MicroVMS Workstation
Graphics Programming Guide

Order Number: AI-GI10B-TN

May 1986

This document provides programming information about the MicroVMS Workstation
graphics software. It describes the general concepts and specific routine calls which
are used in writing application programs.

Revision/Update Information: This manual supersedes the MicroVMS
Workstation Graphics Programming Guide,
Version 2.0.

Software Version: MicroVMS Workstation Graphics Software
Version 3.0

digital equipment corporation
maynard, massachusetts

May 1986

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1986 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER’S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem~10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS

DECwriter RSX mumﬂuﬁu

ZK-3164

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO" CANADA INTERNATIONAL

Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
P.O. Box CS2008 of Canada Ltd. PSG Business Manager
Nashua, New Hampshire 100 Herzberg Road c/o Digital's local subsidiary
03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
Ln Canada call 800-267-6215.
Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation,
Westminster, Massachusetts 01473.

This document was prepared using an in-house documentation production system. All page composition and
make-up was performed by TgX, the typesetting system developed by Donald E. Knuth at Stanford University.
TeX is a trademark of the American Mathematical Society.

Contents

Preface xxvii
New and Changed Features xxxii

PART | MicroVMS Workstation
Graphics Concepts

Chapter 1 System Description

1.1 Overview e e e 1-1
1.2 VAXstation Hardware 1-1
1.2.1 PrOCESSOT . . v v v it i e e e e e 1-2
1.2.2 Monitor e e e 1-2
1.2.3 Keyboard i 1-3
1.2.4 MOUSE . . .t e e 1-3
1.25 Tablet e e 1-3
1.2.6 Communications Board 1-4
1.2.7 Printer e e e 1-4
1.3 Software e e 1-4
1.3.1 Graphics Routine Types 1-4
1.3.2 Human Interface. 1-5
1.3.2.1 Terminal Emulation 1-6
1.3.2.2 Communication Tools 1-6
1.3.3 Windowing Feature 1-7

1.3.4 Graphics Capabilities 1-7

iv Contents

Chapter 2 Display Management Concepts

21 Overview e 2-1
2.1.1 Summary e 2-1
2.2 Coordinate Systems e 2-3
221 Device-Independent Coordinate Systems e 23
2211 World Coordinates 2-4
2.21.2 Normalized Coordinates 2-5
222 Device-Dependent Coordinate Systems 2-6
2.2.2.1 Absolute Device Coordinates 2-6
2222 Viewport-Relative Device Coordinates 2-7
23 Virtual Displays 2-8
24 DisplayWindows oL 2-9
25 Display Viewports 2-10
2.6 Display Window and Viewport Scaling 2-11
2.6.1 Distortion of Graphic Objects 2-12
27 Display Lists e 2-13
2.8 Generic Encoding and UIS Metafiles 2-13

Chapter 3 Graphic Objects and Attributes

3.1
3.2
3.3

3.4

3.4.1
3.4.2
3.4.3
344

3.5
35.1

3.6
3.7
3.8

Overview e e 3-1
Summary e 3-1
Text and Graphics Routines 3-2
Attributes L e 3-2
General Attributes 3-3
Text Attributes 3-3
Graphics Attributes L Lo L 3-5
Window Attribute 3-6
Attribute Blocks e 3-6
Attribute Block 0 e 3-6
Segments 3-7
Viewing Transformations 3-7

Two-Dimensional Geometric Transformations 3-7

Contents v

Chapter 4 Color Concepts

41 Overview i e e 4-1
42 Color Hardware Systems 4-1
43 Raster Graphics Concepts 4-1
43.1 Hardware Interpretation of Pixel Values 4-2
43.2 Color Representation Models 4-6
433 ColorPalette 4-6
44 UlSVirtualColorMaps 4-7
44.1 Reserved Hardware Color Map Entries. 4-9
45 UISColorMapSegments. 4-11
4.6 Shareable Virtual Color Maps 4-11
4.7 Miscellaneous UIS Color Concepts 4-11
4.7.1 Standard and Preferred Colors 4-11
4.7.2 Monochrome, Intensity, and Color Compatibility Features . . 4-12
4.7.3 Color Value Conversion 4-12
474 Set Colors and Realized Colors 4-13
4.7.5 Color Regeneration Characteristics 4-13

Chapter 5 Input Devices

5.1 OVervVIEW . . oo oo, R 5-1
5.1.1 VAXstation Input Devices 5-1
52 Pointers it e e e 5-2
5.2.1 Mouse i e e e e 5-2
5.2.2 Tablet e e 5-3
53 Keyboards i o 5-4

5.3.1 Virtual Keyboards 5-4

vi

Contents

PART Il How to Program with MicroVMS Workstation

Graphics
Chapter 6 Programming Considerations
6.1 Overview e 6-1
6.2 CallingUISRoutines. 6-1
6.2.1 Calling Sequences 6-2
6211 CallType i 6-2
6212 RoutineName, 6-2
6213 Argumentlist o, 6-2
6.3 Argument Characteristics 6-3
6.3.1 VMSUsage i i e 6-3
6.3.2 Type . oo 6-3
6.3.21 VAXStandard Data Types...................... 6-3
6.3.3 Accesso, e e e e e 6-5
6.3.4 Mechanism 6-5
6.3.4.1 VAX FORTRAN Built-In Functions 6-7
64 UlSConstants 6-9
6.5 Condition Values Signaled 6-9
6.6 Additional Program Components 6-9
6.7 NotestoProgrammers................., 6-10
6.7.1 VAX C Programimersc..ouuuuunnnnnn 6-10
6.7.2 VAX PASCAL Programmers 6-11
6.7.3 VAX PL/IProgrammersouvvuunu.. 6-12
6.8 Programming Examples 6-12
6.8.1 Structure of Programming Tutorial 6-12
6.9 Program Execution 6-13
6.9.1 Compiling Your Program 6-13
6.9.2 Linking the ObjectModule 6-14

6.9.3 Running the Executable Image 6-14

Chapter 7
7.1

7.2

7.2.1
7.2.2
7.2.3

7.3

7.3.1
7.3.2
7.3.3

7.4

7.4.1
7.4.2
7.4.3

Chapter 8
8.1
8.2

8.3

8.3.1
8.3.2
8.3.3

8.4

8.4.1
8.4.2
8.4.3

8.5

8.5.1
8.5.2
8.5.3
8.5.4
8.5.5

8.5.6
8.5.7
8.5.8
8.5.9

Contents vii

Creating Basic Graphic Objects
Overview e 7-1
Step 1—Creating a Virtual Display 7-1
Specifying Coordinate Values 7-2
Programming Options 7-2
Program Development 7-3
Step 2—Creating Graphicsand Text 7-4
Graphics Drawing Operations 7-4
Programming Options 7-4
Program Development 7-6
Step 3—Creating a Display Window 7-6
Programming Options 7-7
Program Development 7-7
Calling UIS$CIRCLE, UIS$ELLIPSE, UIS$PLOT, UIS$TEXT,
and UISSCREATE_WINDOW 7-8
Display Windows and Viewports
Overview 8-1
Windowing Routines 8-1
Step 1—Creating Many Display Windows 8-2
Programming Options 8-2
Program Development 8-4
Calling UISSCREATE_WINDOW 8-5
Step 2—Deleting and Erasing Display Windows 8-7
Programming Options 8-7
Program Development 8-7
Calling UISSDELETE_WINDOW 8-9
Step 3—Manipulating Display Windows and Viewports 8-12
Programming Options 8-12
Program DevelopmentI 8-13
Calling UISSMOVE_WINDOW 8-15
Program Development Il 8-18
Calling UIS$POP_VIEWPORT and
UIS$PUSH_VIEWPORT 8-20
Program DevelopmentIIl 8-24
Requesting General Placement and No Border 8-25
Program DevelopmentIV 8-27
Calling UISSMOVE_AREA 8-29

viiu Contents

8.6 World Coordinate Transformations 8-29
8.6.1 Programming Options . . .~ 8-29
8.6.2 Program Development 8-29
8.6.3 Calling UISSCREATE_TRANSFORMATION 8-30

Chapter 9 General Attributes

9.1 Overview e e 9-1
9.2 Attributes—How toUse Them 9-1
9.2.1 Attribute Blocks o oo 9-2
9.2.2 Modifying General Attributes 9-3
9.3 Structure of GraphicObjects 9-3
94 UlSWritingModes 9-6
9.4.1 Using General Attributes 9-8
9.4.1.1 Programming Options 9-8
9.4.1.2 Program DevelopmentI 9-9

9.4.1.3 Calling UIS$SET_BACKGROUND_INDEX,
UIS$SET_WRITING _INDEX, and

UIS$SET_WRITING_MODE 9-11
9.4.1.4 Program DevelopmentII....................... 9-14
9.4.1.5 Using Device-Dependent Writing Modes. 9-17

Chapter 10 Text Attributes

10.1 Overviewo e 10-1
10.2 Structureof Text 10-1
10.2.1 Monospaced and Proportionally Spaced Fonts 10-2
10.22 Linesof Text 10-2
10.2.3 Character Strings 10-4
10.24 CharacterCell 10-9
10.3 Using Text Attributes 10-21
10.3.1 Modifying Text Attributes 10-22
10.4 Programming Options 10-23
10.4.1 Program DevelopmentI 10-25
10.4.2 Calling UIS$SET_FONT and UISSNEW_TEXT_LINE 10-27
10.4.3 Program DevelopmentIl 10-29
10.4.4 Calling UIS$SET_CHAR_SPACING 10-30
10.4.5 Program DevelopmentIIl 10-31
10.4.6 Calling UIS$SET_POSITION and

UIS$SET_ALIGNED_POSITION 10-32

10.4.7 Program DevelopmentIV 10-33

Contents ix

10.4.8 Calling UIS$SET_CHAR_SLANT 10-34
10.4.9 Program DevelopmentV 10-35
10.4.10 Calling UIS$SET_TEXT_SLOPE 10-36
10.4.11 Program Development VI 10-36
10.4.12 Calling UIS$SET_CHAR_ROTATION 10-37
10.4.13 Program Development VI 10-39
10.4.14 Calling UIS$SET_CHAR_SIZE 10-41

Chapter 11 Graphics and Windowing Attributes

11,1 Overviewo o e 11-1
11.2 Using Graphics Attributes 11-1
11.2.1 Modifying Graphics and Windowing Attributes 11-1
11.2.2 Programming Options 11-2
11.2.2.1 Program DevelopmentI 11-4
11.2.2.2 Calling UIS$SET_ARC_TYPE and Using Fill Patterns 11-5
11.2.2.3 Program DevelopmentIl. 11-8
11.2.2.4 Calling UIS$SET_LINE_WIDTH 11-9
11.2.2.5 Program DevelopmentIIl 11-10
11.2.2.6 Calling UIS$SET_LINE_WIDTH and

UIS$SET_LINE_STYLE, 11-11
11.2.2.7 Program DevelopmentIV 11-11
11.2.2.8 Calling UIS$SET_FONT and UIS$SET_FILL _PATTERN .. 11-14
11.2.3 Using the Windowing Attribute 11-14
11.2.3.1 Programming Options 11-14
11.2.3.2 Program Development 11-14
11.23.3 Calling UIS$SET_CLIP 11-17

Chapter 12 Inquiry Routines

121 Overview e 12-1
12.2 Inquiry Routines—How to Use Them 12-1
12.2.1 Using Inquiry Routines. 12-1
12.2.1.1 Programming Options 12-2
12.2.1.2 Program DevelopmentI 12-5
12.2.1.3 Invoking UISSGET_FONT_SIZE, UIS$GET_DISPLAY_SIZE,

and UISSGET_VIEWPORT_SIZE 12-7
12.2.14 Program DevelopmentII. 12-8

12.2.1.5 Invoking UISSGET_ARC_TYPE,
UIS$GET_FILL _PATTERN, and UIS$GET_FONT 12-10

x Contents

Chapter 13 Display Lists and Segmentation

13.1 Overview e
132 Display Lists

133 Segments e
13.3.1 Identifiers and Object Types
13.3.2 Programming Options
13.3.3 Program DevelopmentI
13.3.3.1 Calling UIS$DISABLE_DISPLAY_LIST and
UISSENABLE_DISPLAY_LIST.
13.3.3.2 Program DevelopmentII.
13.3.3.3 Calling UISSGET_NEXT_OBJECT,
UIS$GET_OBJECT_ATTRIBUTES, and
UIS$GET_ROOT_SEGMENT.
13.3.3.4 Program DevelopmentIIl
13.3.3.5 Calling UISSGET_PARENT_SEGMENT

13.4 More AboutSegments
13.4.1 Programming Options
13.4.2 Program DevelopmentI
13.4.2.1 Calling UIS$SET_INSERTION_POSITION
13.4.2.2 Program DevelopmentIl.
13.4.2.3 Calling UISSBEGIN_SEGMENT and
UISSEND_SEGMENT

Chapter 14 Geometric and Attribute Transformations

141 Overview e e e
14.2 Geometric Transformations
14.2.1 Translating Graphic Objects
14.2.2 Scaling GraphicObjects
14.2.2.1 Uniformly Scaled Graphic Objects.
14.2.2.2 Differentially Scaled Graphic Objects
14.2.3 Rotating GraphicObjects
1424 Programming Options
14.25 Program DevelopmentI
14.2.6 Calling UISSTRANSFORMATION_OBJECT
14.2.7 Program DevelopmentIl
14.2.8 Calling UISSCOPY_OBJECT
14.3 Attribute Transformations
14.3.1 Programming Options
143.2 Program Development

14.3.3 Requesting Attribute Transformations

Contents xi

Chapter 15 Metafiles and Private Data

15,1 Overview e e 15-1
15.2 Display Lists and UIS Metafiles 15-1
15.2.1 Generic Encoding of Graphics and Attribute Routines 15-2
15.2.1.1 Normalized Coordinates 15-2
15.2.1.2 Interpreting the UserBuffer 15-3
15.2.2 Creating UISMetafiles 15-11
15.2.3 Structureof a UISMetafile 15-12
15.24 Programming Options 15-14
15.2.5 Program DevelopmentI 15-14
15.2.5.1 Calling UISSEXTRACT_HEADER, UISSEXTRACT_REGION,

and UISSEXTRACT_TRAILER 15-17
15.3 Display Lists and Private Data. 15-19
153.1 Using PrivateData 15-19
15.3.2 Programming Options 15-20
15.3.3 Program DevelopmentIl 15-20
15.3.3.1 Calling UIS$PRIVATE and UISSEXTRACT_PRIVATE. 15-25

Chapter 16 Programming in Color

16.1 Overview i 16-1
16.2 Color and Intensity Routines—How to Use Them 16-1
16.2.1 Step 1—Creating a Virtual ColorMap 16-2
16.2.2 Step 2—Setting Virtual Color Map Attributes 16-2
16.2.3 Step 3—Setting Entries in the Virtual ColorMap 16-3
16.2.4 Programming Options 16-3
16.2.5 Program DevelopmentI 16-4
16.2.6 Program DevelopmentIl 16-6
16.2.6.1 Program DevelopmentIll 16-7
163 ColorMapSegments. 16-9
16.3.1 Programming Options 16-10
16.3.2 Program Development 16-10
16.3.3 Calling UISSCREATE_COLOR_MAP_SEG 16-11
16.4 Color and Intensity Inquiry Routines 16-11
16.4.1 ProgrammingOptions 16-11
16.4.2 Program DevelopmentI 16-12
16.4.2.1 Calling UISSGET_COLORS, UIS$GET_HW_COLOR_INFO,
UISSGET_WRITING_INDEX 16-14

16.4.3 Program II—Creating an HSV Color Wheel 16-15

xii Contents

Chapter 17 Asynchronous System Trap Routines

171 Overview o i i e
17.1.1 Using ASTRoutines
17.1.2 AST-Enabling Routines

17.2 Using Keyboard and Pointer Devices
17.2.1 Using AST Routines with Virtual Keyboards
17.2.1.1 Step 1—Creating a Virtual Keyboard
17.2.1.2 Step 2—Binding the Virtual Keyboard to the Display

Window
17.2.1.3 Step 3—Enabling Virtual Keyboard AST Routines.
17.2.2 Programming Options
17.2.3 Program Development

17.2.4 Calling Keyboard Routines
17.2.5 Using AST Routines with Pointer Devices.
17.25.1 Mouse e

17.25.2 Tablet.
17.2.5.3 Step 1—Create an ASTRoutine
17.2.5.4 Step 2—Enable the AST Routine
17.2.6 Programming Options
17.2.7 Program Development
17.2.8 . Calling UIS$SET_POINTER_AST and

UIS$SET_POINTER _PATTERN e
17.3 Manipulating Display Windows and Viewports
17.3.1 Using AST Routines to Modify the Window Options Menu . .
17.3.1.1 Step 1—Create an AST Routine
17.3.1.2 Step 2—Enable the AST Routine
17.3.2 Programming Options
17.3.3 Program Development
17.3.4 Calling UIS$SET_RESIZE_AST
17.3.5 Calling UIS$SET_SHRINK_TO_ICON_AST

17.3.6 Calling UISSSET_CLOSE_AST

Contents xiii

PART Il UIS Routines

Chapter 18 UIS Routine Descriptions

18.1 Overview e 18-1
18.1.1 FormatHeading 18-3
1812 ReturmnsHeading., 18-5
18.1.3 ArgumentsHeading, 18-6
18.2 Functional Organization of UIS Routines 18-6
UIS$BEGIN_SEGMENT 18-9
UISSCIRCLE e e e 18-11
UISSCLOSE_WINDOW 18-14
UISSCOPY_OBJECTttt i e 18-15
UISSCREATE_COLOR_MAP, 18-20
UIS$CREATE_COLOR_MAP_SEG 18-23
UISSCREATE_DISPLAY oot e e 18-26
UISSCREATE_KB i i 18-28
UISSCREATE_TB e e 18-31
UIS$CREATE_TERMINAL 18-32
UIS$CREATE_TRANSFORMATION 18-34
UISSCREATE_WINDOW 18-37
UISS$DELETE_COLOR_MAP 18-46
UIS$DELETE_COLOR_MAP_SEG. 18-47
UISSDELETE_DISPLAY 18-48
UISSDELETE_KB i 18-49
UISSDELETE_OBJECT i it e it 18-50
UIS$DELETE_PRIVATE 18-51
UISSDELETE_TB ittt e it 18-52
UIS$DELETE_TRANSFORMATION 18-53
UIS$DELETE_WINDOW, . .. i 18-54
UIS$DISABLE_DISPLAY_LIST 18-55
UISSDISABLE_KB 18-58
UISSDISABLE_TB ittt et 18-59
UIS$DISABLE_VIEWPORT_KB 18-60
UISSELLIPSE e 18-61
UISSENABLE_DISPLAY_LIST. 18-65
UISSENABLE_KB i i 18-68
UISSENABLE_TB ittt i e 18-70
UISSENABLE_VIEWPORT_KB 18-71
UISSEND_SEGMENT 18-72
UISSERASE e 18-73
UISSEXECUTEttt et e et e e e e 18-75

UISSEXECUTE_DISPLAY it iiie e 18-77

Xiv

Contents

UISSEXPAND_ICON 18-78

UISSEXTRACT_HEADER it 18-81

UISSEXTRACT_OBJECT oot 18-83

UISSEXTRACT_PRIVATE, 18-85

UISSEXTRACT-REGIONt ... 18-88

UISSEXTRACT_TRAILER 18-91

UISSFIND_PRIMITIVE 18-93

UISSFIND_SEGMENT i 18-95

UIS$GET_ABS_POINTER_POS 18-97

UIS$GET_ALIGNED_POSITION 18-98

UISSGET_ARC_TYPE 18-100
UIS$GET_BACKGROUND_INDEX 18-102
UISSGET_BUTTONS i 18-103
UISSGET_CHAR_ROTATION 18-105
UISSGET_CHAR_SIZE 18-106
UISSGET_-CHAR_SLANT 18-108
UISSGET_CHAR_SPACING 18-110
UISSGET_CLIP 18-112
UISSGET_COLORttt 18-115
UISSGET_COLORS i e e e 18-118
UIS$GET_CURRENT_OBJECT 18-121
UIS$GET_DISPLAY_SIZEttt i 18-123
UISSGET_FILL_PATTERN it in i 18-126
UISSGET_FONT e e 18-129
UISSGET_FONT_ATTRIBUTES 18-131
UISSGET_FONT_SIZE vu.... 18-135
UISSGET_HW_COLOR_INFO 18-137
UISSGET_INTENSITIES 18-141
UISSGET_INTENSITY i i 18-144
UIS$SGET_KB_ATTRIBUTES 18-146
UISSGET_LINE_STYLE 18-148
UISSGET_LINE_WIDTH 18-150
UISSGET_NEXT_OBJECT 18-153
UIS$GET_OBJECT_ATTRIBUTES 18-155
UIS$GET_PARENT_SEGMENT 18-158
UIS$GET_POINTER_POSITION 18-160
UISSGET_POSITION it i e 18-162
UISSGET_PREVIOUS_OBJECTo 18-164
UISSGET_ROOT_SEGMENT. 18-167
UISSGET_TB_INFO 18-169
UISSGET_TB_POSITION ittt 18-172
UIS$GET-TEXT_FORMATTING 18-173
UISSGET_TEXT_MARGINS 18-175

