
TM

FlexOS 286

Release 1.42

Release Notes

1073-1001-004

1. Significant Differences

2 Debug Disk

3. Shared Memory

·4 New Driver Service Calls

5 Removeable Subdrivers

6. Open Door Detection

7. The SYSTAB Utility

8. RNET Serial Driver

9. Limits on Processes

10. Documentation Errata

11. Change Pages

12. VOi Derno Prugrain~

Contents

Copyrl(Jht © 1988 D1!}1tal Research Inc All riqhts reserved Diqital Research and the

Otrptal Resedrch lo<JO dre re~11stered trademarks of Diq1tal Research Inc. FlexOS is a

tradenldrk of Dtri1tdl Research Inc IBM and PC AT are registered trademarks of

International Business Machines Intel is a reqistered trademark of Intel Corporation

Zenith 1s a rnq1stered trndemark of Zenith Data Systems MetaWare and High C are

trademarks of M1~taWare Incorporated Mouse Systems is a trademark of Mouse

Systems Corporation Multiport 1s a trademark of the ARNET corporation.

/

(.··
........__ /

(

(

SECTION 1

Significant Differences

The following list summarizes the significant differences between
FlexOS 1.42 and FlexOS 1.31:

o The installation process has been automated through the use of
batch files.

o An new installation option is offered. The LOADFLEX.EXE
command enables users to install FlexOS in a DOS partition, then
start FlexOS from the DOS command line (see the Installation
Instructions).

o The hard disk driver has been rewritten to improve performance.
This new driver also allows partitions greater than 32Mb to be
made bootable, and partitions other than the first one can be
made bootable.

Note: The new hard disk driver is renamed from ATHD.DRV to
HD ORV.

o The FDISK utility has been rewritten to support the new hard disk
driver. See the Configuration Guide for information about FDISK.

o The floppy disk driver now implements door open detection to
support AT-style drives (see Section 6).

o Large-model SRTL's (Shareable Run-time Libraries) are now
supported and the documentation has been improved (see Section
11).

o There is a separate stand-alone debugger supplied on diskette
SBK 5.

o An optional on-line. menu-driven help system is now available.

End of Section 1

1-1

(

(

SECTION 2

Debug Disk

The diskette labelled SBK 5 in the System Builder's Kit contains
SASID286, a stand--alone debugger (a debugger that is executable and
runs on a separate terminal) for debugging driver code. In order to
use SASID286, you must generate a version of FlexOS you can run and
debug from another termini-II. The FLEX286.MAK file generates a
working copy of FlexOS.

2.1 Using SASID386

Before you begin to use SASID, make sure that you have another serial
terminal attached to the COM2 port on your development system.
SASID286 uses this terminal to display information about activity
taking place on the standard terminal.

Put diskette SBK 5 in drive A and buui up ihe system. You w1ii see
the SASID286 prompt on the serial terminal screen. SASID286 is
similar to the SID 286 debugger, described in the Programmer's
Utilities Guide, and shares many commands with it. Table 2-1 lists
SASID286 commands.

SASID286 also has built-in help. Simply press the question mark (?) to
see a screen of help topics. Pressing two question marks gives you
another screenful.

2-1

2.1 Using SASI0386 Version 1.42 Release Notes

Table 2-1. SASID286 Commands

Display Memory

b <address>,< length>,< address>
d <address>, <address>
dw<address >,<address>
dlw <address>,< offset>,< size>
I< address,address >
sr< address>,< length>, <value>

Examine Memory

s<address>
sw< address>
f< address>,< address>
fw <address>,< address>
m<address >,<length>, <value>

Execute

g <address> ,<address>,< address>
p <address>,< count>,< address>
t<count>
tw<count>
u<count>
x
c <address> ,parm,parm ..

2-2

Compare memory
Display bytes
Display words
Display linked list by words
Disassemble code
Search for value

Display and set bytes
Display and set words
Fill memory bytes
Fill memory words
Move memory block

Go at address until break
Set passpoint
Trace instructions
Trace without calls
Trace without display
Display registers
Call a function

-~-/

(

(

Version 1.42 Release Notes 2.1 Using SASID386

Miscellaneous

ti
11 symbol
11 <value>
h<valuel >,<value2>
n <name>,< address>
qr<port>
qiw< port>
qo<port>
qow< port>

v

Table 2-1. (Continued)

Display symbols
Display symbol offset
Hex-decimal conversion
Hex arithmetic
Add name to symbols
Input byte from port
Input word from port
Output byte to port
Output word to port
Primitive stack dump

Note: A symbol or register can be used as an <address>.

End of Section 2

2-3

(

SECTION 3

Shared Memory

3.1 Shared Memory Regions

FlexOS allows multiple processes to share common memory regions.
Processes can also access specific physical memory locations, for dual
ported RAM or system ROMs, through the shared memory driver
services.

The processes can share data regions with drivers for fast
communications in both protected and unprotected FlexOS
environments, and multiple user processes can share data regions with
each other. FlexOS grants access to shared memory only to those
user processes with access rights established during system
implementation.

There are two ways to access shared memory; through shared
n1emory fifes, \AJhich \"!Ork like pipes, and through the driver services
SHMEM and UN SHMEM.

Shared memory files are created with the CREATE SVC and have the
"sm:" device name. A subsequent OPEN SVC provides and verifies
access to the file. The GET SVC returns a valid address for the shared
memory region, the CLOSE SVC disables access via this address, and
DELETE releases the region. Each shared data file also contains a
semaphore, so drivers and processes can synchronize usage through
the READ and WRITE SVCs.

The Pipe Resource Manager disallows an open request of "sm:"
devices by any process with an mid < > 0. This prevents a process
on a remote node of a network from gaining access to shared data.
Note that pipes are different in this respect: processes on one node
can access pipes on remote nodes.

Figure 4-1 shows the SHMEM table that can be examined with the
LOOKUP SVC.

3-1

3.1 SHARED MEMORY REGIONS Version 1.42 Release Notes

0 1 2 3 4
+--------+--------+--------+--------+

00 KEY
+--------+--------+--------+--------+

04
+ NAME +

08
+ +--------+-------+

oc SIZE
+--------+--------+--------+--------+

10 RESERVED SECURITY
+--------+--------+--------+--------+

14 USER I GROUP RESERVED
+--------+--------+--------+--------+

18 UBUFFER
+--------+--------+--------+--------+

lC SBUFFER
+--------+--- ----+--------+--------+

Figure 3-1. SHMEM Table

20H - Maximum Size of SHMEM Table

3-2

(

(

Version 1.42 Release Notes 3.2 Using Shared Memory Files

Field

KEY

NAME

RESERVED

SIZE

SECURITY

USER

GROUP

UBUFFER

S BU t-f-1::: R

Device Type

Device Name

Table Number

Table 3-1. SHMEM Table Fields

Description

Unique ID

Name

Must be 0

Size of memory area in bytes

Security word

User ID of creator

Group ID of creator

User address of shared memory. This value is zero
if the table was obtained through the LOOKUP SVC.
You must use GET to obtain the address.

System address of shared memory. This value is
used by drivers and system processes independent
of process context.

Ox11

"sm:"

Ox11

3.2 Using Shared Memory Files

To create a shared memory region a user process performs the
following calls:

fnum = s_cr·eate(O, flags, "sm:name", 0, security, size);

s_get(T_SHMEM, fnum, &shmem, sizeof(shmem))

buff_ptr = shmem.ubuffer;

BUFF PTR now points to the shared memory.

3-3

3.2 Using Shared Memory Files Version 1.42 Release Notes

If another user process wants to use the above shared memory file it
performs the following calls:

fnurn = s_open(flags, "sm:riame");

s_get(T_SHMEM. fnum, &shmem, sizeof(shmem));
buff_ptrl = shmem.ubuffer:

All references to '''BUFF PTRl now access the named shared memory
region.

A driver could give a user process access to a ROM of length LENGTH
at address PHYS_ ADDR by using the following calls:

st f"l.J c t

LONG
phys rnem

link, pstart, plength;
01. PHYS ADDR, LENGTH);

sys_arJdr· =(BYTE *lmrippl1ys(&phys_mern. 1);

usr addr = strn1em(sys_acldr. r·ead_on I y_f I ag):

The user process would then use a SPECIAL() or GET() call to receive
the user buffer address from the driver.

If two user processes need to synchronize access to a shared memory / ,
file they could each make the following calls: _

s_read(O, fnum, "", o\. 01):

critical_code():
s_write(O. fnum. "". 01. 01):

I* Get exclusive access *I
I* Perform critical code */
I* Release semaphore */

FNUM is the file number of the shared memory file obtained through
the CREATE or OPEN calls.

When it no longer needs access to the shared memory file, the user
process makes the call:

s_close(O. fnum):

FNUM is the file number that was attained by the CREATE or OPEN
calls.

If the driver wants to remove user access to the shared memory it
created it makes the call:

un shmem(usr_addr);

usr _ addr is the address obtained by the SHMEM() call.

3-4

(

Version 1.42 Release Notes 3.3 Shared Memory Driver Services

3.3 Shared Memory Driver Services

A shared memory driver service must be used for a new process to
gain access to shared memory. The driver obtains system memory by
utilizing the MAPPHYS() or SALLOC() driver services, and then allows a
user process access to memory through a SHMEM() driver service.
The region is subsequently released with the UN_ SHMEM driver
service. This gives a user process direct control of memory related
devices.

Note: OEM's must write a shared memory driver to support an
application's use of shared memory, but FlexOS provides two
subroutines that the driver can call.

3.3.1 SHare MEMory

The SHMEM driver service lets a user process address system memory
while running in user space.

BYTE *usr _addr, •,;y-;_.acJcJr;

lJWORD f I aqs;

1Jsr-_acJcJr· ~ slH!lflrn(•,yo; ddcJr, t I aqs);

Parameters:

flags bit 0: 0 = Read/Write buffer
1 = Read Only buffer

bits 1-15 are reserved

sys_ addr System address obtained through SALLOC() or MAPPHYS()

Return Code:

usr addr User buffer address. 0 indicates failure

3-5

3.3 Shared Memory Driver Services Version 1.42 Release Notes

3.3.2 UN_ SHare MEMory

The UN_ SHMEM() driver service reverses the function of a previous
SHMEM() call. After this call, the user process gets an exception if it
tries to access shared memory. If the user process passes an address
to UN_ SHMEM() that was not previously obtained through an SHMEM() /
call, it receives an error.

LONG r·pt;

BYTE •11sr addr ;

ret ::: t1n_st1mem(tisr addr);

Parameters:

usr addr User buffer address obtained through shmem()

Return Code:

retO indicated success; error code indicates bad usr addr

End of Section 3

3-6

(

(

SECTION 4

New Driver Service Calls

FlexOS 286 contains two new driver services that are not documented
in the System Guide. These driver services allow FlexOS to more
efficiently exploit memory management units (MMUs), which support
paging of physical memory.

4.1 CSALLOC Driver Service

In previous versions of FlexOS, when calling SALLOC to allocate
memory in the system address space, a driver could rely on the fact
that this memory was always physically contiguous, so external
devices under the driver's control such as OMA controllers which use
physical addresses and bypass the MMU, would work properly.

This assumption is no longer true. If the memory to be allocated must
be physically contiguous, CSALLOC must be used instead of SALLOC.
A bit in the flags parameter determines whether contiguity is required.

The second reason for calling CSALLOC is to allocate memory which
must be physically isolated from other system buffers. This use of
CSALLOC is to exert control over a buffer which may be passed (by
the DOS Application Environment) to a user process. If the allocation
for the Application Environment were in the same page as the
allocation for an important system data structure, the user process
would have the potential to corrupt system data. The "isolate" bit in
the CSALLOC flags word is used to control this area of memory
protection. Note: In FlexOS 386, an isolated buffer starts on a 4Kb
boundary and the allocation extends in multiples of 4Kb. The lntelR
80286 processor does not support the same sort of hardware mapping,
so a setting of the ISOLATE bit on a call to CSALLOC in FlexOS 286 is
ignored.

C Interface for CSALLOC:

sysadr = csalloc (length, flags);

Parameters:

4-1

4.2 CONTIG Driver Service

BVTE *

UL ONG

IJWORD

sysacJr;

leflgth;

f I ciqs;

Version 1.42 Release Notes

I* System address of memory block

I* allocated. 0 indicates no

I* memory available.

I* Number of bytes to al I ocate

I* Bit 0:
1 =Physical contiguity required

0 = N<;ri-coriti<Juity accepted

Bit 1 :

1 - Pl1ysical isolation required

0 Not required

*I

*I

*I

*I

Other bits must = 0. */

;•·,;allr;c:(length)"ic; tw1ctionally equivalent to 'csal loc(length,O)'*/

4.2 CONTIG Driver Service

In previous versions of FlexOS, drivers that did OMA to and from
physical memory addresses would call PADDR to convert the system
address of the buffer to a physical address, with the driver assuming
the whole buffer was physically contiguous starting from the address
returned. In FlexOS 386, this assumption is no longer true. Therefore,
CONTIG has bee"n added to find the physical address of a buffer and
the number of bytes that are physically contiguous from that point.

C Interface:

size= c:oritig (bufter. length, &phyadr);

Parameters:

UL ONG size; I* Number of bytes

I* contiguous.

BVTE * buffer; I* System address

lJLONG length; I* Length (bytes)

that are physically

of buff er

of huff er

BVTE • phyadr; I* Physical adc1ress of buff er (retur·ned)

4-2

*I
*I
*I
*I
*I

Version 1.42 Release Notes 4.2 CONTIG Driver Service

The following conditions must be met before calling CONTIG for the
first time for a given buffer

1. The owner of the buffer must be mapped into memory (MAPU).

2. The buffer must have passed a MRANGE call.

After finding the number of bytes that are contiguous in the buffer, the
driver can do OMA to or from that portion of the buffer. Note that the
physical address of the buffer is returned via 'phyadr'. If the return
'size' is not equal to the 'length', then the buffer is not contiguous and
more calls to CONTIG are required. For the next call, 'length' should
be decreased by 'size', and the buffer address should be increased by
'size'. Then, assuming the process owning the buffer is still mapped
in, another call to CONTIG can be made. Repeat this process until the
returned 'size' and 'length' are the same.

End of Section 4

4-3

(

(_/

(-

(

SECTION 5

Removeable Subdrivers

FlexOS has the ability to remove subdrivers using the standard user
DVRUNLK command and supervisor INSTALL function. A user can enter
the subdriver device name in the DVRUNLK command to remove the
subdriver from a driver. A programmer can use the INSTALL SVC with
the option field set to 0 and the devname field set to the subdriver
name address to remove a driver.

Subdrivers like drivers are set as removable or permanent in INSTALL
flag bit 5. When the bit is set, the subdriver is marked as removable;
otherwise, it should not be removable. The DEVICE Table's INSTAT
field reflects the install status, whether permanent or removable.

