
NEVADA

ELLIS COMPUTING
SOFTWARE TECHNOLOGY

12-15-82 NEVADA COBOL PAGE 1

NEVADA COBOL

Programmers' Reference Manual

Edition II for use with Rev 2.1 or higher diskettes

Copyright (C) 1979,1981,1982 by Ellis Computing

Ellis Computing
3917 Noriega Street

San Francisco, CA 94122
(415) 153-0186

8-1-82 NEVADA COBOL PAGE 2

PREFACE

This manual is organized for quick reference to the most
frequently needed information. Sections I through IV
correspond to the four COBOL DIVISIONS while Section V is
the INTRODUCTION.

If you are reading this manual for the first time start with
SECTION V.

This manual assumes you already know how to program in COBOL
and have read the CP/M operating system manuals. If you are
a beginner be sure to read the COBOL Primer section.

* CP/M is a registered trademark of Digital Research Corp.

Printed in the U.S.A.

2-1-82 NEVADA COBOL PAGE 3

ACKNOWLEDGMENT

This acknowledgment has been reproduced from the "CODASYL
COBOL Journal of Development, 1978-79" and "American
National Standard Programming Language COBOL, X3.23-l974" as
requested in those publications.

Any organization interested in reproducing the COBOL
standard and specifications in whole or in part, using ideas
from this document as the basis for an instruction manual or
for any other purpose, is free to do so. However, all such
organizations are requested to reproduce the following
acknowledgment paragraphs in their entirety as part of the
preface to any such publication (any organization using a
short passage from this document, such as in a book review,
is requested to mention "COBOL" in acknowledgment of the
source, but need not quote the acknowledgment):

COBOL is an industry Language and is not the property of any
company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the CODASYL Programming Language Committee
as to the accuracy and functioning of the programming system
and Language. Moreover, no responsibility is assumed by any
contributor, or by the Committee, in connection therewith.

The authors and copyright holders of the copyrighted
material used herein

"FLOW-IV1ATIC (trademark of Sperry Rand Corporation),
Programming for the UNIVAC(R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator Form No. F28-80l3, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell"

have specifically authorized the use of this material in
whole or in part, in the COBOL specifications in programming
manuals or similar publications.

2-1-82 NEVADA COBOL PAGE 4

TABLE OF CONTENTS

SECTION PAGE

I IDENTIFICATION DIVISION 6
PROGRAM-ID statement 6
COpy statement 7

II ENVIRONMENT DIVISION 8
CONFIGURATION SECTION 8
SOURCE-CO.MPUTER 8
OBJECT-COMPUTER 8
SPECIAL-NAMES 8
INPUT-OUTPUT SECTION 10
FILE-CONTROL 10
COPY statement 13

III DATA DIVISION 14
FILE SECTION 14
FILE DESCRIPTION 14
RECORD DESCRIPTION 16
WORKING-STORAGE SECTION 16
COpy statement 21

IV PROCEDURE DIVISION 22
ACCEPT statement 23
ADD statement 25
ALTER statement 26
CALL statement 27
CANCEL statement 30
CLOSE statement 31
COPY statement 32
DISPLAY statement 33
DIVIDE statement 35
END PROGRAM statement 36
EXIT statement 37
GO TO statement 38
IF statement 40
INSPECT statement 42
MOVE statement 49
MULTIPLY statement 52
OPEN statement 53
PERFORM statement 54
READ statement 57
REWRITE statement 58
STOP statement 59
SUBTRACT statement 60
WRITE statement 61

11-2-82

SECTION

v

VI

VII

VIII

IX

NEVADA COBOL

TABLE OF CONTENTS (continued)

INTRODUCTION
SIMPLICITY
GLOSSARY
DEFINITIONS
LANGUAGE CONCEPTS
CHARACTER SET
USER-DEFINED WORDS
PUNCTUATION
LITERALS
NUMERIC
NON-NUMERIC
FIGURATIVE CONSTANTS
SUBSCRIPTING
SYMBOLS AND CONVENTIONS

OPERATING PROCEDURES
HARDWARE REQUIREMENTS
SOFTWARE REQUIREMENTS
FILES ON THE DISTRIBUTION DISKETTE
FILES NOT ON THE DISKETTE
GETTING STARTED
BUILDING A PROGRAM
COBOL CODING FORMAT
COMPILING A PROGRAM
EXECUTING A PROGRAM

RUN CONFIG
LISTING A PROGRAM

ERROR CODES AND MESSAGES
COMPILER ERROR MESSAGES
RUN TIME AND COMPILE TIME ERROR CODES

ANSI-1974 COBOL RESERVED WORDS

A COBOL PRIMER

SAMPLE PROGRAMS
REFERENCES
LICENSE AGREEMENT
CORRECTION AND SUGGESTION FORM
DISCLAIMER

PAGE 5

PAGE

62
62
63
63
81
81
81
81
82
82
82
83
84
85

86
86
86
86
86
87
87
87
88
89
90
90

91
91
93

94

101

124
148
149
151
152

12-15-82 NEVADA COBOL PAGE 6

SECTION I

IDENTIFICATION DIVISION IDENTIFICATION

FUNCTION: To identify the source program for documentation
purposes.

FORMAT:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name~

[AUTHOR. comment entry~]

[INSTALLATION. comment entry~]

[DATE-WRITTEN. comment entry~]

[DATE-COMPILED. comment entry~]

[SECURITY. comment entry~]

RULES:

1. This entire Division is for documentation purposes only
and is treated as comments by the compiler. However, the
required key words are checked, so all text must be in
upper-case and follow the COBOL rules.

EXAMPLE:

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID. TESTI.
0003 AUTHOR. ELLIS COMPUTING.
0004 INSTALLATION. SAN FRANCISCO PROGRAMMING CENTER.
0005 DATE-WRITTEN. JANUARY 11, 1979.
0006 DATE-COMPILED. JULY 15, 1981.
0007 SECURITY. COPYRIGHT 1979 ELLIS COMPUTING.
0008* comment lines with * in column 5 can be lower-case.

2-1-82 NEVADA COBOL PAGE 7

COpy COpy

FUNCTION: The COpy statement inserts text into the source
program at compile time.

FORMAT:

COpy u:file-name .

RULES:

1. A COpy cannot occur within another COpy.

2. The disk unit (u:) is optional. The current logged-in
disk drive will be used as the default if the unit is not
specified.

3. The COPY statement should be preceeded by a space and
terminated by a period, normally, starting in column 7.

4. The file type is not part of the COpy statement but must
be type CBL.

EXAMPLE:

0001 ID~NTIFICATION DIVISION.
0002 PROGRAM-ID. TESTCOPY.
0003 COpy A:FILEI.
0008 COpy A:FILE2.
0015 COpy B:FILE3.

the following represents a separate file named FILEl.CBL to
be included (copied) by the above"copy statement line 0003.
0004 AUTHOR. ELLIS COMPUTING.
0005 INSTALLATION. SAN FRANCISCO PROGRAMMING CENTER.
0006 DATE-WRITTEN. JANUARY 25, 1982.
0007 DATE-COMPILEDe JANUARY 25: 1982.

2-1-82 NEVADA COBOL PAGE 8

SECTION II

ENVIRONMENT DIVISION ENVIRONMENT

FUNCTION: To identify the computer upon which the program is
to be compiled and executed.

FORMAT:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. comment [WITH DEBUGGING MODE]~

OBJECT-COMPUTER. comment

{MODULES }
{ WORDS }

[MEMORY SIZE integer-l{ CHARACTERS}]

[MEMORY BEGINNING integer-l ENDING integer-2]

[PROGRAM COLLATING SEQUENCE IS ASCII] •

SPECIAL-NAMES. [CURRENCY SIGN ~ literal-I]

[DECIMAL-POINT IS COMMA] •

RULES:

1. The generated object code uses memory up to integer-l
CHARACTERS (upper-address limit), if specified. Format 2
specifies a MEMORY BEGINNING address and an ENDING address
used to relocate CALLed programs. If these clauses are not
used the generated object code will use all available
contiguous memory.

2. At compile time the Compiler uses all availa~le
contiguous memory.

3. When WITH DEBUGGING MODE is specified, lines with "D" in
column 5 are also compiled.

4. PROGRAM COLLATING SEQUENCE IS ASCII is treated as
comments by the compiler since the machine collating
sequence is ASCII.

5. The literal which appears in the CURRENCY SIGN IS literal
clause is used in the PICTURE clause to represent the
currency symbol. The literal is limited to a single
character and must not be one of the following characters.

2-1-82 NEVADA COBOL PAGE 9

a. digits a thru 9i
b. alphabetic characters A, B, C, D, L, P, R, S, V, X, Z,
or the space;
c. special characters '*', '+', I_I, I,', 'i' '(I, I)',
lUI, III, '='.
If this clause is not present, only the currency sign is
used in the picture clause.

6. The clause DECIMAL-POINT IS COMMA means that the
function of comma and period are exchanged in the
character-string of the PICTURE clause and in numeric
literals.

7. Integer-l and integer-2 in the MEMORY SIZE clause are
addresses. Users with relocated versions please remember to
adjust these addresses upwards.

EXAMPLE:

0011
0012
0013
0014
0015
0016
0017*
0016

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. 8080-CPU

WITH DEBUGGING MODE.
OBJECT-COMPUTER. 8080-CPU

MEMORY SIZE 16383 CHARACTERS.
the following line would be used for called programs.

MEMORY BEGINNING 16384 ENDING 32767.

2-1-82 NEVADA COBOL PAGE 10

INPUT-OUTPUT INPUT-OUTPUT

FUNCTION: To name each file and to specify the
external hardware devices.

FORMAT:

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT file-name-l ASSIGN TO

{PRINTER}
{DISK }

{SEQUENTIAL}
[, ORGANI ZATION IS {RELATIVE }]

{SEQUENTIAL}
[, ACCESS MODE IS {RANDOM }]

[RELATIVE KEY ~ data-name-l]

[RECORD DELIMITER IS STANDARD]

[, FILE STATUS IS data-name-2]~

I-O-CONTROL.

SAME [RECORD] AREA FOR file-name-l, file-name-2 •••

RULES:

1. Each file-name-l must be unique.

2. The RECORD DELIMITER statement cannot be used with the
PRINTER.

3. When the RECORD DELIMITER statement is specified, each
record is variable length and separated by a carriage return
and line feed.

2-1-82 NEVADA COBOL PAGE 11

4. On a delimited write, the record to be transferred is
first searched from right to left for the first non-blank
character and the delimiter is placed one position to the
the right of it. The record including the delimiter is then
transferred.

5. On a delimited read, the record is transferred from left
to right until the record area is filled or until a
delimiter is detected in the incoming data. The delimiter is
not transferred to the user area. If the data record js
shorter than the record area space, the previous data
remains unaltered.

6. Data-name-2 must be defined in the WORKING-STORAGE
section as a two (2) character alphanumeric data item.

Position 1 (STATUS KEY 1)
O=Successful completion
l=AT END
2=INVALID KEY
3=PERMANENT ERROR
9=SEE STATUS KEY 2

Position 2 (STATUS KEY 2)
O=No information availiable
X=SEE ERROR CODES

7. ORGANIZATION IS RELATIVE applies only to fixed length
DISK files. If this clause is not specified then
ORGANIZATION IS SEQUENTIAL is assumed.

8. The RELATIVE KEY uniquely identifies each record in a
RANDOM file by an integer greater than zero which specifies
the records logical ordinal position in the file. For
example, the tenth record is the one addressed by relative
record number 10 and is in the tenth record area.

9. The RELATIVE KEY is multiplied by the record size and
divided by the physical block size and the block is
retrieved.

10. The RELATIVE KEY is always an unsigned integer with size
7 or less in the WORKING-STORAGE SECTION.

11. SAME RECORD AREA is for documentation purposes only.

12. A RELATIVE file is created with a fixed length
sequential write program to allocate the file space.

13. When RECORD DELIMITER is not specified the records are
output in fixed length format each one the size of the
longest record description for that file.

14. On INVALID KEY the user record area results are
unspecified (filled with padding lAH characters) .

15. On fixed length read when the last record is short the
remainder of the user area is filled with padding
characters.

2-1-82 NEVADA COBOL PAGE 12

16. On a DELIMITED read when a short record is read the
results to the right of the last valid input character are
unspecified (whatever was there from before the read). Its a
good idea to move spaces to the record area before each
read.

17. On a DELIMITED read if the input data contains a tab
character (09H) it is passed to the user unchanged. If we
expanded the tabs then we could not use packed decimal data
types because of the possibility of 09H a valid combination
in packed decimal, so we don't process the tabs. This allows
the use of packed decimal (COMP-3) data types in DELIMITED
files. CP/M has a program called PIP that can be used to
expand tab characters. See CP/M manual for PIP (T) option.

EXAMPLE:

0021 INPUT-OUTPUT SECTION.
0022 FILE-CONTROL.
0023 SELECT OLD-PAYROLL-MASTER-FILE
0024 ASSIGN TO DISK
0025 ORGANIZATION IS SEQUENTIAL
0026 ACCESS MODE IS SEQUENTIAL
0027 RECORD DELIMITER IS STANDARD
0027 STATUS IS STA-l.
0028 SELECT LISTING ASSIGN TO PRINTER.
0029 SELECT NEW-PAYROLL-MASTER-FILE
0030 ASSIGN TO DISK
0031 ACCESS MODE IS RANDOM
0032 RELATIVE KEY IS KEY3
0033 STATUS IS STA-2.

2-1-82 NEVADA COBOL PAGE 13

COpy COpy

FUNCTION: The COpy statement inserts text into the source
program at compile time.

FORMAT:

COpy u:file-name •

RULES:

1. A COpy cannot occur within another COpy.

2. The disk unit (u:) is optional. If not specified the
default drive is used.

3. The COPY statement should be preceeded by a space and
terminated by a period, normally, staring in column 7.

4. The file type is not part of the COpy statement but must
be type CBL.

EXAMPLE:

0011 ENVIRONMENT DIVISION.
0012 COpy A:FILE4.
0013* the following copy looks for FILE5.CBL on the default
0014* drive
0015 COpy FILE5.

2-1-82 NEVADA COBOL PAGE 14

SECTION III

DATA DIVISION DATA DIVISION

FUNCTION: To specify the particular characteristics of each
file.

FORMAT:

DATA DIVISION.

FILE SECTION.

FD file-name

{RECORDS }
[, BLOCK CONTAINS integer-l {CHARACTERS}]

RULES:

{RECORD IS OMITTED }
LABEL{RECORDS ARE STANDARD}

{data-name-l}
VALUE OF FILE-ID IS {literal-l }

{RECORD IS }
DATA {RECORDS ARE} record-name-l [record-name-2]]~

1. BLOCK CONTAINS clause is for documentation purposes only.

2. LABEL RECORDS ARE STANDARD must be used for all disk
files and may be used for printer files.

3. VALUE OF FILE-ID must also be used for all disk files and
may be used for printer files.

4. Literal-l is a 1-14 character file name and disk unit.
The disk unit is optional and if not present at run time the
currently logged-in disk unit will be used.

5. To send output directly to the printer specify VALUE OF
FILE-ID IS "A: PRINTER". Any other file-name sends the
output to the disk.

2-1-82 NEVADA COBOL PAGE 15

6. LABEL RECORD IS OMITTED can be used for printer files
only and sends output directly to the printer. If this
statement is used then the statement VALUE OF FILE-ID must
not be used.

EXAMPLE:

0041 DATA DIVISION.
0042 FILE SECTION.
0043 FD NEW-PAYROLL-MASTER-FILE
0044 LABEL RECORDS ARE STANDARD
0044 VALUE OF FILE-ID IS "A:MASTER.ACT"
0045 DATA RECORDS ARE HOURLY, SALARY.
0046* note record descriptions go here. see next examples
0066 FD LISTING LABEL RECORDS ARE STANDARD
0067* note the next line sends data directly to the printer
0067 VALUE OF FILE-ID IS "PRINTER"
0068 DATA RECORD IS PRINT-LINE.
0100 FD THE-SOURCE LABEL RECORDS ARE STANDARD
0101 VALUE OF FILE-ID IS THE-FILE
0102 DATA RECORD IS DISK-IN.
0103 FD LIST-SPOOL
0104 LABEL RECORDS ARE STANDARD
0105* note the next line sends data to disk file for later
0105* printing. see cpm type command using control-p.
0105 VALUE OF FILE-ID IS "B:LIST.TXT"
0106 DATA RECORD IS PRT-LINE.
0107 FD LIST2
0108* note the next line sends data directly to printer
0108 LABEL RECORD IS OMITTED
0109 DATA RECORD IS PRT-LINE2.

2-1-82 NEVADA COBOL PAGE 16

RECORD DESCRIPTION RECORD DESCRIPTION

FUNCTION: To specify the particular characteristics of data
items.

FORMAT:

{data-name-l}
level-number {FILLER } [REDEFINES data-name-2]

[, OCCURS integer-l TIMES]

{PIC }
[, {PICTURE} IS {character-string-l}]

{SYNC } {LEFT}
[{SYNCHRONIZED} [{RIGHT}]]

{JUST }
[{JUSTIFIED} RIGHT]

[BLANK WHEN ZERO]

{COMP }
{C6MP-3 }
{DISPLAY }
{COMPUTATIONAL-3}

[[, USAGE IS] {COMPUTATIONAL }]. •• •

WORKING-STORAGE SECTION.

same as above and
{[ALL] literal}
{QUOTE} {HIGH-VALUE}
{ZERO}{LOW-VALUE}

[, VALUE IS (SPACE }] .•.•

LINKAGE SECTION.

same as above without value clauses.

2-1-82 NEVADA COBOL PAGE 17

RULES:

1. Level-number must be an integer between 01 and 49 or 77.

2. The VALUE clause cannot be used in an item which also
contains an OCCURS or REDEFINES clause.

3. The OCCURS clause cannot be used in a 01 or 77 level
entry.

4. The WORKING-STORAGE area must be initialized before use,
as its initial value is unspecified.

5. The plural forms of SPACE, ZERO, HIGH-VALUE, LOW-VALUE
and QUOTE can be used.

6. A PICTURE clause must be specified only for elementary
items.

7. The maximum number of characters allowed in
character-string-l is 30.

8. The character-string-l describes the characteristics and
editing requirements of the data. It describes the size of
the data, the editing to be performed on the data, and the
category of the data. There are five types of data that can
be described with a picture clause:

A. Alphabetic character strings contain the symbols 'A' and
'B'. The contents of the alphabetic described item can be
any combination of the (26) letters of the Roman alphabet
and the space character from the COBOL character set.

B. Numeric character str ing conta in the symbols '9', IS',
and 'V'. The number of digit positions that can be described
must range from 1 to 18 inclusive. The contents of the
numeric described item can contain the Arabic numerals 0-9
and +,- signs.

C. Alphanumeric character strings contain the symbols 'A',
'X', '9'. Its contents can be any printable ASCII character.

D. Alphanumeric edited character strings contain the symbols
'A', 'X', '9', 'B' '0' IIi.

E. Numeric edited character strings contain the symbols 'B',
III, 'V', 'Z', '0', '9', I,', '.', '*', '+', I_I, '$', 'CRt,
'DB' .

2-1-82 NEVADA COBOL PAGE 18

The individual characters are described as follows:
Each A represents a character position that can

contain only a letter of the alphabet or a space.
Each B represents a character position into which

the space character will be inserted.
The S indicates the presence (but not the

representation nor the position) of an operational sign, and
must be written as the leftmost character in the picture
string.

The V indicates the location of the assumed decimal
point and may appear only once in a character string.

Each X indicates a character position that may
contain any allowable character from the ASCII set.

Each Z represents a leading numeric character
position; when that position contains a zero, the zero is
replaced by a space character. Each Z is counted in the size
of the item.

Each 0 represents a character position into which
the numeral zero will be inserted and is counted in the size
of the item.

Each 9 represents a character position that contains
a numeral and is counted in the size of the item.

Each comma represents a character position into
which a comma will be inserted and is counted in the size of
the item.

The period represents a character position into
which the period will be inserted and is counted in the size
of the item. It also is used for alignment purposes.

The min us s i g n (-) rep res e n t sac h a r act e r po sit ion
into which the editing sign control symbol will be inserted
and is counted in the size of the item.

The plus sign (+) represents a character position
into which the editing sign control symbol will be inserted
and is counted in the size of the item.

Each asterisk represents a leading numeric character
position into which the asterisk (*) will be inserted and is
counted in the size of the item.

The currency symbol ($) represents a character
position in to which the ($) is inserted and is counted in
the size of the item.

The credit and debit symbols (CR) (DB) each
represent two character positions into which they will be
inserted and are counted in the size of the item.

8-1-82 NEVADA COBOL PAGE 19

9. The USAGE IS clause determines the format of numeric data
items stored internally and externally. The default value is
DISPLAY which represents ASCII format with the sign stored
in the units position bit 7. A positive sign is a 0 bit and
a negative sign is 1 bit. Thus a negative number prints as
a lower case letter (-500 = SOp) unless it is moved to an
edited field. COMPUTATIONAL-3 (COMP-3) directs the compiler
to store digits two to the byte in packed decimal format
with the sign stored in the right hand end 4 bits. A
positive sign is 0000 and a negative sign is 0001.
COMPUTATIONAL (COMP) directs the compiler to store values in
binary Intel 8080 format with a maximum value of decimal
32767. No matter how the COMP picture is described 9 or
9999, the compiler always assigns 2 bytes for storage.

10. Binary data types should not be used in delimited files
because of the possibility of duplicating the delimiter
character.

11. When moving numeric values greater than 32767 to a
binary data type the results are unspecified. For purposes
of data conversion to binary the value 67.000 is greater
than 32767 if the binary picture is 99V999.

12. Justified can only be used with elementry data items
and cannot be used with numeric or edited picture items.

13. REDEFINES must not be used in Level 01 entries in the
File Section. Use the Data Records clause and repeated
level Ol's for multiple records in the file section.

14. COMP & COMP-3 may be used at the group level.

2-1-82 NEVADA COBOL PAGE 20

EXAMPLE:

0047 01 HOURLY.
0048 02 PAY-TYPE PICTURE IS X.
0049 02 FIRST-NAME PICTURE IS X(20).
0050 02 LAST-NAME PICTURE X(20).
0051 02 SOC-SEC-NUM PIC 9(9) USAGE IS COMP-3.
0052 02 ITMI PICTURE IS X.
0053 02 ITMll REDEFINES ITMI PIC 9.
0054 02 INCOME PIC S9(16)V99.
0055 02 TAXES OCCURS 10 TIMES PICTURE IS S9(10)V99.
0056 01 MONTHLY.
0057 05 FILLER PIC X.
0058 05 GRP-ITM.
0059 10 GRP-ITM2.
0060 15 GRP-AMT PIC 9(6)V99.
0061 15 GRP-AMT-l PIC 9(6)V99.
0056 01 PRINT-LINE PICTURE IS X (132) •
0081 WORKING-STORAGE SECTION.
0082 01 INVENTORY.
0083 02 PART-NUM PICTURE 9(5) USAGE IS COMP-3.
0084 02 QTY-IN-STOCK PIC 9(6) COMP-3.
0085 02 W-INDEX PICTURE 99 VALUE IS 01 COMP.
0086 02 W-ITM2 PIC X(5) VALUE "TESTl".
0087 01 A-TABLE.
0088 02 Tl PIC X(5) VALUE "FIRST".
0089 02 T2 PIC X(5) VALUE "SECND".
0090 02 T3 PIC X(5) VALUE "THIRD".
0091 01 B-TABLE REDEFINES A-TABLE.
0092 02 ORDER OCCURS 3 TIMES PICTURE X(5).
0093 01 EDIT.
0094 02 E-l PICTURE $,$$$,$$$,$$$,$$$,$$$.99CR.
0095 02 E-2 PIC 99V999+.
0096 02 E-3 PIC ZZ,ZZZ,ZZZ.99-.
0097 02 E-4 PIC $,$$$,$$$.99DB.
0098* by using the ACCEPT verb the next file name can be
0099* changed at object time
0100 01 THE-FILE PICTURE X(14) VALUE "A:FILENAME.WRK".
0101 01 KEY3 PIC 9(7) COMP-3 VALUE 1.
0102 01 STA-l.
0103 02 KEYI PIC X.
0104 02 KEY2 PIC X.
0105* maximum record or item size is 4095
0106 01 BIG-ITEM PIC X(4095).

2-1-82 NEVADA COBOL PAGE 21

COpy COpy

FUNCTION: The COpy statement inserts text into the source
program at compile time.

FORMAT:

COpy u:file-name •

RULES:

1. A COpy cannot occur within another COpy.

2. The disk unit (u:) is optional and if not present the
default drive is used.

3. The COpy statement should be preceeded by a space and
terminated by a period, normally, starting in column 7.

4. The file type is not part of the COpy statement but must
be type CBL.

EXAMPLE:

0041 DATA DIVISION.
0042 COpy A:FILE6.
0055 COpy A:FILE7.
0105 COpy A:FILE8.

2-1-82 NEVADA COBOL PAGE 22

SECTION IV

PROCEDURE DIVISION PROCEDURE DIVISION

FUNCTION: To set forth the procedures to solve a given
problem.

FORMAT:

PROCEDURE DIVISION
[USING data-name-l [, data-name-2] •••]~

[section-name SECTION [segment-number]].
paragraph-name.

problem-solving statements.
paragraph-name.

problem-solving statements.
END PROGRAM program-name.

RULES:

1. The first entry in the PROCEDURE DIVISION must be a
paragraph name, section-name or USING statement.

2. Each paragraph-name or section-name must be unique.

3. Each paragraph-name must be followed by a period.

4. Each problem-solving statement must be made up of
reserved words, words previously described in a previous
division, paragraph-names, figurative constants, numeric
literals, non-numeric literals and/or punctuation marks.

EXAMPLE:

0100
0101
0102
0103
0104

PROCEDURE DIVISION.
BEGIN.

DISPLAY "HELLO".
STOP RUN.

END PROGRAM TESTI.

NOTE. The following pages are in alphabetical sequence by
key word for easy reference.

2-1-82 NEVADA COBOL

ACCEPT

FUNCTION: To cause data to be made available to tpe
specified data item via the console device.

FORMAT:

ACCEPT identifier

RULES:

1. The ACCEPT device is the console video typewriter.

PAGE 23

ACCEPT

2. Data is transferred from left to right until the
receiving data item (identifier) is filled or until a
carriage return is entered. The carriage return key is used
to release the item and is not transferred to memory.

3. The delete key can be used to backspace if a mistake is
made.

4. The backspace does not go pa~t the beginning of the
accept field.

5. In the CP/M mode using function 1 & 2 when the right end
of a field is exceeded a H(H character notifies the user the
last character was not entered into memory. This is done
because CP/M automaticlly echo's the input character when it
is keyed and it appears to the user as if it was processed
internally when it was not. However, if the run time
package is modified to use function 6 or direct BIOS then
the characters exceeding the user field are not output to
the screen. .

6. See DISPLAY UNIT and the program CONFIG for details on
setting up the CRT drivers.

7e The carriage return character is not echoed to the
screen unless the CP/M function 1 & 2 mode is being used
where CP/M automatically echo's it.

2-1-82 NEVADA COBOL

EXAMPLE:

0101
0102
0103
0104
0105
0105
0106*
0107*
0108
0109*
0110
0111*
0112
0113

PROCEDURE DIVISION.
BEGIN.