UISSGET_TEXT_PATH 18-177

Contents xv

UISSGET_TEXT_SLOPE 18-179
UISSGET_VCM_ID. oo it e e e e 18-181
UIS$GET_VIEWPORT_ICON, 18-182
UIS$GET_VIEWPORT_POSITION 18-184
UIS$GET-VIEWPORT_SIZE 18-186
UISSGET_VISIBILITY0.t it iriinnnnnnn 18-188
UIS$GET_WINDOW_ATTRIBUTES 18-190
UISSGET_WINDOW_SIZEcov.o.. 18-191
UISSGET_WRITING_INDEX 18-192
UISSGET_WRITING_MODE., 18-194
UISSGET_-WS_COLORttt 18-195
UISSGET_WS_INTENSITYo i e 18-198
UISSHLS_TO_RGB. it i 18-200
UISSHSV_TO_RGB. i 18-202
UISSIMAGE e e 18-204
UISSINSERT_OBJECTttt 18-209
UISSLINE e e e 18-210
UISSLINE_ARRAY i 18-213
UISSMEASURE_TEXT i 18-215
UISSMOVE_AREA i i 18-221
UISSMOVE_VIEWPORT 18-224
UISSMOVE_WINDOW 18-226
UISSNEW_TEXT_LINEcu.... 18-228
UISSPLOT o e e e 18-229
UISSPLOT_ARRAY e 18-232
UIS$POP_VIEWPORT it 18-234
UIS$PRESENT i i e 18-236
UIS$PRIVATE e i e e 18-237
UISPUSH_VIEWPORT it 18-239
UISSREAD_CHAR 18-241
UIS$RESIZE_WINDOW i 18-243
UISSRESTORE_CMS_COLORS 18-246
UISSRGB_TO_HLS. it 18-247
UISSRGB_TO_HSV 18-249
UIS$SET_ADDOPT_AST it 18-251
UIS$SET_ALIGNED_POSITION 18-253
UIS$SET_ARC_TYPE 18-255
UIS$SET_BACKGROUND_INDEX 18-258
UISSSET_BUTTON_AST i 18-260
UIS$SET_CHAR_ROTATION 18-264
UIS$SET_CHAR_SIZE, 18-267
UIS$SET_CHAR_SLANT oo 18-271
UIS$SET_CHAR_SPACING 18-273

UISSSET_CLIP ot e e e 18-278

Xvi

Contents

UIS$SET_CLOSE_ASTttt 18-281
UISSSET_COLOR i e i e e 18-283
UIS$SET_COLORS o e e e 18-286
UIS$SET_EXPAND_ICON_AST 18-289
UIS$SET_FILL_PATTERN 18-291
UISSSET_FONTt e e e e e 18-295
UIS$SET_GAIN_KB_AST, 18-297
UIS$SET_INSERTION_POSITION 18-299
UISSSET_INTENSITIESt 18-302
UISSSET_INTENSITYttt i i e 18-304
UIS$SET_KB_AST ittt e i 18-306
UIS$SET_KB_ATTRIBUTES 18-308
UIS$SET_KB_COMPOSE2t 18-311
UIS$SET_KB_COMPOSE3, 18-313
UIS$SET_KB_KEYTABLE, 18-315
UIS$SET_LINE_STYLE, 18-317
UIS$SET_LINE_WIDTH ~...18-320
UIS$SET_LOSE_KB_ASTt 18-324
UIS$SET_MOVE_INFO_ASTc........ 18-326
UIS$SET_POINTER_AST i it 18-328
UIS$SET_POINTER_PATTERN 18-332
UIS$SET_POINTER_POSITION 18-335
UIS$SET_POSITION i i e e 18-337
UIS$SET_RESIZE_AST ittt ie i 18-339
UIS$SET_SHRINK_TO_ICON_AST 18-344
UIS$SET_TB_AST i i 18-346
UIS$SET_TEXT_FORMATTING 18-349
UIS$SET_TEXT_MARGINS 18-353
UIS$SET_TEXT_PATH. 18-355
UIS$SET_TEXT_SLOPE 18-358
UIS$SET_WRITING_INDEX 18-361
UIS$SET_WRITING_MODEo 18-363
UIS$SHRINK_TO_ICONot i i e 18-365
UISSSOUND_BELL oo i, 18-369
UIS$SOUND_CLICKo v oot e e e e e 18-370
UISSTEST_KB i i 18-371
UISSTEXT . . . oo e e e e e 18-372

UISSTRANSFORM_OBJECT e 18-376

Contents xvii

PART IV UIS Device Coordinate (UISDC) Routines

Chapter 19 UIS Device Coordinate Graphics Routines

19.1 Overview i it e e e e e e 19-1
19.2 UISDC Routines—HowtoUse Them 19-1
UISDC$ALLOCATE_DOP it it i e i e e 19-3
UISDCSCIRCLE it ittt et e e et e e e e e 19-5
UISDCSELLIPSE ottt ettt e e e e e i e 19-7
UISDCSERASEttt ittt e e e ee e 19-10
UISDC$EXECUTE_DOP_ASYNCH 19-11
UISDC$EXECUTE_DOP.SYNCH. 19-13
UISDC$GET_ALIGNED_POSITION 19-14
UISDC$GET_CHAR_SIZE i, 19-16
UISDCSGET_CLIPt ittt e i et e e e e 19-18
UISDC$GET_POINTER_POSITION 19-20
UISDC$GET_POSITIONt 19-22
UISDC$GET_TEXT_MARGINS 19-23
UISDC$GET_VISIBILITY ittt it 19-25
UISDCSIMAGE i e e e e e e e 19-27
UISDCSLINE e e e e e et e e 19-31
UISDCSLINE_ARRAY o ittt vt et 19-33
UISDCSLOAD_BITMAP ot et i e e e 19-35
UISDCSMEASURE _TEXT it tei e et e et 19-37
UISDCSMOVE_AREA i et i e e 19-39
UISDCSNEW_TEXT_LINE ¢ un.. 19-41
UISDCSPLOTttt et e e ettt e e e . .19-42
UISDC$PLOT_ARRAY it i i et e 19-44
UISDC$QUEUE_DOP i e e e e e 19-46
UISDC$READ_IMAGE i i i e 19-47
UISDC$SET_ALIGNED_POSITION 19-50
UISDCS$SET_BUTTON _AST it i et e e e e a 19-52
UISDC$SET-.CHAR_SIZE i, 19-54
UISDCSSET_CLIP ittt et e e et e e e e e e e e 19-56
UISDC$SET_POINTER_AST 19-58
UISDC$SET_POINTER_PATTERN 19-61
UISDC$SET_POINTER_POSITION 19-64
UISDCS$SET_POSITION ittt e e et oo e e 19-65
UISDC$SET_TEXT_MARGINS n.. 19-66

UISDCSTEXTttt i et e e 19-68

xviii Contents

A Summary of UIS Calling Sequences

Al

UIS Calling Sequences

B Summary of UISDC Calling Sequences

B.1

C VUIS Fonts
C.1

C.2
C21

C3
C.3.1

UISDC Calling Sequences

Overview e

UIS Multinational Character Set Fonts
UIS Multinational Character Set Font
Specifications

UIS Technical Character Set Fonts
UIS Technical Character Set Font
Specifications

D UIS Fill Patterns
E Error Messages

F Obsolete Routines

Glossary
Index

Figures

1-1
2-1

Typical MicroVMS Workstation Hardware
Virtual Display, Display Window, and Display
Viewport.

World Coordinate System and Virtual
Displayo i

Absolute Device Coordinates
Mapping a Display Window to a Display

Viewport.
Display Window in a Virtual Display
Displaying a Graphic Object
Display List Extraction

Bitplane Configuration in Single- and Multiplane
Systems,

Direct Color Values
Hardware ColorMap

A-1

B-1

C-1

C-5
C-10

C-14

1-2
2-3

2-5
2-7

2-8
2-10
2-11
2-14

4-2
4-3

o= 0 0NN WWN

- O

QO OO0 0 00 o O 00 0O o

[U
OO N e =
N

H\F\O\O\O\O\D\O\Om
[o <IN e NS |

o o
N =

—_
|

Contents xix

Mapped Color Values in Four-Plane System . . . 4-5
RGB and Intensity Color Values as Hardware

Color Map Entries 4-6
Swapping Virtual Color Maps 4-8
Reserved Hardware Color Map Entries in a

4-Plane Color System. 4-10
Passing Arguments 6-8
Mapping a BitmaptoaRaster 7-5
Display Viewport and Graphic Objects 7-8
Aspect Ratios of the Display Window and

Display Viewport 8-3
Four Display Viewports 8-6
Objects Within Different Windows 8-10
Display Window Deletion 8-11
Before Panning the Virtual Display 8-15
Panning the Virtual Display 8-17
Occluding a Display Viewport. 8-21
Popping a Display Viewport 8-22
Pushing a Display Viewport 8-23
General Placement and No Border 8-26
Moving Graphic Objects Within the Virtual

Display 8-28
World Coordinate Transformations. 8-31
Structure of Graphic Objects 9-5
UIS Device-Independent Writing Modes 9-12
BitSetMode 9-18
BitClearMode 9-19
Bit Set Negate Mode 9-20
Bit Clear Negate Mode 9-21
CopyMode 9-22
Copy NegateMode 9-23
Character Cell 10-2
Monospaced and Proportionally Spaced

Characters 10-3
TextPath 10-3
TextSlope 10-5
Character Spacing 10-7
Simple Character Rotation 10-10
Character Rotation with Slope Manipulation . . 10-11

Text Path Manipulation Without Character
Rotation 10-13

xx Contents

10-9 Character Slanting 10-18
10-10 Character Slanting and Rotation with Slope

Manipulation 10-19
10-11 Character Scaling 10-21
10-12 UISFonts. 10-28
10-13 Character and Line Spacing 10-31
10-14 Baseline and Top of Character Cell 10-33
10-15 Character Slanting 10-34
10-16 Manipulating the Text Baseline 10-36
10-17 Character Rotation Without Slanting. 10-38
10-18 Character Rotation with Slanting 10-39
10-19 Manipulating Character Size 10-41
11-1 Closingan Arc 11-6
11-2 FillingaClosed Arc 11-7
11-3 LineWidth 11-9
11-4 Modifying Line Width and Style 11-11
11-5 Vertical Bar Graph 11-15
11-6 Clipping rectangles 11-17
12-1 Centering Text 12-7
12-2 PieGraph 12-11
13-1 Binary Encoded Instruction. 13-2
13-2 Nested Segments 13-3
13-3 Disabling a Display List. 13-8
13-4 After Display List Execution 13-9
13-5 Tree Diagram—Program WALK 13-10
13-6 Display List Elements 13-13
13-7 Contents of the Display List 13-14
13-8 Traversing Upward Along the Segment Path . . 13-19
13-9 Searching Downward Through a Segment 13-19
13-10 Contents of the Display List Drawn in the

Virtual Display 13-20
13-11 Before Display List Modification 13-27
13-12 Executing the Modified Display List 13-28
13-13 Verifying the Contents of the Display List 13-29
13-14 Text Output During Execution. 13-31
13-15 Final TextOQutput. 13-32
14-1 Translating a Graphic Object 14-2
14-2 Simple Scaling 14-4
14-3 Complex Scaling 14-5
14-4 Uniformly Scaling a Graphic Object 14-6

14-5 Differentially Scaling a Graphic Object 14-7

Contents xxi

14-6 Simple Rotation of a Graphic Object. 14-9
14-7 Complex Rotation of a Rectangle 14-13
14-8 Complex Rotation of a Triangle 14-16
14-9 Modifying Attributes with a Transformation . . . 14-19
14-10 Modifying Attributes with a Copy 14-20
15-1 Binary Encoded Instruction. 15-2
15-2 Extended Binary Encoded Instruction 15-2
15-3 Format of Attribute-Related Argument 15-5
15-4 Format of Graphics- and Text-Related

Argument 0., 15-5
15-5 Structure of UIS Metafile 15-13
15-6 Original Objects Drawn in the Virtual

Displayo 15-18
15-7 After Buffer Execution 15-19
15-8 PrivateData 15-25
15-9 Verifying the Contents of the Temporary Array

and User Buffer 15-26
15-10 Hot AirBalloon 15-27
16-1 Different Types of Information Returned from

Inquiry Routines 16-15
17-1 Writing Characters to a Display Viewport 17-8
17-2 Default Pointer Pattern 17-12
17-3 New Pointer Pattern 17-13
17-4 " Unresized Window and Viewport 17-20
17-5 Resized Window and Viewport 17-21
17-6 Iecon 17-21
18-1 Functional Categories of UIS Routines 18-7
C-1 Font1........ C-1
C-2 Font2 C1
C-3 Font3 C-2
C-4 Font4 C-2
C-5 Font5........ C-2
C-6 Font6 C-3
c-7 Font7 C-3
C-8 Font8 C-3
c-9 Font9 C-4
C-10 Font10 C-4
C-11 Font11l C-4
C-12 Font12 C-5
C-13 Font13 i C-5
C-14 Font14 C-5

xxii Contents

C-15 Font15 i, C-10
C-16 Font16 C-11
C-17 Font17 e C-11
C-18 Font18 C-11
C-19 Font19 C-11
C-20 Font20,, C-12
Cc-21 Font21, C-12
C-22 Font22 C-12
C-23 Font23 i, C-13
C-24 Font24 C-13
C-25 Font25 C-13
C-26 Font26, C-14
D-1 PATT$C._VERT1_1 and PATT$C_VERT1_3 . . D-1
D-2 PATT$C_VERT2_2 and PATT$C._VERT3_1 . . D-2
D-3 PATT$C_VERT1_7 and PATT$C_VERT2_6 . . D-2
D-4 PATT$C_VERT4_4 and PATT$C_VERT6..2 . . D-2
D-5 PATT$C_HORIZ1_1 and

PATT$C_HORIZ1_3 D-3
D-6 PATT$C_HORIZ2_2 and

PATT$C_HORIZ3_1 D-3
D-7 PATT$C_HORIZ1_7 and

PATT$C_HORIZ2_6 D-3
D-8 PATT$C_HORIZ4..4 and

PATT$C_HORIZ6-2 D-4
D-9 PATT$C_GRID4 and PATT$C_GRIDS D-4
D-10 PATT$C_UPDIAG1_3 and

PATT$C_UPDIAG2_2 v v .. D-4
D-11 PATT$C__UPDIAG3..1 and

PATT$C_UPDIAG1..7 D-5
D-12 PATT$C_UPDIAG2._.6 and

PATT$C_UPDIAG4_4 D-5
D-13 PATT$C_UPDIAG6_2 and

PATT$C_DOWNDIAG1_3 D-5
D-14 PATT$C_DOWNDIAG2_2 and

PATT$C_DOWNDIAG3_1 D-6
D-15 PATT$C_DOWNDIAG1_7 and ’

PATT$C_DOWNDIAG2_6 D-6
D-16 PATT$C_DOWNDIAG4_4 and

PATT$C_DOWNDIAG6_2 D-6
D-17 PATT$C_BRICK_HORIZ and

PATT$C_BRICK_VERT D-7
D-18 PATT$C_BRICK _DOWNDIAG and

PATT$C_BRICK_UPDIAG D-7

D-19

D-20

D-21

D-22

D-23

D-24

D-25

D-26

D-27

D-28

D-29

Contents

PATT$C_GREY4_16D and
PATT$C_GREY12_16D

PATT$C_BASKET_WEAVE and
PATT$C_SCALE_DOWN

PATT$C_SCALE_UP and
PATT$C_SCALE_RIGHT

PATT$C_SCALE_LEFT and
PATT$C_GREY1_16

PATT$C_GREY2_16 and
PATT$C_GREY3_16

PATT$C_GREY4_16 and
PATT$C_GREY5_16

PATT$C_GREY6_16 and
PATT$C_GREY7_16

PATT$C_GREY8_16 and
PATT$C_GREY9_16

PATT$C_GREY10_16 and
PATT$C_GREY11_16

PATT$C_GREY12_16 and
PATT$C_GREY13_16

PATT$C_GREY14_16 and
PATT$C_GREY15_16

Hardware Color Map Characteristics
ColorPalette
VAX Standard Data Types
Entry Point and Symbol Definition Files
Types of Coordinates
UIS Windowing Routines
Attribute Block 0
Default Settings of General Attributes
UIS Writing Modes

Default Settings of Text Attributes in Attribute
BlockO0

Default Settings of Graphics and Windowing
Attributes, ... L L

Inquiry Routines
Generic Encoding Symbols and Opcodes
Arguments of Binary Encoded Instructions
Structure of UIS Metafiles

xXiii

D-7
D-8
D-8

D-8

D-10
D-10
D-10

D-11

4-4
4-7

6-10
7-2
8-2
9-2

9-6

10-22

11-2
12-2
15-3
15-6
15-11

xxiv

Contents

16-1 Color and Intensity Routines 16-3
16-3 Color and Intensity Inquiry Routines 16-11
17-1 AST-Enabling Routines 17-2
17-2 Connecting Physical Keyboards and Virtual

Keyboards 17-4
17-3 Disconnecting Physical Keyboards and Virtual

Keyboards 17-4
18-1 Main Headings in the Routine Template 18-1
18-2 General Rules of Syntax 18-4
A-1 Summary of UIS Calling Sequences A-1
B-1 Summary of UISDC Calling Sequences B-1
C-1 Font 1—

DTABER0003WKO00PGO0001UZZZZ02A000 . . . C-6
Cc-2 Font 2—

DTABEROIO3WKO00GG0001UZZZZ02A000 . . . C-6
C-3 Font 3—

DTABEROMO03CK00GG0001UZZZZ02A000 . . C-6
C-4 Font 4—

DTABEROR0O3WKO00GG0001UZZZZ02A000 . . C-7
C-5 Font 5—

DTABEROR07SK00GG0001UZZZZ02A000 . . . Cc-7
C-6 Font 6—

DTERMINGO03CKO00PG0001UZZZZ02A000 . . Cc-7
Cc-7 Font 7—

DTERMINMO060OK00PGO0001UZZZZ02A000 . . C-8
C-8 Font 8—

DTABERO0003WK00GG0001UZZZZ02A000 . . C-8
Cc-9 Font 9—

DTABEROGO03CK00GG0001UZZZZ02A000 . . C-8
C-10 Font 10—

DTABEROIO3WKO0PGO0001UZZZZ02A000 . . . C-9
C-11 Font 11—

DTABEROMO060OK00GG0001UZZZZ02A000 . . C-9
C-12 Font 12—

DTABEROR03WKO0PG0001UZZZZ02A000 . . . C-9
C-13 Font 13—

DTABEROR07SK00PG0001UZZZZ02A000 . . . C-10
C-14 Font 14—

DTERMINMO03CK00PG001UZZZZ02A000 . . . C-10
C-15 Font 15—

DVWSVTOG03CK00GG0001QZZZZ02A000 . . C-14
C-16 Font 16—

DVWSVTO0G03CK00PG0001QZZZZ02A000 . . C-15

C-17

C-18

C-19

C-20

C-21

C-22

C-23

C-24

C-25

C-26

Contents

Font 17—
DVWSVTOIO3WKO00GG0001QZZZZ02A000

Font 18—
DVWSVTOIO3WKO0PG0001QZZZZ02A000

Font 19—

DVWSVTONO03CK00GG0001QZZZZ02A000 . .

Font 20—
DVWSVTONO03CK00PG0001QZZZZ02A000

Font 21—

DVWSVTON060K00GG0001QZZZZ02A000 . .

Font 22—

DVWSVTON060OK00PG0001QZZZZ02A000 . .

Font 23—

DVWSVTOR03WK00GG0001QZZZZ02A000 . .

Font 24—

DVWSVTOR03WKO0PG0001QZZZZ02A000 . .

Font 25—
DVWSVTOR07SK00GG0001QZZZZ02A000
Font 26—
DVWSVTOR07SK00GG0001QZZZZ02A000

XXv

C-15

C-15

C-16

C-16

C-16

C-17

C-17

C-17

C-18

C-18

Preface

This programming guide describes the MicroVMS workstation graphics software.
It contains general information about basic MicroVMS graphics concepts, a tutorial
for learning to program with MicroVMS graphics, and complete descriptions and
reference information about the system routines for all callable functions.

Intended Audience

This guide is intended for general users and programmers who want to learn the
concepts and use appropriate routines in graphics application programs.

Structure of This Document

This guide is divided into four major sections, MicroVMS Workstation Graphics
Concepts, How to Program with MicroVMS Workstation Graphics, UIS Routine
Descriptions, and UIS Device Coordinate (UISDC) Routines. These sections are
briefly described in the following paragraphs.
Part | — MicroVMS Workstation Graphics Concepts

This section contains five chapters which provide a general overview of the basic
concepts of MicroVMS workstation graphics.

® Chapter 1 — System Description

This chapter briefly describes the hardware, software, and options that are parts
of the MicroVMS workstation system.

* Chapter 2 — Display Management Concepts

This chapter discusses the concepts of world coordinates, device coordinates,
virtual displays, windows, viewports, window and viewport scaling, and
distortion of graphic objects.

® Chapter 3 — Graphic Objects and Attributes

This chapter describes and shows the relationship between graphics routines,
attribute blocks, text attributes, graphics attributes, and segments.

xxviii Preface

Chapter 4 — Color Concepts

This chapter discusses the various color and intensity environments supported by
the VAXstation color systems.

Chapter 5 — Input Devices

This chapter shows how the workstation input devices relate to the workstation
graphics system.

Part Il — How to Program with MicroVMS Workstation Graphics

This section contains step-by-step tutorial information about writing application
programs using MicroVMS graphics. Practical programming examples are provided
throughout this section. It is divided according to routine functions into the following
chapters:

Chapter 6 — Programming Considerations

This chapter describes the programming interface and topics relating to program
execution. '

Chapter 7 — Creating Basic Graphic Objects

This chapter describes the underlying structures and shows how to create graphic
objects.

