PROFESSIONAL

Computersystem Eurocom 1 mit dem 6809

Das Einplatinensystem Eurocom 1 ist für den CHIP-Leser ein bekannter Computer. Durch Modifikation läßt sich dieses System verbessern.

Als mehr oder weniger stolzer Besitzer eines Eurocom 1 hat man nach einiger Zeit vielleicht das Verlangen, einen Prozessor mit einem etwas exklusiveren Befehlssatz als den des 6802 zu programmieren.

Dem kommt der relativ niedrige Preis des 6809 entgegen, und man läßt sich auf die Idee ein, seinen Computer umzurüsten.

Dafür bestehen nun prinzipiell zwei Möglichkeiten: Entweder man kauft einen von einer bekannten Firma entsprechend teuren Umrüstsatz oder man besorgt sich die dazu notwendigen Bauelemente selbst.

Hardwaremäßige Umrüstung

Hat man sich für das letztere entschlossen, so dürfte der Zusammenbau keine größeren Schwierigkeiten bereiten. Da die Anschlußbilder der Mikroprozessoren 6809 und der 6802 zum größten Teil voneinander differieren, muß man den 6809 auf einer Zusatzplatine unterbringen, die auf die linke VG-Leiste am Eurocom aufgesteckt wird.

Bei der Verdrahtung verbindet man die Prozessoranschlüsse mit den entsprechenden Anschlüssen der VG-Messerleiste, die vorher direkt auf die Zusatzplatine gelötet wurde.

Wenn man dann noch den Taktgenerator mit dem 74LS04 verdrahtet und an den Prozessor angeschlossen hat, wird man feststellen, daß einige Pins vom Superprozessor 6809 unbenutzt geblieben sind, nämlich die für Q, BS, BREQ und FIRQ. Dies ist nicht problematisch, denn diese werden für den Eurocom 1 nicht benötigt.

Man muß jedoch alle Prozessorsteuereingänge über Widerstände auf H-Pegel legen, um Fehlfunk-

FORTSCHRITTLICHER PROZESSOR

tionen oder Beschädigung am 6809 zu vermeiden. Darum steckt man auch

den Prozessor erst dann in

seine Fassung, wenn die Schaltung vollständig aufgebaut worden ist. Es ist klar, daß der alte Prozessor

Befehlssatz des 6809

1. Unmittelbare Adressierung:

Der Operan	id s	teht nach d	em Opcode im	Speid	cher.
1A ORCC	80	SUBA	COSUBB	1083	CMPD
1C ANDCC	81	CMPA	C1 CMPB	108C	CMPY
	82	SBCA	C2 SBCB	108E	LDY
	83	SUBD	C3 ADDD	10CE	LDS
	84	ANDA	C4 ANDB	1183	CMPU
	85	BITA	C5 BITB	118C	CMPS
	86	LDA	C6 LDB		
	88	EORA	C8 EORB		
	89	ADCA	C9 ADCB		
	8A	ORA	CAORB		
	8B	ADDA	CBADDB		
	8C	CMPX	CCLDD		
	8E	LDX	CE LDU		

2. Direkte Adressierung:

Das auf den Befehl folgende Byte enthält den niederwertigen und das DP-Register den höherwertigen Teil der Operandenaddresse.

00	NEG	90	SUBA	D0 SUBB	1093	CMPD
03	COM	91	СМРА	D1 CMPB	109C	CMPY
04	LSR	92	SBCA	D2 SBCB	109E	LDY
06	ROR	93	SUBD	D3 ADDD	109F	STY
07	ASR	94	ANDA	D4 ANDB	10DE	LDS

vor dem Betrieb des Eurocom 1 mit der 6809 erst aus seiner Fassung gezogen und dann zur Sicherheit in Schaumstoff gesteckt werden muß.

Die beiden Mikroprozessoren 6802 und 6809 sind Software-aufwärtszwar kompatibel, was aber nicht bedeutet, daß ihre Maschinencodes vollständig übereinstimmen. Man muß daher für die 6809 ein vollkommen neues Monitorprogramm erstellen.

