
FlexOS TM 386

Version 1.4.

Beta Release Note 2

How this Release Note Differs from the Previous One

This FlexOS 386 Beta Release Note contains new information in
Section 6, System Updates. Reading this section will bring you up to
date on all that has been changed since the June 1987 release. If you
have already read the prior release note, Section 6 is the only section
that you need to read. If you have not read the June 1987 release note,
read this release note in its entirety.

Contents

Section 1 describes the contents of the developer kits and the
required hardware.

Section 2 describes how to use the bootscript, how to link FlexOS
modules, and how to use the SASID386 debugger.

Section 3 describes shared memory and removable subdrivers.

Section 4 describes some new features of the FlexOS 386 development
environment.

Section 5 contains a list of errors or omissions in the FlexOS
documentation set.

s·ection 6 describes corrections and new features including new
installation instructions, new driver service calls, and a list of DOS
applications being certified.

July 1987 1079-1001-002

SECTION 1

GENERAL SYSTEM INFORMATION

1.1 Beta Site Developer Kit Contents

FlexOS 386 beta software is shipped in two forms:

1. for those who already have the FlexOS 286 Developer Kit

2. for those who do not have the FlexOS 286 Developer Kit

Those who already have the FlexOS 286 Developer Kit receive the new
material relevant to the 386 development environment; that is, the
system disks, the FlexOS 386 Programmer's Utilities Guide and this
release note. Those who do not have the 286 kit, receive the 386
information and the FlexOS 286 Developer Kit.

The FlexOS 286 Version 1.31 Developer Kit contains the FlexOS User's
Guide, FlexOS Programmer's Guide, FlexOS System Guide, FlexOS
Programmer's Utilities Guide, FlexOS Programmer's Utilities Guide
Supplement.

Note: FlexOS 386 supports both 286-mode 16 bit addresses and 386-
mode 32-bit addresses. However, you must use the MetaWare 286
High C Compiler to compile drivers. You must also use the 286 linker
and debugger provided to generate and test system space code. See
the FlexOS System Guide, Versions 1.3, for a full discussion of driver
development.

FtexOS 386 is shipped on seven 5 1/4 inch quad density (1.12 Mb)
disks organized into three product assemblies: Programmer's Toolkit,
System Builder's Kit and the Debugger Disk.

1.1.1 Disk Contents

Generally, the files are grouped into subdirectories according to their
purpose or use. The README file for each kit lists the files according
to these groups and provide subdirectory definitions. We recommend
printing out and reviewing the contents of the README.1 and
README.2 files as soon as possible.

1-1

1.2 Required Hardware FlexOS 386 Beta Release Note

Each product assembly has a set of files appropriate to the tasks that
purchasers will need to do. The Programmer's Toolkit supports
creation of applications that use the FlexOS SVCs and run under
FlexOS. This package does not contain FlexOS driver source code nor
does it license further distribution of FlexOS.

The System Builder's Kit supports development of hardware drivers.
The kit provides the FlexOS system object files, driver source, and link
scripts. This package does not license further distribution of FlexOS.

The Debugger Disk contains SASID386, a stand-alone Symbolic
Instruction Debugger, and a help file, DEBUG.DOC, that explains how to
run it

Be sure to backup all disks as soon as you open them to prevent
against mishaps.

1.2 Required Hardware

Two executable versions of FlexOS are provided in the Programmer's
Toolkit: one boots FlexOS from floppy disk, and the other boots FlexOS
from a hard disk. These versions of FlexOS require the following
hardware to run:

• Compaq® Deskpro 386 TM

• Minimum of 2Mb of RAM memory
• 20 Mb or greater hard disk with up to 4 partitions
• Quad density (1.2 Mb) 5 1/4 inch disk drive
• Serial port with the same adress as COM1 under MS-DOS™
• CeQtronics®-compatible port with the same address as PRN under

MS-DOS
• IBM® Color Graphics Adapter (CGA), monochrome mode only, or
• IBM Enhanced Graphics Adapter (EGA), low resolution only
• Serial terminal for debugging and for developing multi-user

applications (FlexOS was developed using Zenith® Z-29 terminals)

1-2

FlexOS ™ 386 Beta release 3
15 September 1987

Dear FlexOS 386 Beta User,

The following information pertains to Beta release #3 of the FlexOS 386
Programmer's toolkit. Beta 3 is a refinement of the previous release, particularly in
the FlexOS DOS Application Environment (DOS AE).

You install this Beta system as previously described in Beta Release Note 2. If you
have an existing CONFIG.BAT file that contains any changes made since the Beta 2
release, you should save it in a separate directory or give it the Read-Only
attribute before installing this release.

Effective with this release, the following system files have been renamed as
indicated:

Old name New name

FLEX286.SYS FLEXOS.SYS
BLOAD286.IMG BOOTLOAD.IMG

If you want to boot FlexOS from the first partition on the hard disk, you must
rename these files as indicated before executing the install procedure on the
distribution diskette.

Note: If you have configured your system to boot from any other partition that the
first, you must create a bootable floppy disk.

Hard Disk Directory Cache Problem

There is a problem in the FlexOS file system that prevents the directory cache for
permanent media from being placed into an nempty" state. This problem primarily
affects the FORMAT and SYS utilities, which do not properly install the system as
documented. Currently, the workaround for this problem is to reboot the system
after performing any logical or physical hard disk format operation.

The SET Utility

FlexOS contains a new utility named SET that allows you to specify DOS
environment strings. This utility is equivalent to the DOS SET (Set Environment)
command, but unlike DOS which holds environent strings in memory, FlexOS's SET
places the environment strings in a file named DOS.ENV in your SYSTEM: directory.
(The SET utility is found in the TOOLS directory on disk #3.)

Examples:

1

A>set path • c:\dosaps

This command sets the search path for an application that looks for its files in the
specified directory DOSAPS.

A> set

The command SET with no parameters displays the contents of the file DOS.ENV.

Note: You should consult the DOS documentation for complete information about
environment strings.

Serial Ports

When installing applications, be sure to specify COM 1 as the serial port, although
you should physically connect the mouse to the serial port designated as COM2.
FlexOS uses COM2 as the primary serial port because it uses COMl for debugging.
The FlexOS DOS AE internally remaps COM 1 to COM2 so the mouse works
correctly.

Using a Mouse

To use a mouse with GEM applications, you must install the mouse driver, and use
the following CONFIG command to set up the serial port with the parameters as
shown:

C>conf ig ser: 1200 8 n 1

Note: Only one DOS application can have control of the mouse at any given time.

When using the mouse, faster response can be gained by double-clicking and then
immediately moving the mouse in any direction rather than simply double-clicking
without movement.

Running GEMPREP

To use GEMPREP for GEM version 2.2, you must boot DOS; GEMPREP only works
under DOS. Be sure DOS is installed in a partition less than 32 Mb.

COMMAND.COM

The FlexOS DOS AE does not support applications that use COMMAND.COM.

EGA Support

The FlexOS DOS AE does not support the EGA.

Specific DOS Applications Guidelines .
The following notes apply to running the indicated DOS applications:

2

1 Dbase II v 2.41

ADDMEM setting: 384

2 Dbase Ill v1 .0

ADDMEM setting: 384

3 Dbase Ill Plus v1 .1

ADDMEM setting: 384

4 DataFlex v2.2b (Full DEMO Version)

ADDMEM setting: 128

Special Notes:

o Add a space before the "/R" in the first line of the INSTALL.BAT file. This is
required otherwise the shell tries to find an executable called R in a directoi:y
called "PKXARC" that is a subdirectory of the current directory.

5 GEM DeskTop v2.2

ADDMEM setting: 512

6 GEM Draw Plus v2.0

ADDMEM setting: 512

7 GEM Paint v2.0

ADDMEM setting: 512

8 GEM WordChart v1 .0

ADDMEM setting: 512

9 GEM First Word Plus v1 .0 (UK Release)

3

ADDMEM setting: 512

10 GEM Write v1 .0

ADDMEM setting: 512

11 Lattice C Compiler v3.1 O

ADDMEM setting: 256

Special Notes:

o Users are recommended to use LINK.EXE v3.0.

12 Lattice C Compiler v3.20

ADOMEM setting: 512

Special Notes:

o Users are recommended to use LINK.EXE v3.0.

13 Lotus 1-2-3 v1A

ADDMEM setting: 128

14 Lotus 1-2-3 v2.01

ADDMEM setting: 512

15 MASM v4.0

ADDMEM setting: 512

Special Notes:

o Users are recommended to use LINK.EXE v3.0.