Chapter 8 — Display Windows and Viewports

This chapter shows how to create and manipulate display windows and display
viewports.

Chapter 9 — General Attributes

This chapter describes writing modes, display background and foreground, and
the writing index.

Chapter 10 — Text Attributes
This chapter describes how attributes may be used to enhance and modify text.
Chapter 11 — Graphics Attributes

This chapter describes how attributes may be used to enhance and modify the
appearance of graphic objects.

Chapter 12 — Inquiry Routines

This chapter discusses how information can be returned to the application
program.

Chapter 13 — Display Lists and Segmentation

This chapter describes how to create and manipulate display lists and segments.

Preface xxix

* Chapter 14 — Geometric and Attribute Transformations

This chapter describes the various ways graphic objects and components of
graphic objects can be manipulated with the respect to the coordinate space.

* Chapter 15 — Metafiles and Private Data

This chapter discusses how to extract the contents of a display list and store the
data in a buffer or external file. There is additional information about how to
associate private data with a graphics display.

¢ Chapter 16 — Programming in Color
The chapter describes how to create and display graphic objects in color.
¢ Chapter 17 — Asynchronous System Trap Routines

This chapter discusses how to make use of program-related events to increase
the interactive nature of your applications.

Part lll — UIS Routine Descriptions

This section contains reference material about the device-independent MicroVMS
workstation graphics routines.

* Chapter 18 — UIS Routines Descriptions

¢ UIS Routine Descriptions

Part IV — UIS Device Coordinate (UISDC) Routines

This section contains reference material about device-dependent MicroVMS
workstation graphics routines.

¢ Chapter 19 — UIS Device Coordinate Graphics Routines
¢ UISDC Routines

Appendix A — Summary of UIS Calling Sequences
Appendix B — Summary of UISDC Calling Sequences
Appendix C — UIS Fonts

Appendix D — UIS Fill Patterns

Appendix E — Error Messages

Appendix F — Obsolete Routines

Glossary

NOTE: For documentation on VMS data types, see Appendix A of the MicroVMS
Workstation Version 3.0 Release Notes.

xxx Preface

How To Use This Guide

This guide is designed so that it can be used in two different ways:

* It can be used as a learning tool by general users and programmers new to
graphics software and MicroVMS workstation graphics.

® It can be used as a reference tool by programmers already familiar with graphics
software in general and/or MicroVMS workstation graphics.

Inexperienced User

If you are unfamiliar with the MicroVMS workstation graphics system, you should
begin by reading Part I of this guide. It gives you an overview of the graphics
concepts discussed in subsequent sections of the book.

The programming tutorial in Part II provides a step-by-step approach for learning
how to write applications that take advantage of the graphics capabilities of the
MicroVMS workstation.

Part III provides you with reference information about all of the UIS routines used in
MicroVMS workstation graphics. It is easier to use after you have read Part II of this
guide.

Part IV contains appendices that provide reference material about UISDC graphics
routines and error messages.

Experienced User

Once you have become familiar with MicroVMS workstation graphics, you will
seldom need to refer to Part I of this guide, except when reviewing basic concepts.

Refer to Part II for examples and suggestions on the proper use of MicroVMS
workstation graphics routines.

Part III is an alphabetically arranged reference section that you can use to get detailed
descriptions of MicroVMS workstation graphics routines. Before using this section,
you should already be familiar with Parts I and II of this guide.

Part IV contains appendices that provide reference material about UISDC graphics
routines and error messages.

Preface xxxi

Associated Documents

The following MicroVMS manuals are related to this guide:
* MicroVMS Workstation User’s Guide

* MicroVMS Workstation Video Device Driver Manual

* MicroVMS Workstation Guide to Printing Graphics

* MicroVMS User’s Manual

* MicroVMS User’s Primer

* MicroVMS Programmer’s Manual

* MicroVMS FORTRAN Programmer’s Primer

® MicroVMS Programming Pocket Reference

o Installing or Upgrading MicroVMS From Diskettes

* Installing or Upgrading MicroVMS From a Tape Cartridge

Conventions Used in This Document

~ This manual uses the following conventions:

Convention Meaning

RET A symbol with a one- to six-character abbreviation
indicates that you press a key on the terminal, for example,
.

The phrase CTRL/x indicates that you must press the key

labeled CTRL while you simultaneously press another key,
for example, CTRL/C, CTRL/Y, CTRL/O.

$ SHOW TIME Command examples show all output lines or prompting

05-JUN-1986 11:55:22 characters that the system prints or displays in black
letters. All user-entered commands are shown in red
letters. ’

$ TYPE MYFILE.DAT Vertical series of periods, or ellipsis, mean either that not
. all the data that the system would display in response to
the particular command is shown or that not all the data a
user would enter is shown.

file-spec,... Horizontal ellipsis indicates that additional parameters,
values, or information can be entered.

xxxii Preface

Convention

Meaning

[logical-name]

quotation marks
apostrophes

Square brackets indicate that the enclosed item is optional.
(Square brackets are not, however, optional in the syntax
of a directory name in a file specification or in the syntax
of a substring specification in an assignment statement.)

The term quotation marks is used to refer to double
quotation marks ("). The term apostrophe (') is used to
refer to a single quotation mark.

New and Changed Features

The following sections describes changes to the programming interface since UIS
Version 2.0.

New UIS Routines

The following UIS routines were added.

Function Routine
AST-enabling UIS$SET_ADDOPT_AST
UIS$SET_EXPAND_ICON_AST

UIS$SET_TB_AST
UIS$SET_SHRINK_TO_ICON_AST

Color UIS$CREATE _COLOR _MAP
UIS$CREATE_COLOR_MAP_SEG
UIS$DELETE_COLOR._MAP
UIS$DELETE _COLOR_MAP_SEG
UIS$GET_COLORS
UIS$GET_HW_COLOR _INFO
UIS$GET_INTENSITIES
UIS$GET_VCM_ID
UIS$HLS_TO_RGB
UIS$HSV_TO_RGB
UIS$RESTORE_CMS_COLORS
UIS$RGB_TO_HLS
UIS$RGB_TO_HSV
UIS$SET_INTENSITIES

xxxiv New and Changed Features

Function

Routine

Display list

Graphics

Keyboard and pointer

UIS$COPY_OBJECT
UIS$DELETE_OBJECT
UIS$DELETE _PRIVATE
UIS$EXECUTE
UIS$EXECUTE_DISPLAY
UIS$EXTRACT_HEADER
UIS$EXTRACT_OBJECT
UIS$EXTRACT_PRIVATE
UIS$EXTRACT_REGION
UIS$EXTRACT_TRAILER
UIS$FIND_PRIMITIVE
UIS$FIND_SEGMENT
UIS$GET_CURRENT_OBJECT
UIS$GET_NEXT_OBJECT
UIS$GET_OBJECT_ATTRIBUTES
UIS$GET_PARENT_SEGMENT
UIS$GET_PREVIOUS_OBJECT
UIS$GET_ROOT_SEGMENT
UIS$INSERT_OBJECT
UIS$PRIVATE
UIS$SET_INSERTION _POSITION
UIS$TRANSFORM_OBJECT

UIS$LINE
UIS$LINE _ARRAY

UIS$CREATE_TB
UIS$DELETE_TB
UIS$DISABLE_TB
UISSENABLE_TB
UIS$GET_TB_INFO
UIS$GET_TB_POSITION

New and Changed Features

XXXV

Function Routine

Text - UIS$GET_CHAR_ROTATION
UIS$GET-CHAR_SIZE
UIS$GET_CHAR_SLANT
UIS$GET_FONT_ATTRIBUTES
UIS$GET_TEXT_FORMATTING
UIS$GET_TEXT-MARGINS
UIS$GET_TEXT_PATH
UIS$GET_TEXT_SLOPE
UIS$SET_CHAR_ROTATION
UIS$SET_CHAR_SIZE
UIS$SET_CHAR_SLANT
UIS$SET_TEXT_FORMATTING
UIS$SET_TEXT_MARGINS
UIS$SET_TEXT_PATH
UIS$SET_TEXT_SLOPE

Windowing UIS$EXPAND_ICON
UIS$GET_VIEWPORT_ICON
UIS$GET_WINDOW_SIZE
UIS$SHRINK_TO_ICON

New UISDC Routines

The following UISDC routines are new for Version 3.0.
e UISDC$ALLOCATE_DOP

e UISDC$EXECUTE_DOP_ASYNCH
e UISDC$EXECUTE_DOP_SYNCH
e UISDC$GET_CHAR_SIZE

e UISDC$GET_TEXT_MARGINS

e UISDCS$LINE

e UISDC$LINE_ARRAY

e UISDC$LOAD_BITMAP

* UISDC$QUEUE_DOP

e UISDC$SET_CHAR_SIZE

* UISDC$SET_TEXT_MARGINS

xxxvi New and Changed Features

New Chapters

Three new chapters describing color concepts and color programming considerations
have been added since Version 2.0.

® Color Concepts
e Geometric and Attribute Transformations

® Programming in Color

New UIS Writing Modes

Five new writing modes have been added since Version 2.0.
e UIS$C_MODE_BIC

e UIS$C_MODE_BICN

e UIS$C_MODE_BIS

e UIS$C_MODE_BISN

e UIS$C_MODE_COPYN

New Technical Character Set Fonts

Twelve new technical character set fonts have been added since Version 2.0.

New Text Attributes

The following new text attributes have been added to the programming interface.
® Character rotation

® Character scaling

® Character slant

® Text formatting

¢ Text margins

* Text path

¢ Text slope

New and Changed Features xxxvii

Changes to Existing UIS Routines

UIS$BEGIN_SEGMENT

UIS$BEGIN_SEGMENT now returns segment identifier that can be referenced by
other display list routines. For example, this allows traversing segments and segment
paths.

UISSMEASURE_TEXT and UISSTEXT
You can now use control lists with UIS$TEXT and UISS$MEASURE_TEXT.

UIS$DISABLE_DISPLAY_LIST and UISSENABLE_DISPLAY_LIST

Additional arguments have been included that control display screen and display list
updates.

UISSSET_POINTER_PATTERN and UISDC$SET_POINTER_PATTERN

If you are using a color system, you can now specify a pointer pattern outline.

Display Lists and Segmentation

The chapter on display lists and segmentation has been expanded with more
examples.

UIS Metafiles

You can create and store metafiles of generically encoded instructions as files and
reexecute the file.

Shrinking Viewports and Expanding Icons

Applications can now shrink display viewports and expand icons.

xxxviii New and Changed Features

Obsolete Version 2.0 UIS Routines

The following routines are obsolete.
e UIS$GET_LEFT_MARGIN

e UIS$SET_LEFT_MARGIN

e UISDC$GET_LEFT_MARGIN
* UISDC$SET_LEFT_MARGIN

PART 1 MicroVMS Workstation
Graphics Concepts

Chapter 1
System Description

1.1 Overview

This chapter introduces the MicroVMS workstation graphics system. It is divided
into two parts:

* A summary of typical workstation hardware

® A description of the graphics software

1.2 VAXstation Hardware

The MicroVMS workstation can be used as a standalone system. It has all the
components necessary to run programs and perform tasks without being connected
to a host computer. It can also be connected to a host computer and used as a part
of a network in a larger system.

The MicroVMS workstation typically consists of a configuration of the following
hardware:

® Processor

* Display monitor

* Keyboard

* Three-button mouse or a tablet
¢ Communications board

¢ Printer

An illustration of the typical MicroVMS workstation hardware is provided in
Figure 1-1.

1-2 System Description

Figure 1-1 Typical MicroVMS Workstation Hardware

Display Monitor

Keyboard
Tablet
Stylus

Mouse

ZK-4616-85

1.2.1 Processor

The processor is the heart of the MicroVMS workstation system. The processor
contains the disk drives, all of the memory, any options, and communications
hardware for the system. Usually, it houses both fixed and flexible disk drives. The
amount of memory it has can vary, depending upon the options installed.

1.2.2 Monitor

The monitor displays text and graphics information. It is a high-resolution bitmap
device that can be used to display black-and-white, grey scale, or color graphics.

System Description 1-3

1.2.3 Keyboard

The keyboard used with the workstation is the DIGITAL LK201, a standard low-
profile style keyboard. This keyboard consists of:

* A top row of function keys which are user-definable

* A numeric keypad which is also user definable

* A special keypad which has arrow keys and function keys

* A standard alphanumeric keypad

Some of the top row of function keys are control keys that enable the user to:
* Hold the screen

¢ Display the operator window

* Switch the windowing system

* Change the active window

In this row, there are also keys that call functions such as cancel, exit, help, and
provide aid in editing.

The function keys and numeric keypad keys can be defined by an application
program to perform functions suited to a particular application. The arrow keys can
be used to move the keyboard cursor within applications. The alphanumeric keypad
is similar in function to a typewriter keyboard.

1.2.4 Mouse

The three-button mouse is a medium-resolution, relative pointing device. It is the
primary means for a user to point to an object on the screen. When the mouse is
rolled on a flat surface, the pointer on the screen moves in a similar fashion. The
buttons are used to make selections.

1.2.5 Tablet

The tablet is a high-resolution, absolute positioning device. It consists of a flat tablet,
a puck with buttons, and a pen with buttons. When the puck or pen are moved

on the tablet, the pointer on the display screen moves in an identical fashion. The
buttons are used for selection.

1-4 System Description

1.2.6 Communications Board

The communications board allows the system to be connected with and communicate
with other computers.

1.2.7 Printer

The MicroVMS workstation can have a printer connected to the processor’s console
port or can access printers located at remote location through the network. You can
print any rectangular portion of display screen.

1.3 Software

The MicroVMS workstation graphics software is a versatile graphics and windowing
interface. It is designed to be used on any of the MicroVAX family of workstation
products (such as VAXstations). This graphics interface allows the user to write
application programs in VAX MACRO, VAX BLISS, and many other high-level
languages. Application programs written to take advantage of this software will be
able to create and manipulate windows, display multiple styles of text and sizes,
receive input, and draw graphic objects in the created windows.

1.3.1 Graphics Routine Types

The MicroVMS workstation graphics software is composed of callable routines that
can be accessed from a high-level programming language. An application program
can perform graphics and windowing functions by making calls to the appropriate
routines. This software contains routines for creating display windows, drawing lines
and text, and building graphic objects.

Routines fall into the following general categories:
® AST-enabling routines

* Attribute routines

* Color routines

* Display list routines

* Graphics and text routines

¢ Inquiry routines

* Keyboard routines

* Pointer routines

® Sound routines

System Description 1-5

¢ Windowing routines

e Device coordinate routines

1.3.2 Human Interface

The MicroVMS workstation provides an interface between the graphics software and
the user. This interface is called the human interface because it acts to aid the human
operator to use the workstation.

One of the things that this interface does is make it easy for the user to create new
terminal windows on the screen. The MicroVMS workstation provides the operator
with the capability of having the equivalent of many terminals at his or her disposal.
A user can easily create emulated DIGITAL VT220 or Tektronix TEK4014 terminals
by merely selecting a menu item which creates a window on the screen.

The operator can also control the placement of windows on the screen. Windows can
be moved anywhere on the screen (or even partially off of it). They can be hidden
from view, pushed behind other windows, popped in front of other windows, and so
on. The following list shows some of the operations that are possible.

® Create a new VT220 or TEK4014 terminal window
* Move a window to a different part of the screen

¢ Push a window behind other windows

* Pop a window in front of other windows

® Shrink a viewport to a icon

* Change the size of a window

® Delete a window

* Switch the keyboard from one window to another
® Suspend all screen activity (hold screen)

® Print any portion (or all) of a window or the screen
* Set workstation attributes

* Get online help

1-6 System Description

1.3.2.1 Terminal Emulation .
You can create emulated terminals on the MicroVMS workstation. The programming
interface and the capabilities of emulated terminals are the same as the programming
interface and capabilities of the corresponding real terminal. The appearance of an
emulated terminal on the MicroVMS workstation screen is similar to that of the
corresponding real terminal. (It will not be completely identical due to hardware
differences.)

An advantage of having several terminal windows is that a job can be started on one
terminal, and while it’s left running, another terminal can be created and another job
started. The user can create as many terminals as desired and switch back and forth
between them at will.

VT220/TEK4014

The VAXstation can emulate the DIGITAL VT220 or Tektronix TEK4014 terminal.
There can be any number of VT220 or TEK4014 windows on the screen
simultaneously. However, only one window may use the keyboard at any one
time. The keyboard is assigned to a window by the operator.

VT220 ANSI and DIGITAL private escape sequences, and TEK4014 escape sequences,
are interpreted and translated into the appropriate graphics routines.

Programs written using the VAX/VMS operating system will operate in a VT100 or
VT220 workstation window without modification.

1.3.2.2 Communication Tools

Users can communicate with the software interface through either the mouse, tablet,
or keyboard.

Mouse and Tablet

The mouse and tablet control a cursor called a pointer on the screen. When the
mouse or tablet is manipulated by the user, the pointer moves on the screen. The
pointer is used by an operator to point to things on the screen, such as an item in
a menu. The buttons associated with mouse and tablet are used to make selections.
. The pointer, in combination with buttons on the mouse, can perform several tasks:

¢ Point to objects on the screen
* Select objects on the screen
* Move objects around on the screen

¢ Push and pop windows on the screen

System Description 1-7

¢ Call menus to the screen
* Switch the keyboard between emulated terminals or windows

* Perform application designated functions

Keyboard
You can use the keyboard to perform the following functions:

* Respond to system prompts

* Provide control keys, such as [HOLD SCREEN] and |[CYCLE]
* Provide special keys, such as

¢ Enter data and information into a screen window

e Move a cursor in a window on the screen

* Perform application specific functions

1.3.3 Windowing Feature

The graphics software allows a large number of windows to be created and
maintained at the same time. Graphics routines are provided to handle the creation,
deletion, and manipulation of overlapping windows. Windows can be popped to
the front of the screen, pushed to the background, moved around the screen to a
new position, and completely deleted from the screen. The amount and size of
information that appears in a window can also be controlled.

1.3.4 Graphics Capabilities

Routines are provided to create new displays and draw graphics within the created
displays. A display list, which is an encoded description of the routines used to
create the contents of a display, is kept in memory. The display list enables a
program to easily pan and zoom portions of a display without having to redraw the
entire display. Scaling of the display is done automatically by the graphics software.
A display, or a portion of a display, can be mapped into one or more windows on
the screen.

Chapter 2
Display Management Concepts

2.1 Overview

This chapter discusses the basic concepts involved in creating a graphic object and
displaying it on the workstation screen. Some of the topics covered in this chapter
are as follows:

Virtual displays

Display windows

Display viewports

World and device coordinates

Display window and viewport scaling

2.1.1 Summary

The MicroVMS workstation graphics software enables application programs to build
graphic objects and display them on the workstation screen.

An application program that takes full advantage of the capabilities of the MicroVMS
workstation graphics can do the following things:

Create a virtual display.

Draw graphics and text into the virtual display.

Open windows into the virtual display for viewing on an output device.
Map the windows into display viewports on the workstation screen.

Manipulate the windows and viewports to display as much or as little of the
virtual display as desired.

Pan, zoom in and out, resize, and duplicate the display windows.

Manipulate display lists.

2-2 Display Management Concepts

To do these things, an application program must first create a virtual display in which
to build the object. A virtual display can be thought of as a conceptual display
space that has no actual physical size or shape. This conceptual display space,
called the world coordinate system, is defined by the application program in terms of
world coordinates. World coordinates are arbitrary units of measure selected by the
application program that specify locations (or points) in the world coordinate system
using values that are convenient to the application.

World coordinates are automatically translated to normalized coordinates (by the
graphics software) before being mapped to an output device. Normalized coordinates
convert user world coordinates into a single device-independent coordinate system
so that the user does not have to deal with several coordinate systems. Normalized
coordinates are automatically mapped to the device-dependent coordinates of the
physical output device.

A graphic object constructed in a virtual display is not available for display on
an output device until a display window and display viewport are created by the
application program.

A display window defines what portion of the graphic object in a virtual display is to
be viewed. By creating the display window, the program is making the information
in the virtual display potentially visible to the user. The information in the display
window is not actually visible to a user until the display window is mapped to a
display viewport.

A display viewport is the physical region on a display device that is created by the
MicroVMS workstation software and controlled by the user. The display viewport
is the physical representation of the display window that is mapped to it. It enables
a user to view the graphic object that is inside the display window. Figure 2-1
illustrates the relationship between the virtual display, display window, and display
viewport.

Physical device coordinates are used in mapping a display window to a display
viewport. Physical device coordinates are the physical points on the display screen
that are used to locate the graphic object. The process of mapping a graphic object
from the world coordinates of the display window to the device coordinates of the
display viewport is called a viewing transformation. Viewing transformations are
handled automatically by the graphics software.

The world coordinates of the display window can be manipulated in relation to
the world coordinates of the virtual display to achieve the effects of panning and
zooming the graphic object in the display viewport.

Display Management Concepts 2-3

Figure 2-1 Virtual Display, Display Window, and Display Viewport

Display Viewport
Display Window

Device
Coordinates

Coordinates Virtual
Display

ZK-2090-84

2.2 Coordinate Systems

The MicroVMS workstation graphics environment can be thought of as a two
dimensional plane. Because of this, the Cartesian coordinate system applies in
describing points within this environment. Cartesian coordinates take the form

of x,y, where x is the horizonal axis and y is the vertical axis. A point on this plane is
specified by a coordinate pair. The area of this plane that is specified by coordinate
pairs is called the coordinate space.

