
Concurrent CP / MTM .
with Windows

Operating System

Technical Note
for the IBM® Personal Computer

and Personal Computer XT

[!ID
DIGITAL

RESEARCH®

Concurrent CP/M™
with Windows

Operating System

Technical Note
for the IBM® Personal Computer

and Personal Computer XT

COPYRIGHT

Copyright © 1984 by Digital Research Inc. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual, or otherwise, without the prior written
permission of Digital Research Inc., Post Office Box
579, Pacific Grove, California, 93950.

DISCLAIMER

Dig i tal Research makes no repre sen ta t ions or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M, CP/M-86, Digital Research and its logo are
registered trademarks of Digi tal Research Inc. ASM-
86, Concurrent CP/M, Concurrent CP /M-86, Digital
Research C, and TEX are trademarks of Digital
Research Inc. IBM is a registered trademark of
IntOernational Busines~ Machines.

The Concurrent CP/M with Windows Operating System
Technical Note for the IBM Personal Computer and
Personal Computer XT was prepared using the Digital
Research TEX™ Text Formatter and printed in the
United States of America.

* First Edition: February 1984 *

Table of Contents

1 Window Management for Programmers

1.1 Console Output 1-1

1.2 Technique for Method 3 Type of Console Output. 1-2

1.3 XIOS Entry Points for Window Management. 1-4

1.4 Window Management Escape Sequences 1-11

2 Queue-driven Serial Communication

2.1 Theory of Operation ••

2.2 Protocol

2.3 Files and Sample Programs on the
Distribution Diskette •..•••

Tables

l-l.
1-2.
1-3.
1-4.

Tables and Figures

XIOS Window Functions •• • • • • . •
Virtual Console Structure Definition •
Window Data Block Definition • • .
XIOS Calls for Escape Sequences • • • •

2-1. Protocol and Queue Messages

Figures

2-1. Queue-driven Serial Communication Interface

iii

2-1

2-3

2-4

1-5
1-6
1-7

1-11

2-4

2-2

Section t
Window Management for Programmers

This section describes how you can use the window management
primitives of the Digital Research® retail version of Concurrent
CP/M'M with Windows for the IBM® Personal Computer and Personal
Computer XT. These window management primitives are implemented in
the hardware-specific portion of the operating system (the XIOS).
Any program that uses the window management primitives (or any other
XIOS function) will probably not be portable to another Concurrent
CP/M 3.1 system.

1.1 Console Output

There are four methods of handling console output in Concurrent
CP/M. As you move from one method to another, the resulting console
output has a higher degree of performance and a lower degree of
portability. These four methods and their relative advantages and
disadvantages are as follows:

Method 1

This method uses the traditional BDOS system calls for console
output with TTY-style output (that is, there is no cursor
positioning or other escape sequences). This method works on any
version of CP/M®, works inside windows if they are provided, and
works on almost any kind of output device. However, this method is
not useful for interactive applications such as word processors or
spreadsheets. It is also not efficient for clearing the screen or
positioning text at random positions on the screen.

Method 2

This method uses the tradi tional BDOS system calls for console
output with the terminal-oriented escape sequences that are
documented for the terminal. This method works on most versions of
CP/M, and works inside windows. It also works on almost any kind of
terminal or memory map as long as the XIOS interprets the escape
sequences appropriately. However, this method is not efficient for
moving blocks of text quickly on the console or changing the
attributes of blocks of text. It cannot use the full capabilities
of the IBM PC character map.

1-1

Concurrent CP/M Technical Note 1.1 Console Output

Method 3

This method uses the XIOS backdoor entry points that allow you to
wri te directly to the virtual console buffer and still work in
windows. This method works inside windows, is extremely efficient,
and exploits the full capabilities of the IBM PC character map.
However, this method is nonportable, requires complex programming
interface to the XIOS, and requires the ability to link with an
assembly language routine.

Method 4

This method bypasses the BDOS and the XIOS by going directly to the
physical console buffer (for either the monochrome monitor or the
color monitor) as if it were the only process running in the system.
This method is extremely efficient and exploits the full
capabilities of the IBM PC character map. Also the code will run
without change on CP/M-86® for the IBM PC. However, it is
nonportable and does not work in windows. That is, applications can
only be run full-screen and in the front screen layer.

