
378 COMPUTER SHOPPEA, DECEMBER 1989

IBM/MS-DOS IBM/MS-DOS IBM/MS-DOS IBM/MS-DOS IBM/M

INSIDE DIGITAL RESEARCH'S FLEXOS/386 AND X/GEM
by Peter Ruber

Part 3
In the OOS world, device drivers

are recognized by the operating sys­
tem when yo'u place the driver
oome after a DEVICE= statement in
a CONFIG.SYS file, and then reboot
the system. FlexOS allows you to
dynamically load and unload
drivers from the command line
while the system is operational. In
order for you to do this, the device
must be physically attached to your
system, and the device driver has to
be located in the DRIVERS subdirec­
tory.

Those of you who have worked
solely with a single-user DOS sys­
tem may not appreciate the need to
load and unload devices "on-the­
fly," because the configurations of
your systems aren't likely to change

A number of access-level options
can be assigned to a driver. They can
be one or more of the following:

E Exclusive access denied. Only
shared access is allowed, assuming
the N option is also set.

L Lockable. Allows a single user
to obtain exclusive control (lock) of a
system-wide device.

M Multiple Partitions. When you
create a partition with FDISK, you
must use the,M option with DVR­
LOAD and DVRUNIT when load­
ing HDO:, DHl:, etc.

N Shared access enabled. Two or
more processes can access the same
device simultaneously.

P Permanent driver. Once
installed, the driver cannot be
removed. The P' option is useful for
devices that do not need to be
changed (for example, a hard disk).,

R Raw Read access allowed. Data

name: p,.ocess p1d: 7 wndw: 3 peon: 5
fmly: 2 grp : 99 user: 11 stat: running -
p,.ty: 200 ppid: 5 (user process) (main context)
evnt: 0000 0000 0000 0000 0000 0000 0000 0000

attached to this command.
The DVRLINK command associ­

ates one driver with another. For
example, you can link a printer
driver to a port driver. This enables
the printer to communicate with
your computer through a specified
port. In the command line syntax,
the device_name is followed by the
name of the sub_driver which is
associated with that port.

DVRUNLK rem..oves a driver
from the FlexOS system that had
been installed with the DVRLOAD
and/ or DVRUNIT commands.

The CONFIG.BAT File
There are no CONFIG.SYS files in

FlexOS. System drivers and associ­
ated parameters are contained in an
extensive CONFIG.BAT text file that
the operating system reads during
the bootstrap. It defines the system's
console, its hard disk and floppy
drives, the serial and parallel ports,
pointing devices, etc., and the syntax
for their associated drivers. Since a
FlexOS system will likely have addi-

name: she J J pi d : 5 wndw: 3 peon: 5 tiOna! consoles (terminals) and mul-
fmJ¥i~ .' i~ ·,9, user: '! .~~ .•.. ~.~~·~~i~t~in~~~~~~~~~~~~~~.~~~_
p,.ty: ,60'" p8tif:, .. ·· fJi.,...·;;Mc •• s) (main context)
evnt: 0000 0000 0000 0000 0000 0000 0000 0000 troIs realtime and event-driven

name: wmanager pid: 4 wndw: 3 peon: 5
fmly: 1 grp : 99 user: 11 stat: waiting
p,.ty: 190 ppid: 3 (use,. process) (main context)
evnt: 0000 0000 0000 0000 0000 0000 0000 0000

name: logon pid : 3 wndw: 0 peon: 5
fmly: 1 grp : 99 user:' 11 stat: waiting
p,.ty: 210 ppid: 0 (use,. process) (main context)
evnt: 0000 0000 0000 0000 0000 0000 0000 0000 (system manager)

Fig. 1: An example of the Process View display.

too often. By virtue of its design
principle, FlexOS operates in envi­
ronments where hardware devices
may need to be loaded and un­
loaded to accomplish different real­
time operations. This is particularly
advantageous in automation and
process control applications that
continue round the clock. You just
can't shut'down the system at will.

