
JM

FlexOS
System Guide

Version 1.3

1073-2013-001

COPYRIGHT

Copyright © 1986 Digital Research Inc. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,
mechanical. magnetic, optical, chemical, manual or otherwise, without the prior written
permission of Digital Research Inc., 60 Garden Court, Box DRI, Monterey, California
93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Digital Research Inc. reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research
Inc. to notify any person of such revision or changes.

NOTICE TO USER

This manual should not be construed as any representation or warranty with respect to
the software named herein. Occasionally changes or variations exist in the software
that are not reflected in the manual. Generally, if such changes or variations are
known to exist and to affect the product significantly, a release note or READ. DOC file
accompanies the manual and distribution disk(s) In that event, be sure to read the
release note or READ.DOC file before using the product.

TRADEMARKS

Digital Research, CP/M, and the Digital Research logo are registered trademarks of
Digital Research Inc. FlexOS is a trademark of Digital Research Inc. We Make
Computers Work is a service mark of Digital Research Inc. ADM-3A is a trademark of
Lear-Siegler, Inc. DEC is a registered trademark of Digital Equipment Corporation. IBM
is a registered trademark of International Business Machines. Ouadram is a registered
trademark of Ouadram Corporation. Zenith is a registered trademark of Zenith Data
Systems.

First Edition: November 1986

Foreword

This guide is for the original equipment manufacturer (OEM) and
system programmers who install and use FlexOS.

The FlexOS System Guide is intended for the original equipment
manufacturer (OEM) and system programmer responsible for
implementing FlexOS on a specific computer system. The text
describes FlexOS architecture, its interface to hardware devices, and
the functions available to the driver writer. To use this guide, you
should be familiar with device drivers and the C programming
language.

Digital Research supplies FlexOS as a set of compiled operating
system modules and device drivers for a variety of consoles, disk
drivers, and printers. You can compile these samples to interface to
the corresponding device or use them as models for building your
own hardware interfaces.

The driver routines are written in the C programming language and
make use of the FlexOS C run-time library. Although FlexOS allows
you to write device drivers entirely in C, you might need or prefer to
use assembly language routines in your code where speed of
execution cannot be compromised.

To complete your understanding of FlexOS, you should read the FlexOS
Programmer's Guide for its programming interface and Supervisor calls
description. For the description of the user interface, read the FlexOS
User's Guide. The FlexOS documentation set also includes the
supplements describing important, microprocessor-specific
information. Refer to the supplement corresponding to the
microprocessor in your computer.

iii

Hardware Requirements

You can tailor FlexOS to run in systems based on a variety of
microprocessors. While FlexOS can take advantage of built-in memory
management found in advanced microprocessors, it does not require
such memory management units to create a multitasking environment.
See the processor-specific supplements to this manual for more
information on memory management.

Digital Research® suggests that a minimum FlexOS system contain 512
kilobytes of RAM. FlexOS supports 2 gigabytes of disk storage space.

FlexOS supports a variety of clock devices and memory management
units. FlexOS supplies application programmers with a standard
console and disk interface that supports integrated multi-window and
desktop applications. FlexOS provides support for a broad range of
hardware environments.

Sample device driver code is distributed as models for floppy and hard
disk drives; serial, bit-mapped, and character-mapped consoles; and
serial 1/0 and printer ports.

About this Manual

This manual is organized into the following sections:

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Introduction to the FlexOS operating system.

Overview of the FlexOS I/O system.

System configuration.

Synchronous driver interface to Resource Managers.

Use and function of the FlexOS driver services.

Driver interface to the Supervisor module.

Sections 7 through 11
1/0 functions for console, disk, printer, port, and special
drivers.

Section 12 The FlexOS bootstrap program requirements, memory
image, and SYS utility.

iv

Appendixes System character sets, support for foreign languages,
and window management.

Data Structure Convention

Throughout this manual, data structures are represented in diagram
form as shown below. The corresponding C listing for the diagram
follows the illustration. Word and byte order are important when using
these structures.

o 2 3

o byte 1 I byte2 byte3 I byte4

4 word1 word2

8 long1

12 byte5 I byte6 word3

Data Structure

struct thisstruct
{

BYTE by tel; /* byte offset = 0 */
BYTE byte2; /* byte offset = 1 */
BYTE byte3; /* byte offset = 2 */
BYTE byte4; /* byte offset = 3 */
WORD wordl; /* byte offset = 4 */
WORD word2; /* byte offset = 6 */
LONG longl; /* byte offset = 8 */
BYTE byte5; /* byte offset = 12 */
BYTE byte6; /* byte offset = 13 */
WORD word3 ; /* byte offset = 14 */

} ; /* length = 16 */

v

vi

Contents

System Overview
1.1 Features...................................... 1-1
1.2 Operating System Organization. 1-2

1.2.1 Programs................................ 1-3
1.2.2 The Supervisor Module. 1-4
1.2.3 The Kernel . 1-4
1.2.4 Resource Managers. 1-4
1.2.5 Device Drivers. 1-5

1.3 File Management. 1-6
1.4 Memory Management. 1-6
1.5 Printer Management: Print Spooler. 1-7

2 I/O Overview
2.1 File-Oriented Input and Output _ 2-1
2.2 Organization of 1/0 Modules. .. 2-2

2.2.1 Device Drivers. .. 2-2
2.2.2 Units.................................... 2-3
2.2.3 Resource Managers _ 2-3

2.3 Driver Unit Flow of Control. 2-4
2.4 Steps in Servicing 1/0 Request _ ... _ ... _ 2-4
2.5 Asynchronous 1/0 _ .. ___ 2-5

2.5.1 Support for Handling Asynchronous Events _. 2-5
2.5.2 Synchronous and Asynchronous Interfaces. 2-6

2.6 Sub-drivers _ 2-8
2.7 Installing Drivers. .. 2-10

3 System Configuration
3.1 System Creation. 3-2

3.1.1 Required Modules. 3-2
3.1.2 Steps in Creating FlexOS. 3-2

3.2 The CON FIG Module. 3-3
3.3 Boot Script Installation. 3-3

3.3.1 Boot Script Commands. 3-4

Contents

3.3.2 Logical Name Definitions. 3-6
3.4 Run-time Driver Installation . 3-8
3.5 Example Boot Script. 3-8

4 Driver Interface
4.1 Driver Load Format. 4-1
4.2 Driver Header. 4-2

4.2.1 Driver Header Synchronization Flags. 4-5
4.3 Entry Point Parameter Interface. 4-7
4.4 Driver Installation Functions. 4-8

4.4.1 INIT--Initialize the specified driver unit. 4-8
4.4.2 SUBDRIVE--Associate driver to a sub-driver. 4-12
4.4.3 UNINIT--Uninitialize the Specified Driver Unit. 4-14

5 Driver Services
5.1 Flag System. 5-2

5.1.1 FLAGCLR--Clear a system flag 5-5
5.1.2 FLAG EVENT --Return an event mask 5-6
5.1.3 FLAGGET--Allocate a system flag number 5-7
5.1.4 FLAGREL -":Release a system flag 5-7
5.1.5 FLAGSET --Set a system flag. 5-8

5.2 Asynchronous Service Routines . 5-9
5.2.1 ASRWAIT --Wait for event to complete. 5-11
5.2.2 DOASR--Schedule an ASR 5-12
5.2.3 DSPTCH--Force a dispatch. 5-13
5.2.4 EVASR--Schedule ASR from Process Context. 5-14
5.2.5 NEXTASR--Schedule ASR from an ASR. 5-15

5.3 Device Polling. .. 5-16
5.3.1 POLLEVENT --Poll for event completion. 5-16

5.4 System Memory Management. .. 5-18
5.4.1 MAPU--Map another process's User Memory. 5-22
5.4.2 MAPPHYS--Map Physical Memory. 5-23
5.4.3 MLOCK-- Lock the User Memory 5-24
5.4.4 MRANGE--Perform range checking. 5-25
5.4.5 MUNLOCK--Unlock User Memory. 5-25
5.4.6 PADDR--Convert address: System to Physical. 5-26
5.4.7 SADDR--Convert address: User to System 5-27

5.4.8 SALLOC--Allocate System Memory
5.4.9 SFREE--Free System Memory
5.4.10 UADDR--Convert address: System to User
5.4.11 UNMAPU--Restore User Memory

5.5 Critical Regions
5.5.1 ASRMX--Obtain MXPB ownership :
5.5.2 MXEVENT--Obtain MXPB ownership
5.5.3 MXINIT --Create an MXPB
5.5.4 MXREL--Release an MXPB
5.5.5 MXUNINIT--Remove an MXPB from the system
5.5.6 NOABORT --Enter no-abort region
5.5.7 NODISP--Enter a no-dispatch region
5.5.8 OKABORT --Exit no-abort region
5.5.9 OKDISP--Exit a no-dispatch region

5.6 System Process Creation
5.6.1 PCREATE--Create a system process

5.7 Interrupt Service Routines
5.7.1 SETVEC--Set interrupt vector to ISR

6 Supervisor Interface

Content

5-27
5-28
5-28
5-29
5-30
5-32
5-33
5-33
5-34

. 5-34
5-35
5-35
5-36
5-36
5-36
5-37
5-39
5-40

6.1 Supervisor Entry Point. 6-1
6.1.1 SUPIF--Make a Supervisor call. 6-2

7 Console Drivers
7.1 Console Driver Overview.................. 7-1
7.2 The FRAME and RECT Structures 7-3

7.2.1 Planes................................... 7-3
7.2.2 FRAME Types. 7-7

7.3 Console Driver Entry Points . 7-8
7.4 Console Driver I/O Functions. 7-9

7.4.1 SELECT--Activate keyboard. 7-9
7.4.2 FLUSH--Deactivate keyboard. 7-12
7.4.3 COPY/ALTER--Modifya RECT. 7-13
7.4.4 WRITE--Write data to VFRAME 7-20
7.4.5 SPECIAL Entry Point. .. 7-24
7.4.6 GET--Provide physical console description. 7-30
7.4.7 SET --Change the PCONSOLE Table. 7-34

Contents

8 Disk Drivers
8.1 Disk Driver Input/Output. .. 8-1

8.1.1 Reentrancy at the Driver/Disk Controller Level 8-1
8.1.2 Disk Driver Types. 8-2

8.2 Logical Disk Layouts. 8-5
8.3 Error Handling '. 8-16
8.4 Disk Driver I/O Functions .. 8-17

8.4.1 SELECT--Initialize driver unit. 8-17
8.4.2 FLUSH--Flush intermediate buffers to media. 8-21
8.4.3 READ--Obtain data from disk medium 8-22
8.4.4 WRITE--Write data to disk medium. 8-26
8.4.5 SPECIAL Entry Point .. 8-30
8.4.6 GET --Provide unit-specific information. 8-45
8.4.7 SET --Change unit-specific information. 8-47

9 Port Drivers
9.1 Port Driver Overview . 9-1
9.2 Port Driver I/O Functions . 9-1

9.2.1 SELECT --Enable the specified unit 9-2
9.2.2 FLUSH--Disable port. 9-3
9.2.3 READ--Read data from port 9-4
9.2.4 WRITE--Send data to port. 9-7
9.2.5 GET--Provide unit-specific information. 9-8
9.2.6 SET --Change unit-specific information. 9-13

10 Printer Drivers
10.1 Support for Printers 10-1
10.2 Printer Driver I/O Functions. .. 10-2

10.2.1 SELECT --Enable the specified unit 10-2
10.2.2 FLUSH--Disable Printer. 10-3
10.2.3 WRITE--Write data to printer. 10-5
10.2.4 GET --Provide unit-specific information. 10-8
10.2.5 SET --Change unit-specific information. 10-13

11 Special Drivers
11.1 Special Driver Access
11.2 Special Driver I/O Functions

11.2.1 SELECT --Open a special driver unit for I/O
11.2.2 FLUSH--Close the specified special driver unit .. .
11.2.3 READ--Initiate request for data.
11.2.4 WRITE--Initiate output of data
11.2.5 SPECIAL Entry Point
11.2.6 GET --Provide unit-specific information
11.2.7 SET --Change unit-specific information

12 System Boot
12.1 Boot Overview

12.1.1 Data Disk Layout
12.1.2 Boot Disk Layout

12.2 Boot Record Format
12.3 Boot Loader Outline
12.4 The FlexOS Memory Image
12.5 The SYS Utility

A The FlexOS Standard Input and Output Character Sets
A.l 16-bit Input Character Set
A.2 8-bit Input Character Set
A.3 16-bit Output Character Set
A.4 8-bit Output Character Set.

B Foreign Language Support
B.l Console Driver Support
B.2 Modifying Messages

C Modifying Windows

Contents

11-1
11-5
11-6
11-9

11-11
11-14
11-16
11-19
11-21

12-1
12-2
12-3
12-3
12-7
12-8
12-9

A-l
A-1
A-4
A-6
A-9

B-1
B-1
B-2

C-l

Index. .. Index-l

Tables

1-1 Driver/Resource Manager Relationships. 1-5
4-1 Driver Header Data Fields . 4-4
4-2 Driver Header Synchronization Flags. 4-6

Contents

4-3 Driver Type Values. .. 4-10
4-4 INSTALL Flags. .. 4-11
4-5 SUBDRIVE Parameter Block Data Fields 4-13
5-1 Flag Operations and Flag States 5-5
7-1 Colors Defined in Attribute Byte 7-5
7-2 Foreground Colors with Intensity Bit Set. 7-6
7-3 Fields in SELECT Parameter Block. 7-10
7-4 Fields in COPY/ALTER Parameter Block. 7-14
7-5 FRAME Fields. .. 7-17
7-6 RECT Fields. .. 7-19
7-7 Fields in WRITE Parameter Block. 7-21
7-8 Fields in SPECIAL Function 0 Parameter Block. 7-26
7-9 Fields in SPECIAL Function 4 Parameter Block. 7-30
7-10 Fields in GET Parameter Block. 7-31
7-11 Fields in PCONSOLE Table. .. 7-33
7-12 Fields in SET Parameter Block. 7-35
8-1 Fields in Logical Disk Layout. 8-6
8-2 Fields in Hard Disk Layout. 8-9
8-3 Fields in Partition Table. .. 8-11
8-4 Fields in BPB. .. 8-14
8-5 Media Descriptor Byte Values .. 8-16
8-6 Media Descriptor Block Fields .. 8-19
8-7 READ Parameter Block Fields. .. 8-24
8-8 WRITE Parameter Block Fields. 8-28
8-9 SPECIAL Function 0 Parameter Block Fields. 8-32
8-10 SPECIAL Function 1 Parameter Block Fields 8-34
8-11 SPECIAL Function 2 Parameter Block Fields 8-36
8-12 SPECIAL Function 3 Parameter Block Fields 8-38
8-13 PARMBUF Structure Fields. .. 8-40
8-14 SPECIAL Function 8 Parameter Block Fields. 8-42
8-15 SPECIAL Function 9 Parameter Block Fields 8-44
8-16 GET Parameter Block Fields. .. 8-46
9-1 Port Driver SELECT Parameter Block Fields 9-3
9-2 Port Driver in FLUSH Parameter Block Fields 9-4
9-3 Port Driver READ Parameter Block Fields. 9-5
9-4 Port Driver GET Parameter Block Fields. 9-9
9-5 Port Driver GET/SET Table Fields. 9-11

Contents

9-6 Port Driver SET Parameter Block Fields 9-14
10-1 Printer Driver SELECT Parameter Block Fields. 10-3
10-2 Printer Driver in FLUSH Parameter Block Fields. 10-4
10-3 Printer Driver WRITE Parameter Block Fields. 10-6
10-4 Printer Driver GET Parameter Block Fields 10-9
10-5 Printer Driver GET ISET Table Fields. 10-11
10-6 Printer Status Bit Map 10-12
10-7 Printer Driver SET Parameter Block Fields 10-14
11-1 Driver Access Flags. .. 11-2
11-2 SELECT Parameter Block Fields 11-7
11-3 SELECT Flags. .. 11-8
11-4 FLUSH Parameter Block Fields. 11-10
11-5 READ Parameter Block Fields 11-12
11-6 WRITE Parameter Block Fields 11-15
11-7 SPECIAL Parameter Block Fields 11-17
11-8 GET Parameter Block Fields. .. 11-20
11-9 SET Parameter Block Fields .. 11-22
12-1 Boot Record Fields. .. 12-5
A-1 High-order Byte Values. .. A-1
A-2 Results of 16- to 8-bit Translation A-5
A-3 16-bit Output Character Set .. A-6
A-4 FlexOS Escape Sequences for 8-bit Output. A-10

Figures

1-1 Structure of FlexOS Operating System. 1-3
2-1 1/0 Flow of Control. 2-4
2-2 Asynchronous 1/0 Request. 2-7
2-3 Relationship of Sub-drivers to Drivers. 2-9
4-1 Driver Load Format . 4-1
4-2 Driver Header Format. 4-3
4-3 SUBDRIVE Parameter Block. .. 4-12
5-1 User Space and System Space. 5-19
5-2 Map Parameter Block. .. 5-24
7-1 Console Drivers. 7-2
7-2 FRAME and RECT. 7-4
7-3 SELECT Parameter Block. 7-9

Contents

7-4 COPY/ALTER Parameter Block. 7-13
7-5 FRAME Structure. .. 7-17
7-6 RECT Structure. .. 7-18
7-7 WRITE Parameter Block. .. 7-20
7-8 Dirty Region Format. .. 7-23
7-9 SPECIAL Function 0 Parameter Block. 7-25
7-10 SPECIAL Function 4 Parameter Block. 7-29
7-11 GET Parameter Block. .. 7-31
7-12 PCONSOLE Table. .. 7-32
7-13 SET Parameter Block. .. 7-35
8-1 Logical Disk Layout. 8-5
8-2 Hard Disk Layout. 8-8
8-3 Partition Table. .. 8-10
8-4 BIOS Parameter Block. .. 8-13
8-5 SELECT Parameter Block .. 8-18
8-6 Media Descriptor Block .. 8-18
8-7 FLUSH Parameter Block. .. 8-21
8-8 READ Parameter Block. .. 8-23
8-9 WRITE Parameter Block. .. 8-27
8-10 SPECIAL Function 0 Parameter Block. 8-31
8-11 SPECIAL Function 1 Parameter Block. 8-33
8-12 SPECIAL Function 2 Parameter Block. 8-35
8-13 SPECIAL Function 3 Parameter Block. 8-37
8-14 PARMBUF Structure. .. 8-39
8-15 SPECIAL Function 8 Parameter Block. 8-41
8-16 SPECIAL Function 9 Parameter Block. 8-43
8-17 GET Parameter Block. .. 8-45
9-1 Port Driver SELECT Parameter Block. 9-2
9-2 Port Driver FLUSH Parameter Block. 9-3
9-3 Port Driver READ Parameter Block. 9-5
9-4 Port Driver GET Parameter Block. 9-8
9-5 Port Driver GET/SET Table. .. 9-10
9-6 Port Driver SET Parameter Block " 9-13
10-1 Printer Driver SELECT Parameter Block. 10-2
10-2 Printer Driver FLUSH Parameter Block 10-4
10-3 Printer Driver WRITE Parameter Block. 10-5
10-4 Printer Driver GET Parameter Block. 10-8

Contents

10-5 Printer Driver GET/SET Table ... , 10-10
10-6 Printer Driver SET Parameter Block 10-13
11-1 SELECT Parameter Block. .. 11-6
11-2 FLUSH Parameter Block. .. 11-9
11-3 READ Parameter Block 11-11
11-4 WRITE Parameter Block 11-14
11-5 SPECIAL Parameter Block. .. 11-16
11-6 GET Parameter Block 11-19
11-7 SET Parameter Block
12-1 FlexOS Disk Layout
12-2 Boot Record
12-3 The FlexOS Memory Image
A-1 High-order Byte Definitions for 01 H to 7FH

Listings

11-22
12-2
12-4
12-8
A-2

3-1 Example Boot Script. .. 3-9
4-1 C Language Definition of a Driver Header. 4-2
4-2 C Language Calling Convention. 4-7
8-1 SPECIAL Function 9 Physical Unit Descriptor. 8-45

SECTION 1

System Overview

This section presents a basic overview of the FlexOS operating system,
including a description of its various modules.

1.1 Features

FlexOS is a real-time, multitasking operating system for single- and
mUlti-user microcomputer systems. It is written to be independent of
a system's microprocessor and peripheral equipment. FlexOS's
programming interface allows a programmer to take maximum
advantage of advanced hardware technology, such as bit-mapped
graphics devices or high-capacity disk storage units. The
programming interface is machine-independent, so applications need
not be rewritten for different machines or different sets of peripherals.

The following is a list of the prominent features of FlexOS:

• Runs multiple applications in an asynchronous environment that
allows real-time response to external events.

• Interfaces to microprocessors that provide memory mapping and
memory protection through memory management hardware.

• Allows inter-process communication synchronization through a
pipe system.

• Allows asynchronous 1/0 and timing through an event system. A
process can wait for multiple events or handle asynchronous
events through software interrupts.

• Provides a standard terminal interface and standard character
and bit-mapped screen interfaces.

1-1

1.2 Operating System Organization FlexOS System Guide

• Provides standard keyboard interfaces independent of physical
console types. Supports 8-bit and 16-bit keyboard input modes
with keyboard translation, which allows support for special
characters, function keys, multi-keyed characters and foreign
languages with 16-bit characters, such as KANJI.

• Manages multiple virtual consoles on each physical console.

• Supports real-time data acquisition and background
communications.

• Allows device drivers to be linked with the system or dynamically
loaded at run-time.

• Supplies country codes to determine character set, accounting,
monetary, and date presentation.

• Provides applications with full error recovery facilities from
physical 110 errors on any device.

1.2 Operating System Organization

Figure 1-1 illustrates three distinct parts of FlexOS.

The FlexOS program part consists of utilities, user shell programs,
shared run-time libraries, applications, window managers, and any
other loadable programs calling operating system services. You define
the FlexOS user interface in the program portion.

The system part contains the device and program independent
portions of the operating system. The elements of this portion are the
Supervisor, kernel and resource manager.

The physical part contains all of the system's device-dependent code
for the system's disk drives, consoles, and other peripheral devices.
The code is organized in the form of independent drivers controlled by
a single resource manager.

1-2

FlexOS System Guide 1.2 Operating System Organization

PROGRAM SYSTEM PHYSICAL

Supervisor Resource Drivers
Managers

Utiiities ~I Disk r- -I Disks I
Appli-

cations
~I t- KBoard

Console - Screen
User Super

Programs visor

User r----I Misc r ~ Printer

Inter- Plotter

faces Commun.

r-I I
Special

Window Pipe OEM

Mngmt

Runtime
Library Kernel § MMU

Figure 1-1. Structure of FlexOS Operating System

1.2.1 Programs

All programs loaded from disk, whether applications, utilities, or user
interface programs, run independent of each other. Each runs under a
process context and has separately addressable User Memory.
Programs call the Supervisor for operating system or machine
services.

1-3

1.2 Operating System Organization FlexOS System Guide

1.2.2 The Supervisor Module

The Supervisor controls the flow of requests to the Resource
Managers. The Supervisor parses all names and file numbers to
determine which Resource Manager should obtain a function request.
It handles the DEFINE, CONTROL, COMMAND and OVERLAY Supervisor
Calls (SVCs) directly. These functions do no actual resource
management. but call the Resource Managers for services.

1.2.3 The Kernel

The kernel manages processes and memory. This facilitates
intermachine communications, networking, multi-user, and multitasking
environments. The kernel controls the timer driver and any special
routines for memory management based on the type of memory
management unit. The kernel is based on an event-driven dispatcher
that schedules on a priority basis. Time slicing is done by a timer
event occuring once per tick. A tick occurs every 16 to 20
milliseconds, depending on the implementation of the Timer driver.
Scheduling of equal priority processes is done in a round-robin
fashion.

1.2.4 Resource Managers

A Resource Manager controls the resources associated with it and
provides a standard interface to the device drivers for each category
of device.

The Disk Resource Manager manages the disk file systems on disk
drives. It supports DOS disk media and provides a single interface to
floppy and hard disks.

The Console Resource Manager manages physical consoles, including
the screen and keyboard devices. FlexOS supports virtual consoles
through the console drivers. Applications create virtual consoles
through a Supervisor Call.

The Miscellaneous Resource Manager manages all devices not
managed by other Resource Managers, including plotters, printers,
ports, and communications devices. Drivers for these devices are
referred to as special drivers. The Miscellaneous Resource Manager
places more responsibility on the driver than the other Resource

1-4

FlexOS System Guide 1.2 Operating System Organization

Managers do, passing requests from a calling process to the
appropriate special driver with a minimum of processing.

The Pipe Resource Manager manages interprocess communications
and synchronization through named FIFO memory files called pipes.
These "in-memory" files are used to pass messages from one process
to another or to synchronize activities. There are no devices
associated with the Pipe Resource Manager.

1.2.5 Device Drivers

A device driver is the software interface to a physical device. Device
drivers contain all of the machine- and device-specific code in the
system. Each driver is separately built and is independent of other
drivers.

A device driver is managed by a single resource manager. A device
driver can, however, control multiple devices of the same type. For
example, a disk driver can control a disk controller, which in turn
controls multiple disk drives. Table 1-1 lists the driver types and
indicates the resource manager that controls it.

Table 1-1. Driver/Resource Manager Relationships

Driver Type

Disk
Console
Port
Printer
Communications
Special OEM

There are three ways to install drivers:

Resource Manager

Disk
Console
Miscellaneous
Miscellaneous
Miscellaneous
Miscellaneous

• Integrating the drivers with the system .
• Installing them dynamically when FlexOS is loaded.

1-5

1.4 Memory Management FlexOS System Guide

• Installing them when the system is up and running.

Link the compiled driver files into the system image to permanently
install a driver. To install a driver while FlexOS is loading, add a
DVRLOAD command to the boot script. Use the DVRLOAD command
once the system is running or add an INSTALL supervisor call to your
application to install a driver once the system is up and running.

FlexOS also supports sub-drivers. A sub-driver is constructed just like
a driver, however, the sub-driver is controlled by the driver rather than
a resource manager. In this case, the controlling driver functions as
the subordinate driver's resource manager. Through sub-drivers, one
driver can control multiple devices of the same type with different 1/0
interfaces.

1.3 File Management

FlexOS has a hierarchical. shared-disk file system with record- and
file-locking mechanisms. The disk file system is protected at several
levels Access to files is based on file and directory ownership
through user and group identification numbers. Users identify
themselves through login procedures that can include password
protection. The disk file system thus provides integrity and data
protection in both multi-user and single-user systems.

FlexOS distinguishes between removable and permanent media. It
gives special recognition to removable media on devices supporting
open door interrupts. By knowing the environment. FlexOS optimizes
performance and minimizes lost data.

1.4 Memory Management

FlexOS supports mapped and protected memory management
hardware. Because of the diversity in memory management units,
FlexOS supports a simple memory model that maps into the more
common MMUs on various CPUs.

1-6

FlexOS System Guide 1.5 Printer Management: Print Spooler

1.5 Printer Management: Print Spooler

FlexOS includes a print spooler system in the form of a driver. To
include the spooler, load the driver SPLDVR.DVR, define a subdirectory
as tempdir: (the subdirectory must exist), and make a couple of logical
name definitions for the system printer in your boot script. See the
example boot script in Section 3 for the commands used to load the
spooler driver and to make the appropriate logical name assignments.

To run the spooler, the following files must be ·present with your
printer driver on the boot: drive:

SPLDRV.DRV
SPOOL
DESPOOL

Application program interface for spooler
Executable spooler module
Executable despooler module

In addition, you need the PRINT utility on the system: drive. Only the
PRINT utility is invoked by the user. SPOOL and DESPOOL are invoked
by the spooler driver.

The following spooler description assumes that the spooler driver has
been installed and defined as the prn: device. If you do not intend to
use the spooler, be sure to define another list device as prn:.

Note: Although you define one printer to be the spooler's output
device, the spooler can make use of multiple printers. The destination
printer is selected by the user via the PRINT utility. If you are gOing
to have multiple printers, the device driver must be loaded before the
selection is made. The spooler automatically links to the driver when
the user requests the device; however, it cannot load the device. If the
device specified is not present, the spooler returns an error message.

The spooling system has three components: the spooler driver, the
spooler process, and the des pooler process. The spooler driver creates
the spooler and des pooler processes and a set of pipes used to
control the system. The driver provides both command-line and
application interfaces.

The command line interface uses the PRINT utility to print files. When
the user invokes PRINT, the utility parses the command line and
groups the file specifications in a job. PRINT then sends each file in
the job to the prn: device. Because the spooler driver is defined as the
prn: device, the files are added to the spooler system's print queue.

1-7

1.5 Printer Management: Print Spooler FlexOS System Guide

See the FlexOS User's Guide for the description of the PRINT utility
and its options.

Application programs access the spooler driver through the prn:
device. Like any device, the program must open prn: before it can use
it. When the application writes to the prn:, the spooler automatically
creates a file in the system temporary file directory tempdir: and
records the output therein. The spooler driver closes the file when the
program closes the prn: and adds the file name to its print queue.

The spooler is a user process created by the spooler driver that waits
on a pipe for the file names of files to be printed. The spooler driver
provides the file specifications in this pipe. When a name is received,
the spooler adds it to the end of a print queue. The print queue is
recorded on disk in the system: directory and maintained on a first in
first out. When the spooler is created, it looks to this file to see if
there are any entries. Thus, if the system crashes, jobs in the queue
are preserved and printed when the system is restarted.

The despooler is also a user process created by the spooler driver.
The despooler reads the queue file and prints the file at the top of the
list on the device assigned as the bgprn: device. When the file output
is complete, the despooler removes the entry, moves the next file to
the top of the queue, and prints it. If no file is present, the despooler
waits for an entry to be made.

For the description of spooler use with FlexNet TM, see the FlexNet
User's Guide.

End of Section 1

1-8

I/O Overview

This section
output It
interaction.
control in an
installation.

SECTION 2

explains, in broad terms, how FlexOS performs input and
defines the system liD modules and describes their
This section also contains an overview of the flow of
110 operation and concludes with a discussion of driver

2.1 File-Oriented Input and Output

FlexOS performs input and output by treating a device as a special
kind of file. Programs initialize 1/0 with the OPEN or CREATE
Supervisor Call (SVC). Multiple devices and files can be open
simultaneously. Use the OPEN SVC to open an existing disk file, pipe,
console, or device. Use the CREATE SVC to create and open a new
disk file, virtual console, or pipe.

Both OPEN and CREATE calls return a 32-bit value called the file
number. This value uniquely identifies a specific communication
channel between a process and a device. All device-related 1/0 SVCs
reference this number. The Supervisor then uses the file number to
decide which Resource Manager should receive the request.

You break a communication channel with the CLOSE SVC. Subsequent
attempts to access the device or file return with an error message.
Before the file is closed, FlexOS flushes the write buffers, unlocks
locked regions, and completes outstanding asynchronous events.

The FlexOS file-oriented I/O scheme is normally device-independent.
SPECIAL functions are available to perform certain device-dependent
functions.

2-1

2.2 Organization of I/O Modules FlexOS System Guide

2.2 Organization of I/O Modules

This section discusses the principal components in FlexOS relating to
1/0: device drivers, units, and Resource Managers.

2.2.1 Device Drivers

A device driver is the system software that translates logical 1/0
requests into physical commands to specific devices. Drivers contain
all of the device-specific code in the system. FlexOS does not create
a process for a driver. A driver's code is run by the application and
system processes working through a driver's resource manager.

A driver is composed of a code group and a data group. The code
group consists of a set of primitive functions that control the driver'S
devices. FlexOS prescribes a set of functions for each type of driver.
Each driver type is described in a separate section of this manual. A
driver's functions can use the SVCs available through the
programmer's interface. In addition to the SVCs, drivers can take
advantage of the FlexOS set of driver services, described in Section 5.

The data group contains a data structure called the Driver Header and
the remainder of the driver's image. FlexOS controls a driver through
its Driver Header, which contains entry points to the driver's functions,
indicates whether and to what degree a driver can operate
asynchronously, and holds other information about the driver. The
Driver Header must be the first structure within the driver's data area.

Functions within a driver's code group access the FlexOS driver
services through the Driver Services Table. FlexOS places the address
of the Driver Services Table in the Driver Header.

FlexOS supports both statically- and dynamically-Ioadable device
drivers. Both types of drivers have the same structure, so that drivers
can be written without regard for the time they are linked or loaded.

2-2

FlexOS System Guide 2.2 Organization of 1/0 Modules

2.2.2 Units

Each loaded device driver supports one or more units. Units are
specific instances of physical devices. FlexOS manages devices at the
unit level. Each unit is treated as an independent functional entity
with its own

• name,
• access level, and
• (opti.onally) associated sub-driver(s).

Defined from a unit point-of-view, a device driver is a collection of
functions that .control related units. The only time FlexOS deals with
device drivers, rather than units, is when a driver is installed or
removed from the system. Both installation and removal of drivers is
performed with the FlexOS INSTALL SVC command.

The organization of units into device drivers allows a higher level of
management for groups of associated devices. For example, consider
a system where a single disk controller controls multiple disk drives.
A single device driver manages the controller, while the units
designate individual drives. As far as possible, the device driver uses
the same code to control all of the drives.

FlexOS logically calls each disk drive unit independent of other disk
drives. However, because of driver organization, the disk device driver
can force access to the individual drives to be serial.

2.2.3 Resource Managers

Each driver unit in the system is controlled by a Resource Manager.
Resource Managers translate I/O requests, such as READ or WRITE,
into calls to the appropriate driver unit. Typically, an application
process runs the code in a Resource Manager.

Through the Driver Header, the driver makes available to the Research
Manager the addresses of all its primitive functions. After receiving a
function request, a Resource Manager maps the request to a specific
unit and passes control to the appropriate function in the unit's driver.

2-3

2.4 Steps in Servicing 1/0 Request FlexOS System Guide

A driver is defined by the type of Resource Manager controlling it.
Resource Managers and their drivers fall into four categories: console,
disk, kernel, and miscellaneous. FlexOS also has a Pipe Resource
Manager; however the Pipe RM does not have any drivers associated
with it.

2.3 Driver Unit Flow of Control

The following diagram illustrates the flow of control from an
application to a driver unit.

L-I ~ Resource Driver
Application I Supervisor r------~_M_a_n_ag;;..e_r_;--I~_u_n_it __ ~

Figure 2-1. I/O Flow of Control

In Figure 2-1, a file number is passed from the application to the
Supervisor, which enables the Supervisor to select the appropriate
Resource Manager. In turn, information passed from the Supervisor
enables the Resource Manager to select the correct unit.

2.4 Steps in Servicing I/O Request

Applications must open a file by name before they can access that file.
In FlexOS, by definition, a file specification includes the driver unit
name. Thus, a minimum file specification takes the form
"device:filename." When the file is recorded in a subdirectory rather
than the device's root directory, place the path specification between
the device name and the file name.