Given these four alternatives for handling console output, you
should choose the method best sui ted to the application. The
techniques used for Methods 1, 2, and 4 are self-explanatory. The
technique for Method 3 is described in Section 1.2. A sample
program, SAMPLE.C, that uses Method 3 is included in the
distribution diskette.

In addition to doing console output in a way that works with
windows, you might want to directly control the placement, sizing,
scrolling, tracking, and layering (what is on top) of the windows
onto Concurrent CP/M's virtual consoles. This direct interaction
with the window management primitives can be very useful. However,
it is very XIOS-dependent and therefore nonportable. The functions
for controlling windows directly are described in Section 1.3.

1.2 Technique for Method 3 Type of Console Output

Method 3 type of console output allows an application program to do
efficient screen output and yet work within the confines of the
Concurrent CP/M windows. In Concurrent CP/M each process that does
console output must own a virtual console. The virtual console is
actually an area of memory the same size and format as the physical
console. The virtual console buffer saves the output that is done
by the process while another process is using all or part of the
physical console.

1-2

Concurrent CP/M Technical Note 1.2 Technique for Method 3

The XIOS in Concurrent CP/M ensures that the virtual console images
are updated and that the physical console displays the appropriate
portions of each virtual console. In the first version of
Concurrent CP/M for the IBM PC, simple window management only
allowed full-screen (24x80) windows to be displayed on the physical
console. As the user switched screens, the virtual console that was
brought to the front completely covered the physical console.
However, in this latest version of Concurrent CP/M, the XIOS
contains more sophisticated window management functions. Now,
windowed portions of each virtual console may all be shown on the
physical console at the same time.

The fact that different portions of a virtual console c-an be
displayed on the physical console in almost any location makes it
almost impossible for application programmers to go directly to the
physical console and still work in windows. To provide a mechanism
for efficient screen updates, a scheme has been devised that allows
a program to update its virtual console buffer and then have the
XIOS handle the windowing 6f the appropriate portion of the virtual
console to the physical console.

The general steps you take for the Method 3 type of console output
are as follows:

1. Make the BDOS function call to find your default virtual
console number:

vc number = __ BDOS(Ox99, OXO)i

2. Make a special XIOS call to find the address of the virtual
console screen buffer that corresponds to your default virtual
console:

WM_PK(l, vc_number, VS_VC_SEGMENT, &vc_segment)i

3. Make a special XIOS call to guarantee that what is currently on
the physical console is synchronized with your virtual console
screen buffer. This might become out of synch if another
program has been sending direct output to your physical
console, or if the virtual console window is full screen on top
and positioned at 1,1 on the physical console:

wm_sync(vc_number)i

4. You are now ready to update your virtual console buffer
directly. To guarantee correct operation, first make a special
XIOS call that takes ownership of an internal semaphore that
protects each virtual console screen buffer from two processes
updating it at the same time:

1-3

Concurrent CP/M Technical Note 1.2 Technique for Method 3

5. You can now use the full power of the 8086 instruction set to
update your virtual console screen buffer. After updating the
buffer, immediately make a special XIOS call that frees the
internal virtual console semaphore. No other XIOS window
management functions that involve your virtual console can
occur while you have the semaphore that protects your virtual
console:

6. Finally, whenever you feel the time is right, make a special
XIOS call that updates the physical console with the current
contents of the virtual console:

IO_CALL(&ax, &bx, &cX, &dx);

Steps 4, 5, and 6 can be repeated as often as necessary. Any time
you mix traditional BOOS system calls for console output wi th direct
updates of your virtual screen buffer, you must again perform step
3. The reason for this is that a special case of full screen on top
on the monochrome display is made where the XIOS does not bother to
keep the virtual console and the physical console synchronized.
This allows for programs that go directly to the monochrome display
to work as long as they are only run full screen and on top.

1.3 XIOS Entry Points for Window Management

This section contains the XIOS entry points that are specifically
used for window control. It describes nine routines in terms of
registers at entry and exit. These XIOS routines are "back door" in
the sense that they cannot be called using the standard Function 50
XIOS calling convention. These routines are called using a far call
to the XIOS entry point using the standard XIOS segment register
conventions, specifically: OS =/SYSOAT and ES = UOA.

At entry, each routine is called with a function code in the AL
register, and various parameters in BX, CX, and ox. The routines
and their decimal function codes are summarized in Table 1-1.