If a device is to be permanent, its
driver and the operating parameters
can be placed into the system's

, CONFIG.BAT file (to be discussed
shortly). If, on the other hand, the
device will only be used sporadi­
cally, its driver can be invoked from
the command line with the DVR­
LOAD command. The syntax is:

PVRLOAD. device_name:
driver_name access_level

can be read directly (without inter­
pretation) as it appears on the
media. You do not see filenames or
the relationships of files within
directories.

S Raw Set access allowed.
Attributes of the driver itself (like
the country code'or baud rate of a
console) can be changed.

V Verify Writes. Verifies all writes
to a device. This option can affect
performance.

W Raw Write access allowed.
Data can be written directly (with­
out interpretation) to the media.

The'DVRUNIT command adds
another device of an existing device
type to the system. If your system
has one hard disk drive and you
want to add another, you must use
DVRUNIT. Access levels can be

devices, the CONFIG.BAT file can
be liberally augmented by REM

, 'statements that define the purpose
and use of each driver. This provides
a reference to future system man­
agers when they are first introduced
to a FlexOS system.

Other types of batch files are
allowed on FlexOS that can perform
nested operations. In this case, pro­
gram control flows from the batch.
file containing the BATCH filespec
command to the named filespec.
The function and operation gf
FlexOS batch files is very similar to
DOS batch file functions. The
AUTOEXEC.BAT file, as used in
FlexOS, sets the system PATH, the
prompt, and, with the DEFINE
statement, the paths to various sub­
directories.

Process View
This is one of two commands

which enable system administrators
to obtain information about what is
going on in a multiuser, multitask­
ing FlexOS system. The other one is
SYSTAB.

The PROCESS command lets you
view or delete processes currently
running on the system. A process is

defined' as any command, program,
or application running under
FlexOS. The PROCESS VIEW com­
mand, followed by an option, pro­
vides a wealth of information that
includes process priority, parent ID,
process type, context, event flags,
memory statistics including maxi­
mum process memory, code, data,
heap start, and memory status.

It also provides paged output, as
opposed to streamed output, a Use!
filter which displays only those pro­
cesses that match this user's Group
and User IDs; and it provides a
Family filter which displays only
those processes that match this
user's Family ID. The PROCESS
CANCEL ID=##### command can
be issued to remove any running
process. See Figure 1.

SYSTAB
The SYSTAB command display

the current status of the system
tables. The -P#option pauses the
display between updates for # sec­
onds, where # is a number from 1 to
9. The -T option displays the system
clocktimein the bottom right corner
of the window. The -? option dis­
plays the help screen.

After you invoke SYSTAB, the
SYSTAB Menu appears. Users may
either move the cursor to the desired
option and press Enter, or type the
option letter:

A Displays all the system tables
in memory. The tables appear in the
same order as the options listed
below. They remain on screen for the
number of seconds specified by the
-P option when SYSTAB was
invoked. SYSTAB continuously
cycles through the tables.

B Displays the Process
Environment Information Table.

C Displays the Pipe Information
Table.

D Displays the Physical Device
Table.

E Displays the Virtual Console
Table.

F Displays the verbose form of
the Virtual Console Table.

G Displays the System Logical
Name Definition Table.

H Displays the Process Logical
Name Definition Table. '

I Displays the Shared Memory
Information Table.

(continued on page 389)

IBM/MS-DOS IBM/MS-DOS I

• FLEX OS/386

(continued from page 378)
J Displays the Calling Process's

Environment Table.
K Displays the Console

Information Table.
L Displays the System Memory

Information Table.
M Displays the System

Environment Information Table.

Spooler
When no opens, despooler waits

CMPCompares two files
CUTCuts out specified fields

from each line in a file
DIFFFinds differences between

two files
DUMPDisplays file contents in

hexadecimal, octal, decimal, or
signed decimal form

DUPPrints multiple files of the

Despooler
When closed. requestors get
EOFerror

Request \

:::::~iililililililili'ililllililllliil~IIIIII,lli'll!!iillilllililllj:ii'I--
/

Shared Exclusive
Reques Write. Read

Fig. 2: The Spooler Pipe

N Displays the Shared Runtime
Library Table.

o Exits SYSTAR

-"'" . The UNIXJliili.ti~s
FlexOS/386 provides two groups

of UNIX utilities. The first group
contains some 18 UNIX utilities in
the UNIX_UTL subdirectory 'in the
Programmer's Toolkit. These are
popular public-domain programs
commonly used by UNIX engineers
which have been ported to FlexOS
by using the Meta Ware High-C
cross-compilers and the FlexOS soft­
ware development library. When
FlexOS / 386 is installed on a hard
disk, these utilities are automatically
moved into the BIN subdirectory
where the FlexOS programs are
stored. They are referred to as the
UNtX-Like Utilities in the FlexOS
user manual.