ACCEPT EMPLOYEE-NAME (Xl).
ACCEPT TODAYS-DATE.
DISPLAY "ENTER FILE NAME <D:FFFFFFFF.EEE>".
ACCEPT THE-FILE-NAME.

clear the screen on a sol-20 next.
DISPLAY ""OB"".

note screen-full can be 80*24=1920 size item.
DISPLAY SCREEN-FULL.

set the cursor using a hexadecimal string.
DISPLAY ""lB,01,3F"".
ACCEPT INPUT-ITEM.

PAGE 24

2-1-82 NEVADA COBOL PAGE 25

ADD

FUNCTION: To add two numeric data items and to store the
sum.

FORMAT:

{literal-I} {literal-2}
ADD {identifier-I} [TO] {identifier-2}

[GIVING identifier-3] [ROUNDED]

[, ON SIZE ERROR imperative-statement]

RULES:

ADD

1. Each ADD verb statement must contain an addend and an
augend.

2. Figurative constants cannot be used.

3. Only numeric items and numeric literals can be used,
except identifier-3 which can be an elementary numeric
edited item.

4. The composite of operands must not contain more than 18
digits.

5. An identifier can only reference an elementary item.

6. Each operand can contain an operational sign and an
implied decimal point.

7. Operands are aligned according to implied decimal points.

8. ROUNDED performs a test to see if right truncation will
occur and, if it will, adjusts the result by adding 1 if the
truncated digit is 5 or greater.

9. ON SIZE ERROR performs a test to see if overflow has
occurred and, if it has, executes the imperative-statement.

EXAMPLE:

0150 ADD SALES-TAX TO TOTAL GIVING GRAND-TOTAL ROUNDED
0151 ON SIZE ERROR GO TO ERROR-ROUTINE.

2-1-82 NEVADA COBOL PAGE 26

ALTER ALTER

FUNCTION: To modify a predetermined sequence of operations.

FORMAT:

ALTER paragraph-name-l -TO PROCEED TO paragraph-name-2.

RULES:

1. Paragraph-name-l must be the name of a paragraph which
contains a single sentence consisting of:

GO TO paragraph-name.

2. The execution of the ALTER statement modifies the GO TO
paragraph-name-l, so that subsequent executions of
paragraph-name-l transfer control to paragraph-name-2.

EXAMPLE:

0200
0201
0202
0203
0205

PARA-6. GO TO BEGIN.
PARA-7.

ALTER PARA-6 TO PROCEED TO END-OF-JOB.
GO TO PARA-5.

END-OF-JOB.

8-1-82 NEVADA COBOL PAGE 27

CALL CALL

FUNCTION: The CALL statement causes control to be
transferred from one object program to another, within the
run unit.

FORMAT:

{literal-l }
CALL {identifier-I}

[USING data-name-l [data-name-2] •••]

RULES:
1. Literal-l must be a nonnumeric literal.

2. Identifier-l must be defined as an alphanumeric data
item such that its value can be a program name.

3. The USING phrase is included in the CALL statement only
if there is a USING phrase in the Procedure Division header
of the called program and the number of operands in each
USING phrase must be identical.

4. Each of the operands in the USING phrase must have been
defined as a data item in the File Section or
Working-Storage Section, and must have a level-number of 01
or 77.

5. The program whose name is specified by the value of
literal-lor identifier-l is the called program; the program
in which the call statement appears is the calling program.

6. The execution of a CALL statement causes control to pass
to the called program.

7. A called program is in its initial state the first time
it is called within a run unit and the first time it is
called after a CANCEL to the called program. On all other
entries into the called program, the state of the program
remains unchanged from its state when last exited. This
includes all data fields, the status and positioning of all
files, and all alterable switch settings.

8. Called programs may contain call statements. However, a
called program must not contain a CALL statement that

2-1-82 NEVADA COBOL PAGE 28

directly or indirectly calls the calling program.

9. The data-names, specified by the USING phrase of the
CALL statement, indicate those data items available to a
calling program that may be referred to in the called
program. The order of appearance of the data-names in the
USING phrase of the CALL statement and the USING phrase in
the Procedure Division header is critical. Corresponding
data-names refer to a single set of data which is available
to the called and calling program. The correspondence is
positional, not by name.

NEVADA COBOL details:

1. Called programs must be type .OBJ.

2. Each called program is dynamically loaded the first time
and entered into a table in the run time package. Future
calls go directly to the called program.

3. Up to 5 active called programs may be resident at any
one time. At that point one will have to be CANCELed before
any other can be loaded.

4. You can CALL another main program from the current
program thus overlaying the first program. Since the
working-storage section always begins at the same point in
memory, those data-items not initialized with value
statements will contain the information from the prior
program. Be sure to CANCEL the program to remove it from the
table as once the table is full and a program is called the
job will terminate.

5. CALLed programs need not be COBOL programs. However,
they must be type .OBJ and be ORGed correctly. The .OBJ file
contains the machine language code for a program, the
address at which the run time package is to load it, and the
address at which execution of the loaded program is to
begin. An .OBJ file consists of one or more segments that
have the format:

#BYTES DESCRIPTION
2 Number of code and data bytes in

2

Variable

segment
Load address of code and data belonging
to the segment.
Code and/or data.

The run time package will load each segment at the specified
address until a starting address is encountered. A starting
address is represented as load address with a zero byte
count.

2-1-82 NEVADA COBOL PAGE 29

6. A program IS supplied to convert CP/M HEX files to .OBJ
format named CONVHEX.COM.

7. The run time package transfers control to the called
program by means of an 8080 CALL instruction. The called
program should return via the 8080 RET instruction. The
called program should use its own stack not the COBOL stack.

8. Parameters are passed to the called program in the
registers. H&L = parameter 1, D&E = parameter 2, B&C =
either parameter 3 or the address of the left end of a list
of parameter addresses if more than three parameters are
passed. The parameters consist of I6-bit addresses pointing
to the right end of each data-name.

9. In some cases it is possible to execute called programs
without the calling program for testing when no data is
being passed. Since the loading format is the same for all
type .OBJ programs, you can A>RUN NEXTPROG

EXAMPLE:

0001
0555

*

CALL "NEXTPROG" USING REC-l, REC-2.
CALL NEXT-PROG USING REC-l, REC-2.

* also see complete programs at end of manual.

2-1-82 NEVADA COBOL PAGE 30

CANCEL CANCEL

FUNCTION: The CANCEL statement releases the memory areas
occupied by the referred to program.

FORMAT:

{literal-l }
CANCEL {identifier-I}

RULES:
1. Subsequent to the execution of a CANCEL statement, the
program referred to therein ceases to have any logical
relationship to the run unit in which the CANCEL statement
appears. A subsequently executed CALL statement naming the
same program will result in that program being initiated in
its initial state. The memory areas associated with the
named programs are released so as to be made available for
disposition by the operating system.

2. A program named in the CANCEL statement must not refer
to any program that has been called and has not yet executed
an EXIT PROGRAM statement.

3. A logical relationship to a cancelled subprogram is
established only by execution of a subsequent CALL
statement.

4. A called program is cancelled either by being referred
to as the operand of a CANCEL statement or by the
termination of the run unit of which the program is a
member.

5. No action is taken when a CANCEL statement is executed
naming a program that has not been called in this unit or
has been called and is at present cancelled. Control passes
to the next statement.

EXAMPLE:
0001
0555

CANCEL "LASTPROG".
CANCEL LAST-PROG.

* also see complete programs at end of manual.

2-1-82 NEVADA COBOL PAGE 31

CLOSE CLOSE

FUNCTION: To terminate the processing of input and output
files.

FORMAT:

CLOSE file-name

RULES:

1. A file must be opened before it can be closed.

2. If required, the CLOSE statement writes the final block
with padding before closing the file.

EXAMPLE:

0300 END-OF-JOB.
0301 CLOSE NEW-PAYROLL-MASTER-FILE.
0302 CLOSE OLD-PAYROLL-MASTER-FILE.
0303 CLOSE LISTING.

2-1-82 NEVADA COBOL PAGE 32

COpy COpy

FUNCTION: The COpy statement inserts text into the source
program at compile time.

FORMAT:

COpy u:file-name •

RULES:

1. A COpy cannot occur within another COpy.

2. The disk unit (u:) is optional and if not present the
default drive will be used.

3. The COpy statement should be preceeded by a space and
terminated by a period, normally, starting in column 7.

4. The file type is not part of the COpy statement but must
be type CBL.

EXAMPLE:

0100 PROCEDURE DIVISION.
0101 PARAGRAPH-A.
0102 COpy A:FILEA.
2500 PARAGRAPH-B.
2501 COpy A:FILEB.
3500 PARAGRAPH-C.
3501 COpy B:FILEC.

2-1-82 NEVADA COBOL

DISPLAY

FUNCTION: To display data on the video typewriter.

FORMAT-I:

{literal-l } {literal-2 }
DISPLAY {identifier-I} [{identifier-2}]

[WITH NO ADVANCING]

FORMAT-2:
{literal-3 }

DISPLAY UNIT {identifier-3}.

RULES:

PAGE 33

DISPLAY

1. The DISPLAY device is the console video typewriter.

2. If the literal is a numeric literal, then it must not be
signed as the sign would be displayed as a lower case
letter.

3. A carriage return & line feed are executed before data
transfer begins unless WITH NO ADVANCING is specified.

4. Data4is transferred from left to right until all of the
data in literal or identifier-l is transferred.

5. If data is longer than 64 or 80 characters as set by the
CONFIG program, the video display will continue on the next
line. In this way the entire screen can be filled with one
DISPLAY statement.

6. Each literal may be any figurative constant, except ALL.

7. If a figurative constant is specified as one of the
operands, only a single occurrence of the figurative
constant is displayed.

8. The DISPLAY statement causes the contents of each
operand to be transferred to the hardware device in the
order listed.

8-1-82 NEVADA COBOL PAGE 34

9. The DISPLAY UNIT literal changes the 1-0 driver at run
time as follows:

"OX" skips CP/M and uses the BIOS driver.
"2X" uses CP/M function 1 & 2 drivers.
"6X" uses CP/M 2.X function 6 drivers.

X will allow any character to be input any
other character in this position will allow only ASCII
input. All of these changes are temporary.

10. To permanently change the run time package drivers ,read
the instructions for the program CONFIG.

11. UNIT 0 or UNIT 6 must be used if sending or receiving
characters other than ASCII, such as video control
characters. This is because CP/M monitors function 1 and 2
and will not allow certain control characters to pass too
and from the user.

EXAMPLE:

0350 ERROR-ROUTINE.
0351 DISPLAY ERROR-MESSAGE (ERROR-CODE).
0352 DISPLAY FIRST-NAME, LAST-NAME, "NAME"
0359D DISPLAY "DEBUG MODE ERROR ROUTINE".
0360 DISPLAY "CONTINUE ON SAME LINE" WITH NO ADVANCING.
0370* the next line clears the screen on a Sol-20 or VDM-l
0380 DISPLAY ""OB"".
0391* the next line clears the screen on Hazeltine-1520
0392 DISPLAY ""7E,lC" I

•

0390* each CRT is different but if you know the commands you
0391* can also set the cursor and display in reverse.
0391* the next line sets the 1-0 driver for BIOS any
0391* incoming character will be passed to user.
0392 DISPLAY UNIT "OX".
0500* the following sequence is a common debugging method.
0501 PARAGRAPH-A.
0502* line 0505 is a debugging line used when testing
0503* to let the programmer know that the paragraph has been
0504* executed
0505D DISPLAY "PARAGRAPH-A".

2-1-82 NEVADA COBOL PAGE 35

DIVIDE DIVIDE

FUNCTION: To divide one numerical data item into another and
set the value of an item equal to the quotient.

FORMAT:

RULES:

DIVIDE {identifier-I} INTO {identifier-2}

[GIVING identifier-3]

[ROUNDED] [, ON SIZE ERROR imperative-statement]

1. Each DIVIDE statement must contain a dividend and a
divisor.

2. Each identifier must refer to an elementary numeric item,
except the identifier-3 which may be an elementary numeric
edited item.

3. The composite of operands must not contain more than 18
digits.

4. An identifier can only reference an elementary item.

5. Each operand can contain an operational sign and an
implied decimal point.

6. Operands are aligned according to implied decimal points.

7. ROUNDED performs a test to see if right truncation will
occur and, if it will, adjusts the result by adding 1 if the
truncated digit is 5 or greater.

8. ON SIZE ERROR performs a test to see if overflow has
occurred and, if it has, executes the imperative-statement.

EXAMPLE:

0400 CALC-I.
0401 DIVIDE HOURS INTO GROSS-PAY GIVING HOURLY-RATE
0402 ROUNDED ON SIZE ERROR GO TO ERR-2.
0403 DIVIDE HOURS INTO MILES.

2-1-82 NEVADA COBOL PAGE 36

END PROGRAM END PROGRAM

FUNCTION: To signal the physical end of the program.

FORMAT:

END PROGRAM program-name

RULES:

1. This entry must be the last physical statement in every
source program.

EXAMPLE:

9999 END PROGRAM TESTI.

2-1-82 NEVADA COBOL

EXIT

FUNCTION: To furnish an end point for a series of
procedures.

FORMAT-1 :

EXIT.

FORMAT-2:

EXIT PROGRAM.

RULES:

PAGE 37

EXIT

1. The EXIT statement must appear in a sentence by itself,
and be the only sentence in the paragraph.

2. An execution of an EXIT PROGRAM statement in a called
program causes control to be passed to the calling program.
Execution of an EXIT PROGRAM statement in a program which is
not called behaves as if the statement were an EXIT
statement.

EXAMPLE:

0500 PARA-END.
0501 EXIT.
0600 END-SUBPROGRAM.
0601 EXIT PROGRAM.

2-1-82 NEVADA COBOL PAGE 38

GO TO GO TO

FUNCTION: To depart from the normal sequence of procedures.

FORMAT-I:

GO TO procedure-name-l

FORMAT-2:

RULES:

GO TO procedure-name-l, [procedure-name-2] •••
DEPENDING ON identifier.

1. The GO TO statement must be the last statement in a
sequence.

2. Identifier is the name of a numeric elementary item
described without any positions to the right of the assumed
decimal point.

3. When a paragraph is referenced by an ALTER statement,
that paragraph can consist only of a paragraph header
followed by a format-1 GO TO statement.

4. When a GO TO statement, represented by format-l is
executed, control is transferred to procedure-name-l or to
another procedure-name if the GO TO statement has been
modified by an ALTER statement.

5. When a GO TO statement represented by format-2 is
executed, control is transferred to procedure-name-l,
procedure-name-2, etc., depending on the value of the
identifier being 1, 2, .•• , n. If the value of the
identifier is anything other than the positive or unsigned
intergers 1, 2, ... , n, then no transfer occurs and control
passes to the next statement in the normal sequence for
execution.

2-1-82 NEVADA COBOL PAGE 39

EXAMPLE:

0330 IF A-SWITCH IS EQUAL TO 1
0331 MOVE X-AMT TO Y-AMT
0332 GO TO A-SUBROUTINE.
0333 GO TO MAIN-PROGRAM.
0334 CASE-STATEMENT-PARA.
0335 GO TO A-PARA, B-PARA, C-PARA DEPENDING ON Xl.
0336 ALTERED-PARA.
0337 GO TO FIRST-PARA.

2-1-82 NEVADA COBOL PAGE 40

IF

FUNCTION: The IF statement causes a condition to be
evaluated. The subsequent action of the object
program depends on whether the value of the
condition is true or false.

FORMAT-I:

{statement-l } {ELSE statement-2 }
g {cond i tion} {NEXT SENTENCE} {ELSE NEXT SENTENCE}

{condition}:
{ = < > }
{EQUAL TO }
{LESS THAN } {literal }

identifier-l IS [NOT] {GREATER THAN} {identifier-2}

{condition}:

{NUMERIC }
identi fier-3 IS [NOT] {ALPHABETIC}

FORMAT-2 :

{OR }
IF condition {AND} condition

RULES:

IF

1. Statement-l and statement-2 represent an imperative
statement.

2. Non-numeric comparisons are made left to right using the
ASCII collating sequence.

3. Numeric comparisons are made by aligning the decimal
points and treating them as algebric quantities.

4. Identifier-3 must be a DISPLAY (ASCII) data type.

5. If the condition is true, statement-l is executed if
specified. If statement-l contains a procedure branching
statement, control is explicitly transferred in accordance
with the rules of that statement. If statement-l does not

2-1-82 NEVADA COBOL PAGE 41

contain a procedure branching statement, the ELSE phrase, if
specified, is ignored and control passes to the next
executable sentence.

6. The ELSE NEXT SENTENCE phrase may be omitted if it
immediately precedes the terminal period of the sentence.

7. If the condition is true and the NEXT SENTENCE phrase is
specified instead of statement-I, the ELSE phrase, if
specified, is ignored and control passes to the next
executable sentence.

8. 1£ tne condition is £a~se, statement-lor its surrogate
NEXT SENTENCE is ignored, and statement-2, if specified, is
executed. If statement-2 contains a procedure branching
statement, control is explicitly transferred in accordance
with the rules of that statement. If statement-2 does not
contain a procedure branching statement, control passes to
the next executable sentence. If the ELSE statement-2 is
not specified, statement-l is ignored and control passes to
the next executable sentence.

9. If the condition is false, and the ELSE NEXT SENTENCE
phrase is specified, statement-l is ignored, if specified,
and control passes to the next executable sentence.

10. Two conditions can be combined by the logical operators
AND and OR.

EXAMPLE:

0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354

IF LAST-NAME IS NOT ALPHABETIC
MOVE ERR-CODE TO MESG
ADD 1 TO ERR-COUNT
GO TO KEY-PUNCM-ERROR

ELSE
PERFORM A-PARA THRU B-PARA.

IF HOURLY-RATE < 3.90 AND FRINGE-BENEFITS < 6000
GO TO MIN-WAGE-ERROR.

IF A = B
OR = C
OR = D
OR X NOT > Y

MOVE S TO W
ELSE

MOVE S TO AW.

2-1-82 NEVADA COBOL PAGE 42

INSPECT INSPECT

FUNCTION: The INSPECT statement provides the ability to
tally, replace, or tally and replace occurences
of single characters in a data item.

FORMAT-l

INSPECT identifier-l TALLYING
{ALL {literal-I}}
{LEADING {identifier-3}}

{identifier-2 FOR {{CHARACTERS }
-rAFTER} {literal-2}
[{BEFORE} INITIAL {identi fier-4}] } ••• } •••

FORMAT-2

INSPECT identifier-l REPLACING
{literal-4 }

{CHARACTERS BY {identifier-6}
{AFTER }

[{BEFORE}
{literal-5 }

INITIAL {identifier-7}
{ALL }
{FIRST } {literal-3 } {literal-4 }
{LEADING} {{identifier-5} BY {identifier-6}

{AFTER} {literal-5}
[{BEFORE} INITIAL {identifier-7}

FORMAT-3

INSPECT identifier-l TALLYING
{ALL {literal-I}}
{LEADING {identifier-3}}

{identifier-2 FOR {{CHARACTERS }
-rAFTER} {literal-2}
[{BEFORE} INITIAL {identi fier-4}] } ••• } •••

REPLACING

{literal-4 }
{CHARACTERS BY {identifier-6}

{AFTER} {literal-5}
[{BEFORE} INITIAL {identifier-7}

{ALL }
{FIRST } {literal-3 } {literal-4 }
{LEADING} {{identifier-5} BY {identifier-5}

{AFTER} {literal-5}
[{BEFORE} INITIAL {identifier-7}

2-1-82 NEVADA COBOL PAGE 43

RULES:

1. Identifier-l must reference either a group item or any
category of elementary item, described (either implicitly or
explicitly) as usage is DISPLAY.

2. Identifier-3 ••• identifier-n must reference either an
elementary alphabetic, alphanumeric or numeric item
described (either implicitly or explicitly) as usage is
DISPLAY.

3. Each literal must be nonnumeric and may be any figurative
constant, except ALL.

4. Literal-I, 2, 3, 4, 5 and the data items referenced by
identifier-3, 4, 5, 6, and 7 must be one character in
length.

FORMATS 1 and 3 only
5. Identifier-2 must reference an elementary numeric data
item.

6. If either literal-lor literal-2 is a figurative
constant, the figurative constant refers to an implicit one
character data item.

FORMATS 2 and 3 only
7. The size of the data referenced by literal-4 or
identifier-6 must be equal to the size of the data
referenced by literal-3 or identifier-5. When a figurative
constant is used as literal-4, the size of the figurative
constant is equal to the size of literal-3 or the size of
the data item referenced by identifier-5.

8. When the CHARACTERS phrase is used, literal-4, literal-5
or the size of the data item referenced by identifier-6,
identifier-7 must be one character in length.

9. When a figurative constant is used as literal-3, the data
referenced by literal-4 or identifier-6 must be one
character in length.

GENERAL RULES:
Ie Inspection (which includes the comparison cycle, the
establishment of boundaries for the BEFORE or AFTER phrase,
and the mechanism for tallying and/or replacing) begins at
the leftmost character position of the data item referenced
by identifier-I, regardless of its class, and proceeds from
left to right to the rightmost character position as
described in general rules 4 through 6.

8-1-82 NEVADA COBOL PAGE 44

2. For use in the INSPECT statement, the contents of the
data item referenced by identifier-I, 3, 4, 5, 6 or 7 will
be treated as follows:

a. If any of identifier-I, 3, 4, 5, 6 or 7 are described as
alphanumeric, the INSPECT statement treats the contents of
each such identifier as a character-string.

b. If any of identifier-I, 3, 4, 5, 6 or 7 are described as
alphanumeric edited, numeric edited or unsigned numeric, the
data item is inspected as though it had been redefined as
alphanumeric and the INSPECT statement had been written to
reference the redefined data item.

c. If and of the identifier-I, 3, 4, 5, 6 or 7 are described
as signed numeric, the data item is inspected as though it
had been moved to an unsigned numeric data item of the same
length and then the rules in general rule 2b had been
appl ied.

3. In general rules 4 through 11 all references to
literal-I, 2, 3, 4 and 5 apply equally to the contents of
the data item referenced by identifier-3, 4, 5, 6 and 7,
respectively.

4. During inspection of the contents of the data item
referenced by identifier-I, each properly matched occurrence
of literal-l is tallied (formats 1 and 3) and/or each
properly matched occurrence of literal-3 is replaced by
Ii teral-4 (formats 2 and 3).

5. The comparison operation to determine the occurrences of
literal-l to be tallied and/or occurrences of literal-3 to
be replaced, occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are
considered in the order they are specified in the INSPECT
statement from left to right. The first literal-I,
literal-3 is compared to an equal number of contiguous
characters, starting with the leftmost character position in
the data item referenced by identifier-I. Literal-I,
literal-3 and that portion of the contents of the data item
referenced by identifier-l match if, and only if, they are
equal, character for character.

b. If no match occurs in the comparison of the first
literal-I, literal-3, the comparison is repeated with each
successive literal-I, literal-3, if any until either a match
is found or there is no next successive literal-I,
literal-3. When there is no next successive literal-I,
literal-3, the character position in the data item

8-1-82 NEVADA COBOL PAGE 45

referenced by identifier-l immediately to the right of the
leftmost character position considered in the last
comparison cycle is considered as the leftmost character
position, and the comparison cycle begins again with the
first literal-I, literal-3.

c. Whenever a match occurs, tallying and/or replacing takes
place as described in general rules 8 through 10. The
character position in the data item referenced by
identifier-l immediately to the right of the rightmost
character position that participated in the match is now
considered to be the leftmost character position of the data
item referenced by identifier-I, and the comparison cycle
starts again with the first literal-l,literal-3.

d. The comparison operation continues until the rightmost
character position of the data item referenced by
identifier-l has participated in a match or has been
considered as the leftmost character position. When this
occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one
character operand participates in the cycle described in
paragraphs Sa through 5d above, except than no comparison to
the contents of the data item referenced by identifier-l
takes place. This implied character is considered always to
match the leftmost character of the contents of the data
item referenced by identifier-l participating in the current
comparison cycle.

6. The comparison operation defined in general rule 5 is
affected by the BEFORE and AFTER phrases as follows:

a. If the BEFORE or AFTER phrase is not specified,
literal-I, literal-3 or the implied operand of the
CHARACTERS phrase participates in the comparison operation
as described in general rule 5.

b. If the BEFORE phrase is specified, the associated
literal-I, literal-3 or the implied operand of the
CHARACTERS phrase participates only in those comparison
cycles which involve that portion of the contents of the
data item referenced by identifier-l from its leftmost
character position up to, but not including, the first
occurrence of literal-2, literal-5 within the contents of
the data item referenced by identifier-l. The position of
this first occurrence is determined before the first cycle
of the comparison operation described in general rule 5 is
begun. If, on any comparison cycle, literal-I, literal-3 or
the implied operand of the CHARACTERS phrase is not eligible
to participate, it is considered not to match the contents
of the data item referenced by identifier-I. If there is no

8-1-82 NEVADA COBOL PAGE 46

occurrence of literal-2, literal-5 within the contents of
the data item referenced by identifier-I, its associated
literal-I, literal-3, or the implied operand of the
CHARACTERS phrase participates in the comparison operation
as though the BEFORE phrase had not been specified.

c. If the AFTER phrase is specified, the associated
literal-I, literal-3 or the implied operand of the
CHARACTERS phrase may participate only in those comparison
cycles which invlove that portion of the contents of the
data item referenced by identifier-l from the character
position immediately to the right of the rightmost character
position of the first occurrence of literal-2, literal-5
within the contents of the data item referenced by
identifier-l and the rightmost character position of the
data item referenced by identifier-I. The position of this
first occurrence is determined before the first cycle of the
comparison operation described in general rule 5 is begun.
If, on any comparison cycle, literal-I, literal-3 or the
implied operand of the CHARACTERS phrase is not eligible to
participate, it is considered not to match the contents of
the data item referenced by identifier-I. If there is no
occurrence of literal-I, literal-5 within the contents of
the data item referenced by identifier-I, its associated
literal-I, literal-3, or the implied operand of the
CHARACTERS phrase is never eligible to participate in the
comparison operation.

FORMAT 1
7. The contents of the data item referenced by identifier-2
is not initialized by the execution of the INSPECT
statement.

8. The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data
item referenced by identifier-2 is incremented by one (I)
for each occurrence of literal-l matched within the contents
of the data item referenced by identifier-I.

b. If the LEADING phrase is specified, the contents of the
data item referenced by identifier-2 is incremented by one
(I) for each contiguous (adjacent) occurrence of literal-l
matched within the contents of the data item referenced by
identifier-I, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison
cycle in which literal-l was eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of
the data item referenced by identifier-2 is incremented by
one (1) for each character matched, in the sense of general
rule Se, within the contents of the data item referenced by

8-1-82 NEVADA COBOL PAGE 47

FORMAT 2
9. The required words ALL, LEADING, and FIRST are
adjectives.

10. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character
matched, in the sense of general rule Se, in the contents of
the data item referenced by identifier-l is replaced by
literal-4.

b. When the adjective ALL is specified, each occurrence of
literal-3 matched in the contents of the data item
referenced by identifier-l is replaced by literal-4.

c. When the adjective LEADING is specified, each contiguous
occurrence of literal-3 matched in the contents of the data
item referenced by identifier-l is replaced by literal-4,
provided that the leftmost occurrence is at the point where
comparison began in the first comparison cycle in which
literal-3 was eligible to participate.

d. When the adjective FIRST is specified, the leftmost
occurrence of literal-3 matched within the contents of the
data item referenced by identifier-l is replaced by
literal-4.

