MODEL DQ130 MAGNETIC TAPE COUPLER **INSTRUCTION MANUAL**

January 1984

DISTRIBUTED LOGIC CORPORATION 1555 S. Sinclair Street P.O. Box 6270 Anaheim. California 92806 Telephone: (714) 937-5700 Telex: 6836051

Copyright ©1984 by Distributed Logic Corporation .

Printed in the United States of America

TABLE OF CONTENTS

Section	Page
. 1	DESCRIPTION
•	INTRODUCTION
	COUPLER CHARACTERISTICS
	LSI-11 Q BUS INTERFACE
	FORMATTER INTERFACE
	TAPE FORMAT COMPATIBILITY
	INTERRUPT
	COUPLER SPECIFICATIONS
2	INSTALLATION
_	INSPECTION
	PRE-INSTALLATION CHECKS
	INSTALLATION
3	OPERATION
-	INTRODUCTION
	TAPE FORMAT
	BOOTING FROM MAGNETIC TAPES
4	PROGRAMMING
	PROGRAMMING DEFINITIONS
	TAPE COUPLER FUNCTIONS AND REGISTERS
	Status Register (MTS)
	Command (MTC)
	Byte Record Counter (MTBRC)
	Current Memory Address (MTCMA) 4-5
	Data Buffer (MTD)
	Tape Read Lines (MTRD) 4-6
5	TROUBLESHOOTING AND THEORY
	BASIC SYSTEM TROUBLESHOOTING
	COUPLER SYMPTOMS
	PHYSICAL LAYOUT
	TERM LISTING
	THEORY 5-6
	Computer Interface
	Microprocessor
	Peripheral Interface
	LOGICS

•

ILLUSTRATIONS

Figure

Page

1-1	Tape System With Two Embedded-Formatter Tape Drives	. 1-1
1-2	Tape System (Maximum Configuration) Two Embedded-Formatter Tape Drives With Three	
	Slave Tape Drives Each	. 1-2
2-1	Coupler Configuration	. 2-2
4-1	Controller Register Configurations	. 4-2
5-1	Board Layout	5-3
5-2	Simplified Block Diagram	. 5-6
5-3	DATI-Slave, Q Bus	. 5-7
5-4	DATO-Slave, Q Bus Transfers	
5-5	DATI-Q Bus DMA Transfers	
5-6	DATO-Q Bus DMA Timing	
5-7	Interrupt Sequence Timing	
5-8	Microinstruction Word	

TABLES

Table

Page

1-1	Coupler/Q-Bus Interface Lines	1-3
1-2	Coupler Connector J1 to Formatter Interface Lines	1-4
1-3	Coupler Connector J2 to Formatter Interface Lines	1-4
1-4	Coupler to Formatter Connector Correlation	1-4
4-1	Function Codes	4-1
5-1	Coupler Symptoms	5-2
5-2	Term Listing	5-4
5-3	Coupler Buses	. 5-10
5-4	Coupler Register Storage	. 5-10
5-5	Control Inputs To 2901	. 5-11
5-6	Status Register Bits	. 5-11
5-7	Address Modification Conditions	. 5-12
5-8	Information Sources to D Bus	. 5-12

SECTION 1 DESCRIPTION

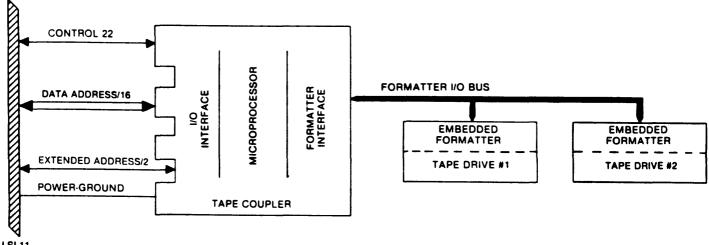
INTRODUCTION

This manual describes the installation, operation, programming, troubleshooting and theory of operation of Distributed Logic Corporation (DILOG) Model DQ130 Magnetic Tape Coupler. The coupler interfaces DEC* LSI-11 based computer systems to Industry-Standard formatted magnetic tape drives.

The coupler and the drive comprise a complete LSI-11 compatible 9-track magnetic tape subsystem. Magnetic tape drives from manufacturers other than DEC can be used while still retaining software and format compatibility with the DEC TM-11 Tape System. Data transfers are via the DMA facility of the LSI-11. Transfer rates vary, depending upon the density and speed of the drives included in the system, between 10,000 and 200,000 characters per second. The complete coupler occupies one quad module in the backplane.

COUPLER CHARACTERISTICS

Up to two embedded-formatter tape drives or external stand-alone tape formatters may be connected to the coupler. Each embedded-formatter tape drive is capable of handling an additional three slave drives. All Industry-Standard, external standalone formatters are capable of handling up to four drives. The coupler can accommodate up to eight


*DEC is a registered trademark of Digital Equipment Corporation.

drives. Figures 1-1 and 1-2 illustrate two configurations.

The optimal usage of the coupler is in situations where 9-track, dual density, 800/1600/3200 bpi tape recording capabilities are required; however, the coupler is compatible with single density 800, 1600 or 3200 bpi embedded-formatter tape drives or stand-alone external formatters.

The primary functions of the coupler in a magnetic tape subsystem are to buffer and interlock data and status transfers between the computer I/O bus and the tape formatter, and to translate CPU commands into tape formatter control signals such as Start, Stop, Rewind, Generate IR Gap, Generate EOF Gap. The primary function of the formatter is to control tape motion, establish data format, and perform error checking. The overall tape control function is a combination of the coupler functions, which are related to the LSI-11, and the formatter functions, which are related to the tape drives.

A microprocessor is the sequence and timing center of the coupler. The control information is stored as firmware instructions in Programmable Read-Only Memory (PROM) on the coupler board. One section of the PROM contains a diagnostic program that tests the functional operation of the coupler. This self-test is performed automatically each time power is applied or whenever an INIT command is issued on the CPU I/O bus. A green

LSI-11 Q BUS

Figure 1-1. Tape System With Two Embedded-Formatter Tape Drives

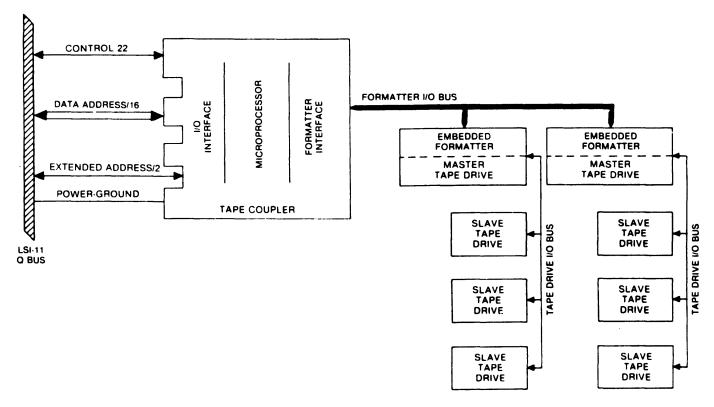


Figure 1-2. Tape System (Maximum Configuration) Two Embedded-Formatter Tape Drives With Three Slave Tape Drives Each

diagnostic indicator on the board lights if self-test passes. If self-test fails, the coupler has an automatic data protect feature that stops the CPU from interacting with the tape formatter, and thus prevents writing erroneous information into critical data base areas.

Two additional indicators on the coupler board display dynamic operating conditions to an operator. The conditions displayed are Coupler Busy and Coupler Transferring Data (DMA Busy).

LSI-11 Q BUS INTERFACE

Commands, data and status transfers between the coupler and the computer are executed via the parallel I/O bus (Q Bus) of the computer directly to memory, via the DMA facility of the Q Bus. Coupler/Q Bus interface signals are listed in Table 1-1.

FORMATTER INTERFACE

The coupler interfaces with the formatted tape drives through two 50-pin flat cable connectors at the top of the coupler board. The maximum cable length between coupler and formatter is 25 feet. Coupler/formatter interface signals are listed in Tables 1-2 and 1-3. Table 1-4 lists some manufacturers and connector correlations.

CAUTION

Cable connections and interface signals should be checked from the drive manufacturers' manuals to ensure the latest configurations are installed correctly. Incorrect cabling may cause damage to the coupler or the drive.

TAPE FORMAT COMPATIBILITY

The coupler can cause the formatter to create a tape in an IBM format. By cutting an etch, the high byte will be written first followed by the low byte. With a jumper (etch) installed, the format will be low byte first followed by the high byte. The tape can be created on the DEC system and run and read on another system.

INTERRUPT

The interrupt vector address is factory set to address 224, which is compatible with TM-11 software. Interrupts are generated when processor attention is required or when an error occurs.

Table 1-1. Coupler/Q-Bus Interface Lines

- .,

.

Bus Pin	Mnemonic	Controller input/ Output	Description
AJ1, AM1, RT1, BJ1, BM1, BT1, BC2, CJ1, CM1, CT1, CC2, DJ1, DM1, DT1, DC2	GND	0	Signal Ground and DC return.
AN1	BDMR L	0	Direct Memory Access (DMA) request from coupler: active low.
AP1	BHALT L	N/A	Stops program execution. Refresh and DMA are enabled. Console operation is enabled.
AR1	BREF L	N/A	Memory Refresh.
BA1	BDCOK H	1	DC power OK. All DC voltages are normal.
BB1	врок н	N/A	Primary power OK. When low activates power fail trap sequence.
BN1	BSACK L	0	Select Acknowledge. Interlocked with BDMGO indicating coupler is bus master in a DMA sequence.
BR1	BEVNT L	N/A	External Event Interrupt Request.
BV1, AA2, BA2, CA2, DA2	+ 5	1	+ 5 volt system power.
AD2, BD2	+ 12	N/A	+ 12 volt system power.
AE2	BDOUT L	1/0	Data Out. Valid data from bus master is on the bus. Interlocked with BRPLY.
AF2	BRPLY L	1/0	Reply from slave to BDOUT or BDIN and during IAK.
AH2	BDIN L	I/O	Data Input. Input transfer to master (states master is ready for data). Interlocked with BRPLY.
AJ2	BSYNC L	1/0	Synchronize: becomes active when master places address on bus; stays active during transfer.
АК2		1/0	Write Byte: indicates output sequence to follow (DATO or DATOB) or marks byte address time during a DATOB.
AL2	BIRQ L	0	Interrupt Request.
AM2 AN2 CM2 CN2	BIAK1I L BIAK1O L BIAK2I L BIAK2O L	 0	Serial Interrupt Acknowledge input and output lines routed from Q Bus, through devices, and back to processor to establish an interrupt priority chain.
AT2	BINIT L	1	Initialize. Clears devices on I/O bus.
AU2, AV2, BE2, BF2, BH2, BJ2, BK2, BL2, BM2, BN2, BP2, BR2, BS2, BT2, BU2, BV2	BDAL0 L through BDAL15 L	1/0	Data/address lines, 0-15
AR2 AS2 CR2 CS2	BDMG1I L BDMG10 L BDMG2I L BDMG20 L	 0	DMA Grant Input and Output. Serial DMA priority line from computer, through devices and back to computer.
AP2	BBS7 L	I	Bank 7 Select. Asserted by bus master when address in upper 4K bank is placed on the bus.

Table	1-2.	Coupler	Connector	J1	Formatter
		Inter	rface Lines		

J1 Signal	J1 Return	Mnemoni	c Description
1 2 3 4 6 8 10 12 14 16 18 20 22 24 26 28 30	5 7 9 11 13 15 17 19 21 23 25 27 29	FRDP FRD0 FRD1 FLDP FRD4 FRD7 FRD6 FHER FFMK FCCG/ID FFEN FRD5 FEOT FOFL FNRZ FRDY FRDY FRWD	Read Data Parity Read Data 0 Read Data 1 Load Point Read Data 4 Read Data 7 Read Data 6 Hard Error File Mark CCG/IDENT Formatter Enable Read Data 5 End of Tape Off Line NRZI Ready
32 34 36	31 33 35	FFPT FRSTR FDWDS	Rewinding File Protect Read Strobe Demand Write Data
38 40 42 44 46 48 50	37 39 41 43 45 47 49	FDBY FCER FONL FTAD1 FFAD FDEN	Strobe Data Busy Not Used Corrected Error On-Line Transport Address 1 Formatter Address Speed/Density Select

Table 1-3. Coupler Connector J2 to Formatter Interface Lines

J2 Signal	J2 Return	Mnemonic	Description	
2	1	FFBY	Formatter Busy	
4	3	FLWD	Last Word	
6	5	FWD4	Write Data 4	
8	5 7	FGO	Initiate Command	
10	9	FWD0	Write Data 0	
12	11	FWD1	Write Data 1	
14	13		Not Used	
16	15	FLOL	Load on Line	
18	17	FREV	Reverse/Forward	
20	19	FREW	Rewind	
22	21	FWDP	Not Used	
24	23	FWD7	Write Data 7	
26	25	FWD3	Write Data 3	
28	27	FWD6	Write Data 6	
30	29	FWD2	Write Data 2	
32	31	FWD5	Write Data 5	
34	33	FWRT	Write/Read	
36	35	FRTH2	Read Threshold 2	
1		FLGAP*		
38	37	FEDIT	Edit	
40	39	FERASE	Erase	
42	41	FWFM	Write File Mark	
44	43	FRTH1	Read Threshold 1	
1		(SPARE)		
46	45	FTAD0	Transport Address 0	
48	47	FRD2	Read Data 2	
50	49	FRD3	Read Data 3	
*Signal applicable to CDC Keystone drives.				

Table 1-4. Coupler to Formatter Connection Correlation

Coupler Connector J1 to:						
Manufacturer	Manufacturer Modei					
CDC Cipher	9218X F880 F100X, F900X	J5 P2 P5				
Digi-Data IDT	(Adapter required) Formatted 1012 1050	JD J2 J125				
Kennedy	6809 Streamer Formatted	J2 J1				
Pertec	Formatted External Formatter (Adapter required)	P5 P5				
Coupler Connecto	or J2 to:					
Manufacturer	Model	Connector				
CDC Cipher	9218X F880 F100X, F900X	J4 P1 P4				
Digi-Data IDT	(Adapter required) Formatted 1012 1050	JC J1 J124				
Kennedy	6809 Streamer Formatted	J1 J5				
Pertec	Formatted Formatted External Formatter (Adapter required)	93 P4 P4				

COUPLER SPECIFICATIONS*

Data Format

- Industry-Standard non-return-to-zero (NRZ) or Phase Encoded (PE) recording.
- 9 tracks
- **Recording densities:**
- 800 characters per inch
- 1600 characters per inch
- 3200 characters per inch
- Interrecord gap 0.60 inch min.
- Tape parity marks: LPC, CRC, LRC

Media Characteristics

- Туре
- 1/2" wide mylar base, oxide coated, magnetic tape.

Reel Size

• 7", 8½", or 10½" diameter tape reels containing 600, 1,200 and 2,400 feet of tape respectively.

Data Capacity (megabytes)

• Assumes aproximate 80% recording efficiency:

	800 CPI	1600 CPI	3200 CPI
==	5.75	11.5	23.0
=	11.5	23.0	46.0
-	22.0	44.0	88.0
	=	= 5.75 = 11.5	= 11.5 23.0

Data Transfer Rate (Characters/Second)

		800 CPI	1600 CPI	3200 CPI
12.5 ips	=	10,000	20,000	20,000
25.0 ips	==	20,000	40,000	40,000
37.5 ips	=	30,000	60,000	60,000
45.0 ips	=	36,000	72,000	72,000
75.0 ips	=	60,000	120,000	120,000
125.0 ips	=	100,000	200,000	200,000

Register Address

- Status (MTS) 772 520
- Command (MTC) 772 522
- Byte Record Counter (MTBRC) 772 524
- Current Memory Address (MTCMA) 772 526
- Data Buffer (MTD) 772 530
- Tape Read Lines (MTRD) 772 532
- Computer Interface
- Interrupt Vector Address 224. DMA data transfer. 1 bus load all lines.

Coupler/Formatter Interface

• Coupler is compatible with formatters manufactured by Pertec, Kennedy, Tandberg, Cipher, CDC, Digi-Data.

Packaging

- The coupler is completely contained on one quad module 10.44 inches wide by 8.88 inches deep. Documentation
- One instruction manual is supplied with the coupler.

Software

• One diagnostic routine with object listing is supplied with a coupler (or the first of a series of couplers).

Power

• +5, ±0.25 VDC at 3.6 amps, from computer backplane.

Environment

- Operating temperature 40°F to 140°F
- Operating humidity 10% to 95% noncondensing.

Note

The quality of recording and reading information on magnetic tape is affected by temperature and humidity. The area where the tape is used should be maintained within the following limits: Temperature: 60°F to 90°F

Humidity: 20% to 80%

Shipping Weight

• 5 pounds including documentation.

*Specifications subject to change without notice.

SECTION 2 INSTALLATION

INSPECTION

The padded shipping carton that contains the coupler board also contains an instruction manual and cables to the magnetic tape drives (if this option is exercised). The coupler is completely contained on one quad-size printed circuit board. The drive (or drives), if supplied, is contained in a separate shipping carton. Inspect the coupler and cable(s) for damage.

CAUTION

If damage to any of the components is noted, do not install. Immediately inform the carrier and DILOG.

Installation instructions for the tape drive are contained in the tape drive manual. Before installing any components of the magnetic tape system, read Sections 1, 2 and 3 of this manual. Figure 2-1 illustrates the configuration of the coupler.

PRE-INSTALLATION CHECKS

There are various LSI-11 configurations for LSI-11 based systems. Certain configurations require minor modifications before operating the magnetic tape system. These modifications are as follows:

- A. If the system contains a REV11-C module, it must be placed closer to the processor module (higher priority) than the coupler if the DMA refresh logic on the REV11-C is enabled.
- B. If the 4K memory on the DK11-F is not used and the memory in the system does not require external refresh, the DMA refresh logic on the REV11-C should be disabled by removing jumper W2 on the REV11-C module.
- C. If the system contains a REV11-A module, the refresh DMA logic must be disabled since the module must be placed at the end of the bus (REV11-A contains bus terminator).
- D. If the REV11-C module is installed, cut the etch to pin 12 on circuit D30 (top of board)

and add a jumper between pin 12 and pin 13 of D30.

E. If the system requires more than one backplane, place the REV-11 terminator in the last available location in the last backplane.

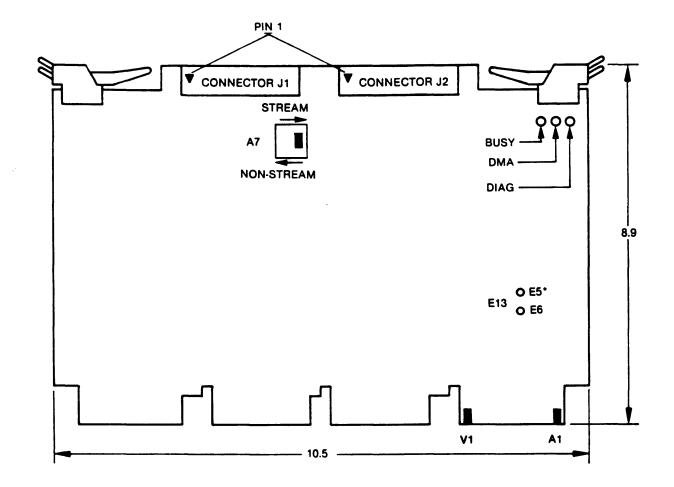
INSTALLATION

To install the coupler module, proceed as follows:

CAUTION

Remove DC power from mounting assembly before inserting or removing the coupler module.

Damage to the backplane assembly may occur if the coupler module is plugged in backwards.