The second group is include9- in
the software development tools. It is
. expected that DRI will soon include
in a forthcoming update a popular
and widely used UNIX text editor
called MICROEMAX, which they
are porting to FlexOS with the
author's permission.

The UNIX-like utilities, which are
now a part of the basic FlexOS/386
operating system, are:

CommandDescnption
BANNERPrints banner pages
CATConcatenatesfiles

same string
ECHOXOutputs special charac­

ters
FGREPSearches a file or files for

the string-eptered
GREPSearches a file or files for

the pattern-entered
LC2UCTranslates lowercase char­

acters to uppercase
MAKEBuilds programs
PASTEMerges lines from a file or

files
PRPrints a file or files
SPLITBreaks down a file into

equal-size files
STRINGSPrints all sequences of

printable characters in a file
SUMCalculates file checksum

and block counts
UC2LCTransiates uppercase

(characters to lowercase
WCCounts file lines, words, and

characters
This concludes the overview of

the FlexOS command structure .

Interprocess Communications
An important feature of FlexOS'

internal structure that I have only
mentioned so far in passing, and
which deserves some discussion, is
how FlexOS manages multiprocess
communications with its devices.
This is accomplished through pipes
and semaphores, and... .

. Digital Research's Concurrent

(continued on page 408)

COMPUTER SHOPPER, DECEft'BER 1989 389

408 COMPUTER SHOPPER, DECEMBER 1989

IBM/MS-DOS IBM/MS-DOS I

• FLEX OS/386

(continued from page 389)
DOS operating systems contain the
hooks and the necessary system
calls for interprocess communica­
tions in its native programming
mode. Although they allow for mul­
tiple threading of processes in back­
ground operations specific to control
and data acquisition applications
(Heuristics, Inc., (916) 369-6175, is

FlexOS

I TP41

I/O is conducted in 4-byte blocks.
The File Security Word sets the
Owner, Group, and World access
privileges. The size is set to the pipe
buffer length.

The Pipe Resource Manager
maintains a directory of all existing
pipes. Each directory entry includes
the pipe creator's User and Group
IDs and the File Security Word. The
Pipe Resource Manager also makes

Fig. 3: The TP4 Transporter aso 8073* standard) provides virtual
. circuit services for interprocess communications over a MULTIBUS II

Parallel System Bus.

the chief implementer of this tech
nology), it doesn't have the sophisti­
cation of named pipes and sema­
phores, nor the power that is avail­
able under the FlexOS technology.

FlexOS supports interprocess
comn'tunications with a device des­
ignated pi:. Processes can use an in­
memory file called a pipe, created on
such a device to establish a buffer
used for depositing and withdraw­
ing messages. Pipe files have two
ends: one to write to and one to read
from. Processes deposit and with­
draw messages on a first-in, first-out
(FIFO) basis. The number of mes­
sages a process can store at one time
is limited only by the pipe's length.

SVCs used for managing pipes
are CLOSE (close a pipe), CREATE
(create and open a pipe), DELETE
(remove a pipe), GET (retrieve a
pipe table), LOOKUP (scan and
retrieve pipe tables), OPEN (open a
pipe), READ (read from a pipe),
SEEK (set or retrieve file pointer),
and WRITE (write to a pipe). The
READ, WRITE, or DELETE privi­
leges have the same meaning for
pipes as for. disk files. The name
field contains the address of the pipe
name. The record-size parameter
regulates the message blocks. A
record size of four means all pipe

Ii PIPE. ta.ble for each_pipe.,..,~,,,.,;;
ing the values set by the CREATE
call. No special access privilege is
required to use LOOKUP to retrieve
PIPE Tables, but the calling process
must have opened the pipe to use
GET. The DELETE SVC removes a
pipe. A CREATE option can be
selected that automatically deletes a
pipe on the last dose. If the pipe is
being used solely to communicate
between two or more processes for
the life of the processes, the pipe is
deleted automatically when the pro­
cessesternnb1ate.