The FlexOS Supervisor associates each device with a unique name
defined through the INSTALL SVC. A device name indicates a particular
driver unit and the resource manager that controls it.

2-4

FlexOS System Guide 2.5 Asynchronous 1/0

When a device open call is received, the Supervisor calls the
appropriate resource manager to establish the connection between the
calling process and unit. If the call is successful, the Supervisor sets
up internal control information and returns a file number for the
opened file.

For all file 1/0 calls, the Supervisor translates the specified file number,
calls the appropriate Resource Manager, and provides it with the
control information. The Resource Manager uses this information to
select the appropriate driver unit. The control information is
maintained by the Supervisor until it receives a CLOSE call.

2.5 Asynchronous I/O

FlexOS supports asynchronous I/O functions in its programming and
driver interfaces. Applications can start an" I/O operation, perform
other activities, then wait for the I/O operation to finish at a later time.

2.5.1 Support for Handling Asynchronous Events

Typically, applications use the WAIT SVC to wait for the completion of
one or more 1/0 event, then call the RETURN SVC to obtain the return
code of the completed event. To enable applications to use the
FlexOS asynchronous capabilities, drivers perform their 1/0
asynchronously.

FlexOS provides support for asynchronous drivers with a flag system
whose functions, a subset of the driver services, communicate with
the WAIT and RETURN SVCs. The flag system driver services are
typically called from Asynchronous Service Routines (ASRs), which in
turn, are initiated by Interrupt Service Routines (ISRs). Driver writers
must write their own ASRs and ISRs, according to the requirements of
their hardware and the guidelines given in Section 5.

FlexOS also provides a polling function for non-interrupt-driven drivers
and functions to create and declare critical regions, such as mutual
exclusion regions. These mechanisms for dealing with asynchronous
events are also described in Section 5.

2-5

2.5 Asynchronous 1/0 FlexOS System Guide

2.5.2 Synchronous and Asynchronous Interfaces

A driver's external interfaces can be divided into two classes,
synchronous and asynchronous. The synchronous interface is the
interface between a resource manager and a driver's primitive
functions. Processes request device 1/0 by calling the synchronous
portion of a driver through the resource manager. The asynchronous
interface is the driver's interface to the physical device, represented by
a unit. The following figure illustrates the interaction between the
synchronous and asynchronous portions of an 1/0 request.

2-6

FlexOS System Guide 2.5 Asynchronous 1/0

Appli- Resource Synchronous Asynchronous

cation Manager Driver Driver Hardware
Portion Portion

Async I/O start
READ- .--.

request I/O

~ • FLAGEVENT perform

I operation

~ (return
,

event mask) ~ do other
things ISR

+
Kernel

~
WAIT

~
ASR ,

FLAGSET
sleep ,
until

event (event complete)
complete (retcode stored by kernel

I until RETURN SVC)

~
RETURN

I retcode

Appli-
Kernel Asynchronous Driver Portion Hardware

cation

Figure 2-2. Asynchronous I/O Request

2-7

2.6 Sub-drivers FlexOS System Guide

In Figure 2-2, FLAGEVENT and FLAGSET are driver services provided by
FlexOS. They are described in Section 5.1.

2.6 Sub-drivers

FlexOS allows a driver to become the Resource Manager of another
driver, through a concept called sub-drivers. Under this concept, a
driver can access a specific piece of hardware through the functions
contained in another driver, which becomes the sub-driver to the first
driver. This allows the first driver to access a specific piece of
hardware, while maintaining device-independence.

In response to a request from a driver, a sub-driver can respond in
any of three ways. It can

• perform the requested function,

• pass the request on to its own sub-driver, or

• perform part of the function and pass the request on to a sub-
driver for further processing.

Sub-drivers work at the unit level of a driver. Each driver unit can
independently request one or more sub-drivers of specified types.
Sub-drivers themselves are driver units.

FlexOS guarantees that each driver in the system, including sub
drivers, has only one owner at a time. The owner is either a Resource
Manager or another driver.

A sub-driver's place in the FlexOS I/O scheme is shown in Figure 2-3.

2-8

FlexOS System Guide

Resource
Managers Drivers

~ TIMER.DVR
Kernel 1---------\

. timer: (0)

FLOPPY.DVR
Disk

f--r+- floppy1 : (0)

r-- floppy2: (1)

HDISK. DVR

r-- hd1 : (0)

L....-. hd2: (1)

BMAPDVR
Console

r.--,- con1 : (0)

VTS2.DVR

r- con2: (0)

~ con3: (1)

EPSON.DVR.
Misc - - prt1: (0)

2.6 Sub-drivers

Sub-drivers

SERIAL.DVR

port 1: (0)

port2: (1)

port3: (2)

port4: (3)

PARALLEL. DVR

portS: (0)

Figure 2-3. Relationship of Sub-drivers to Drivers

2-9

2.7 Installing Drivers FlexOS System Guide

In the preceding figure, numbers in parentheses designate driver units.
Port 1: and port 2: under the serial port driver are sub-drivers to
console 2: and 3: under the VT52 driver. In this scheme, con2: and
con3: are the resource managers to port1: and port2:, respectively.

At the same time, port3: and port4: under the serial port driver are
drivers controlled by the Miscellaneous Resource Manager. port5:
under the parallel port driver is a sub-driver to port1: of the printer
driver.

Use of sub-drivers adds flexibility to a system, as the following two
examples illustrate.

Through the use of sub-drivers, you can offer a system that allows the
use of a number of different terminals. FlexOS lets you write a
console driver for a DEC VT-l00 terminal that requires a port type of
sub-driver. The same VT-100 driver could drive a number of different
terminals, as long as there existed port drivers to interface to the
terminals' serial controllers.

To change a terminal, a user need only change a terminal emulation
module, rather than replacing the entire terminal driver code. An OEM
can provide several different terminal emulation modules, which a user
could install through a FlexOS-supported utility or a simple boot script.

2.1 Installing Drivers

FlexOS lets you install a driver by either of two methods:

• Static: Linking a driver into the system

• Dynamic: Linking a driver to a Driver Run-time Library and loading
the driver independently

Dynamically-installed drivers are loaded from disk either through a
boot script or a user commands.

Drivers installed at system link time are linked into the operating
system image and are loaded with FlexOS at boot time. These drivers
are linked with the Driver Run-time Library, which contains addresses
that the driver will need for successful operation. Dynamically
installed drivers are discussed in Section 3.

2-10

FlexOS System Guide 2.7 Installing Drivers

FlexOS loads drivers into memory in the same way it loads
applications, with the exceptions that a driver is loaded into system
space and that FlexOS does not create a process for a driver.

Because all drivers are identical in structure, drivers are written
without regard for the time or method they are to be installed.

End of Section 2

2-11

FlexOS System Guide

2-12

SECTION 3

System Configuration

This section explains, in general terms, how to install drivers and other
implementation-specific modules in a FlexOS system. FlexOS is
shipped with operating system modules, drivers, and boot loaders for
target systems. If your system matches one of the target systems,
you can compile, link, and load FlexOS without writing any code.

Refer to the microprocessor-specific supplements shipped with this
manual for configuration information pertinent to your particular
system. The System Release Notes contain specific directions for a
implementing a FlexOS system based on a given CPU. They also
identify the console, disk, port and printer hardware for which FlexOS
provides sample drivers.

You can use the sample drivers without modification if your system
uses devices identical to those for which these drivers were written.
The rest of this manual provides guidelines for writing your own
drivers or modifying the sample drivers.

Section 3.1 outlines the steps involved in creating a FlexOS system.
Creating a system involves linking drivers and any OEM-supplied
modules into a system.

Section 3.2 describes how to edit the source code for the CON FIG
module to link drivers and OEM-supplied modules into the system.
The CONFIG module drives the FlexOS initialization and configuration.

Section 3.3 explains how to install drivers with the system using the
boot script.

Section 3.4 explains run-time installation.

3-1

3.1 System Creation FlexOS System Guide

3.1 System Creation

The FlexOS OEM distribution diskettes contain the FlexOS object
module files. The modules you can modify are distributed in source
code form. These files have a .C file extension. The diskettes also
contain all the programming tools required to compile, link, and debug
a system. You create a FlexOS system using the linker provided to link
the FlexOS modules and your driver modules.

3.1.1 Required Modules

The link input files (.lNP files) on the FlexOS distribution diskettes
indicate the various combinations of object and library files needed to
create FlexOS. See the System Release Notes for detailed instructions
on object link order. Typically, you link at least one disk driver into the
system image.

3.1.2 Steps in Creating FlexOS

The Programmer's Utilities Guides contains explicit instructions on the
use of the tools used to create a system. In general terms, the steps
in creating a FlexOS system are:

1. Write FlexOS drivers and sub-drivers according to the guidelines
presented in this manual or modify the sample drivers provided to
match your system configuration.

2. Compile all source code with the appropriate C compiler, using
appropriate options and parameters.

3. Add the names of any OEM-supplied object modules to the list of
modules in the CONFIG modules. OEM-supplied modules can
include user interface programs as well as drivers. Section 3.2
tells you how to mOdify the CON FIG modules.

4. Link the object modules with the link utility appropriate to your
system's microprocessor.

5. Process the file containing the operating system file with a chip
specific FIX utility that creates a file containing the absolute
memory image of FlexOS.

3-2

FlexOS System Guide 3.3 Boot Script Installation

The boot loader gets its addresses for loading the FlexOS segments
from the file produced by the FIX utility. Consequently, you can boot
FlexOS in a target system without modifying the boot loader.

Section 12 explains how to build a boot disk.

3.2 The CONFIG Module

The CON FIG modules drive the configuration and initialization of
FlexOS. Edit the source files of the CON FIG modules to add or delete
modules for your particular FlexOS system.

Within the CONFIG modules, the list of Resource Manager modules to
be linked in the operating system is contained in the MODULES Table.
To add a module, you add the file specification of that module to the
MODULES Table.

The code contained in the CON FIG modules is the first code run in ·the
system at boot time. This code initializes the system modules by
calling the main 0 routine. After the modules are initialized, the
BOOTINIT function is entered.

The BOOTINIT function executes the commands in the boot script
CONFIG.BAT, a modified batch file. BOOTINIT accepts standard batch
commands (see the FlexOS User's Guide), the boot script commands
described below, and OEM-written commands. The boot script
commands cali the INSTALL SVC to install drivers.

3.3 Boot Script Installation

The boot script lets you install drivers and sub-drivers, as well as user
interface or window management programs, at boot time.

Drivers installed with the boot script are read from a disk file and
loaded into memory. These drivers are linked with the Driver Run
time Library (DRTL), which supplies critical information on driver
service routine and data addresses in a driver's Driver Header. The
Driver Header is defined in Section 4.2.

A sample boot script is supplied with FlexOS in the CONFIG.BAT file.
Another example is provided at the end of this section. You can

3-3

3.3 Boot Script Installation FlexOS System Guide

modify CONFIG.BAT or create a new boot script. You can also change
the name of CONFIG.BAT. If you change the name of CONFIG.BAT, you
must edit the CON FIG modules from which the boot script is called,
and replace CONFIG.BAT with the new name.

3.3.1 Boot Script Commands .

The boot script commands are described below. For each command,
you must specify an access level. FlexOS returns an error if the access
level is missing.

DVRLOAD--Load a device driver from disk

Syntax:

Return code:

Where:

loadfile

DVRLOAD loadfile devicename accesslevel

o Success
1 Parameter error
2 Failure
3 Sub-driver needed

is the name of a loadable driver file.

devicename is the logical device name of a driver's unit O. A
colon after the devicename is optional

3-4

access level is any combination of the following options:

P = Permanent driver (cannot be removed)
R = Raw READ access allowed
W = Raw WRITE access allowed
S = Raw SET access allowed
E = No exclusive access
L = Lockable (through the DEVLOCK SVC)
M = Multiple partitions allowed
N = Shared access allowed
V = Verify writes allowed

FlexOS System Guide 3.3 Boot Script Installation

DVRUNIT--Add a new unit to an existing driver

Syntax:

Return code:

Where:

olddevice

DVRUNIT old device devicename accesslevel

o Success
1 Parameter error
2 Failure
3 Sub-driver needed

is the device name of the existing driver

devicename is the logical name of the driver's new unit. A
colon after the device name is optional.

accesslevel is any combination of the above options.

DVRLINK--Link an existing driver to another driver

Syntax: DVRLINK devicename subdriver

Return code:

Where:

o Success
1 Parameter error
2 Failure
3 Sub-driver needed

devicename is the name of previously installed device

subdriver is the name of previously installed device which will
be used as a sub-driver by the device designated
by devicename.

3-5

3.3 Boot Script Installation

DVRUNLK--Remove a driver

Syntax:

Return code:

Where:

DVRUNLK device:

o Success
2 Failure

FlexOS System Guide

device is the name of an installed device

Note: If the driver removed has a sub-driver associated with it, the
sub-driver becomes associated with the uninstalled driver's resource
manager.

3.3.2 Logical Name Definitions

A typical boot script contains logical name definitions appropriate to
the hardware implementation. These definitions are made through the
DEFINE SVC which updates the SYSDEF Table, which contains system
wide logical name definitions, or the PROCDEF Table, which contains
definitions for a given process. Which table to modify is indicated in
bit 0 of DEFINE's flags field.

The following logical names are reserved by FlexOS and should be
defined in your CONFIG.BAT file:

• "system:" indicates the global system directory. It is defined in the
SYSDEF Table .

• "a:" - "p:" represent the root directories of the disk drives present.

3-6

For example, if there are four disk drives, they would be called
drives "a:" through "d:" and drives "e:" through "p:" would be
undefined. Disk drives are defined in the SYSDEF Table.

FlexOS System Guide 3.3 Boot Script Installation

• "protect" enables or disables system-wide password protection at
log on. Put the statement:

define -s protect=on

in CONFIG.BAT to select password protection. If password
protection is not required, include the statement:

define -s protect=off

instead. When password protection is required, the LOGON utility
prompts the user to enter his or her password. The "protect"
status is defined in the PROCDEF Table.

• "shell" represents the default user interface program. The
corresponding shell program is run on each virtual console and is
defined in the PROCDEF Table.

• "home:" indicateas the user's initial default directory. It is defined
in the PROCDEF Table.

• "default:" indicates the current directory. It is defined in the
PROCDEF Table.

• "wmanager" indicates the default window manager to run on each
physical console. If you don't want window management, set
"wmanager" to "shell". wmanager is defined in the PROCDEF Table.

• "con:" determines the physical console that the next LOGON
program runs on. The value following "con:" is changed for each
invocation of LOGON. "con:" is defined in the PROCDEF Table.

• "prn:" is the logical device name for the default list device. It is
defined in the SYSDEF Table

• "tempdir:" indicates the directory for temporary files. It is defined
in the SYSDEF Table.

• "bgprn:" is the des pooler's default output device when the user
does not specify a device name with the PRINT command. If you
install the spooler driver, be sure to define prn: as the bgprn:
device.

The sample CONFIG.BAT defines the shell to the FlexOS "command"
utility and a: as the home: and default: devices.

3-7

3.5 Example Boot Script FlexOS System Guide

3.4 Run-time Driver Installation

Drivers installed at run-time are installed identically to those drivers
installed via a boot script. Both kinds of installation use the INSTALL
SVC. Like drivers installed with a boot script, drivers installed at run
time are linked with the Driver Run-time Library, which places critical
driver service routine and process data addresses in the Driver Header.
See Section 4.2 for a description of the Driver Header.

3.5 Example Boot Script

The following is an example boot script. Do not take it as a rigid
template, but rather as an example showing the general mechanisms
available. The CONFIG.BAT file distributed with FlexOS contains a
"bare bones" boot script that you can modify according to your needs.

This example assumes that the system boots from a diskette and that
the driver contained in FLOPPY.DVR was installed at system link time.
The example also assumes that "floppy':" was established at system
link time as the logical device name for the boot drive.

The boot script contains a series of logical name definitions. These
definitions, made through the DEFINE SVC, are explained following the
listing.

3-8

FlexOS System Guide 3.5 Example Boot Script

Listing 3-1. Example Boot Script

REM START OF BOOT SCRIPT
REM

define switchar = -
REM
REM Set up user's default environment.
REM For protect=cff systems, add def~~es for hOme:.

REM wmanager:, and shell:
REM

REM

define -s boot:=hd1:
define -s system:=hdO:commandsl
define -s protect=on
security -O=RWED -G=RWED -W=RE
define -s helplvl = 2
define default = d:

REM Install other disk devices: floppyO: is name
REM of floppy disk driver linked in with system
REM

REM

dvrunit floppyO: floppy1: prwsln
dvrload hdO: floppyO:hdisk.dvr lnwrsm
dvrlmit hrlO: hd 1: 1 nwrsm

REM Define directory on system disk for tempdir:
REM

define -s tempdir:=system:/temp/
REM
REM Set up the logical names A: - D: for installed
REM drives
REM

define -s a:=floppyO:
define -s b:=floppyl:
define -s c:=hdO:
define -s d: =hd1 :

REM
REM Install serial and parallel port drivers
REM

dvrload port 1 : boot:serial.dvr prwsel
dvrunit port 1 : port2: prwsel
dvrunit port 1 : port3: prwsel
dvrunit port 1 : port4: prwsel
dvrload port5: boot:parallel.dvr prwsel

REM
REM Install consoles: For consoles or any driver
REM that needs a sub-driver, you must check the
REM error level of the driver instal led.

3-9

3.5 Example Boot Script

REM

REM

dvrload coni: boot:bmap.dvr prwsl
dvrload con2: boot:vt52.dvr prwsl
if errorlevel 3 dvrlink con2: port3:
dvrunit con2: con3: p
if errorlevel 3 dvrlink con3: port4:

REM Note: portl: and port2: can be accessed

FlexOS System Guide

REM directly by the appl ication program as serial
REM ports or 1 inked I ater to a dynami ca I I Y
REM installed special driver.
REM
REM Install print spooler
REM

REM

dvrload prtl: boot:printer.dvr lnrws
define -s bgprn:=prtl:
dvrload spldrv: boot:spldvr.dvr lnrws
define -s prn:=spldvr:

REM Startup LOGON program on consoles: LOGON opens
REM "con:" for its physical console and runs
REM defined wmanager. LOGON must run in
REM background for bootinit to continue.
REM

REM

REM

REM

3-10

define con:=conl:
back logon

define con:=con2:
back logon

define con:=con3:
back logon

end

End of Section 3

SECTION 4

Driver Interface

This section describes the FlexOS driver interface. The interface is
discussed in terms of driver load format (4.1); the driver header. its
data fields, driver type values, and interface flags (4.2); the calling
conventions for interfacing with the driver 1/0 function entry points
(4.3); and the driver installation functions (4.4).

4.1 Driver Load Format

Drivers are divided into two separate portions, the code group and the
data group. The code group portion of a driver contains all of the
driver's executable code. Once the driver has been loaded into
memory, its code group cannot be modified. The data group contains
the remainder of the driver's image including the Driver Header, the
GET ISET Table, and any fixed heap areas. See Figure 4-1.

High
Memory

Low
Memory

-- Data Group

Driver Header

Code Group

Figure 4-1. Driver Load Format

High
Memory

Low
Memo!),

The method of loading a driver with respect to memory independence
for load image portions and address relocation is dependent upon
computer's CPU and the program load format. Generally, driver
loading procedures are the same as those used to load normal
application programs. There are three major exceptions:

4-1

4.2 Driver Header FlexOS System Guide

• Drivers are loaded into System Space.
• A process is not created to run the driver code.
• A driver header is required in the beginning of the data group.

4.2 Driver Header

FlexOS installs and manages a driver through its driver header. The
Driver Header must be at offset 0 relative to the driver'S data group. It
contains the entry points to the driver's functions used by the
resource manager. The interface to the Driver Header entry points
makes up the synchronous driver interface. Figure 4-2 shows the
format of the driver header. Listing 4-1 contains a C language
definition of the driver header structure. Table 4-1 describes the driver
header contents.

Listing 4-1. C Language Definition of a Driver Header

Define struct DriverHdr

UWORD dh reserve ; / * Reserved */ -
UBYTE dh nbrunits ; / * Max Number of Units Supported */ -
UBYTE dh flags ;/* Flag Word */ -
LONG dh init() ; / * INIT Code Entry Point */ -
LONG dh subdrv() ;/* SUBDRV Code Entry Point * / -
LONG dh uninit() ; / * UNINIT Code Entry Point */ -
LONG dh select() ; / * SELECT Code Entry Point */ -
LONG dh flush() ;/* FLUSH Code Entry Point */ -
LONG dh read () ; / * READ Code Entry Point */

LONG dh write() ; / * WRITE Code Entry Point */ -
LONG dh_get() ; / * GET Code Entry Point */

LONG dh set() ; / * SET Code Entry Point */ -
LONG dh_special() ; / * SPECIAL Code Entry Point */

LONG dh ct 1 1 - ; / * Reserved */

LONG dh ct12 ; / * Reserved */ -
LONG dh ct13 ; / * Reserved */ -
LONG dh rlr ; / * Pointer to Ready List Root *1 -
LONG dh - functab ; / * Pointer to Driver Services Table */

}

4-2

FlexOS System Guide 4.2 Driver Header

o 1 2 3
+-------+-------+--------+--------+

o Reserved Units I Flags I
+-------+-------+--------+--------+

4 INIT Function Entry Point
+-------+-------+--------+--------+

8 ! SUBDRIVE Function Entry Point
+-------+-------+--------+--------+

12 UNINIT Function Entry Point
+-------+-------+--------+--------+

16 SELECT Function Entry Point
+-------+-------+--------+--------+

20 FLUSH Function Entry Point
+-------+-------+--------+--------+

24 READ Function Entry Point
+-------+-------+--------+--------+

28 WRITE Function Entry Point
+-------+-------+--------+--------+

32 GET Function Entry Point
+-------+-------+-~~-----+--------+

36 SET Function Entry Point
+-------+-------+--------+--------+

40 SPECIAL Function Entry Point
+-------+-------+--------+--------+

44 Reserved
+-------+-------+--------+--------+

48 Reserved
+-------+-------+------~-+--------+

52 Reserved
+-------+-------+--------+--------+

56 Pointer to Ready List Root I
+-------+-------+--------+--------+

60 I Pointer to Driver Services Table I
+-------+-------+--------+--------+

Figure 4-2. Driver Header Format

4-3

4.2 Driver Header FlexOS System Guide

Table 4-1. Driver Header Data Fields

Data Field Explanation

Units

Flags

INIT

This unsigned byte indicates the maximum number of units
supported by this driver. A value of 0 indicates support for
an unspecified number of units. INIT for unit 0 is called
immediately following the first INSTALL. The unit number
is incremented on each subsequent INSTALL.

The first four bits of this unsigned byte are used to specify
driver interface information. See Table 4-2.

Address of the driver installation function called by the
INSTALL SVC to initialize each unit of the driver.

SUBDRIVE Address of the driver installation function that manages

UNINIT

SELECT

FLUSH

READ

WRITE

this driver's sub-driver information.

Address of the driver function called by INSTALL to
uninitialize (remove) a driver unit.

Address of the driver function that prepares a driver unit
for subsequent I/O. SELECT is used in conjunction with the
OPEN SVC.

Address of the driver function that "closes" a previously
opened driver unit. The CLOSE SVC is mapped directly to
this entry pOint.

Address of the driver function called when a READ SVC has
been specified.

Address of the driver function called when a WRITE SVC
has been specified.

GET Address of the driver function called to fill a buffer with
information about a driver unit.

SET Address of the driver function called to control the SET
function for the driver's units.

4-4

FlexOS System Guide 4.2 Driver Header

Table 4-1. (Continued)

Data Field Explanation

SPECIAL Address of the driver function called when a process
requests special, device-specific functions.

Pointer to Ready List Root
Address in the FlexOS internal data area of the Process
Descriptor for the process running before the current
asynchronous I/O event was begun. This is the PDADDR of
the process waiting for a system flag to be set which you
pass to the FLAGSET driver service. This field is filled in
by the Supervisor when the driver is installed.

Pointer to Driver Services Table
Address of a table containing the addresses of the FlexOS
driver service routines (see Section 5). This table is used
by the Driver Run-time Library linked with dynamic drivers.
This field is also filled in by the Supervisor when the driver
is installed.

The INIT, SUBDRIVE, and UNINIT driver installation functions are
common to all driver types. See Section 4.4 for their descriptions. The
remaining functions are driver-type dependent and described
separately according to their resource manager in Sections 7, 8, 9, 10,
and 11.

4.2.1 Driver Header Synchronization Flags

Three driver header flags indicate to the driver's resource manager if
that driver can handle multiple I/O requests. The resource manager
then controls the flow of requests to the driver depending upon the
status of these bits. Another bit indicates whether the device
controlled by the driver is 8- or 16-bit oriented. The following table
lists the bit values:

4-5

4.2 Driver Header FlexOS System Guide

Flag

Bit 0:

Bit 1:

Bit 2:

Bit 3:

Bit 4:

Table 4-2. Driver Header Synchronization Flags

Value Meaning

o 1/0 reentrant at the driver level
Synchronize at the driver level

o

o
1

o

o
1

1/0 reentrant at the unit level
Synchronize at the unit level

1/0 reentrant at the Resource Manager Level
Synchronize at the Resource Manager Level

Byte-oriented device
Word-oriented device

Use systems delimited read routine
Use driver-supplied routine for delimited read
requests

Flag bit 0 is the driver level synchronization flag. Set this flag to zero
if the driver is able to handle multiple I/O requests simultaneously. If
the driver must get 1/0 requests one at a time, set flag bit 0 to one.

Flag bit 1 is the unit level synchronization flag. As with the driver, set
this flag to zero if the unit can handle multiple 1/0 requests
simultaneously. Set this flag to one if the unit must complete one
request before receiving another.

If the Resource Manager level interface flag, bit 2, is set, the resource
manager allows the driver to perform a series of 1/0 operations for a
single unit before permitting a different unit to perform another series
of operations. Set this flag when a device being managed by this
driver must be deactivated before another device can be used. If flag
bit 2 is off, each unit can accept multiple outstanding I/O requests.

Flag bit 3 establishes a record size on a device as 1 or 2 bytes. This
flag is used for delimited READs, to determine whether FlexOS will
interpret a device's data as 8- or 16-bit characters.

4-6

FlexOS System Guide 4.3 Entry Point Parameter Interface

Note: The GET function is not considered an I/O request and can be
called at any time regardless of the synchronization flag value.

4.3 Entry Point Parameter Interface

The resource manager provides the driver installation and 1/0
functions with a 32-bit parameter and expects a 32-bit return code.
The parameter is data or the address of a parameter block. The return
code by definition indicates success with a positive value and failure
with a negative value. The success return codes are described in the
function descriptions below. See Appendix B in the FlexOS

. Programmer's Guide for the description of the FlexOS error codes.
Error codes in the range of -64xl03 to -2xl09 are driver-type specific.

The C language entry point parameter interface convention is shown in
Listing 4-2.

Listing 4-2. C Language Calling Convention

Calling Sequence: ret = function(parm);

Function Interface: LONG function(arg)
LONG arg;
{

LONG ret_code;

return(ret code)

SELECT and SPECIAL return driver-type-specific error codes. INIT and
FLUSH return driver-type-specific error codes through the driver's
synchronous interface.

The READ, WRITE, and SPECIAL driver I/O functions are expected to
return event masks through the driver's synchronous interface. These
driver functions pass the completion code through the asynchronous
interface.

4-7

4.4 Driver Installation Functions FlexOS System Guide

4.4 Driver Installation Functions

This section describes the three driver installation functions common
to all driver types: INIT, SUBDRIVE, and UNINIT. These functions map
to the INSTALL SVC's options as follows:

• INIT is called to execute INSTALL options l--Ioad driver--and 2-
add a unit.

• SUBDRIVE is called to execute INSTALL option 3--link two drivers.
• UNINIT is called to execute INSTALL option O--remove a driver

unit.

4.4.1 INIT --Initialize the specified driver unit

Parameter:

High Word
Low Word

INSTALL Flags--see Table 4-4 below
Unit number to be initialized

Return Code:

4-8

Success High word: Return either 0 or sub-drive driver type
value. A zero value indicates that initialization is
complete--no sub-driver is required. At this point
the unit is operational and mapped to a resource
manager. If a sub-driver is required to make this
driver operational, return the sub-driver's driver type
value here. The driver type values are listed in Table
4-3 below.

Low word: Return this driver's driver type value (see
Table 4-3.

E HARDWARE Hardware not available

E EXISTS Specified unit already initialized

E INIT Driver unit could not be initialized

E MEMORY Could not allocate enough System Memory for the
unit

E xxx Driver-specific type of error

FlexOS System Guide 4.4 Driver Installation Functions

The INIT driver function is called by the INSTALL SVC for each unit in
the driver. The INIT driver function must initialize the specified unit's
hardware. This function should also initialize any Mutual Exclusion
Parameter Blocks (MXPBs) the unit will require, call FLAGGET for any
flags to be used by the unit, establish the Interrupt Service Routine
(ISR) vector through a call to the SETVEC driver service, and allocate
System Memory for the unit. You can also use INIT to allocate buffers
for initialized units.

The INSTALL flags selected by the user are specified in the high word
of the entry parameter; the unit number is provided in the low word.
The meaning for each flag value is listed in Table 4-4. INSTALL flag bit
8 is used by the Disk Resource Manager to determine if the disk
device may have partitions. A disk device installed with partitions
allowed cannot be formatted.

INIT must return the installed driver's type value. If the driver unit
requires a sub-driver, INIT must also return the driver type of the
required sub-driver. The following table lists the driver type values:

4-9

4.4 Driver Installation Functions FlexOS System Guide

Table 4-3. Driver Type Values

Hex Value

o
1

11
21
31
38
5x
61
62
63
64
65
71
72
78
79
70
7E
7F
81

82-FF

Driver Type

Invalid or No Driver
Timer Driver
Pipe Driver
Disk Driver
Console Driver
Screen VOl driver
Extension Drivers
Network Protocol Driver
Network Transport Driver
Network Transaction Server Driver
NET: Device Driver
Name Server Driver
Printer Driver
Serial Driver
Printer VOl driver
Metafile VOl driver
Network Resource Manager
DOS Clock Driver Emulator
Null Device
Port Driver
OEM Specific (Special)

Driver type values never end in zero; for example, 70 is an illegal
driver type value. Zero in the second digit is reserved for resource
managers.

4-10

FlexOS System Guide 4.4 Driver Installation Functions

Flag

Bit 0:

Bit 1:

Bit 2:

Bit 3:

Bit 4:

Bit 5:

Bit 6:

Bit 7:

Bit 8:

Bits 9:

Bits 10-12

Table 4-4. INSTALL Flags

Meaning

o = User Raw SET not allowed
1 = Raw SET allowed

Reserved--must be 0

o = User Raw WRITE not allowed
1 = Raw WRITE allowed

o = User Raw READ not allowed
1 = Raw READ allowed

o = Exclusive access only
1 = Shared access allowed

o = Permanent device
1 = Removable device

o = DEVLOCKs not allowed
1 = DEVLOCKs allowed

o = Exclusive access allowed
1 = Shared access only

o = Device partitions not allowed
1 = Partitions allowed

o = Do not verify after disk writes
1 = Verify after disk writes

Reserved--must be 0

4-11

4,4 Driver Installation Functions FlexOS System Guide

Flag

Bit 13:

Bit 14:

Bit 15:

Table 4-4. (Continued)

Meaning

o = Do not force case to media default
1 = Force case to media default

o = Prefix substitution on load name
1 = Literal load name

Reserved--must be 0

4.4.2 SUBDRIVE--Associate driver to a sub-driver

Parameter:

Return Code:

Success

:1

4-12

0

Address of SUBDRIVE parameter block (see Figure 4-3
below)

High word: Set to either 0 or sub-drive. A zero
value indicates that initialization is complete; the
unit is operational and mapped to a driver, Return
the required sub-driver's driver type value if another
sub-drive is needed to complete the hardware
interface. Table 4-3 lists the driver type values.

Low word: Set to O.

2 3

Unit SDUnit Access

SDHeader

Figure 4-3. SUBDRIVE Parameter Block

FlexOS System Guide 4.4 Driver Installation Functions

Table 4-5. SUBDRIVE Parameter Block Data Fields

Field Meaning

Unit Driver unit that requires this sub-driver

SDunit Sub-driver unit number

Access The sub-driver's INSTALL access flags (see above). It is the
higher-level driver's responsibility to honor these flags.

SDheader Address of sub-driver's Driver Header

The SUBDRIVE function links one driver to another. Both drivers must
be previously loaded and initialized. The user specifies in the INSTALL
call which driver is to act as the resource manager and which driver is
to act as the sub-driver. The SUBDRIVE parameter block provides you
with the user's driver selections in the form of their unit numbers.
Also provided in the parameter block are the subdriver's access flags
(specified when that driver was installed) and the address of the sub
driver's driver header. The higher-level driver controls the sub-driver
through the entry points at this address.

Sub-drivers are previously initialized units not currently in use. Once
a unit has been declared a sub-driver, it cannot be, addressed through
its previous device name--it becomes dedicated to the higher-level
driver. The higher-level driver becomes the sub-driver's resource
manager.

4-13

4.4 Driver Installation Functions FlexOS System Guide

4.4.3 UNINIT --Uninitialize the Specified Driver Unit

Parameter: Unit Number

Return Code: o
The UNINIT driver function removes a driver unit from the system.
UNINIT is responsible for releasing any system resources and for
determining that the unit's hardware has been placed in a quiescent
state before it is removed from the system.

Any files open to the unit are closed by the Resource Manager that
controls the unit's driver. The Resource Manager also FLUSHs any
buffers used by the unit.

UNINIT should not call a sub-driver's UNINIT function because FlexOS
may map the sub-driver to another driver. It is important that UNINIT
call the sub-driver's FLUSH function.

If every unit in a driver has been uninitialized, the driver can be
removed from System Memory.

End of Section 4

4-14

SECTION 5

Driver Services

FlexOS provides a number of services to drivers not available through
the normal programmer interface. This section describes those
services and where a driver would use them.

The driver service functions are ·described in C and are available to
drivers whether they are dynamically installed or linked into the
system image. Drivers linked with the system can access driver
services directly. Drivers loaded from disk can link to a Driver Run
time Library, which indirectly calls the appropriate operating system
routines.

The Driver Run-time Library accesses operating system functions by
looking up the addresses of these routines in a table supplied by the
operating system. The location of this table is placed into the driver
header at the time the driver is installed.

The driver service functions are grouped into the following seven
categories:

• the flag system (Section 5.1)
• Asynchronous Service Routines (5.2)
• device polling (5.3)
• memory management (5.4)
• critical regions (5.5)
• system process creation (5.6)
• interrupt service routines (5.7)

Driver services are listed alphabetically within each category.

Besides the driver services described below, drivers can make
Supervisor calls through the Supervisor Interface (SUPIF). Section 6
describes how to call the Supervisor and the precautions you must
observe.