1. Select the backplane location into which the coupler is to be inserted.

There are several backplane assemblies available from DEC and other manufacturers. Figure 2-2 shows typical backplane configurations. Note that the processor module is always installed in the first location of the backplane or in the first location in the first backplane of multiple backplane systems.

It is important that all option slots between the processor and the coupler be filled to ensure that the daisy-chained interrupt (BIAK) and DMA (BDMG) signals be complete to the coupler slots. If there must be empty slots between the coupler and any option board, the following backplane jumpers must be installed:

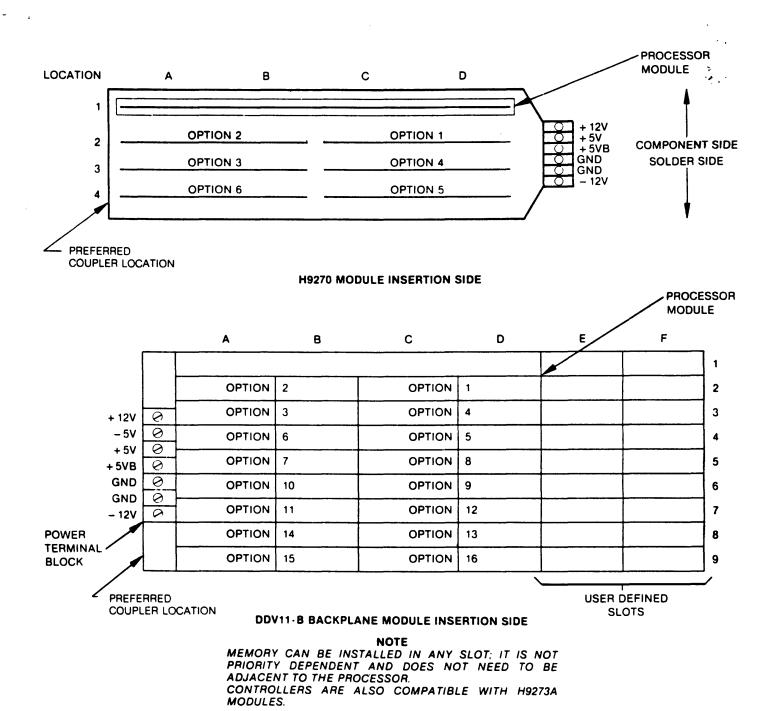
FROM	то	SIGNAL	
$C0 \times NS$	$C0 \times M2$	BIAK1/L0	
$C0 \times S2$	$C0 \times R2$	BDMG1/L0	
+	t		
Last Full	Coupler Slot		
Option Slot	-		

2. Ensure the switch and jumpers are as shown in Figure 2-1.

*When jumper is installed at E13, coupler writes DEC Format (low byte first, high byte second). When jumper is removed at E13, coupler writes IBM format (high byte first, low byte second).

LOCATION A7

	Stream Switch OF	F		Stream Switch ON	•
Logical Unit Addressed	Formatter Addressed	Physical Drive Addressed	Logical Unit Addressed	Mode	Physical Drive Addressed
0	0	0	0	Stop/Start	0
1	0	1	1	Stop/Start	1
2	0	2	2	Stop/Start	2
3	Ö	3	3	Stop/Start	3
4	1	Ō	4	Streaming	0
5	1	1	5	Streaming	1
6	1	2	6	Streaming	2
7	1	3	7	Streaming	3


*Formatter Addressed Always 0.

 E_{-1}

Older coupler boards (Rev. E and earlier) contain Jumpers E1, E2, E3 and E4 at Location A7, rather than the STREAM switch (Rev. F and later). The older boards operated only in an 18-bit addressing mode; the newer ones are capable of 22-bit addressing. For the older boards to operate in the Streamer mode, the following changes must be made:

Factory Set	E1 φ φ E3		E3 م E3
Start/Stop Mode:	E2 0 0 E4	In Streamer Mode:	E2 0 0 E4

Figure 2-1. Coupler Configuration

- 3. If the formatter is equipped with a 100-pin connector, adapter part number ACC993A must be used to convert the 100-pin connector to two 50-pin connectors. Adapter part number ACC993B is used for 72-pin connectors.
- 4. Insert the coupler into the selected backplane position. Be sure the coupler is installed with the components facing row one, the processor.

The coupler module is equipped with handles on the side opposite the slot connectors. Gently position the module slot connectors into the backplane then press until the module connectors are firmly seated into the backplane. Both handles must be pressed simultaneously. When removing the module, apply equal pulling pressure to both handles.

- 5. Feed the module connector end of the tape drive cable(s) into the coupler module connector(s). Install the cable connector(s) into the module connector(s). Verify that the connector(s) are firmly seated.
- 6. Connect the drive end of the I/O cables to the drive I/O connectors.

- 7. Apply power to the computer and verify that the green diagnostic LED indicator on the coupler board is lighted. If the DIAG LED is not lighted, either power is not applied to the coupler, the coupler board is bad, or the LED is bad.
- 8. Refer to the tape drive manual for operating instructions and apply power to the tape drive. Install a known good reel of tape on the tape drive and place the tape drive ON LINE.
- 9. Place the computer in the HALT mode to enable ODT. Using the computer terminal examine location 772 520. The contents of this location should be 000 141. These are the tape drive status bits signifying: ON LINE,

BEGINNING OF TAPE, and TAPE UNIT READY.

- 10. Using the computer console device, deposit 60007 into location 772 522. The tape should move forward approximately 6 inches and stop. A file mark should have been written on the tape. Examine location 772 520. The contents of this location should be 040 101 signifying that a file mark has been written and detected.
- 11. Refer to the DILOG software manual and run the diagnostics.
- 12. The tape system is now ready for data transfer operations.

SECTION 3 OPERATION

INTRODUCTION

Prior to operating the system, the instruction manual sections describing the controls and indicators on the tape drive and procedures for mounting and removing tape reels should be read. To prevent loss of data or damage to the magnetic tape, the following precautions should be observed:

- a. Always handle a tape reel by the hub hole. Squeezing the reel flanges can cause damage to the tape edges when winding or unwinding tape.
- b. Never touch the portion of tape between the BOT and EOT markers. Oils from fingers attract dust and dirt. Do not allow the end of the tape to drag on the floor.
- c. Never use a contaminated reel of tape. This spreads dirt to clean tape reels and can affect tape drive operation.
- d. Always store tape reels inside their containers. Keep empty containers closed so dust and dirt cannot get inside.
- e. Inspect tapes, reels, and containers for dust and dirt. Replace take-up reels that are old or damaged.
- f. Do not smoke near the tape drive or tape storage area. Tobacco smoke and ash are especially damaging to tape.
- g. Do not place the tape drive near a line printer or other device that produces paper dust.
- h. Clean the tape path frequently.

Note that tape drives permit off-line or on-line operation. The off-line mode is controlled by switches on the tape drive. The on-line mode is controlled by programmed commands from the computer via the coupler and formatter. When system operation is desired, be sure the tape drive ON-LINE indicator is lit. On-line operation is a function of program commands described in Section 4 of this manual.

TAPE FORMAT

For detailed information on tape format characteristics see formattter and tape drive manuals.

BOOTING FROM MAGNETIC TAPES

- 1. Place the tape transport "ON LINE" and position the tape at "Beginning of Tape."
- 2. Load Register location 772 522, with 10000,.
- Load Register location 772 524, with 177777, (-1).
- 4. Load Register location 772 522_8 with 60011_8 . The tape will jump forward and halt.
- 5. Load Register location 772 522_g with 60003_g. The tape will jump forward and halt.
- 6. Load PSW (\$S) with 350_{s} .
- 7. Load PC (R7) with 0.
- 8. Type "P" to start.

STREAMING TAPE TRANSPORTS

With the STREAMING switch on, the tape drive will function in the low-speed STOP/START mode when addressed as logical unit number 0, when addressed as logical unit number 4, the streamer will function in the high-speed, streaming mode.

SECTION 4 PROGRAMMING

PROGRAMMING DEFINITIONS

FUNCTION: The expected activity of the tape system (read, write, rewind).

COMMAND: The instruction which initiates a function.

INSTRUCTION: One or more orders executed in a prescribed sequence that cause a function to be performed.

ADDRESS: The binary code placed on the BDAL0-BDAL21 lines by the bus master to select a register in a slave device. Note that "register" can be either discrete elements (flip flops) or memory elements (core, solid state RAM or ROM). When addressing devices other than computer internal memory, i.e., peripheral device registers, the upper 8K bytes address space is used.

REGISTER: An associated group of memory elements that react to a single address and store information (status, control, data) for use by other assemblies of the total computer system.

TAPE COUPLER FUNCTIONS AND REGISTERS

The tape coupler performs eight functions. A function is initiated by a Go command after the processor has issued a series of instructions that store function-control information into coupler registers. To accept a command, and perform a function, the coupler must be properly addressed and the tape drives must be powered up, at operational speed, and be ready.

All software interaction between the coupler, the processor, and processor memory is accomplished by seven registers in the tape coupler. These registers are assigned memory addresses and can be read or written into (except as noted) by instructions that reference respective register addresses. A summary of the registers, their addresses, mnemonics, and their bit assignments are shown in Figure 4-1.

Table 4-1. Function Codes

BIT 3	BIT 2	BIT 1	BIT 0(60)	Octal	
0	0	0	0	00	Off line
0	0	1	1	11	Read
0	1	0	1	05	Write
0	1	1	1	07	Write EOF
1.	0	0	1	10	Space Forward
1	0	1	1	13	Space Reverse
1	1	0	1	15	Write with Extended Interrecord Gap
1	1	1	1	17	Rewind

BIT POSITION	MSE	3								_						LSB
	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
STATUS (MTS) 772 520	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
112 520	ILL COM	EOF		PRE	BGL	EOT	RLE		NXM	SELR	вот	7 СН	SDWN	WRL	RWS	TUR
COMMAND (MTC)	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
772 522	ERR	DEN 8	DEN 5	PWR CLR	PEVN	US2	US1	US0	CUR	INT ENB	XBA 17	XBM 16	FU2	FU1	FU0	GO
BYTE RECORD COUNTER (MTBRC)	15															_00
772 524								BYTE	COUN	т						
	15															00
(MTCMA) 772 526							ME	MORY	ADDF	RESS						
DATA BUFFER (MTD) 772 530	_15	14	13	12	11	10	09	08								00
112 550											DAT	A BUP	FER			
TAPE READ LINES (MTRD) 772 532	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
112 332	тім	CRC/ LPC		GS				Р	СНО	СН1	CH2	СНЗ	СН4	СН5	СН6	СН7
			F	igure	4-1.	Regis	ter S	umm	ary							

STATUS REGISTER (MTS)

772 520

15	14	13	12 .	11	10	09	08	07	06	05	04	03	02	01	00
ILL COM	EOF	NOT USED	HE	BGL	EOT	RLE	NOT USED	NXM	SELR	вот	7 CH	SDWN	WRL	RWS	TUR

The address of the MTS register is 772 520. MTS is a read-only register. The functions of the bits of this register are as follows:

BIT(S)

DESCRIPTION

- 00 TAPE UNIT READY (TUR): This bit is set when the tape unit is ready and is not rewinding. This bit is cleared when the processor sets the GO bit and the operation defined by the function bit occurs.
- 01 REWIND STATUS (RWS): This bit is set by the coupler as soon as it receives a Rewind command from the processor. It is cleared by the coupler as soon as the tape arrives at the BOT marker in the forward direction. (It overshoots BOT in the reverse direction.)
- 02 WRITE LOCK (WRL): This bit is set to prevent the control unit from writing information on tape. It is controlled by the presence or absence of the write protect ring on the tape reel.
- 03 TAPE SETTLE DOWN (SDWN): This bit is set whenever the tape unit is slowing down. The coupler will accept and execute any new command during the SDWN period except when the new command is to the same tape unit as the one issuing SDWN, and if the direction implied in the new command is opposite to the present direction.

- 04 SEVEN CHANNEL (7CH): This bit is set to indicate a 7-channel tape unit; cleared, it indicates a 9-channel unit.
- 05 BEGINNING OF TAPE (BOT): This bit is set when the BOT marker is read, and cleared when the BOT marker is not read. BOT at a 1 does not produce a 1 in the ERR bit.
- 06 SELECT REMOTE (SELR): This bit is cleared when the tape unit addressed does not exist, is offline, or has its power turned off.
- 07 NON-EXISTENT MEMORY (NXM): This bit is set during DMA operations when the control unit is bus master, and is performing data transfers into and out of the bus, when the control unit does not receive a slave Sync signal within 10 microseconds after it has issued a master Sync signal. The operations which occur when the error is detected are identical to those indicated for the BGL error.
- 08 BAD TAPE ERROR (BTE): NOT USED.
- 09 RECORD LENGTH ERROR (RLE): This bit is detected only during a Read operation. It occurs for long records only, and is indicated as soon as MTBRC increments beyond 0, at which time both data transfer into memory and incrementing of the MTCMA and MTBRC stop.

However, the control unit reads the entire record and sets the ERR bit when the LPC character is read. CU Ready remains at 0 until the LPC character is read.

- 10 END OF TAPE (EOT): This bit is set when the EOT marker is read while the tape is moving in the forward direction. The bit is cleared as soon as the same point is read while the tape is moving in the reverse direction. The ERR bit, as a result of the EOT bit at a 1, sets only in the tape forward direction and coincidentally with the reading of an LPC character.
- 11 BUS GRANT LATE (BGL): This bit is set when the control unit, after issuing a request for the bus, does not receive a bus grant before the coupler receives the bus request for the following tape character. The condition is tested only for NPR (Non-Processor Request) operations. The ERR bit sets simultaneously with BGL, thus terminating the operation. If the BGL occurred during a Write or Write With Extended IRG operation, the control unit does not send the signal WDS to the master, while the master writes the CRC character (if required) and LPC character onto the tape, terminating the record.
- 12 HARD ERROR (HE): This bit is set as the result of an error being detected on tape.

For all errors, the ERR bit sets at the end of the record. Both lateral and longitudinal parity errors are detected during Read, Write, Write EOF and Write With Extended IRG operations. The entire record is checked, including the CRC and LPC characters. During a Write operation a correctable error in the PE (1600 bpi) mode will set this bit.

- 13 NOT USED.
- 14 END OF FILE (EOF): This bit is set when an EOF character is detected during a Read, Space Forward, or Space Reverse operation. During the Read or Space Forward operation, the EOF bit is set when the LPC (Longitudinal Parity Check) character following the EOF character is read. During a Space Reverse operation, the EOF bit is set when the EOF character following its LPC character is read. The ERR bit sets when the LPC character strobe is generated with the File Mark signal upon EOF detection.
- 15 ILLEGAL COMMAND (ILL COM): This bit is set by any of the following illegal commands:
 - 1. Any DATO or DATB to the command register during the tape operation period.
 - 2. A Write, Write EOF, or Write With Extended IRG operation when the File Protect bit is a 1.
 - 3. A command to a tape unit whose Select Remote bit is 0.
 - 4. The Select Remote (SELR) bit becomes a 0 during an operation.

In error conditions 1 through 3, the command is loaded into the MTC, but the GO pulse to the tape unit is not generated. In addition, the CU Ready bit remains set.

_	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
	ERR	DEN 8	DEN 5		PEVN	US2	US1	USO	CUR	INT ENB	XBA 17	XBM 16	FU2	FU1	FU0	GO

The address of MTC is 772 522. The functions of the bits of this register are as follows:

. .

BIT(S)

FUNCTION

00 GO: When set, this bit begins the operation defined by the function bits.

01-03 FUNCTION BITS: Selects 1 of 8 functions (programmable commands).

BIT 3 BIT 2 BIT 1

0	0	0	Off-Line/Rewind
0	0	1	Read
0	1	0	Write
0	1	1	Write EOF
1	0	0	Space Forward
1	0	1	Space Reverse
1	1	0	Write With Extended Interrecord Gap
1	1	1	Rewind

- 04-05 ADDRESS BITS: These are extended memory bits for an 18-bit bus address. Bit 5 corresponds to XBA17, and bit 4 to XBA16. They are an extension of the MTCMA, and increment during a tape operation if there is a carry-out of MTCMA.
- 06 INTERRUPT ENABLE (INT ENB): When this bit is set, an interrupt occurs whenever either the CU Ready bit or the ERR bit changes from 0 to 1, or whenever a tape unit that was set into rewind has arrived at the beginning of the tape. In addition, an interrupt occurs on an instruction that changes the INT ENB from 0 to 1 and does not set the GO bit, i.e., CU READY or ERROR = 1.
- 07 CU READY (CUR): This bit is cleared at the start of a tape operation, and set at the end of a tape operation. The control unit accepts as legal, all commands it receives while the CU Ready bit is a 1.
- 08-09 UNIT SELECT 1: These bits specify one of the four possible magnetic tape units. All operations defined in the MTC and all status conditions defined in the MTS pertain to the unit indicated by these bits. They are cleared by INIT.
- 10 UNIT SELECT 2: This bit specifies one of two possible formatters. When the STREAM switch is OFF (see Section 2), and the bit is 0, the formatter addressed is unit 0; if the bit is 1, the formatter addressed is unit 1. When the STREAM switch is ON and the bit is 0, the mode is START/STOP; if the bit is 1, the mode is STREAMING. If the switch is ON, the formatter addressed is always unit 0.
- 11 LATERAL PARITY (PEVN): NOT USED. This bit is not applicable for 9-track tape.
- 12 POWER CLEAR (PWRCLR): This bit provides the means for the processor to clear the control unit and tape units without clearing any other device in the system. The PWR CLR bit is always read back by the processor as a 0.
- 13-14 DENSITY (DEN 8, DEN 5): NOT USED. These bits are not applicable for 9-track tape.
- 15 ERROR (ERR): This bit is set as a function of bits 7-15 of the Status Register MTS. It is cleared by INIT or the GO command to the tape unit.

BYTE RECORD COUNTER (MTBRC) 772 524

The MTBRC is a 15-bit binary counter which is used to count bytes in a Read, Write, or Write With Extended IRG operation, or records in a Space Forward or Space Reverse operation. When used in a Write or Write With Extended IRG operation, the MTBRC is initially set by the program to the 2's complement of the number of bytes to be written on tape. The MTBRC becomes 0 after the last byte of the record has been read from memory. Thus, when the next WDS (Write Data Strobe) signal occurs from the master, the control unit will not send the WDR (Write Data Request) signal to the master, indicating that there are no more data characters in the record.

When the MTBRC is used in a Read operation, it is set to a number equal to or greater than the 2's complement of the number of bytes to be loaded into memory. A Record Length Error (RLE) occurs for long records only, and is indicated when a read pulse for data (RDS occurring when CRC's or LPC's do not occur) occurs when the MTBRC is 0. The MTBRC increments by 1 immediately after each memory access.

When the MTBRC is used in a Space Forward or Space Reverse operation, it is set to the 2's complement of the number of records to be spaced. It is incremented by 1 at LPC time, whether the tape is moving in the forward or reverse direction. A new GO pulse is sent to the tape unit during the SDWN time if the MTBRC is not 0 during that time. When the tape unit is moving in the reverse direction, the LPC character is detected before SDWN, and before the entire record has been traversed. Thus, both SDWN and the LPC character appear to be in different positions on the tape from the positions apparent when the tape unit is moving in a forward direction.

CURRENT MEMORY ADDRESS (MTCMA) 772 526

The MTCMA contains 16 of the possible 18 memory address bits. It is used in DMA operations to provide the memory address for data transfers in Read, Write, and Write With Extended IRG operations. Before issuing a command, the MTCMA is set to the memory address into which the first byte is loaded in a Read operation, or from which the first byte is read in a Write, or Write With Extended IRG operation. The MTCMA is incremented by 2 immediately after each memory access. Thus, at any instant of time, the MTCMA points to the address that is next higher than the one which had been most recently accessed. When the entire record has been transferred, the MTCMA contains the address plus 2 of the last characters in the record. In the error conditions Bus Grant Late (BGL) and Non-Existent Memory (NXM), the MTCMA contains the address of the location in which the failure occurred.