For subdrivers, the fields are defined as follows:

OxOO - Not installed
OxO 1 - Requires subdriver
Ox02 - Owned by Miscellaneous Resource Manager
Ox03 - Owned by another driver
Ox04 - Optional subdriver

Drivers are informed to remove a subdriver through the SUBDRIVE
function entry point. This entry point is now used both to associate
and disassociate a subdriver. To indicate which operation to perform,
bit 10 in the Access field is set as follows:

Bit 10: 0 = Install subdriver
1 = Uninstall subdriver

The remainder of the Access flags remain as defined in Table 4-4,
INSTALL Flags in the FlexOS System Guide.

The driver . should then do whatever is necessary to remove the
subdriver. Ndte, however, that the driver can ignore the request if the
subdriver fs currently in use. The following sample code illustrates a
SUBDRIVE routine that handles both installation and removal of the
subdriver.

5-1

Removeable Subdrivers Version 1.42 Release Notes

LONG s_subdrvr(pb)

DPB *pb;

PHYSBLK *d:

if(pb->dp flags & Ox400)(

sfree(sdevlpb->dp option!):

sdevlpb->dp_optionl = O;

retun1((((LONG)DVR_PORT << 16) (LONG)DVR SER));

s er· ur1 i t I p h- :- d p opt i on I = p b- > cJ p _' m i t no :

pt_hcJrjptJ-.•cJp_uriitnol =(DH*) ph- 0•dp swi;

pt __ <m it I ph- ·rJp_<m i trio I = pb->dp_opt ion;

cJ = scJevlpb-··dp_optionl =

(PHYSBLK *) sal loc((LONG)sizeof(PHYSBLK));

rJ->Qrear = cJ- •Qfror1t = d >evpend

d->xoffed = d->Qlen = O;

ret11rn(E SUCCESS):

The return code from the SUBDRIVE function should indicate the type
of subdriver required or 0, if no subdriver is required.

Typically, the SUBDRIVE routine is not the only portion of the driver
involved in the subdrive interface. For example, you should also free
the resources such as flags, pipes and memory for data structures
used to enable device 1/0 when the remove command is received.

As a general rule when removing subdrivers, everything done in INIT
and SELECT to support device 1/0 should be undone in UNINIT and
FLUSH, respectively.

End of Section 5

5-2

(

''.· ~I
'\

(

SECTION 6

Open Door Detection

Section 8.1.2 of the System Guide describes the type of drives
supported by the FlexOS Disk Resource Manager:

• non-removeable media (hard disk drive)

• removeable media with no door open support

• removable media with door open interrupt (DOI) support

Beginning with release 1.42, the Disk Resource Manager supports a
fourth type: removable media with door open detection (DOD).

Drives that support removable media and do not support DOI incur
high overhead since the Disk Resource Manager must periodically
verify the media has not been changed. Door open detection provides
support for removeable media without incurring high overhead. When
the Disk Resource Manager decides to do a media check, it first
checks the driver to determine if the door has been opened. If it has,
the media is checked and then new media is logged in.

Since performance on removeable media only (RMO) drives would be
unacceptably degraded if a verify was done on each entry into the
caching code, the driver can specify how often the media should be
checked (see Section 6.2, "Media Timed Verification").

6.1 Driver support for DOD

Beginning with release 1.42, the GET driver function call (see page
8-46 in the System Guide is modified to support door open detection.
Figure 6-1 shows the modified parameter block.

6-1

6.1 Driver support for DOD Version 1.42 Release Notes

GET--Provide unit-specific information

Parameter:

Return Code:

E_SUCCESS
E_BADPB

0

Address of GET parameter block

Successful operation
Bad parameter block

1 2 3

I UNIT I FLAGS I
!---
' DTYPE I MAX RS I

ADDR

MAXFATRECS MAXFATSIZ

MAXDIRSIZ DVRDELTA

Figure 6-1. GET Parameter Block

6-2

(

(

Version 1.42 Release Notes 6.1 Driver support for DOD

Field

UNIT

FLAGS

DTYPE

MAX RS

ADDR

Table 6-1. GET Parameter Block Fields

Description

Driver unit number

Reserved

Type of disk medium

Bit 0:

Bit 1:

Bit 2:
Bit 3:

Bit 4:

1 = Removable media only
O = Permanent media
1 = Open door support enabled
0 = Open door support diabled
Reserved
1 = Door open detection enabled
0 = Door open detection disabled
1 = Media timed verification enabled
0 = Media timed verification disabled

Maximum Record Size. This is the maximum physical
sector size of all media types supported through this disk
driver unit. For example, if this unit supports both single
and double-density diskettes, the larger of the physical
sector sizes should be stated here. This field determines
the size of the buffers the Disk Resource Manager
maintains for the unit.

Address of the open door byte if this is a disk drive with
open-door- interrupt support.

MAXFATRCS
Maximum number of FAT records in a single FAT for all
media types supported through this driver unit.

MAXFATSIZE
Maximum size of FAT, in bytes.

6-3

6.1 Driver support for DOD Version 1.42 Release Notes

Table 6-1. (Continued)

Field Description

MAXDIRSIZE
Maximum number of root directory entries.

DVRDELTA Number of milliseconds to wait before performing media
check if media hasn't been accessed.

Disk drivers that support door open detection should set the following
bits in the dtype field:

bit 0 = on (Removable Media only}
bit 3 = on (Door open detection enabled}
bit 4 = on (Media timed verification enabled}

The driver must also support a new Special function as described
below. The driver must check for an open door occurrence on all
READ or WRITE calls and return E_READY if an open door is detected.
After returning E_READY once, the driver must return it again only
when the condition reoccurs.

6-4

Version 1.42 Release Notes 6. l Driver support for DOD

Special Function 4 -- Get Open door information

Parameter: Address of SPECIAL parameter block

(Return Code:

(

E_SUCCESS
E_UNITNO
E_BADPB
E_NEWMEDIA
E_DOOROPEN

Figure 6-2.

0 1

UNIT 4

Same media
Invalid unit number
Bad parameter block
New media
Door has been opened

SPECIAL Function 4 Parameter Block

2 3

FLAGS

Table 6-2. SPECIAL Function 4 Parameter Block Fields

Field Description

UNIT Driver unit number

OPTION Special function number (in hex)

FLAGS Bits 0-15 are reserved
---~~---·------·-------------~

Special function 4 returns E_NEWMEDIA when the driver verifies there
is new media in the drive. E_DOOROPEN is returned when there may
be new media in the drive.

On a E_DOOROPEN error, the Disk Resource Manager performs a media
check to verify if there is new media in the drive. If there is new
media, or E_NEWMEDIA was returned, the Disk Resource Manager
performs a relog operation on the unit. Once the driver returns

6-5

6.1 Driver support for DOD Version 1.42 Release Notes

E_NEWMEDIA or E_DOOROPEN, it must not return either value until it
determines there is new media in the drive, or the drive door has been
opened again.

The SELECT function should only report E_NEWMEDIA or E_DOOROPEN
if the condition arises while executing the select code. If either the
E_NEWMEDIA or E_DOOROPEN error is returned from a SELECT call, the
Disk Resource Manager attempts one more SELECT call before
reporting E MEDIACHANGE to the user.

6.2 Media Timed Verification (MTV)

The Disk Resource Manager supports media timed verification (MTV)
to increase the performance of removable media Media timed
verification relies on the fact that it takes some minimum amount of
time for a user to remove the media and replace it with new media.
Using this knowledge, the Disk Resource Manager can verify the media
every N seconds (provided N is less than the minimum) and not miss a
media change. The media is not verified when it is not in use, but is
checked only during caching or 110 operations on the given media.

Media timed verification is most useful on removeable media only '
(RMO) units where the Disk Resource Manager incurs considerable
overhead verifying the media has not changed. Media timed
verification can be useful on units that implement door open detection
if executing the driver's DOD code takes excessive time. Media timed
verification is of no use on units that use door open interrupts
because there is no overhead for the Disk Resource Manager to check
the door open flag.

6.3 Driver support for MTV

Driver support for media timed verification is provided through the
Disk Driver GET parameter block (see page 8-45 in the System Guide).
Beginning with release 1.42, this parameter block is modified as
follows:

6-6

Version 1.42 Release Notes 6.3 Driver support for MTV

• an additional bit (bit 4) is defined in the dtype field. Bit 4 must
be set to 1 (on) to enable media timed verification; otherwise it is
disabled.

(• the ULONG value dvrdelta is added to the end of the parameter
" block. The dvrdelta field contains the number of milliseconds the

(

Disk Resource Manager waits before performing a media check.

When calling GET on a unit that supports media timed verification, the
driver must set both bit 4 in the dtype field and the number of
miliseconds for dvrdelta.

Note: The Disk Resource Manager does a media check only when the
media has not been accessed in the time span given by dvrdelta, but
otherwise performs no check.

End of Section 6

6-7

c

,-

SECTION 7
·---------------------------

The SVSTAB Utility

FlexOS contains a new utility named SYSTAB that displays the current
status of the following system tables described in Section 8 of the
FlexOS Programmer's Guide

• CONSOLE
• DEVICE
• ENVIRON
•MEMORY
e PIPE
• PROCDEF
• PROCESS
• SHMEM
• SYSDEF
•SYSTEM
• VCONSOLE

To use SYSTAB, enter the command:

C>SYSTAB

which displays the main menu of available commands and the
command-line parameters that control the display operation.

End of Section 7

7-1

(

SECTION 8

RNET Serial Driver

RNETHSD.DVR is a high-speed serial device driver provided in
executable form with the Programmer's Toolkit, and in both executable
and source form with the System Builder's Kit. The RNETHSO.DRV
source code is fully commented, and illustrates the basic structuring of
a device driver into synchronous and asynchronous portions.

RNETHSD.DVR is the driver for the ARNET Multi port™ Board, which is
an RS-232 serial communications board designed for use with IBM AT
and compatibles.

If you need high-speed serial communications, you can use
RNETHSD.DRV as an replacement for the standard serial driver
SDRV.DRV. To do this, you edit the source code, setting the
conditional compilation switch, then recompile to make RNETHSb.ORV
communicate directly with the hardware ports COM 1 and COM2. In its
defauit configuration, RNETHSD.DRV communicates with the ARNET
board (see figure on the following page).

Note: Normally, the serial driver SDRV.ORV communicates with the
port driver PTO:, which then communicates directly with the hardware
ports. If you use RNET.DRV, it communicates directly with the
hardware ports and overrides the port driver, thus disabling the
capability of using a serial terminal or a mouse.

8-1

RNET Serial Driver

fSerial Driver (SDRV.DRVJf

f Port Driver (PTOf

Version 1.42 Release Notes

fARNET Driver (RNET.DRV) I

I
I
I
I
I

--------------------!
I I
I I
I

fHarriwar'e Ports (COM1. UlM2) 1-------1 I RN ET Bo a n1 J

End of Section 8

8-2

(

SECTION 9

Limits on Processes

The Intel 286 microprocessor architecture imposes on FlexOS certain
limits on system values such as the number of files that can be
opened, the maximum number of concurrently scheduled ASR's, and
the size of internal memory pools. These values are all configurable
by editing the system files CONFIG.C, CONFIG.H, and ACONFAT.A86.

If you encounter problems because these numbers are too small,
simply edit the system configuration files and increase the values. For
example, you can increase the size of the internal memory pools, or
the number of entries for the File Number Table, then recompile and
relink the system.

Also, adhering to the following guidelines may help you avoid
problems related to the limitations imposed by these default values:

• Use the HSET command (see the Programmer's Utilities Guide.
Appendix L) on all executable files to set the code group
Descriptor in the .286 file header to 09 (shared code).

• Conserve space in the File Number Table by closing all unused
files numbers, including the standard file numbers
(stdin,stdout,stderr,stdcmd) associated with each process.

End of Section 9

9-1

(

SECTION 10

Documentation Errata

This section contains corrections and/or additions to the indicated
manuals. You should annotate your manuals accordingly.

FLEXOS™ 286 PROGRAMMER'S UTILITIES GUIDE, (1073-2043-001)

In Section 7, change all references to the .CMD filetype to .286 filetype.

On page 7-18 at the bottom, change the sentence

"LINK 86 makes multiple passes through the library index when
attempting to resolve references from other modules."

to read as follows:

"LINK 86 makes multiple passes through the library index when
' attempting to resolve references from other modules within the
"'· library."

On page 10-5 in the explanation of the fourth example, change "12800
bytes" to "128K bytes".

FLEXOS TM SYSTEM GUIDE, First Edition: November 1986
(1073-2013-001)

In section 3.2 on page 3-3, change the reference in the fourth
paragraph from FlexOS User's Guide to F.lexOS Cqnfiguration Guide.

In listing 4-1 on page 4-2, change the line:

UWORD dh_reserved ;I* Reserved I*

(_to read as follows:

UWORD dh_dtype ;I* Type of Driver I*

10-1

Documentation Errata Version 1.42 Release Notes

Also change the top line of Figure 4-2 on page 4-3 from:

ll 2 :J
+-------+-------+--------+--------+

ll Reserved Units I Flags I
+-------+-------~--------+--------+

4 INIT Function Entry Point
+-------+-------~--------+-----·---+

to the following:

0 2 3
+-------+-------+--------+--------+

0 Driver Type Units I Flags I
+-------+-------+--------+--------+

4 INIT Function Entry Point
+------ +-------+--------+--------+

and add the following explanation to Table 4-1 on page 4-4:

Driver Type A word-length description of the type of the driver
as listed in Table 4-3.

Add the following to the explanation of the fields in Table 4-2, "Driver
Header Synchronization Flags" at the bottom of page 4-6:

Flag bit 4 controls delimited reads. Set bit 4 to zero to use the
delimited read routine supplied by the Console Resource Manager.
On systems that do not have a Disk Resource or Console
Resource Manager, set bit 4 to one to have a user-supplied driver
perform the delimited read.

On page 4-10, add the following entry to Table 4-3:

75 Mouse Driver

10-2

(

(

(

Version 1.42 Release Notes Documentation Errata

On page 4-11, make the following changes to Table 4-4:

• Add bit 10 as follows:

Bit 10: 0 = Install subdriver
1 = Uninstall subdriver

• Change "Bits 10-12" to "Bits 11-12".

In Figure A-1 on page A-2, note that the state bits (8-11) do not
apply to the Toggle characters.