The MicroVMS workstation graphics software makes use of four Cartesian coordinate
systems: world, normalized, absolute, and viewport-relative device coordinates.

2.2.1 Device-Independent Coordinate Systems

Device-independent coordinate systems mediate between the requirements of the
application program and the graphics subsystem versus those of the output device.

2-4 Display Management Concepts

2.2.1.1 World Coordinates

An application program uses world coordinates to describe a virtual display and to
build a graphic object within it. Initially, the application program creates a virtual
display and specifies a convenient world coordinate system to use when referring to
the virtual display. Next, the program specifies the size and location of objects to be
created within the virtual display, using the same coordinates.

World coordinates are device-independent Cartesian coordinates that are specified
by the application program. They provide a means of locating the points in a virtual
display. The range of world coordinate values is specified when the virtual display
is created. In this way, the virtual display can be created to any proportions that
are selected by the application program. World coordinate values are given as
floating-point numbers.

The world coordinate system can represent any unit of measure. World coordinates
enable application programs to use convenient increments of measurement when
constructing a graphic object. If the program is accessing information from a data
base, it could specify world coordinates that are meaningful for the data used. For
instance, if an application is drawing a chart showing the sales of a company’s
product during a holiday season, it could use convenient measurements representing
units sold in thousands versus the time in weeks. Or, if the application program is
drawing a graphic object, it could use measurements that make sense for the object.
For example, a virtual display containing a map of the United States might logically
have world coordinates representing measurements in miles or kilometers. A floor
plan of a house might likely use world coordinates representing feet and inches, or
meters and centimeters.

Figure 2-2 shows a world coordinate system that describes a virtual display in which
an object has been constructed.

Display Management Concepts 2-5

Figure 2-2 World Coordinate System and Virtual Display

-1,1) 1 21

-l " === === —— == b

| |

| I

i |

| |

| |

| |

- -1 ! (00) ! ! 2 X

¥ T T >

| |

| |

| |

I |
Virtual I I
Display | :

| 1 [

| -1 |

: World

| Coordinates

|

}

|

? S b e, ——— e ———— -4

(-1,-2) -2 (2,-2)

ZK-4617-85

2.2.1.2 Normalized Coordinates

Normalized coordinates are device-independent coordinates that are defined by the
graphics software. They are used to describe the virtual display in physical terms
that any output device can use. An output device cannot use the arbitrary world
coordinates that an application program uses to describe a virtual display. Instead,
each kind of output device has its own device-specific coordinates that it uses to
locate and build the graphic object. Normalized coordinates can be thought of as a
way for the graphics software to normalize these different coordinate systems so that
a graphic object can be mapped from a virtual display to any output device.

2-6 Display Management Concepts

Normalized coordinates are not directly used or manipulated by application
programs. They are used internally by the graphics software. The mapping of
normalized coordinates into device-specific display coordinates is handled entirely by
the software.

Normalized coordinates provide a means of delaying the actual mapping of an
application program’s world coordinates to device-specific coordinates until the
actual output device is established.

2.2.2 Device-Dependent Coordinate Systems

Output devices use device-dependent coordinate systems to map graphic objects on
the display screen or to print objects on a printer. Device-dependent coordinates are
-physical device coordinates that denote some physical unit of measure such as pixels,
centimeters, or inches. Such physical device coordinates reflect device-dependent
mapping and drawing characteristics of the output device.

2.2.2.1 Absolute Device Coordinates

Absolute device coordinates are physical device-dependent Cartesian coordinates
that specify positions on the MicroVMS workstation display screen. The position
is specified in centimeters relative to the lower-left corner of the display screen.
Typically, viewport placement, pointer position, and tablet placement use absolute
coordinates. Figure 2-3 illustrates viewport placement on the VAXstation screen
relative to the lower-left corner of the screen.

Display Management Concepts 2-7

Figure 2-3 Absolute Device Coordinates

W
S S _J

-] N\ b

\ Lower-Left
Corner of Viewport

Origin of
Display Screen 7K-5429.86

2.2.2.2 Viewport-Relative Device Coordinates

Many MicroVMS workstation graphics software routines utilize a special type of
physical device coordinates called viewport relative device coordinates. Viewport
relative device coordinates are physical device coordinates that specify positions
within a display viewport. The position specified is relative to the lower-left corner
of the viewport. Viewport-relative device coordinates are always positive.

Viewport-relative device coordinates are specified in units of pixels. A pixel is the
smallest displayable unit on a display screen. The MicroVMS workstation graphics
software takes care of all mapping of display windows to the display screen.

2-8 Display Management Concepts

Viewport-relative device coordinates are used in mapping graphic objects from a
display window to a display viewport on a physical display device.

In order to display a graphic object in a display viewport on a display device, the
world coordinates of the object must be transformed to the viewport-relative device
coordinates of the display device.

Figure 2-4 shows an object in a display window being mapped to a display viewport
on a physical display device. In this illustration, the world coordinates of the display
window undergo a viewing transformation to the physical device coordinates of the
display device.

Figure 2-4 Mapping a Display Window to a Display Viewport

Display Terminal

Display Display Viewport
Window i P

World Physical Device
Coordinates Coordinates
(Pixels)

ZK-4624-85

2.3 Virtual Displays

A virtual display is a conceptual display space created by an application program. It
is used by an application program as the place where graphic objects are constructed.
All text and graphics output of the application program are written to a virtual
display.

Display Management Concepts 2-9

A virtual display has no physical size (dimensions of length and width). Therefore,
objects constructed in a virtual display also have no actual physical dimensions. You
cannot measure a virtual display or the graphic objects within it.

Instead, a virtual display and the objects within it have relative sizes and proportions.
The comparison of the relative proportions of the vertical and horizontal components
of an object in a virtual display is called the aspect ratio of the object. The aspect
ratio is used in referring to an object’s relative size in a virtual display.

To create a virtual display, an application program specifies a coordinate range in
the world coordinate system. The coordinate range establishes the relative size, or
aspect ratio, of the virtual display. Objects constructed in the virtual display are also
specified in terms of world coordinates and also have an aspect ratio. The aspect
ratio will later affect how the virtual display and the objects it contains map to the
display window.

Refer back to Figure 2-2 which shows a graphic object drawn in a virtual display.
Both the virtual display and the graphics object are specified in terms of world
coordinates.

2.4 Display Windows

A display window is used to display all or a part of the contents of a virtual display.
Display windows are created by an application program. A display window is used
by the application program to control how much of a virtual display is potentially
available for the user to view. A display window can be the size of an entire virtual
display or just a small portion of it. There can be one or several display windows
active at one time in a virtual display.

The relative proporticns and location of a display window are specified by an
application program in terms of world coordinates. Therefore, the amount of the
virtual display that is encompassed by a display window is relative to the world
coordinates of the virtual display. By specifying the proportions and location of the
display window, an application program determines what portion of the graphic
object within a virtual display is viewable.

The world coordinate boundaries of a display window define what is called a clipping
rectangle. Any graphic object that lies within the clipping rectangle is potentially
visible in the display viewport. Objects that fall outside of the clipping rectangle are
not viewable and are clipped from the window as illustrated in Figure 2-5.

2-10 Display Management Concepts

Figure 2-5 Display Window in a Virtual Display

Virtual Display

Display

Window
(7 T T Clinped -1
I | to —»| |
+ | |
H] I H} [I
S S W - -

World
Coordinates
ZK-4625-85

2.5 Display Viewports

A display viewport is the area of the physical display screen to which a display
window is mapped. The display viewport is the user’s means of viewing the contents
of a display window. A display viewport is always associated with a display window
and is the mechanism by which the display window is displayed on the screen.

They can vary in size and shape, and can be located anywhere on the physical
display screen. There can be as many viewports as desired on the screen at a time.
If viewports overlap each other, they will occlude in the areas that overlap. The
last viewport created will be on top and visible. However, the operator can modify
which viewport is on top at any one time.

The display window is mapped and scaled to the display viewport automatically
by the graphics software. Normally, the display window is mapped to the display
viewport on a one-to-one basis. That is, the boundaries of the display viewport
always implicitly default to the same size and shape as that of the display window.
However, it is possible for the application program to explicitly specify that the
display window be of a size or shape that is different than that of the display
viewport; or, that the display viewport be of a size or shape that is different from
that of the display window. The effects that are achieved when the display window
and display viewport are of a different size or shape are discussed in the following
sections of this chapter.

Display Management Concepts 2-11

Refer to Figure 2-6 for an illustration of the relationship between the virtual display,
the display window and the display viewport. This illustration shows how a graphics
object in a virtual display is clipped to the display window, scaled and mapped into
a display viewport, and displayed on a physical display device such as a terminal
screen.

Figure 2-6 Displaying a Graphic Object

Display Terminal

Virtual Display Display Display Viewport

Window

T " TScaled and

==

Uses Uses
World Physical Device
Coordinates Coordinates

2.6 Display Window and Viewport Scaling

Graphic objects on the display screen can be magnified or reduced in size by
manipulating the relative sizes of the display window and the display viewport.
The following list describes the various effects that can be achieved and the method
used to accomplish each effect.

Magnifying
To magnify the graphic object, use one of these two methods:
® Decrease the size of the display window without altering the viewport size.

* Increase the size of the display viewport without altering the window size.

2-12 Display Management Concepts

Reducing
To reduce the graphic object, use one of these two methods:
* Increase the size of the display window without altering the viewport size.

* Decrease the size of the display viewport without altering the window size.

Panning
To pan the graphic object, use this method:

* Move the display window within the virtual display without altering the display
viewport.

Changing View Size

You can change the area of the virtual display that is being viewed, without
performing scaling, in the following ways:

* To increase the area of the virtual display being viewed, expand both the display
window and the display viewport proportionately.

® To decrease the area of the virtual display being viewed, contract both the
display window and the display viewport proportionately.

2.6.1 Distortion of Graphic Objects

The aspect ratio of the virtual display, the display window, and the display viewport
are the factors that determine whether a graphic object will be distorted when it

is mapped to the display screen. The display viewport can have any proportions
width to height that is specified (within the limits of the display device). If the
proportions of the display viewport do not match the proportions of the display
window, a stretching or squeezing effect occurs with the graphic object. The exact
effect depends upon the proportional differences between the viewport and window.
This happens because the graphics software is trying to make the display window fit
the display viewport. The transformation of the graphic object affects different types
of objects in different ways:

* Straight lines remain straight, but may differ in length and slope, depending
upon the window size and the coordinate system.

* Curved lines can change somewhat in shape. The amount and nature of the
change depends upon the characteristics of the graphic object and the mapping
(transformation) from display window to viewport.

Display Management Concepts 2-13

Arcs change their shape and size. For instance, an ellipse may change its
proportions.

Graphics text (specifically character size and spacing) is not adjusted to fit the
required number of characters into the display viewport. The size and spacing
of text characters is fixed and will not distort. However, the starting position of
the text may change, depending upon the transformation which occurs between
window and viewport.

Distortion can be corrected in the following way:

The application program can create a display viewport whose proportions are
appropriate for a particular graphics window in world coordinate space. Because
the display window can have any proportions in world coordinate space, a
display viewport of the proper proportions for a display window that is square,
tall and narrow, short and wide, or any other proportions, can be created.

2.7 Display Lists

A display list is a device-independent encoding of the exact contents of a virtual
display. The graphics software maintains and uses display lists to achieve the
following goals:

Allow the automatic management of panning, zooming, resizing, and duplication
of display windows.

Allow the structuring of virtual display objects.

Allow objects in a virtual display to be viewed simultaneously within several
display viewports.

Allow the storage and reexecution of UIS pictures

Allow editing of UIS pictures

2.8 Generic Encoding and UIS Metafiles

Whenever a graphic object is drawn in the virtual display or an attribute is modified,
an encoded entry of the object or attribute modification is added to the display list.

2-14 Display Management Concepts

Such entries allow any application to extract arbitrary output from a virtual display,
give it to an intelligent application or store the data as a generically encoded file or
buffer known as a metafile, and then later reexecute the generically encoded binary
stream into a new virtual display.

Generic encoding is both device independent and self describing.

When UIS routines are executed, a binary encoded packet of values is constructed
and stored as display list entries. When the binary encoded packet is extracted from
the display list used, it becomes a generically encoded UIS metafile. Such metafiles
can be reexecuted to invoke the appropriate internal generic encoding routines.

Figure 2-7 Display List Extraction

UIS Routine Call

Binary Encoded Packet

Generic Encoding Primitive

ZK-5428-86

Although many UIS routines have corresponding generic encoding primitives
there is not necessarily a one-to-one mapping between UIS routines and generic
encoding routines or between the UIS routine arguments and generic encoding
routine arguments.

Chapter 3
Graphic Objects and Attributes

3.1 Overview

This chapter discusses the basic building blocks that are used in constructing graphic
objects in a virtual display. These basic components are:

¢ Text and graphics routines

¢ Attributes and attribute modification routines
¢ Attribute blocks

¢ Segments

These topics are discussed in greater detail in the following sections of this chapter.

3.2 Summary

Text and graphics routines (sometimes called output routines) are the fundamental
building blocks that an application program uses to create graphic objects. These
routines are used to specify lines, circles, text, or other graphic objects. The particular
details (or attributes) of the way a text or graphic object look when it is displayed is
determined by the attribute block associated with it.

An attribute block is a group, or set, of attributes. Attributes are values which specify
various things about the appearance of a text or graphic object. Every text and
graphics routine used in an application program is required to specify an attribute
block that it will use.

Attribute routines are used in an application program to specify or change the current
value of an attribute associated with an attribute block. The changed attribute value
affects subsequent text and graphics routines that use the changed attribute block.
An attribute routine is required to specify which attribute block in the application
program it is affecting.

3-2 Graphic Objects and Attributes

Application programs are allowed to group associated attribute, graphics and text
routines together. A group of attribute, graphics and text routines is called a segment.
Segments provide the program with a convenient way of viewing several attribute,
graphics and text routines as a single unit.

An application program can associate graphics and text routines or even entire
segments with application-specific data. The application program is allowed to store
data which is application-specific in the generic encoding stream. In this way, if

a portion of a display screen is copied, stored and then later used (restored) the
program will be able to associate internal information with the graphic object.

3.3 Text and Graphics Routines

Graphics and text routines map objects directly into the virtual display. They can be
used to create new objects or modify an existing one. Application programs use text
and graphics routines to draw lines, circles, text, and other graphic objects. They can
be combined in various ways to form a desired graphic object.

Each text and graphics routine has two required arguments: one argument that
specifies the virtual display in which to draw a graphic object, and another argument
that specifies the attribute block to be used when drawing the graphic object.

The way that a text or graphics routine draws a graphic object is influenced by
several factors. One of the major factors which determines the appearance of a
graphic object is the attributes that are associated with it.

3.4 Attributes

Attributes specify the appearance characteristics of graphic objects created by text
and graphics routines. They are the factors that influence the way a graphic object
appears on a display device. Color intensity, style, mode, width, and so on, are all
characteristics that attributes can determine. Once specified, attribute values stay the
same until explicitly changed. For example, if the line width is decreased, all lines
drawn are drawn to that thickness unless the line width is changed. If the application
program increases the line width, all lines are drawn to the same increased thickness
until the line width is changed again.

Each type of graphic and text object has a set of unique attributes. For example,
attributes that affect graphics do not affect text; the opposite is also true. There are,
however, general attributes that affect all routines. For example the background has
an attribute that can be set to determine the way the background will appear. The
background can be thought of as all parts of a display that are not covered by an
object created by a text or graphics routine.

Graphic Objects and Attributes 3-3

Attributes can be divided into the following general categories:
* General attributes

* Text attributes

® Graphics attributes

¢ Window attribute

These categories are discussed in the following sections of this chapter.

3.4.1 General Attributes

General attributes apply to all types of text and graphics routines. General attributes
include the following kinds of attributes:

¢ Writing color

* Background color
* Writing mode
Writing Color

The writing color attribute assigns the writing color. This attribute is used by all text
and graphics routines (such as lines, text, etc.). It is expressed by specifying an index
into a color map.

Background Color

This attribute assigns the background color. It is expressed by specifying an index
into a color map.

Writing Mode

This attribute assigns the mode of writing text or graphics. In particular, the writing
mode determines the exact way that a text or graphics routine will use the writing
and background colors to display a graphic object.

3.4.2 Text Attributes

Font set

The font set attribute specifies the font set that is used to define text characters. Fonts
express the size and shape of the characters in physical dimensions. This attribute
enables text to be displayed in the right size by display routines during text plotting.
You can choose from a variety of multinational character set fonts and technical
character set fonts.

3-4 Graphic Objects and Attributes

Character spacing

The character spacing attribute defines character spacing for width and height of
character sizes. It is defined as the additional unit of increment beyond the normal
character size for highly spaced characters. This attribute is specified as a floating-
point number. It is multiplied by the normal character size to produce the actual
spacing distance. If zeros are specified, then no additional spacing is performed.
Negative values are also allowed. When used, the spacing is reduced instead of
increased. Negative values for this attribute can cause the characters to overlap in
some cases.

Text Path

The text path is the direction of text drawing. The text path specification consists of
two parts—the major path and the minor path. The major path refers to the direction
in which character are drawn on a line. The minor path refers to the direction used
for beginning a new line of text. The following table lists the major path and minor
path available.

* Left to right (default major text path)

¢ Right to left

¢ Bottom to top

* Top to bottom (default minor text path)

Text Slope

Text slope represents the angle between the actual path of text drawing and the
major text path. The actual path of text drawing connects the baseline points of each
character cell.

Text Margins

The text margins attribute specifies a starting margin and the x coordinate distance to
the ending margin.

Text Formatting

The text formatting attribute along with the text margins attribute positions text flush
against either or both margins, centered, or with no formatting at all. UIS supports
four types of text formatting modes as follows:

® Left justification
* Right justification
¢ Center justification

® Full justification

Graphic Objects and Attributes 3-5

Character Rotation

Individual characters are rotated counterclockwise from 0 to 360 degrees. The angle
of rotation is the angle between the baseline vector of the character cell and the
actual path of the text drawing.

Character Slant

The character slant attribute specifies the angle between the character cell’s up vector
and baseline vector. The angle of character slant can be expressed as a negative or
positive value.

Character Size

Character scaling allows you to increase the height and width of characters drawn in
the virtual display.

3.4.3 Graphics Attributes

Graphics attributes, or line attributes, affect graphic objects such as lines, polylines,
polygons, rectangles, arcs, and curves. They determine the line style and width, and
control filling of objects, among other things.

Current Line Drawing Width

The current line drawing width sets the line width in terms of world or device
coordinate units. Line width is specified as a floating-point number that is either
interpreted as a world coordinate width or multiplied with the standard line width
for a device to produce the desired line width.

Line Style

The line style attribute sets the current line style of line routines. It is a bit vector that
is used to indicate the color of each pixel to be drawn. The color can be designated
to be either the same as the foreground or the background. The bit vector is repeated
as many times as necessary to draw all the pixels in the line.

Fill Pattern

The fill pattern attribute specifies the fill character to be used for filling closed figures
such as polygons, circles, and ellipses. The fill pattern is specified as a font file and
the index of a character in that font file. The pattern defined by the character is used
to fill the figure. Refer to Appendix D of this manual for further information about
fill patterns.

3-6 Graphic Objects and Attributes

Arc Type

The arc type attribute specifies the way an open arc of a circle or ellipse should be
closed. This attribute can have the following values:

* Open—when specified as open, the arc is not closed off.

* Pie—when specified as pie, two radii are drawn from the endpoints of the arc to
the centerpoint (forming a pie shape).

® Chord—when specified as chord, a line is drawn between the two endpoints of
the arc connecting them together.

3.4.4 Window Attribute
Clipping Rectangle

The clipping rectangle is the area of a virtual display that is made available for the
user to view. The clipping rectangle is specified as the corners of a world coordinate
rectangle that all drawing operations are clipped to. Objects, or parts of objects,
outside of the clipping rectangle cannot be viewed.

3.5 Attribute Blocks

An attribute block is a set of attribute values that describes the appearance of
any graphic object that is created by an application program. Each attribute block
contains attributes for graphics, text, and general display characteristics such as
writing mode and background and foreground indices.

There can be up to 256 different attribute blocks addressable at any one time. They
are addressed by numbers ranging from 0 to 255. Application programs assign and
use attribute block numbers.

3.5.1 Attribute Block 0

Attribute block 0 is a special attribute block that is specified by the graphics software.
This attribute block contains a standard set of text and graphics attributes. The
attributes in this block cannot be modified by the application program. Attribute
block 0 is read only. There is no convention on the naming and usage of attribute
blocks, with the exception of attribute block 0. This attribute block is reserved by the
graphics software as a default attribute block.

Attribute block 0 provides default attribute values that can be used by an application
program. It also serves as an attribute block template for an application programmer
to use when creating alternate attribute blocks.

Graphic Objects and Attributes 3-7

3.6 Segments

A segment is a designated group of attribute block, graphics and text objects.
Segments allow the application program to use a special attribute without the need
for knowing which particular attribute blocks are not being used by other parts of the
program. Another major use of segmentation is to implement transformations either
on a per-segment basis or on the entire segment tree. This provides convenience for
the programmer and increased modularity for the program.