FORMAT 3
11. A format 3 INSPECT statement is interpreted and
executed as though two successive INSPECT statements
specifying the same identifier-l had been written with one
statement being a format 1 statement with TALLYING phrases
identical to those specified in the format 3 statement, and
the other statement being a format 2 statement with
REPLACING phrases identical to those specified in the format
3 statement. The general rules given for matching and
counting apply to the format 1 statement and the general
rules given for matching and replacing apply to the format 2
statement.

2-1-82 NEVADA COBOL PAGE 48

EXAMPLES:
Following are six examples of the INSPECT statement:

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL
"A", count-l FOR LEADING "A" BEFORE INITIAL "L".

Where word = LARGE, count = 1, count-l = o.
Where word = ANALYST, count =0, count-l = 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING
"A" BY "E" AFTER INITIAL "L".

Where word = CALLAR, count = 2, word = CALLAR.
Where word = SALAMI, count = 1, word = SALEMI.
Where word = LATTER, count = 1, word = LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A" BY "B".

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.
Where word = JUJMAB, count = 5, word = JUJMBB.

INSPECT word REPLACING ALL "X" BY "Y"
"Q" AFTER INITIAL "R".

Where word = RXXBQWY, word = RYYZQQY.
Where word = YZACDWBR, word = RAQRYEZ.

"B" BY "z" "w" BY

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

word before: 12 XZABCD
word after: BBBBBABCD

2-1-82 NEVADA COBOL PAGE 49

MOVE MOVE

FUNCTION: To transfer data from one data area to another.

FORMAT:

{literal-l }
MOVE {identifier-I} TO identifier-2 [identifier-3]~;=

RULES:

1. Identifier-l and literal-l represent the sending area and
identifier-2 identifier-3, ••• , represent the receiving
area.

2. The data designated by the literal-lor identifier-l is
moved first to identifier-2, then to identifier-3, •••• The
rules referring to identifier-2 also apply to the other
receiving areas. Any subscripting associated with
identifier-2, •.. , is evaluated immediately before the data
is moved to the receiving data item.

3. Any MOVE in which the sending and receiving items are
both elementary items is an elementary move. Every
elementary item belongs to one of the following categories:
numeric, alphabetic, alphanumeric, numeric edited,
alphanumeric edited. These categories are described in the
PICTURE clause. Numeric literals belong to the category
numeric, and nonnumeric literals belong to the category
alphanumeric. The figurative constant ZERO belongs to the
category numeric. The figurative constant SPACE belongs to
the category alphabetic. All other figurative constants
belong to the category alphanumeric.

The following rules apply to an elementary move between
these categories:
a. The figurative constant SPACE, a numeric edited,
alphanumeric edited, or alphabetic data item must not be
moved to a numeric or numeric edited data item.
b. A numeric literal, the figurative constant ZERO, a
numeric data item or a numeric edited data item must not be
moved to an alphabetic data item.
c. A non-integer numeric literal or a non-integer numeric
data item must not be moved to an alphanumeric or
alphanumeric edited data item.
d. All other elementary moves are legal and are performed

2-1-82 NEVADA COBOL PAGE 50

according to the rules given in general rule 4.

4. Any necessary conversion of data from one form of
internal representation to another takes place during legal
elementary moves, along with any editing specified for the
receiving data item:
a. When an alphnumeric edited or alphanumeric item is a
receiving item, alignment and any necessary space filling
takes place. If the size of the sending item is greater
than the size of the receiving item, the excess characters
are truncated on the right after the receiving item is
filled. If the sending item is described as being signed
numeric, the operational sign will not be moved; if the
operational sign occupied a separate character position,
that character will not be moved and the size of the sending
item will be considered to be one less than its actual size
(in terms of standard data format characters).
b. When a numeric or numeric edited item is the receiving
item, alignment by decimal point and any necessary
zero-filling takes place as necessary, except where zeroes
are replacing because of editing requirements.

1. When a signed numeric item is the receiving item,
the sign of the sending item is placed in the receiving
item. Conversion of the representation of the sign takes
place as necessary. If the sending item is unsigned, a
positive sign is generated for the receiving item.

2. When an unsigned numeric item is the receiving
item, the absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

3. When a data item described as alphanumeric is the
sending item, data is moved as if the sending item were
described as an unsigned numeric integer.
c. When a receiving field is described as alphabetic,
justification and any necessary space-filling takes place as
defined. If the size of the sending item is greater than
the the size of the receiving item, the excess characters
are truncated on the right after the receiving item is
filled.

5. Any move that is not an elementary move is treated
exactly as if it were an alphanumeric to alphanumeric
elementary move, except that there is no conversion of data
from one form of internal representation to another. In
such a move, the receiving area will be filled without
consideration for the individual elementary or group items
contained within either the sending or receiving area,
except as noted in the OCCURS clause.

6. If literal-l is SPACE, QUOTE or ZERO then identifier-2 is
entirely filled with the figurative constant.

7. In a non-numeric move the data is moved left to right.

2-1-82 NEVADA COBOL PAGE 51

EXAMPLE:

0360 MAIN-MOVE-ROUTINE.
0361 MOVE SPACES TO PRINT-LINE.
0362 MOVE FIRST-NAME TO P-FIRST-NAME.
0363 MOVE LAST-NAME TO P-LAST-NAME.
0364 MOVE ORDER (W-INDEX) TO P-ORDER.
0365 MOVE ZEROS TO AMT-1, AMT-2, AMOUNT-3.
0366 MOVE SPACES TO FIRST-NAME LAST-NAME.

2-1-82 NEVADA COBOL PAGE 52

MULTIPLY MULTIPLY

FUNCTION: To multiply numeric data items and set the
value of an item equal to the result.

FORMAT:

{literal-l } {literal-2 }
MULTIPLY {identifier-I} BY {identifier-2}

[GIVING identifier-3] [ROUNDED]

[, ON SIZE ERROR imperative-statement]

RULES:

1. Each identifier must be a elementary numeric item, except
identifier-3 which may be a elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The resultant product must not contain more than 18
digits.

4. An identifier can only reference an elementary item.

5. Each operand can contain an operational sign and an
implied decimal point.

6. Operands are aligned according to implied decimal points.

7. ROUNDED performs a test to see if right truncation will
occur and, if it will, adjusts the result by adding I if the
truncated digit is 5 or greater.

8. ON SIZE ERROR performs a test to see if overflow has
occurred and, if it has, executes the imperative-statement.

EXAMPLE:

0399 CALCULATION-ROUTINE.
0400 MULTIPLY WAGE-RATE BY REGULAR-HRS GIVING
0401 GROSS-PAY ROUNDED ON SIZE ERROR GO TO P-ERR.
0402 MULTIPLY WAGE-RATE BY OVERTIME-HOURS.

2-1-82 NEVADA COBOL PAGE 53

OPEN

FUNCTION: To initiate the processing of both input and
output files.

FORMAT:

RULES:

{I-O }
{INPUT }

OPEN {OUTPUT} file-name

OPEN

1. A file must be opened before it can be read, written or
closed.

2. The OPEN statement does not cause a data transfer to or
from the file.

3. In the output SEQUENTIAL ACCESS mode, if the file does
not exist it is created.

4. In the RANDOM ACCESS mode, the file must already exist.

5. The 1-0 (INPUT-OUTPUT) option applies to DISK files only.

EXAMPLE:

0700 BEGIN.
0701 OPEN OUTPUT NEW-PAYROLL-MASTER-FILE.
0702 OPEN INPUT OLD-PAYROLL-MASTER-FILE.
0703 OPEN OUTPUT LISTING.

2-1-82 NEVADA COBOL PAGE 54

PERFORM PERFORM

FUNCTION: To depart from the normal sequence of procedures
in order to execute one statement, or a sequence
of statements, and then return to the normal
sequence.

FORMAT 1:

{THROUGH}
PERFORM procedure-name-l [{THRU} procedure-name-2]

FORMAT 2:

PERFORM procedure-name-l [{THRU} procedure-name-2]
{ i n t eg e r -1 }
{identifier-I} TIMES

FORMAT 3:

PERFORM procedure-name-l [{THRU} procedure-name-2]
-- {OR}

UNTIL condition-l {AND} condition-2

RULES:

1. Each identifier represents a numeric elementary item
des c rib e din the D a taD i vis ion. In form at 2, ide n t i fie r-l
must be described as a numeric integer.

2. The words THRU and THROUGH are equivalent.

3. When the PERFORM statement is executed, control is
transferred to the first statement of the procedure named
procedure-name-l. This transfer of control occurs only once
for each execution of a PERFORM statement. For those cases
where a transfer of control to the named procedure does take
place, an implicit transfer of control to the next
executable statement following the PERFORM statement is
established as follows:
a. If procedure-name-l is a paragraph-name and
procedure-name-2 is not specified, then the return is after
the last statement of procedure-name-l.
b. If procedure-name-l is a section-name and
procedure-name-2 is not specified, then the return is after
the last statement of the last paragraph in

2-1-82 NEVADA COBOL PAGE 55

procedure-name-l.
c. If procedure-name-2 is specified and it is a
paragraph-name, then the return is after the last statement
of the paragraph.
d. If procedure-name-2 is specified and it is a
section-name, then the return is after the last statement of
the last paragraph in the section.

4. There is no necessary relationship between
procedure-name-l and procedure-name-2 except that a
consecutive sequence of operations is to be executed
beginning at the procedure named procedure-name-l and ending
with the execution of the procedure named procedure-name-2.
In particular, GO TO and PERFORM statements may occur
between procedure-name-l and the end of procedure-name-2.
If there are two or more logical paths to the return point,
then procedure-name-2 may be the name of a paragraph
consisting of the EXIT statement, to which all of these
paths must lead.

5. If control passes to these procedures by means other than
a PERFORM statement, cont~ol will pass through the last
statement of the procedure to the next executable statement
as if no PERFORM statement mentioned these procedures.

6. The PERFORM statements operate as follows with rule 5
above applying to all formats:
a. Format I is the basic PERFORM statement. A procedure
referenced by this type of PERFORM statement is executed
once and then control passes to the next executable
statement following the PERFORM statement.
b. Format 2 is the PERFORM ••• TIMES. The procedures are
performed the number of times specified by integer-lor by
the initial value of the data item referenced by
identifier-l for that execution. If, at the time of
execution of a PERFORM statement, the value of the data item
referenced by identifier-l is equal to zero or is negative,
control passes to the next executable statement following
the PERFORM statement. Following the execution of the
procedures the specified number of times, control is
transferred to the next executable statement following the
PERFORM statement.

During execution of the PERFORM statement, references to
identifier-l cannot alter the number of times the procedures
are to be executed from that which was indicated by the
initial value of identifier-I.
c. Format 3 is the PERFORM •.• UNTIL. The specified
procedures are performed until the condition specified by
the UNTIL phrase is true. When the condition is true,
control is transferred to the next executable statement
after the PERFORM statement. If the condition is true when

2-1-82 NEVADA COBOL PAGE 56

the PERFORM statement is entered, no transfer to
procedure-name-l takes place, and control is passed to the
next executable statement following the PERFORM statement.
7. If a sequence of statements referred to by a PERFORM
statement includes another PERFORM statement, the sequence
of procedures associated with the included PERFORM must
itself either be totally included in, or totally excluded
from, the logical sequence referred to by the first PERFORM.
Thus, an active PERFORM statement, whose execution point
begins within the range of another PERFORM statement, must
not allow control to pass to the exit of the other active
PERFORM statement; furthermore, two or more such active
PERFORM statements may not have a common exit.

8. A PERFORM statement that appears in a section that is not
in an independent segment can have within its range, in
addition to any declarative sections whose execution is
caused within that range, only one of the following:
a. Sections and/or paragraphs wholly contained in one or
more non-independent segments.
b. Sections and/or paragraphs wholly contained in a single
independent segment.

9. A PERFORM statement that appears in an independent
segment can have within its range, in addition to any
declarative sections whose execution is caused within that
range, only one of the following:
a. Sections and/or paragraphs wholly contained in one or
more non-independent segments.
b. Sections and/or paragraphs wholly contained in the same
independent segment as the PERFORM statement.

EXAMPLE:

0750
0751
0791
0799
0800
0801

PERFORM CALCULATE-PAY THRU PARA-END.
PERFORM MAIN-PROGRAM.
PERFORM CHECK-ROUTINE 5 TIMES.
PERFORM TEST-ROUTINE UNTIL CODE-l > T-CODE.
PERFORM PARA-l THRU PARA-2

UNTIL A = B OR X=Y AND Z=W.

8-1-82 NEVADA COBOL

READ

FUNCTION: To make available the next logical record
from an open file.

FORMAT:

{AT END }

PAGE 57

READ

READ file-name RECORD {INVALID KEY} imperative-statement

RULES:

1. A file must be OPENed before it can be read.

2. The AT END statement must be used for SEQUENTIAL files
and is executed at the end of the file.

3. The INVALID KEY statement must be used with RANDOM files
and if executed the data in the user area is unspecified.

4. The number of the requested record in a RANDOM file must
be placed in the RELATIVE KEY before the READ statement is
executed.

5. When reading variable length delimited files the record
area should be cleared to spaces before each read because
the data in the user record area to the right of the last
valid character of the input item is unspecified i.e., what
ever data was there from before the read will be there.

6. When reading variable length delimited files the TAB
(09H) characters created by some text editors are not
expanded to avoid conflict with packed decimal (COMP-3) data
type. If tab characters are used they can be expanded by
CP/M's PIP command using the "T" option before processing by
COBOL prog rams.

EXAMPLE:

0800 READ-ROUTINE.
0801 MOVE SPACES TO PAYROLL-RECORD.
0802 READ OLD-PAYROLL-MASTER-FILE
0803 AT END GO TO OLD-EOJ-ROUTINE.
0900 READ-RANDOM.

* if you wanted record 100 in a random file
0901 MOVE 100 TO KEY3-RECORD-NUMBER.
0902 READ IN-RANDOM-FILE
0903 INVALID KEY DISPLAY "INVALID KEY".

2-1-82 NEVADA COBOL PAGE 58

REWRITE REWRITE

FUNCTION: To replace a record existing in a disk file.

FORMAT:

REWRITE record-name [INVALID KEY imperative-statement]

RULES:

1. The file must have been opened in the I-O mode.

2. The record-name must be the name of a logical record in
the FILE SECTION of the DATA DIVISION.

3. The REWRITE statement must have been preceeded by a
successful READ statement in the SEQUENTIAL ACCESS MODE as
it is this logical record that is replaced.

4. The INVALID KEY clause must be used for RANDOM files.

5. For files accessed in RANDOM access mode the record
logically replaces the record specified by the contents of
the RELATIVE KEY data item associated with the file.

EXAMPLE:

* in-file is the file name and in-rec is a record name
* for the file

0097 SEQ-REWRITE.
0098 READ IN-FILE RECORD AT END GO TO EOJ.
0099 MOVE NEW-DATA TO IN-REC.
0100 REWRITE IN-REC.
0200 RANDOM-REWRITE.
0201 MOVE 100 TO KEY-REL.
0202 REWRITE NEW-REC INVALID KEY GO TO ERROR.

2-1-82 NEVADA COBOL PAGE 59

STOP

FUNCTION: To cause permanent or temporary suspension of
the execution of the object program.

FORMAT:

{literal}
STOP {RUN }

RULES:

STOP

1. All files should be closed before a STOP RUN statement is
issued.

2. The STOP RUN statement must be the last statement
executed in the program as the operating system takes
control after execution.

3. The literal is displayed on the console device and waits
for a code followed by a carriage return to be entered as
follows:

C <CR)= continue
E <CR)= exit to operating system.

EXAMPLE:

0900 END-OF-JOB. STOP RUN.
0500 ERR. STOP "SIZE ERROR ENTER C TO CONTINUE".

2-1-82 NEVADA COBOL PAGE 60

SUBTRACT SUBTRACT

FUNCTION: To subtract one numeric data item from another and
set the value of an item equal to the result.

FORMAT:

{literal-I} {literal-2}
SUBTRACT {identifier-I} FROM {identifier-2}

[GIVING identifier-3] [ROUNDED]

[, ON SIZE ERROR imperative-statement]

RULES:

1. Each identifier must refer to a elementary numeric item,
except identifier-3 which may refer to a elementary numeric
edited item.

2. The composite of operands must not contain more than 18
digits.

3. An identifier can only reference an elementary item.

4. Each operand can contain an operational sign and an
implied decimal point.

5. Operands are aligned according to implied decimal points.

6. ROUNDED performs a test to see if right truncation will
occur and, if it will, adjusts the result by adding 1 if the
truncated digit is 5 or greater.

7. ON SIZE ERROR performs a test to see if overflow has
occurred and, if it has, executes the imperative-statement.

EXAMPLE:

0870
0871

SUBTRACT TAXES FROM GROSS-PAY GIVING NET-PAY
ROUNDED ON SIZE ERROR GO TO TAX-ERR-ROUTINE.

2-1-82 NEVADA COBOL PAGE 61

WRITE WRITE

FUNCTION: To release a record to an output file. To
allow for vertical positioning if the output
device is a printer.

FORMAT:

{PAGE
{-

WRITE record-name [BEFORE ADVANCING {integer

}
LINE }
LINES}]

WRITE record-name [INVALID KEY imperative-statement]

RULES:

1. The record-name must be the name of a logical record in
the FILE SECTION of the DATA DIVISION.

2. The reserved word PAGE issues a standard form feed (OCH)
control character to the device driver.

3. Integer LINES issues the specified number of carriage
return line feeds.

4. The INVALID KEY clause must be used for RANDOM files.

5. The requested record number must be placed in the
RELATIVE KEY before writing to a RANDOM file.

EXAMPLE:

0900 P-ROUTINE.
0901 WRITE PRINT-LINE BEFORE ADVANCING 2 LINES.
0902 MOVE SPACES TO PRINT-LINE.
0903 WRITE PRINT-LINE BEFORE ADVANCING PAGE.
1000 WRITE-RANDOM.
1001 MOVE 1000 TO KEY3.
1002 WRITE D-RANDOM-OUT
1003 INVALID KEY DISPLAY "INVALID KEY".
1050 SEQ-WRITE.
1051 WRITE D-REC.

2-1-82 NEVADA COBOL PAGE 62

SECTION V

INTRODUCTION

COBOL (Common Business Oriented Language) is an easy to
learn programming language that has been used for business
applications since the early 1960s. Because COBOL uses
simple English statements, programmers need not be concerned
with the unique details of the computer and can therefore
concentrate their energies on solving particular business
problems. NEVADA COBOL is an up-to-date subset designed for
small businesses using microprocessors.

A few years ago most programmers thought in terms of
creating a program as if they were creating a work of art,
which -like a painting- could never be changed. Today,
programs are engineered and built the way a construction
company designs and builds a home. In both approaches the
objective is the completion of the program, but the
"building a program" concept suggests an element of
productivity and modularity.

In order to start any building project one must first know
what the objectives are. In the case of writing a program
the objective is to produce an efficient, easy to maintain,
easy to change, easy to understand, easy to read program
that solves the problem.

SIMPLICITY

In our opinion SIMPLE IS BETTER. We often see COBOL,
FORTRAN, BASIC, and other languages so complicated with
nested statements and abbreviated labels, that the original
programmer can't understand the program six months later. In
the business world it is important that the program be
easily understood, because programs and businesses are
always changing. They are never complete. They are conceived
and born, they grow and change, and finally pass on. It is
important that the program doesn't pass on before its time.
By writing programs that are easily transported to other
equipment and easy to change we can increase their
longevity, thus increasing their value. So write and test
your COBOL programs on a microprocessor and then run them in
production on a giant machine when the time comes. Today,
the greatest cost of a computer system is not the hardware,
it's the software! That's because software is 95% labor. So
make your labor efficient by writing simple programs to
solve complex problems.

2-1-82 NEVADA COBOL PAGE 63

GLOSSARY

INTRODUCTION

The terms that follow are defined in accordance with their
meaning as used in this document describing NEVADA COBOL and
may not have the same meaning for other languages.

These definitions are also intended to be either reference
material or introductory material to be reviewed prior to
reading the detailed language specifications. For this
reason, these definitions are, in most instances, brief and
do not include detailed syntactical rules. Also, some terms
defined here are not yet implemented in NEVADA COBOL.

DEFINITIONS

Abbreviated combined relation condition - The combined
condition that results from the explicit omission of a
common subject or a common subject and common relational
operator in a consecutive sequence of relation conditions.

Access Mode - The manner in which records are to be operated
upon within a file.

Actual Decimal Point - The physical representation, using
e i the r 0 f the dec i mal po in t c ha r act e r s per i 0 d (.) 0 r com rna
(,), 0 f the dec i mal po in t po sit ion ina d a t a item.

Alphabetic Character - A character that belongs to the
following set of letters: A, B, C, D, E, F, G, H, I, J, K,
L, M, N, 0, P, Q, R, S, T, U, V, W, X, Y, Z, and the space.

Alphanumeric character - Any character in the computer's
character set.

Alternate Record Key - A key, other than the prime record
key, whose contents identify a record within an indexed
file.

Arithmetic Expression - An arithemetic expression can be an
identifier or a numeric elementary item, a numeric literal,
such identifiers and literals separated by arithmetic
operators, two arithmetic expressions separated by an
arithmetic operator, or an arithmetic expression enclosed in
parentheses.

Arithmetic Operator - A single character, or a fixed
two-character combination, that belongs to the following
set:

2-1-82

character
+

*
/
**

NEVADA COBOL

meaning
addition
subtraction
multiplication
division
exponentiation

PAGE 64

Ascending Key - A key upon the values of which data is
ordered starting with the lowest value of key up to the
highest value of key in accordance with the rules for
comparing data items.

Assumed Decimal Point - A decimal point position which does
not involve the existence of an actual character in a data
item. The assumed decimal point has logical meaning but no
physical representation.

At End Condition - A condition caused:

1. During the execution of a READ statement for a
sequentially accessed file.
2. During the execution of a RETURN statement, when no next
logical record exists for the associated sort or merge file.

Block - A physical unit of data that is normally composed of
one or more logical records. For mass storage files, a block
may contain a portion of a logical record. The size of a
block has no direct relationship to the size of the file
within which the block is contained or to the size of the
logical record(s) that are either continued within the block
or that overlap the block. The term is synonymous with
physical record.

Called Program - A program which is the object of a CALL
statement.

Calling Program - A program which executes a CALL to another
program.

Character - A basic indivisible unit ~f the language.

Character Position - A character position is the amount of
physical storage required to store a single standard data
format character described as usage is DISPLAY.

Character-string - A sequence of contiguous characters which
form a COBOL word, a literal, a PICTURE character-string, or
a comment-entry.

Class condition - The proposition, for which a truth value
can be determined, that the content of an item is wholly

2-1-82 NEVADA COBOL PAGE 65

alphabetic or is wholly numeric.

Clause - A clause is an ordered set of consecutive COBOL
character-strings whose purpose is to specify an attribute
of an entry.

COBOL Character
consists of the 51

Character
0,1, •••• 9
A,B, ••.• Z

+

*
/
=
$

"
(
)

>
<

Set - The complete COBOL character set
characters listed below:

Meaning
digit
letter
space (blank)
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

COBOL Word - (See Word)

Collating Sequence - The sequence in which the characters
that are acceptable in a computer are ordered for purposes
of sorting, merging, and comparing.

Column - A character position within a print line. The
columns are numbered from 1, by 1, starting at the leftmost
character position of the print line and extending to the
rightmost position of the print line.

Combined Condition - A condition that is the result of
connecting two or more conditions with the 'AND' or the 'OR'
logical operator.

Comment-Entry - An entry in the Identification Division
that may be any combination of characters from the COBOL
character set.

Comment Line - A source program line represented by an
asterisk in the indicator area of the line and any character
from the computer's character set in area A and area B of
that line. The comment line serves only for documentation
in a program. A special form of comment line represented by
a stroke (/) in the indicator area of the 1 ine and any

2-1-82 NEVADA COBOL PAGE 66

characters from the computer's character set in area A and
area B of that line causes page ejection prior to printing
the comment.

Compile time - The time at which a COBOL source program is
translated, by a COBOL compiler, to a COBOL object program.

Compiler Directing Statement - A statement, beginning with a
compiler directing verb, that causes the compiler to take
specific action during compilation.

Computer-Name - A system-name that identifies the computer
upon which the program is to be compiled or run.

Condition - A status of a program at execution time for
which a truth value can be determined. Where the term
'condition' (condition-I, condition-2, •••) appears in these
language specifications in or in reference to 'condition'
(condition-I, condition-2, •.•) of a gereral format, it is a
conditional expression consisting of either a simple
condition or a combined condition consisting of the
syntactically correct combination of simple conditions,
logical operators,pnd parentheses, for which a truth value
can be determined.

Condition-Name - A user-defined word assigned to a specific
value, set of values, or range of values, within the
complete set of values that a conditional variable may
possess.

Condition-Name Condition - The proposition, for which truth
value can be determined, that the value of a conditional
variable is a member of the set of values attributed to a
condition-name associated with the conditional variable.

Conditional Expression - A simple condition or a complex
condition specified in an IF, or PERFORM statement.

Conditional Statement - A conditional statement specifies
that the truth value of a condition is to be determined and
that the subsequent action of the object program is
dependent on this truth value.

Conditional Variable - A data item one or more values of
which has a condition-name assigned to it.

Configuration Section - A section of the Environment
Division that describes overall specifications of source and
object computers.

Connective - A reserved word that is used to:
1. Associate a data-name, paragraph-name,

2-1-82 NEVADA COBOL PAGE 67

condition-name, or text-name with its qualltler.
2. Link two or more operands written in a series.
3. Form conditions.

Contiguous Item - Items that are described by consecutive
entries in the Data Division, and that bear a definite
hierarchic relationship to each other.

Counter - A data item used for storing numbers or number
representations in a manner that permits these numbers to be
increased or decreased by the value of another number, or to
be changed or reset to zero or to an arbitrary positive or
negative value.

Currency Sign - A character '$' of the COBOL character set.

Currency Symbol - The character defined by the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph. If no CURRENCY SIGN
clause is present in a COBOL source program, the currency
symbol is identical to the currency sign.

Current Record - The record which is available in the record
area associated with the file.

Current Record Pointer - A conceptual entity that is used in
the selection of the next record.

Data Clause - A clause that appears in a data description
entry in the Data Division and provides information
describing a particular attribute of a data item.

Data Description Entry - An entry in the Data Division that
is composed of a level-number followed by a data-name, if
required, and then followed by a set of data clauses, as
required.

Data Item - A character or a set of contiguous characters
(excluding in either case literals) defined as a unit of
data by the COBOL program.

Data-Name - A user-defined word that names a data item
described in a data description entry in the Data Division.
When used in the general formats, 'data-name' represents a
word which can neither be subscripted, nor indexed unless
specifically permitted by the rules for that format.

Debugging Line - A debugging line is any line with 'D' in
the indicator area of the line.

Declaratives - A set of one or more special purpose
sections, written at the beginning of the Procedure
Division, the first of which is preceded by the key word

2-1-82 NEVADA COBOL PAGE 68

DECLARATIVES and the last of which is followed by the key
words END DECLARATIVES. A declarative is composed of a
section header, followed by a USE compiler directing
sentence, followed by a set of zero, one or more associated
paragraphs.