5-1

5.1 Flag System FlexOS System Guide

5.1 Flag System

The FlexOS flag system acts as a logical interrupt system in which a
process begins an asynchronous event and indicates that it will wait
for the future completion of the event. The process that began the
event then continues its execution asynchronously with respect to the
hardware interrupt or process that. completes the event. The flag
system indicates the event's completion and awakens the original
process.

The FlexOS flag system provides five driver service functions that
enable the Supervisor to coordinate and acknowledge asynchronous
events: FLAGGET, FLAG EVENT, FLAG SET, FLAGCLR, and FLAGREL. The
Supervisor allocates flags to drivers with FLAGGET. FLAGEVENT
enables a process to signal that it has begun an asynchronous event
and will wait for the event's completion. The calling process is
notified of the event's completion when another process or an
Asynchronous Service Routine (ASR) calls FLAGSET. A process uses
FLAGCLR to return a flag to its clear state and FLAGREL to release a
flag back to the system.

A flag is similar to a binary semaphore - it is a single-event
communication channel between two asynchronous routines. Unlike a
binary semaphore, a process can use a flag to return a 32-bit value.
The communication channel is established when a driver's INIT code
calls FLAGGET. A flag can be in one of four states:

• unused - the flag has not been allocated

• clear - flag has been allocated but is not currently in use

• pending - A process has an event waiting for the liD to complete

• completed - An I/O event has completed, but no process has
performed a FLAGEVENT driver service function on it

There is a limit of 31 flags per process. The total number of flags in
the system cannot be specified; FlexOS dynamically allocates new
system flags as they are needed.

FLAGGET allocates a flag to the driver by searching for a system flag
that is in the unused state and returning a flag number to be used by
the driver in all future references to that particular flag. The
Supervisor initializes the allocated flag by placing it in the clear state.

5-2

FlexOS System Guide 5.1 Flag System

A driver must allocate a sufficient number of flags to handle the
maximum number of asynchronous events that might occur at a given
time. For example, a driver should allocate separate flags for READ
operations and WRITE operations so that a READ and a WRITE event
can be processed simultaneously.

For drivers using the flag system, an 110 operation takes place in the
following sequence of events.

1. A process starts an .110 event by calling the appropriate driver
function through the driver's synchronous interface. This begins
an 110 operation that causes a hardware interrupt when the driver
unit completes the I/O. At this point, the calling process actually
runs the code in the driver.

2. The driver, under the process's control, then calls FLAG EVENT
with a flag number to indicate which flag to mark as pending.
The flag number was obtained through FLAGGET at the time the
driver was initialized.

3. FLAGEVENT returns an event mask used by the calling process to
wait for the completion of the event. The calling process passes
the event mask to the WAIT SVC to wait for event's completion.
If the event is already completed, i.e., FLAGSET has already been
called and the flag is marked as completed, FLAGEVENT causes
the flag to be marked as clear and the event itself is noted as
completed.

4. When the 110 is completed, a hardware interrupt occurs that
results in an Interrupt Service Routine (ISR) being executed. The
ISR calls the DOASR driver service to schedule an ASR for
execution. The ASR notifies the system that the event is
completed by calling the FLAGSET driver service with the flag
number, process descriptor address, and completion code as
arguments.

If the original process has not caused FLAGEVENT to be called,
FLAGSET sets the flag to completed, or, if the flag was pending, to
clear. If the requesting process is waiting for the event, it is
awakened. If the process canceled the event or the process was
terminated, FLAGSET returns an error code.

5-3

5.1 Flag System FlexOS System Guide

Because of the asynchronous nature of FlexOS, it is possible for the
1/0 event to complete before the process starting the 110 has a
chance to call the FLAGEVENT driver service. Once FLAGEVENT is
called, the calling process returns from the driver code with the event
mask as a return code.

When a flag is set to the clear state, the event it marked is placed on
a list indicating it is waiting for the original process that called
FLAG EVENT to perform the RETURN SVC. The flag can then be used
by other processes, even though the event is not satisfied through
RETURN.

The driver must remember the process descriptor address of the
running process before the 1/0 event is actually started. This value is
obtained through the Ready List Root (RLR) address field in the driver
header. The driver must store this value locally until it is used by the
ASR or process, that calls FLAGSET.

The flag system driver services return error codes if a logic error has
taken place. A FLAG EVENT performed on a flag in the pending state
returns an E_UNDERRUN error; another process is already using this
flag for another 1/0 event. A FLAGSET performed on a flag in the
completed state returns an E_OVERRUN error; an 110 request
completed and set a flag that was previously set. This error is also
occurs when a process has not performed a FLAG EVENT function on
the previous 110 event.

FlexOS returns an LEMASK error if a process attempts, through a
driver's FLAGGET call, to obtain more than 31 flags or when a driver
calls FLAG EVENT when the calling process already has 31 outstanding
110 events.

When the driver is finished using a flag, it can release it with FLAGREl.
FLAGREL places the flag back into the unused state. An error occurs if
a flag is not in the clear state when the release is attempted (see
FLAGCLR). If a driver is to use a flag frequently, the driver should not
release the flag until its UNINIT code is executed.

When the communication between routines gets crossed up, the driver
can force the flag into a clear state with the FLAGCLR driver service.
This happens, for example, when the hardware produces spurious
interrupts. FLAGCLR should be called before an 110 request is started.

5-4

FlexOS System Guide 5.1 Flag System

Table 5-1 shows the results of the flag system driver service functions
on system flags according to their state.

Table 5-1. Flag Operations and Flag States

Flag State FLAGGET FLAGREL FLAGEVENT

unused clear
clear unused pending

pending E_INUSE UNDERRUN
completed EJNUSE clear

5.1.1 FLAGCLR--Clear a system flag

C Interface:

LONG
LONG

flagno;
retcode;

retcode = flagclr(flagno);

Parameters:

flagno System flag number to clear

FLAGSET

completed
clear

OVERRUN

Return Code: E_SUCCESS to indicate success

FLAGCLR

clear
clear
clear

FLAGCLR forces a system flag into the clear state. In hardware
environments where spurious interrupts might occur, the driver should
call FLAGCLR before the process initiates the liD operation.

5-5

5.1 Flag System FlexOS System Guide

5.1.2 FLAGEVENT --Return an event mask

C Interface:

LONG
LONG
LONG

swi;
flagno;
emask;

emask = flagevent(flagno,swi);

Parameters:

flagno

swi

System flag number previously allocated by
FLAGGET

Software interrupt routine to be called when the
event completes. This address is originally passed
to the driver in the Supervisor call's parameter
block. A zero value indicates that no swi was
specified.

Return Code:

emask Event mask. The calling process uses this value to
wait for a subsequent FLAGSET on the given flag
number.

E_UNDERRUN Logic Error. A process is already waiting on this
flag.

No event mask is available. The calling process has
31 outstanding events. This error does not occur
when FLAG EVENT is called by an ASR.

FLAG EVENT returns an event mask (emask) which allows the caller to
wait for the setting of a system flag. It is assumed that the flag will
be set asynchronously, however, in some instances the driver's
synchronous code can call FLAGSET. The calling process can wait for
the event through the WAIT SVC. The driver typically returns the
event mask received through this driver service back to the resource
manager that called the driver. The resource manager is responsible
for either waiting for the event or returning to the calling process,
depending on the type of call made.

5-6

FlexOS System Guide

5.1.3 FLAGGET --Allocate a system flag number

C Interface:

LONG flagno;
flagno = flaggetO;

Parameters: None

Return Code:

Flag number

5.1 Flag System

flagno
E_EMASK 31 flags have already been allocated to this process

The FLAGGET driver service allocates a system flag number. This
operation is typically done in the driver's INIT code.

5.1.4 FLAGREL--Release a system flag

C Interface:

LONG
LONG

flag no;
retc;

retc = flagrel(flagno);

Parameters:

flag no

Return Code:

E_SUCCESS
EJNUSE

Flag number to be released

Flag is released
Flag is not in the clear state

FLAGREL releases a system flag number. This driver service is
typically called from the driver's UNINIT code. FLAGREL returns an
error if the flag to be released has not been previously cleared.

5-7

5.1 Flag System FlexOS System Guide

5.1.5 FLAGSET --Set a system flag

C Interface:

LONG
LONG
LONG
LONG

flagno;
pdaddr;
retcode;
retc;

retc = flagset(flagno,pdaddr,retcode);

Parameters:

flagno

pdaddr

retcode

System flag number as previously allocated by the
FLAGGET driver service.

Process descriptor address of process waiting for
this flag. Get this value from the RLR address in
the driver header.

Note: This is NOT the pdaddr normally passed with
parameter blocks into the driver entry points. The
pdaddr normally indicated in the entry point
Parameter Block is the process in whose memory
the buffer belongs. The original calling process may
be a different process.

Completion code for this operation.

Return Code:

E_SUCCESS Flag is set
E_CANCELLED Process canceled the FLAG EVENT
E_OVERRUN Logic error - flag is already set

The FLAG SET driver service notes the completion of an asynchronous
operation. The process that is waiting for this operation previously
called--or is about to call--FLAGEVENT with the indicated flag number,
from FLAGGET. If the process was aborted while waiting for this flag
to be set or if the process canceled its WAIT, the CCANCELLED error
is returned.

5-8

FlexOS System Guide 5.2 Asynchronous Service Routines

5.2 Asynchronous Service Routines

Asynchronous Service Routines (ASRs) are routines within a driver's
code that execute asynchronously to processes. FlexOS provides five
driver service functions for executing ASRs:

• DOASR schedules an ASR for execution at the next dispatch,

• NEXTASR and EVASR schedule an ASR for execution upon the
completion of an event.

• ASRWAIT suspends ASR execution until an event completes.

• DSPTCH forces a dispatch which results in the execution of all
pending ASRs.

Because ASRs are run by the dispatcher, they have a higher priority
than processes. At every process dispatch, the dispatcher checks to
see if any ASRs have been scheduled to run. If there are one or more
ASRs ready, it runs the first one to completion and checks for more.
FlexOS schedules ASRs in priority order. ASRs of equal priority are
scheduled on a first-come, first-serve basis. When there are no more
ASRs, the dispatcher runs the next ready process.

The routines that respond to hardware interrupts are called Interrupt
Services Routines, or ISRs. To allow FlexOS to respond to multiple
interrupts, ISRs should be very short. Typically, an ISR schedules an
ASR to complete the work required by the interrupting event. For
example, in response to an interrupt, an ISR can call DOASR to
schedule an ASR to perform I/O.

When an ASR starts an event through an SVC or a driver service,
FlexOS returns an event number instead of an event mask. An event
mask allows synchronous processes to wait for up to 31 different
events; event numbers allow ASRs to wait for an unlimited number of
events. Use multiple ASRs, each receiving its own event number, to
wait on multiple events.

SVCs requiring an event mask parameter can be called from either an
ASR or a process. If an ASR is calling, an SVC accepts event numbers
instead of event masks.

When you receive an event number (or, in other contexts, an event

5-9

5.2 Asynchronous Service Routines FlexOS System Guide

mask), you must call the RETURN SVC to c;lear the event from the
system. This is true even for events used to synchronize ASRs and
even if the STATUS SVC indicates the event is already complete. In
response to an ASR, STATUS returns a 0 if the event is not complete.
Any other value indicates completion.

To clear an event from the system, the ASR that generates an event
number should call NEXTASR, EVASR, or ASRWAIT. For all three, the
event is specified as a parameter in the call. For NEXTASR and EVASR,
if you do. not pass the event number in the call, you must store it in a
global area accessible by the ASR scheduled. ASRs scheduled by
NEXTASR or EVASR should call RETURN, passing the event number as
the parameter. Call RETURN or STATUS through the Supervisor
Interface (SUPIF) defined in Section 6. ASRs calling ASRWAIT should
not call RETURN, the event is cleared and the completion code is
returned by ASRWAIT.

ASRs scheduled by NEXTASR can wait on only one event before being
scheduled. The event specification must be an event number; it
cannot be a process's event mask. EVASR, on the other hand, accepts
either a process event mask or an ASR event number. Like NEXTASR,
EVASR is restricted to scheduling one ASR for an event completion.
Use EVASR when you do not know whether the call is made from ASR
context or process context.

ASRWAIT is a functional alternative to NEXTASR and EVASR that takes
an event number (but not a event mask) and returns when the event
completes. In general, it is more expensive in both CPU and memory
utilization to use ASRWAIT versus next ASR or EVASR. However, if
the current ASR stack is complex (that is, the current state of the logic
is not easily reproduced), ASRWAIT can simplify reproducing it.
ASRWAIT is a simple way to break up an ASR, since other ASRs can
run before ASRWAIT returns.

An ASR may not call the WAIT SVC. Polling operations are strongly
discouraged. ASRs may effectively perform a block by calling
ASRWAIT or by chaining to another ASR with NEXTASR or EVASR,
which executes after a specified event has occurred.

The priority of ASRs ranges from 0, the highest priority, to 255, the
lowest. Digital Research recommends that most ASRs run at priority
200, allowing room for ASRs driven by real-time events to have higher
priority than ASRs that need not be so timely.

5-10

FlexOS System Guide 5.2 Asynchronous Service Routines

ASRs run to completion. If a hardware interrupt occurs during the
execution of an ASR, the dispatcher will continue execution of the ASR
after the ISR completes. This occurs even if a higher-priority ASR is
scheduled by the ISR.

ASRs can be disabled through the NODISP driver service, as described
in Section 5.5. The DSPTCH driver service, described below, takes the
currently running process out of context and forces all scheduled ASRs
and poll routines to run.

5.2.1 ASRWAIT--Wait for event to complete

C Interface:

LONG
LONG
BYTE

evnum;
eVJeturn;
*stack_save_area;

ev_return = asrwait(evnum,stack_save_area);

Parameters:

evnum Event number returned by SVC or driver service call

stack_save_area

Return Code:

eVJeturn
E_SUCCESS

Address of buffer for temporary stack storage

Event's completion code
No event number was specified

The ASRWAIT driver service suspends ASR execution until the
specified event is complete. The event is designated by its number.
The event must have been initiated by the ASR; it cannot be a process
event mask. Specify a null event number to reschedule an eventless
ASR. While the ASR is suspended, other ASRs are executed at the next
dispatch.

The second ASRWAfT parameter is a buffer address. ASRWAIT copies a

5-11

5.2 Asynchronous Service Routines FlexOS System Guide

portion of the dispatcher stack into this buffer and restores the stack
from it. The area must be big enough to hold all of the stack used by
this ASR since it was called, plus 50 to 100 bytes. No error or range
checking is performed.

The ASR is rescheduled for the next dispatch after the event
completes. The event's completion code is returned by ASRWAIT. Do
not call the RETURN SVC after an ASRWAIT. When a null event number
is specified, the ASR is rescheduled for the next dispatch and receives
an E_SUCCESS event completion.

IMPORTANT: If you called MAPU before calling ASRWAIT, you must
call MAPU again when the function returns to get the memory back.

5.2.2 DOASR--Schedule an ASR

C Interface:

VOID
LONG
LONG
BYTE

asr JoutineO;
parml;
parm2;
prior;

doasr(asr Joutine,parm 1,parm2,prior);

VOID asr _routine{parm 1,parm2)
LONG parml;
LONG parm2;
{
/* perform activity */

return;
}

Parameters:

5-12

asrJoutine
parml
parm2
prior

Address of ASR routine
First general parameter to pass to the ASR
Second general parameter to pass to the ASR
ASR priority

FlexOS System Guide 5.2 Asynchronous Service Routines

Return Code:

Successful operation
Out of memory

The DOASR driver service schedules an ASR for execution. Typically,
Interrupt Service Routines call DOASR when the ISR needs more work
done than can be performed in a timely manner from within the ISR.
The ASR is placed in the ASR dispatch queue according to the priority
parameter (0 = best, 255 = worst). All ASRs with equal priority are
dispatched on a first-in, first-out basis.

ASRs run to completion before another ASR is run. While ASRs are
running, hardware interrupts are enabled. This allows ISRs to run and
to schedule other ASRs. When an ISR is complete, an interrupted ASR
continues to run even if the ISR has scheduled a higher-priority ASR.
After the ASR is complete, the scheduled ASR with the highest priority
is run next.

5.2.3 DSPTCH--Force a dispatch

C Interface:

dsptchO;

Parameters: None

Return Code: None

The DSPTCH driver service takes the currently running process out of
context, reschedules it, runs all scheduled ASRs and poll routines, then
brings the best priority, runnable process into context. The calling
process is rescheduled as a running process. DSPTCH returns to the
calling process when it comes back into context.

DSPTCH is useful in guaranteeing that all scheduled ASRs have run.
The DOASR driver service, described above, does not force a dispatch
but only schedules the ASR to run at the next dispatch.

5-13

5.2 Asynchronous Service Routines FlexOS System Guide

5.2.4 EVASR--Schedule ASR from Process Context

C Interface:

VOID
LONG
LONG
BYTE

asr _routine(};
emask;
parm2;
prior;

evasr(emask,asrJoutine,parm2,prior};

VOID ascroutine(evnum,parm2}
LONG evnum;
LONG parm2;
{

return;
}

Parameters:

asrJoutine
emask
parm2
prior

Return Code:

Address of an ASR
Process event mask or ASR event number
General parameter to ASR
ASR priority

None

The EVASR driver service schedules an ASR for dispatching upon the
completion of the specified event. If EVASR is called in ASR context,
this service is equivalent to NEXTASR with the event number as
parm 1. When EVASR is called in process context, EVASR converts the
process event mask to an ASR event number, frees the process's
event bit, and disassociates the event from the process. The new
event number is passed as the first parameter to the ASR so that the
ASR can call the RETURN SVC on the event number.

5-14

FlexOS System Guide 5.2 Asynchronous Service Routines

5.2.5 NEXTASR--Schedule ASR from an ASR

C Interface:

LONG
VOID
LONG
LONG
BYTE

evnum;
asrJoutineO;
parm 1;
parm2;
prior;

nextasr(evnum,asr Joutine,parm 1,parm2,prior);

VOID asr_routine(parm1,parm2)
LONG parm1;
LONG parm2;
{
/* perform activity * /

return;
}

Parameters:

evnum
asrJoutine
parml
parm2
prior

Return Code:

Event number of event to wait for
Address of ASR routine
First general parameter to pass to the ASR
Second general parameter to pass to the ASR
Priority of ASR

None

The NEXTASR driver service schedules an ASR for dispatching upon
completion of the event specified by the event number.

Call NEXTASR from within an ASR when an ASR needs to wait for the
completion of an event. NEXTASR can be called only by the ASR that
initiated the event upon which NEXTASR is waiting.

If you run an ASR that generates an event number, you must call
NEXTASR to schedule an ASR to call the RETURN SVC, which clears
the event from the system.

5-15

5.3 Device Polling FlexOS System Guide

NEXTASR accepts only event numbers; an ASR cannot use an event
mask generated by a process. The pending event must have been
generated from within an ASR, not a process.

5.3 Device Polling

For devices not interrupt-driven, FlexOS supports the software
mechanism of device polling. In single-tasking systems, these devices
are usually polled with a hard CPU loop. However, this type of polling
severely degrades the performance of a multitasking system. By using
the POLLEVENT driver service, a device is polled periodically, allowing
processes to run between polls.

Use POLLEVENT to emulate an asynchronous event when there is no
hardware interrupt to determine completion of an event. POLLEVENT is
not meant to replace the FLAG EVENT IFLAGSET method of
communicating with an application, which is described in Section 5.1.

POLLEVENT is usually called from within an ASR. If called from an
ASR, it returns an event number. The event number is used to
perform a NEXTASR driver service, which performs a FLAGSET upon
completion of the poll event.

Following the completion of the poll event, the driver must call the
RETURN SVC to clear the event from the system.

The dispatcher calls the poll routine at process context switches.
Therefore, poll routines run under the dispatcher process context. If
the poll routine returns true (non-zero), the poll event is noted as
completed. If a NEXTASR driver service was called based on the poll
event, NEXTASR schedules an ASR to run.

5.3.1 POLLEVENT --Poll for event completion

C Interface:

5-16

WORD
LONG
LONG

pollJoutineO;
emask;
swi;

emask = polievent(poIiJoutine,swi);

FlexOS System Guide 5.3 Device Polling

WORD poll_routine(}
{
1* check device */

if (deviceJeady)
return(-l);
else
return(O);
}

Parameters:

pollJoutine Address of poll routine. This routine returns 0 if the
event is not complete. A non-zero return code.
indicates· the poll event is complete. This routine is
called at each process dispatch until the event is
complete.

swi Address of user software interrupt routine

Return Code:

emask Event mask used to perform a WAIT based on this
event (or a NEXTASR on this event number)

The POLLEVENT driver service establishes a poll routine which is called
periodically to determine the completion of an event. POLLEVENT
returns an event mask which allows the calling process to wait,
through the WAIT SVC, for the software-determined event.

The poll routine is called under the dispatch-process context and is
similar in nature to an ASR. If POLLEVENT is called by an ASR, an
event number is returned instead of an event mask. Following
completion of the polled event, the driver must call the RETURN SVC,
through SUPIF, to clear the event from the system.

5-17

5.4 System Memory Management FlexOS System Guide

5.4 System Memory Management

FlexOS supports mapped and protected memory management units
(MMUs). The following terms are used in the description of the FlexOS
memory model.

• Physical Memory - all physfcally addressable memory in the
system. This includes memory used for specific types of
hardware, such as bit maps for video displays.

• Physical Space - the address space of Physical Memory. The
addresses in Physical Space might be used when communicating
with hardware, such as DMA controllers.

• User Memory - Physical Memory allocated for use by a particular
process. Programs loaded from disk are placed into User
Memory. Memory allocated through the MALLOe sve is also
placed in User Memory. Each process has its own User Memory.

• User Space - memory that can be addressed while running code
in User Memory. Each process running code in User Memory is
running in its own User Space. Each User Space is a separate
address space. With supporting hardware memory protection, a
process running in its User Space cannot address memory in
another User Space. While running code in User Space, System
Memory and Physical Memory are also not addressable.

• System Memory - Physical Memory allocated for use by the
operating system. All drivers are loaded into System Memory. All
memory allocated to drivers through the SALLOe function,
described below, is also placed in system memory.

• System Space - System Space is the memory that can be
addressed while running code in System Memory. At any point in
time this space includes all System Memory as well as the User
Memory of the currently running process.

5-18

Some processes, called system processes, do not own User
Memory. While system processes are running, there is no
addressable User Memory.

FlexOS System Guide 5.4 System Memory Management

All driver code resides in System Memory and therefore executes
in System Space. This code is always running under a process
context and therefore includes the process's User Memory.
Asynchronous Service Routines (ASRs) run under the dispatch
process context and are considered system processes.

The addressing of User Memory is not necessarily the same in
System Space as it is in User Space. For example, a buffer
address supplied by an application while in User Space cannot be
used directly while in System Space. The address must be
translated into System Space before it addresses the same
physical User Memory .

• User Address - an address that points to User Memory relative to
User Space. While in System Space a User Address must be
converted to a System Address before use .

• System Address - an address directly addressable while in
System Space.

Figure 5-1 shows the relationship of User Space to System Space.

User Space System Space

User Memory 1\ System Memory

1\ User Memory

Figure 5-1. User Space and System Space

FlexOS supplies a number of driver service functions to drivers that
facilitate the use of various types of addresses and also allocate and
free system memory. These services are as follows:

5-19

5.4 System Memory Management FlexOS System Guide

• SADDR - converts a User Address in User Memory to a System
Address.

• UADDR - converts a System Address in User Memory to a User
Address. An error is returned if the System Address points to
System Memory.

• PADDR - converts a System Address to a Physical Address.

• MAPU - allows a process to change the User Memory currently
mapped in system space to another process's User Memory. The
calling process loses access to its own User Memory until the
UNMAPU function is called.

• UNMAPU - restores a process's User Memory.

• MLOCK - locks the current User Memory in Physical Memory.
This prevents moving the memory to another physical location.

• MUNLOCK - allows User Memory to be swapped out to disk or
moved to another physical memory location. System Addresses
of User Memory may change while the memory is unlocked.
System Addresses of User Memory should be converted to a User
Address before the MUNLOCK function is called and converted
back to a System Address after the MLOCK function has been
called.

• MRANGE - checks the start and length of a buffer in User Memory
to verify it is within the process's current User Space.

• SALLOC - allocates System Memory from the free pool of Physical
Memory. This is the same pool used by applications.

• SFREE - frees System Memory and places it back into the free
pool of Physical Memory.

• MAPPHYS - maps physical memory not in the free pool into
System Space and returns a System Address for that memory.
This is used to address "device memory" such as bit maps or
read-only Memory. If the device memory is already mapped to
System Space, the System Address is returned. MAPPHYS should
be called only at INIT time.

5-20

FlexOS System Guide 5.4 System Memory Management

Resource Managers call the driver entry points to 110 functions with
pointers to buffers that can be either User or System Addresses. If
the buffer resides in User Memory the pointer is a User Address. If
the buffer resides in System Memory, the pointer is a System Address.
The resource manager sets a flag to indicate whether the address is in
User or System memory. Along with the flag, drivers receive the
process descriptor address (PDADDR) of the process that owns the
buffer's memory.

A User Address is not directly usable until it is converted to a System
Address. The User Address is relative to a particular process. SADDR
converts a User Address into a System Address for the currently
addressable User Memory.

When drivers pass a User Address to ASRs or other processes, it must
be passed as a User Address and process descriptor address pair.
This allows the ASR or process to call the MAPU driver service to
assume the original User Memory, then call the SADDR driver service
to obtain the System Address of the correct Physical Memory. Passing
a System Address of User Space to an ASR or another process results
in addressing the wrong Physical Memory or a memory violation upon
use of that address.

Driver entry points are called with User Memory locked in Physical
Memory. A driver has the option of unlocking the memory to allow
moving the memory to another physical location.

Moving memory might be done by the memory manager during
garbage collection. If the driver calls MUNLOCK to unlock User
Memory, all System Addresses that refer to User Memory become
invalid. Before MUNLOCK is called, UADDR must be used to convert to
user addresses all System Addresses that refer to User Memory.
These converted addresses cannot be used either by the driver or
hardware until the User Memory is locked into Physical Memory
through the MLOCK driver service. The driver can then use SADDR to
convert User Addresses to System Addresses and Physical Addresses
for USe by the driver and its hardware.

For all SVCs for which the user program specifies a buffer, FlexOS
does buffer range checking to ensure that all buffers sent to drivers
are contiguous in physical memory and legal. An exception to this is
the SPECIAL SVC, where a buffer is not assumed but might be sent to

5-21

5.4 System Memory Management FlexOS System Guide

the driver by an application. In this case, the driver must perform its
own range checking though the MRANGE driver service.

A driver can call the SALLOC driver service to allocate System Memory
to be used by the driver for buffers and other memory resources. This
is usually done in the driver's INIT code. Allocating memory at INIT
time allows a driver's load image to be small. It also allows a driver
to handle an arbitrary number of units by allocating memory as INIT is
called for each unit.

Memory allocated through SALLOC should be freed with the SFREE
driver service in the driver's UNINIT code.

SALLOC takes memory out of the Transient Program Area (TPA), which
is the same Physical Memory pool from which User Memory is
allocated during program loading. Thus, memory allocated by SALLOC
is not available to loadable programs.

Before using SALLOC, you should also consider that more memory
than requested might be taken out of the Transient Program Area
(TPA). This potential for wasted memory ranges from 512 to 16K
bytes. The exact amount depends on the granularity of the MMU's
mapping ability or, in segmented architectures, on the minimum size of
a segment. The amount of wasted memory is also related to the
minimum fragmentation allowed by implementation-dependent
memory management routines.

5.4.1 MAPU--Map another process's User Memory

C Interface:

LONG pdaddr;

ret=mapu(pdaddr);

Parameters:

pdaddr

5-22

Process descriptor address of process whose User
Memory is to be mapped. No checking is done to
verify that the pdaddr is valid.

FlexOS System Guide 5.4 System Memory Management

The driver usually receives this address through the
PDADDR field of a parameter block passed through
one of the driver's entry points. The buffer is
specified in the same parameter block.

Return Codes:

E_SUCCESS Successful operation

emask Designated process is currently swapped out. It will
be swapped in asynchronously to the calling
process. A WAIT on this event mask returns when
the specified process's memory is in place.

MAPU removes the calling process's current User Memory and
replaces it with the indicate.d process's User Memory.

5.4.2 MAPPHYS--Map Physical Memory

C Interface:

BYTE
MAPPB
WORD

*saddr
*parmblk;
type;

saddr = mapphys(parmblk,type);

Parameters:

parmblk Address of map parameter block describing physical
memory (see Figure 5-2)

type

Return Code:

saddr

a = code
1 = data

System Address of mapped physical memory

5-23

5,4 System Memory Management FlexOS System Guide

o o

4 starting address in Physical Memory

8 length

Figure 5-2. Map Parameter Block

MAPPHYS puts the specified Physical Memory into System Memory
The specified Physical Memory cannot be part of the TPA. MAPPHYS
should be called only once, at the time a driver is initialized. If the
memory is to contain executable code, the type parameter must be
zero. If the type parameter is zero, mapped memory cannot be
modified as data.

Use MAPPHYS to obtain System Addresses of device memory, such as
bit maps, or other memory not intended for the direct use of
applications. An example of this type of memory is read-only memory
that can be accessed only from System Space.

5.4.3 MLOCK-- Lock the User Memory

C Interface: mlockO;

Parameters: None

Return Code: None

MLOCK locks the current User Memory in Physical Memory. MLOCK
prevents moving the memory to another physical location. The
Supervisor automatically locks memory whenever an application calls
an SVC.

The driver is responsible for matching MLOCK and MUNLOCK calls.
FlexOS maintains a count of the number of locks in force and will not
unlock the memory until the number of MUNLOCK calls matches the
number of MLOCK calls applied to the User Memory.

5-24

FlexOS System Guide 5.4 System Memory Management

5.4.4 MRANGE--Perform range checking

C Interface:

BYTE
LONG

~:start;

length;

retc = mrange(start,length);

Parameters:

start
length

Return Code:

Starting User Address of buffer in User Memory
Number of bytes in the buffer

Legal buffer

Buffer is read only
Buffer is in system space

These two bits indicate the designated buffer status
on a successful return from MRANGE O.

Range error

The MRANGE driver service allows a driver to verify that a buffer in
User or System Memory does not violate memory protection before
the buffer is used. Following a successful return from MRANGE, a
driver can call a DMA device knowing a memory violation trap will not
occur.

5.4.5 MUNLOCK--Unlock User Memory

C Interface: munlockO;

Parameters: None

Return Code: None

5-25

5.4 System Memory Management FlexOS System Guide

MUNLOCK unlocks the current User Memory in Physical Memory.
MUNLOCK allows moving the memory to another physical location.
The Supervisor automatically locks the current User Memory whenever
an application calls an SVC.

The driver is responsible for matching MLOCK and MUNLOCK calls.
FlexOS maintains a count of the number of locks in force and will not
unlock the memory until the number of MUNLOCK calls matches the
number of MLOCK calls applied to the User Memory. If memory is
unlocked by a driver, the driver must lock the memory before returning
to the calling process.

5.4.6 PADDR--Convert address: System to Physical

C Interface:

BYTE
BYTE

*physadr;
*sysadr;

physadr = paddr(sysadr);

Parameters:

sysadr

Return Code:

physadr

System Address to convert

The physical address of the specified System
Address

PADDR converts a System Address to a physical address. Use PADDR
to convert a buffer address in System Space to a physical address and
then give the address to a hardware device, such as a DMA controller.

5-26

FlexOS System Guide 5.4 System Memory Management

5.4.7 SADDR--Convert address: User to System

C Interface:

BYTE
BYTE

;'usradr;
;'sysadr;

sysadr = saddr(usradr);

Parameters:

usradr Address of User Memory from User Space

Return Code:

sysadr System Address of converted User Address

SADDR converts a User Address into a System Address relative to the
current User Memory. The User Address of another process's User
Memory can be converted to a System Address by first calling the
MAPU driver service, described above, and then SADDR.

5.4.8 SALLOC--Allocate System Memory

C Interface:

LONG
BYTE

length;
;'sysadr;

sysadr = salloc(length);

Parameters:

length

Return Code:

sysadr

o

Number of bytes to allocate

Address of memory block allocated in System
Memory
No memory available to satisfy the request

5-27

5.4 System Memory Management FlexOS System Guide

The SALLOe driver service allocates System Memory from the TPA.

5.4.9 SFREE--Free System Memory

C Interface:

BYTE *sysadr;

ret = sfree(sysadr);

Parameters:

sysadr

Return Code:

E_sueCESS
E_MEMORY

Address of previously allocated System Memory

Successful operation
Illegal memory reference

SFREE frees memory allocated through the SALLOe driver service. The
address to be freed must be one returned through SALLOe.

5.4.10 UADDR--Convert address: System to User

C Interface:

BYTE '~sysadr;

BYTE '~usradr;

usradr = uaddr(sysadr);

Parameters:

sysadr

Return Code:

5-28

usradr
E_MEMORY

Previously converted System Address of User
Memory

User Space address of User Memory
sysadr not in User Memory

FlexOS System Guide 5.4 System Memory Management

UADDR converts a System Address to a User Address. The System
Address must point into User Memory. An error occurs if the System
Address points into System Memory.

5.4.11 UNMAPU--Restore User Memory

C Interface: unmapuO;

Parameters: None

Return Code: None

UNMAPU restores the calling process's User Space. MAPU allows a
process to map temporarily another process's User Memory into
System Space. UNMAPU removes the current User Memory and
restores the process's own User Memory into System Space. If the
calling process is a system process, no User Memory is mapped.

5-29

5.5 Critical Regions FlexOS System Guide

5.5 Critical Regions

FlexOS supplies routines to allow a driver to set up critical regions
without turning off hardware interrupts. FlexOS recognizes three types
of critical regions:

• Mutual exclusion regions - allow a driver to restrict multiple
processes from accessing a resource or data structure. Driver
services are MXINIT, MXEVENT, ASRMX, MXREL. and MXUNINIT.

• No-abort regions - guarantee that a particular process will not
abort while in the no-abort region. Drivers can use this type of
region to ensure that a set of tasks will be completed by the
calling process. The driver services are NOABORT and OKABORT.

• No-dispatch regions - guarantee that no other processes or ASRs
will run while the system is in the no-dispatch region. Typically,
this region is used where a resource, such as a linked list, is
accessed by many processes from many different locations in the
code. A no-dispatch region guarantees that no other process will
access the resource while it is being used by the current process.
You can also use this type of region where the calling process
cannot "hang," waiting for a mutual-exclusion region. The no
dispatch region should be used with care, because it directly
affects the response time of a process to an external event. The
driver services are NODISP and OKDISP.

FlexOS allows drivers to set up mutual exclusion regions to protect
data structures from multiple processes accessing them, without
turning off hardware interrupts. These mutual exclusion regions can
also be used to protect non-reentrant code and make it a serially
reusable resource.