The figure on page A-3 is incorrect. It should be identical to the
figure on page A-11 of the Programmer's Guide:

t1it: 15 14 13 12 11 10 9 8 7 0
+----+----+----+----+----+----+----+----+----+ ----+

! A key
+----+-----+----+ ---+----+----+----+----+----+ ----+

FLEXOS™ USER GUIDE, Second Edition: August 1987 (1073 2004 002)

On page 1-1, change the paragraph:

"An option lets you modify what a command does. Multiple options
are separated from each other by hyphens (-)."

to read as follows:

An option lets you modify what a command does. Multiple options
are separated from each other by hyphens (-). The hyphen is the
default switchar, or options separator (see Table 1-6). The switchar
must be a single character; it cannot be any of the following:

I (backslash) , (comma) ; (semicolon) = (equal sign)

On page 1-10 in Section 1.8.4, change the example to read as follows:

A>DEFINE PROMPT=Your wish is my command$g

On page 3-2, change the example at the top of the page to read as
follows:

10-3

Documentation Errata Version 1.42 Release Notes

"If you are on drive B and you want to run CLEANUP.BAT from drive A,
enter the command:

B>A:CLEANUP

CLEANUP.BAT runs its commands against the files on drive B. When it
is finished, it leaves you in the root directory of drive B.

On page 3-3, make the following changes:

• In the middle of the page change:

DEL %1
DIR %1
DEL %2
DIR %2

to read:

DIR %1
DEL %1
DIR %2
DEL %2

• At the bottom of the page change:

DEL %2
DIR %2
DEL %1
DIR %1

to read:

DIR %2
DEL %2
DIR %1
DEL %1

On page 3-22, delete the sentence that reads:

"VERIFY does this whether it is on or off."

10-4

('
I_ - - -I "--- ,

Version 1.42 Release Notes Documentation Errata

FLEXOS ™ USER'S REFERENCE GUIDE, First Edition: August 1987
(1073-2064-001)

(On page 1-20, change all references of SHELL.EXE to SHELL.286.

(

On page 1-26, change the example

A>COPY B:MYFILE

to read as follows:

A>COPY B:MYFILE.TXT

On page 1-43, make the following changes:

• In the first paragraph under Examples delete the sentence that
reads:

"FlexOS waits for you to enter another command".

• Change the example at the bottom of the page to read as follows:

OFF
-D
Although ECHO is OFF, this message
is displayed.
This line will not be displayed.
ON

TIME
ECHO
ECHO
REM
ECHO
REM
REM

When ECHO is ON, remarks are displayed
as well.

On page 1-51, delete the sentence at the bottom of the page:

"Items in a FOR command line must be filenames."

On page 1-53 and 1-54, disregard any references to physically
formatting the hard disk. You should always assume that a hard disk
has been physically formatted by the manufacturer. The
documentation regarding logically formatting a hard disk is correct.

On page 1-67 in the explanation of the example, change references to
"noname" to "No-Name".

10-5

Documentation Errata Version 1.42 Release Notes

On page 1-92 in the Explanation, change the sentence:

"If you do not specify a path for the source drive, the files are
restored to the current directory."

to read as follows:

"If you do not specify a path for the source drive, files backed up from
the current directory are restored to the current directory."

On page 1-101 make the following changes:

• Change the example command line:

A>SORT < PARTTIME.LST >> FULLTIME.LST >PRN

to read as follows:

A>SORT < PARTTIME.LST >> FULLTIME.LST

• Delete the sentence:

"This file is redirected to the printer device PRN:."

• On page 1-109, delete the sentence that reads:

"VERIFY does this whether it is on or off."

End of Section 10

10-6

'

(

SECTION 11

Change Pages

The pages following this one are change pages for the Programmer's
Uitilies Guide, (1073-2043-001).

Replace all the pages in Appendix B and Appendix H.

11-1

(

(

Appendix B

Creating Shared Runtime Libraries

B.1 Shareable Runtime Libraries

This appendix describes the procedures for creating and modifying
shareable runtime libraries (SRTLs). SRTLs allow multiple users to
share a single copy of library code at runtime. This makes it
unnecessary for each user to store library code in a command file.
When libraries are shared, only references to the library code are
linked with the user's object files.

Before attempting to create or modify shareable runtime libraries, you
should be familiar with the 80286 architecture, memory models, and
calling conventions. You should also be familiar with conventions
used when writing reentrant code.

You can write most shareable runtime library code in C, or most other
high level languages. The only code that cannot be written in a high
level language is the transfer vector code, which handles the calls
from the user program to the SRTL routines. Transfer vector code
must be written in 80286 assembly language.

See Section 7 in this manual for a description on how to link
shareable runtime libraries with your object files.

B.2 SRTL Components

A SRTL consists of two types of files:

• A shareable runtime library file which contains the basic shareable
object code created by LIB-86. The filetype is .L86.

• An XSRTL code file which contains an executable version of the
SRTL created by LINK 86. The flletype is .SRL.

This appendix describes how to create these two files.

B-1

B.3 Creating a SRTL Programmer's Utilities Guide

B.3 Creating a SRTL

Creating a SRTL involves the following general steps:

1. If you plan to compile the SRTL using a Large memory model 1,

you must modify the source of the library routines to use the
proper calling conventions.

2. Create the transfer vectors.

3. Compile the source for the library routines and transfer vectors to
create object modules.

4. Create the LIBATIR module.

5. Use LIB-86 to create the SRTL.

6. Use LINK 86 to create an executable SRTL (XSRTL).

These steps are described in detail in the following sections.

B.3.1 Modifying the Source

To create a C language SRTL (in Large memory model) with the
recommended transfer vectors, you must modify the SRTL library
source code. Two modifications are required:

1. The formal parameter lists of the entry point routines in the SRTL
must include three extra words of parameters. These parameters
provide "placeholders" for the extra information inserted onto the
stack by the transfer vector (see Section B.3.2).

2. Any intra-library calls to the entry point routines must have three
words added to the actual parameter list, preceding the "real"
parameters, so local calls emulate the stack activity of external
calls through the transfer vectors. External calls must call the
transfer vector symb_QL'l<l!!I~. but are otherwise unchanged.

1 The type of memory model you use is dependent on your compiler. As used here,

Large refers to a memory model that allocates multiple code, data, and heap segments,

as well as a separate segment tor the stack.

B-2

(

Programmer's Utilities Guide B.3 Creating a SRTL

If transfer vectors are used, intermediate names must be put in
the library. This is also true for Small memory model2 SRTLs
using a transfer vector at the beginning of the library in order to
make all entry points constant.

Using C conditional compilation statements, a single set of sources
could be used for both shareable and nonshareable libraries. as shown
below:

#ifdef NonShareable
strcpy (to, from)

#else

#encj if

char *to, *from;

strcpy (dl, d2, d3, to, from)
WORD dl, d2, d3;
char *to, *from;

#ifdef NonShareable
strcpy (source, target);

#else
strcpy (0, 0, 0, source, target):

#end if

2As used here, Small refers to a memory model that allocates a single segment for the

program's data, heap, and stack.

B-3

8.3 Creating a SRTL Programmer's Utilities Guide

B.3.2 Creating the Transfer Vectors

There are many possible transfer vector calling conventions for
handling calls between user programs and SRTLs. The calling
conventions you use depend on your application and your
programming style. However, the transfer vector calling conventions
described here are the only ones tested and supported by Digital
Research.

There are two types of transfer vectors: User and SRTL.

User Transfer Vector

If the user program uses a Large memory model SRTL, calls to the
SRTL routines must first pass through a transfer vector. This transfer
vector, referred to as a User Transfer Vector, stores the value of the
user program's DS register and loads the SRTL's OS register prior to
entering the SRTL. Upon exiting the SRTL, the transfer vector restores
the user program's OS register. The user transfer vector must reside
in the user program's code space and must have a separate entry for
each entry point into the SRTL.

See Section B.5 for more information on User Transfer Vectors.

SRTL Transfer Vector

If either memory model is being used, you can create an optional SRTL
Transfer Vector that resides in the SRTL. This transfer vector is a
collection of jumps that establish the SRTL entry points at fixed
locations. By making an entry point into the SRTL a fixecj location
(constant virtual address), user programs do not have to be relinked
each time a change is made to the library.

There must be an entry in the SRTL Transfer Vector for each entry
point into the SRTL.

Note: To make SRTL entry points constant, any object modules
containing the SRTL transfer vector must appear immediately ,after the
LIBATTR module in the SRTL.

B-4

c·

Programmer's Utilities Guide B.3 Creating a SRTL

B.3.3 Creating the Object Modules

This step involves compiling the library source files to create library
object files. Be sure to set any compiler options required to generate
the object files using the correct memory model.

B.3.4 Creating the LIBATTR Module

Each SRTL is associated with a specific set of attributes. These
attributes include:

• the SRTL's name
• the SRTL's version number
• the SRTL's data location when using the Small memory model
• whether the SRTL is shared or not shared by default

The attributes of a SRTL are established by including a module with
the name "LIBATTR" in the SRTL library file.

Note: The LIBATTR module must be specified as the fir§! module in
the list.

The LIBATTR module should contain only a single data segment with
name "LIBATTR". The contents of this segment must have the format
indicated by the lib id and lib attr structures shown in the listing
below. The equivalent form in RASM-86 code appears in the example
at the end of this appendix.

struct 1 it) id { -
char 1 i name l 8 I : -
unsigned sho r· t 1 i ver major;

- -
unsiqned st1ort l i ver minor; - -
w1s i qned char l i f 1 ags I 41: -

} ;

struct 1 i b attr { -
1 ib i c1 la id; - -
unsigned short la data offset; -
char la share at tr; - -

} ;

#define LA s SHARED 0•1

B-5

B.3 Creating a SRTL Programmer's Utilities Guide

LIB ID Structure

The lib _id structure defines the fields used to identify the SRTL
including its name, version numbers and flags. The lib _id fields are:

Ii name

Ii_ ver _major

Ii ver minor

li_flags

B-6

This is the physical name of the XSRTL specified by
users of the SRTL. If this field is nonblank, the
library is a SRTL; otherwise the library is a normal
library. ·This field must be ~>_<ac!IY: 8 bytes long,
including trailing blanks.

This is the major version number. It should be
updated when there are major changes to a library
that make it incompatible with previous versions.
The FlexOS program loader verifies that the major
version number specified in a user program is
identical to that of the XSRTL.

This is the minor version number. It should be
updated when changes to the library do not create
incompatibilities with previous versions. The minor
version number specified in a user program does /
not have to exactly match that specified in the
XSRTL.

This field contains flags that distinguish different
variants of the library from one another. Currently,
only the low-order 6 bits of li_flags[3] have been
assigned the following values:

(

(

Programmer's Utilities Guide B.3 Creating a SRTL

Ll_F _ CMD (OxO)

Ll_F _286 (Oxl)

LI F EXE (Ox2)

(Ox3 through OxF)

This flag informs LINK 86 the code file suffix
should be CMD. If this, or any other value is
specified to a version of LINK 86 that cannot
generate that style of code file, an error is
generated. For example, the LINK 86 version
that generates CMD and 286 files cannot
generate an EXE file and vice versa.

This flag informs LINK 86 the code file suffix
should be 286.

This flag informs LINK 86 the code file suffix
should be EXE.

These values are unassigned and cause an
error if specified in a LIBATTR module.

LI F DUP_MAIN (OxlO) This value informs LINK 86 that duplicate
definitions of the symbol "main" are permitted
and should not generate errors.

LI F OS STACK (Ox20) This value informs LINK 86 the stack appears at
the low end of the data segment. When this
bit is set, the value of the data offset field
represents the size of this stack. If multiple
LIBATTR modules are found, the smallest
data offset value is used. Data is allocated
above the stack and the public variable ?STACK,
if present, is initialized to the size of the stack.
The variable ?STACK is assumed to be allocated
a word (2 bytes).

B-7

B.3 Creating a SRTL Programmer's Utilities Guide

LIB A TTR Structure

The fields in the lib_ attr structure determine the SRTL's memory offset,
and whether or not the SRTL is shareable. The lib attr fields are:

la id This field specifies the library id.

la data offset With the Small memory model, this field contains
the fixed address where the SRTL data mu§! appear.
This value is also used to prevent LINK 86 from
allocating user data at the same location as the
SRTL data. With the Large memory model, this field
must have the value OxFFFF.

LA_ SHARE_ ATTR This field tells LINK 86 whether the library by default
is shared (value 1) or not shared (value 0), so you
do not have to specify the SHARED option every
time the library is used. You can override this
default as specified in Section 7.5.

When linking a user program, LINK 86 determines that a library is a /
SRTL by checking the name of the first module in a library. If the first
module has the name "LIBATTR", LINK 86 examines the contents of the
LIBATTR segment to determine the attributes of the library. Depending
on the value of the LA_SHARE_ATTR field and input options, the library
is treated either as a SRTL or as a regular library.

Before creating a LIBATTR module, you must determine the filename of
the executable shareable runtime library (see Section 8.3.6) and the
data offset if the Small memory model is used. You must also ensure
the sizes and offsets of data items correspond to the fields in the
LIBATTR definition given above. The LIBATTR segment must contain
exactly 19 bytes.

When linking your file(s) with a SRTL, do not include the LIBATTR
module in your user code file. The LIBATTR module is used only to
define the attributes of the SRTL and should not be treated as a
normal module. The LIBATTR module is included in the code file only
when the SRTL is linked as a normal, nonshared library (without
specifying the SEARCH option).

8-8

(

(

(

Programmer's Utilities Guide B.3 Creating a SRTL

B.3.5 Creating the SRTL

You create a SRTL using LIB-86. When entering the command line,
you must specify the LIBATTR object file as the first file in the library.
If the optional SRTL Transfer Vector is used, it must be the second
object file in the library.

For example, to create a SRTL named SM 1 SRTL using the LIBA TTR file,
LIBATTR.OBJ, and the object files: TVECT.OBJ, SVCIF.OBJ, and
RTESRTL.OBJ enter the command:

I i tiH6 sm 1 s rt I . I 86 I map, "r·ef I= I i bat tr. oh j . t vec t . obj • svc if . obj. rt es rt 1 . obj

Assuming all calling conventions are correct. you can modify an
existing nonshareable runtime library to create a shareable library by
including a LIBATTR file in the LIB86 command. For example, to make
the nonshareable library OLDLIB.L86 into the shareable library NEWLIB
using a LIBATTR file named LIBATTR.OBJ, enter:

I iti8fi newl iti c I itiattr·.ohj, olcJI ib.186

B.3.6 Creating the XSRTL

A library file cannot be loaded by the operating system and executed.
Therefore, an executable version of the library file must be available.
This version of a SRTL is called the XSRTL (executable Shared Run
Time Library).

Once you create a SRTL, you then create the XSRTL by linking the
SRTL, as shown in the following example. LINK 86 automatically
recognizes the library is a SRTL by the presence of the LIBATTR
module.

The command:

creates a file SM 1 STRL.SRL, containing the executable version of the
library file SM 1 SRTL.L86. With the exception of the LIBATTR module,
LINK 86 processes all code and data from all modules in the library in
the order they appear in the library. During the link process, the
addresses of the data are resolved, but the data is not included in the
XSRTL, which contains only the SRTL code. This convention is
necessary to ensure that the references in a SRTL user program match
the XSRTL, since both are linked separately.

