
Flex OS™
Programmer's Guide

Version 1.3

1073-2023-001

COPYRIGHT

Copyright 1986 Digital Research Inc. All rights reserved. No part of this publication may b'
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language o
computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemica
manual or otherwise, without the prior written permission of Digital Research Inc., 60 Garden Courl
Box ORI, Monterey, California 93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THI
CONTENTS HEREOF ANO SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILIT'
OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Digital Research Inc. reserves the right tc
revise this publication and to make changes from time to time in the content hereof without obligatior
of Digital Research Inc. to notify any person of such revision or changes.

NOTICE TO USER

This manual should not be construed as any representation or warranty with respect to the softwarE
named herein. Occasionally changes or variations exist in the software that are not reflected in thE
manual. Generally, ii such changes or variations are known to exist and to affect the produc·
significantly, a release note or REAOME.DOC file accompanies the manual and distribution disk(s). Ir
that event. be sure to read the release note or README.DOC file before using the product.

TRADEMARKS

Digital Research. CP/M, and the Digital Research logo are registered trademarks of Digital Resear~~
Inc. FlexOS is a trademark of Digital Research Inc. We Make Computers Work is a service mark ol
Digital Research Inc.

First Edition: November 1986

The kernel is based on an event driven dispatcher that dO()S priority
driven scheduling. Time slicing is done by a timnr event that occurs
once per TICK, typically every lfi to 20 milliseconds (implementation
dependent). Scheduling of equal priority processes is dorm i11 a round

·robin fashion.

Pipe File System

FlexOS performs process communication and synchronization through
named pipes. These in-memory files are available to pass data from
one process to another or to synchronize activities when acting as
semaphores.

Console File System

The FlexOS console system provides dedicated functions designed
specifically for the fast manipulation of bit-mapped and charactor
oriented displays. A single call can copy or modify a screen region
ranging in size from a single character cell to the entire screen. l hese •
functions give you a consistent. _hardware-independent interface to the
computer's interactive devices without sacrificing program portability.

The console system also provides window rnana~Jetnent facilities that
allow applications to create and manage multiple virtual consoles.

Intended Audience and Manual Organization

This manual (hereinafter referred to as the Programmer's Guide) is
written for the programmer whose goal is to write applications and
utilities to run under the FlexOS operating system. The Proora111111er's
Quide anticipates, but does not require, a workill~J knowledoe of the C
programming language.

v

The Pro~Jrammer's Guide is organized as follows:

Section Terms and conventions us8d in this manual; file system.
chC1rncteristics; summary of Sunervisor calls and tables.
Disk Resource M;ma~Jer Section 2

Section 3 Console Resource M<111ag(~r
Section 4 Pipe Manager
Section 5 Process Management
Section 6
Section 7
Section 8
Appendix A
Appelldix B
Appendix C

Miscellaneous Device Management
Supervisor call reference
system table reference
FlexOS character codes
System return and error codes
FlexOS country codes

The FlexOS Documentation Set

The Programmer's Guide is one of several manuals in the FlexOS
documentation set The other documents <1re

vi

• FlexOS User's Guide: The user's reference for FlexOS oneration
The User's Guide describes the command shell, advanced FlexOS
concepts, and command files. It also nrovides an overview of
system manager functions.

• FlexOS System Guide: The guide to FlexOS system
implementation for an original equipment manufacturer or driver
writer. Information presented in this guide includes driver and
supervisor interfaces, FlexOS's driver services, and how to
construct a boot loader.

• FlexOS Supplements: Microprocessor-dependent su1111lements to
the Programmer's Guide and the FlexOS System Guide.

• FlexOS Programmer's Utilities Guides The reference to FlexOS
assembly language programming tools. There is a separate
utilities guide for each microprocessor supported by FlexOS.

Foreword

FlexOS™ is a real-time, multitasking operating system designed for
single-user and multiuser microcomputer systems. The programming
interface to FlexOS is CPU- and peripheral-independent so you can
develop programs "that are portable between machines with different
components and processors.

FlexOS Features

FlexOS provides comprehensive facilities for process, file, console, and
device management. The following list summarizes these facilities:

• Process Management

- FlexOS process execution
- Independent, modifiable process environments
- Asynchronous events and software interrupt handling
- Interprocess communication and synchronization

• Disk System

- PC DOS compatible. with hierarchical file directories
- Shared file system with file and record locking
- File system protection based on file and directory ownership
- User and group file ownership
- Removable media support

• Real-time processing

- Support for real-time data acquisition and communications
- Primitives for real-time process control and other real--tirne

applications

iii

• ConsolP

- Escnpe seqtwnce decoding
- Standmd clwrncter ;ind hit mapped screen interface
- Standmd 16- and 8-bit keybomd interfaces including function

keys, numerical keypad and multikeyed characters
- Virtual console management primitives that include window

support

• International considerations

- Support for 16-hit foreign languages
- Customization of console messages including country codes

• Memory mapping and protection

• Dynamically loadable device drivers

• CPU-independent programming

Disk File System

The FlexOS disk file system is designed for multiuser and networked
microcomputer systems Hierarchical, shared disk files allow for the
large, shared data bases commonly used with professional work
stations, The record and file locking mechanisms, along with security
through ownership, allow integrity and protection of data.

FlexOS's disk file system is designed to protect against file destruction
from power interruptions or accidental system resets. A utility is
provided that reconstructs file directory entries and allocation tables
from the data area of the disk.

The FlexOS file system distinguishes removable from permanent media
and recognizes removable media that have open door interrupts.

Real-time Kernel

The kernel provides multiuser and multitasking environments that allow
both real-time control applications and integrated office environments
on the same CPU.

iv

The f>rggr~!Tl!!!~r':; Guide, User's Guide, and System Guide are generic
in that they are appropriate for FlexOS systems based on any
supported microprocessor. Before developing programs, you should
become familiar with the sections of the FlexOS supplements that
describe microprocessor-dependent distinctions and differences of
operation. In most cases, the points of difference are noted in the
appropriate sections of this manual. However, not all information is
cross-referenced.

vii

Contents

1 TERMS, CONCEPTS, AND CONVENTIONS

1.1 C Language Conventions . 1-1
1.2 Supervisor Calls. 1-1

1.2.1 Calling Conventions . 1-4
1.2.2 Data Structure Representation. 1-5
1.2.3 Synchronous C!nd Asynchronous SVCs. 1-6
1.2.4 Return Codes . 1-8
1.2.5 Asynchronous Supervisor Calls 1-8

1.3 File Specifications. 1-11
1.3.1 Uppercase Versus Lowercase Names. 1-13
1.3.2 Wildcards . 1-14
l.3.3 Reserved Names. 1-16
1.3.4 Logical Name Substitution. 1-16

1.4 File Access. 1-17
1.4.1 Standard File Numbers . 1-18
1.4.2 Access Privileges . 1-19
1.4.3 Access Modes. 1-20
1.4.4 File Pointers

1.5 Deleting Files
1-21
1-21

1.6 Basic Terms .. . 1-22
1.7 Tables . 1-25
1.8 FlexOS Functional Components. 1-27

1.8.1 The Supervisor and Resource Managers......... 1-28
1.8.2 Kernel . 1-29

2 DISK FILE MANAGEMENT

2.1 File Access. 2-2
2.2 Disk File Attributes . 2-2
2.3 Disk Media . 2-3
2.4 Disk File and Directory Security 2-4

ix

Contents

2.4.1 Disk Label. 2-4
2.4.2 User/group IDs and Available Access Privileges . . . 2-5
2.4.3 Directory Versus File Access Privileges 2-5
2.4.4 Access Rules and Restrictions. 2-6

2.5 Disk File Access Modes . 2-7
2.6 Direct Disk Access . 2-8

2.6.1 Disk Device READ and WRITE 2-8
2.6.2 SPECIAL Disk Functions. 2-8
2.6.3 Disk Drive Open Modes. 2-9
2.6.4 Disk Security INSTALL Options 2-10

3 CONSOLE MANAGEMENT

3.1 Console File System. 3-1
3.1.1 Console-Related SVCs , 3-2
3.1.2 Console-Related Tables . 3-3
3.1.3 Console Screen Model and Data Structures. 3-5

3.2 Controlling the Console . 3-12
3.2.1 Console Attributes . 3-12
3.2.2. Manipulating the Screen . 3-13

3.3 Getting Console lhput. 3-15
3.3.1 Reading the Keyboard . 3-16
3.3.2 Monitoring the Mouse. 3-17

3.4 Managing Virtual Consoles . 3-21
3.4.1 Creating the Virtual Consoles and Windows 3-22
3.4.2 Keyboard and Mouse Ownership 3-26
3.4.3 Deleting a Virtual Console. 3-27

3.5 FlexOS Window Manager . 3-27

4 PIPE MANAGEMENT

4.1 Creating and Deleting Pipes . 4-2
4.2 Pipe Access . 4-3
4.3 Interprocess Communication. 4-5
4.4 Synchronization and Exclusion . 4-6
4.5 Nondestructive READ . 4-7

x

Contents

5 PROCESS MANAGEMENT

5.1 Process Relationships. 5-2
5.2 Running a Program. 5-3
5.3 Process Termination. 5-4
5.4 Memory Management. 5-5

6 MISCELLANEOUS RESOURCE MANAGER

6.1 Device Tables. 6-1
6.2 Device Access · 6-2

6.2.1 Opening and Closing. 6-2
6.2.2 Security . 6-3
6.2.3 Data 1/0 . 6-3

6.3 Device Installation . 6-4
6.3.1 Driver and Subdriver Installation 6-4
6.3.2 INSTALL Options. 6-5

6.4 PORT Table Modification : 6-5

1 SUPERVISOR CALL DESCRIPTIONS

7.1 ABORT . 7-2
7.2 ALTER. 7-4
7.3 BWAIT . 7-7
7.4 CANCEL . 7-10
7.5 CLOSE . 7-11
7.6 COMMAND. 7-14
7.7 CONTROL . 7-19
7.8 COPY . 7-24
7.9 CREATE . 7-26

7.9.1 Create a File, Directory, or Pipe. 7-26
7.9.2 Create a Virtual Console . 7-30

7.10 DEFINE . 7-33
7.11 DELETE. 7-36
7.12 DEVLOCK. 7-38
7.13 DISABLE . 7-40
7.14 ENABLE 7-41

xi

Contents

7.15 EXCEPTION 7-42
7.16 EXIT . 7-45
7.17 GET . 7-47
7.18 GIVE. 7-49
7.19 GSX - Perform Graphic SVC . 7-51
7.20 INSTALL . 7-53
7.21 KCTRL. 7-57
7.22 LOCK . 7-60
7.23 LOOKUP . 7-63
7.24 MALLOC . 7-66
7.25 MFREE . 7-69
7.26 OPEN . 7-70
7.27 ORDER . 7-74
7.28 OVERLAY . 7-76
7.29. READ . 7-78
7.30 RENAME . 7-83
7.31 RETURN . 7-85
7.32 RWAIT. 7-86
7.33 SEEK. 7-88
7.34 SET. 7-90
7.35 SPECIAL . 7-92

7.35.1 Disk Resource Manager Functions. 7-95
7.35.2 Miscellaneous Resource Manager Functions 7-110

7.36 STATUS 7-112
7.37 SWIRET 7-113
7.38 TIMER 7-115
7.39 WAIT. 7-117
7.40 WRITE 7-118
7.41 XLAT .. 7-121

8 SYSTEM TABLES

8.1 CMDENV Table . 8-3
8.2 CONSOLE Table . 8-4
8.3 OEVICE Table . 8-7

xii

Contents

8.4 DISK Table . 8-10
8.5 DISKFILE Table . 8-16
8.6 ENVIRON Table. 8-19
8.7 FILNUM Table . 8-21
8.8 MEMORY Table : 8-22
8.9 MOUSE Table ·. . 8-23
8.10 PATHNAME Table _ _ _ ___________ . __ . 8-25

8.11 PCONSOLE Table. 8-26
8.12 PIPE Table. 8-29
8.13 PORT Table................................... 8-30
8.14 PRINTER Table . 8-32
8.15 PROCDEF Table. 8-34
8.16 PROCESS Table. 8-35
8.17 SPECIAL Table. 8-39
8.18 SYSDEF Table. 8-40
8.19 SYSTEM Table. 8-41
8.20 Tl MEDA TE Table . 8-43
8.21 VCONSOLE Table. 8-44

A CHARACTER SETS AND ESCAPE SEQUENCES A-1
A.1 Escape Sequences . A-1
A.2 16-bit Output Character Set. A-6
A.3 16-bit Input Character Set . A-8

B SYSTEM RETURN AND ERROR CODES............. B-1

C COUNTRY CODES . C-1

xiii

Contents

Figures

1-1 Data Structure Diagram . 1-6
1-2 SVC Parameter Block. 1-7
1-3 File Security Word. 1-19
1-4 Computer System Software Categories 1-27
3-1 FRAME Planes with RECT. 3-6
3-2 Attribute Plane Byte Format. 3-7
3-3 Extension Plane Byte Format . 3-8
3-4 FRAME Data Structure Diagram . 3-9
3-5 RECT Structure . 3-11
3-6 CONSOLE Table. 3-12
3-7 Examples of RECT Clipping . 3-14
3-8 MOUSE Table. 3-18
3-9 Virtual Console Relationships. 3-23
3-10 Virtual Console Characteristics. 3-25
4-1 Spooler Pipe . 4-4
A-1 High Byte Bit Usage of 16-bit Input Character.... A-8
B-1 Error Code Conventions. B-1

xiv

Contents

Tables

xv

1-1 Standard Data-type Definitions 1-1
1-2 Supervisor Call Summary. 1-2
1-3 Supervisor Calls by Number. 1-4
1-4 Asynchronous SVCs. 1-9
1-5 Rules for Forcing Name Case. 1-14
1-6 Wildcards . 1-14
1-7 Reserved File Names . 1-16
1-8 Standard File Numbers and Names 1-18
1-9 FlexOS Operating System Terms l-22
1-10 FlexOS Tables . 1-26
1-11 Resource Managers
2-1 Disk Resource Manager
2-2 FlexOS Disk File Attributes

1-29
2-1
2-2

2-3 Privilege Definitions for Files and Directories. 2-6
2-4 SPECIAL Disk Functions . 2-9
3-1 Console-Related Supervisor Calls 3-3
3-2 Console-Related Tables. 3-4
3-3 Foreground and Background Colors by Byte Value. . 3- 7
3-4 line-Editing Characters . 3-17
3-5 Virtual Console File Names . 3-24
4-1 Pipe-related Supervisor Calls. 4-1
5-1 Process-related SVCs . 5-1
6-1 Miscellaneous Device Control Supervisor Calls 6-1
7-1 Exception Condition Numbers . 7-43
8-1 System Table Access. 8-2
A-1 Escape Sequence Functions. A-2
A-2 Output 16-bit Character Set . A-6
A-3 16-bit Input Character Set. A-9
B-1 Error Source Codes--High Order Word B-2
B-2 low-order Word Error Code Ranges 8-3
B-3 Driver Error Codes. 8-4
B-4 Error Codes Shared by Resource Managers. B-5
B-5 Supervisor and Memory Error Codes 8-7
B-6 Kernel Error Codes . B-8
B- 7 Utility Return Codes . B--9

Contents

Listings

1-1 Data Structure Representation . 1-6

xvi

SECTION 1

Terms, Concepts, and Conventions

This section defines the terms, concepts, and conventions used in this
manual and describes the file system characteristics and FlexOS
architecture.

1.1 C Language Conventions

Table 1-1 lists the data-type definitions used to promote C portability
and reduce compiler differences.

Table 1-1. Standard Data-type Definitions

Data Type Definition

BYTE
BOOLEAN
WORD
UWORD
LONG
STRUCT

1.2 Supervisor Calls

Signed 8-bit value
Byte with one of two values: true/false
Signed, 16-bit value
Unsigned 16-bit value
Signed 32-bit value
Named sequence (structure) of variables

The functions performed by FlexOS are referred to as Supervisor calls
(SVCs). SVCs provide file, console, event, process control, and device
1/0 and management services. Table 1-2 lists the SVCs according to
their . purpose (asterisks indicate those SVCs that can be called
asynchronously).

1-1

1.2 Supervisor Calls FlexOS Programmer's Guide

Table 1-2. Supervisor Call Summary

Purpose Call

File Management

DEFINE
CREATE
DELETE
OPEN
CLOSE
READ*
WRITE*
SEEK
LOCK*
RENAME

Console 'Management

KCTRL
ORDER
XLAT
GIVE
COPY
ALTER
AWAIT*
BWAIT

Event Management

1-2

CANCEL
WAIT
STATUS
RETURN

Action

Define logical name for a path
Create a file
Delete a file
Open a disk file
Close a disk file
Read from a file
Write to a file
Modify or obtain current file pointer
Lock/Unlock an area of a disk file
Rename or move a file

Obtain keyboard and mouse ownership
Order windows on parent screen
Specify keystroke translation
Give keyboard and mouse to child proces
Copy one screen rectangle to another
Alter a screen rectangle
Wait for mouse to enter/leave a rectangle
Wait for mouse button state change

Cancel asynchronous events
Wait for multiple events
Get status of asynchronous events
Get return code of completed event

FlexOS Programmer's Guide 1.2 Supervisor Calls

Table 1-2. (Continued)

Purpose Call Action

Real Time and Process Management

TIMER*
ABORT*
COMMAND*
EXCEPTION
MALLOC
MFREE
EXIT
ENABLE
DISABLE
SWIRET
CONTROL*
OVERLAY

Device Management

SPECIAL*
DEVLOCK
INSTALL

Table Management

GET
SET
LOOKUP

Set and wa.it for timer interrupt
Abort specified process
Perform command
Set software interrupts on exceptions
Allocate memory to heap
Free memory from heap
Terminate with return code
Enable software interrupts
Disable software interrupts
Return from software interrupt
Control a process for debugging
Load overlay from command file

Perform special device function
Lock or unlock device for user/group
Install, replace and associate drivers

Get a table
Set table values
Scan and retrieve tables

* Your program can call these SVCs asynchronously.

Table 1-3 lists the SVCs by their number.

1-3

1.2 Supervisor Calls FlexOS Programmer's Guide

Table 1-3. Supervisor Calls by Number

Number Call Number Call

0 F_GET 21 Reserved
1 F_SET 22 F _GIVE
2 F _LOOKUP 23 Reserved
3 F _CREATE 24 F _TIMER
4 F _DELETE 25 F _EXIT
5 F_OPEN 26 F_ABORT
6 F _CLOSE 27 F_CANCEL
7 F _READ 28 F_WAIT
8 F _WRITE 29 F_STATUS
9 F _SPECIAL 30 F _RETURN
10 F_RENAME 31 F _EXCEPTION
11 F _DEFINE 32 F _ENABLE
12 F _DEVLOCK 33 F _DISABLE
13 F _INSTALL 34 F _SWIRET
14 F _LOCK 35 F_MALLOC
15 F _COPY 36 F _MFREE
16 F _ALTER 37 F _OVERLAY
17 F _XLAT 38 F_COMMAND
18 Reserved 39 F _CONTROL
19 F _KCTRL 40 Reserved
20 F _ORDER 41 F _SEEK

1.2.1 Calling Conventions

FlexOS Supervisor calls are made by invoking the FfexOS entry point.
The entry point takes two arguments and returns a value, as follows:

Arguments: a SVC 16-bit number
a parameter block pointer or value, 32-bit

Return: a 32-bit value

1-4

FlexOS Programmer's Guide 1.2 Supervisor Calls

See the processor-specific supplement for the actual entry mechanism
and registers used.

You can call FlexOS independent of a processor by calling the _osif
function supplied with the operating system. The _osif function has
two arguments: the SVC number (16 bits) and, depending on the SVC,
a 32-bit parameter block address or parameter value. The C language
definition of the _osif function is:

WORD
LONG
LONG

SVCno;
pa rm;
ret;

ret = __ osif(SVCno,parm);

The _osif function returns the return code in registers, according to
the convention of the language processor used to create the program.

You can also call FlexOS independent of the processor by using the
standard FlexOS SVC library supplied with the language processor
available for FlexOS. Each of these library functions builds a
parameter block for the corresponding SVC and calls FlexOS. This
high-level interface allows the description of FlexOS supervisor calls in
processor-independent and register convention independent methods.

1.2.2 Data Structure Representation

Throughout this manual, data structures are represented as shown in
Figure 1-1. Listing 1-1 contains the corresponding code representation.
Byte and word order are critical when using these structures.

1-5

1.2 Supervisor Calls FlexOS Programmer's Guide

0 1 2 3

0 byte1 I byte2 byte3 I byte4

4 word1 word2

8 long1

12 byte5 I byte6 word3

Figure 1-1. Data Structure Diagram

Listing 1-1. Data Structure Representation

STRUCT thisstruct
{

BYTE byte 1; I* byte offset 0 *I
BYTE byte2; I* byte offset 1 *I
BYTE byte3; I* byte offset 2 *I
BYTE byte4; I* byte off set 3 *I
WORD wordl; I* byte offset 4 *I
WORD word2; I* byte offset 6 *I
LONG l ongl; I* byte offset B *I
BYTE byte5; I* byte offset 12 *I
BYTE byte6; I* byte offset 13 *I
WORD word3; I* byte offset = 14 *I

) ; I* length = 16 *I

1.2.3 Synchronous and Asynchronous SVCs

All SVCs have a synchronous form. This means the call does not
return until the operating system completes the event--for example,
reads a record from the disk, writes a string to the console, or opens
a file. Some SVCs also have an asynchronous form. These calls
return a value ·immediately which uniquely identifies the event
requested. Program operation can then proceed independently of the
event.

Synchronous and asynchronous SVCs take the following forms:

1-6

FlexOS Programmer's Guide 1.2 Supervisor Calls

ret = s_funcname(parm 1,parm2, ... ,parmN);
emask = e_funcname(swi,parm 1,parm2, ... ,parmN);

SVC names starting with "s_" are synchronous SVCs. The ret value is
the completion code for the event.

SVC names starting with "e_" are asynchronous. The emask value is
the event mask which uniquely identifies the event. The completion
code for asynchronous calls is acquired with the RETURN SVC.

The contents of the parameter block block built from an SVC call are
different, depending on the SVC.

The individual parameters are always provided in the. form shown in
Figure 1-2. The largest parameter block is 28 bytes long.

0 2 3

0 mode T option I flags

4 software interrupt address

8 parm1 - id (fnum, pid, name, etc.)

12 parm2 - Buffer Address

16 parm3 - Buffer Size

20 parm4

24 parm5

Figure 1-2. SVC Parameter Block

The Supervisor checks the mode to determine if the SVC is
synchronous or asynchronous. A mode value of 0 indicates a
synchronous SVC; a mode value of 1 indicates an asynchronous SVC.
A parameter error is returned if the mode specified is not 0 or 1. The
option and flags values select options unique to each SVC.

1-7

1.2 Supervisor Calls FlexOS Programmer's Guide

The software interrupt address is a pointer to an optional software
interrupt routine available with asynchronous SVCs. FlexOS forces the
calling proce'ss to jump to this routine when the asynchronous event
completes.

The ID parameter uniquely identifies the object of the call. For
example, for a WRITE call the object is a disk file, console, printer, or
other peripheral device. The ID value in this case is a 32-bit file
number.

The buffer is used to store data for transfer to or from the object.
FlexOS checks the address and size values to ensure there are no
memory boundary violations.

Many fields are marked with a O (zero) in the individual SVC calls.
These fields must be set to zero to be compatible with future releases
of FlexOS. An error is returned if they are not zero.

1.2.4 Return Codes

The return code for synchronous and asynchronous SVCs is always a
LONG value (32 bits). A zero or positive value (high order bit is off)
indicates ~ successful operation. SVCs not returning any particular
value, SIJCh as a file number or a process ID, return a NULL (0) value to
indicate success. For synchronous SVCs, the return value is the
completion code. For asynchronous SVCs, the return value is the
event mask, not the results of the operation.

A negative return code (high order bit is on) for synchronous and
asynchronous SVCs indicates that an error occurred. The high order
word contains the module or device code and the low order word
contains the error type code. See Appendix B for the error code
descriptions. These codes also apply to the asynchronous call's
completion code.

1.2.5 Asynchronous Supervisor Calls

Asynchronous Supervisor calls allow a program to process multiple
events simultaneously. Table 1-4 lists the Supervisor calls with
asynchronous forms.

1-8

FlexOS Programmer's Guide 1.2 Supervisor Calls

SVC

Table 1-4. Asynchronous SVCs

Purpose

Read from a file.
Write to a file.
Lock/unlock an area of a disk file.
Wait for a time period to expire.
Create a process.
Perform a special device function.
Control a process with another process.
Wait for a process to terminate.
Wait for a mouse button state to occur.

READ*
WRITE*
LOCK
TIMER
COMMAND
SPECIAL
CONTROL
ABORT
SWAIT
RWAIT Wait for the mouse to enter or exit a region.

* You cannot read or write a disk file asynchronously. You can
only use asynchronous READ and WRITE on console files, pipes,
printers, and designated special devices.

Each process can have up to 31 on-going events; each identified by a
single bit set in the event mask. The event mask is relevant to the
following SVCs:

• WAIT to synchronize on one or more asynchronous events
• RETURN to acquire an event's completion code
• STATUS to indicate completed events
• CANCEL to cancel an event

FlexOS provides· two mechanisms sensitive to event completion. You
can suspend program execution until an event or one of several
events completes or you can execute the software interrupt routine
(swi) when the event completes.

Waiting on Events

Use the WAIT SVC to synchronize program operation on the
completion of an event.

1-9

1.2 Supervisor Calls FlexOS Programmer's Guide

The event or events to wait on are specified in the WAIT argument
and the call returns when any of the specified events completes. The
event completed is indicated in the return code. While the process is
waiting, it is removed from the dispatcher's ready list and minimizes
the CPU load.

To get the completion c9de for an asynchronous event, use the
RETURN SVC. RETURN use is limited to asynchronous events that do
not have a software interrupt (swi). (The completion code is passed to
the software interrupt and hence is not available to the process.) For
asynchronous events without a swi, use the WAIT return code as
RETURN's event mask. The event mask bit is not reset until RETURN
has been called.

The STATUS SVC is also useful to determine completed events.
STATUS places a heavy burden on the CPU and excessive use impacts
program performance. You specify the events you want considered in
STATUS's argument, and the call 'returns with the bit of all completed
events set.

Interrupting upon Event Completion

Each asynchronous SVC allows a pointer to a swi so program code
can be executed asynchronously when an event occurs. When the
event completes, FlexOS preserves the stack pointers and proceeds
with the swi.

Two values are passed to the swi, the completed event's mask and its
completion code. Both are LONG values. A swi has the following C
form:

swi_routine(emask,compcode);
LONG emask;/*mask of completed event*/
LONG compcode;/*event's completion code*/

/*interrupt routine*/

s_swiret(OL);/*swi exit call--return to main program*/

FlexOS clears the event mask when the swi is called; do not call
RETURN to reset the bit.

1-10

FlexOS Programmer's Guide 1.2 Supervisor Calls

You must use the SWIRET SVC to exit the swi. It gives you two
options: return to the program at the point of interruption or assume
the process identity froni the main program. For both options the
stack pointer is restored to its condition when the program was
interrupted. ·

When you have the swi assume the process identity, you can force a
return to the main program or not return at all. If you force the return
to the main program, the stack condition is unknown. Consider the use
of a routine that returns the stack to a known place and jump to this
routine from the swi.

When you have the swi assume the process identity, use EXIT to
terminate the process. Do not call EXIT until after you have called
SWIRET, however.

Note: The asynchronous form of ABORT is typically used as a
mechanism to preserve a process when it is user-aborted. For
example, consider a menu-driven program where the user enters a
control-C to abort a menu-selection. To trap the control-C and return
to a menu within the program rather than the operating system, you
wouid use the asynchronous ABORT and a swi to force the return to
the program. To abort the menu program entirely, the user would have
to enter two control-Cs.

To establish critical regions where a swi cannot interrupt program
execution, use the DISABLE SVC. No swi is executed while DISABLE is
active, however, FlexOS does log the completion of asynchronous
events during this time. Use the ENABLE SVC to end the DISABLE
mode. All event swis impeded while DISABLE was active are executed
after ENABLE is called.

1.3 File Specifications

A file is a logical construct applicable to the range of devices and
functional units managed by FlexOS. FlexOS uses files to store or
display information (disk files, pipes, console files, device files), get
data input (keyboard and device files), and control access (zero length
pipes).

1-11

1.3 File Specifications FlexOS Programmer's Guide

Every file is specified by a path. A path consists of the following
elements:

node::
device:
\
directory\·
filename

network node name
logical device name
root directory
subdirectory name
file name and extension

These elements are always entered in the following sequence:

node::device:\directory\ ... directory\filename

If you do not specify a node, device, or directory, the current d.isk
directory is assumed.

The node and device names can be one to eight alphanumeric
characters. A directory name can have one to eight alphanumeric
characters and always has the DIR extension. File names consist of a
one to eight alphanumeric character name and an optional one to
three alphanumeric character extension. You cannot have a NULL file
name. The complete specification cannot exceed 127 characte.rs.

Directories are distinguished from files in a path specification by either
backslash (\) or slash (/). FlexOS recognizes the following
abbreviations:

./ means ·the current directory

..! means the parent directory
II means the root directory of the specified device

Although ./, ../, and 11 are most useful at the user interface level, the
FlexOS logical name substitution means these abbreviations can also
be useful at the programmatic level as well. Note that // ignores
whatever directory specification preceded the 11 and specifies the root
directory on the specified device or, if no device was specified, the
default device.

Paths are also used to identify pipe files, console files, and devices.
The following are examples of path specifications.

1-12

FlexOS Programmer's Guide

remote disk file
disk file
pipe
virtual console

device
abbreviations

svr::hd:\dir\FILE.EXT
hd 1 :/mydir/file.typ
pi:mypipe
con 1 :vc002/console

mydevice:
m:a/b\././../x
m:a/b//c/d

1.3.1 Uppercase Versus Lowercase Names

1.3 File Specifications

full path
device, directory, and file

screen and keyboard for
virtual console #2

means m:a/x
means m:c/d

File names can consist of uppercase and/or lowercase characters.
Name matching is conducted according to the following rules. The
rules are summarized in Table 1-5.

• The Disk Resource Manager accepts two types of disk media,
uppercase media (default) and case sensitive media. You make
the selection in the disk label. All file names on uppercase media
are converted to uppercase. On case sensitive media, the Disk
Resource Manager either converts names to lowercase or leaves
them as is, depending on the force case flag in the SVC.

• Device names are always lowercase and are searched in force
lowercase mode. This way, an uppercase or lowercase name will
match a device name.

• The DEFINE SVC forces logical names to lowercase but leaves the
substitution string as is. All logical names are forced to
lowercase when the define tables are searched, but left as is if no
substitution occurs.

• Programs using FlexOS's SVCs can choose between force case or
not.

1-13

1.3. File Specifications FlexOS Programmer's Guide

Table 1-5. Rules for Forcing Name Case

Default Cases Forced
Device Case Supported Case

Disk Upper-only Upper-only Upper
Mixed lower

Pipe Mixed Mixed Lower

Console Lower-only lower-only Lower

Miscellaneous lower-only Lower-only Lower

1.3.2 Wildcards

Wildcard characters are available for use with the FlexOS LOOKUP SVC.
This supervisor call is a scanning tool that searches tables by type and
extracts items matching the name specification in the LOOKUP call.
Where there is a match, LOOKUP puts all or part of the table into a
buffer. The Table 1-6 lists the wildcard characters.

Wildcard

*
?
"

Table 1-6. Wildcards

Meaning

Matches any number of characters, 0 or more
Matches any single character
Finds riames that do not match the wildcard name

The * and ? characters can be freely intermixed with characters that
must be in the item names. The " must be the first character of the
wildcard name. The following examples illustrate the use of wildcard
characters.

1-14

FlexOS Programmer's Guide 1.3 File Specifications

Suppose the following set of names exists for a table type:

a ab abc bac bb be c

The following wildcard names would specify the indicated set:

* a,ab,abc,bac,bb,bc,c (all files)

*c abc,bac,bc,c (all files ending with c)

"*c a,ab,bb (all files not ending with c)

?b ab,bb (all files with a 2 character name ending with b)

a* a,ab,abc (all files starting with a)

b ab,abc,bac,bb,bc (all files with b anywhere)

? a,c (all files with a 1 character name)

?*b* ab,abc,bb (all files with b anywhere after 1 character)

*b? abc,bb,bc (all files with b. as next-to-last character)

You can have logical name translation with LOOKUP and use paths in
your LOOKUP name specification. In path specifications, wildcards can
only be used in the last element of path. The following examples
demonstrate valid and invalid uses of wildcards in LOOKUP name
specifications.

Specification
-·-~-------- -

hd:/81/GL *.*

pi:" mx\input

hd?:/

hd?:

!==~pl<:JDC1!lOr1

Valid: Returns the table for all files in directory B 1
on device hd: that begin with GL.

Invalid: The wildcard cannot be used if the file is
not at the end of the specification.

Invalid: The wildcard cannot be in the device name
if there are subsequent directory or file references.

Valid: Returns the table for all devices beginning
with hd.

1-15

1.3 File Specifications FlexOS Programmer's Guide

1.3.3 Reserved Names

Table 1-7 lists file names reserved by FlexOS. The BOOTINIT script
initially defines default: in the process logical name table and define!'
system: and boot: in the system logical name table.

Name

stdin

stdout

stderr .

stdcmd

prn:

default:

system:

boot:

Table 1-7. Reserved File Names

Definition

The standard input file.

The standard output file.

The standard error file.

Reserved for system use.

The system list (print spooler) device.

The process's current directory: FlexOS expands a NULL
path to the path associated with default:. A path
consisting of filename alone is expanded to begin with
default:.

The process's system directory: The system directory is
intended as the location to store shared program and data
files. FlexOS searches it after any unsuccessful attempt to
find a match in the default: directory when the path
specification consists of a file name alone. Files in the
system: directory must have the system attribute set to be
loaded in this manner.

The system boot directory: Device drivers are typically
located in the boot directory.

1.3.4 Logical Name Substitution

FlexOS contains a logical name preprocessor which allows paths to be
represented by a single logical name. FlexOS checks the first item in a
path specification against a logical name table and substitutes the

1-16

FlexOS Programmer's Guide 1.3 File Specifications

replacement string when a match is found. An item is defined as a
character string delimited by a NULL, space, tab, or colon. For example,
if you define home: to be the string

floppyl :dir1/dir2/

then the path specification home:datafile is expanded to:

floppy 1 :dir1/dir2/datafile

After the replacement string has been inserted into the original path
specification, FlexOS checks the first item again for a replacement
string. This loop continues until no replacement is found. The complete
file specification after all substitution has been performed cannot
exceed 127 characters.

If the file datafile in this example is a logical name, FlexOS does not
search for the replacement string because it is not the first item in the
path specification.

FlexOS maintains a single, system-wide logical name table--the
SYSDEF table--and separate logical name tables for each process--the
PROCDEF tables. FlexOS cross references the logical names in the
PROCDEF table first and then the SYSDEF table. You make changes to
both tables with the DEFINE SVC; however, only privileged users can
make changes to the SYSDEF table. You can assign logical names for
complete or partial paths.

When a process creates another process, the new process, called the
child, inherits a copy of its parent's loq1I process logical name· table.
Any changes the child process makes affect its table only. The parent's
table is not modified. This is how the logical names replacements for
the standard files are passed from parent to child processes.

1.4 File Access

FlexOS monitors file access for four types of privileges--read, write,
delete/set, and execute--and three types of users--owner, group, and
world. For disk files, access is monitored only when disk security is
enabled. (See the description of the disk label in Section 2.4.1 for the
description of disk security.) Before you can read from or write to a

1-17

1.4 File Access FlexOS Programmer's Guide

file, you must open it. In your open call, you select which privileges
(read and/or write) you require and specify an access mode. The
access privileges available to you depend upon your user and group ID
numbers.

When the open is successful, FlexOS returns a 32-bit file number. You
subsequently access the file by its number. FlexOS keeps all file
numbers in a global table of open files and uses them to dispatch
requests to the proper resource manager. The number is disassociated
from the file when you clo~e it.

1.4.1 Standard File Numbers

FlexOS reserves four file numbers for reference to the standard files.
Table 1-8 lists these file numbers by their reserved names.

Table 1-8. Standard File Numbers and Names

File Number Name Description

0 std in standard input file
1 std out standard output file
2 std err standard error file
3 overlay overlay file

Note: The overlay file is the command file from which the program
was loaded. This file is left open when an indication of overlays exists.

These numbers are not the actual file numbers of your standard input,
output, error, and overlay files. FlexOS translates these numbers into
the actual file numbers. The definition of the standard to actual file
numbers is made by the shell or window manager program. Should
you need the actual file number; you can get them from the ENVIRON
table.

The COMMAND SVC opens stdin, stdout, and stderr. These names are
inherited from the parent process which called the COMMAND SVC.
The standard input file is opened for read access in shared file pointer
mode; the standard output and the standard error files are opened for
write access in shared file pointer mode.

1-18

FlexOS Programmer's Guide 1.4 File Access

1.4.2 Access Privileges

There are four access privileges: read (R) allows the process to read
from the file; write (W) allows the process to write to the file; execute
(E) allows the process to run the program; and delete (D) allows the
process to delete the file and set values in the file's table.

Access privileges are assigned on a owner, group, and world basis
when the file is created. Which access privileges are available to a
given process is determined by comparing its user and group
identification numbers against the file creator's. At log in, FlexOS reads
the user's ID numbers from the USER.TAB file. The comparison is made
when the user attempts to open, execute, or delete the file. If both
numbers match (indicating the user is the file owner), FlexOS allows
the user the access privileges established for the owner. If there is a
match on the group ID only, FlexOS allows only the group-level access
privileges. If neither match or the user IDs match but the group IDs do
not, only world-level privileges are available. ·

User, group, and world categories are independent and do not have to
provide diminishing levels of access. For example, you can set the
world level to have complete rights over a fiie, whiie the group ievel
can only write to the file and the owner can only read the file. The
file owner and superuser can always change the attributes of the file,
regardless of the security word.