Declarative-Sentence - A compiler-directing sentence
consisting of a single USE statement terminated by the
separator period.

Delimiter - A character or a sequence of contiguous
characters that identify the end of a string of characters
and separates that string of characters from the following
string of characters. A delimiter is not part of the string
of characters that it delimits.

Descending Key - A key upon the values of which data is
ordered starting with the highest value of key down to the
lowest value of key, in accordance with the rules for
comparing data items.

Digit Position - A digit position is the amount of physical
storage required to store a single digit. This amount may
vary depending on the usage of the data item describing the
digit position.

Division - A set of zero, one or more sections of
paragraphs, called the division body, that are formed and
combined in accordance with a specific set of rules. There
are four (4) divisions in a COBOL program: Identification,
Environment, Data, and Procedure.

2-1-82 NEVADA COBOL PAGE 69

Division Header - A combination of words followed by a
period and a space that indicates that beginning of a
division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING data-name-l •••].

Dynamic Access - An access mode in which specific logical
records can be obtained from or placed into a mass storage
file in a non-sequential manner (see Random Access) and
obtained from a file in a sequential manner (see Sequential
Access), during the scope of the same OPEN statement.

Editing Character - A single character or a fixed
two-character combination belonging to the following set:

Character
B
o
+

CR
DB
Z

*
$

/

Meaning
space
zero
plus
minus
credit
debit
zero suppress
check protect
currency sign
comma (decimal point)
period (decimal point)
stroke (virgule, slash)

Elementary Item - A data item that is described as not being
further logically subdivided.

End of Procedure Division - The physical position in a COBOL
source program after which no further procedures appear.

Entry - Any descriptive set of consecutive clauses
terminated by a period and written in the Identification
Division, Environment Division, or Data Division of a COBOL
source program.

Environment Clause - A clause that appears as part of an
Environment Division entry.

Execution Time - (See Object Time) .

Extended Mode - The state of a file after execution of an
OPEN statement, with the EXTEND phrase specified, for that
file and before the execution of a CLOSE statement for that
file.

Figurative Constant - A compiler generated value referenced
through the use of certain reserved words.

2-1-82 NEVADA COBOL PAGE 70

File A collection of records.

File Clause - A clause that appears as part of a File
description (FD).

FILE-CONTROL - The name of an Environment Division paragraph
in which the data files for a given source program are
declared.

File Description Entry - An entry in the File Section of the
Data Division that is composed of the level indicator FD,
followed by a file-name, and then followed by a set of file
clauses as required.

File-Name - A user-defined word that means a file described
in a file description entry or a sort-merge file description
entry within the File Section of the Data Division.

File Organization - The permanent logical file structure
established at the time that a file is createde

File Section - The section of the Data Division that
contains file description entries and sort-merge file
description entries together with their associated record
descriptions.

Format - A specific arrangement of a set of data.

Group Item - A named contiguous set of elementary or group
items.

High Order End - The leftmost character of a string of
characters.

I-a-CONTROL - The name of an Environment Division paragraph
in which object program requirements for specific
input-output techniques, rerun points, sharing of same areas
by several data files, and multiple file storage on a single
input-output device are specified.

I-O-MODE - The state of a file after execution of an OPEN
statement, with the 1-0 phrase specified, for that file and
before the execution of a CLOSE statement for that file.

Identifier - A data-name, followed as required, by the
syntactically correct combination of qualifiers, subscripts,
and indices necessary to make unique reference to a data
item.

Imperative Statement - A statement that begins with an
imperative verb and specifies an unconditional action to be
taken. An imperative statement may consist of a sequence of
imperative statements.

Index - A computer storage position or reqister, the
contents of which represent the identification of a
particular element in a table.

2-1-82 NEVADA COBOL PAGE 71

Index Data Item - A data item in which the value associated
with an index-name can be stored in a form specified by the
implementor.

Index-Name - A user-defined word that names an index
associated with a specific table.

Indexed Data-Name - An identifier that is composed of a
data-name, followed by one or more index-names enclosed in
parentheses.

Indexed File - A file with indexed organization.

Indexed Organization - The permanent logical file structure
in which each record is identified by the value of one or
more keys within that record.

Input File A file that is opened in the input mode.

Input Mode - The state of a file after execution of an OPEN
statement, with the INPUT phrase specified, for that file
and before the execution of a CLOSE statement for that file.

Input-Output File - A file that is opened in the 1-0 mode.

Input-Output Section - The section of the Environment
Division that names the files and the external media
required by an object program and which provides information
required for transmission and handling of data during
execution of the object program.

Integer - A numeric literal or an numeric data item that
does not include any character positions to the right of the
assumed decimal point. Where the term tinteger! appears in
general formats, integer must not be a numeric data item,
and must not be signed, nor zero unless explicitly allowed
by the rules of that format.

Invalid Key Condition - A condition, at object time, caused
when a specific value of the key associated with an indexed
or relative file is determined to be invalid.

Key - A data item which identifies the location of a record,
or a set of data items which serve to identify the ordering
of data.

Key of Reference - The key, either prime or alternate,
currently being used to access records within and indexed
file.

Key Word - A reserved word whose presence is required when
the format in which the word appears is used in a source
program.

Language-Name - A system-name that specifies a particular
programming language.

Level Indicator - Two alphabetic characters that identify a

2-1-82 NEVADA COBOL PAGE 72

specific type of file or a position in hierarchy.

Level-Number - A user-defined word which indicates the
position of a data item in the hierarchical structure of a
logical record or which indicates special properties of a
data description entry. A level-number is expressed as a
one or two digit number. Level-numbers in the range 1
through 49 indicate the position of a data item in the
hierarchical structure of a logical record. Level-numbers
in the range 1 through 9 may be written either as a single
digit or as a zero followed by a significant digit.
Level-numbers 66, 77, and 88 identify special properties of
a data description entry.

Library-Name - A user-defined word that names a COBOL
library that is to be used by the compiler for a given
source program compilation.

Library Text - A sequence of character-strings and/or
separators in a COBOL library.

Line Number - An integer that denotes the vertical position
of a line on a page.

Linkage Section - The section in the Data Division of the
called program that describes data items available from the
calling program. These data items may be referred to by
both the calling and called program.

Literal - A character-string whose value is implied by the
ordered set of characters comprising the string.

Logical Operator - One of the reserved words AND, OR or NOT.
In the formation of a condition, both or either of AND and
OR can be used as logical connectives. NOT can be used for
logical negation.

Logical Record - The most inclusive data item. The
level-number for a record is 01.

Low Order End - The rightmost character of a string of
characters.

Mass Storage - A storage medium on which data may be
organized and maintained in both a sequential and
nonsequential manner.

Mass Storage File - A collection of records that is assigned
to a mass storage medium.

Mnemonic-Name - A user-defined word that is associated in
the Environment Division with a specified implementor-name.

Native Character Set - The implementor-defined character set
associated with the computer specified in the
OBJECT-COMPUTER paragraph.

Native Collating Sequence - The implementor-defined

2-1-82 NEVADA COBOL PAGE 73

collating sequence assocIated WItn the computer specified In
the OBJECT-COMPUTER paragraph.

Negated Simple Condition - The 'NOT' logical operator
immediately followed by a simple condition.

Next Executable Sentence - The next sentence to which
control will be transferred after execution of the current
statement is complete.

Next Executable Statement - The next statement to which
control will be transferred after execution of the current
statement is complete.

Next Record - The record which logically follows the current
record of a file.

Noncontiguous Items - Elementary data items, in the
Working-Storage and Linkage Section, which bear no
hierarchic relationship to other data items.

Nonnumeric Item - A data item whose description permits its
contents to be composed of any combination of characters
taken from the computer's character set. Certain categories
of nonnumeric items may be formed from more restricted
character sets.

Nonnumeric Literal - A character-string bounded by quotation
marks. The string of characters may include any character
in the computer's character set. To represent a single
quotation mark character within a nonnumeric literal, two
contiguous quotation marks must be used.

Numeric Character - A character that belongs to the
follow i ng set 0 f dig its: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Numeric Item - A data item whose description restricts its
contents to a value represented by characters chosen from
the digits '0' through '9'; if signed, the item may also
contain a '+', " or other representation of an
operational sign.

Numeric Literal - A literal composed of one or more numeric
characters that also contain either a decimal point, or an
algebraic sign, or both. The decimal point must not be the
rightmost character~ The algebraic sign, if present, must
be te leftmost character.

OBJECT-COMPUTER - The name of an Environment Division
paragraph in which the computer environment, within which
the object program is executed, is described.

Object of Entry - A set of operands and reserved words,
within a Data Division entry, that immediately follows the
subject of the entry.

Object Program - A set or group of executable machine
language instructions and other material designed to

2-1-82 NEVADA COBOL PAGE 74

interact with data to provide problem solutions. In this
context, an object program is generally the machine language
result of the operation of a COBOL compiler on a source
program. Where there is no danger of ambiguity, the word
'program' alone may be used in place of the phrase 'object
program' •

Object Time - The time at which an object program is
executed.

Open Mode - The state of a file after execution of an OPEN
statement for that file and before the execution of a CLOSE
statement for that file. The particular open mode is
specified in the OPEN statement as either INPUT, OUTPUT, 1-0
or EXTEND.

Operand - Whereas the general definition of operand is 'that
component which is operated upon', for the purposes of this
publication, any lowercase word (words) that appears in a
statement or entry format may be considered to be an operand
and, as such, is an implied reference to the data indicated
by the operand.

Operational Sign - An algebraic sign, associated with a
numeric data item or a numeric literal, to indicate whether
its value is positive or negative.

Optional Word - A reserved word that is included in a
specific format only to improve the readability of the
language and whose presence is optional to the user when the
format in which the word appears is used in a source
program.

Output File - A file that is opened in either the output
mode or extend mode.

2-1-82 NEVADA COBOL PAGE 75

Output Mode - The state of a file after execution of an OPEN
statement, with the OUTPUT or EXTEND phrase specified for
that file and before the execution of a CLOSE statement for
that file.

Page - A vertical division of a report representing a
physical separation of report data, the separation being
based on internal reporting requirements and/or external
characteristics of the reporting medium.

Paragraph - In the Procedure Division, a paragraph-name
followed by a period and a space and by zero, one, or more
sentences. In the Identification and Environment Divisions,
a paragraph header followed by zero, one, or more entries.

Paragraph Header - A reserved word, followed by a period and
a space that indicates the beginning of a paragraph in the
Identification and Environment Divisions. The permissible
headers are:

In the Identification Division:
PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

In the Enviroment Division:
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

Paragraph-Name - A user-defined word that identifies and
begins a paragraph in the Procedure Division.

Phrase - A phrase is an ordered set of one or more
consecutive COBOL character-strings that form a portion of a
COBOL procedural statement or of a COBOL clause.

Prime Record Key - A key whose contents uniquely identify a
record within an indexed file.

Procedure - A paragraph or group of logically successive
paragraphs, or a section or group of logically successive
sections, within the Procedure Division.

Procedure-Name - A user-defined word which is used to name a
paragraph or section in the Procedure Division. It consists
of a paragraph-name or a section-name.

Program-Name - A user-defined word that identifies a COBOL
source program.

2-1-82 NEVADA COBOL PAGE 76

Punctuation Character - A character that belongs to the
following set:

Character Meaning
comma
semicolon
period ..

(
)

=

quotation mark
left parenthesis
right parenthesis
equal sign

Random Access An access mode in which the
program-specified value of a key data item identifies the
logical record that is obtained from, deleted from or placed
into a relative or indexed file.

Record - (See Logical Record).

Record Area - A storage area allocated for the purpose of
processing the record described in a record description
entry in the File Section.

Record Description Entry - The total set of data description
entries associated with a particular record.

Record Key - A key, either the prime record key or an
alternate record key, whose contents identify a record
within an indexed file.

Record-Name - A user-defined word that names a record
described in a record description entry in the Data
Division.

Reference Format - A format that provides a standard method
for describing COBOL source programs.

Relation Character - A character that belongs to the
following set:

Character
>
<
=

Meaning
greater than
less than
equal to

Relation Condition - The proposition, for which a truth
value can be determined, that the value of an arithmetic
expression or data item has a specific relationship to the
value of another arithmetic expression or data item.

Relational Operator - A reserved word, a relation character,
or group of consecutive reserved ,words, or a group of
consecutive reserved words and relation characters used in
the construction of a relation condition. The permissible
operators and their meaning are:

Relational operator
IS [NOT] GREATER THAN
IS [NOT] >

Meaning

Greater than or not greater

2-1-82 NEVADA COBOL PAGE 77

IS [NOT] LESS THAN
IS [NOT] <

IS [NOT] EQUAL TO
IS [NOT] =

Less than or not less than

Equal to or not equal to

Relative File - A file with relative organization.

Relative Key - A key whose contents identify a logical
record in a relative file.

Relative Organization - The permanent logical file structure
in which each record is uniquely identified by an integer
value greater than zero, which specifies the record's
logical ordinal position in the file.

Reserved Word - A COBOL word specified in the list of words
which may be used in COBOL source programs, but which must
not appear in the programs as user-defined words or
system-names.

Routine-Name - A user-defined word that identifies a
procedure written in a language other than COBOL.

Section - A set of zero, one, or more paragraphs or entries,
called a section body, the first of which is preceded by a
section header. Each section consists of the section header
and the related section body.

Section Header - A combination of words followed by a period
and a space that indicates the beginning of a section in the
Environment, Data and Procedure Division.

In the Environment and Data Divisions, a section header is
composed of reserved words followed by a period and a space.
The permissible section headers are:

In the Environment Division:
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:
FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a section header is composed of a
section-name, followed by the reserved word SECTION,
followed by a s e g men t - n urn be r (0 p t ion a I), followed by a
period and a space.

Section-Name - A user-defined word which names a section in
the Procedure Division.

Segment-Number - A user-defined word which classifies
sections in the Procedure Division for purposes of
segmentation. Segment-numbers may contain only characters

2-1-82 NEVADA COBOL PAGE 78

10 1 , III ••• ,' 9'. A segment-number may be expressed
either as one or two digit number.

Sentence - A sequence of one or more statements, the last of
which is terminated by a period followed by a space.

Separator - A punctuation character used to delimit
character-strings.

Sequential Access - An access mode in which logical records
are obtained from or placed into a file in a consecutive
predecessor-to-successor logical record sequence determined
by the order of records in the file.

Sequential File - A file with sequential organization.

Sequential Organization - The permanent logical file
structure in which a record is identified by a
predecessor-successor relationship established when the
record is placed into the file.

Sign Condition - The proposition, for which a truth value
can be determined, that the algebraic value of a data item
or an arithmetic expression is either less than, greater
than, or equal to zero.

Simple Condition - Any single condition chosen from the set:
relation condition
class condition
condition-name condition
sign cond i tion

SOURCE-COMPUTER - The name of an Environment Division
paragraph in which the computer environment, within which
the source program is compiled, is described.

Source Program - Although it is recognized that a source
program may be represented by other forms and symbols, in
this document it always refers to a syntactically correct
set of COBOL statements beginning with an Identification
Division and ending with the end of the Procedure Division.
In contexts where there is no danger of ambiguity, the word
Iprograml alone may be used in place of the phrase Isource
program l •

Special Character - A character that belongs to the
following set:

Character
+

*
/
=
$

Meaning
plus sign
minus sign
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)

2-1-82

"
(
)

>
<

NEVADA COBOL

_ •• _ ~ _ ~ .: _ _ _ _ ~ 1,
Y. u V L. a L. J. V 11 HI a L I\.

left parenthesis
right parenthesis
greater than symbol
less than symbol

PAGE 79

Special-Character Word - A reserved word which is an
arithmetic operator or a relation character.

SPECIAL-NAMES - The name of an Environment Division
paragraph in which implementor-names are related to user
specified mnemonic-names.

Special Registers - Compiler generated storage areas whose
primary use is to store information produced in conjunction
with the user of specific COBOL features.

Standard Data Format - The concept used in describing the
characteristics of data in a COBOL Data Division under which
the characteristics or properties of the data are expressed
in a form oriented to the appearance of the data on a
printed page of infinite length and breadth, rather than a
form oriented to the manner in which the data is stored
internally in the computer, or on a particular external
med i urn.

Statement - A syntactically valid combination of words and
symbols written in the Procedure Division beginning with a
verb.

Subject of Entry - An operand or reserved word that appears
immediately following the level indicator or the
level-number in a Data Division entry.

Subprogram - (See Called Program).

Subscript - An integer whose value identifies a particular
element in a table.

Subscripted Data-Name - An identifier that is composed of a
data-name followed by one or more subscripts enclosed in
parentheses.

System-Name - A COBOL word which is used to communicate with
the operating environment.

Table - A set of logically consecutive items of data that
are defined in the Data Division by means of the OCCURS
clause.

Table Element - A data item that belongs to the set of
repeated items comprising a table.

Text-Name - A user-defined word which identifies library
text.

Text-Word - Any character-string or separator, except space,
in a COBOL library.

2-1-82 NEVADA COBOL PAGE 80

Truth Value - The representation of the result of the
evaluation of a condition in terms of one of two values

true
false

Unary Operator - A plus (+) or a minus (-) sign, which
precedes a variable or a left parenthesis in an arithmetic
expression and which has the effect of multiplying the
expression of +1 or -1 respectively.

User-Defined Word - A COBOL word that must be supplied by
the user to satisfy the format of a clause or statement.

Variable - A data item whose value may be changed by
execution of the object program. A variable used in an
arithmetic expression must be a numeric elementary item.

Verb - A word that expresses an action to be taken by a
COBOL compiler or object program.

Word - A character-string of not more than 30 characters
which forms a user-defined word, a system-name, or a
reserved word.

Working-Storage Section - The section of the Data Division
that describes working storage data items, composed either
of noncontiguous items or of working storage records or of
both.

77-level-Description-Entry - A data description entry that
describes a noncontiguous data item with the level-number
77.

2-1-82 NEVADA COBOL PAGE 81

LANGUAGE CONCEPTS

CHARACTER SET

The standard (ANSI-1974) COBOL character set consists of the
following 51 characters:

0,1, ••• ,9
A,B, ••• ,Z

...

*
/
=
$

"
(
)

>
<

USER-DEFINED WORDS

digit
letter
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

A word contains not more than 30 characters from the set
{A-Z,0-9,and -}. A user-defined word cannot begin or end
with a (-) hyphen and must contain at least one alphabetic
character.

PUNCTUATION

The period, comma, or semicolon must immediately follow the
last character of a word and be followed by a space. The
comma and the semicolon are interchangeable. The left
parenthesis must not be followed by a space and the right
parenthesis must not be preceeded by a space.

EXAMPLE:

1234 MOVE MONEY (10) TO SAVING-AND-LOAN.

8-1-82

LITERALS

NUMERIC

NEVADA COBOL PAGE 82

1. A numeric literal must contain from 1 to
18 characters.
2. A numeric literal cannot be bounded by
quotation marks.
3. ·A numeric literal can contain a minus (-)
sign as its left most character. If there is
no minus sign the literal is assumed to be
positive.
4. A decimal point (.) can appear within a
numeric literal. If there is no decimal point
the literal is assumed to be an integer. The
decimal point cannot be to the immediate
left of a minus sign or as the right most
character in the literal.

NON-NUMERIC

EXAMPLE:

1. A non-numeric literal must be bounded by
quotation marks ("). The word quote cannot
be used.
2. A non-numeric literal must contain from
1-120 characters.
3. Each imbedded pair of quotation marks
creates one quotation mark in the literal.
4. A second set of quotation marks (") can
be used to bound hexadecimal values. Each
hexadeciamal value can be separated by a
comma. Hexadecimal characters are from the
set 0-9 and A-F.

* note the following 2 lines would display ABC
0051 DISPLAY "ABC".

* the following is a hexadecimal literal for ABC
0050 GRAPHICS. DISPLAY ""41,42,43"".

* the following line would display a single quotation
* mark because of the imbedded pair of quotation marks.

0052 DISPLAY"""".
0053 DISPLAY "LONG LINE CONTINUES TO NEXT LINE
0054- " QUOTE IN COL 10 & - IN COL 5 IS NECESSARY".

* numeric literals
0060 MATH. ADD 1 TO TOTAL-ITEMS.
0061 ADD 3.75 TO AMT-SAVED.

2-1-82 NEVADA COBOL PAGE 83

FIGURATIVE CONSTANTS

1. The reserved words ZERO, ZEROS or ZEROES represents one
or more occurrences of the character zero (0).

2. The reserved words SPACE or SPACES represents one or more
occurrences of the character space (blank).

3. The reserved words QUOTE or QUOTES represents one or more
occurrences of the character quote (").

4. The reserved words HIGH-VALUE or HIGH-VALUES represents
one or more occurrences of the character FF Hexadecimal.

5. The reserved words LOW-VALUE or LOW-VALUES represents one
or more occurrences of the character 00 Hexadecimal.

6. The reserved word ALL "literal" represents one or more
occurrences of the single non-numeric literal character.

EXAMPLE:

0001
0002
0003
0004

MOVE ALL "X" TO CUSTOMER-NAME.
IF CUSTOMER-NAME IS EQUAL TO ALL "X"

GO TO PRT-ALIGNMENT.
MOVE HIGH-VALUES TO OUT-RECORD.

2-1-82 NEVADA COBOL PAGE 84

SUBSCRIPTING

A subscript is an integer whose value determines the ordinal
position of an item in a table. This value can cross record
boundaries (4095) for large tables (30K - 40K+) in
working-storage by having a series of tables and referencing
the first one with a subscript value which points to an item
in the second, thi rd, ••• table. However, if the subscript
value is such that it crosses a record boundary and no table
follows, then there is no error indication and the results
are un s pe c i fie d •

EXAMPLE:

0001 WORKING-STORAGE.
0002 01 TABLE.
0003 02 FILLER PIC X(9) VALUE "JANUARY
0004 02 FILLER PIC X(9) VALUE "FEBRUARY
0005 02 FILLER PIC X(9) VALUE "MARCH
0006 02 FILLER PIC X(9) VALUE "APRIL
0007 02 FILLER PIC X(9) VALUE MAY
0008 02 FILLER PIC X(9) VALUE JUNE
0009 02 FILLER PIC X(9) VALUE JULY
0010 02 FILLER PIC X(9) VALUE AUGUST
0011 02 FILLER PIC X(9) VALUE SEPTEMBER.
0012 02 FILLER PIC X(9) VALUE OCTOBER "
0013 02 FILLER PIC X(9) VALUE NOVEMBER"
0014 02 FILLER PIC X(9) VALUE DECEMBER"
0015 01 M-TBL REDEFINES TABLE.
0016 02 MONTH OCCURS 12 TIMES PIC IS X(9).
0017 PROCEDURE DIVISION.
0018 DATE-PARA.
0019 MOVE MONTH (MONTH-NO) TO PRT-MONTH-NAME.
0020*
0021* other examples.
0022*
1234 MOVE ITEM TO TABLE (7).
1235 MOVE TABLE (7) TO PRINT-ITEM-SEVEN.
1236 MOVE 007 TO INDEX-I.
1237 MOVE TABLE (INDEX-I) TO PRINT-ITEM-SEVEN.
1238 MOVE ZEROS TO TABLE (3000).
1239 MOVE SPACES TO PRINT-LINE.
1240* if both BIN-l and Xl are binary data types then at run
1240* time the math is 20 times faster than decimal.
1241 ADD BIN-l TO Xl.
1242 IF ITEM (Xl) IS EQUAL TO SPEED GO TO FAST.
1243 MOVE ALL "A" TO PRINT-LINE.

2-1-82 NEVADA COBOL PAGE 85

SYMBOLS AND CONVENTIONS

The symbology used in this manual is the standard COBOL
symbology and the carriage return symbol.

1. Lower-case characters represent data to be supplied by
the programmer.

2. Underlined UPPER-CASE characters are key words that must
be used.

3. Upper-case characters that are not underlined are
optional reserved words.

4. Braces {} indicate that a choice must be made.

5. Square br aC'kets [] i nd ica te opt ional in fo rma t ion.

6. Ellipsis (•••), three consecutive periods, indicate that
preceeding clauses can be repeated.

7. The carriage return is indicated by <CR).

8-1-82 NEVADA COBOL PAGE 86

SECTION VI

OPERATING PROCEDURES

HARDWARE REQUIRED

1. 8080/Z80/8085 microprocessor.
2. A minimun of 32K of RAM for the compiler.
3. Any disk drive.
4. Video display and keyboard.

SOFTWARE REQUIREMENTS

Digital Research Corp's CP/M operating system.
CP/M is a trademark of Digital Research Corp.
Any text editor that terminates a line with a
carriage return line feed.

FILES ON THE DISTRIBUTION DISKETTE

CC.COM is the COBOL COMPILER and is always on the
default drive at compile time.

W4.COM is a random file and is always on the default
drive at compile time.

W5.CBL is the error message file and is always on
the default drive at compile time. This file
is a standard text file that may be changed
by the user.

RUN.COM is the run time loader/subroutine code and
can be on any drive. It is only used at run
time.

ERRORS.COM displays the error report from the
default drive. This program is used to
re-display the error report from the last
compile but is not required for compiling.

RENUMBER.CBL is a COBOL source code program that
must be compiled before it can be used. It
renumbers COBOL source programs.

CONFIG.CBL is a COBOL source code program that must
be compiled before it can be used. It will
configure the CRT for line length, BIOS
and the delete character, etc.

CONVHEX.COM converts (.HEX) files to (.OBJ) files.
This program is executed as follows:

CONVHEX file-name[.HEX].

The program will create the output file if
necessary with the same file-name and type
(. OBJ) •

FILES NOT DISTRIBUTED BUT WILL BE CREATED AT COMPILE TIME.

Wl.WRK is a work file and will be created on the
default drive or the assigned drive at

8-1-82 NEVADA COBOL PAGE 87

compile tIme.
W3.WRK is the error work file and will be

created on the default drive at compile
time.

GETTING STARTED

NEVADA COBOL is distributed on a DATA DISK without the CP/M
operating system, so, first, prepare a CP/M system's
diskette for use as your NEVADA COBOL operations diskette.
On 5 1/4 inch diskettes you may have to remove (use the CP/M
ERA command) most of the files in order to make room for the
COBOL files.

Then insert the newly created CP/M diskette in disk drive A,
and insert the NEVADA COBOL diskette in drive B and type
(ctl-c) to initialize CP/M. Now copy all the files from the
COBOL diskette onto the CP/M diskette.

PIP A:=B:*.*[VO]

If you get a write error message from CP/M during the PIP
operation it usually means the disk is full and you should
erase more files from the operational diskette.

At this point, put the NEVADA COBOL diskette in a safe
place. You will not need it unless something happens to your
operations diskette. By the way, back up your operations
diskette with a copy each week! If your system malfunctions
you can then pat yourself on the back for having a safe back
up copy of your work.

Now, boot up the newly created NEVADA COBOL operations
diskette. Notice that CP/M display's the amount of memory
for which this version of CP/M has been specialized.
Compiling and executing of COBOL programs should be done on
the same CP/M version or one of larger memory unless your
COBOL programs are given an upper address limit. Also, do
not write protect this operations diskette because during a
compile data will be written onto it.

BUILDING A PROGRAM

The first step is to create a COBOL source program file.
This can be done by using a text editor like NEVADA EDIT and
copying an existing COBOL program file like RENUMBER.CBL and
creating a new program file like MYPROG.CBL. Then modify
MYPROG.CBL as required. This saves keying time as well as
avoiding the possibility of misspelling required key words.
Each line must be terminated with a carriage return line
feed. This is automatically done with NEVADA EDIT or ED
(text editor that comes with CP/M).