B-9

B.3 Creating a SRTL Programmer's Utilities Guide

The XSRTL has no main program, but this is not a problem, because
LINK 86 knows it is an XSRTL. Also, the XSRTL cannot contain any
unresolved external references, because there is no way to resolve
them separately to each of multiple, simultaneous user programs.

Note that the value of the data offset attribute from the LIBATTR
module determines whether the -XSRTL uses the Small or Large
memory model. If the attribute value is OxFFFF, the Large memory
model is assumed. Any other value indicates the offset of. the SRTL
data within the data segment, which means the XSRTL uses the Small
memory model.

8.4 Small &· Medium Model SRTLs

When creating a SRTL for use with the Small or Medium Memory
Model, you must decide beforehand where the SRTL data appears and
code this as the value of the data offset attribute in the LIBATTR
module. The location DS:O is not- acceptable, because the stack
overflow detection requires the stack to be at the bottom of the data
segment. On the other hand, putting the SRTL data at the top of the
data segment does not efficiently utiliZe memory. The layout of the /
data segment for a Small memory model program should resemble
that specified in Figure B-1.

+---------------+

Heap

+---------------+
Local Data

+---------------+
SRTL Data

+---------------+
Stack

DS:O +---------------+

Figure B-1. Small Memory Model Data Segment

B-10

Programmer's Utilities Guide B.4 Small & Medium Model SRTLs

If the size of the stack exceeds the starting address of the SRTL data,
LINK 86 prints an error message and terminates the link.

(B.4.1 Calling Conventions

(

(

A file compiled using the Small memory model must be linked with a
Small model SRTL so that both the user file and the SRTL can agree
on the location of the SRTL data. This restriction fixes the calling
convention as illustrated in Figure B-2 below.

lJ '• le R S R T L

Ca 11 111<1 SequencH T1 anster Vector Transfer Vector C Prologue/Epilogue

X() X: JMPF X' ----- · -> X': JMPF X -------> X()

- . . (

C code

+<-------------------- ------------------

Figure B-2. Small Memory Model Calling Convention

fhe calling convention shown in Figure B-2 uses a SRTL Transfer
Vector. If no SRTL Transfer Vector is used, the reference to the SRTL
routine would go directly to the SRTL instruction, rather than the JMPF
instruction in the transfer vector.

Note that the SRTL code sequence in Figure B-2 can have one or more
code segments and, therefore, can be used with the standard Medium
memory model consisting of multiple code segments and a single data
segment.

B-11

B.5 Large Model SRTLs Programmer's Utilities Guide

B.5 Large Model SRTLs

To have reentrant code, the SRTL data must belong to the user file,
rather than the SRTL. When using the Large memory model, the user
file must inform the SRTL of the location of its data. As a
consequence, user calls to large memory model SRTL routines must
pass through a User Transfer Vector, as described in Section B.3.2.

B.5.1 Calling Conventions

The SRTL determines the location of the user file's data by mapping all
references to the SRTL through a transfer vector local to the user.
The transfer vector pushes the user's DS and loads the SRTL DS
before calling the SRTL routine, then pops the user's OS after control
returns from the library. This convention is shown in Figure B-3.

U S E R S R T L

Calling Sequence Transfer Vector Transfer Vector C Prologue/Epilogue

X() -------------> X: PUSH OS
U: <-----+ MOV AX,SRTLOS

MOV OS,AX
CALLF X' --------> X': JMPF X -------> _X()

V: POP OS <--------------------+ {
<--------RETF

C code

+<------------}

Figure 8-3. Large Memory Model Calling Convention

Note that this calling convention assumes the creator of the library
coded a transfer vector containing the entry points to the library. If
this were not the case, the CALLF in the user's transfer vector would
directly reference the instruction in the SRTL routine. The transfer
vector on the SRTL side, though not necessary, is recommended.

B-12

(

(

(

Programmer's Utilities Guide B.7 Example SRTL

B.6 SRTL Restrictions

When creating SRTLs, keep the following restrictions in mind:

• XSRTLs cannot contain any unresolved external references.

• XSRTLs cannot contain overlays.

• A SRTL can contain a maximum of 255 object modules, not
counting the LIBATTR module.

B.7 Example SRTL

The following C code tests a Small memory model SRTL by calling the
SRTL subroutine LIST PRINT twice.

!**
Main proqrarn to call a Shared Run Time Library (SRTL)

**!

" x t "n 1 t a r v" i d I i '' t _fH' i n t (f a r· ch a r *) ;

void main ()

I is t pr int (

li•;t print(

tdr char *)'"\11\r\tln Main fir·st time : ");

tar <t1ar •)"\11\r\tl11Mai11 '>PLorirJ time:");

The C code on the following page defines the LIBATTR (Library
Attribute) module. The LIBATTR module defines the attributes used by
LINK 86 when linking XSRTLs (eXecutable SRTLs) and when linking to
other SRTLs. The LIBATTR module must appear as the first module in
a SRTL

B-13

B.7 Example SRTL Programmer's Utilities Guide

I*-.- --- - - - - -- - --- - - ---- - -- - - - - --- - - -- - - - - - - -- - -- - - --- - -- - - - - - - - - - -- - - *
* LIBATTR.C -- The library attribute module for a SRTL *
·---*/

typedef struct
{

char
unsigned short
unsigned short
unsigned char

1 ib_id;

typedef struct
{

1 ib id
unsigned short
char

lib_attr;

1 i_name[B I;
1 i_ver _major;
1 i_ver_minor;
1 i_flags[4);

la_id;
la_data_offset;
la_share_attr;

static lib attr attrib =

} ;

I* -------- Lib id structure --------*/ -
"SM1SRTL " I* 1 i name[B) *I -
Ox9876, I* 1 ; - ver _major *I
Ox5432, I* 1 i ver minor *I -
{ 0,0,0,0x31 } I* 1 i flags[4] *I -

},

Ox0400,
!*-----------------------------------•/

01

I* ·1 a_data_offset */
I* OxFFFF for large model *I
I* Shared attribute *I

/*---------------------------End of LIBATTR.C------------------------*/

The C code on the following page defines SRTL routines that test
Small memory model SRTLs. The LIST PRINT routine loads the string
into the variable I and calls the CONSOLE _PRINT, which prints the
string on the console.

B-14

J

/
I

\"'

(j

(

(

Programmer's Utilities Guide B.7 Example SRTL

I*

'C' Shared thm Time Libr·ary routines

•I

#i111 Jude "tlextab.t1"

!*****************************•••····································
FILL CHAR is <t MetaWare intrinsic function *

············~···········••********•••••*****************************!

#do;ti11H tilktill(wllHrH,what,how_many) _fill_char(where,how_many,what)

#do;f·irie llfW PAHM'., t1Jktill(&pblock,NULL,sizeof(pblock))

H X t Hl"fl

tar

I Oflq

void
I onq

SVC it () ;

listprint(far

LOllSO\f~ pr1nt(

cha") ;

tar char *) ;

/**
LI STPRINT *

Tl1is is the e11try into the Shared Run Time Library for the *
sarnp I e prnrJr am TEST. C *

**!
tar· void I is t pr i 11 t

r n n.:;, n I A pr' i n t (

r 011sole __ p<'i'1t(

tar char *i

ten char *)"\n\rNow in the SRTL XX

) ;

) :

B-15

B.7 Example SRTL Programmer's Utilities Guide

!**
*
*
*
*

CONSOLE PRINT
This is the same as a runtime library call to the S WRITE

*
*

function. We must use it here because we can not use any *
external references outside of our Shared Run Time Library. *

**!
long console_print(_far char *buffer
{

struct PARAMBLOCK pblock;

ZERO_PARMS; I* zero-init entire parm block */

pblock._pf lags = O;
pblock._pparaml = lL;
pblock. pparam2._pp21ong
pblock._pparam3 24L;
pblock._pparam4 OL;

I* Fnum for STDOUT */
(LONG)buffer ;

I* Length of the Write. */

return(_svcif(F_WRITE, (far BYTE *)&pblock));

/*---------------------------End of RTESRTL.C------------------------*/

End of Appendix B

B-16

(/

(

Appendix H

LINK 86 Error Messages

During the course of operation, LINK 86 can display error messages.
The error messages and a brief explanation of their cause are listed
below. The number in parenthesis following the error message is the
system return code. This number can be used with the IF command in
a batch file to determine if an error condition is true of false.

Table H-1. LINK 86 Error Messages

Message Meaning

NO BLOCK OR DIRECTORY ENTRIES AVAILABLE (01)
There is no more space available on the disk for
data or directory entries.

8087 IN OVERLAY, NOT .IN ROOT (02)
The 8087 emulator, if used, must be referenced in
the root if it is to be referenced in an overlay.

8087 SWITCH OCCURRED AFTER FIRST FILENAME (03)
The HARD8087, AUT08087, and SIM8087 switches
must not appear after the first object file listed on
the command line.

8087 TABLE OVERFLOW (04)
The 8087 fixup table needed with the AUT08087 or
SIM8087 options can have a maximum size of 64K.

ALIGN TYPE NOT IMPLEMENTED (05)
The object file contains a segment align type not
implemented in LINK 86.

H-1

H LINK 86 Error Messages Programmer's Utilities Guide

Table H-1. {continued)

Message Meaning

CANNOT CLOSE (06)
LINK 86 cannot close an output file. Check to see if
the correct disk is in the drive and the disk is not
write-protected or full.

CLASS NOT FOUND (07)
The class name specified in the command line does
not appear in any of the files linked.

COMBINE TYPE NOT IMPLEMENTED (08)
The object file contains a segment align type not
implemented in LINK 86.

COMMAND TOO LONG (09)
The total length of input to LINK 86, including the
input file, cannot exceed 2048 characters.

DISK READ ERROR (11)
LINK 86 cannot properly read a source or object file.
This is usually the result of an unexpected end-of
file character. Correct the problem in your source
file.

DISK WRITE ERROR (12)
A file cannot be written properly; the disk is
probably full.

ERROR IN LIBATTR MODULE (13)

H-2

The LIBATIR module does not conform to
established requirements. Fix the LIBATIR module
and rebuild the library in question.

(

Programmer's Utilities Guide H LINK 86 Error Messages

Table H-1. (continued)

Message Meaning

FIXUP TYPE NOT IMPLEMENTED (14)
The object file uses a fixup type not implemented in
LINK 86. Make sure the object file has not been
corrupted.

GROUP NOT FOUND (15)
The group name specified in the command line does
not appear in any of the files linked.

GROUP OVER 64K (16)
The group listed must be made smaller than 64k
before relinking. Either delete segments from the
group, split it up into 2 or more groups or do not
use groups.

GROUP TYPE NOT IMPLEMENTED (17)
LINK 86 only supports segments as elements of a
group.

INVALID LIBRARY-REQUESTED SUFFIX (18)
The command file suffix requested by a library is
not supported. Verify that the correct library is
being used.

LINK-86 ERROR 1 (19)
This error indicates an inconsistency in the LINK 86
internal tables, and should never be emitted.

MULTIPLE DEFINITION (20)
The indicated symbol is defined as PUBLIC in more
than one module. Correct the problem in the
source file, and try again.

MORE THAN ONE MAIN PROGRAM (21)
A program linked by LINK 86 may have at most one
main program.

H-3

H LINK 86 Error Messages Programmer's Utilities Guide

Message

NO FILE (22)

Table H-1. (continued)

Meaning

LINK 86 cannot find the indicated source or object
file on the indicated drive.

OBJECT FILE ERROR (23)
LINK 86 detected an error in the object file. This is
caused by a translator error or by a bad disk file.
Try regenerating the file.

RECORD TYPE NOT IMPLEMENTED (24)
The object file contains a record type not
implemented in LINK 86. Make sure the object file
has not been corrupted by regenerating it and
linking again.

SEGMENT OVER 64K (25)
The segment listed after the error message has a
total length greater than 64k bytes. Make the
segment smaller, or do not combine it with other
PUBLIC segments of the same name.

STACK COLLIDES WITH SRTL DATA (26)
The base address of SRTL data does not allow
enough room for the requested amount of stack
space. Change the base of the SRTL data in the
LIBA TTR module or request less stack.

SRTL DAT A OVERLAP (27)
The data from 2 SRTLs overlap. Change the base
address in the LIBATTR module of one of the SRTLs.

SRTL CANNOT CONTAIN 8087 FIXUPS (28)

H-4

A SRTL cannot use the 8087 emulator as currently
implemented.

(

(

Programmer's Utilities Guide H LINK 86 Error Messages

Table H-1. (continued)

Message Meaning

SEGMENT CLASS ERROR (29)
The class of a segment must be CODE. DATA,
STACK, EXTRA, X1, X2, X3, or X4.

SEGMENT ATTRIBUTE ERROR (30)
The Combine type of the indicated segment is not
the same as the type of the segment in a previously
linked file. Regenerate the object file after changing
the segment attributes as needed.

SEGMENT COMBINATION ERROR (31)
An attempt is made to combine segments that
cannot be combined, such as LOCAL segments.
Change the segment attributes and relink.

SEGMENT NOT FOUND (32)
The segment name specified in the command line
does not appear in any of the files linked.

SYMBOL TABLE OVERFLOW (33)
LINK 86 ran out of Symbol Table space. Either
reduce the number or length of symbols in the
program, or relink on a system with more memory.

SVNT AX ERROR (34)
LINK 86 detected a syntax error in the command
line; the error is probably an improper filename or
an invalid command option. LINK 86 echoes the
command line up to the point where it found the
error. Retype the command line or edit the INP file.

TARGET OUT OF RANGE (35)
The target of a fixup cannot be reached from the
location of the fixup.

·--·---·-----·----------------------------

H-5

H LINK 86 Error Messages Programmer's Utilities Guide

Table H-1. (continued)

Message Meaning

TOO MANY MODULES IN LIBRARY (36)
A library cannot contain more than 512 modules.
Split the library into 2 or more libraries and relink.

TOO MANY MODULES LINKED FROM LIBRARY (37)
A library cannot supply more than 512 modules
during the linkage process. Split the library into 2
or more smaller libraries and relink.

UNDEFINED SYMBOLS (38)
The symbols following this message are referenced
but not defined in any of the modules being linked.

XSRTL MUST BE LINKED BY ITSELF (40)
When linking an XSRTL, no other files may be linked
at the same time.

XSRTLs INCOMPATIBLE WITH OVERLAYS (41)
An XSRTL cannot use overlays.

OBJECT FILE OVER 64K (42)
The object file created by LINK 86 is greater than
64k. Break the code into modules and relink.

TOO MANY MODULE NAMES (43)

H-6

There are too many library module names. Combine
modules and relink.

End of Appendix H

Change Pages Version 1.42 Release Notes

The pages following this one are change pages for the FlexOS
Programmer's Guide, First Edition November 1986 (1073-2024-001).

