operations to a window

• Resume drawing operations in a window

To perform a drawing operation, your application must complete the
following steps:

1 Allocate storage for the DOP

2 Define the structure of the DOP

5-1

Using Drawing Operation Primitives

5.2 DOP Structure

3 Initialize any relevant fields of the DOP structure

4 Execute the DOP

How you structure and initialize DOPs depends on which operation you
perform.

How you allocate and execute DOPs also depends on whether your
application uses the UIS windowing environment or provides its own
windowing services. If an application uses the UIS environment, it can use
the UISDC routines described in Section 5.3 to allocate and execute DOPs.
If an application does not use the UIS environment, it must allocate and
execute DOPs itself, as described in Section 5.4.

Sections 5.2 through 5.5 provide general information about DOPs that
you must understand before you attempt to implement any individual
operation. Section 5.6 describes how to structure and initialize DOPs
for each type of operation. A FORTRAN example accompanies the
explanation of each operation in the section.

This section provides a general description of DOP structure. Section 5.6
gives a complete description of how to structure DOPs.

Each DOP structure consists of three substructures (blocks):

• Common block-This fixed-size block begins all DOP structures. It
contains information that all DOPs require-for example, the item_type
field that identifies which operation the DOP performs and the opcount
field that indicates how many times the operation should be repeated,

• Unique block-This fixed-size block follows the Common block in all
DOP$. It contains information more specific to a single operation, or
group of operations, and its fields and their contents vary accordingly.
Some operations do not use the fields in this block and others use only
some of the fields (see the operation-by-operation structure description
in Section 5.6 for details) but regardless of use, the DOP structure must
be padded with the entire Unique block.

• Variable block-This variable-length block contains operation-specific
variables (coordinates, line lengths, and so on). The size of this block
depends on the number of times an operation is repeated. Thus, if you
specify a draw-line operation with an opcount of 1, the Variable block
contains the coordinates needed to draw one line. If you specify an
opcount of 3, the Variable block must hold the coordinates needed to
draw three lines.

Section 5.6 contains an illustration of the Common block and a full
explanation. of each field in the block. The section also contains
illustrations and explanations of the specific Unique and Variable blocks
used to define DOPs for each type of operation.

5.3 Implementing DOPs in the UIS Environment

5-2

If your application runs in the UIS environment, you can use UISDC
routines to allocate and execute DOPs.

5.3.1

Using Drawing Operation Primitives

Allocating Storage for DOPs in the UIS Environment
The UISDC$ALLOCATE_DOP routine allocates memory for the DOP
and initializes some fields of the Common block to default values.
UISDC$ALLOCATE_DOP has the following format:

dop_address = UISDC$ALLOCATE_DOP (wd_id, size, atb)

Where:

dop_address Returned address of the DOP, used in subsequent routines to
execute the DOP.

wd_id

size

atb

Window identifier you specify that associates the DOP with a
window by loading the window-related fields of the Common block
(the window dimensions and the clipping rectangle). The window
identifier is returned to an application at vlewport creation time.

Size, in bytes. This argument is read/write: on input, you specify
the space for the Variable block; on output, the system returns
the actual size allocated for the Variable block. The size allocated
may be smaller than the size you request. Always use the returned
size In subsequent operations.

Address of an attribute block used to Initialize the color, writing­
mode, and writing-mask fields of the Common block.

A full routine description of the UISDC$ALLOCATE_DOP routine appears
in Section 5. 7.

Example 5-1 is a FORTRAN program segment that creates a window and
allocates a DOP to draw 50 points. Note that the input size argument
is calculated by multiplying the number of times the DOP repeats
the operation (the opcount) by the predefined constant for the length
of a single-operation Variable block DOP _POINTS$C_LENGTH. The
SYS$LIBRARY:VWSSYSDEF file defines a constant for the length of a
single-operation Variable block for each operation. Section 5.5.4.1 contains
information about predefined data structures.

Example 5-1 Allocating a DOP

! Create a display and window
VD_ID = UI5$CREATE_DISPLAY (O.o,o.o,
2 50.0,50.0,
2 15.0,15.0)

lower left corner
upper right corner
width & height

WD_ID = UIS$CREATE_WINDOW (VD ID,
2 'SYS$WORKSTATION',

display ID
device name
window banner 2 'DOP Drawing Window')

! Allocate the DOP
SIZE = (50 * DOP_POINTS$C_LENGTH)
DOP = UISDC$ALLOCATE_DOP (WD_ID,
2 SIZE,
2 0)

variable block
window ID
size, in bytes
default ATS number

5-3

Using Drawing Operation Primitives

5.3.1.1

5.3.1.2

5-4

Allocation Mechanism
To allocate DOPs, the system uses a mechanism that provides for efficient
use of storage as follows:

• If possible, it allocates a small amount of storage.

• After DOP execution, it reuses the storage formerly occupied by DOPs.

• When too much storage is allocated, it waits for free memory.

By default, DOPs are allocated in two sizes:

• 128 bytes (small)

• 786 bytes (large)

You can also set DOP size and available number (see Section 5.3.1.2).
When you specify the size of the variable portion of the DOP to allocate,
t~ system determines whether it can allocate a small DOP, which it does

/ if it can. Otherwise, it allocates a large DOP.

The system also reuses any storage occupied by an already-executed DOP.
Once a DOP is executed, the system performs the following operations:

• Removes the DOP from the request queue (see Section 5.3.1.2)

• Puts the DOP on a return queue, which is a data structure that points
to a linked list of previously executed DOPs (the DOP Common block
provides forward and backward links).

Each viewport is associated with two return queues: one for small
DOPs and one for large DOPs. The viewport ID is an address that
points to a data structure that holds both associated return queues.

When you use UISDC$ALLOCATE_DOP to allocate a DOP, the system
completes the following steps:

1 Checks whether a small or large DOP is required

2 Attempts to reuse any previously executed DOPs of the same size

3 If there are no such DOPs, allocates a DOP from system memory or
waits until a DOP is free for reuse

Modifying DOP Size and Number
The available default sizes and numbers of DOPs follow:

• 300 small DOPs, each 128 bytes long

• 150 large DOPs, each 768 bytes long

Use these values or alter them to suit your needs. If you want to change
these values, do so before you attempt any other processing. That is, you
cannot start with DOPs of one size then change the size and continue.

You can modify tlle default sizes of the small and large DOPs within the
following restrictions:

• Small DOPs-128-512, inclusive

• Large DOPs-768-16384, inclusive

5.3.2

Using Drawing Operation Primitives

You can also modify the number of available DOPs, as long as you maintain
a minimum of 110 small or large DOPs.

Note that the default DOP setup allocates 300 pages of Pl address space
for DOPs. If your modifications to size and number of DOPs result in the
need for more than 300 pages, take the following steps:

1 Increase the logical value UIS$Pl_POOL_SIZE by the increased size in
bytes.

2 Increase the SYSGEN parameter, CTLPAGES by the increased size in
pages.

To modify the size and number of DOPs, redefine the following logical
values, as appropriate.

Table 5-1 Redefinition of Logical Values

Logical Default

UIS$SMALL_OOP _SIZE 128

UIS$LARGE_OOP _SIZE 768

UIS$NUMBER_OF _SMALL_ 300
OOPS

UIS$NUMBER_OF _LARGE_ 150
OOPS

Executing DOPs in the UIS Environment
Once you have defined, allocated, and initialized a DOP, you can execute
it, with one of three options:

1 Use the UISDC$EXECUTE_DOP_SYNCH routine to execute the DOP
synchronously.

2 Use the UISDC$EXECUTE_DOP _ASYNCH routine to execute the DOP
asynchronously with completion notification.

3 Use the UISDC$QUEUE_DOP routine to execute the DOP
asynchronously without completion notification.

The two types of asynchronous execution differ in that the
UISDC$EXECUTE_DOP _ASYNCH routine takes an 1/0 status block
(IOSB) your application can use to check for completion notification.
UISDC$QUEUE_DOP queues the DOP for execution but provides no way
to tell when the operation is completed (it is more efficient). Complete
descriptions of these routines and their arguments appear in Section 5.7.

PERFORMANCE NOTE: The UISDC$QUEUE_DOP routine is much more efficient than the other
routines; use it whenever an option exists.

The FORTRAN program segment in Example 5-2 defines and initializes a
DOP using a subroutine (the recommended method for FORTRAN) and
queues a DOP for asynchronous execution without completion notification.

5-5

Using Drawing Operation Primitives

Example 5-2 Queuing a DOP for Execution

I Allocate the DOP

! Call subroutine to initialize DOP
CALL SUB_STRUCTURE (%VAL(DOP), address of DOP

%VAL(DOP+DOP$C_LENGTH)) address of a variable
! block

1 Queue the DOP asynchronously
CALL UISDC$QUEUE_DOP (WD_ID, window ID
2 %VAL(DOP)) I DOP address, by value

5.3.2.3 Execution Mechanism
To execute DOPS, you use a mechanism called a request queue. Each
viewport is associated with a request queue, which is a linked list of any
DOPs submitted to a viewport for execution. Viewport IDs (including
the systemwide viewport ID) are addresses that point to the request
queue structure associated with the viewport. The request queue structure
contains the starting address of the linked list of DOPs. Each DOP contains
forward and backward links (in its Common block) to other DOPs in the
list. These links are updated by the system when a DOP is submitted or
executed.

When you execute a DOP, you must provide the above-mentioned routines
with the window ID of the viewport where you want to execute the DOP
(returned in the UIS$CREATE_ WINDOW call) and the address of the DOP
(returned by UISDC$ALLOCATE_DOP). These arguments provide the
system with the information needed to associate the DOP with the correct
request queue.

5.4 Implementing DOPs in a Non-UIS Environment

5.4.1

If your application does not use the UIS windowing system (for example,
if it provides its own windowing system), it must allocate and execute
DOPs itself. Section 5.4.1 describes how an application allocates storage
for DOPs. Section 5.4.2 describes how an application inserts DOPs on the
request queue for execution.

Allocating Storage for OOPS in a Non-UIS Environment

5-6

Before you allocate new storage for a DOP, check the associated return
queue to determine if any reusable storage is available there. Use the
viewport ID to access the return queue (the address of the DOP Queue
structure where the return queue resides). See Appendix B for a full
description of the data structure.

Two return queues are associated with each viewport:

• One for large DOPs

• One for small DOPs

DOP size depends on the amount of information required to describe the
requested drawing operations fully. Use the MACRO REMQUE instruction
to remove a DOP from the return queue.

I

Using Drawing Operation Primitives

If no reusable storage exists, use the LIB$GET_ VM routine to allocate
storage.

Example 5-3 creates a viewport, then allocates a DOP by first checking the
return queue.

Example 5-3 Allocating a DOP

PROGRAM DELETE_VIEWPORT
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
INCLUDE '($IODEF)'

INTEGER*2 CHAN_VPl

! Declare URD
INTEGER*2 URDl_VP1(6)

! Load URDl_VPl buffer
URDl_VPl(l) 0 ! lower left corner
URDl_ VPl (2) = 0
URD1_VP1(3) 99 l upper right corner
URDl_VP1(4) 99
URDl_VPl(S) 10 I absolute coordinate base
URDl_VP1(6) 10

! Define and start VPl
CALL VIEWPORT (URDl_VPl, CHAN_VPl, VPl_ID)

! Get a Draw Lines DOP for VPl
SIZE = (4 * DOP_LINE$C_LENGTH)
CALL GET_DOP (VPl_ID, SIZE, DOPl)

! * Get DOP Subroutine *

! calculate size

SUBROUTINE GET_DOP (VIEWPORT_ID, SIZE, DOP)
IMPLICIT INTEGER*4(A-Z)

! Declare external MACRO routine
EXTERNAL DOP$REMQUE

DOP = DOP$REMQUE (VIEWPORT_ID,
2 SIZE)

Example 5-3 Cont'd. on next page

V 4.1-June 1989 5-7

Using Drawing Operation Primitives

Example 5-3 (Cont.) Allocating a DOP

! If none on return queue, calculate size and allocate one.
IF (DOP .EQ. 0) THEN

CALL TEST_SIZE (%VAL(VIEWPORT_ID), viewport ID> return Q
2 SIZE)

! Allocate appropriate size DOP
CALL LIB$GET_VM (SIZE,

2 DOP)
END IF

RETURN
END

! * TEST_SIZE SUBROUTINE *
! ************************

SUBROUTINE TEST_SIZE (REQ,SIZE)
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'

! Associate the predefined structure w/ REQ
RECORD /REQ_STRUCTURE/ REQ

IF (SIZE .GT. REQ.REQ$W_SMALL_DOP_SIZE) THEN
SIZE REQ.REQ$W_LARGE_DOP_SIZE

ELSE
SIZE REQ.REQ$W_SMALL_DOP_SIZE

END IF

RETURN
END

Separate MACRO Module

.title rem_que - does a remque

$DOPDEF
$REQDEF

Example 5-3 Cont'd. on next page

5-8 V4.1-June 1989

5.4.2

I
5.5

Using Drawing Operation Primitives

Example 5-3 (Cont.) Allocating a DOP

:++
dop$remque - remove a DOP from the return queues and return it

description:
This routine will return a DOP or zero if none is

available. The size is used to determine whether to use a large
or small DOP. Note: that it is possible that the size is larger
than the DOP returned, if this is the case then the application
must break the request down into smaller chunks and use several
large DOPs.

Calling sequence:
DOP = DOP$REMQUE(VIEWPORT_ID,SIZE)

Outputs:
DOP = ZERO if no DOPS avaiiable on the queue

:--
.entry dop$remque,O
movl @4(ap),rl get req address
cmpw @8(ap),req$w_small_dop_size(rl) check for small or large DOP
bgtr 10$
remque @req$l_return_flink(rl),r0 try to get a DOP
bvs 90$ nope then clear rO and return
ret

We need a large DOP
I

10$: remque @req$L_return_large_flink(Rl),r0; get a large DOP
bvs 90$ none of these then return
ret all set then.return

Can't get the DOP we want
I

90$: clrl rO signal error (return zero)
ret
.end

Executing a DOP in a Non-UIS Environment
To execute a DOP in a non-UIS environment, you must insert the DOP on
the request queue. To insert a DOP on the request queue, use the MACRO
INSQUE instruction. Use the viewport ID to access the request queue
(the address of the DOP Queue structure where the return queue resides).
Appendix B describes the data structure.

Example 5-4 illustrates viewport creation, DOP allocation, loading the DOP
with the necessary information, and DOP insertion on the request queue.

Structuring and Initializing DOPs
Each DOP structure consists of three blocks-Common block, Unique
block, and Variable block. Common block fields are the same across
operations; Unique and Variable block fields vary, depending on the
operation.

V4.1-June 1989 5-9

5.5.1

Using Drawing Operation Primitives

Examp·le 5-4 Inserting a DOP on the Request Queue

;++

! Declare external MACRO routine
EXTERNAL DOP$INSQUE

! Define and start VPl
CALL VIEWPORT (URDl_VPl, CHAN_VPl, VPl_ID)

! Get a Draw Lines DOP for VPl
SIZE = (4 * DOP LINE$C LENGTH)
CALL GET_DOP (VPl_ID, SIZE, DOPl)

! calculate size

I Call the draw lines subroutine for a border
CALL D_LINES (%VAL(DOP1), DOP address, by value
2 %VAL(D0Pl+DOP$C_LENGTH), ! var. block address
2 SIZE) ! DOP size

I Queue the DOP by calling a MACRO subroutine
CALL DOP$INSQUE (%VAL(D0Pl), DOP address, by value
2 VPl_ID) ! viewport ID

Separate MACRO Module

.title ins_que - does an insque tail

$DOPDEF
$REQDEF

dop$insque - inserts a DOP at the tail of the return queue

calling sequence:

CALL DOP$INSQUE(DOP,VIEWPORT_ID)

OUTPUTS:
NONE

;--
.entry dop$insque,O

mov 1 4 (ap) , rO
movl @8(ap),rl
insque (RO) ,@req$L_request_blink(Rl)
movl il,rO ; indicate success
ret

.end

Common Block
The Common Block is a fixed-size block that begins all DOP structures. It
contains a number of fields (described completely in theC:ommon Block
DOP Structure section), but two fields particularly affect the subsequent
structure of the DOP:

• The item_type field

• The operation count opcount field

5-10 V4.1-June 1989

Using Drawing Operation Primitives

Item Type Field

The item_type field determines which operation the DOP performs and
therefore affects which Unique and Variable blocks to specify. You must
explicitly specify the item type with a predefined constant (defined in
SYS$LIBRARY:VWSSYSDEF). Table 5-2 lists and describes the symbolic
constants used to specify all possible drawing operations.

Table 5-2 Symbolic Constants

Constant

DOP$C_DRAW _LINES

DOP$C_DRAW_COMPLEX_
LINE

DOP$C_DRAW_POINTS

DOP$C_FILL_POL YGON

DOP$C_FILL_POINT

DOP$C_FILL_LINES

DOP$C_DRAW_FIXED_
TEXT

DOP$C_DRAW_VAR_TEXT

DOP$C_MOVE_ROTATE_
AREA

DOP$C_MOVE_AREA

DOP$C_SCROLL_AREA

DOP$C_STOP

DOP$C_START

DOP$C_DELETE_BITMAP

DOP$C_SUSPEND

DOP$C_RESUME

Opcount Field

Operation

Draws lines or polygon.

Draws a complex patterned line with a sloped length
and width. Also draws a filled polygon.

Draws points.

Draws a filled polygon with a specified pattern.

Fills a point with a specified pattern.

Fills a line with a specified pattern.

Draws text with a specified fixed-space font.

Draws text with a specified variable-spaced font.

Moves an area with specified rotation and scaling.

Moves an area within a viewport.

Moves area in a viewport. Fills the vacated area
with background color.

Stops removing entries from the request queue
(used when manipulating the screen to handle
occlusion).

Starts removing entries from the specified request
queue. This request can only be made from the
system viewport.

Deletes an offscreen bitmap.

Stops removing DOPs from the request queue until
the queue is resumed.

Resumes processing DOPs on the specified queue.
This request can be made only from the system
viewport.

The opcount field indicates how many times the operation should be
repeated. That is, if the specified item_type is dop$c_draw_lines and the
opcount is 4, the DOP draws four lines. This field affects the structure of
the DOP because the size of the Variable block varies with the number
of operations (more coordinates are necessary to perform the additional
operations).

5-11

5.5.2

5.5.3

5.5.4

Using Drawing Operation Primitives

Unique Block

Variable Block

This fixed-size block contains information specific to a single operation or
group of operations; its fields and their contents vary accordingly. Whether
or not it uses the fields in the block, every DOP structure must include the
Unique block. That is, if a particular operation uses only three words of
the Unique block, the Unique block of the DOP structure must be padded
to its full length.

Section 5.6 illustrates and explains the fields in the Unique block
appropriate for each operation.

This variable-sized block contains operation-specific variables such as
coordinates and line lengths. Block size depends on the number of DOP
operations. In other words, if you specify a draw-line operation with an
opcount of one, the Variable block contains coordinates needed to draw one
line. If you specify an opcount of three, the Variable block holds coordinates
needed to draw three lines (and be three times as long).

Section 5.6 illustrates and explains the fields in the Variable block needed
for a single occurrence of each operation. It also lists the predefined
constant for the length of a one-operation Variable block. Use this constant
to calculate the input size argument of the UISDC$ALLOCA TE_DOP
routine. Multiply the constant by the number of times the DOP is to repeat
the operation (the opcount).

Programming Considerations

5-12

When you program an application that performs drawing operations, you
can implement the DOP structure in various ways. Depending on the
programming language and the exact nature of the operation, you can use
one of these options:

• Use the predefined structure provided in the
SYSLIBRARY :VWSSYSDEF file

• Define the full DOP structure using your language structured-type
statements

If you use the predefined DOP structure, you do not have to construct the
DOP explicitly in your application. However, it is not always possible to
use the predefined structure.

5.5.4.1

Using Drawing Operation Primitives

The Predefined DOP Structure
SYSLIBRARY:VWSSYSDEF.lan (where Ian is the file extension for your
programming language) contains a DOP definition file.

VWSSYSDEF defines DOP-related constants, including offset values that
define each field in the DOP structure. You can use these predefined
offsets in your application to initialize the DOP fields. The system allocates
the DOP storage; you must associate a structure with the storage to initialize
the proper fields. The offsets provide a way of ac~essing fields within the
structure. Section 5.6 labels each field in the DOP illustrations with its
predefined offset.

For example, VWSSYSDEF defines an offset DOP$W _ITEM_ TYPE that
identifies the location of the item_type field in the DOP. Once you associate
the returned storage with a structure, you can use the offset to reference
the structure.

In each module where you reference it, you must "include" or "insert"
the VWSSYSDEF file to use any predefined constants and offsets. Become
familiar with the way the VWSSYSDEF file defines the DOP structure for
your programming language.

Initializing fields with the offsets is straightforward with regard to the fixed
portion of the DOP (the Common and Unique blocks) and somewhat
more complex with regard to the Variable block. The VWSSYSDEF file
defines offsets for only one occurrence of an operation in the Variable
block from the end of the fixed portion. In other words, to draw a single
line, the Variable block for a Draw Lines operation requires four fields with
predefined offsets. To draw two lines, however, the Variable block requires
eight fields, but only four offsets are predefined. To write to the second set of
fields, use the same offsets but change the point from which they are offset.

In languages such as PASCAL that support arrays of structures, you can
define an array of Variable block structures and increment the original
offset by the length of a "one-operation" Variable block. The VWSSYSDEF
file provides constants for both the offset and Variable block length. The
original offset (the end of the fixed portion) is DOP$C_LENGTH, and the
constants for the "one-operation" Variable block lengths are listed with the
respective operation in Section 5.6.

In a language such as FORTRAN that does not support arrays of structures,
you have two options:

• Completely define the structure of the Variable block using a
STRUCTURE statement.

• Define a structure the size of a one-operation Variable block, then use
a loop that increments the offset to initialize 'the DOP for a series of
operations.

For a one-operation case, FORTRAN can use the predefined offsets.

The examples that accompany the operation descriptions are written in
FORTRAN. Section 5.5.4.2 describes the conventions they follow.

5-13

Using Drawing Operation Primitives

5-14

5.5.4.2 Using the Examples
The DOP reference section contains FORTRAN examples that are
subroutines that construct the DOP structure and initialize necessary
fields. To eliminate redundancy, the calling program is removed from each
example. For the sake of illustration, Example 5-5 contains a sample calling
program. The sample calling program performs the following functions:

• Creates a display and window.

• Allocates storage for a DOP that draws a box (four lines-opcount
equals four).

• Passes the returned DOP address to a subroutine that defines and
initializes the DOP structure. (This must be done in FORTRAN to
avoid reallocating storage during the structure declaration-other high­
level languages can avoid the subroutine call by using a pointer to
associate the structure with the allocated storage.)

• Passes the address of the Variable block (length of the fixed portion of
the DOP plus the DOP address).

• Queues the DOP for execution.

• Hibernates the process (so the result can be viewed).

NOTE: The examples assume that the application is using the UIS/UISDC
interface.

'5.6

Using Drawing Operation Primitives

Example 5-5 Calling Program for Example Subroutines

PROGRAM DRAW_LINES
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'UISENTRY'
INCLUDE 'VWSSYSDEF'

! Create a display and window
VD_ID = UIS$CREATE_DISPLAY (O.o,o.o,
2 50.0,50.0,
2 15.0,15.0)

lower left corner
upper right corner
width & height

WD_ID = UIS$CREATE_WINDOW (VD_ID,
2 'SYS$WORKSTATION',
2 'DOP Drawing Window')

l Allocate the DOP
SIZE = (4 * DOP_LINES$C_LENGTH)
DOP = UISDC$ALLOCATE_DOP (WD_ID, window ID

display ID
device name
window banner

2 SIZE, variable portion size, in bytes
2 0) default ATB number

l Call the subroutine
CALL SUB_STRUCTURE (%VAL(DOP), DOP address

%VAL(DOP+DOP$C_LENGTH))! Var. block address

l Queue the DOP asynchronously
CALL UISDC$QUEUE_DOP (WD_ID,
2 %VAL(DOP))

CALL SYS$HIBER()
END

window ID
DOP address, by value

NOTE: FORTRAN requires you pass the DOP address that UISDC_$ALLOCATE
returns by value to a subroutine. The subroutine associates the address
with a record structure using the RECORD statement. If this is not done
in a subroutine, the RECORD statement allocates storage redundantly for
the DOP.

The DOP Reference
This section provides an easy reference for structuring DOPs. It contains
the following illustrations and descriptions:

• Illustration and detailed description of the the Common block structure

• Illustration and detailed description of the Unique and Variable block
structure for each operation

• Description of how to perform each operation

• Program example of how to perform each operation

First the Common block is described, then each operation is described
and listed in alphabetical order. The running head reflects which DOP is
described on a page.

Each block is accomp~mied by the record name associated with the block
in the SYS$LIBRARY:VWSSYSDEF definition file. Each field lists the
predefined field name. These names can be used to reference the DOPs.

NOTE: The descriptions assume that an application is using the UIS/UISDC
interface to allocate and execute DOPs and load bitmaps. You can perform
these functions without using the UIS/UISDC interface.

5-15

DOP Structures
Common Block

Common Block

common block
(dop_structure)

Field

DOP$L_FLINK

DOP$L_BLINK

DOP$W_SIZE

DOP$B_TYPE

DOP$B_SUB_ TYPE

DOP$L_DEC_RESERVED

DOP$L_DEC_
RESERVED2

DOP$L_USER_
RESERVED

DOP$W_FLAGS

DOP$W_OPCOUNT

5-16

All DOP structures must begin with the Common block.

Description

DOP queue forward link, the address of .the preceding DOP in the request queue

DOP queue backward link, the address of the subsequent DOP in the request
queue

DOP size in bytes

DOP structure type

Reserved for use by Digital

Reserved for use by Digital

Reserved for use by Digital

Reserved for use by the user

These are defined within DOP$W _FLAGS:

DOP$V_DELETE_ This field is 1 bit long, and starts at bit 0. When this
BITMAP field equals 1 , the offscreen source bitmap (identified in

the bitmap_ID field) is deleted at operation completion.

DOP$V _SYSTEM_
DOP

DOP$V_NO_RETURN

This field is 1 bit long and starts at bit 1 . When this
field equals 1 , the DOP is returned to the system return
queue when the drawing operation is completed. A
window manager specifies this when it needs to draw in
the systemwide viewport or when it allocates a system
DOP to draw on a user viewport.

This field is 1 bit long and starts at bit 2. When this
field equals 1 , the DOP is not returned to the return
queue when the drawing operation is completed and is
not deleted. This is useful in cases where an application
wishes to preserve information in the DOP, possibly in
the user-reserved field.

Number of drawing operations requested by this packet. For example, if the
drawing operation you request is "draw points," this field indicates how many
points should be drawn (using coordinates in the variable portion of the DOP).

I

Field

DOP$W_ITEM_ TYPE

DOP$W_MODE

DOP$L_MASK

DOP$L_SOURCE_INDEX

DOP$L_FCOLOR

DOP$L_BCOLOR

DOP$L_BITMAP _ID

DOP$L_BITMAP _
GLYPHS

DOP$W_ VP _MAX_X

DOP$W_ VP _MAX_ Y

DOP$W_DEL TA_X

DOP$W_DEL TA_ Y

DOP$W_VP _MIN_X

DOP$W_VP _Mlf\l_ Y

DOP Structures
Common Block

Description

Type of drawing operation requested by DOP. Symbolic constants used to specify
all possible drawing operations follow:

DOP$C_DRAW_LINES
DOP$C_DRAW_COMPLEX_LINE
DOP$C_DRAW_POINTS
DOP$C_FILL_POL YGON
DOP$C_FILL_POINT
DOP$C_FILL_LINES
DOP$C_DRAW_FIXED_ TEXT
DOP$C_DRAW_VAR_TEXT
DOP$C_MOVE_ROTATE_AREA
DOP$C_MOVE_AREA
DOP$C_SCROLL_AREA
DOP$C_STOP
DOP$C_START
DOP$C_DELETE_BITMAP
DOP$C_SUSPEND
DOP$C_RESUME

Writing mode code as expected by QOSS. There are 16 different writing modes
that you can specify using constants listed in Appendix C.

The plane mask. This field s.hould be -1 to be compatible with previous versions
of VAX Workstation Software.

Source index. Used with the writing mode to determine the result of overlaid
colors. (See the Description section.)

Foreground color index. This is an index into the color map that is use~ for the
foreground (or writing) color.

Background color index. This is an ·index into the color map that is used for the
background color.

ID bitmap. Used to identify bitmaps in text images, pattern fill, and delete bitmap
operations. This value is O if the operation i~ not related to bitmaps.

Bitmap backing store address. If a stored bitmap is paged out of the bitmap
storage area, the address where it is stored in VAX memory is loaded into this
field.

Viewport relative device coordinate m.aximum X. Used to determine the upper right
corner of the viewport.

Viewport relative device coordinate maximum Y. Used to determine the upper right
corner of the viewport.

Delta from the lower left corner of the viewport to the lower left comer of the
clipping rectangle (the actual wr.iting area).

Delta from the lower left corner of the viewport to the lower left corner of the
clipping rectangle (the actual writing area).

Viewport relative device coordinate minimum X. Used to determine the lower left
corner of the viewport.

Viewport relative device coordinate minimum Y. Used to dE?termine the lower left
corner of the viewport.

V4.1-June 1989 5-17

DOP Structures
Common Block

DESCRIPTION The Common Block is a fixed-size block that must begin all DOP structures.
A number of the fields in this block must be loaded in every DOP, while
other fields in the block are important only to specific types of operations
(for example, color operations and bitmap operations).

Required Fields

The fields you must explicitly load depend on whether your application is
running in the UIS environment.

If your application is not running in the UIS environment, it must load all
relevant fields of the Common Block. That is, during allocation, the system
loads all fields needed for the DOP except for the first six fields.

If your application runs in the UIS environment, some of the Common Block
fields that must be initialized are actually loaded by UISDC$ALLOCA TE_
DOP after it allocates storage for the DOP (default initialization); others
must be explicitly initialized by your application (explicit initialization). The
following sections list the fields in these two categories.

Default Initialization

Using the attribute block the application specifies in the routine call,
UISDC$ALLOCATE_DOP initializes the following fields:

• Writing mode

• Foreground and background colors

• Viewport minimum and maximum coordinates

• Clipping rectangle delta coordinates

You might affect any of these fields by modifying the A TB before allocation
or by overriding initialization directly after allocation.

The ALLOCATE routine initializes the following fields, which are used for
the DOP execution mechanism:

• Forward link

• Backward link

• Size

• Type

• Sub_type

You can access these fields, but do not attempt to modify them.

Explicit Initialization

Your application must explicitly initialize the following fields:

• item_type-Identifies which operation the DOP performs. To initialize
this field, specify one of the symbolic constants listed above.

5-18 V4.1-June 1989

DOP Structures
Common Block

• opcount-Tells how many times the operation should be repeated. Jf
you specify a Draw Lines operation with an opcount of 1, one line is
drawn. If you specify an opcount of 3, three lines are drawn. This field
is directly related to the Variable block of a DOP. The Variable block
contains the coordinates needed to draw a line (in this example). To
draw three lines, the Variable block must hold the coordinates needed
to draw three lines (and be three times as long).

Color Fields

Use the following fields in the Common block to manipulate color:

• Foreground color index

• Background color index

• Writing mode

• Source index

The foreground color index and background color index determine the color to
use for writing to the foreground and background, respectively. Modifying
the index changes the color on a per-operation basis. That is, DOPs can
write in different colors to the same viewport.

Writing mode determines how writing operations use foreground and
background colors to display graphic objects (for example, whether objects
overlay one another on the screen or negate each other). The 16 writing
modes are described in Appendix C.

The source index is a number used to determine the color interaction of
objects being written to the screen with objects already existing on the
screen. The source index involves the following interactions:

• State of the pixels in existing bitmap

• Specified source index value

• Specified writing mode

• Specified foreground and background colors.