The privileges available for owner, group, or world access are kept in
the file's File Security Word. The File _Security Word is a 2-byte bit
map of the access privileges by level as shown in Figure 1-3. The
values are set in the CREATE call. Only disk and pipe files and
directories have a File Security Word. Console file access privileges
are determined by the mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

R W E D R W E D R W E D

-Reserved-. - WORLD__.. - GROUP__.. - OWNER--

Figure 1-3. File Security Word

1-19

1.4 File Access FlexOS Programmer's Guide

The execute and delete privileges are determined when the process
attempts to run or erase the file. You do not need to open the file for
either operation. You can, however, delete a file once it is open. The
delete is not performed until the last close is performed on the file.

You select the process's read and/or privileges in bits 2 and 3 in the
OPEN SVC's flags. If the privileges requested are available in the File
Security Word, the resource manager checks them against the file's
current access modes (see below). If the privilege is available given
existing modes, the file is opened and the file number returned.

When a requested privilege is not available, the OPEN succeeds or fails
depending on the value of the Reduced Access flag in the OPEN call.
The access level granted is derived by ANDing the privileges requested
with those in the File Security Word. For example, if the requested
OPEN access rights are RW and the File Security Word access rights
are ROE, then the reduced access right is R--the only common access
privilege. The resource manager determines if that privilege is
available given any current access modes before opening the file and
returning the file number. If none of the requested rights match, then
an access violation error code is returned and the file is not opened.

1.4.3 Access Modes

FlexOS provides a set of access modes which determine whether or
not and, if so, how open files are shared. These modes are selected in
the OPEN flags word and consist of the following:

• EX: exclusive access by calling process
• AR: allow reads by other processes
• ARW: allow reads and writes by other processes

The default mode is exclusive access, where the calling process
prevents any other process from sharing the file. Exclusive access to a
file is denied if another process has the file open.

If a process tries to open a file with write privilege and another file
has the file open in (AR) mode, then the new open is denied and an
error is returned.

ARW mode has two options: shared or unique file pointer. The shared
file pointer mode is only available to processes with the same family
ID, and all processes in the family must specify this mode.

1-20

FlexOS Programmer's Guide 1.4 File Access

For processes outside of the family, the file appears in exclusive mode.
There are no such restrictions when the unique file pointer option is
selected.

1.4.4 File Pointers

FlexOS supports both sequential and random access to pipes an·d disk
files. Sequential file access is supported by a file pointer. File reads
and writes increment the pointer so you need not constantly calculate
your position within the file. Random file access is supported through
the use of offsets in the READ and WRITE supervisor calls. The offset
can be specified relative to the file pointer, the beginning of the file, or
the end of the file.

The file pointer is initialized to 0 when you create or open the file.
Subsequent reads and writes move the file pointer to the byte position
of the next sequential location. For example, if a new file is created
and then 12 bytes are written, the file pointer would be pointing at the
13th byte (essentially the EOF marker).

Separate processes sharing access to the same file can share the
same file pointer or can have separate ones. File pointer sharing is
limited to processes with the same family identification number (FID).
When the pointer is shared, READ or WRITES by any process update
the file pointer. Use the SEEK SVC to determine the file pointer's
location. SEEK can also be used to set the pointer's location.

Random access on printer, console, and other serial files produces
results that are device dependent. Consequently, file pointers are not
maintained on these types of devices but rather assume an offset of 0
independent of the actual request.

1.5 Deleting Files·

Files are deleted by name with the DELETE SVC. Unless the disk
security has been enabled or the file has the read-only attribute, there
is nothing to prevent the calling process from erasing the file. A file
cannot be erased when it is set read-only. When file security is
enabled and the file has not been opened, the calling process must
have the delete privilege. If the process has the file opened, it must
have either write or delete privilege.

1-21

1.5 Deleting Files FlexOS Programmer's Guide

FlexOS does not immediately erase an open file when you try to delete
it. Instead, FlexOS returns success to the DELETE call but marks the
file as temporary. FlexOS leaves files marked temporary available until
the last close is performed. At this point, the file is deleted.

You can automatically delete files by setting one of two flags when
you create the file. One CREATE flag designates the file as temporary
or permanent. Temporary means the file is deleted after the last open
is closed; permanent means the file remains after the last close. The
other CREA TE flag deletes a file if it has the same name as the file
you are creating. (Alternatively, you can have CREATE return an error if
it finds a file with the same name.)

1.6 Basic Terms

Table 1-9 defines the special terms used in this manual.

Term

Buffer

Bufsiz

Table 1-9. FlexOS Operating System Terms

Meaning

Address of buffer: Many SVCs require buffers for either 1/0
or information. -Buffers must be within the logical address
range of the calling process. FlexOS checks the buffer
address and size to ensure legal buffers.

Size of buffer (in bytes): The size of the buffer sets the
SVC's limit. For instance, the buffer size indicates the
number of bytes to transfer in the WRITE SVC. The buffer
size is also used with the buffer address to catch illegal
buffer specifications.

Completion code
The return code of an asynchronous event.

1-22

FlexOS Programmer's Guide 1.6 Basic Terms

Term

Event

Event Mask

Flags

Fnum

Name

Table 1-9. (Continued)

Meaning

Asynchronous operation: When a process issues an
asyn_;hronous SVC, the requested activity is called an
event. For example, in an asynchronous write call to a
printer, the event is the output of the character or string.
Events can be successful or unsuccessful, the latter
indicating that the resource manager's or driver's error
recovery mechanism determined that the action could not
be completed. A process can have up to 31 ongoing·
events.

Asynchronous SVC return value: When you call an
asynchronous SVC, a 32-bit value is returned immediately.
If it is positive (the most significant bit is 0), the value is
the event mask for that event. If the value is negative, the
SVC could not be performed. The event mask is a unique
value in which one of bits 0 to 30 is set to designate the
event started. You use this value in subsequent calls to
check event status and to retrieve the event's completion
code.

The flags word in many SVCs offers options that are
enabled by setting a bit. Not all SVCs have flags. Bit 0 in
the SVC descriptions corresponds to the lowest order bit
and bit 15 the highest. All unused bits must be set to 0.

File number: SVCs that do 1/0 require a file numbe·r. You
get the file number from the OPEN and CREATE SVCs.

File specification address: File specifications are not
typically entered in an SVC. Instead, you enter the address
of a NULL terminated string containing the complete
specification. For all SVCs, the maximum length string is
128 bytes limiting you to a 127-byte file specification.

1-23

1.6 Basic Terms FlexOS Programmer's Guide

Term

OEM

Option

Table 1-9. (Continued)

Meaning

Original Equipment Manufacturer: In the context of this
manual, the OEM is the person or company who integrates
FlexOS with the computer or develops the interface to a
supplemental piece of hardware such as a plotter or
communications card.

SVC options: Several SVCs have, besides the flags, options
numbered from 1 to 255. Where options are available they
are shown in the SVC descriptions in Section 7. OEM
supplied SPECIAL calls may also have options not
documented in this manual. Select the option by entering
the corresponding value in your call or parameter block.

Privileged user

Process

1-24

A process with group and user numbers of 0. Group and
user numbers are established when FlexOS is loaded from
information in the USER.TAB file

Program entity: FlexOS provides a multitasking environment
in which multiple processes can execute program
instructions independently of each other. Processes are
uniquely identified by a process identification number and
are related to other processes through a family idenfication
number. A process is always in one of three states:

• running when it has the CPU
• ready when it could use the CPU if it had it
• blocked when it is waiting for an event to complete

FlexOS Programmer's Guide 1.6 Basic Terms

Table 1-9. (Continued)

Term Meaning

Return code
LONG value returned by a Supervisor call (SVC).

Superuser Synonymous term for a privileged user.

swi

Table

1.7 Tables

Software Interrupt Routine: Each asynchronous SVC allows
the optional use of a software interrupt routine (swi) that
functions similarly to a hardware interrupt routine. When
the asynchronous SVC completes its operation, the calling
process is interrupted and control passes to the swi. When
the swi is finished, it either returns control back to the
main process where the main process was interrupted or
becomes the main process. It is not necessary to have a
swi specified to execute an SVC asynchronously.

FlexOS data structure: FlexOS provides information about
itself in structures known as Tables. You can examine
these tables and in many cases control process
environments by setting values in the tables. FlexOS also
provides an SVC for scanning and retrieving portions of
tables. Table 1-10 lists the FlexOS tables.

You can monitor most aspects of FlexOS operation through its tables.
Use the GET and LOOKUP SVCs to retrieve the information and the
SET SVC to modify those table fields that are read/write. Tables are
assembled by the supervisor when you make the call; they are not
maintained in system memory. Section 8 contains detailed information
about FlexOS tables. Table 1-10 lists the tables.

1-25

1.7 Tables FlexOS Programmer's Guide

Table 1-10. FlexOS Tables

Table Name

Supervisor/Kernel
PROCESS
ENVIRON
TIMEDATE
MEMORY
SYSTEM
FILNUM

Pipe

Disk

SYS DEF
PROCDEF
CMDENV
DEVICE
PATHNAME

PIPE

DISK
DISKFILE

Console
PCONSOLE
VCONSOLE
CONSOLE
MOUSE

Miscellaneous Device
PRINTER
PORT
SPE.CIAL

1-26

Contents

Process information
Process environment information
System time and date
System memory information
Global system information
Table information for a given file number
System level defined names
Process level defined names
Command line entry
Information on devices
Fully-expanded path for given logical name

Pipe information

Disk device information
Disk file information

Physical console information
Virtual console information
Screen and keyboard information
Mouse information

Printer device information
Port device information
Special device information

FlexOS Programmer's Guide 1.8 FlexOS Functional Components

1.8 FlexOS Functional Components

The computer system software can be grouped into three categories.
Figure 1-4 illustrates the three categories and their relationship to
each other.

Program System

Resource
Managers

Physical

Drivers

Utilities ~~~D-is_k~~~~~~~D-is_k_s~~

Applications Console

Supervisor

She ii Misc

Window
Manager Pipe

Figure 1-4. Computer System Software Categories

The categories are defined as follows:

Keyboard
Screen

"O. P -:-!rt
I/ 0 s I

• Program: This group includes the applications run by users to
perform tasks and various system management utilities.
Background programs which control the user interface such as the
shell and window manager also fall into this category.

1-27

1.8 FlexOS Functional Components FlexOS Programmer's Guide

• System: This group provides the file system services, process
scheduling, and data flow mediation. Programs use these services
on a system call basis. The supervisor receives the functions and
sends them to the appropriate resource manager for servicing.

• Physical: The physical functional unit contains the device-specific
code, called device drivers. The physical functional unit varies for
each computer system. This unit translates the generic SVCs
from the resource managers into the device-specific routine for
execution.

These divisions illustrate FlexOS's two interfaces: the program-to
system interface and the system-to-physical interface. This manual
describes how to call the Supervisor and what you get in return. Refer
to the f!~~Q~-~Y~!~l]l __ i!!!t~~ for detailed information on how the
system functional unit relates to the physical functional unit.

1.8.1 The Supervisor and Resource Managers

The Supervisor receives SVCs from the program units and sends them
to the appropriate resource manager. File numbering is another of the
Supervisor's duties. Every time you open a file or device or create a
file, the Supervisor returns the file number. You use this number to
access the file, and the Supervisor uses it to send the call to the
proper resource manager.

The resource managers control the access to the physical devices and
pipes. Table 1-11 lists the resource managers and summarizes their
tasks.

1-28

FlexOS Programmer's Guide 1.8 FlexOS Functional Components

Resource
Manager

Disk

Console

Pipe

Misc

1.8.2 Kernel

Table 1-11. Resource Managers

Task

Manages the disk file system for disk drives.

Manages physical and virtual consoles.

Manages interprocess communications through FIFO
(first-in-first-out) memory files called pipes.

Manages all devices not managed by the other resource
managers.

Not shown in Figure 1-4 is the FlexOS kernel. This proprietary module
is responsible for aii process management tasks. This includes process
creation, state maintenance, and dispatching. The kernel also manages
process context switching and scheduling and memory allocation.

Process scheduling is performed on a priority basis. Priority is
established at program invocation by a number in the range of 0 to
255 (see the COMMAND description in Section 7). 200 is the
recommended priority for user processes. Higher numbers have a
lower priority; lower numbers have a higher priority. Processes with
the same priority are scheduled on a round-robin basis.

End of Section 1

1-29

SECTION 2

Disk File Management

This section describes FlexOS's disk file management tools and the
fundamental concepts involved in dealing with files. Table 2-1 lists
the SVCs available for disk device, directory, and file management.

Table 2-1. Disk Resourc.e Manager

Disk Disk Disk
SVC Device Directory File

CLOSE y Y* y
CREATE y y y
DELETE y y y
DEVLOCK y N N
GET y y y

LOCK N N y
LOOKUP y y y

OPEN y Y* y
READ y N y

RENAME N y y
SEI y y y
SEEK N N y
SPECIAL y N N
WRITE y N y

* You open and close a directory file to get and set its DISKFILE
table only; you do not open it to read from or write to it.

2-1

2. 1 File Access FlexOS Programmer's Guide

2.1 File Access

Access to files is initiated using the OPEN or CREATE SVC. Use OPEN
to open an existing file; use CREATE to make and open a new file.
Both calls require you to specify a file name; both return a 32-bit file
number. You use the file number for all subsequent file operations.
The CLOSE SVC disassociates the file number from the file. Use the
DELETE SVC to remove files.

Files can be accessed in a byte-oriented manner. Any record in a disk
file can be accessed at random. The file system maintains a byte level
end-of-file on disk files.

2.2 Disk File Attributes

Each file in FlexOS has attributes that control access and define
characteristics. The attributes are initially establishe_d by setting the
ATTRIB word in the DISKFILE tables. Any user with the delete/set
access privilege can change the ATTRIB word. The Disk Resource
Manager records this value in the file's directory entry. Table 2-2 lists
the attributes.

Attribute

Read-only

Hidden

2-2

Table 2-2. FlexOS Disk File Attributes

Meaning

The Read-only attribute overrides the access rights that
are User/Group based. A process cannot delete or write
to a Read Only file even if it has write and delete
privileges for the file.

Files with the Hidden Attribute ON are not shown in a
directory listing unless you use a special option.

FlexOS Programmer's Guide 2.2 Disk File Attributes

Attribute

System

Archive

Table 2-2. (Continued)

Meaning

Files in the system: directory can be opened indirectly
when the System attribute is ON. Indirectly mea·ns,
"from another directory." On each open, if a filename is
given without device or directory specification, the Disk
Resource Manager first searches the default: directory.
If the file is not found, the system: directory is searched
If the file is found and the System attribute is ON, the
file is opened. Files with the System Attribute ON are
not included in a directory listing unless you explicitly
ask to see them (see LOOKUP in Section 7).

If the Archive Attribute is OFF, the file has been archived
since it was created or last modified. It is automatically
turned ON if the file is modified. Programs performing
backup functions can turn this attribute OFF to perform
incremental backups.

2.3 Disk Media

FlexOS disk media have the following characteristics:

Disk label

File security

File record size

A root directory entry containing the label name,
user and group number of the label's creator, and
mode flags. The mode flags determine if disk
security is enabled and whether uppercase and
lowercase or just uppercase file names are
supported.

A four-byte field in the file's directory entry
containing the creator's user and group number and
the two-byte File Security Word. Both are set when
the file is created.

A two-byte field in the file's directory entry
indicating its record size. A record size of zero is
equivalent to a record size of one byte.

2-3

2.3 Disk Media FlexOS Programmer's Guide

The File Security Word and record size are set when the file is created
and the disk label is initialized to 0. The label and its options are set
in the DISK table.

2.4 Disk File and Directory Security

File and directory access is controlled by four factors:

• The security enable flag value in the disk label.
• The user and group ID of the calling process.
• The owner, group, and world access privileges available.
• The access privileges requested in the OPEN call.

The read-only attribute supersedes the access privileges. An error will
be returned if you attempt to write to, set DISKFILE values of, or delete
a file with the read-only attribute return.

2.4.1 Disk Label

The disk label is created when you set the LAMODE and LABEL fields
in the DISK table for the first time. The Disk Resource Manager
completes the remainder of the DISK table's label fields by adding the
label maker's user and group IDs and setting the LAFLAG.
Subsequently, only that user or a superuser can change the label. You
cannot remove a label after it is created. You can set all fields to
NULL.

File security is not enabled on a disk without a label. Once the label
is ·established, you enable and disable disk security by setting and
resetting LAMOOE bit 0. When file security is disabled, all processes
have full (R,W,E,O) access to all files on the disk. When file security is
enabled, all users except the superuser are monitored for read, write,
execute, and delete privilege according to their user and group ID.
The superuser always has full (R,W,E,D) access to files; regardless of
the File Security Word contents.

The disk label also determines if the drive supports uppercase only or
uppercase and/or lowercase file names.

2-4

FlexOS Programmer's Guide 2.4 Disk File and Directory Security

2.4.2 User/group IDs and Available Access Privileges

Before a file is opened, FlexOS grants all processes the minimum
access privileges. This lets the process lookup the file's DISKFILE
table. To execute, read from, write to, or set the file's attributes, a
process must have the corresponding privilege. FlexOS qualifies a
process for read or write privilege when the process attempts to open
the file. Execute and delete privilege are determined when the process
attempts to run and delete the file, respectively.

To determine the access privileges available to a process, FlexOS
compares the process's user and group ID against the file creator's
user and group ID. This indicates whether the process falls into the
owner, group, or world category. The privileges set in the file's File
Security Word for that category are the only ones available to the
calling process.

The _privileges given to the calling process are dependent on three
other factors: the comparison of the privileges requested to those
available, whether or not the file has the read-only attribute, and any
current access modes. FlexOS compares the privilege requested
against those specified in the File Security Word. If there is a match,
FlexOS then determines if the file is read-only. Finally, FlexOS checks
the file to see if it is open and, if so, the access mode is set. Some
access modes--for example, write exclusive mode--prevent all other
processes from using the file. Other access modes--for example, read
exclusive--let other processes open the file but only for the purpose
of reading.

FlexOS opens the file and returns the file number, executes the
program, or deletes the file when the requested privileges are
available. The function is not performed if the privileges requested do
not match those available or are not available given the current access
mode. Processes can acquire reduced access by setting the
corresponding flag bit in the OPEN call.

2.4.3 Directory Versus File Access Privileges

The user and group mechanisms used to qualify users for access to
files are also used for directory security. However, access privileges
to directories have a slightly different meaning than they do for files.
Table 2-3 compares the two meanings. Directory security, like file
security, is only enabled when the corresponding LAMODE bit is set.

2-5

2.4 Disk File and Directory Security FlexOS Programmer's Guide

Table 2-3. Privilege Definitions for Files and Directories

Security
Privilege

Read (R)

Write (W)

Execute (E)

Delete/Set (D)

File

Allows reading
from a file

Directory

Allows LOOKUP
operations on files
in the directory

Allows writing to a Allows file creation
file plus the privileges and deletion
listed for delete/set

Allows a file
to be executed

Allows renaming,
changing file
attributes, or
deleting files

Allows opening of files
in the directory

Allows changing
attributes of
files in directory

2.4.4 Access Rules and Restrictions

Read-only file attribute overrides file access privileges set in the File
Security Word. The following list describes other access restrictions
for files and directories. Recall that the rules only apply when disk
security is enabled.

• To access any file you need execute access in each directory
specified in the pathname of the file.

• To LOOKUP files you must have read access to the last named
directory in the path. No access is needed of the files
themselves.

• The GET SVC requires only a file number; you do not need any
access privilege to a file's DISKFILE table.

2-6

FlexOS Programmer's Guide 2.4 Disk File and Directory Security

• The SET SVC requires write access to the directory the file is in,
as well as delete or write access to the file itself. The file must
be successfully opened with delete access before SET can be
called. A file owner cannot use SET to change file attributes
without write access to the directory. After obtaining write
access to a file's directory, the owner can always obtain delete
access to a file, even if is set to R/O.

• The DELETE and RENAME SVCs require write access in the
directory as well as delete or write access for the file. No
exception is made for the owner of the file.

• The COMMAND and OVERLAY SVCs require execute access to the
file being loaded. Read access in not required.

• The CONTROL SVC requires both execute and read access to load
a file for debugging.

• The READ SVC requires read access to the file.

• The WRITE SVC requires write access to the file.

2.5 Disk File Access Modes

The FlexOS disk file system divides open modes and the privileges
allowed with each mode into three categories.

1. All exclusive opens, with the exception of read/exclusive (R/EX)
reserve the file for the exclusive use of the calling process.

2. (R/EX) opens are treated as read/allowed shared read (R/AR)
opens in order to allow the shared open of read/only files by
multiple processes.

3. Shared read/write opens do not restrict file access by other
processes. You can restrict record access with the LOCK SVC.

The first category applies to other processes only. Previous open
modes set by a process do not delimit its subsequent open modes
options. Thus, a process with a file opened in read/write exclusive
mode can open the file again and in any other mode. However, the
exclusive mode is in force until that open is closed.

2-7

2.6 Disk File Access Modes FlexOS Programmer's Guide

2.6 Direct Disk Access

There are two ways to access the disk directly:

• with the READ and WRITE SVCs
• with the SPECIAL SVC disk functions

Both methods require you to open the disk drive before access is
provided. Use the OPEN SVC for this purpose using the device name
to select the drive and the OPEN flags to select the access privileges
and acGess mode. FlexOS returns the file number number you use in
your READ, WRITE and SPECIAL calls. Disk security measures are
provided to restrict access.

2.6.1 Disk Device READ and WRITE

Using the READ and WRITE SVCs requires the process to have read
and write privilege and the drive to be installed to allow raw reads and
writes. In your calls, the Disk Resource Manager translates the offset
specified into a logical record number. (lhe disk is treated as a serial
sequence of records starting with the first head, cylinder, and sector
and ending at the last sector, cylinder, and head.) The buffer size you
specify must be a multiple of the .sector size and all operations must
be performed on sector boundaries. The information transferred is the
data portion of the sector only; the sector header is not included.

2.6.2 SPECIAL Disk Functions

The SPECIAL disk functions provide the disk format capabilility and
direct access to any sector of the disk, including the system area,
using the file system's head, cylinder, and sector identification scheme.
Table 2-4 summarizes the SPECIAL functions and the access modes
required to use them.

Note: We cannot guarantee the compatibility of the SPECIAL disk
functions with future releases of Digital Research® operating systems.

2-8

FlexOS Programmer's Guide 2.6 Direct Disk Access

Function

Table 2-4. SPECIAL Disk Functions

Description

Read the system area of the disk
Write to the system area of a disk
Format the system area of a disk
Format a track of the disk
Check the media for change or errors
Flush buffer contents to the disk
Read physical record by head, sector, track
Write physical record by head, sector, track
Set drive's Media Descriptor Block (MOB)

1 Must open in at least shared read-only mode.
2 Must open in exclusive mode.

2.6.3 Disk Drive Open Modes

Disk device access is subject to the current access modes. You
specify the mode you require along with the READ and/or WRITE
privilege in your device OPEN call. FlexOS compares the request
against the privileges available, any modes in affect. and, when
write/exclusive mode is requested, the presence of open files by other
processes. Three open modes are supported for direct disk access:

• GET-only
• Shared read-only (AR)
• Exclusive (EX)

The GET-only mode starts when you open the drive without
requesting any access privileges or modes. Use this mode to make a
connection to the device. This connection allows you to use GET to
retrieve the drive's DISK table and DEVLOCK to lock the device. This
type of open has no effect on disk usage by other processes until
DEVLOCK is initiated.

The shared read-only mode allows the calling process to have read,
write, and set access. Other processes are limited to read access with
the SPECIAL read functions, with the READ SVC, and through the disk
file system. Use DEVLOCK to restrict disk access further.

2-9

2.6 Direct Disk Access FlexOS Programmer's Guide

The exclusive mode precludes all access attempts by other processes.
The calling process can declare read, write, and/or set access. FlexOS
does not grant exclusive mode while there are open files or existing
DEVLOCKs on the drive. While the disk is open, no file system
operations can be performed. All the SPECIAL . disk functions
supported by a device driver can be accessed in this mode if the
calling process has obtained the required access level. This is the
only mode that lets you set the disk label.

NOTE: Superusers get full read, write, and delete access to a disk for
any mode, DEVLOCK status, or INSTALL option.

2.6.4 Disk Security INSTALL Options

Disk security is established in two places: Options selected when the
disk driver is installed and the options set in the disk label. See 2.4.1
above for the description of the disk label.

The installation options offered in the INSTALL SVC follow:

• Removable or Permanent Device
• Device raw reads allowed
• Device raw writes allowed
• Device set allowed
• DEVLOCKs allowed

The device read, write, and set options control the level of direct
access to the disk supported by the device driver. Disk security
cannot be guaranteed if the disk driver allows raw reads rnd/or writes.
When a disk is opened as a device, the read, write, and set options

. determine the allowed access level.

The DEVLOCK option determines whether processes can use the
DEVLOCK SVC to lock the drive. The DEVLOCK SVC allows a process
to lock a disk for its exclusive use or the exclusive use of processes in
the same family. Superusers can use the DEVLOCK SVC regardless of
this· option.

End of Section 2

2-10

SECTION 3

Console Management

This section describes how to perform console 1/0 under FlexOS. The
presentation has four parts:

• The first part describes general characteristics of the console
system and introduces the supervisor calls and tables used to
manage it. Also described are the FRAME and RECT data
structures and the console file naming conventions.

• The second part describes how to use the WRITE, ALTER, COPY,
and READ SVCs to control the screen and keyboard.

• The third part describes how to monitor console input from the
keyboard and pointing device with the READ, XLAT, RWAIT, and
BWAIT SVCs.

e The fourth part describes use of the CREA TE, OPEN, KCTRL, GIVE,
ORDER, SET, and GET SVCs to create and manage virtual consoles
and windows.

The 8-bit and 16-bit character sets referenced in this section are
described in Appendix A. For the list of the country codes mentioned
below, see Appendix C.

3.1 Console File System

A console under FlexOS consists of a keyboard and screen and
optionally a pointing device. For convenience, the term mouse is used
to refer to all kinds of pointing devices.

3-1

3.1 Console File System FlexOS Programmer's Guide

The Console Resource Manager controls console 1/0 on a file-oriented
basis. A single file can represent the keyboard and screen or you can
have separate files. With a single file, read and write access are
independent so that keyboard and screen access privileges and modes
can be different. Separate files are used to monitor mouse input and
to represent window borders.

Other Console Resource Manager features are: 8-bit and 16-bit
character modes (individually selectable for keyboard and screen),
escape sequence decoding, keystroke translation, and multiple
international character sets. All features are turned on or off with the
SET SVC.

FLexOS maintains each physical console independently of other
consoles on the system, so different features and options can be
selected for each console. The same independence applies to virtual
consoles.

The COMMAND or CREATE SVCs open the standard files stdin (file
number 0), stdout {file number 1), and stderr (file number 2). The files
are opened in shared file pointer mode so all processes in the family
have console access. (See Section 5 for the explanation of process
families.) The definitions for these logical names are inherited from
the parent process. The Supervisor always translates file numbers 0,
1, and 2 to the actual file numbers.

For applications invoked from the shell, the standard files should
represent the keyboard and screen. However, these files might be
defined to be other than console files through redirection. Get the
FILNUM table for files 0, 1, and 2 to determine the type of device each
references.

3.1.1 Console-Related SVCs

The console-related SVCs provide two types of services: console file
1/0 and virtual console management. The first type are the SVCs you
use in applications and utilities to control the screen and gather user
input. Use the second type in window management programs and
applications to create and control virtual console displays. Table 3-1
lists the console-related SVCs by type.

3-2

FlexOS Programmer's Guide 3.1 Console File System

Table 3-1. Console-Related Supervisor Calls

SVC

Console File 1/0

ALTER
COPY
READ
WRITE
XLAT
SWAIT
RWAIT

Purpose

Modify a RECT (rectangle)
Copy a RECT from one FRAME to another
Read from a console file
Write to a console file
Translate keyboard input
Wait for mouse button state change
Wait for mouse to enter or exit a RECT

Virtual Console Management

CLOSE
CREATE
DELETE
DEFINE
GET
GIVE
KCTRL
LOOKUP
OPEN
ORDER
SET

Close a console file
Create a virtual console file
Delete a virtual console file
Set process's stdin, stdout, and stderr files
Get a table
Transfer physical keyboard and mouse ownership
Obtain physical keyboard and mouse ownership
Scan virtual console tables
Open a virtual console file
Change order of virtual consoles
Change table contents

3.1.2 Console-Related Tables

The Console Resource Manager also maintains tables for each
physical, logical, and virtual console and mouse so applications can
determine their console environment and, to the extent allowed,
change it. Table 3-2 li_sts the tables associated with console
management and indicates the console characteristics maintained in
that table. Complete descriptions of the tables and their contents are
provided in Section 8.

3-3

3.1 Console File System FlexOS Programmer's Guide

Table 3-2. Console-Related Tables

Table Name Information

CONSOLE Number of characters in keyboard's type-ahead buffer
Screen and keyboard modes

ENVIRON

PROCESS

VCONSOLE

PC ON SOLE

3-4

Cursor position
Number of character rows and columns
Virtual console number
Console type
Physical console name

Current stdin, stdout. and stderr file numbers

Process's DEFINEd physical console number
Process's virtual console number

Window mode
Virtual console number
Console type
View origin reference point on virtual console
Total character rows and columns in window
Window position reference point on parent console
Total rows and columns in virtual console
Top, bottom, left, and right border sizes

Physical device name and identification number
Current number of virtual consoles
Number of pixel and/or character rows and columns
Console type
FRAME planes supported
Attribute and extension plane bit maps
Country code
Number of function keys
Number of mouse buttons
Mouse serial number

FlexOS Programmer's Guide 3.1 Console File System

Table 3-2. (Continued)

Table Name Information

Current mouse form position
Keystate of Alt. Control and Shift keys
Current state of moµse button
Mickeys/pixel sensitivity of rows and columns
Click interval time period
Height and width of mouse form
Position of mouse form hotspot
Mask to mask effect of DAT A rectangle
DATA rectangle to "BLT" to screen

3.1.3 Console Screen Model and Data Structures

The screen is represented by a three-dimensional data structure called
a FRAME. The FRAME's height and width are defined in terms of
character columns and rovJs. Each intersection of a rovv and column
defines a FRAME character cell. A cell is always one byte. Figure 3-1
illustrates the FRAME model

The FRAME's depth is defined in terms of planes, each with the same
dimensions as the FRAME. There are three planes: character, attribute,
and extension. Each plane consists of either a two-dimensional byte
array or a single byte used by the Console Resource Manager to set
all plane bytes.

3-5

3.1 Console File System FlexOS Programmer's Guide

0 ncol-1

RECT {

Plane O - Characters

FRAME

Plane 1 - Attributes

Plane 2 - Extension

Figure 3-1. FRAME Planes with RECT

Plane Descriptions

The FRAME planes are defined as follows:

• Character Plane (plane 0): Each byte corresponds to a text
character space on the screen. The 8-bit character set used in
this plane is defined on a per country basis.

• Attribute Plane (plane 1): Each byte defines the foreground color,
background color, and color intensity and contains a blink flag for
the corresponding character cell. The attribute plane byte is used
as shown in Figure 3-2.

3-6

FlexOS Programmer's Guide 3.1 Console File System

'---------.Foreground Color

----------Intensity

-------------1~ Background Color
----------------Blink

Figure 3-2. Attribute Plane Byte Format

• The three bits in the foreground and background color fields are
assigned as follows:

low bit: blue
middle bit: green
high bit: red

Table 3-3 lists the colors corresponding to each 3-bit value in the
lefthand column. The righthand column shows the foreground
color resulting when the intensity bit is set.

Table 3-3. Foreground and Background Colors by Byte Value

Foreground and
Background Colors

0 - black
1 - blue
2 - green
3 - cyan
4 - red
5 - magenta
6 - brown
7 - light gray

Foreground Color with
Intensity Bit Set

8 - dark gray
9 - light blue

10 - light green
11 - light cyan
12 - light red
13 - light magenta
14 - yellow
15 - white

3-7

3.1 Console File System FlexOS Programmer's Guide

Set bit 7 to have the character blink. This feature is not available
if the hardware does not support it.

• Extension Plane (plane 2): An OEM-implemented option that

3-8

provides support for 2-byte characters. Each extension-plane
byte is formatted as shown in Figure 3-3.

Bit: 7 6 5 4 3 2 1 0

.__ ___ Cell Type

~----1 Cell Number

~----- Reserved

---------- OEM Extension

Figure 3-3. Extension Plane Byte Format

The Cell Type bit is 1 when characters are two cells long. Single
cell characters are indicated by a 0 in this bit.

The Cell Number bit indicates if the corresponding character plane
cell is the first or second cell of a two-cell character. If the value
is 0, the cell is the first part of the character; if it's a 1, the cell is
the second part. This bit is always 0 for single-cell characters.

The OEM Extension field is implementation-dependent and defines
alternate character sets. The Console Resource Manager assumes
the standard character set when this field is 0.

FlexOS Programmer's Guide

FRAME C Structure

The FRAME's C structure is as follows.
memory model.

struct FRAME

BYTE *character,*attribute,*extension;
/*Pointers to planes*/

WORD nrow,ncol;

3.1 Console File System

Figure 3-4 illustrates this

/*Number of character rows and colunms*/
WORD use;

/*Plane bit map*/

0 1 2 3

0 CHARACTER

4 ATIRIBUTE

8 EXTENSION

12 NROW NCOL

16 USE

18 = size in bytes

Figure 3-4. FRAME Data Structure Diagram

3-9

3.1 Console File System FlexOS Programmer's Guide

The FRAME fields are defined as follows:

• character: Address of FRAME's character plane

• attribute: Address of FRAME's attribute plane

• extension: Address of FRAME's extension plane

• nrow: Number of character rows in the FRAME

• ncol: Number of character columns in the FRAME

• use: A bit map indicating plane characteristics as follows:

Bit 0: 1 - character pointer addresses a two-dimensional array
0 - character pointer addresses a single byte

Bit 1: 1 - attribute pointer addresses a two-dimensional array
0 - attribute pointer addresses a single byte

Bit 2: 1 - extension pointer addresses a two-dimensional array
0 - extension pointer addresses a single byte

The FRAME's use field indicates if the plane consists of a complete
two-dimensional array or a single byte. When the plane's bit value is
0, the Console Resource Manager applies the single byte's value to all
bytes in the plane. Otherwise, the full array must be specified.

A FRAME is defined as either a screen FRAME or a memory FRAME.
The screen FRAME is the console screen representation contained in
the console file. You use the ALTER, COPY, or WRITE SVC to modify
the screen FRAME, and modifications are immediately reflected on-.
screen. The memory FRAME is a data structure you create in the
application's memory space and hence is not limited to modification
by ALTER, COPY, and WRITE alone. Changes made to the memory
FRAME are not reflected on-screen until they are COPYed to the
screen FRAME.

Screen FRAME dimensions are indicated by the NROW and NCOL
values in the CONSOLE table (see Figure 3-6). There are no restrictions
except physical memory restraints limiting the size of a memory
FRAME.

3-10

FlexOS Programmer's Guide 3.1 Console File System

RECT C Structure

The RECT data structure defines a rectangular region of a FRAME. The
point of reference is the FRAME coordinates of the region's upper
lefthand corner. The region's width and height are specified within the
data structure in terms of character rows and columns. The SVCs
using the RECT structure specify which FRAME planes are included in
the RECT Figure 3-5 shows the RECT data structure diagram. The
corresponding C structure is as follows:

struct RECT

I*
WORD row,col ,nrow.ncol;

Top left corner FRAME coordinates
and RECT width and height*/

o
4
11--~~~-R_o_w~~~~-+-~-"-~~c_o_L~~~~~

NROW NCOL

Figure 3-5. RECT Structure

The RECT fields are defined as follows:

• row: The row coordinate relative to the FRAME of the rectangle's
upper lefthand corner

• col: The column coordinate relative to the FRAME of the
rectangle's upper lefthand corner

• nrow: The number of rows (height) in the rectangle

• ncol: The number of columns (width) in the rectangle

3-11

32 Controlling the Console FlexOS Programmer's Guide

3.2 Controlling the Console

Console attributes such as screen and keyboard modes, cursor
location, and the number of character rows and columns are contained
in the CONSOLE table. You manage the console screen on a FRAME
basis with the ALTER and COPY SVCs and on a character basis with
the WRITE SVC.

3.2.1 Console Attributes

The CONSOLE table is your reference source for information regarding
console attributes and conditions. Figure 3-6 illustrates the CONSOLE
table data structure. To get or set your process's CONSOLE table, use
0 or 1 or the stdin and stdout file numbers from the ENVIRON table as
the GET or SET ID value

0 2 3

0 TAHEAD SMODE

4 KMODE CUR ROW

8 CURCOL NROWS

12 NCO LS VCNUM l TYPE

16
CNAME

20

24

Figure 3-6. CONSOLE Table

3-12

FlexOS Programmer's Guide 3.2 Controlling the Console

SMODE and KMODE set the screen and keyboard modes, respectively.
CURROW and CURCOL indicate the current cursor location. These
values are initialized to 0 when the console is created. Set the mode
options to select 8-bit or 16-bit characters, escape sequence
decoding, and other features. Set CURROW and CURCOL .to change the
cursor position. The remainder of the parameters are read-only; their
values determined by the physical console characteristics or
established when the corresponding virtual console was created.

3.2.2 Manipulating the Screen

There are three ways to manipulate the console display: use ALTER to
change a screen region, use COPY to copy one screen region to
another, or WRITE to send a character, character string, or escape
sequence. ALTER and COPY are also useful for character and string
output, however, they cannot be used when console output is
redirected to non-console devices.

Note: The window border files vcxxx/top, /bottom, /left, and /right are
a ·special class of console file--only COPY and ALTER can be used to
manipulate their contents. See 3.4 for the description of the border
files.

Using ALTER and COPY

ALTER and COPY work on RECT structures to modify a FRAME. The
FRAME can be a memory or a screen FRAME. The RECT can specify a
FRAME region from single cell up to the entire FRAME itself. The
ALTER form is as follows:

ret = s_alter(flags,fnum,dframe,drect,alterb);

Use ALTER's flags to select the character, attribute, and/or extension
plane. To modify the screen FRAME, specify the console file number
in the fnum field and set the dframe value to zero. To modify a
memory frame, set the fnum value to zero and put the FRAME address
in the dframe field. (Although 0 is the file number of the stdin file, the
Console Resource Manager ignores the file reference.)

ALTER modifies the plane according to the two bytes in corresponding
planes alterb argument. Alterb is an array of six bytes that determines
the alteration of the destination frame.