1-4

Concurrent CP/M Technical Note 1.3 XIOS Entry Points

Table 1-1. XIOS Window Functions

Routine I Code I Function

io_pointer 16 returns pointers to window data

io_key 17 returns a character to manager

io_nstatline 18 new status line call with attributes

io im here 19 sets the manager process state

io_new_window 20 sets a new console window

io_cursor_view 21 sets cursor track mode and viewpoint

io_wrap_column 22 sets the column for auto wrap-around

io full 23 toggles VC from full to not full

io_disp1ay 24 sets which console the VC will be on

The parameters for the routines are described in the following
pages. The virtual console structure is described in Table 1-2, and
the window data block is described in Table 1-3.

Function Code 16 io_pointer

Returns pointers to window-relevant information.

Entry Parameters:
Register AL: 16

DL = virtual console number
= OFFH

Returned Values:
Register AX = vc structure pointer if

DL = virtual console number
= window data block pointer if

DL = OFFH

1-5

Concurrent CP/M Technical Note 1.3 XIOS Entry Points

Table 1-2. Virtual Console Structure Definition

(Returned by io_pointer when DL = vc number)

vs cursor -

vs_top_left

vs - bot_right

vs old t 1 -

vs - old _b_ r

vs crt size - -

vs win size - -

vs rows

vs cols

vs attrib

word ptr 00

word ptr 02

word ptr 04

word ptr 06

word ptr 08

word ptr 10

word ptr 12

word ptr 14

word ptr 16

word ptr 18

word ptr 20

word ptr 22

word ptr 24

word ptr 26

byte ptr 28

byte ptr 29

cursor row,col position in
vc image

inside top, left corner of vc
window

inside bottom,right corner
of window

saves the previous value of
top_left

saves the previous value of
bot_right

total number of rows,cols in
vc image

used to remember the size of
the user's window by the
WMENU window manager, this
isn't updated by the XIOS

top left image corner to
top=left win

number of rows in current vc
window

1-6

number of columns in current
window

window tracking correction
factor

segment address of vc console
image

segment address of crt memory

points to the start of row
update list

current vc character
attribute

cursor on/off and wrap on/off

Concurrent CP/M Technical Note 1.3 XIOS Entry Points

vs_vector

Table 1-2. (continued)

byte ptr 30

byte ptr 31

byte ptr 32

byte ptr 33

word ptr 34

word ptr 36

word ptr 38

word ptr 40

window fixed or tracking
scroll

column at which to wrap
around

copy of the virtual console
number

vc num = bit pos

for ESC code save/restore
cursor

conout state machine vector

mono/color xlat table

reserved

vs true view word ptr 42 corrected view point

word ptr 44 mono or color

vs_mxsemaphore byte ptr 52 internal XIOS semaphore

nvc

priority

Table 1-3. Window Data Block Definition

(Returned by io_pointer when DL = OFFH)

byte ptr 0

byte ptr 1

byte ptr 2

manager process state variable
o => manager not resident
1 => manager resident but not active
2 => manager resident and active

number of virtual consoles

a list of vc numbers (nvc bytes long)
from the back window to front window

1-7

Concurrent CP/M Technical Note 1.3 XIOS Entry Points

Function Code 17

Return character to window manager.

Entry Parameters:
Register AL: 17

CL = OFFH (input/status)
= OFEH (status only)
< OFFH (wait for input)

Returned Values:
Register AL = char if char ready (input/status)

= 0 if no char is ready (input/status)
= OFFH if char ready (status only)
= 0 if no char is ready (status only)
= char when ready (wait for input)

AH = key type if AL = char
(O=regular, OFFH = special)

Window manager will go to sleep on this call if CL < OFEH.

Function Code 18 io_nstatline

New status line call with attributes.

Entry Parameters:
Register AL: 18

CX:
DX:

Returned Values:
None

CX and DX are as described in the Concurrent CP/M Operating System
System Guide.

This function works just like the normal io statline call as
described in the Concurrent CP/M System Guide, -except the string
pointed to contains not 80 characters, but 80 character/attribute
pairs. The attributes are as defined in the Technical Reference
Manual for the IBM PC.

1-8

. '.

Concurrent CP/M Technical Note 1.3 XIOS Entry Points

Function Code 19 io im here

Set window manager process state.