• The use_mask modifier of the writing mode (if specified)

• Specified source bitmap (if bitmap _id field is specified)

Figure 5-1 demonstrates how the source index works. (This figure does
not specify the source bitmap or the use_mask writing mode modifier.)
It illustrates two intersecting circles: Circle A has a foreground index of
010 (binary-like all numbers in this example) and a background index
of 100 (remember, the indexes represent colors in the color map-for
simplicity, only three bits are used to represent pixel settings). Circle B has
a foreground index of 001 and a background.index of 100. The specified
source index value is 001, and the specified writing mode is WRIT$DSO
(destination ORed with source).

V4.1-June 1989 5-19

DOP Structures
Common Block

5-20

Figure 5-1 How the Source Index Works

FG = 010

BG= 100

Source Index = 001

FG = 001

BG= 100

Drawn using 101 as color map index

ML0-1069-87

When you write objects to the screen, the system performs a logical
operation on the present contents of the screen bitmap and the source
index. The logical operation is determined by the specified writing mode.
Because the DSO mode is specified in Figure 5-1, Circle A foreground
index 010 is ORed with the source index, 001, resulting in the number 011.

The system uses the following procedure to determine which color map
index to use for writing:

• If the bit position in the resulting number includes a 1, the system
checks the corresponding bit position in the foreground index and sets
or clears the bit to agree with the foreground index.

• If the bit position in the resulting number includes a 0, the system
checks the corresponding bit position in the background index and sets
or clears the bit to agree with the background index.

In Figure 5-1, the number that results from the logical operation is 101, so
the intersecting portion of the circles is written in the color represented by
101 in the color map.

Determining the Result of Screen Intersections

When you specify a bitmap (DOP$L_BITMAP_ID is non-zero) and the
use_mask_2 writing mode modifier, this process is more complicated. The
following steps describe how to determine the result of any intersection on
the screen. The sole objective is to overlay a character on top of an existing
display. (In Figure 5-1, steps 2 and 5 are not meaningful because these
options are not specified.)

STEP 1

bitmap_index

I
IF

I
(source_bitmap exists AND source_bitmap = 0)

THEN
0

ELSE
source_index

V4.1-June 1989

DOP Structures
Common Block

If you use the bitmap ID to specify a bitmap for the DOP, the driver
creates a bitmap index by inserting the source index in any bitmap bit
position where there is a 1. The source_bitmap is 1 bit; the resulting bitmap_
index reflects the number of planes of color used.

STEP2

mask=

I w l use_mask
THEN

bitmap_index
ELSE

-1

If you specify the use_mask modifier as part of the writing mode, the
bitmap_index is used as the mask.

STEP3

fg_bg_
selector = I

IF use_mask l
THEN

(data) logical operation source_index
ELSE

bitmap_index

To obtain the foreground and background selector, perform a logical
operation (determined by the specified writing mode) on the data on the
screen and either the source_index value (if use_mask was specified) or the
bitmap_index.

STEP4

t1 =

{

(fg AND fg_bg_selector) }

~~ AND (NOT fg_bg_selector))

The value of the foreground-and-background selector determines which
bits are set to foreground and background colors-fg and bg refer to the
foreground and background colors specified in the DOP. (tl is the data
output to screen when no mask is specified.)

STEPS

final_data =
{

(t1 AND mask) }

~:ta AND (NOT(mask)))

Use the mask and t1 to determine the data output to the screen.

Bitmap Fields

Two fields in the Common Block are used with bitmap operations: the
bitmap_ID field and the bitmap_glyphs field. (Bitmap operations can be text
or fill-pattern.)

An operation that uses a bitmap must first foad the bitmap from processor
memory into offscreen bitmap memory with the UISDC$LOAD _BITMAP
routine. That routine returns a bitmap _ID that identifies the loaded bitmap
in offscreen memory.

V4.1-June 1989 5-21

DOP Structures
Common Block

To use that bitmap in a bitmap-related DOP, you must initialize the bitmap_
ID field with the returned ID. For example, once you have loaded a bitmap
and initialized the bitmap_ID field of a Fill Polygon DOP, the DOP uses the
bitmap pattern to fill the polygon it creates.

The bitmap_glyphs field enables the system to retrieve the bitmap that is
not available in off screen memory. The bitmap _glyph is the address (in
processor memory) where the bitmap is stored. If a DOP requires the
bitmap, it is swapped back in.

NOTE: The bitmap_glyph address must remain valid and not be reused until a
Delete Bitmap DOP has been executed and that DOP has completed.

5-22

Miscellaneous Fields

The writing mode field specified in a DOP affects the way the drawing
operations appear on the screen. On a QDSS system, the screen is more
than one bit deep. Some operations (such as Move Area) might require a
writing mode other than the default to operate properly.

By setting bits in the flags field, you can perform the following operations:

• Delete the bitmap specified in the bitmap_ID field, typically for a "one­
shot" bitmap DOP. The DOP is performed, then the bitmap is deleted
from off screen memory.

• Not return a DOP for reuse, typically done for a "one-shot" DOP.
This step prevents information contained in the DOP from being
overwritten.

• Return the DOP storage to the systemwide return queue. This step is
done when a DOP is allocated from the systemwide viewport and
inserted on another viewport request queue.

Examples

The examples in the operation-specific sections show how to initialize the
Common Block for each drawing operation.

Initializing the Variable Block

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both the X and Y source coordinates.

V4.1-June 1989

DOP Structures
Delete Bitmap

Delete Bitmap

unique block

variable block

DESCRIPTION

The Delete Bitmap operation permits you to delete a bitmap specified in
the bitmap_ID field of the Common block.

The Unique block is not relevant to this operation.

The Variable block is not relevant to this operation.

Since this is a queued operation, make sure that bitmap glyphs maintained
by the application remain valid until Delete Bitmap has been executed.

Relevant Common Block Fields

Specify the bitmap ID of the bitmap you want to delete in the Common
block.

Initializing the Variable Block

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify a for both the X and Y source coordinates.

5-23

DOP Structures
Draw Complex Line

Draw Complex Line

unique block

The Draw Complex Line operation enables you to draw a line or patterned
line of variable width with a slope in both the length and width direction.

The Unique block is not relevant to this operation.

variable block
(dop_move_r _array)

DESCRIPTION

5-24

Field

DOP _MOVE_R$W_FILLER

DOP _MOVE_R$W_X_SOURCE

DOP _MOVE_R$W_ Y _SOURCE

DOP _MOVE_R$W_WIDTH

DOP _MOVE_R$W_HEIGHT

DOP _MOVE_R$W_X_ TARGET

DOP _MOVE_R$W_ Y _TARGET

DOP _MOVE_R$W_X_ TARGET_
VEC1

DOP _MOVE_R$W_ Y _TARGET_
VEC1

DOP _MOVE_R$W_L_ TARGET_
VEC1

DOP _MOVE_R$W_X_ TARGET_
VEC2

DOP _MOVE_R$W_ Y _TARGET_
VEC2

DOP _MOVE_R$W_L_ TARGET_
VEC2

Use
This field is reserved for use by DIGITAL.

If a bitmap_ID is specified in the Common
block, this field is the X offset Into the line
style bitmap; otherwise, It is ignored.

If a bitmap_ID is specified in the Common
block, this field Is Y offset into the line style
bitmap; otherwise, it is ignored.

If a bitmap_ID is specified in the Common
block, this field Is the width of the line style
bitmap to be used; otherwise, it is ignored.

If a bitmap_ID is specified in the Common
block, this field is the height of the line style
bitmap to be used; otherwise, it is ignored.

X coordinate of the starting point of the line.

Y coordinate of the starting point of the line.

Delta of the X coordinate· starting point and
end point of vector 1 .

Delta of Y coordinate starting point and end
point of vector 1.

This field Is irrelevant to this operation.

Delta of the X coordinate starting point and
end point of vector 2.

Delta of Y coordinate starting point and end
point of vector 2.

This field is irrelevant to this operation.

The Draw Complex Line operation enables you to draw a line or variable
width patterned line with a slope in both the length and width direction.
Refer to the description of the Draw Line DOP (which also draws lines) to
see which routine is appropriate for the operation you want to perform.

Relevant Common Block Fields

DOP Structures
Draw Complex Line

You can specify a bitmap ID in the Common block to indicate a line style
for a complex line. Use the x_source and y_source fields of the Variable block
to specify an offset into the bitmap as a starting point for the line style and
use the width and height fields to specify the extents of the bitmap to use.

By default, the system uses a fill pattern of all ones.

Initializing the Variable Block

To draw a complex line, specify a starting point and two vectors. Vector
1 indicates the length of the line and the slope of the length. Vector_2
indicates the width of the line and the slope of the width. Specify a delta X
and Y value for each vector relative to the target X and Y. To determine the
proper X and Y values for the vectors, subtract the X and Y values of the
endpoint from those of the starting point to determine a delta value.

The length fields are ignored in this operation.

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both the X and Y source coordinates.

PERFORMANCE NOTE: Lines are drawn faster if Vector_l specifies a slope of less than 45
degrees.

EXAMPLE The following FORTRAN program draws a complex line to the screen as
follows:

1 Creates a bitmap pattern

2 Uses UISDC$LOAD_BITMAP to load the bitmap

3 Specifies an opcount of 1

4 Initializes the Variable block with the offset and extent of the specified
bitmap pattern

5 Initializes the Variable block with a starting position of (50,50)

6 Initializes the Variable block with the deltas of the length and width
endpoint coordinates

! Calling program

! ************************
* BITMAP FUNCTION *

! ************************

INTEGER*4 FUNCTION GET_BITMAP_ID
! Declare the storage
IMPLICIT INTEGER*4(A-Z)
COMMON /WINDOW/ WD_ID, VD_ID
INTEGER*4 BITMAP_ID
INTEGER*2 BITMAP(l6)

window ID

5-25

DOP Structures
Draw Complex Line

5-26

1 Load the bitmap values
BITMAP(l) 'AAAA'X
BITMAP(2) '5555' X
BITMAP(3) 'AAAA'X
8ITMAP(4) '5555'X
BITMAP(S) 'AAAA'X
8ITMAP(6) '5555'X
BITMAP(7) 'AAAA' X
BITMAP(8) '5555'X
BITMAP(9) 'AAAA'X
BITMAP(lO) '5555'X
BITMAP(ll) 'AAAA'X
BITMAP(12) '5555 'X
BITMAP(l3) 'AAAA'X
BITMAP(l4) '5555'X
BITMAP(15) 'AAAA' X
BITMAP(l6) '5555'X

1 Load the
BITMAP_ID
2
2
2
2

bitmap from buffer
UISDC$LOAD_BITMAP

GET_BITMAP ID = BITMAP_ID
END ! function

1 * COMPLEX LINES SUBROUTINE *
1 ****************************

to QDSS memory
(WD_ID, window ID
BITMAP, bitmap address
32, bitmap length (bytes)
16, bitmap width, in pixels
1) bi ts/pixel

SUBROUTINE SUB_COMPLEX_LINE (DOP, DOP_VAR)
INCLUDE 'VWSSYSDEF'

1 Declare the GET_BITMAP_ID function
INTEGER*4 GET_BITMAP_ID

! Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

! Associate the predefined variable structure w/ DOP_VAR
RECORD /DOP_MOVE_R_ARRAY/ DOP_VAR

! Load the values
DOP.DOP$W_ITEM_TYPE = DOP$C_DRAW_COMPLEX_LINE
DOP.DOP$W_OP_COUNT = 1
DOP.DOP$L_BITMAP_ID = GET_BITMAP_ID() ! function call

DOP_VAR.DOP_MOVE_R$W_X_SOURCE = 0
DOP VAR.DOP MOVE R$W Y SOURCE = 0
DOP=VAR.DOP=MOVE=R$W=WIDTH = 10
DOP_VAR.DOP_MOVE_R$W_HEIGHT = 10
DOP VAR.DOP MOVE R$W X TARGET = 50
DOP-VAR.DOP-MOVE-R$W-Y-TARGET = 50
DOP-VAR.DOP-MOVE-R$W-X-TARGET VECl 300
DOP-VAR.DOP-MOVE-R$W-Y-TARGET-VEC1 300
DOP=VAR.DOP=MOVE=R$W=X=TARGET=VEC2 -20
DOP_VAR.DOP_MOVE_R$W_Y_TARGET_VEC2 -30

RETURN
END

DOP Structures
Draw Fixed Text

Draw Fixed Text

unique block
(text_args)

variable block
(dop_ftext_array)

DESCRIPTION

This operation describes the additional DOP structure needed to draw
fixed-width text to the screen.

Field Use

DOP$W_ TEXT _HEIGHT Height of each character, in pixels. This value is
constant for each font.

DOP$W_ TEXT _WIDTH Width of each character.

DOP$W_ TEXT _STARTING_ The viewport relative X coordinate for the starting
X position of the text on the screen.

DOP$W _TEXT _STARTING_ The viewport relative Y coordinate for the starting
Y position of the text on the screen.

Field Use

DOP _FTEXT$W_OFFSET _X X coordinate of the offset into the font where a
specific character is located.

DOP _FTEXT$W_OFFSET _ Y Y coordinate of the offset into the font where a
specific character is located.

Variable-Length Constant: dop _ftext$c_length

The Draw Fixed Text operation enables you to Write fixed-width text to
the screen. To draw scaled, rotated, or differently spaced text, use the
Move/Rotate DOP.

Relevant Common Block Fields

To draw fixed-width text to the screen, first load a bitmap that contains a
fixed-width font from processor memory to the offscreen bitmap memory.
Use the UISDC$LOAD_BITMAP routine to load a bitmap. This routine
returns a bitmap ID that must be loaded in the bitmap_ID field of the
Common block. (Section 5.7 describes loading bitmaps with the UISDC
interface.)

Initializing the Unique Block

The Unique block describes the height and width of the specified font and
the position to start writing on the screen. You must initialize all these
fields. When you write text, you specify the starting point as the upper left
corner of the first character (provided the character height is specified as a
positive number).

5-27

DOP Structures
Draw Fixed Text

Initializing the Variable Block

The Variable block specifies an offset into the font to indicate which
character to write.

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both the X and Y source coordinates.

EXAMPLE The following FORTRAN program writes two characters of text to the
screen as follows steps:

5-28

1 Creates a two-letter bitmap-H I (using a function)

2 Uses UISDC$LOAD _BITMAP to load the bitmap

3 Specifies an opcount of 2

4 Initializes the Unique block with a starting position of (100, 100)

5 Initializes the Variable block with the offsets of the two characters

Note that the specified offset values seem to write the letters in reverse
order because of the way VAX memory loads the bitmap: the I is loaded at
(0,0).

! Calling program

! Function that defines
! and loads the bitmap (font)
INTEGER*4 FUNCTION GET_BITMAP_ID

l Declare the storage
IMPLICIT INTEGER*4(A-Z)
COMMON /WINDOW/ WD_ID, VD_ID
INTEGER*4 BITMAP_ID
INTEGER*2 BITMAP(l6)

! Load the bitmap values
BITMAP(l) '423E'X
BITMAP(2) '4208'X
BITMAP(3) '4208'X
BITMAP(4) '4208'X
8ITMAP(5) '7E08'X
BITMAP(6) '4208'X
BITMAP(7) '4208'X
BITMAP(8) '423E'X

window ID

! Load the bitmap from buffer to QDSS memory
BITMAP_ID = UISDC$LOAD_BITMAP (WD_ID, window ID
2 BITMAP, bitmap address
2 32, bitmap length (bytes)
2 16, bitmap width, in pixels
2 1) bits/pixel

GET BITMAP ID = BITMAP ID
END - .! function -

! Subroutine that draws the text
! **********

SUBROUTINE FIXED_TEXT (DOP, DOP_VAR)

IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
l Declare the GET_BITMAP_ID function
INTEGER*4 GET_BITMAP_ID

l Associate the predefined structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

l Build the Variable Block
STRUCTURE /VARIABLE_BLOCK/

INTEGER*2 OFFSET_Xl
INTEGER*2 OFFSET_Yl

INTEGER*2 OFFSET_X2
INTEGER*2 OFFSET_Y2

END STRUCTURE l Variable block

l Associate the structure with the DOP
RECORD /VARIABLE_BLOCK/ DOP_VAR

l Load the values
DOP.DOP$W ITEM TYPE = DOP$C DRAW FIXED TEXT
DOP.DOP$W-OP COUNT = 2 - - -
DOP.DOP$L=BITMAP_ID = GET_BITMAP_ID()

DOP.DOP$W TEXT HEIGHT = 8
DOP.DOP$W=TEXT=WIDTH = 8
DOP.DOP$W TEXT STARTING X = 100
DOP.DOP$W=TEXT=STARTING=Y = 100

DOP_VAR.OFFSET_Xl 8
DOP_VAR.OFFSET_Yl 0

DOP_VAR.OFFSET_X2 0
DOP_VAR.OFFSET_Y2 0

RETURN
END

reversed in memory

function call

DOP Structures
Draw Fixed Text

5-29

DOP Structures
Draw Lines

Draw Lines

unique block
(plot_args)

variable block
(dop_line_array)

This operation describes the additional structure needed to draw lines with
specified end points.

Field Use
DOP$W_PLOT _FILL_WIDTH If a bitmap_ID is specified in the Common block,

this field is the width of the line style bitmap.
Otherwise, it is Ignored.

DOP$W_PLOT _FILL_HEIGHT If a bitmap_ID is specified in the Common block,
this field is the height of the line style bitmap.
Otherwise, it is ignored.

DOP$W_PLOT _FILL_
PATTERN_X

DOP$W_PLOT _FILL_
PATTERN_Y

Field
DOP _LINE$W_X1

DOP _LINE$W_ Y1

DOP _LINE$W_x2

DOP _LINE$W_ Y2

Use

If a bitmap_ID is specified in the Common block,
this field is the X offset into the line style bitmap.
Otherwise, It is ignored.

If a bitmap_ID is specified in the Common block,
this field is the X offset into the line style bitmap.
Otherwise, it is ignored.

X coordinate of the starting point of the line

Y coordinate of the starting point of the line

X coordinate of the end point of the line

Y coordinate of the end point of the line

Variable-Length Constant: dop _line$c_length

DESCRIPTION The Draw Lines operation enables you to draw the following structures:

5-30

• A line

• A series of lines

• A polygon (a series of connected lines)

Draw Lines differs from Fill Lines in that it begins drawing at the specified
starting point with the bitmap offset specified (if specified). Fill Lines
begins drawing at the specified starting point revealing the repeated fill
pattern relative to the lower left corner of the screen.

The width of lines drawn with this operation is always one pixel. The last
pixel of each line is not drawn.

EXAMPLE

Relevant Common Block Fields

DOP Structures
Draw Lines

You can specify a bitmap ID in the Common block to indicate a line style
to be used when drawing a line. If you do, use the fill_pattern_x and fill_
pattern_y fields of the Unique block to specify an offset into the bitmap as a
starting point for the line style and use the width and height fields to specify
the extents of the bitmap to use.

By default, the system uses a fill pattern of all ones.

Initializing the Unique Block

If you specify a bitmap in the Common block, you must specify the bitmap
offset and extents in the Unique block. If you do not specify a bitmap, the
Unique block is ignored by a Draw Lines operation.

Initializing the Variable Block

To draw a line, specify its two end points in the Variable block of the DOP
structure. To draw a series of lines (or a polygon), specify the end points
of all the lines in the Variable block and specify the number of lines you
want to draw in the opcount field of the Common block.

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both the X and Y source coordinates.

This FORTRAN program performs the following steps to draw a polygon:

1 Uses the predefined structure to initialize the fixed portion of the DOP
to write four lines

2 Defines and initializes the Variable portion of the DOP to hold the end
point coordinates of four connecting lines

! Calling program

SUBROUTINE D_LINES (DOP, DOP_VAR)

INCLUDE 'VWSSYSDEF'

! Associate the predefined structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

! Build the Variable Block
STRUCTURE /VARIABLE_BLOCK/

INTEGER*2 FIRST_LINE_Xl
INTEGER*2 FIRST_LINE_Yl
INTEGER*2 FIRST_LINE_X2
INTEGER*2 FIRST_LINE_Y2

INTEGER*2 SECOND_LINE_Xl
INTEGER*2 SECOND_LINE_Yl
INTEGER*2 SECOND_LINE_X2
INTEGER*2 SECOND_LINE_Y2

INTEGER*2 THIRD_LINE_Xl
INTEGER*2 THIRD_LINE_Yl
INTEGER*2 THIRD_LINE_X2
INTEGER*2 THIRD_LINE_Y2

5-31

DOP Structures
Draw Lines

5-32

INTEGER*2 FOURTH_LINE_Xl
INTEGER*2 FOURTH_LINE_Yl
INTEGER*2 FOURTH_LINE_X2
INTEGER*2 FOURTH_LINE_Y2

END STRUCTURE ! dop_structure

! Associate the structure with the DOP_VAR address
RECORD /VARIABLE_BLOCK/ DOP_VAR

! Load the DRAW LINE values
DOP.DOP$W ITEM TYPE = DOP$C DRAW LINES
DOP.DOP$W=OP_COUNT = 4 - -

DOP_VAR.FIRST_LINE_Xl 50
DOP_VAR.FIRST_LINE_Yl 50
DOP_VAR.FIRST_LINE_X2 50
DOP_VAR.FIRST_LINE_Y2 75

DOP_VAR.SECOND_LINE_Xl 50
DOP_VAR.SECOND_LINE_Yl 75
DOP_VAR.SECOND_LINE_X2 75
DOP_VAR.SECOND_LINE_Y2 75

DOP_VAR.THIRD_LINE_Xl 75
DOP_VAR.THIRD_LINE_Yl 75
DOP_VAR.THIRD_LINE_X2 75
DOP_VAR.THIRD_LINE_Y2 50

DOP VAR.FOURTH LINE Xl 75
DOP=VAR.FOURTH=LINE=Yl 50
DOP VAR.FOURTH LINE X2 50
DOP=VAR.FOURTH=LINE=Y2 = 50

RETURN
END

Draw Points

unique block
(plot_args)

variable block
(dop_point_array)

DESCRIPTION

.DOP Structures
Draw Points

This operation describes the additional DOP structure you need to draw
points to the screen.

Field
DOP$W_PLOT _FILL_
WIDTH

DOP$W_PLOT _FILL_
HEIGHT

DOP$W_PLOT _FILL_
PATTERN_X

DOP$W_PLOT _FILL_
PATTERN_Y

Field
DOP _POINT$W _X

DOP _POINT$W_ Y

Use

Use

If a bitmap ID is specified in the .Common block,
this field is the width of the bitmap. Otherwise, it is
ignored.

If a bitmap ID is specified in the Common block,
this field is the height of the bitmap. Otherwise, it is
ignored.

If a bitmap ID is specified in the Common block, this
field is the X offset into the bitmap. Otherwise, it is
ignored.

If a bitmap ID is specified in the Common block, this
field is the X offset into the bitmap. Otherwise, it is
ignored.

X coordinate of the point to draw

Y coordinate of the point to draw

Variable-Length Constant: dop _draw _points$c_length

The Draw Points operation enables you to draw a point, a series of points,
or a series of points that correspond to a specified pattern to the screen.

Relevant Common Block Fields

If you specify a bitmap ID in the Common block to indicate a pattern to
use when drawing a point or a series of points, use the following fields:

• fill_pattem_x and fill_pattem_y fields of the Variable block-To specify an
offset into the bitmap as a starting point for the pattern

• width and height fields-To specify the extents of the bitmap

The pattern is incremented one pixel/point and repeats when the width is
reached. This operation is useful for drawing a thin patterned curve.

By default, the system uses a fill pattern of all ones.

5-33

DOP Structures
Draw Points

5-34

Initializing the Variable Block

To draw a point, specify the X and Y coordinates of the point in the
Variable block. To draw a series of points, specify the X and Y coordinates
of all the points in the Variable block and specify the number of points you
want to draw in the opcount field of the Common block.

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both the X and Y source coordinates.

DOP Structures
Draw Points

EXAMPLE The following FORTRAN example draws three points to the screen.

Calling program

SUBROUTINE DRAW_POINT (DOP, DOP_VAR)

INCLUDE 'VWSSYSDEF'

I Associate the predefined structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

I Build the Variable Block
STRUCTURE /VARIABLE_BLOCK/

INTEGER*2 FIRST_POINT_X
INTEGER*2 FIRST_POINT_Y

INTEGER*2 SECOND_POINT_X
INTEGER*2 SECOND_PO!NT_Y

INTEGER*2 THIRD_POINT_X
INTEGER*2 THIRD_POINT_Y

END STRUCTURE ! dop_structure

l Associate the structure with the DOP_VAR address
RECORD /VARIABLE_BLOCK/ DOP_VAR

l Load the DRAW POINT values
DOP.DOP$W ITEM TYPE = DOP$C DRAW POINTS
DOP.DOP$W=OP_COUNT = 3 - -

DOP_VAR.FIRST_POINT_X = 5
DOP_VAR.FIRST_POINT_Y = 5

DOP_VAR.SECOND_POINT_X = 5
DOP_VAR.SECOND_POINT_Y = 25

DOP_VAR.THIRD_POINT_X = 25
DOP_VAR.THIRD_POINT_Y = 25

RETURN
END

5-35

DOP Structures
Draw Variable Text

Draw Variable Text

unique block
(text_args)

variable block
(dop_vtext_array)

DESCRIPTION

5-36

This operation describes the additional DOP structure needed to draw text
of variable width to the screen.

Field

DOP$W_ TEXT _HEIGHT

DOP$W_ TEXT _WIDTH

DOP$W_ TEXT _STARTING_X

DOP$W_ TEXT_STARTING_ Y

Use

Height of each character, in pixels; this value is
constant for each font

Ignored for variable-width fonts

The viewport-relative X coordinate for the starting
position of the text on the screen

The viewport-relative Y coordinate for the starting
position of the text on the screen

Field Use

DOP _FTEXT$W_OFFSET _X X coordinate of the offset into the font where a
specific character is located

DOP _FTEXT$W_OFFSET _ Y Y coordinate of the offset into the font where a
specific character is located

DOP _VTEXT$W_WIDTH Width of the specified character

Variable-Length Constant: dop_ vtext$c_length

The Draw Variable Text operation enables you to write variable-width text
to the screen. To draw scaled, rotated, or differently spaced text, use the
Move/Rotate DOP.

Relevant Common Block Fields

To draw variable-width text to the screen, first load a bitmap with a
variable-width font from processor memory to the offscreen bitmap
memory. To load a bitmap, use the UISDC$LOAD_BITMAP routine.
This routine returns a bitmap ID that must be loaded in the bifmap_ID field
of the Common block for this operation to succeed. (See Section 5. 7 for
details about loading bitmaps.)

Initializing the Unique Block

The Unique block describes both the height of the specified font and the
position to start writing on the screen. The width field is ignored for this
operation. Note that when you write text, the position you specify as the
starting point is the upper left corner of the first character (provided the
character height is specified as a positive number).

EXAMPLE

DOP Structures
Draw Variable Text

Initializing the Variable Block

The Variable block indicates which character to write as follows:

• Specifies an offset into the font

• Specifies the width of the character

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both the X and Y source coordinates.

The following FORTRAN program writes three characters of text to the
screen (the word LIP) by taking the following steps:

1 Uses a function to creates a 3-letter bitmap-PL I

2 Uses UISDC$LOAD_BITMAP to load the bitmap

3 Specifies an opcount of 3

4 Initializes the Unique block with a starting position of (100, 100)

5 Initializes the Variable block with the offsets of the three characters (in
the proper order) and their respective widths ·

Note that because of the way VAX memory loads the bitmap, the specified
offset values appear reversed: the I is loaded at (0,0).

5-37

DOP Structures
Draw Variable Text

5-38

Calling program

Function that defines
and loads the bitmap (font)

INTEGER*4 FUNCTION GET_BITMAP_ID l window ID

l Declare the storage
IMPLICIT INTEGER*4(A-Z)
COMMON /WINDOW/ WD_ID, VD_ID
INTEGER*4 BITMAP ID
INTEGER*2 BITMAP(l6)

l Load the bitmap values
BITMAP(l) = '784E'X
BITMAP(2) '4844'X
8ITMAP(3) '4844'X
BITMAP(4) = '7844'X
BITMAP(S) '0844'X
8ITMAP(6) '0844'X
BITMAP(7) '0844'X
BITMAP(8) '09CE'X

to QDSS memory l Load the bitmap from buffer
BITMAP_ID UISDC$µOAD_BITMAP
2

(WO ID, ! wlndow ID
BITMAP, bitmap address

2 32, bitmap length (bytes)
2 16, bitmap width, !n pixels
2 1) bits/pixel

GET_BITMAP ID = BITMAP_ID
END l function

l Subroutine that draws the text
l **********

SUBROUTINE VAR_TEXT (DOP, DOP_VAR)

IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
l Declare the GET_BITMAP_ID function
INTEGER*4 GET_BITMAP_ID

l Associate the predefined structure w/ DOP
RECORD /QOP_STRUCTURE/ DOP

I Build the Variable Block
STRUCTURE /VARIABLE_BLOCK/

INTEGER*2 OFFSET_Xl
INTEGER*2 OFFSET_Yl
INTEGER*2 WIDTH!

INTEGER*2 OFFSET_X2
INTEGER*2 OFFSET_Y2
INTEGER*2 WIDTH2

INTEGER*2 OFFSET_X3
INTEGER*2 OFFSET_Y3
INTEGER*2 WIDTH3

END STRUCTURE l Variable block

I Associate the structure with the DOP
RECORD /VARIABLE_BLOCK/ DOP_VAR

I Load the values
DOP.OOP$W ITEM TYPE = DOP$C DRAW VAR TEXT
DOP.DOP$W-OP COUNT = 3 - - -
DOP.DOP$L=BITMAP_ID = GET_BITMAP_ID() function call

DOP.DOP$W TEXT HEIGHT = 8
DOP.DOP$W-TEXT-STARTING X = 100
DOP.DOP$W:TEXT:STARTING:Y = 100

DOP VAR.OFFSET Xl = 5 ! reversed in memory
DOP:VAR.OFFSET:Yl = 0 ! 'L'
DOP_VAR.WIDTHl = 5

DOP_VAR.OFFSET_X2 = 0 'I'
DOP_VAR.OFFSET_Y2 = 0
DOP_VAR.WIDTH2 = 5

DOP_VAR.OFFSET_X3 = 10 ! 'P'
DOP_VAR.OFFSET_Y3 = 0
DOP_VAR.WIDTH3 = 6

RETURN
END

DOP Structures
Draw Variable Text

5-39

DOP: Structures
Fill Lines

Fill Lines

unique block
{plot_args)

variable block
(dop_line_array)

DESCRIPTION

This operation describes the additional structure needed to draw lines,
using a specified bitmap pattern.

Field
DOP$W_PLOT _FILL_WIDTH

DOP$W_PLOT _FILL_HEIGHT

Use
Width of fill pattern (from off screen bitmap),
in bits; bitmap is identified in bitmap_ID field

Height of fill pattern (from off screen bitmap),
in bits; bitmap is identified in bitmap_ID field

DOP$W_PLOT _FILL_PATTERN_X X coordinate in the bitmap from which to
base the fill pattern; bitmap is Identified in
bitmap_ID field

DOP$W_PLOT _FILL_PATTERN_ Y Y coordinate in the bitmap from which to
base the fill pattern; bitmap is identified in
bitmap_ID field

Field
DOP _LINE$W_X1

DOP _LINE$W_ Y1

DOP _LINE$W_X2

DOP _LINE$W_ Y2

Use
X coordinate of the starting point of the line

Y coordinate of the starting point of the line

X coordinate of the end point of the line

Y coordinate of the end point of the line

Variable-Length Constant: dop_line$c_length

The Fill Lines operation enables you to draw patterned lines by associating
the lines with a bitmap pattern. Fill Lines differs from Draw Lines in that
it associates the specified bitmap pattern with the whole screen area and
"reveals" the pattern when it draws a line. Draw Lines draws the line,
using the specified pattern.

NOTE: This operation is restricted to drawing horizontal lines. This restriction
might be lifted in a future release.