Softwaremäßige Umrüstung

Wer sich mehrere Wochen Programmieren oder Fehler suchen ersparen will, kann das abgedruckte Monitorprogramm verwenden. Es ist etwas kürzer als das alte und belegt nicht den gesamten ROM-Be-reich. Der Bereich von \$FD65 bis \$FF0F ist noch frei für eigene Anwendungen des einzelnen Benutzers verfügbar.

Die Monitorfunktionen stimmen mit Ausnahme der vollkommen **B**-Funktion überein. Für die Branchberechnung war eine kleine Modifikation nötig, da die 6809 auch über sogenannte "Long-Branches", das heißt, Branches mit 16bit-Offset verfügt. Es muß nach dem Betätigen der B-Taste nicht die Adresse auf der der Branch-Befehl steht angegeben werden, sondern die nächste Addresse nach dem Branchbefehl. Wie gewohnt wird dann als zweites die Zieladdresse angegeben. Überschreitet der zu berechnende Offset die 8-bit-Grenze, wird er im 16-bit-Format, andernfalls im 8-bit-Format ausgegeben. Die Fehlermeldung "Error 8" existiert damit nicht mehr. Das neue Monitorprogramm muß in den gleichen Typ von EPROM programmiert werden, in dem auch das alte stand, sofern man an der Eurocom-Platine nichts ändern will. Das heißt, man muß bei älteren Computern zwei EPROM des Typs 2708, bei 2716 neueren einen (5 Volt) verwenden.

Hat man alles richtig gemacht, wird der Eurocom nach Anschluß der Betriebsspannung noch bes-Hans Weghorn ser.

PROFESSIONAL

08 ASL	95 BITA	D5 BITB	10DF STS
09 ROL	96 LDA	D6 LDB	1193 CMPU
OA DEC	97 STA	D7 STB	119C CMPS
OC INC	98 EORA	D8 EORB	
OD TST	99 ADCA	D9 ADCB	
OE JMP	9A ORA	DAORB	
OF CLR	9B ADDA	DBADDB	
	9C CMPX	DCLDD	
	9D JSR	DDSTD	
	9E LDX	DELDU	
	9F STX	DF STU	

3. Absolute Adressierung:

Die beiden auf den Opcode folgenden Byte stellen die Operandenadresse dar.

randonuarooc	Ju uur.		
70 NEG	BO SUBA	FO SUBB	10B3 CMPD
73 COM	B1 CMPA	F1 CMPB	10BC CMPY
74 LSR	B2 SBCA	F2 SBCB	10BE LDY
76 ROR	B3 SUBD	F3 ADDD	10BF STY
77 ASR	B4 ANDA	F4 ANDB	10FE LDS
78 ASL	B5 BITA	F5 BITB	10FF STS
79 ROL	B6 LDA	F6 LDB	11B3 CMPU
7A DEC	B7 STA	F7 STB	11BC CMPS
7C INC	B8 EORA	F8 EORB	
7D TST	B9 ADCA	F9 ADCB	
7E JMP	BAORA	FA ORB	
7F CLR	BBADDA	FB ADDB	
	BCCMPX	FC LDD	
	BDJSR	FD STD	
	BE LDX	FE LDU	
	BF STX	FF STU	

4. Relative Adressierung:

Das/die auf den Opcode folgende(n) Byte(s) stellt/stellen einen 8/16-bit-Offset dar, der im Falle eines Sprunges zum Programmzähler addiert wird

Programmzan	lier addiert wird	d .
16 LBRA	20 BRA	1021 LBRN
17 LBSR	21 BRN	1022 LBHI
	22 BHI	1023 LBLS
8D BSR	23 BLS	1024 LBCC
	24 BCC	1025 LBCS
1	25 BCS	1026 LBNE
The second second	26 BNE	1027 LBEQ
1	27 BEQ	1028 LBVC
	28 BVC	1029 LBVS
	29 BVS	102A LBPL
	2A BPL	102B LBMI
	2B BMI	102C LBGE
	2C BGE	102D LBLT
	2D BLT	102E LBGT
	2E BGT	102F LBLE
	2F BLE	
E Im Codo or	thaltene Adres	
12 NOP	40 NEGA	50 NEGB
13 SYNC	43 COMA	53 COMB
19 DAA	44 LSRA	54 LSRB
1D SEX	46 RORA	56 RORB
39 RTS	47 ASRA	57 ASRB
3A ABX	48 ASLA	58 ASLB
3B RTI	49 ROLA	59 ROLB
3C CWAI	4A DECA	5A DECB
3D MUL	4C INCA	5C INCB
3F SWI	4D TSTA	5D TSTB
	4F CLRA	5F CLRB
1E EXG) 2tos		
1F TFR 2tes	Befehlsbyte w	ne tolgt:

4 3 Quell-Register Ziel-Register 0000-D 1000-A 0001-X 1001-B 0010-Y 1010-CC 0011-U 1011-DP 0100-S 0101-PC 34 PSHS 35 PULS 2tes Befehlsbyte, wie folgt: 36 PSHU 37 PULU PUSH→ ← PULL S-Stack PC X DP В A CC U ←steigend Speicheradresse DP U-Stack PC В A CC S X 6. Indizierte Adressierung: Indexregister und Offset siehe nachfolgende Tabelle. 30 LEAX AO SUBA E0 SUBB 10A3 CMPD 31 LEAY A1 CMPA E1 CMPB **10AC CMPY** 32 LEAS A2 SBCA E2 SBCB 10AE LDY 33 LEAU A3 SUBD E3 ADDD 10AF STY **60 NEG** A4 ANDA E4 ANDB 10EE LDS E5 BITB 63 COM A5 BITA 10EF STS 64 LSR A6 LDA E6 LDB 11A3 CMPU 66 ROR A7 STA E7 STB 11AC CMPS 67 ASR A8 EORA E8 EORB 68 ASL A9 ADCA E9 ADCB 69 ROL AA ORA **EAORB** 6A DEC AB ADDA EBADDB 6C INC AC CMPX ECLDD 6D TST ADJSR ED STD 6E JMP AE LDX EE LDU AF STX EF STU 6F CLR Post Byte-Bit Adressierungsmodus 2 7 6 5 4 3 1 0 0 R R X Х Х XX ,R+5 Bit-Offset 0 0 1 R R 0 0 0 ,R+ R R 1 0 0 0 1 ,R++ 1 1 R R 0 0 0 1 0 , – R 1 R R 1 0 0 1 1 , - - R 1 R R 1 0 1 0 0 ,R+0 Offset 1 R R 1 0 1 0 1 ,R+ACCB-Offset R R 0 ,R+ACCA-Offset 1 1 1 1 0 R R 0 0 1 0 ,R+8 Bit-Offset 1 1 R R ,R+16 Bit-Offset 1 1 1 0 0 1 R R 0 1 ,R+D-Offset 1 1 1 1 1 X X 1 0 0 ,PC+8 Bit-Offset 1 X 1 X 1 1 1 0 1 ,PC+16 Bit-Offset 0 1 0 1 1 1 1 1 ,(,address) →I=0: Direkte Adressierung I=1: Indirekte Adressierung $\rightarrow 00 = X$ 01 = Y10 = U

Alle Offsets sind im 2er-Komplement-Format und somit mit Vorzeichen!

11 = S

PRO

Anschlußbilder für den 6809 dem 74LS04

Die internen Register des Supermikroprozessors 6809

Schaltplan für die Erweiterungsplatine, wobei sich ein Minimum an Bauelementen ergibt