16 MicroEmacs v30.5

4

ADDMEM setting: 128

17 Microfocus Level II Cobol v2.6

ADDMEM setting: 128

18 Microsoft Fortran v4.0

ADDMEM setting: 512

Special Notes:

o Users are recommended to use LINK.EXE v3.0.

19 Turbo C v1.0

ADDMEM setting: 256

2.0 Turbo Prolog v1 .1

ADDMEM setting: 256

21 Turbo Pascal v3.02A

ADDMEM setting: 256

22 Wordstar Professional v4.0

ADDMEM setting: 128

5

FlexOS 386 Beta Release Note 1.3 Booting FlexOS on the Target System

1.3 Booting FlexOS on the Target System

See Section 6.3 for detailed installation instructions. Refer to the
FlexOS User's Guide for instructions on creating windows and running
the FlexOS utilities.

1.4 FlexOS Hard Disk Installation

Section 6.3.3 describes how to install FlexOS so that it will boot from
a hard disk.

WARNING

If you create partitions larger than 32K, under no circumstances should
you run MS/PC-DOS. Writing a file in that environment will destroy the
FAT tables.

The FlexOS FDISK and FORMAT utilities give unpredictable results with
hard disks above 64 Mb.

If you are going to change the partitioning on the hard disk before you
install FlexOS, you MUST do a physical format of the hard disk first. If
you do not, you may obtain unpredictable results.

End of Section 1

1-3

FlexOS 386 Beta Release Note 2. 1 System Configuration

SYSTEM DEVELOPMENT

2.1 System Configuration

Certain portions of FlexOS can be defined during system initialization
in the bootscript. For example, systems with sufficient memory can
install a RAM disk from the script or, if the hardware is present, add
serial ports. Refer to listing 3.1 on page 3-9 of the FlexOS System
Guide, Version 1.3, for an example of a bootscript.

The basic bootscript is a user-modifiable file named CONFIG.BAT. The
distribution bootscript is on the Programmer's Toolkit #1 disk.

Other portions of FlexOS are defined in CONFIG.OBJ. This module
specifies, for example, the resource managers and drivers to be loaded
with the system. User changes are generally made in CONFIG.H. The
source of CONFIG.OBJ is the C language file, CONFIG.C.

Refer to the FlexOS User's Guide to modify CONFIG.BAT, and to the
FlexOS System Guide, section 3.3, to modify the CONFIG.C file.

2.2 FlexOS Library Modules

FlexOS is built primarily from library modules. There are three main
libraries:

.• COMLIB.L86 contains nonconfigurable modules
• ATLIB.L86 contains configurable driver modules
• FILESYS.L86 contains the file system manager

The disks in the System Builder's Kit provide the object sources and
sample input files for building all these libraries. Refer to the README
files for for descriptions of the input and object files.

2-1

2.2 FlexOS Library Modules FlexOS 386 Beta Release Note

2.2.1 Linking FlexOS Modules

The files DISP386.0BJ, CONFIG.OBJ, ACONF386.0BJ, CLOCK.OBJ, and
CLOCKAT.OBJ are linked together with the modules in the ATLIB.L86,
FILESYS.L86, and COMLIB.L86 libraries to form FlexOS.

The System Builder's Kit provides linker input files for creating
bootable and non-bootable versions of FlexOS. Link the system using
DEBUG.INP to create a non-bootable system for debugging drivers.

Link the system using BOOT386.INP to create a bootable system. A
complete FlexOS system can be generated with this file.

After the link is complete. process the output file with the FIX.286
utility, then write the resulting file to the boot disk using the SYS.286
utility or FORMAT.286 under FlexOS. FIX.286 is explained in section 5.3
in this release note.

2.3 Building FLEX386.CMD, a Debuggable System

First, link the system with DEBUG.INP. This creates FLEX386.CMD, a
debuggable version of FlexOS, and FLEX386.SYM, its corresponding
symbol table. Boot the disk labelled DEBUG Disk #1 which contains
the debugger. This automatically loads the debugger SASID386.CMD,
which in turn loads FLEX386.CMD and FLEX386.SYM for execution. The
debugger executes from the attached serial terminal; FlexOS runs on
the primary console.

Note: Since the debuggable system runs the debugger on the serial
terminal, it is necessary to have that terminal connected.

2-2

FlexOS 386 Beta Release Note 2.4 Using SASID386

The version of SASID386 provided runs under the "FlexOS Debug
System" on a Compaq Deskpro 386 equipped with one quad density
floppy disk drive.

2.4 Using SASID386

The SASID386 debugger is similar to the SID 286 debugger, and you
will recognize many of the same commands from that utility. First,
backup the disk containing SASID386 and put the copy in drive A of
your machine. Invoke the program by first booting up the FlexOS
Debug System. After a while, you will see the SASID386 prompt on the
serial terminal screen.

The SASID386 loader looks for the FLEX386.CMD and FLEX386.SYM
files, loads SASID386 at selector OAOO, then loads FlexOS 386 at
selector OA30. For mor.e information on running SASID386, and
changing the debugging file, see the text file called DEBUG.DOC
included on DEBUG Disk #1.

Here is a list of the SASID386 commands:

Display Memory

b<address>.<length>,<address>
d <address>,< address>
dw<address>.<address>
dlw<address>.<offset>.<size>
I< address.address>
sr<address>,<length>.<value>

Examine Memory

s<address>
sw<address>
f<address >,<address>
fw <address>,< address>
m <address>,< length>,< value>

Compare memory
Display bytes
Display words
Display linked list by words
Disassemble code
Search for value

Display and set bytes
Display and set words
Fill memory bytes
Fill memory words
Move memory block

2-3

2.4 Using SASID386

Execute

g <address>,< address>,< address>
p <address>,< count>
t<count>
tw<count>
u<count>
x
c <address> ,parm,parm ...

Miscellaneous

h
h.symbol
h<value>
h<valuel >,<value2>
n<name>,<address>
qi<port>
qiw<port>
qo<port>
qow<port>

FlexOS 386 Beta Release Note

Go at address until break
Set passpoint
Trace instructions
Trace without calls
Trace without display
Display registers
Call a function

Display symbols
Display symbol offset
Hex-decimal conversion
Hex arithmetic
Add name to symbols
Input byte from port
Input word from port
Output byte to port
Output word to port

Note: A symbol or register can be used as an <address>.

2-4

FlexOS 386 Beta Release Note 2.5 Adding Drivers

2.5 Adding Drivers

Digital Research provides driver source code in the System Builder's
Kit for the target system:

• Floppy Disk Driver
• Hard Disk Driver
• Printer Driver
• Serial Driver
• RAMdisk Driver
• Mouse Driver
• Console Driver

Note: This code is subject to ongoing rev1s1ons and optimizations. It
is provided only as an example of how the driver code interfaces with
FlexOS.

Drivers in this release are linked into the system by including the
driver object files in the system build .INP files.

Alternatively, you can load drivers in the bootscript or load them
interactively with the DVRLOAD command. To load them interactively,
you must be a superuser.

When you make changes to files and recompile them, be sure the
object files you create do not write over object files of the same name
provided with this release.

All the C modules for FlexOS 386 Version 1.4 were compiled using
MetaWare High C Version 1.3. Because of parameter passing
conventions and other differences, you must also use High C to
ccompile your driver code.

End of Section 2

2-5

SECTION 3

Shared Memory Considerations

3.1 Shared Memory

This feature lets multiple processes share common memory regions.
Processes can also access specific physical memory locations, for dual
ported RAM or system ROMs. (The following information is
substantially the same as that provided with the Version 1.31 release
of FlexOS 286.)

The processes can share data regions with drivers for fast
communications in both protected and unprotected FlexOS
environments, and multiple user processes can share data regions with
each other. FlexOS grants access to shared memory only to those
user processes with access rights established during system
implementation.

There are two ways to access shared memory; through shared
memory files, which work like pipes, and through the new driver
services SHMEM and UN SHMEM.

With the SHMEM table (illustrated below), a driver or process can
create a shared memory file specifying a name for the memory
allocation, a security word, and the size of the memory. Shared
memory files have the "sm:" device name. You create a shared
memory file with the CREATE SVC. See the description of CREATE in
the FlexOS Programmer's Guide on page 7-26.

A subsequent OPEN SVC provides and verifies access to this file. The
GET SVC returns a valid address for the shared memory region, the
CLOSE SVC disables access via this address, and DELETE releases the
region. Each shared data file also contains a semaphore, so drivers and
processes can synchronize usage through the READ and WRITE SVCs.

The Pipe Resource Manager disallows an open request of "sm:"
devices by any process with an mid < > 0. This prevents a process on
a remote node of a network from gaining access to shared data. Note
that pipes are different in this respect: processes on one node can
access pipes on remote nodes.