Replace the following pages:

1-3, 1-4

3-11, 3-12, 3-19, 3-20, 3-21, 3-22

7-7, 7-8, 7-9, 7-10, 7-15, 7-16, 7-57, 7-58, 7-59, 7-60, 7-63, 7-64,
7-71, 7-72, 7-85, 7-86, 7-87, 7-88, 7-117a, 7-117b, 7-118

8-1, 8-2, 8-5, 8-6, 8-9, 8-10, 8-23, 8-24, 8-24a, 8-24b, 8-25, 8-26,
8-27, 8-28, 8-43, 8-44, 8-45, 8-46

B-3, B-4, B-5, B-6, 8-7, B-8, B-9, B-10

11-2

(

FlexOS Programmer's Guide 1.2 Supervisor Calls

Table 1-2. (Continued)

Purpose Call Action

Real Time and Process Management

TIMER*
ABORT'"'
COMMAND'''
EXCEPTION
MALLOC
MFREE
EXIT
ENABLE
DISABLE
SWIRET
CONTROL*
OVERLAY

Device Management

SPECIAL'''
DEVLOCK
INSTALL

Table Management

GET
SET
LOOKUP

Set and wait for timer interrupt
Abort specified process
Perform command
Set software interrupts on exceptions
Allocate memory to heap
Free memory from heap
Terminate with return code
Enable software interrupts
Disable software interrupts
Return from software interrupt
Control a process for debugging
Load overlay from command file

Perform special device function
Lock or unlock device for user/group
Install, replace and associate drivers

Get a table
Set table values
Scan and retrieve tables

1' Your program can call these SVCs asynchronously.

Table 1-3 lists the SVCs by their number.

1-3

1.2 Supervisor Calls FlexOS Programmer's Guide

Table 1-3. Supervisor Calls by Number

Number Call Number Call

0 F_GET 21 Reserved
1 F_SET 22 F_GIVE
2 F_LOOKUP 23 F BWAIT
3 F_CREATE 24 F_TIMER
4 F_DELETE 25 F _EXIT
5 F_OPEN 26 F_ABORT
6 F_CLOSE 27 F_CANCEL
7 F_READ 28 F _WAIT
8 F_WRITE 29 F _STATUS
9 F_SPECIAL 30 F _RETURN
10 F_RENAME 31 F _EXCEPTION
11 F _DEFINE 32 F _ENABLE
12 F_DEVLOCK 33 F_DISABLE
13 F_INSTALL 34 F_SWIRET
14 F_LOCK 35 F _IVIALLOC
15 F_COPY 36 F _MFREE
16 F _ALTER 37 F_OVERLAY
17 F_XLAT 38 F_COMMAND
18 F RWAIT 39 F_CONTROL
19 F _KCTRL 40 F GSX
20 F_ORDER 41 F _SEEK

1.2.1 Calling Conventions

FlexOS Supervisor calls are made by invoking the FlexOS entry point.
The entry point takes two arguments and returns a value, as follows:

Arguments: a SVC 16-bit number
a parameter block pointer or value, 32-bit

Return: a 32-bit value

1-4

(

FlexOS Programmer's Guide 3.1 Console File System

RECT C Structure

The RECT data structure defines a rectangular region of a FRAME. The
point of reference is the FRAME coordinates of the region's upper
lefthand corner. The region's width and height are specified within the
data structure in terms of character rows and columns. The SVCs
using the RECT structure specify which FRAME planes are included in
the RECT. Figure 3-5 shows the RECT data structure diagram. The
corresponding C structure is as follows:

•,trtu:t fffCl

I•

0

4

WORD row.r:ol ,nr,ow,ncol;

Top lett corner FRAME coordinates
and RECT width ancj height*/

+-------+-------+-------+-------+
ROW COL

+-------+-------+-------+-------+
NROW NCOL

+-------+-------+-------+-------+

Figure 3-5. RECT Structure

The RECT fields are defined as follows:

• row: The row coordinate relative to the FRAME of the rectangle's
upper lefthand corner (counting begins at row 0)

• col: The column coordinate relative to the FRAME of the
rectangle's upper lefthand corner (counting begins at row 0)

• nrow: The number of rows (height) in the rectangle

• ncol: The number of columns (width) in the rectangle

3-11

3.2 Controlling the Console FlexOS Programmer's Guide

3.2 Controlling the Console

Console attributes such as screen and keyboard modes, cursor
location, and the number of character rows and columns are contained
in the CONSOLE table. You manage the console screen on a FRAME
basis with the ALTER and COPY SVCs and on a character basis with
the WRITE SVC.

3.2.1 Console Attributes

The CONSOLE table is your reference source for information regarding
console attributes and conditions. Figure 3-6 illustrates the CONSOLE
table data structure. To get or set your process's CONSOLE table, use
0 or 1 or the stdin and stdout file numbers from the ENVIRON table as
the GET or SET ID value

0 1 2 3
+--------+--------+--------+--------+

0 TAHEAD ! SMODE !
+--------+--------+--------+--------+

4 ! KMODE CURROW !
+--------+--------+--------+--------+

8 CUR COL ! NROWS !
+--------+--------+--------+--------+

12 ! NCOLS ! VCNUM ! TYPE !
+--------+--------+--------+--------+

16 ! !
+

20 !
+

24 I

CNAME +

+--------+--------+
I

+--------+--------+

Figure 3-6. CONSOLE Table

3-12

(

FlexOS Programmer's Guide 3.3 Getting Console Input

Opening the Mouse File

The mouse is opened by calling OPEN. In your OPEN call you specify
the mouse name, the access privileges required, and the access mode.
The mouse name is vcxxx/mouse where xxx is a decimal number
indicating the current virtual console number. Get the virtual console
number from the VCNUM field in your standard input file's CONSOLE
table. (Call GET with an ID value of 0 to retrieve stdin's CONSOLE
table.) For example, if the VCNUM value is 3, your mouse name would
be vc003/mouse.

In your OPEN call, specify at least read access privilege. If you need to
set the MOUSE table, request set access as well. For the access mode
specify exclusive mode unless mouse access will be shared by
multiple processes. In this case, specify shared, shared file pointer
mode. Access is restricted to processes with the same family ID.

Your application should close the mouse file when you are done,
otherwise you cannot close or delete the virtual console. CLOSE flag
bit 0 has no meaning with respect to the mouse and· is ignored.

Using BWAIT

Use the SWAIT SVC to monitor button state changes. SWAIT counts
the number of times a specified mouse button condition occurs within
a given time period. A button condition is defined by two criteria:
buttons and their ON or OFF state.

The SWAIT form is as follows:

ret = s~bwalt(c:! icks,fnurn,rnask,state);

<>mask= e __ bwait(swi ,c.1 icks,fn1J1n,rnask,state);

The fnum value is the file number returned when you OPEN the
vcxxx/mouse file. The mask and state parameters are 32-bit values
which define the mouse button condition.

You select buttons for the mask value by their position on the mouse.
The leftmost button is represented by the least significant bit in the
mask; the next button to the left is represented by the next bit, and so
forth. To select the button, set its corresponding mask bit.

3-19

3.3 Getting Console Input FlexOS Programmer's Guide

You define whether the button selected is to be ON or OFF in the
state value. The Console Resource Manager looks only at the state bits
corresponding to the buttons selected in the mask. Set the bit for ON.

As an example of the use of the mask and state fields, consider a
two-button mouse. You can have the following button conditions: "'

1. The left button is pressed (ON) without concern for the state of
any other buttons: mask= 1, state = 1.

2. The left button is pressed while the right button is not: mask = 3,
state = 1.

3. The right button is pressed while the left button is not: mask = 3,
state = 2.

4. The right button is pressed without concern for the state of any
other buttons: mask = 2, state = 2.

5. If either buttons is pressed: mask = 3, state = 3.

Use the clicks value to delimit the event by a specific number of
incidences of the specified button condition. You can specify any
number of clicks between 0 and 255. Use a click value of 0 to
determine the mouse's current condition. BWAIT returns with a value
of 0 when you specify 0 clicks and the mouse is in the condition
defined in the mask and state.

SWAIT counts button conditions for a limited time period--the CLICK
time limit specified in the MOUSE table. If the time period expires
before the BWAIT click count is reached, the event terminates. The
Console Resource Manager starts the timer upon the first incidence of
the condition. Consequently, the count returned is always at least one
except as described above. BWAIT returns a LONG value containing
the following:

32 24 16 0

0 I clicks button state I

3-20

d
I·•'*

FlexOS Programmer's Guide 3.3 Getting Console Input

Using RWAIT

RWAIT establishes an event boundary for the mouse. RWAIT returns
with the row and column coordinates of the mouse's hotspot when it
crosses the boundary. The RWAIT form is as follows:

po~;.ition-= s .. _.rwait(tlaq•-;,t·111Hr1,region);

Hrnask.:..: P. ___ rwdit(swi,tlaqs,fnum,r·egion);

Set RWAIT flag bit 0 to clip the region to the current window borders.
Otherwise, the region can include areas not visible on the parent
screen. Flag bit 1 determines if the event occurs when the form exits
or enters the region. Flag bit 2 allows the region rectangle to be
defined as: COLROW,NCOLS,NROWS instead of the . default
order:ROW,COL,NROWS,NCOLS. The other flag bits are not used.

The region is a RECT structure confined to the calling process's virtual
console's FRAME. The position value returned is 32-bits where the
high order word indicates the row and the low order word the column.

3.4 Managing Virtual Consoles

··~ For applications with multiple processes sharing access to the console
and keyboard, it is often necessary or convenient to have a separate
virtual console for each process. The key to these applications is a
process--the window manager--which creates the virtual consoles,
sets each window's size and position, and passes keyboard and mouse
access from one process to another according to a planned transfer
scheme. (These are basically the same functions as the FlexOS window
manager supplied with the operating system.)

The window manager flow chart would include the following FlexOS
functions; the SVCs used appear in parentheses.

1. Create a virtual console (CREATE).

2. Get the virtual console number (GET).

3. Set the virtual console's window size and location (SET).

(4. Assign the console file to stdin, stdout, and stderr (DEFINE).

5. Define conditions under which keyboard and mouse ownership is
returned (KCTRL and/or MCTRL).

3-21

3.4 Managing Virtual Consoles FlexOS Programmer's Guide

6. Invoke shell or application that will use screen (asynchronous
COMMAND).

7. Give keyboard and mouse ownership to the new virtual console
(GIVE).

8. Read from your keyboard buffer (READ).

9. Reorder the virtual consoles to put the selected one on top
(ORDER).

Steps 1 through 5 are repeated to create each virtual console. You
have a numerical limit of 255 virtual consoles.

3.4.1 Creating the Virtual Consoles and Windows

To create a virtual console, you must specify the c.onsole screen on
which it is to appear. This is called the parent screen. The virtual

. console created is referred to as a child console. Child consoles
created on the same parent screen are referred to as sibling consoles.
There are four rules of virtual console management based on these
relationships:

• A child console always overlays its parent.

• Sibling consoles are "stacked" on the parent in the order of their
creation until reordered by ORDER.

• The ORDER SVC only reorders a "stack" of sibling virtual consoles
and cannot be used to put a parent on top of a child.

• An application always has access to its entire console regardless
of its virtual console's position in the stack and the size of its
window.

Figure 3-9 illustrates the parent, child, and sibling console
relationships and the three rules. As shown in this figure, you can
have multiple tiers of virtual consoles. As you change tiers, the
parent/child relationships change. All virtual consoles on a given level
are siblings.

3-22

(

FlexOS Programmer's Guide 7.3 SWAIT

7.3 BWAIT

C Interface:

UWORD
LONG
LONG

clicks;
mask;
state;

ret = s_bwait(clicks,fnum,mask,state);
emask = e_bwait(swi,clicks,fnum,mask,state);

ret = _osif(F _BWAIT,&parmblk);

parmblk:

0

4

+--------+--------+--------+--------+
! O=sync ! 0 ! clicks !
! l=async!
+--------+--------+--------+--------+

swi
+--------+--------+--------+--------+

8 f num !
+--------+--------+--------+--------+

12 ! mask !
+--------+--------+--------+--------+

16 ! state !
+--------+--------+--------+--------+

7-7

7.3 SWAIT

Parameters:

clicks

fnum

mask

state

Return Code:

ret

7-8

FlexOS Programmer's Guide

Number of times the mouse enters this state within
the "click interval" set up in the MOUSE Table after
this call is made. If clicks is 0 and the mouse is
already in this state, the event is already complete.
A maximum number of 255 clicks is allowed.

Mouse file number

Bit mask of buttons to consider. The lowest order
bit is set if the first mouse button to the left is to
be considered. The second lowest bit corresponds
to the second button from the left. A total of 16
mouse buttons can be supported in the low word of
mask.

Bit mask of buttons that define the button state
given the mask that determines the buttons to
ignore all together in the low word of state. The
event will complete on any of the following
conditions:

• when the number of clicks is satisfied

• when the number of clicks is not satisfied but
the timer interval elapses (see MOUSE Table, in
Section 8).

• when the number of clicks = 0 and the button
is in the state requested

32 24 16 0

I o I clicks button state I

Error Code

(

FlexOS Programmer's Guide 7.3 BWAIT

Description: The BWAIT SVC allows the calling process to wait
until a mouse button state is reached. The mask
determines the number of mouse buttons the calling
process wants considered. For example, by setting
the mask appropriately, a one button mouse can be
expected when there is more than one button.

The clicks field allows the calling process to receive
multi-click mouse input. When a user presses a
mouse button, releases it and presses it again
within the "click interval", the mouse has been
double clicked.

If clicks is set to two, and a second click is not
performed within the "click interval", the event is
considered complete. The return value indicates the
number of clicks actually performed and the last
valid state of the buttons at the time of completion.
If clicks is set to zero, BWAIT returns a zero if the
button state is already in the specified state.
Otherwise, it returns one upon the first entry to the
state.

The "click interval" is changed in the MOUSE table
through the SET SVC.

7-9

7.4 CANCEL

7.4 CANCEL

C Interface:

LONG
LONG

dmask;
events;

FlexOS Programmer's Guide

dmask = s_cancel(events);

dmask = _osif(F _CANCEL,events);

Parameters:

events

Return Code:

dmask

Description:

7-10

Logical OR of event masks to be canceled

Bit map of events that could not be canceled
because they have already completed

The CANCEL SVC terminates one or more specified
asynchronous SVCs. The events argument is the
logical OR of the event masks you want to cancel.
The dmask return code indicates events that,
although requested for termination, had already
completed. Use the RETURN SVC to get the return
codes for these events so the event bits can be
reused.

(

(

FlexOS Programmer's Guide COMMAND

Parameters:

flags bits 0-3 are reserved

swi

command

buffer

bit 4: 1 = No new process (set bit 5 to 1)
0 = New process (ignore bit 5)

bit 5: 1 = Chain
0 = Not implemented (returns E_IMPLEMENT error)

bit 6: reserved (must be 0)

bit 7: 1 = Assign a new process family ID (FID)
0 = Keep the current process family ID (FID)

bits 8-12 are reserved (must be 0).

bit 13: 1 = Force case to media default
0 = Do not affect name case

bit 14: 1 = Literal command
0 = Prefix substitution allowed

bit 15: reserved (must be 0)

Address of a software interrupt routine

Address of 128-byte, null-terminated string
indicating the name of the loadable file.