Accessing Pipes
Processes must open a pipe

before they can read from or ,write to
it. When the OPEN call is made, the
Pipe Resource Manager compares
the User ~nd Group IDs of the call­
ing process with those in the piPe's
directory entry to deternnb1e which
access privileges are available.
Should none of the privileges match,
the OPEN fails.

A pipe acts differently depending
on whether an end is opened in
Exclusive or Shared mode. If one
end of a pipe is opened in Exclusive
mode and then closed, a process
attempting to read or write on the
other end receives an end-of-file

IBM/MS-DOS IBM/MS-DOS I

(EOF) error. This happens indepen­
dently of how the other end was
opened, whether it's currently open,
or if the last open was in Shared
mode; the process accessing data
through the opposite end waits until
the operation is complete.

If one end of a pipe file is opened
in Shared mode and then closed,

Supervisor
(application
interface)

Processes open and close the
write end when they are sending
files to the spooler. When the write
end is closed, the spooler waits until
it is opened by another process. If
the spooler closes the read end, pro­
cesses attempting to write to the
other end receive an EOF error that
indicates to the writing process there

FlexOS
Hardware­
independent
modules

TP4 Transporter
FlexOS dependencies
are isolated to the
"driver header. Hard­
ware dependencies
are isolated to the

the Intel Transpon
specification).

PalalielSystemBus
Fig. 4

FlexOS treats the pipe as if it were
still open on the other end. There­
fore, any process accessing it waits
until the operation is complete.

Note the distinction be.tween
Shared mode and Shared File
Pointer mode. A pipe opened in
Shared File Pointer mode is shared
only by those processes with the
same Family ID (FlO). After a pipe
end that was opened in Shared File
Pointer is closed by all the processes,
any process accessing the other end
receives an EOF error. This notifies
the calling process that a process on
the other end of the pipe has either
closed the file or terminated.

.. Using modes to restrict access is
consistent with spooler-type appli­
cations. For example, a spooler pro­
cess could create a pipe and reserve
for itSelf Exclusive access to the read
end, leaving the write end available
for Shared access by any other pro­
cess (see Figure 2).

is no process at the other end to read
its file.

Interprocess communication
takes place when processes use the
READ SVC to get data in the buffer.
The READ and WRITE flags and
parameters are the same for pipes as
they are for disk files, and the file
pointer is maintained. There is no
limit to the number of processes that
can participate in the exchange.

The amount of data written to
and read from the pipe is indepen­
dent of the pipe's size. When the
amount of data exceeds the pipe
size, the following procedures are
observed:

* On write operations, when the
pipe is full, the process waits for
another process to read data from
the other end. The event completes
when the process reading the data
removes enough to compensate for
the difference.

* On read operations when the

410 COMPUTER SHOPPER, DECEMBER 1989

IBM/MS-DOS IBM/MS-DOS IBM/MS-DOS IBM/MS-DOS IBM/M

• FLEX OS/386

pipe is empty, the process waits for
another proc~ss to write data to the
other end. The event completes
when enough data has been written
to compensate for the difference.

Pipes az:e often used to make one
program'ls output become the.input
of another. To do this, a parent pro­
cess (often the FlexOS shell) 'per- .
forms the following steps:

1. Use CREATE to create a pipe.
2. Use DEFINE to redefine the

STDIN file to be the name of the
pipe.

3. Use COMMAND to create the

receiving (child) process. The child
process inherits the parent's
PROCDEF Table, including the
STDIN prefix.

4. Use DEFINE' to reset the
STDIN file to the original name.

5. Use DEFINE to redefine the
STDOUT to the pipe name.

6. Use COMMAND to create the
source process. This child process
inherits the redefined STDOUT, but,
unlike the receiving child, has the
original STDOUT.