3-1

3.1 Shared Memory FlexOS 386 Beta Release Note

0 1 2 3 4
+--------+--------+--------+--------+

00 I KEY I
+--------+--------+--------+--------+

04 I I
+ NAME +

08 I
+ +--------+--------+

OC I SIZE I
+--------+--------+--------+--------+

10 I RESERVED SECURITY I
+--------+--------+--------+--------+

14 USER I GROUP RESERVED
+--------+--------+--------+--------+

18 I UBUFFER I
+--------+--------+--------+--------+

lC I SBUFFER I
+--------+--------+--------+--------+

20H - Maximum Size of SHMEM Table

KEY

NAME

RESERVED

SIZE

SECURITY

USER

GROUP

UBUFFER

3-2

Unique ID

Name

Must be O

Size of memory area in bytes

Security word

User ID of creator

Group ID of creator

User address of shared memory. This value is zero
if the table was obtained through the LOOKUP SVC.
You must use GET to obtain the address.

FlexOS 386 Beta Release Note 3.1 Shared Memory

SBUFFER System address of shared memory. This value is
used by drivers and system processes independent
of process context.

Device Type Oxl 1

Device Name "sm:"

Table Number Ox11

SVC's supported CREATE. OPEN, READ, WRITE, CLOSE, DELETE. GET
and LOOKUP.

3.1.1 Shared Memory Driver Services

A shared memory driver service must be used for a new process to
gain access to shared memory. The driver itself obtains system
memory by utilizing the MAPPHYS() or SALLOC() driver services. It
then allows a user process access to memory through a SHMEM()
driver service. The region is released with the UN SHMEM driver
service. This gives a user process direct control of memory related
devices. The OEM must write a shared memory driver to support an
application's use of shared memory. but FlexOS 386 provides a set of
subroutines that the driver can call.

SHare MEMory

BYTE •usr_addr, •sys_addr;
UWORO flags;

usr_addr = shmem(sys_addr, flags);

Parameters:

flags

bit 0: 0 = Read/Write buffer.
1 = Read Only buffer.

bits 1-15 are reserved.

3-3

3.1 Shared Memory FlexOS 386 Beta Release Note

sys_addr

System address obtained through SALLOC() or MAPPHYS().

Return Code:

usr addr

User buffer address. 0 Indicates failure.

The SHMEM driver service lets a user process address system memory
while running in user space.

UN_ SHare MEMory

LONG ret;
BYTE *usr_addr;

ret = un_shmem(usr_addr);

Parameters:

usr addr

User buffer address obtained through shmem().

Return Code:

retO indicated success; error code indicates bad usr_addr.

The UN SHMEM() driver service reverses the function of a previous
SHMEl'vl"() call. After this call, the user process gets an exception if it
tries to access shared memory. If the user process passes an address
to UN_ SHMEM() that was not previously obtained through an SHMEM()
call, it receives an error.

3-4

FlexOS 386 Beta Release Note 3. 1 Shared Memory

3.1.2 How to Use Shared Memory Files

A user process gains access to shared memory regions through
shared a memory file, which is managed by the Pipe Resource
Manager and accessed through the device name "sm:".

To create a shared memory region a user process performs the
following calls:

fnum = s_create(O, flags, "sm:name", 0, security, size);
s_get(T_SHMEM, fnum, &shmem, sizeof(shmem))
buff_ptr = shmem.ubuffer;

BUFF _PTR now points to the shared memorv.

If another user process wants to use the above shared memory file it
performs the following calls:

fnum = s_open(flags, "sm:name");
s_get(T_SHMEM, fnum, &shmem, sizeof(shmem));
buff_ptrl = shmem.ubuffer;

All references to *BUFF PTR1 will access the named shared memory
region.

A driver could give a user process access to a ROM of length LENGTH
at address PHYS_ ADDR by using the following calls:

struct

LONG
phys_mem

link, pstart, plength;
01, PHYS_ADOR, LENGTH};

sys_addr = (BYTE *)mapphys(&phys_mem, 1);
usr_addr = shmem(sys_addr, read_only_flag); .
The user process would then use a SPECIAL() or GET() call to receive
the user buffer address from the driver.

If two user processes need to synchronize access to a shared memory
file they could each make the following calls:

s_read(O, fnum, "", 01, 01);
critical_code();
s_write(O, fnum, "'', 01, 01);

I* Get exclusive access */
I* Perform critical code *I
I* Release semaphore *I

FNUM is the file number of the shared memory file obtained through
the CREATE or OPEN calls.

3-5

3.2 Removable Subdrivers FlexOS 386 Beta Release Note

When it no longer needs access to the shared memory file, the user
process makes the call:

s_close(O, fnum);

FNUM is the file number that was attained by the create or open calls.

If the driver wants to remove user access to the shared memory it
created it makes the call:

un_shmem(usr_addr);

usr _ addr is the address obtained by the SHMEM() call.

3.2 Removable Subdrivers

FlexOS has the ability to remove subdrivers. This feature is
implemented through the standard user DVRUNLK command and
supervisor INSTALL function. For example, the user enters the
subdriver device name in the DVRUNLK command to remove the
subdriver from a driver. Similarly, the programmer uses the INSTALL
SVC with the option field set to O and the devname field set to the
subdriver name address to remove a driver.

Subdrivers like drivers are set as removable or permanent in INSTALL
flag bit 5. When the bit is set the subdriver is marked as removable;
otherwise it should not be removable. Permanent versus removable
install status is reflected in the DEVICE Table's INSTAT field. For
subdrivers, the fields are defined as follows:

OxOO - Not installed
Qx01 - Requires subdriver
Ox02 - Owned by Miscellaneous Resource Manager
Ox03 - Owned by another driver
Ox04 - Optional subdriver

Drivers are informed to remove a subdrive through the SUBDRIVE
function entry point. This entry point is now used both to associate
and disassociate a subdriver. To indicate which operation to perform,
bit 10 in the Access field is set as follows:

Bit 10: 0 = Install subdriver
1 = Uninstall subdriver

3-6

FlexOS 386 Beta Release Note 3.2 Removable Subdrivers

The remainder of the Access flags remain as defined in Table 4-4,
INSTALL Flags in the FlexOS System Guide.

The driver should then do what's necessary to remove the subdriver.
Note, however, that the driver can ignore the request. for example, if
the subdriver is currently in use. The following sample code illustrates
a SUBDRIVE routine that handles both installation and removal of the
subdriver.

LONG s_subdrvr(pb)
DPS *pb;
(

PHVSBLK *d;

if(pb->dp_flags & Ox400){
sfree(sdev[pb->dp_option]);
sdev[pb->dp_option] = O;
return((((LONG)DVR_PORT << 16)
}

(LONG)DVR_SER));

ser_unit[pb->dp_option] = pb->dp_unitno;
pt_hdr[pb->dp_unitno] = (DH*) pb->dp_swi;
pt_unit[pb->dp_unitno) = pb->dp_option;

d = sdev[pb->dp_option] =
(PHVSBLK *) salloc((LONG)sizeof(PHVSBLK));

d->Qrear = d->Qf ront = d->evpend
d->xoffed = d->Qlen = O;

return(E_SUCCESS);

The return code from the SUBDRIVE function should indicate the type
o.f subdriver required or 0, if no subdriver is required.

Typically, the SUBDRIVE routine is not the only portion of the driver
involved in the subdrive interface. For example, you should also free
the resources (for example, flags, pipes and memory for data
structures) used to enable device 1/0 when the remove command is
received. A general rule of thumb regarding subdriver removal is:
Everything done in INIT and SELECT to support device 110 should be
undone in UNINIT and FLUSH, respectively.

End of Section 3

3-7

SECTION 4

386 Development Environment

4.1 Overall Considerations

FlexOS 386 uses the paging portion of the 386 chip for efficient
memory management. It also supports a flat 32-bit program load
format. Also, there is no longer a 64K limit on memory allocations
when the S _ MALLOC SVC is called by a 386 program.

There is a change in the exception numbers for the FlexOS EXCEPTION
SVC as they correspond to the 80286 exception vectors. FlexOS
EXCEPTION numbers 11 - 18 (for the condition "emulated instruction
group O") now correspond to 80286 vector number 7.

Flexes 386 runs all 286 drivers and applications. In fact. FlexOS 386
Release 1.4 supports 286 mode drivers only.