5-30

FlexOS System Guide 5.5 Critical Regions

The mutual exclusion primitives are similar to a semaphore system,
where a process must get a semaphore before using a resource. The
semaphore is released when the resource is no longer needed. If the
semaphore is in use by another process, the calling process receives
an event mask which can be used to wait for the semaphore. When
multiple processes wait for the same semaphore, the requests are
queued ona a first-come, first-serve basis.

FlexOS maintains the semaphore, its current owner, and a list of
processes waiting for the semaphore in a data structure called the
Mutual Exclusion Parameter Block, or MXPB. Drivers interface with
MXPBs through routines described below.

A driver creates an MXPB through the MXINIT driver service. MXINIT
returns a 32-bit value that identifies the MXPB for future use.
Typically, a driver stores this value in its data area and accesses the
value whenever a process attempts to use a protected resource. The
driver usually calls MXINIT from its INIT code.

FlexOS provides two driver services for obtaining an MXPB: MXEVENT
and ASRMX. You use MXEVENT when you are in process context; use
ASRMX when in ASR context. For both functions, the caller becomes
the owner if the MXPB is not in use. If the MXPB is owned by another
process when you call the service, MXEVENT returns an event mask.
ASRMX returns an event number when the MXPB is owned by any
process, including the calling process.

Use WAIT or EVASR with the event mask to wait for the MXPB to be
released. The WAIT SVC is only valid when you are in process context.
If you are in ASR context, use NEXTASR or ASRWAIT to reschedule the
ASR upon the release of the MXPB. When you use WAIT, EVASR, or
NEXTASR, you must call the RETURN SVC to clear the event after you
receive control of the MXPB. Do not call RETURN, however, if you use
ASRWAIT; the event number is cleared and the completion code
returned by the function.

5-31

5.5 Critical Regions FlexOS System Guide

Use the MXREL driver service to release the MXPB when you are done
with it. If you acquired the MXPB with ASRMX, you must make the
MXREL call from within ASR context. If you call MXEVENT from within
a process's context, you must call MXREL from within the same
process's context. This is almost impossible to do if you go into ASR
context between the MXEVENT and MXREL calls. Consequently, most
calls to obtain an MXPB should be made from within ASR context.

If a process is aborted while it owns an MXPB, the MXPB is
automatically released.

A driver can remove an MXPB from the system through the MXUNINIT
driver service. An error is returned if the MXPB is in use. MXUNINIT
is usually called in the driver's UNINIT code.

5.5.1 ASRMX--Obtain MXPB ownership

C Interface:

LONG
LONG

mxid;
retc;

retc = asrmx(mxid);

Parameters:

mxid MXPB ID as returned by MXINIT

Return Codes:

E_SUCCESS MXPB obtained
evnum Event number. MXPB is owned.

The ASRMX driver service obtains ownership of an MXPB. If the MXPB
is already owned, either by the calling process or another process, an
event number is returned. Use this number in a NEXTASR or ASRWAIT
call to schedule ASR execution to wait upon the release of the MXPB.

5-32

FlexOS System Guide

5.5.2 MXEVENT --Obtain MXPB ownership

C Interface:

LONG
LONG

mxid;
rete;

retc = mxevent(mxid);

Parameters:

mxid MXPB ID as returned by MXINIT.

Return Code:

E_SUCCESS MXPB obtained

5.5 Critical Regions

emask Event Mask--MXPB owned by another process

The MXEVENT driver service obtains ownership of an MXPB. If the
MXPB is already owned, that is, if the object to be locked is in use, the
return value will be an event mask that can be used to wait through
the WAIT SVC, for ownership.

5.5.3 MXINIT--Create an MXPB

C Interface:

LONG mxid;

mxid = mxinitO;

Parameters: None

Return Code:

mxid New MXPB's ID

5-33

5,5 Critical Regions FlexOS System Guide

The MXINIT driver service returns a 32-bit value identifying a Mutual
Exclusion Parameter Block (MXPB) to be used with the MXEVENT and
MXREL driver services. MXINIT is usually called from the driver's INIT
code.

The MXPB is an abstract structure to the driver writer, who passes the
structure pointer to the MXEVENT and MXREL driver services. FlexOS
allocates space for the MXPB out of System Memory.

5.5.4 MXREL--Release an MXPB

C Interface:

LONG mxid;

retc = mxrel(mxid);

Parameters:

mxid MXPB 10 as returned from MXINIT

Return Code:

E_SUCCESS
E_OWNER

Successful operation
Calling process is not owner of MXPB

The MXREL driver service releases an MXPB and therefore exits a
mutual exclusion region. If another process is waiting for the MXPB, it
receives ownership of it.

5.5.5 MXUNINIT--Remove an MXPB from the system

C Interface:

LONG
LONG

mxid;
retc;

retc = mxuninit(mxid);

Parameters:

mxid MXPB 10 as returned by MXINIT

5-34

FlexOS System Guide

Return Code:

E_SUCCESS
E_INUSE

Successful operation
MXPB currently in use.

5.5 Critical Regions

The MXUNINIT driver service removes an MXPB from the system. In
response to MXUNINIT, FlexOS deletes the specified MXPB from the
MXPB list and frees the memory containing the MXPB for other uses.
MXUNINIT is usually called from a driver's UNINIT code.

5.5.6 NOABORT--Enter no-abort region

C Interface: noabortO:

Parameters: None

Return Code: None

The NOABORT driver service begins a no~abort region, that is,
NOABORT disables abort routines. A no-abort region prevents abort
routines from executing as long as the region is active. As soon as
abort routines are enabled (see the OKABORT driver service) all
pending abort requests for the process are attempted. In the case of
multiple NOABORT calls, each NOABORT call must be matched by an
OKABORT call to reenable abort routines.

5.5.7 NODISP--Enter a no-dispatch region

C Interface: nodispO:

Parameters: None

Return Code: None

5-35

5.6 System Process Creation FlexOS System Guide

The NODISP driver service begins a no-dispatch region and thereby
disables dispatches of processes and ASRs. Execution of NODISP
allows you to disable dispatching of user tasks and ASRs until OKDISP
is executed. In the case of multiple NODISP calls, each NODISP call
must be matched by an OKDISP call to reenable process and ASR
dispatches.

5.5.8 OKABORT --Exit no-abort region

C Interface: okabort();

Parameters: None

Return Code: None

The OKABORT driver service ends a no-abort region and thereby
enables abort routines. Any abort routines called during the no-abort
region are executed.

5.5.9 OKDISP--Exit a no-dispatch region

C Interface: okdisp{);

Parameters: None

Return Code: None

The OKDISP driver service ends a no-dispatch region and therefore
enables dispatching of processes and ASRs.

5.6 System Process Creation

You create system processes with the PCREATE function driver
service. A system process runs in System Space and owns no User
Memory. In your PCREATE call you specify the address in System
Memory where the process is to start execution, the stacksize, the
priority, and the name of the process. PCREATE lets you send two
parameters to the process as it starts execution.

5-36

FlexOS System Guide 5.6 System Process Creation

PCREATE allocates a process data space, including a system stack and
initializes the process name, priority, and other data. PCREATE then
initializes the stack to contain the specified parameters and finally
schedules the new process to run. FlexOS starts the process at the
address you pass as a parameter to PCREATE.

The process has the full context and flexibility of any other process in
the system, with the sole exception that the process does not own
any User Memory.

5.6.1 PCREATE--Create a system process

C Interface:

LONG
VOID
BYTE
BYTE
LONG
LONG
LONG
LONG

pid;
startO;
'~name;

prior;
stacksize;
parm 1;
parm2;
emask;

emask = pcreate(&pid,start,name,prior,stacksize,parm 1,parm2);

VOID start(parm 1,parm2)
LONG parml;
LONG parm2;
{
1* first line of "C" Code that the new process */
/* will execute follows: */

/* Terminate the system process */

5-37

5.6 System Process Creation FlexOS System Guide

Parameters:

&pid

start

name

prior

stacksize

parm1

parm2

Address of a 32-bit variable that will be modified by
this routine to contain the process 10 of the new
process. This value is needed to abort the process
and to obtain information about it.

Address of first instruction the new process will
execute

Address of process name. The' name is null
terminated. If the string is longer than eight bytes,
only the first eight bytes are used.

Initial process priority, ranging from 0 to 255. The
guidelines for selecting the priority are:

1··
2-31

32-63
64-128

129-199
200

201-254
255

INIT process
High-priority system process requiring
immediate response to external events
System process
Undefined
High-priority user process
Normal user process
Low-priority user process
Idle process

Size of the system stack for the new process. If
this value is 0, a default value is used that allows
SVCs to be called.

First 32-bit parameter to new process

Second 32-bit parameter to ,new process

Return Code:

5-38

emask Event mask that can be used to wait, through the
WAIT SVC, for the termination of the created
process. Upon completion of the WAIT, that is,
when the process has terminated, use the RETURN
SVC to obtain the process's exit code.

E_MEMORY Cannot allocate System Space for this process.

FlexOS System Guide 5.7 Interrupt Service Routines

5.7 Interrupt Service Routines

Interrupt Service Routines (ISRs) are established through the SETVEC
function described below. FlexOS transfers control to the Entry Point
of the ISR as though it were calling a C routine.

It expects back one of two possible WORD values:

• true (1). meaning dispatching is required
• false (0), meaning no dispatching is required

Ideally, the ISR should work along the following lines:

1. The driver's INIT function sets up the ISR vector through a
SETVEC call. SETVEC is described below. The driver's SELECT
function enables hardware and software interrupts.

2. The driver's READ or WRITE code starts an operation that results
in an interrupt, which transfers control to the ISR. If the device is
of a type that does not require immediate service, the ISR might
do no more than execute the DOASR function. If the device
requires immediate service, e.g., a serial driver or a disk driver,
the ISR might set up a DMA transfer or input or output the next
data byte, then execute a DOASR to clean up.

3. The ISR determines whether or not a significant event, that is, an
event which requires dispatching, has occurred. If it has, the ISR
should return a true value; otherwise, the ISR should return a
false value.

The following guidelines should be kept in mind when using ISRs.

• FlexOS takes care of stack switching, dispatch scheduling, and
CPU-dependent interrupt resets.

• Interrupts are disabled upon entry to the ISR. Interrupts can be
subsequently enabled by the ISR to allow nested interrupts.

• FlexOS saves all registers for the ISR. Therefore, it is not
necessary for the ISR itself to preserve any registers.

5-39

5.7 Interrupt Service Routines FlexOS System Guide

• To allow FlexOS· to respond to other interrupts in a timely way,
ISRs should be kept as short as possible. In most cases, the
majority of the work should be carried out by an ASR .

• Forcing a dispatch by returning "true" has overhead. If the
external event is not required to be handled in real time, a "false"
should be returned, even if the DOASR driver service function has
been called. If the dispatch is not forced, the ASR will run at the
next dispatch. The worst that could happen is that the ASR would
have to wait for the next tick.

5.7.1 SETVEC--Set interrupt vector to ISR

C Interface:

5-40

LONG
WORD
WORD

intno;
isr _routineO:
prev_isrO:

prevjsr = setvec(isr_routine,intno);

WORD isr_routineO
{
/* service interrupt condition */

1* schedule ASR */
do_asr(...);

/* dispatch or not depending on how critical */
1* it is to run the ASR if one was scheduled */

if (dispatch)
return(-l); /* TRUE = force dispatch */
else
return(O); /* FALSE = no dispatch */
}

FlexOS System Guide 5.7 Interrupt Service Routines

Parameters:

Address of Interrupt Service Routine

intno Interrupt vector number

Return Code:

E_SUCCESS Successful operation

prevjsr Address of previous ISR routine. A return code of
zero indicates that this is the first time SETVEC has
been called for this interrupt vector. If prev_isr is
non-zero, SETVEC has already been called for this
vector.

The SETVEC driver service sets the specified interrupt vector to
execute the specified Interrupt Service Routine. The physical interrupt
vector will actually refer to an operating system routine which sets up
the ISR environment that is, saves registers.

Once the ISR returns, the registers are restored and the operating
system routine either restores the environment and returns to the
interrupted process or forces a dispatch to occur. If a dispatch is
forced, the interrupted process is rescheduled and will run at a later
time, according to its priority.

End of Section 5

5-41

FlexOS System Guide

5-42

SECTION 6

Supervisor Interface

This section describes how drivers interface to the FlexOS Supervisor.

6.1 Supervisor Entry Point

Drivers can use the Supervisor Calls (SVCs) available to user programs
and described in the FlexOS Programmer's Guide. Drivers linked with
the system directly access the operating system services. Drivers
loaded from disk link. to a Driver Run-time Library which indirectly
calls the appropriate operating system services.

Do not call an SVC which forces the driver to be reentered. This can
result in a deadlock situation.

ASRs cannot call SVCs that result in a process waiting. If this occurs,
the Dispatcher cannot schedule any tasks, including ASRs. This results
in a system crash.

Calls passed to the Disk, Console, and Network Resource Managers
might cause a process to wait. The Pipe Resource Manager is
designed to be used by ASRs. However, even when performing
operations on pipes, you must call SVCs asynchronously so that event
masks are returned, instead of performing a wait.

ISRs cannot call SVCs.

When drivers access SVCs through SUPIF:

• The Supervisor does not perform buffer range checking,

• Parameter blocks are always 32 bytes and must be in System
Memory.

6· 1

6.1 Supervisor Entry Point FlexOS System Guide

• Bit 1 of the mode field in the parameter block must be set to 1 if
the addresses in the parameter block are User Addresses. The
mode field is the first byte (lowest address) of the parameter
block. Set bit 1 to 0 if the parameter block addreses are System
Addresses. Note that bit 0, the least significant bit, is the
asynchronous bit.

The specific interface to SUPIF is described below.

6.1.1 SUPIF--Make a Supervisor call

C Interface:

WORD funcno
LONG param;
LONG ret;

ret = supif(funcno,param);

Parameters:

funcno
param

Return Code:

ret

SVC number
32-bit parameter, typically a parameter block address

32-bit return code

The SUPIF driver service allows code within System Space to make
SVC calls. The specific SVC numbers, parameters, and expected return
codes are specified in the FlexOS Programmer's Guide.

End of Section 6

6-2

SECTION 7

Console Drivers

This section describes the specific driver interface to character
console drivers It provides an overview of console drivers, discusses
the FRAME and RECT data structures, and defines entry and return
parameters for each console driver 1/0 function.

7.' Console Driver Overview

A console driver is composed of one or more driver units. The
Console Resource Manager (RM) manages each unit as a separate
physical console device. Each physical console device has two
components: a video display and a keyboard. There is no explicit
limit to the number of physical consoles or the number of console
drivers managed by the Console RM. Limits depend only on memory
constraints.

FlexOS supports a standard console environment model independent of
physical console device type. As a console driver writer, you must
translate this model to your specific physical device. All device
dependent code is in the console driver.

The foremost consideration in writing a console driver is performance:
the console must appear lively to the user. To help you implement
'lour dnvers. two sample drivers. a serial driver for a Zenith ® Z-29 VOT
and a character/bit-mapped driver for an IBM PCIAT, are distributed
with FlexOS.

The sample drivers take advantage of the sub-driver architecture,
described in Section 2.6. The use of this architecture eases the task
of implementing console drivers for similar types of console devices.

Each console driver manages a class of console devices. The console
driver can directly control each physical console it manages or can
control individual physical consoles through sub-drivers. Each unit of
a console driver corresponds to a single physical console device.
FlexOS does not require that a driver's physical consoles be of a
similar type. However, to conserve memory for both driver code and

7-1

7.1 Console Driver Overview FlexOS System Guide

data, it is desirable to have all consoles of similar types controlled by
the same driver.

For example, consider a FlexOS system with three terminals; two serial
consoles and one memory-mapped character console. This system
should have two console drivers; one driving the memory-mapped
console, while the other drives the two serial consoles. The serial
consoles can be of different types if sub-drivers are used to hide
differences between them. Figure 7-1 illustrates this example system.

Console
Resource
Manager

MAPPED

Unit 0 IL QUADRAM

UnitO

:
J r-SERCON

ADM3A+ r-
Unit 0

Unit 0 t--

Unit 1 t---
Z·19
UmI 0 I !

-------..~

Figure 7-1. Console Drivers

PORT

UnitO

Unit 1

Unit2

Unit3

Unit4

In Figure 7-1, the console driver MAPPED supports a single physical
console. MAPPED interfaces directly to the keyboard and screen
hardware. It uses a subdriver to interface to the character-mapped
hardware associated with this physical console. The driver QUAD RAM
handles the video display and keyboard interfaces, but is written to be

7-2

FlexOS System Guide 7.2 The FRAME and RECT Structures

independent of the actual port hardware. QUADRAM uses the port
driver PORT as a sub-driver to interface with the port hardware.

The driver SERCON handles much of the higher-level interface to serial
consoles independent of the type of terminal. SERCON calls the sub
drivers ADM3A+ and Z-19 for the screen and keyboard interfaces.
ADM3A+ and Z-19 handle the specific terminal interfaces and use
PORT as a sub-driver to interface with specific port hardware.

7.2 The FRAME and RECT Structures

A FRAME is a logical representation of a screen. It is a three
dimensional structure consisting of one or more planes of character
cells, with one byte per character cell. Each plane consists of. either a
two-dimensional byte array or a single byte which the Console RM
uses to define all the bytes in the plane.

A FRAME's height and width are defined in terms of character columns
and rows of its planes. A FRAME's depth is defined in terms of the
number of planes in the FRAME.

On a FRAME, a rectangle can be described that descends through all of
the FRAME's planes. This piece of the FRAME is a data structure
called RECT. COPY and ALTER (see Section 7.4) manipulate FRAMEs by
acting on RECTs. Figure 7-2, below, illustrates a FRAME with a RECT
descending through its planes.

7.2.1 Planes

FlexOS defines parameters for three planes: the character (plane 0),
the attribute (plane 1), and extension plane (plane 2). Figure 7-2,
above, depicts these planes. Support for planes 1 and 2 is optional.
These planes are defined as follows:

• Character plane - consists of alphanumeric characters. This plane
uses an 8-bit character set defined on a per-country basis. This
plane supports two-byte characters, such as KANJI, through the
implementation of the extension plane (see below).

7-3

7.2 The FRAME and RECT Structures FlexOS System Guide

o neal

O~------------------------~~

RECT {

Plane 0 - Characters
nrow -l.-----.---------".---.,.-..lI.

UFRAME

Plane 1 - Attributes

Plane 2 - Extension

Figure 7-2. FRAME and RECT

• Attribute plane - describes the display characteristics of the
characters in the character plane. Each byte in the attribute plane
defines the foreground color. background color. color intensity.
and blink status (on or off) for the corresponding character cell in
plane O.

7-4

FlexOS System Guide 7.2 The FRAME and RECT Structures

The attribute byte is formatted as follows for monochrome and
color video display drivers:

Bits 0-2
Bit 3
Bits 4-6
Bit 7

Foreground color
Intensity
Background color
Blink

For video displays supporting the blink attribute, set the blink bit
in a given attribute byte to cause the corresponding character to
blinK.

The three-bit foreground and background color fields are defined
as follows:

low bit blue
middle bit green
high bit red

Use of the three color bits provide the following eight colors:

Table 7-1. Colors Defined in Attribute Byte

3-bit Value Color

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light Gray

The foreground color, specified by bits 0-2, is modified by the
intensity bit, bit 3. When the intensity bit is set, the low nibble of
the attribute byte allows for the following colors:

7-5

7.2 The FRAME and RECT Structures FlexOS System Guide

Table 7-2. Foreground Colors with Intensity Bit Set

Low Nibble Value

8
9

AH
BH
CH
DH
EH
FH

Color

Dark Gray
Light Blue
Light Green
Light Cyan
Light Red
Light Magenta
Yellow
White

The attribute byte has the same format for monochrome video
displays as for color. Certain color selections effect monochrome
display output. For example, when the foreground color is black
and the background color white, a monochrome display will
appear in reverse video .

• Extension plane - allows support for alternate character set or
other extensions to the standard FRAME. Implement this plane if
you intend to support foreign languages. Extension plane bytes
have the following format:

7-6

Bit 0
Bit 1
Bits 2 & 3
Bits 4-7

Cell type
Cell number
Reserved
OEM extension

Cell type (bit 0) determines whether the character corresponding
to an extension byte is one byte or two. A one-byte character,
such as an ASCII character, takes up one character position on
the screen. A two-byte character, such as a KANJI character,
takes up two character positions. Bit 0 is set to zero to display
one-byte characters; Bit 0 is set to 1 to display two-byte
characters.

FlexOS System Guide 7.2 The FRAME and RECT Structures

Cell number (bit 1) indicates whether a corresponding byte in the
character plane is either: a) the first part of a two-byte character
or a one-byte character or b) the second part of a two-byte
character. Bit 1 is set to 0 when the corresponding character
plane byte is the first part of a character or when displaying one
byte characters. B,it 1 is set to 1 when a corresponding character
plane byte is the second part of a character.

You can customize the OEM extension field (bits 4-7) for your
own purposes. This field allows the implementation of alternate
character sets. This field is set to zero when the FlexOS standard
character set is supported.

7.2.2 FRAME Types

There are three types of FRAMEs: a user FRAME (UFRAME), a virtual
FRAME (VFRAME), and a physical FRAME (PFRAME). The driver writer
creates the PFRAME and VFRAME; FlexOS defines the UFRAME.

The UFRAME is a device-independent representation of a console
screen used by applications. It is based on the model of the IBM PC
video map. The FlexOS Programmer's Guide describes the UFRAME for
the applications programmer.

The VFRAME is the storage form of a virtual console, as defined by the
console driver writer. The Console RM stores a virtual console's
current screen image in the VFRAME that the driver creates. The
VFRAME can be created to be different sizes, where size is measured
in rows and columns. FlexOS makes no assumptions regarding the
VFRAME's format.

The Console RM calls the SPECIAL entry point to create and delete
VFRAMEs as virtual consoles are created and deleted. See "SPECIAL
Entry Point" for a description of the FlexOS support for creating and
deleting VFRAMEs.

The Console RM uses the WRITE and COPY fALTER functions to update
the VFRAME. The WRITE entry point updates a VFRAME and returns a
"dirty region" that allows the Console RM to determine the portions of
the VFRAME that must be copied to the PFRAME. The VFRAME's
design should provide for fast VFRAME to PFRAME COPY.

Through the SPECIAL functions 0, 2, and 3, FlexOS supports systems

7-7

7.3 Console Driver Entry Points FlexOS System Guide

whose VFRAME is modeled after the video map of an IBM PC. These
SPECIAL functions are described below, under "SPECIAL Entry Point."

The PFRAME is a direct representation of the physical screen. Like the
VFRAME, the PFRAME is defined by the console driver writer. Any
change to the PFRAME must be reflected on the physical screen. The
console driver must be able to COPY/ALTER the physical screen and
therefore needs a copy of the PFRAME in memory. Most memory
mapped screen devices already have a PFRAME: the mapped memory
itself ..

If your PFRAME does not follow the IBM PC video map model, you
must translate between your PFRAME and an IBM PC-type of PFRAME.

Most implementations of FlexOS console drivers simplify the FRAME
transformation by defining the VFRAME and PFRAME to have the same
memory representation. For serial devices, all three types of FRAME
can have the same representation.

7.3 Console Driver Entry Points

Like all FlexOS drivers, console drivers consist of a driver header and
entry points for driver functions. Section 4 describes the general
format of a FlexOS driver. The entry points to a console driver are
SELECT, FLUSH, COPY/ALTER, WRITE, SPECIAL, GET, and SET.

The SELECT function activates the keyboard. SELECT contains a
pointer to the keyboard Asynchronous Service Routine (ASR) which
calls the Console RM asynchronously. This ASR buffers the characters
to be used by an application. FlexOS calls the SELECT entry point for
keyboard information; there is no READ entry point.

FLUSH deactivates keyboard activity by disabling interrupts. Typically,
the driver activates and deactivates keyboard hardware with SELECT
and FLUSH calls.

WRITE and COPY/ALTER act on FRAMEs. These entry points are called
to perform updates to the physical console. COPY/ALTER replaces
READ in the standard FlexOS Driver Header. The Console RM performs
range checking of the UFRAME before it calls COPY/ALTER.

Note: The WRITE and COPY/ALTER entry points are called from ASRs

7-8

FlexOS System Guide 7.4 Console Driver 1/0 Functions

and therefore can never wait. These functions return a zero if the
operation is completed successfully. WRITE returns an event mask if
the driver must wait for an event, or an error code if an error occurs.

The Console RM calls the SPECIAL entry point to

• create and delete virtual consoles (VFRAMEs)
• convert VFRAMEs to conform to an IBM® PC video map model
• convert VFRAMEs from IBM PC model back to original form
• change VFRAME configuration

The SPECIAL functions need not be implemented if you do not support
virtual consoles or if you do not support PC DOS applications.

GET provides information on the physical console. SET changes the
country code for a console for systems that support foreign character
sets. The SET function is optional.

7.4 Console Driver I/O Functions

7.4.1 SELECT--Activate keyboard

Parameter: Address of SELECT parameter block

Return Code: E_SUCCESS Operation was successful

o
4

8

12

16

o 1 2 3

UNIT J 0 J 0

KEYBOARD

MOUSE

BUTTON

PCONID

Figure 7-3. SELECT Parameter Block

7-9

7.4 Console Driver 1/0 Functions FlexOS System Guide

Table 7-3. Fields in SELECT Parameter Block

Field Description

UNIT Driver unit number

KEYBOARD Address of the keyboard ASR. Use this address in your
DOASR or NEXTASR call to transfer a character from the
keyboard to the input buffer. You must translate the
character into the FlexOS 16-bit input character set (see
Appendix A). If the keyboard generates toggle characters,
they should always be passed to the keyboard ASR. When
you call DOASR or NEXTASR, the first parameter is PCONID
and the second is the character received.

MOUSE

BUTTON

PCONID

Address of the mouse ASR. Use this address in your
DOASR or NEXTASR call to transfer the change in the
mouse position. When you call DOASR or NEXTASR, the
first parameter is PCONID and the second is the address of
the mouse movement packet with the delta x and delta y
values.

Address of the button ASR. Use this address in your
DOASR or NEXTASR call to indicate the mouse button
pressed. When you call DOASR or NEXTASR, the first
parameter is PCONID and the second is a long indicating
the button pressed where bit 31 represents the leftmost
mouse button, bit 30 represents the next button to the
right, and so forth.

Physical console identifier for the driver unit being
SELECTed. The Console RM gives the PCONID to the driver
of this unit. The driver must pass the PCONID to the
keyboard ASR to allow it to identify which physical console
is sending information.

The Console RM calls the SELECT function to initialize the keyboard.
Once SELECT has been called, the keyboard is considered live.

7-10

FlexOS System Guide 7.4 Console Driver 1/0 Functions

Typically, SELECT turns on the hardware interrupts. FlexOS calls only
the SELECT entry point for input data.

The interrupt vector itself is usually initialized in the INIT entry point at
the time the driver is installed. Initialize the interrupt vector with the
SETVEC driver service. Section 5.7 explains SETVEC and offers
guidelines for using ISRs under FlexOS.

In response to an interrupt, the keyboard interrupt service routine
should use the DOASR driver service to schedule the keyboard ASR.
You must use the ASR provided in the SELECT parameter block, so be
sure to save this address in your routine.

Non-interrupt-driven console devices use the POLLEVENT driver
service to establish a poll routine to receive a physical input.
POLLEVENT is described in Section 5.3.

The console driver must perform any necessary translation of
hardware data to logical information that can be used by FlexOS. If
translation is required, the driver, upon receiving a physical input, calls
the DOASR driver service from an ISR to schedule an ASR to perform
physicai-to-Iogical translation. The translation should not be done in
the ISR itself. Such translation might include translation to the FlexOS
16-bit character set. The FlexOS standard input character set is
defined in Appendix A.

When translation is finished, the driver should call DOASR again to
schedule the keyboard ASR, passing the translated information. The
Console RM places the data into the present keyboard owner's input
buffer.

Call the DOASR driver service with a priority of 200 when scheduling a
translation ASR and the keyboard ASR.

7-11

7.4 Console Driver 1/0 Functions FlexOS System Guide

7.4.2 FLU5H--Deactivate keyboard

Parameter: Address of FLUSH parameter block

Return Code:

E_SUCCESS
10ERROR

Operation was successful
Console driver error code

The Console RM calls FLUSH with the address of the following
parameter block:

o

o I __ U_N_IT ________ O __

The UNIT field contains the driver unit to be FLUSHed.

The FLUSH function is the reverse of SELECT. It must perform all
operations (either hardware or software) required to stop the physical
input of characters andlor interrupt sources. If a console driver owns a
sub-driver, it must call the sub-driver's FLUSH function to make the
sub-driver quiescent.

7-12

FlexOS System Guide 7.4 Console Driver I/O Functions

7.4.3 COPY/ALTER--Modifya RECT

Parameter: Address of COPY/ALTER parameter block

Return Code:

E_SUCCESS Operation was successful

COPY and ALTER share the same entry point. You determine which
operation to perform from the OPTION field in the parameter block.
Figure 7-4 illustrates the format of the COPY/ALTER parameter block.
The fields are described in Table 7-4. The FRAME and RECT data
structures referenced in the parameter block are illustrated following
the parameter block description.

o

4

8

12

16

20

24

o 2 3

UNIT I OPTION FLAGS

ROW COL

PDADDR

DFRAME

DRECT

SFRAME or Al TERS

SRECT

Figure 7-4. COPY IALTER Parameter Block

7-13

7.4 Console Driver 1/0 Functions FlexOS System Guide

Field

UNIT

OPTION

FLAGS

7-14

Table 7-4. Fields in COPY/ALTER Parameter Block

Description

Driver unit number

Bit map of operation and FRAME types:

bits: 7 6 5 4 3 2 1 0

Destination FRAME
(bit 0)

I....----i~ Source FRAME Type (bit 1)

I....------!~ Operation (bit 2)

Where FRAME type is:

Operation is:

o - VFRAME/PFRAME
1 - UFRAME
o - COpy source to destination
1 - ALTER destination

RECT and FRAME addresses for a UFRAME are always in
User Memory. You must convert them to system
addresses (see the SADDR driver service). The driver
creates the PFRAME and VFRAME; consequently, these
FRAMEs are in System Memory.

Bit map of flag usage.

Bit 0: 1 = Modify plane 0
o = Do not modify plane 0

Bit 1: 1 = Modify plane 1
o = Do not modify plane 1

FlexOS System Guide 7.4 Console Driver I/O Functions

Table 7-4. (Continued)

Field Description

Bit 2: 1 = Modify plane 2
a = Do not modify plane 2

Bits 3-6: Reserved

Bit 7: 1 = This is top virtual console. Update the
cursor position when this bit is set.

a = This is not the top virtual console.

Bits 8-11: Reserved

Bit 12:

Bit 13:

Bit 14:

Bit 15:

1 = This call is to move the cursor only. Only
UNIT, FLAGS, ROW, and COL have meaning.

a = All fields have meaning

1 = This is an update of a dirty RECT passed
from WRITE driver function.

a = This is not a RECT passed from WRITE.

= Update PFRAME and VFRAME. This means
the virtual console is the same size as the
physical, windowed full-screen, and on top.

a = Update as indicated with option. If VFRAME
is modified, the Console RM updates
windowed RECTs on PFRAME as appropriate.

= Buffer is in User Memory. Use the SADDR
driver service to convert User to System
Address before accessing this address.

a = Buffer in System Memory.

7-15

7.4 Console Driver If 0 Functions FlexOS System Guide

Table 7-4. (Continued)

Field Description

ROW With COL, defines current cursor position. When
COPY fALTER is exited, this is where cursor should be.

COL With ROW, defines current cursor position. When
COPY fALTER is exited, this is where cursor should be.

PDADDR Process descriptor address of user process whose memory
contains the UFRAME. This may not be the calling process
for FlAGEVENT and FLAGSET. Get the pdaddr of the
process accessing the COPY fALTER entry point from the
RlR Address field in the Driver Header.

DFRAME Destination FRAME. Address of UFRAME, virtual console
identifier (VCID) of VFRAME, or 0 if PFRAME.

DRECT Address of destination RECT describing region in DFRAME.

SFRAME or AlTERB

SRECT

7-16

For COPY operation, address of source RECT describing
region in SFRAME. For ALTER operation, address of AlTERB;
a six-byte array indicating the alteration of the destination
RECT. The array is arranged as follows:

alterb[O] = character plane AND
alterb[l] = character plane XOR
alterb[2] = attribute plane AND
alterb[3] = attribute plane XOR
alterb[4] = extension plane AND
alterb[5] = extension plane XOR

Source FRAME. Address of UFRAME, virtual console
identifier (VCID) of VFRAME, or 0 if PFRAME. Not used for
ALTER operation. The VCID is returned from SPECIAL
function 0, Create VFRAME. SPECIAL function 0 is described
later in this section.

FlexOS System Guide 7.4 Console Driver 1/0 Functions

a

4

8

12

16

a

NROW

USE

2 3

CHARACTER

ATTRIBUTE

EXTENSION

NCOl

18 = size in bytes

Figure 7-5. FRAME Structure

Table 7-5. FRAME Fields

Field Description

CHARACTER Address of the character plane of this FRAME

ATTRIBUTE Address of the attribute plane of this FRAME

EXTENSION Address of the extension plane of this FRAME

NROw

NCOl

Number of rows; indicates each FRAME's height.

Number of columns; indicates each FRAME's width.

7-17

7.4 Console Driver 1/0 Functions FlexOS System Guide

Table 7-5. (Continued)

Field Description

USE Bit map describing how the three plane fields are used.

7-18

When the bit value is 0, the byte at the address specifies
the value for each element in the plane.

Bit 0: 1 = CHARACTER addresses a two-dimensional array
of bytes making up the character plane.

o = CHARACTER addresses a single byte.

Bit 1: 1 = ATTRIBUTE addresses a two:-dimensional array
of bytes making up the attribute plane.

o = ATTRIBUTE addresses a single byte.

Bit 2: 1 = EXTENSION addresses a two-dimensional array
of bytes making up the extension plane.

o = EXTENSION addresses a single byte.

o 2 3

°4·~ ________ R_O_W ________ ~ ________ C_O_l ________ ~
. NROW NCOl

8 = size in bytes

Figure 7-6. RECT Structure

FlexOS System Guide 7.4 Console Driver I/O Functions

Field

ROW

COL

NROW

NCOl

Table 7-6. RECT Fields

Description

Row position of the upper left corner of the RECT. The
upper left corner, as specified by ROWand COL is the
reference point for a RECT.

Column position of the upper left corner of the RECT.

Number of rows, indicating the RECT's height.

Number of columns, indicating the RECT's width.

COpy copies the bytes from the region described by the source RECT
into the region described by the destination RECT. If the RECTs are
different sizes, the driver should trim them to the same size, using the
upper left corner of each RECT as a reference point. The driver should
store trimmed RECTs locally. If both RECTs are on the same FRAME
and they overlap, care should be taken to copy the RECT in the
appropriate direction.