When the· two processes termi­
nate, the parent process closes the

Data processing

Real-time va
processi"$l

Fig. 5: A cell controller features FlexOS 386 in real time and data
processing CPU boards and on the Magmedia board, with FlexOS 186 in

real-time 110 handlers.

pipe. If the parent terminates before
-the children, the pipe is automati­
cally re~oved when the children
terminate.

Synchronization and Exclusion
The Pipe Resource Manager

allows a process to create a pipe
with a zero-length buffer size for use
as a simple semaphore. A READ
operation obtains the semaphore
pipe and a WRITE operation
releases it. If another process has
obtained the semaphore pipe previ­
ously, the 'calling process waits until
a WRITE operation to that pipe has
been performed. WRITE operations,
on the other hand, never wait; if the
semaphore pipe was released previ­
ously, the call returns without error.

The process creating the
semaphore pipe automatically owns
it from the start. Although the Pipe
Resource Manager keeps a record of
who read the pipe, a WRITE by any
process releases it. The Process ID is
maintained for two other reasons:
first, so that a process can call READ
multiple times on a semaphore pipe
it already owns, and second, so the
Pipe Resource Manager can release
semaphore pipes owned by a pro­
cess that has terminated.

A semaphore pipe can regulate
access to a resource not managed by

FlexOS. Whenever a process wants
to UiQ the NsourCil, it 1=il_QB tM-­
semaphore pipe. If the semaphore
pipe is already owned by another
process, the calling process waits
until that process releases it with
WRITE. Upon return from READ,
the process is free to use the
resource. Upon completion, the pro­
cess writes to the semaphore pipe, .
which releases the resource so that
other processes can use it.

FlexOS on a Multibus II Parallel
System Bus

Earlier in this series, I made a
number of bold statements about
the ability of FlexOS to move to
many different hardware platforms.
In addition: I said that FlexOS can
coreside and function concurrently

. with other operating systems in
large-~~ale computing environ­
ments; that multiple versions of
FlexOS can exist on the same sys­
tem; and because of its su;pport of
industry standards such as TCP /IP .
and POSIX (among others), that it
offers intercommunication capabiU..;
ties to DOS, UNIX, and OS/2 sys­
tems, to minicomputer and main­
frames, as well as to proprietary
operating systems such as Intel's
iRMX, which actually is a realtime
kernel for embedded control appli-

412 COMPUTER SHOPPER, DECEMBER 1989

IBM/MS-DOS IBM/MS-DOS IBM/MS-DOS IBM/MS-DOS IBM/M

~ • FLEX OS/386

cations, rather than a full-fledged
realtime operating system like
FlexOS.

Harnessing Real Power
At present, only Intel's 386

Multibus II hardware platform can
harness FlexOS' real power, because
it provides a parallel systems bus
which has the extended logic and
architecture necessary to support
multiple FlexOS coprocessors.
Within the next few years, when
IBM's MicroChannel Architecture
and the emerging EISA (Extended
Industry Standard Architecture)
buses move to the next level of
development, we will see multipro­
cessor systems becoming more com­
monplace,' When these buses incor­
porate the Intel 80486 processor (and
ultimately the 80586 processor,
which is slated for release sometime
in 1993 or 1 ~94), we will have main­
frame power sitting on our desk­
tops. However, in terms of present­
day realities, FlexOS already pro­
vides greater-than-minicomputer

power through an interesting new
product called the TP4 Transporter.

In the fall of 1988, American
Manufacturing Systems released the
TP4 Transporter (ISO 8073 standard)
for Multibus II systems which it had
codeveloped with Digital Research.
The TP4 is a software module that
provides full transporter services for
the media-transparent transfer of
information between bus agents
through a message pipe, which is a
type of file optimized for interpro­
cess communication and synchro­
nization. Bus agents are individual
physical CPU boards. The value of
separate bus agents is that they
allow integrators to distribute the
processing load among indepen­
dent, intelligent agents intercon­
nected through a backplane. With
their combined functionality, the
data processing and I/O-handling
horsepower will exceed the high
performance of most minicomput­
ers. Furthermore, these multiproces-:
sor systems also offer a high level of
configuration flexibility and perfo~-

. mance characteristics that are
immune to I/O load, even in I/O­
intensive realtime applications.