3-13

3.2 Controlling the Console FlexOS Programmer's Guide

By~es 0, 2, and 4 in alterb are ANDed with each cell in, respectively,
the character, attribute, and extension planes. Bytes 1, 3, and 5 are
XORed with each cell in the same three planes.

COPY copies the contents of one rectangle to another. As with ALTER,
each plane is individually selectable in the flag word. Source and
destination RECT structures can be on the same or different FRAMES
and when on the same FRAME can overlap. The COPY form is as
follows: ·

ret = s_copy(flags,fnum,dframe,drect,sframe,srect);

You distinguish memory from screen FRAMEs using specific
combinations of fnum, sframe, and dframe. To specify the screen
FRAME as the destination FRAME, put the console file number in the
fnum field and set the dframe pointer to zero. To specify the screen
FRAME as the source, set the sframe pointer to zero and specify the
file number. To copy from one memory FRAME to another use a fnum
value of 0 and enter the dframe and sframe addresses.

The source rectangle is described by the RECT at the srect address
and the destination region by the RECT at the drect address.
Rectangles do not have to be the same size. COPY clips the rectangles
so that the region modified corresponds to the intersection of the
srect and drect. Figure 3-7 illustrates how the excess is trimmed.

Region
Modified

3-14

Source
Rectangle

Destination
Rectangle

Source
Rectangle

Destination
Rectangle and
only region

~~r.+--f--modified

Figure 3-7. Examples of RECT Clipping

FlexOS Programmer's Guide 3.2 Controlling the Cdnsole

Using WRITE

The WRITE SVC sends the contents of the buffer to the console file
specified by fnum. Use WRITE to send 8-bit escape sequences, 16-bit
characters, and character strings to the console file. Each character
output is placed at the current cursor position and the cursor position
is updated. The screen scrolls automatically when the bottom line is
reached.

The synchronous and asynchronous WRITE forms are as follows:

nbytes = s_write(flags,fnum,buffer,bufsiz,offset);
emask = e_write(swi,flags,fnum,buffer,bufsiz,offset);

The bufsiz value indicates how many bytes long the buffer is, not the
number of characters in it. This is important when outputting 16-bit
characters. Similarly, WRITE's return value (nbytes above) indicates the
number of bytes, not characters, written. SMODE bit 1 determines if
the Console Resource Manager outputs 8- or 16-bit characters.

Use an offset of zero when writing to a console file. Specify the offset
relative to the end of file to accommodate redirection to non-console
files. The flags and option values must be 0 for console writes.

The character string can contain displayable and non-displayable
characters. The latter consist of 8-bit escape sequences, ASCII control
sequences, and 16-bit character codes. Appendix A lists and describes
the character sets and escape sequences supported by the Console
Resource Manager.

3.3 Getting Console Input

Applications get console input from two sources: the keyboard and. if
present, a mouse. The keyboard is accessed by reading stdin. The
mouse is represented by a separate file. Mouse ·movement is
automatically relayed to the screen without reading the mouse file.
You use the mouse file to wait for a button state change--the BWAIT
SVC--or for mouse form movement into or out of a RECT--the RWAIT
SVC. The SET and GET SVCs are used to define the mouse form and
determine its location.

3-15

3.3 Getting Console Input FlexOS Programmer's Guide

3.3.1 Reading the Keyboard

There are two words in the CONSOLE table relevant to keyboard input:
TAHEAD and KMODE. TAHEAD indicates how many characters are
waiting in the type-ahead buffer. The KMODE word provides a variety
of options including keystroke translation, character echo, 8-bit or 16-
bit characters, and escape sequence decoding among others.

The READ SVC gets the characters from the console file's keyboard
buffer and puts them in the buffer specified. READ might return fewer
characters than requested; your program should be written
accordingly. The READ forms are shown below. There are two
synchronous forms: one for undelimited reads and one that allows
delimiters to specify an end of string.

nbytes = s_read(f lags,fnum,buffer,bufsiz,offset);
nbytes = s_rdelim(flags,fnum,buffer,bufsiz,offset,delimiters);
emask = e_read(swi ,flags,fnum,buffer,bufsiz,offset);

Use an offset of 0 in your read calls and make it relative to the file
pointer to accommodate redirection to a non-console file. The bufsiz
specifies the end of the read event in terms of bytes read. Get the
CONSOLE table's TAHEAD value to find out the number of characters
waiting to be picked up from the keyboard buffer.

Delimi_ters let you set up conditions for terminating the read before the
buffer is full and editing the character string. Set flag bit 1 to select a
delimited read and bit 5 to use the editing characters. Use the READ
return value to find the number of bytes read. Delimiters cannot be
used with the asynchronous READ and you are limited to a READ
buffer size of 256 bytes on delimited reads.

The delimiter specification is an address of a WORD array with two
components. The first word is a number indicating the number of
delimiters that follow. The remaining words are the delimiters
themselves. Set the high order byte in each delimiter to 0 when the
keyboard is in 8-bit mode.

The Console Resource Manager provides the line-editing characters
listed in Table 3-4 when READ flag bit 5 is set. You can change these
definitions with the XLAT SVC.

3-16

FlexOS Programmer's Guide 3.3 Getting Console Input

Character

Table 3-4. Line-Editing Characters

Action

Moves cursor one character to the left
Moves cursor one character to the right
Deletes next character
Deletes previous character

LEFT ARROW
RIGHT ARROW
DELETE
BACKSPACE
CTRL-B
CTRL-X

Toggles cursor between beginning and end of line
Erases from cursor to beginning of line

The Console Resource Manager compares each character read with
each delimiting and editing character. READ returns with the number of
bytes read when the buffer is filled or one of the delimiters is
encountered. Use flag bit to select whether the delimiter is included in
or excluded from the character string. When character echo is on
(KMODE bit 5), the cursor is positioned at the beginning of the line just
edited after a delimited read

3.3.2 Monitoring the Mouse

Note: This discussion assumes that the mouse device was installed in
the CONFIG.SYS configuration script. If it is not, your application can
use the INSTALL SVC given the following conditions:

• The application must know the drive location and file name of the
loadable mouse driver program.

• The application must have a user and group number of 0.

The INSTALL SVC is described in Section 7.

Mouse information and status is maintained in the MOUSE table.
Figure 3-8 illustrates this data structure.

3-17

3.3 Getting Console Input .FlexOS Programmer's Guide

0

4

8

12

16

20

52

84

0 1 2 3

ROW COL

KEYSTATE I RESERVED BUTTONS

PIXROW PIXCOL

CLICK HEIGHT I WIDTH

HOTROW HOTCOL

MASK (16 words)

DATA (16 words)

Figure 3-8. MOUSE Table

The PCONSOLE table also includes information on the mouse. See
offset 1 BH for the number of mouse buttons and offset 1 CH for the
mouse serial number. The mouse can have up to 16 buttons.

Mouse movement is automatically read from the device and shown on
the screen by the mouse driver. Get the ROW and COL values from the
MOUSE table to determine the mouse location; set these values to
move the form independently of device input. The HOTROW and
HOTCOL values set the hotspot--the point of reference within the
mouse form. You can set these and all other MOUSE table values
except the PIXROW and PIXCOL

3-18

FlexOS Programmer's Guide 3.3 Getting Console Input

Opening the Mouse File

The mouse is opened by calling OPEN. In your OPEN call you specify
the mouse name, the access privileges required, and the access mode.
The mouse name is vcxxx/mouse where xxx is a decimal number
indicating the current virtual console number. Get the virtual console
number from the VCNUM field in your standard input file's CONSOLE
table. (Call GET with an ID value of 0 to retrieve stdin's CONSOLE
table.) For example, if the VCNUM value is 3, your mouse name would
be vc003/mouse.

In your OPEN call, specify at least read access privilege. If you need to
set the MOUSE table, request set access as well. For the access mode
specify exclusive mode unless mouse access will be shared by
multiple processes. In this case, specify shared, shared file pointer
mode. Access is restricted to processes with the same family ID.

Your application should close the mouse file when you are done,
otherwise you cannot close or delete the virtual console. CLOSE flag
bit 0 has no meaning with respect to the mouse and is ignored.

Using BWAIT

Use the SWAIT SVC to monitor button state changes. SWAIT counts
the number of times a specified mouse button condition occurs within
a given time period. A button condition is defined by two criteria:
buttons and their ON or OFF state.

The BWAIT form is as follows:

ret = s_bwait(cl icks,fnum,mask,state);
emask = e_bwait(swi,clicks,fnum,mask,state);

The fnum value is the file number returned when you OPEN the
vcxxx/mouse file. The mask and state parameters are 32-bit values
which define the mouse button condition.

You select buttons for the mask value by their position on the mouse.
The rightmost button is represented by the least significant bit in the
mask; the next button to the left is represented by the next bit, and so
forth. To select the button, set its corresponding mask bit.

3-19

3.3 Getting Console Input FlexOS Programmer's Guide

You define whether the button selected is to be ON or OFF in the
state value. The Console Resource Manager looks only at the state bits
corresponding to the buttons selected in the mask. Set the bit for ON.

As an example of the use of the mask and state fields, consider a
two-button mouse. You can have the following button conditions:

1. The right button is pressed (ON) without concern for the state of
any other buttons: mask = 1, state = 1.

2. The right button is pressed while the left button is not: mask = 3,
state = 1.

3. The left button is pressed while the right button is not: mask = 3,
state = 2.

4. The left button is pressed without concern for the state of any
other buttons: mask = 2, state = 2.

5. Both buttons are pressed simultaneously: mask = 3, state = 3.

Use the clicks value to delimit the event by a specific number of
incidences of the specified button condition. Any number of clicks can
be specified, including 0. Use a click value of 0 to determine the
mouse's current condition. BWAIT returns with a value of 0 when you
specify 0 clicks and the mouse is in the condition defined in the mask
and state.

BWAIT counts button conditions for a limited time period--the CLICK
time limit specified in the MOUSE table. If the time period expires
before the BWAIT click count is reached, the event terminates. The
Console Resource Manager starts the timer upon the first incidence of
the condition. Consequently, the count returned is always at least one
except as described above.

Using RWAIT

RWAIT establishes an event boundary for the mouse. RWAIT returns
with the row and column coordinates of the mouse's hotspot when it
crosses the boundary. The RWAIT form is as follows:

position s rwait(flags,fnum,region); -
ernask = e_rwait(swi ,flags,fnum,region);

3-20

FlexOS Programmer's Guide 3.3 Getting Console Input

Set RWAIT flag bit 0 to clip the region to the current window borders.
Otherwise, the region can include areas not visible on the parent
screen. Flag bit 1 determines if the event occurs when the form exits
or enters the region. The other flag bits are not used.

The region is a RECT structure confined to the calling process's virtual
console's FRAME. The position value returned is 32-bits where the
high order word indicates the row and the low order word the column.

3.4 Managing Virtual Consoles

For applications with multiple processes sharing access to the console
and keyboard, it is often necessary or convenient to have a separate
virtual console for each process. The key to these applications is a
process--the window manager--which creates the virtual consoles,
sets each window's size and position, and passes keyboard and mouse
access from one process to another according to a planned transfer
scheme. (These are basically the same functions as the FlexOS window
manager supplied with the operating system.)

The window manager flow chart would include the following FlexOS
functions; the SVCs used appear in parentheses.

1. Create a virtual console (CREATE).
2. Get the virtual console number (GET).
3. Set the virtual console's window size and location (SET).
4. Assign the console file to stdin, stdout. and stderr (DEFINE).
5. Define conditions under which keyboard and mouse ownership is

returned (KCTRL and/or MCTRL).
6. Invoke shell or application that will use screen (asynchronous

COMMAND).
7. Give keyboard and mouse ownership to the new virtual console

(GIVE).
8. Read from your keyboard buffer (READ).
9. Reorder the virtual consoles to put the selected one on top

(ORDER).

Steps 1 through 5 are rep·eated to create each virtual console. You
have a numerical limit of 255 virtual consoles.

3-21

3.4 Managing Virtual Consoles FlexOS Programmer's Guide

3.4.1 Creating the Virtual Consoles and Windows

To create a virtual console, you must specify the console screen on
which it is to appear. This is called the parent screen. The virtual
console created is referred to as a child console. Child consoles
created on the same parent screen are referred to as sibling consoles.
There are four rules of: virtual console management based on these
relationships:

• A child console always overlays its parent.

• Sibling consoles are "stacked" on the parent in the order of their
creation until reordered by ORDER.

• The ORDER SVC only reorders a "stack" of sibling virtual consoles
and cannot be used to put a parent on top of a child.

• An application always has access to its entire console regardless
of its virtual console's position in the stack and the size of its
window.

Figure 3-9 illustrates the parent, child, and sibling console
relationships and the three rules. As shown in this figure, you can
have multiple tiers of virtual consoles. As you change tiers, the
parent/child relationships change. All virtual consoles on a given level
are siblings.

3-22

FlexOS Programmer's Guide 3.4 Managing Virtual Consoles

/
Parent VC001

I

Children I VC004 I
\

lvcoosl

vc 000

VC002 VC003

Figure 3-9. Virtual Console Relationships

Parent

Children

Creating a virtual console requires write access to the parent console.
The form of the CREATE SVC is:

fnum = s_vccreate(flags,fnum.rows,columns,top,bottom,left,rightl;

The flag bits select virtual console characteristics as follows:

• Whether the console and border are character- or bit-mapped

• Whether or not the parent's screen dimensions are used.

• Whether or not to keep the parent console contents in memory
while the child console exists.

• Whether the virtual console is temporary (delete on last CLOSE) or
permanent (delete only with. DELETE).

For the fnum value, use the file number of the parent screen.

3-23

3.4 Managing Virtual Consoles FlexOS Programmer's Guide

You specify the virtual console's dimensions in the rows and columns
parameters. These become the ROWS and COLS values in the
VCONSOLE table. The virtual console size is independent of the parent
console's dimensions; you can, for example, create a virtual console
larger than its parent. The top, bottom, left, and right parameters
define window borders and are described in below.

CREATE returns the file number of your new virtual console file and
automatically opens the file. Use this value as the ID number in your
GET and SET calls to retrieve and modify the VCONSOLE table.

Virtual Console File Naming

The Console Resource Manager automatically names virtual consoles
when you CREATE them. The name consists of the letters vc followed
by 'a three digit decimal number corresponding to the VCNUM value
from the virtual console's VCONSOLE table. For example, if the VCNUM
is 10, the virtual console name is vcO 10.

A virtual console is composed of separate files representing the
console (keyboard and screen), mouse, and window borders. Table 3-5
lists the names reserved for these files.

Table 3-5.

File Name

device: vcxxx/console
vcxxx/left
vcxxx/right
vcxxx/bottom
vcxxx/top
vcxxx/mouse

Virtual Console File Names

Description

Keyboard and/or screen file
Left border of window file
Right border of window file
Bottom border of window file
Top border of window file
Mouse file

xxx = VCNUM, zero-padded left

Use the vcxxx/console file in your DEFINE call to assign the stdin,
stdout, and stderr files to the virtual console's console file.

3-24

FlexOS Programmer's Guide 3.4 Managing Virtual Consoles

Be sure to define the files before you call COMMAND so that the files
are automatically opened. The remainder of the files must be opened
explicitly by the process before you can use them.

Windows

The term window refers to the view of the virtual console. When you
create a virtual console, the window dimensions are initialized to 0
making the window a point with no height or width.

You set window dimensions in the VCONSOLE table's NROW and NCOL
parameters. Set the VIEWROW and VIEWCOL parameters to position the
window on the virtual console screen. Finally, set the POSROW and
POSCOL parameters to position the window on the parent console's
screen. Figure 3-10 illustrates these parameters.

0,0 0,47

Parent Console I /l~~J
a '