Nested Segments

Segments can be nested. Each nested segment uses the current set of attribute blocks
of higher level segments. This makes it simpler to create segments without having to
redefine attribute blocks. However, modifications of attribute blocks in a segment do
not affect the attribute blocks of higher level segments.

Extracting and Reexecuting Segments

An application program can take the contents of a file containing a display list of a
virtual display and execute it into another virtual display as a segment. The attributes
of the original virtual display should not affect the virtual display segment which is
being inserted.

3.7 Viewing Transformations

The viewing transformation is the mapping of the display window to the display
viewport. The viewing transformation can affect the appearance of a graphic object
when it is viewed on a display screen. The shapes of the display window and the
display viewport will affect the way text and graphic objects look when they are
displayed.

3.8 Two-Dimensional Geometric Transformations
Geometric transformations can also alter the way graphic objects are displayed

through scaling, translation, and rotation. All of these methods involve manipulation
of the object’s angular orientation or shape in the virtual display.

3-8 Graphic Objects and Attributes

Scaling

The term scaling applies to the proportional expansion or reduction of graphic
objects on the display screen. For example, if the display window and viewport
shapes are different in proportion, the graphics software has to squeeze or stretch the
window to fit the viewport. The distortion of the graphics window causes distortion
of the graphic objects in that window. Different graphic objects are affected in
different ways. Refer to Chapter 2 for further information about the distortion of
graphic objects.

Translation

The points that define the position of graphic object in a coordinate system are
translated when its coordinates are altered without changing its angular relationship
with other object or the implied angular relationship between the object and the
coordinate system. For example, two lines are moved in the coordinate system, and
yet remain parallel.

Rotation

When a graphic object turns on a pivotal point or axis, it is rotating. It can rotate
with respect to some point on its surface, or it can revolve around some external

point. In order to give the appearance of rotation on the display screen, you must
first translate the axis of the object to the origin or center of the coordinate system.

Chapter 4
Color Concepts

4.1 Overview

Depending on the type of VAXstation available to you, you can display graphic
objects in black-and-white, grey scale, or color. The VAXstation offers you a number
of color options. However, there are several concepts you should be aware of at the
outset. This chapter discusses these concepts and the features of the color subsystem
in the following topics:

¢ Color hardware systems
e UIS virtual color maps
* Miscellaneous color concepts

See Chapter 16 for more information about programming in color.

4.2 Color Hardware Systems

There are three types of VAXstation hardware systems: (1) monochrome displays
black and white only, (2) intensity displays shades of gray or achromatic color, and
(3) color displays shades, tints, hues or chromatic colors. UIS supports all three color
systems.

4.3 Raster Graphics Concepts

The VAXstation display screen consists of a set of picture elements called pixels.
Pixels are the smallest displayable unit of a graphic object. The rectangular set

of pixels on the VAXstation screen is a raster. Graphic objects are written by
illuminating the necessary pixels along the path of points that geometrically describe
the object. Each pixel has an address and a binary value associated with it. Pixel
values determine the color of graphic objects.

4-2 Color Concepts

4.3.1 Hardware Interpretation of Pixel Values

The number of possible pixel values depends on the number of bit planes or planes
of memory that the system hardware supports. You can think of a plane as an
allocation of memory where each bit on a plane maps to a pixel on the display
screen. Conversely, each pixel has an address in memory. The following table
shows the relationship between the number of planes supported in hardware and the
number of the possible pixel values.

Number of Number of

Workstation Planes Possible Values
Monochrome 1 2
Intensity or color 4or8 16 or 256

Figure 4-1 show how pixel values are represented in single- and multiplane systems.

Figure 4-1 Bitplane Configuration in Single- and Multiplane Systems

Low
Order
Plane

Parallel Bit Planes

High-Order Plane

One Plane Four Planes Eight Planes

ZK 524286

In Figure 4-1, a pixel on the VAXstation screen is associated with four corresponding
bits in memory on each bit plane of a four-plane system. If the bit settings are
arranged as a binary value corresponding to the high- and low-order planes, they
would appear in the following order: 1011,.

Color Concepts 4-3

Therefore, the pixel value would be 11;5. A pixel in a four-plane system can have a
maximum of 16 values. The pixel value can be used in two different ways, as a direct
color value or as a mapped color value.

Direct Color Value

If the pixel value were used as a direct color value, each of the possible pixel values
would directly specify a color. In other words, the pixel value would be sent directly
to system hardware, such as a digital-to-analog converter, and would be used as the
actual color value of the graphic object. For example, the VAXstation monochrome
system, which is a one-plane system, interprets pixel values as direct color values
where 0 is black and 1 is white.

Figure 4-2 Direct Color Values

Bit Setting
1
> Digital-to-Analog
Converter
One Plane
Each bit maps to a Corresponding pixel is
specific pixel on the illuminated using the
display screen. actual bit setting.

ZK-5240-86

Mapped Color Value

When pixel values are interpreted as mapped color values, they indirectly specify an
actual color value located in a hardware color look-up table or hardware color map.

The pixel value is an index to an entry in the color map.

4-4 Color Concepts

Figure 4-3 Hardware Color Map

/——— Color Map Entry

Color Value 0 Color Map Index
Color Value 1
Color Value 2
Color Value 3
Color Value 4

®

[]

.
Color Value
Color Value

ZK-5241-86

The size of the hardware color map is identical to the number of possible pixel
values and is the maximum number of colors that can be displayed simultaneously.
Table 4-1 lists the size of the hardware color map in intensity and color systems.

Table 4-1 Hardware Color Map Characteristics

Number of Number of
System Planes Entries
Intensity Four 16

Eight 256
Color Four 16

Eight 256

Each hardware color map entry contains a color value to be displayed for each
pixel. Conversely, the value of each pixel is the hardware color map index of a color
map entry containing the actual color value. The pixel on the VAXstation screen is
illuminated using this color value.

Figure 4-4

Each bit maps
to the same
pixel on the

display screen.

Color Concepts 4-5

Mapped Color Values in Four-Plane System

-
<
-3
<
@

Four Planes

Hardware Color Map

Color Value 0

Color Value 1

Color Value 2

Color Value 3

Color Value 4

Color Value 5

Color Value 6

Color Value 7

Color Value 8

Color Value 9

Color Value 10

Digital-to-Analog

Color Value 11 > Converter L Display

Color Value 12

Color Value 13 Corresponding pixel
on the display screen

Color Value 14 is illuminated using the
color value located in

Color Value 15 the eleventh hardware color map entry.

ZK 5244-86

4-6 Color Concepts

For example, an eight-plane VAXstation intensity or color system has a hardware
color map with 256 entries. Each color map entry contains color values that are RGB
color components and that define the desired color.

4.3.2 Color Representation Models

Color values are expressed according to the requirements of the particular color
representation model used. Three well known color representation models are hue
lightness saturation (HLS), hue saturation value (HSV), and red green blue (RGB).
The UIS base color model is the RGB model. RGB color values are in the range 0.0 to
1.0, inclusive. Red, green, and blue color component values comprise a single color
value on a VAXstation color system.

Intensity values, the color values associated with shades of gray are specified as a
single value in the range 0.0 to 1.0, inclusive. Figure 4-5 shows RGB and intensity
color values as hardware color map entries.

Figure 4-5 RGB and Intensity Color Values as Hardware Color Map Entries

"_ \ \ Color Component
Values
Intensity 0
X Intensity Value
ZK-5239-86

4.3.3 Color Palette

Your color palette is the number of possible colors that you can specify. Table 4-2
show the color palette available on each color system.

Color Palette Size and Direct Color Systems

On direct color systems, the palette size is identical to the number of simultaneously
displayable colors. For example, the size of the color palette of a VAXstation
monochrome system is 2. Only two possible colors, black and white, can be
displayed simultaneously on the screen.

Color Concepts 4-7

Color Palette Size and Mapped Color Systems

On mapped color systems, the palette size is, typically, much greater than the
number of the simultaneously displayable colors. The palette size is determined by
the precision of color components’ specification. For example, on VAXstation color
system, each color component can be specified with eight binary bits of precision for
each red, green, and blue color components or 224 or 16,177,216 possible colors.

Tal/:le 4-2 Color Palette

Possible
System Colors
Monochrome black and white
Intensity up to 224 shades of gray
Color up to 2% chromatic colors

4.4 UIS Virtual Color Maps

An application that uses hardware color resources, that is, the hardware color map
must be aware of the hardware system limitations. The application must know the
color characteristics of the hardware as well. Is the system direct color or mapped
color? What is the precision of the color representation values for each RGB color
component? What is the range of possible pixel values?

The hardware color map contains a finite number of entries—for example, 16 entries
in a four-plane system. Concurrent processes executing in the same display space
must somehow share system color resources.

Why Use Virtual Color Maps?

The virtualization of the hardware color map solves problems arising from individual
applications requiring large amounts of system resources. It also solves the problem
of many processes competing for finite color resources. The use of virtual color
maps is analogous to the use of virtual memory in a multiprogramming environment
where many processes must access physical memory. When concurrent processes
require collectively more color map entries than exist in the hardware color map,
the color values associated with each competing process are swapped in and out of
the hardware color map as virtual color maps. Swapping virtual color maps in and
out of the hardware color map is a means of arbitrating hardware color map use
across applications. The process of loading or writing values of the virtual color map
into the hardware lookup table is transparent to the user. Figure 4-6 illustrates the
swapping of two 16-entry virtual color maps into a 16-entry hardware color map.

4-8 Color Concepts

Figure 4-6 Swapping Virtual Color Maps

Virtual Color Map 1

-

W 0 N O O s N

-
o

Hardware Color Map

-
-
o

-
N
-

-
w

-
£

-
(4

Virtual Color Map 2

W W N O » A W N

-
—
(=]

2 11
3 12
4 13
5 14
6 15
7
8
9
10
1
12
13
14
15

ZK 5108 86

Color Concepts 4-9

Applications see only a virtual color map, not the underlying hardware resources.
Each virtual display has a virtual color map associated with it.

Characteristics of Virtual Color Maps

A virtual color map is flexible enough to meet the needs of a wide range of
applications. Virtual color map size can range from 2 to 32,768 entries. If you do
not specify a virtual color map, a two-entry virtual color map is created by default.
The virtual color map size does not have to match that of the hardware color
map. Although virtual color maps are potentially shareable among applications,
they are private by default. Virtual color maps can be specified as resident, that is,
nonswappable in the hardware color map. The following table show how virtual
color map entries are initialized.

Virtual Color

Map Entry Color Value
0 Default window background color
1 Default window foreground color

All other entries are undefined.

UIS transparently reconciles differences between the virtual color map model and the
hardware color resources. UIS manages the concurrent use of these resources across
applications.

For information about creating and using virtual color maps, see Chapter 16.

4.4.1 Reserved Hardware Color Map Entries

On mapped color systems, due to hardware limitations, the hardware color system

or the UIS window management software preallocates some of the hardware color

map entries for special purposes. For example, pointer colors, window background

and foreground colors, and display screen color are allocated reserved entries in the
hardware color map. Figure 4-7 describes reserved entries in a hardware color map
in a four-plane system.

4-10 Color Concepts

Figure 4-7 Reserved Hardware Color Map Entries in a 4-Plane Color System

o

-

©W 00 N O O s~ 0N

-
o

-
-t

—
N

reserved

ey
w

reserved

-t
-

reserved

reserved 15

ZK-5430-86

Whenever a virtual color map exceeds the size of the hardware color map less
the reserved entries, the results are unpredictable. For more information about
obtaining the hardware color map characteristics using the programming interface,
see Chapter 16.

Color Concepts 4-11

4.5 UIS Color Map Segments

The use of color map segments represents a device-specific binding of a virtual color
map to the underlying hardware color resources, that is, the hardware color map. In
a color mapped color system, color map segments are bound to specific hardware
color map entries and swapped in and out of the hardware color map based on
system and user events. Usually, applications need not worry about color map
segments. UIS handles the device-specific binding automatically. Applications may
want to use color map segments for the following reasons:

* Applications can control explicitly the binding of the virtual color map and the
hardware color map.

* Applications are not transported to different hardware configurations, for
example, four-plane to eight-plane systems or VAXstation color and intensity
systems to VAXstation monochrome systems.

4.6 Shareable Virtual Color Maps

By default, virtual color maps are private. Yet, they may be shared among
cooperating application programs to define a uniform color regime and to conserve
hardware color map entries. Shared virtual color maps have names, an ASCII string
from 1 to 15 characters and a name space (UIC group or system). For example, UIS
uses a system-wide, shared color map to display terminal emulator windows and the
window and screen menus.

4.7 Miscellaneous UIS Color Concepts

The following sections contain additional information about the UIS color subsystem.

4.7.1 Standard and Preferred Colors

VAXstation color and intensity systems supports two sets of symbolically defined
colors. Workstation standard colors and intensity values are a set of colors used

for specific purposes within the workstation environment. For example, the default
window background and foreground, cursor background and foreground colors, and
the display screen color are the workstation standard colors.

Workstation preferred colors are a set of colors representing the user’s preference
for the eight combinations of the RGB primary colors. For example, workstation
preferred colors are used to define a particular shade of red, rather than a full
intensity red. In an intensity system, preferred colors may be used to define a base
white level from which preferred shades of gray are derived. Preferred values are

4-12 Color Concepts

simply a mechanism for conveniently maintaining and communicating a user’s color
preferences to an application.

Values for standard and preferred colors are set using the workstation setup
mechanism. Standard and preferred color and intensity values can be returned
using UIS$GET_WS_COLOR and UIS$GET_WS_INTENSITY.

4.7.2 Monochrome, Intensity, and Color Compatibility Features

Two types of calls are provided to change or retrieve color map entries.
UIS$SET_COLOR and UIS$SET_INTENSITY both load a single color value in a
color map entry. Both routines can be used in any of the three hardware color
environments—monochrome, intensity, or color.

Color Compatibility

System Feature

Monochrome UIS chooses the color (black or white) closest to the color specified
by the application.

Intensity1 UIS$SET_COLOR converts the specified RGB values to an equivalent

gray level using an equation.
UIS$SET_INTENSITY sets the requested gray level directly.

Color? UIS$SET_COLOR sets the requested RGB color values directly.
UIS$SET_INTENSITY converts the specified intensity value to an
equivalent RGB value using an equation.

IThe color-to-intensity equation is I = 0.30R + 0.59G + 0.11B. Color television broadcasts transmitted for
reception by noncolor television sets are processed in this manner.

2The intensity-to-color equationis R=1, G=1, B=1.

4.7.3 Color Value Conversion

Routines are provided to convert color values in applications using other color
representation models.

* Hue lightness saturation (HLS)
¢ Hue saturation value (HSV)

In both models, hue values are specified from 0.0 to 360.0, inclusive, where red = 0.0.
Values for lightness, saturation, and value are between 0.0 and 1.0, inclusive.

Color Concepts 4-13

4.7.4 Set Colors and Realized Colors

UIS routines that set or load color map entries in the virtual color map accept
F_floating point values between 0.0 and 1.0, inclusive. The precision of the F_floating
point data type is approximately seven decimal places.

The precision for the color representation for a particular device may not be enough
to represent accurately the requested F_floating point value.

In this case, the set color value (F_floating) differs from the realized color value
(device precision). An application can determine realized color values using
UIS$GET_COLOR(S) and including the optional parameter. See Chapter 16 for
details.

4.7.5 Color Regeneration Characteristics

Color regeneration is a hardware characteristic that specifies whether changing a
color map entry affects the color of existing graphic objects (retroactive regeneration)
or only graphic objects drawn after the color map is changed (sequential
regeneration).

The following table summarizes regeneration characteristics of direct and mapped
color systems.

System Regeneration Characteristics
Direct color Usually sequential
Mapped color Usually retroactive

An application can determine the hardware color regeneration characteristics by
calling UISSGET_HW_INFO.

Chapter 5

Input Devices

5.1 Overview

This chapter discusses the devices that enable user and application program
interaction. Some of the topics covered in this chapter are:

* Pointing devices
® Virtual keyboards
* Physical keyboards

5.1.1 VAXstation Input Devices

Application programs and users interact through input devices. The types of input
devices that a VAXstation typically utilizes are:

* Keyboard
* Mouse
e Tablet

The keyboard allows you to initiate program interaction and respond to application
program prompts by pressing a key or entering data. The mouse and tablet let you
communicate with an application program by pointing to objects or items with a
pointer and by making selections with buttons.

5-2 Input Devices

5.2 Pointers

There are two types of pointing devices that can be used with the workstation, a
mouse and a tablet. The workstation supports the use of only one pointing device at
a time.

Application programs receive input from a pointing device by either polling or
soliciting interrupts. To do this, programs use pointer input routines. Because only
one pointer input device can be used at a time, applications use the same set of
pointer input routines to get input from either the mouse or the tablet. The actual
pointer input device being used is transparent to an application.

The programming interface lets you set the pattern or the position of the cursor that
is synchronized with the pointing device.

5.2.1 Mouse

The mouse is a small hand-held device with three buttons on the top and a roller-ball
on the bottom. Associated with the mouse, on the display screen, is an arrow-shaped
cursor (or pointer).

The user is able to manipulate items on the display screen by the combined use of
the mouse-controlled pointer and the mouse buttons. By moving the mouse in any
direction on a flat surface, the ball on the bottom is turned, causing the pointer on
the screen to move. In this way, the pointer can be moved in any direction and
placed at any desired position on the display screen. By pressing the buttons on the
mouse, the user can select items in a menu and perform a variety of other functions.

The mouse is a relative pointing device. The mouse reports only its relative movement
to the workstation. The mouse can be picked up and placed in different position
without any change in the position of the pointer on the screen. Consequently,

the workstation keeps track of the current mouse position, only when the mouse is
moved on a surface.

Some of the ways that application programs can use the pointer are as follows:
¢ To create menus from which the user selects items
* To read the position of the pointer and the state of the mouse buttons

The workstation human interface implements menus that allow users to create,
select, move, and delete objects on the display screen. Application programs can
create menus that do the same things. To select a menu item, the user moves the
pointer to the region of the desired item and presses one of the mouse buttons. The
application program predefines items and specifies the action to be taken when the
user selects an item.

Input Devices 5-3

Application programs can detect when the pointer is moved across the boundary of
a window or a mouse button is pressed within a window. Programs can also read
the current pointer location and current button state. When the pointer is moved to
the border, or outside, of a screen viewport, the human interface detects interrupts
from the mouse. If the pointer is positioned inside of a viewport that is mapped to
an application-created window, the application program can receive these interrupts.

5.2.2 Tablet

The tablet is an optional input device that can be used with the workstation. Tablets
operate in much the same way as a mouse. An application program uses the same
routines to receive information from a tablet as it does for the mouse. This is possible
because the actual physical input device being used is transparent to an application
program.

The tablet is an absolute pointing device. That is, it reports all movement to the
workstation. For example, if the pen or stylus is picked up and moved to another
position on the tablet, the pointer will change its position on the screen to match the
movement.

A tablet is composed of the following parts:

e Tablet
e Puck
e Stylus
Tablet

The tablet is a flat square device with a surface similar to a table top. It is used in
conjunction with a puck and/or stylus to locate points on the display screen. When
the puck and/or stylus are moved on the surface of the tablet, the pointer on the
display screen moves in an identical fashion. If you pick up the puck and place it
in different region of the tablet, the pointer on the display screen would reflect this
change. The tablet has a grid that senses a change in the position of the pen or
stylus.

Puck

The puck is a hand-held device which is moved on the tablet to locate points on the
display screen. The puck has cross-hair markings used for precision in positioning
it on the tablet. It also has four buttons which can be used for various purposes,
depending upon the application.

5-4 Input Devices

Stylus

The stylus is a hand held device which resembles a pen. It is moved on the tablet
to locate points on the display screen. The stylus has greater precision than the
puck in locating positions. The stylus can also have buttons, usually one is located
on the outside of the barrel and one on the tip. The functions of these buttons are
application specific.

5.3 Keyboards

It is important to be able to distinguish between a physical keyboard (the workstation
keyboard) and a virtual keyboard (a simulated keyboard).

The physical keyboard is the actual workstation keyboard. You can press its keys
to respond to prompts from the application program, or you can type and enter
data into the currently active display window. The workstation can have only one
physical keyboard attached to it at any one time.

A virtual keyboard is a conceptual keyboard that does not have an actual physical
existence. Rather, a virtual keyboard is a simulated keyboard that exists in software
and is associated with a display window. Each application may have one or more
virtual keyboards attached to it. Virtual keyboards provide the means for applications
to share the single physical keyboard.

5.3.1 Virtual Keyboards

A virtual keyboard is not an actual physical keyboard; but instead can be considered
a simulated keyboard. Virtual keyboards are conceptual in nature and exist only

in software. Virtual keyboards have much the same relationship to the physical
keyboard as virtual displays have to the physical display screen.

Application programs can read from the physical (workstation) keyboard, assign the
physical keyboard to a display window, and modify the characteristics of a physical
keyboard associated with a window. Programs are able to do this by means of
virtual keyboard routines. These routines can establish one or more virtual keyboards.
They enable applications to manipulate the workstation keyboard by referring to the
established virtual keyboards.

You can think of virtual keyboards in the following way. The VAXstation supports
multiple windows with multiple processes running simultaneously. Normally, these
windows and processes require keyboard input at various times. Therefore, each
window may need to have a keyboard associated with it. Consequently, there is

a need for several keyboards (one for each window). Because there is only one
physical keyboard available, it must be shared among several windows. The way
that this is done is through the concept of virtual keyboards.