Address of a variable length buffer containing a
128-byte, null-terminated command tail and special
information to be passed to the new process. (At
most, the command tail can be 127 characters and
one NULL byte long.) COMMAND puts the tail in the
CMDENV table. Data after the first 128 bytes is put
in the process's heap.

7-15

COMMAND

bufsize

procinfo

pid

7-16

FlexOS Programmer's Guide

The PROCESS table contains the heap address and
size. Use this buffer area to pass an environment
string, common data, or special information to the
program.

Size of buffer in bytes

Address of the PINFO table. PINFO must be
constructed as follows:

+--------+--------+--------+--------+

0
+ NAME +

4

+ +--------+--------+

8 ' PRIOR 'reserved'
+--------+--------·+--------+--------+

12 MAXMEM
+--------+--------+--------+--------+

16 ADDMEM
+--------+--------+--------+--------+

20 Length in bytes

name: Process name

prior: Process priority (user processes are usually
set to 200)

maxmem: Maximum memory this process can own
(larger minimum requirements specified by the
command file supercede this amount)

addmem: The amount of memory to be added to
the minimum amount specified by the command file
(FlexOS allocates the greater of the two values:
maxmem or the sum of the command file's specified
minimum plus addmem)

Address of new process ID. COMMAND puts the
new process's 32-bit PID at this location when flag
bit 4 equals 0 and COMMAND is called
asynchronously.

FlexOS Programmer's Guide

7.21 KCTRL

C C Interface:

(

IJ

4

f3

1

1

LONG
UWORD
UWORD
UWORD
RECT

fnum;
nranges;
flags,beg l ,beg2,beg3,beg4;
end l ,end2,end3,end4;
region;

ret s_l<ctrl(fnum,nranges,beg 1,end 1,beg2,end2,. .. end4);
ret s_mctrl(fnum,region);
ret s_gmctrl(fnum,region);
ret _osif(F _KCTRL,&parmbll<);

parmbll<:

t- -- - t --+--------+--------+

() I) flags

+ - - t - -----+--------+--------+

0
..,. ____

-- - -+ - ----+--------+--------+

f n11rn

+ - - ' +--------+--------+

/ ti~q I P, II cJ 1

-t- -- -. t - --+--------+--------+

{) llP,CJ/

' --+---- ----+--------+

:?II IJ.., (J l P,l)cj :J
---+--------+--------+

24 llP,(J4

t - - - -- -- +------- +---------+

(it mouse control)

·- - --t - -----+---------+---- ---+

12 ROW COL
+-- -·--- --------- -- ---------------+

16 NROWS NCOLS
+----- --+--------+------ -+--------+

KCTRL

7-57

KCTRL

Parameters:

7-58

flags

nranges

fnum

begn

endn

region

FlexOS Programmer's Guide

bit 0: 1 = Mouse control

bit 2:

0 = Character control

= default region definition
(ROW,COL,NROWS,NCOLS)

0 = GEM-compatible region definition
(COL,ROW,NCOLS,NROWS)

If bit O = 0, keyboard and mouse ownership is
controlled through characters typed on the keyboard
and the begin range and end range parameters are
required. If bit 0 =1, keyboard and mouse
ownership is controlled through mouse movement
and a region is required.

If bit 2 = 0, the region is GEM-like. If bit 2 = 1, the
region has the default definition.

The number of beginning and ending ranges to
follow--maximum 4.

Console file number of console to get keyboard;
must be console file of the parent virtual console.

First character in range of characters; pressing any
character in range causes keyboard to return to
specified console.

Last character in the range.

RECT structure defining a character rectangle on the
parent's virtual console.

(

FlexOS Programmer's Guide KCTRL

Return Code:

ret

Description:

Error Code

The KCTRL SVC transfers keyboard ownership to the
console file specified by fnum when a character is
entered that falls within any of the four ranges
specified. The initial transfer of ownership is
conferred with the GIVE SVC.

You can specify up to four character ranges. The
ranges are inclusive of the first and last characters.
A single character is specified by using it as the
beginning and. ending character. When a character
falling in the range is typed, that character and all
subsequent characters are diverted to the parent
console file's keyboard buffer. The process
controlling the virtual consoles can either give
control of the keyboard to another virtual console or
take some special action on behalf of the user.

You can also use mouse position to change
keyboard and mouse ownership. In this case you
specify a RECT (see Section 3 for the RECT
description) on the parent console in which the
mouse form must be resident. This region must be
within the virtual console. When the mouse leaves
the region, keyboard and mouse ownership go back
to the parent. This happens as long as the
rectangle's size is greater than 0. The parent's
application must set NROWS and NCOLS to disable
a previously defined s _mctrl if it wants to regain
ownership whenever the mouse is outside the
specified rectangle.

s_kctrl and s_mctrl are disabled by reversing the
order of the beginning and ending character ranges,
or providing a rectangle of size 0.

LOCK FlexOS Programmer's Guide

7.22 LOCK

C Interface:

UWORD
LONG

flags;
fnum,offset,nbytes;

ret = s_lock(flags,fnum,offset,nbytes);
emask = e_lock(swi,flags,fnum,offset,nbytes);
ret = _osif(F _LOCK,&parmblk);

parmblk:

+--------+--------+--------+--------+
0 ! O=sync ! 0 flags

! l=async!
+--------+--------+--------+--------+

4 ! SW i !
+--------+--------+--------+--------+

8 f num !
+--------+--------+--------+--------+

12 offset !
+--------+--------+--------+--------+

16 nbytes !
+--------+--------+--------+--------+

Parameters:

7-60

flags bits 0 and 1 select the LOCK mode

0 = Unlock
1 = Exclusive lock
2 = Exclusive write lock
3 = Shared write lock

bits 2-3 are reserved (must be 0)

FlexOS Programmer's Guide LOOKUP

7.23 LOOKUP

(C Interface:

~f ,,

UWORD
BYTE
LONG

flags;
table, '''name, #buffer;
key,bufsiz,itemsiz,nfound;

nfound = s_lookup(ta ble,flags,name,buffer,bufsiz,item siz,key);

ret = _osif(F _LOOKUP,&parmblk);

parmblk:

+--------+--------+--------+--------+
0 ! 0 ! table ! flags

+--------+--------+--------+--------+
4 ! 0

+--------+--------+--------+--------+
8 ! name !

+--------+ -------+--------+--------+
12 ! buffer !

+--------+--------+--------+--------+
16 ! buf s i z !

+--------+--------+--------+--------+
20 itemsiz !

+--------+--------+--------+--------+
24 key I

+--------+--------+--------+--------+

Parameters:

table Table Number (Table 10-1 lists the table numbers)

flags bits 0 - 7 are dependent on table type

bits 8 -12 are reserved (must be 0)

7-63

LOOKUP

name

buffer

bufsiz

itemsiz

key

Return Code:

nfound

ret

7-64

bit 13: 1
0

bit 14: 1
0

FlexOS Programmer's Guide

Force name case to media default
Do not change name case

Literal name
Prefix translation allowed

bit 15 is reserved {must be 0)

Address of the table name to search for; names are
case sensitive.

Address of buffer to store information collected.

Size of buffer in bytes.

The number of bytes to store from each table. If
itemsiz is less than the table size, only as many as
complete fields from each table found are written. in
the buffer. If itemsiz is greater than the table size,
the excess area is not modified.

Key from which to continue searching. The key
value depends on the table type. Each table allowing
LOOKUP specifies a key for continued search. The
LOOKUP SVC continues the search from the first
item after the key. A key value of 0 always starts
the LOOKUP search from the beginning of the table.

Number of tables found. LOOKUP stops searching
when the end of the buffer is reached or there are
no more tables. If the last table does not fit into the
remaining buffer space, it is discarded.

Error Code

(

(

(

FlexOS Programmer's Guide

name

Return Code:

bit 4: 1 = Shared
0 = Exclusive

bit 5: 1 = Allow shared reads if shared
0 = Allow shared R/W if shared

hit 6: 1 = Shared file pointer
0 = Unique file pointer

bit 7: 1 = Reduced access accepted
0 = Return error on reduced access

bit 8: 1 = Force logical remount
0 = Do not force logical remount

bit 9: 1 = Force physical remount
0 = Do not force physical remount

bits 10 - 12 are reserved (must be 0)

bit 13: 1 = Force case to media default
0 = Do not affect name case

bit 14: 1 = Literal name
0 == Prefix substitution allowed

bit 15 is reserved (must be 0)

Address of file, pipe, or device name

fnum file number
ret Error Code

OPEN

7-71

OPEN

Description:

7-72

FlexOS Programmer's Guide

The OPEN SVC opens an existing file and returns a
32-bit file number used for subsequent 1/0. "File" in
this context refers to disk files, pipes, and device
files used to communicate with printers, mouses,
consoles, and special devices. FlexOS sets the file
pointer to 0 when you open the file.

Use flag bits 0 through 3 to request the file access
privileges--read, write, execute, and delete/set. Use
flags 4, 5, and 6 to set the access mode--shared
versus exclusive, shared read only versus shared
read/write when shared, and shared versus unique
file pointer. The use of these flags to monitor file
access differs slightly from one type of file to
another. See the sections in this manual on disk
file, console, pipe, and special device management
for the description of flag use with these types of
files.

Set flag bit 6 when you want two or more
processes to share the same file pointer; this
feature is only available to processes with the same
family identification number (FID). Each process
sharing the pointer must have this flag set. When
this bit is set, the value of flag bit 1 is assumed to
be 1; the actual value is ignored.

Set bit 7 to accept reduced access privileges. The
file's governing privileges for owner, group, and
world categories are set when it is created. Reduced
access is an issue when a disk label's security flag
bit is set and you request a privilege level not
available to a process with your ID and group
number. Set this flag to 1 if you can accept
reduced access; FlexOS ANDs the file's R, W, E, and
D privileges corresponding to your category with
those you requested to determine the privileges you
actually get. Set this flag to 0 if you cannot accept
reduced access; FlexOS returns an error code when
the privileges do not match.

FlexOS Programmer's Guide RETURN

7.31 RETURN

(C Interface:

(

LONG em ask;

ret = s_return(emask);

ret = _osif(F _RETURN,emask);

Parameters:

em ask

Return Code:

ret

Description:

Event mask of completed event

return code of asynchronous SVC

The RETURN SVC retrieves the return code of an
asynchronous SVC. If the event is not complete,
FlexOS waits for it to complete before returning
from the RETURN call. Use WAIT or STATUS to
determine if the event has completed. The return
code is the code that would have been returned if
the SVC had not been called synchronously. Once
the RETURN SVC has been called, the event's emask
bit is cleared.

Note: You cannot use RETURN for events with a
software interrupt (swi). The event's completion is
provided to the swi and is not kept available to the
parent process.

7-85

RWAIT FlexOS Programmer's Guide

7.32 RWAIT

C Interface:

0

4

8

RECT '''region;

position = s_rwait(flags,fnum,region);
emask = e_rwait(swi,flags,fnum,region);

ret = _osif(F _RWAIT,&parmblk);

parmblk:

+--------+--------+--------+--------+
1 O=sync !

! l==async~

0 flags

+--------+--------+--------+--------+

swi
+--------+--------+--------+--------+

f nurn
+--------+--------+--------+--------+

1 2

+ region
16

+--------+--------+---- ---+--------+

Parameters:

flags bit 0: 0 return on entry from rectangle
return on exit to rectangle

bit 1: 0 no clip
clip to visible view of the window

bit 2: 0 default region definition
1 = GEM-compatible region definition

bits 3-15 are reserved and must be 0.

7-86

(

FlexOS Programmer's Guide RWAIT

fnum

region

IL

+-----

1fi

- +

File number of open mouse file

RECT structure describing a rectangular area of the
screen associated with the mouse.

[)pt au l t r-P.q ion

-- -~--------+--------+

coiumn

- -----+-----------------+

ll f () w ~") ncols
+ - - -- - - .- - + - -· - - - - - - + - - - - - - - - + - - - - - - - - +

GEM-compatible region
+- +--------+--------+--------+

1 l column row
+ -- -- +-·-·-------- -·-----·- +

1 fi llC ()Is rlr'OWS . - -- -+·-- +

Return Code:

ret Error Code

Position (see diagram below)

cur·1·ent f'OW (or column) cur r-ent co I urrir1 (or row) I

Description: The RWAIT SVC allows a process to detect the
mouse entering or exiting a described region of the
screen.

If bit 0 = 0, RWAIT checks only inside the current
view on the screen. If bit 0 =1, the rectangle can be
outside the visible view to complete the event.

7-87

SEEK FlexOS Programmer's Guide

7.33 SEEK

C Interface:

7-88

LONG
UWORD

fn u m,offset;
flags;

position = s_seek(flags,fnum,offset);

ret = _osif(F _SEEK,&parmblk);

parmblk:

+--------+--------+--------+--------+
O ! O ! 0 ! flags !

+--------+--------+--------+--------+
4 ! 0 !

+--------+--------+--------+--------+
8 fnum

+--------+--------+--------+--------+
12 ! offset !

+--------+--------+--------+--------+

FlexOS Programmer's Guide WAIT

7.39 WAIT

(C Interface:

(

LONG events.cmask;

cmask = s_wait(events);

ret = _osif(F _WAIT.events);

Parameters:

events Logical OR of emasks to wait for

Return Code:

cmask Bit map of completed events

Error Code e_emask if all the events are invalid

Description: The WAIT SVC causes the calling process to wait for
an asynchronous event to occur. Specify one or
more events by their emask in the WAIT events
argument. FlexOS returns when one of these events
has run to completion. For events that do not have
a software interrupt, the cmask return code
indicates which event completed. Subsequently, call
the RETURN SVC to retrieve the return code of the
completed event. This also releases that emask so
it can be reused.

You can wait on ·events that have a software
interrupt (swi). However, the event bit in the cmask
returned is 0 rather than 1 when WAIT returns. Also,
do not call RETURN to retrieve the completion code
after WAIT returns--the completion is no longer
available having already been provided to the swi
for handling.

7-117a

WAIT

7 - l l 7b

FlexOS Programmer's Guide

·If multiple events are being waited on and one or
more are invalid they are ignored. If they are all
invalid, an error E_EMASK is returned.