24 23,7---- '' '' 0,0 . r-::-=-----1 ';D 3 Child Console
I I 32 t
I ', I b -...C

~~~~~'__._....._ '..---~~~~~~~--. 

'-...,so -,,~ 

Child Console ' 17 ·32 

',',, ~ ,,t__u 
a) POSROW and POSCOL 
b) VIEW ROW and VIEWCOL 
c) NROW and NCOL 

120 

Figure 3-10. Virtual Console Characteristics 

48 

3-25 



3.4 Managing Virtual Consoles FlexOS Programmer's Guide 

The VCONSOLE flag bit 1 gives you the option to have the window 
view adjust automatically to keep the cursor on-screen or remain fixed 
on a specific portion of the screen. Other flags determine how and 
when the view changes with respect to the cursor and freeze the 
window borders so you can make comprehensive changes to the 
border files without intermediate states appearing. 

The window borders are contained in the vcxxx/top, /bottom, /left, and 
/right files. The Console Resource Manager creates these files when 
you specify top, bottom, left, and/or right parameters in your CREATE 
call. The top and bottom values set the height of the /top and /bottom 
border files only; the length is determined by the VCONSOLE table's 
NCOL value. The CREATE left and right values set the width of the /left 
and /right files; the height is set by the VCONSOLE NROW value. 

3.4.2 Keyboard and Mouse Ownership 

Keyboard and mouse ownership are always passed as a unit and only 
one virtual console can have ownership at a time. The window 
manager controls keyboard/mouse access by passing ownership to 
another virtual console with the GIVE SVC and specifying the 
conditions for its return with KCTRL or MCTRL. The conditions 
specified in KCTRL are keys or ranges of keys. With MCTRL, you 
specify a rectangle as the condition. 

The KCTRL keys and MCTRL rectangles typically serve two purposes. 
First, they indicate that the user wants to change windows. Second, 
they indicate the user's choice of virtual consoles. When the user 
enters one of the specified window-control keys, that key and all 
subsequent keystrokes.· are sent to the parent virtual console's 
keyboard buffer. If there's a mouse keyboard entries a significant key 
is pressed or the mouse leaves the rectangle, the key and all 
subsequent keystrokes are sent to the window manager's keyboard 
buffer and mouse movement is updated in the window manager's 
MOUSE table. Use the information to determine which window to put 
on top with your ORDER call. 

3-26 



FlexOS Programmer's Guide 3.4 Managing Virtual Consoles 

3.4.3 Deleting a Virtual Console 

The virtual console's window remains on the parent screen until the 
file is closed or overlayed by a sibling virtual console. A partial CLOSE 
flushes the keyboard's type ahead buffer and, if the echo option 
(CONSOLE table KMODE bit 5) is selected, writes the buffer contents to 
the screen. A full CLOSE closes the file but leaves its contents intact 
unless it is the last close on a temporary console. In this case. the 
virtual console and all temporary files are deleted. 

The Console Resource Manager only lets you delete a virtual console 
if it has no open /console, /mouse, /top, /bottom, /left, and /right files. 
Neither can you delete a virtual console with child consoles. If you try, 
an error message is returned. You can set CREATE flag bit 8 so that 
the virtual console is automatically deleted when the last of its virtual 
consoles is closed. Otherwise, use the DELETE SVC to remove the 
virtual console. 

3.5 FlexOS Window Manager 

WMEX, the window manager program provided with FlexOS, lets the 
user create, delete and switch virtual consoles. It also creates a 
message window you can use to interrupt the user and notify him or 
her that something has happened. You write to a reserved pipe to 
activate the window. When you write to this pipe, the message 
window overlays the current virtual console. You specify in your 
WRITE call to the pipe if a response is necessary. 

To use the message window, you must open the file "wmessage." 
WMEX defines this file name to the message window's input pipe and 
waits for a message to appear there. In your OPEN call, specify the 
write privilege and the shared mode. 

WMEX requires the display message to be preceded by a header. 
When you write to the pipe, format the contents of your WRITE buffer 
as follows: 

3-27 



3.5 FlexOS Window Manager FlexOS Programmer's Guide 

UWORD 
LONG 
BOOLEAN 

UBYTE 

UBYTE 

msgsiz 
pid 
rspflg 

rspname[10] 

message 

The total length of the message 
The writing process's process ID 
When true, indicates that a user 
response is expected; when false, 
no user response is allowed 
Name of the pipe in which WMEX 
should put the user's response 
(only necessary when rsplfg true) 
The message to be displayed 

The message itself can be 10 lines long. Each line must be terminated 
by a carriage return and line feed. The message is displayed as is. 

If no response to the message is required, set the rspflg byte to false. 
The user enters a carriage return to remove the message window. If 
you want a response, set rspflg to true and give WMEX the pipe name 
to write the message to. 

The response message is limited to one line in length and WMEX 
requires the user to enter a carriage return to terminate it The 
carriage return is included in the string written to the pipe. If the 
message can be variable length, use the delimited READ call and 
specify the carriage return as the delimiter, WMEX removes the 
message window when the user enters the carriage return. 

End of Section 3 

3-28 



SECTION 4 

Pipe Management 

For two or more processes to communicate, a type of file known as a 
pipe is supported through a special device known as pi:. A file created 
on this device establishes a buffer used for the deposit and withdrawal 
of messages. Conceptually, pipe files have two ends, one to write into 
and the other to read from. Messages are deposited and withdrawn 
on a first in first out basis. Besides the pipe length, there is no limit to 
the number of messages you can store in a pipe at one time. 

This section describes pipe management in the FlexOS operating 
system. Table 4-1 lists the pertinent SVCs. 

Table 4-1. 

SVC 

CLOSE 
CREATE 
DELETE 
GET 
LOOKUP 
OPEN 
READ 
SEEK 
WRITE 

You cannot rename a pipe. 

Pipe-related Supervisor Calls 

Purpose 

Close a pipe 
Create and open a pipe 
Remove a pipe 
Retrieve a pipe table 
Scan and retrieve pipe tables 
Open a pipe 
Read from a pipe 
Set or retrieve file pointer 
Write to a pipe 

In all calls requiring a pipe name, you must precede the pipe name 
with the pi: device name or define a logical name that includes the pi: 
reference. Otherwise, the default: device is assumed. 

4-1 



4. 1 Creating and Deleting Pipes FlexOS Programmer's Guide 

4.1 Creating and Deleting Pipes 

Use the CREATE SVC to make a pipe. The CREATE parameters are used 
as follows: 

• Set the flags to request read, write, or delete privileges and the 
access mode. The privileges have the same meaning for pipes as 
they do for disk files. See 4.2 for the use of access modes with 
pipes. Flag bits 7 and 9 are meaningless with reference to pipes 
and are ignored. 

• Put the address of your pipe name in the name field. The name 
itself is limited to eight alphanumeric characters. 

• Set the record-size parameter to regulate the message blocks. 
For example, if a record size of four is specified, all pipe 1/0 is 
conducted in 4-byte blocks. 

• Use the File Security Word to set the owner, group, and world 
access privileges. 

• Set the size to the pipe buffer length. The size is independent of 
the message length but must be a multiple of the record-size. 

The Pipe Resource Manager maintains a directory of all existing pipes. 
Each directory entry includes the pipe creator's user and group IDs 
and the File Security Word. The resource manager also makes a PIPE 
table for each pipe. PIPE table contents indicate the values set by the 
CREATE pipe call. Use LOOKUP and GET SVCs to retrieve PIPE tables. 
No special access privilege is required to lookup PIPE tables. However, 
you must have opened the PIPE to get its table. None of the values in 
the PIPE table can be set. 

Use the DELETE SVC to remove a pipe. A CREATE option can be 
selected that automatically deletes a pipe on last close. If the pipe is 
being used solely to communicate between two or more processes for 
the life of the processes, the pipe is deleted automatically from the 
system when the processes terminate. This is because files are 
automatically closed on EXIT or ABORT. 

4-2 



FlexOS Programmer's Guide 4.2 Pipe Access 

4.2 Pipe Access 

Processes must open the pipe before they can read from or write to it. 
When the OPEN call is made, the Pipe Resource Manager compares the 
user and group IDs of the calling process with those in the pipe's 
directory entry. This determines whether owner, group, or world 
access privileges are available. If both user and group IDs match, 
owner privileges are available; if only group match, group privileges 
are available. If there's no match, only world privileges are available. 

The OPEN call succeeds when the access privileges requested either 
match or do not exceed the privileges available for the calling 
process's access level. If more privileges are requested, the OPEN 
succeeds or fails depending on the value of the OPEN call's reduced 
access flag. When this flag is set, the privileges granted are derived by 
ANDing the requested privileges with those available. Should none of 
the privileges match, the OPEN fails. 

Pipe access privileges are also affected by existing access modes. The 
following rules govern the privileges available: 

• A process's open access is never restricted by an open 
connection previously made by the same process. 

• The read and write ends of a pipe are considered separate with 
respect to open restrictions. For example, an exclusive read open 
does not restrict a process from opening a pipe as shared write. 

• Any exclusive open prevents other access requests to the same 
end. 

· • A shared open prevents other exclusive access requests but 
allows other shared requests to the same end. 

• A shared file pointer request restricts pipe access to processes 
with the same family ID. All processes sharing the pipe must 
select the shared file pointer mode; a process that requests a 
different mode is denied access. For processes outside the family, 
the request functions as an exclusive request. 

A pipe acts differently depending on whether an end is opened 
exclusive or shared mode. If one end of a pipe is opened in exclusive 
mode and then closed, a read or write attempt on the other end 

4-3 



4.2 Pipe Access FlexOS Programmer's Guide 

results in an end-of-file (EOF) error. This is independent of how the 
other end was opened. If one end of a pipe has either never been 
opened, is currently opened, or the last open was in shared mode, the 
process accessing data through the opposite end waits until the 
operation is complete. 

If one end of a pipe file is opened in shared mode and subsequently 
closed, FlexOS treats the file as if it were still open on the other end. 
Therefore, any process accessing it waits until the operation is 
complete. Note the distinction between shared mode and shared file 
pointer mode. 

A pipe opened in shared file pointer mode is shared only by those 
processes with the same family ID (FID). After a pipe end opened in 
shared file pointer mode is closed by all of the processes, processes 
accessing the other end will receive an end of file error. This tells a 
process that the process on the other end of the pipe has either 
closed the file or terminated. 

The use. of modes to restrict access is consistent with spooler-type 
applications. For example, consider a spooler process which creates a 
pipe reserving for itself exclusive access to the read end. The write 
end is available for shared access by any process. Figure 4-1 
illustrates this configuration. 

Spooler 

Request 

Despooler 

Request~ 
-......._I ~~~~~-P-i-pe~~~~--.t--~~ 

Request// 
Shared 

Request Write 

When no opens, 
despooler waits 

Figure 4-1. 

Exclusive 
Read 

When closed, requesters 
get EOF error 

Spooler Pipe 



FlexOS Programmer's Guide 4.2 Pipe Access 

Processes open and close the write end when they are sending files to 
the spooler. After the write end is closed, the despooler waits until the 
write end is opened by another process. 

If the spooler closes the read end, processes attempting to write to 
the other end get an end of file error. This indicates to the writing 
process that there is no process at the other end that will read its file. 

4.3 Interprocess Communication 

Use the READ SVC to get data from the buffer and the WRITE SVC to 
put data in the buffer. The READ and WRITE flags and parameters are 
used in the same manner for pipes as they are for disk files and the 
file pointer is maintained. As many processes can participate in the 
exchange as you want. 

The amount of data written to and read from the pipe can be 
independent of the pipe size. The following procedures are observed 
when the amount exceeds the size 

• On writes, the process waits when the pipe is full for another 
process to read data from the other end. The event completes 
when the reading process removes enough to compensate for the 
difference. 

• On reads, the process waits when the pipe has been drained for 
another process to write data to the other end. The event 
completes when enough data has been written to compensate for 
the difference. 

Pipes are often used to join two or more programs so one program's 
output becomes the input of another. To do this, a parent process 
would perform the following steps. The SVCs called are in parenthesis. 

4-5 



4.3 Interprocess Communication FlexOS Programmer's Guide 

1. Create a pipe (CREATE). 

2. Redefine stdin to be the name of the pipe (DEFINE). 

3. Create the receiving process (COMMAND). The child inherits the 
parent's PROCOEF table, including the stdin prefix. 

4. Reset stdin back to the original name (DEFINE) 

5. Redefines stdout to the pipe name (DEFINE). 

6. Create the source process (COMMAND). This child inherits the 
redefined stdout but, unlike the receiving child, has the original 
stdin. 

When the two processes terminate, the parent process closes the pipe. 
If the parent terminates before the children, the pipe is automatically 
removed when the children terminate. 

4.4 Synchronization and Exclusion 

The Pipe Resource Manager lets you create pipes with a zero-length 
buffer size (.bufsiz) for use as a simple semaphore. For semaphore 
pipes, a READ operation obtains the pipe and a WRITE releases it. If 
another process has obtained the pipe previously, the calling process 
waits until a WRITE to that pipe has been performed. WRITE 
operations, on the other hand, never wait; if the pipe was released 
previously, the call returns without error. 

The process creating the semaphore pipe automatically owns it from 
the start. Although the Pipe Resource Manager keeps a record of who 
read the pipe, a WRITE by any process releases it. The process _ID is 
maintained for two other reasons: First, so that a process can call 
multiple READs on a pipe it already owns and second, so the Pipe 
Resource manager can release pipes owned by a process that has 
terminated. 

--l-6 



FlexOS Programmer's Guide 4.4 Synchronization and Exclusion 

Use a semaphore pipe to regulate access to a resource not managed 
by the operating system. Any time a process wants to use the 
resource, it reads the pipe. If the pipe is already owned by another 
process, the calling process waits until another process releases it 
with WRITE. Upon return from the READ, the process is free to use 
the resource. Upon completion. the process writes to the pipe which 
releases the resource for other processes to use. 

4.5 Nondestructive READ 

The information stored in a pipe can be previewed using the READ 
SVC by setting flag bit 2. This allows a pipe to be used as a common 
data area among multiple applications. It also allows an application to 
preread a length field or message type field within a message and 
then read the complete message at a later time. 

Note: Nondestructive reads can be dangerous if there are multiple 
readers of a pipe. It is the responsibility of the application to handle 
synchronization of pipe usage when there are multiple processes 
involved. 

End of Section 4 

4-7 





SECTION 5 

Process Management 

This section describes process creation, memory management, and 
process deletion. Table 5-1 lists the SVCs associated with these 
tasks. 

SVC 

ABORT 
COMMAND 
CONTROL 
ENABLE 
EXCEPTION 
EXiT 
DISABLE 
MALLOC 
MFR EE 
SWIRET 
TIMER 
OVERLAY 

Table 5-1. Process-related SVCs 

Purpose 

Terminate a process or wait for a process to terminate 
Create a process 
Run a process under the control of another process 
Enable software interrupts 
Trap error conditions and jump to service routine 
Terminate a process with return code 
Disable software interrupts 
Add memory to heap 
Release memory from heap 
Return from a software interrupt 
Delay process for specified time period 
Load overlay from a command file 

The presentation belows describes how to use the ABORT, COMMAND, 
MALLOC, and MFREE SVCs. See Section 7 for the descriptions of the 
other SVCs listed in Table 5-1. 

Three supervisor tables are pertinent to process management: the 
CMDENV, ENVIRON and PROCESS tables. 

5-1 



5.1 Process Relationships FlexOS Programmer's Guide 

• CMDENV contains the command file specification and command 
tail from the process's spawning COMMAND call. 

• ENVIRON contains the process's stdin, stdout, stderr, and overlay 
file numbers; user and group numbers; and identification numbers. 
A process's ENVIRON table contents are inherited from its 
parent's. 

• PROCESS contains the process's identification number, user and 
group ids, name, current state, parent ID number, virtual console 
number, and memory allocation. Some PROCESS table values are 
set with the COMMAND SVC and while others are set by the 
Supervisor. 

5.1 Process Relationships 

A process executes program instructions independently of other 
processes. A process is constrained by a process environment 
maintained by the operating system. Environment characteristics 
include the process's logical address space (memory), CPU state and 
stack condition, user and group ID, and parent process. FlexOS uses 
these characteristics to manage the proces and protect it from other 
processes. 

Processes are identified by a unique 32-bit process identification 
number--PID--and a name. The PIO is assigned by the kernel when 
the process is created and remains assigned to the process until it 
terminates. The Supervisor splits running time for FlexOS processes on 
a priority basis. The recommended priority for user processes is 200. 
Processes with the same priority are allocated running time on a 
round-robin basis. 

Besides the process ID, processes are also distinguished by a process 
family identification number--FID. When one process creates another, 
they keep the same FID unless you request a new number. Within a 
family, a process that creates another process is called the parent; the 
process created is called the child. Typically, the FID is used to 
distinguish processes running under different shells. That is, the shell 
is the head of the family. 

5-2 



FlexOS Programmer's Guide 5.2 Running a Program 

5.2 Running a Program 

Running a program has two steps: 

• Loading an executable program file from disk into memory 
• Assigning a process to execute the instructions 

You use the COMMAND SVC to perform both steps. The process 
calling COMMAND must have the execute access privilege to the file. 

Note: At the driver level, you can also use the PCREATE function to 
create a process. See the flexO~ System Guide for an explanation of 
PCREATE. 

The COMMAND SVC searches the disk for the command file specified, 
open.s it, and loads it into memory. Running a program does not 
require the creation of a new process. COMMAND gives you the 
following options. 

• Run the program as an independent (child) process: This option 
creates a new process ID for the program. Child processes get 
their own memory allocation and execute F!exOS!y with the other 
process. 

• Run the program as a procedure: This option runs the program 
as a subroutine of the calling process; no new process ID is 
assigned. The calling process's memory allocation is 
supplemented by the new program's specification. When a 
procedure program exits, control is returned to the next 
executable statement in the parent process. You must use the 
synchronous form of COMMAND to use this option. 

• Chain the program to the current program: This option runs the 
program as a subroutine within the context of the calling proce~s; 
no new process ID is assigned nor memory allocated. However, 
the process never returns to the previous program. The chained 
program's memory requirements overlay the process's existing 
allocation. When the chained program exits, the process 
terminates. You must use the synchronous form of. COMMAND to 
use this option. 

5-3 



5.2 Running a Program FlexOS Programmer's Guide 

When you call the synchronous form of COMMAND, the call does not 
return until the program exits or the process is aborted. When you use 
the asynchronous form of COMMAND, the event mask is returned and 
the child's process ID is recorded at the &pid address you specify in 
your COMMAND call. The event completes when the child process 
terminafes. 

Unless externally aborted, a process executes the program instructions 
up to and including the EXIT call. When the Supervisor receives the 
EXIT call, it closes all open files belonging to the process and cancels 
any outstanding events. This completes the COMMAND event. For the 
first and third COMMAND options described above, the process ID is 
then released along with the process's memory; for the second option, 
the process returns to the next instruction in the previous program. 

5.3 Process Termination 

The synchronous form of ABORT SVC terminates the process specified. 
This terminates the COMMAND .event; all files belonging to the process 
are closed, outstanding events cancelled, and memory released. 

The asynchronous form of ABORT is useful as a self-preservation 
measure for processes aborted externally. For example, consider the 
user who enters a control-C to terminate his or her program. For 
many applications, it is preferable to return to a previous location in 
the program rather than abort the program entirely. 

To trap the control-C and force the return to a specific location in the 
program, call the asynchronous form of ABORT; use a process ID of 0 
(this indicates current process) and include a software interrupt (swi) 
pointer. In your software interrupt, use the SWIRET option which keeps 
the process ID in the swi and then call a jump instruction to return to 
the program location. 

Remember that the stack is in an unknown condition when ·you make 
the jump. At the - return point in your program you should include 
instructions to mark the stack frame so it is restored to a known 
condition. 

5--4 



FlexOS Programmer's Guide 5.4 Memory Management 

5.4 Memory Management 

You use the MALLOC and MFREE SVCs to manipulate a process's 
memory allocation. Only the heap portion can be modified: MALLOC 
extends the heap space or adds a new heap and MFREE releases 
allocated heap memory back to the kernel for subsequent allocation. 

To add contiguous memory to an existing heap. select MALLOC's 
expand option. In your MALLOC call you also give a pointer to a buffer 
indicating the minimum and maximum amount of memory and the 
base address of the heap to expand. Get this address from the 
process's PROCESS table. The kernel adds as much as can be allocated 
within the parameters given and returns the new block's starting 
address and the number of bytes allocated in your buffer The original 
heap base address and contents are not affected. 

To get a new, independent heap select MALLOC's allocate option. The 
new memory block may or may not be contiguous with an existing 
heap segment, depending upon current system memory usage. As 
above, you pass a buffer pointer where a minimum and maximum 
amount of memory is specified. You do not need to specify a starting 
address, however. The heap's base address and its actual size are 
returned in the buffer. When you add a new heap and it is contiguous 
with an existing heap, the existing heap becomes a fixed data area. 

End of Section 5 

5-5 





SECTION 6 

Miscellaneous Resource Manager 

This section describes the SVCs used for device management through 
the Miscellaneous Resource Manager. All devices except for disk. 
drives, consoles, mouses, and network controllers are controlled by the 
Miscellaneous Resource Manager. This includes such devices as 
printers, plotters, modems, and custom, OEM-implemented peripherals. 
The term device is used in this section as a generic expression to 
refer to all miscellaneous devices. Table 6-1 lists the SVCs. 

Table 6-1. Miscellaneous Device Control Supervisor Calls 

SVC 

CLOSE 
DEVLOCK 
GET 
SET 
OPEN 
READ 
WRITE 
INSTALL 
SPECIAL 

6.1 Device Tables 

Purpose 

Close a device 
Lock device from access by other processes 
Retrieve a device table 
Set device table values 
Open a device 
Read from a device 
Write to a device 
Install the device driver or subdriver 
Send data to or receive data from driver 

The Miscellaneous Resource Manager maintains four device-related 
tables. 

• DEVICE: Scan the DEVICE table to get the logical port and printer 
names. The Miscellaneous Resource Manager manages all devices 
with type numbers 7xH and 80-FFH. 

6-1 



6.1 Device Tables FlexOS Programmer's Guide 

• PRINTER: Use this table to get and set printer parameters. You 
cannot get or set a printer's table until you have opened the 
device. 

• PORT: Use this table to get and set 1/0 port parameters. You 
cannot get or set a port's table until you have opened it. Ports 
linked to a driver cannot be accessed with GET and SET; use the 
SPECIAL functions instead. 

• SPECIAL: Devices not adhering to the PRINTER or PORT table 
models have SPECIAL tables. SPECIAL table contents are OEM
defined. 

FlexOS reserves the name prn: for the system list device. Unlike 
stdout, and stderr, prn: does not have a reserved file number. 
program must open the prn: device, write data to it, and then 
the device. 

std in, 
Your 
close 

Note: The following description of device 1/0 assumes the device 
driver is already installed. If it is not or if your software must establish 
a driver-to-subdriver link, section 6.3 below reviews device installation. 
See the fl~><Q~ ~ystem Quid~ for additional information on drivers. 

6.2 Device Access 

Unlike files, devices are installed and removed rather than created and 
deleted. Like files, you must open devices to access them. To indicate 
the device, you its name in the OPEN call. The access privileges and 
modes characteristic of disk files and pipes also apply to devices. Like 
pipes and consoles, read and write access privileges are treated 
separately and can be implemented with different modes. 

6.2.1 Opening and Closing 

Use the OPEN SVC to open the device. Set the flags to select the 
access privileges and modes. The privileges and modes supported are 
determined by INST ALL options selected and the device driver itself. 
The Miscellaneous Resource Manager compares the privileges 
requested with those available. Set flag bit 7 if you can accept reduced 
access. You must set flag bit 0 if you want to set the table values. 

6-2 



FlexOS Programmer's Guide 6.2 Device Access 

Note: The devices with PORT tables cannot be used for data 1/0; 
access to these devices is limited to getting and setting PORT table 
values. 

The OPEN call returns the file number used for all subsequent device 
access. The file number is also used as the ID number in GET and SET 
calls and the file number for your CLOSE call. When you close the file, 
the write buffer contents are output to the device. 

After the device is opened, you can get and set table options. Devices 
are process independent; table variables are not initialized or modified 
as processes open and close the device. Thus, the PRINTER table 
typeface mode or PORT table baud rate selected by one process 
remains set for other processes. 

6.2.2 Security 

Security options come in two forms: access modes and device locking. 
The access modes are selected in the OPEN call. If multiple, related 
processes need to share access to the device, set flag bit 6 to shared 
file pointer. Although the file pointer may or may not be meaningful, 
this is the mechanism used to limit device aq;ess to those processes 
in the same family. 

The DEVLOCK SVC can also be used to restrict access. This feature is 
only valid if the INSTALL option allowing DEVLOCK was selected. 
DEVLOCK options let you limit access to the process or the process 
family. The lock is removed explicitly using DEVLOCK or implicitly 
when the process terminates. 

6.2.3 Data 1/0 

Use the READ and WRITE SVCs to get data from and to the driver. 
The file pointer offset may or may not be meaningful. Although the 
Miscellaneous Resource Manager does not maintain a file pointer, it 
does pass the offset to the device. Consequently, you can use an 
offset if the device supports random 1/0. The SEEK SVC is not 
supported by the Miscellaneous Resource Manager. However, the 
function not implemented error is not returned if you call it. Instead, a 
zero is returned. (This is done so redirection to a miscellaneous device 
does not cause an error on seeks.) 

6-3 



6.2 Device Access FlexOS Programmer's Guide 

All. WRITE flag options are supported. 

All READ flag options except the edited read {flag bit 5) are supported 
by the Miscellaneous Resource Manager. This includes the use of 
delimiters to complete the read event. As with consoles, your program 
should be able to accept fewer characters on a read than requested. 

SPECIAL functions are another way to transfer data to and from a 
device. However, all SPECIAL functions are driver-dependent; there are 
no generic functions. The Miscellaneous Resource Manager acts as a 
conduit for SPECIAL calls and provides no services beyond transferring 
the SPECIAL databuf and parmbuf contents. 

6.3 Device Installation 

Device drivers are installed with the INSTALL SVC. The driver can be 
read from a disk file or replicated from an existing driver. Only 
privileged users can call INSTALL 

FlexOS supports the concept of subdrivers. This allows a driver unit to 
be independent of specific hardware by accessing the hardware in a 
generic way. For example, multiple units of an RS-232 subdriver can 
be installed and then linked to printer, network, or communications 
drivers. This relieves the driver writer of hardware dependent code and 
provides flexibility when installing add-on or custom peripherals. 

6.3.1 Driver and Subdriver Installation 

Although drivers and subdrivers are usually installed when the system 
is loaded, they can be installed after the installation script has been 
performed as well. (See the CONFIG.SYS description in the flexOS 
~ys~em Qljig~ for description of the installation script.) You can also 
uninstall drivers, disconnect a subdriver from a driver, and link a 
subdriver to a driver dynamically. 

Once a driver-to-subdriver link is established, the subdriver is no 
longer individually accessible; the driver owns it. When the link is 
dissolved, the subdriver is available for linking to another driver. The 
Miscellaneous Resource Manager manages subdrivers until they are 
linked t.o a driver. Then the driver assumes subdriver management 
responsibilities. Subdrivers can themselves have their own subdriver. 

6-4 



FlexOS Programmer's Guide 6.3 Device Installation 

Note: The subdrivers with PORT tables do not have a standard 
interface to the resource manager. Do not attempt to access these 
drivers directly: 

6.3.2 INSTALL Options 

Drivers and subdrivers are installed with the INSTALL SVC. There are 
four INSTALL options. 

• Load driver· from the disk: Read the driver from the specified disk 
file, load it into the system space, call the initialization routine for 
the first unit, and give it a logical name. 

• Add a unit to an existing driver: Replicate an existing driver in 
system space, initialize the device, and give it a logical name. 

• Link one driver to another: Make one driver the subdriver of 
another. Both drivers must already be installed. 

• Uninstall the driver: Remove the device driver and release 
subdriver. 

Each unit installed manages a separate device; for example an RS-232 
port. Multiple units derived from the same driver are distinguished by 
unique names, however, they all share the same code. 

The driver determines the maximum access privileges supported by 
the device and the access modes. The maximum access modes are 
determined when the device is installed. 

You do not use the DELETE SVC to remove a driver. Instead, use 
INSTALL's uninstall option. Only the device specified is removed; if the 
driver had a subdriver, the subdriver is released and becomes available 
for direct access or linkage with another driver. 

6.4 PORT Table Modification 

PORT table devices cannot be accessed directly; they can only be used 
as subdrivers. You can, however, set PORT table values. There are two 
ways to do this; depending on whether the device has driver or 
subdriver status. To determine the device status, look at the INSTAT 
word in its device table. 

6-5 



6.4 PORT Table Modification FlexOS Programmer's Guide 

A device that is not a subdriver (it as not been linked to another driver 
with INSTALL), can be opened directly. In your OPEN call, request only 
the set access privilege (flag bit 0). Use the file number returned as 
your GET and SET ID. 

Devices that are subdrivers cannot be accessed directly. However, you 
can use SPECIAL functions 13H and 93H to get and set the PORT table 
values. These SPECIAL functions are described after the SPECIAL disk 
functions in Section 7. 

To use the SPECIAL functions, you must know the driver that owns the 
subdriver. The OWNERID value from the subdriver's DEVICE table is the 
sign.ificant 16 bits of the subdriver's owner's DEVICE table key value. 
Use this value in a LOOKUP call to find the device name. If the owner 
is also a subdriver, repeat this procedure to get the owner. When you 
determine the owner, open the device and use the file number 
returned in your SPECIAL calls. 

End of Section 6 

6-6 



SECTION 7 

Supervisor Call Descriptions 

This section describes the FlexOS SVCs. The descriptions are 
presented alphabetically by SVC name and contain explanations of 
each call's arguments and return codes. See Section 1 for the 
description of the C and assembler interface conventions used in the 
descriptions. Appendix B lists the error return codes. 

The descriptions also include a general explanation of the function's 
purpose and effect. For specific information regarding when and how 
to use the SVCs, refer to the chapters describing disk, console, pipe, 
process and special device management. 

7-1 



7.1 ABORT FlexOS Programmer's Guide 

7.1 ABORT 

C Interface: 

LONG pid; 

ret = s_abort(pid); 
emask = e_termevent(swi,pid); 

ret = _osif(F _ABORT,&parmblk); 

parmblk: 

O=sync 1 0 0 1 =async 

4 swi 

8 pid 

Parameters: 

swi Address of a software interrupt routine 

pid 

Return Code: 

ret 

7-2 

Process ID of target process to abort or to wait to 
terminate. Use 0 to specify calling process. 

Error Code 



FlexOS Programmer's Guide 7.1 ABORT 

Description: The synchronous ABORT SVC removes a process 
from the system. Any outstanding events for that 
process are canceled, opened files are closed, and 
memory is released. Performing an ABORT on the 
calling process is equivalent to an EXIT with a 
return code of E_ABORTED. 

A process can only be aborted by another process 
with the same user and group or by a superuser. 

The asynchronous version of ABORT does not 
terminate the target process. Instead, it makes the 
target's termination an event. Specify a process ID 
(pid) of zero to have the program trap a control-C 
entered by the user or any other external abort. Use 
the software interrupt (swi) to control program flow 
from there. 

The return code from ABORT reflects only the 
operating system's attempt to notify a process to 
terminate. If the process has a termination swi that 
does not perform an exit. ABORT's return code 
indicates success, but the process will still be 
running 

7-3 



7.2 ALTER 

7.2 ALTER 

C Interface: 

UWORD 
LONG 
FRAME 
RECT 
BYTE 

flags; 
fnum; 
*dframe; 
*drect; 
alterb[6); 

FlexOS Programmer's Guide 

ret = s_alter(flags,fnum,dframe,drect,alterb); 

7-4 

ret = _osif(F _Al TER,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

20 

24 

0 

andO 

and2 

0 

0 

fnum 

dframe 

drect 

xorO 

xor2 

flags 

and1 · I xor1 

RESERVED 



FlexOS Programmer's Guide 7.2 ALTER 

Parameters: 

flags Bit map of planes to alter. 

fnum 

dframe 

drect 

andO 
xorO 
andl 
xorl 
and2 
xor2 

Return Code: 

bit 0: 1 = Alter character plane 
0 = Do not alter character plane 

bit 1: 1 = Alter attribute plane 
0 = Do not alter attribute plane 

bit 2: 1 = Alter extension plane 
0 = Do not alter extension plane 

bits 3-15 are reserved. 

Console screen or border file number; use 0 to 
specify a memory FRAME 

Address of FRAME to affect; use NULLPTR to 
indicate screen or border specified by fnum. 

Address of RECT specification indicating portion of 
FRAME to alter 

alterb[O] = character plane AND 
alterb[l] = character plane XOR 
alterb[2] = attribute plane AND 
alterb[3] = attribute plane XOR 
alterb[4] = extension plane AND 
alterb[5] = extension plane XOR 

ret 
Error Code 

7-5' 



7.2 ALTER 

Description: 

7-6 

FlexOS Programmer's Guide 

ALTER changes a rectangular area of the specified 
FRAME. The Console Resource Manager changes 
each cell in the planes selected according to the 
AND and XOR values you specify for that plane. The 
rectangular area is defined by a RECT structure. You 
select the planes in the flag word. 

The FRAME can be a screen or memory FRAME. To 
specify a screen FRAME put its file number in the 
fnum field and a null pointer in the dframe field. To 
specify a memory FRAME, put a 0 in the fnum field 
and the FRAME's address in the dframe field. 

The following table lists the AND and XOR bit values 
used to modify the destination byte or combine it 
with another value. 

Action Performed on Bit Bit in Bit in 
in Destination Byte AND Byte XOR Byte 

Clear· 0 0 
Set 0 1 
As is 1 0 
Complement 1 

Logical Operation with Data 
and Bit in Destination Byte 

Load Data 0 data 
AND Data data 0 
XOR Data 1 data 
OR Data NOT data data 



FlexOS Programmer's Guide 

7.3 BWAIT 

C Interface: 

UWORD 
LONG 
LONG 

clicks; 
mask; 
state; 

ret = s_bwait(clicks,fnum,mask,state); 
emask = e_bwait(swi,clicks,fnum,mask,state); 

ret = _osif(F _BWAIT,&parmblk); 

parmblk: 

0 O = sync 
0 

1 = async 

4 swi 

8 fnum 

12 mask 

16 state 

7.3 BWAIT 

clicks 

7-7 



7.3 BWAIT 

Parameters: 

clicks 

fnum 

mask 

FlexOS Programmer's Guide 

Number of times the mouse enters this state within 
the "click· interval" set up in the MOUSE Table after 
this call is made. If clicks is 0 and the mouse is 
already in this state, the event is already complete. 

Mouse file number 

Bit mask of buttons to consider. The lowest order 
bit is set if the first mouse button to the left is to 
be considered. The second lowest bit corresponds 
to the second button from the left. A total of 16 
mouse buttons can be supported in the low word of 
mask. 

state Bit mask of buttons that define the button state 
given the mask that determines the buttons to 
ignore all together in the low word of state. 

Return Code: 

ret 

Description: 

7-8 

Number of Clicks 

Error Code 

The BWAIT SVC allows the calling process to wait 
until a mouse button state is reached. The mask 
determines the number of mouse buttons the calling 
process wants considered. For example, by setting 
the mask appropriately, a one button mouse can be 
expected when there is more than one button. 

The cliCks field allows the calling process to receive 
multi-click mouse input. When a user presses a 
mouse button, releases it and presses it again 
within the "click interval", the mouse has been 
double clicked. 



FlexOS Programmer's Guide 7.3 SWAIT 

If clicks is set to two, and a second click is not 
performed within the "click interval", the event is 
considered complete. The return value indicates the 
number of clicks actually performed. If clicks is set 
to zero, BWAIT returns a zero if the button state is 
already in the specified state. Otherwise, it returns 
one upon the first entry to the state. 

The "click interval" is changed in the MOUSE table 
through the SET SVC. 

7-9 



7.4 CANCEL 

7.4 CANCEL 

C Interface: 

LONG 
LONG 

dmask; 
events; 

FlexOS Programmer's Guide 

dmask = s_cancel(events); 

dmask = _osif(F _CANCEL,events); 

Parameters: 

. events 

Return Code: 

dmask 

Description: 

7-10 

Logical OR of event masks to be canceled 

Bit map of events that could not be canceled 