The MTCMA is available to the processor on a DATI, except bit 0 which always reads as a zero under program control. Bit 0 can be asserted during DMA to determine the selected byte. The bits are set or cleared on a processor DATO. INIT clears all bits in the MTCMA.

15	14	13	12	11	10	09	08	00
							DATA BUFFER	

The data buffer is an 8-bit register which is used during a Read, Write, or Write With Extended IRG operation. In a Read operation, the data buffer is a temporary storage register for characters that are read from tape before being stored in memory. In a processor read, all nine bits are stored in memory. In Bits 0 through 7 in memory correspond to channels 7 through 0, respectively, from tape, and bit 8 corresponds to the parity bit. In a DMA operation only the data bits are read into memory, and are alternately stored in the low and high bytes. In a Write or Write With Extended IRG operation, the data buffer is a temporary storage register for characters that are read from core memory before they are written on tape. In a Read operation, the LPC character enters the data buffer when bit 14 of MTRD is a 1, and is inhibited from doing so when bit 14 is a 0. Thus, after reading a nine-channel tape, the data buffer contains the LPC character when bit 14 is a 1, and the CRC character when bit 14 is a 0. After reading an EOF character, the data buffer contains all 0's when bit 14 is a 1, and the LPC character when bit 14 is a 0. The MTD is available to the processor on a DATI. Bits 9 through 15 are read identically to bits 1 through 7, respectively. Bits 0 through 7 are set or cleared on a processor DATA. Bits 8 through 15 are not affected by a processor DATO. INIT clears all bits in the MTD.

TAPE READ LINES (MTRD) 772 532

15	14	13	12	11	09	08	07	06	05	04	03	02	01	00
тім	CRC/ LPC	NOT USED	GS	NOT	USED	Р	сн о	СН 1	СН 2	сн з	СН 4	СН 5	СН 6	СН 7

The memory locations allocated for the tape read lines are:

- BIT(S) DEFINITION
- 00-07 Channels 7-0 respectively.
- 08 Parity Bit.
- **09-11 NOT USED.**
- 12 Gap Shutdown Bit.
- 13 NOT USED.
- 14 CRC, LPC Character Selector.
- 15 Timer.

For correct longitudinal parity, bits 0-8 are 0 after writing a record or reading a record from tape. For a longitudinal parity error, one or more of the bits 0-8 remain 1's, indicating the channel(s) containing the error, which sets the CU Ready bit. Thus, if the pulse is set during a tape operation, CU Ready sets prematurely, producing the gap shutdown period while characters are still being read. Bits 0-8 are set and cleared by the tape unit. Bit 14 is set and

cleared by the processor or cleared by INIT. Bit 15 is uniquely controlled by the 100-microsecond timer. The MTRD is available to the processor on a DATO, except that bit 13 reads back as a 0.

TIM (Timer) is a 10-kHz signal with a 50% duty cycle. The signal is used for diagnostic purposes in measuring the time duration of the tape operations. The timer is read as bit 15 in the MTRD.

SECTION 5 TROUBLESHOOTING AND THEORY

This section describes troubleshooting procedures at three levels of complexity: basic system, coupler symptoms and detailed analysis. Basic system troubleshooting procedures are visual checks not requiring test equipment and may be performed by the operator. Coupler symptom procedures may require a scope, meter, extender board or diagnostics and should be performed by a technician. Detailed analysis is troubleshooting at the IC level, and is presented for engineers or system analysts for coupler evaluation. The latter method may require the use of test equipment and the material presented here: board layout, term listing, theory of operation and logic diagrams.

CAUTION

Any troubleshooting requires a familiarity with the installation and operation procedures in this manual, the appropriate DEC manual, and the tape drive manufacturer's manual. Ensure power is off when connecting or disconnecting the board or plugs.

BASIC SYSTEM TROUBLESHOOTING

The following should be checked before power is applied:

- 1. Verify that all signal and power cables are properly connected. Ribbon cable connectors are *not* keyed. The arrows on the connectors should be properly aligned.
- 2. Verify that all modules are properly seated in the computer and are properly oriented.

The following should be checked during or after application of power:

- 1. Verify that the computer and tape drive generate the proper responses when the system is powered up.
- 2. Verify that the computer panel switches are set correctly.
- 3. Verify that the console can be operated in the local mode. If not, the console may be defective.
- 4. Verify that the green diagnostic, the DMA, and activity lights on the coupler are active.

COUPLER SYMPTOMS

Coupler symptoms, possible causes and checks/ corrective action are described in Table 5-1. Voltage checks should be performed before troubleshooting more complex problems. Check the logics for voltage sources.

PHYSICAL LAYOUT

The physical layout of the board is shown in Figure 5-1. Column and row numbers on the layout correspond to the numbers on each IC on the logic diagrams.

TERM LISTING

The input and output terms for each logic diagram are described in Table 5-2. The sources and destinations refer to the sheet numbers on the logic diagrams.

Table 5-1. Coupler Symptoms

TROUBLE	POSSIBLE CAUSE	CHECK/REPLACE
1. Green DIAGnostic light on coupler is OFF.	 Microprocessor section of coupler inoperative. Crystal not properly seated in socket. Short or open on board. Bad integrated circuit. No DC power. 	1. Coupler. Put board on extender. With scope look at pins of 2901. All pins except power and ground should be switching. Look for "stuck high", or "stuck low", or half-amplitude pulses. If no switching, either power or crystal bad.
2. No communication between console and computer.	2. I/O section of coupler "hanging up" Q Bus.	2. Computer interface logic of coupler.
	a. DEN always low.	a. Check signal DEN for constant assertion.
	b. Shorted bus transceiver IC.	 b. Check I/O IC's. Remove coupler board to see if trouble goes away.
	c. Bad CPU board.	c. Run CPU diagnostics.
 No data transfers to/from tape. BSY light never lights. 	3. Tape not ready or bad cable connection.	3. Check tape switches and cable connector.
	 a. Improper communication with tape registers on coupler or bad IC in register section of coupler. 	a. Load and read tape registers from console with processor halted, i.e., RKDS, RKDA, RKER. Verify bits loaded can be read.
4. Data transferred to/from tape incorrect, DMA and	4. Bad memory board in backplane.	4. Run memory diagnostics.
BSY lights blink to indicate transfers.	a. Noise or intermittent source of DC power in computer.	a. Check AC and DC power.
	 Bad IC in tape I/O section of coupler. 	b. While operating, check lines from coupler to tape with a 'scope for short or open.
	c. Run tape diagnostic, set console to make system "Halt On Error."	c. Analyze error halt.
	d. Bad area on tape.	d. Errors should always occur in same sector of tape.
	e. Head worn.	e. Replace head.
	 Configuration switch not set properly. 	f. Check configuration in Installation Section.

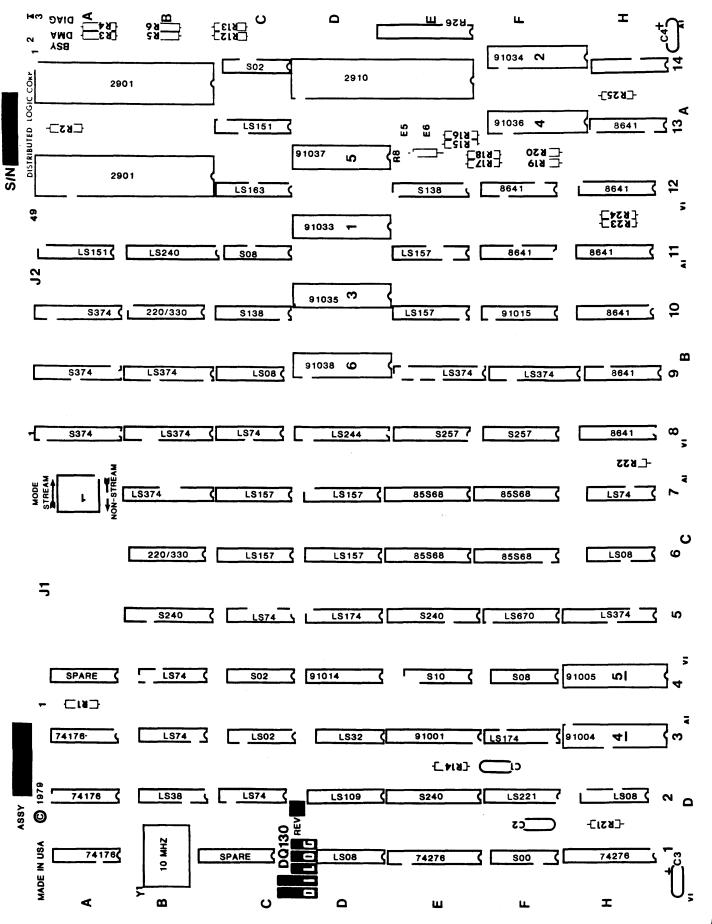


Figure 5-1. Board Layout

5-3

Table 5-2. Term Listing

Table 5-2. Term Listing (Continued)

Desgination

9

9

10

8 4, 7

5

6

6

6

J1 (38)

4, 5 J1 (50)

22

2

9

11

7

7

6

3 J1 (32)

6

3

2

9

2

5

3. 4

2, 9

9

6

3, 7

11

3

13

13

11, 13

12 J1 (24)

J1 (44)

2. 3. 9 3. 11

3. 6. 11 2. 6 2

J2 (4)

3.7

J2 (8)

J1 (16)

12

J1 (36)

J2 (40)

J1 (48)

J2 (2)

J1 (18)

J1 (14)

4.7

4.6.7

2, 3, 6

2,6

Source

7, 9, 10, 12

5, Bus (AC1)

5, Bus (AD1)

10

8

9

2

3

4

4

6

4

6

12

2 13

225222

2

11 12

12

3

12

13

13

12 13

6 3

3

12

12

7

7

3

3

3

5

13

12

12 5 4

2

3

3

3

13 12

13

3 3

13

5, Bus (AS2)

Description

2901

Bus

Bits 0-8

Data Enable

Bus (MSB)

Extension)

Extension)