(

(

WRITE

7.40 WRITE

C Interface:

LONG
BYTE
UWORD

fnum,bufsiz,offset,nbytes;
option/'buffer;
flags;

FlexOS Programmer's Guide

nbytes = s_write(flags,fnum,buffer,bufsiz,offset);
emask = e_write(swi,flags,fnum,buffer,bufsiz,offset);

ret = _osif(F _WRITE,&parmblk);

parmblk:

+--------+--------+--------+--------+
0 ! O=sync ! option ! flags

! l=async! !
+--------+--------+--------+--------+

4 ! swi !
+--------+--------+--------+--------+

8 ! f num !
+--------+--------+--------+--------+

12 ! buffer ! ·
+--------+--------+--------+--------+

16 ! bufsiz !
+--------+--------+--------+--------+

20 offset
+--------+--------+--------+--------+

7-118

f-

SECTION 8

System Tables

System status and parameter values are available to applications
through the GET, SET, and LOOKUP SVCs which operate on a set of
formalized data structures that comprise FlexOS's system tables. This
section presents descriptions of the system tables in alphabetical
order.

The GET SVC transfers the table to a buffer in the application's
memory space. The SET SVC changes values in a table. For both
SVCs, the table is identified by its number and, when that table type
has more than one version, a unique ID number. The LOOKUP SVC
searches for and retrieves tables of the same type. Each table that
can be accessed with LOOKUP has a key value field; use this field to
specify a starting point for the search.

The GET, SET, and LOOKUP SVCs will not access all of the system
tabies. Tauie 8-1 iisb each of the system tables and the SVCs used
to access them. Also listed in Table 8-1 are each table's number, ID,
and key value.

8-1

System Tables FlexOS Programmer's Guide

Table 8~1. System Table Access

Table No.
& Name

Unique LOUK
GET SE~

OH PROCESS X
lH ENVIRON X

2H TIMEDATE X

3H MEMORY X
lOH PIPE X

20H DISKFILE X
21H DISK X

30H CONSOLE X
31H PCONSOLE X
32H VCONSOLE X
33H MOUSE X

40H SYSTEM X

41H FILNUM X
42H SYSDEF
43H PROCDEF
44H CMDENV
45H DEVICE

x

46H PATHNAME
71H PRINTER X
75H MOUSE DT X
81H PORT
82H+ SPECIAL

x
x

x
x
x

x
x
x
x
x
x
x

x
x
x
x

ID

pid

0

0

0

fnum

fnurn

fnurn

f nurn

f num

fnurn

fnurn

0

fnurn

pid

fnum

fnum
fnurn

fnum

lJP

x

x
x

x
x

x
x
x

x
x

Key Description

rJid Process infor1natior1
Pr,ocess envi r-onrnent

System time of day
System memory tJSe

key Pipe information

key Disk file information
Disk device information
Console file infcH'matiori
Console device infor·rnation

VCNUM Console information
Mouse information
Global system information

fnum Fi le number's table

key
key

System logical name table
Process logical name table
Command environment

key Device information
none Ful 1 path name

Printer device information

Mouse driver table information
Port device intormatior1
Special device information

In the following system table descriptions, only those fields marked
R/W are read-write; all other fields are read-only. In all bit-mapped
values the bits for which there are no options are reserved and must
be 0.

Note: FlexOS does not maintain memory representations for the
tables described in this section. The corresponding resource manager
or driver constructs them only when you call the GET, SET, or LOOKUP
SVCs.

8-2

(

FlexOS Programmer's Guide CONSOLE Table

• KMODE (R/W): Keyboard mode

bit 0: 1 = Disable Control-C
0 = Control-C attempts external abort

bit 1: 1 = Disable Control-S/Control-0
0 = Allow Control-S/Control-Q

bit 2: 1 = Disable keyboard s_xlat translation table
0 = Translate keys

bit 3: 1 = Disable ESC sequence decoding
0 = Support ESC sequence

bit 4: 1 = Characters are 16-bit values
0 = Characters are 8-bit values

bit 5: 1 = Disable echo
0 = Echo input characters on screen

bit 6: 1 = Disable CTRL-Z
0 = CTRL -Z = end of file

bit 7: 1 = Enable toggle characters
0 = Disable toggle characters

bit 8: 1 =Convert <LF> or <CR> to <CR><LF>
0 = Do not convert <LF> or <CR>

bit 9: 1 = Do not echo carriage returns
0 = Echo carriage returns

bit 10: 1 = Do not echo <CR> on any delimiter
0 = Echo <CR> on any delimiter

• CURROW (R/W): Current cursor row position

• CURCOL (R/W): Current cursor column position

8-5

CONSOLE Table FlexOS Programmer's Guide

• NROWS: Height of virtual screen in character rows

• NCOLS: Width of virtual screen in character columns

• VCNUM: Decimal number of virtual console

• TYPE: Type of virtual console

bit 0: 1
0

bit 1: 1
0

bit 2: 1
0

bit 3: 1
0

bit 4: 1
0

bit 5: 1
0

Graphics capability
Character only

No numeric keypad
Keypad

Mouse support
No mou~e support

Color
Black and white

Memory-mapped video
Serial device

Currently in graphics mode
Currently in character mode

• CNAME: Physical console device name

Each console file opened has a corresponding CONSOLE table. The
TAHEAD, CURROW, and CURCOL values are initialized to 0 when the
console file is opened. NROWS and NCOLS correspond to the rows and
columns set in the virtual console. SMODE and KMODE are initialized
to O; TYPE and CNAME are inherited from the parent console.

GET and SET the CONSOLE table using as the ID the file number
returned when you OPENed the file vcxxx/console. Do not use the file
number returned when you CREATEd the virtual console. For most
applications, this file number is contained in the stdout--the screen
file number--and stdin--the keyboard file number--in the ENVIRON
table. Stdin and stdout can have the same or different file numbers.

Use SET to change the cursor position and the screen and keyboard
modes.

8-6

(

FlexOS Programmer's Guide DEVICE Table

• INSTAT: Installation status

OxOO - Not installed
OxO 1 - Requires subdriver
Ox02 - Owned by the Miscellaneous Resource Manager
Ox03 - Owned by another driver
Ox04 - Optional subdriver

• OWNERID: Significant 16 bits of the key field of the owner's
DEVICE table entry. Use this value with a LOOKUP to find the
driver that owns this subdriver. This field is only valid when
INSTAT has a value of Ox03.

The DEVNAME, TYPE, ACCESS, and KEY values are established when
the device is installed and do not change. The ACCESS flags override
conflicting requests made by programs when they open the device.

The INSTAT and OWNERID values are also static except for subdrivers
assigned to different drivers. In this case, the current values are
subject to change as the driver is linked and unlinked to different
owners.

~ You must use the LOOKUP SVC to get DEVICE tables. Wildcards can be
' used in the LOOKUP device name specification.

(

8-9

DISK Table

8.4 DISK Table

Number
21H

GET?
Yes

SET?
Yes

LOOKUP?
No

ID: File number returned by OPEN
Key: none

FlexOS Programmer's Guide

The DISK table describes a disk driver. All fields are read-only except
the label options.

8-10

(

(

FlexOS Programmer's Guide

8.9 MOUSE Table

Number
33H

GET?
Yes

SET?
Yes

LOOKUP?
No

ID: File number returned by OPEN
Kev: none

MOUSE Table

The MOUSE table describes a pointing device. Every installed pointing
device has a MOUSE table. The initial values are set by the driver and
you can set all of them except for the PIXROW and PIXCOL.

() 2
I) + - - - -- -- - -- + - ~+ --------+---- ----+

ROW COL

!KEV\TATE'RESERVED! BUTTON'.>
A +- ------+--------+--------+--------+

PIXROW PIXCOL
12 +--------+ -------+--------+--------+

CLCCKTIME 1 HEIGHT ' WIDTH
16 +--------+--------+--------+--------+

HO I ROW HOT COL

20 +--------+--------+--------+--------+

+ MASK (16 words) +

52 +--- ·-+--------+--------+--------+

+ DATA (16 words) +

84 +--------+--------+--------+--------+

• ROW (R/W): Current row position of mouse

• COL (R/W): Current column position of mouse

8-23

.JIOUSE Table FlexOS Programmer's Guide

• KEYSTATE: Keyboard state of the right Shift, left Shift, Control,
and Alt keys

Bit 0 right Shift key
Bit 1 left Shift key
Bit 2 Control key
Bit 3 Alt key

0 ~ up position
1 - down position

• BUTTONS: The least significant bit is the leftmost button. Total
buttons supported is 16.

• PIXROW: Number of mickeys per pixel for rows

• PIXCOL: Number of mickeys per pixel for columns

• CLICKTIME (R/W): Click interval in milliseconds (usually 174)

• HEIGHT (R/W): Height of mouse form

• WIDTH (R/W): Width of mouse form

• HOTROW (R/W): Hot row of mouse form

• HOTCOL (R/W): Hot column of mouse form

• MASK (R/W): On a bit map screen, a 16 x 16 pixel rectangle that
masks the effect of the DATA rectangle.

• DATA (R/W): On a bit map screen, a 16 x 16 pixel rectangle to
"BLT" to the screen given the mask.

The ROW and COL values are updated by the Console Resource
Manager to indicate the current mouse location. You can, however, set
these values to move the mouse form to a location without device
input. The HEIGHT and WIDTH values have a maximum value of 4, but
can be less. If either is less, the length of the MASK and DATA fields
is not affected.

8-24

(

(

FlexOS Programmer's Guide

8.9a MOUSE DRIVER Table

Number
75H

GET7
Yes

SET?
Yes

LOOKUP?
No

ID: File number returned by OPEN
Key: none

MOUSE DRIVER Table

The MOUSE Driver is a device driver for a pointing device such as a
mouse, tablet, touch screen, light pen, joystick, or other similar device.
Every installed pointing device has a MOUSE Driver table. Normally, a
MOUSE Driver is optionally owned by the console driver as a
subdriver. The MOUSE driver itself requires a PORT subdriver to
connect to the physical 1/0 port.

After loading and linking a PORT Driver, the MOUSE Driver is owned by
the Resource Manager and then you can use GET and SET on this
table. However, after the MOUSE Driver is linked to and optionally
owned by a CONSOLE Driver, this table is inaccessible.

The CONSOLE Driver sets the ROW MAX and COL MAX values for - -
maximum resolution in graphics mode (e.g. 640 x 200) using a SET call,
then makes a GET call to read the values for BUTTONS, PIXROW, and
PIXCOL from the MOUSE Driver.

Note: All row and column values are absolute pixel values of the
physical screen.

Sample installation script:

dvrload mouseO: hdO:\drivers\mdrv.drv lnrws ;load the mouse driver

dvrlink mouseO: ptO: ;link it to serial port 0

dvrlink conO: mouseO: ;make mouse driver a subdriver

;of the console driver

if you want to connect it to serial port 1:

dv r·un I k rnouseO:

dvrload rnouseO: hdO:\drivers\mdrv.drv lnrws

dvrlink mouseO: ptl:

dvrlink conO: mouseO:

;uni ink driver from console

; load the mouse driver again

;link it to serial port 1

;make mouse driver a subdriver

;of the console driver

8-24a

MOUSE DRIVER Table FlexOS Programmer's Guide

0

4

8

10

16

20

+----------------- ----+-----------------------+

ROW MAX COL MAX

RESERVED NUM BUTTONS

PIXROW PIX COL

DOUBLE V DOUBLE X

CURRENT ROW CURRENT COL

BUTTON STATE RESERVED
+---------- -----------+-----------------------+

• ROW MAX (R/W): Maximum value of row position of MOUSE in
pixels

• COL MAX (R/W): Maximum value of column position of MOUSE
in pixels

• NUM BUTTONS: Number of buttons supported by driver

• PIXROW: Number of internal pixels for one row (set by driver)

• PIXCOL: Number of internal pixels for one column (set by driver)

• DOUBLE Y (R/W): Double the internal delta y values when bigger
than this- value. Optimized for quicker mouse movement

• DOUBLE X (R/W): Double the internal delta x values when bigger
than this- value. Optimized for quicker mouse movement

• CURRENT ROW: Current row position; valid values are 0 to
ROW MA£

• CURRENT COL: Current column position; valid values are 0 to
COL MAX

• BUTTON STATE: Current button state. Each bit represents a
mouse button, with the least significant bit representing the
leftmost button.

bit = 0 button not pressed
bit = 1 button pressed

8-24b

(

(

FlexOS Programmer's Guide 8.10 PATHNAME Table

8.10 PATHNAME Table

Number GET?
46H No

ID: none
Key· none

SET?
No

LOOKUP?
Yes

The PATHNAME table contains the fully-expanded path name for a
defined symbol. LOOKUP is the only way to retrieve a PATHNAME
table; you cannot SET or GET a PATHNAME.

0 1 2 3
+--------+--------+--------+--------+

0 !
+ PATHNAME +

4 !

124
+--------+-------+--------+---------+

128 Length in bytes

The PATHNAME table consists of a single 128 byte field. Only one path
is ever returned when you lookup a defined symbol. If the symbol
specified starts with a defined name, the prefix is substituted for the
symbol. If the first name in the prefix is itself a defined symbol, the
substitution is made again. The search and substitute routine is
repeated until no prefix is found for the starting name.

The SYSDEF and PROCDEF tables are searched when you lookup the
PATHNAME table. (DEFINE only looks in one or the other.) These
tables are searched for the first name in the specification only.

Wildcard characters can be used but they are not expanded; for
example, as asterisk is interpreted only as an asterisk.

8-25

PCONSOLE Table FlexOS Programmer's Guide

8.11 PCONSOLE Table

Number
31H

GET?
Yes

SET?
Yes

LOOKUP?
No

ID: File number returned by OPEN
Key: none

The PCONSOLE table describes a physical console device. Each
console installed has its own PCONSOLE table. All parameters are
read-only except the country code.

0 2 :.l
+--------+--------+--------+--------+

iJ

+ NAME +

4

+ +--------+--------+

8 NVC CID
+--- -----+--------+--------+--------+

1 2 ROWS COLS
+--------+--------+--------+--------+

16 CROWS CCOLS
~ -------+--------+--------+--------+

20 ! TYPE 1 PLANES 1 ATTRP EXTP
+--------+--------+--------+--------+

24 COUNTRY I NFKEVS 'BUTTONS I

+--------+----- - +--------+--------+

28 SERIAL #

+---------+---- ---~- -------+--------+

32 MU ROW MU COL
+----------------- ----------------+

40 CHARHEIGHT CHARWIDTH
+--------+--------+- ------+--------+

40 = Length in bytes

• NAME: Console device name

• NVC: Current number of virtual consoles

• CID: Physical console ID number

8-26

(

(_

FlexOS Programmer's Guide PCONSOLE Table

• ROWS: On graphic console devices, this is the number of rows of
pixels. On character console devices, this is the number of
character rows and is the same as CROWS.

• COLS: On graphic console devices, this is the number of pixels in
a row. On character console devices, this is the number of
character columns and is the same as CCOLS.