F8RA 3A 25 02 CB 07 F9CD D0 26 F6 39 D6 FAF0 3D 20 DD CA 34 FC05 0C 86 55 B7 80 F8RF 39 8D FC 1C 80 F9D2 D1 C1 44 27 08 FAF5 10 8D F8 93 27 FC0A 08 0C C0 86 2D F884 30 2B 0F 81 09 F9D7 C1 45 27 04 C1 FAFA 0A D7 D0 8E A7 FC0F 97 C9 39 7E F9 F889 2F 0A 81 11 2B F9DC 46 26 16 39 8E FAFF CC FC14 F5 34 74 8D F8 F888 07 81 16 2E 03 F9E1 A7 CE 8D F8 EF FC19 35 35 74 86 80 F109 35 35 74 86 80 F119 35 35 74 86 80 F8C3 80 07 39 C6 35 F9E6 9E 8C A7 84 A1 F100 8D F8 D4 20 F1 FC23 80 09 84 7F 39 F218 84 28 48 48 F9F0 31 20 8E 0F D1 F805 35 10 D6 D1 C1 FC28 C6 4C 8D F8 EF F12 38 80 F8D2 A7 C8 A6 01 A7 F9F5 86 A7 1F 8B 10 F807 30 14 AC E4 27 FC32 K6 4C 8D F8 EF F22 80 78 81 53 26 F8D7 80 8C A7 00 26 F9FA CE A7 80 0F C0 F80F 30 14 AC E4 27 FC32 K6 4C 8D F8 EF F22 80 78 81 53 26 F8D7 80 8C A7 00 26 F9FA CE A7 80 0F C0 F80F 30 14 AC E4 27 FC32 K6 4C 8D F8 E7 F23 81 30 26 F814 C9 30 0E 20 C5 FC37 8D E3 81 30 26 F814 C9 30 0E 20 C5 FC37 8D E3 81 30 26 F81 82 F826 80 30 81 09 2F FA00 15 87 80 88 8E F823 30 1E 20 87 EC <th>F000105086801FF805509F120F13F80086971186F80FFF97104897F8141297130C03F8191897088697F8141297130C03F8191897088697F8141297130C03F8191897088697F812FB889FC482F823FB869FC295F820C67EFA2D90F832008D004F82F837A7C8108EFFF83000C6FFF780F84110B780118DF8462C261CE680F848C1202402C6F85610C6605A26F857DD5AF78010F86439D7D19BD1F86997D14A26FDF862398D008D00F873F63011CA0FF87453390FD13DF87553390F<!--</th--><th>F923478DDE6E84F9284444444484F92D0F8B308139F93223028B0739F9378D00A6301FF9378D00A6301FF9378D00A6301FF9378D00A6301FF9378D00A6301FF9378D8E1F21A6F9488D841F2139F950C64D8DB0BDF955F8CF9EBC8DF955F8CF9EBC8DF9560606CFDDCEF96420F58D698DF9571E301E9FBCF9788EA7BC8DBAF97020D5FFFF86F98215B780088EF987FF808D378EF98215B780088EF987FF808D378EF982A7CFE7848DF987FF808D378EF982A7CFE7848DF9983402<!--</th--><th>FA46 50 BD F9 04 10 FA4B 8E A7 D3 86 01 FA50 A1 22 27 0D 31 FA55 23 10 8C A8 00 FA5A 26 F4 C6 33 7E FA5F F9 81 C6 34 86 FA64 3F A1 84 27 F5 FA64 3F A1 84 27 F5 FA69 E6 84 A7 84 A1 FR6E 84 27 Ø4 C6 32 FA7D 42 BD F9 A1 A4 FA82 10 BD F8 CB FA7 CE DC FA82 10 BD<th>FB69 35 BD F9 04 AF FB6E 6A 86 3E B7 80 FB73 12 B6 30 10 BD FB73 12 B6 30 10 BD FB73 12 B6 30 10 BD FB73 FA B8 32 62 C1 FB70 40 27 07 86 37 FB82 B7 30 12 21 90 FB87 3B AE 6A 30 1F FB82 B7 30 AE 6A 30 1F FB82 AF 6A BD FA B8 FB91 32 62 AE AH 10 FB84 AF FA BD FA B8 FB1 36 01 FBAA 0C 3B 31 21 10 FB4 FB4 FB7 75 50 20 FBAF SC A8</th></th></th></th>	