because they have already completed 

The CANCEL SVC terminates one or more specified 
asynchronous SVCs. The events argument is the 
logical OR of the event masks you want to cancel. 
The dmask return code indicates events that, 
although requested for termination, had already 
completed. Use the RETURN SVC to get the return 
codes for these events so the event bits can be 
reused. 



FlexOS Programmer's Guide 

7.5 CLOSE 

Interface: 

UWORD 
BYTE 
LONG 

flags; 
option; 
fnum; 

ret = s_close(flags,fnum); 

ret = _osif(F _CLOSE,&parmblk); 

parmblk: 

0 0 

4 

8 

Parameters: 

option 

flags 

I option I flags 

0 

fnum 

May be used by SPECIAL devices. 

bit 0: 1 = partial close (flush only) 
0 = full close 

bits 1-15 are reserved. 

fnum File number of file to be closed 

7.5 CLOSE 
·------------

7-11 



7.5 CLOSE 

Return Code: 

Description: 

7-12 

FlexOS Programmer's Guide 

ret 
Error Code 

CLOSE disassociates an 1/0 stream from a file 
number. Before the close is performed, all 
outstanding asynchronous 1/0 is completed and 
locked file areas are unlocked. If a device error 
occurs on a full close, the file is closed making the 
file number invalid. 

For all types of files, a partial close flushes the 
associated 1/0 buffer but leaves the file open. For 
disk files, a partial close updates the directory. 

For disk and pipe files and directories created with 
the temporary flag set, the last close deletes the 
files. This also applies to a file marked temporary 
because an attempt has been made to delete it 
while any process had it open. in this second case 
only, the closing process gets an error return code 
rather than success to indicate that the close also 
resulted in a file delete. 

WARNING: CLOSE with the "full close" option 
always disconnects an open file from the calling 
process regardless of error. This can cause a 
failure to flush intermediate buffers to media if the 
error is a physical error. 

Specifically, if a floppy drive door is open at the 
time of a close, the final flush does not occur. An 
application can avoid this problem by performing a 
"partial close" to flush all intermediate buffers. If an 
error is returned indicating an "open door", the 
application can warn the user to replace the media 
and close the door before attempting the close 
operation again. 



FlexOS Programmer's Guide 7.5 CLOSE 

However, if any other activity occurs on the device 
from the time the door was originally opened, the 
"partial close" approach fails since all intermediate 
buffers have been discarded. In such a case, the 
application must assume the file has not been 
updated since the last successful partial close. 
After performing a successful partial close, the 
application can perform a full close to disassociate 
the file from the process. 

7-13 



COMMAND 

7.6 COMMAND 

c Interface: 

UWORD 
LONG 
BYTE 
PINFO 

flags; 
pid,bufsiz; 
*command, *buffer; 
*procinfo; 

FlexOS Programmer's Guide 

ret = s_command(flags,command,buffer,bufsiz,procinfo); 

7-14 

emask = e_command(swi,&pid,flags,command,buffer,bufsiz,procinfo); 

ret = _osif(F _COMMAND,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

20 

24 

O=sync 
1 =async 0 

swi 

command 

buffer 

bufsiz 

procinfo 

&pid 

flags 



FlexOS Programmer's Guide COMMAND 

Parameters: 

flags bits 0-3 are reserved 

swi 

command 

buffer 

bit 4: 1 = No new process (set bit 5 to 1) 
0 = New process (ignore bit 5) 

bit 5: 1 = Chain 
0 = Not implemented (returns E_IMPLEMENT error) 

bit 6: 1 = Do not release memory on termination 
of procedure if procedure uses the 
EXIT SVC with the stay resident flag set. 

0 = Not implemented (returns E_IMPLEMENT error) 

bit 7: 1 = Assign a new process family ID (FID) 
0 = Keep the current process family ID (FID) 

bits 8-12 are reserved (must be 0). 

bit 13: 1 = force case to media default 
0 = Do not affect name case 

bit 14: 1 = Literal command 
0 = Prefix substitution allowed 

bit 15: reserved (must be 0) 

Address of a software interrupt routine 

Address of 128-byte, null-terminated 
indicating the name of the loadable file. 

string 

Address of a variable length buffer containing a 
128-byte, null-terminated command tail and special 
information to be passed to the new process. (At 
most, the command tail can be 127 characters and 
one NULL byte long.) COMMAND puts the tail in the 
CMDENV table. Data after the first 128 bytes is put 
in the process's heap. 

7-15 



COMMAND 

bufsize 

procinfo 

0 

4 

8 

12 

16 

FlexOS Programmer's Guide 

The PROCESS table contains the heap address and 
size. Use this buffer area to pass an environment 
string, common data, or special information to the 
program. 

Size of buffer in bytes 

Address of the PINFO table. PINFO must be 
constructed as follows: 

name 

l prior l RESERVED 

maxmen 

ADDMEM 

20 = Length in bytes 

pid 

7-16 

name: Process name 

prior: Process priority (user processes are usually 
set to 200) 

maxmem: Maximum memory this process can own 
(larger minimum requirements specified by the 
command file supercede this amount) 

addmem: The amount of memory to be added to 
the minimum amount specified by the command file 
(FlexOS allocates the greater of the two values: 
maxmem or the sum of the command file's specified 
minimum plus addmem) 

Address of new process ID. COMMAND puts the 
new process's 32-bit PIO at this location when flag 
bit 4 equals 0 and COMMAND is called 
asynchronously. 



FlexOS Programmer's Guide COMMAND 

Return Code: 

ret 

Description: 

Process completion status: 
High order word = 0 
low order Word = return status (negative if error) 

Error Code: Indicates program load failure 

The COMMAND SVC creates a new process or 
chains a new program to the calling process. The 
value of flag bit 4 determines which action is taken. 
When flag bit 4 is set, use flag bit 7 to specify 
whether you want the current process family ID kept 
or a new one assigned. 

The return code is a long value with two 
components: if the high order word is zero, the low 
order word contains an utility return code. See 
Appendix B for a list of utility return codes. If the 
high order word is a negative number, the low order 
word contains an operating system error code. A 
return code can be used in batch files as an 
argument in the IF ERRORLEVEL statement. 

When COMMAND is called synchronously, the return 
code is provided when the EXIT SVC is called by the 
program. When COMMAND is called asynchronously 
and a new process is requested, an event mask 
(emask) is returned and the new process ID is 
stored at the location indicated by pid. 

The chain option causes the calling 
current program to be overlaid with 
program. The process ID does not change. 

process's 
the new 

·7-17 



COMMAND 

7-18 

FlexOS Programmer's Guide 

The COMMAND SVC opens the specified command 
file in EXECUTE mode without accepting reduced 
access. Any error in the attempt to open the file 
returns the file not found error. 

Priority of 200 is the recommended number for user 
processes. Higher numbers have lower priority; 
lower numbers have higher priority. 



FlexOS Programmer's Guide 

7.7 CONTROL 

C Interface: 

UWORD 
LONG 
BYTE 

option; 
pid,target,bufsiz,tpid; 
*buffer; 

ret = s_control(option,pid,buffer,bufsiz,target,&tpid); 

CONTROL 

emask = e_control(swi,option,pid,buffer,bufsiz,target,&tpid); 

ret = _osif(F _CONTROL,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

20 

24 

O=sync 
1 =async 0 

swi 

pid 

buffer 

bufsiz 

target 

&tpid 

option 

7-19 



CONTROL 

Parameters: 

option 

swi 

pid 

·buffer 

7-20 

bufsiz 

target 

&tpid 

FlexOS Programmer's Guide 

0 - Invalid 
1 - Load Program for control 
2 - Delete Program 
3 - Read Target Code Memory 
4 - Read Target Data Memory 
5 Write Target Code Memory 
6 - Write Target Data Memory 
7 - Read Target Registers 
8 - Write Target Registers 
9 - Go 
10 - Single Step (Trace) 
11 - Reserved (Force Halt) 
12 - 13 Reserved (All Exception Traps ON,OFF) 
14 - Select Exception Trap ON 
15 - Select Exception Trap OFF 
16 - 255 are reserved 

Address of a software interrupt routine 

For option 1, a pointer to command file 
specification; for options 2-15, the process ID of the 
target process 

Address of buffer in calling process's address space; 
the purpose of this buffer depends on the option 
selected. 

Size of buffer in bytes 

Address in controlled process's address space: the 
purpose of this buffer depends upon the option 
selected. 

Target process address: tpid is used only with 
option 1; see the first section of the chip 
supplement to this book for the description of its 
use. 



FlexOS Programmer's Guide CONTROL 

Return Code: 

ret 

Description: 

Error Code 

The CONTROL SVC controls the execution of one or 
more child processes. Use the CONTROL options to 
select debugging functions such as setting 
breakpoints, modifying memory or registers, and 
starting and stopping process execution. The use of 
the pid, buffer, target, and &tpid arguments depends 
upon the option selected. 

Option 1--Load: Use this option to create the 
target process. The pid, buffer, bufsiz, target, and 
&tpid arguments have the same purpose as the 
command, buffer, bufsiz, procinfo, and &tpid 
arguments in the COMMAND SVC. CONTROL opens 
the specified program (command file) in Execute, 
Read mode with no reduced access. When called 
synchronously, the load option returns when the 
program is loaded; the return code indicates the 
success or failure of the operation. Similarly, the 
asynchronous CONTROL load event is complete 
when the program is loaded. Use the RETURN SVC 
to get the return code. 

Option 2--Delete: Use this option to terminate the 
program. pid specifies the target process to 
terminate. 

Options 3 and 4--Read target code or data 
memory: Use these options to transfer a portion of 
the target process's memory to the calling process's 
memory. pid specifies the target process, the buffer 
address points to the calling process's destination 
buffer area, and target contains the logical address 
in the target process from which to begin the 
transfer. The bufsiz value indicates the number of 
bytes to be transferred. 

7-21 



CONTROL 

7-22 

FlexOS Programmer's Guide 

Options 5 and 6--Write target code or data 
memory: Use these options to transfer a portion of 
the calling process's memory to the target process's 
memory. pid specifies the target process, buffer 
contains the pointer to the calling process's source 
buffer, and target contains the first logical 'address 
of the target's destination buffer. The bufsiz 
indicates the number of bytes to be transferred. 

Options 7 and 8--Read and write target registers: 
Use these options to transfer the target process's 
register data to or from the calling process's buffer. 
pid specifies the target process and buffer contains 
the pointer to the destination or source buffer. 

Option 9--Go: Use this option to commence 
execution of the target program. Execution 
proceeds until one of the following conditions is 
encountered. The number shown in parenthesis 
indicates the condition's return code. 

• Error code on CONTROL request ( <0) 
• Target process EXIT (0) 
• Target process exception (>0): This condition 

exists when break point set by CONTROL option 
14 or by the EXCEPTION SVC is encountered. 

• Target about to be aborted through an external 
ABORT or Control-C (512): 512 is the return 
code fo,r the COMMAND SVC when using the go 
option. 

Option 10--Trace: Use this option to step through 
the target program one instruction at a time. pid 
specifies the target process and bufsiz must be 1. 
The return code is the same as the Go option. 
Resume execution with Go or another Trace. 



FlexOS Programmer's Guide CONTROL 

Options 14 and 15--Trap ON and OFF: Use option 
14 to set target program break points at exception 
handling routines and SVCs; use option 15 to have 
break points ignored. pid specifies the target 
process and the target value contains a buffer 
pointer indicating the exception numbers to break. 
on (see EXCEPTION). When an exception set by the 
target program is reached, target program execution 
proceeds with the interrupt service routine (isr). 
When an exception set by CONTROL is reached, 
target program execution stops and control returns 
to the calling process. 

You set break points by writing a "break point" 
instruction into the target buffer, turning the break 
point exception trap on, and using the Go option. A 
return code greater than 0, where the number 
indicates the exception number, indicates that a 
break point has been encountered. To proceed, 
restore the target process code and set the 
instruction pointer to the break point location. 

7-23 



COPY 

7.8 COPY 

C Interface: . 

UWORD 
LONG 
FRAME 
RECT 

flags; 
fnum; 
*sframe, *dframe; 
*srect, *drect; 

FlexOS Programmer's Guide 

ret = s_copy(flags,fnum,dframe,drect,sframe,srect); 
ret = _osif(F _COPY,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

20 

24 

Parameters: 

0 l 0 J flags 

0 

fnum 

dframe 

drect 

sframe 

srect 

.flags Bit map of planes to copy 

bit 0: 1 = Copy character plane 
0 = Do not copy character plane 

7-24 



FlexOS Programmer's Guide COPY 

fnum 

dframe 

drect 

sframe 

srect 

Return Code: 

ret, 

Description: 

bit 1: 1 = Copy attribute plane 
0 = Do not copy attribute plane 

bit 2: 1 = Copy extension plane 
0 = Do not copy extension plane 

bits 3-15 are reserved. 

Console screen or border file number 

Address of destination FRAME; NULLPTR indicates 
screen or border specified by fnum. 

Address of destination RECT description 

Address of source FRAME; NULLPTR indicates screen 
or border specified by fnum. 

Address of source RECT description 

Error Code 

The COPY SVC copies the specified plane contents 
from one rectangle to another on the same or 
different FRAMEs. The drect and srect rectangles are 
defined in the form of RECT structures. If either the 
dframe or sframe FRAME specifications are 0, the 
file number in fnum indicates the proper FRAME. The 
RECT and FRAME data structures are described in 
Section 3. 

The source and destination rectangles do not need 
to be the same size and can overlap on the same 
screen. When the rectangles are different sizes, 
COPY trims off the larger. The upper lefthand 
corner of both rectangles is used as the point of 
reference. 

7-25 



CREATE FlexOS Programmer's Guide 

7.9 CREAlE 

7 .9.1 Create a File, Directory, or Pipe 

C Interface: 

UWORD 
BYTE 
LONG 

flags,record_size,security; 
option,*name; 
size; 

fnum = s_create(option,flags,name,record_size,security,size); 

ret = _osif(F _CREATE,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

Parameters: 

option 

7-26 

0 l option I 
0 

name 

record_size I 
size 

0 = Disk file or pipe 
1 = Disk directory 

flags 

security 

2 = Virtual console (described separately) 
3-255 Reserved 



FlexOS Programmer's Guide Create a File, Directory, or Pipe 

flags bit 0: 1 = Delete file/set attributes access 
0 = No delete/set access 

bit 1: Reserved (must be 0) 

bit 2: 1 = Write 
0 = No Write 

bit 3: 1 = Read 
0 = No Read 

bit 4: 1 = Shared 
0 = Exclusive 

bit 5: 1 = Allow Shared Reads if Shared 
0 = Allow Shared R/W if Shared 

bit 6: 1 = Shared File Pointer 
0 = Unique File Pointer 

bit 7: 1 = Zero Fill contiguous region* 
0 = Do Not Zero Fill 

bit 8: 1 = Temporary - Delete on Last Close 
· 0 = Permanent 

bit 9: 1 = Allocate space in a contiguous block* 
0 = Contiguous block allocation not required 

bit 10: 1 = Delete File if it already exists 
0 = Return Error if file exists 

bit 11 is reserved (must be zero) 

bit 12: 1 = Use specified security 
0 = Use default security (see ENVIRON table) 

bit 13: 1 = Force Case to Media Default 
0 = Do not Force Case on name 

7-27 



Create a File, Directory, or Pipe FlexOS Programmer's Guide 

bit 14: 1 = Literal Name 
0 = Prefix Substitution Allowed 

bit 15 is reserved 

* Only valid if file's size value is non-zero. 

name Address of NULL -terminated name string: if file is 
not in default:, the string must include path 
specification or a previously defined logical name 
(maximum 128 bytes, NULL terminated) 

record_size File record size: The READ, WRITE and LOCK SVCs 
use this value to make sure the requested action 
falls on record boundaries. Use a record_size of 0 
OR 1 if you want no boundary checks performed (a 
record_size of 0 is equivalent to a record_size of 1). 
FlexOS considers disk files and pipes with a record 
size of 1 as 8-bit files. Files with a record size of 2 
are considered 16-bit files. 

security File Security Word (FSW) describing access rights 
. for file owner, group and world. The FSW is 
formatted as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

R W E D R W E D R W E D 

-Reserved~ -woRLD~ -GROUP~ -owNER~ 

7-28 

User access is restriced according to the privilege 
level set for owner, group, and world users. See 
Section 1.4.2 for a description of the R(ead), W(rite), 
E(xecute), and D(elete) privileges. This value is only 
valid when flag bit 12 is on. Otherwise, the default 
security specified in the ENVIRON table is used. 



FlexOS Programmer's Guide Create a File, Directory, or Pipe 

size 

Return Code: 

fnum 

ret 

Description: 

Number of bytes to reserve. for the file: For disk 
files, the space is contiguous only if bit 9 is set. Use 
a size value of 0 when you create directories and 
files whose size is dynamic. For pipes, the size 
value specifies the size of the pipe buffer. Size is 
not applicable to virtual consoles. 

The file number: The file is automatically opened. 
The calling process must close the file if no access 
is needed. If the security field conflicts with the 
flag bits 0-6, then the file is created but not 
opened, and an error code is returned. 

Error Code 

CREATE option 0 adds a new disk file to a directory 
or a new pipe to the pipe system. CREATE option 1 
makes a new directorv. The record_size and size 
fields are only applicable to option O; for directories, 
set these values to zero. 

7-29 



Create a File, Directory, or Pipe FlexOS Programmer's Guide 

7.9.2 Create a Virtual Console 

C Interface: 

, UWORD 
LONG 
WORD 
BYTE 

flags; 
screen_fnum; 
rows,columns; 
option,top,bottom,left,right; 

fnum = s_vccreate(flags,screen_fnum,rows,columns,top,bottom,left, 
right); 

ret = _osif(F _CREATE,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

Parameters: 

option 

flags 

7-30 

0 

top 

I option flags 

0 

screen_tnum 

rows columns 

I bottom left l 

0 = Disk file or pipe (invalid here) 
1 = Disk directory (invalid here) 

right 

2 = Virtual console (only valid choice) 
3-255 Reserved 

bit 0: 1 = Bit mapped screen 
0 = Character mapped screen 



FlexOS Programmer's Guide Create a Virtual Console 

bit 1: 1 = Bit mapped borders 
0 = Character mapped borders 

bit 2: 1 = Sized as specified 
0 = Same size as parent 

bit 3: 1 = Remove parent screen memory and 
restore on delete of last child's 
virtual console. 

0 = Keep screen memory and allow writing 
to the parent screen 

bits 4 - 7 are reserved 

bit 8: 1 = Temporary - delete on last close 
0 = Permanent 

bits 9 - 15 are reserved 

screen_fnum File number of the parent console file on which new 
virtual console is based. 

rows 

columns 

top 

bottom 

left 

right 

Number of character rows in new virtual console. If 
flag bit 2 is zero, the number of rows is the same 
as the parent. 

Number of character columns in the new virtual 
console. If flag bit 2 is zero, the number of 
columns is the same as the parent. 

Height of top border in characters 

Height of bottom border in characters 

Width of left border in characters 

Width of right border in characters 

7-31 



Create a Virtual Console FlexOS Programmer's Guide 

Return Code: 

fnum 

ret 

Description: 

7-32 

New virtual console's file number: Use this number 
to GET and SET the virtual console's VCONSOLE 
table. Only the process that created a virtual 
console can change VCONSOLE values. The number 
returned is not the VCNUM referenced in the 
VCONSOLE and CONSOLE tables. 

Error Code 

This CREATE SVC option makes a new virtual 
console. Before you can CREATE a child virtual 
console, you must have at least write access to the 
parent console specified in screen_fnum. The row 
and column values do not need to be the same as 
the parent console's. 

CREATE opens the new virtual console, which allows 
you to change values in the VCONSOLE table. No 
other process has access rights to this table. 
CREATE does not open the console file. Before you 
can read from and write to a new virtual console, 
you must open the console file. The· name of this 
file is vcxxx/console where xxx is a 3-digit number 
indicating the virtual console's number. 

Unlike the s_create call, the s_vccreate call does not 
accept an option. 



FlexOS Programmer's Guide 

7.10 DEFINE 

C Interface: 

UWORD 
BYTE 
LONG 

flags; 
*I name, *prefix; 
size; 

ret = s_define(flags,lname,prefix,size); 
ret = _osif(F _DEFINE,&parmblk); 

parmblk: 

0 0 l 0 l flags 

4 0 

8 I name 

12 prefix 

16 size 

Parameters: 

flags bit 0: 1 = Reference SYSDEF table 
0 = Reference PROCDEF table 

bit 1: 1 = Return prefix string 
0 = Set prefix string 

bits 2-13 are reserved 

bit 14: 1 = literal returned prefix 
0 = Translated prefix 

DEFINE 

7-33 



DEFINE 

lname 

prefix 

size 

Return Code: 

ret 

Description: 

7-34 

FlexOS Programmer's Guide 

If bit 14 = 1, the exact prefix string is returned. 
Otherwise, FlexOS translates the logical name until 
it cannot find another entry. This is done for a 
maximum of 99 times, after which an error is 
returned. 

Address of logical name: lname is a NULL 
terminated string no longer than ten characters. 

Address of prefix string buffer: If flag bit 1 = 0, 
prefix contents replace lname. Use NULLPTR to 
delete a lname. Prefix string must be NULL -
terminated and cannot exceed 128 bytes. If flag bit 
1 = 1, DEFINE stores the current prefix at this 
address. 

Size of prefix buffer; cannot exceed 128 bytes 

Error Code 

The DEFINE SVC either gives a logical name to a 
prefix string or returns the prefix for the specified 
name. Use DEFINE to redirect 1/0 from hardcoded 
filenames to other filenames or to make program
related assignments for stdin, stdout, stderr, and 
other logical names. The logical name cannot 
contain wildcard characters or path delimiters. 

Logical name prefixes are kept in two tables: The 
SYSDEF table holds the system-wide logical name 
definitions and the PROCDEF table holds the 
process-bound logical name definitions. Child 
processes inherit their parent's PROCDEF table. 
However, DEFINE changes affect the calling 
process's PROCDEF table only. See Section 8 for the 
description of the SYSDEF and PROCDEF tables. 



=1exOS Programmer's Guide DEFINE 

Only privileged processes (user and group numbers 
equal 0) can call DEFINE to modify SYSDEF table 
assignments. No special privilege is required to 
.return a prefix from the SYSDEF table. 

SVCs using names to indicate files have options to 
ignore prefix translation. When prefix translation is 
requested, the process's PROCDEF table is chec~ed 
before the SYSDEF table. 

When the file name specified does not include a 
device, FlexOS applies the special device name 
"default:" to the file name before attempting prefix 
substitution. Setting the current default directory of 
a process is therefore done by defining "default:". 
Since indirection is allowed, the user can set 
"default:" to another defined name such as "system:" 
or "home:". This implies the default directory is not 
necessarily legal. Pngrams that set the default 
directory should check for legality through 
accessing "default:" in some manner. 

FlexOS does not check for loops in the DEFINE SVC. 
It does prevent infinite loops by only allowing 99 
iterations when converting a name. FlexOS also 
insures that the· logical name and the prefix name 
are not the same. 

FlexOS does not check for actual device and 
directory names. Therefore, you can use D,EFINE to 
store any string substitution information needed at 
either the system or process level. For example, 
you can store command macros for later translation 
either by the COMMAND SVC or a user interface 
program. 

The "system:" and "boot:" logical names are initially 
defined at boot time by the BOOTINIT process. 

7-35 



DELETE 

7.11 DELETE 

C Interface: 

UWORD 
BYTE 

flags; 
*name; 

FlexOS Programmer's Guide 

ret = s_delete(flags,name); 

ret = _osif(F _DELETE,&parmblk); 

parmblk: 

0 

4 

8 

0 I 0 I 
0 

name 

flags 

Parameters: 

7-36 

flags bits 0 - 12 are reserved 

name 

bit 13: 1 = Force case to media default 
0 = Do not affect name case 

bit 14: 1 = Literal name 
0 = Prefix substitution allowed 

bit 15 is reserved 

Address of name of file to be deleted 



FlexOS Programmer's Guide DELETE 

Return Code: 

ret 

Description: 

Error Code 

The DELETE SVC removes an existing disk file, pipe, 
virtual console, or directory file. Before you can 
delete a virtual console, it must have no open. files 
or child consoles. Before you can delete a directory 
file, it must be empty. 

An attempt to delete an open file returns success, 
however, the file is not immediately deleted. Instead, 
FlexOS marks the file as temporary. The temporary 
classification results in a file that remains available 
until the last close, when it is deleted. 

7-37 



DEVLOCK 

7.12 DEVLOCK 

C Interface: 

BYTE 
LONG 

option; 
fnum; 

FlexOS Programmer's Guide 

ret = s_devlock(option.fnum); 

ret = _osif(F _OEVLOCK,&parmblk); 

parmblk: 

0 0 

4 

8 

Parameters: 

opti<:m 

fnum 

Return Code: 

ret 

7-38 

] 0 1 
0 

fnum 

0 - Lock for process 
1 - Lock for process family 
2 - Unlock 

option 

File number of the opened device 

Error Code 



FlexOS Programmer's Guide DEVLOCK 

Description: The DEVLOCK SVC locks or unlocks a device; 
restricting or releasing access rights to the device. 
Use the option field to indicate whether you want 
access restricted to the calling process alone or to 
the calling process and other processes with the 
same family ID (FID). 

FlexOS does not lock the device and returns an 
error if another process has an open file on the 
device. (FlexOS allows the calling process to have 
open files, however.) It also returns an error if the 
device was protected against DEVLOCK when it was 
installed. 

The device can only be unlocked by the process 
that initiated the lock. The lock is automatically 
removed when the process terminates and when the 
device file is fully closed. If the lock is applied to 
allow only related processes access to the device, 
FlexOS removes the restriction when the initiating 
process terminates; related processes no longer 
have exclusive access. 

7-39 



DISABLE FlexOS Programmer's Guide 

7.13 DISABLE 

C Interface: 

s_disable(); 

ret = _osif(F _OISABLE,O); 

Parameters: 

NONE 

Return Code: 

NONE 

Description: 

7-40 

The DISABLE SVC suspends the calling process's 
program jumps to software interrupt routines (SWls). 
DISABLE does not, however, suspend software 
interrupts generated through the EXCEPTION SVC. 
FlexOS triggers SWls for events completed while 
software interrupts are OISABLEd when the ENABLE 
SVC is called. 



FlexOS Programmer's Guide ENABLE 

7.14 ENABLE 

C Interface: 

s_enable(); 

ret = _osif(F _ENABLE,O); 

Parameters: 

NONE 

Return Code: 

NONE 

Description: The ENABLE SVC restores program jumps to 
software interrupt routines (SWls). (The DISABLE SVC 
suspends their execution.) After ENABLE is called, 
FlexOS triggers the SWls for events completed while 
software interrupts were DISABLEd. 

7-41 



EXCEPTION 

7 .15 EXCEPTION 

C Interface: 

WORD 
LONG 

number; 
isr; 

FlexOS Programmer's Guide 

ret = s_exception(number,isr); 

ret = -.:..Osif(F _EXCEPTION,&parmblk); 

parmblk: 

0 

4 

Parameters: 

number 

isr 

Return Code: 

ret 

Description: 

7-42 

0 0 number 

isr 

exception number 

Address of Interrupt Service Routine. A NULL pointer 
removes the software interrupt for the exception 
number specified. 

Error Code 

The EXCEPTION SVC allows a user program to trap 
various conditions that would otherwise result in a 
program abort or error. 



FlexOS Programmer's Guide EXCEPTION 

The number parameter is a 16-bit integer specifying 
the exception condition to trap. Exception condition 
numbers are assigned as shown in Table 7-1; see 
the first section of the chip supplement to this book 
for the relationship between your microprocessor's 
and FlexOS's condition numbers. 

Table 7-1. Exception Condition Numbers 

Number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

19-255 
256+n 

512-64K 

Condition 

Non-existent memory 
Memory boundary error 
Illegal instruction 
Divide by zero 
Bound exception 
Overflow error 
Privilege violation 
Trace 
Breakpoint 
Floating point exception 
Stack fault 
Emulated instruction group 0 
Emulated instruction group 1 
Emulated instruction group 2 
Emulated instruction group 3 
Emulated instruction group 4 
Emulated instruction group 5 
Emulated instruction group 6 
Emulated instruction group 7 
Reserved 
Software interrupt n 
Reserved 

7-43 



EXCEPTION 

7-44 

FlexOS Programmer's Guide 

Emulated instruction group 0 is reserved for 
software emulation of floating point hardware. Refer 
to programmer guide supplements for other 
emulation group assignments. 

The Interrupt Service Routine is a machine-specific 
routine that must save and restore machine state if 
it is to return to the program causing the exception. 
This includes an "Interrupt Return" tailored to the 
CPU architecture to exit the routine. Be careful to 
monitor your stack utilization; your isr may have to 
do a stack switch for a program that is tight on 
stack space. This happens especially when the 
exception occurs in procedure code loaded through 
the COMMAND SVC. 



FlexOS Programmer's Guide EXIT 

7.16 EXIT 

C Interface: 

LONG status; /*System error code or utility return code*/ 

s_exit(status); 

ret = _osif(F _EXIT.status); 

Parameters: 

status 

Return Code: 

A 32-bit value setting exit flags in the high order 
word and passing completion status in the low 
order word. 

Set exit flag bit 0 (status bit 16) to 1 to keep 
memory resident. Otherwise, FlexOS releases the 
terminating processes memory. Exit flag bits 1 - 15 
are reserved and must be 0. The keep memory 
resident flag is only valid when the process is 
created with COMMAND flag bits 5 and 6 set. See 
Section 7.6 

The completion status word is returned to 
terminating process's parent process. 

NONE to calling process 

7-45 



EXIT 

Description: 

7-46 

FlexOS Programmer's Guide 

The EXIT SVC terminates the calling process, returns 
control to FlexOS, and passes back the completion 
status value to the parent process. Any outstanding 
events are cancelled and open files closed. 
Depending on status bit 32 (exit flag bit 16), the 
terminating process's memory allocation is either 
released or kept resident. 

After a process calls EXIT. its parent's COMMAND 
call completes. The completion status code is 
placed into the low order WORD of the return code 
with the high order word set to 0. (If exit flag 6 was 
set, FlexOS resets it.) See Appendix B for utility 
return codes. 

FlexOS sets the high bit of the completion status 
word to form a negative number when the. attempt 
to create the process resulted in an error or the 
process was abnormally terminated. You can use 
the remainder of the bits to return a value to the 
parent process. By convention, a 0 value is used to 
indicate success while positive values indicate some 
form of partial completion. 



FlexOS Programmer's Guide 

7.17 GET 

C Interface: 

UWORD 
BYTE 
LONG 

flags; 
table, *buffer; 
id,bufsiz; 

ret = s_get(table,id,buffer,bufsiz); 

ret = _osif(F _GET,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

0 l table l 
0 

id 

buffer 

bufsiz 

GET 

flags 

7-47 



GET FlexOS Programmer's Guide 

Parameters: 

table Table Number 

flags bits 0-7 can be used for SPECIAL devices bits 8-15 
are reserved 

id 

buffer 

bufsiz 

Return Code: 

ret 

Description: 

7-48 

File number or process ID 

Address of buffer to place partial or complete table 
contents 

Size of buffer in bytes 

Error Code 

The GET SVC stores partial or full table contents in 
the buffer specified. You specify the table by its 
number and, when there is more than one table with 
the same number, by a unique identifier. If the 
bufsiz is less than the size of the table structure, 
only the table contents up to that byte are stored. 

Depending on the table type, the table ID is either a 
process ID or a file number. The table descriptions 
in Section 8 indicate what the ID is for each table. 
Not all tables require an ID. Use a NULL ID value for 
these GET calls. 



FlexOS Programmer's Guide 

7.18 GIVE 

C Interface: 

LONG fnum; 

ret = s_give(fnum); 

ret = _osif(F _GIVE,&parmblk); 

parmblk: 

0 

Parameters: 

fnum 

Return Code: 

ret 

0 l 0 

File number 
keyboard you 
keyboard. 

Error Code 

l 0 

0 

fnum 

of virtual console 
want mapped to 

GIVE 

whose virtual 
the physical 

7-49 



GIVE 

Description: 

7-50 

FlexOS Programmer's Guide 

The GIVE SVC transfers access to the physical 
keyboard and mouse from the current virtual 
console to the virtual console specified by fnum. 
The virtual console getting ownership must be the 
virtual console for the process making the call or a 
child of that virtual console. Keyboard and mouse 
ownership is returned through the KCTRL SVC. 

Keyboard and mouse ownership is always passed 
from one virtual console to another as a unit; they 
cannot be separated. 

All characters in the previous owner's keyboard 
buffer are transferred into the new owner's keyboard 
buffer. Characters read subsequently from the 
physical keyboard are appended to the end of the 
characters in the buffer. 



FlexOS Programmer's Guide 

7.19 GSX - Perform Graphic SVC 

C Interface: 

ret = s_gsx(); 

ret = _osif(F _GSX,&parmblk); 

parmblk: 

0 

4 

8 

12 

Parameters: 

0 I option 

GSX - Perform Graphic SVC 

I 0 

0 

fnum 

PB 

PB Address of GSX Parameter Block 

7-51 



GSX - Perform Graphic SVC FlexOS Programmer's Guide 

GSX Parameter Block format: 

0 

4 

8 

12 

16 

20 

option 

Return Code: 

ret 

Description: 

7-52 

0 
1 

contrl 

intin 

ptsin 

intout 

ptsout 

reserved 

normal GSX call 
VOi aborting due to a CTRL-C. 

Error Code 

The GSX SVC allows the calling process to perform 
a Graphics operation on the indicated file. 



FlexOS Programmer's Guide 

7 .20 INST ALL 

C Interface: 

BYTE 
UWORD 

option, *devname. *parm; 
flags; 

ret = s_install(option,flags,devname,parm); 
ret = _osif(F _INSTALL,&parmblk); 

parmblk: 

0 

4 

8 

12 

Parameters: 

option 

0 I option I flags 

0 

devname 

pa rm 

0 - Remove previously installed driver unit. 

devnanie = device driver name 
parm =NULL 

- Load device driver from disk 

devname = device driver name for unit 0 
parm = Loadable driver disk file name 

INSTALL 

7-53 



INSTALL FlexOS Programmer's Guide 

2 - Add un'it to existing device driver 

devname = device driver name for new unit 
parm = device driver name for unit 0 

3 - Link a subdriver to a device driver 

devname = Front end device driver name 
parm := Subdriver device driver name 

flags These flags are used for options 1 and 2 only. 

7-54 

bit 0: 1 = Raw SET allowed 
0 = Raw SET not allowed 

bit 1: Reserved (must be 0) 

bit 2: 1 = Raw WRITE allowed 
0 = Raw WRITE not allowed 

bit 3: 1 = Raw READ allowed 
0 = Raw READ not allowed 

bit 4: 1 = Shared access allowed 
0 = Exclusive access only 

bit 5: 1 = Removable device 
0 = Permanent device 

bit 6: 1 = DEVLOCKs allowed 
0 = DEVLOCKs not allowed 

bit 7: 1 = Shared access only 
0 = Exclusive access allowed 

bit 8: 1 = Allow device partitions 
0 = Do not allow partitions 

bit 9: 1 = Verify after disk writes 
O = Do not verify after disk writes 



FlexOS Programmer's Guide INSTALL 

devname 

pa rm 

Return Code: 

ret 

Description: 

bits 10 - 12 are reserved and must be 0 

bit 13: 1 = Force case to media default 
0 = Do not force case 

bit 14: 1 = Literal load name 
0 = Prefix substitution on load name 

bit 15 is reserved and must be 0 

Address of the device name 

Depending on the option a null pointer or the 
address of the loadable disk driver file name, unit 0 
device name, or subdevice name. 

Error Code 

The INST ALL SVC loads a device driver, removes a 
device driver, adds a unit to an existing device 
driver, or associates a subdevice to an e"xisting 
device driver. The calling process must have group 
and user IDs of 0 to call INSTALL. INSTALL's 
devname and parm values are different for each 
option. 

The device privileges set by the driver override 
those set by your INSTALL flags. This prevents you, 
for example, from opening a printer device with read 
access. 

If a physical device driver has more than one unit, 
you must specify a unique device name to 
distinguish each unit Put the unit's name in the 
devname field and specify the physical device driver 
in the parm field. devname and parm values must be 
null terminated and are limited to 128 bytes. 

7-55 



INSTALL 

7-56 

FlexOS Programmer's Guide 

When you call option 3, both drivers must be 
already installed. 

Flag bit 8 is used only by the disk resource manager 
and indicates whether or not the fixed disk device 
can have partitions. A disk with partitions cannot 
be formatted when installed with this bit on. Flag 
bit 9 is also used only by the disk resource 
manager. Set it when you want to verify every write 
to disk. Checksum verification is done. 



FlexOS Programmer's Guide 

7.21 KCTRL 

C Interface: 

LONG 
UWORD 
UWORD 
UWORD 
RECT 

fnum; 
nranges; 
flags.beg l,beg2,beg3,beg4; 
end 1,end2,end3,end4; 
region; 

ret = s_kctrl(fnum,nranges,beg 1,end 1,beg2,end2, ... end4); 
ret = s_mctrl(fnum,region); 
ret = _osif(F _KCTRL,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

20 

24 

0 l 0 

0 

fnum 

beg1 

beg2 

beg3 

beg4 

(if mouse control) 

flags 

end1 

end2 

end3 

end4 

KCTRL 

7-57 



KCTRL 

Parameters: 

flags 

nranges 

fnum 

begn 

endn 

region 

Return Code: 

ret 

Description: 

7-58 

FlexOS Programmer's Guide 

Reserved, must be 0 
bit 0: 1 = Mouse control 

0 = Character control 

If 0, keyboard ownership is controlled through 
characters typed on the keyboard and the begin 
range and end range parameters are required. If 1, 
keyboard ownership is controlled through mouse 
movement and a region is required. 

The number of beginning and ending ranges to 
follow--maximum 4. 

Console file number of console to get keyboard; 
must be console file of the parent virtual console. 

First character in range of characters; pressing any 
character in range causes keyboard to return to 
specified console. 

Last character in the range. 

RECT structure defining a character rectangle on the 
parent's virtual console. 

Error Code 

The KCTRL SVC transfers keyboard ownership to the 
console file specified by fnum when a character is 
entered that falls within any of the four ranges 
specified. The initial transfer of ownership is 
conferred with the GIVE SVC. 



FlexOS Programmer's Guide KCTRL 

You can specify up to four character ranges. The 
ranges are inclusive of the first and last characters. 
A single character is specified by using it as the 
beginning and ending character. When a character 
falling in the range is typed, that characte~ and all 
subsequent characters are diverted to the parent 
console file's keyboard buffer. The process 
controlling the virtual consoles can either give 
control of the keyboard to another virtual console or 
take some special action on behalf of the user. 

You can also use mouse position to change 
keyboard and mouse ownership. In this case you 
specify a RECT (see Section 3 for the RECT 
description) on the parent console in which the 
mouse form must be resident. This region must be 
within the virtual console. When the mouse leaves 
the region, keyboard and mouse ownership go back 
to the parent. 

7-59 



LOCK FlexOS Programmer's Guide 

7.22 LOCK 

C Interface: 

UWORD 
LONG 

flags; 
fnum,offset,nbytes; 

ret = s_lock(flags,fnum,offset,nbytes); 
emask = e_lock(swi,flags,fnum,offset,nbytes); 
ret = _osif(F _LOCK,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

O=sync 
1 =async 

0 

swi 

fnum 

offset 

nbytes 

flags 

Parameters: 

7-60 

flags bits 0 and 1 select the LOCK mode 

0 = Unlock 
1 = Exclusive lock 
2 = Exclusive write lock 
3 = Shared write lock 

bits 2-3 are reserved (must be 0) 



FlexOS Programmer's Guide LOCK 

swi 

fnum 

offset 

nbytes 

Return Code: 

ret 

Description: 

bit 4: 1 = Return error on lock conflict 
0 = Wait on lock conflict 

bits 5-7 are reserved (must be 0) 

bits 8 and 9 determine how the offset field is 
interpreted 

0 = Relative to beginning of file 
1 = Relative to file pointer 
2 = Relative to end of file 

bits 10-15 are reserved (must be 0) 

Address of software interrupt routine 

File number whose contents you want to lock and 
unlock 

Offset of region to lock in file 

Length of region to !ock 

Error Code 

The LOCK SVC either locks or unlocks a region of a 
disk file, restricting or releasing access rights in the 