ALTER alters the destination RECT by performing a logical AND
operation with a specified AND byte and a logical XOR operation with
a specified XOR byte on each byte of a given plane. Separate AND
and XOR bytes are specified for each plane in the ALTERS array,
defined above. The FLAGS parameter determines which planes will be
effected.

The ALTER driver function allows an application to set, clear,
complement. or leave unchanged any bit in the raw bytes of the
destination RECT. This function should enable an application to
perform such operations as clearing a portion of the screen, displaying
strings of identical characters in different parts of the screen, or
changing the attributes of a portion of the display without effecting
the character or extension plane.

7-19

7.4 Console Driver 1/0 Functions FlexOS System Guide

7.4.4 WRITE--Write data to VFRAME

Parameter: Address of WRITE parameter block

Return Code:

E_SUCCESS Operation was successful
Event Mask Event mask if operation will complete asynchronously

7-20

o

4

8

12

16

20

24

o 2 3

UNIT 1 1 FLAGS

VCID

PDADDR

BUFFER

BUFSIZ

ROW 1 COLUMN

DIRTY

Figure 7-7. WRITE Parameter Block

FlexOS System Guide 7,4 Console Driver liD Functions

Field

UNIT

FLAGS

Table 7-7. Fields in WRITE Parameter Block

Description

Driver unit number

Bit map of flags

Bit 7:

Bit 14:

Bit 15:

1 = This is the top virtual console.
o = This is not the top virtual console.

This bit determines whether the WRITE
operation should affect the cursor position
on the physical console. If bit 7 is set,
update the cursor position in the WRITE
operation. If it is not set, do not update the
cursor.

1 = Update PFRAME.
o = Update VFRAME or PFRAME as indicated.

Set Bit 14 to 1 when the virtual console is
full screen, on top. This setting allows
optimized use of screen-editing commands
in 16-bit character set.

1 = Buffer is in User Memory.
o = Buffer is in System Memory.

If bit 15 is set to 1, use the SADDR service
to convert User to System Address before
accessing this address.

7-21

7.4 Console Driver I/O Functions FlexOS System Guide

Table 7-7. (Continued)

Field Description

VCID Virtual console identifier of VFRAME or, if writing to the
PFRAME, O. The VCID is returned from SPECIAL function 0,
described later in this section.

PDADDR Address of process in whose memory BUFFER (see below)
resides. This is not necessarily the calling process as
needed in the FLAGEVENT and FLAGSET driver services ..
Obtain the pointer to the calling process's pdaddr from the
RLR field in the Driver Header.

BUFFER Address of buffer of 16-bit characters used to update the
indicated VFRAME or PFRAME.

BUFSIZ Size in bytes of BUFFER. This is not the number of
characters. To obtain the number of characters divide
BUFSIZE by two.

ROW Current cursor row position on which to start placing
characters.

COLUMN Current cursor column position on which to start placing
characters.

DIRTY Address of structure to be filled in by WRITE indicating
new cursor position and dirty region. Figure 7-8 illustrates
the format of the dirty region.

7-22

FlexOS System Guide 7.4 Console Driver I/O Functions

a 2 3

a Cursor ROW Cursor Cal

4 Dirty ROW Dirty Cal

8 NROWS NCOlS

Figure 7-8. Dirty Region Format

Cursor ROWand Cursor COL indicate the cursor's new location. Dirty
ROWand Dirty COL are the coordinates of the upper left corner of the
dirtied RECT. NROWS and NCOLS indicate the size of the dirtied RECT.

WRITE updates a VFRAME with a specified buffer of 16-bit characters.
The driver should write the string buffer at the specified cursor
position. Before returning you must update the cursor position (the
ROWand COLUMN values) and fill in the dirty region data structure.

7-23

7.4 Console Driver I/O Functions FlexOS System Guide

7.4.5 SPECIAL Entry Point

The Console RM calls the SPECIAL entry point to perform the following
functions:

• Special Function 0: Create a virtual console (VFRAME)
• Special Function 1: Delete a virtual console (VFRAME)
• Special Function 2: Convert a VFRAME to a PCFRAME
• Special Function 3: Convert a PCFRAME to its original form

(inverse of Function 2)
• Special Function 4: Change VFRAME configuration

The SPECIAL functions operate on VFRAMEs, the storage form of a
virtual console (see Section 7.2.2). A driver that does not support
virtual consoles should return a not implemented (E_IMPLEMENT) error
to the Console RM when the SPECIAL entry point is called.

Note: A PCFRAME is a VFRAME with the following characteristics:

• For a character-mapped screen: A 25 row by 80 column display
with the characters arranged in character/attribute pairs

• For a bit-mapped screen: A 200 by 640 pixel display

FlexOS defines the UFRAME to allow a fast transformation to an IBM
PC-type of PFRAME.

SPECIAL Functions 2 converts a VFRAMEfrom its original form to a
model that replicates an IBM PC video map. SPECIAL Function 3
converts the VFRAME from the IBM PC model back to its original form.
These functions are provided to allow applications that poke the IBM
PC model video map to run in a multiple-virtual console environment.

7-24

FlexOS System Guide 7.4 Console Driver 110 Functions

SPECIAL Function O--Create a VFRAME

Parameter:

Return Code:

VCID

o

Address of SPECIAL parameter block

An identifier of this VFRAME for use in the WRITE,
COpy IAlTER and SPECIAL functions 1-3. This is
typically the address of an internal data structure
known by this driver. The VCID cannot be O.

Error. The Console RM assumes a memory allocation
error has occured. A negative error code cannot be
returned here since addresses may look like a
negative number.

E-,MPlEMENT Virtual consoles are not implemented

o 2 3

o UNIT I 0 FLAGS

4 NROWS NCOLS

8 PCFRAME

Figure 7-9. SPECIAL Function 0 Parameter Block

7-25

7.4 Console Driver I/O Functions FlexOS System Guide

Table 7-8. Fields in SPECIAL Function 0 Parameter Block

Field

UNIT

o
FLAGS

Description

Driver unit number

One byte set to zero

Bit map of flag usage

Bit 0:

Bits 1-6:
Bit 7:

1 = bit-mapped device
o = character-mapped device
Reserved
1 = creating a PFRAME
o = creating a VFRAME

NROWS Number of rows in VFRAME

NCOlS Number of columns in VFRAME

PCFRAME Preset to zero. If this field is non-zero, the value is the
address of an IBM PC-compatible character or bit map.

The Console RM calls SPECIAL Function 0 to create a VFRAME. When
the PCFRAME field contains the address of an IBM PC-type video map,
use the FLAGS field to determine whether the display is bit- or
character-mapped.

SPECIAL Function 1--Delete a VFRAME

Parameter: Address of SPECIAL parameter block

Return Code:

E_SUCCESS Operation was successful
E_IMPlEMENT Virtual consoles are not implemented

7-26

FlexOS System Guide 7.4 Console Driver 1/0 Functions

The Console RM calls SPECIAL function 1 to delete a VFRAME and
provides the following information in the parameter block:

a 2 3

a UNIT FLAGS

4 VCID

The UNIT field contains the driver unit number. 1 is the SPECIAL
function number. The word at offset 2 is set to zero. VCID is the
VFRAME identifier of the VFRAME to delete. The VCID is returned from
SPECIAL function O.

SPECIAL Function 2--lnitialize a PCFRAME

Parameter:

Return Code:

address
o

Address of SPECIAL parameter block

Video map address
Operation not allowed

The Console RM calls SPECIAL function 2 when an application attempts
to write directly to an IBM PC video map. Use this function to convert
the specified VFRAME to a facsimilie of an IBM PC video map and
return the address of the replacement video map. FlexOS directs
subsequent console output to the video map address returned.

The SPECIAL parameter block provided by the Console RM is formatted
as follows:

a 2 3

a UNIT 2 FLAGS

4 VCID

7-27

7.4 Console Driver 110 Functions FlexOS System Guide

The UNIT field contains the driver unit number. 2 is the SPECIAL
function number. The Console RM uses flag bit 0 only. If it is set to 1,
it indicates that the application attempted to output to a bit-mapped
display (address B800:0 in the IBM PC). If bit 0 is set to 0, the
application attempted to output to a character-mapped display
(address BOOO:O in the IBM PC). The VCID identifies the VFRAME to
convert.

SPECIAL Function 3--Revert to VFRAME

Parameter:

Return Code:

address
o

Address of SPECIAL parameter block

Original VFRAME video map address
Operation not allowed

The Console RM calls SPECIAL function 3 when an application has
stopped writing directly to an IBM PC video map. Use this function to
convert the designated PCFRAME back to the VFRAME originally
created.

The SPECIAL Function 3 parameter block is formatted as follows:

o 2 3

0
4
r ___ U_N_I_T __ ~ _____ 3 ____ ~ _________ O ________ ~
. VelD

The UNIT field contains the driver unit number. 3 is the SPECIAL
function number. The word at offset 2 is set to zero. VelD identifies
the PCFRAME to convert back to a VFRAME.

7-28

FlexOS System Guide 7.4 Console Driver I/O Functions

SPECIAL Function 4--Change VFRAME Configuration

Parameter: Address of SPECIAL parameter block

Return Code:

address Video map address

E-,MPLEMENT Virtual console change does not match physical
capabilities of console device

E_MEMORY Not enough memory to change virtual console
configuration

o 2 3

o UNIT I 4 FLAGS

4 NROWS NCOLS

8 VCID

Figure 7-10. SPECIAL Function 4 Parameter Block

The Console RM calls SPECIAL Function 4 to reconfigure a virtual
frame to a new configuration; for example, to convert a 80 x 25 black
and white character screen to a 320 x 200 pixel color graphics screen.

7-29

7.4 Console Driver 1/0 Functions FlexOS System Guide

Table 7-9. Fields in SPECIAL Function 4 Parameter Block

Field

UNIT

4

FLAGS

NROWS

NCOLS

VCID

Description

Driver unit number

SPECIAL function number

Bit map of flag usage

Bit 0:

Bits 1-2:
Bit 3:

Bits 4-15:

1 = Graphics virtual console requested
o = Character vir'tual console requested
Reserved
1 = Color display
o = Black and white display
Reserved

VFRAME's number of rows (bit 0 = 0) or height in pixels (bit
o = 1)

VFRAME's number of columns (bit 0 = 0) or width in pixels
(bit 0 = 1)

Identification number of VFRAME to reconfigure.

7.4.6 GET--Provide physical console description

Parameter:

Return Code:

7-30

E_SUCCESS
10ERROR

Address of GET parameter block

Operation was successful
Driver-specific error code

FlexOS System Guide 7.4 Console Driver 1/0 Functions

Field

UNIT

o
FLAGS

o

4

8

12

16

o 2

UNIT I 0 I FLAGS

0

PDADDR

BUFFER

BUFSIZ

Figure 7-11. GET Parameter Block

Table 7-10. Fields in GET Parameter Block

Description

Driver unit number

Byte set to zero

Bit map of flag usage

Bit 15: 1 = Buffer in User Memory
a = Buffer in System Memory

o Long word set to zero

3

PDADDR Address of process descriptor of process owning BUFFER

BUFFER Address of PCONSOLE Table--see Figure 7-12

BUFSIZ Size of BUFFER. If this is less than the size of the
PCONSOLE Table, only complete fields should be filled in.

7-31

7.4 Console Driver I/O Functions FlexOS System Guide

GET must provide information for the FlexOS PCONSOlE Table. The
PCONSOlE Table describes a physical console device and contains the
information described in Table 7-11, below.

o 2 3

o ROWS COlS

4 FLAGS I PLANES ATTRP EXTP

8 COUNTRY NFKEYS BUTTONS

12 SERIAL

16 MUROW MUCOl

20 CONVERT8

24 CONVERT16

28 = length in bytes

Figure 7-12. PCONSOLE Table

GET provides routines to translate the 8-bit output character set to
the 16-bit output character set and the 16-bit input character set to
the 8-bit input character set. If the driver does not provide these
routines, the Console RM uses the standard conversion routines when
interfacing with a given unit. The FlexOS standard input and output
character sets and escape sequences are defined in Appendix A.
Country codes are listed in Appendix C of the FlexOS Programmer's
Guide.

For the use of computers in Japan, GET might provide a routine to
translate 8-bit SHIFT -JIS characters to 16-bit SHIFT -JIS characters as
defined by Digital Research/Japan.

7-32

FlexOS System Guide 7.4 Console Driver I/O Functions

Field

ROWS

COlS

FLAGS

PLANES

ATTRP

EXTP

Table 7-11. Fields in PCONSOLE Table

Description

Number of rows on physical console

Number of columns on physical console

Bit map of capabilities:

Bit 0:

Bit 1:

Bit 2:
Bit 3:

Bit 4:

Bit 5:

1 = graphic and character-mapped display
o = character-only display
1 = no numeric keypad
o = numerical keypad
Reserved
1 = color screen
o = monochrome screen
1 = memory-mapped video
o = serial device
1 = currently in graphics mode
o = currently in character mode

Planes supported on PFRAME. FlexOS assumes whatever
planes are supported on PFRAME are supported on
VFRAME.

Bit 0:
Bit 1:
Bit 2:
Bits 3-7:

= character plane supported
= attribute plane supported
= extension plane supported

Set to zero

Attribute plane bits supported

Extension plane bits supported

COUNTRY Country code

NFKEYS Number of function keys

7-33

7.4 Console Driver I/O Functions FlexOS System Guide

Table 1-11. (Continued)

Field Description

BUTTONS Number of mouse buttons

SERIAL Serial number of mouse

MUROW Number of mickey units per row

MUCOL Number of mickey units per column

CONVERT8 Address of 8-bit to 16-bit output conversion routine. If
NULLPTR, the FlexOS standard conversion routine is called
internally. See the sample driver code for the specific
interface expected of this routine.

CONVERT16
Address of 16-bit to 8-bit input conversion routine. If
NULLPTR, the FlexOS standard conversion routine is called
internally. See the sample driver code for the specific
interface expected of this routine.

1.4.7 SET--Change the PCONSOLE Table

Parameter:

Return Code:

7-34

E_SUCCESS
10ERROR

Address of SET parameter block.

Operation was successful
Driver-specific error code

FlexOS System Guide 7.4 Console Driver I/O Functions

Field

UNIT

o
FLAGS

o

o

4

8

12

16

o 2 3

UNIT j 0 1 FLAGS

0

PDADDR

BUFFER

BUFSIZ

Figure 7-13. SET Parameter Block

Table 7-12. Fields in SET Parameter Block

Description

Driver unit number

Byte set to zero

Bit map of flag usage

Bits 0-14: Reserved
Bit 15: 1 = Buffer in User Memory

o = Buffer in System Memory

Long word set to zero

PDADDR Address of process descriptor of process containing
BUFFER

BUFFER Address of PCONSOLE Table

SET changes the COUNTRY field in the PCONSOLE Table. (See Table
7-11.) This is the only PCONSOLE Table value that can be modified.
Support for this console function is optional.

7-35

7.4 Console Driver I/O Functions FlexOS System Guide

End of Section 7

7-36

SECTION 8

Disk Drivers

This section describes how FlexOS performs reads and writes to disk
and defines 1/0 functions for disk drivers.

8.1 Disk Driver Input/Output

FlexOS supports an extended PC DOS 2.0 disk file format. The file
system primitives are contained in the Disk Resource Manager (RM).
The Disk RM manages the disk file system through the interface with
the disk driver(s).

All hardware-dependent code is within the disk drivers. The Disk
Resource Manager deals with a single, uniform disk driver interface.
All types of disk media are handled through this single interface.

FlexOS supports three extensions to the PC DOS 2.0 disk file format.
The first two extensions are required for file security, the third to
support variable record sizes on files. These extensions take the form
of fields in each directory entry that specify a file's User/Group ID,
protection level, and record size. The FlexOS file system is described
in detail in the FlexOS Programmer's Guide.

With minor modifications, the FORMAT and FDISK utilities, distributed
in source code, support non-DOS disk formats. COPYCPM, also
distributed in source code, allows you to copy to and from CP/M
media.

8.1.1 R~entrancy at the Driver/Disk Controller Level

Disk drivers are organized at the controller level and the unit level.
Each disk driver controls one disk controller and as many units as are
controlled by that controller. Each unit represents a logically separate
disk drive. A unit might be a single diskette drive or one partition of a
partitioned hard disk.

The Disk Resource
controller/driver level.

Manager supports reentrancy only
The unit level is always synchronized.

at the
A disk

8-1

8.1 Disk Driver InputlOutput FlexOS System Guide

driver can choose to allow only one operation at a time for all units of
the driver or it can allow each unit to operate independently of the
other. In either event, there can be only one operation at a time at
the unit level.

In the FLAGS field of a disk driver's driver header, bit 0 can be 0 if the
cO'ntroller can handle multiple 1/0 requests. However, bit 1 must be 1,
indicating that the disk driver synchronizes 1/0 requests at the unit
level. See Section 4.2 for a complete description of the driver header.

8.1.2 Disk Driver Types

The Disk Resource Manager supports three types of disk drivers:
removeable with open door support, removeable, and permanent. The
Disk Resource Manager deals with each of these types differently to
take advantage of each type's capabilities.

With all disk driver types, FlexOS allows delayed READs and WRITEs for
those drivers performing intermediate buffering of data on I/O
operations. The READ and WRITE disk driver functions have "normal
read (or write)" and "read (or write) through" options. Normal reads
and writes can take advantage of buffering, if implemented at the
driver level. The read or write through option forces a direct read
from or write to the actual medium, bypassing any intermediate
buffering.

Delayed WRITEs are forced out to disk when FlexOS performs a CLOSE
operation on a unit and on WRITE through and READ through
operations. I/O will always occur in response to any of these three
operations.

The disk drivers shipped with FlexOS do not use intermediate
buffering.

Disk driver units inform the Disk RM of their driver type, size, and file
structure information through a data structure called the Media
Descriptor Block. The driver returns the Media Descriptor Block
through the SELECT entry point. The Media Descriptor Block is
described in detail in the explanation of SELECT, later in this sectiOn.

8-2

FlexOS System Guide 8.1 Disk Driver Input/Output

Removeable with Open Door Support

With disk drive hardware providing "open door" detection, the Disk
Resource Manager ensures the integrity of removeable media.

To take advantage of the FlexOS open-door support, the disk driver
must be able to respond to the hardware's open door interrupt. The
driver responds to such an interrupt by setting an open door flag. The
address of the open door flag is given to the Disk Resource Manager
through a disk driver's GET entry point at the time a driver unit is
initialized. .

At each I/O operation, the Disk Resource Manager checks the address
of the open door flag for a non-zero value. If it finds a non-zero
value, the Disk RM requires verification that the disk has not been
changed before passing the -next I/O request. If a change is detected,
the Disk RM calls the SELECT function to reinitialize the driver unit.
Any intermediate buffers are not written to the disk.

The Disk RM does not do media verification at any time other than in
response to the open door flag, thereby improving performance
significantly over hardware and software without open door support.

Removable Without Open Door Support

While FlexOS obtains optimum performance from floppy disk hardware
and software supporting an open door interrupt, FlexOS also supports
disk drivers that do not have such an interrupt. For drives in this
category, the Disk RM maintains checksum information on critical
portions of the system area of the disk medium. If the drive is not
used within a certain time interval, the volume is marked as suspect.
At the next disk access, the checksum is verified. If the verification
fails, the Disk RM calls the SELECT function to allow the disk driver
unit to specify which type of media is in place.

After a failed verification, the Disk RM takes the following steps:

o The Disk RM assumes that the disk has been changed and
disregards all buffers pertaining to the drive.

8-3

8.1 Disk Driver Input/Output FlexOS System Guide

• If there are opened files on the removed medium, the Disk RM
closes the files without flushing any intermediate buffers to the
disk.

• The Disk RM attempts to re-Iogin the disk. Then, if the SVC
request did not assume an open file, the Disk RM retries the
request. LOOKUP, OPEN, and RENAME are examples of SVCs that
do not assume open files.

• The Disk RM sets the open door flag (see previous subsection)
and returns an error code to the process that requested 1/0.

To improve performance, FlexOS does not perform checksum
verification on READs and WRITEs. This means that, if a file is active
when a disk is changed, FlexOS could write data from that file to a
changed disk. Digital Research recommends that you implement an
open door interrupt to eliminate this possibility and to significantly
enhance floppy disk performance.

Permanent

In this usage, "permanent" means that you cannot change the medium
during the life of the system. The Disk RM does no checksum
verification and does not check the open door flag. Because of these
facts, 1/0 system performance is faster with permanent media than
with either sort of removable media.

8-4

FlexOS System Guide 8.2 Logical Disk Layouts

8.2 Logical Disk Layouts

This section illustrates a generalized logical disk layout and a logical
layout for hard disks.

Each disk driver unit interfaces to a logical disk drive with the layout
shown in Figure 8-1; Table 8-1 explains each field. .

Logical Sector 0 --------------------------------- Sector SECTRI<

System Area (SYSSIZE bytes)

TrackO --. RESERVED I~ FIRSTSEC FAT Area

(NFSECS*NFATS)Sectors 1

(DIRSIZE * 32) bytes

Root Directory Area

1-- OP SYS
~------------------------------------~

Data Area

(NSECTORS - NFSECS - (DIRSIZE*32/SECTSIZE))

Sectors I
Figure 8-1. Logical Disk Layout

8-5

8.2 Logical Disk Layouts FlexOS System Guide

Table 8-1. Fields in Logical Disk Layout

Field Description

Logical Sector 0

SECTRK

The first sector of the track containing the beginning of the
FAT (File Allocation Table) area. This sector is also the
sector identified by head 0, track 0, sector O. By definition,
track 0 contains the first sector of the FAT area. If the FAT
area does not exist (NFSECS and NFATS are both zero),
then track 0 is the track containing the first sector of the
root directory. The Disk RM handles both one- and zero
based sector numbering. Programs' in User Memory and
disk drivers must have the same numbering scheme.

Specifies the number of physical sectors per track.

System Area

8-6

Usually defined as the area used for booting. The system
area is considered outside of the disk medium and can be
formatted independently of the disk medium. For hard
disks, the system area is zero length and is therefore not
counted in sequential sector numbering. For a disk
containing tracks with different densities, the system area
must end on a track boundary as defined for that disk. For
a disk with a uniform density, if the system area extends
into the beginning of the first track of the disk, it must end
on a physical sector boundary, as defined for that disk.

FlexOS System Guide 8.2 Logical Disk Layouts

Table 8-1. (Continued)

Field Description

SYSSIZE Size of the system area, in bytes.

RESERVED Normally, when the system area is zero, this field contains
the boot· sector. At offset 0 in the boot sector is the BIOS
Parameter Block, illustrated in Figure 8-4, below.

FIRSTSEC The physical sector number of the first FAT sector on track
O. If no FAT exists, FIRSTSEC is the first sector of the root
directory area.

NFSECS The number of sectors in each FAT. NFSECS is zero for
CP/M media.

NFATS The number of FATs in the FAT area. NFATS is zero for
CP/M media.

DIRSIZE The number of root directory entries. A directory entry is
32 bytes long. The physical sectors occupied by the
directory area must be contiguous.

NSECTORS Specifies the total number of sectors on the disk. See
below for the formula for determining NSECTORS.

SECTSIZE Specifies the physical sector size of the disk, in bytes.
Legal sizes are 128, 256, 512, 1024, 2048 and 4096.

The formula for determining the total number of sectors on a disk
(NSECTORS) is as follows:

NSECTORS = FIRSTSEC + (NFATS*NFSECS) +

(DIRSIZE * 32) + (SECSIZE - l))/SECSIZE +
(Number of Clusters * (Sectors per Cluster))

A cluster is the number of physical sectors per file allocation unit on a
given disk.

If a disk is boatable, the operating system must be stored starting with
first sector following the directory area.

8-7

8.2 Logical Disk Layouts FlexOS System Guide

Model Hard Disk Layout

Figure 8-2 illustrates a model logical hard disk. The following table
describes the components.

8-8

Master
Boot

Record

O.S. {
Boot

Record
(Part.#1)

O.S. (Boot
Record

(Part. #n)

Sector 1

MBR CODE

Partition Table

I Signature

JUMPI BPB

Code to Load O.S. in
Partition #1

I Signature

1 st Sector of 1 st FAT
Logical Disk Layout

Partition #1

!
JUMPI BPB

Code to Load O.S. in
Partition #n

1 Signature

.. 1 st Sector of 1 st FAT

Logical Disk Layout
Partition #n

Figure 8-2. Hard Disk Layout

FlexOS System Guide 8.2 Logical Disk Layouts

Table 8-2. Fields in Hard Disk Layout

Field Description

Master Boot Record (MBR)
Contains code to load and pass control to the boot record
for one of four possible operating systems. Also contains
the Partition Table. For hard disks with a sector size of
512 bytes, the MBR is usually one sector long.

Code portion of Master Boot Record.

Partition Table

SIGNATURE

Contains information on each of four possible partitions on
the hard disk. See Figure 8-3, below.

Two-byte field at offset 1 FEH from the beginning of the
MBR. A value of 55AAH indicates a valid partition.

O.S. Boot Record

JUMP

Contains code and data to load an operating system. For
hard disks with a sector size of 512 bytes, the O.S. Boot
Record is usually one sector long.

Instruction to pass control to boot loader code after ROM
monitor reads boot record into memory.

BPB BIOS Parameter Block. Table describing a given operating
system's partition. See Figure 8-4, below.

Code to Load O.S.
Code portion of an operating system's boot record.

Logical Disk Layout
The LDL as it is illustrated in Figure 8-1, above.

8-9

8.2 Logical Disk Layouts FlexOS System Guide

The Partition Table is a structure beginning at offset 1 BEH from the
beginning of the Master Boot Record. Figure 8-3 illustrates its format.

8-10

Hex
Offset

1BE

1C2

1C6

1CA

1CE

102

106

lOA

lOE

1E2

1E6

1EA

1EE

1F2

1 F6

1FA

1FE

o 2 3

BOOT_IND PART_BEGIN
H S CYL

OWNER PART_END

H S CYL

HIDDEN

NSECTS

BOOT_IND PART_BEGIN

H S CYL

OWNER PART_END

H S CYL

HIDDEN

NSECTS

BOOT_IND PART_BEGIN
H S CYL

OWNER PART_END

H S CYL

HIDDEN

NSECTS

BOOT_IND PART_BEGIN
H S CYL

OWNER PART_END

H S CYL

HIDDEN

NSECTS

SIGNATURE I

Figure 8-3. Partition Table

FlexOS System Guide B.2 Logical Disk Layouts

Table 8-3. Fields in Partition Table

Field Description

BOOT -,NO Indicates whether a partition is bootable, where 0 indicates
non-bootable and BOH indicates a bootable partition. Only
one partition can be marked as bootable.

PART_BEGIN

OWNER

Three-byte field indicating the head (H), sector (S), and
cylinder (CYL) number where a partition begins. The head
number is stored in the H field. The sector number is
stored in the low order 6 bits of the S field. The cylinder
number is 10 bits; the low order eight bits are stored in
the CYL field, while the high order two bits are stored in
the high order two bits of the S field.

All partitions are usually allocated on track boundaries and
begin on sector 1, head O.

One byte field indicates which operating system owns the
partition. This field can contain one of the following
values:

OOH = unknown
01H = DOS 12-bit FAT entries
04H = DOS 16-bit FAT entries

PART_END Three-byte field indicating the head (H), sector (S), and
cylinder (CYL) numbers where a partition ends. See
PART_BEGIN, above, for an explanation of how these values
are stored.

HIDDEN Four-byte field contains the number of sectors preceding a
partition. Count sectors starting with cylinder 0, sector 1,
head 0, incrementing the sector number up to the
beginning of a partition. Store this value least significant
word first.

B-11

8,2 Logical Disk Layouts FlexOS System Guide

Field

NSECTS

SIGNATURE

Table 8-3. (Continued)

Description

Number of sectors allocated to a partition. Store this four
byte value least significant word first.

Two-byte field at offset 1 FEH from the beginning of the
MBR. A value of 55AAH, stored high order byte first,
indicates a valid partition.

The BIOS Parameter Block (BPB) is stored at offset 0 in an operating
system's boot record. Each partition must contain a BPB, even if it is
not boatable. Figure 8-4 illustrates the format of a BPB.

8-12

FlexOS System Guide 8.2 Logical Disk Layouts

~OH

04H

08H

OCH

10H

14H

18H

1CH

20H

24H

28H

2CH

30H

34H

o 2 3

JUMP I OEM_NAME

OEM_NAME

OEM_NAME I BYTESPERSEC

BYTESPERSEC SEC_CLUSTER RES_SECTORS

FATNUM NROOTDIR I NSECTORS

NSECTORS MDB FATSEC

SECPERTRK NHEADS

HIDDEN

EXTENSION

FIRSTSEC

CODE_LOAD_BASE

CODE_LENGTH

OAT A-LOAD_BASE

DAT A-LENGTH

I
Remaining Portion of O.S. Boot Record

+

Figure 8-4. BIOS Parameter Block

8-13

8.2 Logical Disk Layouts FlexOS System Guide

Field

JUMP

Table 8-4. Fields in BPB

Description

A jump instruction to transfer control to an operating
system's loader. See the chip-specific supplements for a
description of the jump instruction.

The OEM name and version number identifying the boot
record's operating system.

BYTESPERSEC
Number of bytes per sector.

SEC_CLUSTER
Number of sectors per file allocation unit in a partition.
This value must be a power of two.

RES_SECTOR
Number of sectors reserved by the operating system,
starting at logical sector O.

FATNUM Number of FATs in a partition.

NROOTDIR Maximum number of root directory entries in a partition.

NSECTORS Total number of sectors in a partition, including boot,

MDB

FATSEC

SECPERTRK

NHEADS

HIDDEN

8-14

directory, and reserved sectors. If this field value is 0, the
EXTENSION field contains the total.

Media Descriptor Byte. Describes disk characteristics; MDB
values are listed in Table 8-5, below.

Number of sectors occupied by one FAT.

Number of sectors per track in a partition.

Number of heads in partition.

Total number of sectors preceding a partition, including
sectors occupied by the MBR.

FlexOS System Guide 8.2 Logical Disk Layouts

Table 8-4. (Continued)

Field Description

EXTENSION
If NSECTORS contains zero, EXTENSION contains the total
number of sectors in a partition. The total is here when the
partition's size is too big for recording in NSECTORS.

FIRSTSEC First sector of data area.

CODE_LOAD_BASE
Address where the operating system code is to be loaded.

CODE_LENGTH
Length, in bytes, of code segment.

DATA_LOAD_BASE
Address where the operating system data is to be loaded.

DATA_LENGTH
length, in bytes, of data segment.

From the EXTENSION field through the end of the BPB is Digital
Research's extension to the standard DOS BPB. The FORMAT utility
fills in the fields from BYTESPERSEC through FIRSTSEC. The code and
data load addresses and segment lengths are filled in by the SYS
utility.

8-15

8.3 Error Handling FlexOS System Guide

The Media Descriptor Byte have the following values:

Table 8-5. Media Descriptor Byte Values

Value Meaning

F8H Hard disk
F9H Double-sided, 15 sectors per track
FCH Single-sided, 9 sectors per track
FDH Double-sided, 9 sectors per track
FEH Single-sided, 8 sectors per track
FFH Double-sided, 8 sectors per track

Values F9H through FFH refer to 5 1/4-inch diskettes.

8.3 Error Handling

The method used by Disk RM in handling errors depends on the error
code returned by the driver unit and the type of media.

All FlexOS function return codes are 32-bit values. If the value is a
negative number, it represents an error code. Error codes in the range
from -64 to -2 gigabytes are driver-specific error codes. FlexOS
system-wide error codes are listed in Appendix B of the fJ~xOS
Programmer's Guide.

Disk driver functions that return physical errors return the error code
to the application process, allowing the application to inform the user
of the problem.

When 1/0 operations to removable media without open door support
return a timeout error, the Disk RM automatically sets the open door
flag and returns the error to the calling process. At the time of the
next operation, the Disk RM performs a check to ensure that the
medium has not changed.

8-16

FlexOS System Guide 8.4 Disk Driver 1/0 Functions

8.4 Disk Driver I/O Functions

The following section describes the functions called by the Disk
Resource Manager through the entry points contained in the disk
driver's Driver Header. Of these functions, READ and WRITE are
expected to be asynchronous; the remammg functions are
synchronous. The physical 110 within the READ and WRITE functions is
performed by Interrupt Service Routines (ISRs) and Asynchronous
Service Requests (ASRs). Examples are contained in the source code
for the sample disk drivers on the FlexOS distribution diskettes.

8.4.1 SELECT--Initialize driver unit

Parameter: Address of SELECT parameter block

Return Code:

E_SUCCESS Successful operation

E_UNITNO Drive has been installed to allow partitions (see
FLAGS field of the INSTALL SVC's parameter b!ock in
the FlexOS Programmer's Guide) but driver is unable
to read partition.

E_READY Door open on a removable medium

E_CRC Cyclical Redundancy Check error

E_SEEK Non-existent track or sector

E_SEC_NOTFOUND
Sector or record not found

E_MISADDR Missing address mark

E_DKATTACH Attachment failed to respond

E_READFAUL T Read error

E_GENERAL Undetermined source of failure

8-17

8.4 Disk Driver I/O Functions FlexOS System Guide

o 1

o UNIT RESERVED 4 5

2 Address of Media Descriptor Block

Figure 8-5. SELECT Parameter Block

In the figure above, UNIT refers to the driver unit number of a specific
disk drive.

o 2 3

o SECTSIZE FIRSTSEC

4 NSECTORS

8 SECTRK SECBLK

12 NFATS I FATID NFSECS

16 DIRSIZE NHEADS I FORMAT

20 HIDDEN

24 SYSSIZE

Figure 8-6. Media Descriptor Block

8-18

FlexOS System Guide 8.4 Disk Driver I/O Functions

Table 8-6. Media Descriptor Block Fields

Field Description

SECTSIZE Physical sector size, in bytes. This value is required for a
partial MOB.

FIRSTSEC First physical sector number of FAT on track a
NSECTORS Number of sectors in logical disk image. This includes

boot sector, FATs, directories, and data. The boot sector
consists of a BIOS Parameter Block and code to load the
operating system. Figure 8-4 illustrates the format of a
BIOS Parameter Block. NSECTORS does not include system
track(s). This value is required for a partial MDB.

SECTRK Number of sectors per track

SECBLK Number of sectors per block (file allocation unit)

NFATS Number of FATs

FATID Implementation-dependent value indicating media format

NFSECS Number of physical sectors in a single FAT

DIRSIZE Number of directory entries in the root directory

NHEADS Number of heads

FORMAT FAT format

a = Raw
1 = 1 112-byte FATs
2 = 2-byte FATs

For a partial MOB, FORMAT must be set to zero.