You can use the RENUMBER program to automatically number or
renumber the source program. All source programs must be .
type CBL.

8-1-82

COBOL CODING FORMAT
optional

Sequence number
Indicator area
A-field
B-field

NEVADA COBOL

ANSI-1974
column

1-6
7

8-11
12-72

NEVADA COBOL
col umn

1-4
5

6-9
10-70

PAGE 88

1. The user can use either format as the compiler looks at
the first line of the source program and determines either 4
position or 6 position line numbers are used. When
converting ANSI programs to NEVADA COBOL (or vice versa)
adjust the sequence number by two positions and the other
columns will align properly. We felt that 9999 sequence
numbers would be enough for microprocessors and would also
be compatible with other microprocessor software (ie.
RENUMBER, edi ts, etc.).

2. The indicator area can contain only the following:
* which indicates a comments line.
/ which indicates a comments line after head

of fo rms.
SPACE which indicates a standard COBOL statement line.

D which indicates a Debugging line.
which indicates a continuation line. When a
non-numeric literal is continued a quotation
mark (") must also appear in column 10.

All other characters are flagged by the compiler and are
treated as comment lines.

3. Sequential line numbers are required because all errors
are referenced by line number.

4. Each line must be terminated by a carriage return line
feed (ODOA hex) •

EXAMPLE:
Col umns
123456789012345678901234567890
0001 IDENTIFICATION DIVISION.
0002* this is a comment line. the next line is blank
0003*

COMPILING A PROGRAM

To compile a program simply type CC file-name. A copyright
message will appear until the error report is displayed or
until the successful compile message is displayed. Using
the error report line number/message correct the source and
recompile if necessary. The compile can be interrupted
(aborted) by pressing the CONTROL-C keys. In the following
examples the CP/M operating system gives the prompt A> and
the user types in the rest of the line.

A>CC RENUMBER<CR>

8-1-82 NEVADA COBOL PAGE 89

in the above case, the source file RENUMBER.CBL is on the
default drive. The object code file will be created if
necessary on the default drive with the file-name of
RENUMBER.OBJ. The work file WI will be created if necessary
on the default drive.

A>CC SOURCE.BBB<CR>

in the above example, all assignable files are on disk drive
B. The type field is used for drive assignment. The first
position is for the source file, the second position is for
the object file and the third position is for WI a large
work file. All source files must be type' .CBL'.

A>CC CONFIG.ABB<CR>

in the above case, the source file CONFIG.CBL is on drive
(A) and the object file CONFIG.OBJ will be created if
necessary on drive (B) as will the work file WI.WRK.

Warning: If you forget and type CC file-name.CBL you will
get a CP/M BDOS Select ERROR. Because the compiler will
look for drive C: or L: in error.

EXECUTING A PROGRAM

Once the object file has been produced, the program can be
executed by simply typing RUN file-name. The run time
package is called RUN and lives in memory locations IOOH to
2EFFH. It contains a special loader and all the required run
time subroutines. Execution of the program can be
interrupted (aborted) by pressing the CONTROL C keys.

A>RUN u:OBJECT<CR>
in the above case, RUN is on the current logged-in drive A
and OBJECT is on some other disk drive u:

B>RUN A:PAYROLL<CR>
in the above case RUN.COM is on the current logged-in drive
(B) and PAYROLL.OBJ is on drive (A).

A>RUN RENUMBER<CR>
where RUN.COM and the object program RENUMBER.OBJ are both
on the current logged-in disk drive (A). The program
RENUMBER is used to renumber the first four positions of
COBOL source code programs. After loading it asks the
question:
ENTER FILE NAME A:FILENAME.TYP
at this point the user enters his program-name.

A:CONFIG.CBL
the program then renumbers the requested file-name and when
complete displays:

RENUMBERING COMPLETE

8-1-82 NEVADA COBOL PAGE 90

In some cases the renumber program issues error messages.
If a input line is all spaces (blank) or if any of the first
four positions contain a tab character (09H) the user is
notified that the line has been skipped. This is because the
renumber program uses the rewrite statement which cannot
expand the input.

A>RUN CONFIG
where RUN.COM and CONFIG.OBJ are both on the current
logged-in disk drive (A). The program CONFIG is used to
specialize the RUN time package and asks the following
questions:

ENTER SCREEN INFORMATION
ENTER 2-DIGIT HEXADECIMAL CODE FOR DELETE-KEY

this is usually 08 the CP/M standard Ctl-H
on the apple the backarrow is ISH

ENTER 2-DIGIT HEXADECIMAL CODE SENT TO BACKSPACE CURSOR
this is usually 08

IS THE BACKSPACE PRECEEDED WITH AN ESCAPE CHARACTER (Y/N)?
this is usually N

ENTER * OF CHARACTERS ACROSS SCREEN
this is usually 64 or 80

ENTER * OF LINES PER SCREEN PAGE
this is usually 16 or 24

DOES YOUR BIOS ISSUE A CR/LF
AT THE END OF EACH LINE (Y/N)?

this is usually Y
DOES YOUR PRINTER REQUIRE A LINE FEED (Y/N)?

this is usually Y
DO YOU WANT TO USE CPM FUNCTION 1 & 2
CONSOLE 1-0 (Y/N)?

if N other info will be displayed
DOES YOUR CPM BACKSPACE AND BLANK THE
DELETED CHARACTER (Y/N)?

this is usually N
DO YOU WANT TO ACCEPT ANY HEX CHARACTER
OR ONLY DISPLAY ASCII (H/A)?

this is usually A
EOJ CONFIG RETURNING TO CPM

Once the CONFIG program has been run and you are satisfied
with the way the ACCEPT/DISPLAY functions, the programs are
no longer needed on the operational diskette and may be
removed as follows: -----------

A)ERA CONFIG.*

LISTING A PROGRAM

To list a NEVADA COBOL source code program use the CP/M TYPE
command and if you have a printer use (ctl-p).

A)TYPE RENUMBER.CBL[CTL-P]<CR)
A)TYPE CONFIG.CBL(CR)
A)TYPE WS.CBL(CR)

2-1-82 NEVADA COBOL PAGE 91

SECTION VII

ERROR CODES AND MESSAGES

COMPILER ERROR MESSAGES

During compilation all error codes are output to a disk work
file (W3.WRK). At the end of each COBOL Division the
compiler checks for any fatal errors and terminates the
compile if any have been found. At the end of compilation a
report is displayed and is available for redisplay using the
program ERRORS if needed:

A)ERRORS(CR).

Using the CP/M feature control-p, the error messages can
also be sent to the printer as they are displayed. Also,
control-s can be used to stop and start the report.

All of the compiler error messages are contained on a file
named W5.CBL and can be changed by the user. For example,
you may want to hav~ your error messages displayed in German
or some other language. These messages can be more than one
line and upper-case or lower-case. See error code number 003
below for an example.

Th e L VL (I eve I) cod e s are F for Fat a 1 (n 0 0 b j e c t cod e
generated) and W for Warning Possible Error. Also, not shown
below each line is preceeded by the source programs actual
line number.

SEQ ERR
NO. COL
9999 70 001

002
003

004
dataname005
dataname006
dataname007
dataname008
dataname009
dataname010
dataname011

012
013
014
015
016
017
018
019

LVL TEXT
F SYNTAX ERROR
F NOT A COBOL WORD
F syntax error or period

missing from prior line
F FILE NOT SELECTED IN THE 1-0 SECTION
F OCCURS LIMITED TO ONE LEVEL
F SUBSCRIPTED ITEMS CANNOT BE REDEFINED
F PICTURE ITEMS MUST BE ELEMENTARY
F EDITED PICTURE CONTAINS ILLEGAL COMBINATIONS
F MAX RECORD LENGTH OF 4095 EXCEEDED
F ELEMENTARY ITEM DOES NOT HAVE PICTURE CLAUSE
F ILLEGAL REDEFINES DUE TO INCORRECT REFERENCE
F SUBSCRIPT ERROR
F ILLEGAL COMBINATION OF CHARACTERS IN PICTURE
F DUPLICATION OF PREVIOUS NAME IS ILLEGAL
F ENVIRONMENT DIVISION MISSING
F FD MUST CONTAIN A LABEL RECORD CLAUSE
F VALUE OF FILE-ID MISSING
F SUBSCRIPT LITERAL CONTAINS ILLEGAL VALUE
F USAGE CONFLICT

2-1-82

020
021
022
023

dataname024
dataname025

026
dataname027
paraname028
paraname029

030
031
032
033
034
035
036
037

dataname038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077

NEVADA COBOL

F OCCURS CLAUSE IS ILLEGAL AT 01 LEVEL
F VALUE IS ILLEGAL WITH OCCURS CLAUSE
F VALUE IS ILLEGAL FOR REDEFINED ITEMS
F ILLEGAL CHARACTER IN WORD
F MUST HAVE RELATIVE KEY
F MUST BE IN WORKING-STORAGE
F KEY NOT ELEMENTARY
F RELATIVE KEY MUST BE PIC 9(7)
F PARAGRAPH NAME IS No'r DEFINED
F PARAGRAPH NAME IS NOT ALTERABLE
F TOO MANY FILES SELECTED

PAGE 92

F NEED MORE MEMORY OR REDUCE SIZE OF LABELS
F CORRECT ALL ERRORS AND RECOMPILE
F MISSING DIVISION STATEMENT
F TOO MANY PARAGRAPH NAMES
F TOO MANY FORWARD REFERENCES
F NOTIFY ELLIS COMPUTING
F 01-10 AND 77 LEVELS ONLY
F IS NOT DEFINED
F AREA B MUST START WITH " ON CONTINUED LITERAL
F ILLEGAL HEXADECIMAL CHARACTER
F ILLEGAL FILE-ID "U:FILE"
F ASCII (DISPLAY) DATA TYPE REQUIRED
F RANDOM FILES MUST USE INVALID KEY CLAUSE
F RESERVED WORD NOT YET IMPLEMENTED
F VALUE/PICTURE SIGN ERROR
F COpy CANNOT ALSO COpy
F COpy FILE NAME TOO LONG
F COULD NOT FIND REDEFINED ITEM NAME
F LITERAL OVER 120 CHARACTERS LONG
W LITERAL TRUNCATED RIGHT END
W MORE THAN 30 CHARACTERS IN A WORD
F LITERAL LARGER THAN PICTURE
W REDEFINED AREA ADJUSTED
W EDITED PICTURE MODIFIED
W TWO RECORDS IN A FILE HAVE DIFFERENT SIZES
W COLUMN 5 OR 7 TREATED AS COMMENTS
W LINE NUMBER OUT OF SEQUENCE
W RANDOM FILE CANNOT BE DELIMITED
W PERIOD IS MISSING AFTER PREVIOUS WORD
F DECIMAL POINT SIZES DIFFERENT
W PRINTER CANNOT BE DELIMITED
F VALUE EXCEEDS 5 DIGITS FOR COMP
F ILLEGAL VALUE FOR COMP
F ILLEGAL CURRENCY SIGN
F COpy FILE-NAME MISSING
W ALL LITERAL LIMITED TO 1 BYTE
F ZERO MISSING IN BLANK WHEN ZERO
F BLANK WHEN ZERO NOT ALLOWED AT GROUP LEVEL
F BLANK WHEN ZERO MUST BE ASCII DISPLAY
F BLANK WHEN ZERO FOR NUMERIC ONLY
F JUSTIFIED MUST BE ELEMENTARY DATA ITEM
F JUSTIFIED CANNOT BE NUMERIC OR EDITED
W ADDRESS EXCEEDS CURRENT CPM BASE ADDRESS
F MORE THAN 255 LINKAGE ITEMS
F USING WITH NO LINKAGE SECTION
F IF/UNTIL NESTED CONDITIONAL ARE ILLEGAL
F RESERVED WORD "SENTENCE" IS ~ISSING

2-1-82

A~n
UfO

079
080
081

~
r

F

F

NEVADA COBOL

ONLY PRINTER FILES CAN HAVE OMITTED
MORE THAN ONE LABEL RECORDS CLAUSE
SUCCESSFUL COMPILE MEMORY AVAILABLE
MEMORY OVERFLOW REDUCE PROGRAM SIZE
look at MEMORY size clause under
OBJECT-COMPUTER.

PAGE 93

082
083

F
F

ADVANCING FOR PRINTER FILES ONLY
REDEFINES AT 01 LEVEL IN FILE SECTION
IS ILLEGAL

084
085
086
087
088
089

F
F

COMP AND COMP-3 CANNOT CONTAIN EDIT SYMBOLS
PROGRAM NAME
USER LINE ERR
LINE NO LVL TEXT
ENTER <CR> FOR NEXT LINE
ERROR MESSAGE NEXT LINE:

RUN TIME AND COMPILE TIME ERROR MESSAGES

The runtime package will display the unit and file-name
following the error codes. The following codes are also
used in the STATUS keys when specified.

90 No additional information
91 Error in extending the file
92 end of disk data - disk is full
93 file not open
94 no more directory space - disk is full
95 file cannot be found
96 file already open
97 reading unwritten data in random access
98 rewrite without prior read in 1-0 MODE
99 reading an output file or writing to an input file

100 ERROR MESSAGE NOT IN TABLE
Please send the code to Ellis Computing.

101 SUBSCRIPT ERROR value exceeds 65K.
102 BOUNDARY ERROR program fell through last paragraph.

Note: The RUN time package must be the one distributed with
the current version of the compiler. Older version will not
work. Also older versions of the object code programs will
not work with current RUN time packages and must be
recompiled.

2-1-82

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE
AND
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR

BEFORE
BLANK
BLOCK
BOTTOM
BY

CALL
CANCEL
CD
CF
CH
CHARACTER
CHARACTERS
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SET
COLLATING
COLUMN
COMMA
COMMUNICATION
COMP
COMPUTATIONAL
COMPUTE
CONFIGURATION
CONTAINS
CONTROL
CONTROLS
COpy
CORR
CORRESPONDING

NEVADA COBOL

SECTION VIII

ANSI-1974 COBOL RESERVED WORDS

x = implemented in NEVADA COBOL

x
X
X
X
X
X
X

X

X
X
X

X
X
X

X

X

X

X
X

X

X

X

X

X
X

X
X

X

PAGE 94

2-1-82 NEVADA COBOL PAGE 95

""r."""m \...UUL'IJ.

CURRENCY X

DATA X
DATE
DATE-COMPILED X
DATE-WRITTEN X
DAY
DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-l
DEBUG-SUB-2
DEBUG-S UB-3
DEBUGGING X
DECIMAL-POINT X
DECLARATIVES
DELETE
DELIMITED
DELIMITER X
DEPENDING X
DESCENDING
DESTINATION
DETAIL
DISABLE
DISPLAY X
DIVIDE X
DIVISION X
DOWN
DUPLICATES
DYNAMIC

EGI
ELSE X
EMI
ENABLE
END X
END-OF-PAGE
ENTER
ENVIRONMENT X
EOP
EQUAL X
ERROR X
ESI
EVERY
EXCEPTION
EXIT X
EXTEND

FD X
FILE X
FILE-CONTROL X
FILLER X
FINAL
FIRST X
FOOTING

2-1-82 NEVADA COBOL PAGE 96

FOR X
FROM X

GENERATE
GIVING X
GO X
GREATER X
GROUP

HEADING
HIGH-VALUE X
HIGH-VALUES X

I-O X
I-O-CONTROL X
IDENTIFICATION X
IF X
IN
INDEX
INDEXED
INDICATE
INITIAL X
INITIATE
INPUT X
INPUT-OUTPUT X
INSPECT X
INSTALLATION X
INTO X
INVALID X
IS X

JUST X
JUSTIFIED X

KEY X

LABEL X
LAST
LEADING X
LEFT X
LENGTH
LESS X
LIMIT
LIMITS
LINAGE
LINAGE-COUNTER
LINE X
LINE-COUNTER
LINES X
LINKAGE X
LOCK
LOW-VALUE X
LOW-VALUES X
MEMORY X
MERGE
MESSAGE
MODE X
MODULES X

2-1-82 NEVADA COBOL PAGE 97

I\Jlr"\'t Tr:t V
i'IV V.L.o A

MULTIPLE
MULTIPLY X

NATIVE
NEGATIVE
NEXT X
NO X
NOT X
NUMBER
NUMERIC X

OBJECT-COi'1PUTER X
OCCURS X
OF X
OFF X
OMITTED X
ON X
OPEN X
OPTIONAL
OR X
ORGANIZATION X
OUTPUT X
OVERFLOW

PAGE X
PAGE-COUNTER
PERFORM X
PF
PH
PIC X
PICTURE X
PLUS
POINTER
POSITION
POSITIVE
PRINTING
PROCEDURE X
PROCEDURES
PROCEED X
PROGRAM X
PROGRAM-ID X

QUEUE
QUOTE X
QUOTES X

RANDOM X
RD
READ X
RECEIVE
RECORD X
RECORDS X
REDEFINES X
REEL
REFERENCES
RELATIVE X
RELEASE

2-1-82 NEVADA COBOL PAGE 98

REMAINDER
REMOVAL
RENAMES
REPLACtNG X
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET
RETURN
REVERSED
REWIND
REWRITE X
RF
RH
RIGHT X
ROUNDED X
RUN X

SAME X
SD
SEARCH
SECTION X
SECURITY X
SEGMENT
SEGMENT-LIMIT
SELECT X
SEND
SENTENCE X
SEPARATE
SEQUENCE X
SEQUENTIAL X
SET
SIGN X
SIZE X
SORT
SORT-MERGE
SOURCE
SOURCE-COMPUTER X
SPACE X
SPACES X
SPECIAL-NAMES X
STANDARD X
STANDARD-l
START
STATUS X
STOP X
STRING
SUB-QUEUE-l
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACT X
SUM
SUPPRESS
SYMBOLIC
SYNC X
SYNCHRONIZED X

2-1-82 NEVADA COBOL PAGE 99

TABLE
TALLYING X
TAPE
TERMINAL
TERMINATE
TEXT
THAN X
THROUGH X
THRU X
TIME
TIMES X
TO X
TOP
TRAILING
TYPE

UNIT
UNSTRING
UNTIL X
UP
UPON
USAGE X
USE
USING X

VALUE X
VALUES
VARYING

WHEN
WITH X
WORDS X
WORKING-STORAGE X
WRITE X

ZERO X
ZEROES X
ZEROS X

+

*
/
**
> X
< X
= X

2-1-82 NEVADA COBOL

NEVADA COBOL RESERVED WORDS (NOT ANSI-1974)

ASCII
BEGINNING
COMP-3
COMPUTATIONAL-3
DISK
ENDING
FILE-ID
PRINTER

x
X
X
X
X
X
X
X

PAGE 100

2-1-82 NEVADA COBOL PAGE 101

SECTION IX

A COBOL PRIMER

INTRODUCTION

The NEVADA COBOL system consists of three elements: a
language, a compiler and a run time package. The language
is used by the programmer in writing the source program.
The compiler is a program that processes programmer-written
COBOL sentences and produces (compiles) an object program (a
program that is in machine language). The run time package
loads the object program and also contains subroutines used
by the object program.

ANALYSIS & DESIGN

This topic is too large to be covered here. The reader
should consult one of the many books on this subject. In
general, to prepare a business problem for solution, the
first step is to thoroughly describe the functions to be
performed and the objectives to be accomplished. One of the
most important parts of this analysis is the description of
the format of the input and output data. Special forms are
usually used. The form used for printers is called a printer
layout form and the form used for other files, such as Disk
or Tape, is called a Record layout form.

THE PROGRAM

After a job has been defined the program can be written. The
COBOL language was created specifically to facilitate the
processing of data generated by business and industry.

Every COBOL program consists of four separate divisions, or
parts:

1. IDENTIFICATION DIVISION
2. ENVIRONMENT DIVISION

3. DATA DIVISION

4. PROCEDURE DIVISION

Identifies the program.
Describes the computer used and
the hardware available.
Describes the files, record
layouts and storage areas.
States the program logic.

The first division is the IDENTIFICATION DIVISION. It
provides all of the necessary documentation for the program
such as the program name, the programmer's name, the system
or application to which the program belongs, the security
restrictions on the use of the program, the dates on which
the program was written and compiled. Look in the manual
for the IDENTIFICATION DIVISION Chapter for an example.

The format for the second division, the ENVIRONMENT

2-1-82 NEVADA COBOL PAGE 102

DIVISION, is the same as that of the IDENTIFICATION
DIVISION. In addition to fixed paragraph-names, there are
also fixed section-names. These section-names, like the
division-name, appear as single entries on individual lines.
Each section contains one or more paragraphs. The last
character of the section-name is followed by a space, the
word SECTION, and a period.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. The computer that will be used in compiling

the source program (8080-CPU).
OBJECT-COMPUTER. The computer that will be used in executing

the compiled object program (8080-CPU).
INPUT-OUTPUT SECTION.
FILE-CONTROL. In this paragraph the programmer supplies

the computer with two facts concerning each
data file used in the program:
1. The name of the file - a unique thirty
character name created by the programmer.
This name will be used in other divisions
of the program whenever referencing the
file.
2. The hardware input/output device to
which the file is assigned

Disk
Printer

The format which must be supplied for each input or output
data file is

SELECT (file-name) ASSIGN TO (hardware-device)

The third division is the DATA DIVISION. Data processed by a
COBOL program fall into four categories:
1. Data read from input files or written on output files.

Memory areas must be reserved into which the data can be
read or from which the data can be written.

2. Data which is developed internally, such as totals, and
placed into intermediate storage areas.

3. Stored constant values (literals) which are required by
the program.

4. Data from other COBOL programs.

To define these area, the DATA DIVISION consists of three
sections. The FILE SECTION in which files and the
input/output areas are described. For each file named in the
FILE-CONTROL paragraph the file name, the record name, the
layout of the record and the name, location, size, and
format of each field. The WORKING-STORAGE SECTION in which
the intermediate storage areas and constant values are
defined. The size, format, and content of every counter,
storage area, or constant value used by the program. And,
the LINKAGE SECTION for accessing information from other
programs.

The fourth and last division is the PROCEDURE DIVISION. It

2-1-82 NEVADA COBOL PAGE 103

is divided into programmer-created paragraphs and sections,
containing all of the procedure statements which constitute
the steps to be followed in processing the data.

TESTING

Most source programs contain clerical errors the first time
they are run, so the first output of a compilation run is
usually a listing of errors. The COBOL compiler will
diagnose each clerical error it finds and display what are
called diagnostics. There are two types of diagnostics -
warnings and fatals. Warnings will not prevent compilation
of the source program, but fatals will prevent compilation.

Getting the errors out of a source program is called
"debugging". If there is a source program error, the program
will have to be debugged and compiled again. This cycle is
repeated until compilation is successful and an error free
object program is produced.

The compiler cannot detect most logical errors. Thus it is
possible to produce an object program file that will not
solve the problem correctly. For example, suppose "ADD" has
been written when the task called for a "SUBTRACT"
instruction. The "ADD" instruction will compile, but the
resulting object program will not solve the problem
correctly. This means that each program must be tested with
known data so the results can be verified. Once this is done
the program can be run and the business problem "solved".

WORDS

One of the advantages of COBOL is achieved through the
standardization of words.

ADD FIRST-NUMBER TO SECOND-NUMBER GIVING RESULT-OF-ADDITION.

You can see from this example COBOL is relatively easy to
learn because, for the most part, it uses words from the
English language. People can read the source listing and
tell what the program does, what hardware it needs, etc.
They know who to go to with questions about the program, and
how current the program is. We call this feature
documentation and it's one of the most important advantages
of COBOL. Many of the entries in COBOL are not required,
they are optional. However, they should generally be
included in the source program because they add to the
documentation.

COBOL words can be broken down into two major categories -
reserved words and nonreserved words. A COBOL programmer
must not use reserved words for file=names, data-names, etc.
Nonreserved words must be used.

MOVE CUSTOMERS-NAME TO PRINT-CUSTOMER-NAME.

The above is an excerpt from a COBOL source program. The

2-1-82 NEVADA COBOL PAGE 104

reserved words are underlined. The remaining words were made
up by the programmer.

Now look in the manual at the list of COBOL reserved words.
When writing a COBOL source program, if you are not sure
about a data-name you supply, you would first check the list
of COBOL reserved words because these words cannot be used.

COBOL words may be constructed from a limited set of
characters, following certain rules. COBOL words may contain
as many as 30 characters. These characters may be any of
the 26 letters, 10 numeric characters, and the "-" or
hyphen. Hyphens may be used in COBOL words anywhere except
at the beginning or the end of a word.

DCROAB-l and BALANCE-DATA can both be used as COBOL w6rds
since they contain only letters of the alphabet, numeric
characters, and hyphens and have no more than 30 characters.
Al042 can be a COBOL word, but AlO.42 cannot, because AlO.42
contains a decimal point (period), which is not an allowable
character in a COBOL word.

A word may be ended by a space, or by a period, right
parenthesis, comma, or semicolon. Therefore, spaces in the
middle of COBOL words are not permissible. TAX-RATE is a
legal, nonreserved COBOL word, but TAX RATE is not.

File-names, record-names, and individual item-names must all
conform to the rules for the construction of data-names. A
data-name must include at least one alphabetic character,
must not contain any spaces and must not exceed 30
characters. A data-name may not begin or end with a hyphen,
although this character may be contained within a data-name.
It is usually convenient to use data-names which suggest the
data content, however, it is important that a data-name is
not spelled the same as a word on the list of reserved
words.

If you don't want to specify a data-name, you can use the
word FILLER. Data-name is used to specify the name of the
data being described. FILLER is used to specify an unused
portion of the logical record. If you want to reference a
portion of your record, you cannot call it FILLER. MOVE
FILLER TO NAME-FIELD would be an illegal entry because you
may never directly reference FILLER. The only way to
reference FILLER data is through a group item name.

COBOL language is compatible because it can be compiled by
any computer which has a COBOL compiler. Reserved words
provide COBOL with this quality of compatibility.

PUNCTUATION

In English, punctuation is used to separate words, clauses
and sentences, so that the meaning is clearly understood.
In COBOL, for the same purpose, specific punctuation marks
are used. Punctuation rules for the four COBOL divisions are

2-1-82 NEVADA COBOL PAGE 105

specified in tne manual along with the division entries.
The words, IDENTIFICATION DIVISION, must be followed by a
period. The IDENTIFICATION DIVISION paragraphs may consist
of any statement or sentence, but each one must be ended
with a period.

Incorrect punctuation can cause fatal diagnostics at compile
time. Some punctuation errors will cause warnings to be
reported, but others will stop compilation and cause a fatal
diagnostic. A frequent diagnostic is "SYNTAX ERROR" •
.. S YN TAX" ref e r s to the r u I e s g 0 v ern i n g the s t r u c t u reo f a
language. Many clerical errors that cannot be otherwise
analyzed will result in a diagnostic of SYNTAX ERROR. A
file-name in the DATA DIVISION must match exactly the same
file-name in the ENVIRONMENT DIVISION and the PROCEDURE
DIVISION. If it does not match, at compilation time you
will receive a fatal diagnostic of the error.

FORMAT

Look in the manual for the paragraph on Symbols and
Conventions. Just as COBOL words are standardized for use in
source programs, program format is also standardized.
Optional entries are shown in square brackets. However, if
you decide to use an option, then you must use the complete
format in the brackets.