Input Devices 5-5

Virtual keyboards provide a way for each window to have its own keyboard. There
can be one, or several, display windows and virtual keyboards active on the display
screen at one time. However, the physical keyboard can be connected to only one
virtual keyboard at a time. A virtual keyboard can be attached to more than one
display window at a time; however, each display window may have only one virtual
keyboard attached to it.

The user has control over the association between the physical keyboard and the
various virtual keyboards that exist at any point in time. A user can connect the
workstation keyboard to different windows by manipulating the display viewports
to which the virtual keyboards are connected. The user determines which window
the workstation keyboard is attached to, and in that way, which process is receiving
keyboard input. In this way, the user determines which window on the screen is
currently active.

When the user switches the keyboard between windows, the workstation gives
notification of which window has the keyboard. It places a small KB icon in the
upper right corner of all windows that are able to use the keyboard. The KB icon
is highlighted in the window that is currently active. An application can restrict
windows from receiving keyboard input. Display windows that do not interact with
the keyboard will not have the KB icon.

PART Il How to Program with MicroVMS
Workstation Graphics

Chapter 6

Programming Considerations

6.1 Overview

The User Interface Services (UIS) graphics software package allows you to create
application programs that call system routines. Using UIS system routines, you can
create virtual displays, display windows, viewports, graphic images, and text. These
callable routines can be accessed through high-level programming languages as well
as VAX MACRO and VAX BLISS. The programming examples used in succeeding
chapters to illustrate the capabilities of the UIS graphics software are written in VAX
FORTRAN. This chapter discusses the following topics:

* (Calling UIS routines

* Argument characteristics

* Constants

* Condition values

* Additional program components
®* Program execution

Refer to the MicroVMS Programming Support Manual for additional information about
other callable routines.

6.2 Calling UIS Routines

Your application programs must contain references or calls to specific UIS system
routines to draw and manipulate graphic images and text. These CALL statements
and language-specific function declarations invoke the UIS system routines through
the VAX Procedure Calling Standard.

6-2 Programming Considerations

6.2.1 Calling Sequences

The format of a call to UIS, or the calling sequence, consists of the elements that
make up the statement and their positional order. Refer to Tables A-1 and B-1 in the
appendices for summaries of UIS and UISDC calling sequences, respectively.

6.2.1.1 Call Type

Calls to UIS system routines from application programs, typically specify the function
name and an argument list as follows:

vd_id=UIS$CREATE_DISPLAY(-1.0,-1.0,+1.0,+1.0,width,height)

However, some UIS routines are functions and return values to the calling program.
The preceding example shows such a call from a VAX FORTRAN program. It
also returns a value, the virtual display identifier, to the vd_id argument. Such
return values are stored in variables that are often arguments (where applicable) in
subsequent routine calls.

UIS routines that are not functions must be called using an explicit VAX FORTRAN
CALL statement.

CALL UIS$PLOT(vd_id,1,-1.0,-1.0)

There is no standard call type used by all programming languages to invoke the
UIS system routines. This manual does not attempt to describe the ways in which
each high-level programming language calls a UIS system routine but uses VAX
FORTRAN as an example of a typical call syntax. For specific information about
calling syntax, please refer to the appropriate language user’s guide.

6.2.1.2 Routine Name

You must identify the system routine you are calling by specifying its routine name,
for example, UISSMOVE_AREA. The routine name consists of a symbol prefix
identifying the system facility (UIS$) and the symbol name indicating what operation
it performs (MOVE_AREA). The routine name is also known as the entry point name.

6.2.1.3 Argument List

The argument list is the list of parameters to be passed to the UIS routine. This
list, typically, follows the function name as a parenthetical expression containing
arguments separated by commas. You can substitute your own argument names in
place of the formal parameter names. However, whenever you invoke a UIS routine,
you must maintain the positional order of the parameters in the argument list. The
following example illustrates positional order of the parameters:

CALL UIS$CIRCLE(VD_ID,ATB,CENTER_X,CENTER_Y,XRADIUS, START_DEG,END_DEG)

Programming Considerations 6-3

6.3 Argument Characteristics

Because the arguments in your routine call are the means of passing data to the
called routine, you should keep in mind the characteristics of arguments—VMS
Usage, type, access, mechanism.

6.3.1 VMS Usage

The VMS Usage entry contains the name of a VMS data type that has special meaning
in the VMS operating system environment.

The VMS Usage entry is NOT a traditional data type such as the VAX standard
data types byte, word, longword and so on. It is significant only within the context
of the VMS operating system environment and is intended solely to expedite data
declarations within application programs.

Refer to Appendix A in the MicroVMS Workstation Version 3.0 Release Notes for a
complete listing of VMS usage entries and implementation charts for each VAX
language supported by UIS. The implementation charts describe how to code the
VMS usage entry in the programming language of your application.

6.3.2 Type

The type characteristic refers to the standard data type of the argument, that is,
whether the argument is a word, longword, floating point number, and so forth.
Depending on the programming language you are using, you may be required to
declare certain data types locally within your program. These locally declared data
structures provide data type definitions for the arguments in subsequent calls to UIS
routines.

6.3.2.1 VAX Standard Data Types

When a calling program passes an argument to a system routine, the routine expects
the argument to be of a particular data type. The routine descriptions in Part III
indicate the expected data types for each argument.

Properly speaking, an argument does not have a data type; rather, the data specified
by an argument has a data type. The argument is merely the vehicle for the passing
of data to the called routine.

Nevertheless, the phrase “argument data type” is frequently used to describe the data
type of the data that is specified by the argument. This terminology is used because
it is simpler and more straightforward than the strictly accurate phrase “data type of
the data specified by the argument.”

6-4 Programming Considerations

The following table contains the data types allowed by the VAX Procedure Calling
Standard.

Table 6-1 VAX Standard Data Types

Data Type

Symbolic Code

Absolute date and time

Byte integer (signed)

Bound label value

Bound procedure value

Byte (unsigned)

COBOL intermediate temporary
D_floating

D_floating complex

Descriptor

E_floating

F_floating complex

G _floating

G _floating complex

H_floating

H_floating complex

Longword integer (signed)
Longword (unsigned)

Numeric string, left separate sign
Numeric string, left overpunched sign
Numeric string, right separate sign
Numeric string, right overpunched sign
Numeric string, unsigned
Numeric string, zoned sign
Octaword integer (signed)
Octaword (unsigned)

Packed decimal string

Quadword integer (signed)
Quadword (unsigned)

Character string

Aligned bit string

Varying character string

DSC$K_DTYPE_ADT
DSC$K_DTYPE_B
DSC$K_DTYPE_BLV
DSC$K_DTYPE_BPV
DSC$K_DTYPE_BU
DSC$K_DTYPE_CIT
DSC$K_DTYPE_D
DSC$K_DTYPE_DC
DSC$K_DTYPE_DSC
DSC$K_DTYPE_F
DSC$K_DTYPE_FC
DSC$K_DTYPE_G
DSC$K_DTYPE_GC
DSC$K_DTYPE_H
DSC$K_DTYPE_HC
DSC$K_DTYPE_L
DSC$K_DTYPE_LU
DSC$K_DTYPE_NL
DSC$K_DTYPE_NLO
DSC$K_DTYPE_NR
DSC$K_DTYPE_NRO
DSC$K_DTYPE_NU
DSC$K_DTYPE_NZ
DSC$K_DTYPE_O
DSC$K_DTYPE_OU
DSC$K_DTYPE_P
DSC$K_DTYPE_Q
DSC$K_DTYPE_QU
DSC$K_DTYPE_T
DSC$K_DTYPE_V
DSC$K_DTYPE_VT

Programming Considerations 6-5

Table 6-1 (Cont.) VAX Standard Data Types

Data Type Symbolic Code
Unaligned bit string DSC$K_DTYPE_VU
Word integer (signed) DSC$K_DTYPE_W
Word (unsigned) DSC$K_DTYPE_WU
Unspecified DSC$K_DTYPE_Z
Procedure entry mask DSC$K_.DTYPE_ZEM
Sequence of instruction DSC$K_DTYPE_ZI

Refer to the MicroVMS Programming Support Manual for more information about VAX
standard data types.

6.3.3 Access

The access characteristic describes how a calling routine will use the data specified by
the argument. Following is a list of the most common types of argument access:

* Read only access—the UIS routine uses the data specified by the argument as
input only.

* Write only access—the UIS routine uses the argument as a location to return data
only.

* Modify access—the UIS routine uses the data specified by the argument as input
for its operation and then writes data to that argument.

6.3.4 Mechanism

VAX language extensions provide the means of reconciling the different argument
passing mechanisms within a programming language. The VAX Procedure Calling
Standard provides three ways by which all application programs may pass arguments
to a system routine.

* By value—the argument contains the actual data to be used by the routine, the
actual data is said to be passed to the routine by value.

* By reference—the argument contains the address of the location in memory of
the actual data to be used by the routine, the actual data is said to be passed to
the routine by reference.

6-6 Programming Considerations

* By descriptor—the argument contains the address of a descriptor, the actual data
is said to be passed by descriptor.

A descriptor consists of two or more longwords (depending on the type of
descriptor used) that describe the location, length, and data type of the data to be
used by the called routine.

All language processors, except VAX MACRO and VAX BLISS, pass arguments
by reference or descriptor by default. Some high-level languages including VAX
FORTRAN set up the descriptors and arrays for you.

The following list contains the passing mechanisms allowed by the VAX Procedure
Calling Standard.

Passing Mechanism Descriptor Code

By value
By reference
By reference, array reference

By descriptor

By descriptor, fixed-length DSC$K_CLASS_S

By descriptor, dynamic string DSC$K_CLASS_D
By descriptor, array DSC$K_CLASS_A
By descriptor, procedure DSC$K_CLASS_P

By descriptor, decimal string DSC$K_CLASS_SD
By descriptor, noncontiguous array DSC$K_CLASS_NCA
By descriptor, varying string DSC$K_CLASS_VS
By descriptor, varying string array DSC$K_CLASS_VSA
By descriptor, unaligned bit string DSC$K_CLASS_UBS
By descriptor, unaligned bit array DSC$K_CLASS_UBA
By descriptor, string with bounds DSC$K_CLASS_SB

By descriptor, unaligned bit string 1 with bounds DSC$K..CLASS_UBSB

Refer to the MicroVMS Programming Support Manual for more information about
passing mechanisms.

Programming Considerations 6-7

6.3.4.1 VAX FORTRAN Built-In Functions

VAX FORTRAN also supports explicit argument passing mechanisms, or built-in
functions that do not require formal data declarations. Built-in functions are specified
only in the argument list of the call (with one exception) and are used when data
must be passed to a subroutine written in a programming language other than VAX
FORTRAN. The four VAX FORTRAN built-in functions are as follows:

* %VAL—specifies that the argument must be passed as a value.

* %REF—specifies that the argument must be passed as the address of the actual
data.

* %DESCR—specifies that the argument must be passed as the address of a
descriptor that points to the actual data.

o %LOC—returns the virtual address of the actual data.

The built-in function %LOC can be used outside an argument list to obtain
the address of a variable. For example, %LOC can be used in an assignment
statement where a longword in a character string descriptor is assigned the
address of the actual character string.

By default, VAX FORTRAN passes numeric data by reference and character string
data by descriptor. The built-in functions override default argument passing
mechanisms. Occasionally, an external procedure is encountered that passes data
differently from the VAX FORTRAN default and, in such cases, the built-in functions
can be used in VAX FORTRAN code.

For specific information regarding similar procedure argument passing mechanisms
for other high-level programming languages, refer to the appropriate language user’s
guide.

Figure 6-1 illustrates how arguments are placed on the stack and shows how
arguments are passed to the called routine.

6-8 Programming Considerations

Figure 6-1 Passing Arguments

Procedure Argument Passing Mechanisms

ARGUMENT LIST PROCEDURE ARGUMENT
PASSING MECHANISMS
N | (AP)
(a) ARGUMENT PASSED BY VALUE
ARG 1
ARG 2
ACTUAL VALUE
ARG N
N | (aP)
(b) ARGUMENT PASSED BY REFERENCE
ARG 1
ARG 2
POINTER TO
ACTUAL VALUE DATA
. ACTUAL VALUE
ARG N
DATA
A
N | (AP) B
(c) ARGUMENT PASSED BY DESCRIPTOR
ARG 1 c
D
LENGTH
ARG 2 DESCRIPTOR E
POINTER TO F
DESCRIPTOR CLASS|D TYPE| LENGTH ~
POINTER H
ARG N

Note. ARG 1, ARG 2, ARG N
can be passed by value, by
reference, or by descriptor

in any of the above examples.

{(AP) = argument pointer

N = number of arguments

7K-1962 84

Programming Considerations 6-9

6.4 UIS Constants

UIS constants are symbolic names for values that can be passed to, or returned from,
UIS routines. UIS constants are syntactically equivalent to literal integer constants
and are used in the following ways:

® As arguments to UIS functions

* As indexes into array arguments that are passed to, or received from, the UIS
subsystem

* As literals with which you can compare a returned value from an inquiry routine

Refer to Section 6.6 for information about UIS symbol definition files.

6.5 Condition Values Signaled

Occasionally hardware- or software-related events occur indicating errors that could
jeopardize successful program execution. Instead of returning condition values to
RO (as in VAX MACRO) or to a status variable (as in high-level languages), the UIS
routines signal a condition. In such cases, unless you have explicitly arranged to
handle the signaled condition, program execution terminates.

6.6 Additional Program Components

In addition to the usual program entities, you should be aware of UIS-specific and
language-specific program components that affect program execution.

Subroutines and Functions

VAX FORTRAN application programs must declare subroutines as external

procedures with the EXTERNAL statement if the subroutine name is used as
an actual argument to other subprograms. The subprogram can then use the
corresponding dummy argument in a function reference or a CALL statement.

Entry Point and Symbol Definition Files

All UIS and UISDC routines are declared in an entry point file supplied with the
graphics software. In addition, you may need to include a file of UIS symbol
definitions depending on the language you are using. These files are also known
as data description files. See your appropriate language user’s manual to determine
whether you must include these files in your program data declarations.

6-10 Programming Considerations

The following table contains a list of entry point files and symbol definition files for
each VAX programming language. All files are located in SYS$LIBRARY.

Table 6-2 Entry Point and Symbol Definition Files

VAX Language Entry Point File Symbol Definition File
BLISS UISENTRY.R32 UISUSRDEF.R32

C UISENTRY.H UISUSRDEF.H
FORTRAN UISENTRY.FOR UISUSRDEF.FOR
MACRO UISUSRDEF.MAR
PASCAL UISENTRY.PAS UISUSRDEF.PAS

PL/I UISENTRY.PLI UISUSRDEF.PLI

Message Definition File

A language-specific message definition file called UISMSG is included in the directory
SYS$LIBRARY. All possible UIS error codes are defined in this file. It is similar to
the entry point file UISENTRY. For instance, to define message symbols in a VAX
FORTRAN condition handler, you would add the following line to your program.

INCLUDE ’SYS$LIBRARY:UISMSG’

The appropriate language version of UISMSG is copied to your disk during the
installation procedure depending on the programming language options you select.

All messages symbols use the prefix UIS$_.

6.7 Notes to Programmers

As a programmer, you should know about language-specific issues that might affect
program execution. It is recommended that all application programmers read this
section.

6.7.1 VAX C Programmers

Entry Point and Symbol Definition Files

The file UISENTRY.H defines all routine entry points in lowercase characters, while
UISUSRDEEF.H defines all constants in uppercase characters.

Programming Considerations 6-11

6.7.2 VAX PASCAL Programmers

Entry Point Files

Because VAX PASCAL references arguments as formal parameters, your calls to UIS
must specify the same parameter names as those contained in the entry point file
UISENTRY.PAS. Therefore, specify obj_id as the argument whenever the routine
descriptions in Parts III and IV allow a choice between the obj_id and seg—id
arguments. Refer to Tables A-1 and B-1 for summaries of UIS and UISDC calling
sequences.

Creating Environment Files

Before running application programs written in VAX PASCAL, you must perform the
following procedure.
1. Set your default directory to SYS$LIBRARY.
$ SET DEFAULT SYS$LIBRARY
2. Produce an environment file of symbolic definitions and type declarations

by invoking the VAX PASCAL compiler with the /ENVIRONMENT and
/NOOBJECT qualifiers.

$ PASCAL/ENVIRONMENT/NOOBJECT UISENTRY
The result of the compilation is UISENTRY.PEN, an environment file.

3. Include the INHERIT attribute in the first line of the application program or
program module specifying UISENTRY.PEN.
[INHERITCUISENTRY.PEN)]

4. Repeat this procedure for the symbol definition file UISUSRDEF.PAS.

Refer to Programming in VAX PASCAL for more information about the /ENVIRONMENT
and /NOOBJECT qualifiers and the INHERIT attribute.

Drawing Lines and Polygons

VAX PASCAL application programs should use UISSPLOT_ARRAY rather than
UIS$PLOT and UIS$LINE_ARRAY instead of UIS$LINE, when drawing lines and

polygons.

6-12 Programming Considerations

6.7.3 VAX PL/lI Programmers

Entry Point Files

Because VAX PL/I references arguments as formal parameters, your calls to UIS
must specify the same parameter names as those contained in the entry point file
UISENTRY.PLI. Therefore, specify obj_id as the argument whenever the routine
descriptions in Parts III and IV allow a choice between the obj_id and seg—id
arguments. Refer to Tables A-1 and B-1 for summaries of UIS and UISDC calling
sequences.

6.8 Programming Examples

The programming examples in Parts II and III of this manual use VAX FORTRAN
Version 4.4. In addition, some examples particularly in Part III include ellipses, the
standard convention for indicating portions of code that have been left out. The
ellipses are also included to point out places in the program where code could be
added at the programmer’s discretion.

Many of the examples include the VAX FORTRAN PAUSE statement. The PAUSE
suspends program execution and returns the user to the DCL prompt ($). A default
message “FORTRAN PAUSE” is returned to the display screen. The graphic images
that were created on the display screen will remain. You can respond to the DCL
prompt ($) by typing one of the following commands:

* CONTINUE—Program execution resumes at the next executable statement.
¢ EXIT—Program execution is terminated.

¢ DEBUG—Program execution resumes under the control of the VAX/VMS
Symbolic Debugger.

NOTE: If your program is running in batch mode, program execution is not
suspended. All messages are written to the system output file.

6.8.1 Structure of Programming Tutorial

Part II attempts to describe UIS graphics features and programming using a tutorial
approach in each chapter. Within each chapter, after a discussion of the main topics,
you are offered two types of information under the following headings:

* Programming options — Lists the features that you can use at a given point in
time. The addition of each new group of programming options lets you progress
in an orderly fashion from simple programming tasks to relatively complex ones.

Programming Considerations 6-13

* Program development — Lists the current programming objective and the tasks
needed to successfully implement the objective.

Program — Contains the source module with embedded callouts. Each
callout refers to a programming feature that should be noted.

Program output — Displays and explains the output from the program.

Each programming example uses some or all of the programming options listed. Not
all routines are illustrated in the accompanying example.

6.9 Program Execution

Your program can run in batch mode with predefined data or it can run interactively
accepting input from you when needed. However, in order to execute your
application program successfully, you must first store it as a file using a text editor.
Invoke the text editor on your workstation using the following command sequence.
Please refer to appropriate sections of the user’s manual for detailed information
about MicroVMS text editors.

$ EDIT MYPROG.FOR

Please note in the previous example that you must supply a file name, for example,
MYPROG. In addition, a VAX FORTRAN file type (FOR) is added to the file name to
identify the file as a VAX FORTRAN source file. Enter your program according to the
rules of the programming language you are using. Refer to the appropriate language
reference manual for detailed information about the language.

6.9.1 Compiling Your Program

The newly created source file MYPROG.FOR must be compiled prior to execution.
The language compiler, in our case the VAX FORTRAN compiler, checks for proper
syntax and initiates code optimization where appropriate. Invoke the language
compiler in the following manner.

$ FORTRAN/LIST MYPROG

Note that the file type need not be included. By default, the system searches for
the latest version of the file, MYPROG, with a file type of FOR. If the application
source file contains syntax errors, you will receive compile-time error messages
called diagnostics. These diagnostic messages indicate the portion of code in error as
well as an explanation. The /LIST qualifier specifies the creation of a listing file of
accounting information and diagnostics (if present).

Some language compilers return a predetermined maximum number of diagnostics
before terminating compilation. In any case, you must correct these errors and
resubmit the source program for a successful compilation. Successful compilation
produces an object module with file type of OBJ.

6-14 Programming Considerations

6.9.2 Linking the Object Module

The Linker resolves references to subroutines and allocates memory to variables
within your program. Invoke the Linker in the following manner:

$ LINK MYPROG

You need not specify the file type of the program, MYPROG. By default, the system
searches for the latest version of the file MYPROG with the file type OBJ.

In addition, you can link object modules of programs written in different source code.

6.9.3 Running the Executable Image

The Linker produces an executable image with a file type of EXE. At this point, you
can run your program. However, you may receive run-time errors in which case you
must correct errors in your source code and recompile the source module and relink
the object modules. Run the executable image after receiving the $ prompt in the
following manner:

$ RUN MYPROG

Chapter 7
Creating Basic Graphic Objects

7.1 Overview

This chapter describes how to create basic graphic objects: lines, circles, ellipses, and
text. To accomplish this task you will need to know about the following topics:

* Creating a virtual display
* Creating graphics and text
* Creating a display window

You will construct an interactive program that contains the necessary components
for creating graphic objects. Later, you will manipulate these displays using other
windowing routines.