process. The disk file is specified by fnum and the 
area to be locked is determined by flag bits 8 and 9, 
offset, and nbytes. The Disk Resource Manager 
verifies that offset and nbytes define a region that 
falls on record boundaries for files created with a 
record size. If you specify a region that does not fall 
on a record boundary, no records are locked or 
unlocked and an error message is returned. 

The lock modes selected by flag bits 0 and 1 are 
defined as follows: 

7-61 



LOCK 

7-62 

FlexOS Programmer's Guide 

• 1--Exclusive lock: Prevents other processes 
from locking, reading from, writing to, or 
deleting the region. 

• 2--Exclusive write lock: lets other processes 
read from the region but prevents them from 
locking, writing to, or deleting the region.· 

• 3--Shared write lock: Allows other processes 
to read from and establish a shared write lock 
on but prevents them from writing to the 
region 

Flag bit 4 determines what happens when the region 
requested is already locked in an exclusive mode. 
When you set bit 4 to 1, an error code is returned; 
when you set bit 4 to 0, LOCK waits for the region 
to be unlocked, locks the region, and returns. 

The offset of the lock region in the file is, 
depending on the value in flag bits 8 and 9, relative 
to the beginning of the file, the current file pointer, 
or the end of the file. The file pointer location is 
modified by the READ, WRITE and SEEK SVCs. The 
nbytes value determines how many bytes are 
locked. · 

To unlock a region set flag bits 0 and 1 to 0. The 
offset indicates the first byte of the region to unlock 
and nbytes the number of bytes to unlock. Because 
the region unlocked is independent of the region 
initially locked, you can lock a large region of a file 
and then release portions as the lock becomes 
unnecessary so that other processes can have 
access. Once a region is unlocked, it can be locked 
by another process. 

An unlock specification with flags and offset values 
equal to 0 and nbytes equal to OxFFFFFFFF removes 
all locks on the file made by the calling process. 
The number of unlock calls does not have to match 
the number of lock calls. 



FlexOS Programmer's Guide 

7.23 LOOKUP 

C Interface: 

UWORD 
BYTE 
LONG 

flags; 
table, *name, *buffer; 
key,bufsiz,itemsiz,nfound; 

LOOKUP 

nfound = s_lookup(table,flags,name,buffer,bufsiz,itemsiz,key); 

ret = ~osif(F _LOOKUP,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

20 

24 

Parameters: 

0 I table I 
0 

name 

buffer 

bufsiz 

itemsiz 

key 

flags 

table Table Number (Table 10-1 lists the table numbers) 

flags bits 0 - 7 are dependent on table type 

bits 8 -12 are reserved (must be 0) 

7-63 



LOOKUP 

name 

buffer 

bufsiz 

itemsiz 

key 

Return Code: 

nfound 

ret 

7-64 

bit 13: 

FlexOS Programmer's Guide 

= Force name case to media default 
0 = Do not change name case 

bit 14: 1 = Literal name 
0 = Prefix translation allowed 

bit 15 is reserved (must be 0) 

Address of the table name to search for; names are 
case sensitive . 

. Address of buffer to store information collected. 

Size of buffer in bytes. 

The number of bytes to store from each table. If 
itemsiz is less than the table size, only that many 
bytes from each table found are written in the 
buffer. If itemsiz is greater than the table size, the 
excess area is not modified. 

Key from which to continue searching. The key 
value depends on the table type. Each table allowing 
LOOKUP specifies a key for continued search. The 
LOOKUP SVC continues the search from the first 
item after the key. A key value of 0 always starts 
the LOOKUP search from the beginning of the table. 

Number of tables found. LOOKUP stops searching 
when the end of the buffer is reached or there are 
no more tables. If the last table does not fit into the 
remaining buffer space, it is discarded. 

Error Code 



FlexOS Programmer's Guide LOOKUP 

Description: The LOOKUP SVC searches the system tables for 
those matching the table and name specified. The 
key field is used to specify the starting point for the 
search. A key value of zero specifies the beginning. 
A table's key value is defined by the resource 
manager responsible for that table. When a match is 
found the table, or an excerpt corresponding to the 
itemsiz in length, is copied into the buffer. The 
search continues until the buffer is filled or there 
are no more tables. 

The name specification is limited to 128 bytes and 
must be null terminated. You can use wildcards in 
the name specification. However, you are restricted 
to the lowest level of a path name--that is, files 
within a directory and devices on a node. The name 
"*" is translated to mean "default:*". 

Table names are case sensitive and you must enter 
your specification with the same case letters to get 
a match. This is also true when you use wildcards. 
For example, the entry "s*" returns only those tabies 
beginning with a lowercase s. 

A return of 0 indicates success, but means that 
LOOKUP found no tables. 

Table numbers, names, keys and the use of flag bits 
0 through 7 are described in Section 8. 

7-65 



MALLOC 

7.24 MALLOC 

C Interface: 

LONG 
BYTE 

*mpbptr,mpbsiz; 
option; 

FlexOS Programmer's Guide 

ret = s_malloc(option,mpbptr); 

ret = _osif(F _MALLOC,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

Parameters: 

7-66 

option 

mpbptr 

mpbsiz 

0 I option I 
0 

0 

mpbptr 

mpbsiz 

0 = Expand existing heap 
1 = Allocate a new heap 

0 

Address of Memory Parameter Block . 

Size of Memory Parameter Block in bytes 



FlexOS Programmer's Guide MALLOC 

The Memory Parameter Block must have the following format: 

0 

4 

8 

Return Code: 

ret 

Description: 

start 

min 

max 

start: For option equals 0, set the base address of 
the heap segment to be expanded in this field. 
MALLOC writes the base address of the added 
memory portion before it returns. For option equals 
1, set this field to zero. MALLOC fills in the base 
address of the new heap here. 

min: Specify the minimum number of bytes 
required. MALLOC fills in the actual number 
allocated before returning. 

max: Specify the maximum number of bytes 
required. MALLOC does not change your entry. 

Error Code 

MALLOC either adds contiguous memory to the end 
of an existing heap or allocates a new heap. Use the 
option field to select one or the other and the 
Memory Parameter Block to specify the minimum 
and maximum memory requirements. Set the 
Memory Parameter Block's start parameter to the 
base address of the existing heap for option 0 or to 
zero for option 1. 

7-67 



MALLOC 

7-68 

FlexOS Programmer's Guide 

Note: Process are not automatically given an initial. 
heap allocation. Consequently, option 1 must be 
called the first time heap space is needed. 

When you select option 0, MALLOC extends the 
designated heap contiguously and modifies your 
Memory Parameter Block's start and min parameters 
to indicate the new allocation's starting address and 
actual allocation, respectively. The original heap's 
base address (which is present PROCESS table) and 
contents remain unchanged. 

When you select option 1, the new heap may or 
may not be contiguous with any previously 
allocated heap. MALLOC modifies your Memory 
Parameter Block's start and min values to indicate 
the new heap's base address and actual allocation. 
These new values a.lso appear as the PROCESS 
table's HEAP and HSIZE parameters. The new heap 
may be allocated such that an existing heap is no 
longer expandable. 

MALLOC use is affected by the type of processor. 
See the supplement corresponding to your 
processor for more information. 



FlexOS Programmer's Guide MF REE 

7.25 MFREE 

C Interface: 

BYTE *start; 

!?_mfree(start); 

ret = _osif(F _MFREE,start); 

Parameters: 

start First address in heap to free 

Return Code: 

ret Error Code 

Description: The MFREE SVC releases the memory in a heap 
from the address specified to the end of that heap. 

7-69 



OPEN 

7.26 OPEN 

C Interface: 

UWORD 
BYTE 
LONG 

flags; 
*name; 
fnum; 

FlexOS Programmer's Guide 

fnum = s_open(flags,name); 

ret = _osif(F _OPEN,&parmblk); 

parmblk: 

0 0 l option l flags 

4 0 

8 name 

Parameters: 

option May be used by SPECIAL devices 

flags bit 0: 1 = Delete file/set attributes access 
0 = No delete/set access 

bit 1: 1 = Execute access 
0 = No execute access 

bit 2: 1 = Write access 
0 = No write access 

bit 3: 1 = Read access 
0 = No read access 

7-70 



FlexOS Programmer's Guide OPEN 

name 

Return Code: 

fnum 
ret 

Description: 

bit 4: 1 = Shared 
0 = Exclusive 

bit 5: 1 = Allow shared reads if shared 
0 = Allow shared R/W if shared 

bit 6: 1 = Shared file pointer 
0 = Unique file pointer 

bit 7: 1 = Reduced access accepted 
0 = Return error on reduced access 

bits 8 - 12 are reserved (must be 0) 

bit 13: 1 = Force case to media default 
0 = Do not affect name case 

bit 14: 1 = Literal name 
0 = Prefix substitution allowed 

bit 15 is reserved (must be 0) 

Address of file, pipe, or device name 

file number 
Error Code 

The OPEN SVC opens an existing file and returns a 
32-bit file number used for subsequent 110. "File" in 
this context refers to disk files, pipes, and device 
files used to communicate with printers, mouses, 
consoles, and special devices. FlexOS sets the file 
pointer to 0 when you open the file. 

7-71 



OPEN 

7-72 

FlexOS Programmer's Guide 

Use flag bits 0 through 3 to request the file access 
privileges--read, write, execute, and delete/set. Use 
flags 4, 5, and 6 to set the access mode--shared 
versus exclusive, shared read only versus shared 
read/write when shared, and shared versus unique 
file pointer. The use of these flags to monitor file 
access differs slightly from one type of file to 
another. See the sections in this manual on disk 
file, console, pipe, and special device management 
for the description of flag use with these types of 
files. 

Set flag bit 6 when you want two or more 
processes to share the same file pointer; this 
feature is only available to processes with the same 
family identification number (FID). Each process 
sharing the pointer must have this flag set. When 
this bit is set, the value of flag bit 1 is assumed to 
be 1; the actual value is ignored. 

Set bit 7 to accept reduced access privileges. The 
file's governing privileges for owner, group, and 
world categories are set when it is created. Reduced 
access is an issue when a disk label's security flag 
bit is set and you request a privilege level not 
available to a process with your ID and group 
number. Set this flag to 1 if you can accept 
reduced access; FlexOS ANDs the file's R W, E, and 
D privileges corresponding to your category with 
those you requested to determine the privileges you 
actually get. Set this flag to 0 if you cannot accept 
reduced access; FlexOS returns an error code when 
the privileges do not match. 



FlexOS Programmer's Guide OPEN 

Files can be opened any number of times. . Each 
open returns a different file number and each must 
be closed. Use this technique to obtain greater 
access to a file without losing your previous access. 
The standard protection rules do not apply on 
multiple opens of the same file by the same 
process. For example, if you open a file in. SHARED, 
READ-ONLY mode, you can later open it in 
EXCLUSIVE, READ-WRITE mode. The protection 
rules still apply, however, with respect to other 
processes attempting to open the file. 

Pipe file's read and write ends are separate and 
independent of each other. Similarly, a console file 
can be opened for read and write access separately. 
If one process opens a console or pipe file with 
EXCLUSIVE, READ access, another can open· it with 
EXCLUSIVE, WRITE access. One end of a pipe file 
can be opened in SHARED mode while the other is 
opened in EXCLUSIVE· mode. For pipes, how you 
open the file affects the pipe's operation. 

7-73 



ORDER 

7.27 ORDER 

C Interface: 

WORD 
LONG 

order; 
fnum; 

ret = s_order(order,fnum); 

ret = _osif(F _OROER,&parmblk); 

parmblk: 

0 0 l 0 l 
4 0 

8 fnum 

Parameters: 

FlexOS Programmer's Guide 

order 

order New virtual console position 

0 = Bottom 
1 = Next to Bottom 
2 = 2nd from Bottom 
n = Nth from Bottom 

-1 = Top 

fnum Fite number of virtual console to move 

Return Code: 

ret Error Code 

7-74 



FlexOS Programmer's Guide ORDER 

Description: The ORDER SVC changes the position of the virtual 
console with file number fnum in a "stack" of sibling 
virtual consoles. The "order" value specifies the 
virtual console's new position. Use - l to specify 
the top. All other positions are designated by 
number where 0 is the bottom console, 1 the next, 
then 2, and so forth. The Console Resource Manager 
adjusts the position numbers after "you make a 
change. 

The initial order of precedence corresponds to the 
order of creation. 

7-75 



OVERLAY 

7 .28 OVERLAY 

C Interface: 

BYTE 
LONG 

*codeadr, *dataadr; 
fnum,offset; 

FlexOS Programmer's Guide 

ret = s_overlay(fnum,codeadr,dataadr,offset); 

ret = _osif(F _OVERLAY,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

20 

Parameters: 

fnum 

codeadr 

7-76 

0 1 0 I 0 

0 

fnum 

codeadr 

dataadr 

offset 

File number of the opened file containing one or 
more overlay procedures 

Address in calling process's code area in which to 
load the overlay code. 



FlexOS Programmer's Guide OVERLAY 

dataadr 

offset 

. Return Code: 

ret 

Description: 

Address in calling process's data area in which to 
load the overlay data. 

Byte offset into file of the overlay header. The 
header must be in the same format as the default 
program load image used by the COMMAND SVC . 

Error Code 

The OVERLAY SVC loads the code and data from the 
designated overlay file into the calling process's 
memory. The overlay file is specified by fnum and 
the code and data addresses by the codeadr and 
dataadr pointers, respectively. Use the offset value 
to select a specific overlay within a file containing 
several. Each overlay in a file must have its own 
header. The overlay file must be open and the 
calling process must have EXECUTE privilege. 

An E MEMORY error is returned if the overlay does 
not fit into the calling process's code or data area 
starting at the specified address. 

When the COMMAND SVC detects overlays in the 
program file, it automatically keeps the file open. 
The file number can be found in the ENVIRON table. 



READ 

7.29 READ 

C Interface: 

LONG 
UWORD 
BYTE 

fnum,offset,bufsiz,nbytes; 
flags,*delimiters; 
*buffer, option; 

FlexOS Programmer's Guide 

nbytes = s_read(flags,fnum,buffer,bufsiz,offset); 
emask = e_read(swi,flags,fnum,buffer,bufsiz,offset); 
nbytes = s_rdelim(flags,fnum,buffer,bufsiz~offset,delimiters); 

ret = _osif(F _READ,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

20 

24 

o=sync 
1 =async 

option 

swi 

fnum 

buffer 

bufsiz 

offset 

delimiters 

flags 

Parameters: 

option May be used by SPECIAL devices 

7-78 



FlexOS Programmer's Guide READ 

flags bit 0: = Read from device. On disk files 
internal buffers are flushed and 
discarded before reading. On a keyboard 
file, the type ahead buffer is flushed. 

0 = Allow reading from internal buffers 

bit 1: 1 = Read until delimiter 
0 = Not delimited 

bit 2: = Non-destructive read: Read the internal 
buffer contents without removing bytes 
pertinent to keyboard and pipe files only; 
disk file reads are always non-destructive. 

0 = Normal read 

bit 3: 1 = Preinitialized read 
0 = Normal read 

bit 4: 1 = Include delimiter in buffer 
0 = Exclude delimiter 

bit 5: 1 = Edited read (only relevant when "Read 
until Delimiter" flag is on.) 

0 = Normal Read 

bits 6-7 are reserved (must be 0) 

bits 8 and 9 determine interpretation of the offset field: 

0 = relative to the beginning of file 
1 = relative to the file pointer 
2 = relative to the end of file 

bits 10-15 are reserved (must be 0) 

7-79 



READ 

swi 

fnum 

buffer 

. bufsiz 

offset 

delimiters 

Return Code: 

nbytes 

Description: 

7-80 

FlexOS Programmer's Guide 

Address of software interrupt routine 

File number of file to read 

Address of buffer in which to place information 

Size of buffer in bytes 

Byte offset relative to the position indicated by flag 
bits 8 and 9. Negative offsets are allowed. 

Address of an array of WORD values. This field is 
ignored on non-delimited reads. The first item 
indicates the number of delimiters in the array; 16-
bit character delimiters follow. If the file being read 
is an 8-bit file, the high byte of each qelimiter is 
ignored. Disk files and pipes with a record size of 1 
are considered 8~bit files; files with a record size of 
2 are considered 16-bit files. If the record size is 
greater than 2, a record size error is returned. The 
keyboard mode in the CONSOLE table determines if 
a console file is 8-bit or 16-bit oriented. On other 
devices, the device driver determines if it is an 8-bit 
or 16-bit device. 

Number of bytes read 

Error Code 

The READ SVC extracts data from the specified file. 
Data can be read either sequentially or randomly. 
The offset field is always added to either the 
beginning of a file, the current file pointer, or the 
end of file (see flag bits 8 and 9). You can specify a 
negative offset; this is useful, for example, to reread 
the last record of a file. Set flag bits 8 and 9 to one 
and the file pointer to one to perform sequential 
1/0. 



FlexOS Programmer's Guide READ 

LEFT ARROW 

RIGHT ARROW 

DELETE 

BACKSPACE 

CTRL-B 

CTRL-X 

The file pointer is updated on every read to the byte 
position after the transferred data in the file. It is 
initialized to 0 at OPEN. 

The READ SVC verifies that the offset and bufsiz 
fields are on record boundaries if the file was 
created with a record size. If the values do not fall 
on record boundaries, no characters are read and an 
error code is returned. 

The READ SVC can be called asynchronously on 
character oriented devices such as keyboards and 
special devices if the delimited read flag is not set. 
In this case: the number of characters read is at 
least one before the event is completed. The disk 
system does not support asynchronous READs. The 
pipe system supports asynchronous undelimited 
READs and reads as many characters as requested. 

When using the delimited read flag, READ cannot be 
called asynchronously. The buffer size is limited to 
256 bytes. Editing is performed by keyboards on 
delimited reads only. Common delimiters include 
the <carriage return>, ... <line feed> and <help> 
keys. The standard editing characters are as 
follows: 

Move cursor one character to left. 

Move cursor one character to right. 

Delete next character 

Delete previous character 

Move cursor to beginning of line if not at beginning, 
otherwise move to end of line. 

Erase from beginning of line to cursor 

7-81 



READ 

7-82 

FlexOS Programmer's Guide 

If a standard editing key is used as a delimiter, it 
has no effect on the returned buffer. These keys 
can be changed by an application program through 
the use of the XLAT SVC. The OEM that configures 
the system can also set the original ·editing 
character set. 



FlexOS Programmer's Guide 

7.30 RENAME 

C Interface: 

UWORD 
BYTE 

flags; 
*name,*newname; 

ret = s_rename(flags,name,newname); 

ret = _osif(F _RENAME,&parmblk); 

parmblk: 

0 

4 

8 

12 

Parameters: 

0 I 0 I flags 

0 

name 

newname 

flags bits 0 - 12 are reserved 

bit 13: 1 = Force case to media default 
0 = Do not affect name case 

bit 14: 1 = Literal name and new name 
0 = Prefix translation allowed 

bit 15 is reserved 

RENAME 

name Address of string containing name of existing file. 

7-83 



RENAME 

newname 

Return Code: 

ret 

Description: 

7-84 

FlexOS Programmer's Guide 

Address of string containing new name of file. 

Error Code 

The RENAME SVC renames an existing disk file or 
directory. If the file is currently open by another 
process, FlexOS does not ·rename the file and 
returns an error. For files, if the new name specifies 
another directory, the file is moved to that location. 
This feature is limited to directories on the same 
drive. Attributes, ownership, protection and date 
stamps are not changed. 



FlexOS Programmer's Guide RETURN 

7.31 RETURN 

C Interface: 

LONG emask; 

ret = s_return(emask); 

ret = _osif(F _RETURN,emask); 

Parameters: 

em ask 

Return Code: 

ret 

Description: 

Event mask of completed event 

return code of asynchronous SVC 

The RETURN SVC retrieves the return code of an 
asynchronous SVC. If the event is not complete, 
FlexOS waits for it to complete before returning 
from the RETURN call. Use WAIT or STATUS to 
determine if the event has completed. The return 
code is the code that would have been returned if 
the SVC had not been called synchronously. Once 
the RETURN SVC has been called, the event's emask 
bit is cleared. 

Note: You cannot use RETURN for events with a 
software interrupt (swi). The event's completion is 
provided to the swi and is not kept available to the 
parent process. 

7-85 



RWAIT FlexOS Programmer's Guide 

7.32 RWAIT 

C Interface: 

RECT *region; 

position = s_rwait(flags,fnum,region); 
emask = e_rwait(swi,flags,fnum,region); 

ret = _osif(F _RWAIT,&parmblk); 

parmblk: · 

0 

4 

8 

12 

16 

0 = sync 

1 = async 
0 

swi 

fnum 

region 

flags 

Parameters: 

7-86 

flags bit 0: 1 = clip to current window 

fnum 

0 = no clip 

bit 1: 1 = return on exit from rectangle 
0 = return on entry to rectangle 

bits 2-15 are reserved and must be 0. 

File number of open mouse file 



FlexOS Programmer's Guide RWAIT 

region 

Return Code: 

ret 

Description: 

RECT structure describing a rectangular area of the 
screen associated with the mouse. 

Error Code 

The RWAIT SVC allows a process to detect the 
mouse entering or exiting a described region of the 
screen. 

7-87 



SEEK 

7.33 SEEK 

C Interface: 

LONG 
UWORO 

fnum,offset; 
flags; 

position = s_seek(flags,fnum,offset); 

7-88 

ret = _osif(F _SEEK,&parmblk); 

parmblk: 

0 

4 

8 

12 

0 l 0 l 
0 

fnum 

offset 

FlexOS Programmer's Guide 

flags 



FlexOS Programmer's Guide SEEK 

Parameters: 

flags 

offset 

Return Code: 

position 

Description: 

bits 0-7 are reserved (must be 0) 

bits 8-9 determine how to interpret the offset field 

0 - Relative to beginning of file 
1 - Relative to file pointer 
2 - Relative to end of file 

bits 10-15 are reserved 

Number of bytes relative to reference selected in flag 
bits 8 and 9 

Current position of the file pointer after SEEi<; call. 

The SEEK SVC either returns or changes the file 
pointer position of the specified file. To get the 
current pointer position, select the "Relative to file 
pointer" option in flag bits 8 and 9 and specify an 
offset of 0. Any other combination of values for flag 
bits 8 and 9 and the offset cause a change in the 
file pointer position. For all SEEK calls, the value 
returned indicates the current file pointer position. 

The offset value can be positive or negative. An 
error is returned, however, if the new pointer 
position is less than 0. If the file consists of 
multibyte records, the offset must fall on a record 
boundary. 

7-89 



SET 

7.34 SET 

C Interface: 

BYTE 
LONG 
UWORD 

table, *buffer; 
id,bufsiz; 
flags; 

ret = s_set(table,id,buffer,bufsiz); 

ret = _osif(F _SET,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

Parameters: 

0 I table 

table Table number 

I 
0 

id 

buffer 

bufsiz 

FlexOS Programmer's Guide 

flags 

flags bits 0-7 may be used by SPECIAL drivers 
bits 8-15 are reserved and must be 0 

7-90 



FlexOS Programmer's Guide SET 

id 

buffer 

bufsiz 

Return Code: 

ret 

Description: 

Table identifier (required only when you have more 
than one table with the same number) 

Address of source buffer with new table contents 

Size of buffer in bytes 

Error Code 

The SET SVC changes table contents. The table is 
specified by the table number and, if necessary, an 
id. The id is table dependent; see the individual 
table explanations in Section 8 for the id value of a 
specific table. Not all tables can be modified with 
SET and some tables can only be modified by 
privileged processes. 

If the bufsiz specified is less than the size of the 
table, the buffer contents replace the table contents 
starting from the beginning of the table. The 
remainder of the table is not changed. 

7-91 



SPECIAL FlexOS Programmer's 1 

7.35 SPECIAL 

C Interface: 

7-92 

UWORD 
LONG 
BYTE 

flags; 
fnum,dbufsiz,pbufsiz,; 
func, *data but, *parmbuf; 

ret = s_special(func,flags,fnum,databuf,dbufsiz,parmbuf,pbufsiz) 
emask = e_special(swi,func,flags,fnum,databuf,dbufsiz,parmbuf, 
pbufsiz); 

ret = _osif(F _SPECIAL,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

20 

24 

O=sync 
1 =async tune 

swi 

fnum 

databuf 

dbufsiz 

parmbuf 

pbufsiz 

flags 



FlexOS Programmer's Guide SPECIAL 

Parameters: 

func 

flags 

swi 

fnum 

databuf 

dbufsiz 

parmbuf 

pbufsiz 

Return Code: 

ret 

ret 

SPECIAL function number field: Bits 6 and 7 indicate 
the data flow direction of the databuf and parmbuf 
buffers as follows: 

Q_f!_]__:- :-P~ r !Tl t;> IJf 
1 = write buffer 
0 = read buffer 

l;>i! 6_~:-ctat~blJf 
1 = write buffer 
0 = read buffer 

If no data or parameters are to be transferred, set 
the bits to 0. The remainder of the bits in the 
number are determined by the device drivers. 

Depends on type of file; however bits 11, 14, and 15 
are always reserved and must be 0. 

Address of software interrupt routine 

File number returned when device was opened 

Address of data buffer. If dbufsize field is NULL, this 
field is data. 

Size of data buffer in bytes or NULL to indicate that 
data is in databuf field or that there is no data. 

Address of parameter buffer. If pbufsiz field is NULL, 
this field is data. 

Size of parameter buffer or NULL to indicate that 
parameter is in the parmbuf field or that there are 
no parameters. 

Return code depending on type of file 

Error code 

7-93 



SPECIAL 

Description: 

7-94 

FlexOS Programmer's Guide 

The SPECIAL SVC provides direct access to a device. 
The calling process must have opened the device 
before a SPECIAL function can be used. The function 
number indicates what type of operation to perform. 
SPECIAL requires the driver, not the resource 
manager, to interpret the function number and 
perform the operation. 

Although SPECIAL functions and return codes differ 
according to the driver, the SPECIAL SVC parameter 
block is always formatted as shown above. The 
format rules are as follows: 

• The most significant 2 bits of the func field 
determine the direction of the buffer data flow 
as described in the func description above. 
The lower 6 bits of the func field and flag bits 
0-10, 12, and 13 are driver dependent. 

• The flags field is a bit map of flags affecting 
the function's mode of operation and are 
typically function dependent. 

• The databuf and dbufsiz fields make up a buffer 
specifier. If dbufsiz is 0 (NULLPTR). databuf 
field is a 32 bit data value rather than a pointer. 

• The data buffer cannot contain pointers. 

• The parmbuf and pbufsiz fields are also buffer 
specifiers and follow the same rules as the 
databuf and dbufsiz fields. 

There are a maximum of 64 SPECIAL function 
numbers. (This is because only function number bits 
0 through 5 can be used.) The first 32 digits are 
reserved for use by Digital Research Inc. The second 
32 digits are available for use by an OEM. 



FlexOS Programmer's Guide SPECIAL 

7.35.1 Disk Resource Manager SPECIAL Functions 

The Disk Resource Manager recognizes nine SPECIAL functions for disk 
initialization and raw disk 1/0. These SPECIAL calls allow you to access 
the disk directly, bypassing normal operations and restrictions. You 
must specify OEM-defined parameters, such as sector size or file 
allocation table (FAT) address, to use some functions. 

The parameter blocks for the Disk Resource Manager functions adhere 
to the model shown above but differ in their flag use and buffer 
requirements. Each function description below includes the flag 
definitions. Buffer requirements are shown in the parameter block 
illustrations. If a 0 is shown in the field, there is no corresponding 
parameter. 

The return code for all Disk Resource Manager functions is either 
E_SUCCESS or E_IOERRS. 

Note: Before you can perform the SPECIAL disk initialization functions 
1 through 3, you must open the device with exclusive access and call 
SPECIAL function 8. Read, write, and/or set privileges are also required 
as described below. 

7-95 



Disk Function 0 FlexOS Programmer's Guide 

Disk Function 0: Read System Area 

SPECIAL disk function 0 reads in the system area of the disk into the 
data buffer. GET the drive's DISK table before you call function 0 to 
determine if the system area exists on the disk. The size of the data 
buffer must be greater than or equal to the size of the system area. 
FlexOS requires the user to have disk read privilege to perform this 
function. 

0 

4 

8 

12 

16 

20 

24 

Parameters: 

0 l 0 l 
swi 

fnum 

databuf 

dbufsiz 

0 

0 

flags Bits 0-15: Reserved 

7-96 

flags 



FlexOS Programmer's Guide Disk Function 1 

Disk Function 1: Write System Area 

SPECIAL disk function 1 writes the contents of the data buffer onto· the 
system area of the disk. GET the drive's DISK table to determine if the 
disk has a system area before calling function 1. The size of the data 
buffer must match the size of the system area. You must must open 
the drive in exclusive mode with write privileges and call SPECIAL disk 
function 8 before you can write to the system area. 

0 l 41H l flags 

swi 

fnum 

databuf 

dbufsiz 

0 

0 

Parameters: 

flags Bits 0-15: Reserved 

7-97 



Disk Function 2 FlexOS Programmer's Guide 

Disk Function 2: Format System Area of Disk 

SPECIAL disk function 2 formats the disk's system area according to 
the convention of the driver. GET the drive's DISK table to determine 
if the system area exists before calling function 2. You must open the 
drive in exclusive mode with read, write, and set privileges and call 
SPECIAL disk function 8 before you can format the system area. 

0 J 2 J flags 

swi 

fnum 

0 

0 

0 

0 

Parameter: 

flags Bits 0-15: Reserved 

7-98 



FlexOS Programmer's Guide Disk Function 3 

Disk Function 3: Format Track 

SPECIAL disk function 3 formats the disk media according to the 
specifications in the parameter buffer. You must open the drive in 
exclusive mode with read, write, and set privileges and call SPECIAL 
disk function 8 before you can use this function 

0 

Parameters: 

flags Bit 0: 

Bit 1: 

Bit 2: 

Bit 3: 

l 83H l flags 

swi 

fnum 

0 

0 

parmbuf 

pbufsiz 

Reserved 

= Mark the whole track as bad 

= Use C, H, S, and N fields 

1 = Use HEAD, CYLINDER, BYTESEC, and. SECTOR 
fields 

Bits 4-15: Reserved 

7-99 



Disk Function 3 FlexOS Programmer's Guide 

Set bit 1 to remove tracks designated bad by the 
manufacturer from file system access. Set flag bit 3 
rather than flag bit 2 and specify the track in the 
head and cylinder fields. The remainder of the fields 
are irrelevant in this operation. 

You select the format locations and characteristics 
in the parmbuf (parameter buffer). The data 
structure provides two, mutually exclusive means for 
specifying the starting head, cylinder, sector 
number, and the number of bytes per sector for the 
format operation. The other fields are valid for both 
options. Set flag bit 2 or 3 to select one means over 
the other. 

parmbuf Format: 

HEAD 

DENS 

HEAD 

CYLINDER 

DENS 

FILL 

7-100 

c 

c 

0 

FILL 

SECTRK 

H s 

H s 

Starting head number 

Starting cylinder number 

Format density where 

0 - Single density 
1 - Double density 

Fill character 

CYLINDER 

BYTE SEC 

SECTOR 

l N 

N 



FlexOS Programmer's Guide Disk Function 3 

BYTESEC Number of bytes per sector 

SECTRK Number of sectors per track 

SECTOR Starting sector number. When you set bit 3, the 
format operation begins with the sector field 
specified here 

C, H, S, & N a variable length list of 4-byte fields where: 

C is a starting cylinder number 
H is a head number 
S is a starting sector number 
N is the number of bytes/sector 

When you. set bit 2, the format operation begins 
after the sector specified in each entry. The number 
of items in the list is determined by pbufsiz. 

7-101 



Disk Function 4 FlexOS Programmer's Guide 

Disk Function 4: Media Check 

SPECIAL disk function 4 checks to see if the media has changed or if a 
physical or logical error condition exists on the media. You must have 
opened the drive in at least GET-only mode to use this function. (GET
only mode is described in Section 2.6 above.) 

0 l 4 l flags 

swi 

fnum 

0 

0 

0 

0 

Parameters: 

flags Bits 0-15: Reserved 

7-102 



FlexOS Programmer's Guide Disk Function 5 

Disk Function 5: Flush Bufff:~rs 

SPECIAL disk function 5 writes any updated buffers onto the disk. The 
user must have opened the device, however, no particular privilege is 
required. 

0 J 5 J flags 

swi 

fnum 

0 

0 

0 

0 

Parameters: 

flags Bits 0-15: Reserved 

7-103 



Disk Function 6 FlexOS Programmer's Guide 

Disk Function 6: Read Physical Record 

SPECIAL disk function 6 either reads data from the media into the data 
buffer or verifies the data is valid; flag bit 2 determines which 
operation is performed. The media starting point for both operations 
is defined in the parameter buffer by head, sector, and cylinder 
numbers. The dbufsiz value determines how much data is read. 
dbufsiz must be a multiple of the media's sector size. You must have 
opened the drive with at least read privilege to use function. No data 
is read, however, when you select the verify option. 

0 1 86H 1 flags 

swi 

fnum 

databuf 

dbufsiz 

head J sector l cylinder. 

0 

7-104 



FlexOS Programmer's Guide Disk Function 6 

Parameters: 

flags Bits 0-1: Reserved 
Bit 2: 1 = Verify media 

0 = Read media 
Bits 3-15: Reserved 

The starting head, sector and cylinder numbers are 
specified in the H, S, C fields above. 

7-105 



Disk Function 7 FlexOS Programmer's Guide 

Disk Function 7: Write Physical Record 

SPECIAL disk function 7 writes the data buffer contents to the media. 
The media starting point is specified in the parameter buffer by head, 
sector, and cylinder number. The dbufsiz value determines how much 
data is written. dbufsiz must be a multiple of the media's sector size. 
You must open the drive in exclusive mode with write access before 
you can use this function. 

0 I C7H l flags 

swi 

fnum 

databuf 

dbufsiz 

head I sector I cylinder 

0 

Parameters: 

flags Bits 0-15: Reserved 

7-106 

The starting head, sector, and cylinder numbers are 
specified in the H, S, C fields, above. 



FlexOS Programmer's Guide Disk Function 8 

Disk Function 8: Initialize Format 

SPECIAL disk function 8 supplies the file system and the disk driver 
with the drive's Media Descriptor Block (MOB). This function must be 
called before the user calls SPECIAL disk functions 1, 2, and 3. To 
execute this call, the user must have opened the drive in exclusive 
mode with read, write and set privileges. 

0 48H flags 

swi 

fnum 

databuf 

dbufsiz 

0 

0 

7-107 



Disk Function 8 FlexOS Programmer's Guide 

Parameters: 

flags Bits 0 - 15: Reserved 

The Media Descriptor Block is specified in the data 
buffer as follows: 

SECTSIZE FIRSTSEC 

NSECTORS 

SECTRK SECBLK 

NFATS 1 FATID NFRECS 

DIRSIZE NH EADS l FORMAT 

HIDDEN 

SYSSIZE 

SECTSIZE Size of sectors in bytes 

FIRSTSEC First physical sector number of File Allocation Table 
(FAT) on track 0 

NSECTORS Number of sectors in logical image of disk including 
FATs, directory, and boot record 

SECTRK Number of sectors per track 

SECBLK Number of sectors per block 

NFATS Number of FATs 

FATID FAT identification byte 

NFRECS Number of sectors in a FAT 

DIRSIZE Number of directory entries in the root dir~ctory 

NHEADS Number of heads 

7-108 



FlexOS Programmer's Guide Dlsk Function 8 

FORMAT 

HIDDEN 

SYSSIZE 

Media format according to the following values 

0 =RAW 
1 = 1.5 byte FATs 
2 = 2 byte FATs 

Number of sectors in partitions preceding the 
media's logical image 

Number of bytes in the system area. 

7-109 



Miscellaneous SPECIAL Functions FlexOS Programmer's Guide 

7.35.2 Miscellaneous Resource Manager SPECIAL Functions 

Two SPECIAL functions are provided for accessing serial-type port 
devices when they are serving as subdrivers. Use these functions as 
you would GET and SET to determine the driver's current values and 
set them. The data structure used for both functions is the PORT table. 

The fnum value for both calls is the file number returned when you 
open the subdriver's owner: See Section 6 for the description of the 
owner and the procedure for finding it. 

Miscellaneous Device Function 0: Get Current PORT Table Values 

Use this function to determine the subdriver's current PORT table 
values. 

Parameters: 

parmbuf 

pbufsize 

7-110 

0 l 13H l 0 

0 

fnum 

0 

0 

parmbuf 

pbufsiz 

Address of buffer to place the PORT table. 

Length of the buffer; if the number splits a field, 
that value is not copied. 



FlexOS Programmer's Guide Miscellaneous SPECIAL Functions 

Miscellaneous Device Function 1: Set Port Table Values 

Use this SPECIAL function to set a subdriver's· PORT table values .. 

Parameters: 

parmbuf 

pbufsize 

0 I 93H I 0 

0 

fnum 

0 

0 

parmbuf 

pbufsiz 

Address of buffer with source PORT table values. 

Length of the buffer; if the number splits a field, 
that value is not set. 

7-111 



STATUS FlexOS Programmer's Guide 

7.36 STATUS 

C Interface: 

LONG cm ask; 

cmask = s_status(); 

ret = _osif(F _STATUS,OL); 

Parameters: 

NONE 

Return Code: 

cmask 

Description: 

7-112 

Bit map of completed events 

The STATUS SVC informs the calling process of 
previously initiated asynchronous e·vents that have 
completed and whose return codes have not been 
retrieved by the RETURN SVC. If the event specified 
has a software interrupt (swi), the cmask value for 
that event is 0 rather than 1. (You do not call 
RETURN for events with a software interrupt.) 

Note: STATUS places a heavy burden on the CPU; 
excessive use of STATUS impacts program 
performance. 



FlexOS. Progra·mmer's Guide SWIRET 

7.37 SWIRET 

C Interface: 

LONG option 

s_swiret(option); 

ret = _osif(F _SWIRET,option); 

Parameters: 

option 

Return Code: 

NONE 

Description: 

0 - return to main program at point of interruption 

1 - assume process identity from main program 

The SWIRET SVC is used to return from a software 
interrupt routine (swi). It provides two options: 

o return to the main program at the point of 
interruption 

o retain control of subsequent program execution 

"main program" means the process that made the 
initial asynchronous call. Both options return the 
registers to their values when the process was 
interrupted. 

When you select SWIRET's second option, the 
software interrupt assumes the main program's 
process ID and environment, including the stack. 

7-113 



SWIRET 

7-114 

FlexOS Programmer's Guide 

Use this option to return to a location in the main 
program other than the point of interruption or to 
assume the entire process identity without returning 
to the main program. Because the current condition 
of the stack is unknown when SWIRET is called, you 
should restore it to a known place before 
proceeding. 

You can exit a program with SWIRET. Specify option· 
1 and call EXIT in your next instruction. 



FlexOS Programmer's Guide 

7.38 TIMER 

C Interface: 

UWORD flags; 
LONG time; 

ret = s_timer(flags,time); 
emask = e_timer(swi.flags,time); 

ret = _osif(F _TIMER.&parmblk); 

parmblk: 

0 

4 

8 

Parameters: 

O=sync 
1 =async 0 

--· -

flags bit 0: 1 = absolute 
0 = relative 

bits 1-15: Reserved 

swi 

time 

flags 

swi Address of software interrupt routine 

TIMER 

time If bit 0 = 1 (absolute), number of milliseconds to 
delay after midnight. If bit 0 = 0 (relative), number of 
milliseconds to delay. 

7-115 



TIMER 

Return Code: 

ret 

Description: 

7-116 

FlexOS Programmer's Guide 

Error Code 

The TIMER SVC delays the calling process until the 
specified time or the specified period of time 
expires. Use TIMER asynchronously with bit 0 = 0 
(relative time) when you need a watchdog timer for 
an asynchronous SVC. 

If absolute time is specified and the current time of 
day is beyond it, the process delays until the 
specified time the next day. 



FlexOS Programmer's Guide WAIT 

7.39 WAIT 

C Interface: 

LONG events,cmask; 

cmask = s_wait(events); 

ret = _osif(F _WAIT.events); 

Parameters: 

events 

Return Code: 

cmask 

Description: 

Logical OR of emasks to wait for 

Bit map of completed events 

The WAIT SVC causes the calling process to wait for 
an asynchronous event to occur. Specify one or 
more events by their emask in the WAIT events 
argument. FlexOS returns when one of these events 
has run to completion. For events that do not have 
a software interrupt, the cmask return code 
indicates which event completed. Subsequently, call 
the RETURN SVC to retrieve the return code of the 
completed event. This also releases that emask so 
it can be reused. 

You can wait on events that have a software 