5-40

Relevant Common Block Fields

To draw a patterned line to the screen, use the UISDC$LOAD_BITMAP
routine to load a bitmap with the pattern from processor memory to the
off screen bitmap memory. This routine returns a bitmap ID that must be
loaded in the bitmap_ID field of the Common block for this operation to
succeed. (See Section 5.7 for details about loading bitmaps.)

DOP Structures
Fill Lines

Initializing the Unique Block

The Unique block describes the portion of the loaded bitmap pattern used
to fill the line.

Initializing the Variable Block

To draw a line, specify the line end points in the Variable block of the DOP
structure. To draw a series of lines, specify the end points of all the lines
in the Variable block and specify the number of lines to draw in the opcount
field of the Common block.

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both the X and Y source coordinates.

EXAMPLE This FORTRAN example program draws a filled line as follows:

1 Uses UISDC$LOAD _BITMAP to load a bitmap pattern

2 Specifies DOP$C_FILL_LINES in the item_type field

3 Defines and initializes the Variable portion of the DOP to hold the
endpoint coordinates of the line

1 Calling program

1 Function that defines
1 and loads the bitmap
INTEGER*4 FUNCTION GET_BITMAP_ID

1 Declare the storage
IMPLICIT INTEGER*4(A-Z)
COMMON /WINDOW/ WD_ID, VD_ID
INTEGER*4 BITMAP_ID
INTEGER*2 BITMAP(16)
1 Load the bitmap values
BITMAP(l) 'AAAA'X
BITMAP(2) '5555'X
BITMAP(3) 'AAAA'X
BITMAP(4) '5555'X
BITMAP(5) 'AAAA'X
BITMAP(6) '5555'X
BITMAP(7) 'AAAA'X
BITMAP(8) '5555' X
BITMAP(9) 'AAAA'X
BITMAP(lO) '5555'X
BITMAP(ll) 'AAAA'X
BITMAP(l2) '5555'X
8ITMAP(l3) 'AAAA'X
BITMAP(l4) '5555'X
BITMAP(l5) 'AAAA'X
BITMAP(16) '5555'X

window ID

1 Load the bitmap from buffer to QDSS memory
BITMAP_ID = UISDC$LOAD_BITMAP (WD_ID, window ID
2 BITMAP, bitmap address
2 32, bitmap length (bytes)
2 16, bitmap width, in pixels
2 1) bi ts/pixel

5-41

DOP Structures
Fill Lines

5-42

GET BITMAP ID = BITMAP ID
END- 1 function -

1 Subroutine that draws the line
I **********

SUBROUTINE F_LINE (DOP, DOP_VAP\

IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
I Declare the GET_BITMAP_ID function
INTEGER*4 GET_BITMAP_ID

I Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

I Associate the predefined variable structure w/ DOP_VAR
RECORD /DOP_LINE_ARRAY/ DOP_VAR

I Load the FILL_LINE v~lues
PARAMETER DOP$C FILL LINE = 5
DOP.DOP$W_ITEM_TYPE : DOP$C_FILL_LINE

DOP.DOP$W OP COUNT = 1
DOP.DOP$L=BITMAP_ID = GET_BITMAP_ID()

DOP.DOP$W PLOT FILL WIDTH = 16
DOP.DOP$W-PLOT-FILL-HEIGHT = 16
DOP.DOP$W-PLOT-FILL-PATTERN X 0
DOP.DOP$W=PLOT=FILL=PATTERN=Y 0

DOP_VAR.DOP_LINE$W_Xl 50
DOP VAR.DOP LINE$W Yl 50
DOP=VAR.OOP=LINE$W=X2 150
DOP_VAR.DOP_LINE$W_Y2 50

RETURN
END

I function call

Fill Point

unique block
(plot_args)

variable block
(dop_point_array)

DESCRIPTION

DOP Structures
Fill Point

This operation describes the additional DOP structure needed to map a
point to a defined bitmap.

Field
DOP$W_PLOT _FILL_WIDTH

DOP$W_PLOT _FILL_HEIGHT

DOP$W_PLOT _FILL_PATTERN_)(

DOP$W_PLOT _FILL_PATTERN_ Y

Field Use

Use
Width of fill pattern (from offscreen bitmap),
in bits; bitmap is identified in bitmap_ID field

Height of fill pattern (from offscreen bitmap),
in bits; bitmap is identified in bitmap_ID field

X coordinate in the bitmap from which to
base the fill pattern; bitmap is identified In
bitmap_ID field

Y coordinate in the bitmap from which to
base the fill pattern; bitmap is identified in
bitmap_ID field

DOP _POINT$W_X

DOP _POINT$W_ Y

X coordinate of the point to fill

Y coordinate of the point to fill

The Fill Point operation enables you to map individual points you draw to
the screen to a bitmap pattern you specify. If the corresponding bit in the
bitmap is set, the point is drawn to the screen (fill~d); if not, then the point
is not drawn.

Relevant Common Block Fields

To draw patterned points to the screen, first load a bitmap that contains the
pattern from processor memory to the offscreen bitmap memory. Use the
UISDC$LOAD_BITMAP routine to load a bitmap. This routine returns a
bitmap ID that must be loaded in the bitmap_ID field of the Common block
in order for this operation to succeed. (See Section 5. 7 for details about
loading bitmaps.)

Initializing the Unique Block

The Unique block describes which portion of the loaded bitmap pattern
should be used to determine whether to fill the point.

5-43

DOP Structures
Fiii Point

EXAMPLE

5-44

Initializing the Variable Block

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap .in QDSS memory,
specify 0 for both X and Y source coordinates.

This sample FORTRAN program segment draws 90 points in a patterned
sine curve as follows:.

1 Creates a bitmap pattern (in a function)

2 UsesUISDC$LOAD_BITMAP to load the bitmap

3 Specifies an opcount of 90

4 Initializes the Unique block

5 Uses the SIND and REAL functions to calculate the points on the sine
curve

6 Initializes the Variable block with the points by indexing into the
Variable block array

Calling program

Function that defines
and loads the bitmap

INTEGER*4 FUNCTION.GET_BITMAP_ID

! Declare the storage
IMPLICIT INTEGER*4(A-Z)
COMMON /WINDOW/ WO ID, VD ID
INTEGER*4 BITMAP_ID -
INTEGER*2 BITMAP(16)

! Load the bitmap values
BITMAP(l) 'AAAA'X
BITMAP(2) '5555'X
8ITMAP(3) 'AAAA'X
BITMAP(4) '5555'X
BITMAP(5) 'AAAA' X
BITMAP(6) '5555'X
BITMAP(7) 'AAAA'X
BITMAP(B) '5555'X
BITMAP(9) 'AAAA'X
BITMAP(lO) '5555'X
8ITMAP(ll) 'AAAA'X
BITMAP(12) '5555'X
BITMAP(l3) 'AAAA'X
BITMAP(14) '5555 'X
BITMAP(l5) 'AAAA'X
BITMAP(16) '5555'X

window ID

! Load the
BITMAP_ID
2

bitmap from buffer
UISDC$LOAD_BITMAP

to QDSS memory
(WD_ID, window ID
BITMAP, ! bitmap address

2 32, bitmap length (bytes)
2 16, bitmap width, in pixels
2 1) bi ts/pixel

GET_BITMAP ID = BITMAP_ID
END ! function

! *************************
! * FILL POINT SUBROUTINE *
! *************************

SUBROUTINE F_POINT (DOP, DOP_VAR)

IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
l Declare the GET_BITMAP_ID function
INTEGER*4 GET_BITMAP_ID

! Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

! Build the Variable Block
STRUCTURE /VARIABLE_BLOCK/

INTEGER*2 POINTS(60)
END STRUCTURE ! dop_structure
! Associate the structure with the DOP_VAR address
RECORD /VARIABLE_BLOCK/ DOP_VAR

! Load the DRAW POINT values
DOP.DOP$W ITEM TYPE = DOP$C FILL POINT
DOP.DOP$W=OP_COUNT = 90 - -
DOP.DOP$L_BITMAP_ID = GET_BITMAP_ID()
DOP.DOP$W_PLOT_FILL_WIDTH = 16
DOP.DOP$W PLOT FILL HEIGHT = 16
DOP.DOP$W-PLOT-FILL-PATTERN X 0
DOP.DOP$W=PLOT=FILL=PATTERN=Y 0

function call

DOP Structures
Fill Point

5-45

DOP Structures
Fill PC>lnt

5-46

l Use a loop to load 30 points
l set counters
x = 1
X COORD = 1
y:coORD = 2

DO WHILE (X .LE. 91)
DOP_VAR.POINTS(X_COORD) = X
DOP_VAR.POINTS(Y_COORD) = SIND(REAL(X)) * 100

l Increment counters
x = x + 1
x_COORD = x_COORD + 2
Y_COORD = Y_COORD + 2

END DO

RETURN
END

Fill Polygon

unique block
(plot_args)

variable block
(dop_poly_array)

DOP Structures
Fill Polygon

This operation describes the additional DOP structure to create a polygon
and fill it with a specified pattern.

Field
DOP$W_PLOT _FILL_WIDTH

DOP$W_PLOT _FILL_HEIGHT

DOP$W _PLOT _FILL_PATTERN_X

DOP$W_PLOT _FILL_PATTERN_ Y

Field
DOP _POL Y$W_LEFT _X1

DOP _POL Y$W_LEFT _ Y1

DOP _POL Y$W_LEFT _X2

DOP _POL Y$W_LEFT _ Y2

DOP _POL Y$W_RIGHT _X1

DOP _POLY$W_RIGHT _ Y1

DOP _POL Y$W_RIGHT _X2

DOP _POL Y$W_RIGHT _ Y2

Use

Use

Width of fill pattern (from offscreen bitmap),
in bits; bitmap Is identified in bitmap_/D field.
If no bitmap is specified, this field Is ignored.

Height of fill pattern (from offscreen bitmap),
in bits; bitmap is identified in bitmap_ID field.
If no bitmap is specified, this field is ignored.

X coordinate in the bitmap from which to
base the fill pattern; bitmap is identified in
bitmap_ID field. If no bitmap is specified,
this field is ignored.

Y coordinate in the bitmap from which to
base the fill pattern; bitmap is identified in
bitmap_ID field. If no bitmap is specified,
this field is ignored.

X coordinate of the starting point of a line that
defines the left edge of a polygon

Y coordinate of the starting point of a line that
defines the left edge of a polygon

X coordinate of the end point of a line that
defines the left edge of a polygon

Y coordinate of the end point of a line that
defines the left edge of a polygon

X coordinate of the starting point of a line that
defines the right edge of a polygon

Y coordinate of the starting point of a line that
defines the right edge of a polygon

X coordinate of the end point of a line that
defines the right edge of a polygon

Y coordinate of the end point of a line that
defines the right edge of a polygon

Variable-Length Constant: dop_poly$c_length

5-47

DOP Structures
Fill Polygon

DESCRIPTION The Fill Polygon operation enables you to write a polygon (more precisely,
a trapezoid) filled with a pattern or a solid color. The trapezoid you create
must have top and bottom lines that are both parallel and horizontal. That
is, Y coordinates of the upper corners must be the same, and Y coordinates
of the lower corners must be the same.

NOTE: Some of these restrictions might be lifted in a future release.

Relevant Common Block Fields

To draw a pattern-filled polygon to the screen, first use the UISDC$LOAD _
BITMAP routine to load a bitmap with the desired pattern from processor
memory to the off screen bitmap memory. This routine returns a bitmap
ID that must be loaded in the bitmap_ID field of the Common block. (See
Section 5.7 for details about loading bitmaps.)

To fill the polygon with the solid foreground color, specify a bitmap ID of
0 and omit the Unique block.

Initializing the Unique Block

The Unique block describes which portion of the loaded bitmap pattern
you should use to fill the polygon.

Initializing the Variable Block

The Variable block describes the polygon (more precisely, the trapezoid)
by specifying the end points of the two lines (the left and right edges of the
polygon). Note that the top and bottom lines of the trapezoid must be both
parallel and horizontal. Therefore, Y coordinates of the upper corners must
be the same, and Y coordinates of the lower corners must be the same.

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both the X and Y source coordinates.

EXAMPLE This FORTRAN sample program segment draws a filled polygon as follows:

1 Creates a bitmap pattern (in a function)

5-48

2 Uses UISDC$LOAD_BITMAP to load the bitmap

3 Specifies an opcount of 1

4 Initializes the Unique block

5 Initializes the Variable block with the end points of the two sides of the
polygon

! Calling program

Function that defines
! and loads the bitmap

INTEGER*4 FUNCTION GET_BITMAP_ID ! window ID

! Declare the storage
IMPLICIT INTEGER*4(A-Z)
COMMON /WINDOW/ WD_ID, VD_ ID
INTEGER*4 BITMAP_ID
!NTEGER*2 BITMAP(l6)

I Load the bitmap values
BITMAP(l) 'AAAA'X
BITMAP(2) '5555'X
BITMAP(3) 'AAAA'X
BITMAP(4) '5555'X
BITMAP(5) 'AAAA'X
BITMAP(6) '5555'X
BITMAP(7) 'AAAA'X
BITMAP(8) '5555'X
BITMAP(9) 'AAAA'X
BITMAP(lO) '5555'X
BITMAP(11) 'AAAA'X
8ITMAP(l2) '5555'X
8ITMAP(l3) 'AAAA'X
8ITMAP(l4) '5555'X
BITMAP(lS) 'AAAA'X
BITMAP(l6) '5555'X

to QDSS memory ! Load the
BITMAP_ID
2

bitmap from buffer
UISDC$LOAD_BITMAP (WO ID, I window ID

BITMAP, I bitmap address
2 32, bitmap length (bytes)
2 16, bitmap width, in pixels
2 1) bits/pixel

GET_BITMAP ID = BITMAP_ID
END ! function

! **********
I Subroutine that draws the polygon
I **********
SUBROUTINE F_POLYGON (DOP, DOP_VAR)

IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
! Declare the GET_BITMAP_ID function
INTEGER*4 GET_BITMAP_ID

! Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

I Associate the predefined variable structure w/ DOP_VAR
RECORD /DOP_POLY_ARRAY/ DOP_VAR

! Load the POLYGON values
DOP.DOP$W_ITEM_TYPE = DOP$C_FILL_POLYGON

DOP.DOP$W OP COUNT = 1
DOP.DOP$L=BITMAP_ID = GET_BITMAP_ID()

DOP.DOP$W_PLOT_FILL_WIDTH = 16
DOP.OOP$W PLOT FILL HEIGHT = 16
DOP.OOP$W-PLOT-FILL-PATTERN X = 0
DOP.DOP$W=PLOT=FILL=PATTERN=Y = 0

DOP VAR.DOP POLY$W LEFT Xl 10
DOP-VAR.DOP-POLY$W-LEFT-Yl 10
DOP=VAR.DOP=POLY$W=LEFT=X2 50
DOP_VAR.DOP_POLY$W_LEFT_Y2 100

DOP VAR.DOP POLY$W RIGHT Xl 150
DOP=VAR.DOP=POLY$W=RIGHT=Yl 10
DOP VAR.DOP POLY$W RIGHT X2 100
DOP=VAR.DOP=POLY$W=RIGHT=Y2 100

function call

DOP Structures
Fill Polygon

5-49

DOP Structures
Fill Polygon

5-50

RETURN
END

Move Area

unique block

variable block
(dop_move_array)

DESCRIPTION

DOP Structures
Move Area

This operation describes the additional DOP structure needed to move
(copy) a rectangular area on the screen from one point to another.

The Unique block is not relevant to this operation.

Field

DOP _MOVE$W_FILLER

DOP _MOVE$W_X_SOURCE

DOP _MOVE$W_ Y _SOURCE

DOP _MOVE$W_WIDTH

DOP _MOVE$W_HEIGHT

DOP _MOVE$W_X_ TARGET

DOP _MOVE$W_ Y _TARGET

Use
Reserved for use by DIGITAL

X coordinate of the lower left corner of the
source area (area to be moved)

Y coordinate of the lower left corner of the
source area

Width of the area to be moved, in pixels

Height of the area to be moved, In pixels

X coordinate of the lower left corner of the
target area (the area to which the source
area is moved)

Y coordinate of the lower left corner of the
target area

Variable-Length Constant: dop _move$c_length

The Move Area operation enables you to move (copy) a rectangular area
from one point to another, either on the screen or in offscreen memory.

Relevant Common Block Fields

Overlay is the default writing mode loaded into the Common block
(from the ATB) during allocation. When you are performing a Move
Area operation, use COPY mode. To load the UIS$_MODE_ COPY value
into the writing_mode field of the Common block, use the UIS$SET_
WRITING_MODE routine to J.'!lOdify the ATB before you allocate, or use
the predefined offsets to load the field with the value directly.

WRIT$C_S (source only) is the non-UIS environment writing mode that
corresponds to COPY.

Initializing the Variable Block

To move an area, specify the coordinates that define the lower left corner
of the rectangle you want to move (source area), the heigJtt and width of
the area, and the coordinates that define the lower left corner of the area
where you are moving it (target area).

5-51

DOP Structures
Move Area

EXAMPLE The following FORTRAN program draws fixed text to the screen at the
point (100, 100). It then moves (copies) an 8-pixel by 16-pixel rectangle
containing the text from (100, 100) to (50,50).

5-52

In the Move Area DOP, the source rectangle coordinates are (100, 93)
because when text is written to a specified point on the screen (that is,
100,100) the point is considered the upper left corner of the text-but for
Move Area you must specify the lower left corner of the rectangle.

The full calling program is shown to clarify the example.

PROGRAM MOVE_TEXT
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'UISENTRY'
INCLUDE 'UISUSRDEF'
INCLUDE 'VWSSYSDEF'
COMMON /WINDOW/ WD_ID, VD_ID

I Create a display and window
VD_ID = UIS$CREATE_DISPLAY (O.o,o.o,
2 50.0,50.0,
2 15.0,15.0)

WD_ID = UIS$CREATE_WINDOW (VD_ID,

I lower left corner
upper right corner
width & height

2 'SYS$WORKSTATION',
display ID
device name
window banner 2 'DOP Drawing Window')

I Allocate the DOP for DRAW LINES
SIZE = (2 * DOP_FTEXT$C_LENGTH)
DOPl = UISDC$ALLOCATE_DOP (WD_ID, window ID
2 SIZE, I variable portion size, in bytes
2 0) I default ATB number

I Call the FIXED_TEXT subroutine
CALL SUB_FIXED_TEXT (%VAL(DOP1),
2 %VAL(DOP1+DOP$C_LENGTH))

I Queue the DOP asynchronously
CALL UISDC$QUEUE_DOP (WD_ID,
2 %VAL(DOP1))

! Modify the writing mode
CALL UIS$SET_WRITING_MODE
2

in ATB
(VD_ID,
o,

window ID
I DOP address, by value

2
2

1,
UIS$C_MODE_COPY)

default ATB
I modified ATB

new mode

I Allocate the DOP for MOVE_AREA
SIZE DOP MOVE$C LENGTH
DOP2 = UISDC$ALLOCATE_DOP (WD_ID,
2 SIZE,
2 1)

I Call the MOVE_AREA subroutine
CALL SUB_MOVE_AREA (%VAL(DOP2),

I window ID
I size, in bytes
I number of modified ATB

2 %VAL(DOP2+DOP$C_LENGTH))

I Queue the DOP asynchronously
CALL UISDC$QUEUE_DOP (WD_ID,
2 %VAL(DOP2))

CALL SYS$HIBER()

END

* BITMAP FUNCTION *

I ************************

INTEGER*4 FUNCTION GET_BITMAP_ID

window ID
DOP address, by value

I window ID

! Declare the storage
IMPLICIT INTEGER*4(A-Z)
COMMON /WINDOW/ WD_ID, VD_ID
INTEGER*4 BITMAP ID
INTEGER*2 BITMAP(l6)

! Load the bitmap values
BITMAP(l) '423E'X
BITMAP(2) '4208'X
BITMAP(3) '4208'X
BITMAP(4) '4208'X
BITMAP(S) '7E08'X
BITMAP(6) '4208'X
BITMAP(7) '4208'X
BITMAP(8) '4208'X

to QDSS memory ! Load the bitmap from buffer
BITMAP_ID = UISDC$LOAD_BITMAP
2

(WD_ID, window ID
BITMAP, bitmap address

2 32, bitmap length (bytes)
2 16, bitmap width, in pixels
2 1) bi ts /pixel

GET_BITMAP ID = BITMAP_ID
END ! function

! * DRAW FIXED TEXT SUBROUTINE *
I ******************************

SUBROUTINE SUB_IFIXED_TEXT (DOP, DOP_VAR)

IMPLICIT INTEGER*4(A-Z)
INCLUDE 'VWSSYSDEF'
! Declare the GET_BITMAP_ID function
INTEGER*4 GET_BITMAP_ID

! Associate the predefined structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

! Build the Variable Block
STRUCTURE /VARIABLE_BLOCK/

INTEGER*2 OFFSET_Xl
INTEGER*2 OFFSET_Yl

INTEGER*2 OFFSET_X2
INTEGER*2 OFFSET_Y2

END STRUCTURE I Variable block

l Associate the Variable block w/ address
RECORD /VARIABLE_BLOCK/ DOP_VAR

I Load the values
DOP.DOP$W ITEM TYPE = DOP$C DRAW FIXED TEXT
DOP.DOP$W-OP COUNT = 2 - - -
DOP.DOP$L=BITMAP_ID = GET_BITMAP_ID()

DOP.DOP$W TEXT HEIGHT = 8
DOP.DOP$W-TEXT-WIDTH = 8
DOP.DOP$W=TEXT=STARTING_X = 100
DOP.DOP$W_TEXT_STARTING_Y = 100

DOP VAR.OFFSET Xl
DOP=VAR.OFFSET=Yl

8
0

DOP_VAR.OFFSET_X2 0
DOP_VAR.OFFSET_Y2 0

RETURN
END

reversed in memory

* MOVE AREA SUBROUTINE *

function call

DOP Structures
Move Area

5-53

DOP Structures
Move Area

5-54

SUBROUTINE SUB_MOVE_AREA (DOP,DOP_VAR)

INCLUDE 'VWSSYSDEF'

l Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

l Associate predefined Variable Block w/ DOP_VAR
RECORD /DOP_MOVE_ARRAY/ DOP_VAR

l Load the MOVE AREA values
DOP.DOP$W ITEM TYPE = DOP$C MOVE AREA
DOP.DOP$w:oP_COUNT = 1 - -

DOP VAR.DOP MOVE$W X SOURCE = 100
DOP-VAR.DOP-MOVE$W-Y-SOURCE = 93
DOP-VAR.DOP-MOVE$W-WIDTH = 16
DOP-VAR.DOP-MOVE$W-HEIGHT = 8
DOP-VAR.DOP-MOVE$W-X TARGET 50
DOP:VAR.DOP:MOVE$W:Y:TARGET 50

RETURN
END

!text is written in
!negative direction

Move/Rotate Area

DOP Structures
Move/Rotate Area

This operation describes the additional DOP structure needed to move and
rotate an area on the screen to a specified angle (vector) and scale.

unique block The Unique block is not relevant to this operation.

variable block
(dop_move_r _array)

DESCRIPTION

Field

DOP _MOVE_R$W _FILLER

DOP _MOVE_R$W_X_SOURCE

DOP _MOVE_R$W _ Y _SOURCE

DOP _MOVE_R$W_WIDTH

DOP _MOVE_R$W_HEIGHT

DOP _MOVE_R$W_X_ TARGET

DOP _MOVE_R$W_ Y _TARGET

DOP _MOVE_R$W_X_ TARGET_
VEC1

DOP _MOVE_R$W_ Y _TARGET_
VEC1

DOP _MOVE_R$W_L_ TARGET_
VEC1

DOP _MOVE_R$W_X_ TARGET_
VEC2

DOP _MOVE_R$W_ Y _TARGET_
VEC2

DOP _MOVE_R$W_L_ TARGET_
VEC2

Use
Reserved for use by Digital

X coordinate of the lower left corner of
the source area (area to be moved); if a
bitmap_ID is specified in the Common
block, this coordinate is relative to the
bitmap - otherwise it is viewport relative

Y coordinate of the lower left corner of the
source area; if a bitmap_ID is specified
in the Common block, this coordinate is
relative to the bitmap - otherwise it is
viewport relative

Height of the area to be moved, in pixels

Width of the area to be moved, in pixels

X coordinate of the lower left corner of the
target area (the area to which the source
area is moved)

Y coordinate of the lower left corner of the
target area

X coordinate of the end point of vector 1;
the previously specified corner coordinates
are used as the starting point; used to
determine the degree of rotation

Y coordinate of the end point of vector 1

Length of vector 1 ; determines the degree
of scaling

X coordinate of the end point of vector 2;
the previously specified corner coordinates
are used as the starting point; the vector is
used to determine the degree of rotation

Y coordinate of the end point of vector 1

Length of vector 2; determines the degree
of scaling

5-55

DOP Structures
Move/Rotate Area

5-56

The Move Rotate Area operation enables you to move (copy) a rectangular
area from one point to another (either on the screen or .. in off screen
memory) and enables you to rotate and scale the moved copy.

This operation also enables you to move/rotate a rectangular area of a
bitmap identified by the bitmap ID field.

NOTE: If the source is viewport-relative, the viewport must be unobscured and
defined as one region for this operation to work properly. This restriction
does not apply when the bitmap ID is specified.

NOTE: You must specify a value for all the vector fields even if you desire no
scaling; otherwise, your results return undefined.

Relevant Common Block Fields

If you specify the bitmap ID in the bitmap ID field of the Common block,
the x_source and y_source fields of the Variable length block are considered
offsets into the bitmap and the area you move/rotate is from the bitmap.
Typically, you use this feature to move, rotate, and/or scale text.

The default writing mode loaded into the Common block (from the ATB)
during allocation is overlay mode. When you move areas, use COPY mode.
To load the UIS$_MODE_COPY value into the writing mode field of the
Common block, either use the UIS$SET_ WRITING_MODE routine to
modify the A TB before allocating or use the predefined offsets to load
the field with the value directly. WRIT$C_S (source only) is the non-UIS
environment writing mode that corresponds to COPY.

Initializing the Variable Block

To move an area, you must specify the coordinates that define the lower
left corner of the rectangle you want to move (source area), the height and
width of the area, and the coordinates that define the lower left corner of
the area where you are moving it (target area).

To rotate and scale a moved area, specify two vectors, each with the
following values:

• X and Y value-Specify angle of rotation

• Length value-Specifies degree of scaling

One vector relates to the X axis, the other to the Y axis. To determine the
proper X and Y values for the vectors, use the following formulas:

For the X axis vector (VECTOR_l):

x = (original width, in pixels) * COS (desired angle of rotation)
y = (original width, in pixels) * SIN (desired angle of rotation)

For Y axis vector (VECTOR_2):

x = -(original height, in pixels) * SIN (desired angle of rotation)
y = (original height, in pixels) * COS (desired angle of rotation)

Scaling factor is relative to pixels. If the original width of an area is 100
pixels and you specify a VECTOR_l length of 80, the area is down-scaled
by 20%.

DOP Structures
Move/Rotate Area

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both X and Y source coordinates.

EXAMPLE The following FORTRAN program draws an 11- by 16-pixel rectangle at the
point (50,50). It then moves (copies) the rectangle to the point (150,150)
and rotates it 90 degrees. No scaling is specified.

PROGRAM MOVE_TEXT
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'UISENTRY'
INCLUDE 'UISUSRDEF'
INCLUDE 'VWSSYSDEF'
INTEGER*4 WD_ID, VD_ID
COMMON /WINDOW/ WD_ID, VD_ID

I Create a display and window
VD_ID UIS$CREATE_DISPLAY (O.o,o.o,
2 50.0,50.0,
2 15.0,15.0)

lower left corner
upper right corner

! width & height

WD_ID
2
2

UIS$CREATE_WINDOW (VD_ID,
'SYS$WORKSTATION',
'DOP Drawing Window')

display ID
device name
window banner

Allocate the DOP for DRAW_LINES
SIZE = (4 * DOP_LINE$C_LENGTH)
DOP UISDC$ALLOCATE_DOP (WD_ID, window ID
2 SIZE, variable portion size, in bytes
2 0) default ATB number

! Call the DRAW LINES subroutine
CALL D_LINES (%VAL(DOP),
2 %VAL(DOP+DOP$C_LENGTH))

I Queue the DOP asynchronously
CALL UISDC$QUEUE_DOP (WD_ID,
2 %VAL(DOP))

! Modify the writing mode
CALL UIS$SET_WRITING_MODE
2

in ATS
(VD_ID,
O,

DOP address, by value
! Var. block address

window ID
DOP address, by value

2
2

1,
UIS$C_MODE_COPY)

default ATB
modified ATB
new mode

! Allocate the DOP for MOVE_ROTATE
SIZE DOP MOVE R$C LENGTH
DOPl UISDC$ALLOCATE_DOP (WD_ID,
2 SIZE,
2 1)

Call the MOVE_ROTATE subroutine
CALL SUB_MOVE_ROTATE (%VAL(DOP1),

window ID
size, in bytes
number of modified ATS

2 %VAL(D0Pl+DOP$C_LENGTH))

! Queue the DOP asynchronously
CALL UISDC$QUEUE_DOP (WD_ID,
2 %VAL (DOP 1))

CALL SYS$HIBER()

END

! *************************
I * DRAW LINES SUBROUTINE *
! *************************

SUBROUTINE D_LINES (DOP, DOP_VAR)

window ID
DOP address, by value

5-57

DOP Structures
Move/Rotate Area

5-58

INCLUDE 'VWSSYSDEF'

1 Associate the predefined structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

1 Build the Variable Block
STRUCTURE /VARIABLE_BLOCK/

INTEGER*2 FIRST_LINE_Xl
INTEGER*2 FIRST_LINE_Yl
INTEGER*2 FIRST_LINE_X2
INTEGER*2 FIRST_LINE_Y2

INTEGER*2 SECOND_LINE_Xl
INTEGER*2 SECOND _LINE_ Y 1
INTEGER*2 SECOND_LINE_X2
INTEGER*2 SECOND_LINE_Y2

INTEGER*2 THIRD_LINE_Xl
INTEGER*2 THIRD_L!NE_Yl
INTEGER*2 THIRD_LINE_X2
INTEGER*2 THIRD_LINE_Y2
INTEGER*2 FOURTH_LINE_Xl
INTEGER*2 FOURTH_LINE_Yl
INTEGER*2 FOURTH_LINE_X2
INTEGER*2 FOURTH_LINE_Y2

END STRUCTURE ! dop_structure

1 Associate the structure with the DOP_VAR address
RECORD /VARIABLE_BLOCK/ DOP_VAR

! Load the DRAW LINE values
DOP.DOP$W ITEM TYPE = DOP$C DRAW LINES
DOP.DOP$W=OP_COUNT = 4 - -

DOP_VAR.FIRST_LINE_Xl 50
DOP_VAR.FIRST_LINE_Yl 50
DOP_VAR.FIRST_LINE_X2 50
DOP_VAR.FIRST_LINE_Y2 65

DOP_VAR.SECOND_LINE_Xl 50
DOP_VAR.SECOND_LINE_Yl 65
DOP_VAR.SECOND_LINE_X2 60
DOP_VAR.SECOND_LINE_Y2 65

DOP_VAR.THIRD_LINE_Xl 60
DOP_VAR.THIRD_LINE_Yl 65
DOP_VAR.THIRD_LINE_X2 60
DOP_VAR.THIRD_LINE_Y2 50

DOP_VAR.FOURTH_LINE_Xl 60
DOP_VAR.FOURTH_LINE_Yl 50
DOP_VAR.FOURTH_LINE_X2 50
DOP_VAR.FOURTH_LINE_Y2 50

RETURN
END

! * MOVE ROTATE SUBROUTINE *
! ****************************

SUBROUTINE SUB_MOVE_ROTATE (DOP, DOP_VAR)
INCLUDE 'VWSSYSDEF'

! Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

! Associate the predefined variable structure w/ DOP_VAR
RECORD /DOP_MOVE_R_ARRAY/ DOP_VAR

1 Load the values
DOP.DOP$W ITEM TYPE = DOP$C MOVE ROTATE AREA
DOP.DOP$W=OP_COUNT = 1 - - -

DOP VAR.DOP MOVE R$W X SOURCE = 50
DOP-VAR.DOP-MOVE-R$W-Y-SOURCE = 50
DOP:VAR.DOP:MOVE:R$w:wioTH = 11
DOP VAR.DOP MOVE R$W HEIGHT = 16
DOP:VAR.DOP:MOVE:R$W:x_TARGET = 150
DOP VAR.DOP MOVE R$W Y TARGET = 150
DOP:VAR.DOP:MOVE:R$w:x:TARGET_VEC1
DOP VAR.OOP MOVE R$W Y TARGET VECl
DOP-VAR.DOP-MOVE-R$W-L-TARGET-VEC1
DOP-VAR.DOP-MOVE-R$W-X-TARGET-VEC2
DOP:VAR.DOP:MOVE:R$W:Y:TARGET:VEC2
DOP_VAR.DOP_MOVE_R$W_L_TARGET_VEC2

RETURN
END

(11 * COSD (9 0 •))
(11 * SINO(90.))
11
(-16 * SIND(90.))
(16 * COSD(90.))
16

DOP Structures
Move/Rotate Area

5-59

DOP Structures
Resume Viewport Activity

Resume Viewport Activity

This operation describes the additional DOP structure needed for a system
viewport to resume activity on a suspended viewport.

unique block
(stop_args)

Field

DOP$L_DRIVER_ VP _ID

Use
The viewport ID associated with the request queue
to be resumed

DESCRIPTION The Resume Viewport Activity operation resumes activity on a viewport
that was suspended with the Suspend Viewport Activity DOP (or Suspend
Viewport Activity QIO function).