8-19

8.4 Disk Driver 1/0 Functions FlexOS System Guide

Field

HIDDEN

SYSSIZE

Table 8-6. Continued)

Description

Number of hidden sectors, that is, number of sequential
physical sectors preceding a partition. HIDDEN is used
only for partitioned disks. See the HIDDEN fields in the
Partition Table (Figure 8-3) and BIOS Parameter Block
(Figure 8-4).

Size of the system area of the disk, in bytes. The system
area is outside of the disk medium and can be formatted
independently of the disk medium. The system area might
contain code to support an operating system other than
FlexOS.

The Disk Resource Manager calls the SELECT function to initialize the
driver unit for subsequent READ, WRITE, FLUSH and SPECIAL calls on
the current medium. The Disk RM calls SELECT only once until either
the "Media Change" error is detected or the drive has been opened
exclusively.

SELECT is called with address of the SELECT parameter block. This
parameter block contains the address of the Media Descriptor Block.
The Media Descriptor Block determines the type (removable,
permanent, and so forth) and size of the media as well as the file
structure to be managed. It is a static structure and can be used for
multiple units of the same driver if the MDB is identical for those
units.

If SELECT is called for a unit containing an unformatted disk or a disk
whose format is not supported by the Disk RM, the driver should not
return an error code. Instead, the driver should return a partly filled-in
MDB. By filling in the SECTSIZE, NHEADS, and FORMAT fields of the
SELECT parameter block, the driver allows utilities, such as COPYCPM,
to use the SPECIAL SVCs to initiate raw 1/0 to non-DOS media.

8-20

FlexOS System Guide 8.4 Disk Driver I/O Functions

8.4.2 FLUSH--Flush intermediate buffers to media

Parameter:

Return Code:

E_SUCCESS
E_UNITNO
E_BADPB
E_REAOY
E_SEC_NOTFOUND
E_MISADDR
E_SEEK
E_DKATTACH
E_WPROT
E_WRITEFAULT
E_GENERAL

o

o UNIT

Address of FLUSH parameter block,

Operation was successful
Invalid unit number
Bad parameter block
Door open on a removable medium
Sector or record not found
Missing address mark
Non-existent track or sector
Attachment failed to respond
Disk write-protected
Write error
Failure from undetermined source

2

RESERVED FLAGS

3

Figure 8-7. FLUSH Parameter Block

The UNIT value indicates the driver unit number of the drive to be
flushed .. The FLAGS field is reserved for future use.

The Disk Resource Manager calls the FLUSH function to flush any
intermediate buffers to a medium and to make sure the driver is not in
any intermediate state.

The disk drivers provided with FlexOS do not use intermediate
buffering. When the Disk RM calls FLUSH in a FlexOS disk driver,
FLUSH returns E_SUCCESS.

8-21

8.4 Disk Driver I/O Functions FlexOS System Guide

8.4.3 READ--Obtain data from disk medium

Parameter: Address of READ parameter block

Return Code:

emask The return code from FLAGEVENT

The read event's completion code is returned through the FLAGSET
function and should be one of the following:

8-22

E_SUCCESS Successful operation

CUNITNO Drive has been installed to allow partitions (see
FLAGS field of the INSTALL SVC's parameter block in
the FlexOS Programmer's Guide) but driver is unable
to read partition.

E_READY Door open on a removable medium

E_CRC Cyclical Redundancy Check error

E_SEEK Non-existent track or sector

E_SEC_NOTFOUND
Sector or record not found

E_MISADDR Missing address mark

E_DKATTACH Attachment failed to respond

E_READFAULT Write error

E_GENERAL Failure from undetermined source

FlexOS System Guide

o

4

8

12

16

20

o

UNIT

8.4 Disk Driver I/O Functions

2 3

I RESERVED I FLAGS

SWI

PDADDR

BUFFER

NRECS

RECORD

Figure 8-8. READ Parameter Block

8-23

8.4 Disk Driver 1/0 Functions FlexOS System Guide

Field

UNIT

FLAGS

8-24

Table 8-7. READ Parameter Block Fields

Description

Driver unit number

Bit map of flags

Bit 0: 1 = Read through
o = Normal read

Read through option forces direct read from
the medium, bypassing intermediate buffers.
This flag is meaningless for drivers without·
intermediate buffers.

Bit 1: 1 = RECORD formatted as head, sector, cylinder

Bit 2:

Bit 8:

o = RECORD formatted as the logical sector
number from the beginning of the disk
medium.

= Verify medium, do not read
o = Read

1 = Write
o = Read

Bits 9-10: 0 = Not Applicable
1 = FAT
2 = DIR
3 = Data

Bit 11-14: Reserved

Bit 15: 1 = User Address
o = System Address

FlexOS System Guide 8.4 Disk Driver 1/0 Functions

Table 8-7. (Continued)

Field Description

SWI User-supplied software interrupt to be passed as a
parameter to the FLAGEVENT driver service function.

PDADDR Process descriptor address of process calling READ SVC. If
an address is specified and it is a User Address, this is the
pdaddr you use for the MAPU driver service. This is not
necessarily the process calling this entry point, and
therefore not the pdaddr used in the FLAGSET function.
The pdaddr obtained before calling FLAGEVENT is found via
the driver header's Ready List Root (RLR) address.

BUFFER Address of buffer to place information into.

NRECS Number of physical sectors to READ

RECORD First sector to READ. This field is either a logical sector
number or a head, track, sector specification, depending on
the value in bit 1 of the FLAGS field. A logical sector
number is the number of physical sectors from the
beginning of the disk medium, where Sector 0 is Track 0,
Head 0, Sector O.

If bit 1 of the FLAGS field is set, the RECORD parameter is
formatted as follows:

o 2 3

o I~ __ H_E_A_D __ ~ __ S_EC_T_O_R __ ~ ______ C_Y_L_IN_D_E_R ______ ~

8-25

8.4 Disk Driver I/O Functions FlexOS System Guide

The Disk Resource Manager calls the READ function to obtain data
from the disk medium. The Disk RM assumes this function is
asynchronous.

To work asynchronously, the READ driver function must call the
FLAGEVENT driver service function to receive an event mask, which is
returned to the Disk Resource Manager. Upon completion of the
READ, FLAGSET is called by the asynchronous portion of the driver to
return a completion code. FLAGEVENT and FLAGSET are explained in
Section 5.1, "Flag System."

8.4.4 WRITE--Write data to disk medium

Parameter: Address of WRITE Parameter Block

Return Code:

emask Return code from the FLAGEVENT driver service

The write events completion code is returned through the FLAGSET
function and should be one of the following:

8-26

E_SUCCESS
E_UNITNO
E_BADPB
E_READY
E_SEC_NOTFOUND
E_MISADDR
E_SEEK
E_DKATTACH
E_WPROT
E_WRITEFAUL T
E_GENERAL

Successful operation
Invalid unit number
Bad parameter block
Door open on a removable medium
Sector or record not found
Missing address mark
Non-existent track or sector
Attachment failed to respond
Disk write-protected
Write error
Failure from undetermined source

FlexOS System Guide

o

4

8

12

16

20

o
UNIT

8.4 Disk Driver I/O Functions

2 3

I RESERVED I FLAGS

SWI

PDADDR

BUFFER

NRECS

RECORD

Figure 8-9. WRITE Parameter Block

8-27

8.4 Disk Driver I/O Functions FlexOS System Guide

Field

UNIT

FLAGS

8-28

Table 8-8. WRITE Parameter Block Fields

Description

Driver unit number

Bit map of flags

Bit 0: 1 = Write through
o = normal write

The write through option forces a direct
write to the actual media, bypassing any
intermediate buffers. This flag has no
meaning for disk drivers not using
intermediate buffering.

Bit 1: 1 = RECORD is formatted as head, track, cylinder
o = RECORD is formatted as the logical sector

number from the beginning of the disk
medium.

Bit 8: 1 = Write
o = Read

Bits 9-10: 0 = Not Applicable
1 = FAT
2 = DIR
3 = Data

Bits 11-14: Reserved

Bit 15: 1 = User Address
o = System Address

FlexOS System Guide 8.4 Disk Driver 1/0 Functions

Table 8-8. (Continued)

Field Description

SWI User-supplied software interrupt to be passed as a
parameter to the FLAGEVENT driver service function.

PDADDR

BUFFER

NRECS

RECORD

o

Process descriptor address of process initiating the WRITE
request. If an address is specified and the address is a
User Address, this is the pdaddr you use for the MAPU
driver service function. This is not necessarily the process
calling this entry point and therefore not the pdaddr used
in the FLAGSET function. The pdaddr obtained before
calling FLAG EVENT is found through the Ready List Root
(RLR) address in the driver header.

Address of buffer to obtain data from

Number of physical sectors to WRITE

First sector to WRITE. This field is either a logical sector
number or a head, sector, cylinder specification, depending
on the value in bit 1 of the FLAGS field. A logical sector
number is the number of physical sectors from the
beginning of the disk medium, where sector ° is track 0,
head 0, sector 0.

If bit 1 of the FLAGS field is set, the RECORD parameter is
formatted as follows:

o 2 3

HEAD SECTOR CYLINDER

8-29

8.4 Disk Driver 110 Functions FlexOS System Guide

The Disk Resource Manager calls WRITE to place data onto the disk
medium. WRITE is assumed to be asynchronous.

The WRITE driver function must call the FLAG EVENT driver service to
receive an event mask, which is returned to the Disk Resource
Manager. Upon completion of the WRITE, the asynchronous portion of
the driver calls the FLAGSET driver service to return a completion
code. WRITE should then call the RETURN SVC through SUPIF to clear
the event from the system.

8.4.5 SPECIAL Entry Point

The Disk Resource Manager calls the SPECIAL entry point to perform
actions that cannot be performed by other disk driver functions.
FlexOS defines six SPECIAL disk driver functions, 0 through 3, 8, and 9.
The Disk RM reserves functions 10-31 for future use. Functions 32-63
are OEM-dependent and can be used for special activities particular to
a given hardware implementation.

8-30

FlexOS System Guide 8.4 Disk Driver I/O Functions

SPECIAL Function O--Read from System Area of disk

Parameter:

Return Code:

E_SUCCESS
E_UNITNO
E_READY
E_CRC
E_SEEK
E_SEC_NOTFOUND
E_MISADDR
E_DKATTACH
E_READFAUL T
E_GENERAL

o

o UNIT

4

8

12

16

Address of SPECIAL parameter block

Successful operation
Invalid unit number
Door open on a removable medium
Cyclical Redundancy Check error
Non-existent track or sector
Sector or record not found
Missing address mark
Attachment failed to respond
Write error
Failure from undetermined source

2 3

I 0 I FLAGS

SBADDR

PDADDR

BUFFER

BUFSIZ

Figure 8-10. SPECIAL Function 0 Parameter Block

8-31

8.4 Disk Driver I/O Functions FlexOS System Guide

Field

UNIT

o
FLAGS

Table 8-9. SPECIAL Function 0 Parameter Block Fields

Description

Driver unit number

SPECIAL function number

Bit map of flags

Bits 0-13:
Bit 14:
Bit 15:

Driver-type specific
Reserved
1 = User Address
o = System Address

SBADDR System address of special buffer for blocking/deblocking.
The drivers shipped with FlexOS do not use
blocking/deblocking.

PDADDR Process descriptor address of process initiating the
SPECIAL request. If an address is specified and the
address is a User Address, this is the pdaddr you use for
the MAPU driver service function. This is not necessarily
the process calling this entry point and therefore not the
pdaddr used in the FLAGSET function. The pdaddr obtained
before calling FLAG EVENT is found through the Ready List
Root (RLR) address in the driver header.

BUFFER Address of buffer where data will be placed.

BUFSIZ Size of buffer, in bytes

SPECIAL function 0 reads the data in the system area of the disk and
places the data into the specified buffer. This function is performed
synchronously and does not return until the read is complete.

8-32

FlexOS System Guide 8.4 Disk Driver I/O Functions

SPECIAL Function 1--Write to System Area of disk

Parameter:

Return Code:

E_SUCCESS
E_UNITNO
LBADPB
E_READY
E_SEC_NOTFOUND
E_MISADDR
E_SEEK
E_DKATTACH
E_WPROT
E_WRITEFAUL T
E_GENERAL

o

a UNIT

4

8

12

16

Address of SPECIAL parameter block

Successful operation
Invalid unit number
Bad parameter block
Door open on a removable medium
Sector or record not found
Missing address mark
Non-existent track or sector
Attachment failed to respond
Disk write-protected
Write error
Failure from undetermined source

2

1 1 J FLAGS

SBADDR

PDADDR

BUFFER

BUFSIZ

3

Figure 8-11. SPECIAL Function 1 Parameter Block

8-33

8.4 Disk Driver I/O Functions FlexOS System Guide

Field

UNIT

41

FLAGS

Table 8-10. SPECIAL Function 1 Parameter Block Fields

Description

Driver unit number

SPECIAL function number (in hex)

Bit map of flags

Bits 0-13:
Bit 14:
Bit 15:

Driver-type specific
Reserved
1 = User Address
o = System Address

SBADDR System Address of special buffer for blocking/deblocking.
The disk drivers shipped with FlexOS do not use blocking/
deblocking.

PDADDR Process descriptor address of process initiating the
SPECIAL request. If an address is specified and the
address is a User Address, this is the pdaddr you use for
the MAPU driver service function. This is not necessarily
the process calling this entry point and therefore not the
pdaddr used in the FLAG SET function. The pdaddr obtained
before calling FLAGEVENT is found through the Ready List
Root (RLR) address in the driver header.

BUFFER Address of buffer from which data will be written.

BUFSIZ Size of buffer, in bytes

SPECIAL function 1 writes the data in the specified buffer to the
system area of the disk. This function is performed synchronously and
does not return until the write is complete.

8-34

FlexOS System Guide 8.4 Disk Driver 1/0 Functions

SPECIAL Function 2--Format System Area of disk

Parameter:

Return Code:

E_SUCCESS
E_UNITNO
CBADPB
E_READY
E_SEC_NOTFOUND
E_MISADDR
E_SEEK
E_DKATTACH
E_WPROT
E_WRITEFAUL T
E_GENERAL

a
4

8

a

UNIT I

Address of SPECIAL parameter block

Successful operation
Invalid unit number
Bad parameter block
Door open on a removable medium
Sector or record not found
Missing address mark
Non-existent track or sector
Attachment failed to respond
Disk write-protec~ed
Write error
Failure from undetermined source

1 2 3

2 I FLAGS

SBADDR

PDADDR

Figure 8-12. SPECIAL Function 2 Parameter Block

8-35

8.4 Disk Driver liD Functions FlexOS System Guide

Table 8-11. SPECIAL Function 2 Parameter Block Fields

Field

UNIT

2

FLAGS

Description

Driver unit number

SPECIAL function number

Bit map of flags

Bits 0-14: Reserved
Bit 15: 1 = User Address

o = System Address

WSBADDR System address of buffer

PDADDR Process descriptor address of process initiating the
SPECIAL request. If an address is specified and the
address is a User Address, this is the pdaddr you use for
the MAPU driver service function. This is not necessarily
the process calling this entry point and therefore not the
pdaddr used in the FLAGSET function. The pdaddr obtained
before calling FLAGEVENT is found through the Ready List
Root (RLR) address in the driver header.

SPECIAL function 2 formats the system area of the disk managed by
the specified driver unit. Function 2 only formats the system area if it
resides in those tracks preceding the data area of the disk. In the
FlexOS logical disk layout, the system area is not considered part of
the disk medium and so can be formatted independently of the disk
medium. This function is performed synchronously and does not
return until the function is complete.

8-36

FlexOS System Guide 8.4 Disk Driver 1/0 Functions

SPECIAL Function 3--Format track

Parameter:

Return Code:

E_SUCCESS
E_UNITNO
E_BADPB
E_READY
E_SEC_NOTFOUND
E_MISADDR
E_SEEK
E_DKATTACH
E_WPROT
E_WRITEFAUL T
E_GENERAL

o
4

8

12

16

20

24

o

UNIT

Address of SPECIAL parameter block

Successful operation
Invalid unit number
Bad parameter block
Door open on a removable medium
Sector or record not found
Missing address mark
Non-existent track or sector
Attachment failed to respond
Disk write-protected
Write error
Failure from undetermined source

1 2 3

1 3 1 FLAGS

SBADDR

PDADDR

0

0

PARMBUF

PRSIZE

Figure 8-13. SPECIAL Function 3 Parameter Block

8-37

8,4 Disk Driver I/O Functions FlexOS System Guide

Field

UNIT

3

FLAGS

8-38

Table 8-12. SPECIAL Function 3 Parameter Block Fields

Description

Driver unit number

SPECIAL function number (in hex)

Bit map of flags:

Bit 0:

Bit 1:

Bit 2:

Reserved

o = Track map is valid
1 = Map bad tracks •

o = Use HEAD, SECTOR, and BYTESPERSPEC
fields.

= Ignore HEAD, SECTOR, and BYTESPERSEC
fields. Instead, use a table of four-byte C
H-S-N fields as defined in the PARMBUF
structure in Figure 8-13, below,

Bit 3: 0 = SECTOR field is the starting sector number.
This field is the first in variable-length list,
whose length is the number of sectors per
track.

= HEAD is the valid head number.

Bits 4-14: Reserved

Bit 15: o = System Address
1 = User Address

FlexOS System Guide 8.4 Disk Driver I/O Functions

Table 8-12. (Continued)

Field Description

SBADDR System address of special buffer for blocking/deblocking.
The drivers shipped with FlexOS do not use
blocking/deblocking.

PDADDR Process descriptor address of process initiating the
SPECIAL request. If an address is specified and the
address is a User Address, this is the pdaddr you use for
the MAPU driver service function. This is not necessarily
the process calling this entry point and therefore not the
pdaddr used in the FLAGSET function. The pdaddr obtained
before calling FLAG EVENT is found through the Ready List
Root (RLR) address in the driver header.

PARMBUF Address of data structure illustrated in Figure 8-13, below.

PRSIZE Length, in bytes, of data buffer.

a

4

8

12

N

a

HEAD a

DENS FILL

SECPERTRACK

C H

C H

2 3

CYLINDER

BYTESPERSEC

SECTOR

S I N

S N

Figure 8-14. PARMBUF Structure

8-39

8.4 Disk Driver I/O Functions FlexOS System Guide

Field

HEAD

o

Table 8-13. PARMBUF Structure Fields

Description

If FLAGS bit 1 in SPECIAL Function 3 parameter block is
zero, HEAD is a valid starting head number.

One byte set to zero

CYLINDER Cylinder number

DENS Density, where:

o = single density
1 = double density

FILL Fill character

BYTESPERSEC
If FLAGS bit 2 in SPECIAL Function 3 parameter block is
zero, BYTESPERSEC is the number of bytes per sector.

SECPERTRACK
Number of sectors per track

SECTOR This field's value depends on the settings for bits 2 and 3
in the FLAGS field of the SPECIAL Function 3 parameter
block. If bits 2 and 3 are off, SECTOR contains the starting
sector number. Use only bytes 0 through 11 of the
PARMBUF Structure. If bit 2 is on and bit 3 is off, ignore
SECTOR and use list starting with byte 12 in the PARMBUF
Structure, as shown in Figure 8-13. If bit 2 is off and bit 3
is on, SECTOR is the first in variable-length list of sectors
whose length is the number of sectors per track.

C-H-S-N If FLAGS bit 2 in SPECIAL Function 3 parameter block is
one, this is a variable-length list of four-byte fields, where
C is cylinder, H is head, S is sector, and N is bytes per
sector.

8-40

FlexOS System Guide 8.4 Disk Driver I/O Functions

SPECIAL function 3 is used to format the disk medium and to map bad
tracks out of the data area of a disk. SPECIAL function 3 maps bad
tracks by marking a track in the FAT Table as allocated and without an
owner. This function does not deal with the system area of a disk.

SPECIAL function 3 is called by the FORMAT utility.

SPECIAL Function 8--lnitialize format

Parameter: Address of SPECIAL parameter block

Return Code:

E_SUCCESS
E_BADP~

o

Successful operation
Bad MOB parameters

o
4

8

UNIT I 8 I
SBADDR

PDADDR

12 DATBUF

16 BFSIZE

2

FLAGS

3

Figure 8-15. SPECIAL Function 8 Parameter Block

8-41

8.4 Disk Driver I/O Functions FlexOS System Guide

Table 8-14. SPECIAL Function 8 Parameter Block Fields

Field Description

UNIT Driver unit number

8 SPECIAL function number (in hex)

FLAGS Bits 0-15 are reserved

SBADDR System Address of special buffer

PDADDR Process descriptor address of process initiating the
SPECIAL request. If an address is specified and the
add·ress is a User Address, this is the pdaddr that must be
used for the MAPU driver service function. This is not
necessarily the process calling this entry point and
therefore not the pdaddr used in the FLAGSET function.
The pdaddr obtained before calling FLAGEVENT is found
through the Ready List Root (RLR) address in the driver
header. The RLR address is explained in Section 4, "Driver
Interface."

DATBUF

BFSIZE

Address of buffer containing Media Descriptor Block (MOB).
The MDB is described under the SELECT function, in Figure
8-6 and Table 8-6, above.

Size, in bytes, of DATBUF

SPECIAL function 8 resets the Media Descriptor Block in system and
driver memory, but does not transfer the MDB information to the disk.
This function enables a user program to begin formatting a disk by
establishing a new set of guidelines for the disk. When formatting is
complete, the MDB is written to the disk's system area.

8-42

FlexOS System Guide 8.4 Disk Driver 110 Functions

SPECIAL Function 9--Get Drive Information

Parameter: Address of SPECIAL parameter block

Return Code:

E_SUCCESS
E-UNITNO
E_BADPB

a

Successful operation
Invalid unit number
Bad parameter block

a UNIT I 9 1
4 a

8 PDADDR

12 DATBUF

16 BFSIZE

2

FLAGS

3

Figure 8-16. SPECIAL Function 9 Parameter Block

8-43

8.4 Disk Driver I/O Functions FlexOS System Guide

Table 8-15. SPECIAL Function 9 Parameter Block Fields

Field

UNIT

9

FLAGS

PDADDR

DATBUF

BFSIZE

Description

Driver unit number

SPECIAL function number (in hex)

Bits 0-15 are reserved

Process descriptor address of process initiating the
SPECIAL request. If an address is specified and the
address is a User Address, this is the pdaddr that must be
used for the MAPU driver service function. This is not
necessarily the process calling this entry point and
therefore not the pdaddr used in the FLAGSET function.
The pdaddr obtained before calling FLAGEVENT is found
through the Ready List Root (RLR) address in the driver
header. The RLR address is explained in Section 4, "Driver
Interface."

Address of buffer for Physical Unit Descriptor. (see Listing
8-1).

Size, in bytes, of DATBUF

SPECIAL Function 9 requests disk-dependent information. You return
the data in the buffer provided in the parameter block. Listing 8-1
describes the buffer contents.

8-44

FlexOS System Guide 8.4 Disk Driver liD Functions

Listing 8-1. SPECIAL Function 9 Physical Unit Descriptor

1* PUD - Physical Unit Descriptor *1

PUD
C

UWORD pu_maxcyl ; /* max cyl number for ilo
UWDRD pu_precomp : /* precompensation cyl number
UWORD pu_crashpad : /* landing zone cyl number
uS'viE pu nheads : i* no of heads -UBvTE pu sectors /* no sectors/track
UBVTE pu_step : /* step rate
UBVTE pu eat / *. even (unused)

8.4.6 GET--Provide unit-specific information

Parameter: Address of GET parameter block

Return Code:

E_SUCCESS
E_BADPB

Successful operation
Bad parameter block

o

o
4

8

UNIT I

12

16

DTYPE

MAXFATRECS

MAXDIRSIZ

ADDR

2

FLAGS

MAXRS

MAXFATSIZ

Figure 8-17. GET Parameter Block

*/
*/
*/
;"j

*/
*/
*/

3

8-45

8.4 Disk Driver 1/0 Functions FlexOS System Guide

Field

UNIT

FLAGS

DTYPE

MAXRS

ADDR

Table 8-16. GET Parameter Block Fields

Description

Driver unit number

Reserved

Type of disk medium

Bit 0:

Bit 1:

Bit 2:

1 = Removable media
o = Permanent media
1 = Open door support
o = No open door support
Reserved

Maximum Record Size. This is the maximum physical
sector size of all media types supported through this disk
driver unit. For example, if this unit supports both single
and double-density diskettes, the larger of the physical
sector sizes should be stated here. This field determines
the size of the buffers the Disk Resource Manager
maintains for the unit.

Address of the open door byte if this is a disk drive with
open-door-interrupt support.

MAXFATRCS
Maximum number of FAT records in a single FAT for all
media types supported through this driver unit.

MAXFATSIZE
Maximum size of FAT, in bytes.

MAXDIRSIZE
Maximum number of root directory entries.

8-46

FlexOS System Guide 8.4 Disk Driver I/O Functions

The Disk Resource Manager calls the GET function during the
installation of the driver unit. GET is responsible for passing
information to the Disk Resource Manager that is unit-specific, but
does not pass the current disk medium-specific information.

The GET function passes the address of the GET parameter block to
the driver unit and expects all of the fields of the parameter block
except the UNIT and FLAGS fields to be filled in before returning.

8.4.7 SET --Change unit-specific information

Parameter: None

Return Code: E-,MPLEMENT Not Implemented

The Disk Resource Manager never calls· the SET disk driver entry point.
SET should return the "Not Implemented" error code.

End of Section 8

8-47

FlexOS System Guide

8-48

SECTION 9

Port Drivers

This section describes the driver interface for interrupt-driven serial
port drivers. All port drivers fall under the category of special drivers
and are managed by the Miscellaneous Resource Manager.

Many serial interfaces generate interrupts only when a character is
received, not when the port is ready to transmit a character. To
account for this situation, the READ function in the sample port driver
uses an ISR-ASR method of receiving characters, while the WRITE
function uses the POLLEVENT driver service (see Section 5.3) to poll
the selected' port. Section 5, "Driver Services," discusses methods for
responding to interrupts.

9.1 Port Driver Overview

A single port driver can control multiple units of the same type of
port. FlexOS does not have a theoretical limit to the number of ports
that are part of a system.

To allow multiple processes to perform serial 110, the port driver
should be 1/0 re-entrant at the driver and Resource Manager levels,
and synchronized at the unit level. This means that bit 1 in the flags
field of the port's Driver Header should be set. See Section 4.2,
"Driver Header," for a definition of the Driver Header. See Section 11.1
for a discussion of how the Miscellaneous Resource Manager protects
its drivers from user processes.

9.2 Port Driver 1/0 Functions

This section describes the port 1/0 functions accessed by the
Miscellaneous Resource Manager through entry points in the port
driver's Driver Header.

9-1

9.2 Port Driver I/O Functions FlexOS System Guide

The port driver contains the SELECT. FLUSH, READ, WRITE, GET, and
SET functions. The SPECIAL function is not required by the port driver
and should return E_IMPLEMENT unless you provide support for
SPECIAL calls.

See Section 4.4, "Driver Installation Functions," for a description of the
INIT, SUBDRIVE, and UNINIT driver installation functions.

9.2.1 SELECT--Enable the specified unit

Parameter: Address of SELECT parameter block

Return Code:

E_SUCCESS Port is enabled

10_ERROR Port not enabled

o 2 3

o UNIT I OPTION I FLAGS

4 SWI

8 PDADDR

Figure 9-1. Port Driver SELECT Parameter Block

9-2

FlexOS System Guide 9.2 Port Driver I/O Functions

Field

UNIT

OPTION

FLAGS

Table 9-1. Port Driver SELECT Parameter Block Fields

Description

Unit number of port being enabled

User-defined option

User flags field

SWI Address of optional Software Interrupt. Routine. 0 if there
is no SWI

PDADDR Process descriptor address of process attempting to open'
this device (via the OPEN SVC)

The Miscellaneous RM calls SELECT to enable a specific port unit for
I/O. SELECT clears all buffers for the selected unit, excluding the
Interrupt Service Routine (ISR) buffer and then enables serial interrupts.

9.2.2 FLUSH--Disable port

Parameter:

Return Code:

E_SUCCESS
10_ERROR

a

a UNIT

4

8

Address of FLUSH parameter block

Port is deselected
Port not deselected

I OPTION I
SWI

PDADDR

2

FLAGS

3

Figure 9-2. Port Driver FLUSH Parameter Block

9-3

9.2 Port Driver 1/0 Functions FlexOS System Guide

Table 9-2. Port Driver in FLUSH Parameter Block Fields

Field Description

UNIT Unit number of port to be disabled

OPTION User-defined option

FLAGS User flags field

SWI Address of optional Software Interrupt Routine. 0 if there
is no SWI

PDADDR Process descriptor address of process attempting to close
this device (via the CLOSE SVC)

The Miscellaneous Resource Manager calls FLUSH before writing to
another unit connected to the same driver or before uninstalling the
driver.

1/0 is not allowed past the point of invoking FLUSH without first
calling SELECT. Because of this, FLUSH should clear any buffers not
yet sent to the port, including the ISR buffer, before disabling serial
interrupts.

9.2.3 READ--Read data from port

Parameter:

Return Code:

emask

9-4

Address of HEAD parameter block

Event mask used by the calling process to wait for
port to finish reading the character or characters
into buffer

Unable to read from port

FlexOS System Guide 9.2 Port Driver I/O Functions

o
4

8

12

16

o 2 3

UNIT I OPTION I FLAGS

SWI

PDADDR

BUFFER

BUFSIZ

Figure 9-3. Port Driver READ Parameter Block

Table 9-3. Port Driver READ Parameter Block Fields

Field Description

UNIT Unit number of port being read

OPTION User-defined option

FLAGS User flags field

SWI Address of optional Software Interrupt Routine; the value is
o if there is no SWI

PDADDR Process descriptor address of process attempting the read.
This is not necessarily the process calling this entry point
and therefore not the PDADDR used with FLAGEVENT and
FLAGSET. Find the PDADDR of the process calling
FLAG EVENT through the RLR field of the Driver Header. If
an address is specified and it is a User Address, this is the
PDADDR you use with MAPU.

BUFFER Pointer to user's buffer

BUFSIZ Size of buffer indicated in BUFFER

9-5

9.2 Port Driver 1/0 Functions FlexOS System Guide

The Miscellaneous RM calls READ to read characters from a selected
port. FlexOS assumes that the serial interface produces an interrupt
when a character arrives. For those ports not interrupt-driven, see
Section 5.3, "Device Polling."

READ must be able to buffer characters arriving at the port when the
user process is not ready to read them. The READ function in
FlexOS's sample serial driver works in the following sequence:

1. A. character arrives at the serial port, causing an interrupt.

2. The operating system receives the interrupt via the exception
vector established by the SETVEC driver service in the serial
driver's INIT code. FlexOS passes control to the driver's Interrupt
Service Routine (ISR).

3. The ISR reads the character from the serial port and calls the
DOASR driver service to queue an ASR, passing DOASR the
character as an argument.

4. The ASR puts the character into a buffer, then exits.

READ must transfer the characters from the ISR buffer into the user
buffer. To do this, READ calls FLAGEVENT with the number of a clear
flag and the address of the SWI in the READ parameter block.
FLAGEVENT returns an event mask, which the driver saves.

The driver then calls DOASR with the address of the READ parameter
block and the address of an ASR that performs the actual reading from
ISR buffer to user buffer. When the READ ASR has completed, the
driver calls FLAGSET to note the completion of the read.

9-6

FlexOS System Guide 9.2 Port Driver I/O Functions

9.2.4 WRITE--Send data to port

Parameter:

Return Code:

emask

Unsigned word (UWORD) with the unit number in
the high order byte and the character in the low
order word

Event mask use by calling process to wait for port
to be ready for more characters

Unable to write to port

The Miscellaneous RM calls WRITE to write the character provided to
the specified unit.

If a port does not generate an interrupt when it is ready to transmit a
character, WRITE can use the POLLEVENT driver service to poll.
Alternatively, if the amount of data to write is small and/or the serial
baud rate is fast, the driver can keep reading the status port until it
becomes ready.

9-7

9.2 Port Driver I/O Functions FlexOS System Guide

9.2.5 GET --Provide unit-specific information

Parameter: Address of GET parameter block

Return Code:

LSUCCESS Write to buffer completed - no error
E_xxx Driver-specific error code

o

4

8

12

16

o
UNIT

2

I RESERVED I
0

PDADDR

BUFFER

BUFSIZ

FLAGS

3

Figure 9-4. Port Driver GET Parameter Block

9-8

FlexOS System Guide 9.2 Port Driver liD Functions

Field

UNIT

FLAGS

Table 9-4. Port Driver GET Parameter Block Fields

Description

Port driver unit number

Bit map of flags

Bits 0-7:
Bits 8-14:
Bit 15:

Defined by driver
Reserved
o = System Address
1 = User Address

PDADDR Process descriptor address of the process that initiated the
GET request. If the buffer address is a User Address, and
the asynchronous portion of the driver is required to
access the buffer, this parameter is used to call the MAPU
driver service.

BUFFER Address of buffer in which to write information from the
driver's GET ISET Table; see Figure 9-5 below.

BUFSIZ Size of buffer. This field determines the amount of
information returned from the driver'S GET ISET Table.

The Miscellaneous Resource Manager calls the GET entry point to
place information from the port driver's GET ISET Table into a buffer
whose address is specified as a parameter. The BUFSIZ parameter is
passed to determine the amount of information to be obtained. If the
buffer's size is less than the size of the table, only those fields that fit
into the buffer are written there.

The GET and SET routines are not expected to return an event mask.
The calling process should not return until the operation is complete.
If the asynchronous portion of the driver is required to initiate an liD
event to obtain the information, the GET and SET routines must
perform their own WAIT and RETURN SVCs through the Supervisor
interface described in Section 6.

9-9

9.2 Port Driver I/O Functions FlexOS System Guide

Many of the GET/SET Table values cannot be determined until they are
placed in the table by SET. GET/SET Table values are set by one
process for use by another.

The port driver GET/SET Table format is shown in Figure 9-5. Table
9-5 describes the GET/SET Table fields.

o 2 3

o TYPE STATE

4 BAUD I MODE CONTROL I RESERVED

Figure 9-5. Port Driver GET/SET Table

9-10

FlexOS System Guide 9.2 Port Driver I/O Functions

Table 9-5. Port Driver GET/SET Table Fields

Field Description

TYPE Type of port, where:

STATE

BAUD

o = Undefined
1 = Standard serial driver
2 = Character I/O device
3 = Standard parallel driver

Bit map of port's state including error conditions. A bit set
to 1 indicates the following conditions:

Bit Condition

o Ready to send a character (RTS)
1 Character has been received
2 Change in DSR or CD
3 Parity error
4 Overrun error
5 Framing error
6 Carrier present (CD)
7 DSR

Baud rate, as indicated by the following values:

Value Rate Value Rate

0 50 8 1800
1 75 9 2000
2 110 10 2400
3 134.5 11 3600
4 150 12 4800
5 300 13 7200
6 600 14 9600
7 1200 15 19200

9-11

9.2 Port Driver I/O Functions FlexOS System Guide

Field

MODE

Table 9-5. (Continued)

Description

Bit map indicating word length, parity, and stop bits as
follows:

Bits Value Mode

0-1 0 5 bits/word
1 6 bits/word
2 7 bits/word
3 8 bits/word

2-3 0 o stop bits
1 1 stop bit
2 1.5 stop bits
3 2 stop bits

4-5 0 no parity
1 odd parity
3 even parity

CONTROL Bit map describing serial port control parameters. This field
is intended for the use of the driver's SET function. A bit
set to 1 indicates the following conditions:

Bit Conditio!}

o Enable character transmission
1 Force DTR low
2 Enable character reception
3 Force break signal
4 Reset error
5 Force RTS low

9-12

FlexOS System Guide 9.2 Port Driver I/O Functions

9.2.6 SET --Change unit-specific information

Parameter: Address of SET parameter block.