Entry Parameters:
Register AL: 19

CL = im here state
o => manager not resident
1 => manager resident but not active
2 => manager resident and active
3 => leave state the same but

switch VC to top
DL = VC number to switch to top

= OFFH means do not switch VC to top

Returned Values:
Window manager process state changed
and/or specified VC is switched to
the top and given the keyboard.

The process state can also be changed from a 1 to a 2 by the wake-up
key, as described in the Concurrent CP/M User's Reference Guide for
the IBM PC and PC XT. All other manager process state changes can
be made only by using routine io_im_here •

. '

Function Code 20 io new window -

'Create a new window.

Entry Parameters:
Regist,er AL: 20

DL = virtual console number
CX = top left (row, column)
BX = bottom right (row, column)

Returned Values:
, Window to specified VC is redrawn

with new dimensions

Windows are specified by their inside corners. ~ows are from 0 to
23, columns from 0 ~o·79. If the new size i~ the same as the the
old size, then the physical image is·updated from the virtual sc~een
buffer. This provides. the method of ensuring changes to the virtual
screen buffer are cdrreqtly displayed on the physical console.

1-9
" .

Concurrent CP/M Technical Note 1.3 XIOS Entry Points

Function Code 21 io_ cu.rsor - view

Set the cursor tracking mode and the viewpoint.

Entry Parameters:
Register AL: 21

DL = virtual console number
DH = cursor tracking mode

0 => fixed window (no tracking)
1 => track scrolling cursor

CX = top left viewpoint corner
(row, column)

Returned Values:
Window's tracking mode and/or
viewpoint are changed.

Function Code 22 io_wrap_column

Set virtual console wrap around column.

Entry Parameters:
Register AL: 22

DL = virtual console number
CL = wrap column number

Returned Values:
Window's wrap column is changed

Function Code 23 io full

Change window state.

Entry Parameters:
Register AL: 23

DL = virtual console number

Returned Values: ,
Window's state is changed from
windowed to full or vice-versa.

1-10

Concurrent CP/M Technical Note 1.3 XIOS, Entry Points

Function Code 24 io_display

Specifies on which display the specified
virtual console will be.

Entry Parameters:
Register AL: 24

CL = 0 => monochrome
= 1 => color

DL = virtual console number

Returned Values:
None

1.4 Window Management Escape Sequences

The window management escape sequences provide a limited subset of
window management functionality if you either cannot or do not want
to link with assembly language routines that make back-door XIOS
calls. These escape sequences all have the same basic format. In
general, they are a list of bytes to be stored in AL, AH, BL, BH,
CL, CH, DL, DH prior to making an XIOS call. The only XIOS calls
that are supported via this escape sequence mechanism are listed in
Table 1-4.

Table 1-4. XIOS Calls for Escape Sequences

XIOS Call I Code I Function

io switch 7 Switch screen to top but do not give
it the keyboard. If screen is already
on top, update the vc buffer with what
is currently on the physical console.

io statline 8 Display 80 character status line.

io nstatline 18 New status line call with attributes.

io im here 19 Sets the window manager process state
and changes which console is on top.

io new window 20 Sets a new console window.

io_cursor_view 21 Sets cursor track mode and viewpoint.

io_wrap_column 22 Sets the column for auto wrap-around.

1-11

Concurrent CP/M Technical Note 1.4 Escape Sequences

XIOS Call

io full

Table 1-4. (continued)

\code I Function

23 Toggles indicated VC from full to not
full.

24 Sets which console the VC will be on.

The escape sequences to access these calls use a parameter list of
registers. There are always 10 bytes in the escape sequence. The
last 8 bytes contain the desired values for the registers prior to
an XIOS call. The exact escape sequence format is as follows:

ESC ! al ah bl bh cl ch dl dh

If you use these escape sequences in an application, you are g~v~ng
up portability for the ability to use windows. Digital Research
encourages OEMs to implement the same escape sequence conventions on
their machines.

The program SAMPLE.C is included on the distribution diskette to
demonstrate the technique for using Method 3 of console output.

End of Section 1

1-12

Section 2
Queue-driven Serial Communications

A Serial I/O device looks like a pair of queues to an application
program. An application program can write to, or read from, a queue
either conditionally or unconditionally. The details of
synchronization and protocol are taken care of by the Input and
Output RSP's, by the Interrupt Handler, and by the queue mechanism
of Concurrent CP/M-86~ itself.