4.1.1 Program Development Tools

In addition to the 286 Assembly Language Programming tools provided
with FlexOS, there are new 386 model program development tools
provided with this release that are based on the Common Object File
Format (COFF). They are:

CASM
CLINK
CUB
CSID
CTO

Description

386 Assembler
COFF Linkage Editor
COFF Librarian
386 Model Program Debugger
COFF to OBJ conversion utility

4.1.2 Reserved File Extensions

In addition to the reserved file extensions listed in the FlexQ~
Supplement for Intel iAPX 286-based Corf!puters, the following
extensions have been reserved for the 386 development environment.

4-1

4.1 Overall Considerations FlexOS 386 Beta Release Note

Extension

A
0
386

Description

CASM Assembly language file
GOFF 80386 object file
Command file that runs directly under the

operating system in 32-bit mode

4.1.3 Entry Mechanism

Entry into FlexOS 386 by 386 programs is made by application code
using INT 221 as the entry point with the parameter and return value
as shown below.

Register

ECX
EAX
EAX (return}

Contents

SVC number
Parameter block address
Return Value

For a sample program illustrating the entry mechanism, see the GOFF
Programming Utilities Guide. Also described in that manual is the 386
application program memory model.

4.1.4 System Generation Utilities

FlexOS itself is compiled into OBJ format object files using the 16-bit
addressing mode. Therefore, driver code must be compiled into the
same format object files so that they can be linked with the system
object files. The following 16-bit utilities are used to generate a
FlexOS 386 system, to construct drivers, and to develop FlexOS 286-
compatible applications. They are described in full in the FlexOS
Programmer's Utilities Guide.

4-2

RASM86.286
LINK86.286
LIB86.286
SID86.286
FIX.286

Description

Relocatable Assembler
Linker
Librarian
Symbolic instruction debugger
Generates a relocated operating system image

End of Section 4

SECTION 5

DOCUMENTATION ERRATA

5.1 FlexOS User's Guide

The following are errors or omissions in the FlexOS User's Guide, First
Edition November 1986:

Page 2-2

Page 2-5

Page 7-7

Page 7-25

Page 7-32

Page 7-53

Page 7-79

Window 1 is the dedicated message window, and
window 2 is the status window. The first window
that actually shows is window 3. When you pull up
the status window, you may not see them, but they
are there at all times.

The <HELP> key on the keyboard is actually
CTRL-<INS>.

Following the second paragraph in the explanation
add the following:

Note: Invoking a batchfile in the background causes
a shell to be invoked, and the shell, in turn, runs the
batchfile. Thus, the process ID returned is that of
the shell. Therefore, batchfiles cannot be stopped
with the CANCEL command, but the shell can be
stopped.

Omit the filetype CMD from the sentence reading " ..
. with the extension 286, 386, 68K, CMD, COM, or
EXE."

The paragraph should read, "When you copy a file,
the date and time of the source file are copied to
the destination file's directory information."

Delete the Note that states DISKCOPY will format an
unformatted disk while copying. This is incorrect;
DISKCOPY does not format an unformatted disk.

In the example, remove the "Press any key to begin"
line. LOGOFF does not issue any prompt.

5-1

5.1 FlexOS User's Guide FlexOS 386 Beta Release Note

Page 7-85

Page 7-103

Page A-1

Omit the filetype CMD from the sentence "These
files extensions include 286, 386, 68K, CMD, CMD,
COM, and EXE."

Omit "(a-p)" after current drive.
limitation on drive name.

There is no

Change the sentence "Use CONFIG.BAT tset up the
LOGON/LOGOFF . . . " to read "Use CONFIG.BAT to
set up the LOGON/LOGOFF ... "

5.2 FlexOS System Guide

The figure on page A-3 of the FlexOS System Guide is incorrect. It
should be:

bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A Key

5.3 FlexOS Programmer's Utilities Guide

FIX Cross-Reference Utility

FIX.286 is a system generation utility program that generates an output
file containing a relocated FLEX286.SYS operating system image from
a relocatable operating system file in standard .286 format.

FIX also creates the Global Descriptor Table (GOT) and Interrupt
Descriptor Table (IDT) and appends them to the data segment. If you
are generating a Real Mode system (indicated by the Ir parameter on
the FIX command line), FIX does not create the GDT and IDT, which
are used in protected mode only. FIX expects the OS Data Header to
be the first item in the data segment.

5-2

FlexOS 386 Beta Release Note 5.3 FlexOS Programmer's Utilities Guide

FIX Command Syntax

FIX is invoked using the command form:

FIX input.fil output.fil [/r]

For example, to create the system boot loader BLOAD286.IMG, first
assemble and link the BLOAD286.A86 file to create a BLOAD286.286
file, then enter:

FIX BLOAD286.286 BLOAD286.IMG /r

The BLOAD286.IMG file is then ready to be placed on the boot disk,
using the SYS.286 utility, to create a bootable disk.

FIX also creates a protected mode system image from the relocatable
file produced by the loader. For example, link the BOOT386.INP file to
produce BOOTPROT.286, then give the command:

FIX BOOTPROT.286 FLEX286.SVS

The resulting image file FLEX286.SYS is copied to a disk with a
bootloader image (BLOAD286.IMG) using the COPY.286 utility, or it is
placed on a disk with the SYS.286 utility.

5-3

SECTION 6

SYSTEM UPDATES

6.1 New Information

• Memory Usage -- FlexOS 386 is now able to access 384K of
previously "hidden" memory in the Compaq Deskpro ™ 386 and
use it for user program space.

• Hard Disk Support -- The hard disk driver for the Compaq
Deskpro 386 has been improved to support all the controllers and
drives available through Compaq (40, 70, 130 Mb.). Work is
ongoing to correct the performance degradation on the 70 Mb.
drive, however. The following utilities support the drives: CHKDSK,
FDISK, FORMAT, and SYS.

• Compiler Released -- MetaWare High C-386, and its FlexOS 386
run-time-library is in beta release and may be used to construct
native-mode, .386, 32-bit applications. Contact MetaWare at (408)
429-6382 to obtain a test copy.

• Driver Services -- There are two new driver service calls
{CSALLOC and CONTIG). They are described at the end of this
section.

• DOS Functions -- The FlexOS 386 DOS Application Environment
emulates MS DOS 3.2 functions on a call-by-call, register-by
register basis. It also allows programs to support a mix of FlexOS
and MS DOS functions. Careful management is required when
mixing functions because the impact of this practice on file
access and resources.

• DOS Application Environment Disk -- A disk has been included
that contains the object files and system library necessary to link
the MS/PC DOS Application Environment to the bootable system.
See the README file on the disk for instructions.

• DOS Applications -- The Applications listed on the next page are
currently being certified under the MS/PC DOS application
environment.

6-1

6.1 New Information FlexOS 386 Beta Release Note

• CASM Fix -- The COFF 386 assembler, CASM, is now able to
assemble the movsx and movzx instructions correctly.

• SVC Fix -- The s control SVC now properly traps page fault
exceptions of .386 programs. This is of interest to programmers
writing debuggers since this situation arises only when the
debugged process attempts to access memory that not allocated.

• Warning: Do not create hard disk partitions greater than 32Mb if
both MS/PC DOS and FlexOS are to share that partition.
Corruption of data may occur. {FlexOS 386 supports partitions of
greater than 32Mb but DOS does not.)

• Warning: The memory containing the code sections of .386
programs is marked read-only. Programs attempting to write. data
to variables within their code section will be aborted with a
general protection error. This also happens if a .386 program's
stack overflows its allocated memory pages.

6.2 Applications being Certified

These MS/PC DOS applications have been assigned top priority for
certification:

dBase II, Ill, Ill+
Lotus 1-2-3 (vlA)
MASM
MicroEmacs
Multimate Advantage
Norton Utilities, Advanced
R:Base, System V
Solomon Accounting
Turbo Pascal
Turbo Prolog

GEM Desktop
GEM Draw Plus
GEM Graph
GEM Paint
GEM Desktop Publisher
GEM Wordchart
GEM Write
ThinkTank
Wordstar Professional

The following MS/PC DOS applications are of secondary priority during the
beta period but will continue to be tested for subsequent certification.

6-2

AutoCad
Clipper

Microsoft Chart
Microsoft Project

FlexOS 386 Beta Release Note

Compu-brush
Crosstalk
Dataflex
EGA Paint
Enable
EZ-VU
Instant C
Lattice C
Lotus 1-2-3 (v.2.01)
Lotus Freelance Plus
Microfocus COBOL
Microsoft C

6.2 Applications being Certified

Microsoft Word
Microsoft Codeview
Microsoft Windows
Norton Utilities
Profs
Perspective
Storyboard
Supercalc 3
Turbo C
Ventura Publisher
Volkswriter Deluxe
Word Perfect

Beta certifiers are encouraged to report results with any and all
applications tested under the FlexOS 386 DOS application environment.
Contact Connie Paul at (408)-649-3896.