F000105086801FF805509F120F13F80086971186F80FFF97104897F8141297130C03F8191897088697F8141297130C03F8191897088697F8141297130C03F8191897088697F812FB889FC482F823FB869FC295F820C67EFA2D90F832008D004F82F837A7C8108EFFF83000C6FFF780F84110B780118DF8462C261CE680F848C1202402C6F85610C6605A26F857DD5AF78010F86439D7D19BD1F86997D14A26FDF862398D008D00F873F63011CA0FF87453390FD13DF87553390F </th <th>F923478DDE6E84F9284444444484F92D0F8B308139F93223028B0739F9378D00A6301FF9378D00A6301FF9378D00A6301FF9378D00A6301FF9378D00A6301FF9378D8E1F21A6F9488D841F2139F950C64D8DB0BDF955F8CF9EBC8DF955F8CF9EBC8DF9560606CFDDCEF96420F58D698DF9571E301E9FBCF9788EA7BC8DBAF97020D5FFFF86F98215B780088EF987FF808D378EF98215B780088EF987FF808D378EF982A7CFE7848DF987FF808D378EF982A7CFE7848DF9983402<!--</th--><th>FA46 50 BD F9 04 10 FA4B 8E A7 D3 86 01 FA50 A1 22 27 0D 31 FA55 23 10 8C A8 00 FA5A 26 F4 C6 33 7E FA5F F9 81 C6 34 86 FA64 3F A1 84 27 F5 FA64 3F A1 84 27 F5 FA69 E6 84 A7 84 A1 FR6E 84 27 Ø4 C6 32 FA7D 42 BD F9 A1 A4 FA82 10 BD F8 CB FA7 CE DC FA82 10 BD<th>FB69 35 BD F9 04 AF FB6E 6A 86 3E B7 80 FB73 12 B6 30 10 BD FB73 12 B6 30 10 BD FB73 12 B6 30 10 BD FB73 FA B8 32 62 C1 FB70 40 27 07 86 37 FB82 B7 30 12 21 90 FB87 3B AE 6A 30 1F FB82 B7 30 AE 6A 30 1F FB82 AF 6A BD FA B8 FB91 32 62 AE AH 10 FB84 AF FA BD FA B8 FB1 36 01 FBAA 0C 3B 31 21 10 FB4 FB4 FB7 75 50 20 FBAF SC A8</th></th></th>	F923478DDE6E84F9284444444484F92D0F8B308139F93223028B0739F9378D00A6301FF9378D00A6301FF9378D00A6301FF9378D00A6301FF9378D00A6301FF9378D8E1F21A6F9488D841F2139F950C64D8DB0BDF955F8CF9EBC8DF955F8CF9EBC8DF9560606CFDDCEF96420F58D698DF9571E301E9FBCF9788EA7BC8DBAF97020D5FFFF86F98215B780088EF987FF808D378EF98215B780088EF987FF808D378EF982A7CFE7848DF987FF808D378EF982A7CFE7848DF9983402 </th <th>FA46 50 BD F9 04 10 FA4B 8E A7 D3 86 01 FA50 A1 22 27 0D 31 FA55 23 10 8C A8 00 FA5A 26 F4 C6 33 7E FA5F F9 81 C6 34 86 FA64 3F A1 84 27 F5 FA64 3F A1 84 27 F5 FA69 E6 84 A7 84 A1 FR6E 84 27 Ø4 C6 32 FA7D 42 BD F9 A1 A4 FA82 10 BD F8 CB FA7 CE DC FA82 10 BD<th>FB69 35 BD F9 04 AF FB6E 6A 86 3E B7 80 FB73 12 B6 30 10 BD FB73 12 B6 30 10 BD FB73 12 B6 30 10 BD FB73 FA B8 32 62 C1 FB70 40 27 07 86 37 FB82 B7 30 12 21 90 FB87 3B AE 6A 30 1F FB82 B7 30 AE 6A 30 1F FB82 AF 6A BD FA B8 FB91 32 62 AE AH 10 FB84 AF FA BD FA B8 FB1 36 01 FBAA 0C 3B 31 21 10 FB4 FB4 FB7 75 50 20 FBAF SC A8</th></th>	FA46 50 BD F9 04 10 FA4B 8E A7 D3 86 01 FA50 A1 22 27 0D 31 FA55 23 10 8C A8 00 FA5A 26 F4 C6 33 7E FA5F F9 81 C6 34 86 FA64 3F A1 84 27 F5 FA64 3F A1 84 27 F5 