2.1 Theory of Operation

A character received by a Serial I/O Device generates an interrupt
which activates the Interrupt Handler. The Interrupt Handler puts
the character into the Circular Buffer, and then wakes up the Ser ial
Input RSP. The Serial Input RSP reads one or more characters from
the Circular Buffer, forms a message of the characters preceded by a
count, and writes this message to the Serln Queue. The received
characters are now available to the application program.

When the application program wants to transmit characters, it can
form a message of the same type as Serln's (a string of characters
preceded by a count), and write that message to the SerOut Queue.
The Serial Output RSP reads this message and passes a pointer to the
Interrupt Handler. The Interrupt Handler then transmits the
message, one character at a time, and wakes up the Serial Output RSP
when finished.

Each queue message is 17 bytes in length. The first byte, N, is a
count indicating the number of valid data characters in the message.
The next N bytes are the actual data in the order received or
transmitted. This means that any message may contain from 1 to 16
bytes of actual data. The size of the input message is determined
by the speed of the communications line and by system response time.
Higher speeds of the received characters will produce longer
messages on the average. The size of the output message is
determined by the application program. Writing longer messages to
the SerOut queue results in greater system efficiency, particularly
at higher transmission speeds.

An Input/Output pair of RSP's, along with their associated queues,
is automatically created during system initialization for each
Serial Communiation Port installed. Serial Port 0 is defined as the
card addressed at 03F8h, and is accessed through queues "SerInO" and
"SerOutO". Serial Port 1 is defined as the card addressed at 02F8h,
and is accessed through queues "Serlnl" and "SerOutl". This
numbering convention follows that of the Concurrent CP/M-86 CONFIG
utility. If no Serial Communications Port is installed, then no
Serial RSP or queue will be created. Figure 2-1 illustrates the
system interface for queue-driven serial communication.

2-1

Concurrent CP/M Technical Note 2.1 Theory of Operation

--------+

Serial
I/O

Device

--------+

Circular +--------+ +------~
Buffer 1 1 Serln Queue

+-----------+ +--------+ 1 1 +---------+
1 1 +===>+ 1 1 Serial 1 1---------1

==> 1 ==> 1 1 1 1 ==> 1 Input 1 ==> 1---------1 ==>
1 1 +<===+ 1 1 RSP 1 1---------1
1 +--------+ 1 1 +---------+
1 1 1 four msgs

Interrupt +-------------» +--------+ Appl.
Handler 1 wake up Program

+------------» +--------+
1 1 1
1 1 1 SerOut Queue
1 1 Serial 1 +----------+

<== 1<==============1 Output 1<==1----------1<==1
1 1 RSP 1 +----------+ 1

+-----------+ 1 1 two msgs 1
1 1 1
+--------+ +-------

Figure 2-1. Queue-driven Serial Communication Interface

In addition to the SerIn and SerOut queues, there is another queue
that is created for each port at system initialization. It is a
mutual exclusion queue, named "MXSerO" for port 0, and "MXSerl" for
port 1. These queues are designed to prevent access of more than
one process to a single serial port. An application program reads
its MX queue before accessing the Serial Data queues, and writes to
its MX queue when it terminates.

There are limitations to the performance of Serial Communications
under Concurrent CP/M-86. The primary limitation is encountered
when using high speed communications while running other programs
concurrently. There are times when the system "goes to sleep" for
more than one high-baud-rate character time (Multi-sector disk
access is an example). When this happens it is common to drop a
received character or two, thus destroying the integrity of the
incoming message. The other common problem is that the program
receiving the data cannot consume it as fast as it is being sent.
(Trying to send characters to the console at 9600 baud is an example
of this.) Solutions to these problems must address the question of
both high and low level communication protocol. Section 2.2
discusses communication protocol in detail.

The program TERM.A86 is included on the distribution diskette. This
program demonstrates the use of queue-driven serial communication.