• CROWS: The number of rows of characters

• CCOLS: The number of columns of characters

• TYPE: Type of console

bit 0: 1 = Graphics capability
O = Character only

bit 1: 1 = No numeric keypad
0 = Keypad

bit 2: 1 = Mouse supported
0 = l'Jo mouse supported

bit 3: 1 = Color
0 = Black and white

bit 4: 1 = Memory-mapped video
0 = Serial device

bit 5: 1 = Currently in graphics mode
0 = Currently in character mode

• PLANES: Planes supported

Bit 0: 1 = Character plane supported
0 = No character plane

Bit 1: 1 = Attribute plane supported
0 = No attribute plane

Bit 2: 1 = Extension plane supported
0 = No extension plane

8-27

PCONSOLE Table FlexOS Programmer's Guide

• ATTRP: Bit map of attribute plane bits supported

• EXTP: Bit map of extension plane bits supported

• COUNTRY (R/W): Country code; in applications that support
multiple character sets, use this value to select a specific set.
Appendix C lists the country codes.

• NFKEYS: Number of function keys supported

• BUTTONS: Number of mouse buttons supported

• SERIAL #: Mouse serial number

• MUROW: Mouse sensitivity in mickey units per row

• MUCOL: Mouse sensitivity in mickey units per column

• CHARHEIGHT: Height of character cell in pixels

• CHARWIDTH: Width of character cell in pixels

The PCONSOLE values are set by the driver. The Console Resource
Manager updates the NVC value as you create and delete virtual
consoles on this console.

To GET and SET a PCONSOLE table (LOOKUP cannot be used), OPEN
the device and use the file number returned as the GET and SET ID
number. In your OPEN call, the only access mode flag bit you can set
is bit 0 and you only need set it if you want to change the country
code.

8-28

(

FlexOS Programmer's Guide TIMEDATE Table

8.20 TIMEDATE Table

Number
2H

ID: 0
Key: none

GET?
Yes

SET?
Yes

LQOKL.JP?
No

The TIMEDATE table contains the system time of day. All fields are
read/write except WEEKDAY. The time is maintained by the kernel once
the starting is set. Use SET to establish the starting time.

0 1 2 3
+--------+--------+--------+--------+

0 YEAR ! MONTH ! DAY
+--------+--------+--------+--------+

4 ! TIME
+--------+--------+--------+--------+

8 ! TIMEZONE ! WEEKDAY!Reserved!
+--------+--------+--------+--------+

12 Length in bytes

• YEAR (R/W): Year; a literal value (for example, 1987 = 1987)

e MONTH (R/W): Month; 1 - 12

• DAY (R/W): Day of the month; 1 - 31

• TIME (R/W): Number of milliseconds since midnight

• TIMEZONE (R/W): Minutes from Universal Coordinated Time

• WEEKDAY: Day of the week; 0 = Sunday, 6 = Saturday

You use an ID value of 0 to GET and SET the TIMEDATE table.

8-43

VCONSOLE Table FlexOS Programmer's Guide

8.21 VCONSOLE Table

Number
32H

GET?
Yes

SET?
Yes

LOOKUP?
Yes

ID: File number returned by CREATE
Key: VCNUM assigned when virtual console created

The VCONSOLE table describes a virtual console. Table values are
established when you CREATE the console. Use read/write fields to
modify window size, location on the virtual console, and placement on
the parent console.

0 1 2 3
+--------+--------+--------+--------+

0 KEY !
+--------+--------+--------+--------+

4 ! MODE VCNUM ! TYPE !
+--------+--------+--------+--------+

8 VIEWROW ! VIEWCOL !
+--~-----+--------+--------+--------+

12 ! NROW ! NCOL !
+--------+--------+--------+--------+

16 ! POSROW POSCOL !
+--------+--------+--------+--------+

20 ROWS COLS !
+--------+--------+--------+--------+

24 ! TOP ! BOTTOM ! LEFT ! RIGHT !
+--------+--------+--------+--------+

28 = Length in bytes

• KEY: Key field for LOOKUP

8-44

FlexOS Programmer's Guide VCONSOLE Table

• MODE {R/W): Window mode

bit 0: 1 = Freeze borders
0 = Synchronize borders (See Note 1, below)

bit 1: 1 = Allow auto view change (See Note 2, below)
0 = Keep view fixed

bit 2: 1 = Keep cursor on edge on auto view change
0 = Center cursor on auto view change

bit 3: 1 = Auto view change on output
0 = Auto view change on input

• VCNUM: Decimal virtual console number

• TYPE: Type of console.

bit 0: 1 = Graphics capability
0 = Character only

bit 1: 1 = No numeric keypad
O = Keypad

bit 2: 1 = Mouse supported
O = No mouse supported

bit 3: 1 = Color
O = Black and white

bit 4: 1 = Memory-mapped video
0 = Serial device

bit 5: 1 = Currently in graphics mode
0 = Currently in character mode

• VIEWROW {R/W): Row coordinate on the virtual console view
upper lefthand corner

C\ • VIEWCOL {R/W): Column coordinate on the virtual console view
1 upper lefthand corner

8-45

VCONSOLE Table FlexOS Programmer's Guide

• NROW (R/W): Number of character rows of the view

• NCOL (R/W): Number of character columns of the view

• POSROW (R/W): Row coordinate on parent virtual console of view
upper lefthand corner

• POSCOL (R/W): Column coordinate on parent virtual console of
view upper lefthand corner

• ROWS: Number of character rows in the virtual console

• COLS: Number of character columns in the virtual console

• TOP: Height in character rows of the top border

• BOTTOM: Height in character rows of the bottom border

• LEFT: Width in character columns of the left border

• RIGHT: Width in character columns of the right border

Notes:

1. Use bit 0 to freeze a border so that intermediate states are not
displayed when you make changes to the border file contents.
Before you change the border file contents, set this bit. After you
have completed the changes, reset the bit. Normally, keep this
flag at 0 so that the borders change as you make changes to the
window dimensions and location.

2. Bits 1 through 3 determine whether the window view changes to
keep the cursor on-screen or the view remains fixed on the same
virtual console coordinates regardless of cursor location. If the
cursor leaves the window and bit 2 = 1, bit 3 determines whether
the view changes when the cursor leaves the view (output) or
when the application READs the keyboard.

8-46

(

FlexOS Programmer's Guide B Error and Return Codes

Table 8-2. Low-order Word Error Code Ranges

Error Code Range Source

0000 - 3FFF
4000 - 407F
4080 - 40FF
4100 - 417F
4180 - 41 FF
4200 - 427F
4280 - 42FF
4300 - 437F
4400 - FFFF

Drivers
Errors Common to All Resource Managers
Supervisor
Memory
Kernel
Pipe and Miscellaneous Resource Managers
Console System
File System
Reserved

For the source of one of the common error codes, see the low byte in
the high order word. The remaining tables in this appendix list define
the error messages by their source. No error codes are currently
associated with the Pipe, Console and Miscellaneous Resource
Managers.

B-3

B Error and Return Codes FlexOS Programmer's Guide

Table B-3. Driver Error Codes

Mnemonic Code Description

E_WPROT OxOO Write protect violation
E_UNITNO Ox01 Illegal unit number
E_READY Ox02 Drive not ready
E_INVCMD Ox03 Invalid command issued
E_CRC Ox04 CRC error on 1/0
E_BADPB Ox05 Bad parameter block
E_SEEK Ox06 Seek operation failed
E_UNKNOWNMEDIA Ox07 Unknown media present
E_SEC_NOTFOUND Ox08 Requested sector not found
E_DKATTACH Ox09 Attachment did not respond
E_WRITEFAULT OxOA Write fault
E_READFAULT OxOB Read fault
E_GENERAL OxOC General failure
E_MISSADDR OxOD Missing address mark
E_NEWMEDIA OxOE New media detected
E_DOOROPEN Ox OF Door has been opened

8-4

FlexOS Programmer's Guide B Error and Return Codes

Table B-4. Error Codes Shared by Resource Managers

Mnemonic Code Description

(
E_SUCCESS OxOL No Error
F_ACCESS Ox4001 Cannot access file--ownership

differences
E_CANCEL Ox4002 Event Cancelled
E_EOF Ox4003 End of File
E_EXISTS Ox4004 File (CREATE) or device (INSTALL) exists
E_DEVICE Ox4005 Device does not match or not found;

for RENAME, on different devices
E_DEVLOCK Ox4006 Device is LOCKed
E_FILENUM Ox4007 Bad File Number
E_FUNCNUM Ox4008 Bad function number
E_IMPLEMENT Ox4009 Function not implemented
E_INFOTYPE Ox400A Illegal lnfotype for this file
E_INIT Ox400B Error on driver initialization
E_CONFUCT Ox400C Cannot access file due to current

usage; for DELETE on open file or
directory with files; for INSTALL,
attempted replacement of driver in use

E_MEMORY Ox400D Not enough memory available
E_MISMATCH Ox400E Function mismatch--file does not support

attempted function; for INSTALL, mis-
match of subdrive type

E_NAME Ox400F Illegal file name specified
E_NO_FILE Ox4010 File not found; for CREATE, device or

directory does not exist
E_PARM Ox4011 Illegal parameter specified; for

EXCEPTION, an illegal number
E_RECSIZE Ox4012 Record Size does not match request
E_SUBDEV Ox4013 INSTALL only: Sub-drive required
E_FLAG Ox4014 Bad Flag Number
E_NOMEM Ox4015 Non-existent memory

(

B-5

B Error and Return Codes FlexOS Programmer's Guide

Table B-4. (Continued)

Mnemonic Code Description

E_MBOUND Ox4016 Memory bound error
E_ILLINS Ox4017 Illegal instruction
E_EDIVZERO Ox4018 Divide by zero
E_EBOUND Ox4019 Bound exception
E_OFLOW Ox401A Overflow exception
E_PRIV Ox401B Privilege violation
E_TRACE Ox401C Trace
E_BRKPT Ox401D Breakpoint
E_FLOAT Ox401E Floating point exception
E_STACK Ox401F Stack fault
E_NOTON286 Ox4020 General Exception
E_EMI Ox4021 Emulated instruction group 1

B-6

(

FlexOS Programmer's Guide B Error and Return Codes

Table 8-5. Supervisor and Memory Error Codes

Mnemonic.

E_ASYNC

E_LOAD
E_LOOP

E_FULL
E_DEFINE
E_UNIT
E_UNWANTED
E_DVRTYPE
E_LSTACK

Code

Ox4080

Ox4082
Ox4083

Ox4084
Ox4085
Ox4086
Ox4087
Ox4088
Ox4089

Memory Error Codes

E_POOL
E_BADADD

Ox4100
Ox4101

Description

Function does not allow
asynchronous 1/0
Bad load format
Infinite req.1rsion (99 times) on prefix
substitution; for INSTALL subdrive type
mismatch
File number table full
DEFINE only: illegal, or undefined name
Too many driver units
Driver does not need subdriver
Driver returns bad driver type
Stack not defined in load header

Out of memory pool
Specified bad address

8-7

B Error and Return Codes FlexOS Programmer's Guide

Mnemonic

E_OVERRUN
E_FORCE
E_PDNAME
E_PROCINFO
E_LOADTYPE
E_ADDRESS
E_EMASK
E_COMPLETE
E_STRL
E_ABORT
E_CTRLC
E_GO
E_INSWI
E_UNDERRUN

B-8

Table B-6. Kernel Error Codes

Code

Ox4180
Ox4181
Ox4182
Ox4183
Ox4184
Ox4185
Ox4186
Ox4187
Ox4188
Ox4189
Ox418A
Ox418B
Ox418C
Ox418D

Description

Flag already set
Return code of aborted process
Process ID not found on abort
COMMAND only: no procinfo specified
COMMAND only: invalid loadtype
CONTROL only: invalid memory access
Invalid event mask, or out of events
Event has not completed
Required SRTL could not be found
Process cannot be terminated
Process aborted by Ctrl-C
Slave process running
Not in SWI context; not a swi process
Flag already pending

(

(

FlexOS Programmer's Guide B Error and Return Codes

Table B-7. Disk Error Codes

Mnemonic Code Description

E_SPACE Ox4300 Insufficient space on disk or in
directory

E_MEDIACHANGE Ox4301 Media change occured
E_MEDCHGERR Ox4302 Detected media change after a write
E_PATH Ox4303 Bad path
E_DEVCONFLICT Ox4304 Devices locked exclusively
E_RANGE Ox4305 Address out of range
E_READONLY Ox4306 RENAME or DELETE on R/O file
E_DIRNOTEMPTY Ox4307 DELETE of non-empty directory
E_BADOFFSET Ox4308 Bad offset in read, write or seek
E_CORRUPT Ox4309 Corrupted FAT
E_PENDLK Ox430A Cannot unlock a pending lock
E_RAWMEDIA Ox430B Not FlexOS media
E_FILECLOSED Ox430C File closed before asynchronous lock

could be completed
E_LOCK Ox430D Lock access conflict
E_FATERR Ox430E Error while reading FAT

Utility return codes follow the same format of operating system error
return codes, as illustrated in Figure B-1, with the following
exceptions:

• Utility return codes are positive numbers (LONGS) because the
high order bit (31) is always zero.

• When possible, you should use the error codes listed in Table B-8
in the error code field {bits 0-15).

• You can designate given modules within an application in the
source field {bits 16-23).

B--9

B Error and Return Codes FlexOS Programmer's Guide

To return errors generated within your application, OR the source field
(module) with the error code field. For example, to indicate that an
application has detected a parameter error, use:

return(UR_SOURCE I UR_PARM);

Do not OR a source field value with UR_SUCCESS, which is a LONG of
zeroes.

B-10

Table 8-8. Utility Return Codes

Mnemonic

UR_SOURCE
UR_SUCCESS
UR PARM
UR_CONFLICT
UR_ UTE RM
UR_FORMAT
INTERNAL
UR_UR_DOSERR

Code

(LONG)O
(LONG)O
Ox0001
Ox0002
Ox0003
Ox0004
Ox0005
Ox0006

Description

Utility return
Success
Parameter error
Contention conflict
Terminated by user
Data structure format error
Internal utility error
PC DOS error

End of Appendix 8

(

SECTION 12

VOi Demo Programs

Diskette PTK 3 contains three programs that demonstrate the
cdpabilities of tt1e Virtual Device Interface (VDI}:

thing [-I < # of points>]

This program draws a simple line-figure; it is useful for testing lines
and line colors. The -I switch tells thing to draw a design with the
specified number of points around the perimeter. By default, thing
draws the figures with from four to ten points around the perimeter.

polyline

This program is documented in the GEM VOi reference manual.

logos

This program draws a number of Digital Research logos on the screen,
using the copy transparent function, draws DRi's slogan over that
using a one of the fonts loaded, and then cycles the colors on 16
color screens (on an EGA device).

All of these programs have the following switches in common

-f device

-m

Sends output to the specified device instead of the
screen.

Emulate monochrome on color devices.

-c colors number Set the maximum number of colors to the argument.
If you specify too many colors, the number defaults
to the maximum available. -m overrides this switch.

End of Section 12

12-1