Data Busy

Data In

Data Out Data Out Flip-Flop Direct Memory Grant

Delaved

Flop

Erase

Device Enable Device Enable

Data In Flip-Flop

Data Request Flag

Demand Write Data

Demand Write Data

Enable Data File

End of Tape Mark

Formatter Address

Formatter Busy

Formatter Enable

File Lower Byte Clock

File In Bits 0-15

File Lower Data

File Out Bits 0-7

File Upper Data

File Out Bits 8-15

File Upper Byte Clock

Interrupt Acknowledge

Load Memory Address

Formatter ID Burst

Formatter ID Burst

Bus Grant Output

Memory Request A

Memory Request B Master Reset

Magnetic Tape Control Magnetic Tape Request

Magnetic Tape Status Sign of ALU MSB

Peripheral Busy

Peripheral Clock

Peripheral In B

Peripheral In B

Non Existent Memory Off-Line Status From Tape

On-Line Status From Tape

Peripheral In A Byte Clock

Peripheral In B Byte Clock Peripheral In C Byte Clock

File Protect

File Mark

Function

Go

Input

Initialize

Load Address

Last Word

Direct Memory Grant In

Direct Memory Grant Flip-

Output Bits 0-7

Control Register Five

Control Store Address

2901 Data Bus Bits 0-7

Data Address Bits 16, 17

Data Bus Bit 0 From A Bus Data Bus Bits 1-12 From A

Data Bus Bit 8 From A Bus

Data Bus Address Bits 13-15 From A Bus

Data Bus Bit 15 From A

Data Bus Bit 16 (Address

Data Bus Bit 17 (Address

Carry Signal Out of Second

A00 2 2 2 Bus Address Bit 0, LSB CR500 A01:A03 2 2.7 Bus Address Bit 1:3:3 CR507 ACKFF 2 2 Acknowledge Fip-Fip CS ADRB 3 7 Address A CS AD0FF 2 2 Address A CS AD0FF 2 2 Address Bit 0 Fip-Fip DS AS00-AS02 2 2 Address Bit 0 Fip-Fip DB BS7T 5 2 Bank Seven Select DB000 BS7T 5 2 Data in DB000 DB10010 DB10010 DB10010 DB1010 DB10010 DB1010 DB1010 DB1010 DB1010 DB1010 DB1010 DB1010 DB1010 DB110 DB1010 DB101	Term	Source	Desgination	Description		Term
ACK 2 2 Acknowledge Construction ACKFF 2 2 Acknowledge Fibe Fiop CSA.00 ADRB 3 7 Address A CSA.00 ADRF 2 2 Address Bit O Fibe Fiop DA/ ACOFF 2 2 Address Bit O Fibe Fiop DA/ BACTFF 2 2 Address Bit O Fibe Fiop DA/ BASS7L 5 Bus Atsite Sequencer Bits DA DA/ BBS7L 5 Bus Atsite Sequencer Bits DB10//DB12 DB0//DB12 BDMRL 5 Bus (AR2) Data In From Master DB13/DB15 BDMRL 5 Bus (AR2) DAta Grant In DB13/DB15 BDMRL 5 Bus (AR2) Bus Bata Chrom Master DB16L BIAKIL 5 Bus (AR2) Bus Brain From Master DB17L BIAKIL 5 Bus (AR2) Bus Brain From Master DB17L BIAKIL 5 Bus (AR2) Bus Brain From Master DEN				Bus Address Bit 0, LSB		CR5-00/
ACKFF 2 2 Acknowledge Flip-Flop State ADRA 3 7 Address B CSA.00 ADRF 2 2 Address B CSA.00 ADRA 3 7 Address B CSA.00 ADRA 3 7 Address B CSA.00 ADRA 3 7 Address B CSA.00 AS0AS02 2 A State Sequence Bits DA DA BACTFF 2 2.7 Bus Activity Flip-Flop DB00/DB12 DA BBS7 5. Bus (AP2) Data In DB00/DB12 DB10/DB12 DB10/DB12 BDMGIL 5. Bus (AP2) Data Grant In DB13/DB15 DB13/DB15 BAKOL 5. Bus (AP2) Interrupt Achowledge DB17/L DB15/L BIAKOL 5. Bus (AP2) Interrupt Achowledge DD17 DB17/L BARDY 5. Bus (AP2) Sect Knowledge DUTF DB17/L BRACKL 5. Bus (AP2) Bus Reply Finp-Flop DUTF DUTF </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
ADRA ADRB AORE AORE AORE AORE ADRE ADRE ADRE ADRE ADRE ADRE ADRE AD		2		ů.		03
A00FF 2 2 Address Bit O Flip-Flop DOAD AS00-AS02 2 2 A State Sequence Bits DA BACTFF 2 7 Bus Activity Flip-Flop DA BBS7L 5 2 Bank Seven Select DB01/DB12 BDINL 5 Bus (AR2) Data in From Master DB13/DB15 BDMRL 5 Bus (AR2) DA at Out From Master DB13/DB15 BDMRL 5 Bus (AR2) DAta Out From Master DB16L BIAKL 5 Bus (AR2) Data Out From Master DB16L BIAKL 5 Bus (AR2) Data Out From Master DB17L BIAKL 5 Bus (AR2) Interrupt Acknowledge DEN DOUT 5 Bus (AR2) Interrupt Acknowledge DEN BIROLY 5 Bus (AR2) Bus Repty Firefon DING BRPLY 5 Bus (AR2) Bus Bit 1 DOUTF BSTCLK 3 9 Busey DOUTF				Address A		
AS00-AS0222A State Sequencer Bits 02DA DA DA DA DBS7DA DA DA DA DBS7DA DA DA DBS7DA DA DA DB00/DB12BACTFF BBS722.7Bus Activity Fito-Flop Bank Seven SelectDB00/DB12BDN BDN DDN DDMGIL5. Bus (AP2) S. Bus (AP2)2Data in Data in From Master DB13/DB15DB02007BDMGIL BDOUTL5. Bus (AP2) S. Bus (AP2)Data in From Master Data in From MasterDB15MBDOUTL BDOUTL5. Bus (AP2) S. Bus (AP2)Data Out From Master Interrupt Acknowledge OUtput BRINTDB16LBIAKOL BRPLY S5. Bus (AP2) S. Bus (AP2)Data Out From Master Interrupt AcknowledgeDB17LBIND BRPLY S5. Bus (AP2) SData Out From Master DUTF FDBNBRACKL 						
BASTFF 2 2.7 Bus Activity File/Flop Bark Seven Select DB00 BBS7 5.Bus (AP2) 2 Bark Seven Select DB01/DB12 BDIN 5.Bus (AP2) 2 Data in DB1 DB085 DB085 BDMGL 5.Bus (AP2) Data in DB0007 Data in SB007 DB086 DB086 BDOUT 5.Bus (AP2) DMA Grant in Bus Data Output DB15M DB16L BIAKL 5.Bus (AP2) Data Out From Master DB16L DB17L BIAKOL 5.Bus (AP2) Data Out From Master DB17L DB17L BIAKOL 5.Bus (AP2) Interrupt Acknowledge DD1N DB17L BIAROL 5.Bus (AP2) J1 (4) Beginning of Tape Mark DIN DINFF BSACKL 5.Bus (AP2) Bus Peply Flip-Flop DMG1 Bus Peply DMG1 BSY 3 3.7 Clock Nowledge DOUT DW0S BUSDOL 4.Bus (AP2) Bus B10 DW0S DW0S BUSDOL 4.Bus (BP2) Bus B11						
BBS7/ BBS7/ BDINL 5 2 Bank Seven Select Data in From Master DB0//DB12 BDINL BDINL 5. Bus (AP2) BDINL 2 Data in From Master Data in From Master DB08M DB13/DB15 BDMRL BDOUT 5. Bus (AP2) BIAKUL 5. Bus (AP2) S. Bus (AP2) Data in From Master DB13/DB15 BDOUT 5. Bus (AP2) BIAKUL 5. Bus (AP2) S. Bus (AP2) DB16 DB17L BIAKUL 5. Bus (AP2) BIAKUL 5. Bus (AP2) S. Bus (AP2) DB16 DB17L BIAKUL 5. Bus (AP2) BIAKUL J1 (A) BESTON Beginnog Tape Mark Beginnog Tape Mark Beginnog Tape Mark BESTONL DB17L BIAKUL 5. Bus (AP2) BIAKUL J1 (A) BESTONL Beginnog Tape Mark Beginnog Tape Mark BESTONL DB17L BARLY 5. Bus (AP2) BESTONL Bus Reply Flip-Flop DINFF BSY 3 3.7 Clock DMG BUSDOUL 4. Bus (AP2) BUSDOUL Bus Bi1 0 DMGFF BUSDOUL 4. Bus (BP2) BUSDOUL Bus Bi1 0 DWDS BUSDOUL 4. Bus (BP2) BUSDOUL Bus Bi1 1 DROFLG BUSDOUL 4. Bus (BP2)	BACTEE	2	2.7			
BBS7L 5. Bus (AP2) Bank Seven Select Data in From Master BDINL 5. Bus (AH2) Data in From Master DB08M BDMGIL 5. Bus (AH2) Data in From Master DB13/DB15 BDOUT 5. Bus (AH2) Bus Data Output DB15M BDOUT 5. Bus (AH2) Data Output DB17L BIAKIL 5. Bus (AH2) Data Output DB17L BIAKIL 5. Bus (AH2) Data Output DB17L BIAKIL 5. Bus (AH2) Interrupt Acknowledge DB17L BIROL 5. Bus (AH2) U1 (A) Beginning of Tape Mark DEN BIROL 5. Bus (AH2) J1 (A) Beginning of Tape Mark DIN BRPLY 5. Bus (AH2) Bus Reiply From Slave DOUT DOUT BSTOLK 3. 7 Clock DMG DWGS BUSDOL 4. Bus (AU2) Bus Bit 1 DROFLG DWDS BUSDOL 4. Bus (BH2) Bus Bit 3 DWDS BUSDOL 4. Bus (BH2) Bus Bit 3 DWDS		-			2	
BDINL BDMGIL5. Bus (AH2)Data Sur From Master BUMGILDB13//DB15BDMGIL BDOUT BDOUTL5. Bus (AN2)DMA Grant In Bus DMA Request Bus DMA Request Bus DMA Grant In Bus DMA Crant Master Interrupt Acknowledge InputDB16LBIAKUL BIAKUL5. Bus (AU2)Data Out From Master Interrupt Acknowledge Interrupt Acknowledge DUTDB17LBIAKOL BINT BIROL5. Bus (AU2)DUT Interrupt Request Bus Rely Fip-Fiop Bus Rely Fip-Fiop Bus Rely From Slave BUSDOULDBY DUTFFBRPFF BSACKL BSYNCL5. Bus (AL2)J1 (4) Bus Rely From Slave Bus Rely From Slave Bus Rely From Slave Bus Rely From Slave BUSDOULDGTFF DOUTFFBUSDOUL BUSDOUL BUSDOUL4. Bus (AU2) Bus Bit 1DBGFFGBUSDOUL BUSDOUL 4. Bus (BU2)Bus Bit 1 Bus Bit 3 Bus Bit 3DMGFFBUSDOUL BUSDOUL 4. Bus (BU2)Bus Bit 3 Bus Bit 3 Bus Bit 3DWDS Bus Bit 3DWDS Bus Bit 4 Bus Bit 4 Bus Bit 5 Bus Bit 3DWDS BUSDOL Bus Bit 6ERAS ERAS BUSDOL 4. Bus (BU2)BUSDOLL BUSDOLL 4. Bus (BU2)Bus Bit 10 Bus Bit 10FRO/FLG BUSDOL Bus Bit 11FRO/FLG BUSDOL Bus Bit 12BUSDOLL BUSDOLL 4. Bus (BU2)Bus Bit 14 Bus Bit 7 FAOFCO/FLG BUSDOL BUS Bit 14 Bus Bit 12FLO FUC FUC FUC FUC FUC CCTBUSDOLL BUSDOLL 4. Bus (BU2)Bus Bit 13 BUS BUS 14 4. Bus (BU2)Bus Bit 14 BUS FF BUS BUS 14FMC/FLG FUC FUC FUDBUSDOLL CCT-10103. Control				Bank Seven Select		
BDMGIL BDMRL BDOUT5. Bus (AR2)DMA Grant in Bus DMA Request Bus DMA Request BDOUTDB15M DB16LBDOUT BOUT BIAKIL5. Bus (AM2)Data Output Interrupt Acknowledge Input Interrupt Acknowledge Interrupt Acknowledge DB17LDB17LBIAKOL BIAKIL5. Bus (AU2)Data Out From Master Interrupt Acknowledge BINIT BIRPLYDB17LBIRPL BRPLY BSCKL5. Bus (A12)Interrupt Acknowledge Beginning of Tape Mark Beginning of Tape Mark Beginning of Tape Mark BUSDOLDBY DDINFF Beginning of Tape Mark Beginning of Tape Mark Beginning of Tape Mark BUSDOLDDINFF Beginning of Tape Mark Beginning of Tape Mark Beginning of Tape Mark Beginning of Tape Mark BUSDOLDOUTF Beginning of Tape Mark Beginning of Tape Mark Beginning of Tape Mark Bus Dout BSTCLKDMGI Beginning of Tape Mark Bus Dout BUSDOLDMGFFBUSDOL BUSDOL6. Bus (AU2)Bus Bit 0DMGFFBUSDOL BUSDOL6. Bus (AU2)Bus Bit 10DWDSBUSDOL BUSDOL6. Bus (BU2)Bus Bit 10DWDSBUSDOL BUSDOL6. Bus (BU2)Bus Bit 3DWDSBUSDOL BUSDOL6. Bus (BU2)Bus Bit 10FETBUSDOL BUSDOL6. Bus (BU2)Bus Bit 10FETBUSDOL BUSDOL6. Bus (BU2)Bus Bit 13FLPTBUSDOL BUSDOL6. Bus (BU2)Bus Bit 13FLPTBUSDOL BUSDOL6. Bus (BU2)Bus Bit 13FLPTBUSDOL BUSDOL6. Bus (BU2)Bus Bit 13FLPTBUSDOL BUSDOL </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
BDOUT S Bus (AM2) Bus Data Output DB16L BIAKIL S. Bus (AM2) Data Out From Master Interrupt Acknowledge DB16L BIAKIL S. Bus (AU2) Data Out From Master Interrupt Acknowledge DB17L BIAKOL S. Bus (AU2) Unturn of target acknowledge DB17L BIRDUT S. Bus (AL2) Interrupt Acknowledge DB17L BIRDUT S. Bus (AE2) Interrupt Acknowledge DB17L BIRDUT S. Bus (AE2) Interrupt Acknowledge DB17L BIRDUT S. Bus (AE2) Bus Breply Fib-Flop DINFF BRPLY S. Bus (AE2) Bus Breply Fib-Flop DINFF BST GAL S. Bus (AU2) Bus Bit 0 DUTT BST GAL S. Bus (AU2) Bus Bit 0 DUTT BUSDOL 4. Bus (AV2) Bus Bit 1 DROFFG BUSDOL 4. Bus (BP2) Bus Bit 3 DWDS BUSDOL 4. Bus (BR2) Bus Bit 1 EOT BUSDOL 4. Bus (BR2) Bus Bit 10 FRAD BUSDOL	BDMGIL	5. Bus (AR2)				
BDOUTL BIAKILS. Bus (AE2)Data Out From Master Interrupt Acknowledge Input Interrupt Acknowledge Input Interrupt Acknowledge 						DB15M
BIAKOL 5. Bus (AU2) Input Interrupt Acknowledge Output Interrupt Acknowledge Output DB17L BINIT 5. Bus (AZ2) Interrupt Acknowledge Output DBY BINIT 5. Bus (AZ2) Interrupt Request DEN - BOT 12 J1 (4) Beginning of Tape Mark DIN FF BRPFY 5 2 Bus Reply Filp-Filop DIN FF BRPLY 5. Bus (AJ2) Reply From Siave DOUIT BSACKL 5. Bus (AJ2) Synchronize DMGFF BUSDOL 4. Bus (AV2) Bus Bit 1 DROFFLG BUSDOL 4. Bus (AV2) Bus Bit 2 DWDS BUSDOL 4. Bus (BP2) Bus Bit 3 DWDS BUSDOL 4. Bus (BP2) Bus Bit 6 EDFF BUSDOL 4. Bus (BP2) Bus Bit 10 EDUF BUSDOL 4. Bus (BP2) Bus Bit 10 FAD BUSDOL 4. Bus (BP2) Bus Bit 11 FLCLK BUSDOL 4. Bus (BP2) Bus Bit 10 FLCLK BUSDOL 4. Bus (BP2)			2			DB16L
BIAKOL 5. Bus (AU2) Interrupt Acknowledge DBY BINIT 5. Bus (A12) Interrupt Acknowledge DEN BIROL 5. Bus (A12) Interrupt Acknowledge DEN BIROL 5. Bus (A12) Interrupt Acknowledge DEN BAPLY 5. Bus (AF2) Bus Reply Fip-Fiop DINFF BRACKL 5. Bus (AF2) Select Knowledge DOUTFF BSYCL 5. Bus (A12) Sus (A12) Bus Py Fisson BSYNCL 5. Bus (A12) Bus Bit 0 DOUTFF BUSD011 4. Bus (B2) Bus Bit 1 DROFLG BUSD021 4. Bus (B2) Bus Bit 3 DWDS BUSD031 4. Bus (B2) Bus Bit 3 DWDS BUSD041 4. Bus (B2) Bus Bit 3 DWDS BUSD051 4. Bus (B2) Bus Bit 1 FAD BUSD051 4. Bus (B2) Bus Bit 10 FRA BUSD051 4. Bus (B2) Bus Bit 11 FLCLK BUSD11 4. Bus (B2) Bus Bit 11 FLCLK	BIAKIL	5. Bus (AM2)				
BINIT 5. Bus (AT2) 5. Bus (AL2) Output Initialize Initialize Initialize DBY DEN BOT 12 J1 (4) Beginning of Tape Mark DIN DEN BOT 12 J1 (4) Beginning of Tape Mark Berly FL DIN BAPFF 2 Bus Reply Flop BSACKL DINFF DINFF BARLY 5. Bus (AP2) Bus Reply Flop STCLK DMG DOUT BSTCK 3 3. 9 Busy DMGFF BUSDOL 4. Bus (AU2) Bus Bit 1 DMGFF BUSDOL 4. Bus (AU2) Bus Bit 2 DWDS BUSDOL 4. Bus (BP2) Bus Bit 3 DWDS BUSDOL 4. Bus (BP2) Bus Bit 3 DWDS BUSDOL 4. Bus (BP2) Bus Bit 6 EOF BUSDOL 4. Bus (BP2) Bus Bit 6 EOF BUSDOL 4. Bus (BP2) Bus Bit 11 DROFFIG BUSDOL 4. Bus (BP2) Bus Bit 12 EOF BUSDOL 4. Bus (BP2) Bus Bit 13 EOF BUSDOL 4	BIAKOL	5. Bus (AU2)				DB17L
BIROL 5. Bus (AL2) Interrupt Request DEN- BOT 12 J1 (4) Beginning OT Tape Mark DINFF BAPFF 2 Bus Reply FipFiop DINFF DINFF BRPLY 5 Bus (AF2) Select knowledge DOUT BSTCLK 3 3 Select knowledge DOUTFF BSYNCL 5. Bus (AI2) Bus Bit 0 DMG BUSDOUL 4. Bus (AU2) Bus Bit 0 DMGFF BUSDOL 4. Bus (BE2) Bus Bit 1 DROFLG BUSDOL 4. Bus (BE2) Bus Bit 3 DWDS BUSDOL 4. Bus (BE2) Bus Bit 3 DWDS BUSDOL 4. Bus (BE2) Bus Bit 1 DROFLG BUSDOL 4. Bus (BE2) Bus Bit 10 FAD BUSDOL 4. Bus (BE2) Bus Bit 10 FEAS BUSDOL 4. Bus (BP2) Bus Bit 10 FEAS BUSDOL 4. Bus (BP2) Bus Bit 10 FEN BUSDOL 4. Bus (BP2) Bus Bit 11 FCD						DBY
BOT 12 J1 (4) Beginning of Tape Mark DIN BRPFF 2 2 Bus Reply Flip-Flop DINFF BRPLY 5. Bus (AF2) Bus Reply DOUT DMGI BSACKL 5. Bus (AF2) Select Knowledge DOUTF BST 3. 7 Clock DMGI BSY 3. 7 Clock DMG BSY 3. 7 Clock DMGF BUSD01 4. Bus (AU2) Bus Bit 0 DWDS BUSD014 4. Bus (AV2) Bus Bit 1 DROFLG BUSD024 4. Bus (BF2) Bus Bit 3 DWDS BUSD041 4. Bus (BK2) Bus Bit 3 DWDS BUSD041 4. Bus (BK2) Bus Bit 3 EOUF BUSD0514 4. Bus (BK2) Bus Bit 10 FEN BUSD0514 4. Bus (BK2) Bus Bit 13 FEN BUSD0514 4. Bus (BK2) Bus Bit 14 EOUF BUSD0514 4. Bus (BK2) Bus Bit 13 FLOF BUSD1514 Bus (
BRPFF 2 2 Bus Reply DINFF BRPLYL 5. Bus (AF2) Reply From Slave DOUT BSACKL 5. Bus (AF2) Reply From Slave DOUTFF BSTCLK 3 3.7 Clock DMGF BSYNCL 5. Bus (A12) Synchronize DMGFF BUSDOUL 4. Bus (AU2) Bus Bit 0 DWDS BUSDOUL 4. Bus (BF2) Bus Bit 1 DROFLG BUSDO3L 4. Bus (BF2) Bus Bit 3 DWDS BUSD04L 4. Bus (BH2) Bus Bit 3 DWDS BUSD05L 4. Bus (BH2) Bus Bit 6 EAS BUSD06L 4. Bus (BH2) Bus Bit 6 EAS BUSD01L 4. Bus (BH2) Bus Bit 10 FRO BUSD01L 4. Bus (BH2) Bus Bit 10 FIO/FI15 BUSD01L 4. Bus (BH2) Bus Bit 11 FIO/FI15 BUSD11 4. Bus (BH2) Bus Bit 13 FLPT BUSD11. 4. Bus (BH2) Bus Bit 13 FLOL BUSD11.			J1 (4)			
BRPLYL 5. Bus (AF2) Reply From Slave DOUT BSACKL 5. Bus (BN1) Select Knowledge DOUTFF BSTCLK 3 3.7 Clock DMG BSYNCL 5. Bus (AU2) Bus Bit 0 DMGFF BUSDOUL 4. Bus (AU2) Bus Bit 1 DMGFF BUSDO1L 4. Bus (BE2) Bus Bit 1 DMOFEG BUSDO2L 4. Bus (BF2) Bus Bit 3 DWDS BUSDO3L 4. Bus (BH2) Bus Bit 4 EDUF BUSDO4L 4. Bus (BH2) Bus Bit 5 EOT BUSDO5L 4. Bus (BH2) Bus Bit 7 FAD BUSDO4L 4. Bus (BH2) Bus Bit 7 FAD BUSDO4L 4. Bus (BH2) Bus Bit 10 FEN BUSD04L 4. Bus (BH2) Bus Bit 11 FUCK BUSD051L 4. Bus (BH2) Bus Bit 11 FUCK BUSD14L 4. Bus (BH2) Bus Bit 13 FLPT BUSD14L 4. Bus (BH2) Bus Bit 14 FUT BUSD14L 4. Bus (2	Bus Reply Flip-Flop		
BSACKL BSTCLK 5. Bus (BN1) Select Knowledge Clock DOUTFF DMG BSY 3 3. 7 Clock DMG BSYNCL 5. Bus (AJ2) Synchronize DMGFF BUSD01 4. Bus (AU2) Bus Bit 1 DMOFFG BUSD014 4. Bus (BF2) Bus Bit 2 DWDS BUSD031 4. Bus (BF2) Bus Bit 3 DWDS BUSD041 4. Bus (BF2) Bus Bit 3 DWDS BUSD054 4. Bus (BF2) Bus Bit 6 ERAS BUSD054 4. Bus (BH2) Bus Bit 7 FAD BUSD051 4. Bus (BH2) Bus Bit 7 FAD BUSD051 4. Bus (BH2) Bus Bit 10 FIO/FI15 BUSD051 4. Bus (BH2) Bus Bit 11 FLOT BUSD111 4. Bus (BP2) Bus Bit 11 FLOT BUSD131 4. Bus (BP2) Bus Bit 13 FLOT BUSD14 4. Bus (BP2) Bus Bit 13 FLOT BUSD1514 4. Bus (BP2) Bus Bit 13 FLOT BUSD141			2			
BSY 3 3.9 Busy DMGFF BSYNCL 5. Bus (AU2) Bus Bit 0 DMGFF BUSD01L 4. Bus (AU2) Bus Bit 1 DRGFLG BUSD02L 4. Bus (AU2) Bus Bit 2 DWDS BUSD02L 4. Bus (BE2) Bus Bit 3 DWDS BUSD02L 4. Bus (BL2) Bus Bit 5 EOT BUSD02L 4. Bus (BL2) Bus Bit 5 EOT BUSD02L 4. Bus (BL2) Bus Bit 6 ERAS BUSD02L 4. Bus (BL2) Bus Bit 6 FEA BUSD02L 4. Bus (BL2) Bus Bit 10 Fl00/F115 BUSD03L 4. Bus (BP2) Bus Bit 10 Fl00/F115 BUSD11L 4. Bus (BP2) Bus Bit 11 FLD BUSD12L 4. Bus (BV2) Bus Bit 13 FLD BUSD14L 4. Bus (BV2) Bus Bit 14 FMK – BUSD14L 4. Bus (BV2) Bus Bit 13 FLD BUSD14L 4. Bus (BV2) Bus Bit 13 FLD BUSD14L 4. Bus (BV2) <td>BSACKL</td> <td>5. Bus (BN1)</td> <td></td> <td></td> <td></td> <td></td>	BSACKL	5. Bus (BN1)				
BSYNCL 5. Bus (AJ2) Synchronize DMGFF BUSD0L 4. Bus (AV2) Bus Bit 1 DRQFLG BUSD01L 4. Bus (AV2) Bus Bit 1 DWDS BUSD01L 4. Bus (BF2) Bus Bit 3 DWDS BUSD02L 4. Bus (BF2) Bus Bit 4 EDUF BUSD02L 4. Bus (BF2) Bus Bit 6 ERAS BUSD03L 4. Bus (BK2) Bus Bit 6 ERAS BUSD04L 4. Bus (BK2) Bus Bit 7 FAD BUSD05L 4. Bus (BK2) Bus Bit 10 FEN BUSD04L 4. Bus (BK2) Bus Bit 11 FLCLK BUSD10L 4. Bus (BR2) Bus Bit 11 FLCLK BUSD13L 4. Bus (BC2) Bus Bit 13 FLPT BUSD13L 4. Bus (BU2) Bus Bit 14 FMK - BUSD13L 4. Bus (BU2) Bus Bit 13 FLPT BUSD13L 4. Bus (BU2) Bus Bit 14 FMK - BUSD15L 4. Bus (BK2) Bus Bit 14 FMK - BUSD14L 5. Bus (AK2) <td></td> <td></td> <td></td> <td></td> <td></td> <td>DMG</td>						DMG
BUSDOUL 4 Bus (AU2) Bus Bit 0 BUSDO1L 4 Bus (AV2) Bus Bit 2 DRQFLG BUSD01L 4 Bus (B2) Bus Bit 3 DWDS BUSD01L 4 Bus (B2) Bus Bit 3 DWDS BUSD01L 4 Bus (B42) Bus Bit 5 EOT BUSD01L 4 Bus (B42) Bus Bit 5 EOT BUSD01L 4 Bus (B42) Bus Bit 6 ERAS BUSD01L 4 Bus (B42) Bus Bit 6 FEN BUSD01L 4 Bus (B42) Bus Bit 10 FI00/F115 BUSD01L 4 Bus (B42) Bus Bit 11 FLCLK BUSD11L 4 Bus (B42) Bus Bit 13 FLPT BUSD112 4 Bus (B42) Bus Bit 15 FO00-F007 BUSD114 4 Bus (B42) Bus Bit 15 FO00-F007 BUSD114 4 Bus (B42) Bus Bit 15 FO00-F007 BUSD1514 4 Bus (B42) Bus			5.9			DMGFF