Refer to Section 6.8 for more information about the programming examples that
appear in this manual.

7.2 Step 1—Creating a Virtual Display

When an artist paints a picture, he is concerned with presenting a subject from a
particular perspective. He then wonders how he will frame his subject and how
much space he will need to accomplish this task successfully. These needs are
fulfilled by the size of the canvas he chooses. All of the objects that we will create
will use such a frame of reference or virtual display to establish the universe in which
our graphic objects will exist.

While the artist simply chooses a spot on the canvas to paint, our calls to UIS
routines must reference points within our virtual display. The UIS subsystem uses
the coordinates you specify to generate a coordinate system with which we can create
the virtual display and subsequent windows. This coordinate system, or grid, allows
us to reference points as world coordinates along two perpendicular axes labelled x
and y.

7-2 Creating Basic Graphic Objects

Unlike the artist’s canvas which has finite dimensions, your virtual display is infinite
and graphic objects may be drawn anywhere in it.

7.2.1 Specifying Coordinate Values

Many routines documented in this manual require specifying coordinates to define
virtual displays, display windows, and extent rectangles. Table 7-1 lists information
about coordinate values.

Table 7-1 Types of Coordinates

Data
Coordinate Units Type Origin
Absolute cam F_ﬂoatingl Lower-left corner of
display screen or tablet
Normalized Gutenbergs F_ﬂoatir\g1 Lower-left corner of
virtual display
Viewport-relative Pixels Longword (unsigned) Lower-left corner of
display viewport
World User-specified F_ﬂoating1 Lower-left corner of

virtual display

1F_.ﬂoating point numbers may be expressed with up to approximately seven decimal digits of precision.

7.2.2 Programming Options

The following options allow you to create the basic structures used to create graphic
objects.

Creating a Virtual Display

You must use UISSCREATE_DISPLAY to specify the world coordinate space in
which you will draw graphic objects. The world coordinate values specified in
UIS$CREATE_DISPLAY establish mapping and scaling factors that the system may
later use in viewport creation. The coordinate values should not be thought of as the
absolute boundaries of the virtual display.

You can create an unlimited number of virtual displays subject to system and process
resources.

Deleting a Virtual Display

You may delete a virtual display at any time in your program using UISSDELETE _
DISPLAY. However, you should remember that when you delete a virtual display
you are throwing out the canvas on which you have drawn graphic objects.

Creating Basic Graphic Objects 7-3

7.2.3 Program Development

Programming Objectives

To create an executable program using the VAX FORTRAN programming language.

Programming Tasks
1. Create a virtual display.
2. Delete the virtual display.

PROGRAM IMAGES_1

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’ @
INCLUDE ’SYS$LIBRARY:UISUSRDEF’ @

VD_ID=UIS$CREATE_DISPLAY(+1.0,+1.0,+20.0,+20.0,10.0,10.0) ©

PAUSE 4]
CALL UIS$DELETE_DISPLAY(VD_ID) ®
END

At this point the program contains UIS entry points @ and definitions @. It also
includes a call ® to UISSCREATE_DISPLAY. The plus sign (+) is optional for
positive coordinates. The minus sign (-) is required for negative coordinates.

Because world coordinates are f_floating numbers, the decimal point is required
when specifying world coordinate pairs.

See Section 6.8 for information about the VAX FORTRAN PAUSE statement @.

UIS$DELETE _DISPLAY is called © to remove the virtual display before the program
ends. Terminating an application program with UIS$DELETE_DISPLAY is not
required. \

Besides specifying the world coordinate range of the virtual display, UISSCREATE _
DISPLAY returns the value of the virtual display identifier in vd_id. The virtual
display ID uniquely identifies this newly created virtual display and is used in
subsequent windowing routines. Typically, UISSCREATE _DISPLAY is the first UIS
routine to be called in an application program.

If your application program were to invoke the UISSCREATE _DISPLAY only, you
would not notice a change in your workstation display screen.

7-4 Creating Basic Graphic Objects

7.3 Step 2—Creating Graphics and Text

You are now at a point comparable to the artist preparing to draw on the canvas.
The virtual display is an infinitely large canvas. You must choose the types of
graphic objects to be drawn there. You can draw graphic objects anywhere in the
virtual display. Three types of graphic objects can be drawn in the virtual display as
shown in the following table.

Graphic Object Example

Geometric shapes Point, line, polygon, circle, and ellipse

Text Characters

Raster images Any object constructed with a bitmap of varying size

7.3.1 Graphics Drawing Operations
The following considerations appiy to graphics operations:
¢ All line drawing operations are symmetrical and include both end points.

¢ All region specifications include the borders of the region specified. This applies
in all cases to fill patterns, images, ellipses, moving windows, and so forth.

7.3.2 Programming Options

You can draw any of the graphic objects listed in this section. Read the routine
description of each routine carefully.

Creating Points, Lines, and Polygons

Depending on the number of times you repeat coordinate pairs in UIS$PLOT or
UIS$PLOT_ARRAY, you can draw a point, connected lines, or a polygon.

You can draw more than one unconnected line in single call to UISSLINE or
UIS$LINE_ARRAY. Each pair of world coordinate pairs specified represents the
end points of a line.

NOTE: VAX PASCAL application programs should use UISSPLOT_ARRAY or
UISSLINE_ARRAY to draw all lines, disconnected lines, and polygons.

Creating Circles

You can create circles or circular arcs with UIS$CIRCLE.

Creating Ellipses

You can create ellipses or elliptical arcs with UISSELLIPSE.

Creating Basic Graphic Objects 7-5

Drawing Images

You can create a bitmap image of a graphic object and then draw the raster to the
display screen with UISSIMAGE using the following procedure:

1. Create a data structure in your program, such as an array or record, that defines
the bitmap.

2. Set the bits in the structure to create the bitmap image by assigning values to the
elements of the structure.

3. Specify width and height of the raster image in pixels in UISJIMAGE.
4. Specify the name of the data structure in UIS$IMAGE.

Figure 7-1 illustrates how bitmap settings are mapped to raster images.

Figure 7-1 Mapping a Bitmap to a Raster
1514131211109 8 7 6 5 4 3 2 1 0

olrlol1|1jo0]1|lo]1]ofloO|1]T1]1]0
\Bitmap
Image
1
_>
2
11011 1/{0j0j1]10]1]0]1
1101110

Raster
Image

2K 4627 85

Mapping the raster image occurs from left to right and from top to bottom. See the
UIS$IMAGE routine description for more information.

Text

You can set the current position and create text anywhere within a virtual display
using UIS$TEXT. The text within a virtual display could be used for labelling

an accompanying graphic object within the window. Only UIS$TEXT can write
characters in a virtual display.

7-6 Creating Basic Graphic Objects

7.3.3 Program Development

Programming Objectives

To create an executable program using the VAX FORTRAN programming language.

Programming Tasks
1. Create a virtual display.
2. Draw four graphic objects in the virtual display.

3. Delete the virtual display.

PROGRAM IMAGES_2

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF’
REAL WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0) @

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0) ©

CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0) ©

CALL UIS$TEXT(VD_ID,O,’This is a test.’,1.0,12.0) @

PAUSE
CALL UIS$DELETE_DISPLAY(VD_ID)
END

In the preceding example, world coordinate pairs are specified explicitly to the UIS
graphics routines @ @ © @ describing the exact locations of the graphic objects
(circle, line, ellipse, and text) in the virtual display.

If you executed the program in its present form, the workstation display screen
would show no objects. Your calls to the UIS graphics and text routines have been
processed. However, you must create a window to view what has been drawn.

7.4 Step 3—Creating a Display Window

The next step is to create a display window. The display window defines the world
coordinate range of the viewable portion of the virtual display. When you create a
display window, you are also creating a display viewport, an area on the physical
screen on which the display window is mapped.

Creating Basic Graphic Objects 7-7

7.4.1 Programming Options

All the programming options available to us at this point, are provided through
UIS$CREATE_WINDOW. At this point, you do not need to know about its full
capabilities, which are discussed in more detail in the next chapter.

Creating a Display Window and Viewport

You can create a display viewport and its associated viewport with
UIS$CREATE_WINDOW.

7.4.2 Program Development

Programming Objectives ‘

To create an executable program that draws and displays graphic objects on the
VAXstation display screen.

Programming Tasks

1. Create a virtual display.

2. Draw four graphic objects in the virtual display.

3. Create a display window and viewport.

4. Delete the virtual display.

PROGRAM IMAGES_2A
IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY :UISUSRDEF’
REAL*4 WIDTH,HEIGHT

TYPE *,’ENTER DESIRED VIEWPORT WIDTH AND HEIGHT’
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,WIDTH,HEIGHT) @

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0) @

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0) @

CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0) @

CALL UIS$TEXT(VD_ID,O,’This is a test.’,1.0,12.0) ©
WD_ID=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’) O
PAUSE

CALL UIS$DELETE_DISPLAY(VD_ID)

END

7-8 Creating Basic Graphic Objects

The world coordinate range of the virtual display and the default dimensions of the
display viewport are specified in a call to UISSCREATE_DISPLAY @.

NOTE: The display viewport will not be mapped until a display window is created.
Next, the graphics and text routines are called @ © @ © to draw the graphic objects.

A display window and viewport are created in a call to UISSCREATE_WINDOW ©.
The world coordinate range of the window and the viewport width and height are
not specified. Therefore, the world coordinate space of the display window, that is,
the viewable portion of the virtual display defaults to the entire virtual display. You
will see all objects drawn in the virtual display.

7.4.3 Calling UISSCIRCLE, UISSELLIPSE, UIS$PLOT, UISSTEXT,
and UISSCREATE_WINDOW

When you run the program IMAGES_2A, you should get a single display viewport
without a title, containing text, a circle, a line, and an ellipse as shown in Figure 7-2.

Figure 7-2 Display Viewport and Graphic Objects

This is a tes(>

ZK-4533-85

Chapter 8
Display Windows and Viewports

8.1 Overview

Before you begin to manipulate graphic objects, you need to know more about
display windows and viewports. After all, display windows and viewports allow
you to see graphic objects drawn in the virtual display. This chapter discusses the
following topics:

Creating display windows and viewports
Moving display windows

Manipulating display viewports

Deleting display windows

Erasing the virtual display

Creating transformations

These tasks are accomplished by the UIS windowing routines.

8.2 Windowing Routines

Windowing routines are responsible for the creation and deletion of virtual displays,
display windows, and display viewports. Table 8-1 provides a list of window
routines and their functions.

8-2 Display Windows and Viewports

Table 8-1 UIS Windowing Routines

Routine Description

UIS$CREATE _DISPLAY Creates a virtual display and defines default viewport
dimensions

UIS$CREATE_WINDOW Creates display window and viewport

UISSEXPAND_ICON Substitutes an associated viewport for an icon

UISSMOVE_AREA Moves a specified rectangle and its contents in the
virtual display to another part of the virtual display

UISS$MOVE_WINDOW Pans the display window across the virtual display

UIS$POP_VIEWPORT Allows an occluded viewport to be fully displayed

UIS$PUSH _VIEWPORT Places a viewport behind another viewport

UIS$SHRINK_TO_ICON Substitutes an icon for a display viewport

UIS$CREATE_TRANSFORMATION Alters the world coordinate space of the virtual display

UIS$ERASE Erases objects that lie completely within a specified
rectangle in the virtual display

UIS$DELETE _DISPLAY Deletes a virtual display

UIS$DELETE _WINDOW Deletes a display window and viewport

These routines allow you to create and manage the display screen environment
and to perform certain housekeeping functions such as erasing and deleting virtual
displays and windows.

8.3 Step 1—Creating Many Display Windows

For every display window that you create, you are also creating a display viewport.
A one-to-one relationship exists between each display window and its associated
viewport. An application program can create an unlimited number of display
windows and viewports subject to system and process resources.

8.3.1 Programming Options

Each display window can be unique with regard to world coordinate range.
Therefore, you can create display viewports that are also unique with respect to
dimensions and position in the display screen.

Display Windows and Viewports 8-3

Display Window Size

By default, a newly created display window displays the full world coordinate space
specified when creating the virtual display. You can specify world coordinates pairs
in UISSCREATE_WINDOW as you see fit to produce display windows of different

proportions within the virtual display.

Display Viewport Size

Similarly, the default display viewport dimensions are equal to the values specified
in the width and height arguments in the UISSCREATE_DISPLAY call. However,
you may specify different dimensions to scale the contents of the window. Maximum
display viewport size depends on the dimensions of the display screen. If you
specify viewport dimensions that exceed the size of the display screen, UIS scales the
viewport to the size of the display screen.

Graphic Object Magnification

The world coordinate range of the display window or the dimensions of the display
viewport can be manipulated to increase or decrease magnification of the object
displayed in the viewport. This occurs when the display window area is decreased
or increased while the viewport size remains the same, or when the viewport is
decreased or increased while dimensions of the window remain the same.

Distortion

Distortion occurs whenever the aspect ratios of the display viewport and display
window are not equal. The aspect ratio of the display window is the absolute value
of the difference between y world coordinates of the upper-right and the lower-right
corners of the window divided by the absolute value of the difference between the
x world coordinates of the lower-right and lower-left corners. Figure 8-1 illustrates
how to calculate the aspect ratios of the display window and viewport.

Figure 8-1 Aspect Ratios of the Display Window and Display Viewport

|y1 - yOI viewport height
|x1 - xol viewport width
2K-4579-85

Number of Windows and Viewports

You can create an unlimited number of display windows and, as a result, an
unlimited number of display viewports subject to system and process resources.
In addition, you can specify the dimensions of each display viewport.

8-4 Display Windows and Viewports

Display Banner

The display banner appears along the top border of the display viewport and
contains the menu and keyboard icons as well as the viewport title. The maximum
length of the viewport title is 63 characters.

You can suppress the generation of the display banner with the attributes argument
in UISSCREATE_WINDOW. When the display banner is suppressed, only the
viewport border is displayed.

Display Viewport Placement

You can either explicitly place a display viewport on the workstation display screen
or you can allow UIS to choose a location for you. By default, display viewport
placement is random.

8.3.2 Program Development

Programming Objectives

To create four display windows and display viewports.

Programming Tasks
1. Create a virtual display.
2. Draw four graphic objects in the virtual display.

3. Create four display windows and viewports omitting the display window
coordinates in the calls to UISSCREATE_WINDOW.

4. Delete the virtual display.

PROGRAM IMAGES_3

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF’

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0)

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0)

CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0)

CALL UIS$TEXT(VD_ID,O,’This is a test.’,1.0,12.0)

WD_ID1=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’) ©
PAUSE

WD_ID2=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’) @
WD_ID3=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’) ©
WD_ID4=UIS$CREATE_WINDOW(VD_ID, * SYS$WORKSTATION’) @

Display Windows and Viewports 8-5

PAUSE
CALL UIS$DELETE_DISPLAY(VD_ID)

END

Four calls to UISSCREATE_WINDOW © © © @ have been inserted to create
four windows. The world coordinate range of each window defaults to the world
coordinate range of the entire virtual display.

8.3.3 Calling UISSCREATE_WINDOW

If you were to run this program now, your workstation screen would display the
graphic objects as shown in Figure 8-2.

8-6 Display Windows and Viewports

Figure 8-2 Four Display Viewports

This is a test, This is a test,

This is a test. This is a test.

ZK-4534-85

As you can see, four display windows have been created and mapped to the
display screen as four viewports. Each of the viewports contains four objects.
Because display window world coordinate pairs were not explicitly specified in
UIS$CREATE_WINDOW, the viewports allow you to see the entire area of the

Display Windows and Viewports 8-7

virtual display by default. In addition, because the display viewport width and
height in centimeters were not explicitly specified in the UISSCREATE_WINDOW
call, each display viewport is, by default, 10 cm square as specified in the width and
height arguments of the UISSCREATE__DISPLAY call.

8.4 Step 2—Deleting and Erasing Display Windows

Some windowing routines perform housekeeping functions, that is, they delete
unused display windows or erase graphic objects from the virtual displays. Such
routines are important in managing display environment, when you run complicated
applications.

8.4.1 Programming Options

You may want your application program to delete unwanted windows, viewports,
and virtual displays. This can be done by calling UIS routines for deleting and
erasing display windows and virtual displays.

Display Window Deletion

Any display window can be deleted without interfering with other windows or
viewports. Deletion of the display window does not affect the graphic objects

in the virtual display. If you delete a display window, you are also deleting the
associated display viewport. Delete any display window and its associated viewport
by specifying the appropriate display window identifier in UIS$DELETE_WINDOW.

Erasing the Virtual Display

Graphic objects that lie completely within a specified rectangle in the virtual display
can be deleted at any time using UIS$ERASE. If no rectangle is specified, the entire
virtual display is used.

8.4.2 Program Development

Programming Objectives

To enclose each graphic object in its own display window and then to delete a
window and its viewport.

8-8 Display Windows and Viewports

Programming Tasks
1. Create a virtual display.
2. Draw four graphic objects in the virtual display.

3. Create four display windows and viewports specifying display window regions
that enclose each of the graphic objects.

* Specify display window regions that enclose each of the graphic objects.
* Specify a viewport title identifying the graphic object.
4. Delete one of the display windows and its viewport.

PROGRAM IMAGES_4

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY :UISUSRDEF’
REAL WIDTH,HEIGHT

TYPE *,’ENTER DISPLAY SIZE’ @
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,WIDTH,HEIGHT)

CALL UIS$CIRCLE(VD_ID,0,12.0,12.0,1.0)

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0)

CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0)

CALL UIS$TEXT(VD_ID,O,’This is a test.’,1.0,12.0)

WD_ID1=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’,’CIRCLE’,

2 10.0,10.0,14.0,14.0,WIDTH,HEIGHT) @
WD_ID2=UIS$CREATE_WINDOW(VD_ID, *SYS$WORKSTATION’, 'LINE’,
2 3.0,2.0,6.0,8.0,WIDTH,HEIGHT) ©
WD_ID3=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’, ’TEXT’,
2 1.0,12.0,10.0,10.0,WIDTH,HEIGHT) @
WD_ID4=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’ , ’ELLIPSE’,
2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT) ©

PAUSE

CALL UIS$DELETE_WINDOW(WD_ID2) O

PAUSE

END

The program now accepts input for the display viewport dimensions interactively @.

The world coordinate space that defines each display window is specified explicitly
in the UISSCREATE_WINDOW calls ® © © ©.

Display Windows and Viewports 8-9

UIS$CREATE_WINDOW returns the variable wd_id2, the display window identifier
© to uniquely identify the LINE window. Note that the call to delete the LINE
window O references this variable.

8.4.3 Calling UISSDELETE_WINDOW

If we ran this program until the first PAUSE statement, the workstation screen would
display the graphic objects shown in Figure 8-3.

8-10 Display Windows and Viewports

Figure 8-3 Objects Within Different Windows

__ CIRCLE

ELLIPSE

This is a test.

ZK-4535-85

By specifying explicitly a particular world coordinate range within the virtual display
for each display window, each graphic object lies within a separate window that
maps to the physical display screen as a separate display viewport.

Display Windows and Viewports 8-11

To continue program execution, type CONTINUE at DCL prompt ($). The program
continues to execute and the screen changes as shown in Figure 8-4.

Figure 8-4 Display Window Deletion

This is a test.

2ZK-4536-85

The viewport LINE and its window are deleted. However, the actual graphic
object still exists. You have simply deleted the display window that allowed you

8-12 Display Windows and Viewports

to view the portion of the virtual display that contained the line. If you called
UIS$CREATE_WINDOW again, specifying the appropriate world coordinate space
in the virtual display, the object would reappear.

8.5 Step 3—Manipulating Display Windows and Viewports

Display viewports and windows do not have to remain as static objects on your
screen. You can manipulate the newly created display windows and viewports in
many ways.

8.5.1 Programming Options

Viewport placement features and window attributes are implemented using the
optional attributes argument of UISSCREATE_WINDOW.

NOTE: When you include the attributes argument in UISSCREATE_WINDOW,
you are not modifying attribute block 0.

Attributes and attribute block 0 are discussed in detail in the next chapter.

General and Exact Placement of Viewports

Unless you specify otherwise, your display viewports are placed randomly
throughout the screen. You can move any display viewport to any position on the
screen. When you create the window, you can specify general viewport placement,
that is, within a certain vicinity on the screen—top, left, right, or bottom.

Exact placement positions your display viewport where you want on the screen and
allows you to occlude other viewports to save space.

Panning and Zooming the Virtual Display

You can pan across the virtual display to include either the entire virtual display or
any discrete area within it.

Pushing and Popping Display Viewports

Pushing and popping display viewports is useful when you have created display
windows with the exact placement attribute. In such a case, your application may
have created two windows and purposely occluded one of the viewports. In this
instance, you know which viewport will be occluded and the use of UIS$POP_
VIEWPORT is clearly indicated.

Otherwise, the UIS subsystem places newly created windows randomly on the
display screen by default. As a result, you will not know where the viewports will
be placed. Therefore, use of UISSPOP_VIEWPORT or UIS$PUSH_VIEWPORT in
this instance, would be unnecessary and confusing.

Display Windows and Viewports 8-13

Moving a Display Viewport

You can move an existing display viewport anywhere on the display screen using
UIS$MOVE_VIEWPORT.

Moving a Portion of the Virtual Display

You can draw a graphic object in a portion of the virtual display, then move that
coordinate space to another part of the same virtual display with UISSMOVE_
AREA. The vacated source area is filled with the current background color.