Because the target viewport is suspended, this DOP must be inserted
on the queue of a viewport that is not suspended. In most cases, the
systemwide viewport is used to resume suspended viewports.

Initializing the Unique Block

The Unique block specifies the viewport ID of the viewport to be resumed.
You obtain the viewport ID with the Get Viewport ID QIO at viewport
creation time.

Initializing the Variable Block

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both X and Y source coordinates.

EXAMPLE The following FORTRAN program resumes activity on a viewport whose ID
is passed to the subroutine:

5-60

Calling Program

l *********************
* RESUME SUBROUTINE *

SUBROUTINE RESUME (DOP, DOP_VAR, VP_ID)
INCLUDE 'VWSSYSDEF'

l Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

l Load the value
DOP.DOP$W ITEM TYPE = DOP$C RESUME
DOP.DOP$W-OP COUNT = 1 -
DOP.DOP$L=DRIVER_VP_ID = VP_ID

RETURN
END

DOP Structures
Resume Viewport Activity

5-61

DOP Structures
Scroll Area

Scroll Area

unique block

variable block
(dop_move_array)

DESCRIPTION

5-62

This operation describes the additional DOP structure needed to scroll the
screen display.

The Unique block is not relevant to this operation.

Field

DOP _MOVE$W_FILLER

DOP _MOVE$W_X_SOURCE

DOP _MOVE$W_ Y _SOURCE

DOP _MOVE$W_WIDTH

DOP _MOVE$W_HEIGHT

DOP _MOVE$W_X_ TARGET

DOP _MOVE$W_ Y _TARGET

Use
Reserved for use by Digital

X coordinate of the lower left corner of the
source area (area to be moved)

Y coordinate of the lower left corner of the
source area

Height of the area to be moved, in pixels

Width of the area to be moved, In pixels

X coordinate of the lower left corner of the target
area (the area to which the source area is moved)

Y coordinate of the lower left corner of the target
area

Variable-Length Constant: dop_move$c_length

The Scroll Area operation permits you to move (copy) a rectangular area
either on the screen or in off screen memory. It differs from the Move Area
operation in that it erases (fills with background color) the area specified as
the source. This operation is typically used for onscreen scrolling.

Relevant Common Block Fields

Scroll Area always uses the copy writing mode. It ignores any value
currently contained in the writing_mode field.

Initializing the Variable Block

To scroll an area, specify the coordinates that define the lower left corner
of the rectangle you want to move (source area), the height and width of
the area, and the coordinates that define the lower left come~ of the area
where you are moving it (target area).

DOP Structures
Scroll Area

EXAMPLE The following FORTRAN program scrolls an 11- by 16-pixel rectangle from
the point (50,50) to the point (50, 150).

PROGRAM SCROLL
IMPLICIT INTEGER*4(A-Z)
INCLUDE 'UISENTRY'
INCLUDE 'UISUSRDEF'
INCLUDE 'VWSSYSDEF'
COMMON /WINDOW/ WD_ID, VD_ID

! Create a display and window
VD_ID UIS$CREATE_DISPLAY (O.O,O.O,
2 so.o,so.o,
2 15.0,15.0)

! lower left corner
upper right corner
width & height

WD_ID
2
2

UIS$CREATE_WINDOW (VD ID,
'SYS$WORKSTATION',
'DOP Drawing Window')

display ID
device name
window banner

! Allocate the DOP for DRAW_LINES
SIZE = (4 * DOP_LINE$C_LENGTH)
DOP UISDC$ALLOCATE_DOP (WD_ID,
2 SIZE,
2 0)

! Call the DRAW LINES subroutine
CALL D_LINES (%VAL(DOP),

window ID
variable portion size, in bytes
default ATS number

2 %VAL(DOP+DOP$C_LENGTH))
DOP address, by value

! Var. block address

! Queue the DOP asynchronously
CALL UISDC$QUEUE_DOP (WD_ID,
2 %VAL(DOP))

! Modify the writing mode
CALL UIS$SET_WRITING_MODE
2

in ATS
(VD_ID,
o,

window ID
DOP address, by value

2
2

1,
UIS$C_MODE_COPY)

default ATB
modified ATB
new mode

Allocate the DOP for SCROLL
SIZE DOP MOVE$C LENGTH
DOPl UISDC$ALLOCATE_DOP (WD_ID,
2 SIZE,
2 1)

Call the MOVE_ROTATE subroutine
CALL SUB_SCROLL (%VAL(DOP1),
2 %VAL(DOPl+DOP$C_LENGTH))

! Queue the DOP asynchronously
CALL UISDC$QUEUE_DOP (WD_ID,
2 %VAL(DOP1))

CALL SYS$HIBER()

END

! * DRAW LINES SUBROUTINE *
! *************************

SUBROUTINE D_LINES (DOP, DOP_VAR)

INCLUDE 'VWSSYSDEF'

window ID
size, in bytes
number of modified ATB

window ID
DOP address, by value

! Associate the predefined structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

! Build the Variable Block
STRUCTURE /VARIABLE_SLOCK/

5-63

DOP Structures
Scroll Area

5-64

INTEGER*2 FIRST_LINE_Xl
INTEGER*2 FIRST LINE Yl
INTEGER*2 FIRST=LINE=X2
INTEGER*2 FIRST_LINE_Y2

INTEGER*2 SECOND_LINE_Xl
INTEGER*2 SECOND_LINE_Yl
INTEGER*2 SECOND_LINE_X2
INTEGER*2 SECOND _LINE_ Y2

INTEGER*2 THIRD_LINE_Xl
INTEGER*2 THIRD LINE Yl
INTEGER*2 THIRD-LINE-X2
INTEGER*2 THIRD :LINE= Y2

INTEGER*2 FOURTH_LINE_Xl
INTEGER*2 FOURTH_LINE_Yl
INTEGER*2 FOURTH_LINE_X2
INTEGER*2 FOURTH_LINE_Y2

END STRUCTURE ! dop_structure

l Associate the structure with the DOP_VAR address
RECORD /VARIABLE_BLOCK/ DOP_VAR

l Load the DRAW LINE values
DOP.DOP$W_ITEM_TYPE = DOP$C_DRAW_LINES
DOP.DOP$W_OP_COUNT = 4

DOP_VAR.FIRST_LINE_Xl 50
DOP_VAR.FIRST_LINE_Yl 50
DOP_VAR.FIRST_LINE_X2 50
DOP_VAR.FIRST_LINE_Y2 65

DOP_VAR.SECOND_LINE_Xl 50
DOP VAR.SECOND LINE Yl 65
DOP=VAR.SECOND=LINE=X2 60
DOP_VAR.SECOND~LINE_Y2 65

DOP_VAR.THIRD_LINE_Xl 60
DOP VAR.THIRD LINE Yl 65
DOP:VAR.THIRD:LINE=X2 60
DOP_VAR.THIRD_LINE_Y2 50

DOP_VAR.FOURTH_LINE_Xl 60
DOP_VAR.FOURTH_LINE_Yl 50
DOP VAR.FOURTH LINE X2 50
DOP:VAR.FOURTH:LINE=Y2 50

RETURN
END

l * SCROLL SUBROUTINE *
l ****************************

SUBROUTINE SUB_SCROLL (DOP, DOP_VAR)
INCLUDE 'VWSSYSDEF'

l Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

I Associate the predefined variable structure w/ DOP_VAR
RECORD /DOP_MOVE_ARRAY/ DOP_VAR

l Load the values
DOP.DOP$W_ITEM_TYPE = DOP$C_SCROLL_AREA
DOP.DOP$W_OP_COUNT = 1

DOP VAR.DOP MOVE$W X SOURCE = 50
DOP=VAR.DOP=MOVE$W=Y=SOURCE = 50
DOP VAR.DOP MOVE$W WIDTH = 11
DOP-VAR.DOP-MOVE$W-HEIGHT = 16
DOP-VAR.DOP-MOVE$W-X TARGET 50
DOP:VAR.DOP:MOVE$W:Y:TARGET = 150

RETURN
END

DOP Structures
Scroll Area

5-65

DOP Structures
Start Request Queue

Start Request Queue

This operation describes the additional DOP structure needed for the
system viewport to restart a stopped request queue on another viewport.

unique block
(stop_args)

Field

DOP$L_DRIVER_ VP _ID

Use
Viewport ID associated with the request queue to
be started

DESCRIPTION The Start Request Queue operation starts (or restarts) the processing of
packets on the request queue of the specified viewport.

Typically, this call is made after the queue has been stopped with the
Stop operation. Since the target viewport is stopped, this DOP must be
inserted on the queue of a viewport that is not stopped. In most cases, the
systemwide viewport is used to start stopped viewports.

Initializing the Unique Block

The Unique block specifies the viewport ID of the viewport to be started.
Obtain the viewport ID with the Get Viewport ID QIO at viewport creation
time.

Initializing the Variable Block

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both X and Y source coordinates.

EXAMPLE The following FORTRAN program starts activity on a viewport whose ID is
passed to the subroutine:

5-66

1 Calling Program

1 *********************
1 * START SUBROUTINE *
1 *********************

SUBROUTINE START (DOP, DOP_VAR, VP_ID)
INCLUDE 'VWSSYSDEF'

1 Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

1 Load the value
DOP.DOP$W_ITEM_TYPE = DOP$C_START
DOP.DOP$W OP COUNT = 1
DOP.DOP$L=DRIVER_VP_ID = VP_ID

RETURN
END

DOP Structures
Start Request Queue

5-67

DOP Structures
Stop Request Queue

Stop Request Queue

unique block
(stop_args)

DESCRIPTION

5-68

This operation describes the additional DOP structure needed to stop
removing entries from the specified viewport request queue.

Field

DOP$L_DRIVER_VP _ID

Use

Viewport ID associated with the request queue to
be stopped

The Stop Request Queue operation stops processing on the request queue
of the specified viewport to give the calling process control over the
viewport bitmap. Stopping a viewport request queue ensures that no other
process will modify the bitmap of the stopped viewport. To guarantee
that all previously queued DOPs are processed, insert this DOP on the
queue with the Insert DOP QIO or the Execute DOP UISDC routine. Stop
differs from Suspend in that Stop waits for any DOPs already processing to
complete before returning control.

A viewport management task typically uses this operation to change the
position or occlusion of any viewport in the system (with the Set Viewport
Region QIO).

Once the Stop operation is invoked, no further commands can be executed
from the request queue unless the request queue is explicitly restarted
with the Start Request Queue QIO or DOP (from a viewport other than the
stopped one).

Initializing the Unique Block

The Unique block specifies the viewport ID of the viewport to be stopped.
Obtain the viewport ID with the Get Viewport ID QIO at viewport creation
time.

Initializing the Variable Block

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both X and Y source coordinates.

DOP Structures
Stop Request Queue

EXAMPLE The following FORTRAN program stops activity on a viewport whose ID is
passed to the subroutine.

Calling Program

! * STOP SUBROUTINE *

SUBROUTINE STOP (DOP, DOP_VAR, VP_ID)
INCLUDE 'VWSSYSDEF'

! Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

! Load the value
DOP.DOP$W_ITEM_TYPE = DOP$C_STOP
DOP.DOP$W OP COUNT = 1
DOP.DOP$L=DRIVER_VP_ID = VP_ID

RETURN
END

V4.1-June 1989 5-69

DOP Structures
Suspend Viewport Activity

Suspend Viewport Activity

unique block
(stop_args)

This operation describes the additional DOP structure to suspend activity
on a viewport.

DOP$L_DRIVER_ VP _ID

Field

DOP$L_DRIVER_ VP _ID

Use

The viewport ID associated with the request queue
to be suspended

0

DESCRIPTION The Suspend Viewport Activity operation suspends activity on a specified
viewport.

5-70

Typically, this operation is used to synchronize drawing operations. When
operations are completed, you can resume activity on the viewport by
issuing a $QIO request to resume viewport activity (see Chapter 4) or
invoking the Resume DOP (from a viewport other than the stopped one).
Think of Suspend and Resume as the drawing parallels to the CTRL/S and
CTRL/Q key functions. ·

Stop differs from Suspend in that Stop waits for any DOPs already
processing to complete before returning control.

Initializing the Unique Block

The Unique block specifies the viewport ID of the viewport to be
suspended. Obtain the viewport ID with the Get Viewport ID QIO at
viewport creation time.

Initializing the Variable Block

The QDSS bitmap-memory coordinate system uses an X coordinate that
increases from left to right and a Y coordinate that increases down. For
example, to access the top left corner of a bitmap in QDSS memory,
specify 0 for both X and Y source coordinates.

V4.1-June 1989

DOP Structures
Suspend Viewport Activity

EXAMPLE The following FORTRAN program suspends activity on a viewport whose
ID is passed to the subroutine.

! Calling Program

! *********************
* SUSPEND SUBROUTINE *

! *********************

SUBROUTINE SUSPEND (DOP, DOP_VAR, VP_ID)
INCLUDE 'VWSSYSDEF'

! Associate the predefined fixed structure w/ DOP
RECORD /DOP_STRUCTURE/ DOP

! Load the value
DOP.DOP$W_ITEM_TYPE = DOP$C_SUSPEND
DOP.DOP$W_OP_COUNT = 1
DOP.DOP$L_DRIVER_VP_ID = VP_ID

RETURN
END

V4.1-June 1989 5-71

Using Drawing Operation Primitives

5.7 UISDC DOP Interface

5.7.1

The UISDC DOP interface enables applications that draw within UIS
viewports to use DOPs. The five UISDC routines that compose the
interface follow.

• UISDC$ALLOCATE_DOP-Allocate storage for a DOP

• UISDC$LOAD_BITMAP-Load bitmaps from processor memory into
offscreen bitmap memory (for subsequent use by text or fill pattern
DOPs)

• UISDC$EXECUTE_DOP _ ASYNCH, UISDC$EXECUTE_DOP _SYNCH,
and UISDC$QUEUE_DOP-Submit DOPs to the request queue for
execution

This section describes each routine.

Section 5.3.1 describes how to use UISDC$ALLOCATE_DOP to allocate
DOPs.

Section 5.3.2 describes how to use UISDC$EXECUTE_DQP_ASYNCH,
UISDC$EXECUTE_DOP _SYNCH, and UISDC$QUEUE_DOP to execute
DOPs (and how they differ from one another).

Section 5.7.1 describes how to use UISDC$LOAD_BITMAP.

Loading Bitmaps into Offscreen Memory

, 5-72

Use the UISDC$LOAD_BITMAP routine to load a bitmap. UISDC$LOAD_
BITMAP returns a bitmap identifier (a handle) when you specify a window
ID (where the bitmap will be used), the bitmap address, the length and
width of the bitmap, and the number of bits per pixel (more than one on
color systems).

Use UISDC$LOAD_BITMAP two ways.

1 The bitmap is copied from the user buffer into a driver-maintained
buffer. When the bitmap is accessed, it is copied from the driver­
maintained buffer into off screen memory.

2 A handle (identifier) is created for the bitmap, but the routine relies on
the application to supply the bitmap when it is accessed. This second
method saves space by not loading bitmaps until they are actually
accessed.

To have the driver maintain the bitmap, specify the address of the bitmap
in process memory as the bitmap address parameter. To access the bitmap
in a subsequent DOP, load the bitmap_ID field of the DOP Common block
with the bitmap ID returned by Load Bitmap. The system handles the
storage of this bitmap.

When the system manages bitmap storage, it uses the bitmap glyph as a
backing store address if it has to swap the bitmap out of off screen memory.
That is, when the bitmap is accessed, the system uses the bitmap glyph to
swap the bitmap back into offscreen memory.

V4.1-June 1989

Using Drawing Operation Primitives

To load a bitmap dynamically, specify 0 as the bitmap address parameter,
but still specify the correct length, width, and bits-per-pixel. To access the bitmap
in a subsequent DOP, load the bitmap _ID field of the DOP Common block
with the bitmap ID returned by LOAD_BITMAP and load the bitmap_glyph
field of the Common block with the address of the bitmap in processor
memory.

When you specify a bitmap address of 0 and put the true address in the
bitmap_glyph field, you save system resources. The bitmap is not loaded
until it is accessed, and the application, not the system, is responsible for
saving the bitmap (when it is swapped out, it is unknown by the system).

5-73

UISDC Routines
UISDC$ALLOCATE_DOP

UISDC$ALLOCATE_DOP-Allocate Drawing Packet

FORMAT

RETURNS

ARGUMENTS

5-74

This routine allocates a driver DOP for a particular display window.

dop_address = UISDC$ALLOCATE_DOP wd_id ,size
,atb

VMS Usage: address
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as the address of the DOP in the variable dop _
address or RO 01 AX MACRO). Used in subsequent execution calls.

UISDC$ALLOCA TE_DOP signals all errors; no condition values are
returned.

wd_/d
VMS Usage:
type:
access:
mechanism:

identifier
longword (unsigned)
read only
by reference

The window identifier. The wd_id argument is the address of a longword
that uniquely identifies the display window. This routine associates the
DOP with a window by loading the viewport-related fields of the Common
block with the coordinates from the specified window (to determine the
clipping rectangle). The window identifier is returned to an application
at viewport creation time. See UIS$CREATE_WINDOW in the VMS
Workstation Software Graphics Programming Guide for more information
about the wd_id argument.

size
VMS Usage: longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

Size of the variable portion of the DOP, in bytes. On input, the size
argument is the address of a number that defines the requested size of the
variable portion of the DOP to be allocated.

On output, it is the size of the variable portion of the DOP that was actually
allocated. The size allocated might be smaller than the size you request.
Always use the returned size in subsequent operations.

atb
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

UISDC Routines
UISDC$ALLOCATE_DOP

Attribute block number. The atb argument is the address of the attribute
block which is used to initialize the color, writing_mode, and writing_mask
fields of the Common block.

5-75

UISDC Routines
UISDC$LOAD_BITMAP

UISDC$LOAD_BITMAP-Load Bitmap

FORMAT

RETURNS

ARGUMENTS

5-76

This routine loads a bitmap from processor memory into off screen memory.

bitmap_id = UISDC$LOAD_BITMAP wd_id
,bitmap_adr
,bitmap_len

VMS Usage: identifier
type: longword (unsigned)
access: write only
mechanism: by value

, bitmap_width
, bits_per _pixel

Longword value returned as the bitmap identifier in the variable bitmap _id
or RO (VAX MACRO). This value is used in DOP$L_BITMAP_ID field of
subsequent driver DOPs.

UISDC$LOAD _BITMAP signals all errors; no condition values are
returned.

wdld
VMS-Usage:
type:
access:
mechanism:

identifier
longword (unsigned)
read only
by reference

Display window identifier. The wd_id argument is the address of a
longword that uniquely identifies a display window. The window identifier
is returned to an application at viewport creation time. See UIS$CREATE_
WINDOW in the VMS Workstation Software Graphics Programming Guide for
more information about the wd_id.

bitmap_adr
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Bitmap address. The bitmap_adr argument is the address of a bitmap
located in processor memory.

bltmap_len
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

DESCRIPTION

UISDC Routines
UISDC$LOAD_BITMAP

Bitmap length. The bitmap_len argument is the address of the number that
defines the length of the bitmap in bytes. The length must be a multiple of
2.

bltmap_wldth
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Width of the bitmap. The bitmap_width argument is the address of a
number that defines the width of the bitmap in pixels. If the width of the
bitmap is greater than 1024, the bitmap wraps. Single-plane bitmaps must
have a width that is a multiple of 16.

blts_per _pixel
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The bits_per_pixel argument is the address of a number that defines the
number of bits per pixel. Currently, the values 1 and 8 are supported.

UISDC$LOAD _BITMAP loads a bitmap that resides in processor memory
into the bitmap portion of off screen memory. It returns a bitmap ID for
the loaded bitmap that can be used in DOPs that require a bitmap ID (fill
operations and text operations). In those cases, the returned bitmap ID is
loaded into the DOP$C_BITMAP _ID field of the Common block.

5-77

UISDC Routines
UISDC$EXECUTE_DOP _ASYNCH

UISDC$EXECUTE_DOP _ASYNCH-Execute Drawing
Operation
Primitive
Asynchronously

FORMAT

RETURNS

ARGUMENTS

5-78

This routine starts execution of the specified DOP in the specified display
window and immediately returns control to the application.

UISDC$EXECUTE_DOP _ASVNCH wd_id
,dop_address
,iosb

UISDC$EXECUTE_DOP _ASYNCH signals all errors; no condition values
are returned.

wdld
VMS-Usage:
type:
access:
mechanism:

identifier
longword (unsigned)
read only
by reference

Display window identifier. The wd_id argument is the address of a
longword that uniquely identifies the display window. The window
identifier is returned to an application at viewport creation time.• See
UIS$CREATE_ WINDOW in the VMS Workstation Software Graphics
Programming Guide for more information about the wd_id argument.

dop_address
VMS Usage: vector_byte_unsigned
type: byte_unsigned
access: read only
mechanism: by reference

Drawing Operation Primitive. The dop_address argument is the address of
an array of bytes that compose the DOP. This address is returned by the
UISDC$ALLOCATE_DOP routine.

losb
VMS Usage: cond_ value
type: longword (unsigned)
access: write only
mechanism: by reference

1/0 status block. The iosb argument is the address of an 110 status block
that receives a value indicating that the DOP is queued for execution. The
IOSB also receives notification when the DOP is completed.

DESCRIPTION

UISDC Routines
UISDC$EXECUTE DOP ASVNCH - -

UISDC$EXECUTE_DOP _ASYNCH queues the specified DOP for
execution in the specified window request queue. The execution is
performed asynchronously; the DOP is queued for execution, but control is
immediately returned to the application. Use the IOSB to determine when
the DOP has actually completed.

5-79

UISDC Routines
UISDC$EXECUTE_DOP _SYNCH

UISDC$EXECUTE_DOP _SYNCH-Execute Drawing
Operation
Primitive
Synchronously

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

5-80

This routine executes the specified DOP in the specified display window
and returns control to the application.

UISDC$EXECUTE_DOP _SYNCH wd_id
,dop_address

UISDC$EXECUTE_DOP _SYNCH signals all errors; no condition values are
returned.

wdld
VMS Usage:
type:
access:
mechanism:

identifier
longword (unsigned)
read only
by reference

Display window identifier. The wd_id argument is the address of a
longword that uniquely identifies the display window. The window
identifier is returned to an application at viewport creation time. See
UIS$CREATE_ WINDOW in the VMS Workstatwn Software Graphics
Programming Guide for more information about the wd_id argument.

dop_address
VMS Usage: vector _byte_unsigned
type: byte_unsigned
access: read only
mechanism: by reference

Drawing Operation Primitive. The dop_address argument is the address of
an array of bytes that compose the DOP. This address is returned by the
UISDC$ALLOCATE_DOP routine.

UISDC$EXECUTE_DOP _SYNCH queues the specified DOP for execution
on the specified window request queue. The execution is performed
synchronously; the DOP is queued for execution, and EXECUTE_DOP _
SYNCH waits until the operation is complete before returning control to
the application.

UISDC Routines
UISDC$QUEUE_DOP

UISDC$QUEUE_DOP-Queue Drawing Operation
Primitive

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

This routine queues the specified DOP for execution in the specified
window and returns control to the application.

UISDC$QUEUE_DOP wd_id ,dop_address

UISDC$QUEUE_DOP signals all errors; no condition values are returned.

wd_ld
VMS Usage:
type:
access:
mechanism:

identifier
longword (unsigned)
read only
by reference

Display window identifier. The wd_id argument is the address of a
longword that uniquely identifies the display window. The window
identifier is returned to an application at viewport creation time. See
UIS$CREA TE_ WINDOW for more in the VMS Workstation Software Graphics
Programming Guide information about the wd_id argument.

dop_address
VMS Usage: vector_byte_unsigned
type: byte_ unsigned
access: read only
mechanism: by reference

Drawing Operation Primitive. The dop_address argument is the address of
an array of bytes that compose the DOP. This address is returned by the
UISDC$ALLOCATE_DOP routine.

UISDC$QUEUE_DOP . queues the specified DOP for execution in
the specified window request queue. The execution is performed
asynchronously; the DOP is queued for execution, but control
is immediately returned to the application. This differs from
UISDC$EXECUTE_DOP _ASYNCH in that with UISDC$QUEUE_DOP,
you cannot determine when the DOP has actually completed.

5-81

A QVSS/QDSS Data Structures

button simulation
block

cursor hot spot

This appendix illustrates and describes the data structures common to the
QVSS and QDSS systems.

buttons to be pressed mask

buttons to be released mask

0

0

4

8

0 12

Field

Buttons to be pressed mask

Buttons to be released mask

0

0

V4.1-June 1989

X offset

Y offset

Use

Mask of the buttons to be pressed.

Mask of the buttons to be released.

Pointer button definitions used in the masks
are defined by the $QVBDEF macro. They
consist of the following symbols:

Symbol

QV$M_BUTTON_ 1

QV$M_BUTTON_2

QV$M_BUTTON_3

QV$M_BUTTON_ 4

Meaning

Select button

Button 2

Button 3

Button 4

This longword must be zero.

This longword must be zero.

0

4

A-1

QVSS/QDSS Data Structures

data rectangle
values block

keyboard request
ast specification
block

A-2

The Pointer Cursor Hot Spot data type defines the pointer cursor hot spot,
which is that point within the 16- x 16-pixel cursor display region that is the
actual cursor position.

Field

X offset

Y offset

MINX (left side value)

Use

X off set from the upper left corner of the
pointer pattern to the active point.

Y offset from the upper left corner of the
pointer pattern to the active point.

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Field

MINX (left side value)

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Use

Pixel value for left side of rectangle.

Pixel value for bottom side of rectangle.

Pixel value for right side of rectangle.

Pixel value for top side of rectangle.

AST service routine address

AST parameter

access mode

0

0

4

8

12

0

4

8

12

V4.1-June 1989

keyboard
characteristics
block

Field

AST service routine address

AST parameter

Access mode

0

QVSS/QDSS Data Structures

Use

The AST service routine address is O if no
AST action routine is required. If no AST
routine is specified, input is stored in the
type-ahead buffer and delivered either when
an AST region is declared or when a Get
Next Input Token QIO is issued.

The user-defined AST parameter is delivered
to the AST action routine. It is not examined
by the driver.

The access mode to deliver the AST is
maximized with the current access mode.

The fourth longword must be zero.

enabled characteristics mask 0

disabled characteristics mask 4

keyclick volume 8

0 12

Field Use

Enabled The first longword is a mask of characteristics to be
characteristics mask enabled.

V4.1-June 1989 A-3

QVSS/QDSS Data Structures

A-4

Field Use

Disabled The second longword is a mask of characteristics to be
characteristics mask disabled.

Keyclick volume

0

The keyboard characteristics, defined by the $QVBDEF
macro, consist of the following bits:

Characteristic Default Meaning

QV$M_KEY_ On Key held down
AUTORPT automatically repeats.

QV$M_KEY_ On Keyclick sounds on each
KEYCLICK keystroke.

QV$M_KEY _UDF6 Off Function keys F6 through
F1 O generate up/down
transitions.

QV$M_KEY _UDF11 Off Function keys F11 through
F14 generate up/down
transitions.

QV$M_KEY _UDF17 Off Function keys F17 through
F20 generate up/down
transitions.

QV$M_KEY_ Off Function keys HELP and
UDHELPDO DO generate up/down

transitions.

QV$M_KEY _UDE1 Off Function keys E1 through
E6 generate up/down
transitions.

QV$M_KEY_ Off Arrow keys generate
UDAAAOW up/down transitions.

QV$M_KEY_ Off Numeric keypad keys
UDNUMKEY generate up/down

transitions.

The keyclick volume is a value from 1 (loudest) to 8
(softest). If a value of O is specified, the current system
default keyclick volume is used.

The fourth longword must be 0.

V4.1-June 1989

keystroke ast
specification
block

QVSS/QDSS Data Structures

AST service routine address 0

AST parameter

access mode

input token address

Field

AST service routine address

AST parameter

Access mode

Input token address

V4.1-June 1989

4

8

12

Use

The AST service routine address is O if no
AST action routine Is required. If no AST
routine is specified, input is stored in the
type-ahead buffer and delivered either when
an AST region is declared or when an Get
Next Input Token QIO is issued.

The user-defined AST parameter is delivered
to the AST action routine. It is not examined
by the driver.

The access mode to deliver the AST is
maximized with the current access mode.

The input token address is the address
of a longword that receives an input token
when an AST routine is called. Word O of
the longword contains token or character
data. Values from O to 255 map into the
Digital multinational character set. Values
from 256 to 512 map function keys into token
values. Word 1 of the longword contains
control information; bit 15 defines the status
of a token (1 equals down, O equals up). By
default an AST is only signaled on a down
transition.

A-5

I

QVSS/QDSS Data Structures

pointer button
characteristics
block

pointer
characteristics
block

A-6

enabled characteristics mask 0

disabled characteristics mask 4

Field

Enabled
characteristics mask

Disabled
characteristics mask

0

0

0 8

0 12

Use

Longword of characteristics to be enabled.

Longword of characteristics to be disabled.

The pointer button characteristics, defined by the $QVBDEF
macro, consist of the following bits:

Characteristic Default Meaning

QV$M_BUT_
UPTODOWN

On

This longword must be zero.

This longword must be zero.

After a pointer button
down transition occurs,
the current pointer button
request receives all future
pointer button transitions
until all pointer buttons
return to the up position
(regardless of the position
of the pointer cursor on
the physical screen).
If this characteristic is
disabled, then each up
and down transition is
delivered to the active
button request for the
current pointer cursor
position.

V4.1-June 1989

pointer motion
ast specification
block

QVSS/QDSS Data Structures

enabled characteristics mask

disabled characteristics mask

Field

Enabled characteristics
mask

0

0

Use

The first longword is a mask of characteristics to be
enabled.

0

4

8

12

Disabled characteristics
mask

The second longword is a mask of characteristics to be
disabled.

0

0

Field

The pointer characteristics, defined by the $QVBDEF
macro, consist of the following bits:

Characteristic

QV$M_PTR_LEFT _
HAND

QV$M_PTR_INVERT _
STYLUS

Must be 0.

Must be 0.

AST service routine address

AST parameter

access mode

address of new pointer cursor position

Use

Meaning

Invert buttons on mouse or
puck. (Buttons 1 and 3 are
switched.)

Invert buttons on stylus.
(Buttons 1 and 3 are
switched.)