BUSD02L 4. Bus (BE2) Bus Bit 2 DWDS BUSD03L 4. Bus (BF2) Bus Bit 3 DWDS BUSD04L 4. Bus (BF2) Bus Bit 4 EDUF BUSD05L 4. Bus (BH2) Bus Bit 5 EOT BUSD06L 4. Bus (BK2) Bus Bit 5 EOT BUSD06L 4. Bus (BK2) Bus Bit 6 ERAS BUSD08L 4. Bus (BK2) Bus Bit 7 FAD BUSD08L 4. Bus (BK2) Bus Bit 10 FIO0/FI15 BUSD10L 4. Bus (BK2) Bus Bit 10 FIO0/FI15 BUSD11L 4. Bus (BK2) Bus Bit 12 FLCLK BUSD13L 4. Bus (BV2) Bus Bit 13 FLPT BUSD14L 4. Bus (BV2) Bus Bit 15 FOO0-FOOT BUSD15L 4. Bus (BV2) Bus Bit 15 FOO-FOOT BUSD14L 4. Bus (BV2) Bus Bit 15 FUCK BUSD15L 4. Bus (BV2) Bus Bit 15 GO-FOOT BUSD15L 4. Bus (BV2) Bus Bit 16 FUCK BUSD15L B		4. Bus (AU2)		Bus Bit 0		
BUSD03L 4. Bus (BF2) Bus Bit 3 DWDS BUSD04L 4. Bus (BH2) Bus Bit 4 EDUF BUSD05L 4. Bus (BH2) Bus Bit 5 EOT BUSD05L 4. Bus (BH2) Bus Bit 6 ERAS BUSD05L 4. Bus (BH2) Bus Bit 6 FAD BUSD09L 4. Bus (BM2) Bus Bit 7 FAD BUSD09L 4. Bus (BM2) Bus Bit 7 FAD BUSD01L 4. Bus (BM2) Bus Bit 10 FIO/FI15 BUSD11L 4. Bus (BR2) Bus Bit 11 FLCLK BUSD12L 4. Bus (BR2) Bus Bit 12 FLD BUSD13L 4. Bus (BV2) Bus Bit 14 FMK - BUSD14L 4. Bus (BV2) Bus Bit 14 FMK - BUSD15L 4. Bus (BV2) Bus Bit 12 FLD BWTBTL 5. Bus (AK2) Bus Bit 14 FMK - BWTBTL 5. Bus (AK2) 8 2001 Carry FUD CFR - 12 J1 (42) Corrected Error GO IAKI						
BUSDOSL 4. Bus (BJ2) Bus Bit 5 EOT BUSDOEL 4. Bus (BK2) Bus Bit 5 ERAS BUSDOBL 4. Bus (BK2) Bus Bit 7 FAD BUSDOBL 4. Bus (BM2) Bus Bit 7 FAD BUSDOBL 4. Bus (BM2) Bus Bit 8 FBY BUSD10L 4. Bus (BP2) Bus Bit 10 FIO/FI15 BUSD11L 4. Bus (BP2) Bus Bit 11 FLCLK BUSD11L 4. Bus (BP2) Bus Bit 13 FLPT BUSD13L 4. Bus (BY2) Bus Bit 13 FLPT BUSD14L 4. Bus (BY2) Bus Bit 13 FLPT BUSD15L 4. Bus (BY2) Bus Bit 14 FMK – BUSD14L 4. Bus (BY2) Bus Bit 14 FMK – BUSD15L 4. Bus (BY2) Bus Bit 14 FUT BUSD15L 4. Bus (BY2) Bus Bit 14 FUT C Ymite Byte FOO0-FOOT FUNC C 9 8 2901 Carry FUNC CRR 12 J1 (42) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
BUSD06L 4. Bus (BK2) Bus Bit 6 ERAS BUSD07L 4. Bus (BK2) Bus Bit 7 FAO BUSD08L 4. Bus (BM2) Bus Bit 7 FAO BUSD09L 4. Bus (BM2) Bus Bit 7 FAO BUSD01L 4. Bus (BM2) Bus Bit 10 FEN BUSD11L 4. Bus (BP2) Bus Bit 10 FLCLK BUSD12L 4. Bus (B2) Bus Bit 12 FLD BUSD13L 4. Bus (BV2) Bus Bit 13 FLPT BUSD15L 4. Bus (BV2) Bus Bit 15 FO00-FO07 BWTBT 5 2 Write Byte FO08-FO15 BWTBTL 5. Bus (AK2) Write Byte FUCLK CR - 12 J1 (42) Corrected Error FUNC CLR B 3 3. 11 Clear Bus IAKI CR -0 10 3. 8. 10 Control Register One INIT CR1-01/ 10 8 Control Register One IDADD CR1-05/ 10 8. 10 Control Register O						
BUSD07L 4. Bus (BL2) Bus Bit 7 FAD BUSD08L 4. Bus (BM2) Bus Bit 8 FBY BUSD09L 4. Bus (BM2) Bus Bit 9 FEN BUSD09L 4. Bus (BM2) Bus Bit 10 FID0/F115 BUSD11L 4. Bus (BR2) Bus Bit 11 FLCLK BUSD13L 4. Bus (BS2) Bus Bit 12 FL-D BUSD14L 4. Bus (BV2) Bus Bit 13 FLPT BUSD14L 4. Bus (BV2) Bus Bit 15 FO00-FO07 BUSTBTL 5. Bus (AK2) Write Byte FUCLK CFR - 12 J1 (42) Corrected Error FUNC CLRB 3 3. 11 Clear Bus IAKI CR1-00 10 3. 8. 10 Control Register One INIT CR1-01/ 10 3. 8. 10 Control Register One INIT CR1-02 10 8 Control Register One IDAD CR1-04 10 8 Control Register One IDAD CR1-07 0 O						
BUSD09L 4, Bus (BN2) Bus Bit 9 FEN BUSD10L 4, Bus (BR2) Bus Bit 10 FI00/FI15 BUSD11L 4, Bus (BR2) Bus Bit 10 FLCLK BUSD12L 4, Bus (BR2) Bus Bit 11 FLCLK BUSD13L 4, Bus (B2) Bus Bit 12 FL-D BUSD14L 4, Bus (BU2) Bus Bit 13 FLPT BUSD14L 4, Bus (BV2) Bus Bit 14 FMK - BUSD15L 4, Bus (BV2) Bus Bit 15 FO00-FO07 BWTBT 5 2 Write Byte FO08-F015 GC 9 2 201 Carry FU-D CLR 2 3 Clear GO CLR 2 3 Clear GO CR1-01/ 10 3. 8 Control Register One IDENT Output Bit 0 Output Bit 1-3 LD DADD CR1-03 10 8 Control Register One MMBGOL CR1-04 10 8 Control Register Two MRQ		4. Bus (BL2)		Bus Bit 7		FAD
BUSD10L 4. Bus (BP2) Bus Bit 10 FI00/FI15 BUSD11L 4. Bus (BR2) Bus Bit 11 FLCLK BUSD12L 4. Bus (BS2) Bus Bit 12 FL-D BUSD13L 4. Bus (B2) Bus Bit 13 FLCLK BUSD13L 4. Bus (BV2) Bus Bit 13 FL-D BUSD13L 4. Bus (BV2) Bus Bit 14 FMK - BUSD15L 4. Bus (BV2) Bus Bit 15 FO00-F007 BWTBTL 5. Bus (AK2) Write Byte FUCLK C 9 8 2901 Carry FUNC CLRB 3 3. 11 Clear Bus IAKI CR1-00 10 3. 8. 10 Control Register One IDENT - Output Bit 0 Control Register One INIT ID ID CR1-01/ 10 8. 10 Control Register One IDADD CR1-05/ 10 8. 10 Control Register One MMBGOL CR2-00 10 3. 8 Control Register Two MRCA CR2-07						
BUSD12L 4. Bus (BS2) Bus Bit 12 FL-D BUSD13L 4. Bus (BT2) Bus Bit 13 FLPT BUSD14L 4. Bus (BV2) Bus Bit 13 FUPT BUSD15L 4. Bus (BV2) Bus Bit 14 FMK – BUSD15L 4. Bus (BV2) Bus Bit 15 FO00-FO07 BWTBT 5 Sus (AK2) Write Byte FO08-FO15 C 9 8 2901 Carry FU-D CER - 12 J1 (42) Corrected Error FUNC CLR B 3 11 Clear Bus IAKI CN + 2 8 6 Carry Output of 2901 IDENT CR1-00 10 3. 8. 10 Control Register One IDENT CR1-01/ 10 8 Control Register One LDADD CR1-03 0 Output Bit 3 LD CR1-04 10 8 Control Register One MMBGOL CR2-00 10 3. 8 Control Register Two MRCA CR2-01/						
BUSD13L 4. Bus (BT2) Bus Bit 13 FLPT BUSD14L 4. Bus (BU2) Bus Bit 13 FMK – BUSD15L 4. Bus (BV2) Bus Bit 15 FO00-FO07 BWTBT 5 2 Write Byte FO08-FO15 BWTBTL 5. Bus (AK2) Write Byte FUCLK C 9 8 2901 Carry FU.D CER - 12 J1 (42) Corrected Error FUNC CLRB 3 3.11 Clear Bus IAKI CN + 2 8 8 Carry Output of 2901 IDENT CR1-01/ 10 3. 8 Control Register One IDENT CR1-03 0 Output Bit 0 IDENT IDENT CR1-04 10 8 Control Register One IDADD CR1-05/ 10 8. 10 Control Register One MMBGOL CR1-07 0 3. 8 Control Register Two MRCA CR2-00 10 3. 8 Control Register Two MRCB						
BUSD15L 4. Bus (BV2) Bus Bit 15 FO00-FO07 BWTBT 5 2 Write Byte FO08-FO15 BWTBTL 5. Bus (AK2) Write Byte FUCLK C 9 8 2901 Carry FU-D CER 12 J1 (42) Corrected Error FUNC CLR 2 3 Clear GO CN + 2 8 8 Carry Output of 2901 FUNC CR1-00 10 3. 8. 10 Control Register One IDENT Output Bit 0 0utput Bit 15 LD LD IDENT CR1-03 0 S. 8 Control Register One IDADD CR1-05/ 10 8. 10 Control Register One MMBGOL CR2-00 10 3. 8 Control Register Two MROA CR2-01/ 10 8 Control Register Two MROB CR2-07 0 Output Bits 0-1 MTR NS CR3-01 10 3. 7 Control Register Two						
BWTBT52Write ByteFO08-FO15BWTBTL5. Bus (AK2)82901 CarryFU2C982901 CarryFU2CER12J1 (42)Corrected ErrorFUNCCLR23ClearGOCLRB33. 11Clear BusIAKICR1-00103. 8. 10Control Register OneIDENTCR1-01/103. 8Control Register OneIDENTCR1-03008Control Register OneINITCR1-04108Control Register OneLDADDCR1-05/108, 10Control Register OneMMBGOLCR1-0708, 10Control Register OneMMBGOLCR2-00103. 8Control Register TwoMRQACR2-01/108Control Register TwoMRQBCR3-00/103Control Register TwoMTCCR3-0103. 7Control Register TwoMTSCR3-02/103. 7Control Register ThreeNSCR3-04/108Control Register ThreeNXMCR3-0300Control Register ThreeNSCR3-04/108Control Register ThreeNKCR3-071010Control Register ThreeONLCR3-071010Control Register ThreePBSYCR3-071010Control Register ThreeONLCR3-071010<						
BWTBTL C5. Bus (AK2)Write ByteFUCLKC982901 CarryFUDCER -12J1 (42)Corrected ErrorFUNCCLR23ClearGOCLRB33. 11Clear BusIAKICN + 288Carry Output of 2901IDENTCR1-00103. 8. 10Control Register OneIDENTCR1-01/103. 8Control Register OneINITCR1-030Output Bits 1-3LDCR1-04108Control Register OneLDADDCR1-05/108, 10Control Register OneMMBGOLCR1-0708, 10Control Register TwoMRQACR2-00103. 8Control Register TwoMRQACR2-01/108Control Register TwoMTCCR3-01/103Control Register TwoMTSCR3-04/108Control Register ThreeNXMCR3-03103. 7Control Register ThreeNXMCR3-04/108Control Register ThreeNXMCR3-04/108Control Register ThreePSYCR3-071010Control Register ThreePSYCR3-071010Control Register ThreePLCLKCR3-071010Control Register ThreePLCLKCR3-071010Control Register ThreePSYCR3-071010Control Regis						
CER - CLR12J1 (42)Corrected Error ClearFUNC GOCLR23ClearGOCLRB33.11Clear BusIAKICN + 288Carry Output of 2901IAKICR1-00103.8.10Control Register OneIDENTCR1-01/103.8Control Register OneIDENTCR1-0300utput Bit 0IDENTCR1-04108Control Register OneLDADDCR1-05/108.10Control Register OneLDADDCR1-0708.10Control Register OneMMBGOLCR2-00103.8Control Register TwoMRQACR2-01/108Control Register TwoMROBCR2-0700utput Bits 1-7MTRCR3-00/103.77Control Register ThreeMTSCR3-01108Control Register ThreeNSCR3-03103.77Control Register ThreeNSCR3-04/108Control Register ThreeNSCR3-071010Control Register ThreePSYCR3-061077Control Register ThreePSYCR3-071010Control Register ThreePLLKCR3-071010Control Register ThreePLLKCR3-071010Control Register ThreePLLKCR3-061010Control Register ThreePLLKCR3-0710 <t< td=""><td></td><td></td><td></td><td>Write Byte</td><td></td><td></td></t<>				Write Byte		
CLR23ClearGOCLRB33, 11Clear BusIAKICN + 288Carry Output of 2901IAKICR + 288Carry Output of 2901IDENTCR + 288Control Register OneIDENTCR + 00103, 810Control Register OneIDENTCR + 01103, 8Control Register OneIDENTCR + 04108Control Register OneLDADDCR + 04108Control Register OneMMBGOLCR + 07108, 10Control Register OneMMBGOLCR + 0700utput Bits 5-7MRQACR + 0703, 8Control Register TwoMRQBCR + 0703, 8Control Register TwoMRQBCR + 07103Control Register TwoMTCCR + 07103, 7Control Register ThreeMTSCR + 07103, 7Control Register ThreeNSCR + 0710106Control Register ThreePSYCR + 0710107Control Register ThreePSYCR + 0710107Control Register ThreePLCLKCR + 07109Control Register FourPIBO1CR + 07109Control Register FourPIBCLK	-					
CN + 2 CR1-0088Carry Output of 2901 Control Register One Output Bit 0IDENT IDENT - IDENT - 						
CR1-00103. 8. 10Control Register One Output Bit 0IDENT IDENT INITCR1-01/ CR1-03103. 8Control Register One Output Bits 1-3IDENT IDENT INITCR1-03 CR1-04108Control Register One Output Bits 1-3LD LDADDCR1-05/ CR1-07108, 10Control Register One Output Bits 5-7LDADD LDADDCR2-00103. 8Control Register One Output Bits 5-7MRQA MRQBCR2-01/ CR2-07103. 8Control Register Two Output Bits 1-7MRQB MRSTCR3-00/ CR3-01103Control Register Two Output Bits 0-1MRST NSCR3-02/ CR3-03103. 7Control Register Three Output Bits 2-3NS NSCR3-04/ CR3-06108Control Register Three Output Bits 4-6NSM PBSYCR3-0137Control Register Three Output Bits 7PIACLK PIACLKCR3-A0137Control Register Three Output Bit 7PIACLK PIACLKCR3-A0137Control Register Four Output Bits 0-7PIBO1						IAKI
CR1-01/ CR1-03103. 8Output Bit 0 Output Bit 10IDENT - INITCR1-03108Control Register One Output Bits 1-3LD LDADDCR1-04108Control Register One Output Bit 4LWDCR1-05/ CR1-07108. 10Control Register One Output Bits 5-7LMBGOL MMBGOLCR2-00103. 8Control Register Two Output Bits 5-7MRQA MRQBCR2-01/ CR2-07108Control Register Two Output Bits 1-7MRTR MTCCR3-00/ CR3-01103Control Register Two Output Bits 0-1MRST MTSCR3-02/ CR3-03103. 7Control Register Three Output Bits 2-3MTS OFCCR3-04/ CR3-06108Control Register Three Output Bits 4-6PBSY PLACLKCR3-A0137Control Register Three Output Bit 7PLACLK PLACLKCR3-A0137Control Register Four Output Bit 7PIBD1 PIBD1CR4-07109Control Register Four Output Bits 0-7PIBCLK			-			IDENT
CR1-03 CR1-04Output Bits 1-3 Control Register OneLDCR1-04108Control Register One Output Bit 4LDADD LWDCR1-05/108, 10Control Register One Output Bit 5-7LWDCR1-07 CR2-00103, 8Control Register Two Output Bit 5-7MRGOA MRGDCR2-01/108Control Register Two Output Bit 0MRSTCR2-07 CR3-00/103Control Register Two Output Bits 1-7MTRCR3-01 CR3-02/103Control Register Three Output Bits 0-1MTSCR3-04/108Control Register Three Output Bits 2-3OFCCR3-04/108Control Register Three Output Bits 4-6ONLCR3-06 CR3-071010Control Register Three Output Bit 7ONLCR3-00137Control Register Three Output Bit 7PBSYCR3-00137Control Register Three Output Bit 7PIBO1 PIBO1CR3-001109Control Register Four Output Bits 0-7PIBO5	004.044			Output Bit 0		IDENT -
CR1-04108Control Register One Output Bit 4LDADD LWDCR1-05/108, 10Control Register One Output Bits 5-7MRQACR1-0703, 8Control Register Two Output Bits 5-7MRQACR2-00103, 8Control Register Two Output Bit 0MRQBCR2-071038Control Register Two Output Bits 1-7MRQACR3-00/103Control Register Two Output Bits 1-7MTRCR3-01103Control Register Three Output Bits 0-1MSSCR3-02/103, 7Control Register Three Output Bits 2-3NSMCR3-0303Control Register ThreeNXMCR3-0600Output Bits 4-6 Output Bits 4-6PBSYCR3-071010Control Register ThreePLKKCR3-0137Control Register ThreePLKKCR3-001109Control Register Four Output Bit 2-3PBD1CR3-001109Control Register Four Output Bit 0-7PIBCLK		10	3, 8			_
CR1-05/ CR1-07108, 10Control Register One Output Bits 5-7MMBGOL MRQACR2-00103. 8Control Register Two Output Bits 5-7MRQB MRSTCR2-01/ CR2-07108Control Register Two Output Bits 1-7MRTC MRSTCR3-00/ CR3-01103Control Register Two Output Bits 1-7MTC MTSCR3-02/ CR3-03103Control Register Three Output Bits 0-1MSS MTSCR3-04/ CR3-06108Control Register Three Output Bits 2-3NXM OUtput Bits 2-3CR3-06 CR3-0710106Control Register Three Output Bits 4-6PBSY PIACLKCR3-A01 CR3-00137Control Register Three Output Bit 7PIACLK PIACLKCR3-A01 CR4-0737Control Register Four Output Bits 0-7PIBCLK		10	8	Control Register One		
CR1-07 CR2-00Output Bits 5-7 CR2-00MROA MRQB Output Bit 5-7MROA MRQB MRSTCR2-01/ CR2-07 CR3-00/103.8Control Register Two Output Bit 0 Output Bits 1-7MRST MRSTCR3-01/ CR3-01103Control Register Two Output Bits 1-7MTC MTS MTSCR3-01/ CR3-01103.7Control Register Three Output Bits 0-1MTS MTS Output Bits 2-3CR3-02/ CR3-03 CR3-04/108Control Register Three Output Bits 2-3OFC OUTPUT Bits 2-3CR3-04/ CR3-06 CR3-0710106Control Register Three Output Bits 4-6 Output Bits 7PSY PLACLKCR3-A01 CR4-0737Control Register Three Output Bits 0-7PIBO1 PIBCLK	CB1-05/	10	8 10			
CR2-00103. 8Control Register Two Output Bit 0MROB MRSTCR2-01/ CR2-07108Control Register Two Output Bit 0MRC MRSTCR3-00/ CR3-01103Control Register Two Output Bits 1-7MTR MTRCR3-01 CR3-02/ CR3-033. 7Control Register Three Output Bits 0-1MSS MTSCR3-02/ CR3-04/ CR3-06 CR3-063. 7Control Register Three Output Bits 2-3NS OFCCR3-04/ CR3-06 CR3-0710108Control Register Three Output Bits 4-6PBSY PLACLKCR3-001 CR3-00137Control Register Three Output Bit 7PLACLK PIBO1CR3-001 CR4-07109Control Register Four Output Bits 0-7PIBO5 PIBCLK						
CR2-01/108Control Register Two Output Bits 1-7MTCCR2-07103Control Register ThreeMTSCR3-00/103Control Register ThreeMTSCR3-0103.7Control Register ThreeNXMCR3-02/103.7Control Register ThreeNXMCR3-030utput Bits 2-3OFCOFCCR3-060utput Bits 4-6PBSYCR3-071010Control Register ThreeCR3-071010Control Register ThreeCR3-0137Control Register ThreeCR3-A0137Control Register FourCR4-00/109Control and Address Bit 1CR4-0700utput Bits 0-7PIBCLK	CR2-00	10	3.8	Control Register Two		MRQB
CR2-07 CR3-00/Output Bits 1-7 CR3-00/MTR Output Bits 1-7CR3-01 CR3-02/3Control Register Three Output Bits 0-1MTS NS Output Bits 0-1CR3-02/ CR3-03 CR3-04/103. 7Control Register Three Output Bits 2-3NXM Output Bits 2-3CR3-04/ CR3-06 CR3-07108Control Register Three Output Bits 4-6ONL PBSY Output Bits 4-6CR3-06 CR3-071010Control Register Three Output Bits 7PLACLK PIACLKCR3-A01 CR4-0737Control and Address Bit 1 Output Bits 0-7PIBO1 PIBCLK	CR2-01/	10	8			
CR3-01Output Bits 0-1NSCR3-02/103. 7Control Register ThreeNXMCR3-03Output Bits 2-3OFCOutput Bits 2-3OFCCR3-04/108Control Register ThreeONLCR3-06Output Bits 4-6PBSYOutput Bits 4-6PBSYCR3-071010Control Register ThreePLKCR3-A0137Control Register FhreePLKCR3-A0137Control and Address Bit 1PIBO1CR4-00/109Control Register FourPIBO5CR4-07Output Bits 0-7PIBCLK	CR2-07	-	1	Output Bits 1-7		MTR
CR3-02/ CR3-03103. 7Control Register Three Output Bits 2-3NXMCR3-030000000CR3-04/ CR3-06108Control Register Three Output Bits 4-6ONLOFCCR3-060000000CR3-07101010Control Register Three Output Bit 7PBSYCR3-A0137Control Register Three Output Bit 7PIACLKCR3-A0137Control and Address Bit 1PIB01CR4-00/ CR4-07109Control Register Four Output Bits 0-7PIBCLK		10	3			
CR3-03 CR3-04/108Output Bits 2-3 Control Register ThreeOFC ONL PBSYCR3-06 CR3-0710100utput Bits 4-6 Output Bits 4-6PBSY PBSYCR3-071010Control Register Three Output Bit 7PCLK PIACLKCR3-A0137Control and Address Bit 1 Output Bits 0-7PIB01 PIB05CR4-07109Control Register Four Output Bits 0-7PIBCLK	CR3-02/	10	3.7			
CR3-06 CR3-07Output Bits 4-6 10PBSY Control Register Three Output Bit 7PBSY PCLK PIACLKCR3-A0137Control Register Three Output Bit 7PIACLK PIB01CR4-00/109Control Register Four Output Bits 0-7PIB05 PIBCLK		10		Output Bits 2-3		OFC
CR3-071010Control Register Three Output Bit 7PCLK PIACLKCR3-A0137Control and Address Bit 1PIB01CR4-00/109Control Register Four Output Bits 0-7PIB05CR4-0700PIBCLK			0			
CR3-A01 3 7 Control and Address Bit 1 PIB01 CR4-00/ 10 9 Control Register Four PIB05 CR4-07 Output Bits 0-7 PIBCLK		10	10	Control Register Three		PCLK
CR4-00/ 10 9 Control Register Four PIBO5 CR4-07 Output Bits 0-7 PIBCLK	C83.401	3	7			
CR4-07 Output Bits 0-7 PIBCLK	CR4-00/	-		Control Register Four		
PICCLK	CR4-07					PIBCLK
	L	ł				PICCLK