6.3 INST ALLING FLEX OS 386

The installation process involves creating subdirectories with specific
names and transferring designated files into those directories. Since
this is a complex and detailed process, a "batch file" is used to
accomplish this transfer. The following procedure describes how to
install the operating system, the Programmer's Toolkit, and the System
Builder's Kit on your hard disk. You may install the system to boot
from either a floppy or a hard disk.

This version of FlexOS 386 has been developed for use on the
Compaq® Deskpro ™ 386 with 20 megabyte or greater hard disk.
FlexOS 386 can be used on other computers utilizing the Intel® 80386
microprocessor but the drivers must be modified or rewritten to
accomodate differences in the hardware.

6.3.1 Installing the Programmer's Toolkit

Note: This method of installation allows you to boot FlexOS 386 from
floppy disk. If you want to boot FlexOS from your hard disk, go to the
next section.

Turn on your computer and put Disk #1 of the Programmer's Toolkit in

6-3

6.3 INSTALLING FLEXOS 386 FlexOS 386 Beta Release Note

drive A. The system will load and soon you will be asked for a
username. You have two options here: to bring up a single tasking
system or a concurrent multitasking system. To bring up a single user
system, enter "user" as your username. You are then asked for a
password, again enter "user."

To bring up a multitasking system (with virtual consoles), enter
"system" as your username and also as your password. FlexOS will
continue to load and the system prompt (A>) will come on the screen.

If your hard disk or bootable partition is not labelled C:, you must tell
FlexOS what its label is. For instance, if your hard disk is labelled 0:,
enter the following:

A>ASSIGN C:=D:

This tells FlexOS that it must go to drive D: to create subdirectories
and transfer files. You will not be able to boot FlexOS from a hard disk
that has a label other than C: using the hard disk system provided. If
you would like to build a system that will boot from a D: drive or
partition, see the note under 6.3.3 below.

To resume the installation, type the following:

A>INSTALL1

As INSTALL 1 runs the instructions that it is executing appear on the
screen.

Note: The INSTALL 1.BAT batch file is used to transfer the
Programmer's Toolkit and INSTALL2.BAT is used to transfer the System
Builder's Kit.

When all• the files from Programmer's Toolkit Disk # 1 have been
transferred, you will be asked to remove Disk #1 from drive A and put
Disk #2 in drive A and close the latch.

When all the files from Programmer's Toolkit #2 have been transferred,
you will be asked to remove Disk #2 from drive A and put
Programmer's Toolkit Disk #3 in drive A and close the latch.

The installation process will continue once again and more directories
will be created on the hard disk and the last of the Programmer's
Toolkit files will be transferred.

6-4

FlexOS 386 Beta Release Note 6.3 INSTALLING FLEXOS 386

6.3.2 Installing the System Builder's Kit

The System Builder's Kit is installed in the same way as the
Programmer's Toolkit. After booting FlexOS 386, put the System
Builder's Kit Disk # 1 in drive A and close the latch.

Enter the following command:

A>INSTALL2

When the files on Disk # 1 have been transferred, you will be asked to
insert Disk #2. After the files on Disk #2 have been transferred, insert
Disk #3 and close the latch. When the files on Disk #3 have been
transferred, the installation process is complete.

6.3.3 Booting FlexOS 386 from a Hard Disk

In order to have FlexOS 386 boot from your hard disk, it must be
installed as follows. First turn on your computer and then put
Programmer Toolkit Disk # 1 in drive A and close the latch. The
system loads and soon you will be asked for a username. Enter "user"
or "system" as explained in 6.3.1 above. You are then asked for a
password, again enter "user" or "system." FlexOS will continue to load
and the system prompt (A>) will come on the screen.

For the following procedure to be successful, your hard disk (or active
partition) must be designated C:. If your hard disk or partition is
designated D: (or any other letter) you will still be able to run FlexOS
386 but you will not be able to boot from the hard disk unless you set
up the system differently.

Note: An Application Note is available that explains how you can set
up· FlexOS to boot from a D: drive or partition. Contact Connie Paul at
(408)649-3896 to obtain one.

Type the following command at the system prompt from the root
directory of drive A.

A>SVS C:

This command copies the executable form of FlexOS from the root
directory of drive A to the root directory of drive C. When the files
have been transferred, enter the following command:

6-5

6.3 INSTALLING FLEXOS 386 FlexOS 386 Beta Release Note

A>INSTALL1

This will start the installation process as described in 6.3.1 above.

6.4 New Driver Service Calls

Two new driver services have been added to FlexOS 386. They have
been added so that the FlexOS family of operating systems may more
efficiently exploit memory management units (MMUs), which support
paging of physical memory. These driver services will be supported in
the current version of FlexOS 386 and all versions of FlexOS 286
starting with version 1.4.

6.4.1 CSALLOC Driver Service

In earlier versions of FlexOS, a driver would call the driver service,
SALLOC, to allocate memory in the system address space. The driver
could rely on the fact that this memory was always physically
contiguous, so external devices under the driver's control, such as
OMA controllers which use physical addresses and bypass the MMU,
would work properly. In FlexOS 386, this assumption is no longer true.
If the memory to be allocated must be physically contiguous, the
CSALLOC service call must be used instead of SALLOC. A bit in the
flags parameter determines whether contiguity is required.

The second reason for calling CSALLOC is to allocate memory which
must be physically isolated from other system buffers. This use of the
call is to exert control over a buffer which may be passed (by the DOS
Application Environment to a user process. If the allocation for the
Applicatiqn Environment were in the same page as the allocation for
an important system data structure, the user process would have the
potential to corrupt system data. The "isolate" bit in the CSALLOC
flags word is used to control this area of memory protection. In
FlexOS 386, an isolated buffer will start on a 4Kb boundary and the
allocation will extend in multiples of 4Kb. The 80286 does not support
the same sort of hardware mapping, so a setting of the ISOLATE bit on
a call to CSALLOC in FlexOS 286 is ignored.

6-6

FlexOS 386 Beta Release Note 6.4 New Driver Service Calls

C Interface for CSALLOC:

sysadr = csalloc (length, flags):

Parameters:

BYTE • sysadr: I* System address of memory block •/

I* allocated. 0 indicates no .,
I* memory available. •/

ULONG length: I* Number of bytes to allocate •/
UWORD flags; I* Bit 0:

1 = Physical contiguity required
0 = Non-contiguity accepted

Bit 1:
1 = Physical isolation required
0 = Not required

Other bits must = 0. •/

/*'salloc(length)'is functionally equivalent to 'csalloc(length,0)'*/

6.4.2 CONTIG Driver Service

In earlier versions of FlexOS, drivers that did OMA to and from physical
memory addresses would call the driver service, PADDR, to convert the
system address of the buffer to a physical address. The driver could
assume that the whole buffer was physically contiguous starting from
the address returned. As described above, this assumption is no
longer true in FlexOS vl.4. A new driver service, CONTIG, has been
added which is used to find the physical address of a buffer and the
number of bytes that are physically contiguous from that point.

C Interface:

siz!' = contig (buffer, length, &phyadr):

Parameters:

UL ONG size; 1• Number of bytes that are physically .,
1• contiguous. •/

BYTE • buffer: 1• System address of buffer •/
UL ONG length; 1• Length (bytes) of buffer •/
BYTE • phyadr; 1• Physical address of buff er (returned) •/

The following conditions must be met before calling CONTIG for the
first time for a given buffer:

6-7

6.4 New Driver Service Calls FlexOS 386 Beta Release Note

1. The owner of the buffer must be mapped into memory (MAPU).

2. The buffer must have passed a MRANGE call.

After finding the number of bytes that are contiguous in the buffer, the
driver can do OMA to or from that portion of the buffer. Note that the
physical address of the buffer is returned via 'phyadr'. If the return
'size' is not equal to the 'length', then the buffer is not contiguous and
more calls to CONTIG will be required. For the next call, 'length'
should be decreased by 'size', and the buffer address should be
increased by 'size'. Then, assuming the process "owning" the buffer is
still mapped in, another call to CONTIG can be made. Repeat the
above until the returned 'size' and 'length' are the same.

End of Release Note

6-8

FlexOS TM 386

Version 1.4

Beta Release Note

June 1987

Contents

Section l describes the contents of the developer kits, the required
hardware, and how to boot up FlexOS from the floppy disks and then
install it on your hard disk.

Section 2 describes how to use the bootscript, how to link FlexOS
modules, and how to use the SASID386 debugger.