2-2

Concurrent CP/M Technical Note 2.2 Protocol

2.2 Protocol

The Interrupt Handler currently supports the following three types
of handshaking protocol to synchronize communications between
systems:

1. DTR/DSR is a hard-wired handshake using the Data Terminal Ready
and Data Set Ready modem control lines.

2. RTS/CTS is a hard-wired handshake using the Request To Send and
Clear To Send modem control lines.

3. XON/XOFF is a software handshake accomplished by sending an
ASCII XON or XOFF character through the reverse channel.

A description of conditions and actions pertaining to all three
protocols is presented below.

Protocol

DTR/DSR

RTS/CTS

XON/XOFF

The Interrupt Handler,
when receiving a character

if buffer is if buffer
almost full is empty
------------ ---------
Sets DTR 0 Sets DTR

Sets RTS 0 Sets RTS

1

1

Sends an XOFF Sends an XON

The Interrupt Handler,
when transmitting a character

will stop will resume
transmission transmission
------------ ------------
if DSR 0 if DSR 1

if CTS 0 if CTS 1

if XOFF rec'd if XON rec'd

A given receive or transmit protocol can be set by an application
program by writing a protocol message to the SerOut Queue. A
protocol message is identified by a special code in the first byte
of the queue message. The second byte of the message then sets the
protocol. To set the receive protocol, the first byte of the
message must be OFEH. To set the transmit protocol, this byte must
be OFFH. In both cases, the second byte of the message contains a
bi t code for the protocol or protocols to be used. Table 2-1
describes the queue messages to set the various protocols.

2-3

Concurrent CP/M Technical Note 2.2 Protocol

Table 2-1. Protocol and Queue Messages

Protocol
I

Queue Messages
for Receive for Transmit

<none>

DTR/DSR

RTS/CTS

DTR/DSR + RTS/CTS

DTR/DSR +

XON/XOFF

XON/XOFF

RTS/CTS + XON/XOFF

DTR/DSR + RTS/CTS + XON/XOFF

OFEH,OOH

OFEH,OlH

OFEH,02H

OFEH,03H

OFEH,04H

OFEH,OSH

OFEH,06H

OFEH,07H

OFFH,OOH

OFFH,OlH

OFFH,02H

OFFH,03H

OFFH,04H

OFFH,OSH

OFFH,06H

OFFH,07H

If the application program does not set the protocol, the default
protocol for receive is <none> and the default protocol for transmit
is DTR/DSR + XON/XOFF.

The program PROTOCOL.A86 is included on the distribution diskette.
This program sets protocols for queue-driven serial communications.

2.3 Files and Sample Programs on the Distribution Diskette

Two window utilities, WINDOW and WMENU, are included on the
distribution disk. The following files are required to generate the
WINDOW and WMENU utilities (WINDOW.CMD and WMENU.CMD):

CAPARM.H
FIELDS.H
PORTAB.H

PDKEEP.A86
WMCA.A86
WWCALL.A.86

WINDOW.C
WMCOLOR.C
WMENU.C
WMEXEC.C
WMFTD.C
WMUTIL.C
WMWINDOW.C
WMWRITE.C

A submit file, WINDOW.SUB, is included to generate WMENU.CMD and
WINDOW.CMD from the preceding files.

The sample program, SAMPLE.C, uses the .H files listed above along
with WMCA.A86 and WWCALL.A86.

2-4

Concurrent CP/M Technical Note 3.1 Files and Sample Programs

The sample progra.m TERM.A86 on your distribution diskette
demonstrates the use of queue-driven serial communication. The
sample program PROTOCOL .A86 demonstrates protocols for queue-dr iven
serial communication.

The Digital Research C'M compiler is required to compile the programs
with filetype C. ASM-86'M is needed to assemble the programs with
the A86 filetype. GENCMD can be used to generate the CMD files.

End of Section 2

2-5

NOTES

NOTES

Reader Comment Card
We welcome your comments and suggestions. They help us provide you with better
product documenta tion.

Date

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

Concurrent CPIM™ with Windows Operating System
Technical Notes for the IBM PC & PC XT
First Edition: February 1984
4007 -1010-001

COMMENTS AND SUGGESTIONS BECOME THE PROPERlY OF DIGITAL RESEARCH.

From: ______________________ _

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

[!ID DIGITALRESEARCH®
Attn: Publications Production

P.O. BOX 579
PACIFIC GROVE, CA 93950-9987

11.1 •••• 11.1.1'111.1.11 ••• 1.1 •• 1.1 •• 1 •• 1.111.1 ••• 111

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

4007-1010-001