[i BLOCK CONTAINS integer-l CHARACTERS]

If you use the above optional clause, you must use the words
BLOCK and CHARACTERS. You may use the optional word
CONTAINS. Note that programmer-supplied information is
always required so you must supply integer-I.

2-1-82 NEVADA COBOL PAGE 106

THE DATA DIVISION

The purpose of the DATA DIVISION is to describe the data
upon which the processing (as stated in the PROCEDURE
DIVISION) will be performed.

DATA DIVISION.
FILE SECTION.
Every file selected in the FILE-CONTROL paragraph of the
INPUT-OUTPUT SECTION must have two sets of entries in the
FILE SECTION.

1. File Description (FD)
a. Name of the file (same name as in FILE-CONTROL) •
b. LABEL RECORDS ARE STANDARD or OMITTED.

VALUE OF FILE-ID IS "value" or data-name.
c. The programmer-created name assigned to a

record of the file.
DATA RECORD IS (record-name).

the programmer must supply a unique record-name.

2. Record description (01)
The record description entries are located just below the
f i 1 e d'e sc rip t ion. It i s the r e cor d d esc rip t ion w h i c h tell s
the compiler how to set up a record area for each file in
which input records can be stored and processed and output
records assembled and written. It provides the compiler
with the format, or PICTURE, of one record of the file. Each
entry begins with a level number followed by at least one
space, the name of the data item, and a sequence of
independent clauses descriptive of the item. The last
clause is terminated by a period and space.

Position -
The record is always described from left to right, i.e.,
from print position 1 to print position 132 for print files.
Every column or print position must be accounted for.

Level -
The first step in preparing a record description entry is
the assignment of level-numbers. Level-numbers are used to
show the hierarchy of data within a logical record. There
may be forty-nine different levels specified for a record,
numbered 01 through 49.

The name assigned to the entire record always has the
highest level (01). Major divisions (fields) within the
record are assigned the next lowest level (02). Subfields
within these major divisions are assigned still lower levels
(03,04,05 etc.). To show that an elementary item (or field)
belongs to a group item, you assign it a higher level-number
than the group item.

2-1-82 NEVADA COBOL PAGE 107

02 C UST-CODE
02 CUST-NAME

03 LAST-NAME
03 FIRST-NAME

02 CUST-ADDRESS
Notice that you signify the end of a group item by using a
level-number item equal to or less than the level-number of
the group item.

In the FD entry, the letters "FD" immediately precede the
f i 1 e-name. They tell the compi 1 er (and the use r) tha t the
next word is the name of the file. In a record description
entry, the level number "01" immediately precedes the
record-name. It tells the compiler (and the user) that the
next word is the record-name.

Name -
Every field within the record is assigned a unique name of
up to thirty characters. This name is used to reference the
field in PROCEDURE DIVISION statements. Any unreferenced
fields can be assigned the name FILLER.

Following the level-number and data-name are a series of
independent clauses.

Format -
Each field must be described as to size, type (numeric,
alphabetic, or alphanumeric), location of the actual or
assumed decimal point, and any editing desired. This
description is given in the form of a PICTURE, using special
PICTURE symbols

9 - One numeric field position
A - One alphabetic field position
X - One alphanumeric field position; also used

to describe FILLER positions.

Assumed decimal point location -
V - Location of imaginary decimal point; does

not occupy an actual field position and is
not counted in determining the size of the
field.

Editing characters (used to indicate editing on
fields contained in print record lines) -

- Actual decimal point to be inserted in the
field where shown.

- Actual comma to be inserted in the field
where shown.

Z - Indicates that all leading zeros and commas
are to be suppressed before printing this
field.

Abbreviations - Instead of having to write out a
whole string of identical character symbols in
describing a PICTURE, COBOL allows you to write
the symbol once, followed by a set of

2-1-82 NEVADA COBOL PAGE 108

parentheses within which the number of
repetitions of that character symbol is
indicated. The number of characters in a
PICTURE clause is limited to 30. PICTURE
abbreviations such as), (and S are
counted in the size of the PICTURE clause.

A seven-position numeric field

9999999 or 9(7)

An eight-position numeric field with two cent
positions

999999V99 or 9(6)V99

A twenty-position alphanumeric field

XXXXXXXXXXXXXXXXXXX or X(20)

Using the PICTURE clause we can also insert a dollar sign,
commas, and a decimal point in a numeric value. Below are
PICTUREs of input fields, which will be MOVEd to output
printer fields, where we want them to be edited as monetary
val ues.

input
1. PICTURE IS 9(4)
2. PICTURE 9V99
3. PICTURE 9(8)V99

output
PICTURE IS $9,999
PICTURE IS $9.99
PICTURE IS $99,999,999.99

Note in the examples that each PICTURE has enough 9 1 s to
hold the entire incoming value, in addition to the insertion
characters. When editing a numeric value, you must be sure
to have enough 9's to hold the entire value (unless you want
to truncate or round it off) •

Numeric data to be printed out, especially monetary values,
will often have insertion characters put in. Other data,
such as input data, or output disk data, will rarely have
insertion characters, but will often have operational
characters (such as S and V).

Nonintegral input data will usually be described with an
assumed decimal point. If data is to be used in arithmetic
operations, it may not have an actual decimal point. It
must have an assumed decimal point, if any decimal point at
all. The PICTURE symbol for an assumed decimal point is V.
An actual decimal point cannot be specified without using a
PICTURE clause.

The only time a "+" will be printed out is if you specify
"+" in the PICTURE and the value stored is positive. If "-",
nCR", or "08" are specified in a PICTURE, and the value
received is positive, spaces (blanks) will be printed out.

In some programs, a negative value will represent a credit
(such as returned items on a charge account). In others,
they will represent a debit (such as accounts due and

2-1-82 NEVADA COBOL PAGE 109

paya b 1 e to \0: hoI e sal e sup pI i e r s). I nth e fir s tea s e, yo u
would use the characters CR in the receiving field; in the
second case DB.

Unless otherwise specified, all data is considered positive.
To change this, an input data field must contain a standard
operational sign, and an output fie~d must contain either a
+ - CR DB or a standard operational sign.

X-FLD PICTURE IS 9(3)V99. Y-FLD PICTURE IS +9(3) .99.

If you MOVEd X-FLD to Y-FLD, the report sign in Y-FLD will
always be "+" because X-FLD will always be considered
positive.

X-FLD PICTURE IS S9(3)V99. Y-FLD PICTURE IS +9(3) .99.

The PICTURE of X-FLD has been changed; the S stands for a
standard operational sign. Now the report sign in Y-FLD will
vary according to whether the value in X-FLD is positive or
negative.

Floating Characters
The following symbols may be used as floating zero
suppression characters + - $. The other two (nonfloating)
zero suppression characters are * and Z.

If the value of (-)003vI9 were to be moved to a receiving
field described by the PICTURE $$$$.99D8, the appearance of
the receiving field would be $3.19DB

When a floating dollar sign is given, it represents a 9 in
all but the leftmost position. That is, $$$$.99 will hold 5
numeric digits.

Sending field 45612v34
Receiving field $$$$$.99
value $5612.34

In the above example, the most significant digit of the
value the 4, was truncated to make room for the dollar sign.
To prevent that from happening, the receiving field should
have been described as PICTURE IS $$$$$$.99

OCCURS clause

When describing data which is repeated, the use of the
OCCURS clause eliminates the need for separate entries.
Whenever the data-name which is the subject of an OCCURS
clause is used as an operand, it must be subscripted.

IF SEAT-A VAIL-CODE (39) = "Y" • •

The example above iindicates that reference is being made to
seat 39 (the 39th occurence of this entry). (39) is a
subscript.

The reference format rules for parentheses are summarized as

2-1-82 NEVADA COBOL PAGE 110

follows:

1. A left parenthesis must be preceded by a space; a right
parenthesis must be followed by a space.
2. A left parenthesis must not be followed by a space; a
right parenthesis must not be preceded by a space.

The subscript must be, or represent, an integer. The
subscript may be a literal or a data-name. If the subscript
is a data-name, the value stored in the data-name field must
be an integer.

A 32 character entry may not occur 128 times in any record
because it would require more than 4,095 characters of
computer memory. But you can get around this limitation by
setting up several records of up to 4,095 each in a row and
then subscripting the first one accessing the information in
all of them.

REDEFINES clause

It is often advantageous to be able to call memory areas by
more than one name. The REDEFINES clause allows us to give
a name to a field which crosses from one elementary item
into the next. Note that, in the FILE SECTION, REDEFINES may
not be used on the 01 level. To redefine an entire record,
you need only name the new record in the DATA RECORDS clause
(this implicitly redefines it).

The format of the REDEFINES clause shows nothing may come
between data-name-l and the REDEFINES clause.

A file (whether tape, disk, or printer) is simply a
collection of records. For example, a printer file would be
a long sheet of paper, on which each line is a record.
Normally, a printer prints 132 characters per line.
Therefore most printer records would contain 132 characters.
Disk files have different physical limitations. In NEVADA
COBOL, a logical disk record is limited to 4095 characters.
However, it is not likely that you will be using a record
that large.

The FILE SECTION of the DATA DIVISION is composed of one or
more file description entries. If three files are used by
the program, there will be 3 FD entries in the DATA
DIVISION. Files contain records which in turn contain data.

The files described so far have each had one type of data
record. This is not always the case. Files may have more
than one type of data record. Find the DATA RECORDS clause
under FILE DESCRIPTION in the manual. The format shows that
the programmer can supply record-name-l, record-name-2 .•.

FD DISK-FILE •
DATA RECORDS ARE CONTROL-REC, INFO-REC,

SPECIAL-REC.

2-1-82 NEVADA COBOL PAGE III

m\.-._ T'\TCV~t:'Tr C' .&.:, """" __ "-:_,... ., '1,. _,... _.t= ,.:J ~_ _~,.:J,... t:" "k
.1 1 J I:: LJ .l. ..:;J n - J.: .l. 1..1 .u .1...1.l. I:: \.... V 11 I.- a .1 11 ~ J I.- Y 1:-'1:: ~ V.1.. U a I.- a 1. I:: \.... V 1. U ~ • .u a \.... 11

type has been assigned a record-name. A file description
entry must be followed by one 01 level entry (and its
associated 02,03,etc level entries) for each type of data
record only. One of them can be stored in memory at a time.
In order to store a record of different sizes, the computer
would have to reserve enough area for the larger of the two
types of records. The computer cannot distinguish whether
the record currently stored in memory is in INFO-REC or
CONTROL-REC format. It is up to the programmer via
programming to determine which record is in memory.

WORKING-STORAGE SECTION

A second part of the DATA DIVISION is called the
WORKING-STORAGE SECTION. It is in this section that we set
up all of the counters and stored values as we find they are
needed while coding the application. The format for each
entry is very similar to the format for defining any of the
data fields in the FILE SECTION. Every elementary
WORKING-STORAGE item must be described by a PICTURE clause.
In addition to the level-number, data-name, and format, the
programmer can also specify that the field or area be set to
some initial value. This initial value is expressed in a
VALUE IS clause following the PICTURE format. The value
itself is written as either a numeric or a non-numeric
literal. Values for numeric fields (those defined by 9 and
V symbols) are coded as numeric literals

100
-65

2.50

Values for non-numeric fields (those defined by A or X
symbols) must be coded as non-numeric literals. A
non-numeric literal is always enclosed in quotation marks.

" CUSTOMER NAME "
"PROFITS FOR 1981"

Every space within the quotation marks is counted as a
position. The maximum length of any single non-numeric
literal is 120 character positions.

Output data often is edited and cannot be used as arithmetic
operands. Thus, until it is time to actually write this
data, it is often handy to store it in an unedited field.
This field would be located in the WORKING-STORAGE SECTION.

While the WORKING-STORAGE SECTION does not contain files, it
may contain logical records and therefore be defined by
record description entries.

Often, WORKING-STORAGE fields bear no relationship to each
other, and are called noncontiguous (not adjacent) fields.
However, sometimes it is handy to have group items (so you
can MOVE groups, etc). These items are called contiguous
(ad j ace n t) fie 1 d s. Asp e cia lIe vel n urn b e r, 7 7, i sus ed to

2-1-82 NEVADA COBOL PAGE 112

define items which are not part of a group items That is,
level number 77 indicates a noncontiguous item. Each
separate, noncontiguous Record Description must begin with
level-number 77 and include a data-name and a PICTURE
clause.

PROCEDURE DIVISION

In this last division of the COBOL program, the processing
steps are coded as an English-language statement according
to the rules and conventions of the COBOL language. Verb
statements are combined to form sentences, which are the
basic units in this division. Sentences, one or more, are
grouped according to procedure to form paragraphs. The
paragraphs in turn are combined to form sections. As in
other COBOL divisions, paragraphs and sections must be
named.

For example, a series of statements required to print the
title and column headings at the top of each page might be
grouped together under the paragraph-name TOP-OF-PAGE. If,
at some point in the program, the programmer wishes to
execute this routine, he simply writes the statement
PERFORM TOP-OF-PAGE.

In English, words which describe action are called verbs.
In COBOL, words which describe procedures are also called
verbs.

Example

OPEN INPUT DATA-FILE.
READ DATA-FILE AT END CLOSE DATA-FILE, STOP RUN.
ADD FIRST-NUMBER TO SECOND-NUMBER GIVING

GIVING RESULT-OF-ADDITION.

In this example, OPEN, READ and ADD are examples of verbs
which specify the procedures to be followed in processing
the data.

The number of different kinds of statements that can be
written depends upon the number of COBOL verbs (ADD, GO TO,
IF, MOVE, READ, etc.) which the compiler can handle. Every
procedural statement must begin with one of these verbs, and
each verb has its own unique statement format which must be
followed. Only one procedural statement should be written
on each line.

Most verb statements contain a verb followed by one or more
operands. The word which describes the processing is the
verb, while the name of the data to be processed is
indicated by the operand.

SUBTRACT TAXES FROM GROSS-PAY.

In the example above, SUBTRACT is the verb, TAXES and
GROSS-PAY are its operands.

2-1-82 NEVADA COBOL PAGE 113

The minimum form of a statement consists of a verb and its
operands.

MOVE CUST-NAME TO PRT-CUST-NAME; GO TO COMPUTE-BALANCE.

Larger statements may consist of two or more minimum
statements. There are a total of 3 statements represented by
the above entry (two individual + one overall). The
individual statements have been separated by the punctuation
mark semicolon (;). No punctuation is ever required between
statements, it is optional. However, to make the statement
easier to read, you could use a separator. The allowable
separators are; (semicolon) ,(comma).

SENTENCES

A sentence consists of a sequence of one or more statements,
the last of which is terminated by a period. In COBOL,
sentences describe the procedure that is to be accomplished.
The sentences are written successively, according to the
rules of the reference format. The order in which the
sentences are written is important because the sequence of
the sentences establishes the order in which the procedures
are executed.

PROCEDURE DIVISION.
BEGINING.

OPEN INPUT CUSTOMERS-TRANSACTIONS;
OPEN OUTPUT CUSTOMER-STATEMgNT.
MOVE SPACES TO HEADING.
READ CUSTOMERS-TRANSACTIONS; AT END STOP RUN.

Sentences executing a particular procedure are grouped to
form a paragraph. In the example above, there are 3
sentences in the paragraph named BEGINING.

0001
0002
0003
0004
0005
0006
0007

PRINT-TRANSACTION.
MOVE AMOUNT TO AMOUNT-FIELD.
WRITE HEADING.

DISK-FILE-READ.
READ CUSTOMERS-TRANSACTIONS;

AT END GO TO TRANSFER-DISK.
GO TO ACCT-NO-MATCH.

Paragraph-names must begin under position A (see COBOL
Coding Format in the manual). In the example above, there
are 2 paragraphs named PRINT-TRANSACTION and DISK-FILE-READ.
Beginning under position B are the sentences which form each
paragraph.

Paragraph-names are used so that one procedure can reference
another by its name. Normally sentences are executed in th~
order of their appearance in the source program, however,
you can change this by referring to a paragraph-name. You
can jump from one procedure to another by saying GO TO
paragraph-name.

2-1-82 NEVADA COBOL PAGE 114

Statements consist of a verb and its operands or several
statements. Sentences consist of one or more such
statements. Paragraphs consist of one or more sentences.
Sections consist of one or more paragraphs.

THE CATEGORIES OF VERBS

All the verbs which may be used in the PROCEDURE DIVISION
fall into one of three functional categories -- imperative,
conditional, or compiler-directing.

ALTER is an imperative verb. IF is a conditional verb. COpy
is a compiler-directing verb. Most of the verbs are
imperative verbs. A verb which gives a direct processing
instruction, such as ADD or READ, is called an imperative
verb.

A verb which tests a condition, such as A = B, is called a
conditional verb. The conditional verb IF creates
conditional statements, and cannot appear in imperative
statements.

A verb which instructs the compiler, at compilation time,
rather than instructing the central processor during data
processing, is called a compiler-directing verb. Statements
using EXIT or COpy are compiler-directing statements.

The statement ADD A TO B is imperative. But the
statement ADD A TO B; ON SIZE ERROR GO TO X-PROCEDURE is
conditional. The statement READ FILE-A; AT END GO TO
CLOSING-ROUTINE ••• is conditional. Any statement starting
with IF is conditional.

IF A = B GO TO ADD-ROUTINE

Basically, GO TO ADD-ROUTINE is an imperative statement.
However, the statement shown is a conditional statement.
Remember that statements may contain statements. A sentence
is a statement or group of statements that are terminated by
a period.

THE INPUT-OUTPUT VERBS

The transfer of data between peripheral device and memory
can be a complicated subject. COBOL simplifies the matter
by letting the compiler select all the ports, channels,
appropriate devices, memory storage areas, etc. All the
COBOL programmer need do is give the appropriate input or
output instruction.

In the manual turn to the page devoted to the OPEN verb.
(The verbs are arranged in alphabetical order.) The
function of the verb is to initiate the processing of input
and output files. Before an input file can be READ, certain
standardized procedures may take place. The OPEN verb
generates these standardized procedures.

2-1-82 NEVADA COBOL PAGE 115

Now turn to the CLOSE verb in your manual. Tne CLOSE verb is
just the opposite of the OPEN verb. The OPEN verb initiates
the processing of input and output files. The CLOSE verb
terminates the processing of input and output files. Many
times after you have CLOSED the files, you would STOP RUN.
Turn to the STOP verb in your manual. The use of the STOP
verb is to halt the object program either permanently or
temporarily.

Now turn to the READ verb in your manual. To transfer a
data record from an input file to memory storage, you use a
READ instruction. A file may have many, many records, but
only one at a time is made available. Every record in the
file is stored in the same memory area as the last record
was stored. A READ instruction does not destroy the previous
record in the file, but it does destroy the previous record
in memory. Since most programs loop back to a READ
instruction, provisions must be made in the READ instruction
for running out of records in the file. This is done in the
phrase AT END any imperative statement. The phrase AT END
any imperative statement is required. This means that, even
though you know the AT END will not be taken, you must
include it.

READ DISK-IN; AT END IF TAX-INCOME IS GREATER THAN 8400
GO TO COMPUTE-WAGE-TAX.

The above sentence would cause a diagnostic at compilation
time because the AT END branch is followed by a conditional
statement when it should be followed by an imperative
statement.

Now turn to the WRITE verb in your manual. The READ verb
makes one record available. The write verb releases one
record to an output device. To make the ACCOUNT-COPY record
available to an output device, you would enter:

WRITE ACCOUNT-COPY.

Compare the READ and WRITE verbs. Notice that you READ a
file-name but you WRITE a record-name.

2-1-82 NEVADA COBOL PAGE 116

MOVE VERB

An often used procedure in a source program is the
transferal of data from one area in memory to another. For
example, data can be transferred from memory area reserved
for the input file to a memory area reserved for the output
file. To execute this type of procedure, the MOVE verb is
used.

Look at the MOVE verb format in the manual. Every MOVE verb
references one "sending field" and at least one "receiving
field". If you want to transfer the data stored in the field
named CUSTOMERS-ACCOUNT to the data area
ACCOUNT-OF-CUSTOMER, you write:

MOVE CUSTOMERS-ACCOUNT TO ACCOUNT-OF-CUSTOMER.

If you want to transfer the data in NEW-BALANCE to three
different data areas, named CUSTOMER-BALANCE,
CLOSING-BALANCE and AUDIT-BALANCE, you would make the
following entry;

MOVE NEW-BALANCE TO CUSTOMER-BALANCE, CLOSING-BALANCE,
AUDIT-BALANCE.

When data is MOVEd from a memory area, it is not removed
from that area. Therefore, after the MOVE is executed, the
data appears in at least two memory areas. The sending field
and each receiving field. In the verb format for MOVE, you
may use a literal. A literal is an item of data, the value
of which is identical to those characters comprising the
literal. As you know, a data-name refers to a memory area
where a value is stored. Thus, the value of the data-name
ACCOUNT-NUMBER may be 50321, or 27993, or any other number.
However, the value of the literal 34729 can only be the
number 34729. Usually, the programmer does not know the
values he is dealing with, so he uses data-names and lets
the computer find the values. If, however, he wishes to
specify the exact characters to be processed, he uses a
literal. There are two types of literals, nonnumeric and
numeric. "1984" is a nonnumeric literal, while 1984 is a
numeric literal.

Since data-names must contain at least 1 alphabetic
character, numeric literals do not resemble data-names.
That is 40325 must be a literal because it does not contain
an alphabetic character.

Nonnumeric literals may tend to look like data-names, since
they may be comprised of alphabetic characters. Therefore,
to distinguish between nonnumeric literals and data-names,
we put nonnumeric literals in quotation marks.

COST OF ITEM is an illegal data-name because it contains
spaces. However, "COST OF ITEM" is acceptable as a
nonnumeric literal. While nonnumeric literals may contain

2-1-82 NEVADA COBOL PAGE 117

any allowable character, numeric literals may never contain
alphabetic characters. A numeric literal may contain a (+)
or (-) sign as its leftmost character. If no sign is used,
the literal is assumed to be positive. If a numeric literal
does not contain a decimal point, it is assumed to an
integer.

While nonnumeric literals may contain up to 120 characters,
numeric literals contain no more than 18 characters.

The data to be transferred by a MOVE statement may be
specified by a figurative constant. A figurative constant
is a value that has been assigned a fixed data-name. No
matter how many characters the receiving field contains, it
will be filled with the value represented by the figurative
constant. If we want to clear the memory area reserved for
CUSTOMER-NAME, this mean we want to replace any data there
with spaces, we would write:

MOVE SPACES TO CUSTOMER-NAME.

If we wanted to fill the CUSTOMERS-ADDRESS field will X's.
We wo u 1 d w r i t e :

MOVE ALL "X" TO CUSTOMER-ADDRESS.

If both the sending field and the receiving field are
numeric, you would expect the MOVE to be numeric. If both
the sending field and the receiving field are nonnumeric,
the MOVE will be nonnumeric. However, if either the sending
field or the receiving field is nonnumeric, the MOVE is
nonnumeric.

Sometimes the sending field and the receIvIng field are not
the same size. The results of such a MOVE depend on the
description of the data you are moving. In the example
below, the MOVE is a nonnumeric MOVE. The extra spaces are
on the right side of the receiving field.

[JOHN JONES] [JOHN JONES

When a receiving field is longer than the sending field, and
the MOVE is nonnumeric, the righthand side of the receiving
field is filled with spaces (blanks).

The coding generated for numeric moves is such as to move
characters from the sending to the receiving field lining up
the decimal point. Every number has a decimal point. If it
doesn't show, it is to the right of the rightmost (least
significant) digit.

W hen we use the s ym b 0 1 II V II, i t mea n s the dec i mal po i n tis
lIimplied". (i.e., it is not actually present in the data
field but the computer can align data by it.)

Some examples of decimal point alignment are shown below.
As you can see, the computer can align real decimal points
with other real decimal points, and implied decimal points
with either implied or real decimal points.

2-1-82

[123.45]
[123v45]
[123v45]

NEVADA COBOL

[0123~450]
[0123.450]
[0123v4500]

A numeric MOVE is a 3-step process
1. Align the decimal points.
2. MOVE the digits.
3. Fill in zeros.

PAGE 118

On the prior unequal MOVEs the receiving field has been
larger than the sending field. However, if the sending field
is larger than the receiving field "Truncation" (the
chopping off of extra characters) occurs.

[WILLIAM K. SMITH] [WILLIAM K. 8M]

The above example shows that for nonnumeric MOVEs, the extra
characters will be truncated on the right side.

[1234.56] [34.5]

For numeric or edited MOVEs, the extra characters may be
truncated on both sides, depending on the decimal point
alignments.

Subdivisions of a field are very handy in COBOL, because
sometimes we may want to ~se the entire field and sometimes
just part of a field. You may MOVE either group items or
elementary items. Often, group items are set up for the very
purpose of moving; i. e., we may want to process the
customer's name individually. However, we know that we need
to transfer all the data to the output master file. So we
created a group name, CUSTOMERS-RECORD and, rather than
writing 3 individual MOVE verbs, we can say

MOVE CUSTOMERS-RECORD TO •••

In every file, the largest group item will be the record
name. In an updating procedure, the input record and the
output record will have exactly the same format. You can
transfer the entire record from the input memory area to the
output memory area by saying:

MOVE input-record-name TO output-record-name.

All group MOVEs are nonnumeric.

THE ARITHMETIC VERBS

Most of the arithmetic functions of a business application
can be handled by addition, subtraction, multiplication,
and/or division. So, COBOL includes four arithmetic verbs
ADD, SUBTRACT, MULTIPLY and DIVIDE.

2-1-82 NEVADA COBOL

Suppose we wanted to add 5 to the field named
PRINTER-LINE-COUNT. We would write:

ADD 5 TO PRINTER-LINE-COUNT.

PAGE 119

Look in the manual under ADD. Note that you may combine TO
and GIVING. If you do, the sum is stored in the data-name
following the word GIVING.

INPUT
WAGE-TAX [3029v73]

FICA [7637v69]

/

OUTPUT
DEDUCTIONS [9999v99]

The fields on the left represent fields in memory used as
operands. The field on the right represents a field in
memory used as a receiving field. These fields are
referable by the data-names next to them, although the
data-names do not actually appear in memory. The fields are
set up by data description entries in the DATA DIVISION.
The "v" stands for the location of the decimal point. Add
WAGE-TAX and FICA together. The sum is l0667v42. You cannot
store the sum in DEDUCTIONS because it's too long and you
will lose the 1. This is called a SIZE ERROR. Whenever
arithmetic processes take place there is the possibility of
a SIZE ERROR.

PRINCIPLE [0005023v7] INTEREST [9999v99]
INT-RATE [v042]

If we were to multiply PRINCIPLE by INT-RATE and store the
sum in INTEREST, a SIZE ERROR would occur. You could not
store the righthand digits.

Truncation of leftmost and/or rightmost digits of the sum
can occur during the storage of the sum according to the
size of the receiving field. The normal rules for
truncation are:
a. When the receiving field contains fewer integer places
than the sum, truncation of the leftmost digits occurs.
b. When the receiving field contains fewer decimal places
than the sum, the truncation of rightmost digits occur.

As you can see, if a SIZE ERROR occurs, the sum will be
stored but truncation will occur. The SIZE ERROR option is
to detect left digit truncation. The programmer must
specify how to store the sums and must supply any imperative
statement. Normally, more than one step is involved in
preventing left truncation. Therefore, rather than
specifying the procedures to be taken as part of the ADD
sentence, you would branch to a subroutine.