interrupt (swi). However, the event bit in the cmask 
returned is 0 rather than 1 when WAIT returns. Also, 
do not call RETURN to retrieve the completion code 
after WAIT returns--the completion is no longer 
available having already been provided to the swi 
for handling. 

7-117 



WRITE 

7.40 WRITE 

C Interface: 

LONG 
BYTE 
UWORD 

fnum,bufsiz,offset,nbytes; 
option, *buffer; 
flags; 

FlexOS Programmer's Guide 

nbytes = s_write(flags,fnum,buffer,bufsiz,offset); 
emask = e_write(swi,flags,fnum,buffer,bufsiz,offset); 

ret = _osif(F _WRITE,&parmblk); 

parmblk: 

7-118 

0 

4 

8 

12 

16 

20 

O=sync 
1 =async option 

swi 

fnum 

buffer 

bufsiz 

offset 

flags 



FlexOS Programmer's Guide WRITE 

Parameters: 

option 

flags 

swi 

fnum 

buffer 

bufsiz 

offset 

May be used by SPECIAL devices 

bit 0: = Flush buffers after WRITE. 
This forces the data to the media. 
If this is a zero length request, 
the media is updated with any pending 
writes. 

bit 1: 

0 = Allow optimized internal buffering 

= Truncate file to size specified in 
offset field. The bufsiz field 
must be 0 to allow a truncate. 

0 = Do not truncate 

bits 2 - 7 are reserved (must be 0) 

bits 8 and 9 determine how the offset fieid 
is interpreted: 

0 - Relative to beginning of file 
1 - Relative to file pointer 
2 = Relative to end of file 

bits 10-15 are reserved (must be 0) 

Address of software interrupt routine 

File number of file to write to 

Address of buffer from which to write 

Size in bytes of buffer 

Offset into file to start writing depending on bits 8 
and 9. 

7-119 



WRITE 

Return Code: 

nbytes 

Description: 

7-120 

FlexOS Programmer's Guide 

Number of bytes written. When nbytes is less than 
bufsize, an error ocurred during the write operation. 
An error code is returned only if no data was 
written before the error ocurred. 

Error Code 

The WRITE SVC places data into the specified file. 
Flags bits 8 and 9 determine whether the offset 
value is added to the beginning of file, the current 
file pointer, or the end of file. The offset can be a 
negative number, allowing a write to the last record 
of the file. Sequential 1/0 is performed by writing 
relative to the file pointer with an offset of 0. 

The file pointer is updated on every write to be the 
byte position after the transferred data in the file. It 
is initialized to 0 at OPEN. Use the SEEK SVC to 
determine the current value of the file pointer. 

The WRITE function verifies that the offset and 
bufsiz are on record boundaries if the file was 
created with a record size. No data is written if the 
values do not correspond. 

The disk system has an asynchronous interface to 
allow for 1/0 redirection from the pipe or console 
systems. However, the disk system does not 
support asynchronous WRITE operations. An 
asynchronous WRITE to disk is slower and requires 
more memory than a synchronous WRITE. 



FlexOS Programmer's Guide 

7.41 XLAT 

C Interface: 

LONG 
UWORD 
BYTE 

fnum,bufsiz; 
flags; 
*buffer; 

ret = s_xlat(flags,buffer,bufsiz); 

ret = _osif(F _XLAT,&parmblk); 

parmblk: 

0 

4 

8 

12 

16 

Parameters: 

0 J 0 J 
() 
v 

0 

buffer 

bufsiz 

XLAT 

flags 

flags bit 0: 1 = replace existing table with buffer contents 

buffer 

bufsiz 

0 = add buffer contents to current table 

bits 1 - 15 are reserved and must be 0. 

Address of the buffer with the replacement or 
supplemental keystroke translations 

Size of buffer in bytes 

7-121 



XlAT 

Return Code: 

ret 

Description: 

FlexOS Programmer's Guide 

Error Code 

The XlAT SVC creates, replaces, or supplements a 
key translation table for the console specified by 
fnum. When the CONSOLE table KMODE (offset 2) 
bit 2 is 0, FlexOS translates characters entered from 
the keyboard into the string specified in the key 
translation table. 

The key translation table consists of an unlimited 
number of 32 byte entries. Each entry is formatted 
as follows: 

,._..-----------32 bytes------------l._I 

7-122 

J 
The fields are defined as follows: 

·• key: The 16-bit character to be translated; fill 
the high byte with a 0 for 8-bit input. 

• nch: A WORD value indicating the number of 
16-bit replacement characters; the maximum 
number of replacement characters is 14 

• replacement: The replacement string; all 
characters are 16-bit 



FlexOS Programmer's Guide XLAT 

The key translation table is maintained on a · per 
process basis. Child processes inherit their parent's 
table and share it until either process mak~s a 
change. This allows a parent to set up the 
keyboard environment before an application is run. 
When XLAT is called to change a table shared by 
two processes, FlexOS makes a separate copy for 
the calling process so that the modifications do not 
affect the other process. 

There is no inherent limit to the number of 
translated keys supported for each process. The 
space for these keys are taken out of the Transient 
Program Area (TPA). 

End of Section 7 

7-123 





SECTION 8 

System Tables 

System status and parameter values are available to applications 
through the GET, SET, and LOOKUP SVCs which operate on a set of 
formalized data structures that comprise FlexOS's system tables. This 
section presents descriptions of the system tables in alphabetical 
order. 

The GET SVC transfers the table to a buffer in the application's 
memory space. The SET SVC changes values in a table. For both 
SVCs, the table is identified by its number and, when that table type 
has more than one version, a unique ID number. The LOOKUP SVC 
searches for and retrieves tables of the same type. Each table that 
can be accessed with LOOKUP has a key value field; use this field to 
specify a starting point for the search. 

The GET, SET, and LOOKUP SVCs will not access all of the system 
tables. Table 8-1 lists each of the system tables and the SVCs used 
to access them. Also listed in Table 8-1 are each table's number, iD, 
and key value. 

8-1 



FlexOS Programmer's Guide 

Table 8-1. System Table Access 

Table No. Unique LOOK 
& Name GET SET ID UP Key Description 

OH PROCESS x x pid x pid Process information 
lH ENVIRON x x 0 Process environment 
2H TI MEDA TE x x 0 System time of day 
3H MEMORY x 0 System memory use 

lOH PIPE x fnum x key Pipe information 
20H DIS,KFILE x x fnum x key Disk file information 
21H DISK x x fnum Disk device information 
JOH CONSOLE x x : fnum Console f i1 e information 
31H PCONSOLE x x fnum Console device information 
32H VCONSOLE x x fnum x VCNUM Console information 
40H SYSTEM x x 0 Global system information 
41H FILNUM x fnum x fnum File number's table 
42H SYSDEF x key System logical name table 
43H PROCDEF x key Process logical name table 
44H CMDENV x pid Command environment 
45H DEVICE x key Device information 
46H PATHNAME x none Ful I path name 
71H PRINTER x x fnum Printer device information 
81H PORT x x fnum Port device information 
82H+ SPECIAL x x fnum Special device information 

In the following system table descriptions, only those fields marked 
R/W are read-write; all other fields are read-only. In all bit-mapped 
values the bits for which there are no options are reserved and must 
be 0. 

Note: FlexOS does not maintain memory representations for the 
tables described in this section. The corresponding resource manager 
or driv.er constructs them. only when you call the GET, SET, or LOOKl)P 
SVCs. 

8-2 



FlexOS Programmer's Guide 

8.1 CMDENV Table 

Number 
44H 

GET? 
Yes 

ID: 0 or process ID 
Key: none 

§_!=Tl 
No 

LOOKUP? ------

No 

0 Command File Specification ... 

128 Command Tail ... 

256 = Length in bytes. 

8.1 CMDENV Table 

The CMDENV table contains a process's command file specification and 
command tail. The strings are set by the COMMAND SVC. Both fields 
are 128 bytes in length and the strings are NULL terminated. The file 
specification includes the full pathname. 

You can get the CMDENV table for the calling process or another 
process For the calling process, specify an !D of 0 in the GET. !O field. 
Otherwise, put the process ID of the target in the ID field. 

8-3 



8.2 CONSOLE Table FlexOS Programmer's G 

8.2 CONSOLE Table 

Number 
30H 

GET? 
Yes 

SET? 
Yes 

!-oQO~!lPl 
No 

ID: File number of the console file 
Key: none 

The CONSOLE table describes the screen and keyboard of a con 
file. 

0 1 2 3 

TAHEAD SMODE 
. 

0 

4 KMODE CUR ROW 

8 

12 

16 

20 

24 

CURCOL 

NCOLS 

26 = Length in bytes 

NROWS 

VCNUM l TYPE 

CNAME 

.• TAHEAD: Number of characters waiting in type-ahead buffer 

• SMODE (R/W): Screen modes 

8-4 

bit 0: 1 = Disable escape sequence decoding 
0 = Select Escape sequences supported 

bit 1: 1 = Characters are 16-bit values 
0 = Characters are 8-bit values 

bit 2: 1 = Convert <LF> to <CR>< LF> 
0 = Do not convert <LF> or <CR> 



FlexOS Programmer's Guide 8.2 CONSOLE Table 

e KMODE (R/W): Keyboard mode 

bit 0: 1 = Disable Control-C 
0 = Control-C attempts external abort 

bit 1: 1 = Disable Control-S/Control-0 
0 = Allow Control-S/Control-0 

bit 2: 1 = Disable keyboard translation 
0 = Translate keys 

bit 3: 1 = Disable ESC sequence decoding 
0 = Support ESC sequence 

bit 4: 1 = Characters are 16-bit values 
0 = Characters are 8-bit values 

bit 5: 1 = Disable echo 
0 = Echo input characters on screen 

bit 6: 1 = Disable CTRL -Z 
0 = CTRL -Z = end of file 

bit 7: 1 = Enable toggle characters 
0 = Disable toggle characters 

bit 8: 1 = Convert <LF> or <CR> to <CR> <LF> 
0 = Do not convert <LF> or <CR> 

bit 9: 1 = Do not echo carriage returns 
0 = Echo carriage returns 

bit 10: 1 = Do not echo <CR> on any delimiter 
0 = Echo <CR> on any delimiter 

• CURROW (R/W): Current cursor row position 

• CURCOL (R/W): Current cursor column position 

8-5 



8.2 CONSOLE Table FlexOS Programmer's Guide 

• NROWS: Height of virtual screen in character rows 

• NCOLS: Width of virtual screen in character columns 

• VCNUM: Decimal number of virtual console 

• TYPE: Type of virtual console 

bit 0: 1 = Graphics capability 
0 = Character only 

bit 1: 1 = No numeric keypad 
0 = Keypad 

bit 2: 1 = Mouse support 
0 = No mouse support 

bit 3: 1 = Color 
0 = Black and white 

bit 4: 1 = Memory-mapped video 
0 = Serial device 

bit 5: 1 = Currently in graphics mode 
0 = Currently in character mode 

• CNAME: Physical console device name 

Each console file opened has a corresponding CONSOLE table. The 
TAHEAD, CURROW, and CURCOL values are initialized to 0 when the 
console file is opened. NROWS and NCOLS correspond to the rows and 
columns set in the virtual console. SMODE and KMODE are initialized 
to O; TYPE and CNAME are inherited from the parent console. 

GET anq SET the CONSOLE table using as the ID the file number 
returned when you OPENed the file vcxxx/console. Do not use the file 
number returned when you CREATEd the virtual console. For most 
applications, this file number is contained in the stdout--the screen 
file number--and stdin--the keyboard file number--in the ENVIRON 
table. Stdin and stdout can have the same or different file numbers. 

Use SET to change the cursor position and the screen and keyboard 
modes. 

8-6 



FlexOS Programmer's Guide 

8.3 DEVICE Table 

Number ----

45H 

ID: none 

GETl 
No 

SEJ1 
No 

LOOKUP? 
--~---~-· 

Yes 

Key: Key value assigned by resource manager 

8.3 DEVICE Table 

This table describes a physical device. Each device installed has a 
DEVICE table. All fields are read-only. 

0 

4 

0 

KEY 

DEVNAME 
8 

12 

16 

20 

ACCESS 

OWNERID 

22 = Length in bytes 

• KEY: Key field for LOOKUP 

• DEVNAME: 10-byte device name 

• TYPE: Type of device 

OxH - Kernel drivers 
2xH - Disk drivers 
3xH - Console drivers 
5xH - Extension drivers 
6xH - Network drivers 
7xh - Miscellaneous drivers 
80-FFH - Special drivers 

2 3 

TYPE 

INST AT 

8-7 



8.3 DEVICE Table 

• ACCESS: Access modes 

bit 0 1 = Delete allowed 
0 = Delete not allowed 

bit 1 Reserved 

bit 2 1 = Raw write allowed 
0 = Raw write not allowed 

bit 3 1 = Raw read allowed 
0 = Raw read not allowed 

bit 4 1 = Shared access allowed 
0 = Exclusive access only 

bit 5 1 = Removeable device 
0 = Permanent device 

FlexOS Programmer's Guide 

bit 6 1 = Device lock (DEVLOCK) allowed 
0 = Device lock not allowed 

bit 7 1 = Shared access only 
0 = Exclusive access allowed 

bit 8* 1 = Device partitions allowed 
0 = Device partitions not allowed 

bit 9* 1 = Verify disk writes 
O = Do not verify disk writes 

bits 10-15 reserved 

* Applicable to disk devices only. 

8-8 



FlexOS Programmer's Guide 8.3 DEVICE Table 

• INSTAT: Installation status 

OxOO - Not installed 
Ox01 - Requires subdriver 
Ox02 - Owned by the Miscellaneous Resource Manager 
Ox03 - Owned by another driver 

• OWNERID: Significant 16 bits of the key field of the owner's 
DEVICE table entry. Use this value with a LOOKUP to find the 
driver that owns this subdriver. This field is only valid when 
INSTAT has a value of Ox03. 

The DEVNAME, TYPE, ACCESS, and KEY values are established when 
the device is installed and do not change. The ACCESS flags override 
conflicting requests made by programs when they open the device. 

The INSTAT and OWNERID values are also static except for subdrivers 
assigned· to different drivers. In this case, the current values are 
subject to change as the driver is linked and unlinked to different 
owners. 

You must use the LOOKUP SVC to get DEVICE tables. Wildcards can be 
used in the LOOKUP device name specification. 

8-9 



8.4 DISK Table 

8.4 DISK Table 

Number ----
21H 

GET? 
Yes 

SET? 
Yes 

LOOKUP? ---------

No 

ID: File number returned by OPEN 
Key: none 

FlexOS Programmer's Guide 

The DISK table describes a disk driver. All fields are read-only except 
the label options. 

8-10 



FlexOS Programmer's Guide 8.4 DISK Table 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

'52 

56 

60 

64 

62 

72 

76 

0 1 2 3 

NAME 

TYPE 

!OPTIONS STATUS 

LRFID LRNID 

LAPID 

FREE 

SIZE 

SECTSIZE FIRSTSECT 

NSECTORS 

SECTSiTRACK SECTS/BLOCK 

NFATS l FATID NFSECTS 

DIRSIZE NHEADS I FORMAT 

HIDDEN 

SYSSIZE 

I I 
--·-

LAFLAG LAMODE LAUSER LAG ROUP 

LABEL 

78 = Length in bytes 

8-11 



· 8.4 DISK Table 

• NAME: Disk device driver name 

• TYPE: Media type 

bit 0: 1 = Removable media 
0 = Permanent media 

• IOPTIONS: Install options 

bit 0: 1 = Set allowed 

8-12 

0 = Set not allowed 

bit 1: Reserved 

bit 2: 1 = Raw write allowed 
0 = Raw write not allowed 

bit 3: 1 = Raw read allowed 
0 = Raw read not allowed 

bit 4: Reserved 

bit 5: 1 = Removable device driver 
0 = Permanent device driver 

bit 6: 1 = OEVLOCKs allowed 
0 = DEVLOCKs not allowed 

bit 7: Reserved 

bit 8: 1 = Partitioned disk driver 
0 = Non-partitioned disk driver 

bit 9: 1 = Verify after writes 
. 0 = Do not verify after writes 

FlexOS Programmer's Guide 



FlexOS Programmer's Guide 8.4 DISK Table 

• STATUS: Disk status 

bit 0: 1 = Disk locked to process 
0 = Disk not locked to process 

bit 1: 1 =·Disk locked to family 
. 0 = Disk not locked to family 

bit 2: 1 = Disk opened for exclusive access 
0 = Disk not opened for exclusive access 

bit 3: 1 = Disk currently in use by other processes 
0 = Disk not currently in use by other processes 

bit 4: 1 = Disk currently in use by processes in other families 
0 = Disk not currently in use by processes in other families 

bit 5: 1 = Disk activated for file system access 
0 = Disk not activated 

bit 6: 1 ""' File system files currently open 
0 = No open file system files 

• LRFID: Family ID of locking process 

• LRNID: Network node ID of locking process 

• LRPID: Process ID of locking process 

• FREE: Number of bytes of free space on disk/partition 

• SIZE: Size in bytes of total file space on disk/partition 

• SECTSIZE: Sector size in bytes 

• FIRSTSEC: First sector of logical media 

• NSECTORS: Number of sectors on disk 

• SECTS/TRACK: Number of sectors per track 

• SECTS/BLOCK: Number of sectors per block 

• NFATS: Number of File Allocation Tables (FATs) 

. 8-13 



8.4 DISK Table FlexOS Programmer's Guide 

• FATID: Implementation-dependent value indicating media format 

• NFSECTS: Number of sectors per FAT 

• DIRSIZE: Maximum number of directory entries in root directory 

• NHEADS: Number of heads on disk 

e FORMAT: FAT format 

O - Raw 
1 - 1 1/2 byte FATs 
2 - 2 byte FATs 

• SYSSIZE: Size of system area in bytes 

• HIDDEN: Number of hidden sectors on partitioned' disk 

e LAFLAG: Label flag 

0 - Label does not exist on media 
1 - Label exists 
2 - Return device error on attempts to read label 

e LAMODE (R/W): Label mode 

bit 0: 1 = File security enabled 
0 = No file security 

bit 1: 1 = Upper and lower case file names 
0 = Upper case file names only 

• LAUSER (R/W): Label maker's User ID 

• LAGROUP (R/W): Label maker's Group ID 

• LABEL (R/W): 11-character label (also referred to as volume) 
name. Bytes 12 through 14 in LABEL data block are ignored. The 
name does not need to be null-terminated. 

8-14 



FlexOS Programmer's Guide 8.4 DISK Table 

Most of the DISK table's read-only fields are static. The exceptions 
are: 

•'STATUS which changes as processes lock, unlock, open, and close 
files. 

• FREE and DIRSIZE which increase and decrease as files are 
removed and added. 

• LRFID, LRNID, and LRPID which change with each change in the 
locking process. 

Use the file number returned by OPEN as the ID in your GET and· SET 
calls. 

All of the label-related fields are read/write. However, once they have 
been set,· only the superuser (user and group IDs 0) or the original 
label setter can make any changes. 

8-15 



8.5 DISKFILE Table 

8.5 DISKFILE Table 

Number 
20H 

GET? 
Yes 

FlexOS Programmer's Guide 

~f!l . LQQK~J>? 
Yes Yes 

ID: Fil~ number returned by CREATE or OPEN 
Key: Key number assigned by resource manager 

The DISKFILE table describes a disk file. The disk file must be open 
before you can GET its table. To SET values in the table, the calling 
process must have the . same USER and GROUP IDs or have GROUP 
and USER numbers 0. Files do not need to be open for the LOOKUP 
SVC. LOOKUP flag bits determine the type of file to search for and are 
used as follows: 

bit 0: 1 - Include HIDDEN files 
0 = Exclude HIDDEN files 

bit 1: 1 = Include SYSTEM files 
0 = Exclude SYSTEM files 

bit 2: 1 = Include VOLUME label 
0 = Exclude VOLUME label 

bit 3: 1 = Include directories 
0 = Exclude directories 

bit 4: 1 = Exclude normal files 
0 = Include normal files 

8-16 



FlexOS Programmer's Guide 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

0 

RECSIZE 

PROTECT 

RESERVED 

MOD YEAR 

MODHA I MODMIN 

48 = Length in bytes 

• KEY: Key field for LOOKUP 

• NAME: Disk file name 

8.5 DISKFILE Table 

2 3 

KEY 

NAME 

ATTR1 ATTR2 

USER GROUP 

RESERVED 

RESERVED 

SIZE 

MODMONTH MODDAY 

MODS EC RESERVED 

8-17 



8.5 DISKFILE Table FlexOS Programmer's Guide 

• ATTR1 (R/W): The sum of the following file attributes: 

OlH Read-only 
02H Hidden 
04H System 
08H Volume label 
lOH Subdirectory 
20H Archive attribute 
40H Reserved 
80H Reserved 

• ATTR2 (R/W}: The sum of the following file attributes: 

01 H Security enabled (label only) 
02H Disk supports uppercase and lowercase file names 

{if not set, disk supports uppercase file names only) 

. 04H through 80H are reserved. 

e RECSIZE: Record size 

• USER (R/W**): User ID of owner 

e GROUP (R/W**): Group ID of owner 

e PROTECT (R/W): File Security Word 

e SIZE: File size 

• MODVEAR (R/W): Year of last modification 

• MODMONTH (R/W): Month of last modification (1 -'- 12) 

• MODDAV (R/W): Day of la st modification ( 1 - 31) 

e MOOHR (R/W): Hour of last modification (0 - 23) 

• MODMIN (R/W): Minute of last modification (0 - 59) 

• MODSEC (R/W): Second of last modification (0 - 59) 

** These fields are read/write to a superuser only. 

All DISKFILE values are set and updated by the Disk Resource Manager. 
This does not preclude setting these values yourself. However, you 
should exercise caution when modifying the attributes and record size. 

8-18 



FlexOS Programmer's Guide 8.6 ENVIRON Table 

8.6 ENVIRON Table 

Number 
--~·--

lH 

ID: 0 
Key: none 

GET? 
Yes 

SET? 
Yes 

LOOKUP? -----------

No 

The ENVIRON and PROCESS tables describe the calling process'.s 
environment. Although there is some overlap between the two, the 
standard input, output, error, and overlay file numbers, file security 
word, and requester node numbers are unique to the ENVIRON table. 

0 

4 

8 

12 

0 1 

STDIN 

ST DO UT 

STD EAR 

OVERLAY 

16 

20 

24 

SECURITY 

USER l GROUP 

PIO 

28 RNID 

32 RPID 

36 = Length in bytes 

2 

RESERVED 

FID 

RFID 

• STDIN (R/W): Process's standard input file number 

3 

• STDOUT (R/W): Process's standard output file number 

• STDERR (R/W): Process's standard error file number 

8-19 



8.6 ENVIRON Table FlexOS Programmer's Guide 

• OVERLAY (R/W): Current program's file number 

• SECURITY (R/W): Default file security word for CREATE 

• USER (R/W**): Current User ID 

• GROUP (R/W**): Current Group ID 

• FID: Calling process's family ID 

• PIO: Calling process's ID 

• RNID (R/W*): Requester process's remote node ID 

• RFID (R/W*): Requester process's family ID 

• RPID (R!W\ Requester process's process ID 

**These fields are read/write for a superuser only. 

The RNID, RFID and RPID fields are used by network server processes 
only. See the fl~~N!'!LJ'!~t~ork _..QQ~r~!ing_ System OEM and 
Programmer's Gui!!~ for the description of their use. 

8-20 



FlexOS Programmer's Guide 8.7 FILNUM Table 

8.7 FILNUM Table 

Number ____ ,_ ___ _ 

41H 
GET? 
Yes 

SET? 
No 

LOOKUP? 
Yes 

ID: File number returned by CREATE or OPEN 
Key: File number returned by CREATE or OPEN 

The FILNUM table provides the table number for a given file number. 
For example, the Console Resource Manager returns the VCONSOLE 
table number when you GET the FILNUM table for a virtual console file. 

0 2 

0 

4 ACCESS TABNUM 

6 = Length in bytes 

• FNUM: File number and key field for LOOKUP 

• ACCESS: Access privileges returned from OPEN call 

bit 0: 1 = Delete/set access 
0 = No delete/set access 

bit 1: 1 = Execute access 
0 = No execute access 

bit 2: 1 = Write access 
0 = No write access 

bit 3: 1 = Read access 
0 = No read 

• TABNUM: table number for that type of file's table 

3 

8-21 



8.8 MEMORY Table 

8.8 MEMORY Table 

ID: 0 
Key: none 

QET? 
Yes 

SET? 
No 

LOOKUP? 
--·---~-

No 

FlexOS Programmer's Guide 

The MEMORY table indicates the system memory usage. The FREE and 
SYSTEM values change as processes use and release memory and the 
resource managers take up transient program area. 

0 

4 

8 

0 

12 = Length in bytes 

1 

FREE 

TOTAL 

SYSTEM 

• FREE: Total free memory in bytes 

• TOTAL: Total memory in bytes 

2 

• SYSTEM: Size of system memory in bytes 

8-22 

3 



FlexOS Programmer's Guide 8.8 MEMORY Table 

8.9 MOUSE Table 

Number 
33H 

GET? 
Yes 

SETl 
Yes 

~OQK!Jrl 
No 

ID: File number returned by OPEN 
Key: none 

The MOUSE table describes a pointing device. Every installed pointing 
device has a MOUSE table. The initial values are set by the driver and 
you can set all of them except for the PIXROW and PIXCOL. 

0 1 2 3 

0 ROW COL 

4 KEYSTATE l RESERVED BUTTONS 

PIXROW PIXCOL 8 

12 

16 

20 

CLICK HEIGHT l WIDTH 

HOTROW HOTCOL 

MASK (16 words) 
52 

84 
DATA (16 words) 

• ROW (R/W): Current row position of mouse 

• COL (R/W): Current column position of mouse 

8-23 



8.9 MOUSE Table FlexOS Programmer's Guide 

• KEYSTATE: Keyboard state of the right Shift, left Shift, Control, 
and Alt keys 

Bit 0 right Shift key 
Bit 1 left Shift key 
Bit 2 Control key 
Bit 3 Alt key 

0 - up position 
1 - down position 

• PIXROW: Number of mickeys per pixel for rows 

• PIXCOL: Number of mickeys per pixel for columns 

• CLICK (R/W): Click interval in milliseconds 

• HEIGHT (R/W): Height of mouse form 

• WIDTH (R/W): Width of mouse form 

• HOTROW {R/W): Hot row of mouse form 

• HOTCOL (R/W): Hot column of mouse form 

• MASK (R/W): On a bit map screen, a 16 x 16 pixel rectangle that 
masks the effect of the DATA rectangle. 

• DATA (R/W): On a bit map screen. a 16 x 16 pixel rectangle to 
"BLT" to the screen given the mask. 

The ROW and COL values are updated by the Console Resource 
Manager to indicate the current mouse location. You can, however, set 
these values to move the mouse form to a location without device 
input. The HEIGHT and WIDTH values have a maximum value of 4, but 
can be less. If either is less, the length of the MASK and DATA fields 
is not affected. 

8-24 



f!exOS Programmer's Guide 

8.10 PATHNAME Table 

Number. 
-·~-~ 

46H 

ID: none 
Key: aone 

GET? 
No 

SET? 
N<;> 

8.10 PATHNAME Table 

LOOKUP? ----- - - --------

Yes 

The PATHNAME table contains the fully-expanded path name for a 
defined symbol. LOOKUP is the only way to retrieve a PATHNAME 
table; you cannot SET or GET a PATHNAME. 

0 2 3 

PATHNAME 

124 

128 = Length in bytes. 

The PATHNAME table consists of a single 128 byte field. Only one path 
is ever returned when you lookup a defined symbol. If the symbol 
specified starts with a defined name, the prefix is substituted for the 
symbol. If the first name in the prefix is itself a defined symbol, the 
substitution is made again. The search and substitute routine is 
repeated until no prefix is found for the starting name. 

The SYSDEF and PROCDEF tables are searched when you lookup the 
PATHNAME table. (DEFINE only looks in one or the other.) These 
tables are searched for the first name in the specification only. 

Wildcard characters can be used but they are not expanded; for 
example, as asterisk is interpreted only as an asterisk. 

8-25 



PCONSOLE Table 

8.11 PCONSOLE Table 

GE!Z 
Yes 

SET? 
Yes 

LOQ~!JEZ 
No 

ID: File number returned by OPEN 
Key: none 

FlexOS Programmer's Guide 

The PCONSOLE table describes a physical console device. Each 
console installed has its own PCONSOLE table. All parameters are 
read-only except the country code. 

0 

4 

8 

0 

TYPE 

1 

ROWS 

CROWS 

l PLANES 

2 3 

NAME 

NVC CID 

COLS 

CCOLS 

ATTRP EXTP 

12 

16 

20 

24 

28 

COUNTRY NFKEYS BUTTONS 

SERIAL# 

32 MU ROW MUCOL 

36 = length in bytes 

• NAME: Console device name 

• NVC: Current number of virtual consoles 

• CID: Physical console ID number 

8-26 



FlexOS Programmer's Guide PCONSOLE Table 

• ROWS: On graphic console devices, this is the number of rows of 
pixels. On character console devices, this is the number of 
character rows and is the same as CROWS. 

• COLS: On graphic console devices, this is the number of pixels in 
a row. On character console devices, this is the number of 
character columns and is the same as CCOLS. 

• CROWS: The number of rows of characters 

• CCOLS: The number of columns of characters 

• TYPE: Type of console 

bit 0: 1 = Graphics capability 
0 = Character only 

bit 1: 1 = No numeric keypad 
0 = Keypad 

bit 2: 1 = Mouse supported 
0 = No mouse supported 

bit 3: 1 = Color 
0 = Black and white 

bit 4: 1 = Memory-mapped video 
0 = Serial device 

bit 5: 1 = Currently in graphics mode 
0 = Currently in character mode 

• PLANES: Planes supported 

Bit 0: 1 = Character plane supported 
0 = No character plane 

Bit 1: 1 = Attribute plane supported 
0 = No attribute plane 

Bit 2: 1 = Extension plane supported 
0 = No extension plane 

8-27 



PCONSOLE Table FlexOS Programmer's Guide 

• ATTRP: Bit map of attribute plane bits supported 

• EXTP: Bit map of extension plane bits supported 

• COUNTRY (R/W): Country code; in applications that support 
multiple character sets, use this value to select a specific set. 
Appendix C lists the country codes. 

• NFKEVS: Number of function keys supported 

• BUTTONS: Number of mouse buttons supported 

• SERIAL # Mouse serial number 

• MUROW Mouse sensitivity in mickey units per row 

• MUCOL Mouse sensitivity in mickey units per column 

The PCONSOLE values are set by the driver. The Console Resource 
Manager updates the NVC value as you create and delete virtual 

· consoles on this console. 

To GET and SET a PCONSOLE table (LOOKUP cannot be used), OPEN 
the device and use the file number returned as the GET and SET ID 
number. In your OPEN call, the only access mode flag bit you can set 
is bit 0 .and you only need l?et it if you want to change the country 
code. 

8-28 



FlexOS Programmer's Guide 

8.12 PIPE Table 

Number ----
lOH 

GET? 
Yes 

SET? 
No 

!-_QQ~U~l 
Yes 

ID: File number returned by CREATE or OPEN 
Key: Key number assigned by resource manager 

PIPE Table 

The PIPE table describes a pipe. All fields are set when you create the 
pipe and are read-only. 

4 

8 

12 

16 

0 

RECSIZE 

2·0 = Length in bytes 

• KEY: Key field for LOOKUP 

• NAME: 10-byte pipe name 

KEY 

NAME 

• SIZE: Internal buffer size of pipe 

• RECSIZE: Record size 

• SECURITY: File security word 

2 3 

SIZE 

SECURITY 

You can retrieve a pipe table with GET or LOOKUP. Use the the file 
. number returned when you CREATEd or OPENed the pipe as your GET 
ID number. In a LOOKUP call, use the pipe name. 

8-29 



PORT Table FlexOS Programmer's Guide 

8.13 PORT Table 

QIIZ 
Y.es 

SET? 
Yes 

h_QQl(l)P? 
No 

ID: File number returned by OPEN 
Key: None 

0 

0 TYPE 

2 3 

STATE 

4 BAUD I MODE CONTROL I RESERVED 

8 = Length in bytes 

• TYPE: Type of port 

. 0 = Undefined 
1 = Standard serial driver 
2 = Character 1/0 device 
4 = Standard parallel driver 

• STATE (R/W): Current state of port 

0 = Transmit enable 

8-30 

1 = Character has been received 
2 = Change in Data Set Ready or Data Carrier Detect 
3 = Parity error 
4 = Overrun error 
5 = Framing error 
6 = Carrier present (Data Carrier Detect) 
7 = Data Set Ready (DSR) active 



FlexOS Programmer's Guide PORT Table 

• BAUD (R/W): A value selecting the baud rate 

0 = 50 baud 6 = 600 baude 12 = 4800 baud 
1 = 75 baud 7 = 1200 baud 13 = 7200 baud 
2 = 110 baud 8 = 1800 baud 14 = 9600 baud 
3 = 134.5 baud 9 = 2000 baud 15 = 19200 baud· 
4 = 150 baud 10 = 2400 baud 
5 = 300 baud 11 = 3600 baud 

• MODE (R/W): Bit-mapped description of the word length, parity · 
and stop bits 

Bits 0-1 Bits 2-3 Bits 4-5 ------ -- ----- ---~ 

Value Bits/word Stop Bits Parity 

0 5 None. None 
1 6 1 Odd 
2 7 1.5 
3 8 2 Even 

• CONTROL (R/W): Bit-mapped description of serial port control 
parameters 

0 = Enable character transmission 
1 = Force Data Terminal Ready low 
2 = Enable character reception 
3 = Force break signal 
4 = Reset error 
5 = Force Request to Send low 

Use the GET and SET SVCs to retrieve and set PORT table values. The 
ID is the file number returned when the device was opened. When the 
port is a subdriver, you cannot access the table directly with GET or 
SET. Instead, use SPECIAL .functions 13H and 93H, respectively. 

For standard parallel drivers, the STATE, BAUD, MOOE, and CONTROL 
fields are meaningless. 

8-31 



PRINTER Table 

8.14 PRINTER Table 

l'il~J!1Qgf 
71H 

Q_~T? 
Yes 

~~Tl 
Yes 

~QQl\~P? 
No 

ID: File number returned by OPEN 
Key: None 

FlexOS Programmer's Guide 

The PRINTER table describes an installed printer driver. The printer 
driver may dri.ve the physical 1/0 port directly or require a subdriver to 
conduct character 1/0. For all bit maps in this table, the least 
significant bit is rightmost. 

0 

4 

8 

12 

16 

20 

24 

0 

MODE 

LEG.MODE 

28 = Length in bytes 

2 3 

PRINTER STATUS 

PAPER WIDTH 

SING.PAG LPI I LENGTH 

NAME 

• PRINTER STATUS: Bit map indicating current status; bits are 
assigned as follows: 

Bit Se! Defini!JQ!! Bit Set Definitio·n --- ------------

0 Off line 4 Illegal mode requested 
1 Out of paper 5 Framing error 
2 Select error 6 Internal buffer full 
3 Initialization error 7 Waiting for XON 

8-32 



FlexOS Prqgrar:nmer's Guide PRINTER Table 

• MODE (R/W): A bit map used to select the current typeface; the 
bits are assigned as follows: 

Bit Iypef_C!c;~ ~~~ctecl Bit I'lQ~f_<!~~ Selecte<_! 
0 Boldface 4 Superscript 
1 Graphics 5 Condensed 
2 Italic 6 Elongated 
3 Subscript 7 Letter quality 

• PAPERTYP (R/W): A bit map indicating the current paper type; 
the default is 8 1/2 x 11. The bits are assigned as follows: 

Bit paper IYI!~ 
0 Wide paper 
1 Letterhead 
2 ·Labels 

• WIDTH (R/W): Width of paper in columns for all modes except 
graphics; in dots if graphics mode. 

• LENGTH (R/W): Length of paper in lines 

• LEG.MODE: Bit map of modes available; bit assignments are the 
same as MODE above. 

• SING.PAG (R/W): Single-page paper feed select; non-zero when 
single-page feed mechanism selected. 

• LPI (R/W): Number of lines printed per inch 

• NAME: 16-byte field for the brand and mode of the printer in 
ASCII. 

To retrieve a PRINTER table, use the file number returned when the 
device was opened as the GET ID number. 

8-33 



PROCOEF Table 

8.15 PROCDEF Table 

ID: none 

GET? 
No 

SET? 
No 

FlexOS Programmer's Guide 

LOOKUP? -·-------- -· 

Yes 

Key: Key number assigned by resource manager 

The PROCDEF table shows the prefix defined for a logical name by the 
calling process. The LNAME and PREFIX fields are set by the DEFINE 
call; the key value is set by the resource manager when the name is 
defined. All fields are read-only. 

0 

4 

8 

12 

16 

138 

142 = Length in bytes 

e KEY Key field for LOOKUP. 

KEY 

LNAME 

1 
PREFIX 

• LNAME: 10-byte, null terminated logical name string 

• PREFIX: 128-byte, null terminated prefix substitution string 

Use LOOKUP to get a PROCDEF table. Use the logical name (wildcards 
can be used) or key value to specify a table. The maximum name and 
prefix length is 9 and 127 characters, respectively; the null character is 
always included in the specification. 

8-34 



FlexOS Programmer's Guide 

8.16 PROCESS Table 

Number 
OH 

GET? 
Yes 

ID: Process ID 
Key: Process ID 

SET? 
Yes 

LOOKUP? 
Yes 

PROCESS Table 

The PROCESS and ENVIRON tables combine to describe a process's 
environment. The PROCESS table values are set when the process is 
created (see the COMMAND SVC description) and maintained by the 
resource managers. All values are read-only except the priority. This 
value can be set by a process with the same USER and GROUP 
numbers or USER and GROUP numbers 0. 

8-35 



PROCESS Table 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

0 

FID 

FLAGS 

60 = Length in bytes 

8-36 

FlexOS Programmer's' Guide 

2 3 

PIO 

l CID l VCID 

NAME 

l STATE l PRIOR 

MAXMEM 

l USER l GROUP 

PARENT 

EVENTS 

CODE 

CSIZE 

DATA 

DSIZE 

HEAP 

HSIZE 



FlexOS Programmer's Guide PROCESS Table 

• PIO: Process ID 

• FID: Process's family ID 

• CID: Physical console device number 

• VCID: Process's virtual console number--only filled after console 
is opened 

• NAME: Process name 

• ST ATE: Process state 

0 - Run 
1 - Waiting 
2 - Terminating 

• PRIOR (R/W): Priority 

• MAXMEM Maximum memory allowed 

e FLAGS: 

bit 0: = System process 
0 = User process 

bit 1: 1 = Locked in memory 
0 = Swappable 

bit 2: 1 = Running in SWI context 
0 = Running in main context 

bit 3: 1 = Originally a privileged process 1 

0 = Not originally a privileged process 

• USER: User number 

• GROUP: Group number 

1 A privileged process, also called a superuser. is one with USER and GROUP numbers 0. 

8-37 



PROCESS Table FlexOS Programmer's Guide · 

• PARENT: Parent process ID 

• EVENTS: Bit map of events that have completed but whose return 
values have not been retrieved. 

• CODE: Start of code area in user space 

• CSIZE: Size in bytes of code area 

• DATA: Start of data area in user space 

• DSIZE: Size in bytes of data area 

• HEAP: Start of heap area in user space2 

• HSIZE: Size in bytes of most recently allocated heap area 

Use the process ID as the ID in GET and SET calls and as the key 
value in LOOKUP calls. You can also use the process NAME with 
LOOKUP. A process ID of 0 selects the calling process. 

21ntormation passed to the process in the COMMAND SVC is stored at this location. 

8-38 



FlexOS Programmer's Guide 

8.17 SPECIAL Table 

Number GET{ 
82H-FFH Yes 

SET? 
Yes 

LOOKUP? 
No 

ID: File number returned by OPEN 
Key: Key number assigned by resource manager 

SPECIAL Table 

SPECIAL tables describe special devices installed. The format and size 
of a SPECIAL table is defined by the OEM and set by the device driver. 
There are two rules, however, for all SPECIAL tables: the first word 
indicates the size of the table and table number is the same number 
as the device type. 

8-39 



SYSDEF Table 

8.18 SVSDEF Table 

ID: none 

GEJ? 
No 

SET? 
No 

LOOKUP? 
Yes 

FlexOS Programmer's Guide 

Key: Key number assigned by resource manager 

Tile SYSDEF table describes the system's logical names. Logical name 
assignments are made with the DEFINE SVC by privileged (USER and 
GROUP numbers are 0) processes. Privileged processes can also 
change existing assignments. 

0 

4 

8 

12 

16 

138 

142 = Length in bytes 

• KEV: Key field for LOOKUP. 

KEY 

LNAME 

J 
PREFIX 

• LNAME (R/W): 10-byte, null terminated Logical name string. 

• PREFIX (R/W): 128-byte, null terminated prefix substitution string. 

Use LOOKUP to get a SYSTEM table. Use the logical name or key value 
to specify a table. The maximum name and prefix length is 9 and 127 
characters, respectively; the null character is always included in the 
specification. 

8-40 



FlexOS Programmer's Guide 

8.19 SYSTEM Table 

ID: 0 
Key: none 

GET? 
Yes 

~IIl 
Yes 

t,QQ_l(:!JP? 
No 

SYSTEM Table 

The SYSTEM table describes the CPU and operating system. All fields 
are read-only except the IDLECNT. This field is read-write to processes 
with USER and GROUP numbers 0 only. 

0 1 2 3 

0 CPU l OSTYPE l VERSION l RELEASE 

4 

8 

12 

16 = Length in bytes 

• CPU: Type of CPU 

1 - Intel 8080 
2 - Intel 8085 
3 - Zilog Z80 
4 - Intel 8086 
5 - Zilog Z8ooo 
6· - Motorola 68000 

SERIAL 

IDLECNT 

7 - Motorola 68010 
8 - Motorola 68020 
9 - Intel 80286 

10 - Intel 80386 
11 - Intel 80186 
12 - 255 Reserved 

• OSTYPE: Type of Operating System 

0 FlexOS 
l-255 Reserved 

• VERSION: Operating system version number 

8-41 



SYSTEM Table FlexOS Programmer's Guide 

• RELEASE: Release level of version 

• SERIAL: 8-byte, operating system serial number 

• IDLECNT (R/W for privileged user only): CPU System idle count 

IDLECNT is a value incremented by the CPU when no process is 
running. Monitor CPU utilization by setting this value to 0 and after a 
known period of time, GETting the count. 

8-42. 



FlexOS Programmer's Guide TIMEDATE Table 

8.20 TIMEDATE Table 

ID: 0 
Key: n'one · 

Q~E 
Yes 

~IIZ 
Yes 

LOOKUP? ---

No 

The Tl MEDA TE table contains the system time of day. All fields are 
read/write except WEEKDAY. The time is maintained by the kernel once 
the starting is set. Use SET to establish the starting time. 

0 

4 

0 

YEAR 1 
TIME 

2 3 

MONTH l DAY 

8 TIMEZONE 1 WEEKDAY l RESERVED 

12 = Length in bytes 

• YEAR (R/W): Year; a literal value (for example, 1987 = 1987) 

• MONTH (R/W): Month; 1 - 12 

• DAY (R/W): Day of the month; 1 - 31 

• TIME (R/W): Number of milliseconds since midnight 

• TIMEZONE (R/W): Minutes from Universal Coordinated Time 

• WEEKDAY: Day of the week; 0 = Sunday, 6 = Saturday 

You use an ID value of 0 to GET and SET the TIMEDATE table. 

8-43 



VCONSOLE Table 

8.21 VCONSOLE Table 

GET? 
Yes 

SET? 
Yes 

LOOKUP? --·----- ~ '" 

Yes 

ID: File number returned by CREATE 

FlexOS Programmer's Guide 

Key: VCNUM assigned when virtual console created 

The VCONSOLE table describes a virtual console. Table values are 
established when you CREATE the console. Use read/write fields to 
modify window size, location on the virtual console, and placement on 
the parent console. 

0 

4 

8 

12 

16 

20 

24 

0 

TOP 

1 

MODE 

VIEWROW 

NROW 

POSROW 

ROWS 

l BOTTOM 

28=Length in bytes 

• KEV: Key field for LOOKUP 

8-44 

2 3 

KEY 

VCNUM I TYPE 

VIEWCOL 

NCOL 

POSCOL 

COLS 

LEFT l RIGHT 



FlexOS Programmer's Guide VCONSOLE Table 

• MODE (R/W): Window mode 

bit 0: 1 = Freeze borders 
0 = Synchronize borders (See Note 1, below) 

bit 1: 1 = Allow auto view change (See Note 2, below) 
0 = Keep view fixed 

bit 2: 1 = Keep cursor on edge on auto view change 
0 = Center cursor on auto view change 

bit 3: 1 = Auto view change on output 
0 = Auto view change on input 

• VCNUM: Decimal virtual console number 

• TYPE: Type of console. 

bit 0: 1 = Graphics capability 
0 = Character only 

bit 1: 1 = No numeric keypad 
0 = Keypad 

bit 2: Reserved 

bit 3: 1 = Color 
0 = Black and white 

bit 4: 1 = Memory-mapped video 
0 = Serial device 

bit 5: 1 = Currently in graphics mode 
0 = Currently in character mode 

• VIEWROW (R/W): Row coordinate on the virtual console of 
window's upper lefthand corner 

• VIEWCOL (R/W): Column coordinate on the virtual console of the 
window's upper lefthand corner · 

8-45 



VCONSOLE Table FlexOS Programmer's Guide 

• NROW (R/W): Number of character rows in the window 

• NCOL (R/W): Number of character columns in the window 

• POSROW (R/W): Row coordinate on parent console of window's 
upper lefthand corner 

• POSCOL (R/W): Column coordinate on parent console of window's 
upper lefthand corner 

• ROWS: Number of character rows in the virtual console 

• COLS: Number of character columns in the virtual console 

• TOP: Height in character rows of the top border 

• BOTTOM: Height in character rows of the bottom border 