AST service routine
address

AST service routine address is O if no AST action
routine is required. No buffering of data In the type­
ahead buffer occurs for pointer motion ASTs.

0

4

8

12

V4.1-June 1989 A-7

QVSS/QDSS Data Structures

new cursor
position

new pointer
position

A-8

Field

AST parameter

Access mode

Address of new pointer
cursor position

Use

The user-defined AST parameter is delivered to the
AST action routine. It is not examined by the driver.

The access mode to deliver the AST is maximized with
the current access mode.

The fourth longword contains the address of a longword
to receive the new pointer cursor position when the AST
routine is called. (If the information is not required, this
longword is 0.) The low-order word contains the new
X pixel location of the pointer cursor; the high-order
word contains the new Y pixel location of the cursor.
For screen pointers, X is value 0 through 1023 with the
lowest value denoting the left side of the screen; Y Is
value O through 863 with the lowest value denoting the
bottom of the screen. For tablet pointers, the range
of X is defined in the -rqvb$w _tablet_width field of the
avss block; the range of y is defined in the qvb$w _
tablet_height field of the avss block.

X position on physical screen 0

Y position on physical screen

Field

X position on physical screen

Y position on physical screen

Use

X position on the physical screen

Y position on the physical screen

X position on physical screen

Y position on physical screen

Field Use

X position on the physical X position on the physical screen
screen

4

0

4

V 4.1-June 1989

QVSS/QDSS Data Structures

Field Use

Y position on the physical Y position on the physical screen
screen

V4.1-June 1989 A-9

QVSS/QDSS Data Structures

qvss block (qvb)
(qvb_common_structure)

QVB$W_MOUS_ YPIX

QVB$W_HEIGHT

QVB$W_ Y _RESOL

QVB$W_MAIN_MAPMAX

QVB$W_BUTTONS

QVB$W_ TABLET _XPIX

QVB$W_ TABLET _WIDTH

QVB$W_BUT_STATUS

QVB$W_FLAGS

QVB$W_SPARE_W_ 1

QVB$W _TABLET_ YSIZE

A-10

QVB$L_ VIDEOSIZE 0

QVB$L_ VIDEOADDR 4

QVB$L_MAPSIZE 8

QVB$L_MAPADDR 12

QVB$L_ CONTEXT 16

QVB$L_CSR 20

QVB$W_MOUS_XPIX 24

QVB$W_WIDTH 28

QVB$W_X_RESOL 32

QVB$L_MOUS_XABS 36

QVB$L_MOUS_ YABS 40

QVB$L_MAIN_ VIDEOSIZE 44

QVB$L_MAIN_ VIDEOADDR 48

QVB$L_MAIN_MAPSIZE 52

QVB$L_MAIN_MAPADDR 56

QVB$W_MAIN_MAPMIN 60
--:c- .•

QVB$L_ CHARACTERISTICS 64

QVB$W_SCRSAV_ TIMOUT 68

QVB$W _KEYCLICK_ VOLUME 72

QVB$W_ TABLET_ YPIX 76

QVB$W_ TABLET _HEIGHT 80

DEVICE_ TYPE BITS_PER_PIXEL 84

SPARE_B_1 CURSOR_PLANES 88

QVB$W_ TABLET _XSIZE 92

QVB$F _TABLET _XRATIO 96

QVB$F _TABLET_ YRATIO 100

(Continued on next page)

V4.1-June 1989

QVSS/QDSS Data Structures

Example 5-5 (Cont.) Calling Program for Example Subroutines

QVB$L_UNtT _NUMBER 104

QVB$L_POINTER_SETUP 108

1 QVB$W_HOLD_DEFER_CNT

The following list describes the contents of each field in the QVSS block.

NOTE: The names in the following fields of the preceding data structure have
the prefix QVB$B_. The prefixes are omitted in the diagram so the field
names fit within the fields.

DEVICE_ TYPE
BITS_PER_PIXEL
SPARE_B_l
CURSOR_PLANES

Field

QVB$L_ VIDEOSIZE

QVB$L_ VIDEOADDR

QVB$L_MAPSIZE

QVB$L_MAPADDR

QVB$L_ CONTEXT

QVB$L_CSR

QVB$W_MOUS_XPIX

QVB$W_MOUS_ YPIX

QVB$W_WIDTH

QVB$W_HEIGHT;

QVB$W_X_RESOL

QVB$W_ Y _RESOL

QVB$L_MOUS_XABS

QVB$L_MOUS_ YABS

QVB$L_MAIN_ VIDEOSIZE

QVB$L_MAIN_
VIDEOADDR

QVB$L_MAIN_MAPSIZE

V4.1-June 1989

Use

Full size of video memory, in bytes (QVSS specific).

Address of 1st byte of video memory (QVSS specific).

Size of scanline map, in words (QVSS specific).

Address of scanline map (QVSS specific).

Reserved for use by Digital.

Reserved for use by Digital.

X coordinate of the current pointer position.

Y coordinate of the current pointer position.

Maximum horizontal size of screen, in pixels.

Maximum vertical size of screen, in pixels.

Horizontal pixels per inch of physical screen.

Vertical pixels per inch of physical screen.

Pointer X position on signed 32-blt virtual coordinate
space. Used to obtain relative motion when cursor
hardware tracking not used.

Potnter Y position on signed 32-bit virtual coordinate
space.

Size of video memory allocated to the windowing
system, in bytes (QVSS specific).

Address of video memory allocated to the windowing
system (QVSS specific).

Size of the windowing system scanHne map (QVSS
specific).

A-11

QVSS/QDSS Data Structures

A-12

Field

QVB$L_MAIN_MAPADDR

QVB$W_MAIN_MAPMIN

QVB$W_MAIN_MAPMAX

QVB$L_
CHARACTERISTICS

QVB$W_SCRSAV_
TIM OUT

QVB$W_BUTTONS

QVB$W_KEYCLICK_
VOLUME

QVB$W _TABLET _XPIX

QVB$W_ TABLET_ YPIX

QVB$W_ TABLET _WIDTH

QVB$W _TABLET_
HEIGHT

QVB$W_BUT_STATUS

Use

Address of the windowing system scanline map (QVSS
specific)

Entry number of the lowest entry In the scanline map
last updated (QVSS specific).

Entry number of the highest entry in the scanllne map
last updated (QVSS specific). (Updating these fields
permits the driver to update only the modified portion
of the scanline map, using the main windowing system
scanline map area.)

Current systemwide windowing characteristics.

Current screen saver timeout value, In seconds.

This field no longer supported.

Default keyclick volume. Value must be in the range of
1 to 8 (1 is loudest). Default Is 3.

Current X position on a tablet, in pixels.

Current Y position on a tablet, in pixels.

Maximum horizontal size of a tablet, in pixels.

Maximum vertical size of a tablet, in pixels.

Current up/down status of the pointing device buttons.
If a bit is set, the button is down. The bit positions
correspond to the button numbers. That is, the select
button, (number 1) Is represented by the first bit, and
so on.

QVB$B_BITS_PER_PIXEL Number of bits per pixel. Black and white systems have
a value of 1. Color systems may be 4 or 8.

QVB$B_DEVICE_ TYPE Value identifying driver: 0 for QVSS, 1 for QDSS.

QVB$W_FLAGS Internal flags. The following fields are defined in
QVB$W _FLAGS:

QVB$B_CURSOR_
PLANES

QVB$B_SPAAE_B_ 1

QVB$W_SPARE_W_ 1

QVB$W_ TABLET _XSIZE

Field Use

QVB$V_TABLET This field is one bit long and starts
at bit 18; indicates that tablet
is present; O equals pointer is
present.

QVB$V _STYLUS This field is one bit long and starts
at bit 19; indicates that tablet
stylus is present.

The number of planes in the hardware cursor. A color
cursor has two planes.

Reserved to Digital.

Reserved to Digital.

Width of tablet, in centimeters (integer value).

V4.1-June 1989

QVSS/QDSS Data Structures

Field Use

QVB$W_ TABLET_ YSIZE Height of tablet, in centimeters (integer value).

OVB$F _TABLET _XRATIO Floating-point ratio of screen width to tablet width, in
pixels.

QVB$F _TABLET_ YRATIO Floating-point ratio of screen height to tablet height, in
pixels.

QVB$L_UNIT _NUMBER Number of the video device unit associated with the
QVB.

QVB$L_POINTER_ System characteristics. Contains the current status
SETUP for system wide pointer characteristics. The following

fields are defined within QVB$L_POINTER_SETUP:

QVB$W_HOLD_DEFER_
CNT

Field

QV$V _PTR_LEFT _
HAND

QV$V_PTR_
INVERT_ STYLUS

Use

Indicates pointer is left handed
if bit is set.

Indicates tip of stylus is select
button if bit Is set.

Reserved for use by Digital.

The following constants are defined in conjunction with the QDB$.

Constant

KEY$C_SELECT

KEY$C_BUTTON_ 1

KEY$C _BUTTON_2

KEY$C_BUTTON_3

KEY$C_F1

KEY$C_F2

KEY$C_F3

KEY$C_F4

KEY$C_F5

QVB$C_QVSS

QVB$C_QDSS

QVB$C_LENGTH

V4.1-June 1989

Value

Select button

Pointer device button 1

Pointer device button 2

Pointer device button 3

Function key F1

Function key F2

Function key F3

Function key F4

Function key F5

QVSS driver type constant (= 0)

QDSS driver type constant (= 1)

Length of the QVB structure

A-13

QVSS/QDSS Data Structures

reserved function
keystroke ast
specification
block

screen rectangle
values block

A-14

AST service routine address 0

AST parameter 4

access mode 8

input token address 12

Field

AST service routine
address

AST parameter

Access mode

Input token address

Use

AST service routine address is O if no AST action
routine is required.

The user-defined AST parameter is delivered to the
AST action routine. It is not examined by the driver.

The access mode to deliver the AST is maximized with
the current access mode.

This address of a longword receives an input token
when an AST routine Is called. Word O of the longword
contains token data defined by the $SMGDEF macro
for these function keys. By default an AST is only
signaled on a down transition.

MINX (left side value) 0

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Field

MINX (left side value)

MINY (bottom side value)

MAXX (right side value)

MAXY (top side value)

Use

Pixel value for left side of rectangle.

Pixel value for bottom side of rectangle.

Pixel value for right side of rectangle.

Pixel value for top side of rectangle.

4

8

12

V4.1-June 1989

system
characteristics
block

QVSS/QDSS Data Structures

enabled characteristics mask 0

disabled characteristics mask 4

keyclick volume 8

screen saver timeout value 12

Field

Enabled characteristics
mask

Disabled characteristics
mask

V4.1-June 1989

Use

The first longword is a mask of characteristics to be
enabled.

The second longword is a mask of characteristics to be
disabled.

The system characteristics, defined by the $QVBDEF
macro, consist of the following bits:

Characteristic Default Meaning

QV$M_KEY_ On Key held down
AUTO APT automatically repeats.

QV$M_KEY_ On Keyclick sounds on
KEYCLICK each keystroke.

QV$M_KEY _UDF6 Off Function keys F6
through F1 O generate
up/down transitions.

QV$M_KEY _UDF11 Off Function keys F11
through F14 generate
up/down transitions.

QV$M_KEY _UDF17 Off Function keys F17
through F20 generate"
up/down transitions.

QV$M_KEY_ Off Function keys HELP
UDHELPDO and DO generate

up/down transitions.

A-15

QVSS/QDSS Data Structures

A-16

Field

Keyclick volume

Screen saver timeout
value

Use

QV$M_KEY _UDE1 Off

QV$M_KEY_ Off
UDARROW

QV$M_KEY_ Off
UDNUMKEY

QV$M_SYS_ On
SCRSAV

Function keys E1
through E6 generate
up/down transitions.

Arrow keys generate
up/down transitions.

Numeric keypad keys
generate up/down
transitions.

Disable video output
to monitor if no input
activity occurs within
the number of minutes
specified in the
fourth longword.
Any keystroke, pointer
button transition, or
pointer motion will
reset the timer and
reactivate a disabled
screen.

Must be a value from 1 (loudest) to 8 (softest). Default
is 3.

Represents minutes of inactivity that must elapse
before the screen saver is activated. The value must
be from 1 to 1440. If a value of O is specified, the
timeout value is not changed. Default is 15.

V4.1-June 1989

B QDSS-Specific Data Structures

dop queue
structure
(req_structure)

This appendix illustrates and describes the QDSS data structures
predefined in the SYSLIBRARY: VWSSYSDEF .lan definition file (where
lan is the file extension for the language you are using). (You choose which
language definition files are created Cl.t system installation time.)

VWSSYSDEF defines data type structures and constants, including offset
values that define each field in the structure. Use these predefined offsets
in your application to access fields.

This appendix labels each data type with its predefined name and
each field in the illustrations with its predefined offset. For example,
VWSSYSDEF defines a structure DOP ...:STRUCTURE in which it defines
an offset DOP$W _ITEM_ TYPE. Once you associate the storage with a
structure, you can use the offset to reference the structure.

To use any predefined constants and offsets, "include" or "insert" the
SYS$LIBRARY:VWSSYSDEF file in every module where you reference it.
Become familiar with the way VWSSYSDEF defines the DOP structure for
the programming language you are using.

REQ$L_REQUEST _FLINK 0

REQ$L_REQUEST _BLINK 4

REQ$L_RETURN_FLINK 8

REQ$L_RETURN_BLINK 12

REQ$L~RETURN_LARGE_FLINK 16

REQ$L_RETURN_LARGE_BLINK 20

REQ$W_LARGE_DOP _SIZE l REQ$W_SMALL_DOP _SIZE 24

REQ$L_APPLICATION_RESERVED 28

V4.1-June 1989 B-1

QDSS-Specific Data Structures

The following list describes the contents of each field in the Request Queue
Definition.

Field

REQ$L_REQUEST _FLINK

REQ$L_REQUEST _BLINK

REQ$L_RETURN_FLINK

REQ$L_RETURN_BLINK

REQ$L_RETURN_LARGE_FLINK

REQ$L_RETURN_LARGE_BLINK

REQ$W_LARGE_DOP _SIZE

REQ$W_SMALL_DOP _SIZE

REQ$L_APPLICATION_RESERVED

Use

Pending drawing operation queue header.

Previous drawing operation queue header.

Forward link for the ordinary return queue.

. Backward link for the ordinary return queue.

Forward link for the large DOP return queue.

Backward link for the large DOP return queue.

Size of a DOP returned to the large DOP return queue.

Size of a DOP returned to the ordinary return queue.

A longword reserved for use by the application.

The following constants are defined in conjunction with the REQ$.

B-2

Constant

REQ$K_RETURN_
OFFSET

REQ$K_LENGTH

Value

Offset from beginning of structure to return queue.

Length of the structure.

V4.1-June 1989

QDSS-Specific Data Structures

qdss block (qdb)
(qvb_qdss_structure)

l QVBDEF$$ QD COMMON FILL (120 bytes) ,.,., - - -

QDB$L_SYSVP

QD8$W_ON_SCREEN_Y QD8$W_ON_SCREEN_X

QDB$W_ON_SCREEN_HEIGHT QDB$W_ON_SCREEN_WIDTH

QDB$W_SCROLL_ Y QDB$W_SCROLL_X

QD8$W_SCROLL_HEIGHT QDB$W_SCROLL_WIDTH

QDB$W_FREE_ 1 _ Y QDB$W _FREE_ 1 _X

QD8$W _FREE_ 1 _HEIGHT QD8$W_FREE_ 1 _WIDTH

QDB$W_FREE_2_ Y QD8$W _FREE_2_X

QDB$W_FREE_2_HEIGHT QDB$W_FREE_2_WIDTH

QD8$W_FREE_3_ Y ODB$W _FREE_3_X

QDB$W_FREE_3_HEIGHT QD8$W_FREE_3_WIDTH

QDB$W_FONT _ Y QD8$W_FONT _X

QDB$W_FONT _HEIGHT QD8$W_FONT _WIDTH

QDB$W_ CLIP _SAVE_,.Y QDB$W_CLIP _SAVE_X

QDB$W_CLIP _SAVE_HEIGHT QD8$W_CLIP _SAVE_WIDTH

QDB$L_ COLOR_INDICES

QDB$L_CQLOR_COLORS

QDB$L_ COLOR_RBITS

QDB$L_COLOR_GBITS

QDB$L_ COLOR_BBITS

QDB$L_ COLOR_IBITS

QDB$L_ COLOR_RES_INDICES

QDB$L_ COLOR_REGEN

1 ry

1 20

1 24

1 28

1 32

1 36

1 40

1 44

1 48

1 52

1 56

1 60

1 64

1 68

1 72

1 76

1 80

1 84

1 88

1 92

1 96

200

204

208

212

(Continued on next page)

V4.1-June 1989 B-3

I

QDSS-Specific Data Structures

Example 5-5 (Cont.) Calling Program for Example Subroutines

QDB$L_COLOR_MAPS 216

QDB$L_COLOR_INTENSITY _FLAG 220

The following list describes the contents of each field in the QDSS block.
Note that the first part of the QDB is actually the QVB. See Appendix A for
a full explanation of the QVB fields.

Field

QVBDEF$_QD_
COMMON_FILL

QDB$L_SYSVP

QDB$W_ON_SCREEN_X

QDB$W_ON_SCREEN_X

QDB$W_ON_SCREEN_
WIDTH

QDB$W_ON_SCREEN_
HEIGHT

QDB$W_SCROLL_X

QDB$W_SCROLL_ Y

Use

The part of the block occupied by the QVB Common
block.

Systemwide viewport ID.

X coordinate of the lower left-hand corner of onscreen
memory.

Y coordinate of the lower left-hand corner of onscreen
memory.

Width of onscreen memory.

Height of on screen memory.

X coordinate of the lower left-hand corner of the scroll
area.

Y coordinate of the lower left-hand corner of the scroll
area.

QDB$W_SCROLL_WIDTH Width of the scroll area.

QDB$W_SCROLL_. Height of the scroll area
HEIGHT

QDB$W_FREE_1_X X coordinate of the lower left-hand corner of writable
memory.

QDB$W_FREE_ 1 _ Y

QDB$W_FREE_ 1 _WIDTH

QDB$W_FAEE_ 1_
HEIGHT

QD8$W _FONT _X

QDB$W_FONT _ Y

QDB$W_FONT _WIDTH

Y coordinate of the lower left-hand corner of writable
memory.

Width of writable memory.

Height of writable memory.

X coordinate of the lower left-hand corner of bitmap
storage area.

Y coordinate of the lower left-hand corner of bitmap
storage area.

Width of the bitmap storage area.

QDB$W_FONT _HEIGHT Height of the bitmap storage area.

QDB$L_COLOR_INDICES Color map size.

B-4 V4.1-June 1989

return queue
structure
(ret_structure)

QDSS-Specific Data Structures

Field

QDB$L_COLOR_
COLORS

QDB$L_ COLOR_RBITS

QDB$L_ COLOR_ GBITS

QDB$L_ COLOR_BBITS

QDB$L_ COLOR_IBITS

QDB$L_ COLOR_RES_
INDICES

Use

Maximum number of possible colors.

Number of bits of precision for red.

Number of bits of precision for green.

Number of bits of precision for blue.

Number of bits of intensity precision.

Number of color map entries reserved by the system.

QDB$L_ COLOR_REGEN Color regeneration characteristics. On a QDSS system
color regeneration is retroactive.

QDB$L_ COLOR_MAPS

QDB$L_COLOR_
INTENSITY _FLAG

Number of hardware color maps (always 1 for QDSS).

Indicates color (0) or intensity (1) mode.

The following constants are defined in conjunction with the QDB.

Constant Value

QVB$C_LENGTH Length of the QVB structure.

RET$L_RETURN_FLINK

RET$L_RETURN_BLINK

RET$L_RETURN_LARGE_FLINK

RET$L_RETURN_LARGE_BLINK

0

4

8

12

RET$W_LARGE_DOP _SIZE l RET$W_SMALL_DOP _SIZE 16

RET$L_APPLICATION_RESERVED 20

V4.1-June 1989 B-5

QDSS-Specific Data Structures

The following list describes the contents of each field in the request queue
definition.

Field Use

RET$L_RETURN_FLINK Forward link for the ordinary return queue.

RET$L_RETURN_BLINK Backward link for the ordinary return queue

RET$L_RETURN_ Forward link for the large DOP return queue.
LARGE_FLINK

RET$L_RETURN_ Backward link for the large DOP return queue.
LARGE_BLINK

RET$W_LARGE_DOP _ Size of a DOP returned to the large DOP return queue.
SIZE

RET$W_SMALL_DOP _ Size of a DOP returned to the ordinary return queue.
SIZE

RET$L_APPLICATION_ Longword reserved for use by the application.

transfer
parameter
block (tpb)
(tpb_structure)

RESERVED

TPB$W_X_SOURCE

TPB$W_WIDTH

TPB$W_X_ TARGET

TPB$W _x_ TARGET_ VEC 1

TPB$W_L_ TARGET _VEC1

TPB$W _ Y _TARGET_ VEC2

TPB$B_SIZE l TPB$B_TYPE

TPB$W""" Y _SOURCE

TPB$W_HEIGHT

TPB$W_ Y _TARGET

TPB$W_ Y _TARGET _VEC1

TPB$W _X_ TARGET_ VEC2

TPB$W_L_ TARGET _VEC2

0

4

8

12

16

20

B-6 V4.1-June 1989

QDSS-Specific Data Structures

The following list describes the contents of each field in the Transfer
Parameter block.

Field

TPB$B_TYPE

TPB$B_SIZE

TPB$W_X_SOURCE

TPB$W_ Y _SOURCE

TPB$W_WIDTH

TPB$W_HEIGHT

TPB$W_X_ TARGET

TPB$W_ Y _TARGET

TPB$W_X_ TARGET_
VEC1

TPB$W_ Y _TARGET_
VEC1

TPB$W_L_ TARGET_
VEC1

TPB$W_X_TARGET_
VEC2

TPB$W_ Y _TARGET_
VEC2

TPB$W_L_ TARGET_
VEC2

V4.1-Ju"ne 1989

Use

Type of transfer being performed, either bitmap-to­
processor (BTP), processor-to-bitmap (PTB), or bitmap­
to-bitmap. Use the constants defined later to load this
field.

Reserved to Digital.

X coordinate of lower left-hand corner of source bitmap.

Y coordinate of lower left-hand corner of source bitmap.

Width of source bitmap.

Height of source bitmap.

X coordinate of lower left-hand corner of target bitmap.
(Only specified for bitmap-to-bitmap transfer.)

Y coordinate of lower left-hand corner of target bitmap.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

QDSS-Specific Data Structures

The following constants are defined in conjunction with the TPB.

update region
definition block
(urd_structure)

Constant

TPB$C_BITMAP _XFR

TPB$C_SOURCE_
ONLY

TPB$C_SOURCE_
LENGTH

TPB$C_BITMAP _XFR_
LENGTH

TPB$C_LENGTH

URD$W _ Y _MIN

URD$W_Y_MAX

URD$W_Y_BASE

Value

Used to specify a bitmap-to-bitmap transfer.

Used to specify a BTP or PTB transfer.

Structure length for BTP or PTB transfers

Structure length for a bitmap-to-bitmap transfer.

Full structure length.

URD$W_X_MIN

URD$W_X_MAX

URD$W_X_BASE

0

4

8

The following list describes the contents of each field in the update region
definition block.

Fie.Id

URD$W_X_MIN

URD$W_ Y _MIN

URD$W_X_MAX

URD$W_ Y _MAX

URD$W_X_BASE

URD$W_ Y _BASE

B-8

Use

Viewport-relative X coordinate of the lower
left-hand corner of defined region.

Viewport-relative Y coordinate of the lower
left-hand corner of defined region.

Viewport-relative X coordinate of the upper
right-hand corner of defined region.

Viewport-relative Y coordinate of the upper
right-hand corner of defined region.

Absolute X coordinate from lower left-hand
corner of defined region.

Absolute X coordinate from lower left-hand
corner of defined region.

V4.1-June 1989

QDSS-Specific Data Structures

The following constants are defined in conjunction with the URD.

Constant Value

URD$C_ Length of the structure.
LENGTH

V 4~ 1-June 1989 B-9

C QDSS Writing Modes

I

This appendix lists all QDSS writing modes and describes the logical
operations that can be performed when two graphic objects intersect. This
operation occurs among the destination, the bits composing the existing
bitmap pixel, and the source index, a value sele_cted by the application in the
DOP structure. The results of this operation are tested again~t foreground
and background color to determine bit settings for the pixels that compose
the intersecting area.

The writing mode names are acronyms that reflect the function performed.
To interpret (and remember) the names, read D for destination, S for
source index, N for NEGATE, A for AND, 0 for OR, and X for XOR-with
all expressions written in reverse Polish notation.

Table C-1 lists QDSS writing modes and their functions.

Table C-1 QDSS Writing Modes

QDSS Writing Modes

WRIT$C_ZEROES

WRIT$C_DSON

WRIT$C_DNSA

WRIT$C_DN

WRIT$C_DSNA

WRIT$C_SN

WRIT$C_DSX

WRIT$C_DSAN

WRIT$C_DSA

WRIT$C_DSXN

WRIT$C_S

WRIT$C_DNSO

WRIT$C_D

WRIT$C_DSNO

WRIT$C_DSO

WRIT$C_ONES

V4.1-June 1989

Function

All resulting bits are set to 0.

The destinationis ORed with source Index, then the
result is negated.

The destination is negated, then ANDed with the
source index.

The destination is negated.

The source index is negated, then ANDed with the
destination.

The source index is negated.

The destination is XORed with the source index.

The destination is ANDed with the source index,
then the result is negated.

The destination is ANDed with the source index.

The destination is XORed with the source index,
then the result is negated.

The result is equal to the source index.

The destination is negated, then ORed with the
source index.

The result is equal to the destination.

The source index is negated, then ORed with the
destination.

The destination is ORed with the source Index.

All resulting bits are set to 1 .

C-1

QDSS Writing Modes

In addition, you can specify the following modifiers with the writing modes (by ANDing the two
values).

C-2

Table C-2 QDSS Writing Mode Modifiers

Modifier

WRIT$M_USE_MASK_2

WRIT$M_COMP _MASK_2

WRIT$M_NO_SRC_COMP

Function

Specifies that the mask specified in the DOP bitmap
ID field be used to determine whether the resulting
pixel should be written.

Specifies that the complement of the mask specified
in the DOP bitmap ID field be used to determine
whether the resulting pixel should be written.

Specifies that the complement of the source index
should not be used in the logical operation.

V4.1-June 1989

D QVSS Programming Example

D.1 Programming
This appendix contains a sample application program for the QVSS driver.

D.1.1 Program Functions
The test program in Section D .1.2 shows how a typical program might be
designed for the QVSS driver. This simple program uses most of the QIO
functions available to the QVSS driver to perform the following operations:

1 Sets system windowing characteristics.

a. Enables autorepeat and keyclick; disables keys F6 to FlO and the
arrow keys from generating up-transition ASTs.

b. Sounds the bell to indicate that the characteristics have been set.

2 Sets up permanent cursor pattern and a new default system cursor
pattern.

3 Sets up two separate cursor regions on the screen.

a. Block-shaped cursor is located in the lower left corner.

b. Cross-shaped cursor is located in the upper right corner.

4 Sets up two one-shot requests on keyboard channel 1.

5 Sets up keyboard region 1 to be a French keyboard.

6 Sets up a private two-stroke compose table for keyboard region 1.

7 Sets up a private three-stroke compose table for keyboard region 1.

8 Sets up two keyboard regions.

a. Each region specifies a keyboard AST and a control AST.

b. The keyboard AST specified for each region performs the following
actions:

Sends an acknowledgment message to the terminal.

Sends (echoes) the character typed to the terminal.

If the character is a "C," issues a cycle QIO on the keyboard
list, which activates the other keyboard region; then delivers a
controlAST for the new region.

If the character "F" is typed, sets event flag 2, which terminates
the program.

c. The control AST specified for each region sends a message to the
terminal, indicating that a control AST was delivered.

D-1

D.1.2

QVSS Programming Example

9 Enables an AST region for pointer buttons.

a. Sets up an AST to be called each time a pointer button is
pressed/released in the specified region.

b. The AST routine determines which button was changed and prints
a message identifying the pointer button. The AST routine then
determines whether the button is currently up or down and prints a
message to that effect.

10 Enables AST for function key FS; sets up an AST to be called each time
function key FS is pressed.

The FS AST routine issues a cycle QIO on the keyboard list.

The cycle QIO delivers the control AST for the new keyboard
region.

11 Enables an AST region for pointer motion.

a. Sets up an AST to be called each time the pointer moves within a
specified region.

b. Enables the AST routine to print a message indicating that the
pointer has moved.