Section 3 describes shared memory and removable subdrivers.

Section 4 describes some new features of the FlexOS 386 development
environment.

Section 5 contains a list of errors or omissions in the FlexOS
documentation set.

Copyright © 1987 Digital Research Inc. All rights reserved. Digital Research. CP/M, and
the Digital Research logo are registered trademarks of Digital Research Inc. Concurrent,
Concurrent PC DOS. FlexOS, and LIB-86 are trademarks of Digital Research Inc.
Centronics is a registered trademark of the Centronics Corporation. Compaq is a
registered trademark of Compaq Corporation. Deskpro 386 is a trademark of the
Compaq Corporation. IBM is a registered trademark of the International Business
Machines Corporation. Intel is a registered trademark of Intel Corporation. Zenith is a
registered trademark of Zenith Data Systems. MetaWare and High C are trademarks of
MetaWare Incorporated. Mouse Systems is a trademark of Mouse Systems Corporation.
MS-DOS is a trademark of Microsoft Corporation.

1079-1001-001

SECTION 1

GENERAL SYSTEM INFORMATION

1.1 Beta Site Developer Kit Contents

FlexOS 386 beta software is shipped in two forms:

1. for those who already have the FlexOS 286 Developer Kit

2. for those who do not have the FlexOS 286 Developer Kit

Those who already have the FlexOS 286 Developer Kit receive the new
material relevant to the 386 development environment; that is, the
system disks, the ~lexOS 386 _programmer's Utilities Guide and this
release note. Those who do not have the 286 kit. receive the 386
information and the FlexOS 286 Developer Kit.

The FlexOS 286 Version 1.31 Developer Kit contains the FlexOS User's
Guide, FlexOS Programmer's Guide, FlexOS System Guide, FlexOS
Programmer's Utilities Guide, FlexOS Programmer's Utilities Guide
Supplement.

Note: FlexOS 386 supports both 286-mode 16 bit addresses and 386-
mode 32-bit addresses. However, you must use the Metaware 286
High C Compiler to compile drivers. You must also use the 286 linker
and debugger provided to generate and test system space code. See
the FlexOS System Guide, Versions 1.3, for a full discussion of driver
development.

F.lexOS 386 is shipped on seven 5 1/4 inch quad density (1.12 Mb)
disks organized into three product assemblies: Programmer's Toolkit,
System Builder's Kit and the Debugger Disk.

1.1.1 Disk Contents

Generally, the files are grouped into subdirectories according to their
purpose or use. The README file for each kit lists the files according
to these groups and provide subdirectory definitions. We recommend
printing out and reviewing the contents of the README.1 and
README.2 files as soon as possible.

1-1

Disk Contents Release Note

Each product assembly has a set of files appropriate to the tasks that
purchasers will need to do. The Programmer's Toolkit supports
creation of applications that use the FlexOS SVCs and run under
FlexOS. This package does not contain FlexOS .driver source code nor
does it license further distribution of FlexOS.

The System Builder's Kit supports development of hardware drivers.
The kit provides the FlexOS system object files, driver source, and link
scripts. This package does not license further distribution of FlexOS.

The Debugger Disk contains SASID386, a stand-alone Symbolic
Instruction Debugger, and a help file, DEBUG.DOC, that explains how to
run it.

Be sure to backup all disks as soon as you open them to prevent
against mishaps.

1.2 Required Hardware

Two executable versions of FlexOS are provided in the Programmer's
Toolkit: one boots FlexOS from floppy disk, and the other boots FlexOS
from a hard disk. These versions of FlexOS require the following
hardware to run:

• Compaq® Deskpro 386 TM

• Minimum of 2Mb of RAM memory
• 20 Mb or greater hard disk with up to 4 partitions
• Quad density (1.2 Mb) 5 1/4 inch disk drive
• Serial port with the same a dress as COM 1 under MS-DOS TM

• Ce{ltronics®-compatible port with the same address as PRN under
MS-DOS

• • IBM® Color Graphics Adapter (CGA), monochrome mode only, or
"' • IBM Enhanced Graphics Adapter (EGA), low resolution only

• Serial terminal for debugging and for developing multi-user
applications (FlexOS was developed using Zenith® Z-29 terminals)

1-2

Release Note Booting FlexOS on the Target System

1.3 Booting FlexOS on the Target System

Turn on the computer, then immediately insert the disk marked

Programmer's Toolkit #1

in drive A and close the door. The system is self-booting. Refer to
the -lexOS User's Guide for instructions on creating windows and
running the FlexOS utilities.

1.4 FlexOS Hard Disk Installation
\ "'-~'T ALl.f\-Tto""- '°6r\"f t..t-l

The me+,'" YJ\"F file transfers system files onto your hard disk so you
can boot from the harct di~ rather ttJ..\n frem a floppy. As with the
README files, there are'I~ ~':lffffes'16r each kit.,INSTALL1.BAT for
the Programmer's Toolkit and INSTALL2.BAT for the System Builder's
Kit.

WARNING

If you create partitions larger than 32K, under no circumstances should
you run MS/PC-DOS. Writing a file in that environment will destroy the
FAT tables.

The FlexOS FDISK and FORMAT utilities give unpredictable results with
hard disks above 64 Mb.

If you are going to change the partitioning on the hard disk before you
install FlexOS, you MUST do a physical format of the hard disk first. If
you do not, you may obtain unpredictable results.

End of Section 1

1-3

Release Note SECTION 2

SYSTEM DEVELOPMENT

2.1 System Configuration

Certain portions of FlexOS can be defined during system initialization
in the bootscript. For example, systems with sufficient memory can
install a RAM disk from the script or, if the hardware is present, add
serial ports. Refer to listing 3.1 on page 3-9 of the FtexOS System
Guide, Version 1.3. for an example of a bootscript.

The basic bootscript is a user-modifiable file named CONFIG.BAT. The
distribution bootscript is on the Programmer's Toolkit #1 disk.

Other portions of FlexOS are defined in CONFIG.OBJ. This module
specifies, for example, the resource managers and drivers to be loaded
with the system. User changes are generally made in CONFIG.H. The
source of CONFIG.OBJ is the C language file. CONFIG.C.

Refer to the FlexOS Us13r's Guide to modify CONFIG.BAT, and to the
FtexOS System Guide, section 3.3, to modify the CONFIG.C file.

2.2 FlexOS Library Modules

FlexOS is built primarily from library modules. There are three main
libraries:

• • COMLIB.L86 contains nonconfigurabte modules
• ATLIB.L86 contains configurable driver modules
• FILESYS.L86 contains the file system manager

The disks in the System Builder's Kit provide the object sources and
sample input files for building all these libraries. Refer to the README
files for for descriptions of the input and object files.

2-1

Linking FlexOS Modules Release Note

2.2.1 Linking FlexOS Modules

The files DISP386.0BJ, CONFIG.OBJ, ACONF386.0BJ, CLOCK.OBJ, and
CLOCKAT.OBJ are linked together with the modules in the ATLIB.l86,
FILESYS.L86, and COMLIB.L86 libraries to form FlexOS.

The System Builder's Kit provides linker input files for creating
bootable and non-bootable versions of FlexOS. Link the system using
DEBUG.INP to create a non-bootable system for debugging drivers.

Link the system using BOOT386.INP to create a bootable system. A
complete FlexOS system can be generated with this file.

After the link is complete, process the output file with the FIX.286
utility, then write the resulting file to the boot disk using the SYS.286
utility or FORMAT.286 under FlexOS. FIX.286 is explained in section 5.3
in this release note.

2.3 Building FLEX386.CMD, a Debuggable System

First, link the system with DEBUG.INP. This creates FLEX386.CMD, a
debuggable version of FlexOS, and FLEX386.SYM, its corresponding
symbol table. Boot the disk labelled DEBUG Disk #1 which contains
the debugger. This automatically loads the debugger SASID386.CMD,
which in turn loads FLEX386.CMD and FLEX386.SYM for execution. The
debugger executes ·from the attached serial terminal; FlexOS runs on
the primary console.

Note: Since the debuggable system runs the debugger on the serial
terminal, it is necessary to have that terminal connected.

?-?

Release Note Using SASID386

The version of SASID386 provided runs under the "FlexOS Debug
System" on a Compaq Deskpro 386 equipped with one quad density
floppy disk drive.

2.4 Using SASID386

The SASID386 debugger is similar to the SID 286 debugger, and you
will recognize many of the same commands from that utility. First,
backup the disk containing SASID386 and put the copy in drive A of
your machine. Invoke the program by first booting up the FlexOS
Debug System. After a while, you will see the SASID386 prompt on the
serial terminal screen.