Table	5-2 .	Term	Listing	(Continued)
-------	--------------	------	---------	-------------

Term	Source	Desgination	Description
PIDCLK	3	11	Peripheral In D Byte Clock
POA-D	2	12	Peripheral Out A Byte Data
POB-D	3	12	Peripheral OUt B Byte Data
POC-D	3	12	Peripheral Out C Byte Data
PPCLK	3		
			Processor Clock
PPCLK	3	8, 9, 10	Processor Clock
RD0	12	J1 (2)	Read Data Bit 0 From Tape
RD1	12	J1 (3)	Read Data Bit 1 From Tape
RD2	12	J2 (48)	Read Data Bit 2 From Tape
RD3	12		
		J2 (50)	Read Data Bit 3 From Tape
RD4	12	J1 (6)	Read Data Bit 4 From Tape
RD5	12	J1 (20)	Read Data Bit 5 From Tape
RD6	12	J1 (10)	Read Data Bit 6 From Tape
RD7	12	J1 (8)	Read Data Bit 7 From Tape
RDP		1 31 (0)	
NUP	12		Read Data Parity From
RDP –	12	J1 (1)	Read Data Parity From
RDP -	1.2		Tape
HUP -	12	12	Read Data Parity From
RDQ	11	9	Request Data From Bus
RDS	12	J1 (34)	Read Data Strobe From
			Таре
RDS –	12	11	Read Data Strobe From
DEV	1 12	1.0.00	Tape
REV	13	J2 (18)	Tape Reverse
ASTS	11	3.9	Reset
RSTS -	11	2.3	Reset
RSYNC	2	2	Synchronize
RSYNC	5	2	Synchronize
RWC			
	13 -	J2 (20)	Rewind Command To Tape
RWS	12	J1 (30)	Rewinding
STA	3		Status
STORL	2	3	Store Lower Byle
STORU	2	3, 11	
			Store Upper Byte
ТА	3	3	Tag Clock For Extended
	1		Address Bits
TADO	13	J2 (46)	Transport Address 0
TAD1	13	J1 (46)	Transport Address 1
TD07	4	4.6	
			Transmit Bit 07
TD07	6	4	Transmit Bit 07
TD12"	4	4.6	Transmit Bit 12
TD12	6	4	Transmit Bit 12
TD13*	4	4.6	Transmit Bit 13
TD13	6		
		4	Transmit Bit 13
TD14"	4	4	Transmit Bit 14
TD15*	4	4.6	Transmit Bit 15
TD15	6	4	Transmit Bit 15
TDIN	2	5	Transmit D Bus In
TDMG	2	5	
	2	5	Transmit Direct Memory
TDMR	2	5	Transmit Direct Memory
			Request
TD00G	2	4	Transmit D Bus Bit 0 Gate
TDOUT	2	5	Transmit D Bus Out
TEST	9	9	Test 2901
TIAK	2	5	
	4	5	Transmit Interrupt
			Acknowledge
TIMER	11	6	Tape Time Operations
TIRQ	2	2	Transmit Interrupt Request
то	3	3	Time Out
TOD	3	2.3	Time Out Delay
TRDY	12		
	-	J1 (28)	Tape Ready From Tape
TRPLY	2	5	Transmit Reply
TSACK	2	2. 3. 5	Transmit Select
TSACK		1 2 5	Acknowledge
TSACK -	2	2.5	Transmit Select Acknowledge
TSYNC	2	3, 5	
			Transmit Sync
TWTBT	2	2	Transmit Write Byte
WDO	13	J2 (10)	Write Data Line 0 To Tape
WD1	13	J2 (12)	Write Data Line 1 To Tape
WD2	13		
. –		J2 (30)	Write Data Line 2 To Tape
WD3	13	J2 (26)	Write Data Line 3 To Tape
WD4	13	J2 (6)	Write Data Line 4 To Tape
WD5	13	J2 (32)	Write Data Line 5 To Tape
WD6	13		
		J2 (28)	Write Data Line 6 To Tape
	13	J2 (24)	IWrite Data Line 7 To Tone
WD7 WFM	13	J2 (42)	Write Data Line 7 To Tape Write File Mark

Table 5-2. Term Listing

Term	Source	Desgination	Description
WRL	3	7	Write Load
WRT	13	12	Write/Read Formatter
WRT -	13	J2 (34)	Write/Read Formatter
WRU	3	7	Write Unload
WTBFF	2	2	Write Byte Flip-Flop
Y00/Y02	8	3, 6, 7, 9, 13	Write Byte Flip-Flop Y Bus Bits 0-2
Y03/Y05	8	3, 6, 9, 13	Write Byte Flip-Flop Y Bus Bits 3-5
Y06/Y07	8	6, 9, 13	Write Byte Flip-Flop Y Bus Bits 6-7
ZS	8	9	ALU Zero

THEORY

The coupler may be examined as three functions: computer interface, microprocessor and formatter interface. Signals from and to the computer are described in Section 1, Table 1-1. Signals from and to the formatter are described in Tables 1-2 and 1-3. Figure 5-2 is a simplified block diagram illustrating the interfaces and listing the major functional components. Single lines in the illustration represent serial data and the wide lines represent parallel data. A detailed block diagram of the coupler is shown on Sheet 1 of the logic diagrams. The numbers in the blocks on Sheet 1 refer to the sheet numbers of the other logic diagrams.

Computer Interface

The purpose of the computer interface is to (1) buffer lines between the Q Bus of the computer and the coupler and (2) synchronize information transfers. There are two major classes of lines connected to the computer interface:

- a. Data/address lines
- b. Control lines

There are 16 bidirectional data/address lines and six extended address lines. Both device addresses and data are transferred over these lines. Address information is first placed on the lines by a bus master. The bus master then either receives input data from, or outputs data to, the addressed slave device, or memory, over the same lines. During initial control and status-transfer sequences, the coupler is a slave device. During data transfers, the coupler is a bus master and either receives data from, or outputs data to, the processor memory via the DMA facility.

The control lines request information transfers, select the type and direction of transfers, and synchronize the transfers. The control lines are functionally unidirectional and originate either at the processor or at the coupler.

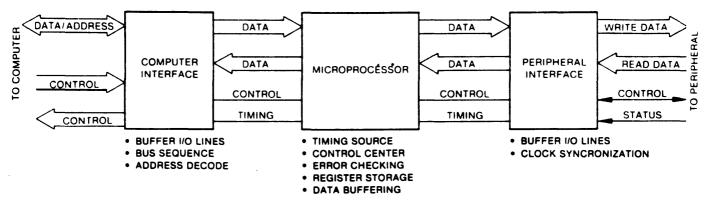


Figure 5-2. Tape Coupler Simplified Block Diagram

The computer interface controls the synchronization, or "bus arbitration" sequence. Bus synchronization is done by a separate hardware state processor, rather than by the microprocessor, to minimize bus use by the coupler. This permits many other devices to use the DMA channel efficiently on a time multiplexed basis with the tape coupler.

Data/Address Receivers—Both data and device addresses are time multiplexed on a 16 I/O bus line (BDAL00L-BDAL15L). The tri-state receiver/driver circuits H8, H9, H10, and H11, shown on Sheet 4, buffer these lines into the coupler. Once buffered, the received lines are identified as DB00-DB15 and routed to the bus arbitration sequence logic and the RAM data file multiplexer in the microprocessor.

Control Receiver/Drivers—The control lines between the I/O bus and the coupler are buffered by circuits F11, F12, H12, and H13, shown on Sheet 5. The receivers are always connected to the bus. Setting circuit pins 7 and 9 low enables the tri-state drivers to the bus. Two of the circuits are permanently enabled; circuit H12 is enabled by Transmit Select Acknowledge (TSACK), and circuit H13 is enabled by Device Enable (DEN) and TSACK.

Data/Address Drivers—The tri-state drivers in circuits H8, H9, H10, and H11 are enabled by Device Enable (\overline{DEN}) to gate addresses and data to the I/O bus. Addresses and data to the I/O bus are temporarily stored by register circuits E9 and F9. Information from the FQ Bus is clocked into the registers either by a Data (DA) signal or by a Load Address (LDADD) signal. The least significant bit (D00) is gated with control term TD00G to the line drivers.

Bus and Arbitration Sequence (State Processor)— To ensure the fastest response time, the synchronization of I/O bus transfers is done by hard-wired state logic, illustrated on Sheets 2 and 3. Information transfers are of two kinds; programmed I/O and Direct Memory Access (DMA). During DMA transfers, the coupler is bus master. Distinguishing between the two transfer types is the function of the arbitration logic.

The bus sequence logic synchronizes master/slave transfers over the I/O bus.

Transfers between the I/O bus and the coupler are of two types:

- a. Register transfers via programmed I/O.
- b. Data transfers via DMA.

During programmed I/O transfers, the seven coupler registers are accessed; initialization information is transferred to the registers; status information is accessed from the registers. The registers are located in the microdata file. Address information from the processor is decoded by circuits D4 and D5. Circuit D4 decodes the 772 52X portion of the address word. Circuit D5 buffers the four least significant bits, which become A00-A03.

The bus and sequence arbitration logic primarily comprises PROM's, used as decoders, and flip flops that temporarily store control information. For example, the storage elements for the DMA light, the Busy light, and the Diagnostic light are contained in this logic. Monostable multivibrators F2-5 and F2-13 monitor bus activity to ensure that responses to the bus master occur within 10 microseconds. Circuits Y1 and E1 establish the crystalcontrolled time base for the coupler. The 10 mega-Hertz output of E1 is divided by two to generate 200 nanosecond clock <u>PCLK</u>, buffered to become PPCLK, <u>PPCLK</u>, and CLK*.

Bus Transfer Timing—The two major types of transfers are divided into the following I/O operations and an interrupt sequence:

- Data Input Transfer (DAT1) slave
- Data Output Transfer (DAT0) slave

- Data Input Transfer (DAT1) DMA
- Data Output Transfer (DAT0) DMA
- Interrupt Requests

Programmed I/O transfers are initiated with the coupler when the computer places the device address of the coupler on the BDAL04 through BDAL15 lines, sets the BBS7L signal at a low level, and switches signal BSYNCL low. Within the coupler, BSYNCL converts to RSYNC.

Address decoder D4 monitors the address lines. When the coupler address is decoded and RSYNC is asserted, the Bus Active bit (BACTFF) sets. This sets in motion the transfer sequence.

The sequence for a DATI operation is shown in Figure 5-3. For a DATI sequence, the state processor steps through states 1, 2,, and 7 (see Microprocessor in this section). The coupler responds to input requests by asserting TRPLY within 10 microseconds of a DATI request. DATI operations read status from the coupler.

The sequence for a DATO operation is shown in Figure 5-4. DATO operations transfer commands to the coupler registers. A DATO is similar to a DATI. The principle difference is that during a DATO, the

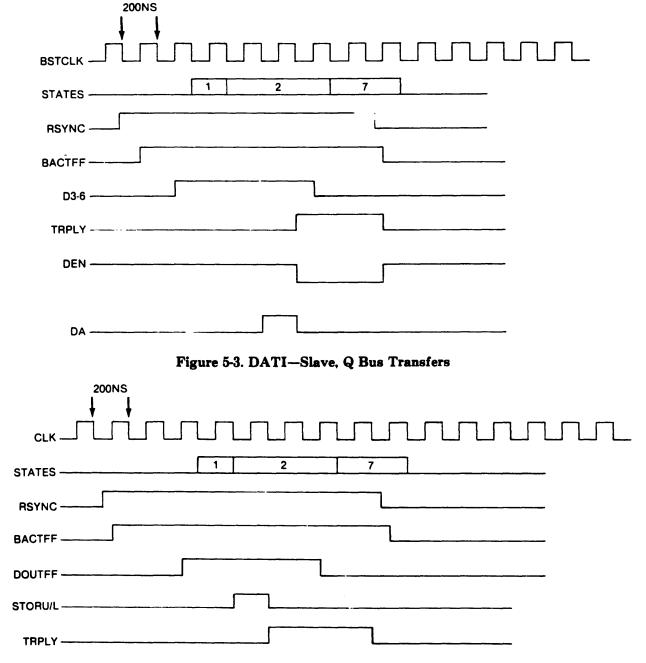


Figure 5-4. DATO-Slave, Q Bus Transfers

Data Out FF rather than the Data In FF is set, and the Data Available (DA) signal is not generated.

DMA transfers are between the coupler and computer memory. The coupler is always bus master. There are two transfer types: data in to memory (DATI) and data out of memory (DATO). Once the coupler has been granted DMA bus control, the transfer sequence is similar to I/O bus transfers.

Figure 5-5 illustrates the DMA DATI timing; Figure 5-6 illustrates the DMA DATO timing.

Interrupt request timing is illustrated by Figure 5-7. Interrupt requests are originated by Memory Request A (MRQA), a function of bit Y00 and the FUNC signal. The interrupt vector address is 224.

Microprocessor

The microprocessor is the timing and control center of the coupler. The microprocessor is controlled by instructions stored in Programmable Read Only Memory (PROM). These instructions, called firmware, cause the microprocessor to operate in a prescribed manner during each of the computerselected functions. The functions are established by a series of instructions issued by the computer. The instruction operands are stored in registers within the microprocessor.

When a Go command is issued by the computer, the firmware microinstructions cause the registers

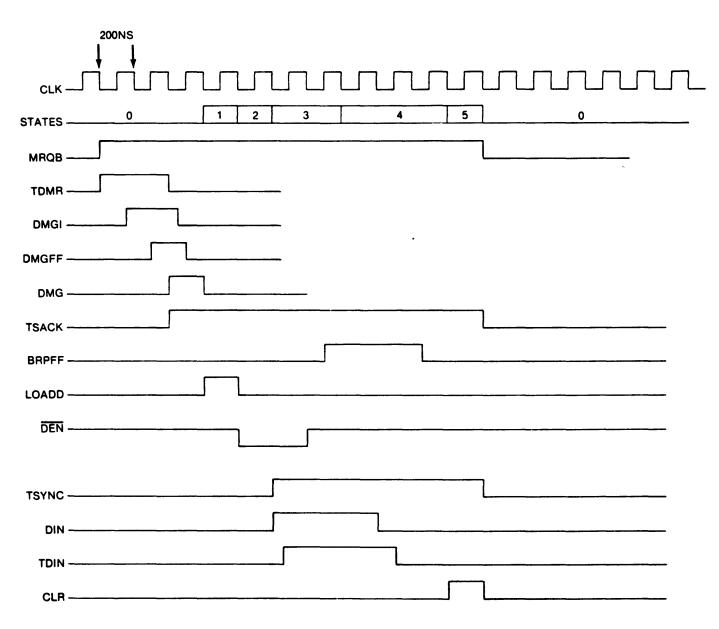
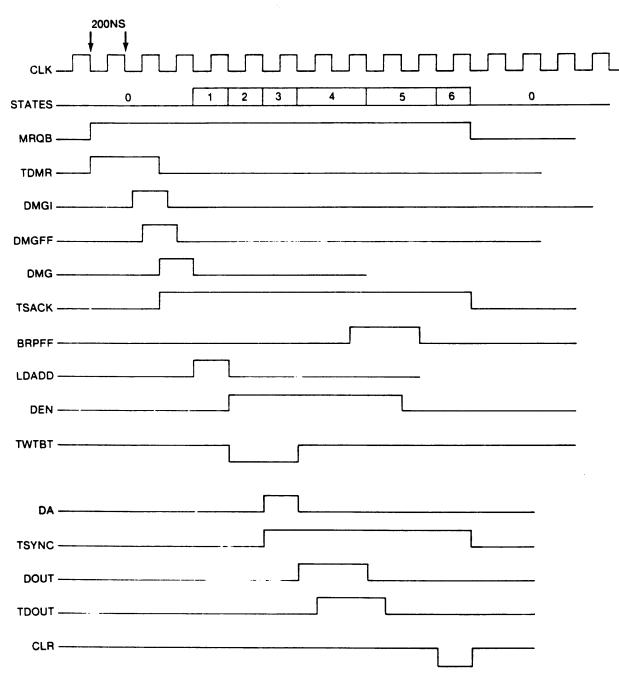
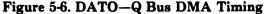




Figure 5-5. DATI-Q Bus DMA Timing

to be examined, and either a data transfer sequence or a rewind sequence to be performed.