FA69 E6 84 A7 84 A1 FR6E 84 27 Ø4 C6 32 FA7D 42 BD F9 A1 A4 FA82 10 BD F8 CB FA7 CE DC FA82 10 BD <th>FB69 35 BD F9 04 AF FB6E 6A 86 3E B7 80 FB73 12 B6 30 10 BD FB73 12 B6 30 10 BD FB73 12 B6 30 10 BD FB73 FA B8 32 62 C1 FB70 40 27 07 86 37 FB82 B7 30 12 21 90 FB87 3B AE 6A 30 1F FB82 B7 30 AE 6A 30 1F FB82 AF 6A BD FA B8 FB91 32 62 AE AH 10 FB84 AF FA BD FA B8 FB1 36 01 FBAA 0C 3B 31 21 10 FB4 FB4 FB7 75 50 20 FBAF SC A8</th>	FB69 35 BD F9 04 AF FB6E 6A 86 3E B7 80 FB73 12 B6 30 10 BD FB73 12 B6 30 10 BD FB73 12 B6 30 10 BD FB73 FA B8 32 62 C1 FB70 40 27 07 86 37 FB82 B7 30 12 21 90 FB87 3B AE 6A 30 1F FB82 B7 30 AE 6A 30 1F FB82 AF 6A BD FA B8 FB91 32 62 AE AH 10 FB84 AF FA BD FA B8 FB1 36 01 FBAA 0C 3B 31 21 10 FB4 FB4 FB7 75 50 20 FBAF SC A8
	F8AF 39 BD FC 1C 80 F8B4 30 2B 0F 81 09 F8B9 2F 0A 81 11 2B F8B9 2F 0A 81 11 2B F8BF 07 81 16 2E 03 F8BF 07 81 16 2E 03 F8C3 80 07 39 C6 35 F8C8 7E F9 81 8D 00 F8C0 SD 00 8D 00 8E F8D2 A7 C8 A6 01 A7 F8D7 80 8C A7 D0 26 F8D7 80 8C A7 D0 26 F8D7 80 8C A7 D0 26 F8E1 C0 26 CC A6 80 F8E6 80 30 81 09 2F F8E8 02 80 07 39 <td>F9D2 D1 C1 44 27 08 F9D7 C1 45 27 04 C1 F9DC 46 26 16 39 8E F9E1 A7 CE BD F8 EF F9E6 9E BC A7 84 A1 F9E8 80 26 01 39 C6 F9F0 31 20 8E 0F D1 F9F5 86 A7 1F 3B 10 F9FA CE A7 B0 0F C0 F9FF 86 A4 A4 FA00 15 B7 80 08 8E</td> <td>FAF5 10 BD F8 93 27 FAFA 0A D7 D0 8E A7 FAFF CC FB00 BD F8 D4 20 F1 FB05 35 10 D6 D1 C1 FB0A 46 26 0C 8D 3F FB0F 30 14 AC E4 27 FB14 C9 30 0E 20 C5 FB19 C1 45 26 13 8D FB1E 2F AC E4 27 04 FB23 30 1E 20 B7 EC</td> <td>FC0A 08 0C C0 86 2D FC0F 97 C9 39 7E F9 FC14 F5 34 74 9D F8 FC19 35 35 74 96 80 FC1F 08 47 24 F3 86 FC23 80 09 84 7F 39 FC28 C6 4C BD F8 BF FC20 8D F0 81 53 26 FC32 FA 0D D2 26 18 FC37 8D E3 81 30 26 FC41 DA 27 FC A1 80 FC46 26 E5 8C A7</td>	F9D2 D1 C1 44 27 08 F9D7 C1 45 27 04 C1 F9DC 46 26 16 39 8E F9E1 A7 CE BD F8 EF F9E6 9E BC A7 84 A1 F9E8 80 26 01 39 C6 F9F0 31 20 8E 0F D1 F9F5 86 A7 1F 3B 10 F9FA CE A7 B0 0F C0 F9FF 86 A4 A4 FA00 15 B7 80 08 8E	FAF5 10 BD F8 93 27 FAFA 0A D7 D0 8E A7 FAFF CC FB00 BD F8 D4 20 F1 FB05 35 10 D6 D1 C1 FB0A 46 26 0C 8D 3F FB0F 30 14 AC E4 27 FB14 C9 30 0E 20 C5 FB19 C1 45 26 13 8D FB1E 2F AC E4 27 04 FB23 30 1E 20 B7 EC	FC0A 08 0C C0 86 2D FC0F 97 C9 39 7E F9 FC14 F5 34 74 9D F8 FC19 35 35 74 96 80 FC1F 08 47 24 F3 86 FC23 80 09 84 7F 39 FC28 C6 4C BD F8 BF FC20 8D F0 81 53 26 FC32 FA 0D D2 26 18 FC37 8D E3 81 30 26 FC41 DA 27 FC A1 80 FC46 26 E5 8C A7

CHIP 223

PROFESSIONAL SOFTWARE