Intercommunications between
agents over a bus parallels inter­
mode communications over a net­
work. Applying the International
Standards Organization's (ISO)
model of Open Systems Intercon­
nect (OSI) illustrates the similarities
and highlights th~ issues that need
to be resolved to ensure reliable
communications. Figure 3 illustrates
how the Intel Multibus II Parallel
System Bus (iPSB) and the Message
Passing Coprocessor (MPC) provide
services that are equivalent to the
OSI-defined physical and datalink
layers for managing the passing of
messages between nodes.

Next is the transport layer. It pro­
vides media-transparent transfer of
all data between users. It also
assures the reliable transfer of infor­
mation. On an operational level, this
means the application simply opens,
reads, and writes to a file to effect
interagent transfers, as I described in

the previous section dealing with
FlexOS' interprocess communica­
tions.

Establishing Connections
Without a transporter like the

TP4, applications must deal directly
with the media and its message­
passing mechanisms to establish
connections between software enti­
ties. There is· a considerable code
burden associated with these func­
tions, which can detract from a pro­
grammer's ability to focus on the
application. The TP4 Transporter
handles all of the media control
functions. This relieves the applica­
tion writer from the complex tasks
of message passing, because the
transporter transparently establishes
the connection, breaks down the
message into packets, arbitrates bus
access to send each packet, reassem­
bles the packets into the message,
and reports any errors.

Connections are defined by agent
and socket IDs so that multiple con­
nections between the same agents

COMPUTER SHOPPER, DECEMBER 1989 413

18M/MS-DOS IBM/MS-DOS IBM/MS-DOS IBM/MS-DOS IBM/M

are supported. This allows processes
on each agent to have multiple and
independent channels of communi­
cation between each other. The TP4
Transporter has been implemented
first for use with FlexOS on the
Multibus II platform. The software is
modular and designed so that the
core components are portable to
other system software platforms.
This allows a Multibus II developer
to use the TP4 Transporter for inter­
communication between FlexOS,
UNIX, and/ or proprietary software
agents in the same system as illus­
trated in Figure 3. Additionally, it
also allows for the integration of
Intel's iRMX/ iRMK system soft­
ware to be integrated into a
FlexOS /UNIX multiprocessor sys-

. tem. Applications can be developed
either on the Multibus II platform, or
the standard, lower-cost ~exOS /286
or FlexOS/386 development envi­
ronments. Interagent communica­
tions are easily simulated using
standard FlexOS named message
pipes. As an example, the processes

on both agents can be loaded and
run on a single FlexOS system with
a named· pipe used to test message
transfers. Moving it to the Multibus
II environment is simply a matter of
replacing the create-pipe function
with the make-connection function
and loading the processes in their
respective agents.

Taking Care of Details
The reason why the TP4 Trans­

porter supports the ISO 8073 stan­
dard results from the close similari­
ties between interagent communica­
tions on a Multibus II system and
internode communications on a net­
work. It provides a portable and
functional layer that takes care of the
media-specific details of establishing
virtual circuits and the transmitting
of solicited and unsolicited mes­
sages. ISO 8073 is also the standard
transporter for' MAP/TOP installa­
tions, allowing for easy integration
with these systems. MAP/TOP is
one of the major protocols used in
large factory automation installa-

tions by General Motors and other
manufacturing firms ..

The internal structure of TP4 is
made up of three discrete sections
(see Figure 4). There is the driver
header, the transporter state
machine, and the low-level interface.
All TP4 Transorter code is written in
C. The transporter state machine is
operating system- and backplane­
independent. This module handles
the logical operations surrounding
bus address translation, ~al cir­
cuit management, and mes~age
packetization and assembly.

The driver header reconciles the
state machine with the operating
system. FlexOS is a machine-inde­
pendent operating system with all
hardware dependencies isolated in
device drivers. All FlexOS device
drivers have a standard interface to
the system for control operations

-. such as opening and closing the file
or device, passing functions, argu­
ments, and data, flushing buffers,
setting control. parameters, and
returning results. The TP4

Transporter driver header for
FlexOS converts the information
passed through this interface to a
form meaningful to the state
machine.