8.5.2 Program Development |

Programming Objectives
To delete three display windows and viewports and then to pan the virtual display
using the remaining display window.
Programming Tasks
Create a virtual display.
Draw four graphic objects in the virtual display.
Create four display windowé and viewports each containing a graphic object.

1

2

3

4. Specify a title for each viewport.

5. Delete three of the four display windows.
6

Pan the virtual display with the remaining display window using
UISSMOVE_WINDOW.

PROGRAM IMAGES_5

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF’
REAL WIDTH,HEIGHT

TYPE *,’ENTER VIEWPORT WIDTH AND HEIGHT’
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UIS$CIRCLE(VD_ID,0,12.0,12.0,1.0) @

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0) @

CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0) ©

CALL UIS$TEXT(VD_ID,O,'This is a test.’,1.0,12.0) ©

8-14 Display Windows and Viewports

WD_ID1=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’ , ’CIRCLE’,
2 10.0,10.0,14.0,14.0,WIDTH,HEIGHT) ©
WD_ID2=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’, ’LINE’,

2 3.0,2.0,6.0,8.0,WIDTH,HEIGHT) O
WD_ID3=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’,’TEXT?,

2 1.0,12.0,10.0,10.0,WIDTH,HEIGHT) @
WD_ID4=UIS$CREATE_WINDOW(VD_ID, *SYS$WORKSTATION’ , ’ELLIPSE’,
2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT) ©

PAUSE ©

CALL UIS$DELETE_WINDOW(WD_ID1) @®
CALL UIS$DELETE_WINDOW(WD_ID3) ®
CALL UIS$DELETE_WINDOW(WD_ID4) @

PAUSE ®
CALL UIS$MOVE_WINDOW(VD_ID,WD_ID2,6.0,8.0,18.0,18.0) @
PAUSE ®
CALL UIS$DELETE_DISPLAY(VD_ID)
END
The program IMAGE_S5 creates four graphic objects @ @ © @ in the virtual display.

The program prompts for the viewport width and height which overrides the values
specified in UISSCREATE_DISPLAY.

Each graphic object is contained within a newly created display window © © @ ©.
Each display window is mapped to the physical screen as a display viewport with an
appropriate title describing the graphic object within the window.

Program execution is suspended ©. The display screen contains four viewports as
previously described.

Three calls to UISSDELETE_WINDOW ® ® ® remove the windows and their
viewports CIRCLE, ELLIPSE, and TEXT from the display screen.

Program is suspended ®. The display screen contains one display viewport LINE.

A call to UISSMOVE_WINDOW @ has been inserted. Thus, the display window
LINE pans the virtual display.

Display Windows and Viewports 8-15

8.5.3 Calling UISSMOVE_WINDOW

The display screen initially contains all four windows as shown in Figure 8-5.

Figure 8-5 Before Panning the Virtual Display

CIRCLE

This is a test.

ZK-4537-85

8-16 Display Windows and Viewports

Three of the display windows and viewports are deleted.

The display viewport LINE remains. Originally, the viewport contained a line; now it
contains the circle and the ellipse. The display window will go to the location in the
virtual display you have specified. You may include as many calls to UISSMOVE_
WINDOW as you see fit. Your workstation screen will display the objects shown in
Figure 8-6.

Display Windows and Viewports 8-17

Figure 8-6 Panning the Virtual Display

ZK-4622-85

8-18 Display Windows and Viewports

The circle and the ellipse still exist in the virtual display.

8.5.4 Program Development Il

Programming Objectives

To demonstrate exact placement of the display viewport on the display screen in
order to pop and push viewports.

Programming Tasks

1.

2
3.
4

Create a viewport attributes data structure specifying viewport placement data.
Create a virtual display.

Draw two graphic objects in the virtual display in separate viewports.

One viewport will occlude the other initially.

PROGRAM IMAGES_6

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY :UISUSRDEF’
REAL WIDTH,HEIGHT

STRUCTURE/PLACE/ @
INTEGER*4 CODE_1

REAL*4 ABS_POS_X
INTEGER*4 CODE_2
REAL*4 ABS_POS_Y

INTEGER*4 END_OF_LIST
END STRUCTURE

RECORD /PLACE/PLACE_LIST,ON_TCP ©

PLACE_LIST.CODE_1=WDPL$C_ABS_POS_X
PLACE_LIST.ABS_P0S_X=8 ©
PLACE_LIST.CODE_2=WDPL$C_ABS_POS_Y
PLACE_LIST.ABS_P0OS_Y=8 ©®
PLACE_LIST.END_OF_LIST=WDPL$C_END_OF_LIST

ON_TOP . CODE_1=WDPL$C_ABS_P0S_X
ON_TOP.ABS_P0S_X=8.5 ©

ON_TOP . CODE_2=WDPL$C_ABS_POS_Y
ON_TOP.ABS_P0S_Y=8.5 ©

ON_TOP . END_OF _LIST=WDPL$C_END_OF_LIST

TYPE *,’ENTER DISPLAY SIZE’
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

Display Windows and Viewports 8-19

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0)
CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0)

WD_ID1=UIS$CREATE_WINDOW(VD_ID, *SYS$WORKSTATION’, *CIRCLE’,

2 8.0,8.0,12.0,12.0,WIDTH,HEIGHT ,PLACE_LIST) @
WD_ID2=UIS$CREATE_WINDOW (VD_ID, *SYS$WORKSTATION’, LINE’,
2 3.0,2.0,6.0,8.0,,,0N_TOP) ©

PAUSE (9]

CALL UIS$POP_VIEWPORT(WD_ID1) ®

PAUSE

CALL UIS$PUSH_VIEWPORT(WD_ID1) ®
PAUSE

CALL UIS$DELETE_DISPLAY(VD_ID)
END

A data structure argument @ is created and given the symbolic name PLACE
using the STRUCTURE statement. The symbolic names for the fields were chosen
arbitrarily.

Two variables, PLACE_LIST and ON_TOP, of type PLACE are created @ and
contain five longwords.

Actual values are assigned to the different fields of the record PLACE_LIST. In this
case, the absolute coordinates of the lower-left corner ® @ of the display viewport
LINE are assigned to the fields ON_TOP.ABS_POS_X and ON_TOP.ABS_POS_Y
© 0O. The absolute coordinates of the display viewport CIRCLE, are assigned to the
fields PLACEMENT.ABS_POS_X and PLACEMENT.ABS_POS_Y as well.

Also, the position of your calls to UISSCREATE_WINDOW @ © within your
program is important. The call to create the display viewport CIRCLE must be
executed prior to LINE.

At the first PAUSE statement ©, viewport LINE occludes viewport CIRCLE.

UIS$POP_VIEWPORT is called ®. The display viewport CIRCLE is placed over the
viewport LINE.

A call to UIS$PUSH_VIEWPORT @ returns the viewports to their orginal position.

8-20 Display Windows and Viewports

8.5.5 Calling UISSPOP_VIEWPORT and UIS$PUSH_VIEWPORT

Initially, the viewport LINE is placed over CIRCLE. Note that display viewports

are placed on the physical display screen with absolute coordinates. The lower-left
corner of any viewport is the origin of the viewport rectangle. When you request
exact placement of a viewport, you are specifying where on display screen the origin
of the viewport rectangle is to be placed relative to the lower-left corner of the
display screen.

The program execution is suspended at the first PAUSE statement. The display
screen contains the graphic objects shown in Figure 8-7.

Display Windows and Viewports 8-21

Figure 8-7 Occluding a Display Viewport

ZK-4539-85

8-22 Display Windows and Viewports

The display viewports LINE and CIRCLE exchange positions when the call to
UIS$POP_VIEWPORT is executed. The viewport CIRCLE now occludes LINE as
shown in Figure 8-8.

Figure 8-8 Popping a Display Viewport

ZK-4540-85

Display Windows and Viewports 8-23

In order to return the viewports to their original positions, a call to UIS$PUSH_
VIEWPORT pushes viewport CIRCLE behind viewport LINE as shown in Figure 8-9.

Figure 8-9 Pushing a Display Viewport

ZK-4539-85

8-24 Display Windows and Viewports

8.5.6 Program Development Ill

Programming Objectives

To place a viewport in a general vicinity on the display screen and to create a display
viewport with no border.

Programming Tasks

1. Create a viewport attributes list to hold the appropriate viewport placement and
attributes data.

2. Create a virtual display.
3. Draw two graphic objects in the virtual display.

4. Create two display windows and associated viewports each containing a graphic
object.

5. Delete the virtual display.

PROGRAM IMAGES_7

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF’
REAL WIDTH,HEIGHT

STRUCTURE/PLACE/ ©
INTEGER*4 CODE_b
INTEGER*4 REL_POS
INTEGER*4 CODE_6
INTEGER*4 ATTR
INTEGER*4 END_OF_LIST
END STRUCTURE

RECORD /PLACE/LOCATION(2) ©

LOCATION(1) .CODE_5=WDPL$C_PLACEMENT

LOCATION(1) .REL_POS=WDPL$M_TOP .OR. WDPL$M_LEFT ©
LOCATION(1) .CODE_6=WDPL$C_ATTRIBUTES

LOCATION(1) .ATTR=WDPL$M_NOMENU_ICON
LOCATION(1) .END_OF _LIST=WDPL$C_END_OF_LIST

LOCATION(2) .CODE_5=WDPL$C_PLACEMENT

LOCATION(2) .REL_POS=WDPL$M_RIGHT .OR. WDPL$M_BOTTOM ©
LOCATION(2) .CODE_6=WDPL$C_ATTRIBUTES
LOCATION(2) . ATTR=WDPL$M_NOBORDER

LOCATION(2) .END_OF_LIST=WDPL$C_END_OF _LIST

TYPE *,’ENTER VIEWPORT WIDTH AND HEIGHT’
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

Display Windows and Viewports 8-25

CALL UIS$CIRCLE(VD_ID,0,12.0,12.0,1.0)
CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0)

WD_ID1=UIS$CREATE_WINDOW(VD_ID, ’SYS$WORKSTATION’, ’CIRCLE’,

2 10.0,10.0,14.0,14.0,WIDTH,HEIGHT,LOCATION(1))
WD_ID4=UIS$CREATE_WINDOW(VD_ID, *SYS$WORKSTATION’ ,’ELLIPSE’,
2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT,LOCATION(2))
PAUSE

CALL UIS$DELETE_DISPLAY(VD_ID)

PAUSE

END

The name of the data structure argument PLACE is defined using the STRUCTURE
statement @. An array LOCATION is defined to have two elements that are records
with a structure defined by the structure PLACE @. Each record LOCATION(1) and
LOCATION(2) consists of two pairs of longwords terminated by a longword equaling
the constant WDPL$C_END_OF_LIST.

We prefer to have the display viewport CIRCLE placed in the upper-left corner of
the display screen and the borderless viewport ELLIPSE in the lower-right corner.
Therefore, we must specify in each assignment two preference masks for each

viewport © O.

NOTE: Note that you must use the logical operator .OR. when specifying more
than one preference mask.

The array name LOCATION is added to the argument lists of the viewport CIRCLE
and ELLIPSE to invoke the optional attribute list.

8.5.7 Requesting General Placement and No Border

General display viewport placement works best on an uncluttered display screen.
Your workstation screen will display the objects shown in Figure 8-10.

8-26 Display Windows and Viewports

Figure 8-10 General Placement and No Border

CIRCLE

ZK-4541-85

Display Windows and Viewports

8.5.8 Program Development IV

Programming Objectives

To move graphic objects within the virtual display.

Programming Tasks
1. Create a virtual display.
Create a display window and viewport.

2
3. Draw two graphic objects in the virtual display.
4

8-27

Move the coordinate space containing each graphic object to another portion of

the virtual display using UISSMOVE_AREA.

PROGRAM AREA

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LII

VD_ID=UIS$CREATE_DISPLAY(0.0,0.0,50.0,50.0,15.0,15.0)

WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION’, ’MOVE AREA’)
CALL UIS$PLOT(VD_ID,0,1.0,25.0,16.0,25.0,9.0,42.0,1.0,25.0)

CALL UIS$CIRCLE(VD_ID,0,35.0,35.0,10.0) e

PAUSE
CALL UIS$MOVE_AREA(VD_ID,0.0,22.0,20.0,42.0,30.0,1.0) ©
CALL UIS$MOVE_AREA(VD_ID,25.0,26.0,50.0,60.0,1.0,1.0) ©

PAUSE
END

A triangle and a circle are drawn in the upper half of the virtual display using

UIS$PLOT and UIS$CIRCLE © ©.

A rectangular area containing the triangle is moved to the lower-right area of the
virtual display ©. A rectangular area containing the circle is moved to the lower-left

region in the virtual display @.

8-28 Display Windows and Viewports

Figure 8-11 Moving Graphic Objects Within the Virtual Display

@ _ move area

Display Windows and Viewports 8-29

8.5.9 Calling UISSMOVE_AREA

Figure 8-11 shows how areas within the virtual display containing graphic objects
can be moved to other parts of the same virtual display.

8.6 World Coordinate Transformations

Certain applications may require that you create more than one virtual display, or
world coordinate space. Depending on the requirements of the program, you might
have to map graphic objects in one virtual display to another virtual display.

8.6.1 Programming Options

To illustrate the advantages of world coordinate transformations, we will construct
a program that creates a virtual display. We will then create a circle in a virtual
display. The circle will be written to new world coordinate space or transformation
space.

Two-Dimensional Transformation and Scaling

Depending on the values supplied to UISSCREATE_TRANSFORMATION, graphic
objects mapped to other coordinate spaces may be scaled. If the coordinates of the
new transformation space are the same as those of the original virtual display, no
scaling occurs.

8.6.2 Program Development

Programming Objectives

To transform a world coordinate space by altering its mapping and scaling factors.

Programming Tasks
1. Create a virtual display.
Create a display window and viewport.

2

3. Draw a graphic object in the virtual display.

4. Create a new coordinate space using UISSCREATE_TRANSFORMATION.
5

Redraw the graphic object substituting the transformation identifier of the new
coordinate space returned by UISSCREATE_TRANSFORMATION for the virtual
display identifier of the old coordinate space.

8-30 Display Windows and Viewports

PROGRAM TRANS

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF’

VD_ID=UIS$CREATE_DISPLAY(-5.0.-5.6 ,25.0,25.0,10.0,10.0) ©
WD_ID=UIS$CREATE_WINDOW(VD_ID, *SYS$WORKSTATION’ , * TRANSFORMATION’)
CALL UIS$CIRCLE(VD_ID,0,6.0,6.0,7.0) @

TR_ID=UIS$CREATE_TRANSFORMATION(VD_ID,-5.0,-5.0,

2 17.5,17.5) ©

CALL UIS$CIRCLE(TR_ID,0,6.0,6.0,7.0) @
PAUSE

END

The virtual display @ and the new transformation space © specify different
coordinate ranges. The circles are created in calls to UISSCIRCLE ® @ where
the tr_id argument is substituted for vd_id in the second call. The same circle is
redrawn with the same world coordinates in the new transformation space.

8.6.3 Calling UISSCREATE_TRANSFORMATION

The graphic objects appear to be superimposed one over the other. If the vdx1 and
vdy1 arguments are manipulated, the size of the arc can increase or decrease relative
to the size of the first circle. In any case, the arc is mapped to the transformation
space eliminating the need for additional computation and coding on the part of the
programmer.

Display Windows and Viewports

Figure 8-12 World Coordinate Transformations

_TRANSFORMATION

2K-4542-85

8-31

Chapter 9
General Attributes

9.1 Overview

Until the information presented in this manual has been concerned with UIS output
routines that create the basic structures needed to produce graphic objects. However,
there are other types of routines. This chapter discusses the following topics:

® Understanding general attributes
* Using general attributes

The attribute routines place a great deal of control over the quality of graphic objects
and text in the hands of the programmer.

9.2 Attributes—How to Use Them

As the canvas gradually fills with various shapes and figures, the artist is concerned
not only with the shapes of the subjects—a line, a circle, an ellipse, and text but also
with whether their appearance conveys the intended meaning. What our artist would
regard as an aesthetic consideration, we will call an attribute. Attributes control the
appearance of graphic objects and text. You will use attributes whenever you need
to enhance some element on the display screen. Attributes can be modified at any
time within your program.

9-2 General Attributes

9.2.1 Attribute Blocks

All UIS attributes are grouped in a data structure called an attribute block. One or
more attributes may be modified within a given attribute block. Default attribute
settings reside in attribute block 0. Table 9-1 lists the categories of attributes within
attribute block 0.

Table 9-1 Attribute Block 0

Type Attribute

General Writing mode
Writing color index
Background color
Text Character rotation
Character spacing
Character slant
Character size
Text path
Text slope
Text formatting
Left margin
Right margin
Font
Graphics Line width
Line style
Fill pattern
Arc type
Windowing Clipping rectangle

The default attribute settings in attribute block 0 can never be modified.

General Attributes 9-3

9.2.2 Modifying General Attributes

When you modify general attributes, you do not change the default attribute settings
within attribute block 0 itself. You should think of attribute block 0 as a template
of default settings and you are modifying a copy of this attribute block for use
within your program. Attribute modification routines contain two arguments—the
input attribute block number (iatb) and the output attribute block number (oatb).
Table 9-2 lists the default settings of general attributes.

Table 9-2 Default Settings of General Attributes

General Default Modification

Attribute Setting Routine

Background index’ Index 0 UIS$SET_BACKGROUND_INDEX
Writing index? Index 1 UIS$SET_WRITING _INDEX
Writing mode Overlay UIS$SET_WRITING_MODE

Tindex of the background color in the virtual color map.

2Index of the foreground color in the virtual color map.

Perform attribute modification using the following procedure:
1. Choose an appropriate attribute modification routine to modify the attribute.
2. Specify 0 as the iatb argument to obtain a copy of attribute block 0.

3. Specify a number from 1 to 255 as the oatb argument. The attribute block can
then be referenced in subsequent UIS graphics and text routines or in any other
attribute modification routine.

Graphics and text routines as well as UISSMEASURE _TEXT, UISSNEW_TEXT—
LINE, and UIS$SET_ALIGNED__POSITION reference attribute blocks in the atb
argument.

9.3 Structure of Graphic Objects

There are three types of graphic objects: (1) geometric shapes such as circles,
ellipses, points, lines, and polygons, (2) text, and (3) raster images. Graphic objects
consist of a pattern. In memory, the pattern represents one or more bit settings to 0
or 1 that comprise the actual graphic object.

When these entities are written in the virtual display, the UIS writing modes interpret
the bit settings that comprise these objects in different ways.

9-4 General Attributes

Text

In the case of text, a standard character within the default font displayed on the
workstation screen represents the bitmap image of a cell in memory. The size of the
cell varies and depends on the type of font. UIS draws monospaced and proportionally
spaced text. Monospaced fonts use a standard cell size for all letters within the font.
However, the standard cell size varies depending on the monospaced font you are
using.

Proportionally spaced fonts use character cells that vary in width according to the
letter used. The height of the character cell remains constant for all characters within
the font.

The character cell contains the pattern. The remaining bits in the cell are set to 0.
All bits within the character cell are significant to UIS writing modes.

Geometric Shapes

In the case of geometric shapes, only the bit settings that actually comprise the
pattern are significant. Bit settings in the pattern may be 0 or 1. For example, a
dotted line represents bit settings of 0 and 1 in a pattern. All bit settings both 0 and
1 within this pattern are significant to UIS writing modes.

Raster Images

When you draw a raster image, you set bits in a bitmap to create text characters or
geometric shapes. For example, UISSIMAGE and UIS$SET_POINTER_PATTERN
use bitmaps to map rasters to the display screen. All bits in the bitmap are significant
to the UIS writing modes. The following table shows the underlying structures from
which graphic objects are created.

Graphic Object Structure

Text Character cell

Geometric shapes Pattern s
Raster Image Bitmap image of varying size

For a given graphic object, the current writing mode determines how the bit settings
in the appropriate structure are displayed. All bit settings of a particular structure are
significant to UIS writing modes. Figure 9-1 shows graphic objects as structures that
UIS writing modes recognize: (1) the letter E within a character cell, (2) a square as
a pattern, and (3) a bitmap containing the letter E, a square, and a vertical dashed
line of double thickness.

General Attributes 9-5

Figure 9-1 Structure of Graphic Objects

o
S
S

-
-~
-~
)
-
-
-

R T T Y O e]
- s R W wa R e e

SO O © © © © © © © © © © © © ©
O © © © © © © © © O © © © o ©
QQOON“‘H'&AMN*QQQ
O O © © * O O© =~ O © = O O© O
© O O O wm O O w O O « O O O O
O O © O w» O O © © © = O O ©o
O © © © © © © © © O O © © ©o ©
S O © © © O © O © © © © © o ©

—~ed

by

-

—~a

-

ork

-

O O O O © © O O O O O O o ©o o
O O O O O O O O O © © O o o ©
QO O O O O O O O O 0O © © o o ©°
QO O O O = w~ = m s = owm O O O O
O O O O = O © == O © = O o O O
QO O O O =~ O O - O O = O O O O
O O © O = O O O O o =~ O O O ©O
O QO O O O O O O O O O O ©o o ©°
O O ©O O O O O O O o o o o o o
QO O O v e ma mh owk wmk wa owa o OO O
O © O W O 0O O O O O o =~ O O ©
QO O O = © O O © O © o = o O ©
O O O = O O O O O O © = O o ©
O O © = ©O O O © © © O = O O ©O
O O O ™ O O O O O O © m O O ©°o
O O O = O O O O O O O = O O ©
O O O = O O O O O © O.m O O O
QO O O %k . Ra ma wr