12 Simulates k'eyboard input on keyboard channel 2; simulates the input
of a character string on keyboard region 2.

13 Waits for event flag 2 to be set.

14 Exits program when event flag 2 is set.

QVSS Program Example

.TITLE QVSS PORT DRIVER TEST PROGRAM
• IDENT /02/

**

QVSS PORT DRIVER TEST PROGRAM

**

.SBTTL DECLARATIONS

Define symbols

D-2

$IODEF
$QVBDEF

Define I/0 function codes
QVSS definitions

QVSS Programming Example

Allocate workstation descriptor and channel number storage

WS_DEVNAM:
.ASCID

SYS_CHANl:
.BLKW

CUR_CHANl:
.BLKW

CUR_CHAN2:
.BLKW

KBD_CHANl:
.BLKW

KBD_CHAN2:
.BLKW

BUT_CHAN:
.BLKW

MOUSE_ CHAN:
.BLKW

FNKEY_FS_CHAN:
.BLKW

BUTTON:
.BLKL

MOUSE_XY:
.BLKL

CHARACTER:
.BLKL

DESC: .LONG
.LONG

IOSB_BLOCK:
.QUAD

DESCl: .LONG

/SYS$WORKSTATION/

1

1

1

1

1

1

1

1

1

1

1
2
CHARACTER

0
1

.LONG IOSB_BLOCK+4

; Logical name of workstation

Channel number storage

Channel number storage

Channel number storage

Channel number storage

Channel number storage

Channel number storage

Channel number storage

Channel number storage
State of buttons

Current pointer X,Y coordinates

Keyboard character

IOSB descriptor

.SBTTL START - MAIN ROUTINE
;++

FUNCTIONAL DESCRIPTION:

**

START PROGRAM

**

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:

;--

START:

NONE

.WORD
$ASSIGN_S DEVNAM=WS_DEVNAM,­

BLBS
BRW

CHAN=SYS_CHANl
R0,5$
ERROR

Entry mask
Assign channel using

logical name and channel number
Check for success
Report error on failure

D-3

QVSS Programming Example

5$: BSBW SET_ CHARACTERISTICS Set up system characteristics
B~BW SET_PERM_CURSOR Set up new system wide cursor pattern
BSBW SET_ CURSOR Set up cursors
BSBW SET_ONESHOT Set up one-shot on keyboard channel
BSBW SET_FRENCH_KB Set up French keyboard on keyboard 1
BSBW SET_COMPOSE2_TABLE Set up 2-stroke compose table on kbd
BSBW SET_COMPOSE3_TABLE Set up 3-stroke compose table on kbd
BSBW SET_KBDAST Set keyboard AST
BSBW SET_BUTTONAST Set up button region AST
BSBW SET_FNKEYAST Set up function key AST
BSBW SET_MOUSEAST Set up pointer region AST
BSBW SIMULATE INPUT Simulate input on keyboard 2
$CLREF_S EFN=i2 Clear event flag #2
$WAITFR_S EFN=i2 Wait for event flag #2

ERROR: $EXIT_S RO

.SBTTL SET_CHARACTERISTICS - SET SYSTEM WINDOWING CHARACTERISTICS
;++

FUNCTIONAL DESCRIPTION:

Set a couple of SYSTEM windowing characteristics and sound the
bell after they are set.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

SET CHARACTERISTICS:
- MOVL #IO$C QV MODIFYSYS,RO

$QIOW S CHAN=SYS - CHAN l , -
- FUNC=#IO$_SETMODE,­

Pl = (RO),-

10$:

P4 = #CHAR_BLOCK
BLBS R0,10$
BRW ERROR

MOVL
$QIOW_S

BLBS
BRW

iIO$C_QV_SOUND,RO
CHAN=SYS CHAN1,­
FUNC=iIO$_SETMODE,­
Pl = (RO),~

P2 = f QV$M SOUND BELL
R0,20$ - -
ERROR

Modify characteristics code
Use system channel
QIO function code
QVSS function code
Characteristics block
Check for success

Sound code

Bell sound modifier
Check for success
Report error on failure

; Characteristics block

20$: RSB

CHAR_BLOCK:
.LONG
.LONG
.LONG
.LONG

<QV$M SYS AUTORPT!QV$M SYS KEYCLICK> Enable these
<QV$M=SYS=UDF61QV$M_SYS_UDARROW> Disable these
5 Keyclick volume
30 Screen saver timeout

D-4

1

1
1

QVSS Programming Example

.SBTTL SET_PERM_CURSOR - SET UP NEW SYSTEM CURSOR
;++

FUNCTIONAL DESCRIPTION:

Set a new system wide cursor pattern.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

SET PERM CURSOR:
- MOVL f<I0$C_QV_SETCURSOR -

!IO$M_QV_LOAD_DEFAULT>,R0
$QIOW_S CHAN=SYS_CHAN1,­

FUNC=#IO$_SETMODE,­
Pl =(RO),­
P2=#MOUSE$BM,-
P4=f MOUSE$HOTSPOT

BLBS R0,10$
BRW ERROR

10$: RSB

MOUSE$BM:
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

MOUSE$HOTSPOT:
.LONG
.LONG

"bOOOOOOlllOOOOOOO
"b0000011000000000
"b0000001100000000
"b0000000110000000
"b0011111111111100
"b0100000000000010
"bll01100110011011
"b1101100110011011
"bll01100110011011
"bllOOOOOOOOOOOOll
"bllOOOOOOOOOOOOll
"bllllOOOOOOOOllll
"bll00110000110011
"b0110001111000110
"b0011010000101100
"bOOOllllllllllOOO

9
0

Define system cursor
; Default modifier

Cursor description
Cursor hot spot
Check for success
Report error on failure

Bitmap definition of
pointer cursor used in call

Pointer hot spot definition

; The following two cursor patterns (although not used by the appliation)
; are provided to show alternative patterns

PENCIL: .WORD "XOOOO ; Pencil cursor definition
.WORD "XOOOO
.WORD "X0700
.WORD "X0880
.WORD "X0880
.WORD "X1700
.WORD "XllOO
.WORD "X2200
.WORD "X2200
.WORD "X4400
.WORD "X4400
.WORD "Xc800
.WORD "XfOOO
.WORD "XeOOO
.WORD "XcOOO
.WORD "X8000

PENCIL_HS: Pencil hot spot defi~ition
.LONG 0
.LONG 15

D-5

QVSS Programming Example

SPRAYCAN:
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

SPRAYCAN_HS:
.LONG
.LONG

0
1

"X8000
"X2000
"X8b00
"X2780
"X8580
"XOfcO
"X0840
"X09c0
"X0940
"X09c0
"X0940
"X09c0
"X09c0
"X0840
"X0840
"XOfcO

Spraycan cursor definition

Spraycan hot spot definition

.SBTTL SET_CURSOR - SET UP CURSOR REGIONS
:++

FUNCTIONAL DESCRIPTION:

Set two cursor regions for the screen.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

1--

SET_ CURSOR:

10$:

20$:

30$:

$ASSIGN_S DEVNAM=WS_DEVNAM,-
CHAN=CUR_CHANl

BLBS R0,10$
BRW ERROR
$ASSIGN_S DEVNAM=WS_DEVNAM,­

BLBS
BRW

MOVL
$QIOW_S

BLBS
BRW

MOVL
$QIOW_S

BLBS
BRW

CHAN=CUR_CHAN2
R0,20$
ERROR

#I0$C_QV_SETCURSOR,RO
CHAN=CUR CHAN1,­
FUNC=#IO$_SETMODE,­
Pl =(RO),­
P2=#QV$CURSOR1,­
P6=#REGION1
R0,30$
ERROR

#I0$C_QV_SETCURSOR,RO
CHAN=CUR CHAN2,­
FUNC=#IO$_SETMODE,­
Pl=(RO),­
P2=#QV$CURSOR2,­
P6=#REGION2
R0,40$
ERROR

40$: RSB
REGIONl:

0-6

.LONG

.LONG

.LONG

.LONG

20
20
300
300

Assign one cursor channel using
logical name and channel number

Check for success

Assign another cursor channel using
logical name and channel number

Define cursor region code
On cursor channel 1

Cursor description
Cursor region 1 definition
Check for success

Define cursor region code
On cursor channel 2

Cursor description
Cursor region 2 definition
Check for success

Cursor region 1 definition
Lower left corner (ADC)

Upper right corner (ADC)

QVSS Programming Example

REGION2:
.LONG
.LONG
.LONG
.LONG

QV$CURSOR1:
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

QV$CURSOR2:
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

400
400
800
800

Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll
Abllllllllllllllll

Ab0000011110000000
Ab0000011110000000
Ab0000011110000000
Ab0000011110000000
Ab0000011110000000
Ab0000011110000000
Ab0000011110000000
Abllllllllllllllll
Abllllllllllllllll
Ab0000011110000000
Ab0000011110000000
AbQOOOOllllOOOOOOO
Ab0000011110000000
AbOOOOOllllOOOOOOO
Ab0000011110000000
Ab0000011110000000

Cursor region 2 definition
Lower left corner (ADC)

Upper right corner (ADC)

16 * 16 Cursor pattern 1 (solid)

16 * 16 Cursor pattern 2 (cross)

.SBTTL SET_ONESHOT - SET UP ONE-SHOT QIO
;++

FUNCTIONAL DESCRIPTION:

Set a two 'one-shot' keyboard character reads
on keyboard channel 1 by enabling a keyboard region
w/o an AST. The input goes to the typeahead buffer,
and the one-shots read it one character at a time.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

SET_ONESHOT:
$ASSIGN_S DEVNAM=WS_DEVNAM,­

CHAN=KBD_CHANl
BLBS R0,10$
BRW ERROR

Assign a keyboard channel using
logical name and channel number

Check for success

D-7

QVSS Programming Example

10$: MOVL
$QIOW_S

BLBS
BRW

20$: $QIO_S

BLBS
BRW

30$: $QIO_S

RSB
P2_8LOCK:

.LONG

.LONG

.LONG

.LONG

#IO$C_QV_ENAKB,RO
CHAN=KBD_CHANl,-
FUNC=#IO$_SETMODE,-
Pl=(RO),-
P2=#P2_BLOCK
R0,20$
ERROR

CHAN=KBD_CHANl,-
FUNC=#I0$_READVBLK,-
IOSB = IOSB_BLOCK,-
ASTADR = ONE_SHOT_AST,-
ASTPRM = #ONESHOT_ACK,-
P2 = #I0$C_QV_ENAKB
R0,30$
ERROR

CHAN=KBD CHAN1,­
FUNC=#I0$_READVBLK,­
IOSB = IOSB_BLOCK,­
ASTADR = ONE SHOT AST,­
ASTPRM = #ONESHOT-ACK,­
P2 = #IO$C_QV~ENAKB

0
0
0
0

ONESHOT_ACK: Acknowledgment message

Enable keyboard region code
On keyboard channel 1

AST specification block
Check for success

Queue 2 one-shot reads
QIO Read code
IOSB block
AST that reads character
Acknowledgment message
Indicates keyboard list
Check for success

AST specification block 1
AST address
AST parameter
AST delivery mode
Input token

.ASCID /ONE SHOT RECEIVED ON CHANNEL 1/

.SBTTL SET_FRENCH_KB - SET UP A FRENCH KEYBOARD
;++

FUNCTIONAL DESCRIPTION:

Set up a French keyboard on keyboard channel 1.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

SET_FRENCH_KB:

Request that the VC driver use the new keyboard table as the private table
for keyboard 1.

5$:

D-8

MOVL
$QIOW_S

BLBS
BRW
RSB

#<I0$C QV LOAD KEY TABLE>, RO
CHAN =-KBD CHANl, :
FUNC = #IO$_SETMODE, -
Pl = (RO), -
P2 = #KB LAYOUT TBL LEN,
P3 = #KB-LAYOUT-TBL-
RO, 5$ - -
ERROR

Change the keyboard layout
On keyboard channel 1

Keyboard table size
New keyboard table
Check for success

QVSS Programming Example

Generate a new keyboard table using macros. This table will define
the layout of the characters on the workstation keyboard.

VC$KEYINIT KB LAYOUT_TBL ; Generate the table

Make any changes to the table here. Because VC$KEYINIT was used to generate
the table, only the characters that must be changed need to be specified.
F.or example, if the "A" key will still be the "A" key in the new layout
and the various combinations of shift/control/lock are to remain the same, it
need not be specified again. (Note that the key definitions do not have to
be in order.

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEY

VC$KEYEND

1,<Aa/!/>,<Ax0BO>,<Ax0FF>,<Ax0FF>,­
<Aa/!/>,<Ax0BO>,<Ax0FF>,<Ax0FF>

2,<Aa/1/>,<Aa/+/>,<AxOFF>,<AxOFF>,­
<Aa/1/>,<Aa/+/>,<AXOFF>,<AXOFF>

3,<Aa/2/>,<Aa/"/>,<Ax000>,<Ax000>,­
<Aa/2/>,<Aa/"/>,<Ax000>,<Ax000>

4,<Aa/3/>,<Aa/*/>,<Ax01B>,<Ax01B>,­
<Aa/3/>,<Aa/*/>,<Ax01B>,<Ax018>

5,<Aa/4/>,<Ax0E7>,<Ax01C>,<Ax01C>,­
<Aa/4/>,<Ax0E7>,<Ax01C>,<Ax01C>

7,<Aa/6/>,<Aa/&/>,<Ax01E>,<Ax01E>,­
<Aa/6/>,<Aa/&/>,<Ax01E>,<Ax01E>

8,<Aa/7/>,<Ax02F>,<Ax01F>,<Ax01F>,­
<Aa/7/>,<Ax02F>,<Ax01F>,<Ax01F>

9,<Aa/8/>,<Aa/(/>,<Ax07F>,<Ax07F>,­
<Aa/8/>,<Aa/(/>,<Ax07F>,<Ax07F>

10,<Aa/9/>,<Aa/)/>,<Ax0FF>,<Ax0FF>,­
<Aa/9/>,<Aa/)/>,<Ax0FF>,<Ax0FF>

11,<Aa/0/>,<Aa/=/>,<Ax0FF>,<Ax0FF>,­
<Aa/0/>,<Aa/=/>,<Ax0FF>,<Ax0FF>

12,<Ax081>,<Aa/?/>,<Ax0FF>,<Ax0FF>,­
<Ax081>,<Aa/?/>,<Ax0FF>,<Ax0FF>

13,<Ax082>,<Ax083>,<Ax01E>,<Ax01E>~­

<AX082>,<Ax083>,<Ax0FF>,<Ax0FF>
19,<Aa/z/>,<Aa/Z/>,<Ax01A>,<Ax01A>,­

<Aa/z/>,<Aa/Z/>,<Ax01A>,<Ax01A>
24,<Ax0E8>,<Ax0FC>,<Ax0FF>,<Ax0FF>,­

<Ax0E8>,<Ax0FC>,<Ax0FF>,<Ax0FF>
25,<Ax080>,<Ax084>,<Ax0FF>,<Ax0FF>,­

<Ax080>,<Ax084>,<Ax0FF>,<Ax0FF>
35,<Ax0E9>,<Ax0F6>,<Ax0FF>,<Ax0FF>,­

<Ax0E9>,<Ax0F6>,<Ax0FF>,<Ax0FF>
36,<Ax0EO>,<Ax0E4>,<Ax0FF>,<Ax0FF>,­

<AX0EO>,<Ax0E4>,<Ax0FF>,<Ax0FF>
37,<Aa/$/>,<Ax0A3>,<Ax0FF>,<Ax0FF>,­

<Aa/!/>,<Ax0BO>,<Ax0FF>,<Ax0FF>
46,<~a/,/>,<Aa/;/>,<Ax0FF>,<Ax0FF>,­

<Aa/,/>,<Aa/;/>,<Ax0FF>,<Ax0FF>
47,<Aa/./>,<Aa/~/>,<Ax0FF>,<Ax0FF>,­

<Aa/ ./>,<Aa/:/>,<Ax0FF>,<Ax0FF>
48,<Aa/-/>,<Aa/ />,<Ax0FF>,<Ax0FF>,­

<Aa/-/>,<Aa/- />,<Ax0FF>,<Ax0FF>
39,<Aa/y/>,<Aa/Y/>,<Ax019>,<Ax019>,­

<Aa/y/>,<Aa/Y/>,<Ax019>,<Ax019>

Diacritical (')

Diacriticals ('A)

Diacriticals (" -)

KB_LAYOUT_TBL_LEN End the table,
and determine its length

D-9

QVSS Programming Example

.SBTTL SET_COMPOSE3_TABLE - SET UP A THREE-STROKE COMPOSE TABLE
1++

FUNCTIONAL DESCRIPTION:

Set up a private three-stroke compose table on keyboard channel 1.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

SET_COMPOSE3_TABLE:

Request that the VC driver use the new three-stroke compose table as the
private table for keyboard 1.

MOVL
$QIOW_S

BLBS
BRW

5$: RSB

#<I0$C_QV_LOAD_COMPOSE_TABLE>, RO
CHAN = KBD_CHANl, -
FUNC = #IO$_SETMODE, -
Pl (RO), -
P4 = #COMPOSE3_TBL_LEN,
PS = #COMPOSE3 TBL
R0,5$ -
ERROR

Change the compose table
On keyboard channel 1

Three-stroke table size
New three-stroke table
Check for success

Generate a new three-stroke compose table. This table will define the new
compose sequences for a keyboard region (This example shows a subset of
the standard three-stroke compose sequences - the complete default
three-stroke table is in Appendix G).

VC$COMPOSE_KEYINIT COMPOSE3_TBL

Fill the table here.

D-10

VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY

<Aa/A/>,<Aa/"/>,,<Axc4>
<Aa/A/>,<Aa/'/>,,<Axcl>
<Aa/A/>,<Aa/*/>,,<Axc5>
<Aa/A/>,<Aa/A/>,<@>
<Aa/A/>,<Aa/E/>,,<Axc6>
<Aa/A/>,<Aa/A/>,,<Axc2>
<Aa/A/>,<Aa/ />,,<Axaa>
<Aa/A/>,<Aa/~/>,,<AxcO>
<Aa/A/>,<Aa/-/>,,<Axc3>
<Aa/A/>,<Ax80>,,<Axc4>
<Aa/A/>,<Axb0>,,<Axc5>

<Aa/C/>,<Aa/,/>,,<Axc7>
<Aa/C/>,<Aa\/\>,,<Axa2>
<Aa/C/>,<Aa/0/>,,<Axa9>
<Aa/C/>,<Aa/O/>,,<Axa9>
<Aa/C/>,<Aa/l/>,,<Axa2>

VC$COMPOSE_KEYEND COMPOSE3_TBL_LEN

Generate an empty table

Order sensitive

End the table,
and determine its length

QVSS Programming Example

.SBTTL SET_COMPOSE2_TABLE - SET UP A TWO-STROKE COMPOSE TABLE
:++

FUNCTIONAL DESCRIPTION:

Set up a private two-stroke compose table on keyboard channel 1.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

SET_COMPOSE2_TABLE:

Request that the VC driver use the new two-stroke compose table as the
private table for keyboard 1.

5$:

MOVL
$QIOW_S

BLBS
BRW
RSB

#<I0$C_QV_LOAD_COMPOSE_TABLE>,
CHAN = KBD_CHANl, -
FUNC = #I0$_SETMODE, -
Pl (RO), -
P2 = #COMPOSE2_TBL_LEN,
P3 = #COMPOSE2 TBL
RO, 5$ -
ERROR

RO : Change the compose table
On keyboard channel 1

Two-stroke table size
New two-stroke table
Check for success

Generate a new two-stroke compose table. This table will define the new
compose sequences for a keyboard region (This example actually shows the
default table of two-stroke compose sequences).

VC$COMPOSE_KEYINIT COMPOSE2_TBL,COMPOSE_2=YES

Diaresis mark

VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY

VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY

<Ax80>,<Aa/ />,<">
<Ax80>,<Aa/A/>,,<Axc4>
<Ax80>,<Aa/E/>,,<Axcb>
<Ax80>,<Aa/I/>,,<Axcf>
<Ax80>,<Aa/O/>,,<Axd6>
<Ax80>,<Aa/U/>,,<Axdc>
<Ax80>,<Aa/Y/>,,<Axdd>
<Ax80>,<Aa/a/>,,<Axe4>
<Ax80>,<Aa/e/>,,<Axeb>
<Ax80>,<Aa/i/>,,<Axef>
<Ax80>,<Aa/o/>,,<AF6>
<Ax80>,<Aa/u/>,,<Axfc>
<Ax80>,<Aa/y/>,,<Axfd>

<Ax81>,<Aa/ />,<'>
<Ax81>,<Aa/A/>,,<Axcl>
<Ax81>,<Aa/E/>,,<Axc9>
<Ax81>,<Aa/I/>,,<Axcd>
<Ax81>,<Aa/O/>,,<Axd3>
<Ax81>,<Aa/U/>,,<Axda>
<Ax81>,<Aa/a/>,,<Axel>
<Ax81>,<Aa/e/>,,<Axe9>
<Ax81>,<Aa/i/>,,<Axed>
<Ax81>,<Aa/o/>,,<Axf3>
<Ax81>,<Aa/u/>,,<Axfa>

D-11

QV$S Programming Example

:++

VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY

VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPO~E-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY

VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY

<Ax82>,<Aa/ />,<'>
<Ax82>,<Aa/A/>,,<Axd0>
<Ax82>,<Aa/E/>,,<Axc8>
<Ax82>,<Aa/I/>,,<Axcc>
<Ax82>,<Aa/O/>,,<Axd2>
<Ax82>,<Aa/U/>,,<Axd9>
<Ax82>,<Aa/a/>,,<Axe0>
<Ax82>,<Aa/e/>,,<Axe8>
<Ax82>,<Aa/i/>,,<Axec>
<Ax82>,<Aa/o/>,,<Axf2>
<Ax82>,<Aa/u/>,,<Axf9>
<Ax83>,<Aa/ />,<A>
<Ax83>,<Aa/A/>,,<Axc2>
<Ax83>,<Aa/E/>,,<Axca>
<Ax83>,<Aa/I/>,,<Axce>
<Ax83>,<Aa/0/>,,<Axd4>
<Ax83>,<Aa/U/>,,<Axdb>
<Ax83>,<Aa/a/>,,<Axe2>
<Ax83>,<Aa/e/>,,<Axea>
<Ax83>,<Aa/i/>,,<Axee>
<Ax83>,<Aa/o/>,,<Axf4>
<Ax83>,<Aa/u/>,,<Axfb>

<Ax84>,<Aa/ />,<->
<Ax84>,<Aa/A/>,;<Axc3>
<Ax84>,<Aa/N/>,,<Axdl>
<Ax84>,<Aa/0/>,,<Axd5>
<Ax84>,<Aa/a/>,,<Axe3>
<Ax84>,<Aa/n/>,,<Axfl>
<Ax84>,<Aa/o/>,,<Axf5>
<Ax84>,<Aa/u/>,,<Axfc>

<Ax85>,<Aa/ />,,<AxbO>
<Ax85>,<Aa/A/>,,<Axc5>
<Ax85>,<Aa/a/>,,<Axe5>

VC$COMPOSE_KEYEND COMPOSE2_TBL_LEN : End the table,
and determine its length

.SBTTL SET_KBDAST - SET UP KEYBOARD REGIONS

FUNCTIONAL DESCRIPTION:

Enable several keyboard regions.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

1--

SET_KBDAST:
$ASSIGN_S DEVNAM=WS DEVNAM,­

CHAN=KBD_CHAN2
R0,10$

10$:

D-12

BLBS
BRW

MOVL
$QIOW_S

BLBS
BRW

ERROR

#IO$C_QV_MODIFYKB,RO
CHAN=KBD_CHAN1,­
FUNC=iIO$ SETMODE,­
Pl=(RO) ,--
P2=#P2 BLOCK1,­
P3=#P3-BLOCK
RO, 20$-
ERROR

Assign keyboard channel 2 using
logical name and channel number

Check for success

Modify the keyboard
On keyboard channel 1

AST specification block
Control AST block
Check for success

QVSS Programming Example

20$: MOVL
$QIOW_S

BLBS
BRW

30$: RSB

P2_BLOCK1:
.LONG
.LONG
.LONG
.LONG

f IO$C_QV_ENAKB,RO
CHAN=KBD_CHAN2,-
FUNC=f I0$_SETMODE,-
Pl=(RO),-
P2=fP2_BLOCK2,-
P3=#P3_BLOCK
R0,30$
ERROR

KBD_AST
ACKl
0
CHARACTER

Enable a keyboard
On keyboard channel 2

AST specification block
Control AST block
Check for success

AST specification block 1
Keyboard AST address
AST parameter
AST delivery mode
Input token

ACKl: .ASCID /INPUT ACKNOWLEDGED CHANNEL 1/ ; Acknowledgment 1
P2_BLOCK2:

.LONG

.LONG

.LONG

.LONG

KBD_AST
ACK2
0
CHARACTER

; AST specification block 2

ACK2: .ASCID /INPUT ACKNOWLEDGED CHANNEL 2/

Control AST specification block P3_BLOCK:
.LONG
.LONG
.LONG
.LONG
.SBTTL

CTL_AST Control AST address
0 AST parameter
0 AST delivery mode
0 Must be zero
SET_BUTTONAST - ENABLE POINTER BUTTON REGION

;++

FUNCTIONAL DESCRIPTION:

Enable a pointer button region, and specify an AST address.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

SET_BUTTONAST:
$ASSIGN_S DEVNAM=WS_DEVNAM,­

CHAN=BUT CHAN
BLBS R0,10$ -
BRW ERROR

10$: MOVL
$QIOW_S

BLBS
BRW

20$: RSB
BUT_BLOCK:

.LONG

.LONG

.LONG

.LONG

BUT_REGION:
.LONG
.LONG
.LONG
.LONG

#IO$C_QV_ENABUTTON,RO
CHAN=BUT_CHAN,­
FUNC=#IO$_SETMODE,­
Pl=(RO),­
P2=#BUT_BLOCK,­
P6=#BUT REGION
R0,20$ -
ERROR

BUT_AST
0
0
BUTTON

20
20
300
300

Assign a button channel using
logical name and channel number

Check for success

Enable button transitions
On the button channel

AST specification
Associated button region
Check for success

Button AST specification block
AST address
AST parameter
Access mode
Button information longword

Button AST region
Lower left corner (ADC)

Upper right corner (ADC)

D-13

QVSS Programming Example

.SBTTL SET_FNKEYAST - ENABLE FS FUNCTION KEY
;++

FUNCTIONAL DESCRIPTION:

Enable a function key, and specify an AST address.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

SET FNKEYAST:
- $ASSIGN_S DEVNAM=WS_DEVNAM,-

CHAN=FNKEY_FS_CHAN
BLBS R0,10$
BRW ERROR

10$: MOVL
$QIOW_S

BLBS
BRW

30$: RSB

FNKEY_BLOCK:
.LONG
.LONG
.LONG
.LONG

#I0$C_QV_ENAFNKEY,RO
CHAN=FNKEY FS CHAN,­
FUNC=#I0$_SETMODE,­
Pl=(RO),­
P2=#FNKEY_BLOCK,­
P3=#QV$M_KEY_F5
R0,30$
ERROR

FS_AST
FS_ACK
0
CHARACTER

Assign function key channel using
logical name and channel number

Check for success

Enable function key
On function key channel

AST specification block
Modifier indicating FS key
Check for success

Function key ast specification block
AST address
AST parameter
Access mode
Input token

FS_ACK: .ASCID /FUNCTION KEY FS HAS BEEN PRESSED/ ; Acknowledgment message
.SBTTL SET_MOUSEAST - ENABLE POINTER MOVEMENT REGION

;++

FUNCTIONAL DESCRIPTION:

Enable pointer movement ASTs for a region.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

SET_MOUSEAST:

10$:

20$:

D-14

$ASSIGN_S DEVNAM=WS_DEVNAM,­
CHAN=MOUSE CHAN

BLBS R0,10$ -
BRW ERROR

MOVL
$QIOW_S

BLBS
BRW
RSB

#IO$C_QV_MOUSEMOV,RO
CHAN=MOUSE_CHAN,­
FUNC=#I0$_SETMODE,­
Pl=(RO),­
P2=#MOUSE_BLOCK,­
P6=#MOUSE_REGION
R0,20$
ERROR

Assign pointer channel using
logical name and channel number

Check for success

Enable pointer movement
On pointer channel

AST specification block
Associated region
Check for success

QVSS Programming Example

MOUSE_BLOCK:
.LONG
.LONG
.LONG
.LONG

MOUSE_REGION:
.LONG
.LONG
.LONG
.LONG

MOUSE_ACK:

MOUSE_AST
MOUSE_ACK
0
MOUSE_XY

400
400
800
800

Pointer region AST specification block
AST address
AST parameter
Access mode
New cursor position

Pointer region
Lower left corner (ADC)

Upper right corner (ADC)

.ASCID /POINTER MOVEMENT DETECTED/ ; Acknowledgment message

.SBTTL SIMULATE_INPUT - SIMULATE INPUT ON KEYBOARD 2
;++

FUNCTIONAL DESCRIPTION:

Simulate keyboard input on keyboard channel 2.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

SIMULATE_INPUT:

20$:

SIM_ACK:

MOVL
$QIOW_S

BLBS
BRW
RSB

#IO$C_QV_SIMULATE,RO
CHAN=KBD CHAN2,­
FUNC=#IO$_SETMODE,­
Pl=(RO),-
P2=#SIM ACK,-
P3=#0 -
R0,20$
ERROR

Simulate keyboard input
On keyboard channel 2

Acknowledgment
No pointer repositioning
Check for success

.ASCID /This input SIMULATED on chan 2./ Acknowledgment message

The following code contains all the ASTs specified in the above QIOs

.SBTTL ONE_SHOT_AST - ONE_SHOT AST ROUTINE
;++

FUNCTIONAL DESCRIPTION:

This is the AST routine specified by the 'one-shot' read QIO.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

ONE_SHOT_AST:
.WORD
PUSHL
CALLS
BLBS
BRW

4(AP)
#l,GALIB$PUT LINE
RO, 10$ -
ERROR

10$: PUSHAL DESCl
CALLS #l,GALIB$PUT_LINE

Send acknowledgment message

Send character typed,
descriptor points to IOSB

D-15

QVSS Programming Example

RET

.SBTTL MOUSE_AST - POINTER AST ROUTINE
~++

FUNCTIONAL DESCRIPTION:

This is the AST routine specified by the enable pointer movement QIO.

INPUT PARAMETERS:
POINTER_XY - Contains the current X and Y coordinates for the pointer.

OUTPUT PARAMETERS:
NONE

;--

MOUSE_AST:
.WORD
PUSHL
CALLS
BLBS

5$: BRW

10$: RET

4(AP)
#1,GALIB$PUT~LINE

RO, 10$
ERROR

Send acknowledgment message

.SBTTL KBD_AST - KEYBOARD AST ROUTINE

.SBTTL F5_AST - FUNCTION KEY F5 AST ROUTINE

FUNCTIONAL DESCRIPTION:

This is the AST routine specified by the enable keybo~rd QIO and
by the enable function key F5 QIO.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:

;--

KBD_AST:
F5_AST:

5$:

10$:

20$:

30$:

NONE

.WORD
PUSHL 4(AP)
CALLS #l,GALIB$PUT_LINE
BLBS RO, 10$
BRW ERROR

CMPW #KEY$C_F5,CHARACTER
BNEQ 20$
BSBW CYCLE_KBD
BRB 40$

PUS HAL DESC
CALLS #l,GALIB$PUT_LINE
BLBC R0,5$

CMPB #AA/Cf ,CHARACTER
BNEQ 30$
BSBW CYCLE_KBD
BRB 40$

CMPB #AA/Ff ,CHARACTER
BNEQ 40$
$SETEF_S EFN=#2

40$: RET

D-16

Send acknowledgment message

Was F5 typed?

Cycle the keyboard list
and exit

Send character typed

Was a "C" typed?

Cycle the keyboard list

Was an "F" Typed?

Yes, exit program

QVSS Programming Example

.SBTTL CTL_AST - CONTROL AST ROUTINE
:++

FUNCTIONAL DESCRIPTION:

This is the control AST routine.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:

CTL_AST:

5$:
10$:

NONE

.WORD
PUS HAL
CALLS
BLBS
BRW
RET

CYCLE_ACK:

CYCLE ACK
f 1,GALIB$PUT_LINE
RO, 10$
ERROR

Send acknowledgment message

.ASCID /KEYBOARD HAS BEEN CYCLED/ : Acknowledgment message

.SBTTL BUT_AST - BUTTON AST ROUTINE
:++

FUNCTIONAL DESCRIPTION:

This is the AST routine specified by the enable pointer movement QIO.

INPUT PARAMETERS:
BUTTON - Status of the pointer buttons.

OUTPUT PARAMETERS:
NONE

;--

BUT_AST:
.WORD
CMPW fKEY$C_BUTTON_l,BUTTON
BNEQ 10$
PUS HAL BUTl_ACK
BRB 50$

10$: CMPW #KEY$C_BUTTON_2,BUTTON
BNEQ 20$
PUS HAL BUT2_ACK
BRB 50$

20$: CMPW tKEY$C_BUTTON_3,BUTTON
BNEQ 100$
PUS HAL BUT3_ACK

50$: CALLS #l,GALIB$PUT_LINE
BLBS R0,60$
BRW ERROR

60$: PUS HAL BUTUP ACK
BBC t31 , BUTTON, 7 0 $
PUS HAL BUTDOWN_ACK

70$: CALLS f l,GALIB$PUT_LINE
BLBS R0,100$
BRW ERROR

100$: RET

Was BUTTON 1 changed?
(predefined constant)

Was BUTTON 2 changed?

Was BUTTON 3 changed?

Send correct acknowledgment

Assume button was released
If clear then button released
Otherwise, button was depressed
Send acknowledgment message

D-17

QVSS Programming Example

Acknowledgment messages
BUTl_ACK:

.ASCID /POINTER BUTTON 1 TRANSITION HAS BEEN DETECTED/
BUT2_ACK:

.ASCID /POINTER BUTTON 2 TRANSITION HAS BEEN DETECTED/
BUT3_ACK:

.ASCID /POINTER BUTTON 3 TRANSITION HAS BEEN DETECTED/
BUTUP_ACK:

.ASCID /BUTTON IS UP/
BUTDOWN_ACK:

.ASCID /BUTTON IS DOWN/

.SBTTL CYCLE_KBD - CYCLE KEYBOARD REGION
;++

FUNCTIONAL DESCRIPTION:

This routine cycles the keyboard to the next keyboard region.

INPUT PARAMETERS:
NONE

OUTPUT PARAMETERS:
NONE

;--

CYCLE_KBD:
MOVL i<I0$C_QV_ENAKB!IO$M_QV_CYCLE>,RO Use keyboard cycle modifier

On keyboard channel 1 $QIOW_S CHAN=KBD_CHAN1,­
FUNC=#IO$_SETMODE,-

BLBS
BRW

Pl= (RO)

R0,40$
ERROR

40$: RSB

.END START

D-18

Check for success

E Keyboard Table Macro

This appendix contains the macro used to generate a keyboard table .

• SBTTL VC$KEYINIT - Macro to generate keyboard table
;++

VC$KEYINIT
VC$KEY

- Initializes the keyboard table
- Generates a key table entry for the given position

This macro defines a given key entry for the keyboard position.
This entry contains the ASCII translation for the lowercase character,
uppercase character, control (CTRL) for this position, and shift control
for this position. In addition it will generate a lock state for this
position including the character to be used when lock is detected, when
shift lock is detected, when control lock is detected, and when control
shift lock is detected.