The SASI0386 loader looks for the FLEX386.CMD and FLEX386.SYM
files, loads SASID386 at selector OAOO, then loads FlexOS 386 at
selector OA30. For more information on running SASI0386, and
changing the debugging file, see the text file called DEBUG.DOC
included on DEBUG Disk #1.

Here is a list of the SASI0386 commands:

Display Memory

b <address>,< length>,< address>
d<address>,<address >
dw <address>,< address>
dlw <address>,< offset>,< size>
I< address.address>
sr< address> ,<length>,< value>

Examine Memory

s<address>
sw<address>
f< address>,< address>
fw<address >,<address>
m <address>,< length>,< value>

Compare memory
Display bytes
Display words
Display linked list by words
Disassemble code
Search for value

Display and set bytes
Display and set words
Fill memory bytes
Fill memory words
Move memory block

2-3

Using SASID386

Execute

g <address>,< address>,< address>
p <address>,< count>
t<count>
tw<count>
u<count>
x
c <address> ,parm,parm ...

Miscellaneous

h
h.symbol
h<value>
h<value1 >.<value2>
n <name>,< address>
qi<port>
qiw<port>
qo<port>
qow<port>

Release Note

Go at address until break
Set passpoint
Trace instructions
Trace without calls
Trace without display
Display registers
Call a function

Display symbols
Display symbol offset
Hex-decimal conversion
Hex arithmetic
Add name to symbols
Input byte from port
Input word from port
Output byte to port
Output word to port

Note: A symbol or register can be used as an <address>.

2-4

Release Note Adding Drivers

2.5 Adding Drivers

Digital Research provides driver source code in the System Builder's
Kit for the target system:

• Floppy Disk Driver
• Hard Disk Driver
• Printer Driver
• Serial Driver
• RAMdisk Driver
• Mouse Driver
• Console Driver

Note: This code is subject to ongoing rev1s1ons and optimizations. It
is provided only as an example of how the driver code interfaces with
FlexOS.

Drivers in this release are linked into the system by including the
driver object files in the system build .INP files.

Alternatively, you can load drivers in the bootscript or load them
interactively with the DVRLOAD command. To load them interactively,
you must be a superuser.

When you make changes to files and recompile them, be sure the
object files you create do not write over object files of the same name
provided with this release.

All the C modules for FlexOS 386 Version 1.4 were compiled using
MetaWare High C Version 1.3. Because of parameter passing
conventions and other differences, you must also use High C to
compile your driver code.

End of Section 2

2-5

Release Note SECTION 3

Shared Memory Considerations

3.1 Shared Memory

This feature lets multiple processes share common memory regions.
Processes can also access specific physical memory locations, for dual
ported RAM or system ROMs. (The following information is
substantially the same as that provided with the Version 1.31 release
of FlexOS 286.)

The processes can share data regions with drivers for fast
communications in both protected and unprotected FlexOS
environments, and multiple user processes can share data regions with
each other. FlexOS grants access to shared memory only to those
user processes with access rights established during system
implementation.

There are two ways to access shared memory; through shared
memory files, which work like pipes, and through the new driver
services SHMEM and UN SHMEM.

With the SHMEM table (illustrated below), a driver or process can
create a shared memory file specifying a name for the memory
allocation. a security word, and the size of the memory. Shared
memory files have the "sm:" device name. You create a shared
memory file with the CREATE SVC. See the description of CREATE in
the FlexOS Programmer's Guide on page 7-26 . .
A subsequent OPEN SVC provides and verifies access to this file. The
GET SVC returns a valid address for the shared memory region, the
CLOSE SVC disables access via this address, and DELETE releases the
region. Each shared data file also contains a semaphore, so drivers and
processes can synchronize usage through the READ and WRITE SVCs.

The Pipe Resource Manager disallows an open request of "sm:"
devices by any process with an mid < > 0. This prevents a process on
a remote node of a network from gaining access to shared data. Note
that pipes are different in this respect: processes on one node can
access pipes on remote nodes.

~-1

Shared Memory

0 1 2 3 4
+--------+--------+--------+--------+

KEY 00

04
+--------+--------+--------+--------+

+ NAME +
08 I

+ +--------+--------+
oc I SIZE

+--------+--------+--------+--------+
10 I RESERVED ! SECURITY !

+--------+--------+--------+--------+
14 I USER I GROUP RESERVED

+--------+--------+--------+--------+
18 I UBUFFER

+--------+--------+--------+--------+
lC SBUFFER

+--------+--------+--------+--------+
20H - Maximum Size of SHMEM Table

KEY

NAME

RESERVED

SIZE

SECURITY .

Unique ID

Name

Must be O

Size of memory area in bytes

Security word

User ID cf creator

Group ID of creator

Release Note

USER

GROUP

UBUFFER User address of shared memory. This value is zero
if the table was obtained through the LOOKUP SVC.
You must use GET to obtain the address.

Release Note Shared Memory

SBUFFER System address of shared memory. This value is
used by drivers and system processes independent
of process context.

Device Type Ox 11

Device Name "sm:"

Table Number Ox11

SVC's supported CREATE, OPEN, READ, WRITE, CLOSE, DELETE, GET
and LOOKUP.

3.1.1 Shared Memory Driver Services

A shared memory driver service must be used for a new process to
gain access to shared memory. The driver itself obtains system
memory by utilizing the MAPPHYS() or SALLOC() driver services. It
then allows a user process access to memory through a SHMEM()
driver service. The region is released with the UN_ SHMEM driver
service. This gives a user process direct control of memory related
devices. The OEM must write a shared memory driver to support an
application's use of shared memory, but FlexOS 386 provides a set of
subroutines that the driver can call.

SHare MEMory

BYTE •usr_addr. *sys_addr;
UWORD flags;

~sr_addr = shmem(sys_addr, flags);

Parameters:

flags

bit 0: 0 = Read/Write buffer.
1 = Read Only buffer.

bits 1-15 are reserved.

Shared Memory Driver Services Release Note

sys_addr

System address obtained through SALLOC() or MAPPHYS().

Return Code:

usr addr

User buffer address. 0 Indicates failure.

The SHMEM driver service lets a user process address system memory
while running in user space.

UN_ SHare MEMory

LONG ret;
BVTE *usr_addr;

ret = un_shmem(usr_addr);

Parameters:

usr addr

User buffer address obtained through shmem().

Return Code:

retO indicated success; error code indicates bad usr _ addr.

The UN SHMEM{) driver service reverses the function of a previous
SHMEM() call. After this call. the user process gets an exception if it
tries to access shared memory. If the user process passes an address
to UN_ SHMEM() that was not previously obtained through an SHMEM()
call, it receives an error.

_,_A

Release Note How to Use Shared Memory Files

3.1.2 How to Use Shared Memory Files

A user process gains access to shared memory regions through
shared a memory file, which is managed by the Pipe Resource
Manager and accessed through the device name "sm:".

To create a shared memory region a user process performs the
following calls:

fnum = s_create(O. flags, "sm:name", 0, security, size):
s_get(T_SHMEM, fnum, &shmem, sizeof(shmem))
buff_ptr = shmem.ubuffer;

BUFF _PTR now points to the shared memory.

If another user process wants to use the above shared memory file it
performs the following calls:

fnum = s_open(flags, "sm:name"):
s_get(T_SHMEM, fnum, &shmem, sizeof(shmem));
buff_ptr1 = shmem.ubuffer;

All references to *BUFF PTR 1 will access the named shared memory
region.

A driver could give a user process access to a ROM of length LENGTH
at address PHYS_ ADDR by using the following calls:

struct

LONG link, pstart, plength;
phys_mem = 01, PHVS_AOOR, LENGTH};

sys_addr = (BYTE •)mapphys(&phys_mem, 1);
usr_addr = shmem(sys_addr, read_only_flag);

The user process would then use a SPECIAL() or GET() call to receive
the user buffer address from the driver.

If two user processes need to synchronize access to a shared memory
file they could each make the following calls:

s_read(O, fnum, "", 01, 01);
critical_code():
s_write(O, fnum, "", 01, 01);

!• Get eKclusive access •/
I* Perform critical code */

I* Release semaphore •/

FNUM is the file number of the shared memory file obtained through
the CREATE or OPEN calls.

3-5

Removable Subdrivers Release Note

When it no longer needs access to the shared memory file, the user
process makes the call:

s_close(O, fnum);

FNUM is the file number that was attained by the create or open calls.

If the driver wants to remove user access to the shared memory it
created it makes the call:

un_shmem(usr_addr);

usr _ addr is the address obtained by the SHMEM() call.