• LEFT: Width in character columns of the left border 

• RIGHT: Width in character columns of the right border 

Notes: 

1. Use bit 0 to freeze a border so that intermediate states are not 
displayed when you make changes to the border file contents. 
Before you change the border file contents, set this bit. After you 
have completed the changes, reset the bit. Normally, keep this 
flag at 0 so that the borders change as you make changes to the 
window dimensions and location. 

2. Bits 1 through 3 determine whether the window view changes to 
keep the cursor on-screen or the view remains fixed on the same 
virtual console coordinates regardless of cursor location. If the 
cursor leaves the window and bit 2 = 1, bit 3 determines whether 
the view changes when the cursor leaves the view (output) or 
when the application READs the keyboard. 

8-46 



FlexOS Programmer's Guide VCONSOLE Table 

Use the file number returned by the CREATE call to GET or SET the 
VCONSOLE table. Alternatively, use the key value in a LOOKUP call. 
Changes made to the VIEWROW, VIEWCOL, NROW, and NCOL 
immediately affect the shape and position of the window on the virtual 
console. Border files are automatically adjusted accordingly as well . 

. Changes to POSROW and POSCOL are immediately reflected on the 
parent console. 

End of Section 8 

8-47 





Appendix A 

Character Sets and Escape Sequences 

This appendix describes the Console Resource Manager's built-in 
escape sequences and character sets. The presentation begins with 
the description of the 8-bit escape sequences (a superset of the 
VT-52 escape sequences), continues with the description of the 16-bit 
output character set, and concludes with the description of the 16-bit 
input character set. 

Output escape sequence decoding is only available with the WRITE 
SVC. You cannot use COPY or ALTER to output escape sequences. 

The descriptions below cross-reference bits in the CONSOLE table's 
SMODE and KMODE fields. See Section 8, "System Tables,'.' for the 
complete description of these fields. 

A.1 Escape Sequences 

You select escape sequence decoding to manipulate the screen 
display by setting bits 0 and 1 of the CONSOLE table's SMODE word to 
0. Escape sequence decoding of keyboard input is selected by setting 
bits 3 and 4 of the CONSOLE Table's KMODE word to 0. 

An escape sequence consists of at least two 8-bit characters, where 
the first is always an ESC (ASCII character 1B hex). The second 
character selects a function. Three functions require additional 
numeric values to select a foreground or background color or set the 
cursor position. Table A-1 lists the functions supported and the 
escape sequence that invokes it. 

A-1 



A Escape Sequences FlexOS Programmer's Guide 

ESC Sequence 

<ESC>A 

<ESC>B 

<ESC>C 

<ESC>D 

<ESC>H 

Table A-1. Escape Sequence Functions 

Description 

Cursor Up: Move cursor up to beginning of 
previous line. 

Cursor Down: Move cursor down one line without 
changing column position. 

Cursor Right: Move cursor one character position 
right. 

Cursor Left: Move cursor one character position 
left. 

Cursor Home: Move cursor to first column of first 
line. 

< ESC >I (uppercase i) 
Reverse Index: Move cursor up one line without 
changing column position. 

< ESC >j Save Cursor Position: Store current cursor position 
for subsequent restore. 

< ESC >k Restore Cursor Position: Move cursor to position 
previously saved. 

<ESC>Y(c1)(c2) Set Cursor Position: Move cursor to specified 
coordinates; first character is the ASCII equivalent of 
the row number + 31 D and second character is 
ASCII equivalent of column number + 31 D. 

<ESC>E Clear Display: Erase entire screen and home cursor. 

<ESC>J Erase to End of Display: Erase from cursor to end 
of display. 

< ESC >K Erase to End of Line: Erase from cursor to end of 
line. 

A-2 



FlexOS Programmer's Guide A Escape Sequences 

Table A..,.1. (Continued) 

ESC Sequence Description 

<ESC>I (lowercase l) 

<ESC>d 

<ESC>o 

<ESC>L 

<ESC>M 

<ESC>N 

<ESC>b(n) 

Erase Entire Line: Erase current line contents. 

Erase Beginning of Display: Erase from beginning 
of display through cursor. 

Erase Beginning of line: Erase from beginning of 
line through cursor. 

Insert Blank line: Move current· and all subsequent 
lines down one line; keep cursor on current line. 

Delete line: Remove current line from display and 
add blank line at bottom. 

Delete Character: Remove character at cursor. 

Set Foreground Color: Set character color for 
current cursor position where n is a decimal value 
that determines the color as follows: 

0 - Black 
1 - Blue 
2 - Green 
3 - Cyan 
4 - Red 
5 - Magenta 
6 - Brown 
7 - light Gray 

8 - Dark gray 
9 - Light blue 

10 - light green 
11 - Light cyan 
12 - light red 
13 - Light magenta 
14 - Yellow 
15 - White 

A-3 



A Escape Sequences FlexOS Programmer's Guide 

ESC Sequence 

<ESC>c(n) 

<ESC>e 

<ESC>f 

<ESC>p 

<ESC>q 

<ESC>r 

<ESC>u 

A-4 

Table A-1. (Continued) 

Description 

Set Background Color: Set screen color for current 
cursor position where n is a decimal value that 
determines the color as follows: 

0 - Black 
1 - Blue 
2 - Green 
3 - Cyan 
4 - Red 
5 - Magenta 
6 - Brown 
7 - Light Gray 
8 - 15 are the same as 0 - 7, except the foreground 
blinks. 

Enable Cursor: Show cursor. 

Disable Cursor: Remove cursor. 

Enter Reverse Video Mode: Swap foreground and 
background colors. 

Exit Reserve Video Mode: Return to original 
foreground and background color scheme. 

Enter Intensify Mode: Turn on the console's 
intensity option. 

Exit Intensify Mode: Turn off the console's intensity 
option. 



FlexOS Programmer's Guide A Escape Sequences 

ESC Sequence 

<ESC>s 

<ESC>t 

<ESC>@ 

<ESC>O 

<ESC>V 

<ESC>W 

Table A-1. (Continued) 

Description 

Enter Blink Mode: Start character blinking for all 
characters. 

Exit Blink Mode: Stop character blinking. 

Enter Insert Mode: Insert subsequent characters 
from current cursor position, moving existing 
characters over; characters pushed off end . of line 
are lost. 

Exit Insert Mode: Replace existing characters with 
characters entered. 

Wrap at End of Line: Automatically scroll cursor to 
beginning of next line when end of line reached. 

Drop Characters at End of Line: Ignore characters 
entered after end of line reached. 

A-5 



A 16-bit. Output Character Set FlexOS Programmer's Guide 

A.2 16-bit Output Character Set 

When SMODE bit 2 is 1, the Console Resource Manager accepts 16-bit 
characters output with the WRITE SVC. Table A-2 defines the 16-bit 
output character set. 

Range 

OOxxH 

OlxxH - OFxxH 

lxxxH 

2xxxH 

A-6 

Table A-2. Output 16-bit Character Set 

Description 

Same as 8-bit; each character takes one character 
position in FRAME. Characters in the range 80~-FFH 
are defined on a per country basis. · 

Alternate character sets provided by the system 
implementer; each character takes one character 
position where the low byte is stored in the 
Character Plane and the low nibble of the high byte 
is stored in the low nibble of Extension Plane. 

Non-visible characters (take no space). 

Editing characters functionally equivalent to 
the VT-52 ESC sequences defined above: 

2040 
2041 
2042 
2043 
2044 
2045 
2048 
2049 
204A 
2048 

Enter insert character mode 
Cursor up 
Cursor down 
Cursor right 
Cursor left 
Clear display 
Cursor home 
Reverse index 
Erase to end of display 
Erase to end of line 



FlexOS Programmer's Guide A 16-bit Output Character Set 

Range 

3xxxH 

4xxxH 

51xxH 

52xxH - 7xxxH 

8000H - FCFCH 

Table A-2. (Continued) 

Description 

204C 
204D 
204E 
204F 
2064 
2065 
2066 
206A 
2068 
206C 
206F 
2070 
2071 
2072 
2073 
2074 
2075 
2076 
2077 

Insert blank line 
Delete line 
Delete character 
Exit insert character mode 
Erase beginning of display 
Enable cursor 
Disable cursor 
Save cursor position 
Restore cursor position 
Erase entire line 
Erase beginning of line 
Enter reverse video mode 
Exit reverse video mode 
Enter intensify mode 

·Enter blink mode 
Exit blink mode 
Exit intensify mode 
Wrap at end of line 
Discard at end of line 

Set cursor to row xxx (0 origin) 

Set cursor to column xxx (0 origin) 

Set background color to xx (see < ESC >c above) 

Non-visible characters (take no space) 

16-bit language; each character takes two character 
positions on FRAME (the corresponding Extension 
Plane bytes are modified to indicate byte order). 

A-7 



A 16-bit Input Character Set FlexOS Programm.er's Guide 

A.3 16-bit Input Character Set 

When the CONSOLE table's KMOOE bit 4 is 1, the Console Resource 
Manager accepts 16-bit characters input with the READ SVC. In a 16-
bit character, the low byte contains the ASCII character code. The 
high byte is used as shown in Figure A-1. Table A-3 defines the 16-
bit character set. 

State Bits 

bit 15 14 .13 12 11 10 9 8 

(01 xx) CTRL Key 
.__ ____ (02xx) ALT Key 

------- (04xx) SHIFT Key 
"------~- (08xx) reserved 

(1Sxx) FUNCTION Keys 
(2Sxx) SPECIAL Characters 
(3xxx) Toggle Characters 

'----------~ (4xxx) Reserved 
(5xxx) Reserved 
(6xxx) Reserved 
(7xxx) Reserved 

'-------------- For.eign character set 

Figure A-1. High Byte Bit Usage of .16-bit Input Character 

Table A-3 lists the 16-bit characters. The "S" in the table represents 
the value of CTRL, ALT and SHIFT state bits 8, 9, and 10. If these keys 
are depressed when another key is pressed, the corresponding bits 
come on. If the ASCII standard includes this character, the standard 
ASCII character is generated instead of the state value. 

A-8 



FlexOS Programmer's Guide A 16-bit Input Character Set 

Table A-3. 16-bit Input Character Set 

Range Description 

0000 - OOFFH ASCII character set 

lSxxH Function keys 

2SxxH Special keys defined as follows: 

2SOO HELP 
2S01 WINDOW 
2S02 NEXT 
2S03 PREVIOUS 
2S04 PRINT SCREEN 
2505 BREAK 
2S06 REDRAW (screen) 
2507 BEGIN 
2S08 END 
2S09 INSERT 
2SOA DELETE 
250B SYS REQ 

2S10 Cursor up 
2S 11 Cursor down 
2S12 Cursor left 
2S13 Cursor right 
2S14 Page up 
2S15 Page down 
2S16 Page left 
2S17 Page right 
2S18 Home 
2S19 Reverse tab 

A-9 



A 16-bit Input Chara.cter Set FlexOS Programmer's Guide 

Table A-3. (Continued) 

Range Description 

2S30 Numeric keypad 0 
2S31 Numeric keypad 1 
2S32 Numeric keypad 2 
2S33 Numeric keypad 3 
2S34 Numeric keypad 4 
2S35 Numeric keypad 5 
2S36 Numeric keypad 6 
2S37 Numeric keypad 7 
2S38 Numeric keypad 8 
2S39 Numeric keypad 9 
2S3A Numeric keypad A 
2S3B Numeric keypad B 
2S3C Numeric keypad C 
2S3D Numeric keypad D 
2S3E Numeric keypad E 
2S3F Numeric keypad F 
2S40 Numeric keypad ENTER 
2S41 Numeric keypad COMMA 
2S42 Numeric keypad MINUS 
2S43 Numeric keypad PERIOD 
2S44 Numeric keypad PLUS 
2S45 Numeric keypad DIVIDE 
2S46 Numeric keypad MULTIPLY 
2S47 Numeric keypad EQUAL 

A-10 



FlexOS Programmer's Guide A 16-bit Input Character Set 

Range 

3xxxH 

bit: 15 14 

3 

13 

Table A-3. (Continued) 

Description 

Toggle character where xxx defines a toggle key as 
follows: 

12 11 10 

A - Action 0 - OFF 
1 - ON 

key 0 - Caps Lock 
1 - Shift Lock 
2 - Scroll Lock 
3 - Num Lock 

10 - Right Shift 
1 i - Left Shift 
12 - Insert 
13 - Control 
14 - Alternate 

9 8 7 0 

A key ==i 

When the user presses and releases keys 0 - 3 a 
single character is sent. For keys 10 - 14, a 
character is sent when the key is pressed and 
another is sent when it is released. 

Toggle characters are only available if the hardware 
supports them. 

A-11 



A 16-bit Input Character Set FlexOS Programmer's Guide 

Range 

4xxxH - 7xxxH 

8xxxH - FCxxH 

A-12 

Table A-3. (Continued) 

Description 

Reserved 

15-bit Foreig.n larrnuage character sets including 
KANJI. 

End of Appendix A 



Appendix B 

System Return and Error Codes 

All FlexOS SVCs return 32 bit values. A negative number-:-the high 
order bit is set--indicates an error occurred. The remainder of the 
value is allocated as shown in Figure B-1. 

bit 31 30 24 23 16 15 0 

1 Reserved SOURCE ERROR CODE 

High byte Low byte 

High word Low word 

Figure B-1. Error Code Conventions 

In the high order word, only the low byte is significant; the high byte 
is reserved. The low byte indicates the source of the error as indicated 
in Table 8-1. By convention, operating system resource managers and 
modules have a zero-value in the low order nibble. 

B-1 



B Error and Return Codes FlexOS Programmer's Guide 

Table B-1. 

Value 

OOH 
10H 
20H 

21H - 2FH 
30H 

31H - 3FH 
40H 
50H 

51H - 5FH 
60H 

61H - 6FH 
70H 

71H - 7FH 
81H - FEH 

Error Source Codes--High Order Word 

Source 

Kernel or Supervisor 
Pipe Resource Manager 
Disk Resource Manager 
Disk Drivers 
Console Resource Manager 
Console Drivers 
Command/Load 
OEM Extension Resource Manager 
OEM Extension Drivers 
Network Resource Manager 
Network Drivers 
Miscellaneous Resource Manager· 
Miscellaneous Drivers 
Special Drivers 

The low order word indicates the error condition. The codes are 
assigned in ranges of values again to indicate the source. Table B-2 
lists the ranges and their corresponding source. 

B-2 



FlexOS Programmer's Guide B Error and Return Codes 

Table B-2. 

Error Code Range 

0000 - 3FFF 
4000 - 407F 
4080 - 40FF 
4100 - 417F 
4180 - 4 lFF 
4200 - 427F 
4280 - 42FF 
4300 - 437F 
4400 - FFFF 

Low-order Word Error Code Ranges 

Source 

Drivers 
Errors Common to All Resource Managers 
Supervisor 
Memory 
Kernel 
Pipe and Miscellaneous Resource Managers 
Console System 
File System 
Reserved 

For the source of one of the common error codes, see the low byte in 
the high order word. The remaining tables in this appendix list define 
the error messages by their source. No error codes are currently 
associated with the Pipe, Console and Miscellaneous Resource 
Managers. 

B-3 



B Error and Return Codes FlexOS Programmer's Guide 

Table B-3. Driver Error Codes 

Mnemonic Code Description 

E_WPROT OxOO Write protect violation 
E_UNITNO Ox01 Illegal unit number 
E_READY Ox02 Drive not ready 
E_INVCMD Ox03 Invalid command issued 
E_CRC Ox04 CRC error on 1/0 
E_BADPB Ox05 Bad parameter block 
E_SEEK Ox06 Seek operation failed 
E_UNKNOWNMEDIA Ox07 Unknown media present 
E_SEC_NOTFOUND Ox08 Requested sector not found 
E_DKATTACH Ox09 Attachment did not respond 
E.:.WRITEFAUL T OxOA Write fault 
E_READFAUL T Ox OB Read fault 
E_GENERAL OxOC General failure 
E_RESl Ox OD Reserved 
E_RES2 Ox OE Reserved 
E~RES3 Ox OF Reserved 

8-4 



FlexOS Programmer's Guide B Error and Return Codes 

Table 8-4. Error Codes Shared by Resource Managers 

Mnemonic Code Description 

E_SUCCESS OxOL No Error 
E_ACCESS Ox4001 Cannot access file--ownership 

differences 
E_CANCEL Ox4002 Event Cancelled 
E_EOF Ox4003 End of File 
E_EXISTS Ox4004 File (CREATE) or device (INSTALL) exists 
E_DEVICE Ox4005 Device does not match; for RENAME, 

on different devices 
E_DEVLOCK Ox4006 Device is LOCKed 
E_FILENUM Ox4007 Bad File Number 
E_FUNCNUM Ox4008 Bad function number 
E_IMPLEMENT Ox4009 Function not implemented 
E_INFOTYPE Ox400A Illegal lnfotype for this file 
E_INIT Ox400H Error on driver initialization 
E_CONFUCT Ox400C Cannot access file due to current 

usage; for DELETE on open file or 
directory with files; for INST ALL, 
attempted replacement of driver in use 

E_MEMORY Ox400D Not enough memory available 
E_MISMATCH Ox400E Function mismatch--file does not support 

attempted function; for INSTALL, _mis-
match of subdrive type 

E_NAME Ox400F Illegal file name specified 
E_NO_FILE Ox4010 File not found; for CREATE, device or 

directory does not exist 
E_PARM Ox4011 Illegal parameter specified; for 

EXCEPTION, an illegal number 
E_RECSIZE Ox4012 Record Size does not match request 
E_SUBDEV Ox4013 INST ALL only: Sub-drive required 
E_FLAG Ox4014 Bad Flag Number 
E_EMEMACCESS Ox4015 Non-existent memory 

B-5 



B Error and Return Codes FlexOS Programmer's Guide 

Table B-4. (Continued) 

Mnemonic 

E_BOUNDS 
E_EINSlRUCT 
E_EDNO 
E_EBOUNDEX 
E_OVERFLOW 
E_PRIV 
E_ETRACE 
E_EBREAK 
E_EFLOAT 
E_ESTACK 
E_EGENERAL 

B-6 

Code 

Ox4016 
Ox4017 
Ox4018 
Ox4019 
Ox401A 
Ox401B 
Ox401C 
Ox401D 
Ox401E 
Ox401F 
Ox4020 

Description 

Memory bound error 
Illegal instruction 
Divide by zero 
Bound exception 
Overflow exception 
Privilege violation 
Trace 
Breakpoint 
Floating point exception 
Stack fault 
General Exception 



FlexOS Programmer's Guide B Error and Return Codes 

Table B-5. Supervisor and Memory Error Codes 

Mnemonic 

E_ASYNC 

E_LOAD 
E_LOOP 

E_FULL 
E_DEFINE 
E_UNIT 
E_UNWANTED 
E_DVRTYPE 
E_LSTACK 

Code 

Ox4080 

Ox4082 
Ox4083 

Ox4084 
Ox4085 
Ox4086 
Ox4087 
Ox4088 
Ox4089 

Memory Error Codes 

E_POOL 
E_BADADD 

Ox4100 
Ox4101 

Description 

Function does not allow 
asynchronous 1/0 
Bad load format" 
Infinite recursion (99 times) on prefix 
substitution; for INSTALL, subdrive type 
mismatch 
File number table full 
DEFINE only: illegal name 
Too many driver units 
Driver does not need subdriver 
Driver returns bad driver type 
Stack not defined in load header 

Out of memory pool 
Specified bad address to free 

8-7 



B Error and Return Codes FlexOS Programmer's Guide 

Table B-6. Kernel Error Codes 

Mnemonic Code Description 

E_OVERRUN. Ox4180 Flag already set 
E_FORCE Ox4181 Return code of aborted process 
E_PDNAME Ox4182 Process ID not found on abort 
E_PROCINFO Ox4183 COMMAND only: no procinfo specified 
E_LOADTYPE Ox4184 COMMAND only: invalid loadtype 
E_ADDRESS Ox4185 CONTROL only: invalid memory access 
E_EMASK Ox4186 Invalid event mask 
E_COMPLETE Ox4187 Event has not completed 
E_STRL Ox4188 Required SRTL could not be found 
E_ABORT Ox4189 . Process cannot be terminated 
E_CTRLC Ox418A Process aborted by Ctrl-C 
E_CONTROL Ox418B Slave process running 
E_SWIRET Ox418C Not in SWI context 
E_UNDERRUN Ox418D Flag already pending 
E_SPACE Ox4300 Insufficient space on disk or in 

directory 
E_MEDIACHANGE Ox4301 Media change occured 
E_MEDCHGERR Ox4302 Detected media change after a write 
E_PATH Ox4303 Bad path 
E_DEVCONFLICT Ox4304 Devices locked exclusively 
E_RANGE Ox4305 Address out of range 

. E_REAOONL Y Ox4306 RENAME or DELETE on RIO file 
E_DIRNOTEMPTY Ox4307 DELETE of non-empty directory 
E_BADOFFSET Ox4308 Bad offset in read, write or seek 
E_CORRUPT Ox4309 Corrupted FAT 
E_PENDLK Ox430A Cannot unlock a pending lock 
E_RAWMEDIA Ox430B Not FlexOS media 
E_FILECLOSED Ox430C File closed before asynchronous lock 

could be completed 
E_LOCK Ox430D Lock access conflict 

B-8 



FlexOS Programmer's Guide B Error and Return Codes 

Utility return codes follow the same format of operating system error 
return codes, as illustrated in Figure B-1, with the following 
exceptions: 

• Utility return codes are positive numbers (LONGS) because the 
high order bit (31) is always zero. 

• When possible, you should use the error codes listed in Table B- 7 
in the error code field (bits 0-15). 

• You can designate given modules within an application in the 
source field (bits 16-23). 

To return errors generated within your application, OR the source field 
(module) with the error code field. For example, to indicate that an 
application has detected a parameter error, use: 

return( UR_SOURCE I UR_PARM ); 

Do not OR a source field value with UR_SUCCESS, which is a LONG of 
zeroes. 

Table B-7. Utility Return Codes 

Mnemonic Code Description 

UR_SOURCE (LONG)O Utility return 
UR_SUCCESS .(LONG)O Success 
UR PARM Ox0001 Parameter error 
UR_CONFLICT Ox0002 Contention conflict 
UR_UTERM Ox0003 Terminat~d by user 
UR..:.FORMAT Ox0004 Data structure format error 
INTERNAL Ox0005 Internal utility error 
UR_UR_DOSERR Ox0006 PC DOS error 

End of Appendix B 

B-9 





Appendix C 

Country Codes 

All FlexOS console drivers indicate the country code. that is currently 
supported. These country codes are used by applications to 
distinquish character sets, accounting practices. currency symbols 
presentation, date presentation and many other country or region 
dependent practices. 

Code Coufltrv Q! B~gion 

10 Afghanistan 
20 Albania 
30 Algeria 
40 Andorra 
50 Angola 
60 Antigua 
70 Argentina 
80 Austria 
90 Australia 

100 Bahama Islands 
110 Bahrein 
120 Bangladesh 
130 Barbados 
140 Belgium 
150 Bermuda Islands 
160 Bhutan 
170 Bolivia 
180 Botswana 
190 Brazil 
200 British Honduras 
210 Brunei 
220 Bulgaria 
230 Burma 
240 Burundi 
250 Cameroun 
260 Canada 
270 Central African Republic 

C-1 



C Country Codes 

Code 

280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520. 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 

.C-2 

Country or Region 

Ceylon 
Chad 
Chile 
China 
Colombia 
Congo 
Costa Rica 
Cuba 
Cyprus 
Czechoslovakia 
Dahomey 
Denmark 
Dominica 
Dominican Republic 
East Germany 
Ecuador 
Egypt 
El Salvador 
Equatorial· Guinea 
Ethiopia 
Fiji 
Finland 
France 
French Guiana 
French Somaliland 
Gabon 
Gambia 
Ghana 
Greece 
Greenland 
Grenada 
Guadeloupe 
Guatemala 
Guinea 
Guyana 

FlexOS Programmer's Guide 



FlexOS Programmer's Guide C Country Codes 

Code (;o~ntry or Region 

630 Haiti 
640 Honduras 
650 Hong Kong 
660 Hungary 
670 Iceland 
680 Indonesia 
690 India 
700 Iran 
710 Iraq 
720 Ireland 
730 Israel 
740 Italy 
750 Ivory Coast 
760 Jamaica 
770 Japan 
780 Jordan 
790 Kenya 
800 Khmer Republic 
810 Kuwait 
820 Laos 
830 Lebanon 
840 Lesotho 
850 Liberia 
860 Libya 
870 Liechtenstein 
880 Luxempourg 
890 Malagasy Republic 
900 Malaysia 
910 Malawi 
920 Malaysia 
930 Maldive Islands 
940 Mali 
950 Malta 
960 Mauritania 

C-3 



C Country Codes 

Code 

970 
980 
990 

1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 

C-4 

Country or Region 

Mauritius 
Mexico 
Moldavian SSR 
Monaco 
Mongolia 
Morocco 
Mozambique 
Nepal 
Netherlands 
New Caledonia 
New Guinea 
New Hebrides 
New Zealand 
Niger 
Nigeria 
Nicaragua 
North Korea 
Norway 
Oman 
Pacific Islands 
Pakistan 
Panama 
Papua 
Paraguay 

FlexOS Programmer's Guide 

People's Democratic Republic of Yemen 
Peru 
Philippines 
Poland 
Portugal 
Portuguese Guinea 
Puerto Rico 
Qatar 
Rhodesia 
Rumania 



FlexOS Programmer's Guide C Country Codes 

Code (:guntry or F{egion 

1310 Rwanda 
1320 St. Kitts-Nevis-Anguilla 
1330 St. Lucia 
1340 St. Vincent 
1350 San Marino 
1360 Saudi Arabia 
1370 Senegal 
1380 Sierra Leone 
1390 Sikkim 
1400 Singapore 
1410 Somalia 
1420 South Africa 
1430 South Korea 
1440 South-West Africa 
1450 Spanish Sahara 
1460 Spain 
1470 Sudan 
1480 Suri nan 
1490 Swaziland 
1500 Sweden 
1510 Switzerland 
1520 Syria 
1530 Tahiti 
1540 Taiwan 
1550 Tanzania 
1560 Thailand 
1570 Tibet 
1580 Tim or 
1590 Togo 
1600 Trinidad and Tobago 
1610 Tunisia 
1620 Turkey 
1630 Uganda 

C-5 



C Country Codes 

Code 

1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730. 
1740 
1750 
1760 
1770. 
1780 

C-6 

FlexOS Programmer's Guide 

Country or Region 

Union of Soviet Socialist Republics 
United Arab Emirates 
United Kingdom 
United States of America 
Upper Volta 
Uruguay 
Vatican City 
Venezuela 
Vietnam 
West Germany 
Western Samoa 
Yemen Arab Republic 
Yugoslavia 
Zaire 
Zambia 

End of Appendix C 



Index 

A 

ABORT, 7-2 
process termination, 5-4 

Access modes, 1-20 
AR (shared read), 1-20 
ARW (shared read/write), 1-20 
default, 1-20 
devices, 6-3 
EX (exclusive), 1-20 
multiple opens, 2.- 7 
setting, 7-70 

Access privileges, 1-19 
available, 1-19 
before OPEN, 2-5 
disk label, 2-4 
levels, 1-19 
pipes, 4-2 
reduced, 1-20, 7-72 
requesting, 7-70 
rules and restrictions, 2-6 
setting for devices, 7-53 
to directories, 2-5 

ALTER, 7-4 
memory FRAME modification, 

3-13 
operation, 3-13 
plane byte operations, 7-6 
screen FRAME modification, 

3-13 
Archive attribute, 2-3 
Asynchronous SVC 

cancelling event, 7-10 
monitoring event status, 

7-112 
retrieving completion code, 

7-85 
Attribute plane, 3-6 

background color, 3-7 
byte format, 3-7 
character blinking, 3-8 
foreground color, 3-7 

Attributes (disk files only), 2-2 

B 

BACKSPACE key, 7-81 
Boot, 1-16 
Border files 

dimensions, 3-26 
Borders 

bottom size, 8-46 
freeze, 8-44 
left size, 8-46 
reserved file names, 3-24 
right size, 8-46 
synchronize, 8-44 
top size, 8-46 

Buttons 
(mouse) waiting on, 7-7 

BWAIT, 7-7 
button specification, 3-19 
clicks description, 7-8 

lndex-1 



c 

clicks use, 3-20 
event completion, 3-20 
event specification, 3-19 
mask and state example, 3-20 
mask description, 7-8 
mask specification, 3-19 
selecting buttons, 3-19, 7-8 
state specification, 3-20 

C interface 
data structure representation, 

1-5 
data types, 1-1 
SVC form, 1-7 

CANCEL, 7-10 
Case sensitivity, 1-13 
Chained procedure, 5-3 
Character blinking, 3-8 
Character plane, 3-6 
C!laract.er plane 

cell number, 3-8 
Child consoles, 3-22 
Child process, 5-2, 5-3 
CID, 8-37 
CLOSE, 7-11 

affects of, 7-12 
console file, 3-27 
device error, 7-12 
partial, 7-12 

CMDENV Table, 8-3 
COMMAND, 7-14 

access privilege requirements, 
2-7 

asynchronous, 5-4 

lndex-2 

chained procedure, 5-3 
child process, 5-3 
creating processes, 5-3 
procedure, 5-3 
program load options, 5-3 
standard files, 1-18, 3-2 
synchronous, 5-4 

Command specification, 7-15 
Command tail, 7-15, 8-3 
Completion code 

retrieving, 7-85 
specification, 7-45 

Console 
dimensions, 8-5 
keystroke translation, 7-121 
modifying screen, 7-4, 7-24 
name, 8-6 
passing keyboard ownership, 

7-49 
returning keyboard ownership, 

7-57 
screen and keyboard modes, 

8-4 
type, 8-6 
virtual console number, 8-6 

Console files 
access modes and privileges, 

3-2 
closing, 3-27 

CONSOLE Table, 8-4 
diagram, 3-12 
how to get and set, 3-12 
source for read-only values, 

3-13 
TAHEAD, 3-15 

Consoles 
character modes, 3-2 



console files, 3-1 
dimensions. 3-24 
file naming, 3-24 
physical, 8-26 
related SVCs, 3-2 
related tables, 3-3 
type of, 8-45 

CONTROL, 7-19 
access privilege requirements, 

2-7 
options, 7-20 

COPY, 7-24 
memory FRAME specification, 

3-14 
operation, 3-1.4 
screen FRAME specification. 

3:-14 
CPU 

idle count, 8-42 
type, 8-41 · 

CREATE, 7-26 
pipes, 4-2 
virtual consoles, 3-22, 7-30 

CTRL-B, 7-81 
CTRL-C 

trapping, 7-3 
CTRL-X, 7-81 
Cursor 

location, 3-13, 8-5 
keeping in win'dow, 3-26 
tracking, 8-45 
updating location, 3-15 

Data Structures, 1-5 

Data types, 1-1 
Date, 8-43 
Debugging, 7-19 
Default:, 1-16 
DEFINE, 7-33 

device substitution, 7-35 · 
DELETE, 7-36 

access privilege requirements, 
2-7 

open files, 1-21 
required privileges, 1-21 
virtual consoles, 3-27 

DELETE key, 7-81 
Delimiters. 3-16, 7-80 
Device drivers 

installing, 7-53 
Device names, 1-12 

case sensitivity, 1-13 
DEVICE Table, 8-7 

OWNERID, 6-6 
Devices 

access modes, 8-8 
access privileges, 6-2 
direct access, 7-92 
enabling for DEVLOCK, 7-53 
enabling for raw 1/0, 7-53 
installation, 6-4 
installation status, 8-9 
installing drivers, 7-53 
linking subdrivers, 7-53 
locking/unlocking, 7-38 
name, 8-7 
opening, 6-2, 7-70 
owner ID, 8-9 
related SVCs, 6-1 
related tables, 6-1 
setting access privileges, 7-53 

Index< 



types, 8-7 
DEVLOCK, 7-38 

enabling for, 7-53 
miscellaneous devices, 6-3 
options, 2-10 

Directories 
ac,cess privileges, 2-5 
creating, 7-26 
deleting, 7-36 
naming, 1-12 
renaming, 7-83 

DISABLE, 7-40 
Disk buffers 

flushing, 7-103 
Disk device 

reading from, 2-8 
writing to, 2-8 

Disk directories 
abbreviations, 1-12 

Disk drive· 
access modes, 2-9 
current status, 8-13 
checking contents, 7-102 
entries i,n root directory, 8-14 
exclusive mode, 2-10 
FAT ID, 8-14 
first sector, 8-13 
formatting system area, 7-98 
formatting tracks, 7-99 
free space, 8-13 
GET-only mode, 2-9 
hidden sectors, 8-14 
install options selected, 8-12 
label contents, 8-14 
locked information, 8-13 
media format, 8-14 
Media Descriptor Block, 7-107 

lndex-4 

name, 8-12 
number of FATs, 8-13 
number of heads, 8-14 
number of sectors, 8-13 
opening, 2-9 
partition size, 8-13 
raw read, 7-104 
raw write, 7-106 
reading system area, 7-96 
sector size, 8-13 
sectors/block, 8-13 
sectors/FAT, 8-14 
sectors/track, 8-13 
setting for verify after write, 

7-53 
setting Media Descriptor 

Block, 7-107 
shared read-only mode, 2-10 
size of system area, 8-14 
total file space, 8-13 
type. 8-12 
writing system area, 7-97 

Disk files 
attributes, 2-2, 8-18 
File Security Word, 8-18 
group and user IDs, 8-18 
group ID, 2-3 · 
initiating access, 2-2 
lock modes, 7-61 
locking and unlocking, 7-60 
modification date, 8-18 
multiple opens, 2-7 
ownership rights, 1-19 
record size, 2:-3, 8-18 
removing all locks, 7-62 
security, 2-3 
setting attributes, 2-2 



shared access, 2-7 
size, 8-18 
user ID, 2-3 

Disk label, 2-3, 2-4 
selecting options, 2-4 
set mode requirements, 2-10 

Disk media 
characteristics, 2-3 
direct access, 2-8 
raw 1/0, 2-8 

Disk Resource Manager 
SVCs, 2-1 

Disk security 
limiting raw 1/0, 2-10 

DISK Table, 8-10 
DISKFILE Table, 8-16 
Drivers 

installation, 6-4 

E 

E_bwait, 7-7 
E_command, 7-14 
E_control, 7-19 
E_lock, 7-60 
E_open, 7-70 
E_read, 7-78 
E_rwait, 7-86 
E_termevent, 7-2 
E_timer, 7-115 
E_write, 7-118 
ENABLE, 7-41 
ENVIRON Table, 8-19 
Escape sequences 

output, 3-15 

Events 
cancelling, 7-10 
getting completion status, 

7-112 
outstanding, 8-38 
waiting on completion; 7-117 

EXCEPTION, 7-42 
EXIT, 7-45 

from a swi, 1-11 
Extension plane 

byte format, 3-8 
External abort 

trapping, 7-3 

F 

Family identification number 
(FID), 5-2, 8-20, 8-37 

File 
security. 2-4 

File Allocation Tables 
ID, 8-14 
number of, 8-13 
sectors per, 8-14 

File names, 1-12 
case sensitivity, 1-13 
logical name substitution, 

1-16 
reserved, 1-16 
wildcards, 1-14 

File number, 1-17 
File pointer, 1-21 

after READ, 7-80 
after WRITE, 7-120 
determining location, 1-21 
getting current value, 7-88 

lndex-5 



.initial value, 7-71 
pipes, 4-5 
·setting , 7-88 
setting location, 1-21 
shared, 7-72 
shared versus unique, 1-21 

File security, 2-3, 2-6 
default 8-20 
for pipes, 4-2 
format. 1-19 
setting, 7-28 

File specification, 1-12 
node, 1:-12 
pa~h, 1-12 
root directory, 1-12 
subdirectory, 1-12 

Files 
access mode, 8-21 
closing, 7-11 
console, 3-24 
creating, 7-26 
deleting, 1-21. 7-36 
disk file lock modes, 7-61 
disk file management. 2-1 
file pointers, 1 ·-21 
locking disk files, 7-60 
name specification, 7-28 
number, 1-17 
opening, 1-17, 7-70 
random access, 1-21 
record size specification. 7-28 
removing all disk file locks, 

7-62 
renaming, 7-83 
reserved console names, 3-24 
reserving contiguous disk 

space. 7-29 

tndex-6 

security specification, 7-28 
sequential access, 1-21 
setting size, 7-29 
standard, 1-16 
truncating, 7-119 
unlocking disk files, 7-60 

FILNUM Table, 8-21 
Flags 

bit ordering, 1-23 
FlexOS 

idle count, 8-42 
release level, 8-42 
version number, 8-41 

FRAME 
attribute plane, 3-6 
C structure, 3-9 
changing rectangle. 7-4 
character plane, 3-6 
copying rectangles, 7-24 
dimensions, 3-10 
Extension plane, 3-8 
memory, 3-10 
modification with ALTER, 3-13 
modification with COPY, 3-14 
plane use flag, 3-10 
planes, 3-5 
screen, 3-10 
structure diagram, 3-9 

Fite Security Word (FSW), 2-3, 
7-28 

G 

GET, 7-47 



access privilege requirements, 
2-6 

table number specification, 
7-48 

GIVE, 7-49 
Group ID, 2-3 
GSX, 7-51 

H 

Heap 
adding a new, 7-66 
current size, 8-38 
decreasing size of, 7-69 
expanding, 7-66 
initial contents, 7-15 
starting address, 8-38 

Heap management, 5-5 
Hidden attribute, 2-2 
Hotspot 

location within mouse form, 
3-18 

Idle count, 8-42 
INSTALL, 7-53 

disk security options, 2-10 
options, 6-5 

Interrupt condition numbers, 
7-43 

Interrupt Service Routine (ISR), 
7-42 

J 

K 

KCTRL, 7-57 
Kernel, 1-29 
Key translation, 7-121 
Keyboard 

input delimiters, 3-16 
mode, 8-5 
passing ownership, 7-49 
returning ownership, 7-57 · 
type-ahead buffer, 3-15 

KMODE, 8-5 
initialization value, 3-13 

L 

LEFT ARROW key, 7-81 
Line editing characters, 7-81 
LOCK, 7-60 
Lock modes, 7-61 
Logical names 

default devices, 7-35 
defining, 7-33 
delimiters, 1-17 
global, 1-17, 8-40 
passing to child process, 1-17 
prefix string, 8-34 
process only, 8-34 
process-related, 1-17 
replacement procedurn, 1-17 
specification, 7-34 
subtitution, 1-16 

LOOKUP, 7-63 
access privilege requirements, 

2-6 
directories, 8-16 

lndex-7 



hi.dden files. 8-16 
include label, 8-16 
name case sensitivity, 7-65 
system files, 8-16 
wildcard use, 1-15 

M 

"':!ALLOC, 7-66 
adding new heap, 5-5 
increasing existing heap, 5-5 

. MCTRL, 7-57 
Media Descriptor Block (MOB), 

7-107 
Media format, 8-14 
Memory 

allocation at process 
termination, 7-45 

free byt~s. 8-22 
increas·ing heap, 7-66 
operating system size, 8-22 
total bytes, 8-22 

MEMORY Table, 8-22 
Message Window, 3-27 
MFREE, .7-69 
Miscellaneous device 

ge.t subdriver PORT table, 
7-110 

set subdriver PORT table, 
7-111 

Miscellaneous devices (see 
Devices), 6-1 

Mouse, 7-86 
driver loading requirements, 

3-17 
getting location, 3-18 

lndex~8 

opening, 3-19 
reserved file name, 3-24 
setting location, 3-18 
virtual console number, 3-19 
waiting on clicks, 7-7 

MOUSE Table, 8-23 
Mutual exclusion, 4-6 

N 

Names 
case sensitivity, 1-13 
reserved, 1-16 

Node names, 1-12 

0 

OPEN, 7-70 
access privileges, 1-20 
devices. 6-2 
disk drive, 2-9 
multiple, 2-7 
pipes, 4-3 

ORDER, 7-74 
Osif, 1-4. 1-5 
Overlay, 1-18, 7-76 

access privilege requirements, 
2-7 

current file number, 8-20 
file number, 1-18 
loading, 7-76 

OWNERID, 6-6 

p 



Parameter block 
diagram, 1-7 

Parent consoles, 3-22 
Parent process, 5-2, 8-38 
Partition size, 8-13 
Path, 1-12, 8-25 

item delimiters, 1-17 
PATHNAME Table, 8-25 
PCONSOLE Table, 8-26 
Physical console, 8-26 

attribute plane bits, 8-28 
character rows and columns, 

8-27 
country code, 8-28 
extension plane bits, 8-28 
ID r.iumber, 8-26 
name, 8-26 
number of function keys, 8-28 
number of rows and columns, 

8-27 
number of virtual consoles, 

8-26 
planes supported, 8-27 
type of, 8-27 

Pi:, 4-1 
PIO, 5-2, 8-20, 8-37 
PIPE Table, 8-29 
Pipes 

access modes, 4-3 
access privileges, 4-2 
creating, 7-26 
deleting, 4-2, 7-36 
File Security Word, 8-29 
name, 4-2, 8-29 
non-destructive READ, 4-7 
record size, 4-2, 8-29 
related SVCs, 4-1 

shared file pointer, 4-3 
size, 4-2, 8-29 
size specification, 7-29 
used for mutual exclusion, 4-6 
zero length buffers, 4-6 

Planes 
byte or array flag, 3-10 
changing cells, 7-4 

PORT Table. 8-30 
Ports 

baud rate, 8-31 
control parameters, 8-31 
current status, 8-30 
serial mode, 8-31 
type, 8-30 

Prefix string, 8-34, 8-40 
specification, 7-34 

PRINTER Table, 8-32 
Printers 

name, 8-33 
paper type, 8-33 
status, 8-32 
typeface mode, 8-32 

Priority (process), 1-29, 7-16, 
7-18, 8-37 

Prn:, 1-16, 6-2 
PROCDEF Table, 8-34 

changing entries, 7-33 
scanning, 8-25 
source, 1-17 

Procedure, 5-3 
Process ID. 5-2, 8-37 
PROCESS Table, 8-35 
Processes 

aborting, 7-2 
child, 5-2 
code area, 8-38 

lndex-9 



command file specification, 
8-3 

completion code, 7-45 
creating, 5-3, 7-14 
current family ID, 8-20 
current process ID, 8-20 
current state, 8-37 
current user and group ID, 

8-20 
data area, 8-38 
decreasing heap, 5..:.5 
defined logical names, 8-34 
family ID, 5-2, 8-37 
group ID, 8-37 
heap, 8-38 

· increasing heap, 5-5, 7-66 
loading overlays, 7-76 
maximum memory, 8-37 
maximum memory 

specification, 7-16 
m~mory at termination, 7-45 
name, 8-37 
name specification, 7-16 
outstanding events, 8-38 
parent, 5-2, 8-38 
physical console number, 8-37 
PIO, 7-16, 8-37 
priority, 1-29, 7-16, 8-37 
priority numbers, 7-18 
process ID, 5-2 
related SVCS, 5-1 
related tables, 5-1 
relationships, 5-2 
return code, 7-45 
scheduling, 1-29, 7-115 
source PROCDEF table, 1-17 
states, 1-24 

lndex-10 

;;ynchronization with pipes, 
4-6 

terminating, 5-4, 7-45 
type of, 8-37 
user ID, 8-37 
user priority number, 1-29 
virtual console number, 8-37 

Program 

0 

R 

code area, 8-38 
data area, 8-38 
heap, 8-38 
load options, 5-3 

Random file access, 1-21 
Raw 1/0 

enabling for, 7-53 
READ, 7-78 

access privilege requirements, 
2-7 

delimiters, 3-16, 7-80 
disk device, 2-8 
enabling for delimiters, 7-79 
from keyboard, 3-16 
line editing charac~ers, 7-81 
miscellaneous devices, 6-3 
pipes, 4-5 

Read-only attribute, 2-2 
Record size, 2-3 
Record_size, 7-26 
RECT 

C structure, 3-11 



dimensions, 3-11 
structure diagram, 3-11 

Red~ced access privileges, 7-72 
Release level, 8-42 
RENAME, 7-83 

access privilege requirements, 
2-7 

Resource Managers, 1-28 
RETURN, 7-85 

limitation, 1-10 
Return code, 1-8 

specification, 7-45 
RIGHT ARROW key, 7-81 
Root directory 

abbreviation, 1-12 
number of entries in, 8-14 

RWAIT, 7-86 

s 

clipping region, 3-21 
RECT specification, 3-21 
return value, 3-21 

S_abort, 7-2 
S_alter, 7-4 
S_bwait, 7-7 
S_cancel, 7-10 
S_close, 7-11 
S_command, 7-14 
S_control, 7-19 
S_copy, 7-24 
S_create, 7-26 
S_define, 7-33 
S_delete~ 7-36 
S_devlock, 7-38 
S_disable, 7-40 

S_enable, 7-41 
S_exception, 7-42 · 
S_exit, 7-45 
S_get, 7-47 
S_give, 7-49 
S_gsx, 7-51 
S_iristall, 7-53 
S_kctrl, 7-57 
S_lock, 7-60 
S_lookup, 7-63 
S malloc, 7-66 
S_mctrl, 7-57 
S_mfree, 7-69 
S_open, 7-70 
S_order, 7-74 
S_overlay, 7-76 
S_rdelim, 7-78 
S_read, 7-78 
S rename, 7-83 
S return, 7-85 
S_rvvait, 7-86 
S_seek, 7-88 
S_set, 7-90 
S_special, 7-92 
S status,7-112 
S_swiret, 7-113 
S_timer, 7-115 
S_vccreate, 7-30 
S_wait, 7~117 
S_write, 7-118 
S_xlat, 7-121 
Screen 

changing display, 3-13 
cursor location, 8-5 
colors, 3-7 
mode, 8-4 

Screen_fnum, 7-30 

lndex-11 



Searching tables, 7-63 
·sectors 

first. 8-13 
number on disk, 8-13 
size, 8-13 

SEEK, 7-88 
Semaphores, 4-6 
Sequential file access, 1-21 
SET, 7-90 

access privilege requirements, 
2-7 

Sibling consoles, 3-22 
SMODE, 8-4 

initialization value, 3-13 
Software Interrupt routine 

disabling, 7-40 
enabling, 7-41 
returning from, 7-113 

Softwa.re interrupts, 1-10, 1-11 
SPECIAL, 7-92 

checking media, 7-' 102 
disk function mode 

requirements, 2-8 
disk functions, 7-95 
disk functions return codes, 

7-95 
flushing disk buffers, 7-103 
formatting disk system area, 

7-98 
formatting tracks, 7-99 

·Miscellaneous device function 
0, 7-110 

Miscellaneous device function 
1, 7-111 

miscellaneous devices, 6-4 

lndex-12 

parameter block specification, 
7-92 

raw disk read, 7-104 
raw disk write, 7-106 
read disk system area, 7-96 
reserved function number bits, 

7-93 
reserved function numbers, 

7-94 
writing disk system area, 7-97, 

7-107 ' 

SPECIAL Table, 8-39 
SPLDVR, 6-2 
Spooling system, 6-2 
Standard files, 1-16 

current numbers, 8-19 
numbers, 1-18 · 
source definitions, 1-17 
when opened, 3-2 

STATUS, 7-112 
Stdcmd, 1-16 
Stderr (standard error file), 1-16 

current file number, 8-19 
file number, 1-18 
open mode, 3-2 
open privilege and mode, 1-18 

Stdin (standard input file), 1-16 
current file number, 8-19 
file number, 1-18 
open mode, 3-2 · 
open privilege and mode, 1-18 

Stdout (standard output file), 
1-16 

current file number, 8-19 
file number, 1-18 
open mode, 3-2 
open privilege and mode, 1-18 



Subdrivers 
getting PORT table values, 

7-110 
linking, 6-4, 7-53 
PORT table access, 6-3 
setting PORT table values, 

7-110 
Superuser 
·disk access privileges, 2-10 
setting privileges, 1-19 

Supervisor, 1-28 
Supervisor calls 

asynchronous, 1-7 
general form, 1-7 
numbers, 1-3 
return codes, 1-8 
synchronous, 1-7 

SVC (see also Supervisor calls), 
1-4 

Swi 
disabling, 7-40 
enabling, 7-41 
exit options, 1-11 

See also software 
interrupts 

SWIRET, 7-113 
SYSDEF Table, 8-40 

access rules, 7-34 
changing entries, 7-33 
modification restrictions, 1-17 

·scanning, 8-25 
System area 

size of, 8-14 
System attribute, 2-3 
System' Data Structures, 8-1 
System overview, 1-27 
SYSTEM Table, 8-41 

System:, 1-16 

T 

Tables, 8-1 
CMDENV, 8-3 
CONSOLE, 8-4 
DEVICE, 8-7 
DISK, 8-10 
DISKFILE, 8-16 
ENVIRON, 8-19 
FILNUM, 8-21 
ID value, 7-48 
lookup, 7-63 
MEMORY, 8-22 
MOUSE, 8-23 
PATHNAME, 8-25 
PCONSOLE; 8-26 
PIPE, 8-29 
PORT, 8-30 
PRINTER, 8-32 
PROCDEF, 8--34 
PROCESS, 8-35 
retrieving, 7-47 
setting values, 7-90 
SPECIAL, 8-39 
SYSDEF, 8-40 
SYSTEM, 8-41 
Tl MEDA TE, 8-43 
VCONSOLE, 8-44 

TAHEAD, 3-15 
Time, 8-43 
TIMEDATE Table, 8-43 
TIMER, 7-115 
Tracks 

sectors per, 8-13 

lndex--13 



Type-ahead buffer, 3-15, 8-4 

u 

User ID, 2-3 
User space 

v 

code area, 8-38 
data area, 8-38 
heap, 8-38 

VCID, 8-37 
VCNUM. 8-45 
VCONSOLE Table, 8-44 
Version number, 8-41 
Virtual consoles 

border dimensions, 3-26, 8-46 
border specification, 7-31 
child, 3-22 
console file closing, 3-27 
creating, 3-22, 7-30 
current number, 8-45 
deleting, 3-27, 7-36 
dimensions. 8-46 
display tules. 3-22 
illustration, 3-25 
initialization values, 3-24 
name, 3-24 
number, 3-24 
number of, 8-26 
parent, 3-22, 7-31 
relationships, 3-22 
reordering, 7-74 
setting dimensions, 3-24 

lndex-14 

setting window size and 
dimension, 3-25 

siblings, 3-22 
type of, 8-45 
window location, 8-46 
window mode, 8-44 
window position, 8-45 
window size, 8-46 
windows, 3-25 

w 

WAIT, 7-117 
Watchdog timer, 7-116 
Wildcard, 1-14 
Windows, 3-25 

border files, 3-26 
cursor tracking, 3-26 
dimensions, 8-46 
mode, 8-44 
position on parent, 8-46 
reference point of view, 8-45 
reserved border file names, 

3-24 
setting size and position, 3-25 

Wmessage, 3-27 
WMEX 

wmessage pipe, 3-27 
WRITE, 7-118 

access privilege requirements, 
2-7 

disk device, 2-8 
miscellaneous devices, 6-4 
pipes, 4-5 
to screen, 3-15 
with redirection, 3-15 



X' 

XLAT, 7-121 

y 

z 

lndex-1 ! 