The microprocessor contains an eight-word Random Access Memory (RAM) dedicated to buffering data between the Q Bus and the microprocessor. This allows several DMA cycle requests to be missed without missing data words being transferred between the tape and computer memory.

The rate and order (format) at which data is transferred to the tape is controlled by the microprocessor. Within the microprocessor, data is handled in 8-bit parallel bytes. Error check bits are calculated (LRCC, CRCC) and supplied to the tape during a write function. During a read function, the microprocessor monitors the error check bits and the data being read. Discrepancies are flagged as errors to the computer. The microprocessor detects other types of errors during the transfer functions (data late, programming error, etc.) and monitors status lines from the tape for malfunctions within this assembly. All errors are assembled into a status word for access by the processor.

The microprocessor comprises the following major elements:

- a. Microdata File
- b. Microdata File Address Register

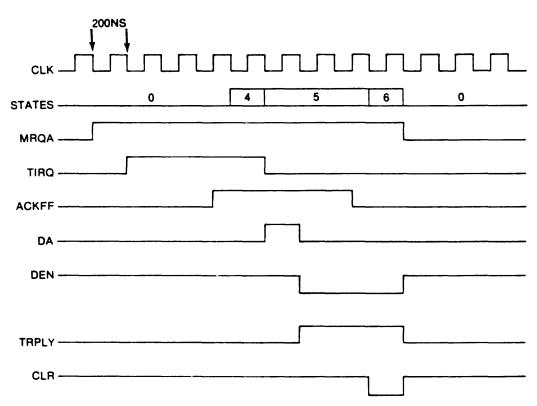


Figure 5-7. Interrupt Sequence Timing

- c. Microdata File Multiplexer
- d. 2901A Array and Status Register
- e. Control Memory and Register
- f. Control Store Address Programmer and Test Multiplexer
- g. D Bus Multiplexer

The preceding elements are interconnected to perform the control, timing, error checking, and data manipulation functions of the coupler. Information is transferred among the elements over internal buses defined in Table 5-3.

To understand the function of a microprocessor, please refer to *The Microprogramming Handbook* from Advanced Micro Devices, Inc. Detailed technical descriptions of the 2901A four-bit bipolar microprocessor slice and of the 2901 microprogram coupler are given in the Advanced Micro Devices *AM2900 Family Data Book*. These two elements are the major components of the coupler.

Microdata File—This 16 word, 16-bit-per-word, data file has two functions:

- a. Storage for the seven coupler registers in locations 10₁₆ through 1A₁₆ shown in Table 5-4.
- b. Buffer storage for data words being transferred via DMA between memory and disc (locations 0 through 7).

Table 5-3. Coupler Buses

The following prefixes are used as bus identifiers in the logic diagrams and the tables in Section 1.		
Designation	Function	
B	LSI-11 I/O bus: Data, Address and Control lines, bidirectional.	
DB	Data bus from I/O bus receivers into coupler.	
D	Input Data bus to 2901A.	
Р	Peripheral Bus: Data and Control signals.	
т	Transmit data or control signals from coupler to LSI-11 I/O bus.	
Y	Output data bus from 2901A array.	
FQ	Output of 16 x 16 Microdata file.	

Table 5-4. Coupler Register Storage

Register	File Location (HEX)
MTS	10
MTC	12
MTBRC	14
MTCMA	16
MTD	18
MTRD	1A

Sheet 7 shows the data file. Inputs to the data file are from the data file multiplexer on lines F100-F115. Outputs from the data file are on lines F000-F015 to the microdata bus. Data file locations are accessed by the address file and by the DS2 portion of the control register word. Note that the data file is separated into 8-bit bytes and that the upper byte (FX08-FX15), the lower byte (FX00-FX07), or both bytes can be written into or read from.

Microdata File Addressing—The microdata file address logic is shown on Sheet 7. Two sources address the data file:

- a. The bus and arbitration sequence logic (circuit E5).
- b. The 4 x 4 address file (circuit F5).

Address control from the bus and arbitration sequence logic is address lines A01-A03, which select specific coupler registers.

The 4 x 4 address file can store up to four addresses. The source of address information to the address file is bit 03 of field three of the control register word (CR3-03), and bits 00, 01, and 03 of the Y Bus. Information can be read from and written into different locations of the address file simultaneously. When addresses are being buffered through circuit E5, circuit F5 is inhibited from supplying addresses. Write and read addresses to the address file are from field three of the control register word directly, and indirectly, via PROM E3 (Sheet 3).

Microdata File Multiplexer—The microdata file multiplexer, shown on Sheet 6, switches the input to the microdata file between two sources; the contents of the Y Bus, and the contents of the Data Bus (DB). The contents of field three of the control register word control the selection. Note that data bus bits 8 and 15 to the multiplexer can be selected by circuits E10 and E11 to be either DB8 and 15 or file output bits 8 and 15 restored in the file.

2901A Array and Status Register—The 2901A array is shown on Sheet 8. The status register is shown on Sheet 9 (circuit C12). The 2901A array comprises two AM2901A four-bit, bipolar microprocessor slice integrated circuits connected in cascade to perform data manipulation on 8-bit bytes. The major sections of the AM2901A are shown within dashed lines on the block diagram. A description of the operation of this device is given in the AM2900 Family Data Book.

The D Bus supplies external data to the 2901A. Data from the 2901A is on the Y Bus. Control inputs to the 2901A are shown in Table 5-5.

The status register is updated on a coupler clock with the ALU status. The register stores the conditions shown in Table 5-6.

Table 5-5. Control Inputs To 2901A

Mnemonic	Signal Source	Definition
A0-3	Control Register	Address inputs; selects the A file register contents to be con- nected to the 2901A, A Bus. (S1)
B0-3	Control Register	Address inputs; selects the A file register contents to be con- nected to the 2901A, B Bus. (S2)
10-8	Control Register	Instruction control lines; lines 0-2 select the data sources to be applied to the ALU; lines 6-8 determine the routing of the output of the ALU within the ALU, and the source of data supplied to the Y (output) Bus.
CN	Control Register	Carry input of ALU. Used during arithmetic operations.
СР	Crystal Oscillator	200 nanosecond clock to 2901A.

Table 5-6. Status Register Bits

Mnemonic	Definition
C _s	Indicates a "carry out" of ALU
Ns	The most significant ALU bit (sign of result).
v _s	Overflow has occurred.

Control Memory and Register—The control memory stores the firmware that controls the operation of the coupler. It comprises six 512 x 8 bit Programmable Read-Only Memories (PROMs) identified as D9, D10, D11, D12, F13, and F14, on Sheet 10. The PROMs have a pipeline register at the output identified as the Control Register (CR). The six PROMs produce a 48-bit instruction word divided into six 8-bit fields. Figure 5-8 depicts the instruction word.

1	CF	31		CR2	L	CF	13	CI	R4	CR5	D0
6	123	4 5 6 7	0 1 2	3 4 5 6	'n	0 1 2 3	4 5 6 7	0 1 2 3	4567	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7
Γ	S1	S2	ALUS	ALU CIN	Ī	DS2	DST C	ADR	TEST G	BRANCH	LITERAL
	DS1										

Figure 5-8. Microinstruction Word

The contents of the control memory are accessed by the Control Store Address Processor and strobed into the control register by the PPCLK clock. The contents of the control register (CR1-00-07 through CR5-00-07 and literal D00-D07) are routed throughout the logic of the coupler.

Control Store Address Programmer—The Control Store Address Programmer (CSAP) is an AM2910 microprogram control circuit and is described in the AM2900 Family Data Book. It controls the sequence of execution of microinstructions stored in the control memory. The CSAP is shown on Sheet 9 (circuit DE14).

Control Store output address lines CSA00 through CSA08 select one of 512 locations in control memory. Inputs to the CSAP are primarily from fields four and five of the Control register and the TEST output of Test Conditions Multiplexer C13 (shown on Sheet 9). Bits 00 through 07 (LSB) of field five (CR5) supply branch addresses to the CSAP. Bits 00 through 03 of field four (CR4) supply instruction codes to the CSAP. Any one of 16 instructions can be selected. The instructions can be modified by the state of the TEST input. The instructions select the next source of addresses to the control memory. The primary sources of addresses are as follows:

- a. A program counter/register within the CSAP.
- b. A five-word stack within the CSAP.
- c. Branch addresses directly from bits 00-07 of field five (CR5).

Note that bits 04 through 06 of field four (CR4) control Test Condition Multiplexer C13. This multiplexer connects one of seven selected conditions to the TEST line when specified by the current microinstruction being executed. The conditions tested for are shown in Table 5-7.

Table 5-7. Address	Modification	Conditions
--------------------	--------------	------------

Mnemonic	Condition
С	No carry from 2901A ALU.
z	ALU result is zero.
с	Carry from ALU.
N	ALU sign bit is logical true.
v	ALU has overflowed.
INIT	Initiate

Note that bus signal BDCOKH, if ever low, disables the output of the GSAP and generates a RESET (RST) signal.

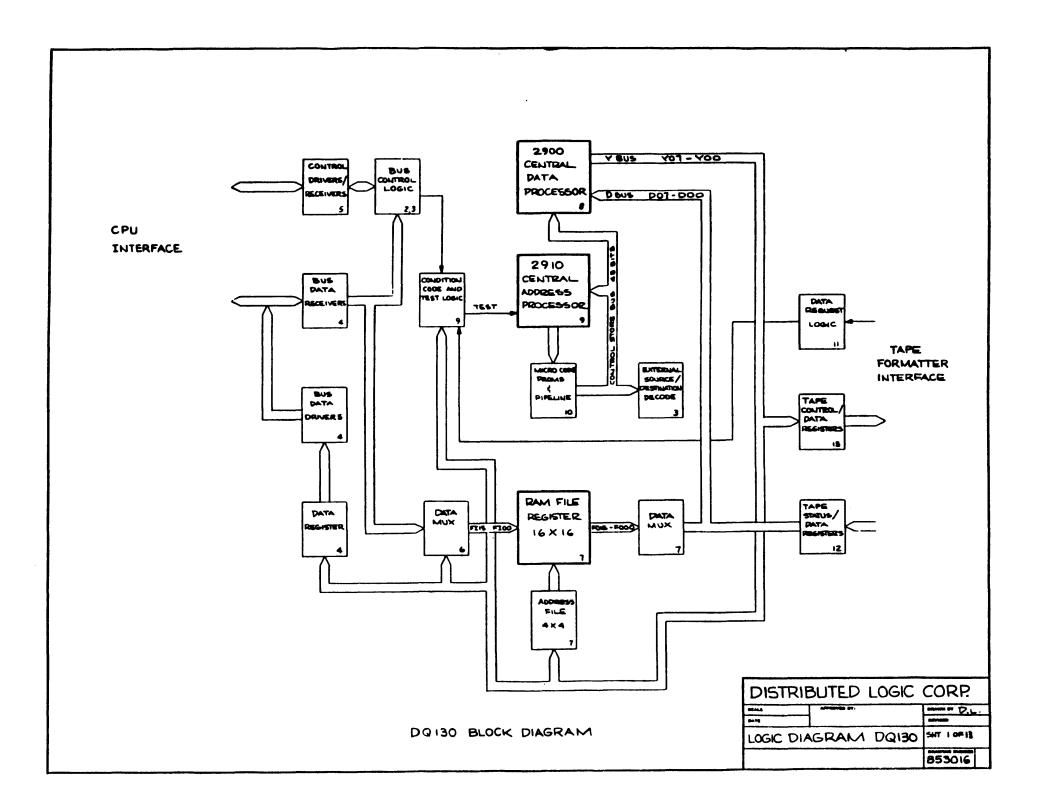
D Bus Multiplexer—'The D-bus multiplexer, shown on Sheets 7, 9, and 12, is the information source to the 2901A array processor. The multiplexer comprises circuits D8 (Sheet 9), E8 and F8 (Sheet 7), and B9 (Sheet 12). Circuits B7, B8, and B9 also function as storage registers. One additional information source for the D Bus is PROM D9, shown on Sheet 10, which supplies the Literal (LIT).

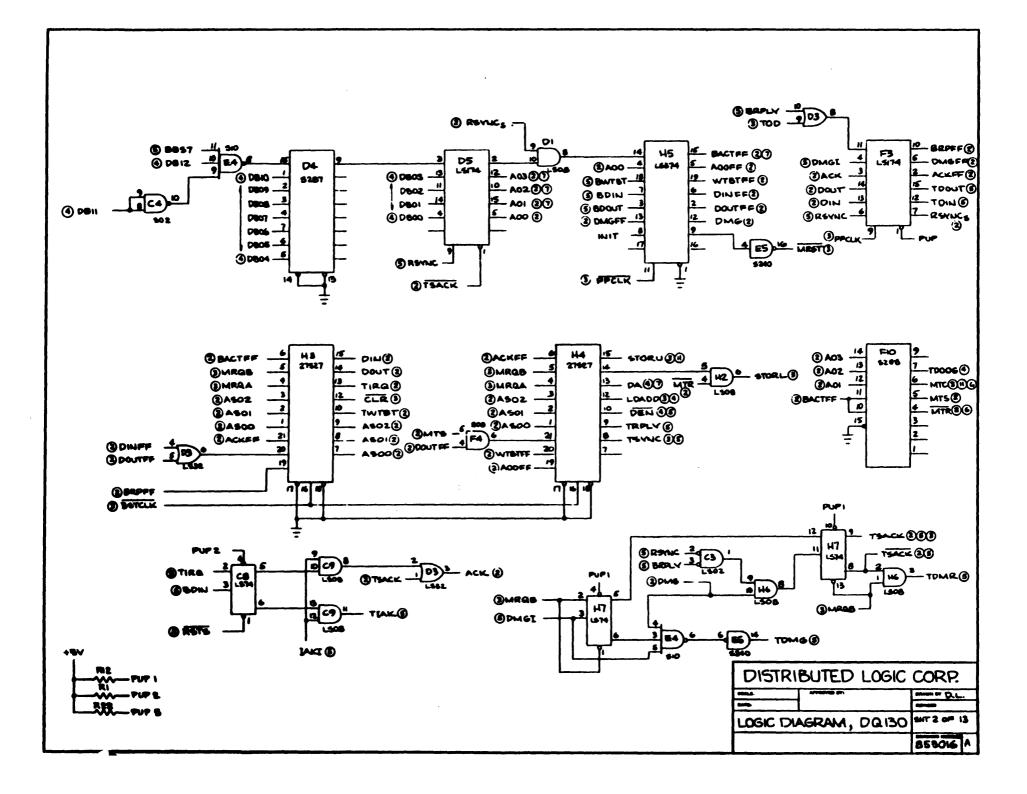
Field one CR1-00-03 and CR2-00 via circuit E12 (Sheet 3) gate the selected source to the D Bus. Information sources to the D Bus are shown in Table 5-8.

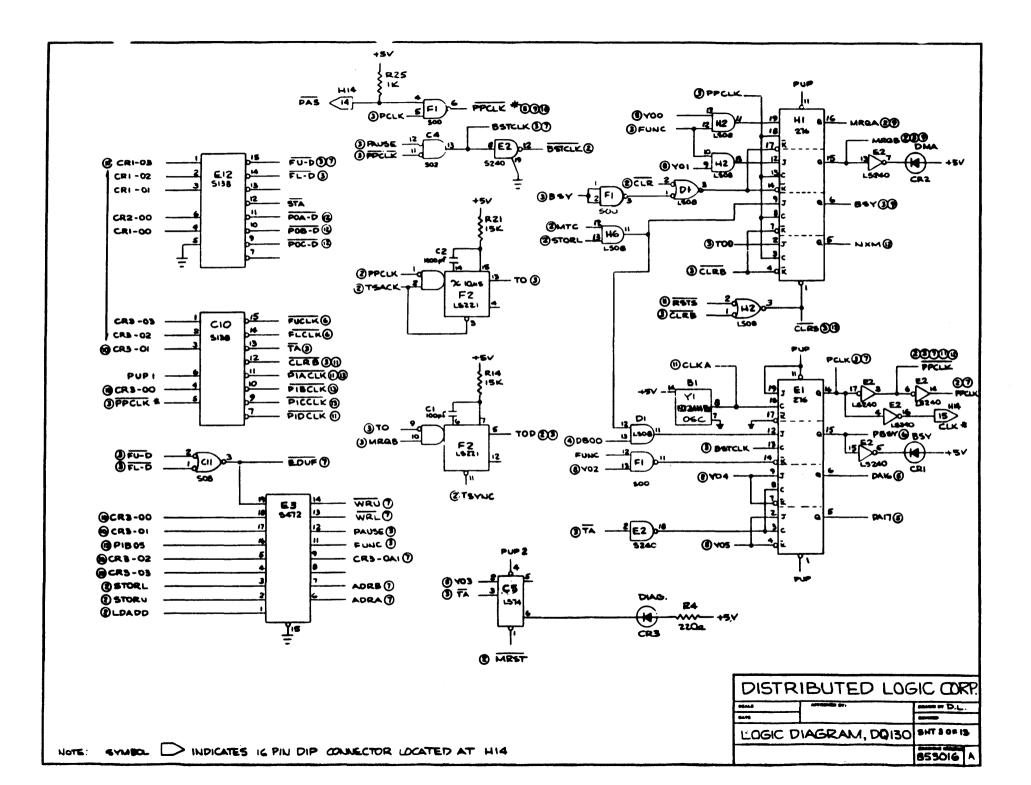
Circuit	Sheet	Source
D9	10	Literal from control memory
E8, F8	7	RAM File data bus upper and lower bytes
D8	9	Coupler status
B7	12	Data from tape
88, B9	12	Tape status