3.2 Removable Subdrivers

FlexOS has the ability to remove subdrivers. This feature is
implemented through the standard user DVRUNLK command and
supervisor INSTALL function. For example, the user enters the
subdriver device name in the DVRUNLK command to remove the
subdriver from a driver. Similarly, the programmer uses the INSTALL
SVC with the option field set to 0 and the devname field set to the
subdriver name address to remove a driver.

Subdrivers like drivers are set as removable or permanent in INSTALL
flag bit 5. When the bit is set the subdriver is marked as removable;
otherwise it should not be removable. Permanent versus removable
install status is reflected in the DEVICE Table's INSTAT field. For
subdrivers, the fields are defined as follows:

OxOO - Not installed
Ox01 - Requires subdriver
Ox02 - Owned by Miscellaneous Resource Manager
Ox03 - Owned by another driver
Ox04 - Optional subdriver

Drivers are informed to remove a subdrive through the SUBDRIVE
function entry point. This entry point is now used both to associate
and disassociate a subdriver. To indicate which operation to perform,
bit 10 in the Access field is set as follows:

Bit 10: 0 = Install subdriver
1 = Uninstall subdriver

Release Note Removable Subdrivers

The remainder of the Access flags remain as defined in Table 4-4,
INSTALL Flags in the FlexOS System Guide.

The driver should then do what's necessary to remove the subdriver.
Note, however, that the driver can ignore the request, for example, if
the subdriver is currently in use. The following sample code illustrates
a SUBDRIVE routine that handles both installation and removal of the
subdriver.

LONG s_subdrvr(pb)
DPB *pb;
{

PHVSBLK *d;

if(pb->dp_flags & Ox400)(
sfree(sdev[pb->dp_option]):
sdev[pb->dp_option] = 0:
return((((LONG)DVR_PORT << 16)
)

(LONG)DVR_SER)):

ser_unit[pb->dp_option] = pb->dp_unitno;
pt_hdr[pb->dp_unitno] = (DH•) pb->dp_swi;
pt_unit[pb->dp_unitno] = pb->dp_option;

d = sdev[pb->dp_option] =
(PHVSBLK •) salloc((LONG)sizeof(PHVSBLK));

d->Qrear = d->Qfront = d->evpend
d->xoffed = d->Qlen = 0:

return(E_SUCCESS);

The return code from the SUBDRIVE function should indicate the type
Qf subdriver required or 0, if no subdriver is required.

Typically, the SUBDRIVE routine is not the only portion of the driver
involved in the subdrive interface. For example, you should also free
the resources (for example, flags, pipes and memory for data
structures) used to enable device 1/0 when the remove command is
received. A general rule of thumb regarding subdriver removal is:
Everything done in INIT and SELECT to support device 1/0 should be
undone in UNINIT and FLUSH, respectively.

End of Section 3

3-7

Release Note SECTION 4

386 Development Environment

4.1 Overall Considerations

FlexOS 386 uses the paging portion of the 386 chip for efficient
memory management. It also supports a flat 32-bit program load
format. Also, there is no longer a 64K limit on memory allocations
when the S _ MALLOC SVC is called by a 386 program.

There is a change in the exception numbers for the FlexOS EXCEPTION
SVC as they correspond to the 80286 exception vectors. FlexOS
EXCEPTION numbers 11 - 18 (for the condition "emulated instruction
group O") now correspond to 80286 vector number 7.

FlexOS 386 runs all 286 drivers and applications. In fact, FlexOS 386
Release 1.4 supports 286 mode drivers only.

4.1.1 Program Development Tools

In addition to the 286 Assembly Language Programming tools provided
with FlexOS, there are new 386 model program development tools
provided with this release that are based on the Common Object File
Format (COFF). They are:

CASM
CLINK
CLIB
CSID
CTO

Description

386 Assembler
COFF linkage Editor
COFF librarian
386 Model Program Debugger
COFF to OBJ conversion utility

4.1.2 Reserved File Extensions

In addition to the reserved file extensions listed in the FlexOS
5-IJ~_ment for Intel iAPX 28fi_:_!?ased Computers. the following
extensions have been reserved for the 386 development environment.

4-1

Entry Mechanism

Extension

A
0
386

Description

CASM Assembly language file
GOFF 80386 object file

Release Note

Command file that runs directly under the
operating system in 32-bit mode

4.1.3 Entry Mechanism

Entry into FlexOS 386 by 386 programs is made by application code
using INT 221 as the entry point with the parameter and return value
as shown below.

Register

ECX
EAX
EAX (return)

Contents

SVC number
Parameter block address
Return Value

For a sample program illustrating the entry mechanism, see the GOFF
Programming Utilities Guide. Also described in that manual is the 386
application program memory model.

4.1.4 System Generation Utilities

FlexOS itself is compiled into OBJ format object files using the 16-bit
addressing mode. Therefore, driver code must be compiled into the
same format object files so that they can be linked with the system
object files. The following 16-bit utilities are used to generate a
FlexOS 386 system, to construct drivers, and to develop FlexOS 286-
compatible applications. They are described in full in the FlexOS
Programmer's Utilities Guide.

4-2

RASM86.286
LINK86.286
LIB86.286
51086.286
FIX.286

Description

Relocatable Assembler
Linker
Librarian
Symbolic instruction debugger
Generates a relocated operating system image

End of Section 4

SECTION 5

DOCUMENTATION ERRATA

5.1 FlexOS User's Guide

The following are errors or omissions in the FlexOS User's Guide, First
Edition November 1986:

Page 2-2

Page 2-5

Page 7-7

Page 7-25

Page 7-32

Page 7-53

Page 7-79

Window 1 is the dedicated message window, and
window 2 is the status window. The first window
that actually shows is window 3. When you pull up
the status window, you may not see them, but they
are there at all times.

The <HELP> key on the keyboard is actually
CTRL-<INS>.

Following the second paragraph in the explanation
add the following:

Note: Invoking a batchfile in the background causes
a shell to be invoked, and the shell, in turn, runs the
batchfile. Thus, the process ID returned is that of
the shell. Therefore, batchfiles cannot be stopped
with the CANCEL command, but the shell can be
stopped.

Omit the filetype CMD from the sentence reading " ..
. with the extension 286, 386, 68K, CMD, COM, or
EXE."

The paragraph should read, "When you copy a file,
the date and time of the source file are copied to
the destination file's directory information."

Delete the Note that states DISKCOPY will format an
unformatted disk while copying. This is incorrect;
DISKCOPY does not format an unformatted disk.

In the example, remove the "Press any key to begin"
line. LOGOFF does not issue any prompt.

SECTION 5

Page 7-85

Page 7-103

Page A-1

Release Note

Omit the filetype CMD from the sentence HThese
files extensions include 286, 386, 68K, CMD, CMD,
COM, and EXE."

Omit "(a-p)" after current .drive.
limitation on drive name.

There is no

Change the sentence "Use CONFIG.BAT tset up the
LOGON/LOGOFF ... " to read "Use CONFIG.BAT to
set up the LOGON/LOGOFF ... "

5.2 FlexOS System Guide

The figure on page A-3 of the FlexOS System Guide is incorrect. It
should be:

bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A Key
--

5.3 FlexOS Programmer's Utilities Guide

FIX Cross-Reference Utility

FIX.286 is a system generation utility program that generates an output
file containing a relocated FLEX286.SYS operating system image from
a relocatable operating system file in standard .286 format.

FIX also creates the Global Descriptor Table (GOT) and Interrupt
Descriptor Table (IDT) and appends them to the data segment. If you
are generating a Real Mode system (indicated by the Ir parameter on
the FIX command line), FIX does not create the GOT and IDT, which
are used in protected mode only. FIX expects the OS Data Header to
be the first item in the data segment.

5-2

Release Note SECTION 5

FIX Command Syntax

FIX is invoked using the command form:

FIX input.fil output.fil [/r]

For example, to create the system boot loader BLOAD286.IMG, first
assemble and link the BLOAD286.A86 file to create a BLOAD286.286
file, then enter:

FIX BLOAD286.286 BLOAD286.IMG /r

The BLOAD286.IMG file is then ready to be placed on the boot disk.
using the SYS.286 utility, to create a bootable disk.

FIX also creates a orotected mode system image from the relocatable
file produced by the loader. For example, link the BOOT386.INP file to
produce BOOTPROT.286. then give the command:

FIX BOOTPROT.286 FLEX286.SVS

The resulting image file FLEX286.SYS is copied to a disk with a
bootloader image (BLOAD286.IMG) using the COPY.286 utility, or it is
placed on a disk with the SYS.286 utility.

End of Release Note