The ROUNDED option is to prevent right digit truncation. The
ROUNDED option automatically takes care of storing the sum.

Editing of Output Data

Numeric data which contains no extraneous symbols on input
(ie, no real decimal points, commas, dollar signs, etc) may
be edited on output. That is, symbols such as commas and

2-1-82 NEVADA COBOL

dollar signs may be added to the data.

INPUT
CUST-BAL [v]

DEPOSITS [v]

OUTPUT
NEW-BAL [$

To edit data, the editing symbols are
receiving fields. In the NEW-BAL receiving
sign and a decimal point are stored.

NUMERIC LITERALS

ADD "29" TO LINE-COUNT.

PAGE 120

stored in the
field a dollar

This is not legal. "29" is a nonnumeric literal; only
numeric literals may be used.

ADD 14.21 TO X-FIELD.

This is legal. (14.21 is a numeric literal; the decimal
point will be aligned with the implied decimal point of
X-FIELD before addition takes place.)

Turn now to the SUBTRACT verb in your manual. As you can
see, the SUBTRACT verb format is similar to the ADD verb
format. Whereas, in the ADD verb, TO is optional, in the
SUBTRACT verb, FROM is required.

GROSS-PAY DEDUCTIONS = NET-PAY

To accomplish the above, you would enter SUBTRACT DEDUCTIONS
FROM GROSS-PAY GIVING NET-PAY.

Now turn to the MULTIPLY verb. Again, the format is very
similar to the ADD and SUBTRACT verbs. Like the SUBTRACT
verb FROM, the word BY is required. Note that only two
operands may be used, the multiplier (data-name-l) and the
multiplicand (data-name-2).

In the multiplication process, MULTIPLY A BY B GIVING C and
MULTIPLY B BY A GIVING C will produce same results. The
rightmost operand must be a data-name, since it will be the
receiving field. Therefore, rather than saying MULTIPLY
LINE-COUNT BY 2 you should say MULTIPLY 2 BY LINE-COUNT.

MULTIPLY LINE-COUNT BY 2 GIVING TALLY-LINES is permissible
because the rightmost operand (the receiving field) is
TALLY-LINES, which is a data-name.

Turn to the DIVIDE verb. The format is the same. In DIVIDE
processes, the decimal places can often go on and on.
Therefore, the number of places computed is not determined
by the operands, but the receiving field. If the receiving
field contains three decimal places, the DIVIDE process will
generate three decimal digits.

Since enough digits are generated to fill the right hand
portion of the field, there is no right truncation in the

2-1-82 NEVADA COBOL PAGE 121

division process (although the effect is the same as right
truncation). Division simply ceases at the appropriate
time. However, left truncation can occur.

Anything divided by zero = infinity. You cannot DIVIDE by O.
Division by zero is regarded as a SIZE ERROR. If even a
remote possibility exists, you must specify an ON STZE ERROR
option.

Recall that ROUNDED is used to prevent right truncation.
Since no right truncation takes place in the DIVIDE process,
the rules for ROUNDED option are different. ROUNDED will
cause two more right hand digits to be generated. The two
extra right hand digits created by the ROUNDED option are
then rounded off, as normal.

THE SEQUENCE CONTROL VERBS

The normal sequence of executing a COBOL program is to start
with the first statement after the words PROCEDURE DIVISION,
execute that, pass control to the second statement, execute
that, pass control to the third statement, etc. Sometimes
you may wish to instruct the computer not to execute the
statements in this "straight-line" sequence. In this case,
depending on whether you want to permanently depart or only
temporarily depart from the "straight-line" sequence, you
may use the GO TO or the PERFORM verb.

Turn to the GO TO page of the manual. In a source program,
procedural statements are written in the order in which the
programmer decided they should be executed. To depart from
this normal sequence of procedures, you may use the GO TO
verb. The GO TO verb format consists of the words GO TO plus
the desired procedure-name. To write the GO TO entry using
the procedure-name BEGIN. You would write GO TO BEGIN. When
this statement is encountered, the entire PROCEDURE DIVISION
is scanned for a paragraph or a section named BEGIN. Control
is transferred to that paragraph or section.

Another sequence control verb is PERFORM. Whereas GO TO
permanently transfers control, PERFORM only temporarily
transfers control.

A subroutine must have one, and only one, EXIT point. If it
logically has more than one, then you must change it so that
it has only one exit point.

SUMMARY SECTION.
A-PARA.

MOVE IN-REC TO OUT-REC.
WRITE OUT-REC.
IF FLAG = I GO TO B-PARA.
WRITE OUT-REC.

B-PARA. EXIT.
The statement says IF FLAG = I GO TO B-PARA.

B-PARA of SUMMARY subroutine contains one instruction EXIT.

2-1-82 NEVADA COBOL PAGE 122

In many cases where a procedure has more than one path, the
last statement will be the verb EXIT.

Since EXIT must be in a paragraph by itself, with a
paragraph-name, the other procedures to be PERFORMed must be
contained in at least one other paragraph. Since the
PERFORM statement must reference the EXIT verb as well as
the procedures to be PERFORMed, the PERFORM statement can
reference a section-name. The section referenced will
contain the procedural paragraph's plus the EXIT paragraph.
Or another way would be to PERFORM ••• THRU. In this case:

PERFORM A-PARA THRU B-PARA.

A command which will cause the ADD-DAlLY-HOURS through the
COMPUTE-DAlLY-WAGE paragraphs to be executed five times in a
row is written:

PERFORM ADD-DAlLY-WAGE THRU COMPUTE-DAlLY-WAGE 5 TIMES.

THE IF VERB

At many points in a program it is important to take
different courses of action based on the results of a test.
For example, in payroll computations, employees with over a
certain amount of year-to-date earnings do not get charged
social security tax, those under do. Some employees may
have Blue Cross, Blue Shield, savings bonds, and other
employee benefits charged. Others may not. Each of these
would need a special test made to see if the deductions
should be made.

Turn to the IF verb in your manual. Read the function.
Remember that conditional statements have two forms the
second form is represented by ON SIZE ERROR or AT END. IF
represents the 1st form. Read the format of the IF
statement. The first programmer- supplied information is
condition. Look at the format for the entire IF statement.
Following the condition the programmer either supplies
statement-lor writes the key words NEXT SENTENCE.

IF LINE-COUNT IS NOT LESS THAN 40 PERFORM PAGE-ROUTINE
ELSE PERFORM SPACING-ROUTINE.
WRITE HEADING-I.

The, LINE-COUNT is tested and if 39 or less, the
SPACING-ROUTINE is performed, and then the instruction WRITE
HEADING-l is processed. In fact, no matter what the results
of the test, control is returned to the next sentence, WRITE
HEADING-I.

Look at your manual. In order to pass control directly to
the next sentence by statement-2, you would use the key
words NEXT SENTENCE. You can also transfer control directly
to the next sentence by statement-I. In this case,
statement-l would say NEXT SENTENCE. NEXT SENTENCE can be
substituted for either statement-lor statement-2. If

2-1-82 NEVADA COBOL PAGE 123

substituted for statement-2, the whole clause ELSE NEXT
SENTENCE can be omitted.

IF AMOUNT IS POSITIVE PERFORM DEPOSIT-ROUTINE.
WRITE HEADING-l.

In the above conditional sentence, the compiler ~ill assume
that ELSE NEXT SENTENCE is missing. Therefore, if AMOUNT is
not positive, control will be sent to the statement
WRITE HEADING-l.

CONCLUSION

This has been a brief introduction to the COBOL language.
Perhaps with the example programs that follow, it will be
enough to get you started. The interested reader should
consult one of the many COBOL self-teaching books available
at most book stores. Good luck!

2-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T6WF.

PAGE 124

0004* THIS PROGRAM CREATES A FILE OF FIXED LENGTH RECORDS AND
0004* IF THE RECORD SIZES ARE CHANGED TO YOUR NEEDS CAN BE
0004* USED TO CREATE THE SPACE NEEDED (ALLOCATE) FOR A RANDOM
0004* FILE.
0005 ENVIRONMENT DIVISION.
0006 CONFIGURATION SECTION.
0007 SOURCE-COMPUTER.
0008 8080-CPU.
0009 OBJECT-COMPUTER.
0010 8080-CPU.
0011 INPUT-OUTPUT SECTION.
0012 FILE-CONTROL.
0013 SELECT FILE1 ASSIGN TO DISK
0014 ORGANIZATION IS SEQUENTIAL
0015 ACCESS MODE IS SEQUENTIAL.
0016 DATA DIVISION.
0017 FILE SECTION.
0018 FD FILE1
0019 LABEL RECORDS ARE STANDARD
0020 VALUE OF FILE-ID IS OUT-FILE-NAME
0021 BLOCK CONTAINS 1 RECORD
0022 DATA RECORDS ARE O-RECORD.
0023 01 O-RECORD.
0024 02 SEQ PIC 9999.
0025 02 REC1 PIC IS X(156).
0026 02 SEQ2 PIC 9999.
0027 WORKING-STORAGE SECTION.
0028 01 OUT-FILE-NAME PIC X(14)
0029 VALUE "A:TESTF.WRK".
0030 01 Xl PIC 9999
0031 VALUE 0001.
0032 PROCEDURE DIVISION.
0033 BEGIN.
0034 DISPLAY "ENTER OUTPUT FILE NAME ".
0035 DISPLAY OUT-FILE-NAME WITH NO ADVANCING.
0036* to accept and use the file-name just displayed you can
0036* hit the <CR) key. see i 2 under accept.
0036 ACCEPT OUT-FILE-NAME.
0037 OPEN OUTPUT FILE1.
0038 MOVE SPACES TO O-RECORD.
0039 BEGIN2.
0040 MOVE Xl TO SEQ.
0041 MOVE Xl TO SEQ2.
0042 ADD I TO Xl.
0043 DISPLAY O-RECORD.
0044 WRITE O-RECORD.
0045 IF Xl IS = TO 201
0046 GO TO EOJ.
0047 GO TO BEGIN2.
0048 EOJ.
0049 CLOSE FILE1.
0050 STOP RUN.
0051 END PROGRAM T6WF.

2-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T6RF.

PAGE 125

0004* THIS PROGRAM READS A FIXED LENGTH FILE SEQUENTIALLY
0005 ENVIRONMENT DIVISION.
0006 CONFIGURATION SECTION.
0007 SOURCE-COMPUTER.
0008 8080-CPU.
0009 OBJECT-COMPUTER.
0010 8080-CPU.
0011 INPUT-OUTPUT SECTION.
0012 FILE-CONTROL.
0013 SELECT FILEI ASSIGN TO DISK
0014 ORGANIZATION IS SEQUENTIAL
0015 ACCESS MODE IS SEQUENTIAL
0016 FILE STATUS IS STATUS-KEY.
0017 DATA DIVISION.
0018 FILE SECTION.
0019 FD FILEI
0020 LABEL RECORDS ARE STANDARD
0021 VALUE OF FILE-ID IS NAME-OF-FILE
0022 BLOCK CONTAINS 1 RECORD
0023 DATA RECORDS ARE I-RECORD.
0024 01 I-RECORD.
0025 02 SEQ PIC 9999.
0026 02 RECI PIC IS X(160).
0027 WORKING-STORAGE SECTION.
0028 01 STATUS-KEY PIC XX.
0029 01 NAME-OF-FILE PIC X(14)
0030 VALUE "A:TESTF.WRK".
0031 PROCEDURE DIVISION.
0032 BEGIN.
0033 DISPLAY "ENTER INPUT FILE NAME ".
0034 DISPLAY NAME-OF-FILE WITH NO ADVANCING.
0035 ACCEPT NAME-OF-FILE
0036 OPEN INPUT FILEI.
0037 BEGIN2.
0038 MOVE SPACE TO I-RECORD.
0039 MOVE SPACE TO STATUS-KEY.
0040 READ FILEI
0041 AT END
0042 GO TO EOJ.
0043 DISPLAY I-RECORD.
0044 DISPLAY STATUS-KEY.
0045 GO TO BEGIN2e
0046 EOJ. .
0047 DISPLAY STATUS-KEY.
0048 CLOSE FILEI.
0049 DISPLAY STATUS-KEY.
0050 STOP RUN.
0051 END PROGRAM T6RF.

2-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION~
0002 PROGRAM-ID.
0003 T6IOF.

PAGE 126

0004* THIS PROGRAM READS THEN REWRITES FIXED LENGTH RECORDS.
0005 ENVIRONMENT DIVISION.
0006 CONFIGURATION SECTION.
0007 SOURCE-COMPUTER.
0008 8080-CPU.
0009 OBJECT-COMPUTER.
0010 8080-CPU.
0011 INPUT-OUTPUT SECTION.
0012 FILE-CONTROL.
0013 SELECT FILEI ASSIGN TO DISK
0014 ORGANIZATION IS SEQUENTIAL
0015 ACCESS MODE IS SEQUENTIAL.
0016 DATA DIVISION.
0017 FILE SECTION.
0018 FD FILEI
0019 LABEL RECORDS ARE STANDARD
0020 VALUE OF FILE-ID IS IN-OUT-FILE
0021 DATA RECORDS ARE I-O-RECORD.
0022 01 I-O-RECORD.
0023 02 SEQ PIC 9999.
0024 02 RECI PIC IS X(160).
0025 WORKING-STORAGE SECTION.
0026 01 IN-OUT-FILE PIC X(14)
0027 VALUE "A:TESTF.WRK".
0028 01 Xl PIC 9999
0029 VALUE 1001.
0030 PROCEDURE DIVISION.
0031 BEGIN.
0032 DISPLAY "ENTER FILE NAME II

0033 DISPLAY IN-OUT-FILE WITH NO ADVANCING.
0034 ACCEPT IN-OUT-FILE.
0035 OPEN 1-0 FILEI.
0036 MOVE SPACE TO I-O-RECORD.
0037 BEGIN2.
0038 READ FILE1
0039 AT END
0040 GO TO EOJ.
0041 DISPLAY SEQ.
0042 DISPLAY II IN" WITH NO ADVANCING.
0043 MOVE Xl TO SEQ.
0044 ADD 1 TO Xl.
0045 DISPLAY SEQ.
0046 REWRITE I-O-RECORD.
0047 DISPLAY" OUT" WITH NO ADVANCING.
0048 GO TO BEGIN2.
0049 EOJ.
0050 CLOSE FILE1.
0051 STOP RUN.
0052 END PROGRAM T6IOF.

8-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T6WD.

PAGE 127

0004* THIS PROGRAM CREATES A FILE OF VARIABLE LENGTH
0005* (DELIMITED) RECORDS. Most text editors create

* this type of file. Each record ends with a carriage
* return and line feed.

0005 ENVIRONMENT DIVISION.
0006 CONFIGURATION SECTION.
0007 SOURCE-COMPUTER.
0008 8080-CPU.
0009 OBJECT-COMPUTER.
0010 8080-CPU.
0011 INPUT-OUTPUT SECTION.
0012 FILE-CONTROL.
0013 SELECT FILE1 ASSIGN TO DISK
0014 ORGANIZATION IS SEQUENTIAL
0015 ACCESS MODE IS SEQUENTIAL

* the next statement tells the compiler each record is to
* be delimited (separated) by or ended with a carriage
* return and line feed.

0016 RECORD DELIMITER IS STANDARD.
0017 DATA DIVISION.
0018 FILE SECTION.
0019 FD FILE1
0020 LABEL RECORDS ARE STANDARD
0021 VALUE OF FILE-ID IS OUT-FILE
0022 DATA RECORDS ARE O-RECORD.
0023 01 O-RECORD.
0024 02 SEQ PIC 9999.
0025 02 REC1 PIC IS X(156).
0026 02 SEQ2 PIC 9999.
0027 WORKING-STORAGE SECTION.
0028 01 OUT-FILE PIC X(14)
0029 VALUE IS "A:TESTB.WRK".
0030 01 Xl PIC 9999
0031 VALUE 0001.
0032 01 PAD.
0033 02 FILLER PIC X(30)
0034 VALUE SPACE.
0035 02 FILLER PIC X(30)
0036 VALUE SPACE.
0037 02 FILLER PIC X(30)
0038 VALUE SPACE.
0039 02 FILLER PIC X(30)
0040 VALUE SPACE.
0041 02 FILLER PIC X(30)
0042 VALUE SPACE.
0043 02 FILLER PIC X(05)
0044 VALUE "AAAAA".
0045 PROCEDURE DIVISION.
0046 BEGIN.
0047 DISPLAY "ENTER OUTPUT FILE NAME ".
0048 DISPLAY OUT-FILE WITH NO ADVANCING.
0049 ACCEPT OUT-FILE.
0050 MOVE SPACES TO O-RECORD.
0051 OPEN OUTPUT FILE1.

8-1-82 NEVADA COBOL PAGE 128

0052 DISPLAY "OPEN".
0053 MOVE PAD TO RECI.
0054 BEGIN2.
0055 MOVE Xl TO SEQ.
0056 MOVE Xl TO SEQ2.
0057 ADD 1 TO Xl.
0058 DISPLAY a-RECORD.
0059 WRITE O-RECORD.
0060 IF Xl = 011
0061 GO TO EOJ.
0062 GO TO BEGIN2.
0063 EOJ.
0064 CLOSE FILEI.
0065 STOP RUN.
0066 END PROGRAM T6WD.

8-1-82 NEVADA COBOL PAGE 129

""", VVV..L

0002 PROGRAM-ID.
0003 T6RD.
0004*

*
*
*

THIS PROGRAM READS A VARIABLE LENGTH (DELIMITED) FILE.
the kind of file created by most text editors. Each
record in the file is terminated with a carriage
return and line feed.

0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.

8080-CPU.
OB JEC T-C OMPUT ER.

8080-CPU.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE1 ASSIGN TO DISK
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL

the next statement tells the compiler the records will
end with a carriage return and line feed.

0016 RECORD DELIMITER IS STANDARD.
0017 DATA DIVISION.
0018 FILE SECTION.
0019 FD FILEI
0020 LABEL RECORDS ARE STANDARD
0021 VALUE OF FILE-ID IS IN-FILE
0022 DATA RECORDS ARE I-RECORD.
0023 01 I-RECORD.
0024 02 SEQ PIC 9999.
0025 02 REC1 PIC IS X(160).
0026 WORKING-STORAGE SECTION.
0027 01 IN-FILE PIC X(14)
0028 VALUE "A:TESTB.WRK".
0029 PROCEDURE DIVISION.
0030 BEGIN.
0031 DISPLAY "ENTER INPUT FILE NAME ".
0032 DISPLAY IN-FILE WITH NO ADVANCING.
0033 ACCEPT IN-FILE.
0034 OPEN INPUT FILEI.
0035 BEGIN2.
0036* the next statement is necessary because the delimited
0036* read only transfers data into the record area and if
0036* short the data from prior reads will be in the record
0036* area on the right end.
0036 MOVE SPACE TO I-RECORD.
0037 READ FILEI
0038 AT END
0039 GO TO EOJ.
0040 DISPLAY I-RECORD.
0041 GO TO BEGIN2.
0042 EOJ.
0043 CLOSE FILEI.
0044 STOP RUN.
0045 END PROGRAM T6RD.

2-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T6IOD.

PAGE 130

0004* THIS PROGRAM READS THEN REWRITES VARIABLE LENGTH RECORDS.
0005 ENVIRONMENT DIVISION.
0006 CONFIGURATION SECTION.
0007 SOURCE-COMPUTER.
0008 8080-CPU.
0009 OBJECT-COMPUTER.
0010 8080-CPU.
0011 INPUT-OUTPUT SECTION.
0012 FILE-CONTROL.
0013 SELECT FILE1 ASSIGN TO DISK
0014 ORGANIZATION IS SEQUENTIAL
0015 ACCESS MODE IS SEQUENTIAL
0016 RECORD DELIMITER IS STANDARD.
0017 DATA DIVISION.
0018 FILE SECTION.
0019 FD FILE1
0020 LABEL RECORDS ARE STANDARD
0021 VALUE OF FILE-ID IS I-O-FILE-NAME
0022 DATA RECORD IS A-RECORD.
0023 01 A-RECORD.
0024 02 SEQ PIC 9999.
0025 02 REC1 PIC IS X(160).
0026 WORKING-STORAGE SECTION.
0027 01 Xl PIC 9999
0028 VALUE 2001.
0029 01 I-O-FILE-NAME PIC X(14)
0030 VALUE IS "A:TESTB.WRK".
0031 PROCEDURE DIVISION.
0032 BEGIN.
0033 DISPLAY "ENTER 1-0 FILE NAME"
0034 DISPLAY I-O-FILE-NAME WITH NO ADVANCING.
0035 ACCEPT I-O-FILE-NAME.
0036 OPEN 1-0 FILE1.
0037 BEGIN2.
0038 MOVE SPACE TO A-RECORD.
0039 READ FILE1
0040 AT END
0041 GO TO EOJ.
0042 MOVE Xl TO SEQ.
0043 ADD 1 TO Xl.
0044 DISPLAY SEQ.
0045 REWRITE A-RECORD.
0046 GO TO BEGIN2.
0047 EOJ.
0048 CLOSE FILE1.
0049 DISPLAY "RENUMBERING COMPLETE".
0050 STOP RUN.
0051 END PROGRAM T6IOD.

2-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID. TST-PRT.

PAGE 131

* this sample program reads in a variable length file and
* outputs it to the printer.

0003 ENVIRONMENT DIVISION.
0004 CONFIGURATION SECTION.
0005 SOURCE-COMPUTER. 8080-CPU.
0006 OBJECT-COMPUTER. 8080-CPU.
0008 INPUT-OUTPUT SECTION.
0009 FILE-CONTROL.
0010 SELECT FILEI ASSIGN TO DISK
0011 RECORD DELIMITER IS STANDARD.

* the next line is for printers and/or printer-files.
0012 SELECT FILE2 ASSIGN TO PRINTER.
0013 DATA DIVISION.
0014 FILE SECTION.
0015 FD FILEI
0016 LABEL RECORDS ARE STANDARD
0017 VALUE OF FILE-ID IS IN-FILEl-NAME
0018 DATA RECORD IS TESTB.
0019 01 TESTB PIC X(80).
0020 FD FILE2
0021 LABEL RECORDS ARE STANDARD
0'022 VALUE OF FILE-ID IS OUT-FILE2-NAME
0023 DATA RECORD IS PRINT-LINE.
0024 01 PRINT-LINE PICTURE IS X(132).
0025 WORKING-STORAGE SECTION.

* the input file-n~me can be a cobol source file to be
* listed on the printer. this file-name can be changed at
* run time see lines 0030-0032.

0026 01 IN-FILEl-NAME PIC X(14) VALUE "A:TOl.CBL".
* in 1 ine 0027 "pr inter" is the key word to send output
* to the physical printer.
* any other file-name sends output to the named disk file.
* this option of either printing or sending output to the
* printer can be made at run time. see lines 0033-0035.

0027 01 OUT-FILE2-NAME PIC X(14) VALUE "PRINTER".
0028 PROCEDURE DIVISION.
0029 BEGIN.
0030 DISPLAY "ENTER INPUT FILE ".
0031 DISPLAY IN-FILEl-NAME WITH NO ADVANCING.
0032 ACCEPT IN-FILE I-NAME.
0033 DISPLAY "ENTER PRINTER FILE ".
0034 DISPLAY QUT-FILE2-NAME WITH NO ADVANCING.

* no need to re-enter the word "printer" just hit <cr>
0035 ACCEPT OUT-FILE2-NAME.
0036 OPEN INPUT FILEI.
0037 OPEN OUTPUT FILE2.
0038 MOVE SPACES TO PRINT-LINE.
0039 PARA-3.
0040
0041
0042
0043
0044
0045
0046

EOJ.

MOVE SPACES TO TESTB.
READ FILEl AT END GO TO EOJ.
MOVE TESTB TO PRINT-LINE.
WRITE PRINT-LINE BEFORE ADVANCING
GO TO PARA- 3.

MOVE SPACES TO PRINT-LINE.

1 LINE.

2-1-82 NEVADA COBOL PAGE 132

0047 WRITE PRINT-LINE BEFORE ADVANCING PAGE.
0048 CLOSE FILEI.
0049 CLOSE FILE2.
0050 STOP RUN.
0051 END PROGRAM TST-PRT.

2-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T8WR.

PAGE 133

0004* THIS PROGRAM WRITES RANDOM FIXED LENGTH RECORDS TO A
0004* FILE THAT HAS BEEN CREATED USING A SEQUENTIAL FIXED
0004* LENGTH WRITE PROGRAM TO ALLOCATE THE REQUIRED FILE
0004* SPACE.
0005 ENVIRONMENT DIVISION.
0006 CONFIGURATION SECTION.
0007 SOURCE-COMPUTER.
0008 8080-CPU.
0009 OBJECT-COMPUTER.
0010 8080-CPU.
0011 INPUT-OUTPUT SECTION.
0012 FILE-CONTROL.
0013 SELECT FILEI ASSIGN TO DISK
0014 ORGANIZATION IS
0015 RELATIVE
0016 ACCESS MODE IS RANDOM
0017 RELATIVE KEY IS KEY-I.
0018 DATA DIVISION.
0019 FILE SECTION.
0020 FD FILEI
0021 LABEL RECORDS ARE STANDARD
0022 VALUE OF FILE-ID IS OUT-FILE
0023 DATA RECORDS ARE O-RECORD.
0024 01 O-RECORD.
0025 02 SEQ PIC 9999.
0026 02 RECI PIC IS X(160).
0027 WORKING-STORAGE SECTION.
0028 01 OUT-FILE PIC X(14)
0029 VALUE "A:TESTF.WRK".
0030 01 KEY-l PIC 9(7) COMP-3.
0031 01 XX-KEY PIC 9(4) VALUE 1.
0032 PROCEDURE DIVISION.
0033 BEGIN.
0034 DISPLAY "ENTER OUTPUT FILE NAME ".
0035 DISPLAY OUT-FILE WITH NO ADVANCING.
0036 ACCEPT OUT-FILE.
0037 OPEN OUTPUT FILEI.
0038 BEGIN2.
0039 MOVE SPACE TO O-RECORD.
0040 MOVE 0001 TO XX-KEY.
0041 DISPLAY "ENTER RECORD NUMBER 0001 "
0042 ACCEPT XX-KEY.
0043 IF XX-KEY IS NOT NUMERIC
0044 GO TO BEGIN2.
0045 IF XX-KEY = 9999
0046 GO TO EOJ.
0047 MOVE XX-KEY TO KEY-I.
0048 MOVE XX-KEY TO SEQ.
0049 DISPLAY "ENTER DATA FOR RECORD "
0050 ACCEPT RECI.
0051 WRITE O-RECORD

2-1-82 NEVADA COBOL PAGE 134

0052 INVALID KEY
0053 DISPLAY "INVALID KEY" GO TO BEGIN2.
0054 DISPLAY a-RECORD.
0055 GO TO BEGIN2.
0056 EOJ.
0057 CLOSE FILEI.
0058 DISPLAY "EOJ".
0059 STOP RUN.
0060 END PROGRAM T8WR.

2-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T8RR.