Return Code:

E_SUCCESS Write completed - no error
E_xxx Driver specific error code

o
4

8

12

16

o
UNIT

2

I RESERVED 1
0

PDADDR

BUFFER

BUFSIZ

FLAGS

3

Figure 9-6. Port Driver SET Parameter Block

9-13

9.2 Port Driver I/O Functions FlexOS System Guide

Table 9-6. Port Driver SET Parameter Block Fields

Field Description

UNIT

FLAGS

Port driver unit number

Bit map of flags:

Bits 0-14: Reserved
Bit 15: 0 = System Address

1 = User Address

PDADDR Process descriptor address of the process that initiated the
SET call. This parameter is used to call the MAPU driver
'service if the buffer address is a User Address and the
asynchronous portion of the driver is required to access
the buffer.

BUFFER

BUFSIZ

Address of buffer containing information to be written to
the driver's GET/SET Table. See Figure 9-5.

Size of buffer. This field determines the amount of
information returned from the driver's GET/SET Table.

The Miscellaneous Resource Manager calls the SET entry point to set
or modify unit-specific information in the port driver's GET/SET Table.
The buffer indicated in the SET parameter block contains the
information to be set. A buffer size parameter is passed by the calling
process to determine the amount of information to be written to the
driver's GET/SET Table.

See the explanation of the port driver's GET function for the
description of the GET/SET Table.

End of Section 9

9-14

SECTION 10

Printer Drivers

This section describes the driver interface for printer drivers. Printer
drivers fall under the category of special drivers and are managed by
the Miscellaneous Resource Manager.

10.1 Support for Printers

FlexOS supports multiple parallel and serial printers. Printers can be
interrupt-driven or polled. The printer driver shipped with FlexOS is
for a non-interrupt-driven parallel printer. You can implement a serial
printer driver by installing a new unit to a serial driver or defining a
new name (such as PRN: or LST:) for an existing serial unit.

A single printer driver can control multiple units of the same type of
printer. The example driver supports up to four printers. FlexOS does
not have a theoretical limit to the number of printing devices
connected to a system.

The example printer driver uses the POLLEVENT driver service to
emulate interrupts and maximize operating speed in a multitasking
environment. POLLEVENT is described in Section 5.3, "Device Polling."

To allow multiple print jobs, the printer driver should be liD reentrant
at the driver and Resource Manager levels, and synchronized at the
unit level. This means that bit 1 in the flags field of the. printer's
Driver Header should be set. See Section 4.2, "Driver Header" for a
definition of the Driver Header. See Section 11.1 for a discussion of
how the Miscellaneous Resource Manager protects drivers from user
processes.

10-1

10.2 Printer Driver liD Fu nctions FlexOS System Guide

10.2 Printer Driver 1/0 Functions

This section describes the printer liD functions accessed by the
Miscellaneous Resource Manager through entry points in the printer
driver's Driver Header.

The printer driver contains the SELECT, FLUSH, WRITE, GET, and SET
functions. The READ function is meaningless for printers; it should
return EJMPLEMENT. The SPECIAL function is also not required by the
printer driver and should return EJMPLEMENT unless you support this
SPECIAL functions in your driver.

See Section 4.4 for a description of the (NIT, SUBDRIVE, and UNINIT
driver installation functions.

10.2.1 SELECT --Enable the specified unit

Parameter: Address of SELECT parameter block

Return Code:

E_SUCCESS
10_ERROR

o

Printer is enabled
Printer not enabled

o UNIT I OPTION I
4 SWI

8 PDADDR

2

FLAGS

3

Figure 10-1. Printer Driver SELECT Parameter Block

10-2

FlexOS System Guide 10.2 Printer Driver I/O Functions

Table 10-1. Printer Driver SELECT Parameter Block Fields

Field Description

UNIT Unit number of printer being enabled

OPTION User-defined option

FLAGS User flags field

SWI Address of optional Software Interrupt Routine; this value
is 0 if there is no SWI.

PDADDR Process descriptor address of' process attempting to open
this device. This is not necessarily the process calling this
entry point and therefore not the PDADDR used' with the
FLAGEVENT and FLAGSET driver services. Find the PDADDR
of the process calling FLAG EVENT in the RLR field of the
Driver Header. If an address is specified and it is a User
Address, this is the PDADDR that must be used with the
MAPU driver service.

The Miscellaneous RM calls SELECT to enable a specific printer unit for
printing. A printer is selected before writing to it (if not previously
selected), or if another unit was selected since last writing to this
printer.

10.2.2 FLUSH--Disable Printer

Parameter:

Return Code:

E_SUCCESS
10_ERROR

Address of FLUSH parameter block

Printer is deselected
Printer not deselected

10-3

10.2 Printer Driver I/O Functions

a
4

8

a
UNIT I OPTION l

SWI

PDADDR

FlexOS System Guide

2 3

FLAGS

Figure 10-2. Printer Driver FLUSH Parameter Block

Table 10-2. Printer Driver in FLUSH Parameter Block Fields

Field Description

UNIT Unit number of printer to be disabled

OPTION User-defined option

FLAGS User flags field

SWI Address of optional Software Interrupt Routine; this value
is 0 if there is no SWI.

PDADDR Process descriptor address of process attempting to write
to this device. This is not necessarily the process calling
this entry point and therefore not the PDADDR used with
the FLAG EVENT and FLAGSET driver services. Find the
PDADDR of the process calling FLAGEVENT in the RLR field
of the Driver Header. If a User Address is specified, this is
the PDADDR that must be used with the MAPU driver
service.

The Miscellaneous Resource Manager calls FLUSH before writing to
another unit connected to the same driver or before uninstalling the
driver, If you are using a port driver to perform the actual printer I/O,
the printer driver must call the FLUSH function in the sub-driver (port
driver) to place it in a quiescent state.

10-4

FlexOS System Guide 10.2 Printer Driver liD Functions

Because writes are not allowed past the point of invoking FLUSH
without first calling SELECT, any buffers not yet sent to the printer
should be sent before FLUSH actually disables the unit.

10.2.3 WRITE--Write data to printer

Parameter:

Return Code:

em ask

o

o UNIT

4

8

12

16

Address of WRITE parameter block

Event mask for calling process to wait for printer to
be ready for more characters

Unable to write to printer

2 3

I OPTION I FLAGS

SWI

PDADDR

PBUF

BUFSIZE

Figure 10-3. Printer Driver WRITE Parameter Block

10-5

10.2 Printer Driver I/O Functions FlexOS System Guide

Table 10-3. Printer Driver WRITE Parameter Block Fields

Field

UNIT

OPTION

FLAGS

SWI

PDADDR

PBUF

BUFSIZE

Description

Unit number of printer being written to

User-defined option

User flags field

Address of optional Software Interrupt Routine; this value
is 0 if there is no SWI.

Process descriptor address of process attempting to write
to this device. This is not necessarily the process calling
this entry point and therefore not the PDADDR used with
the FLAG EVENT and FLAGSET driver services. Find the
PDADDR of the process calling FLAG EVENT in the RLR field
of the Driver Header. If an address is specified and it is a
User Address, this is the PDADDR that must be used with
the MAPU driver service.

Pointer to buffer that holds characters to be written

Size of buffer indicated in PBUF

The Miscellaneous RM calls WRITE to output characters to a selected
printer. As implemented in the FlexOS example driver, WRITE uses the
POLLEVENT driver service to wait until the printer is ready, then
outputs the character. The printer driver checks the status of the
selected unit before calling POLLEVENT.

WRITE should first call FLAGCLR to make certain that the flag the
driver obtained during its initialization is clear. It should pass the flag
and the address of any SWls to the FLAGEVENT driver service.
FLAG EVENT returns an event mask that WRITE eventually passes back
to the calling process on completion of the event.

10-6

FlexOS System Guide 10.2 Printer Driver 1/0 Functions

WRITE latches a character to the output port for transmission to the
printer. WRITE then calls POLLEVENT for an event mask with which to
WAIT for the printer to become ready. POLLEVENT requires the
address of status routine as a parameter. The status routine should
return a non-zero WORD value if the unit is ready to receive a
character; zero indicates that the unit is not ready. Your status
routine should contain any delays required for carriage returns, form
feeds, and any other device-related operations.

After all the characters have been written, WRITE must call FLAGSET
and then return to the calling process the event mask obtained from
FLAGVENT. Even though the event has already been completed (as
signaled by FLAGSET), the call cannot be synchronous because
POLLEVENT permits other tasks to run while the printer is busy.

See Section 5.1 for a description of the FlexOS flag system driver
services. POLLEVENT is described in Section 5.3.

For an interrupt-driven printer, use the SETVEC driver service to
establish an Interrupt Service Routine (ISR). Guidelines for using ISRs
are presented in Section 5.7.

10-7

10.2 Printer Driver 1/0 Functions FlexOS System Guide

10.2.4 GET --Provide unit-specific information

Parameter: Address of GET parameter block

Return Code:

E_SUCCESS Write to buffer completed - no error
E_xxx Driver specific error code

o
4

8

12

16

o

UNIT I RESERVED I
0

PDADDR

BUFFER

BUFSIZE

2

FLAGS

3

Figure 10-4. Printer Driver GET Parameter Block

10-8

FlexOS System Guide 10.2 Printer Driver liD Functions

Field

UNIT

FLAGS

Table 10-4. Printer Driver GET Parameter Block Fields

Description

Printer driver unit number

Bit map of flags:

Bits 0-7:
Bits 8-14:
Bit 15:

Can be defined by driver
Reserved
1 .= User Address
o = System Address

PDADDR Process descriptor address of the process that initiated the
GET request. If the buffer address is a User Address and
the asynchronous portion of the driver is required to
access the buffer, this parameter is used to call the MAPU
driver service.

BUFFER Address of buffer in which to write information from the
driver's GET ISET Table. See Figure 10-5, below.

BUFSIZ Size of buffer. This field determines the amount of
information returned from the driver's GET ISET Table.

The Miscellaneous Resource Manager calls the GET entry point to
place information from the printer driver's GET ISET Table into the
buffer at the address specified. The BUFSIZ parameter is passed to
limit the amount of information to be obtained. If the buffer's size is
less than the size of the table, only those fields that fit into the buffer
are written there.

The GET and SET routines are not expected to return an event mask.
The calling process should not return until the operation is complete.
If the asynchronous portion of the driver is required to fulfill an I/O
event in order to obtain the information, the GET and SET routines
must perform their own WAIT and RETURN SVCs through the
Supervisor interface described in Section 6.

10-9

10.2 Printer Driver I/O Functions FlexOS System Guide

Many of the GET/SET Table values cannot be determined until they are
placed in the table by SET. GET/SET Table values are set by one
process for use by another. For example, a parent process can
configure a unit to print labels and then pass information about the
width and length of the labels to its subprocesses through the
appropriate table entries. ·The GET and SET SVCs can only be called if
the printer driver unit is OPEN.

The format of the printer driver GET/SET Table is shown in Figure
10-5.

10-10

o
4

8

12

16

20

24

o 2 3

STATUS

MODE PAPERTYP WIDTH

LEG.MODE SING.PAG LPI I LENGTH

PRINTER NAME (0-3)

PRINTER NAME (4-7)

PRINTER NAME (8-11)

PRINTER NAME (12-15)

Figure 10-5. Printer Driver GET/SET Table

FlexOS System Guide 10.2 Printer Driver 1/0 Functions

Field

STATUS

MODE

Table 10-5. Printer Driver GET/SET Table Fields

Description

Bit map of printer error codes--see Table 10-6

Current printer mode. This field specifies the printer
typeface. This code may be replaced for other printer
types, indicating the wheel-type on letter-quality printers,
for example. The bit map for this field is the same for the
LEG.MODE field (least significant bit is right-most):

0 boldface
1 graphics
2 italic
3 subscript
4 superscript
5 condensed
6 elongated
7 letter quality

PAPERTYP This field indicates the type of paper currenly in use on the

WIDTH

LENGTH

printer:

o wide paper
1 letterhead
2 labels

Paper width, in columns, or dots if in graphics mode

Paper length, in lines

LEG.MODE Printing modes supported by this printer (see MODE)

SING.PAGE Set to non-zero if using a single-page-feed mechanism

LPI Number of lines-per-inch

PRINTER NAME
This 16-bit field contains the printer's brand and model in
ASCII.

10-11

10.2 Printer Driver I/O Functions FlexOS System Guide

Table 10-6 lists the Printer Status flag bits (least significant bit right
most) and their meanings when set.

Table 10-6. Printer Status Bit Map

Flag Bit Meaning

o Printer unit off line
1 Out of paper
2 Select error
3 Initialization error
4 Illegal mode requested
5 Framing error
6 Internal buffer full
7 Waiting for XON

10-12

FlexOS System Guide 10.2 Printer Driver I/O Functions

10.2.5 SET--Change unit-specific information

Parameter: Address of SET parameter block

Return Code:

E_SUCCESS Write completed - no error
Cxxx Driver specific error code

o
4

8

12

16

o

UNIT J RESERVED I
0

PDADDR

BUFFER

BUFSIZE

2

FLAGS

3

Figure 10-6. Printer Driver SET Parameter Block

10-13

10.2 Printer Driver I/O Functions FlexOS System Guide

Table 10-7. Printer Driver SET Parameter Block Fields

Field

UNIT

FLAGS

PDADDR

BUFFER

BUFSIZ

Description

Printer driver unit number

Bit map of flags

Bits 0-14: Reserved
Bit 15: 1 = User Address

o = System Address

Process descriptor address of the process that initiated the
SET call. This parameter is used to call the MAPU driver
service if the buffer address is a User Address and the
asynchronous portion of the driver is required to access
the buffer.

Address of buffer containing information to be written to
the driver's GET/SET Table. See Figure 10-5 above.

Size of buffer. This field determines the amount of
information returned from the driver's GET/SET Table.

The Miscellaneous Resource Manager calls the SET entry point to set
or modify unit-specific information in the printer driver's GET/SET
Table. The buffer indicated in the SET parameter block contains the
information to be set. A buffer size parameter is passed by the calling
process to limit the amount of information to be written to the driver's
GET/SET Table.

See the explanation of the printer driver's GET function for the
description of the GET/SET Table.

End of Section 10

10-14

SECTION 11

Special Drivers

This section describes the interface to special drivers. Special drivers
interface to printers, plotters, ports and other devices not defined by
FlexOS. Special drivers are managed by the Miscellaneous Resource
Manager.

Special driver functions are available to application programs through
standard Supervisor calis. The OPEN and CLOSE SVCs are mapped
directly to the special driver's SELECT and FLUSH 1/0 functions. The
READ, WRITE, GET, SET, and SPECIAL SVCs map directly to the
corresponding entry points in the special driver's Driver Header.

In most cases, the Supervisor copies the user's parameter block into
the System Area. The Supervisor and Miscellaneous Resource
Manager then modify this copy of the user's parameter block before
the special driver units are called with the address of the parameter
block.

11.1 Special Driver Access

The Miscellaneous Resource Manager protects special drivers from
user processes according to the level of access specified in the
access flags parameter of the INSTALL SVC. INSTALL is described in
the FlexOS Programmer's Guide. INSTALL's access flags are defined in
the following table:

11-1

11.1 Special Driver Access FlexOS System Guide

Table 11-1. Driver Access Flags

Flag Description

Bit 0: 1 = SET allowed

Bit 1:

Bit 2:

Bit 3:

11-2

o = SET not allowed

If flag bit 0 is 1, users can get the SET privilege to modify
the driver's GET/SET table. If this bit is 0, the resource
manager returns an error to users requesting the SET
privilege at OPEN (the driver's SELECT function is not
called).

Reserved (must be set to 0)

1 = WRITE allowed
o = WRITE not allowed

If flag bit 2 is 1, users can get the WRITE privilege to the
device. If bit 2 is 0, the resource manager returns an error
to users requesting the WRITE privilege at OPEN (the
driver's SELECT function is not called).

1 = READ allowed
o = READ not allowed

If flag bit 3 is 1, user can get the READ privilege to the
device. If bit 3 is 0, the resource manager returns an error
to users requesting the READ privilege at OPEN (the
driver's SELECT function is not called).

FlexOS System Guide 11.1 Special Driver Access

Flag

Bit 4:

Bit 5:

Bit 6:

Table 11-1. (Continued)

Description

1 = Shared access allowed
o = Exclusive access only

If flag bit 4 is 1, multiple processes may have the same
unit of the special driver OPEN at the same time. If bit 4 is
0, only one process may have the unit OPEN at any
particular time. To enforce exclusive access, and indicate
that the driver is synchronized at the unit level, you should
set the Unit Level Interface Flag in the Driver Header (Bit 1)
to 1. See Section 4.2, "Driver Header."

1 = Removable driver
o = Permanent driver

If flag bit 5 is 1, the INSTALL SVC is allowed to remove the
driver unit. The Miscellaneous Resource Manager does not
allow the unit to be removed if it is currently OPEN or if
another driver is using the unit as a sub-driver.

1 = DEVLOCKs allowed
o = DEVLOCKs not allowed

The DEVLOCK SVC allows a process to temporarily restrict
access to a driver it has opened. The process can restrict
access to itself or processes within the same process
family. DEVLOCK also allows the process to prevent the
driver from being locked by other processes. This option
is effective only if flag bit 4 is 1 (shared access allowed).

11-3

11.1 Special Driver Access FlexOS System Guide

Table 11-1. (Continued)

Flag Description

Bit 7: 1 = Shared access only
a = Exclusive access allowed

If flag bit 7 is 1, the Miscellaneous Resource Manager does
not allow an exclusive OPEN of this device.

Bits 8-12: Reserved

Bit 13: 1 = Force case to media default
a = Do not force case to media default

Bit 14: Used in interpreting the driver load file name given in the
INSTALL SVC.

Bit 15: Reserved

The Miscellaneous Resource Manager also restricts special driver
access according to the OPEN SVC flags specified by the current
process. For example, if a process opens the driver for exclusive
access (OPEN flag bit 4 = a), the Miscellaneous Resource Manager
does not allow any other process to open the driver unless the driver
has been INSTALLed for shared access (INSTALL flag bit 7 set to 1).

When a unit of a special driver is installed as a sub-driver, its higher
level driver can access any of its entry points. The higher-level driver
must assume the responsiblities of controlling access to the special
driver unit, acting, in effect as the sub-driver's Resource Manager.

A controlling driver has the option of accepting or not accepting a
special sub-driver's INSTALL options. The special driver unit attached
as a sub-driver responds at its discretion to calls from the controlling
driver.

11-4

FlexOS System Guide 11.2 Special Driver 1/0 Functions

11.2 Special Driver 1/0 Functions

This section describes the special driver 1/0 functions available to the
Miscellaneous Resource Manager through entry points in the special
driver's Driver Header. See 4.4 for a description of the INIT, SUBDRIVE,
and UNINIT driver installation functions.

The READ and WRITE entry points are responsible for initiating the
appropriate 1/0 request and calling the FLAGEVENT driver service to
return an event mask (emask) to the calling process. The
asynchronous portion of the special driver must complete the request
by moving the appropriate data to or from the specified buffer. The
asynchronous portion of the driver must then call the FLAGSET driver
service to satisfy the outstanding request and return a completion
code. See Section 5.1, "Flag System."

Each special driver is responsible for a single, well-defined table of
information, the GET ISET Table. The GET and SET entry points read
and write information in the table. The format of the GETISET Table is
dependent upon the special driver type. Any process can call a
special driver's GET function at any time (through the LOOKUP SVC)
without opening the driver. A user process can only call a special
driver's SET function when the driver unit is open.

11-5

11.2 Special Driver 1/0 Functions FlexOS System Guide

11.2.1 SELECT --Open a special driver unit for I/O

Parameter: Address of SELECT Parameter Block

Return Code:

E_SUCCESS Successful operation

E_xxxxxxx Special driver-specific error code. The OPEN is
denied and this error code is returned to the user.

11-6

o
4

8

12

o 2 3

UNIT J INFO I FLAGS

0

PDADDR

OPTION

Figure 11-1. SELECT Parameter Block

FlexOS System Guide 11.2 Special Driver 1/0 Functions

Table 11-2. SELECT Parameter Block Fields

Field Description

UNIT Driver unit number

INFO Unit information provided to the special driver by the
Miscellaneous RM.

FLAGS

PDADDR

OPTION

o - This is the first OPEN
1 - This is a subsequent OPEN

The Miscellaneous Resource Manager indicates if another
process has the driver unit open (1) or if this is the first
open (0) since either INSTALL or CLOSE (FLUSH).

OPEN call's flag field contents

Process descriptor address of process making OPEN call

Contains the OPEN call's option field value in low 8 bits.

The SELECT function is called by the Miscellaneous RM to open the
specified unit. The name field in the OPEN parameter block is
translated by the Supervisor to identify which driver unit to open. The
information passed to your SELECT function is the OPEN call's flags
and option fields. These fields are passed unmodified. The flag's field
options are listed in Table 11-3.

11-7

11.2 Special Driver I/O Functions FlexOS System Guide

Flag

Bit 0:

Bit 1:

Bit 2:

Bit 3:

Bit 4:

Table 11-3. SELECT Flags

Description

1 = Delete file/set attributes
o = No delete/set

1 = Execute access
o = No execute access

1 = Write access
o = No write access

1 = Read access
o = No read access

1 = Shared access
o = Exclusive access

Bit 5: 1 = Allow shared reads if shared
o = Allow shared RIW if shared

Bit 6: 1 = Shared file pointer
o = Unique file pointer

Bit 7: 1 = Reduced access accepted
o = Return error on reduced access

Bits 8-12: Reserved, must be 0

Bit 13: 1 = Force case to media default
o = Do not affect name case

Bit 14: 1 = Literal name
o = Prefix substitution allowed

Bit 15: Reserved, must be 0

11-8

FlexOS System Guide 11.2 Special Driver I/O Functions

11.2.2 FLUSH--Close the specified special driver unit

Parameter: Address of FLUSH parameter block

Return Code:

E_SUCCESS No hardware errors
E_xxxxxxx Special dnver specific error code

o 2 3

o UNIT I INFO 1 FLAGS

4 0

8 PDADDR

12 OPTION

Figure 11-2. FLUSH Parameter Block

11-9

11.2 Special Driver I/O Functions FlexOS System Guide

Table 11-4. FLUSH Parameter Block Fields

Field Description

UNIT Driver unit number

INFO Close information provided by the Miscellaneous RM:

FLAGS

PDADDR

OPTION

o - This is the last CLOSE
1 - This is not the last CLOSE

The Miscellaneous RM indicates if another process has the
driver unit open (1) or if this is the last CLOSE. When last
CLOSE is indicated, the driver unit is required to make
itself quiescent.

Contents of CLOSE call's flag field:

Bit 0: 1 = Partial close (flush only)
o = Full close

Bit 1: 1 = Do not close on error
o = Close on error

Bits 2-15 can be user parameters to the special driver's
FLUSH function.

Process descriptor address of process making CLOSE call

Contents of option field in the CLOSE parameter block

The Miscellaneous Resource Manager calls the FLUSH entry point when
a process attempts to CLOSE a special driver unit it had previously
opened. When the last CLOSE is indicated, the FLUSH routine must
make the device quiescent. If your driver called has a sub-driver, you
must call the sub-driver's FLUSH function.

The Miscellaneous Resource Manager passes the flags and option
fields to FLUSH unmodified from the CLOSE SVC parameter block.
When the partial close option is specified, the FLUSH function should
only flush any buffers, but not actually close, the unit.

11-10

FlexOS System Guide 11.2 Special Driver 1/0 Functions

11.2.3 READ--Initiate request for data

Parameter:

Return Code:

emask

o

4

8

12

16

20

o

UNIT

Address of READ Parameter Block

Event mask as returned by FLAG EVENT. If an error
occurs before the READ function can call
FLAGEVENT to return the event mask, READ must
call FLAGEVENT and then FLAGSET to return the
error code. The error code must be returned to the
calling process before READ returns to the
Miscellaneous Resource Manager with an event
mask.

2 3

I OPTION I FLAGS

SWI

PDADDR

BUFFER

BUFSIZE

OFFSET

Figure 11-3. READ Parameter Block

11-11

11.2 Special Driver 1/0 Functions FlexOS System Guide

Field

UNIT

OPTION

FLAGS

Table 11-5. READ Parameter Block Fields

Description

Driver unit number

Option field from the READ SVC

Flags field from the READ SVC. Bit 15 is turned on by the
Miscellaneous Resource Manager if the buffer field is a
User Address. All other flag bits are passed unchanged.

Bit 15: 1 = Buffer is User Address
o = Buffer is System Address

SWI User-supplied software interrupt. The SWI is passed as a
parameter to the FLAGEVENT driver service.

PDADDR Process descriptor address of process that initiated the
READ request. If the specified address is a User Address,
this is the PDADDR that must be used for the MAPU
function.

BUFFER

BUFSIZE

OFFSET

Data buffer address specified in READ call; the Supervisor
checks the range before calling the READ function.

Size of buffer passed from READ SVC

Position in file relative to point indicated by value of bits 8
and 9 in READ SVC's flags field

The Miscellaneous Resource Manager calls the READ entry point when
a process performs the READ SVC on a SELECTed special driver unit.
The resource manager converts the READ SVC's file number into the
READ parameter block's UNIT and PDADDR values. Most of the
remaining parameter block contents are direct copies from the READ
call's entries. The exception is flag bit 15, which the Miscellaneous RM
sets to indicate whether the buffer provided is in User (1) or System
(0) space. The buffer can be in System space when another driver calls
the special driver unit with local buffers.

11-12

FlexOS System Guide 11.2 Special Driver I/O Functions

The offset field is used at the discretion of the special driver.

READ must initiate an I/O request. call the FLAG EVENT driver service,
and return with an event mask. The special driver's asynchronous
portion must complete the request by placing the appropriate data into
the specified buffer. The driver then calls FLAGSET to clear the event
from the system and return a completion code:

If an error occurs before READ can call FLAG EVENT, READ must call
FLAGEVENT and then call the FLAGSET driver service to return the
error code to the original calling process before returning to the
Miscellaneous Resource Manager with the event mask. FLAGSET can
be called from the synchronous portion of the driver's code.

11-13

11.2 Special Driver 1/0 Functions FlexOS System Guide

11.2.4 WRITE--Initiate output of data

Parameter:

Return Code:

emask

11-14

o
4

8

12

16

20

o

UNIT

Address of WRITE parameter block

Event mask returned by the FLAG EVENT driver
service. If an error occurs "before FLAGEVENT is
called, WRITE must first call FLAGEVENT and then
call the FLAGSET driver service to return the error
code before returning to the Miscellaneous
Resource Manager with the event mask.

2 3

I OPTION I FLAGS

SWI

PDADDR

BUFFER

BUFSIZE

OFFSET

Figure 11-4. WRITE Parameter Block

FlexOS System Guide 11.2 Special Driver 1/0 Functions

Field

UNIT

OPTION

FLAGS

Table 11-6. WRITE Parameter Block Fields

Description

Driver unit number

User option field

Flags field as passed from WRITE SVC. The Miscellaneous
Resource Manager turns on bit 15 if the buffer field is a
User Address.

Bit 15: 1 = Buffer is User Address
o = Buffer is System Address

SWI User-supplied software interrupt to be passed as a
parameter to the FLAGEVENT driver service

PDADDR Process descriptor address of process that initiated the
WRITE request. If the specified address is a User Address,
this is the PDADDR that must be used for the MAPU driver
service.

BUFFER

BUFSIZE

OFFSET

Data buffer address specified in WRITE call; the Supervisor
checks the range before calling the WRITE function.

Bufsiz field as passed from WRITE call; indicates number of
bytes to write.

Position in file relative to point indicated by value of bits 8
and 9 in the flags field

The Miscellaneous Resource Manager calls the WRITE entry point when
a process performs the WRITE SVC on a SELECTed special driver unit.
The resource manager converts the WRITE SVC's file number into the
WRITE parameter block's UNIT and PDADDR values. Most of the
remaining parameter block contents are direct copies from the WRITE
call's entries. The exception is flag bit 15, which the Miscellaneous RM
sets to indicate whether the buffer provided is in User (1) or System
(0) space. The buffer can" be in System space when another driver calls
the special driver unit with local buffers.

11-15

11.2 Special Driver I/O Functions FlexOS System Guide

The offset field is used at the discretion of the special driver. WRITE
must call the FLAGSET driver service upon completion to satisfy the
outstanding event and return a completion code.

11.2.5 SPECIAL Entry Point

Parameter:

Return Code:

emask

11-16

o
4

8

12

16

20

24

Address of SPECIAL Parameter Block

Event mask returned by the FLAGEVENT driver service

o 2 3

UNIT I OPTION I FLAGS

SWI

PDADDR

DATABUF

DBUFSIZ

PARMBUF

PBUFSIZ

Figure 11-5. SPECIAL Parameter Block

FlexOS System Guide 11.2 Special Driver 1/0 Functions

Field

UNIT

OPTION

FLAGS

SWI

PDADDR

Table 11-7. SPECIAL Parameter Block Fields

Description

Driver unit number

Contents of the SPECIAL SVC's func field. The value of bits
7 and 6 indicate the data flow direction of the data and
parameter buffers as follows:

bit 7--parmbuf
1 = write buffer
o = read buffer

bit 6--databuf
1 = write buffer
o = read buffer

If no data or parameters are being provided, the
corresponding bit is set to O. The remainder of the bits
indicate the SPECIAL function number.

Flags field as passed from the SPECIAL SVC. The
Miscellaneous Resource Manager sets bit 15 if parameters
came directly from User Memory.

Bits 0-14: special driver-type specific
Bit 15: 1 = User Address

o = System Address

User-supplied software interrupt, passed as a parameter to
the FLAG EVENT driver service.

Process descriptor address of process that initiated the
SPECIAL request. If the specified address is a User
Address, this is the PDADDR that must be used for the
MAPU driver service.

.11-17

11.2 Special Driver 1/0 Functions FlexOS System Guide

Table 11-7. (Continued)

Field Description

DATABUF Value from SPECIAL call's databuf parameter. If DBUFSIZ is
zero, this value is data; if DBUFSIZ is non-zero, this value
is an address of a data buffer. The fl~){Q_S~J~r9grammer's
QUiclE! instructs the programmer never to put an address in
the data buffer.

DBUFSIZ Size in bytes of data buffer; if zero, the DATABUF value is
data rather than an address.

PARMBUF Value from SPECIAL call's parmbuf parameter. If PBUFSIZ is
zero, this value is data; if PBUFSIZ is non-zero, this value is
an address of a data buffer. The FlexOS Programmer's
Guide instructs the programmer never to put an address in
the parameter buffer.

PBUFSIZ Size in bytes of parameter buffer; if zero, the PARMBUF is
data rather than an address.

The Miscellaneous Resource Manager calls the SPECIAL entry point
when a user process calls the SPECIAL SVC on a previously SELECTed
special driver unit.

If an error occurs before FLAG EVENT is called, the SPECIAL function
must call FLAG EVENT and then call FLAGSET to return the error code
to the original calling process before returning to the Miscellaneous
Resource Manager with the event mask. FLAGSET can be called from
the synchronous portion of the special driver.

11-18

FlexOS System Guide 11.2 Special Driver 1/0 Functions

See the description of the SPECIAL SVC in the FJe.xOS __ ~!()9!C!-,,!!mE!r's
G!lid~ for rules on defining the SPECIAL driver function parameter
block.

11.2.6 GET --Provide unit-specific information

Parameter: Address of GET parameter block

Return Code:

E_SUCCESS Operation completed - no error
E_xxxxxxx Driver type-specific error code

o
4

8

12

16

o 2

UNIT I RESERVED I FLAGS

0

PDADDR

BUFFER

BUFSIZ

Figure 11-6. GET Parameter Block

3

11-19

11.2 Special Driver 1/0 Functions FlexOS System Guide

Field

UNIT

FLAGS

Table 11-8. GET Parameter Block Fields

Description

Driver unit number

Bit map of flags

Bits 0-7: Defined by driver
Bits 8-14: Reserved
Bit 15: 1 = User Address

o = System Address

PDADDR Process descriptor address of the process that initiated the
GET request. If the buffer address is a User Address and
the asynchronous portion of the driver is required to
access the buffer. use this as the pdaddr value in your
MAPU driver service call

BUFFER Address of buffer

BUFSIZE Size of buffer. This field determines the amount of
information wanted.

11-20

FlexOS System Guide 11.2 Special Driver I/O Functions

You must define a single table structure for each type of special
driver. The first field of this structure must be a 32-bit value that
indicates the structure's size. When a user process calls the GET SVC,
the special driver must return the requested information in a specified
buffer in the defined table format. The GET and SET SVCs can be
called only if the special driver unit is OPEN.

The Miscellaneous Resource Manager calls the GET entry point to
place information from the special driver's GET ISET Table into the
buffer at the address specified. The buffer size parameter is passed to
indicate the amount of information requested. If the buffer size is less
than the table size, fill in only those fields that fit completely.

The GET entry point is not expected to return an event mask. The
calling process should not return until the operation is complete. If
the asynchronous portion of the driver is required to fulfill an 1/0
event in order to obtain the information, the GET routine must perform
its own WAIT and RETURN SVCs to complete the event. Drivers
access SVCs through the Supervisor interface defined in Section 6,
"Supervisor Interface."

11.2.7 SET --Change unit-specific information

Parameter: Address of SET Parameter Block

Return Code:

E_SUCCESS Operation completed
E_xxx Driver type-specific error code

11-21

11.2 Special Driver 1/0 Functions FlexOS System Guide

Field

UNIT

FLAGS

a
4

8

12

16

PDADDR

BUFFER

BUFSIZ

11-22

a 2

UNIT I RESERVED I FLAGS

a
PDADDR

BUFFER

BUFSIZ

Figure 11-7. SET Parameter Block

Table 11-9. SET Parameter Block Fields

Description

Driver unit number

Bit map of flags

Bits 0-7: Defined by driver
Bits 8-14: Reserved
Bit 15: 1 = User Address

o = System Address

3

Process descriptor address of the process that initiated the
SET SVC. If the buffer address is a User Address and the
asynchronous portion of the driver is required to access
the buffer, use this as the pdaddr value in your MAPU
driver service call.