;--

.Macro VC$KEY POSITION,LOWER,SHIFT,CTRL,SHIFT_CTRL,LOCK,­
SHIFT_LOCK,CTRL_LOCK,SHIFT_CTRL_LOCK

.=BASE+<<POSITION-1>*8>

.BYTE LOWER

.IF BLANK,<SHIFT>

.BYTE LOWER&<AC<l@S>>

.!FF

.BYTE

.ENDC
SHIFT

.IF BLANK,<CTRL>

.BYTE LOWER&<AC<3@5>>

.IFF

.BYTE

.ENDC
CTRL

.IF BLANK,<SHIFT_CTRL>

.BYTE LOWER&<AC<3@5>>

.!FF

.BYTE

.ENDC
SHIFT_CTRL

.IF BLANK,<LOCK>

.BYTE LOWER&<AC<l@5>>

.!FF

.BYTE

.ENDC
LOCK

.IF BLANK,<SHIFT_LOCK>

.BYTE LOWER&<AC<l@5>>

.IFF

.BYTE

.ENDC
SHIFT_LOCK

.IF BLANK,<CTRL_LOCK>

.BYTE LOWER&<AC<3@5>>

.!FF

.BYTE

.ENDC
CTRL_LOCK

.IF BLANK,<SHIFT_CTRL_LOCK>

.BYTE LOWER&<AC<3@5>>

.!FF

.BYTE

.ENDC
SHIFT_CTRL_LOCK

Lowercase character

Shift (uppercase) character

Control key and character key

Shift, control and character key
usually same as control

Lock and character keys
Usually the same as shift

Shift, lock and character keys
usually the same as shift

Control, lock and character keys
usually the same as control

Shift, control, lock & char keys
usually the same as control

E-1

Keyboard Table Macro

.ENDM VC$KEY

.Macro VC$KEYINIT NAME,VERSION=l,INTERNAL

.SAVE

.PSECT
•IF NB
.long
.ENDC

$$$117_'NAME,LONG
INTERNAL
2 ; * Used for building internal driver table *

MAXKEY=49
TBL_START=.
NAME==.

.QUAD VERSION

Allocate space for the table. Pre-initialize it to known values (-1).

BASE=.
.REPEAT MAXKEY-1
.LONG -1,-1
.ENDR

ENDBASE=.

Initialize the table to the North American keyboard.

E-2

VC$KEY 1,<Aa/'/>,<Aa/-/>,<Axle>,<Axle>,­
<Aa/'/>,<Aa/-/>,<Axle>,<Axle>

VC$KEY 2,<Aa/1/>,<Aa/!/>,<Ax0FF>,<Ax0FF>,­
<Aa/1/>,<Aa/!/>,<Ax0FF>,<Ax0FF>

VC$KEY 3,<Aa/2/>,<Aa/@/>,<Ax00>,<Ax00>,­
<Aa/2/>,<Aa/@/>,<Ax00>,<Ax00>

VC$KEY 4,<Aa/3/>,<Aa/i/>,<Axlb>,<Axlb>,­
<Aa/3/>,<Aa/i/>,<Axlb>,<Axlb>

VC$KEY 5,<Aa/4/>,<Aa/$/>,<Axlc>,<Axlc>,­
<Aa/4/>,<Aa/$/>,<Axlc>,<Axlc>

VC$KEY 6,<Aa/5/>,<Aa/%/>,<Axld>,<Axld>,­
<Aa/5/>,<Aa/%/>,<Axld>,<Axld>

VC$KEY 7,<Aa/6/>,<Aa/A/>;<Axle>,<Axle>,­
<Aa/6/>,<Aa/A/>,<Axle>,<Axle>

VC$KEY 8,<Aa/7/>,<Aa/&/>,<Axlf>,<Axlf>,­
<Aa/7/>,<Aa/&/>,<Axlf>,<Axlf>

VC$KEY 9,<Aa/8/>,<Aa/*/>,<Ax7f>,<Ax7f>,­
<na/8/>,<na/*/>,<nx7f>,<nx7f>

VC$KEY 10,<Aa/9/>,<Aa/(/>,<AxOFF>,<nxOFF>,­
<Aa/9/>,<Aa/(/>,<AxOFF>,<nxOFF>

VC$KEY 11,<Aa/0/>,<Aa/)/>,<AxOFF>,<AxOFF>,­
<Aa/0/>,<Aa/)/>,<AxOFF>,<AxOFF>

VC$KEY 12,<Aa/-/>,<Aa/_/>,<Axlf>,<Axlf>,­
<Aa/-/>,<Aa/ />,<Axlf>,<Axlf>

VC$KEY 13,<Aa/=/>,<Aa/+!>,<Ax0FF>,<Ax0FF>,­
<Aa/=/>,<Aa/+/>,<Ax0FF>,<Ax0FF>

VC$KEY 14,<Aa/q/>,<Aa/Q/>,<Axll>,<Axll>,-
' ,<Axll>,<Axll>

VC$KEY 15,<AA/w/>,<Aa/W/>,<Ax17>,<Axl7>,-
' ,<Axl7>,<Ax17>

VC$KEY 16,<AA/e/>,<Aa/E/>,<Ax05>,<Ax05>,-
' ,<Ax05>,<Ax05>

VC$KEY 17,<AA/r/>,<Aa/R/>,<Ax12>,<nxl2>,-
' ,<Ax12>,<Ax12>

VC$KEY 18,<AA/t/>,<Aa/T/>,<Ax14>,<Ax14>,-
' ,<Ax14>,<Ax14>

VC$KEY 19,<AA/y/>,<Aa/Y/>,<nx19>,<nxl9>,-
' ,<Ax19>,<nx19>

VC$KEY 20,<AA/u/>,<Aa/U/>,<Ax15>,<Axl5>,-
' ,<Ax15>,<Ax15>

VC$KEY 21,<AA/i/>,<Aa/I/>,<Ax09>,<Ax09>,-
' ,<Ax09>,<nx09>

VC$KEY 22,<AA/o/>,<Aa/O/>,<Ax0F>,<Ax0F>,-
' ,<Ax0F>,<Ax0F>

VC$KEY 23,<AA/p/>,<Aa/P/>,<AxlO>,<AxlO>,-
, ,<nxlO>,<nxlO>

VC$KEY 24,<AA/[/>,<Aa/{/>,<Axlb>,<Axlb>,­
<Aa/[/>,<Aa/{/>,<Axlb>,<Axlb>

VC$KEY 25,<AA/J/>,<Aa/}/>,<Axld>,<Axld>,­
<Aa/)/>,<Aa/}/>,<Axld>,<"xld>

VC$KEY 26,<"A/a/>,<Aa/A/>,<Ax01>,<"x01>,-
' ,<"x01>,<"x01>

VC$KEY 27,<AA/s/>,<Aa/S/>,<Ax13>,<Ax13>,-
' ,<Axl3>,<"x13>

VC$KEY 28,<AA/d/>,<"a/D/>,<"x04>,<"x04>,-
, ,<"x04>,<"x04>

VC$KEY 29,<"A/f/>,<Aa/F/>,<"x06>,<"x06>,-
' ,<"x06>,<"x06>

VC$KEY 30,<AA/g/>,<"a/G/>,<Ax07>,<Ax07>,-
' ,<Ax07>,<"x07>

VC$KEY 31,<AA/h/>,<"a/H/>,<Ax08>,<"x08>,-
, ,<"x08>,<"x08>

VC$KEY 32,<"A/j/>,<"a/J/>,<"x0A>,<Ax0A>,-
, ,<"x0A>,<"x0A>

VC$KEY 33,<"A/k/>,<Aa/K/>,<"x0B>,<"x0B>,-
, ,<Ax0B>,<"x0B>

VC$KEY 34,<"A/l/>,<"a/L/>,<AxOC>,<AxOC>,-
, ,<"xOC>,<AxOC>

VC$KEY 35,<"x03B>,<Aa/:/>,<"x0FF>,<"x0FF>,­
<"x03B>,<"a/:/>,<"x0FF>,<Ax0FF>

VC$KEY 36,<"a/'/>,<"a/"/>,<"x0FF>,<"x0FF>,­
<"a/'/>,<"a/"/>,<"x0FF>,<"x0FF>

VC$KEY 37,<"a/\/>,<"a/l/>,<"xlc>,<"xlc>,­
<"a/\/>,<"a/l/>,<"xlc>,<"xlc>

VC$KEY 38,<"x3c>,<"x3e>,<"x0FF>,<"x0FF>,­
<Ax3c>,<"x3e>,<"x0FF>,<"x0FF>

VC$KEY 39,<"A/z/>,<"a/Z/>,<AxlA>,<"xlA>,-
, ,<"xlA>,<"xlA>

VC$KEY 40,<"A/x/>,<Aa/X/>,<"x18>,<Ax18>,-
' ,<"x18>,<"x18>

VC$KEY 41,<"A/c/>,<Aa/C/>,<"x03>,<"x03>,-
, ,<"x03>,<"x03>

VC$KEY 42,<AA/v/>,<"a/V/>,<"x16>,<"xl6>,-
, ,<"x16>,<"x16>

VC$KEY 43,<"A/b/>,<"a/B/>,<"x02>,<"x02>,-
, ,<"x02>,<"x02>

VC$KEY 44,<AA/n/>,<"a/N/>,<"xOE>,<"xOE>,-
, ,<"x0E>,<"x0E>

VC$KEY 45,<"A/m/>,<"a/M/>,<"xOD>,<"xOD>,-
' ,<"x0D>,<Ax0D>

VC$KEY 46,<"a/,/>,<"a/,/>,<"x0FF>,<"x0FF>,­
<Aa/,/>,<"a/,/>,<"x0FF>,<"x0FF>

VC$KEY 47,<"a/./>,<"a/./>,<"x0FF>,<"x0FF>,­
<"a/./>,<"a/./>,<"x0FF>,<"x0FF>

VC$KEY 48,<"x2f>,<"a/?/>,<"xlf>,<"xlf>,­
<"x2f>,<"a/?/>,<"xlf>,<"xlf>

.endm VC$KEYINIT

.MACRO VC$KEYEND TABLE_SIZE

Keyboard Table Macro

.=ENDBASE PC points to first byte after table

.IF NOT_BLANK TABLE_SIZE
TABLE_SIZE ENDBASE - TBL_START ;Size of table
.ENDC
.RESTORE
.ENDM - VC$KEYEND

E-3

F Compose Table Macros

This appendix contains the macros used to construct a compose table .

• SBTTL VC$COMPOSE_KEYINI - Macro to initialize a compose sequence table
;++

MACRO VC$COMPOSE_KEYINI - Macro to initialize a compose sequence table

INPUTS

1--

NAME==.

DIA_ TAB_

NAME = TABLE NAME TO GENERATE
COMPOSE_2 = YES - IF THIS IS A 2 CHARACTER COMPOSE TABLE

BLANK - IF A 3 CHARACTER COMPOSE TABLE
VERSION = TABLE VERSION
INTERNAL = YES - IF THIS MACRO IS BEING CALLED TO BUILD INTERNAL TABLE.

.Macro

.SAVE

.PSECT

.IF NB

.long

.ENDC

.save

BLANK - IF THIS MACRO IS BEING CALLED NORMALLY.

VC$COMPOSE_KEYINIT NAME,COMPOSE_2,VERSION=l,INTERNAL

$$$118_'NAME'_A
INTERNAL
2 *** Used by driver, NOT for regular table ***

Save attributes
.psect $$$118_'NAME'_B
ext_'name=.

Go to other psect
Save base address
Restore attributes .restore

.LONG VERSION

.IF NB COMPOSE 2 -
i=O
'NAME=.
.repeat <256/32> Get the diacritical table
.long 0
dia_init \i
i=i+l
.endr
.ENDC

.SBTTL VC$COMPOSE_KEY - Macro to generate a compose table entry
;++

MACRO VC$COMPOSE_KEY - Macro to generate a compose table entry

INPUTS
INPUT_CHARl
INPUT_CHAR2
OUTPUT_ SIZE

FIRST C~RACTER OF COMPOSE SEQUENCE
SECOND CHARACTER OF COMPOSE SEQUENCE
SIZE OF THE OUTPUT STRING (optional,

;--

STR=.

OUTPUT_CHAR
if omitted, size will be calculated)

OUTPUT STRING

.Macro VC$COMPOSE_KEY input_charl,input_char2,output_size,output_char

.BYTE

.BYTE

.SAVE

.PSECT

INPUT_CHARl
INPUT_CHAR2

$$$118_'NAME'_B

.IF BLANK <OUTPUT_SIZE>

.BYTE 1

.BYTE OUTPUT_ CHAR

F-1

Compose Table Macros

;++

.IFF

.ASCIC IOUTPUT_SIZEI

.ENDC

.RESTORE

.WORD STR-NAME

.IF NB COMPOSE 2
I=INPUT CHARl/32
J=INPUT-CHAR1-<I*32>
DIA -\I,\J
.ENDC
.endm VC$COMPOSE_KEY

MACRO VC$COMPOSE_KEYEND - Macro to end a compose table

INPUTS

1--

;++

TABLE_SIZE - (optional) Location to store size of table

.MACRO VC$COMPOSE_KEYEND TABLE_SIZE

.LONG -1

.IIF NB,COMPOSE_2, DIA_END DIA_TAB_'NAME

.IF NB TABLE_SIZE
TABLE_SIZE == .-name
.psect $$$118_'NAME'_B
TABLE_SIZE TABLE_SIZE+<.-ext_'name>
.ENDC
.RESTORE
.ENDM VC$COMPOSE_KEYEND

.ENDM VC$COMPOSE_KEYINIT

If table size requested
Get size of first psect
Jump to other psect
Add in size of this psect

.SBTTL MACRO DIA_INIT - Macro to generate diacritical table

MACRO DIA_INIT - Macro to generate diacritical table

INPUTS

;--

F-2

N - OFFSET INTO TABLE

.MACRO DIA_INIT N
DIA_'N = 0
.MACRO DIA OFFSET,BIT_POS
.IIF GT OFFSET-N,.ERROR; OFFSETS CANNOT BE GREATER THAN DIA_MAX
DIA_'OFFSET=l@BIT_POS!DIA_'OFFSET
.ENDM DIA
.MACRO DIA_ GEN x
.LONG DIA_ 'X
.ENDM DIA_ GEN

.MACRO DIA_END LABEL

.SAVE

.=LABEL
X=O
.REPEAT N+l
DIA_ GEN \X
X=X+l
.ENDR
.RESTORE
.ENDM DIA_END

.ENDM DIA_INIT

G Default Three-Stroke Compose Table Values

This appendix contains the macro that is executed to load the default three­
stroke compose table values. (The default two-stroke table is shown in the
example in Appendix D)

VC$COMPOSE_KEYINIT QV$COMPOSE3_TABLE

sp ! II * $ % & t ()

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY

* +

<"a/
<"a/
<"a/
<"a/
<"a/
<"a/

- I

/>,<"a/"/>,<">
/>,<"a/'/>,<'>
/>,<"a/*/>,,<"xbO>
/>,<"a/"/>,<">
/>,<"a/-/>,<->
/>,<"xbO>,,<"xbO>

<"a/!/>,<"a/!/>,,<"xal>
<"a/!/>,<"a/P/>,,<"xb6>
<"a/!/>,<"a/S/>,,<"xa7>
<"a/!/>,<"a/p/>,,<"xb6>
<"a/!/>,<"a/s/>,,<"xa7>

<"a/"/>,<"a/ />,<">
<"a/"/>,<"a/A/>,,<"xc4>
<"a/"/>,<"a/E/>,,<"xcb>
<"a/"/>,<"a/I/>,,<"xcf>
<"a/"/>,<"a/O/>,,<"xd6>
<"a/"/>,<"a/U/>,,<"xdc>
<"a/"/>,<"a/Y/>,,<"xdd>
<"a/"/>,<"a/a/>,,<"xe4>
<"a/"/>,<"a/e/>,,<"xeb>
<"a/"/>,<"a/i/>,,<"xef>
<"a/"/>,<"a/o/>,,<"xf6>
<"a/"/>,<"a/u/>,,<"xfc>
<"a/"/>,<"a/y/>,,<"xfd>

<"a/'/>,<"a/ />,<'>
<"a/'/>,<"a/A/>,,<"xcl>
<"a/'/>,<"a/E/>,,<"xc9>
<"a/'/>,<"a/I/>,,<"xcd>
<"a/'/>,<"a/O/>,,<"xd3>
<"a/'/>,<"a/U/>,,<"xda>
<"a/'/>,<"a/a/>,,<"xel>
<"a/'/>,<"a/e/>,,<"xe9>
<"a/'/>,<"a/i/>,,<"xed>
<"a/'/>,<"a/o/>,,<"xf3>
<"a/'/>,<"a/u/>,,<"xfa>

<"a/(/>,<"a/(/>,<[>
<"a/(/>,<"a/-/>,<{>

<"a/)/>,<"a/)/>,<J>
<"a/)/>,<"a/-/>,<}>

<"a/*/>,<"a/ />,,<"xbO>
<"a/*/>,<"a/A/>,,<"xc5>
<"a/*/>,<"a/a/>,,<"xe5>

<"a/+/>,<"a/+/>,<#>
<"a/+/>,<"a/-/>,,<"xbl>

G-1

Default Three-Stroke Compose Table Values

VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

0 1 2 3 4 5 6 7 8 9

A to Z

G-2

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY

VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY

VC$COMPOSE_KEY

VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

<Aa/,/>,<Aa/C/>,,<Axc7>
<Aa/,/>,<Aa/c/>,,<Axe7>

<Aa/-/>,<Aa/(/>,<{>
<Aa/-/>,<Aa/)/>,<}>
<Aa/-/>,<Aa/+/>,,<Axbl>
<Aa/-/>,<Aa/L/>,,<Axa3>
<Aa/-/>,<Aa/Y/>,,<Axa5>
<Aa/-/>,<Aa/l/>,,<Axa3>
<Aa/-/>,<Aa/y/>,,<Axa5>

<Aa/./>,<Aa/A/>,,<Axb7>

<Aa\/\>,<Aa\/\>,<\>
<Aa\/\>,<Ax3c>,<\>
<Aa\/\>,<Aa/C/>,,<Axa2>
<Aa\/\>,<Aa/O/>,,<Axd8>
<Aa\/\>,<Aa/U/>,,<Axb5>
<Aa\/\>,<Aa/A/>,,<Aa/I/>
<Aa\/\>,<Aa/c/>,,<Axa2>
<Aa\/\>,<Aa/o/>,,<Axf8>
<Aa\/\>,<Aa/u/>,,<Axb5>

: ; < => ?

<Aa/0/>,<Aa/C/>,,<Axa9>
<Aa/0/>,<Aa/S/>,,<Axa7>
<Aa/0/>,<Aa/X/>,,<Axa8>
<Aa/0/>,<Aa/A/>,,<AxbO>
<Aa/0/>,<Aa/c/>,,<Axa9>
<Aa/0/>,<Aa/s/>,,<Axa7>
<Aa/0/>,<Aa/x/>,,<Axa8>

<Aa/1/>,<Aa/2/>,,<Axbd>
<Aa/1/>,<Aa/4/>,,<Axbc>
<Aa/1/>,<Aa/A/>,,<Axb9>

<Aa/2/>,<Aa/A/>,,<Axb2>

<Ax3c>,<Aa\/\>,<\>
<Ax3c>,<Ax3c>,,<Axab>

<Aa/=/>,<Aa/L/>,,<Axa3>
<Aa/=/>,<Aa/Y/>,,<Axa5>
<Aa/=/>,<Aa/l/>,,<Axa3>
<Aa/=/>,<Aa/y/>,,<Axa5>

<Aa/A/>,<Aa/"/>,,<Axc4>
<Aa/A/>,<Aa/'/>,,<Axcl>
<Aa/A/>,<Aa/*/>,,<Axc5>
<Aa/A/>,<Aa/A/>,<@>
<Aa/A/>,<Aa/E/>,,<Axc6>
<Aa/A/>,<Aa/A/>,,<Axc2>
<Aa/A/>,<Aa/ />,,<Axaa>
<Aa/A/>,<Aa/~/>,,<AxcO>
<Aa/A/>,<Aa/-/>,,<Axc3>
<Aa/A/>,<Ax80>,,<Axc4>
<Aa/A/>,<Axb0>,,<Axc5>

<Aa/C/>,<Aa/,/>,,<Axc7>
<Aa/C/>,<Aa\/\>,,<Axa2>
<Aa/C/>,<Aa/0/>,,<Axa9>
<Aa/C/>,<Aa/0/>,,<Axa9>
<Aa/C/>,<Aa/l/>,,<Axa2>

order sensitive

order sensitive

order sensitive
order sensitive

order sensitive

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

[\] "

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

Default Three-Stroke Compose Table Values

<"a/E/>,<"a/"/>,,<"xcb>
<"a/E/>,<"a/'/>,,<"xc9>
<"a/E/>,<"a/"/>,,<"xca>
<"a/E/>,<"a/'/>,,<"xc8>
<"a/E/>,<"x80>,,<"xcb>

<"a/I/>,<"a/"/>,,<"xcf>
<"a/I/>,<"a/'/>,,<"xcd>
<"a/I/>,<"a/"/>,,<"xce>
<"a/I/>,<"a/'/>,,<"xcc>
<"a/I/>,<"x80>,,<"xcf>

<"a/L/>,<"a/-/>,,<"xa3>
<"a/L/>,<"a/=/>,,<"xa3>

<"a/N/>,<"a/-/>,,<"xdl>

<"a/O/>,<"a/"/>,,<"xd6>
<"a/O/>,<"a/'/>,,<"xd3>
<"a/0/>,<"a\/\>,,<"xd8>
<"a/0/>,<"a/C/>,,<"xa9>
<"a/0/>,<"a/E/>,,<"xd7>
<"a/0/>,<"a/S/>,,<"xa7>
<"a/0/>,<"a/X/>,,<"xa8>
<"a/0/>,<"a/"/>,,<"xd4>
<"a/0/>,<"a/ />,,<"xba>
<"a/O/>,<"a/~/>,,<"xd2>
<"a/0/>,<"a/-/>,,<"xd5>
<"a/0/>,<"x80>,,<"xd6>

<"a/P/>,<"a/!/>,,<"xb6>

<"a/S/>,<"a/!/>,,<"xa7>
<"a/S/>,<"a/0/>,,<"xa7>
<"a/S/>,<"a/O/>,,<"xa7>

<"a/U/>,<"a/"/>,,<"xdc>
<"a/U/>,<"a/'/>,,<"xda>
<"a/U/>,<"a/"/>,,<"xdb>
<"a/U/>,<"a/'/>,,<"xd9>
<"a/U/>,<"x80>,,<"xdc>

<"a/X/>,<"a/0/>,,<"xa8>
<"a/X/>,<"a/O/>,,<"xa8>

<"a/Y/>,<"a/"/>,,<"xdd>
<"a/Y/>,<"a/-/>,,<"xa5>
<"a/Y/>,<"a/=/>,,<"xa5>
<"a/Y/>,<"x80>,,<"xdd>

<"a/"/>,<"a/ />,<">
<"a/"/>,<"a/./>,,<"xb7>
<"a/"/>,<"a\/\>,,<"a/j/>
<"a/"/>,<"a/0/>,,<"xbO>
<"a/"/>,<"a/1/>,,<"xb9>
<"a/"/>,<"a/2/>,,<"xb2>
<"a/"/>,<"a/3/>,,<"xb3>
<"a/"/>,<"a/A/>,,<"xc2>
<"a/"/>,<"a/E/>,,<"xca>
<"a/"/>,<"a/I/>,,<"xce>
<"a/"/>,<"a/O/>,,<"xd4>
<"a/"/>,<"a/U/>,,<"xdb>
<"a/"/>,<"a/a/>,,<"xe2>
<"a/"/>,<"a/e/>,,<"xea>
<"a/"/>,<"a/i/>,,<"xee>
<"a/"/>,<"a/o/>,,<"xf4>
<"a/"/>,<"a/u/>,,<"xfb>

order sensitive

G-3

Default Three-Stroke Compose Table Values

a to z

G-4

VC$COMPOSE KEY
VC$COMPOSE-REY
VC$COMPOSE-KEY
VC$COMPOSE=KEY

VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE-KEY
VC$COMPOSE=REY

VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY

VC$COMPOSE KEY
VC$COMPOSE-KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

<Aa/ />,<Aa/A/>,,<Axaa>
<Aa/-/>,<Aa/O/>,,<Axba>
<Aa/-/>,<Aa/a/>,,<Axaa>
<Aa/=/>,<Aa/o/>,,<Axba>

<Aa/'/>,<Aa/A/>,,<AxcO>
<Aa/'/>,<Aa/E/>,,<Axc8>
<Aa/~/>,<Aa/I/>,,<Axcc>

<Aa/'/>,<Aa/O/>,,<Axd2>
<Aa/'/>,<Aa/U/>,,<Axd9>
<Aa/'/>,<Aa/a/>,,<AxeO>
<Aa/'/>,<Aa/e/>,,<Axe8>
<Aa/'/>,<Aa/i/>,,<Axec>
<Aa/'/>,<Aa/o/>,,<Axf2>
<Aa/'/>,<Aa/u/>,,<Axf9>

<Aa/a/>,<Aa/"/>,,<Axe4>
<Aa/a/>,<Aa/'/>,,<Axel>
<Aa/a/>,<Aa/*/>,,<Axe5>
<Aa/a/>,<Aa/A/>,,<Axe2>
<Aa/a/>,<Aa/_/>,,<Axaa>
<Aa/a/>,<Aa/'/>,,<AxeO>
<Aa/a/>,<Aa/a/>,<@>
<Aa/a/>,<Aa/e/>,,<Axe6>
<Aa/a/>,<Aa/-/>,,<Axe3>
<Aa/a/>,<Ax80>,,<Axe4>
<Aa/a/>,<AxbO>,,<AxeS>

<Aa/c/>,<Aa/,/>,,<Axe7>
<Aa/c/>,<Aa\/\>,,<Axa2>
<Aa/c/>,<Aa/0/>,,<Axa9>
<Aa/c/>,<Aa/o/>,,<Axa9>
<Aa/c/>,<Aa/l/>,,<Axa2>

<Aa/e/>,<Aa/"/>,,<Axeb>
<Aa/e/>,<Aa/'/>,,<Axe9>
<Aa/e/>,<Aa/A/>,,<Axea>
<Aa/e/>,<Aa/'/>,,<Axe8>
<Aa/e/>,<Ax80>,,<Axeb>

<Aa/i/>,<Aa/"/>,,<Axef>
<Aa/i/>,<Aa/'/>,,<Axed>
<Aa/i/>,<Aa/A/>,,<Axee>
<Aa/i/>,<Aa/'/>,,<Axec>
<Aa/i/>,<Ax80>,,<Axef>

<Aa/l/>,<Aa/-/>,,<Axa3>
<Aa/l/>,<Aa/=/>,,<Axa3>
<Aa/l/>,<Aa/A/>,,<Axb9>

<Aa/n/>,<Aa/-/>,,<Axfl>

<Aa/o/>,<Aa/"/>,,<Axf6>
<Aa/o/>,<Aa/'/>,,<Axf3>
<Aa/o/>,<Aa\/\>,,<Axf8>
<Aa/o/>,<Aa/A/>,,<Axf4>
<Aa/o/>,<Aa/_/>,,<Axba>
<Aa/o/>,<Aa/'/>,,<Axf2>
<Aa/o/>,<Aa/c/>,,<Axa9>
<Aa/o/>,<Aa/e/>,,<Axf7>
<Aa/o/>,<Aa/s/>,,<Axa7>
<Aa/o/>,<Aa/x/>,,<Axa8>
<Aa/o/>,<Aa/-/>,,<Axf5>
<Aa/o/>,<Ax80>,,<Axf6>

<Aa/p/>,<Aa/!/>,,<Axb6>

<Aa/s/>,<Aa/!/>,,<Axa7>
<Aa/s/>,<~a/0/>,,<Axa7>

<Aa/s/>,<Aa/o/>,,<Axa7>
<Aa/s/>,<Aa/s/>,,<Axdf>

order sensitive

order sensitive

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE KEY
VC$COMPOSE=KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

{ I > -
VC$COMPOSE_KEY
VC$COMPOSE_KEY

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

Diaresis mark

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

Degree sign

VC$COMPOSE_KEY
VC$COMPOSE_KEY
VC$COMPOSE_KEY

Default Three-Stroke Compose Table Values

<Aa/u/>,<Aa/"/>,,<Axfc>
<Aa/u/>,<Aa/'/>,,<Axfa>
<Aa/u/>,<Aa/A/>,,<Axfb>
<Aa/u/>,<Aa/'/>,,<Axf9>
<Aa/u/>,<Ax80>,,<Axfc>

<Aa/x/>,<Aa/0/>,,<Axa8>
<Aa/x/>,<Aa/o/>,,<Axa8>

<Aa/y/>,<Aa/"/>,,<Axfd>
<Aa/y/>,<Aa/-/>,,<Axa5>
<Aa/y/>,<Aa/=/>,,<Axa5>
<Aa/y/>,<Ax80>,,<Axfd>

<Aa/l/>,<Aa/C/>,,<Axa2>
<Aa/l/>,<Aa/c/>,,<Axa2>

<Aa/-/>,<Aa/ />,,<Aa/-/>
<Aa/-/>,<Aa/A/>,,<Axc3>
<Aa/-/>,<Aa/N/>,,<Axdl>
<Aa/-/>,<Aa/O/>,,<Axd5>
<Aa/-/>,<Aa/a/>,,<Axe3>
<Aa/-/>,<Aa/n/>,,<Axfl>
<Aa/-/>,<Aa/o/>,,<Axf5>

<Ax80>,<Aa/A/>,,<Axc4>
<Ax80>,<Aa/E/>,,<Axcb>
<Ax80>,<Aa/I/>,,<Axcf>
<Ax80>,<Aa/O/>,,<Axd6>
<Ax80>,<Aa/U/>,,<Axdc>
<Ax80>,<Aa/Y/>,,<Axdd>
<Ax80>,<Aa/a/>,,<Axe4>
<Ax80>,<Aa/e/>,,<Axeb>
<Ax80>,<Aa/i/>,,<Axef>
<Ax80>,<Aa/o/>,,<Axf6>
<Ax80>,<Aa/u/>,,<Axfc>
<Ax80>,<Aa/y/>,,<Axfd>

<AxbO>,<Aa/ />,,<AxbO>
<Axb0>,<Aa/A/>,,<Axc5>
<Axb0>,<Aa/a/>,,<Axe5>

VC$COMPOSE_KEYEND END THE TABLE

G-5

H $QIO System Service Description

The $QIO system service queues an I/O request to a channel associated
with a device. The $QIO service completes asynchronously; that is, it
returns to the caller immediately after queuing the I/O request, without
waiting for the I/O operation to complete.

For synchronous completion, use the Queue I/O Request and Wait
($QIOW) service. The $QIOW service is identical to the $QIO service in
every way, except that $QIOW returns to the caller after the I/O operation
has completed.

H-1

$QIO System Service
$QIO System Service Description

$010 System Service Description

$QIO SYSTEM
SERVICE

FORMAT

RETURNS

ARGUMENTS

H-2

SYS$QIO [efn] ,chan ,func [,iosb] [,astadr] [,astprm]
lPnlP~lP~lP~lP~lpey

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

efn
VMS Usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Event flag that $QIO sets when the 1/0 operation actually completes. The
efn argument is a longword value containing the number of the event flag.

If efn is not specified, event flag 0 is set.

When $QIO begins execution, it clears the specified event flag or event flag
0 if efn was not specified.