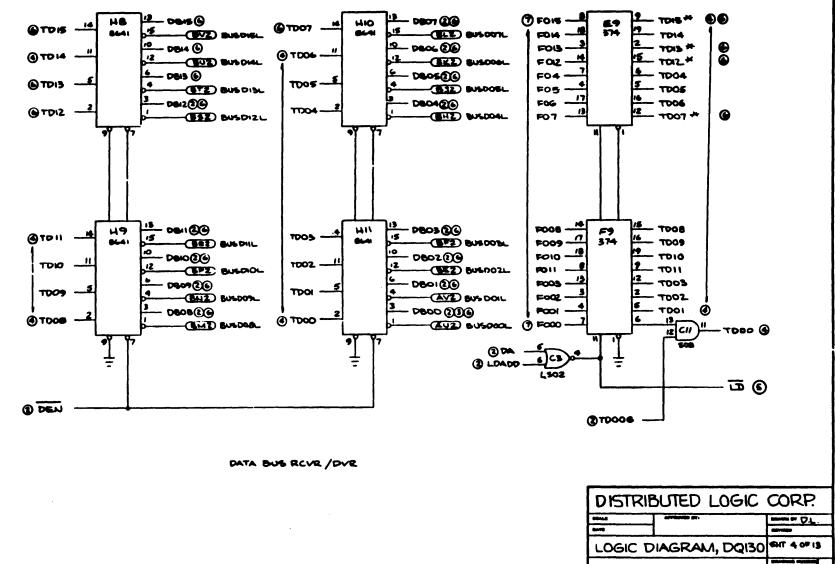
Table 5-8. Information Sources to D Bus

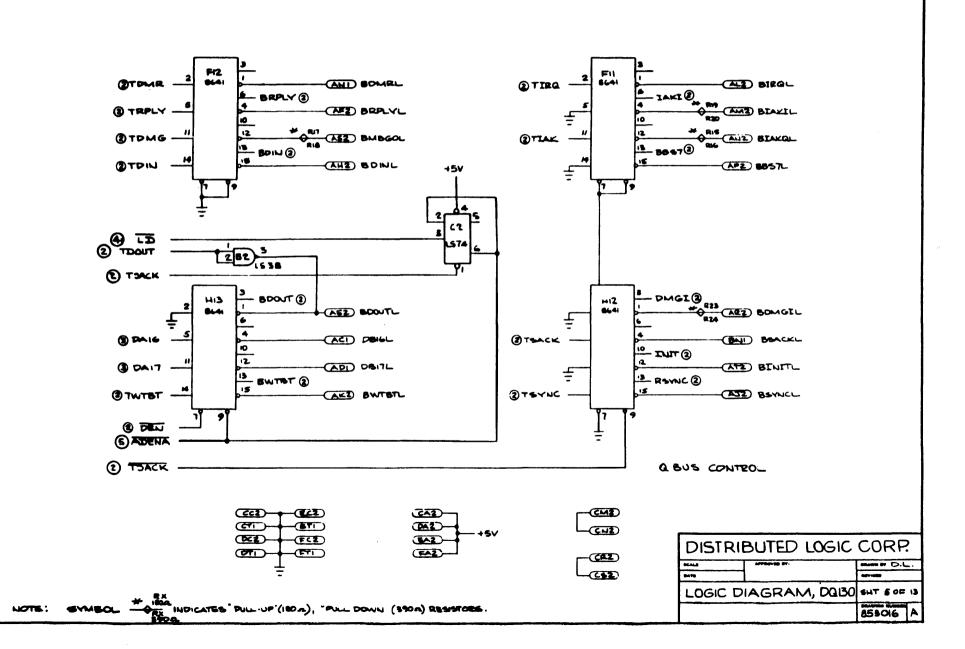
Peripheral Interface

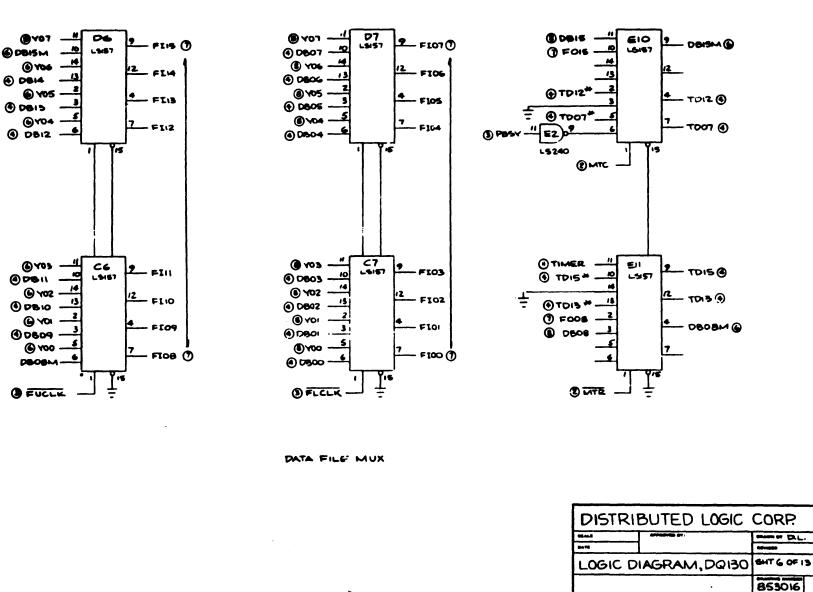

The purpose of the peripheral interface is to match the characteristics of the tape formatter to the characteristics of the microprocessor. The peripheral interface:

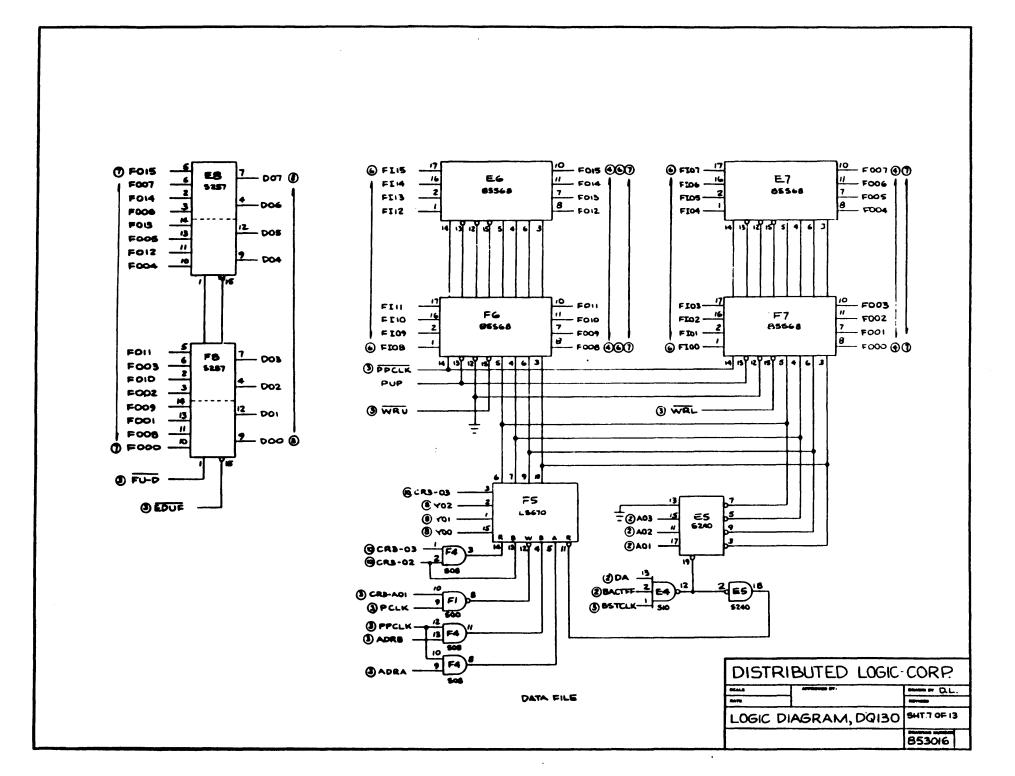

- a. Contains line drivers and receivers that buffer the information lines between the coupler and the tape drives over cable lengths up to 25 feet.
- b. Contains the PROM and jumpers that permit configuring the coupler to match the different tape subsystem configurations.

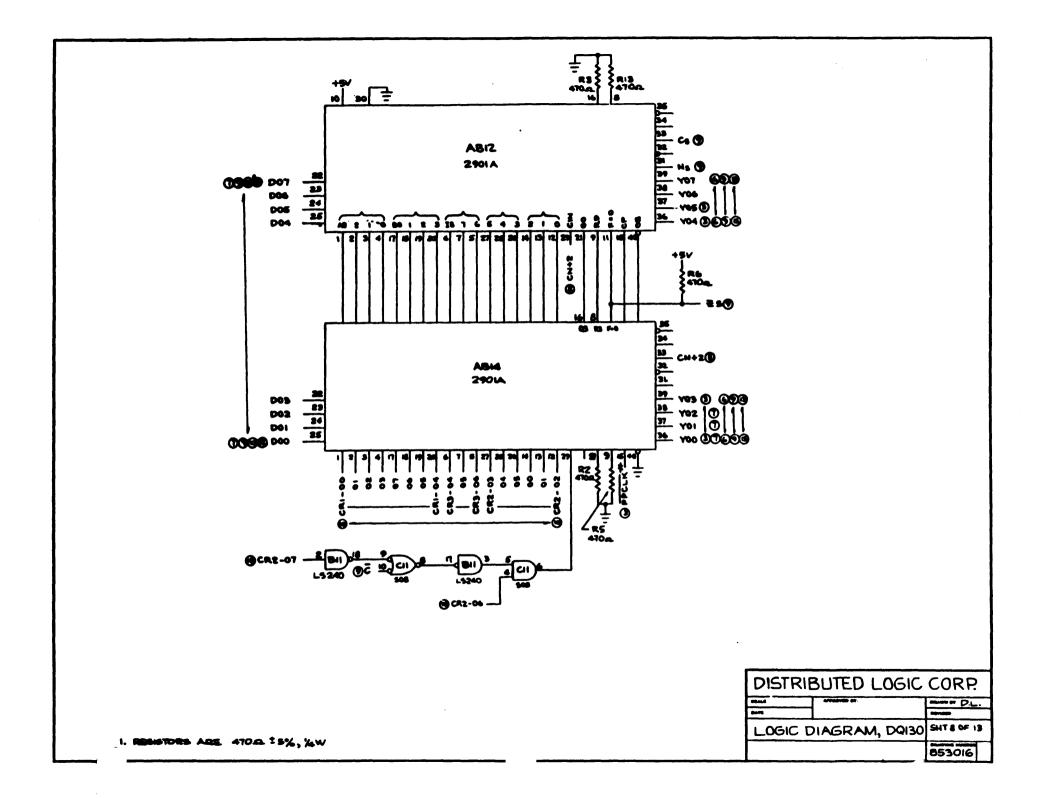

There are two registers which temporarily store information being transferred between the tape and the other elements of the coupler; an input register and an output register. The input register is shown on Sheet 12, and the output register on Sheet 13.

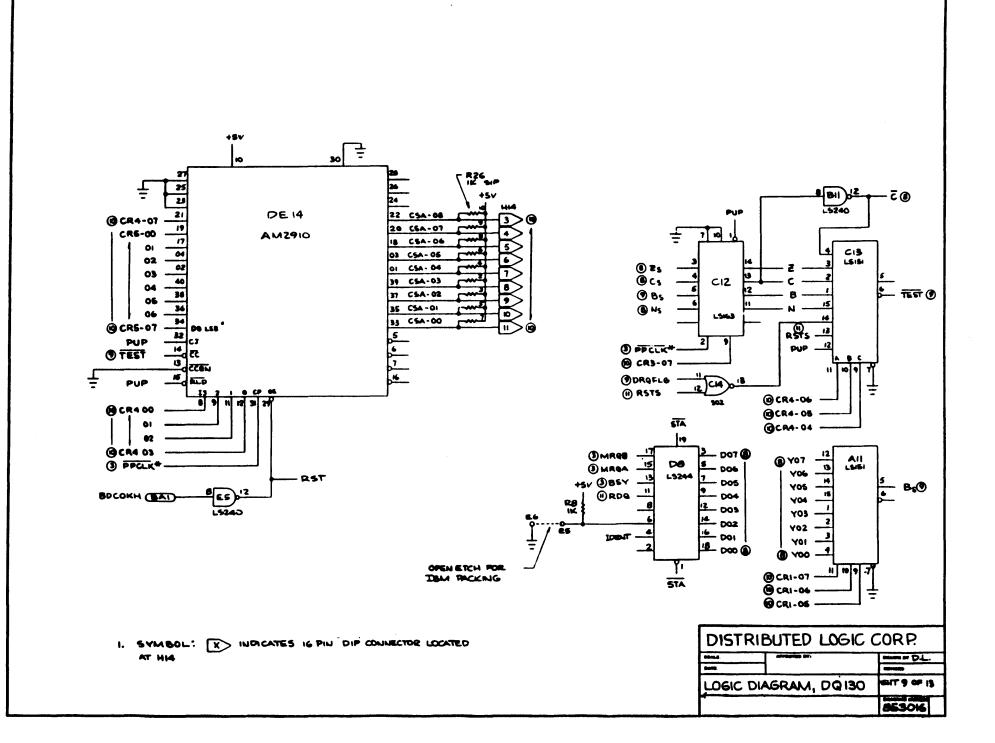

The input register stores status information and data received from the tape and comprises circuits B7, B8, and B9. The outputs of these circuits are gated to the D Bus. The tape status information originates at the line receivers and is stored in circuit B9; the data from the tape is stored in circuit B7.

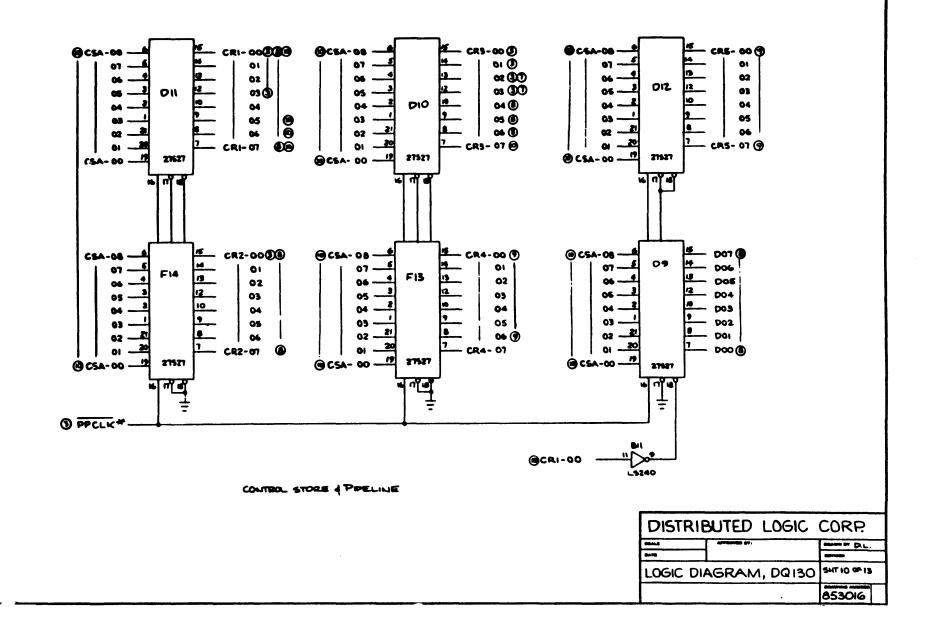

The output register stores information to be sent to the tape and comprises circuits A8, A9, and A10 on Sheet 13. These circuits make up a 32-bit register that receives information from the Y Bus in 8-bit segments. Y-bus information is stored in the register under control of the PIA, PIB, PIC, and PID clocks. The outputs of the register are routed to the tape formatter.

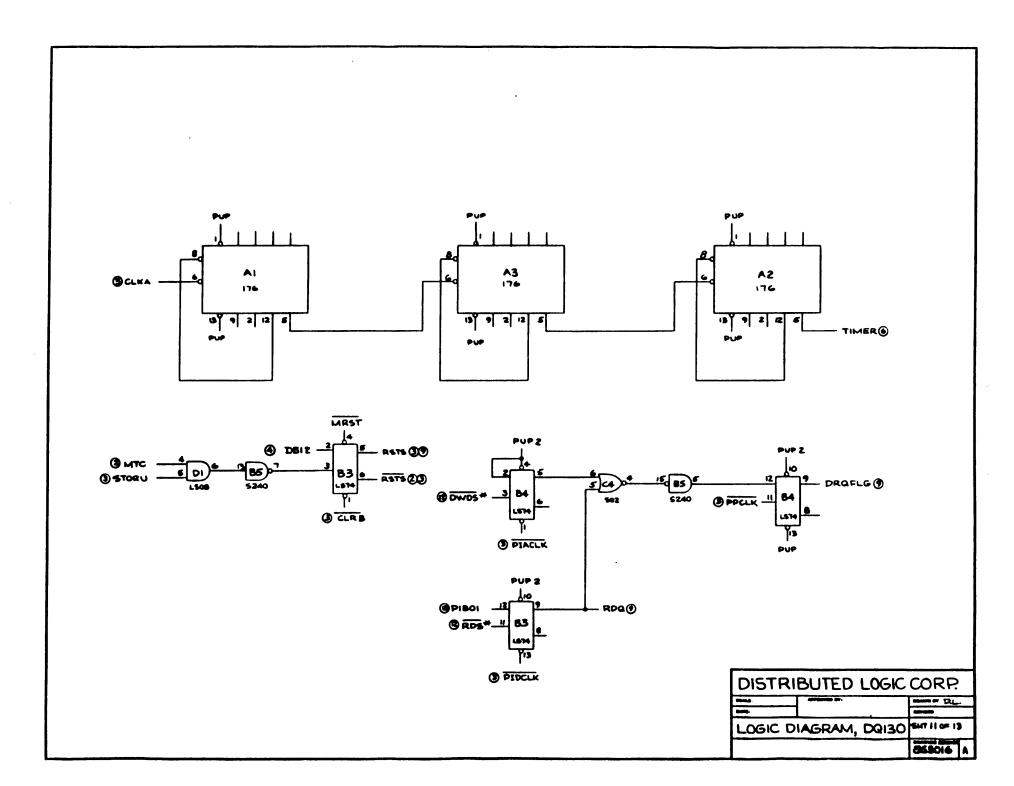




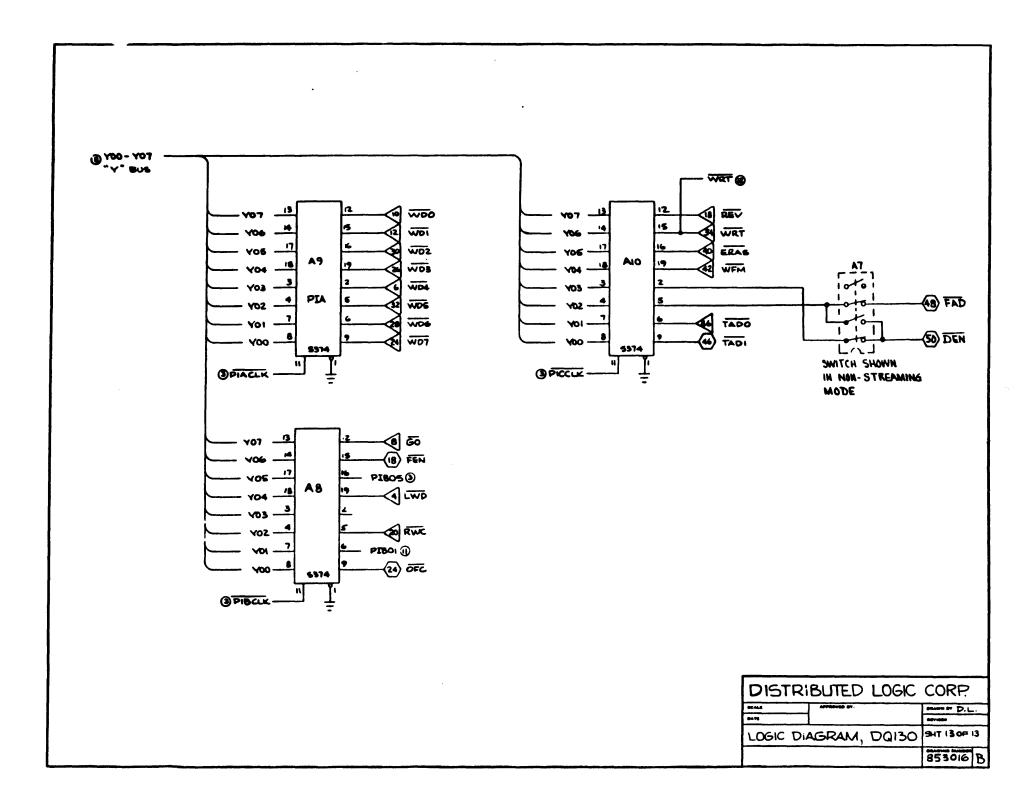







O D814 0 DBIS





Corporate Headquarters 1555 S. Sinclair Street P.O. Box 6270 Anaheim, California 92806 Telephone: (714) 937-5700 Telex: 6836051

64-A White Street Red Bank, New Jersey 07701 Telephone: (201) 530-0044

جانب المعد الم

Northwestern Regional Sales Office 3031 Tisch Way San Jose, California 95128 Telephone: (408) 248-3355

.

European Sales and Service Chester House Chertsey Road Woking, Surrey GU21 5BJ ENGLAND Telephone: (04862) 70262/7 Telex: 859321 DILOGI G 1. 1. 1. 1. 24