PAGE 135

0004* THIS PROGRAM READS RANDOM FIXED LENGTH RECORDS.
0005 ENVIRONMENT DIVISION.
0006 CONFIGURATION SECTION.
0007 SOURCE-COMPUTER.
0008 8080-CPU.
0009 OBJECT-COMPUTER.
0010 8080-CPU.
0011 INPUT-OUTPUT SECTION.
0012 FILE-CONTROL.
0013 SELECT FILE1 ASSIGN TO DISK
0014 ORGANIZATION IS
0015 RELATIVE
0016 ACCESS MODE IS RANDOM
0017 RELATIVE KEY IS KEY-I.
0018 DATA DIVISION.
0019 FILE SECTION.
0020 FD FILE1
0021 LABEL RECORDS ARE STANDARD
0022 VALUE OF FILE-ID IS IN-FILE
0023 DATA RECORDS ARE I-RECORD.
0024 01 I-RECORD.
0025 02 PART-NUMBER PIC 9999.
0026 02 ITEM-DESCRIPTION PIC IS X(160).
0027 WORKING-STORAGE SECTION.
0028 01 IN-FILE PIC X(14)
0029 VALUE "A:TESTF.WRK".
0030 01 KEY-1 PIC 9(7) COMP-3.
0031 01 XX-KEY PIC 9(4).
0032 PROCEDURE DIVISION.
0033 BEGIN.
0034 DISPLAY "ENTER INPUT FILE NAME".
0035 DISPLAY IN-FILE WITH NO ADVANCING.
0036 ACCEPT IN-FILE.
0037 OPEN INPUT FILE1.
0038 DISPLAY "OPEN".
0039 BEGIN2.
0040 MOVE SPACE TO I-RECORD.
0041 MOVE 0001 TO XX-KEY.
0042 DISPLAY "ENTER RECORD NUMBER 0001 "
0043 ACCEPT XX-KEY.
0044 IF XX-KEY NOT NUMERIC
0045 GO TO BEGIN2.
0046 IF XX-KEY = 9999
0047 GO TO EOJ.
0048 MOVE XX-KEY TO KEY-I.
0049 READ FILE1
0050 INVALID KEY
0051 DISPLAY "INVALID KEY" GO TO BEGIN2.
0051* don't display on invalid key as data is unspecified.
0052 DISPLAY I-RECORD.
0053 GO TO BEGIN2.
0054 EOJ.

2-1-82 NEVADA COBOL PAGE 136

0055 CLOSE FILE1~
0056 DISPLAY "EOJ".
0057 STOP RUN.
0058 END PROGRAM T8RR.

2-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T8IOR.

PAGE 137

0004* THIS PROGRAM READS THEN REWRITES FIXED LENGTH RECORDS I

0005* IN RANDOM MODE.
0006 ENVIRONMENT DIVISION.
0007 CONFIGURATION SECTION.
0008 SOURCE-COMPUTER.
0009 8080-CPU.
0010 OBJECT-COMPUTER.
0011 8080-CPU.
0012 INPUT-OUTPUT SECTION.
0013 FILE-CONTROL.
0014 SELECT FILE1 ASSIGN TO DISK
0015 ORGANIZATION IS
0016 RELATIVE
0017 ACCESS MODE IS RANDOM
0018 RELATIVE KEY IS KEY-I.
0019 DATA DIVISION.
0020 FILE SECTION.
0021 FD FILE1
0022 LABEL RECORDS ARE STANDARD
0023 VALUE OF FILE-ID IS I-O-FILE
0024 BLOCK CONTAINS 1 RECORD
0025 DATA RECORDS ARE A-RECORD.
0026 01 A-RECORD.
0027 02 SEQ PIC 9999.
0028 02 REC1 PIC IS X(160).
0029 WORKING-STORAGE SECTION.
0030 01 I-O-FILE PIC X(14)
0031 VALUE "A:TESTF.WRK".
0032 01 KEY-1 PIC 9(7) COMP-3.
0033 01 XX-KEY PIC 9(4)
0034 VALUE 1.
0035 PROCEDURE DIVISION.
0036 BEGIN.
0037 DISPLAY "ENTER 1-0 FILE NAME "
0038 DISPLAY I-O-FILE WITH NO ADVANCING.
0039 ACCEPT I-O-FILE.
0040 OPEN 1-0 FILE1.
0041 BEGIN2.
0042 MOVE SPACE TO A-RECORD.
0043 MOVE 1 TO XX-KEY.
0044 DISPLAY "ENTER RECORD NUMBER 0001 "
0045 ACCEPT XX-KEY.
0046 IF XX-KEY IS NOT NUMERIC
0047 GO TO BEGIN2.
0048 IF XX-KEY = 9999
0049 GO TO EOJ.
0050 MOVE XX-KEY TO KEY-I.
0051 READ FILE1
0052 INVALID KEY
0053 DISPLAY "READ INVALID KEY" GO TO BEGIN2.
0054 DISPLAY A-RECORD.
0055 DISPLAY "ENTER NEW DATA"
0056 ACCEPT REC1.

2-1-82

EOJ.

NEVADA COBOL

REWRITE A-RECORD
INVALID KEY
DISPLAY "REWRITE

DISPLAY A-RECORD.
GO TO BEGIN 2.

C LOS E FILE 1.
DISPLAY "EOJ".
STOP RUN.

INVALID KEY".

0057
0058
0059
0060
0061
0062
0063
0064
0065
0066 END PROGRAM T8IOR.

PAGE 138

2-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T20.

PAGE 139

0004* THIS PROGRAM CALLS PROGRAM T20A WHICH IN TURN CALLS
0005* PROGRAM T20B.
0006 ENVIRONMENT DIVISION.
0007 CONFIGURATION SECTION.
0008 SOURCE-COMPUTER.
0009 8080-CPU.
0010 OBJECT-COMPUTER.

* the following memory statement is necessary for memory
* mapping as it marks the upper boundary address (16383).
* the data from this program loads from the ,bottom-up
* and from the top-down. free space, if any, is somewhere
* between the top address and the starting address.

0011 8080-CPU MEMORY SIZE 16383 CHARACTERS.
0012 DATA DIVISION.
0013 WORKING-STORAGE SECTION.
0014 01 MI.
0015 02 Ml-2.
0016 03 M1-3 PIC XXX.
0017 02 Ml-4 PIC 99.
0018 02 Ml-5 PIC 99V99 COMP VALUE 11.11.
0019 02 Ml-6 PIC 999999V99 COMP-3 VALUE 012345.78.
0020 02 Ml-7 PIC $99,999.99.
0021 01 M2 PIC S9V9999 VALUE 0.6143.
0022 01 M3 PIC X(10) VALUE "A:T20A".
0023 01 M4 PIC X (120).
0024 01 M5 PIC X(20) JUSTIFIED.
0025 PROCEDURE DIVISION.
0026 BEGIN.
0027
0028
0029
0030
0031
0032

DISPLAY "START T20".
MOVE ALL "A" TO M4.
CALL IT20A" USING M1,
DISPLAY IEOJ-T20".
STOP RUN.

END PROGRAM T20.

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T20A.

M2, M3, M4, M5.

0004* THIS PROGRAM IS CALLED BY T20 AND IN TURN CALLS
0005* PROGRAM T20B.
0006 ENVIRONMENT DIVISION.
0007 CONFIGURATION SECTION.
0008 SOURCE-COMPUTER.
0009 8080-CPU.
0010 OBJECT-COMPUTER.

* the following memory statement is necessary. it must be
* at least 1 byte higher than the previous programs ending
* address (16383+1=16384) in this example.

2-1-82 NEVADA COBOL PAGE 140

0011 8080-CPU MEMORY BEGINNING 16384 ENDING 20000.
0012 DATA DIVISION.
0013 WORKING-STORAGE SECTION.
0014 01 L3 PIC X(10) VALUE "A:T20A".
0015 LINKAGE SECTION.
0016 01 MI.
0017 02 Ml-2.
0018 03 Ml-3 PIC XXX.
0019 02 Ml-4 PIC 99.
0020 02 Ml-5 PIC 99V99 COMP.
0021 02 Ml-6 PIC 999999V99 COMP-3.
0022 02 Ml-7 PIC $99,999.99.
0023 01 M2 PIC S9V9999.
0024 77 M3 PIC X(10).
0025 77 M4 PIC X(120).
0026 77 M5 PIC X(20) JUSTIFIED.
0027 PROCEDURE DIVISION
0028* no period after the word division when using using
0029 USING M1, M2, M3, M4, MS.
0030 BEGIN.
0031 DISPLAY "THIS IS T20A".
0032 DISPLAY M3.
0033 DISPLAY M4.
0034 CALL "T20B" USING L3.
0035 CANCEL "T20B".
0036 EOJ1.
0036 EXIT PROGRAM.
0037 EOJ.
0038 STOP RUN.
0039 END PROGRAM T20A

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T20B.
0004* THIS PROGRAM IS CALLED BY T20A AND EXITS BACK TO IT.
0005* NOTE HOW THE MEMORY IS ALLOCATED.
0006 ENVIRONMENT DIVISION.
0007 CONFIGURATION SECTION.
0008 SOURCE-COMPUTER.
0009 8080-CPU.
0010 OBJECT-COMPUTER.

* the following memory statement is necessary to control
* the memory mapping of this third program module. it
* starts at address 20001 just one byte higher than the
* previous programs ending address.

0011 8080-CPU MEMORY BEGINNING 20001 ENDING 24000.
0012 DATA DIVISION.
0013 FILE SECTION.
0014 WORKING-STORAGE SECTION.
0015 01 L1 PIC X(10) VALUE SPACE.
0016 LINKAGE SECTION.
0017 01 L3 PIC X (10) •
0018 PROCEDURE DIVISION

2-1-82

0019 USING L3.
0020
0021
0022
0023
0024
0025
0026
0027

BEGIN.
DISPLAY "THIS
DISPLAY L3.

EOJ1.
EXIT PROGRAM.

EOJ.
STOP RUN.

END PROGRAM T20B

NEVADA COBOL PAGE 141

IS T20-8".

2-1-82 NEVADA COBOL

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 TSUBMIT.

PAGE 142

0004* THIS PROGRAM CHAINS TO EXECUTE THE NEXT PROGRAM USING
0005* CP/M'S SUBMIT WHEN THE NEXT PROGRAM IS NOT TYPE (.OBJ)
0006 ENVIRONMENT DIVISION.
0007 CONFIGURATION SECTION.
0008 SOURCE-COMPUTER.
0009 8080-CPU.
0010 OBJECT-COMPUTER.
0011 8080-CPU.
0012 INPUT-OUTPUT SECTION.
0013 FILE-CONTROL.
0014 SELECT FILE1 ASSIGN TO DISK
0015 RECORD DELIMITER IS STANDARD.
0016 DATA DIVISION.
0017 FILE SECTION.
0018 FD FILE1
0019 LABEL RECORDS ARE STANDARD
0020 VALUE OF FILE-ID IS "A:$$$.SUB"
0021 DATA RECORDS ARE NEXT-PROGRAM.
0022 01 NEXT-PROGRAM PIC X(16).
0023 WORKING-STORAGE SECTION.
0024 01 W-NEXT-PROGRAM.
0025 02 NAME-SIZE PIC X VALUE ""07"".
0026 02 NAME PIC X(7) VALUE "ED TEXT".
0027 02 STOPPER PIC 99 COMP VALUE ZERO.
0028 PROCEDURE DIVISION.
0029 BEGIN.
0030 OPEN OUTPUT FILE1.
0031 MOVE W-NEXT-PROGRAM TO NEXT-PROGRAM.
0032 WRITE NEXT-PROGRAM.
0033 CLOSE FILE1.
0034 STOP RUN.
0035 END PROGRAM TSUBMIT.

2-1-82 NEVADA COBOL PAGE 143

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID. TRANSFER.

* this program calls an assembly language program called
* "trans". it is used to transfer files from CP/M to
* PTDOS a unix like operating system.

0003 ENVIRONMENT DIVISION.
0004 CONFIGURATION SECTION.
0005 SOURCE-COMPUTER. 80BO-CPU.
0006 OBJECT-COMPUTER. 8080-CPU

0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049

* the following is the actual ending address for this
* program. the assembly language program is orged just
* after it.

MEMORY SIZE 16383 CHARACTERS.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILEI ASSIGN TO INPUT DISK
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD FILEI

LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS IN-FILE-NAME
BLOCK CONTAINS 1 RECORD
DATA RECORDS ARE TESTA.

01 TESTA.
02 RECI PICTURE IS X(256).

WORKING-STORAGE SECTION.
01 ANSWER PIC X VALUE "y".
01 IN-FILE-NAME PIC X(14) VALUE "A:TXX.CBL
01 OUT-FILE-NAME PIC X(lO) VALUE "TXX/l
01 TRANSFER-TYPE PIC 9 VALUE 1.
01 TRANSFER-FUNCTION PIC X VALUE ;; 1;; •
01 TRANSFER-ERROR PIC XX VALUE "00".
PROCEDURE DIVISION.
BEGIN.

"
"

DISPLAY "ENTER INPUT CP/M FILE NAME" IN-FILE-NAME.
ACCEPT IN-FILE-NAME.
OPEN INPUT FILEI.
DISPLAY "ENTER OUTPUT PTDOS FILE NAME " OUT-FILE-NAME.
ACCEPT OUT-FILE-NAME.
DISPLAY "ENTER FILE TRANSFER TYPE".
DISPLAY "I=FIXED 2=CRLF-CR (1/2)? "
ACCEPT TRANSFER-TYPE.
MOVE 1 TO TRANSFER-FUNCTION.
CALL "TRANS" USING OUT-FILE-NAME

TRANSFER-TYPE TRANSFER-FUNCTION TRANSFER-ERROR
TESTA.

IF TRANSFER-ERROR NOT EQUAL "00"
DISPLAY "PTDOS OPEN ERROR " TRANSFER-ERROR
STOP RUN.

BEGIN2.
MOVE SPACE TO TESTA.
READ FILEI AT END GO TO EOJ.
MOVE 3 TO TRANSFER-FUNCTION.

2-1-82 NEVADA COBOL PAGE 144

0050 CALL "TRANS" USING OUT-FILE-NAME
0051 TRANSFER-TYPE TRANSFER-FUNCTION TRANSFER-ERROR
0052 TESTA.
0053 IF TRANSFER-ERROR = "00" GO TO BEGIN2.
0054 DISPLAY "PTDOS WRITE ERROR".
0055 STOP RUN.
0056 EOJ.
0057 CLOSE FILEI.
0058 MOVE 2 TO TRANSFER-FUNCTION.
0059 CALL "TRANS" USING OUT-FILE-NAME
0060 TRANSFER-TYPE TRANSFER-FUNCTION TRANSFER-ERROR
0061 TESTA.
0062 DISPLAY "ANOTHER FILE (YIN)? "
0063 ACCEPT ANSWER.
0064 IF ANSWER = "yo GO TO BEGIN.
0065 STOP RUN.
0066 END PROGRAM TRANSFER.

0001 THIS PROGRAM IS "TRANS"
0002 IT IS AN ASSEMBLY LANGUAGE PROGRAM THAT IS CALLED
0003 BY THE PRIOR COBOL PROGRAM NAMED TRANSFER.
0004 IT TRANSFERS CP/M FILES TO PTDOS A UNIX LIKE OPERATING
0005 SYSTEM.
0006 IT IS AN EXAMPLE OF AN ASSEMBLY LANGUAGE CALLED

PROGRAM
0007 after this program is assembled the .HEX file must be

converted to an .OBJ file. use the program called
CONVHEX to do the conversion.

0008 RELOC EQU 0 ;4200H FOR TRS-80
0009 SET UP AS FOLLOWS
0010 BO LOAD PTDOS
0011 *S GO TO SOLOS
0012 BO LOAD CP/M FROM LIFEBOAT 32K
0013
0014 COPY PTDEFS ;THIS FILE CONTAINS THE PTDOS DEFINITIONS
0015 ORG 16384+RELOC
0016 XEQ START ;necessary for ptdos assembler
0017 START EQU $;ENTRY FROM COBOL PROGRAM
0018 SHLD SAVI ;OUT-FILE-NAME
0019 LXI H,O
0020 DAD SP
0021 SHLD SAVSP
0022 LXI SP,STACK ;SET UP THE STACK
0023 CALL GETP
0024 LHLD SAV3 ;TRANSFER-FUNCTION
0025 MOV A,M ;GET CODE
0026 CPI '1' ; OPEN?
0027 JZ OPEN
0028 CPI '2' ;CLOSE?
0029 JZ CLOSE
0030 CPI '3' ;WRITE?
0031 JZ WRITE
0032 ; ERROR TRANSFER FUNCTION NOT 1,2,3
0033 ERRT LXI D,3232H ;22
0034 EXIT EQU $

2-1-82 NEVADA COBOL

0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090

LnLJ.J SAV4
MOV M,D
DCX H
MOV M,E
LHLD SAVSP
SPHL
RET

GETP EQU $
XCHG
SHLD SAV2 iTRANSFER-TYPE
PUSH B
POP H iPOINTS TO TABLE OF ADDRESS LEFT END
MOV E,M
INX H
MOV D,M
XCHG
SHLD SAV3 iTRANSFER-FUNCTION
XCHG
INX H
MOV E,M
INX H
MOV D,M
XCHG
SHLD SAV4 iTRANSFER-ERROR
XCHG
INX H
MOV E,M
INX H
MOV D,M
LXI H,255
MOV A,E
SUB L
MOV L,A
MOV A,D
SSS H
MOV H,A
SHLD SAV5 iLEFT END OF RECORD TO BE OUTPUT
RET

OPEN EQU $
LHLD SAV1 iOUT-FILE-NAME RIGHT END
LXI D,ONAME+9
MVI C,10

OP1 EQU $
MOV A,M
STAX D
DCX H
DCX D
DCR C
JNZ OP1

the next 9 lines is a ptdos open function
MVI A,40H iOPEN CREATE IF NECESSARY
LXI D,OBUFF
LXI H,ONAME
CALL PSCAN
JC ERROR
JZ ERROR

PAGE 145

8-1-82 NEVADA COBOL

0091 MOV A,E ;FILE NUMBER
0092 CPI 255 ;-1 for cpm
0093 JZ ERROR
0094 STA OFILENUMBER ;ptdos uses file numbers
0095 LXI D,3030H ;GOOD EXIT for the cobol program
0096 JMP EXIT
0097 ERROR EQU $
0098 MOV D,E
0099 MVI E,'9'
0100 JMP EXIT
0101 CLOSE EQU $;ptdos close function follows
0101 LDA OFILENUMBER
0101 CALL SYS
0101 DB EOFOP ;END FILE
0101 JMP ERROR
0102 LDA OFILENUMBER
0103 CALL SYS
0104 DB CLOOP
0105 JMP $;NO ERRORS RETURNED ON CLOSE

PAGE 146

0106 LXI D,3030H ;good close message for the cobol program
0107 JMP EXIT
0108 WRITE EQU $
0109 LHLD SAV2 ;TRANSFER-TYPE
0110 MOV A,M
0111 CPI '2' ;DROP THE LF' S
0112 JZ WT2
0113 CPI '1'
0114 JNZ ERRT ;ERROR TRANSFER-TYPE CODE
0115 LHLD SAV5 ;LEFT-END
0116 XCHG
0117 LXI B,256
0118 WT1 EQU $;ptdos write function follows
0119 LDA OFILENUMBER
0120 CALL SYS
0121 DB WBLOP ;WRITE BLOCK
0122 JMP ERROR
0123 LXI D,3030H ;GOOD WRITE for cobol program
0124 JMP EXIT
0125 WT2 EQU $;DROP THE LF'S
0126 LHLD SAV5
0127 LXI D,BUFF2
0128 LXI B,256
0129 WT2A EQU $
0130 MOV A,M
0131 CPI OAH ;LF
0132 JZ WT2B
0133 CPI lAH ;CP/M'S EOF FOR ASCII FILES
0134 JZ WT2C
0135 STAX D
0136 INX D
0137 WT2B EQU $
0138 INX H
0139 DCX B
0140 MOV A,C
0141 ORA B
0142 JNZ WT2A

8-1-82

0143 WT 2C E QU $
0144 LXI H,BUFF2
0145 MOV A,E
0146 SUB L
0147 MOV E,A
0148 MOV A,D
0149 SBB H
0150 MOV D,A
0151 PUSH D

NEVADA COBOL

0152 POP B iSIZE OF THIS WRITE FOR PTDOS
0153 XCHG
0154 JMP WT1
0155 SAVI DW 0 iOUT-FILE-NAME
0156 SAV2 DW 0 iTRANSFER-TYPE
0157 SAV3 DW 0 iTRANSFER-FUNCTION
0158 SAV4 DW 0 iTRANSFER-ERROR
0159 SAV5 DW 0 iOUTPUT RECORD
0160 SAVSP OW 0 iSTACK POINTER
0161 i all that follows is for ptdos
0162 DB '.'+80H
016 3 DW 0 4C 0 H
0164 DB 0
0165 OBUFF DS 20
0166 DS 20
01 6 7 S T AC K DW 0
0168 ONAME DS 10
0169 DB 0
0170 OFILENUMBER DB 0
0171 BUFF2 DS 256
0172 LAST DB 0
0173 END START inecessary for cpm assembler

PAGE 147

8-1-82 NEVADA COBOL PAGE 148

LIST OF REFERENCES

Ashley, Ruth, Structured COBOL self-teaching guide, Wiley, 1980.

Bauer, F.L, & Eickel J., Compiler Construction, Springer-Verlag,
1976.

Chumra, L., & Ledgard, H., COBOL WITH STYLE: Programming
Proverbs, Hayden, 1976.

ELLIS COMPUTING, NEVADA COBOL Application Packages Bookl, ELLIS
COMPUTING, 1980.

ELLIS COMPUTING, NEVADA EDIT, ELLIS COMPUTING, 1982.

ELLIS COMPUTING, NEVADA SORT, ELLIS COMPUTING, 1982.

ELLIS COMPUTING, NEVADA FORTRAN, ELLIS COMPUTING, 1982.

Gries, D., Compiler Construction for Digital Computers, Wiley,
1971.

Hogan, T., CPM Users guide, Osborne, 1981.

Kunth, D., The Art of Computer Programming, Addison Wesley, 1973.

McCracken, D.M., A Simplified Guide to Structured COBOL
Programming, Wiley, 1976.

Parkin Andrew, COBOL for students, Edward Arnold, 1975.

Starkweather, J., NEVADA PILOT, ELLIS COMPUTING, 1981.

FIPS Pub 21-1, National Technical Information Service, 425 13th
Street, NW, Washington,DC 20004. Includes the ANSI-74 standards
manual.

Receiver General of Canada, Journal of Developement, Dept of
Supply & Services, Material Data Management Center, 4/8-1 Place
du Portage, Phase III, 11 Laurier Street, Hull, Quebec, Canada
KIA OS5

X3J4 Chairman, CBEMA, Suite 1200, 1828 L Street, NW, Washington,
DC 20036 Ask for latest COBOL report.

12-15-82 NEVADA COBOL PAGE 149

Ellis Computing
3917 Noriega Street, San Francisco, CA 94122

SOFTWARE LICENSE AGREEMENT

IMPORTANT: All Ellis Computing programs are sold only on the
condition that the purchaser agrees to the following License.

ELLIS COMPUTING agrees to grant and the Customer agrees to accept
on the following terms and conditions nontransferable and
nonexclusive Licenses to use the software program(s) (Licensed
Programs) herein delivered with this Agreement.

TERM:

This Agreement is effective from the date of receipt of the
above-referenced program(s) and shall remain in force until
terminated by the Customer upon one month's prior written notice,
or by Ellis Computing as provided below.

Any License under this Agreement may be discontinued by the
Customer at any time upon one month's prior written notice.
Ellis Computing may discontinue any License or terminate this
Agreement if the Customer fails to comply with any of the terms
and conditions of this Agreement.

LICENSE:

Each program License granted under this Agreement authorizes the
Customer to use the Licensed Program in any machine readable form
on any single computer system (referred to as System). A
separate license is required for each System on which the
Licensed Program will be used.

This Agreement and any of the Licenses, programs or materials to
which it applies may not be assigned, sublicensed or otherwise
transferred by the Customer without prior written consent from
Ellis Computing. No right to print or copy, in whole or in part,
the Licensed Programs is granted except as hereinafter expressly
provided.

PERMISSION TO COpy OR MODIFY LICENSED PROGRAMS:

The customer shall not copy, in whole or in part, any Licensed
Programs which are provided by Ellis Computing in printed form
under this Agreement. 'Additional copies of printed materials may
be acquired from Ellis Computing.

The NEVADA COBOL COMPILER Licensed Programs which are provided by
Ellis Computing in machine readable form may be copied, in whole
or in part, in machine readable form in sufficient number for use
by the Customer with the designated System, for back-up purposes,
or for archive purposes. The original, and any copies of the
Licensed Programs, in whole or in part, which are made by the
Customer shall be the property of Ellis Computing. This does not
imply that Ellis Computing owns the media on which the Licensed
Programs are recorded.

11-2-82 NEVADA COBOL PAGE 150

The NEVADA COBOL Licensed Program called "RUN" which is provided
by Ellis Computing may be distributed to third parties.

The Customer agrees to reproduce and include the copyright notice
of Ellis Computing on all copies, in whole or in part, in any
form, including partial copies of modifications, of Licensed
Programs made hereunder.

PROTECTION AND SECURITY:

The Customer agrees not to provide or otherwise make available
the NEVADA COBOL COMPILER Program including but not limited to
program listings, object code and source code, in any form, to
any person other than Customer or Ellis Computing employees,
without prior written consent from Ellis Computing, except with
the Customer's permission for purposes specifically related to
the Customer's use of the Licensed Program.

DISCLAIMER OF WARRANTY:

Ellis Computing makes no warranties with respect to the Licensed
Programs.

LIMITATION OF LIABILITY:

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT WILL ELLIS COMPUTING BE LIABLE FOR
CONSEQUENTIAL DAMAGES EVEN IF ELLIS COMPUTING HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

GENERAL:

If any of the provlslons, or portions thereof, of this Agreement
are invalid under any applicable statute or rule of law, they are
to that extent to be deemed omitted. This is the complete and
exclusive statement of the Agreement between the parties which
supercedes all proposals, oral or written, and all other
communications between the parties relating to the subject matter
of this Agreement.
This Agreement will be governed by the laws of the State of
California.

12-15-82 NEVADA COBOL PAGE 151

CORRECTIONS AND SUGGESTIONS

All suggestions and problems must be reported in writing.
Please include sample source listings if possible.

ERRORS IN MANUAL:

SUGGESTIONS FOR IMPROVEMENTS TO MANUAL:

ERRORS IN COMPILER: For bugs we need to know the machine
configuration, CP/M version if: (2.2 vs 1.4), Nevada COBOL
version if: and a complete listing of the source program.

SUGGESTIONS FOR IMPROVEMENT TO COMPILER:

MAIL TO:

FROM:

Ellis Computing
3917 Noriega Street
San Francisco,CA 94122

NAME -------------------------
ADDRESS

DATE ----.

CITY,STATE,ZIP -----
COUNTRY ----------------------
PHONE NUMBER

VERSION SERIAL # --------------------

If you wish a reply include a self-addressed postage-paid
envelope. Thank you.

11-2-82 NEVADA COBOL PAGE 152

DISCLAIMER

All Ellis Computing computer programs are distributed on an
"AS IS" basis without warranty.

ELLIS COMPUTING makes no warranties, expressed or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. In no
event will ELLIS COMPUTING be liable for consequential
damages even if ELLIS COMPUTING has been advised of the
possibility of such damages.