The specified event flag is set if the service terminates without queuing an
1/0 request.

ch an
VMS Usage: channel
type: word (unsigned)
access: read only
mechanism: by value

1/0 channel that is assigned to the device to which the request is directed.
The chan argument is a word value containing the number of the 110
channel; however, $QIO uses only the low-order word.

tune
VMS Usage: function_code
type: word (unsigned)
access: read only
mechanism: by value

$QIO System Service
$QIO System Service Description

Device-specific function codes and function modifiers specifying the
operation to be performed. The func is a longword value containing the
function code.

Each device has its own function codes and function modifiers. Refer
to Chapter 3 and Chapter 4 for complete information about the function
codes and function modifiers that apply to the particular 1/0 operation you
want to perform. ,

iosb
VMS Usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

IIO status block to receive the final completion status of the I/O operation.
The iosb is the address of the quadword I/O status block.

The following diagraPl shows the structure of the 1/0 status block:

31 15 0

transfer count l condition value

device-specific information

ZK-1723-84

110 Status Block Fields

condition value
Word-length condition value returned by $QIO when the I/O operation
actually completes.

transfer count
Number of bytes of data actually transferred in the I/O operation.

device-specific information
The contents of this field vary depending on the specific device and on the
specified function code.

When $QIO begins execution, it clears the quadword 1/0 status block if the
iosb argument is specified.

Although this argument is optional, Digital strongly recommends that you
specify it for the following reasons.

• If you are using an event flag to signal the completion· of the service,
you can test the I/O status block for a condition value to be sure that
the event flag was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the
service, the 1/0 status block is a required argument for $SYNCH.

• The condition values returned in RO and the 1/0 status block provide
information about different aspects of the call to the $QIO service:

The condition value returned in RO provides information about the
success or failure of the service call itself.

H-3

$010 System Service
$QIO System Service Description

DESCRIPTION

H-4

The condition value returned in the status provides information
about the success or failure of the service operation.

Therefore, to assess accurately the success or failure of the call to
$QIO, you must check the condition values returned in both RO and the
110 status block.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when the 110 completes. The astadr
argument is the address of a longword value that is the entry mask to the
AST routine.

The AST routine executes at the access mode of the caller of $QIO.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter to be passed to the AST service routine. The astprm
argument is a longword value containing the AST parameter.

p1 top6
VMS Usage:
type:
access:
mechanism:

varying_arg
longword (unsigned)
read only
by reference

Optional device- and function-specific 1/0 request parameters.

For more information on these parameters see the individual QIO
descriptions contained in Chapters 3 and 4.

$QIO operates only on assigned 110 channels and only from access modes
that are equal to or more privileged than the access mode from which the
original channel assignment was made.

$QIO uses the following system resources:

• The process quota for buffered 110 limit (BIOLM) or direct 110 limit
(DI OLM)

• The process buffered 110 byte count (BYTLM) quota

• The process AST limit (ASTLM) quota if an AST service routine is
specified

• System dynamic memory is required to construct a data base to queue
the 110 request

• Additional memory may be required on a device-dependent basis

$QIO System Service
$QIO System Service Description

To synchronize completion for $QIO, perform either of the following
procedures.

• Specify the astadr argument with an AST routine execute when the 110
completes.

• Call the Synchronize ($SYNCH) service to await completion of the 110
operation. (Because $QIOW completes synchronously, this is the better
choice when you require synchronous completion.)

astadr argument to have an AST routine execute when the 110 completes or (2) by calling the
Synchronize ($SYNCH) service to await completion of the 110 operation. $QIOW completes
synchronously, and it is the best choice when synchronous completion is required.

RETURN
VALUES SS$_NORMAL

SS$_ABORT

SS$_ACCVIO

SS$_DEVOFFLINE

SS$_EXQUOTA

SS$_1LLEFC

SS$_1NSFMEM

SS$_1VCHAN

SS$_NOPRIV

SS$_UNASEFC

Service successfully completed. The 110 request
was successfully queued.

A network logical link was broken.

Either the 110 status block cannot be written by
the caller, or the parameters for device-dependent
function codes are incorrectly specified.

The specified device is offline and not currently
available for use.

The process has done any of the following:

1 Exceeded its AST limit (ASTLM) quota

2 Exceeded Its buffered 110 byte count (BYTLM)
quota

3 Exceeded its buffered 110 limit (BIOLM) quota

4 Exceeded its direct 110 limit (DIOLM) quota

5 Requested a buffered 110 transfer smaller
than the buffered byte count quota limit
(BYTLM), but when added to other current
buffer requests the buffered 110 byte count
quota was exceeded

An illegal event flag number was specified.

Insufficient system dynamic memory is available to
complete the service.

An invalid channel number was specified, that Is, a
channel number of O or a number larger than the
number of channels available.

The specified channel does not exist, was assigned
from a more privileged access mode, or the process
does not have the necessary privileges to perform
the specified functions on the device associated
with the specified channel.

The process is not associated with the cluster
containing the specified event flag.

H-5

$QIO System Service
$QIO System Service Description

SS$_LINKABOAT

SS$_LINKDISCON

SS$_PATHLOST

SS$_PAOTOCOL

SS$_CONNECFAIL

SS$_FILALAACC

SS$_1NVLOGIN

SS$_1VDEVNAM

SS$_LINKEXIT

SS$_NOLINKS

SS$_NOSUCHNODE

SS$_NOSUCHOBJ

SS$_NOSUCHUSEA

SS$_PAOTOCOL

SS$_AEJECT

SS$_AEMASRC

SS$_ SHUT

SS$_ THIADPAATY

SS$_ TOOMUCHDATA

SS$_ UN REACHABLE

The network partner task aborted the logical link.

The network partner task disconnected the logical
link.

The path to the network partner task node was lost.

A network protocol error occurred, probably because
of a network software error.

The connection to a network object timed out or
failed.

A logical link Is already accessed on the channel
(that is, a previous connect on the channel).

The access control information is invalid at the
remote node.

The NCB has an invalid format or content.

The network partner task started, but exited before
confirming the logical link (that is, $ASSIGN to
SYS$NET).

No logical links are available. The maximum number
of logical links as set for the executor MAXIMUM
LINKS parameter was exceeded.

The specified node is unknown.

The network object number is unknown at the
remote node; or for a TASK = connect, the named
DCL command procedure file cannot be found at
the remote node.

The remote node could not recognize the login
information supplied with the connection request.

A network protocol error occurred. This error is
probably because of a network software error.

The network object rejected the connection.

The link could not be established because system
resources at the remote node were insufficient.

The local or remote node is no longer accepting
connections.

The logical link was terminated by a third party (for
example, the System Manager).

The task specified too much optional or interrupt
data.

The remote node is currently unreachable.

CONDITION
VALUES
RETURNED
IN THE 1/0
STATUS
BLOCK

Device-specific condition values.

H-6

I DEC Multinational Character Set

Figure 1-1 represents the ASCII character set (characters with decimal
values 0 through 127), the first half of the DEC multinational character set.

The first half of each numbered column identifies the character as you
would enter it on a VT200 or VT100 series terminal or as you would see
it on a printer (except for the nonprintable characters). The second half
of each column identifies the character by the binary value of the byte;
the value is stated in three radixes-octal, decimal, and hexadecimal. For
example, under ASCII conventions, the letter uppercase A has a storage
value of hexadecimal 41 (a bit configuration of 01000001), equivalent to 101
in octal notation and 65 in decimal notation.

Figure 1-2 represents the second half of the DEC multinational character
set (characters with decimal values 128 through 255). The first half of each
of the numbered columns identifies the character as you would see it on
a VT200 series terminal or printer (these characters cannot be output on a
VT100 series terminal).

1-1

DEC Multinational Character Set

Figure 1-1 DEC Multinational Character Set-I

1-2

COLUMN

1,8 BITS
bl

-- h6 1>5
ROW 114 1>3 1>2 tJ 1

0 0 0 0 0

0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

0

NULi g

SOH

STX

ETX

4

EQT 4

5

ENQ s
I 5

ACK 6

BEL 1

10

BS 8

HT

LF

VT

FF

8

11
9
9

12
10
A

1J
11

8

14
12

c

1

20

OLE 16

DC1
IXONI

DC2

DC3
IXOFFI

10

21

II
11

22
18
12

23
19

13

24

DC4 20
14

25

NAK 21
15

26

SYN 22
16

27

ETB 23
17

30
CAN 24

18

31
EM 2s

19

J2
SUB 26

IA

33

ESC n
18

J4

FS 28
IC

13 1 1 0 1 CR I :~ GS
J5
29
ID : D

14 1 I 1 0 so RS l' 30
1 E

36 I 15

I I:
15 I 1 1 1 SI ! :~

j_ F

J7

us li 31
IF

KEY
CHAR-"CTE"I Eillsc 33 OCTAL

27 DECIMAL

IB HEX

2

SP

''

s

%

&

*
+

I

40
32
20

41

33
21

42
34

22
43
35
23

44

I
36
24

45
37

25

46

J8
26

41
3!)

27

so
40
28
51
41

29

52
42
2A

SJ
43
28

54
44

2C

55
4S
2D

56
46

2E

57
41
2F

3

0

2

3

4

5

6

7

8

9

<

60
48
JO

61

49
Jl

62
50
32

63
51

33

64

52
34

65

53
35

66
54
36

I
61

55
37

70

56
38

11
S7
39

72
58
3A

13

59
JS

74

60
JC

75

4

@

A

B

c

D

E

F

G

H

I

J

K

L

100

64
40

101
65
41

102
66
42

103

67
43

104

68
44

105

69
45

106

70

46

107
71

47

110
72
48

111
73
49

112
14

4A

113

75
48

114
16

4C

= 61 M
115

77
4D JD

76 116

> 62
JE

N [1 10
4E

? II ~;
3F

117

o I 19
) 4F

5

p

Q

R

s

T

u

v

w

x
y

z

[

\

120
80
50

121
81
51

122
82
S2

123

83
53

124
84
S4

125
85

55

126

86
56

127

87
S7

130
88
S8

131

89
59

132

90
SA

133
91

SB

1J4

92
SC

135

a

b

c

d

e

g

h

k

1

J 93 m
SD

I IJ7

- i 95 SF

n

0

6

140

96
60

141
97
61

142

98
62

143
99

63

144

100
64

145
101

65

146
102

66

147

103
67

150
104
68

151
105

69

152

106

6A

IS3
107

68

IS4

108
6C

p

q

s

u

v

w

x

y

z

{

155 }
109
6D

156
110

6E

7

161

113
11

162

114
72

163
115

73

164

116

74

165

117

75

166
118

76

167
119

77

170

120
78

171

121

79
172
1n
IA

173

123
18

174

124
lC

175

125

70

116
126

7E

I
I 177

111 DEL 121
6F 7F

157

ZK-1752-84

DEC Multinational Character Set

Figure 1-2 DEC Multinational Character Set-II

8 9 10 11 12 13 14 15 COLUMN

1 1 1 1 1 1 1 1 118 1,1BITS 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 116

0 1 0 1 0 1 0 1 ,,5 .,...._
n4 IJJ 1·2 1·1 ROW

200 220

~
240 0 260

'
300 320

'
340 360

128 DCS 144 160 176 A 192 208 a 224 240 0 0 0 0 0
80 90 AO BO co DO EO FO

201 221 241 261 , 301 - 321 , 341 - 361
129 PU1 145 i 161 ± 177 A 193 N 209 a 225 n 241 0 0 0 1 1

81 91 Al 81 Cl Dl E 1 F 1

202 222 242 2 262 A 302·

'
322

A
342

'
362

130 PU2 146 c 162 178 A 194 0 210 a 226 0 242 0 0 1 0 2
B2 92 A2 B2 C2 D2 E2 F2

203 223 243 3 263 - 303 , 323 - 343 , 363
131 STS 147 £ 163 179 A 195 0 211 a 227 0 243 0 0 1 1 3
B3 93 A3 83 CJ D3 E3 F3

204 224 244 264 .. 304 A 324 344 A 364

IND 132 CCH 148 164 1BO A 196 0 212 a 22B 0 244 0 1 0 0 4
B4 94 A4 84 C4 D4 E4 F4

205 225 245 265 305 - 325 345 - 365

NEL 133 MW 149 =t 165 µ 181 A 197 0 213 a 229 0 245 0 1 0 1 5
BS 95 AS BS cs DS ES F5

206 226 246

~
266 306 .. 326 346 366

SSA 134 SPA 150 166 182 .E 198 0 214 • 230 0 246 0 1 1 0 6
B6 96 A6 B6 C6 D6 E6 F6

207 227 247 267

~
307 327 '.347 367

ESA 135 EPA 151 § 167 183 199 <E 215 c; 231 at 247 0 1 1 1 7
B7 97 A7 87 C7 07 E7 F7

210 230 250 270

'
310 330

i
350 370

HTS 136 152 ::a'. 168 1B4 E 200 (lJ 216 232 • 248 1 0 0 0 8
88 98 AB 88 ca 08 ES FS

HTJ
211 231

©
251 1 271 , 311

'
331 , 351

'
371

137 153 169 1S5 E 201 u 217 e 233 u 249 1 0 0 1 9
B9 99 A9 89 C9 09 E9 F9

212 232 @ 252 Q 272 A 312 , 332 • 352 , 372

VTS 138 154 170 186 E 202 u 218 234 u 250 1 0 1 0 10
SA 9A AA BA CA DA EA FA

213 233 253 273 .. 313 A 333 353
A

373

PLO 139 CSI 155 « 171 » 1B7 E 203 u 219 e 235 u 251 1 0 1 1 11
BB 9B AB BB CB DB EB FB

214 234 254 274

'
314 .. 334

'
354 374

PLU 140 ST 156 172 1/4 1B8 I 204 u 220 I 236 u 252 1 1 0 0 12
SC 9C AC BC cc DC EC FC

215 235 255 275 , 315 .. 335 , 355 v 375
RI 141 osc 157 173 112 1S9 I 205 y 221 I 237 253 1 1 0 1 13

so 90 AO BO CD DD ED FD

216 ~36 256 276 A 316 336

"
356 376

SS2 142 PM 15S 174 190 I 206 222 I 23S 254 1 1 1 0 14
BE 9E AE BE CE DE EE FE

217 237 257 277 .. 317 337 357

~
377

SS3 143 APC 159 175 l 191 I 207 Jl 223 ·,· 239 255 1 1 1 1 15
SF 9F AF BF CF OF EF FF

KEY
CHARACTEREill$C 33 OCTAL

27 DECIMAL

lB HEX

ZK-1753·B4

1-3

J ISO Latin Nr 1 Supplemental Character Set

The ASCII character set (characters with decimal values 0 through 127)
comprises the first half of the ISO Latin character set. For example, the
letter uppercase A has, under ASCII conventions, a storage value of
hexadecimal 41 (a bit configuration of 01000001), equivalent to 101 in octal
notation and 65 in decimal notation.

The second half of the ISO Latin character set is represented as characters
with decimal values 128 through 255.

NOTE: Characters in the first half of the ISO Latin character set can be output on a
VT200 or VTlOO series terminal. Characters in the second half of the ISO
Latin character set cannot be output on a VT100 series terminal.

J-1

Index

A
Absolute device coordinates

See ADC
ADC (absolute device coordinates) • 1-15, 2-26,

2-32
Alternate windowing system • 2-24

B
Background color index • 5-19
Bitmap

accessing• 1-9, 1-11
exclusive access to • 2-32
loading into offscreen memory • 2-29
loading into storage area • 1-11
reading• 2-28
storage area • 1-11
systemwide • 4-1 7
transferring • 1-11
writing • 2-28

Bitmap ID • 2-29
Bitmap_glyphs field• 5-21
Bitmap_ID field • 5-21
Button simulation block • A-1
Button transition value • 2-20

c
Channel

assigning • 2-2
assigning to viewport • 2-25
deassigning • 2-41

Character
composing nonstandard • 2-11
input• 2-20

Color
displaying • 2-46
ldentifing system type• 2-47

Color map
changing values in • 2-47

Compose sequence • 2-11

Compose sequence (cont'd.)

three-stroke • 2-11
two-stroke • 2-11

Compose sequence table • 2-12
constructing • 2-12
default• 2-16
initializing • 2-15
loading• 2-15, 2-16
macro to generate • F-1
terminating • 2-15
three-stroke • 2-12
two-stroke • 2-13

Control AST • 2-3
Cursor hot spot structure • A-1
Cursor pattern

defining • 2-21
multiplane • 2-22, 3-6

Cursor pattern entry
creating • 2-21

Cursor pattern list • 1-12
Cycling operation • 1-14

D
Data rectangle values block• A-2
Data structure

using predefined structure• B-1
DEC multinational character set • 1-1
Deferred queue • 1-18

deleting • 2-46
executing • 2-46

Define Pointer Cursor Pattern QIO • 1-12, 2-21,
3-3

Define Viewport Region QIO • 2-26, .2-31, 2-33,
2-46,4-3

Delete Bitmap DOP • 5-23
Delete Deferred Queue Operation QIO • 2-46, 4-5
Diacritical mark • 2-9, 2-11 , 2-13
Diacritical table • 2-13
DOP (drawing operation primitive)• 1-6, 5-1 to

5-81
allocating memory for • 1-17
allocating storage for • 5-3
drawing with • 2-28
entering on request queue • 1-17
executing • 5-5

lndex-1

Index

DOP (drawing operation primitive)
executing (cont'd.)

asynchronously • 5-5
initializing • 5-9 to 5-14

using predefined structure• 5-12
large• 5-3
small• 5-3
state of • 2-29
structuring • 5-9 to 5-14

using predefined structure • 5-12
DOP Common block• 5-2, 5-10, 5-16

initializing • 5-18 to 5-22
DOP queue structure • 8-1
DOP Unique block• 5-2, 5-12
DOP Variable block• 5-2, 5-12
Dop_line_array predefined structure • 5-41
Dop_move_array predefined structure• 5-52, 5-63
Dop_move_r_array predefined structure • 5-24,

5-56
Dop_polnt_array predefined structure • 5-44
Dop_poly_array predefined structure • 5-48
Dop_structure predefined structure• 5-16
Dop_vtext_array predefined structure • 5-37
Draw Complex Line DOP • 5-24
Draw Fixed Text DOP • 5-28
Drawing operation primitive

See DOP
Drawing to the QVSS screen • 2-24
Draw Lines DOP • 5-31
Draw Points DOP • 5-34
Draw Variable Text DOP • 5-37
Driver differences

alternate windowing • 1-3
bitmap manipulation • 1-3
color• 1-3
driver interface • 1-3
hardware interface • 1-4
UISDC interface • 1-3
UIS interface • 1-3

E
Enable Button Transition QIO • 1-13, 2-18, 3-8
Enable Data Digitizing QIO • 3-13
Enable Function Keys QIO • 3-17
Enable Input Simulation QIO • 3-20
Enable Keyboard Input QIO • 1-14, 2-3, 2-6, 3-23
Enable Keyboard Sound QIO • 3-29
Enable Pointer Movement QIO • 1-13, 2-17, 3-31
Enable User Entry QIO • 3-35

lndex-2

Events• 1-4
Event tracking • 1-12
Example

assign channel • 2-4
AST routine • 2-4
keyboard request • 2-4
QVSS sample program • D-1

Execute Deferred Queue QIO • 1-18, 2-46, 4-6
Exit AST• 2-18

F
Fill Lines DOP • 5-41
Fill Point DOP • 5-44
Fill Polygon DOP • 2-41 , 5-48
Flags field • 5-22
Foreground color index • 5-19
Free DOP • 1-17
Free_1 area• 1-10, 2-31

G
Get Color Map Entries QIO • 2-48, 4-7
Get Free DOPs QIO • 1-17, 4-9
Get Keyboard Characteristics QIO • 1-6, 3-37
Get Next Input Token QIO • 2-3, 2-21, 3-39
Get Number of List Entries QIO • · 3-40
Get System Information QIO • 1-11 , 2-1 , 2-41 ,

3-41
Get Viewport ID QIO • 1-16, 2-25, 4-10

H
Hardware color map • 2-47

determining current values of • 2-48
loading values into • 2-48

Hardware cursor• 1-8
Hardware look-up table• 2-47
Hold Viewport Activity QIO • 2~30, 4-12

I
Image

drawing • 2-29

Image (cont'd.)

storing• 2-29
Initialize Screen QIO • 2-1, 3-42
Input

intercepting • 2-21
Insert DOP 010 • 1-17, 2-30, 2-41, 4-13
INSQUE (Insert Entry in Queue) instruction • 5-9
Intensity value• 2-47
Intercepting input • 2-21
10$C_QD_COLOR_CHAR function code• 4-23
10$C_QD_DELETE_DEFERRED function code•

4-5
10$C_QD_EXECUTE_DEFERRED function code•

4-6
10$C_QD_GET_COLOR function code• 4-7
10$C_QD_GET_FREE_DOPS function code• 4-9
10$C_QD_GET_VIEWPORT_ID function code•

4-10
10$C_QD_HOLD function code• 4-12, 4-18
10$C_QD_LOAD_BITMAP function code. 4-14
10$C_QD_NOHOLD function code• 4-22
10$C_QD_OCCLUDED_SUSPEND function code•

4-28
10$C_QO_RESUME_VP function code• 4-23
10$C_QO_SETCOLOR function code• 4-24
10$C_QD_SET _ VIEWPORT _REGIONS function

code• 4-3
10$C_QD_START function code• 4-26
10$C_QD_STOP function code• 4-27
10$C_QD_SUSPEND_VP function code• 4-29
10$C_QV_ENABLE_DIGITIZING function code•

3-13
10$C_QV_ENABUTTON function code• 3-8
10$C_QV_ENAFNKEY function code• 3-17
10$C_QV_ENAKB function code• 3-23
10$C_QV_ENAUSER function code• 3-35
10$C_QV_GETKB_INFO function code• 3-37
10$C_QV_GETSYS function code• 3-41
10$C_QV_GET_ENTRIES function code• 3-40
10$C_QV_INITIALIZE • 3-42
10$C_QV_LOAO_COMPOSE_TABLE function code

• 3-43
10$C_QV_LOAD_KEY_TABLE function code• 3-45
10$C_QV_MOOIFYKB function code• 3-47
10$C_QV_MODIFYSYS function code• 3-51
10$C_QV_MOUSEMOV function code• 3-31
10$C_QV_SETCURSOR function code• 3-3
10$C_QV_SIMULATE function code• 3-20
10$C_QV _SOUND function code • 3-29
10$C_QV_USE_DEFAUL T _TABLE function code•

3-55, 3-56

Index

10$M_QD_INTENSITY function modifier• 4-7,
4-24

10$M_QD_RESERVED_COLORS function modifier•
4-7,4-24

10$M_QD_SYSTEM_WIDE function modifier• 4-14
10$M_OV_ACTIVE function modifier• 3-47
10$M_QV_BIND function modifier• 3-3
10$M_QV_COMPOSE2 function modifier• 3-55
10$M_QV_COMPOSE3 function modifier• 3-55
10$M_QV_CYCLE function modifier• 3-23, 3-35
10$M_OV_DELETE function modifier• 3-3. 3-8,

3-13,3-23,3-31, 3-35
10$M_QV_KEYS function modifier• 3-56
10$M_QV_LAST function modifier• 3-3, 3-8, 3-23,

3-31,3-35
10$M_QV_LOAD_DEFAULT function modifier• 3-3,

3-43,3-45
10$M_QV_PURG_TAH function modifier• 3-8,

3-23
10$_QV_ TWO_PLANE_CURSOR function modifier•

3-3
10$_QV_USE_DEFAULT function modifier• 3-3
10$_SENSEMODE • 1-5
10$_SETMODE • 1-5
ISO Latin Nr 1 supplemental character set • J-1
item_type field • 5-18

K
Key

defining• 2-7
Keyboard

activating • 1-14
cycling• 1-14
popping• 1-14
programming • 2-7
receiving input from • 2-3
using • 2-3 to 2-16
virtual• 2-4

Keyboard characteristics • 2-6
defining • 2-6

Keyboard characteristics block • 2-4, A-3
Keyboard entry list • 1-14, 2-3
Keyboard request AST specification block • A-2
Keyboard table

constructing • 2-9
initializing• 2-7
loading• 2-7, 2-11
macro to generate • E-1
modifying • 2-7

lndex-3

Index

Keyboard table (cont'd.)

terminating • 2-9
Key-click volume • 2-6
Keystroke AST specification block • A-5

L
LIB$GET_VM • 5-7
List entry• 1-5, 1-12
Load Bitmap QIO • 1-11, 2-29, 4-14
Load compose sequence table • 2-16
Load Compose Sequence Table QIO • 2-12, 2-16,

3-43
Load Keyboard Table QIO • 2-7, 2-11 , 3-45

M
Macro

compose table • F-1
keyboard table• E-1

Mapping • 2-24.1
Memory • 2-24.1

offscreen • 1-7, 1-10, 1-16
onscreen • 1-7, 1-9, 1-16

Memory usage • 1-6
Meta-key• 2-19, 3-9, 3-15, 3-24
Modify Keyboard Characteristics QIO • 2-7, 3-47
Modify Systemwide Characteristics QIO • 2-6, 3-51
Mouse• 2-18
Move/Rotate Area DOP • 5-56
Move Area DOP • 5-52

N
New cursor position structure • A-8
New pointer position structure • A-8
Notify Deferred Queue Full QIO • 1-18, 2-46, 4-18

0
Occlusion• 1-15, 1-18

handling • 2-31
handling with update regions • 1-16

Offscreen memory• 1-7, 1-10, 1-16, 2-31

lndex-4

Onscreen memory• 1-7, 1-9, 1-16
Opcount field • 5-18

p
Plot_args predefined structure• 5-31, 5-34, 5-41,

5-44, 5-48
Pointer • 2-18

using• 2-17
Pointer button characteristics block • A-6
Pointer button transition • 2-17

creating entry • 2-18
Pointer button transition list • 1-13
Pointer motion AST specification block• A-7
Pointer movement • 2-17

creating entry • 2-17
Pointer movement list • 1-13
Pointer movement list entry • 2-18
Pointer position • 2-20
Popping operation • 1-14
Puck• 2-18

Q
QDB (QDSS block) structure • B-3
QDSS block

See QDB
QDSS Viewport • 2-25
QIO interface • 1-5
Queue manipulation • 1-6
QVB$L_MAIN_ VIDEOADDA • 2-24, 2-24.1
QVB$L_ VIDEOADDA • 2-24.1
QVB (QVSS block) structure • A-10
$QVBDEF.MLB • 2-7
Qvb_common_structure • A-10
Qvb_qdss_structure predefined structure • B-3
OY-DELETE • 2-4, 2-18
QV-LAST • 2-17
QVSS block

See QVB
QVSS control driver

sample program • D-1
QV_DELETE• 2-19,2-22
QV_LAST• 2-19,2-22
QV_PUAG_TAH • 2-19

R
Read Bitmap QIO • 1-11, 2-29, 2-33, 2-45, 4-19
Region• 1-4

defining • 1-5
placing on deferred queue • 2-45

Region descriptor • 2-18
Release Hold 010 • 2-30, 4-22
Request AST • 2-3
Request queue• 1-6, 1-16, 5-6
Req_structure predefined structure • B-1
Reserved function keystroke AST specification

block• A-14
Resume Request Queue 010 • 2-30
Resume Viewport Activity DOP • 2-30, 5-61
Resume Viewport Activity QIO • 4-23
Return queue • 1-17, 5-4

alternate • 1-1 8
Return queue structure • B-5
Ret_structure predefined structure • B-5
Revert to Default Compose Table QIO • 2-16, 3-55
Revert to Default Keyboard Table QIO • 2-11, 3-56

s
Scanline • 2-24.1
Scanline map• 1-7, 1-8, 2-2, 2-24.1

obtaining address of base • 2-24.1
Screen

drawing to • 2-24
initialization • 2-1
mapping video memory to • 2-24.1
writing to • 1-6

Screen event
tracking• 1-12

Screen rectangle values block • A-14
Screen saver time • 2-6
Scroll area• 1-10
Scroll Area DOP • 5-63
Scrolling save area • 1-10
Set Color Characteristics QIO • 2-47, 4-23
Set Color Map Entries QIO • 2-47, 2-48, 4-24
Set Viewport Region QIO • 1-15
Source index • 5-19
Start Request Queue DOP • 5-67
Start Request Queue QIO • 2-26, 2-30, 2-33, 4-26
Start Viewport Activity DOP • 2-30
Stop Request Queue DOP • 5-69

Index

Stop Request Queue QIO • 2-30, 2-32, 4-27
Stop Viewport Activity DOP • 2-30, 2-41
Stop_args predefined structure• 5-61, 5-67, 5-69,

5-70
Stylus• 2-18
Suspend Occluded Viewport Activity QIO • 4-28
Suspend Request Queue QIO • 2-30
Suspend Viewport Activity DOP • 2-30, 5-70
Suspend Viewport Activity QIO • 4-29
SYS$ASSIGN • 2-2
SYS$DASSGN • 2-41
SYS$QIO • H-2
SYSTARTUP.COM • 2-24
System characteristics block• 2-6, A-15
System information block • 1-6, 2-1
Systemwide viewport • 1-15, 2-25

T
Text_args predefined structure• 5-28, 5-37
Token• 2-19,3-9, 3-15
TPB (transfer parameter block) • 2-33, B-6
Tpb_structure predefined structure • B-6
Transfer parameter block

See TPB
Type-ahead buffer

getting input from • 2-20
purging • 2-21
using• 2-20

u
UIS$CREATE_WINDOW • 5-6
UIS$WS AL TAPPL • 2-24
UISDC$ALLOCATE_DOP • 5-3, 5-6, 5-12, 5-74
UISDC$EXECUTE_DOP _ASYNCH • 5-5, 5-78
UISDC$EXECUTE_DOP _SYNCH • 5-5, 5-80
UISDC$LOAD_BITMAP • 1-11, 5-76
UISDC$QUEUE_DOP • 5-5, 5-81
Update region • 1-15

and occlusion • 1-16
defining • 2-25

Update region definition

See URD
Update region definition block • B-8
URD (update region definition) buffer• 2-25, 2-31
Urd_structure predefined structure • B-8

lndex-5

Index

User-defined viewport • 1-1 5

v
VC$COMPOSE_KEY • 2-15
VC$COMPOSE_KEYEND • 2-15
VC$COMPOSE_KEYINIT • 2-15
VC$KEY • 2-7
VC$KEYEND • 2-7
VC$KEYINIT • 2-7
Video memory

copying images to • 1-11
drawing to• 1-11
driver use of • 1-6
mapping to screen • 2-24.1
private • 2-24
setting bits in • 2-24

Viewport • 1-4, 1-11, 1-15 to 1-16
creating • 2-25
defining • 2-25, 2-26
deleting • 2-40
erasing • 2-41
moving • 2-45
popping• 2-31, 2-36
redefining • 2-31
starting • 2-26
synchronizing activity on • 2-29

Viewport ID• 1-16, 5-6
getting • 2-25

Viewport-relative coordinates

See VRC
Viewport request queue • 2-26
Viewport update regions• 1-15
VRC (vlewport-relative coordinates) • 1-15, 2-26
$VWSSYSDEF.MLB • 2-15

w
Window ID • 5-6
Windowing system

alternate • 2-24
enabling alternate • 2-24

Write Bitmap QIO • 1-11, 2-29, 2-33, 2-46, 4-30
Writing mode • 5-19
Writing mode field • 5-22

lndex-6

z
Z-mode• 2-46, 2-47

VMS Workstation
Video Device Driver Manual

AA-DY65E-TE

READER'S
COMMENTS

Note: This form is for document comments only. DIGIT AL will use comments
submitted on this form at the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance Report (SPR) service,
submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify) _________________________ _

Organization ________________________________ _

Street ___________________________________ _

City ________________ State _____ Zip Code. _____ _

or Country

I
I

• _______ - - - - DoNotTear-FoldHereandTape - - - - - - - - - - -· - - - 1

BUSINESS REPLY MAIL
FIRST CLASS P~RMIT NO. 33 MAYNARD, MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

VWS Engineering
Digital Equipment Corporation
110 Spitbrook Rd. ZK03-2/S30
Nashua, New Hampshire 03062-2698

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

- DoNotTear-FoldHere- - - - - - - -

No Postage

Necessary

if Mailed in the

United States