The low-level interface reconciles
the state machine with the bus-con­
trol hardware. In the FlexOS version,
the TP4 Transporter uses the Intel
Transport specification to manage
access to the Message Passing
Coprocessor. The TP4 Transporter
provides fast, predictable realtime
response to events on other agents,
independent of bus load. Two fea-

. tures govern bus use and message
transfers. Large transactions are bro­
ken down into small packets.
Although this results in a slight
decrease in bus throughput because
the bus arbitration cycle is repeated
more often, there is an advantage,
because processes can interleave
their messages with lengthy
transactions between other pro­
cesses.

(continued on page 437) .

COMPUTER SHOPPER, DECEMBER 1989 437

IBMiMS-DOS IBM/MS-DOS IBM/MS-DOS IBM/MS-DOS IBM/M

(continued from page 413)

The second feature allows a pro­
cess to bypass the current transport
queue in order to get a message to
another agent/process without
waiting for a current transaction to
complete. The TP4 Transporter pre­
serves the buffers queued up at both
sending and receiving nodes while
handling the expedited message.
Together, these two features provide
an orderly and flexible mechanism
accommodating the two important
aspects of bus communications in
realtime systems: transferring large
messages without interfering with
other processes' use of the bus; and
aborting/ resetting a transaction
without waiting for it tQ complete.

A FlexOSffP4 Realtime System
FlexOS and the TP4 Transporter

are currently integral parts of the
American Manufacturing Systems
Orchestrator, a cell controller that
combines_data acquisition, process
monitoring, and powerful data-pro­
c~sing capabiliti~.

The architecture of this modular, of the bus for lengthy data transac­
system (shown in Figure 5) uses tions and short data bursts. It is not
standard 80386- and 80186-based unusual for the data-processing
board agents. One set of CPUs han- CPU board to load a file through the
dIes the critical activities of realtime Magmedia board while, simultane­
control; the other set handles the less ously, the realtime CPU board was
time-dependent data-processing receiving short, asynchronous con­
functions. Each realtime agent is trol or status updates from a real­
individually and dynamically pro- time I/O processor. Predictable, real­
grammable and configurable. Disk time response occurs despite the
I/O is supported through the disk "load, because the. TP4
Magmedia Board. Transporter breaks down lengthy

The TP4 Transporter is a FlexOS logical transactions into a series of
loadable driver delivered as a part of small packets. At the end of each
the FlexOS Multibus n Driver Pack. packet, the I/O processor can initi­
This pack contains a full FlexOS sys- ate a message transfer. When that
tem executable on a Multibus IT sys- packet concludes, the bus arbitration
tem with the Intel iSBC 386 single- cycle is repeated so that the data­
board computer, the American processing CPU and the Magmedia
Manufacturing Systems Magmedia boards can pick up where they left
Controller, and the Concurrent off.
Technologies M-PC 186/010 Because FlexOS' modularity
Intelligent I/O Controller. Also allows systems to be built with any
included are target system driver combination of core components
sources, and a TP4 Transporter in (see Part 1 of this series for the
loadable and linkable form. unwanted or unnecessary resources)

In this system, data-processing and overhead can be eliminated
and realtime components share use from any CPU agent. In systems that

may contain dedicated agents (such
as robotic as~embly), FlexOS/186
can be placed into ROM.

In January
Next month, we begin our explo­

ration of the X/GEM multitasking
graphics interface for F1exOS/386. I
will also explore X/GEM's portabil­
ity to X Windows under UNIX and
other software platforms. If you're
interested in getting a jump on this
section, you can refer to my article
entitled "GEM Moves to OS/2's
Presentations Manager and X
Windows Under UNIX" in the
December 1988 issue of Computer
Shopper.

For detailed information about
the FlexOS/386 and X/GEM
Programmer's Toolkits and System
Builder's Kits, refer to the endil\g
paragraphs of Part 1 in this series.
Or contact Digital Research, Inc.,
Box DRI, 70 Garden Ct., Monterey,
CA 93942; phone (408) 649-3896; or
you can call their North American
sales office at (408) 982-0700;

	img381
	img382
	img383
	img384
	img385
	img386
	img387
	img388