Address of buffer

Size of buffer; indicates the amount of information to set.

FlexOS System Guide 11.2 Special Driver I/O Functions

You must define a single table structure for each type of special
driver. The first field of this structure must be a 32-bit value that
indicates the structure's size. The GET and SET SVCs can be called
only if the special driver unit is OPEN.

The Miscellaneous Resource Manager calls the SET entry point to
modify information in the special driver's GET/SET table. The format of
the table is specific to the type of special driver. The buffer indicated
in the SET parameter block contains the information to be set. A buffer
size parameter is passed to limit the amount of information being SET.
If the size of the buffer is less than the size of the table, only those
fields that fit within the buffer are SET.

SET is not expected to return an event mask. The calling process
should not return until the operation is complete. If the asynchronous
portion of the driver is required to fulfill an I/O event in order to
change the state of the information, SET must perform its own WAIT
and RETURN SVCs to complete the event.

End of Section 11

11-23

FlexOS System Guide

11-24

SECTION 12

System Boot

This section outlines the steps required to cold boot a system. It
describes boot and data disk formats and the FlexOS layout in
memory. The section explains how to construct a loader and
concludes with a description of the SYS utility, which transfers the
loader to a disk's boot track.

Utilities used to generate a system that are specific to a given
microprocessor are described in chip-specific supplements. These
supplements are distributed with FlexOS.

12.1 Boot Overview

The boot procedure usually involves the following three steps:

1. A ROM reads the disk boot loader contained in the boot record,
starting at track 0, sector 0 of the boot drive, then transfers
control to it.

2. The disk boot loader reads the system image into memory
starting at the first data cluster and continuing for n clusters,
where n is the size of the operating system in clusters.

3. The disk boot loader then transfers control to the initialization
routine in the operating system.

The boot loader reads the code into memory at the address specified
by the code-load base address. The loader reads operating system
data into memory at the address specified by the data-load base
address. The loader then transfers control to the code-load base
address, which should be the address of or a jump to the operating
system initialization routines. Code-load and data-load base
addresses are defined in Table 12-1, below.

The operating system initialization routines must perform any
hardware and software initialization required by the operating system.

12-1

12.1 Boot Overview FlexOS System Guide

12.1.1 Data Disk Layout

The FlexOS disk layout is identical to the PC DOS disk layout
illustrated in Figure 12-1, below. The boot record, FAT, and root
directory are all of variable size.

12-2

boot record
minimum size, 1 sector

N (usually 2) copies ofthe FAT

root directory

Data Area

Figure 12-1. FlexOS Disk Layout

FlexOS System Guide 12.2 Boot Record Format

12.1.2 Boot Disk Layout

The FlexOS boot disk is a data disk which contains the operating
system as illustrated above. The system file must be recorded under
the file name FLEXOS.SYS, beginning at the disk's first data cluster and
continuing for as many consecutive clusters as are required to store
the complete operating system. Record the FLEXOS.SYS file with the
System, Hidden, and Read-Only attributes.

12.2 Boot Record Format

The boot record (see Figure 12-2 below) contains the code needed to
load FlexOS from disk into memory. It is a minimum of one physical
sector in length. The boot record also contains information about
where to load the various parts of the operating system and the sizes
of each part. Table 12-1 defines the fields in the boot record.

12-3

12.2 Boot Record Format FlexOS System Guide

OOH

04H

08H

OCH

10H

14H

18H

1CH

20H

24H

28H

2CH

30H

34H

12-4

o 2 3

JUMP I OEM_NAME

OEM_NAME

OEM_NAME I BYTESPERSEC

BYTESPERSEC SEC_CLUSTER RES_SECTORS

FATNUM NROOTDIR I NSECTORS

NSECTORS MDB FATSEC

SECPERTRK NHEADS

HIDDEN

EXTENSION

FIRSTSEC

CODE_LOAD_BASE

CODE_LENGTH

DAT A-.LOAD_BASE

DAT A-.LENGTH

I
Remaining Portion of O.S. Boot Record

+
Figure 12-2. Boot Record

FlexOS System Guide 12.2 Boot Record Format

Field

JUMP

Table 12-1. Boot Record Fields

Description

A jump instruction to transfer control to an operating
system's loader. See your chip-specific supplement for the
description of the jump instruction.

The OEM name and version number identifying the boot
record's operating system

BYTESPERSEC
Number of bytes per sector

SEC_CLUSTER
Number of sectors per file allocation unit (cluster) in a
partition. This value must be a power of two.

RES_SECTOR

FATNUM

Number of sectors reserved by the operating system,
starting at logical sector 0

Number of FATs in a partition

NROOTDIR Maximum number of root directory entries in a partition

NSECTORS Total number of sectors in a partition, including boot
sector, directories, and reserved sectors. If this field
contains zero, the EXTENSION field (see below) contains
the total number of sectors.

MOB

FATSEC

SECPERTRK

NHEADS

Media Descriptor Byte. Describes the disk medium in
terms of number of sides, number of sectors per track, and
whether the medium is fixed or removable. Possible values
for the MOB are defined in Table 8-5.

Number of sectors occupied by one FAT

Number of sectors per track in a partition

Number of heads in partition

12-5

12.2 Boot Record Format FlexOS System Guide

Field

HIDDEN

EXTENSION

Table 12-1. (Continued)

Description

Total number of sectors preceding a partition, including
sectors occupied by the Master Boot Record.

If NSECTORS contains zero, EXTENSION contains the total
number of sectors in a partition. The EXTENSION field is
used for partitions whose number of sectors is greater
than can be stored in the one-word NSECTORS field.

FIRSTSEC First sector of data area

CODE_LOAD_BASE
Address at which operating system code is to be loaded

CODE_LENGTH
Length, in bytes, of code segment

DATA_LOAD_BASE
Address at which operating system data is to be loaded

OAT A_LENGTH
Length, in bytes, of data segment

The FORMAT utility fills in the fields from BYTESPERSEC through
FIRSTSEC. The SYS utility (see Section 12.5) fills in the code and data
load addresses and segment lengths.

12-6

FlexOS System Guide 12.3 Boot Loader Outline

12.3 Boot Loader Outline

Take the following steps in constructing a boot loader. The field names
referenced below are defined in Table 12-1 above.

1. Calculate the number of physical sectors of 'code to read by
dividing the value in the CODE_LENGTH field by the number of
bytes in a physical sector. Add one physical sector if the division
produces a remainder.

2. Read the operating system code into memory at the location
specified by the CODE_lOAD_BASE field. The read always begins
at the first sector of the first data cluster on the disk.

3. If the operating system code does not end on a physical sector
boundary, the remainder of the sector is data. The data portion of
the sector needs to be moved to the location in memory specified
by the DATA_lOAD_BASE field.

4. Calculate the number of physical sectors of data to read by
dividing the value in DATA_lENGTH, minus any data already read,
by the number of bytes in a physical sector. Add one physical
sector if the division produces a remainder.

5. Read the operating system data into memory at the location
specified by the DATA_lOAD_BASE field plus the length of the
data already read. The read begins at the next sector following
the code reads.

If the operating system code and data are to be contiguous in
memory, you can optimize the boot loader so that it performs one
read that includes both the code and the data sectors.

12-7

12.4 The FlexOS Memory Image FlexOS System Guide

12.4 The FlexOS Memory Image

Figure 12-3 shows the FlexOS memory image.

Code Load Base

Code

Data Load Base

Initialized Data

Uninitialized Data

Figure 12-3. The FlexOS Memory Image

12-8

FlexOS System Guide 12.5 The SYS Utility

12.5 The SYS Utility

SYS transfers the operating system from the default to the specified
drive or places the operating system onto the specified drive from a
file. SYS modifies the destination drive's boot record to reflect the
correct operating system Code Load Base, Code Length, Data Load
Base, and Data Length fields.

SYS has the following syntax:

SYS d:

or

SYS d: d:filename.ext

The operating system image is placed in contiguous data clusters
beginning at the first data cluster, Cluster· 2. The first directory entry
on the boot disk is FLEXOS.SYS. This file is recorded with the System,
Hidden, and Read-Only attributes.

The header record on the specified input file is removed by SYS prior
to placing the image on the disk. The information contained in the
header record is used to update the proper fields in the disk's boot
record.

End of Section 12

12-9

FlexOS System Guide

12-10

Appendix A

The FlexOS Standard Input and Output Character Sets

This appendix presents the characters sets supported by the FlexOS
standard keyboard and standard console. The character sets are
presented in the following order:

• 16-bit input characters (A. 1)
• 8-bit input characters (A.2)
• 16-bit output characters (A.3)
• 8-bit output characters (A.4)

A.1 16-bit Input Character Set

This section defines the 16-bit character set supported by the FlexOS
standard keyboard. The low order byte of a 16-bit input character is
reserved for data. The high order byte can have the following values:

Table A-1. High-order Byte Values

Byte Value Character Set

OOH ASCII character set. Includes DRI-standard US, Japanese,
and European 8-bit character sets.

01 H-7FH Defined in Figure A-1, below.

80H-FCH 15-bit foreign language character sets, including KANJI.

When the high order byte of a 16-bit character is in the range from
01 H to 7FH, the byte is defined as follows.

A-l

A 16-bit Input Character Set FlexOS System Guide

bit 15 14 13 12 11 10 9 8 7 6

Data (D)

(0100) Ctrl Key

(0200) Alt Key

(0400) Shift Key

(0800) Reserved }~
(1 Sxx) Func Keys E

(2Sxx) Special Chars

(3xxx) Toggle Chars
(4xxx) Reserved

(5xxx)Reserved

(6xxx) Reserved

(7xxx) Reserved

Foreign 1 5-bit char set

Figure A-1. High-order Byte Definitions for 01 H to 7FH

Each defined bit field is described below. In the explanations, S refers
to the state bits, bits 8-11 .

• STATE Bits: The state bits indicate the status of the Ctrl, Alt. and
Shift keys. When a state key is pressed along with another key,
set the corresponding state bit or bits. If the ASCII standard
specifies a code for the state and character key combination, the
standard ASCII code should be generated without the state
information. Examples of state bit use are:

CTRL -C == > 0003H
SHIFT -p == > P or 0050H
CTRL-5 ==> 0135H
CTRL-SHIFT-ALT-5 ==> 0735H

• Func Keys: Function key codes where you indicate the function
key number in xx. Examples of function key codes are:

A-2

FUNC 1 ==> 1001H
CTRL-FUNC 1 ==> 1101H

FlexOS System Guide A 16-bit Input Character Set

• Special Characters: Special keys where the xx value should be
generated for the key as follows:

~eclaL£uncJjgn Cursor Movement Numeric Keypad - ~ -

2S00 HELP 2S10 UP 2S30 ZERO
2S01 WINDOW 2S 11 DOWN 2S31 ONE
2S02 NEXT 2S12 LEFT 2S32 TWO
2S03 PREVIOUS 2S13 RIGHT 2S33 THREE
2S04 PRINT SCREEN 2S14 PAGE UP 2S34 FOUR
2S05 BREAK 2S15 PAGE DOWN 2S35 FIVE
2S06 REDRAW (screen) 2S16 PAGE LEFT 2S36 SIX
2S07 BEGIN 2S17 PAGE RIGHT 2S37 SEVEN
2S08 END 2S18 HOME 2S38 EIGHT
2S09 INSERT 2S19 REVERSE TAB 2S39 NINE
2S0A DELETE 2S3A A
2S0B SYSREQ 2S3B B

2S3C C
2S3D D
2S3E E
2S3F F
2S40 ENTER
2S41 COMMA
2S42 MINUS
2S43 PERIOD
2S44 PLUS
2S45 DIVIDE
2S46 MULTIPLY
2S47 EQUAL

• Toggle Characters: Where your hardware supports toggle
characters, generate the values for 3xxx according to the scheme:

bit: 15 11 7 o
key

A-3

A 8-bit Input Character Set FlexOS System Guide

where the fields are defined as follows:

A - action

key

o - OFF
1 - ON

OxO - Caps Lock
Oxl - Shift Lock
Ox2 - Scroll Lock
Ox3 - Num Lock

Oxl0 - Right Shift
Ox11 - Left Shift
Ox12 - Insert
Ox13 - Control
Ox14 - Alternate

Keys 0-3 should generate a character each time the user presses
and releases the key.

Keys 10H-14H should generate a character when the user releases
the key after pressing it along with another character

A.2 8-bit Input Character Set

The Console Resource Manager expects 16-bit keyboard input from
the console driver. When the application specifies 8-bit character
mode, the Console RM translates the 16-bit characters to 8-bit
characters. The translation process may generate more characters than
the console driver actually sends to the Console Resource Manager, as
illustrated in Table A-2, below.

FlexOS supports the set of escape sequences only when the
application is in 8-bit keyboard mode. Table A-4 lists the escape
sequences supported.

A-4

FlexOS System Guide A 8-bit Input Character Set

Table A-2. Results of 16- to 8-bit Translation

16-bit Code Result Characters

OOxxH xxH

0100H-7FFFH Converts to escape n
sequence except as follows
(S=STATE bit values):

2S30 Ox30H 0
2S31 Ox31H 1
2532 Ox32H 2
2S33 Ox33H 3
2S34 Ox34H 4
2S35 Ox35H 5
2S36 Ox36H 6
2S37 Ox37H 7
2S38 Ox38H 8
2S39 Ox39H 9
2S3A Ox41H A
2S38 Ox42H 8
2S3C Ox43H C
2S3D Ox44H D
2S3E Ox45H E
2S3F Ox46H F
2S40 OxODH RETURN or ENTER
2541 Ox2CH , (comma)
2S42 Ox2DH - (minus)
2543 Ox2EH . (period)
2544 Ox28H + (plus)
2545 Ox2FH / (divide)
2546 Ox2AH * (multiply)
2547 Ox3DH = (equal)

8000H-FCFCH High byte, low byte 2

A-5

A 16-bit Output Character Set FlexOS System Guide

A.3 16-bit Output Character Set

The Console Resource Manager accepts 16-bit output characters
through the WRITE SVC when in 16-bit screen mode. The 16-bit
character codes provided are defined in Table A-3.

Table A-3. 16-bit Output Character Set

16-bit Value Definition

OOxxH Same as 8-bit. Give these characters one character
position on the screen. Characters in the range 80H
FFH are defined on a per-country basis.

8000H-FCFCH 16-bit language, such as KANJI. Give these characters
two character positions on the screen. When
modifying the FRAME, set the two character plane
cells according to the key value and set the extension
plane to indicate a two-cell character; that is, set bit 0
of both extension plane bytes to 1, set bit 1 of the
first extention plane byte to 0, and set bit 1 of the
second byte to 1.

01xxH-OFxxH Alternate character sets. Implement these codes
according to the following rules. Each character takes
one character position. Typically, these characters are
defined by the OEM extension field in a byte in a
FRAME's extension plane. If an extension plane exists,
the low byte is placed into the character plane while
the low nibble of the high byte is placed into the low
nibble of the extension plane.

1 xxxH Non-visible characters which take no space on the
screen.

2xxxH

A-6

Editing functions. These functions are the equivalent
of the escape sequences:

FlexOS System Guide A 16-bit Output Character Set

16-bit Value

2040
2041
2042
2043
2044
2045
2048
2049
204A
204B
204C
2040
204E
204F
2064
2065
2066
206A
206B
206C
206F
2070
2071
2072
2073
2074
2075
2076
2077

Table A-3. (Continued)

Definition

Enter Insert Character Mode
Cursor Up
Cursor Down
Cursor Right
Cursor Left
Clear Display
Cursor Home
Reverse Index
Erase to End of Page
Erase to End of Line
Insert Blank Line
Delete Line
Delete Character
Exit Insert Character Mode
Erase Beginning of Display
Enable Cursor
Disable Cursor
Save Cursor Position
Restore Cursor Position
Erase Entire Line
Erase Beginning of Line
Enter Reverse Video Mode
Exit Reverse Video Mode
Enter Intensify Mode
Enter Blink Mode
Exit Blink Mode
Exit Intensify Mode
Wrap at End of Line
Discard at End of Line

A-7

A 16-bit Output Character Set FlexOS System Guide

16-bit Value

3xxxH

4xxxH

50xxH

51xxH

52xxH-7xxxH

A-8

Table A-3. (Continued)

Definition

Set cursor to xxx row (O origin)

Set cursor to xxx column (0 origin)

Set foreground color to color xx. Color codes are
documented in the A.4, below.

Set background color to color xx. Color codes are
documented in the A.4, below.

Non-visible characters. Take no space on screen.

FlexOS System Guide A 8-bit Output Character Set

A.4 8-bit Output Character Set

The Console Resource Manager converts the application's 8-bit output
characters and escape sequences to 16-bit characters internally before
calling the driver's WRITE function. The escape sequences are
supported independently of the physical terminal type.

You can provide your own 8-to-16 bit conversion routine, accessible
through the GET entry point in a console driver's Driver Header, to
extend the character set. The extendability of the character set allows
the implementation of SHIFT-JIS KANJI through the 8-bit character set
in Japan. You might also modify the conversion routine to add escape
sequences that switch to another character set.

You can support multiple country codes in the console driver. If you
do, implement your selection routine in the driver's SET entry point
using the value in the PCONSOLE table's COUNTRY field.

In the United States, FlexOS supports the IBM PC character set. In
Japan, FlexOS uses the SHIFT-JIS character set. In Europe, the ISO
standard ASCII character set is used.

While in 8-bit mode, the console's video attributes, such as cursor
control, video blink, video intensity, and reverse video can be
controlled through escape sequences sent through the WRITE SVC.
The first character of an escape sequence is always the Escape
character (ASCII character 27 or 1 BH).

Table A-4, below, lists the escape sequences defined for FlexOS. This
set of escape sequences is, with some exceptions, a superset of the
set required by a VT -52 terminal. In the description below, < ESC> is
followed by the function character. Blanks are used for clarity of
presentation only.

A-9

A 8-bit Output Character Set FlexOS System Guide

A-l0

Table A-4. FlexOS Escape Sequences for 8-bit Output

Function Escape Sequence

Cursor Up
Cursor Down
Cursor Right
Cursor Left
Cursor Home
Reverse Index
Save Cursor Position
Restore Cursor Position
Set Cursor Position

Clear Display
Erase to End of Page
Erase to End of Line
Erase Entire Line
Erase Beginning of Display
Erase Beginning of Line
Insert Blank Line
Delete Line
Delete Character

<ESC> A
<ESC> B
<ESC> C
<ESC> D
<ESC> H
< ESC> .1 (upper case i)
<ESC> j
<ESC> k
<ESC> Y (r) (c)

(r) = row + 32 (one character)
(c) = col + 32 (one character)
home = 0,0

<ESC> E
<ESC> J
<ESC> K
< ESC> I (lower case L)
<ESC> d
<ESC> 0

<ESC> L
<ESC> M
<ESC> N

FlexOS System Guide A 8-bit Output Character Set

Table A-4. (Continued)

Function

Set Foreground Color

Set Background Color

Escape Sequence

<ESC> b (c)

where (c) = color (one character)

o - Black
1 - Blue
2 - Green
3 - Cyan
4 - Red

8 - Dark Gray
9 - Light Blue
10 - Light Green
11 - Light Cyan
12 - Ught Red

5 - Magenta
6 - Brown

13 - Light Magenta
14 - Yellow

7 - Light Gray 15 - White

<ESC> c (c)

where (c) = color (one character)

o - Black
1 - Blue
2 - Green
3 - Cyan
4 - Red
5 - Magenta
6 - Brown
7 - Light Gray

8-15 are the same as 0-7 except
the foreground blinks

A-11

A 8-bit Output Character Set FlexOS System Guide

Table A-4. (Continued)

Function Escape Sequence

A-12

Enable Cursor
Disable Cursor
Enter Reverse Video Mode
Exit Reverse Video Mode
Enter Intensify Mode
Exit Intensify Mode
Enter Blink Mode
Exit Blink Mode
Enter Insert Mode
Exit Insert Mode
Wrap at End of Line
Discard at End of Line

<ESC> e
<ESC> f
<ESC> p
<ESC> q
<ESC> r
<ESC> u
<ESC> s
<ESC> t
<ESC> @
<ESC> 0
<ESC> v
<ESC> w

End of Appendix A

Appendix B

Foreign Language Support

This appendix describes the FlexOS support for languages other than
American English. FlexOS defines a console driver so an OEM can
provide translation routines. In addition to this driver-level support an
OEM can translate or modify all messages displayed by FlexOS utilities.

Section B.1 describes provisions for foreign language support in a
console driver. Section B.2 explains how to edit recompile, and relink
utility messages.

B.1 Console Driver Support

Support for foreign character sets exists in the console driver's SET
and GET functions and in the extension plane of a FRAME. See
Section 7, "Console Drivers," for a description of SET and GET and the
FRAME data structure.

Through the SET function, a console driver can change the COUNTRY
field in the PCONSOLE Table. The COUNTRY field contains a country
code that determines which character set is being used. Applications
can, through the GET and LOOKUP SVCs, obtain the country code from
the PCONSOLE Table. Country codes are listed in Appendix C of the
FlexOS Programmer's Guide.

Through the GET function, a console driver can provide the addresses
of OEM-written character translation routines. The Console Resource
Manager passes the address of the PCONSOLE Table to the GET
function. The PCONSOLE Table has two 32-bit fields, CONVERT8 and
CONVERT16, that can store pointers to translation routines. CONVERT8
can point to an 8-bit to 16-bit output translation routine. CONVERT16
can point to a 16-bit to 8-bit input translation routine. If these fields
contain NULLPTR, the FlexOS standard conversion routines are called.

B-1

8 Console Driver Support FlexOS System Guide

To support foreign language character sets, the console driver writer
must implement an extension plane in his PFRAME. If the console
driver supports virtual consoles, the extension plane must exist in the
VFRAME also. FlexOS defines a byte in the extension plane to allow
support for one-byte characters, two-byte characters, such as KANJI,
or alternate character sets. See Section 7.2.1 for details.

B.2 Modifying Messages

Modifying the FlexOS messages consists of editing source message
files, compiling those files, and linking the new object modules with a
utility's code. The FlexOS utilities are written so code modules contain
no messages and message modules contain only global symbols and
messages.

The following message files are distributed with FlexOS:

• STDMSGS.C - contains all public messages, that is, all messages
used by more than one utility. This file is provided as reference
and is not used in the process of modifying messages.

• Set of files consisting of each message in STDMSGS.C in a
separate file

• < utilityname > MSG.C - contains specific messages for a utility

Perform the following steps to create utilities that display modified
messages.

1. Print STDMSGS.C, to use as a guide when editing individual"
message files.

2. Edit each of the public message files.

3. Edit the message file for each utility.

8-2

FlexOS System Guide B Modifying Messages

4. Run the batch file, CCMSGS.BAT. This file contains commands
that do the following:

• Compiles all public messages

• For object files created by the Lattice C compiler, executes
the COMB utility to change object files from Lattice format to
a format usable by L1NK-86 and L1B-86.

• Runs LIB with the input file CCMSGS.INP using the I option.
CCMSGS.INP contains a list of public symbols that LIB
matches with corresponding message files to create a
CCMSGS.L86 (CCMSGS.L68 for 68000-based systems), a
library of standard object modules.

5. Run batch file, <utilityname>.BAT, for each utility. These files
contain commands that do the following:

• Compiles the <utility>MSG.C file containing a utility's
messages

• Runs LINK with a utility-specific input file, < utilityname > .INP.
These input files contain a list of which code and message
modules to link and a list of public symbols that LINK uses to
extract appropriate messages from the CCMSGS file. LINK
produces an executable file.

For 68000-based implementations that use SUBMIT rather than BATCH,
SUBMIT files (file extension SUB) are provided.

The Window Manager and FORMAT utility distributed with FlexOS
display text not contained in STDMSGS.C. Text strings for the Window
Manager are stored in WMEXDATA.C (see Appendix C). Messages for
FORMAT are stored in BOOT.A86 and HDBOOT.A86.

End of Appendix B

B-3

FlexOS System Guide

8-4

Appendix C

Modifying Windows

This appendix explains how you modify screen windows (virtual
consoles) as set up by the FlexOS Window Manager.

You can modify the following window characteristics:

• size
• location on the screen
• attributes of windows, including borders
• fill characters
• number of windows to bring up at boot time
• startup command for each window
• text strings in window headers

A window can be as large as the limits of your physical console allow.

Distributed with FlexOS is the source code to the Window Manager,
including two data files, WMEX.H and WMEXDATA.C.

WMEX.H contains the WNDWDESC structure, which describes a user
window, and the WNDWSPEC structure, which describes a special
window. A special window is a message or a status window.
WMEXDATA.C contains data for both structures. WNDWDESC and
WNDWSPEC are the only configurable window structures.

WNDWDESC describes a window's size, location, attributes, and fill
characters. It also contains pointers to a text string for the window
header and a pointer to the startup command line. WNDWSPEC
contains pointers to text displayed in the message and status windows
and stores the number of elements in a variety of different arrays of
text strings.

In addition to configuration data, WMEXDATA.C contains the text
strings pointed to in WNDWDESC and WNDWSPEC. You can translate,
or otherwise modify these strings.

C-l

C FlexOS System Guide

WMEX.H sets eight as the maximum number of user and special
windows per physical console. Changing this number requires
changing code in WMEX.H.

WMEXDATA.C defines eight windows: six user windows, a status
window, and a message window.

In WMEXDATA.C, the variable WM0010, which stores the number of
user windows at startup, is initialized to one. You can change this
value to as many user windows as are defined in WMEX.H.

The variables WM0100, WMOll0, and WM0120 in WMEXDATA.C define
attributes and fill characters for the Desk Window. The Desk Window
is the parent console for all user and special windows. Desk Window
variables can also be modified.

In WNDWDESC, if you place a zero in the WD_RMAX (maximum number
of rows) and WD_CMAX (maximum number of columns) fields, the
Window Manager makes the window the size of the screen the
Window Manager is running in. This is usually the size of the phYSical
console.

In the WD_FLAGS field in WNDWDESC, you can change bits 0
(borders/no borders) and 1 (attributes/no attributes). Do not change
bits 6 and 7.

End of Appendix C

C-2

Index

A

ABORT SVC, 5-38
ASR
ASR. 5-19, 5-32, 5-40

blocking, 5-11
scheduling, 5-12

ASR priority, 5-13
ASRMX, 5-32

. ASRWAIT, 5-11
Asynchronous 1/0, 2-5
Asynchronous interface, 2-6
Asynchronous Service Routines

(ASRs), 2-5
Asynchronous Service Routines,

5-9

B

Bgprn:, 1-8
BIOS Parameter Block, 8-12
Boot disk layout, 12-3
Boot loader

constructing, 12-7
Boot procedure, 12-1
Boot record

Master, 12-6
Boot record format 12-3
Boot script, 3-3, 3-8
Boot script commands, 3-4
BOOTINIT, 3-3

c

Character set
16-bit input, A-l
16-bit output A-6
8-bit input, A-4
8-bit output, A-9

Character set, alternate, 7-6
Cha racter sets, A-l
Character translation, 7-34
CLOSE SVC, 11-1
Cold boot 12-1
CONFIG.OBJ, 3-3
Console driver, 7-1
Console driver
Console driver, B-1

ALTER, 7-13
COPY, 7-13
FLUSH,7-12
GET, 7-30
SELECT, 7-9
SET, 7-34
SPECIAL, 7-24
SPECIAL function 1, 7-26
SPECIAL function 2, 7-27
SPECIAL function 3, 7-28
SPECIAL functioon 0, 7-25
WRITE, 7-20

Country code, A-9, B-1
Critical regions, 5-30

Index-1

D

DEFINE SVC, 3-8
Device driver, 2-2
Device drivers, 1-5
Device polling, 5-16
Dirty region, 7-22
Disk driver, 8-1
Disk driver

error handling, 8-16
FLUSH, 8-21
GET, 8-45
READ,8-22
.reentrancy, 8-1
SELECT, 8-17
SET, 8-47
SPECIAL, 8-30
SPECIAL function 0, 8-31
SPECIAL function 1, 8-33
SPECIAL function 2, 8-35
SPECIAL function 3, 8-37
SPECIAL function 8, 8-41
SPECIAL function 9, 8-43
WRITE,8-26

DOASR, 5-12, 5-39
Driver Header, 2-2, 4-1, 4-2
Driver 1/0 functions, 4-5
Driver installation functions,

4-5, 4-8
Driver interface, 4-7
Driver load access levels, 3-4
Driver load format. 4-1
Driver Run-time Library, 3-3,

5-1
Driver services, 5-1
Driver services

accessing, 5-1

Index-2

Driver Services Table, 4-5
Driver type values, 4-9
Drivers

installing, 2-10
loading, 2-11
run-time installation, 3-8

DSPTCH, 5-13
DVRLlNK, 3-5
DVRLOAD, 3-4
DVRUNIT, 3-5
DVRUNLK, 3-6

E

Error code values, 4-7
EVASR, 5-14
Event

clearing, 5-17
Event mask, 5-9
Event number, 5-9, 5-16
Events

clearing, 5-10
emulating, 5-16

Extension plane, 7-6

F

File names, 2-4
File number, 2-1
Flag states, 5-5
Flag system, 5-2
FLAGCLR, 5-5
FLAG EVENT, 2-8, 5-6
FLAGGET, 5-7
FLAGREL, 5-7

FLAGSET. 2-8. 5-8
FlexOS memory model. 5- 1 8
Foreign language support. 7-6.

7-32. B-1
FORMAT utility. 8-15. 12-6
Formatting

information. 8-43
initializing for. 8-41

Formatting tracks. 8-37
FRAME
FRAME. B-1

dirty region. 7-22
FRAME structure. 7-3. 7-17
FRAME types, 7-7

G

H

Hard disk layout. 8-8
Hard disk support, 8-4

IBM PC video map. 7-27
INIT driver function. 4-8. 5-34
INSTALL access flags. 11-1
INSTALL flags. 4-10
INSTALL SVC. 2-3
Interrupt handling. 5-39
Interrupt Service Routine. 5-39
Interrupt Service Routines

(ISRs). 2-5
Interrupt Services Routines. 5-9

Interrupt vector
setting. 5-40

ISR. 5-13

J

K

KANJI. 7-32. B-2
Kernel. 1-4
Keyboard

L

deactivating. 7-12
initializing, 7-9

Logical disk layout. 8-5
Logical name definitions. 3-8
LOOKUP SVC. B-1

M

MAPPHYS. 5-23
MAPU.5-22
Master boot record. 12-6
Media

permanent. 8-4
removable. 8-3

Media Descriptor Block. 8- 1 8
Media Descriptor Byte. 8- 1 6
Memory

locking. 5-21
moving. 5-21
unlocking. 5-26

Index-3

Memory image, 12-8
Memory management services,

5-20
Memory range checking, 5-25
Message translating, B-2
Miscellaneous Resource

Manager, 11-1
MLOCK, 5-24
MRANGE, 5-25
MUNLOCK, 5-25
Mutual exclusion region, 5-30
MX Parameter Block, 5-31
MXEVEN~ 5-31, 5-33
MXINIT, 5-31, 5-33
MXPB

creating, 5-33
obtaining ownership, 5-31,

5-32, 5-33
releasing, 5-34
removing, 5-34

MXREL, 5-34
MXUNINIT, 5-34

N

NEXTASR, 5-15
No abort regions, 5-30
No dispatch region, 5-30
NOABORT, 5-35
NODISP, 5-11, 5-35

o

OKABORT, 5-36
OKDISP, 5-36

Index-4

Open door interrupt, 8-3
Open door support, 8-3
OPEN SVC, 11-1

p

PADDR, 5-26
Partition Table, 8-10
PCFRAME

converting to PCFRAME, 7-28
creating, 7~27

PCONSOLE Table, 7-30, B-1
PC REATE, 5-37
Permanent media, 8-4
PFRAME, 7-8
Physical Memory, 5-18
Physical Space, 5-18
Plane, character, 7-3
Planes, 7-3
Planes

attributes, 7-3
POLLEVENT, 5-16
Polling devices, 5-16
Port driver, 9-1
Port driver

FLUSH, 9-3
GET, 9-8
READ, 9-4
SELECT, 9-2
SET, 9-13
WRITE,9-7

Port driver GET/SET Table, 9-10
Port drivers

interrupt-driven, 9-1
Port mode status bit map, 9-12
Print spooler, 1-7

Printer
enabling, 10-3

Printer driver, 10-1
Printer driver

FLUSH. 10-3
GET. 10-8
SELECT, 10-2
SET, 10-13
WRITE,10-5

Printer driver GET ISET Table,
10-10

Prn:, 1-7
PROCDEF Table, 3-6
Process

setting priority, 5-38

Q

R

Range checking. 5-22
Ready List Root. 4-5
RECT, 7-18
RECT structure, 7-3
Reentrancy, 8-1
Regions

critical. 5-30
mutual exclusion. 5-30
no abort. 5-30
no dispatch. 5-30

Removable media. 8-3
Required modules. 3-2
Resource Managers. 1-4, 2-3
RETURN SVC. 2-5. 5-10. 5-15.

5-31. 5-38

s

SADDR. 5-27
SALLOC, 5-27
Semaphore

waiting on, 5-31
Serial interrupts

enabling, 9-3
SETVEC, 5-39, 5-40
SFREE. 5-28
Special driver

accessing, 11-1
FLUSH, 11-9
GET, 11-19,
READ. 11-11
SELECT, 11-6
SET, 11-21
SPECIAL. 11-16
WRITE. 11-14

Special drivers, 11-1
SPLDVR. 1-7
STATUS SVC, 5-10
Sub-drive~ 2-8, 4-12
SUBDRIVE driver function. 4-12
Supervisor. 1-4
Supervisor entry point, 6-1
Supervisor interface, 6-1
SUPIF. 6-1
Synchronous interface, 2-6
SYS utility. 8-15. 12-6. 12-9
SYSDEF Table. 3-6
System Address. 5-1 g
System Address

converting. 5-26. 5-28
System area. 8-31
System area

formatting. 8-35

Index-5

reading, 8-31
writing, 8-33

System configuration, 3-1, 3-3
System creation procedures,

3-2
System Memory, 5-18
System Memory

allocating, 5-27
freeing, 5-28

System memory management,
5-18

System process, 5-18
System Process

creating, 5-36
System Space, 5-18

T

Tempdir:, 1-7
Transient Program Area, 5-22

u

UADDR, 5-28
UFRAME,7-7
UNINIT driver function, 4-14,

5-35
Unit, 2-3
UNMAPU, 5-29
User Address, 5-19
User Address

converting, 5-27
User Memory, 5-18
User Memory

addressing, 5-19

Index-6

locking, 5-24
restoring, 5-29

User Space, 5-18

v

VFRAME, 7-7
VFRAME

converting to PCFRAME, 7-27
Virtual console
Virtual console, C-1

creating, 7-25
removing, 7-26

w

WAIT SVC, 2-5, 5-10, 5-33,
5-38

Window Manager, C-1
Windows, C-1

x

y

z

